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QUALITY ASSURED 

Our quality system focuses on the continuing high quality of our 
components and the best possible service for our customers. We have 
a three-sided quality strategy: we apply a system oftotal quality control 
and assurance; we operate customer-oriented dynamic improvement 
programmes; and we promote a partnering relationship with our 
customers and suppliers. 

PRODUCT SAFETY 

In striving for state-of-the-art perfection, we continuously improve 
components and processes with respect to environmental demands. 
Our components offer no hazard to the environment in normal use 
when operated orstored within the limits specified in the data sheet. 

Some components unavoidably contain substances that, if exposed by 
accident or misuse, are potentially hazardous to health. Users of these 
components are informed of the danger by warning notices in the data 
sheets supporting the components. Where necessary the warning 
notices also indicate safety precautions to be taken and disposal 
instructions to be followed. Obviously users of these components, in 
general the set-making industry, assume responsibility towards the 
consumerwith respect to safety matters and environmental demands. 

All used or obsolete components should be disposed of according to 
the regulations applying at the disposal location. Depending on the 
location, electronic components are considered to be 'chemical', 
'special' orsometimes 'industrial' waste. Disposal as domestic waste is 
usually not perm itted. 
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DEFINITIONS 

Data Sheet Identification Product Status Definition (Note) 

Objective Specification Formative or in Design This data sheet contains the design target or goal specifications for 
product development. Specifications may change in any manner 
without notice. 

Preliminary Specification Preproduction Product This data sheet contains preliminary data, and supplementary data 
will be published at a later date. Philips Semiconductors reserves the 
right to make changes at any time without notice in order to improve 
design and supply the best possible product. 

Product Specification Full Production This data sheet contains Final Specifications. Philips Semiconductors 
reserves the right to make changes at any time without notice, in 
order to improve design and supply the best possible product. 

Short-form specification - The data in this specification is extracted from a full data sheet with 
the same type number and title. For detailed information see the 
relevant data sheet or data handbook. 

Limiting values 

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting 
values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other 
conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended 
periods may affect device reliability. 

Application information 

Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no 
representation or warranty that such applications will be suitable for the specified use without further testing or modification 

LIFE SUPPORT APPLICATIONS 
These products are not designed for use in life support appliances, devices, or systems where malfunction of these 
products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or 
selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips 
Semiconductors for any damages resulting from such improper use or sale. 

PURCHASE OF PHILIPS 12C COMPONENTS 

DISCLAIMER 

Purchase of Philips 12C components conveys a license under the Philips' 12C patent to use the 
components in the 12C system provided the system conforms to the 12C specifications defined 
by Philips. This specification can be ordered using the code 939839340011. 

Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, 
standard cells, and/or software, described or contained herein in order to improve design and/or performance. 
Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no 
license or title under any patent, copyright, or mask work right to these products, and makes no representations or 
warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise 
specified. 

NOTE: Always check with your local Philips Semiconductors Sales Office to be certain that you have the latest 
data sheet(s) before completing a design. 



Philips Semiconductors 

1997 Mar21 

Preface 

XA Microcontrollers from Philips Semiconductors 

Philips Semiconductors offers a wide range of microcontrollers based on the 8048, 
80C51 , and now the XA architectures. The XA is a new architecture that was 
developed by Philips Semiconductors in response to the market need for higher 
performance than what can be obtained from the 8-bit 80C51 and retained 
compatibility with the 80C51 designed-in architecture. The XA successfully 
addresses both of these needs. It is compatible with the 80C51 at the source code 
level. All of the internal registers and operating modes of the 80C51 are fully 
supported within the XA, as are all of the 80C51 instructions. Yet compatibility with 
the 80C51 has in no way hindered the performance of the XA. It is a very high 
performance 16-bit architecture. The XfJ\s performance is 3 to 4 times faster than 
that of the most popular 16 bit architectures and 10 to 100 times faster than the 
80C51. 

If you use or are familiar with the 80C51 and need higher performance, the XA is 
the architecture for you. You will find it very easy to understand. Rather than having 
to learn its programmer's model, you will find that you already know it, and, better, 
are very familiar with it. You will be able to focus on the enhanced features of the 
XA and quickly move your design to much higher performance. You will also notice 
that the features on the XA, in many cases, exceed what you need today. We have 
designed the XA so that it will meet your needs not only today but well into the 
future; you will not need to look for another architecture for many years to come. 

As Philips Semiconductors has done with the 8048 and 80C51 , we will develop the 
XA into a broad family of derivatives. Advance information has been included in this 
handbook that covers the first two of these. It is our plan to introduce 3 to 4 XA 
derivatives in 1997 and 5 to 8 per year after that. In addition to this, we will continue 
to move the XA into Philips Semiconductors' most advanced processes and we 
have plans to increase the clocking frequency of the architecture to over 100MHz 
(greater than 30MIPS execution rate). 

Philips Semiconductors offers you one of the industry's widest selections of 
microcontrollers. The XA architecture is an extension of this strategy that gives you 
the ability to easily upgrade your designs to very high performance with the only 
16-bit, 80C51-compatible microcontroller available on the market. 
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Philips Semiconductors 

XA tools linecard 

Telephone/Contact 
Product 

North America Europe 

C Compilers 

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen C-51XA 

CMX Company 1-508-872-7675 Charles Behrmann US 1-508-872-7675 Charles Behrmann Hi-Tech XAC 

Hi-Tech 1-207-236-9055 Avocet - T. Taylor UK 44.1.932.829460 Computer Solutions Hi-Tech C (X A) 

Pantasoft 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron C-XA 

Tasking 1-617-320-9400 Vaughn Orchard US 1-617-320-9400 Vaughn Orchard C-Compiler 

Emulators (including Debuggers) 

Ashling 1-508-366-3220 Bob Labadini IR 353.61.334466 Micheal Healy Ultra2000-XA 

Ceibo 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron DS-XA 

Nohau 1-408-866-1820 Jim Straub SW 46.40.922425 Mikael Johnsson EMUL51XA-PC 

Cross Assemblers 

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen A-51XA 

Ashling 1-508-366-3220 Bob Labadini IR 353.61.334466 Micheal Healy SDS-XA 

Pantasoft 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron ASM-XA 

Philips/Macraigor* 1-408-991-51XA Mati Kama US 1.408.991.5192 Moti Kama Mcgtool 

Tasking 1-617-320-9400 Vaughn Orchard US 1-617-320-9400 Vaughn Orchard C-Compiler 

Real-Time Operating Systems 

CMX Company 1-508-872-7675 Charles Behrmann US 1.508.872.7675 Charles Behrmann CMX-RTX 

Embedded 1-713-561-9990 Ron Hodge US 1.713.516.9990 Ron Hodge RTXC System Products 

R&D Publications 1-913-841-1631 Customer Service US 1.913.841.1631 Customer Service Labrosse MCU/OS 

Simulators & Software Generation Tools 

Aisys 1-800-397-7922 Customer Service IL 972.3.9226860 Oren Katz DriveWay-XA 

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen SimCASE-51XA 

Pantasoft 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron DEBUG-XA 

Philips/Macraigor* 1-408-991-51XA Moti Kama US 1.408.991.5192 Moti Kama Mcgtool 

Translators (80CS1-to-XA) 

Philips/Macraigor* 1-408-991-51XA Mike Thompson US 1.408.991.5192 Mike Thompson Mcgtool 

Development Kits 

CMX (Hi-Tech) 1-508-872-7675 Charles Behrmann UK 44.1 .932.829460 Charles Behrmann XADEV 

Future Designs 1-205-830-4116 Mark Hall US 1-205-830-4116 Mark Hall XTEND-G3 

Philips/Macraigor 1-408-991-51 XA Moti Kama US 1.408.991.5192 Moti Kama P51XA-DBE SD 

EPROM Programmers 

BP Microsystems 1-800-225-2102 Sales Department US 1.713.688.4600 Sales Department BP-1200 

Ceibo 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron MP-51 

Data 1/0 Corp. 1-800-247-5700 Tech Help Desk BE 32.1.638.0808 Roland Appeltants UniSite 

Adapters & Sockets 

EDI Corp 1-702-735-4997 Milos Krejcik US 1.702.735.4997 Milos Krejcik 44PG/44PL 

Logical Systems 1-315-478-0722 Lynn Burko US 1.315.478.0722 Lynn Burko PA-XG3FC-44 
.. 

• The Philips cross assembler, simulator, and translator are available on the Philips FTP site at ftp://ftp.philipsMCU.com/pub. 
File name XA-TOOLS.ZIP 
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Philips Semiconductors 

Microcontroller internet and 
bulletin board access 

INTERNET ACCESS 

Philips Semiconductors World Wide Web: 

http://www.semiconductors.philips.com 

Internet XA 16-bit 80C51 Support Address: 

XA_help@sv.sc.philips.com 

Microcontroller FTP Site: 

ftp://ftp.PhilipsMCU.com 

Internet Microcontroller Newsletter: 
To subscribe, send email to: 

News-Request@PhilipsMCU.com 

Internet 80C51 Discussion Forum: 

Forum-Request@ PhilipsMCU.com 

Internet 80C51 Applications Support Address: 

80C51_help @ sv.sc.philips.com 

Send us your questions and we will respond quickly. 

1997 Mar 21 8 



Philips Semiconductors 

Microcontroller internet and 
bulletin board access 

BULLETIN BOARDS 
To better serve our customers, Philips maintains a microcontroller bulletin board. This computer bulletin board 
system features microcontroller newsletters, application and demonstration programs for download. 

The telephone numbers is: 

European Bulletin Board 
MAX 14.400 baud 

Standards V32N42N42.bis/HST 
+31 402721102 

Sunnyvale ROMcode Bulletin Board 

We also have a ROM code bulletin board through which you can submit ROM codes. This is a closed bulletin 
board for security reasons. To get an ID, contact your local sales office. The system can be accessed with a 2400, 
1200, or 300 baud modem, and is available 24 hours a day. 

The telephone number is: 

(408) 991-3459 

All code for application notes in this databook are available on the Philips web site. 
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Philips Semiconductors 

FAX-on-DEMAND System 

FAX 

DEMAND 

You can hang up now 

What is it? 
The FAX-on-DEMAND system is a computer facsimile 
system that allows customers to receive selected 
documents by fax automatically. 

How does it work? 
To order a document, you simply enter the document 
number. This number can be obtained by asking for an 
index of available documents to be faxed to you the 
first time you call the system. 

Our system has a selection of the latest product data 
sheets from Philips with varying page counts. As you 
know, it takes approximately one minute to FAX one 
page. This isn't bad if the number of pages is less than 
10. But if the document is 37 pages long, be ready for 
a long transmission! 

Philips Semiconductors also maintains product 
information on the World-Wide Web. Our home page 
can be located at: 
http://www.semiconductors.philips.com 

Who do I contact if I have a question 
about FAX-on-DEMAND? 
Contact your local Philips sales office. 

1997 Mar 04 10 

FAX-on-DEMAND phone numbers: 
England 44-181-730-5020 
(United Kingdom, Ireland) 

France 33-1-40-99-60-60 

Italy 39-167-295502 

North America 1-800-282-2000 

Locations soon to be in operation: 
Hong Kong 
Japan 
The Netherlands 



Philips Semiconductors 

CMOS and NMOS a-bit microcontroller family 

8400 FAMILY CMOS 

TYPE ROM RAM SPEED PACKAGE FUNCTIONS REMARKS PROBE REMARKS 
(MHz) SDS 

84C21A 2k 64 10 DIL28/S028 20 I/O lines OM1083 OM1025 
84C41A 4k 128 10 DIL28/S028 8-bittimer (LSDS) 
84C81A 8k 256 10 DIL28/S028 Byte 12C 

84C22A 2k 64 10 DIL20/S020 131/0 lines OM1083 + OM1025 
84C42A 4k 64 10 DIL20/S020 8-blttimer Adapter_1 (LSDS) 
84C12A 1k 64 16 DIL20/S020 

DIL20/S020 

84COOB 0 256 10 28 pins 20 I/O lines Piggyback OM1080 
8-bittimer 
Byte 12C 

84COOT 0 256 10 VSO-56 ROMless OM1080 

84C121 1k 64 10 DIL20/S020 131/0 lines OM1073 OM 1 025(LEDS) 
2 8-bit timers 
8 bytes 

84C121B 0 64 10 EEPROM Piggyback OM1027 

84C122A 1k 32 10 A: S020 Controller for OM4830 
84C122B B: S024 remote control 
84C422A 4K 32 C: S028 A: 121/0 
84C422B B: 161/0 
84C822A 8K 32 C:201/0 
84C822B 
84C822C 

84C230 21 64 10 DIL40NS040 121/0 lines OM1072 
8-bittimer 
16*4 LCD drive 

84C430 4k 128 10 QFP64 241/0 lines OM1072 
8-bittimer 
Byte 12C 
24*4 LCD drive 

84C430BH 0 128 10 Piggyback for C230 
and C430 

84C633 6k 256 16 VS056 281/0 lines OM1086 
8-bittimer 
16-bit up/down 
counter 
16-bittimer 
with compare 
and capture 

84C633B 0 256 16 16*4 LCD drive 

84C440 4k 128 10 DIP42 shrunk RC: 29 I/O lines 12C, RC OM1074 For emulation of 
84C441 4k 128 10 LC: 28 I/O lines 12C, LC LC versions, 
84C443 4k 128 10 8-bittimer RC use OM1074 + 
84C444 4k 128 10 114-bitPWM LC adaptec3 + 
84C640 6k 128 10 56-bitPWM 12C, RC 2adaptec5 
84C641 6k 128 10 3-bitADC 12C, LC 
84C643 6k 128 10 OSD 2L-16 RC 
84C644 6k 128 10 LC 
84C840 8k 192 10 12C, RC 
84C841 8k 192 10 12C, LC 
84C843 8k 192 10 RC Baud for LCDS 
84C844 8k 192 10 LC OM4831 
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Philips Semiconductors 

CMOS and NMOS a-bit microcontroller family 

8400 FAMILY CMOS (Continued) 

TYPE ROM RAM SPEED PACKAGE FUNCTIONS REMARKS PROBE REMARKS 
(MHz) SDS 

84C646 6k 192 10 DIP42 shrunk 30 I/O lines 12C, RC OM4829 + OM4833 for 
84C846 8k 192 10 DOS clock = 12C, RC OM4832 LCD584 

PLL 
8 bit timer 
1-14 bit PWM 
4-6 bit PWM 
4-7 bit PWM 
3-4 bitADC 
DOS: 64 disp. 
RAM 
62 char. fonts 
Char. blinking 
Shadow modes 
8 foreground 

colors/char. 
8 background 
colors/word 

DOS: clock: 
8".20MHz 

84C85 8k 256 10 DIL40NS040 321/0 lines OM1070 
8-bittimer 

" Byte 12C 
84C85B 0 256 10 Piggyback for C85 

84C853 8k 256 16 DIL40NS040 331/0 lines OM1081 
8-bittimer 
16-bit up/down 
counter 
16-bit timer with 
compare and 
capture 

84C853B 0 256 16 Piggyback for C853 

84C270 2k 128 10 DIL40NS040 81/0 lines OM1077 
84C470 4k 128 10 DIL40NS040 16*8 captu re 

keyboard matrix 
8-bittimer 

84C270B 0 128 10 Piggyback for C270 

84C470B 0 128 10 470 also Piggyback for C470 
handles mech. 
keys 

84C271 2k 128 10 DIL40 81/0 lines OM1078 
16*8 mech. 
keyboard matrix 
8-bittimer 

8400 FAMILY NMOS 

TYPE ROM RAM SPEED PACKAGE FUNCTIONS REMARKS EMULATOR REMARKS 
(MHz) TOOLS 

8411 1k 64 6 DIL28/S028 20 I/O lines OM1025 
8421 2k 64 6 DIL28/S028 8-bittimer (LCDS) + 
8441 4k 128 6 DIL28/S028 Byte 12C OM1026 
8461 6k 128 6 DIL28/S028 

8422 2k 64 6 DIL20 131/0 lines 
8442 4k 128 6 DIL20 8-bittimer 

Bitl2C 

8401B 0 128 6 28-pin Piggyback for 84X1 
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Philips Semiconductors 

CMOS and NMOS a-bit microcontroller family 

3300 FAMILY CMOS 

TYPE ROM RAM SPEED PACKAGE FUNCTIONS REMARKS PROBE REMARKS 
(MHz) sos 

3315A 1.5k 160 10 DIL28/S028 20110 lines OM1083 OM1025(LCDS) 
8-bittimer 
Voo> 1.8V 

3343 3k 224 10 DIL28/S028 20 I/O lines OM1083 OM 1 025(LCDS) 
8-bittimer 
Voo> 1.8V 
8yte 12C 

3344A 2k 224 3.58 DIL28/S028 20 I/O lines OM1071 OM 1 025(LCDS) 
8-bittimer + OM1028 
DTMF generator 

3346A 4k 128 10 DIL28/S028 20 I/O lines OM1076 
8-bittimer 
8yte 12C 
256 bytes EEPROM 
Voo < 1.8V 

3347 1.5k 64 3.58 DIL20/S020 121/0 lines OM1071 + OM1025(LCDS) 
8-bittimer Adapter_2 +OM1028 
DTMF generator 

3348A 8k 256 10 DIL28/S028 20110 lines OM1083 OM1025(LCDS) 
8-bittimer 
8yte 12C 
Voo < 1.8V 

3349A 4k 224 3.58 DIL28/S028 20110 lines OM1071 OM1025(LCDS) 
8-bittimer +OM1028 
DTMF generator 

3350A 8k 128 3.58 VS064 30110 lines 
8-bittimer 
DTMF generator 
256 bytes EEPROM 

3351A 2k 64 3.58 DIL28/S028 20 I/O lines OM5000 
8-bittimer 
DTMF generator 
128 bytes EEPROM 

3352A 6k 128 3.58 DIL28/S028 20 I/O lines OM5000 
8-bittimer 
DTMF generator 
128 byte EEPROM 

3353A 6k 128 16 DIL28/S028 20110 lines March '92 OM5000 
8-bittimer 
DTMF generator 
Ringer out 
128 bytes EEPROM 

3354A 8k 256 16 QFP64 361/0 lines June '92 OM4829+ OM4829: Probe 
8-bittimer OM5003 base 
DTMF generator 
Ringer out 
256 bytes EEPROM 

8755A 0 128 16 DIL28/S028 8kOTP In Development 
20110 lines 
8-bittimer 
DTMF generator 
Melody output 
128 bytes EEPROM 

33018 Piggyback for 3315, OM1083 
3343,3348 

33448 Piggyback for 3344, OM1071 
3347,3349 

33468 Piggyback for 3346 OM1076 
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Philips Semiconductors 

CMOS and N MaS a-bit microcontroller family 

3300 FAMILY CMOS (Continued) 

TYPE ROM RAM SPEED PACKAGE FUNCTIONS REMARKS PROBE REMARKS 
(MHz) SDS 

33508 Piggyback for 3350A OM4829+ 
OM5003 

33518 Piggyback for OM5000 
3351 A, 3352A, 
3353A 

33548 Piggyback for 3354A OM4829+ 
OM5010 
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Philips Semiconductors 

CMOS 16-bit microcontroller family 

16-81T CONTROLLERS (XA ARCHITECTURE) 

TYPE (EP)ROM RAM SPEED FUNCTIONS REMARKS DEVELOPMENT TOOLS 
(MHz) 

XA-G1 8k 512 30 3 timers, watchdog, -40 to Nohau 
2 UARTs +125°C Ceibo 

MacCraigor Systems 

XA-G2 16k 512 30 3 timers, watchdog, -40 to Nohau 
2 UARTs +125°C Ceibo 

MacCraigor Systems 

XA-G3 32k 512 30 3 timers, watchdog, -40 to Nohau 
2 UARTs +125°C Ceibo 

MacCraigor Systems 

16-81T CONTROLLERS (68000 ARCHITECTURE) 

TYPE (EP)ROM RAM SPEED FUNCTIONS REMARKS PHILIPS TOOLS THIRD-PARTY 
(MHz) TOOLS 

68070 - - 17.5 2 DMA channels, OM4160 Microcore 1 TRACE32-ICE68070 
MMU, UART, OM4160/2 Microcore 2 (Lauterbach) 
16-bit timer, 12C, OM4161 (SBE68070) 
68000 bus interface, OM4767/2 XRAY68070SBE 
16Mb address range high level symbolic debugger 

OM4222 68070DS development 
system 

OM4226 XRAY68070DS 
high level symbolic debugger 

93C101 34k 512 15 Derivative with low Not for new 
power modes design 

90CE201 16MB 16MB 24 UART, fast 12C. -25 to OM4162 Microcore 4 TRACE32-
external external 3 timers (16 bit), +85°C (Lauterbach) 

ROM RAM Watchdog timer. 
68000 software 
compatible, EMC, 
QFP64 
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Philips Semiconductors 

80C51 microcontroller family features guide 

Part Number Memory Counter I/O Serial External Comments! 
(ROM less) ROM EPRM RAM Timers Port Interfaces Interrupt Special Features 

P 83C750 1K 64 1 (16-bit) 2-3/8 2 40 MHz, Lowest cost, SSOP 

P 87C750 1K 64 1 (16-bit) 2-3/8 2 40 MHz, Lowest cost, SSOP 

P 83C748 2K 64 1 (16-bit) 2-3/8 2 8XC751 w/o I"C, SSOP 

P 87C748 2K 64 1 (16-bit) 2-3/8 2 8XC751 w/o 12C, SSOP 

S 83C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 24-pin Skinny DIP, SSOP 

s 87C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 24-pin Skinny DIP, SSOP 

P 83C749 2K 64 1 (16-bit) 2-5/8 2 8XC752 w/o 12C, SSOP 

P 87C749 2K 64 1 (16-bit) 2-5/8 2 8XC752 w/o 12C, SSOP 

S 83C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit NO, PWM Output, SSOP 

S 87C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit NO, PWM Output, SSOP 

SC 80C51 (80C31) 4K 128 2 4 UART 2 CMOS (Sunnyvale) 

PCx 80C51 (80C31) 4K 128 2 4 UART 2 CMOS (Hamburg) 

SC 87C51 4K 128 2 4 UART 2 CMOS 

P 80CL51 (80CL31) 4K 128 2 4 UART 10 Low Voltage (1.8V to 6V), Low Power 

P 83CL410 (80CL41 0) 4K 128 2 4 12C 10 Low Voltage (1.8V to 6V), Low Power 

SC 83C451,(80C451) 4K 128 2 7 UART 2 Extended 110, Processor Bus Interface 

SC 87C451 4K 128 2 7 UART 2 Extended 110, Processor Bus Interface 

p 83C550 (80C550) 4K 128 2 + Watchdog 4 UART 2 8 Channel 8-bit NO 

P 87C550 4K 128 2+ Watchdog 4 UART 2 8 Channel 8-bit NO 

P 83C851 (80C851) 4K 128 2 4 UART 2 256B EEPROM, 80C51 Pin compatible 

P 83C852 6K 256 2 (16-bit) 2/8 1 Smartcard Controller with 2K EEPROM (Data, 
Code) Cryptographic Calc Unit 

P 83CL580 (80CL580) 6K 256 3 + Watchdog 5 UART,12C 9 4 Channel 8-bit NO, PWM Output, 
Low Voltage (2.5V to 6V), Low Power 

P 80C52 (80C32) 8K 256 3 4 UART 2 80C51 Pin Compatible 

P 87C52 8K 256 3 4 UART 2 (see above) 

P 83C652 (80C652) 8K 256 2 4 UART,12C 2 80C51 Pin Compatible 

S 87C652 8K 256 2 4 UART,12C 2 (see above) 

P 83C453 (80C453) 8K 256 2 7 UART 2 Extended 110, Processor Bus Interface 
p 87C453 8K 256 2 7 UART 2 Extended 110, Processor Bus Interface 

S 83C51 FA (80C51 FA) 8K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA 

S 87C51FA 8K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA 

S 83L51FA 8K 256 3+PCA 4 UART 2 Low Voltage 83C51 FA (3V @ 20M Hz) 

S 87L51FA 8K 256 3+PCA 4 UART 2 Low Voltage OTP 87C51 FA (3V @ 20M Hz) 

P 83C575 (80C575) 8K 256 3+ PCA+ 4 UART 2 High Reliability, with Low Voltage Detect, 
Watchdog OSC Fail Detect, Analog Comparators, PCA 

P 87C575 8K 256 (see above) 4 UART 2 (see above) 

P 83C576 (80C576) 8K 256 3+ PCA+ 4 UART 2 Same as 8XC575 plus UPI and 10-bit NO 
Watchdog 

P 87C576 8K 256 (see above) 4 UART 2 (see above) 

PC 83C562 (80C562) 8K 256 3 + Watchdog 6 UART 2 8 Channel 8-bit NO, 2 PWM Outputs, 
Capture/Compare Timer 

PCx 83C552 (80C552) 8K 256 3 + Watchdog 6 UART,12C 2 8 Channel10-bit NO, 2 PWM Outputs, 
Capture/Compare Timer 

S 87C552 8K 256 3 + Watchdog 6 UART,12C 2 ,(see above) 

Notes: Part number prefixes are noted In the first column. 
All combinations of part type, speed, temperature and package may not be available. 
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Philips Semiconductors 
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Part Number Program Clock Freq Temperature Ranges (OC) pacKage 

(ROM less) Security? (MHz) Oto 70 -40 to +85 -55 to +125 PDIP CDIP PLCC CLCC PQFP/SSOP 

83C750 S N 3.51040 X X N24 F24 A28 OB24 (0-70F) 

87C750 S y 3.51040 X X N24 F24 A28 OB24 (0-70F) 

83C748 S N 3.51016 X X N24 A28 OB24 (0-70F) 

87C748 8 y 3.51016 X X N24 F24 A28 OB24 (0-70F) 

83C751 8 N 3.51016 X X N24 A28 OB24 (0-70F) 

87C751 8 Y 3.51016 X X N24 F24 A28 OB24 (0-70F) 

83C749 8 N 3.51016 X X N28 A28 OB28 (0-70F) 

87C749 S Y 3.51016 X X N28 F28 A28 OB28 (0-70F) 

83C752 8 N 3.51016 X X X N28 A28 OB28 (0-70F) 

87C752 8 y 3.51016 X X X N28 F28 A28 OB28 (0-70F) 

8C80C51 (80C31) 8 y 3.51033 X X X N40 A44 B44 (5) 

PCx80CS1 (80C31) H N 1.21030 X X X P (40) WP(44) H (44) 

87CS1 8 y 3.51033 X X X N40 F40 A44 K44 B44 (5) 

80CL51 (80CL31) Z N 01016 (1) X N40(2) B44 

83CL41 0(80CL41 0) Z N 01012 (1) X N40 (2) B44 

83C451 (80C451) 8 N 3.51016 X X X N64 (4) A68 

87C451 S Y 3.51016 X X X N64 (4) A68 

83CS50 (80C550) 8 y 3.51016 X X N40 A44 

87CS50 8 y 3.51016 X X -4010 +125 N40 F40 A44 K44 

83C851 (80C8S1) H y 1.21016 X X N40 A44 B44 

83C852 H Y 11012 X 8028 
ordie 

83CLS80 (80CL580) Z N 01012 (1) X (3) B64 

80C52 (80C32) S y 3.51024 X X N40 A44 B44 (5) 

87CS2 S y 3.51024 X X X N40 F40 A44 K44 B44 (5) 

83C652 (80C652) H Y 1.21024 X X -4010 +125 N40 A44 B44 

87C652 8 y 1.21020 X X X N40 F40 A44 K44 

83C453 (80C453) 8 N 3.51016 X X A68 

87C453 S Y 3.51016 X X A68 

83C51FA (80C51 FA) 8 y 3.51024 X X N40 A44 B44 

87CS1FA 8 Y 3.51024 X X N40 F40 A44 K44 844 

83L51FA 8 y 3.51020 X X N40 A44 B44 

87L51FA 8 y 3.51020 X X N40 F40 A44 K44 B44 

83C575 (80C575) S Y 41016 X X N40 A44 B44 

87C575 S y 41016 X X N40 F40 A44 K44 B44 

83C576 (80C576) S y 41016 X X N40 A44 B44 

87C576 S Y 41016 X X N40 F40 A44 K44 B44 

83C562 (80C562) H N 1.21016 X X -4010 +125 A68 B80 

83C552 (80C552) H N 1.21030 X X -40 to +125 A68 B80 

87C552 S y 1.21016 X A68 K68 

Notes: Production Centers are indicated In the second column: H - Hamburg, S - Sunnyvale, Z - Zunch. 
All combinations of part type, speed, temperature and package may not be available. 
1) Oscillator options start from 32kHz. 
2) Also available in VS040 package. 
3) Also available in VS056 Package. 
4) Not recommended for new design. 
5) Package available up to 16 MHz only. 
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Part Number Memory Counter I/O Serial External Comments! 
(ROMless) ROM EPRM RAM Timers Port Interfaces Interrupt Special Features 

p 83C055 16K 256 2 (16-bit) 31/2 - 2 On-Screen Display, 9 PWM Outputs, 
3 Software AID Inputs 

p 87C055 16K 256 2 (16-bit) 31/2 - 2 (see above) 

p 80C54 16K 256 3 4 UART 2 Standard; 80C51 compatible 

p 87C54 16K 256 3 4 UART 2 Standard; 87C51 compatible 

p 83C654 16K 256 2 4 UART,12C 2 80C51 Pin Compatible 

s 87C654 16K 256 2 4 UART,12C 2 (see above) 

p 83CE654 16K 256 2 4 UART,12C 2 83C654 with Reduced EMI 

p 83CL781 16K 256 3 4 UART,12C 10 Low Voltage (1.8V to 6V), Low Power 

p 83CL782 16K 256 3 4 UART,12C 10 83CL781 Optimized 12MHz @ 3.1V 

s 83C51FB 16K 256 3+ PCA 4 UART 2 Enhanced UART, 3 timers + PCA 

s 87C51FB 16K 256 3+ PCA 4 UART 2 Enhanced UART, 3 timers + PCA 

s 83L51FB 16K 256 3+ PCA 4 UART 2 Low Voltage 83C51 FB (3V @ 20MHz) 

s 87L51FB 16K 256 3+ PCA 4 UART 2 Low Voltage OTP 87C51 FB (3V @ 20MHz) 
p 83C524 16K 512 3 + Watchdog 4 UART, 12C-bit 2 512 RAM 
p 87C524 16K 512 3+Watchdog 4 UART, 12C-bit 2 512 RAM 
p 83C592 (80C592) 16K 512 3+ Watchdog 6 UART,CAN 6 CAN Bus Controller with 8 x 1 O-bit AID, 

2 PWM outputs, Capture/Compare Timer 

p 87C592 16K 512 3 + Watchdog 6 UART,CAN 6 (see above) 

p 80C58 32K 256 3 4 UART 2 Standard; 80C51 compatible 
p 87C58 32K 256 3 4 UART 2 Standard; 87C51 compatible 

s 83C51FC 32K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA 

s 87C51FC 32K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA 
p 83C528 (80C528) 32K 512 3+ Watchdog 4 UART, 12C-bit 2 Large Memory for High Level Languages 
p 87C528 32K 512 3+ Watchdog 4 UART, 12C-bit 2 Large Memory for High Level Languages 
p 83CE528 (80CE528) 32K 512 3 + Watchdog 4 UART, 12C-bit 2 8XC528 with Reduced EMI 
p 83CE598 (80CE598) 32K 512 3 + Watchdog 6 UART,CAN 6 CAN Bus Controller, 8 x 10-bit AID, 

2 PWM outputs, WD, T2, Reduced EMI 

p 87CE598 32K 512 3 + Watchdog 6 UART,CAN 6 (see above) 
p 83CE558(80CE558) 32K 1024 3 + Watchdog 6 UART,12C 2 Low EMI, 8 Channel10-bit AID, 

2 PWM Outputs, Capture/Compare Timer 

p 89CE558 32K 1024 3 + Watchdog 6 UART,12C 2 32K FLash EEPROM plus above 

Notes: Part number prefixes are noted In the first column. 
All combinations of part type, speed, temperature and package may not be available. 
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Part Number Program Clock Freq lemperature Hanges (0C) package 

(ROMless) Security? (MHz) Oto 70 -40 to +85 -55 to +125 PDIP CDIP PLCC CLCC PQFP/SSOP 

83C055 S N 3.5 to 20 X NB42 

87C055 S N 3.5 to 20 X NB42 

80C54 S y 3.5 to 24 X X N40 A44 B44 

87C54 S Y 3.5 to 24 X X N40 F40 A44 K44 B44 

83C654 (80C654) H Y 1.2t024 X X -40 to +125 R42. A44 B44 
N40 

87C654 S y 1.2t020 X X X N40 F40 A44 K44 B44 

83CE654 H y 1.2to 16 X X B44 

83CL781 Z N Oto 12 (1) X N40 B44 

83CL782 Z N Oto 12 (1) -25 to +55 N40 B44 

83C51 FB S y 3.5 to 24 X X N40 A44 B44 

87C51 FB S y 3.5 to 24 X X N40 F40 A44 K44 B44 

83L51FB S y 3.5 to 20 X N40 A44 B44 

87L51FB S y 3.5 to 20 X N40 F40 A44 K44 B44 

83C524 H Y 1.2 to 16 X X N40 A44 B44 

87C524 S y 3.5 to 20 X X N40 F40 A44 K44 B44 

83C592 (80C592) H Y 1.2to 16 X -40 to +125 AS8 K68 

87C592 H Y 1.2to 16 X R42 AS8 K68 

80C58 S y 3.5 to 16 X X N40 A44 B44 

87C58 S y 3.51016 X X N40 F40 A44 K44 B44 

83C51FC S y 3.5 to 24 X X N40 A44 B44 

87C51FC S Y 3.51024 X X N40 F40 A44 K44 B44 

83C528 (80C528) H Y 1.2to 16 X X -40 to +125 N40 A44 B44 

87C528 S Y 3.5 to 20 X X N40 F40 A44 K44 B44 

83CE528 (80CE528) H Y 1.2to 16 X X -40 to +125 A44 B44 

83CE598 (80CE598) H Y 1.2to 16 X -40 to +125 B80 

87CE598 H Y 3.5 to 16 X X B80 

83CE55880CE558 H y 1.2to 16 X X -40 to +125 B80 

89CE558 H Y 1.2to 16 X X Q80 B80 

Notes: Production Centers are indicated In the second column: H - Hamburg, S - Sunnyvale, Z - Zunch. 
All combinations of part type, speed, temperature and package may not be available. 
1) Oscillator options start from 32kHz. 
2) Also available in VS040 package. 
3) Also available in VS056 Package. 
4) Not recommended for new design. 
5) Package available up to 16 MHz only. 
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Ordering Information 

XA PRODUCTS 

Example: P51 XA G3 7 

Philips SOCS1 eX1ended Architecture] T 
Derivative Name 

K B A 

L Package Code 

1997 Mar 21 

A = Plastic Leaded Chip Carrier (PLCC) 
BD = Low Profile Quad Flat Pack (LQFP) 
KA = CerQuad (window) 
BC = Thin Quad Flat Pack (TQFP) 

Temperature 
B = O°C to +70°C 
F = -40°C to +85°C 
H = -40°C to + 125°C 

Speed 
J = 25MHz 
K = 30MHz 

'------ Memory Option 
0= ROMless 
3= ROM 
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General 

TOTAL QUALITY MANAGEMENT 

Philips Semiconductors is a Quality Company, renowned 
for the high quality of our products and service. We keep 
alive this tradition by constantly aiming towards one 
ultimate standard, that of zero defects. This.aim is guided 
by our Total Quality Management (TQM) system, the 
basis of which is described in the following paragraphs. 

Quality assurance 

Based on ISO 9000 standards, customer standards such 
as Ford TQE and IBM MDQ. Our factories are certified to 
ISO 9000 by external inspectorates. 

Partnerships with customers 

PPM co-operations, design-in agreements, ship-to-stock, 
just-in-time and self-qualification programmes, and 
application support. 

Partnerships with suppliers 

Ship-to-stock, statistical process control and ISO 9000 
audits. 

Quality improvement programme 

Continuous process and system improvement, design 
improvement, complete use of statistical process control, 
realization of our final objective of zero defects, and 
logistics improvement by ship-to-stock and just-in-time 
agreements. 

ADVANCED QUALITY PLANNING 

During the design and development of new products and 
processes, quality is built-in by advanced quality 
planning. Through failure-mode-and-effect analysis the 
critical parameters are detected and measures taken to 
ensure good performance on these parameters. The 
capability of process steps is also planned in this phase. 
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Quality 

PRODUCT CONFORMANCE 
The assurance of product conformance is an integral part 
of our quality assurance (QA) practice. This is achieved 
by: 

• Incoming material management through partnerships 
with suppliers. 

• In-line quality assurance to monitor process 
reproducibility during manufacture and initiate any 
necessary corrective action. Critical process steps are 
100% under statistical process control. 

• Acceptance tests on finished products to verify 
conformance with the device specification. The test 
results are used for quality feedback and corrective 
actions. The inspection and test requirements are 
detailed in the general quality specifications. 

• Periodic inspections to monitor and measure the 
conformance of products. 

PRODUCT RELIABILITY 

With the increasing complexity of Original Equipment 
Manufacturer (OEM) equipment, components reliability 
must be extremely high. Our research laboratories and 
development departments study the failure mechanisms 
of semiconductors. Their studies result in design rules 
and process optimization for the highest built-in product 
reliability. Highly accelerated tests are applied to the 
product reliability evaluation. Rejects from reliability tests 
and from customer complaints are submitted to failure 
analysis, to result in corrective action. 

CUSTOMER RESPONSES 

Our quality improvement depends on joint action with our 
customer. We need our customer's inputs and we invite 
constructive comments on all aspects of our performance. 
Please contact our local sales representative. 

RECOGNITION 

The high quality of our products and services is 
demonstrated by many Quality Awards granted by major 
customers and international organizations. 
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ELECTROSTATIC CHARGES 
Electrostatic charges can exist in many things; for example, 
man-made-fibre clothing, moving machinery, objects with air blowing 
across them, plastic storage bins, sheets of paper stored in plastic 
envelopes, paper from electrostatic copying machines, and people. 
The charges are caused by friction between two surfaces, at least 
one of which is non-conductive. The magnitude and polarity of the 
charges depend on the different affinities for electrons of the two 
materials rubbing together, the friction force and the humidity of the 
surrounding air. 

Electrostatic discharge is the transfer of an electrostatic charge 
between bodies at different potentials and occurs with direct contact 
or when Induced by an electrostatic field. All of our MOS devices are 
internally protected against electrostatic discharge but they can be 
damaged if the following precautions are not taken. 

WORK STATION 
Figure 1 shows a working area suitable for safely handling 
electrostatic sensitive devices. It has a work bench, the surface of 
which is conductive or covered by an antistatic sheet. Typical 
resistivity for the bench surface Is between 1 and 500 kn per cm2 

The floor should also be covered with antistatic material. The 
following precautions should be observed: 
• Persons at a work bench should be earthed via a wrist strap and a 

resistor 

• All mains-powered electrical equipment should be connected via 
an earth leakage switch 

• Equipment cases should be earthed 

• Relative humidity should be maintained between 50 and 65% 

• An ionizer should be used to neutralize objects with immobile 
static charges 

RECEIPT AND STORAGE 
MOS devices are packed for dispatch in antistatic/conductive 
containers, usually boxes, tubes or blister tape. The fact that the 

(1) Earthing rail. 
(2) Resistor (500 kn ± 10%,0.5 W). 
(3) Ionizer. 
(4) Work bench. 
(5) Chair 
(6) Wrist strap. 
(7) Electrical equipment. 

(8), (9) Conductive surface/antistatic sheet. 

(1) 

Handling MOS devices 

contents are sensitive to electrostatic discharge is shown by warning 
labels on both primary and secondary packing. 

The devices should be kept in their original packing whilst in 
storage. If a bulk container is partially unpacked, the unpacking 
should be performed at a protected work station. Any MOS devices 
that are stored temporarily should be packed in conductive or 
antistatic packing or carriers. 

ASSEMBLY 
MOS devices must be removed from their protective packing with 
earthed component pincers or short-circuit clips. Short-circuit clips 
must remain in place during mounting, soldering and 
cleansing/drying processes. Do not remove more devices from the 
storage packing than are needed at anyone time. 
Production/assembly documents should state that the product 
contains electrostatic sensitive devices and that special precautions 
need to be taken. 

During assembly, endure that the MOS devices are the last of the 
components to be mounted and that this is done at a protected work 
station. 

All tools used during assembly, including soldering tools and solder 
baths, must be earthed. All hand tools should be of conductive or 
antistatic material and, where possible, should not be insulated. 

Measuring and testing of completed circuit boards must be done at a 
protected work station. Place the soldered side of the circuit board 
on conductive or antistatic foam and remove the short-circuit clips. 
Remove the circuit board from the foam, holding the board only at 
the edges. Make sure the circuit board does not touch the 
conductive surface of the work bench. After testing, replace the 
circuit board on the conductive foam to await packing. 

Assembled circuit boards containing MOS devices should be 
handled in the same way a unmounted MOS devices. they should 
also carry waning labels and be packed in conductive or antistatic 
packing. 

Figure 1. Protected work station 

November 1994 29 



Philips Semiconductors . 

General 

RATING SYSTEMS 

The rating systems described are those recommended 
by the IEC in its publication number 134. 

Definitions of terms used 

ELECTRONIC DEVICE 

An electronic tube or valve, transistor or other 
semiconductor device. This definition excludes inductors, 
capacitors. resistors and similar components. 

CHARACTERISTIC 

A characteristic is an inherent and measurable property 
of a device. Such a property may be electrical, 
mechanical, thermal, hydraulic, electro-magnetic or 
nuclear, and can be expressed as a value for stated or 
recognized conditions. A characteristic may also be a set 
of related values, usually shown in graphical form. 

BOGEY ELECTRONIC DEVICE 

An electronic device whose characteristics have the 
published nominal values for the type. A bogey electronic 
device for any particular application can be obtained by 
considering only those characteristics that are directly 
related to the application. 

RATING 

A value that establishes either a limiting capability or a 
limiting condition for an electronic device. It is determined 
for specified values of environment and operation, and 
may be stated in any suitable terms. Limiting conditions 
may be either maxima or minima. 

RATING SYSTEM 

The set of principles upon which ratings are established 
and which determine their interpretation. The rating 
system indicates the division of responsibility between 
the device manufacturer and the circuit designer, with the 
object of ensuring that the working conditions do not 
exceed the ratings. 

Absolute maximum rating system 

Absolute maximum ratings are limiting values of 
operating and environmental conditions applicable to any 
electronic device of a specified type, as defined by its 
published data, which should not be exceeded under the 
worst probable conditions. 

These values are chosen by the device manufacturer to 
provide acceptable serviceability of the device, taking no 
responsibility for equipment variations, environmental 
variations, and the effects of changes in operating 
conditions due to variations in the characteristics of the 
device under consideration and of all other electronic 
devices in the equipment. 

1995 Mar 27 30 

Rating systems 

The equipment manufacturer should design so that, 
initially and throughout the life of the device, no absolute 
maximum value for the intended service is exceeded with 
any device, under the worst probable operating 
conditions with respect to supply voltage variation, 
equipment component variation, equipment control 
adjustment, load variations, signal variation, 
environmental conditions, and variations in 
characteristics of the device under consideration and of 
all other electronic devices in the equipment. 

Design maximum rating system 

Design maximum ratings are limiting values of operating 
and environmental conditions applicable to a bogey 
electronic device of a specified type as defined by its 
published data, and should not be exceeded under the 
worst probable conditions. 

These values are chosen by the device manufacturer to 
provide acceptable serviceability of the device,taking 
responsibility for the effects of changes in operating 
conditions due to variations in the characteristics of the 
electronic device under consideration. 

The equipment manufacturer should design to that, 
initially and throughout the life of the device, no design 
maximum value for the intended service is exceeded with 
a bogey electronic device, under the worst probable 
conditions with respect to supply voltage variation, 
equipment component variation, variation in 
characteristics of all other devices in the equipment, 
equipment control adjustment, load variation, signal 
variation and environmental conditions. 

Design centre rating system 

Design centre ratings are limiting values of operating and 
environmental conditions applicable to a bogey electronic 
device of a specified type as defined by its published 
data, and should not be exceeded under normal 
conditions. 

These values are chosen by the device manufacturer to 
provide acceptable serviceability of the device in average 
applications, taking responsibility for normal changes in 
operating conditions due to rated supply voltage 
variation, equipment component variation, equipment 
control adjustment, load variation, signal variation, 
environmental conditions, and variations in the 
characteristics of all electronic devices. 

The equipment manufacturer should design so that, 
initially, no design centre value for the intended service is 
exceeded with a bogey electronic device in equipment 
operating at the stated normal supply voltage. 
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1 The XA Family - High Performance, Enhanced 
Architecture 80C51-Compatible 16-8it CMOS 
Microcontrollers 

1.1 Introduction 

The role of the microcontroller is becoming increasingly important in the world of electronic ' 
systems which in the past relied on mechanical or simple analog electrical control systems h s as 
microcontrollers embedded in them that dramatically improve functionality and reliahilit w:.~e 
reducing size and cost. Microcontrollers also provide the general purpose solutiOllS n .. Y

d
, dIe 

, ce e so 
that common software and hardware can be shared among multiple designs to reduce 1 

overa 1 design-in time and costs. 

The requirements of systems using microcontrollers are .,Iso much more demanding now th. . 
.c h .. ' 11" " b ,til ,t lew years ago. Whether called by t e name mIcrocontro ers, em edded conrrollers" 
"single-chip microcomputers", the systems that use these devicesrequire a much highl'r le~e1 ~; 
performance and on-chip integration. 

As microcontrollers begin to enter into Illore complex c()ntrol~nvronIllents. rhe demand fi 
increased throughput, increased addressing capability, and higkr Ive] of on-chip integratio~; 
has led to the development of I (}-bit micrncontrollers that arc ca~ah of processing much 

. . ' more 
information than 8-bit mil:rocontrollers. However, Simply Intl~gtlllg more bits Of' 

lllore 
peripheral functions does not solve the dl'mand of the control sysus being developed today. 

New microcontrollers must provide. high-~evel-Iangua~e wlrt, POWerful debugging 
environments, and advanced methods 01 real tIme control 111 onle' meet tile more stringent 
functionality and cost requirements ofthl"s~ systems. 

To meet the above goals The XA or "eXtended Architectunmily of general-purpose 
microcontrollers from Philips is being introduced to provide the ~st performance/cost ratio 

for ~ vari~ty of h~gh performance emhc{~de~-systems-control aijions including real-time., 
multI-taskmg enVIronments. The XA I amlly members add f. CPU core a specific 
complement of on-chip memory, 1I0s, and peripherals aimed ~tIng the requirements (I 

different application areas. The core-based architecture allow~;expansion of the rami' 
according to a wide variety of customer requirements. The pf instruction set Slippor 
faster computing power. faster data transfer. multi-tasking, impljsponse to external eve 
and efficient high-leveJJanguage programming. 

i 

Upward (assembly-level) code compatihility with the PhiliP' family of contro 
provides a smooth design transition for system upgrades hy pg tremendously enh~, 
performance. 
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Data Processing 
_ Disk Drives 

Automotive Electronics 
- Power train Electronics 
- Vehicle Control Electronics 
- Ignition Control 
- Fuel Injection Control 
- Anti-lock Braking 
- Active Suspension 

Industrial Control 
- Robotic Control 

_ Laser Printers .. 
_ Multi-processor Communtcatlons 

- Asynchronous Motor Control 

_ Copiers 
_ Protocol Handling 
- Mass Storage 
_ Computer Peripherals 

- Fuzzy Control 
- Stepper Motor Control 
- Process Automation 
- Drive Control 

F\gure 1. Ipplications of Philips XA microcontrollers 

I 

1.2 Architectura\ fe~es of XA 

• Upward compatibility w\e standard 8XC51 core (assembly source level) 
• 24-bit address range (16 abytes code and data space) 

16-bit static CPU 
Enhanced architecture uS)th 16-bit words and 8-bit bytes 
Enhanced instruction set 
High code efficiency~ mane instructions are 2-4 bytes in length 
Fast 16X 16 Multiply and, Divide Instructions 
'\6-bit Stack Pointers and\l pointer registers 
~apability to support 32 'd interrupts - 31 maskable and 1 NMI 
e1pports 16 hardware anqware traps 
• wer Down and Idle P°"'tction modes 
• 'dware support for mul\g software 
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1 The XA Family - High Performance, Enhanced 
Architecture 80C51-Compatible 16-Bit CMOS 
Microcontrollers 

1.1 Introduction 

The role of the microcontroller is becoming increasingly important in the world of electronics as 
systems which in the past relied on mechanical or simple analog electrical control systems have 
microcontrollers embedded in them that dramatically improve functionality and reliability, while 
reducing size and cost. Microcontrollers also provide the general purpose solutions needed so 
that common software and hardware can be shared among multiple designs to reduce overall 
design-in time and costs. 

The requirements of systems using microcontrollers are also much more demanding now than a 
few years ago. Whether called by the name 6"microcontrollers", "embedded controllers" or 
"single-chip microcomputers", the systems that use these devices require a much higher level of 
performance and on-chip integration. 

As microcontrollers hegin to enter into more complex control environments, the demand for 
increased throughput, increased addressing capability, and higher level of on-chip integration 
has led to the development of 16-bit microcontrollers that are capable of processing much more 
information than X-hit microcontrollers. However, simply integrating more bits or more 
peripheral functions does not solve the demand of the control systems being developed today. 
New microcolltrollers must provide high-level-language support, powerful debugging 
environments, and advanced methods of real time control in order to meet the more stringent 
functionality and cost requirements of these systems. 

To meet the above goals The XA or "eXtended Architecture" family of general-purpose 
microcontrollers from Philips is being introduced to provide the highest performance/cost ratio 
for a variety of high performance embedded-systems-control applications including real-time, 
multi-tasking environments. The XA family members add to the CPU core a specific 
complement of on-chip memory, JlOs, and peripherals aimed at meeting the requirements of 
different application areas. The core-based architecture allows easy expansion of the family 
according to a wide variety of customer requirements. The powerful instruction set supports 
faster computing power. faster data transfer. Illulti-tasking, improved response to external events 
and efficient high-level language programming. 

Upward (assembly-level) code compatibility with the Philips 80C51 family of controllers 
provides a smooth dcsign transitioll for systcm upgrades by providing tremendously enhanced 
performance. 
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Data Processing 
- Disk Drives 

Automotive Electronics 
- Power train Electronics 
- Vehicle Control Electronics 
- Ignition Control 
- Fuel Injection Control 
- Anti-lock Braking 
- Active Suspension 

Industrial Control 
- Robotic Control 

- Laser Printers 
- Multi-processor Communications 

- Asynchronous Motor Control 

- Copiers 
- Protocol Handling 
- Mass Storage 
- Computer Peripherals 

- Fuzzy Control 
- Stepper Motor Control 
- Process Automation 
- Drive Control 

Figure 1 , Applications of Philips XA microcontrollers 

1.2 Architectural Features of XA 

• Upward compatibility with the standard 8XC51 core (assembly source level) 
• 24-bit address range (16 Megabytes code and data space) 

16-bit static CPU 
Enhanced architecture using both 16-bit words and 8-bit bytes 
Enhanced instruction set 
High code efficiency; most of the instructions are 2-4 bytes in length 
Fast 16X16 Multiply and 32x16 Divide Instructions 

• 16-bit Stack Pointers and general pointer registers 
• Capability to support 32 vectored interrupts - 31 maskable and 1 NMI 
• Supports 16 hardware and 16 software traps 
• Power Down and Idle power reduction modes 
• Hardware support for multi-tasking software 
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2 Architectural Overview 

2.1 Introduction 
The Philips XA (eXtended Architecture) has a general purpose register-register architecture to 
provide the best cost-to-performance trade-off available for a high speed microcontroller using 
today's technology. Intended as both an upward compatibility path for 80C51 users who need 
greater performance or more memory, and as a powerful, general-purpose 16-bit controller, the 
XA also incorporates support for multi-tasking operating systems and high-level languages such 
as C, while retaining the comprehensive bit-oriented operations that are the hallmark of the 
80C51. 

This overview introduces the concepts and terminology of the XA architecture in preparation for 
the detailed descriptions in the following sections of this manual. 

2.2 Memory Organization 
The XA architecture has several distinct memory spaces. The architecture and the instruction 
encoding are optimized for register based operations; in addition, arithmetic and logical 
operations may be done directly on data memory as well, Thus, the XA architecture avoids the 
bottleneck of having a single accumulator register. 

2.2.1 Register File 

The register file (Figure 2.1) allows access to 8 words of data at anyone time; the eight words 
are also addressable as 16 bytes. The bottom 4 word registers are "banked". That is, there are 
four groups of registers, anyone of which may occupy the bottom 4 words of the register file at 
anyone time. This feature may be used to minimize the time required for context switching 
during interrupt service, and to provide more register space for complicated algorithms. 

For some instructions -32-bit shifts, multiplies, and divides- adjacent pairs of word registers 
are referenced as double words. 

The upper four words of the register file are not banked. The topmost word register is the stack 
pointer, while any other word register may be used as a general purpose pointer to data memory. 

The entire register file is bit addressable. That is, any bit in the register file (except the 3 
unselected banks of the bottom 4 words) may be operated on by bit manipulation instructions. 

The XA instruction encoding allows for future expansion of the register file by the addition of 8 
word registers. If implemented, these additional registers will be word data registers only and 
cannot be used as pointers or addressed as bytes. 

The overall XA register file structure provides a superset of the 80C51 register structure. For 
details, refer to the section on 80C51 compatibility. 
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Figure 2.1 XA register file diagram 

2.2.2 Data Memory 

The XA architecture supports a 16 megabyte data memory space with a full 24-bit address. 
Some derivative parts may implement fewer address lines for a smaller range. The data space 
beginning at address 0 is normally on-chip and extends to the limit of the RAM size of a 
particular XA derivative. For addresses above that on a derivative, the XA will automatically 
roll over to external data memory. 

Data memory in the XA is divided into 64K byte segments (Figure 2.2) to provide an intrinsic 
protection mechanism for multi-tasking systems and to improve performance. Segment registers 
provide the upper 8 address bits needed to obtain a complete 24-bit address in applications that 
require large data memories (Figure 2.3). 

The XA provides 2 segment registers used to access data memory, the Data Segment register 
(DS) and the Extra Segment register (ES). Each pointer register is associated with one of the 
segment registers via the Segment Select (SSEL) register. Pointer registers retain this 
association until it is changed under program control. 

The XA provides flexible data addressing modes. Most arithmetic, logic, and data movement 
instructions support the following modes of addressing data memory: 
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Direct. The first lK bytes of data on each segment may be accessed by an address contained 
within the instruction. 

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register 
concatenated with 16-bits from a pointer register. 

Indirect with offset. An 8-bit or 16-bit signed offset contained within the instruction is added to 
the contents of a pointer register, then concatenated with an 8-bit segment register to produce a 
complete address. This mode allows access into a data structure when a pointer register contains 
the starting address of the structure. It also allows subroutines to access parameters passed on 
the stack. 

Indirect with auto-increment. The address is formed in the same manner as plain indirect, but 
the pointer register contents are automatically incremented following the operation. 

Data movement instructions and some special purpose instructions also have additional data 
addressing modes. 

The XA data memory addressing scheme provides for upward compatibility with the 80CSl. 
For details, refer to Chapter 9. 

2.2.3 Code Memory 

The XA is a Harvard architecture device, meaning that the code and data spaces are separate. 
The XA provides a continuous, unsegmented linear code space that may be as large as 16 
megabytes (Figure 2.4). In XA derivatives with on-chip ROM or EPROM code memory, the on-
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DireCt. The first 1 K bytes of data on each segment may be accessed by an address contained 
within the instruction. 

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register 
concatenated with 16-bits from a pointer register. 

Indirect with offset. An 8-bit or 16-bit signed offset contained within the instruction is added to 
the contents of a pointer register, then concatenated with an 8-bit segment register to produce a 
complete address. This mode allows access into a data structure when a pointer register contains 
the starting address of the structure. It also allows subroutines to access parameters passed on 
the stack. 

Indirect with auto-increment. The address is formed in the same manner as plain indirect, but 
the pointer register contents are automatically incremented following the operation. 

Data movement instructions and some special purpose instructions also have additional data 
addressing modes. 

The XA data memory addressing scheme provides for upward compatibility with the 80CS1. 
For details, refer to Chapter 9. 

2.2.3 Code Memory 

The XA is a Harvard architecture device, meaning that the code and data spaces are separate. 
The XA provides a continuous, unsegmented linear code space that may be as large as 16 
megabytes (Figure 2.4). In XA derivatives with on-chip ROM or EPROM code memory, the on-
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chip space always begins at code address 0 and extends to the limit of the on-chip code memory. 
Above that, code will be fetched from off-chip. Most XA derivatives will support an external 
bus for off-chip data and code memory, and may also be used in a ROM-less mode, with no 
code memory used on-chip. 

In some cases, code memory may be addressed as data. Special instructions provide access to 
the entire code space via pointers. Either a special segment register (CS or Code Segment) or the 
upper 8-bits of the Program Counter (PC) may be used to identify the portion of code memory 
referenced by the pointer. 

2.2.4 Special Function Registers 

Special Function Registers (SFRs) provide a means for the XA to access Core registers, internal 
control registers, peripheral devices, and IJOports. Any SFR may b~ accessed by a program at 
any time without regard to any pointer or segment. An SFR address IS always contained entirel 
within an instruction. See Figure 2.5. y 
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because each has a different set of peripheral functions. Many SFR addresses will be unused on 

any particular XA derivative. 

The first 64 bytes of on-chip SFR space are bit-addressable. Any CPU or peripheral register that 
allows bit access will be allocated an address within that range. 

2.3 CPU 
Figure 2.6 shows the XA architecture as a whole. Each of the blocks shown are described in this 

section. 
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chip space always begins at code address 0 and extends to the limit of the on-chip code memory. 
Above that, code will be fetched from off-chip. Most XA derivatives will support an external 
bus for off-chip data and code memory, and may also be used in a ROM-less mode, with no 
code memory used on-chip. 

In some cases, code memory may be addressed as data. Special instructions provide access to 
the entire code space via pointers. Either a special segment register (CS or Code Segment) or the 
upper 8-bits of the Program Counter (PC) may be used to identify the portion of code memory 
referenced by the pointer. 

2.2.4 Special Function Registers 

Special Function Registers (SFRs) provide a means for the XA to access Core registers, internal 
control registers, peripheral devices, and I/O ports. Any SFR may be accessed by a program at 
any time without regard to any pointer or segment. An SFR address is always contained entirely 
within an instruction. See Figure 2.5. 
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The total SFR space is IK hytes in size. This is further divided into two 512 byte regions. The 
lower half is assigned to on-chip SFRs, while the second half is reserved for off-chip SFRs. This 
allows provides a means to add off-chip I/O devices mapped into the XA as SFRs. Off-chip SFR 
access is not implemented on all XA derivatives. 

On-chip SFRs are implemented as needed to provide control for peripherals or access to CPU 
features and functions. Each XA derivative may have a different number of SFRs implemented 
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because each has a different set of peripheral functions. Many SFR addresses will be unused on 
any particular XA derivative. 

The first 64 bytes of on-chip SFR space are bit-addressable. Any CPU or peripheral register that 
allows bit access will be allocated an address within that range. 

2.3 CPU 
Figure 2.6 shows the XA architecture as a whole. Each of the blocks shown are described in this 
section. 
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2.3.1 CPU Blocks 

The XA processor is composed of several functional blocks: Instruction fetch and decode; 
Execution unit; ALU; Exception controller; Interrupt controller; Register File and core registers; 
Program memory (ROM or EPROM), Data memory (RAM); SFR and external bus interface; 
Oscillator; and on-chip peripherals and I/O ports. 

Certain functional blocks that exist on most XA derivatives are not part of the CPU core and 
may vary in each derivative. These are: the external bus interface, the Special Function Register 
bus (SFR bus) interface, specific peripherals, 1/0 ports, code and data memories, and the 
interrupt controller. 

CPU Performance Features 
The XA core is partially pipelined and performs some CPU functions in parallel. For instance, 
instruction fetch and decode, and in some cases data write-back, are done in parallel with 
instruction execution. This partial pipelining gives very fast instruction execution at a very low 
cost. For instance, the instruction execution time for most register-to-register operations on the 
XA is 3 CPU clocks, or 100 nanoseconds with a 30 MHz oscillator. 

ALU 
Data operations in the XA core are accomplished with a 16-bit ALU, providing both 8-bit and 
16-bit functions. Special circuitry has been included to allow some 32-bit functions, such as 
shifts, multiply, and divide. 

Core Registers 
The XA core includes several key Special Function Registers which are accessed by programs. 

The System Configuration Register (SCR) sets up the basic operating modes of the XA. The 
Program Status Word (PSW) contains status flags that show the result of ALU operations, the 
register select bits for the four register file banks, the interrupt mask bit, and other system flags. 
The Data Segment (DS), Extra Segment (ES), and Code Segment (CS) registers contain the 
segment numbers of active data memory segments. The Segment Select register (SSEL), 
contains bits that determine which segment register is used by each pointer register in the 
register file. Bits in the Power Control register (PCON) control the reduced power modes of the 
processor. 

Execution and Control 
The Execution and Control block fetches instructions from the code memory and decodes the 
instructions prior to execution. The XA normally attempts to fetch instructions from the code 
memory ahead of what is immediately needed by the execution unit. These pre-fetched 
instructions are stored in a 7 byte queue contained in the fetch and decode unit. 

If the fetch unit has instructions in the queue, the execution unit will not have to wait for a fetch 
to occur when it is ready to begin execution of a new instruction. If a program branch is taken, 
the queue is flushed and instructions are fetched from the new location. This block also decides 
whether to attempt instruction fetches from on or off-chip code memory. 
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The instruction at the head of the queue is decoded into separate functional fields that tell the 
other CPU blocks what to do when the instruction is executed. These fields are stored in staging 
registers that hold the information until the next instruction begins executing. 

Execution Unit 
The execution unit controls many of the other CPU blocks during instruction execution. It routes 
addressing information, sends read and write commands to the register file and memory control 
blocks, tells the fetch and decode unit when to branch, controls the stack, and ensures that all of 
these operations are performed in the proper sequence. The execution unit obtains control 
information for each instruction from a microcode ROM. 

Interrupt Controller 
The interrupt controller can receive an interrupt request from any of the sources on a particular 
XA derivative. It prioritizes these based on user programmable registers containing a priority for 
each interrupt source. It then compares the priority of the highest pending interrupt (if any) to 
the interrupt mask bits from the PSW. If the interrupt has a higher priority than the currently 
running code, the interrupt controller issues a request to the execution unit. 

The interrupt controller also contains extra registers for processing software interrupts. These 
are used to run non-critical portions of interrupt service routines at a decreased priority without 
risking "priority inversion." 

While the interrupt controller is not part of the XA core, it is present in some form on all XA 
derivatives. 

Exception Controller 
The exception controller is similar to the interrupt controller except that it processes CPU 
exceptions rather than hardware and software interrupt requests. Sources of exceptions are: stack 
overflow; divide by zero; user execution of an RETI instruction; hardware breakpoint; trace 
mode; and non-maskable interrupt (NMI). 

Exceptions are serviced according to a fixed priority ranking. Generally, exceptions must be 
serviced immediately since each represents some important event or problem that must be dealt 
with before normal operation can resume. 

The Exception Controller is part of the XA core and is always present. 

Interrupt and Exception Processing 
Interrupt and exception processing both make use of a vector table that resides in the low 
addresses of the code memory. Each interrupt and exception has an entry in the vector table that 
includes the starting address of the service routine and a new PSW value to be used at the 
beginning of the service routine. The starting address of a service routine must be within the first 
64 K of code memory. 

When the XA services an exception or interrupt, it first saves the return address on the stack, 
followed by the PSW contents. Next, the PC and the PSW are loaded with the starting address of 
the appropriate service routine and the new PSW contents, respectively, from the vector table. 
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When the service routine completes, it returns to the interrupted code by executing the RETI 
(return from interrupt) instruction. This instruction loads first the PSW and then the Program 
Counter from the stack, resuming operation at the point of interruption. If more than the PC and 
PSW are used by the service routine, it is up to that routine to save and restore those registers or 
other portions of the machine state, normally by using the stack, and often by switching register 
banks" 

Reset 
Power up reset and any other external reset of the XA is accomplished via an active low reset 
pin. A simple resistor and capacitor reset circuit is typically used to provide the power-on reset 
pulse. the reset pin is a Schmitt trigger input, in order to prevent noise on the reset pin from 
causing spurious or incomplete resets. 

The XA may be reset under program control by executing the RESET instruction. This 
instruction has the effect of resetting the processor as if an external reset occurred, except that 
some hardware features that are latched following a hardware reset (such as the state of the EA 
pin and bus width programming) are not re-Iatched by a software reset This distinction is 
necessary because external circuitry driving those inputs cannot determine that a reset is in 
progress. 

Some XA derivatives also have a hardware watchdog timer peripheral that will trigger an 
equivalent chip reset if it is allowed to time out 

Oscillator and Power Saving Modes 
XA derivatives have an on-chip oscillator that may be used with crystals or ceramic resonators 
to provide a clock source for the processor. 

The XA supports two power saving modes of operation: Idle mode and Power Down mode. 
Either mode is activated by setting a bit in the Power Control (PC ON) register. The Idle mode 
shuts down all processor functions, but leaves most of the on-chip peripherals and the external 
interrupts functioning. The oscillator continues to run. An interrupt from any operating source 
will cause the XA to resume operation where it left off 

The Power Down mode goes one step further and shuts down everything, including the on-chip 
oscillator. This reduces power consumption to a tiny amount of CMOS leakage plus whatever 
loads are placed on chip pins. Resuming operation from the power down mode requires the 
oscillator to be restarted, which takes about 10 milliseconds. Power down mode can be 
terminated either by resetting the XA or by asserting one of the external interrupts, if one was 
left enabled when power down mode was entered. In Power Down mode, data in on-board RAM 
is retained. Further power savings may be made by reducing V dd in Power Down mode; see the 
device data sheet for details. 

Stack 
The processor stack provides a means to store interrupt and subroutine return addresses, as well 
as temporary data. The XA includes 2 stack pointers, the System Stack Pointer (SSP) and the 
User Stack Pointer (USP), which correspond to 2 different stacks: the system stack and the user 
stack. See Figure 2.7. The system stack always resides inthe first data memory segment, 
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segment O. The user stack resides in the data memory segment identified by the current value of 
the data segment (DS) register. Executing code has access to only one of these stacks at a time, 
via the Stack Pointer, R7. Since each stack resides in a single data memory segment, its 
maximum size is 64K bytes. The purpose of having two stack pointers will be discussed in more 
detail in the section on Task Management below. 

The XA stack grows downwards, from higher addresses to lower addresses within data memory. 
The current stack pointer always points to the last item pushed on the stack, unless the stack is 
empty. Prior to a push operation, the stack pointer is decremented by 2, then data is written to 
memory. When the stack is popped, the reverse procedure is used. First, data is read from 
memory, then the stack pointer is incremented by 2. Data on the stack always occupies an even 
number of bytes and is word aligned in data memory. 

Debugging Features 
The XA incorporates some special features designed to aid in program and system debugging. 
There is a software breakpoint instruction that may be inserted in a user's program by a 
debugger program, causing the user program to break at that point and go to the breakpoint 
service routine, which can transmit the CPU state so that it can be viewed by the user. 

The trace mode is similar to a breakpoint, but is forced by hardware in the XA after the 
execution of every instruction. The trace service routine can then keep track of every instruction 
executed by a user program and transmit information about the CPU state to a serial port or 
other peripheral for display or storage. Trace mode is controlled by a bit in the PSW. The XA is 
able to alter the trace mode bit whenever an interrupt or exception vector is taken. This gives 
very flexible use of trace mode, for instance by allowing all interrupts to run at full speed to 
comply with system hardware requirements, while single stepping through mainline code. 
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With these two features, a simple monitor debugger routine can allow a user to single step 
through a program, or to run a program at full speed, stopping only when execution reaches a 
breakpoint, in either case viewing the CPU state before continuing. 

2.4 Task Management 
Several features of the XA have been included to facilitate multi-tasking. Multi-tasking can be 
thought of as running several programs at once on the same processor, with a supervisory 
program determining when each program, or task, runs, and for how long. Since each task 
shares the same CPU, the system resources required by each must be kept separate and the CPU 
state restored when switching execution from one task to another. The problem is much simpler 
for a microcontroller than it is for a microprocessor, because the code executed by a 
microcontroller always comes from the same source: the designers of the system it runs on. 
Thus, this code can be considered to be basically trustworthy and extreme measures to prevent 
misbehavior are not necessary. The emphasis in the XA design is to protect against simple 
accidents. 

The first step in supporting multi-tasking is to provide two execution contexts, one for the basic 
tasks -on the XA termed "user mode"- and one for the supervisory program -"system mode.". 
A program running in system mode has access to all of the processor's resources and can set up 
and launch tasks. 

Code running in system and user mode use different stack pointers, the System Stack Pointer 
(SSP) and the User Stack Pointer (USP) respectively. The system stack is always located in the 
first 64K data memory segment, where it can take advantage of the fast on-chip RAM. The user 
stack is located within each task's local data segment, identified by the DS register. The fact that 
user mode code uses a different stack than system mode code prevents tasks from accidentally 
destroying data on the system stack and in other task spaces. 

Additional protection mechanisms are provided in the form of control bits and registers that are 
only writable by system mode code. For instance the DS register, that identifies the local data 
segment for user mode code, is only writable in the system mode. While tasks can still write to 
the other segment register, the ES register, they cannot write to memory via the ES register 
unless specifically allowed to do so by the system. The data memory segmentation scheme thus 
prevents tasks from accessing data memory in unpredictable ways. 

Other protected features include enabling of the Trace Mode and alteration of the Interrupt Mask. 

The 4 register banks are a feature that can be useful in small multi-tasking systems by using 
each bank for a different task, including one for system code. This means less CPU state that 
must be saved during task switching. 
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2.5 Instruction Set 
The XA instruction set is designed to support common control applications. The instruction 
encoding is optimized for the most commonly used instructions: register to register or register 
with indirect arithmetic and logic operations; and short conditional and unconditional branches. 
These instructions are all encoded as 2 bytes. The bulk of XA instructions are encoded as either 
2 or 3 bytes, although there are a few 1 byte instructions as well as 4, 5, and 6 byte instructions. 

The execution of instructions normally overlaps instruction fetch, and sometimes write-back 
operations, in order to further speed processing. 

2.5.1 Instruction Syntax 

The instruction syntax chosen for the XA is similar in many ways to that of the SOC51. A typical 
XA instruction has a basic mnemonic, such as "ADD", followed by the operands that the 
operation is to be performed on. The basic syntax is illustrated in Figure 2.S. The direction of 
operation flow is determined by the order in which operands occur in the source line. For 
instance, the instruction: "ADD Rl, R2" would cause the contents ofRI and R2 to be added 
together and the result stored in RI. Since Rl and R2 are word registers in the XA, this is a 16-
bit operation. 

op-code 
mnemonic 

ADD 

target source 
operand ...... --- operand 

Rl R2 

\ operand delimiter (comma) 

Figure 2.8 Basic Instruction Syntax 

An indirect reference (a reference to data memory using the contents of a register as an address) 
is specified by enclosing the operand in square brackets, as in: "ADD Rl, [R2]". See Figure 2.9. 
This instruction causes the contents of R 1 and the data memory location pointed to by R2 
(appended to its associated segment register) to be added together and the result stored in Rl. 
Reversing the operand order ("ADD [R2], Rl ") causes the result to be stored in data memory, 
as shown in Figure 2.10. 

Most instructions support an additional feature called auto-increment that causes the register 
used to supply the indirect memory address to be automatically incremented after the memory 
access takes place. The source line for such an operation is written as follows: "ADD Rl, 
[R2+]". As illustrated in Figure 2.11, the auto-increment amount always matches the data size 
used in the instruction. In the previous example, R2 will have 2 added to it because this was a 
word operation. 
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Before After 

Rl~ ADD RI, [R2] Rl~ 
R2 1004 R2 1004 

register file register file 

1000 1000 

1002 1002 

1004 45 1004 45 

1006 1006 

data memory data memory 

Figure 2.9 Basic Indirect Addressing Syntax, to register 

Before After 

Rl~ ADD [R2], Rl Rl~ 
R2 1004 R2 1004 

register file register file 

1000 1000 

1002 1002 

1004 45 1004 1045 

1006 1006 

data memory data memory 

Figure 2.10 Basic Indirect Addressing Syntax, from Register 

Another version of indirect addressing is called indirect with offset mode. In this version, an 
immediate value from the instruction word is added to the contents of the indirect register in 
order to form the actual address. This result of the add is 16 bits in size, which is then appended 
to the segment register for that pointer register. If the offset calculation overflows 16 bits, the 
overflow is ignored, so the indirect reference always remains on the same segment. The 
immediate data from the instruction is a signed 8-bit or 16-bit offset. Thus, the range is + 127 
bytes to -128 bytes for an 8-bit offset, and +32,767 to -32,768 bytes for a 16-bit offset. Note that 
since the address calculation is limited to 16-bits, the 16-bit offset mode allows access to an 
entire data segment 

When an instruction requires an immediate data value (a value stored within the instruction 
itself), it is written using the "#" symbol. For example: "ADD Rl, #12" says to add the value 12 
to register R1, 
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Before After 

Rl~ ADD Rl, [R2+] Rl~ 
R2 1004 R2 1006 

register file register file 

1000 1000 

1002 1002 

1004 45 1004 45 

1006 1006 

data memory data memory 

Figure 2.11 Indirect Addressing with Auto-Increment 

Since indirect memory references and immediate data values do not implicitly identify the size 
of the operation to be performed, a few XA instructions must have an operation size explicitly 
called out. An example would be the instruction: "MOV [Rl], #1", The immediate data value 
does not specify the operation size, and the value stored in memory at the location pointed to by 
Rl could be either a byte or a word. To clarify the intent of such an instruction, a size identifier 
is added to the mnemonic as follows: "MOV.b [Rl], #1 ". This tells us that the operation should 
be performed on a byte. If the line read "MOV.w [Rl], #1", it would be a word operation. 

If a direct data address is used in an instruction, the address is simply written into the 
instruction: "ADD 123, Rl", meaning to add the contents of register Rl to the data memory 
value stored at direct address 123. In an actual program, the direct data address could be given a 
name to make the program more readable, such as "ADD Count, RI". 

Operations using Special Function Registers (SFRs) are written in a way similar to direct 
addresses, except that they are normally called out by their names only: "MOV PSW,#12". 
U sing actual SFR addresses rather than their names in instructions makes the code both harder 
to read and less transportable between XA derivatives. 

Bit addresses within instructions may be specified in one of several ways. A bit may be given a 
unique name, or it may be referred to by its position within some larger register or entity. An 
example of a bit name would be one of the status flags in the PSW, for instance the carry ("C") 
flag. To clear the carry flag, the following instruction could be used: "CLR C". The same bit 
could be addressed by its position within the PSW as follows: "CLR PSWL.T', where the period 
(". ") character 'indicates that this is a bit reference. A program may use its own names to identify 
bits that are defined as part of the application program. 

Finally, code addresses are written within instructions either by name or by value. Again, a 
program is more readable and easier to modify if addresses are called out by name. Examples 
are: "IMP Loop" and "IMP 124". 
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2.5.2 Instruction Set Summary 
The following pages give a summary of the XA instruction set. For full details, consult Chapter 6. 

Basic Arithmetic, Logic, and Data Movement Instructions 
The most used operations in most programs are likely to be the basic arithmetic and logic 
instructions, plus the MOV (move data) instruction. The XA supports the following basic 
operations: 

ADD 
ADDC 
SUB 
SUBB 
CMP 
AND 
OR 
XOR 

Simple addition. 
Add with carry. 
Subtract. 
Subtract with borrow. 
Compare. 
Logical AND. 
Logical OR. 
Exclusive-OR. 

These instructions support all of the following standard XA data addressing mode combinations:: 

Operands 

R,R 

R, [RJ 

[R], R 

[R+], R 

R, [R+offset] 

[R+offset], R 

direct, R 

R, direct 

R, #data 

[R], #data 

XA User Guide 

Description 

The source and destination operands are both registers. 

The source operand is indirect, the destination operand is a 
register. 

The source operand is a register, the destination operand is 
indirect. 

The source operand is indirect with auto-increment, the destination 
operand is a register. 

The source operand is a register, the destination operand is 
indirect with auto-increment. 

The source operand is indirect with an 8 or 16-bit offset, the 
destination operand is a register. 

The source operand is a register, the destination operand is 
indirect with an 8 or 16-bit offset. 

The source operand is a register, the destination operand is a 
direct address. 

The source operand is a direct address, the destination operand is 
a register. 

The source operand is an 8 or 16-bit immediate value, the 
destination operand is a register. 

The source operand is an 8 or 16-bit immediate value, the 
destination operand is indirect 
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Operands Description 

[R+], #data The source operand is an 8 or 16-bit immediate value, the 
destination operand is indirect with auto-increment. 

[R+offset], #data The source operand is an 8 or 16-bit immediate value, the 
destination operand is indirect with an 8 or 16-bit offset. 

direct, #data The source operand is an 8 or 16 bit immediate value, the 
destination operand is a direct address. 

Other instructions on the XA use different operand combinations. All XA instructions are 
covered in detail in the Instruction Set section. Following is a summary of other instruction 
types:Additional arithmetic instructions 

Additional arithmetic instructions 
ADDS Add short immediate (4-bit signed value). 
NEG Negate (twos complement). 
SEXT Sign extend. 
MUL Multiply. 
DIV Divide. 
DA Decimal adjust. 
ASL Arithmetic shift left. 
ASR Arithmetic shift right. 
LEA Load effective address. 

Additional logic instructions 
CPL Complement (ones complement or logical inverse). 
LSR Logical shift right. 
NORM Normalize. 
RL Rotate left. 
RLC Rotate left through carry. 
RR Rotate right. 
RRC Rotate right through carry. 

Other data movement instructions 
MOVS Move short immediate (4-bit signed value). 
MOVC Move to or from code memory. 
MOVX Move to or from external data memory. 
PUSH Push data onto the stack. 
POP Pop data from the stack. 
XCH Exchange data in two locations. 

Bit manipulation instructions 
SETB Set (write a 1 to) a bit. 
CLR Clear (write a 0 to) a bit. 
MOV Move a bit to or from the carry flag. 
ANL Logical AND a bit (or its inverse) to the carry flag. 
ORL Logical OR a bit (or its inverse) to the carry flag. 
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Jump~ branch, and call instructions 
BR Branch to code address (plus or minus 256 byte range). 
JMP Jump to code address (range depends on specific JMP variation). 
CALL Call subroutine (range depends on specific CALL variation). 
RET Return from subroutine or interrupt. 
Bcc Conditional branches with 15 possible condition variations. 
JB, JNB Jump if a bit set or not set 
CJNE Compare two operands and jump if they not equal. 
DJNZ Decrement and jump if the result is not zero. 
JZ, JNZ Jump on zero or not zero (included for 80C51 compatibility). 

Other instructions 
NOP No operation (used mainly to align branch targets). 
BKPT Breakpoint (used for debugging). 
TRAP Software trap (used to call system services in a multitasking system). 
RESET Reset the entire chip. 
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2.6 External Bus 

Most XA derivatives have the capability of accessing external code and/or data memory through 
the use of an external bus. The external bus provides address information to external devices, 
and initiates code read, data read, or data write strobes. The standard XA external bus is 
designed to provide flexibility, simplicity of connection, and optimization for external code 
fetches. 

As described in section 4.4.4, the initial external bus width is hardware settable, and the XA 
determines its value (8 or 16 bits) during the reset sequence. 

2.6.1 External Bus Signals 

The standard XA external bus supports 8 or 16-bit data transfers and up to 24 address lines. The 
precise number of address lines varies by derivative. The standard control signals and their 
functions for the external bus are as follows: 

Signal name Function 

ALE Address Latch Enable. This signal directs an external address 
latch to store a portion of the address for the next bus operation. 
This may be a data address or a code address. 

PSEN Program Store Enable. Indicates that the XA is reading code 
information over the bus. Typically connected to the Output 
Enable pin of external EPROMs. 

RD Read. The external data read strobe. Typically connected to the 
RD pin of external peripheral devices. 

WRL Write. The low byte write strobe for external data. Typically 
connected to the WR pin of external peripheral devices. For an 8-
bit data bus, this is the only write strobe. For a 16-bit data bus, this 
strobe applies only to the lower data byte. 

WRH Write High. This is the upper byte write strobe for external data 
when using a 16-bit data bus. 

WAIT Wait. Allows slowing down any type external bus cycle. When 
asserted during a bus operation, that operation waits for this 
signal to be de-asserted before it is completed. 

2.6.2 Bus Configuration 

The standard XA bus is user configurable in several ways. First, the bus size may be configured 
to either 8 bits or 16 bits. This may be configured by the logic level on a pin at reset, or under 
firmware control (if code is initially executed from on-chip code memory) prior to any actual 
external bus operations. As on the 80CS1, the EA pin determines whether or not on-chip code 
memory is used for initial code fetches. 
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Second, the number of address lines may be configured in order to make optimal use of 1/0 
ports. Since external bus functions are typically shared with 1/0 ports and/or peripheral I/O 
functions, it is advantageous to set the number of address lines to only what is needed for a 
particular application, freeing I/O pins for other uses. 

2.6.3 Bus Timing 

The standard XA bus also provides a high degree of bus timing configurability. There are 
separate controls for ALE width, PSEN width, RD and WRLIWRH width, and data hold time 
from WRLIWRH. These times are programmable in a range that will support most RAMs, 
ROMs, EPROMs, and peripheral devices over a wide range of oscillator frequencies without the 
need for additional external latches, buffers, or WAIT state generators. 

The following figures show the basic sequence of events and timing of typical XA bus accesses. 
For more detailed information, consult Section 7 and the device data sheet. 

ALE -----/ \'-------
Address bus ----------~<:~ _________ c_o_de __ ad_d_r_es_s ______ ~:>~-----

Data bus ----------~< address> < instruction data :>>---
\ / 

Figure 2.12 Typical External Code Read. 

ALE 

Address bus code address X'-________ c_o_d_e_a_d_d_re_s_s ______ ---'X'-__ 

Data bus instruction data X'-______ i_ns_t_ru_c_tio_n __ da_t_a _________ >C 

Figure 2.13 Optimized (Sequential Burst) External Code Read. 
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ALE _--J1 \~----------------
Address bus ----------~<:~ _________ d_a_ta __ ad_d_re_s_s _______ :>~-----

Data bus ...--------~< address:> < data in to XA :>>---

\ / 

Figure 2.14 Typical External Data Read. 

ALE _---I \~----------------
Address bus ------~<:~ ________ d_a_ta_a_d_d_re_s_s ________ :>>------

Data bus -------~< address :> <data out from xy>---

\ / 

Figure 2.15 Typical External Data Write. 

2.7 Ports 

Standard 1/0 ports on the XA have been enhanced to provide better versatility and 
programmability than was previously available in the 80CSI and most of its derivatives. Access 
to the I/O ports from a program is through SFR addresses assigned to those ports. Ports may be 
read and written is the same manner as any other SFR. 

The XA provides more flexibility in the use of I/O ports by allowing different output 
configurations. See Figure 2.16. Port outputs may be programmed to be quasi-bidirectional 
(80CSI style ports), open drain, push-pull, and high impedance (input only). 
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input output 

---II~ 
hi-Z 

+V +V 

Wri,,~r 
Quasi -bidirectional open drain push-pull 

Figure 2.16 XA Port Pins with Driver Option Detail 

2.8 Peripherals 
The XA CPU core is designed to make derivative design fast and easy. Peripheral devices are 
not part of the core, but are attached by means of a Special Function Register bus, called the 
SFR bus, which is distinct from the CPU internal buses. So, a new XA derivative may be made 
by designing a new SFR bus compatible peripheral function block, if one does not already exist, 
then attaching it to the XA core. 

2.9 80C51 Compatibility 

The 80CS1 is the most extensively designed-in 8-bit microcontroller architecture in the world, 
and a vast amount of public and private code exists for this device family. For customers who 
use the 80CS1 or one of its derivatives, preservation of their investment in code development is 
an important consideration. By permitting simple translation.of source code, the XA allows 
existing 80CS1 code to be re-used with this higher-performance 16-bit controller. At the same 
time, the XA hardware was designed with the clear goal of upward compatibility. 80CS1 
designs may be migrated to the XA with very few changes necessary to software source or 
hardware. 
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The XA provides an 80CS1 Compatibility Mode, which essentially replicates the 80CS1 register 
architecture for the best possible upward compatibility. In the alternative Native Mode, the XA 
operates as an optimized 16-bit microcontroller incorporating the best conceptual features of the 
original 80CS1 architecture. 

Many trade-offs and considerations were taken into account in the creation of the XA 
architecture. The most important goal was to make it possible for a software translator to 
convert 80CS1 assembler source code to XA source code on a 1: 1 basis, i.e., one XA instruction 
for one 80CS1 instruction. 

Some specific compatibility issues are summarized in the following two sections. See Chapter 9 
for a complete description of compatibility. 

2.9.1 Software Compatibility 

Several basic goals were observed in order to design 80CS1 software compatibility for the XA, 
while avoiding over-complicating the XA design. Following are some key issues for XA 
software: 

• Instruction mapping. Each 80CS1 instruction translates into one XA instruction. Multi­
instruction combinations that could result in problems if split by an interrupt were avoided as 
much as possible. Only one 80CS1 instruction does not have a one-to-one direct replacement 
with an XA instruction (this instruction, XCHD, is extremely rarely used). 

• "As-is" instructions. Most XA instructions are more powerful supersets of 80CS1 instructions. 
Where this was not possible, the original 80CS1 instruction is included" as-is" in the XA 
instruction set. 

• Timing. Instruction timing must necessarily change in order to improve performance. The XA 
does not attempt to retain timing compatibility with the 80CS1; rather, the design simply 
maximizes instruction execution speed. When 80CS1 code that is timing critical is translated to 
the XA, the user must re-analyze the timing and make adjustments. 

• SFR Access. Translation of SFR accesses is usually simple, since SFRs are normally 
referenced by name. Such references are simply retained in the translated XA code. If program 
source code from a specific 80CS1 derivative references an SFR by its address, the translator 
can directly substitute the appropriate XA SFR, provided both the 80CS1 and the XA derivative 
are correctly identified to the translator. 

2.9.2 Hardware Compatibility 

The key goal for hardware was to produce a familiar architecture with a good deal of upward 
compatibility. 

• Memory Map. A major consideration in hardware compatibility of the XA with the 80CS1 is 
the memory map. The XA approaches this issue by having each memory area (registers, data 
memory, code memory, stack, SFRs) be a superset of the corresponding 80CS1 area. 
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• Stack. One area where a functional change could not be avoided is in the use of the processor 
stack. Due to the fact that the XA supports 16-bit operations in memory, it was necessary to 
change the direction of stack growth to downward -the standard for 16-bit processors- in order 
to match stack usage with efficient access of 16-bit variables in memory. This is an important 
consideration for support of high-level language compilers such as C. 

• Pin-for-pin compatibility. XA derivatives are not intended to be exactly pin-compatible with 
other 80C51 derivatives that have similar features. Many on-chip XA peripherals, for example, 
have improved capabilities, and maintaining pin-for-pin compatibility would limit access to 
these capabilities. In general, peripherals have been made upward compatible with the original 
80C51 devices, and most enhancements are added transparently. In these cases, 80C51 code will 
operate correctly on the 80C51 functional subset. 

• Bus Interface. The external bus on the XA is an example of a trade-off between 80C51 
compatibility and performance. In order to provide more flexibility and maximum performance, 
the 80C51 bus had to be changed somewhat. The differences are described in detail in the 
section on the external bus. 
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3 XA Memory Organization 

3.1 Introduction 
The memory space of XA is configured in a Harvard architecture which means that code and 
data memory (including sfrs) are organized in separate address spaces. The XA architecture 
supports 16 Megabytes (24-bit address) of both code and data space. The size and type of 
memory are specific to an XA derivative. 

The XA supports different types of both code and data memory e.g.,code memory could be 
Eprom, EEProm, OTP ROM, Flash, and Masked ROM whereas data memory could be RAM, 
EEProm or Flash. 

This chapter describes the XA Memory Organization of register, code, and data spaces; how 
each of these spaces are accessed, and how the spaces are related. 

3.2 The XA Register File 
The XA architecture is optimized for arithmetic, logical, and address-computation operations 
on the contents of one or more registers in the XA Register File. 

3.2.1 Register File Overview 

The XA architecture defines a total of 16 word registers in the Register File: 
In the baseline XA core, only RO through R7 are implemented. These registers are available for 
unrestricted use except R7- which is the XA stack pointer, as illustrated in Figure 3.1. In effect, 
the XA registers provide users with at least 7 distinct "accumulators" which may be used for all 
operations. As will be seen below, the XA registers are accessible at the bit, byte, word, and 
doubleword level. 

Additional global registers, R8 through R15, are reserved and may be implemented in specific 
XA derivatives. These registers, when available, are equivalent to RO through R7 except byte 
access and use as pointers will not be possible (only word, double-word, and bit-addressable). 
The Register File is independent of all other XA memory spaces (except in Compatibility Mode; 
see chapter 9). 

Register File Detail 
Figure 3.2 describes RO through R7 in greater detail. 

Byte, Word, and Doubleword Registers 
All registers are accessible as bits, bytes. words, and -in a few cases- doublewords. Bit access 
to registers is described in the next section. As for byte and word accesses, R1 -for example- is 
a word register that can be word referenced simply as "R 1". The more significant byte is labeled 
as "R1H" and the less significant byte of R1 is referenced as "R1L". Double-word registers are 
always formed by adjacent pairs of registers and are used for 32 bit shifts, multiplies, and 
divides. The pair is referenced by the name of the lower-numbered register (which contains the 
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less significant word), and this must have an even number. Thus valid double-register pairs are 
(RO,R1), (R2,R3), (R4,R5) and (R6, R7). 

R15 
R14 
R13 
R12 
R11 
R10 
R9 
R8 
R7 
R6 
R5 
R4 
R3 
R2 
R1 
RO 

.. 16 bits • 

deri vati ve-optional 
general registers 
(word-accessible only) 

general registers 
present in all 
XA derivatives 

Figure 3.1 XA Register File Overview 

As described in section 4.7, there are two stack pointers, one for user mode and another for 
system mode. At any given instant only one stack pointer is accessible and its value is in R7. 
When PSW.SM is 0, user mode is active and the USP is accessible via R7. When PSW.SM is 1, 
the XA is operating in system mode, and SSP is in SP (R7). (Note however, as described in 
Chapter 4, all interrupts save stack frames on the system stack, using the SSP, regardless of the 
current operating mode.) 

There are four distinct instances of registers RO through R3. At any given time, only 1 set of the 
4 banks is active, referenced as RO through R3, and the contents of the other banks are 
inaccessible. This allows high-speed context-switching, for example, for interrupt service 
routines. PSW bits RSI and RSO select the active register bank: 

3/24/97 

RS1 RSO 

o 
o 
1 
1 

o 
1 
o 
1 

visible register bank 

bank 0 
bank 1 
bank 2 
bank 3 
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PSW;RSn are writable when the XA is operating in system or user mode, and programs running 
in either mode may explicitly change these bits to make selected banks visible one at a time. 
More commonly, the interrupt mechanism, as described in Chapter 4, provides automatic 
implicit register bank switching so interrupt handlers may immediately begin operating in a 
reserved register context. 

R15 

R14 

R13 

R12 

R11 

R10 

R9 

R8 

SP(R7) 

R6 

R5 

R4 

R3 

R2 

R1 

RO 
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R7H 

R6H 

R5H 

R4H 

R3H 

R2H 

R1H 

ROH 

I 
I 

SSP 
U$P R7l 

I 

I 

I 

I R6l 
I 

I R5l I 

I 

I R4l , 

I 
I R3l 
I 
I 
I R2l I 

I 
I R1l 
I 
I 
I ROl 
I 

I 

-
f-

Global registers 
(word only) 

Global registers. 

r-

Banked Registers 

/' 

Figure 3.2 XA Register File 
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Bit Access to Registers 
The XA Registers are all bit addressable. Figure 3.3 shows how bit addresses overlie the basic 
register file map. In general, absolute bit references as given in this map are unnecessary. XA 
software development tools provide symbolic access to bits in registers. For example, bit 7 may 
be designated as "RO.7" with no ambiguity 

Bit references to banked registers RO through R3 access the currently accessible register bank, 
as set by PSW bits RSl, RSO and the currently selected stack pointer USP or SSP. The 
unselected registers are inaccessible .. 

R1S 
R14 

R7 
R6 
RS 
R4 
R3 
R2 
R1 
RD 

FF 

EF 

7F 

6F 

5F 

4F 

3F 

2F 

iF 

OF 

FE FD 

EE ED 

7E 7D 

6E 6D 

5E 5D 

4E 4D 

3E 3D 

2E 2D 

1E 1D 

DE OD 

FC F8 FA F9 

EC E8 EA E9 

7C 78 7A 79 

6C 68 6A 69 

5C 58 5A 59 

4C 48 4A 49 

3C 38 3A 39 

2C 28 2A 29 

1C 18 1A 19 

DC 08 OA 09 

F8 F7 

E8 E7 

• • • 
78 77 

68 67 

58 57 

48 47 

38 37 

28 27 

18 17 

08 07 

F6 F5 F4 

E6 E5 E4 

76 75 74 

66 65 64 

56 55 54 

46 45 44 

36 35 34 

26 25 24 

16 15 14 

06 05 04 

F3 F2 F1 FO 

E3 E2 E1 EO 

73 72 71 70 

63 62 61 60 

53 52 51 50 

43 42 41 40 

33 32 31 30 

23 22 21 20 

13 12 11 10 

03 02 01 00 

'------~V-------A------~V-------/ 
RnH RnL 

Figure 3.3 Bit Address to Registers 

3.3 The XA Memory Spaces 

The XA divides physical memory into program and data memory spaces. Twenty-four address 
bits, corresponding to a 16MB address space, are defined in the XA architecture. In any given 
XA implementation, fewer than all twenty-four address bits may actually be used, and there is 
provision for a small-memory mode which uses only 16-bit addresses; see Chapter 4. 

Code and data memory may be on-chip or external, depending on the XA variant and the user 
implementation. Whether a specific region is on-chip or external does not, in general, affect 
access to the memory. 
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3.3.1 Bytes, Words, and Alignment 

XA memory is addressed in units of bytes, where each byte consists of 8 bits. A word consists of 
two bytes, and the word storage order is "Little-Endian", that is, the less significant byte of word 
data is located at a lower memory addresso See Figure 304. 

address AO 

n o 

n+1 

L.S. Byte 

M.So Byte 
'--------' 

} WORD at address n 

Figure 3.4 Memory byte order 

Any word access must be aligned at an even address (Address bit AO=O). If an odd-aligned word 
access is attempted the word at the next-smallest even address will be accessed, that is, AO will 
be set to 00 

The external XA memory spaces may be accessed in byte or word units but the h.ardware access 
method does not affect the even alignment restriction on word accesses. 

3.4 Data Memory 

The data memory space starts at address 0 and extends to the highest valid address in the 
implementation, at maximum, FFFFFFh. As will be described below, the data memory space is 
segmented into 256 segments of 64K bytes each. External Data Memory starts at the first 
address following the highest Internal Data Memory location. In general, at least 512 bytes of 
Internal Data Memory, starting at location 0, will be provided in all XA implementations; 
however, there is no inherent minimum or maximum architectural limitation on Internal Data 
Memory. 

The upper 16 segments of data memory (addresses FO:OOOO through FF:FFFF hexadecimal) are 
reserved for special functions in XA derivatives. A similar range is reserved in the code memory 
space, see section 3.5. 

3.4.1 Alignment in Data Memory 

There are no data memory alignment restrictions except that placed on word accesses to all 
memory: Words must be fetched from even addresses. An attempt to fetch a word at an odd 
address will fetch a word from the preceding even address. 

3.4.2 External and Internal Overlap 

If External Data Memory is placed by external logic at addresses that overlaps Internal Data 
Memory, the Internal Data Memory generally takes precedence. The overlapped portion of the 
External memory may be accessed only by using a form of the MOVX instruction; see 
Chapter 6. The use of MOVX always forces external data memory fetch in XA. For non­
overlapped portion of external data memory, no MOVX is required. 
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3.4.3 Use and ReadlWrite Access 

Data memory is defined as read-write, and is intended to contain read/write data. It is logically 
impossible to execute instructions from XA Data Memory. It is possible, and a common 
practice, to add logic to overlap external code and data memory spaces. In this case it is 
important to understand that the memory spaces are logically separate. In such a modified 
Harvard architecture, implemented with external logic, it is possible -but not recommended- to 
write self-modifying XA code. No such overlap is possible for internal data memory. 

3.4.4 Data Memory Addressing 

XA data memory addressing is optimized for the needs of embedded processing. Data memory 
in the XA is divided into 64K byte segments. This provides an intrinsic protection mechanism 
for multitasking applications and improves performance by requiring fewer address bits for 
localized accesses. 

Addressing through Segment Registers 
Segment registers provide the upper 8 address bits needed to obtain a complete 24-bit address in 
applications that require full use of the XA 16 Mbyte address space. Two segment registers are 
defined in the XA architecture for use in accessing data memory, the Data Segment Register 
(DS), and the Extra Segment Register (ES). As user stacks are located in the segment specified 
by DS, it is probably most convenient to address user data structures through ES. Each pointer 
register, namely RO through R6, is associated with one of the segment registers via the Segment 
Select (SSEL) register as illustrated in Figure 3.5. 

SSEL 

segment 
registers 

DS 8-bit segment 
identifier 

complete 
24-bit memory 
address 

R3 
16-bit segment offset 

Figure 3.5 Address generation 

A 0 in the SSEL bit corresponding to the pointer register selects DS (default on RESET) and 1 
selects the ES. For example, when R3 contains a pointer value, the full 24 bit address is formed 
by concatenating DS or ES, as determined by the state of SSEL bit 3, as the most significant 
8 bits. As a consequence of segmented addressing, the XA data memory space may be viewed 
as 256 segments of 64K bytes each (Figure 3.6). 
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FFFFh 

400h 
3FFh 

Directly 40h 
addressed 3Fh 
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(1Kb per 
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20h 
1Fh 
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~--------------~~~------------------/ , 
0 1 
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addressed) 

---------- ------- - - - -- r---- - - - --
RAM 

(directly and 
indirectly 

addressable) 

Standard 
bit-addressable 

RAM 

RAM 
(directly and 

indirectly 
add ressable) 

Figure 3.6 Data memory segmentation 

If R7 (the stack pointer) is used as a normal indirect pointer, the data segment addressed will 
always be segment 0 in System Mode and the DS segment in User Mode. More information 
about the System and User modes may be found in sections 4 and 5. 

The ESWEN (bit 7 of SSEL) can be programmed only in the System Mode to enable (1) or 
disable (0) write privileges to data segment via ES register in the User Mode. This bit defaults to 
the disabled (0) state after reset. 

Addressing Modes 
The XA provides flexible data addressing modes. Arithmetic, logic, and data movement 
instructions generally support the following data memory access: 

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register 
concatenated with a 16-bit pointer in a register. 

Direct. The first lK bytes of data in each segment may be accessed by an address contained 
within the instruction. Indirect with offset. A signed byte/word offset contained within the 
instruction is added to the contents of a pointer register, and the result is concatenated with the 
8-bit segment register DS to produce a complete 24-bit address. 

Indirect with auto-increment. Indirect addresses are formed as above and the pointer register 
contents are automatically incremented. 
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Bit-level. Bit-level addresses are absolute references to specific bits. 

Data move instructions and some special purpose instructions also have additional data 
addressing modes as described in Chapter 6. 

Indirect Addressing 
The entire 16 MByte address space is accessible via register-indirect addressing with a segment 
register, as illustrated by Figure 3.7 (Note that for simplicity, this figure omits showing how the 
Extra Segment or Data Segment Register is chosen using SSEL.). 

FFFFFFh 

U I 16 bits I Rn 

r V 
+ 18 bitsl Seg 

r Reg 

I 11.- I 24 bit address -

0 

Figure 3.7 Indirect Access to 24 Bit Address Space 

Indirect addressing with an offset is a variant of general indirect addressing in which an 8-bit or 
16-bit signed offset contained within the instruction is added to the contents of a pointer register, 
then concatenated with an 8-bit segment register to produce a complete address. This mode 
gives access to data structures when a pointer register contains the starting address of the 
structure. It also supports stack-based parameter passing. 

Indirect addressing with autoincrement is another variant of indirect addressing in which the 
pointer register contents are automatically incremented following the operation. When the 
operand is a byte, the increment is one; when the operand is a word, the increment is 2. Using 
indirect addressing with auto-increment provides a convenient method of traversing data 
structures smaller than 64K bytes. For data structures exceeding 64K bytes in length, the 
program code must explicitly adjust the segment register at page boundaries. 

Address generation in these two modes of indirect addressing is illustrated inFigures 3.8 and 3.9. 
When using indirect addressing care is necessary to avoid accessing a word quantity at an odd 
address. This will result in an access using the next-lower even address, which is generally not 
desirable. Note that the indirect addressing with an offset will be successful in this case as long 
as the final, effective address is even. That is, both the base address and the offset may be odd. 
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Direct Addressing 
The first lK of each segment is directly addressable. Address generation for the direct address 
mode is summarized in Figure 3.10. Segment register DS is always used. 
Direct data-reference instructions encode a maximum of 10 address bits, which are zero extended 
to sixteen bits and concatenated with DS to form an absolute 24 bit address. In all segments, direct 
addressing can be used to access any byte in the first 1 K bytes of the segment. 

------ 8 or i6-bit G I signed offset 
16 bits Rn 

1 _____ -

+ 18 bitsl Seg 
+ Rn Reg 

16 bits 
partial 24 bit address 
indirect addr 

+ 18 bitsl Seg 
Reg 0 Rn <-- Rn + data size 

24 bit address 

a) Indirect addressing with offset b) indirect addressing with auto increment 

Figure 3.8 Indirect Addressing 

o 10 bits Direct address from instruction 

+ 
OS (data segment register) 

24 bit address 

Figure 3.9 Direct address generation 

SFR Addressing 
A 1 K portion of the direct address space, addresses 400h through 7FFh, is reserved for SFR 
addresses. The SFR address space uses a portion of the direct address space, but represents a 
completely distinct logical area that is not related to the data memory segmentation scheme. See 
section 3.6 for a complete description of SFR access. 

Bit Addressing 
Thirty-two bytes of each segment of data memory are also bit-addressable, starting at offset 20h 
in the segment addressed by the DS register. Address generation for bit addressing in the data 
memory space is shown in Figure 3.10. As described in chapter 6, bits are encoded in 
instructions as 10 bits. Figure 3.11 shows the bit addresses as they appear in memory . 
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identifies 1 of 8 bits in a byte. 

byte offset from 20h ~ 
1\ /r----....J '---______ \ 

o I I I I I 
9 8 7 6 5 4 3 2 1 0 

Figure 3.10 Bit address generation in direct memory space 

3Fh 1FF 1FE 1FD 1FC 1FB 1FA 1F9 1F8 1F7 1F6 1F5 1F4 1F3 1F2 1F1 1FO Segment n 

3Eh 1EF 1EE 1ED 1EC 1EB 1EA 1E9 1E8 1E7 1E6 1E5 1E4 1E3 1E2 1E1 1EO 

~ • ) 

• • r 

28h 14F 14E 14D 14C 14B 14A 149 148 147 146 145 144 143 142 141 140 
r 

26h 13F 13E 13D 13C 13B 13A 139 138 137 136 135 134 133 132 131 130 

24h 12F 12E 12D 12C 12B 12A 129 128 127 126 125 124 123 122 121 120 

22h 11F 11E 110 11C 11B 11A 119 118 117 116 115 114 113 112 111 110 

3Fh ------
20h 10F 10E 10D 10C 10B 10A 109 108 107 106 105 104 103 102 101 100 

~ , 
V 

A 
V 

/ 

byte at odd address byte even address 
20h ------

Figure 3.11 Direct memory bit addressing 

3.5 Code Memory 
Code memory starts at address 0 and extends to the highest valid address in the implementation, 
at maximum, FFFFFFh. External Code Memory (off-chip) starts at the first address following 
the highest Internal Code Memory (on-chip) location, if any. If code memory is present on-chip, 
it always starts at location O. 

The upper sixteen 64K byte code pages (addresses FOOOOO through FFFFFF hexadecimal) are 
reserved for special functions in XA derivatives. The same address range is reserved in the data 
memory space, see section 3.4. 

3.5.1 Alignment in Code Memory 

As instructions are variable in length, from 1 to 6 bytes (see Chapter 6), instructions in code 
memory can be located at odd addresses. As described in Chapter 6, instruction branch targets, 
i.e., targets of jumps, calls, branches, traps, and interrupts must be aligned on an even address. 
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3.5.2 External and Internal Overlap 

If External Code Memory is placed by external logic at locations that overlap Internal Code 
Memory, the Internal Code Memory takes precedence, and the overlapped portion of the 
External memory will in not be accessed. However, on XA implementations that provide an 
External Address (EA) hardware input, setting EA low will cause external program memory to 
be used. 

3.5.3 Access 

Code memory is intended to contain executable XA instructions. The XA architecture supports 
storing constant data in Code Memory and provides special access modes for retrieving this 
information. Constant data is implicitly stored within the instruction of many data manipulation 
instructions when immediate operands are specified. 

It is possible, and a common practice, to overlap external code and data memory spaces. In this 
case it is important to understand that the memory spaces are logically separate. In such an 
architecture, implemented with external logic, code memory is logically read-only memory that 
is writable when accessed as external data memory. No such overlap is possible for internal 
code memory. 

MOVC addressing in Code Memory 
A special instruction, MOVC, is defined in the XA for accessing constant data (e.g lookup 
tables, string constants etc.) stored in code memory. There is a standard form of MOVC that 
reflects the native XA architecture, and there are two variations that reflect 80CSI compatibility; 
see Chapter 9 for details of 80CS1 compatibility. The standard form of MOVC uses a 16-bit 
register value as a pointer, appended to either the top 8 bits of the Program Counter (PC) or the 
Code Segment register (CS) to form a 24-bit address, as shown in Figure 3.12. The source for 
the upper 8 address bits is determined by the setting of the segment selection bit (0 = PC and 
1= CS) in the SSEL register that corresponds to the operand register. 

segment 
registers 

XA User Guide 

PC 
8-bit segment 

identifier 

CS 

complete 
24-bit memory 
address 

R4 16-bit segment offset 

Figure 3.12 MOVC addressing in code memory 
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3.6 Special Function Registers (SFRs) 
Special Function Registers (SFRs) provide a means for programs to access CPU control and 
status registers, peripheral devices, and 110 ports. The SFR mechanism provides a consistent 
mechanism for accessing standard portions of the XA core, peripheral functions added to the 
core within each XA derivative, and external devices as implemented in future derivatives. 

Figure 3.13 highlights the core registers that are accessed as SFRs: PCON, SCR, SSEL, 
PSWH, PSWL, CS, ES, DS. Communication with these registers as well as on-chip peripheral 
devices is performed via the dedicated Special Function Register Bus (see section 8). 

o 
y 

External 
Data 

Memory 

On-chip 
Peripherals 

____ .I 

External 
SFR 

Devices 

On-chip 
EPROMI 

ROM 
External 
Program 
Memory 

Figure 3.13 XA Core with SFRs highlighted 

Execution 
Unit 

The SFR address space is 1 K bytes (Figure 3.14). The first half of this space (400h through 
5FFh) is dedicated to accessing core registers and on-chip peripherals outside the XA core. 
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SFRs assigned addresses in the range 400h through 43Fh are both byte and bit-addressable. The 
second half (600h through 7FFh) of the SFR space is reserved for providing access to off-chip 
SFRs. The off-chip sfr space is provided to allow faster access of off-chip memory mapped liD 
devices without having to create a pointer for each access. 

1 K directly 
addressable 
SFR space 

7FFh 

600h 

5FFh 

440h 

43Fh 

400h 

Reserved for off-chip, 
non-bit addressable 

SFRs 
(memory-mapped I/O) 

Standard 
non-bit addressable 

on-chip SFRs 

64 bytes of bit 
addressable on-chip 

SFRs 

Figure 3.14 SFR address space 

Following are some key points to remember when using SFRs: 

512 bytes 

512 bytes 

SFRs should be symbolically addressed. Because SFR assignments may vary from derivative to 
derivative, it is important to always use symbolic references to SFRs. XA software development 
tools provide symbolic constants for all SFRs in the form of header/include files and the tools 
will be updated as new SFRs are added with each added XA derivative. 

Verify that your application uses the right headerlincludefiles. Although baseline SFRs are 
likely to retain their addresses in future XA derivatives, this is not guaranteed. SFRs used for 
optional peripherals may well have different addresses on different derivatives, and the same 
address on one derivative may access a different peripheral SFR. 

Any SFR may be accessed at any time without reference to a pointer or segment. SFR access is 
independent of any segment register, so SFRs are always accessible with the 10 bit address 
encoded in instructions accessing SFRs. 

SFRs may not be accessed via indirect address. Any time indirection is used, data memory is 
accessed. If an SFR address is referenced as an indirect address, physical RAM at that address -
if it exists- is accessed. 
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An SFR address is always contained entirely within an instruction. The SFR address is always 
encoded in the instruction providing the access, and there is no other way of addressing an SFR. 

Details of access to external SFRs is determinedby derivative implementation. Access to off­
chip SFRs is a reserved feature not implemented in the baseline XA. Consult derivative product 
datasheets for details of external SFR access, e.g., timing. 

3.7 Summary of Bit Addressing 

Several sections of this chapter have described portions of the XA that are bit-addressable. 
There are a total of 1024 addressable bits distributed in the XA architecture, chosen to make 
important data structures immediately accessible via XA bit-processing instructions, 
specifically, all registers in the register file, RO through R7 (and R8 through R15 if 
implemented); directly addressable RAM addresses 20h through 3Fh in the page currently 
specified by DS, and a portion of the on-chip SFRs. Figure 3.15 summarizes all the bit­
addressable portions of the XA.5 

bit space overlaps bytes ... 

start end type start end 

0 ~ OFFh registers RO ~ R15 

100h ~ IFFh direct RAM 20h ~ 3Fh 

200h ~ 3FFh on-chip SFRs 400h ~43Fh 

Figure 3.15 Bit addressing summary 
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4 CPU Organization 

This chapter describes the Central Processing Unit (CPU) of the XA Core. The CPU contains all 
status and control logic for the XA architecture. The XA reset sequence and the system 
oscillator interface with the CPU, and power control is handled here. The CPU performs 
interrupt and exception handling. The XA CPU is equipped with special functions to support 
debugging. 

4.1 Introduction 

Figure 4.1 is a block diagram of the XA Core . 
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Figure 4.1 The XA Core 
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Here is an overview of core elements: The XA Core oscillator provides a basic system clock. 
Timing and control logic are initialized by an external reset signal; once initialized, this logic 
provides internal and external timing for program and data memory access. This logic supervises 
loading the Program Counter and storing instructions fetched by the Program Memory Interface 
into the Instruction Register. The timing and control logic sequences data transfers to and from 
the Data Memory Interface. Under the same control, the ALU performs Arithmetic and Logical 
operations. The ALU stores status information in the low byte of the Program Status Word 
(PSWL). The on-board register file is used for intermediate storage and contains the current 
value of the Stack Pointer (SP). The high byte of the Program Status Word (PSWH) chooses 
between a privileged System Mode and a restricted User Mode; controls a Trace Mode used for 
single-step debugging, chooses the active register bank, and records the priority of the currently 
executing process. The System Configuration Register (SCR) is initialized to choose native XA 
mode execution or an 80C51 family compatibility mode. The Segment Selection Register (SSL) 
controls the use of the Code Segment (CS), Data Segment (DS), and the Extra Segment (ES) 
registers. The XA Core architecture supports interfaces to on- and off-chip RAM, ROMI 
EPROM, and Special Function Registers (SFRs). 

This chapter describes all these core elements in detaiL 

4.2 Program Status Word 

The Program Status Word (PSW) is a two-byte SFR register that is a focal point of XA 
operations. The least significant byte contains the CPU status flags, which generally reflect the 
result of each XA instruction execution. This byte is readable and writable by programs running 
in both User and System modes. 

PSWH PSWL 

Figure 4.2 XA PSW 

The most significant byte of PSW is written by programs to set important XA operating modes 
and parameters: system/user mode, trace mode, register bank select bits, and task execution 
priority. PSWH is readable by any process but only the register select bits may be modified by 
User mode code. All of the flags may be modified by code running in System Mode. 

It should be noted that the XA includes a special SFR that mimics the original 80C51 PSW 
register. This register, called PSW51, allows complete compatibility with 80C51 code that 
manipulates bits in the PSW. See Chapter 9 for details of 80C51 compatibility. 

4.2.1 CPU Status Flags 

The PSW CPU flags (Figure 4.3) signify Carry, Auxiliary Carry, Overflow, Negative, and Zero. 
Some instructions affect all these flags, others only some of them, and a few XA instructions 
have no effect on the PSW status flags. In general, these flags are read by programs in order to 
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make logical decisions about program flow. Chapter 6 describes comprehensively how CPU 
Status Flags are affected by each instruction type. Consult reference pages in Chapter 6 for 
details about how individual instructions affect the PSW Status Flags. 

PSWLlc><-: v N z 

Figure 4.3 PSW CPU status flags 

C, the Carry Flag, generally reflects the results of arithmetic and logical operations. It contains 
the carry out of the most significant bit of an arithmetic operation, if any, for the instructions 
ADD, ADDC, CMP, CJNE, DA, SUB, and SUBB.The carry flag is also used as an intermediate 
bit for shift and rotate instructions ASL, ASR, LSR, RLC, and RRC. 

The multiply and divide instructions (MUL16, MULU8, MULU16, DIV16, DIV32, DIVU8, 
DIVU16, and DIVU32) unconditionally clear the carry flag. 

AC, the auxiliary carry flag, is updated to reflect the result of arithmetic instructions ADD, 
ADDe, CMP, SUB, and SUBB with the carry out of the least significant nibble of the ALU. 
This flag is used primarily to support BCD arithmetic using the decimal adjust instruction (DA). 

V is the overflow flag. It is set by an arithmetic overflow condition during signed arithmetic 
using instructions ADD, ADDC, CMP, NEG, SUB, and SUBB. 

V is also set when the result of a divide instruction (DIV16, DIV32, DIVU8, DIVU16, DIVU32) 
exceeds the size of the specified destination register and when a divide-by-zero has occurred. 
For multiply instructions (MUL16, MULU8, MULU16) this flag is set when the result of a 
multiply instruction exceeds the source operand size. In this case "overflow" provides an 
indication to the program that the result is a larger data type than the source, such as a long 
integer product resulting from the multiply of two integers). 

N reflects the twos complement sign (the high-order or "negative" bit) of the result of arithmetic 
operations and the value transferred by data moves. This flag is unaffected by PUSH, POP, 
SEXT, LEA, and XCH instructions. 

Z ("zero") reflects the value of the result of arithmetic operations and the value transferred by 
data moves. This flag is set if the result or value is zero, otherwise it is cleared. The flag is 
unaffected by PUSH, POP, SEXT, LEA, and XCH instructions. 

Other bits (marked with "-" in the register diagram) are reserved for possible future use. 
Programs should take care when writing to registers with reserved bits that those bits are given 
the value o. This will prevent accidental activation of any function those bits may acquire in 
future XA CPU implementations. 
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4.2.2 Operating Mode Flags 

The PSW operating mode flags (Figure 4.4) set several aspects of the XA operating mode. All 
of the flags in the upper byte of the PSW (PSWH) except the bits RS 1 and RSO may be modified 
only by code running in system mode. 

PSWH ISM: TM: RS1: RSO: 1M3: 1M2: IM1 IMO 

Figure 4.4 PSW operating mode flags 

The System Mode bit, SM, when asserted, allows the currently running program full System 
Mode access to all XA registers, instructions, and memories. (For example, most of PSWH can 
only be modified when SM is asserted.) When this bit is cleared, the XA is running in User 
Mode and some privileges are denied to the currently running program. 

The Trace Mode bit, TM, when set to 1, enables the built-in XA debugging facilities described 
in section 4.9. When TM is cleared, the XA debugging features are disabled. 

The bits RSI and RSO identify one of the four banks of word registers RO through R3 as the 
active register set. The other three banks are not accessible as registers (but also see the 
Compatibility Mode description in the System Configuration Register section). 

The 4 bits 1M3 through IMO (Interrupt Mask bits) identify the execution priority of the current 
executing program. The event interrupt controller compares the setting of the 1M bits to the 
priority of any pending interrupts to decide whether to initiate an interrupt sequence. The value 0 
in the 1M bits indicates the lowest priority, or fully interruptible code. The value 15 (or F 
hexadecimal) indicates the highest priority, not interruptible by event interrupts. Note that 
priority 15 does not inhibit servicing of exception interrupts or NMI. 

The value of the 1M bits may be written only by code operating in the system mode. Their value 
may be read by interrupt handler code to implement software-based interrupt priorities. Note 
that simply writing a new value to the interrupt mask bits can sometimes cause what is called a 
priority inversion, that is, the currently executing code may have a lower priority than 
previously interrupted code. The Software Interrupt mechanism is included on some XA 
derivatives specifically to avoid priority inversion in complex systems. Refer to the section on 
Software Interrupts for details. 

4.2.3 Program Writes to PSW 

The bytes comprising the PSW, namely PSWH and PSWL, are accessible as SFRs, and there is 
a potential ambiguity when a write to the PSW is performed by an instruction whose execution 
also modifies one or more PSW bits. The XA resolves this by giving full precedence to explicit 
writes to the PSW. . 
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For example, executing 

MOV.b ROL,#81h 

sets PSW bit N to 1, since the byte value transferred is a twos complement negative number. 
However, executing 

MOV.b PSWL, #81h 

will set PSW bits C and Z and leave bit N cleared, since the value explicitly written to PSW 
takes precedence. 

This precedence rule suppresses all PSW flag updates. When a value is written to the PSW, for 
example when executing 

OR.b PSWH, #30 

the contents of PSWL are unaffected. 

4.2.4 PSW Initialization 

As described below, at XA reset, the initial PSW value is loaded from the reset vector located at 
program memory address O. Philips recommends that the PSW initialization value in the reset 
vector sets 1M3 through IMO to all l' s so that XA initialization is marked as the highest priority 
process (and therefore cannot be interrupted except by an exception or NMI). At the conclusion 
of the initialization code, the execution priority is typically reduced, often to 0, to allow all other 
tasks to run. It is also recommended that the reset vector set the SM bit to 1, so that execution 
begins in System Mode. 

4.3 System Configuration Register 

The System Configuration Register (SCR), described in Figure 4.5, sets XA global operating 
mode. SCR is intended to be written once during system start-up and left alone thereafter. Four 
bits are currently defined: 

Figure 4.5 System Configuration Register (SCR) 

PZ set to 0 (the default) puts the XA in the Large-Memory mode that uses full 24-bit XA 
addressing. When PZ = 1 the XA uses a small-memory "Page 0" mode that uses 16 bit 
addresses. The intent of Page 0 mode is to save stack space and improve interrupt latency in 
systems with less than 64 K bytes of code and data memory. See the following sections for 
details. 
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CM chooses between standard "native" mode XA operation and 80CSI compatibility mode. 
When SOCS1 compatibility mode is enabled, two things happen. First, the bottom 32 bytes of 
data memory in each data segment are replaced by the four banks of RO through R3 from the 
register file. ROL of bank 0 will appear at data address 0, ROH of bank 0 will appear at data 
address 1, etc. Second, the use of RO and Rl as indirect pointers is altered. To mimic 80CSI 
indirect addressing, indirect references to RO use the byte ROL (zero extended to 16-bits) as the 
actual pointer value. References to Rl similarly use the byte ROH (zero extended to 16-bits) as 
the actual pointer value. Note that ROL and ROH on the XA are the same registers as RO and Rl 
on the 80CS1. No other XA features are altered or affected by compatibility mode. Operation of 
the XA with compatibility mode off (CM = 0) is reflected in descriptions found in the first 8 
chapters of this User Guide. Operation with compatibility mode on (CM = 1) is discussed in 
Chapter 9. 

PTI and PTO select a submultiple of the oscillator clock as a Peripheral Timing clock source, in 
particular for timers but possibly for other peripherals in XA derivatives. Here are the values for 
these bits and the resulting clock frequency: 

PT 1 PTO Peripheral Clock 

o 0 oscillator/4 

o oscillator/16 

o oscillator/64 

reserved 

Other bits (marked with "-" in the register diagram) are reserved for possible future use. 
Programs should take care when writing to registers with reserved bits that those bits are given 
the value O. This will prevent accidental activation of any function those bits may acquire in 
future XA CPU implementations. 

4.3.1 XA Large-Memory Model Description 

When the default XA operation is chosen via the SCR (CM = 0 and PZ = 0), all addresses are 
maintained by the core as 24 bit values, providing a full 16 MByte address space. On a specific 
XA derivative, fewer than 24 bits may be available at the external bus interface. All 24 address 
bits are pushed on the stack during calls and interrupts and 24 bits are popped by RETs and 
RETls. 

4.3.2 XA Page 0 Memory Model Description 

When XA Page 0 mode is chosen, only 16 address bits are maintained by the XA core. This 
operating mode supports XA applications for which a 64K byte address space is sufficient. The 
external memory interface port used for the upper 8 address bits, if present, is available for other 
uses. A single 16-bit word is pushed on the stack during calls and interrupts and 16 bits are, in 
turn popped by RETs and RETls. Using Page 0 mode when only a small memory model is 
needed saves stack space and speeds up address PUSH and POP operations on the stack. 
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Switching into or out of Page 0 mode after the original initialization is not recommended. First, 
switching into Page 0 mode can only be done by code running on Page 0, since the code address 
will be truncated to 16-bits as soon as Page 0 mode takes effect. Instructions already in the XA 
pre-fetch queue would have been fetched prior to Page 0 mode taking effect. Any addresses that 
may have been pushed onto the stack previously also become invalid when Page 0 mode is 
changed. Thus Page 0 mode could not be changed while in an interrupt service routine, or any 
subroutine. 

4.4 Reset 

The term "reset" refers specifically to the hardware input required when power is first applied to 
the XA device, and generally to the sequence of initialization that follows a hardware reset, 
which may occur at any time. The term also refers to the effect of the RESET instruction (see 
Chapter 6); in addition, an overflowing Watchdog timer (if this peripheral is present) has an 
identical effect. 

This section describes the XA reset sequence and its implications for user hardware and 
software. 

4.4.1 Reset Sequence Overview 

A specific hardware reset sequence must be initiated by external hardware when the XA device 
is powered-up, before execution of a program may begin. If a proper reset at power up is not 
done, the XA may fail wholly or in part. The XA reset sequence includes the following 
sequential components: 

• Reset signal generated by external hardware 
Internal Reset Sequence occurs 
RST line goes high 
External bus width and memory configuration determined 

• Reset exception interrupt generated 
• Startup Code executed 

Figure 4.6 illustrates this process. 

4.4.2 Power-up Reset 

This section describes the reset sequence for powering up an XA device. 

The XA RST input must be held low for a minimum reset period after V dd has been applied to 
the XA device and has stabilized within specifications. The minimum reset period for a typical 
system with a reasonably fast power supply ramp-up time is 10 milliseconds. This reset period 
provides sufficient time for the XA oscillator to start and stabilize and for the CPU to detect the 
reset condition. At this point, the CPU initiates an internal reset sequence. RST must continue to 
be low for a sufficient time for the internal reset sequence to complete. 

3/24/97 78 CPU Organization 



Vdd ~ 
/ : 'Vmin 

I I 

I 

I 

XA 
internal 

reset 
sequence 

I 
I 

XA configuration signals sampled 

~ ~irst instruction executed 

1 
reset exception 

generated 

Figure 4.6 XA power-up sequence 

4.4.3 Internal Reset Sequence 

The XA internal reset sequence occurs after power-up or any time a sufficiently long reset pulse 
is applied to the RST input while the XA is operating. This sequence requires a minimum of a 
10 microseconds (or 10 clocks, whichever is greater) to complete, and RST must remain low for 
at least this long. 

The internal reset sequence does the following: 
• Writes a 00 to most core and many peripheral SFRs. Other values are written to some periph­

eral SFRs. Consult the data sheet of a specific device for details. 
Sets CS, DS, and ES to O. 

• Sets SSEL = 0, i.e., sets all accesses through DS. 
• Sets all registers in the Register File to O. 
• Sets the user and the system stack pointers (USP and SSP) to 01 OOh. 
• Clears SCR bit PZ, i.e., 24-bit memory addresses will be used by default. 

Clears SCR bit CM, i.e., starts execution in XA Native Mode. 
• Clears IE bit EA, disabling all maskable interrupts. 

Note that the internal reset sequence does not initialize internal or external RAM. Note also that 
the contents of PSW at this point is not important, as it will immediately be replaced as 
described further below. 

The effect of the internal reset sequence on components outside the XA core depends on the 
peripheral complement and configuration of the specific XA derivative. In general, the internal 
reset sequence has the following effects: 

• 
• 
• 

Sets all port pins to inputs (quasi-bidirectional output configuration with port value = FF hex) 
Clears most SFRs to 0 
Initializes most other SFRs to appropriate non-zero values 
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Note that serial port buffers, PCA capture registers, and WatchDog feed registers (if present) are 
unaffected. Consult the XA derivative data sheet for more information. 

After the XA internal reset sequence has been completed, the device is quiescent until the RST 
line goes high. 

4.4.4 XA Configuration at Reset 

As the RST line goes high, the value on two input pins is sampled to determine the XA memory 
and bus configuration. The EA and BUSW pins (if present on a specific XA derivative) have 
special function during the reset sequence, to allow external hardware to determine the use of 
internal or external program memory, and to select the default external bus width. 

Immediately after the RST line goes high, the CPU triggers a reset exception interrupt, as 
described in the next section. 

Selecting Internal or External Program Memory 
The XA is capable of reading instructions from internal or external memory, both of which may 
be present. The XA EA input pin determines whether internal or external program memory will 
be used. The EA pin is sampled on the rising edge of the RST pulse. If EA = 0, the XA will 
operate out of external program memory, otherwise it will use internal code memory. The 
selection of external or internal code memory is fixed until the next time RST is asserted and 
released; until then all code fetches will access the selected code memory. 

The XA cannot detect inconsistencies between the setting detected on the EA input and the 
hardware memory configuration. For example, setting EA = 1 on a ROMless XA variant will 
cause the XA to attempt to execute internal code memory, which is undefined on a ROMless 
device. typically resulting in a system failure. 

Selecting External Bus Width 
The XA is capable of accessing an 8 or 16 bit external data bus. The BUSW pin tells the XA the 
external data bus configuration. BUSW=O selects an 8-bit bus and BUSW=1 selects an 16-bit 
bus. On power-up, the XA defaults to the 16-bit bus (due to an on-chip weak pull-up on 
BUSW). The BUSW pin is sampled on the rising edge of the RST pulse. If BUSW is low, the 
XA operates its external bus interface in 8 bit mode, otherwise, the XA uses 16 bit bus 
operation. The bus width may also be set under software control on derivatives equipped with 
the BeR ("Bus Configuration Register") SFR. 

After RST is released, the BUSW pin may be used an alternate function on some XA 
derivatives. Consult derivative data sheets for exact pinouts and details of how pins such as 
these may be shared to keep package size small. 
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4.4.5 The Reset Exception Interrupt 

Immediately after the RST line goes high, the CPU generates a Reset Exception Interrupt. As a 
result, the initial PSW and address of the first instruction (the "start-up code") is fetched from 
the reset vector in code memory at location 0, Here's an example in generalized assembler 
format of the setup for the Reset Exception: 

code_seg 
org Oh 

reset_vector 
dw initial PSW 
dw startup_code 

org 120h 

startup_code: 

establish code segment 
start at address 0 

define a word constant 
define a word constant 

move to address 120h 
(above vector table) 

put startup code here 

The initial value of PSWL set in the Reset Vector is generally of no special system-wide 
importance and may be set to zero or some other value to meet special needs of the XA 
application. The initial PSWH value sets the stage for system software initialization and its 
value requires more attention. Here's an example set of declarations that create the 
recommended initial value of PSWH: 

system_mode 
maxJ)riority 
initial_PSW 

equ 8000h 
equ OFOOh 
equ system_mode + maxJ)riority 

It is generally appropriate to initialize the XA in System Mode so that the start-up code has 
unrestricted access to the entire architecture. This is done by using a initial value that sets the 
PSWHbitSM. 

Philips recommends initializing the execution priority of the start-up code to the highest possible 
value of 15 (that is, IMO through 1M3 to all ones) so that the start-up code is recognizable as the 
highest priority process. As described above, the hardware initialization sequence turns off all 
possible interrupts, so the only potential interrupting process would arise from a non-mask able 
interrupt (NMI). It is generally a good idea to prevent NMI generation with a hardware lock-out 
until XA start-up procedures are completed. 

The PSWH initialization value given in this example sets System Mode (SM), selects register 
bank 0 (any register bank could be used) and clears TM so that Trace Mode is inactive. 
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4.4.6 Startup Code 

Philips recommends that the first instruction of start-up code set the value of the System 
Configuration Register (SCR), described in section 4.3, to reflect the system architecture. 

The next recommended step is explicitly initializing the stack pointers. The default values 
(section 4.7) are usually insufficient for application needs. 

The start-up code sequence may be concluded by a simple branch or jump to application code. A 
RETI may not be used at the conclusion of a Reset Exception Interrupt handler (which causes 
the start-up code to run) because a reset initializes the SP and does not leave an interrupt stack 
frame. 

4.4.7 Reset Interactions with XA Subsystems 

The following describes how the reset process interacts with some key subsystems: 

• Trace Exception. The trace exception is aborted by an external reset; see section 4.9. 
• WatchDog. In XA derivatives equipped with a WatchDog timer feature, an internal reset will 

be asserted for a derivative-defined number of clocks. 
• Resets while in Idle Mode or during normal code execution. Since the XA oscillator is run­

ning in Idle Mode, the RST input must be kept low for only 10 microseconds (or 10 clocks, 
whichever is greater) to achieve a complete reset. 

• Resets while in Power-Down Mode. The XA oscillator is stopped in Power-Down mode, so 
the RST input must be low for at least 10 milliseconds. An exception to this is when an exter­
nal oscillator is used and the XA is in Power-Down mode. In this case, if the external oscilla­
tor is running, a reset during Power-Down mode may be the same as a reset in Idle Mode. 

4.4.8 An External Reset Circuit 

The RST pin is a high-impedance Schmitt trigger input pin. For applications that have no special 
start-up requirements, it is practical to generate a reset period known to be much longer than that 
required by the power supply rise time and by the XA under all foreseeable conditions. One 
simple way to build a reset circuit is illustrated in Figure 4.7. 
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Some typical values for Rand C: 

R = 100K, C = 1.0J..lF 

R = 1 M, C = 0.1 J..lF 

(assuming that the Vdd rise time is 
1 millisecond or less) 

Figure 4.7 An external reset circuit 
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4.5 Oscillator 

The XA contains an on-chip oscillator which may be used as the clock source for the XA CPU, 
or an external clock source may be used. A quartz crystal or ceramic resonator may be 
connected as shown in Figure 4.8a to use the internal oscillator. To use an external clock, 
connect the source to pin XTALI and leave pin XTAL2 open, as shown in Figure 4.8b. 

XTAL1 JLrl.J-C1~ 1 XTAL1 

0T XA XA 

XTAL2 - nc- XTAL2 -

a) using the on-chip oscillator b) using an external clock 

Figure 4.8 XA clock sources 

The on-chip oscillator of the XA consists of a single stage linear inverter intended for use as a 
positive reactance oscillator. In this application, the crystal is operated in its fundamental 
response mode as an inductive reactance in parallel resonance with capacitance external to the 
crystaL 

A quartz crystal or ceramic resonator is connected between the XTALI and XTAL2 pins, 
capacitors ar connected from both pins to ground. In the case of a quartz crystal, a parallel 
resonant crystal must be used in order to obtain reliable operation. The capacitor values used in 
the oscillator circuit should normally be those recommended by the crystal or resonator 
manufacturer. For crystals, the values may generally be from 18to 24 pF for frequencies above 
25 MHz and 28 to 34 pF for lower frequencies. Too large or too small capacitor values may 
prevent oscillator start-up or adversely affect oscillator start-up time. 

4.6 Power Control 

The XA CPU implements two modes of reduced power consumption: Idle mode, for moderate 
power savings, and Power-Down mode. Power-Down reduces XA consumption to a bare 
minimum. These modes are initiated by writing SFR peON, as illustrated in Figure 4.9. 

PCON - : - : - : 

Figure 4.9 _PCON 

Idle Mode is activated by setting the PCON bit IDL. This stops CPU execution while leaving 
the oscillator and some peripherals running. 
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Power-Down mode is activated set by setting the PCON bit PD. This shuts down the XA 
entirely, stopping the oscillator. 

The reset values of IDL and PD are O. If a 1 is written to both bits simultaneously, PD takes 
precedence and the XA goes into Power-Down mode, 

Other bits (marked with "-" in the register diagram) are reserved for possible future use. 
Programs should take care when writing to registers with reserved bits that those bits are given 
the value O. This will prevent accidental activation of any function those bits may acquire in 
future XA CPU implementations. 

4.6.1 Idle Mode 

Idle mode stops program execution while leaving the oscillator and selected peripherals active. 
This greatly reduces XA power consumption. Those peripheral functions may cause interrupts 
(if the interrupt is enabled) that will cause the processor to resume execution where it was 
stopped. 

In the Idle mode, the port pins retains their logical states from their pre-idle mode. Any port pins 
that may have been acting as a portion of the external bus revert to the port latch and 
configuration value (normally push-pull outputs with data equal to 1 for bus related pins). ALE 
and PSEN are-held in their respective non-asserted states. When Idle is exited normally (via an 
active interrupt), port values and configurations will remain in their original state. 

4.6.2 Power-Down Mode 

Power-Down mode stops program execution and shuts down the on-chip oscillator. This stops 
all XA activity. The contents of internal registers, SFRs and internal RAM are preserved. 
Further power savings may be gained by reducing XA V dd to the RAM retention voltage in 
Power Downmode; see the device data sheet for the applicable Vdd value. The processor may 
be re-activated by the assertion of RST or by assertion of one of an external interrupt, if enabled. 
When the processor is re-activated, the oscillator will be restarted and program execution will 
resume where it left off. 

In Power-Down mode, the ALE and PSEN outputs are held in their respective non-asserted 
states. The port pins output the values held by their respective SFRs. Thus, port pins that are not 
configured to be part of an external bus retain their state. Any port pins that may have been 
acting as a portion of the. external bus revert to the port latch and configuration value (normally 
push-pull outputs with data equal to 1 for bus related pins). If Power-Down mode is exited via 
Reset, all port values and configurations will be set to the default Reset state. 

In order to use an external interrupt to re-activate the XA while in Power-Down mode, the 
external interrupt must be enabled and be configured to level sensitive mode. When Power­
Down mode is exited via an external interrupt, port values and configurations will remain in 
their original state. Since the XA oscillator is stopped when the XA leaves Power-Down mode 
via an interrupt, time must be allowed for the oscillator to re-start. Rather than force the external 
logic asserting the interrupt to remain active during the oscillator start-up time, the XA 
implements its own timer to insure proper wake-up. This timer counts 9,892 oscillator clocks 
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before allowing the XA to resume program execution, thus insudng that the oscillator is running 
and stable at that time. Once the oscillator counter times out, the XA will execute the interrupt 
that woke it up, if that interrupt is of a higher priority than the currently executing code. 

Note that if an external oscillator is used, power supply current reduction in the Power-Down 
mode is reduced from what would be obtained when using the XA on-chip oscillator. In this 
case, full power savings may be gained by turning off the external clock source or stopping it 
from reaching the XTALI pin of the XA. If the clock source may be turned off, it may be 
advantageous to use Idle mode rather than Power-Down mode, to allow more ways of 
terminating the power reduction mode and to avoid the 9,892 clock waiting period for exiting 
Power-Down mode. 

4.7 XA Stacks 

The XA stacks are word-aligned LIFO data structures that grow downward in data memory, 
from high to low address. This and some other details of the XA stack implementation differ 
from 80C51 stack operation. Refer to the chapter on 8051 compatibility for a detailed discussion 
of this topic. 

The XA implements two distinct stacks, one for User Mode and one for System Mode. The User 
Stack may be placed anywhere in data memory, while the System Stack must be located in the 
first 64K bytes, i.e., segment O. 

4.7.1 The Stack Pointers 

The XA has two stacks, the system stack and the user stack. Each stack has an associated stack 
pointer, the System Stack Pointer (SSP) and the User Stack Pointer (USP), respectively. Only 
one of these stacks is active at a given time. The current stack pointer at any instant (which may 
be the SSP or the USP) appears as word register SP (R7) in the register file; the other stack 
pointer will not be visible. The value of the PSW bit SM determines which stack is active (and 
whose stack pointer therefore appears as R7). In User Mode (SM = 0), SP (R7) contains the 
User Stack Pointer. In System Mode (SM =1), SP (R7) contains the System Stack Pointer. The 
XA automatically switches SSP and USP values when the operating mode is changed. Note that 
the terms "USP" and "SSP" are logical terms, denoting the value of SP (R7) in each mode. 

Segments and Protection 
The User stack is always addressed relative to the current data segment (DS) value. This is 
consistent with each user task being associated with a specific data segment. Moreover, code 
running in User Mode cannot modify DS, so there is no possibility of changing the segment in 
which the stack resides within the User context. The System Stack must always be located in 
segment 0, that is, the first 64K of data memory. 

4.7.2 PUSH and POP 

The PUSH operation is illustrated by Figure 4.10. The stack pointer always points to an existing 
data item at the top of the stack, and is decremented by 2 prior to writing data. 
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The POP operation copies the data at the top of the stack and then adds two to the stack pointer, 
as follows shown in Figure 4.11. 

, 
All stack pushes and pops occur in word multiples. If a byte quantity is pushed on the stack it is 
stored as the least significant byte of a word and the high byte is left unwritten; 
see Figure 4.12. A POP to a byte register removes a word from the stack and the byte register 
receives the least significant 8 bits of the word, as shown in Figure 4.13. 

2n + 6 

2n+4 

2n+2 

2n+ 6 

2n+4 
2n+2 

2n+6 

2n+4 

2n+2 
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MOV RO,#1234h 
PUSHRO 
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2n+4 
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Figure 4.10 PUSH operation 
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The stack should always be word-aligned. If the SP (R7) is modified to an odd value, the 
offending LSB of the stack pointer is ignored and the word at the next-lower even address is 
accessed. 

Note that neither PUSH or POP operations have any effect on the PSW flags. 

2n+ 6 

2n+4 

2n+2 

before 

existing I data 

(empty) 

(empty) 
(empty) 

.-

MOV RO,#9876h 
PUSH ROH 

SP 2n+6 

2n+4 
2n+2 

Figure 4.13 PUSH a byte 

4.7.3 Stack-Based Addressing 

after 

existing' data 

00 I 98 

(empty) 
(empty) 

~ 

Stack-based data addressing is fully supported by the XA. RO through R7 may be used in all 
indexed address modes; the stack pointer in R 7 is equally valid as an index. 

SP 

Figure 4.14 illustrates an example of stack-based addressing. The segment used for stack 
relative addressing is always the same as for other stack operations (Segment 0 for System mode 
code and DS for User mode code). 

Note that the precautions mentioned in section 3.3.4 apply here: when referencing a word 
quantity, the final (effective) address must be even, otherwise incorrect data will be accessed. 
This topic is discussed further in the section Stack Pointer Misalignment. 

4.7.4 Stack Errors 

Special attention is required to avoid problems due to stack overflow, stack underflow, and stack 
pointer misalignment 

Stack Overflow 
Stack overflow occurs when too many items are pushed, either explicitly or as the result of 
interrupts. As items are pushed on to the stack, it may grow downward past the memory 
allocated to it. It is not always possible for programs to detect stack overflow, so the XA triggers 
a Stack Overflow Exception Interrupt whenever the value of the current stack pointer (SSP or 
USP) decrements from 80h to 7Eh (simply setting SP to a value lower than 80h would NOT 
cause a stack overflow). This value was chosen so that stack space sufficient to handle a stack 
overflow exception interrupt is always guaranteed, as follows: 

The 80h limit leaves 64 bytes available for stack overflow processing. A worst case might be 
occurs when the Stack Pointer is at 80h and a program executes an 8 word push; this generates a 
stack overflow. If an NMI occurs at the same time, 3 additional words are pushed. The balance 
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MOV Rn, [R7+offset] 
MOV [R7+offset], Rn 

I SM bit ~n PSW I 

DS 8-bit segment 
identifier 

OOh 

Data Memory 

• • • 
SP+8 
SP+6 
SP+4 
SP+2 
SP+O 

complete 24-bit 
memory address 

Figure 4.14 Stack-based addressing 

SP (R7) 

of the 64 bytes on the stack is available for handler processing, which should carefully limit 
further use of the stack. 

Stack Underflow 
Stack underflow occurs when too many items are popped and the stack pointer value becomes 
greater than its initial value, i.e., the stack top. The XA does not support stack underflow 
detection. 

Stack Pointer Misalignment 
Pointer misalignment occurs when a pointer contains an odd value and is used by an instruction 
to access a word value in memory. The same situation could occur if some program action 
forced the stack pointer to an odd value. In these cases, the XA ignores the bottom bit of the 
pointer and continues with a word memory access. 

4.7.5 Stack Initialization 

At power-on reset, both USP and SSP in all XA derivatives are initialized to 100h. Since SP is 
pre-decremented, the first PUSH operation will store a word at location FEh and the stack will 
grow downwards from there. 
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These default stack pointer start-up values overlap the System and User stacks and are 
applicable only when one of these stacks will never be used. 

Since the System stack is used for all exception and interrupt processing. this may not be 
appropriate in all XA applications. The startup code should normally set new and different 
values of both USP and SSP. 

4.8 XA Interrupts 

The XA architecture defines four kinds of interrupts. These are listed below in order of intrinsic 
priority: 

Exception Interrupts 
Event Interrupts 

• Software Interrupts 
Trap Interrupts 

Exception interrupts reflect system events of overriding importance. Examples are stack 
overflow, divide-by-zero, and Non-Maskable Interrupt. Exceptions are always processed 
immediately as they occur, regardless of the priority of currently executing code. 

Event interrupts reflect less critical hardware events, such as a UART needing service or a timer 
overflow. Event interrupts may be associated with some on-chip device or an external interrupt 
input. Event interrupts are processed only when their priority is higher than that of currently 
executing code. Event interrupt priorities are settable by software. 

Software interrupts are an extension of event interrupts, but are caused by software setting a 
request bit in an SFR. Software interrupts are also processed only when their priority is higher 
than that of currently executing code. Software interrupt priorities are fixed at levels from 1 
through 7. 

Trap interrupts are processed as part of the execution of a TRAP instruction. So, the interrupt 
vector is always taken when the instruction is executed. 

All forms of interrupts trigger the same sequence: First, a stack frame containing the address of 
the next instruction and then the current value of the PSW is pushed on the System Stack. A 
vector containing a new PSW value and a new execution address is fetched from code memory. 
The new PSW value entirely replaces the old, and execution continues at the new address, i.e., at 
the specific interrupt handler. 

The new PSW value may include a new setting of PSW bit SM, allowing handler routines to be 
executed in System or User mode, and a new value of PSW bits 1M3 through IMO, reflecting 
the execution priority of the new task. These capabilities are basic to multi-tasking support on 
the XA. See Chapter 5 for more details. 
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Returns from all interrupts should in most cases be accomplished by the RETI instruction, which 
pops the System Stack and continues execution with the restored PSW context. Since RETI 
executed while in User Mode will result in an exception trap, as described further below, 
interrupt service routines will normally be executed in System Mode. 

The XA architecture contains sophisticated mechanisms for deciding when and if an interrupt 
sequence actually occurs. As described below, Exception Interrupts are always serviced as soon 
as they are triggered. Event Interrupts are deferred until their execution priority is higher than 
that of the currently executing code. For both exception and event interrupts, there is a 
systematic way of handling multiple simultaneous interrupts. Software and trap interrupts occur 
only when program instructions generating them are executed so there is no need for conflict 
resolution. 

The Non-Maskable Interrupt requires special consideration. It is generated outside the XA core, 
and in that respect is an event interrupt. However, it shares many characteristics of exception 
interrupts, since it is not maskable. Note that NMI, while part of the XA CPU core, may not 
always be connected to a pin or other event source on all XA derivatives. 

4.8.1 Interrupt Type Detailed Descriptions 

This section describes the four kinds of interrupts in detail. 

Exception Interrupts 
Exception interrupts reflect events of overriding importance and are always serviced when they 
occur. Exceptions currently defined in the XA core include: Reset, Breakpoint, Divide-by-O, 
Stack overflow, Return from Interrupt (RETI) executed in User Mode, and Trace. Nine 
additional exception interrupts are reserved. NMI is listed in the table of exception interrupts 
(Table 4.1) below because NMI is handled by the XA core in same manner as exceptions, and 
factors into the precedence order of exception processing. 

Since exception interrupts are by definition not maskable, they must always be serviced 
immediately regardless of the priority level of currently executing code, as defined by the 1M 
bits in the PSW. In the unusual case that more than one exception is triggered at the same time, 
there is a hard-wired service precedence ranking. This determines which exception vector is 
taken first if multiple exceptions occur. In these cases, the exception vector taken last may be 
considered the highest priority, since its code will execute first. Of course, being non-maskable, 
any exception occurring during execution of the ISR for another exception will still be serviced 
immediately. 

Programmers should be aware of the following when writing exception handlers: 

1. Since another exception could interrupt a stack overflow exception handler routine, care 
should be taken in all exception handler code to minimize the possibility of a destructive stack 
overflow. Remember that stack overflow exceptions only occur once as the stack crosses the 
bottom address limit, 80h. 
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2. The breakpoint (caused by execution of the BKPT instruction, or a hardware breakpoint in an 
emulation system) and Trace exceptions are intended to be mutually exclusive. In both cases, 
the handler code will want to know the address in user code where the exception occurred. If a 
breakpoint occurs during trace mode, or if trace mode is activated during execution of the 
breakpoint handler code, one of the handlers will see a return address on the stack that points 
within the other handler code. 

Table 4.1: Exception interrupts, vectors, and precedence 

Exception Interrupt Vector Address Service Precedence 

Breakpoint 0004h:0007h 0 

Trace 0008h:OOOBh 1 

Stack Overflow OOOCh:OOOFh 2 

Divide-by-zero 0010h:0013h 3 

User RETI 0014h:0017h 4 

<reserved> 0018h - 003Fh 5 

NMI 009Ch:009Fh 6 

Reset 0000h:0003h 7 
(always serviced 

immediately, aborts 
other exceptions) 

Event Interrupts 
Event Interrupts are typically related to on-chip or off-chip peripheral devices and so occur 
asynchronously with respect to XA core activities. The XA core contains no inherent event 
interrupt sources, so event interrupts are handled by an interrupt control unit that resides on-chip 
but outside of the processor core. 

On typical XA derivatives, event interrupts will arise from on-chip peripherals and from events 
detected on interrupt input pins. Event interrupts may be globally disabled via the EA bit in the 
Interrupt Enable register (IE) and individually masked by specific bits the IE register or its 
extension. When an event interrupt for a peripheral device is disabled but the peripheral is not 
turned off, the peripheral interrupt flag can still be set by the peripheral and an interrupt will 
occur if the peripheral is re-enabled. An event interrupt that is enabled is serviced when its 
priority is higher than that of the currently executing code. Each event interrupt is assigned a 
priority level in the Interrupt Priority register(s). If more than one event interrupt occurs at the 
same time, the priority setting will determine which one is serviced first. If more than one 
interrupt is pending at the same level priority, a hardwares precedence scheme is used to choose 
the first to service. The XA architecture defines 15 interrupt occurrence priorities that may be 
programmed into the Interrupt Priority registers for Event Interrupts. Note that some XA 
implementations may not support allIS levels of occurrence priority. Consult the data sheet for 
a specific XA derivative for details. 
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Note that, like all other forms of interrupts, the PSW (including the Interrupt Mask bits) is 
loaded from the interrupt vector table when an event interrupt is serviced. Thus, the priority at 
which the interrupt service routine executes could be different than the priority at which the 
interrupt occurred (since that was determined not by the PSW image in the vector table, but by 
the Interrupt Priority register setting for that interrupt). Normally, it is advisable to set the 
execution priority in the interrupt vector to be the same as the Interrupt Priority register setting 
that will be used in the program. 

Furthermore, the occurrence priority of an interrupt should never be set higher than the 
execution priority. This could lead to infinite interrupt nesting where the interrupt service 
routine is re-interrupted immediately upon entry by the same interrupt source. 

Software Interrupts 
Software Interrupts act just like event interrupts, except that they are caused by software writing 
to an interrupt request bit in an SFR. The standard implementation of the software interrupt 
mechanism provides 7 interrupts which are associated with 2 Special Function Registers. One 
SFR, the software interrupt request register (SWR), contains 7 request bits: one for each 
software interrupt. The second SFR is an enable register (SWE), containing one enable bit 
matching each software interrupt request bit. 

Software interrupts are initiated by setting one of the request bits in the SWR register. If the 
corresponding enable bit in the SWE register is also set, the software interrupt will occur when it 
becomes the highest priority pending interrupt and its priority is higher than the current 
execution level. The software interrupt request bit in SWR must be cleared by software prior to 
returning from the software interrupt service routine. 

Software interrupts have fixed interrupt priorities, one each at priorities 1 through 7. These are 
shown in Table 4.2 below. Software Interrupts are defined outside the XA core and may not be 
present on all XA derivatives; consult the specific XA derivative data sheet for details. 

Table 4.2: Software interrupts, vectors, and fixed priorities 

Software Interrupt Vector Address Fixed Priority 

SWI1 01 OOh:01 03h 1 

SWI2 01 04h:01 07h 2 

SWI3 01 08h:01 OSh 3 

SWI4 01 OCh:01 OFh 4 

SWI5 0110h:0113h 5 

SWI6 0114h:0117h 6 

SWI7 0118h:011 Bh 7 

The primary purpose of the software interrupt mechanism is to provide an organized way in 
which portions of event interrupt routines may be executed at a lower priority level than the one 
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at which the service routine began. An example of this would be an event Interrupt Service 
Routine that has been given a very high priority in order to respond quickly to some critical 
external event. This ISR has a relatively small portion of code that must be executed 
immediately, and a larger portion of follow-up or "clean-up" code which does not need to be 
completed right away. Overall system performance may be improved if the lower priority 
portion of the ISR is actually executed at a lower priority level, allowing other more important 
interrupts to be serviced. 

If the high priority ISR simply lowers its execution priority at the point where it enters the 
follow-up code, by writing a lower value to the 1M bits in the PSW, a situation called "priority 
inversion" could occur. Priority inversion describes a case where code at a lower priority is 
executing while a higher priority routine is kept waiting. An example of how this could occur by 
writing to the 1M bits follows, and is illustrated in Figure 4.15. 

Suppose code is executing at level 0 and is interrupted by an event interrupt that runs at level 10. 
This is again interrupted by a level 12 interrupt. The level 12 ISR completes a time-critical 
portion of its code and wants to lower the priority of the remainder of its code (the non-time 
critical portion) in order to allow more important interrupts to occur. So, it writes to the 1M bits, 
setting the execution priority to 5. The ISR continues executing at level 5 until a level 8 event 
interrupt occurs. The level 8 ISR runs to completion and returns to the level 5 ISR, which also 
runs to completion. When the level 5 ISR returns, the previously interrupted level 10 ISR is re­
activated and eventually competes. 

It can be seen in this example that lower priority ISR code executed and completed while higher 
priority code was kept waiting on the stack. This is priority inversion. 
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Figure 4.15 Example of priority inversion (see text) 

In those cases where it is desirable to alter the priority level of part of an ISR, a software 
interrupt may be used to accomplish this without risk of priority inversion. The ISR must first be 
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split into 2 pieces: the high priority portion, and the lower priority portion. The high priority 
portion remains associated with the original interrupt vector. The lower priority portion is 
associated with the interrupt vector for software interrupt 5. At the completion of the high 
priority portion of the ISR, the code sets the request bit for software interrupt 5, then returns. the 
remainder of the ISR, now actually the ISR for software interrupt 5, executes when it becomes 
the highest priority pending interrupt. 

The diagram in Figure 4.16 shows the same sequence of events as in the example of priority 
inversion, except using software interrupt 5 as just described. Note that the code now executes in 
the correct order (higher priority first). 

Trap Interrupts 
Trap Interrupts are generated by the TRAP instruction. TRAP 0 through TRAP 15 are defined 
and may be used as required by applications. Trap Interrupts are intended to support application­
specific requirements, as a convenient mechanism to enter globally used routines, and to allow 
transitions between user mode and system mode. A trap interrupt will occur if and only if the 
instruction is executed, so there is no need for a precedence scheme with respect to simultaneous 
traps. 

The effect of a TRAP is immediate, the corresponding TRAP service routine is entered upon 
completion of the TRAP instruction. 

See Chapter 6 for a detailed description of the TRAP instruction. 

4.8.2 Interrupt Service Data Elements 

There are two data elements associated with XA interrupts. The first is the stack frame created 
when each interrupt is serviced. The second is the interrupt vector table located at the beginning 
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of code memory. Understanding the structure and contents of each is essential to the 
understanding of how XA interrupts are processed. 

Interrupt Stack Frame 
A stack frame is generated, always on the System Stack, for each XA interrupt. With one 
exception, the stack frame is stored for the duration of interrupt service and used to return to and 
restore the CPU state of the interrupted code. (The exception is an Exception Interrupt triggered 
by a Reset event. Since Reset re-initializes the stack pointers, no stack frame is preserved. See 
section 4.4 for details.) The stack frame in the native 24-bit XA operating mode is illustrated in 
Figure 4.17. Three words are stored on the stack in this case. The first word pushed is the low­
order 16 bits of the current PC, i.e., the address of the next instruction to be executed. The next 
word contains the high-order byte of the current PC. A zero byte is used as a pad. In sum, a 
complete 24-bit address is stored in the stack frame. The third word contains a copy of the PSW 
at the instant the interrupt was serviced. 

When the XA is operating in Page 0 Mode (SCR bit PZ = 1) the stack frame is smaller because, 
in this mode, only 16 address bits are used throughout the XA. The stack frame in Page 0 Mode 
is illustrated in Figure 4.18. Obviously it is very important that stack frames of both sizes not be 
mixed; this is one reason for the admonition in section 4.3 to set the System Configuration 
Register once during XA initialization and leave it unchanged thereafter. 

'-"' '""" '-"'~ 

~ SSP I Before interrupt 

Low-order 16-bits of PC 

OxOO PC (hi-byte) 
, 

P$W ~ SSP I 

6-bytes { 

After 

,--,,"=, ....... C' 

Figure 4.17 Interrupt stack frame (non- page zero mode) 

Before interrupt 

{ 

16-bits of PC 
4-bytes t------p-S"--.w-----~ 

After 

Figure 4.18 Interrupt stack frame (page 0 mode) 
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Interrupt Vector Table 
The XA uses the first 284 bytes of code memory (addresses 0 through lIB hex) for an interrupt 
vector table. The table may contain up to 71 double-word entries, each corresponding to a 
particular interrupt event. 

The double-word entries each consist of a 16 bit address of an interrupt service routine address . 
and a 16 bit PSW replacement value. Because vector addresses are 16-bit, the first instruction of 
service routines must be located in the first 64K bytes of XA memory. The first instruction of all 
service routines must be word-aligned. Key elements of the replacement PSW value are the 
choice of System or User mode for the service routine, the Register Bank selection, and an 
Execution Priority setting. For more details on PSW elements, see section 4.2.2. 

The first 16 vectors, starting at code memory address 0 are reserved for Exception Interrupt 
vectors. The second 16 vectors are reserved for Trap Interrupts. The following 32 vectors in the 
table are reserved for Event Interrupts. The final 7 vectors are used for Software Interrupts. 
Figure 4.19 illustrates the XA vector table and the structure of each component vector. Of the 
vectors assigned to Exceptions, 6 are assigned to events specific to the XA CPU and 10 are 
reserved. All 16 Trap Interrupts may be used freely. Assignments of Event Interrupt vectors are 
derivative-independent and vary with the peripheral device complement and pinout of each XA 
derivative. 

Unused interrupt vectors should normally be set to point to a dummy service routine. The 
dummy service routine should clear the interrupt flag (if it is not self-clearing) and execute an 
RETI to return to the user program. This is especially true of the exception interrupts and NMI, 
since these could conceivably occur in a system where the designer did not expect them. If these 
vectors are routed to a dummy service routine, the system can essentially ignore the unexpected 
exception or interrupt condition and continue operation. 

Note that when using some hardware development tools, it may be preferable not to initialize 
unused vector locations, allowing the development tool to flag unexpected occurrences of these 
conditions. 

4.9 Trace Mode Debugging 

The XA has an optional Trace Mode in which a special trace exception is generated at the 
conclusion of each instruction. Trace Mode supports user-supplied debugger/monitor programs 
which can single-step through any code, even code in ROM. 

4.9.1 Trace Mode Operation 

Trace Mode is initiated by asserting PSW. TM in the context of the program to be traced. 

U sing Trace Mode requires a detailed understanding of the XA instruction execution sequence 
because when and if a trace exception occurs depends on events within the execution sequence 
of a single instruction. Figure 4.20 illustrates the XA instruction sequence in overview. 
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Figure 4.19 Interrupt vectors 
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Figure 4.20 XA Instruction Sequence Overview 

A detailed model of this sequence is shown in Figure 4.21: First, at die beginning of the 
instruction cycle, the state of the TM flag is latched. Next, the instruction is checked to see if it 
is valid; undefined instructions or disallowed operations (like a write through ES in User Mode) 
are simply not executed, and there is no chance for a trace to occur. The sequence then checks 
for instructions illegal in the current context (currently only an IRET while in User Mode is 
detected here) and services an exception if one is found. If, and only if, none of these special 
conditions occur, the instruction is actually executed. Just after execution, if the Trace Mode bit 
had been latched TRUE at the beginning of the instruction cycle, the Trace is serviced. Finally, 
the cycle checks for a pending interrupt and performs interrupt service if one is found 
Note that an external reset may occur at any point during the cycle illustrated in Figure 4.2L 
This will abort processing when it occurs. 
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Figure 4.21 Instruction Execution Clock Detail 

One consequence of this sequence is that the instruction that sets TM = 1 cannot generate a 
Trace, since TM is not latched when the instruction is actually executed. Another consequence is 
that an instruction that generates an exception will never be traced. Finally if an event interrupt 
occurs during an instruction clock when the instruction being executed is a TRAP, the TRAP 
will be executed, then the trace service, and finally the interrupt will be serviced. 

4.9.2 Trace Mode Initialization and Deactivation 

Since PSW.TM is in the protected portion of the PSW (i.e., in PSWH), only code executing in 
System Mode can initiate or turn off Trace Mode. In practice, this may be done by invoking a 
trap whose replacement PSW clears this bit, or by executing a RETI instruction with a synthetic 
ExceptionlInterrupt stack frame explicitly pushed on the top of the System Stack, as follows: 

Lo-order 16-bits of PC 

OxOO , PC (hi-byte) 

... PSW 

\ 

) address of next instruction 
in traced routine 

TM set in saved PSW image 

Tracing will continue until the PSW.bit TM is cleared. This may be done by the trace service 
routine by examining the stack frame at the top of the system stack and clearing the TM bit prior 
to returning to the currently traced process. A similar method may be used to initiate trace mode. 
Note that stack frames generated by exception interrupts are always placed on the System stack. 
It is probably a good idea for the trace service routine to verify that the item in the stack frame is 
consistent with the traced process before modifying the TM bit. 
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5 Real-time Multi-tasking 

Multi-tasking as the name suggests, allows tasks, which are pieces of code that do specific 
duties, to run in an apparently concurrent manner. This means that tasks will seem to all run at 
the same time, doing many speCific jobs simultaneously. 

High end applications (like automotive) require instantaneous responses when dealing with high 
speed events, such as engine management, traction control and adaptive braking system (ABS) 
and hence there is a trend towards multi-tasking in a wide variety of high performance 
embedded control applications. 

Real-time application programs are often comprised of multiple tasks. Each task manages a 
specific facet of application program. Building a real-time application from individual tasks 
allows subdividing a complicated application program into independent and manageable 
modules. Each task shares the processor with other tasks in the application program according to 
an assigned priority level. 

In real-time multi-tasking, the main concern is the system overhead. Switching tasks involve 
moving lots of data of the terminated and initiated tasks, and extensive book-keeping to be able 
to restore dormant tasks when required. Thus it is extremely crucial to minimize the system 
overhead as much as possible. In some cases, some of the tasks may be associated with real-time 
response, which further complicates the requirements from the system. 

The following section analyzes the requirements and the XA suitability to these applications. 

5.1 Assist For Multi-tasking in XA 

The XA has numerous provisions to support multi-tasking systems. The architecture provides 
direct support for the concept of a multi-tasking as by providing two (System/User) privilege 
levels for isolation between tasks. High performance, interrupt driven, multi-tasking applications 
systems requiring protection are feasible with the XA. 

The XA architecture offers the following features which will appeal to multi-tasking 
implementations. 

5.1.1 Dual stack approach 

The architecture defines a System Stack Pointer (SSP) as well as an User Stack Pointer (USP). 
The dual stack feature supports fast task switching, and ease the creation of a multi-tasking 
monitor kernel. The separation of the two offers a reduction is storing and retrieving stack 
pointers or using a single stack, when switching to the kernel and back to an application. It also 
serves to speed up interrupt processing in large systems with external data memory. User stacks 
can be allocated in the slower external memory, while system memory is in internal SRAM, 
allowing for fast interrupt latency in this environment. The dual stack approach also adds the 
benefit of a better potential to recover from an ill-behaved task, since the system stack is still 
intact when an error is sensed. 
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5.1.2 Register Banks 

The XA also supports 4 banks of 8 byte/4 word registers, in addition to 12 shared registers. In 
some applications, the register banks can be designated statically to tasks, cutting significantly 
on the overhead for saving and restoring registers on context switching. 

5.1.3 Interrupt Latency and Overhead 

Interrupt latency is extremely critical in a multitasking environment. For a real-time 
multitasking environment, a fast interrupt response is crucial for switching between tasks. The 
XA is designed to provide such fast task switching environment through improved interrupt 
latency time. 

The interrupt service mechanism saves the PC (1 or 2 words, depending on the PageO mode flag 
PZ) and the PSW (1 word) on the stack. The interrupt stack normally resides in the internal data 
memory, and interrupt call including saving of three words takes 23 clocks. Prefetching the 
service routine takes 3 additional clocks. 

When interrupt or an exception/trap occurs, the current instruction in progress always gets 
executed prior servicing the interrupt. This present an overhead, while increasing the effective 
interrupt latency, since the event that interrupted the machine cannot be dealt with before the 
book-keeping is completed. In XA, the longest uninterrupted instruction is the signed 32x16 
Divide, which takes 24 clocks. 

This puts the worst case interrupt latency at [24 + 23 + 3] = 50 clocks (3.125 microseconds at 
16.0 MHz, 2.5 microseconds at 20.0 MHz. and 1.67 microseconds at 30.0 MHz). Saving the 
state of the lower registers can be done by simply switching the register bank. 

In the general case, up to 16 registers would be saved on the stack, which takes 32 clocks. The 
totallatency+overhead at start of an interrupt is a maximum of 68 clocks (4.25 microsecond at 
16 MHz, 3.4 at 20 MHz and 2.27 at 30 MHz). This allows for extremely fast context switching 
for multitasking environments. 

5.1.4 Protection 

The issue is mentioned here simply to clarify what is and what is not supported by the XA 
architecture. Dual stack pointer and minor privileges to what looks like a supervisor mode do 
not mean full protection. It is assumed that code in a micro controller does not require guarding 
from intentional system break-in by a lower privilege task. A table of the protected features in 
XA is given below. Note that features marked "disallowed" are simply not completed if 
attempted in the User mode. There are no exceptions or flags associated with these occurrences. 
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Protected Features in the XA 

Table 5.1: Segment and Stack Register Protection 

Write Write Read Read Read 
Write 

Write Write Write to 
Mode 

to OS 
through 

to ES 
through through through through 

to SSP SSEL 
OS ES OS ES SSP 

bit 7 

System Allowed Allowed Allowed Allowed Allowed Allowed Allowed Allowed Allowed 

User Dis- Allowed Allowed Select- Allowed Allowed Not Not Dis-
allowed able 1 possible possible allowed 

Note 1: The MSB of SSEL (bit 7) selects whether write through ES is allowed in User mode. 
However, this bit is accessible only in System mode. 

Table 5.2: PSW bit protection 

Mode 
Write to SM Write to RSO: 1 

Write to TM bit 
Write to IMO:3 

bit bits bits 

System Allowed Allowed Allowed Allowed 

User Disallowed Allowed Disallowed Disallowed 

In addition to the above, the System Stack is protected from corruption by User Mode execution 
of the RETI instruction. If User Mode code attempts to execute that instruction, it causes an 
exception interrupt. If it is necessary to run TRAP routines, for instance, in User Mode, the User 
RETI exception handler can perform the return for the User Mode code. To accomplish this, the 
User RETI exception handler may pop the topmost return address from the stack (2 or 3 words, 
depending on whether the XA is in Page Zero mode) and then execute the RET!. 

Protection Via Data Memory Segmentation 
In U serf Application mode, each task is protected from all others via the separation of data 
spaces (unless explicit sharing is planned in advance). If the address spaces of two tasks include 
no shared data, one task cannot affect the data of another, but it can read any data in the full 

address space. Code sharing is always safe since code memory may never be written!. An 
application mode program is prohibited from writing the segment registers, thus confining the 
writable area per an ill-behaved task to its dedicated segment. Most applications, which are not 
expected to utilize multi-tasking or use external memory, do not require any protection. They 
will remain after reset in system mode, and could access all system resources. 

At any given instant, two segments of memory are immediately accessible to an executing XA 
program. These are the data segment DS, w~ere the stack and local variables reside, and the 
extra segment ES, which may be used to read remote data structures. Restricting the 
addressability of task modules helps gain complete control of system resources for efficient, 
reliable operation in a multi-tasking environment. 

1. True for non-writable code memory only like EPROM, ROM, OTP. This might change for FLASH parts. 
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Protection Vja Dual Stack Pointers 

The XA provides a two-level user/supervisor protection mechanism. These are the user or 
application mode and the system or supervisor mode. In a multitasking environment, tasks in a 
supervisor level are protected from tasks in the application level. 

The XA has two stack pointers (in the register file) called the System Stack Pointer (SSP) and 
the User Stack Pointer (USP). In multitasking systems one stack pointer is used for the 
supervisory system and another for the currently active task. This helps in the protection 
mechanism by providing isolation of system software from user applications. The two stack 
pointers also help to improve the performance of interrupts. If the stack for a particular 
application would exceed the space available in the on-chip RAM, or on-chip RAM is needed 
for other time critical purposes (since on-chip RAM is accessed more quickly than off-chip 
memory), the main stack can be put off-chip and the interrupt stack (using the System SP) may 
be put in on-chip RAM. 

These features of the XA place it well above the competition in suitability to multi-tasking 
applications. 
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6 Instruction Set and Addressing 

This section contains information about the addressing modes and data types used in the XA. 
The intent is to help the user become familiar with the programming capabilities of the 
processor. 

6.1 Addressing Modes 
Addressing modes are ways to form effective addresses of the operands. The XA provides seven 
basic powerful addressing modes for access on word, byte, and bit data, or to specify the target 
address of a branch instruction. These basic addressing modes are uniformly available on a large 
number of instructions. Table 6.1 includes the basic addressing modes in the XA. An instruction 
could use a combination of these basic addressing modes, e.g., ADD RO, #020 is a combination 
of Register and Immediate addressing modes. 

All modes (non-register) generate ADDR[15:0]. This address is combined with DSIES[23: 16] 

for data and PCJCS [23: 16] for code to form a 24-bit address 1. 

An XA instruction can have zero, one, two, or three operands, whose locations are defined by 
the addressing mode. A destination operand is one that is replaced by a result, or is in some way 
affected by the instruction. The destination operand is listed first in an addressing mode 
expression. A source operand is a value that is moved or manipulated by the instruction, but is 
not altered. The source is listed second in an addressing mode expression. 

Table 6.1 Basic Addressing Modes 

MODE MNEMONIC OPERANDS 

Register R operand(s) in register (in Register file) 

Indirect [R] BytelWord whose 16-bit address is in R 

Indirect-Offset [R+off 8/16] Byte or Word data whose address (16-bit) contained in R, is 
offset by 8/16-bit signed integer "off 8/16' 

Direct mem_addr BytelWord at given memory "mem_addr' 

SFR 1 sfcaddr BytelWord at "sfr_addr' address 

Immediate #data 4/5 Immediate 4/5 and 8/16-bit integer constants "data8/16" 
#data 8/16 

Bit bit 1 O-bit address field specifying Register File, Data Memory or 
SFR bit address space 

1. This is a special case of direct addressing mode but separately identified, as SFR space is sepa­
rate from data memory. 

1. Exception is Page 0 mode, where all addresses are 16-bit. 
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6.2 Description of the Modes 

6.2.1 Register Addressing 

Instructions using this addressing mode contain a field that addresses the Register File that 

contains an operand. The Register file is byte2, word, double-word or bit addressable. 

Example: ADD R6, R4 

REGISTER· REGISTER 

Before: R4 contains 005Ah 
R6 contains A5A5h 

After: R4 contains 005Ah 
R6 contains A5FFh 

DESTINATION 

A5FFh (result) R6 
A5A5h (original contents) 

SOURCE 

005Ah R4 

ADD R6, R4 REGISTER FILE 

Figure 6.1 

2. The unimplemented 8 word registers are not Byte addressable 
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6.2.2 Indirect Addressing 

Instructions using this addressing mode contain a 16-bit address field. This field is contained in 
lout of 8 pointer registers in the Register File (that contain the 16-bit address of the operand in 
any 64K data segment). For data, the segment is identified by the 8-bit contents of DS or the ES 
and for code by the 8-bit contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit 
n = 0 selects DS and 1 selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS for 
code) in the segment select register SSEL corresponding to the indirect register number. The 
address of the pointer word for word operands should be even 

Example: ADD R6, [R4J 
SSEL.4 = 1 
i.e., the operand is in 
segment determined 
by the contents of ES 
So, if ES = 08, the 
operand is in 

Before: R6 contains 1005h 
R4 contains AOOOh 
Word at AOOOh contains A5A5h 

After: R4 contains AOOOh 
R6 contains B5AAh 
Word at AOOOh in segment 8 

segment 8 of data memory. of data memory contains A5A5h 

REGISTER - INDIRECT 

ADD R6, [R4] 

3/24/97 

B5AAh (result) 
l005h R6 

Seg8 

POINTER 
I--_A_5A_5h_..:---A-O-OO-h--------l AOOOh R4 

OR ~ ___ --' 

DATA MEMORY REGISTER FILE 

Figure 6.2 
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6.2.3 Indirect-Offset Addressing 

This addressing mode is just like the Register-Indirect addressing mode above except that an 
additional displacement value is added to obtain the final effective address. Instructions using 
this addressing mode contain a 16-bit address field and an 8 or 16-bit signed displacement field. 
This field addresses lout of 8 pointer registers in the Register File that contains the 16-bit 
address of the operand in any 64K data segment. The contents of the pointer register are added 

to the signed displacement to obtain the effective address3 (which must be even) of the operand. 
For data the segment is identified by the 8-bit contents of DS or the ES and for code, by the 8-bit 
contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit n = 0 selects DS and 1 
selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS for code) in the segment 
select register SSEL. 

Example: ADD R5, [R3 +30h] 
SSEL.3 = 1 
i.e., the operand is in 
segment determined 
by the contents of ES 
So, if ES = 04, the 
operand is in segment 
4 of data memory. 

Before: R3 contains COOOh 
R5 contains 0065h 
Word at C030h = A540h 

After: R3 contains COOOh 
R5 contains A5A5h 
Word at C030h = A540h 

REGISTER - INDIRECT WITH OFFSET 

DESTINATION 
0065h A5A5h 

r---
! Seg4 

FFFFh 

POINTER 
A540h COOOh C030h 

Oh 

R5 

R3 

DATA MEMORY REGISTER FILE 

ADD R5, [R3+30] 

Figure 6.3 

3. In case of an odd address, the XA forces the operand fetch from the next lower even boundary 
(address.bitO = 0) 
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6.2.4 Direct Addressing 

Instructions using this addressing mode contain an 10-bit address field, which contains the 
actual address of the operand in any 64K data memory segment or sfr space.The direct address 
data memory space is always the bottom lK byte (0:3FFh) of any segment. The associated data 
segment is always identified by the 8-bit contents of DS. 

Example: 

3/24/97 

SUB RO, 200h 
If DS = 02, the 
operand is in segment 
2 of data memory. 

REGISTER - DIRECT 

Before: RO contains A5FFh 
200H contains 5555h 

After: RO contains 50AAh 
200h contains 5555h 

-,--. 
I Seg2 I 

FFFFh -- ~ DS = 2h I 

SOURCE 

5555h 200h 

Oh 

DATA MEMORY 

A5FFh DES TINA TION 

L.--___________ ~ 50AAh (result) RO 

REGISTER FILE 

SUB RO,200h 

Figure 6.4 
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6.2.5 SFR Addressing 

This is identical to the direct addressing mode described before, except it addresses the lK SFR 
space. Although encoded into the same instruction field as the direct addressing described 
above, this is actually a separate space. Instructions using this addressing mode contain an lO-bit 
SFR address. The 1 K SFR space is always directly addressed (400:7FFh) and is mapped directly 
above the lK direct-addressed RAM space. 

Example: MOV ROH, 406h4 

6.2.6 Immediate Addressing 

Before: ROH contains 05h 
406h contains A5h 

After: ROH contains A5h 
406h contains A5h 

In immediate addressing, the actual operand is given explicitly in the instruction.The immediate 
operand is either an 4/5, 8 or 16-bit integer which constitutes the source operand. 4-bit short 
immediate operands used with instructions ADDS and MOVS are sign extended. 

Example: ADD ROL,#OB9h Before: RO contains 13h 
After: ROL contains CCh 

REGISTER - IMMEDIATE DESTINATION 

ROL 

ADD ROL, #B9h 
IMMEDIATE DATA 

Figure 6.5 

4. The syntax always refers to the SFR address starting from the base address of 400H. 
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6.2.7 Bit Addressing 

Instructions using the bit addressing mode contain a 10-bit field containing the address of the bit 
operand. The XA supports three bit address spaces, which are encoded into the same format. The 
spaces are: 256 bits in the register file (the entire active register file); 256 bits in the data memory 
(byte addresses 20 through 3F hex on the current data segment); and 512 bits in the SFR space (byte 
addresses 400 through 43F hex). 

Bit addresses 0 to FF hex map to the register file, bit addresses 100 to IFF hex map to data memory, 
and bit addresses 200 to 3FF map to the SFR space. 

A separate bit-addressable space (20-3F hex) in the direct-address data memory, exists for each 
segment. The current working segment for the direct-address space being always identified by the 
DS register. 

The encoding of the 10-bit field for bit addresses is as follows: 

3/24/97 

This bit determines 
whether the bit address is 
an SFR or not (1 = SFR). 

5 or 6 bit field (6 bits 
for an SFR) 
identifies the byte 
that the addressed bit 
resides in. 

r-__ ...JI\.'--__ """" 

If not an SFR bit address, this bit 
determines whether the bit 
address is in the Register File or 
the data memory (0 = Register 
file, 1 = data memory). 

3-bit field identifies 1 
of 8 bits in a byte. 

Bit Address Encoding 
Examples: 
For a given data segment, 
1 001100010 = Bit 2 of an SFR at address OCh (i.e., 40Ch in the map) 
0001100010 = Bit 2 of Register file at address OCh, i.e., R6L 
o 101100010 = Bit 2 of Data memory address OCh 

Figure 6.6 
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6.3 Relative Branching and Jumps 
Program memory addresses as referenced by Jumps, Calls, and Branch instructions must be word 
aligned in XA. For instance, a branch instruction may occur at any code address, but it may only 
branch to an even address. This forced alignment to even address provides three benefits: 

• Branch ranges are doubled without providing an extra bit in the instruction and 
• Faster execution as XA always fetches first two byte of an instruction simultaneously. 

Allows translated 8051 code to have branches extended over intervening code that will tend to 
grow when translated and generally increase the chances of a branch target being in that 
range. 

The ref8 displacement is a 9-bit two's complement integer which is encoded as 8-bits that 
represents the relative distance in words from the current PC to the destination PC. Similarly, the 
re116 displacement is a 17 -bit twos complement integer which is encoded as 16-bits. The value of 
the PC used in the target address calculation is the address of the instruction following the Branch, 
Jump or Call instruction. 

The 8-bit signed displacement is between -128 to + 127. The branch range for rel8 is (sample 
calculation shown below) is really +254 bytes to -256 bytes for instructions located at an even 
address, and +253 to -257 for the same located at an odd address, with the limitation that the target 
address is word aligned in code memory. 

The 16-bit signed displacement is -32,768 to +32,767. The branch range is therefore +65,534 bytes 
to -65,536 bytes for instructions located at an even address, and +65,533 to -65,537 for the same 
located at an odd address, with the limitation that the target address is word aligned in code 
memory. 

Sample calculation for rel8 range: 

Assuming word aligned branch target, forward range as measured from current PC is: 

Branch Target Address - Current PC 
Now, maximum positive signed 8-bit displacement = +127; So, reI8« 1 is +254 

If Current PC = ODD, then 
Range = 254 - 1 = +253 as PC is forced to an even location, else 
If current PC = EVEN, then 
Range = +254 

Similarly, reverse range as measured from current PC is: 

Branch Target Address - Current PC 
Now, maximum positive signed 8-bit displacement = -128; So, rel8 « 1 is -256 

If Current PC = ODD, then 
Range = -257 
Else if current PC = EVEN, then 
Range = -256 
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6.4 Data Types in XA 
The XA uses the following types of data: 

Bits 
4/5-bit signed integers 
8-bit (byte) signed and unsigned integers 
8-bit, two digit BCD numbers 
16-bit (word) signed and unsigned integers 
IO-bit address for bit-addressing in data memory and SFR space 
24-bit effective address comprising of 16-bit address and 8-bit segment select. See addressing 
modes for more information. 

A byte consists of 8-bits. A word is a 16-bit value consisting of two contiguous bytes. A double 
word consists of two 16-bit words packed in two contiguous words in memory. 

Negative integers are represented in twos complement form. 4-bit signed integers (sign extended 
to byte/word) are used as immediate operands in MOVS and ADDS instructions. 

Binary coded decimal numbers are packed, 2 digits per byte. BCD operations use byte operands. 

6.5 Instruction Set Overview 
The XA uses a powerful and efficient instruction set, offering several different types of 
addressing modes. A versatile set of "branch" and "jump" instructions are available for 
controlling program flow based on register or memory contents. Special emphasis has been 
placed on the instruction support of structured high-level languages and real-time multi-tasking 
operating systems. 

This section discusses the set of instructions provided in the XA microcontroller, and also shows 
how to use them. It includes descriptions of the instruction format and the operands used by the 
instructions. After a summary of the instructions by category, the section provides a detailed 
description of the operation of each instruction, in alphabetical order. 

Five summary tables are provided that describes the available instructions. The first table is a 
summary of instructions available in the XA along with their common usage. The second and 
third table are tables of addressing modes and operands, and the instruction type they pertain to. 
A fourth table that lists the summary of status flags update by different instructions. A fifth table 
lists the available instructions with their different addressing modes and briefly describes what 
each instruction does along with the number of bytes, and number of clocks required for each 
instruction. 

The formats have been chosen to optimize the length and execution speed of those instructions 
that would be used the most often in critical code. Only the first and sometimes the second byte 
of an instruction are used for operation encoding. The length of the instruction and the first 
execution cycle activity are determined from the first byte. Instruction bytes following the first 
two bytes (if any) are always immediate operands, such as addresses, relative displacements, 
offsets, bit addresses, and immediate data. 
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Glossary of mnemonics, notations used 

General: 

offset8 

offset 16 

direct 
#data4 

#data5 
#data8 
#data16 
bit 
reI 8 
rel16 
addr16 
addr24 
SP 
USP 
SSP 
C 
AC 
V 
N 
Z 
DS 

ES 

direct 

An 8-bit signed offset (immediate data in the instruction) that is added to a register to 
produce an absolute address. 
A 16-bit signed offset (immediate data in the instruction) that is added to a register to 
produce an absolute address. 
An II-bit immediate address contained in the instruction. 
4 bits of immediate data contained in the instruction. (range +7 to -8 for 
signed immediate data and 0-15 for shifts) 
5 bits of immediate data contained in the instruction. (0-31 for shifts) 
8 bits of immediate data contained in the instruction. (+ 127 to -128) 
16 bits of immediate data contained in the instruction. (+32,767 to -32,768) 
The 10-bit address of an addressable bit. 
An 8-bit relative displacement for branches. (+254 to -256) 
An 16-bit relative displacement for branches.( +65,534 to -65,536) 
A 16-bit absolute branch address within a 64K code page. 
A 24-bit absolute branch address, able to access the entire XA address space. 
The current Stack Pointer (User or System) depending on the operation mode. 
The User Stack Pointer. 
The System Stack Pointer 
Carry flag from the PSW. 
Auxiliary Carry flag from the PSW. 
Overflow flag from the PSW. 
Negative flag from the PSW. 
Zero flag from the PSW. 
Data segment register. Holds the upper byte of the 24-bit data address space of the XA. 
Used mainly for local data segments. 
Extra segment register. Holds the upper byte of the 24-bit data address space of the XA. 
Used mainly for addressing remote data structures. 
Uses the current DS for data memory for the upper byte of the 24-bit address or none 
(uses only the low 16-bit address) for accessing the special functions register (SFR) 
space. The interpretation should be as below: 

if (data range) 
then (direct = (DS:direct) 
if (sfr range) 
then (direct) = (sfr) 

Operation encoding fields: 

SZ Data Size. This field encodes whether the operation is byte, word or double-word. 
IND This field flags indirect operation in some instructions. 
HIL This field selects whether PUSH and POP Rlist use the upper or lower half of the 

dddd 
ddd 

ssss 
sss 

available registers. 
Destination register field, specifies one of 16 registers in the register file. 
Destination register field for indirect references, specifies one of 8 pointer registers in 
the register file. 
Source register field, specifies one of 16 registers in the register file. 
Source register field for indirect references, specifies one of 8 pointer registers in the 
register file. 
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Mnemonic text: 

Rs Source register. 
Rd Destination register. 
[ ] In the instruction mnemonic, indicates an indirect reference (e.g.: [R4] refers to the 

memory address pointed to by the contents of register 4). 
[R +] U sed to indicate an automatic increment of the pointer register in some indirect 

addressing modes. 
[WS:R] Indicates that the pointer register (R) is extended to a 24-bit pointer by the selected 

segment register (either DS or ES for all instructions except MOVe, which uses either 
PC23-16 or CS). 

Rlist A bitmap that represents each register in the register file during a PUSH or POP 
operation. These registers are RO-R7 for word or ROL-R7H for byte. 

Pseudocode: 

( ) 

<---

((SP)) 

Rn.x 
Rn.x-y 

Used to indicate "contents of" in the instruction operation pseudocode (e.g.: (R4) refers 
to the contents of register 4). 
Pseudocode assignment operator. Occasionally used as <--> to indicate assignment in 
both directions (interchange of data). 
Data memory contents at the location pointed to by the current stack pointer. In system 
mode, the current SP is the SSP, and the segment used is always segment O. In user 
mode, the current SP is the USP, and the segment used is the Data Segment (DS). This 
segment apply to the uses of the SP, not just PUSH and POP. In a few cases, "((SSP))" 
or "((USP))" indicate that a specific SP is used, regardless of the operating mode. 

Indicates bit x of register n. 
Indicates a range of bits from bit x to bit y of register n. 

Note: all indirect addressing is accomplished using the contents of the data segment register as the 
upper 8 address bits unless otherwise specified. Example: [ES:Rs] indicates that the extra segment 
register generates the upper 8 bits of the address in this case. 

Execution time: 

PZ - In Page 0 
nt - Not Taken 
t - Taken 

Syntax For Operand size: 
• w = For word operands 
.h = byte operands 
.d = double-word operands 

Default operand size is dependant on the operands used e.g MOV RO,Rl is always word-size 
whereas MOV ROL, ROH is always byte etc. For INDIRECT_IMMEDIATE, 
DIRECT_IMMEDIATE, DIRECT_DIRECT, etc., user must specify operand size. 
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Ox = prefix for Hex values 
[] = For indirect addressing 
[[]] = For Double-indirect addressing 
dest = destination 
src = source 

Table 6.2 Instruction Set in XA 

Mnemonic Usage 

MOV, MOVC, MOVS, MOVX, LEA, XCH, PUSH, POP, Data Movement 
PUSHU,POPU 

ADD,ADDS,ADDC,SUB,SUBB Add and Subtract 

MULU.b, MULU.w, MUL.w Multiply and Divide 
DIVU.b, DIVU.w. DIVU.d, DIV.w, DIV.d 

RR,RRC,RL,RLC,LSR,ASR,ASL,NORM Shifts and Rotates 

CLR,SETB,MOV,ANL,ORL Bit Operations 

JB, JBC, JNB, JNZ, JZ, DJNZ, CJNE, Conditional Jumps/Calls 

BOV,BNV,BPL,BCC,BCS,BEQ,BNE,BG,BGE, Conditional Branches 
BGT,BL,BLE,BLT,BMI 

AND. OR, XOR Boolean Functions 

JMP, FJMP, CALL, FCALL, BR Unconditional Jumps/Calls/Branches 

RET, RETI Return from subroutines, interrupts 

SEXT, NEG, CPL, DA Sign Extend, Negate, Complement, Decimal Adjust 

BKPT,TRAP#,RESET Exceptions 

NOP No Operation 

XA User Guide 114 3/24/97 



Table 6.3 shows a summary of the basic addressing modes available for data transfer and 
calculation related instructions. 

Table 6.3 Instruction Addressing Modes 

Modes/ ADD SUB AND ADDS MUL 
Operands 

MOVX MOV CMP 
AD DC SUBB OR MOVS DIV Shift XCH 

XOR 

R,R · · · · · . . · 
R. [R] . · · · · · · 
[RJ, R . · · · · · 

R, [R+offB] · · · · · 
[R+offB], R · · · · · 

R, [R+off16] · · · · · 
[R+off16], R · · · · · 

R, [R+] · · · · · 
[R+], R · · · · · 

[R+]. [R+J · 
dir, R · · · · · 
R, dir · · · · · · 

dir, [R] · 
[RJ, dir · 

R, #data · · · · · · . . 
[R], #data · · · · · · 

[R+], #data · · · · · · 
[R+offBJ, · · · · · · #data 

[R+off16], · · . · · · · #data 

dir, #data • · · · · · 
dir, dir · 
R,USP · 

Notes: 
- Shift class includes rotates, shifts, and normalize. 
- USP = User stack pointer. 
* : ADDS and MOVS uses a short immediate field (4 bits). 
** instructions with no operands include: BKPT, NOP, RESET, RET, RETI. 

bytes 

2 

2 

2 

3 

3 

4 

4 

2 

2 

2 

3 

3 

3 

3 

2*/3/4 

2*/3/4 

2*/3/4 

3*/4/5 

4*/5/6 

3*/4/5 

4 

2 
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Modesl Move PUSH DA,SEXT JUMP DJNZ CJNE BIT MISC bytes 

Operands POP CPL, NEG CALL OPS 

R, [R+] · 2 

[R+], R · 2 

A, · 2 
[A+DPTR] 

A, [A+PC] · 2 

direct . 3 

Rlist . 2 

R . 2 

addr24 · 4 

[R] · 2 

[A+DPTR] JMP 2 

R, rei . 3 

direct, rei . 4 

R, direct, rei · 4 

R, #data, rei · 4/5 

[RJ, #data, · 4/5 
rei 

bit · 3 

bit, C; C, bit · 3 

C,/bit · 3 

rei · Condo 2 
Branch 

bit, rei Condo 4 
Branch 

#data4 TRAP 2 

R,R+off8 LEA 3 

r, R+off16 LEA 4 

<none> ** . 1/2 

Notes: 
- Shift class includes rotates, shifts, and normalize. 
- USP = User stack pointer. 
* : ADDS and MOVS uses a short immediate field (4 bits). 
** instructions with no operands include: BKPT, Nap, RESET, RET, RET!. 
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Table 6.4 summarizes the status flag updates for the various XA instruction types. 

Table 6.4 Status Flag Updates 

Flags Updated 
Instruction Type 

C AC V 

ADD, ADDC, CMP, SUB, SUBB X X X 

ADDS, MOVS -

AND, OR. XOR - - -
ASR, LSR * - -

branches, all bit operations, NOP - - -
Calls, Jumps, and Returns - - -

CJNE X - -

CPL - - -

DA * - -
DIV, MUL * - * 

DJNZ - - -

LEA - - -

MOV, MOVC, MOVX - - -
NEG - - X 

NORM - - -
PUSH, POP - - -

RESET * * * 

RL, RR - - -
RLC,RRC * - -

SEXT - - -
TRAP,BKPT - - -

XCH - - -
ASL * - X 

Notes: 
-: flag not updated. 
X: flag updated according to the standard definition. 
*: flag update is non-standard, refer to the individual instruction description. 
Note: Explicit writes to PSW flags takes precedence over flag updates. 

N Z 

X X 

X X 

X X 

X X 

- -

- -

X X 

X X 

X X 

X X 

X X 

- -
X X 

X X 

X X 

- -
* * 

X X 

X X 

- -

- -
- -
X X 
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Instruction Set Summary 

Table 6.5 lists the entire XA instruction set by instruction type. This can be used as a quick 
reference to find specific instructions that may be looked up in the detailed alphabetical description 
section. 

Table 6.5 

Mnemonic Description Bytes Clocks 

Arithmetic Operations 

ADD Rd, Rs Add registers direct 2 3 

ADD Rd, [Rs] Add register-indirect to register 2 4 

ADD [Rd], Rs Add register to register-indirect 2 4 

ADD Rd, [Rs+offset8] Add register-indirect with 8-bit offset to 3 6 
register 

ADD [Rd+offset8], Rs Add register to register-indirect with 8-bit 3 6 
offset 

ADD Rd, [Rs+offset16] Add register-indirect with f6-bit offset to 4 6 
register 

ADD [Rd+offset16], Rs Add register to register-indirect with 16-bit 4 6 
offset 

ADD Rd, [Rs+] Add register-indirect with auto increment to 2 5 
register 

ADD [Rd+], Rs Add register-indirect with auto increment to 2 5 
register 

ADD direct, Rs Add register to memory 3 4 

ADD Rd, direct Add memory to register 3 4 

ADD Rd, #data8 Add 8-bit immediate data to register 3 3 

ADD Rd, #data16 Add 16-bit immediate data to register 4 3 

ADD [Rd], #data8 Add 8-bit immediate data to register-indirect 3 4 

ADD [Rd], #data16 Add 16-bit immediate data to register-indirect 4 4 

ADD [Rd+], #data8 Add 8-bit immediate data to register-indirect 3 5 
with auto-increment 

ADD [Rd+], #data16 Add 16-bit immediate data to register- 4 5 
indirect with auto-increment 

ADD [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect 4 6 
with 8-bit offset 

ADD [Rd+offset8], #data16 Add 16-bit immediate data to register- 5 6 
indirect with 8-bit offset 
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Table 6.5 

Mnemonic Description Bytes Clocks 

ADD [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect 5 6 
with 16-bit offset 

ADD [Rd+offset16], #data 16 Add 16-bit immediate data to register- 6 6 
indirect with 16-bit offset 

ADD direct, #data8 Add 8-bit immediate data to memory 4 4 

ADD direct, #data16 Add 16-bit immediate data to memory 5 4 

AD DC Rd, Rs Add registers direct with carry 2 3 

ADDC Rd, [Rs] Add register-indirect to register with carry 2 4 

ADDC [Rd], Rs Add register to register-indirect with carry 2 4 

ADDC Rd, [Rs+offset8] Add register-indirect with 8-bit offset to 3 6 
register with carry 

AD DC [Rd+offset8], Rs Add register to register-indirect with 8-bit 3 6 
offset with carry 

ADDC Rd, [Rs+offset16] Add register-indirect with 16-bit offset to 4 6 
register with carry 

ADDC [Rd+offset16], Rs Add register to register-indirect with 16-bit 4 6 
offset with carry 

ADDC Rd, [Rs+] Add register-indirect with auto increment to 2 5 
register with carry 

ADDC [Rd+], Rs Add register-indirect with auto increment to 2 5 
register with carry 

ADDC direct, Rs Add register to memory with carry 3 4 

ADDC Rd, direct Add memory to register with carry 3 4 

ADDC Rd, #data8 Add 8-bit immediate data to register with 3 3 
carry 

ADDC Rd, #data16 Add 16-bit immediate data to register with 4 3 
carry 

ADDC [Rd], #data8 Add 16-bit immediate data to register- 3 4 
indirect with carry 

AD DC [Rd], #data16 Add 16-bit immediate data to register- 4 4 
indirect with carry 

ADDC [Rd+], #data8 Add 8-bit immediate data to register-indirect 3 5 
and auto-increment with carry 

AD DC [Rd+], #data16 Add 16-bit immediate data to register- 4 5 
indirect and auto-increment with carry 

ADDC [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect 4 6 
with 8-bit offset and carry 

3124/97 119 Addressing Modes and Data Types 



Table 6.5 

Mnemonic Description Bytes Clocks 

AD DC [Rd+offset8], #data 16 Add 16-bit immediate data to register- 5 6 
indirect with 8-bit offset and carry 

ADDC [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect 5 6 
with 16-bit offset and carry 

AD DC [Rd+offset16], #data 16 Add 16-bit immediate data to register- 6 6 
indirect with 16-bit offset and carry 

ADDC direct, #data8 Add 8-bit immediate data to memory with 4 4 
carry 

AD DC direct, #data16 Add 16-bit immediate data to memory with 5 4 
carry 

ADDS Rd, #data4 Add 4-bit signed immediate data to register 2 3 

ADDS [Rd], #data4 Add 4-bit signed immediate data to register- 2 4 
indirect 

ADDS [Rd+], #data4 Add 4-bit signed immediate data to register- 2 5 
indirect with auto-increment 

ADDS [Rd+offset8], #data4 Add register-indirect with 8-bit offset to 4-bit 3 6 
signed immediate data 

ADDS [Rd+offset16], #data4 Add register-indirect with 16-bit offset to 4- 4 6 
bit signed immediate data 

ADDS direct, #data4 Add 4-bit signed immediate data to memory 3 4 

ASL Rd, Rs Logical left shift destination register by the 2 See 
value in the source register Note1 

ASL Rd, #data4 Logical left shift register by the 4-bit 2 See 
immediate value Note1 

ASR Rd,Rs Arithmetic shift right destination register by 2 See 
the count in the source Note1 

ASR Rd, #data4 Arithmetic shift right register by the 4-bit 2 See 
immediate count Note1 

CMP Rd, Rs Compare destination and source registers 2 3 

CMP [Rd], Rs Compare register with register-indirect 2 4 

CMP Rd, [Rs] Compare register-indirect with register 2 4 

CMP [Rd+offset8], Rs Compare register with register-indirect with 3 6 
8-bit offset 

CMP [Rd+offset16], Rs Compare register with register-indirect with 4 6 
16-bit offset 

CMP Rd, [Rs+offset8] Compare register-indirect with 8-bit offset 3 6 
with register 
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Table 6.5 

Mnemonic Description Bytes Clocks 

CMP Rd,[Rs+offset16] Compare register-indirect with 16-bit offset 4 6 
with register 

CMP Rd, [Rs+] Compare auto-increment register-indirect 2 5 
with register 

CMP [Rd+], Rs Compare register with auto-increment 2 5 
register-indirect 

CMP direct, Rs Compare register with memory 3 4 

CMP Rd, direct Compare memory with register 3 4 

CMP Rd, #data8 Compare 8-bit immediate data to register 3 3 

CMP Rd, #data16 Compare 16-bit immediate data to register 4 3 

CMP [Rd], #data8 Compare 8 -bit immediate data to register- 3 4 
indirect 

CMP [Rd], #data 16 Compare 16-bit immediate data to register- 4 4 
indirect 

CMP [Rd+], #data8 Compare 8-bit immediate data to register- 3 5 
indirect with auto-increment 

CMP [Rd+], #data16 Compare 16-bit immediate data to register- 4 5 
indirect with auto-increment 

CMP [Rd+offset8], #data8 Compare 8-bit immediate data to register- 4 6 
indirect with 8-bit offset 

CMP [Rd+offset8], #data16 Compare 16-bit immediate data to register- 5 6 
indirect with 8-bit offset 

CMP [Rd+offset16], #data8 Compare 8-bit immediate data to register- 5 6 
indirect with 16-bit offset 

CMP [Rd+offset16], #data 16 Compare 16-bit immediate data to register- 6 6 
indirect with 16-bit offset 

CMP direct, #data8 Compare 8-bit immediate data to memory 4 4 

CMP direct, #data 16 Compare 16-bit immediate data to memory 5 4 

DA Rd Decimal Adjust byte register 2 4 

DIV.w Rd, Rs 16x8 signed register divide 2 14 

DIV.w Rd, #data8 16x8 signed divide register with immediate 3 14 
word 

DIV.d Rd, Rs 32x16 signed double register divide 2 24 

DIV.d Rd, #data16 32x16 signed double register divide with 4 24 
immediate word 

DIVU.b Rd, Rs 8x8 unsigned register divide 2 12 
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Table 6.5 

Mnemonic Description Bytes Clocks 

DIVU.b Rd, #data8 8X8 unsigned register divide with immediate 3 12 
byte 

DIVU.w Rd,Rs 16X8 unsigned register divide 2 12 

DIVU.w Rd, #data8 16X8 unsigned register divide with 3 12 
immediate byte 

DIVU.d Rd,Rs 32X16 unsigned double register divide 2 22 

DIVU.d Rd, #data16 32X16 unsigned double register divide with 4 22 
immediate word 

LEA Rd, Rs+offset8 Load 16-bit effective .address with 8-bit 3 3 
offset to register 

LEA Rd, Rs+offset16 Load 16-bit effective address with 16-bit 4 3 
offset to register 

MUL.w Rd,Rs 16X16 signed multiply of register contents 2 12 

MUL.w Rd, #data16 16X16 signed multiply 16-bit immediate data 4 12 
with register 

MULU.b Rd, Rs 8X8 unsigned multiply of register contents 2 12 

MULU.b Rd, #data8 8X8 unsigned multiply of 8-bit immediate 3 12 
data with register 

MULU.w Rd,Rs 16X16 unsigned register multiply 2 12 

MULU.w Rd, #data16 16X16 unsigned multiply 16-bit immediate 4 12 
data with register 

NEG Rd Negate (twos complement) register 2 3 

SEXT Rd Sign extend last operation to register 2 3 

SUB Rd,Rs Subtract registers direct 2 3 

SUB Rd, [Rs] Subtract register-indirect to register 2 4 

SUB [Rd], Rs Subtract register to register-indirect 2 4 

SUB Rd, [Rs+offset8] Subtract register-indirect with 8-bit offset to 3 6 
register 

SUB [Rd+offset8], Rs Subtract register to register-indirect with 8- 3 6 
bit offset 

SUB Rd, [Rs+offset16] Subtract register-indirect with 16-bit offset to 4 6 
register 

SUB [Rd+offset16], Rs Subtract register to register-indirect with 16- 4 6 
bit offset 

SUB Rd, [Rs+] Subtract register-indirect with auto 2 5 
increment to register 
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Table 6.5 

Mnemonic Description Bytes Clocks 

SUB [Rd+], Rs Subtract register-indirect with auto 2 S 
increment to register 

SUB direct, Rs Subtract register to memory 3 4 

SUB Rd, direct Subtract memory to register 3 4 

SUB Rd, #data8 Subtract 8-bit immediate data to register 3 3 

SUB Rd, #data16 Subtract 16-bit immediate data to register 4 3 

SUB [Rd], #data8 Subtract 8-bit immediate data to register- 3 4 
indirect 

SUB [Rd], #data 16 Subtract 16-bit immediate data to register- 4 4 
indirect 

SUB [Rd+], #data8 Subtract 8-bit immediate data to register- 3 S 
indirect with auto-increment 

SUB [Rd+], #data16 Subtract 16-bit immediate data to register- 4 S 
indirect with auto-increment 

SUB [Rd+offset8], #data8 Subtract 8-bit immediate data to register- 4 6 
indirect with 8-bit offset 

SUB [Rd+offset8], #data16 Subtract 16-bit immediate data to register- S 6 
indirect with 8-bit offset 

SUB [Rd+offset16], #data8 Subtract 8-bit immediate data to register- S 6 
indirect with 16-bit offset 

SUB [Rd+offset16], #data 16 Subtract 16-bit immediate data to register- 6 6 
indirect with 16-bit offset 

SUB direct, #data8 Subtract 8-bit immediate data to memory 4 4 

SUB direct, #data16 Subtract 16-bit immediate data to memory S 4 

SUBB Rd,Rs Subtract with borrow registers direct 2 3 

SUBB Rd, [Rs] Subtract with borrow register-indirect to 2 4 
register 

SUBB [Rd], Rs Subtract with borrow register to register- 2 4 
indirect 

SUBB Rd, [Rs+offset8] Subtract with borrow register-indirect with 8- 3 6 
bit offset to register 

SUBB [Rd+offset8], Rs Subtract with borrow register to register- 3 6 
indirect with 8-bit offset 

SUBB Rd, [Rs+offset16] Subtract with borrow register-indirect with 4 6 
16-bit offset to register 

SUBB [Rd+offset16], Rs Subtract with borrow register to register- 4 6 
indirect with 16-bit offset 
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Table 6.5 
.. 

Mnemonic Description Bytes. Clocks 

SUBB Rd, [Rs+] Subtract with borrow register-indirect with 2 5 
auto increment to register 

SUBB [Rd+], Rs Subtract with borrow register-indirect with 2 5 
auto increment to register 

SUBB direct, Rs Subtract with borrow register to memory 3 4 

SUBB Rd, direct Subtract with borrow memory to register 3 4 

SUBB Rd, #data8 Subtract with borrow 8-bit immediate data to 3 3 
register 

SUBS Rd, #data16 Subtract with borrow 16-bit immediate data 4 3 
to register 

SUBB [Rd], #data8 Subtract with borrow 8-bit immediate data to 3 4 
register-indirect 

SUBB [Rd], #data 16 Subtract with borrow 16-bit immediate data 4 4 
to register-indirect 

SUBB [Rd+], #data8 Subtract with borrow 8-bit immediate data to 3 5 
register-indirect with auto-increment 

SUBS [Rd+], #data16 Subtract with borrow 16-bit immediate data 4 5 
to register-indirect with auto-increment 

SUBB [Rd+offset8], #data8 Subtract with borrow 8-bit immediate data to 4 6 
register-indirect with 8-bit offset 

SUSS [Rd+offset8], #data16 Subtract with borrow 16-bit immediate data 5 6 
to register-indirect with 8-bit offset 

SUBS [Rd+offset16], #data8 Subtract with borrow 8-bit immediate data to 5 6 
register-indirect with 16-bit offset 

SUSS [Rd+offset16], #data 16 Subtract with borrow 16-bit immediate data 6 6 
to register-indirect with 16-bit offset 

SUBS direct, #data8 Subtract with borrow 8-bit immediate data to 4 4 
memory 

SUBS direct, #data16 Subtract with borrow 16-bit immediate data 5 4 
to memory 

Logical Operations 

AND Rd,Rs Logical AND registers direct 2 3 

AND Rd, [Rs] Logical AND register-indirect to register 2 4 

AND [Rd], Rs Logical AND register to register-indirect 2 4 

AND Rd, [Rs+offset8] Logical AND register-indirect with 8-bit offset 3 6 
to register 
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Table 6.5 

Mnemonic Description Bytes Clocks 

AND [Rd+offset8], Rs Logical AND register to register-indirect with 3 6 
8-bit offset 

AND Rd, [Rs+offset16] Logical AND register-indirect with 16-bit 4 6 
offset to register 

AND [Rd+offset16], Rs Logical AND register to register-indirect with 4 6 
16-bit offset 

AND Rd, [Rs+] Logical AND register-indirect with auto 2 5 
increment to register 

AND [Rd+], Rs Logical AND register-indirect with auto 2 5 
increment to register 

AND direct, Rs Logical AND register to memory 3 4 

AND Rd, direct Logical AND memory to register 3 4 

AND Rd, #data8 Logical AND 8-bit immediate data to register 3 3 

AND Rd, #data16 Logical AND 16-bit immediate data to 4 3 
register 

AND [Rd], #data8 Logical AND 8-bit immediate data to register- 3 4 
indirect 

AND [Rd], #data16 Logical AND16-bit immediate data to 4 4 
register-indirect 

AND [Rd+], #data8 Logical AND 8-bit immediate data to register- 3 5 
indirect and auto-increment 

AND [Rd+], #data 16 Logical AND16-bit immediate data to 4 5 
register-indirect and auto-increment 

AND [Rd+offset8], #data8 Logical AND8-bit immediate data to register- 4 6 
indirect with 8-bit offset 

AND [Rd+offset8], #data 16 Logical AND16-bit immediate data to 5 6 
register-indirect with 8-bit offset 

AND [Rd+offset16], #data8 Logical AND8-bit immediate data to register- 5 6 
indirect with 16-bit offset 

AND [Rd+offset16], #data 16 Logical AND16-bit immediate data to 6 6 
register-indirect with 16-bit offset 

AND direct, #data8 Logical AND 8-bit immediate data to memory 4 4 

AND direct, #data16 Logical AND16-bit immediate data to 5 4 
memory 

CPL Rd Complement (ones complement) register 2 3 

LSR Rd, Rs Logical right shift destination register by the 2 See 
value in the source register Note 1 
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Table 6.5 

Mnemonic Description Bytes Clocks 

LSR Rd, #data4 Logical right shift register by the 4-bit 2 See 
immediate value Note 1 

NORM Rd, Rs Logical shift left destination register by the 2 See 
value in the source register until MSB set Note 1 

OR Rd,Rs Logical OR registers 2 3 

OR Rd, [Rs] Logical OR register-indirect to register 2 4 

OR [Rd], Rs Logical OR register to register-indirect 2 4 

OR Rd, [Rs+offset8] Logical OR register-indirect with 8-bit offset 3 6 
to register 

OR [Rd+offset8], Rs Logical OR register to register-indirect with 3 6 
8-bit offset 

OR Rd, [Rs+offset16] Logical OR register-indirect with 16-bit offset 4 6 
to register 

OR [Rd+offset16], Rs Logical OR register to register-indirect with 4 6 
16-bit offset 

OR Rd, [Rs+] Logical OR register-indirect with auto 2 5 
increment to register 

OR [Rd+], Rs Logical OR register-indirect with auto 2 5 
increment to register 

OR direct, Rs Logical OR register to memory 3 4 

OR Rd, direct Logical OR memory to register 3 4 

OR Rd, #data8 Logical OR 8-bit immediate data to register 3 3 

OR Rd, #data16 Logical OR 16-bit immediate data to register 4 3 

OR [Rd], #data8 Logical OR 8-bit immediate data to register- 3 4 
indirect 

OR [Rd], #data 16 Logical OR 16-bit immediate data to register- 4 4 
indirect 

OR [Rd+], #data8 Logical OR 8-bit immediate data to register- 3 5 
indirect with auto-increment 

OR [Rd+], #data16 Logical OR 16-bit immediate data to register- 4 5 
indirect with auto-increment 

OR [Rd+offset8], #data8 Logical OR 8-bit immediate data to register- 4 6 
indirect with 8-bit offset 

OR [Rd+offset8], #data16 Logical OR 16-bit immediate data to register- 5 '6 
indirect with 8-bit offset 

OR [Rd+offset16], #data8 Logical OR 8-bit immediate data to register- 5 6 
indirect with 16-bit offset 
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Table 6.5 

Mnemonic Description Bytes Clocks 

OR [Rd+offset16], #data 16 Logical OR 16-bit immediate data to register- 6 6 
indirect with 16-bit offset 

OR direct, #data8 Logical OR 8-bit immediate data to memory 4 4 

OR direct, #data16 Logical OR16-bit immediate data to memory 5 4 

RL Rd, #data4 Rotate left register by the 4-bit immediate 2 See 
value Note 1 

RLC Rd, #data4 Rotate left register though carry by the 4-bit 2 See 
immediate value Note 1 

RR Rd, #data4 Rotate right register by the 4-bit immediate 2 See 
value Note 1 

RRC Rd, #data4 Rotate right register though carry by the 4- 2 See 
bit immediate value Note 1 

XOR Rd, Rs Logical XOR registers 2 3 

XOR Rd, [Rs] Logical XOR register-indirect to register 2 4 

XOR [Rd], Rs Logical XOR register to register-indirect 2 4 

XOR Rd, [Rs+offset8] Logical XOR register-indirect with 8-bit 3 6 
offset to register 

XOR [Rd+offset8], Rs Logical XOR register to register-indirect with 3 6 
8-bit offset 

XOR Rd, [Rs+offset16] Logical XOR register-indirect with 16-bit 4 6 
offset to register 

XOR [Rd+offset16], Rs Logical XOR register to register-indirect with 4 6 
16-bit offset 

XOR Rd, [Rs+] Logical XOR register-indirect with auto 2 5 
increment to register 

XOR [Rd+], Rs Logical XOR register-indirect with auto 2 5 
increment to register 

XOR direct, Rs Logical XOR register to memory 3 4 

XOR Rd, direct Logical XOR memory to register 3 4 

XOR Rd, #data8 Logical XOR 8-bit immediate data to register 3 3 

XOR Rd, #data16 Logical XOR 16-bit immediate data to 4 3 
register 

XOR [Rd], #data8 Logical XOR 8-bit immediate data to register- 3 4 
indirect 

XOR [Rd], #data 16 Logical XOR 16-bit immediate data to 4 4 
register-indirect 
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Table 6.5 

Mnemonic Description Bytes Clocks 

XOR [Rd+], #data8 Logical XOR 8-bit immediate data to register- 3 5 
indirect with auto-increment 

XOR [Rd+], #data16 Logical XOR 16-bit immediate data to 4 5 
register-indirect with auto-increment 

XOR [Rd+offset8], #data8 Logical XOR 8-bit immediate data to register- 4 6 
indirect with 8-bit offset 

XOR [Rd+offset8], #data 16 Logical XOR 16-bit immediate data to 5 6 
register-indirect with 8-bit offset 

XOR [Rd+offset16], #data8 Logical XOR 8-bit immediate data to register- 5 6 
indirect with 16-bit offset 

XOR [Rd+offset16], #data 16 Logical XOR 16-bit immediate data to 6 6 
register-indirect with 16-bit offset 

XOR direct, #data8 Logical XOR 8-bit immediate data to memory 4 4 

XOR direct, #data16 Logical XOR16-bit immediate data to 5 4 
memory 

Data transfer 

MOV Rd, Rs Move register to register 2 3 

MOV Rd, [Rs] Move register-indirect to register 2 3 

MOV [Rd], Rs Move register to register-indirect 2 3 

MOV Rd, [Rs+offset8] Move register-indirect with 8-bit offset to 3 5 
register 

MOV [Rd+offset8], Rs Move register to register-indirect with 8-bit 3 5 
offset 

MOV Rd, [Rs+offset16] Move register-indirect with 16-bit offset to 4 5 
register 

MOV [Rd+offset16], Rs Move register to register-indirect with 16-bit 4 5 
offset 

MOV Rd, [Rs+J Move register-indirect with auto increment to 2 4 
register 

MOV [Rd+], Rs Move register-indirect with auto increment to 2 4 
register 

MOV direct, Rs Move register to memory 3 4 

MOV Rd, direct Move memory to register 3 4 

MOV [Rd+], [Rs+] Move register-indirect to register-indirect, 2 6 
both pointers auto-incremented 
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Table 6.5 

Mnemonic Description Bytes Clocks 

MOV direct, [Rs] Move register-indirect to memory 3 4 

MOV [Rd], direct Move memory to register-indirect 3 4 

MOV Rd, #data8 Move 8-bit immediate data to register 3 3 

MOV Rd, #data16 Move 16-bit immediate data to register 4 3 

MOV [Rd], #data8 Move 16-bit immediate data to register- 3 3 
indirect 

MOV [Rd], #data 16 Move 16-bit immediate data to register- 4 3 
indirect 

MOV [Rd+], #data8 Move 8-bit immediate data to register- 3 4 
indirect with auto-increment 

MOV [Rd+], #data16 Move 16-bit immediate data to register- 4 4 
indirect with auto-increment 

MOV [Rd+offset8], #data8 Move 8-bit immediate data to register- 4 5 
indirect with 8-bit offset 

MOV [Rd+offset8], #data 16 Move 16-bit immediate data to register- 5 5 
indirect with 8-bit offset 

MOV [Rd+offset16], #data8 Move 8-bit immediate data to register- 5 5 
indirect with 16-bit offset 

MOV [Rd+offset16], #data16 Move 16-bit immediate data to register- 6 5 
indirect with 16-bit offset 

MOV direct, #data8 Move 8-bit immediate data to memory 4 3 

MOV direct, #data16 Move 16-bit immediate data to memory 5 3 

MOV direct, direct Move memory to memory 4 4 

MOV Rd, USP Move User Stack Pointer to register (system 2 3 
mode only) 

MOV USP, Rs Move register to User Stack Pointer (system 2 3 
mode only) 

MOVe Rd, [Rs+] Move data from WS:Rs address of code 2 4 
memory to register with auto-increment 

MOVe A, [A+DPTR] Move data from code memory to the 2 6 
accumulator indirect with DPTR 

MOVe A, [A+PC] Move data from code memory to the 2 6 
accumulator indirect with pe 

MOVS Rd, #data4 Move 4-bit sign-extended immediate data to 2 3 
register 

MOVS [Rd], #data4 Add 4-bit sign-extended immediate data to 2 4 
register-indirect 
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Table 6.5 

Mnemonic Description Bytes Clocks 

MOVS [Rd+], #data4 Add 4-bit sign-extended immediate data to 2 4 
register-indirect with auto-increment 

MOVS [Rd+offset8], #data4 Add register-indirect with 8-bit offset to 4-bit 3 5 
sign-extended immediate data 

MOVS [Rd+offset16], #data4 Add register-indirect with 16-bit offset to 4- 4 5 
bit sign-extended immediate data 

MOVS direct, #data4 Add 4-bit sign-extended immediate data to 3 3 
memory 

MOVX Rd, [Rs] Move external data from memory to register 2 6 

MOVX [Rd], Rs Move external data from register to memory 2 6 

PUSH direct Push the memory content (byte/word) onto 3 5 
the current stack 

PUSHU direct Push the memory content (byte/word) onto 3 5 
the user stack 

PUSH Rlist Push multiple registers (byte/word) onto the 2 See 
current stack Note 2 

PUSHU Rlist Push multiple registers (byte/word)from the 2 See 
user stack Note 2 

POP direct Pop the memory content (byte/word) from 3 5 
the current stack 

POPU direct Pop the memory content (byte/word) from 3 5 
the user stack 

POP Rlist Pop multiple registers (byte/word) from the 2 See 
current stack Note 3 

POPU Rlist Pop multiple registers (byte/word) from the 2 See 
user stack Note 3 

XCH Rd,Rs Exchange contents of two registers 2 5 

XCH Rd, [Rs] Exchange contents of a register-indirect 2 6 
address with a register 

XCH Rd, direct Exchange contents of memory with a register 3 6 

Program Branching 

BCC rel8 Branch if the carry flag is clear 2 6t/3nt 

BCS rel8 Branch if the carry flag is set 2 6t/3nt 

BEQ rel8 Branch if the zero flag is set 2 6t13nt 

BNE rel8 Branch if the zero flag is not set 2 6t13nt 
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Mnemonic Description Bytes Clocks 

BG rel8 Branch if greater than (unsigned) 2 6t13nt 

BGE rel8 Branch if greater than or equal to (signed) 2 6t13nt 

BGT rel8 Branch if greater than (signed) 2 6t/3nt 

BL rel8 Branch if less than or equal to (unsigned) 2 6t/3nt 

BLE rel8 Branch if less than or equal to (signed) 2 6t13nt 

BLT rel8 Branch if less than (signed) 2 6t/3nt 

BMI rel8 Branch if the negative flag is set 2 6t/3nt 

BPL rel8 Branch if the negative flag is clear 2 6t/3nt 

BNV rel8 Branch if overflow flag is clear 2 6t13nt 

BOV rel8 Branch if overflow flag is set 2 6t/3nt 

BR rel8 Short unconditional branch 2 6 

CALL [Rs] Subroutine call indirect with a register 2 8/S(PZ) 

CALL rel16 Relative call (+/- 64K) 3 7/4(PZ) 

CJNE Rd,direct,reI8 Compare direct byte to register and jump if 4 10tl7nt 
not equal 

CJNE Rd,#data8, rel8 Compare immediate byte to register and 4 9t/6nt 
jump if not equal 

CJNE Rd,#data16,reI8 Compare immediate word to register and S 9t16nt 
jump if not equal 

CJNE [Rd],#data8, rel8 Compare immediate word to register-indirect 4 10t17nt 
and jump if not equal 

CJNE [Rd],#data 16, rel8 Compare immediate word to register-indirect S 10t/7nt 
and jump if not equal 

DJNZ Rd,rel8 Decrement register and jump if not zero 3 8t/Snt 

DJNZ direct,rel8 Decrement memory and jump if not zero 4 9t/6nt 

FCALL addr24 Far call (anywhere in the 24-bit address 4 9/S(PZ) 
space) 

FJMP addr24 Far jump (anywhere in the 24-bit address 4 6 
space) 

JB bit,rel8 Jump if bit set 4 7t14nt 

JBC bit,rel8 Jump if bit set and then clear the bit 4 7t/4nt 

JMP rel16 Long unconditional branch 3 6 

JMP [Rs] Jump indirect to the address in the register 2 7 
(64K) 
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Mnemonic Description Bytes Clocks 

JMP [A+DPTR] Jump indirect relative to the DPTR 2 5 

JMP [[Rs+]] Jump double-indirect to the address (pointer 2 8 
to a pointer) 

JNB bit,rel8 Jump if bit not set 4 7t14nt 

JNZ rel8 Jump if accumulator not equal zero 2 7t14nt 

JZ rel8 Jump if accumulator equals zero 2 7t14nt 

NOP No operation 1 3 

RET Return from subroutine 2 8/6(PZ) 

RETI Return from interrupt 2 10/ 
8(PZ) 

Bit Manipulation 

ANL ,C, bit Logical AND bit to carry 3 4 

ANL C, /bit Logical AND complement of a bit to carry 3 4 

CLR bit Clear bit 3 4 

MOV, C, bit Move bit to the carry flag 3 4 

MOV bit, C Move carry to bit 3 4 

ORL C, bit Logical OR a bit to carry 3 4 

ORL C, /bit Logical OR complement of a bit to carry 3 4 

SETB bit Sets the bit specified 3 4 

Exception I Trap 

BKPT Cause the breakpoint trap to be executed. 1 23/ 
19(PZ) 

RESET Causes a hardware Reset, identical to an 2 8 
external Reset 

'TRAP #data4 Causes 1 of 16 hardware traps to be 2 23/ 
executed 19(PZ) 

Note 1: For 8 and 16 bit shifts, it is 4+ 1 per additional two bits. For 32-bit shifts, it is 6+ 1 per additional two bits. 
Note 2: 3 clocks per register pushed. 
Note 3: 2 clocks per register popped. 
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ADD Integer Addition 

Syntax: ADD dest, source 

Operation: dest <- src + dest 

Description: Performs a twos complement binary addition of the source and destination operands, 
and the result is placed in the destination operand. The source data is not affected by the operation. 

Note: If used with write to PSWL, takes precedence to flag updates 

Sizes: Byte-Byte, Word-Word 

Flags Updated: C, AC, V, N, Z 

ADD Rd,Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) + (Rs) 

I 0 I 0 I 0 I 0 I sz I 0 I 0 

ADD Rd, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
(Rd) <-- (Rd) + C(WS:Rs) 

o I 0 I 0 I 0 I sz I 0 I 1 I 0 

ADD [Rd], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
(WS:Rd) <-- (WS:Rd) + (Rs) 

I 0 I 0 I 0 I 0 I sz I 0 I 1 I 0 I 
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ADD Rd, [Rs+offset8] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
6 
(Rd) <-- (Rd) + ((WS:Rs)+offset8) 

"'--1 0 -'--1 -0 ,"'--0--'--1 -0 I"'--SZ-'--I -1 1"'--0-'--1 ----'0 Id Id Id Idlo Is Is Is I 

byte 3: offset8 

ADD [Rd+offset8], Rs 

Bytes: 
Clocks: 

3 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + (Rs) 
Encoding: 

I 0 I 0 I 0 I 0 I sz I 
byte 3: offset8 

ADD Rd, [Rs+offsetl6] 

Bytes: 
Clocks: 

4 
6 

I 0 I 0 

Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16) 
Encoding: 

I 0 I 0 I 0 I 0 I sz I 1 I 0 I 1 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 

ADD [Rd+offsetl6], Rs 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offset16) + (Rs) 
Encoding: 

I 0 I 0 I 0 I 0 I sz I 
byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 
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ADD Rd, [Rs+] 

Bytes: 
Clocks: 
Operation: 

2 
5 
(Rd) <-- (Rd) + ((WS:Rs)) 
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 

Encoding: 

1'-0 -'--1 -0 1'-0-'--1 -0 I'-SZ-'--I -0 1'--1-'--, ---'1 I 

ADD [Rd+], Rs 

Bytes: 
Clocks: 
Operation: 

2 
5 
((WS:Rd)) <-- ((WS:Rd)) + (Rs) 
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 

Encoding: 

Ir--0 ---'-1 -0 ""--1 0---'-1 -0 ""--1 SZ---'-I -0 ""--1 1---'-1 ---'1 I 

ADD direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) <-- (direct) + (Rs) 

I 0 I 0 I 0 I 0 I sz I 
byte 3: lower 8 bits of direct 

ADD Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (Rd) + (direct) 

o 

"'--1 O----r-,-O -r--I ----'0 ,-0--'--, S-Z .....--, 1-'----'--'0 

byte 3: lower 8 bits of direct 

3/24/97 
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I sis 1 sis 1 1 I direct: 3 bits\ 

I dId I did I 0 I direct: 3 bitsl 
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ADD Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) <-- (Rd) + #data8 

1110101110101011 
byte 3: #data8 

ADD Rd, #datal6 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- (Rd) + #datal6 

1110101111101011 
byte 3: upper 8 bits of #data 16 
byte 4: lower 8 bits of #datal6 

ADD [Rd], #data8 

Bytes: 
Clocks: 

3 
4 

Operation: «WS:Rd» <-- «WS:Rd» + #data8 
Encoding: 

11 10
1

01 101011101 10ldldidi 01 01 0101 
byte 3: #data8 

ADD [Rd], #datal6 

Bytes: 
Clocks: 

4 
4 

Operation: «WS:Rd» <-- «WS:Rd» + #datal6 
Encoding: 

11101011111011101 10ldldidi 01 01 0101 
byte 3: upper 8 bits of #datal6 
byte 4: lower 8 bits of #datal6 
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ADD [Rd+], #data8 

Bytes: 
Clocks: 

3 
5 

Operation: ((WS:Rd) <-- ((WS:Rd) + #data8 
(Rd) <-- (Rd) + 1 

Encoding: 

byte 3: #data8 

ADD [Rd+], #data16 

Bytes: 
Clocks: 

4 
5 

Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16 
(Rd) <-- (Rd) + 2 

Encoding: 

11 I 01 01 11 1 \ 01 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

ADD [Rd+offset8], #data8 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8 
Encoding: 

byte 3: offset8 
byte 4: #data8 

ADD [Rd+offset8], #data16 

Bytes: 
Clocks: 

5 
6 

a a 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16 
Encoding: 

111 01 01 1 1 1 1 1010 
byte 3: offset8 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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ADD [Rd+offsetI6], #data8 

Bytes: 
Clocks: 

5 
6 

Operation: «WS:Rd)+offsetl6) <-- «WS:Rd)+offsetI6) + #data8 
Encoding: 

r--'11--r"I-O -r-I ----'0 1r--1---r-1-0 ""-11---r-0 --'-------'1 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset 16 
byte 5: #data8 

ADD [Rd+offsetI6], #datal6 

Bytes: 
Clocks: 

6 
6 

Operation: «WS:Rd)+offsetI6) <-- «WS:Rd)+offsetl6) + #datal6 
Encoding: 

11 1 0 1 0 1 1 1 1 11 0 1 ,1 I 
byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset16 
byte 5: upper 8 bits of #datal6 
byte 6: lower 8 bits of #datal6 

ADD direct, #data8 
Bytes: 4 
Clocks: 4 
Operation: (direct) <-- (direct) + #data8 
Encoding: 

byte 3: lower 8 bits of direct 
byte 4: #data8 

ADD direct, #datal6 

Bytes: 
Clocks: 

5 
4 

o 

Operation: ( direct) < -- ( direct) + #data 16 
Encoding: 

byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #datal6 
byte 5: lower 8 bits of #datal6 
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ADDC Integer addition with Carry 

Syntax: ADDC dest, source 

Operation: dest <- dest + src + C 

Description: Performs a two's complement binary addition of the source operand and the 
previously generated carry bit with the destination operand. The result is stored in the destination 
operand. The source data is not affected by the operation. 

If the carry from previous operation is one (C=l), the result is greater than the sum of the operands; 
if it is zero (C=O), the result is the exact sum. 

This form of addition is intended to support multiple-precision arithmetic. For this use, the carry 
bit is first reset, then ADDC is used to add the portions of the multiple-precision values from least­
significant to most-significant 

Size: Byte-Byte, Word-Word 

Flags Updated: C, AC, V, N, Z 

ADDC Rd, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) + (Rs) + (C) 

o I 0 I 0 I 1 I sz I 0 I 0 I 

ADDC Rd, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
(Rd) <-- (Rd) + ((WS:Rs» + (C) 

o I 0 I 0 I 1 I sz I 0 I 1 I 0 I 
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ADDC [Rd], Rs 

Bytes: 
Clocks: 

2 
4 

Operation: «WS:Rd)) <-- «WS:Rd)) + (Rs) + (C) 
Encoding: 

ADDC Rd, [Rs+offset8] 

Bytes: 
Clocks: 

3 
6 

Operation: (Rd) <-- (Rd) + «WS:Rs)+offset8) + (C) 
Encoding: 

I 0 I 0 I 0 I I sz I 1 1 0 1 0 

byte 3: offset8 

ADDC [Rd+offset8], Rs 

Bytes: 
Clocks: 

3 
6 

Operation: «WS:Rd)+offset8) <-- «WS:Rd)+offset8) + (Rs) + (C) 
Encoding: 

I 0 1 0 I 0 I 1 1 sz 1 1 0 I 0 

byte 3: offset8 

ADDC Rd, [Rs+offset16] 

Bytes: 
Clocks: 

4 
6 

Operation: (Rd) <-- (Rd) + «WS:Rs)+offset16) + (C) 
Encoding: 

1 0 1 0 1 0 11 1 SZ 11 1 0 11 lid 1 did 1 d 1 0 1 sis 1 s 1 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset 16 
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ADDC [Rd+offsetl6], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
6 
((WS:Rd)+offsetl6) <-- ((WS:Rd)+offset16) + (Rs) + (C) 

I 0 1 0 1 0 11 1 SZ 11 1 0 11 I 
byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset16 

ADDC Rd, [Rs+] 

Bytes: 2 
Clocks: 5 
Operation: (Rd) <-- (Rd) + ((WS:Rs» + (C) 

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 
Encoding: 

.--, 0 -...-, ~O ,"---0 -...-, -1 ,"---SZ-"'-, 0---',"---1 -"'-11----', 

ADDC [Rd+], Rs 

Bytes: 2 
Clocks: 5 
Operation: ((WS:Rd» <-- ((WS:Rd» + (Rs) + (C) 

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 
Encoding: 

ADDC direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) <-- (direct) + (Rs) + (C) 

'--1 0 --'-1 ----'0 ,"---0 -..--, -1 ,"---SZ-"'-, 1-,"---1 --'-1 0-', 
byte 3: lower 8 bits of direct 

d d d 

1 direct: 3 bitsl 
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ADDC Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (Rd) + (direct) + (C) 

1""'--0 """-1 0----'1""'--0 """-1 ----'1 1""'--8Z"""-11----'1""'--1 """-1 0----'1 

byte 3: lower 8 bits of direct 

ADDC Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) <-- (Rd) + #data8 + (C) 

11101011101010111 
byte 3: #data8 

ADDC Rd, #data 16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- (Rd) +#dataI6 + (C) 

111010111110101 
byte 3: upper 8 bits of #datal6 
byte 4: lower 8 bits of #datal6 

ADDC [Rd], #data8 

Bytes: 
Clocks: 

3 
4 

I did I did I 0 I direct: 3 bitsl 

Operation: ((WS:Rd» <-- ((WS:Rd» + #data8 + (C) 
Encoding: 

11 10 101 1 10101 101 
byte 3: #data8 
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ADDC [Rd], #data16 

Bytes: 4 
Clocks: 4 
Operation: ((WS:Rd» <-- ((WS:Rd» + #data16 + (C) 

Encoding: 

1'---1 ~I-O """""1 -0 -r--.-------r-O -'--"--0-----' 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

ADDC [Rd+], #data8 

Bytes: 
Clocks: 
Operation: 

Encoding: 

byte 3: #data8 

3 
5 
((WS:Rd» <-- ((WS:Rd» + #data8 + (C) 
(Rd) <-- (Rd) + 1 

ADDC [Rd+], #data16 

Bytes: 
Clocks: 
Operation: 

Encoding: 

4 
5 
((WS:Rd» <-- ((WS:Rd» + #data16 + (C) 
(Rd) <-- (Rd) + 2 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

ADDC [Rd+offset8], #data8 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8 + (C) 
Encoding: 

byte 3: offset8 
byte 4: #data8 
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ADDC [Rd+offset8], #datal6 

Bytes: 
Clocks: 

5 
6 

Operation: ((WS:Rd)+offset8) <-- «(WS:Rd)+offset8) + #datal6 + (C) 
Encoding: 

11101011111100 
byte 3: offset8 
byte 4: upper 8 bits of #datal6 
byte 4: lower 8 bits of #datal6 

ADDC [Rd+offsetI6], #data8 

Bytes: 
Clocks: 

5 
6 

Operation: «(WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetI6) + #data8 + (C) 
Encoding: 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 
byte 5: #data8 

ADDC [Rd+offsetl6], #data16 

Bytes: 
Clocks: 

6 
6 

o 1 

Operation: (WS:Rd)+offsetI6) <-- ((WS:Rd)+offset16) + #datal6 + (C) 
Encoding: 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 
byte 5: upper 8 bits of #data16 
byte 6: lower 8 bits of #datal6 

ADDC direct, #data8 

Bytes: 
Clocks: 

4 
4 

o 

Operation: ( direct) < -- ( direct) + #data8 + (C) 
Encoding: 

1110101110111110 I 
byte 3: lower 8 bits of direct 
byte 4: #data8 
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AD DC direct, #data 16 

Bytes: 
Clocks: 

5 
4 

Operation: (direct) <-- (direct) + #data16 + (C) 
Encoding: 

I~ 1 ---'--1 0-1'--0---'--1 -1 ,'--1 ---.--, -""-----'------'0 

byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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ADDS Add Short 

Syntax: ADDS dest, #value 

Operation: dest <- dest + #data4 

Description: Four bits of signed immediate data are added to the destination. The immediate data 
is sign-extended to the proper size, then added to the variable specified by the destination operand, 
which may be either a byte or a word. The immediate data range is + 7 to -8. This instruction is used 
primarily to increment or decrement pointers and counters. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

(Note: the C and AC flags must not be updated by ADDS since this instruction is used to replace 
the 80C51 INC and DEC instructions, which do not update the flags.) 

ADDS Rd, #data4 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) + #data4 

1 0 1 1 1 0 1 sz I 0 1 0 1 1 

ADDS [Rd], #data4 

Bytes: 2 
Clocks: 4 
Operation:((WS:Rd» <-- ((WS:Rd» + #data4 
Encoding: 

11 I 0 1 1 1 0 1 sz 1 0 1 1 I 0 1 

ADDS [Rd+], #data4 

Bytes: 
Clocks: 
Operation: 

.2 
5 
((WS:Rd» <-- ((WS:Rd» + #data4 

d d d d 

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 
Encoding: 

11 1 0 1 I 0 I sz 1 0 1 
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ADDS [Rd+offset8], #data4 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
6 
((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data4 

~11 --r-, -0 1r---1--r-, -0 Ir---SZ--r-I -r---I O--r-I ----'0 

byte 3: offset8 

ADDS [Rd+offset16], #data4 

Bytes: 4 
Clocks: 6 
Operation:((WS:Rd)+offset16) <-- ((WS:Rd)+offset16) + #data4 
Encoding: 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset 16 

ADDS direct, #data4 

Bytes: 3 
Clocks: 4 
Operation:(direct) <-- (direct) + #data4 

Encoding: 

#data4 

#data4 

,"'--1--"-,-0 .....---, ---'1 ,-0--'-, S-Z ...--, ---'---'----'0 I 0 I direct: 3 bits I #data4 

byte 3: lower 8 bits of direct 
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AND Logical AND 

Syntax: AND dest, src 

Operation: dest <- dest AND src 

Description: Bitwise logical AND the contents of the source to the destination. The byte or word 
specified by the source operand is logically ANDed to the variable specified by the destination 
operand. The source data is not affected by the operation. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

AND Rd,Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) • (Rs) 

1 0 1 1 I 0 1 1 I 8Z I 0 1 0 I 1 

AND Rd, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
(Rd) <-- (Rd) • «WS:Rs)) 

"'--1 0-'-1 -1 "--1 0-'-1-1 "--1 8Z-'-1 -0 "--1 1-'-1-0 

AND [Rd], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
((WS:Rd)) <-- «WS:Rd)) • (Rs) 

1"'--0---'--1 -1 '---1 0--'--1 -1 1"----8Z---'--1 '--'0 1-1-'--, '--'0 1 
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AND Rd, [Rs+offset8] 

Bytes: 
Clocks: 

3 
6 

Operation: (Rd) <-- (Rd) • ((WS:Rs)+offset8) 
Encoding: 

1"""-0 --"--1 ---'I~O--"--' ----'1 ,"---SZ--"--, ----'1 ,"---0--"--1 ---'0 I 

byte 3: offset8 

AND [Rd+offset8], Rs 

Bytes: 
Clocks: 

3 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • (Rs) 
Encoding: 

1
0 

1 I 0 1 

byte 3: offset8 

AND Rd, [Rs+offset 16] 

Bytes: 
Clocks: 

4 
6 

1 SZ 11 1 0 I 0 

Operation: (Rd) <-- (Rd) • ((WS:Rs)+offsetI6) 
Encoding: 

,"---0 ---.--, -----'1 ,-0---'--, -----'1 ,"---SZ---'--I -----'1"---0---'--, ---. 

byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offsetl6 

AND [Rd+offsetI6], Rs 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offsetI6) <-- ((WS:Rd)+offsetI6) • (Rs) 
Encoding: 

I 0 I 1 , 0 , 1 I sz I 
byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 
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AND Rd, [Rs+] 

Bytes: 
Clocks: 
Operation: 

2 
5 
(Rd) <-- (Rd) • «WS:Rs)) 
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 

Encoding: 

I 0 I 1 I 0 I , sz I 0 '1 1 

AND [Rd+], Rs 

Bytes: 2 
Clocks: 5 
Operation: «WS:Rd)) <-- «WS:Rd)) • (Rs) 

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 
Encoding: 

I 0 I 1 I 0' 1 I sz I 0 I 1 I 1 I 

AND direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) <-- (direct) • (Rs) 

byte 3: lower 8 bits of direct 

AND Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (Rd) • (direct) 

I 0 I 1 I 0 I 1 'SZ I 1 
byte 3: lower 8 bits of direct 
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AND Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) <-- (Rd) • #data8 

1~1 --'-1 ----'0 Ir---O--'-I ----'1 Ir---O-'--I ----'0 I~O--'-I -----. 

byte 3: #data8 

AND Rd, #data 16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- (Rd) • #datal6 

1r---1 --'-1 ----'0 Ir---O--'-I ----'1 1r---1--'-1 ----'0 Ir---O--'-I -----. 

byte 3: upper 8 bits of #datal6 
byte 4: lower 8 bits of #datal6 

AND [Rd], #data8 

Bytes: 
Clocks: 

3 
4 

Operation: «WS:Rd)) <-- «WS:Rd)) • #data8 
Encoding: 

1 1 101 0 \1\0\0\1\0\ 
byte 3: #data8 

AND [Rd], #datal6 

Bytes: 
Clocks: 

4 
4 

Operation: «WS:Rd)) <-- «WS:Rd)) • #datal6 
Encoding: 

\1 \ 01 01 1 1 1 \ 0\1\ 01 
byte 3: upper 8 bits of #datal6 
byte 4: lower 8 bits of #datal6 
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AND [Rd+], #data8 

Bytes: 
Clocks: 

3 
5 

Operation: ((WS:Rd» <-- ((WS:Rd» • #data8 
(Rd) <-- (Rd) + 1 

Encoding: 

byte 3: #data8 

AND [Rd+], #datal6 

Bytes: 
Clocks: 

4 
5 

Operation: ((WS:Rd» <-- ((WS:Rd» • #datal6 
(Rd) <-- (Rd) + 2 

Encoding: 

11 1 01 0
1

11 1\ 01 
byte 3: upper 8 bits of #data 16 
byte 4: lower 8 bits of #datal6 

AND [Rd+offset8], #data8 

Bytes: 
Clocks: 

4 
6 

1 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • #data8 
Encoding: 

11101011101110101 
byte 3: offset8 
byte 4: #data8 

AND [Rd+offset8], #datal6 

Bytes: 
Clocks: 

5 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) • #datal6 
Encoding: 

1110101111111010 I 
byte 3: offset8 
byte 4: upper 8 bits of #datal6 
byte 5: lower 8 bits of #datal6 

XA User Guide 152 3124/97 



AND [Rd+offset16], #data8 

Bytes: 
Clocks: 

5 
6 

Operation: «WS:Rd)+offset16) <-- «WS:Rd)+offset16) • #data8 
Encoding: 

byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offsetl6 
byte 5: #data8 

AND [Rd+offsetl6], #data16 

Bytes: 
Clocks: 

6 
6 

10 I 1 

Operation: «WS:Rd)+offset16) <-- «WS:Rd)+offsetl6) • #data16 
Encoding: 

byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offset16 
byte 5: upper 8 bits of #data16 
byte 6: lower 8 bits of #data16 

AND direct, #data8 

Bytes: 
Clocks: 

4 
4 

Operation: ( direct) < -- (direct) • #data8 
Encoding: 

111010111011 
byte 3: lower 8 bits of direct 
byte 4: #data8 

AND direct, #data 16 

Bytes: 
Clocks: 

5 
4 

o 

Operation: (direct) < -- (direct) • #data 16 
Encoding: 

byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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ANL Logical AND a bit to the Carry flag 

Syntax: ANL C, bit 

Operation: C <- C (AND) Bit 

Description: Read the specified bit and logically AND it to the Carry flag. 

Size: Bit 

Flags Updated: none 

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with 
carry affected by the result of an ALU operation 

Bytes: 3 
Clocks: 4 

Encoding: 

1010101011000 1 0 11 I 0 1 0 1 0 1 0 1 bit: 2 I 
byte 3: lower 8 bits of bit address 
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ANL Logical AND the complement of a bit to the Carry flag 

Syntax: ANL C, /bit 

Operation: Carry <- C (AND) bit 

Description: Read the specified bit, complement it, and logically AND it to the Carry flag. 

Size: Bit 

Flags Updated: none 

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with 
carry affected by the result of an ALU operation 

Bytes: 3 
Clocks: 4 

Encoding: 

000 I 0 I 1 I 0 I 1 I 0 I 0 I bit: 2 I 

byte 3: lower 8 bits of bit address 
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ASL 

Syntax: 

Operation: 

Description: 

Arithmetic Shift Left. 

ASL dest, count 

Do While (count not equal to 0) 
(C) <- (dest.msb) 
(dest.bit n+ 1) <- (dest.bit n) 
count = count-l 
if sign change during shift, 
(V) <- 1 
End While 

If the count operand is greater than 0, the destination operand is logically shifted left by the 
number of bits specified by the count operand. The Low-order bits shifted in are zero-filled and 
the high-order bits are shifted out through the C (carry) bit. If the count operand is 0, no shift is 
performed. 

The count operand could be: 
- An immediate value (#data4 or #data5) 
- A Register (Only 5 bits are used to implement up to 31 bit shifts) 

The count is a positive value which may be from 1 to 31 and the destination operand is a signed 
integer (twos complement form).The destination operand (data size) may be 8, 16, or 32 bits. In 
the case of 32-bit shifts, the destination operand must be the least significant half of a double 
word register.The count operand is not affected by the operation. 

Note: 
- a double word register is double-word aligned in the register file (Rl:RO, R3:R2, R5:R4, or 
R7:R6). 
- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else for 
immediate shift count, shifting is continued until count is 0. 

Size: Byte, word, and double word 

Flags Updated: C, V, N, Z 

Note: The V flag is set if the sign changes at any time during the shift operation and remains set 
until the end of the shift operation i.e., the V flag does not get cleared even if the sign reverts to its 
original state because of continued shifts within the same instruction. ASL clears the V flag if the 
condition to set it does not occur. 
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ASL Rd, Rs 

Operation: 

(Rd) 

~ MSB, .... ~I---- LSBf.- 0 

Bytes: 
Clocks: 

Encoding: 

2 
For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift 
For 32 bit shifts -> 6 + 1 for each 2 bits of shift 

I 1 I 0 I 0 I SZ1 I SZO I 0 I 1 I I did I did I SiS I SiS 

ASL Rd, #data4 
Rd,#data5 

Bytes: 
Clocks: 

Operation: 

2 
For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift 
For 32 bit shifts -> 6 + 1 for each 2 bits of shift 

(Rd) 

~ MSB, ...... ~t----- LSBf.- 0 

Encoding: (for byte and word data sizes) 

1 I 1 I 0 I 1 I SZ1 I SZO I 0 I 1 I I did I did I #data4 

(for double word data size) 

#data5 

Note: SZlISZO = 00: byte operation; SZ1/SZ0 = 10: word operation; SZlISZO = 11 : double word 
operation. 
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ASR 

Syntax: 

Operation: 

Description: 

Arithmetic Shift Right 

ASR dest, count 

Do While (count not equal to 0) 
(C) <- (dest.O) 

(dest.bit n) <- (dest.bit n+ 1) 

dest.msb <- Sign bit 
count = count-l 
End While 

If the count operand is greater than 0, the destination operand is logically shifted right by the 
number of bits specified by the count operand. The low-order bits are shifted out through the C 
(carry) bit. If the count operand is 0, no shift is performed. To preserve the sign of the original 
operand, the MSBs of the result are sign-extended with the sign bit. 

The count operand could be: 
- An immediate value (#data4/5) 
- A Register (Only 5 bits are used to implement up to 31 bit shifts) 

The count operand could be an immediate value or a register. The count is a positive value 
which may be from ° to 31 and the destination operand is a signed integer. The count operand is 
not affected by the operation. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts, 
the destination operand must be the least significant half of a double word register. 

Note: 
- a double word register is double-word aligned in the register file (Rl:RO, R3:R2, R5:R4, or 
R7:R6). 
- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else for 
immediate shift count, shifting is continued until count is 0. 
- a double word register is double-word aligned in the r~gister file (Rl:RO, R3:R2, R5:R4, or 
R7:R6). 

Size: Byte, Word, Double Word 

Flags Updated: C, N, Z 
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ASR 

Bytes: 
Clocks: 

Operation: 

Encoding: 

Rd,Rs 

2 
For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift 
For 32 bit shifts -> 6 + 1 for each 2 bits of shift 

(Rd) 

ASR Rd, #data4 
Rd,#data5 

Operation: 

Bytes: 
Clocks: 

Encoding: 

(Rd) 

r--l MSB--~~ LSB~ 
~L.... ___ I 

2 
For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift 
For 32 bit shifts -> 6 + 1 for each 2 bits of shift 

(for byte and word data sizes) 

(for double word data size) 

I 1 I 0 I 1 I SZ1 I SZO 11 I 0 I lL-d--L.l_d -,--I _d '..l..-I __ #d_ata_5_---' 

Note: SZlISZO = 00: byte operation; SZlISZO = 10: word operation; SZlISZO = 11: double word 
operation. 
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BCC 

Syntax: 

Operation: 

Branch if carry clear 

BCC rel8 

(PC) <-- (PC) + 2 
if (C) = 0 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last arithmetic instruction (or other instruction that updates 
the C flag) did not generate a carry (the carry flag contains a 0). If Carry is clear, the program 
execution branches at the location of the PC, plus the specified displacement, rel8. The branch 
range is +254 bytes to -256 bytes, with the limitation that the target address isword aligned in code 
memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 2 
Clocks: 6 (t) / 3 (nt) 

Encoding: 

1 rela 
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BCS Branch if carry set 

Syntax: 

Operation: 

BCS rel8 

(PC) < -- (PC) + 2 
if (C) = 1 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last arithmetic instruction (or other instruction that updates 
the C flag) generated a carry (the carry flag contains a 1). The branch range is +254 bytes to -256 
bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

3124/97 
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BEQ 

Syntax: 

Operation: 

Branch if zero 

BEQ rel8 

(PC) <-- (PC) + 2 
if (Z) = 1 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the lastarithmetic/logic instruction (or other instruction that 
updates the Z flag) had a result of zero (the Z flag contains a 1). The branch range is +254 bytes to 
-256 bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 
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BG Branch if greater than (unsigned) 

Syntax: BG rel8 

Operation: (PC) <-- (PC) + 2 
if (Z) OR (C) = 0 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last compare instruction had a destination value that was 
greater than the source value, in an unsigned operation. The branch range is +254 bytes to -256 
bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 2 
Clocks: 6t13nt 

Encoding: 

1 1 1 1 1 01 01 01 rela 
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BGE Branch if greater than or equal to (signed) 

Syntax: BOE rel8 

Operation: (PC) <-- (PC) + 2 
if (N) XOR (V) = 0 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last compare instruction had a destination value that was 
greater than or equal to the source value, in a signed operation. The branch range is +254 bytes to 
-256 bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 2 
Clocks: 6t/3nt 

Encoding: 

1 1 1 01 1 I 01 rala 
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BGT Branch if greater than (signed) 

Syntax: BGT rel8 

Operation: (PC) <-- (PC) + 2 
if «Z) OR (N» XOR (V) = a then 
(PC) <-- (PC + reI8*2) 
(Pc.a) <-- a 

Description: The branch is taken if the last compare instruction had a destination value that was 
greater than the source value, in a signed operation, The branch range is +254 bytes to -256 bytes, 
with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 
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BKPT Breakpoint 

Syntax: BKPT 

Operation: (PC) <-- (PC) + 1 
(SSP) <-- (SSP) - 6 
((SSP)) <-- (PC) 
((SSP)) <-- (PSW) 
(PSW) <-- code memory (bkpt vector) 
(PC.lS-0) <-- code memory (bkpt vector) 
(PC.23-16) <-- 0; (PC.O) <-- 0 

Description: Causes a breakpoint trap. The breakpoint trap acts like an immediate interrupt, using 
a vector to call a specific piece of code that will be executed in system mode. This instruction is 
intended for use in emulator systems to provide a simple method of implementing hardware 
breakpoints. 

For a breakpoint to work properly under all conditions, it must have an instruction length no greater 
than the smallest other instruction on the processor, in this case the one byte NOP. This 
requirement exists because a breakpoint may be inserted in place of a NOP that is followed by 
another instruction that is branched to or otherwise executed without going through the breakpoint. 
If the breakpoint instruction were longer than the NOP, it would corrupt the next instruction in 
sequence if that instruction were executed. 

The opcode for the breakpoint instruction is specifically assigned to be all ones (FFh). This is so 
that un-programmed EPROM code memory will contain breakpoints. Similarly, the NOP 
instruction is assigned to opcode 00 so that both "blank" code states map to innocuous instructions. 

Size: None 

Flags Updated: nones 

Bytes: 1 
Clocks: 23/19 (PZ) 

Encoding: 

1 1 1 1 

5. All flags are affected during the PSW load from the vector table. It is possible that these flags are restored 
by the debugger, but does not have to be the case. 
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BL Branch if less than or equal to (unsigned) 

Syntax: BL rel8 

Operation: (PC) <-- (PC) + 2 
if (Z) OR (C) = 1 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last compare instruction had a destination value that was 
less than or equal to the source value, in an unsigned operation. The branch range is +254 bytes to 
-256 bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

2 
6t/3nt 

11111111111010111 
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BLE Branch if less than or equal (signed) 

Syntax: BLE rel8 

Operation: (PC) <-- (PC) + 2 
if ((Z) OR (N» XOR (V) = 1 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last compare instruction had a destination value that was 
less than or equal to the source value, in a signed operation. The branch range is +254 bytes to-
256 bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 2 
Clocks: 6t13nt 

Encoding: 

1 rela 
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BL T Branch if less than (signed) 

Syntax: BLT re18 

Operation: (PC) <-- (PC) + 2 
if (N) XOR (V) = 1 then 
(PC) <-- (PC + re18*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last compare instruction had a destination value that was 
less than the source value, in a signed operation. The branch range is +254 bytes to -256 bytes, with 
the limitation that the target address is word aligned in code memory. 

Note: Refer to section .6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

3/24/97 
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BMI Branch if negative 

Syntax: BMI rel8 

Operation: (PC) <-- (PC) + 2 
if (N) = 1 then 
(PC) <-- (PC + reI8*2) 
(Pc.a) <-- a 

Description: The branch is. taken if the last arithmetic/logic instruction (or other instruction that 
updates the N flag) had a result that is less than a (the N flag contains a 1). The branch range is 
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code 
memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 2 
Clocks: 6t13nt 

Encoding: 

1 1 01 1 rel8 
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BNE Branch if not equal 

Syntax: BNE rel8 

Operation: (PC) <-- (PC) + 2 
if (Z) = 0 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that 
updates the Z flag) had a non-zero result (the Z flag contains a 0). The branch range is +254 bytes 
to -256 bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

3/24/97 
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BNV Branch if no overflow 

Syntax: BNV rel8 

Operation: (PC) <-- (PC) + 2 
if (V) = 0 then 
(PC) <-- (PC + re18*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that 
updates the V flag) did not generate an overflow (The V flag contains a 0). The branch range is 
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code 
memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

1 

XA User Guide 

2 
6t/3nt 

172 

rel8 

3124/97 



BOV Branch if overflow flag 

Syntax: BOV rel8 

Operation: (PC) <-- (PC) + 2 
if (V) = 1 then 
(PC) <-- (PC + re18*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that 
updates the V flag) generated an overflow (the V flag contains a 1). The branch range is +254 bytes 
to -256 bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

3/24/97 
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BPL Branch if positive 

Syntax: BPL re18 

Operation: (PC) <-- (PC) + 2 
if (N) = 0 then 
(PC) <-- (PC + reI8*2) 
(PC.O) <-- 0 

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that 
updates the N flag) had a result that is greater than 0 (the N flag contains a 0). The branch range is 
+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code 
memory. 

Note: Refer to section 6.3 for details of branch range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

XA User Guide 

1 

2 
6t13nt 

1 I 0 I I 0 I 

174 

rel8 

3/24/97 



BR Unconditional Branch 

Syntax: BR rel8 

Operation: (PC) < -- (PC) + 2 
(PC) <-- (PC + re18*2) 
(PC.O) <-- 0 

Description: Branches unconditionally in the range of +254 bytes to -256 bytes, with the limitation 
that the target address is word aligned in code memory 0 

Note: Refer to section 6.3 for details of branch range 

Size: None 

Flags Updated: none 

Bytes: 2 
Clocks: 6 

Encoding: 

1 1 1 1 1 1 I 0 I rela 
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CALL Call Subroutine Relative 

Syntax: CALL rel16 

Operation: (PC) <-- (PC) + 3 
(SP) <-- (SP) - 4 
«SP» <-- (PC.23-0) 
(PC) <-- (PC + re116*2) 
(PC.O) <-- 0 

Description: Branches unconditionally in the range of +65,534 bytes to -65,536 bytes, with the 
limitation that the target address is word aligned in code memory. The 24-bit return address is 
saved on the stack. 

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack. 

Note: Refer to section 6.3 for details of branch range 

Size: None 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

3 
7/4(PZ) 

byte 2: upper 8 bits of re116 
byte 3: lower 8 bits of rel16 
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CALL Call Subroutine Indirect 

Syntax: CALL [Rs] 

Operation: (PC) <-- (PC) + 2 
(SP) <-- (SP) - 4 
((SP» <-- (PC.23-0) 
(PC.15-1) <-- (Rs.15-1) 
(PC.O) <-- 0 

Description: Causes an unconditional branch to the address contained in the operand register, 
anywhere within the 64K page following the CALL instruction.The return address (the address 
following the CALL instruction) of the calling routine is saved on the stack. The target address 
must be word aligned, as CALL or branch will force PC.bitO to O. 

Note: 
(I) Since the PC always points to the instruction following the CALL instruction and if that 
happens to be on a different page, then the called routine should be located in that page (64K) 

(2) if the XA is in page 0 mode, only a I6-bit address will be pushed to the stack. 

Size: None 

Flags Updated: none 

Bytes: 2 
Clocks: 8/5 (PZ) 

Encoding: 

111 0 1 0 1 0 1 1 
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CJNE Compare and jump if not equal 

Syntax: CJNE dest, src, rel8 

Operation: (PC) <-- (PC) + # of instruction bytes 
(dest) - (direct) (result not stored) 
if (Z) = 0 then 
(PC) <-- (PC + reI8*2); (PC.O) <-- 0 

Description: The byte or word specified by the source operand is compared to the variable 
specified by the destination operand and the status flags are updated. Jump to the specified address 
if the values are not equal. The source and destination data are not affected by the operation. The 
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned 
in code memory. 

Note: Refer to section 6.3 for details of jump range 

Size: Byte-Byte, Word-Word 

Flags Updated: C, N, Z 

(Note: this particular type of compare must not update the V or AC flags to duplicate the 80C51 
function.) 

CJNE 

Bytes: 
Clocks: 
Encoding: 

Rd, direct, rel8 

4 
10tl7nt 

11 1 1 1 1 1 0 1 sz 1 0 11 1 0 1 
byte 3: lower 8 bits of direct 
byte 4: rel8 
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CJNE Rd, #data8, rel8 

Bytes: 4 
Clocks: 9t/6nt 

Encoding: 

byte 3: rel8 
byte 4: data#8 

CJNE Rd, #dataI6, rel8 

Bytes: 5 
Clocks: 9t16nt 

Encoding: 

1111\1101110111 
byte 3: rel8 
byte 4: upper 8 bits of #datal6 
byte 5: lower 8 bits of #datal6 

CJNE [Rd], #data8, rel8 

Bytes: 
Clocks: 
Encoding: 

4 
IOt/7nt 

1 

""---11 -.,...-, ---'1 r---r-I ---'0 I-O~I ---"0 1--'----' 
byte 3: rel8 
byte 4: #data8 

CJNE [Rd], #data16, rel8 

Bytes: 
Clocks: 

Encoding: 

5 
lOtl7nt 

I~ 1 -""'-1 ---'1 1r-1-""'-1 -'0 1-1~1 ---"0 '-1.,....----, 
byte 3: re18 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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CLR Clear Bit 

Syntax: CLR bit 

Operation: (bit) <-- 0 

Description: Writes a 0 (clears) to the specified bit. 

Size: Bit 

Flags Updated: none 

Bytes: 3 
Clocks: 4 

Encoding: 

r--I O--r-I -0 Ir--O--r-I -0 1r--1-r--O Ir--O--r-I ----'0 I 0 I 0 I 0 I 0 I 0 I 0 I bit: 2 I 
byte 3: lower 8 bits of bit address 
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CMP Integer Compare 

Syntax: CMP dest, src 

Operation: dest - src 

Description: The byte or word specified by the source operand is compared to the specified 
destination operand by performing a twos complement binary subtraction of src from dest. The 
flags are set according to the rules of subtraction. The source and destination data are not affected 
by the operation. 

Size: byte-byte, word-word 

Flags Updated: C, AC, V, N, Z 

CMP Rd, Rs 

Operation: 

Bytes: 
Clocks: 

Encoding: 

(Rd) - (Rs) 

2 
3 

a I 1 I a I a I sz I a I a I 1 I 

CMP Rd, [Rs] 

Operation: 

Bytes: 
Clocks: 

Encoding: 

(Rd) - ((WS:Rs)) 

2 
4 

a I 1 I a I a I sz I a I 1 I a I 

3/24/97 
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CMP [Rd], Rs 

Operation: «WS:Rd» - (Rs) 

Bytes: 2 
Clocks: 4 
Encoding: 

1'--0--'-1-1 "'--1 ---'0 I-O--r-I S-Z~I O---rI-1 """----'0 

CMP Rd, [Rs+offset8] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

byte 3: offset8 

3 
6 
(Rd) - «WS:Rs)+offset8) 

CMP [Rd+offset8], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

byte 3: offset8 

3 
6 
«WS:Rd)+offset8) - (Rs) 

CMP Rd, [Rs+offset 16] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
6 
(Rd) - «WS:Rs)+offset16) 

1"----0 --r-I -1 1"----0-'--1 -0 I"----SZ-'--I -1"---0-'--1 ---. 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 
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CMP [Rd+offset16], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
6 
((WS:Rd)+offset16) - (Rs) 

'--1 0-"-,-1 -'--1 ---'0 ,-O-r-", 8-Z"---, 1--r,-0-'--, --'1 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset 1 6 

CMP Rd, [Rs+] 

Bytes: 2 
Clocks: 5 
Operation: (Rd) - ((WS:Rs)) 

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 
Encoding: 

....---, 0 -r-, -1 ....---, 0--'--, -0 r--I 8Z--'--' -0 r--, 1--'--, ---'1 I 

CMP [Rd+], Rs 

Bytes: 2 
Clocks: 5 

Operation: ((WS:Rd)) - (Rs) 
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 

Encoding: 

,'---0 --'--1 --1 ,'---0--'--1 --0 ,""---8Z--'--1 --0 ,""---1--'--1 ----. 

CMP direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
( direct) - (Rs) 

, 0 I 1 I 0 I 0 I 8Z I 
byte 3: lower 8 bits of direct 

o I direct: 3 bits' 
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CMP Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) - (direct) 

1""-0--'-1-1 ""--1 ----TO 1-0"""-1 S-Z -r-I ---..,.--~O 

byte 3: lower 8 bits of direct 

CMP Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) - #data8 

111010110101011 
byte 3: #data8 

CMP Rd, #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) - #data16 

1110101111101011 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

CMP [Rd], #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
((WS:Rd» - #data8 

1'--1 -'-1 -----0 1'--0-'-1 -----1 1'--0-'-1 -0 1'--1-'-1 ----'0 1 
byte 3: #data8 
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CMP [Rd], #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
4 
«WS:Rd)) - #data16 

,'---1 -,-, -----0 ,"---0-'-, -1 ,"---1-r-, -----0 I..----r-I --'0 I 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

CMP [Rd+], #data8 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
5 
«WS:Rd)) - #data8 
(Rd) <-- (Rd) + 1 

1"--1 --'-1 -----0 1"--0--'-, -1 I"--O-r-I -0 I..----r---. 
byte 3: #data8 

CMP [Rd+], #data16 

Bytes: 4 
Clocks: 5 
Operation: «WS:Rd)) - #data16 

(Rd) <-- (Rd) + 2 
Encoding: 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

CMP [Rd+offset8], #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
6 
«WS:Rd)+offset8) - #data8 

11101011101 1 0 1 0 
byte 3: offset8 
byte 4: #data8 
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CMP [Rd+offset8], #data16 

Bytes: 
Clocks: 

5 
6 

Operation: «WS:Rd)+offset8) - #data16 
Encoding: 

\1\0\0\11 1\100 
byte 3: offset8 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 

CMP [Rd+offset16], #data8 

Bytes: 
Clocks: 

5 
6 

Operation: «WS:Rd)+offsetl6) - #data8 
Encoding: 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset16 
byte 5: #data8 

CMP [Rd+offsetl6], #data16 

Bytes: 
Clocks: 

6 
6 

o 

Operation: «WS:Rd)+offsetl6) - #data16 
Encoding: 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 
byte 5: upper 8 bits of #data16 
byte 6: lower 8 bits of #data16 

CMP direct, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
4 
( direct) - #data8 

byte 3: lower 8 bits of direct 
byte 4: #data8 
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CMP direct, #datal6 

Bytes: 
Clocks: 
Operation: 
Encoding: 

5 
4 
(direct) - #data 16 

~~--~--~~--~~~~~ 

11101011111110 
byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #datal6 
byte 5: lower 8 bits of #data 16 

3124/97 
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CPL Integer Ones Complement 

Syntax: CPL Rd 

Operation: Rd <-- (Rd) 

Description: Performs a ones complement of the destination operand specified by the register Rd. 
The result is stored back into Rd. The destination may be either a byte or a word. 

Size: Byte, Word 

Flags Updated: N, Z 

Bytes: 2 
Clocks: 3 

Encoding: 

1 I 0 I 0 I 
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DA Decimal Adjust 

Syntax: DA Rd 

Operation: if (Rd.3-0) > 9 or (AC) = 1 
then (Rd.3-0) <-- (Rd.3-0) + 6 

if (Rd.7-4) > 9 or (C) = 1 
then (Rd.7-4) <-- (Rd.7-4) + 6 

Description: Adjusts the destination register to BCD format (binary-coded decimal) following an 
ADD or ADDC operation on BCD values. This operation may only be done on a byte register. 

If the lower 4 bits of the destination value are greater than 9, or if the AC flag is set, 6 is added to 
the value. This may cause the carry flag to be set if this addition caused a carry out of the upper 4 
bits of the value. 

If the upper 4 bits of the destination value are greater than 9, or if the carry flag was set by the add 
to the lower bits, 60 hex is added to the value. This may cause the carry flag to be set if this addition 
caused a carry out of the upper 4 bits of the value. Carry will never be cleared by the DA instruction 
if it was already set. 

Size: Byte 

Flags Updated: C, N, Z 

The carry flag may be set but not cleared. See the description of the carry flag update above. 

Bytes: 2 
Clocks: 4 

Encoding: 

I 0 1
0 0 0 000 

Note: Please refer to the table on the next page. 
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The following table shows the possible actions that may occur during the DA instruction, related 
to the input conditions. 

Table 6.6 

Low nibble 
Carry to High 

Initial 
Number 

Resulting 
(bits 3-0) AC high nibble 

Cflag 
added to Cflag 

nibble (bits 7-4) value 

0-9 0 0 0-9 0 00 0 

A-F 0 1 0-8 0 06 0 

0-3* 1 0 0-9 0 06 0 

0-9 0 0 A-F 0 60 1 

A-F 0 1 9-F 0 66 1 

0-3* 1 0 A-F 0 66 1 

0-9 0 0 0- 2 ** 1 60 1 

A-F 0 1 0-2 ** 1 66 1 

0-3* 1 0 0- 3 *** 1 66 1 

: The largest digit that could result from adding two BCD digits that caused the AC flag to 
be set is 3. This is with an ADDC instruction where 9 + 9 + 1 (the carry flag) = 13 hex. 

* * : The largest digit that could result in the upper nibble of a value by adding two BCD bytes, 
with no carry from the bottom nibble (the AC flag = 0) is 2. For instance, 98 hex + 97 hex = 12F 
hex. 

*** : The largest digit that could result in the upper nibble of a value by adding two BCD bytes, 
with a carry from the bottom nibble (the AC flag = 1) is 3. For instance, 99 hex + 99 hex = 132 hex. 
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DIV.w 
DIV.d 
DIVU.h 
DIVU.w 
DIVU.d 

16x8 
32x16 
8x8 
16x8 
32x16 

Signed Division 
Signed Division 
Unsigned Division 
Unsigned Division 
Unsigned Division 

Description: The byte or word specified by the source operand is divided into the variable 
specified by the destination operand. 

For DIVU.b, the destination operand can be any byte register that is the least significant byte of a 
word register. For DIV.w and DIVU.w, the destination operand must be a word register, and for 
DIV.d and DIVU.d, the destination operand must identify a word register that is the low-word of 
a double-word register (see note below). The result is stored in the destination register as the 
quotient (8 bits for DIVU.b, DIVU.w, DIV.w, and DIVU.w, and 16-bits for DIV.d and DIVU.d) 
in the least significant half and the remainder (same size as the quotient), in the most significant 
half (except for DIVU.b which stores the quotient in the destination as identified by the lower half 
of a word register and the remainder at upper half of the same word register). 

Note: a double word register is double-word aligned in the register file (R1:RO, R3:R2, R5:R4, or 
R7:R6). 

Size: Byte-Byte, Word-Byte, Double word-Word 

Flags Updated: C, V, N, Z 

The carry flag is always cleared. The V flag is set in the following cases, otherwise it is cleared: 

- DIVU.b: V is set if a divide by 0 occurred. A divide by 0 also causes a hardware trap 
to be generated. 
- DIV.w, DIVU.w: V is set if the result of the divide is larger than 8 bits (the result does 
not fit in the destination). 
- DIV.d, DIVU.d: V is set if the result of the divide is larger than 16 bits (the result does 
not fit in the destination). 

The Z, and N flags are set based on the quotient (integer) portion of the result only and not on 
the remainder. 

Examples: 

a) DIVU.b R4L, R4H - will store the result of the division of R4L by R4H in 
R4L and R4H (quotient in register R4L, remainder in register R4H). 

b) DIV.w RO, R2L - will store the result of word register RO divided by byte register 
R2L in word register RO (quotient in register ROL, remainder in register ROH). 

c) DIV.d R4,R2 - will store the result of double-word register R5:R4 divided by word 
register R2 in double-word register R5:R4 (quotient in R4, remainder in R5) 
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Note: For all divides except DIVU.b, the destination register size is the same as indicated by the 
instruction (by the ".b", ".w", or ".d") and the source register is half that size. 

DIV.w Rd, Rs 
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder) 

Bytes: 
Clocks: 
Operation: 

Encoding: 

1 

2 
14 
(RdL) <-- 8-bit integer portion of (Rd) / (Rs). 
(RdH) <-- 8-bit remainder of (Rd) / (Rs) 

1 1 

DIV. w Rd, #data8 
(signed 16 bits I 8 bits --> 8 bit quotient, 8 bit remainder) 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
14 
(RdL) <-- 8-bit integer portion of (Rd) l#data8 
(RdH) <-- 8-bit remainder of (Rd) / #data8 

/1/1/1/0/1/0/01 0 1 

byte 3: #data8 

DIV.d Rd, Rs 
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder) 

Bytes: 
Clocks: 
Operation: 

Encoding: 

1 

XA User Guide 
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DIV.d Rd, #datal6 
(signed 32 bits 116 bits --> 16 bit quotient, 16 bit remainder) 

Bytes: 
Clocks: 
Operation: 

Encoding: 

4 
24 
(Rd) <-- 16-bit integer portion of (Rd) 1 #datal6 
(Rd+l)<-- 16-bit remainder of (Rd) I #datal6 

1111111011101011 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #datal6 

DIVU.b Rd, Rs 
(unsigned 8 bits 18 bits --> 8 bit quotient, 8 bit remainder) 

Bytes: 
Clocks: 
Operation: 

Encoding: 

2 
12 
(RdL) <-- 8-bit integer portion of (RdL) I (Rs) 
(RdH) <-- 8-bit remainder of (RdL) 1 (Rs) 

DIVU.b Rd, #data8 
(unsigned 8 bits 1 8 bits --> 8 bit quotient, 8 bit remainder) 

Bytes: 
Clocks: 

3 
12 

(signed divide) 

(unsigned divide) 

Operation: (RdL) <-- 8-bit integer portion of (RdL) 1 #data8 (unsigned divide) 
(RdH) ,<-- 8-bit remainder of (RdL) 1 #data8 

Encoding: 

byte 3: #data8 
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DIVU.w Rd, Rs 
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder) , 

Bytes: 
Clocks: 
Operation: 

Encoding: 

2 
12 
(RdL) <-- 8-bit integer portion of (Rd) / (Rs) 
(RdH) <-- 8-bit remainder of (Rd) / (Rs) 

1111110101110111 

DIVU.w Rd, #data8 
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder) 

Bytes: 3 
Clocks: 12 

Operation: 

Encoding: 

byte 3: #data8 

(RdL) <-- 8-bit integer portion of (Rd) / #data8 
(RdH) <-- 8-bit remainder of (Rd) / #data8 

DIVU.d Rd, Rs 
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder) 

Bytes: 
Clocks: 
Operation: 

Encoding: 

2 
22 
(Rd) <-- 16-bit integer portion of (Rd)/ (Rs) 
(Rd+ 1) < -- 16-bit remainder of (Rd) / (Rs) 

(unsigned divide) 

(unsigned divide) 

(unsigned divide) 

Idldldlol slslsls 
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DIVU.d Rd, #datal6 
(unsigned 32 bits 116 bits --> 16 bit quotient. 16 bit remainder) 

Bytes: 
Clocks: 

4 
22 

Operation: (Rd) <-- 16-bit integer portion of (Rd) 1 #datal6 
(Rd+l)<-- 16-bit remainder of (Rd) 1 #data16 

Encoding: 

1111111011101011 
byte 3: upper 8 bits of #data 16 
byte 4: lower 8 bits of #datal6 
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DJNZ Decrement and jump if not zero 

Syntax: DJNZ dest, rel8 

Operation: (PC) <-- (PC) + 3 
(dest) <-- (dest) - 1 
if (Z) = 0 then 
(PC) <-- (PC + reI8*2); (PC.O) <-- 0 

Description: Controls a loop of instructions. The parameters are: a condition code (Z), a counter 
(register or memory), and a displacement value. The instruction first decrements the counter by 
one, tests the condition if the result of decrement is 0 (for termination of the loop); if it is false, 
execution continues with the next instruction. If true, execution branches to the location indicated 
by the current value of the PC plus the sign extended displacement. The value in the PC is the 
address of the instruction following DJNZ. 

The branch range is +254 bytes to -256 bytes, with the limitation that the target address is word 
aligned in code memory. The destination operand could be byte or word. 

Note: Refer to section 6.3 for details of jump range 

Size: Byte, Word 

Flags Updated: N, Z 

DJNZ Rd, rel8 

Bytes: 
Clocks: 
Encoding: 

3 
8t/5nt 

\1 \ 0 \ 0 \ 0 \ SZ \1 \1 1 
byte 3: rel8 

DJNZ direct, rel8 

Bytes: 
Clocks: 
Encoding: 

4 
9t/5nt 

\1 1 1 1 1 1 0 1 SZ 1 0 11 I 0 I 
byte 3: lower 8 bits of direct 
byte 4: rel8 

XA User Guide 196 

I 0 1 0 1 0 1 0 1 1 1 direct: 3 bits 1 

3124/97 



FCALL Far Call Subroutine Absolute 

Syntax: FCALL addr24 

Operation: (PC) <-- (PC) + 4 
(SP) <-- (SP) - 4 
«SP)) <-- (PC) 
(PC.23-0) <-- addr24 
(PC.O) <-- 0 

Description: Causes an unconditional branch to the absolute memory location specified by the 
second operand, anywhere in the 16 megabytes XA address space. The 24-bit return address (the 
address following the CALL instruction) of the calling routine is saved on the stack. The target 
address must be word aligned as CALL or branch will force PC.bitO to O. 

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack. 

Size: None 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

4 
12/9(PZ) 

1111000 o 0 

byte 3: lower 8 bits of address (bits 7-0) 
byte 4: upper 8 bits of address (bits 23-16) 
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FJMP Far Jump Absolute 

Syntax: FJMP addr24 

Operation: (PC.23-0) <-- addr24 
(PC.O) <-- 0 

Description: Causes an unconditional branch to the absolute memory location specified by the 
second operand, anywhere in the 16 megabytes XA address space. 
Note: The target address must be word aligned as JMP always forces PC to an even address. 

Note: if the XA is in page 0 mode, only 16-bits of the address will be used. 

Size: None 

Flags Updated: none 

Bytes: 4 
Clocks: 7 

Encoding: 

11 11 0 o 1 0 0 

byte 3: lower 8 bits of address (bits 7-0) 
byte 4: upper 8 bits of address (bits 23-16) 
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JB Relative Jump if bit set 

Syntax: JB bit, rel8 

Operation: (PC) <-- (PC) + 4 
if (bit) = 1 then 
(PC) <-- (PC + reI8*2); 
(PC.O) <-- 0 

Description: If the specified bit is a one, program execution jumps at the location of the PC, plus 
the specified displacement. If the specified bit is clear, the instruction following JB is executed. The 
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned 
in code memory. 

Note: Refer to section 6.3 for details of jump range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

4 
6t13nt 

11101011101111 
byte 3: lower 8 bits of bit address 
byte 4: rel8 
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JBC Jump if bit is set then clear bit 

Syntax: JBC bit, rel8 

Operation: (PC) <-- (PC) + 4 
if (bit) = 1 then 
(PC) <-- (PC + reI8*2); 
(PC.O) <-- 0; (bit) <-- 0 

Description: If the bit speCified is set, branch to the address pointed to by the PC plus the specified 
displacement. The specified bit is then cleared allowing implementation of semaphore operations. 
If the specified bit is clear, the instruction following JBC is executed. The branch range is +254 
bytes to -256 bytes, with the limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of jump range 

Size: Bit 

Flags Updated: none 

Bytes: 4 
Clocks: 6t/3nt 

Encoding: 

11 1 0 1 0 1 

byte 3: lower 8 bits of bit address 
byte 4: rel8 
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JMP Relative Jump 

Syntax: JMP rel16 

Operation: (PC) <-- (PC) + 3 
(PC) <-- (PC + rel16*2) 
(PC.O) <-- 0 

Description: Jumps unconditionally. The branch range is +65,535 bytes to -65,536 bytes, with the 
limitation that the target address is word aligned in code memory. 

Note: Refer to section 6.3 for details of jump range 

Size: None 

Flags Updated: none 

Bytes: 3 
Clocks: 6 

Encoding: 

11 11 0 o 1 0 1 re116: upper 8 bits 

byte 3: lower 8 bits of rel16 
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JMP Jump Indirect through Register 

Syntax: IMP [Rs] 

Operation: (PC) <-- (PC) + 2 
(PC. IS-I) <-- (Rs.IS-I) (note that PC.23-16 is not affected) 
(PC.O) <-- 0 

Description: Causes an unconditional branch to the address contained in the operand word 
register, anywhere within the 64K code page following the JMP instruction. The value of the PC 
used in the target address calculation is the address of the instruction following the IMP 
instruction. 
The target address must be word aligned as IMP will force PC.bitO to O. 

Size: none 

Flags Updated: none 

Bytes: 2 
Clocks: 7 

Encoding: 

1 I 0 I 1 
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JMP Jump indirect through register 

Syntax: JMP [A+DPTR] 

Operation: (PC) <-- (PC) + 2 
(PCIS-I) <-- (A) + (DPTR) 
(PC.O) <-- a 

Description: Causes an unconditional branch to the address formed by the sum of the 80CS1 
compatibility registers A and DPTR, anywhere within the 64K code page following the JMP 
instruction. This instruction is included for 80CS1 compatibility. See Chapter 9 for details of 
80CS1 compatibility features. 

Note: The target address must be word aligned as JMP will force PC.bitO to O. 

Flags Updated: none 

Bytes: 2 
Clocks: S 

Note: A and DPTR are pre-defined registers used for 80CS1 code translation. 

Encoding: 
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JMP Jump double indirect 

Syntax: JMP [[Rs+ ]] 

Operation: (PC) <-- (PC) + 2 
(PC.lS-0) <-- code memory ((WS:Rs» 
(PC.O) <-- 0 
(Rs) <-- (Rs) + 2 

Description: Causes an unconditional branch to the address contained in memory at the address 
pointed to by the register specified in the instruction. The specified register is post-incremented. 

This 2-byte instruction may be used to compress code size by using it to index through a table of 
procedure addresses that are accessed in sequence. Each procedure would end with another JMP 
[[R+]] that would immediately go to the next procedure whose address is in the table. 

The procedures must be located in the same 64K address page of the executed "Jump Double­
indirect" instruction (although the table could be in any page). This instruction can result in 
substantial code compression and hence cost reduction through smaller memory requirements. The 
register pointer (index to the table) being automatically post-incremented after the execution of the 
instruction. The 24-bit address is identified by combining the low order 16-bit of the PC and either 
of high 8-bits of PC or the contents of a byte-size CS register as chosen by the program through a 
segment select Special Function Register (SFR). 

Note: The subroutine addresses must be word aligned as JMP will force PC.bitO to O. 

Flags Updated: none 

Bytes: 2 
Clocks: 8 

Encoding: 

1 1 0 o 1 o 
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JNB Jump if bit not set 

Syntax: JNB bit, re18 

Operation: (PC) <-- (PC) + 4 
if (bit) = 0 then 

(PC. 15-0) <--, (PC + re18*2); (PC.O) <-- 0 

Description: If the specified bit is a zero, program execution jumps at the location of the PC, plus 
the specified displacement. If the specified bit is set, the instruction following JB is executed. 
The branch range is +254 bytes to -256 bytes, with the limitation that the target address is word 
aligned in code memory. 

Note: Refer to section 6.3 for details of jump range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

4 
6t/3nt 

1110101110/111 
byte 3: lower 8 bits of bit address 
byte 4: rel8 
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JNZ Jump if the A register is not zero 

Syntax: JNZ rel8 

Operation: (PC) <-- (PC) + 2 
if (A) not equal to 0, then 
(PC. 15-0) <-- (PC + reI8*2); (PC.O) <-- 0 

Description: A relative branch is taken if the contents of the. 80C51 Accumulator are not zero. The 
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned 
in code memory. 

The contents of the accumulator remain unaffected. This instruction is included for 80C51 
compatibility. See Chapter 9 for details of 80C51 compatibility features. 

Note: Refer to section 6.3 for details of jump range 

Size: Bit 

Flags Updated: none 

Bytes! 2 
Clocks: 6t13nt 

Encoding: 

1 1 1 01 1 1 1 01 rela 
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JZ Jump if the A register is zero 

Syntax: JZ rel8 

Operation: (PC) <-- (PC) + 2 
If (A) = 0 then 
(PC.lS-0) <-- (PC + reI8*2); 
(PC.O) <-- 0 

Description: A relative branch is taken if the contents of the 80CSI Accumulator are zero. The 
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned 
in code memory. 

The contents of the accumulator remain unaffected. This instruction is included for 80CSI 
compatibility. See Chapter 9 for details of 80CSI compatibility features. 

Note: Refer to section 6.3 for details of jump range 

Size: Bit 

Flags Updated: none 

Bytes: 
Clocks: 

Encoding: 

2 
6t13nt 

11111110111110101 
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LEA Load effective address 

Syntax: LEA Rd, Rs+offsetS/16 

Operation: (Rd) <-- (Rs)+offsetSI16 

Description: The word specified by the source operand is added to the offset value and the result 
is stored into the register specified by the destination operand. The source and destination operands 
are both registers. The offset value is an immediate data field of either S or 16 bits in length. The 
source data is not affected by the operation. 

This instruction mimics the address calculation done during other instructions when the register 
indirect with offset addressing mode is used, allowing the resulting address to be saved for other 
purposes. 

Note: The result of this operation is always a word since it duplicates the calculation ofthe indirect 
with offset addressing mode. 

Size: Word-Word 

Flags Updated: none 

LEA Rd, Rs+offset8 

Bytes: 3 
Clocks: 3 
Encoding: 

1
0 1 1 1 01 01 01 0 0 0 

byte 3: offset8 , 

LEA Rd, Rs+offset 16 

Bytes: 4 
Clocks: 3 
Operation: (Rd) <-- (Rs)+offsetI6 
Encoding: 

10 1 1 1 01 01 1 1 0 0 0 
byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 

XA User Guide 208 3/24/97 



LSR Logical Shift Right 

Syntax: 

Operation: 

LSR dest, count 

Do While (count not equal to 0) 
(C) <- (dest.O) 
(dest.bit n) <- (dest.bit n+l) 

(dest.msb) <- 0 
count = count-1 
End While 

Description: If the count operand is greater than the variable specified by the destination 
operand is logically shifted right by the number of bits specified by the count operand. The 
MSBs of the result are filled with zeroes.The low-order bits are shifted out through the C (carry) 
bit. If the count operand is 0, no shift is performed. The count operand is a positive value which 
may be from ° to 31. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts, the 
destination operand must be the least significant half of a double word register. The count is not 
affected by the operation. 

Note: 
- For Logical Shift Left, use ASL ignoring the N flag. 
- If shift count (count in Rs) exceeds data size, the count value is truncated to 5 bits, else for 

immediate shift count, shifting is continued until count is 0. 
- a double word register is double-word aligned in the register file (R1:RO, R3:R2, R5:R4, or 

R7:R6). 

Size: Byte, Word, Double Word 

Flags Updated: C, N, Z (N = ° after an LSR unless count = 0, then it is unchanged) 

LSR Rd, Rs (Rs = Byte-register) 

Operation: 
(Rd) 

° -.j MSB -----I~~LSB ~ 

Bytes: 
Clocks: 

Encoding: 
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LSR Rd, #data4 
Rd, #data5 

Operation: 
(Rd) 

o --.j MSB ---I~.LSB ~ 

Bytes: 
Clocks: 

Encoding: 

2 
For 8/16 bit shifts --> 4+ 1 for each 2 bits of shift 
For 32 bit shifts --> 6+ 1 for each 2 bits of shift 

(for byte and word data sizes) 

(for double word data size) 

1 1 1 1 0 1 t 1111 1 0 1 0 1 

#data4 

#data5 

Note: SZlISZO = 00: byte operation; SZlISZO = 01: reserved; SZlISZO = 10: word operation; 
SZlISZO = 11: double word operation. 
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MOV Move Data 

Syntax: MOV dest, src 

Operation: dest <- src 

Description: The byte or word specified by the source operand is copied into the variable specified 
by the destination operand. The source data is not affected by the operation. 

Source and destination operands may be a register in the register file, an indirect address specified 
by a pointer register, an indirect address specified by a pointer register added to an immediate 
offset of 8 or 16 bits, or a direct address. Source operands may also be specified as immediate data 
contained within the instruction. Auto-increment of the indirect pointers is available for simple 
indirect (not offset) addressing. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

MOV Rd,Rs 

Bytes: 2 
Clocks: 3 
Operation: (Rd) <-- (Rs) 
Encoding: 

1 I 01 

MOV Rd, [Rs] 

Bytes: 
Clocks: 

2 
3 

01 o ISZI 0 

Operation: (Rd) <-- ((WS:Rs)) 
Encoding: 

0 1 d d d d I 51 s 5 5 

1 I 0 I 0 I 0 I sz I 0 I 1 0 I did I did I 0 I s I 5 I 5 I 
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MOV [Rd], Rs 

Bytes: 2 
Clocks: 3 

Operation: «WS:Rd» <-- (Rs) 
Encoding: 

1 0 1 0 1 0 1 SZ 1 0 I 

MOV Rd, [Rs+offset8] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
5 
(Rd) <-- «WS:Rs)+offset8) 

o 

11 I 0 I 0 I 0 I sz I I 0 I 0 
byte 3: offset8 

MOV [Rd+offset8], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
5 
«WS:Rd)+offset8) <-- (Rs) 

11 I 0 I 0 I 0 I 8Z I 1 I 0 I 0 
byte 3: offset8 

MOV Rd, [Rs+offset16] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
5 
(Rd) <-- ((WS:Rs)+offset16) 

'--\1 --'-1 -0 '--1 0--'-1 -0 1'--8Z--'-1 -1 1'--0--'-1 ----, 

byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offset 16 
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MOV [Rd+offset16], Rs 

Bytes: 
Clocks: 
Operation: 

Encoding: 

4 
5 
«WS:Rd)+offset16) <--:- (Rs) 

1""---1 --'--1 --'0 1""-0--'--1 --'0 I""-SZ--'--I ----'1 1""-0--'-1 ----'1 I 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset16 

MOV Rd, [Rs+] 

Bytes: 
Clocks: 
Operation: 

2 
4 
(Rd) <-- «WS:Rs» 
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 

Encoding: 

I 0 1 0 I 0 I sz I 0 I 1 I 1 I 

MOV [Rd+], Rs 

Bytes: 2 
Clocks: 4 

Operation: «WS:Rd» <-- (Rs) 
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 

Encoding: 

1 0 I 0 I 0 1 sz I 0 I 1 1 

MOV [Rd+], [Rs+] 

Bytes: 
Clocks: 
Operation: 

Encoding: 

2 
6 
«WS:Rd» <-- «WS:Rs» 
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 

1 I 0 I 0 1 1 1 sz I 0 1 0 I 0 I 
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MOV direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) <-- (Rs) 

'--11--'-1-0 --r-I ----'0 1-0-'-1 S-Z-r---"I ---r-~O 

byte 3: lower 8 bits of direct 

MOV Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (direct) 

11 I 0 I 0 I 0 1 sz I 
byte 3: lower 8 bits of direct 

MOV direct, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) <-- ((WS:Rs» 

o 

11 1 0 1 1 1 0 1 sz I 0 I 0 1 0 

byte 3: lower 8 bits of direct 

MOV [Rd], direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(CWS:Rd» <-- (direct) 

11 I 0 I 1 I 0 I sz I 0 I 0 1 0 

byte 3: lower 8 bits of direct 
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MOV Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) < -- #data8 

.----11---.-'-0 -'--1 --"0 ,-1---r-, -0 ....-, 0--'-0 --'------'1 

byte 3: #data8 

MOV Rd, #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- #data16 

1"---1---'-1-0 -,--, --"0 ,-1---r-1 -1 ....-, 0--'-0 --'------'1 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

MOV [Rd], #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
((WS:Rd)) <-- #data8 

,"""--1 --,--, -----'0 1'---0--'--, -----'1 1'---0--'--1 0-----','---1 --'--0---' 

byte 3: #data8 

MOV [Rd], #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
((WS:Rd)) <-- #data16 

'---11 -r-I -0 r---I O-r-I -1 r---I 1-r-, -0 r---I ----'-----'0 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 
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MOV [Rd+]. #data8 

Bytes: 
Clocks: 
Operation: 

Encoding: 

byte 3: #data8 

3 
4 
((WS:Rd)) <-- #data8 
(Rd) <-- (Rd) + 1 

MOV [Rd+]. #data16 

Bytes: 
Clocks: 
Operation: 

Encoding: 

4 
4 
((WS:Rd)) <-- #data16 
(Rd) <-- (Rd)+ 2 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

MOV [Rd+offset8], #data8 

Bytes: 
Clocks: 

4 
5 

1 

Operation: ((WS:Rd)+offset8) <-- #data8 
Encoding: 

11 101011101110101 
byte 3: offset8 
byte 4: #data8 

MOV [Rd+offset8], #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

5 
5 
((WS:Rd)+offset8) <-- #data16 

11101011111110101 
byte 3: offset8 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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MOV [Rd+offsetl6], #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

5 
5 
«WS:Rd)+offsetl6) <-- #data8 

11 101011101110111 
byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offsetl6 
byte 5: #data8 

MOV [Rd+offsetI6], #datal6 

Bytes: 
Clocks: 

6 
5 

Operation: «WS:Rd)+offset16) <-- #datal6 
Encoding: 

1110101111111011 
byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 
byte 5: upper 8 bits of #datal6 
byte 6: lower 8 bits of #datal6 

MOV direct, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
( direct) < -- #data8 

byte 3: lower 8 bits of direct 
byte 4: #data8 

MOV direct, #datal6 

Bytes: 
Clocks: 
Operation: 
Encoding: 

5 
3 
( direct) < -- #data 16 

111010111111 
byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #datal6 
byte 5: lower 8 bits of #datal6 
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MOV direct, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
4 
( direct) < -- (direct) 

11 1 0 1 0 1 1 1 sz 1 1 1 1 
byte 3: lower 8 bits of direct (dest) 
byte 4: lower 8 bits of direct (src) 

MOV Rd, USP (move from user stack pointer) 

Bytes: 2 
Clocks: 3 
Operation: (Rd) <-- (USP) 
Encoding: 

1 0 0 1 0 0 0 0 

MOV USP, Rs (move to user stack pointer) 

Bytes: 
Clocks: 
Operation: 
Encoding: 
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MOV Move Bit to Carry 

Syntax: MOV C, bit 

Operation: (C) <-- (bit) 

Description: Copies the specified bit to the carry flag. 

Size: Bit 

Flags Updated: none 

Note: C is written as the destination of the move, not as a status flag 

Bytes: 3 
Clocks: 4 

Encoding: 

10 I 0 I 0 I 0 I 000 I 0 I 0 I 0 bit: 2 

byte 3: lower 8 bits of bit address 
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MOV Move Carry to Bit 

Syntax: MOV bit, C 

Operation: (bit) <-- (C) 

Description: Copies the carry flag to the specified bit. 

Size: Bit 

Flags Updated: none 

Bytes: 3 
Clocks: 4 

Encoding: 

10 1010101 1 01010 I 0 I 0 I 1 1 I 0 I 0 bit: 2 

byte 3: lower 8 bits of bit address 
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MOVC Move Code 

Syntax: MOVC Rd, [Rs+] 

Operation: (Rd) <-- code memory ((WS:Rs» 
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 

Description: Contents of code memory are copied to an internal register. The byte or word 
specified by the source operand is copied to the variable specified by the destination operand. In 
the case of MOVC, the pointer segment selection gives the choices of PC23-16 or CS segment 
(current working segment referred here as WS), rather than DS or ES as is used for all other 
instructions. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

Bytes: 2 
Clocks: 4 

Encoding: 

1 I 0 I 0 I 0 I sz I 0 0 0 
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Move Move Code to A (DPTR) 

Syntax: MOVC A, [A+DPTR] 

Operation: PC <- PC+2 
(A) <-- code memory (PC.23-16:(A) + (DPTR)) 

Description: The byte located at the code memory address formed by the sum of A and the DPTR 
is copied to the A register. The A and DPTR registers are pre-defined registers used for 80CS1 
compatibility. This instruction is included for 80CS1 compatibility. See Chapter 9 for details of 
80CS1 compatibility features. 

Size: Byte-Byte 

Flags Updated: N. Z 

Bytes: 2 
Clocks: 6 

Encoding: 

1101 0111010101 0 1 
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MOVC Move Code to A (PC) 

Syntax: MOVC A, [A+PC] 

Operation: PC <- PC+2 
(A) <-- code memory [PC.23-16: (A +PC.1S-0)] 

Note: Only 16-bits of A+PC are used 

Description: The byte located at the code memory address formed by the sum of A and the current 
Program Counter value is copied to the A register. The A register is a pre-defined register used for 
80CS1 compatibility. This instruction is included for 80CS1 compatibility. See Chapter 9 for 
details of 80CS1 compatibility features. 

Size: Byte-Byte 

Flags Updated: N, Z 

Bytes: 2 
Clocks: 6 

Encoding: 

o 0 0 0 o 1 001 
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MOVS Move Short 

Syntax: MOVS dest, #data 

Description: Four bits of signed immediate data are moved to the destination. The immediate data 
is sign-extended to the proper size, then moved to the variable specified by the destination operand, 
which may be a byte or a word. The immediate data range is +7 to -8. This instruction is used to 
save time and code space for the many instances where a small data constant is moved to a 
destination. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

MOVS Rd, #data4 

Bytes: 
Clocks: 

2 
3 

Operation: (Rd) <-- sign-extended #data4 
Encoding: 

MOVS [Rd], #data4 

Bytes: 
Clocks: 

2 
3 

Isz 1 0 0 

Operation: «WS:Rd)) <-- sign-extended #data4 
Encoding: 

1 sz 1 0 1 0 

MOVS [Rd+], #data4 

Bytes: 
Clocks: 
Operation: 

Encoding: 

2 
4 
«WS:Rd)) <-- sign-extended #data4 
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 

1 I 0 I Iszl 0 1 
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MOVS [Rd+offset8], #data4 

Bytes: 
Clocks: 

3 
5 

Operation: «WS:Rd)+offset8) <-- sign-extended #data4 
Encoding: 

I 0 I 0 

byte 3: offset8 

MOVS [Rd+offsetI6], #data4 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
5 
«WS:Rd)+offset16) <-- sign-extended #data4 

11 I 0 I 1 I 1 I sz I 1 I 0 I 1 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 

MOVS direct, #data4 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
3 
(direct) <-- sign-extended #data4 

#data4 

#data4 

11 I 0 1 1 I 1 1 sz 1 1 0 o Idirect: 3 bits 1 #data4 

byte 3: lower 8 bits of direct 
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MOVX Move External Data 

Syntax: MOVX dest, src 

Description: Move external data to or from an internal register. The byte or word specified by the 
source operand is copied into the variable specified by the destination operand. This instruction 
allows access to data external to the microcontroller in the address range of 0 to 64K. The standard 
indirect move may access external data only above the boundary where internal data RAM ends, 
whereas MOVX always forces an external access. MOVX only operates on the first 64K of 
external data memory. This instruction is included to allow compatibility with 80CS1 code. 

Note that in the 80CSI MOVX instruction using @Ri as a pointer (where i could be 0 or 1), the 
pointer was eight bits in length and the upper address lines were not driven on the external bus. The 
XA always drives all of the enabled external bus address lines. The use of the pointer depends on 
whether compatibility mode is in use. If CM = 0 (compatibility mode off, the default), 16 bits of 
RO or R1 are used as the address within data segment O. IfCM = 1 (compatibility mode on), 8 bits 
of ROL or ROH are used as the bottom eight bits of the address, while the remainder of the address 
bits, including those corresponding to the data segment are O. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

MOVX Rd, [Rs] 

Bytes: 
Clocks: 

2 
6 

Operation: (Rd) <-- external data memory «Rs» 

Encoding: 

MOVX [Rd], Rs 

Bytes: 
Clocks: 

2 
6 

1 0 ISZI 1 1 

Operation: external data memory «Rd» <-- (Rs) 
Encoding: 

I 0 I 1 0 18Z1 
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MUL.w 
MULU.b 
MULU.w 

16x16 Signed Multiply 
8x8 Unsigned Multiply 
16x16 Unsigned Multiply 

Description: The byte or word specified by the source operand is multiplied by the variable 
specified by the destination operand. 

The destination operand must be the first half of a double size register (word for a byte multiply 
and double word for a word multiply). The result is stored in the double size register. 

Note: a double word register is double-word aligned in the register file (Rl:RO, R3:R2, RS:R4, 
and R7:R6)0 

Size: Byte-Byte, Word-Word 

Flags Updated: C, V, N, Z 

The carry flag is always cleared by a multiply instruction. The V flag is set in the following 
cases, otherwise it is cleared: 
- MULU.b: V is set if the result of the multiply is greater than FFh (the upper byte is not equal 
to 0). 
- MULU. w: V is set if the result of the multiply is greater than FFFFh (the upper word is not 
equal to 0)0 
- MUL.w: V is set if the absolute value of the result of the multiply is greater than 7FFFh (the 
upper word is not a sign extension of the lower word). 

Examples: 
a) MUL. w RO,RS stores the product of word register 0 and word register S in double word 
register 0 (least significant word in word register RO, most significant word in word register Rl). 

b) MULUob R4L, R4H will store the MS byte of the product of R4L and R4H in R4H and the 
LS byte in R4L. 
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MUL.w Rd,Rs 
(signed 16 bits * 16 bits --> 32 bits) 

Bytes: 
Clocks: 

2 
12 

Operation: (Rd+1)<-- Most significant word of (Rd) * (Rs) (signed""multiply) 
(Rd) <-- Least significant word of (Rd) * (Rs) 

Encoding: 

1 

MUL.w Rd, #data16 
(signed 16 bits * 16 bits --> 32 bits) 

Bytes: 4 
Clocks: 12 
Operation: (Rd+1)<-- Most significant word of (Rd) * #data16 

(Rd) <-- Least significant word of (Rd) * #data16 
Encoding: 

1r----'1 ~I ---'1 1r----'1~1 ---'0 1r----'1--r-1 ---'0 Ir--O~I ----. 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

MULU.b Rd, Rs 
(unsigned 8 bits * 8 bits --> 16 bits) 

Bytes: 
Clocks: 

2 
12 

Operation: (RdH) <-- Most significant byte of (RdL) * (Rs) 
(RdL) <-- Least significant byte of (RdL) * (Rs) 

Encoding: 

1111110101010101 
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MULU.b Rd, #data8 
(unsigned 8 bits * 8 bits --> 16 bits) 

Bytes: 
Clocks: 

3 
12 

Operation: (RdH) <-- Most significant byte of (RdL) * #data8 
(RdL) <-- Least significant byte of (RdL) * #data8 

Encoding: 

byte 3: #data8 

MULU.w Rd, Rs 
(unsigned 16 bits * 16 bits --> 32 bits) 

Bytes: 
Clocks: 

2 
12 

Operation: (Rd+l)<-- Most significant word of (Rd) * (Rs) 
(Rd) <-- Least significant word of (Rd) * (Rs) 

Encoding: 

MULU.w Rd, #datal6 
(unsigned 16 bits * 16 bits --> 32 bits) 

Bytes: 4 
Clocks: 12 
Operation: (Rd+l)<-- Most significant word of (Rd) * #datal6 

(Rd) <-- Least significant word of (Rd) * #datal6 
Encoding: 

111111101110101 
byte 3: upper 8 bits of #datal6 
byte 4: lower 8 bits of #datal6 
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NEG Negate 

Syntax: NEG Rd 

Operation: Rd <-- (Rd) + 1 

Description: The destination register is negated (twos complement). The destination may be a byte 
or a word. 

Size: Byte, Word 

Flags Updated: V, N, Z 

The V flag is set if a twos complement overflow occurred: the original value = result = 8000 hex 
for a word operation or 80 hex for a byte operation. 

Bytes: 2 
Clocks: 3 

Encoding: 

11 1 0 1 0 1 1 1 sz 1 0 1 0 I 0 I 
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NOP No Operation 

Syntax: NOP 

Operation: PC <- PC + 1 

Description: Execution resumes at the following instruction. This instruction is defined as being 
one byte in length in order to allow it to be used to force word alignment of instructions that are 
branch targets, or for any other purpose. It may also be used to as a delay for a predictable amount 
of time. 

Size: None 

Flags Updated: none 

Bytes: 1 
Clocks: 3 

Encoding: 

00001 0 1 0 1 0 1 0 1 
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NORM Normalize 

Syntax: NORM Rd,Rs 

Operation: 
(Rd) 

\MSB ..... ~--LSB h-O 

Description: Logically shifts left the contents of the destination until the MSB is set, storing the 
number of shifts performed in the count (source) register. The data size may be 8, 16, or 32 bits. 

If the destination value already has the MSB set, the count returned will be 0. If the destination 
value is 0, the count returned will be 0, the N flag will be cleared, and the Z flag will be set. For all 
other conditions, the N flag will be 1 and the Z flag will be 0. 

Note: a double word register is double-word aligned in the register file (Rl:RO, R3:R2, ~5:R4, or 
R7:R6). 
The last pair, i.e, R7:R6 is probably not a good idea as R7 is the current stack pointer. 

Size: Byte, Word, Double Word 

Flags Updated: N, Z 

Bytes: 
Clocks: 

Encoding: 

2 
For 8 or 16 bit shifts -> 4 + 1 for each 2 bits of shift 
For 32 bit shifts -> 6 + 1 for each 2 bits of shift 

\ 1 \ 1\ 0 \ 0 \ SZ1 \ SZO \1 \ 11 \ d \ d \ d \ d \ S \ S \ S \ S 

Note: SZlISZO = 00: byte operation; SZlISZO = 01: reserved; SZlISZO = 10: word operation; 
SZ lISZ0 = 11: double word operation. 
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OR Logical OR 

Syntax: OR dest, src 

Description: Bitwise logical OR the contents of the source to the destination. The byte or word 
specified by the source operand is logically ORed to the variable specified by the destination 
operand. The source data is· not affected by the operation. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

OR Rd, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) + (Rs) 

I 0 I 1 I 1 I 0 I sz I 0 I 0 I 

OR Rd, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

OR [Rd], Rs 

Bytes: 
Clocks: 

2 
4 
(Rd) <-- (Rd) + ((WS:Rs» 

2 
4 

1 I 0 I sz I 0 o 

Operation: (CWS:Rd» <-- C(WS:Rd» + (Rs) 
Encoding: 
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'OR Rd, [Rs+offset8] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
6 
(Rd) <-- (Rd) + «WS:Rs)+offset8) 

1 0 1 1 1 1 1 0 1 sz I 1 1 0 1 0 lid 1 did 1 d 1 0 1 8 1 8 1 8 1 
byte 3: offset8 

OR [Rd+offset8], Rs 

Bytes: 
Clocks: 

3 
6 

Operation: «WS:Rd)+offset8) <-- «WS:Rd)+offset8) + (Rs) 
Encoding: 

r--I o--r-"I -1 r--1--r-"1 -0 Ir--SZ--r-"I -1 Ir--O--r-"I -----'0 1 1 8 1 8 1 8 1 8 1 1 did 1 d 1 
byte 3: offset8 

OR Rd, [Rs+offset16] 

Bytes: 4 
Clocks: 6 
Operation: (Rd) <-- (Rd) + «WS:Rs)+offset16) 
Encoding: 

t--I O--r-"I-1 Ir--. 1--'-1 ---'0 I-SZ~I -----r1 I-O~I ---'1 lid 1 did 1 d 1 0 1 8 1 8 1 8 1 
byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 

OR [Rd+offsetI6], Rs 

Bytes: 
Clocks: 

4 
6 

Operation: «WS:Rd)+offset16) <-- «WS:Rd)+offset16) + (Rs) 
Encoding: 

1 0 I· 1 1 .1 1 0 1 sz 1 1 1 0 1 1 
byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 
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OR Rd, [Rs+J 

Bytes: 2 
Clocks: 5 
Operation: (Rd) <-- (Rd) + ((WS:Rs)) 

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 
Encoding: 

1 0 , 

OR [Rd+], Rs 

Bytes: 2 
Clocks: 5 
Operation: ((WS:Rd)) <-- ((WS:Rd)) + (Rs) 

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 
Encoding: 

1
0 

I 1 I 0 I sz I 0 I 

OR direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) < -- ( direct) + (Rs) 

I~ 0--'-,-1 -r--I --'1 ,-0--'-, S-Z~I 1---'----'------'0 

byte 3: lower 8 bits of direct 

OR Rd. direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (Rd) + (direct) 

Ir--O---r'",-1 -,--, ---"1 ,-0--'--, S-Z r-I 1~1 ""'---'0 

byte 3: lower 8 bits of direct 
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OR Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) <-- (Rd) + #data8 

"'---11 --'--1 --0 ,"'---0--'--, --1 \"'---0-'--\ ----'0 \r-O--r-\ ----'1 
byte 3: #data8 

OR Rd, #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- (Rd) + #data16 

11 \ 0\ 01 1\110\ 01 1 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

OR [Rd], #data8 

Bytes: 
Clocks: 

3 
4 

Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8 
Encoding: 

11\ 0\ 01 11 0101 11 0 1 10IdldldI01 1\1\01 
byte 3: #data8 

OR [Rd], #data16 

Bytes: 
Clocks: 

4 
4 

Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data16 
Encoding: 

11 10\ 01 111101 1101 10ldldidi 011 1101 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 
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OR [Rd+], #data8 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
5 
((WS:Rd» <-- ((WS:Rd» + #data8 
(Rd) <-- (Rd) + 1 

\1\0\0\1\0\01 1\1 
byte 3: #data8 

OR [Rd+], #data16 

Bytes: 
Clocks: 
Operation: 

Encoding: 

4 
5 
((WS:Rd» <-- ((WS:Rd» + #data16 
(Rd) <-- (Rd) + 2 

1110101111101111 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

OR [Rd+offset8], #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
6 
((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data8 

11 1 0 1 0 1 1 1 0 11 1 0 I 0 I 1 0 I did 1 d I 0 1 11 11 01 
byte 3: offset8 
byte 4: #data8 

OR [Rd+offset8], #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

5 
6 
((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) + #data16 

1 1 10\ 0\11 11 1 10 1 0 1 1 0 1 dl dl dl 01 
byte 3: offset8 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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OR [Rd+offsetl6], #data8 

Bytes: 
Clocks: 

5 
6 

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #data8 
Encoding: 

11101011101 10 11 
byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offsetl6 
byte 5: #data8 

OR [Rd+offsetl6], #data16 

Bytes: 
Clocks: 

6 
6 

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) + #data16 
Encoding: 

11101011111 10 11 
byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offset 16 
byte 5: upper 8 bits of #data16 
byte 6: lower 8 bits of #data16 

OR direct, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
4 
(direct) <-- (direct) + #data8 

byte 3: lower 8 bits of direct 
byte 4: #data8 

OR direct, #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

5 
4 
(direct) <-- (direct) + #data16 

byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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ORL Logical OR bit 

Syntax: ORL C, bit 

Operation:(C) <-- (C) + (bit) 

Description: Logical (inclusive) OR a bit to the Carry flag. Read the specified bit and logically OR 
it to the Carry flag. 
(C is written as the destination of the ORL, not as a status flag) 

Size: Bit 

Flags Updated: none 

Bytes: 3 
Clocks: 4 

Encoding: 

000 1 I 0 I 0 I 0 bit: 2 

byte 3: lower 8 bits of bit address 
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ORL Logical OR complement of bit 

Syntax: ORL C~ /bit 

Operation: (C) <-- (C) + (bit) 

Description: Logically OR the complement of a bit to the Carry flag. Read the specified bit, 
complement it, and logically OR it to the Carry flag. 
(C is written as the destination of the move, not as a status flag) 

Flags Updated: none 

Bytes: 3 
Clocks: 4 

Encoding: 

000 I 0 I 1 1 I 0 I 0 bit: 2 

byte 3: lower 8 bits of bit address 
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POP 
POPU 

Syntax: 

Pop 
Pop User 

POP dest 

Description: The stack is popped and the data written to the specified directly addressed location. 
The data size may be byte or word. POP uses the current stack pointer, while POPU forces an 
access to the user stack. 

Size: Byte, Word 

Flags Updated: none 

POP direct 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
5 
(direct) <-- «SP» 
(SP) <-- (SP) + 2 

,"--1 -..-, ---'0 1""'--0-"-1 ---'0 I""'--SZ-"-I ---,.....-----,----, 

byte 3: 8 bits of direct 

POPU direct 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
5 
(direct) <-- «USP» 
(USP) <-- (USP) + 2 

11 1 0 I 0 I 0 I sz 1 
byte 3: 8 bits of direct 
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POP 
POPU 

Syntax: 

Pop Multiple 
Pop User Multiple 

POP 
POPU 

Rlist 
Rlist 

Description: Pop the specified registers (one or more) from the stack. The stack is popped (from 
1 to 8 times) and the data stored in the specified registers. Any combination of word registers in 
the group RO to R7 may be popped in a single instruction in a word operation. Or, any combination 
of byte registers in the group ROL to R3H or the group R4L to R7H may be popped in a single 
instruction in a byte operation. POP uses the current stack pointer, while POPU forces an access to 
the user stack. 

Note: Rlist is a bit map that represents each register to be popped. The registers are in the order R7, 
R6, R5, ...... , RO, for word registers or R3H .... ROL, or R7H ... R4L for byte registers. The pop order 
is from right to left, i.e., the register specified by the rightmost one in Rlist will be popped first, etc. 
The order must be the reverse ofthat used by the preceding PUSH instruction. Note that ifthe same 
register list is used first with a PUSH, then with a POP, the original register contents will be 
restored. The order in which the registers are called out in the source code is not important because 
the Rlist operand is encoded as a fixed order bit map (see below). 

Size: Byte, Word 

Flags Updated: none 

POP Rlist 

Bytes: 
Clocks: 
Operation: 

Encoding: 

2 
4 + 2 per additional register 
Repeat for all selected registers (Ri): 
(Ri) <-- «SP)) 
(SP) <-- (SP) + 2 

I 0 I HILI 1 I 0 ISZ 11 

POPU Rlist 

Bytes: 
Clocks: 
Operation: 

Encoding: 

2 
4 + 2 per additional register 
Repeat for all selected registers (Ri): 
(Ri) <-- «USP)) 
(USP) <-- (USP) + 2 

o IH/LI1 Isz I 
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Rlist bit definitions for a byte POP from register(s) in the upper register group (R4L through R7H): 

I R7H I R7l I R6H I R6l I R5H I R5l I R4H I R4l I 
Rlist bit definitions for a byte POP from register(s) in the lower register group (ROL through R3H): 

I R3H I R3l I R2H I R2l I R1H I R1l I ROH ROl 

Rlist bit definitions for a word POP from any register(s) (RO through R7): 

R7 R6 R5 R4 R3 R2 R1 RO 
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PUSH 
PUSHU 

Syntax: 

Push 
Push User 

PUSH src 
PUSHU src 

Description: The specified directly addressed data is pushed onto the stack. The data size may be 
byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to the user stack. 

Size: Byte, Word 

Flags Updated: none 

PUSH direct 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
5 
(SP) <-- (SP) - 2 
((SP» <-- (direct) 

r---,1"""'"T"'""1 -0 '--1 O"""'"T"'""I -0 ,"---SZ"""'"T"'""I -1 ...----r----. 

byte 3: 8 bits of direct 

PUSHU direct 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
5 
(USP) <-- (USP) - 2 
((USP» <-- (direct) 

11 I 0 I 0 I 0 1 sz I 
byte 3: 8 bits of direct 
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PUSH 
PUSHU 

Syntax: 

Push Multiple 
Push User Multiple 

PUSH Rlist 
PUSHU Rlist 

Description: Push the specified registers (one or more) onto the stack. The specified registers are 
pushed onto the stack. Any combination of word registers in the group RO to R7 may be pushed in 
a single instruction in a word operation. Or, any combination of byte registers in the group ROL to 
R3H or the group R4L to R7H may be pushed in a single instruction in a byte operation. The data 
size may be byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to 
the user stack. 

Note: Rlist is a bit map that represents each register to be popped. The registers are in the order R7, 
R6, R5, ...... , RO, for word registers or R3H .... ROL, or R7H ... R4L for byte registers. The push order 
is from left to right, i.e., the register specified by the leftmost one in Rlist will be pushed first, etc. 
The order must be the reverse of that used by the corresponding POP instruction. Note that if the 
same register list is used first with a PUSH, then with a POP, the original register contents will be 
restored. The order in which the registers are called out in the source code is not important because 
the Rlist operand is encoded as a fixed order bit map (see below). 

Size: Byte, Word 

Flags Updated: none 

PUSH Rlist 

Bytes: 2 
Clocks: 3 + 3 per additional register 
Operation: Repeat for all selected registers CRi): 

(SP) <-- (SP) - 2 
«SP» <-- (Ri) 

Encoding: 

r--"0---'-,-H/L-r'"1 -0 ...-o-,r--"SZ---,-,----r'---...----, 

PUSHU RUst 

Bytes: 2 
Clocks: 3 + 3 per additional register 
Operation: Repeat for all selected registers (Ri): 

(USP) <-- (USP) - 2 
«USP» <-- (Ri) 

Encoding: 

o I H/L I 0 I 1 ISZ I 
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Rlist bit definitions for a byte PUSH from register(s) in the upper register group 
(R4L through R7H): 

I R7H I R7l I R6H I R6l I R5H I R5l I R4H I R4l 

Rlist bit definitions for a byte PUSH from register(s) in the lower register group 
(ROL through R3H): 

I R3H I R3l I R2H I R2l I R1H I R1l I ROH HOl 

Rlist bit definitions for a word PUSH from any register(s) (RO through R7): 

R7 R6 R5 R4 R3 R2 R1 RO 
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RESET Software Reset 

Syntax: RESET 

Operation: (PC) <-- vector(O) 
(PSW) <-- vector(O) 
(SFRs) <-- reset values (refer to the description of reset for details) 

Description:· The chip is reset exactly as if the external hardware reset has been asserted with 
the exception that it does not sample inputs for configuration, e.g., EA, BUSW, etc. When a 
RESET instruction is executed, the chip is internally reset, but no external RESET pulse is 
generated. The above inputs which are latched during rising edge of a RESET pulse, hence does 
not affect the chip configuration. 

Flags Updated: The entire PSW is set to the value specified in the reset vector. 

Bytes: 2 
Clocks: 19 

Encoding: 

o 1 I 0 I 000 000 0 
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RET Return from Subroutine 

Syntax: RET 

Operation: (PC) <-- ((SP)) 
(SP) <-- (SP) + 4 

Description: A 24-bit return address is popped from the stack and used to replace the entire 
program counter value (PC23-0). This instruction is used to return from a subroutine that was called 
with a CALL or Far Call (FCALL). 

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack. 

Size: None 

Flags Updated: none 

Bytes: 2 
Clocks: 8/6 (PZ) 

Encoding: 

0 1 I 01 
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RETI Return from Interrupt 

Syntax: RETI 

Operation: (PSW) <-- ((SSP» 
(PC.23-0) <-- ((SSP» 
(SSP) <-- (SSP) + 6 

Description: A 24-bit return address is popped from the stack and used to replace the entire 
program counter value. The Program Status Word is also restored by being popped from the stack. 

This instruction is a privileged instruction (limited to system mode) and is used to return from 
an interrupt/exception. An attempt to use RETl in user mode will generate a trap. 

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack. 

Size: None 

Flags Updated: All PSW bits are written by the POP of the PSW value in System mode. In User 
mode, the protected PSW bits are not altered. 

Bytes: 2 
Clocks: 10/8 (PZ) 

Encoding: 

1 0 I 0 I I 0 I 0 0 0 0 0 0 
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RL Rotate Left 

Syntax: RL Rd, #data4 

Operation: 
(Rd) 

dMSBOOI LSBb 

count <- #data4 
Do While (count not equal to 0) 
(desto) <- (destmsb) 

(destn) <- (destn_l) 

(count) <- count-l 
End While 

Description: The variable specified by the destination operand is rotated left by the number of bits 
specified in the immediate data operand. The data size may be 8 or 16 bits. The number of bit 
positions shifted may be from 0 to 15. 

Size: Byte, Word 

Flags Updated: N, Z 

Bytes: 2 
Clocks: 4 + 1 for each 2 bits of shift 

Encoding: 

Iszl 0 1 d d d d #data4 
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RLC Rotate Left Through Carry 

Syntax: RLC Rd, #data4 

Operation: 
(Rd) 

c0=l_M_SB_ ... ____ L_S_Bb 
count <- #data4 
Do While (count not equal to 0) 
(temp) <- (C) 
(C) <- (destmsb) 

(destn) <- (destn_l) 

(desto) <- (temp) 

(count) <- count-l 
End While 

Description: The variable specified by the destination operand is rotated left through the carry flag 
by the number of bits specified in the immediate data operand. The data size may be 8 or 16 bits. 
The number of bit positions shifted may be from 0 to 15. 

Size: Byte, Word 

Flags Updated: C, N, Z 

Bytes: 2 
Clocks: 4 + 1 for each 2 bits of shift 

Encoding: 

18z1 1 #data4 
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RR Rotate Right 

Syntax: RR Rd, #data4 

Operation: 
(Rd) 

rjMSB 
count < - #data4 
Do While (count not equal to 0) 
(destmsb) <- (desto) 
(destn_l) <- (destn) 

(count) <- count-l 
End While 

Description: If the count operand is greater than 0, the destination operand is rotated right by 
the number of bits specified in the immediate data operand. The data size may be 8 or 16 bits. 
The number of bit positions shifted may be from ° to 15. If the count operand is 0, no rotate is 
performed. 

Size: Byte, Word 

Flags Updated: N, Z 

Bytes: 2 
Clocks: 4 + 1 for each 2 bits of shift 

Encoding: 

1 I sz I 0 0 0 d d d d #data4 
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RRC Rotate Right Through Carry 

Syntax: RRC Rd, #data4 

Operation: 
(Rd) 

c&!MSB ~LSB~ 

count <- #data4 
Do While (count not equal to 0) 

(temp) <- (C) 
(C) <- (desto) 

(destn) <- (destn+l) 

(destmsb) <- (temp) 
(count) <- count-l 
End While 

Description: If the count operand is greater than 0, the destination operand is rotated right through 
the carry flag by the number of bits specified in the immediate data operand. The data size may be 
8 or 16 bits. The number of bit positions shifted may be from ° to 15. 
If the count operand is 0, no rotate is performed. 

Size: Byte, Word 

Flags Updated: C, N, Z 

Bytes: 2 
Clocks: 4 + 1 for each 2 bits of shift 

Encoding: 

I 0 I Iszl d d d d #data4 
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SETB Set Bit 

Syntax: SETB bit 

Operation: (bit) <-- 1 

Description: Writes (sets) a 1 to the specified bit 

Size: Bit 

Flags Updated:none 

Bytes: 3 
Clocks: 4 

Encoding: 

1010101011000 I 0 1 0 1 0 1 1 1 0 1 0 bit: 2 

byte 3: lower 8 bits of bit address 
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SEXT· Sign Extend 

Syntax: SEXT Rd 

Operation: if N = 1 
then (Rd) <-- FF in byte mode or FFFF in word mode 

ifN= 0 
then (Rd) <-- 00 in byte mode or 0000 in word mode 

Description: Copies the N flag (the sign bit of the last ALU operation) into the destination register. 
The destination register may be a byte or word register. 

Example: 
SEXT.b Rl 
if the result of the previous operation left the N flag set, then Rl <-- FF 

Size: Byte, word 

Flags Updated: none 

Bytes: 2 
Clocks: 3 

Encoding: 

11 1 0 0 1 szl 0 0 0 100 
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SUB Integer Subtract 

Syntax: ' SUB dest, src 

Operation: dest <- dest - src 

Description: Performs a twos complement binary subtraction of the source and destination 
operands, and the result is placed in the destination operand. The source data is not affected by the 
operation. 

Size: Byte-Byte, Word-Word 

Flags Updated: C, AC, V, N, Z 

SUB Rd, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) - (Rs) 

, 0 , 0 , I 0 , SZ , 0 , 0 I 1 

SUB Rd, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
(Rd) <-- (Rd) - ((WS:Rs» 

,"'--0 -r-", --0 ,"---1--'-, --0 ,"'--SZ--'-, ----'0 ,"'--1--'-, ----'0 

SUB [Rd], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
CCWS:Rd» <-- C(WS:Rd» - CRs) 

I 0 I 0' 1 I 0' sz I 0 , 1 I 0 I 
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SUB Rd, [Rs+offset8] 

Bytes: 
Clocks: 

3 
6 

Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8) 
Encoding: 

1'--0 --.--, -0 ..--, 1--'--1 -0 I"--SZ--'--I -1"--0--'--1 ----'0 

byte 3: offset8 

SUB [Rd+offset8], Rs 

Bytes: 
Clocks: 

3 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - (Rs) 
Encoding: 

I 0 1 0 I 1 I 0 I sz I 1 I 0 I 0 I 
byte 3: offset8 

SUB Rd, [Rs+offset16] 

Bytes: 
Clocks: 

4 
6 

Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16) 
Encoding: 

1'--0 --'--1 -0 "--1 1--'--, -0 ..--, SZ--'--I -,"--0--'--, --., 
byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset 16 

SUB [Rd+offset16], Rs 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offsetl6) - (Rs) 
Encoding: 

I 0 I 0' 1 I 0' sz I '0 I 
byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offset 16 
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SUB Rd, [Rs+] 

Bytes: 2 
Clocks: 5 
Operation: (Rd) <-- (Rd) - «WS:Rs» 

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 
Encoding: 

SUB [Rd+], Rs 

Bytes: 2 
Clocks: 5 
Operation: «WS:Rd)) <-- «WS:Rd» - (Rs) 

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 
Encoding: 

I 0 I 0 I 1 I 0 I sz I 0 I 1 I 1 I 

SUB direct, Rs 

Bytes: 
Clocks: 

3 
4 

Operation: ( direct) < -- ( direct) - (Rs) 
Encoding: 

I 0 I 0 I 1 , 0 , SZ , 1 

byte 3: lower 8 bits of direct 

SUB Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (Rd) - (direct) 

I 0 I 0 I 1 I 0 , sz I 
byte 3: lower 8 bits of direct 
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SUB Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) <-- (Rd) - #data8 

111010111010101 
byte 3: #data8 

SUB Rd, #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- (Rd) - #data16 

111010111110101 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

SUB [Rd] , #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
«WS:Rd)) <-- «WS:Rd)) - #data8 

11 10 I 0 I 1 I 0 I 0 I 1 I 0 I I Old 1 did 1 0 1 0 1 1 1 0 I 
byte 3: #data8 

SUB [Rd], #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
4 
«WS:Rd)) <-- «WS:Rd)) - #data16 

11 1 0 I 01 11 11 01 1 I 01 10 I did 1 d 1 0 I 01 1 I 0 I 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 
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SUB [Rd+ ], #data8 

Bytes: 
Clocks: 

3 
5 

Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 
(Rd) <-- (Rd) + 1 

Encoding: 

\110101110101111 
byte 3: #data8 

SUB [Rd+], #data16 

Bytes: 
Clocks: 

4 
5 

Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16 
(Rd) <-- (Rd) + 2 

Encoding: 

byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

SUB [Rd+offset8], #data8 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data8 
Encoding: 

11 I 0 1 0 I I 0 I 1 0 I 0 I 1 0 I did 1 d 1 0 1 01 11 01 
byte 3: offset8 
byte 4: #data8 

SUB [Rd+offset8], #data16 

Bytes: 
Clocks: 

5 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #data16 
Encoding: 

11 I 0 I 01 1 1 1 11 
1 0 10 I 1 0 I did 1 dl 01 01 11 01 

byte 3: offset8 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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SUB [Rd+offsetI6], #data8 

Bytes: 
Clocks: 

5 
6 

Operation: ((WS:Rd)+offset16) <-- ((WS:Rd)+offsetI6) - #data8 
Encoding: 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset 16 
byte 5: #data8 

SUB [Rd+offset16], #datal6 

Bytes: 
Clocks: 

6 
6 

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetI6) - #data16 
Encoding: 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 
byte 5: upper 8 bits of #datal6 
byte 6: lower 8 bits of #datal6 

SUB direct, #data8 

Bytes: 
Clocks: 

4 
4 

10 1 

Operation: ( direct) < -- ( direct) - #data8 
Encoding: 

byte 3: lower 8 bits of direct 
byte 4: #data8 

SUB direct, #data 16 

Bytes: 
Clocks: 

5 
4 

o 

Operation: (direct) <-- (direct) - #data16 
Encoding: 

byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #datal6 

3/24/97 
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SUBB Subtract with Borrow 

Syntax: SUBB dest, src 

Operation: dest <- dest - src - C 

Description: Performs a twos complement binary addition of the source operand and the 
previously generated carry bit (borrow) with the destination operand. The result is stored in the 
destination operand. The source data is not affected by the operation. 

If the carry from previous operation is zero (C = 0, i.e., Borrow = 1), the result is exact difference 
of the operands; if it is one (C = 1, i.e., Borrow = 0), the result is 1 less than the difference in 
operands. 

This form of subtraction is intended to support multiple-precision arithmetic. For this use, the carry 
bit is first reset, then SUBB is used to add the portions of the multiple-precision values from least­
significant to most-significant. 

Size: Byte-Byte, Word-Word 

Flags Updated: C, AC, V, N, Z 

SUBB Rd, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) - (Rs) - (C) 

I 0 I 0 I 1 I 1 I sz I 0 I 0 I 

SUBB Rd, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

XA User Guide 
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SUBB [Rd], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
((WS:Rd» <-- ((WS:Rd» - (Rs) - (C) 

I 0 1 0 1 1 1 1 1 sz 1 0 1 1 1 0 liS 1 SiS 1 S 11 1 did 1 d 1 

SUBB Rd, [Rs+offset8] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
6 
(Rd) <-- (Rd) - ((WS:Rs)+offset8) - (C) 

I 0 I 0 1 1 1 1 1 sz 1 1 0 1 0 

byte 3: offset8 

SUBB [Rd+offset8], Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
6 
((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - (Rs) - (C) 

I 0 I 0 1 1 1 1 1 sz 1 1 1 0 I 0 I lsi sis 1 s 1 
byte 3: offset8 

SUBB Rd, [Rs+offset16] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
6 
(Rd) <-- (Rd) - ((WS:Rs)+offset16) - (C) 

d d d 

I 0 1 0 1 1 I 1 I sz I 1 I 0 1 1 I I did 1 did I 0 1 sis 1 S I 
byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset16 
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SUBB [Rd+offset16], Rs 

Bytes: 
Clocks: 

4 
6 

Operation: «WS:Rd)+offsetl6) <-- «WS:Rd)+offset16) - (Rs) - (C) 
Encoding: 

1 01 0 1 1, 1 1 I 5Z 1 1 1 0 1 1 I I sis I sis I 1 d d d 
byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset 16 

SUBB Rd, [Rs+] 

Bytes: 2 
Clocks: 5 
Operation: (Rd) <-- (Rd) - «WS:Rs» - (C) 

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 
Encoding: 

1 I did I did 1)0 lsi sis l 

SUBB [Rd+], Rs 

Bytes: 2 
Clocks: 5 
Operation: «WS:Rd» <-- «WS:Rd» - (Rs) - (C) 

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 
Encoding: 

SUBB direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) <-- (direct) - (Rs) ... (C) 

byte 3: lower 8 bits of direct 
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SUBB Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (Rd) - (direct) - (C) 

'--1 0-'-1-0 '-1 -----r1 ,-1-'--1 S-Z ,--, --r-1--,-----,0 

byte 3: lower 8 bits of direct 

SUBB Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) <-- (Rd) - #data8 - (C) 

111010111010101 
byte 3: #data8 

SUBB Rd, #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- (Rd) - #data16 - (C) 

11 1010111110101 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

SUBB [Rd], #data8 

Bytes: 
Clocks: 

3 
4 

I did I did 1 0 1 direct: 3 bitsl 

Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 - (C) 
Encoding: 

11 101011101011101 1 

byte 3: #data8 
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SUBB [Rd], #data16 

Bytes: 
Clocks: 

4 
4 

Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data16 - (C) 
Encoding: 

1110\0\1\110\110\ \O\dldld\O\O\ 1 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

SUBB [Rd+], #data8 

Bytes: 3 
Clocks: 5 
Operation: ((WS:Rd)) <-- ((WS:Rd)) - #data8 - (C) 

(Rd) <-- (Rd) + 1 
Encoding: 

11 10101110101111 
byte 3: #data8 

SUBB . [Rd+], #data16 

Bytes: 4 
Clocks: 5 
Operation: (CWS:Rd)) <-- ((WS:Rd)) - #data16 - (C) 

CRd) <-- CRd) + 2 
Encoding: 

11 1 010\1\11 0 \11 1 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

SUBB [Rd+offset8], #data8 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offset8) <-- C(WS:Rd)+offset8) - #data8 - (C) 
Encoding: 

11 I 0 1 0 I 1 I 0 1 1 0 I 0 I I Old 1 did 1 0 1 01 11 1\ 
byte 3: offset8 
byte 4: #data8 
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SUBB [Rd+offset8], #datal6 

Bytes: 
Clocks: 

5 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) - #datal6 - (C) 
Encoding: 

byte 3: offset8 
byte 4: upper 8 bits of #datal6 
byte 5: lower 8 bits of #datal6 

SUBB [Rd+offsetI6], #data8 

Bytes: 
Clocks: 

5 
6 

o 0 

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offsetl6) - #data8 - (C) 
Encoding: 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset 16 
byte 5: #data8 

SUBB [Rd+offsetl6], #datal6 

Bytes: 
Clocks: 

6 
6 

o 

Operation: ((WS:Rd)+offsetI6) <-- ((WS:Rd)+offsetI6) - #datal6 - (C) 
Encoding: 

byte 3: upper 8 bits of offsetl6 
byte 4: lower 8 bits of offset16 
byte 5: upper 8 bits of #datal6 
byte 6: lower 8 bits of #datal6 

SUBB direct, #data8 

Bytes: 
Clocks: 

4 
4 

o 

Operation: (direct) <-- (direct) - #data8 - (C) 
Encoding: 

byte 3: lower 8 bits of direct 
byte 4: #data8 
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SUBB direct. #data16 

Bytes: 
Clocks: 

5 
4 

Operation: (direct) <-- (direct) - #data16 - (C) 
Encoding: . 

"'---11---'-1-0 ""-1 -----rO 1-1---r-1 -1 "--11~1 ~O----' 
byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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TRAP Software Trap 

Syntax: TRAP #data4 

Operation: (PC) <-- (PC) + 2 
(SSP) <-- (SSP) - 6 
((SSP)) <-- (PC) 
((SSP)) <-- (PSW) 
(PSW) <-- code memory (trap vector (#data4)) 
(PC. 15-0) <-- code memory (trap vector (#data4)) 
(PC.23-I6) <-- 0; (PC.O) <-- 0 

Description: Causes the specified software trap. The invoked routine is determined by branching 
to the specified vector table entry point. The RETI, return from interrupt, instruction is used to 
resume execution after the trap routine has been completed. A trap acts like an immediate interrupt, 
using a vector to call one of several pieces of code that will be executed in system mode. This may 
be used to obtain system services for application code, such as altering the data segment register. 
This is described in more detail in the section on interrupts and exceptions. 

Note: The address of the exception handling routine must be word aligned as the PC is forced to 
an even address before vectoring to the service routine. 

Size: None 

Flags Updated: none 

Bytes: 2 
Clocks: 23/19 (PZ) 

Encoding: 

o o 0 #data4 
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XCH Exchange 

Syntax: XCH dest, src 

Operation: dest <--> src 

Description: The data specified by the source and destination operands is exchanged. 

Size: Byte-Byte, word-word. 

Flags Updated: none 

XCH Rd, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
5 
(Rd) <--> (Rs) 

I 0 I sz I 0 0 0 

XCH Rd, [Rs] 

Bytes: 2 
Clocks: 6 
Operation: (Rd) <--> ((WS:Rs)) 
Encoding: 

1
0 

I 
1 I 01 1 ISZI 

XCH Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
6 
(Rd) <--> (direct) 

0 0 0 

11 I 0 I 1 I 0 I sz I 0 0 0 

byte 3: lower 8 bits of direct 
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XOR Exclusive OR 

Syntax: XOR dest, src 

Operation: dest <- dest (XOR) src 

Description: The byte or word specified by the source operand is bitwise logically XORed to the 
variable specified by the destination operand. The source data is not affected by the operation. 

Size: Byte-Byte, Word-Word 

Flags Updated: N, Z 

XOR Rd,Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
3 
(Rd) <-- (Rd) (XOR) (Rs) 

,"--0---"-,-1 -r---T1 -1-'--, 8-Z ...---, 0--'-,-0 -r--I ----'1 

XOR Rd, [Rs] 

Bytes: 
Clocks: 
Operation: 
Encoding: 

2 
4 
(Rd) <-- (Rd) (X OR) ((WS:Rs» 

I 0 1 1 1 1 1 8Z 1 0 1 1 0 

XOR [Rd], Rs 

Bytes: 
Clocks: 

2 
4 

Operation: ((WS:Rd» <-- ((WS:Rd» (XOR) (Rs) 
Encoding: 

r--, 0-'-1 -1 ~I 1-'-1 -1 ~I 8Z-'-1 -0 1~1---Y-1 ----'0 I 
I sis 1 sis 1 d d d 
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XOR Rd, [Rs+offset8] 

Bytes: 
Clocks: 

3 
6 

Operation: (Rd) <-- (Rd) (X OR) ((WS:Rs)+offset8) 
Encoding: 

1 0 I 1 1 I 1 I sz 1 1 1 0 I 0 I 

byte 3: offset8 

XOR [Rd+offset8], Rs 

Bytes: 
Clocks: 

3 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) (Rs) 
Encoding: 

byte 3: offset8 

XOR Rd, [Rs+offset16] 

Bytes: 
Clocks: 

4 
6 

1 SZ 11 I 0 I 0 

Operation: (Rd) <-- (Rd) (X OR) ((WS:Rs)+offsetl6) 
Encoding: 

1 0 1 1 1 1 1 1 1 sz 1 1 0 I 1 

byte 3: upper 8 bits of offset16 
byte 4: lower 8 bits of offset16 

XOR [Rd+offset16], Rs 

Bytes: 
Clocks: 

4 
6 

Operation: ((WS:Rd)+offsetl6) <-- ((WS:Rd)+offset16) (XOR) (Rs) 
Encoding: 

1 0 I 1 I 1 I 1 I sz I 1 I 0 I 1 I 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 
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XOR Rd, [Rs+] 

Bytes: 2 
Clocks: 5 
Operation: (Rd) <-- (Rd) (XOR) ((WS:Rs» 

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation) 
Encoding: 

1
0 

I 1 'SZ I 0 11 

XOR [Rd+], Rs 

Bytes: 2 
Clocks: 5 
Operation: ((WS:Rd» <-- ((WS:Rd» (XOR) (Rs) 

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation) 
Encoding: 

I~O--'-'-1 -r-----T-1---.-, S-Z -r--"I O---r"I---'------"1 

XOR direct, Rs 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(direct) <-- (direct) (XOR) (Rs) 

I 0 , l' 1 I l' SZ I 1 1 0 
byte 3: lower 8 bits of direct 

XOR Rd, direct 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
4 
(Rd) <-- (Rd) (XOR) (direct) 

, 0 I l' 1 , 1 I sz I 1 1 0 

byte 3: lower 8 bits of direct 

3/24/97 

Is' s , s , s '1 d d d 

I sis I sis' , direct: 3 bits' 

I did I d , d , 0 I direct: 3 bits' 
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XOR Rd, #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

3 
3 
(Rd) <-- (Rd) (XOR) #data8 

1110\0110101011 
byte 3: #data8 

XOR Rd, #data16 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
3 
(Rd) <-- (Rd) (X OR) #data16 

111010\111101011 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

XOR [Rd], #data8 

Bytes: 
Clocks: 

3 
4 

I did Id \ d 1 0 \ 1 \1 11 1 

I d ld\dldlol 11111 1 

Operation: «WS:Rd» <-- «WS:Rd» (XOR) #data8 
Encoding: 

11 10101 110101 1 \ 01 10Idld\d\ 0\1\1\1 
byte 3: #data8 

XOR [Rd], #data16 

Bytes: 
Clocks: 

4 
4 

Operation: «WS:Rd» <-- «WS:Rd» (XOR) #data16 
Encoding: 

11 10101 111\ 01 11 01 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 
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XOR [Rd+], #data8 

Bytes: 
Clocks: 
Operation: 

Encoding: 

3 
5 
((WS:Rd)) <-'- ((WS:Rd)) (XOR) #data8 
(Rd) <-- (Rd) + 1 

111010111010111 
byte 3: #data8 

XOR [Rd+], #data16 

Bytes: 
Clocks: 
Operation: 

Encoding: 

4 
5 
((WS:Rd)) <-- ((WS:Rd)) (X OR) #data16 
(Rd) <-- (Rd) + 2 

1110101111101111 
byte 3: upper 8 bits of #data16 
byte 4: lower 8 bits of #data16 

XOR [Rd+offset8], #data8 

Bytes: 
Clocks: 
Operation: 
Encoding: 

4 
6 
((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (XOR) #data8 

1 1 

11101011101110101 1
01 dl dl dl 01 11 11 11 

byte 3: offset8 
byte 4: #data8 

XOR [Rd+offset8], #data16 

Bytes: 
Clocks: 

5 
6 

Operation: ((WS:Rd)+offset8) <-- ((WS:Rd)+offset8) (X OR) #data16 
Encoding: 

11101011111110101 10ldldidl011 1 1 

byte 3: offset8 
byte 4: upper 8 bits of #data16 
byte 5: lower 8 bits of #data16 
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XOR [Rd+offset16], #data8 

Bytes: 
Clocks: 

5 
6 

Operation: «WS:Rd)+offsetl6) <-- «WS:Rd)+offsetl6) (XOR) #data8 
Encoding: 

byte 3: upper 8 bits of offset 16 
byte 4: lower 8 bits of offset16 
byte 5: #data8 

XOR [Rd+offsetI6], #datal6 

Bytes: 
Clocks: 

6 
6 

Operation: «WS:Rd)+offsetl6) <-- «WS:Rd)+offsetl6) (X OR) #datal6 
Encoding: 

11101011111110111 
byte 3: upper 8 bits of offset I 6 
byte 4: lower 8 bits of offset 16 
byte 5: upper 8 bits of #datal6 
byte 6: lower 8 bits of #datal6 

XOR direct, #data8 

Bytes: 
Clocks: 

4 
4 

Operation: (direct) <-- (direct) (X OR) #data8 
Encoding: 

1110101110111101 
byte 3: lower 8 bits of direct 
byte 4: #data8 

XOR direct, #datal6 

Bytes: 
Clocks: 

5 
4 

Operation: (direct) <-- (direct) (XOR) #datal6 
Encoding: 

11 1 0 101 1 1 1 1 
byte 3: lower 8 bits of direct 
byte 4: upper 8 bits of #datal6 
byte 5: lower 8 bits of #datal6 
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6.6 Summary Of Illegal Operand Combinations On The XA 

All but one case are instructions that specify or imply 2 write operations to a single register file 
location within a single instruction. The other case is a possible corruption of the source register 
data by an auto-increment before it is read. These conditions are not detected by XA hardware. The 
instruction/operand combinations indicated should not be used when writing XA code. 

Instruction(s) affected Reason for illegal combination 

(anyop) Rx, [Rx+] Auto-increment plus explicit write 1 

mov [Rx+], [Rx+] Double auto-increment of one register 2 

(anyop) [Rx+], Rx Auto-increment write may corrupt the source register before it is read 3 

NORM Rx, Rx Result and shift count stored in the same register 4 

XCH Rx, Rx Double write of a single register 4 

(anyop) [Rx+], Ry Auto-increment plus indirect write to same register 5 

(anyop) [Rx+J, [Ry+J Auto-increment plus indirect write to same register 5 

(anyop) [Rx+], #data Auto-increment plus indirect write to same register 5 

XCH Rx, [Rx] Indirect write plus explicit write to the same register 6 

XCH Rx, direct Direct write plus explicit write to the same register 7 

POP R7 Stack pointer auto-increment plus explicit write to R7/SP 8 

NOTES: 
This addressing mode is illegal when the source and destination are the same register. This would cause 
both a data write and an auto-increment operation to the same register. 

2 This instruction is illegal when the source and destination pointer registers are the same register. This 
would cause two auto-increment operations to the same register. ' 

3 This instruction is illegal when the source and destination are the same register. The source register 
would be auto-incremented and read at the same time, with an undefined result. 

4 This instruction is illegal when the source and destination are the same register. This would cause two 
writes to the same register. 

5 This addressing mode is illegal when the indirect address of the destination points to the pointer register 
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would 
cause both a data write and an auto-increment operation to the same register. 

6 This instruction is illegal when the indirect address of the source operand points to the destination register 
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would 
cause two writes to the same register. . 

7 This instruction is illegal when the direct address of the source operand points to the destination register 
itself in the register file. This is possible only when 8051 compatibility mode is enabled. This would 
cause two writes to the same register. 

8 A POP to R7 (the stack pointer) would cause both a data write and an auto-increment operation to the 
same register. 
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7 External Bus 

Most XA derivatives have the capability of accessing external code and/or data memory through 
the use of an external bus. The external bus provides address information to external devices 
that are to be accessed, then generates a strobe for the required operation, with data passing in or 
out on the data bus. Typical bus operations are code read, data read, and data write. The standard 
XA external bus is designed to provide flexibility, simplicity of connection, and optimization for 
external code fetches. 

The following discussion is based on the standard version of the XA external bus. Some specific 
XA derivatives may have a different implementation of the external bus, or no external bus at all. 

7.1 External Bus Signals 
For flexibility, the standard XA external bus supports 8 or 16-bit data transfers and a user 
selectable number of address bits. The maximum number of address lines varies by derivative 
but may be up to 24. A standard set of bus control signals coordinates activity on the bus. These 
are described in the following sections. 

7.1.1 PSEN - Program Store Enable 

The program store enable signal is used to activate an external code memory, such as an 
EPROM. This active low signal is typically connected to the Output Enable (OE) pin of an 
external EPROM. PSEN remains high when a code read is not in progress. 

7.1.2 RD - Read 

The bus read signal is also active low. Activity of this signal indicates data read operations on 
the external bus. RD is typically connected to the pin of the same name on an external peripheral 
device. 

7.1.3 WRL - Write Low Byte 

WRL is the external bus data write strobe. It is typically connected to the WR pin of an external 
peripheral device. When the XA external bus is used in the 16-bit mode, this strobe applies only 
to the lower data byte, allowing byte writes on the 16-bit bus. The WRL signal is active low. 

7.1.4 WRH - Write High Byte 

For a 16-bit data bus, a signal similar to WRL, but for the upper data byte is needed. The active 
low signal WRH serves this purpose. 

7.1.5 ALE - Address Latch Enable 

Since a portion of the XA external bus is used for multiplexed address and data information, that 
part of the address must be latched outside of the XA so that it will remain constant during the 
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subsequent read or write operation. The active high ALE signal directs the external latch to 
allow information to be stored for a data address or a code address. The external latch must 
close and retain this address when the ALE signal ends, by going low (inactive). 

7.1.6 Address Lines 

Some of the address lines used by the external bus interface are driven during a complete bus 
operation and do not need to be latched. In the standard XA bus interface, the lower four address 
lines are always driven and unlatched in this manner. This is done specifically as part of the 
optimization of the bus for fetching instructions from external code memory at high speed. This 
feature will be explained in detail in a later section. 

7.1.7 Multiplexed Address and Data Lines 

The part of the bus that is used for data transfer is also used for address output from the XA. 
Prior to asserting the strobe for the bus operation about to be performed, the XA outputs the 
address for the operation. On the multiplexed portion of the bus, this address is captured by an 
external latch, as commanded by the ALE signal. After that is done, this part of the bus is free to 
be used for data transfer either into or out of the XA. The control signals PSEN, RD, WRL, and 
WRH determine what type of bus operation takes place. 

7.1.8 WAIT - Wait 

The WAIT input allows wait states to be inserted into any external bus operation. If WAIT is 
asserted (high) after a bus control strobe (PSEN, RD, WRL, or WRH) is driven by the XA, that 
bus operation is stretched, and that control strobe continues to be driven by the XA until WAIT 
goes low again. For this feature to be used, an external circuit must be present to generate the 
WAIT signal at the appropriate times. 

The XA has an internal bus configuration feature that allows programming the various types of 
external bus cycles to different lengths, so that in most applications the WAIT line will not be 
needed. This feature will be explained in detail in a later section. 

7.1.9 EA - External Access 

The EA input determines whether the XA operates in single-chip mode, or begins running code 
from the internal program memory after reset. If EA is low as Reset goes high, the first code 
fetch (and all others after that) is made off-chip. If EA is high as Reset goes high, the XA will 
execute the on-chip code first, but will still attempt to execute instructions from external 
memory at addresses above the limit of on-chip code. The level on the EA pin is latched as reset 
goes high, so whatever mode is selected remains valid until the next reset. 

On some XA derivatives, the pin used for the EA function may be shared with another function 
that becomes active after the XA begins code execution. 
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7.1.10 BUSW - Bus Width 

The external XA bus may be configured to be 8 or 16 bits in width. The XA allows the bus 
width to be programmed in 2 ways. In a system where instructions are initially fetched from on­
chip code memory, the user program can configure the external bus size (and many other 
aspects of the bus) prior to the bus actually being used. 

When the initial code fetches must be done using off-chip code memory, however, the XA must 
know the bus width before the first off-chip code fetch can begin. 

On some XA derivatives, the BUSW function may share a pin with some other function. In this 
case, the level on the BUSW pin is latched as Reset is released and that selection is kept until 
the next Reset. The secondary function on that pin will be active after Reset when the processor 
begins executing code normally. 

Unlike the EA function, the bus width set by the BUSW pin at reset may be over-ridden by a 
user program, making setting by use of the BUSW pin unnecessary in most systems. Settings in 
the Bus Configuration Register allow changing the bus size under program control. This feature 
is covered in more detail in the next section. 

7.2 Bus Configuration 
The standard XA external bus has a number of configuration options. In addition to the data bus 
width selection discussed previously, the number of address lines used for external accesses is 
programmable, as is the bus timing. 

7.2.1 a-Bit and 16-Bit Data Bus Widths 

The standard XA external bus allows both 8-bit and 16-bit bus widths. BUSW=O selects an 8-bit 
bus and BUSW=l selects a 16-bit bus. On power-up, the XA defaults to the 16-bit bus (due to 
an on-chip weak pull-up on BUSW). The bus width is determined by the value of the BUSW pin 
as Reset is released, unless a user program overrides that setting by writing to the Bus 
Configuration Register (BCR), shown in Figure? .1. 
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BCR 
1-

WAITD: 

BUSD: 

BC2 - BCO: 

XA User Guide 

1- 1- 1 WAITD BUSD BC2 BC1 BCQ 

WAIT disable. Causes the XA external bus interface to ignore the value on the 
WAIT input. This allows tying the WAIT input high for applications that use 
internal code and do not need the WAIT function. 

Bus disable. Causes XA external bus functions to be disabled permanently. 
The primary purpose of this is to allow prevention of inadvertent activation of 
the bus by an instruction pre-fetch when the XA is executing code near the end 
of the on-chip code memory. 

These bits select the XA external bus configuration, specifically the number of 
data bits and the number of address lines. The supported combinations are 
shown below. 

000 : 8-bit data bus, 12 address lines 
001 : 8-bit data bus, 16 address lines 
01 Q : 8-bit data bus, 20 address lines 
011 : 8-bit data bus, 24 address lines 
100 : < function reserved> 
101 : < function reserved> 
110 : 16-bit data bus, 20 address lines 
111 : 16-bit data bus, 24 address lines 

Reserved for possible future use. Programs should take care when writing to 
registers with reserved bits that those bits are given the value O. This will 
prevent accidental activation of any function those bits may acquire in future 
XA CPU implementations. 

Figure 7.1 Bus Configuration Register (BCR) 
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Figures 7.2 and 7.3 show the address and data functions present on XA bus related pins when 
used with each available bus width. 

XA 

A3-AO ..... 4 low order address lines, ..... always driven 

A4 - A11/ ......,. .... 8 multiplexed address 

DO - D7 ........ - and data lines 

A12 - A23 
... Up to 12 high order address 
..... lines, always driven 

Figure 7.2 a-Bit External Bus Configuration 

XA 

A3 - A1 .... 4 low order address lines, - always driven 

A4 - A19/ ...... ..... 16 multiplexed address 
DO - D15 - - and data lines 

A20 - A23 ..... Up to 4 high order address - lines, always driven 

Figure 7.3 16-Bit External Bus Configuration 

7.2.2 Typical External Device Connections 

Many possibilities exist for connecting and using external devices with the XA bus. The bus will 
support EPROMs, RAMs, and other memory devices, as well as peripheral devices such as 
UARTs, and parallel port expanders. The following diagrams show a generalized connection of 
devices for 8-bit and 16-bit XA bus modes. 
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-
ALE .. LE -

..c. 
u 

A4DO- ...... ..... ~ ..... 
A11D7 - - :t:::oo ...... A4 - A11 

-'?oo 
CX)~ 

8-bit "C 
"C peripheral as 

XA -
device 

..... 
DO- D7 ...... 

A3 - AO, ..... A3 - AO, 
(A12 - A19) I - (A12 - A19) 

Address .. CS decode -
WR .. WR }fordata -
RD ... RD device .. 

PSEN ... OE } for ~ode 
device 

Figure 7.4 Typical XA External Bus Connections for a-Bit Peripheral Devices 

Address 
decode 

r--- ~ ~ ALE ~- LE 
" " -

..c. CS CS u 
+-' 

A4DO- ...... ..... +-'~ .... 
A4 - A19 ........ A4 - A19 :Coo A19D15 - - I 00 ...... ...... 

~~ 
"C 8-bit 8-bit 

XA 
"C Device Device ~ 

(low byte) (high byte) 

..... 
DO - D7 ....... D8 - D15 - -.....--

A3 - A1 ..... 
A3 - A1 ......... A3 - A1 ...... ......... 

WRH ... 
WR} .. 

WRL ... WR} fo"la .. 
for data 

~ 

device 
RD .. RD device ... RD .. -

PSEN ... OE } for~ode ... OE } for~ode .. 
device - device 

Figure 7.5 Typical XA External Bus Connections for 16-Bit Peripheral Devices 
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7.3 Bus Timing and Sequences 
The standard XA external bus allows programming the widths of the bus control signals ALE, 
PSEN, WRL, WRH, and RD. There is also an option to extend the data hold time after a write· 
operation. The combinations available will allow interfacing most devices to the XA directly 
without the need for special buffers or a WAIT state generator. Note that there is always a "rest 
clock" after any type of bus cycle except part of a burst mode code read. That is, when a bus 
cycle is completed and the bus strobe de-asserted, no new bus cycle will be begun until one 
clock has passed with no bus activity. 

7.3.1 Code Memory 

Interfacing with external code memory, typically in the form of EPROMs, is enabled by the 
PSEN control signal. If the XA is configured to execute internal code memory at reset, by the 
setting of the EA pin, it will automatically begin to fetch external code if the program crosses 
the boundary from internal to external code space. The location of this boundary varies for 
different XA derivatives, depending on the size of the internal code memory for each part. 

Since the XA employs a pre-fetch queue in order to optimize instruction execution times, 
fetching of external instructions may begin before program execution actually crosses the on/off­
chip code memory boundary. If a branch or subroutine return is located near the end of on-chip 
code memory, the off-chip fetch would be unnecessary, and may in fact cause problems if the 
XA ports that implement the external bus are being used for other purposes. For this reason, the 
BUSD (bus disable) bit in the Bus Configuration Register (BCR) is provided to prevent the XA 
from using the external bus for code or data operations. 

Note also that external code read cycles may sometimes be aborted by the XA. This happens 
when a code pre-fetch is occurring on the bus and the XA must execute a branch. The 
instruction data from the code pre-fetch will not be needed, so the bus cycle will be terminated 
immediately. This may appear as an ALE with no subsequent PSEN strobe, or a PSEN strobe 
that is shorter than that specified by the bus timing registers. 

Code Read with ALE 
The classic operation of a multiplexed address and data bus involves the issuance of an address, 
along with its associated control signal, for every bus cycle. The XA uses the bus control signal 
ALE to indicate that an address is on the bus that must be latched through the following code or 
data operation. The following diagram shows a code memory fetch in a cycle using ALE. 

Burst Code Read (No ALE) 
The XA does not always require an ALE cycle for every code fetch. This feature is included 
specifically to improve performance when the XA executes code from external memory, while 
increasing the access time available for the external memory device. Because the lower four 
address lines of the external bus are always driven, not multiplexed, the XA can access up to 16 
bytes (or 8 words) of sequential code memory each time an ALE is issued. This type of fast 
sequential code read is called a burst read. Of course, any type of jump, branch, interrupt, or 
other change in sequential program flow will require an ALE in order to change the code fetch 
address in a non-sequential manner. Any data operation (read or write) on the XA external bus 
also requires an ALE cycle and will cause any subsequent external code fetch to begin with an 
ALE cycle also. 

3124/97 284 External Bus 



XTAL1 

Address bus =x 
Address/~ 
Databus~ 

, 
inst!uction data: X'-__ ~ ___ "-

, \'--__ ~I.,.----r--------.-

Note: the timing of this type of bus operation is user programmable. The timing shown 
here is generated by the Bus Timing Register setup: ALEW = 0, CRA 1/0 = 01. 

Figure 7.6 Typical External Code Read Using ALE 

The following diagram shows a typical sequential code fetch where no ALE is issued between 
code reads. Also note that thePSEN bus control signal does not toggle, but remains asserted 
throughout the burst code read 

XTAL1 

ALEJ\ , ~~------~--------~------~----~~-----
I 

Address bus ==X~--_----oJ~ X"-__ -r-__ ---.'~X'---_,..._---
Address/ 
Data bus 

\~----~--~--~-
Note: the timing of this type of bus operation is user programmable. The timing shown 
here is generated by the Bus Timing Register setup: ALEW = 0, CR1/0 = 01. 

Figure 7.7 Burst Mode (Sequential) External Code Read 
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7.3.2 Data Memory 

Reads and writes on the XA external bus are controlled through the use of the RD, WRL, and 
WRH signals. Since the XA bus supports both 8-bit and 16-bit widths, as well as byte and word 
read and write operations, several different versions of the basic bus cycles are possible. These 
are described in the following sections. 

Data memory, like code memory, has a boundary where the internal data memory ends, and 
above which the XA will switch to the external bus in order to act on data memory. This onloff­
chip data memory boundary may be in a different place for various XA derivatives, depending 
upon the amount of internal data memory built into a specific derivative. 

Typical Data Read 
A simple byte read on an 8-bit bus or any read on a 16-bit bus both begin with an ALE cycle, 
where the XA presents the address of the data location that is to be read on the bus. This is 
followed by the assertion of the RD strobe, that causes the external device to present its data on 
the bus. This process is shown in the diagram below. 
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XTAL1 

ALE~ 
, ~~------~~------~------~------~ 

Address bus ==>< 
Address/~ 
Oatabus~ 

~ X'--~----r-, , 

da~a in to XA ; X'-_---I ___ ---L-

Note: the timing of this type of bus operation is user programmable. The timing shown 
here is generated by the Bus Timing Register setup: ALEW = 0, ORA 1/0 = 01. 

Figure 7.8 Typical External Data Read 
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Word Read on an a-Bit Data Bus 
When the XA external bus is configured for an 8-bit data width, a word read operation is 
automatically performed as two byte reads at sequential addresses. Since the XA CPU requires 
word operations to be performed at even addresses, the second half of any word read on a byte­
wide bus always uses the same upper address latched by ALE. for this operation, the low order 
byte first is read at the even byte address. then the high order byte is read at the next (odd) 
address. So, only one ALE is required in this case. The diagram below shows this sequence. 

XTAL1 

ALE~~~ ______ ~ ______ ~ ______ ~ ______ ~ __ __ 

Address bus ==>< ____ e-ve-n-ad-d-r-es_s-__ --,J~ X odd ~ddress 

Addressl 
Data bus da~a in to XA I 

I 

\\...---------r----.------Jl 

Note: the timing of this type of bus operation is user programmable. The timing shown 
here is generated by the Bus Timing Register setup: ALEW = 0, DRA 110 = 01 , DR1 10 = 01. 

Figure 7.9 Word Read on a-Bit Data Bus 

Byte Read on a 16-Bit Data Bus 
When an instruction causes a read of one byte of data from the external bus, when it is 
configured for 16-bit width, a simple read operation is performed. This results in 16 bits of data 
being received by the XA, which uses only the byte that was requested by the program. There is 
no way to distinguish a byte read from a word read on the external bus when it is configured for 
a 16-bit widtho 

XA User Guide 287 3/24/97 



Typical Data Write 
A data write operation begins with an ALE cycle, like a read operation, followed by the 
assertion of one or both of the write strobes, WRL and WRH. This simple bus cycle applies to 
byte writes on an 8-bit data bus and all writes on a 16-bit data bus. 

A byte write on an 8-bit data bus will always use only the WRL strobe. A byte write on a 16-bit 
data bus will always use either the WRL or WRH strobe, depending on whether the byte is at an 
even or odd address. A word write on a 16-bit bus requires the assertion of both the WRL and 
WRH strobes. The simple data write cycle is shown below. 
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XTAL1 

ALEJ\ 
, ~~------~~------~------~------~ , 

Address bus J---_---_....JX'-----r---------.---------r 
, 

Address/ ~ data out X 
Data bus ~ from XA . 1...... __ --I-______ -.l... ______ ----L.. 

WRL and/or 
WRH 

Note: the timing of this type of bus operation is user programmable. The timing shown here 
is generated by the Bus Timing Register setup: ALEW = 0, DWA 1/0 = 00, WMO = 0, WM1 = O. 

Figure 7.10 Typical External Data Write 
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Word Write on an a-Bit Data Bus 
When a word write operation is done with the bus configured to an 8-bit width, the XA 
automatically performs two byte writes. First, the low order byte is written (at the even byte 
address), then the high order byte is written at the next (odd) address. As with a word read on an 
8-bit bus, this requires only a single ALE cycle at the beginning of the process. This sequence is 
shown in the following diagram. 

XTAL1 

Address bus ==>< 
Addressl 
Data bus 

even address ~,-__ o,....~d_ad_d_re_s_s_~ -L 
data out 
from XA 

data out 
from XA 

Note: the timing of this type of bus operation is user programmable. The timing shown here 
is generated by the Bus Timing Register setup: ALEW = 0, DWA1/0 = 00, DW1/0 = 00, 
WMO = 0, WM1 = O. 

Figure 7.11 Word Write on a-Bit Data Bus 
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External Bus Signal Timing Configuration 
The standard XA bus also provides a high degree of bus timing configurability. There are 
separate controls for ALE width, data read and write cycle lengths, and data hold time. These 
times are programmable in a range that will support most RAMs, ROMs, EPROMs, and 
peripheral devices over a wide range of oscillator frequencies without the need for additional 
external latches, buffers, or WAIT state generators. 

Programmable bus timing is controlled by settings found in the BusTiming Register SFRs, 
named BTRH, and BTRL, shown in Figures 7.12 and 7.13. 

BTRH DWl I DWO I DWAl I DWAO I DRl DRO DRA1 DRAO 

DW1, DWO: Data Write without ALE. Applies only to the second half of a 16-bit write operation when 
the bus is configured to 8 bits. 

00 : Data write cycle is 2 clock in duration. 
01 : Data write cycle is 3 clocks in duration. 
10 : Data write cycle is 4 clocks in duration. 
11 : Data write cycle is 5 clocks in duration. 

DWA 1, DWAO: Data Write with ALE. Selects the length (in CPU clocks) of the entire data write cycle, 
including ALE. 

00 : Data write cycle is 2 clocks in duration. 
01 : Data write cycle is 3 clocks in duration. 
10 : Data write cycle is 4 clocks in duration. 
11 : Data write cycle is 5 clocks in duration. 

DR1, DRO: Data Read without ALE. Applies only to the second half of a 16-bit read operation when 
the bus is configured to 8 bits. 

00 : Data read cycle is 1 clock in duration. 
01 : Data read cycle is 2 clocks in duration. 
10 : Data read cycle is 3 clocks in duration. 
11 : Data read cycle is 4 clocks in duration. 

DRA 1, DRAO: Data Read with ALE. Selects the length (in CPU clocks) of the entire data read cycle, 

Notes: 

including ALE. 
00 : Data read cycle is 2 clocks in duration. 
01 : Data read cycle is 3 clocks in duration. 
10 : Data read cycle is 4 clocks in duration. 
11 : Data read cycle is 5 clocks in duration. 

- See text regarding disallowed bus timing combinations. 
- The bit pairs DW1 :0, DWA1 :0, DR1 :0, DRA1 :0, CR1 :0, and CRA1:0 determine the length of entire 

bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without 
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst 
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time 
is completed (in the case of a data write with extra hold time, see bit WMO). 

Figure 7.12 Bus Timing Register High Byte (BTRH) 
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BTRL ~IW __ M_1 __ ~W_M_0 __ ~I_A_L_EW __ ~ ____ ~I_C_R_1 __ ~IC_R_0 __ ~I_C_RA_1 __ ~I_C_R_A_0~ 
WM1: 

WMO: 

ALEW: 

CR1, CRO: 

CRA1, CRAO: 

Notes: 

Write Mode 1. Selects the width of the write pulse. 
o : Write pulse (WR) width is 1 CPU clock. 
1 : Write pulse (WR) width is 2 CPU clocks. 

Write Mode O. Selects the data hold time. 
o : Data hold time is minimum (0 clocks). 
1 : Data hold time is 1 CPU clock. 

ALE width selection. Determines the duration of ALE pulses. 
o : ALE width is one half of one CPU clock. 
1 : ALE width is one and a half CPU clocks. 

Code Read. Selects the length of a code read cycle when ALE is not used. 
00 : Code read cycle is 1 clocks in duration. 
01 : Code read cycle is 2 clocks in duration. 
10 : Code read cycle is 3 clocks in duration. 
11 : Code read cycle is 4 clocks in duration. 

Code Read with ALE. Selects the length of a code read cycle when ALE is used prior 
to PSEN being asserted. 

00 : Code read cycle is 2 clocks in duration. 
01 : Code read cycle is 3 clocks in duration. 
10 : Code read cycle is 4 clocks in duration. 
11 : Code read cycle is 5 clocks in duration. 

Reserved for possible future use. Programs should take care when writing to registers 
with reserved bits that those bits are given the value O. This will prevent accidental 
activation of any function those bits may acquire in future XA CPU implementations. 

- See text regarding disallowed bus timing combinations. 
- The bit pairs DW1 :0, DWA 1 :0, DR1 :0, DRA 1 :0, CR1 :0, and CRA 1:0 determine the length of entire 

bus cycles of different types. Bus cycles with an ALE begin when ALE is asserted. Bus cycles without 
an ALE begin when the bus strobe is asserted or when the address changes (in the case of burst 
mode code reads). Bus cycles end either when the bus strobe is de-asserted or when data hold time 
is completed (in the case of a data write with extra hold time, see bit WMO). 

Figure 7.13 Bus Timing Register Low Byte (BTRL) 
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Disallowed Bus Timing Configurations 
Some possible combinations of bus timing register settings do not make sense and the XA 
cannot produce working bus signals that match those settings. The disallowed combinations 
occur where the sum of the specified components of a bus cycle exceed the specified length of 
the entire cycle. Two simple rules define the allowed/disallowed combinations. Violating these 
rules may result in incomplete bus cycles, for example a data read cycle in which an address and 
ALE pulse are output, but no read strobe (RD) is produced. 

For data write cycles on the external bus there are two conditions that must be met. The first 
applies to data write cycles with no ALE: 

WMI + WMO ~ DWI:O 

This says that the sum of the values associated with the WM I and WMO fields must be less than 
or equal to the value of the DW field. Note that this is the value of the timing durations that they 
specify. For example, if the WM I field specifies a 2 clock write pulse and the WMO field 
specifies a I clock data hold time, those two times together (3 clocks) must be less than or equal 
to the value specified by the DWI:O field. In this case the DWI:O field must specify a total bus 
cycle duration of at least 3 clocks. The other rule uses the same structure, as follows. 

A second requirement applies to write cycles with ALE: 

ALEW + WMI + WMO ~ DW AI:O 

The configuration for data read has only one requirement, which applies to data read cycles with 
ALE: 

ALEW ~ DRAI:O + I 

The configuration for code read also has only one requirement, which applies to code read 
cycles with ALE: 

ALEW ~ CRA1:0 +1 

7.3.3 Reset Configuration 

Upon reset, at the time of power up or later, the XA bus is initially configured in certain ways. 
As previously discussed, the pins EA and BUSW select whether the XA will begin operation 
from internal code, and whether the bus will be 8-bits or 16-bits. 

The values for the programmable bus timing are also set to a default value at reset. All of the 
timing values are set to their maximum, providing the slowest bus cycles. This setting allows for 
the slowest external devices that may be sued with the XA without WAIT generation logic. The 
user program should set the bus timing to the correct values for the specific application in the 
system initialization code. Refer to the data sheet for a particular XA derivative for details of the 
values found in registers and SFRs after reset. 
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7.4 Ports 
I/O ports on any microcontroller provide a connection to the outside world. The capabilities of 
those I/O ports determine how easily the microcontroller can be interfaced to the various 
external devices that make up a complete application. The standard XA I/O ports provide a high 
degree of versatility through the use of programmable output modes and allow easy connection 
to a wide variety of hardware. 

7.4.1 1/0 Port Access 

The standard on-chip I/O ports of the XA are accessed as SFRs. The SFR names used for these 
ports begin with port 0, called PO. Port numbers and names go up in sequence from there, to the 
number of ports on a specific XA derivative. Ports are normally identified by their names in 
assembler source code, such as: "MOV Pl,#O". This instruction causes the value 0 to be written 
to port 1. 

XA 1/0 ports are typically bit addressable, meaning that individual port bits are readable, 
writable, and testable. An instruction using a port bit looks like this: "SETB P2.1 ". This 
particular example would result in the second lowest bit in port 2 (bit 1) having a 1 written to it. 

Reading of a Port Pin Versus the Port latch 
Each I/O port has two important logic values associated with it. The first is the contents of the 
port latch. When data is written to a port, it is stored in the port latch. The second value is the 
logic level of the actual port pin, which may be different than the port latch value, especially if a 
port pin is being used as an input. 

When a port is explicitly read by an instruction, the value returned is that from the pin. When a 
port is read intrinsically, in order to perform some operation and store the value back to the port, 
the port latch is read. This type of operation is called a read-modify-write. 

1) The following instructions cause read-modify­
write operations, and read the port latch when a 
port or port bit is specified as the destination: 

ADD Px, ... 
ADDC Px, ... 
ADDS Px, ... 
AND Px, ... 
DJNZ Px, ... 
OR Px, ... 
SUB Px, ... 
SUBB Px, ... 
XOR Px, ... 

CLR Px.y 
JBC PX.y, rel8 
MOV PX.y, C 
SETB Px.y 

2) The following instruction reads the 
port pins when a port is specified as 
the destination operand: 

CMP Px, ... 

3) When a port or port bit is specif~ed 
as a source in any instruction, the port 
pin is always read. 

Figure 7.14 How ports are read. 
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7.4.2 Port Output Configurations 

Standard XA 110 ports provide several different output configurations. One is the 80CS1 type 
quasi-bidirectional port output. Others are open drain, push-pull, and high impedance (input 
only). It is important to note that the port configuration applies to a pin even if that pin is part of 
the external bus. Bus pins should normally be configured to push-pull mode. Also, the port 
latches for pins that are to be used as part of the external bus must be set to one (which is the 
reset state). A zero in a port latch will override bus operations and force a zero on the 
corresponding bus position. 

The port configuration is controlled by settings in two SFRs for each port. One bit in each port 
configuration register is associated with a port pin in the corresponding bit position. These port 
configuration SFRs are called: PnCFGA and PnCFGB, where "n" is the port number. So, the 
configuration registers for port 1 are named P1CFGA and P1CFGB. The table below shows the 
port control bit combinations and the associated port output modes. 

Table 7.1 

PnCFGB PnCFGA Port Output Mode 

0 0 Open drain. 

0 1 Quasi-bidirectional (default). 

1 0 High impedance. 

1 1 Push-pull. 

7.4.3 Quasi-Bidirectional Output 

The default port output configuration for standard XA 110 ports is the quasi-bidirectional output 
that is common on the 80CS1 and most of its derivatives. This output type can be used as both 
an input and output without the need to reconfigure the port. This is possible because when the 
port outputs a logic high, it is weakly driven, allowing an external device to pull the pin low. 
When the pin is pulled low, it is driven strongly and able to sink a fairly large current. These 
features are somewhat similar to an open drain output except that there are three pullup 
transistors in the quasi -bidirectional output that serve different purposes. 

One of these pullups, called the "very weak" pullup, is turned on whenever the port latch for a 
particular pin contains a logic 1. The very weak pullup sources a very small current that will pull 
the pin high if it is left floating. 

A second pullup, called the "weak" pullup, is turned on when the port latch for its associated pin 
contains a logic 1 and the pin itself is a logic 1. This pullup provides the primary source current 
for a pin that is outputting a 1, and can drive several TTL loads. If a pin that has a logic 1 on it is 
pulled low by an external device, the weak pullup turns off, and only the very weak pullup 
remains on. In order to pull the pin low under these conditions, the external device has to sink 
enough current to overpower the weak pullup and pull the voltage on the port pin below its input 
threshold. 

3124/97 294 External Bus 



The third (and final) pullup is referred to as the "strong" pullup. This pullup is included to speed 
up low-to-high transitions on a port pin when the port latch changes from 0 to 1. When this 
occurs, the strong pullup turns on for a brief time, two CPU clocks, pulling the port pin high 
quickly, then turning off again. 

The quasi-bidirectional output structure normally provides a means to have mixed inputs and 
outputs on port pins without the need for special configurations. However, it has several 
drawbacks that can be problems in certain situations. For one thing, quasi-bidirectional outputs 
have a very small source current and are therefore not well suited to driving certain types of 
loads. They are especially unsuited to directly drive the bases of external NPN transistors, a 
common method of boosting the current of 110 pins. 

Also, since the weak pullup turns off when a port pin is actually low, and the strong pullup turns 
on only for a brief time, it is possible that under certain port loading conditions, the port pin will 
get "stuck" low and cannot be driven high. This tends to happen when an external device being 
driven by the port pin has some leakage to ground that is larger than the current supplied by the 
very weak pullup of the quasi-bidirectional port output. If there is also a fairly large capacitance 
on the pin, from a combination of the wiring itself and the pin capacitance of the device(s) 
connected to the pin, the strong pullup may not succeed in pulling the pin high enough while it 
is turned on. When the strong pull up is then turned off, the leakage of the external device pulls 
the pin low again, since only the very weak pullup is turned on at that point and the leakage is 
greater than the very weak pull up source current. These issues are the reason for enhancing the 
port configurations of the XA. 

A diagram of the quasi-bidirectional output structure is shown in the figure below. 

port latch 
data 

Vdd 

input 
data ~--oc 

Figure 7.15 Structure of the Quasi-Bidirectional Output Configuration 
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Open Drain Output 
Another port output configuration provided by the standard XA 110 ports is open drain. This 
configuration turns off all pull ups and only drives the pulldown transistor of the port driver 
when the port latch contains a logic O. To be used as a logic output, a port configured in this 
manner must have an external pullup, typically a resistor tied to V dd. The pulldown for this 
mode is the same as for the quasi-bidirectional mode. 

An advantage of the open drain output is that ismay be used to create wired AND logic. Several 
open drain outputs of various devices can be tied together, and anyone of them can drive the 
wire low, creating a logical AND function without using a logic gate. The figure below show the 
structure of the open drain output. 

port latch ._~ NI 
data --vv-I 

input 
data ~--o<. 

Figure 7.16 Structure of the Open Drain Output Configuration 

Push-Pull Output 
The push-pull output mode has the same pull down structure as both the open drain and the quasi­
bidirectional output modes, but provides a continuous strong pullup when the port latch contains 
a logic 1. This mode uses the same pullup as the strong pull up for the quasi-bidirectional mode. 
The push-pull mode may be used when more source current is needed from a port output. The 
output structure for this mode is shown below. 

3/24/97 

port latch 
data 

input 
data ~--o< 

Vdd 

Figure 7.17 Structure of the Push-Pull Output Configuration 
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High Impedance Output 
The final XA port output configuration is called high impedance mode. This mode simply turns 
all output drivers on a port pin off. Thus, the pin will not source or sink current and may be used 
effectively as an input-only pin with no internal drivers for an external device to overcome. 

7.4.4 Reset State and Initialization 

Upon chip reset, all of the port output configurations are set to quasi-bidirectional, and the port 
latches are written with all ones. The quasi-bidirectional output type is a good default at power­
up or reset because it does not source a large amount of current if it is driven by an external 
device, yet it does not allow the port pin to float. A floating input pin on a CMOS device can 
cause excess current to flow in the pin's input circuitry, and of course all port pins have input 
circuits in addition to outputs. 

7.4.5 Sharing of 1/0 Ports with On-Chip Peripherals 

Since XA on-chip peripheral devices share device pins with port functions, some care must be 
taken not to accidentally disable a desired pin function by inadvertently activating another 
function on the same pin. A peripheral that has an output on a pin will use the 110 port output 
configuration for that pin (quasi-bidirectional, open drain, push-pull, or high impedance). 

The method of sharing multiple functions on a single pin involves a logic AND of all of the 
functions on a pin. So, if a port latch contains a zero, it will drive that port pin low, and any 
peripheral output function on that pin is overridden. Conversely, an on-chip peripheral 
outputting a zero on a pin prevents the contents of the port latch from controlling the output 
level. It is usually not an issue to avoid turning on an alternate peripheral function on a pin 
accidentally, since most peripherals must be either explicitly turned on or activated by a write to 
one of their SFRs. It is more likely that a user program could erroneously write a zero to a port 
latch bit corresponding to a pin whose with a peripheral function that is being used and therefore 
disable that function. The simple rule to follow is: never write a zero to a port bit that is 
associated with an active on-chip peripheral, or that should only be used an input. 
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8 Special Function Register Bus 

The Special Function Register Bus or SFR Bus is the means by which all Special Function 
Registers are connected to the XA CPU so that they may be read and written by user programs. 
This includes all of the registers contained in peripherals such as Timers and UARTs, as well as 
some CPU registers such as the PSW. CPU registers communicate functionally with the CPU 
via direct connections, but read and write operations performed on them are routed through the 
SFR bus. 

The SFR bus provides a common interface for the addition of any new functions to the XA core, 
thus supplying the means for building a large and varied microcontroller derivative family. This 
is illustrated in Figure 8.1. 

XA CPU Core 

Figure 8.1. Example of peripheral functions connected to the XA SFR bus. 

8.1 Implementation and Possible Enhancements 

The SFR bus interface is itself not part of the XA CPU core, but a separate functional block. 
Since the SFR bus controller is a separate block, writes to SFRs may occur simultaneously with 
the beginning of execution of the next instruction. If the next instruction attempts to access the 
SFR bus while it is still busy, the instruction execution will stall until the SFR bus becomes 
available. SFR bus read and write clocks each take 2 CPU clocks to complete. However, the 
starting time of those 2 clocks has a one clock uncertainty, so the time from the SFR bus 
controller receiving a request until it is completed can be either 2 or 3 clocks. 
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The SFR bus implementation on initial XA derivatives is an 8-bit interface. This means that 
word reads and writes are not allowed. In the future, higher performance XA architecture 
implementations may expand the capabilities of the SFR bus by supporting 16-bit accesses. 

One enhancement to the SFR bus would be to have it divide 16-bit access requests into two 8-bit 
accesses. This leaves the actual SFR bus width at 8 bits, but allows a user program to act as if it 
was 16-bits. The highest performance alternative is a full 16-bit SFR bus. This would require 
extra hardware in the XA to implement, but may eventually become necessary on order to 
achieve very high performance with some future enhanced XA core implementation. 

8.2 Read-Modify-Write Lockout 

Some of the SFRs that are accessed via the SFR bus contain interrupt flags and other status bits 
that are set directly by the peripheral device. When a read-modify-write operation is done on 
such an SFR, there is a possibility that a peripheral write to a flag bit in the same SFR could 
occur in the middle of this process. A standard mechanism is defined for the XA to deal with 
such cases, which is called Read-Modify-Write lockout. A read- modify-write is defined as an 
operation where a particular SFR is read, altered and written during the execution of a single XA 
instruction. 

The instructions that fit this description are those that write to bits in SFRs and those that modify 
an entire SFR, except for the MOV instruction. This happens to be the same operations as those 
that read port latches rather than port pins as specified in Chapter 7, only the SFRs involved are 
different. 

The mechanism used throughout XA peripherals to avoid losing status flags during a read­
modify-write operation first involves detecting that such an operation is in progress. A signal 
from the CPU to the peripherals indicates such a condition. When a peripheral detects this, it 
prevents the CPU write to just those status flags that the peripheral has already updated since the 
beginning of the read-modify-write operation. This basically makes it look as if the peripheral 
flag update happened just after the read-modify-write operation completed, rather than during it. 
Once the read-modify-write operation is completed, a CPU write may affect all bits in these 
SFRs. 
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9 80C51 Compatibility 

Many architectural decisions and features were guided by the goal of 80CS1 compatibility when 
the XA core specification was written. The processor's memory configuration, memory 
addressing modes, instruction set, and many other things had to be taken into account. 

9.1 Compatibility Considerations 

Source code compatibility of the XA to the 80CS1 was chosen as a goal for many reasons. 
Complete compatibility with an existing processor is not possible if the new processor is to have 
substantially higher performance. 

The XA architecture makes use of a number of rules for 80CSI compatibility. An 80CSI to XA 
source code translator program is intended to be the means of providing compatibility between 
the architectures. For the translator software to be fairly simple, a one-to-one translation for all 
80CSI instructions is a major consideration. The XA instruction set includes many instructions 
that are more powerful than 80CS1 instructions and yet perform roughly the same function. 
80CSI instruction can therefore be translated into those XA instructions. When this is not the 
case, an 80CS1 instruction may be included in its original form in the XA. The XA memory map 
and memory addressing modes are also a superset of the 80CS1, making source code translation 
easy to accomplish. Other CPU features are made compatible to the extent that such is possible. 
In rare cases, when this compatibility could not be provided for some important reason, the 
changes were kept to the minimum while maintaining the XA goals of high performance and 
low cost. 

9.1.1 Compatibility Mode, Memory Map, and Addressing 

Specific XA registers are reserved for use as 80CS1 registers when translating code. The A 
register, the B register, and the data pointer all map to a pre-determined place in the XA register 
file (see figure 9.1). The accumulator (A) is the only one of these that required special hardware 
support in the XA, because the accumulator can be read or tested directly by certain instructions 
and in order to generate the parity flag. 

The 4 banks of 8 byte registers that are found in the 80CSI are duplicated in the XA. The only 
difference is that in the XA, these registers do not normally overlap the lower 32 bytes of data 
memory space as they do in the 80CSI. To allow code translation, a special 80CSI compatibility 
mode causes the XA register file to copy the 80CSI mapping to data memory. This mode is 
activated by the CM bit in the System Configuration Register (SCR). 
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Figure 9.1. XA Register File 
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Other important registers of the 80C5l are provided in other ways. The program status word 
(PSW) of the XA is slightly different than the 80C5l PSW, so a special SFR address is reserved 
to provide an 80C5l compatible "view" of the PSW for use by translated code. This alternate 
PSW, called PSW5l, is shown in the figure 9-.2. The FO flag and the Fl flag are simply readable 

PSW51 I C : AC : FO : RS1: RSO: OV: F1 P 

Figure 9.2. PSW CPU status flags 

and writable bits. The P flag provides an even parity bit for the 80C5l A register and always 
reflects the current contents of that register. Note that the P flag, the FO flag, and the Fl flag 
only appear in the PSW5l register. 

The 80C5l indirect data memory access mode, using RO or R 1 as pointers, requires special 
support on the XA, where pointers are normally 16 bits in length. The 80C5l compatibility 
mode also causes the XA to mimic the 80C5l indirect scheme, using the first two bytes of the 
register file as indirect pointers, each zero extended to make a l6-bit address. Due to this and the 
previously mentioned register overlap to memory feature, the compatibility mode must be 
turned on in order to execute most translated 80C5l code on the XA. Other than the two 
aforementioned effects, nothing else about XA functioning is affected by the compatibility mode. 
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The 80CSl mapped the special function registers (SFRs) into the direct address space, from 
address 80 hex to FF hex. SFRs were only accessed by instruction that contain the entire SFR 
address, so translation to the XA is fairly simple. Since references to SFRs are normally done by 
their name in 80CSl source code, the translation just copies the name into the XA code output. 
If an SFR happened to be referred.to by its address, its name must be found so that it can be 
inserted into the XA code. This would require that an SFR table be available for the 80CSl 
derivative for which the code was originally written. 

The XA has another mode which may be useful for translated 80CSI code. In order to save 
stack space as well as speed up execution, a Page Zero (PZ) mode causes return addresses on the 
stack to be saved as 16 bits only, instead of the usual 24 bits (which occupy 32 bits due to word 
alignment on the XA stack). All other program and data addresses are also forced to be 16-bits. 
If an entire 80CSI application program i~ translated to the XA, it will very likely fit within this 
64 K limit, allowing the use of this mode. 

Other aspects of the processor stack have been altered on the XA. For one, the standard 
direction of stack growth for 16 bit processors has been adopted. So, the XA stack grows 
downward, from higher to lower addresses in data memory. The stack can now be nearly 64K in 
size if necessary, and begin anywhere in its data segment so may be easily moved to a new 
location for translated 80CSl applications. This stack direction change is important to match the 
stack contents to normal data memory accesses on the XA. 

80CSl code translated to run on the XA will also tend to use more stack space for two reasons. 
First, the PSW is automatically saved during interrupt and exception processing on the XA. The 
original 80CSI code should have also saved the PSW explicitly, but the XA PSW is 16 bits in 
length. Secondly, the initial implementation of the XA allows only word writes to the stack. 
Both byte and word operations may be performed, but both types of operations use 16 bits of 
stack space. 

The tendency for stack size increase, in addition to the stack growth direction will require some 
changes to be made if a complete 80CSl application program is translated to run on the XA. 

9.1.2 Interrupt and Exception Processing 

Interrupt handling on the XA is .inherently much more powerful than it was on the 80CSl. Along 
with this added power and flexibility comes some difference that must be taken into account for 
80CSI code conversion. 

Previously noted was the fact that the XA automatically saves the PSW during interrupt 
processing. If an 80CSI program relied on this not being the case somehow, it would not work 
without alteration. This type of reliance is not found in code using common programming 
practices and should be very rare. 

The XA allows up to 15 interrupt priority levels, compared to only 2 in the standard 80CS1, 
although up to 4 levels are available in a few of the newer 80CSI variations. These priorities are 
stored as 4-bit values, with the priority for 2 interrupts found in the same SFR byte. This is 
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different (and much more powerful) than any 80C51 derivative, and will require minor changes 
to code that is translatedo 

The method of entering an interrupt routine in the XA uses a vector table stored in low addresses 
of the code memory. Each interrupt or exception source has a vector which consists of the 
address of the handler routine for that event and a new PSW value that is loaded when the vector 
is taken. This differs from the 80C51 approach of fixed addresses for the interrupt service 
routines, and again is a much more flexible and powerful method. So, if a complete 80C51 
application program is converted for the XA, the interrupt service routines must be re-Iocated 
above the XA vector table and the new address stored in the table, a very simple process. 

9.1.3 On-Chip Peripherals 

Compatibility with standard on-chip peripherals found in the 80C51 has been kept in the XA 
whenever possible and reasonable, but not to the extent that some enhancements are not made. 
The set of standard peripheral devices includes the UART, Timers a and 1, and Timer 2 from 
the 80C52. 

The XA UART has been enhanced in a way that does not affect translated 80C51 code. Some 
additional features are added through the use of a new SFR, such as framing error detection, 
overrun detection, and break detection. 

Timers a and 1 remain the same except for one difference in the function, and a difference in 
timing. The functional change was to remove the 8048 timer mode (mode 0) and replace it with 
something much more useful: a 16-bit auto-reload mode. Sixteen bit reload registers (formed by 
RTHn and RTLn) had to be added!\) Timers a and 1 to support the new mode O. In mode 2, 
RTLn also replaces THn as the 8-bit reload register. 

The relationship of all timer count rates to the microcontroller oscillator has also been changed. 
This adds flexibility since this is now a programmable feature, allowing oscillator divided by 4, 
16, or 64 to be used as the base count rate for all of the timers. Since XA performance is much 
higher (on a clock-by clock basis), an application converted to theXA from the 80C51 would 
likely not use the same oscillator frequency anyway. 

9.1.4 Bus Interface 

The customary 80C51 bus control signals are all found on the standard external XA bus. To 
provide the best performance, the details of some of these signals have changed somewhat, and 
a few new ones have been added. In addition to the well known ALE, PSEN, RD, WR, and EA, 
there are now also WAIT andWRH. The WAIT signal causes wait states to be inserted into any 
XA bus clock as long as it is asserted. The WRH signal is used to distinguish writes to the high 
order byte when the XA bus is configured to be 16 bits wide. 

The multiplexed address/data bus has undergone some renovations on the XA as well. To get 
the most performance in a system executing code from the external bus, the XA separates the 4 
least significant address lines on to their own pins. Since these lines normally change the most 
often, an ALE clock would be required on every external code fetch if these lines were 
multiplexed as they are on the 80C51. The 80C51 had time to do this since its performance was 

XA User Guide 303 3/24/97 



not that high. The XA, however, uses only as many clocks as are needed to execute each 
instruction, so an ALE for every fetch would slow things down considerably. With this change, 
up to 16 bytes (or 8 words) of code may be accessed without the need to insert an ALE cycle on 
the XA bus. 

The number of XA clocks used for each type of bus cycle (code read, data read, or data write) 
can also be programmed, so that slower peripheral devices can work with the XA without the 
need for an external WAIT state generator. 

Due to the various changes to the bus just mentioned, an XA device cannot be completely pin 
compatible with an 80CS1 derivative if the external bus is used. The changes to application 
hardware needed are relatively small and easy to make. 

9.1.5 Instruction Set 

The simplest goal of the XA for instruction set compatibility was to have every 80CS1 
instruction translate to one XA instruction. That has been achieved but for a single exception. 
Tl,le 80CS1 instruction, XCHD or exchange digits, cannot be translated in that manner. XCHD is 
an instruction that is rarely used on the 80CS1 and could not be implemented on the XA, due to 
its internal architecture, without adding a great deal of extra circuitry. So, if this instruction lli 
encountered when 80CS1 source code is being translated, a sequence of XA instructions is used 
to duplicate the function: 

PUSH 
MOV 
RR 
RR 
RL 

MOV 
POP 

R4H 
'R4H,(Ri) 
R4H,#4 
R4L,#4 
R4,#4 

(Ri),R4H 
R4H 

; Save temporary register. 
; Get second operand. 
; Swap one byte. 
; Swap second byte (theIlAUregister). 
; Swap word, 
; Result is swapped nibbles in A and R4H. 
; Store result. 
; Restore temporary register. 

If the application requires this sequence to not be interruptible, some additional instruction must 
be added in order to disable and re-enable interrupts. The table at the end of this section shows 
all of the other XA code replacements for 80CS1 instructions. 

The XA instruction set is much more powerful than the 80CS1 instruction set, and as a direct 
consequence, the average number of bytes in an instruction is higher on the XA. In code written 
for the XA, the capability of a single instruction is high, so the size of an entire XA program·will 
normally be smaller than the same program written for an 80CS1. Of course, this depends on . 
how much the application can take advantage of XA features. When code is translated from 
80CS1 source, however, the size change can be an issue. 

In the case of a jump table, where the JMP @ A+DPTR instruction is used to jump into a table of 
other jumps composed of the 80CS1 AJMP instruction, the XA cannot always duplicate the 
function of the jumps in the table with instructions that are 2 bytes in length, as in the case of the 
AJMP instruction. An adjustment to the calculation of the table index will be required to make 
the translated code work properly. For a data table, accessed using MOVC @A+PC, the distance 
to the table may change, requiring a similar index adjustment. 
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Since the XA optimizes the timing of each instruction, there will be very little correspondence to 
the original 80C51 timing for the same code prior to translation to the XA. If the exact timing of 
a sequence of instructions is important to the application, the translated code must be altered, 
perhaps by adding NOPs or delay loops, to provide the necessary timing. 

To show how a simple 80CS1 to XA source code translator might work, a subroutine was 
extracted from a working 80C51 program and translated using the table at the end of this 
document and the other rules presented here. The original 80CS1 source code was: 

;StepCal - Calculates a trip point value for motor movement based on 
; a percent of pointer full scale (0 - 1000/0). 
; Call with target value in A. Returns result in A and IIStepResult". 

StepCal: MOV Temp2,A ; Save step target for later use. 
MOV B,#Steplow ; Get low byte of step increment. 
MUL AB ; Multiply this by the step target. 
MOV StepResult,B ; Save high byte as partial result 
MOV Temp1,A ; Save low byte to use for rounding. 

MOV A,Temp2 ; Get back the step target. 
MOV B,#StepHigh ; Get high byte of step increment, 
MUL AB ; and multiply the two. 

ADD A,StepResult ; Add the two partial results. 
JNB Temp1.7,Exit ; Least significant byte> BOh? 
INC A ; If so, round up the final result. 

Exit: ADD A,#MotorBot ; Add in the 0 step displacement. 
MOV StepResult,A ; Save final step target. 
RET 

The same code as translated for the XA is as follows: 

;StepCal - Calculates a trip point value for motor movement based on 
; a percent of pointer full scale (0 - 1000/0). 
; Call with target value in A. Returns result in A and IIStepResult". 

StepCal: MOV 
MOV 
MULU.b 
MOV 
MOV 

Temp2,R4L ; Save step target for later use. 
R4H,#Steplow ; Get low byte of step increment. 
R4,R4H ; Multiply this by the step target. 
StepResult,R4H ; Save high byte as partial result. 
Temp1,R4L ; Save low byte to use for rounding. 

MOV R4L,Temp2 ; Get back the step target. 

Exit: 

MOV R4H,#StepHigh; Get high byte of step increment, 
MULU.b R4,R4H ; and multiply the two. 

ADD 
JNB 
ADDS 
ADD 
MOV 
RET 

R4L,StepResult ; Add the two partial results. 
Temp1.7,Exit ; Least significant byte> BOh? 
R4L,#1 ; If so, round up the final result. 
R4L,#MotorBot ; Add in the 0 step displacement. 
StepResult,R4 ; Save final step target. 
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In this case, the translated code actually changed very little. Primarily, the 80C51 register names 
have been replaced by the new ones reserved for them in the XA. The increment (INC) 
instruction became a short add (ADDS), and the mnemonic for multiply (MUL) changed to 
MULU8. 

Some basic statistical information about these code samples may be found in table 9.1. These 
statistics show a large performance increase for the XA code. This is significant because the 
code is only simple translated 80C5! code and therefore does not take any advantage of the 
XA's unique features. 

Table 9.1: 80C51 to XA Code Translation Statistics 

Statistic 
80C51 XA 

Comments 
code translation 

Code bytes 28 40 - one NOP added for branch 
alignment on XA 

Clocks to execute 300 78 - includes XA pre-fetch queue 
analysis, raw execution is 66 
clocks 

Time to execute 15 Jlsec 3.9 Jlsec - a nearly 4x improvement 
@ 20MHz without any optimization 
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9.2 Code Translation 
Table 9.2 shows every 80C51 instruction type and the XA instruction that replaces it. An actual 
80C51 to XA source code translator can make use of this table, but must also flag the 
compatibility exceptions noted in this section, so that any necessary adjustments may be made to 
the resulting XA source code. 

Table 9.2: 80C51 to XA Instruction Translations 

80C51 Instruction XA Translation 

Arithmetic operations 

ADD A,Rn ADD.b R,R 
ADD A, #data8 ADD.b R, #data8 
ADD A,dir8 ADD.b R, direct 
ADD A, @Ri ADD.b R, [R] 
ADDC A, Rn ADDC.bR, R 
ADDC A, #data8 ADDC.bR, #data8 
ADDC A,dir8 ADDC.bR, direct 
ADDC A, @Ri ADDC.bR, [R] 

SUBB A,Rn SUBB.bR, R 
SUBB A, #data8 SUBB.b R, #data8 
SUBB A, dir8 SUBB.b R, direct 
SUBB A, @Ri SUBB.b R, [R] 

INC Rn ADDS.bR, #1 
INC dir8 ADDS.bdirect, #1 
INC @Ri ADDS.b[R], #1 
INC A ADDS.bR, #1 
INC DPTR ADDS.wR, #1 

DEC Rn ADDS.bR, #-1 
DEC dir8 ADDS.bdirect, #-1 
DEC @Ri ADDS.b[R], #-1 
DEC A ADDS.bR, #-1 

MUL AB MULU.bR, R 
DIV AB DIVU.b R, R 
DA A DA R 
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Table 9.2: 80C51 to XA Instruction Translations 

80C51 Instruction XA Translation 

Logical operations 

ANL A,Rn AND.b R,R 
ANL A, #data8 AND.b R, #data8 
ANL A, dir8 AND.b R, direct 
ANL A, @Ri AND.b R, [R] 
ANL dir8, A AND.b direct, R 
ANL dir8, #data8 AND.b direct, #data8 

ORL A,Rn OR.b R,R 
ORL A, #data8 OR.b R, #data8 
ORL A, dir8 OR.b R, direct 
ORL A, @Ri OR.b R, [R] 
ORL dir8, A OR.b direct, R 
ORL dir8, #data8 OR.b direct, #data8 

XRL A,Rn XOR.b R, R 
XRL A, #data8 XOR.b R, #data8 
XRL A, dir8 XOR.b R, direct 
XRL A, @Ri XOR.b R, [R] 
XRL dir8, A XOR.b direct, R 
XRL dir8, #data8 XOR.b direct, #data8 

CLR A MOVS R, #0 
CPL A CPL.b R 
SWAP A RL.b R,#4 

RL A RL.b R, #1 
RLC A RLC.b R, #1 
RR A RR.b R, #1 
RRC A RRC.b R, #1 

CLR C CLR bit 
CLR bit CLR bit 
SETS C SETB bit 
SETB bit SETB bit 
CPL C XOR.b PSWL, #data8 
CPL bit XOR.b direct, #data8 
ANL C, bit AND C, bit 
ANL C,/bit AND C,/bit 
ORL C, bit OR C, bit 
ORL C,/bit OR C,/bit 
MOV C, bit MOV C, bit 
MOV bit, C MOV bit, C 
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Table 9.2: 80C51 to XA Instruction Translations 

80C51 Instruction XA Translation 

Data transfer 

MOV A,Rn MOV.b R, R 
MOV A, #dataB MOV.b R, #dataB 
MOV A, dirB MOV.b R, direct 
MOV A,@Ri MOV.b R, [R] 
MOV Rn,A MOV.b R, R 
MOV Rn, #dataB MOV.b R, #dataB 
MOV Rn, dirB MOV.b R, direct 
MOV dirB, A MOV.b direct, R 
MOV dirB, #dataB MOV.b direct, #dataB 
MOV dirB, Rn MOV.b direct, R 
MOV dirB, dirB MOV.b direct, direct 
MOV dirB, @Ri MOV.b direct, [R] 
MOV @Ri,A MOV.b [Rl, R 
MOV @Ri, dirB MOV.b [Rl, direct 
MOV @Ri, #dataB MOV.b [R], #dataB 
MOV DPTR, #data 16 MOV.w R, #data16 

XCH A,Rn XCH.b R, R 
XCH A, dirB XCH.b R, direct 
XCH A, @Ri XCH.b R, R 
XCHD A, @Ri a sequence (see text) 

PUSH dirB PUSH.bdirect 
POP dirB POP.b direct 

MOVX A, @Ri MOVX.bR, [R] 
MOVX A, @ DPTR MOVX.bR, [R] 
MOVX @Ri,A MOVX.b[R], R 
MOVX @DPTR, A MOVX.b[R], R 

MOVC A, @A+DPTR MOVC.bA, [A+DPTR] 
MOVC A, @A+PC MOVC.bA, [A+PC] 
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Table 9.2: BOC51 to XA Instruction Translations 

BOC51 Instruction XA Translation 

Relative branches 

SJMP rel8 BR rel8 

CJNE A, dir8, rei CJNE.b R, direct, rei 
CJNE A, #data8, rei CJNE.b R, #data8, rei 
CJNE Rn, #data8, rei CJNE.b R, #data8, rei 
CJNE @Ri, #data8, rei CJNE.b [R], #data8, r~1 

DJNZ Rn, rei DJNZ.b R, rei 
DJNZ dir8, rei DJNZ.b direct, rei 

JZ rei JZ rei 
JNZ rei JNZ rei 
JC rei BCS rei 
JNC rei BCC rei 

Jumps, Calls, Returns, 
and Misc. 

NOP NOP 

AJMP addr11 JMP rel16 
LJMP addr16 JMP rel16 
JMP @A+DPTR JUMP [A+DPTR] 

ACALL addr11 CALL rel16 
LCALL addr16 CALL rel16 

RET RET 
RETI RETI 

9.3 New Instructions on the XA 

While the XA instructions that are similar to 80C51 instructions have a larger addressing range, 
more status flags, etc~, the XA also has many entirely new instructions and addressing modes 
that make writing new code for the XA much easier and more efficient. The new addressing 
modes also make the XA work very well with high level language compilers. A complete list of 
the new XA instructions and addressing modes is shown in Table 9.3. 
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Table 9.3: Instructions and addressing modes new to the XA 

New Instructions and Addressing Modes 

alu.w a •• , ••• All of the 80C51 arithmetic and logic instructions 
with a 16-bit data size. 

SUBB R, ... Subtract (without borrow), all addressing modes. 

alu [R], R Arithmetic and logic operations (ADD, ADDC, 
SUB, SUBB, CMPAND, OR, XOR, and MOV) 
from a register to an indirect address. 

alu R, [R+] Arithmetic and logic operations from an indirect 
address to a register, with the indirect pointer 
automatically incremented. 

alu R,[R+offset8/16] Arith/Logic operations from an indirect offset 
address (with 8 or 16-bit offset) to a register. 

alu direct, R The 80C51 has only MOV direct, R. 

alu [R], R The 80C51 has only MOV [R], R. 

alu [R+], R Arith/Logic operations from a register to an 
indirect address, with the indirect pointer 
automatically incremented. 

alu [R+offset8/16], R Arith/Logic operations from a register to an 
indirect offset address (with 8 or 16-bit offset). 

alu direct, #data8/16 Arith/Logic operations to a direct address with 8 
or 16-bit immediate data. 

alu [R], #data8/16 Arith/Logic operations to an indirect address with 
8 or 16-bit immediate data. 

alu [R+], #data8/16 Arith/Logic operations to an indirect address with 
8 or 16-bit immediate data with the indirect 
pointer automatically incremented. 

alu [R+offset8/16], #data8/16 Arith/Logic operations to an indirect offset 
address (with 8 or 16-bit offset), with 8 or 16-bit 
immediate data. 

MOV direct, [R] Move data from an indirect to a direct address. 

ADDS R, #data4 The 80C51 can only increment or decrement a 
register by 1. ADDS has a range of +7 to -8. 

ADDS [R], #data4 Add a short value to an indirect address. 
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Table 9.3: Instructions and addressing modes new to the XA 

New Instructions and Addressing Modes 

ADDS [R+], #data4 Add a short value to an indirect offset address, 
with the indirect pointer automatically 
incremented. 

ADDS [R+offset8/16], #data4 Add a short value to an indirect offset address 
(with 8 or 16-bit offset). 

ADDS direct, #data4 Add a short value to a direct address. 

MOVS ... , #data4 Move short data to destination using any of the 
same addressing modes as ADDS. 

ASL R,R Arithmetic shift left a byte, word, or double word, 
up to 31 places, shift count read from register. 

ASR R,R Arithmetic shift right a byte, word, or double word, 
up to 31 places, shift count read from register. 

LSR R,R Logical shift right a byte, word, or double word, 
up to 31 places, shift count read from register. 

ASL R, #DATA4/5 Arithmetic shift left a byte, word, or double word, 
up to 31 places, shift count read from instruction. 

ASR R, #DATA4/5 Arithmetic shift right a byte, word, or double word, 
up to 31 places, shift count read from instruction. 

LSR R, #DATA4/5 Logical shift right a byte, word, or double word, 
up to 31 places, shift count read from instruction. 

DIV R,R Signed divide of 32 bits register by 16 bit register, 
or 16 bit register by 8 bit register. 

DIVU R,R Unsigned divide of 32 bit register by 16 bit 
register, or 16 bit register by 8 bit register. 

MUL R,R Signed multiply of 16 bit register by 16 bit 
register, or 8 bit register by 8 bit register. 

MULU R,R Unsigned multiply of 16 bit register by 16 bit 
register. 

DIV R, #data8/16 Signed divide of 32 bits register by 16 bit 
immediate, or 16 bit register by 8 bit immediate. 

DIVU R, #data8/16 Unsigned divide of 32 bit register by 16 bit 
immediate, or 16 bit register by 8 bit immediate. 

MUL R, #data8/16 Signed multiply of 16 bit register by 16 bit 
immediate, or 8 bit register by 8 bit immediate. 
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Table 9.3: Instructions and addressing modes new to the XA 

New Instructions and Addressing Modes 

MULU R, #data8/16 Unsigned multiply of 16 bit register by 16 bit 
immediate, or 8 bit register by 8 bit immediate. 

LEA R, R+offset8/16 Load effective address, duplicates the offset8 or 
16-bit addressing mode calculation but saves the 
address in a register. 

NEG R Negate, performs a twos complement operation 
on a register. 

SEXT R Sign extend, copies the sign flag from the last 
operation into an 8 or 16-bit register. 

NORM R, R Normalize. Shifts a byte, word, or double word 
register left until the MSB becomes a 1. The 
number of shifts used is stored in a register. 

RL, RR, RLC, RRC R,#data4 All of the 80C51 rotate modes with 16-bit data 
size and a variable number of bit positions (up to 
15 places). 

MOV [R+], [R+] Block move. Move data from an indirect address 
to another indirect address, incrementing both 
pointers, 

MOV R, USP and USP, R Allows system code to move a value to or from 
the user stack pointer. Handy in multi-tasking 
applications. 

MOVC R, [R+] Move data from an indirect address in the code 
space to a register, with the indirect pOinter 
automatically incremented. 

PUSH and POP Rlist PUSH and POP up to 8 word registers in one 
instruction, 

PUSHU and POPU Rlist or direct Allows system code to write to or read the user 
stack. Handy in multi-tasking applications. 

conditional branches A complete set of conditional branches, including 
BEQ, BNE, BG, BGE, BGT, BL, BLE, BMI, BPL, 
BNV, and BOV. 

CALL [R] Call indirect, to an address contained in a 
register. 

CALL rel16 Call anywhere in a +/- 64K range. 
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Table 9.3: Instrlictions and addressing modes new to the XA 

New Instructions and Addressing Modes 

FCALL addr24 Far call, anywhere within the XA 16Mbyte code 
address space. 

JMP [R] Jump indirect, to an address contained in a 
register. 

JMP rel16 Jump anywhere in a +/- 64K range. 

FJMP addr24 Far jump, anywhere within the XA 16Mbyte code 
address space. 

JMP [[R+]] Jump double indirect with auto-increment. Used 
to branch to a sequence of addresses contained 
in a table. 

BKPT Breakpoint, a debugging feature. 

'RESET Allows software to completely reset the XA in one 
instruction. 

TRAP #data4 Call one of up to 16 system services. Acts like an 
immediate interrupt. 
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Philips Semiconductors Preliminary specification 

CMOS single-chip 16-bit microcontroller XA-G1 

FAMILY DESCRIPTION 
The Philips Semiconductors XA (eXtended Architecture) family of 
16-bit single-chip microcontrollers is powerful enough to easily 
handle the requirements of high performance embedded 
applications, yet inexpensive enough to compete in the market for 
high-volume, low-cost applications. 

The XA family provides an upward compatibility path for 80C51 
users who need higher performance and 64k or more of program 
memory. Existing 80C51 code can also easily be translated to run 
on XA microcontroliers. 

The performance of the XA architecture supports the 
comprehensive bit-oriented operations of the 80C51 while 
incorporating support for multi-tasking operating systems and 
high-level languages such as C. The speed of the XA architecture, 
at 10 to 100 times that of the 80C51, gives designers an easy path 
to truly high performance embedded control. 

The XA architecture supports: 

• Upward compatibility with the 80C51 architecture 

• 16-bit fully static CPU with a 24-bit program and data address 
range 

• Eight 16-bit CPU registers each capable of performing all 
arithmetic and logic operations as well as acting as memory 
pointers. Operations may also be performed directly to memory. 

• Both 8-bit and 16-bit CPU registers, each capable of performing 
all arithmetic and logic operations. 

• An enhanced instruction set that includes bit intensive logic 
operations and fast signed or unsigned 16 x 16 multiply and 
32 / 16 divide 

ORDERING INFORMATION 

• Instruction set tailored for high level language support 

• Multi-tasking and real-time executives that include up to 32 
vectored interrupts, 16 software traps, segmented data memory, 
and banked registers to support context switching 

• Low power operation, which is intrinsic to the XA architecture, 
includes power-down and idle modes. 

More detailed information on the core is available in the XA User 
Guide. 

SPECIFIC FEATURES OF THE XA-G1 
• 20-bit address range, 1 megabyte each program and data space. 

(Note that the XA archi~ecture supports up to 24 bit addresses.) 

• 2.7V to 5.5V operation (EPROM and OTP are 5V ± 5%) 

• 8K bytes on-chip EPROM/ROM program memory 

• 512 bytes of on-chip data RAM 

• Three counter/timers with enhanced features 
(equivalent to 80C51 TO, T1, and T2) 

• Watchdog timer 

• Two enhanced UARTs 

• Four 8-bit I/O ports with 4 programmable output configurations 

• 44-pin PLCC and 44-pin LQFP packages 

ROM EPROM1 TEMPERATURE RANGE °C AND PACKAGE FREQ DRAWING 
(MHz) NUMBER 

P51XAG13JB BD P51XAG17JB BD OTP o to +70, Plastic Low Profile Quad Flat Pkg. 25 SOT389-1 

P51XAG13JB A P51 XAG17JB A OTP o to +70, Plastic Leaded Chip Carrier 25 SOT187-2 

P51XAG13JF BD P51XAG17JF BD OTP -40 to +85, Plastic Low Profile Quad Flat Pkg. 25 SOT389-1 

P51XAG13JF A p51XAG17JF A OTP -40 to +85, Plastic Leaded Chip Carrier 25 SOT187-2 

P51XAG13KB BD P51XAG17KB BD OTP o to +70, Plastic Low Profile Quad Flat Pkg. 30 SOT389-1 

P51XAG13KB A P51XAG17KB A OTP o to +70, Plastic Leaded Chip Carrier 30 SOT187-2 

NOTE: 
1. OTP = One Time Programmable EPROM. UV = Erasable EPROM. 
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Philips Semiconductors 

CMOS single-chip 16-bit microcontroller 

PIN CONFIGURATIONS 
44-Pin PLCC Package 

~ h ~ 
7[/ 0 ::J 39 

PLCC 

17e ::J 29 

~ ~ 
Pin Function Pin Function , Vss 23 Voo 

2 P1.0/AOIWRR 24 P2.0/A12DB 
3 P1.1/A1 25 P2.1/A13D9 
4 P1.21A2 28 P2.21A14D10 
5 P1.31A3 27 P2.31A15D11 
8 P1.4/RxD1 2B P2.4/A16D12 
7 P1.5rrxD1 29 P2.5/A17D13 
8 P1.8rr2 30 P2.8/A1BD14 
9 P1.7rr2EX 31 P2.7/A19D15 

10 RST 32 I'SEfl' 
11 P3.0/RxDO 33 ALE.II'Rm 
12 NC 34 NC 
13 P3.1rrxDO 35 ~ppIWAIT 
14 P3.211'fml 36 PO.7/A11D7 
15 P3.311FJTi 37 PO.BlA10D6 
16 P3.4rrO 38 PO.5/A9D5 
17' P3.5!r1/BUSW 39 PO.4/A8D4 
18 P3.6iWRL 40 PO.3/A7D3 
19 P3.71Fm 41 PO.21A8D2 
20 XTAL2 42 PO.1/A5D1 
21 XTAL1 43 PO.0/A4DO 
22 Vss 44 Voo 

SUOO525 

LOGIC SYMBOL 

en[ 
ei RxDO_ 
1= TxDO_ 
~ Nrn_ 
~ Ifm_ 

TO_ 
~ T1/BUSW_ 
a: WRC_ 
~ 110_ 

, NOT AVAILABLE ON 40-PIN DIP PACKAGE 
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44-Pin LQFP Package 
44 

11 

12 

Pin Function 
1 P1.5rrxD1 
2 P1.8rr2 
3 P1.7!r2EX 
4 RST 
5 P3.0/RxDO 
8 NC 
7 P3.1rrxDO 
8 P3.211'fml 
9 P3.311FJTi 

10 P3.4rrO 
11 P3.5!r1/BUSW 
12 P3.8tWRC 
13 P3.71Fm 
14 XTAL2 
15 XTAL1 
16 Vss 
17 Voo 
16 P2.0/A12D6 
19 P2.1/A13D9 
20 P2.21A14D10 
21 P2.3/A15D11 
22 P2.4/A16/D12 

- T2EX' 
T2' 
TxD1 ----

Pin 
23 
24 
25 
28 
27 
28 
29 
30 
31 
32 
33 
34 
35 
38 
37 
38 
39 
40 
41 
42 
43 
44 

- A2 wen 
~~D1 ] 13 - A1 !S~ - AOIWRR !ii! 

Preliminary specification 

XA-G1 

34 

33 

23 

22 

Function 
P2.5/A17D13 
P2.BlA18D14 
P2.7/A19D15 
I'SEfl' 
ALE/P'FIOG 
NC 
~ppIWAIT 
PO.7/A11D7 
PO.6/A10D6 
PO.5/A9D5 
PO.4/A8D4 
PO.3/A7D3 
PO.2/A8D2 
PO.1/A5D1 
PO.0/A4DO 
Voo 
Vss 
P1.0/AOIWRR 
P1.1/A1 
P1.2/A2 
P1.31A3 
P1.4/RxD1 

SUOO580 
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PIN DESCRIPTIONS 

PIN. NO. 
MNEMONIC TYPE NAME AND FUNCTION 

LCC LQFP 

Vss 1,22 16 I Ground: OV reference. 

VDD 23,44 17 I Power Supply: This is the power supply voltage for normal, idle, and power down operation. 

PO.O - PO.7 43--36 37-30 1/0 Port 0: Port 0 is an 8-bit 1/0 port with a user-configurable output type. Port 0 latches have 1 s written 
to them and are configured in the quasi-bidirectional mode during reset. The operation of port 0 pins 
as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on 1/0 port configuration and the DC Electrical Characteristics for 
details. 

When the external programldata bus is used, Port 0 becomes the multiplexed low data/instruction 
byte and address lines 4 through 11. 

Port 0 also outputs the code bytes during program verification and receives code bytes during 
EPROM programming. 

P1.O - P1.7 2-9 40-44, 1/0 Port 1: Port 1 is an 8-bit 1/0 port with a user-configurable output type. Port 1 latches have 1 s written 
1-3 to them and are configured in the quasi-bidirectional mode during reset. The operation of port 1 pins 

as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on 1/0 port configuration and the DC Electrical Characteristics for 
details. 

Port 1 also provides special functions as described below. 
2 40 0 AOJWFffi: Address bit 0 of the external address bus when the external data bus is 

configured for an 8 bit width. When the external data bus is configured for a 16 
bit width, this pin becomes the high byte write strobe. 

3 41 0 A1: Address bit 1 of the external address bus. 
4 42 0 A2: Address bit 2 of the external address bus. 
5 43 0 A3: Address bit 3 of the external address bus. 
7 1 0 TxD1 (P1.5): Transmitter output for serial port 1. 

8 2 I T2 (P1.6): Timerlcounter 2 external count inputlclockout. 

9 3 I T2EX (P1. 7): Timerlcounter 2 reloadlcaptureldirection control 

P2.0 - P2.7 24-31 18-25 1/0 Port 2: Port 2 is an 8-bit 1/0 port with a user-configurable output type. Port 2 latches have 1 s written 
to them and are configured in the quasi-bidirectional mode during reset. The operation of port 2 pins 
as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on 1/0 port configuration and the DC Electrical Characteristics for 
details. 

When the extemal program/data bus is used in 16-bit mode, Port 2 becomes the multiplexed high 
datalinstruction byte and address lines 12 through 19. When the extemal program/data bus is used in 8-bit 
mode, the number of address lines that appear on port 2 is user programmable. 

Port 2 also receives the low-order address byte during program memory verification. 

P3.0 - P3.7 11, 5, 1/0 Port 3: Port 3 is an 8-bit 1/0 port with a user configurable output type. Port 3 latches have 1 s written 
13-19 7-13 to them and are configured in the quaSi-bidirectional mode during reset. the operation of port 3 pins 

as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on 1/0 port configuration and the DC Electrical Characteristics for 
details. 

Port 3 pins receive the high order address bits during EPROM programming and verification. 

Port 3 also provides various special functions as described below. 
11 5 I RxDO (P3.0): Receiver input for serial port O. 
13 7 0 TxDO (P3.1): Transmitter output for serial port O. 
14 8 I INTO(P3.2): External interrupt 0 input. 
15 9 I INTf (P3.3): External interrupt 1 input. 
16 10 I/O TO (P3.4): Timer 0 external input, or timer 0 overflow output. 
17 11 1/0 T1/BUSW (P3.5): Timer 1 external input, or timer 1 overflow output. The value on this pin is 

latched as the external reset input is released and defines the default 
external data bus width (8USW). 0 = 8-bit bus and 1 = 16-bit bus. 

18 12 0 wm:: (P3.6): External data memory low byte write strobe. 
19 13 0 RO(P3.7): External data memory read strobe. 

RST 10 4 I Reset: A low on this pin resets the microcontroller, causing 1/0 ports and peripherals to take on their 
default states, and the processor to begin execution at the address contained in the reset vector. 
Refer to the section on Reset for details. 
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PIN. NO. 
MNEMONIC TYPE NAME AND FUNCTION 

LCC LQFP 

ALEIJ5'ROG 33 27 I/O Address Latch Enable/Program Pulse: A high output on the ALE pin signals external circuitry to 
latch the address portion of the multiplexed address/data bus. A pulse on ALE occurs only when it is 
needed in order to process a bus cycle. During EPROM programming, this pin is used as the 
program pulse input. 

PSEN 32 26 0 Program Store Enable: The read strobe for external program memory. When the microcontroller 
accesses external program memory, P"SEf\J is driven low in order to enable memory devices. P"SEf\J 
is only active when external code accesses are performed. 

"UJWAIT/ 35 29 I External Access/WaitiProgramming Supply Voltage: The EA input determines whether the 
Vpp internal program memory of the microcontroller is used for code execution. The value on the EA pin 

is latched as the external reset input is released and applies during later execution. When latched as 
a 0, external program memory is used exclusively, when latched as a 1, internal program memory 
will be used up to its limit, and external program memory used above that point. After reset is 
released, this pin takes on the function of bus Wait input. If Wait is asserted high during any external 
bus access, that cycle will be extended until Wait is released. During EPROM programming, this pin 
is also the programming supply voltage input. 

XTAL1 21 15 I Crystal 1 : Input to the inverting amplifier used in the oscillator circuit and input to the internal clock 
generator circuits. 

XTAL2 20 14 0 Crystal 2: Output from the oscillator amplifier. 

SPECIAL FUNCTION REGISTERS 

SFR BIT FUNCTIONS AND ADDRESSES RESET NAME DESCRIPTION ADDRESS MSB LSB VALUE 

BCR Bus configuration register 46A - - - WAITD BUSD BC2 BC1 BCO Note 1 

BTRH Bus timing register high byte 469 DW1 DWO DWA1 DWAO DR1 DRO DRA1 DRAO FF 

BTRL Bus timing register low byte 468 WM1 WMO ALEW - CR1 CRO CRA1 CRAO EF 

CS Code segment 443 00 
DS Data segment 441 00 
ES Extra segment 442 00 

33F 33E 33D 33C 33B 33A 339 338 

lEW Interrupt enable high byte 427 - - - - ETI1 ERI1 ETIO ERIO 00 

337 336 335 334 333 332 331 330 

IEL* Interrupt enable low byte 426 EA - - ET2 ET1 EX1 ETO EXO 00 

IPAO Interrupt priority 0 4AO - PTO - PXO 00 

IPA1 Interrupt priority 1 4A1 - PT1 - PX1 00 

IPA2 Interrupt priority 2 4A2 - - - PT2 00 

IPA4 Interrupt priority 4 4A4 - PTIO - PRIO 00 

IPA5 Interrupt priority 5 4A5 - PTI1 - PRI1 00 

387 386 385 384 383 382 381 380 

PO* PortO 430 AD7 AD6 AD5 AD4 AD3 AD2 AD1 ADO FF 

38F 38E 38D 38C 38B 38A 389 388 

P1* Port 1 431 T2EX T2 TxD1 RxD1 A3 A2 A1 WRH FF 

397 396 395 394 393 392 391 390 

P2* Port 2 432 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 FF 

39F 39E 39D 39C 39B 39A 399 398 

P3* Port 3 433 RD WR T1 TO INT1 INTO TxDO RxDO FF 
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SFR BIT FUNCTIONS AND ADDRESSES RESET 
NAME DESCRIPTION ADDRESS VALUE MSB LSB 

POCFGA Port 0 configuration A 470 Note 5 

P1CFGA Port 1 configuration A 471 Note 5 

P2CFGA Port 2 configuration A 472 Note 5 

P3CFGA Port 3 configuration A 473 Note 5 

POCFGB Port 0 configuration B 4FO Note 5 

P1CFGB Port 1 configuration B 4F1 Note 5 

P2CFGB Port 2 configuration B 4F2 Note 5 

P3CFGB Port 3 configuration B 4F3 Note 5 

227 226 225 224 223 222 221 220 

PCON* Power control register 404 - - - - - - PO 10L 00 

20F 20E 200 20C 20B 20A 209 208 

PSWH* Program status word (high byte) 401 SM TM RS1 RSO 1M3 1M2 IM1 IMO Note 2 

207 206 205 204 203 202 201 200 

PSWL* Program status word (low byte) 400 C AC - - - V N Z Note 2 

217 216 215 214 213 212 211 210 

PSW51* 80C51 compatible PSW 402 C AC FO RS1 RSO V F1 P Note 3 

RTHO Timer 0 extended reload, 455 00 
high byte 

RTH1 TImer 1 extended reload, 457 00 
high byte 

RTLO Timer 0 extended reload, low byte 454 00 
RTL1 Timer 1 extended reload, low byte 456 00 

307 306 305 304 303 302 301 300 

SOCON* Serial port 0 control register 420 SMO_O SM1_0 SM2_0 REN_O TB8_0 RB8_0 TLO RI_O 00 

30F 30E 300 30C 30B 30A 309 308 

SOSTAT* Serial port 0 extended status 421 - - - - FEO BRO OEO STINTO 00 

SOBUF Serial port 0 buffer register 460 x 
SOAOOR Serial port 0 address register 461 00 
SOAOEN Serial port 0 address enable 462 00 

register 

327 326 325 324 323 322 321 320 

S1CON* Serial port 1 control register 424 SMO_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TU RU 00 

32F 32E 320 32C 32B 32A 329 328 

S1STAT* Serial port 1 extended status 425 - - - - FE1 BR1 OE1 STINT1 00 

S1BUF Serial port 1 buffer register 464 x 
S1AOOR Serial port 1 address register 465 00 
S1AOEN Serial port 1 address enable 466 00 

register 

SCR System configuration register 440 - - - - PT1 PTO CM PZ 00 

21F 21E 210 21C 21B 21A 219 218 

SSEL* Segment selection register 403 ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG ROSEG 00 

SWE Software Interrupt Enable 47A - SWE7 SWE6 SWE5 SWE4 SWE3 SWE2 SWE1 00 

357 356 355 354 353 352 351 350 

SWR* Software' Interrupt Request 42A - SWR7 SWR6 SWR5 SWR4 SWR3 SWR2 SWR1 00 
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SFR BIT FUNCTIONS AND ADDRESSES RESET 
NAME DESCRIPTION ADDRESS LSB VALUE MSB 

2C7 2C6 2C5 2C4 2C3 2C2 2C1 2CO 

T2CON* Timer 2 control register 418 TF2 I EXF2 I RClKO I TClKO I EXEN2 I TR2 I Crr2 I CP/RL2 00 

2CF 2CE 2CD 2CC 2CB 2CA 2C9 2C8 

T2MOD* Timer 2 mode control 419 - I - I RClK11 TClK1 1 - 1 - I T20E I DCEN 00 

TH2 Timer 2 high byte 459 00 
Tl2 Timer 2 low byte 458 00 
T2CAPH Timer 2 capture register, 45B 00 

high byte 
T2CAPl Timer 2 capture register, 45A 00 

low byte 

287 286 285 284 283 282 281 280 

TCON* Timer 0 and 1 control register 410 TF1 I TR1 I TFO I TRO I IE1 I IT1 I lEO I ITO 00 

THO Timer 0 high byte 451 00 
TH1 Timer 1 high byte 453 00 
TlO Timer 0 low byte 450 00 
Tl1 Timer 1 low byte 452 00 

TMOD Timer 0 and 1 mode control 45C GATE I crr I M1 1 MO .. 1 GATE I crr I M1 I MO 00 

28F 28E 28D 28C 28B 28A 289 288 

TSTAT* Timer 0 and 1 extended status 411 - I - I - I - I - 1 T10E I - I TOOE 00 

2FF 2FE 2FD 2FC 2FB 2FA 2F9 2F8 

WDCON* Watchdog control register 41F PRE2 I PRE1 I PREO I - I - I WORUN I WOTOF I - Note 6 

WDl Watchdog timer reload 45F 00 
WFEED1 Watchdog feed 1 45D x 
WFEED2 Watchdog feed 2 45E x 

NOTES: 
• SFRs are bit addressable. 
1. At reset, the BeR register is loaded with the binary value 0000 Oa 11, where "a" is the value on the BUSW pin. This defaults the address bus 

size to 20 bits since the XA-G1 has only 20 address lines. 
2. SFR is loaded from the reset vector. 
3. All bits except F1, FO, and P are loaded from the reset vector. Those bits are all O. 
4. Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other 

purposes in future XA derivatives. The reset,value shown for these bits is O. 
5. Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the 

condition found on the EA pin. Thus all PnCFGA registers will contain FF and PnCFGB registers will contain 00. When the XA begins 
execution using external code memory, the default configuration for pins that are associated with the external bus will be push-pull. The 
PnCFGA and PnCFGB register contents will reflect this difference. 

6. The WDCON reset value is E6 for a Watchdog reset, E4 for all other reset cauSes. 
7. The XA-G1 implements an 8-bit SFR bus, as stated in Chapter 8 of the XA User Guide. All SFR accesses must be 8-bit operations. Attempts 

to write 16 bits to an SFR will actually write only the lower 8 bits. Sixteen bit SFR reads will return undefined data in the upper byte. 
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XA-G1 TIMER/COUNTERS 
The XA has two standard 16-bit enhanced Timer/Counters: Timer 0 
and Timer 1. Additionally, it has a third 16-bit Up/Down 
timer/counter, T2. A central timing generator in the XA core provides 
the time-base for all XA Timers and Counters. The timer/event 
counters can perform the following functions: 
- Measure time intervals and pulse duration 

- Count external events 
- Generate interrupt requests 

- Generate PWM or timed output waveforms 

All of the XA-G1 timer/counters (Timer 0, Timer 1 and Timer 2) can 
be independently programmed to operate either as timers or event 
counters via the CIT bit in the TnCON register. All XA-G1 timers 
count up unless otherwise stated. These timers may be dynamically 
read during program execution. 

The base clock rate of all of the XA-G1 timers is user 
programmable. This applies to timers TO, T1, and T2 when running 
in timer mode (as opposed to counter mode), and the watchdog 
timer. The clock driving the timers is called TCLK and is determined 
by the setting of two bits (PT1, PTO) in the System Configuration 
Register (SCR). The frequency of TCLK may be selected to be the 
oscillator input divided by 4 (Osc/4), the oscillator input divided by 
16 (Osc/16), or the oscillator input divided by 64 (Osc/64). This 
gives a range of possibilities for the XA timer functions, including 

SCR Address:440 
Not Bit Addressable 
Reset Value: OOH 

PT1 

o 
o 

PTO 

o 

o 

MSB 

1- I 
OPERATING 
Prescaler selection. 
Osc/4 
Osc/16 
Osc/64 
Reserved 

Preliminary specification 

XA-G1 

baud rate generation, Timer 2 capture. Note that this single rate 
setting applies to all of the timers. 

When timers TO, T1, or T2 are used in the counter mode, the 
register will increment whenever a falling edge (high to low 
transition) is detected on the external input pin corresponding to the 
timer clock. These inputs are sampled once every 2 oscillator 
cycles, so it can take as many as 4 oscillator cycles to detect a 
transition. Thus the maximum count rate that can be supported is 
Osc/4. The duty cycle of the timer clock inputs is not important, but 
any high or low state on the timer clock input pins must be present 
for 2 oscillator cycles before it is guaranteed to be "seen" by the 
timer logic. 

Timer 0 and Timer 1 
The ''Timer'' or "Counter" function is selected by control bits CIT in 
the special function register TMOD. These two Timer/Counters have 
four operating modes, which are selected by bit-pairs (M1, MO) in 
the TMOD register. Timer modes 1, 2, and 3 in XA are kept identical 
to the 80C51 timer modes for code compatibility. Only the mode 0 is 
replaced in the XA by a more powerful 16-bit auto-reload mode. This 
will give the XA timers a much larger range when used as time 
bases. 

The recommended M1, MO settings for the different modes are 
shown in Figure 2. 

LSB 

PT1 PTO CM PZ I 

1 
CM Compatibility Mode allows the XA to execute most translated 80C51 code on the XA. The 

XA register file must copy the 80C51 mapping to data memory and mimic the 80C51 indirect 
addressing scheme. 

PZ 

TMOD Address:45C 
Not Bit Addressable 
Reset Value: OOH 

M1 
o 
o 

1997 Mar 25 

GATE 

crr 

MO 
o 

o 

Page Zero mode forces all program and data addresses to i6-bits only. This saves stack space 
and speeds up execution but limits memory access to 64k. 

Figure 1. System Configuration Register (SCR) 

MSB LSB 

I GATE I crr Mi MO I GATE I crr Mi MO I 
~------~v~--------~) ~~--------~v~----------~ 

TIMER 1 TIMER 0 

Gating control when set. Timer/Counter "n" is enabled only while ''l'J'ITfi'' pin is high and 
"TRn" control bit is set. When cleared Timer "n" is enabled whenever "TRn" control bit is set. 
Timer or Counter Selector cleared for Timer operation (input from internal system clock.) 
Set for Counter operation (input from ''Tn'' input pin). 

OPERATING 
i6-bit auto-reload timer/counter 
i6-bit non-auto-reload timer/counter 
8-bit auto-reload timer/counter 
Dual 8-bit timer mode (timer 0 only) 

Figure 2. Timer/Counter Mode Control (TMOD) Register 
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New Enhanced Mode 0 
For timers TO or T1 the 13-bit count mode on the SOC51 (current 
Mode 0) has been replaced in the XA with a 16-bit auto-reload 
mode. Four additional S-bit data registers (two per timer: RTHn and 
RTLn) are created to hold the auto-reload values. In this mode, the 
TH overflow will set the TF flag in the TCON register and cause both 
the TL and TH counters to be loaded from the RTL and RTH 
registers respectively. 

These new SFRs will also be used to hold the TL reload data in the 
S-bit auto-reload mode (Mode 2) instead of TH. 

The overflow rate for Timer 0 or Timer 1 in Mode 0 may be 
calculated as follows: 

TimecRate = Osc / (N * (65536 - TimecReload_Value)) 

where N = the TCLK prescaler value: 4 (default), 16, or 64. 

Mode 1 
Mode 1 is the 16-bit non-auto reload mode. 

Mode 2 
Mode 2 configures the Timer register as an S-bit Counter (TLn) with 
automatic reload. Overflow from TLn not only sets TFn, but also 

TCON Address:410 MSB 
Bit Addressable 
Reset Value: OOH I TF1 TR1 TFO 

BIT SYMBOL FUNCTION 

Preliminary specification 

XA-G1 

reloads TLn with the contents of RTLn, which is preset by software. 
The reload leaves THn unchanged. 

Mode 2 operation is the same for Timer/Counter O. 

The overflow rate for Timer 0 or Timer 1 in Mode 2 may be 
calculated as follows: 

Timer_Rate = Osc / (N * (256 - Timer_Reload_Value)) 

where N = the TCLK prescaler value: 4, 16, or 64. 

Mode 3 
Timer 1 in Mode 3 simply holds its count. The effect is the same as 
setting TR1 =0. 

Timer 0 in Mode 3 establishes TLO and THO as two separate 
counters. TLO uses the Timer ° control bits: CIT, GATE, TRO, INTO, 
and TFO. THO is locked into a timer function and takes over the use 
of TR1 and TF1 from Timer 1. Thus, THO now controls the "Timer 1" 
Interrupt. 

Mode 3 is provided for applications requiring an extra S-bit timer. 
When Timer 0 is in Mode 3, Timer 1 can be turned on and off by 
switching it out of and into its own Mode 3, or can still be used by 
the serial port as a baud rate generator, or in fact, in any application 
not requiring an interrupt. 

LSB 

TRO lEi IT1 lEO ITO 

TCON.7 TF1 Timer 1 overflow flag. Set by hardware on Timer/Counter overflow. 
This flag will not be set if Ti0E (TSTAT.2) is set. 

TCON.6 TR1 
TCON.5 TFO 

TCONA TRO 
TCON.3 lEi 

TCON.2 IT1 

TCON.1 lEO 

TCON.O ITO 
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Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software. 
Timer 1 Run control bit. Set/cleared by software to turn Timer/Counter ion/off. 
Timer 0 overflow flag. Set by hardware on Timer/Counter overflow. 
This flag will not be set if TOOE (TSTAT.O) is set. 
Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software. 
Timer 0 Run control bit. Set/cleared by software to turn Timer/Counter 0 on/off. 
Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected. 
Cleared when interrupt processed. 

Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered 
external interrupts. 
Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected. 
Cleared when interrupt processed. 
Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level 
triggered external interrupts. 

Figure 3. Timer/Counter Control (TCON) Register 
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T2CON Address:41S M~ ~B 
Bit Addressable 
Reset Value: OOH I TF2 I EXF2 I RClKO I TClKO I EXEN21 TR2 I CtT2 I CP/Rl21 

BIT SYMBOL FUNCTION 
T2CON.7 TF2 Timer 2 overflow flag. Set by hardware on Timer/Counter overflow. Must be cleared by software. 

TF2 will not be set when RClKO, RClK1, TClKO, TClK1 or T20E=1. 
T2CON.6 EXF2 nmer 2 external flag Is set when a capture or reload occurs due to a negative transition on T2EX (and 

EXEN2 is set). This flag will cause a Timer 2 Interrupt when this interrupt Is enabled. EXF2 is cleared by 
software. 
Receive Clock Flag. T2CON.5 RClKO 

T2CON.4 TClKO Transmit Clock Flag. RClKO and TClKO are used to select Timer 2 overflow rate as a clock source for 
UARTO instead of nmer T1. 

T2CON.3 EXEN2 
T2CON.2 TR2 
T2CON.1 CtT2 

Timer 2 external enable bit allows a capture or reload to occur due to a negative transition on T2EX. 
Start=1/Stop=0 control for Timer 2. 
Timer or counter select. 
O=lnternal timer 
1 =External event counter (falling edge triggered) 

T2CON.0 CP/Rl2 Capture/Reload flag. 
If CP/Rl2 & EXEN2=1 captures will occur on negative transitions of T2EX. 
If CP/Rl2=0, EXEN2=1 auto reloads occur with either Timer 2 overflows or negative transitions at T2EX. 
If RClK orTClK=1 the timer is set to auto reload on nmer 2 overflow, this bit has no effect. 

SU00606A 

Figure 4. Timer/Counter 2 Control (T2CON) Register 

New Timer-OverflowToggle Output 
In the XA, the timer module now has two outputs, which toggle on 
overflow from the individual timers. The same device pins that are 
used for the TO and T1 count inputs are also used for the new 
overflow outputs. An SFR bit (TnOE in the TSTAT register) is 
associated with each counter and indicates whether Port-SFR data 
or the overflow signal is output to the pin. These outputs could be 
used in applications for generating variable duty cycle PWM outputs 
(changing the auto-reload register values). Also variable frequency 
(Osc/S to Osc/S,3SS.60S) outputs could be achieved by adjusting 
the prescaler along with the auto-reload register values. With a 
30.0MHz oscillator, this range would be 3.5SHz to 3.75MHz. 

TimerT2 
Timer 2 in the XA is a 16-bit Timer/Counter which can operate as 
either a timer or as an event counter. This Is selected by CtT2 in the 
special function register T2CON. Upon timer T2 overflow/underflow, 
the TF2 flag is set, which may be used to generate an interrupt. It 
can be operated in one of three operating modes: auto-reload (up or 
down counting), capture, or as the baud rate generator (for either or 
both UARTs via SFRs T2MOD and T2CON). These modes are 
shown in Table 1. 

Capture Mode 
In the capture mode there are two options which are selected by bit 
EXEN2 in T2CON. If EXEN2 = 0, then timer 2 is a 16-bit timer or 
counter, which upon overflowing sets bit TF2, the timer 2 overflow 
bit. This will cause an interrupt when the timer 2 interrupt is enabled. 

If EXEN2 = 1, then Timer 2 still does the above, but with the added 
feature that a 1-to-0 transition at external input T2EX causes the 
current value in the Timer 2 registers, Tl2 and TH2, to be captured 
into registers RCAP2l and RCAP2H, respectively. In addition, the 
transition at T2EX causes bit EXF2 in T2CON to be set. This will 
cause an interrupt in the same fashion as TF2 when the Timer 2 
interrupt is enabled. The capture mode is illustrated in Figure 7. 
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Auto-Reload Mode (Up or Down Counter) 
In the auto-reload mode, the timer registers are loaded with the 
16-bit value in T2CAPH and T2CAPl when the count overflows. 
T2CAPH and T2CAPl are initialized by software. If the EXEN2 bit in 
T2CON is set, the timer registers will also be reloaded and the EXF2 
flag set when a 1-to-0 transition occurs at input T2EX. The 
auto-reload mode is shown In Figure 8. 

In this mode, Timer 2 can be configured to count up or down. This is 
done by setting or clearing the bit DCEN (Down Counter Enable) in 
the T2MOD special function register (see Table 1). The T2EX pin 
then controls the count direction. When T2EX Is high, the count is In 
the up direction, when T2EX is low, the count is in the down 
direction. 

Figure 8 shows Timer 2, which will count up automatically, since 
DC EN = O. In this mode there are two options selected by bit 
EXEN2 in the T2CON register. If EXEN2 = 0, then nmer 2 counts 
up to FFFFH and sets the TF2 (Overflow Flag) bit upon overflow. 
This causes the Timer 2 registers to be reloaded with the 16-bit 
value in T2CAPl and T2CAPH, whose values are preset by 
software. If EXEN2 = 1, a ·16-bit reload can be triggered either by an 
overflow or by a 1-to-0 transition at input T2EX. This transition also 
sets the EXF2 bit. If enabled, either TF2 or EXF2 bit can generate 
the Timer 2 interrupt. 

In Figure 9, the DCEN = 1; this enables the Timer 2 to count up or 
down. In this mode, the logic level of T2EX pin controls the direction 
of count. When a logic '1' is applied at pin T2EX, the nmer 2 will 
count up. The Timer 2 will overflow at FFFFH and set the TF2 flag, 
which can then generate an interrupt if enabled. This timer overflow, 
also causes the 16-bit value in T2CAPl and T2CAPH to be 
reloaded into the timer registers Tl2 and TH2, respectively. 

A logic '0' at pin T2EX causes Timer 2 to count down. When 
counting down, the timer value is compared to the 16-bit value 
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contained in T2CAPH and T2CAPl. When the value is equal, the 
timer register is loaded with FFFF hex. The underflow also sets the 
TF2 flag, which can generate an interrupt if enabled. 

The external flag EXF2 toggles when Timer 2 underflows or 
overflows. This EXF2 bit can be used as a 17th bit of resolution, if 
needed. the EXF2 flag does not generate an interrupt in this mode. 
As the baud rate generator, timer T2 is incremented by TCLK. 

Baud Rate Generator Mode 
By setting the TCLKn and/or RCLKn in T2CON or T2MOD, the 
Timer 2 can be chosen as the baud rate generator for either or both 
UARTs. The baud rates for transmit and receive can be 
simultaneously different. 

Programmable Clock-Out 
A 50% duty cycle clock can be programmed to come out on P1.6. 
This pin, besides being a regular I/O pin, has two alternate 
functions. It can be programmed (1) to input the external clock for 

Table 1. Timer 2 Operating Modes 

TF\2 CP/RL2 RCLK+TCLK DC EN 

0 X X X 

1 0 0 0 

1 0 0 1 

1 1 0 X 

1 X 1 X 

TSTAT Address:411 MSB 
Bit Addressable 
Reset Value: OOH 

SYMBOL FUNCTION 
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Timer/Counter 2 or (2) to output a 50% duty cycle clock ranging from 
3.58Hz to 3.75MHz at a 30MHz operating frequency. 

To configure the Timer/Counter 2 as a clock generator, bit CIT2 (in 
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit 
TR2 (T2CON.2) also must be set to start the timer. 

The Clock-Out frequency depends on the oscillator frequency and 
the reload value of Timer 2 capture registers (TCAP2H, TCAP2L) as 
shown in this equation: 

TCLK 
2 x (65536-TCAP2H, TCAP2L) 

In the Clock-Out mode Timer 2 roll-overs will not generate an 
interrupt. This is similar to when it is used as a baud-rate generator. 
It is possible to use Timer 2 as a baud-rate generator and a clock 
generator simultaneously. Note, however, that the baud-rate will be 
1/8 of the Clock-Out frequency. 

MODE 

Timer off (stopped) 

16-bit auto-reload, counting up 

16-bit auto-reload, counting up or down depending on T2EX pin 

16-bit capture 

Baud rate generator 

LSB 

nOE TOOE 

BIT 
TSTAT.2 T10E When 0, this bit allows the T1 pin to clock Timer 1 when in the counter mode. 

When 1, T1 acts as an output and toggles at every Timer 1 overflow. 
TSTAT.O TOOE When 0, this bit allows the TO pin to clock Timer 0 when in the counter mode. 

When 1, TO acts as an output and toggies at every Timer 0 overflow. 

Figure 5. Timer 0 And 1 Extended Status (TSTAT) 

T2MOD Address:419 MSB LSB 
Bit Addressable 
Reset Value: OOH I RCLK1 I TCLK1 I T20E DCEN I 

BIT SYMBOL FUNCTION 
T2MOD.5 RCLK1 
T2MODA TCLK1 

T2MOD.1 T20E 

T2MOD.0 DC EN 

Receive Clock Flag. 

Transmit Clock Flag. RCLK1 and TCLK1 are used to select Timer 2 overflow rate as a clock source 
for UART1 instead of Timer Ti. 

When 0, this bit allows the T2 pin to clock Timer 2 when in the counter mode. 
When 1, T2 acts as an output and toggles at every Timer 2 overflow. 
Controls count direction for Timer 2 in autoreload mode. 
DCEN=1 counter set to count up only 

SU006128 

DCEN=O counter set to count up or down, depending on T2EX (see text). 
SU00610A 

Figure 6. Timer 2 Mode Control (T2MOD) 
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T2 Pin 

~,_~ __ ._O ____ -+~~ O-~----~ 
______ --'t c~., 

Transition 
Detector 

TR2 

Control 

Capture 

TL2 
(S-bhs) 

TH2 
(8-blts) 
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Timer 2 
Interrupt 

T2EX Pin ~~~----~-------------------~ 

T2Pln 

T2EX Pin 

Control 

EXEN2 

Control 

EXEN2 

Figure 7. Timer 21n Capture Mode 

TL2 
(S-blts) 

TH2 
(S-blts) 

. Figure 8. Timer 2 In Auto-Reload Mode (DCEN = 0) 

(DOWN COUNTING RELOAD VALUE) 

~_~ __ =_0 ____ -r-4~-~ __ +-____ -4~ OVERFLOW 
TL2 TH2 

C~=' 
CONTROL 

TR2 

(UP COUNTING RELOAD VALUE) 

Figure 9_ Timer 2 Auto Reload Mode (DCEN = 1) 
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WATCHDOG TIMER 
The watchdog timer subsystem protects the system from incorrect 
code execution by causing a system reset when the watchdog timer 
underflows as a result of a failure of software to feed the timer prior 
to the timer reaching its terminal count. It is important to note that 
the XA-G1 watchdog timer is running after any type of reset and 
must be turned off by user software if the application does not use 
the watchdog function. 

Watchdog Function 
The watchdog consists of a programmable presca.ler and the main 
timer. The prescaler derives its clock from the TCLK source that also 
drives timers 0, 1, and 2. The watchdog timer subsystem consists of 
a programmable 13-bit prescaler, and an 8-bit main timer. The main 
timer is clocked (decremented) by a tap taken from one of the top 
8-bits of the prescaler as shown in Figure 10. The clock source for 
the prescaler is the same as TCLK (same as the clock source for 
the timers). Thus the main counter can be clocked as often as once 
every 64 TCLKs (see Table 2). The watchdog generates an 
underflow signal (and is autoloaded from WDL) when the watchdog 
is at count a and the clock to decrement the watchdog occurs. The 
watchdog is 8 bits wide and the autoload value can range from a to 
FFH. (The autoload value. of a is permissible since the prescaler is 
cleared upon autoload). 

This leads to the following user design equations. DeHnitions :tose 
is the oscillator period, N is the selected prescaler tap value, W is 
the main counter autoload value, P is the prescaler value from 
Table 2, tMIN is the minimum watchdog time-out value (when the 
autoload value is 0), tMAX is the maximum time-out value (when the 
autoload value is FFH), tD is the design time-out value. 

tMIN = tose x 4 x 32 (W = 0, N = 4) 

tMAX = lose x 64 x 4096 x 256 (W = 255, N = 64) 

tD = tose x N x P x (W + 1) 

The watchdog timer is not directly loadable by the user. Instead. the 
value to be loaded into the main timer is held in an autoload register. 
In order to cause the main timer to be loaded with the appropriate 
value, a special sequence of software action must take place. This 
operation is referred to as feeding the watchdog timer. 

To feed the watchdog, two instructions must be sequentially 
executed successfully. No intervening SFR accesses are allowed, 
so interrupts should be disabled before feeding the watchdog, The 
instructions should move A5H to the WFEED1 register and then 
5AH to the WFEED2 register. If WFEED1 is correctly loaded and 
WFEED2 is not correctly loaded, then an immediate watchdog reset 
will occur. The program sequence to feed the watchdog timer or 
cause new WDCON settings to take effect is as follows: 

clr 
mov.b 
mov.b 
setb 

ea ; disable global interrupts. 
wfeed1.#A5h ; do watchdog feed part 1 
wfeed2,#5Ah ; do watchdog feed part 2 
ea ; re-enable global interrupts. 

This sequence assumes that the XA interrupt system is enabled and 
there is a possibility of an interrupt request occurring during the feed 
sequence. If an interrupt was allowed to be serviced and the service 
routine contained any SFR access, it would trigger a watchdog 
reset. If it is known that no interrupt could occur during the feed 
sequence, the instructions to disable and re-enable interrupts may 
be removed. 
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The software must be written so that a feed operation takes place 
every tD seconds from the last feed operation. Some tradeoffs may 
need to be made. It is not advisable to include feed operations in 
minor loops or in subroutines unless the feed operation is a specific 
subroutine. 

To turn the watchdog timer completely off, the following code 
sequence should be used: 

mov.b wdcon,#O ; set WD control register to clear WDRUN. 
mov.b wfeed1,#A5h ; do watchdog feed part 1 
mov.b wfeed2,#5Ah ; do watchdog feed part 2 

This sequence assumes that the watchdog timer is being turned off 
at the beginning of initialization code and that the XA interrupt 
system has not yet been enabled. If the watchdog timer is to be 
turned off at a point when interrupts may be enabled, instructions to 
disable and re-enable interrupts should be added to this sequence. 

Watchdog Control Register (WDCON) 
The reset values of the WDCON and WDL registers will be such that 
the watchdog timer has a timeout period of 4 x 8192 x tose and the 
watchdog is running. WDCON can be written by software but the 
changes only take effect after executing a valid watchdog feed 
sequence. 

Table 2. Prescaler Select Values in WDCON 

PRE2 PRE1 PREO DIVISOR 

a a a 32 

0 0 1 64 

a 1 a 128 

a 1 1 256 

1 a a 512 

1 a 1 1024 

1 1 a 2048 

1 1 1 4096 

Watchdog Detailed Operation 
When external RE"SET is applied, the following takes place: 

• Watchdog run control bit set to ON (1). 

• Autoload register WDL set to 00 (min. count). 

• Watchdog time-out flag cleared. 

• Prescaler is cleared. 

• Prescaler tap set to the highest divide. 

• Autoload takes place. 

When coming out of a hardware reset, the software should load the 
autoload register and then feed the watchdog (cause an autoload). 

If the watchdog is running and happens to underflow at the time the 
external RESET is applied, the watchdog time-out flag will be 
cleared. 
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WATCHDOG FEED SEQUENCE 

MOV WFEED1,#A5H 
MOV WFEED2,#5AH 

TCLK 
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SU00581A 

Figure 10. Watchdog Timer In XA-G1 

When the watchdog underflows, the following action takes place 
(see Figure 10): 

• Autoload takes place. 

• Watchdog time-out flag is set 

• Watchdog run bit unchanged. 

• Autoload (WOL) register unchanged. 

• Prescaler tap unchanged. 

• All other device action same as external reset. 

Note that If the watchdog underflows, the program counter will be 
loaded from the reset vector as in the case of an Internal reset. The 
watchdog time-out flag can be examined to determine if the 
watchdog has caused the reset condition. The watchdog time-out 
flag bit can be cleared by software. 

WOCON Register Bit Definitions 
WOCON.7 PRE2 Prescaler Select 2, reset to 1 
WOCON.6 PRE1 Prescaler Select 1, reset to 1 
WOCON.5 PREO Prescaler Select 0, reset to 1 
WOCONA 
WOCON.3 
WOCON.2 WORUN Watchdog Run Control bit, reset to 1 
WOCON.1 WOTOF Timeout flag 
WOCON.O 

UARTs 
The XA-G1 includes 2 UART ports that are compatible with the 
enhanced UART used on the 8xC51 FB. Baud rate selection is 
somewhat different due to the clocking scheme used for the XA 
timers. 

Some other enhancements have been made to UART operation. 
The first is that there are separate interrupt vectors for each UART's 
transmit and receive functions. A break detect function has been 
added to the UART. This operates independently of the UART itself 
and provides a start-of-break status bit that the program may test. 
Finally, an Overrun Error flag has been added to detect missed 
characters in the received data stream. 

Each UART rate is determined by either a fixed division of the 
oscillator (in UART modes 0 and 2) or by the timer 1 or timer 2 
overflow rate (in UART modes 1 and 3). 
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Timer 1 defaults to clock both UARTO and UART1. Timer 2 can be 
programmed to clock either UARTO through T2CON (via bits ROCLK 
and TOCLK) or UART1 through T2MOO (via bits R1CLK and 
T1 CLK). In this case, the UART not clocked by T2 could use T1 as 
the clock source. 

The serial port receive and transmit registers are both accessed at 
Special Function Register SnBUF. Writing to SnBUF loads the 
transmit register, and reading SnBUF accesses a physically 
separate receive register. 

The serial port can operate in 4 modes: 

Mode 0: Serial 110 expansion mode. Serial data enters and exits 
through RxOn. TxOn outputs the shift clock, B bits are 
transmitted/received (LSB first). (The baud rate Is fixed at 1/16 the 
oscillator frequency.) 

Mode 1: Standard S-blt UART mode. 10 bits are transmitted 
(through TxOn) or received (through RxOn): a start bit (0), B data 
bits (LSB first), and a stop bit (1). On receive, the stop bit goes Into 
RBB In Special Function Register SnCON. The baud rate Is variable. 

Mode 2: Fixed rate 9·blt UART mode. 11 bits are transmitted 
(through TxOn) or received (through RxOn): start bit (0), B data bits 
(LSB first), a programmable 9th data bit, and a stop bit (1). On 
Transmit, the 9th data bit (TBB_n in SnCON) can be assigned the 
value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could 
be moved into TBB_n. On receive, the 9th data bit goes into RBB_n 
in Special Function Register SnCON, while the stop bit is ignored. 
The baud rate is programmable to 1/32 of the oscillator frequency. 

Mode 3: Standard 9·bit UART mode. 11 bits are transmitted 
(through TxOn) or received (through RxOn): a start bit (0), B data 
bits (LSB first), a programmable 9th data bit, and a stop bit (1). 
In fact, Mode 3 is the same as Mode 2 in all respects except baud 
rate. The baud rate in Mode 3 is variable. 

In all four modes, transmission is Initiated by any instruction that 
uses SnBUF as a destination register. Reception is initiated in Mode 
o by the condition RI_n = 0 and REN_n = 1. Reception is initiated in 
the other modes by the incoming start bit if REN_n = 1. 

Serial Port Control Register 
The serial port control and status register is the Special Function 
Register SnCON, shown in Figure 12. This register contains not only 
the mode selection bits, but also the 9th data bit for transmit and 
receive (TBB_n and RB8_n), and the serial port interrupt bits (TI_n 
and R'-n). 
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CLOCKING SCHEMEIBAUD RATE GENERATION 
The XA UARTS clock rates are determined by either a fixed division 
(modes 0 and 2) of the oscillator clock or by the Timer 1 or Timer 2 
overflow rate (modes 1 and 3). 

The clock for the UARTs in XA runs at 16x the Baud rate. If the 
timers are used as the source for Baud Clock, since maximum 
speed of timers/Baud Clock is Osc/4, the maximum baud rate is 
timer overflow divided by 16 i.e. Osc/64. 

In Mode 0, it is fixed at Osc/16. In Mode 2, however, the fixed rate is 
Osc/32. 

00 Osc/4 

Pre-scaler 01 Osc/16 
for all Timers TO,1 ,2 10 Osc/64 controlled by PT1, PTO 
bits in SCR 11 reserved 

Baud Rate for UART Mode 0: 
Baud_Rate=Osc/16 

Baud Rate calculation for UART Mode 1 and 3: 
Baud_Rate= TimecRate/16 

Timer_Rate=Osc/(N*(TimecRange- TimecReload_Value)) 

where N=the TCLK prescaler value: 4, 16, or 64. 
and Timer_Range= 256 for timer 1 in mode 2. 

65536 for timer 1 in mode 0 and timer 2 
in count up mode. 

The timer reload value may be calculated as follows: 
TimecReload_ Value= TimecRange-(Osc/(Baud_Rate*N*16)) 

NOTES: 
1. The maximum baud rate for a UART in mode 1 or 3 is Osc/64. 
2. The lowest possible baud rate (for a given oscillator frequency 

and N value) may be found by using a timer reload value of O. 
3. The timer reload value may never be larger than the timer range. 
4. If a timer reload value calculation gives a negative or fractional 

result, the baud rate requested is not possible at the given 
oscillator frequency and N value. 

Baud Rate for UART Mode 2: 
Baud_Rate = Osc/32 

SnSTAT Address: SO STAT 421 
S1STAT 425 

Bit Addressable 
Reset Value: OOH 

MSB 

BIT SYMBOL FUNCTION 
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Using Timer 2 to Generate Baud Rates 
Timer T2 is a 16-bit up/down counter in XA. As a baud rate 
generator, timer 2 is selected as a clock source for eitherlboth 
UARTO and UART1 transmitters and/or receivers by setting TCLKn 
and/or RCLKn in T2CON and T2MOD. As the baud rate generator, 
T2 is incremented as Osc/N where N=4, 16 or 64 depending on 
TCLK as programmed in the SCR bits PT1, and PTO. So, if T2 is 
the source of one UART, the other UART could be clocked by either 
T1 overflow or fixed clock, and the UARTs could run independently 
with different baud rates. 

T2CON 
Ox418 

T2MOD 
Ox419 

bitS 

RCLKO 

bitS 

RCLK1 

Prescaler Select for Timer Clock (TCLK) 

LSB 

FEn BRn OEn I STINTn I 

bit4 

TCLKO 

bit4 

TCLK1 

bit2 

PTO 

SnSTAT.3 FEn Framing Error flag is set when the receiver fails to see a valid STOP bit at the end of the frame. 

SnSTAT.2 BRn 

SnSTAT.1 OEn 

Cleared by software. 
Break Detect flag is set if a character is received with all bits (including STOP bit) being logic '0'. Thus 
it gives a "Start of Break Detect" on bit 8 for Mode 1 and bit 9 for Modes 2 and 3. The break detect 
feature operates independently of the UARTs and provides the START of Break Detect status bit that 
a user program may poll. Cleared by software. 
Overrun Error flag is set if a new character is received in the receiver buffer while it is still full (before 
the software has read the previous character from the buffer), i.e., when bit 8 of a new byte is 
received while RI in SnCON is still set. Cleared by software. 

SnSTAT.O STINTn This flag must be set to enable any of the above status flags to generate a receive interrupt (Rln). The 
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only way it can be cleared is by a software write to this register. 

Figure 11. Serial Port Extended Status (SnSTAT) Register 
(See also Figure 13 regarding Framing Error flag.) 
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INTERRUPT SCHEME 
There are separate interrupt vectors for each UART's transmit and 
receive functions. 

Table 3. Vector Locations for UARTs in XA 

Vector Address Interrupt Source Arbitration 

AOH -A3H UART 0 Receiver 7 

A4H-A7H UART 0 Transmitter 8 

A8H-ABH UART 1 Receiver 9 

ACH -AFH UART 1 Transmitter 10 

NOTE: 
The transmit and receive vectors could contain the same ISR 
address to work like a 8051 interrupt scheme 

Error Handling, Status Flags and Break Detect 
The UARTs in XA has the following error flags; see Figure 11. 

Multiprocessor Communications 
Modes 2 and 3 have a special provision for multiprocessor 
communications. In these modes, 9 data bits are received. The 9th 
one goes into RB8. Then comes a stop bit. The port can be 
programmed such that when the stop bit is received, the serial port 
interrupt will be activated only if RBB = 1. This feature is enabled by 
setting bit SM2 in SCON. A way to use this feature in multiprocessor 
systems is as follows: 

When the master processor wants to transmit a block of data to one 
of several slaves, it first sends out an address byte which identifies 
the target slave. An address byte differs from a data byte in that the 
9th bit is 1 In an address byte and 0 in a data byte. With SM2 = 1, no 
slave will be interrupted by a data byte. An address byte, however, 
will interrupt all slaves, so that each slave can examine the received 
byte and see if it is being addressed. The addressed slave will ciear 
its SM2 bit and prepare to receive the data bytes that will be coming. 
The siaves that weren't being addressed leave their SM2s set and 
go on about their business, ignoring the coming data bytes. 

SM2 has no effect in Mode 0, and in Mode 1 can be used to check 
the validity of the stop bit although this is better done with the 
Framing Error (FE) flag. In a Mode 1 reception, if SM2 = 1, the 
receive Interrupt will not be activated unless a valid stop bit is 
received. 

Automatic Address Recognition 
Automatic Address Recognition is a feature which allows the UART 
to recognize certain addresses In the serial bit stream by using 
hardware to make the comparisons. This feature saves a great deal 
of software overhead by eliminating the need for the software to 
examine every serial address which passes by the serial port. This 
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART 
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be 
automatically set when the received byte contains either the "Given" 
address or the "Broadcast" address. The 9 bit mode requires that 
the 9th Information bit is a 1 to indicate that the received Information 
is an address and not data. Automatic address recognitipn Is shown 
in Figure 14. . 

Using the Automatic Address Recognition feature allows a master to 
selectively communicate with one or more slaves by invoking the 
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Given slave address or addresses. All of the slaves may be 
contacted by using the Broadcast address. Two special Function 
Registers are used to define the slave's address, SADDR, and the 
address mask, SADEN. SADEN is used to define which bits in the 
SADDR are to be used and which bits are "don't care". The SAD EN 
mask can be logically ANDed with the SADDR to create the "Given" 
address which the master will use for addressing each of the slaves. 
Use of the Given address allows multiple slaves to be recognized 
while excluding others. The following examples will help to show the 
versatility of this scheme: 

Slave 0 SADDR 1100 0000 
SADEN ljj:! jjQj 
Given 1100 OOXO 

Slave 1 SADDR 1100 0000 
SADEN jjjj jjjQ 
Given 1100 OOOX 

In the above example SADDR is the same and the SADEN data is 
used to differentiate between the two slaves. Slave 0 requires a 0 in 
bit 0 and it ignores bit 1 . Slave 1 requires a 0 in bit 1 and bit 0 is 
ignored. A unique address for Slave 0 would be 11000010 since 
slave 1 requires a 0 In bit 1 . A unique address for slave 1 would be 
1100 0001 since a 1 in bit 0 will exclude slave O. Both siaves can be 
selected at the same time by an address which has bit 0 = 0 (for 
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed 
with 1100 0000. 

In a more complex system the following could be used to select 
slaves 1 and 2 while excluding slave 0: 

Slave 0 SADDR 1100 0000 
SADEN :I:Ij:l :100:1 
Given 1100 OXXO 

Slave 1 SADDR 1110 0000 
SAD EN 1111 :lQjQ 
Given 1110 OXOX 

Slave 2 SADDR 1110 0000 
SADEN jjjj jjQQ 
Given 1110 OOXX 

In the above exampie the differentiation among the 3 slaves is in the 
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be 
uniquely addressed by 11100110. Siave 1 requires that bit 1 = 0 and 
it can be uniquely addressed by 1110 and 0101. Slave 2 requires 
that bit 2 = 0 and its unique address Is 1110 0011. To select Slaves 0 
and 1 and exclude Slave 2 use address 1110 0100, since it Is 
necessary to make bit 2 = 1 to exclude slave 2. 

The Broadcast Address for each slave Is created by taking the 
logical OR of SADDR and SADEN. Zeros in this result are teated as 
don't-cares. In most cases, Interpreting the don't-cares as ones, the 
broadcast address will be FF hexadecimal. 

Upon reset SADDR and SADEN are loaded with Os. This produces 
a given address of all "don't cares" as well as a Broadcast address 
of all "don't cares". This effectively disables the Automatic 
Addressing mode and allows the microcontroller to use standard 
UART drivers which do not make use of this feature. 
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SnCON Address: SOCON 420 

Bit Addressable 
Reset Value: OOH 

BIT SYMBOL 
SnCON.5 SM2 

SnCON.4 REN 
SnCON.3 TB8 
SnCON.2 RB8 

SnCON.1 TI 

SnCON.O RI 
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S1CON 424 MSB LSB 

SMO SM1 SM2 REN TB8 RB8 TI RI 

Where SMO, SM1 specify the serial port mode, as follows: 

SMO SM1 Mode Description Baud Rate 

o 0 0 shift register fosc/ 16 
o 1 8-bit UART variable 

o 2 9-bit UART fosc/32 
3 9-bit UART variable 

FUNCTION 
Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2 is set to 1, then RI 
will not be activated if the received 9th data bit (RB8) is O. In Mode 1, if SM2=1 then RI will not be activated if a 
valid stop bit was not received. In Mode 0, SM2 should be O. 
Enables serial reception. Set by software to enable reception. Clear by software to disable reception. 
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired. 
In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, it SM2=0, RB8 is the stop bit that was 
received. In Mode 0, RB8 is not used. 
Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the end of the stop bit in the 
other modes. Must be cleared by software. 
Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the end of the stop bit time 
in the other modes (except see SM2). Must be cleared by software. 

Figure 12. Serial Port Control (SnCON) Register 

~.I 
START DATA BYTE ONLY IN STOP 

BIT MODE 2. 3 BIT 

I 
IfO. sets FE 

{ 
FEn BRn OEn STINTn I SnSTAT 

Figure 13. UART Framing Error Detection 

RECEIVED ADDRESS DO TO 07 ----r----, 
PROGRAMMED ADDRESS J-------.J 

IN UART MODE 2 OR MODE 3 AND SM2 = 1: 
INTERRUPT IF REN=1, RBS=' AND "RECEIVED ADDRESS" = "PROGRAMMED ADDRESS" 

- WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES 
- WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS. 

Figure 14. UART Multiprocessor Communication, Automatic Address Recognition 
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110 PORT OUTPUT CONFIGURATION 
Each I/O port pin on the XA-G1 can be user configured to one of 4 
output types. The types are Quasi-bidirectional (essentially the 
same as standard 80C51 family I/O ports), Open-Drain, Push-Pull, 
and Off (high impedance). The default configuration after reset is 
Quasi-bidirectional. However, in the ROMless mode (the EA pin is 
low at reset), the port pins that comprise the external data bus will 
default to push-pull outputs. 

I/O port output configurations are determined by the settings in port 
configuration SFRs. There are 2 SFRs for each port, called 
PnCFGA and PnCFGB, where "n" is the port number. One bit in 
each of the 2 SFRs relates to the output setting for the 
corresponding port pin, allowing any combination of the 2 output 
types to be mixed on those port pins. For instance, the output type 
of port 1 pin 3 is controlled by the setting of bit 3 in the SFRs 
P1 CFGA and P1 CFGB. 

Table 4 shows the configuration register settings for the 4 port 
output types. The electrical characteristics of each output type may 
be found in the DC Characteristic table. 

Table 4. Port Configuration Register Settings 

PnCFGB PnCFGA Port Output Mode 

0 0 Open Drain 

0 1 Quasi-bidirectional 

1 0 Off (high impedance) 

1 1 Push-Pull 
NOTE: 
Mode changes may cause glitches to occur during transitions. When 
modifying both registers, WRITE instructions should be carried out 
consecutively. 

EXTERNAL BUS 
The external program/data bus on t~e XA-G1 allows for 8-bit or 
16-blt bus width, and address sizes from 12 to 20 bits. The bus 
width is selected by an Input at reset (see Reset Options below), 
while the address size Is set by the program In a configuration 
register. If all off-chip code is selected (through the use of the EA 
pin), the initial code fetches will be done with the maximum address 
size (20 bits). 

RESET 
The device is reset whenever a logic "0" is applied to 'RST for at 
least 10 microseconds, placing a low level on the pin re-initiallzes 
the on-chip logic. Reset must be asserted when power is initially 
applied to the XA-G1 and held until the oscillator is running. 

The duration of reset must be extended when power is initially 
applied or when using reset to exit power down mode. This is due to 
the need to allow the oscillator time to start up and stabilize. For 
most power supply ramp up conditions, this time is 10 milliseconds. 

As It is brought high again, an exception is generated which causes 
the processor to jump to the address contained in the memory 
location 0000. The destination of the reset jump must be located in 
the first 64k of code address on power-up, all vectors are 16-bit 
values and so point to page zero addresses only. After a reset the 
RAM contents are indeterminate. 

1997 Mar 25 334 

Preliminary specification 

XA-G1 

v2P 

R XA 

I---- RESET 

C1 

SOME TYPICAL VALUES FOR RAND C: 
R = 1 OaK. C = 1.0~F 
R = 1.0M. C =O.1~F 

(ASSUMING THAT THE vee RISE TIME IS 1 ms OR LESS) SUOO702 

Figure 15. Recommended Reset Circuit 

RESET OPTIONS 
The EA pin is sampled on the rising edge of the 'RST pulse, and 
determines whether the device is to begin execution from internal or 
external code memory. EA pulled high configures the XA in 
single-chip mode. If EA is driven low, the device enters ROMless 
mode. After Reset is released, the EAlWAIT pin becomes a bus wait 
signal for external bus transactions. 

The BUSW/P3.5 pin is weakiy pulled high while reset is asserted, 
allowing simple biasing of the pin with a resistor to ground to select 
the alternate bus width. If the BUSW pin is not driven at reset, the 
weak pull up will cause a 1 to be loaded for the bus width, giving a 
16-bit external bus. BUSW may be pulled low with a 2.7K or smaller 
value resistor, giving an 8-bit external bus. The bus width setting 
from the BUSW pin may be overridden by software once the user 
program is running. 

Both EA and WAIT must be held for three oscillator clock times after 
reset Is deasserted to guarantee that their values are latched 
correctly. 

ONCE MODE 
The ONCE (on-circuit emulation) mode facilitates testing and 
debugging of systems using the XA-G1 without the device having to 
be removed from the circuit. While the XA-G1is In this mode, an 
emulator, tester, or test device may be used to drive the application 
circuit. The ONCE mode is activated by the following conditions: 
1. While 'RST is asserted, ALE, P1.3, P1.2, P1.1, and P1.0 are 

pulled low. The 'J5SEiJ'signal must be allowed to remain high. 

2. Deassert'RST while holding the other pins in the above state. 
After ONCE mode is entered, the setup signals may be released. 

While the XA-G1 is in the ONCE mode, all port pins, ALE, and 
'J5SEiJ' are pulled weakly high. The on-chip oscillator remains active. 
Normal operation is restored after a standard reset is applied. 

POWER REDUCTION MODES 
The XA-G1 supports Idle and Power Down modes of power 
reduction. The idle mode leaves some peripherals running to allow 
them to activate the processor when an interrupt is generated. The 
power down mode stops the oscillator in order to minimize power. 
The processor can be made to exit power down mode via reset or 
one of the external interrupt inputs. In order to use an external 
interrupt to re-activate the XA while in power down mode, the 
external Interrupt must be enabled and be configured to level 
sensitive mode. In power down mode, the power supply voltage may 
be reduced to the RAM keep-alive voltage (2V), retaining the RAM, 
register, and SFR values at the point where the power down mode 
was entered. 



Philips Semiconductors Preliminary specification 

CMOS single-chip 16-bit microcontroller XA-G1 

INTERRUPTS 
The XA-G1 supports 38 vectored interrupt sources. These include 9 
maskable event interrupts, 7 exception interrupts, 16 trap interrupts, 
and 7 software interrupts. The maskable interrupts each have 8 priority 
levels and may be globally and/or individually enabled or disabled. 

The XA defines four types of interrupts: 
• Exception Interrupts - These are system level errors and other 

very important occurrences which include stack overflow, 
divide-by-O, and reset. 

• Event Interrupts - These are peripheral interrupts from devices 
such as UARTs, timers, and external interrupt inputs. 

• Software Interrupts - These are equivalent of hardware 
interrupt, but are requested only under software control. 

• Trap Interrupts - These are TRAP instructions, generally used to 
call system services in a multi-tasking system. 

Exception interrupts, software interrupts, and trap interrupts are 
generally standard for XA derivatives and are detailed in the XA 
User Guide. Event interrupts tend to be different on different XA 
derivatives. 

Table 5. Interrupt Vectors 
EXCEPTIONITRAPS PRECEDENCE 

The XA-G1 supports a total of 9 maskable event interrupt sources 
(for the various XA-G1 peripherals), seven software interrupts, 5 
exception interrupts (plus reset), and 16 traps. The maskable event 
interrupts share a global interrupt disable bit (the EA bit in the IEL 
register) and each also has a separate individual interrupt enable bit 
(in the IEL or IEH registers). Only three bits of the IPA register values 
are used on the XA-G1. Each event interrupt can be set to occur at 
one of 8 priority levels via bits in the Interrupt Priority (IP) registers, 
IPAO through IPA5. The value 0 in the IPA field gives the interrupt 
priority 0, in effect disabling the interrupt. A value of 1 gives the interrupt 
a priority of 9, the value 2 gives priority 10, etc. the result is the same 
as if all four bits were used and the top bit set for all values except O. 
Details of the priority scheme may be found in the XA User Guide. 

The complete interrupt vector list for the XA-G1, including all 4 
interrupt types, is shown in the following tables. The tables include 
the address of the vector for each interrupt, the related priority 
register bits (if any), and the arbitration ranking for that interrupt 
source. The arbitration ranking determines the order in which 
interrupts are processed if more than one interrupt of the same 
priority occurs simultaneously. 

DESCRIPTION VECTOR ADDRESS ARBITRATION RANKING 

Reset (h/w, watchdog, s/w) 0000-0003 o (High) 

Breakpoint (h/w trap 1) 0004-0007 1 

Trace (h/w trap 2) 0008-0008 1 

Stack Overflow (h/w trap 3) OOOC-OOOF 1 

Divide by 0 (h/w trap 4) 0010-0013 1 

User RETI (h/w trap 5) 0014-0017 1 

TRAP 0-15 (software) 0040-o07F 1 

EVENT INTERRUPTS 

DESCRIPTION FLAG BIT VECTOR ENABLE BIT INTERRUPT PRIORITY ARBITRATION 
ADDRESS RANKING 

External interrupt 0 lEO 008D-0083 EXO IPAO.2-0 (PXO) 2 

Timer 0 interrupt TFO 0084-0087 ETO IPAO.6-4 (PTO) 3 

External interrupt 1 lEi 0088-o08B EX1 IPA1.2-o (PX1) 4 

Timer 1 interrupt TF1 008C-008F En IPA1.6-4 (PT1) 5 

Timer 2 interrupt TF2(EXF2) 0090-0093 ET2 IPA2.2-0 (PT2) 6 

Serial port 0 Rx RI.O 00AO-00A3 ERIO IPA4.2-0 (PRIO) 7 

Serial port 0 Tx TLO 00A4-o0A7 ETIO IPA4.6-4 (PTIO) 8 

Serial port 1 Rx RLi 00A8-00AB ERI1 IPA5.2-0 (PRI1) 9 
Serial port 1 Tx TL1 OOAC-OOAF ETI1 IPA5.6-4 (PTI1) 10 

SOFnNAREINTERRUPTS 

DESCRIPTION FLAG BIT VECTOR ENABLE BIT INTERRUPT PRIORITY ADDRESS 

Software interrupt 1 SWR1 0100-0103 SWE1 (fixed at 1) 

Software interrupt 2 SWR2 0104-0107 SWE2 (fixed at 2) 
Software interrupt 3 SWR3 01 08-01 OB SWE3 (fixed at 3) 

Software interrupt 4 SWR4 010C-010F SWE4 (fixed at 4) 

Software interrupt 5 SWR5 0110-0113 SWE5 (fixed at 5) 

Software interrupt 6 SWR6 0114-0117 SWE6 (fixed at 6) 
Software interrupt 7 SWR7 0118-0118 SWE7 (fixed at 7) 
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ABSOLUTE MAXIMUM RATINGS 
PARAMETER 

Operating temperature under bias 

Storage temperature range 

Voltage on ~PP pin to Vss 

Voltage on any other pin to V S8 

MaximumloL per I/O pin 

Power dissipation (based on package heat transfer limitations, not device power consumption) 

DC ELECTRICAL CHARACTERISTICS 
ROM (G13): Voo = 2.7V to 5.5V unless otherwise specified; 
EPROM/OTP (G17): Voo = 5.0V ± 5% unless otherwise specified; 
Tamb = 0 to +70°C for commercial, -40°C to +85°C for industrial, unless otherwise specified 

SYMBOL PARAMETER TEST CONDITIONS 

Supplies 

100 Supply current operating 30 MHz 

110 Idle mode supply current 30 MHz 

Ipo Power-down current 

Ip01 Power-down current (-40°C to +85°C) 

VRAM RAM-keep-alive voltage RAM-keep-alive voltage 

VIL Input low voltage 

At5.0V 
VIH Input high voltage, except XTAL 1, RST 

At3.0V 

VIH1 Input high voltage to XTAL 1, RST For both 3.0 & 5.0V 

IOL = 3.2mA, Voo = 5.0V 
VOL Output low voltage ali ports, ALE, PSEN::I 

1.0mA, Voo = 3.0V 

IOH = -100IA-A, Voo = 4.5V 
VOH1 Output high voltage ali ports, ALE, PSEN' 

IOH = -30IA-A, Voo = 2.7V 

IOH = 3.2mA, Voo = 4.5V 
VOH2 Output high voltage, ports PO-3, ALE, PSEN2 

IOH = 1mA, Voo = 2.7V 

CIO Input/Output pin capacitance 

IlL Logical 0 input current, PO-36 VIN = O.45V 

ILl Input leakage current, PO-35 VIN = VIL or VIH 

ITL Logical 1 to 0 transition current ali ports4 At5.5V 
NOTES: 

Preliminary specification 
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RATING UNIT 

-55 to +125 °C 

-65 to +150 °C 

o to +13.0 V 

-0.5 to Voo+0.5V V 

15 rnA 

1.5 W 

LIMITS 

MIN TYP MAX 
UNIT 

60 80 rnA 

22 30 rnA 

5 50 IA-A 

75 IA-A 

1.5 V 

-0.5 0.22VOD V 

2.2 V 

2 V 

0.7Voo V 

0.5 V 

0.4 V 

2.4 V 

2.0 V 

2.4 V 

2.2 V 

15 pF 

-25 -75 IA-A 

±10 IA-A 

-650 flA 

1. Ports In Quasi bl-dlrectional mode with weak pull-up (applies to ALE, '!'SEN only during RESET). 
2. Ports in Push-Pull mode, both pull-up and pull-down assumed to be same strength 
3. In all output modes 
4. Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to O. This current is highest when 

VIN is approximately 2V. 
5. Measured with port in high impedance output mode. 
6. Measured with port in quasi-bidirectional output mode. 
7. Load capacitance for all outputs = 80pF. 
8. Under steady state (non-transient) conditions, IOL must be externally limited as follows: 

Maximum IOL per port pin: 15mA (*NOTE: This is 85°C speCification for VDD = 5V.) 
Maximum IOL per 8-bit port: 26m A 
Maximum total IOL for all output: 71 rnA 

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed 
test conditions. 
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AC ELECTRICAL CHARACTERISTICS 
VDD = 5.0V ±5%; Tamb = 0 to +70°C for commercial, -40°C to +85°C for industrial. 

VARIABLE CLOCK 
SYMBOL FIGURE PARAMETER UNIT 

MIN MAX 

External Clock 

fc Oscillator frequency 0 30 MHz 

tc 22 Clock period and CPU timing cycle 1/fc ns 

tCHCX 22 Clock high time (60%-40% duty cycle) tc * 0.5 ns 

tCLCX 22 Clock low time (60%-40% duty cycle) tc * 0.4 ns 

tCLCH 22 Clock rise time 5 ns 

tCHCL 22 Clock fall time 5 ns 

Address Cycle 

tCRAR 21 Delay from clock rising edge to ALE rising edge 10 40 ns 

tLHLL 16 ALE pulse width (programmable) (Vi * tc) - 4 ns 

tAVLL 16 Address valid to ALE de-asserted (set-up) (Vi * tc) -10 ns 

tLLAX 16 Address hold after ALE de-asserted (tcl2) -10 ns 

Code Read Cycle 

tpLPH 16 'J5S'EI'J pulse width (V2 * tc) -10 ns 

tLLPL 16 ALE de-asserted to PSEfiT asserted (tcl2) -5 ns 

tAVIVA 16 Address valid to instruction valid, ALE cycle (access time) (V3 * tc) -30 ns 

tAVIVB 17 Address valid to instruction valid, non-ALE cycle (access time) (V4 * tc) - 25 ns 

tpLIV 16 'J5S'EI'J asserted to instruction valid (enable time) (V2 * tc) - 25 ns 

tpXIX 16 Instruction hold after'J5S'EI'J de-asserted 0 ns 

tPXIZ 16 Bus 3-State after'J5S'EI'J de-asserted (disable time) tc-8 ns 

tUAPH 16 Hold time of unlatched part of address after PSEf\J is de-asserted 0 ns 

Data Read Cycle 

tRLRH 18 'Fro pulse width (V7*tc)-10 ns 

tLLRL 18 ALE de-asserted to 'Fro asserted (tcl2) - 5 ns 

tAvDVA 18 Address valid to data input valid, ALE cycle (access time) (V6 * tc) - 30 ns 

tAvDVB 19 Address valid to data input valid, non-ALE cycle (access time) (V5 * tc) - 25 ns 

tRLDV 18 'Fro low to valid data in, enable time (V7 * tc)-25 ns 

tRHDX 18 Data hold time after 'Fro de-asserted 0 ns 

tRHDZ 18 Bus 3-State after 'Fro de-asserted (disable time) tc - 8 ns 

tUARH 18 Hold time of unlatched part of address after 'Fro is de-asserted. 0 ns 

Data Write Cycle 

tWLWH 20 WFf pulse width (VB * tc) -10 ns 

tLLWL 20 ALE falling edge to WFf asserted (V9 * tc)-5 ns 

tovwx 20 Data valid before WFf asserted (data setup time) (V9 * tc) -25 ns 

tWHOX 20 Data hold time after WFf de-asserted (Vii *tc)-5 ns 

tAVWL 20 Address valid to WFf asserted (setup time) (Note 5) (V9 * tc)-25 ns 

tUAWH 20 Hold time of unlatched part of address after WFf is de-asserted (Vii *tc)-5 ns 

Wait Input 

tWTH 21 WAIT stable after bus strobe ('Fro, WFf, or PSm) asserted (Vi 0 * tc) - 25 ns 

tWTL 21 WAIT hold after bus strobe (RO', WFf, or 'J5S'EI'J) assertion (V10 * tc) -10 ns 
NOTES ON FOLLOWING PAGE. 
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NOTES: 
1. Load capacitance for all outputs = 80pF. 
2. Variables V1 through V11 reflect programmable bus timing, which is programmed via the Bus Timing registers (BTRH and BTRL). 

Refer to the XA Usef Guide for details of the bus timing settings. Please note that the XA-G1 requires that extended data bus hold time 
(WMO = 1) to be used with external bus write cycles. 
V1) This variable represents the programmed width of the ALE pulse as determined by the ALEW bit in the BTRL register. 

V1 = 0.5 if the ALEW bit = 0, and 1.5 if the ALEW bit = 1. 
V2) This variable represents the programmed width of the 'J5S"EN pulse as determined by the CR1 and CRO bits or the CRA 1, CRAO, and 

ALEW bits in the BTRL register. 
- For a bus cycle with no ALE, V2 = 1 if CR1/0 = 00, 2 if CR1/0 = 01, 3 if CR1/0 = 10, and 4 if CR1/0 = 11. Note that during burst 

mode code fetches, 'J5S"EN does not exhibit transitions at the boundaries of bus cycles. V2 still applies for the purpose of 
determining peripheral timing requirements. 

- For a bus cycle with an ALE, V2 = the total bus cycle duration (2 if CRA 1/0 = 00, 3 if CRA 1/0 = 01, 4 if CRA 1/0 = 10, 
and 5 ifCRA1/0 = 11) minus the number of clocks used by ALE (V1 + 0.5). 
Example: if CRA1/0 = 10 and ALEW = 1, the V2 = 4 - (1.5 + 0.5) = 2. 

V3) This variable represents the programmed length of an entire code read cycle with ALE. This time is determined by the CRA 1 and 
CRAO bits in the BTRL register. V3 = the total bus cycle duration (2 if CRA1/0 = 00,3 if CRA1/0 = 01,4 if CRA1/0 = 10, 
and 5 if CRA1/0 = 11). 

V4) This variable represents the programmed length of an entire code read cycle with no ALE. This time is determined by the CR1 and 
CRO bits in the BTRL register. V4 = 1 if CR1/0 = 00, 2 if CR1/0 = 01,3 if CR1/0 = 10, and 4 if CR1/0 = 11. 

V5) This variable represents the programmed length of an entire data read cycle with no ALE. this time is determined by the DR1 and 
ORO bits in the BTRH register. V5 = 1 if DR1/0 = 00, 2 if DR1/0 = 01,3 if DR1/0 = 10, and 4 if DR1/0 = 11. 

V6) This variable represents the programmed length of an entire data read cycle with ALE. The time is determined by the ORA 1 and 
DRAO bits in the BTRH register. V6 = the total bus cycle duration (2 if DRA1/0 = 00, 3 if DRA1/0 = 01,4 if DRA1/0 = 10, 
and 5 if DRA1/0 = 11). 

V7) This variable represents the programmed width of the RO pulse as de1ermined by the DR1 and ORO bits or the ORA 1, DRAO In the 
BTRH register, and the ALEW bit in the BTRL register. Note that during a 16-bit read operation on an 8-bit external bus, RO remains 
low and does not exhibit a transition between the first and second byte bus cycles. V7 still applies for the purpose of determining 
peripheral timing requirements. The timing for the first byte is for a bus cycle with ALE, the timing for the second byte is for a bus 
cycle with no ALE. 
- For a bus cycle with no ALE, V7 = 1 if DR1/0 = 00, 2 if DR1/0 = 01,3 if DR1/0 = 10, and 4 if DR1/0 = 11. 
- For a bus cycle with an ALE, V7 = the total bus cycle duration (2 if DRA1/0 = 00,3 if DRA1/0 = 01, 4 if DRA1/0 = 10, 

and 5 if DRA1/0 = 11) minus the number of clocks used by ALE (V1 + 0.5). 
Example: if DRA1/0 = 00 and ALEW = 0, then V7 = 2 - (0.5 + 0.5) = 1. 

V8) This variable represents the programmed width of the WRC and/or WRR pulse as determined by the WM1 bit in the BTRL register. 
V81 if WM1 = 0, and 2 if WM1 = 1. 

V9) This variable represents the programmed write setup time as determined by the data write cycle duration (defined by DW1 and DWO 
or the DWA 1 and DWAO bits in the BTRH register), the WMO and ALEW bits in the BTRL register, and the value of V8. 
- For a bus cycle with no ALE, V9 = the total bus write cycle duration (2 if DW1/0 = 00, 3 if DW1/0 = 01, 4 if DW1/0 = 10, and 

5 if DW1/0 = 11) minus the number of clocks used by the WR[ and/or WRR pulse (V8) minus the number of clocks used for data 
hold time (0 if WMO = 0 and 1 if WMO = 1). 
Example:1f DW1/0 = 11, WMO = 0, and WM1 = 0, then V9 = 5 - 0 -1 = 4. 

- For a bus cycle with an ALE, there are two cases: 
1 For the parametertAvwL, V9 = the total bus cycle duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01, 4 if DWA1/0 = 10, and 5 if 

DWA 1/0 = 11) minus the number of clocks used by the WRC and/or WRR pulse (V8), minus the number of clocks used by data 
hold time (0 if WMO = 0 and 1 if WMO = 1). 

2 For other parameters, V9 = the above value minus the width of the ALE pulse (V1). 
Example: if DWA1/0 = 11, WMO = 1, WM1 = 1, and V1 = 0.5, then V9 = 5 -1 - 2 - 0.5 = 1.5. 

V10) This variable represents the length of a bus strobe for calculation of WAIT setup and hold times. The strobe may be RO (for data read 
cycles), WRC and/or WRR (for data write cycles), or'J5S"EN (for code read cycles), depending on the type of bus cycle being widened 
by WAIT. V10 will equal V2, V7, or V8 in any particular bus cycle (V2 tor a code read cycle, V7 for a data cycle ~ wideneciJ>L 
WAIT. V10 = V2 for WAIT associated with a code read cycle using 'I"SE1\l'. V10 = V8 for a data write cycle using WR[ and/or WRR. 
V10 = V7-1 for a data read cycle using RO. This means that a single clock data read cycle cannot be stretched using WAIT. If WAIT 
is used to vary the duration of data read cycles, the RO strobe width must be set to be at lease two clocks in duration. 
Also see note 4. 

V11) This variable represents the programmed write hold time as determined by the WMO bit in the BTRL register. 
V11 = 0 if the WMO bit = 0, and 1 if the WMO bit = 1. 

3. Not all combinations of bus timing configuration values result in valid bus cycles. Please refer to the XA User Guide section on the External 
Bus for details. 

4. When code is being fetched for execution on the external bus, a burst mode fetch is used that does not have 'J5S"EN edges in every fetch 
cycle. Thus, if WAIT is used to delay code fetch cycles, a change in the low order address lines must be detected to locate the beginning of 
a cycle. This would be A3-AO for an 8-bit bus, and A3-A 1 for a 16-bit bus. Also, a 16-bit data read operation conducted on a 8-bit wide bus 
similarly does not include two separate RO strobes. So, a rising edge on the low order address line (AO) must be used to trigger a WAIT in 
the second half of such a cycle. 

5. This parameter is provided for peripherals that have the data clocked in on the falling edge of the WR strobe. This is not usually the case, 
and in most applications this parameter is not used. 
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* INSTA IN is either DO-D7 or DO-D15, depending on the bus width (8 or 16 bits), 

Figure 16. External Program Memory Read Cycle (ALE Cycle) 
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ALE~ ,,~--------------------------------

,,~---------------------------
MULTIPLEXED X ~ ~~/. ADDRESS AND DATA ______ oJ A4-A11 or A4-A19~ INSTR IN * rT7'</ h "-______ _ 

r-----------------------i---~ UNMULTIPLEXED ____ ~X AO or A1-A3, A12-19 AO or A1-A3, A12-1e 
ADDRESS .' • ' 

* INSTR IN is either DO-D7 or DO-D15, depending on the bus width (8 or 16 bits). SU00707 

Figure 17. External Program Memory Read Cycle (Non-ALE Cycle) 
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Figure 18. External Data Memory Read Cycle (ALE Cycle) 
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UNMULTIPLEXED 
ADDRESS ------", 

AO or A1-A3. A12-A19 

• DATA IN is either 00-07 or ~O-DiS, depending on the bus width (8 or 16 bits). 

"' ____ --J/ 
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AO or A1-A3, A12-A19 

SU0070B 

Figure 19. External Data Memory Read Cycle (Non-ALE Cycle) 

1997 Mar 25 340 



Philips Semiconductors 

CMOS single-chip 16-bit microcontrolier 

ALE 

WRCorWFrn 

MULTIPLEXED 
ADDRESS 
AND DATA 

UNMULTIPLEXED 
ADDRESS 

tAVLL 

)< 

)< 

"-

- tLLWL tWLWH 

tLLAX t~ 
A4-A 11 or A4-A 15 t>< DATAOUT* 

~tAVWL-

AD or A1-A3, A12-A19 

* DATA OUT is either 00-07 or 00-015. depending on the bus width (8 or 16 bits), 

~ 

V 

~ I+- tWHQX 

~ 
j+tUAWH+ 

)K 
Figure 20. External Data Memory Write Cycle 
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Figure 21. WAIT Signal Timing 
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(NC) XTAL2 

CLOCK SIGNAL XTAL1 

I 
Vss 

VOO-o·5 

0.45V 
0.7VOO 

0.2VOO-o·1 

tCHCL- tCLC 

Figure 22. External Clock Drive 

VOO-o·5 =x 0.2Voo+0.9 >C 
0.2Vo0-0·1 

0.45V --------.... 

NOTE: 
AC inputs during testing are driven at Voo -0.5 for a logic '1' and 0.4SV for a logic '0'. 
Timing measurements are made at the 50% point of transitions. 

VLOAO----< 

NOTE: 

Figure 23. AC Testing Input/Output 

TIMING 
REFERENCE 

POINTS 
VOL+0.1V 

For timing purposes, a port is no longer floating when a 1 OOmV change from load voltage occurs, 
and begins to float when a 100mV change from the loaded VOW'JOL level occurs. low'IOL;?: ±20mA. 

Figure 24. Float Waveform 

Voo 

Voo 

(NC) 

CLOCK SIGNAL 

Voo 

I'--vss __ ---' 
SU005918 

Voo 

Figure 25. 100 Test Condition, Active Mode 
All other pins are disconnected 

Figure 26. 100 Test Condition, Idle Mode 
All other pins are disconnected 
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CURRENT (rnA) 
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100 ~----.-----.-----~----.-----.------, 

80 +-----+-----+-----+-----+-----+------:::004 MAX. 100 

60 +-----+-----+-----+-----+-----:'::lJIIi'""--+----=-i TYPICAL S.OV 100 (ACTIVE) 

40 +-----+-----+----~~---~~~----+-----~ 

ROM & ROM less 
TYPICAL 3.0V 100 (ACTIVE) 

20 I:~~~t~~~;t~~~=t====f=~::t:==J TYPICAL 100 (IDLE) 

10 15 

FREQUENCY (MHz) 

20 

Figure 27. 100 vs. Frequency 

25 

Valid only within frequency specification of the device under test. 

VCC-<l·5 - - - - 0.7VCC 

0.45V O.2VCC-<l.1 

tCHCL- tClC 

Figure 28. Clock Signal Waveform for 100 Tests in Active and Idle Modes 
tClCH = tCHCl = 5ns 

Voo 
~~ 

l voo r---< 
R'ST 

~ r--
(NC)- XTAL2 

- XTALl 

~ vss 

-==-

Figure 29. 100 Test Condition, Power Down Mode 
All other pins are disconnected. Voo=2V to 5.5V 
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EPROM CHARACTERISTICS 
The XA-G17 is programmed by using a modified Improved 
Quick-Pulse Programming™ algorithm. This algorithm is essentially 
the same as that used by the later 80C51 family EPROM parts. 
However different pins are used for many programming functions. 

NOTE: The Vpp EPROM programming voltage for the XA-G17 is 
10.75V ± 0.25V. This is less than the 12.75V used for 80C51 
products. Care should be taken when programming the XA-G 17 to 
insure that the programming voltage (Vpp) is in the correct range. 
Using a programming voltage of 12.75V may damage the part being 
programmed. See Figure 30 for a circuit that you can use with a 
programmer that has a 12.75V programming pulse that will allow 
you to safely program the XA-G17. 

I 12.75V +5V 

D1 ~~ 
PROGRAMMER 

D2 ~~ R1 XA-G37 

10K 

D3 ~~ 
10.75V 

Vpp 

SU00843 

Figure 30. XA-G17 Programming Voltage Adjustment Circuit 

The XA-G1 contains three Signature bytes that can be read and 
used by an EPROM programming system to identify the device. The 
signature bytes identify the device as an XA-G1 manufactured by 
Philips. 

Table 6 shows the logic levels for reading the Signature byte, and for 
programming the code memory and the security bits. The circuit 
configuration and waveforms for quick-pulse programming are 
shown in Figure 31. Figure 33 shows the circuit configuration for 
normal code memory verification. 

Quick-Pulse Programming 
The setup for microcontroller quick-pulse programming is shown in 
Figure 31. Note that the XA-G1 is running with a 3.5 to 12MHz 
oscillator. The reason the oscillator needs to be running is that the 
device is executing internal address and program data transfers. 

The address of the EPROM location to be programmed is applied to 
ports 2 and 3, as shown in Figure 31. The code byte to be 
programmed into that location is applied to port O. RST, f'S'EN and 
pins of port 1 specified in Table 6 are held at the 'Program Code 
Data' levels indicated in Table 6. The ALEIPROO is pulsed low 5 
times as shown in Figure 32. 

To program the security bits, repeat the 5 pulse programming 
sequence using the 'Pgm Security Bit' levels. After one security bit is 
programmed, further programming of the code memory and 
encryption table is disabled. However, the other security bits can still 
be programmed. 

TMTrademark phrase of Intel Corporation. 
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Note that the r::AJVpp pin must not be allowed to go above the 
maximum specified Vpp level for any amount of time. Even a narrow 
glitch above that voltage can cause permanent damage to the 
device. The Vpp source should be well regulated and free of glitches 
and overshoot. 

Program Verification 
If security bits 2 and 3 have not been programmed, the on-Chip 
program memory can be read out for program verification. The 
address of the program memory locations to be read is applied to 
ports 2 and 3 as shown in Figure 33. The other pins are held at the 
'Verify Code Data' levels indicated in Table 6. The contents of the 
address location will be emitted on port O. 

Reading the Signature Bytes 
The Signature bytes are read by the same procedure as a normal 
verification of locations 030H, 031 H, and 060H except that P1.2 and 
P1.3 need to be pulled to a logic low. The values are: 

(030H) = 15H indicates manufactured by Philips 
(031 H) = EAH indicates XA architecture 
(060H) = 03H indicates XA-G1 (non-Rev.) 

06H indicates XA-G1 (Rev. A) 

ProgramNerify Algorithms 
Any algorithm in agreement with the conditions listed in Table 6, and 
which satisfies the timing specifications, is suitable. 

Erasure Characteristics 
Erasure of the EPROM begins to occur when the chip is exposed to 
light with wavelengths shorter than approximately 4,000 angstroms. 
Since sunlight and fluorescent lighting have wavelengths in this 
range, exposure to these light sources over an extended time (about 
1 week in sunlight, or 3 years in room level fluorescent lighting) 
could cause inadvertent erasure. For this and secondary effects, 
it is recommended that an opaque label be placed over the 
window. For elevated temperature or environments where solvents 
are being used, apply Kapton tape Fluorglas part number 2345-5, or 
equivalent. 

The recommended erasure procedure is exposure to ultraviolet light 
(at 2537 angstroms) to an integrated dose of at least 15W-s/cm2. 
Exposing the EPROM to an ultraviolet lamp of 12,000pW/cm2 rating 
for 90 to 120 minutes, at a distance of about 1 inch, shOUld be 
sufficient. 

Erasure leaves the array in an all1s state. 

Security Bits 
With none of the security bits programmed the code in the program 
memory can be verified. When only security bit 1 (see Table 6) is 
programmed, MOVC instructions executed from external program 
memory are disabled from fetching code bytes from the internal 
memory. All further programming of the EPROM is disabled. When 
security bits 1 and 2 are programmed, in addition to the above, 
verify mode is disabled. When all three security bits are 
programmed, all of the conditions above apply and all external 
program memory execution is disabled. (See Table 7.) 
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Table 6. EPROM Programming Modes 

MODE RST I'SE'N ALEJPR'O'G' ~pp P1.0 P1.1 P1.2 P1.3 P1.4 

Read signature 0 0 1 1 0 0 0 0 0 

Program code data 0 0 o· Vpp 0 1 1 1 1 

Verify code data 0 0 1 1 0 0 1 1 0 

Pgm security bit 1 0 0 O· Vpp 1 1 1 1 1 

Pgm security bit 2 0 0 O· Vpp 1 1 0 0 1 

Pgm security bit 3 0 0 O· Vpp 1 0 1 0 1 

Verify security bits 0 0 1 1 0 0 0 1 0 

NOTES: 
1. '0' = Valid low for that pin, '1' = valid high for that pin. 
2. Vpp = 10.7SV ±O.2SV. 
3. Voo = SV±1 0% during programming and verification. 
• ALEIPROO receives S programming pulses while Vpp is held at 10.7SV. Each programming pulse is low for 50J,Ls (±10J,Ls) and high for a 

minimum of 10J,Ls. 

Table 7. Program Security Bits 

PROGRAM LOCK BITS 

SB1 SB2 SB3 PROTECTION DESCRIPTION 

1 U U U No Program Security features enabled. 

2 P U U MOVC instructions executed from external program memory are disabled from fetching code bytes 
from internal memory and further programming of the EPROM is disabled. 

3 P P U Same as 2, also verify is disabled. 

4 P P P Same as 3, external execution is disabled. Internal data RAM is not externally accessible. 

NOTES: 
1. P - programmed. U - unprogrammed. 
2. Any other combination of the security bits Is not defined. 

ROM CODE SUBMISSION 
When submitting ROM code for the XA-G1, the following must be specified: 
1. 8k byte user ROM data 
2, ROM security bits. 
3. Watchdog configuration 

ADDRESS CONTENT BIT(S) 

OOOOH to 1 FFFH DATA 7:0 

8020H SEC 0 

8020H SEC 1 

8020H SEC 3 
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COMMENT 

User ROM Data 

ROM Security Bit 1 

ROM Security Bit 2 
o = enable security 
1 = disable security 

ROM Security Bit 3 
o = enable security 
1 = disable security 
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+5V 

AD-A7 P2 
VDD 

PO PGMDATA 

'RST 

P1.2 EA/VPP +12.75V 

P1.3 ALEfI5R'OO 5 50j.lS PULSES TO GROUND 

P1.4 XA·G1 J5SEiI 

XTAL2 P1.1 

3.S-12MHz P1.0 

XTAL1 P3.o-P3.6 AB-A14 

Vss 

SU00622A 

Figure 31, Programming Configuration for XA-G1 

1 fooIlcr------------------ 5 PULSES ~I 

ALEIPROO: ~L.. _____ --' n n n 
C 

~ I· 10j.lsMIN 50j.ls±10 

ALEJPROG: o I n 
SU006098 

Figure 32, PROO Waveform 

+5V 

VDD 

AD-A7 P2 PO PGMDATA 

'RST EA/VPP 
P1.2 

P1.3 
ALEiJ5ROG 

P1.4 XA·G1 PSEf'J 

XTAL2 P1.1 

P1.0 

XTAL1 P3.D-P3.6 AB-A14 

vss 

SU00623 

Figure 33, Program Verification for XA-G1 
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EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS 
Tamb = 21°C to +27°C, VDD = 5V±5%, VSS = OV (See Figure 34) 

SYMBOL PARAMETER 

Vpp Programming supply voltage 

Ipp Programming supply current 

1/tCL Oscillator frequency 

tAVGL Address setup to PROO low 

tGHAX Address hold after PROO 

tDVGL Data setup to PROO low 

tGHDX Data hold after PROO 

tEHSH P2.7 (rnAB'CE) high to Vpp 

tSHGL Vpp setup to moo low 

tGHSL Vpp hold after moo 
tGLGH PROOwidth 

tAVQV Address to data valid 

tELQV ENABCE low to data valid 

tEHQZ Data float after ENABCE 

tGHGL PROO high to 'PROO low 

NOTE: 
1. Not tested. 

PROGRAMMING· 

P2.o-P2.7 
P3.o-P3.4 

PORTO 
PO.O- PO.7 
(00-07) 

ALEII'FlO'G 

NOTE: 

~pp 

P1.4 
'El'I7iB[E 

FOR PROGRAMMING CONDITIONS SEE FIGURE 32. 
FOR VERIFICATION CONDITIONS SEE FIGURE 33. 

ADDRESS 

DATA IN 

MIN 

10.5 

3.5 

48tCL 

48tCL 

48tCL 

48tCL 

48tCL 

10 

10 

40 

0 

10 

VERIFICATION· 

DATA OUT 

LOGIC 1 

Figure 34. EPROM Programming and Verification 
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MAX UNIT 

11.0 V 

50 1 mA 

12 MHz 

Ils 

Ils 

60 Ils 

48tcL 

48tcL 

48tCL 

Ils 

tEHQZ 

SU00588 
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FAMILY DESCRIPTION 
The Philips Semiconductors XA (eXtended Architecture) family of 
16-bit single-chip microcontrollers is powerful enough to easily 
handle the requirements of high performance embedded 
applications, yet inexpensive enough to compete in the market for 
high-volume, low-cost applications. 

The XA family provides an upward compatibility path for 80C51 
users who need higher performance and 64k or more of program 
memory. Existing 80C51 code can also easily be translated to run 
on XA microcontrollers. 

The performance of the XA arc.hitecture supports the 
comprehensive bit-oriented operations of the 80C51 while 
incorporating support for multi-tasking operating systems and 
high-level languages such as C. The speed of the XA architecture, 
at 10 to 100 times that of the 80C51 , gives designers an easy path 
to truly high performance embedded control. 

The XA architecture supports: 

• Upward compatibility with the 80C51 architecture 

• .i6-bit fully static CPU with a 24-bit program and data address 

range 

• Eight 16-bit CPU registers each capable of performing all 
arithmetic and logic operations as well as acting as memory 
pointers. Operations may also be performed directly to memory. 

• Both 8-bit and 16-bit CPU registers, each capable of performing 
all arithmetic and logic operations. 

• An enhanced instruction set that includes bit intensive logic 
operations and fast signed or unsigned 16 x 16 multiply and 
32 / 16 divide 

ORDERING INFORMATION 

• Instruction set tailored for high level language support 

• Multi-tasking and real-time executives that include up to 32 
vectored interrupts, up to 16 software traps, segmented data 
memory, and banked registers to support context switching 

• Low power operation, which is intrinsic to the XA architecture 
includes power-down and idle modes. 

More detailed information on the core is available in the XA User 
Guide. 

SPECIFIC FEATURES OF THE XA·G2 
• 20-bit address range, 1 megabyte each program and data space. 

(Note that the XA architecture supports up to 24 bit addresses.) 

• 2.7V to 5.5V operation (EPROM and OTP are5V ±5%) 

• 16K bytes on-chip EPROM/ROM program memory 

• 512 bytes of on-chip data RAM 

• Three counter/timers with enhanced features 
(equivalentto 80C51 TO, T1, and T2) 

• Watchdog timer 

• Two enhanced UARTs 

• Four 8-bit I/O ports with 4 programmable output configurations 

• 44-pin PLCC and 44-pin LQFP packages 

ROM EPROM1 TEMPERATURE RANGE °C AND PACKAGE FREQ DRAWING 
(MHz) NUMBER 

P51XAG23JB BD P51XAG27JB BD OTP o to +70, Plastic Low Profile Quad Flat Pkg. 25 SOT389-1 

P51XAG23JB A P51XAG27JB A OTP Oto +70, Plastic Leaded Chip Carrier 25 SOT187-2 

P51XAG23JF BD P51XAG27JF BD OTP -40 to +85, Plastic Low Profile Quad Flat Pkg. 25 SOT389-1 

P51XAG23JF A P51XAG27JF A OTP -40 to +85, Plastic Leaded Chip Carrier 25 SOT187-2 

P51XAG23KB BD P51XAG27KB BD OTP o to +70, Plastic Low Profile Quad Flat Pkg. 30 SOT389-1 

P51XAG23KB A P51XAG27KB A OTP o to +70, Plastic Leaded Chip Carrier 30 SOT187-2 

NOTE: 
1. OTP = One Time Programmable EPROM. UV = Erasable EPROM. 
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PIN CONFIGURATIONS 

44-Pin PLCC Package 44-Pin LQFP Package 

~ 
1 

~ 
44 34 

n 
7[/ 

0 
p39 

33 

PLCC 

17[ P29 11 23 

~ ~ 
Pin Function Pin Function 12 22 

1 Vss 23 Voo Pin Function Pin Function 
2 P1.0/AOIWRH 24 P2.0/A1208 
3 P1.1/A1 25 P2.1/A1309 P1.5fTx01 23 P2.5/A17013 

4 P1.2/A2 26 P2.2/A14010 P1.6fT2 24 P2.6/A18014 

5 P1.3/A3 27 P2.3/A15011 P1.7fT2EX 25 P2.7/A19015 

6 P1.4/Rx01 28 P2.4/A16012 I1ST 26 J5'Srn 
7 P1.5fTxD1 29 P2.S/A17013 P3.0/RxDO 27 ALE/PROO' 
8 P1.6fT2 30 P2.6/A18D14 NC 28 NC 
9 P1.7fT2EX 31 P2.7/A19015 P3.1fTxOO 29 T:A/Vpp/WAIT 

10 R5T 32 J5'Srn P3.2/1NTO 30 PO.7/A11D7 
11 P3.0/RxDO 33 ALE/PROO' P3.3!Tf.lTf 31 PO.6/A1006 
12 NC 34 NC 10 P3.4fTO 32 PO.S/A90S 
13 P3.1fTxDO 3S T:A/Vpp/WAIT 

11 P3.SfT1/BUSW 33 PO.4/A804 14 P3.2/fmO 36 PO.7/A11D7 
1S P3.3!Tf.lTf 37 PO.6/A1006 12 P3.6/WR[ 34 PO.3/A703 

16 P3.4fTO 38 PO.S/A90S 13 P3.7/RU 35 PO.2/A602 

17 P3.SfT1/BUSW 39 PO.4/A804 14 XTAL2 36 PO.1/A501 
18 P3.6iWl1L 40 PO.3/A703 15 XTAL1 37 PO.O/A4DO 
19 P3.7/RU 41 PO.21A602 16 Vss 38 Voo 
20 XTAL2 42 PO.1/AS01 17 Voo 39 Vss 
21 XTAL1 43 PO.0/A4OO 18 P2.0/A1208 40 P1.0/AOIWRH 
22 Vss 44 Voo 19 P2.1/A1309 41 P1.1/A1 

SUOO525 20 P2.21A14010 42 P1.2/A2 
21 P2.3/A1SD11 43 P1.3/A3 
22 P2.4/A16/012 44 P1.4/Rx01 

SUOO580 

LOGIC SYMBOL 

Voo Vss 

T2EX' 
_ T2' - Tx01 -----

Rx01 ] A3 CIl 
A2 ~CIl 
A1 ~~ 
AOIWRH ~ 

CIl[ 

t5 RxDO_ 
i= TxDO_ 
~ 1liI'rn_ 
0: J1iJTI_ 
1!! TO_ 
~ T1/BUSW_ 

ffi WR'C_ 
~ RO_ 
c( 

• NOT AVAILABLE ON 40-PIN DIP PACKAGE 
SU00526 
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BLOCK DIAGRAM 

. _ .. ------ ---- ----- - ---------- ------------------ - ------ . . 
XACPU Core 

16K BYTES 
ROM/EPROM 

UARTO 

512 BYTES 
STATIC RAM 

UARTl 

PORTO 

TIMER 0& 
TIMER 1 

PORT 1 

TIMER 2 

PORT 2 

WATCHDOG 
TIMER 

PORT 3 

I D. ____________________________ .. _______________________ .. 

SU00656 
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PIN DESCRIPTIONS 

PIN. NO. 
MNEMONIC TYPE NAME AND FUNCTION 

LCC LQFP 

Vss 1,22 16 I Ground: OV reference. 

VDD 23,44 17 I Power Supply: This is the power supply voltage for normal, idle, and power down operation. 

PO.O - PO.7 43-36 37-30 I/O Port 0: Port 0 is an 8-bit I/O port with a user-configurable output type. Port 0 latches have 1 s written 
to them and are configured in the quasi-bidirectional mode during reset. The operation of port 0 pins 
as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

When the external program/data bus is used, Port 0 becomes the multiplexed low data/instruction 
byte and address lines 4 through 11. 

Port 0 also outputs the code bytes during program verification and receives code bytes during 
EPROM programming. 

P1.0-P1.7 2-9 40-44, I/O Port 1: Port 1 is an 8-bit I/O port with a user-configurable output type. Port 1 latches have 1 s written 
1-3 to them and are configured in the quasi-bidirectional mode during reset. The operation of port 1 pins 

as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

Port 1 also provides special functions as described below. 

2 40 0 AOiWRH: Address bit 0 of the external address bus when the external data bus is 
configured for an 8 bit width. When the external data bus is configured for a 16 
bit width. this pin becomes the high byte write strobe. 

3 41 0 A1: Address bit 1 of the external address bus. 
4 42 0 A2: Address bit 2 of the external address bus. 

5 43 0 A3: Address bit 3 of the external address bus. 
7 1 0 TxD1 (P1.5): Transmitter output for serial port 1. 

8 2 I T2 (P1.6): Timer/counter 2 external count inputlclockout. 

9 3 I T2EX (P1.7): Timer/counter 2 reload/capture/direction control 

P2.0 - P2.7 24-31 18-25 I/O Port 2: Port 2 is an 8-bit I/O port with a user-configurable output type. Port 2 latches have 1 s written 
to them and are configured in the quasi-bidirectional mode during reset. The operation of port 2 pins 
as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on 110 port configuration and the DC Electrical Characteristics for 
details. 

When the extemal program/data bus is used in 16-bit mode, Port 2 becomes the multiplexed high 
datalinstruction byte and address lines 12 through 19. When the extemal program/data bus is used in 8-bit 
mode, the number of address lines that appear on port 2 is user programmable. 

Port 2 also receives the low-order address byte during program memory verification. 

P3.0- P3.7 11, 5, I/O Port 3: Port 3 is an 8-bit I/O port with a user configurable output type. Port 3 latches have 1 s written 
13-19 7-13 to them and are configured in the quasi-bidirectional mode during reset. the operation of port 3 pins 

as inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

Port 3 pins receive the high order address bits during EPROM programming and verification. 

Port 3 also provides various special functions as described below. 

11 5 I RxDO (P3.0): Receiver input for serial port O. 
13 7 0 TxDO (P3.1): Transmitter output for serial port O. 
14 8 I INTO(P3.2): External interrupt 0 input. 
15 9 I INTf (P3.3): External interrupt 1 input. 
16 10 I/O TO (P3.4): Timer 0 external input, or timer 0 overflow output. 
17 11 I/O T1/BUSW (P3.5): Timer 1 external input, or timer 1 overflow output. The value on this pin is 

latched as the external reset input is released and defines the default 
external data bus width (8USW). 0 = 8-bit bus and 1 = i6-bit bus. 

18 12 0 WRL(P3.6): External data memory low byte write strobe. 

19 13 0 RO(P3.7): External data memory read strobe. 

R'ST 10 4 I Reset: A low on this pin resets the microcontroller, causing 110 ports and peripherals to take on their 
default states, and the processor to begin execution at the address contained in the reset vector. 
Refer to the section on Reset for details. 
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PIN. NO. 
MNEMONIC TYPE NAME AND FUNCTION 

LCC LQFP 

ALE.IPR'OO 33 27 I/O Address Latch Enable/Program Pulse: A high output on the ALE pin signals external Circuitry to 
latch the address portion of the multiplexed address/data bus. A pulse on ALE occurs only when it is 
needed in order to process a bus cycle. During EPROM programming, this pin is used as the 
program pulse input. 

"J5SE1\j 32 26 0 Program Store Enable: The read strobe for external program memory. When the microcontroller 
accesses external program memory, 15Srn is driven low in order to enable memory devices. 15Srn 
is only active when external code accesses are performed. 

"UJWAIT/ 35 29 I External Access/WaitiProgramming Supply Voltage: The EA input determines whether the 
Vpp internal program memory of the microcontroller is used for code execution. The value on the EA pin 

is latched as the external reset input is released and applies during later execution. When latched as 
a 0, external program memory is used exclusively, when latched as a 1, intemal program memory 
will be used up to its limit, and external program memory used above that point. After reset is 
released, this pin takes on the function of bus Wait input. If Wait is asserted high during any external 
bus access, that cycle will be extended until Wait is released. During EPROM programming, this pin 
is also the programming supply voltage input. 

XTAL1 21 15 I Crystal 1 : Input to the inverting amplifier used in the oscillator circuit and input to the internal clock 
generator circuits. 

XTAL2 20 14 0 Crystal 2: Output from the oscillator amplifier. 

SPECIAL FUNCTION REGISTERS 

SFR BIT FUNCTIONS AND ADDRESSES RESET 
NAME DESCRIPTION ADDRESS VALUE MSB LSB 

BCR Bus configuration register 46A - - - WAITD BUSD BC2 BC1 BCO Note 1 

BTRH Bus timing register high byte 469 DW1 DWO DWA1 DWAO DR1 DRO DRA1 DRAO FF 

BTRL Bus timing register low byte 468 WM1 WMO ALEW - CR1 CRO CRA1 CRAO EF 

CS Code segment 443 00 

DS Data segment 441 00 

ES Extra segment 442 00 
33F 33E 33D 33C 33B 33A 339 338 

lEW Interrupt enable high byte 427 - - - - ETI1 ERI1 ETIO ERIO 00 

337 336 335 334 333 332 331 330 

IEL* Interrupt enable low byte 426 EA - - ET2 ET1 EX1 ETO EXO 00 

IPAO Interrupt priority 0 4AO - PTO - PXO 00 

IPA1 Interrupt priority 1 4A1 - PT1 - PX1 00 

IPA2 Interrupt priority 2 4A2 - - - PT2 00 

IPA4 Interrupt priority 4 4A4 - PTIO - PRIO 00 

IPA5 Interrupt priority 5 4A5 - PTI1 - PRI1 00 

387 386 385 384 383 382 381 380 

PO* PortO 430 AD7 AD6 AD5 AD4 AD3 AD2 AD1 ADO FF 

38F 38E 38D 38C 38B 38A 389 388 

P1* Port 1 431 T2EX T2 TxD1 RxD1 A3 A2 A1 WRH FF 

397 396 395 394 393 392 391 390 

P2* Port 2 432 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 FF 

39F 39E 39D 39C 39B 39A 399 398 

P3* Port 3 433 RD WR T1 TO INn INTO TxDO RxDO FF 
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SFR BIT FUNCTIONS AND ADDRESSES RESET NAME DESCRIPTION ADDRESS LSB VALUE MSB 

POCFGA Port 0 configuration A 470 Note 5 

P1CFGA Port 1 configuration A 471 Note 5 

P2CFGA Port 2 configuration A 472 Note 5 

P3CFGA Port 3 configuration A 473 Note 5 

POCFGB Port 0 configuration B 4FO Note 5 

P1CFGB Port 1 configuration B 4F1 Note 5 

P2CFGB Port 2 configuration B 4F2 Note 5 

P3CFGB Port 3 configuration B 4F3 Note 5 

227 226 225 224 223 222 221 220 

PCON* Power control register 404 - - - - - - PD IDL 00 

20F 20E 20D 20C 20B 20A 209 208 

PSWH* Program status word (high byte) 401 SM TM RS1 RSO 1M3 1M2 IM1 IMO Note 2 

207 206 205 204 203 202 201 200 

PSWL* Program status word (low byte) 400 C AC - - - V N Z Note 2 

217 216 215 214 213 212 211 210 

PSW51* 80C51 compatible PSW 402 C AC FO RS1 RSO V F1 P Note 3 

RTHO Timer 0 extended reload, 455 00 
high byte 

RTH1 Timer 1 extended reload, 457 00 
high byte 

RTLO Timer 0 extended reload, low byte 454 00 
RTL1 Timer 1 extended reload, low byte 456 00 

307 306 305 304 303 302 301 300 

SOCON* Serial port 0 control register 420 SMO_O SM1_0 SM2_0 REN_O TB8_0 RB8_0 TLO RI_O 00 

30F 30E 30D 30C 30B 30A 309 308 

SOSTAT* Serial port 0 extended status 421 - - - - FEO BRO OEO STINTO 00 

SOBUF Serial port 0 buffer register 460 x 
SOADDR Serial port 0 address register 461 00 
SOADEN Serial port 0 address enable 462 00 

register 

327 326 325 324 323 322 321 320 

S1CON* Serial port 1 control register 424 SMO_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TU RU 00 

32F 32E 32D 32C 32B 32A 329 328 

S1STAT* Serial port 1 extended status 425 - - - - FE1 BR1 OE1 STINT1 00 

S1BUF Serial port 1 buffer register 464 x 
S1ADDR Serial port 1 address register 465 00 
S1ADEN Serial port 1 address enable 466 00 

register 

SCR System configuration register 440 - - - - PT1 PTO CM PZ 00 

21F 21E 210 21C 21B 21A 219 218 

SSEL* Segment selection register 403 ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG ROSEG 00 

SWE Software Interrupt Enable 47A - SWE7 SWE6 SWE5 SWE4 SWE3 SWE2 SWE1 00 

357 356 355 354 353 352 351 350 

SWR* Software Interrupt Request 42A - SWR7 SWR6 SWR5 SWR4 SWR3 SWR2 SWR1 00 
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SFR BIT FUNCTIONS AND ADDRESSES RESET 
NAME DESCRIPTION ADDRESS VALUE MSB LSB 

2C7 2C6 2C5 2C4 2C3 2C2 2C1 2CO 

T2CON* Timer 2 control register 418 TF2 I EXF2 I RClKO I TClKO I EXEN2 I TR2 I Crr2 I CP/RL2 00 

2CF 2CE 2CO 2CC 2CB 2CA 2C9 2C8 

T2MOO* Timer 2 mode control 419 - I - I RClK1 I TClK1 I - I - I T20E 10CEN 00 

TH2 Timer 2 high byte 459 00 

Tl2 Timer 2 low byte 458 00 

T2CAPH Timer 2 capture register, 45B 00 
high byte 

T2CAPl Timer 2 capture register. 45A 00 
low byte 

287 286 285 284 283 282 281 280 

TCON* Timer 0 and 1 control register 410 TF1 I TR1 I TFO I TRO I lEi I 1T1 I lEO I ITO 00 

THO Timer 0 high byte 451 00 

TH1 Timer 1 high byte 453 00 

TlO Timer 0 low byte 450 00 

Tl1 Timer 1 low byte 452 00 

TMOO Timer 0 and 1 mode control 45C GATE I crr I M1 I MO I GATE I crr I M1 I MO 00 

28F 28E 280 28C 28B 28A 289 288 

TSTAT* Timer 0 and 1 extended status 411 - I - I - I - I - I TlOE I - I TOOE 00 

2FF 2FE 2FO 2FC 2FB 2FA 2F9 2F8 

WOCON' Watchdog control register 41F PRE2 I PRE1 I PREO I - I - I WDRUN I WDTOF I - Note 6 

WOl Watchdog timer reload 45F 00 
WFEE01 Watchdog feed 1 450 x 
WFEE02 Watchdog feed 2 45E x 

NOTES: 
SFRs are bit addressable. 

1. At reset, the BCR register is loaded with the binary value 0000 Oa11, where "a" is the value on the BUSW pin. This defaults the address bus 
size to 20 bits since the XA-G2 has only 20 address lines. 

2. SFR is loaded from the reset vector. 
3. All bits except F1, FO, and P are loaded from the reset vector. Those bits are all O. 
4. Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other 

purposes in future XA derivatives. The reset value shown for these bits is O. 
5. Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the 

condition found on the EA pin. Thus all PnCFGA registers will contain FF and PnCFGB registers will contain 00. When the XA begins 
execution using external code memory, the default configuration for pins that are associated with the external bus will be push-pull. The 
PnCFGA and PnCFGB register contents will reflect this difference. 

6. The WOCON reset value is E6 for a Watchdog reset, E4 for all other reset causes. 
7. the XA-G2 implements an 8-bit SFR bus, as stated in Chapter 8 of the XA User Guide. All SFR accesses must be 8-bit operations. Attempts 

to write 16 bits to an SFR will actually write only the lower 8 bits. Sixteen bit SFR reads will return undefined data in the upper byte. 
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XA-G2 TIMER/COUNTERS 
The XA has two standard 16-bit enhanced Timer/Counters: Timer 0 
and TImer 1. Additionally, it has a third 16-bit Up/Down 
timer/counter, T2. A central timing generator in the XA core provides 
the time-base for all XA Timers and Counters. The timer/event 
counters can perform the following functions: 
- Measure time intervals and pulse duration 
- Count external events 
- Generate interrupt requests 
- Generate PWM or timed output waveforms 

All of the XA-G2 timer/counters (TImer 0, TImer 1 and TImer 2) can 
be independently programmed to operate either as timers or event 
counters via the CIT bit in the TnCON register. All XA-G2 timers 
count up unless otherwise stated. These timers may be dynamically 
read during program execution. 

The base clock rate of all of the XA-G2 timers is user 
programmable. This applies to timers TO, T1, and T2 when running 
in timer mode (as opposed to counter mode), and the watchdog 
timer. The clock driving the timers is called TCLK and Is determined 
by the setting of two bits (PT1, PTO) in the System Configuration 
Register (SCR). The frequency of TCLK may be selected to be the 
oscillator input divided by 4 (Osc/4), the oscillator input divided by 
16 (Osc/16), or the oscillator input divided by 64 (Osc/64). This 
gives a range of possibilities for the XA timer functions, including 

SCR Address:440 
Not Bit Addressable 
Reset Value: OOH 

PT1 

o 
o 

PTO 

o 
1 

o 

MSB 

1- I 
OPERATING 
Prescaler selection. 
Osc/4 
Osc/16 
Osc/64 
Reserved 
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baud rate generation, Timer 2 capture. Note that this single rate 
setting applies to all of the timers. 

When timers TO, T1, or T2 are used in the counter mode, the 
register will increment whenever a falling edge (high to low 
transition) is detected on the external input pin corresponding to the 
timer clock. These inputs are sampled once every 2 oscillator 
cycles, so it can take as many as 4 oscillator cycles to detect a 
transition. Thus the maximum count rate that can be supported is 
Osc/4. The duty cycle of the timer clock inputs is not important, but 
any high or low state on the timer clock input pins must be present 
for 2 oscillator cycles before it is guaranteed to be "seen" by the 
timer logic. 

Timer 0 and Timer 1 
The ''Timer'' or "Counter" function is selected by control bits CIT in 
the special function register TMOD. These two TImer/Counters have 
four operating modes, which are selected by bit-pairs (M1, MO) in 
the TMOD register. TImer modes 1, 2, and 3 in XA are kept identical 
to the 80C51 timer modes for code compatibility. Only the mode 0 is 
replaced in the XA by a more powerful 16-bit auto-reload mode. This 
will give the XA timers a much larger range when used as time 
bases. 

The recommended M1, MO settings for the different modes are 
shown in Figure 2. 

LSB 

PT1 PTO CM PZ 

1 
CM Compatibility Mode allows the XA to execute most translated 80C51 code on the XA. The 

XA register file must copy the 80C51 mapping to data memory and mimic the 80C51 Indirect 
addressing scheme. 

PZ 

TMOD Address:45C 
Not Bit Addressable 
Reset Value: OOH 

M1 
o 
o 
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GATE 

Crr 

MO 
o 

o 

Page Zero mode forces all program and data addresses to 16-blts only. This saves stack space 
and speeds up execution but limits memory access to 64k. 

Figure 1. System Configuration Register (SCR) 

MSB LSB 

I GATE I crr M1 MO I GATE I crr M1 MO I 
~------~y~--------~) ~~--------~yr----------~ 

TIMER 1 TIMER 0 

Gating control when set. Timer/Counter "n" Is enabled only while ''If\Jiri'' pin is high and 
"TRn" control bit is set. When cleared Timer "n" Is enabled whenever ''TRn'' control bit is set. 
Timer or Counter Selector cleared for Timer operation (Input from Internal system clock.) 
Set for Counter operation (input from ''Tn'' Input pin). 

OPERATING 
16-bit auto-reload timer/counter 
16-bit non-auto-reload timer/counter 
8-bit auto-reload timer/counter 
Dual 8-bit timer mode (timer 0 only) 

Figure 2. Timer/Counter Mode Control (TMOD) Register 
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New Enhanced Mode 0 
For timers TO or T1 the 13-blt count mode on the 80C51 (current 
Mode 0) has been replaced In the XA with a 16-bit auto-reload 
mode. Four additional 8-blt data registers (two per timer: RTHn and 
RTln) are created to hold the auto-reload values. In this mode, the 
TH overflow will set the TF flag In the TCON register and cause both 
the Tl and TH counters to be loaded from the RTl and RTH 
registers respectively. 

reloads Tln with the contents of RTln, which Is preset by software. 
The reload leaves THn unchanged. 

Mode 2 operation is the same for Timer/Counter O. 

The overflow rate for Timer 0 or Timer 1 In Mode 2 may be 
calculated as follows: 

TlmecRate = Osc / (N * (256 - Timer_Reload_Value)) 

where N = the TClK prescaler value: 4, 16, or 64. 
These new SFRs will also be used to hold the Tl reload data in the 
8-blt auto-reload mode (Mode 2) Instead of TH. Mode 3 
The overflow rate for Timer 0 or Timer 1 in Mode 0 may be 
calculated as follows: 

Timer 1 in Mode 3 simply holds its count. The effect Is the same as 
setting TR1 = O. 

TimecRate = Osc / (N * (65536 - Timer_Reload_Value)) 

where N = the TClK prescaler value: 4 (default), 16, or 64. 

Timer 0 in Mode 3 establishes TlO and THO as two separate 
counters. TlO uses the Timer 0 control bits: CIT, GATE, TRO, INTO, 
and TFO. THO is locked Into a timer function and takes over the use 
of TR1 and TF1 from Timer 1. Thus, THO now controls the "Timer 1" 
interrupt. Mode 1 

Mode 1 Is the 16-blt non-auto reload mode. 

Mode 2 
Mode 2 configures the Timer register as an 8-bit Counter (Tln) with 
automatic reload. Overflow from Tln not only sets TFn, but also 

Mode 3 Is provided for applications requiring an extra 8-blt timer. 
When Timer 0 is in Mode 3, Timer 1 can be turned .on and off by 
switching it out of and into its own Mode 3, or can still be used by 
the serial port as a baud rate generator, or in fact, in any application 
not requiring an Interrupt. 

TCON Address:410 
Bit Addressable 
Reset Value: OOH 

BIT SYMBOL 
TCON.7 TF1 

TCON.6 TR1 
TCON.5 TFO 

TCON.4 TRO 
TCON.3 IE1 

TCON.2 IT1 

TCON.1 lEO 

TCON.O ITO 
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MSB 

I TF1 TR1 TFO TRO IE1 IT1 

FUNCTION 
Timer 1 overflow flag. Set by hardware on Timer/Counter overflow. 
This flag will not be set If T1 OE (TSTAT.2) Is set. 

lSB 

lEO ITO 

Cleared by hardware when processor vectors to Interrupt routine, or by clearing the bit in software. 
Timer 1 Run control bit. Set/cleared by software to turn Timer/Counter 1 on/off. 
Timer 0 overflow flag. Set by hardware on Timer/Counter overflow. 
This flag will not be set if TOOE (TSTAT.O) is set. 
Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit In software. 
Timer 0 Run control bit. Set/cleared by software to turn Timer/Counter 0 on/off. 
Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected. 
Cleared when interrupt processed. 
Interrupt 1 type control bit. Set/cleared by software to specify falling edge/low level triggered 
external Interrupts. 
Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected. 
Cleared when Interrupt processed. 
Interrupt 0 Type control bit. Set/cleared by software to specify falling edge/low level 
triggered external Interrupts. 

Figure 3. Timer/Counter Control (TCON) Register 
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T2CON Address:418 MSB LSB 
Bit Addressable 
Reset Value: OOH I TF2 I EXF2 I RClKO I TClKO I EXEN2\ TR2 I CfT2 \ CP/Rl2\ 

BIT SYMBOL FUNCTION 
T2CON.7 TF2 Timer 2 overflow flag. Set by hardware on Timer/Counter overflow. Must be cleared by software. 

TF2 will not be set when RClKO, RClK1, TClKO, TClK1 or T20E=1. 
T2CON.6 EXF2 TImer 2 external flag is set when a capture or reload occurs due to a negative transition on T2EX (and 

EXEN2 is set). This flag will cause a Timer 2 interrupt when this interrupt Is enabled. EXF2 is cleared by 
software. 

T2CON.5 RClKO Receive Clock Flag. 
T2CON.4 TClKO Transmit Clock Flag. RClKO and TClKO are used to select Timer 2 overflow rate as a clock source for 

UARTO instead of TImer T1. 
T2CON.3 EXEN2 
T2CON.2 TR2 

Timer 2 external enable bit allows a capture or reload to occur due to a negative transition on T2EX. 
Start=1/Stop=0 control for Timer 2. 

T2CON.1 CfT2 Timer or counter select. 
O=lnternal timer 
1 =External event counter (failing edge triggered) 

T2CON.0 CP/Rl2 Capture/Reload flag. 
If CP/Rl2 & EXEN2=1 captures will occur on negative transitions of T2EX. 
If CP/Rl2=0, EXEN2=1 auto reloads occur with either Timer 2 overflows or negative transitions at T2EX. 
If RClK or TClK=1 the timer is set to auto reload on TImer 2 overflow, this bit has no effect. 

SU00606A 

Figure 4. Timer/Counter 2 Control (T2CON) Register 

New Timer-Overflow Toggle Output 
In the XA, the timer module now has two outputs, which toggle on 
overflOW from the Individual timers. The same device pins that are 
used for the TO and T1 count inputs are also used for the new 
overflow outputs. An SFR bit (TnOE in the TSTAT register) is 
associated with each counter and indicates whether Port-SFR data 
or the overflow Signal is output to the pin. These outputs could be 
used in applications for generating variable duty cycle PWM outputs 
(changing the auto-reload register values). Also variable frequency 
(Osc/8 to Osc/8,388,608) outputs could be achieved by adjusting 
the prescaler along with the auto-reload register values. With a 
30.0MHz OSCillator, this range would be 3.58Hz to 3.75MHz. 

TimerT2 
Timer 2 In the XA is a 16-blt Timer/Counter which can operate as 
either a timer or as an event counter. This Is selected by CfT2 In the 
special function register T2CON. Upon timer T2 overflow/underflow, 
the TF2 flag is set, which may be used to generate an interrupt. It 
can be operated in one of three operating modes: auto-reload (up or 
down counting), capture, or as the baud rate generator (for either or 
both UARTs via SFRs T2MOD and T2CON). These modes are 
shown in Table 1. 

Capture Mode 
In the capture mode there are two options which are selected by bit 
EXEN2 In T2CON. If EXEN2 = 0, then timer 2 is a 16-bit timer or 
counter, which upon overflowing sets bit TF2, the timer 2 overflow 
bit. This will cause an interrupt when the timer 2 interrupt is enabled. 

If EXEN2 = 1, then Timer 2 still does the above, but with the added 
feature that a 1-to-0 transition at external input T2EX causes the 
current value in the Timer 2 registers, Tl2 and TH2, to be captured 
into registers RCAP2l and RCAP2H, respectively. In addition, the 
transition at T2EX causes bit EXF2 in T2CON to be set. This will 
cause an interrupt in the same fashion as TF2 when the Timer 2 
interrupt is enabled. The capture mode is illustrated in Figure 7. 
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Auto-Reload Mode (Up or Down Counter) 
In the auto-reload mode, the timer registers are loaded with the 
16-blt value In T2CAPH and T2CAPL when the count overflows. 
T2CAPH and T2CAPl are initialized by software. If the EXEN2 bit in 
T2CON is set, the timer registers will also be reloaded and the EXF2 
flag set when a 1-to-0 transition occurs at input T2EX. The 
auto-reload mode is shown in Figure 8. 

In this mode, TImer 2 can be configured to count up or down. This is 
done by setting or clearing the bit DCEN (Down Counter Enable) in 
the T2MOD special function register (see Table 1). The T2EX pin 
then controls the count direction. When T2EX is high, the count is in 
the up direction, when T2EX is low, the count is in the down 
direction. 

Figure 8 shows Timer 2, which will count up automatically, since 
DCEN = O. In this mode there are two options selected by bit 
EXEN2 in the T2CON register. If EXEN2 = 0, then TImer 2 counts 
up to FFFFH and sets the TF2 (Overflow Flag) bit upon overflow. 
This causes the Timer 2 registers to be reloaded with the 16-bit 
value in T2CAPl and T2CAPH, whose values are preset by 
software. If EXEN2 = 1, a 16-bit reload can be triggered either by an 
overflow or by a 1-to-0 transition at Input T2EX. This transition also 
sets the EXF2 bit. If enabled, either TF2 or EXF2 bit can generate 
the Timer 2 interrupt. 

In Figure 9, the DCEN = 1; this enables the Timer 2 to count up or 
down. In this mode, the logic level of T2EX pin controls the direction 
of count. When a logic '1' is applied at pin T2EX, the TImer 2 will 
count up. The Timer 2 will overflow at FFFFH and set the TF2 flag, 
which can then generate an interrupt if enabled. This timer overflow, 
also causes the 16-bit value in T2CAPl and T2CAPH to be 
reloaded into the timer registers TL2 and TH2. respectively. 

A logic '0' at pin T2EX causes Timer 2 to count down. When 
counting down, the timer value is compared to the 16-bit value 
contained in T2CAPH and T2CAPL. When the value is equal, the 
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timer register Is loaded with FFFF hex. The underflow also sets the 
TF2 flag, which can generate an Interrupt If enabled. 

The external flag EXF2 toggles when Timer 2 underflows or 
overflows. This EXF2 bit can be used as a 17th bit of resolution, If 
needed. the EXF2 flag does not generate an Interrupt In this mode. 
As the baud rate generator, timer T2 Is Incremented by TCLK. 

Baud Rate Generator Mode 
By setting the TCLKn and/or RCLKn In T2CON or T2MOD, the 
Timer 2 can be chosen as the baud rate generator for either or both 
UARTs. The baud rates for transmit and receive can be 
simultaneously different. 

Programmable Clock-Out 
A 50% duty cycle clock can be programmed to come out on P1.6. 
This pin, besides being a regular I/O pin, has two alternate 
functions. It can be programmed (1) to Input the external clock for 
Timer/Counter 2 or (2) to output a 50% duty cycle clock ranging from 
3.58Hz to 3.75MHz at a 30MHz operating frequency. 

Table 1. Timer 2 Operating Modes 
TR2 CP/RL2 RCLK+TCLK DCEN 

0 X X X 

1 0 0 0 

1 0 0 1 

1 1 0 X 

1 X 1 X 

TSTAT Address:411 
Bit Addressable 

MSB 

Reset Value: OOH 

FUNCTION 

Preliminary specification 

To configure the Timer/Counter 2 as a clock generator, bit CIT2 (In 
T2CON) must be cleared and bit T20E In T2MOD must be set. Bit 
TR2 (T2CON.2) also must be set to start the timer. 

The Clock-Out frequency depends on the oscillator frequency and 
the reload value of Timer 2 capture registers (TCAP2H, TCAP2L) as 
shown in this equation: 

TCLK 
2 x (65536-TCAP2H, TCAP2L) 

In the Clock-Out mode Timer 2 roll-overs will not generate an 
interrupt. This Is similar to when It Is used as a baud-rate generator. 
It Is possible to use Timer 2 as a baud-rate generator and a clock 
generator simultaneously. Note, however, that the baud-rate will be 
1/8 of the ClOCk-Out frequency. 

MODE 

Timer off (stopped) 

16-blt auto-reload, counting up 

16-bit auto-reload, counting up or down depending on T2EX pin 

16-bit capture 

Baud rate generator 

LSB 

T10E TOOE 

BIT 
TSTAT.2 

SYMBOL 
T10E When 0, this bit allows the T1 pin to clock Timer 1 when In the counter mode. 

When 1, T1 acts as an output and toggles at every Timer 1 overflow. 
TSTAT.O TOOE 

T2MOD Address:419 

When 0, this bit allows the TO pin to clock Timer 0 when in the counter mode. 
When 1 , TO acts as an output and toggles at every Timer 0 overflow. 

Figure 5. Timer 0 And 1 Extended Status (TSTAT) 

MSB LSB 
Bit Addressable 
Reset Value: OOH I RCLK1 I TCLK1 I T20E DCEN I 

BIT SYMBOL FUNCTION 
T2MOD.5 RCLK1 Receive Clock Flag. 
T2MOD.4 TCLK1 Transmit Clock Flag. RCLK1 and TCLK1 are used to select Timer 2 overflow rate as a clock source 

for UART1 Instead of Timer T1. 
T2MOD.1 T20E 

T2MOD.O DCEN 

When 0, this bit allows the T2 pin to clock Timer 2 when In the counter mode. 
When 1, T2 acts as an output and toggles at every Timer 2 overflow. 
Controls count direction for Timer 2 in autoreload mode. 
DCEN=1 counter set to count up only 

SU006128 

DCEN=O counter set to count up or down, depending on T2EX (see text). 
SU00610A 

Figure 6. Timer 2 Mode Control (T2MOD) 
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T2 Pin 
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Transition 
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TR2 

Control 

Capture 

TL2 
(S-bits) 

TH2 
(S-blts) 
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XA-G2 

Timer 2 
Interrupt 

T2EX Pin ~~~------~----------------------~ 

Control 

EXEN2 

Figure 7. Timer 2 In Capture Mode 

TL2 TH2 
(S-blts) (S-blts) 

T2 Pin 

T2EX Pin 

Control 

EXEN2 

Figure 8. Timer 2 in Auto-Reload Mode (OCEN = 0) 

(DOWN COUNTING RELOAD VALUE) 

~_~ __ =_O ____ -4 __ ~~C~-+ ______ ~ 
CONTROL 

TR2 

(UP COUNTING RELOAD VALUE) 

Figure 9. Timer 2 Auto Reload Mode (OCEN = 1) 
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WATCHDOG TIMER 
The watchdog timer subsystem protects the system from Incorrect 
code execution by causing a system reset when the watchdog timer 
underflows as a result of a failure of software to feed the timer prior 
to the timer reaching its terminal count. It Is Important to note that 
the XA-G2 watchdog timer is running after any type of reset and 
must be turned off by user software if the application does not use 
the watchdog function. 

Watchdog Function 
The watchdog consists of a programmable prescaler and the main 
timer. The prescaler derives Its clock from the TCLKsource that also 
drives timers 0, 1, and 2. The watchdog timer subsystem consists of 
a programmable 13-bit prescaler, and an B-bit main timer. The main 
timer is clocked (decremented) by a tap taken from one of the top 
B-blts of the prescaler as shown in Figure 10. The clock source for 
the prescaler is the same as TCLK (same as the clock source for 
the timers). Thus the main counter can be clocked as often as once 
every 64 TCLKs (see Table 2). The watchdog generates an 
underflow signal (and is autoloaded from WDL) when the watchdog 
Is at count 0 and the clock to decrement the watchdog occurs. The 
watchdog Is 8 bits wide and the autoload value can range from 0 to 
FFH. (The autoload value of 0 is permissible since the prescaler Is 
cleared upon autoload). 

This leads to the following user deSign equations. Definitions :tose 
is the OSCillator period, N is the selected prescaler tap value, W is 
the main counter autoload value, P is the prescaler value from 
Table 2, tMIN is the minimum watchdog time-out value (when the 
autoload value is 0), tMAX is the maximum time-out value (when the 
autoload value is FFH), tD is the design time-out value. 

tMIN = tose x 4 x 32 (W = 0, N = 4) 

tMAX = tose x 64 x 4096 x 256 (W = 255, N = 64) 

tD = lose x N x P x (W + 1) 

The watchdog timer Is not directly loadable by the user. Instead, the 
value to be loaded Into the main timer Is held in an autoload register. 
In order to cause the main timer to be loaded with the appropriate 
value, a special sequence of software action must take place. This 
operation Is referred to as feeding the wa~chdog timer. 

To feed the watchdog, two instructions must be sequentially 
executed successfully. No intervening SFR accesses are allowed, 
so interrupts should be disabled before feeding the watchdog. The 
instructions should move A5H to the WFEED1 register and then . 
5AH to the WFEED2 register. If WFEED1 is correctly loaded and 
WFEED2 is not correctly loaded, then an Immediate watchdog reset 
will occur. The program sequence to feed the watchdog timer or 
cause new WDCONsettlngs to take effect is as follows: 

clr ea ; disable global interrupts. 
mov.b wfeed1,#A5h ; do watchdog feed part 1 
mov.b wfeed2,#5Ah ; do watchdog feed part 2 
setb ea ; re-enable global interrupts. 

This sequence assumes that the XA interrupt system is enabled and 
there is a possibility of an interrupt request occurring during the feed 
sequence. If an interrupt was allowed to be serviced and the service 
routine contained any SFR access, it would trigger a watchdog 
reset. If it is known that no interrupt could occur during the feed 
sequence, the instructions to disable and re-enable interrupts may 
be removed. 
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The software must be written so that a feed operation takes place 
every tD seconds from the last feed operation. Some tradeoffs may 
need to be made. It Is not advisable to Include feed operations In 
minor loops or In subroutines unless the feed operation Is a specific 
subroutine. 

To turn the watchdog timer completely off, the following code 
sequence should be used: 

mov.b wdcon,#O ; set WD control register to clear WDRUN. 
mov.b wfeed1,#A5h ; do watchdog feed part 1 
mov.b wfeed2,#5Ah; do watchdog feed part 2 

This sequence assumes that the watchdog timer Is being turned off 
at the beginning of initialization code and that the XA Interrupt 
system has not yet been enabled. If the watchdog timer Is to be 
turned off at a point when Interrupts may be enabled, Instructions to 
disable and re-enable Interrupts should be added to this sequence. 

Watchdog Control Register (WDCON) 
The reset values of the WDCON and WDL registers will be such that 
the watchdog timer has a timeout period of 4 x 8192 x tose and the 
watchdog Is running. WDCON can be written by software but the 
changes only take effect after executing a valid watchdog feed 
sequence. 

Table 2. Prescaler Select Values in WDCON 
PRE2 PRE1 PREO DIVISOR 

0 0 0 32 

0 0 1 64 

0 1 0 128 

0 1 1 256 

1 0 0 512 

1 0 1 1024 

1 1 0 204B 

1 1 1 4096 

Watchdog Detailed Operation 
When external 'RES'ET is applied, the following takes place: 

• Watchdog run control bit set to ON (1). 

• Autoload register WDL set to 00 (min. count). 

• Watchdog time-out flag cleared. 

• Prescaler is cleared. 

• Prescaler tap set to the highest divide. 

• Autoload takes place. 

When coming out of a hardware reset, the software should load the 
autoload register and then feed the watchdog (cause an autoload). 

If the watchdog is running and happens to underflow at the time the 
external RESET is applied, the watchdog time-out flag will be 
cleared. 
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WATCHDOG FEED SEQUENCE 

MOV WFEED1,#A5H 
MOV WFEED2,#5AH 

TCLK 
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Figure 100 Watchdog Timer in XA-G2 

When the watchdog underflows, the following action takes place 
(see Figure 10): 

• Autoload takes place, 

• Watchdog time-out flag is set 

• Watchdog run bit unchanged, 

• Autoload (WDl) register unchanged. 

• Prescaler tap unchanged. 

• All other device action same as external reset. 

Note that if the watchdog underflows, the program counter will be 
loaded from the reset vector as in the case of an internal reset. The 
watchdog time-out flag can be examined to determine if the 
watchdog has caused the reset condition. The watchdog time-out 
flag bit can be cleared by software. 

WDCON Register Bit Definitions 
WDCON.7 PRE2 Prescaler Select 2, reset to 1 
WDCON.6 PRE1 Prescaler Select 1, reset to 1 
WDCON.5 PREO Prescaler Select 0, reset to 1 
WDCONA 
WDCON.3 
WDCON.2 WDRUN Watchdog Run Control bit, reset to 1 
WDCON.1 WDTOF Timeout flag 
WDCON.O 

UARTs 
The XA-G2 includes 2 UART ports that are compatible with the 
enhanced UART used on the BxC51 FB. Baud rate selection is 
somewhat different due to the clocking scheme used for the XA 
timers. 

Some other enhancements have been made to UART operation. 
The first is that there are separate interrupt vectors for each UART's 
transmit and receive functions. A break detect function has been 
added to the UART. This operates independently of the UART itself 
and provides a start-of-break status bit that the program may test. 
Finally, an Overrun Error flag has been added to detect missed 
characters in the received data stream. 

Each UART rate is determined by either a fixed division of the 
oscillator (in UART modes 0 and 2) or by the timer 1 or timer 2 
overflow rate (in UART modes 1 and 3). 
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Timer 1 defaults to clock both UARTO and UART1. Timer 2 can be 
programmed to clock either UARTO through T2CON (via bits ROClK 
and TOClK) or UART1 through T2MOD (via bits R1ClK and 
T1 ClK). In this case, the UART not clocked by T2 could use T1 as 
the clock source. 

The serial port receive and transmit registers are both accessed at 
Special Function Register SnBUF. Writing to SnBUF loads the 
transmit register, and reading SnBUF accesses a physically 
separate receive register. 

The serial port can operate in 4 modes: 

Mode 0: Serial 1/0 expansion mode. Serial data enters and exits 
through RxDn. TxDn outputs the shift clock. B bits are 
transmitted/received (lSB first). (The baud rate is fixed at 1/16 the 
oscillator frequency.) 

Mode 1 : Standard a-bit UART mode. 10 bits are transmitted 
(through TxDn) or received (through RxDn): a start bit (0), B data 
bits (lSB first), and a stop bit (1). On receive, the stop bit goes into 
RBB in Special Function Register SnCON. The baud rate is variable. 

Mode 2: Fixed rate 9-bit UART mode. 11 bits are transmitted 
(through TxDn) or received (through RxDn): start bit (0), B data bits 
(lSB first), a programmable 9th data bit, and a stop bit (1). On 
Transmit, the 9th data bit (TBB_B in SnCON) can be assigned the 
value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could 
be moved into TBB_n. On receive, the 9th data bit goes into RBB_n 
in Special Function Register SnCON, while the stop bit is ignored. 
The baud rate is programmable to 1/32 of the oscillator frequency. 

Mode 3: Standard 9-bit UART mode. 11 bits are transmitted 
(through TxDn) or received (through RxDn): a start bit (0), B data 
bits (lSB first), a programmable 9th data bit, and a stop bit (1). 
In fact, Mode 3 is the same as Mode 2 in all respects except baud 
rate. The baud rate in Mode 3 is variable. 

In all four modes, transmission is Initiated by any instruction that 
uses SnBUF as a destination register. Reception is initiated in Mode 
o by the condition RI_n = 0 and REN_n = 1. Reception is initiated in 
the other modes by the incoming start bit if REN_n = 1. 

Serial Port Control Register 
The serial port control and status register is the Special Function 
Register SnCON, shown in Figure 12. This register contains not only 
the mode selection bits, but also the 9th data bit for transmit and 
receive (TBB_n and RBB_n), and the serial port interrupt bits (TI_n 
and Ri_n). 
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CLOCKING SCHEME/BAUD RATE GENERATION 
The XA UARTS clock rates are determined by either a fixed division 
(modes 0 and 2) of the oscillator clock or by the Timer 1 or Timer 2 
overflow rate (modes 1 and 3). 

The clock for the UARTs in XA runs at 16x the Baud rate. If the 
timers are used as the source for Baud Clock, since maximum 
speed of timers/Baud Clock is Osc/4, the maximum baud rate is 
timer overflow divided by 16 Le. Osc/64. 

In Mode 0, it is fixed at Osc/16. In Mode 2, however, the fixed rate is 
Osc/32. 

00 Osc/4 

Pre-scaler 01 Osc/16 
for all Timers TO,1 ,2 10 Osc/64 
controlled by PT1, PTO 
bits in SCR 11, reserved 

Baud Rate for UART Mode 0: 
Baud_Rate=Osc/16 

Baud Rate calculation for UART Mode 1 and 3: 
Baud_Rate= TimecRate/16 

TimecRate=Osc/(N*(Timer_Range- TimecReload_ Value)) 

where N=the TCLK prescaler value: 4, 16, or 64. 
and Timer_Range= 256 for timer 1 in mode 2. 

65536 for timer 1 in mode 0 and timer 2 
in count up mode. 

The timer reload value may be calculated as follows: 
Timer_Reload_ Value= TimecRange-(Osc/(Baud_Rate*N*16») 

NOTES: 
1. The maximum baud rate for a UART in mode 1 or 3 is Osc/64. 

2. The lowest possible baud rate (for a given oscillator frequency 
and N value) may be found by using a timer reload value of o. 

3. The timer reload value may never be larger than the timer range. 

4. If a timer reload value calculation gives a negative or fractional 
result, the baud rate requested is not possible at the given 
oscillator frequency and N value. 

Baud Rate for UART Mode 2: 
Baud_Rate = Osc/32 

SnSTAT Address: SOSTAT 421 
S1STAT 425 

Bit Addressable 
Reset Value: OOH 

MSB 

BIT SYMBOL FUNCTION 
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Using Timer 2 to Generate Baud Rates 
Timer T2 is a 16-bit up/down counter in XA. As a baud rate 
generator, timer 2 is selected as a clock source for either/both 
UARTO and UART1 transmitters and/or receivers by setting TCLKn 
and/or RCLKn in T2CON and T2MOD. As the baud rate generator, 
T2 is incremented as Osc/N where N=4, 16 or 64 depending on 
TCLK as programmed in the SCR bits PT1, and PTO. So, if T2 is 
the source of one UART, the other UART could be clocked by either 
T1 overflow or fixed clock, and the UARTs could run independently 
with different baud rates. 

T2CON bit5 bit4 

Ox418 RCLKO TCLKO 

T2MOD bit5 bit4 

Ox419 RCLK1 TCLK1 

Prescaler Select for Timer Clock (TCLK) 

SCR bit3 

I 
bit2 

Ox440 PT1 PTO 

LSB 

FEn BRn OEn I STINTn I 

SnSTAT.3 FEn Framing Error flag is set when the receiver fails to see a valid STOP bit at the end of the frame. 
Cleared by software. 

SnSTAT.2 BRn 

SnSTAT.1 OEn 

SnSTAT.O STINTn 
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Break Detect flag is set if a character is received with all bits (including STOP bit) being logic '0'. Thus 
it gives a "Start of Break Detecf' on bit 8 for Mode 1 and bit 9 for Modes 2 and 3. The break detect 
feature operates independently of the UARTs and provides the START of Break Detect status bit that 
a user program may poll. Cleared by software. 
Overrun Error flag is set if a new character is received in the receiver buffer while it is still full (before 
the software has read the previous character from the buffer), Le., when bit 8 of a new byte is 
received while RI in SnCON is still set. Cleared by software. 
This flag must be set to enable any of the above status flags to generate a receive interrupt (Rln). The 
only way it can be cleared is by a software write to this register. 

Figure 11. Serial Port Extended Status (SnSTAT) Register 
(See also Figure 13 regarding Framing Error flag.) 
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INTERRUPT SCHEME 
There are separate interrupt vectors for each UART's transmit and 
receive functions. 

Table 3. Vector locations for UARTs in XA 

Vector Address Interrupt Source Arbitration 

AOH -A3H UART 0 Receiver 7 

A4H -A7H UART 0 Transmitter 8 

A8H -ABH UART 1 Receiver 9 

ACH-AFH UART 1 Transmitter 10 

NOTE: 
The transmit and receive vectors could contain the same ISR 
address to work like a 8051 interrupt scheme 

Error Handling, Status Flags and Break Detect 
The UARTs in XA has the following error flags; see Figure 11. 

Multiprocessor Communications 
Modes 2 and 3 have a special provision for multiprocessor 
communications. In these modes, 9 data bits are received. The 9th 
one goes into RB8. Then comes a stop bit. The port can be 
programmed such that when the stop bit is received, the serial port 
interrupt will be activated only if RB8 = 1. This feature is enabled by 
setting bit SM2 in SCON. A way to use this feature in multiprocessor 
systems is as follows: 

When the master processor wants to transmit a block of data to one 
of several slaves, it first sends out an address byte which identifies 
the target slave. An address byte differs from a data byte in that the 
9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1, no 
slave will be interrupted by a data byte. An address byte, however, 
will interrupt all slaves, so that each slave can examine the received 
byte and see if it is being addressed. The addressed slave will clear 
its SM2 bit and prepare to receive the data bytes that will be coming. 
The slaves that weren't being addressed leave their SM2s set and 
go on about their business, ignoring the coming data bytes. 

SM2 has no effect in Mode 0, and in Mode 1 can be used to check 
the validity of the stop bit although this is better done with the 
Framing Error (FE) flag. In a Mode 1 reception, if SM2 = 1, the 
receive interrupt will not be activated unless a valid stop bit is 
received. 

Automatic Address Recognition 
Automatic Address Recognition is a feature which allows the UART 
to recognize certain addresses in the serial bit stream by using 
hardware to make the comparisons. This feature saves a great deal 
of software overhead by eliminating the need for the software to 
examine every serial address which passes by the serial port. This 
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART 
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be 
automatically set when the received byte contains either the "Given" 
address or the "Broadcast" address. The 9 bit mode requires that 
the 9th information bit is a 1 to indicate that the received information 
is an address and not data. Automatic address recognition is shown 
in Figure 14. 

Using the Automatic Address Recognition feature allows a master to 
selectively communicate with one or more slaves by invoking the 

1997 Mar 25 363 

Preliminary specification 

XA-G2 

Given slave address or addresses. All of the slaves may be 
contacted by using the Broadcast address. Two special Function 
Registers are used to define the slave's address, SADDR, and the 
address mask. SADEN. SAD EN is used to define which bits in the 
SADDR are to be used and which bits are "don't care". The SADEN 
mask can be logically ANDed with the SADDR to create the "Given" 
address which the master will use for addressing each of the slaves. 
Use of the Given address allows multiple slaves to be recognized 
while excluding others. The following examples will help to show the 
versatility of this scheme: 

Slave 0 SADDR 1100 0000 
SADEN 1111 11Q1 
Given 1100 OOXO 

Slave 1 SADDR 1100 0000 
SADEN 1111 111Q 
Given 1100 OOOX 

In the above example SADDR is the same and the SADEN data is 
used to differentiate between the two slaves. Slave 0 requires a 0 in 
bit 0 and it ignores bit 1 . Slave 1 requires a 0 in bit 1 and bit 0 is 
ignored. A unique address for Slave 0 would be 11000010 since 
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 
1100 0001 since a 1 in bit 0 will exclude slave O. Both slaves can be 
selected at the same time by an address which has bit 0 = 0 (for 
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed 
with 11000000. 

In a more complex system the following could be used to select 
slaves 1 and 2 while excluding slave 0: 

Slave 0 SADDR 1100 0000 
SADEN 1111 1Q01 
Given 1100 OXXO 

Slave 1 SADDR 1110 0000 
SADEN 1111 1Q:lQ 
Given 1110 OX OX 

Slave 2 SADDR 1110 0000 
SADEN :1111 11QQ 
Given 1110 OOXX 

In the above example the differentiation among the 3 slaves is in the 
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be 
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and 
it can be uniquely addressed by 1110 and 0101. Slave 2 requires 
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0 
and 1 and exclude Slave 2 use address 11100100, since it is 
necessary to make bit 2 = 1 to exclude slave 2. 

The Broadcast Address for each slave is created by taking the 
logical OR of SADDR and SADEN. Zeros in this result are teated as 
don't-cares. In most cases, interpreting the don't-cares as ones, the 
broadcast address will be FF hexadecimal. 

Upon reset SADDR and SADEN are loaded with Os. This produces 
a given address of all "don't cares" as well as a Broadcast address 
of all "don't cares". This effectively disables the Automatic 
Addressing mode and allows the microcontroller to use standard 
UART drivers which do not make use of this feature. 
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SnCON Address: SOCON 420 

Bit Addressable 
Reset Value: OOH 

BIT SYMBOL 
SnCON.5 SM2 

SnCON.4 REN 
SnCON.3 TBS 
SnCON.2 RBS 

SnCON.1 TI 

SnCON.O RI 
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S1CON 424 MSB LSB 

SMO SM1 SM2 REN TBS RBS TI RI 

Where SMO, SM1 specify the serial port mode, as follows: 

SMO SM1 Mode Description Baud Rate 

0 0 0 shift register fosc/16 

0 1 S-bit UART variable 

0 2 9-bit UART fosc/32 

3 9-bit UART variable 

FUNCTION 
Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2 is set to 1, then RI 
will not be activated if the received 9th data bit (RBS) is O. In Mode 1, if SM2=1 then RI will not be activated if a 
valid stop bit was not received. In Mode 0, SM2 should be O. 
Enables serial reception. Set by software to enable reception. Clear by software to disable reception. 
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired. 
In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, it SM2=0, RBS is the stop bit that was 
received. In Mode 0, RBS is not used. 
Transmit interrupt flag. Set by hardware at the end of the Sth bit time in Mode 0, or at the end of the stop bit in the 
other modes. Must be cleared by software. 
Receive interrupt flag. Set by hardware at the end of the Sth bit time in Mode 0, or at the end of the stop bit time 
in the other modes (except see SM2). Must be cleared by software. 

Figure 12. Serial Port Control (SnCON) Register 

~.I 
START DATA BYTE ONLY IN STOP 

BIT MODE 2, 3 BIT 

I 
if 0, sets FE 

( 
/ 

FEn BRn OEn STINTn I SnSTAT 

Figure 13. UART Framing Error Detection 

RECEIVED ADDRESS DO TO D7 -----Ir------, 
PROGRAMMED ADDRESS t---------' 

IN UART MODE 2 OR MODE 3 AND SM2 = 1: 
INTERRUPT IF REN=l, RBB=1 AND "RECEIVED ADDRESS· = "PROGRAMMED ADDRESS" 

- WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES 
- WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS. 

Figure 14. UART Multiprocessor Communication, Automatic Address Recognition 
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I/O PORT OUTPUT CONFIGURATION 
Each I/O port pin on the XA-G2 can be user configured to one of 4 
output types. The types are Quasi-bidirectional (essentially the 
same as standard 80C51 family I/O ports), Open-Drain, Push-Pull, 
and Off (high impedance). The default configuration after reset is 
Quasi-bidirectional. However, in the ROMless mode (the EA pin is 
low at reset), the port pins that comprise the external data bus will 
default to push-pull outputs. 

110 port output configurations are determined by the settings in port 
configuration SFRs. There are 2 SFRs for each port, called 
PnCFGA and PnCFGB, where "n" is the port number. One bit in 
each of the 2 SFRs relates to the output setting for the 
corresponding port pin, allowing any combination of the 2 output 
types to be mixed on those port pins. For instance, the output type 
of port 1 pin 3 is controlled by the setting of bit 3 in the SFRs 
Pi CFGA and Pi CFGB. 

Table 4 shows the configuration register settings for the 4 port 
output types. The electrical characteristics of each output type may 
be found in the DC Characteristic table. 

Table 4. Port Configuration Register Settings 

PnCFGB PnCFGA Port Output Mode 

0 0 Open Drain 

0 1 Quasi-bidirectional 

1 0 Off (high impedance) 

1 1 Push-Pull 

NOTE: 
Mode changes may cause glitches to occur during transitions. When 
modifying both registers, WRITE instructions should be carried out 
consecutively. 

EXTERNAL BUS 
The external program/data bus on the XA-G2 allows for 8-bit or 
16-bit bus width, and address sizes from 12 to 20 bits. The bus 
width is selected by an input at reset (see Reset Options below), 
while the address size is set by the program in a configuration 
register. If all off-chip code is selected (through the use of the EA 
pin), the initial code fetches will be done with the maximum address 
size (20 bits). 

RESET 
The device is reset whenever a logic "0" is applied to RST for at 
least 10 microseconds, placing a low level on the pin re-initializes 
the on-chip logic. Reset must be asserted when power is initially 
applied to the XA-G2 and held until the oscillator is running. 

The duration of reset must be extended when power is initially 
applied or when using reset to exit power down mode. This is due to 
the need to allow the oscillator time to start up and stabilize. For 
most power supply ramp up conditions, this time is 10 milliseconds. 

As it is brought high again, an exception is generated which causes 
the processor to jump to the address contained in the memory 
location 0000. The destination of the reset jump must be located in 
the first 64k of code address on power-up, all vectors are i6-bit 
values and so point to page zero addresses only. After a reset the 
RAM contents are indeterminate. 
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SOME TYPICAL VALUES FOR RAND c: 
R = 100K. C = 1.01lF 
R = 1.0M. C = O.1IlF 

(ASSUMING THAT THE voo RISE TIME IS 1ms OR LESS) 

XA-G2 
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Figure 15. Recommended Reset Circuit 

RESET OPTIONS 
The EA pin is sampled on the rising edge of the RST pulse, and 
determines whether the device is to begin execution from internal or 
external code memory. EA pulled high configures the XA in 
single-chip mode. If EA is driven low, the device enters ROMless 
mode. After Reset is released, the EAlWAIT pin becomes a bus wait 
Signal for external bus transactions. 

The BUSW/P3.5 pin is weakly pulled high while reset is asserted, 
allowing simple biasing of the pin with a resistor to ground to select 
the alternate bus width. If the BUSW pin is not driven at reset, the 
weak pullup will cause a 1 to be loaded for the bus width, giving a 
i6-bit external bus. BUSW may be pulled low with a 2.7K or smaller 
value resistor, giving an 8-bit external bus. The bus width setting 
from the BUSW pin may be overridden by software once the user 
program is running. 

Both EA and WAIT must be held for three oscillator clock times after 
reset is deasserted to guarantee that their values are latched 
correctly. 

ONCE MODE 
The ONCE (on-circuit emulation) mode facilitates testing and 
debugging of systems using the XA-G2 without the device having to 
be removed from the circuit. While the XA-G2 is in this mode, an 
emulator, tester, or test device may be used to drive the application 
circuit. The ONCE mode is activated by the following conditions: 

1. While RST is asserted, ALE. P1.3, P1.2, P1.1, and P1.0 are 
pulled low. The 'J5SEl\T signal must be allowed to remain high. 

2. Deassert RST while holding the other pins in the above state. 
After ONCE mode is entered, the setup signals may be released. 

While the XA-G2 is in the ONCE mode, all port pins, ALE and 'PS'E]\J' 
are pulled weakly high. The on-chip oscillator remains active. 
Normal operation is restored after a standard reset is applied. 

POWER REDUCTION MODES 
The XA-G2 supports Idle and Power Down modes of power 
reduction. The idle mode leaves some peripherals running to allow 
them to activate the processor when an interrupt is generated. The 
power down mode stops the oscillator in order to minimize power. 
The processor can be made to exit power down mode via reset or 
one of the external interrupt inputs. In order to use an external 
interrupt to re-activate the XA while in power down mode, the 
external interrupt must be enabled and be configured to level 
sensitive mode. In power down mode, the power supply voltage may 
be reduced to the RAM keep-alive voltage (2V), retaining the RAM, 
register, and SFR values at the point where the power down mode 
was entered. 
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INTERRUPTS 
The XA-G2 supports 38 vectored interrupt sources. these include 9 
maskable event interrupts, 7 exception interrupts, 16 trap interrupts, 
and 7 software interrupts. The maskable interrupts each have 8 
priority levels and may be globally and/or individually enabled or 
disabled. 

The XA defines four types of interrupts: 
• Exception Interrupts - These are system level errors and other 

very important occurrences which include stack overflow, 
divide-by-O. and reset. 

• Event interrupts - These are peripheral interrupts from devices 
such as UARTs, timers, and external interrupt inputs. 

• Software Interrupts - These are equivalent of hardware 
interrupt, but are requested only under software control. 

• Trap Interrupts - These are TRAP instructions, generally used to 
call system services in a multi-tasking system. 

Exception interrupts, software interrupts, and trap interrupts are 
generally standard for XA derivatives and are detailed in the XA 
User Guide. Event interrupts tend to be different on different XA 
derivatives. 

Table 5. Interrupt Vectors 

EXCEPTIONITRAPS PRECEDENCE 

The XA-G2 supports a total of 9 maskable event interrupt sources 
(for the various XA-G2 peripherals), seven software interrupts, 5 
exception interrupts (plus reset), and 16 traps. The maskable event 
interrupts share a global interrupt disable bit (the EA bit in the IEL 
register) and each also has a separate individual interrupt enable bit 
(in the IEL or IEH registers). Only three bits of the IPA register values 
are used on the XA-G2. Each event interrupt can be set to occur at 
one of 8 priority levels via bits in the Interrupt Priority (IP) registers, 
IPAO through IPA5. The value 0 in the IPA field gives the interrupt 
priority 0, in effect disabling the interrupt. A value of 1 gives the 
interrupt a priority of 9, the value 2 gives priority 10, etc. The result is 
the same as if all four bits were used and the top bit set for all values 
except O. Details of the priority scheme may be found in the XA User 
Guide. 

The complete interrupt vector list for the XA-G2, including all 4 
interrupt types, is shown in the following tables. The tables include 
the address of the vector for each interrupt, the related priority 
register bits (if any), and the arbitration ranking for that interrupt 
source. The arbitration ranking determines the order in which 
interrupts are processed if more than one interrupt of the same 
priority occurs simultaneously. 

DESCRIPTION VECTOR ADDRESS ARBITRATION RANKING 

Reset (h/w, watchdog, s/w) 0000-0003 o (High) 

8reakpoint (h/w trap 1) 0004-0007 1 

Trace (h/w trap 2) 0008-0008 1 

Stack Overflow (h/w trap 3) OOOC-OOOF 1 

Divide by 0 (h/w trap 4) 0010-0013 1 

User RETI (h/w trap 5) 0014-0017 1 

TRAP 0-15 (software) 0040-007F 1 

EVENT INTERRUPTS 

DESCRIPTION FLAG BIT 
VECTOR 

ENABLE BIT INTERRUPT PRIORITY ARBITRATION 
ADDRESS RANKING 

External interrupt 0 lEO 0080-0083 EXO IPAO.2-Q (PXO) 2 

Timer 0 interrupt TFO 0084-0087 ETO IPAO.6-4 (PTO) 3 

External interrupt 1 lEi 0088-0088 EX1 IPA1.2-0 (PX1) 4 

Timer 1 interrupt TF1 008C-008F ET1 IPA1.6-4 (PT1) 5 

Timer 2 interrupt TF2(EXF2) 0090-0093 ET2 IPA2.2-0 (PT2) 6 

Serial port 0 Rx RI.O 00Ao-OOA3 ERIO IPA4.2-Q (PRIO) 7 

Serial port 0 Tx TLO 00A4-00A7 ETIO IPA46-4 (PTIO) 8 

Serial port 1 Rx RL1 00A8-00A8 ERI1 IPA5.2-Q (PRI1) 9 

Serial port 1 Tx TL1 OOAC-OOAF ETI1 IPA5.6-4 (PTI1) 10 

SOFTWARE INTERRUPTS 

DESCRIPTION FLAG BIT VECTOR ENABLE BIT INTERRUPT PRIORITY 
ADDRESS 

Software interrupt 1 SWR1 0100...;.0103 SWE1 (fixed at 1) 

Software interrupt 2 SWR2 0104-0107 SWE2 (fixed at 2) 

Software interrupt 3 SWR3 0108-0108 SWE3 (fixed at 3) 

Software interrupt 4 SWR4 01 OC-01 OF SWE4 (fixed at 4) 

Software interrupt 5 SWR5 0110-0113 SWE5 (fixed at 5) 

Software interrupt 6 SWR6 0114-0117 SWE6 (fixed at 6) 

Software interrupt 7 SWR7 0118-0118 SWE7 (fixed at 7) 
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ABSOLUTE MAXIMUM RATINGS 
PARAMETER 

Operating temperature under bias 

Storage temperature range 

Voltage on FA/Vpp pin to Vss 

Voltage on any other pin to V ss 

Maximum IOL per I/O pin 

Power dissipation (based on package heat transfer limitations, not device power consumption) 

DC ELECTRICAL CHARACTERISTICS 
ROM (G23): 2.7V to 5.5V unless otherwise specified; 
EPROM/OTP (G27): Voo = 5.0V ±5% unless otherwise specified; 
Tamb = 0 to +70°C for commercial, -40°C to +85°C for industrial, unless otherwise specified. 

SYMBOL PARAMETER TEST CONDITIONS 

Supplies 

100 Supply current operating 30MHz 

lID Idle mode supply current 30M Hz 

Ipo Power-down current 

IpOi Power-down current (-40°C to +85°C) 

VRAM RAM-keep-alive voltage RAM-keep-alive voltage 

VIL Input low voltage 

At5.0V 
VIH Input high voltage, except XTAL 1, RST 

At3.3V 

VIHl Input high voltage to XTAL 1, RST For both 3.0 & 5.0V 

IOL = 3.2mA, Voo = 5.0V 
VOL Output low voltage all ports, ALE, PSEN3 

1.0mA, Voo = 3.0V 

IOH = -100~, Voo = 4.5V 
VOHl Output high voltage all ports, ALE, PSENl 

IOH = -30ltA, Voo = 2.7V 

IOH = 3.2mA, Voo = 4.5V 
VOH2 Output high voltage, ports PO-3, ALE, PSEN<! 

IOH = 1mA, Voo = 2.7V 

CIO Input/Output pin capacitance 

IlL Logical 0 input current, PO-36 VIN = 0.45V 

III Input leakage current, P0-35 VIN = VIL or VIH 

ITL Logical 1 to 0 transition current all ports4 At5.5V 

NOTES: 
10 Ports in Quasi bi-directional mode with weak pull-up (applies to ALE, PSrn only during RESET). 
2. Ports in Push-Pull mode, both pull-up and pull-down assumed to be same strength 
3. In all output modes 
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RATING UNIT 

-5510 +125 °C 

-6510+150 °C 

Oto+13.0 V 

-0.5 to Voo + 0.5V V 

15 rnA 

1.5 W 

LIMITS 

MIN TYP 
UNIT 

MAX 

60 80 rnA 

22 30 rnA 

5 50 itA 

75 itA 

1.5 V 

-0.5 0.22Voo V 

2.2 V 

2 V 

0.7Voo V 

0.5 V 

0.4 V 

2.4 V 

2.0 V 

2.4 V 

2.2 V 

15 pF 

-5 -25 -75 itA 

±10 itA 

-650 itA 

4. Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to O. This current is highest when 
VIN is approximately 2V. 

5. Measured with port in high impedance output mode. 
6. Measured with port in quasi-bidirectional output mode. 
7. Load capacitance for all outputs = 80pF. 
8. Under steady state (non-transient) conditions, IOL must be externally limited as follows: 

Maximum IOL per port pin: 15mA (-NOTE: This is 85°C specification for Voo = 5V.) 
Maximum IOL per 8-bit port: 26mA 
Maximum totallOL for all output: 71 rnA 

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed 
test conditions. 
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AC ELECTRICAL CHARACTERISTICS 
VDD = 5V ±5%; Tamb = 0 to +70°C for commercial, -40°C to +85°C for industrial. 

VARIABLE CLOCK 
SYMBOL FIGURE PARAMETER UNIT 

MIN MAX 

External Clock 

fc Oscillator frequency 0 30 MHz 

tc 22 Clock period and CPU timing cycle 1/fc ns 

tCHCX 22 Clock high time (60%-40% duty cycle) tc" 0.5 ns 

teLCX 22 Clock low time (60%-40% duty cycle) te • 0.4 ns 

tCLCH 22 Clock rise time 5 ns 

tCHCL 22 Clock fall time 5 ns 

Address Cycle 

tCRAR 21 Delay from clock rising edge to ALE rising edge 10 40 ns 

tLHLL 16 ALE pulse width (programmable) (Vi "tc)-4 ns 

tAVLL 16 Address valid to ALE de-asserted (set-up) (Vi" tc) -10 ns 

tLLAX 16 Address hold after ALE de-asserted (tcl2) -10 ns 

Code Read Cycle 

tpLPH 16 'J5SE1'J pulse width (V2" tc) -10 ns 

tLLPL 16 ALE de-asserted to 'J5SE1'J asserted (tcl2) -5 ns 

tAVIVA 16 Address valid to instruction valid, ALE cycle (access time) (V3 * tc) - 30 ns 

tAVIVB 17 Address valid to instruction valid, non-ALE cycle (access time) (V4 * tc) - 25 ns 

tpLiV 16 PSEN asserted to instruction valid (enable time) (V2 * tc) -25 ns 

tpXIX 16 Instruction hold after 'J5SE1'J de-asserted 0 ns 

tpXIZ 16 Bus 3-State after 'J5SE1'J de-asserted (disable time) tc-8 ns 

tUAPH 16 Hold time of unlatched part of address after 'J5SE1'J is de-asserted 0 ns 

Data Read Cycle 

tRLRH 18 'Fm pulse width (V7 * tc) -10 ns 

tLLRL 18 ALE de-asserted to 'RO' asserted (tcl2) -5 ns 

tAVDVA 18 Address valid to data input valid, ALE cycle (access time) (V6" tc) -30 ns 

tAVDVB 19 Address valid to data input valid, non-ALE cycle (access time) (V5 * tc) - 25 ns 

tRLDV 18 'RO' low to valid data in, enable time (V7 * tc) -25 ns 

tRHDX 18 Data hold time after 'RO' de-asserted 0 ns 

tRHDZ 18 Bus 3-State after'RO' de-asserted (disable time) te- 8 ns 

tUARH 18 Hold time of unlatched part of address after 'RO' is de-asserted. 0 ns 

Data Write Cycle 

tWLWH 20 WR' pulse width (V8 * te) -10 ns 

tLLWL 20 ALE falling edge to WR' asserted (V9 * te)-5 ns 

tavwx 20 Data valid before WR' asserted (data setup time) (V9* tc)-25 ns 

tWHax 20 Data hold time after WR' de-asserted (Vii * te)-5 ns 

tAVWL 20 Address valid to WR' asserted (setup time) (Note 5) (V9 * te) -25 ns 

tUAWH 20 Hold time of unlatched part of address after WR' is de-asserted (Vii * te)-5 ns 

Wait Input 

tWTH 21 WAIT stable after bus strobe ('RO', WR', or 'J5SE1'J) asserted (V10 * te) - 25 ns 

tWTL 21 WAIT hold after bus strobe (R15, WR', or 'J5SE1'J) assertion (V10 * te) -10 ns 

NOTES ON FOLLOWING PAGE. 
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NOTES: 
1. Load capacitance for all outputs = aOpF. 
2. Variables Vi through Vii reflect programmable bus timing, which is programmed via the Bus Timing registers (BTRH and BTRL). 

Refer to the XA User Guide for details of the bus timing settings. Please note that the XA-G2 requires that extended data bus hold time 
(WMO = 1) to be used with external bus write cycles. 
Vi) This variable represents the programmed width of the ALE pulse as determined by the ALEW bit in the BTRL register. 

Vi = 0.5 if the ALEW bit = 0, and 1.5 if the ALEW bit = 1. 
V2) This variable represents the programmed width of the "PSEN pulse as determined by the CR1 and CRO bits or the CRA 1, CRAO, and 

ALEW bits in the BTRL register. 
- For a bus cycle with no ALE, V2 = 1 if CR1/0 = 00, 2 if CR1/0 = 01,3 if CR1/0 = 10, and 4 if CR1/0 = 11. Note that during burst 

mode code fetches, P"SEN does not exhibit transitions at the boundaries of bus cycles. V2 still applies for the purpose of 
determining peripheral timing requirements. 

- For a bus cycle with an ALE, V2 = the total bus cycle duration (2 if CRA 110 = 00, 3 if CRA 110 = 01 , 4 if CRA 110 = 10, 
and 5 if CRA 1/0 = 11) minus the number of clocks used by ALE (Vi + 0.5). 
Example: if CRA1/0 = 10 and ALEW = 1, the V2 = 4 - (1.5 + 0.5) = 2. 

V3) This variable represents the programmed length of an entire code read cycle with ALE. This time is determined by the CRA 1 and 
CRAO bits in the BTRL register. V3 = the total bus cycle duration (2 if CRA1/0 = 00, 3 if CRA1/0 = 01,4 if CRA1/0 = 10, 
and 5 if CRA1/0 = 11). 

V4) This variable represents the programmed length of an entire code read cycle with no ALE. This time is determined by the CR1 and 
CRO bits in the BTRL register. V4 = 1 if CR1/0 = 00, 2 if CR1/0 = 01, 3 if CR1/0 = 10, and 4 if CR1/0 = 11. 

V5) This variable represents the programmed length of an entire data read cycle with no ALE. this time is determined by the DR1 and 
DRO bits in the BTRH register. V5 = 1 if DR1/0 = 00, 2 if DR1/0 = 01,3 if DR1/0 = 10, and 4 if DR1/0 = 11. 

V6) This variable represents the programmed length of an entire data read cycle with ALE. The time is determined by the DRA 1 and 
DRAO bits in the BTRH register. V6 = the total bus cycle duration (2 if DRA 1/0 = 00, 3 if DRA 1/0 = 01, 4 if DRA 1/0 = 10, 
and 5 if DRA1/0 = 11). 

V7) This variable represents the programmed width of the AD pulse as determined by the DR1 and DRO bits or the DRA 1, DRAO in the 
BTRH register, and the ALEW bit in the BTRL register. Note that during a i6-bit read operation on an a-bit external bus, "RD" remains 
low and does not exhibit a transition between the first and second byte bus cycles. V7 still applies for the purpose of determining 
peripheral timing requirements. The timing for the first byte is for a bus cycle with ALE, the timing for the second byte is for a bus 
cycle with no ALE. . 
- For a bus cycle with no ALE, V7 = 1 if DR1/0 = 00, 2 if DR1/0 = 01,3 if DR1/0 = 10, and 4 if DR1/0 = 11. 
- For a bus cycle with an ALE, V7 = the total bus cycle duration (2 if DRA 110 = 00, 3 if DRA 110 = 01 , 4 if DRA 110 = 10, 

and 5 if DRA1/0 = 11) minus the number of clocks used by ALE (Vi + 0.5). 
Example: if DRA1/0 = 00 and ALEW = 0, then V7 = 2 - (0.5 + 0.5) = 1. 

Va) This variable represents the programmed width of the WR[ andlor WRR pulse as determined by the WM1 bit in the BTRL register. 
V81 ifWM1 = 0, and 2 ifWM1 = 1. 

V9) This variable represents the programmed write setup time as determined by the data write cycle duration (defined by DW1 and DWO 
or the DWA 1 and DWAO bits in the BTRH register), the WMO and ALEW bits in the BTRL register, and the value of V8. 
- For a bus cycle with no ALE, V9 = the total bus write cycle duration (2 if DW1/0 = 00, 3 if DW1/0 = 01,4 if DW1/0 = 10, and 

5 if DW1/0 = 11) minus the number of clocks used by the WF1[ andlor WRR pulse (Va) minus the number of clocks used for data 
hold time (0 if WMO = 0 and 1 if WMO = 1). 
Example:if DW1/0 = 11, WMO = 0, and WM1 = 0, then V9 = 5 - 0 - 1 = 4. 

- For a bus cycle with an ALE, there are two cases: 
1. For the parametertAvwL, V9 = the total bus cycle duration (2 if DWA1/0 = 00, 3 if DWA1/0 = 01,4 if DWA1/0 = 10, and 

5 if DWA1/0 = 11) minus the number of clocks used by the WAC and/orWRR pulse (Va), minus the number of clocks used by 
data hold time (0 if WMO = 0 and 1 if WMO = 1). 

2. For other parameters, V9 = the above value minus the width of the ALE pulse (Vi). 
Example: if DWA1/0 = 11, WMO = 1, WM1 = 1, and Vi = 0.5, then V9 = 5 - 1 - 2 - 0.5 = 1.5. 

Vi 0) This variable represents the length of a bus strobe for calculation of WAIT setup and hold times. The strobe may be "RD" (for data read 
cycles), WF1[ andlor WRR (for data write cycles), or P"SEN (for code read cycles), depending on the type of bus cycle being widened 
by WAIT. Vi 0 = V2 for WAIT associated with a code read cycle using P"SEN. Vi 0 = V8 for a data write cycle using WR[ andlor WRR. 
Vi 0 = V7-1 for a data read cycle using RL>. This means that a single clock data read cycle cannot be stretched using WAIT. 
If WAIT is used to vary the duration of data read cycles, the m:> strobe width must be set to be at least two clocks in duration. 
Also see note 4. 

Vii) This variable represents the programmed write hold time as determined by the WMO bit in the BTRL register. 
Vii = 0 if the WMO bit = 0, and 1 if the WMO bit = 1. 

3. Not all combinations of bus timing configuration values result in valid bus cycles. Please refer to the XA User Guide section on the External 
Bus for details. 

4. When code is being fetched for execution on the external bus, a burst mode fetch is used that does not have ~ edges in every fetch 
cycle. Thus, if WAIT is used to delay code fetch cycles, a change in the low order address lines must be detected to locate the beginning of 
a cycle. This would be A3-AO for an a-bit bus, and A3-A 1 for a 16-bit bus. Also, a 16-bit data read operation conducted on a a-bit wide bus 
similarly does not include two separate AD strobes. So, a rising edge on the low order address line (AO) must be used to trigger a WAIT in 
the second half of such a cycle. 

5. This parameter is provided for peripherals that have the data clocked in on the falling edge of the WR strobe. This is not usually the case, 
and in most applications this parameter is not used. 
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ALE 

MULTIPLEXED 
ADDRESS AND DATA 

UNMULTIPLEXED 

____ J 

ADDRESS ____ _ 

• INSTR IN is either 00-07 or 00-015, depending on the bus width (8 or 16 bits). 

Figure 16. External Program Memory Read Cycle (ALE Cycle) 
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SU00582D 

ALE --.-/ ,,~---------------------------------

,,~-----------------------------------------

MULTIPLEXED ____ -.JXA4-A11 or A4-A19,-----/ INSTR IN; ~ ~ 
ADORES".D DATA .. ~ /77'V' ~ .AVIV.---I--------

UNMULTIPLEXED ----.... X~----A-o-o-r A-1--A-3-, A-1-2--19------ r--= ~AD" A1-A3. A10-19 

ADDRESS r ____ ...J 

• INSTR IN is either 00-07 or 00-015, depending on the bus width (8 or 16 bits). SU00707 

Figure 17. External Program Memory Read Cycle (Non-ALE Cycle) 
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ALE 

MULTIPLEXED 
ADDRESS 
AND DATA 

UNMULTIPLEXED 
ADDRESS 

tAVLL 

)< 

)< 

"-

-- tLLRL tRLRH 

"-
tLLAX 

~tRLDV -+ 

A4-A11 or A4-A19 

tAVDVA 

AO or A1-A3, A12-A19 

~ 

/V' 

I_ tRHDZ~ 

tRHDX - r-
DATA IN * ~ V 

jc- tUARH-+ 

) K 
* DATA IN is either DO-D7 or DO-DiS, depending on the bus width (8 or 16 bits). 

Figure 18. External Data Memory Read Cycle (ALE Cycle) 
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ALE 

,,~-------------------------------------
RO ____________________ ~ 

,,-----.....,,/ 

MULTIPLEXED V\'( 
~~g~~~~ ____ ..JA A4-A11 or A4-A19/>---------< '--__ D_A_TA_IN_*_-..J 

UNMULTIPLEXED 
ADDRESS ------

AO or A1-A3, A12-A1g 

* DATA IN is either Do-D7 or DO-DiS, depending on the bus width (8 or 16 bits). 

,,'--___ -..J/ 

DATA IN * 

AO or A1-A3, A12-A1g 

SU0070B 

Figure 19. External Data Memory Read Cycle (Non-ALE Cycle) 
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ALE 

wm:orWRR 

MULTIPLEXED 
ADDRESS 
AND DATA 

UNMULTIPLEXED 
ADDRESS 

tAVLL 

)< 

)< 

"\ 

- tLLWL tWLWH 

I 

d tLAX 

A4-All or A4-AI5 ~ DATA OUT" 

I--tAVWL-

AO or A1-A3, A12-A19 

• OATA OUT is either 00-07 or 00-015, depending on the bus width (8 or 16 bits). 
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.. 

/V 

... +- tWHQX 

X 
j4-tUAWH+ 

)K 
SU00584C 

Figure 20. External Data Memory Write Cycle 

XTAe, 

tCRAR 

ALE 

ADDRESS BUS X >C ----J, '---_______ _ 

WAIT ----------

BUS STROBE _______ _ 
, , 

'f'\... 
~--------------------------------

_

II 

~'=i " tmH--+ '-~~--------~---------------------------~ 
tmL----.! 

Figure 21. WAIT Signal Timing 
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(NC) XTAL2 

CLOCK SIGNAL XTAL 1 

VSS 

VOO-O·S -

O.4SV 
0.7VOO 

0.2VOO-o·1 

tCHCL - tCLC 

1+---- tc 

Figure 22. External Clock Drive 

VOO-o.S==x 0.2Voo+0.9 >C 
0.2Voo-o·1 

O.4SV "'----------

NOTE: 
AC inputs during testing are driven at Voo -0.5 for a logic '1' and 0.45V for a logic '0'. 
Timing measurements are made at the 50% point of transitions. 

VLOAO+0.1V 

VLOAO'----< 

NOTE: 

Figure 230 AC Testing Input/Output 

TIMING 
REFERENCE 

POINTS 
VOL+O.1V 

For timing purposes, a port is no longer floating when a 1 OOmV change from load voltage occurs, 
and begins to float when a 100mV change from the loaded VOHNOL level occurs. IOWIOL 2: ±20mA. 

Figure 24. Float Waveform 

Voo 

Voo 

t RST 

(NC)- XTAL2 

CLOCK SIGNAL __ XTAL1 

IVSS 

SU00591B 

Preliminary specification 

XA-G2 

SU00842 

SU00703A 

SUOOOll 

~~ 

voo ~ 

EA --

SUOO590B 

Figure 25. 100 Test Condition, Active Mode 
All other pins are disconnected 

Figure 26. 100 Test Condition, Idle Mode 
All other pins are disconnected 
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CURRENT (rnA) 
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100~--------~--------~--------~--------~--------~------~ 

80 +---------4---------4---------4--------+_------+_-----~ MAX. 100 

60 +---------I---------I---------I----------I---"2II'II!::...---I-------~ TYPICAL 5.0V 100 (ACTIVE) 

40+---------4---------4-------~~~----~~~------+_------~ 

ROM & ROM less 
TYPICAL 3.0V 100 (ACTIVE) 

20 I:~~~~~~~~f~~~=t====I=~::r::=J TYPICAL 100 (IDLE) 

10 15 

FREQUENCY (MHz) 

20 

Figure 27. 100 vs. Frequency 

25 

Valid only within frequency specification of the device under test. 

VC~·5 - - - - 0.7VCC 

0.45V 0.2VC~.1 

tCHCL-

Figure 28. Clock Signal Waveform for 100 Tests in Active and Idle Modes 
tCLCH = tCHCl = 5ns 

l 
~!2P 

Voo I--
RST 

EA I--

(NC)- XTAL2 

,- XTAL1 

~ vss 

_I.-

-

Figure 29. 100 Test Condition, Power Down Mode 
All other pins are disconnected. Voo=2V to 5.5V 
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EPROM CHARACTERISTICS 
The XA-G27 is programmed by using a modified Improved 
Quick-Pulse Programming™ algorithm. This algorithm is essentially 
the same as that used by the later 80C51 family EPROM parts. 
However different pins are used for many programming functions. 

NOTE: The Vpp EPROM programming voltage for the XA-G27 is 
1 0.75V ± 0.25V. This is less than the 12.75V used for 80C51 
products. Care should be taken when programming the XA-G27 to 
insure that the programming voltage (Vpp) is in the correct range. 
Using a programming voltage of 12.75V may damage the part being 
programmed. See Figure 30 for a circuit that you can use with a 
programmer that has a 12.75V programming pulse that will allow 
you to safely program the XA-G27. 

12.75V +5V 
I---

01 ~~ 
PROGRAMMER 

02 ~t R1 XA-G37 . 10K 

03 ~t 
10.75V 

vpp 

SU00843 

Figure ao. XA-G27 Programming Voltage Adjustment Circuit 

The XA-G2 contains three signature bytes that can be read and 
used by an EPROM programming system to identify the device. The 
signature bytes identify the device as an XA-G2 manufactured by 
Philips. 

Table 6 shows the logic levels for reading the signature byte, and for 
programming the code memory and the security bits. The circuit 
configuration and waveforms for quick-pulse programming are 
shown in Figure 31. Figure 33 shows the circuit configuration for 
normal code memory verification. 

Quick-Pulse Programming 
The setup for microcontrolier quick-pulse programming is shown in 
Figure 31. Note that the XA-G2 is running with a 3.5 to 12MHz 
oscillator. The reason the oscillator needs to be running is that the 
device is executing internal address and program data transfers. 

The address of the EPROM location to be programmed is applied to 
ports 2 and 3, as shown in Figure 31. The code byte to be 
programmed into that location is applied to port O. RST, J5S"E1\J and 
pins of port 1 specified in Table 6 are held at the 'Program Code 
Data' levels indicated in Table 6. The ALEiP'ROO is pulsed low 5 
times as shown in Figure 32. 

To program the security bits, repeat the 5 pulse programming 
sequence using the 'Pgm Security Bit' levels. After one security bit is 
programmed, further programming of the code memory and 
encryption table is disabled. However, the other security bits can still 
be programmed. 

TMTrademark phrase of Intel Corporation. 
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Note that the r=ANpp pin must not be allowed to go above the 
maximum specified Vpp level for any amount of time. Even a narrow 
glitch above that voltage can cause permanent damage to the 
device. The Vpp source should be well regulated and free of glitches 
and overshoot. 

Program Verification 
If security bits 2 and 3 have not been programmed, the on-Chip 
program memory can be read out for program verification. The 
address of the program memory locations to be read is applied to 
ports 2 and 3 as shown in Figure 33. The other pins are held at the 
'Verify Code Data' levels indicated in Table 6. The contents of the 
address location will be emitted on port O. 

Reading the Signature Bytes 
The signature bytes are read by the same procedure as a normal 
verification of locations 030H. 031H, and 060H except that P1.2 and 
P1 .3 need to be pulled to a logic low. The values are: 

(030H) = 15H indicates manufactured by Philips 
(031 H) = EAH indicates XA architecture 
(060H) = 02H indicates XA-G2 (non-Rev.) 

05H indicates XA-G2 (Rev. A) 

ProgramNerify Algorithms 
Any algorithm in agreement with the conditions listed in Table 6, and 
which satisfies the timing specifications, is suitable. 

Erasure Characteristics 
Erasure of the EPROM begins to occur when the chip is exposed to 
light with wavelengths shorter than approximately 4,000 angstroms. 
Since sunlight and fluorescent lighting have wavelengths in this 
range, exposure to these light sources over an extended time (about 
1 week in sunlight, or 3 years in room level fluorescent lighting) 
could cause inadvertent erasure. For this and secondary effects, 
it is recommended that an opaque label be placed over the 
window. For elevated temperature or environments where solvents 
are being used, apply Kapton tape Fluorglas part number 2345-5, or 
equivalent. 

The recommended erasure procedure is exposure to ultraviolet light 
(at 2537 angstroms) to an integrated dose of at least 15W-s/cm2. 
Exposing the EPROM to an ultraviolet lamp of 12,000jlW/cm2 rating 
for 90 to 120 minutes, at a distance of about 1 inch, should be 
sufficient. 

Erasure leaves the array in an all1s state. 

Security Bits 
With none of the security bits programmed the code in the program 
memory can be verified. When only security bit 1 (see Table 6) is 
programmed, MOVC instructions executed from external program 
memory are disabled from fetching code bytes from the internal 
memory. All further programming of the EPROM is disabled. When 
security bits 1 and 2 are programmed, in addition to the above, 
verify mode is disabled. When all three security bits are 
programmed, all of the conditions above apply and all external 
program memory execution is disabled. (See Table 7.) 
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Table 6. EPROM Programming Modes 

MODE RST P§R ALEIPROG EJ(Npp P1.0 P1.1 P1.2 P1.3 P1.4 

Read signature 0 0 1 1 0 0 0 0 0 

Program code data 0 0 O· Vpp 0 1 1 1 1 

Verify code data 0 0 1 1 0 0 1 1 0 

pgm security bit 1 0 0 O· Vpp 1 1 1 1 1 

Pgm security bit 2 0 0 O· Vpp 1 1 0 0 1 

Pgm security bit 3 0 0 O· Vpp 1 0 1 0 1 

Verify security bits 0 0 1 1 0 0 0 1 0 
NOTES: 
1. '0' = Valid low for that pin, '1' = valid high for that pin. 
2. Vpp = 10.75V ±0.25V. 
3. Voo = 5V±10% during programming and verification. 
* ALE/P'RO'G' receives 5 programming pulses while Vpp is held at 10.75V. Each programming pulse is low for 50~s (±1 O~s) and high for a 

minimum of 1 O~s. 

Table 7. Program Security Bits 

PROGRAM LOCK BITS, 

SB1 SB2 SB3 PROTECTION DESCRIPTION 

1 U U U No Program Security features enabled. 

2 P U U MOVe instructions executed from external program memory are disabled from fetching code bytes 
from internal memory and further programming of the EPROM is disabled. 

3 P P U Same as 2, also verify is disabled. 

4 p P P Same as 3, external execution is disabled. Internal data RAM is not accessible. 

NOTES: 
1. P - programmed. U - unprogrammed. 
2. Any other combination of the security bits is not defined. 

ROM CODE SUBMISSION 
When submitting ROM code for the XA-G2, the following must be specified: 
1. 16k byte user ROM data 
2. ROM security bits. 
3. Watchdog configuration 

ADDRESS CONTENT BIT(S) COMMENT 

OOOOH to 3FFFH DATA 7:0 User ROM Data 

8020H SEC 0 ROM Security Bit 1 

8020H SEC 1 ROM Security Bit 2 
o = enable security 
1 = disable security 

8020H SEC 3 ROM Security Bit 3 
o = enable security 
1 = disable security 
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+5V 

AD-A7 P2 
VDD 

PO PGM DATA 

RST 

P1.2 E7i/VPP +12.75V 

P1.3 ALEiPR'OG 550115 PULSES TO GROUND 

P1.4 XA-G2 J5SEN 

XTAL2 P1.1 

3.5-12MHz P1.0 

XTAL1 P3.D-P3.6 AS-A14 

Vss 

SU00624A 

Figure 31. Programming Configuration for XA-G2 

1 i'IIl------------------ 5PULSES ~I 

ALEII'lmG: ~L. _____ ---I n n n ~ ____ ~n~ ____ ~r--
C 

4 I-10115 MIN 5OIlS±10 ~I 

ALEfl5'R'O'G: o I n '----_IL 
SU00609B 

Figure 32. P'ROO Waveform 

+5V 

VDD 

AD-A7 P2 PO PGMDATA 

RST E7i/VPP 
P1.2 

P1.3 
ALEIPROO 

Pl.4 XA-G2 J5SEJir 

XTAL2 P1.1 

P1.0 

XTAL1 P3.D-P3.6 AB-A14 

vss 

SU00625 

Figure 33. Program Verification for XA-G2 
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EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS 
Tamb = 21°C to +27°C, VDD = 5V±5%, VSS = OV (See Figure 34) 

SYMBOL PARAMETER 

Vpp Programming supply voltage 

Ipp Programming supply current 

1/tCL Oscillator frequency 

tAVGL Address setup to "J5ROO low 

tGHAX Address hold after"J5ROO 

tDVGL Data setup to"J5ROO low 

tGHDX Data hold after"J5ROO 

tEHSH P2.7 (Ef\Jj5J~[E) high to Vpp 

tSHGL Vpp setup to"J5ROO low 

tGHSL Vpp hold after"J5ROO 

tGLGH moo width 

tAVQV Address to data valid 

tELQV Ef\JABI"E low to data valid 

tEHQZ Data float after Ef\JABI"E 

tGHGL moo high to "PROO low 

NOTE: 
1. Not tested. 

PROGRAMMING" 

P2.o-P2.7 
P3.o-P3.4 

PORTO 
PO.O- PO.7 
(00-07) 

ALEIPROG -------........ 1 

NOTE: 

FA/Vpp _____ J 

P1.4 
EI'IABIT 

FOR PROGRAMMING CONDITIONS SEE FIGURE 32. 
FOR VERIFICATION CONDITIONS SEE FIGURE 33. 

ADDRESS 

DATA IN 

LOGIC 1 

MIN 

10.5 

3.5 

48tCL 

48tCL 

48tcL 

48tCL 

48tCL 

10 

10 

40 

0 

10 

VERIFICATION" 

DATA OUT 

LOGIC 1 

Figure 34. EPROM Programming and Verification 
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MAX UNIT 

11.0 V 

50 1 mA 

12 MHz 

Ils 

IlS 

60 Ils 

48tCL 

48tCL 

48tCL 

Ils 
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FAMILY DESCRIPTION 
The Philips Semiconductors XA (eXtended Architecture) family of 
16-bit single-chip microcontrollers is powerful enough to easily 
handle the requirements of high performance embedded 
applications, yet inexpensive enough to compete in the market for 
high-volume, low-cost applications. 

The XA family provides an upward compatibility path for 80C51 
users who need higher performance and 64k or more of program 
memory. Existing 80C5.1 code can also easily be translated to run 
on XA microcontrollers. 

The performance of the XA architecture supports the 
comprehensive bit-oriented operations of the 80C51 while 
incorporating support for multi-tasking operating systems and 
high-level languages such as C. The speed of the XA architecture, 
at 10 to 100 times that of the 80C51 , gives designers an easy path 
to truly high performance embedded control. 

The XA architecture supports: 

• Upward compatibility with the 80C51 architecture 

• 16-bit fully static CPU with a 24-bit program and data address 
range 

• Eight 16-bit CPU registers each capable of performing all 
arithmetic and logic operations as well as acting as memory 
pointers. Operations may also be performed directly to memory. 

• Both 8-bit and 16-bit CPU registers, each capable of performing 
all arithmetic and logic operations. 

• An enhanced instruction set that includes bit intensive logic 
operations and fast signed or unsigned 16 x 16 multiply and 
32 116 divide 

ORDERING INFORMATION 

ROMless ROM EPROM1 

P51XAG30JB BD P51XAG33JB BD P51XAG37JB BD 

P51 XAG30JB A P51XAG33JB A P51XAG37JB A 

P51XAG37JB KA 

P51XAG30JF BD P51XAG33JF BD P51XAG37JF BD 

P51XAG30JF A P51XAG33JF A P51XAG37JF A 

P51XAG30KB BD P51 XAG33KB BD P51XAG37KB BD 

P51 XAG30KB A P51XAG33KB A P51 XAG37KB A 

P51 XAG37KB KA 

P51XAG30KF BD P51 XAG33KF BD P51 XAG37KF BD 

P51XAG30KF A P51 XAG33KF A P51 XAG37KF A 

NOTE: 

OTP 

OTP 

UV 

OTP 

OTP 

OTP 

OTP 

UV 

OTP 

OTP 

• Instruction set tailored for high level language support 

• Multi-tasking and real-time executives that include up to 32 
vectored interrupts, 16 software traps, segmented data memory, 
and banked registers to support context switching 

• Low power operation, which is intrinsic to the XA architecture, 
includes power-down and idle modes. 

More detailed information on the core is available in the XA User 
Guide. 

SPECIFIC FEATURES OF THE XA-G3 
• 20-bit address range, 1 megabyte each program and data space. 

(Note that the XA architecture supports up to 24 bit addresses.) 

• 2.7V to 5.5V operation (EPROM and OTP are 5V ± 5%) 

• 32K bytes on-chip EPROM/ROM program memory 

.512 bytes of on-Chip data RAM 

• Three counterltimers with enhanced features 
(equivalent to 80C51 TO, T1, and T2) 

• Watchdog timer 

• Two enhanced UARTs 

• Four 8-bit 1/0 ports with 4 programmable output configurations 

• 44-pin PLCC and 44-pin LQFP packages 

TEMPERATURE RANGE °C AND PACKAGE FREQ DRAWING 
(MHz) NUMBER 

o to +70, Plastic Low Profile Quad Flat Pkg. 25 SOT389-1 

o to +70, Plastic Leaded Chip Carrier 25 SOT187-2 

o to +70, Ceramic Leaded Chip Carrier 25 1472A 

-40 to +85, Plastic Low Profile Quad Flat Pkg. 25 SOT389-1 

-40 to +85, Plastic Leaded Chip Carrier 25 SOT187-2 

o to +70, Plastic Low Profile Quad Flat Pkg. 30 SOT389-1 

o to +70, Plastic Leaded Chip Carrier 30 SOT187-2 

o to +70, Ceramic Leaded Chip Carrier 30 1472A 

-40 to +85, Plastic Low Profile Quad Flat Pkg. 30 SOT389-1 

-40 to +85, Plastic Leaded Chip Carrier 30 SOT187-2 

1. OTP = One Time Programmable EPROM. UV = Erasable EPROM. 
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PIN CONFIGURATIONS 

44-Pin PLCC Package 

h n rs\ 
7C/ 

0 :J 39 

PLCC 

He :J 29 

U U 
18 28 

Pin Function Pin Function 
1 Vss 23 Voo 
2 P1.0/AOIWRR 24 P2.0/A12D8 
3 P1.1/A1 25 P2.1/A13D9 
4 P1.2/A2 26 P2.2/A14D10 
5 P1.3/A3 27 P2.3/A15D11 
6 P1.4/RxD1 28 P2.4/A16D12 
7 P1.5ffxD1 29 P2.5/A17D13 
8 P1.6ff2 30 P2.6/A18D14 
9 P1.7ff2EX 31 P2.7/A19D15 

10 RST 32 J5Srn 
11 P3.0/RxDO 33 ALEiI"ROG 
12 NC 34 NC 
13 P3.1ffxDO 35 FAiVpplWAIT 
14 P3.2!11iIT6 36 PO.7/A11D7 
15 P3.31f1\1TI 37 PO.6/A10D6 
16 P3.4ffO 38 PO.5/A9D5 
17 P3.5ff1/BUSW 39 PO.4/A8D4 
18 P3.6tWR'L 40 PO.3/A7D3 
19 P3.7/RO 41 PO.2/A6D2 
20 XTAL2 42 PO.1/A5D1 
21 XTAL1 43 PO.0/A4DO 
22 Vss 44 Voo 

LOGIC SYMBOL 

en[ 

is RxDO_ 
i= TxDO_ 
~ IN'TO_ 
ir ll'JTT_ 
W TO_ 

~ T1/BUSW_ 

ffi WRC_ 
~ FID_ 
...: 

, NOT AVAILABLE ON 40-PIN DIP PACKAGE 
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44-Pin LQFP Package 

Voo Vss 

380 

R4 

1 =1'0 

LQFP 

11= 

'-
~ 
12 

Pin Function Pin 
1 P1.5ffxD1 23 
2 P1.6ff2 24 

P1.7ff2EX 25 
RST 26 
P3.0/RxDO 27 
NC 28 
P3.1ffxDO 29 
P3.2111'ITO 30 
P3.3t'1l'JTI 31 

10 P3.4ffO 32 
11 P3.5ff1/BUSW 33 
12 P3.6/WR[ 34 
13 P3.7/RO 35 
14 XTAL2 36 
15 XTAL1 37 
16 Vss 38 
17 Voo 39 
18 P2.0/A12D8 40 
19 P2.1/A13D9 41 
20 P2.2/A14D10 42 
21 P2.3/A15D11 43 
22 P2.4/A16/D12 44 

T2EX' - T2' 

TxD1 -- A3 en - A2 [3 en 
",0' ] 

--
en 
::l 
CD 

~ 
~ 
o 
~ en en 
w 
II: o 
~ 

A1 l5iE 
AOIWRR ~ 
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34 

R 

" = 33 

= 23 
/ 

~ 
22 

Function 
P2.5/A17D13 
P2.6/A18D14 
P2.7/A19D15 
J5Srn 
ALEfF!IiOO 
NC 
FAiVpplWAIT 
PO.7/A11D7 
PO.6/A10D6 
PO.5/A9D5 
PO.4/A8D4 
PO.3/A7D3 
PO.2/A6D2 
PO.1/A5D1 
PO.0/A4DO 

Voo 
Vss 
P1.0/AOIWRR 
P1.1/A1 
P1.2iA2 
P1.3/A3 
P1.4/RxD1 

SUOO580 
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BLOCK DIAGRAM 
... - - - - - - - - - - - - - - - - - - - - - - <EO ____ .. _______________________ __ • 
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32KBYTES 
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512 BYTES 
STATIC RAM 

PORTO 

PORT 1 

PORT 2 

PORT 3 

XA CPU Core 

UARTO 

UART1 

TIMERO& 
TIMER 1 

TIMER 2 

WATCHDOG 
TIMER 

I , i. ____________________________________________________ • 

381 

XA-G3 

SU00527 



Philips Semiconductors Preliminary specification 

CMOS single-chip 16-bit microcontroller XA-G3 

PIN DESCRIPTIONS 

PIN. NO. 
MNEMONIC TYPE NAME AND FUNCTION 

LCC LQFP 

Vss 1,22 16 I Ground: OV reference. 

Voo 23,44 17 I Power Supply: This is the power supply voltage for normal, idle, and power down operation. 

PO.O- PO.7 43-36 37-30 I/O Port 0: Port 0 is an 8-bit I/O port with a user-configurable output type. Port 0 latches have 1 s 
written to them and are configured in the quasi-bidirectional mode during reset. The operation of 
port 0 pins as inputs and outputs depends upon the port configuration selected. Each port pin is 
configured independently. Refer to the section on I/O port configuration and the DC Electrical 
Characteristics for details. 

When the external program/data bus is used, Port 0 becomes the multiplexed low data/instruction 
byte and address lines 4 through 11. 

Port 0 also outputs the code bytes during program verification and receives code bytes during 
EPROM programming. 

P1.0-P1.7 2-9 40-44, I/O Port 1: Port 1 is an B-bit I/O port with a user-configurable output type. Port 1 latches have 1 s 
1-3 written to them and are configured in the quasi-bidirectional mode during reset. The operation of 

port 1 pins as inputs and outputs depends upon the port configuration selected. Each port pin is 
configured independently. Refer to the section on I/O port configuration and the DC Electrical 
Characteristics for details. 

Port 1 also provides special functions as described below. 

2 40 0 AO/WRH: Address bit 0 of the external address bus when the external data bus is 
configured for an B bit width. When the external data bus is configured for a 16 
bit width, this pin becomes the high byte write strobe. 

3 41 0 Ai: Address bit 1 of the external address bus. 
4 42 0 A2: Address bit 2 of the external address bus. 

5 43 0 A3: Address bit 3 of the external address bus. 
6 44 I RxDi (Pi.4): Receiver input for serial port 1 . 
7 1 0 TxD1 (Pi.5): Transmitter output for serial port 1. 

8 2 I T2 (Pi.6): Timer/counter 2 external count inputlclockout. 

9 3 I T2EX (Pi. 7): Timer/counter 2 reload/capture/direction control 

P2.0 - P2.7 24-31 18-25 I/O Port 2: Port 2 is an 8-bit I/O port with a user-configurable output type. Port 2 latches have 1 s 
written to them and are configured in the quasi-bidirectional mode during reset. The operation of 
port 2 pins as inputs and outputs depends upon the port configuration selected. Each port pin is 
configured independently. Refer to the section on I/O port configuration and the DC Electrical 
Characteristics for details. 

When the extemal program/data bus is used in 16·bit mode, Port 2 becomes the multiplexed high 
datalinstruction byte and address lines 12 through 19. When the extemal program/data bus is used in 
8-bit mode, the number of address lines that appear on port 2 is user programmable. 

Port 2 also receives the low-order address byte during program memory verification. 

P3.0- P3.7 11, 5, I/O Port 3: Port 3 is an 8-bit I/O port with a user configurable output type. Port 3 latches have 1 s 
13-19 7-13 written to them and are configured in the quasi-bidirectional mode during reset. the operation of 

port 3 pins as inputs and outputs depends upon the port configuration selected. Each port pin is 
configured independently. Refer to the section on I/O port configuration and the DC Electrical 
Characteristics for details. 

Port 3 pins receive the high order address bits during EPROM programming and verification. 

Port 3 also provides various special functions as described below. 

11 5 I RxDO (P3.0): Receiver input for serial port O. 
13 7 0 TxDO (P3.1): Transmitter output for serial port, O. 
14 8 I INTO(P3.2): External interrupt 0 input. 
15 9 I lNTl (P3.3): External interrupt 1 input. 
16 10 I/O TO (P3.4): Timer 0 external input, or timer 0 overflow output. 
17 11 I/O T1/BUSW (P3.5): Timer 1 external input, or timer 1 overflow output. The value on this pin is 

latched as the external reset input is released and defines the default 
external data bus width (BUSW). 0 = 8-bit bus and 1 = 16-bit bus. 

18 12 0 WFr[ (P3.6): External data memory low byte write strobe. 
19 13 0 'FfD(P3.7): External data memory read strobe. 
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PIN. NO. 
MNEMONIC TYPE NAME AND FUNCTION 

LCC LQFP 

RST 10 4 I Reset: A low on this pin resets the microcontrolier, causing I/O ports and peripherals to take on 
their default states, and the processor to begin execution at the address contained in the reset 
vector. Refer to the section on Reset for details. 

ALEiPFIDG 33 27 I/O Address Latch Enable/Program Pulse: A high output on the ALE pin signals external circuitry to 
latch the address portion of the multiplexed address/data bus. A pulse on ALE occurs only when it 
is needed in order to process a bus cycle. During EPROM programming, this pin is used as the 
program pulse input. 

PSEN 32 26 0 Program Store Enable: The read strobe for external program memory. When the microcontrolier 
accesses external program memory, ~ is driven low in order to enable memory devices. ~ 
is only active when external code accesses are performed. 

r=AlWAIT/ 35 29 I External Access/WaitiProgramming Supply Voltage: The 'EA input determines whether the 
Vpp internal program memory of the microcontrolier is used for code execution. The value on the 'EA pin 

is latched as the external reset input is released and applies during later execution. When latched 
as a 0, external program memory is used exclusively, when latched as ai, internal program 
memory will be used up to its limit, and external program memory used above that point. After reset 
is released, this pin takes on the function of bus Wait input. If Wait is asserted high during any 
external bus access, that cycle will be extended until Wait is released. During EPROM 
programming, this pin is also the programming supply voltage input. . 

XTAL1 21 15 I Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the internal clock 
generator circuits. 

XTAL2 20 14 0 Crystal 2: Output from the oscillator amplifier. 

SPECIAL FUNCTION REGISTERS 

SFR BIT FUNCTIONS AND ADDRESSES RESET 
NAME DESCRIPTION ADDRESS VALUE MSB LSB 

BCR Bus configuration register 46A - - - WAITD BUSD BC2 BC1 BCO Note 1 

BTRH Bus timing register high byte 469 DW1 DWO DWA1 DWAO DR1 DRO DRA1 DRAO FF 

BTRL Bus timing register low byte 468 WM1 WMO ALEW - CR1 CRO CRA1 CRAO EF 

CS Code segment 443 00 
DS Data segment 441 00 
ES Extra segment 442 00 

33F 33E 33D 33C 33B 33A 339 338 

IEH* Interrupt enable high byte 427 - - - - ETI1 ERI1 ETIO ERIO 00 

337 336 335 334 333 332 331 330 

IEL* Interrupt enable low byte 426 EA - - ET2 En EX1 ETO EXO 00 

IPAO Interrupt priority 0 4AO - PTO - PXO 00 

IPA1 Interrupt priority 1 4A1 - PT1 - PX1 00 

IPA2 Interrupt priority 2 4A2 - - - PT2 00 

IPA4 Interrupt priority 4 4A4 - PTIO - PRIO 00 

IPA5 Interrupt priority 5 4A5 - PTI1 - PRI1 00 

387 386 385 384 383 382 381 380 

PO* PortO 430 AD7 AD6 AD5 AD4 AD3 AD2 AD1 ADO FF 

38F 38E 38D 38C 38B 38A 389 388 

P1* Port 1 431 T2EX T2 TxD1 RxD1 A3 A2 Ai WRH FF 

397 396 395 394 393 392 391 390 

P2* Port 2 432 P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0 FF 
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SFR BIT FUNCTIONS AND ADDRESSES RESET 
NAME DESCRIPTION ADDRESS MSB LSB VALUE 

39F 39E 39D 39C 398 39A 399 398 

P3* Port 3 433 RD WR T1 TO INTi INTO TxDO RxDO FF 

POCFGA Port Oconfiguration A 470 Note 5 

P1CFGA Port 1 configuration A 471 Note 5 

P2CFGA Port 2 configuration A 472 Note 5 

P3CFGA .Port 3 configuration A 473 Note 5 

POCFG8 Port 0 configuration 8 4FO Note 5 

P1CFG8 Port 1 configuration B 4F1 Note 5 

P2CFGB Port 2 configuration B 4F2 Note 5 

P3CFG8 Port 3 configuration 8 4F3 NoteS 

227 226 225 224 223 222 221 220 

PCON* Power control register 404 - - - - - - PD IDl 00 

20F 20E 20D 20C 208 20A 209 208 

PSWH* Program status word (high byte) 401 SM TM RS1 RSO 1M3 1M2 IM1 IMO Note 2 

207 206 205 204 203 202 201 200 

PSWl* Program status word (low byte) 400 C AC - - - V N Z Note 2 

217 216 215 214 213 212 211 210 

PSWSi* BOC51 compatible PSW 402 C AC FO RS1 RSO V F1 P Note 3 

RTHO Timer 0 extended reload, 455 00 
high byte 

RTH1 Timer 1 extended reload, 457 00 
high byte 

RTlO Timer 0 extended reload, low byte 454 00 
RTl1 Timer 1 extended reload, low byte 456 00 

307 306 305 304 303 302 301 300 

SOCON* Serial port 0 control register 420 SMO_O SMCO SM2_0 REN_O T8B_0 R88_0 T'-O RI_O 00 

30F 30E 30D 30C 308 30A 309 308 

SOSTAT* Serial port 0 extended status 421 - - - - FEO BRO OEO STINTO 00 

SOBUF Serial port 0 buffer register 460 x 
SOADDR Serial port 0 address register 461 00 
SOADEN Serial port 0 address enable 462 00 

register 

327 326 325 324 323 322 321 320 

S1CON* Serial port 1 control register 424 SMO_1 SM1_1 SM2_1 REN_1 TB8_1 R88_1 TU RU 00 

32F 32E 32D 32C 32B 32A 329 328 

S1STAT* Serial port 1 extended status 425 - - - - FE1 8Ri OEi STINT1 00 

S1BUF Serial port 1 buffer register 464 x 
S1ADDR Serial port 1 address register 465 00 
S1ADEN Serial port 1 address enable 466 00 

register 

SCR System configuration register 440 - - - - PT1 PTO CM PZ 00 

21F 21E 210 21C 218 21A 219 218 

SSEl* Segment selection register 403 ESWEN R6SEG R5SEG R4SEG R3SEG R2SEG R1SEG ROSEG 00 

SWE Software Interrupt Enable .47A - SWE7 SWE6 SWE5 SWE4 SWE3 SWE2 SWE1 00 
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SFR BIT FUNCTIONS AND ADDRESSES RESET 
NAME DESCRIPTION ADDRESS VALUE MSB LSB 

357 356 355 354 353 352 351 350 

SWR* Software Interrupt Request 42A - I SWR7 I SWR6 1 SWR5 I SWR4 1 SWR3·1 SWR2 1 SWR1 00 

2C7 2C6 2C5 2C4 2C3 2C2 2C1 2CO 

T2CON* Timer 2 control register 418 TF2 J EXF2 J RCLKO I TCLKO I EXEN2 I TR2 I Crr2 I CP/Rl2 00 

2CF 2CE 2CD 2CC 2CB 2CA 2C9 2C8 

T2MOD* Timer 2 mode control 419 - I - I RCLK1 1 TCLK1 1 - I - I T20E I DCEN 00 

TH2 Timer 2 high byte 459 00 

TL2 Timer 2 low byte 458 00 

T2CAPH Timer 2 capture register, 45B 00 
high byte 

T2CAPL Timer 2 capture register, 45A 00 
low byte 

287 286 285 284 283 282 281 280 

TCON* Timer 0 and 1 control register 410 TF1 I TR1 I TFO I TRO 1 lEi 1 IT1 I lEO I ITO 00 

THO Timer 0 high byte 451 00 

TH1 Timer 1 high byte 453 00 

TLO Timer 0 low byte 450 00 

TL1 Timer 1 low byte 452 00 

TMOD Timer 0 and 1 mode control 45C GATE I crr I M1 I MO I GATE I crr I M1 I MO 00 

28F 28E 28D 28C 28B 28A 289 288 

TSTAT* Timer 0 and 1 extended status 411 - I - I - I - I - I TlOE I - I TOOE 00 

2FF 2FE 2FD 2FC 2FB 2FA 2F9 2F8 

WDCON* Watchdog control register 41F PRE2 I PRE1 I PREO I - 1 - I WDRUN 1 WDTOF I - Note 6 

WDL Watchdog timer reload 45F 00 
WFEED1 Watchdog feed 1 45D x 
WFEED2 Watchdog feed 2 45E x 

NOTES: 
SFRs are bit addressable. 

1. At reset, the BCR register is loaded with the binary value 0000 Oa11, where "a" is the value on the BUSW pin. This defaults the address bus 
size to 20 bits since the XA-G3 has only 20 address lines. 

2. SFR is loaded from the reset vector. 
3. All bits except F1, FO, and P are loaded from the reset vector. Those bits are all O. 
4. Unimplemented bits in SFRs are X (unknown) at all times. Ones should not be written to these bits since they may be used for other 

purposes in future XA derivatives. The reset value shown for t,hese bits is O. 
5. Port configurations default to quasi-bidirectional when the XA begins execution from internal code memory after reset, based on the 

condition found on the EA pin. Thus all PnCFGA registers will contain FF and PnCFGB registers will contain 00. When the XA begins 
execution using external code memory, the default configuration for pins that are associated with the external bus will be push-pull. The 
PnCFGA and PnCFGB register contents will reflect this difference. 

6. The WDCON reset value is E6 for a Watchdog reset, E4 for all other reset causes. 
7. The XA-G3 implements an 8-bit SFR bus, as stated in Chapter 8 of the XA User Guide. All SFR accesses must be 8-bit operations. Attempts 

to write 16 bits to an SFR will actually write only the lower 8 bits. Sixteen bit SFR reads will return undefined data in the upper byte. 

1997 Mar 25 385 



Philips Semiconductors 

CMOS single-chip 16-bit microcontroller 

XA-G3 TIMER/COUNTERS 
The XA has two standard 16-bit enhanced Timer/Counters: Timer 0 
and Timer 1. Additionally, it has a third 16-bit Up/Down 
timer/counter, T2. A central timing generator in the XA core provides 
the time-base for all XA Timers and Counters. The timer/event 
counters can perform the following functions: 

- Measure time intervals and pulse duration 
- Count external events 
- Generate interrupt requests 
- Generate PWM or timed output waveforms 

All of the XA-G3 timer/counters (Timer 0, Timer 1 and Timer 2) can 
be independently programmed to operate either as timers or event 
counters via the CIT bit in the TnCON register. All XA-G3 timers 
count up unless otherwise stated. These timers may be dynamically 
read during program execution. 

The base clock rate of all of the XA-G3 timers is user 
programmable. This applies to timers TO, T1, and T2 when running 
in timer mode (as opposed to counter mode), and the watchdog 
timer. The clock driving the timers is called TCLK and is determined 
by the setting of two bits (PT1, PTO) in the System Configuration 
Register (SCR). The frequency of TCLK may be selected to be the 
oscillator input divided by 4 (Osc/4), the oscillator input divided by 
16 (Osc/16), or the oscillator input divided by 64 (Osc/64). This 
gives· a range of possibilities for the XA timer functions, including 

SCR Address:440 
Not Bit Addressable 
Reset Value: OOH 

PT1 

o 
o 
1 

PTO 

o 
1 
o 

MSB 

1- I 
OPERATING 
Prescaler selection. 
Osc/4 
Osc/16 
Osc/64 
Reserved 

Preliminary specification 
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baud rate generation, Timer 2 capture. Note that this single rate 
setting applies to all of the timers. 

When timers TO, T1, or T2 are used in the counter mode, the 
register will increment whenever a falling edge (high to low 
transition) is detected on the external input pin corresponding to the 
timer clock. These inputs are sampled once every 2 oscillator 
cycles, so it can take as many as 4 oscillator cycles to detect a 
transition. Thus the maximum count rate that can be supported is 
Oscl4. The duty cycle of the timer clock inputs is not important, but 
any high or low state on the timer clock input pins must be present 
for 2 oscillator cycles before it is guaranteed to be "seen" by the 
timer logic. 

Timer 0 and Timer 1 
The "Timer" or "Counter" function is selected by control bits CIT in 
the special function register TMOD. These two Timer/Counters have 
four operating modes, which are selected by bit-pairs (M1, MO) in 
the TMOD register. Timer modes 1, 2, and 3 in XA are kept identical 
to the 80C51 timer modes for code compatibility. Only the mode 0 is 
replaced in the XA by a more powerful 16-bit auto-reload mode. This 
will give the XA timers a much larger range when used as time 
bases. 

The recommended M1 , MO settings for the different modes are 
shown in Figure 2. 

LSB 

PT1 PTO CM PZ I 

1 
CM Compatibility Mode allows the XA to execute most translated 80C51 code on the XA. The 

XA register file must copy the 80C51 mapping to data memory and mimic the 80C51 indirect 
addressing scheme. 

PZ 

TMOD Address:45C 
Not Bit Addressable 
Reset Value: OOH 

M1 
o 
o 
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GATE 

crr 

MO 
o 

o 
1 

Page Zero mode forces all program and data addresses to 16-bits only. This saves stack space 
and speeds up execution but limits memory access to 64k. 

Figure 1. System Configuration Register (SCR) 

MSB LSB 

I GATE I crr M1 MO I GATE I Crr M1 MO I 
~ ______ ~y~ ________ ~J ~~ __________ y,~ __________ ~ 

TIMER 1 TIMER 0 

Gating control when set. Timer/Counter "n" is enabled only while "1fJTi1" pin is high and 
"TRn" control bit is set. When cleared Timer "n" is enabled whenever "TRn" control bit is set. 
Timer or Counter Selector cleared for Timer operation (input from internal system clock.) 
Set for Counter operation (input from ''Tn'' input pin). 

OPERATING 
16-bit auto-reload timer/counter 
16-bit non-auto-reload timer/counter 
8-bit auto-reload timer/counter 
Dual 8-bit timer mode (timer 0 only) 

Figure 2. Timer/Counter Mode Control (TMOD) Register 

386 
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New Enhanced Mode 0 
For timers TO or T1 the 13-bit count mode on the 80C51 (current 
Mode 0) has been replaced in the XA with a 16-bit auto-reload 
mode. Four additional 8-bit data registers (two per timer: RTHn and 
RTLn) are created to hold the auto-reload values. In this mode, the 
TH overflow will set the TF flag in the TCON register and cause both 
the TL and TH counters to be loaded from the RTL and RTH 
registers respectively. 

These new SFRs will also be used to hold the TL reload data in the 
8-bit auto-reload mode (Mode 2) instead of TH. 

The overflow rate for Timer 0 or Timer 1 in Mode 0 may be 
calculated as follows: 

Timer_Rate = Osc / (N * (65536 - TimecReload_ Value)) 

where N = the TCLK prescaler value: 4 (default), 16, or 64. 

Mode 1 
Mode 1 is the 16-bit non-auto reload mode. 

Mode 2 
Mode 2 configures the Timer register as an 8-bit Counter (TLn) with 
automatic reload. Overflow from TLn not only sets TFn, but also 
reloads TLn with the contents of RTLn, which is preset by software. 
The reload leaves THn unchanged. 

TCON Address:410 MSB 
Bit Addressable 
Reset Value: OOH TFi TR1 TFO 

BIT SYMBOL FUNCTION 
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Mode 2 operation is the same for Timer/Counter O. 

The overflow rate for Timer 0 or Timer 1 in Mode 2 may be 
calculated as follows: 

Timer_Rate = Osc / (N * (256 - Timer_Reload_Value)) 

where N = the TCLK prescaler value: 4, 16, or 64. 

Mode 3 
Timer 1 in Mode 3 simply holds its count. The effect is the same as 
setting TRi = O. 

Timer 0 in Mode 3 establishes TLO and THO as two separate 
counters. TLO uses the Timer 0 control bits: CIT, GATE, TRO, INTO, 
and TFO. THO is locked into a timer function and takes over the use 
of TRi and TF1 from Timer 1. Thus, THO now controls the "Timer 1" 
interrupt. 

Mode 3 is provided for applications requiring an extra 8-bit timer. 
When Timer 0 is in Mode 3, Timer 1 can be turned on and off by 
switching it out of and into its own Mode 3, or can still be used by 
the serial port as a baud rate generator, or in fact, in any application 
not requiring an interrupt. 

LSB 

TRO lEi In lEO ITO 

TCON.7 TFi Timer 1 overflow flag. Set by hardware on Timer/Counter overflow. 
This flag will not be set if TlOE (TSTAT.2) is set. 

TCON.6 TR1 
TCON.5 TFO 

TCON.4 TRO 
TCON.3 lEi 

TCON.2 IT1 

TCON.i lEO 

TCON.O ITO 
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Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software. 
Timer 1 Run control bit. SeVcleared by software to turn Timer/Counter ion/off. 
Timer 0 overflow flag. Set by hardware on Timer/Counter overflow. 
This flag will not be set if TOOE (TSTAT.O) is set. 
Cleared by hardware when processor vectors to interrupt routine, or by clearing the bit in software. 
Timer 0 Run control bit. SeVcleared by software to turn Timer/Counter 0 on/off. 
Interrupt 1 Edge flag. Set by hardware when external interrupt edge detected. 
Cleared when interrupt processed. 
Interrupt 1 type control bit. SeVcleared by software to specify falling edge/low level triggered 
external interrupts. ' 

Interrupt 0 Edge flag. Set by hardware when external interrupt edge detected. 
Cleared when interrupt processed. 
Interrupt 0 Type control bit. SeVcleared by software to specify falling edge/low level 
triggered external interrupts. 

Figure 3. Timer/Counter Control (TCON) Register 

387 

SU00604C 
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T2CON Address:418 MSB lSB 
Bit Addressable 
Reset Value: OOH I TF2 I EXF2 I RClKO I TClKO I EXEN21 TR2 I CfT2 I CP/Rl21 

BIT SYMBOL FUNCTION 
T2CON.7 TF2 Timer 2 overflow flag. Set by hardware on Timer/Counter overflow. Must be cleared by software. 

TF2 will not be set when RClKO, RClK1, TClKO, TClK1 or T20E=1. 
T2CON.6 EXF2 Timer 2 external flag is set when a capture or reload occurs due to a negative transition on T2EX (and 

EXEN2 is set). This flag will cause a Timer 2 interrupt when this interrupt is enabled. EXF2 is cleared by 
software. 
Receive Clock Flag. T2CON.5 RClKO 

T2CON.4 TClKO Transmit Clock Flag. RClKO and TClKO are used to select Timer 2 overflow rate as a clock source for 
UARTO instead of Timer T1. 

T2CON.3 EXEN2 
T2CON.2 TR2 
T2CON.1 CfT2 

Timer 2 external enable bit allows a capture or reload to occur due to a negative transition on T2EX. 
Start=1/Stop=0 control for Timer 2. 
Timer or counter select. 
O=lnternal timer 

T2CON.0 CP/RL2 
1=External event counter (falling edge triggered) 
Capture/Reload flag. 
If CP/Rl2 & EXEN2=1 captures will occur on negative transitions of T2EX. 
If CP/Rl2=O, EXEN2=1 auto reloads occur with either Timer 2 overflows or negative transitions at T2EX. 
If RClK or TClK=1 the timer is set to auto reload on Timer 2 overflow, this bit has no effect. 

SUOO606A 

Figure 4. Timer/Counter 2 Control (T2CON) Register 

New Timer-Overflow Toggle Output 
In the XA, the timer module now has two outputs, which toggle on 
overflow from the individual timers. The same device pins that are 
used for the TO and T1 count inputs are also used for the new 
overflow outputs. An SFR bit (TnOE in the TSTAT register) is 
associated with each counter and indicates whether Port-SFR data 
or the overflow signal is output to the pin. These outputs could be 
used in applications for generating variable duty cycle PWM outputs 
(changing the auto-reload register values). Also variable frequency 
(Osc/8 to Osc/8,388,608) outputs could be achieved by adjusting 
the prescaler along with the auto-reload register values. With a 
30.0MHz oscillator, this range would be 3.58Hz to 3.75MHz. 

TimerT2 
Timer 2 in the XA is a 16-bit Timer/Counter which can operate as 
e.ither a timer or as an event counter. This is selected by CfT2 in the 
special function register T2CON. Upon timer T2 overflow/underflow, 
the TF2 flag is set, which may be used to generate an interrupt. It 
can be operated in one of three operating modes: auto-reload (up or 
down counting), capture, or as the baud rate generator (for either or 
both UARTs via SFRs T2MOD and T2CON). These modes are 
shown in Table 1. 

Capture Mode 
In the capture mode there are two options which are selected by bit 
EXEN2 in T2CON. If EXEN2 = 0, then timer 2 is a 16-bit timer or 
counter, which upon overflowing sets bit TF2, the timer 2 overflow 
bit. This will cause an interrupt when the timer 2 interrupt is enabled. 

If EXEN2 = 1, then Timer 2 still does the above, but with the added 
feature that a 1-to-0 transition at external input T2EX causes the 
current value in the Timer 2 registers, TL2 and TH2, to be captured 
into registers RCAP2l and RCAP2H, respectively. In addition, the 
transition at T2EX causes bit EXF2 in T2CON to be set. This will 
cause an interrupt in the same fashion as TF2 when the Timer 2 
interrupt is enabled. The capture mode is illustrated in Figure 7. 
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Auto-Reload Mode (Up or Down Counter) 
In the auto-reload mode, the timer registers are loaded with the 
16-bit value in T2CAPH and T2CAPl when the count overflows. 
T2CAPH and T2CAPl are initialized by software. If the EXEN2 bit in 
T2CON is set, the timer registers will also be reloaded and the EXF2 
flag set when a 1-to-0 transition occurs at input T2EX. The 
auto-reload mode is shown in Figure 8. 

In this mode, Timer 2 can be configured to count up or down. This is 
done by setting or clearing the bit DCEN (Down Counter Enable) in 
the T2MOD special function register (see Table 1). The T2EX pin 
then controls the count direction. When T2EX is high, the count is in 
the up direction, when T2EX is low, the count is in the down 
direction. 

Figure 8 shows Timer 2, which will count up automatically, Since 
DCEN = o. In this mode there are two options selected by bit 
EXEN2in the T2CON register. If EXEN2 = 0, then Timer 2 counts 
up to FFFFH and sets the TF2 (Overflow Flag) bit upon overflow. 
This causes the Timer 2 registers to be reloaded with the 16-bit 
value in T2CAPl and T2CAPH, whose values are preset by 
software. If EXEN2 = 1, ~ 16-bit reload can be triggered either by an 
overflow or by a 1-to-0 transition at input T2EX. This transition also 
sets the EXF2 bit. If enabled, either TF2 or EXF2 bit can generate 
the Timer 2 interrupt. 

In Figure 9, the DCEN = 1; this enables the Timer 2 to count up or 
down. In this mode, the logic level of T2EX pin controls the direction 
of count. When a logic '1' is applied at pin T2EX, the Timer 2 will 
count up. The Timer 2 will overflow at FFFFH and set the TF2 flag, 
which can then generate an interrupt if enabled. This timer overflow, 
also causes the 16-bit value in T2CAPl and T2CAPH to be 
reloaded into the timer registers Tl2 and TH2, respectively. 

A logic '0' at pin T2EX causes Timer 2 to count down. When 
counting down, the timer value is compared to the 16-bit value 
contained in T2CAPH and T2CAPL. When the value is equal, the 
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timer register is loaded with FFFF hex. The underflow also sets the 
TF2 flag, which can generate an interrupt if enabled. 

The external flag EXF2 toggles when Timer 2 underflows or 
overflows. This EXF2 bit can be used as a 17th bit of resolution, if 
needed. the EXF2 flag does not generate an interrupt in this mode. 
As the baud rate generator, timer T2 is incremented by TCLK. 

Baud Rate Generator Mode 
By setting the TCLKn and/or RCLKn in T2CON or T2MOD, the 
Timer 2 can be chosen as the baud rate generator for either or both 
UARTs. The baud rates for transmit and receive can be 
simultaneously different. 

Programmable Clock-Out 
A 50% duty cycle clock can be programmed to come out on Pi.6. 
This pin, besides being a regular I/O pin, has two alternate 
functions. It can be programmed (1) to input the external clock for 

Table 1. Timer 2 Operating Modes 

TR2 CP/RL2 RCLK+TCLK DC EN 

0 X X X 

1 0 0 0 

1 0 0 1 

1 1 0 X 

1 X 1 X 

TSTAT Address:4i1 
Bit Addressable 

MSB 

Reset Value: OOH 

BIT SYMBOL FUNCTION 
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Timer/Counter 2 or (2) to output a 50% duty cycle clock ranging from 
3.58Hz to 3.75MHz at a 30MHz operating frequency. 

To configure the Timer/Counter 2 as a clock generator, bit CIT2 (in 
T2CON) must be cleared and bit T20E in T2MOD must be set. Bit 
TR2 (T2CON.2) also must be set to start the timer. 

The Clock-Out frequency depends on the oscillator frequency and 
the reload value of Timer 2 capture registers (TCAP2H, TCAP2L) as 
shown in this equation: 

TCLK 
2 x (65536 - TCAP2H, TCAP2L) 

In the Clock-Out mode Timer 2 roll-overs will not generate an 
interrupt. This is similar to when it is used as a baud-rate generator. 
It is possible to use Timer 2 as a baud-rate generator and a clock 
generator simultaneously. Note, however, that the baud-rate will be 
1/8 of the Clock-Out frequency. 

MODE 

Timer off (stopped) 

16-bit auto-reload, counting up 

i6-bit auto-reload, counting up or down depending on T2EX pin 

i6-bit capture 

Baud rate generator 

LSB 

nOE rOOE 

TSTAT.2 Ti0E When 0, this bit allows the n pin to clock Timer 1 when in the counter mode. 
When 1, T1 acts as an output and toggles at every Timer 1 overflow. 

TSTAT.O TOOE When 0, this bit allows the TO pin to clock Timer 0 when in the counter mode. 
When 1, TO acts as an output and toggles at every Timer 0 overflow. 

Figure 5. Timer 0 And 1 Extended Status (TSTAT) 

T2MOD Address:419 MSB LSB 
Bit Addressable 
Reset Value: OOH I RCLK1 I TCLK1 I T20E DCEN I 

BIT SYMBOL FUNCTION 
T2MOD.5 RCLK1 
T2MOD.4 TCLKi 

T2MOD.1 T20E 

T2MOD.0 DC EN 

Receive Clock Flag. 

Transmit Clock Flag. RCLK1 and TCLK1 are used to select Timer 2 overflow rate as a clock source 
for UART1 instead of Timer T1. 
When 0, this bit allows the T2 pin to clock Timer 2 when in the counter mode. 
When 1, T2 acts as an output and toggles at every Timer 2 overflow. 
Controls count direction for Timer 2 in autoreload mode. 
DCEN=1 counter set to count up only 

SU006128 

DCEN=O counter set to count up or down, depending on T2EX (see text). 
SU00610A 

Figure 6. Timer 2 Mode Control (T2MOD) 
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T2 Pin 

Transition 
Detector 

TR2 

Control 

Capture 

Tl2 TH2 
(a-bits) (a-bits) 
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Timer 2 
Interrupt 

T2EX Pin ~~~----~~----------------------~ 

Control 

EXEN2 

Figure 7. Timer 2 in Capture Mode 

Tl2 TH2 
(a-bits) (a-bits) 

T2 Pin 

T2EX Pin 

Control 

EXEN2 

Figure 8. Timer 2 in Auto-Reload Mode (DCEN = 0) 

(DOWN COUNTING RELOAD VALUE) 

CONTROL 

TR2 

(UP COUNTING RELOAD VALUE) 

Figure 9_ Timer 2 Auto Reload Mode (DCEN = 1) 
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TOGGLE 

COUNT 
DIRECTION 
1 =UP 
O=OOWN 

T2EX PIN 

SUOO704 

Timer 2 
Interrupt 

SUOO705 

INTERRUPT 

SUOO706 



Philips Semiconductors 

CMOS single-chip 16-bit microcontroller 

WATCHDOG TIMER 
The watchdog timer subsystem protects the system from incorrect 
code execution by causing a system reset when the watchdog timer 
underflows as a result of a failure of software to feed the timer prior 
to the timer reaching its terminal count. It is important to note that 
the XA-G3 watchdog timer is running after any type of reset and 
must be turned off by user software if the application does not use 
the watchdog function. 

Watchdog Function 
The watchdog consists of a programmable prescaler and the main 
timer. The prescaler derives its clock from the TCLK source that also 
drives timers 0, 1, and 2. The watchdog timer subsystem consists of 
a programmable 13-bit prescaler, and an 8-bit main timer. The main 
timer is clocked (decremented) by a tap taken from one of the top 
8-bits of the prescaler as shown in Figure 10. The clock source for 
the prescaler is the same as TCLK (same as the clock source for 
the timers). Thus the main counter can be clocked as often as once 
every 64 TCLKs (see Table 2). The watchdog generates an 
underflow signal (and is autoloaded from WDL) when the watchdog 
is at count 0 and the clock to decrement the watchdog occurs. The 
watchdog is 8 bits wide and the autoload value can range from 0 to 
FFH. (The autoload value of 0 is permissible since the prescaler is 
cleared upon autoload). 

This leads to the following user design equations. Definitions :lose 
is the oscillator period. N is the selected prescaler tap value, W is 
the main counter autoload value, P is the prescaler value from 
Table 2, tMIN is the minimum watchdog time-out value (when the 
autoload value is 0), tMAX is the maximum time-out value (when the 
autoload value is FFH), to is the design time-out value. 

lMlN = tose x 4 x 32 (W = 0, N = 4) 

tMAX = lose x 64 x 4096 x 256 (W = 255, N = 64) 

to = lose x N x P x (W + 1) 

The watchdog timer is not directly loadable by the user. Instead, the 
value to be loaded into the main timer is held in an autoload register. 
In order to cause the main timer to be loaded with the appropriate 
value, a special sequence of software action must take place. This 
operation is referred to as feeding the watchdog timer. 

To feed the watChdog, two instructions must be sequentially 
executed successfully. No intervening SFR accesses are allowed, 
so interrupts should be disabled before feeding the watchdog. The 
instructions should move A5H to the WFEED1 register and then 
5AH to the WFEED2 register. If WFEED1 is correctly loaded and 
WFEED2 is not correctly loaded, then an Immediate watchdog reset 
will occur. The program sequence to feed the watchdog timer or 
cause new WDCON settings to take effect is as follows: 

clr ea ; disable global interrupts. 
mov.b wteed1,#A5h ; do watchdog feed part 1 
mov.b wteed2,#5Ah; do watchdog feed part 2 
setb ea ; re-enable global interrupts. 

This sequence assumes that the XA interrupt system is enabled and 
there is a possibility of an interrupt request occurring during the feed 
sequence. If an interrupt was allowed to be serviced and the service 
routine contained any SFR access, it would trigger a watchdog 
reset. If it is known that no interrupt could occur during the feed 
sequence, the instructions to disable and re-enable interrupts may 
be removed. 
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The software must be written so that a feed operation takes place 
every to seconds from the last feed operation. Some tradeoffs may 
need to be made. It is not advisable to include feed operations in 
minor loops or in subroutines unless the feed operation is a specific 
subroutine. 

To turn the watchdog timer completely off, the following code 
sequence should be used: 

mov.b wdcon,#O ; set WD control register to clear WDRUN. 
mov.b wteed1,#A5h; do watchdog feed part 1 
mov.b wfeed2,#5Ah ; do watchdog feed part 2 

This sequence assumes that the watchdog timer is being turned off 
at the beginning of initialization code and that the XA interrupt 
system has not yet been enabled. If the watchdog timer is to be 
turned off at a point when interrupts may be enabled, instructions to 
disable and re-enable interrupts should be added to this sequence. 

Watchdog Control Register (WDCON) 
The reset values of theWDCON and WDL registers will be such that 
the watchdog timer has a timeout period of 4 x 8192 x tose and the 
watchdog is running. WDCON can be written by software but the 
changes only take effect after executing a valid watchdog feed 
sequence. 

Table 2. Prescaler Select Values In WDCON 

PRE2 PRE1 PREO DIVISOR 

0 0 0 32 

0 0 1 64 

0 1 0 128 

0 1 1 256 

1 0 0 512 

1 0 1 1024 

1 1 0 2048 

1 1 1 4096 

Watchdog Detailed Operation 
When external 'RESET is applied, the following takes place: 

• Watchdog run control bit set to ON (1). 

• Autoload register WDL set to 00 (min. count). 

• Watchdog time-out flag cleared. 

• Prescaler is cleared. 

• Prescaler tap set to the highest divide. 

• Autoload takes place. 

When coming out of a hardware reset, the software should load the 
autoload register and then feed the watchdog (cause an autOload). 

If the watchdog is running and happens to underflow at the time the 
external RESET is applied, the watchdog time-out flag will be 
cleared. 
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WATCHDOG FEED SEQUENCE 

MOV WFEED1,/lA5H 
MOV WFEED2,/l5AH 

TCLK 
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Figure 10. Watchdog Timer In XA-G3 

When the watchdog underflows, the following action takes place 
(see Figure 10): 

• Autoload takes place. 
• Watchdog time-out flag is set 

• Watchdog run bit unchanged. 
• Autoload (WOL) register unchanged. 
• Prescaler tap unchanged. 
• All other device action same as external reset. 

Note that if the watchdog underflows, the program counter will be 
loaded from the reset vector as in the case of an Internal reset. The 
watchdog time-out flag can be examined to determine if the 
watchdog has caused the reset condition. The watchdog time-out 
flag bit can be cleared by software. 

WDCON Register Bit Definitions 
WOCON.7 PRE2 Prescaler Select 2, reset to 1 
WOCON.6 PRE1 Prescaler Select 1, reset to 1 
WOCON.5 PREO Prescaler Select 0, reset to 1 
WOCON.4 
WOCON.3. 
WOCON.2 WORUN Watchdog Run Control bit, reset to 1 
WOCON.1 WOTOF Timeout flag 
WOCON.O 

UARTs 
The XA-G3 includes 2 UART ports that are compatible with the 
enhanced UART used on the BxC51 FB. Baud rate selection is 
somewhat different due to the clocking scheme used for the XA 
timers. 

Some other enhancements have been made to UART operation. 
The first is that there are separate interrupt vectors for each UART's 
transmit and receive functions. A break detect function has been 
added to theUART. This operates independently of the UART itself 
and provides a start-of-break status bit that the program may test. 
Finally, an Overrun Error flag has been added to detect missed 
characters in the received data stream. 

Each UART rate is determined by either a fixed division of the 
oscillator (in UART modes 0 and 2) or by the timer 1 or timer 2 
overflow rate (in UART modes 1 and 3). 

1997 Mar 25 392 

Timer 1 defaults to clock both UARTO and UART1, Timer 2 can be 
programmed to clock either UARTO through T2CON (via bits ROCLK 
and TOCLK) or UART1 through T2MOO (via bits R1CLK and 
T1CLK). In this case, the UART not clocked by T2 could use T1 as 
the clock source. 

The serial port receive and transmit registers are both accessed at 
Special Function Register SnBUF. Writing to SnBUF loads the 
transmit register, and reading SnBUF accesses a physically 
separate receive register, 

The serial port can operate in 4 modes: 

Mode 0: Serial 110 expansion mode. Serial data enters and exits 
through RxOn. TxOn outputs the shift clock. B bits are 
transmitted/received (LSB first). (The baud rate is fixed at 1/16 the 
oscillator frequency.) 

Mode 1: Standard B-blt UART mode. 10 bits are transmitted 
(through TxOn) or received (through RxOn): a start bit (0), B data 
bits (LSB first), and a stop bit (1). On receive, the stop bit goes into 
RBB in Special Function Register SnCON. The baud rate is variable. 

Mode 2: Fixed rate 9-blt UART mode. 11 bits are transmitted 
(through TxO) or received (through RxO): start bit (0), S data bits 
(LSB first), a programmable 9th data bit, and a stop bit (1). On 
Transmit, the 9th data bit (TBS_n in SnCON) can be assigned the 
value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could 
be moved into TBB_n. On receive, the 9th data bit goes into RBB_n 
in Special Function Register SnCON, while the stop bit is ignored. 
The baud rate is programmable to 1/32 of the oscillator frequency. 

Mode 3: Standard 9-blt UART mode. 11 bits are transmitted 
(through TxOn) or received (through RxOn): a start bit (0), S data 
bits (LSB first), a programmable 9th data bit, and a stop bit (1). 
In fact, Mode 3 is the same as Mode 2 in all respects except baud 
rate. The baud rate in Mode 3 is variable. 

In all four modes, transmission is initiated by any instruction that 
uses SnBUF as a destination register. Reception is initiated in 
Mode 0 by the condition RLn = 0 and REN:....n = 1. Reception is 
initiated in the other modes by the incoming start bit if REN_n = 1. 

Serial Port Control Register 
The serial port control and status register is the Special Function 
Register SnCON, shown in Figure 12. This register contains not only 
the mode selection bits, but also the 9th data bit for transmit and 
receive (TBB_n and RBS_n), and the serial port interrupt bits (TI_n 
and RLn). 
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CLOCKING SCHEME/BAUD RATE GENERATION 
The XA UARTS clock rates are determined by either a fixed division 
(modes 0 and 2) of the oscillator clock or by the Timer 1 or Timer 2 
overflow rate (modes 1 and 3). 

The clock for the UARTs in XA runs at 16x the Baud rate. If the 
timers are used as the source for Baud Clock, since maximum 
speed of timers/Baud Clock is Osc/4, the maximum baud rate is 
timer overflow divided by 16 I.e. Osc/64. 
In Mode 0, it is fixed at Oscl16. In Mode 2, however, the fixed rate is 
Osc/32. 

00 Osc/4 

Pre-scaler 01 Osc/16 
for all Timers TO,1 ,2 10 Osc/64 controlled by PT1 , PTO 
bits in SCR 11 reserved 

Baud Rate for UART Mode 0: 
Baud_Rate = Osc/16 

Baud Rate calculation for UART Mode 1 and 3: 
Baud_Rate = TimecRate/16 

TimecRate = Osc/(N*(TimecRange- TimecReload_ Value)) 

where N = the TCLK prescaler value: 4, 16, or 64. 
and Timer_Range = 256 for timer 1 in mode 2. 

65536 for timer 1 in mode 0 and timer 2 
in count up mode. 

The timer reload value may be calculated as follows: 
TimecReload_ Value = TimecRange-(Osc/(Baud_Rate*N*16)) 

NOTES: 
1. The maximum baud rate for a UART in mode 1 or 3 is Osc/64. 
2. The lowest possible baud rate (for a given oscillator frequency 

and N value) may be found by using a timer reload value of O. 
3. The timer reload value may never be larger than the timer range. 
4. If a timer reload value calculation gives a negative or fractional 

result, the baud rate requested is not possible at the given 
oscillator frequency and N value. 

Baud Rate for UART Mode 2: 
Baud_Rate = Osc/32 

SnSTAT Address: SOSTAT 421 
S1STAT 425 

Bit Addressable 
Reset Value: OOH 

MSB 

BIT SYMBOL FUNCTION 
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Using Timer 2 to Generate Baud Rates 
Timer T2 is a 16-blt up/down counter In XA. As a baud rate 
generator, timer 2 is selected as a clock source for elther/both 
UARTO and UART1 transmitters and/or receivers by setting TCLKn 
and/or RCLKn in T2CON and T2MOD. As the baud rate generator, 
T2 is incremented as Osc/N where N = 4, 16 or 64 depending on 
TCLK as programmed in the SCR bits PT1, and PTO. So, if T2 is 
the source of one UART, the other UART could be clocked by either 
T1 overflow or fixed clock, and the UARTs could run independently 
with different baud rates. 

T2CON bit5 bit4 
ox418 RCLKO TCLKO 

T2MOD bit5 bit4 
ox419 RCLK1 TCLK1 

Prescaler Select for Timer Clock (TCLK) 

SCR 

I I 
bit3 

I 
bit2 

Ox440 PT1 PTO 

LSB 

FEn BRn OEn I STINTn I 

SnSTAT.3 FEn Framing Error flag is set when the receiver fails to see a valid STOP bit at the end of the frame. 
Cleared by software. 

SnSTAT.2 BRn 

SnSTAT.1 OEn 

SnSTAT.O STINTn 
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Break Detect flag is set if a character is received with all bits (including STOP bit) being logic '0'. Thus 
it gives a "Start of Break Detecr on bit 8 for Mode 1 and bit 9 for Modes 2 and 3. The break detect 
feature operates independently of the UARTs and provides the START of Break Detect status bit that 
a user program may poll. Cleared by software. 
Overrun Error flag is set if a new character is received in the receiver buffer while it is still full (before 
the software has read the previous character from the buffer), I.e., when bit 8 of a new byte is 
received while RI in SnCON is still set. Cleared by software. 
This flag must be set to enable any of the above status flags to generate a receive interrupt (Rln). The 
only way it can be cleared is by a software write to this register. 

Figure 11. Serial Port Extended Status (SnSTAT) Register 
(See also Figure 13 regarding Framing Error flag) 
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INTERRUPT SCHEME 
There are separate Interrupt vectors for each UART's transmit and 
receive functions. 

Table 3. Vector Locations for UARTs In XA 

Vector Address Interrupt Source Arbitration 

AOH -A3H UART 0 Receiver 7 

A4H -A7H UART 0 Transmitter 8 

A8H-ABH UART 1 Receiver 9 

ACH-AFH UART 1 Transmitter 10 

NOTE: 
The transmit and receive vectors could contain the same ISR 
address to work like a 8051 interrupt scheme 

Error Handling, Status Flags and Break Detect 
The UARTs In XA has the following error flags; see Figure 11. 

Multiprocessor Communications 
Modes 2 and 3 have a special provision for multiprocessor 
communications. In these modes, 9 data bits are received. The 9th 
one goes Into RB8. Then comes a stop bit. The port can be 
programmed such that when the stop bit is received, the serial port 
interrupt will be activated only if RB8 = 1. This feature is enabled by 
setting bit SM2 in SCON. A way to use this feature in multiprocessor 
systems is as follows: 

When the master processor wants to transmit a block of data to one 
of several slaves, it first sends out an address byte which identifies 
the target slave. An address byte differs from a data byte in that the 
9th bit is 1 in an address byte and 0 in a data byte. With SM2 = 1 , no 
slave will be interrupted by a data byte. An address byte, however, 
will interrupt all slaves, so that each slave can examine the received 
byte and see if it is being addressed. The addressed slave will clear 
its SM2 bit and prepare to receive the data bytes that will be coming. 
The slaves that weren't being addressed leave their SM2s set and 
go on about their business, ignoring the coming data bytes. 

SM2 has no effect in Mode 0, and in Mode 1 can be used to check 
the validity of the stop bit although this is better done with the 
Framing Error (FE) flag. In a Mode 1 reception, if SM2 = 1, the 
receive interrupt will not be activated unless a valid stop bit is 
received. 

Automatic Address Recognition 
Automatic Address Recognition is a feature which allows the UART 
to recognize certain addresses in the serial bit stream by using 
hardware to make the comparisons. This feature saves a great deal 
of software overhead by eliminating the need for the software to 
examine every serial address which passes by the serial port. This 
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART 
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be 
automatically set when the received byte contains either the "Given" 
address or the "Broadcast" address. The 9 bit mode requires that 
the 9th information bit is a 1 to indicate that the received information 
is an address and not data. Automatic address recognition is shown 
in Figure 14. 

Using the Automatic Address Recognition feature allows a master to 
selectively communicate with one or more slaves by invoking the 
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Given slave address or addresses. All of the slave!! may be 
contacted by using the Broadcast address. Two special Function 
Registers are used to define the slave's address, SADDR, and the 
address mask, SADEN. SADEN is used to define which bits In the 
SADDR are to be used and which bits are "don't care". The SADEN 
mask can be logically ANDed with the SADDR to create the "Given" 
address which the master will use for addressing each of the slaves. 
Use of the Given address allows multiple slaves to be recognized 
while excluding others. The following examples will help to show the 
versatility of this scheme: 

Slave 0 SADDR 1100 0000 
SADEN 1111 11Q1 
Given 1100 OOXO 

Slave 1 SADDR 1100 0000 
SADEN 1111 111Q 
Given 1100 OOOX 

In the above example SADDR Is the same and the SADEN data Is 
used to differentiate between the two slaves. Slave 0 requires a 0 in 
bit 0 and It Ignores bit 1. Slave 1 requires a 0 In bit 1 and bit 0 is 
ignored. A unique address for Slave 0 would be 1100 0010 since 
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be 
1100 0001 since a 1 In bit a will exclude slave O. Both slaves can be 
selected at the same time by an address which has bit 0 = 0 (for 
slave 0) and bit 1 = a (for slave 1). Thus, both could be addressed 
with 1100 0000. 

In a more complex system the following could be used to select 
slaves 1 and 2 while excluding slave 0: 

Slave a SADDR 1100 0000 
SADEN 1:111 1001 
Given 1100 OXXO 

Slave 1 SADDR 1110 0000 
SADEN 1111 1010 
Given 1110 OXOX 

Slave 2 SADDR 1110 0000 
SADEN 1111 1100 
Given 1110 OOXX 

In the above example the differentiation among the 3 slaves Is in the 
lower 3 address bits. Slave a requires that bit a = 0 and it can be 
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and 
it can be uniquely addressed by 1110 and 0101. Slave 2 requires 
that bit 2 = a and Its unique address is 1110 0011. To select Slaves 0 
and 1 and exclude Slave 2 use address 1110 0100, since it is 
necessary to make bit 2 = 1 to exclude slave 2. 

The Broadcast Address for each slave is created by taking the 
logical OR of SADDR and SADEN. Zeros in this result are teated as 
don't-cares. In most cases, Interpreting the don't-cares as ones, the 
broadcast address will be FF hexadecimal. 

Upon reset SADDR and SADEN are loaded with Os. This produces 
a given address of all "don't cares" as well as a Broadcast address 
of all "don't cares". This effectively disables the Automatic 
Addressing mode and allows the microcontroller to use standard 
UART drivers which do not make use of this feature. 
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SnCON Address: SOCON 420 

Bit Addressable 
Reset Value: OOH 

BIT SYMBOL 
SnCON.5 SM2 

SnCON.4 REN 
SnCON.3 TBS 
SnCON.2 RBS 

SnCON.1 TI 

SnCON.O RI 
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S1CON424 MSB LSB 

SMO SM1 SM2 REN TBS RBS TI RI 

Where SMO, SM1 specify the serial port mode, as follows: 

SMO SM1 Mode Description Baud Rate 

0 0 0 shift register fosc/16 

0 S-bit UART variable 

0 2 9-bit UART fosc/32 

3 9-bit UART variable 

FUNCTION 
Enables the multiprocessor communication feature in Modes 2 and 3. In Mode 2 or 3, if SM2 is set to t, thenRI 
will not be activated if the received 9th data bit (RBS) is O. In Mode 1, if SM2=1 then RI will not be activated if a 
valid stop bit was not received. In Mode 0, SM2 should be O. 
Enables serial reception. Set by software to enable reception. Clear by software to disable reception. 
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired. 
In Modes 2 and 3, is the 9th data bit that was received. In Mode 1, it SM2=O, RBS is the stop bit that was 
received. In Mode 0, RBS is not used. 
Transmit interrupt flag. Set by hardware at the end of the Sth bit time in Mode 0, or at the end of the stop bit in the 
other modes. Must be cleared by software. 
Receive interrupt flag. Set by hardware at the end of the Sth bit time in Mode 0, or at the end of the stop bit time 
in the other modes (except see SM2). Must be cleared by software. 

Figure 12. Serial Port Control (SnCON) Register 

~.I 
START DATA BYTE ONLY IN STOP 

BIT MODE 2, 3 BIT 

if 0, sets FE 

__ -----------------------------------,1 ( 
FEn BRn OEn STINTn I SnSTAT 

Figure 13. UART Framing Error Detection 

RECEIVED ADDRESS DO TO 07 ----r------,t--____ ----.J 

PROGRAMMED ADDRESS ----L.:=:.:.::.::.:.:..:.:.J 
IN UART MODE 2 OR MODE 3 AND SM2 = 1: 

INTERRUPT IF REN=l, RBB=1 AND "RECEIVED ADDRESS· = "PROGRAMMED ADDRESS" 
- WHEN OWN ADDRESS RECEIVED, CLEAR 5M2 TO RECEIVE DATA BYTES 
- WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET 5M2 TO WAIT FOR NEXT ADDRESS. 

Figure 14. UART Multiprocessor Communication, Automatic Address Recognition 
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VO PORT OUTPUT CONFIGURATION 
Each I/O port pin on the XA-G3 can be user configured to one of 4 
output types. The types are Quasi-bidirectional (essentially the 
same as standard SOC51 family I/O ports), Open-Drain, Push-Pull, 
al)d Off (high impedance). The default configuration after reset is 
Quasi-bidirectional. However, in the ROM less mode (the EA pin is 
low at reset), the port pins that comprise the external data bus will 
default to push-pull outputs. 

I/O port output configurations are determined by the settings in port 
configuration SFRs. There are 2 SFRs for each port, called 
PnCFGA and PnCFGB, where "n" is the port number. One bit in 
each of the 2 SFRs relates to the output setting for the 
corresponding port pin, allowing any combination of the 2 output 
types to be mixed on those port pins. For instance, the output type 
of port 1 pin 3 is controlled by the setting of bit 3 in the SFRs 
P1 CFGA and P1 CFGB. 

Table 4 shows the configuration register settings for the 4 port 
output types. The electrical characteristics of each output type may 
be found In the DC Characteristic table. 

Table 4 •. Port Configuration Register Settings 

PnCFGB PnCFGA Port Output Mode 

0 0 Open Drain 

0 1 Quasi-bidirectional 

1 0 Off (high impedance) 

1 1 Push-Pull 

NOTE: 
Mode changes may cause glitches to occur during transitions. When 
modifying both registers, WRITE instructions should be carried out 
consecutively. 

EXTERNAL BUS 
The external program/data bus on the XA-G3 allows for S-bit or 
16-bit bus width, and address sizes from 12 to 20 bits. The bus 
width is selected by an input at reset (see Reset Options below), 
while the address size is set by the program in a configuration 
register. If all off-chip code is selected (through the use of the EA 
pin), the initial code fetches will be done with the maximum address 
size (20 bits). 

RESET 
The device is reset whenever a logic "0" is applied to 'R'ST for at 
least 10 microseconds, placing a low level on the pin re-initializes 
the on-Chip logic. Reset must be asserted when power Is initially 
applied to the XA-G3 and held until the oscillator is running. 

The duration of reset must be extended when power is initially 
applied or when using reset to exit power down mode. This is due to 
the need to allow the oscillator time to start up and stabilize. For 
most power supply ramp up conditions, this time is 10 milliseconds. 

As it is brought high again, an exception Is generated which causes 
the processor to jump to the address contained in the memory 
location 0000. The destination of the reset jump must be located in 
the first 64k of code address on power-up, all vectors are 16-bit 
values and so pOint to page zero addresses only. After a reset the 
RAM contents are indeterminate. 
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vlV' 

R: XA 

~ RE'SET c1 
SOME TYPICAL VALUES FOR RAND C: 

R = lOOK. C = 1.01!F 
R .. 1.0M. C .. O.lI!F 

(ASSUMING THAT THE Vee RISE TIME IS 1 ma OR LESS) SUOO702 

Figure 15. Recommended Reset Circuit 

RESET OPTIONS 
The EA pin is sampled on the rising edge of the ~ pulse, and 
determines whether the device is to begin execution from internal or 
external code memory. EA pulled high configures the XA in 
single-chip mode. If EA is driven low, the device enters ROMless 
mode. After Reset is released, the EAlWAIT pin becomes a bus wait 
signal for external bus transactions. 

The BUSW/P3.5 pin is weakly pulled high while reset is asserted, 
allowing simple biasing of the pin with a resistor to ground to select 
the alternate bus width. If the BUSW pin Is not driven at reset, the 
weak pullup will cause a 1 to be loaded for the bus width, giving a 
16-bit external bus. BUSW may be pulled low with a 2.7K or smaller 
value resistor, giving an S-bit external bus. The bus width setting 
from the BUSW pin may be overridden by software once the user 
program is running. 

Both EA and WAIT must be held for three oscillator clock times after 
reset is deasserted to guarantee that their values are latched 
correctly. 

ONCE MODE 
The ONCE (on-circuit emulation) mode facilitates testing and 
debugging of systems using the XA-G3 without the device having to 
be removed from the circuit. While the XA-G3 is in this mode, an 
emulator, tester, or test device may be used to drive the application 
circuit. The ONCE mode is activated by the following conditions: 

1. While'R'ST is asserted, ALE, P1.3, P1.2, P1.1, and P1.0 are 
pulled low. The 'J5S'El\J signal must be allowed to remain high. 

2. Deassert ~ while holding the other pins in the above state. 
After ONCE mode is entered, the setup signals may be released. 

While the XA-G3 is in the ONCE mode, all port pins, ALE and 'J5S'El\J 
are pulled weakly high. The on-chip oscillator remains active. 
Normal operation is restored after a standard reset is applied. 

POWER REDUCTION MODES 
The XA-G3 supports Idle and Power Down modes of power 
reduction. The idle mode leaves some peripherals running to allow 
them to wake up the processor when an interrupt is generated. The 
power down mode stops the oscillator in order to minimize power. 
The processor can be made to exit power down mode via reset or 
one of the external interrupt inputs. In order to use an external 
interrupt to re-activate the XA while in power down mode, the 
external interrupt must be enabled and be configured to level 
sensitive mode. In power down mode, the power supply voltage may 
be reduced to the RAM keep-alive voltage (2V), retaining the RAM, 
register, and SFR values at the point where the power down mode 
was entered. 
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INTERRUPTS 
The XA-G3 supports 3S vectored interrupt sources. These include 9 
maskable event interrupts, 7 exception interrupts, 16 trap interrupts, 
and 7 software interrupts. The maskable interrupts each have S priority 
levels and may be globally and/or individually enabled or disabled. 

The XA defines four types of interrupts: 

• Exception Interrupts - These are system level errors and other 
very important occurrences which include stack overflow, 
divide-by-O, and reset. 

• Event interrupts - These are peripheral interrupts from devices 
such as UARTs, timers, and external interrupt inputs. 

• Software Interrupts - These are equivalent of hardware 
interrupt, but are requested only under software control. 

• Trap Interrupts - These are TRAP instructions, generally used to 
call system services in a multi-tasking system. 

Exception interrupts, software interrupts, and trap interrupts are 
generally standard for XA derivatives and are detailed in the XA 
User Guide. Event interrupts tend to be different on different XA 
derivatives. 

Table 5. Interrupt Vectors 

EXCEPTIONITRAPS PRECEDENCE 

The XA-G3 supports a total of 9 maskable event interrupt sources 
(for the various XA-G3 peripherals), seven software interrupts, 5 
exception interrupts (plus reset), and 16 traps. The maskable event 
interrupts share a global interrupt disable bit (the EA bit in the IEL 
register) and each also has a separate individual interrupt enable bit 
(in the IEL or IEH registers). Only three bits of the IPA register 
values are used on the XA-G3. Each event interrupt can be set to 
occur at one of S priority levels via bits in the Interrupt Priority (IP) 
registers, IPAO through IPA5. The value 0 in the IPA field gives the 
interrupt priority 0, in effect disabling the interrupt. A value of 1 gives 
the interrupt a priority of 9, the value 2 gives priority 10, etc. The 
result is the same as if all four bits were used and the top bit set for 
all values except o. Details of the priority scheme may be found in 
the XA User Guide. 

The complete interrupt vector list for the XA-G3, including all 4 
interrupt types, is shown in the following tables. The tables include 
the address of the vector for each interrupt, the related priority 
register bits (if any), and the arbitration ranking for that interrupt 
source. The arbitration ranking determines the order in which 
interrupts are processed if more than one interrupt of the same 
priority occurs simultaneously. 

DESCRIPTION VECTOR ADDRESS ARBITRATION RANKING 

Reset (h/w, watchdog, s/w) 0000-0003 o (High) 

Breakpoint (h/w trap 1) 0004-0007 1 

Trace (h/w trap 2) OOOS-OOOB 1 

Stack Overflow (h/w trap 3) OOOC-OOOF 1 

Divide by 0 (h/w trap 4) 0010-0013 1 

User RETI (h/w trap 5) 0014-0017 1 

TRAP 0-15 (software) 0040-007F 1 

EVENT INTERRUPTS 

DESCRIPTION FLAG BIT VECTOR 
ENABLE BIT INTERRUPT PRIORITY ARBITRATION 

ADDRESS RANKING 

External interrupt 0 lEO 00SO-00S3 EXO IPAO.2-0 (PXO) 2 

Timer 0 interrupt TFO 00S4-00S7 ETO IPAO.6-4 (PTO) 3 

External interrupt 1 lEi OOSS-OOSB EX1 IPA1.2-D (PX1) 4 

Timer 1 interrupt TF1 OOSC-OOSF ET1 IPA1.6-4 (PT1) 5 

Timer 2 interrupt TF2(EXF2) 0090-0093 ET2 IPA2.2-0 (PT2) 6 

Serial port 0 Rx RI.O 00AO-00A3 ERIO IPA4.2-0 (PRIO) 7 

Serial port 0 Tx TI.O 00A4-00A7 ETIO IPA4.6-4 (PTIO) S 

Serial port 1 Rx RI.1 OOAS-OOAB ERI1 IPA5.2-0 (PRT1) 9 

Serial port 1 Tx TI.1 OOAC-OOAF ETI1 IPA5.6-4 (PTI1) 10 

SOFTWARE INTERRUPTS 

DESCRIPTION FLAG BIT VECTOR 
ENABLE BIT INTERRUPT PRIORITY ADDRESS 

Software interrupt 1 SWR1 0100-0103 SWE1 (fixed at 1) 

Software interrupt 2 SWR2 0104-0107 SWE2 (fixed at 2) 

Software interrupt 3 SWR3 010S-010B SWE3 (fixed at 3) 

Software interrupt 4 SWR4 01 OC-01 OF SWE4 (fixed at 4) 

Software interrupt 5 SWR5 0110-0113 SWE5 (fixed at 5) 

Software interrupt 6 SWR6 0114-0117 SWE6 (fixed at 6) 

Software interrupt 7 SWR7 011S-011B SWE7 (fixed at 7) 
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ABSOLUTE MAXIMUM RATINGS 
PARAMETER 

Operating temperature under bias 

Storage temperature range 

Voltage on r=AIV pp pin to V 88 

Voltage on any other pin to Vss 

Maximum IOL per I/O pin 

Power dissipation (based on package heat transfer limitations, not device power consumption) 

DC ELECTRICAL CHARACTERISTICS 
ROM (G33) and ROMless (G30): 2.7V to 5.5V unless otherwise specified; 
EPROM/OTP (G37): Voo = 5.0V ±5% unless otherwise specified; 
Tamb = 0 to +70°C for commercial -40°C to +85°C for industrial, unless otherwise specified. 

SYMBOL PARAMETER TEST CONDITIONS 

Supplies 

100 Supply current operating 30 MHz 

110 Idle mode supply current 30 MHz 

Ipo Power-down current 

Ipol Power-down current (-40°C to +85°C) 

VRAM RAM-keep-alive voltage RAM-keep-alive voltage 

VIL Input low voltage 

At5.0V 
VIH Input high voltage, except XTAL 1, RST 

At3.3V 

VIH1 Input high voltage to XTAL 1, RST For both 3.0 & 5.0V 

IOL = 3.2mA, Voo = 5.0V 
VOL Output low voltage all ports, ALE, PSEN3 

1.0mA, Voo = 3.0V 
" IOH = -1OOItA, Voo = 4.5V 

VOH1 Output high voltage all ports, ALE, PSEN' 
IOH = - 15ItA, Voo = 2.7V 

IOH = 3.2mA, Voo = 4.5V 
VOH2 Output high voltage, ports PQ-3, ALE, PSEN2 

IOH = 1mA, Voo = 2.7V 

CIO Input/Output pin capacitance 

IlL Logical 0 input current, PQ-36 VIN = 0.45V 

III Input leakage current, pQ-35 VIN = VIL or VIH 

ITL Logical 1 to 0 transition current all ports4 At5.5V 

NOTES: 

MIN 

1.5 

-0.5 

2.2 

2 

0.7Voo 

2.4 

2.0 

2.4 

2.2 

1. Ports in Quasi bi-directional mode with weak pull-up (applies to ALE, J5SEN only during RESET). 
2. Ports in Push-Pull mode, both pull-up and pull-down assumed to be same strength 
3. In all output modes 
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RATING UNIT 

-55 to +125 °C 

-65 to +150 °C 

o to +13.0 V 

-0.5 to Voo+0.5V V 

15 mA 

1.5 W 

LIMITS 

TYP MAX 
UNIT 

60 80 mA 

22 30 mA 

5 50 ItA 
75 ItA 

V 

0.22Voo V 

V 

V 

V 

0.5 V 

0.4 V 

V 

V 

V 

V 

15 pF 

-25 -75 ItA 
±10 itA 

-650 ItA 

4. Port pins source a transition current when used in quasi-bidirectional mode and externally driven from 1 to O. This current is highest when 
VIN is approximately 2V. 

5. Measured with port in high impedance output mode. 
6. Measured with port in quasi-bidirectional output mode. 
7. Load capacitance for all outputs=80pF. 
8. Under steady state (non-transient) conditions, IOL must be extemally limited as follows: 

Maximum IOL per port pin: 15mA (*NOTE: This is 85°C specification for Voo = 5V.) 
Maximum IOL per 8-bitport: 26mA 
Maximum total IOL for all output: 71 mA 

If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed 
test conditions. 
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AC ELECTRICAL CHARACTERISTICS 
VDD = 5V ±5%; Tamb = 0 to +70°C for commercial, -40°C to +85°Cfor industrial. 

VARIABLE CLOCK 
SYMBOL FIGURE PARAMETER UNIT 

MIN MAX 

External Clock 

fc Oscillator frequency 0 30 MHz 

te 22 Clock period and CPU timing cycle 1/fe ns 

teHcx 22 Clock high time te * 0.5 ns 

teLex 22 Clock low time te * 0.4 ns 

teLcH 22 Clock rise time 5 ns 

teHcL 22 Clock fall time 5 ns 

Address Cycle 

tCRAR 21 Delay from clock rising edge to ALE rising edge 10 40 ns 

tLHLL 16 ALE pulse width (programmable) (V1 * tc) - 4 ns 

tAVLL 16 Address valid to ALE de-asserted (set-up) (V1*tc)-10 ns 

tLLAX 16 Address hold after ALE de-asserted (td2) -10 ns 

Code Read Cycle 

tpLPH 16 J5Srn pulse width (V2· tc) -10 ns 

tLLPL 16 ALE de-asserted to J5'SEN asserted (td2)-5 ns 

tAVIVA 16 Address valid to instruction valid, ALE cycle (access time) (V3 * tc) - 30 ns 

tAVIVB 17 Address valid to instruction valid, non-ALE cycle (access time) (V4 * tc) - 25 ns 

tpLiV 16 J5Srn asserted to instruction valid (enable time) (V2 * tc) -25 ns 

tPXIX 16 Instruction hold after J5Srn de-asserted 0 ns 

tpxlZ 16 Bus 3-State after J5Srn de-asserted (disable time) te- 8 ns 

tUAPH 16 Hold time of unlatched part of address after J5Srn is de-asserted 0 ns 

Data Read Cycle 

tRLRH 18 tID pulse width (V7 * tc) -10 ns 

tLLRL 18 ALE de-asserted to tID asserted (td2)-5 ns 

tAVDVA 18 Address valid to data input valid, ALE cycle (access time) (V6 * tc) - 30 ns 

tAVDVB 19 Address valid to data input valid, non-ALE cycle (access time) (V5 * tc) - 25 ns 

tRLDV 18 tID low to valid data in, enable time (V7 * tc) - 25 ns 

tRHDX 18 Data hold time after tID de-asserted 0 ns 

tRHDZ 18 Bus 3-State after tID de-asserted (disable time) te- 8 ns 

tUARH 18 Hold time of unlatched part of address after tID is de-asserted. 0 ns 

Data Write Cycle 

tWLWH 20 WR pulse width (V8 * tc) -10 ns 

tLLWL 20 ALE falling edge to WR asserted (V9 * tc)-5 ns 

tOVWX 20 Data valid before WRasserted (data setup time) (V9 * tc) -25 ns 

tWHOX 20 Data hold time after WR de-asserted (V11 * tc) - 5 ns 

tAVWL 20 Address valid to WR asserted (setup time) (Note 5) (V9 * tc) -25 ns 

tUAWH 20 Hold time of unlatched part of address after WR is de-asserted (V11*tc)-5 ns 

Wait Input 

tWTH 21 WAIT stable after bus strobe (tID, WR, or J5Srn) asserted (V10 * tc) - 25 ns 

tWTL 21 WAIT hold after bus strobe (tID, WR, or 'JSS'Ef\J) assertion (V10 * tc) -10 ns 
NOTES ON FOLLOWING PAGE 
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NOTES: 
1. Load capacitance for all outputs = BOpF. . 
2. Variables Vi through Vii reflect programmable bus timing, which is programmed via the Bus Timing registers (BTRH and BTRL). 

Refer to the XA User Guide for details of the bus timing settings. Please note that the XA-G3 requires that extended data bus hold time 
(WM() = 1) to be used with external bus write cycles. . 
Vi) This variablerepresents the programmed width of the ALE pulse as determined by the ALEW bit in the BTRL register. 

Vi = 0.5 if the ALEW bit = 0, and 1.5 if the ALEW bit = 1. 
V2) This variable represents the programmed width of the PSEf\J pulse as determined by the CR1 and CRO bits or the CRA 1, CRAO, and 

ALEW bits in the BTRL register. 
- For a bus cycle with no ALE, V2 = 1 if CR1/0 = 00, 2 if CR1/0 = 01,3 if CR1/0 = 10, and 4 if CR1/0 = 11. Note that during burst 

mode code fetches, PSEf\J does not exhibit transitions at the boundaries of bus cycles. V2 still applies for the purpose of 
determining peripheral timing requirements. 

- For a bus cycle with an ALE, V2 = the total bus cycle duration (2 if CRA 1/0 = 00, 3 if CRA1/0 = 01, 4 if CRA 110 = 10, 
and 5 if CRA 1/0 = 11) minus the number of clocks used by ALE (Vi + 0.5), 
Example: if CRA1/0 = 10 and ALEW = 1, the V2 = 4 - (1.5 + 0.5) = 2. 

V3) This variable represents the programmed length of an entire code read cycle with ALE. This time is determined by the CRA 1 and 
CRAO bits in the BTRL register. V3 = the total bus cycle duration (2 if CRA1/0 = 00,3 if CRA1/0 = 01,4 if CRA1/0 = 10, 
and 5 if CRA1/0 = 11). 

V4) This variable represents the programmed length of an entire code read cycle with no ALE. This time is determined by the CR1 and 
CRO bits in the BTRL register. V4 = 1 ifCR1/0 = 00,2 ifCR1/0 = 01,3 ifCR1/0= 10, and 4 ifCR1/0 = 11. 

V5) This variable represents the programmed length of an entire data read cycle with no ALE. this time is determined by the DR1 and 
ORO bits in the BTRH register. V5 = 1 if OR1/0 = 00, 2 if DR1/0 = 01,3 if DR1/0 = 10, and 4 if OR1/0 = 11. 

V6) This variable represents the programmed length of an entire data read cycle with ALE. The time is determined by the DRA 1 and 
ORAO bits in the BTRH register. V6 = the total bus cycle duration (2 if ORA1/0 = 00, 3 if ORA1/0 = 01,4 if ORA1/0 = 10, 
and 5 if DRA1/0 = 11). 

V7) This variable represents the programmed width of the RO pulse as determined by the OR1 and ORO bits or the DRA 1, ORAO in the 
BTRH register, and the ALEW bit in the BTRL register. Note that during a 16-bit operation on an B-bit external bus, RO remains low 
and does not exhibit a transition between the first and second byte bus cycles. V7 still applies for the purpose of determining 
peripheral timing requirements. The timing for the first byte is for a bus cycle with ALE, the timing for the second byte is for a bus 
cycle with no ALE. 
- For a bus cycle with no ALE, V7 = 1 if OR1/0 = 00, 2 if OR1/0 = 01, 3 if OR1/0 = 10, and 4 if OR1/0 = 11. 
- For a bus cycle with an ALE, V7 = the total bus cycle duration (2 if ORA 1/0 = 00, 3 if ORA 1/0 = 01, 4 if DRA 1/0 = 10, 

and 5 if DRA 1/0 = 11) minus the number of clocks used by ALE (Vi + 0.5). 
Example: if ORA 1/0 = 00 and ALEW = 0, then V7 = 2 - (0.5 + 0.5) = 1. 

VB) This variable represents the programmed width of the WRL and/or WRH pulse as determined by the WM1 bit in the BTRL register. 
VB 1 if WM1 = 0, and 2 if WM1 = 1. 

V9) This variable represents the programmed write setup time as determined by the data write cycle duration (defined by DW1 and DWO 
or the OWA 1 and DWAO bits in the BTRH register), the WMO and ALEW bits in the BTRL register, and the value of VB. 
- For a bus cycle with no ALE, V9 := the total bus write cycle duration (2 if OW1/0 = 00, 3 if OW1/0 = 01, 4 if DW1/0 = 10, and 

5 if OW1/0 = 11) minus the number of clocks used by the WRL and/or WRH pulse (VB) minus the number of clocks used for data 
hold time (0 if WMO = 0 and 1 if WMO = 1). 
Example:if DW1/0 = 11, WMO = 0, and WM1 = 0, then V9 = 5 - 0 -1 = 4. 

- For a bus cycle with an ALE, there are two cases: 
1. For the parametertAVWL, V9 = the total bus cycle duration (2 if DWA1/0 = 00, 3 if OWA1/0 = 01, 4 if OWA1/0 = 10, and 

5 if OWA1/0 = 11) minus the number of clocks used by the WR[ and/orWRR pulse (VB), minus the number of clocks used by 
data hold time (0 ifWMO = 0 and 1 if WMO = 1). 

2. For other parameters, V9 = the above value minus the width of the ALE pulse (V1). 
Example: if DWA1/0 = 11, WMO = 1, WM1 = 1, and Vi = 0.5, then \/9 = 5 -1 - 2- 0.5 = 1.5. 

Vi 0) This variable represents the length of a bus strobe for calculation of WAIT setup and hold times. The strobe may be RO (for data read 
cycles), WR[ and/or WRR (for data write cycles), or PSEf\J (for code read cycles), depending on the type of bus cycle being widened 
by WAIT. Vi 0 = V2 for WAIT assOCiated with a code read cycle using PSEf'I. V10 = VB for a data write cycle using WR[ and/or WRR. 
V10 = V7-1 for a data read cycle using RO. This means that a single clock data read cycle cannot be stretched using WAIT. 
If WAIT is used to vary the duration of data read cycles, the RU strobe width must beset to be at least two clocks in duration. 
Also see Note 4. 

V11) This variable represents the programmed write hold time as determined by the WMO bit in the BTRL register. 
V11 = 0 if the WMO bit = 0, and 1 if the WMO bit = 1. 

3. Not all combinations of bus timing configuration values result in valid bus cycles. Please refer to the XA User Guide section on the External 
Bus for details. 

4. When code is being fetched for execution on the external bus, a burst mode fetch is used that does not have 1'SEN edges in every fetch 
cycle. Thus, if WAIT is used to delay code fetch cycles, a change in the low order address lines must be detected to locate the beginning of 
a cycle. This would be A3-AO for an B-bit bus, and A3-A 1 for a 16-bit bus. Also, a 16-bit data read operation conducted on a B-bit wide bus 
similarly does not include two separate RO strobes. So, a rising edge on the low order address line (AO) must be used to trigger a WAIT in 
the second. half of such a cycle. 

5. This parameter is provided for peripherals that have the data clocked in on the falling edge of the WRstrobe. This is not usually the case, 
and in most applications this parameter is not used. 
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ALE 

MULTIPLEXED 
ADDRESS AND DATA 

UNMULTIPLEXED 
ADDRESS 

____ J 

AD or A1-A3. A12-19 
____ J 

• INSTR IN is either DO-D7 or DO-DiS, depending on the bus width (8 or 16 bits). 

Figure 16. External Program Memory Read Cycle (ALE Cycle) 
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XA-G3 

SU00582D 

ALE -.-/ ~~--------------------------------

,,--------------------------------
MULTIPLEXED X '--/ ~~/. ADDRESS AND DATA ____ oJ A4-A11 or A4-A19~ INSTR IN' ~ h '--______ _ 

r-----------------------~~~ ~ 
UNMULTIPLEXED ____ ---JX ADorAl-A3.A12-19 ADorA1-A3,A12-19 

ADDRESS .. . . 

* INSTR IN is either DO-D7 or DO-DiS, depending on the bus width (8 or 16 bits). SU00707 

Figure 17. External Program Memory Read Cycle (Non-ALE Cycle) 
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ALE 

MULTIPLEXED 
ADDRESS 
AND DATA 

UNMULTIPLEXED 
ADDRESS 

tAVLL 

)< 

)< 

'\ 

I--- tLRL tRLRH 

'\ 

tLLAX 
I-- tRLDV---+ 

A4-A11 or A4-A19 

tAVDVA 

AO or A1-A3, A12-A19 

/ 

tRHDX -

DATA IN • 

• OATA IN is either 00-07 or 00-015, depending on the bus width (8 or 16 bits). 

I_ tRHDZ., 

~ 
~ K 
~tUARH+ 

)K 

Figure 18. External Data Memory Read Cycle (ALE Cycle) 
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ALE 

,,~-------------------------------------
RO _________________ ~ 

,, _____ -J/ ,,'--___ --..J/ 

MULTIPLEXED V \. ( 
~~g~~~~ ____ ..JAA4-A11 or A4-A19/>---------< '-___ DA_:r_A_IN_* ___ DATA IN • 

UNMULTIPLEXED 
ADDRESS ____ J AO or A1-A3, A12-A19 AO or A1-A3, A12-A19 

* OATA IN is either 00-07 or 00-015, depending on the bus width (8 or 16 bits). SUOO70B 

Figure 19. External Data Memory Read Cycle (Non-ALE Cycle) 

1997 Mar 25 402 



Philips Semiconductors 

CMOS single-chip 16-bit microcontroller 

ALE 

WF![orWRR 

MULTIPLEXED 
ADDRESS 
AND DATA 

UNMULnPLEXED 
ADDRESS 

tAVLL 

)< 

)< 

" 
I--- tLLWL tWLWH 

tLLAX d 
A4-A11 or A4-A15 ~ DATA OUT * 

-tAVWL-

AO or A1-A3, A12-A19 

* DATA OUT is either 00-07 or 00-015, depending on the bus width (8 or 16 bits). 

/V 

.-. !-. tWHQX 

X 
I+tUAW~ 

)K 

Figure 20. External Data Memory Write Cycle 
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ADDRESSBUS ________ J:><:~ ___________________________________________________________ ~ 

"v WAIT _________________ -J
f "~ '--------------------------------------

BUS STROBE ________ ~ 

~.~ '~I 
t~ __ ~+~--------------------~---------------------------------------J 

tWTL----+I (The dashed line shows the strobe without WAIT.) 

SUOO709A 

Figure 210 WAIT Signal Timing 
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(NC) XTAL2 

CLOCK SIGNAL XTAL1 

Vss 

VOO-o·5 

0.45V 
o.7VOO 

0.2VOO-o·1 

tCHCL~ 

Figure 22. External Clock Drive 

V
OO
-o.5=X O.2Voo+0.9 >C 

0.2Voo-Q.l 
0.4SV ---------

NOTE: 
AC Inputs during testing are driven at Voo -o.S for a logic '1' and 0.4SV for a logic '0'. 
Timing measurements are made at the SO% point of transitions. 

VLOAO+D·1V 

VLOAO----< 

NOTE: 

Figure 23. AC Testing Input/Output 

TIMING 
REFERENCE 

POINTS VOL+O.1V 

For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs, 
and begins to float when a 100mV change from the loaded VOHf'lOL level occurs. IOWIOL ~ ±20mA. 

Figure 24. Float Waveform 

Voo 

Voo 

(NC) 

CLOCK SIGNAL 

Vss 

SU00591B 
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SU00842 

SUOO703A 

SUOOOII 

Voo 

Voo 

SUOO590B 

Figure 25. 100 Test Condition, Active Mode 
All other pins are disconnected 

Figure 26. 100 Test Condition, Idle Mode 
All other pins are disconnected 
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CURRENT (rnA) 
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100 ,----------r---------,---------,----------,---------,---------, 

80 +----------+----------+----------1----------+---------+----------::- MAX. 100 

60 +----------r---------+----------ir----------t---~""'---;_-------::::;;oof TYPICAL 5.0V 100 (ACTIVE) 

40 +----------r---------+--------~~------~~~------;_--------~ 
ROM & ROM less 
TYPICAL 3.0V 100 (ACTIVE) 

20 I:~;~;~~~~1~~~~~t====[=~::r::==J TYPICALloo(IDLE) 

10 15 

FREQUENCY (MHz) 

20 

Figure 27. iOO vs. Frequency 

25 

Valid only within frequency specification of the device under test. 

VOO-{)·5 - - - - ~O.-7V-o-o'""\J 

O.45V 0.2VOo-o.l "-__ " 

toHCL - toLC 

I+---- tCL 

Figure 28. Clock Signal Waveform for 100 Tests in Active and Idle Modes 
tcLCH = tcHCl = Sns 

Voo 
~9P 

LAST Voo ----< 

EA -
(NC)- XTAl2 

~ XTAL1 

~ Vss 

~~ 

Figure 29. 100 Test Condition, Power Down Mode 
All other pins are disconnected. Voo=2V to S.SV 
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EPROM CHARACTERISTICS 
The XA·G37 Is programmed by using a modified Improved 
Quick·Pulse Programmlng™ algorithm. This algorithm Is essentially 
the same as that used by the later 80C51 family EPROM parts. 
However different pins are used for many programming functions. 

NOTE: The Vpp EPROM programming voltage for the XA·G37 Is 
10.75V ± 0.25V. This Is less than the 12.75V used for 80C51 
products. Care should be taken when programming the XA·G37 to 
insure that the programming voitage (Vpp) is In the correct range. 
Using a programming voltage of 12.75V may damage the part being 
programmed. See Figure 30 for a circuit that you can use with a 
programmer that has a 12.75V programming pulse that will allow 
you to safely program the XA·G37. 

12.75V +5V r--
01 ~~ 

PROGRAMMER 
02 ~~ R1 XA·G37 

: 10K 

03 ~~ 
10.75V 

vpp 

SU00843 

Figure 30. XA·G37 Programming Voltage Adjustment Circuit 

The XA·G3 contains three signature bytes that can be read and 
used by an EPROM programming system to identify the device. The 
signature bytes identify the device as an XA·G3 manufactured by 
Philips. 

Table 6 shows the logic levels for reading the signature byte, and for 
programming the code memory and the security bits. The circuit 
configuration and waveforms for quick· pulse programming are 
shown in Figures 31. Figure 33 shows the circuit configuration for 
normal code memory verification. 

Quick-Pulse Programming 
The setup for microcontroller quick·pulse programming is shown in 
Figure 31. Note that the XA·G3 is running with a 3.5 to 12MHz 
oscillator. The reason the oscillator needs to be running is that the 
device is executing internal address and program data transfers. 

The address of the EPROM location to be programmed is applied to 
ports 2 and 3, as shown in Figure 31. The code byte to be 
programmed into that location is applied to port O. RST, P'SE1\I and 
pins of port 1 specified in Table 6 are held at the 'Program Code 
Data' levels indicated in Table 6. The ALEIJ5m:m' is pulsed low 5 
times as shown in Figure 32. 

To program the security bits, repeat the 5 pulse programming 
sequence using the 'Pgm Security Bit' levels. After one security bit is 
programmed, further programming of the code memory and 
encryption table is disabled. However, the other security bits can still 
be programmed. 

TMTrademark phrase of Intel Corporation. 
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Note that the ~pp pin must not be allowed to go above the 
maximum specified Vpp level for any amount of time. Even a narrow 
glitch above that voltage can cause permanent damage to the 
device. The Vpp source should be well regulated and free of glitches 
and overshoot. 

Program Verification 
If security bits 2 and 3 have not been programmed, the on·chlp 
program memory can be read out for program verification. The 
address of the program memory locations to be read Is applied to 
ports 2 and 3 as shown In Figure 33. The other pins are held at the 
'Verify Code Data' levels indicated in Table 6. The contents of the 
address location will be emitted on port o. 
Reading the Signature Bytes 
The Signature bytes are read by the same procedure as a normal 
verification of locations 030H, 031 H, and 060H except that P1.2 and 
P1.3 need to be pulled to a logic low. The values are: 
(030H) = 15H indicates manufactured by Philips 
(031 H) = EAH Indicates XA architecture 
(060H) = 01 H Indicates XA·G3 (non·Rev.) 

04H Indicates XA·G3 (Rev. A) 

ProgramNerlfy Algorithms 
Any algorithm In agreement with the conditions listed In Table 6, and 
which satisfies the timing specifications, is suitable. 

Erasure Characteristics 
Erasure of the EPROM begins to occur when the chip is exposed to 
light with wavelengths shorter than approximately 4,000 angstroms. 
Since sunlight and fluorescent lighting have wavelengths in this 
range, exposure to these light sources over an extended time (about 
1 week in sunlight, or 3 years in room level fluorescent lighting) 
could cause inadvertent erasure. For this and secondary effects, 
It Is recommended that an opaque label be placed over the 
window. For elevated temperature or environments where solvents 
are being used, apply Kapton tape Fluorglas part number 2345-5, or 
equivalent. 

The recommended erasure procedure is exposure to ultraviolet light 
(at 2537 angstroms) to an integrated dose of at least 15W-s/cm2. 

Exposing the EPROM to an ultraviolet lamp of 12,000IlW/cm2 rating 
for 90 to 120 minutes, at a distance of about 1 inch, should be 
sufficient. 

Erasure leaves the array in an all 1 s state. 

Security Bits 
With none of the security bits programmed the code in the program 
memory can be verified. When only security bit 1 (see Table 6) is 
programmed, MOVC instructions executed from external program 
memory are disabled from fetching code bytes from the internal 
memory. All further programming of the EPROM is disabled. When 
security bits 1 and 2 are programmed, in addition to the above, 
verify mode is disabled. When all three security bits are 
programmed, all of the conditions above apply and all external 
program memory execution is disabled. (See Table 7) 
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Table 6. EPROM Programming Modes 

MODE RST PSER ALEIPlmG ~pp P1.0 P1.1 P1.2 P1.3 P1.4 

Read signature 0 0 1 1 0 0 0 0 0 

Program code data 0 0 O· Vpp 0 1 1 1 1 

Verify code data 0 0 1 1 0 0 1 1 0 

Pgm security bit 1 0 0 o· Vpp 1 1 1 1 1 

Pgm security bit 2 0 0 O· Vpp 1 1 0 0 1 

pgm security bit 3 0 0 O· Vpp 1 0 1 0 1 

Verify security bits 0 0 1 1 0 0 0 1 0 

NOTES: 
1. '0' = Valid low for that pin, '1' = valid high for that pin. 
2. Vpp = 10.7SV ±0.2SV. 
3. Voo = SV±100/0 during programming and verification. 
* ALEI?ROO receives S programming pulses while Vpp is held at 10.7SV. Each programming pulse is low for SOilS (±1011S) and high for a 

minimum of lOllS. 

Table 7. Program Security Bits 

PROGRAM LOCK BITS, 

SBl SB2 SB3 PROTECTION DESCRIPTION 

1 U U U No Program Security features enabled. 

2 P U U MOVC instructions executed from external program memory are disabled from fetching code bytes 
from internal memory and further programming of the EPROM is disabled. 

3 P P U Same as 2, also verify is disabled. 

4 P P P Same as 3, external execution is disabled. Internal data RAM is not accessible. 

NOTES: 
1. P - programmed. U - unprogrammed. 
2. Any other combination of the security bits is not defined. 

ROM CODE SUBMISSION 
When submitting ROM code for the XA-G3, the following must be specified: 
1. 32k byte user ROM data 

2. ROM security bits. 

3. Watchdog configuration 

ADDRESS CONTENT BIT(S) COMMENT 

OOOOH to 7FFFH DATA 7:0 User ROM Data 

8020H SEC 0 ROM Security Bit 1 

8020H SEC 1 ROM Security Bit 2 
o = enable security 
1 = disable security 

8020H SEC 3 ROM Security Bit 3 
o = enable security 
1 = disable security 
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+SV 

Ao-A7 P2 
Voo 

PO PGMOATA 

11ST 

P1.2 EiWpp +12.75V 

P1.3 ALEIPROO S SOj.l8 PULSES TO GROUND 

P1.4 XA·G3 T'SEN 

XTAL2 P1.1 

3.S-12MHz P1.0 

XTAL1 P3.o-P3.6 AB-A14 

Vss 

SU00586A 

Figure 31. Programming Configuration for XA·G3 

1 t· S PULSES ---------------~.I 

ALEIFRO'G'i ~""" ____ ---' n n n ~ ____ ~n~ ____ ~r__ 
C 

~ I· 10j.lsMIN 50j.ls±10 

ALEII'ROG: o I n 
SU00609B 

Figure 32. 1'"R'O'G Waveform 

+SV 

VOO 

Ao-A7 P2 PO PGMOATA 

FIST EA/VPP 
P1.2 

P1.3 
ALEII'RO'G 

P1.4 XA·G3 ~ 

XTAL2 P1.1 

P1.0 

XTAL1 P3.o-P3.6 AB-A14 

vss 

SU00587 

Figure 33. Program Verification for XA·G3 
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EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS 
Tamb == 21°C to +27°C, VDD == SV±S%, VSS == OV (See Figure 34) 

SYMBOL 

Vpp 

Ipp 

1/tCL 

tAVGL 

tGHAX 

tDVGL 

tGHDX 

tEHSH 

tSHGL 

tGHSL 

tGLGH 

tAVOV 

tELOV 

tEHOZ 

tGHGL 

NOTE: 

EAlVpp 

Pl.4 
ENA8[E 

Programming supply voltage 

Programming supply current 

Oscillator frequency 

Address setup to '?ROO low 

Address hold after PROO 

Data setup to PROO low 

Data hold after PROO 

P2.7 (Ef\JAB[E) high to Vpp 

Vpp setup to PROO low 

Vpp hold after PROO 

PROOwidth 

Address to data valid 

Ef\JAB[E low to data valid 

Data float after Ef\JAB[E 

PROO high to PROO low 

FOR PROGRAMMING CONDITIONS SEE FIGURE 32. 
FOR VERIFICATION CONDITIONS SEE FIGURE 33. 
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MIN MAX UNIT 

10.S 11.0 V 
I 

SO 1 mA 

3.S 12 MHz 

48tCL 

48tCL 

48tCL 

48tCL 

48tCL 

10 ~s 

10 ~s 

40 60 ~s 

48tCL 

48tCL 

0 48tCL 

10 ~s 

LOGIC 1 

SU00588 
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DESCRIPTION 
The XA-CAN device is a member of Philips' 80C51 XA (eXtended 
Architecture) family of high performance i6-bit single-chip 
microcontrollers, and is intended for industrial control applications. 

The XA-CAN device supports the DeviceNeFM /CAN Controller Area 
Network (CAN) 2.08 .. It supports both 11-bit and 29-bit identifiers 
(I D) at up to 1 Mbitls data rate. 

The performance of the XA architecture supports the 
comprehensive bit-oriented operations of the 80C51 while 
incorporating support for multi-tasking operating systems and 
high-level languages such as C. The speed of the XA architecture, 
at 10 to 100 times that of the 80C51 , gives designers an easy path 
to truly high performance embedded control, while maintaining great 
flexibility to adapt software to specific requirements. 

BLOCK DIAGRAM 

Specific Features of the XA-C3 
• 2.7V to 5.5V operation 

• 32K bytes of on-Chip EPROM/ROM program memory 

• 1024 bytes of on-Chip data RAM 

• CAN block supporting full CAN2.0B, with 11-/29-bit ID and up to 
1 Mbitls 

• Three standard counter/timers with enhanced features (equivalent 
to 80C51 TO, T1, and T2) with outputs 

• Watchdog timer with output 

.1 UART 

• Low voltage detect 

• Three 8-bit I/O ports with 4 programmable output configurations 

• EPROM/OTP versions can be programmed in circuit 

• 25MHz operating frequency at 4.5 - 5.5V Vee over commercial 
operating conditions; 16MHz at 2.7V - 3.6V Vee 

• 40-pin DIP, 44-pin PLCC, and 44-pin QFP packages 

i - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --. 

32K BYTES 
ROM/EPROM 

1024 BYTES 
STATIC RAM 

PORTO 

PORT 1 

XA CPU Core 

~ ____ PO_R_T_2 ____ ~f::~---------
LOW VOLTAGE 

DETECT I 

o 

, , 
e. ___________________________ ~ ________________________ ! 

DeviceNeFM is a trademark of Open DeviceNet Vendor ASSOCiation (OVDA). 

1995 Nov 16 413 
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GENERAL DESCRIPTION 
The XA-S3 device is a member of Philips' 80C51 XA (eXtended 
Architecture) family of high performance 16-bit single-chip 
microcontrollers. 

The XA-S3 device combines many powerful peripherals on one 
chip. With its high performance AID converter, timers/counters, 
watchdog, Programmable Counter Array (PCA), 12C interface, dual 
UARTs, and multiple general purpose I/O ports, it is suited for 
general multipurpose high performance embedded control functions. 

Specific features of the XA-S3 

• 2.7V to 5.5V operation. 

• 32K bytes of on-chip EPROM/ROM program memory. 

• 1024 bytes of on-chip data RAM. 

• Supports off-chip addressing up to 16 megabytes (24 address 
lines). A clock output reference is added to simplify external bus 
interfacing. 

• High performance 8-channel 1 O-bit AID converter with automatic 
channel scan and repeated read functions. Completes a 
conversion in 5 microseconds at 20 MHz (100 clocks per 
conversion). Operates down to 3V. 

• Three standard counter/timers with enhanced features (same as 
XA-G3 TO, n, and T2). All timers have a toggle output capability. 

1997 Mar 12 414 

• Watchdog timer. 

• 5-channel 16-bit Programmable Counter Array (PCA). 

• 12C-bus serial I/O port with byte-oriented master and slave 

functions. Supports the 100 kHz 12C operating mode at rates up to 
400kHz. 

• Two enhanced UARTs with independent baud rates. 

• Seven software interrupts. 

• Active low reset output pin indicates all reset occurrences 
(extemal reset, watchdog reset and the RESET instruction). 
A reset source register allows program determination of the cause 
of the most recent reset. 

• 50 I/O pins (68-pin package) or 48 I/O pins (64-pin package), 
each with 4 programmable output configurations. 

• EPROM/OTP versions can be programmed in circuit (On-Board 
Programming). 

• 30 MHz operating frequency at 2.7 - S.SV Voo over commercial 
operating conditions. 

• Power saving operating modes: Idle and Power-Down. 
Wake-Up from power-down via an external interrupt is supported. 

• 68-pin PLCC package. 
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LOGIC SYMBOL 
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PIN DESCRIPTIONS 

MNEMONIC PLCC68 TYPE NAME AND FUNCTION 

Vss I Ground: OV reference. 

Voo I Power Supply: This is the power supply voltage for normal, idle, and power down operation. 

PO.O-PO.7 110 Port 0: Port 0 is an S-bit 110 port with a user-configurable output type. Port 0 latches have 1 s written to 
them and are configured in the quasi-bidirectional mode during reset. The operation of port 0 pins as 
inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

When the exterhal program/data bus is used, Port 0 becomes the multiplexed low datalinstruction byte 
and address lines 4 through 11" 

P1.0 - P1.7 I/O Port 1: Port 1 is an S-bit I/O port with a user-configurable output type. Port 1 latches have 1s written to 
them and are configured in the quaSi-bidirectional mode during reset. The operation of port 1 pins as 
inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

Port 1 also provides various special functions as described below: 

0 AOIWRH (P1.0) Address bit 0 of the external address bus when the eternal data bus is 
configured for an S-bit width. When the external data bus is configured for a 
16-bit width, this pin becomes the high byte write strobe. 

0 A1 (P1.1): Address bit 1 of the external address bus. 

0 A2 (P1.2): Address bit 2 of the external address bus. 

0 A3 (P1.3): Address bit 3 of the external address bus. 

I RxD1 (P1.4): Serial port 1 receiver input. 

0 TxD1 (P1.5): Serial port 1 transmitter output. 

I SCL (P1.6): 12C port serial clock output. 

0 SDA(P1.7): 12C port serial data inpuVoutput. 

P2.0- P2.7 I/O Port 2: Port 2 is an S-bit I/O port with a user-configurable output type. Port 2 latches have 1 s written to 
them and are configured in the quasi-bidirectional mode during reset. The operation of port 2 pins as 
inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the sectin on I/O port configuration and the DC Electrical Characteristics for 
details. 

When the external program/data bus is used in 16-bit mode, Port 2 becomes the multiplexed high 
datalinstruction byte and address lines 12 through 19. When the external data/address bus is used in 
S-bit mode, the number of address lines that appear on Port 2 is user programmable in groups of 
4 bits. 

P3.0- P3.7 110 Port 3: Port 3 is an S-bit I/O port with a user-configurable output type. Port 3 latches have 1s written to 
them and are configured in the quasi-bidirectional mode during reset. The operation of port 3 pins as 
inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on i/O port configuration and the DC Electrical Characteristics for 
details. 

Port 3 also provides the various special functions as described below: 

I RxDO (P3.0): Receiver input for serial port O. 

0 TxDO (P3.1 ): Transmitter output for serial port o. 
I mTO(P3.2): External interrupt 0 input. 
I rnTl (P3.3): External interrup 1 input. 

110 TO (P3.4): Timer/counter 0 external count input or overflow output. 

I/O T1 I BUSW (P3.5): Timer/counter 1 external count input or overflow output. The value on this 
pin is latched as an .external chip reset is completed and defines the default 
external data bus. 

0 WR[(P3.6): External data memory low byte write strobe. 
0 All (P3.7): External data memory read strobe. 
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MNEMONIC PLCCS8 TYPE NAME AND FUNCTION 

P4.0- P4.7 I/O Port 4: Port 4 is an 8-bit I/O port with a user-configurable output type. Port 4 latches have 1s written to 
them and are configured in the quasi-bidirectional mode during reset. The operation of Port 4 pins as 
inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

Port 4 also provides various special functions as described below: 

I ECI (P4.0): PCA External clock input. 

110 CEXO (P4.1): Capture/compare external I/O for PCA module O. 

I/O CEX1 (P4.2): Capture/compare external I/O for PCA module 1. 

110 CEX2 (P4.3): Capture/compare external I/O for PCA module 2. 

I/O CEX3 (P4.4): Capture/compare external I/O for PCA module 3. 

I/O CEX4 (P4.S): Capture/compare external I/O for PCA module 4. 

6 A20 (P4.6): Address bit 20 of the external address bus. 

0 A21 (P4.7): Address bit 21 of the external address bus. 

P5.0 - P5.7 I/O Port S: Port 5 is an 8-bit I/O port with a user-configurable output type. Port 5 latches have 1s written to 
them and are configured in the quasi-bidirectional mode during reset. The operation of Port 5 pins as 
inputs and output depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

Port 5 also provides various special functions as described below. Port 5 pins used as AID inputs must 
be configured by the user to the high impedance mode. 

I ADO (PS.O): AID channel 0 input. 

I AD1 (PS.1): AID channel 1 input. 

I AD2 (PS.2): AID channel 2 input. 

I AD3 (PS.3): AID channel 3 input. 

I AD4 (PS.4): AID channel 4 input. 

I ADS (PS.S): AID channel 5 input. 

I/O ADSIT2 (PS.S): AID channel 6 input. Timer/counter 2 external count input or overflow 
output. 

I/O AD7IT2EX (PS.7): AID channel 7 input. Timer/counter 2 reload/capture/direction control. 

P6.0- P6.7 I/O Port 6: Port 6 is an 8-bit i/O port with a user-configurable output type. Port 6 latches have 1 s written to 
them and are configured in the quasi-bidirectional mode during reset. The operation of Port 6 pins as 
inputs and outputs depends upon the port configuration selected. Each port pin is configured 
independently. Refer to the section on I/O port configuration and the DC Electrical Characteristics for 
details. 

Port 6 also provides special functions as described below: 

0 A22(PS.0): Address bit 22 of the external address bus. 

0 A23 (P6.1): Address bit 23 of the external address bus. 

AVDD I AID Positive Power Supply. 

AVSS I AID Negative Power Supply. 

VREF+ I AID Positive Reference Voltage. 

VREF- I AID Negative Reference Voltage. 

RST I Reset: A low on this pin resets the microcontroller, causing I/O ports and peripherals to take on their 
default states, and the processor to begin execution at the address contained in the reset vector. 

RSTOUT 0 Reset Out: This pin ouputs a low whenever the XA-S3 processor is reset for any reason. This includes 
an external reset via the RST pin, watchdog reset, and the RESET instruction. 

ALE/P"ROO I/O Address Latch Enable/Program Pulse: A high output on the ALE pin signals external circuitry to 
latch the address portion of the multiplexed address/data bus. A pulse on ALE occurs only when it is 
needed in order to process a bus cycle. During EPROM programming, this pin is used as the program 
pulse input. 

'J5"SEN 0 Program Store Enable: The read stobe for external program memory. When the microcontroller 
accesses external program memory. ~ is driven low in order to enable memory devices. PSEf\J is 
only active when external code accesses are performed. 
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MNEMONIC PLCC68 TYPE NAME AND FUNCTION 

r=A/WAITNpp I External Access/Bus WaitlProgramming Supply Voltage: The EA input determines whether the 
internal program memory of the microcontroller is used for code execution. The value on the EA pin is 
latched as the external reset input is released and applies during later execution. When latched as aO. 
external program memory is used exclusively. When latched as a 1. internal program memory will be 
used up to its limit. and external program memory used above that point. After reset is released, this 
pin takes on the function of bus WAIT input. If WAIT is asserted high during an external bus access, 
that cycle will be extended until WAIT is released. During EPROM programming. this pin is also the 
programming supply voltage input. 

XTAL1 I Crystal 1: Input to the inverting amplifier used in the oscillator circuit and input to the internal clock 
generator circuits. 

XTAL2 I Crystal 2: Output from the oscillator amplifier. 

CLKOUT 0 Clock Output: This pin outputs a buffered version of the internal CPU clock. The clock output may be 
used in conjunction with the external bus to synchronize WAIT state generators. etc. 
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FUNCTIONAL DESCRIPTION 
Details·of XA-S3 functions will be described in the following 
sections. 

Analog to Digital converter 
, The XA-S3 has an 8-channel, 1 O-bit AID converter with 8 sets of 
result registers, single scan and multiple scan' operating modes. 
When 10 result bits are not needed, the AID may be set up to 
perform 8-bit conversions at a higher speed than that required for 
1 O-bit results. The AID input range is limited to 0 to AVoo (3.3V 
max.).'The AID inputs are on Port 5. When an AID conversion is not 
in progress, port 5 pins may be read as digital inputs, like any other 
port. 

12C Interface 
The 12C interface on the XA-S3 is essentially the same as the 
standard byte-style 12C interface found on devices such as the 
8xC552. 

XA-S3 Timer/Counters 
The XA-S3 has three general purpose counter/timers, two of which 
may also be used as baud rate generators for either or both of the 
UARTs. 

Timer 0 and 1 
Same as the standard XA-G3 timer 0 and 1. 

Timer 2 
Same as the standard XA-G3 timer 2. 

PCA 
Standard 80C51 FC-style PCA counter/timer. The PCA is clocked by 
TCLK in the same manner as the other timers. Each PCA module 
has its own interrupt (in addition to the standard global PCA 
interrupt). 

When the ECI input is used, the falling edge clocks the PCA 
counter. The maximum rate for the counter in this mode on the XA is 
Osc/4. 

Watchdog Timer 
Standard XA-G3 watchdog timer. This watchdog timer always 
comes up running at reset. The watchdog acts the same on 
EPROM, ROM, and ROMless parts, as in the XA-G3. 

UARTs 
Standard XA-G3 UARTO and UART1. 

Clocking / Baud Rate Generation 
Same as for the XA-G3. 

110 Port Output Configuration 
Port output configurations are the same as for the XA-G3: open 
drain,. quasi-bidirectional, push-pull, and off. 

External Bus 
The external bus will operate in the same manner as the XA-G3, but 
all 24 address lines will be brought out to the outside world. This 
allows for up to 16 Mbytes of code memory and 16 Mbytes of data 
memory. 
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Clock Output 
The CLKOUT pin allows easier external bus interfacing in some 
situations. This output is a buffered version of the clock used inside 
of the CPU. The default is for CLKOUT to be on at reset, but it may 
be turned off via the CLKD bit in the BCR register. 

Reset 
Active low reset input. The associated RSTOUT pin provides an 
external indication via an active low output when an internal reset 
occurs. The RSTOOT pin will be driven low when the R'ST pin is 
driven low, when a Watchdog reset occurs or the RESET instruction 
is executed. This signal may be used to inform other devices in a 
system that the XA-S3 has been reset. 

The reset source identification register (RSTSRC) indicates the 
cause of the most recent XA reset. The cause may have been an 
externally applied reset signal, \execution of the RESET instruction, 
or a Watchdog reset. 

Power Reduction Modes 
The XA-S3 supports Idle and Power Down modes of power 
reduction. The idle mode leaves some peripherals running in order 
to allow them to activate the processor when an interrupt is 
generated. The power down mode stops the oscillator in order to 
absolutely minimize power. The processor can be made to exit 
power down mode via a reset or one of the external interrupt inputs 
(INTO, INT1, or the keyboard sense interrupt). This will occur if the 
interrupt is enabled and its priority is higher than that defined by 1M3 
through IMO. In power down mode, the power supply voltage may be 
reduced to the RAM keep-alive voltage VRAM. This retains the RAM, 
register, and SFR contents at the point where power down mode 
was entered. Voo must be raised to within the operating range 
before power down mode is exited. 

INTERRUPTS 
XA-S3 interrupt sources include the following: 

• External interrupts 0 and 1 (2) 

• Timer 0, 1, and 2 interrupts (3) 

• PCA: 1 global and 5 channel interrupts (6) 

• AID interrupt (1) 

• UART 0 transmitter and receiver interrupts (2) 

• UART 1 transmitter and receiver interrupts (2) 

• 12C interrupt (1) 

• Software interrupts (7) 
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EXCEPTIONITRAPS PRECEDENCE 

DESCRIPTION VECTOR ADDRESS ARBITRATION RANKING 

Reset (h/w, watchdog, s/w) 0000-0003 o (High) 

Breakpoint 0004-0007 1 

Trace OOOS-OOOB 1 

Stack Overflow OOOC-OOOF 1 

Divide by 0 0010-0013 1 

User RETI 0014-0017 1 

TRAP 0-15 (software) 0040-007F 1 

EVENT INTERRUPTS 

DESCRIPTION FLAG BIT VECTOR ADDRESS ENABLE BIT INTERRUPT ARBITRATION 
PRIORITY RANKING 

External Interrupt 0 lEO 00SO-OOS3 EXO IPAO.3-0 2 

Timer 0 Interrupt TFO 00S4-00S7 ETO IPAO.7-4 3 

External Interrupt 1 lEi OOSS-OOSB EX1 IPA1.3-0 4 

Timer 1 Interrupt TF1 OOSC-OOSF ET1 IPA1.7-4 5 

Timer 2 Interrupt TF2 (EXF2) 0090-0093 ET2 IPA2.3-0 6 

PCA Interrupt CCFO-CCF4,CF 0094-0097 EPC IPA2.7-4 7 

AID Interrupt ADINT 009S-009B EAD IPA3.3-0 S 

Serial Port 0 Rx RLO 00AO-00A3 ERIO IPA4.3-0 9 

Serial Port 0 Tx TI_O 00A4-00A7 ETIO IPA4.7-4 10 

Serial Port 1 Rx RU OOAS-OOAB ERI1 IPA5.3-0 11 

Serial Port 1 Tx TU OOAC-OOAF ETI1 IPA5.7-4 12 

PCA channel 0 CCFO 00CO-00C3 ECO IPBO.3-0 17 

PCA channel 1 CCF1 00C4-00C7 EC1 IPBO.7-4 is 

PCA channel 2 CCF2 OOCS-OOCB EC2 IPB1.3-0 19 

PCA channel 3 CCF3 OOCC-OOCF EC3 IPB1.7-4 20 

PCA channel 4 CCF4 00DO-00D3 EC4 IPB2.3-0 21 

12C Interrupt SI 00D4-00D7 EI2 IPB2.7-4 22 

SOFTWARE INTERRUPTS 
DESCRIPTION FLAG BIT VECTOR ADDRESS ENABLE BIT INTERRUPT PRIORITY 

Software interrupt 1 SWR1 0100-0103 SWE1 (fixed at 1) 

Software Interrupt 2 SWR2 0104-0107 SWE2 (fixed at 2) 

Software Interrupt 3 SWR3 01 OS-01 OB SWE3 (fixed at 3) 

Software interrupt 4 SWR4 01 OC-01 OF SWE4 (fixed at 4) 

Software Interrupt 5 SWR5 0110-0113 SWE5 (fixed at 5) 

Software Interrupt 6 SWR6 0114-0117 SWE6 (fixed at 6) 

Software Interrupt 7 SWR7 011S-011B SWE7 (fixed at 7) 
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Author: Santanu Roy, MCa Applications Group, Sunnyvale, California 

SUMMARY sequences of numbers and with the transformation or processing of 
This report describes a method of implementation of FIR filters using such signal representations by numeric computational procedures. 
Philips XA microcontroller. Appended with this application note is a In order to be considered a DSP microcontroller, a part must be able 
generic routine that could be used to implement a N-point FIR filter. to quickly multiply two values, and add the result to an accumulator 

register. this is a minimum requirement. "Quickly" implies MAC 

INTRODUCTION 
The term "digital filter" refers to the computational process or 
algorithm by which a digital signal or sequence of numbers (acting 
as input) is transformed into a second sequence of numbers termed 
the output digital signal. Digital filters involve signals in the digital 
domain (discrete-time signals) and are used extensively in 
applications such as digital image processing, pattern recognition, 
and spectral analysis. 

Digital Signal Processing (DSP) is concerned with the 
representation of signals (and information they contain) by 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

(Multiply and Accumulate). Typically, the multiply and accumulate 
path operates on 16-bit values with a 32-bit result. Figure 1 shows a 
typical Digital Signal Processing hardware used in digital filtering. 

Although XA currently does not have a hardware MAC unit, it is 
quite suitable for some DSP applications, due to its relatively high 
computational power, and high 1/0 throughput. This application note 
is intended to demonstrate such DSP power of the XA through 
implementation of FIR and IIR digital filters. It is to be noted, though, 
that this application note is not intended as a learning tool for DSP. 
It is assumed that the reader is familiar with DSP and filtering 
basics. 

L __ _ 

MAC 

SU00506 

Figure 1. Typical DSP Hardware 
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Filter Algorithms 
For a large variety of applications, digital filters are usually based on 
the following relationship between the filter input sequence x(n) and 
filter output sequence y(n); 

N M 

y(n) = L ak x y(n - k) + L bk x x(n - k) 
k=O k=O 

where ak and bk represent constant coefficients and Nand M 
represent the number of input samples. 

(1) 

Equation (1) is referred to as a linear constant coefficient difference 
equation. Two classes of filters can be represented by such 
equations: 
4. Finite Impulse Response (FIR) filters, and 

5. Infinite Impulse Response (IIR) filters. 

This applications note describes the implementation of the FIR class 
of digital filters on the XA. 

FIR Filters 
FIR filters are preferred in lower order solutions, and since they do 
not employ feedback (output values used in the calculation of newer 
output values), they exhibit naturally bounded response. They are 
simpler to implement, and require one RAM location and one 
coefficient for each order. 

For FIR filters, all of the ak in equation (1) is zero. Therefore (1) 
reduces to: 

M 

y(n) = L bk x x(n - k) 
k=O 

(2) 

As a result, the output of an FIR filter is simply a finite length 
weighted sum of the present and previous inputs to the filter. If the 
unit-sample response of the filter is denoted as h(n), then from (2), it 
is seen that h(n) = b(n). Therefore, (2) is sometimes written as: 

N-1 
y(n) = L h(k) x x(n - k) (3) 

k=O 

where N = length of the filter = M+ 1 . 

Digital Filter Implementation 
As described above, a digital filter (FIR or IIR) could then be 
implemented by multiplying a vector of sampled Signals with another 
vector of constants (coefficients) and adding the results to a register. 
The vectors involved in the filter process are derived from 
transformation of an S domain transfer function into the sampled Z 
domain. 

The Multiply-Accumulate (MAC) Function 
The MAC speed applies both to finite impulse response (FIR) and 
finite impulse response (IIR) filters. The complexity of the filter 
response dictates the number MAC operations required per sample 
period. 

A multiply-accumulate step performs the following: 

• Read a 16-bit sample data (pointed to by a register) 

• Increment the sample data pOinter by 2 
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• Read a 16-bit coefficient (pointed to by another register) 

• Increment the coefficient register pointer by 2 

• Sign Multiply (16-bit) data and coefficient to yield a 32-bit result 

• Add the result to the contents of a 32-bit register pair for 
accumulate. 

This accumulator should be initialized to zero before calculating 
each output. It is assumed that the algorithm cannot overflow the 
accumulator, either by reducing significant bits of samples and/or 
constants or the number of accumulations. 

All these above MAC operations take place in addition to a buffer 
management routine that maintains an updated database for the 
filters samples, and system coefficients. 

Buffer Management 
In order to effectively perform the task of buffer management, the 
processor should be able to quickly "shift" data (or pointers) in a 
data array which contains a series of input samples. New data is 
going in, and oldest sample is disposed off. 

There are few ways to maintain and manage this database. They 
are as follows: 
1. Linear Buffer 

New Sample x(n) 

x(n-1) 

1 
x(n-2) Increasing 

Address 
x(n-3) 

Lost x(n-4) 

Linear buffer management requires the data to physically move 
down towards the oldest sample, then the newest sample is 
written into the top (FIFO style). 

2. Circular Buffer 

x(n-1) 

x(n) 

*1-> x(n-4) 

x(n-3) <-*2 

x(n-2) 

*1 At the beginning of filter pass, input pointer points to the oldest 
(n-4) sample, new sample is stored there. 

*2 At the end of the filter pass, pointer now points to the next oldest 
sample (n-3). 

Circular buffer management requires a test to make sure a buffer 
pointer increment does not move the pointer beyond the "tail" (end) 
of the buffer. If so, the pointer must be reset to the "head" 
(beginning) of the buffer. 

Selecting one approach versus another depends mainly on the 
overhead involved with this task over the plain Multiply-Accumulate 
and loop control operations, and may vary based on the processor 
architecture, storage access time and other factors. 
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MAC Implementation on the XA 
An efficient loop for memory mapped vectors is presented below. 
The loop entry is at an even address, to reduce the fetch overhead 
after branch to beginning of the loop. Arrays are accessed using the 
indirect-autoincrement addressing mode . 

. incld fir.h 
MAC_LOOP: 

mov.w 
mov.w 
mul.W 
add 
addc 

R3, [Rl+) 
R4, [R2+) 
R3, R4 
R5, R3 
R6, R4 

read sample vector entry 
read coefficient vector entry 
multiply 
accumulate into 
a 32 bit register pair(R5:R6) 
this serves as the RRP 

djnz RD, MAC~OOP 
;decrement loop counter and 
;branch to MAC_LOOP 

The loop contains 13 bytes and takes 32 clocks (including branch 
penalty) per Iteration (1 .6fJ.S at 20MHz and 1.07fJ.S at 30.0MHz). 

The following section analyzes the digital filter performance, 
including initialization, 110, MAC operations and sample vector buffer 
management. 

An N-Point FIR Filter Implementation on XA 
The FIR filter maintains a list of a fixed number N of recent samples. 
At each Iteration, a new sample Is taken, replacing the oldest 
sample on the list. This list represents a sampled vector. It Is then 
multiplied by an N constant's vector to yield the current output. 

As mentioned earlier, there are 2 register pointers fetching data 
samples and coefficient and feeding it to the ALU for 16-bit signed 
multiply with the 32-bit result being added to the MAC result register 
pair (RRP). In addition, a buffer management routine updates the 
sample data buffer each sample period. 

The following sample codes show the mechanism for running filters 
on successive samples. It reflects the Simplest data structures and 
list management, to simulate an output of a high level complier. 

Data Samples in Buffer 

NOTE: Arrows indicate direction of data shift on each filter pass. 

SUOO507 

Figure 2. Buffer Management for FIR Filter 
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FIR Algorithm in XZ 

;Preliminary initialization for first filter pass: 
.incldfir.h 

Start_FIR: 
mov RO, #N-1 N = number of entries in the list 

mov R1, #Old_Entry 
mov R2, #Old_Entry+2 

Shft_Smpl: 
mov.w [R1+] , [R2+] 
djnz RO, Shft_Smpl 

mov RO, A2D 
and RO, #mask 
mov New_Entry, RO 

Mac init: 
mov RO, #N 

mov Rl, #Old_Entry 
mov R2, #Coef_Entry 
xor R5, R5 
xor R6, R6 

MAC_LOOP: 
mov.w R3, [R1+] 
mov.w R4, [R2+] 
mul.w R3, R4 
add R5, R3 
addc R6, R4 
djnz RO, MAC_LOOP 

ACC_corr: 
asl R5, #norm** 

mov DAC, R6 

= loop counter 
compiler uses 2 pointers 

- SAMPLE FROM AID PORT 
input from port 
mask upper bits (for N-bit AID) 
add to list 

MULTIPLY ACCUMULATE 
N = number of entries in the list 
= loop counter 
pointer to sample vector 
pointer to coefficient vector 
zero to accumulator 
zero to accumulator 

read sample from list to reg 
read constant from list to reg 
multiply 
accumulate in RRP 
complete 32 bit add 

- NORMALIZE RESULT BY SHIFTING 
correction for non-significant LSBs 
for eight 10 bit samples and 16 bit 
constants, #norm=3 
i.e. take only most significant 29 bits of the result 
[16+10 + 3 (for B iterations)] 
- OUTPUT TO D2A PORT 
send to DAC 

A total of 62 bytes and 370 clocks for this FIR algorithm. 

For N=8, 10 bit AID, 16 bit filter coefficients; 8, 12, 16 bits clock very similar performance. 

Total time for an 8-point filter at 20 MHz is 19.0 microseconds and 
12.7 microseconds at 30 MHz. This would translate to a maximum 
sampling rate of 52 KHz at 20 MHz and 78 KHz at 30 MHz clock. 
If this filter algorithm is interrupt driven, then additional 20 clocks 
would be required for latency, which would then translate to 50 KHz 
maximum sampling rate at 20 MHz and 75 KHz at 30 MHz. This 
puts the XA In the bandwidth of Audio Signal Processing (44.1 KHz) 
applications. 
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NOTES: 
1. The above FIR algorithms are assembled with "asmxa rev 1.4" , 

the first XA absolute assembler for verification. It is to be noted in 
this context, that this assembler is a beta-site tool and still under 
evaluation. The syntax used in the assembler might be subjected 
to change. The functionality of the code is not checked at this 
stage using any simulator or ICE. 

2. It is possible in the above MAC operation to extend the length of 
the accumulator to accommodate more iterations and higher 
precision (greater than 10-bit AID) sample values with some 
additional overhead, e.g:, using 'ADDC Rn, R6H", etc., after the 
32-bit accumulate, where Rn is a byte-size register to increase 
the length of the accumulator to accommodate more 
accumulations and higher precision (greater than 1 O-bit AID) 
sample values. 
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Author's Note 
All addresses and constants assumed 16 bit for generality. 
Performance is calculated for a work-aligned branch targets which is 
mandated in the XA architecture for performance reasons. 
Misalignment will result in addition of NOPs by the assembler 
causing penalty in both code density and execution times. It is also 
to be mentioned that this Is not the fastest executable code for the 
XA. A good programmer can combine the two loops Into one, and 
data can be kept in registers. For low order filter implementation, 
code can be written in-line, and can utilize direct addressing mode 
for samples array. 

This code was written in a way that reflects minimum expected 
optimization form a complier (local loop optimization only), and it 
shows the expected speed for code written in a high level language, 
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without rewriting routines In assembly language. also, this is not the 
ultimate performance for the XA architecture. The register banks 
can be used to store coefficients and samples, resulting In slightly 
faster execution time. 
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IEEE SINGLE PRECISION FLOATING POINT 
ARITHMETIC WITH XA 

Introduction 
This application note is intended to implement Single Precision 
Floating Point Arithmetic package using the new Philips 
Semiconductors XA microcontrolJer. The goal is to have this 
package as a part of the run-time math library for the XA when the 
cross-compiler is developed. The package is based upon the IEEE 
Standard for Binary Floating-Point Arithmetic (IEEE Std 754-1985). 
This package, however, is not a conforming implementation of the 
said standard. The differences between the XA implementation and 
the standard are listed later in this report. Also, this package does 
not include routines for conversion between Integers to Floating 
Point and vice versa. 

The following four standard Single Precision (SP) arithmetic 
operations have been implemented in this package: 

1. FPADD Addition of two SP floating point numbers. 

2. FPSUB Subtraction of two SP floating pOint numbers. 
3. FPMUL 

4. FPDIV 

Multiplication of two SP floating point numbers. 

Division of two SP floating point numbers. 

The following section discusses the representation of FLP numbers. 
Then the differences between the XA implementation and the IEEE 
standard are described. This is followed by a description of the 
algorithms used in the computations. Appendix A is a user reference 
section for converting a floating point number into IEEE format and 
Appendix B is a listing of the code. 

Note that this application note assumes that the reader is familiar 
with the IEEE Binary Floating-Point standard. 

IEEE Floating Point Formats 
The basic format sizes for floating-point numbers, 32 bits and 64 
bits, were selected for efficient calculation of array elements In 
byte-addressable memories. For the 32-bit format, precision was 
deemed the most important criterion, hence the choice of radix 2 
instead of octal or hexadecimal. Other characteristics include not 
representing the leading slgnificand bit in normalized numbers, a 
minimally acceptable exponent range which uses 8 bits, and 
exponent bias Which allows the reciprocal of all normalized numbers 
to be represented without overflow. For the 64-blt format, the main 
consideration was range. 

Representation of FLP Number 
The IEEE binary floating point number is represented in the 
following format: 

FP = ± Signlficand x BaseCharacteristic 

The specification of a binary FP number involves two parts: 
A Significand or Mantissa 
and a Characteristic or Exponent. 

The Mantissa Is signed fixed point number and the Exponent is a 
signed integer. Mantissa or Significand is that component of a binary 
FLP number which consists of an explicit or implicit leading bit to the 
left of its binary point and a fraction field to the right of the binary 
point. Exponent signifies the power to which 2 is raised in . 
determining the value of the represented number. Occasionally the 
exponent is called the signed or unbiased exponent. The IEEE 
standard specifies that a single precision Floating Point number 
should be represented in 32 bits as shown in Figure 1. 
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SIGN 
i-bit 

EXPONENT 
8-bits 

Figure 1. 

MANTISSA 
23-bits 

The significance of each of these fields is as follows: 

1" SIGN - This i-bit field is the sign of the Mantissa. '0' indicates 
a positive and '1' indicates a negative number. 

2. EXPONENT - This is a 8-bit field. The width of this field 
determines the range of the FP number. The exponent is 
represented as a biased value with a bias of 127 decimal. The 
bias value is added to exponents in order to keep them always 
positive and is represented by 

2n- 1 -1, 

where n = number of bits in the binary exponent. 

3. MANTISSA - This is a 23-bit field representing the fractional 
part. The width of this field determines the precision for the FP 
number. For normalized FP numbers (see below), a MSB of '1' is 
assumed and not represented. Thus, for normalized numbers, 
the value of the mantissa is 1.Mantissa. This provides an 
effective precision of 24-bits for the mantissa. 

If dealt with normalized numbers only (as the XA implementation 
does), then the MSB of the Mantissa need not be explicitly 
represented as per IEEE standard specification.The normalized 
significand lies in the range shown below. 

1.0 < Normalized Mantissa < 2.0 

Given the values of Sign, Exponent, and Mantissa, the value of 
the FP number is obtained as follows: 

(I) If 0 < Exp < 255, then 

FP = (-1 )SIGN x 2EXP - 127 x 1.MANTISSA 

(ii) If Exp = 0, then FP = 0 

(iii) If Exp = 255, and Mantissa =/= 0, then FP = Invalid Number 
(NaN or Not a Number). 

The above format for single precision binary FP numbers provides 
for the representation in the range -3.4 x 1038 to -1.75 X 10-38, 0, 
and 1.75 x 10-38 to 3.4 x 1038 . The accuracy Is between 7 and 8 
decimal digits. 

Differences with the IEEE Standards 
The IEEE standard specifies a comprehensive list of operations and 
representations for FLP numbers. Since an implementation that fully 
conforms to this standard would lead to an excessive amount of 
overhead, a number of features In the standard were omitted. This 
section describes the differences between the Implemented package 
and the standard. 

1. Omission of -0 - The IEEE standard requires that both + and 
- 0 be represented, and arithmetic carried out using both. The 
implementation does not represent -0. 

2. Omission of Infinity arithmetic - The IEEE standard provides 
for the representation of + and - infinity, and requires that valid 
arithmetic operations be carried out on infinity. 

3. Omission of Quiet NaN - The IEEE standard provides for both 
Quiet and Signalling NaNs. A signalling NaN can be produced as 
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the result of overflow during an arithmetic operation. If the NaN Is 
passed as input to further FLP routines, then these routines 
would produce another NaN as output. The routines will also set 
the Invalid Operation Flag, and call the user FLP error trap 
routine at address FPTRAP. 

4. Omission of denormallzed numbers - These are FLP 
numbers with a biased exponent, E of zero and non-zero 
mantissa F. Such denormalized numbers are useful in providing 
gradual underflow to O. These are not represented in the XA 
implementation. Instead, if the result of a computation cannot be 
represented as a normalized number within the allowable 
exponent range, then an underflow is signalled, the result is set 
to 0, and the user FLP error trap routine at address FPTRAP is 
called. 

5. Omission of Inexact Result Exponent - The IEEE standard 
requires that an Inexact Result Exception be signalled when the 
round result of an operation is not exact, or it overflows without 
an overflow trap. This feature is not provided. 

6. Biased Rounding to Nearest - The IEEE standard requires 
that rounding to the nearest be provided as the default rounding 
mode. Further, the rounding Is required to be unbiased. The XA 
implementation provides biased rounding to nearest only, e.g., 
suppose the result of an operation Is .b1 b2b3nnn and needs to 
be rounded to 3 binary digits. Then if nnn is OYY, the round to 
nearest result is .b1 b2b3. If nnn Is 1 YY, with at least one of the 
V's being 1, then the result is .b1 b2b3 + 0.001 , Finally, if nnn is 
100, It is a tie situation. In such a case, the IEEE standard 
requires that the rounded result be such that its LSB is O. The XA 
implementation, on the other hand, will round the result In such a 
case to .b1 b2b3 + 0.001. 

DESCRIPTION OF ALGORITHMS 

General Considerations 
The XA implementation of the SP floating point package consists of 
a series of subroutines. The subroutines have been written and 
tested using Microsoft C however, not been tested with the XA C 
cross-compiler and also not optimized for code efficiency. The 
executable could be run under DOS in any IBM compatible PC. It is 
a menu driven routine that enables the user to select any of the 4 
Floating Point routines. The menu also includes a "HELP" Item 
designed to provide some standard SP floating point numbers, their 
operations and results as a quick reference. 

The Arithmetic subroutines that compute F1 (Op) F2, where Op is +, 
-, *, or I expect that F1 and F2 are In IEEE format. Each of F1 and 
F2 consists of two 16-blt words organized as follows: 

Fn-HI : 5Ign(1) Biased exponent(7) MSB of Mantlssa(8) 

Fn-LO : Least Significant word of Mantissa(16) 

Exception Handling 
The following types of exception can occur during the course of 
computation. 

Invalid Operand-This exception occurs if one of the input is a 
NaN. 

Exponent Overflow-This occurs if the result of a computation is 
such that its rounded result is finite and not an invalid result but its 
exponent is too large to represent in the floating point format, 
I.e .• exponent has a biased value of 255 or more. 
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Exponent Underflow-This occurs if the result of a computation Is 
such that its exponent Is 0 or less. 

Dlvide-by-zero-This exception occurs if the FLP divide routine is 
called with F2 being O. . 

The package signals exceptions in 2 ways. First, a word at address 
ERRFLG is maintained that registers the history of the exception 
conditions. Bits 0-3 of this word are used for the same. . 

Bit 0 - Exponent overflow detect 

Bit 1 - Exponent Underflow detect ERRFLG 

Bit 2 - Illegal Operand detect 

Bit 3 - Divide-by-o detect 

ERRFLG 

DBZ lOP EUF EOV 

This bits are never cleared by the FLP package, and can be 
examined by the user software to determine the exception 
conditions that occurred during the course of a computation. If. it Is 
the responsibility of the user software to Initialize this word before 
calling any of the floating pOint routines. 

The second method that the package uses to signal exceptions is to 
call a user floating point exception handler whenever such 
conditions occurs. The corresponding exception bit in ERRFLG is 
set before calling the handler. The starting address of the handler 
should be defined by the symbol FPTRAP. 

Unpacked FLP Format 
The IEEE standard FLP format described earlier Is very 
cumbersome to deal with during computation. This Is primarily 
because of splitting of the mantissa between the 2 words. The 
subroutine in the package unpack the input IEEE FLP numbers into 
an Internal representation, do the computations using this 
representation, and finally pack the result into the IEElfformat 
before returning to the calling program. The unpacking Is done by 
the subroutine FUNPAK and the packing by the subroutine FPAK. 
The unpacked format consists of 3 words and Is organized as 
follows: 

Unpacked FLP 

Fn-Exponent (8-blt biased) I Fn-Sign (extended to 8-bits) 

MS 16-blts of Mantissa (implicit 1 is present as MSB) 

L5 8-blts of Mantissa I Eight O's 

Since all computations are carried out In this format, note that the 
result Is actually known to 32 bits. This 32-blt mantissa is rounded to 
24 bits before packed to the IEEE format. 

Algorithms 
All the arithmetic algorithms first check for easy cases when either 
F1 or F2 is zero or a NaN. The result in these cases is immediately 
available. The description of the algorithms below Is for those cases 
when neither F1 or F2 Is 0 or a NaN. Also, in order to keep the 
algorithm description simple, the check for underflow/overflow at the 
various stages is not shown. The documentation in the program, the 
flowcharts given below, and the theory as described in the 
references should allow these programs to be easily maintained. 
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FPADD AND FPSUB 
Before a floating point add/subtract instruction is executed, the 2 
operand~ in normalized form 

The processing steps are as follows: 

1. Compare the 2 exponents. 

2. Align the mantissas by ;equalizing their exponents. 

3. Compute result sign as the XOR of the signs of the 2 numbers. 

4. Add/Subtract the mantissas. 

For suptract, FP2 is complemented and added with FP1 , 
i.e., FSUB = FP1 + (-FP2). 

5. Normalize the resulting sum/difference. 

6. Pack the exponent, sign and mantissa in IEEE format and return. 

FMULT = FP1 * FP2 
Floating-point multiplication is accomplished by multiplying the 
mantissas of the 2 operands and adding their corresponding 
exponents. Exponent overflow or underflow may occur when true 
addition is performed on 2 exponents of the same sign. 

The processing steps are as follows: 

1. Add the 2 exponents and subtract 7FH (I EE bias "of 12710) to 
yield the result exponent. 

," Result"Exponent = FP1_EXP + FP:LEXP-127 

2. XOR the sign bits to get the result sign. 

Result Sign = FP1_SIGN XOR FP2_SIGN 

3. Compute FP1_HI x FP2_HI = C1_HI.C1_LO. 

4. Compute FP1_HI x FP2_LO = CO_HI.CO_LO. 

5. Add CO_HI + C1_LO = C2_LO. 
If more than 16~bits, then C1_HI += 1. 

6. CQmpu!eFP1_LO x FP2:-HI= C3_HI.C3_LO. 

7. Add C3_HI + C2_LO = C4_LO. 
If more than 16-blts, then C1_HI += 1. 

8. Normalize mantissa. If MSB of C1_HI =/= 1, 
then result exponent += 1 else left shift C1_HI.C4_LO. 

9. Round C1_HI.C4_LO to get result mantissa. 

10. Pack the exponent; sign and mantissa In IEEE format and return. 

1995 Jul28 432 

Application note 

AN701 

FPDIV == FP1/FP2 
The way a floating-point DIVIDE instruction is executed is analogous 
to that of a Floating Point Multiply, except that mantissa 
multiplication is replaced by mantissa division and the exponent 
addition by exponent subtraction. Exponent overflow or underflow 
may occur When true addition is performed on the 2 exponents of 
opposite signs. The scheme must avoid the situation of having a 
divisor which is smaller than dividend mantissa, including the special 
case of a 0 divisor. With this constraint, the post normalization is 
unnecessary in FLP division as long as pre-normalization was 
conducted to avoid quotient overflow. 

The processing steps are as follows: 

1. Compare FP1_HI and FP2_HI. 
If FP2_HI > FP1_HI, then go to step 3, else go to step 2. 

2. Shift right FP1 and FP1_EXP += 1. 

3. Compute FP1_EXP - FP2_EXP + 127 to get C_EXP. 

4. Compute FP1_SIGN XOR FP2_SIGN to get result sign, 
Le., C_SIGN 

5. Compute FP1_HI x FP2_LO = M1_HI.M1_LO. 

6. Divide M1_HI.M1_LO / FP2_HI = M2_HI (Quotient) 

7. Doa true subtract FP1_LO - M2_HI = M3_LO. 
If result -ve then go to step 8 else FP1_HI-= 1 and go to step 8. 

8. Divide FP1_HI.M3_LO / FP2_HI = C1_HI (Quotient) + R1 
(remainder) . 

9. Divide R1.0000 / FP2_HI = C1_LO (Quotient) 

10.lf MSB of C1_HI = 1, then go to step 11, else shift left 
C1_HI.C1_LO, C_EXP -= 1, and go to step 11. 

11. Round CCHI.C1_LO to get C_HI.C_LO, go to step 12 

12. Pack the exponent, sign and mantissa in IEEE format and return. 
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FPADD AND FPSUB 

NO 

NO 

RESULT MANTISSA = FP1MANT - FP2MANT 
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O=SAME SIGN 
1 =OPP. SIGN 

YES 

RESULT MANTISSA = FP1MANT + FP2MANT 

NO 
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FPMULT 
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ROUND RESULT, 
PACK IN IEEE FORMAT & 

EXIT 
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YES 

SU00509 
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FPDIV 
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ROUND RESULT, 
PACK IN IEEE FORMAT & 

EXIT 
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APPENDIX A 

Conversion of Floating Point Numbers 
In general IEEE FP = +- mantissa X 2 exponent 

Format = Sign bit (1). Biased Exponent bits (8). Normalized 
Mantissa bits (23), e.g., convert 1.0 to a 32-bit IEEE Floating Point: 

1 = 1.0 X 2°; 
Biased Exponent = 0 + 127 = 127 = 7F Hex 
The 24-bit normalized mantissa = 100000000000000000000000; 
Sign = positive = 0; 

So, IEEE 1.0 = 0 0111111100000000000000000000000 

which is 3f80 0000 hex & so on. 

Some Floating Point Numbers are given below for 
user reference: 
-1.0 = BF80 0000; 
+ 1.0 = 3F80 0000 

-0.25 = BE80 0000; 
+0.25 = 3EBO 0000 

-0.50 = BFOO 0000; 
+0.50 = 3FOO 0000 

6.250 = 40C8 0000; 
1.625 = 3FDO 0000; 

12.0 = 4140 0000 
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APPENDIX B 
#include <stdio.h> 
#include "fpp.h" 

void main (void) 

unsigned int fprtn; 
unsigned short j; 
FILE *fp; 

start: 
while (1) 
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II clear RAM 

for(j=O; j<6;j++) 
{ 

trnp1 [ j 1 - 0; 
trnp2 [j 1 0; 

II Menu 

printf("\n\n\n\n"); 
printf(" XA FLOATING POINT ARITHMETIC FUNCTION MENU\n") ; 
printf(" 
printf ("\n") ; 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 
printf(" 

fprtn = getche(); 

-------------------------------------------\n") ; 

A .............. Floating Point Add\n") ; 
B ...... , ....... Floating Point Subtract \n") ; 
C ....... " ..... Floating Point Multiply\n"); 
D .............. Floating Point Divide\n"); 
H .............. Help File\n"); 
J .............. Error Register Status\n"); 
Q .............. Exit Menu\n\n\n\n\n"); 
==>") i 

1* wait for user i/p *1 

getch(); II wait for <CR> 
printf("\n\n") ; 

1* Select Floating Point Routine */ 

switch(fprtn) 
{ 

case 'A' 
case 'a' 

printf ("Floating Point Addition in Progrss .... \n\n\n") ; 
getnurn() ; 
fpadd() ; 
break; 
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case 'B' 
case 'b' 

case 'C': 
case 'c': 

case '0': 
case 'd': 

case 'H': 
case 'h': 

case 'J': 
case 'j': 

case 'Q': 
case 'q': 

default : 

printf("Floating Point Subtraction in Progrss .... \n\n\n"); 
printf("\n\n\n\n") ; 
getnum() ; 
fpsub() ; 
break; 

printf("Floating Point Multiplication in Progress .... \n\n\n"); 
printf("\n\n\n\n"); 
getnum() ; 
fpmult () ; 
break; 

printf("Floating Point Divide in Progress .... \n\n\n"); 
printf("\n\n\n\n"); 
getnum() ; 
fpdiv() ; 
break; 

if( (fp = fopen("help","r")) == NULL) 
printf("can't open flpdat for read\n"); 

fcopy(fp,stdout) ; 
fclose (fp) ; 
printf("Hit any key to continue ... "); 
getch() ; 
goto start; 

show_err_reg(); 
printf("Hit any key to continue ... "); 
getch () ; 
goto start; 

printf("******Hit Ctrl+C to exit .... !! !!*******\n"); 
getch() ; 

printf(" 
printf(" 
printf(" 
goto start; 

*****************************************************\n H ): 

UNKNOWN COMMAND, GOODBYE!! *\n"); 
*****************************************************\nUl; 
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/'O Exception Handling Routines */ 

void divbyz (void) 

ERRFLG 1= 8, 
fp_Io = 0; 
fp_hi = NANH; 
fptrap() ; 
return; 

f* set the DIVBYO bit (#3) */ 
/* Return NaN *f 

/* exception handler 'O/ 

/'O Illegal Operand - one of the numbers is a INVALID. 'O/ 

void fnan(void) 

ERRFLG 1= 4; 
fp_lo = NANL; 
fp_hi = NANH; 
fptrap () ; 
return; 

void undflw(void) 

void ovflw (void) 

ERRFLG 1= 2, 
fp_Io = 0; 
fp_hi = 0; 
fptrap() ; 
return; 

ERRFLG 1= 1; 
fp_lo = 0; 
fp_hi '" NANH; 
fptrap () ; 
return; 

/* set the NAN operand bit */ 

/* return NAN in fp_lo and fp_hi */ 

/* exponent underflow 'Of 

/* set the exponent underflow bit */ 
/* clear FP */ 

/* exponent overflow */ 

/* set the exponent overflow bit */ 

/* Subroutine to check if a single preC1S1on FLP # stored in the 
IEEE flp format in registers fp_Io and fp_hi is 'INVALID' 
Returns 0 if number != INVALID and 
Returns 1 if Number == INVALID 

*/ 

unsigned int fnanchk() 

/* Subroutine to check if a SP floating point number is a NaN 
Returns 1, if YES, and 0 if NOT */ 

1995Jul28 

long tmp; 

tmp '" fp_hi; 
tmp = tmp » 1; 
if (tmp > Oxfeff) 
return 1; 
return 

/* Shift left fp_hi by */ 
/* feff + 1 = ffOO */ 
/* biased exp >= 255 & f =/= 0 */ 
/* OK *1 
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} 

/* Subroutine to check if a single precision FLP # stored in the 
IEEE flp format in registers fp_lo and fp_hi is 'ZERO' 
Returns 0 if number != and 
Returns 1 if Number == 0 
Note: fp "0" = 1.0 x 2 e -127 i.e if biased exp 0, fp 

*/ 

char zchk (void) 

unsigned long tmp; 
tmp fp_hi; 

tmp tmp « 1; 

if (tmp > OxOOff) 
return 0; 
return 1; 

1* Shift left fp_hi by 1 */ 

/* subroutine to unpack a SP IEEE formatted FP # and held in regs.fp_hi 
and fp_lo. The unpacked format occupies 3 words & is organized as 
follows: 

*/ 

WORD2 
WORD1 
WORDO 

eeeeeeee ssssssss 
1mmmmmmm mmmmmmmm 
mmmmmmmm 00000000 

-> biased-exp.sign 
16 MSB of Mantissa (m23 

-> 8 LSB of Mantissa.zeros 

e7:0 - 8-bit exponent in excess-127 format 
s7:0 - sign bit -> OxOO = +ve, Oxff = -ve 
m23:0 - normalized mantissa i.e 1.0000 ... 

m16) 

char* funpak(fparray) 
int *fparray; 

II returns ptr. to a character array to fpadd 
Ilpointer to the flp. array passed by fpadd 

char sign; 
unsigned short i= O,j 0; 

if(k=2) k=O; 
else 
k ++; 
flpar [i] 0; II clear la-byte of fpO 

flpar[++i] 
flpar[++i] 

fparray[j] & OxOOff; 1* fpO_hi = mO:m7 *1 
(fparray[j++] & OxffOO) » 8; 1* fp1_1o = m8:m15 *1 

flpar[++i) = fparray[j] & Ox007f; /* m16:m22 */ 

flpar[ ill = Ox80; /* set bit7 -> normlz. bit */ 

sign = (fparray[j] & Ox8000) » 15; 1* check sign bit *1 

if (sign) 

flpar[++i] 
else 

flpar [++il 

Oxff; 

OxOO; 

1* fp2_1o = 8 sign bits *1 

1* -ve number? *1 

/* yes */ 
/* no */ 

flpar[++il = (fparray[jl & Ox7f80) » 7; /**1 
return (flpar); /* return the ptr to the array */ 
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/* subroutine to pack a SP held in 3 words flparO:3 into IEEE format. 

*/ 

The packed format is stored in fp_hi & fp_lo as follows: 
fp_hi seeeeee ernrnrnrnrnrnrn -> sign.biased-exp.7 MSBs of mantissa 
fp_Io: rnrnrnrnrnrnrnr rnrnrnrnrnrnrnr -> 16 LSBs of Mantissa 

Result Stored in tmp2[i); i=O:5 
tmp2[O) = OxOO; tmp[l) = mO:m7; tmp[2] = m8:m15; 
tmp[3) = 1.m16:m22; tmp(4) = sign7:0; tmp(5) = exp7:0 

void fpak(void) 

int i=l; 
unsigned int sign,tmpc; 
long ltmp1,ltmp2; 

fp_lo = tmp2[i++); 
tmpc = tmp2[i++); 
fp_lo fp_lo I (tmpc« 8); 

fp_hi 
ltmpl 
ltmp1 

tmp2 [i++] ; 
(fp_hi & Ox007f); 
ltmp1 « 16; 

sign = tmp2[i++]; 
1 tmp2 tmp2 [ i] ; 
ltmp2 = ltmp2 « 23; 
Itmp2 = Itmp2 I Itmp1; 

if (sign) 
ltmp2 = ltmp2 Ox80000000; 

/* 

/* 

/* 

/* 

/* 
/* 

get mO : m7 */ 

get m8 :m15 */ 

get 1.m22 :m16 */ 

mask & shift */ 

save sign-bit(s) */ 
exponent */ 

printf("\n\nThe IEEE packed result is:"); 
printf (" %lx\n" , 1 tmp2) ; 

1* This routine rounds up the 32-bit mantissa resulted from FP operations 
to a 24-bit number */ 

void fround(void) 
{ 

unsigned int i=3, ctmp; 
long tmpl; 

tmpl 
tmpl 
ctmp 
tmpl 
tmpl 
ctmp 
ctmp 

tmp2[i--]; 
tmpl « 8; 
tmp2[i--]; 
tmpll ctmp; 
tmpl « 8; 
tmp2 [i--]; 
tmp2[i] ; 

/* l.m22: 16 * / 

/* m15:8 */ 

/ * m7: 0 * / 

if(ctmp & Ox80) /* if bit 7 i not set in the LSB */ 

tmpl Ox0100; /* Increase next byte by 1 */ 

ctmp = tmp2 [5] ; 

if{tmpl & Ox1000000) 
{ 

/* carry out of MSB? */ 

tmpl = tmpl » 1; 
ctmp++; 

if (ctmp > 255) 

/* exp 

tmp2[5] 
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/* User supplied FLP Trap Routine */ 

void fptrap(void) 

tmp2[1] 
tmp2[2] 
tmp2[3] 

printf ("\n\nException Occurance !!! \n\n") i 

printf("Error Flag Register = %x",ERRFLG); 
/* User exception handler 

*/ 

(tmpl & OxOOOOOOff): 
(tmpl & OxOOOOffOO) » 8: 
(tmpl & OxOOffOOOO) » 16: 

printf("\n The Error Flag Register Bit Map is as follows :"): 
printf("\n --------------------------------------\n\n"): 
printf(" ---------------------------------------\n"); 
printf (" I - I - I - I - I DBZ I lOP I EUF I EOV I \n") ; 
printf(" ---------------------------------------\n\n\n"); 
printf(" where DBZ Divide by Zero exception\n"); 
printf(" lOP NaN or Invlaid operand\n"); 
printf (" EUF Exponent Underflow\n"); 
printf (" and EOV Exponent Overflow\n\n\n"): 

printf("The status of the register after the operation is :"): 
printf ("Ox%x\n\n", ERRFLG) ; 

/* FPADD - Floating Point Add 
It is assumed two floating point numbers Fl &F2 are in IEEE format 
Format : 
Fn = fpnh (s.e7:0.m22:l6) + fpnl (m15:0) 

*1 

int fpadd() 

1/ 

long dmant, flpml, flpm2, lnfp, tlong; 
int *flpn, templ, temp2; 
char dexp, i=O,j=O,k=5,t=O, expl, exp2: 

In registers 

expl tmpl [k] i /* get exponent of 1st */ 

exp2 tmp2 [k] ; /* get exponent of 2nd */ 

dexp (expl - exp2); /* difference in exponent */ 

printf("\n\n") ; 
printf ("DEXP = %x\n", dexp); 
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1* CASE 1: */ 

1/2 

1995Jul28 

if (dexp > 0 && dexp<23) / * flexp > f2exp * / 

tmp = dexp; 

/* if exp > 23, can't shift mantissa 

{ //44 

1/22 

while (tmp--) 
{ 

} 

for(i=O; i<=3; i++) 
( 

tmp2[i) = tmp2[i) » 1; 
} 

i = 4; 

more than 23-bits */ 

tempI = tmpl[i) & OxOOff; /* get the fpl sign byte */ 
printf("\nFPl SIGN BITS = %x", tempI); 

temp2 = tmp2[i) & OxOOff; /* get the fp2 sign byte */ 
printf("\nFP2 SIGN BITS = %x", temp2); 

i = 4; 
rsign = (tmpl[i) A tmp2[i); /* ex-or sign bits */ 

if(rsign != 0) /* if different sign */ 

printf (" \nFPs ARE OF DIFFERENT SIGNS! ! \n") ; 

flpml 
flpm2 

dmant 

getmant (0) ; 
getmant(l); 

flpml - flpm2; 

if (flpml > flpm2) 

printf("\n") ; 

/* Flman > F2man */ 

printf("FPl MANTISSA GREATER THAN FP2 MNATISSA\n"); 
printf("\n\n") ; 

tmp2[4) = tmpl[4); 
rsign tmpl [4) ; 

/* result sign sign of Fl */ 
/* stored in FP2 sign byte */ 

/* Shift left mantissa till MSB = 1 */ 

for(k=O; k <= 23 && «dmant & Ox00800000) == 0); k++) 
( 

/* save result in tmp2[i) 
tmp2[5) 
tmp2[4) 
tmp2[3) 
tmp2[2) 
tmp2[l) 

dmant = dmant « 1; 
expl = expl - 1; 

array */ 
expl: 
rsign; 
(dmant & OxOOffOOOO) » 16; 
(dmant & OxOOOOffOO) » 8; 
(dmant & OxOOOOOOff); 
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} 1122 

{ 1123 

} //23 

printf ("RESULT EXPONENT : %x\n", expl); 
printf("RESULT MANTISSA (NORMLZD) = %lx\n", dmant); 
printf ("RESULT SIGN = %x\n", rsign & Oxl); 

fround(); 1* round the result *1 
fpak() ; 1* Pak & leave *1 

printf ("Hi t any key to continue ... "); 
getch() ; 
return 0; 

else if (flpml<flpm2) 1* F2man > Flman *1 

printf(" FP2 MANTISSA GREATER THAN FPl MANTISSA \n"); 

dmant = -dmant; 1* 2'S COMPLEMENT *1 
dmant++; 
exp2 = tmp2 [5] ; I * res. exp = F2. exp * I 
rsign = tmp2[4]; 
tlong = dmant; 

while(! (tlong & Ox800000» 

1* 

{ dmant = dmant « 1; 
tlong dmant; 
exp2--; 

dmant dmant & Oxffffff; 

save result in tmp2[i] array */ 
tmp2[5] rexp; 
tmp2[4] rsign; 
tmp2[3] (dmant & OxOOffOOOO) 
tmp2[2] (dmant & OxOOOOffOO) 
tmp2[l] (dmant & OxOOOOOOff) ; 

» 16; 
» 8 ; 

printf("\n\n") ; 
printf("THE RESULT MANTISSA (NORMLZD) IS = %lx\n",dmant); 
printf("THE RESULT EXPONENT IS = %x\n", exp2); 
printf("THE RESULT SIGN IS = %x\n", rsign & Oxl); 

fround() ; 
fpak() ; 
printf ("Hi t any key to continue ... "); 
getch() ; 

return(O) ; 

else if(rsign 0) II same sign, so ex-OR is 
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} II 2 

{ 1199 

) 1199 

else if (dexp < 0) 
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printf (" \n") ; 
printf ("FPs ARE OF SAME SIGN!! \n") ; 

flpml getmant(O); 
flpm2 getmant(l); 
dmant flpml + flpm2; 
rsign tmpl[4]; 
rexp = expl; 

tlong dmant; 
tlong = tlong & OxOl000000;11 check if carry set 

if (tlong) 

dmant = dmant » 1; 
rexp '" rexp + 1; 
} 

1* save result in tmp2[i] array * 1 
tmp2[5] rexp; 
tmp2[4] rsign; 
tmp2[3] (dmant & OxOOffOOOO) 
tmp2[2] (dmant & OxOOOOffOO) 
tmp2[1] (dmant & OxOOOOff) ; 

printf (" \n \n") ; 

» 16; 
» 8; 

printf("THE RESULT MANTISSA(NORMLZD) IS = %lx\n",dmant); 
printf("THE RESULT EXPONENT IS = %x\n", rexp); 
printf ("THE RESULT SIGN IS = %x\n", rsign & 1); 

fround() ; 
fpak() ; 1* pack in IEEE format *1 

printf ("Hi t any key to continue ... "); 
getch() ; 

return(O) ; 

else if (dexp > 23) 

printf ("DIFFERENCE IN EXPONENT IS GREATER THAN 23 \n") ; 

for(i = 0; i<= 3; i++) 
tmp2[i] = 0: 
goto loop_here; 
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//6 

} / / 

printf ("DIFFERENCE IN EXPONENT IS NEGETIVE\n"); 
printf ("FP2 EXPONENT GREATER THAN FPl EXPONENT\n"); 

tmp = -dexp ; 
tmp++; 

/* 2's complement */ 

printf ("2' s COMPLEMENT OF DEXP = %d\n", tmp); 

if(tmp < 23) 

while (tmp--) 
{ 

goto loop_here; 

forti = 0; i<= 3; i++) 
{ 

tmpl[i] = tmpl[i] » 1; 
} 

else if(tmp > 23) 

for(i=O; i<= 3; i++) 
tmpl[i] = 0; 
goto loop_here; 

else if(dexp == 0) 
printf ("FPs GOT SAME EXPONENT!! \n"); 

go to loop_here; 

/* Get the mantissa for both FP in 24-bit format */ 

long getmant(val) 
unsigned short val; 

long lnfp, flpm; 
unsigned short i; 

if (!val) 

i= 1; 
Infp 0; 
flpm = 0; 

lnfp = tmpl [i] ; 
flpm 1= (lnfp & OxOOOOOOff); 

Infp 0; 
i++i 
Infp tmpl [i] ; 
Infp Infp« 8; 
flpm \= Infp & OxOOOOffOO; 

Infp 0; 
i++i 
lnfp tmpl[i]; 
lnfp (lnfp« 16); 
flpm \= (lnfp & OxOOffOOOO); 

flpm = flpm & OxOOffffff; 

/* dexp > 23 */ 

/* Flmant o */ 

/* shift done */ 

printf (" \n FPl MANTISSA = %lx\n", flpm); 

1995Jul28 446 

Application note 

AN701 



Philips Semiconductors 

SP floating point math with XA 

else 

i=l; 
flpm = 0; 
Infp = 0; 
Infp = tmp2[i++]; 
flpm 1= (lnfp & OxOOOOOOff); 

Infp = 0; 
Infp = tmp2[i++]; 
Infp = (lnfp « 8); 
flpm 1= (lnfp & OxOOOOffOO); 

Infp = 0; 
Infp = tmp2 [i] ; 
Infp = (lnfp « 16); 
flpm 1= (lnfp & OxOOffOOOO); 

flpm = (flpm & OxOOffffff); 

printf (" FP2 MANTISSA = %lx\n", flpm); 

return (flpm); 

int fpsub() 
{ 

unsigned char fp2_sign; 

fp2_sign = tmp2[4]; 
fp2_sign = -fp2_sign; 

tmp2[4] = fp2_sign; 
fpadd() ; 

void getnum () 

unsigned int fp[3], px; 
unsigned short i,j,k; 

printf("Type the lo-word of FP#l in IEEE format :"); 
scanf (" %x" ,&px) ; 
i= 0; 
fp[i] = *&px; 

printf("Type the hi-word of FP#l in IEEE format :"); 
scanf ( "%x" ,&px) ; 
fp(++i] = *&Px; 

funpak(fp); II pass the array ptr. to unpack routine 

for(k=O,j=O; k<=5; j++,k++) 
{ 

tmp1[k] = flpar[j]; 
} 

printf (" \n") ; 

i=O; 
printf("\n\n") ; 
printf("Type the lo-word of FP#2 in IEEE format :"); 
scanf ("%x". &px) ; 
fp[i] = *&px; 
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void fpmult () 

printf("Type the hi-word of FP#2 in IEEE format :"); 
scanf ("%x" ,&px) ; 
fp[++i) = *&px; 
funpak ( fp) ; 

for(k=O,j=O; k<=5; j++,k++) 
{ 

tmp2[k) = flpar[j); 
} 

int fp1_exp,fp2_exp, res_sign; 
unsigned int fp1_hi, fp1_lo, fp2_hi, fp2_10, tmp; 
unsigned int cO_hi,cO_Io,c1_hi, c1_Io, c2_lo,c3_hi, c3_lo, c4_lo; 
int res_exp; 
long ltmp; 
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tmp1[5); 
tmp2 [5) ; 

(long) (fpl_exp + fp2_exp -127); II result exponent 

if (res_exp < 0) 
undflw() ; 

if (res_exp > 255) 
ovflw() ; 

I I underf low 

res_sign = tmpl[4) h tmp2[4); II XOR result sign 

tmp = tmp1[3) « 8; 
tmp = tmp & OxffOO; 
tmp I", tmp1 [2) ; 

fp1_hi = tmp; 
fp_hi = fpl_hi; 

tmp = fnanchk(); 

1* l.m22:8 FP_HI*I 

if (tmp) 
fnan() ; II F1 is a NaN 

tmp'" tmp2[3) « 8; 
tmp = tmp & OxffOO; 
tmp I = tmp2 [2) ; 

fp2_hi = tmp; 
fp_hi = fp2_hi; 

1* l.m22:8 

tmp '" fnanchk ( ) ; 

FP_LO *1 

if (tmp) 
fnan() ; II F2 is a NaN 

tmp zchk(); II Check for F2 o 

fpLhi; 

if (tmp) 
printf("\nResult is 
goto endprog; } 
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tmp zchk(); Ii Check for FI 

if (tmp) { 
printf("\nResult is 
goto endprog; } 

tmp = tmpl[l) « 8; 
tmp = tmp & OxffOO; 
tmp 1= tmpl [0] ; 

tmp = tmp2[l) « 8; 
tmp = tmp & OxffOO; 
tmp 1= tmp2 (0) ; 

/* m7:0.0000 */ 

c1_hi = (ltmp & OxffffOOOO) » 16; 
cl_lo = ltmp & OxOOOOffff; 

ltmp = (long)fp1_hi * (long)fp2_lo; 
cO_hi (ltmp & OxffffOOOO) » 16; 
cO_lo ltmp &OxOOOOffff; 

if(ltmp & OxlOOOO) 
c1_hi++; 

c2 10 ltmp & Oxffff; 

ltmp = (long)fp1_10 * (long)fp2_hi; 

c3_hi (ltmp & OxffffOOOO) » 16; 
c3_10 = 1tmp & OxOOOOffff; 

if(ltmp & Ox10000) 
cl_hi++; 

c4 10 ltmp & Oxffff; 

Itmp c1_hi; 
1tmp Itmp «8; 
Itmp (ltmp & OxffffffOO) ! c4_10; 

if (! (c1_hi & Ox8000)) 
ltmp = Itmp « 1; 

else 
res_exp++; 

if(res_exp > 254) 
ovflw() ; 

array * / 
res_exp; 
res_sign; 

o as Mul tiplicand is 0 \n") ; 

/* save result in tmp2[i] 
tmp2[5] 
tmp2[4] 
tmp2[3] 
tmp2[2] 
tmp2[l) 

(ltmp & OxOOffOOOO) » 16; 
(ltmp & OxOOOOffOO) 8; 
(ltmp & OxOOOOOOff); 
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endprog: 

void fpdiv(void) 

printf("\n\n") ; 
printf("RESULT EXPONENT: %x\n", res_exp); 
printf ("RESULT MANTISSA (NORMLZD) = %lx\n", ltmp); 
printf ("RESULT SIGN = %x\n", res_sign & 1); 

fround() ; 

1* final check of exponent *1 

tmp = tmp2 [5] ; 

if ( ! tmp) 
undflw(); 1* exponent underflow */ 

if (tmp > 254) 
ovflw() ; 

fpak() ; 

printf ("Hit any key to continue .. :"); 
getch() ; 

unsigned int tmp, fpl_hi, fp2_hi, fpl_lo, fp2_lo, cl_hi, c1_lo; 
unsigned char i, c1_exp, cl_sign, fpl_sign, fp2_sign; 
long ltmp, rem, lfpml, lfpm2, tmplng; 
unsigned int ml_hi, ml_lo, m2_hi, m2_lo, m3_hi, m3_lo; 
signed int fpl_exp, fp2_exp, dexp; 
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tmp tmpl[3]« 8; 
tmp tmp & OxffOD; 
tmp 1 = tmpl [2] ; 

fpl_hi = tmp; 
fp_hi = fpl_hi; 
trop = fnanchk(); 

if (tmp) 
fnan() ; 

tmp trop2[3]« 8; 
tmp tmp & DxffOD; 
tmp 1= tmp2[2]; 

fp2_hi = tmp; 
fp_hi = fp2_hi; 

tmp = fnanchk(); 

if (trop) 

II Fl is a NaN 

fnan(); II F2 is a NaN 

trop = zchk(); II Check for F2 

if (tmp) { 
divbyz(); II F2 = 0 
printf("\nException as a result of Division by O\n"); 
goto exit; 
} 

fp_hi = fpl_hi; 
tmp = zchk(); /1 Check for Fl 0 

if (tmp) 
{ 

II Result = D 

printf("\nResult of Division of a zero Dividend is 
goto exit; 
} 
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tmp = tmpl[l] « 8; 
tmp = tmp & OxffOO; 
tmp 1 = tmpl [0] ; 

tmp = tmp2[1] « 8: 
tmp = tmp & OxffOO; 
tmp 1= tmp2[0]; 

lfpml = fpl_hi; 
lfpml = lfpml « 16; 
lfpml 1= fpl_lo; 

lfpm2 = fp2_hi; 
lfpm2 = lfpm2 « 16; 
lfpm2 1= fp2_lo; 

1* Exponent bits *1 
fpl_exp tmpl[5] ; 

/* Sign bits *1 
fpl_sign 
fp2_sign 

tmp2[5]; 

tmpl [4]; 
tmp2 [4] ; 

1* Ensure that fp2_hi > fpl_hi *1 

1* else 

lfpml » 1; 
fpl_exp++; 
} 

good *1 

(lfpml & OxffffOOOO) » 16; 
lfpml & OxOOOOffff; 

dexp (fpl_exp - fp2_exp); II difference in exponent (2's compl) 

cl_exp = dexp + 127; 
cl_sign = fpl_sign + fp2_sign; 

(ltmp & OxffffOOOO) » 15; 
(ltmp & OxOOOOffff); 

m2_hi = Itmp / (10ng)fp2_hi; 
m3 10 = fpl_lo - m2_hi; 

II Quotient 

if( m2_hi > fpl_lo) II B = 0 i.e C = 1 
fpl_hi--; 
ltmp = (unsigned long)fpl_hi; 
ltmp = ltmp « 16; 
ltmp = ltmplm3_lo; 
tmplng = Itmp; 
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ltmp = ltmp I (unsigned long)fp2_hi; II Quotient 
c1_hi = ltmp & OxOOOOffff; 
ltmp tmplng; 
ltmp = ltmp % (unsigned long)fp2_hi; II remainder 

ltmp = ltmp « 16; 
ltmp = ltmp & OxffffOOOO; 
cl_lo = ltmp/(unsigned long)fp2_hi; 

if(cl_hi & Ox8000) 

cl_hi « 1; 
cl_lo « 1; 
c1_exp -= 1; 

ltmp cl_hi; 
ltmp ltmp« 16; 
ltmp ltmp I cl_lo; 

1* save result in tmp2[i) 
tmp2(5) 
tmp2(4) 
tmp2(3) 
tmp2(2) 
tmp2[l) 
tmp2[O) 

printf("\n\n") ; 

array *1 
c1_exp; 
c1_sign; 
(ltmp & OxffOOOOOO) » 24; 
(ltmp & OxOOffOOOO) » 16; 
(ltmp & OxOOOOffOO) » 8; 
ltmp & OxOOOOOOff; 

printf ("RESULT EXPONENT : %x\n", cl_exp); 
printf ("RESULT MANTISSA (NORMLZD) = %lx\n", ltmp); 
printf ("RESULT SIGN = %x\n", c1_sign & 1); 

fround() ; 1/ round up results in IEEE format 

/* final check of exponent *1 

tmp = tmp2 (5) ; 

if (! tmp) 
undflw(); /* exponent underflow *1 

else if (tmp > Oxfe) 
ovflw; 1* exponent overflow *1 

fpak(); II pack in IEEE format 
exit: 

printf ("Hi t any key to continue ... "); 
getch() ; 

void fcopy(FILE *ifp, FILE *ofp) 
{ 

int C; 
while «c=getc(ifp)) != EOF) 

putc(c,ofp) ; 

1995 Jul28 452 

Application note 

AN701 



Philips Semiconductors Application note 

High level language support in XA AN702 

Author: Santanu Roy, Philips Semiconductors, MCa Applications Group, Sunnyvale, California 

Introduction 
High Level Language (HLL) support is becoming a key feature in 
modern day microcontroller architecture. The reason is highly 
visible. It is easier to code a processor in a high-level platform than 
in conventional assembly because it is portable, Le., it is not tied to 
anyone machine. Also, the advantage of coding in a high-level 
language is because it is modular and re-usable which speeds up 
any code development process considerably. 

In recent years, C has been "the language" of choice for all 
engineers. Thus almost all modern day microcontrollers are 
designed with C-Ianguage support in mind. This article highlights 
some of the architectural features of Philips XA microcontroller that 
has been designed to support such languages specifically C. 

Supporting HLL 
One of the tasks that an architect has to confront is the 
determination of exactly what instructions should form the functional 
instruction of a microcontroller to meet high-level language support. 
An answer to this is to provide an operation code for each functional 
operation in a high-level programming language. Thus operation 
codes will exist for +, -, ., /. and so on. Special provision is made for 
operation on arrays, and all operations that can be applied to data 
types in a high-level language are directly supported in the 
architecture. An instruction set ideally should contain only 
instructions that are used in a HLL, and not implement any 
non-functional instructions, Le., instruction that is not expressed as a 
verb or operator in a high-level language. Thus "LOAD", "STORE", 
and so on which are not statements made in high-level languages 
are redundant and only adds to architectural overheads. 

An instruction word consists of a single op-code and an operand 
address for each HLL variable involved in the operation. Op-codes 
are symmetric in that they are applicable to any type of addressing 
and any data type. 

Some general criteria for an ideal architecture could be: 
1. Only one instruction should be executed for most common HLL 

operators. 

2. There should be only one memory reference for each referenced 
operand. 

3. There should be explicit addressing only for operands whose 
location cannot be inferred by recent processing activity, and 
address should be short. 

4. Instructions should be compact, and densely coded. 

The XA Architecture 
The XA is a register based machine. Hence most variables could be 
stored in these fast storage registers for high code density and fast 
execution. However, the beauty of the XA architecture is that, it is 
optimized for internal memory as well for high throughput and code 
denSity, e.g., a register-register ALU operation takes 2 bytes and 3 
clocks and the same ALU operation between register-memory 
(indirectly addressed) is 2 bytes and 4 clocks. So, a large set of 
variables could be stored in memory with very little loss in 
performance. Additionally, hooks like "burst mode", etc., are 
provided to speed up external memory access as well. 

Data Types and Sizes 
XA directly supports the following basic data types as used in C: 

character (char) - signed and unsigned bytes 
integer (int) - signed and unsigned words 

Constants - Supported as byte/word (charlint) immediate data in the 
instructions, e.g., ADD RO, #1234 etc. The range is +32,767 to 
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-32,768 for signed and 0 to 65,536 for unsigned wordlinteger 
constants, + 127 to -128 for Signed or 0 to 255 for unsigned 
bytes/char. 

For "short" qualifier, the range is +7 to -8 as used with instructions 
MOVS and ADDS. 

A "long" qualifier to integer is implemented by the compiler by 
extending (signed/unsigned) the word to the next higher 
add ress ( + 1). In addition to the above, 

Bit - This special data type is also supported to access the different 
bit addressable space in the machine. 

Note: All signed data are represented in 2's complement form in the 
XA. 

TYpe conversion 
All operations are performed under natural data sizes, e.g., MULU.b 
does a 8x8 unsigned multiply of 2 bytes, MULU.w does the same 
but with 2 word-size operands. So when operands of different types 
appear in an expression, they are converted to a common type by 
the compiler, e.g., operation between a char (byte) and an integer 
(word) is promoted to integer-integer, etc. 

Arrays 
XA supports addressing byte and word arrays in memory as 
required by C or any HLL. Offset and auto-increment addressing 
modes in XA allow easy access and manipulation of array elements. 
Offsets are signed values of 8 or 16 bits and are used depending on 
the size of the array. 

Static Variables 
Static variables unlike automatic provide permanent storage in a 
function. This means these variables are stored in memory rather 
than being a part of run-time stack. A wide variety of memory 
addressing modes are supported in the XA to provide easy access 
to static variables in memory. In addition to several indirect 
addressing modes (auto-increment offset) the XA supports direct 
access to the first 1 K of the memory space in each segment. This is 
ideal for addressing static variables, and has found to generate 
extremely dense code. A listing of operations to access static 
variables is given below for reference: 

Table 1_ Access to Static Variables 

ADDRESSING MODES 

Rd, direct 

direct, Rd 

Rd, [Rs+] 

[Rs+], Rd 

Rd, [Rs+] 

Rd, [Rs+Offset8/16] 

[Rs+Offset8/16], Rd 

direct, direct 

[Rd], #immediate 

direct, #immediate 

[Rd+], #immediate 

[Rd+], [Rs+] 
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Automatic/Dynamic Variables 
Within a function, a typical compiler maintains a Frame Pointer (FP), 
which is used to access function arguments and local automatic 
variables. To call a function, a compiler pushes arguments onto the 
stack in reverse order, (the PUSH instruction decrements the SP by 
2 each time it is executed, calls the function, then increments the SP 
by the number of bytes pushed. For instance, to call a function with 
two one-word arguments, the XA-compiler generates code to do the 
following: 

PUSH arg2 
PUSH arg1 
CALL (subroutine) 
ADDS SP,4 

; (SP-=2) 
; (SP-=2) 

; (SP+=4) 

arg2 

arg1 

OO.PC23-16 

PC15-O 

FPoid 

local #1 . 
-:::~ . -:::~ { 
~ 

LOCAUAUTOMATIC 
VARIABLES ~ 

~~ 
SU00596 

The CALL instruction pushes the current PC onto the stack. 
Because all stack pushes are 16-bits in XA, any 8-bit function 
argument is automatically promoted to word. 

Upon function entry, the compiler creates new stack and frame 
pointers by computing: 

PUSH FP (old) 
FP (new) = SP 
SP = SP - Framesize; 

where uFramesize" is the space required for all local automatic 
variables. If the frame size is odd, the compiler always rounds it up 
to the next even number. If there are 2 arguments and 2 local 
variables, then the frame size is 4 and the stack looks like this: 

FP+8 second argument 
FP+6 first argument 
FP+4 return address 
FP+2 old FP 
FP-O first local variables 
FP-2 second local variable 
FP-4 next free stack location (same as SP) 

If a function argument is defined to be an 8-bit type, then only the 
lower 8-bits of the value pushed by the caller are to inside the called 
function. 

Upon function exit, the compiler restores the SP and FP to their 
original value by executing the following: 

SP= FP 
POPFP 
RET 
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The return instruction RET sets the new PC by popping the saved 
PC off the stack. 

Because then:i are so many registers in XA (unlike 8051), any of 
them could be assigned to hold the FP. Access to variables in the 
stack space is easily achieved through the indirect-offset addressing 
modes (signed 8 or 16) with respect to the stack pointer. In almost 
all the cases the variables pushed onto the stack could be accessed 
using only a signed 8-bit offset present in XA. The function 
arguments and variables could be moved in and out of the stack in a 
single PUSH/POP multiple instructions permitted in XA. In fact up to 
8 words or 16 bytes of such information could be moved in and out 
of the XA stack with one instruction, which increases code density to 
a large extent during procedure calls and context switching. For 
example, if register variables are in R1 ,R2,R3, and R4, a single 
"PUSH R1 ,R2,R3,R4" instruction will be generated by the 
XA-compiler. A corresponding function exit will have a "POP 
R1.R2,R3,R4" for restoring the variables. 

All automatic class of variables will be allocated on run-time stack. 
The XA has full complement of addreSSing modes on SP to handle 
dynamic variables in the stack. Table 2 shows some of the XA 
addressing modes that could be used for such access. 

Table 2. 

ANSI-C XA Comments 

SP->Offset R+Offset8/16 

*SP [R] 

SP+ [R+] Pop 

Operators for HLL support 
The structure for op-codes of an ideal architecture should be stated 
in terms of number of operands required and the relationship 
between the operands. The structure should be oriented toward 
efficient coding of an instruction that will support programs written in 
a HLL with minimum compilation. The XA instruction set is designed 
to handle such efficiency as reflected in Table 3. The set of 
instructions that supports the generallbasic addressing modes are 
used to describe HLL support in this table. 

Table 3. Mapping of XA ALU Operations 
to C Operators 

ANSI C Operator (op) XAOp-codes 

+=, += + CO ADD,ADDC 

-=, -=-CO SUB, SUBB 

< , <= , == , >= , > , 1= (s/u) CMP 

&=,1=, II: AND,OR,XOR 

Data movement in C is given by U=" which is the "MOV" instruction in 
XA. The MOV instruction not only has the generallbasic addressing 
modes, it also has some additional addressing modes for C-code 
optimization for memory transfer operations like direct-direct, 
direct-indirect. indirect-autoincrement - indirect-autoincrement. 
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Table 4 of two operand case A = A op B or B = A op B is shown 
below. 

Table 4. 

ANSIC XA 

C-operations Equivalent XA-operations 

Rop=R R,R 

R op= *R R,[R] 

R op= *R++ R.[R+] 

R op= direct R, direct 

R op= R->offset R, [R+ottset] 

*R op= R [R],R 

*R++ op= R [R++],R 

direct op= R direct, R 

R->offset op= R [R+offset], R 

R op= constant R, #constant 

*R op= constant [R], #constant 

*R++ op= constant [R++]. #constant 

direct op= constant direct, #constant 

R->offset op= constant [R+offset], #constant 

The three operand cases A = B op C may regularly be translated as: 
A=B; 
Aop= C; 

exception to above is 
*R++ = B op C is equivalent to 
*R= B: 
*R++ op = C; 

Typical/Frequently used C-code A = B op C involves operations that 
will fetch operands from memory, register, and as immediate data 
which is embedded in the instruction. The XA has the following 
choices for operand placements for such three operand operations. 

Case 1: 
If A = register. 

then Band C in A = B and A op= C could have the following choices 

(i) Register i.e .• R = Rand R op= R 

(ii) Memory i.e., R = Memory and R op= Memory 

where Memory = [R]. direct. [R+], [R+Offset] 

(iii) Immediate i.e., R = Immediate and R op= Immediate 
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Case 2: 
IfA= Memory 

where Memory = [R], direct, [R+], [R+Offset] 

then Band C in A = B and A op= C could have the following 
choices: 

(i) Register i.e., Memory = Register and Memory op= Register 

(ii) Immediate i.e., Memory = Immediate and Memoryop= 
Immediate. 

(iii) Memory i.e., Memory = Memory ([R+], and direct modes only) 
forB 

The above indicates that virtually all C operations involving two and 
three operands could be very efficiently translated in XA assembly 
code (in two operand cases, it is one-to-one) using a cross-compiler. 

NULL DETECT/STRING TERMINATOR 
Checking for "0" at the end of a string is natural in XA with the MOV 
instruction. The Z flag is set whenever such a condition occurs. This 
is especialfy important in string copy operations where the loop ends 
whenever a end of string or '\0' occurs which is reflected in the 
status flag "Z' in XA. The following lists such C-code and equivalent 
XA instructions. 

while ((c=getch()) != '\0') 
buffer[i++J = c; 

Label: MOV [R+], memory 
BNE Label 

Coding Relational Operations 
Performing relational evaluation between two operands A and B in 
C-Ianguage involves fetching operands (a) in memory (b) in register 
or (c) an immediate value, evaluating the condition and then taking 
appropriate actions which typically involves a branch-if-true or 
branch-if-false operations 

The operand(s) in memory again could be addressed as direct, 
indirect, indirect-autoincrement, indirect-offset. etc. The XA provides 
one-to-one translations of such operations. . , 

Typically such C-statements are as follows: 

if (A cmp_op B) CMP A, B 
{ body} 1* true */ Bxx LABEL; branch if false 

body 

if (A cmp_op B) 
{body1} 
else 
{body2} 

while (A cmp_op B) 
{ body} 

LABEL: 

CMPA, B 
Bxx L 1 ; branch if false 
body 1 
JMPL2 
L1:body2 
L2: 

L1: CMP A, B 
Bxx L2 ; branch if false 
body 
JMPL1 
L2: 
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Coding Bitwise Operations 
C provides 6 operators for bit manipulation. These are & (Logical 
AND), I (Logical OR), " (Logical-XOR), « (Logical Shift-Left), 
» (Logical Shift-right), and - (one's complement). There is 
one-to-one equivalence in XA for such operation class: 

(a)&-AND, 
(b) I-OR, "-XOR, 
(c) «-ASL, 
(d) »- LSA, and 
(e) - - CPL. 

Compiler Optimization 
Some special cases of Multiply and Divide where the multiplier and 
divisor could be assumed to a power of 2, following translation could 
be expected from the compiler during optimization which speeds up 
code execution and make code denser. 

Language extensions to XA could be written as the pre-processor 
macros of the XA C-compiler as shown in Table 5. 

Table 5. 
C-code XA code 

R *= R R«= R 

R *= Constant R «= Constant 

R/= R R»=R 

R 1= Constant R »= Constant 

ROLC(R,A) - for rotate left through carry, ROL (R,R) and 
ROL (R, constant) - for rotate lefts, etc. Same holds for ADDC and 
SUBBalso. 

Reentrancy 
In a multi-tasking or nested interrupt environment, some system or 
library subroutines may be activated dynamically. These subroutines 
require duplication of the variable area of the subroutine per each 
active copy, utilizing essentially dynamic memory allocation. 

The allocation of the dynamic area is done by a system service call. 
The dynamic area is allocated either out of the reserved system 
memory, when large memory exists in the system, or on the stack, 
when memory is very limited. In the latter case, the stack pOinter is 
adjusted, to reflect the extra bytes reserved. It will be readjusted just 
prior to returning from the subroutine. 

1995 Jul28 456 

Application note 

AN702 

The subroutine code accesses variables using [R+offset] addressing 
mode. The register is referred to as a Static Base Register or Frame 
Pointer. 

Since the application stack is separate from the interrupt stack, 
there's no problem with interrupting the dynamic 
allocation/de-allocation and application stack pOinter adjustments. 

Floating Point Support 
Although the XA does not have a floating point unit, it has special 
instructions to provide an extensive support for floating point 
operations. Instructions like NORM (normalize), SEXT (sign extend), 
ASL, ASA (Arithmetic shifts) and status flag like "N" (sign), all aid in 
floating point support. Floating point library routines implementing 
(IEEE or ANSI) floating point provided with compilers could 
extensively use such instructions for increased code density and 
throughput in XA. 

Dynamic Code LinklRelocability 
The XA allows for dynamic code linking through extensive use of 
FCALL (Far Call 24-bit addressing). This makes code developed for 
XA highly portable/relocatable in memory. 

Simple relocatable code however could use CALL rel16 and CALL 
[R] addressing modes which is limited to 64K address. 

System Interface 
When used for RTOS, system mode with its protected features 
could be extensively used for system management 
routines/operating System service e.g., printf etc and application 
task switching. This could be easily done in XA through a TRAP # 
instruction set up by the compiler requesting system service by the 
application task. In the event of task switching, a system service call 
sets up the environment for the new task via the resource access 
privileges of the task, application stack etc. 
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Author: Santanu Roy 
BACKGROUND 
A computer benchmark is a "program" that is used to determine 
relative computer core performance by evaluating benchmark 
execution time by that core. In the brainstorm on microcontrollers for 
automotive applications, an assembler functional benchmark for 
engine management, which is a typical example of embedded 
high-end microcontrol, was created. This report gives worked out 
routines of the functions if they were implemented in assembler 
language of the compared controllers: Motorola 68000, Intel 
80C196, Philips 80C552 and Philips XA. The total execution times of 
a program "engine cycle" (engine stroke) are calculated and the 
required program code is estimated for each controller. 

Evaluation of performance in a High Level Language (HLL) like C 
would be preferable, but it is difficult to realize as "the best" 
compilers for all cores involved then should be used. 

This document is generated based on the report number DPE88187. 
It outlines code density and execution times of the XA, based on 
most recent information. The execution times are given in terms of 
both clock cycles and time units. Although XA can run at speed of 
30 MHz @ 5.0 Volts, for sake of fairness, all cores are evaluated for 
running at 16.00 MHz. This is reasonable for comparing the cores at 
the same level of technology. 

A separate section is included in this benchmark for "Bit 
manipulation" function benchmark results only. This (bit-test) routine 
is a stand alone one and should not be considered as a part of 
engine management routine. 

BENCHMARK RESULTS AND CONCLUSIONS 

Relative performance on a line 
The table below presents the most important result of the assembler 
benchmark evaluation. It pictures the relative performance of the 
compared core instruction set on a scale where XA=1.0. Also 
appended Is the performance charts-execution and code density of 
all the processors. 

Total exec.times/core(lJ.s) for all routines (with ·occurrences) 
5,942 1,560 1089.24 402.6 

PERFORMANCE 8051 68000 80C196 XA RATIO 

8051 1.0 3.81 5.45 14.7 

68000 0.34 1.0 1.43 3.85 

80C196 0.18 0.7 1.0 2.7 

XA 0.068 0.26 0.37 1.0 

Table 1. XA instruction set execution times and byteslfunction 

FUNCTION 

MPY 

FDIV 

ADD/SUB 

CMP 24b 

CAN 16b 

INTPLIN 

INTERR 

BRANCH 

XAtotals 
including 20% statistics 

1996 Mar01 

335.51J.s 
402.61J.s 

OC* EXEC. TIME 
/FUNCT.(lJ.s) 

12 0.75 

4 3.94 

50 0.38 

13 1.06 

40 0.563 

20 1.98 

10 6.1 

10 

457 

XA 

OCCURRENCE BYTES/FUNCTION 
*TIMEIFUNCT. 

9 2 

15.8 18 

19 4 

13.78 9 

22.52 5 

41.3 14 

61 41 

153.1 
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Table 2. 68000 instruction set execution times and bytes/function 

FUNCTION 

MPY 

FDIV 

ADD/SUB 

CMP24b 

CAN 16b 

INTPLIN 

INTERR 

BRANCH 

68000 totals : 1 ,300 I1s 
including 20% statistics : 1 ,560 I1s 

68000 

OC* EXEC. TIME 
IFUNCT·(I1S ) 

12 4.4 

4 13.4 

50 2.75 

13 3.2 

40 2.7 

20 7.5 

10 21.9 

10 

Table 3. 80C196 instruction set execution times and bytes/function 

80C196 

FUNCTION OC* EXEC. TIME 
IFUNCT·(I1S) 

MPY 12 1.75 

FDIV 4 9.5 

ADD/SUB 50 1.25 

CMP24b 13 4.25 

CAN 16b 40 2.5 

INTPLIN 20 6.4 

INTERR 10 12.8 

BRANCH 10 

80C196 totals : 907.7115 
including 20% statistics : 1,089.24115 

Table 4. 8051 instruction set execution times and byteslfunction 

FUNCTION 

MPY 

FDIV 

ADD/SUB 

CMP24b 

CAN 16b 

INTPLIN 

INTERR 

BRANCH 

8051 totals 
including 20% statistics 

1996 Mar 01 

4,951.74 I1S 
5,942J.lS 

8051 

OC* EXEC. TIME 
IFUNCT·(I1S) 

12 37.5 

4 451.5 

50 7.5 

13 9.98 

40 9 

20 25.8 

10 31.5 

10 
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OCCURRENCE BYTESIFUNCTION 

*TIMEIFUNCT. 

52.S 2 

53.6 16 

137.5 12 

41.6 14 

108 14 

150 14 

219 92 

537.5 

OCCURRENCE BYTES/FUNCTION 

*TIMEIFUNCT. 

21 3 

38 19 

62.5 7 

55.2 14 

100 6 

128 18 

128 58 

375 

OCCURRENCE BYTESIFUNCTION 

*TIMEIFUNCT. 

450 58 

1806 96 

375 19 

129.74 22 

360 14 

516 20 

315 70 

1000 
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Table 5. Total benchmark execution time results 

MICROCONTROLLER EXECUTION TIME 
CORE (~8) 

XA 402.6 

68000 1560 

80C196 1089.24 

8051 5942 

As the total activity has to be completed in one machine stroke of 2 
ms, the XA, and the 80C196 will be able to meet the application 
requirements. The 80C552 originally was assumed to complete the 
functions over more than one stroke. 

Best efficiency is of the XA and the 80C196. The 80C196 includes 
3-parameter instructions that reduce the instruction count per 
function and it has JB/JBN instructions. It also uses half-word 
(1-byte) codes for frequently used instructions. 

The lower code efficiency of the 8051 instruction set can mainly be 
explained by the "accumulator bottleneck" which is not present in 
XA: most data has to be transported to and from the accumulator 
be fore add/sub/cmp can be done, operations on words require 4 
"MOV" instructions and 2 data execution instructions. The efficient 
JB and JBN instructions compensate this for a great part. 

BENCHMARK LIMITATIONS 
Like all benchmarks, the automotive engine management assembler 
functional benchmark has some weakness that limit validity of its 
results. 
1. Control in a special (automotive, engine) environment is 

evaluated. 

2. Occurrences of operation overheadS are based on estimations. 

3. Occurrences of functions are based on estimations. 

4. Functions are implemented in assembler, not in a HLL like C. 

5. Routines may contain assembler implementation errors. 

6. All cores are evaluated at 16.0 MHz 

Control in a special environment is evaluated 
(automotive, engine) 
The core performance evaluation is based on a single specialized 
case. All benchmark implementations are fractions of the automotive 
engine management PCB83C552 demonstration program. 

It can be advocated that the automotive engine control task gives a 
good example of a typical high demanding control environment, 
where many >= 16 bit calculations have to be done. 

1996 Mar01 459 

Application note 

AN703 

Occurrences of overheads are based on 
estimations 
The assembler functional benchmark is not a full implementation of 
a program. Arbitrary choosing location for storage of parameters in 
register file or (external) memory, for instance, has for some 
instruction set a considerable effect on the total execution time. 

For the different core parameter storage is chosen where possible 
using the core facilities to have minimum access overhead. 

Occurrences of functions based on estimations 
Occurrences is estimated on basis of experience of the automotive 
group. In a real implementation of an engine controller accents may 
shift. As most functions already include some "instruction mix", the 
effect of changes In occurrences Is limited. 

Functions are implemented in assembler, not in a 
HLL like C 
Control programs for embedded systems get larger, have to provide 
more facilities and have to be realized in shorter development times. 
The only way to do this is to program in a HLL like C. Efficient 
C-Ianguage program implementation requires different features from 
microcontrollers than assembly programs. Results of this assembler 
benchmark evaluation therefore have a restricted value for ranking 
microcontroller performances for future HLL applications. 

Benchmark ranking on basis of HLL like C requires good 
C-compilers of all the devices involved are needed. The quality of 
the C-compilers really has to be the best there is: HLL 
benchmarking measures not only the micro characteristics, but even 
more the compiler ability to use these qualities. As these are not 
available for all the micros evaluated, all routines are worked out 
only in assembly. 

Routines may contain assembler implementation 
errors 
Assembler routine implementations are made after a short study of 
the micro specifications and are not checked by assembling or 
debugging in real hardware environment. 

It can be rather safely said that a complete system setup and 
program debug to correct errors would not lead to considerable 
differences in performance results. Deviations in function 
occurrences and overheads may have a more significant effect on 
performance ratios. 

All cores are evaluated at 16.0 MHz 
A 16.0 MHz internal clock frequency seems a reasonable choice for 
comparing the cores at the same level of technology. 
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ASSEMBLER FUNCTIONAL BENCHMARK FOR 
AUTOMOTIVE ENGINE MANAGEMENT 
This benchmark is a functional benchmark: it is a collection of 
functions to be executed in an automotive engine management 
program. It would be preferable to implement the complete control ' 
program in assembler and evaluate it in a real hardware 
environment, but this is not practical as every implementation 
requires many man-months to realize. 

To implement the assembly functional benchmark for automotive 
engine management correctly the "rules and details" described in 
this section have to be followed carefully. 

The assembler functional benchmark embraces all activity to be 
completed in 1 program cycle that corresponds with 1 engine stroke 
of 2 ms. The benchmark execution time will be calculated as the 
sum of the products of functions and their occurrence rates in 1 
calculation cycle. 

Branches are evaluated separately as "branch penalties" have 
considerable effect of program execution efficiency. Estimated 
(branch count)*(average branch time) is added to the function 
execution times. 

The relative estimated overhead for statistics does not contribute to 
the evaluation of speed. performance ratios, but they have to be 
considered when looking at the total execution time required / 
engine stroke cycle. therefore the real total execution time is 
multiplied with the statistics overhead factor (1.2*). 

NO. FUNCTION DESCRIPTION OCCURRENCES 

1 16x16 Multiply 12 

2 Floating Point divide (16: 16) 4 

3 Add/Subtract (24) 60 

4 Compare (24) 13 

6 CANcmp/mov 10*8 80 

6 Linear Interpolation (8*8) 20 

7 Interrupts 10 

8 Program control branches 600 

9 Statistics (20%) 1.2 * 
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FUNCTION PARAMETER ALLOCATION 
Most functions are very short in exec. time, so that the function 
parameter data access method has great effect on the total time. 
Thus it is to be considered carefully. 

Some core features a large register files (XA, 80C196) in which 
variables can be stored, others with few registers (68000) have to 
store all data in memory. 

For the XAl80C196 processor, data stored in the lower part of 
register file, or in SFRs for 110. can be accessed using "direcf' 
addressing, but table data, used, e.g., for 3 bye compare, is stored 
in "extemal memory". 

The 68000 assume data in memory (or memory mapped 110) as not 
enough data registers are available. All 68000 memory data has to 
be accessed using long-absolute addressing: 68000 short 
addresses are relative to memory address 0000 and are therefore 
not useful. 

For more complex functions 16*16 multiply, Floating point division 
and interpolation, data is assumed to be already in registers. 

16x16 Signed Multiply 
Parameters are assumed to be in registers, and the 32-bit result 
written into a register pair. 

Divide (16:16) ''floating point" 
The floating point division is entered with parameters in registers: 

a divisor. a dividend and an "exponenr that determines the position 
of the fraction point in the result. 

Floating point binary 16/16 division is a function that is normally not 
included in HLL compilers as it requires separate algorithms for 
exponent control and accuracy is limited. For assembler control 
algorithms, floating point division can be quite efficient as it is much 
faster than normal "real" number calculations (where no "floating 
point accelerator" hardware is available). 

Compare 24-bit variables 
Note that 24-bit compare is very efficient for "real" 16-bit and 8-bit) 
controllers, but for automotive engine timers, 24-bit seems a good 
solution. 

Compare must give possibility to decide >, < or =. For 68000, and 
80C196 instruction set LT, EQ and GT are included in the cc after 
CMP. 

CAN move and compares 
For service of the CAN serial interface, it is esti~ted .that 40* 
(2 byte compares + branch) have to be done. Devices with 16-bit 
bus assumes word access. An average branch is included in the 
CAN compare function. 
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Linear Interpolation (8*8) 
The interpolation routine is entered with 3 register parameters: 
1. Table position address 

2. X fraction 

3. Y fraction 

The routine first Interpolates using the X fraction the values of 
F(x.x, y} between F(x,Y} .... V(x+1, y} and of F(x.x, y+1} between 
F(x, y+ 1) .... F(x+ 1, y+ 1}. From F(x.x, y} and F(x.x, y+ 1} the value of 
F(x.x, y.y} is interpolated using the fraction of y. 

The table is organized as 16 linear arrays of 16 x-values, so that an 
V(x,y) can be accessed with table origin address +x+16*y = "Table 
Position Address". In x-direction the interpolation can be done 
between the "Table Position" value and next position (+1 ). 
Interpolation in v-direction is done by looking at 
"Table Position" + 16. 

For linear interpolation time the 2-dimensional interpolation time and 
byte count are divided by 3 to include some "overhead" into linear 
interpolation. 

Interrupts 
The average interrupt routine overhead includes the following 
stages: 
a. Interrupt recognition and return 

b. 1 * (long) branch 

c. 2 * Jump (short) on bit 

d. 1 * call (long) and subroutine return 

e. 2* set bit and 2 * clear bit 

f. 5 * POP and 5 * PUSH (or move multiple) 
[free 5 registers for local use] 

g. 1 * mov #xxx, PST 

Program Control Overheads 
For a given algorithm, the Program Control Overheads consisting of 
a number of decisions (branches) and subroutine calls is 
independent of the instruction set used, except for cases where 
functions can be replaced by complex instructions. The most 
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important exception cases, MPY words and Floating Point Division 
are handled in this benchmark separately. 

Most 16-bit cores use more pipeline stages so that taken branches 
add branch time penalty for these CPU's due to pipeline flush. This 
effect can be found in the branch execution time tables. 

More efficient data operations and pipeline penalty of the more 
complex instruction set of 16-bit cores lead to considerable higher 
relative time used for branch Instructions. 

To Incorporate the influence of branches in the benchmark the 
number of branches to be included must be estimated. For byte and 
bit routines, branches occur more frequent. Average branch time of 
25% may be a good guess. For the automotive engine management 
benchmark that executes in approx. 5000/l1S (on 8051) results in 
+/- 1250 /I1S or 625 branches. As a part of the branches already 
taken account for in the compare functions the number of additional 
program control branches is estimated 500 branches. 

To estimate the average branch execution time, an estimated 
relative occurrence of the branch types has to be made. 

Table 6. Estimated relative occurrence of the 
branch types 

TYPE RELATIVE ABSOLUTE 
OCCURRENCE 

Absolute Jumps AJMP/JMP 20% 100 

Subroutine calls ACALUJSR 20% 100 

Jump on Bcc/Jcc 40% 200 condition (rei) 

Jump on bit (rei) JB/JBN 20% 100 

Statistic Routine Overheads 
Statistic routines are estimated as relative program overheads, only 
to get an indication of the required total processing time in a real 
engine management application. "Statistics" are mainly arithmetic 
routines to determine table corrections. They use about 20% of the 
total time. 
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XA BENCHMARK RESULTS 
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The following analysis assumes worst case operation; At any point In time, only 2 bytes are available in the instruction Queue. An Instruction 
longer than 2 bytes requires additional code read cycle. 

APPENDIX 1 

XA Function Implementations 
XA reference: XA User's Manual 1994 

16x16 Signed Multiply 
Parameters are assumed to be in registers, and the 32-bit result written into a register pair. The MUL.w R,R is encoded in the XA instruction set 
as a 2 byte instruction. The exact optimization for this instruction (such as skip over 1's and O's) has not been concluded at this point, and the 
execution time may be data dependent and shorter than one outlined here. 

The basic algorithm utilizes 2-blt Booth recoding. Instruction fetch and Decode time overlaps the execution of the preceding instruction (except 
when following a taken branch), so it is ignored. The total execution time is either 11 or 12 clocks, including operand fetch and write back 
(1 clock is dependent on critical path analysis). 

A1.1: 16x16 Multiply 

MUL.w RO, R1 

A1.2: Floating Point 16x16 Divide: 
The algorithm here follows the one outlined for the 80C196. 

Arguments: R4 Dividend <extend into R5 for 32 bits) 
R6 Divisor Mantissa 

FPDIV: 
ADDS 
BEQ 

RO Divisor Exponent 

R6, # 0 
L1 

SGNXTD_AND_SHFT: 

DIV: 

L1: 

SEXT R5 
ASL R4, RO 

DIV.d R4, R6 
BOV L1 
RET 

MOVS 
RET 

R4, # -1 

A 1.3: Extended 32-bit subtract 

R5:R4 = Minuend 
R3:R2 = Subtrahend 

SUB R4, R2 
SUBB R5, R3 

1996 Mar 01 

Add short format 
Check for DIVBYO 

Sign extend into R5 
13 position shifts 

Divide 32x16 signed 
Branch on Overflow 
Normal termination 

Overflow - Max Result 

462 

Byte. 
2 

Clock. 
12 (0.75 IJS) 

Byte. Clock. 

2 

2 

2 

3 

11 

21 

(not taken) 

6 (taken) 
8 

(not executed) 

18 63 (3.9' ~S) 

, 6 (0.38 ~S) 
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Only minimum execution time is considered here. An average branch is included after compare. The table data. used for 3 byte compare, is 
stored in memory. 

CMP.b R1L, R2L 
BNE L1 
CMP.w RO, mem2 

L1: 
CMP.w RO, mem1 
Bxx LABELl 

LABELl: 

A 1.5: CAN Move and Compare 
Application: 

Bytes Clocks 
direct addressing 2 4 
average (6t/3nt) 2 4.S 

3 4 

4 
average 4.S 

xx -> GT or LT or EQ 

9 17 (1.06 1lS) 

For service of CAN (Controller Area Network) seriallntertace it is estimated that 40' (2 byte compares + branch) have to be done. 
One parameter is in register, the other in internal memory. Again, minimum execution times are considered. 

CMP 
Bxx 

RO, memO 
LABEL average 

A 1.6: Linear Interpolation 
Arguments: 

LIN_INT: 

RO Table Base (assumed < 400 Hex) 
R2 Fraction 1 
R4 Fraction 2 
R6 Result 

MOV R6, [RO+J 
MOV R1, [ROJ 
SUB R1, R6 
MULU.w R6, R2 
MOV.b R1H, R1L 
MOVS.b R1L,#0 
ADD R6, R1 
ADD RO, #1S 
MOV R1, [RO+J 
MOV RS, [ROJ 
SUB RS, R1 
MULU.w RS, R2 
MOV.b R1H, R1L 
MOVS.b R1L,#0 
ADD R1, RS 
SUB R1, R6 
MULU.w R1, R4 
MOV.b R1H,. R1L 
MOVS.b R1L,#0 
ADD R6, R1 
RET 

Linear Interpolation (2 dim. time I 3) • l' bytes, 1.98 ~S 

1996 Mar 01 463 

Bytes Clocks 
3 4 

4.S 

5 9 (0.563 ~S) 

Bytes Clocks 

4 
2 

12 
2 3 

2 
2 4 

2 12 
2 3 
2 3 
2 

2 12 

'2 95 (5.9' ~S) 
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A1.7: Interrupt Overhead 
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AN703 

Note: Interrupt overhead, as defined in the benchmark, applies to performance calculations. It does not consider the interrupt latency 
associated with completing the current instruction. 

All transfers are to / from internal memory, all addresses are 16-bit long. 
{ 
Saves 2 words on stack = 4 clks 
Prefetching ISR = 3 clks 
Overhead through Interrupt Controller = 3 clks (allow synch + avoid metastability) 
Le., total = 10 clks 
} 

Interrupt Accept/Return 
JMP rel16 uncond. x 
Bxx bit, re18 Branch on bit test x 2 
CALL rel16 Long Call (PZ assumed) 
RET Subroutine return 
SETB bit Set bit x 2 
CLR bit Clear bit x 2 
PUSH Rlist (5) 5 PUSH Multiple 
POP Rlist (5) 5 POP Multiple 
MOV PSWL, #dataB imm. byte to PSWL 
MOV PSWH, #data8 needs 2 for 8-bit sfr 

bus 

A 1.8: Program Overhead 

0/2 10+B 
3x2 6x2 
2x2 4.5x2 
3 4 
2 6 
3x2 4x2 
3x2 4x2 
2 15 

12 
4 3 
4 

41 98 (6.1 I1S) 

Branches are assumed taken 70% of the time, all addresses are external. Code is assumed a run-time trace, code size cannot be calculated; 
based on the same approach taken for 80C196, code size is 1400 bytes. 

JMP re116 
CALL rel16 
RET 
Bxx rel8 
JB/JNBbit, re18 

A1.9: XA TOTALS 

FUNCTION OC· 

MPY 12 

FDIV 4 

ADD/SUB 50 

CMP24b 13 

CAN 16b 40 

INTPLIN 20 

INTERR 10 

BRANCH 10 

Conclusion: 

Long branch x 100 
Call x 100 (Page 0) 
Subroutine return x 100 
Condl. short branch x 100 
Bit test & branch x 100 

XA 

EXEC. TIME 
IFUNCT·(I1S ) 

0.75 

3.94 

0.38 

1.06 

0.563 

5.94 

6.1 

3xlOO 
3x50 
2xlOO 
2x200 
2xlOO 

1400 

OCCURRENCE 
*TIMEIFUNCT. 

9 

15.8 

19 

13.78 

22.52 

118.8 

61 

153.1 

An assumption is made that XA code is in first 64K (PZ) as the 80196 has a 64K address space only. 

1996 Mar 01 464 

6 x 100 
4 x 50 
6 x 50 
4.5 x 200 
4.5 x 100 

2,450 
(153.1 I1S) 

BYTES/FUNCTION 

2 

18 

4 

9 

5 

42 

41 
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APPENDIX 2 

8051 Function Implementations 
8051 reference: Single chip 8-bit microcontrollers PCB83C552 

Users manual 1988 

A2.1: 80C51 Multiply 16x16 
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The 80C51 core performs 8-bit multiply only. A 16x16 multiply has to be done by splitting X and Y into XH. XL and YH. YL so that: 

P3 .. PO = (XH*256+XL)*(YH*256+YL) = 
XH*YH*65536+(XH*YL+XL *YH)*256+XL *YL 

MPY: 
MOV 
MOV 
MOV 
MOV 
MOV 
MOV 
MUL 
MOV 
MOV 
MOV 
MOV 
MUL 
ADD 
MOV 
MOV 
ADDC 
XCH 
MOV 
MUL 
ADD 
MOV 
MOV 
ADDC 
MOV 
MOV 
MOV 
MUL 
ADD 
MOV 
MOV 
ADDC 
MOV 

Total 

Rl,XH 
R2,XL 
R3,YH 
R3,YL 
A,R2 
B,R4 
AB 

PO,A 
A,R4 
R4,B 
B,Rl 
A,B 
A,R4 
R4,A 
A,B 
A,#O 
A,R2 
B,R3 
A,B 
A,R4 
Pl,A 
A,B 
A,R2 
R2,A 
A,R3 
B,Rl 
AB 
A,R2 
p2,A 
A,B 
A, #0 
P3,A 

Clocks Bytes 

2 

1 

4 

1 

4 

1 

4 

1 

1 

1 

3 

1 2 
1 1 
1 
1 

4 

1 

1 

1 

50 58 

50 clocks = 50*12 = 600 clocks (37.5I1S @ 16.0 Mhz) 

8051 MPY 16x16 (MPY Bytes) 50 clocks = 37.511S / 58 bytes 
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;XL 
,YL 

, Lowest multiply result byte 
;YL 
; XL*YL upper byte (*256) 
,XH 

;XL*YL 

;upper (Xl*YL) +lower (XH*YL) in R2 

;XL upper (XH*YL) in R2 
,YH 
;XL*YH 

465 
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A2.2: 8051 Divide (16/16) "floating point" 
Divide (R6. R7) (dividend) by (R4.R5) (divisor) with (RO) bits after the fraction point. 

Alignment of MSBits of operand in R6.7 and R4.7 using RO as bit counter. 

Clocks Bytes 
FDV: 

INC RO 1 
INC RO 1 
MOV R3,#0 
MOV R2,#0 
CLR C 
CLR FO 
MOV A,R4 1 
JB ACC.7, L2 
JNZ Ll 
MOV A,R5 1 
JZ LX 2 

Ll: 
MOV A,R5 1 
RCL A 1 
MOV R5,A 1 

MOV A,R4 1 
RCL A 
MOV R4,A 1 
INC RO 1 
JNB ACC.7, Ll 

L2: 
MOV A,R6 1 
JB ACC.7, L6 3 

L3: 
MOV A,R7 
RLC A 
MOV R7,A 1 
MOV A,R6 1 
RLC A 1 
MOV R6,A 1 
DJNZ RO, $+4 2 
AJMP LX 2=0 3 
JNB ACC.7,L3 2 
AJMP L6 

L4: 
MOV A,R3 
RLC A 1 
MOV R3,A 1 
MOV A,R2 1 1 
RLC A 1 
MOV R2,A 1 1 
JNC L5 2 2 
MOV R2,#OFFH 1 
MOV R3,#OFFH 1 
SJMP LX 1 

L5: 
CLR C 
MOV A, R7 1 

RLC A 1 1 
MOV R7,A 1 
MOV A,R6 
RLC A 
MOV R6,A 
JNC L5 1 
MOV FO,C 1 
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L6 : 
CLR C 1 
MOV A,R7 1 
SUBB A,R4 1 1 
JNC L7 2 2 
JNB FO,L8 2 3 
CPL C 

L7: 
MOV R6,A 1 
MOV A, Rl 1 
MOV R7,A 

L8: 
CPL C 
DJNZ RO,L4 
MOV A,R3 1 
ADD A,#O 1 
MOV R3,A 1 
MOV A,R2 1 
ADD A,#O 1 
MOV R2,A 1 

LX: 
RET 

Total 96 bytes 13 branch instructions (=35 bytes== 36%) 

Timing : 3 divide cases subtracts shifts 
1. RO=OE, 8-bit/14 bit --> 15-8+2=9 8+2=9 
2. RO=08, 12-bit/14 bit 8-4+4=8 4+4=8 
3. RO=10, 11-bit/12 bit 16-5+4=15 5+5 
17+4*9+6*10+(15.5+10*31.5)+8=451.5 clocks = 338.6 ~S 

8051 UFDIV 16/16 (sub/sft) : 338.6 clocks = 451.5 ~s, 96 bytes. 

A2.3: 8051 Add/Sub 

ADS: 
CLR 
MOV 
SUBB 
MOV 
MOV 
SUBB 
MOV 
MOV 
SUBB 
MOV 

8051 ADD/SUB 

C 
A,XO 
A,YO 
ZO,A 
A,X1 
A,Y1 
ZO,A 
A,X2 
A,#O 
Z2,A 

Bytes Clocks 

1 

1 

1 

1 

10 19 

in reg file 10 clocks = 7.5 ~s, 19 bytes 

8051 CMP enabling JZ JNZ JC JNC 

The 8051 decisions made with branches are one of these three: 
JC It 2 2 
JC 
JZ 
JC 
JNZ 

eq 

gt 

2 

2 

2 

2 

2 
2 

8051 compare decision branches take average: 10/3 clocks => 2.5 ~s 
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total average 
32 subtracts 11 
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A2.4: 8051 CMP 3 byte compare 

Bytes Clocks 
CM3: 

CLR C 1 

MOV A,X2 2 
SUBB A,Y2 
MOV RO,A 
MOV A,Xl 
SUBB A,Yl 1 

ORL RO,A 1 2 
MOV A,X2 2 
SUBB AY2 
Orl A,RO 
Jcc xxxx 3.33 3.33 

10 19 

8051 CMP 3 byte data in reg file 13.3 clocks = 9.975 its, 22.3 bytes 

A2.5: 8051 2-byte CAN compares 

Bytes Clocks 
CAN: 

MOV DPTR,aXl 
MOVX A, @DPTR 
CJNE A,Yl 
MOV DPTR,aX2 
MOVX A,@DPTR 
CJNE A,Y2 

12 14 

8051 CAN CMP XRAM/Direct 9 its, 14 bytes 
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one compare src in X-RAM 

one compare src in X-RAM 
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A2.6: 8051 2-dimensional interpolation 

At the start registers are prepared 
A position in table (x+16*y) 
DPTR Start address of table (aligned at 256 byte 'boundary) 
RO x-fraction Rl : y-fraction 
Result ACC registers used : ACC,RO,Rl,R2,R4,R5,R6 

Clock. Byte. 
INT: 

MOV DPL,A ;POS X,Y 
ACALL GVAL 
MOV R4,A 
MOV A,DPL 
ADD A,#15 
MOV DPL,A 
ACALL GVAL 
MOV REG6,R4 
MOV B,Rl 
ACALL INTP 
RET 

GVAL: 
MOVX A,@DPTR 2 1 
MOV R6,A 1 1 
INC DPL 2 
MOVX A,@DPTR 1 
MOV B,RO 2 

INTP: 
CLR SF 
CLR C 
SUBB A,R6 1 1 
JNC INTi 2 2 
CPL A 
INC A 1 
SETB SF 

INTi: 
MUL A,B 4 1 
XCH A,B 1 2 
CLR C 

RRC A 
XCH A,B 
XCH A,B 
CLR C 
RRC A 
XCH A,B 2 
JB SF,INT2 3 
ADDC A,R6 
RET 1 

INT2: 
XCH A,R6 2 
SUBB A,R6 2 
RET 1 

TotaI2·dim. interpolation: 15+2*(8+24)+24=103 clocks = 77.25 f.1s, 59 bytes 

8051 Linear interpolation: (2-dim. intp time 13) = 10313 =25.75 f.1s, 20 bytes 
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A2.7: 8051 Interrupt Overhead 

Bytes Clocks 
a. interrupt 2 2 (vector) 

RETI 1 
b. AJMP 2* 4 
c. JB 2* 
d. ACALL 2 2 

RET 2 1 
e. SETB 2* 2 4 

CLRB 2* 4 
f. POP 5* 10 10 

PUSH 5* 10 10 
g. MOV 1* 

42 46 

8051 Interrupt Overhead 42 clocks = 31.5 ~s 

A2.8: 8051 Program Overhead 

TYPE OCCURRENCE 8051 

LJMP/JMP 100 

LCALUJSR 100 

Jcc/Bcc 200 

JB/JBN 100 

total cylces 
~sec 

A2.9: 8051 Totals 

FUNCTION OC* 

1.MPY 12 

2. FDIV 4 

3. ADD/SUB 50 

4. CMP 24b 13 

5. CAN 16b 40 

6.INTPLIN 20 

7.INTERR 10 

8. BRANCH 10 

8051 totals 
including 20% statistics 
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2 

2 

2 

2 

EXEC 

37.5 

338.6 

7.5 

9.98 

9 

25.8 

31.5 

4250.14~ 
5,100.2~s 

BYTES 

200 3 300 

200 3 300 

400 3 600 

200 3 300 

1000 1500 
750 

8051 

*OC 

450 

1354.4 

375 

129.74 

360 

516 

315 

750 

470 
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APPENDIX 3 

68000 implementations 

68000 reference: SC68000 microprocessor users manual 

(Motorola copyright; Philips edition 12NC: 4822 873 30116) 

A3.1: 68000 16x16 Multiply 

The 68000 can use 1 <ea> with MUL and move a long word result. 

MUL RO,R1 70 

total: 4.375 I.1S, 2bytes 

A3.2: Floating point division 16:16 

(RO) Accuracy, (R1)/(R2) R1 result 

Byte. Clock. 
FDV: 

EXT.l R1 2 4 
TST R2 2 
BEQ L1 2 10/8 
ASL RO,R1 32 
DlVU R2, R1 140 
BVC L2 10/8 

L1: 
MOVI #-1, R1 

L2: 

RTS 16 

total: 214 clocks or 13.375I.1s, 16 bytes 

A3.3: Add/Sub 

Byte. Clock. 
ADDS: 

MOV.l A,RO 
ADD.l RO,C 

total: 44 clocks or 2.75 I.1s, 12 bytes 

A3.4: Compares 24 (=32) bit 

20 
48 

Byte. Clock. 
CMP1; 

MOV.l X,RO 
CMP.l Y, Rn 

BLT/EQ/GT (av) 2 

total: 51 clocks or 3.19I.1s, 14 bytes 

20 

22 

A3.5: CAN move and compares (16-bit) 

CMPw: 

MOV.w X,RO 
CMP.w Y,Rn 

BLT/EQ/GT (av) 

Byte. Clock. 

6 
2 

16 
18 
9 

total: 43 clocks or 2.69 I.1s, 14 bytes 
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A3.6: 2-dimensionallnterpolation 
AO : table position. RO: fraction1. R1 : fraction 2, R2: result, R3, R4 

CMPw: 
MOV.w (AO) , R2 
ADDQ.1 U,AO 
MOV.1 (AO) , R3 
SUB.w R2,R3 
MULu RO,R3 
ASR.1 #8,R3 
ADD.w R3,R2 
ADD! .1 U5,AO 
MOV.w (AO) ,R3 
ADDQ.1 #l,AO 
MOV.w (AO) ,R4 
SUB.w R3,R4 
MULu RO,R4 
ASR.1 #8,R4 
ADD.w R4,R3 
SUB.w R2,R3 
MULu Rl,R3 
ASR.1 #8,R3 
ADD.w R3,R2 
RTS 

total: 362 clocks or 22.62 I1s, 42 bytes 

Linear interpolation is 2-dim. interpolation /3 : 

1-dim.lnterpolation 7.54118,14 bytes 

A3.7: 68000 Interrupt Overhead 

Clocks 
a. interrupt 44 

RET! 20 
h. JMP 2* 24 
c. BTST+BNE 2* 60 
d. BSR 18 

RTS 16 
e. BSET/BCLR 4* 96 
f. MOVEM 2* n=5 64 
g. MOV! #xx,CCR 8 

350 

Byte. Clock. 

4 
74 
28 
4 

4 

8 

4 
74 
28 
4 
4 
40 
22 
4 
16 

Bytes 
4 

24 
16 

24 
12 
4 
92 

68000 INTerrupt overhead 350 clocks = 21.87 I1s, 92 bytes 
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A3.8: 68000 Program Overhead 

For the 68000, the JB/JBN branches have to be constructed: 

Clock. Byte. 
MOV.w 
ANDI.w 
BEQ/BNE 

ABS.l,Rn 
#bitmask.,Rn 
rel.address 

total JB/JNB execution: 34 clocks, 12 bytes 

12 6 
8 4 
10 

Now the absolute (estimated) branch time can be calculated, taking the core difference in account. 

TYPE OCCURRENCE 68000 

LJMP/JMP 100 

LCALUJSR 100 

Jcc/Bcc 200 

JB/JBN 100 

total cycles 
flsac 

A3.9: 68000 Totals 

FUNCTION OC* 

1.MPY 12 

2. FDIV 4 

3. ADD/SUB 50 

4. CMP 24b 13 

5. CAN 16b 40 

6.INTPLIN 20 

7.INTERR 10 

8. BRANCH 10 

68000 totals 
including 20% statistics 
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12 

20 

10 

34 

EXEC 

4.4 

13.4 

2.75 

3.2 

2.7 

7.5 

21.9 

1,300 fls 
1,560 flS 

BYTES 

1200 6 600 

2000 8 800 

2000 2 400 

3400 12 1200 

8600 3000 
537.5 

68000 

*OC 

52.8 

53.6 

137.5 

41.6 

216 

150 

219 

537.5 

473 
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APPENDIX 4 

80C196 function implementations 

80C196 reference: Embedded control/erhandbook vol 11-16 bit 

Copyright: Intel Corp. 

A4.1: 80C196 Unsigned multiply P=X*Y (16x16) 

Bytes Clocks 
MUL RO,Rl 3 28 

total: 1.75 !lS, 3 bytes 

A4.2: Floating point division 16:16 
(RO) Accuracy, (R4) / (R8) R4 result 

Bytes Clocks 
FDV: 

EXT R4 4 
AND R8,#FFFF 4 5 
JE Ll 2 8/4 
SHLL R4,RO 3 20 
DlVU R8,R4 24 
JNV L2 4/8 

Ll: 
LD R4,#FFFF 2 

L2: 
RET 11 

total: 76 clocks or 9.5 I1s, 19 bytes 

A4.3: Add/Sub 

Bytes Clocks 
ADDS: 

SUB R5,Rl,R3 
SUBB R4,RO,R2 4 

total: 10 clocks or 1.25 I1s, 7 bytes 

A4.4: 80C196 "3-byte compare" 

Ll: 

eMP 
BNE 

Rn,Yl 
Ll 

eMP Rrn,Y2 

BLT/EQ/GT (av) 

Bytes Clocks 
5 9 

4/8 

4/8 

Average total: 34 clocks or 4.25I1S, 14 bytes 

A4.5: CAN move and compares (16-bit) 

Byte. Clock. 
eMP Rx,Y 4 9 
BLT/EQ/GT (av) 

total: 15 clocks or 2.5 I1s, 6 bytes 
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A4.6: 80C196 2-dimensional interpolation using in-line linear interpolations 

RO : table position, R2=fraction1, R4=fraction2, R6=result, RS, R10 

LD R6, [RO)+ 
LD R8, [RO)+ 
SUB R8,R6 
MULU R8,R2 
SHRAL R8,#8 
ADD R6,R8 
ADD RO, #15 
LD R8, [RO)+ 
LD R6, [ROJ 
SUB RI0,R8 
MULU RI0,R2 
SHRAL RI0,#8 
ADD R8,RI0 
SUB R8,R6 
MULU R8,R4 
SHRAL R8,#8 
ADD R6,R8 
RET 

total: 153 clocks or 19.1 J.Ls, 53 bytes 

Linear interpolation is 2-dim. interpolation 13 : 

1-dim. interpolation 6.4 J.Ls, 18 bytes 

A4.7 80C196 Interrupt Overhead 

Clocks 
a. interrupt /RTE 27 
b. LJMP 2* 14 
c. JB 2*av.7 14 
d. CALL/RTS 22 
e. BSET/BCLR 4* 28 
f. POP 5* 40 

PUSH 5* 55 
g. MOVI #xx,CCR 5 

205 

Bytes Clocks 

14 
15 
4 

4 6 
3 

5 
4 
14 
15 
4 
4 
14 
15 
4 
14 

Bytes 
2 
6 

4 
16 
10 
10 
4 

58 

SOC196 INTerrupt overhead 205 clocks = 12.S J.Ls, 58 bytes 
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A4.8: 80C196 Program Overhead 

TYPE OCCURRENCE 68000 

LJMP 100 

LCALLIRET 100 

Jcc/Bcc 200 

JB/JBN 100 

total cycles 
Ilsec 

80C196 totals 
including 20% statistics 

FUNCTION 

1.MPY 

2. FDIV 

3. ADD/SUB 

4. CMP 24b 

5. CAN 16b 

6.INTPLIN 

7.INTERR 

8. BRANCH 

1996 Mar 01 

OC· 

12 

4 

50 

13 

40 

20 

10 

10 

958.11lS 
1150 Ils 

7 

22 

7 

7 

EXEC 

1.75 

9.5 

1.25 

4.25 

1.88 

6.4 

12.8 

BYTES 

700 3 300 

2200 4 400 

1400 2 400 

700 3 300 

6000 1400 
375 

80C196 

·OC 

21 

38 

62.5 

55.2 

150.4 

128 

128 

375 

476 
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BIT MANIPULATION 

Copy a bit from one location to another in memory. Complement the bit in the new location 

Note: Assumed that memory is on-chip and directly addressed. 

Bit "x" of memO needs to be copied to bit "1' of mem1. 

XA 
CLR 
ORL 
MOV 

C 

c, Ibitm 
bitn, C 

clear Carry 
comp1. bit and save in C 
move memO.x -> mem1.y 

4 

9 12 

Intel 80C196 

Note : States = clock (period)/ 2 

Move complement of bit "m" to "n" in memory 

R3 = memory byte having bit "m" 
R4 = memory byte having bit "n" 
RO = Used as bit-mask register 
R1 = position of "m" in memO 
R2 = position of "n" in mem1 

LD RO, 1 
SHLB RO, R2 

NOTB RO 
JBC R3,bitm, L1 
ANDB R4, RO 

L1: 
ORB R4, 

Motorola 68000 

BTST 
BEQ 
BCLR 

bitm 
L1 
bitn 

L1: BFSET bitn 

8051 Bit-test 

MOV 
CPL 
MOV 

1996 Mar 01 

C, bitm 
C 

bitn, C 

RO 

Bytes 
Load 1 in Reg 
position of bit "n 
in R2 
complement 
test bit "mil polarity 
reset \\n" if \'m" = 0 

set "m" otherwise 

14 

Bytes 
Test bit 2 
Branch if reset 
Test bit and clear (-m 0) 2 

Test bit and set ( -m 1) 

8 

2 
1 

5 

477 

(0. 75 I1S ) 

States 

16 

4 

7 (av) 
4 

either/or 

31 (3_88 

States 
4 

4 

either/or 

14 (0_88 

12 
12 
24 

I1S) 

I1S) 

48 (3_0 I1S) 
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XA CODE DENSITY RESULTS 
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Graph showing performance with respect to 6BOOO, and BOC196 cores normalized with respect to XA. The BOC51 is included just for reference. 

XA 68000 

MPY 

FDIV 0.B9 

ADD/SUB 3 

CMP24b 1.6 

CAN 1Gb 2.B 

INTPLIN 0.33 

INTERR 2.24 

3.0 

2.5 

2.0 

1.5 

1.0 
~ ~ 
~ ~ 
~ F= 
1== ~ 
~ ~ 

~ 
1= 1= 
F= ~ 
~ ~ 
F= 1= 
~ ~ 
~ ~ 

0.5 

o 
MPY FDIV 
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80C19G 8051 

1.5 

1.06 5.33 

1.75 2.5 

1.6 

1.2 1.5 

0.43 0.33 

1.41 1.71 

6BOOO 

BOC196 

XA 

~ ~ 
~ ~ 
~ ~ 
~ ~ 
~ ~ 
~ ~ 
1= 1= 
~ ~ 
~ ~ 1= ~ 
F= 1= 
~ ~ 
ADD/SUB CMP 24b 

~ ~ 
~ ~ 
~ ~ 
~ ~ 
1== ~ l=: 
1= ~ 1= 
~ ~ 

I ~ ~ 1= 1= 
~ ~ 

CAN 16b INTPLIN 

47B 

~ 
r--

~ 
~ 
~ 
~ 
C::: 
1= r--
~ 
~ 
~ 
~ 
~ 

INTERR 

~XA 

m 6BOOO 

[[I] BOC196 

SU00599A 
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XA EXECUTION TIME RESULTS 
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Graph showing performance with respect to 68000, and 80C196 cores normalized with respect to XA. The 80C51 is included just for reference. 

XA 68000 

MPY 5.87 

FDIV 3.4 

ADD/SUB 7.2 

CMP24b 3.02 

CAN 16b 4.8 

INTPLIN 1.26 

INTERR 3.6 

8 

7 

6 

5 

4 

3 

2 

== ~ 
== ~ 
== ~ == == o 

MPY FDIV 

1996 Mar 01 

80C196 8051 

2.33 50 

2.41 86 

3.3 19.74 

4 9.41 

4.44 15.98 

1.08 4.34 

2.1 5.16 

68000 

80C196 

XA 

~ ~ 
1== == ~ == ~ == 
ADD/SUB CMP 24b 

~ 1== 
~ ~ 
~ 1== 
~ ~ 
CAN 16b INTPLIN 

479 

t--

t--

== == == == 
INTERR 

~XA 

M 68000 

[[I] 80C196 
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BIT TEST BENCHMARK: CODE DENSITY NORMALIZED WITH XA (=1.0) 
The SOC51 is shown here only for reference. 

XA 68000 80C196 8051 

Code Density 0.S9 1.6 0.6 

2,O~--------------------------------------------------_. 

1.5 1---------------------------
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1,Of---- 1--------------1 I_ Code Dens", 

0.51------

0'-----
XA 6S000 SOC196 SOC51 

BIT TEST BENCHMARK: EXECUTION TIME NORMALIZED WITH XA (=1.0) 
The SOC51 is shown here only for reference. 

XA 68000 80C196 8051 

Execution Time 1.2 5,2 4 

6~-----------------------------------_. 

5f------------------

41-----------------~---~ 

3f----------------------

2r---------------------------

If-----

0'-----
XA 6S000 SOC196 SOC51 

1996 Mar 01 4S0 

SU00601 

II Execution Time 
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Author: Greg Goodhue 
The 80C51 is arguably the most used 8-bit microcontroller 
architecture in the world, and a vast amount of public and private 
c~de exists for this processor. The "XA" (Extended Architecture) 
mlcrocontroller, developed by Philips Semiconductors, is a high 
performance 16-bit processor that retains source code compatibility 
with the original 80C51. By permitting simple translation of source 
code, the XA allows existing 80C51 code to be re-used with a higher 
performance 16-bit controller. This provides an upward mobility path 
to a 16-bit controller for 80C51 users that has not previously existed, 
while also bringing a low cost, high performance, general purpose 
16-bit controller to the market. How can a modern 16-bit controller 
provide compatibility with the venerable 80C51 without badly 
compromising the architecture and performance? 

DESIGN TRADEOFFS 
Many tradeoffs must be made and considerations taken into account 
when creating an upward compatible processor that must also be 
high performance and low cost. Among the areas to be considered 
~re the .processor's memory map and means of accessing memory, 
Instruction set and methods of instruction execution, stack 
operation, interrupts, and special features added to enhance 
particular functions, such as multi-tasking, exception handling, and 
debugging features. 

The goal of source code compatibility, rather than object code 
compatibility, was adopted for a number of reasons. First, ~ 
upward compatibility with an existing processor is by definition 
!mpossible if one of the goals of the new processor is to generally 
Improve performance. By doing the same things in less time, the 
time related attributes of previously written code change. 

Another consideration has to do with the fact that the 80C51 used all 
but one of the 256 opcodes available with an 8-bit opcode field. 
Adding more than a few new instructions or a new data type (such 
as 16-bit operations) would result in a very inefficient instruction 
encoding, and inefficient execution as well, for those new functions. 

Creating a new instruction set that includes an exact copy of the 
8?C51 instruction set as a subset would also be very inefficient, 
since some subset of many new operations would act as duplicates 
of 80C51 instructions. For instance, a more powerful ADD 
instruction that can add any byte or word register to any other 
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register is a superset of the 80C51 instruction to add a register to 
the accumulator. In such a case, there is no good argument to 
duplicate the original instruction precisely. 

An 80C51 "mode" on an otherwise totally new (and therefore 
incompatible) processor was also considered. However, this 
ap~roachwould result in having in effect 2 processors on one chip, 
which would be confusing and not very cost effective. Mixing new, 
more efficient code with existing 80C51 code would require 
switching modes often, which would be very cumbersome and 
potentially hazardous. If a mode switch was skipped by accident in 
some seldom executed code sequence, the processor could 
suddenly find itself executing code using the wrong instruction set! 

HOW IS IT DONE? 
The team that created the XA architecture at Philips followed several 
rules in order to insure that 80C51 compatibility goals were met. 
First, translation for all (or nearly all) 80C51 instructions would be 
one to one. Multi-instruction combinations that could result in 
problems if split by an interrupt or otherwise compromise the 
integrity of the translation would be avoided. This has the effect of 
producing a simple, straightforward, and easily checkable 
translation. 

Second, most 80C51 instructions should be a subset of new XA 
instructions. If that is not possible or doesn't make sense in a 
particular case, the original 80C51 instruction would be included 
"as-is", even though it might not fit the basic XA architecture's 
philosophy. 

Third, XA register, code memory, data memory, and Special 
Function Register addressing would be a superset of the 80C51 
equivalents. The same idea applies to other features that are part of 
the CPU. 

Finally, some compromises to these compatibility rules are allowed 
in cases where keeping absolute compatibility would adversely 
affect system cost, high level language support, or performance. 
The cost (in engineering time) of dealing with any incompatibilities 
must be kept to a minimum. Preferably, the issue should not even be 
noticeable to most customers. 
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MEMORY MAPPING 
At the root of any potential compatibility between the XA and the 
BOCS1 is the memory map. The XA takes a simple but effective 
approach to this issue: its memory map is a superset of the BOCS1 
memory map. Modes of addressing memory likewise duplicate the 
modes available on the BOC51 , adds new modes, and enhances 
some of the old ones. 

In translating BOC51 source code to the XA, particular registers are 
used to represent the accumulator (A) and the data pOinter (DPTR). 
Although the XA can use any of the 14 general purpose byte 
registers int he register file as an accumulator, the BOC51 has some 
features that require the accumulator to be a specific byte register. 
These are primarily the parity flag and a few special instructions that 
intrinsically reference the accumulator in a way that could not be 
generalized in the XA. The latter are, speCifically, instructions like: 
JZ, JNZ, MOVC A,@A+DPTR, MOVC @A+PC, and JMP @A+DPTR. 
Figure 1 shows the register file of the first XA derivative (the XA 
architecture can support some additional registers not implemented 
in the first part) and the registers used for BOCS1 translation. 

1 SYSTEM STACK POINTER 

R7H 
USER STACK 

R7L POINTER 
R7 

R6H (80C51 DATA R6L 
POINTER) 

R6 

R5 R5H R5L 

R4 R4H R4L 
(80C51 B REGISTER) (80C51 ACC) 

R3 R3H R3L 

R2 R2H R2L 

R1 R1H R1L 

RO ROH ROL 

; 

, 

- RO THROUGH R7 ARE WORD REGISTERS. 
EACH IS MADE UP OF 2 BYTE REGISTERS, 
ROL THROUGH R7H. 

I",j 

1--'''' 
~,., .. " 

f.wM 

Figure 1. XA Register File 

GLOBAL 
REGISTERS 

BANKED 
REGISTERS 

SU00592 

An alternate program status word (PSW) was created on the XA to 
duplicate the BOC51 PSW and contains the P (parity) flag as well as 
the F1 and Fa user defined flags that are not found in the native XA 
PSw. The XA PSW, on the other hand, adds some new status flags 
and system controls to expand its capabilities. 

The XA register file duplicates the 4 banks of B bytes that are found 
in the SOCS1. An BOCS1 compatibility mode determines whether 
these locations appear both as registers and as the lower 32 bytes 
of data memory as they do on the BOCS1 . The more standard 
scheme of keeping the register file separate from the data memory 
is the default on the XA. Besides being "cleaner", the separation of 
the register file from data memory allows for a higher performance 
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implementation of the XA processor core at some point in the future 
if and when aOCS1 compatibility is no longer required. Figure 2 
shows the overlap of data memory and the register file in 
compatibility mode. This shows only this one aspect of the XA 
memory map, not a general view of the memory. 

1 
20 ~ __________ --1 ., 

1E R3H I R3L 

-----+------
1C R2H I R2L 

-----+------ REGISTER BANK 3 

1A R1H I R1L 

~-----+------
18 ROH I ROL 

16 R3H I R3L 

1------+------
14 R2H I R2L 

-----+------ REGISTER BANK 2 

12 R1H I R1L 

-----+------
10 ROH I ROL 

~--------~--------~ ~ 
E R3H I R3L 

~-----+------
C R2H I R2L 

-----+------ REGISTER BANK 1 

A R1H I R1L 

~-----+------
ROH I ROL 

R3H I R3L 

-----+------
R2H I R2L 

-----+------ REGISTER BANK 0 

R1H I R1L 

-----+------
ROH I ROL 

L-________ -L ________ ~ J 

NOTES: 
1) The addresses shown are the data memory addresses that 

correspond to the register appearance in the XA data memory when 
aOC51 compatibility mode is activated. 

2) This drawing represents a single XA data memory segment. 

SU00593 

Figure 2. XA Register File and Data Memory Overlap 
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A second aspect of XA memory addressing is also controlled by the 
aforementioned 80C51 compatibility mode. In the XA, indirect 
memory accesses normally make use of a i6-bit pointer register, 
which may be any of the word registers in the register file. The 
80C51. however, allows only the 2 single-byte registers RO and Ri 
to used for indirect references. The XA is forced use the first 2 
single-byte registers in the currently selected bank as byte pointers 
rather than word pOinters when the 80C51 compatibility mode is 
activated. Thus, translated 80C51 code typically must be run with 
the compatibility mode activated. 

The data memory map for a single XA data segment looks just like 
the entire data memory map for an 80C51. This leads to the 
possibility of using a single XA to perform the function of several 
80C51s, with a separate data segment and code area allocated to a 
task that was originally performed by one 80C51. The XA includes 
hardware support for multi-tasking operation in order to allow for this 
and other interesting possibilities. 

The XA retains the direct and indirect addressing modes of the 
80C51 , although both are greatly expanded in capability, as shown 
in figure 3. The direct data addressing has been increased to use up 
to 1 K bytes of data memory. Indirect addressing is done in 64K byte 
segments, for a total of up to 16 megabytes. Both types of 
addressing seamlessly switch from internal to external data memory 
wherever the boundary exists between the two for a particular chip. 
In this manner, the processor stack may also be extended off-chip 
up to nearly 64K bytes if necessary. Because of the seamless 
internal to external memory transition, the XA would not normally 
attempt off-chip data accesses at the low memory addresses that 
correspond to the on-chip data RAM. For that reason, the 80C51 
MOVX instruction is included on the XA in order to allow translated 
code to run without changes in the external memory address map. 
This works because MOVX always forces data to be read from 
off-chip memory. 

FFFF (64K) 

THE ENTIRE MEMORY IS ----.j 
ADDRESSABLE 

IN THE INDIRECT AND 
THE INDIRECT WITH OFFSET 

MODES 

OFF-CHIP 
DATA MEMORY 

THE DIRECT ADDRESSABLE ----.j,--.-,"~"'-,~"""~,-,"".~ 
MODE LIMIT IS AT 1K (3FFh) 

THE ON-CHIP/OFF-CHIP -----+-------1 
DATA MEMORY BOUNDARY 

VARIES FOR 
DIFFERENT XA DERIVATIVES 

ON-CHIP 
DATA MEMORY 

Figure 3. XA Memory Addressing 

SU00576A 

On the 80C51 , the special function registers (SFRs) were mapped 
into the direct address space starting at location 128, through the 
end of that space at location 255. Since the 80C51 only allowed 
SFR access by direct addresses, where the entire address is 
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encoded into the instruction, the XA does not need to duplicate its 
SFRs in exactly the same area or at the same specific addresses. In 
order to simplify the memory map, expand the SFR space, and 
expand the directly addressed data space, the XA defines a totally 
separate SFR space that is not logically related to the rest of data 
memory. To translate 80C51 source code, the original SFR ~ is 
kept in the translated code, unless the name was changed for some 
reason. In any case, as long as the reference is by name, a code 
translator need not try to determine which SFR it is, or where it 
belongs on a particular XA derivative. If 80C51 source code for 
some reason references an SFR by its ~, a code translator 
might attempt to look it up in an SFR map for the 80C51 derivative 
to which the code was targeted. 

A second mode control in the XA applies to 80C51 translated code, 
although it may be used in pure XA applications as well. This is the 
Page Zero, or PZ, mode. This mode forces the XA to only allow 64K 
of address space in both the data and code memories. The purpose 
is to reduce the overhead required to support the extra address 
space if it is not needed, such as in "single-chip" systems that do not 
use any off-chip data or program. Besides saving stack space for 
24-bit subroutine and interrupt return addresses (reduced to 16 bits 
in PZ mode), overall XA operation is faster by having smaller stack 
pushes and pops. Since the 80C51 supported only 64K of code and 
data space, translated 80C51 code will likely fit into the same 
category. 

There are other changes in the processor stack on the XA, besides 
the need to save 24 bits of return address when not running in the 
Page Zero mode. First, a great deal of extra hardware in the 
processor would be required to allow both byte and word pushes 
and pops on the stack, especially since word operations could then 
sometimes be mis-aligned from word address boundaries in the data 
memory, so stack operations on the XA are always done in word 
increments. Mis-aligned word operations, aside from being difficult 
to implement, would be very inefficient, since they would have to be 
split up into multiple byte operations. This means that translated 
80C51 code run on the XA will tend to use somewhat more stack 
space than it did originally. The automatic save of the PSW during 
interrupts on the XA might also increase stack usage in some cases, 
since a few 80C51 programs may have been able to omit saving the 
PSW during interrupt processing. 

Secondly, the XA stack has been altered so that the direction of 
growth is downward, conforming to the industry standard for stack 
operation on 16-bit processors. There is also a necessary 
relationship between the stack growth direction and the order in 
which the bytes of a word are stored in memory for a processor that 
is capable of stack relative addressing, as can be done with the XA. 
This relationship required that the stack grow downward since data 
on the' XA is stored in memory with the low order byte of a word at 
the lower address (sometimes referred to as Little Endian storage 
order). 

These differences in stack operation may require some changes to 
be made by the user for any 80C51 source code translated to the 
XA. In most cases, the change would be limited to choosing a 
different starting address for the stack. 

A look at interrupt processing presents some other issues for 80C51 
compatibility. In order to allow more powerful handling of interrupts, 
the XA has to make some compromises. Besides the previously 
mentioned fact that the PSW is automatically saved on the stack, 
which would have been done explicitly in 80C51 interrupt service 
code, the return address on the stack is also different if Page Zero 
mode is not active. So, any code written for the 80C51 which relied 
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in some manner on manipulating the return address on the stack, or 
on the PSW not being saved and restored automatically, will require 
modification. Both of these situations should be very rare. The 
standard (non-Page Zero mode) XA interrupt stack frame is shown 
in Figure 4. 

CPU FEATURES 
Another difference in interrupt processing is that the XA uses a more 
efficient and flexible vector table for interrupts and exceptions 
instead of the fixed vector scheme of the 80C51. The vector table 
must reside at the bottom of the code memory, since this is the only 
region that is guaranteed to always exist in a system that uses 
on-Chip ROM or EPROM for the program. Thus, during 80C51 code 
translation, code found at the 80C51 interrupt service locations must 
be moved to another location. Of course, an interrupt vector table 
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must be added to any translated 80C51 program that makes use of 
interrupts, and a reset vector entry must be created for all XA 
programs. 

A major enhancement to the XA is the addition of a general purpose 
interrupt priority scheme that can support up to 15 levels, compared 
to only 2 on standard 80C51 parts, and up to 4 on enhanced parts. 
This addition, however, requires some changes in the way interrupt 
priorities are handled. Two-priority interrupt systems on 80C51 
derivatives used a single bit in a priority register to select the two 
levels. Four-priority systems extended this to two bits, but in 2 
different registers for each interrupt source. Extending that approach 
to 15 levels would entail 4 bits in 4 different registers for each 
interrupt source, which is getting a bit ridiculous. For the XA, a more 
reasonable approach was taken: 4 bits in a single register control 
the priority of each interrupt source. Priorities for 2 separate 
interrupts are contained in each 8-bit priority register. 

HIGHER MEMORY ADDRESSES 
r-~ r-- I---" 

(PREVIOUSLY STORED STACK DATA) - STACK POINTER PRIOR TO INTERRUPT 

LOWER 16·BITS OF PC 

(RESERVED) I HIGH BYTE OF PC , 

SAVED psw VALUE _ STACK POINTER AFTER INTERRUPT 

r-v r-u 
LOWER MEMORY ADDRESSES 

SU00594 

Figure 4. Standard Interrupt Stack Frame on the XA 
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PERIPHERALS, ON AND OFF·CHIP 
Another subject to look at is hardware compatibility. While complete 
hardware compatibility with the 80C51 was not a primary goal during 
the XA architecture development, hardware compatibility was 
retained whenever possible and practical. This particularly concerns 
peripheral devices such as UARTs, Timers, etc., and the processor's 
external bus system. 

In the case of peripherals that are the same as those customarily 
found on the 80C5i , these have been made to function as close as 
possible to the original, with some transparent enhancements such 
as framing error detection, overrun detection, and break detection in 
the UARTs. One exception to this general compatibility is that timer 
mode 0 of the standard timers 0 and 1, which is the rarely used 
8048 compatible timer mode, has been replaced with a much more 
useful i6-bit auto-reload mode. In the future, further enhanced 
peripheral functions will likely lead eventually to completely new 
implementations that are not backward compatible with the 80C51. 

Since there is no supposed relationship between the original 
oscillator frequency of an 80C5i system and a similar XA system 
using translated code, the exact relationship of peripheral speeds to 
the oscillator need not be preserved. For more flexibility in timer 
rates and therefore UART baud rates, the XA timers and some other 
peripherals are operated from a special clock whose rate is user 
programmable. The choices are the CPU clock divided by 4, 16, or 
64, giving a wide range of uses. This function, like anything else in 
an application that is time critical, will need to be visited by the user 
when translated 80C51 code is used to drive XA peripherals. 

The standard XA external bus interface includes all of the familiar 
80C51 bus Signals: ALE, "P'SEf\J, RO, WR', EA, the multiplexed 
address and data bus, and address-only lines. However, some 
additional signals have been added and changes have been made 
in some of the details. For instance, the XA supports both 8-bit and 
16-bit bus widths, using a second write Signal to distinguish byte 
writes on a 16-bit bus. A WAIT line allows external circuitry to insert 
wait states into bus cycles for slow peripherals or program 
memories. 

The largest change in the XA bus from the 80C51 is in the mapping 
of the multiplexed address and data lines. The 80C51 has a 
somewhat inefficient mapping that requires an ALE (Address Latch 
Enable) cycle in order to latch the least Significant bits of an address 
for §!l external bus cycles. This was not a concern for the 80C5i 
due to its machine cycle timing, which allowed plenty of time for an 
ALE pulse. For the XA, which has no extra cycles during instruction 
execution, any extra strobes required on the bus during code 
fetches will likely take away time that could be used to execute 
instructions. As a result, the XA drives the 4 lower address lines 
directly, and does not require them to be latched. This means that 
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the XA can fetch as many as 16 bytes of code between ALE cycles. 
The multiplexed address and data bus begins with the fifth address 
line (A4), paired with the first data line (DO), and continues to the 
width of the bus, either 8 or 16 bits. Above that will be more 
always-driven address lines, if more are needed by the application. 
Since the XA allows programming the number of address lines, 
those above the multiplexed portion of the bus need not be driven by 
the XA if they are not needed, leaving them free for other functions. 

These changes mean that an XA device may be made pin 
compatible with a similar 80C51 derivative if the external bus is not 
used. Small changes to the external hardware must be made if the 
external bus is in use. Internally programmable bus cycle timing 
control on the XA allows programming the duration of all of the bus 
cycles, allowing nearly all memory and peripheral devices to be 
used on the XA bus without the need for an external WAIT state 
generator or any other additional circuitry. 

INSTRUCTIONS REVISITED 
The earlier mentioned goal of the XA to map nearly every 80C51 
instruction to a Single XA instruction was met. Just one 80C51 
instruction cannot be replaced by single XA instruction. That 
instruction is XCHD (exchange digit), a seldom used 80C51 
instruction. This unusual instruction exchanges the lower nibble of 
the 80C51 accumulator with a nibble at an internal RAM address 
pointed to by byte register RO or Ri. The XA would have required 
additional special circuitry in order to support this operation. As a 
result, it was decided to allow a multi-instruction sequence in this 
case, since the instruction is rarely used. The sequence used to 
replace XCHD is: 

PUSH R4H 

MOV R4H, (Ri) 

RR R4H, #4 

RR R4L, #4 

RL R4, #4 

MOV (Ri), R4H 

; save temporary register. 

; get second operand. 

; swap one byte. 

; swap second byte (the "An register). 

; swap word, result is swapped nibbles in A 
and R4H. 

; store result. 

POP R4H ; restore temporary register. 

Some additional code may be needed if an application requires this 
sequence to be un-interruptable for some reason. All other 80C51 
instructions translate one-to-one to XA instructions. Since the XA 
instruction set and memory model are a superset of the 80C51 , and 
since most mnemonics and names were kept the same, 80C51 
code translated for the XA looks nearly the same as the original. 
Some examples are shown below. 
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Table 1. Examples of 80C51 to XA Source Code Translation 

TYPE OF OPERATION 80C51 SOURCE CODE XA SOURCE CODE 

Move immediate to SFR. MOV 

Move direct address to accumulator. MOV 

Move register to register. MOV 

Arithmetic with 2 registers. ADD 

Arithmetic with register and immediate. SUBB 

Increment a register. INC 

Test a register. CJNE 

Clear a bit. CLR 

Seta bit. SETB 

Testa bit. JNB 

Subroutine call. ACALL 

Subroutine return RET 

Push register onto stack. PUSH 

Pop register from stack. POP 

Details of instruction translation for the entire 80C51 instruction set 
are available in the Philips XA User Guide. 

One side effect of source code compatibility of the XA with the 
80C51 is that the number of bytes required to encode some 
instructions changes between the two processors. In most cases, 
this is not a major concern, however it does raise issues with the 
translated code for some situations. A simple example of this is that 
a conditional branch could have the target address move out of 
range when translated code is re-assembled. This should be a rare 
occurrence since the range of short relative branches on the XA has 
been doubled to 256 bytes forward or backward. The same issue 
does not exist for farther jumps and calls since the XA extends that 
range to beyond the entire 80C51 address range. 

The precise length of a branch instruction is of concern in certain 
cases, such as a table of jump instructions entered using the JMP 
@A+DPTR instruction of the 80C51. The XA instruction set includes 
this jump, but does not include a 2-byte replacement for the 80C51 
AJMP instruction which is often used in jump tables. The user will 
have to make small changes to the indexing into such a table if it is 
translated to run on the XA. 

A similar issue can arise for a translation of the 80C51 instruction 
MOVC A,@A+PC, since the distance from this instruction to the 
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TCON,#OOh MOV.B TCON,#OOh 

A,TstDat MOV.B R4L,TstDat 

R5,A 

A,R1 ADD.B R4L,ROH 

A,#'O' SUBB.B R4L,#'O' 

RO ADDS.B ROL,#1 

A,#'O',Cmd1 CJNE.B R4L,#'O' ,Cmd1 

RxFlag CLR RxFlag 

EX1 SETB EX1 

RcvRdy, Wait JNB RcvRdy, Wait 

Test CALL Test 

RET 

ACC PUSH.B R4L 

ACC POP.B R4L 
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lookup table that it is accessing may change. The solution is the 
same as for JMP @A+DPTR: some user intervention to adjust the 
table index. 

User intervention will also be needed in any case where the timing 
of instructions in the original80C51 code is of importance. The XA 
reduces the execution time of each instruction to the minimum 
possible with its internal hardware implementation. Also, instructions 
are normally fetched into a small queue prior to being needed to 
continue execution, which can lend additional uncertainty to 
execution times. The execution time of loops or the time between 
particular instructions can be calculated and adjusted by the use of 
NOPs, delay loops, or other means of matching timing. Also, any 
variable execution timing of the same code due to it being entered in 
different ways can be handled with certain coding techniques. An 
example would be a loop that is entered by "falling through" the 
preceding code on the first instance and branching back to be 
repeated on subsequent occasions. The branch back takes extra 
time not seen on the first entrance to the code due to the necessity 
of "flushing" the queue on a branch. The solution in this case is to 
add a branch instruction prior to the loop branching to the first 
instruction of the loop. Then, each cycle through the loop acquires 
the same timing. Of course, a simple source code translator cannot 
sense such cases and attempt to deal with them automatically. 
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As an example of translating 80C5i source code into XA source 
code, an actual piece of 80C51 code from a working application was 
taken and translated using the rules that were presented above. The 
results of the simple one-to-one translation are shown below. 

Table 2. Sample 80C51 Routines Translated for the XA 

Original 80C51 source code: 

; Sets up UART and Timer (for baud rate generation), prints a string, 
; and prints a hexadecimal value. 

Start: MOV SCON,#42h ; Set UART for 8-bit variable rate. 
MOV TMOD,#20h ; Set Timer1 for 8-bit auto-reload. 
MOV TCON,#OOh ; Stop timer 1 and clear flag. 
MOV TL 1,#OFDh ; Set timer for 9600 baud @ 11.0592 MHz. 
MOV TH1,#OFDh ; Set reload register for same rate. 
MOV A,PCON ; Make sure SMOD bit in PCON is 
CLR ACC.7 ; cleared for this baud rate. 
MOV PCON,A 
SETB TR1 ; Start timer 

MOV DPTR,#Msg1 ; Send a stored message. 
ACALL Msg 

MOV A,Pi ; Send Port 1 value as hexadecimal. 
ACALL PrByte 

.******************** ••• ************************ 
Subroutines 

.*********************************************** 

; Print byte routine: print ACC contents as ASCII 
; hexadecimal. 

PrByte: PUSH ACC 
SWAP A 
ACALL HexAsc 
ACALL XmtByte 
POP ACC 
ACALL HexAsc ; Print nibble in ACC as ASCII hex. 
ACALL XmtByte 
RET 

; Hexadecimal to ASCII conversion routine. 
; Converts a nibble to ASCII hex. 

HexAsc: ANL A,#OFH 
JNB ACC.3,NoAdj 
JB ACC.2,Adj 
JNB ACC.1,NoAdj 

Ad]: ADD A,#07H 
NoAdj: ADD A,#30H 

RET 
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Translated XA source code: 

Start: MOV.B SCON,#42h 
MOV.B TMOD,#20h 
MOV.B TCON,#OOh 
MOV.B TL1,#OFDh 
MOV.B TH1,#OFDh 
MOV.B R4L,PCON 
CLR R4L.7 
MOV.B PCON,R4L 
SETB TR1 

MOV.W R6,#Msg1 
CALL Msg 

MOV.B R4L,P1 
CALL PrByte 

PrByte: PUSH.B ACC 
RL.B R4L,#4 
CALL HexAsc 
CALL XmtByte 
POP.B ACC 
CALL HexAsc 
CALL XmtByte 
RET 

HexAsc: AND.B R4L,#OFH 
JNB R4L.3,NoAdj 
JB R4L.2,Adj 
JNB R4L.1,NoAdj 

Adj: ADD.B R4L,#07H 
NoAdj: ADD.B R4L,#30H 

RET 
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Original 80C51 source code: 

; Message string transmit routine. 

Msg: PUSH ACC 
MOV RO,#O ; RO is character pointer (string 

MsgL: MOV A,RO length is limited to 256 bytes). 
MOVC A,@A+DPTR ; Get byte to send. 
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Translated XA source code: 

Msg: PUSH.B ACC 
MOV.B ROL,#O 

MsgL: MOV.B R4L,ROL 
MOVC.B A,[A+DPTR] 

CJNE A,#O,Send ; End of string is indicated by a O. CJNE.B R4L,#O,Send 
POP ACC 
RET 

Send: ACALL XmtByte ; Send a character. 
INC RO ; Next character. 
SJMP MsgL 

Msg1: DB ODh,OAh,ODh,OAh 
DB 'Port 1 value =',0 

; Wait for UART ready, then send a byte. 

XmtByte: JNB TI,$ 
CLR TI 
MOV SBUF,A 
RET 

The translated XA code looks very much like the 80C51 source 
code and can easily be read by anyone familiar with the original 
program. Statistics for this example are shown in the following table. 

POP.B ACC 
RET 

Send: CALL XmtByte 
ADDS.B ROL,#1 
BR MsgL 

Msg1: DB ODh,OAh,ODh,OAh 
DB 'Port 1 value = ',0 

XmtByte: JNB TI,$ 
CLR TI 
MOV.B SBUF,R4L 
RET 

Table 3. Statistics on Sample 80C51 to XA Code Translation 

STATISTIC 80C51 CODE XA TRANSLATION 

Bytes to encode 107 151 

Clocks to execute 840 212 

Time to execute @ 20 MHz 42 sec 10.6 sec 

SOME XA ENHANCEMENTS 
The subject of this article has been how the new Philips XA 
microcontroller architecture supports upward compatibility with the 
80C51. The XA adds quite a bit to the equation beyond mere 80C51 
compatibility, which has barely been touched upon here. In addition 
to high performance and very compact instruction encoding, the XA 
is specifically designed for high level language support for compilers 
such as C, has many features to support multi-tasking, with 
protected features and separate memory spaces, many 32-bit 
operations in addition to general 16-bit arithmetic, and greatly 
enhanced interrupt processing, to name a few. A complete 
description of all of these features and many more may be found in 
the XA User Guide and data sheets for specific parts. 
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COMMENTS 

- Includes NOPs added for branch alignment on XA. 

- Raw execution time for instructions in code, without flow analysis. 
Conditional branch times calculated as if half taken, half not 
taken. 

- A 4x speed improvement for a simple translation with no 

488 

optimization. 

THE UPWARD SPIRAL 
Many openings have been left in the XA architecture for even more 
enhancements in the future, such as full pipelining, complete 32-bit 
operation support, or a faster peripheral bus. The XA is the 
foundation of a new microcontroller derivative family in a manner 
similar to the very popular 80C51 family. Many other advanced 
microcontroller architectures have been brought to market since the 
80C51 was designed years ago. But until now, none has allowed the 
enormous quantities of 80C51 code that users have on file to be 
re-used with minimal effort on a state-of-the-art 16-bit processor. 
With the Philips XA, that is now possible, while getting the benefit of 
a modern 16-bit processor with few compromises. 
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BACKGROUND 
A computer benchmark is a "program" that is used to determine 
relative computer core performance by evaluating benchmark 
execution time of the core. In a brainstorm sessionon 
microcontrollers for automotive applications, an assembler functional 
benchmark for engine management, which is a typical example of 
embedded high-end microcontral was created. This report 
summarizes the functions implemented in assembler language of 
the compared controllers: Intel MCS251 , and Philips XA. The total 
execution times of a program "engine cycle" (engine stroke) are 
calculated and the required program code is estimated for each 
controller. 

Evaluation of performance in a High Level Language (HLL) like C 
would be preferable, but it is difficult to realize as "the best" 
compilers for all cores involved then should be used. 

This document outlines code density and execution times of the XA, 
based on the most recent information. The execution times are 
given in terms of both clock cycles and time units. Although the XA 
can run at a much higher speed than the MCS251, for the sake of 
fairness, both cores are evaluated running at 16.00 MHz. This is a 
reasonable assumption for comparing the cores at the same level of 
technology. 

Because of the pipeline architectures of the MCS251 and the XA, 
the benchmarks are run on actual silicon. 
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BENCHMARK RESULTS AND CONCLUSIONS 

Relative performance on a line 
The table below presents the most important result of the assembler 
benchmark evaluation. It pictures the relative performance of the 
compared core instruction set on a scale where XA=1.0. Also 
appended is the performance charts-execution and code density of 
all the processors. 

Total exec.times/core(fls) for all routines (with *occurrences) 
938.75 359.86 

Performance MCS251 XA ratio 

MCS251 1.0 2.61 

XA 0.383 1.0 

Table 1. XA instruction set execution times and byteslfunction 
XA 

FUNCTION OC* EXEC. TIME 
/FUNCT·(flS) 

MPY 12 0.75 

FDIV 4 3.0 

ADD/SUB 50 0.375 

CMP 24b 13 1.25 

CAN 16b 80 0.562 

INTPLIN 20 2.04 

BRANCH 1 

XA totals : 299.89 ,""S 
including 20% statistics : 359.86 fls 

Table 2. MCS251 instruction set execution times and byteslfunction 

FUNCTION 

MPY 

FDIV 

ADD/SUB 

CMP 24b 

CAN 16b 

INTPLIN 

BRANCH 

MCS251 totals 
including 20% statistics 

1996 Feb 15 

782.29 fls 
938.75 Ils 

MCS251 
OC* EXEC. TIME 

IFUNCT·(IlS) 

12 1.53 

4 30.125 

50 0.641 

13 3.375 

80 1.625 

20 6.12 

1 
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OCCURRENCE BYTES/FUNCTION 
*TIMEIFUNCT. 

9 2 

12 18 

18.75 4 

16.25 9 

44.96 5 

40.8 42 

158.13 

OCCURRENCE BYTES/FUNCTION 
*TIMEIFUNCT. 

18.36 2 

120.6 25 

32.05 2 

43.88 12 

130 6 

122.4 60 

315.0 
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Table 3. Total benchmark execution time results 

MICROCONTROLLER EXECUTION TIME 
CORE (1-18 ) 

Philips XA-G3 359.86 

Intel MCS251 938.75 

Benchmark limitations 
Like all benchmarks, the automotive engine management assembler 
functional benchmark has some weakness that limit validity of its 
results. 
1. Control in a special (automotive, engine) environment is 

evaluated. 

2. Occurrences of operation overheads are based on estimations. 

3. Occurrences of functions are based on estimations. 

4. Functions are implemented in assembler, not in a HLL like C. 

5. Routines may contain assembler implementation errors. 

6. Cores are evaluated at 16.0 MHz 

Control in a special environment is evaluated 
(automotive, engine) 
The core performance evaluation is based on a single specialized 
case. All benchmark implementations are fractions of the automotive 
engine management PCB83C552 demonstration program. 

It can be advocated that the automotive engine control task gives a 
good example of a typical high demanding control environment, 
where many >= 16 bit calculations have to be done. 

Occurrences of overheads are based on 
estimations 
The assembler functional benchmark is not a full implementation of 
a program. Arbitrary choosing location for storage of parameters in 
register file or (external) memory, for instance, has for some 
instruction set a considerable effect on the total execution time. 

For the different core parameter storage is chosen where possible 
using the core facilities to have minimum access overhead. 

Occurrences of functions based on estimations 
Occurrences is estimated on basis of experience of the automotive 
group. In a real implementation of an engine controller accents may 
shift. As most functions already include some "instruction mix", the 
effect of changes in occurrences is limited. 

Functions are implemented in assembler, not in a 
HLL IikeC. 
Control programs for embedded systems get larger, have to provide 
more facilities and have to be realized in shorter development times. 
The only way to do this is to program in a HLL like C. Efficient 
C-Ianguage program implementation requires different features 
from microcontrollers than assembly programs. Results of this 
assembler benchmark evaluation therefore have a restricted value 
for ranking microcontroller performances for future HLL applications. 

Benchmark ranking on basis of HLL like C requires good 
~ompilers of all the devices involved are needed. The quality of 
the C-compilers really has to be the best there is : HLL 
benchmarking measures not only the micro characteristics, but even 
more the compiler ability to use these qualities. As these are not 
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available for all the micros evaluated, all routines are worked out 
only in assembly. 

All cores are evaluated at 16.0 MHz 
A 16.0 MHz internal clock frequency seems a reasonable choice for 
comparing the cores at the same level of technology: 

Assembler functional benchmark for automotive 
engine management 
This benchmark is a functional benchmark: it Is a collection of 
functions to be executed in an automotive engine management 
program. To implement the assembly functional benchmark for 
automotive engine management correctly the "rules and details" 
described in this section have to be followed carefully. 

The assembler functional benchmark embraces all activity to be 
completed in 1 program cycle that corresponds with 1 engine stroke 
of 2 ms. The benchmark execution time will be calculated as the 
sum of the products of functions and their occurrence rates in 1 
calculation cycle. 

Branches are evaluated separately as "branch penalties" have 
considerable effect of program execution efficiency. Estimated 
(branch count)*(average branch time) is added to the function 
execution times. 

The relative estimated overhead for statistics does not contribute to 
the evaluation of speed performance ratios, but they have to be 
considered when looking at the total execution time required / 
engine stroke cycle. therefore the real total execution time is 
multiplied with the statistics overhead factor (1.2*). 

NO. FUNCTION DESCRIPTION OCCURRENCES 

1 16x16 Multiply 12 

2 Floating Point divide (16:16) 4 

3 Add/Subtract (24) 50 

4 Compare (24) 13 

5 CAN cmp/mov 10*8 80 

6 Linear Interpolation (8*8) 20 

7 Program control branches 500 

8 Statistics (20%) 1.2 * 

Function Parameter Allocation 
Most functions are very short in exec. time, so that the function 
parameter data access method has great effect on the total time. 
Thus it is to be considered carefully. Both XA and MCS251 SB have 
register files in which variables can be stored. 

For the XA and 251 SB processors, data is stored in the lower part of 
register file, or in sfrs for I/O, can be accessed using 
"direct"addressing, but table data, used e.g. for 3 byte compare, is 
stored in "external memory". For more complex functions 16*16 
multiply, Floating point division and interpolation, data is assumed to 
be already in registers. 

16x16 Signed Multiply 
Parameters are assumed to be in registers, and the 32-bit result 
written into a register pair. 
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Divide (16:16) "floating point" 
The floating point division is entered with parameters in registers: 

a divisor, a dividend and an "exponent" that determines the 
position of the fraction point in the result. 

Floating point binary 16/16 division Is a function that is normally not 
included in HLL compilers as it requires separate algorithms for 
exponent control and accuracy is limited. For assembler control 
algorithms, floating point division can be quite efficient as it is much 
faster than normal "real" number calculations (where no ''floating 
point accelerator" hardware is available). 

Compare 24-bit variables 
Note that 24-bit compare is very efficient for "real" 16-bit and 8-bit) 
controllers, but for automotive engine timers, 24-bit seems a good 
solution. Compare must give possibility to decide >, < or =. An 
average branch is included in the function. 

CAN move and compares 
For service of the CAN serial interface, it is estimated that 40· (2 
byte compares + branch) have to be done. Devices with 16-bit bus 
assumes word access. An average branch is included in the CAN 
compare function. 

Linear Interpolation (8*8) 
The interpolation routine is entered with 3 register parameters: 
1. Table position address 

2. X fraction 

3. Y fraction 

The routine first interpolates using the X fraction the values of 
F(x.x, y) between F(x,y) .... V(x+1, y) and of F(x.x, y+1) between 
F(x, y+1) .... F(x+1, y+1). From F(x.x, y) and F(x.x, y+1) the value of 
F(x.x, y.y) is interpolated using the fraction of y. 

The table is organized as 16 linear arrays of 16 x-values, so that an 
V(x,y) can be accessed with table origin address +x+ 16*y = ''Table 
Position Address". In x-direction the interpolation can be done 
between the ''Table Position" value and next position (+1). 
Interpolation in y-direction is done by looking at ''Table Position" + 
16. 

For linear interpolation time the 2-dimensional interpolation time and 
byte count are divided by 3 to include some "overhead" into linear 
interpolation. 
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Program Control Overheads 
For a given algorithm, the "program control overhead" consisting of 
a number of decisions (=branches) and subroutine calls is 
independent of the instruction set used, except for cases where 
functions can be replaced by complex instructions. The most 
important exception cases, MPY words and Floating Point Division 
are handled in this benchmark separately. 

Most 16-blt cores use more pipeline stages so that taken branches 
add branch time penalty for these CPU's due to pipeline flush. This 
effect can be found in the branch execution time tables. 

More efficient data operations and pipeline penalty of the more 
complex Instruction set of 16-bit cores lead to considerable higher 
relative time used for branch instructions. 

To incorporate the influence of branches in the benchmark the 
number of branches to be included must be estimated. For byte and 
bit routines, branches occur more frequent. Average branch time of 
25% may be a good guess. For the automotive engine management 
benchmark that executes in approx. 5000/~S (on 8051) results in 
+/-1250 /~S or 625 branches. As a part of the branches already 
taken account for in the compare functions the number of additional 
program control branches is estimated 500 branches. 

To estimate the average branch execution time, an estimated 
relative occurrence of the branch types has to be made. 

Table 4. Estimated relative occurrence of the 
branch types 

TYPE RELATIVE ABSOLUTE 
OCCURRENCE 

Absolute Jumps AJMP/JMP 20% 100 

Subroutine calls ACALUJSR 20% 100 

Jump on Bcc/Jcc 40% 200 condition (rei) 

Jump on bit (rei) JB/JBN 20% 100 

Statistic Routine Overheads 
Statistic routines are estimated as relative program overheads, only 
to get an indication of the required total processing time in a real 
engine management application. "Statistics" are mainly arithmetic 
routines to determine table corrections. They use about 20% of the 
total time. 
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XA BENCHMARK RESULTS 
The following analysis assumes worst case operation. At any point in time, only 2 bytes are available in the instruction Queue. An instruction 
longer than 2 bytes requires additional code read cycle. 

APPENDIX 1 

XA Function Implementations 
XA reference: XA User's Manual 1994 . 

A1.1: 16x16 Signed Multiply 
Parameters are assumed to be in registers, and the 32-bit result written into a register pair. 

MUL.w RO, R1 i result is in register pair R1:RO 

2 Bytes, 12 clocks --> 0.75 ~s 

A1.2: Floating Point 16x16 Divide: 
;The floating point division is entered with parameters in registers: 

;Arguments: R4 
R6 

Dividend (extend into R5 for 32 bits) 
Divisor Mantissa 

RO Divisor Exponent 

FPDIV: 
ADDS R6, # 0 

BEQ L1 

SGNXTD_AND_SHFT: 
SEXT.W R5 
ASL R4, ROL 

DIV: 
DIV.d R4, R6 
BOV L1 
RET 

L1: 
MOVS R4, # -1 
RET 

18 Bytes, 48 clocks •• > 3.0 ~s 

A 1.3: Extended 32-bit subtract 
R5:R4 Minuend 
R3:R2 Subtrahend 

SUB.w R4, R2 
SUBB.w R5, R3 

4 Bytes, 6 clocks •• > 0.375 ~s 
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Add short format 
divby Ochk - if z=1, go to L1 

Sign extend into R5 
13 position shifts (average) 

Divide 32x16 signed 
Branch on Overflow 
Normal termination 

Overflow - Max Result 
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A 1.4: Compare 24·bit Variables 
An average branch is included after compare. 

The table data, used for 3 byte compare, is stored in "memory". 

CMP: 
CMP.B R1L, R2L 
BNE L1 

L1: 
CMP. W RO, mem1 
BGT LABELl 

LABELl: 
xx -> GT or LT or EQ 

Bytes, 20 clocks (average - branch always taken and not taken) =-> 1.25 ~s 

A 1,5: CAN Compare and Move 
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Application: For service of CAN (Controller Area Network) serial Interface it is estimated that 80* (2 byte compares + branch) have to be 
done. One parameter is in register, the other in internal memory. 

CAN: 

LABEL: 

CMP 
BGT 

RO, memO 
LABEL 

memO = $10H 

5 Bytes, 9 clocks (average) ==> 0.563 ~s 

A 1.6: Linear Interpolation 

Arguments: 
RO Table Base (assumed < 400 Hex) 
R2 Fraction 1 
R4 Fraction 
R6 Result 

MOV R2, [R5+] 
MOV RO, [R5] 
SUB RO, R2 
MULU.w R2, R6 
MOV.b ROH, ROL 
MOVS.b ROL,#O 
ADD R2, R1 
ADD R5, #15 
MOV RO, [R5+] 
MOV R4, [R5] 
SUB R4, RO 
MULU.w R4, R6 
MOV.b ROH, ROL 
MOVS.b ROL,#O 
ADD RO, R4 
SUB RO, R2 
MULU.w RO, R5 
MOV.b ROH, ROL 
MOVS.b ROL,#O 
ADD R2, RO 
RET 

42 Bytes, 98 clocks ==> 6.125 ~s 
Linear Interpolation (2 d~. time I 3) 42 bytes, 2.04 ~s 
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A 1.8: Program Overhead 
Branches are assumed taken 70% of the time, all addresses are 
external. Code is assumed a run-time trace, code size cannot be 
calculated, 

TYPE OCCURRENCE 

JMP rel16 100 

CALL rel16 100 

Bxx rel8 200 

JNB bit,rala 100 

total cylcas 
Ilsec 

A 1.9: XA Totals 

FUNCTION 

MPY 

FDIV 

ADD/SUB 

CMP 24b 

CAN 16b 

INTPLIN 

BRANCH 

XA total/Jls: 
including 20% statistics: 

Note: 

6 

4 

5,1 

5.1 

XA 

600 

400 

1020 

510 

2,530 
158.13 

OC* 

12 

4 

50 

13 

80 

20 

1 

299.89 Ils 
359.86 Ils 

BYTES 

3 300 

3 300 

2 400 

2 200 

1,200 

XA 

EXEC. TIME OCCURRENCE 
IFUNCT.(lls) *TIMEIFUNCT. 

0.75 9 

3.0 12 

0.375 18.75 

1.25 16.25 

0.562 44.96 

2.04 40.8 

158.3 

An assumption is made that XA code is in first 64K (PZ), that is, only 64K address space is used. 
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BYTES/FUNCTION 

2 

18 

4 

16 

8 

14 

1200 
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APPENDIX 2 

MCS251 Implementations 
MCS251 reference: "MCS251SB Embedded microcontroller users manual", February 1995. 
All data are taken using the Kiel Development Board using a 251SB 16.0 MHz part. 

A2.1: MCS251SB 16x16 Multiply 

;The MCS251 can do only unsigned multiply. So, there will be some overhead for testing 
;the sign of the result. 

MUL RO,Rl 

;Total: 2 bytes, 24 clocks ==> 1.5 ~s 

A2.2: Floating point division 16:16 

Arguments; WR4 16-bit Dividend 
WR6 16-bit Divisor Mantissa 
WRO Divisor Exponent 

FPDIV: 
ADD WR2, #0 
JE L1 

SGNXTD_AND_SHFT: 
MOVS WR6,R5 

SHFT_LOOP: 
SLL 
DJNZ 

WR4 ;NO ARITH SLL ? 
;DOES 1 BIT AT A TIME 

DIVISION: 
DIV WR4,WR2 

L1: 

JB 
RET 

MOV 
RET 

OV,L1 

WR4, #-1 

;IF OVFLW BIT IS SET 
iNORMAL TERMN. 

OVFL - MAX RESULT 

Totals: 25 bytes, 482 clocks =~> 30.125 ~s 

A2.3: Add/Sub 

ORO Minuend 
DR4 Subtrahend 

SUB DRO,DR4 

; Totals: 2 bytes, 10 clocks ==> 0.625 ~s 

A2.4: Compares 24 (=32) bit 

COMPARE: 
MOV 
MOV 
CMP 
JE 
SJMP 

CMP_EQUALS: 
CMP_APPROX: 

WRO,60H 
WR2,50H 
DRO,DR4 
CMP_EQUALS 
CMP_APPROX 

imemory 
; memory 

; Totals: 12 bytes g 54 clocks (branch average) ==> 2.375 ~s 
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A2.S: CAN move and compares (16-bit) 

;memO = 40H 4 bytes, 6 clocks 
COMPARE: 

eMP 
JNE 

WRO , memO 
THERE ; 2 bytes 2 t! 8nt 

THERE: 

1 Totals: 6 bytes, 10 clocks a=> 0.625 ~s 

A2.6: 2-dimensional interpolation 
;Arguments: 

XARO Table Base (assumed < 400 Hex) 
XAR2 Fraction 1 

XAR4 Fraction 2 
XAR6 Result 
XAR1 temporary1 
XARO temporary2 
XARS temporary3 

WRO Table Base (assumed < 400 Hex) 
WR2 Fraction 1 
WR4 Fraction 2 
WR6 Result 
WR8 temporary1 = XAR1 
WR10 temporary2 XARO 
WR12 = temporary3 = XARS 

LIN_INT: 
MOV WR6,@WR10 
ADD WR10, #2 
MOV WR8,@WR10 
SUB WR8,WR6 
MUL WR6,WR2 22 
MOV R2,R1 2 
MOV R1,#0 
ADD WR6, WR8 4 
ADD WR10, #15 6 
MOV WR8,@WR10 
ADD WR10, #2 
MOV WR12,@WR10 
SUB WR12,WR8 4 
MUL WR12,WR2 22 
MOV R2,R1 
MOV R1,#O 4 
ADD WR8,WR12 4 
SUB WR8,WR6 
MUL WR8,WR4 22 
MOV R2,R1 2 
MOV R1,#0 4 
ADD WR6,WR8 4 
RET 12 

Totals: 58 bytes, 274 clocks --> 17.125 ~s 
Linear Interpolation (2 dtm. time I 3) - 60 bytes, 5.71 ~s 
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A2.7: MCS251 Program Overhead 

TYPE OCCURRENCE 

LJMP addr16 100 

LCALL addr16 100 

JLE rei 200 

JNB rei 100 

total cylces 
Ilsec 

A2.8: MCS251 Totals 

FUNCTION 

MPY 

FDIV 

ADD/SUB 

CMP 24b 

CAN 16b 

INTPLN 

BRANCH 

MCS251 total/lls: 
including 20% statistics: 
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MCS251 

8 800 

18 1800 

6.8 1360 

10.8 1080 

5040 
315.0 

OC* 

12 

4 

50 

13 

80 

20 

1 

782.29 Ils 
938.75 Ils 

BYTES 

4 400 

3 300 

2 400 

4 400 

1500 
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EXEC. TIME OCCURRENCE BYTES/FUNCTION 

IFUNCT·(IlS) *TIMEIFUNCT. 

1.53 18.36 2 

30.125 120.6 25 

0.641 32.05 2 

3.375 43.88 12 

1.625 130 6 

6.12 122.4 60 

315.0 
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EXECUTION TIME PERFORMANCE 

Actual execution times/function 

FUNCTIONS XA 251S8 

MULT 0.75 1.53 • 

FPDIV 3 30.125 

SUB 0.375 0.641 

CMP24 biT 1.25 3.375 

CAN CMP 0.562 1.625 

INTPLN 2.04 6.12 

OVERHEAD 158.13 315 

* Only for unsigned, extra overhead for sign needs to be added. 

Normalized timings/function 

FUNCTIONS 

MULT 

FPDIV 

SUB 

CMP24blT 

CAN CMP 

INTPLN 

OVERHEAD 

XA-G3 

EXECU~ONBENCHMARK 

12 

10 
251SB 

8 

6 

4 

2 

XA 

o 
§ § § 

251SB 

2.04 

10.04 

1.71 

2.7 

2.89 

3 

1.99 

§ 
MULT FPDIV SUB CMP24 bit 
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BENCHMARK OF CODE DENSITY 

Actual code density performance 

FUNCTIONS XA·G3 251SB 

MULT 2 2 

FPDIV 18 25 

SUB 4 2 

CMP24 biT 9 12 

CAN CMP 5 6 

INTPLN 42 60 

Normalized w.r.t. XA 

FUNCTIONS XA·G3 251SB 

MULT 1 

FPDIV 1.39 

SUB 0.5 

CMP 24 biT 1.33 

CAN CMP 1.2 

INTPLN 1.43 

CODE DENSITY BENCHMARK 

1.6 

1.4 

1.2 

~ 
~ 
~ t::::= 
~ 
~ 
~ 
~ 
~ 

1.0 

0.8 

0.6 

0.4 

0.2 

o 
MULT FPDIV SUB 
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BM1.ASM 

$include xa-g3.equ 
$include bm.inc 

;16x16 signed multiply 

start: 

org SO 
dw S8fOO,start 

org S200 

setp_l5 
MUL.w RO, R1 
rstp_15 
br start 

;Totals 2 Bytes, 12 clocks (0.75 uS) 
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BM2.ASM 

; $ listing_min 
$include xa-g3.equ 
$include bm. inc 

org $0 
dw $8fOO,start 

org $200 
;r6= divisor mantissa 
;rO=divisor exponent 

Bytes 

;r4=dividend (extended to r5 for 32-bits) 

start; 
movs.b 
mov.b 
mov.w 
mov.w 
call 
br 

FPDIV: 
setp_15 
ADDS 
BEQ 

SGNXTD_AND_SHFT: 
SEXT.W 

r61,#2 
rOl. #13 
r4,#$200 
r6,#$100 
FPDIV 
start 

R6, # 0 
L1 

R5 

some value > 0 

; Add short format 
; divby 0 chk 

if z=l, go to L1 

Sign extend into R5 

Clocks 

ASL R4, ROL 13 position shifts (average) 

DIV: 
DIV.d R4, 
BOV 
rstp_15 

RET 

L1: 
MOVS R4, 
rstp_15 
RET 

R6 

# -1 

L1 
Divide 32x16 signed 
Branch on Overflow 

Overflow - Max Result 

;Totals = 18 Bytes, 48 clocks (averages for branches) i.e 3.0 uS at 16.0 MHz 
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BM3.ASM 

; $ listing_min 
$include xa-g3.equ 
$include bm. inc 

start: 

org $0 
dw S8fOO,start 

org $200 

MOV 
MOV 
MOV 
MOV 

R4,#$200 
R5,#$210 
R2,#$100 
R3, #$110 

;Extended 32-bit subtract 

SUB R4, R2 
SUBB R5, R3 

rstp_15 
br start 

Bytes 

;Totals= 4 Bytes and 6 clocks (0.375 uS) at 16.00 MHz 
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BM4.ASM 

$include xa-g3.equ 
$ incl ude bm. inc 

meml equ $20 

org $0 
dw $8fOO,start 

;;Compare 24-bit Variables 

start: 

CMP: 

Ll: 

org $200 

mov 
mov 
mov 
mov 

setp_l5 

R2L,#$40 
meml,#$lOOO 
RlL,#$50 
RO,#$5000 

CMP.B RlL, R2L 
BNE Ll 

CMP.W RO, mem1 
BGT LABELl 

LABELl: 
xx -> GT or LT or EQ 

rstp_15 
br start 

one parameter is register 
and one in memory 

average 

;Totals= 9 Bytes and 20 clocks i.e 1.25 uS at 16.00 MHz 
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BM5.ASM 

$include xa-g3.equ 
$include bm. inc 

;Al.5 
,CAN Move and Compare 
;one parameter in register, the other in memory 

memO equ $10 

org $0 
dw $8fOO,start 

Bytes Clocks 

org $200 
start: 

mov memO, #$100 
mov RO,#$50 

CMPR: 
setp_15 
CMP RO, memO 
BGT LABEL 

LABEL: 

rstp_ 15 
br start 

;Totals = 5 Bytes and 9 clocks (average for branches) 
;or 0.563 uS at 16.00 MHz 
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BM6.ASM 

Sinclude xa-g3.equ 
$include bm.inc 

mem1 equ 

org $0 
dw $afOO,start 

;Linear Interpolation 

;Arguments: 

$20 

R4 
R6 
RS 
R2 

Table Base (assumed < 400 Hex) 
Fraction 1 
Fraction 
Result 

org $200 
start: 

mov r7,#$100 ;safe 
movs scr,#l ipage 
mov R5, #5120 
mov R2,#$12F 
mov R4,#$80 
mov.w $120,#$4S 
call LIN_INT 
rstp_1S 
br start 

LIN_ INT: 
setp_1S 
MOV R2, [RS+] 
MOV RO, [RS] 
SUB RO, R2 
MULU.w R2, R6 
MOV.b ROH, ROL 
MOVS.b ROL,#O 
ADD R2, R1 
ADD RS, #1S 
MOV RO, [RS+] 
MOV R4, [RS] 
SUB R4, RO 
MULU.w R4, R6 
MOV.b ROH, ROL 
MOVS.b ROL,#O 
ADD RO, R4 
SUB RO, R2 
MULU.w RO, RS 
MOV.b ROH, ROL 
MOVS.b ROL,#O 
ADD R2, RO 
RET 

;Totals = 42 bytes and 98 clocks i.e 6.12S us at 16.00 
;For 2-dim interpolation, exec. time = 6.13/3 = 2.04 us 
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BM1.AS1 

$TITLE(bml.a51) 
$INCLUDE (reg251sb.inc) 
$INCLUDE (bm.inc) 

?PR?BMI SEGMENT CODE 
RSEG ?PR?BMI 

16x16 '251 Multiply 

test: 
T_START 
MUL WRO,WR2 
T_END 

;stall: 
sjmp test 

;Totals: 2 bytes, 24.5 clocks ==> 1.53 uS 

END 
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BM2.AS1 

$TITLE(bm2.a51) 
$INCLUDE (reg251sb.inc) 
SINCLUDE (bm.inc) 

?PR?BM2 SEGMENT CODE 
RSEG ?PR?BM2 

251 Floating Point 16x16 Divide, 16:16 

Note: the '251 may have a shift-by-n, but I can;t seem to find it! 
If there is one, the '251 results would likely improve. 

Arguments: 16-bit Dividend WR4 
WR2 16-bit Divisor Mantissa 
WRO Divisor Exponent 

test: 
mov rO, #13 
mov wr4,#200H 
mov wr2,#100H 
call FPDIV 

stall: 
jmp test 

FPDIV: 

SGNXTD_AND_SHFT: 

wr2,#0 
11 

movs wr6, r5 
SHFT_LOOP: 

sll wr4 
djnz rO,SHFT_LOOP 

DIVISION: 
div wr4,wr2 
jb OV,L1 
T_END 
ret 

L1: 
mov wr4, #-1 

T_END 
ret 

END 

return here 

;No arith sll ? 
;does 1 bit at a time 

:if ovflw bit is set 

Normal termination 

Overflow - Max Result 

;Totals: 25 bytes, 482 clocks ==> 20.125 uS 

4 

;Note : The shift instructions are taking 10 clocks in the MCS251 part 
;instead of 2 clocks as specified in the manual. No idea why!!! 
;For sign divide in MCS 251, there will be a considerable overhead involved 

1996 Feb 15 507 

Application note 

AN705 



Philips Semiconductors 

XA benchmark VS. the MCS251 

BM3.A51 

$TITLE (BM3.A51) 
$INCLUDE (reg251sb.inc) 
$INCLUDE (bm,inc) 

?PR?BM3 SEGMENT CODE 
RSEG ?PR?BM3 

" Extended 32-bit subtract 
Z = X - Y 

entry: DW(X) in DRO 
DW(Y) in DR4 

exit: DW(Z) in DRO 

SUBTR: 
T_START 
SUB DRO,DR4 
T_END 
sjmp SUBTR 
END 

Totals: 2 bytes, 10.25 clocks ==> 0.641 uS at 16.00 MHz 

BM4.A51 

$TITLE (BM4.A51) 
$INCLUDE (reg251sb.inc) 
$INCLUDE (bm.inc) 

?PR?BM4 SEGMENT CODE 
RSEG ?PR?BM4 

Compare 24-bit Variables 

The '251 really uses fewer instruction for a 3 byte compare because it 

test; 
mov wr4,#4000H 
mov wr6,#2000H 
mov 60H,wr6 
mov 50H,wr4 

compare: 
T_START 
MOV WRO,60H 
MOV WR2/50H 
CMP DRO,DR4 
JE CMP_EQUALS 
SJMP CMP_APPROX 

Totals: 12 bytes, 54 clocks (average) ==> 3.375 uS 
CMP_EQUALS: 
CMP_APPROX; 

T_END 
sjmp 
END 
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BM5.A51 

$INCLUDE (reg251sb.inc) 
$INCLUDE (bm.inc) 

?PR?BM5 SEGMENT CODE 
RSEG ?PR?BM5 

i CAN COMPARE 
;1 parameter in register, the other in memory 

test: 

compare: 

THERE: 

MOV WRO,#2000H 
MOV WR4,#3000H 
MOV 40H,WR4 

T_START 
CMP WRO,40H 
JNE THERE 

end 

4 

Totals: 6 bytes, 26 clocks (average branches) ==> 1.625 uS at 16 MHz 
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BM6.A51 

$INCLUDE (reg251sb.inc) 
$INCLUDE (bm.inc) 

?PR?BM6 SEGMENT CODE 
RSEG ?PR?BM6 

;;Linear Interpolation 

;Arguments: 
XARO Table Base (assumed < 400 Hex) 

test: 
call 
T_END 

stall: 
jmp test 

LIN_INT: 
T START -

MOV 
ADD 

MOV 
SUB 
MUL 

MOV 
MOV 

ADD 
ADD 
MOV 

ADD 

MOV 
SUB 
MOL 
MOV 
MOV 
ADD 
SUB 
MOL 
MOV 
MOV 
ADD 
RET 

END 

XAR2 Fraction 1 
XAR4 Fraction 2 
XAR6 Result 
XAR1 temporary1 
XARO temporary2 
XAR5 temporary3 

WRO Table Base (assumed 
WR2 Fraction 1 
WR4 Fraction 2 
WR6 Result 
WRS temporary1 = XAR1 
WRlO temporary2 XARO 
WR12 = temporary3 = XAR5 

LIN_INT 

WR6,@WRlO 
WR10, #2 

WRS,@WRlO 
WRS, WR6 
WR6,WR2 

R2,Rl 
Rl, #0 

WR6, WRS 
WRlO,#15 
WRS,@WR10 

WRlO,#2 

WR12,@WR10 
WRl2,WRS 
WR12,WR2 
R2,R1 
R1,#0 
WRS,WRl2 
WRS,WR6 
WRS,WR4 
R2,Rl 
Rl,#O 
WR6, WRS 

;; 

< 400 Hex) 

return here 

Totals: 60 bytes, 294 clocks ==>1S.36 uS at 16.00 MHz 
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using the PSD311 with the Philips XA 

Author: Lane Hauck; with permission from WaferScale Incorporated. 
©Copyright 1996 WaferScale Incorporated. This is a duplicate of WaferScale application note 045. 

Introduction 
The Philips Semiconductors P51XA-G3 is the first of a new breed of 
fast, inexpensive 16-bit processors designed for high performance, 
high integration, and family growth. Although the P51XA (XA) family 
is promoted as a modern version of the venerable 8-bit 8051, it 
actually outperforms most of today's 16-bit embedded processors by 
a wide margin. 

The XA is available in the usual array of OTP, ROMless and mask 
ROM versions so the cost/performance benefit that has made 
WSI PS03XX chips attractive to embedded system designers 
applies the to XA. A typical system can be built using the ROMless 
version of the XA and a PS0311 for less cost than the OTP version 
of the XA. 

Connection of a PS03XX to the XA is not straightforward, due to the 
fact that the XA address and data lines are multiplexed in a manner 
unlike all other CPU chips that the PSO family is designed to 
support. This application note identifies the interface issues and 
solves them one by one to achieve an efficient XA-PSO interface. 

The WSI PS03XX devices can be used either with multiplexed 
address/data buses or with separate address and data buses. 
Multiplexed buses have the advantage that fewer PSO pins are 
required for the CPU interface, leaving more PSO pins available for 
general purpose system use. This application note addresses 
multiplexed bus connection of the XA and the PS0311. 

The XA-PSD Marriage: Almost Perfect 
The Philips XA designers took a radical departure from the 8051 bus 
architecture by bringing out the address lines AQ-A2 on dedicated 
pins. These addresses are not multiplexed, which means that they 
do not require an ALE pulse to separate the address information 
from the data information. This allows up to 16 byte fetches on an 
8-bit external bus with only one ALE pulse - the address is latched, 
the first byte is read or written, and then AO-A3 are incremented and 
the subsequent bytes are accessed. 

This non-multiplexing of AO-A3 also allows very quick access of 
16-bit operands on an 8-bit bus, because the time required to fetch 
the second byte can be as low as 20% of the normal ALE-R/W cycle 
time. This innovative timing allows external 8-bit bus systems to run 
nearly as fast as external 16-bit bus systems. 

The XA gives very precise control (via internal programmable 
registers) of its bus timing. You can set the width of the ALE signal, 
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and the positions and widths of the RD and WR signals. Given the 
inherent speed of the XA and the capability to fine-tune its bus 
timing, a word fetch using an S-bit external bus can be significantly 
faster than other 16-bit CPUs that use a 16-bit external bus. 

But •.• 
For all the reasons it makes sense to buy the "ROMless" version of 
a CPU like the 8031 and attach a PSD chip for a lower system cost, 
it likewise makes sense to use a PSO chip with the ROMless XA. 
But there's a hitch. PS03XX chips expect to see the low 8 bits of 
address and data multiplexed together, i.e., A07-Aoo. But the XA 
uses a different multiplexing arrangement, as shown in Table 1. 

Table 1. Address-Data Multiplexing Schemes 

CONVENTIONAL XA 

A15 A15 

A14 A14 

A13 A13 

A12 A12 

A11 A11 07 

A10 A10 06 

A9 A9 05 

A8 A8 04 

A7 07 A7 03 

A6 06 A6 02 

A5 05 A5 01 

A4 04 A4 00 

A3 03 A3 

A2 02 A2 

A1 01 A1 

AO 00 AO 

As illustrated in Table 1, data lines 00 - 07 are multiplexed with 
A4 - A 11 on the XA, not with AQ-A 7 as the PSO devices expect. 
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Basic Strategy 
Given Table 1, how should the XA buses be connected to a PSD? In 
principle, it is possible to scramble address and data lines, as long 
as the scrambling is accounted for in the system design. For 
example, if you scramble address lines connected to a RAM, the 
scramble occurs for both writes and reads, so the effect is 
transparent to the system. However, address scrambling is not 
transparent in a device like a ROM that stores data at predetermined 
locations. When a CPU sends out an address to fetch an interrupt 
vector or execute one step of a program, it expects the data to be at 
that absolute address, not somewhere else due to scrambled 
address lines. 

The first interface consideration is that the XA data lines must be 
connected to the corresponding PSD311 data lines. This dictates 
that XA A4/DO-A11/D7 must be connected to PSD311 ADO-AD7 as 
shown in the highlighted portion of Table 2. 

Table 2. XA-PSD311 Bus Connection 

As shown in Table 2, the upper four address lines A 15-A 12 are 
connected straight across. Because the data lines D7-DO must line 
up, the CPU address lines A 11-A4 must be connected to the PSD 
A7-AO. Then the remaining CPU lines A3-AO connect to PSD 
A11-AS. 

This address scramble must be accommodated for in the system 
design. There are three areas to consider: the EPROM, the 10 port 
control registers, and the RAM. 

EPROM 
XA code is usually supplied to a device programmer using a file 
format called "Intel HEX", and files of this type generally have the 
extension "HEX". A HEX file is supplied to the WSI PSDsoft 
software, which combines it with PSD configuration information and 
writes out a new hex file with an "OBJ" extension. 

A standard HEX file associates data with absolute addresses. 
Because of the address line scrambling shown in Table 2, a 
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standard XA HEX file will not work. For example, if the XA sends out 
the address Ox1234, the EPROM location accessed within the 
PSD311 will actually be Ox1423. To account for this, we need a 
program that reads the XA HEX file, stores the data in memory in 
address-scrambled order, and then writes a new HEX file with the 
data residing at the scrambled addresses. 

Appendix A is the source code for a C program to accomplish this 
address translation. It was compiled on the Borland C++ compiler 
Version 3.1 using the LARGE memory model. The SCRAMBLE.CPP 
and SCRAMBLE.EXE files are available on the WSI BBS. The 
source code is included in case you have any trouble running the 
program - you can freely adapt it to suit your purposes or cater to 
the whims of your particular C compiler. 

To use the utility, place your XA HEX file and the SCRAMBLE.EXE 
file in the same directory, and type "SCRAMBLE myfHe.hex" where 
myfile.hex is the HEX file to be scrambled. The SCRAMBLE 
program writes out a new file in address-scrambled order with the 
same filename and the "HX2" extension - in this example, 
myfile.HX2. 

1/0 Port Control Registers 
The PSD311 port control registers appear at byte offset 2-7 from a 
programmable base address. The base address is set by the 
equation you write for the CSIOP output in the Programmable 
Address Decoder (PAD). If this base address is positioned at a 4 
Kilobyte boundary, only the address lines A 15-A 12 participate in the 
decoding. These addresses are not scrambled, so there is a direct 
mapping of the equation you write for CSIOP and the memory space 
which the block of I/O Port Control Registers inhabit. 

The address lines that participate in selection of the 10 control 
registers, CPU A2-AO, are scrambled: CPU AO is PSD AS, CPU Ai 
is PSD A9, and CPU A2 is PSD Ai 0 (Table 2). Therefore the 
register offsets are translated as shown in Table 3. 

Table 3. 1/0 Port Register Mapping 
CPU REGISTER OFFSET ACTUAL PSD ADDRESS 

2 (Port A Pin Register) Ox20 

3 (Port B Pin Register) Ox30 

4 (Port A Direction Register) Ox40 

5 (Port B Direction Register) Ox50 

6 (Port A Data Register) Ox60 

7 (Port B Data Register) Ox70 

Table 3 indicates that to access the Port A direction register, for 
example, the byte at (BASE+Ox40) must be accessed. This might be 
accomplished with the following XA code fragment, which sets PAO 
and PA1 to outputs, and PA2-PA7 to inputs: 

Apins 
Bpins 
Adir 
Bdir 
PortA 
PortB 
BASE 

mov 
mov.b 

equ $20 
equ $30 
equ $40 
equ $50 
equ $60 
equ $70 
equ $COOO 

rO, #BASE 
[rO+Adirl, #00000011 b ; 1 =out, O=in 
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XA PSD311 

~ 
A11/D7 1 

Y AD7 

-0 

~ Af5"&AI:E 

,---- BUSW A3 A11 

-'-

SU00734 

Figure 1. How to Convert A11D7 to A3D7 

RAM 
At first glance, it might appear that the PSD RAM is the easiest 
portion of the PSD to accommodate the scrambled address lines. 
After all, if the CPU writes to address XYZ, and unbeknownst to the 
CPU, it instead writes to address ABC, when the CPU tries to 
retrieve the data at XYZ it (again unknowingly) retrieves the data at 
ABC, which is the correct data. In other words, as long as the same 
scrambling occurs on a read-write device for both reads and writes, 
everything is copacetic. 

A problem arises, however, because the connection shown in 
Table 2 connects CPU A3 to PSD A 11, and CPU A 11 (actually 
A11/D7) to PSD AD7. Why is this a problem? The RAM size in the 
PSD is 2 kilobytes, requiring eleven CPU address lines AO-A 10. But 
look where CPU A03 is connected - it's to PSD A 11, which is not 
used in the RAM addressing. Therefore, as far as the PSD311 RAM 
is concerned, it is missing CPU A03. Furthermore, the signal 
connected to the PSD311 A 7 pin, CPU A 11, is superfluous for RAM 
access. 

The net result is that if the connections are made exactly as shown 
in Table 2, only half of the RAM would be addressable, and every 
eight bytes would repeat! This would tend to make the software 
people very unhappy, especially if they put data like the system 
stack in the PSD RAM. 

The solution is to change the CPU "A 11 ID7" signal to "A3/D7". This 
change connects all eleven active CPU address lines AO-A 10 to all 
eleven active PSD RAM address lines AD-Ai 0, albeit in scrambled 
order (which is OK for a RAM). This is accomplished by the circuit 
shown in Figure 1. A 15 is used as a RAM select signal to tell the 
circuit when to do the A11-A3 swap. The Address swap should be 
done for RAM accesses only, because A 11 is required for EPROM 
addressing. In order to swap only the address and not the data 
portion of the multiplexed A11/D7 Signal, the ALE signal is used as a 
qualifier. 

The QS3257 is a quad bi-directional multiplexor made by Quality 
Semiconductor and others. In this circuit, A 15 is used as the RAM 
chip select. When A 15 goes HI to select the RAM, the MUX 
connects XA A3 to PSD311 AD7, but only for the ALE (address) 
portion of the cycle. When ALE de-asserts, the MUX re-connects XA 
A11/D7 to the PSD311 AD7 to connect the D7 signals together. The 
mux must be bi-directional to allow read-write access on D7. Note 
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that the XA BUSW pin is tied low to support an 8-bit bus system at 
power-on. 

How do we develop the logic for driving the MUX select (S) Signal? 
Using the PSD311 PAD, of course. If the RAM is to be positioned 
within an 8K block, rather than the 32K block decoded by A 15 alone, 
the other address lines A 14-A 12 may be used in the mux control 
equations. Appendix B is a PSDabellisting showing the mux select 
signal as 'mux', which uses PBO. Appendix C is the PSDsoft 
configuration file for the design. 

Figure 2 is a scope photo of ALE, WRITE, REAU and address line 
AO. Figure 3 shows the timing for the MUX select signal. The 
measurements for Figures 2 and 3 were taken using a 30 MHz XA 
system, with the following bus timing parameters: 

ALEW [1.5 clock ALE pulse] 
WM1 1 [long write pulse] 
WMO 1 [1 clock data hold time for write] 
OWA 3 [5 clock ALE-WR cycle] 
OW 3 [4 clock WR cycle] 
DRA 2 [4 clock ALE-RD cycle] 
DR 3 [4 clock RD cycle] 
CRA 2 [4 clock ALE-PSEN cycle] 
CR 3 [4 clock PSEN cycle] 

The XA listing in Appendix D gives the startup code that establishes 
the above bus timing plus other chip configuration data, and then 
runs a continuous loop to produce the waveforms shown in 
Figures 2 and 3. 

Figure 2 illustrates two consecutive XA bus cycles. In the first cycle, 
the XA writes a 16-bit word by issuing two consecutive byte writes. 
Notice that address AO changes from an odd address to an even 
address midway through the cycle (between write pulses) and a 
Single ALE pulse is issued for both byte writes. The PSD3XX family 
devices work properly with the single ALE pulse because the 
addresses A8-A 11, which are connected to XA addresses AD-A3, 
are not latched in the PSD3XX. PSD devices (PSD4XXl5XX) that 
latch all of the address lines would not work in this application, since 
they would not pick up the address change on AO without a second 
ALE pulse. 

Figure 3 shows the timing for the multiplexor select signal. 
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Because the first cycle writes data to memory outside the PSD311 
RAM (A 15=0), the mux select signal is high throughout the write 
cycle. The second ALE pulse corresponds to a read operation from 
RAM (A15=1). In this cycle the mux-S signal switches low, feeding 
A3 into the AD7 pin in place of A 11. A3 is latched by the falling edge 
of ALE, the mux switches back to normal operation, and CPU D7 is 
connected to PSD AD7 for the remainder of the read operation. 

The "R[) and AO traces in Figure 2 illustrate the basic bus timing for 
the PSD311. The PSD311 access time can be determined by 
examining the read cycle which starts at the center division of the 
scope diagram. The XA reads the first byte by issuing the address of 
the first byte (AO=LO) and an ALE pulse. The RAM address is valid 
about 10 nanoseconds after the mux-S signal switches LO (to 
account for the 3257 mux switching time), and this address is 

Application note 

AN707 

latched inside the PSD311 by the falling edge of ALE. The XA reads 
the byte just before AO switches from LO to HI, which starts the 
second RAM access cycle. (Remember that "AO" is actually AS in 
the PSD311, which is not latched). The access time required for the 
first byte read (mux-S LO to AO LO-HI transition) is about 100 nsec, 
and the access time required for the second byte read (AO HI to "R[) 
going HI) is about 120 nsec. Thus a PSD311-90 is a good choice for 
this design. 

Performance 
As the bus timing waveforms of Figures 2 and 3 demonstrate, an 
S-bit bus connection of the Philips Semiconductors XA CPU and the 
WSI PSD311 gives a very high performance system. Using fairly 
conservative timing, a word (double byte) read or write takes 
400 nanoseconds using the PSD311-30. 

Ch1 5V Ch2 5V M 100ns Ch2 \.. 1.9V 
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lIB 5V 100ns 

Figure 2. MUX Timing 

ALE 

MUX-S 
DD-'I~~+H~H-~-H~~~~~~H++H~I 

R2-' 

AO 

Ch1 5V Ch2 5V M 100ns Ch1 J 3.4V 
l1li 5V 100ns 

Figure 3. Multiplexor Select Signal (MUX-S) 
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Appendix A: 
C Listing for SCRAMBLE Program 

Scramble.cpp 9-12-95 Lane Hauck 

This program is used to modify a standard Intel Hex file (.hex) so that it can be used to load a WaferScale PSD311 that is connected to a 
Philips Semiconductors XA microprocessor. Because the XA does not multiplex AD7-ADO, but instead multiplexes A 11 D7-A4DO, the 
addresses to the PSD311 must be scrambled for the data stored in the PSD311 ROM. 

Typically the input hex file will be the output of a 51 XA linker. 

The program reads an Intel hex file, scrambles addresses, and writes a new Intel hex file with an "hx2" extension. 

Invoke with: 
Outputs file: 

Scramble order: 

scram <infile.hex>. 
"infile.hx2", 

A15 A14 A13 A12 A11 A10 A09 A08 A07 A06 A05 A04 A03 A02 A01 AOO 
A15 A14 A13 A12 A07 A06 A05 A04 A03 A02 A01 AOO A11 A10 A09 A08 

Hex ABCD becomes ADBC 

Intel hex format: 
(A) Data Record 
: cc aaaa 00 [data] cs CR LF 

Colon 
cc # data bytes (2 chars) 
aaaa load addr (4 chars) 
00 record type=data record 
data 2 times cc chars 
cs 2's compl of checksum (binary values, not ASCII codes) includes cC,aaaa,OO,data 
CR carriage ret 
LF line feed 

(B) End Record 
: 00 aaaa 01 cs CR LF 

Colon 
00 no data bytes 
aaaa program start address 
01 indicates an END record 
cs checksum of OO,aaaa,01 

******************************************************************************************************* / 

#include <stdio.h> 
#include <conio.h> 
#include <dos.h> 
#include <string.h> 
#include <stdlib.h> 
#include <dir.h> 
#define ROMSIZE 32768L II PSD311 ROM size 

II function prototypes 
int a2d(int a); 
int scramble(int inaddr) ; 

II global variables 
int huge inarray[ROMSIZE]; 
FILE *out; 

int main(int argc. char *argv[]) 
{ 

FILE 
unsigned int 
char 
char 
int 
unsigned int 
char 
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·in; 
pos,j,k,a.b.c,d,e,f,m,data; 
outfilename[12]; 
*ptr; 
ch; 
count,addr,scradd,csum; 
string[16]: 
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1/ check for two command line items: "scramble", outfilename 

if (argc ! = 2) 
( 
printf(''\nERROR: Usage: SCRAMBLE outfile\n"); 
sound(100); r a little razz sound *f 
delay(200); 
nosoundO; 
return 1; 
} 

r open the file given in the command line *f 

if ((in=fopen(argv[1j,"rt")) == NULL) 
( 
printf("Cannot open input file .. %s\n" ,argv[1]); 
return 1; 
} 

printf("File-%s-openedl\n" ,argv[1]); 

1/ open a file with input file name plus' .hx2' extension 

strcpy(outfilename,argv[1]); /I make a copy of filename 
ptr=strchr(outfilename,'.'); /I ptr -> '.' 
pos=ptr-outfilename; II position of period 
outfilename[++pos]='h'; /I replace extension 
outfilename[++posj='x'; 
outfilename[ ++pos)='2'; 

if ((out=fopen(outfilename,"wt")) == NULL) 
( 
printf("Cannot open output file .. %s\n",outfilename); 
return 1; 
} 

printf("File-%s-opened!\n" ,outfilename); 

for 0=0; j<ROMSIZE; j++) 
{ 
inarray[j]=OxFF; 
} 

while (!feof(in)) 
( 
ch=fgetc(in); 
if (ch==':') 

{ 
csum=O; 
a=fgetc(in); 
b=fgetc(in); 
count=16*a2d(a)+a2d(b); 
if (count!=O) /I ignore end record 
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{ 
csum+=count; 
c=fgetc(in); 
d=fgetc(in); 
e=fgetc(in); 
f=fgetc(in); 
addr=4096*a2d(c)+256*a2d(d)+ 16*a2d(e )+a2d(f); 
csum+=addr; 
a=fgetc(in); II should be two zero bytes 
b=fgetc(in); 
data=16*a2d(a)+a2d(b); 
csum+=data; II (checks for 00 byte) 
for 0=0; j<count; j++) 

( 
a=fgetc(in); II data byte first digit 
b=fgetc(in); II data byte second digit 
data=16*a2d(a)+a2d(b); 
scradd=scramble(addr); 
Inarray[scraddj=data; 
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else; 
} 

II Write the new hex file 

addr=O; 

csum+=data; 
addr++; 
} 

csum=255-(csum&OxOOFF); 
} 

II NOTE: csum not checked 
II here for debuglcheckout only 

II 8-bit, 2's complement 

for u=O; j<=1023; j++) II 1024 lines of 32 bytes each 
{ 
csum=O; 
fputs(":20", out); 
csum+=addr; 
sprintf(string,"%04X",addr); 
fputs(string,out); 
fputS{"OO" ,out); 
for (k=O; k<=15; k++) 

{ 
for (m=O; m<=1; m++) 

{ 
data=inarray[addr]; 
csum+=data; 
sprintf(string,"%02X",data); 
fputs( string ,out); 
addr++; 
} 

} 
csum=255-(csum&OxOOFF); 
sprintf(string,"%02X",csum); 
fputs(string,out); 
fputs("\n" ,out); 
} 
fputS(":00000001 FF\n",out); 

sound(1000); 
delay(20); 
sound(500); 
delay(20); 
nosoundO; 
fclose(in); 
fclose(out); 
return 0; 
} 

II 8-bit, 2's complement 
II 2 chars in checksum 

II a pleasant little sound ... 

II Scramble routine: Change address ABCD to ADBC 

int 
( 
int 

scramble(int inaddr) 

outaddr=O; 
outaddr = inaddr 

return(outaddr); 
} 

I (inaddr «8) 
I (inaddr »4) 

II ASCII to hex digit conversion 
II converts ASCII char to integer 0-15 

int a2d(int x) 
{ 
if (x>=65 && x<=70) II A to F 

& 
& 
& 

OxFOOO II A 
OxOFOO liD 
OxOOFF; II BC 

x-=55; II -65 makes it 0-5, -55 makes it 10-15 
else 

x-=48; II "0" is ascii 48 
return(x); 
} 
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Appendix B: 
PSDAbel File for MUX Control Signal 
module xa311 
title 'xa311'; 

mux pin 11; 
pin 40; 
pin 13,22,2; 

"PSO 
" PCQ-/CS8 nAOOO 

ale,nRD,nWR 
a15,a14,a13,a12,a11 
esO,es1,es2,es3 
es4,es5,es6,es7 
rsO,csiop 

pin 39,38,37,36,35; 
node 140,141,142,143; 

equations 

node 144,145,146,147; 
node 124,125; 

esO = la15 & la14 & la13 & la12; II EPROM address map 
es1 = la15 & la14 & la13 & a12; 
es2 = la15 & la14 & a13 & la12 ; 
es3 = la15 & la14 & a13 & a12; 
es4 = la15 & a14 & la13 & la12; 
es5 = la15 & a14 & la13 & a12; 
es6 = la15 & a14 & a13 & la12; 
es7 = la15 & a14 & a13 & a12; 
rsO = a15 & la14 & la13 & la12; "RAM select 
csiop = la15 & la14 & a13 & la12; "IOCTL select 

mux = !(a15 & ale); "a11-a3 mux control 
!nAOOO = a15 & !a14 & a13 & !a12; "FPGA chip select 

tesCvectors 

([a 15,a 14,a 13,a 12]-> [rsO,csiop,nAOOOJ) 

[0, 0, 0, 0 )-> [0, 0, 1 );" nothing selected 

[0, 0, 1, 0 ]-> [0, 1, 1 );" 10 at 2000 
[1, 0, 0, 0 )-> [1, 0, 1 );" RAM at 8000 
[1, 0, 1, 0 )-> [0, 0, 0);" FPGA at AOOO 

tesC vectors 

([a15,ale)-> [muxJ) 

[0,0]-> [1); 
[0, 1)-> [1]; 
[1, 0]-> [1); 
[1, 1 ]-> [ 0 ); " mux low only for address (ALE) time 

end xa311 
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Appendix C: 
PSDSoft Configuration File 

WSI - PSDsoft Version 2.10 
Output of PSD Configurations 
.*.****************************************************.************************************************ 

PROJECT: xa311 DATE: 10/24/1995 
DEVICE: PSD311 TIME: 18:31:39 

==== Bus Interface ==== 
Data bus width 
AddresslData Mode 
ALEIAS signal 
ReadlWrlte signals 

= 8-Bits 
= Multiplexed 
= Active High 
= IWR,/RD,/PSEN 

Memory space setting for EPROM 
Security bit 

= Program space only (IPSEN) 
= OFF 

Power-down capability 
EPROM low power mode 
Active-level of RESET signal 

==== Other Configurations ==== 
Port A: ADDRESS/IO Mode 

= OFF 
= OFF 
= LOW 

Pin IOlAddress CMOSIOP Output 
PAO 10 CMOS 
PA1 10 CMOS 
PA2 10 CMOS 
PA3 10 CMOS 
PA4 10 CMOS 
PA5 10 CMOS 
PA6 10 CMOS 
PA7 10 CMOS 

Port B: 
pin 
PBO 
PBi 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 
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CMOS/OP Output 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
CMOS 
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Appendix 0: 
XA Listing for Figures 2 and 3 
; RAMTEST.ASM 
$Include xa-g3.equ 
$pagewldth 132t 

; PSD311 control registers 

DORA equ 
DDRB equ 
PortA equ 
PortB equ 
PlnsA equ 
PinsB equ 

org 
dw 

o 

$40 
$50 
$60 
$70 
$20 
$30 

$8fOO, Start 
;=========================== 
; Begin initialization code. 
;=========================== 

org 100 

Start: 
mov R7,#$100 

; SCR, System Configuration Register 

SCRval equ 

76543210 
0000 

00 
o 

1 
00000001q 

; System exceptions: 
; Reset PSW, Reset vector 

; initialize stack pointer 

; reserved 
; PT1 :PTO = 00 for peri ph osc/4 
; XA mode 
; Page 0 mode, uses 16-bit addresses 

; WDCON, Watch Dog Timer Control Register 

WDCONval equ 

76543210 
000 

00 
o 
o 
o 

OOOOOOOOq 

; BCR, Bus Control Register 

BCRval equ 
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76543210 
000 

1 
o 

001 
00010001q 

Prescaler divisor Is TCLK*32*2 
reserved 
WDRUN Is OFF 
input bit WDTOF 
reserved 

reserved 
WAITD: disable EAlWAIT pin 
Bus Disable OFF (bus enabled) 
bc2:0 -> 8-bit data bus, 16-bit address bus 
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; Bus Timing Registers 

;BTRH 

76543210 
11 

11 
11 

; DW=3 for 4 clock write-w/o-ALE cycle 
; DWA=3 for 5 clock ALE-write cycle 
; DR=3 for 4 clock read-w/o-ALE cycle 
; DRA=2 for 4 clock ALE-read cycle 

BTRHval equ 
10 

11111110q 

; BTRL 

76543210 
1 

1 
1 
o 

11 

; WM1=1 for 2 clock write pulse 
; WMO=1 for 1 clock write hold time 
; ALEW=1 for 1.5 clock ALE width 
; (reserved) 
; CR=3 for 4 clock PSEN cycle 
; CRA=2 for 4 clock ALE-PSEN cycle 

BTRLval equ 
10 

11101110q 

mov.b scr,#SCRval ; (see above for bit assignments) 
mov.b wdcon,#WDCONval; (see above for bit assignments) 
mov.b wfeed1,#$a5 ; Feed watchdog so new config takes effect. 
mov.b wfeed2,#$5a 
mov.b bcr,#BCRval ; (see above for bit assignments) 
mov.b btrh,#BTRHval ; (see above for bit assignments) 
mov.b btrl,#BTRLval ; (see above for bit assignments) 

; Configure the 10 port drivers 

mov.b pOcfga,#1111ii11q; Configure portO for bus(11) 
mov.b pOcfgb,#1iiiiiiiq 
mov.b pi cfga,#i1ii11ii q ; Configure p14-p17 for quasi-bidirec(i 0), 
mov.b p1cfgb,#0000iiiiq; A3-AOforpush-pull (11). 
mov.b p2cfga,#11i1i111q; Configure port2 for push-pull (11) 
mov.b p2cfgb,#11i1i1iiq 
mov.b p3cfga,#1111ii11 q ; Configure p35-p30 for quasi-bidirec(i 0), 
mov.b p3cfgb,#11000000q; WR(p36), RD(p37) for push-pull (11). 

; End of initialization, begin user code. 

mov r1,#$8000; RAM 
mov r2,#$7000; not RAM 
mov r3,#$00FF 

wri: mov.w [r2],r3 ; word write to outside RAM 
mov.w r3,[r1] ; word read from RAM 
br wr1 

END 
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1. INTRODUCTION 
What if ... 

• You've been given the task of translating your company's flagship 
80C51 application to XA; your manager gives you an XA data 
manual and some diskettes-and until tomorrow to get it done? 

• You're going to be translating lots and lots of 8051 code to XA 
over the next few months, and you want to set up the most 
effective system for doing so? 

• You want to learn the XA architecture by translating an example 
8051 application? 

8051 SOURCE XA SOURCE 

SU00785 

Figure 1. 

Relaxl Translating production 80C51 source code to debugged XA 
code is very practical-although we cannot guarantee you'll make 
your deadline-and this application note brings together the 
information you'll need. 

We're going to generally assume that you're dealing with 80C51 
source code you've never seen before. 

We will also assume you're a reasonably skilled 80C51 programmer 
and that you've already studied the basics of XA architecture. 
We're also going to assume you're able to use Windows™ in 
general, and you've familiarized yourself with the XA development 
tools. Although using the simulator or emulator is a key part of 
verifying your translations, teaching you to use these is beyond the 
scope of this note. 

Source code for the examples may be found on the Philips ftp site. 

1.1 The questions you are probably asking 
right now 

How is this application note organized? 
We're going to describe a stepwise procedure for translating 80C51 
code to working XA code, concentrating mostly on 
hardware-independent issues. Later on, we'll deal with some very 
specific issues In detail (section 3: Special Topics), so we 
recommend you read through all this material before starting to do 
any translation work. 

How long will it take to translate an 8051 application? 
That depends on the application and the code. We've seen code 
from experienced 8051 programmers who've used every 
conceivable 8051 coding trick to squeeze out the last drop of 
functionality. We expect this kind of 8051 code will be the most 
difficult, especially when the code uses target hardware-specific 
tricks. On the other hand, some 8051 code, especially small 
applications designed to be easily maintainable, aren't particularly 

.Windows Is a Iradmard of Microsoft. Inc. 
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difficult and you may be able to do a complete translation in a matter 
of a few hours. 

Is translation automatic? 
Not completely. While the XA does have an equivalent for every 
8051 instruction, some code cannot be automatically translated. 
You'll have to intervene manually. 

Is translation a single-pass process? 
If you are really expert and you spend enough time, you can 
probably translate simple to moderately complex applications in a 
single pass. We don't generally recommend this approach, however, 
especially when you are starting out. It's probably more productive 
to iterate several times, using all the development tools available to 
produce the most robust translation. 

Will XA code be bigger? 
In alilikelyhood, it will be somewhat to significantly larger than the 
original 8051 code. However, you'll be well-compensated by a 
significant increase in generality and functionality -the XA 
instructions are bigger, but they do more- so your XA code will be 
much easier to maintain and expand. 

Will XA code be faster? 
Based on the same clock rate, XA code will execute significantly 
faster than the 80C51 code. 

What about 8051 and XA derivatives? 
This application note is about translating "general" 8051 code to a 
"generalized" XA. We'll look briefly at the essential peripheral 
devices, like the UART and timers, but we're not going to look at 
other subsystem-specific programs. 

What about memory and I/O expansion? 
We won't deal with specific memory and I/O issues, but we will 
comment that the XA is flexible enough to deal with almost any kind 
of memory and 1/0 interfaces. The only exception to this rule is 
some very 8051-specific external interfacing which you'll very likely 
need to re-engineer anyway. 

What's the standard for 8051 code syntax? 
The code translater expects the MetaLink ASM51 assembler syntax. 
This assembler Is available for free on the Philips BBS, and it has 
become the de-facto standard for 8051 and derivatives. If your 8051 
source code is based on a different standard, we'll have some 
suggestions. 

What's special about translating your own 8051 code? 
As you'll see below, we generally recommend that you deal with 
mechanical translation issues first and worry about structural 
changes later. If you're translating 8051 code that's very familiar to 
you, it is very easy to get distracted by making structural changes 
too early: you know the constraints of the original design and you'll 
likely be eager to overcome them by using the significantly greater 
freedom of the XA architecture. 

What Is the biggest difference between 8051 and XA afffecting 
the translation process? 
Most 8051 programmers building complex applications spend a 
significant amount of time reconciling application requirements to 
8051 architectural capabilities. When you translate this code to the 
XA, you'll find many familiar architectural concepts but far fewer 
constraints on them. 
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Figure 20 Translation Process 

1.2 Overview of the translation process 
Let's take a more detailed look at the overall translation process 
(Figure 2). There are four distinct source versions: 

1. The working 8051 source (a copy, not your original source, which 
you must preserve). 

2. A tentative translation of the original 8051 source into XA 
assembly. 

3. The structurally correct XA source. 

4. The debugged XA source. 

The method of producing each of these source versions is similar to 
the standard program development cycle, with a single additional 
step, as shown in Figure 3: 

TRANSLATE, 
~~~~~~ _ OR ASSEMBLE, 

OR EXECUTE 

I. 
-

Figure 3. 

ERRORS? ~ COMPLETE 

SU00787 

We recommend that you first make a copy of your original 8051 
source. We'll call this the ''working'' 8051 source. In some cases 
we've found it convenient to make changes to this source, in 
particular, when we've found ourselves re-running the translator 
multiple times for particularly difficult source programs. Be sure to 
protect your original 8051 source carefully; this is so important we'll 
remind you to do so several times. 

You can see that the edit-assemble cycle and the 
edit-assemble-execute is preceded by an edit-translate cycle. As we 
will show below, this extra step is easy. After you complete your 
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work with the translator, you'll have tentative XA source. You'll edit 
and assemble the tentative XA source, you'll have structurally 
correct XA source code. You'll run the simulator or emulator and edit 
and reassemble until your application is proven. 

In a few cases, especially with complex applications, you may find it 
useful to return to an earlier source version. For example, you may 
encounter some translation Issues while debugging your XA source 
that are best handled by returning'to the working 8051 source and 
repeating the intervening steps. Because of the number of source 
versions in this process and the potential for returning to an earlier 
step, we've found that careful organization of the translation process 
can be very helpful. 

1.3 What you'll need 
Here's a checklist of what you need to get started translating your 
8051 application to XA: 
o The XA Data Handbook (IC25 or its successor); especially 

Section 2, Chapter 9 and AN704. 

o An 8051 reference, preferably one that's familiar to you. 

o A Windows-based computer 

o The Macraigor XA Development Environment, which includes a 
translator, an assembler, a simulator, and an optional single-chip 
XA emulator. 

o The MetaLink ASM51 8051 assembler and its manual, both 
available on the Philips BSS 

o Macraigor Development hardware is helpful, but optional 

o Your favorite word processor and text utilities. 

o Any and all documentation about the original application. An 
as-implemented memory map is invaluable. (If you don't have 
one, we recommend you immediately prepare one by examining 
the original source code). 

o DeSign specs for your XA target, particularly the memory map. 
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1.4 Preparation 
Read this application note thoroughly. Section 3, "Special Topics" 
describes some specific problems you may encounter, and you 
should have these in mind from the start. Then scan through your 
original 80C51 source to see how many potential translation issues 
you can identify. 

We recommend that you prepare by choosing a file labeling system 
to distinguish among the original 8051 source, intermediate 
translations. and the final XA source file. We have found the 
following scheme to be useful: 

app.asm the original 80C51 source file (Not to be modified!) 

tapp.asm the working 80C51 source, which may be modified 

tapp.1 an intermediate translation 

tapp.2 

tapp.xa the current XA assembler source 

Note that the translator identifies 80C51 source files and activates 
the 8051 to XA Translator option in the LANGUAGES menu 
whenever you use a file with a ".asm" extension. The default 
extension for translated files is ".xa". You may want to keep copies 
of intermediate translations or originals. 

Choose a method that is comfortable for you and that's consistent 
with the size of the job. This seems like a trivial matter, but we've 
found that a little extra bookkeeping care can make the translating 
job much easier. 

Second, we recommend that you make sure that all your tools are 
installed and are functional before attempting translation: 

1. Assemble your original source file with the Metalink assembler; 
note its assembled size. 

2. Assemble and simulate one of the examples that accompany the 
XA tools. 

3. Translate one of the example 8051 files. 

In other words, we suggest you are comfortable with, and sure of, 
your tools before you start actual translation work. 

1.5 About the original application 
Note what we haven't suggested: a detailed examination of the 
original application. 

We're not sure this is necessary! 

Intense study of someone else's code can be so incredibly boring or 
discouraging that you might balk at going through with the 
translation. You'll have to determine in each case exactly how much 
detailed knowledge of the application is actually necessary to do a 
translation. As we've already mentioned, it almost all cases you 
should start with a memory map of the original application, but it isn't 
always necessary to have everything documented. 

Table 1, 

FEATURE IN NATIVE MODE: 
CM=O 

registers (RO, R1 .,,) Accessible only as registers 

RO, R1 indirect addressing uses 16-bit pointers: RO. R1 
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For example, we've been successful translating a moderately 
complex application, TinyBASIC, without really attempting to 
understand how the code works, rather, by just attending to the 
mechanical translation details. 

Ultimately, of course, it is up to you how much you need to know 
about the original application before doing the translation. In the 
ideal case, you already have full and clear documentation of your 
application's algorithm (what it does) and the implementation (hOW it 
does it). ,In practice, unfortunately, you may have to re-develop this 
documentation or translate without it. 

1,6 Translation decisions you must make 
Although the translator does a good job, there will be some grey 
areas where you will have to decide about specific issues, and 
possibly make manual changes to the translated code. Here are the 
issues: 

Retaining or Replacing 80C51-like instructions 
The XA instruction set includes a number of instructions for 
compatibility with 80C51 , even though the XA architecture provides 
improved alternatives. 

Instructions like "JMP [A+DPTR]", for example, are supported in the 
XA, but the full functionality may not translate directly. The translator 
leaves a warning to mark each use of one of these instructions. 
You'll either have to check each case carefully and make 
adjustments to make sure the translated code will function correctly, 
or replace the entire construction with one or more native XA 
instructions. 

In general, we recommend you replace these 80C51-style 
instructions with native XA instructions whenever it is practical. We'll 
give you more information about this issue in following sections. 

Recodlng obscure but functional 80C51-style coding 
There is an additional class of 80C51 instructions and constructions 
that translate directly into XA instructions. These Instructions 
generate no warning messages from the translator because the 
resulting XA code, while often obscure, will function correctly. One 
example is a common 80C51 compare-tree construction. 

We can't make a general recommendation in this case, but we'll 
admit our bias towards recodlng into native XA code whenever 
possible. The following sections will give you more information on 
this issue. 

Using Native versus Compatibility Mode on the XA 
The XA System Configuration Register (SCR) CM bit controls the 
8051 Compatibility Mode. At reset, SCR.CM is set to zero and the 
XA operates in "native" XA mode. Setting SCR.CM to "1" makes the 
XA register model and indirect register addressing mirrors the 
80C51 model. 

The effects of the CM bit setting are given in Table 1. 

IN COMPATIBILITY MODE: 
CM=1 

Accessible as registers or as the first 32 bytes of data memory. 

Uses 8-bit pointers: ROL, ROH 

525 
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In other words, if you do nothing, the XA will operate in native mode. 
The first 32 bytes of data memory will be accessible only as such 
and won't be overlaid by registers. You'll be able to use rO and r1 
(and any other register) as a 16-bit pOinter. 

If you insert an instruction that sets SCR.CM=1, translated code that 
depends on the overlaid memory and register mapping shown in 
Table 2 will continue to work, and both rO and r1 will function as 8 bit 
indirect pOinters. This maintains "pure" code compatibility for 
translation but effectively wastes 32 bytes of internal RAM data 
memory. 

Table 2. 

ORIGINAL TRANSLATED OVERLAID 
8051 XA DATA MEMORY 

REFERENCE REFERENCE ADDRESS 

RO (RBO) ROI (RBO) 0 

R1 (RBO) ROh (RBO) 1 

R2 (RBO) R11 (RBO) 2 

R3 (RBO) R1h (RBO) 3 

... 
R7 (RBO) R3h (RBO) 7 

RO(RB1) ROI (RB1) 8 

... 
R5 (RB3) R2h (RB3) 29 

R6 (RB3) R31 (RB3) 30 

R7 (RB3) R3h (RB3) 31 

• RB = Register Bank. 

NOTE: The setting of SCR.CM has no effect on instructions 
labeled " ... included for 80C51 compatibility", e.g., "JMP [A+DPTR]" 
These instructions function as described in the XA User Guide no 
matter what the setting of SCR.CM. 

What are the pros and cons of compatability mode versus 
native mode? 
By design, enabling compatability mode produces the greatest 
chance of translated code working with the least necessity of 
manual intervention. 
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In practice, the deciding factor for choosing is, in our experience, the 
degree of memory map rearrangement you do and the resulting 
effects on indirect addressing In the application. Specifically: if your 
XA memory map requires the use of 16-bit pOinters, you'll need to 
use native mode. 

Here's a list of factors to consider: 

• USing compatability mode .... 

- translated code is more likely to run correctly with minimal 
manual intervention 

- preserves register assignments 

- preserves direct addressing to registers commonly used in 
8051 programs 

• Using native mode ... 

- is sometimes necessary due to changes In the memory map 
- supports cleaner, more efficient XA code 
- generally requires more manual changes to the translated code 
- frees up 32 bytes of on-chip RAM 

Using 24·blt versus 16·bit ("Page 0") addressing 
You can save some data and hardware resources if you choose 
i6-bit addressing; clearly this option is available only to applications 
with addressing requirements below 64K bytes. 

The System Configuration Register (SCR) PZ bit controls the XNs 
Page 0 mode. At reset, SCR.PZ is set to "0" and the XA uses 
standard 24-bit XA addressing. If SCR.PZ is set to "1", the XA 
maintains only 16 bits of address data throughout. 

For XA targets implementing a memory space of 64K or less, using 
Page 0 mode can result in some resource savings because the XA 
will only PUSH and POP 16-bit values for subroutine calls and 
returns, respectively, insread of 32-bits in standard operation. See 
the XA User Guide sections 4.3.1 and 4.3.2 for more details 

Your choice of 24-bit versus 16-bit addressing has no direct effect 
on the translation process, but you should be generally aware of the 
implications of each alternative. We've chosen to set Page 0 mode 
in our start-up code example (Appendix 1). 
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2. THE TRANSLATION PROCESS 

8051 SOURCE XASOURCE XA SOURCE XASOURCE 
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Figure 4. 
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Figure 5. 

2.1 Starting translation: 
Producing tentative XA source 

Let's get started by looking at the process of turning 8051 source 
into tentative XA source code. Figure 5 tells the story. You'll edit, 
translate, and repeat if necessary until the translator gives no error 
messages. Don't worry about warnings placed in the translated 
source code just yet. 

2.1.1 Systematic changes 
We've chosen the term "systematic changes" to describe anything 
you might do to change the 8051 source overall. 

Do you need to make systematic changes at this stage? The answer 
depends on the assembler you've been using, the complexity of the 
code, and the degree to which special directives and other 
assembler features are present in the source code. 

At this point, we'll give you an easy answer that will serve for most 
purposes: "no". Just go ahead and translate. You'll find out in 
subsequent steps if this answer was right. 

We might as well remind you right now: Whatever you do, make 
sure you keep a protected copy of your original 8051 source 
code somewhere. It is all too easy to make modifications to the 
original source file-as you will see, the working 8051 source file 
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may change during this process-and you'll lose valuable 
information. 

2.1.2 Translating 
Translating is the soul of simplicity: the XA Development 
Environment recognizes any file with a ".asm" file as being possibly 
8051 assembly source. 

1. Open the source file (for example, "try. asm" ) 

2. Select "Languages --> 8051 to XA Translator." 

3. Respond "Yes" or "No" as you prefer to the query "Include 8051 
Code in Output?" 

4. The XA translator ... 
a. translates your file, leaving it unchanged, 
b. makes a new XA source file with the same name and an 

" . xa" extension ("try. xa"), and 
c. automatically saves a copy of the XA source file. 

If you choose to include 8051 code in the translator output you'll see 
the original 8051 instruction, commented out, adjacent to the 
corresponding XA instruction. This can be very helpful in some 
cases but the output file can be difficult to read. 

We recommend standardizing on the ".xa" extension for all XA 
assembly source files to distinguish them clearly. 
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2.1.3 How the translator works 
The translator looks at each input source line individually. The 
translator looks at each source line and attempts to identify it as 
either a) translatable 8051 code or b) anything else. 

If the translator sees 80C51 code, it translates it according to the 
rules described in Chapter 9 of the XA Usef Guide. The XA was 
designed to have direct correspondences with 80C51 whenever 
possible, and most of the translations are probably what you'd 
expect. The register translations are so critical that we want to 
restate them here (Figure 6). 

All other source lines-that is, anything other than translatable 8051 
code-are passed through the translator and appear in the output 
file unchanged. 

The translator doesn't attempt to "understand" what the code is 
doing; in specific, it doesn't look at more than one source file line or 
more than one actual instruction at a time. However, the translator 
warns you when some specific mUlti-line constructs might go wrong 
after translation. 

SP R7 R7H R7L 

R6 R6H 

RS R5H R5L 

R4 R4H 

R3 R3H 

R2 R2H 

R1 R1H 

RO ROH 

.. =80C51 

SUOO790 

Figure 6. 
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2.1.4 Interpreting translator results 
In most cases, the translator will run without error, and you'll see an 
open window with the translated source file. This file will contain 
inserted lines and warnings. 

The translator always inserts a line that controls the pagewidth, in 
order to produce generally convenient displays within source and 
listing windows: 

$pagewidth 132t 

If necessary, the translator inserts an "include" reference, as follows, 

$include XA-G3.EQU 

so that any XA register or other reference it produced in translated 
code is correctly resolved. (If no such references are made, this 
"include" directive is omitted.) The default location of this file is the 
PROGRAM subdirectory of the XA Development Tools. You may 
want to use a different file-for example, for a different XA 
derivative-or use your own copy of this file. 

The translator inserts warnings adjacent to source lines that are 
translated correctly, but which might not produce the desired results 
without further intervention. We will take a look at resolving these 
warnings later in this document. 

The translator displays any serious errors in a standard dialog box. 

What produces translator errors? In general, when the translator 
encounters a source line containing what looks like translatable 
8051 code, it attempts to do the translation. If the translator finds 
something about the code that's not expected, it will flag an error for 
this line. 

Fortunately, translator errors are very rare and occur only if the 
translator finds something entirely unexpected, like source code for 
an entirely different processor. You'll have to take a look at each 
error message and decide what to do about them on a case-by-case 
basis. A large number of errors probably means something very 
basic is wrong. 



Philips Semiconductors 

Translating 8051 assembly code to XA 

2.1.5 Systematic changes revisited 
Let's revisit the issue of systematic changes. 

You'll need to make systematic changes to your original 8051 
source file whenever there are consistent differences between your 
source and the expectations of the XA Development Tools, 
especially the translator. 

We have found that the easiest way to discover the need for 
systematic changes is to proceed as if they are not necessary. 

If you see significant numbers of similar translator warning 
messages or XA assembler errors, consider changing your 8051 
working source to avoid them. 

NOTE: We are suggesting you change the 8051 source file to 
avoid problems downstream in the translation process. It is for this 
reason that we use the label ''working 8051 source" and we remind 
you to carefully preserve your original 8051 source file. 

If systematic changes are necessary, you may want to work outside 
the XA Development Environment in order to use the familar, and 
likely more advanced, features of your favorite text editor. We've 
found using a UNIXTM-style stream editor such as sed or awk can 
be very useful, especially in the case of large-scale syntax changes 
to big source files. It is well beyond the scope of this application note 
to describe such programs. 

We've found the following to require attention: 

• 8051 Source code intended for some assembler other than 
MetaLink 

If you discover large numbers of translation warnings due to 
unrecognized directives, consider scanning your 8051 working 
source for directives. Compare them to the XA Development 
Environment Assembler (see "Help" ~ "XA Assembler"~ 
"Directives") and make indicated changes. Some directives 
don't have equivalents in the XA tools; comment these out or 
remove them. 

If you see large number of XA assembler errors due to syntax 
errors, you may have to make significant changes to your 
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working source. Compare the syntax of your source to that 
described in the XA Development environment ("Help" ~ "XA 
Assembler). 

• Include files 

The translator doesn't handle all forms of "include" and mayor 
may not pass through a given include file directive. It may be 
practical in some cases to remove "include" instances and 
insert the "include" file contents. Otherwise, you may change 
the existing syntax in your working 8051 source file to one of 
the alternatives accepted by the XA tools: 

#include file.ext 

or 

$include file.ext 

and translate the files individually. 

Once more we will remind you to keep a protected copy of the 
80C51 original source! 

2,1.6 What you've got: "tentative XA source" 
After you've taken care of translator warnings and any errors, the 
output file you've got is "tentative" because: 

• It doesn't have the proper XA startup vector or any other XA 
interrupt vector. 

• It uses an 8051-style stack . 

., It may contain warning messages. 

• It might contain illegal or unrecognizable syntax with respect to 
the XA assembler. 

• No comments contain anything about XA implementation. 

• If you chose to have 8051 instructions included in the output, 
there are lots of lines you'll probably want to remove. 

We'll see how to resolve these problems in the next section. 
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Figure 8. 

2.2 Continuing translation: 
Producing structurally correct XA code 

The next step of translation, producing structurally correct XA code 
from tentative XA code, is summarized in Figure 8. 

The diagram Item "required changes; translator warnings" denotes 
the following: 

• Installing an XA startup vector and any other required XA interrupt 
vectors. 

• Implementing an XA stack. 

• Removing or resolving warning messages. 
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Later on in this section we will offer a few comments on the 
remaining issues of tentative XA source: resolving illegal or 
unrecognizable XA syntax, adding comments about the XA 
implementation, and removing 8051 instruction comments optionally 
included by the translator. 

Although this application note is targeted to dealing with software 
translation Issues, we'll also cover the key areas of hardware 
preparation for real XA hardware. If you are just Simulating for now, 
please feel free to maintain code for real hardware; it won't have any 
effect on the simulator, and you'll be prepared for eventual use on a 
realXA. 
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2.2.1 XA startup vector (simple case) 
Practiced 8051 programmers usually have a standard program template readily available. In its essence-ignoring interrupts-it looks 
something like this: 

org 0 
ljmp start 

org 040h 
start: 

mov SP,#stack_bottom 

first executed instruction 

; initialization code 

If you've studied the XA, you know that the equivalent minimum startup looks like this: 

org 0 

dw 8FOOH initial PSW 
dw start 

org 0120h 

start: 
mov SP,#stack_top 

reset interrupt vector 

; initialization code 

(See Appendix 2 for a complete listing of a standard XA initialization template.) 

As you can see, the XA startup is based on a pair of word vectors at the beginning of code memory, the first taken as the initial Program Status 
Word (PSW) value, and the second as the initial Program Counter (PC). There is no way for the XA Development Environment translator to 
automatically translate the 80C51 startup to the XA form, so you'll have to do it yourself: Replace the initial jump with two "dw" define words, the 
first setting the initial PSW (8fOOH is the recommended default) and the second containing the address of the first instruction to execute. 

Use this code as a guide for simple cases, such as evaluating code using the XA Development Environment XA simulator. The next section 
discusses more complex cases. We'll take up the differences in stack initialization further below. 

NOTE: It may be useful to make these changes to your working 8051 source file, especially if you return to the translation step more than once. 

2.2.2 XA startup and interrupt vectors (more complex case) 
Practiced 8051 programmers usually have a vector template for simple applications that looks like the following: 

CSEG 

org 0 

ljmp start 

org 03H 
reti 

org OBH 

reti 

org 13H 

reti 

org IBH 

reti 

org 23H 
ljmp SerialISR 

org 40H 

start: 

mov SP,#stack_bottom 

Reset Vector 

EXT 0 interrupt: not used 

Timer 0 interrupt: not used 

EXTI interrupt: not used 

Timer 1 interrupt: not used 

Serial port interrupt 

; initialization code 

(This example includes all the interrupt vectors on the core 80C51; derivates differ.) 
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Drawing again on the complete startup template given in Appendix 2, here's an expanded template that includes the key interrupt vectors for the 
XA: 

dw 08fOOH, Start Reset PSW, vector 
dw 08fOOH, BreakVec breakpoint PSW, vector 
dw 08fOOH, TraceVec trace PSW, vector 
dw 08fOOH, StkOvfVec stack overflow PSW, vector 
dw 08fOOH, DivOvec divide by 0 PSW, vector 
dw 08fOOH, URetiVec user reti PSW, vector 

org 040H (TRAP 0-15 exceptions omitted) 

org 080H Event interrupts: 
dw 08900H, ExtlntOVec external interrupt 
dw 08900H, TimerOVec timer 0 interrupt 
dw 08900, ExtlntlVec external interrupt 
dw 08900H, TimerlVec timer 1 interrupt 
dw 08900H, Timer2Vec timer 2 interrupt 

org 090H 
dw 08900H, RxdOVec Serial port 0 receive 
dw 08900H, TxdOVec Serial port 0 transmit 
dw 08900H, RxdlVec Serial port 1 receive 
dw 08900H, TxdlVec Serial port transmit 

org 0100H (Software interrupts omitted) 

org 00120H Start of executable code area. 

BreakVec: 
TraceVec: 
StkOvfVec: 
DivOVec: 
URetiVec: 
ExtlntOVec: 
TimerOVec: 
ExtlntlVec: 
TimerlVec: 
Timer2Vec: 
RxdOVec: 
TxdOVec: 
RxdlVec: 
TxdlVec: 

reti Location to route interrupts/exceptions with no specific 
handler code. This could prevent lockup particularly due 
to an unexpected exception such as stack overflow if 
there was no vector or handler whatsoever. 
(labels for traps and software interrupts omitted) 

i====================================================================== 

org System exception interrupts: 
Beginning of initialization code. 

Start: 
mov R7, #0100H initialize stack pointer top 
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For brevity, we've omitted the traps and software interrupts and their 
corresponding labels for the "reti tie-off" found in the original, but 
we'd encourage you to include them in all code destined for 
execution on an actual XA target. 

The purpose of this comparison is to highlight the differences in 
interrupt setup when translating an application between the 80C51 
and the XA. 

We want you to notice that the XA provides extensive support of 
exception, trap, and event interrupt mechanisms. Tying off unused 
interrupts takes a lot more "bookkeeping", but you'll recognize that 
this cost is well worthwhile when you start using these. 

2.2.3 The XA stack 
We recommend that the first instruction executed in any XA 
application be a stack initialization; even if this does no more than 
duplicate the default initialization (completely sufficient for small test 
programs). 

Odds are that the translator will find an 80C51 stack initialization and 
translate it, but you'll have to manually locate any such code and 
replace it with XA-specific initialization, if for no other reason that the 
byte-sized 80C51 stack initialization will be translated to a byte 
operation; the translator doesn't handle SP as a special case. 

Converting from an 8051-style stack to an XA stack is fairly easy if 
you understand all the issues. Let's take a look at them, in order of 
increasing complexity: 

Basics 
In all but the most trivial 8051 applications you'll most certainly see 
an instruction like this 

mov SP, #stackbottom 

In other words, it may be entirely sufficient to use code like this: 

ENDRAM EQU OFFFFh 
STACKSIZE EQU 200h 
ISTACKPTR EQU ENDRAM-STACKSIZE - 1 

. mov SP,ISTACKPTR 
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You should already know the differences between the 8051 and the 
XA stacks: 

• The 8051 stack grows upward, while the XA stack grows 
downward. 

• The 8051 stack contains bytes, while the XA stack contains 
words. 

• The 8051 has only one stack, the XA has a System and a 
User Stack. 

• The 8051 stack must be located in on-board memory, while the 
XA System Stack must be in the first 64K of RAM, on-chip or off. 

• The XA user stack may be located in any memory region. 

Because 8051 stack space is generally at a premium, stack 
al/ocation in 8051 applications is usually done with great care. With 
any luck, your original 8051 application documentation will describe 
the stack al/ocation in detail, including the expected "high-water 
mark" of the maximum expected usage. If not, we encourage you to 
spend a little time to study and characterize how the stack is 
implemented. 

Fortunately, stack allocation is much easier on the XA because 
stack space and placement is much less restricted. 

in simple cases-with simple subroutine calls/returns and no 
interrupts-you'll be able to transform the 8051 stack allocation to a 
first approximation by using the following steps: 

1. Use only the System Stack. 

2. Declare the top of the stack in the XA at a specific RAM address. 

3. Allocate as many words in the XA as the original application 
allocates bytes. 

last cell 
in bytes 
initial value 

recommended 1st initialization 
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As the XA initializes the System Stack Pointer to 100H, that is, 
within on-chip memory space for all XA devices, you may be able to 
use the default setting for small applications. Even so, we 
recommend that you explicitly document the stack allocation for the 
translated application and explicitly set the stack pOinter. Please 
also note that the XA provides a stack overflow exception if the 
stack reaches 80H. It's often a good idea to add an interrupt handler 
for this overflow exception so that your application can recover from 
stack overflow. 

That said, we'll warn you that more complex 8051 applications may 
require considerably more special handling with respect to stack 
operation translation. We'll take a look at the next more complex 
case-handling interrupts-in a following section and then take a 
look at special topics later on. 

The System Stack 
We're going to assume that you're translating a single-threaded 
8051 application to the XA for the purposes of this application note; 
translating a multitasked 8051 application Is beyond the scope of 
this application note. 

In most cases, Philips recommends you operate the XA Initially in 
System Mode (see the XA User Guide, section 4.2.4, for example) 
and we'll extend that recommendation here to suggest that most 
translated applications be operated entirely in System Mode. 

You set System Mode by setting the SM bit in the initial PSW. If you 
do this, your application will have full access to all XA registers, 
instructions, and memory spaces. Further, you'll have only one stack 
and one stack pointer, and you can ignore any discussion of the 
User Stack Pointer. R7 will always contain the System Stack 
Pointer, which you can simply call "the stack pointer" or SP. 
Throughout your code, you need to take care that no operation you 
perform sets PSW.SM to zero. 

Interrupts add another level of complexity to the picture. When 
handling interrupts you must "confirm" the System Mode setting of 
PSW.SM by making sure that the new PSW portion of each interrupt 
vector contains a value that will result in PSW.SM = 1. In other 
words, to preserve System Mode, make sure that all values of PSW 
specified in interrupt vectors leave PSW.SM=O. 

The System Stack and Interrupts 
Let's review how interrupts are serviced: As you can see in the XA 
User Manual, the address of the next instruction and PSW in force 
at the instant of the interrupt are saved on the System Stack. 
(All interrupts-exception interrupts, event interrupts, software 
interrupts, and trap interrupts-use the System Stack exclusively.) 
The new value of the Program Counter (PC) and the new PSW are 
taken from the code-memory vector associated with that interrupt. 
Normally, you'll use the RETI instruction at the conclusion of an 
Interrupt service routine to restore the Interrupted program flow and 
Program Status. 

Unlike the 8051, the XA PSW value is automatically saved any time 
an Interrupt occurs, so it is unnecessary to save the PSW explicitly. 
(This means you can save a few bytes In translated programs where 
the original 8051 code did the save and restore by manually 
removing the explicit PUSH PSW and POP PSW instructions.) 

As described in the XA User Guide, section 4.3.2, the amount of 
information processed on the stack during interrupts varies between 
the default 24-bit XA operation mode and the optional 16-bit Page 0 
mode. 
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The User Stack 
What about the User Stack POinter? We recommend that you don't 
worry about it for the purposes of the vast majority of translated 
applications. Simply make sure that PSW.SM is always set. R7 will 
always contain the System Stack Pointer. 

Of course, the XA offers support for multitasking and, for this 
purpose, you'll need to know how to use User and Supervisor Mode 
functionality. See Chapter 5 of the XA User Manual, and look for 
forthcoming applications notes on general multiasking support and 
running multiple vlrtual8051's on a single XA. 

Advanced Stack Issues 
Clever uses of the 8051 stack have been a key feature of that 
architecture. We can think of a number of schemes you may have to 
recognize and handle, as well as some XA-specific issues: 

• Multiple 8051 Stacks 

Some applications demand multiple stacks, and we've seen some 
translation problems handling these. Fortunately, these generally 
involve schemes in which registers other than the 8051 SP is 
used for stack pOinters-we have generally seen the ·SP stack" 
used only for interrupts In some applications-and so these can 
be handled routinely. 

• 16-bit 8051 Stacks 

Likewise, some 8051 applications require 16 bit stacks, and the 
ones we've seen also handle these outside the scope of the 
hardware SP. 

• Special PSW handling within interrupt service routines (ISRs) 

When you are translating an 8051 ISR, it is almost certain you'll 
see a "PUSH PSW" somewhere near the beginning and a 
matching "POP PSW'-or some equivalents-near the end. 
Unlike the XA, 8051 interrupt processing doesn't automatically 
save and restore the PSW value, and the vast majority of 
applications will require that the foreground's PSW be unchanged 
through interrupt service. 

However, it is remotely possible that an 8051 application breaks 
this general rule and depends on an altered value of PSW on 
return from an ISR. 

Here's a somewhat contrived example: an application with no 
arithmetic processing whatsoever and extreme storage 
requirements might use the CY flag to indicate the completion of 
some ISR-processed event to a foreground processing loop. 

The translator can't detect this special method and certainly can't 
defeat the standard interrupt processing peformed by the XA 
hardware, saving and restoring the PSW, so you'll have to modify 
the code manually to make this algorithm work. Fortunately, XA 
storage Is likely to be much more plentiful and you'll probably be 
able to use a much more conventional technique. 

By the way, you can manually remove the PUSH/POP pair from 
the translated code if you want. 

• Stacks extending over phYSical address boundaries 

80C51 stacks necessarily reside within the IRAM memory space. 
XA stacks may be In IRAM, In external RAM, or --as the stack 
grows downward across the boundary-- in both. There is no 
special consideration for the placement of the stack with respect 
to the internal/external boundary, but you should be aware that 
access speed may be different for the two types of memory. 



Philips Semiconductors Application note 

Translating 8051 assembly code to XA AN708 

2.2.4 Feeding the Watchdog 
There is one critical mechanism provided on the XA that has no equivalent in the basic 80C51 architecture (but is Implemented in some 80C51 
derivatives): the watchdog timer. If you fail to pay attention to the watchdog timer-which Is activated automatically by a hardware reset-your 
translated applications will crash mysteriouslyl 

Fortunately, it is very easy to take care of the watchdog. For most developmental purposes, we recommend simply deactivating the entire 
subsystem early in your XA initialization code. (Right after stack pointer initialization is a good place.) We will draw again from the complete 
startup Initialization template In Appendix 1. The watchdog timer uses a special ''feeding'' sequence to enable any changes to its configuration: 

wdoff: 

mov.b 
mov.b 

equ $00 

wdcon, #wdoff 
wfeedl,#$a5 

mov.b wfeed2,#$5a 

; WDCON value to turn off WD 

Turn off watchdog timer. 
Feed watchdog: use new config 

This code sequence deactivates the watchdog subsystem and places it in a known state. 

The watchdog mechanism is not implemented in the XA Tools simulator, and these Instructions will have no effect. 

2.2.5 Obligatory Hardware Initialization 
The XA contains a number of hardware initialization registers. (Namely, BCA, BTRH, BTRL, POCFGA, POCFGB, P1 CFGA, P1 CFGB, P2CFGA, 
P2CFGB, P3CFGA. and P3CFGB.) The default power-up values of these are often sufficient to get your application running, but the defaults 
won't work in every case, and we recommend that you consider initializating these registers as obligatory among the first instructions after reset. 

You'll definitely need to use non-default values to speed up external memory access and to enable external RAM access when executing code 
in internal code space. 

Explaining how to set all these registers is well beyond the scope of this document, but we'll give a common example, taken from Appendix 1: 

mov.b bcr,#waitd+bus16+adr20 
mov.b btrh,#dw5+dwa5+dr4+dra5 

Set up bus configuration. 
Config bus timing to longest 
bus cycles 

mov.b btrl, #wrpuls2+holdmin+ale05+cr4+cra5 ; short ALE, min data 
hold. 

mov.b pOcfga,#pcfga-pp Configure portO types for bus. 
mov.b pOcfgb,#pcfgb-pp 
mov.b plcfga,#plcfga_bus Configure Pl for quasi-bidirec 
mov.b plcfgb,#plcfgb_bus except A3 -AO are push-pull. 
mov.b p2cfga,#pcfgb-pp Configure P2 types for bus. 
mov.b p2cfgb,#pcfgb-pp 
mov.b p3cfga,#p3cfga_bus Configure P3 for quasi-bidirect 
mov.b p3cfgb,#p3cfgb_bus except WR, RD are push-pull. 

This won't have any effect on the XA simulator. See section 7.3 in the XA User Guide for more details. 
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2.2.6 Disposing of Warning Messages 
Warnings are written as comments to the output file. We recommend 
resolving all warning messages before proceeding with the 
translation process. 

The majority of warnings are usually due to 8051 instructions that 
translate directly Into XA "compatibility" instructions: 

JZ/JNZ 

JMP[A+DPTR] 

MOVC A, [A+PC] 

MOV A, [A+DPTR] 

MOVC A, [A+DPTR] 

The resulting XA code may be obscure or non-functional, and the 
translator flags this usage to warn you to check each instance. You'll 
have to understand what the original code does to do this. 

A second class of warning messages are generated for bit 
references, since identities of bits-even those with identical 
functions-are different on the 8051 and the XA. Some of these 
problems will be Identified in a later stage by the XA assembler, but 
you'll have to review all the bits referenced in the translated program 
sooner or later. No matter what, we can't over-emphasize the rule 
that's equally valid for 80C51 and XA coding: 

"All SFR and bit references should be symbolic." 

The first reason for this rule is that identically named SFRs and bits 
may appear at different places in different 80C51 and XA variants. 
Secondly, symbolic references receive some error-checking by the 
assembler that can't be done with explicit numeric references. 

Details of Compatibility Instructions 
The XA "compatibility" instructions offer you the option of continuing 
to use a number of highly-functional 80C51 instructions in your XA 
code. To do so requires that you understand, in detail, any 
differences that exist between the 80C51 and XA implementation of 
the instructions, as well as the specifics of each implementation. You 
may choose to adjust the code to continue to use these instructions, 
or recode into native XA Instructions. (We generally recommend 
recoding whenever practical.) 
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Here are the details, along with alternatives for recoding Into native 
XA instructions: 

• JZlJNZ 
JZlJNZ In the 80C51 uses the current contents of ACC -not the 
result of a prior ALU operation-to determine whether the jump is 
taken or not. This function is duplicated in the XA using the 
translated ACC, R4L. Check the program logic to make sure that 
the the value In R4L is valid at the time the JZlJNZ Is executed. 

XA native alternative: recode to use CMP followed by Bxx. 

• JMP[] 
The JMP[A+DPTR] instruction, used for implementing jump or call 
tables, depends on the length of each entry in the jump table. 
Because the lengths of translated instructions in the tables are 
likely to differ, the translated algorithm probably won't work without 
further manual intervention. 

XA native alternative: Implement a vector table instead, do an 
indexed fetch followed by a jump-thru-register. 

• MOVC A,[A+PC] 

The MOVC A,[A+PC] instruction fetches a cOnstant byte out of 
code memory. Since the algorithm depends on the length of this 
instruction -one byte on the 80C51, and two bytes on the XA­
you'll have to make an adjustment to make the translated code 
work correctly. 

XA native alternative: Use standard register-indirection or MOVC 
to get bytes or words from data or code memory, respectively. 

• MOV A,[A+DPTR] and MOVC A,[A+DPTR] 

These instructions are used to fetch one of 256 bytes in a data- or 
code-memory table, respectively. As long as the translated A, 
R4L, and the translated DPTR, R6, contain the correct values, 
algorithms implemented with this instruction should continue to 
work In the XA. 

XA native alternative: Use standard register-indirection or MOVC 
to get bytes or words from data or code memory, respectively. 
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2.3 The final step: 
Generating debugged XA code 

There's good news at the final step: Transforming structurally 
correct XA code into debugged XA is almost identical to the 
standard native code-development cycle. You'll run the XA simulator 
or XA emulator to verify your code, make corrections, re-assemble, 
then re-verify, continuing until your program is proven. If you've been 
careful during previous steps, you shouldn't have any 
translation-specific problems here. 
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Figure 10 describes the details. 

The only difference for translated code is the very slight chance 
you'll need to return to an early translation step to correct an 
unforeseen systematic error in your code. We don't expect this to 
happen except in extreme cases of specialized code. 

As standard XA development techniques are covered by other 
materials, we'll cut this section short and turn to special topics. 
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3. SPECIAL TOPICS 
We've translated a good deal of 80C51 code, ranging from short 
functional snippets to applications of considerable size. In the 
process, we're reminded of the wealth of programming tricks 
developed over the years by 80C51 programmers to extract all 
possible functionality from the architecture and to overcome 
limitations of early tools. 

We've also seen a few cases where the 80C51 to XA Translator 
needs a littie extra help. 

We've kept notes of these, and we'll share them with you-along 
with our recommendations for fixes-in this section. 

3.1 Trouble-making items 
Here's a list from our notes of some potential troublespots. You may 
want to scan your 80C51 and translated source code for these. Most 
of these issues are covered in detail in this Application Note. 

• 80C51-specific comments in translated code. 

• 80C51-style Increments in XA that don't affect condition codes, 
but possibly should. 

• Any occurence of the [ ... +DPTR] operand. 

• Any operation on the 80C51 PSW register. 

• Any explicit push or pop. 

• Over-terse console messages (due to extremely limited ROM size 
in many 8051 applications). 

• Multiply/Divide algorithms, which may translate and run correctly, 
but very slowly if not re-written for the XA. 

• Indirect references (@RO, @R1) in 80C51 code. 

3.2 Translating indirect references 
Indirect addressing doesn't always translate well from the 80C51 to 
the XA since the 80C51 implements 8-bit indirection through RO or 
R1, while the XA can do 16-bit indirection through any of RO thru R7. 

For programs that are heavily dependent on the 80C51 
implementation, you may consider setting SCR.CM to put the XA 
into 80C51 "compatibility mode" in which XA RO and R1 function as 
8 bit index registers. 

In general, we recommend that you examine the issues carefully 
and recode if necessary to use native 16-bit addressing whenever 
possible. The increased generality of your code will almost always 
pay back the effort. 

3.2.1 Indirect reference failure 
In a few cases, the translator can produce XA code which won't 
function correctly. 

For example, the XA translator translates the 8051 code sequence 

to 

MOV Rl,PTR 

MOV A,@Rl 

MOV.B ROH,PTR 

get a pointer from lRAM 

load @ptr to ACC 

; get a pointer from lRAM 

MOV.E R4L, [Rl] ; load @ptr to ACC 

In the 80C51 version, the IRAM location "PTR" contains an 8-bit 
pOinter, which is fetched to R1, one of the two 80C51 index 
registers. (The source of the pointer is not important; this example 
would be equally valid if the value of Ri is loaded from any other 

1996 Dec 30 538 

Application note 

AN708 

8-bit location.) The code uses the byte-size pointer in R1 to load 
another 8-bit quantity to the accumulator. 

In the XA version, an 8-bit pointer is fetched to the XA register 
corresponding to 80C51 R1, namely ROH. For native mode, the 
translation has already gone astray as no byte-length index registers 
are implemented in the XA, and ROH isn't a proper Index register 
anyway. The next instruct, an Indirect load, fetches through R1, 
which is completely uninitialized by this sequence, so the translation 
falls. 

In XA compatibility mode, byte-length pOinters are available, but 
they are defined as the least-significant byte of either R1 or RO, so 
the 8-bit pointer should be loaded to either ROl or R1 L. This 
translated sequence effectively uses R1l, which is likewise 
uninitialized, and the translation fails. 

3.2.2 Recommendations for Indirect References 
The most general solution is to search for all u@RO"and "@R1" 
addressing in the 8051 code or all U[RO]" and U[R1]" references In 
translated code. Note that translated code won't contain any 
references like "[R2]" through U[R7]" Since no 8051 code generates 
these. Although there are no useful changes you can make to the 
8051 code prior to translating, you may be able to see better how 
the code works in the original source, and it is a good idea to 
consider how pOinters might be converted to words from bytes at the 
most convenient level. Make sure to distinguish between true 
byte-sized pOinters and word-size pointers used to access external 
memory. Some 8051 programs keep word pointers in adjacent 
registers or IRAM cells, but there's no guarantee, since we've seem 
some that don't. 

Don't forget that pointers are sometimes checked against limits, and 
you'll need to convert the limit checking code as well. 8051 CJNE's 
are translated to CJNE.B's. You may have to manually convert these 
to CJNE'w's. It's probably a good idea to replace the CJNE tests 
completely with CMP instruction followed by a conditional branch. In 
the 8051, the CJNE was the only way to do a non-destructive test, 
so it was overused-and possibly misused-in situations where a 
limit might be reached or exceeded. 

3.2.3 Picking a register for indirect references 
If you are manually modifying translated code-following our 
recommendation to recode certain 80C51-specific 
constructions-you may need to pick a new register for indirect 
addressing. Here are some pointers: 

In the most general case, you can't use XA registers RO through R3 
for indirect addressing because it is possible that 8051 registers RO 
through R7, which translate into byte registers in RO through R3, 
namely: ROl, ROH, R1l, ... R3H, might contain useful data. 

Of the group R4 through R7, R4 is best preserved for translated 
code that assigns R4l as "ACC" and R7 is the Stack Pointer. The 
chances are good that DPTR in the 8051 code was doing something 
useful, so it's XA twin, R6, is busy. 

That leaves R5 as a good candidate. (If R5 is also busy, then you'll 
have to save a register temporarily; unless stack space is very 
limited, the stack is as good as any place. Alternatively, you may 
want to switch register banks if there are free registers in a different 
bank.) 

Remember to consider that it is a standard practice in 8051 coding 
to assign symbolic names to registers, so you may need to take 
extra care to track register usage. 
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3.3 Translating "degenerate" 8051 source code 
This section discusses some "degenerate" 8051 programming 
practices in this section. We use this term for some constructs 
because they are very 8051-specific, developed over time by 
programmers to make the most of the available tools and the 8051 
architecture. 

Most of these don't translate mechanically very well. You can 
manually modify the code used in around this kind of code and get it 
to work, but our experience indicates that it is often better to it 
outright with maintainable, clear XA code. We'll show you how. 

3.3.1 "Here" relative addressing 
Some typical 8051 source code includes branch instructions 
resembling the following: 

JB testbitl,$+3 
JNB testbit2,somewhere 
RET i or whatever 

Early 8051 assemblers had limited symbolic capacity and 
encouraged such usage. This code should have been written 

JB testbitl,xyz 
JNB testbit2,somewhere 

xyz: 
RET 

The translator cannot perform this replacement mechanically, and 
the XA assembler will not accept "here" relative constructs except in 
specific cases, so we recommend that you correct the original 8051 
source code by adding labels. It is a good idea to search 8051 
source code for "$-" and "$+" and resolve all these before attempting 
translation. 

Note: The translator will not translate operands like ".+3" and ".-6". 
The period operator does not mean "here" in the XA assembly 
language, where it is reserved for bit addressing constructions, 
e.g., "SCR.PZ". The translator will emit an error message and leave 
dot-based operands alone. 

3.3.2 Branch to "Here" 
A very typical 8051 source code construction looks like this: 

JB eventbitl,$ 

Of course, at the cost of inventing a label name, this code could 
have been written 

wait: 
JB eventbitl,wait 
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Unlike the 8051, the XA cannot branch Oump) to an odd address. If 
an labeled instruction prospectively occurs at an odd address, the 
assembler inserts a NOP before any Jump target to place it at the 
next even address. Without a label, however, the assembler can't 
distinguish this instruction as a jump target, so the translator 
generates a label when this construction is found. The generated 
label is not very informative, appearing, for example, as follows: 

XA_ADJUST_0005: 
JB eventbitl,$ 

This guarantees that the assembler will even-align the target 
instruction. We recommend that you substitute a better label, at 
minimum; even better, consider replacing the "$" reference with the 
full label. 

3.3.3 Branch to "here+offset" or "here-offset" 
It's a common 8051 practice to use knowledge of the the length of 
instructions and the exact movement of the program counter during 
Instructions to use specify branches in conditionals to a place "so 
many bytes from here". Without careful documentation, the code Is 
often incomprehensible. For example, this 80C51 fragment maps 
alpha characters in the accumulator to upper case: 

CJNE A,#'a',$+3 
JC C_IN_l 
CJNE A, #'z'+l, $+3 
JNC C_IN_l 
ANL A,#llOlllllB 

RET 

This code won't translate. Even though it is obvious what this 
segment does, it is not immediately obvious how it does it. (See also 
"Compare Trees" in section 3.3.7.) To which instruction does the first 
CJNE branch if the branch is not taken? If you keep this 
construction, you'll have to figure this out. 

We recommended you recode this kind of construction in clear XA 
code, for example as follows: 

CMP . B R4L, # ' a ' 
BL EXIT 
CMP . B R4L, # ' z ' 
BG C_IN_EXIT 
AND.B R4L,#110lllllB 

EXIT: 
RET 
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3.3.4 In-line strings 
Some 8051 assembly programs follow the practice of embedding 
strings within code sequences that use them. Often this is done 
where a canned string is to be output to the console, but it may 
occur in other contexts, for example in a Tiny BASIC interpreter, 
where the BASIC commands are sought by successive code 
routines and the compare strings are embedded in the code. 

The print string case might look like the following: 

CALL 
DB 
NOP 

String_Out 
"This string goes to the console",O 

; or whatever 

The subroutine "String_Ouf' obtains the string address from the 
stack and outputs the string, in the process adjusting the stack value 
to that of the following instruction -here a RET. A trailing null is often 
used as a string delimiter. (Other schemes that delimit the string are 
possible, for example, a leading byte count, or setting the 80h bit of 
the final character, but these have no effect on the basic method.) 
The code at String_Out usually starts out as follows: 

String_Out: 
POP DPH 
POP 
MOV 
MOVC 

DPL 
a,#O 
A,@A+DPTR 

This method works on the 8051, and very efficiently, because it take 
advantage of the fact that the CALL places a full 16-bit address on 
the stack in a single instruction. Unfortunately, the 8051 has no 
corresponding 16-bit pop to anywhere else but the Program Counter 
(i.e., via the RET instruction). So the string pointer must be retrieved 
and placed in DPTR, the most useful place for it, one byte at a time. 

The transiator transforms this code to 

CALL String_Out 
DB "This string goes to the console",O 
NOP 

String_Out: 
POP.B DPH 
POP.B DPL 
MOV.B R4L, #0 
MOVC.B A, [A+dptr] 

which looks almost the same, but operates very differently. First, the 
XA CALL places a 16·bit return address on the stack in page 0 
mode. In native XA mode, CALL generates a 24-bit return address 
in two 16-bit stack cells. 

When it comes to retrieving the string address, there are no 8·bit 
stack operations on the XA, so an entire word is popped for each 
byte POP. If the XA is in page 0 mode, this code will remove two . 
16-bit words from the stack, one more than was pushed by the 
CALL, causing a likely fatal stack imbalance as well as incorrect 
data in DPTR. In native mode, this code will remove the two words 
pushed by the CALL, leaving the stack in balance, but DPTR will 
contain an incorrect value. In other words, this code won't work 
when translated. 

What to do? The answer depends on your application. 

If you are certain to use page 0 mode, the two byte POPs can be 
replaced by a single word POP. This will keep the stack balanced 
and retrieve the pOinter value correctly. The return will always be to 
an even address, so assure that It is the correct one by placing a 
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label on the first instruction following the string. Eliminate the special 
8051-equivalent "A+DPTR" form in favor of a straight indirect code 
memory fetch, in the process eliminating the need to clear the 
accumulator, and gaining an implicit autoincrement: 

CALL String_Out 
DB "This string goes to the console", a 

new_label: 
NOP 

String_Out: 
POP.W R6 
MOVC.B R4L,[R6+] 

Don't forget to remove the code that increments DPTR further below 
in the output subroutine. 

In XA native mode, on entry to String_Out, address bits 16 thru 23 
will be in a word on the top of the stack. In some simple cases you 
might be able to simply POP these and discard them, but resist the 
temptation, since this won't always work if your code moves. 

In general, it is best to remove this construction entirely so there will 
be no mode or address dependence: 

msgl: 
DB "This string goes to the console",O 

MOV R6,#msgl 
CALL String_Out 

String_Out: 
MOVC.B R4L,[R6+) 

When you make this conversion, you can forget about the alignment 
issue, i.e. the need for a dummy label on the code following the 
embedded string goes away. Of course, you'll have to invent some 
labels for the strings and place them somewhere out of the code flow. 

3.3.5 General In-line args 
We've seen strings placed in-line in 80C51 code in the previous 
section and these at least have the somewhat redeeming value of 
self·documentation. Imagine finding a code sequence like the 
following: 

STK_ER: 
CALL AES_ER 
DB OFH 

This is a bit mysterious, especially if the code following is of no 
particular relevance. To make a long story short, the value 'OFH' is 
an error number, and this routine handles stack errors in a Tiny 
Basic interpreter. The routine AES_ER could retrieve the error 
number by popping the presumptive return address into DPTR and 
doing a MOVC. 

This is a good example of the lengths to which 8051 programmers 
have gone to squeeze optimum performance from the architecture. 

Since there are many more registers available in the XA, your 
translated code couid simply move the er(or code into a free register 
before calling AES_ER. The error code could even be pushed on 
the stack: 

ADDC R7, #-2 
MOV.B [R7),#OFH 

without involving any registers. Whatever you do, we advise you to 
eliminate in-line arguments. 
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3.3.6 Program Resets 
It is not uncommon to see an 8051 program instruction: 

JMP OOOOH 

This will translate, but the result won't be correct since there's not an 
executable instruction at O. 

Better to use: 

RESET 

3.3.7 Compare trees 
The 8051 construction 

CJNE 
JC 
CJNE 
JNC 

A,#'a',$+3 
C_IN_l 
A,#'z'+1,$+3 
C_IN_l 

works because the CJNE instruction performs a subtract and sets 
the carry flag. This construction is the only way to "bin" numbers in 
the 8051 using the accumulator only. But it is often very difficult to 
understand. 

We recommend recoding to use successive XA compares and 
branches. 

Note that XA CJNE's don't include a form that allows comparing two 
register arguments, and in the XA you'll likely have more working 
values in registers. 

3.3.8 Code Table Fetches 
To do table look ups returning bytes, it's common to see 8051 code 
that does the following: 

MOV A,#index 
MOV DPTR,#TABLE_BASE 
MOVC A, [A+DPTR] 

or calculated 

A <-- indexed byte value 

This code sequence will work equally well on the XA, and may often 
simply be retained after translation, assuming you can live with the 
limitations: 

1. The table is in the current code page 

2. You must use the simulated DPTR (R6) and the simulated 
accumulator, R4L 

3. The table can only be 256 bytes long 

4. You can only conveniently fetch bytes this way 
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5. This minimal form uses three register bytes 

6. It's not easy to expand to use multiple indexes 

Using native XA code is the alternative. Let's see what that looks 
like in a similar case: 

MOV. W Rn, #index or calculated 
ADD. W Rn, #TABLE_BASE 
MOVC. B RnL, [Rn+] RnL <-- indexed byte value 

Note: we're re-using the same register for the sake of illustration, 
which you may not want to do in all cases. Using native code has 
the following advantages: 

• The table is in the current code page or through ES, which can 
point anywhere in code space. 

• You can use any registers for the index and table base. 

• You can create tables up to 64K bytes long, maybe longer in 
some situations. 

• You can fetch bytes or words, and the autoincrement makes 
longer fetches easy. 

• This minimal form uses only two register bytes. 

• it's easy to expand to use multiple indexes. 

3.3.9 USing the stack for vectored execution 
A sequence of 2 pushes followed by a "ref' instruction in 80C51 
source code means that a new execution address has been 
calculated by some means; the only way to get it into the 80C51 PC 
is through the stack, for example: 

push DPL 
push DPH 
ret 

This kind of construct is used when "JMP @A+DPTR" is insufficient, 
for example, in the case of large or very sparse jump tables. 
Although we've seen cases where the translated code works 
correctly, it is both inefficient and obscure. We recommend recoding 
to use jumps through an XA register. 

Threaded code requiring double-indirect jumps demands use of the 
single XA instruction to replace the mass of 80C51 code required to 
do this function. 
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3.4 Translating "untranslatable" 8051 source 
Before you use the translator to mechanically translate 8051 code, 
you should be aware of a number of 8051 constructions that may 
translate without error, but will simply not work. 

There are also some limitations on source code that the translator 
can handle, and it is best to manually or automatically scan your 
source code for these and eliminate them before attempting to use 
the translator. 

3.4.1 PSW bit addressing 
Some 8051 code takes advantage of the fact tnat PSW bits are 
bit-addressable. 

None of these bits are addressable on the XA. This fact should be 
mechanically demonstrated by the lack of BIT definitions in 
"XA.EQU" (or its equivalent in your environment), but it is probably 
better to take care of this kind of problem explicitly, since you'll have 
to make some code changes right off the bat if you've got PSW bit 
dependence. 

3.4.2 P2 addressing 
On the 80C51 it was common for applications with external RAM 
and ROM to use P2 addressing to address external RAM data 
memory. This trick provides a second i6-bit memory pointer, albeit 
an awkward one, for accessing external memory. Obviously, this 
extremity is not necessary for the XA, which provides plenty of 
memory pointer registers. We'll describe how to recognize this trick 
and what to do about it. 

Here's what you'll see in the 80C51 source code: 

A sixteen-bit pointer is divided into two bytes. The high-order byte is 
written to port P2, while the low-order byte is written to or maintained 
in RO or R1. This is followed by a MOVX to read or write a data byte 
through the 16-bit pOinter. 

(The trick: writes to the P2 SFR are gated to the external bus only 
when this doesn't interfere with P2 addessing external program 
memory. When the 8051 fetches an instruction from external 
program memory, the contents of SFR P2 are ignored -but 
retained- and the most significant byte of the program counter is 
written to the external P2 physical pins. At all other times, the SFR 
contents are output to the physical pins.) 

To translate these references into XA external data memory 
references: 

1. Chose a word pOinter register, XA-Rn. 

2. Write the value formerly written into P2 into RnH 

3. Write the value formerly written into RO or R1 into RnL 

4. Perform a MOVX indexed by XA-Rn 

To translate these references into plain old XA internal data 
references-assuming there's enough internal RAM available­
substitute a MOV for the MOVX. Note that the XA will do an external 
memory access if the address exceeds the on-chip space. 

3.4.3 R7 use 
Just a reminder: the XA Stack Pointer is maintained in the XA 
register R7; avoid the temptation to use R7 as a general register, 
except in the unusual case that your application doesn't use the XA 
stack. 
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3.5 Wrap-up 
We've designed the entire suite of XA Development Environment 
tools-translator, assembler, simulator/debugger-to make the 
process of translating 80C51 code to the XA to be as smooth as 
possible. 

With the exception in a few cases of the requirement to return to the 
original source code and re-translate-which occurs only when 
there's some systematic differences between the original source and 
the requirements of the tools-the job is little different from any other 
native development and debugging job. 

3.6 Trouble checklist 
In trouble? Sometimes it is easy to lose perspective when you're 
immersed in the details of a translation. Here's a checkist to help 
you: 
o Have you read the entire application note and studied the special 

topiCS? 

o Have you organized your files and file-naming system to the 
necessary degree? 

o Are you spending too much time understanding obscure 8051 
constructs that would be better recoded into native XA code? 

o Should your choice of Page 0 or compatability mode settings be 
reconsidered? 

o Are you using the simulator effectively? 

o Are you using the correct (up-to-date, variant-specific) include 
file (e.g., "XA-G3.equ")? 

o Are you attempting to access external memory on an 
development tool that only supports Single-chip operations? 

o Are you using the symbolic register-naming capabilities of the 
assembler to the best advantage to translate code, by translating 
functionality, then assigning a specific register? 

o Are you re-editing translated code too often? 

o Are you making piecemeal changes when systematic changes 
are required? 

o Would you be better off re-writing the application from scratch? 

o Do have a case so special you need help from Philips 
Applications? 

3.7 Final Comments 
We've seen that 80C51 code varies enormously with respect to 
quality, amount of documentation, dependence on architectural 
''tricks'', and so on. Each translation will have its own flavor. 
Ultimately, there's no substitute for experience, so we encourage to 
you start with simple cases, take them through the process to 
completion, and then start again with more difficult translation 
problems. 
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APPENDIX 1: STARTUP+INTERRUPT PROTOTYPES 
The following code is a complete template for software startup, interrupt vectors, and hardware initialization. Extracts from this code are used in 
several places in the text. You may obtain this code from the Philips BBS as file "XA-SKEL.ASM". 

$pagewidth 132t 

$listing_min 

;====================================================================== 

; General purpose skeleton assembly file for the XA-G3 

;====================================================================== 

This file may be used as a starting point to develop XA assembly 
language applications. Many definitions are included to simplify XA 
system initialization and to make the code more readable. The user 
will need to adjust the initialization values to suit a specific 
application. Some things to look at are: stack starting location, 
system configuration (8051 compatibility mode; page 0 mode, and 
peripheral timing), watchdog timer setup, bus configuration 
and timing, and port configuration (especially as regards bus 
operation) . 

The default setup shown gives an XA with 8051 compatibility turned 
off, page 0 mode on, peripheral timing set to clk/4, watchdog timer 
turned off, the external bus configured to a 16-bit data width with 20 
address lines, bus timing set to the longest cycles but a short ALE 
and minimum data hold, ports; configured for quasi-bidirectional 
mode except for the pins related to bus operation, which are set to 
push-pull. 

;====================================================================== 

Sinclude xa-g3.equ 

$nolist 

Model file for the XA-G3 
which defines all of the 
Special Function Registers 
and addressable bits. 

;====================================================================== 
Equates to for XA initialization and make setup code self-documenting: 

System Configuration register (SCR) : 
cmoff: equ $00 SCR value to turn off 8051 compatibility mode. 
cmon: equ $02 SCR value to turn on 8051 compatibility mode. 
pageOoff : equ $00 SCR value to turn off Page Zero mode. 
pageOon: equ SOl SCR value to turn on Page Zero mode. 
time4: equ sOO SCR value for timer rate clk / 4. 
time16: equ $04 SCR value for timer rate clk / 16. 
time64: equ $08 SCR value for timer rate clk / 64. 

; Watchdog timer configuration register (WDCON) : 
wdoff: equ sOO WDCON value to turn off watchdog timer. 
wdon: equ $04 WDCON value to turn on watchdog timer. 
wdpre64: equ $00 WDCON value for prescale 64 .. TCLK. 
wdpre128 : equ S20 WDCON value for prescale 128 .. TCLK. 
wdpre256: equ S40 WDCON value for prescale 256 .. TCLK. 
wdpre512: equ S60 WDCON value for presca1e 512 .. TCLK. 
wdpre1K: equ S80 WDCON value for prescale 1024 .. TCLK. 
wdpre2K: equ SaO WDCON value for prescale 2048 .. TCLK. 
wdpre4K: equ ScO WDCON value for prescale 4096 .. TCLK. 
wdpre8K: equ $eO WDCON value for prescale 8192 .. TCLK . 
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; Bus Configuration Register (BCR) 
waitd: equ $10 bcr value to activate Wait Disable. 
busd: equ $08 bcr value to activate Bus Disable. 
bus8: equ $00 bcr value to set 8-bit bus. 
busl6: equ $04 bcr value to set 16-bit bus. 
adr12: equ $00 bcr value to set 12 address lines. 
adr16: equ $01 bcr value to set 16 address lines. 
adr20: equ $02 bcr value to set 20 address lines. 

; Bus 
dw2: 
dw3: 
dw4: 
dw5: 
dwa2: 
dwa3: 
dwa4: 
dwa5: 
dr1 : 
dr2: 
dr3: 
dr4: 
dra2: 
dra3: 
dra4: 
draS: 

Timing Register 
equ $00 
equ $40 
equ $80 
equ $eO 
equ $00 
equ $10 
equ $20 
equ $30 
equ $00 
equ $04 
equ $08 
equ SOC 
equ $00 
equ $01 
equ $02 
equ $03 

; Bus Timing Register 
wrpuls1: equ $00 
wrpuls2: equ $80 
holdmin: equ $00 
holdlong: equ $40 
aleOS: equ $0 
ale1S: equ $1 
cr1: equ $00 
cr2: equ $04 
cr3: equ $08 
cr4: equ SOC 
cra2: equ $00 
cra3: equ $01 
cra4: equ $02 
craS: equ $03 

High (BTRH): 
data write cycle without ALE is clocks. 
data write cycle without ALE is clocks. 
data write cycle without ALE is 4 clocks. 
data write cycle without ALE is S clocks. 
data write cycle with ALE is clocks. 
data write cycle with ALE is clocks. 
data write cycle with ALE is clocks. 
data write cycle with ALE is clocks. 
data read cycle without ALE is 1 clock. 
data read cycle without ALE is 2 clocks. 
data read cycle without ALE is 3 clocks. 
data read cycle without ALE is 4 clocks. 
data read cycle with ALE is clocks. 
data read cycle with ALE is clocks. 
data read cycle with ALE is 4 clocks. 
data read cycle with ALE is clocks. 

Low (BTRL): 
write pulse width is 1 clock. 
write pulse width is 2 clocks. 
data hold time is minimum. 
data hold time is 1 clock. 
ALE width is O.S clocks. 
ALE width is 1.S clocks. 
data read cycle without ALE is clock. 
data read cycle 
data read cycle 
data read cycle 
data read cycle 
data read cycle 
data read cycle 
data read cycle 

without ALE is clocks. 
without ALE is clocks. 
without ALE is 4 clocks. 
with ALE is clocks. 
with ALE is 
with ALE is 
with ALE is 

clocks. 
clocks. 
clocks. 

; Port configuration registers (PnCFGA, PnCFGB): 
pcfga-pp: equ $ff port config reg a value for push-pull output. 
pcfgb-pp: equ $ff port config reg b value for push-pull output. 
pcfga_qb: equ $ff port config reg a value for quasi-bidirect 
pcfgb_qb: equ $00 port config reg b value for quasi-bidirect 
pcfga_od: equ $00 port config reg a value for open drain output. 
pcfgb_od: equ $00 port config reg b value for open drain output. 
pcfga_z: equ $00 port config reg a value for output off. 
pcfgb_z: equ $ff port config reg b value for output off. 
p1cfga_bus: equ $ff port1 config reg a=quasi, but A3-AO=push-pull. 
plcfgb_bus: equ $Of portl config reg b=quasi, but A3-AO=push-pull. 
p3cfga_bus: equ $ff port3 config reg a=quasi, but RD,WR=push-pull. 
p3cfgb-pus: equ $cO port3 config reg b=quasi, but RD,WR=push-pull. 

$list 
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i====================================================================== 

Start code space: 

org 0 
dw S8fOO, Start 
dw S8fOO, BreakVec 
dw $8fOO, TraceVec 
dw S8fOO, StkOvfVec 
dw $8fOO, DivOVec 
dw $8fOO, URetiVec 

org $40 
dw $8800, TrapOVec 
dw $8800, Trap1Vec 
dw $8800, Trap2Vec 
dw $8800, Trap3Vec 
dw $8800, Trap4Vec 
dw $8800, Trap5Vec 
dw $8800, Trap6Vec 
dw S8800, Trap7Vec 
dw $8800, Trap8Vec 
dw $8800, Trap9Vec 
dw S8800, Trap10Vec 
dw $8800, Trap11Vec 
dw $8800, Trap12Vec 
dw $8800, Trap13Vec 
dw $8800, Trap14Vec 
dw $8800, Trap15Vec 

org $80 
dw $8900, ExtIntOVec 
dw $8900, TimerOVec 
dw $8900, ExtInt1Vec 
dw $8900, Timer1Vec 
dw $8900, Timer2Vec 
org $90 
dw $8900, RxdOVec 
dw $8900, TxdOVec 
dw $8900, Rxd1Vec 
dw $8900, Txd1Vec 

org $100 
dw $8100, SWI1Vec 
dw $8200, SWI2Vec 
dw $8300, SWI3Vec 
dw $8400, SWI4Vec 
dw $8500, SWI5Vec 
dw $8600, SWI6Vec 
dw $8700, SWI7Vec 

org $0120 
BreakVec: 
TraceVec: 
StkOvfVec: 
DivOVec: 
URetiVec: 
TrapOVec: 
Trap1Vec: 
Trap2Vec: 
Trap3Vec: 
Trap4Vec: 
Trap5Vec: 
Trap6Vec: 
Trap7Vec: 
Trap8Vec: 
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System exception interrupts: 
Reset PSW, vector. 
breakpoint PSW, vector. 
trace PSW, vector. 
stack overflow PSW, vector. 
divide by ° PSW, vector. 
user reti PSW, vector. 

TRAP - 15 exceptions: 
trap PSW, vector. 
trap PSW, vector. 
trap 2 PSW, vector. 
trap 3 PSW, vector. 
trap 4 PSW, vector. 
trap PSW, vector. 
trap PSW, vector. 
trap PSW, vector. 
trap PSW, vector. 
trap PSW, vector. 
trap 10 PSW, vector. 
trap 11 PSW, vector. 
trap 12 PSW, vector. 
trap 13 PSW, vector. 
trap 14 PSW, vector. 
trap 15 PSW, vector. 

Event interrupts: 
external interrupt 0. 
timer ° interrupt. 
external interrupt 1. 
timer interrupt. 
timer 2 interrupt. 

Serial port ° receive. 
Serial port ° transmit. 
Serial port receive. 
Serial port transmit. 

Software interrupts: 
SWIl 
SWI2 
SWI3 
SWI4 
SWI5 
SWI6 
SWI7 

Start of executable code area. 
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Trap9Vec: 
TraplOVec: 
TrapllVec: 
Trap12Vec: 
Trap13Vec: 
Trap14Vec: 
TraplSVec: 
ExtlntOVec: 
TimerOvec: 
ExtlntlVec: 
TimerlVec: 
Timer2Vec: 
RxdOVec: 
TxdOVec: 
RxdlVec: 
TxdlVec: 
SWI1Vec: 
SWI2Vec: 
SW!3Vec: 
SWI4Vec: 
SWISVec: 
SWI6Vec: 
SWI7Vec: 

reti Location to route interrupts/exceptions with no specific 
handler code. This could prevent lockup particularly due 
to an unexpected exception such as stack overflow if 
there was no vector or handler whatsoever. 

i====================================================================== 
; Beginning of initialization code. 

Start: 
mov 

mov.b 

mov.b 
mov.b 
mov.b 

mov.b 
mov.b 

mov.b 

mov.b 
mov.b 
mov.b 
mov.b 
mov.b 
mov.b 
mov.b 
mov.b 

R7, #$100 

scr,#cmoff+pageOon+time4 

wdcon,#wdoff 
wfeedl,#$aS 
wfeed2,#$Sa 

bcr,#waitd+bus16+adr20 
btrh,#dwS+dwaS+dr4+draS 

initialize stack pointer. 

Set up chip configuration. 

Turn off watchdog timer. 
Feed watchdog: use new config 

Set up bus configuration. 
Config bus timing to longest 
bus cycles 

btrl,#wrpuls2+holdrnin+ale05+cr4+cra5 ; short ALE, min data 
hold. 

pOcfga,#pcfga-pp 
pOcfgb,#pcfgb-pp 
plcfga,#plcfga_bus 
picfgb,#picfgb_bus 
p2cfga,#pcfgb-pp 
p2cfgb,#pcfgb-pp 
p3cfga,#p3cfga_bus 
p3cfgb,#p3cfgb_bus 

Configure portO types for bus. 

Configure Pi for quasi-bidirec 
except A3 - AO are push-pull. 
Configure P2 types for bus. 

Configure P3 for quasi-bidirect 
except WR, RD are push-pull. 

End of initialization, begin user code. 

end 
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APPENDIX 2: COMPARE/BRANCH SUMMARY 
XA Compare/Branch Operations are summarized in the following tables: 

Compare op: (destination - source) 

Comparison: destination to source 

op CONDITION(S) JUMP IF ... ALTERNATE: JUMP IF ..• 

BG (CORZ) = 0 above, unsigned not below nor equal, unsigned 
Bl (CORZ)= 1 below or equal, unsigned not above, unsigned 
BCC C=O above or equal, unsigned not below, unsigned 
BCS C=1 below, unsigned not above nor equal, unsigned 

BGT ((N XOR V) OR Z) = 0 greater, signed not less or equal, signed 
BGE (N XORV)=O) greater or equal, signed not less, signed 
BlT (N XORV) = 1 less, signed not greater nor equal, signed 
BlE ((N XOR V) OR Z) = 1 less or equal. signed not greater, signed 

BCS C=1 carry 
BCC C=O not carry 
BEQ Z=1 zero equal 
BNE z=o not zero not equal 
BOV V=1 overflow 
BNV V=O not overflow 
BPl N=O not sign positive 
BMI N=1 sign negative 

XAFLAG MEANING 

"z" Zero Flag 
"C" Carry Flag 
"V" Overflow Flag 
"N" Sign Flag 

NOTE: XA PSW51.P is a bit-testable flag that indicates parity (=1 indicates even parity). 
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Following are some parallel examples of compare trees done first with 8051 CJNE operations, then with XA CJNE operations (directly 
translated), and XA CMP Instructions followed by branches. These examples are illustrative and not intended to be exhaustive 

EXAMPLE 1 

8051 CJNE 
CJNE 
JMP 

NOT_SAME: 

JC 
SRC_SMALLER: 

JMP DONE 
DEST_SMALLER: 

JMP DONE 
SAME: 

DONE: 

XA CJNE 
CJNE 
JMP 

NOT_SAME: 

BCS 
SRC_SMALLER: 

BR 

BR 
SAME: 

XACMP/Bxx 
CMP 
BEQ 

NOT_SAME: 

BCS 

SRC_SMALLER: 

BR 

BR 
SAME; 

DONE: 
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dest,src,NOT_SAME 

SAME 

DEST_SMALLER 

dest,src,NOT_SAME 
SAME 

DONE 

DONE 

dest, src 
SAME 

DONE 

DONE 

548 

branch if dest ¢ src 

dest source 

dest ¢ src 

dest > src 

dest < src 

dest source 

branch if dest ¢ src 
dest source 

dest *- src 

dest > src 

dest < src 

dest source 

compare dest to src 
branch if dest source 

branch if dest < src 

dest > src 

dest < src 

dest source 
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EXAMPLE 2 

8051 CJNE 
CJNE 
JMP 

NOT_SAME: 

JNC 
DEST_SMALLER: 

JMP 
SRC_SMALLER: 

JMP 
SAME: 

DONE: 

XACJNE 
CJNE 
JMP 

NOT_SAME: 

BCC 
DEST_SMALLER: 

BR 
SRC_SMALLER: 

BR 

SAME: 

DONE: 

XA CMP/Bxx 
CMP 
BEQ 

NOT_SAME: 

BCC 
DEST_SMALLER: 

BR 
SRC_SMALLER: 

BR DONE 
SAME: 

DONE: 
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dest,src,NOT_SAME 

SAME 

DONE 

DONE 

dest, src , NOT_SAME 

SAME 

DONE 

DONE 

dest, src 
SAME 

DONE 
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branch if dest ¢ src 

dest source 

dest ;c src 

dest < src 

dest > src 

dest source 

branch if dest ;c src 

dest source 

dest ¢ src 

dest < src 

dest > src 

dest source 

compare dest to src 
branch if dest source 

branch if dest < src 

dest < src 

dest > src 

dest source 
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EXAMPLE 3 

8051 CJNE 
CJNE 
JC 

GTE: 

JMP 
DEST_SMALLER: 

DONE: 

XACJNE 
CJNE 
BCS 

GTE: 

BR 
DEST_SMALLER: 

DONE: 

XACMP/Bxx 

GTE: 

eMP 
BCS 

BR 
DEST_SMALLER: 

DONE: 
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dest,src,GTE 
DEST_SMALLER 

DONE 

dest, src, NOT_SAME 
DEST_SMALLER 

DONE 

dest, src 
DEST_SMALLER 

DONE 

550 

branch if dest * src 
dest¢src; branch if dest < src 

dest >= src 

dest < src 

branch if dest ¢ src 
dest¢src; branch if dest < src 

dest >= src 

dest < src 

compare dest to src 
branch if dest < src 

dest >= src 

dest < src 
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EXAMPLE 4 

8051 
CJNE dest,src,LTE branch if dest :;o!: src 
JNC SRC_SMALLER dest:;o!:srci branch if dest > src 

LTE: 
dest <= src 

JM DONE 
SRC_ SMALLER: 

dest > src 
DONE: 

XA CJNE 
CJNE dest,src,LTE branch if dest :;o!: src 
BG SRC_SMALLER dest:;o!:src; branch if dest > src 

LTE: 
dest <= src 

BR DONE 
SRC_SMALLER: 

dest >src 
DONE: 

XACMP/Bxx 
CMP dest, src compare dest to src 
BG SRC_SMALLER branch if dest > src 

LTE: 

dest <= src 
BR DONE 

SRC_SMALLER: 

c1.est > src 
DONE: 
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Author: Greg Goodhue, Microcontrol/er Product Planning, Philips Semiconductors, Sunnyvale, CA 

Implementing an algorithm to reverse the bits within a data byte Is 
notorious for producing inefficient code on most processors. This 
function can serve as a case study of how to trade off code size for 
performance and shows some of the methods that might be 
employed in similar types of data conversion situations. 

Here four solutions are shown to implement the byte reverse 
function. The first version (Listing 1) uses a very simple approach. 
The result is produced by shifting a bit out of the Initial data value 
and shifting the same bit back into the result value. This is repeated 
in a loop for each bit. Since the two shift operations are done In 
opposite directions, the result value is a bit reversal of the initial 
value. This version is the smallest in size, using only 11 bytes. 
However, it takes 128 XA clock periods to complete. 

Listing 2 uses the same method as the first, but "unfolds" the loop to 
eliminate the counting and branching overhead. What is left are the 
instructions from the inside of the loop repeated eight times. 
Unfolding the loop gives faster execution, 64 clocks in this case. The 
code size grows somewhat to 16 bytes. 

The third method (Listing 3) uses a partial lookup table to reverse 
one nibble at a time and assemble the complete byte from two 
lookup values. In a reversed byte, the upper nibble of the result 
consists of the reversed bits of the lower nibble of the initial value, 

300 

250 

200 

150 

100 

50 

LISTING 1 LISTING 2 

while the lower nibble of the result consists of the reversed bits of 
the upper nibble of the Initial value. The code example uses each 
nibble of the Initial value as an Index Into the lookup table, which 
provides a nibble of result data. The two partial results are then 
combined to produce the complete result. This version uses 42 
bytes for both the code and the lookup table, but requires only 42 
XA clock periods to complete. 

The final method shown (listing 4) uses a full lookup table to 
produce the entire result very quickly. The initial data byte is used as 
an Index into the lookup table and the value from the table is the 
complete result byte. This method produces the result in only 12 XA 
clocks. However, the code pius the lookup table occupies a fairly 
large amount of code space: 264 bytes. 

CONCLUSION 
These examples show how code size may often be traded for 
execution speed, or execution speed for code size, depending on an 
application's requirements. This is summarized in Figure 1. Other 
solutions to this particular algorithm are certainly possible and other 
algorithms will likely have different types of solutions with different 
resulting tradeoffs. 

LISTING 3 LISTING 4 

SU00819 

Figure 1. Tradeoff of code size to performance. 
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LISTING 1 
Listing 1) Smallest solution in terms of code space: 

Enter with value to be reversed in ROL, result in ROH. 
This works by shifting the register out in one direction and back in 
the other. 

loop: 
mov 
rrc 

count, #8 
rOI,#l 

rIc rOh,#l 
djnz count, loop 

total time = 8*(4+4) + 7*8 + 3+5 

LISTING 2 

128 clocks 

elks 
elks 

4 elks 
8/5 elks 

Listing 2) Solution 1 with the loop "unfolded". 
Enter with value to be reversed in ROL, result in ROH. 
This works by shifting the register out in one direction 
the other. 

rre rOI, #1 elks 
rIc rOh,#l elks 
rrc rOI,#l elks 
rIc rOh, #1 elks 
rrc rOI,#l elks 
rIc rOh, #1 elks 
rrc rOI,#l elks 
rIc rOh,#l elks 
rrc rOl,#1 elks 
rIc rOh,#l 4 elks 
rrc rOI, #1 4 elks 
rIc rOh, #1 elks 
rrc rOI,#l elks 
rIc rOh,#l elks 
rrc rOl,#l 4 elks 
rIc rOh,#l 4 elks 

total time = 8*(4+4) = 64 clocks 
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LISTING 3 

; 

Listing 3) Fastest solution (without using a 256 byte lookup table): 
Enter with value to reverse in R4L, result returned in ROL. 

This works by reversing each nibble using a look up table and reversing 
the two nibbles separately as part of the procedure. 

this is 

mov r6,#LUT1 3 elks 
push 
and 
move 
mov 
rr 
pop 

and 
rr 
move 
or 

a nibble 

r4l 
r4l,#$Of 
a, [a+dptr) 
rOl,r4l 
rOl,#4 
r4l 
r4l,#$fO 
r4l,#4 
a, [a+dptr) 
rOl,r4l 

reverse lookup table: 

elks 
elks 
elks 
elks 
elks 
elks 
elks 
elks 
elks 
elks 

LUT1: db $00 0000 => 0000 
db $08 0001 => 1000 
db $04 0010 => 0100 
db SOC 0011 => 1100 
db $02 0100 => 0010 
db $OA 0101 => 1010 
db $06 0110 => 0110 
db $OE 0111 => 1110 
db $01 1000 => 0001 
db $09 1001 => 1001 
db $05 1010 => 0101 
db SOD 1011 => 1101 
db $03 1100 0011 
db SOB 1101 => 1011 
db $07 1110 => 0111 
db $OF 1111 => 1111 

total time = 42 clocks 

LISTING 4 
Listing 4) Fastest solution (using a 256 byte lookup table): 

Enter with value to reverse in R4L, result returned in ROL. 
mov r6,#LUT2 elks 
move 
mov 

a, [a+dptr] 
rOl, r4l 

; this is a byte reverse lookup table: 
LUT2: 

db 
db 
db 
db 

total 12 clocks 

$00 
$80 
$40 

$CO 

elks 
elks 

00000000 => 00000000 
00000001 => 10000000 
00000010 => 01000000 
00000011 => 11000000 
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Implementing fuzzy logic control with the XA AN710 

Author: Zhimin Ding 

ABSTRACT 
Most control applications involve the specification of a relationship 
between sensor signals and actuator outputs. Fuzzy logic provides 
an intuitive way to accomplish that. It allows the user to use 
linguistic rules to specify a nonlinear mapping between sensor 
signals and actuator outputs, thus provide a framework for 
programing an embedded system. Using a multi-joint robot system 
as a testbed, we implemented fuzzy logic on an 8051 compatible 
16-bit microcontroller-the XA. The robot controlled by the XA 
running the fuzzy logic algorithm is able to carry out a goal-directed 
motor sequencing behavior. An 8XC552 is also used to directly 
interface with the robot and communicate with the XA through 12C. 
In addition to carrying out AOIPWM conversions, the '552 also 
implements multiple loops of linear feedback for servo positioning 
and compliance control. This application note will demonstrate the 
implementation of Fuzzy Logic in an embedded control solution 
using the Philips XA microcontroller. 

INTRODUCTION 
Fuzzy logic was originally created as a mathematical model of 
human thought. It is said that fuzzy logic is able to capture the 
"vagueness" and "inexactness" of the concepts that we use for 
reasoning. In the past few decades or so, the main area of success 
with fuzzy logic has been in industry control. The application of fuzzy 
logic allows us to specify the relationship between sensor inputs and 
actuator outputs using "if...then ... " type of linguistic rules. A fuzzy 
logic algorithm would be able to translate or interpolate these rules 
into a nonlinear mapping between sensor input Signals and actuator 
outputs for feedback control [1]. Fuzzy logic makes it easy for a 
human designer to fine tune a control system through trial and error. 
Together with some other approaches such as artificial neural 
networks, genetic algorithm, etc., fuzzy logic is considered a useful 
tool for non-model based control system design 1. 

There are a number of software products available that would allow 
the user to design a fuzzy controller interactively with a special 
graphic user interface (GUI). These tools would usually generate C 
codes which can to be modified to fit into a user target platform. If 
you have to determine the parameters of your fuzzy logic control 
system on trial-and-error basis, it is certainly desirable to have some 
kind of graphic user interface so that you do not have to go into your 
code and make modification here and there. 

As the number of inputs to a control system increases, the number 
of potential useful fuzzy rules increases dramatically and it becomes 
increasingly desirable to use some kind of automated method for 
rule synthesizing. There are a variety of such methods for doing this 
and active research is being carried out in this area currently. For 
example, the combination of fuzzy logic with artificial neural 

networks, genetic algorithm and learning automata have proved to 
be effective in many applications. 

In this application note, I will demonstrate the use of fuzzy logic in 
the XA. With a two-joint robot system as the testbed, I will discuss 
how to use fuzzy logic to tackle a specific control problem as well as 
some general programming issues related to the XA. Instead of 
exploring all the options that are out there, I will focus on one 
effective solution in this application note to get the readers quickly 
acquainted with the technique. 

ROBUSTCONTROLOFA"BUG~UKE 

ROBOT LEG 
Figure 1 is a diagram of the robot leg. It is powered by two 
gearmotors and it has a passive foot-like structure at the end of the 
distal segment. We call the distal segment the "tibia", and the 
proximal segment the "femur" after animals. The behavioral purpose 
of this robot is to grab an object within the space it can reach. The 
location of the object is unknown to the robot and changing 
periodically. This is very similar to a situation when an insect walking 
over a very rough terrain is trying to find an object (such as a tree 
branch or twig) to grab onto as a foothold. In this deSign, range 
senSing such as vision is not involved in the search of the object, as 
is the case with insects. Insects have developed a behavior shown 
in Figure 2 where they use their legs as probes to actively sense 
where the object is and then establish a foothold onto it through a 
Simple reflex [2]. The active senSing reflex makes the 
"substrate-finding" behavior quite robust. 

The robot is equipped with two potentiometers which give us angular 
position readings for the two joints. On the two segments of the leg, 
strain gauges are pasted as force or touch sensors. The two strain 
gauges that are pasted near the junction of each actuator and the 
corresponding leg segment give us indications of the output torque 
of the two actuators. Three additional strain gauges are pasted 
along the distal segment (the tibia). These strain gauge readings 
can be decoded to determine where the touch between the leg and 
a external object has occurred. One of the strain gauges is pasted at 
the foot ankle region to signal foothold. 

Our purpose of controlling this leg is to replicate the 
"substrate-finding" behavior described above in a robust and reliable 
fashion (Figure 2). The challenge of this control problem lies in the 
fact that the pOSition and touch sensors do not passively tell where 
the object is. The robot has to carry out active search movement to 
find out where the object is. In such a case, there is no way to 
linearly combine the sensor signals (or their derivatives and 
integrations) to produce the desired motor movement as in PIO 
control. It is therefore an ideal application for us to try out fuzzy 
logic. 

1. Non-model based design is a design that does not depend on a mathematical description of the plant dynamics. 
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BUILT IN POTENTIOMETERS 
(ANGLE SENSOR) 

"FEMUR" 

o r--------, 
I I 
I I 
I I 
I I 
I I 
L.~--r----.J 

~ / 

0 -m.m-J-, _____ ~ __ ~.J 

SERVO MOTOR 1 

STRAIN GAUGES 
(STRESS SENSOR) 

TOUCH SENSOR 2 

---- TOUCH SENSOR 1 

SIGN OF THE JOINT ANGLES 

FOOT STRESS 

Figure 1. A two-Joint robot leg. 
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For each axis, there is a potentiometer for angle sensing and a pair of strain gauges to measure the output torque. Additionally, there are three 
strain gauges on the tibia to measure the stress caused by touch or foot load. A third servo can be added to this leg to make It three degrees of 
freedom. . 
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a. 

\ 

b. 

SUOOB04 

Figure 2. Digitized robot leg movement trajectories from the "substrate-finding" behavior. 
a. The leg encounters an object during the downward sweep of a search cycle; once contact is made, the leg slips up until it just clears 

the object and then comes back down to establish a foothold. 
b. The leg encounters the object during the upward sweep of a search cycle. This is a typical nonlinear control problem because one 

could not linearly combine the sensor signals and get the actuator output values as shown in the figure. 
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OUTLINE OF OUR APPROACH 
As illustrated in Figure 3, two Philips microcontrollers on an 12C-bus 
are used to control this robot. Firstly, an 8-bit 8XC552 
microcontroller is used to Interface directly with the robot. In addition 
to carrying out the necessary AID and PWM functions for sensor 
and actuator interface, this 8-bit microcontroller also implements 
position and force feedback to shape the actuator dynamics so It 
becomes a position servo with proper compliance and damping 
properties. This is very important because the compliance in the 
actuators allows the robot to carry out contact based maneuvers 
stably and reliably. Together with the sensors and actuators of the 
robot leg, the 8XC552 implements ''virtual muscles" as seen from 
the microcontroller at the upper level, which is the 16-bit XA 
microcontroller running the fuzzy logic algorithm. I chose an XA as 

VDD 

(NC) XTAL2 VDD (NC) XTAL2 

ClK XTAl1 ClK XTAl1 

VDD 

PWMO 

PWM1 

XA VDD 
'552 ADCO 

2.2Kx2 
ADC1 

ADC2 

PO.O/SCl P1.61SCl ADC3 

ADC4 

PO.21SDA P1.7/SDA ADCS 

the fuzzy logic engine because of its higher arithmetics capability: 
The XA reads "crisp" sensor values from the 8-bit microcontroller 
through 12C interface and converts them into fuzzy membership 
grades. These values are evaluated by a set of fuzzy rules 
implemented in the XA in order to generate appropriate motor 
commands which are sent back to the '552 through 12C. With 12C, 
we can easily put multiple robot legs in the control system as shown 
in Figure 3. For example, we can put together a six-legged hexapod 
robot. 

In this application, the use of fuzzy logic and XA is not intended to 
replace low level linear, classical control carried out with the 
8XC552. Instead, I use fuzzy logic in an augmented and distributed 
fashion. Fuzzy logic in XA and linear classical control in '552 
function in parallel and contribute to different aspects of the control. 

VDD 

I 
I 
I 
I 
I 
I 
I 
I 

ADCS 14----.,,-< I-t------, 

Vss vss 

ADC7 

(PORTS) 

AV ss 

AVref-

I 1-= 
I I r-----"l --
~-t--1 (---------il------Ji 1 
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I 
II 

MORE LEGS I 

Figure 3. A diagram of the robot control circuit. 
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We use two microcontrollers to Implement two levels of control. A 8XC552 is used to directly interface with the robot and carry out actuator level 
control feedback. The XA is used here to carry out fuzzy logic algorithms to control the leg movement. The two microcontrollers communicate 
with each other through an 12C bus. With 12C, we can easily put more than one robot leg in the same system. 
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THE IMPLEMENTATION OF FUZZY LOGIC 
ALGORITHM IN XA 
In this section, I will explain some fuzzy logic related programming 
issues. I first explain the algorithm itself by going through the basic 
steps and then discuss how to implement the algorithm in the XA. 

The first thing to do in a fuzzy logic control system is to translate a 
real sensor signal value into fuzzy membership grades. This 
procedure is called fuzzification. For example, if we have a sensor 
input value x within the range of 0 to 255, we want to find out to 
what extent is it "big" or "medium" or "small". We can assign three 
functions corresponding to "big", "medium" and "small" to do the 
translation. Those are called membership functions. As shown in 
Figure 4, if x = 10, then "x is small" has a truth value of 0.9; "x is 
medium" has a truth value of 0.2; "x is big" has a truth value of 0.1. 
In other words, we are mapping the value of x = 10 into a triplet (0.9, 
0.2,0.1). 

TRUTH VALUE 

X= 10 

SU00806 

Figure 4. An illustration of the fuzzy membership functions. 
For each xin the range of 0 to 255 (e.g., x=10), we can describe it 
as degrees of being "small", "medium" and "big" by using the three 
fuzzy membership functions. 

The next thing to do at this point is to evaluate rules and find out 
their strengths. Suppose we have these three rules that involve 
inputx. 

• if x is small then z is low 
• if x is medium then z is high 
• if x is high then z is low 

In this case, there is one "if ... " part in each rule, the strength of the 
rule is simply the truthfulness of the "if ... " part, which is called the 
antecedent. The truth values of the above three rules are 0.9, 0.2, 
and 0.1, respectively. If there are two or more antecedents, as In 

"if x is small and y is big", the strength of the rule is the smallest of 
the truthfulness of the antecedents (if the relationship between the 
two antecedents is an "or" instead of an "and", we would use the 
largest value of the truthfulness of the antecedents). 

The last thing is to find out is the real value of the output z from rule 
evaluation. Before we proceed, we need to define the membership 
functions for z. For example, we can simply assign z = 5 to ''z is low" 
and z = 200 to ''z is high". These membership functions are Impulse 
functions and they are generally called "Singletons". 

To find out the precise (crisp) value of z according to the above 
three rules, we simply calculate the weighted average of 
z-singletons according to the strength of the three rules, therefore, 

zI = 5 * 0.9 + 200 * 0.2 + 5 * 0.1 == 38 
x=10 0.9 + 0.2 + 0.1 (1) 

What we have accomplished so far is to map x= 1 0 to z= 38. 
According to the three rules, we can map every point of x in range 
0-255 to some value of z as shown in Figure 5. Now the reader 
might be wondering what difference does it make if we just 
implement a look-up table to describe the relationship in Figure 5. 
The answer is, for a one-dimensional sensor input, you can 
implement exactly the same sensor to actuator mapping with a table 
and possibly save code complexity and memory space. It is, 
however, not so obvious how to implement multi-dimensional sensor 
to actuator mapping with tables. Furthermore, the fuzzy logic 
method allows the user to tune the system more easily. For 
example, in order to change a mapping relationship between input 
and output, for most people, it is more intuitive to change a set of 
linguistic rules instead of an array of parameters in a table.2 

z 

255 

255 X 

SUOOB07 

Figure 5. The curve in this figure represent a mapping 
relationship from xto z. 

This relationship is interpolated from the above three fuzzy rules. 

2. An important point has to be stressed now before we go on. A mapping relationship implemented by fuzzy logic is no different from that Implemented by a mathematical function. 
Such a relationship is clearly defined and fully deterministic. Once the input membership functions are defined. the process of translating rules into mapping functions is strictly conventional 
algebra. The buzz word "fuzzy" is thus very misleading. 
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To implement the above algorithm In an XA, we need to consider the following issues. Since the membership functions do not usually change at 
run time, I use arrays stored in the code memory space to represent input membership functions. With this approach, I will not lose membership 
function information during power down. and also I can get membership functions of any shape. An easy way to choose the array size 
(dimension) for membership functions is to let the array size equal to the resolution of the AD conversion. For example, with an 8-bit AJD input, I 
use arrays of size 256 to represent input membership functions. Furthermore, I also use 8-bit unsigned integers to represent the membership 
grades so that they go from 0 to 255 instead of 0 to 1. Suppose we have multiple input channels and for each channel, we divide the domain 
into a number of clusters; the total number membership function would be the number of input channels times the number of clusters in each 
input. For the example in Figure 4, we need three arrays or membership functions to characterize input x. In our robot application, we need a 
total of 40 membership function arrays and that takes about 10K code memory space.3 

The following is an example that shows how to perform ''fuzzification''. It plugs input value x into the membership function array that stands for "x 
is small". The XA instruction move A, [A+DPTR] (code memory access with indirect addressing with an offset) is used to access membership 
function data. this is an 80C51 compatible instruction. In XA, A is mapped to R4L and DPTR is mapped to R6. 

x 

antecedent 

db 

data 
data 

Sff, $fd, Sf8, Sf 0, 

10h 
llh 

;Membership function for "x is small". 

:Input value x. 
;The resultant truth value of the antecedent: "x is small". 

;To find out the truth value of x being "small": 
mov.w r6,#x_small ;Indirect pointer. 
mov.b r4l,x ;Offset. 
movc A, [A+DPTRj ;Code memory access. 
mov antecedent,r41 ;Return the result. 

Once we have an appropriate way to implement membership functions, it is fairly straightforward to evaluate rules. In case there are multiple 
antecedents in each rule, however, we need to additionally implement some kind of min() or max() function to evaluate "and", "or" relationships. 
The following is a code example that implements the minO function for fuzzy rule evaluation 

num_antecedents equ 

antecedents data 

data 

4 

20h 

30h 

;Number of antecedents in a rule, e.g. 4. 

;Truth values of the antecedents. 

;The resultant truth value of the rule. 

;To evaluate the truth value of the rule with multiple antecedents: 

loop: 

proceed: 

mov.w 

mov.b 
cmp 
bl 
mov.b 
add 
cmp 
bcs 

rO,#antecedents :Index to antecedents. 

rll, [rO+) 
rll, [rOj 
proceed 
rll, [rOj 
rO, #1 
rO,#antecedents+num_antecedents 
loop ; Loop "num_antecedents" times. 

3. If cost of memory space is a concem, there are other ways to implement input membership functions. For example, we can specify a trapezoid membership function with a few key 
parameters Instead of a 256 dimensional array. We have to then write a subroutine to map inputs into fuzzy membership grades according to these parameters. 
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The last part of fuzzy logic loop. the "defuzzification" process is most computationally expensive. As shown in equation (1). we need to perform 
a series of 8x8 to 16-bit multiplications and a 32x16 to 16 division to get one final output value. This is to assume that our sensor values and 
membership grades have 8-bit resolution. We need to use 32-bit (long) integer to represent the numerator of equation (1) and 16-bit integer to 
represent the denominator. The following is an example of the defuzzification code segment. 

equ ;Number of rules, e.g. 4. 

data 10h ;The truth value of the rules (an array) . 

singletons data 20h ;The output singleton functions (an array); 

data 21h ;The crisp output value. 

;To perform the defuzzification process 

mov.w 

mov.b 

mov.w 

mov.w 

mov.w 

loop: mov.b 

mov.b 

mulu.b 

add.w 

addc.w 

add.w 

add.w 

cmp 

bcs 

divu.d r4, r6 

mov.w z, r4 

rO,#O 

r1h,#O 

r4,#O 

r5,#O 

r6,#O 

;Index to the rules. 

;Clear the high order bits of r1. 

;Initialize low order bits of the numerator. 

;Initialize high order bits of the numerator. 

;Initialize the denominator. 

r1l, [rO+truth_rules] 

r21, [rO+singletons] 

r2l,rll ;8x8=16 multiplication. 

r4,r2 ;r4 stores the numerator. 

r5,#O ;add carry to higher bits. 

r6,r1 ;calculate the denominator. 

rO,#l ;increment the index. 

loop 

;32/16 -> 16 unsigned division. 

The above code segments serve as examples to illustrate how to efficiently use the XA instruction to perform the basic fuzzy logic operation. 
One would still have to decide on how to encode rules and control the timing of the peripheral access. Most fuzzy logic controllers sample 
sensor inputs and update actuator outputs synchronously at fix time intervals. The XA provides a number of internal timers which can be used 
to control the timing of peripheral access. 
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IMPLEMENTATION OF A COMPLIANT ROBOT 
ACTUATOR THROUGH SENSORY FEEDBACK IN 
AN 8XC552 
As stated earlier, we intend to use fuzzy logic in an augmented 
fashion. In this application, the low level servo control can still be 

. handled more easily with conventional linear feedback. In this 
section, we focus on these low level implementation issues. 
Specifically, we will discuss the Interface between the 8XC552 and 
the sensors and actuators of the robot leg. 

Most robot actuators use position feedback to implement a 
closed-loop position servo. In order to achieve position accuracy, 
those actuators are usually quite rigid. Although robots powered by 
this kind of servo are usually able to make unconstrained movement 
smoothly and quickly, they become unstable and behave erratically 
upon contact with external objects [3]. With sufficient power, this 
kind of robot could also be dangerous to human operators and 
things around it. It is therefore often necessary to avoid any contact 
situation. Animal and human muscles, on the other hand, are very 
versatile due to the fact that they are usually compliant and more 
importantly, the compliance can be actively controlled. 

Figure 6 illustrates the implementation of our robot actuator as a 
"virtual muscle". I use a DC gearmotor as the core. Each motor is 
integrated with a position sensor (potentiometer) and a feedback 
circuit that acts as a position servo. Since the gear motor is 
non-backdrivable, without the additional circuitry described below, 
the servo system is quite rigid, that is to say, the output angle is 
determined by the input command signal, and largely unaffected by 
external torques acting on the joint. To achieve actuator properties 
that resemble those of muscles, I add additional feedback pathways 
through an 8XC552 to allow us to control compliance and damping 

properties. The torque signal from strain gauges is fed back to the 
position command signal to form a compliance feedback loop. The 
gain of the compliance loop determines the extent to which the 
servo moves In response to external forces, thus establishing 
compliant properties (see Figure 6, the outer loop). The dynamic 
properties of the integrated sensor-actuator such as the compliance 
and the damping ratio can be controlled by adjusting the variable 
gains and low pass filter time constants in the compliance feedback 
loop. With compliant robot joint actuators, we effectively added a 
cushion between the robot and the objects it is in contact with and 
therefore get a significant improvement in contact stability [3], [4]. 
With an adjustable joint compliance, the robot can serve as both a 
contact based probe and an effector that is capable of exerting 
forces and maintaining positional accuracy depending on the 
behavior context. 

The 8XC552 carries out both position and force feedback. The 
feedback loop is implemented in a timer interrupt service routine that 
is called every 0.1 ms. After the 8XC552 completes the sensory 
feedback function for the tuning of a compliant actuator dynamics, it 
stores copies of all the sensor values in a buffer for access by the XA 
through 12C to control the output angle and compliance of the robot 
joint. The 8XC552 thus implements a compliant actuator with 
electronically controllable compliance and presents itself as an 12C 
slave to the XA. 

Notice that the feedback pathways implemented thus far are strictly 
linear feedback loops that are intended for actuator control. This part 
of the feedback can be done easily without fuzzy logic4. On the 
other hand, the control at this level has to be done in hard real time 
to ensure dynamic stability. 

INNER LOOP (POSITION SERVO) 

OUTER LOOP (COMPLIANCE & DAMPING) 

SU00805 

Figure 6. An integrated sensor-actuator assembly for compliant robot joint actuation. 
The active compliance is accomplished through stress feedback. 

4. It is possible to use fuzzy logic to make an exact linear feedback loop. but this approach would seem counter·productive. 
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Rule base generation 
In this application, fuzzy logic is used to control the robot at higher 
level, that is, the coordination between jOints in order to carry out 
meaningful motion sequence. As mentioned earlier, the main 
advantage of fuzzy logic is that the user can design a control system 
based on intuition. There are, therefore, not many rules to follow to 
generate the fuzzy logic rules. In this section, we discuss a few 
techniques that we used in this specific application. 

In addition to the strain and position sensor inputs mentioned earlier, 
a software generated timer signal implemented in XA is fed to the 
fuzzy evaluator internally and this counts as another sensory input. 
The timer counts from 0 to 255 repeatedly and they were clustered 
into three fuzzy sets corresponding to the three phases of the leg 
searching cycle, namely "start", "probe" and "retracf'. This is 
necessary because the control of the leg involves the generation of 
rhythmic movement in the absence of any specific sensor inputs. 
The rhythmic movement ensures that the robot will engage in active 
searching when it is not in touch with any object. The timer input 
functions as a "central pattern generator". 

In addition to the soft timer, there are a total of 7 sensor inputs to 
this system. Each of sensor values are clustered into 5 clusters. For 
example, a quantity ranging from 0 to 255 can be characterized by 
membership functions corresponding to, ''very small", "small", 
"medium", "big", "very big". For each output, there could be as much 
as 57 * 3 = 234375 rules. It is obviously impossible for us to 
manually try all the rules on ''trial-and-error'' basis. Notice that for 
this system, the signals detected from the various sensors are highly 
correlated. For example, when touch sensor 1 is Signaling positive, 
touch sensor 2 is likely to signal positive also (but not vice versa). It 
is therefore unnecessary to try a rule like 

.IF touch sensor 1 positive-big 
AND touch sensor 2 negative-big 
AND .. . 
THEN .. . 

because this situation does not exist. 

By this analysis we can reduce the number of rules significantly. 
Here are a set of rules that are used to give the performance shown 
in Figure 2. Additional rules can be put in to make the leg more 
versatile. 

.IF tibia stress is zero 
AND femur stress is zero 
AND timer is start 
THEN femur output is negative-small 
AND tibia output is positive-big . 

. IF tibia stress is zero 
AND femur stress is zero 
AND timer is probe 
THEN femur output is positive-big 
AND tibia output is negative-big . 

. IF tibia stress is zero 
AND femur stress is zero 
AND timer is retract 
THEN femur output is negative-big 
AND tibia output is negative-big. 

(* The above three rules are responsible for the generation of the 
three phased search pattern when the leg is not in touch of 
anything). 
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.IF touch sensor 1 is negative-small 
THEN femur output is negative-big 
AND tibia output is negative-big. 

.IF touch sensor 2 is negative-small 
THEN femur output is negative-big 
AND tibia output is negative-big. 

.IF tibia stress is negative-small 
THEN femur output is negative-big 
AND tibia output is negative-big. 

.IF touch sensor 1 is positive-small 
THEN femur output is negative-big 
AND tibia output is zero. 

.IF touch sensor 2 is positive-small 
THEN femur output is negative-big 
AND tibia output is zero. 

.IF tibia stress is positive-small 
THEN femur output is negative-big 
AND tibia output is zero. 

.IF femur angle is negative-big 
and tibia angle is negative-big 
THEN tibia output is positive-big. 

(* The above rules are responsible for the retract movement when 
the leg is in touch with an object in a way as shown in Figure 2.) 

.IF foot stress is negative-small 
THEN femur output is positive-small 
AND tibia output is negative-small. 

(* This rule is responsible for the foot to keep in contact with an 
object by pressing onto it.) 

Figure 2 gives the digitized trajectory plots of the "substrate finding" 
behavior performed by our robot leg. When the robot leg is not in 
contact with anything. it carries out a three-phased searching 
movement. As soon as the leg touches an object. it would generate 
reflexes as shown in Figure 2. For example, in Figure 2a, the tibia 
would press against the object while Slipping upwards. As soon as 
the tibia just clears the object, the robot will reposition the foot on to 
the object and keep a pressure. If the substrate moves, the leg is 
able to adjust promptly to maintain contact with the substrate due to 
the jOint compliance. Even though there is no visual guidance, with 
active sensing, the robot leg is able to find and grab onto any firm 
object quite reliably. 
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DISCUSSIONS 
The feedback pathways in a control system can often be 
categorized into two classes, linear (e.g., PID control) and nonlinear, 
and they often serve quite different purposes. In this application, the 
linear feedback control loops are implemented to "tune" the robot 
joint dynamics in some desired fashion, Le., position servo with 
some compliance, whereas the nonlinear feedback control reflexes 
are used to control the coordination between multiple robot joints in 
order to aChieve a more concrete objective such as the requirement 
for the robot to grab and hold onto an object. The linear feedback 
algorithms are usually straightforward to implement but they 
generally have high speed requirements for stability reasons. 
Nonlinear feedbacks, on the other hand are usually computationally 
more intensive due to the requirements for interpolation (fuzzy logic 
algorithm does exactly that). This requirement will usually slow 
things down a little bit. In this paradigm, the stability and robustness 
of a system depends critically on the speed of the linear feedback 
layer and is somewhat less sensitive to the speed of the fuzzy logic 
loop. We envision that with our next generation of XA (XA-S3). We 
can integrate all of these functions into one Chip. We will use the XA 
multi-tasking capabilities so that we implement several layers of 
feedback, some of which carry out simple, but fast servoing for 
actuator control and the others running fuzzy logic for goal-directed 
motor sequencing behavior. 
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SUMMARY 
A real-time kernel is software that manages the time of a 
microprocessor or microcontroller to ensure that all time critical 
events are processed as efficiently as possible. This application note 
describes how a real-time kernel, I1C/OS works with the Philips XA 
microcontroller. The application note assumes that you are familiar 
with the XA and the C programming language. 

INTRODUCTION 
A real-time kernel allows your project to be divided into multiple 
independent elements called tasks. A task is a simple program 
which competes for CPU time. With most real-time kernels, each 
task is given a priority based on its importance. When you design a 
product using a real-time kernel you split the work to be done into 
tasks which are responsible for a portion of the problem. A real-time 
kernel also provides valuable services to your application such as 
time delays, system time, message passing, synchronization, 
mutual-exclusion and more. 

Most real-time kernels are preemptive. A preemptive kernel ensures 
that the highest-priority task ready-to-run is always given control of 
the CPU. When an ISR (Interrupt Service Routine) makes a 
higher-priority task ready-to-run, the higher-priority task will be given 
control of the CPU as soon as all nested interrupts complete. The 
execution profile of a system designed using a preemptive kernel is 
illustrated in Figure 1. As shown, a low-priority task is executing CD. 

® 
ISR 
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An asynchronous event interrupts the microprocessor @. The 
microprocessor services the interrupt @ which makes a high-priority 
task ready for execution. Upon completion, the ISR invokes a 
service provided by the kernel which decides to return to the 
high-priority task instead of the low-priority task @. The high-priority 
task executes to completion, unless it also gets interrupted ®. At the 
end of the high-priority task, the kernel resumes the low-priority task 
®. As you can see, the kernel ensures that time critical tasks are 
performed first. Furthermore, execution of time critical tasks are 
deterministic and are almost insensitive to code changes. In fact, in 
many cases, you can add low-priority tasks without affecting the 
responsiveness of you system to high-priority tasks. During normal 
execution, a low-priority task can make a higher-priority task ready 
for execution. At that pOint, the kernel immediately suspends 
execution of the lower priority task in order to resume the higher 
priority one. 

A real-time kernel basically performs two operations: Scheduling 
and Context Switching. Scheduling is the process of determining 
whether there is a higher priority task ready to run. When a 
higher-priority task needs to be executed, the kernel must save all 
the information needed to eventually resume the task that is being 
suspended. The information saved is called the task context. The 
task context generally consist of most, if not all, CPU registers. 
When switching to a higher priority task, the kernel perform the 
reverse process by loading the context of the new task into the CPU 
so that the task can resume execution where it left off. 

A~ 

ISR PRE·EMPTS TASK 

® j ISR RETURNS TO HIGH·PRIORITY TASK 
@ 

@ 

HIGH-PRIORITY TASK 

TIME • 

SU00769 

Figure 1. 
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THE PHILIPS XA AND REAL-TIME KERNELS 
The XA has a number of interesting features which makes it 
particularly well suited for real-time kernels. 

When you use a kernel, each task requires its own stack space. The 
size of the stack required for each task is application specific but 
basically depends on function call nesting, allocation of local 
variables for each function and the worst case interrupt 
requirements. Unlike other processors, the XA provides two stack 
spaces: a System Stack and a User Stack. The System Stack is 
automatically used when processing interrupts and exceptions. The 
User Stack is used by your application tasks for subroutine nesting 
and storage of local variables. The most important benefit of using 
two stacks is that you don't need to allocate extra space on the 
stack of each task to accommodate for interrupt nesting. This 
feature greatly reduces the amount of RAM needed in your product. 
With the XA, the total amount of RAM needed just for stacks is given 
by: 

n 

TotalRAMStack = ISRStackMax + LTaskStackl 
1 .. 1 

The XA divide its 16 MBytes of data address Into 256 segments of 
64 Kbytes. The stack for each task can be isolated from each other 
by having them reside in their own segment. The XA protects each 
stack by preventing a task from accessing another task's stack. This 
feature can prevent an errant task from corrupting other tasks. 

Scheduling and task-switching can eat up valuable CPU time which 
directly translates to overhead. A processor with an efficient 
Instruction set such as that found on the XA helps reduce the time 
spent performing scheduling and context switching. For instance, 
the XA provides two instructions to PUSH and POP multiple 
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registers onto and from the stack, respectively. This feature makes 
for a fast context switch because all seven registers (RO through R6) 
can be saved and restored onto and from the stack In just 42 clock 
cycles whereas it would take 70 clock cycles to perform the same 
function with Individual PUSH and POP instructions. 

IlC/0S 
IlC/OS (pronounced micro C OS) is a portable, ROMable, 
preemptive, real-time, multitasking kernel and can manage up to 63 
tasks. The internals of IlC/OS are described in my book called: 
IlC/OS. The Rea/-Time Kernel [1]. The book also includes a floppy 
disk containing all the source code. IlC/OS Is written in C for sake of 
portability, however, microprocessor specific code is written in 
assembly language. Assembly language and microprocessor 
specific code is kept to a minimum. IlC/OS is comparable in 
performance with many commercially available kernels. The 
execution time for every service provided by IlC/OS (except one) is 
both deterministic and constant. IlC/OS allows you to: 

• Create and manage up to 63 tasks, 

• Create and manage binary or counting semaphores, 

• Delay tasks for integral number of ticks, 

• Lock/Unlock the scheduler, 

• Change the priority of tasks, 

• Delete tasks, 

• Suspend and resume tasks and, 

• Send messages from an ISR or a task to other tasks. 



Philips Semiconductors 

IlC/OS for the Philips XA 

USING J.!C/OS 
J.lC/OS requires that you call OSIni t () before you start using any 
of the other services provided by J.lC/OS. After calling OSIni t ( ) 
you will need to create at least one task before you start multitasking 
(I.e., before calling OSStart () ). All tasks managed by IlC/OS 
needs to be created. You create a task by simply calling a service 
provided by IlC/OS (described later). You need to create each task 
in order to prepare them for multitasking. If you want. you can create 
all your tasks before calling OSStart ( ) . Once multitasking starts, 
IlC/OS will start executing the highest priority task that has been 
created. You should note that interrupts will be enabled as soon as 
the first task starts execution. Your main () function will thus look as 
shown in Figure 2. 

A task under IlC/OS must always be written as an infinite loop as 
shown in Figure 3. When your task first executes, it will be passed 
an argument (pdata) which can be made to point to task specific 
data when the task is created. If you don't use this feature, you 
should simply equate pda ta to pda ta as shown below to prevent 
the compiler from generating a warning. Even though a task is an 
infinite loop, it must not use up all of the CPU's time. To allow other 
tasks to get a chance to execute, you have to write each task such 
that the task either suspends itself until some amount of time 
expires, wait for a semaphore, wait for a message from either 
another task or an ISR or simply suspend itself indefinitely until 
explicitly resumed by another task or an ISR. J.lC/OS provides 
services to accomplish this. 

A task is created by calling the OSTaskCreate () function. 
OSTaskCreate () requires four arguments as shown in the 
function prototype of Figure 4. 

task is a painter to the task you are creating. pda ta is a pointer to 
an optional argument that you can pass to your task when it begins 
execution. This feature allows you to write a generic task which is 
personalized based on arguments passed to it. For example, you 
can design a generic serial port driver task which gets passed a 
pointer to a structure defining the ports parameters such as the 
address of the port, its interrupt vector, the baud rate etc. pstk is a 
painter to the task's top-of-stack. Finally, pr i 0 is the task's priority. 
With IlC/OS, each task must have a unique priority. The smaller the 
priority number, the more important the task is. In other words, a 
task having a priority of 10 is more important than a task with a 
priority of 20. 

With J.lC/OS, each task can have a different stack size. This feature 
greatly reduces the amount of RAM needed because a task with a 
small stack requirement doesn't get penalized because another task 
in your system requires a large amount of stack space. You should 
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note that you can locate a task's stack just about anywhere in the 
XNs address space. This is accomplished by specifying the task's 
top-of-stack through a constant (or a #define) as shown in the two 
examples of Figure 5. 

Here, I located task1's stack at the top of page 0 while task2s stack 
will start at offset OxF700 of page 7 and grow downwards from there. 
When locating stacks using constants, you must be careful that the 
linker does not locate data at these memory locations. If needed, 
you can also locate the stacks of multiple tasks in the same page 
using the same technique. 

OSTaskCrea te () returns a value back to its caller to notify it about 
whether the task creation was successful or not. When a task is 
created, J.lC/OS assigns a Task Control Block (TCB) to the task. 
The TCB is used by J.lC/OS to store the priority of the task, the 
current state of the task (ready, waiting for an event, delayed, etc.), 
the current location of the task's top-of-stack and, other kernel 
related data. 

Table i shows the function prototypes of the services provided by 
J.lC/OS, V1.09. The prototypes are shown in tabular form for sake of 
discussion. The actual prototype of OSTimeDly () for example is 
actually: 

void OSTimeDly(UWORD ticks); 

You will notice that every function starts with the letters ·OS'. This 
makes it easier for you to know that the function call is related to a 
kernel service (I.e., an Operating System call). Also, the function 
naming convention groups services by functions: 'OSTask .. .' are 
task management functions, 'OSTime .. ,' are time management 
functions, etc. Another item you should notice is that non-standard 
data types are in upper-case: UBYTE, UWORD, ULONG and 
OS_EVENT. UBYTE, UWORD and ULONG represent an 
unsigned-byte (a-bit), an unsigned-word (16-bit), and an 
unsigned-long (32-bit), respectively. OS_EVENT is a typedef'ed 
data structure declared in UCOS.H and is used to hold information 
related to semaphore, message mailboxes and message queues. 
Your application will in fact have to declare storage for a painter to 
this data structure as follows: 

far OS_EVENT *MySem; 

The 'far' attribute is specific to the HI-TECH compiler (described 
later) and indicates that the pointer MySem will be able to access the 
as EVENT data structure which may be located in another bank. 
OS=EVENT is used in the same capacity as the FILE data-type 
used in standard C library. OSSemCreateO, OSMboxCreate () and 
OSQCrea te () return a painter which is used to identify the 
semaphore, mailbox or queue, respectively. 
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void main(void) 

/* Perform XA Initializations */ 
OSInit() ; 
/* Create at least one task by calling OSTaskCreate() */ 
OSStart() ; 

void UserTask(far void *pdata) 
{ 

pdata = pdata; 
/* User task initialization 
while (1) ( 

/* User code goes here 
/* You MUST invoke a service 
/* a) Delay the task for 
/* b) Wait on a semaphore 

Figure 2. 

provided by 
'n' ticks 

/* c) Wait for a message from a task 
/* d) Suspend execution of this task 

Figure 3. 

UBYTE OSTaskCreate(void (*task) (far void *pd) , 
far void *pdata, 
far void *pstk, 
UBYTE prio) ; 

Figure 4. 

j.LC/OS to: 

or an ISR 

*/ 

*/ 

*/ 
*/ 
*/ 
*/ 

*/ 

UBYTE OSTaskCreate(task1, pdata1, (far void *)OxOOFFFE, prio1); 
UBYTE OSTaskCreate(task2, pdata2, (far void *)Ox07F700, prio2); 

Figure 5. 
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Table 1. JlC/OS V1.09 
Philips XA Large Model 

RETURN VALUE FUNCTION NAME 

Initialization 

void OSInit 

void OSStart 

Task Management 

UBYTE OSTaskCreate 

UBYTE OSTaskDel 

UBYTE OSTaskDelReq 

UBYTE OSTaskChangePrio 

UBYTE OSTaskSuspend 

UBYTE OSTaskResume 

void OSSchedLock 

void OSSchedUnlock 

Time Management 

void OSTimeDly 

UBYTE OSTimeDlyResume 

void OSTimeSet 

ULONG OSTimeGet 

Semaphore Management 

far OS_EVENT * OSSernCreate 

UWORD OSSemAccept 

UBYTE OSSernPost 

void OSSemPend 

Message Mailbox Management 

far OS_EVENT * OSMboxCreate 

far void" OSMboxAccept 

UBYTE OSMboxPost 

far void' OSMboxPend 

Message Queue Management 

far OS_EVENT * OSQCreate 

far void' OSQAccept 

UBYTE OSQPost 

far void * OSQPend 

Interrupt Management 

void OSIntEnter 

void OSIntExit 

ARGUMENT #1 

void 

void 

void (task)(far void *pd) 

UBYTE prio 

UBYTE prio 

UBYTE prio 

UBYTE prio 

void 

void 

UWORDticks 

UBYTE prio 

ULONG ticks 

void 

UWORDvalue 

far OS_EVENT ·pevent 

far OS_EVENT "pevent 

far OS_EVENT *pevent 

far void *msg 

far OS_EVENT ·pevent 

far OS_EVENT ·pevent 

far OS_EVENT *pavant 

far void **start 

far OS_EVENT 'pevant 

far OS_EVENT *pavant 

far OS_EVENT *pavant 

void 

void 
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ARGUMENT #2 ARGUMENT ARGUMENT CALLED 
#3 #4 FROM ... 

- - - mainO 

- - - mainO 

far void *pdata far void *pstk UBYTE prio mainO or Task 

- - - Task 

- - - Task 

- - Task 

- - - Task or ISR 

- - - Task or ISR 

- - - Task or ISR 

- - - Task or ISR 

- - - Task 

- - - Task 

- - - Task or ISR 

- - - Task or ISR 

- - - Task 

- - - Task or ISR 

- - - Task or ISR 

UWORD timeout UBYTE *err Task 

- - - Task 

- - - Task or ISR 

far void *msg - - Task or ISR 

UWORD timeout UBYTE *arr - Task 

UBYTE size - - Task 

- - - Task or ISR 

far void *msg - - Task or ISR 

UWORD timeout UBYTE *err - Task 

- - - ISR 

- - - ISR 
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IlC/OS AND THE PHILIPS XA 
J.lc/os (V1.09) was ported to the XA using the HI-TECH C XA tool 
chain and the complete source code for both J.lC/OS and the port to 
the XA's Large Memory Model are available from Philips 
Semiconductors, Inc. The large memory model allows you to write 
very large applications (up to 16 Mbytes of code) and access a lot of 
data memory (up to 16 Mbytes). The XA port has been tested on the 
Future Design, Inc. XTEND-G3 evaluation board and the test code 
provided with the port is assumed to run on this target. The test 
code can. however, be easily modified to support other 
environments. The large model requires that your XTEND board has 
at least two pages of data RAM. In other words, you must have 
more than 64K bytes of RAM In the Xl>:s addressable data area. 
This can be easily accomplished by replacing the two 32K bytes 
data RAM chips with two 128K bytes chips. 

A number of assumptions have been made about how IlC/OS uses 
the XA. IlC/OS will run the XA in Native Mode. This allows the 
compiler to use as many new features of the XA as possible and 
does not make any effort to be backwards compatible with the 
80C51. 

Your application code and most of IlC/OS services will be executing 
in User mode. The XA will automatically be placed In System mode 
when either an interrupt or an exception occurs or, when IlC/OS 
performs a context switch. Each of your application task will require 
its own stack space in Banked RAM while all interrupts will share 
the system mode stack. IlC/OS allows you to specify a different 
stack size for each task. In other words, J.lC/OS doesn't require that 
the stack for each task be the same size. This feature prevents you 
from wasting valuable RAM when the stack requirements for each 
task varies. 

IlC/OS will only manipulate the registers In bank #0. If your 
application code changes register bank, you will need to ensure that 
your code restores register bank #0 prior to using any of IlC/OS's 
services. 

IlC/OS requires a periodic interrupt source to maintain system time 
and provide time delay and timeout services. 'This periodic interrupt 
is called a System Tick and needs to occur between 10 and 100 
times per second. The system tick can be generated by using any of 
the XA's three internal timers or externally through the INTO or INT1 
inputs. For lack of a better choice, I used timer #0 and configured it 
for a 100 Hz tick rate. The tick interrupt vectors to an assembly 
language function called OSTickISR. If you application requires the 
use of all of the XA's timers then you will have to find another source 
for the 'ticker'. For example, If your system Is powered from a power 
grid, you can bring the line frequency (50 or 60 Hz) in through either 
INTO or INn. 
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J.lC/OS also requires one of the 16 TRAP vectors In order to perform 
a context switch. I decided to use TRAP #15 which is defined In the 
C macro OS_TASK_SW ( ) . A context switch will force the XA Into 
system mode and push the return address and the PSW onto the 
system stack. 

As previously mentioned, you must prepare your tasks for 
multitasking by calling OSTaskCreate () . OSTaskCreate ( ) 
builds the stack frame for the task being created as Illustrated In 
Figure 6. DS:USP Indicates that once the task gets to execute, the 
stack will be located In the bank selected by the DS register at an 
offset supplied by the USP. You should note that pointers In the large 
model are 32-blts but, only the least significant 24 bits are used. 
OSTaskCreate () first sets up the stack to make it look as if your 
task has just been called by another C function <D. In other words, 
when your task first executes, it will think it was called by another 
function since the stack pointer will point as shown In ~. 
OSTaskCreate () then simulates the stacking order of a 
PUSHU RO-R6 Instruction ® which Is needed for a context switch. 
The Initial value of each register is set to the values shown for 
debugging purposes and can thus be changed as needed. Next, 
OSTaskCreate () stacks both the ES register and the SSEL 
register @. Even though both the ES and SSEL registers are 8-bit, 
they are stacked as two 16-blt values because all XA stacking 
operations are 16-blt. The SSEL register is initialized to Ox80 to 
allow your task to read and write data anywhere In the 16-MBytes 
data address space. You may not want to change the Initial value of 
the SSEL register because the compiler will not know that write 
through the ES register Is not allowed (run-time) but, It will generate 
code (compile-time) as if It was. During an Interrupt or a context 
switch, the XA pushes the PC and the PSW onto the system stack. 
The stacking order of these registers as shown on the stack frame 
of Figure 6 is reversed because OSTaskCreate () simulates a 
move of these registers from the system stack to the user stack @. 

As previously mentioned, multitasking starts when you call 
OSStart () . Figure 7 Illustrates the process. OSStart () finds the 
TCB of the highest priority task that you created, loads the pOinter 
OSTCBHighRdy to point to that TCB <D and calls the assembly 
language function OSStartHighRdy. OSStartHighRdy loads the 
USP and the DS register from the task's TCB ~ and then moves the 
start address of your task, along with the PSW from the user stack 
to the system stack ®. OSStartHighRdy then pops the remaining 
registers from the user stack @ and finally, OSStartHighRdy 
executes a return from interrupt which loads the PC and PSW from 
the system stack ® Into the XA. Because the PSW was Initialized to 
OxOOOO, the XA will now execute the first Instructions of your task In 
user mode with all Interrupts enabled. 
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<D Simulated call to your task 

---- ® 

@ Simulated PUSHU RD-R6 instruction 

@ ES and SSEL registers 

@ PC and PSW registers 

• 
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CONTEXT SWITCHING WITH ~C/OS 
Because ~C/OS is a preemptive kernel, it always executes the 
highest priority task that is ready to run. As your tasks execute they 
will eventually invoke a service provided by ~C/OS to either wait for 
time to expire, wait on a semaphore or wait for a message from 
another task or an ISA. A context switch will result when the 
outcome of the service is such that the currently running task cannot 
continue execution. For example, Figure 8 shows what happens 
when a task decides to delay itself for a number of ticks. In CD, the 
task calls oSTimeDly () which is a service provided by ~C/OS. 
OSTimeDly () places the task in a list of tasks waiting for time to 
expire @. Because the task is no longer able to execute, the 
scheduler (OsSched () ) is invoked to find the next most important 
task to run @. A context switch is performed by issuing a TRAP #15 
instruction @. The function OSCtxSw () is written entirely in 
assembly language because it directly manipulates XA registers. All 
execution times are shown assuming a 24 MHz crystal and the large 
model. The highest priority task executes at the completion of the 
XP\s RETI instruction ®. 

The work done by OSCtxSw () is illustrated in Figure 9. The 
scheduler loads OSTCBHighRdy with the address of the new task's 
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TCB CD before invoking OSCtxSw () which is done through the 
TRAP #15 instruction. OSTCBCur already pOints to the TCB of the 
task to suspend. The TRAP #15 instruction automatically pushes 
the return address and the PSW onto the system stack @. 

OSCtxSw () starts off by saving the remainder of the XP\s registers 
onto the user stack@andthen, moves the saved PSW and PC from 
the system stack to the user stack @. The final step in saving the 
context of the task to be suspended is to store the top-of-stack into 
the current task's TCB ®. The second half of the context switch 
operation restores the context of the new task. This is performed in 
the following four steps. First, the user stack pointer is loaded with 
the new task's top-of-stack @. Second, the PC and PSW of the task 
to resume is moved from the user stack to the system stack (f). 
Third, the remainder of the XP\s registers are restored from the user 
stack ®. Finally, a return from interrupt instruction (RETI) is 
executed ® to retrieve the new task's PC and PSW from the system 
stack which causes the new task to resume execution where it left 
off. As shown in Figure 7, a context switch for the large model takes 
only about 1 O~s at 24M Hz. 

m I~ _____ ~: ______ ~L ____ _ c=r TASK SUSPENDED UNTIL TIME DELAY EXPIRES Task calls OSTimeDlyO I --------------,-----
+ ® 

~C/OS: OSTimeDlyO 

@ 

~C/OS: OSSchedO 

TRAP#15 I +@, 
~C/OS: OSCtxSwO ---~-----~------~~~ @ 

__ ~ _____ ..._T~~E~:t!~~.__ j ••••• 1 Next highest priority task 

, 
20115 25115 , 10115 I ..... 

TIME 

SU00776 
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INTERRUPT SERVICE ROUTINES (ISRS) AND 
IlC/OS 
Under IlC/OS, you must write your ISRs in assembly language as 
shown in Figure 10. This code assumes you are using the HI-TECH 
C compiler and assembler. You must always save all the registers at 
the beginning of the ISR and restore them at the completion of the 
ISA. You must also always notify IlC/OS when you are starting to 
process an ISR by calling OSIntEnter ( ) . OSIntEnter () simply 
increments an interrupt nesting counter and thus takes very little 
time to execute. You can either process the interrupting device 
direcly in assembly language or, call a C handler as shown in 
Figure 9. Note that you are responsible for clearing the interrupt. 
When you are done processing the interrupt, you must call 
OSIntExi t ( ) . OSIntExi t () decrements the nesting counter 
and, when the nesting counter reaches 0, all interrupts have nested 
and the scheduler is invoked to determine whether the ISR needs to 
return to the interrupted task or, whether a higher priority task has 
been made ready to run by one of the ISRs. If there is a higher 

signat 
global 
global 
global 

_YourISR: 
pushu 
pushu.b 
pushu.b 
pop 
pushu 
pop 
pushu 
pop 
pushu 

fcall 
mov.b 
fcall 
fcall 

popu 
push 
popu 
push 
popu 
push 
popu.b 
popu.b 
popu 

reti 

_YourISR,24 
_OSIntEnter 
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OSIntExit 

rO,rl,r2,r3,r4,r5,r6 
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403h 
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priority task, /lC/OS will need to perform a context switch to return to 
the more important task. 

The stack frames (system and user) during an interrupt is shown in 
Figure 11. Items <D, ® and @ are performed at the beginning of your 
ISR. When you call OSIntExit (), the return address is pushed 
onto the system stack. OSIntExit () creates a local variable on 
the stack by saving R4. If a context switch is needed, 
OSIntExi t () calls OSIntCtxSw () which also causes its return 
address to be pushed onto the stack. In order for OSIntCtxSw () to 
properly perform a context switch, the stack pointer (R7) needs to 
be adjusted so that it points as shown in Figure 11, @. The 
adjustment value of the stack pointer depends on the compiler 
model and the compiler options selected. The value is, however, at 
least 8 (for the large model) because of the two return addresses. If 
your application crashes you may want to make sure that you have 
the proper value for this constant. The rest of the context switch is 
exactly the same as previously discussed. 

Save RO through R6 
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Move PSW to user stack 
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Move PCL to user stack 

Notify uC/OS of ISR begin 
Allow interrupt nesting 
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l FCALL to OSlntExitO 

Local variable 

FCAL to OSlntCtxSwO 
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This document will discuss the XA Interrupt Structure from two different perspectives. First we will look at the XA 
Family Interrupt Structure since it is important to have an understanding of all the interrupt options available in the 
XA Family. This general discussion will introduce us to all available interrupt options in the XA Family. We will 
cover the details of Exception Interrupts, Trap Interrupts and Software Interrupts since these will generally be 
standard across the XA Family. However, specific implementations for Event Interrupts will not be covered, since 
each XA derivative may have a unique subset of Event Interrupts available. 

Next we will look in detail at the XA-G3 Interrupt Structure since this is the first available member of the XA 
derivative family. This discussion will cover the function and detail of all interrupts included on the XA-G3. We will 
assume an understanding of the general structure and function of XA interrupts as given in the section on XA 
Family Interrupts. Event Interrupts that are unique to the XA-G3 will be covered in detail. 
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2. XA FAMILY INTERRUPT STRUCTURE 
This section covers all the interrupt options available in the XA Family. It should be used as background material to 
gain familiarity with the way XA interrupts function. Please refer to the sections on specific XA derivatives for 
details of their individual interrupt structures. 

The XA Family offers a very powerful Interrupt Structure with various levels of user programmable configuration 
and control. This allows for great flexibility in various applications but does require the user to provide adequate 
initialization and set-up for interrupts to function as expected. This required initialization is more detailed than that 
needed for microcontrollers such as the 8051 which have a much simpler interrupt structure. 

2.1. XA Family Interrupts 
The XA architecture defines four kinds of interrupts. These are listed below in order of intrinsic priority: 
• Exception Interrupts 

• Trap Interrupts 

• Event Interrupts 

• Software Interrupts 

Exception interrupts reflect system events of overriding importance. Examples are stack overflow, divide-by-zero, 
and Non-Maskable Interrupt. Exceptions are non maskable and are always processed immediately as they occur, 
regardless of the Execution Priority of currently executing code. 

Trap interrupts are processed as part of the execution of a TRAP instruction. Since the Trap interrupt is 
non-maskable the interrupt vector is always taken when the TRAP instruction is executed. 

Event interrupts reflect less critical hardware events, such as a UART needing service or a timer overflow. These 
events may be associated with some on-chip device or an external interrupt input. Event interrupts are maskable 
and are processed only when their priority is higher than that of currently executing code. Event interrupt priorities 
are software selectable by writing bits in the IPA (Interrupt Priority) register for each interrupt source. In this section 
we will generically refer to the IPA register but in most XA derivatives this will actually be a group of registers 
(IPAO-IPAn) based on the number of event interrupts available. Each event interrupt can be set to one of 16 
priority levels by writing four bits in the IPA register assigned to the interrupt event. A priority level of zero 
effectively disables the interrupt since the priority must be greater than the Execution Priority of the code that is 
currently executing for the interrupt to be serviced. 

Software interrupts are an extension of event interrupts, but are caused by software setting a request bit in a 
Special Function Register or SFR. Software interrupts are also processed only when their priority is higher than 
that of currently executing code. Software interrupt priorities are fixed at levels from 1 through 7. Thus code with an 
Execution Priority of 8 or higher can NOT be interrupted by any of the Software Interrupts. 

All forms of interrupts trigger the same sequence: First, a stack frame containing the address of the next instruction 
and then the current value of the PSW (Program Status Word) is pushed on the System Stack. A vector containing 
a new PSW value and a new execution address is fetched from code memory. The new PSW value entirely 
replaces the old, and execution continues at the new address, e.g., at the specific interrupt service routine. Since 
the execution address for the Interrupt Service Routine (ISR) is only 16 bits wide, the ISR for all XA interrupt 
sources must begin in Page 0 of code memory (the first 64K byte page). This allows a faster interrupt response 
time than if a full 32 bit ISR address was fetched. Notice that all XA ISR's always begin in Page 0 of code memory 
independently of whether the XA is operating in Page 0 Mode or not. Page 0 Mode is a special mode where total 
XA code memory is limited to 64K bytes. 

The new PSW value may include a new setting of PSW bit SM (System Mode), allowing handler routines to be 
executed in System or User mode, and a new value of PSW bits IM3-IMO, reflecting the Execution Priority of the 
new task. These capabilities are basic to multi-tasking support on the XA. 
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Returns from all interrupts should in most cases be accomplished by the RETI instruction, which pops the System 
Stack and continues execution with the restored PSW context. All interrupt service routines will normally be 
executed in System Mode. If an RETI instruction is executed from an ISR running in User Mode an exception 
interrupt will be generated. 

The XA architecture contains sophisticated mechanisms for deciding when and if an interrupt sequence actually 
occurs. As described below, Exception Interrupts are always serviced as soon as they are triggered. Event 
Interrupts are deferred until their Execution Priority is higher than that of the currently executing code. For both 
exception and event interrupts, there is a systematic way of handling multiple simultaneous interrupts. Software 
Interrupts and Trap Interrupts occur only when program instructions generating them are executed, so there is no 
need for conflict resolution within these two interrupt classes. 

2.2. The Interrupt Mask (Execution Priority) 
The PSW operating mode flags (shown below) set several aspects of the XA operating mode including the 
Interrupt Mask or Execution Priority. The terms Interrupt Mask and Execution Priority are two different ways of 
defining the same thing. Interrupt Mask refers to the fact that all interrupts with a priority equal to or lower than this 
value are "masked" and are not allowed to occur. Execution Priority refers to the fact that for any interrupt (or task) 
to be allowed to run, it must have a higher priority than the Execution Priority of the task that is currently running. 
The four Interrupt Mask bits (IM3-IMO) identify the Execution Priority of the code that is currently executing. The 
XA interrupt controller compares the current setting of the 1M bits to the priority of any pending interrupts to decide 
whether to initiate an interrupt sequence. The value 0 in the 1M bits indicates the lowest Execution Priority, or fully 
interruptable code. The value 15 (or OF hexadecimal) indicates the highest Execution Priority, which is not 
interruptable by maskable event interrupts. However, note that an Execution Priority of 15 does not inhibit servicing 
of Exception Interrupts or Traps since these are non-maskable. 

PSWH (401 h) - bit addressable 

I SM TM RS1 RSO 1M3 1M2 IM1 IMO 

PSW operating mode flags 

All of the flags in the upper byte of the PSW (PSWH), except the bits RS1 and RSO (Register Bank Select), may be 
modified only by code running in system mode. 

2.3. PSW Initialization 
At reset, the initial XA PSW value is loaded from the reset vector located at address 0 in code memory. The initial 
PSWH value sets the stage for system software initialization and its value requires great attention. PSWL contains 
only status flags which do not require initialization. Therefore, the initial value of PSWL is generally of no special 
system-wide importance and may be set to zero or some other value. Philips recommends that the PSW 
initialization value in the reset vector sets IM3-IMO to all 1 's so that XA initialization code is set as the highest 
Execution Priority process (and therefore can not be interrupted by any source other than an exception or trap). It 
is also recommended that the reset vector set the SM bit to 1, so that execution begins in System Mode. This gives 
an initial PSW value of 8FOOH for normal operation. At the conclusion of the user initialization code, the Execution 
Priority is typically reduced, often to 0, to allow all other maskable interrupt driven tasks to run. 

Here's an ~xample set of declarations that create the recommended initial value of PSWH: 

system_mode equ 
max_priority equ 
initial_PSW equ 
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2.4. Interrupt Service Data Elements 
There are two data elements associated with XA interrupts. The first is the stack frame created when each 
interrupt is serviced. The second is the interrupt vector table located at the beginning of code memory. 
Understanding the structure and contents of each is essential to the understanding of how XA interrupts are 
processed. 

2.4.1. Interrupt Stack Frame 
A stack frame is generated, always on the System Stack, for each XA interrupt. The stack frame is stored for the 
duration of interrupt service and used to return to and restore the CPU state of the interrupted code. There is one 
case where this is not true. The Exception Interrupt triggered by a Reset event re-initializes the stack pointers, so 
no stack frame is preserved. This makes the Reset Exception interrupt unique since it is not terminated with an 
RETllike all other XA interrupts 

The stack frame in the native 24-bit XA operating mode is shown in Figure 1. Three words (6 bytes) are stored on 
the stack in this case. The first word pushed is the low-order 16 bits of the current Program Counter (PC), i.e., the 
address of the next instruction to be executed. The next word contains the high-order byte of the current PC. A 
zero byte is used as a pad since the stack must be word aligned. Since a complete 24-bit address is stored in the 
stack frame a return to any code location in the 16M byte XA address range is possible. The third word in the XA 
stack frame contains a copy of the PSW at the instant the interrupt was serviced. 

Program Memory .......... 
Vector Table 1--1 .... ; SSP; .......... 

/ Before 

Lower 2 bytes of PC Interrupt 

6 bytes OOh : High byte 
of PC After 

I Interrupt 
PSW (16 bits) ~ "-

SUOO848 

Figure 1. XA Stack Frame - Non Page 0 Mode (24 bit mode) 

When the XA is operating in Page 0 Mode (SCR bit PZ = 1) the stack frame is smaller. In Page 0 Mode, only 16 
address bits are used throughout the XA. The stack frame in Page 0 Mode is only four bytes since the High Byte of 
the PC and the pad byte are not needed. Obviously, it is very important that stack frames of both sizes not be 
mixed since this would corrupt the return address and therefore the operation of the XA. This is one reason it is 
recommended that the user set the System Configuration Register (SCR) once during XA initialization to select 
either Page 0 Mode or 24 bit address mode, and leave it unchanged thereafter. 

2.4.2. Interrupt Vector Table 
The XA uses the first 284 bytes of code memory (addresses 0 - 011 B hex) for an interrupt vector table. The table 
may contain up to 71 double-word entries, each corresponding to a particular interrupt event. 

The double-word entries each consist of a 16 bit address of an Interrupt Service Routine (ISR) and a 16 bit PSW 
replacement value. Because vector addresses are 16-bit, the first instruction of each Interrupt Service Routine 
must be located in the first 64K bytes of XA memory. The first instruction of allISR's must also be word-aligned. 
Note that this is normally handled by the XA assembler, which will insert NOP's automatically to assure 
word-alignment of ALL labels. The replacement PSW value contains key elements such as the choice of System or 
User mode for the service routine, the Register Bank selection, and an Interrupt Mask setting. 
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The first 16 vectors, starting at code memory address 0 are reserved for Exception Interrupt vectors. The second 
16 vectors are reserved for Trap Interrupts. The following 32 vectors in the table are reserved for Event Interrupts. 

'The final? vectors are used for Software Interrupts. A figure presented later will illustrate the XA vector table,and 
the structure of each component vector. Of the vectors assigned to Exceptions, ? are assigned to events specific to 
the XA CPU and 9 are reserved. All 16 Trap Interrupts may be used freely since none are reserved. Assignments 
of Event Interrupt vectors are derivative dependent and vary with the peripheral device complement and pinout of 
each XA derivative. 

Unused interrupt vector locations should typically be set to point to a "null" service routine (an RETI instruction), 
rather than be overwritten by executable instructions. This is especially true of the exception interrupts, since these 
are non-maskable and could conceivably occur in a system where the designer did not expect them. If these 
vectors are routed to an RETI instruction, the system can essentially ignore the unexpected exception or interrupt 
condition and continue operation. 

Note that when using some hardware development tools it may be preferable not to initialize unused vector 
locations with a "null handler". This allows the XA development tool to recognize and flag these unexpected 
interrupt conditions so they can be addressed. 

2.5. The Reset Exception Interrupt 
Immediately after the -RST line goes high, the XA generates a Reset Exception Interrupt. As a result, the initial 
PSW and address of the first instruction (the "start-up code") are fetched from the reset vector in code memory at 
location O. Here's an example in generalized assembler format of the setup for the Reset Exception Interrupt: 

reseCvector 

code_seg 
org Oh 

dw 
dw 

initial_PSW 
startup_code 

establish code segment 
start at address 0 

; PSW reset value - normally 8FOOH 
; starting address of code 

; the XA Interrupt Vector Table goes from 0 -011 Bh in code memory 

org 120h start code at address 120h 
(above interrupt vector table) 

put user startup code here 

; end user startup code by enabling ALL interrupts 

mov.b PSWH, #80H 
mov.b PSWL, #OOH 

; PSWH run value to allow ALL interrupts 
; PSWL value is not critical 

The PSWH initialization value given in this example sets System Mode (SM), selects register bank 0 (any register 
bank could be used) and clears TM so that Trace Mode is inactive. 

The startup_code sequence may be followed directly by user startup code or by a simple branch to any application 
code. At the end of user initialization code remember to lower the Interrupt Mask value in PSWH so maskable 
event interrupts can occur. Do NOT use an RETI instruction at the conclusion of the startup_code sequence even 
though this is part of the Reset Exception Interrupt handler. The Reset initializes the Stack Pointer (SP) and does 
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not leave an interrupt stack frame. This makes the Reset Exception Interrupt unique since it is not terminated with 
an RETI like all other XA interrupts. 

Notice that the same Reset Exception Interrupt is generated for any of the three possible XA reset sources: 

1 " Hardware reset via the -RST pin 

2. Software reset via the RESET instruction 

3. Watchdog Timer generated reset 

2.6. XA Interrupt Types 
This section describes the four types of XA interrupts. It addresses interrupts that are available in the XA Family 
but mayor may not be present on any given XA derivative. 

2.6.1. Exception Interrupts 
Exception interrupts reflect events of overriding importance and are always serviced when they occur. Exceptions 
currently defined in the XA core include: Reset, Breakpoint, Trace, Divide-by-O, Stack overflow, and Return from 
Interrupt (RETI) executed in User Mode. Nine additional exception interrupts are reserved. 

NMI is listed in the table of exception interrupts below because NMI is handled by the XA core in the same manner 
as exceptions, and factors into the precedence order of exception processing. However, the vector address 
reserved for NMI is actually mapped right in the middle of the Event Interrupt vector address space. This should 
not cause NMI, which is a non-maskable Exception Interrupt, to be confused with the maskable Event Interrupts. 
Note that NMI is part of the XA Family Interrupt Structure but is not implemented on the first XA derivative (the 
XA-G3). 

Since exception interrupts are by definition not maskable, they must always be serviced immediately regardless of 
the Execution Priority level of currently executing code (as defined by the 1M bits in the PSW). In the unusual case 
that more than one exception is triggered at the same time, there is a hard-wired service precedence ranking. This 
ranking determines which exception vector is taken first if multiple exceptions occur. Of course, being 
non-maskable, any exception occurring during execution of the ISR for another exception will still be serviced 
immediately. In this case, the exception vector taken last may be considered the highest priority, since its code will 
execute first. This LIFO (Last-In-First-Out) system means that an Exception Interrupt with a higher service 
precedence actually has a higher priority. Even though the Exception with the higher service precedence will be 
taken last, it will stilf be serviced first. 

Programmers should be aware of the following when writing Exception Interrupt handlers: 

1. Since another exception could interrupt a stack overflow ISR, care should be taken in all exception handler 
code to minimize the possibility of a destructive stack overflow. Remember that stack overflow exceptions only 
occur once as the stack crosses the lower address limit of 0080h. 

2. The Breakpoint (caused by execution of the BKPT instruction, or a hardware breakpoint in an emulation 
system) and Trace exceptions are intended to be mutually exclusive. In both cases, the handler code will want 
to know the address in user code where the exception occurred. If a breakpoint occurs during trace mode, or if 
trace mode is activated during execution of the breakpoint handler code, one of the handlers will see a return 
address on the stack that points within the other handler code. 
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Exception Interrupts - Non Maskable 

Exception Interrupt Vector Address Arbitration Ranking Service Precedence 

Breakpoint 0OO4h~OO7h 1 0 

Trace OOOBh-OOOBh 1 1 

Stack Overflow OOOCh-OOOFh 1 2 

Divide-by-zero 0010h-0013h 1 3 

User RETI 0014h-0017h 1 4 

<reserved 1 > 001Bh-001Bh - -
<reserved2> 001Ch-001Fh - -
<reserved3> 0020h-0023h - -
<reserved4> 0024h-0027h - -
<reserved5> 002Bh-002Bh - -
<reserved6> 002Ch-002Fh - -
<reserved7> 0030h-0033h - -
<reservedB> 0034h-0037h - -
<reserved9> 003Bh-003Fh - -

NMI 009Ch-009Fh 1 6 

Reset OOOOh-0003h 0 7 
(High) always serviced immediately 

aborts other exceptions 
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2.6.2. Trap Interrupts 
Trap Interrupts are intended to support application-specific requirements, as a convenient mechanism to enter 
globally used routines, and to allow transitions between User Mode and System Mode. TRAP 0 through TRAP 15 
are defined and may be used as required by applications. Trap interrupts are generated by the TRAP instruction. A 
trap interrupt will occur if and only if the instruction is executed, so there is no need for a precedence scheme with 
respect to simultaneous traps. A trap acts like an immediate non-maskable interrupt, using a vector to call one of 
several pieces of code that will be executed in System Mode. This may be used to obtain system services for 
application code, such as altering the Data Segment register for example. Some XA development software and 
Real Time Operating Systems may reserve certain Trap instructions for specific system functions. An example of 
this would be the Hitech XA C compilers use of Trap 15 to access system services. 

Traps - Non-Maskable 

Description Vector Address Arbitration Ranking 

Trap 0 004Q-0043h 1 

Trap 1 0044-0047h 1 

Trap 2 0048-004Bh 1 

Trap 3 004C-004Fh 1 

Trap 4 0050-0053h 1 

Trap ~ 0054-0057h 1 

Trap 6 0058-005Bh 1 

Trap 7 005C-005Fh 1 

Trap 8 006Q-0063h 1 

Trap 9 0064-0067h 1 

Trap 10 0068-006Bh 1 

Trap 11 006C-006Fh 1 

Trap 12 0070-0073h 1 

Trap 13 0074-0077h 1 

Trap 14 0078-007Bh 1 

Trap 15 007C-007Fh 1 

Example of Trap Interrupt: 

TRAP #05 ; generate Trap 5 Interrupt 

; immediate branch to TRAP05 Interrupt Service Routine (non-maskable) 

Example of ISR for a Trap Interrupt: 

TRAP05: 
. user code 

RETI 

Notice that the Execution Priority (IM3-IMO value) is not relevant since Traps are non-maskable. When the TRAP 
instruction is executed the Trap Interrupt will always occur. No user action is required in the ISR to "clear" the Trap 
before the RETI is executed. 
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2.6.3. Event Interrupts 
On typical XA derivatives, event interrupts will arise from on-chip peripherals and from events detected on external 
interrupt input pins. Event interrupts may be globally enabled/disabled via the EA bit in the Interrupt Enable register 
(IE) and individually masked by specific bits in the IE register or registers. When an event interrupt for a peripheral 
device is disabled but the peripheral is not turned off, the peripheral interrupt flag can still be set by the peripheral. 
If the peripheral interrupt is re-enabled an interrupt will occur. An event interrupt that is enabled can only be 
serviced when its Execution Priority is higher than that of the currently executing code. Event Interrupts have 16 
priority levels that can be individually set in the Interrupt Priority (IPA) register for the appropriate interrupt source. 
This allows tight control over the scheduling and occurrence of each maskable XA interrupt source. If more than 
one event interrupt occurs at the same time, the higher priority setting will determine which one is serviced first. If 
more than one interrupt is pending at the same priority level, a hardware precedence scheme is used to choose 
the first to service. Consult the data sheet for a specific XA derivative for details on the hardware precedence 
scheme or arbitration ranking. 

Note that the PSW (including the Interrupt Mask or Execution Priority bits) is loaded from the interrupt vector table 
when an event interrupt is serviced. Thus, the priority at which the ISR executes could be different from the priority 
at which the interrupt occurred. Since the occurrence priority is determined by the IPA register setting for that 
interrupt rather than by the PSW image in the vector table. Normally it is advisable to set the Execution Priority in 
the interrupt vector to be the same as the IPA register setting that will be used in the code. If the Execution Priority 
for any ISR is set lower than the Interrupt Priority for that interrupt, then that interrupt will interrupt itself 
continuously and likely overflow the stack. This can occur since most event interrupts are still pending during part 
of the ISA. 
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Event Interrupts - Maskable 

Description Flag Bit Vector Address Enable bit 
Interrupt Arbitration 
Priority Ranking 

External interrupt 0 lEO 00BO-00B3h EXO IPAO.3-0 2 

Timer 0 interrupt TFO 00B4-00S7h ETO IPAO.7-4 3 

External interrupt 1 IE1 OOBB-OOBBh EX1 IPA1.3-0 4 

Timer 1 interrupt TF1 OOBC-OOBFh ET1 IPA1.7-4 5 

Timer 2 interrupt TF2(EXF2) 0090-0093h ET2 IPA2.3-0 6 

<reserved 1 > 0094-0097h 

<reserved2> 009S-009Bh 

NMI (non-maskable) 009C-009Fh 1 

Serial port 0 Rx RI.O 00AO-00A3h ERIO IPA4.7-4 7 

Serial port 0 Tx TI.O 00A4-00A7h ETIO I PAS. 3-0 B 

Serial port 1 Rx RI.1 OOAB-OOABh ERI1 IPAS.3-0 9 

Serial port 1 Tx TI.1 OOAC-QOAFh ETI1 I PAS. 7-4 10 

<reserved3> 00BO-00B3h 

<reserved4> 00B4-00B7h 

<reservedS> OOBB-OOBBh 

<reserved6> OOBC-OOBFh 

<reserved7> 00Co-OOC3h 

<reservedS> 00C4-00C7h 

<reserved9> OOCS-OOCBh 

<reserved 1 0> OOCC-OOCFh 

<reserved11 > 00DO-00D3h 

<reserved12> 00D4-00D7h 

<reserved13> OODS-QODBh 

<reserved14> OODC-OODFh 

<reserved 1 5> 00EO-00E3h 

<reserved16> 00E4-00E7h 

<reserved17> OOEBh-OOEBh 

<reserved1B> OOEC-oOEFh 

<reserved19> 00FO-00F3h 

<reserved20> 00F4-00F7h 

<reserved21 > OOFS-DOFBh 

<reserved22> OOFC-OOFFh 

Notice that the vector address reserved for NMI is mapped into the Event Interrupt vector address space. This 
should not cause NMI, which is a non-maskable Exception Interrupt, to be confused with the maskable Event 
Interrupts. The NMI vector address is mapped into this space because NMI shares certain characteristics with the 
External Interrupts. Both NMI and External Interrupts are generated by a signal on an external XA pin that is then 
fed into the XA interrupt controller. 
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2.S.4. Software Interrupts 
Software Interrupts act just like event interrupts, except that they are caused by software writing to an interrupt 
request bit in an SFR. The standard XA implementation of the software interrupt mechanism provides 7 interrupts 
that are associated with 2 SFRs. One SFR, the Software Interrupt Request register (SWR), contains 7 request bits 
- one for each software interrupt. The second SFR is the Software Interrupt Enable register (SWE), containing one 
enable bit for each software interrupt. 

SWR (42Ah) - bit addressable 

I SWR7 SWRS SWR5 SWR4 SWR3. SWR2 SWR1 

Software Interrupt Request 

SWE (47Ah) - NOT bit addressable 

I SWE7 SWES SWE5 SWE4 SWE3 SWE2 SWE1 

Software Interrupt. Enable 

Software interrupts have fixed interrupt priorities, one each at priorities 1- 7. These are shown in the table below. 
Software interrupts are available in the XA Family Interrupt Structure but may not be present on all XA derivatives. 
Consult the data sheet for a specific XA derivative for details on the availability of software interrupts. 

Software Interrupts - Maskable 

Description Flag Bit 

Software interrupt 1 SWR1 

Software interrupt 2 SWR2 

Software interrupt 3 SWR3 

Software interrupt 4 SWR4 

Software interrupt 5 SWR5 

Software interrupt 6 SWR6 

Software interrupt 7 SWR7 

Example of Software Interrupt: 

OR.B SWE, #01 

SETB SWR1 

Vector Address Enable Bit Interrupt Priority 

0100-0103 SWE1 

0104-0107 SWE2 

0108-010B SWE3 

01 OC-01 OF SWE4 

0110-0113 SWE5 

0114-0117 SWE6 

0118-011 B SWE7 

; enable Software Interrupt 1 indirectly 
; since SWE not bit addressable! 
; generate Software Interrupt 1 

(fixed at 1) 

(fixed at 2) 

(fixed at 3) 

(fixed at 4) 

(fixed at 5) 

(fixed at 6) 

(fixed at 7) 

; branch to SWI1 Interrupt Service Routine if and only if the current Execution Priority (IM3-IMO) = 0 
; if the Execution Priority of the running code is> 0, then SWI1 wiU NOT occur, but will remain pending 

Example of ISR for a Software Interrupt: 

SWI1: 
CLR SWR1 clear Software Interrupt 1 

RETI 

Notice that Software Interrupt 1 has a fixed priority of 1. This means that the IM3-IMO value would need to be 0 
(Execution Priority of the current executing code equal 0) for this priority 1 interrupt to occur. Any IM3-IMO value 
> 0 would block the Software Interrupt 1 from occurring. The SWR1 bit must be cleared by the user before exiting 
the iSR or the Software Interrupt will re-occur. 
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It is also important to address the Software Interrupt Request bits by their bit addressable names and not by their 
bit position in SWR since they are shifted (Le., SWR1 is SWR.O not SWR.1). Thus it is correct to use these 
instructions: 

SETB SWR1 
CLR SWR1 

but incorrect to use these instructions: 

SETB SWR.1 
CLR SWR.1 

; generate Software Interrupt 1 
; clear Software Interrupt 1 

; actually would generate Software Interrupt 2 
; actually would clear Software Interrupt 2 

Since the Software Interrupt Enable register is NOT bit addressable it is wise to enable Software Interrupts as 
shown below (paying close attention to the actual bit position of the desired enable bit): 

OR.B 
OR.B 
OR.B 
OR.B 
OR.B 
OR.B 
OR.B 

SWE, #01H 
SWE, #02H 
SWE, #04H 
SWE, #08H 
SWE, #10H 
SWE, #20H 
SWE, #40H 

; enable Software Interrupt 1 indirectly 
; enable Software Interrupt 2 indirectly 
; enable Software Interrupt 3 indirectly 
; enable Software Interrupt 4 indirectly 
; enable Software Interrupt 5 indirectly 
; enable Software Interrupt 6 indirectly 
; enable Software Interrupt 7 indirectly 

Using the "OR" instruction allows the individual Software Interrupt to be enabled without affecting the setting of the 
enable bits for any other Software Interrupts. 

The primary purpose of the software interrupt mechanism is to provide an organized way in which portions of the 
event interrupt routines may be executed at a lower priority level than the one at which the service routine began. 
An example of this would be an event Interrupt Service Routine that has been given a very high priority in order to 
respond quickly to some critical external event. This ISR has a relatively small portion of code that must be 
executed immediately, and a larger portion of follow-up or "clean-up" code that does not need to be completed right 
away (but does not need to wait until the main software loop). Overall system performance may be improved if the 
lower priority portion of the ISR is actually executed at a lower priority level, allowing other more important 
interrupts to be serviced. 

If the high priority ISR simply lowers its execution priority at the point where it enters the follow-up code, by writing 
a lower value to the 1M bits in the PSW, a situation called "priority inversion" could occur. Priority inversion 
describes a case where code at a lower priority is executing while a higher priority routine is kept waiting. An 
example of how this could occur by writing to the 1M bits follows, and is illustrated in Figure 2. 
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Suppose code is executing at level 0 and is interrupted by an event interrupt that runs at level 10. This is again 
interrupted by a level 12 interrupt. The level 12 ISR completes a time-critical portion of its code and wants to lower 
the priority of the remainder of its code (the non-time critical portion) in order to allowmore important interrupts to 
occur. So, it writes to the 1M bits, setting the execution priority to 5. The ISR continues executing at level 5 until a 
level 8 event interrupt occurs. The level 8 ISR runs to completion and returns to the level 5 ISR, which also runs to 
completion. When the level 5 ISR completes, the previously interrupted level 10 ISR is reactivated and eventually 
completes. 

It can be seen in this example that lower priority ISR code executed and completed while higher priority code was 
kept waiting on the stack. This is priority inversion. 

In those cases where it is desirable to alter the priority level of part of an ISR, a software interrupt may be used to 
accomplish this without risk of priority inversion. The ISR must first be split into 2 pieces: the high priority portion, 
and the lower priority portion. The high priority portion remains associated with the original interrupt vector. The 
lower priority portion is associated with the interrupt vector for a software interrupt, in this case Software Interrupt 
5. At the completion of the high priority portion of the ISR, the code sets the request bit for software interrupt 5, and 
then returns. The remainder of the ISR, now actually the ISR for software interrupt 5, executes when it becomes 
the highest priority pending interrupt. 

The diagram in Figure 3 shows the same sequence of events as in the example of priority inversion, except using 
software interrupt 5 as just described. Note that the code now executes in the correct order (higher priority first). 
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Figure 3. Correct Priority Execution with Software Interrupts 

3. XA-G3 INTERRUPT STRUCTURE 
This section covers only the interrupts that are implemented on the XA-G3. Recall that not all interrupt options 
covered in the XA Family Interrupt Structure are available in this first XA derivative product. Our focus here will be 
on the actual XA-G3 Int~rrupts and any differences from the XA Family Interrupts. For details on XA-G3 interrupts 
that are identical to the XA Family Interrupts please refer to the appropriate section in the "XA Family Interrupt 
Structu re". 

3.1. XA-G3 Interrupts 
The XA-G3 defines four types of interrupts: 

• Exception Interrupts - These are system level errors and other very important occurrences that include Stack 
overflOW, Divide by 0, Breakpoint, Trace, User Mode RETI and Reset. 

• Trap Interrupts - These are TRAP instructions, generally used to call system services in a multi-tasking system. 

• Event Interrupts - These are peripheral interrupts from devices such as UARTs, timers, and external interrupt 
inputs. 

• Software Interrupts - These are equivalent to hardware event interrupts, but are requested only under software 
control and have fixed priority levels. 

Exception interrupts, trap interrupts, and software interrupts are generally standard for XA derivatives and are 
detailed in the XA Family Interrupt Structure. Event Interrupts tend to be different on various XA derivatives and will 
be explained in detail for the XA-G3. 

The XA-G3 supports 38 vectored interrupt sources. These include 9 maskable Event Interrupts (for the various 
XA-G3 peripherals), 7 Software Interrupts, 6 Exception Interrupts and 16 Traps. 

The complete interrupt vector list for the XA-G3, including all 4 interrupt types, is shown in the following tables. The 
tables include the address of the vector for each interrupt, the related priority register bits (if any), and the 
arbitration ranking for that interrupt source. The arbitration ranking determines the order in which interrupts are 
processed if more than one interrupt of the same priority occurs simultaneously. 
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3.2. XA-G3 Interrupt Vectors 

3.2.1. Exception Interrupts 

Exceptions - Non-Maskable 

Description Vector Address Arbitration Ranking Service Precedence 

Reset 000O-OO03h o (High) 7 

Breakpoint 0004-0007h 1 0 

Trace OOOS-OOOBh 1 1 

Stack Overflow OOOC-OOOFh 1 2 

Divide-by-O 0010-0013h 1 3 

User RETI 0014-0017h 1 4 

3.2.2. Trap Interrupts 

Traps - Non-Maskable 

Description Vector Address Arbitration Ranking 

Trap 0 0040-0043h 1 

Trap 1 0044-0047h 1 

Trap 2 004S-004Bh 1 

Trap 3 004C-004Fh 1 

Trap 4 00SO-OOS3h 1 

Trap S 00S4-00S7h 1 

Trap 6 OOSS-oOSBh 1 

Trap 7 OOSC-OOSFh 1 

Trap S 0060-0063h 1 

Trap 9 0064-0067h 1 

Trap 10 006S-006Bh 1 

Trap 11 006C-006Fh 1 

Trap 12 0070-0073h 1 

Trap 13 0074-0077h 1 

Trap 14 007S-007Bh 1 

Trap 15 007C-007Fh 1 
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3.2.3. Event Interrupts 

Event Interrupts - Maskable 

Description Flag Bit Vector Address Enable bit 
Interrupt Arbitration 
Priority Ranking 

External interrupt 0 lEO 00SO-DOS3h EXO IPAO.2-0 2 

Timer 0 interr{Jpt TFO OOS4-00S7h ETO IPAO.6-4 3 

External interrupt 1 lEi OOSS-DOSBh EX1 IPA1.2-0 4 

Timer 1 interrupt TF1 OOSC-OOSFh ET1 IPA1.6-4 5 

Timer 2 interrupt TF2(EXF2) 0090-0093h ET2 IPA2.2-0 6 

Serial port 0 Rx RI.O OOAD-00A3h ERIO IPA4.2-0 7 

Serial port 0 Tx TI.O 00A4-00A7h ETIO IPA4.6-4 S 

Serial port 1 Rx Rl.i OOAS-OOABh ERI1 IPA5.2-0 9 

Serial port 1 Tx TI.1 OOAC-OOAFh ETI1 IPA5.6-4 10 

3.2.4. Software Interrupts 

Software Interrupts - Maskable 

Description Flag Bit Vector Address Enable Bit Interrupt Priority 

Software interrupt 1 SWR1 01 0D-01 03h SWE1 (fixed at 1) 

Software interrupt 2 SWR2 01 04-D1 07h SWE2 (fixed at 2) 

Software interrupt 3 SWR3 01 OS-D1 OBh SWE3 (fixed at 3) 

Software interrupt 4 SWR4 010C-010Fh SWE4 (fixed at 4) 

Software interrupt 5 SWR5 011D-0113h SWE5 (fixed at 5) 

Software interrupt 6 SWR6 0114-0117h SWE6 (fixed at 6) 

Software interrupt 7 SWR7 011S-011 Bh SWE7 (fixed at 7) 

Arbitration ranking is only relevant when more than one interrupt (from the same category) is triggered at the same 
time. For example, 2 exceptions or 2 event interrupts at the same time would use the arbitration ranking to 
determine which interrupt source was serviced first. The interrupt with the lower arbitration ranking will be serviced 
first, and thus has a higher priority. Since this simultaneous triggering is not possible for Traps or Software 
Interrupts, these two interrupt categories do not require an arbitration ranking. 

Since Exceptions and Traps are non-maskable they will always occur immediately and therefore do not require an 
Interrupt Priority. Exceptions and Traps may be considered to have "infinite" priority. 
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3.3. XA-G3 Event Interrupts 
The 9 maskable Event Interrupts on the XA-G3 share a global interrupt enable bit (the EA bit in the IEL register) 
and each also has a separate individual interrupt enable bit (in the IEH or IEL registers). Notice that the power-up 
reset value for EA and each of the separate interrupt enable bits is O. This effectively disables each of the 
maskable interrupts in two different places. For a maskable event interrupt to occur the global EA bit must be set to 
"1" and the individual interrupt enable bit in the IEHlIEL register must be set for that particular interrupt source. The 
interrupt enable bits were listed in the previous table of Event Interrupts along with their associated interrupt. As 
shown below the interrupt enable bits are all bit addressable. 

IEH (427h) - bit addressable 

ETI1 ERI1 ETIO ERIO 

Interrupt Enable High Byte 

IEL (426h) - bit addressable 

I EA ET2 ET1 EX1 ETO EXO 

Interrupt Enable Low Byte 

In the XA-G3 each event interrupt can be set to occur at 1 of 8 priority levels via bits in the Interrupt Priority (IPA) 
registers, IPAQ-IPA5. The value 0 in the IPA field gives the interrupt priority 0, in effect, disabling the interrupt. 
Since the IPAQ-IPA5 registers all have power-up reset values of 0, each of the event interrupts starts with a priority 
of 0 and is thus disabled. 

The XA-G3 differs slightly from the XA Family Interrupt Structure in the way that interrupt priority levels are set via 
the IPA registers. Since only 3 of the 4 IPA register bits are implemented in the XA-G3, only 8 of the 16 possible 
priority levels are available for each of the event interrupts. The value OOOOh in one nibble of the IPAQ-IPA5 
register gives the interrupt priority 0, a value of 0001 h gives the interrupt a priority of 9, the value 001 Oh gives 
priority 10, etc. The value 0111 h in one nibble of the IPAQ-IPA5 register gives the interrupt priority 15. Since the 
MSB or 4th bit in each nibble of the IPAQ-IPA5 register is not implemented in the XA-G3, writing the value 0001 h 
or 1001 h to the IPA register will yield the same results. The interrupt in question will be set to a priority level of 9 in 
both cases. However, since the 4th bit in each nibble of the IPAQ-IPA5 register is not implemented it can not be 
read back if written. If 1001 h is written to either nibble of the IPAQ-IPA5 register and then read back, the value 
returned will be 0001 h. 

On the XA-G3 the user may want to write any non-zero IPA value with the upper bit always set. This provides both 
a reminder of the true interrupt priority and software compatibility with future XA derivatives. 
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IPAO(4AOh) PTO PXO 

Priority Timer 0 Priority External 0 

IPA1 (4A1h) PT1 PX1 

Priority Timer 1 Priority External 1 

IPA2 (4A2h) PT2 

Reserved Priority Timer 2 

IPA4(4A4h) PTIO PRIO 

Priority Transmit 0 Priority Receive 0 

IPA5 (4A5h) PTI1 PRI1 

Priority Transmit 1 Priority Receive 1 

SUOO851 

Figure 4. Interrupt Priority Registers IPAQ-IPA5 

Since event interrupts in the XA-G3 only support 8 of the 16 priority levels available in the XA Family Interrupt 
Structure, they can only have priorities of either 0 or 9-15. This means that Software Interrupts, with fixed priorities 
of 1-7, can not be granted higher priority than any of the XA-G3 Event Interrupts. 

Event interrupts in the XA-G3 can be grouped into three basic types: 

1. Externallnterrupts 

2. Timer Interrupts 

3. Serial Port Interrupts 

Let's take a detailed look at each type of event interrupt. 

3.3.1. Externallnterrupts 
External interrupts available on the XA-G3 are External Interrupt 0 and External Interrupt 1. These external 
interrupts are controlled. by bits in the TCON register as shown below: 

TCON (410h) - bit addressable 

I TF1 TR1 TFO TRO IE1 1T1 lEO ITO 

Timer/Counter Control 

External interrupts can be either falling edge triggered or low level triggered. This is controlled by the Interrupt 
Type Control bits 1T1I1TO. If 1T1I1TO is set to "1" then that interrupt will be set for falling edge trigger. If IT111TO is set 
to "0" then that interrupt will be set for low level trigger. When an external interrupt is detected it will set the 
Interrupt Edge Flag IE1I1EO. If the external interrupt is enabled the setting of this flag will generate an External 
Interrupt 1 or External Interrupt o. The IE1/IEO flag will be cleared when the interrupt is processed or it can be 
cleared by software at any time. 
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3.3.2. Timer Interrupts 
Timer interrupts available on the XA-G3 are Timer 0 interrupt, Timer 1 interrupt and Timer 2 interrupt. Timer 0 and 
Timer 1 interrupts are identical and are controlled by bits in the TCON register as shown below: 

TCON (410h) - bit addressable 

I TF1 TR1 TFO TRO IE1 IT1 lEO ITO 

Timer/Counter Control 

The timer is turned on by setting the Timer Run Control bit TR1ITRO to "1". The timer is turned off by setting the 
Timer Run Control bit TR1ITRO to "0". When the timer/counter overflows it will set the Timer Overflow Flag 
TF1ITFO. If the timer interrupt is enabled the setting of this flag will generate a Timer 0 Interrupt or a Timer 1 
Interrupt. The TF1ITFO flag will be cleared when the interrupt is processed or it can be cleared by software at any 
time. 

Timer 2 on the XA-G3 has additional functional modes over Timer 0 and 1 that will not be discussed here. Timer 2 
interrupts are controlled by bits in the T2CON register as shown below: 

T2CON (418h) - bit addressable 

TF2 EXF2 RClKO TClKO EXEN2 TR2 CIT2 CP/Rl2 

Timer/Counter Control 

Timer 2 is turned on by setting the Timer Run Control bit TR2 to "1". Timer 2 is turned off by setting the Timer Run 
Control bit TR2 to "0". When the timer/counter overflows it will set the Timer 2 Overflow Flag TF2. If the timer 2 
interrupt is enabled, the setting of this flag will generate a Timer 2 Interrupt. The TF2 flag will NOT be cleared when 
the interrupt is processed so it must be cleared by software or the Timer 2 interrupt will reoccur. If RClK1/RClKO 
or TClK1ITClKO are set to "1", then the Timer 2 overflow rate is being used as a baud rate clock source for 
UARTO or UART1. In this case the TF2 flag will NOT be set when the timer/counter overflows. 

If Timer 2 is enabled in external capture or reload mode, a negative transition on the T2EX pin will set the Timer 2 
external flag EXF2. If the Timer 2 interrupt is enabled, the setting of the Timer 2 external flag EXF2 can also 
generate a Timer 2 Interrupt. The EXF2 flag will NOT be cleared when the interrupt is processed so it must be 
cleared by software or the Timer 2 interrupt will reoccur. 

3.3.3. Serial Port Interrupts 
The two Serial Ports on the XA-G3 are identical and are called Serial Port 0 and Serial Port 1. Each Serial Port has 
two interrupts - one for the transmitter and one for the receiver. Notice that this is an enhancement over the Serial 
Port on the 8051 (which had only a single shared interrupt for both the transmitter and receiver). This gives the 
XA-G3 a total of four interrupts for the Serial Ports: 

1. Serial Port 0 Rx 

2. Serial Port 0 Tx 

3. Serial Port 1 Rx 

4. Serial Port 1 Tx 
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These Serial Port interrupts are controlled by bits in identical registers called SOCON and Sl CON. To avoid 
confusion we will look only at SOCON as shown below: 

SOCON (420h) - bit addressable 

Serial Port 0 Control 

The Serial Port 0 receiver is enabled by setting the Receiver Enable bit REN_O to "1". The Serial Port 0 receiver is 
disabled by setting the Receiver Enable bit REN_O to "0". When a character is received by Serial Port 0 the 
Receive Interrupt Flag RI_O will be set. If the Serial Port 0 Rx interrupt is enabled the setting of this flag will 
generate a Serial Port 0 Rx Interrupt. The RCO flag will NOT be cleared when the interrupt is processed so it must 
be cleared by software or the Serial Port 0 Rx interrupt will reoccur. 

When a character is transmitted by Serial Port 0 the Transmit Interrupt Flag TI_O will be set. If the Serial Port 0 Tx 
interrupt is enabled the setting of this flag will generate a Serial Port 0 Tx Interrupt. The TI_O flag will NOT be 
cleared when the interrupt is processed so it must be cleared by software or the Serial Port 0 Tx interrupt will 
reoccur. 

Serial Port 0 also has a Status Interrupt flag STINTO that is contained in the Serial Port 0 Extended Status Register 
(SOSTAT). If the STINTO flag is set to "1" the extended status flags are enabled and anyone of them can also 
generate a Serial Port 0 Rx Interrupt by setting the RI_O flag. These extended status flags include Framing Error, 
Overrun Error and Break Detect. Please refer to the XA-G3 data sheet for more details on these flags. The RI_O 
flag will NOT be cleared when the interrupt is processed so it must be cleared by software or the Serial Port 0 Rx 
interrupt will reoccur. 

As mentioned earlier the function of the Serial Port 1 Interrupts is identical to the Serial Port 0 Interrupts and 
therefore will not be covered here. 
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ABSTRACT 

Application note 

AN96075 

The XA is the high speed 16-bit successor of the 80C51. To be able to use relatively slow (to the XA) 80C51 
peripherals, a wait state generator is needed. The wait pin on the XA is multiplexed with the'E'A function and 
therefore some precautions have to be taken. The behavior of this pin is different than on the 80C51, and users 
must be careful using this pin. 

SUMMARY 
To limit the number of pins on the XA, some pins have multiple functions. EAlWAIT is one of them. During RESET, 
the'E'A pin determines the memory configuraiton of the XA. If the XA runs the WAIT function takes over 
functionality. To use both function, extra hardware is needed. This document describes how to construct this 
hardware. 

This document assumes that users are familiar with the XA and its bus interface. 

~ y 
Purchase of Philips 12C components conveys a license under the Philips' 12C patent 
to use the components in the 12C system provided the system conforms to the 
12C specifications defined by Philips. This specification can be ordered using the 
code 9398 393 40011. 
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1. THE XA EANIW AIT PIN 

1.1 Introduction 

The EAn (External Access) pin is used to configure the XA's memory configuration during reset. 
After reset this PIN becomes a high active WAIT pin. The XA will run in external memory only mode 
when EAn is held low DURING reset. When EAn is held high during reset, the XA will run in on-chip 
or mixed memory mode. 
During RESET all 1/0 pins are pulled high, however it depends on the logical level on the EAn pin if 
it is a weak or a "strong" (low impedance) pull-up. The status of the EAn pin is immediately reflected 
into the type of pull up, even during reset. 

Unlike the 80C51 [2] the XA EAn pin cannot always be connected direct/yto Vdd or GND. If EAn is 
connected to Vdd WAIT states will be inserted as soon as the XA accesses the external bus (but the 
external bus only, because the WAIT pin only applies to the external bus). 
The following table gives an overview of all possible WAIT/EAn combinations. 

Table 1, Possible memory / WAIT combinations 

WAIT needed 
External onl 
Connect EAn to WAIT 
generator 

Mixed mode Internal onl 
NOT APPLICABLE 

No WAIT needed Connect EAn to GND 

EAn circuit + WAIT 
generator (1.3,1.4) 
only EAn circuit 
needed (1.3) 

Connect EAn to Vdd 

In the following situations NO extra logic is needed: 
If the XA must run in external mode only and NO wait states need to be generated; the EAnlWAIT pin can 
be directly connected to ground. 

When in external memory mode wait states are needed, the EAnlWAIT pin can be connected to the WAIT 
state generator directly without extra logic. During reset ALL data strobes are high and consequently NO 
wait signal will be generated (be absolutely sure that WAIT cycles are generated only as a result of a data 
strobe, see 1 A) 

In case the XA will run internal only, EAn can be connected to Vdd directly because no wait states can be 
generated in this memory mode. Please be absolutely sure the XA is not accessing external memory in 
this mode. The XA will enter an infinitive wait as soon as external memory is accessed. Setting the WAITD 
(found in BCR, sfr address Ox46A, no bit address available [1]) bit can prevent this behaviour. This bit 
disables the WAIT function completely. 

In all other cases extra logic is needed described in the following sections. 

1.2 EAnlWAIT pin deSign considerations. 

Before the XA WAIT pin can be used, be aware of the following things: 
The EAnIWAIT input pin has NO Smitt-trigger, this means that the rising and falling edges of WAIT 
must be steep. If NOT, due to oscillation, the XA will generate unpredictable events, for example the 
XA can generate a exceptions. This restriction rules out a wired logic solution, where both signals 
are connected via an open drain to the EAnIWAIT pin. The slopes of this type 6f signals is not steep 
enough to be used with the XA EAnIWAIT pin. 
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A WAIT signal needs a holdtime and must be generated within a specified time, see Figure 1. 

STROBE 
\'---------

~:----t.1 
\'-----

waittd 

WAIT 

Figure 1, WAIT hold time (2) and WAIT asserted after Strobe asserted (1) 

Because XA data strobes (code read and data read/writes) lengths are individually programmable, 
WAIT must be generated correspondingly [1]. It is impossible to generate WAIT states when the XA 
bus controller is programmed as 1 clock cycle data reads without ALE. For most XA data cycles 
WAIT needs to be generated at least 1 clock (plus 34ns) before the end of the strobe (decision 
point). For code reads and wait cycles with strobes of one clock in length, WAIT may be generated 
as late as 34ns before the end of the strobe (no extra clock). 

It is allowed to generate a wait strobe before a data strobe is asserted. The following situation 
however should be avoided: 

avoid.td 

STROBE 

WAIT lEAn \ 
I--

Figure 2, Too short WAIT hold time 

Because of the combined WAIT and EAn "feature" this situation can occur when a application 
initialises (see 1.3), as a result the XA can lock up. 

1.3 Generating the EAn signal. 

The XA samples the EAn pin at the rising edge of RESETn, however a hold time is needed (see 
Figure 1). This hold time must be at least three clock cycles long. Therefore the EAn generating logic 

I+ll RESETn ------, r---~+_---
'----_____ ----'1 

MODE ••••••••• ItC= ••• 

mmhttd 

Figure 3, Memory mode hold time 

needs some delay. At 20MHz the hold time is 150ns, so just simply gating this signal with RESETn 
will not do the job. 

Absolute condition for proper operation of all EAn networks is that a "clean" RESETn is supplied to 
the XA. The XA RESETn input is Smitt-triggered, so a normal RC network can be used to generate 
the appropriate reset signal. However if a RESETn is constructed via an RC network and additional 
logic, for example reset is generated by an other device, it is important to use Smitt-triggered logic. If 
not, the additional logic can oscillate at the rising edge of RESETn. The XA does not tolerate this 
oscillation on the RESETn pin, and can lock-up or initialises in the wrong memory mode. 
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1 .3.1 Generating EAn using an RC network. 

The easiest way of generating an appropriate EAn signal is using a simple RC network (Figure 4). 
The RC loop is triggered at RESETn, holding the EAn signal for a certain period of time determined 
by the RC time. It is very important to use Smitt-triggered logic due to the slow slopes. 

U2A U2B U2C ' 
At UtA 

EAn out .' .... 
ASTn '-'"",-_ ... -' --... . '.~ EAn/WAIT pin 

74HCT32 

W A I TIre::::>-' 

Figure 4, Generating EAn 

The RC circuit can be calculated as follows: 
I 

Uth = Uo.e RC => C= t 

R'ln(~:) 
Uth = HCT14 Input threshold voltage [3]. 
Uo = HCT14 output voltage (5V) [3]. 

When Rln » R (e.g. 1 k) and XA running @ 20MHz ( to = 50ns), it will take a minimum of 7 clock 
cycles before the first ALE is generated after RESET: 

350ns 
c = 3 (0.9) => C,.. 200pF 

10 ·In -
5 

The minimum of 7 clocks applies when the XA is running external only (EAn = 0). Using the EAn 
circuit will force the XA to boot internally (EAn = 1). Thus it will take longer before the first external 
cycle is generated and consequently the value of the capacitor may be higher. Again, as stated in 
section 1.1, the EAn circuit is not needed if absolutely NO external cycle will be generated (I.e. the 
XA is executing internal only). 

The jumper in 1.3.1 Figure 4 has been added to enable the user to choose between the two memory 
modes. In case WAIT states are needed, the circuit can be combined with a WAIT state generator 
via the OR gate. If there is no need for generating wait cycles, [EAn out] can be connected directly 
to the XA EAnIWAIT pin (see Table 1). 
The main advantage of this circuit is that it is very simple and exists of only one type of logic 
(74HCT14 [3]). A disadvantage however is that this circuit can never be implemented in 
programmable logic because a PLD is normally not equipped with Smitt-triggered inputs [5]. 
Therefore extra logic is needed something that you try to prevent with programmable logic. 
In the next sections however alternative (C)PLD compatible solutions are presented. 

1997 Mar 17 601 



Philips Semiconductors 

Using the XA EAnIWAIT pin 

1.3.2 Generating EAn using XA reset behaviour 

ALE U1A 
PSENn 

A19 
A18 

74HCT32 

Figure 5, EAn generator using XA RESET state 

Application note 

AN96075 

'. to XA EAn/WAIT pin 
. ...;::> 

During RESET all XA control, address and data pins are pulled high. Figure 6 shows that after reset 
it takes some time before ALE will become low for the first time. This behaviour can be used to 
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Figure 6, RESETn and XA control line relationship, 3 = RSTn 14 = ALE 

. 

: 

.J 

·1 

i 

6 ~'>lov "1996 

11:02:52 

determine whether or not the XA is in reset state or not. This behaviour is based on the fact that an 
external cycle will be performed, if not the XA runs fully internal and the EAn circuit is not needed. 
Consequently EAnIWAIT can be connected to Vdd because WAIT only applies for the external bus 
(see 1.1). 
The ALE strobe can be used in combination with for example the PSENn strobe. Besides during 
reset, ALE and PSENn are also high at the same time during an ALE cycle (I.e. address is available 
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on the address/data bus), consequently during this period also WAIT will be high. It is however 
allowed to generate a WAIT strobe outside a data strobe, but in this case NO wait cycles will be 
inserted, 
To improve EMC behaviour it is desired to suppress these spurious WAIT strobes. This can be 
achieved by ANDing ALE and PSENn with a couple address lines, e.g. A19 and A18. Of course if 
the same address is used to decode chip selects, again this spurious wait will be generated (but now 
less frequent). Figure 5 shows an implementation, more addresses can be decoded if a larger AND 
gate is used. 
If the Jumper is applied the XA will run on-chip (EAn high during reset), and consequently will cause 
the I/O pins to be configured as quasi bi-directional. A weak internal pull-up will make the 1/0 pins 
high. Therefore R1 in Figure 5 must have a relatively high value, so R1 > 10k. 
A CPLD description of this circuit is relatively easy [4]: 

WAIT = ALE & PSEN & A19 & ... & Ax + EAnIN; 

1.3.3 Generating EAn using a 0 flip-flop 

The final and most secure option is using a D flip-flop with asynchronous PRESET. During reset 
(RSTn = 0) the D flip-flop is PRESET, the flip-flop is reset on the rising edge of the first ALE (data = 
o clocked in), ALE is used as clock. The flip-flop will stay set as long as no exteral cycle is 
performed. This means if the flip-flop has never been reset, no external cycle has been performed 
(the XA runs fully internal), consequently the EAn circuit is not needed. In this case EAnlWAIT can 
be connected to Vdd because WAIT only applies for the external bus (see 1.1). 

RSTn U2A 

74HCT74 JP1 U1A 

r-D-~""'---Q--;"'5,,--_-o . to XA EAn/WAIT pin 
.-C:> 

>--=-tCLK 

~ Q 6 74HCT32 

Vdd 

Figure 7, Generating EAn using D-flip-flop 

Jumper J1 is used to determine between internal/mixed or external memory mode. When jumper J1 
is not applied, resistor R1 will pull down the XA EAnlWAIT pin or, if combined with a wait state 
generator, one of the OR gate (U1A) inputs. This means that if jumper J1 is applied the XA 
EAnlWAIT pin will be "0" at RESET, i.e. full external. 
Jumper J1 and resistor R1 may both be removed if only on-chip memory mode is needed and no 
selection between internal/external is required. 
As described previously, the above described circuit can be discarded if the XA must run external 
only. If NO wait states are needed, the EAn pin can be connected directly to GND without extra 
logic. However if wait states are needed, EAnlWAIT can be connected to the WAIT state generator 
without extra logic. 
It is NOT important to buffer the RSTn signal with a Smitt-trigger because once the flip-flop has been 
set, it will stay set, up to the rising edge of ALE 

1997 Mar 17 603 



Philips Semiconductors Application note 

Using the XA EAnIWAIT pin AN96075 

Tel< 

Figure 8, Generating EAn using RSTn and ALE 

C i'J C'v' i QC)(i 
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Figure 8 shows how EAn sets when RSTn is low and resets at the ALE rising edge. In this example 
it takes more than 7 f..Ls before the first ALE strobe (= first external access, XA is running internal 
because EAn is high) is generated (at 20M Hz). The reset falling edge is not displayed, because the 
reset strobe has a length of several milli seconds. Due to the resolution of the digital storage scope 
displaying both edges of reset will prevent the sampling of the first ALE and will consequently not be 
displayed. 

Many designs use programmable logic to connect a microcontroller to peripherals and generate chip 
selects. The schematic shown in Figure 7 can also be implemented in a PLD. The following XPLA 
designer equations show it is very easy to implement the above described Dflip-flop solution in a 
(C)PLD: 

equations 
ea.pr 
ea.clk 
ea.d 
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pin 4; /* use clock pin, see PZ5032 data sheet */ 
node istype 'reg'; 

!RSTN; 
ALE_eLK; 
0; 
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1.3.4 EAnIWAIT lock up 

As mentioned in section 1.2 some EAnIWAIT situations can lock-up the XA. In this section an 
example will show how an EAnIWAIT signal can lock-up the XA. Figure 9 shows a problem causing 
design and should therefore not be used with any XA project. The transparent latch (U2A & U2B) is 
SET during RESETn and is reset at the first external access (datastrobes WRHn, WRLn, PSEN or 
ROn). The problem is EAnIWAIT is still high when the first data strobe is generated. This situation is 
similar as displayed in Figure 2 (section 1.2); the WAIT hold time is too short and can lock-up the 
XA. It depends on the propagation delay of the circuit how long it takes before EAnIWAIT is negated 
after the first data strobe is generated. When using HCT logic the propagation delay for the NAND 
gate (Figure 9) is 9ns [3]. 

RSTn 

WRHn 
WRLn 

PSENn 
ROn 

1997 Mar 17 

74HCT21 

U2A 
U1A 

WAIT in , c=>- " " - - " - , ,to XA EAn/WAIT pin 
EAn out· -c:::> JP'T1" . ~~~~T~~ • . ea_ille.dsn 

10k 

Figure 9, problem generating EAn solution 
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1.4 Generating WAIT 

1.4.1 The XA WAIT pin 
With the WAIT pin it is possible to stretch an external XA bus cycle. However the WAIT pin has no influence on 
code running from on-chip memory. When WAIT is asserted wait states will be inserted as soon as the XA 
accesses the external bus (that is asserting RDn, PSENn, WRLn and/or WRHn). The WAIT pin is therefore a 
part of the bus controller and not the core. When wait states are inserted the bus controller will halt the core up 
to the point WAIT will be negated again. In the mean time also NO internal activity takes place, because WAIT 
will only be granted in sequence. If not, the following erroneously situation can occur; The XA is executing code 
internally, at certain pOint data is needed from the external databus, e.g. to make a go no-go decision. If during 
this external access a wait signal is generated the external bus will be stretched, thus postponing the data fetch. 
Wrong decisions can be made if the XA continues to execute the internal code without waiting for the necessary 
external data. 

It is possible to overrule the WAIT pin by setting bit WAITD in the SCR (sfr address Ox46A [1]) register. 

The XA WAIT pin is not bi-directional and therefore the XA cannot halt external peripherals like on the 68000. It 
is however possible to use the 68000's DTACKn with the XA, please refer to application note AN96098 [7]. 

1.4.2 Illegal WAIT configuration 

The XA itself can never generate a WAIT strobe. When one ore more XA data strobes are 
connected via an invertor to the XA WAIT input (Figure 10), the XA will latch-up as soon as it tries to 

Figure 10, Illegal WAIT construction 

access external memory. This is caused because when a WAIT is asserted during a data strobe, the 
strobe will be stretched as long as this WAIT signal is asserted. This mechanism however can never 
negate the WAIT signal again, because it is stretched by the same signal. This is the reason why an 
external WAIT state generator needs to be build. 
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1.4.3 Burst and non burst wait state generators 

XA code and data reads can be performed during a so called burst mode. In this mode one of the 3 
(4 for 8 bit data bus) non-multiplexed LSB address lines can change without asserting ALE and 
without negating PSENn or RDn (see Figure 11). This burst mode is transparent and cannot be 
controlled by the user and/or programmer. 

ALE 
~~----------------------------------------------

PSEN 
1-----t4---j 

~ __________________________________ ~I ____ ~r--

.. ~ . 3 ... 12 . . 12 .. t2 
ADDRESS I X X X X X 

f-tl-j f-tl-j -tl-j -tl-j f--u-j 
I X X X X AD·BUS 

WAIT 
L.jt6 L.jt5 -ItS -ItS L.j1S 

Figure 11, burst (code) read 

Non bust mode wait state generators can therefore only be used in situations where no burst is generated by 
the XA, i.e. 16 bit write cycles. Or if the connected peripheral Is only accessed one byte or word at the time. In 
all other cases a burst mode walt state generator is needed. 

1.4.4 Generating NON burst mode WAIT states 

Generating non burst WAIT using one shot 

Several XA wait state implementations are available, the easiest solution is using a one shot 
generator (Figure 12). Looking at the schematic you can see that the WAIT signal is only generated 
AFTER a data strobe (i.e. RDNIWRLIWRH/PSEN) is asserted. The data strobe will also trigger the 
one shot generator, generating a pulse with a length determined by the RC time. By ORing the 
strobe with a CSn signal you can select which device needs WAIT states. 

DATASTROBE 

CHIP SELECT 

+5V 

RESETr>-------...J 

EAn In L .... >---------------------I 
Figure 12: Wait state generator using one shot 

WAIT 

The WAIT duration is always a whole number of clocks, therefore the RC time is not very critical 
except at turn over stages. The number of wait states can be made selectable when R1 is replaced 
by an adjustable resistor. 
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Generating non burst WAIT using shift register 

A shift register offers a more reliable way of generating wait states. Figure 13 shows you a shift 
register implementation. This circuit only generates a WAIT signal during a datastrobe. The shift 

WRln 

WRH nL ...... ------·····---L~_ ~ 

ClK 

CSn 

Figure 13: Wait state generator using shift register 

register master reset is released when one of the data strobes is asserted AND Chip Select is low. 
The chip select input has bee included to make it possible to insert WAIT states for particular 
devices. The WAIT output will immediately become high and ones (A and B input are one) are 
shifted into the shift register after a data strobe is asserted. 
Counting will continue until the selected (by for example a jumper) shift register output becomes 
high. Consequently the WAIT signal will be negated and the XA will continue by negating its strobe 
resulting in clearing the shift register. 
To save logic in contrast with all other WAiT/EAn designs in this design for "EAn in" a NOR is used 
instead of an OR. 
The circuit above serves as an example, more solutions are of course available [6]. 

1.4.5 Burst mode wait state generation 

The XA burst mode can cause several problems: firstly NO WAITs are inserted when one of the 
address lines changes, consequently the burst cycle is too fast for the connected peripheral. 
Secondly, depending how the wait state generator is constructed, waits can be inserted endlessly 
because the hardware expects a datastrobe. 
To solve this problem besides the PSENn and RDn strobes also the address lines A1-A3 (in 8 bit 
databus mode AO-A3) must be monitored. So if PSENn is asserted AND the WAIT cycle has ended, 
new wait states need to be inserted if one of the non multiplexed addresslines change 

PSENn H->L 
WAIT H->L & PSEN = L 
If AO-A3 H<->L & PSENn L 
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=> WAIT = 1 
=> monitor AO-A3 
=> WAIT = 1 
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Burst mode wait state generator using discrete logic 

Figure 14 shows the same shift register used in Figure 13. The magnitude comparator U1 
(74HCT85) is the heart of this design. If no data strobe is generated (Le. RDn = PSENn = WRLn = 
WRHn = 1) the comparator's A=B output will be zero, because the 74HCT85 A3 input is low and the 

ClK C'>,· -------------.,.:-;------, 

~~ F·····~···'Sa===_======·~··..1t1·Q·· AO 

~~l! 

WRLn 
WRHn 

ROn 
PSENn 

CSn 

EAn in 

~ ~~B 
°LL...--'-----"--'4 ~:~ 

~74=HC=T85,---' 

........ -0 

.......• -0 

Figure 14, wait state generator with address monitor 

R1 

.. l .... ···C>WAIT 

B3 input is high. During this state the shift register is a-synchronously cleared, consequently ALL 
74HCT164 outputs (QA to QH) are low. When QA is zero the 74HCT573 latch enable input (C) is 
high and therefore transparent for address lines A 1 to A3. If one or two (both the WRLn and WRHn 
can be asserted simultaneously) strobes are asserted, the 74HCT85's A=B output will become HIGH 
because now both A3 and B3 are low. The shift register will start to shift in ones and QA will be high 
after one clock cycle. When QA is high the 74HCT573 latch enable will be low (C=O) and the current 
address is latched in. A wait signal will be generated as soon as both CSn and one or more XA data 
strobes are low up to the point the selected (by jumper) will be become high. 
When during a PSENn or RDn strobe (no burst is generated in case of a 16bit write cycle) one or 
more addresses change (A 1 .. A3). the comparator's A=B output will be low again and resets the shift 
register. Consequently QA will also be low and the latch (74HCT573) will be transparent again. 
Immediately the A=B output will become high and the shift register starts to shift. Because ALL shift 
register outputs are low after the 74HCT164 is cleared, a NEW wait cycle will be generated. 

Burst mode wait state generator using CPLD 

The circuit described in the previous section can also be constructed by using a Philips 
Semiconductors CPLD (e.g. PZ5032 [5]). The XPLA [4] module displayed below is based on Figure 
14, except the shift register has been replaced by a counter. This results in less nodes, three in 
stead of eight. 

Module BURSTMODE_WAITSTATE 

! ** ** ** 'It * ** 'It 'It 'It * ** **'It ** ** * 'It * * * * ** ** 11:* ** **** 'It **'It * ** * **'/t *** ** *** ** / 

1* this waitstate generator has a FIXED number of wait states *1 

1* Please change {number_of_wait} by required value *1 
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1'* '* '* '* * '* '* '* * '* '* '* '* '* '* '* ** '* '* '* ** '* '* * * ** ** ** * '* ** '* '* '* '* * ** * * 1t *** ** ** ** '* ** '* ** / 

Title 'wait state generator for the XA' 

CLOCK 

RST 

PSEN 

WAIT 

pin; 

node; 

pin; 

pin istype 'reg_d'; 

1* Alternative see section 1.4.6: WAIT pin; *1 

WRL 

WRH 

RDN 

CSN 

EAN_IN pin; 

node; 

pin; 

pin; 

pin; 

pin; 

1* Alternative see section 1.4.6: wait_is_true 

bit3 .. bitO node istype 'reg'; 

count = (bit3 .. bitO); 

a2 .. aO pin; 

compa = [a2 .. aO] ; 

ie node; 

latch3 .. latchl node istype 'com'; 

latchinout = [latch3 .. latchl] ; 

1* if XA is used in 8 bit mode please add latchO *1 

/* clock signal from XA oscillator 

1 * internal counter reset * / 

1* program data strobe input * / 

/* WAIT signal output */ 

/ * write low strobe input * 1 

/* write high strobe input * / 

1* data read strobe input * / 

/ " chip select input *1 

/* XA memory mode pin input *1 

node istype 'reg_d'; "I 

1* Up counter register bits * 1 

I" Up counter register * / 

I * address sense pins "/ 

1* address sense register * 1 

*1 

/. latch enable, used internal only* 1 

/ * latched in address * / 

/ * address latch register "I 

/ ** ****'ft***** **** *** **** ** ************** ** ******* ** **** ******* / 

equations 

le = (count == 0); 

latchinout = (le & compa) # (latchinout & lle); 
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1 * latch is open when count is zero * / 

1* latch in current a3-al*1 
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RST (PSEN & RDN & WRL & WRH) # (compa != latchinout); 

count when no strobe is asserted * / 

count.CLK = CLOCK; 

count.AR = RST; 

count.d = count.q + (count < 7); / * do not count more than 7 * / 

/* Alternative, Add this line. see section 1.4.6: wait_is_true.CLK = CLOCK; */ 

wait_is_true = (count < (number_ot_wait)) & (! CSN) ; 

Application note 

AN96075 

/* do not 

WAIT. CLK = CLOCK; /* Alternative see section 1.4.6 remove this line */ 

WAIT = ((! PSEN # !WRL # !RDN # !WRH) & wait_is_true) # EAN_IN; 

end; 

On the next page a simulation can be found, the {numbecoCwait} is 6. 
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~ Z ..J I 
U W a::: a::: a (J) 3: 3: 
..J a... 
u 

Z Z Z lSI o (J) H a: 
a::: U zl 

a: w 

C\J f­a: a: H 
a: 
3: 

Figure 15, CPLD simulated with number of waitstate = 6 
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The following oscilloscope picture shows that when one or more addresses change, and PSENn or ROn is low, 
a WAIT will be generated. In the picture 1 represents the data strobe, 3 and 4 are Ai and A2, and 2 is WAIT 

Tel< 
T I 

~, 

l~i 

~!lH=llJ=:J ~ ~. 
l~J !l-_J t-:J r::;:-- .:,-:' 

...... "(" ..... . 

.. ;: 

~ n In ! ~·tJ······ ..... ··~·~~~···'IF'Flt'~!'·F1] 
2 •• L ! i· . :W~hUH···········~·······\ 

'chlu'S:o-OV' . (,hZ' ':)':Cli:r\/u" "S.T'·S'CijTi·s'···"\f;raUi·,u·thl··' .. 6 f'J 0 v 
en3 ~5. 00 \/ 

" 1'5" 

Figure 16, Oscilloscope picture with 1 = PSENn, 3 = Ai, 4 = A2 and 2 = WAIT 

out. Please notice the abandoned cycle on the right hand side of the picture. When a cycle is abandoned the 
data strobe will be negated again. The WAIT circuit does NOT generate a WAIT when none of the data strobes 
is asserted. 

Combining one shot generator with burst detector 

As an alternative for the burst mode wait state generator with shift register a burst mode wait generator with a 
one shot generator is displayed. In fact Figure 17 is a combination of Figure 12 and Figure 14 where the shift 
register is replaced by the one shot generator. This needs some minor changes in the burst mode detector 
because the one shot can not generate a short pulse to open the input latch. In this design the opening and 
closing of the latch is achieved by an OR gate which is connected to the comparator's A > 8 and A < 8 output. 
This wayan A :t:- 8 signal is constructed, and is high when no strobe (PSENn, ROn, WRHn or WRLn) is 
generated because input A3 is low and input 83 is high. When A :t:- 8 is high the input latch will be transparent. 

When a datastrobe is generated both inputs A3 and 83 are low and consequently A = 8 will become high (and 
of course A :t:- 8 low) resulting in closing the address input latch. The one shot generator will be triggered on the 
positive edge of A = 8 and thus generating a WAIT. 

After WAIT is negated (determined by the one shot generator RC time), the XA will continue running. In a burst 
mode cycle the data strobe will not be negated, instead one or more of the addresses (A3:1) will alter. The 
address change will make A :t:- 8 high again and consequently the latch will be opened triggering the one shot 
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generator. When the latch is transparent the new address will also be available on the comparator's B2:0 input 
and thus making A#- B low, resulting inclosing the latch. 

At the end of the cycle when the data strobe is negated, A#- B will be high and the latch transparent. 

In this design the chip select input is connected to the comparator's A > B input. If chip select is not asserted 
(Le. CSn = 1), the A = B output will be low and therefore NO waitcycles will be generated. 

Al 
A2 
A3 

WRLn 
WRHn c->-----''-I 

t=lt===~ 

~~~Nn F~=::i~==/ 
CSn 
RESET 
EAn in 

AO 
A1 
A2 
A3 

+5V 

:: ir1 14 CEXT 
lOOp 

..• 15-. REXTICEXT 

I A 
2 B 

.•.... i1 CLR 

74HCT123 

Figure 17, burst mode wait state generator with one shot 

1.4.6 Known problems and solutions 

U4A 

WAIT 

74HCT32 

The CPLD counter used in section 1.4.5 has one drawback, it can generate spikes. For example the 
equation count < 7 generates a spike at the 4th clock. Going from 3 to 4 : 

Q11 (3) -> 1U(spike 7) -> 100(4) 

To prevent this problem WAIT has been constructed around a D flip-flop (see XPLA listing section 
1.4.5 [4,5]) . It is however NOT guaranteed that this construction always will function. The XA and 
CPLD are both clocked on the same source, in some situations it can take up to a clock period 
before a WAIT is generated. An XA data strobe is generated at the rising edge of CLOCK (although 
this cannot be guaranteed), just the next rising edge will clock the connected logic resulting in WAIT 
being asserted. This delay can be a problem, for example when the XA write strobe length has been 
programmed as one clock cycle. In that case the wait signal must be generated at least at tx = 1 * tc -
34ns. Where tc is the length of the current strobe, this means that wait must be generated 34ns 
before the end of the strobe. 
When the (CPLD [4,5]) logic generates a wait after one clock (minus 17ns, I.e. internal XA delay 
between rising edge input clock and falling edge strobe) it will be too late and WAIT will not be 
sampled. See Figure 18 for an oscilloscope picture, this picture shows that the wait signal is 23ns 
late: 
tl = 34 - (tpxa - tpl) => tl = 23ns (tl = time late, tpxa propagation delay XA, tpi propagation delay logiC) This 
situation occurs when BTRL (Bus Timing Register Low) contains Ox6F [1]. 
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PM3394B 

CLOCK wtnJtJt9JtftftFtJrrtlt 
- ... ~.... -

WAIT~.~ 
L. _""".~~ lpxa - tpl = 11ns 

WRL ~ - T ~ i i 
i i 

2- ~. Jx=)4ns ' . 
. _ .. _). <0- WAIT should have 

~CHl 5.00 V= 
been generated here 

=CH2 5.00 V= STOP 
=~~,3, ~:9P v,~ Alt1' I;17',~ ~9Pp~~, ~;.,9.4<;lv, ,c,lt2 -;-" ,= 

Figure 18, WAIT generated too late 

Please note: although the number_oCwait in this design was 6, WAIT is only high for ONE clock 
period. This is caused because the counter is cleared in case NO strobe is asserted. 

This problem can be solved in two ways, the first method is using !CLOCK in stead of CLOCK. Now 
WAIT will be asserted at the falling edge in stead of the rising edge, resulting in a delay of half a 
clock cycle plus logic (invertor) propagation delay_ 
Also this solution can provoke problems, caused by the internal XA delay between clock and the 
data strobe falling edge (tpxJ This delay is constant (at least not depending on the clock frequency) 
and is around 17ns. The wait strobe must be generated after an XA data strobe is asserted, 
otherwise an extra clock cycle will be inserted before WAIT will be generated. So: 

0.5 * tc = 17ns - 6ns ==> tc = 22ns 

Resulting in a maximum frequency of 45MHz, the maximum operating frequency of the XA is 
currently 30M Hz, therefore this solution can be used without restrictions. Please notice, the logic 
propagation delay can compensate tpxa-
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The second solution can be found in the CPLD equations. In stead of using clocked logic, combinatorial logic 
can be used instead to generate WAIT. The XPLA source need to be adapted (see comment in CPLD source, 

I 
SOns 

I I I 
lOOns 

I I I 
1 SOns 

I I I I 1

200ns 

I I 

CLOCK 

!CLOCK 

STROBE ----------; 

WAITt MtPII 

~tPll 

clckrel.td 

WAITL 'I ----------------~ ________________________ __ 

Figure 19, relation between strobe/wait/clock 

section 1.4.5) to realise this implementation. 

In the new equations the WAIT signal is generated immediate (minus propagation delay logic) after a data 
strobe is asserted. Because the relationship between the supplied clock and the XA core clock will never be 
Ons, the length of the WAIT strobe is not a exact number of clocks. In stead it can be up to one clock longer 
than defined. In case of using CLOCK: 

tOxt 'a2 = tc - tpxa 

In case of using the inverted CLOCK: 

tOxt'.1 = 0.5 " tc - (tpxa - tpclk) 

if to < (tpxa - tpclk) then: 

to,.". 

tc 

tOxt 'a2 1.5 " to - (tpx• - tpclk) 

= time making wait strobe longer 

= clock period 

tpxa 

tPClk 

tp,,& tpl2 

= time difference between rising edge clock and falling edge strobe 

= time difference between CLOCK and !CLOCK 

= logic propagation delay 

Because tpl1 and tpl2 are both propagation delays caused by the same logic, that cancels both signals in the wait 
strobe length formula. 

tpxa and tPClk are both measured and serve as an indication, the exact value can vary (influenced by temperature 
and supply voltage). 

The next chapter (2) describes how to supply a clock source. 
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2. CLOCK SOURCE 

Some designs in the previous sections need a CLOCK. Unfortunately the XA does not have a CLOCK output, 
so a core CLOCK reference is not available. Of course the XA XTAL2 output can be used, but this signal and 
the core clock are not in phase. 

Several ways are available to offer a CLOCK source to external devices. The most common way is using a 
normal crystal and supplying CLOCK by XTAL2 (see Figure 20). Please be aware that extracting the CLOCK 
signal from this pin will raise the capacitive load (input capacitance CPLD is 8pF) on the XTAL2 pin, this can be 
corrected by lowering the capacitor (C2) normally found on the XTAL2 pin. 

U1 
C1 3S 

EA/Vpp/WAIT 

+d2D 

A4DO/PO.O 
A5D1/PO.1 

XTAL1 A6D2/PO.2 
A7D3/PO.3 

20 A8D4/PO.4 
XTAL2 A9DS/PO.S 

A 1 OD6/PO.6 , 

10 A11D7/PO.7 
RST 

CLOCK 
14 

Figure 20, Clock source using XT AL 

A better clock is supplied when using an XO (crystal oscillator) device. Advantage of these type of oscillator is 
the square wave output. An external CLOCK can be supplied in two ways, connecting the XO output to both the 
XA XTAL 1 input and CPLD or other logic (Figure 21). 

+5V U1 

35 
EAlVppJWAIT A4DO/PO.O 

8 21 ASD1/PO.1 
Vdd CLOCK XTAL1 A6D2/PO.2 

A7D3JPO.3 
A8D4/PO.4 

XTAL2 A9D5/PO.5 
GND nc A10D6/PO.6 

A11D7/PO.7 
XO RST -

CLOCK 14 

Figure 21, Clock source using XO 

The other way is less conventional, the XO output is connected to the XA XTAL 1 input, the XA XTAL2 output, 
normally dangling when using an external clock source, is connected to the CPLD or other logic. For both 
configurations, crystal or XO, XTAL2 is used to supply CLOCK, so in designs where crystals can be exchanged 
with XO's and vice-versa no jumpers are needed. Secondly the XTAL2 output is inverted, so the XA itself can 
provide a !CLOCK source (see section 1.4.6). XTAL2 can be used where a !CLOCK signal is needed, and 
therefore logic can be saved. 
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+5V U1 

X1 
35 

EAlVpp/WAIT A4DO/PO.0 

14 8 21 A5D1/PO.1 
Vdd CLOCK XTAL1 A6D2/PO.2 

C1 A7D3/PO.3 

20 A8D4/PO.4 
7 XTAL2 A9D5/PO.5 

GND nc A 1 OD6/PO.6 
r')7/PO.7 

XO RS'" -
CLOCK 

_ 14 -

Figure 22, Clock source using XO and XTAL2 output 

The CLOCK lines should be as short as possible to improve EMC behaviour and supplying a clean CLOCK to 
the peripherals. 
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ABSTRACT 

Product specification 

AN96098 

The XA is not limited to interface to 80XX compatible peripherals. By using some glue logic, or a PLD if available, 
the XA can be interfaced to a 68000 compatible peripheral. Using the 68000 DTACKn signal enables the use of 
slow 68000 peripherals without the need of an external WAIT state generator. 

SUMMARY 
Many peripherals with a 68000 compatible interface are on the market. This document shows that these 68000 
peripherals can be interfaced to the XA vel}' easily. This means that an XA user is not limited to an XA compatible 
peripheral in his XA design. 

Several interfacing aspects are covered: normal interfacing, interrupt interfacing, and bus arbitration. 

This document assumes that users are familiar with the XA and its bus interface. 

Purchase of Philips 12C components conveys a license under the Philips' 12C patent 
to use the components in the 12C system provided the system conforms to the 
12C specifications defined by Philips. This specification can be ordered using the 
code 9398 393 40011. 
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1. HOW TO INTERFACE 68000 FAMILY PERIPHERALS TO THE XA 

1.1 introduction 

The Philips Semiconductors XA is a 16 bit high speed microcontroller with an 80XX compatible bus 
(found on e.g. an 8051 or 8048 with separate read and write strobes). This means that popular 
periherals with an 80XX compatible bus can be used with the XA. 

This documents shows that besides 80XX peripherals also peripherals with a 68000 bus can be used. 
Extra advantage is that the 68000's DTACKn output is extremely suitable to generate an XA WAIT 
strobe. The main advantage of using this DTACKn output is that a full handshake is available 
(synchronous) and consequently NO external wait state generator is needed. 

1 .1 .1 General remarks: 

• Because the XA wait mechanisme is rather complex, this document is NOT intended for the starting 
XA user, instead some fundemental knowledge about the XA is needed . 

• In this documed is assumed that the nessecary address latches are provided (2 x 74HCT573), i.e. a 
demultiplexed bus is used: 

U1 

e-2§... EAlVpp/wAIT 

~ XTAL1 

~ XTAL2 

U2 

A4DO/PO.0 43 A4 )() '~ ~~ ; D1 
ASD1/PO.1 !~ ~r.: ~} / V> 4 D2 
A6D2/PO.2 4 A y~ ~ -!'; D3 
A7D3/PO.3 39 "', loll loll 6 D4 
A8D4/POA ~R A' r.: r.: 7 DS 
A9DS/PO.S 37 A Inc-: Inc-: 8 D6 

~ ~ ~g~~:g:~ 36 A n7 11 ri'i 9 g~ 

01 19 
02 1-R 

03l~ 
04 15 
05 14 
06 13 

g~ 12 

A12D8/P2.0 ~~ I~ AII=' 11 C 

~ ~~:~~~ ~1~g1~E~j ~~ ;~. ~ ~ 7~:CT573 
~ P3.41T0 A16D12/P2.4 2~ ,.. )/ U3 
[3--1-'- P3.5IT1/BUSW A17D13/P2.5 30 2 ';;;"::;;'---. 19 

WRHn 2 A18D14/P2.6 ~i ~ D1 01 if! 
Ai 3 P1.0/AOi\iiiRH A19D1S/P2.7 4 g~ 02 17 

~ ~ ~~:~~~~ w~~~;:~.i~ ~~:::n-~ ~ ~ g~ g~ ~i 
~ P1.4/RxDi PSEN 33 A. r- -~ I\. 8 D6 06 13 
~ P1.SlTxD1 ALE/PROG ~ I\. ,,~ D7 07 

g....Jl. ~~ :~~~EX ~:gg:~~"6 J--1.Le I\. AI 1': 11 D8 08 12 

~----------------~ C 
~L.0";,,,C __ --1 XAG37 

-:- 74HCT573 

A 

/ 
10 / 
11 / 

Io...i p::::> A4-A 19 

~t::S~~t~ 
c::::> PSENn 

V~RDn 
~------------------------------------~---------------------------~~.~C=>~~~~5 

Figure 1, demultiplexed XA bus 
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1.2 Differences between an 80XX and 68000 bus 

A 68000 bus compatible peripheral has a significantly different interface than a 80XX bus type 
peripheral. 68000 and 80XX bus interfaces consists of several different control signals (see Table 1): 

Table 1, Microcontrol/er control signals 

., "68.k. c.Q!!JpatipJ8_.. . " _. . . ... 80XX c:,ompatible 
- -- peripheral peripheral 

Data strobes 2+ direction: 2:WRn+ROn 

RlWn>*(UPSh+ .. I,..DSn) 

Chip select asn CSn 

.... XA c:,ompatible 
peripheral 

-~~-~----'"-~---. --~--~--~~----';--.-~~--,~~~,....-..;.--~~~~~~~~ 

Handshake PTACKn NotavaUable 

Code strobe Not available PSENn 

Both 68000 and 80XX peripherals use data strobes to read or write data. An 80XX peripheral has 
separate read and write strobes (see Figure 3), a 68000 peripheral uses a data strobe (only indicating a 
data transfer, not the direction, see Figure 2) AND a RlWn signal to indicate a READ (RIWn = 1) or a 
WRITE (RlWn = 0) cycle. At both the 68000 and 80XX data strobes' rising edges data will (write) or 
must (read) be valid. 

RIWN L:J 7 CJ 
(U/L)OSN / 

ASN \ / 

A 1-A23 c=J---{ }---c=J 
00-015 

CSn \ / 
Figure 2, 68000 bus 

ALE ~ 

RON \ 
WRxN J 

AO I ~ A~-A:l9 r----\ QA T A X 
A1-A3 I X A1-A3 X 

CSn 

Figure 3, 80XX bus 
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Normally an 80XX chipselect (not) signal is generated by decoding addresses after the address 
latches. To avoid spikes on this signal (addresses can change during ALE = 1) the CSn signal should 
be gated with ALE. A 68000 chipselect can be constructed by decoding addresses and gating it with 
the Address Strobe (ASn) signal generated by the 68000. 

Some 8 bit wide 68000 compatible peripherals do not have separate Data Strobe and Chip Select 
inputs. On these peripherals the Data strobe and Chip Select are multiplexed to one signal. In this 
document a multiplexed DSn (data strobe) and CSn (chip select strobe). will be called CSn. 

Real 16 bit wide 68000 peripherals have two Data strobes; UDSn (upper data strobe) and LDSn (lower 
data strobe) and consequently need a Chip Select (not) input. 

Both the XA and 68000 are 16 bit microcontrollers. Therefore address line a has no meaning and is on 
the 68000 decoded to UDSn (AO = 0, little endianl) and LDSn (AO = 1). On the XA AO is decoded to 
WRLn (AO = 0, big endian!) and WRHn (AO = 1). On the XA no separate read low and high are 
available. All read cycles (except if the XA bus is configured as 8bit) are 16 bit, if only 8bits are needed 
the upper or lower 8 bits are discarded. 

The following pictures show how to convert XA strobes to 8 bit or 16 bit 68000 peripherals. 

C'>RlWn 

WRl..nr::::.:~·:-J-r\~_-'~I--_____ --Ic::>osn (not mUhlplexed) 

ROn C>_·············L-J J----[=---.. -------c::>csn (not muhlplexed) 

esn[:::.:·.~>------"----D C:>CSn (Multiplexed) 

Figure 4, converting XA to 68000 strobes (8 bit) 

:l..n C>_·_- ._ ............ 1\........._ ......... . ...... ... . r----"LOSn 
-- ~ 

WRHn C::::~:---l------I--
· .. ·········------c::~·uOSn 

'--__ ·_·_O············----·-·-.... C::>RlWn 

esnC:.:.:'>----------------lC>cSn 
Figure 5, converting XA to 68000 strobes (16 bit) 

o 
o 
Orl 
coro 
\O~ 

Q) 
.j.l~ 
• .-i P, 
..Q'.-i 

~ 
\0 Q) 
rlp, 

Please be aware that a 68000 peripheral has no separate data and program memory area, instead a 
lineair memory space is available with mixed memory. It is up to the user to decide in which XA 
memory area the 68000 peripheral is located. 

Because on the XA it is not possible to write to program memory, writing is always performed via the 
XA data write strobe (WRHn and/or WRLn). Writing is achieved through the XA's data and extra 
segment (OS & ES, see XA user's guide [1 D. Reads can be executed in both data (ROn strobe via ES 
& OS) and program memory (PSENn via Program counter or Code segment). 

In Figure 4 and Figure 5 ROn can be replaced by PSENn. If PSENn is used to read data from a 68000 
peripheral, consequently MOVC must be used. 
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1.3 Using DTACKn to Generate an XA compatible WAIT signal 

1 .3.1 Generating 68000 bus signals 

Figure 6 shows the signals from both the XA and a 68000 peripheral combined. First of all a 68000 
compatible data strobe needs to be constructed composed from XA signals. The easiest way to 
accomplish this is to combine the RDn or WRLnIWRHn strobes with a chip select (decoded addresses, 
or the most simple solution only one address line). Figure 6 shows the generated 68000 CSn strobe (or 
LDSn in case of real 16 bit wide 68000 peripherals because in this example WRLn is used). t2 in Figure 
6 indicates the propagation delay of the decoding circuit. 

ALE(XA) ____ --oJ 

WRLn(XA) ------------,\L-________ .--J 

A[4-19]D[O-16](XA) : ~ ~2 D15 

A[Q-3](XA)~. =============:c~========t~=======-===========j(============= 

CSn(generated) ---------------:, ==l 
DTACKn(68k) ------------+-L-1--------,\\.----------lr--

WAIT(generated) 

---------------~ 
~A)'_I _______ ~ _________________ ~ _________ _ 

Figure 6, 68000 and XA signals combined 

The XA's WRLnIWRHn signal can be used to generated the 68000's RIWn Signal. In case of a 16 bit 
wide 68000 peripheral BOTH WRLn and WRHn need to be monitored to generate the RIWn Signal. 
68000 peripherals with an 8 bit wide data bus can be connected to either D8:15 (using only WRHn) or 
to DO:7 (using only WRLn). 

Please note that some 68000 peripherals do not allow t2 (RIWn set-up to CS low) to be Ons, for 
example the PCF8584 needs t2 to be 10ns or higher. You need to use an address line to generate a 
RIWn signal (see figure 1, Ax(XA)), if the decoding logic propagation delay is shorter than the required 
time t2. A drawback to this solution is reading and writing is not possible on the same address. 

1 .3.2 68000 DT ACKn signal. 

A 68000 peripheral generates a DTACKn to provide a real handshake between the mlcrocontroller and 
its peripheral. DTACKn indicates when the peripheral is ready to receive data (in case of a write cycle), 
or when the microcontroller can expect valid data on the databus, placed on the bus by a peripheral. 
This DTACKn can be used to generate an XA compatible WAIT signal 

1.3.3 Generating the XA WAIT signal. 

An XA WAIT signal must be asserted immediately after (minimal 34ns before end of strobe, i.e. the 
rising edge) a read (PSENn or RDn) or write (WRLn or WRHn) strobe is asserted. The XA will ONLY 
insert waitstates after the XA databus is stable up to the point the WAIT signal is de-asserted. A WAIT 
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signal has no effect if it is asserted outside a data strobe. It is however allowed to generate a WAIT 
signal before a data strobe is asserted, but will only be active after this strobe is asserted. 

After a CSn (LDSn) strobe has been generated the device's DTACKn signal is high until the device is 
ready to receive. During this high period the XA must generate wait cycles, see t3 in Figure 6. So the 
equation for the WAIT signal (t3) is: /CSn * DTACKn. 

There are several ways to construct a XA WAIT signal from a DTACKn signal, discrete or via a PLA. 
The following schematic (Figure 7) shows a discrete implementation for 8 bit wide peripherals. 

l~------------------------------~~>~n WRLnC>· ............. . 

RDn C>- t----~,__---------------I ......... > OSn (not multiplexed) 

, CSn (not multiplexed) 

CSnC=~~----------~----~ 
cSn (Multiplexed) 

WNT ~OTACKn 
~~ .......... + 

Figure 7, discrete solution (8 bit wide 68000 peripheral) 

or if LDSn and UDSn are needed (16 bit peripheral): 

ROn 

WRLn L::)--1'"---+------l 
............... ------+----1 ?LDSn 

~n ~--+-~+-----~ ----+--+-----l···· .. ·· ..... ,·uOSn 

1----------+--+---1 ......... > RlWn 

WRHn C)- . . . . . . . . . . . . . . . . . . . . . . . " . --c> RlWn 

Figure 8, Discrete solution 16 bit peripheral 
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Table 2, Figure 8 WAIT truth table Table 3, Figure 8 data strobe thruth table 

Table for both UDSn and LDSn x = NOT VALID 

You can also use a PLA if one is present (see Figure 9): 

8 bit 68k 16 bit 68k 
PLA 

r···A(ie--ii)····-----·······--·-······ 
r'-~-'---'--.L......-.J""""'" 

XA XA 

Figure 9, PLA plus XA plus 68000 

The PLA must have the following equations (multiplexed DSn and CSn, e.g. SC68C562): 

(Ia) CSn = 1«Ax * .. * Ay) * I(WRLn * ROn) * IALE) 

( Ib) WAIT = + ICSn * OTACKn 

(Ic) R/Wn = WRLn (R/Wn directly connected to WRLn) 

The dots represent other funtions to drive the WAIT pin (see general remarks 1.3.4) 

Non multiplexed 8 bit 68k peripheral (e.g. ST 68HC901): 

(2a) CSn = 1«Ax * .. * Ay) * IALE) 

(2b) OSn = I(WRLn * ROn) 
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(2c) WAIT = + ICSn * IOSn * OTACKn 
(2d) R/Wn =WRLn (R/Wn directly connected to WRLn) 

In case of 16 bit wide 68000 peripherals, where separate UDSn and LDSn strobes are needed (e.g. 
SCC66470 video and system controller); 
( 3a ) LOSn =' I( WRLn * ROn) 
( 3b ) UOSn = I( WRHn * ROn) 
(3c) R/Wn = WRHn * WRLn 
(3d) CSn = 1«Ax * ..• Ay) • IALE) 
(3e) WAIT = .. + I(LOSn * UDSn) * DTACKn * ICSn 

The (generated) RIWn, LDSn and UDSn signals are available for ALL 68000 peripherals. The DTACKn 
signal is generated by a 68000 peripheral. All 68000 DTACKn pins are open drain outputs and 
connected together as wired OR. The only device specific signal is CSn and therefore ALL CSn signals 
need to be monitored if a corresponding WAIT signal needs to be generated for that particular device: 
(~a) CSln = 1«Ax * .. * Ay) * IALE) 
( % ) CS2n = I( (Ax * .. * Ay) * IALE) 
(~c) WAIT = .,. + I(LDSn * UDSn) * DTACKn * (/CSln + ICS2n) 

1.3.4 General remarks: 

• The XA WAIT pin is combined with the EAn (external access) function. This pin is sampled at the 
rising edge of RESET, therefore in functions 1 b, 2e and 3c an extra EAn term needs to be added. An 
example, however beyond the scope of this document, can be: EAn = ALE * WRLn * RDN * 
EAmode. During RESET ALL XA pins are high, this effect is used to generate EAn or not (depending 
on EAmode, e.g. a jumper). Of course WAIT strobes will be generated during ALE = 1, but as stated 
in this paragraph WAIT strobes outside a data strobe will not put the XA in WAIT mode. 

• ALL chip select lines are decoded address lines ANDed with IALE, this prevents generating spikes 
on the CSn lines while addresses are not stable (ALE = 1). 

• Please be sure the WAIT pin is not overridden by the WAIT disable bit. 
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1.4 68000 Interrupt mechanism 

When using a 68000 peripheral, consequently the 68000 interrupt mechanism is used. This means that 
the XA has to generate an IACKn to this peripheral. It is not allowed to assert the CSn and IACKn 
strobes at the same time, the IACKn is (so to say) also a Chip Select. 

A way of generating a IACKn is decoding an interrupt vector address and combining it with a read 
strobe (more or less an alternative Chip Select, compare with 1 a), e.g. with a PLA: 

(5) IACKn = 1((Ax * * Ay) * IROn * IALE) 

Ax to Ay must be an other address now than the address in the previous paragraph, so CSn address 
for normal data accesses IACKn address 

So to generate an IACKn (example via Extra Segment = ES): 

( 8a ) MOV . b ES, #xxh xx = (add r esses A I 9 - A I 8 ) 

(8b) MOV. b R2, #yyyyh yyyy = (addresses A 15 - Af2l) 

( 8e ) OR . b SSEL, #f2l'-th a I i gns ES to R2 

( 8d ) MOV . b R3, [R2 1 R3 ho I ds pe r i phe r a I' s vee to r 

( 8e ) JMP [ R3 1 

Generating an IACKn can also be achieved via a code read if the full code range is not used: 

(7) IACKn = 1((Ax * * Ay) * IPSENn * IALE) 

Using PSENn to generate IACKn enables the use of the same address as the CSn address (with 
ROn), it is now a code space address. An interrupt acknowledge can have the following construction 
(example via Code Segment = CS): 
(8a) MOV b es, #xxh 

( 8b ) MOV . b R2, #yyyyh 

( 8e ) OR . b SSEL, #f2l'-th 

( 8d ) Move b R3, [R2 1 
( 8e ) JMP [ R3 ] 

Notes: 

xx = (addresses AI9 - A18) 

yyyy = (addresses AI5 - Af2l) 

a I i gns CS to R2 

R3 holds peripheral's vector 

• If XA code is running internal exclusively (within the on board EPROM) and only one peripheral 
needs an IACKn, NO address decoding is needed and PSENn can be connected to IACKn directly. 

• Please be sure xx:yyyy in formula 8a and 8b is above the XA internal memory range, in case of the 
P51XAG37 xx:yyyy > OxOO:7FFF 
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1.5 68000 bus arbitration with the XA 

Missing on the XA is a bus arbitration scheme. If the XA had an ONCE mode, i.e. a pin that forces aU 
pins to float, it would have been very easy to implement. It is however possible to construct 68000 bus 
arbitration with discrete components. This XA bus arbitration scheme will also utilise the XA WAIT pin. 
During a bus arbitration cycle a WAIT signal will halt the XA. 

RDre::::::.-
M1 

CSnC=:: M2 WAIT •........•.... 

r=E>---BGACKrC,>---'' ---,"'-'-" -8- ~>BGn 

BRnC::::~ 

PSEN,{''''''''-:'' "'''''''''INTlCI'l 

M5 M6 

~ ~~ ~.~ , :;.:, :'bl ~F.- :;.~ ., )1\) r , , 
'lP> a, 

~.~ J~ I~l 
: : f»tn~ 

o~ ~~~ IXIP> l>~ 
~fO fx> P(JI ~p~ ~~ ~~~~ r-> ~~ Pr-> N~ 1\)1\)1\)1\) .................... 

(j)(j) »»»»»»»» 
QO »»»»»»»» U200 »»»»»»»» U3 00 00000000 U~ 00 00000000 UE ,J:.(,,)I\)-~IJ)N~ 

Jl ()) ..... O'lC}1~VlfIJ ..... jj ()l'l(l)(11l>Y>N~ 0 1XI~(l)(11"'Y>N~ 0 CD-..JOHTI.,f:I.(,,)I\) ...... 
74HCT244 

U1 

74HCT245 74HCT245 74HCT573 74HCT573 

OlOlOltllOlOlOlOl OlOlOlOlOlOlOltll 00000000 00000000 
1\)(\)(\)1'\) ..... ...,1....1....,1. 

-<-<-<-<-<-<-<-< 
Ol~(l)(11l>(.lN~ (l)~(l)(11l>(.lN~ (l)-.J(l)tnl>(.lN- IXI-.JOlO1.1>(.lN~ l>(.lI\l~.I>Y>I\l~ 

~~~L ~r~ L~ I ~tn~}~~ 
I 

i-'~ C;;~ 
fnPir ~c;; i'la;~ rp ~~ o;~ a;~ 

~~r~ i t(~ ," " " 

B"" .... OATA",,~ ~ ~1 
Buffered ADDRESS bUs j Control SignalJ 

v 'v \I 

Figure 10 .. Bus arbitration on XA 

A device that requests the bus asserts the BRn (bus request) strobe. The master device must return a 
BGn (Bus Grand) strobe when the master is ready. After the slave has received the BGn signal it starts 
the bus arbitration cycle by asserting BGACKn. During this strobe the slave device must have complete 
access to the (shared) memory, therefore the XA is on hold and its signals must float. As stated NO 
ONCE pin is available therefore the XA memory bus must be buffered. 

Due to the XA multiplexed address/databus structure latches are needed to demultiplex. The latches 
have an Output Enable (OEn) input, connecting this input to WAIT will float the address bus when the 
XA is in WAIT. 

The only thing missing is the non-floating databus, the not multiplexed address lines A3 to A 1 and the 
control signals ROn, WRLn, WRHn and PSENn. The databus can be made floating by using a bi-
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directional buffer. Writing or reading is indicated by the direction (DIA) signal. If DIA=1 a write is 
indicated else a read. A DIA signal is constructed by ANDing both write strobes (WALn and WAHn). 

A3 to A 1 and the control signals only need an output buffer (with Output Enable control). Figure 10 
shows a solution with discrete components. 

BRn 

BGn 

BGACKn '--___ ~r-
Figure 11, Bus arbitration timing diagram 

The XA must generate a BGn signal. This signal is constructed by monitoring the ADn, WALn, WAHn 
and PSENn strobes. If one of these strobes is asserted AND a BAn is pending a BGn is generated up 
to the point the slave device is negating the BAn, 

Figure 11 shows that in principle BGn must be asserted longer than BAn. In the 68000 specification 
BGACKn asserted to BGn negated is min. 1,5 and max, 3.5 clocks. BGACKn asserted to BAn negated 
min. 20ns max. 1.5 clocks. This shows that BAn and BGn can be negated at the same time. Figure 10 
shows that in fact BGn is negated after BAn has been negated and some propagation delay should be 
considered. 

The WAIT signal is generated during BAn or BGACKn asserted, but only if one of the XA control 
strobes is asserted AND the XA reads at the bus "request enable address". This bus request enable 
address is a decoded dedicated address. Just using the RDn without decoding address can cause the 
following problem: If during a "normal" XA read a Bus Request occurs (for the bus request signal is 
generated aynchronously), WAIT can be generated to late for the XA to sample. The bus however will 
float when both BAn and RDn strobe are generated. If during this situation the XA is not in WAIT mode, 
unpredictable things can occur. BRn is connected to one of the two XA external interrupts inputs 
(lNTOn or INT1 n) to be sure the XA will access external memory when a bus request is pending. The 
bus arbitration cycle will only continue after the XA has accessed external memory. 

The glue logic (Figure 10) can be replaced by a PLA and combined with other functions. The bus 
arbitration WAIT signal is constructed as follows: 

(9) WAIT = + I(ROn * WRLn * WRHn * PSEN) * (Ax * * Ay) * I(BRn * BGACKn) 

The Bus Grand (BGn) is assembled as follows (output to slave); 

(10) BGn = 1(( ROn * WRLn * WRHn * PSEN) * (Ax * * Ay) + BRn) 

The following instructions must be part of the interrupt routine to generate a BGn and put the XA in 
wait: 

(1Ia) MOV b ES. #xxh xx = (addresses AI9 - A18) 

(lib) MOV b R2, #yyyyh yyyy = (addresses AI5 - A0) 
( I Ie) 

( lid) 
OR.b 

MOV b 

( I Ie) RETI 

SSEL. #0% 

R3. [R2J 

a I i gns ES to R2 

read to generate BGn 

return from interrupt 

The XA interrupt latency determines the time it takes for the XA to generate BGn after BAn asserted. 
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2. EXAMPLE, INTERFACING THE PCF8584 TO THE XA 

Interfacing the PCF8584 (See IC12 [2]) to microcontrollers can cause serious problems. Causes for 
these problems are: The Interface Mode Control, the interface the PCF8584 will run in is determined by 
the first write cycle to this peripheral. Secondly it is a relatively (to the XA) SLOW device. In contrast 
this example shows that it is in fact quite easy to interface the PCF8584 to the XA. 

2.1.1 PCF8584 to XA implementation 

In "80C51" mode the PCF8584 needs write and read strobes longer than 250nS, the XA can generate 
read strobes with a maximum length of 4 times the oscillator clock period, a XA write strobe is even 
shorter, its length is max. 2 clock periods. This means when the XA is running at 8MHz the write strobe 
will match the PCF8584 write strobe specification. Running the XA on higher frequencies than 8MHz 
will cause the need of an external wait state generator. 

It is however possible to use the PCF8584 WITHOUT the use of an external wait state generator on 
every XA clock (up to the maximum XA clock). Using the PCF8584 in 68000 mode will do the trick. 
Using the PCF8584 in 68000 mode: 

1 . RlWn asserted before CSn (t2) needs to be 10ns or higher. This time is needed to enable the 
PCF8584 to decode a 80C51 or 68k bus mode (it is by the way the only 68k peripheral that does 
not allow t2 to be Ons). If the decoding logic is too fast an address is needed as RIWn strobe 
instead of WRLn or WRHn. 

2. The first PCF8584 cycle needs to be a write cycle, this cycle determines the bus mode the 
PCF8584. In contrast of getting the PCF8584 in 80C51 mode, it is allowed to have write or read 
cycles to other peripherals first. Having a read cycle from the XA first will put the PCF8584 in 
80C51 mode, thus not asserting the OTACKn signal (it is now the ROn input) and therefore 
causing the XA to be in a endless WAIT. 

3. When an address line is used to generate a RIWn signal, reading and writing is not performed on 
the same address. 

4. Excessive accesses to the PCF8584 will slow down the entire application, so using the PCF8584 
in time critical applications in polling mode should be avoided. 

The following picture shows an actual hardcopy of all signals used to connect the XA to a PCF8584. 
Please note that the OT ACKn rising edge has the shape of an exponential function: 

this is caused by the open drain (wired OR) structure of this pin (pull up resistor R and parasitic 
capacitance C). 

1996 Oct 25 630 



Philips Semiconductors 

Interfacing 68000 family peripherals to the XA 

WAIT 

WRn 

DTACKn 

2.1.2 Usage. 

PM3384, FLUKE & PHILIPS 

ch : d = 423ns V=t 1.88/+3.43 
T _ 

.3: 

CH1 5.00 V= 
CH2 5.00 V= 

CH3 5 .. Qq Y-=, A~ T M1~2,5,O,n,s ,~~9n~, , , 

Figure 12, Scope hardcopy 

Please be sure the first cycle to the PCF8584 is a write cycle. 

Product specification 

AN96098 

If using an address line as RIWn strobe, writing to the PCF8584 must be performed on an other 
address than reading from the PCF8584 (e.g. if A 15 is used): 

Reading PCF8584 address 0: 
( I 2a ) MOV . b ES, #I2IFh 

( I 2b ) MOV . b R2, #8121121121h add r ess line A I 5 = I 

( 12c ) 

( 12d) 

OR.b 

MOV.b 

SSEL, #121% 

R3L, [R2J 

Writing to PCF8584 address 0: 
( I 3a ) MOV . b ES, #I2IFh 

(13b) MOV.b R2, #l21l21l21l21h 

( 13c) OR. b SSEL, #121% 

( 13d) MOV. b [ R2 J, #data8 

a I i gns ES to R2 

Result is stored in R3L 

address line AI5 = 121 

a I i gns ES to R2 

data8 written to PCF858~ 
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Author: Paul Seerden, Systems Laboratory Eindhoven, The Netherlands 

ABSTRACT 
This report describes how to implement 12C functionality (single master), if you're using the Philips XA-Gx 
microcontrol/er. Elaborated driver routines (written in C) are given for two alternative solutions: 
- Software emulation using two port pins ('bit-banging1. 
- Using the PCx8584 12C-bus control/er. 

SUMMARY 
This application note demonstrates the implementation of 12C functionality using the 16-bit XA-G3 microcontrol/er 
from Philips Semiconductors. 

The note contains two main parts: 
- An implementation using the Philips PCx8584 12C-bus controller (Interrupt driven). 
- An implemenation by software emulation of the bus using 2 110 port pins (polling, 'bit-banging'). 

Not only the driver software is given. This note also contains a set of (example) interface routines and a small 
demo application program. All together, it offers the user a quick start in writing a complete 12C system application 
(single master). 
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1. INTRODUCTION 
This report describes 12C driver software, in C, for the XA microcontroller. This driver software is the interface 
between application software and the (hardware) 12C device(s). These devices conform to the serial bus interface 
protocol specification as described in the 12C reference manual. 

The 12C bus consists of two wires carrying information between the devices connected to the bus. Each device has 
its own adddress. It can act as a master or as a slave during a data transfer. A master is the device that initiates 
the data transfer and generates the clock signals needed for the transfer. At that time, any addressed device is 
considered a slave. The 12C bnus is a multi-master bus. This means that more than one device capable of 
controlling the bus can be connected to it. However, the driver software given in this application note only supports 
(single) master transfers. 

Chapter 2 gives a functional description of the driver program. 

Chapter 3 describes the software structure and all driver interface functions ('callable' by the application). 

Chapter 4 describes the low level hardware dependent driver software and is split into one general part and two 
sections. The first section describes a software emulated 12C bus driver ('bit-banging') using two 110 port pins. The 
other section describes an interrupt driven PCF8584 driver. The PCF8584 is a Philips integrated circuit to be used 
as a separate 12C bus controller. 

Chapter 5 is a short description of the example application program (demo.c and i2cintfc.c). 

DEMO.C 

APPLICATION SOFTWARE 

INTERFACE FUNCTIONS 12CINTFC.C 

external interface (Chapter 3) external interface (Chapter 3) 

12C8ITS.C 12C8584.C 

'BIT BANGING' driver PCx8584 driver 

Polling (P1.4 and 1.5 used) Interrupt driven (external Int.O used) 

Figure 1. Overview of software layers and modules 
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1.1 References 
Description 

Used references: 

The 12C-bus specification 

The 12C-bus and how to use it 

Application report PCF8584 12C-bus controller MAR 93 

Specification 12C driver (J. Reitsma) 

C routines for the PCx8584 

12CBITS.ASM (by G. Goodhue) 

Used development and test tools: 

Hi-Tech C XA complier (version 7.60) 

Philips Microcore SiXA evaluation board 

FDI XTEND board 

Philips 12C-bus evaluation board 

Philips Logic Analyzer with 12C-bus support package PF8681 

1.2 BBS and WWW 

Ordering Info 

939835810011 

939839340011 

seeBBS/WWW 

AN95068 

seeBBS/WWW 

http://www.htsoft.com 

XTEND-G3 

OM1016 

PM3580/PM3585 

Application note 

AN96119 

This application note (with C source files) is available for downloading from the Philips Bulletin Board Systems and 
from the world wide web. It is packed in the self extracting PC DOS file: 12CXAG3.EXE. 

To better serve our customers, Philips maintains a microcontroller bulletin board. This system is open to all callers, 
it operates 24 hours a day, and can be accessed with modems up to 28800 bps. The telephone number is: 

European Bulletin Board, telephone number: +31 402721102. 

Internet access: 

Philips Semiconductors WWW: http://www.semiconductors.philips.com 

1.3 File overview 
the driver package contains the following files: 

12CBITS.C The driver part for 'bit-banging" 12C. 

12C8584.C 

12CDRIVR.H 

12CINTFC.C 

12CEXPRT.H 

January 1997 

The PCF8584 drive for master transfers, containing initialization and state handling. This 
module also contains address definitions of hardware registers of the PCx8584. The user 
should adapt these definitions to his own system environment (address map). 

This module (include file) contains definitions of local data types and constants, and is used 
only by the driver package. 

This module contains example application interface functions to perform a master transfer. 
In this module, some often-used message protocols are implemented. Furthermore, it shows 
examples of error handlin, like: time-outs (software loops), retries and error messages. The 
user must adapt these funtions to his own system needs and environment. 

This module (include file) contains definitions of all 'global' contants, function prototypes, 
data tyes and structures needed by the user (application). Include this file in the user 
application source files. 
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DEMO.C This program uses the driver package to implement a simple application on the Microcore 6 
demo / evaluation board. This board contains a PCx8584 12C-bus controller, a PCF8583 real 
time clock and a PCF8574 I/O exapander with connections to 4 LEOs. The program runs the 
LEOs every second. 

All driver software programs are tested as thoroughly as time permitted; however, Philips cannot guarantee that 
they are flawless in all applications. 

2. FUNCTIONAL DESCRIPTION 

2.1 The 12C bus format 
An 12C transfer is initiated with the generation of a start condition. This condition will set the bus busy. After that, a 
message is transferred that consists of an address and a number of data bytes. This 12C message may be followed 
either by a stop condition or a repeated start condition. A stop condition will release the bus mastership. A 
repeated start offers the possibility to send/receive more than one message to/from the same or different devices, 
while retaining bus mastership. Stop and (repeated) start conditions can only be generated in master mode. 

Data and addresses are transferred in eight bit bytes, starting with the most significant bit. During the 9th clock 
pulse, follwing the data byte, the receiver must send an acknowledge bit to the transmitter. The clock speed is 
normally 100kHz. Clock pulses may be stretched (for timing causes) by the slave. 

A start condition is always followed by a 7-bit slave address and a RIW direction bit. 

General format and explanation of an 12C message: 

1 s 1 SLV_W 1 A 1 SUB 1 A 1 s 1 SLV_R 1 A 1 Dl 1 A I D21 A I· ...... ·1 AI Dn 1 Nip 1 

S : (re)Start condition 

A : Acknowledge on last byte 

N : No Acknowledge on last byte 

p : Stop condition 

SLV_W : Slave address and Write bit 

SLV_R : Slave address and Read bit 

SUB : Sub-address 

01 ... On : Block of data bytes 

01.1 ... 01.m : First block of data bytes 

On.1,..On.m : nth block of data bytes 

2.2 Input definition 
Inputs (applicaiton's view) to the driver are: 

• The number of messages to exchange (transfer) 

• The slave address of the 12C device for each message 

• The data direction (read/write) for all messages 

• The number of bytes in each message 

• In case of a write message: The data bytes to be written to the slave. 
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2.3 Output definition 
Outputs (application's view) from the driver are: 
• Status information (success or error code) 

• Number of messages actually transferred (not the requested number of messages in case of an error) 

• For each read message: The data bytes read from the slave. 

2.4 Performance 
The default maximum speed of the 12C-bus is 100 KHz. With the XA-Gx running at 16 MHz or higher, it's possible 
to reach this speed using the 'bit-banging' driver. However, it is important to minimize the delay time between 
successive data bytes, because this delay determines the effective speed of the bus. 

The maximum speed of the PCF8584 is limited to 90 KHz. 

Software emulation ('bit-banging') of the bus is a heavy load for the XA processor. That's why systems that have to 
do more time critical tasks better apply the interrupt driven PCF8584 solution. 

2.5 Error handling 
A transfer 'status' is passed every time the 'transfer ready' function is called by the driver. It's up to the user to 
handle time outs, retries or all kind of other possible errors. Simple examples of these (no operating system, and 
no hardware timers) are shown in the file 12CINTFC.C 

2.6 Hardware requirements 
Bit-bang driver: 
The bus requires open-drain device outputs to drive the bus. In fact, all port pins of the XA-Gx are programmable 
to open-drain outputs. In our example, external memory is connected to port PO and P2. So, we have chosen to 
use P1.4 as SDA pin and P1.5 as SCL pin. To change this (for example to P1.6 and P1.7, like at the C51 
derivative), adjust the include file 12CDRIVR.H. The code size of the emulation driver in this application note is 
approximately 800 bytes (Hi-Tech compiler V7.60). The driver is tested and tuned for an XA-G3 running at 20 MHz. 

PCx8584 driver: 
Selection of either an Intel or Motorola bus interface is achieved by detection of the first WR - CS signal sequence 
(see data sheet). This driver assumes that previously the right interface is selected (after power-up). The driver 
uses external interrupt 0 input. To change the base-address (OxFOOOO) of the PCF8584 edit the file 12C8584.C. 
In our example, a 3.6864 MHz clock is connected to the PCF8584. 
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3. EXTERNAL (APPLICATION) INTERFACE 
This chapter describes the external interface of the driver towards the application. The C-coded external interface 
definitions are in the include file 12CEXPRT.H. 

The applicaiton's view on the 12C bus is quite simple: The applicaiton can send messages to an 12C device. 
Also, the applicaiton must be able to exchange a group of messages, optionally addressed to different devices, 
without losing bus mastership. Retaining the bus is needed to guarantee atomic operations. 

3.1 External data interface 
All parameters affected by an 12C master transfer are logically grouped within two data structures. The user fills 
these structures and then calls the interface function to perform a transfer. The data structures are listed below. 

typedef struct 
{ 

BYTE 

} 12C_TRANSFER; 

nrMessages; 
**p_message; 

/* total number of messages 
/* ptr to array of ptrs to message parameter blocks 

*/ 

*/ 

The structure 12C_ TRANSFER contains the common parameters for an 12C transfer. The driver keeps a local copy 
of these parameters and leaves the contents of the structure unchanged. So, in many applications the structure 
only needs to be filled once. 

After finishing the actual transfer, a 'transfer ready' function is called. The driver status and the number of 
messages done, are passed to this function. 

The structure contains a pointer (p_message) to an array with pointers to the structure 12C_MESSAGE: 

typedef struct 
{ 

BYTE 
BYTE 
BYTE 

} 12C_MESSAGE; 

address; 
nrBytes; 
*buf; 

/* The 12C slave device address 
/* number of bytes to read or write 
/* pointer to data array 

The direction of the transfer (read or write) is determined by the lowest bit of the slave address; 

write = 0 and read = 1. This bit must be (re)set by the application. 

*/ 
*/ 
*/ 

The array but must contain data supplied by the application in case of a write transfer. The user should notice that 
checking to ensure that the buffer pointed to by but is at least nrBytes in length, cannot be done by the driver. 

In case of a read transfer, the array is filled by the driver. If you want to use but as a string, a terminating NULL 
should be added at the end. It is the user's responsibility to ensure that the buffer, pointed to by buf, is large 
enough to receive nrBytes bytes. 

3.2 External function interfaces 
This seciton gives a description of the only two 'callable' interface funcitons in the both 12C driver modules. 

First, the initialization function (/2C-lnitialize) is explained. This function directly programs the 12C interface 
hardware and is part of the low level driver software. It must be called only once after 'reset', but before any 
transfer function is executed. After that, the interface function used to actually perform a transfer (/2C_ Transfe/) is 
explained. 
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void 12C_lnitia/ize(BYTE speed) 
Initialize the 12C-bus driver part. Must be called once after RESET. 

'Bit Bang': Port pins P1.3 (SCl) and P1.4 (SDA) are programmed to be used as open-drain output pins. 
BYTE speed Dummy parameter. Not used. 

PCx8584: Hardware 12C registers of the PCx8584 interface will be programmed. 
Used constants (parameters) are defined in the file 12CDRIVR.H. 
BYTE speed Contents for clock register S2 (bit rate of 12C-bus). 

void 12C_ Transfer(12C_ TRANSFER *p, void (*proc)(BYTE status, BYTE msgsDone)) 
Start a synchronous 12C transfer. When the transfer is completed, with or without an error, call the function proc, 
passing the transfer status and the number of messages successfully transferred. 

12C_ TRANSFER *p A pointer to the structure describing the 12C messages to be transferred. 

void (*proc(status, msgsDone)) A pointer to the function to be called when the transfer is completed. 

BYTE msgsDone Number of message successfully transferred. 

BYTE status one of: 12C_OK Transfer ended No Errors 
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12C_BUSY J2C busy, so wait 
12C_ERR 

12C_NO_DATA 
12C_NACK_ON_DATA 

12C_NACK_ON_ADDRESS 
12C_ TIME_OUT 
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General error 

err: No data message block 

err: No ack on data in block 
err: No ack of slave 
err: Time out occurred 
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4. DRIVER OPERATION 
After completing a transfer the function readyProc in the application (or interface) is called. 

After completing the transmission or reception of each byte (address or data), a state handler is called, either by 
interrupt (PCx8584) or by software ('bit-banging'). This handler can be in one of the following states: 

ST _IDLE The state handler does not expect any bus activity. 

ST _AWAIT _ACK 

ST _RECEIVING 

ST _RECV _LAST 

ST_SENDING 

The driver has sent the slave address and waits for an acknowledge. 

The handler is receiving bytes, and there is still more than one expected. 

The handler is waiting for the last byte to receive. 

The handler is busy sending bytes to a device. 

Figure 2 shows the state transition diagram. A transition will occur on initiation of a transfer by the application and 
on each 12C-bus event (state change). The transitions are: 

ST _SENDING -t ST _IDLE 

ST _SENDING -t ST _AWAIT _ACK 

ST _AWAIT _ACK -t ST _RECV _LAST 

ST _RECEIVING -t ST _RECEIVING 

ST _RECEIVING -t ST _RECV _LAST 

ST _RECV _LAST -t ST _IDLE 

January 1997 

A transfer is initiated. Send the slave address for the first write 
message. 

A transfer is initiated. A message is to be received from a slave 
device. The micro transmits the slave address. 

At least one byte to send. Send the next byte. Or no more bytes to 
send, send repeated start and slave address of next message to 
write. 

No more bytes to send, no more messages. 

No more bytes to send, send repeated start and slave address of 
next message is to be received. 

More than 1 byte is to be received. Wait for and acknowledge next 
byte. 

Only one byte to receive, send no acknowledge on last byte. 

More than one byte to receive. Read received byte. 

Only one byte left to receive, send no acknowledge on it. 

Last byte read, send stop. No more messages. Call ReadyProc 
and give status. 

Last byte read, send repeated start and slave address of next 
(write) message. 

Last byte read, send repeated start and slave address of next 
(read) message. 
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o more n 

me 
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STOP 

I ST_SENDING 

read byte 
NACK 

next byte 

ST_IDLE 

first message first message 
START condition START condition 
send ADDR + WR send ADDR + RD 

I 
Next message 
START condition 
Send ADDR + RD 

ST _AWAIT _ACK 

read byte 
ACK 

next byte 

I ST _RECEIVING I 

I 

I 

nom ore 
sages 

STOP 
mes 
send 

Next message read byte Next message 
START condition NACK START condition 

send ADDR + WR next byte send ADDR + RD 

I ST_RECV_LAST I 

Figure 2. State transition diagram of the master state handler 

4.1 Bit-banging driver 
The XA-Gx derivative does not incorporate on-chip 12C hardware. However, 12C functionality can be achieved by 
software emulation. The file 12CBITS.C (Appendix II) performs two main tasks: handling complete transfers that 
consist of one or more messages (described above, see Figure 2), and the software emulation task. The emulation 
task consists of: bus monitoring and control, master sending/receiving of bytes conform to the 12C protocol. 

The following macro and functions are designed for master 12C-bus control: 

delay Macro for delay loop of about 1 microsecond. Needs to be tuned (in application note done for 
20MHz XA). This delay is needed to insure minimum high and low clock times on the bus. 
Also, the hold and setup times for START and STOP conditions are met with this macro. To 
optimize the speed, the software (generated by the compiler) delay is measured and 
included in the total delay times. 

SCLHighO Function to release (send high) the SCL pin and wait for any clock stretching peripheral 
devices. At this point, if requested, the user can build in time-outs. 

PutByte() Function that sends one byte of data to a slave device. After that, it checks if slave did 
acknowledge. 

GetByteO 

GenerateStart() 

GenerateStopO 

January 1997 

Function to receive one data byte from an addressed slave. and after that it sends 
(no )acknowledge. 

Function to generate and 12C (repeated)START condition and send slave address for a 
message read/write. 

Function to generate an 12C STOP condition, releasing the bus. It also calls the function 
readyProc to signal the driver is finished, and pass the status of the transfer. 
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4.2 PCx8584 driver 
The PCx8584 logic provides a serial interiace that meets the 12C-bus specification and supports all master transfer 
modes from and to the bus. 

A microcontroller/processor interiaces to the PCx8584 via five hardware registers: SO (data read/write register), 
SO' (own address register), S1 (control/status register), S2 (clock register), and S3 (interrupt vector register). 

Selection of either an Intel or Motorola bus interiace, achieved by detection of the first WR - CS Signal sequence is 
outside the scope of this application note, as well as the insertion of wait states needed to meet the constraints of 
the XA - PCF8584 bus timing. More information about the hardware interface can be found in the Philips 
Semiconductors application note, AN96098: Interfacing 68000 family peripherals to the XA. 

Bus speed 
The speed of the 12C-bus is controlled by clock register S2 of the PCx8584. This register provides a prescaler that 
can be programmed to select one of five different clock rates, externally connected to pin 1 of the PCx8584. 
Furthermore, it provides a selection of four different 12C-bus SCL frequencies, ranging up to 90 KHz. The value for 
register S2 is passed as a parameter during initialization of the driver. To select the correct initialization values, 
refer the the datasheet or the Application Report of the PCx8584. 

Interrupt 
In this applicaiton note we assume that the interrupt output of the PCF8584 is connected to external interrupt 0 
input of the XA. In the initialization function, this interrupt is enabled, its priority is set as well as the general 
interrupt enable flag. Furthermore, a 'soft' interrupt vector is filled to point to the right interrupt handler. This is only 
done for debugging purposes. In a 'real' application, this should be replaced by a ROM vector. 

After completing the transmission or reception of each byte (address or data), the PIN flag in the control/status 
register of the PCF8584 is reset to O. This will send an interrupt to the XA (EXO) and the interrupt service (state) 
handler will be called (see Figure 2). 

If a transfer is started, the driver interiace function returns immediately. At the end of the transfer, together with the 
generation of a STOP condition, the driver calls a function, passing the transfer status. A pointer to this function 
was given by the applicaiton at the time the transfer was applied for. It is up to the user to write this function and to 
determine the actions that have to be done (see for example, the function 12cReady in module 12CINTFC.C). 
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5. DEMO PROGRAM 
The modules OEMO.C and 12CINTFC.C use either one of the drivers to implement a simple application on a 
Microcore 6 demo I evaluation board. They are intended as examples to show how to use the driver routines. 

The Microcore 6 board contains a PCx858412C-bus controller, a PCF8583 real time clock and a PCF8574 lID 
expander with connections to 4 LEOs. the demo program runs the LEOs every second. 

The module 12CINTFC.C gives an example of how to implement a few basic transfer functions (see also previous 
SLE 12C driver application notes). These functions allow you to communicate with most of the available 12C devices 
and serve as a layer between your application and the driver software. This layered approach allows support for 
new devices (microcontrollers) without re-writing the high-level (device-independent) code. The given examples 
are: 

void 12C_Write(12C_MESSAGE *msg) 

void 12C_WriteRepWrite(12C_MESSAGE *msg1, 12C_MESSAGE *msg2) 

void 12C_WriteRepRead(12C_MESSAGE *msg1, 12C_MESSAGE *msg2) 
void 12C_Read(12C_MESSAGE *msg) 
void 12C_ReadRepRead(12C_MESSAGE *msg1, 12C_MESSAGE *msg2) 
void 12C_ReadRepWrite(12C_MESSAGE *msg1, 12C-MESSAGE *msg2) 

Furthermore, the module 12CINTFC.C contains the functions StartTransfer, in which the actual call to the driver 
program is done, and the function 12cReady, which is called by the driver after the completion of a transfer. The 
flag drvStatus is used to test/check the state of a transfer. 

In the StartTransferfunction a software time-out loop is programmed. Inside this time-out loop the 
MainStateHandler is called if the driver is in polling mode and the status register PIN flag is set. 

If a transfer has failed (error or time-out) the StartTransferfunction prints an error message (using standard lID 
redirection, like the printf() function) and it does a retry of the transfer. However, if the maximum number of retries 
are reached, and exception interrupt (Trap #14) is generated to give a fatal error message. 
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APPENDICES 

Appendix I 12CINTFC.C 
1***************************************************** **********************************/ 

/~ Name of module 
/~ Language 
/* Name 
/* Description 
/* 

/* 
/* 
/* 

I2CINTFC.C 
C 
P.H. Seerden 
External interface to the PCx8584 I2C driver 
routines. This module contains the **EXAMPLE** 
interface functions, used by the application to 
do I2C master-mode transfers. 

/~ 

/* 

(C) Copyright 1996 Philips Semiconductors B.V. 

*/ 

*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

*/ 

*/ 
*/ 

/***************************************************************************************/ 

/* 

/* History: 
/* 

/* 96-11-25 
/* 

P.H. Seerden Initial version 

*/ 
*/ 
*/ 

*/ 
*/ 

/***************************************************************************************/ 

#include "i2cexprt.h" 
#include "i2cdrivr.h" 

extern void PrintString(code char *s); /* to send messages out using UART 

code char retryexp [] "retry counter expired\n"; 
code char bufempty[] "buffer empty\n" ; 
code char nackdata[ ] "no ack on data\n"; 
code char nackaddr[] "no ack on address\n"; 
code char timedout [] "time-out\n"; 
code char unknowst [] "unknown status\n"; 

static BYTE drvStatus; /* Status returned by driver 

*/ 

*/ 

static I2C_MESSAGE *p_iicMsg[2] 
static I2C_TRANSFER iicTfr; 

/* pointer to an array of (2) I2C mess */ 

static void 12cReady(BYTE status, BYTE msgsDone) 
/*********************************************** 

* Input(s) status 
msgsDone 

* Output(s) None. 
* Returns None. 

Status of the driver at completion time 
Number of messages completed by the driver 

* Description: Signal the completion of an I2C transfer. This function is 
passed (as parameter) to the driver and called by the 
drivers state handler (I). 

****************************************************** *********************************1 

drvStatus = status; 
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8tatic void StartTran8fer(void) 
1****************************** 

None. * Input(s) 
* Output(s) statusfield of 12C_TRANSFER contains the driver status: 

12C_OK Transfer was successful. 
12C_TIME_OUT 
Otherwise 

* Returns None. 

Timeout occurred 
Some error occurred. 

* Description: Start 12C transfer and wait (with t.imeout) until the 
driver has completed the transfer(s). 

***************************************************************************************/ 

LONG timeOut; 
BYTE retries = 0; 

do 
{ 

drvStatus = 12C_BUSY; 
12C_Transfer(&iicTfr, 12cReady); 

timeOut = 0; 
while (drvStatus 
{ 

if (++timeOut > 60000) 
drvStatus 12C_TIME_OUT; 

if (retries == 6) 
{ 

PrintString(retryexp) ; 
asm("trap #14"); 

/* fatal error ! So, .. 

else 
retries++; 

switch (drvStatus) 

case 12C_OK 
case 12C_NO_DATA 
case 12C_NACK_ON_DATA 
case 12C_NACK_ON_ADDRESS 
case 12C_TIME_OUT 
default 

while (drvStatus != 12C_OK); 

/* escape to debug monitor 

break 
PrintString(bufempty) i 

PrintString(nackdata) ; 
PrintString(nackaddr) ; 
PrintString(timedout); 
PrintString(unknowst) ; 

break; 
break; 
break; 
break; 
break; 
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/**********~******************** 

* Input(s) 
* Returns 

msg 
None. 

I2C message 

* Description: Write a message to a slave device. 
* PROTOCOL <S><SlvA><W><A><D1><A> ... <Dnum><N><P> 
***************************************************************************************/ 

iicTfr.nrMessages = 1; 
iicTfr.p_message p_iicMsg; 
p_iicMsg[O] = msg; 

StartTransfer() ; 

void 12C_WriteRepWrite(I2C_MESSAGE *msgl, 12C_MESSAGE *msg2) 
/********************************************************* 

" Input(s) msg1 
msg2 

* Returns None. 

first I2C message 
second I2C message 

* Description: Writes two messages to different slave devices separated 
by a repeated start condition. 

" PROTOCOL <S><Slv1A><W><A><D1><A> ... <Dnum><A> 
<S><Slv2A><W><A><D1><A> ... <Dnum2><A><P> 

***************************************************************************************/ 

iicTfr.nrMessages = 2; 
iicTfr.p.message p_iicMsg; 
p_iicMsg[O] msg1; 
p_iicMsg[1] = msg2; 

StartTransfer() ; 

void 12C_WriteRepRead(I2C_MESSAGE *msgl, 12C_MESSAGE *msg2) 
/********************************************************** 

* Input(s) 

* Returns 

msg1 
msg2 
None. 

first I2C message 
second I2C message 

* Description: A message is sent and received to/from two different 
slave devices, separated by a repeat start condition. 

* PROTOCOL <S><Slv1A><W><A><D1><A> ... <Dnum1><A> 
<S><Slv2A><R><A><D1><A> ... <Dnum2><N><P> 

***************************************************************************************/ 

iicTfr.nrMessages = 2; 
iicTfr.p_message p_iicMsg; 
p_iicMsg[Ol msg1; 
p_iicMsg[1] = msg2; 

StartTransfer() ; 

void 12C_Read(I2C_MESSAGE *msg) 
/****************************** 

" Input(s) msg I2C message 
* Returns None. 
* Description: Read a message from a slave device. 
* PROTOCOL <S><SlvA><R><A><D1><A> ... <Dnum><N><P> 
***************************************************************************************/ 

iicTfr.nrMessages = 1; 
iicTfr.p_message p_iicMsg; 
p_iicMsg[O] = msg; 

StartTransfer(); 
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void I2C_Re.dRepRe.d(I2C_MESSAGB *~gl, I2C_MESSAGB *mag2) 
/********************************************************* 

* Input{s) 

* Returns 

msgl 
msg2 
None. 

first I2C message 
second I2C message 

* Description: Two messages are read from two different slave devices, 
separated by a repeated start condition. 

* PROTOCOL <S><SlvlA><R><A><Dl><A> .. ,,<Dnuml><N> 
<S><Slv2A><R><A><Dl><A> ... <Dnum2><N><P> 

****************************************************** *********************************1 

iicTfr.nrMessages = 2; 
iicTfr.p_message p_iicMsg; 
p_iicMsg[O] msgl; 
p_iicMsg[lj = msg2; 

StartTransfer{) i 

void I2C_Re.dRepWrite(I2C_MESSAGB *magl, I2C_MESSAGE *mag2) 
/********************************************************** 

* Input(s) msgl 
msg2 

* Returns None. 

first I2C message 
second I2C message 

* Description: A block data is received from a slave device, and also 
a{nother) block data is send to another slave device 
both blocks are separated by a repeated start. 

* PROTOCOL <S><SlvlA><R><A><Dl><A> ... <Dnuml><N> 
<S><Slv2A><W><A><Dl><A> ... <Dnum2><A><P> 

***************************************************************************************/ 

iicTfr.mrNessages = 2; 
iicTfr.p_message p_iicMsg; 
p_iicMsg[O] msgl; 
p_iicMsg[l] = msg2; 

StartTransfer() ; 
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Appendix II 12CBITS.C 
1***************************************************** **********************/ 

/* Name of module 
/* Language 
/* Name 
/* Description 

I2CBITS.C 
C 

P.H. Seerden 
Driver part for XA-G3 I2C 'bit-bang' code. 

*/ 
*/ 

*/ 
*/ 

/* 
/* 
/* 
/* 

/* 
/* 
/* 

/* 
/* 

*/ 

Pl.4 and Pl.5 are used for SCL and.SDA. */ 
Everything between one Start and Stop condition is called a TRANSFER. */ 
One transfer consists of one or more MESSAGEs. 
MESSAGEs are separated by Repeated Staarts. 
To start a transfer call function "I2C_Transfer". 

(C) Copyright 1996 Philips Semiconductors B.V. 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 

/***************************************************************************/ 

/* 

/* History: 
/* 

1* 96-11-25 
/* 

P.H. Seerden Initial version 

*/ 

*/ 

*/ 
*/ 
*/ 

/***************************************************************************/ 

#include <xa.h> 

#include "i2cexprt.h" 
#include "i2cdrivr.h" 

static I2C_TRANSFER *tfr; 
static I2C-MESSAGE *msg; 

static void (*readyProc) (BYTE,BYTE); 
static BYTE mssgCount; 
static BYTE dataCount; 
static BYTE state; 
static bit noAck; 

/* Ptr to active transfer block 
/* ptr to active message block 

/* proc. to call if transfer ended 
/* Number of messages sent 
/* nr of bytes of current message 
/* state of the I2C driver 

*/ 
*/ 

*/ 

*/ 
*/ 
*/ 

/* about 1 us delay time at 20 MHz. */ 
/* Used to insure minimum high and low clock times on the I2C bus. */ 
/* This macro must be tuned for the actual oscillator frequency used. */ 
/* Other parameters involved: XA bus timing (BTRH and BTRL) */ 
/* 
/* 

#define delay asm(" 
asm(" 
asm(" 
asm(" 
asm(" 
asm(" 
asm(" 
asm(" 

nop") ; 
nop") ; 
nap") ; 
nap") ; 
nap") ; 
nop") ; 
nop") ; 
nap") 

required I2C bus speed (normal or fast) 
performance of compiler generated code 
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static void SCLHigh(void) 
I*****~****************** 

* Input(s) 
* Returns 
* Description 

none. 
none. 
Sends SCL pin high and wait for any clock stretching 
peripherals. 

************************************************~***** *********************/ 

SCL = 1; 
while (!SCL) 
delay; 

static void PutByte(BYTE i) 
/************************** 

* Input(s) i byte to be transmitted. 
* Returns : None. 
* Description: Sends one byte of data to a slave device. 
***************************************************************************/ 

II 

BYTE n; 

for (n-Ox80; n!=O; n=n»I) 

SDA = (i & n) ? 1 : 0; 
SCLHigh() ; 
delay; 
SCL = 0; 

delay; 

delay; 
SDA = 1; 
SCLHigh() ; 
noAck = SDA; 
SCL = 0; 

static BYTE GetByte(void) 
/************************ 

" Input(s) 
* Returns 

None. 
: received byte. 

1* 
/* 

1* 

1* 
1* 
1* 
/* 

make SCL high and check for stretching *1 
extra delay needed *1 

not needed, enough delay in sw loop *1 

extra delay needed (1 us) *1 
release data line for acknowledge *1 
make SCL high and check for stretching *1 
check acknowledge *1 

* Description : Receive one byte of an addressed slave. 
***************************************************************************/ 

BYTE n, i; 

for (n=O; n<8; n++) 

SCLHigh(); 
i = i I SDA; 
SCL = 0; 
delay; 
i = i«I; 

SDA noAck; 
SCLHigh() ; 
SCL = 0; 
SDA = 1; 
return i; 
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I * read 8 bits *1 

1* make SCL high and check for stretching */ 

1* make SCL high and check for stretching */ 
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static void Generatestart(voidl 
/**~*************************** 

* Input(s) None. 
* Returns : None. 
* Description: Generate a start condition, and send slave address. 
***************************************************************************/ 

SCL = 1; 
SDA = 1; 
noAck FALSE; 

if (SCL && SDA) 
{ 

else 

SDA = 0; 
delay; 
delay; 
delay; 
SCL = 0; 
PutByte(msg->address) ; 

/* needed for repeated start */ 

/* clear no ack status flag */ 

/* both lines high ?? */ 

/* hold time start condition min. 4 us */ 

readyProc(I2C_ERR, mssgCount); /* Signal driver is finished */ 

static void GenerateStop(BYTE status) 
1************************************ 

* Input(s) status status of the driver. 
* Returns : None. 
* Description: Generate a stop condition, releasing the bus. 
*********************************************~******** *********************/ 

SDA = 0; 
SCLHigh() ; 
SDA = 1; 
state = ST_IDLE; 
readyProc(status, mssgCount; 
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/* make seL high and check for stretching */ 
/* stop condition setup time min. 4 us */ 

/* Signal driver is finished */ 
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void StateHandler(void) 
1********************** 

* Input(s) None. 
* Returns : None. 
* Description: Master mode state handler for 12C bus. 
****************************************************** *****~***************/ 

switch (state) 
{ 

case ST_SENDING 
if (noAck) 

GenerateStop{I2C_NACK_ON_DATA) ; 
else 

if (dataCount < msg->nrBytes) 
putByte (msg-->buf [dataCount++] ) ; 

else 
{ 

if (msgCount < tfr->nrMessages) 
{ 

dataCount = 0; 

/* sent next byte 

msg = tfr->p_message[mssgCount++]; 
state = (msg->address & 1) ? ST_AWAIT_ACK 
GenerateStart() ; 

else 
GenerateStop(I2C_OK) ; 

break; 
case ST AWAIT_ACK : 

if (noAck) 
GenerateStop(I2C_NACK_ON_ADDRESS) ; 

else 
if (msg->nrBytes == 1) 
{ 

else 

noAck 
state 

state 

TRUE; 
ST_RECV_LAST; 

ST_RECEIVING; 
break; 

case ST_REEIVING 
msg->buf[dataCount++] = GetByte(); 

if (dataCount + 1 == msg->nrBytes) 
{ 

noAck 
state 

TRUE; 
ST_RECV_LAST; 

break; 
case ST RECV_LAST : 

msg->buf[dataCount] = GetByte(); 
if (mssgCount<tfr->nrMessages) 
{ 

dataCount = 0; 
msg = tfr->p_message[mssgCount++]; 

i* transfer ready 

/* clear ACK 

/* clear ACK 

state = (msg->address & 1) ? ST_AWAIT_ACK 
GenerateStart() ; 

else 
GenerateStop(I2C_OK) ; 

break; 
case ST_IDLE 

break; 
default : 
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GenerateStop(I2C_ERR); 
break; 

/* transfer ready 

/* impossible 
/* just to be sure 
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void I2C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE, BYTE» 
!*********************************************************** 

* Input{s) 

* Output(s) 
* Returns 

p 

proc 

None. 
None. 

address of I2C transfer parameter block. 
procedure to call when trnasfer completed, 
with the driver status passed as parameter. 

* Description: Start an I2C transfer, containing 1 or more messages. The 
application must leave the transfer parameter block 
untouched until the ready procedure is called. 

***************************************************************************/ 

tfr = p, 
readyProc 
mssgCount 
dataCount 

proc, 
1, 
0; 

msg = tfr->p_message[O]; 

state = (msg->address & 10 

GenerateStart(); 

while (state != ST_IDLE) 
StateHandler{) ; 

void I2C_Initialize(BYTE dum) 
/**************************** 

state = ST_IDLE; 

P1CFGA 
P1CFGB 
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P1CFGA & Oxcf; 
P1CFGB & Oxcf; 

/* first message */ 

/*P1.4 and P1.5 as open drain ports */ 
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Appendix III 12C8584.C 
/**********************************************~****** ***********************/ 

/* Name of module 
/* Language 
/* Name 
/* Description 
/* 

I2C8584.C 
C 

P.H. Seerden 
Interrupt driven driver for the XA-Gx and the 
PCx8584 I2C bus controller. 

*/ 

*/ 
*/ 
*/ 
*/ 

/ * * / 
/* Uses external interrupt 0 of the XA. */ 
/* Everything between one Start and stop condition is called a TRANSFER. */ 
/* One transfer consists of the one or more MESSAGEs. */ 
/* To start a transfer call function "I2C_Transfer". */ 
/ * * / 
;* 
/* 

(C) Copyright 1996 Philips Semiconductors B.V. */ 
*/ 

1***************************************************** ***********************/ 

/* 
/* History: 
/* 
/* 96-11-25 
1* 

P.H. Seerden Initial version 

*J 
*/ 
*/ 
'OJ 

*J 
/****************************************************************************/ 

#include <xa.h> 

#include "i2cexprt.h" 
#include "i2cdrivr.h" 

/***'O'*******'O'O****CHANGE ADDRESSES FOR OTHER APPLICATIONS******************/ 

#define BYTE_AT (x) (*(far unsigned char*)x) 
J* ESO ESl ES2 */ 

#define AR_8584 BYTE_AT (OxFOOOO) /* Address Register 0 0 0 'O/ 
#define VR_8584 BYTE_AT (OxFOOOO) /* Vector Register 0 0 1 */ 
#define CL_8584 BYTE_AT (OxFOOOO) /* Clock Register 0 1 */ 
#define DR_8584 BYTE_AT (OxFOOOO) /* Data Register */ 

#define CR_8584 BYTE_AT (OxF0002) /* Control Register x x */ 
#define CS_8584 BYTE_AT (OxF0002) /* CntrlJStatus Reg x x */ 

/****************************************************************************/ 

static I2C_TRANSFER *tfr; /* Ptr to active transfer block */ 
static I2C_MESSAGE *msg; /* ptr to active message block */ 

static void (*readyproc) (BYTE/BYTE); /* proc. to call if transfer ended */ 
static BYTE mssgCount; /* Number of messages sent */ 
static BYTE dataCount; J* nr of bytes of current message */ 
static BYTE state; J'O state of the I2C driver 'O/ 

static void GenerateStop(BYTE status) 
/************************************ 

* Input(s) status status of the driver. 
* Output(s) driver status to the upper layer. 
* Returns none. 
* Description Generate a stop condition. 
****************************************************************************/ 

PIN_MASK I ESO_MASK I STO_MASK lACK_MASK; 
ST_IDLE; 

readyProc(status, mssgCount); /'O Signal driver is finished 
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interrupt void X2C_Xnterrupt(void) 
I****~w*************************** 

* Input(s) none. 
* Output(s) none. 
* Returns none. 
* Description Interrupt handler for PCF8584 into at external int 0 pin. 
****************************************************************************/ 

switch (state) 
{ 

case ST_SENDING 
if (CS_8584 & LRB_MASK) 

GenerateStop(I2C_NACK_ON_DATA) ; 
else 

if (dataCount < msg->nrBytes) 
DR_8584 = msg->buf[dataCount++]; 

else 
{ 

if (mssgCount < tfr->nrMessages) 
{ 

dataCount = 0; 
msg = tfr->p_message[msgCount++]; 

/* sent next byte 

state = (msg->address & 1) ? ST_AWAIT_ACK 
CS_8584 ESO_MASK I STA_MASK lACK_MASK; 
DR_8584 = msg->address; 

else 
GenerateStop(I2C_OK) ; 

break; 
case ST_AWAIT_ACK : 

if (CS_8584 & LRB_MASK) 
GenerateStop(I2C_NACK_ON_ADDRESS); 

else 
{ 

BYTE dummy; 
if (msg->nrBytes == 1) 
{ 

else 

CS_8584 = ESO_MASK; 
state ST_RECV_LAST; 

state = ST_RECEIVING; 

/* transfer ready 

/* clear ACK 

dummy = DR_8584; /* start generation of clock pulses 
for the first byte to read 

break; 
case ST_RECEIVING 

if (dataCount + 2 == msg->nrBytes) 
{ 

} 

CS_8584 ESO_MASK; 
state = ST_RECV_LAST; 

msg->buf[dataCount++j = DR_8584; 
break; 

case ST_RECV_LAST : 
if (mssgCount < tfr->nrMessages) 
{ 

else 
{ 

msg->buf[dataCount] = DR_8584; 
dataCount = 0; 
msg = tfr->p_message[mssgCount++]; 
state = (msg->address & 1) ? ST AWAIT ACK 
CS_8584 ESO_MASK I STA_MASK I-ACK_MASK; 
DR_8584 = msg->address; 

GenerateStop(I2C_OK) ; 
msg->buf[dataCount) DR_8584; 

/* clear ACK 

/* transfer ready 

break; 
default : /* impossible 

GenerateStop(I2C_ERR); 
break; 
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void 12C_Transfer(I2C_TRANSFER *p, void (*proc)(BYTE, BYTE)) 
1***************************************************** ****** 
* Input(s) p 

proc 

* Output(s) None. 
* Returns None. 

address of I2C transfer parameter block. 
procedure to call when transfer completed. 
with the driver status passed as parameter. 

* Description: Start an I2C transfer, containing 1 or more messages. The 
application must leave the transfer parameter block 
untouched until the ready procedure is called. 

***************************************************************************/ 

tfr = p; 
readyProc 
mssgCount 
dataCount 

proc; 
0; 
0; 

msg = tfr->p_message[mssgCount++); 

ST_SENDING; state 
CS_8584 
DR_8584 

(msg->address & 1) ? ST_AWAIT_ACK 
ESO_MASK I STA_MASK lACK_MASK; 
msg->address; 

/* generate start */ 

void 12C_Initialize(BYTE speed) 
/****************************** 

* Input(s) 
* Output(s) 
* Returns 

speed 
None. 
None. 

clock register value for bus speed. 

* Description: Initialize the PCF8584. 
***************************************************************************/ 

state ST_IDLE; 
readyProc NULL; 

AR_8584 Ox26; 
CR_8584 Ox20; 
CL_8584 speed; 

/* dummy 
/* write 

own slave address 
clock register 

*/ 
*/ 

/* for Microcore 6 and XTEND, */ 
/* now fill the secondary vector table with the right interrupt vector */ 
#asm 

mov.w r2,#680h 
mov.w rO,#_I2C_Interrupt&(0+65535) 
mov.w r1,#seg _I2C_Interrupt 
mov.w [r2+),rO 
mov.w [r2),r1 

#endasm 

IPAO = IPAO I 7; 
EXO = 1; 
EA = 1; 
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/* set serial interface ON */ 

/* General interrupt enable */ 
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Appendix IV 12CDEMO.C 
i~***********************************************~**** **********************/ 

/" Name of module 
/* Program language 
/* Name 
/* Description 
/* 

/* 

/* 

/* 

DEMO.C 
C 
P.H. Seerden 
XA-Gx I2C driver test (PCF8584 + bit bang) 
Runs on MICROCORE 6 
Read time from the real time clock chip PCF8583. 
run leds connected to PCF8574 every second. 

/* 
/* 

(C) Copyright 1996 Philips Semiconductors B.V. 

*/ 
*/ 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 

*/ 
*/ 

/***************************************************************************/ 

/* 

/* History: 
/* 
/* 96-11-25 
/* 

P.H. Seerden Initial version 

*/ 
*/ 
*/ 

*/ 
*/ 

/***************************************************************************/ 

!tinclude "i2cexprt.h 

!tdefine PCF8574_WR Ox40 
!tdefine PCF8574_RD Ox41 
!tdefine PCF8583 _WR OxAO 
!tdefine PCF8583 RD OxAl -

static BYTE rtcBuf[1] ; 
static BYTE iopBuf[1] ; 

static I2C_MESSAGE rtcMsg1; 
static I2C_MESSAGE rtcMsg2; 
static I2C_MESSAGE iopMsg; 

static void Init(void) 
{ 

/* i2c address I/O poort write 
/* i2c address I/O poort read 
/* i2c address Clock 
/* i2c address Clock 

I2C_Initialize(OxlO) ; /* for PCF8584, 4.43MHz and SCL 90KHz 

rtcMsg1.address 
rtcMsg1.buf 
rtcMsg1.nrBytes 
rtcMsg2.address 
rtcMsg2.buf 
rtcMsg2.nrBytes 

PCF8583_WR; 
rtcBuf; 
1; 
PCF8583_RD; 
rtcBuf; 
1; 

iopMsg.address 
iopMsg.buf 
iopMsg.nrBytes 
iopBuf[O] = Oxff; 
I2C_Write(&iopMsg) ; 

PCF8574_WR; 
iopBuf; 
1; 
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void main (void) 
{ 

BYTE oldseconds,port; 

Init () ; 

oldseconds 0; 
port = Oxf7; 
while (1) 
{ 

rtcBuf[O) = 2; 
12C_WriteRepRead(&rtcMsgl, &rtcMsg2); 

if (rtcBus(O) != oldseconds) 
{ 
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oldseconds = rtcBuf[O]; 

switch (port) 

} 

case Oxf7: port 
case Oxfb: port 
case Oxfd: port 
case Oxfe: port 
default: break; 

iopBuf(O) port; 
12C_Write(&iopMsg) ; 

Oxfe; 
Oxf7; 
Oxfb; 
Oxfd; 

break; 
break; 
break; 
break; 
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Appendix V 12CEXPRT.H 
/***************************************************** **********************1 

1* Name of module I2CEXPRT.H */ 
/* Language : C */ 
I * Name P. H. Seerden * / 
I * Description This module consists of a number of exported * / 
/* declarations of the I2C driver package. Include */ 
/* this module in your source file if you want to */ 
/* make use of one of the interface functions of the */ 
I * package. * / 
1* 
/* 
/* 

(C) Copyright 1996 Philips Semiconductors B.V. 
*/ 
*/ 
*/ 

/*********************************************~******* **********************/ 

1* */ 
/* History: 
1* 
/* 96-11-25 
/* 

P.H. Seerden Initial version 

*/ 
*/ 
*/ 
*/ 

/***************************************************************************/ 

typedef unsigned char BYTE 
typedef unsigned short WORD 
typedef unsigned long LONG 

typedef struct 
{ 

BYTE address; 
BYTE nrBytes; 
BYTE *buf; 

I2C_MESSAGE; 

typedef struct 
{ 

/* slave address to sent/receive message 
/* number of bytes in message buffer 
/* pointer to application message buffer 

*/ 
*/ 
*/ 

BYTE nrMessages; 
I2C_MESSAGE **p_message; 

I2C_TRANSFER; 

/* number of message in one transfer */ 
/* pointer to pointer to message */ 

/***************************************************************************/ 
/* EXPORTED DATA DECLARATIONS */ 
1***************************************************** **********************/ 

#define FALSE 
#define TRUE 

#define I2C_WR 
#define I2C_RD 

/**** Status Errors ****/ 

#define I2C_OK 
#define I2C_BUSY 
#define I2C_ERR 
#define I2C_NO_DATA 
#define I2C_NACK_ON_DATA 
#define I2C_NACK_ON_ADDRESS 
#define I2C_TIME_OUT 

o 
1 
2 
3 
4 
5 
6 

/* transfer ended No Errors 
/* transfer busy 
/* err: general error 
/* err: No data in block 
/* err: No ack on data 
/* err: No ack on address 
/* err: Time out occurred 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/*********************************~******************* **********************/ 

1* I N T E R F ACE FUN C T ION PRO TOT Y PES */ 
/***************************************************************************/ 

extern void I2C_Initialixe(BYTE speed); 

extern void 
extern void 
extern void 
extern void 
extern void 
extern void 
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I2C_Write(I2C_MESSAGE *msg); 
I2C_WriteRepWrite(I2C_MESSAGE *msgl, I2C_MESSAGE *msg2); 
I2C_WriteRepRead(I2C_MESSAGE *msgl, I2C_MESSAGE *msg2); 
I2C_Read(I2C_MESSAGE *msg); 
I2C_ReadRepRead(I2C_MESSAGE *msgl, I2C_MESSAGE *msg2); 
I2C_ReadRepWrite(I2C_MESSAGE *msgl, I2C_MESSAGE *msg2); 
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12C with the XA-G3 

Appendix VI 12CDRIVR.H 
/***************************************************************************/ 

Name of module 
Language 
Name 
Description 

I2CDRIVR.H 
C 
P.H. Seerden 
This module contains a number of 'local' 
declarations for the XA-Gx I2C driver package. 

/* 
/* 
/* 
/* 
1* 
/* 
/* 
/* 

(C) Copyright 1996 Philips Semiconductors B.V. 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/***************************************************************************/ 

/* 
1* History: 
1* 
1* 96-11-25 P.H. Seerden Initial version 

*/ 
*/ 
*/ 
*/ 
*/ /* 

/***************************************************************************/ 

static bit SDA @ Ox38C 1 * port Plo 4 * / 
static bit SCL @ Ox28D; 1 * port Pl. 5 * / 

#define ST_IDLE 
#define ST_SENDING 1 
#define ST_AWAI T_ACK 2 
#define ST_RECEIVING 3 
#define ST_RECV_LAST 4 

#define ACK_MASK OxOl 
#define STO_MASK Ox02 
#define STA_MASK Ox04 
#define ESO_MASK Ox48 1* also interrupt enable */ 

#define BB_MASK OxOl 
#define LAB_MASK Ox02 
#define AAS_MASK Ox04 
#define LRB_MASK Ox08 
#define BER_MASK Oxl0 
#define STS_MASK Ox20 
#define PIN_MASK Ox80 

extern void I2C_Transfer(I2C_TRANSFER *p, void (*proc) (BYTE, BYTE»; 
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XA tools Ii necard 

Telephone/Contact 
Product 

North America Europe 

C Compilers 

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen C-51XA 

CMXCompany 1-508-872-7675 Charles Behrmann US 1-508-872-7675 Charles Behrmann Hi-Tech XAC 

Hi-Tech 1-207-236-9055 Avocet - T. Taylor UK 44.1.932.829460 Computer Solutions Hi-Tech C (XA) 

Pantasoft 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron C-XA 

Tasking 1-617-320-9400 Vaughn Orchard US 1-617-320-9400 Vaughn Orchard C-Compiler 

Emulators (including Debuggers) 

Ashling 1-508-366-3220 Bob Labadini IR 353.61.334466 Micheal Healy Ultra2000-XA 

Ceibo 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron DS-XA 

Nohau 1-408-866-1820 Jim Straub SW 46.40.922425 Mikael Johnsson EMUL51XA-PC 

Cross Assemblers 

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen A-51XA 

Ashling 1-508-366-3220 Bob Labadini IR 353.61.334466 Micheal Healy SDS-XA 

Pantasoft 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron ASM-XA 

Philips/Macraigor* 1-408-991-51 XA MotiKama US 1.408.991.5192 Moti Kama Mcgtool 

Tasking 1-617-320-9400 Vaughn Orchard US 1-617-320-9400 Vaughn Orchard C-Compiler 

Real-Time Operating Systems 

CMX Company 1-508-872-7675 Charles Behrmann US 1.508.872.7675 Charles Behrmann CMX-RTX 

Embedded 1-713-561-9990 Ron Hodge US 1.713.516.9990 Ron Hodge RTXC 
System Products 

R&D Publications 1-913-841-1631 Customer Service US 1.913.841.1631 Customer Service Labrosse MCU/OS 

Simulators & Software Generation Tools 

Aisys 1-800-397-7922 Customer Service IL 972.3.9226860 Oren Katz DriveWay-XA 

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen SimCASE-51XA 

Pantasoft 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron DEBUG-XA 

Philips/Macraigor* 1-408-991-51XA Moti Kama US 1.408.991.5192 Moti Kama Mcgtool 

Translators (80C51-to-XA) 

Philips/Macraigor* 1-408-991-51XA Mike Thompson US 1.408.991.5192 Mike Thompson Mcgtool 

Development Kits 

CMX (Hi-Tech) 1-508-872-7675 Charles Behrmann UK 44.1.932.829460 Charles Behrmann XADEV 

Future Designs 1-205-830-4116 Mark Hall US 1-205-830-4116 Mark Hall XTEND-G3 

Philips/Macraigor 1-408-991-51 XA MotiKama US 1.408.991.5192 Moti Kama P51XA-DBE SD 

EPROM Programmers 

BP Microsystems 1-800-225-2102 Sales Department US 1.713.688.4600 Sales Department BP-1200 

Ceibo 1-314-830-4084 Roly Schwartzman GE 49.6151.27505 M. Kimron MP-51 

Data 1/0 Corp. 1-800-247-5700 Tech Help Desk BE 32.1.638.0808 Roland Appeltants UniSite 

Adapters & Sockets 

EDICorp 1-702-735-4997 Milos Krejcik US 1.702.735.4997 Milos Krejcik 44PG/44PL 

Logical Systems 1-315-478-0722 Lynn Burko US 1.315.478.0722 Lynn Burko PA-XG3FC-44 

* The Philips cross assembler, simulator, and translator are available on the Philips FTP site at ftp://ftp.philipsMCU.com/pub. 
File name XA-TOOLS.ZIP 
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PILOT-U40 
Universal Programmer 

• All members of the Philips XA family 
of microcontrollers, as well as 
EPROMs, PALs, etc., are supported 

• Controlled by IBM PCs/Notebooks or 
compatibles 

• Standard parallel printer port interface, 
no PC slot required 

• Powerful, flexible and friendly 
software 

• Free lifetime software updates via high 
speed BBS 

• Industrial quality 

• Approved by major semiconductor 
manufacturers 

Contact Information 
Advin Systems Incorporated 
1050-L East Duane Avenue 
Sunnyvale, CA 94086 
Tel: (800) 627-2456 
Tel: (408) 243-7000 
Fax: (408) 736-2503 

SAdvin 
661 

ADVIN SYSTEMS INC. 

PILOT-U40 

Product Information 
PILOT-U40 is the most cost-effective and reliable 

solution for programming the Philips XA family of 
microcontrollers, as well as other micros, memories and 
logic devices. It comes standard with all the software for 
supporting the different types of devices. Software is 
versatile and rich in features, yet designed for ease of use 
and fast operation. Batch/macro features allow easy setup of 
repeatedly used sequences and provide straight forward 
operation by production personnel. Software updates are 
free via BBS lines. 

Since PILOT-U40 connects to IBM PCs through 
standard parallel ports, no time-consuming downloading is 
needed and no special PC interface card is required either. 
The power supply is built-in and automatically adjusts to 
110-240 AC, convenient for international operations. 

Advin Systems, Inc. has been a dependable and 
responsive supplier of reliable programming instruments for 
over eight years. It is recognized by major IC manufacturers 
as a producer of high quality programmers. Please call now 
to see how we can serve your needs. 

Ordering Information 
PILOT-U40: Includes interface cable, software, 

manual, 1 year warranty, 30-day money-back satisfaction 
guarantee. PLCC, SOIC, PGA, QFP modules are optional. 



DriveWayTM-XA 
Device Drivers 
Code Generation Tool 

• Generates complete Device Drivers in 
'C' source code 

• Generates initialization routines 

• Generates your 'main' template 

• Generates complete test functions 

• Includes Interactive Data Sheet (IDS) 

• Runs under MS-Windows 

• Shortens time to market 

• Reduces product development costs 

• Improves code quality 

• Eliminates the need to learn chip internals 

Visit Aisys at 
http://www.aisys-usa.com 

USA 
Aisys 
One Washington Street 
Wellesley Hills, MA 02181 
Tel: 800-397-7922 
Fax: 800-625-5525 

Other 
Aisys Ltd. 
Science & Technology Park 
16 Basel St., P.O.B. 10041 
Petach-Tikva 49001, Israel 
Tel: +972-3-922-6860 
Fax: +972-3-922-6863 
Email: dw_xa@aisys.co.il 
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DriveWay-XA is an automatic application code 
generator that supports Philips 8051-XA microcontrollers. It 
is an easy-to-use Windows-based software tool that 
produces tested and documented 'C' source code to control 
8051-XA on-chip peripherals. 

Aisys provides a series of DriveWay products which 
support a variety of popular microcontrollers. These 
DriveWay products address the need of embedded system 
designers for full hardware and software integration of 
on-chip peripherals. DriveWay is a revolutionary class of 
tools for developing device drivers which produces tested 
and documented 'C' code to control on-chip peripherals. 

DriveWay eliminates the tedious coding of peripheral 
functions and the need to learn the internals of each 
supported chip. This results in a shorter time to market, 
reduced product development costs, and higher-quality 
code. 

DriveWay also provides on-line Interactive Data Sheet 
(IDS) which provides hypertext data describing the chip, 
peripherals, modes, registers and pins that you need to 
program and can be used as a simpler kind of chip data 
handbook. 

Ordering Information 
Call us for a detailed data sheet and free demo disk. 
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TECHNICAL OVERVIEW 
Archimedes IDE-8051XA unlocks theJull power oJ the new Philips 8051XA microcontroller. 

The IDE-8051XA toolset includes an ANSI C compiler optimizedJor the 8051XA, a library 

manager, linkerllocator, editor and make utilities as well as an 8051 XA macro-assembler. 

Archimedes SimCASE 8051XA Simulator/ C & ASM debugger provides 

comprehensive C and assembly debugging via the built-in 8051XA 

simulator and third party in-circuit emulators. 

Archimedes IDE-8051XA ANSI 
C Compiler. 

The Archimedes ANSI standard C compiler optimized for 
the 8051XA architecture forms the core of the 
IDE-8051XA tool-set. 

C Compiler Feature Overview: 
• Size and speed optimizations 

• Position independent code 

• Flexible memory models 

• Reentrancy 

• Interrupts in C 

• In-line assembly 

• Unlimited source code size 

• Floating point operations support both IEEE 32 bit 
single and IEEE 64 bit double precision 

• Static data initialized at run-time 

• C libraries support advanced math including 
trigonometric, exponential and logarithmic functions 

Archimedes SimCASE 8051 XA 
Simulator/C & ASM debugger. 
Archimedes 8051XA SimCASE Simulator/ C & ASM 
debugger permits fast and reliable debugging at source 
level. The IDE-8051XA debugger interfaces directly with 
the built-in 8051XA simulator and with popular in-circuit 
emulators. 

SimCASE Feature Overview: 
• Full simulation of the 8051XA CPU. 

• Comprehensive C Source & ASM debugging 

• Multiple debug windows 

• Execution Profiler 
• Code coverage function marks executed program code 

Hosts & System Requirement: 
386 or higher 
4MB RAM or higher 
Windows 3.1IMS-DOS 5.0 or higher 

Ordering Information: 
Archimedes Software offers an unconditional 30-day 
money back guarantee on all products. 

To place an order: Call Archimedes Software Sales Dept. at: 

1-800-338-1453 
or order on-line at: 

http://www.archimedesinc.com/devtools 

ARCHIMEDES 
30fTWAftf. 

Archimedes Software, Inc. 303 Parkplace Center #125, Kirkland, WA 80033 FAX: (206) 822-8632. 
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Ultra-51XA Microprocessor Development Systems for Philips XA Microcontrollers 

Ashling's u/tra-51XA Microprocessor Development System for Philips 80C51XA Microcontrol/ers 

Ashling's Ultra-51 XA Microprocessor Development System provides a complete development 
environment for the Philips XA Microcontroller family, hosted under Windows. 

Features of Ashling's Ultra-SlXA Microprocessor Development systems include: 

• Real-time in-circuit emulator for all Philips 80C51XA derivatives; full-speed, non-intrusive emulation 

• Real-time, DSP-based Performance Analysis and Code Coverage systems for Software Quality Assurance 

• Source-Level Debugging for 80C51XA programs, under Windows™ and Windows® hosts 

• Single ICE probe emulates XA in ROM, EPROM and External Memory modes 

• Hardware break-before-execute breakpoints throughout the XA's Code and Xdata address ranges 

• Stand-alone system, complete with power supply; interchangeable probes for all XA derivatives/packages 

• Integrated Development Environment for Philips 80C51XA under Windows 

• IS09001-Certified Supplier; Ashling Microsystems Ltd. is certified to EN ISO 9001 
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Ashling Ultra-51XA Emulator Specification 

In-Circuit Emulator 
Ashling Ultra-51XA real-time in-circuit emulator for all 
Philips XA derivatives, in single-chip and expanded modes. 
Up to 50 MHz clocks; support for Bus Wait State operation. 

Emulation Memory 
256K emulator code memory and 256KB emulator data 
memory as standard. Memory expansion options up to 
16MB Code and 16MB Xdata memory. 8- and 16-bit bus 
widths supported. Mapping to target or emulator memory 
with 256-byte resolution. 

Emulation Probes 
In-Circuit probes are available for all XA device packages 
and derivatives. 

Emulation Modes 
The Ultra-51XA In-Circuit Emulator provides real-time 
emulation in both Single-Chip and Expanded modes, using 
a single ICE probe. Target voltages in the range 2.7 - 5 Volts 
are supported; the emulation voltage can be set at 3.0, 3.3V 
or 5.0V, or can track the target system voltage throughout 
the range. 

Upgrade Path 

Power Supply 
Stand-alone In-Circuit Emulator with standard serial or 
network connection to PC. Supplied with 230V 50Hz or 
115V 60Hz or 100V 50Hz power unit. 

Device Support 
80C5IXA-G3 and all 8051XA derivatives. Software control 
of emulation mode, voltage and derivative. Probes are 
available for all device packages. 

Triggering 
Six multiple event recognisers; symbolic, binary, or hex. 
Trigger on boolean combinations of events; Trigger on 
address and/or data or range(s). Prescaling to 65535. 
Pre/Center/Post trace triggers. Savenoad trigger definition 
files. Modify trigger on-the-fly. 

Trace display 
32K frames by 96 bits with variable trace length; 
expandable to 5I2K frames. Display signals in 
cycle-by-cycle, hex, symbolic disassembly or source code. 
Full real-time tracing of address, data, ports, control and 
external buses. Savenoad trace display. Compare trace 
against reference trace. 

All Ultra-51 XA systems can easily be field-upgraded to a different processor type. Ashling's Development Support 
Co-operation Agreement with Philips ensures that a full range of development-support tools is provided for each 
new XA derivative introduced by Philips. New Ashling probes are regularly introduced for new standard 
microcontrollers and microcontroller-based ASICs from Philips. 

Development Support for Philips 8051 derivatives 
In addition to the Ultra-51 XA Development System, Ashling supplies the CTS51 In-Circuit Emulator for the entire 
Philips 8051 microcontroller family. Developed with the co-operation of Philips Semiconductors, the CTS51 
In-Circuit Emulator and PathFinder-51 for Windows Source-Level Debugger supports all Philips 8051 derivatives, 
including the 83C855-family Smart-Card Microcontrollers, the low-cost 87C751-series, the 83CE598-series 
automotive controllers, the SAA5296-series teletext microcontrollers and the 83CL434-series consumer 
microcontrollers. 

IS09001 Certification; Quality Management System 
Ashling Microsystems Ltd. operates a company-wide Quality Management System, formally certified to the 
IS09001 international standard (NSAI Registration No. M619). This certification applies to all of Ashling's product 
development, manufacturing and customer-support activities. 

I.S. EN ISO 9001 
Registration No. M619 
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This PathFinder for Windows screen shows the source program and disassembled code, and the contents of 
on-chip RAM, Registers and System Stack for an BOC51XA program. 

Windows Source-Level Debugger 
Ashling's Pathfinder for Windows source-level debugger for C and Assembler provides up to 20 display-windows, 
controlled by mouse, menu-bar, command-line, accelerator keys or button-bar. Features include automatic 
synchronisation of Source-Code, Traced Executed Source Code, Disassembled Code Memory, Port Activity and 
Code Coverage windows; on-chip RAM, External Data Memory, Special Function Registers, Status, System Stack, 
User-Stack and Variables windows. All popular XA Compilers and Assemblers are supported. 

Integrated Development Environment 
WinIDEAS, the Windows Integrated Development Environment allows you to edit, compile, assemble, simulate, 
debug, download and execute code on your Philips XA microcontrolier target system in the Windows™ 
environment throughout. WinlDEAS provides a uniform, flexible and extensible windows interface for Editing, 
C Compiling, Assembling, Linking, In-circuit emulation, Performance Analysis, Code Coverage Measurement and 
Software Validation reporting on 80C51 XA Microcontrolier projects. 
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Ashling's System Execution Analyser (SEA-XA) option is a DSP-based, high-speed measurement system for 
performance-critical or safety-critical embedded applications using the XA microcontroller and its derivatives. It is 

non-intrusive and non-statistical, and measures all events accurately and continuously. 

Software Quality Assurance Tools: Real-Time Performance Analysis 
The System Execution Analyser (SEA-XA) is a built-in, DSP-based option for Ashling's Ultra-51 XA Microprocessor 
Development System. The SEA provides real-time, non-intrusive, non-statistical Performance Analysis, Code 
Coverage and Report Generation. The SEA also provides symbolic function-trace, time-stamping, timing analysis 
and software verification. You can measure maximum, minimum and average execution times, execution counts 
and percentage code execution at Source or Assembly level. 

Software Quality Assurance Tools: Real-Time Code Coverage 
Ashling's CTMS-XA Code Test Management System option for the Ultra-51 XA Emulator measures 80C51 XA code 
execution in real-time throughout a test session. It maps tested and untested code; identifies all tested, 
partially-tested or untested C source statements and assembler instructions; generates formal, annotated test 
reports; identifies redundant code; and provides a formal measurement of test completeness. 
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Ashling's International Distributors 

AUSTRALIA: Metromatics Pty. Ltd. Tel: 07-3585155 Fax: 07-2541440 

AUSTRIA: Ashling Mikrosysteme Tel: +49-8233-32681 Fax: +49-8233-32682 

BELGIUM: Air Parts Electronics Tel: 02241 6460 Fax: 02241 8130 

FRANCE: Ashling Microsystemes sari Tel: (1) 46.66.27.50 Fax: (1) 46.74.99.88 

GERMANY: Ashling Mikrosysteme Tel: 08233/32681 Fax: 08233/32682 

GREECE: Pantech D.D.C. Tel: 031-608850 Fax: 031-608851 

HUNGARY: Vanguard Kft. Tel: (1) 1751849 Fax: (1) 1751849 

IRELAND: Ashling Microsystems Ltd Tel: 061-334466 Fax: 061-334477 

ISRAEL: ROT Ltd. Tel: 03-6450745 Fax: 03-6478908 

ITALY: All-Data s.r.1. Tel: 02-66015566 Fax: 02-66015577 

KOREA: DaSan Technology Tel: (02) 511 9846 Fax: (02) 511 9845 

MALAYSIA: Quality Power Sdn Bhd Tel: (04) 8266552 Fax: (04) 8266552 

NETHERLANDS: Air Parts b.v. Tel: 0172-422455 Fax: 0172-421022 

SINGAPORE: Flash Technology Pte. Ltd. Tel: +652920233 Fax: +652928433 

SPAIN: Sistemas Jasper s.1. Tel: (1) 8038526 Fax: (1) 804 1623 

SWEDEN: Ferner Elektronik AB Tel: 08-7608360 Fax: 08-7608341 

SWITZERLAND: Litronic AG Tel: 061 421 3201 Fax: 061 421 1802 

TAIWAN: Chinatech Corp. Tel: 029160977 Fax: 029126641 

TURKEY: MOS Engineering Tel: 02125771691 Fax: 02126128824 

U.K.: Ashling Microsystems Ltd. Tel: (01256) 811998 Fax: (01256) 811761 

U.S.A.: Orion Intruments, Inc. Tel: (800) 729 7700 Fax: (408) 7470688 

Ashling Microsystems Ltd. Ashling Microsystems Ltd. Ashling Microsystemes sari Ashling Mikrosysteme Orion Instruments Inc. 
National Technological Park Intec 2, Studio 9 2, rue Alexis de Tocqueville Brunnenweg 4 1376 Borregas Avenue 
Limerick Wade Road, Basingstoke Parc d' Activites Antony 2 86415 Mering Sunnyvale 
Ireland. Hants. RG24 8NE, UK 92183 ANTONY - France. Germany. CA 94089-1004, USA. 
Tel: +35:3--61-334466 Tel: (01256) 811998 Tel: (1) 46.66.27.50 Tel: 08233-32681 Tel: (800) 729 7700 
Fax: +353-61-334477 Fax: (01256) 811761 Fax: (1)46.74.99.88 Fax: 08233-32682 Fax: (408) 7470688 
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The BP-1200 uses the newest 

technology to satisfy the programming 

requirements of both engineering and 

production users at a reasonable price. 

Leading the competition in devices 

supported, performance, ease of use, 

and cost of ownership, the BP-1200 is 

clearly the best choice for demanding 

users. the ability to program almost 

every programmable device, including 

the fastest and largest PLDs and 

memories available, gives engineers 

the freedom to choose the optimum 

device for new designs. Helping to get 

BP-1200 
• New technology provides price and perform~nce 

breakthrough 

• Supports virtually every programmable device 

• Supports all device technologies up to 240 pins 

• Supports DIP, LCC, PGA, PLCC, QFP, SOIC, and 
TSOP devices directly 

• Autohandler interface available for production 
applications 

• Fastest universal programmer available 

• User-friendly software runs on PC 

• Backed by unmatched customer service 

• Field upgradable to grow with your requirements 

products to market faster, the BP-1200 connects directly to an engineer's PC, 

saving many valuable hours during product development by speeding up the 

program-and-test cycle. For production, the BP-1200's ease-of-use, high yields, 

high speed, and reliability increase efficiency and eliminate headaches in either 

an autohandler or a manual production environment. Best of all, the BP-1200 can 

be upgraded to meet your future requirements through expandable hardware that 

can support advanced devices with up to 240 pins, and through free software 

updated available twenty-four hours a day from our electronic bulletin board 

system. Algorithms are released approximately every six weeks for new device 

support and immediately for bug fixes. Enhanced software is available to support 

engineering, QC, and production applications that go beyond mainstream 

requirements. Our achievement in bringing customers the highest quality 

programming system at a fair price is unparalleled. The BP-1200's concept is 

simple: the Best Programmer available at any price. 
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BP-1200 
DEVICE SUPPORT 

The BP-1200 supports virtually every 
programmable device available today. All technologies 
are supported, including bipolar, CMOS, BiCMOS, 
MOS, ECL, and hybrids. All packages are supported, 
including DIP, LCC, PGA, PLCC, QFP, SOIC, and 
TSOP. All device families are supported, including 
PLD, FPGA, EPROM, EEPROM, PROM, flash 
EPROM, microcontrollers, and special function devices. 
The BP-1200 directly supports many devices not fully 
supported by competing programmers, including 
high-pin-count PLDs, FPGAs, 4 and 5 ns bipolar PALs, 
3.5ns CMOS PALs, microcontrollers (including 
Motorola), NS AIM PALs, and ECL PALs. To see what 
devices the BP-1200 supports, be sure to obtain the 
current device list from BP Microsystems because it is 
updated so often. 

Socket modules are interchangeable to allow 
switching between device package types. A 48-pin DIP 
socket is standard; other types of sockets are optional. A 
universal PLCC socket supports all 20- to 84-pin PLCC 
devices using either particle interconnect technology or 
long metal spring contacts. Standard test sockets are also 
available for LCC, PGA, PLCC, QFP, SOIC, and TSOP. 

FUTURE DEVICES 
For many people, the most valuable feature a 

programmer can have is its ability to support the newest 
devices. The BP-1200 has an innovative new design 
intended for tomorrow's fastest CMOS technology so it 
wm give high programming yields and proper test 
results even as semiconductor makers push the limits of 
silicon and packaging technology. The BP-1200 
improves your competitiveness by letting you take 
advantage of new devices as soon as they become 
available, giving you access to the fastest, densest, and 
cheapest devices. The BP-1200 is the first programmer 
that is expandable to program and test devices with up 
to 240 pins. Only with a true high~pin-count 
programmer will you be able to fully test these advanced 
devices in order to verify your design and identify 
defects such as ESD damage or bent leads before 
soldering the part into a board. The BP-1200's capacity 
can grow with your needs, unlike competing 
programmers with no upgrade path beyond 84 pins. 

BP Microsystems has considered the requirements 
of future devices, such as EPROMs beyond 64 megabits, 
PLDs with JTAG testing, and devices that will be 
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programmed in circuit, to make the BP-1200 as 
advanced as possible. We work closely with major 
semiconductor manufacturers as they develop new 
devices to keep abreast of future programming trends. 
this helps us release software updates concurrently with 
the introduction of new devices. These software updates 
are available at all times on our electronic Bulletin 
Board System. 

SOFTWARE FEATURES 
Easy to use for both novices and experts, BP 

Microsystems' highly acclaimed control software is 
versatile, powerful, and intuitive. Some of its features 
include a simple two-level menu structure, FI help at all 
times, and automatic file loading, Automatic package 
selection allows you to change the programming socket 
without having to power down or change the software 
configuration. since the entire software package consists 
of a single .EXE file, companies with many users on a 
network can upgrade quickly by replacing a single file. 
The system is so easy to use that numerous first-time 
users have reported programming their first chip within 
five minutes of opening the shipping carton. 

Sophisticated functions are also easy to perform on 
the BP-1200. You can program aPLCC part using a DIP 
JEDEC file without changing the software 
configuration. (It will automatically translate 24-pin DIP 
vectors to 28-pin PLCC vectors or vice-versa.) Macros 
can be recorded to eliminate operator errors or to 
automate any sequence of commands, then played back 
interactively or from the DOS command line (allowing 
batch file or make file operation). Special chip 
functions, such as encryption, programmable chip 
enable polarity, etc. can be easily selected using the 
Device/Configure command. 

The optional Advanced Feature Software takes the 
BP-1200 a step beyond competing programmers by 



providing special features for production, QC, and 
engineering. Included is the autohandler interface for 
high-volume programming. Also, users can put serial 
numbers or other information into EPROMs 
automatically. Verify and functional test Vee voltages 
can be set or swept to find device margins. Updates to 
the Advanced Feature Software are available through a 
support contract. 

HARDWARE FEATURES 
The BP-1200's state-of-the-art performance is 

based on solid modular hardware and innovative 
techniques to provide the highest performance. The 
BP-1200 can support up to 240 pin devices by using up 
to 48 analog pin drivers that can generate accurate 
waveforms to program virtually any device, plus 192 
inexpensive digital pin drivers. This unique architecture 
allows us to keep the price of the BP-1200 well below 
the competition. the BP-1200 can be configured with 32, 
40,48,84, 144, or 240 pin drivers, depending on your 
needs. If you need to upgrade in the field, a screwdriver 
is all that is required to install additional pin drivers. 
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Advancing the state of the art, the BP-1200 offers 
the fastest programming times on most devices. 
Programming small EPROMs and PALs in one or two 
seconds may sound like a luxury, but when your designs 
require large FPGAs and memories, you will appreciate 
erasing and programming an 8 MB flash EPROM in 
under two minutes. To achieve this level of 
performance, the BP-1200 uses an 80286 CPU with a 
proprietary hardware accelerator. 

The BP-1200 connects to any PC's standard parallel 
printer port so it is both portable and fast. Users on the 
go may choose to use a notebook computer or just plug 
into any available Pc. Since the programmer is 
controlled directly by your PC, you can load files 
directly from your hard disk or network in seconds, 
eliminating the slow task of downloading your file to the 
programmer before you can program. (To program the 
8Mb EPROM mentioned above, most competing 
programmers require a serial download because a floppy 
will not hold the file. Their download times are at least 3 
minutes at 115 Kbps or 36 minutes at 9600 bps.) Also, 
the programmer utilizes your PC's memory, so you 
won't have to buy expensive RAM upgrades for the 
programmer. 



To help ensure reliable programming and the quick 
diagnosis of problems, the BP-1200 automatically 
performs many test and protection functions. When you 
place a part in the socket, every pin is tested for proper 
continuity. Any pin that is not connected is listed on the 
screen so you can straighten bent pins easily. The 
BP-1200 protects any device in the socket from damage 
caused by a power failure. During operation, each pin 
driver is continuously monitored and calibrated by a 
special supervisory circuit. After programming, both 
verify and test passes are performed at high and low 
Vee to guarantee an operating margin. The built-in self 
test will verify correct operation of the pin drivers, 
power supply, CPU, memory, and communications. 

FUNCTIONAL TEST 
The BP-1200 was carefully designed to enable 

trouble-free test vector operation. Ground bounce, 
which limits many programmers' ability to test 
high-speed parts and achieve high programming yields. 
is carefully controlled on the BP-1200, improving both 
test results and programming yields. Short DUT trace 
lengths, excellent grounds at the socket, and fast rise and 
fall times (1.5ns) allow programming and testing the 
fastest CMOS parts without trouble. Since the device is 
provided with uncompromised operating conditions at 
all times, it is not necessary to have the plethora of 
complicated software switches that competing 
programmers require. 

Testing asynchronous designs and synchronous 
designs with multiple clocks is made possible by 
switching multiple pins simultaneously. Unlike many 
competing programmers, the BP-1200 can apply two 
clocks or an entire test vector simultaneously, 
eliminating a common source of confusion and errors. 

PRODUCTION 
The optional Advanced Feature Software includes 

autohandler interface software, serialization capability, 
supervisor/operator modes, and other features that make 
production programming easy. Even without an 
auto handler, large quantities of devices can be 
programmed efficiently because of the BP-1200's high 
speed and yields. Autohandler interfaces are available 
for Exatron, MeT, and other handlers. Because of its 
small size, the BP-1200 can be attached directly to the 
handler's contactor without a cable or additional 
interface card. Programming yields have proven to be 
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very high, primarily because of the clean signals and 
low ground bounce that this simple interface allows. 

If automating your EPROM programming sounds 
enticing, the BP-1200 is just the programmer you need. 
It can program many EPROMs in a few seconds, 
making it more economical than dedicating an operator 
to a gang programmer. 

The supervisor/operator mode provides a simple 
method to configure the programmer and let an operator 
program or verify parts without the risk of inadvertently 
modifying the data, loading the wrong file, or forgetting 
to configure an option. A supervisor password permits 
full access to the programmer's powerful software at 
any time. 

SUPPORT 
BP Microsystems, the second largest independent 

maker of device programmers in the U.S., provides 
support thatis second to none. We do everything we can 
to keep your cost of ownership as low as possible by 
providing free phone support and free software updates 
and by continuing to support every programmer we have 
ever made. 

You can speak directly to a knowledgeable technician 
at our factory by calling our technical support line 
(toll-free within the U.S., 8 am-6 pm CST). Most 
problems are solved with a single phone call and 
perhaps a free software update. Outside the U.S., BP 
Microsystems' local representatives also provide 
technical support. 

Free software updates are available for the standard 
software through our bulletin board system (BBS), 
allowing you to program most new devices without any 
further investment. The BBS is updated about every six 
weeks for new device releases, and immediately for bug 
fixes. All popular high speed modem standards are 
supported up to 23,000 bps. 

A support contract is also available .. The contract 
provides a loaner unit, available to you overnight, and 
pays for repairs to your programmer. Software updates 
will also be mailed to you monthly, including updates to 
the optional Advanced Feature Software. 

BP Microsystems' commitment to service is 
unparalleled. We still support every programmer we 
have ever made. We even add new devices and software 
features to programmers that were discontinued years 
ago and give away updates to these programmers. We 
know that only a happy customer will be a repeat 
customer. 



SPECI FICATIONS 

SOFTWARE 
File Types: binary, Intel, JEDEC, Motorola, POF, 

straight hex, hex-space, Tekhex, Extended Tekhex, 
and others 

File Size: limited by hard disk 
Test Vectors: limited by hard disk 
Device Commands: blank, check sum, compare, 

options, program, test, verify 
Features: data editor, revision history, session 

logging, on-line help, device and algorithm 
information 

Installation: automatic (just copy the file to your hard 
disk) 

HARDWARE 
CPU: 80286, 16MHz, with proprietary hardware 

accelerator 
RAM: does not limit device or file size 
Calibration: automatic self-calibration 
Diagnostics: pin continuity test, RAM, ROM, CPU, 

pin drivers, power supply, communications, cable, 
calibration, timing, ADC, DAC 

Communications: Centronicx parallel, up to 1Mbps 

PIN DRIVERS 
Analog & Digital: up to 48, located on 6 circuit boards 
Digital: up to 192, located in small chassis on front of 

BP-1200 
Voltage: 0 - 25.00V, 25m V steps 
Current: 0 -lA in 1mA steps 
Slew rate: 0.001 to 2500V/!ls 
Timing: Oils - Ills, ±llls, ±0.01 % 

Clocks: 1MHz to 16MHz, any pin 
Protection: overcurrent shutdown, power failure 

shutdown 
Independence: each analog pin may be set to a 

different voltage 

GENERAL 
Size: 24cm Lx 17.5m D x 12.7cm H; 

9.5" L x 7" D x 5" H 
Mass: 2.7kg; 6lbs 
Power: 90-260VAC, 47-63 Hz, 80 VA, 

lEC inlet connector for worldwide use 
Maintenance: none required 
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COMPUTER 
Operating System: MSDOS or compatible (Windows 

or OS/2 optional) 

Port: parallel printer port (standard, bi-directional, or 
enhanced) 

Memory: 520K available minimum (EMS optional, 
will improve performance on large files) 

Disk: 1.2M or 1.44M floppy, hard disk or network 
recommended 

CPU: 8088 to Pentium 

PROGRAMMING TIMES 
27C64: 1.2s 

27COIOA: 8.8s 

GAL22VIOB: 2.5s (2.8s with 1000 vectors) 

MACH230: 4.8s 

MC68HC811E2: 29s 

Times are somewhat dependent on computer speed. 

STANDARD ACCESSORIES 
software disk including entire device library 

user manual 

power cable 

data cable 

SM48D (48 pin DIP socket module) 

OPTIONS 
Pin Drivers: 32, 40, 48, 84, 144, or 240 

Socket Modules: Universal PLCC, standard PLCC, 
PGA, QFP, SOIC, TSOP, LCC 

Software: Advanced Feature Software 

Support: service contract 

Features and specifications subject to change without notice. 

BP~ 
1000 North Post Oak Road, Suite 225 
Houston, TX 77055-7237 / 
Phone: (713)688-4600 or (800)225-2102 
Fax: (713)688-0920 
Internet: sales@bpmicro.com 



BP-2100 Concurrent Programming System™ 
THE ULTIMATE PARALLEL PROGRAMMER 

The BP-2100 Concurrent Programming System is the ultimate parallel device programmer, capable of concurrently 
programming 4-16 complex devices. Because it is a concurrent programmer, the system starts programming each device 
as soon as the device is inserted. When the last socket is filled, the first device will be complete and the process begins again, 
keeping your operator or autohandler in perpetual motion. The programming electronics are based on our proven BP-1200 
design, so programming is speedy, reliable, and independent on each socket. 

The system supports over 7000 devices including the ability to vector test the latest high pin count FPGAs. Being a true 
universal programmer, you can program virtually any device that fits in the sockets you own. For example, the universal 
PLCC socket supports over 2500 different devices, unlike the expensive family-specific socket rails used by conventional 
parallel programmers. The control software is updated eight times per year to provide you with the latest device support. 

The BP-21 00 has many features to meet the requirements of real-world production facilities. The BP-21 OO's fault tolerant 
architecture allow the system to continue production even if one of the sockets or boards should fail. Depending on your 
needs, the system can be used manually, or automated with an advanced autohandlerllaser marker capable of handling fine 
pitch SMDs tray-to-tray. Design files and job statistics can be stored on a file server to meet your document control and 
SPC requirements. The BP-2100 is the first programmer c~pable of programming hundreds of thousands of fine-pitch 
SMDs, FPGAs, CPLDs, flash memories, and complex microcontrollers month after month. 

• Supports over 7000 devices - many times more than any other parallel programmer 

• Supports DIP, PLCC, QFP, PGA, SOIC, TSOP, LCC, SDIP, PCMCIA, and SIMM devices 

• Over fifty socket configurations available today 

• A single Universal PLCC socket supports over 
2500 devices 

• Full vector test and continuity test up to 240 pins 

• Programs 600+/hour Altera CPLDs, Motorola 
and Microchip microcontrollers, and Intel and 
AMD flash memories 

• LAN connection possible 

• More cost effective than other solutions 

• Can program 200,000 parts/month 

• Fully automated solution available to minimize device handling 

• Manual solution available to minimize investment 

BP MICROSYSTEMS 
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SPECI FICATIONS 
SOFTWARE 
File Types: binary, Intel, JEDEC, Motorola, POP, 

straight hex, hex-space, Tekhex, Extended Tekhex, 
and others 

Device Commands: blank, check sum, compare, 
options, program, test, verify 

Features: data editor, revision history, session 
logging, on-line help, device and algorithm 
information 

HARDWARE 
Included System Controller: 340 MB Hard Drive, 

486 CPU, VGA monitor, keyboard 
Calibration: automatic self-calibration 
Diagnostics: pin continuity test, RAM, ROM, CPU, 

pin drivers, power supply, communications, cable, 
calibration, timing, ADC, DAC 

Memory: up to 264 MB DRAM (really!) 
Pin Controllers: up to 16 80286 CPUs 
Programming Sockets: 4,6,8,12, or 16 
User Interface: 3 LEDs (pass, fail, active) and 

1 start switch per socket 

PIN DRIVERS 
Quantity: 84 or 240 per socket, up to 3840 
Voltage: 0 - 25.00V in 25m V steps 
Current: 0 - lA in ImA steps 
Slew rate: 0.001 to 2500V/j..I.s 
Timing: Ij..l.s - Is, +lj..1.s, +0.01 % 

Clocks: IMHz to 16MHz, any pin 
Protection: overcurrent shutdown, power failure 

shutdown 
Independence: pin drivers and waveform generators 

are fully independent and concurrent on each socket 

GENERAL 
Power: 90-260VAC, 47-63 Hz, 1.2 KVA, 

IEC inlet connector for worldwide use 
Mass: up to 90 lbs. (40 kg) 
Maintenance: replace work sockets as required 

STANDARD ACCESSORIES 
software disk 
user manual 
power cable 
data cable 
48 pin DIP socket module 
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Operator Mode: the software may be configured to 
allow only loading jobs to help eliminate the 
possibility of an inadvertent setup mistake 

Job loading: a user defined job may be chosen from a 
list of user-defined part numbers 

File loading: automatic file type identification; no 
download time because programmer is PC controlled; 
supports Intel, JEDEC, Motorola S-record, POF, 
straight hex, hex-space, Tekhex, and other file 
formats 

Device Selection: intelligent device selector allows 
you to type as little Or as much of the part number as 
you like then choose from a list of devices matching 
your description 

Algorithms: only manufacturer approved or certified 
algorithms are used; BP Microsystems has an 
excellent record of being first to provide certified 
algorithms for new devices. Custom algorithms are 
available at additional costs. 

Algorithm Updates: algorithm changes and algorithm 
updates are available free of charge. Additional 
algorithms available by subscription 

Programming Yield: assured by independent 
universal pin drivers on each socket, short distance 
from pin drivers to device, and accuracy of 
waveforms 

Devices Supported: PROM, EPROM, EEPROM, 
Flash EEPROM, microcontrollers, SPLD, CPLD, 
FPGA 

Test Vectors: supported on PLDs up to 240 pins 

Continuity Test: each pin, including Vee, ground, 
and signal pins, may be tested before every 
programming operation 

Protection: overcurrent shutdown; power failure 
shutdown; ESD protection, reverse insertion, banana 
jack for ESD wrist straps 

Options: Available Socket Modules include Universal 
PLCC, standard PLCC, PGA, SOIC, QFP, TSOP, 
LCC, SDIP, PCMCIA, SIMM. System is upgradeable 
to add additional sockets 

Features and specifications subject to change without notice. 

BP~ 
1000 North Post Oak Road, Suite 225 
Houston, TX 77055-7237 
Phone: (713)688-4600 or (800)225-2102 
Fax: (713)688-0920 
Internet: sales@bpmicro.com 



BP-4100 Automated Programming System 

The First Universal Automated Programming System 
• Tube-to-tube or tray-to-tray operation 

• Programs and marks in a single operation 

• Throughput of up to 1440 devices per hour 

• Programs Flash memories, FPGAs, CPLDs, and microcontrollers 

• Handles PLCC, SOlC, TSOP and fine pitch QFP to 208 pins 

• Leads touched only once during programming and marking 

• Vision centering compensates for component variation 

• Accurate placement virtually eliminates component lead damage 

• Glass encoder scales guarantee accuracy even after millions of cycles 

• Software setup reduces changeover time 

• Very few moving parts for high reliability 

The BP-4100 meets the rigorous demands of real-world programming centers with state-of-the-art performance and field-proven 
technology. The BP-41 00 is the first automated programming system capable of programming fine pitch (20 mil or 0.5 mm) QFP and 
TSOP surface-mount programmable integrated circuits including Flash memories, antifuse FPGAs, CPLDs, and microcontrollers. 
The BP-4100's throughput, accuracy, and flexibility make the system more economical to operate than either conventional 
autohandlers or manual gang programmers. Service, training, and upgrades are available from over twenty field service locations 
worldwide. BP Microsystems stands behind every BP-4100 with unparalleled support. 

BP MICROSYSTEMS 
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SPECI FICATIONS 
PICK AND PLACE SYSTEM 
Maximum Programming Rate: 1440 CPH 
Component Processing Range: 8-pin SOIC to 208-pin QFP 
Placement Accuracy: ±O.0024" (0.06mm) 
Placement Repeatability: ±0.0012" (O.03mm) 
Placement Force: 0-600 grams positional control 
Dimensions: length 42" (106.6cm), width with laser 63" 

(l60.2cm), width without laser 42" (l06.6cm), and height 
with light tower 72" (l82.8cm) 

Shipping Dimensions: length 48" (l22cm), width 48" 
(122cm), and height 69" (175cm) 

Shipping Weight: 1700 lbs. (771 kg) 

POSITIONING SYSTEM 
x-v Drive System: high-performance stepper motor-driven 

precision belt 
X-Y Encoder Type: linear glass scale 
X-V Axis Resolution: 0.0005" (0.OI27mm) 
X-V Axis Repeatability: ±O.OOI" (O.025mm) 
X-V Accuracy: ±O.00I5" (O.038mm) 
X-V Axis Maximum Velocity: 80 in/sec (203.2cmls) 
X Axis Acceleration: 48.3 ftls/s (14.7 mls/s) 
Y Axis Acceleration: 32.2 ftls/s (9.8 mls/s) 
Z Drive System: high-performance stepper motor-driven ball 

spline 
Z Axis Resolution: ±O.OO I" (0.025mm) 
Z Axis Repeatability: ±0.00I5" (O.038mm) 
Theta Drive System: precision stepper motor-driven 

anti-backlash twin gear assembly 
Theta Axis Resolution: 0.015° 
Theta Axis Repeatability: ±O.02° 

VISION SYSTEMS 
On-the-fly Component Centering System: Standard 

LaserAlign 
Type: side illuminated profile measurement 
Field of View: 1.1" 
Minimum Lead Pitch: 0.025" (O.635mm) 

Downward Vision System: Standard Vu3 
Lighting Type: LED array 
Light Level Adjust: automatic software control 

Upward Vision System: Optional Vu6 
Processing Type: ICOS MVS 256 gray level pattern 

recognition system 
Lighting type: LED array 
Light Level Adjust: automatic software control 
Optics Type: Telecentric 
Field of View: IS' (38.1 mm) 
Multiple Field of View: Standard (components larger than 
1.3" [33mmD 

Processing Time Per View; 1-3 seconds typical 
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PROGRAMMING SYSTEM 
Architecture: Concurrent Programming System with 

independent universal programmer at each site 
Devices Supported: PROM, EPROM, EEPROM, flash 

EEPROM, microcontrollers, SPLD, CPLD, FPGA 
Technologies Supported: TTL, CMOS, ECL, BiCMOS, 

Flash, EPROM, EEPROM, fuse, anti-fuse, (including 
FPGAs) 

Included System Controller: 340 MB Hard Drive, 486 CPU, 
VGA monitor, keyboard 

Calibration: automatic self-calibration 
Diagnostics: pin continuity test, RAM, ROM, CPU, pin 

drivers, power supply, communications. cable, calibration, 
timing, ADC, DAC. actuator, leakage current 

Memory: up to 181 MB DRAM (5I2KB to 16.5 MB per site) 
Pin Controllers: one 80286 CPU with hardware accelerator 

per site 
Programming sites: up to 11 
Pin Drivers: 84 or 240 per socket, up to 2640 total 
Independence: pin drivers and waveform generators are fully 

independent and concurrent on each site 
File Type: binary, Intel, JEDEC, Motorola, POF, straight hex, 

hex-space. TEKHEX. Extended Tekhex. and others 
Device Commands: blank check sum, compare, options, 

program, test, verify 
Features: graphic display of job status, 10bMaster control 

software. data editor, revision history, session logging, 
on-line help, device and algorithm information 

BP-4100 Throughput 

Programming Time 

SYSTEM REQUIREMENTS 
Air Pressure: 80 psi (5.56 bars) 
Air Flow: 8.1 SCFM (203 lImin) 
Operational Temperature Range: 55° to 90°F (13°-32°C) 
Relative Humidity: 30 - 90% 
Floor Space: length 60" (152.4cm) and width 75" (190.5cm) 
Input Line Voltage: 100-240 VAC 
Input Line Frequency: 50/60 Hz 
Power Consumption: 2.4 KVA 

Features and specifications subject to change without notice. 

BP~ 
1000 North Post Oak Road, Suite 225 
Houston, TX 77055-7237 
Phone: (713 )688-4600 or (800)225-2102 
Fax: (713)688-0920 
Internet: sales@bpmicro.com 
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BSO/TASKING 

Total Development Solution for 
the Philips 51XA Architecture 

Introduction 
The 51XA software development toolset is the first 
professional and state-of-the-art XA programming package 
available on numerous host platforms. The toolset consists 
of: 

• C compiler (ANSI-C) 

• Assembler and Macro-preprocessor 

• LinkerlLocator with BSOITASKING's unique 
architecture description language 

• CrossView Debugger (Windows and text style) 

The 51 XA Toolset 
The BSOITASKING software development toolset for the 
Philips 51XA provides a complete and cost effective 
solution for programming all variants of the 51XA family of 
microcontrollers. 

The C Compiler 
The XA compiler is designed and build specifically for the 
51XA microcontroller family. this means you get a very 
efficient compiler that takes full advantage of the 
microcontroller's architecture without violating the ANSI 
standard: 

• Bit addressable memory 

• Full ANSI C compiler to ensure early error detection 

• All members ofthe 51XA architecture supported 

• Extensive optimization for very efficient code 

• Easy C51 source migration from 8051 to XA 

• Supports various memory models for optimal code 
generation characteristics 

• Interrupt functions in C 

• Different pointer sizes for better code density and 
higher execution speed 

• In-line assembly 

• IEEE754 single and double precision floating point 
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• C level access to the special function registers 

• Built-in function expansion capability for efficient use 
of certain XA instructions 

• Generates flow-graph information for overlaying 
linker 

• Complete ANSI-C libraries in source and runtime 
libraries tuned for the 51XA 

The CrossView Debugger 
Cross View is our high level language debugger designed to 
deliver functionality that will reduce the time spent testing 
and debugging. It combines the flexibility of the C language 
with the control of code execution found in assembly 
language debugging. Cross View brings the full power of 
Microsoft and X Windows to the debugging environment by 
displaying and updating the most critical execution data in 
an organized way. 

Simulator 
The simulator environment allows you to test, debug and 
monitor the performance of code in a known and repeatable 
environment independent of target hardware. All Cross View 
features are available to you, so you can test code before 
target hardware is available. 

Migration from 8051 to XA 
One of the key features of the toolset is easy migration from 
8051 to XA. Migration features of the BSOITASKING 
toolset include: 

• Most 8051 specific features are supported 

• Tested with8051 and XA test suites 

• Extensive migration guidelines in documentation 

• Special utility to convert existing BSO/TASKING 
LINK51 control files 

• Compatibility mode supported in Assembler 



Cooperation with 3rd Parties 
Working with other suppliers of products for the 51XA 
gives us the opportunity to improve the tools that we 
deliver. We cooperate with different hardware 
manufacturers for Emulators and evaluation boards, and 
with software manufacturers for Real Time Kernels, Device 
Drivers and Code Generation tools. Our extensive 
cooperation ensures you have access to the tools you need 
to be most productive. 

Availability 
the 51XA development tools will be available on: 

PC SUN SPARC 
HP9000 DEC Alpha 

The Programming Environment EDETM 
EDE BSOffASKING's Embedded Development 
Environment is a package of program building, editing, 
code generation and debugging tools that provides: 

• Accessible push-button control over a variety of 
development tasks spread over many tools 

• Tight integration of tools enabling a rapid 
edit-compile-debug process that leads to higher 
productivity by automating repetitive tasks. 

To achieve all this, we have 
integrated Codewright™ 
from Premia®, in EDE. 
Code wright is the leading 
professional editor and 
blends a command shell 
with powerful productivity 

tools and MS-Windows™ resources. EDE also includes the 
following components: 

• C Interface Generator 

• Make 

• Librarian 

• Object code report writer 

• Cross reference report writer 

• Formatters 

• Converters 

Code wright is more than a language sensitive editor, it is a 
complete environment which gives you direct access to the 
tools and features you need to be your most productive. 
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Code wright lets you 
define project 
environments with a set 
of commands (compile, 
assemble, make, debug, 
etc.) for each type of file or project; so the files associated 
with your 51XA project will automatically use the 
BSOffASKING tools (compiler, assembler, make, 
debugger, etc.). Codewright understands the error messages 
generated by the compiler and assembler, and shows you 
where the errors are, so you can fix them quickly. 
Interfacing to Version Control is easy. Codewright has an 
interface for checking in your changes, checking out a file 
for review or locking a revision you plan to change. You can 
use the default commands, specify your own, or use the 
interface to PVCS® we provide. 

Customer Support 
Purchasing BSOffASKING products marks the beginning 
of a long term relationship. We are dedicated to providing 
quality products and support worldwide. This support 
includes program quality control, product update service 
and support personnel to answer questions by telephone, fax 
or email. A 90 day maintenance plan is included with the 
purchase of BSO/TASKING products and entitles the 
customer to enhancements and improvements as well as 
individual response to problems. Annual maintenance 
contracts are available at the end of the 90 day maintenance 
plan. This extremely valuable service, in return for a small 
annual fee, provides the user with all program 
enhancements released during the period of the program 
maintenance agreement, and assures response to all problem 
reports submitted by the user. 

You can reach us on CompuServe: GO TASKING 
or contact us at: 
BSOffASKING US 
TASKING Netherlands 
TASKING Germany 
TASKING Italy 
Nihon TASKING Japan 
BSOffASKING UK 

1 800 458 8276 
+31 334558584 
+49 7152 22090 
+ 39 2 6698 2207 
+81 353890721 
+44 1252510014 

Products listed are the trademarks of their respective holders. 
BSOfTASKING retains the right to make changes to the specification at any time without 
notice. Contact your local sales office to obtain the latest information. 
BSOfTASKING assumes no responsibility for any errors which may appear in this 
document. 
© 1996. TASKING Software BV January 30,1996 



In-Circuit Emulator for Philips XA Microcontrollers 

FEATURES 

• Real-Time and Transparent In-Circuit Emulator • Hardware and Conditional Breakpoints 

• 3.3V and 5V Microcontroller Emulation • Source Level Debugger for Assembler and C 

• Maximum Frequency of 30MHz • On-line Assembler and Disassembler 

• 32K to 1 M of Internal Memory • MS-Windows Debugger 

• 32K to 128K Trace Memory and Logic Analyzer • Serially linked to IBM PC at 115 KBaud 
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CEIBO DS-XA In-Circuit Emulator 

DESCRIPTION 

Ceibo DS-XA is a real-time in-circuit emulator dedicated to the Philips XA family of microcontrollers. It is 
serially linked to a PC or compatible host at 115 KBaud and carries out a transparent emulation on the 
target microcontroller. DS-XA supports the low-voltage and 5 Volt XA derivatives. The emulator uses 
Philips' bond-out emulation technology. Its software includes Source Level Debugger for Assembler and 
C, Performance Analyzer, On-line Assembler and Disassembler, Conditional Breakpoints, a Software 
Simulator and many other features. The Debugger runs under MS-Windows and supports full C and 
Assembler expression evaluation. DS-XA accepts files generated by Ceibo PantaSoft C-Compiler and 
Assembler and other available compilers with IEEE-695 format. From your Assembler or C Source Code 
Screen you can run the program in real-time, specify a breakpoint, redefine the Program Counter, 
execute a line step or an assembly instruction, open a watch window to display variables, display the 
trace memory, registers and data. The number of windows that may be displayed is not limited. Systems 
are supplied with 32K to 1 MBytes of Internal Memory with mapping capabilities, Hardware Breakpoints, 
32K to 128K Real-Time Trace Memory and Logic Analyzer with external test points, and Personality 
Probe for P51 XAG3 microcontrollers. DS-XA emulates every XA derivative in the complete voltage and 
frequency range specified by the microcontroller. The minimum frequency is determined by the emulated 
chip characteristics, while maximum frequency is up to 30M Hz. 

SPECIFICATIONS 

Emulation Memory 
DS-XA provides 32 KBytes to 1 MByte of internal memory with software mapping capabilities. 

Hardware Breakpoints 
Breakpoints allow real-time program execution until an opcode is executed at a specified address. 
Breakpoints on data read or write and an AND/OR combination of two external signals are also 
implemented. 

Conditional Breakpoints 
A complete set of conditional breakpoints permit halting program emulation on code addresses, source 
code lines, access to external and on-chip memory, port and register contents. 

Software Analyzer 
A 64 KByte buffer is used to record any software and hardware events of your program, such as 
executed code, memory accesses, port and internal register states, external or on-Chip data memory 
contents and more. 

Languages and File Formats 
DS-XA accepts files with IEEE-695 and Intel Hex format. Assemblers and high-level languages such as 
Ceibo PantaSoft ASM-XA and C-XA are fully supported. 
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CEIBO DS-XA In-Circuit Emulator 

Source Level Debugger 
Ceibo Debug-XA Windows Debugger is a complete Source Level Debugger that includes commands 
which allow the user to get all the information necessary for testing the programs and hardware in 
real-time. The commands permit setting breakpoints on high-level language lines, adding a watch 
window with the symbols and variables of interest, modifying variables, displaying floating point values, 
showing the trace buffer, executing assembly steps and many more useful functions. 

Personality Probes 
DS-XAuses Philips' bond-out microcontrollers for hardware and software emulation. The selection of a 
different XA derivative is made by replacing the probe or changing the software'setup. The Personality 
Probes run at the frequency of the crystal on them or from the clock source supplied by the user 
hardware. Therefore, the same probe may be adapted to your frequency requirements. The minimum 
and maximum frequencies are determined by the emulated chip characteristics, while the emulator 
maximum frequency is 30MHz. 

Trace and Logic Analyzer 
The 32 KByte to 128 KByte Trace Memory is used to record the microprocessor activities. Eight lines are 
user selectable test points. Trigger inputs and conditions are available for starting and stopping the trace 
recording. The trace buffer can be viewed in disassembled instructions or high level language lines 
embedded with the related instructions. 

Performance Analyzer 
This useful function checks the trace buffer and provides time statistics on modules and procedures as a 
percentage of the total execution time. 

Host Characteristics 
IBM PC or compatible systems with 2 MBytes of RAM and one RS-232 Port. 

Input Power 
SVDC/1.SA. 

Mechanical Dimensions 
26mm x 151mm x 195mm (1" x 6" x 7"). 

Items Supplied as Standard 
In-Circuit Emulator with 32 KBytes of Internal Memory. Personality Probe for P51 XAG3. 32 KByte Trace 
Memory. Ceibo Debug-XA for Windows. User's Manual. RS-232 cable. Power Supply. 

Options 
1 MByte of Internal Memory. 128K Trace Memory. Personality Probes and adapters for different 
microcontrollers and packages. 
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CEIBO DS-XA In-Circuit Emulator 

WARRANTY 

TWO-YEAR WARRANTY ON ALL CEIBO PRODUCTS. 

ADDRESSES 

For more information, contact us today: 
Toll free: (U.S.A. and Canada) 1-800-833-4084 
Email: 100274.2131@compuserve.com 
Compuserve: 100274,2131 
Internet: ceibo@trendline.co.il 

CEIBO USA CEIBO DEUTSCHLAND CEIBO ISRAEL 
TEL: 314-830-4084 
FAX: 314-830-4083 
7 Edgestone Court 
Florissant, MO 63033 

Brazil 
Tel: 453-5588 
Fax: 441-5563 

Belgium 
Tel: 32-3-2327295 
Fax: 32-3-2324116 

Colombia 
Tel: 345-8713 
Fax: 57-1-3458712 

Denmark 
Tel: 45-44-538444 
Fax: 45-44-539444 

France 
Tel: 1-30660136 
Fax: 1-34820039 

Holland 
Tel: 05357-33333 
Fax: 05357-33240 

TEL: 06155-61005 
FAX: 06155-61009 
Hausweg 1a 
0-64347 Griesheim 

India 

Italy 

Tel: 91-80-3323029 
Fax: 91-80-3325615 

Tel: 051-727252 
Fax: 051-727151 

Korea 
Tel: 822-783-8655 
Fax: 822-783-8653 

Norway 
Tel: 053-763000 
Fax: 053-765339 

Poland 
Tel: 022-7556983 
Fax: 022-7555878 

Singapore 
Tel: 65-7446873 
Fax: 65-7445971 

TEL: 972-9-555387 
FAX: 972-9-553297 
32 Maskit St. 
46120 Herzelia 

Spain 
Tel: 91-5477006 
Fax: 91-5478226 

South Africa 
Tel: 27-11-8877879 
Fax: 27-11-8872051 

Sweden 
Tel: 0589-19250 
Fax: 0589-16153 

Taiwan 
Tel: 886-2-9160977 
Fax: 886-2-9126641 

Thailand 
Tel: 662-472-1976 
Fax: 662-466-5227 

United Kingdom 
Tel: 01332-332651 
Fax: 01332-360922 

Ordering Information 

Part No.: Call (800) 833-4084 

Product and Company names are trademarks of their respective organizations. 
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Software Tools for Philips XA Microcontrollers 

FEATURES 

• ANSI Standard C Cross Compiler • Extended Keywords Specific to the XA 

• XA Macro Assembler • Full Floating Point Support 

• XA Lauker and Locator • Direct C Interrupt Handling 

• C Source-Level-Simulator/Debugger • Built-In C and Assembler Optimizer 

• Full MS-Windows Interface • Direct Interface to In-Circuit Emulator 
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II 

CEIBO XA Software Tools 

PANTASOFT C-XA - COMPILER 

C-XA is an ANSI C compiler with extensions designed to support XA special features. The compiler is 
compatible with other ANSI C compilers. C-XA Compiler is designed to make the code faster and more 
compact by using the special chip features. C-XA can support multi-tasking programs. 

C-XA special features permit the user direct access from C source to the XA chip. The features also 
include direct access to the interrupt mechanism, as well as access to the XA SFRs as variables. 

C-XA supports 9 different data types including floating point variables, and bit variables. The C compiler 
comes with a variety of the most frequently used C Library functions associated with embedded systems. 
Some of the low-level functions, like those which handle I/O, are provided with source code. The 
Compiler may be used with in-line assembler instructions for direct access to XA resources. A six-level 
optimizer is also available to achieve the best results. 
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CEIBO XA Software Tools 

PANTASOFT ASM-XA MACRO ASSEMBLER 

The ASM-XA Macro Assembler translates an XA Macro Assembly Language program into relocatable 
object code. The Macro Assembler includes commands and directives specially designed to fit the XA 
architecture. 

ASM-XA processes the input file and executes macro definitions, assembly directives and commands. 
The Macro Assembler provides the user with a spectrum of options ranging from test repetition to 
conditional assembly. 

The object code generated by the Assembler includes information about the symbols and lines used in 
the source file. It has been specially designed to facilitate easy translation of code from the 8051 
Assembler. ASM-XA is integrated into a modern graphic interface, which paves the way to invoke tasks 
desired for a complete development environment. 

688 



CEIBO XA Software Tools 

PANTASOFT LlNK-XA LINKER 

UNK-XA Linker supports complete linkage, relocation and format generation for producing absolute 
object code. UNK-XA accesses only the requested modules in the library and combines them in the 
absolute object code. The PUS Librarian utility maintains the libraries. 

The Linker can combine object files created by the C-XA Compiler and ASM-XA Macro Assembler into 
one absolute file, as well as find the necessary objects from libraries created by the PUS Librarian. 

UNK-XA can create the absolute file in several output formats, including Intel HEX and IEEE-695. 

The Linker generates a detailed map file including information about the location of segments and 
symbols. 
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CEIBO XA Software Tools 

DEBUG-XA DEBUGGER 

DEBUG-XA is a Source-Level Debugger/Simulator for the XA architecture. The program enables fast and 
reliable debugging at source-level for C-XA and ASM-XA. 

The Simulator/Debugger for the C-XA compiler is fully source-level and controls the program flow in HLL 
or Assembler. The debugger operates with or without an in-circuit emulator. The user can inspect 
variables using the watch window and set breakpoints in the source code. 

DEBUG-XA also includes an on-line assembler which the user can invoke to change the executable code 
during the debugging session. 

DEBUG-XA is wholly based on a Windows platform, so it may be used in a multi-tasking and 
multi-window application. 
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CEIBO XA Software Tools 

CUSTOMER SUPPORT 

A two-year maintenance plan is included with the purchase of Ceibo XA software products and entitles 
the customer to enhancements and improvements as well as individual response to problems. 

ADDRESSES 
For more information, contact us today: 
Toll free: (U.S.A. and Canada) 1-800-833-4084 
Email: 100274.2131@compuserve.com 
Compuserve: 100274,2131 
Internet: ceibo@trendline.co.il 

CEIBO USA CEIBO DEUTSCHLAND CEIBO ISRAEL 
TEL: 314-830-4084 
FAX: 314-830-4083 
7 Edgestone Court 
Florissant, MO 63033 

Brazil 
Tel: 453-5588 
Fax: 441-5563 

Belgium 
Tel: 32-3-2327295 
Fax: 32-3-2324116 

Colombia 
Tel: 345-8713 
Fax: 57-1-3458712 

Denmark 
Tel: 45-44-538444 
Fax: 45-44-539444 

France 
Tel: 1-30660136 
Fax: 1-34820039 

Holland 
Tel: 05357-33333 
Fax: 05357-33240 

TEL: 06155-61005 
FAX: 06155-61009 
Hausweg 1a 
D-64347 Griesheim 

India 

Italy 

Tel: 91-80-3323029 
Fax: 91-80-3325615 

Tel: 051-727252 
Fax: 051-727151 

Korea 
Tel: 822-783-8655 
Fax: 822-783-8653 

Norway 
Tel: 053-763000 
Fax: 053-765339 

Poland 
Tel: 022-7556983 
Fax: 022-7555878 

Singapore 
Tel: 65-7446873 
Fax: 65-7445971 

TEL: 972-9-555387 
FAX: 972-9-553297 
32 Maskit St. 
46120 Herzelia 

Spain 
Tel: 91-5477006 
Fax: 91-5478226 

South Africa 
Tel: 27-11-8877879 
Fax: 27-11-8872051 

Sweden 
Tel: 0589-19250 
Fax: 0589-16153 

Taiwan 
Tel: 886-2-9160977 
Fax: 886-2-9126641 

Thailand 
Tel: 662-472-1976 
Fax: 662-466-5227 

United Kingdom 
Tel: 01332-332651 
Fax: 01332-360922 

Ordering Information 

Part No.: Call (800) 833-4084 

Product and Company names are trademarks of their respective organizations. 
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CMX COMPANY 

CMX-RTXTM, CMX-TINY+TM, CMX-TINyTM 

Real-Time Multi-Tasking 
Operating System for 
Microprocessors and 
Microcomputers 

• No royalties on embedded code 

• All source code supplied 

• Extremely fast context switch times 

• Very low interrupt latency times 

• Several "C" vendors supported 

• Scheduler and interrupt handler written in 
assembly for speed and optimization 

• All CMX functions contained in library 

• User configurable 

• Task management 

• Event management 

• Timer management 

• Message management 

• Circular queue management 

• Resource management 

• Fixed block memory management 

• Specialized U ART management 

• Automatic power down management 

• Full pre-emption and ability to also have 
cooperative and time slice scheduling 

CMX is also a distributor of C compilers for 
many microcomputers and microprocessors. 

CMX 
COMPANY 
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.1." 

Most 
8/16/32 bit 

Embedded 
Microcomputers 

and Microprocessors 
Supported 

Product Information 
The CMX-RTXTM Real-time multi-tasking operating 

system is a ''full featured" powerful kernel, which provides 
the user with a rich set of functions. Over 65 functions are 
available to the user. CMX allows nested interrupts, with the 
ability of interrupts to use many of the CMX functions. True 
pre-emptive scheduling is provided. Both the ROM and RAM 
sizes needed by the CMX-RTX RTOS are very small. Join 
companies using CMX such as HP, Xerox, Ford Motor Co., 
AT&T, Kenwood Corp., Optimay, Temic Telefunken, Philips, 
Ericsson and many more, to see how CMX can enhance 
your embedded design. 

The CMXBug™ debugger, which is included for FREE 
with CMX-RTX, provides the user the ability to view and 
modify different aspects of the CMX multi-tasking operating 
system environment, while the user's application code is 
running. 

CMXTracker™ add on module for CMX-RTX allows 
the user the ability to log chronologically in real-time, the 
tasks' execution flow, capturing when a task is executing, 
the CMX functions called and their parameters, interrupts 
using CMX functions and the CMX system TICK within the 
CMX-RTX environment, while the user's application code is 
running. 

Contact Information 
CMXCompany 
5 Grant st. Ste. C 
Framingham, MA 01701 
Tel: (508) 872-7675 
Fax: (508) 620-6828 
E-mail: cmx@cmx.com 
WWW: http://www.cmx.com 



CMX 
COMPANY 

5 Grant Street. Suite C • Framingham, MA 01701 USA 
Phone: (508) 872-7675 • Fax: (508) 620-6828 • Email: cmx@cmx.com 

The CMX-TINy+TM RTOS Kernel 

The CMX-TINY + Real-Time Multi-Tasking Operating System is a "Tiny Plus" kernel for those processors that have 
a fair amount of RAM, embedded on the processor's silicon (approximately 648 bytes and up). This allows the user 
to develop their application code and have it run under a RTOS, using just the RAM that the processor provides. The 
CMX-TINY + does NOT need any external RAM, regardless of whether the processor can support the use of external 
RAM or not. The code size of the CMX-TINY + is also very small, thus allowing the processor's on-board ROM, to 
support both the user application code and the CMX-TINY + code in most cases. This kernel, based on a scaled down 
CMX CMX-RTXTM, retains the most frequently used functions and associated functionality. The CMX-TINY + will 
become available to most processors that have this type of architecture. True preemptive scheduling is provided, with 
cooperative scheduling also available, if needed. 

TASK MANAGEMENT 

*' Create a task. 

*' Start a task. 

*' Wake a task. 

*' Remove a task. 

*' End a task. 

*' Change a task's priority. 

*' Remove a task and create a new task. 

*' Remove a task, create and start a new task. 

*' Suspend a task, with time out provision. 

*' Terminate a task early. 

*' Do a cooperative scheduling. 

*' Raise the privilege. 

*- Lower the privilege. 

EVENT MANAGEMENT 

* Set an event. 

* Reset an event. 

* Task may wait for event, with time our provision. 

RESOURCE MANAGEMENT 

*' Task may get a resource. 

*' Task may release a resource. 

CMX-TINY + Functions 

TIMER MANAGEMENT 

*' Create a cyclic timer. 

*' Start a cyclic timer. 

*' Stop a cyclic timer. 

*' Restart a cyclic timer. 

*' Change a cyclic timer event parameters. 

*' Restart a cyclic timer, with new initial time period. 

* Restart a cyclic timer, with new cyclic time period. 

MESSAGE MANAGEMENT 

*' Task may get a message. 
*' Task may send a message, with time out provision. 

*' Task may wait for message, with time out provision. 

*' Change a mailbox event parameters. 

SYSTEM MANAGEMENT 

*' Initialize CMX. 

* EnterCMX. 

*' Enter CMX interrupt handler. 

*' Exit CMX interrupt handler. 

* Enable interrupts. 

* Disable interrupts. 

*' Automatic low power mode. 
*' Task may reserve a resource, with timeout provision. 

Very fast CONTEXT SWITCH times and Low ROMIRAM requirements. 
All SOURCE CODE supplied and NO ROYALTIES. 

Call or fax, for pricing, supported processors and with any questions that you may have. CMX will be constantly adding new processors and 
"c" vendors that the CMX -TINY + RTOS will support. Please let us know what processor you may be working with, that would benefit from 
the use of the true preemptive CMX-TINY + RTOS. 

3/15/95 - Content subject to change without notice. 
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CMX 
COMPANY 

5 Grant Street. Suite C • Framingham, MA 01701 USA 
Phone: (508) 872·7675 • Fax: (508) 620-6828 • Email: cmx@cmx.com 

CMX PCProto-RTXTM 

The CMX PCProto-RTXTM Real-Time Multi-Tasking Operating Systemis basically the CMX·RTXTM RTOS ported 
specifically to work with the PC and its environment. This allows any 80x86 based PC to be used as a development 
platform, regardless of their target processor. 

PCProto·RTX allows the user to write, develop and test 
their application code using the sophisticated and 
enhanced tools that are available for the PC, such as the 
tools offered by Borland and Microsoft. Because many 
programmers are familiar with and have used the PC, 
this allows them to get their application code up and 
running faster than possibly working with the target 
cross compiler and processor. Also, the enhanced 
capabilities that the PC tools provide are usmi.lly better 
than the tools tha,t are available for the target processor. 

All features that are supplied with 'CMX·RTX are included within the PCProto·RTX. The functions allow the user 
to control task scheduling, task management, timer management, event management, message management, memory 
management, resource and semaphore management, queue management, system management and DART 
management. 

CMX allows nested interrupts, with the ability of an interrupts to use some of the CMX functions. True preemptive 
scheduling is provided, with cooperative scheduling and timeslicing available, if needed. Both tasks and interrupts, 
can cause a context switch, thus allowing a higher priority task that is able to run, to immediately become the running 
task. 

All source code is included. Call, Fax, or Email us with any additional questions that you may have. 

3/15/95 - Content subject to change without notice. 
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CMX 
COMPANY 

5 Grant Street. Suite C • Framingham, MA 01701 USA 
Phone: (508) 872-7675 • Fax: (508) 620-6828 • Email: cmx@cmx.com 

The CMXTracker™ 

The CMX CMXTracker™ provides the user the ability to log chronologically in real-time, the tasks' execution flow, 
capturing when a task is executing, the CMX functions called and their parameters, interrupts using CMX functions 
and the CMX system TICK within the CMX-RTXTM real-time multitasking operating system environment, while the 
user's application code is running. Displaying of the log is performed by CMXTracker, which runs as a task, usually 
being the highest priority task. In most cases, one of the target processor UART channel(s) is used as the input/output 
device. A simple terminal or CPU with a keyboard is all that is required to use CMXTracker. 

When the user enables the CMXTracker task, it will send a menu to the screen. The user may then select one of many 
prompts, allowing the user to view the chronologically ordered log, reset the log, resume running of application code 
and possibly change some aspects of the log, such as "autowake" CMXTracker after a certain number of entries. When 
the CMXTracker task is running, it prohibits other tasks from running, stopping the task timers and cyclic timers and 
also disables interrupts from calling the CMX functions, so as the application code will "freeze" within the CMX RTOS 
environment. 

CMXTracker allows the user to view the log at the 
beginning or end, paging down or up, viewing the 
exact execution of the tasks. Also what CMX 
functions were called with their parameters and 
results returned (such as the message sent or recei ved, 
event bits set, timed out, etc.) and interrupts, with the 
CMX system TICK being a "timeline" stamp. 

CMXTracker allows the user to "single step" one 
system TICK, thus allowing normal activity to occur 
for one system TICK, with CMXTracker resuming 
after this "single step". The user can also set the 
desired number of system TICKS that CMXTracker 
will wait, allowing normal activity, before it ag'ain 
resumes. This is a very powerful and helpful feature. 

CMXTracker is now available for use with the CMX CMX-RTXTM package, for most processors and vendors that 
CMX supports. All source code is included. 

Call, Fax, or Email us with any additional questions that you may have. 

3/15/95 - Content subject to change without notice. 
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CMX 
COMPANY 

5 Grant Street. SuiteC • Framingham, MA 01701 USA 
Phone: (508) 872-7675. Fax: (508) 620-6828. Email: cmx@cmx.com 

The CMXBug ™ Debugger 

The CMX CMXBug™ debugger provides the user the ability to view and modify different aspects of the CMX 
multi-tasking operating system environment, while the user's application code is running. CMXBug runs as a task, 
usually being the highest priority task. In most cases, one of the target processor UART channel(s) is used as the 
input/output device. A simple terminal or CPU with a keyboard is all that is needed to use CMXBug. 

When the user enables the CMXBus task, it will send a 
menu to the screen. The user may then select one of 
many prompts,allowing the user to view and possibly 
change many aspects of the CMX OS environment. 
When the. CMXBug task is running, it prohibits other 
tasks from running and also freezes the task timers and 
cyclic timers, so as the user will get an accurate picture 
of the "current state" of the CMX OS environment. 

CMXBug allows the user to "single step" one system 
TICK, thus allowing normal activity to occur for one 
system TICK, with CMXBug resuming after this 
"single step". Also the user can set the number of system 
TICKS that CMXBug will wait, allowing normal 
activity, before it again resumes. This is a very powerful 
and helpful feature. 

CMXBug allows the user access to most of the CMX OS features, such as: Tasks, Cyclic timers, Resources, Mailboxes, 
Queues, Stacks, the system TICK and TIMES LICE scales, etc. For example, you may view a task, which shows its 
ciIrrent state (ready, waiting on what, the time remaining, etc.), its current priority, its starting address, the events 
associated with the task, the task's stack address and maximum usage, etc. Also, you may start a task, wake a task that 
was waiting on some entity, stop a task, etc. 

CMXBug also allows the user information pertaining to each task percentage of RUNNING time, to the total. This 
enables the user to obtain an accurate picture of each task, in relation to all tasks. It also shows the amount of time, 
that the processor is "IDLE" with no task running. This allows the user a very powerful insight as to how the processor 
time is being spent. 

CMXBug is now available for FREE, with the CMX CMX-RTXTM package, for most processors/vendors that CMX 
supports. All source code is included. . 

Call, Fax, or Email us with any additional questions that you may have. 

~/l5/95 - Content subject to chooge without notice. 
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ProMaster 2500 
Automated Handling 
System 

• Programs, tests, labels, and sorts in a 
single-pass, tube-to-tube operation 

• Pick-and-place device transport 
protects SMT and other devices against 
physical damage 

• Changeovers from one package style to 
another can be done in two minutes or 
less- no tools or special skills are 
required 

• Fully grounded device-contact surfaces 
guard against ESD damage 

• Entire system is approved by 
semiconductor manufacturers to ensure 
highest programming yields and 
reliability 

• Pin electronics, based on industry­
standard Data 1/0 programmers, ensure 
optimum signal fidelity and superior 
yields 

Contact Information 
Data I/O Corporation 
10525 Willows Road N.E. 
P.O. Box 97046 
Redmond, WA 98073-9746 
Tel: (800) 332-8246 
Tel: (206) 881-6444 
Fax: (206) 869-7423 
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DATA 1/0 CORPORATION 

ProMaster 2500 

Product Information 
Data I/O@'s ProMaster@ 2500 is a fully integrated, 

automated system for handling, programming, testing, 
sorting, and labeling programmable devices. 

Providing universal support for devices in DIP 
packages up to 32 pins, PLCC packages up to 84 pins, and 
300-through 525-mil SOIC packages with 14-44 pins, the 
ProMaster 2500 programs, labels, and sorts as many as 550 
devices per hour. Its state-of-the-art pick-and-place handling 
technology minimizes damage to delicate surface-mount 
devices for safe, high-yield SMT production. Automated 
tube-to-tube processing also eliminates human error and 
device damage, and minimizes any electrostatic (ESD) 
damage caused by human handling. 

From input to output, the ProM aster 2500 is designed 
for flexibility. The pick-and-place head rotates devices, so 
programming and labeling proceed without interruption 
regardless of device orientation in the tubes. A high-density: 
dot matrix printer quickly prints and applies device labels, 
available in a wide variety of materials and sizes, in one swift 
and precise operation. Quick and easy changeovers 
dramatically reduce downtime and also enhance flexibility for 
just-In-time manufacturing. 

Data I/O offers a complete line of programmer 
products for programmable ICs, including the UniSite™ and 
3900 programming systems, the PSXTM Parallel Gang/Set 
programming systems, and the ProMaster Automated 
Handling Systems. 



EDI Corporation Modular R&D Interconnect System™ 

Accessories for 8051-Architecture Devices 

Device App1 Description Basic Adapter P/N2 

8031AH, 8052AH, 80C32, 8051AH, E 40-DIP to 44-PLCC 40D/44PL-8051 
8XC51 FA, 8XC51FB, 8XC51FC, 

E 40-DIP to 44-QFP, 2-piece surface mount 40D/44QF31-TOP-8051 with 44QF31-SD 80C52, 87C52, 8XC504, 8XC524, 
8XC575, 8XC576, 8XC652, 8XC654, E 44-PGA to 44-QFP, 2-piece surface mount 44PG/44QF31-TOP with 44QF31-SD 
& 80C851 

E 44-PLCC to 44-QFP, 2-piece surface mount 44PU44QF31-TOP with 44QF31-SD 

80C39, 80C49, 8XC54. 8XC528, E 44-PGA to 44-PLCC 44PG/44PL 
8XC852, 8XCL41 0 

E 40-DIP to 44-PLCC 40D/44PL-8051 

E 44-PGA to 44-PLCC 44PG/44PL 

80C51XA E 40-DIP to 44-PLCC 44PGl44PL 

83C055 & 87C055 E 40-DIP to 42-Shrink DIP 40D/42SD6-83C055 

8XC552, 8XC562 & 8XC592 E 68-PGA to 80-QFP, 2-piece surface mount 68PG/80QFR31-TOP-8XC552 

E 68-PLCC to 80-QFP, 2-piece surface mount 68PU80QFR31-TOP-8XC552 

83C751 E 24-DIP to 28-PLCC 24D3/28PL-751 

83C752 & 87C752 E 28-PGA to 28-PLCC 28PG/PL 

8XCE654 E 40-DIP to 44-QFP, 2-piece surface mount 40D/44QF31-TOP-8051 with 44QF31-SD 

E 44PGA to 44-QFP, 2-piece surface mount 44PG/44QF31-TOP with 44QF31-SD 

E 44-PLCC to 44-QFP, 2-piece surface mount 44PU44QF31-TOP with 44QF31-SD 

80CL31/51 E 40-DIP to 44-QFP, 2 piece surface mount 40D/44QF31-TOP-8051 with 44QF31-SD 

E 44-PGA to 44-QFP. 2 piece surface mount 44PG/44QF31-TOP with 44QF31-SD 

E 44-PLCC to 44-QFP, 2-piece surface mount 44PU44QF31-TOP with 44QF31-SD 

E 40-DIP to 40-VSOP, 2 piece surface mount 40DNS30-TOP with 40VS30-SD 

P83CL 167/168, P83CL267/268 E 64-DIP to 64-Shrink DIP, with solder tail pins 64D9/SD7-S 

E 64-Shrink DIP to 64-QFP, 2-piece surface mount 64SD7/QF39-TOP-83CL 167 with 
64QF39-SD 

E 68-PGA to 64-QFP, 2-piece surface mount 68PG/64QF39-TOP-83CL 167 with 
64-QF39-SD 

E 68-PLCC to 64-QFP, 2-piece surface mount 68PU64QF39-TOP-83CL 167 with 
64QF39-SD 

83CL580 E 68-PGA to 64~QFP, 2~piece surface mount 68PG/64QF39-TOP-83CL580 with 
64QF39-SD 

E 68-PLCC to 64-QFP, 2-piece surface mount 68PU64QF39-TOP-83CL580 with 
64QF39-SD 

E 68-PGA to 56-VSOP, 2-piece surface mount 68PG/56VS _-TOP-83CL580 

E 68-PLCC to 56-VSOP, 2-piece surface mount 68PU56VS _-TOP-83CL580 

8XL51FAlFB E 40-DIP to 44-LCC, 2-piece surface mount 40D/44LC-TOP-8051 

E 40-DIP to 44-QFP, 2-piece surface mount 40D/44QF31-TOP-8051 with 44QF31-SD 

E 44-PGA to 44-QFP, 2-piece surface mount 44PG/44QF31-TOP with 44QF31-SD 

E 44-PLCC to 44-QFP, 2-piece surface mount 44PU44QF31-TOP with 44QF31-SD 

85CL001 E 84-PGA to 84-PLCC 84PG/PL 

Notes: 
1. Applications: E = emulators, U = upgrade. 
2. Programming adapters for 8051 architecture devices can be found in the programming accessory section of the EDI catalog. 

Adapters are available with monitoring posts for logic analyzers. 

• ED! Corp. • 2611 Highland Drive. Las Vegas, NV 89109. Tel:7021735-4997. Fax: 7021735-8339. 
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3 DIFFERENT CONFIGURATIONS 

An RTXC license is not expensive. Different applications need different levels of 
kernel services. RTXC, the Real Time eXecutive in C takes that into 
consideration by offering three different, but compatible, configurations at three 
different, yet affordable, prices. The Basic Library, RTXC/BL, contains 36 kernel 
services. Our Advanced Library, RTXC/AL, is a power packed bargain with 55 
kernel services. And finally, there is RTXC/EL, the Extended Library, which 
contains all 72 services. 

What if the RTXC library has more services than your application uses? You 
can easily configure RTXC to contain only those kernel services needed by your 
application. You keep the kernel lean and save memory space that may be used 
for your application code. 

You may decide after licensing a Basic or Advanced Library that you want to use 
the additional services offered by a Library with more services. Don't think 
you're stranded. We offer our customers a liberal upgrade policy that protects 
your software investment. Simply pay the difference between the two license 
fees plus a small upgrade charge and you have all the power of the new library 
available for your application. 

The API is the same across all ports and bindings, so devote your team's time to 
code development on your application by using the standard for real-time 
kernels, RTXC. See how easy it is to make the transition to RTXC with its short 
learning curve and ease of use. You'll see how to reduce programming time, 
increase reliability and performance, and get to the market faster. That's the 
heart of the matter. 

To get more information on RTXC, RTXCio, or RTXCfile just take a minute to 
call or fax us today. 

10450 Stancliff, Suite 110 Houston, Texas 77099-4383 Phone: 713/561-9990 Fax: 713/561-9980 
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KS_ block a A E 

KS _deftask a A E 

KS _ defpriority B A E 

KS _defslice a A E 

KS_deftask_arg A E 

KS_delay a A E 

KS_execute a A E 

KS_inqpriority E 

KS_inqslice E 

KS_inqtask E 

KS_inqtask_arg A E 

KS_resume a A E 

KS_suspend a A E 

KS_terminate a A E 

KS_ unblock a A E 

KS _yield a A E 

1:1: :":tllml~',iM.'II.Qlmm H::::,::::m,::1 

KS_alloc_timer a A E 

KS_elapse A E 

KS_free_timer a A E 

KS_inqtimer E 

KS_restarCtimer E 

KS_starCtimer a A E 

KS_stop_timer a A E 

RTXC V3.2 LIBRARY CONTENTS 

a - RTXC aasic Library ...................................... 36 Services 
A - RTXC Advanced Library ............................... 55 Services 
E - RTXC Extended Li ................................ 72 Services 

Semaphore Services 
KS_defmboxsema A 

KS_defqsema A 

KS _inqsema 

KS_pend B A 

KS_pendm 

KS_signal a A 

KS_signalm 

KS_wait a A 

KS _waitm A 

KS_waitt 

Message Services 
KS_ack a A 

KS _receive B A 

KS_receivet 

KS _receivew A 

KS_send a A 

KS_sendt 

KS_sendw A 

Queue Services 
KS_defqueue 

KS_dequeue a A 

KS_dequeuet 

KS_dequeuew A 

KS_enqueue a A 

KS_enqueuet 

KS_enqueuew A 

KS_inqqueue 

KS _purgequeue A 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

KS_alloc_part 

KS_alloct 

KS_allocw 

KS_create_part 

KS_defpart 

KS_free 

KS_free_part 

KS_inqmap 

KS_defres 

KS_inqres 

KS_lock 

KS_lockt 

KS_lockw 

KS_unlock 

KS_deftime 

KS_inqtime 

KS_user 

KS_ISRalioc 

KS_ISRexit 

KS_ISRsignal 

KS_ISRtick 

a A E 

E 

A E 

A E 

a A E 

a A E 

a A E 

A E 

A E 

A E 

a A E 

E 

A E 

a A E 

A E 
A E 

a A E 

a A E 

a A E 

a A E 

B A E 

10450 Stancliff, Suite 110 Houston, Texas 77099-4383 Phone: 713/561-9990 Fax: 713/561-9980 
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KS_alloc_task( ) 

Dynamically allocate a TCB from pool of Free 
TCBs. 

KS_block(start, end) 

Blocks range of tasks from start to end. 

KS _ defpriority(task,priority) 

Change the priority of task to priority. 

KS_defslice(task,ticks) 

Define time-slice time quantum of task to ticks. 

KS_deftask(task,priority,stack_addr, 
stack_ size, entry_ address) 

Define attributes of dynamically created task 
running at priority to be started at entry_address 
and having a stack of stack_size bytes located 
at stack_addr. 

KS_deftask_arg(task,address) 

Define the address of task's Environment 
Arguments structure. 

KS _ delay(task, ticks) 

Block task for a period of time specified by ticks. 
Unblock task when delay expires. 

KS_execute(task) 

Make task READY for execution beginning at its 
starting address. 

KS_inqpriority(task) 

Inquire on task's priority. 

KS _inqslice(task) 

Get time-slice time quantum for task. 

Get task number of Current Task. 

Get address of task's Environment structure. 

KS_resume(task) 

Resume suspended task. unless otherwise 
blocked. 

KS_suspend(task) 

Suspend operation of task. 

RTXC V3.2 KERNEL SERVICES 

KS_terminate(task) 

Terminate operation of task. 

KS_unblock(start,end) 

Unblocks range of tasks from start through end. 

Yield control of the CPU to another task at same 
priority. 

KS _defres(resource,resattr) 

Define the priority inversion handling attribute, 
resattr, for resource. 

KS _inqres(resource) 

Inquire about the current owner of resource. 

KS _Iock(resource) 

Acquire exclusive use of resource. If ownership 
of resource achieved, return to requesting task. 
If resource is BUSY, return value indicating the 
lock operation was not performed. 

KS_lockt(resource,ticks) 

Same as KS_lockw( ) but limit duration of wait 
to period of ticks. 

KS_lockw(resource) 

Same as KS_lock( ) but if resource is BUSY, 
requesting task waits until resource becomes 
available. 

KS_unlock(resource) 

Release exclusive ownership of resource. 

KS_alloc(map) 

Allocate a block of memory from map and return 
its address. Return NULL if map is empty. 

KS_alloc_part( ) 

Allocate a dynamic Memory Partition and return 
its identifier. Return NULL if none available. 

KS_alloct(map,ticks) 

Same as allocwO but, limit duration of wait to a 
period of ticks. 

KS_allocw(map) 

Same as anoc() but, if map is empty, wait until 
memory available. 

KS_create_part(body_address, 
blksize,numblks) 

Allocate a dynamic Memory Partition and define 
the location of tts RAM at body_address with 
numblks number of blocks of size b1ksize. 
Return its identifier if allocation is successful or 
NULL if not. 

KS_defpart(map,body_address, 
blksize,numblks) 

Define attributes of an existing or dynamically 
allocated map with RAM beginning at 
body_address with numblks number of blocks 
of size blksize. 

KS_free(map,address) 

Free the memory block at address to specified 
map. 

KS_free_part(map) 

Free the dynamically allocated Memory Partition 
whose identifier is map. 

KS_inqmap(map) 

Returns the memory block size of map. 

1.,1,.,1::,1'101111'11.1: '::il 

KS_ISRalloc(map) 

From an Interrupt service routine, allocate a 
block of memory from map and return Its 
address. Return NULL if map is empty. 

KS_ISRexit(address, sema) 

Exit an interrupt service routine whose 
interrupted context frame is located at address 
and Signal sema if specified. 

KS_ISRsignal(sema) 

Signal sema from an interrupt service routine. 

KS_ISRtick( ) 

Announce a timer Interrupt (tick) to system. 

10450 Stancliff, Suite 110 Houston, Texas 77099-4383 
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Semaphore Services 

KS_defmboxsema(mailbox, sema) 

Associate a semaphore with the Not_Empty 
condition of mailbox. 

KS_defqsema(queue,sema, 
conditiOn) 

Associate semaphore with the given 
condition on queue. 

KS_inqsema(sema) 

Returns current state of semaphore. 

KSJ)8nd(semaphore) 

Set semaphore to a PENDING state. 

KS-pendm(semaphore_'ist) 

Set multiple semaphores as specified in 
semaphore_Hstto PENDING state. 

KS_signal(semaphore) 

Signal semaphore that associated event has 
occurred. 

KS_signalm(semaphore_'ist) 

Signal multiple semaphores as specified in 
semaphore_Nst that a particular event has 
occurred. 

KS_wait(semaphore) 

Requesting task waits for occurrence of event 
associated with semaphore. 

Requesting task waits for occurrence of an 
event associated with any semaphore found in 
semaphore_Hst (logical OR condition). 

KS_waitt(semaphore,ticks) 

Same as KS_walt( ) but duration of wait limited 
to a period defined by ticks. 

Message Services 

KS_ack(message) 

Acknowledge receipt or processing of message. 

KS _receive(mailbox,task) 

Receive next message from any sender (or from 
a specifIC sender defined by task) in mailbox 
and return message address. If mailbox is 
empty, retum NULL. 

KS_receivet(mailbox, task, ticks) 

Same as KS_,ecelvew( ) but period of waiting 
is limited by duration ticks. 

KS_receivew(mailbox,task) 

Same as KS_,ecelve( ) but if maHbox empty, 
walt until a message is sent to maHbox. 

KS_send(mailbox,message,priority, 
semaphore) 

Send message asynchronously at specified 
priority to maUbox. Associate semaphore with 
acknowledgement signal. 

KS_sendt(mailbox,message,priority, 
semaphore, ticks) 

Same as KS_sendw( ) but waiting period is 
limited by duration ticks. 

KS_sendw(mailbox,message,priority 
semaphore) 

Send message synchronously. Same as 
KS_send( ) but wait on semaphore for 
acknowledgement. 

Queue Services 

KS_defqueue(queue, width, depth, 
body, count) 

Define width, depth, queue body address and 
currenlslze of queue. 

KS_dequeue(queue,destination) 

Get data from queue and store it at destination 
address. 

KS_dequeuet( queue, destination, 
ticks) 

Same as KS_dequeuew( ) but duration of wait 
is limited by period defined by ticks. 

KS_dequeuew(queue,destination) 

Same as KS_dequeue( ) but if queue is 
EMPTY, wait until operation can be completed. 

KS_enqueue(queue, source) 

Put data at source address into queue. 

KS _ enqueuet(queue, source, ticks) 

Same as KS_enqueuew() but limit duration of 
wait to period defined by ticks. 

KS_enqueuew(queue, source) 

Same as KS_enqueue() but if queue is FULL, 
wait until there is room in queue to complete the 
operation. 
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KS_inqqueue(queue) 

Return number of entries currently in queue. 

KS_purgequeue(queue) 

Purge queue of all entries. 

I::: HlllmWW1:i:ii::IIfI .. lll ••• iI.iI:llllllilllllli!llllllllJlllll 

KS_alloc_timer( ) 

Allocate a general purpose timer and return its 
address. 

KS_elapse(countet) 

Return the elapsed time between two events. 

KS_free_timer(timet) 

Free the general purpose timer. 

KS_inqtimer(timet) 

Get amount of time remaining on timer. 

KS_restarCtimer(timer,period, 
cyclic-P6riod) 

Reset and restart the active timer with a new 
initial perlod and an optional cycHcJ»rIod. 

KS_starCtimer(timer,period, 
cyclic-P6riod,semaphore) 

Start the specified timer giving it an initial period 
and an optional cyclic-P'fiod. Associate 
semaphore with expiration of the initial period or 
cycHc-P'rlod. 

KS_stop_timer(timet) 

Stop the specified active timer and remove it 
from the active timer list. 

I:ll!:::·!'::: '}E>lllllllllfll·lilllll.!!!II:IllIll:m mH,llw:1 

KS_deftime(Date_ Time) 

Define current date and time-of..cfay. 

KS_inqtime( ) 

Get the current date and time-of..cfay. 

KS_user(funcfion, argumenCIist) 

User defined function is called by the standard 
RTXC KS protocol and address of argumenllst 
passed to it. 



Real-Time Kernel 
What is RTXC? 
RTXC is a flexible, field-proven, 
multitasking real-time kernel for 
use in a wide variety of embedded 
applications on a broad range of 
microprocessors, microcontrollers, 
and DSP processors. 

It is written primarily in C 
and features a single Application 
Programming Interface for all 
supported processors. The result 
is a configurable, powerful 
multitasking architecture that 
helps you get your job done 
and preserves your software 
investment. 

What's in RTXC? 
RTXC, like all multitasking 
real-time kernels, manages tasks 
and time, synchronizes with 
events, and permits transferal of 
data between tasks. But RTXC 
goes beyond basic requirements 
through its extensive set of 
understandable kernel services, 
each operating on one of seven 
classes of kernel object. In addi­
tion to the fundamental require­
ments, RTXC also contains kernel 
services for RAM management 
and exclusive access to any entity. 
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Tasks 
In RTXC, tasks are the main 
operational elements of the 
application. Because different 
tasks have different relative 
importance, RTXC supports a task 
prior-itization design permitting 
both static and dynamically 
variable values. Tasks may be 
predefined during system genera­
tion or dynamically defined at 
runtime. 

RTXC supports a scheduling 
policy that permits tasks to gain 
control of the CPU in different 
manners. Preemptive scheduling 
ensures that the highest priority 
task in a ready state is in control 
of the CPU. If several tasks share 
the same priority, they may be 
scheduled in a round-robin 
fashion. Time-sliced scheduling is 
also available within a given 
priority and each task may be 
given its own time quantum. 

Semaphores 
Semaphores are event synchroni­
zation objects in RTXC. Sema­
phores support both internal and 
external events through a unified 
event processing design. Tasks 
may synchronize with an event by 
waiting on a semaphore, consum­
ing no CPU time while doing so. 
A waiting task will resume when 
the event occurs and the associ­
ated semaphore is signaled. RTXC 
kernel services provide for single 
and multiple event handling. 

FIFO Queues 
FIFO Queues permit tasks to 
pass data from one to another in 
chronological order. All Queues 
are defined globally and may have 
multiple producers and multiple 
consumers. Various queue condi­
tions such as Full, Empty, and 
NocEmpty can be associated with 

Applications 
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semaphores to provide rapid and 
deterministic handling for mUltiple 
queues without polling. 

Messages 
and Mailboxes 
Messages and Mailboxes give 
RTXC users a prioritized means 
of passing data between tasks. 
Mailboxes are globally declared 
and a task may use none, one, 
or many. Any task may send 
messages to any Mailbox, synchro­
nously or asynchronously, and any 
task may receive Messages from 
any Mailbox. Semaphores may be 
coupled with Mailboxes for use in 
serving multiple Mailboxes 
without the need for periodic 
polling. 

Timers 
One-shot and periodic time 
durations are managed by RTXC's 
Timer kernel object class. Expira­
tion of a timed period is an event 
associated with a semaphore. 
RTXC's design for managing timer 
updates is very efficient requiring 
a fixed overhead regardless of the 
number of active timers. 
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Memory Partitions 
RTXC manages RAM through a 
partitioning design using Memory 
partition kernel objects. Memory 
Partitions prevent RAM fragmen­
tation that can occur when mul­
tiple tasks randomly allocate and 
free blocks of RAM from the 
system heap. Memory Partitions 
may be statically defined during 
system generation or created 
dynamically at runtime. 

Resources 
The need to ensure exclusive 
access to some entity in a real­
time system gives rise to the 
RTXC Resource kernel object. 
A task can gain ownership of an 
entity, real or logical, and use it ' 
exclusively. When the task 
completes its use of the entity, it 
relinquishes ownership to permit 
other tasks to gain control of the 
entity. RTXC options provide a 
convenient way to handle priority 
inversion in which a low priority 
task owns a Resource needed by 
a high priority task. 
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Interrupt 
Management 
RTXC provides a generalized 
design for servicing interrupts in 
an efficient yet flexible manner 
achieving minimum interrupt 
latency and maximum responsive­
ness. Special kernel services may 
be called from an interrupt service 
routine to perform such functions 
as event signaling, buffer alloca­
tion, and ISR exit. 

System 
Configuration Utility 
RTXCgen is an interactive pro­
gram used to define the kernel 
objects needed for the application. 
Objects are defined in a simple 
interactive dialogue with the 
program. When all definitions are 
complete, RTXCgen produces 
C source code of the kernel 
objects. The result is error free 
system generation. RTXCgen is 
a standard part of the RTXC 
distribution. 

System Level 
Debug Task 
During the debugging phase, 
RTXCbug may be employed as 
a task to examine the interaction 
between the application tasks and 
RTXC. RTXCbug remains 
blocked and consumes no CPU 
time until invoked by the process 
or by operator intervention. When 
in use, RTXCbug displays coher­
ent snapshots of the various 
classes of kernel objects showing 
current states and relationships 
with other objects. There is also 
support for some direct operator 
intervention. RTXCbug is pro­
vided with all RTXC distributions. 
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Embedded System Products, Inc. 
10450 Stancliff, Suite 110 
Houston, Texas 77099-4383 
Phone: 713/561-9990 
Fax: 713/561-9980 
email: sales@esphou.com 

All product names mentioned are the trademark or registered trademark of their respective manufacturers. Copyright@ 1995, Embedded System Products, Inc. All Rights Reserved. 

706 



Product 
Description 

Input/Output Subsystem 
RTXCio is a device independent 
input/output subsystem that 
pennits application tasks to make 
direct requests to any supported 
device. Multiple tasks may access 
the same device and a single task 
may access multiple devices. 
RTXCio also supports both 
synchronous and asynchronous 
input/output operations. 

Because it is written in C, 
RTXCio can be used in any 
system using RTXC without 
regard to the target processor. 
In combination with RTXCfile, 
RTXCio acts as an interface 
between file manager and drivers 
for file oriented devices. 

Device 
Independence 
All RTXCio operations are 
inherently device independent 
because they reference logical 
channels instead of physical 
devices. RTXCio's Application 
Program Interface provides a set 
of services that have the same 
fonn regardless of the device 
being used. The result is applica­
tion code that is more portable and 
easier to test and debug. 

Multitasking 
RTXCio operates in, and is fully 
compatible with, the multitasking 
environment managed by RTXC. 
RTXCio functions are reentrant 
and execute on the same thread as 
the calling task. 

Multiple 
Device Support 
There are no limitations as to the 
type or number of devices that 
RTXCio can support. Multiple as 
well as single port devices are 
supported via RTXCio's channel 
oriented I/O architecture. 

Synchronous & 
Asynchronous I/O 
In embedded systems, time can be 
critical and RTXCio recognizes 
that need by providing two basic 
input/output modes: asynchro­
nous and synchronous. Asynchro­
nous I/O pennits a time conscious 
task to continue its application 
while the device controller is 
processing its I/O request. 
RTXCio also pennits timed 
asynchronous mode requests. 

Synchronous I/O supports 
those applications where the task 
must wait for the completion of 
an I/O request. RTXCio returns 
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the device completion status 
so that the requesting task can 
detennine how to proceed. 
Synchronous I/O requests 
nonnally complete when the 
requested operation is finished. 
RTXCio also pennits time 
limited synchronous mode 
requests. 

Drivers 
RTXCio includes a functional 
sample driver. This is a virtual 
driver which you can use to 
develop your application while 
your device driver is being 
developed. 

If you choose to write your 
own driver or drivers, RTXCio has 
a standardized architectural 
scheme, and an entire section of 
its User's Manual dedicated to 
assisting you in doing so. 

On the other hand, device 
drivers may be separately licensed 
from Embedded System Products. 
As with RTXCio, such drivers 
include full source code. 

Factory development of 
custom device drivers is also 
available on a fee basis. Call for 
details. 



Functions 
RTXCio performs five basic 
inputloutput,functions similar to 
those found in expensive operat­
ing system environments. Table 1 
shows each function and its 
associated I/O mode. 

Portability 
RTXCio is written in C and is 
fully integrated with RTXC. As 
such it is processor independent 
and, thus, highly portable. Device 
drivers, however, are generally 
associated with a particular 
device controller and may not 
be portable. 

Distribution 
RTXCio is distributed in source 
code form and is royalty-free. 

Embedded System Products, Inc. 
10450 Stancliff, Suite 110 
Houston, Texas 77099-4383 
Phone: 713/561-9990 
Fax: 713/561-9980 
email: sales@esphou.com 

All product names mentioned are the trademark or registered trademark of their respective manufacturers. Copyright Ie) 1995, Embedded System Products, Inc. All Rights Reserved. 
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Product 
Description 

MS-DOS· Compatible 
File Manager 
RTXCfile is a MS-DOS 
compatible file management 
subsystem for RTXC-based 
systems. RTXCfile is written in 
C following the standard ANSI C 
protocall for file services and can 
be used on any system using 
RTXC without regard to the 
target processor. 

Because RTXCfile uses RTXCio 
to perform input/output requests, 
RTXCfile can be used with hard 
disks, floppy disks, PCMCIA 
memory cards, RAM disks or 
any device suitable for file 
oriented storage. 

MS-DOS 
Compatibility 
RTXCfile's compatibility with 
MS-DOS file formats assures 
portability of data files exported 
from or imported to your system. 
The RTXCfile Application 
Program Interface provides a 
powerful set of services for file 
and directory manipulation for 
use with RTXC-based 
applications. 

Each task using RTXCfile 
maintains its own path including 
active logical device and current 
working directory. File requests 
omitting specification of a path 
will default to the task's current 
working directory. 

Multitasking 
RTXCfile supports and operates 
in the multitasking architecture of 
RTXC. Each task has its own 
specific logical device 
environment in which both single 
and multiple devices are 
permitted. RTXCfile not only 
supports concurrent file requests 
on a device by all tasks, but also 
permits any task to use more than 
one logical device. 

Reentrant 
Because it is compatible with the 
RTXC multitasking architecture 
including preemptive scheduling 
of tasks, RTXCfile is reentrant. 
Thus, a higher priority task may 
preempt the file service request of 
a lower priority task and still 
successfully perform its own file 
management operation. 
Reentrancy preserves the 
integrity of the priority scheme 
while conserving time as well. 
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Device 
Independence 
RTXCfile requires RTXCio in 
order to perform input/output 
operations needed for file 
management. Use ofRTXCio 
allows RTXCfile to be device 
independent and easily 
supportive of any device suitable 
for file oriented storage. 

Data Integrity 
RTXCfile recognizes that all 
data written to files is potentially 
vital and provides services to 
guarantee its integrity. Whether 
the data is written to one or more 
files on a device, RTXCfile 
allows file flushing and device 
synchronization to force the 
immediate writing of buffered 
data to the storage medium. 

Portability 
RTXCfile is written in C and is 
fully integrated with RTXC and 
RTXCio. It can operate on any 
processor without regard to byte 
ordering. 



Functions 
RTXCfile performs all of the file 
management and input/output 
services necessary to support MS­
DOS compatibility. Table 1 shows 
each function. 

Distribution 
RTXCfile is distributed royalty­
free in source code form. A RAM 
disk driver is included in the 
RTXCfile distribution. 

Embedded System Products, Int. 
10450 Stancliff, Suite 110 
Houston, Texas 77099-4383 
Phone: 713/561-9990 
Fax: 7131561-9980 
email: sales@esphou.com 

All product names mentioned are the trademark or registered trademark of their respective manufacturers. Copyright © 1995, Embedded System Products, Inc. All Rights Reserved. 
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EMULATION TECHNOLOGY, INC. 
Interconnect Solutions and PC Based Instrumentation 

XA Microcontroller Development Tools 

Development Tools 
ET-iCXA - Development Board 

ET-iCXA - In-Circuit Emulator 

ET-ASM-XA - Assembler 

ET-C-XA - C Compiler 

ET-CONV-XA - 8051 Code Converter 

ET-DEBUG-XA - Software Simulator 

ET-MP-51 - Programmer 

ET-ASM-XA - Macro Assembler and Linker 

The ET-ASM-XA assembler translates XA assembly language program into relocatable object code. The XA assembly 
language includes commands and directives specially designed to fit the XA architecture. 

The two main tools of the package are assembler and linker programs. The linker enables the user to work with a number 
of modules and to locate the necessary segments. The ET-ASM-XA produces debug information that includes SYMB, LINE 
and FILE, and many more symbols. 

The package also includes several utilities that convert from object code into Hex format. The assembler supports the XA 
special features like system and user modes, register banking and others. 

The ET-ASM-XA assembler is integrated into a modern graphic interface that allows it to be used in a complete development 
environment. 

ET-CONV-XA - 8051 Code Converter 

The ET-CONV-XA converts assembly source and object code written for the 8051 to ET-ASM-XA. The ET-CONV-XA 
utilities make it possible to use code written in C, PLM or Assembler for the 8051 microcontroller and to adapt it to the XA 
architecture. 

The CONY program first passes over the source file written for the 8051. It then translates the source file into ET-ASM-XA 
source file. In case of a conflict, the user will be asked by the program to select the right option. If the available code is 
different from the assembly source, the program converts the object file generated by high-level languages or assemblers 
into an ASCII file with all the possible assembly information. 

ET-C-XA - C Compiler 

The ET-C-XA is an ANSI C compiler with an extension designed to support XA special features. The compiler is compatible 
with other ANSI C compilers. The ET-C-XA is designed to make the code faster and smaller by using the special chip 
features. The ET-C-XA can support multi-tasking programs. 

The system features ANSI C compatible, exception handling mechanism, interrupt handling mechanism, floating point 
variables, in-line assembler, extended C keyword for XA special architecture, special functions for checking memory 
integrity and more. 

2344 Walsh Avenue, Bldg. F, Santa Clara, CA 95051 USA Tel: (408)982-0660 Fax: (408)982-0664 
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EMULATION TECHNOLOGY, INC. 
Interconnect Solutions and PC Based Instrumentation 

DB-XA - Development Board 

DB-XA is a development board dedicated to all Philips XA microcontroller derivatives. It is serially linked to PC/XT/AT 
or compatible systems and can emulate the microcontroller using either the built-in clock oscillator or any other clock source 
connected to the microcontroller. 

The system emulates the microcontroller in ROMless mode. A two microcontroller architecture leaves the serial port for 
user applications. 

The software includes a Source Level Debugger for C and Assembler, On-line Assembler and Disassembler, Software Trace, 
Conditional Breakpoints and many other features. All the debugger functions run under DOS and Windows operating 
systems. 

The code memory permits downloading and modifying of user's programs. Mapping the data memory to a target circuit or 
to the system is possible. Breakpoints allow real time execution until an opcode is executed at a specified address or line 
of the source code. All 110 lines are easily accessed and may be connected to the on-board switches and LEOs when trying 
out a specific idea. The system is supplied with a User's Manual, software, emulation cable and a power supply. 

DS-XA - In-Circuit Emulator 

This system is a real-time, fully transparent in-circuit emulator with 1 MByte mappable internal memory, 16M hardware 
breakpoints and real-time trace with trigger capabilities. The system emulates any XA derivatives in all the frequency ranges 
of the microcontroller. 

ET-DEBUG-XA - Software Simulator 

The ET-OEBUG-XA is a source level debugger for the XA architecture. The ET-DEBUG-XA enables fast and reliable 
program debugging at source level for ET-C-XA and ET-ASM-XA. 

The ET-DEBUG-XA can execute your code on a target emulator or high-speed simulator. The software enables the user to 
follow and control code execution. The user can examine and change the data and the code. 

ET-MP-51 - Programmer 

All the necessary adapters and programming algorithms are added to the Et-MP-51 Programmer to support all the EPROM 
based XA derivatives. 

2344 Walsh Avenue, Bldg. F, Santa Clara, CA 95051 USA Tel: (408)982-0660 Fax: (408)982-0664 
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F D I Future Designs, Inc. 

XTEND 
XA 
Trainer & 
Expandable 
Narrative 
Design 

The XTEND, XA Trainer and Expandable Narrative Design, is designed 
to provide the user with a stable hardware and software platform for 
application development with the XA-G3. In many cases, the XTEND 
may serve as a quick prototype for the actual user application. With 
the on-board prototype area or optional expansion boards, the user 
can quickly and easily get a new customized design running with the 
XA-G3. 

Features 
1. Philips XA-G3 microcontroller socket 

for 44-pin PLCC supporting both 
internal and external code execution 

2. 128KB standard FLASH ROM code 
space, expandable to 256KB (dual 
sockets for 16-bit access) 

3. Code Space supports EPROM, 
FLASH (5V), NVSRAM, or SRAM 

4. 64KB Standard High-Speed Data 
Space SRAM, expandable to 256KB 
(dual sockets for 16-bit access) 

5. Two OB-9 RS232 serial 
communications ports with optional 
hardware handshake & RS232 cable 
and OB25 adapter included 
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6. On-board speaker for tone generation 

7. Interface for character type LCD 
modules with 16 character LCD 
included 

8. 60-pin expansion header for full 
expansion capability 

9. 9 VDC input with on-board 5V 
regulator, UL-approved power supply 
included 

10. 5.25" x 7.25" 2-layer PCB with full 
silkscreen information 

11. 2.5" x 1" wire-wrap area on-board 

12. Four TTL user inputs via double-row 
header 



F D I Future Designs, Inc. 

13. Two user input push buttons 

14. Eight TTL user outputs via single-row 
header 

15. Users manual and schematics 
included 

16. Optional 12C interface/monitor 

17. Planned Future Expansion Boards 
include: 
• 12C expansion board with LCD, 

keypad, and realtime clock 
• Prototype board with 'Pad-per-hole' 

area 
• Virtually any type may be custom 

designed 

18. Example routines for applications: 
• XA-G3 initialization and setup 

routines 
• Serial port drivers 
• Timer/Counter drivers 
• Watchdog Timer routines 
• Interrupt routines 
• 8051 to XA translation examples 

19. Internal XA-G3 monitor supporting: 
• Serial host communication 
• Register dump/modify 
• External data memory dump/modify 
• External code memory load (from 

RS232) 

• Code disassembly 
• Execute code with up to 4 user 

defined breakpoints 

• Single-step through user code 

20. CMX evaluation package 
CMX RTOS XA demo for XTEND 
CMX RTOS demo for the PC 
HiTech XA C Compiler demo 

Ordering Information . 
Part Number: XTEND-G3 

Price: $249.00 (USD) complete 
Warranty: 30-day money back 

guarantee 
Availability: Stock 

(205) 830-4116 Information 
(800) 278-0293 Sales 

(205) 830-9421 FAX 
e-mail teamfdi@aol.com 

Future Designs, Inc. 
P.O. Box 7362 

Huntsville, AL 35807 Kit Contents 
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HI-TECH C Complier for the Ph!lips XA microcontrolier - technical specifications 

HI-TECH Software's range of ANSI C embedded 
development systems now includes a product targeted 
specifically at Philips Semiconductors' XA (eXtended 
Architecture) microcontroller. . 

Key features of the XA development system include: 

• Full ANSI C language supported 

• Optimized code generation 

• Full use of XA features and architecture 

• Choice of memory models to suit differing 
applications 

• Enhanced features including bit data type and 
interrupt functions 

• Integrated development environment with project 
management facilities 

• IEEE floating point with full maths library 

• Macro assembler included 

• Fully featured linker and librarian allow effective 
development of large projects 

• Run-time library source code included. 

System Requirements 

HI-TECH C is available to run under MS-DOS, where it 
requires at least a 286 processor with 512k of conventional 
memory and 2MB of extended memory. It is also available 
for Unix systems running SunOs or Solatis on Sparc 
processors, or generic 386 Unix on 386 or higher 
processors. 

ANSIIISO C Language 

HI-TECH C for the XA implements the ANSIIISO standard 
for the C programming language. All data types are 
supported and have sizes and arithmetic properties as 
follows: 

int 16 bits - signed and unsigned int available 

char 8 bits - plain char is signed, signed char and 
unsigned char also available. 

short same an int 

long 

float 

double 

32 bits in signed and unsigned versions 

32 bit IEEE floating point format - sign bit plus 
8 bits of exponent plus 24 bits of mantissa. 

same as float by default; 64 bit IEEE format 
available with compile time option. 

All standard data structures are available, including struct, 
union and arrays. Structures may contain bitfields of up to 
16 bits. 

The compiler uses the XA stack for storage of automatic 
variables, so that functions are fully reentrant. 

A full ANSI compatible library is provided, except for file 
handling functions. The library does include console 110 
functions like printf() and scanf() which operate via simple 
serial port drivers in.cluded in the library, or through other 
user-supplied functions. Full library source code is 
provided to allow modification of this or other functions. 

Enhanced Features 

To maximize the effectiveness of C on the XA 
microcontroller, HI-TECH C offers some enhanced 
features, implemented in a manner which is in keeping with 
the sty Ie of the ANSI C standard. 

Bit Variables 

To allow access to the XA's bit handling functions the 
compiler implements bit variables. These are allocated in 
the bit addressable memory area (or may be mapped onto 
bit-addressable SFR's) and will be accessed with 
appropriate XA bit handling instructions. 

Absolute Variables 

SFR and other absolute variables may be defined with the 
absolute variable facility, e.g., the power control register 
PCON is defined as follows: 

unsigned char peON @Ox404; 

This defines the size, data type and address of the port. The 
compiler will not allocate space, but will use the specified 
address when accessing the variable. A header file is 
provided which defines the standard XA SFRs. 

Interrupt Functions 

Interrupt functions may be written completely in C by 
using the interrupt function feature. A function declared 
interrupt will contain code to save and restore any registers 
used, and will return with an appropriate reti instruction. 
Macros are provided to initialize and manage interrupt 
vectors, and enable and disable interrupts. 

Near and Far Variables 

To allow the programmer control over placement of 
variables, the keywords near andfar are used to specify that 
a variable will be located in the on-board (directly 
addressable) RAM or in the indirectly addressable RAM 
respectively. 
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Non-Volatile RAM 

Variables whose value is retained by battery-backed RAM 
when the microcontroller is turned off or reset can be 
defined with the persistent qualifier. Variables qualified 
persistent are allocated in a separate memory area, the 
address of which may be used-specified, and are not 
cleared to zero on startup like ordinary variables. Library 
functions are provided to initialize and validate the 
persistent memory area. 

Memory Models 

Because of the XA's Harvard architecture (separate RAM 
and ROM address spaces) and its ability to access memory 
in 64K segments, trade-offs are required between memory 
addressability and code size. To allow these trade-offs to be 
tuned to a particular application, three memory models are 
provided. 

small This model is designed for applications using 
less than 64K of code, and only directly 
addressable (on-board) RAM. Function calls 
use 16 bit addressing, and initialized data is 
stored in ROM rather than RAM. 

medium 

large 

For applications using larger amounts of RAM, 
the medium model will give similar code 
efficiency to the small model at the expense of 
higher RAM usage. This model will use both 
directly and indirectly addressable RAM. 

Where more than 64K code is required, the 
large model should be used. It uses 24 bit 
addressing to call functions, so that multiple 
64K banks of code can be implemented in a 
transparent fashion. 

In all memory models, the far and near keywords may be 
used to control RAM usage. In the large model, interrupt 
functions are automatically placed in bank 0 since interrupt 
vectors provide only a 16 bit address. 

IEEE Floating Point 

The compiler implements IEEE 32 and 64 bit floating point 
arithmetic. The 32 float format has a range of ±lo±38 and 
a precision of approximately 7 decimal digits. The 64 bit 
t10at format has a range of ± 1 O±308 and a precision of 
approximately 15 decimal digits. The floating point maths 
library includes the standard trigonometric, exponential, 
logarithmic and hyperbolic functions. 

Advanced Optimization 

HI-TECH C for the XA implements many compile-time 
optimization techniques to produce the smallest, fastest 
code possible. Some of the optimizations performed 
include: 

• Constant folding - constant expressions (including 
floating point) are evaluated at compile time. 

• Strength reduction - multiplication is reduced to 
shifting and adding where possible. 

• Expression reordering - expressions are reordered and 
associative operators grouped to minimize complexity. 

• Dynamic register allocation - registers are allocated 
to variables and temporaries based on function-wide 
analysis of variable usage. 

• Common code elimination - where separate pieces of 
code produce common sequences, they are merged. 

• Register parameters - function parameters are passed 
in registers where possible. 

The set of optimizations performed is tuneable at compile 
time to allow trade-offs between compile time and code 
quality. 

Macro Assembler Included 

A full featured macro assembler is included with the 
compiler. This may be used to write separate assembler 
modules for use with C programs, or to write stand-alone 
assembler programs. Assembler code can also be 
embedded in-line in C modules. The compiler produces 
assembler code, and an assembled listing may be requested 
to allow inspection of the generated code. 

Linker and Librarian 

HI-TECH C includes a complete object code linker and 
librarian. This allows a large project to be split into 
multiple modules, thus making maintenance and 
recompilation easier. The linker combines a number of 
object modules, merging program code, data, etc., 
according to user-specified addresses of RAM and ROM. 

The librarian allows object libraries to be built and 
maintained. The linker will extract from a library only 
those modules that satisfy currently unresolved external 
references. This allows a library to be used to hold multiple 
routines, not all of which may be used in anyone project. 

The linker produc.es a link map which provides information 
on code and data addresses and sizes for individual 
modules and the entire program. 

716 



HI-TECH C Complier for the Philips XA microcontroller - technical specifications (cont.) 

Integrated Development Environment 

The MS-DOS version of the HI-TECH C compiler includes 
an integrated development environment which provides a 
number of facilities to speed firmware development These 
facilities include: 

• Text editor, implementing WordStar compatible and 
MS-Windows compatible key commands. 

• C syntax colour coding. 

• Compilation and linking control with automatic 
dependency analysis. 

• Error reporting, with automatic location of errors, and 
automatic correction where possible, plus detailed 
error message explanation. 

• Project management - a set of C and assembler source 
files, object files and libraries are defined with 
memory addresses, etc. 

• String search across files. 

• Multi-radix calculator. 

• Summary memory usage map after project build. 

• Library creation. 

• Fully mouse and keyboard driven. 

• User-defined commands for interfacing to external 
utilities such as EPROM programmers. 

The integrated environment runs under MS-DOS, 
MS-Windows and Windows NT. There is also a command 
line driver provided. The Unix hosted compiler provides 
the command line driver only. 

Sample Code 
The following code was generatedfrom a C source module 
by the compiler. 

psect text,class=CODE 
global_init_uart 
signat_init_uart,24 

init uart: 
iserial.c: 10: TL1 = RTL1 

mov.b r01,#-10 
mov.b 0456h,r01 
mov.b 0452h,r01 

iserial.c: 11: TH1 = RTH1 
movs.br01,#-1 
mov.b 0457h,r01 
mov.b 0453h,r01 

;serial.c: 12: TR1 = 1; 
setb 0286h 

;serial.c: 13: SOCON = Ox52; 
mov.b 0420h,#052h 

;seria1.c: 14: } 
ret 
global-putch 
signat-putch,4152 

-10&OxFFi 

-10 » 8; 

param _c assigned to r31 on entry 
-putch: 
iserial.c: 

jb 
19: if ( ! RO EN) 
0304h,13 

iserial.c: 20: init_uart(); 
call _init_uart 

13: 
;serial.c: 21: if(c == '\n') 

cmp.b r31,#OAh 
bne18 

iserial.c: 22: while(!TIO) 
15: 

jnb 0301h,15 
iserial.c: 24: SOBUF = '\r'; 

mov.b 0460h,#ODh 
;serial.c: 25: TIO = Oi 

clr 0301h 
; s er i a 1. c: 2 6: } 
iserial.c: 27: while(!TIO) 
18: 

jnb 0301h,18 
;serial.c: 29: SOBUF = Ci 

mov.b 0460h,r31 
iserial.c: 30: TIO = Oi 

clr 0301h 
i serial. c: 31: } 

ret 
end 
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Contacting HI-TECH Software 

Telephone: +61 733005011 

Fax: 

BBS: 

E-Mail: 

WWW: 

FTP: 

Postal: 

+61 733005246 

+61 733005235 

hi tech @hitech.com.au 

http://www.hitech.com.au 

ftp.hitech.com.au 

PO Box 103 
ALDERLEY QLD 4051 
AUSTRALIA 

HI-TECH Resellers Worldwide 

Country Reseller 

Australia HI-TECH Software 

USA CMXCo. 

Avocet Systems Inc. 

Japan Shoshin Corp. 

UK Pentica Systems 

Nohau UK Ltd. 

Denmark Digitek Instruments 

Italy Grifo 

Switzerland Traco Electronic 

Ireland Ashling Microsystems 

France Convergie 

Emulations 

Germany Reichmann Microcomputer 

Sweden LinSoft AB 

Telephone Fax E-Mail 

(07) 3300 5011 (07) 3300 5246 hitech@hitech.com.au 

508872 7675 5086206828 cmx@cmx.com 

2072369055 2072366713 avocet@midcoast.com 

(03) 32705921 (03) 3245 0369 tokamoto@shoshin.co.jp 

(01734) 792 101 (01734) 774 081 

(01962) 733 140 (01962) 735 408 100265.705 @compuserve.com 

+4543424742 +4543424743 

051 892052 051 893661 

+41 1 2842911 +41 1 201 1168 

+41 1 201 1168 +35361 334477 ashling@iol.ie 

+33 1 47890938 

+33 1 6941 2801 +33 1 60192950 

71565635 71565141 100533.2535@compuserve.com 

13 111588 13 152429 
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Hi-Cross 
Development System 

Complete, Integrated Development 
Environment for the Philips XA Family 

.. Compiler for ANSI C 

.. HLI -assembler 

.. Smart linker 

.. Interactive real-time cross-debugger 

.. (ROM Monitor) 

.. Emulator support 

.. CPU simulator with simulator-debugger 

.. Editor (PC only) 

.. Librarian 

.. Make-utility (PC only) 

.. Utility for EPROM programmer 

.. Decoder/HLI -generator 

.. ANSI C library 

.. Macro assembler 

Contact Information 
Hiware 
Europe: 
Tel: +41 61 331 7151 
Fax: +41 61 331 1054 

USA: 
Archimedes Software Inc. 
Tel: (206) 822 6300 
Fax: (206) 822 8632 

HIWARE 
719 

· HIWARE 

Hi-Cross 

Compiler 
Optimizing ANSI-C compilers, based on the latest 

compiler technology . 

HLI-Assembler 
High-Level Inline Assembler allows use of variables 

and parameters of the HLL directly in the assembly 
instructions . 

Macro Assembler 
"HI-ASM" is a stand-alone macro assembler. It allows 

conditional assembly, assembler include files, listings with 
location, code, source, fixups. "HI·ASM" can also be used 
together with the compiler. Assembler modules can be 
mixed with C modules. Assembler routines can be called 
from C functions and vice versa . 

Interactive Real-Time Cross-Debugger 
Debugging on source and assembler level. Display, 

zoom, modification of variables, registers, memory, 
break-points, trace, single step, etc. Monitor can be adapted 
to any target system. Several emulators are supported. 

CPU Simulator with Simulator-Debugger 
Simulates the target processor instruction set, 

registers, memory. Allows the use of most cross-debugger 
functions without hardware. 

Fuzzy Logic Tool 
This product "HI-FLAG" introduces many new 

functions for Fuzzy development: Graphical, interactive user 
interface. Mixing fuzzy objects with non-fuzzy functions. 
Debugging allows to inspect variables or parameters, 
various 2- and 3-dimensional graphic displays, online and 
while the system is running. The tool can be embedded into 
the HI-CROSS environment. 

Supported Platforms 
PC (Windows 3.x), SUN SPARC (Motif). 

Supported Emulators 
Nohau. 



51XA-G3 Programming Adapters 
• Program 5iXA-:G3 chips on 

your current programmer 

• Transition 5iXA-G3 devices 
into your B05i-FC products 

Programming adapters allow programming of 51XA-G3 
chips on 8051-FC programmers 

Prototyping adapters accept PLCC or QFP devices and 
plug into an emulator's production socket. 

Adapters from Logical systems make it easy for embedded 
designers to make the transition to the 51XA-G3. The 
adapters user high-quality Yamaichi and Enplas sockets. 
They are modular and the sockets and plugs can easily be 
replaced if damage occurs. They are priced at $65-$165. 
30 days satisfaction guaranteed, unlimited free tech support. 

SlXA-G3 
Package 

44 pin PLCC 

44 pin PLCC 

44 pin PLCC 

44 pin PLCC 

44 pin QFP 

Adapter 
Socket 

Auto-eject 

LiddedZIF 

Production 

Production 

LiddedZIF 

Adapter 
Footprint 

40 DIP 8051-FC 

40 DIP 8051-FC 

44 PLCC Plug 

40 DIP 8051-FC 

40 DIP 8051-FC 

44 pin QFP LiddedZIF 44 PLCC Plug 51XA-G3 

• 
LOGICAL 
SYSTEMS 

720 

PA-XAG3FC-PD 

PA44-QP 

Adapter Logical Systems 
Purpose Part Number 

Programming PA-XAG3FC-PD 

Programming PA-XAG3FC-PDZ 

Proto typing PA-G3PIFCP 

Proto typing PA-G3PIFCD 

Programming PA-XAG3FC-QD 

Proto typing PA44-QP 

Logical Systems Corporation 
P.O. Box 6184 
Syracuse, NY 13217-6184 USA 

Tel: (315) 478-0722 
Fax: (315)479-6753 
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-:J14~ 
"':312. 
-311, ' 
-309, 
-368, 
-306. 
-304, 
-300. 
-299, 
-297 ~ 
-295, 
-293, 
-292, 
-288.;. 
--286, . 
-284, 
-282.-
-280, 
-279. 
-'277 • 
-273, 
,-272, 
-'1,70, 
-268 

a 
3BO:- fea2 
2F6: balO 
2F8: Fe55 
3A4: 9alIJ0002 
3A8: fba8 
2FA: 'BaOl 
2FC: e9000018 
'aoo:. B52001ec 
304:,9908021 e·" 
3.08: 11228 
30A; fbOc 
324: feOb 
33C: fe.OF 
35C: feOO 
3SE: Fe21 
3A2: aal1 
3AII: 9a7110002 
3AG: fba8 
2FA: 8aOl 
2FC: e90000'I.B 
300: 852.001ec 
304: 
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P51 Development Board 
The P51XADEMO supports the new 16-bit XA-G3 
microcontroller from Philips. It provides the user with 
an integrated hardware/software development tool, 
allowing early verification of the prototype hardware and 
system software. 

P51XADEMO features 

mm Fully emulates the XA-G3 in single-chip mode 

" Does not Support external program 
memory modes 

$ Allows external RAM for data storage 

II Integrated development environment for 
MS WindowsTM 3.1 

" Source code editor 

.. XA macro assembler 

,. Translator (8051 to XA) 

" Source code debug 

mw Allows single stepping or real-time execution 

!l@ 32K of emulation RAM for user program 

~ Allows display and/or modification of: 

.. Registers, stack (user and supervisor) 

~ PC, PSW 
" Data variables by name 

.. Source, listing, disassembly 

Philips 
Semiconductors 
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The P51 XADEMO is a development tool that supports the 
XA-G3 microcontroller. The emulator will run a user pro­
gram in real-time, and allow full source code debugging, 
including reading and writing all registers, RAM memory 
locations and SFRs. The emulator is limited to debugging 
only single-chip resources. The software included is a 
Microsoft Windows-based integrated development environ­
ment. It consists of an editor, translator (8051 to XA), 
assembler, simulator, debugger and emulator interface. The 
translator is optimized to read· an input file that is com­
patible with the Metalink ASM51 assembler. Each line of 
the file is converted to an equivalent line of XA code. 
Pseudo-ops and directives are translated appropriately. The 
XA assembler is an absolute macro assembler. A debug file 
can be produced that is a superset of the IEEE 695 

Emulator Processors 
The emulator has two microcontrollers. One is the emulation version of the 
XA-G3. The other is an 80C451 which communicates with the host 
computer and emulation device. 

Host Characteristics 
An IBM AT or compatible system running MS Windows 3.1 or later, one 
AS-232 port available for emulator communication. 

Assembler 
The included macro assembler uses factory-specified mnemonics. It is an 
absolute assembler and produces listing, debug (superset of IEEE 695), 
hex and error files. 

Transiator 
The included translator will read ASM51 or similar assembly language source 
and output XA source. code. The translation is done on a line-by-line basis 
and is an aid in porting code between the 8051 family and the XA. 

Emulator interface 
The emulator interface allows full source code and symbolic debugging of 
assembler or compatible high-level languages. The interface reads in either 
hex Object code or a superset of IEEE 695 debug file for symbolic and 
source information. 

All variables may be displayed by name and type. The user may choose 
between hex, ASCII, and decimal displays in most windows. 

The user may specify up to ten breakpoints. These are used during real-time 
emulation. Breakpoints are not inserted during single stepping. 
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Circuit Board 

Standard PC 

RS-232 
User 

PC Host d Cable ... Target 
MS Windows 

.•. ", .,?, .. 

XA Single-Chip Mode 
In-Circuit Emulator 

standard. The emulator and simulator interface are built 
into the development environment. Among the windows 
available are the user's source code and listing file, Watch 
Points, Breakpoints, Registers, CPU values, and SFRs. Any 
values in these windows may be modified by the user. 

The emulator uses an on-board TIL-type canned oscillator to run the XA 
emulation chip. The oscillator supplied with the emulator operates the XA at 
20MHz. The user may replace this with another canned oscillator or crystal 
to run at any desired speed up to 20MHz. 

Emulation Restrictions 
• The user's code may not use the Trace or Breakpoint 

interrupts or vectors 
• Eight words of system stack are used by the emulator 
• Debug restricted to on-Chip code and data 

Six months limited warranty, parts and labor. 

Items :Supplied 
The emulator comes as a complete package including the development 
board/emulator, emulation cable with 25-pin host adapter, 120/220 volt 
power supply, quick-start guide and documentation on line. 

fh·,d."rj,nn information 
Part No. P51XADEMOSD 
Order No. 9352-448-40112 

for more information call your 
IDea! Office or: 
North America: Call 1-408-991-51 XA (5192) 
Europe: Fax 31-40-2724825 
Asia: Fax 852-2811-9173 



80CSIXA 
Software Development Tools 

Software development tools for the XA 

Philips provides standard software development tools for the XA family of microcontrollers. These software tools make up the 
core elements of an integrated development environment urider Microsoft Windows. All three tools also work und~r DOS. They 
consist of a cross-assembler. an assembly language translator. and an architectural software simulator. 

The cross-assembler provides a standard environment for XA programming. The translator allows 80C51 code to be ported to 
the XA. The software simulator acts as an immediately available test-bed for fresh code and provides several levels of errors and 
warnings. 

All three of these tools operate on a PC under Windows or DOS. The programs include hooks for use with development tools 
from third-party vendors. including cross-assemblers. cross-compilers. and performance profilers. 

The assembler/translator/simulator package is available free-of-charge from Philips. along with ensuing releases and updates. via a 
bulletin board system (800-451-6644). Each program incudes context-sensitive help and on-line documentation. 

Philips 
Semiconductors 
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r1,1$00 ;start 
p1ou.w ~1+.,1$00 ;clear 
MiIiM WI.IIMiNil-Iid". 
ret 

; Set up registers 
initJeg: 

P1ou.b r1L,1$56 
p1ou.w r2,1$1234 
ret 

Start of Plain loop 

HOP ADDED 
start: 

call init iraPl 
call init:::reg 
jPlP Plain 

FOR 

;set counter 
;for sys init 

WORD AL I GHMEH' 

HOP ; ** ADDED FOR WORD ALIGHMEK 

start 

©1994 Macraigor Systems, Inc. 

PHILIPS 



Standard XA Assembler 

• Functions as an absolute assembler 

• Supports macro development 

• Available under Windows and DOS (real and protected modes) 

• Defines factory-standard mnemonics 

• Imposes no limit on size of source or object code files 

• Supports a superset of IEEE 69S debug format 

• Provides numerous directives for source code listing 

• Outputs standard object files, list, and error files; compatible with various programmer's editors 

• Provides well-documented output files 

• Includes comprehensive, context-sensitive, on-line help 

80CSI Assembly Code Translator 

• Accepts standard SOCSI code (Intel and MetaLink) 

• Supports all SOCSI derivatives 

• Available under Windows and DOS (real and protected modes) 

• Allows fast and efficient porting of SOCS I code libraries to the standard XA environment 

• Non-invasive direct translation (one XA instruction for each SOCSI instruction) 

• Flags NOPs, and problems associated with timing and code size along with possible optimization opportunities 

• Provides multiple levels of warnings, errors, and hints 

• Provides one-to-one listing of SOCSI input and resulting XA code 

• Provides well-documented output files including SOCSI and XA source code listings; preserves labels and comments 

XA Software Simulator 

• Architectural simulator; covers CPU, one timer, and internal memory 

• Available under Windows and DOS (protected mode) 

• Supports numerous breakpoints, error highlighting, and cycle counting 

• Resettable cycle counter allows simple timing analysis 

• Provides hooks to support performance profiling of source code 

• Reads superset of IEEE 69S debug file format 

• Supports source-level debug for third party compilers 

For more information call, 1·800·447.1500, ext. 1 143 

98-8080-820-0 I ©1994 Philips Electronics North America Corporation. Printed in U.S.A., SP802 IIIOM/SRIII 294 

731 



USP-Sl Key Features 
• Memory display or edit while your 

code is executing in real-time 
• View the trace during execution 
• HLL Debug for C-51 and PUM-5l 
• Pass-point to monitor internal RAM, 

variables, and registers while running 
• Real-time transparent emulation up 

to 40 MHz 
• 32K Frame by 80-bit execution trace 

buffer with time stamp 
• In-line symbolic assembler and 

disassembler 
• Up to 256K of emulation overlay 

program RAM with bank switching 
• Memory map in 256 byte blocks 
• Up to 256K of real-time hardware 

breakpoints 
• Three complex events for trace, 

sample trace, or break 
• Two l6-bit pass counters 
• 8 Level hardware event sequencer 
• 8 Channel user logic state analyzer 
• External trigger input and outputs 
• Performance analysis histogram 
• Wide range of uP pods to emulate most 

8051 family members 
• Windowed and command line user 

interface 
• 115 K-baud serial download, (64K 

program downloads in 14 sec.) 

User Interface 
Designed to work with DOS, IBM-AT, 
386/486 compatible computers, the 
window/menu user interface gives you: 
• ~op-up windows for source, registers 

program, SFR's, trace, stack, setup, 
symbols, locals, and variables watch 

• HLL windows for C-5l and PL/M-5l 
for source level debugging 

• You may define your own watch 
window for complex variables like 
arrays and structures 

• 132 by 60 Display, EGA, VGA 
• Full screen edit with mouse support 
• User defined SFR window 
• Extensive macro program support 
• You can define, save, and recall trigger 

setups, breakpoints, trace, and complex 
events to or from disk 

• Locals window displays all local 
variables automatically 

Complex Events 
A complex event is a set of conditions 
that may be used to qualify emulation 
breakpoints, event sequencer, or trace 
filtering in real time. The system has 
three complex event triggers available 
that may be used for the following: 
• 256K Address breakpoints induding 

within and outside address ranges 
• 16-Bit data pattern with less than, 

greater than, equal, not equal, and 
don't care combinations. 

• Qualify on RD, WR, Int, instruction 
fetch, and operand read 

• External input with programmable 
trigger polarity 

All events may be count qualified or 
delayed by two l6-bit pass counters. 
Events also work with the eight level 
sequencer to trigger from any setof 
events or pass count condition. 

Breakpoints 
Breakpoints are used to stop user 
program execution while preserving the 
current program status. They may be 
combinations of: 
• Register values and internal RAM 
• Addresses and address ranges 
• Complex events 
• Pass counts 
• Sequenced events 
• Trace buffer full 
• External trigger input 

Trace Buffer 
The system trace buffer is a high speed 
RAM that captures activity of the 
microprocessor intenial bus and pins in 
real time. A trace start/stop switch 
allows you to filter unwanted information 
from the captured data. The trace will 
store up to 32K samples, (80 bit frames), 
comprised of the following: 
• Address Bus 
• Data Bus 
• Control signals 
• I/O Pins 
• Time Stamp 
• User logic state input, (8 bits) 

The trace may be started and stopped 
by any combination of: 
• Complex events 
• Pass counts 
• Event sequences 
• Gocommand 
• Trace full condition 

The trace buffer also has a frame counter 
to stop tracing after a specified number of 
frames have been captured. This means 
you may capture as much as 32K of small 
program fragments at full target speed. 

The trace contents can be viewed during 
program execution without stopping 
or slowing down the prototype 
microcontroller. 

Made and supported in the U.S.A. 

SIGNUM SYSTEMS CORP., 171 E. Thousand Oaks Blvd., Thousand Oaks, CA 91360 

Corp tel: (805) 371-4608. FAX (415) 371-4610. EMail Attmail!Signum. Sales tel: (415) 903-2220. FAX (415) 903-2221 
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SPECIFICATIONS 

Mfrs. Target Processors 
All 8031 80C32 80CSI FA 

80C IS4 • 20/30/40 MHz 
All 80C31/328XCSI/S2 

8SCIS4· 16 MHz 
AMD 80C321 • 16 MHz 
AMD-Siemens 80SIS - 80S3S· 12 MHz 
AMD Siemens 80CS3S • 16 MHz 
Intel 80CIS2JA/JB/JC/JD· 16 MHz 
Intel 80CSIGB· 16 MHz 
OKI 8SC154· 30 MHz 
Philips/Signetics 8XC552 • 16/20/24 MHz 
Philips/Signetics 8XC562 • 16/20/24 MHz 
Philips/Signetics 8X652/654 • 24 MHz 
Philips/Signetics 8XC4SI·16MHz 
Philips/Signetics 8XC85 I • 16 MHz 
Philips/Signetics 80C552 • 16/24 MH~ 
Philips/Signetics 80C562 • 16/24 MHz 
Philips/Signetics 80C652/6S4 • 16/24 MHz 
Philips/Signetics 8XC75 I • 16 MHz 
Philips/Signetics 80C851 • 16 MHz 
Siemens 80C515A· 18 MHz 
Siemens 80C517 - 80C537 • 12 MHz 
Siemens 80C517A· 18 MHz 
Siemens CSOI ·40 MHz 
Siemens 80CS37 • 12 MHz 
Silicon Systems K246· 16 MHz 

Source window 

Locals window 

Real-time Trace 

Message line 

171 E. Thousand Oaks Blvd 
Thousand Oaks, CA 91360 
Tel: (805) 371-4608 
FAX: (805) 371-4610 

In-Circuit Pod 
POD31 

PODSI 

POD321 
PODSIS 
PODS3S 
PODIS2 
PODS 1GB 
PODI54 
PODXSS2 
PODX562 
PODX652 
POD4S1 
PODX85I 
PODSS2 
POD562 
POD652 
POD75 I 
POD8S 
POD515A 
POD517 
POD517A 
PODSOI 
PODS37 
POD246 

Model USP-Sl 

In-Circuit Emulators 
Maximum emulation speed 

USP-51 
USP-51-30 
USP-51-40 
USP-51-SS 

Size 
Operating temperature 
Storage temperature 
Operating humidity 
Max. Emulation Program Memory 
Program Memory Mapping 
Data Memory Mapping 
Pass counters 
Trace Buffer 
Event Time Stamp 
Sequencer 
User probe 

Host interface 

File uploadldownloadformat 

20 MHz 
30 MHz 
40 MHz 
30 MHz (Silicon Systems) 
260 x 260 x 64 mm 
Oto 40 C 
-1Ot065C 
Oto 90% 
256K 
256 byte boundary 
256 byte boundary 
2 each, 16 bit 
32 Kframes by 80 bits 
32 bits, 100 ns resolution 
8 level hardware 
8 channel logic input 
1 trigger input with gate 
6 trigger outputs (Events, 
Pass Counters, Sequencer) 
Asynchronous RS-232C, 
9600-115Kbaud, XONIXOFF 
Intel HEXIAOMF, 2400AD, 
Archimedes, BSOITasking, 
Franklin, Keil 

Main menu line 

Status window 

SFR window 

Macro & 
command line 
background 

USP-Sl Screen Example 

EMail: AHmail!Signum 
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SYSTEM GENERAL 

Universal Device Programmers 

SG Family of Universal 
Device Programmers 

* Full range of programming support 
for Low Voltage devices from all 
manufacturers 

* Engineering and Production 
Programmers for EPROMs, 
EEPROMs, FLASH EPROMs, 
PROMs, Microcontrollers, PLDs, 
EPLDs, PALs, GALs, PEELs, 
FPLAs, FPGAs, etc. 

* Stand-alone & PC-remote Programmers 
* AC/DC Parametric testing to provide 

leakage test for ESD 
* Unique patented Features Auto-sense 

and Turbo-mapping provide extremely 
high throughput and optimize yield 

* Patented pin-driver technology 
* Fully certified by most major 

Semiconductor manufacturers 
* Programmer of choice by many of 

the IC Distributors at their 
"Value-Added Programming Centers" 

* Interface to automated handling 
equipment 

* Responsive, reliable technical support 
* Lifetime Free SW Updates Available 

Via BBS 

Contact: 
SYSTEM GENERAL CORPORATION 
1603 A South Main Street 
Milpitas, CA 95035 
Phone: 1-800-967-4 PRO (1-800-967-4776) 

(408) 263-6667 
Fax: (408) 262-9220 

r= SYSTEM 
~GENERAL 
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System General has been manufacturing Device Program­
mers since 1985. In 1989 we began delivering IC Manufac­
turer approved solutions to the U.S. Market. Having become 
the Number 1 Programmer Manufacturer in Asia, we are now 
considered one of the "Big 3" programmer manufacturers in 
the world by the Semi-Houses. We have been meeting high 
volume requirements in harsh environments since inception. 
Every programmer we make must pass a rigid burn-in proce­
dure before being shipped out. 

We offer a full range of programming solutions, so one is 
bound to be the ideal fit for your application. Whether you are 
a design engineer working on the most basic EPROM or PLD 
development, or a manufacturing engineer with a high volume 
requirement for programming Memory or Logic devices, we 
have a very cost effective solution for you. We have also been 
known to custom design our software to customer require­
ments. 

SG's excellent device support and technical support are 
widely renowned in the semiconductor industry. In most cases 
we will be the first programmer manufacturer to support a new 
device release. IC Manufacturer certification means that all the 
Semi-Houses have SG test units to help support our custom­
ers. Our customer references are the best in the business! 

Every System General programmer comes standard with 
our easy-to-use DOS-based control SW, all the cabling you 
need to get started, and an anti-static ground strap. 

Call System General to find out more about the program­
mers that are fast becoming THE NEW industry standard! 

Ordering information (See reverse) 

APRO Single socket Memory Programmer $ 895.00 

APRO· As above. includes CMOS EPLDs $t 295.00 

Turpro-1 Universal IC-Programmer (Level 1) $1695.00 

Turpro-1/FX Universal Production Programmer (Level 1) $2495.00 

Turpro-832 Gang EPROM Programmer $1995.00 

Turpro-832 (Set) Gang/Set EPROM Programmer $2695.00 

Turpro-840 Gang/Set EPROM/Micro Programmer $3995.00 



r= SYSTEM 
L::I GENERAL 

P.O. Box 361898, Milpitas, CA 95036-1898 U.S.A. 
Tel: 408-263-6667/Fax: 408-262-9220/1-800-967-4776 

System General Product 
Comparison Chart 
Programmer User Interface: 

TURPRO-I/TX 
• Universal programmer plus DC 

parametric tester for Memory and 
logic devices 

• Unique leakage current test to 
ensure device quality 

• Interface to Unix, Apple, NEC under 
VT100 modem mode 

• High Speed pin driver for future High 
Speed PlD. 

TURPRO-I/FX 
• Universal Production Pin· Driven IC 

Programmer 
• Drop-in Replacement for Data I/O 

Handler Interface 
• Supports all Device Technologies 

and Packages to 84 Pins and 
beyond 

• Vector Tests PlDs to 44 Pins 
• Parallel Port File Downloads for 

High Speed Transfer 

TURPRO-840 
• Universal Memory/Micro Gang/Set 

Programmer. 8 at a Time 
• Supports 24, 28. 32. 40 & 44 Pin 

Devices in DIP/PlCC 
• Stand-Alone and/or Computer 

Remote Via RS232C From PC 
• Parallel Port File Downloads for 

High Speed Transfer 
• Full Editor in Remote 
• Device Auto-ID. Easy·To·Use 

APRO GANG 

Standalone Programmi ng Operat ions No Yes 

Must have PC to Operate Yes No 

RS232 for Computer Remote Control Yes Opt 
PC Interface Software Yes Opt 
Parallel Port for High Speed Transfer No Opt 

Operates with Device Handler No No 
Programmer Device Support: 
Standard on-board RAM (Bits) 8 MEG N/A 
E/EPROMs (24,28 & 32-pin DIP) Yes Yes 
FLASH EPROMS to 32-pi n DIP Yes Yes 
EPROMs 40-pi n, 16bi t-wi de Yes No 
GANG ElEPROMs to 32-pi n DIP No Yes 

'SET" E/EPROMs to 32-pi n DIP No Opt 
GANG/SET Meomori es to 40-pi n DIP No No 
Sequent i a 1 'SET h Programmi ng Yes N/A 

40-pi n (! nte 1) Mi cros Yes No 
Motorol a Mi cros No No 
Bi pol ar RPOMs to 24-pi n DIP No No 
PLDs to 28-pi n 0 I P No No 
PLDs to 40-pi n DIP No No 
PLDs to 84-pi n (& beyond) No No 
Single PLCC Device Options Yes Opt 
GANG PLCC E/EPROM Opt ions N/A Opt 
Programmer Architecture: 
Pi n Dri ver Archi tecture Yes Yes 
Turbo Ma ppi ng Techno logy Yes Yes 
Fast EPROM Programmi ng Speeds Yes Yes 
Auto Sense Feature Yes Yes 
Programmer Price: $895 $1995 
Level Upgrade N/A $ 700 

T-832 

SET T-840 

Yes Yes 

No No 

Yes Yes 

Yes Yes 
Yes Yes 

No Yes 

8 MEG 8 MEG 

Yes Yes 

Yes Yes 

No Yes 

Yes Yes 

Yes Yes 

No Yes 

N/A N/A 

No Yes 

No No 

No No 

No No 

No No 

No No 

Yes Yes 

Yes Yes 

Yes Yes 
Yes Yes 

Yes Yes 

Yes Yes 

$2695 $3995 
N/A N/A 

Call Us Now For Turnkey Solutions 
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TURPRO-832 
• Universal Memory Gang/Set 

Programmer, 8 at a Time 
• Supports 24, 28 & 32 Pin Devices in 

DIP/PlCC 
• Stand-Alone and/or Computer 

Remote Via RS232C From PC 
• Parallel Port Fde Downloads for 

High Speed Transfer 
• Full Editor in Remote 
• Device Auto-ID, Easy-To·Use 

TURPRO-I 
• Universal Engineering Pin· Driven IC 

Programmer 
• Drop-In Replacement for Data I/O 
• Supporls All Device Technologies 

and Packages to 84 Pins and 
beyond 

• Vector Test PlDs to 44 Pins 

APRO 
• U'niversal Engineering Memory/ 

Micro Programmer 
• Supports 24, 28, 32, 40 & 44 Pin 

Devices In DIP/PlCC 
• Computer Remote Via RS232C 

From PC at 115.2K Baud 
• Full Editor 
• Device Auto-ID, Easy· To-Use 
• Only $895. Optional EPlD Support 

for $1,295 

T-1 T-1/FX 

No No 

Yes Yes 

Yes Yes 

Yes Yes 

No Yes 

No Yes 

256K 8 MEG 

Yes Yes 

lEVII lEVII 

Yes Yes 

No No 

No No 

No No 

Yes Yes 

Yes Yes 

No Yes 

lEV II lEV II 

lEV I lEV I 

lEV II lEVII 

lEVlII lEVIII 

Yes Yes 

N/A N/A 

Yes Yes 

Yes Yes 

No Yes 

Yes Yes 

$1695 $2495 

$600 EA $800 EA 
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Philips Semiconductors Section 8 
Package Information 

CONTENTS 

Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 739 

LQFP44: plastic low profile quad flat package; 
44 leads; body 10 x 10 x 1.4 mm ...................... SOT389-1 741 

PLCC44: plastic leaded chip carrier; 44 leads ................... SOT187-2 742 

44-pin CerQuad J-Send (K) Package .................. 1472A ......... 743 

TQFP44: plastic thin quad flat package; 
44 leads; body 10 x 10 x 1.0 mm ...................... SOT376-1 744 

LQFP64: plastic low profile quad flat package; 64 leads; 
body 10 x 10 x 1.4 mm .............................. SOT314-2 745 

PLCC68: plastic leaded chip carrier; 68 leads ................... SOT188-2 746 

PLCC68: plastic leaded chip carrier; 68 leads; pedestal ........... SOT188-3 747 
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Philips Semiconductors 

Package information 

INTRODUCTION 
There is no soldering method that is ideal for all IC packages. Wave 
soldering is often preferred when though-hole and surface mounted 
components are mixed on one printed-circuit board. However, wave 
soldering is not always suitable for surface mounted ICs, or for 
printed-circuits with high population densities. In these situations 
reflow soldering is often used. 

This text gives a very brief insight to a complex technology. A more 
in-depth account of soldering ICs can be found in our "Ie Package 
Oatabook" (order code 9398 652 90011). 

THROUGH-HOLE MOUNTED PACKAGES 

Table 1. Types of through-hole mounted packages 

TYPE DESCRIPTION 

DIP plastic dual in-line package 

SDIP plastic shrink dual in-line package 

HDIP plastic heat-dissipating dual in-line package 

DBS plastic dual in-line bent from a single in-line package 

SIL plastic single in-line package 

Soldering by dipping or wave 
The maximum permissible temperature of the solder is 260°C; 
solder at this temperature must not be in contact with the joint for 
more than 5 seconds. The total contact time of successive solder 
waves must not exceed 5 seconds. 

The device may be mounted to the seating plane, but the 
temperature of the plastic body must not exceed the specified 
maximum storage temperature (T519 max). If the printed-circuit board 
has been pre-heated, forced cooling may be necessary immediately 
after soldering to keep the temperature within the permissible limit. 

Repairing soldered joints 
Apply a low voltage soldering iron (less than 24V) to the lead(s) of 
the package, below the seating plane or not more than 2mm above 
it. If the temperature of the soldering iron bit is less than 300°C it 
may remain in contact for up to 10 seconds. If the bit temperature is 
between 300 and 400°C, contact may be up to 5 seconds. 
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Soldering 

SURFACE MOUNTED PACKAGES 

Table 2. Types of surface mounted packages 

TYPE DESCRIPTION 

SO plastic small outline package 

SSOP plastic shrink small outline package 

TSSOP plastic thin shrink small outline package 

VSO plastic very small outline package 

QFP plastic quad flat package 

LQFP plastic low profile quad flat package 

SQFP plastic shrink quad flat package 

TQFP plastic thin quad flat package 

PLCC plastic leaded chip carrier 

Reflow soldering 
Reflow soldering techniques are suitable for all SMD packages, 
ease of soldering varies with the type of package as indicated in 
Table 3. 

The choice of heating method may be indluenced by larger plastic 
packages (QFP or PLCC with 44 leads, or more). If infrared or vapor 
phase heating is used and the large packages are not absolutely dry 
(less than 0.1 % moisture content by weight), vaporization of the 
small amount of moisture in them can cause cracking of the plastic 
body. For more information on moisture prevention, refer to the 
Drypack chapter in our "Quality Reference Manual" 
(order code 9398 510 63011). 

Reflow soldering requires solder paste (a suspension of fine solder 
particles, flux and binding agent) to be applied to the printed-circuit 
board by screen printing, stenciling or pressure-syringe dispensing 
before package placement. 

Several techniques exist for reflowing; for example, thermal 
conduction by heated belt. Dwell times vary between 50 and 
300 seconds depending on heating method. Typical reflow 
temperatures range from 215 to 250°C. 

Preheating is necessary to dry the paste and evaporate the binding 
agent. Preheating duration: 45 minutes at 45°C. 
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Package information Soldering 

Table 3. Suitability of surface mounted packages for various soldering methods 
Rating from 'a' to 'd': 'a' indicates most suitable (soldering is not difficult); 'd' indicates least suitable (soldering is achievable with difficulty). 

REFlOW METHOD DOUBLE WAVE 
TYPE 

INFRARED HOT BELT HOT GAS 

SO a a a 

SSOP a a a 

TSSOP b b b 

VSO b b a 

OFP b b a 

LOFP b b a 

SOFP b b a 

TOFP b b a 

PLCC c b b 

Wave soldering 
Wave soldering is not recommended for SSOP, TSSOP, OFP, 
LOFP, SQFP or TOFP packages. This is because of the likelihood of 
solder bridging due to closely-spaced leads and th'e possibility of 
incomplete solder penetration in multi-lead devices. 

If wave soldering cannot be avoided, the following conditions must 
be observed: 

• A double-wave (a turbulent wave with high upward pressure 
followed by a smooth laminar wave) soldering technique should 
be used. 

• For SSOP, TSSOP and VSO packages, the longitudinal axis of 
the package footprint must be parallel to the solder flow and must 
incorporate solder theives at the downstream end. 

• For OFP, LOFP and TOFP packages, the footprint must be at and 
angle of 45° to the board direction and must incorporate solder 
thieves downstream and at the side corners. 

Even with these conditions, only consider wave soldering for the 
following package types: 

• SO 

·VSO 

• PLCC 

• SSOP only with body width 4.4mm, e.g., SSOP16 (SOT369-1) 
or SSOP20 (SOT266-1). 

• OFP except OFP52 (SOT379-1), OFP100 (SOT317-1, SOT317-2 
and SOT382-1) and OFP160 (SOT322-1); these are not suitable 
for wave soldering. 

• LOFP except LOFP32 (SOT401-1), LOFP48 (SOT313-1, 
SOT313-2), LOFP64 (SOT314-2), LOFP80 (SOT315-1); these 
are not suitable for wave soldering. 

• TOFP except TOFP64 (SOT357-1), TOFP80 (SOT375-1) and 
TOFP100 (SOT386-1); these are not suitable for wave soldering. 

SOFP are not suitable for wave soldering. 
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VAPOR PHASE RESISTANCE METHOD 

a d a 

c d c 

c d d 

b a b 

c a c 

c d d 

c d d 

c d d 

d d b 

During placement and before soldering, the package must be fixed 
with a droplet of adhesive. The adhesive can be applied by screen 
printing, pin transfer or syringe dispensing. The package can be 
soldered after the adhesive is cured. 

Maximum permissible solder temperature is 260°C, and maximum 
duration of package immersion in solder is 10 seconds, if cooled to 
less than 150°C within 6 seconds. Typical dwell time is 4 seconds at 
250°C. 

A mildly-activated flux will eliminate the need for removal of 
corrosive residues in most applications. 

Repairing soldered joints 
Fix the component by first soldering two diagonally-opposite end 
leads. Use only a low voltage soldering iron (less than 24V) applied 
to the flat part of the lead. Contact time must be limited to 
10 seconds at up to 300°C. When using a dedicated tool, all other 
leads can be soldered in one operation within 2 to 5 seconds at 
between 270 and 320°C. 
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Package outlines 

LQFP44: plastic low profile quad flat package; 44 leads; body 10 x 10 x 1.4 mm SOT389-1 

33 

i 231!1 
--t:::J::::3I-- - -- - + ------lEEl-- E HE 

34 

~-------HD------~'-;~~~~ 

o 2.5 5 mm 
I",! I" t, I 

scale 

DIMENSIONS (mm are the original dimensions) 

A 0(1) E(1) Zo(1) ZE(1) UNIT max. A1 A2 A3 b p c e Ho HE L Lp Q v w y e 

mm 1.60 0.15 1.45 
0.25 

0.45 0.20 10.10 10.10 
0.80 

12.15 12.15 
1.0 

0.75 0.70 
0.20 0.20 0.10 

1.14 1.14 7° 
0.05 1.35 0.30 0.12 9.90 9.90 11.85 11.85 0.45 0.57 0.85 0.85 0° 

Note 

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. 

OUTLINE REFERENCES EUROPEAN 
VERSION I I I PROJECTION ISSUE DATE 

IEC JEDEC EIAJ 

SOT389-1 I I I £3-$ 95-12-19 

1995 Dec 19 741 
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Package outlines 

PLCC44: plastic leaded chip carrier; 44 leads 

I 

-----+-----pin 1 index I 

I 
I 

I 

'-"------0-------+1--1 
,4--------Ho-------~~§I~~D 

5 
I 

scale 

10mm 
I 

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions) 

UNIT A Al 
A3 

A4 b p b l 
0(1) E(l) e eO eE Ho HE k 

min. max. 

mm 4.57 
0.51 0.25 3.05 0.53 0.81 16.66 16.66 

1.27 
16.00 16.00 17.65 17.65 1.22 

4.19 0.33 0.66 16.51 16.51 14.99 14.99 17.40 17.40 1.07 

inches 
0.180 

0.020 0.Q1 0.12 0.021 0.032 0.656 0.656 
0.05 

0.630 0.630 0.695 0.695 0.048 
0.165 0.013 0.026 0.650 0.650 0.590 0.590 0.685 0.685 0.042 

Note 

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included. 

OUTLINE REFERENCES 

VERSION IEC I JEDEC I EIAJ I 
80T187·2 112El0 I MO-047AC I I 

1995 Feb 25 742 

50T187-2 

kl Lp v w y 
ZO(l) ZE(l) 

~ max. max. max. 

0.51 1.44 
0.18 0.18 0.10 2.16 2.16 1.02 

45° 

0.020 0.057 
0.007 0.007 0.004 0.085 0.040 0.085 

EUROPEAN 
PROJECTION ISSUE DATE 

-E3~ ~ 95-02-25 
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SEE DETAILA 
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SEATINGn 
PLANE 
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0.73 ± 0.08 (0.029 ± 0.003) 

45°TYP. 
4 PLACES 

I--- 0.482 (0.019 ± 0.002) 

DETAIL A 
TYP. ALL SIDES 

mm/(inch) 

NOTES: 
1. All dimensions and tolerances to conform 

to ANSI Y14.5-1982. 

~ UV window is optional. 

~ Dimensions do not include glass protrusion. 
Glass protrusion to be 0.005 inches maximum 
on each side. 

4. Controlling dimension millimeters. 

5. All dimensions and tolerances include 
lead trim offset and lead plating finish. 

& Backside solder relief is optional and 
dimensions are for reference only. 
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Package outlines 

TQFP44: plastic thin quad flat package; 44 leads; body 10 x 10 x 1.0 mm SOT376·1 

+di (( bJ4 H H H er H H m-u )) \6 

I 
I 

I 
I 

I 
I 

~~-----+------
I 

I 

~--------------HD---------------"~-L-L~~ 

DIMENSIONS (mm are the original dimensions) 

A 
UNIT max. Al A2 A3 bp c 

mm 1.2 0.15 1.05 
0.25 

0.45 0.18 
0.05 0.95 0.30 0.12 

Note 

0(1) E(l) 

10.1 10.1 
9.9 9.9 

o 
I 

e 

0.8 

2.5 
, I , 

scale 

Ho HE 

12.15 12.15 
11.85 11.85 

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. 

OUTLINE REFERENCES 

VERSION IEC I JEDEC I EIAJ I 
SOT376-1 I I I 

1996 Apr02 744 

5mm 
, I 

I- I-p Q v w y Zo(l) ZE(l) e 

1.0 
0.75 0.50 

0.2 0.2 
1.2 1.2 7° 

0.45 0.36 0.1 
0.8 0.8 0° 

EUROPEAN 
PROJECTION ISSUE DATE 

E3~ ~ 96-04-02 
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Package outlines 

LQFP64: plastic low profile quad flat package; 64 leads; body 10 x 10 x 1.4 mm 

48 

49 

----------~I~~B 

1-----------HD----------~~~~~I-v@~IB~1 

o 2.5 5 mm 
L..' ..... , ................ L..' ......... ....o.......Jw' 

scale 

DIMENSIONS (mm are the original dimensions) 

UNIT 
A 

Al A2 A3 b p 0(1) E(l) 
max. c e Ho HE L 

mm 1.60 0.20 1.45 
0.25 

0.27 0.18 10.1 10.1 12.15 12.15 
0.05 1.35 0.17 0.12 9.9 9.9 0.5 11.85 11.85 

1.0 

Note 

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included. 

OUTLINE REFERENCES 

VERSION IEC I JEDEC I EIAJ I 
50T314-2 I I I 

1995 Dec 19 745 

Lp Q v w y 

0.75 0.69 
0.45 0.59 

0.2 0.12 0.1 

EUROPEAN 
PROJECTION 

-E3@ 

SOT314-2 

ZO(l) ZE(l) e 

1.45 1.45 7° 
1.05 1.05 0° 

ISSUE DATE 

~ 

95-12-19 
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Package outlines 

PLCC68: plastic leaded chip carrier; 68 leads SOT188-2 

1 
I 

1 
I 

______ 1 ______ _ 

I 

1 
I 

1 
I 

1 

~--------------D---------------.~ 

~-----------HD------------~~~~~ 

5 10mm 
! , I 

scale 

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions) 

UNIT A A1 
A3 

A4 b p b 1 
0(1) E(1) e eo eE Ho HE k k1 Lp v w y ZO(1) ZE(1) 

~ min. max. max. max. max. 

mm 4.57 
0.51 0.25 3.30 

0.53 0.81 24.33 24.33 
1.27 

23.62 23.62 25.27 25.27 1.22 0.51 1.44 
0.18 0.18 0.10 2.16 2.16 4.19 0.33 0.66 24.13 24.13 22.61 22.61 25.02 25.02 1.07 1.02 

45° 

inches 
0.180 

0.020 0,01 0.13 
0.021 0.032 0.958 0.958 

0.05 
0.930 0.930 0.995 0.995 0.048 

0.020 
0.057 

0.007 0.007 0.004 0.085 0.085 0.165 0.013 0.026 0.950 0.950 0.890 0.890 0.985 0.985 0.042 0.040 

Note 

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included. 

OUTLINE REFERENCES EUROPEAN 
VERSION I I I PROJECTION ISSUE DATE 

IEC JEDEC EIAJ 

SOT188-2 112E10 I MO-047AC 
I I E3<W> ~ 95-03-11 

1995 Mar 11 746 
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Package outlines 

PLCC68: plastic leaded chip carrier; 68 leads; pedestal SOT188-3 

€:n~n~ u u u u 
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pi~ 1 index I I 
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\. 1 I 
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141---------D --------~M-l 

14---------------HD--------------~ 

A 

5 10mm 
, I , I 

scale 

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions) 

UNIT A A1 
A3 

A4 
b p b 1 

0(1) E(1) e eO eE Ho HE 
min. max. 

mm 4.57 
0.13 0.25 3.05 

0.53 0.81 24.33 24.33 
1.27 

23.62 23.62 25.27 25.27 
4.19 0.33 0.66 24.13 24.13 22.61 22.61 25.02 25.02 

inches 
0.180 

0.005 0.01 0.12 
0.021 0.032 0.958 0.958 

0.05 
0.930 0.930 0.995 0.995 

0.165 0.013 0.026 0.950 0.950 0.890 0.890 0.985 0.985 

Note 

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included. 

OUTLINE REFERENCES 

VERSION IEC I JEDEC I EIAJ I 
SOT188-3 112E10 I MO·047AE I I 

1995 Feb 25 747 

k £IJ Lp v w y 
ZO(1) ZE(1) 

13 max. max. 

1.22 15.34 1.44 
0.18 0.18 0.10 1.07 15.19 1.02 2.06 2.06 

45° 
0.048 0.604 0.057 

0.007 0.007 0.004 0.042 0.598 0.040 0.081 0.081 

EUROPEAN 
PROJECTION 

ISSUE DATE 

-E3<W> ~ 95-02-25 
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DATA HANDBOOK SYSTEM 
Philips Semiconductors data handbooks contain all pertinent 
data available at the time of publication and each is revised 
and reissued regularly. 

Loose data sheets are sent to subscribers to keep them 
up-to-date on additions or alterations made during the 
lifetime of a data handbook. 

Catalogs are available for selected product ranges (some 
catalogs are also on floppy discs). 

Our data handbook titles are listed here. 

Integrated Circuits 

Book Title 

IC01 

IC02 

IC03 

IC04 

IC05 

IC06 

IC11 

IC12 

IC13 

IC14 

IC15 

IC16 

IC17 

IC1S 

IC19 

IC20 

IC22 

IC23 

IC24 

Semiconductors for Radio and Audio Systems 

Semiconductors for Television and Video Systems 

Semiconductors for Wired Telecom Systems 

HE4000B Logic Family CMOS 

Advanced Low-power Schottky (ALS) Logic 

High-speed CMOS Logic Family 

General-purpose/Linear ICs 

12C Peripherals 

Programmable Logic Devices (PLD) 

S04S-based S-bit Microcontrollers 

FAST TTL Logic Series 

CMOS ICs for Clocks and Watches 

Semiconductors for Wireless Communications 

Semiconductors for In-Car Electronics 

ICs for Data Communications 

SOC51-based S-bit M icrocontrollers 

Multimedia ICs 

BiCMOS Bus Interface Logic 

Low Voltage CMOS & BiCMOS Logic 

IC25 16-bit SOC51XA Microcontrollers 
(eXtended Architecture) 

IC26 IC Package Databook 

IC27 Complex Programmable Logic Devices 

1997 Mar27 750 

Data handbook system 

Discrete Semiconductors 

Book Title 

SC01 Small-signal and Medium-power Diodes 

SC02 Power Diodes 

SC03 Thyristors and Triacs 

SC04 Small-signal Transistors 

SC05 Video Transistors and Modules for Monitors 

SC06 High-voltage and Switching NPN Power 
Transistors 

SC07 Small-signal Field-effect Transistors 

SCOSa RF Power Transistors for HF and VHF 

SCOSb RF Power Transistors for UHF 

SC09 RF Power Modules and Transistors for Mobile 
Phones 

SC13a Power MaS Transistors 
including TOPFETs and IGBTs 

SC13b Small-signal and Medium-power MaS Transistors 

SC14 RF Wideband Transistors 

SC15 Microwave Transistors (new version planned) 

SC16 Wideband Hybrid IC Modules 

SC17 Semiconductor Sensors 

Professional Components 

PC06 Circulators and Isolators 

MORE INFORMATION FROM PHILIPS SEMICONDUCTORS? 
For more information about Philips Semiconductors data 
handbooks, catalogs and subscriptions, contact your nearest 
Philips Semiconductors national organization, select from 
the address list on the back cover of this handbook. 
Product specialists are at your service and inquiries are 
answered promptly. 
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OVERVIEW OF PHILIPS COMPONENTS 
DATA HANDBOOKS 
Our sister product division, Philips Components, also has a 
comprehensive data handbook system to support their 
products. Their data handbook titles are listed here. 

Display Components 

Book Title 

DC01 Colour Television Tubes 

DC02 Monochrome Monitor Tubes and Deflection Units 

DC03 Television Tuners, Coaxial Aerial Input 
Assemblies 

DC04 Colour Monitor Tubes 

DC05 Flyback Transformers, Mains Transformers and 
General-purpose FXC Assemblies 

Magnetic Products 

MA01 Soft Ferrites 

MA03 Piezoelectric Ceramics 
Specialty Ferrites 

MA04 Dry-reed Switches 

Passive Components 

PA01 Electrolytic CapaCitors 

PA02 Varistors, Thermistors and Sensors 

PA03 Potentiometers 

PA04 Variable Capacitors 

PA05 Film Capacitors 

PA06 Ceramic Capacitors 

PA08 Fixed Resistors 

PA10 Quartz Crystals 

PA11 Quartz Oscillators 

1997 Mar 27 751 

Data handbook system 

MORE INFORMATION FROM PHILIPS 
COMPONENTS? 
For more information contact your nearest Philips 
Components national organizaiton shown in the following list. 

Argentina: BUENOS AIRES, Tel. (01) 786 7635, Fax. (01) 786 9367. 
Australia: NORTH RYDE, Tel. (02) 98054455, Fax. (02) 98054466. 
Austria: WIEN, Tel. (01) 601 011241, Fax. (01) 601011211. 
Belarus: MINSK, Tel. (5172) 200 915, Fax. (5172) 200773. 
Benelux: EINDHOVEN, Tel. (+31 40) 2783 749, Fax. (+31 40) 2788 399. 
Brazil: SAO PAULO, Tel. (011) 8212333, Fax (011) 8291849. 
Canada: SCARBOROUGH, Tel. (0416) 292 5161, Fax. (0416) 754 6248. 
China: SHANGHAI, Tel. (021) 6485 0600, Fax. (021) 6485 5615. 
Columbia: BOGOTA, Tel. (01) 3458713, Fax (01) 345 8712. 
Denmark: COPENHAGEN, Tel. (32) 883 333, Fax. (31) 571 949. 
Finland: ESPOO, Tel. 9 (0)-615 800, Fax. 9 (0)·615 80510. 
France: SURESNES, Tel. (01) 4099 6161, Fax, (01) 4099 6427. 
Germany: HAMBURG, Tel. (040) 2489-0, Fax. (040) 24891400. 
Greece: TAVROS, Tel. (01) 4894 339/(01) 4894 239, Fax. (01) 4814 240. 
Hong Kong: KOWLOON, Tel. 2784 3000, Fax. 2784 3003. 
India: BOMBAY, Tel. (022) 4938 541, Fax. (022) 4938 722. 
Indonesia: JAKARTA, Tel. (021) 520 1122, Fax. (021) 520 5189. 
Ireland: DUBLIN, Tel. (01) 7640203, Fax. (01) 76 40 210. 
Israel: TEL AVIV, Tel (03) 6450444, Fax. (03) 6491 007. 
Italy: MILANO, Tel. (02) 6752 2531, Fax. (02) 67522557. 
Japan: TOKYO, Tel. (03) 3740 5028, Fax. (03) 3740 0580. 
Korea (Republic of): SEOUL, Tel. (02) 7091472, Fax. (02) 7091480. 
Malaysia: PULAU PINANG, Tel. (04) 657 0055, Fax. (04) 656 5951. 
Mexico: EL PASO, Tel. (915) 7724020, Fax. (915) 7724332. 
New Zealand: AUKLAND, Tel. (09) 8494160, Fax. (09) 849 7811. 
Norway: OSLO, Tel. (22) 748000, Fax (22) 748341. 
Pakistan: KARACHI, Tel. (021) 5874641-49, Fax. (021) 577 035/(021) 5874546. 
Philippines: MANILA, Tel. (02) 816 6380, Fax. (02) 817 3474. 

Poland: WARSZAWA, Tel. (022) 612 2594, Fax. (022) 6122327. 
Portugal: LlNDA-A-VELHA, Tel. (01) 416 3160/416 3333, 
Fax. (01) 416 3174/416 3366. 
Russia: MOSCOW, Tel (095) 247 9124, Fax. (095) 247 9132. 
Singapore: SINGAPORE, Tel. 3502000, Fax. 3551758. 
South Africa: JOHANNESBURG, Tel. (011) 470 5911, Fax. (011) 470 5494. 

Spain: BARCELONA, Tel. (93) 301 63 12, Fax. (93) 301 4243. 
Sweden: STOCKHOLM, Tel. (+46) 86322000, Fax. (+46) 8 632 2745. 
Switzerland: ZORICH, Tel. (01) 488 2211, Fax. (01) 48177 30. 

Taiwan: TAIPEI, Tel. (02) 3887666, Fax. (02) 382 4382. 
Thailand: BANGKOK, Tel. (02) 745 4090, Fax. (02) 398 0793. 
Turkey: ISTANBUL, Tel. (0212) 279 2770, Fax. (0212) 282 6707. 
Ukraine: KIEV, Tel (044) 268 7327, Fax. (044) 268 6323. 
United Kingdom: DORKING, Tel. (01306) 512000, Fax. (01306) 512 345. 
United States: 
• JUPITER, FL, Tel. (561) 745 3300, Fax. (561) 745 3600. 
• ANN ARBOR, MI, Tel. (313) 996 9400, Fax. (313) 761 2776. 
• SAUGERTIES, NY, Tel. (914) 246 2811, Fax (914) 246 0487. 
Uruguay: MONTEVIDEO, Tel. (02) 704 044, Fax (02) 920 601. 

For all other countries apply to: 
Philips Components. 
Marketing Communications, 
P.O. Box 218, 
5600 MD, EINDHOVEN, The Netherlands 
Fax. +31-40-2724547. 
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North American Sales Offices, Representatives 
and Distributors 

PHILIPS ILLINOIS Charlotte 
SEMICONDUCTORS Itasca Elcom,. Inc. 
811 East Arques Avenue Philips Semiconductors Phone: (704) 543-1229 

P.O. Box 3409 Phone: (708) 250-0050 

Sunnyvale, CA 94088-3409 Schaumburg 
Raleigh 

Elcom, Inc. 

ALABAMA 
Micro-Tex, Inc. Phone: (919) 743-5200 
Phone: (708) 885-8200 

Huntsville OHIO 
Philips Semiconductors INDIANA Columbus 
Phone: (205) 464-0111 Indianapolis Great Lakes Group, Inc. 

(205) 464-9101 Mohrfield Marketing, Inc. Phone: (614) 885-6700 

Elcom, Inc. 
Phone: (317) 546-6969 

Kettering 
Phone: (205) 830-4001 Kokomo Great Lakes Group, Inc. 

Philips Semiconductors Phone: (513) 298-7322 
ARIZONA Phone: (765) 459-5355 
Scottsdale Solon 

Thom Luke Sales, Inc. MARYLAND Great Lakes Group, Inc. 
Phone: (602) 451-5400 Columbia Phone: (216) 349-2700 

TemRe 
Third Wave Solutions, Inc. OREGON 

P ilips Semiconductors 
Phone: (410) 290-5990 Beaverton 

Phone: (602) 820-2225 MASSACHUSETTS Philips Semiconductors 

CALIFORNIA Chelmsford Phone: (503) 627-0110 

Calabasas 
JEBCO Western Technical Sales 

Philips Semiconductors 
Phone: (508) 256-5800 Phone: (503) 644-8860 

Phone: (818) 880-6304 Westford PENNSYLVANIA 
Centaur Corporation Philips Semiconductors Erie 
Phone: (818) 878-5800 Phone: (508) 692-6211 S-J Associates, Inc. 

Irvine MICHIGAN 
Phone: (216) 888-7004 

Philips Semiconductors Novi Hatboro 
Phone: (714) 453-0770 Philips Semiconductors Delta Technical Sales, Inc. 

Phone: (810) 347-1700 Phone: (215) 957-0600 
Centaur Corporation 

Mohrfield Marketing, Inc. Pittsburgh Phone: (714) 261-2123 
Phone: (810) 380-8100 S-J Associates, Inc. 

Loomis Phone: (216) 349-2700 
B.A.E. Sales, Inc. MINNESOTA 
Phone: (916) 652-6777 Bloomington TENNESSEE 

San Diego 
High Technology Sales Dandridge 
Phone: (612) 844-9933 Philips Semiconductors 

Philips Semiconductors Phone: (615) 397-5053 
Phone: (619) 560-0242 MISSOURI 

TEXAS Bridgeton San Jose Centech, Inc. Austin 
B.A.E. Sales, Inc. Phone: (314) 291-4230 Philips Semiconductors 
Phone: (408) 452-8133 Phone: (512) 339-9945 

Sunnyvale Raytown 
OM Associates Centech, Inc. Philips Semiconductors 

Phone: (816) 358-8100 Phone: (512) 794-9971 
Phone: (408) 991-3737 

COLORADO NEW JERSEY Houston 
Philips Semiconductors 

Englewood Toms River Phone: (281) 999-1316 
Philips Semiconductors Philips Semiconductors 
Phone: (303) 792-9011 Phone (908) 505-1200 OM Associates 

(908) 240-1479 Phone: (713) 376-6400 
Thom Luke Sales, Inc. 

NEW YORK Richardson Phone: (303) 649-9717 
Ithaca Philips Semiconductors 

CONNECTICUT Bob Dean, Inc. Phone: (972) 644-1610 
Wallingford Phone: (607) 257-0007 (972) 705-9555 

JEBCO 
OM Associates Phone: (203) 265-1318 Rockville Centre 

S-J Associates Phone: (972) 690-6746 
FLORIDA Phone: (516) 536-4242 UTAH Clearwater 

Conley and Assoc., Inc. Wappingers Falls Salt Lake City 
Phone: (813) 572-8895 Philips Semiconductors Electrodyne 

Phone: (914) 297-4074 Phone: (801) 264-8050 
Oviedo 

WASHINGTON Conley and Assoc., Inc. Bob Dean, Inc. 
Phone: (407) 365-3283 Phone: (914) 297-6406 Bellevue 

Western Technical Sales 
GEORGIA NORTH CAROLINA Phone: (206) 641-3900 
Norcross Cary Spokane 

Elcom, Inc. Philips Semiconductors Western Technical Sales 
Phone: (770) 447-8200 Phono (919) 462 1332 Phone: (509) 922-7600 
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WISCONSIN 
Waukesha 

Micro-Tex, Inc. 
Phone: (414) 542-5352 

CANADA 
PHILIPS 
SEMICONDUCTORS 
CANADA, LTD. 

Calgary, Alberta 
Philips Semiconductors! 

Components, Inc. 
Phone: (403) 735-6233 

Tech-Trek, Ltd. 
Phone: (403) 241-1719 

Kanata, Ontario 
Philips Semiconductors 
Phone: (613) 599-8720 

Tech-Trek, Ltd. 
Phone: (613) 599-8787 

Montreal, Quebec 
Philips Semiconductors! 

Components, Inc. 
Phone: (514) 956-2134 

Mississauga, Ontario 
Tech-Trek, Ltd. 
Phone: (416) 238-0366 

Richmond, B.C. 
Tech-Trek, Ltd. 
Phone: (604) 276-8735 

Scarborough, Ontario 
Philips Semiconductors! 

Components, Ltd. 
(416) 292-5161 

Ville St. Laurent, Quebec 
Tech-Trek, Ltd. 
Phone: (514) 337-7540 

MEXICO 
Anzures Section 

Philips Components 
Phone: +9-5 (800)234-7381 

EIPaso,TX 
Philips Components 
Phone: (915) 775-4020 

PUERTO RICO 
Caguas 

Mectron Group 
Phone: (809) 746-3522 

DISTRIBUTORS 
Contact one of our 
local distributors: 
Allied Electronics 
Anthem Electronics 
Arrow/Schweber Electronics 
Future Electronics 
Hamilton Hallmark 
Marshall Industries 
Newark Electronics 
Penstock 
Richardson Electronics 
Zeus Electronics 
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Philips Semiconductors - a worldwide company 

Argentina: see South America 
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113, 
Tel. +61 298054455, Fax. +61 298054466 
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, 
Tel. +43 1 60101, Fax. +431 601011210 
Belarus: Hotel Minsk Business Center, Bid. 3, r. 1211, Volodarski Str. 6, 
220050 MINSK, Tel. +375 172200733, Fax. +375 172 200 773 
Belgium: see The Netherlands 
Brazil: see South America 
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 
51 James Bourchier Blvd., 1407 SOFIA, 
Tel. +359 2 689 211, Fax. +3592689102 
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, 
Tel. +1 8002347381 
ChinaiHong Kong: 501 Hong Kong Industrial Technology Centre, 
72 Tat Chee Avenue, Kowloon Tong, HONG KONG, 
Tel. +85223197888, Fax. +852 2319 7700 
Colombia: see South America 
Czech Republic: see Austria 
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, 
Tel. +45 32 88 2636, Fax. +4531 570044 
Finland: Sinikalliontie 3, FIN-02630 ESPOO, 
Tel. +358 9 615800, Fax. +358 9 61580920 
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, 
Tel. +331 40996161, Fax. +33140996427 
Germany: Hammerbrookstra~e 69, D-20097 HAMBURG, 
Tel. +494023 53 60, Fax. +4940 23 536 300 
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS, 
Tel. +30 14894339/239, Fax. +30 14814240 
Hungary: see Austria 
India: Philips INDIA Ltd., Shivsagar Estate, A Block, Dr. Annie Besant Rd., 
Worli, MUMBAI400 018, Tel. +91 224938 541, Fax. +91 224938 722 
Indonesia: see Singapore 
Ireland: Newstead, Clonskeagh, DUBLIN 14, 
Tel. +353 1 7640 000, Fax. +353 1 7640200 
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, 
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007 
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 
20124 MILANO, Tel. +39 2 6752 2531, Fax. +3926752 2557 
Japan: Philips Bldg. 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, 
Tel. +81 337405130, Fax. +81 337405077 
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, 
Tel. +82 2 7091412, Fax. +8227091415 
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, 
Tel. +6037505214, Fax. +6037574880 
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, 
Tel. +9-5 800 234 7381 
Middle East: see Italy 

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB, 
Tel. +31 402782785, Fax. +31 402788399 
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, 
Tel. +6498494160, Fax. +64 9 849 7811 
Norway: Box 1, Manglerud 0612, OSLO, 
Tel. +4722748000, Fax. +4722748341 
Philippines: Philips Semiconductors Philippines Inc., 
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, 
Metro MANILA, Tel. +6328166380, Fax. +63 2 8173474 
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA, 
Tel. +48226122831, Fax. +48226122327 
Portugal: see Spain 
Romania: see Italy 
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW, 
Tel. +70957556918, Fax +7 095 755 6919 
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231, 
Tel. +65350 2538, Fax. +65251 6500 
Slovakia: see Austria 
Slovenia: see Italy 
South Africa: SA PHILIPS Ply Ltd., 195-215 Main Road Martindale, 
2092 JOHANNESBURG, P.O. Box 7430, Johannesburg 2000, 
Tel. +27114705911, Fax. +2711 4705494 
South America: Rua do Rocio 220, 5th Floor, Suite 51, 
04552-903 Sao Paulo, SAO PAULO-SP, Brazil, 
Tel. +5511 821 2333, Fax. +5511 8291849 
Spain: Balmes 22, 08007 BARCELONA, 
Tel. +343301 6312, Fax. +343 301 4107 
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM, 
Tel. +46 8 632 2000, Fax. +4686322745 
Switzerland: Allmendstrasse 140, CH-8027 ZORICH, 
Tel. +4114882686, Fax. +411 481 7730 
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, 
TAIPEI, Taiwan, Tel. +886221342865, Fax. +886221342874 
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, 
Tel. +66 2 745 4090, Fax. +6623980793 
Turkey: Talatpasa Cad. No.5, 80640 GOLTEPElISTANBUL, 
Tel. +90 212 279 2770, Fax. +90 212 282 6707 
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumbastr., Building B, Floor 7, 
252042 KIEV, Tel. +38044 264 2776, Fax. +38044 268 0461 
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, 
MIDDLESEX UB3 5BX, Tel. +44 181 7305000, Fax. +44 181 7548421 
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, 
Tel. +1 8002347381 
Uruguay: see South America 
Vietnam: see Singapore 
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD, 
Tel. +38111 625344, Fax. +38111 635777 

For all other countries apply to: Philips Semiconductors, Marketing and Sales Communications, 
Building BE,p, P.O. Box 218,5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825 

Internet: http://www.semiconductors.philips.com 
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