INTEGRATED CIRCUITS

80C51-Based
8-Bit Microcontrollers

DATA HANDBQOOK

PHILIPS

[B|Ofo|K| |t]c|2]o| |1]9]9]3]



80C51-Based
8-Bit Microcontrollers

Philips Semiconductors

PHILIPS

5}




Philips Semiconductors and North American Philips Corporation reserve the right to
make changes, without notice, in the products, including circuits, standard cells, and/or
software, described or contained herein in order to improve design and/or performance.
Philips Semiconductors assumes no responsibility or liability for the use of any of these
products, conveys no license or title under any patent, copyright, or mask work right to
these products, and makes no representations or warranties thatthese products are free
from patent, copyright, or mask work right infringement, unless otherwise specified.
Applications that are described herein for any of these products are for illustrative pur-
posesonly. Philips Semiconductors makes no representation or warranty thatsuch appli-
cations will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and North American Philips Corporation Products are not de-
signed for use in life support appliances, devices, or systems where malfunction of a
Philips Semiconductors and North American Philips Corporation Product can reasonably
be expected to result in a personal injury. Philips Semiconductors and North American
Philips Corporation customers using or selling Philips Semiconductors and North Ameri-
can Philips Corporation Products for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors and North American Philips Corporation
for any damages resulting from such improper use or sale.

Philips Semiconductors and North American Philips Corporation register
eligible circuits under the Semiconductor Chip Protection Act.

© Copyright North American Philips Corporation, 1993

All rights reserved.



Philips Semiconductors

80C51-Based
8-Bit Microcontrollers

March 1993

Preface

Microcontrollers from Philips Semiconductors

Philips Semiconductors supplies a wide range of microcontrollers based on
mainstream architectures. By offering a large variety of product derivatives, Philips
Semiconductors can meet a broad range of specific or unique application
requirements. All of our microcontrollers are based on mainstream architectures to
allow the user to take advantage of existing software and a vast array of third-party
support.

Philips Semiconductors 8-bit microcontrollers are based on the popular 80C51
architecture. We offer most of the industry standard products in this architecture as
well as a large selection of powerful derivative products. These derivatives offer a
wide assortment of features, including: additional memory, A/D, PWM, additional
timers, and many more. Many of the derivative microcontrollers have an IPC serial
interface that allows them to be connected easily to over 70 other parts, increasing
their capabilities even further. The I2C serial bus is covered in Section 2 of this
book. Philips Semiconductors also offers the Controller Area Network (CAN) serial
bus for automotive and industrial applications. This standard, developed by Bosch,
offers high noise immunity and error correction for automotive and industrial
environments. The CAN serial bus is covered in Section 5 of this book. The Low
Power 80CL51 Family of derivatives may be found in Section 4. These devices
operate over the wide voltage range of 1.8 - 6.0 volts and are ideal for portable and
battery operations. This data book covers the 80C51 standard products and
derivatives that Philips Semiconductors manufactures.

Philips Semiconductors 16-bit microcontroller family is based on the 68000
architecture. While these are called 16-bit microcontrollers, the 68000 CPU core
architecture is 32-bit. This offers the user a great deal more processing power,
when the need arises in a design to move from an 8-bit to a 16-bit microcontroller.
Philips Semiconductors 16-bit microcontrollers are software compatible with
existing 68000 code. As with our popular 8-bit microcontrollers, EPROM and OTP
versions of our 16-bit products are available. The 16-bit microcontrollers are also
covered in a separate data book.

Philips Semiconductors is developing a family of 32-bit microcontrollers based on
the SPARC RISC architecture. This family of microcontrollers will offer the ultimate
in processing power for those applications that are computation intensive in an
embedded control environment.

Philips Semiconductors offers uncompromising quality, service, and support with all
of its microcontroller products. For a complete family and the best in microcontroller
products, look to Philips Semiconductors.



Philips Semiconductors P rod u ct Stat us

80C51-Based
8-Bit Microcontrollers

DEFINITIONS

Data Sheet
Identification

Product Status

Definition

or in Design

This data sheet contains the design target or goal specifications for
product development. Specifications may change in any manner
without notice.

Product

This data sheet contains preliminary data, and y data
will be published at alater date. Philips Semiconductors reserves the
right to make changes at any time without notice in order to improve
design and supply the best possible product.

Product

This data sheet contains Final Specifications. Philips
Semiconductors reserves the right to make changes at any time
without notice, in order to improve design and supply the best
possible product.

March 1993



Philips Semiconductors

80C51-Based
8-Bit Microcontrollers

March 1993

Contents
Preface ... ... il
ProductStatus ... ... .. .. ... iv
Ordering Information ........ ... ... .. ... ... . ix
80C51 Microcontroller Family FeaturesGuide .............................. i
8051 Microcontroller Cross-ReferenceGuide . .............................. Xiii
80C51 Microcontroller Development System Support . ....................... Xiv
Microcontroller BulletinBoards ... .......... ... ... .. ... ... ... ... ... xv
CMOS and NMOS 8-bit Microcontroller Family .............................. xvi
CMOS 16-bit Microcontroller Family .. ............... ... ... .............. xXiii
Philips 8-bit Micr lier D tion and EvaluationBoards ............ XXiv

Section 1 - 80C51 Family

80CS51 Family OVervIeW . . ... ... . i 3
B0CSTArchitecture . ... ... ... it e 8
Hardware Description . ...... ... .. e 23
Programmer's Guide and InstructionSet ......... ... ... .. .. ... ... 48
EPROM Products . . ... ... e 103
8031AH/8051AHDataSheet .. ... ... ... ... ... . 107
80C31/80C51/87C51 DataSheet . ....... ... .. iiiii . 116
Section 2 — Inter-Intergrated (12C) Circuit Bus
12C-bus Specification . ... ...... ... .. ... 136
12C Peripheral Selection GUIde .. ... ........ .ot 155
82B715BuUsS EXtender ........ ... ... ... 157
Section 3 — ACCESS.bus™ Technical Overview
2C BUS AQOrESSES . . ..\t it et ettt e e e 164
ACCESS.bus Development Kit ......... e rateesereesaciieaaaeas ceeenas 173
ACCESS.bus PC/AT Controller Board . ......coviiiiieiiniiininnnennnnennn 175

Section 4 — Low Power 80CL51 Family Derivatives

83CLXXX Family OVEIVIEW . .. .. ...t et e e e et 179
CL Quick Reference Chart . .......... .. ... ... . ... ... 181
80CLS1 DataSheet .. ....... ... i e 182
80CL32/80CL52DataSheet .. ........ ...ttt 217
BXCLATOOVEIVIEW . . ..ottt e e e e e e e e e 248
80CL410/83CL410DataSheet ... ... ... .. ... i 254
83CL411 DataSheet . .. ... ... e 274
80CL580/83CL580DataSheet ....... ... ... ... ... 302
80CL781/83CL781 DataSheet ........ ... ... .oiiiiiiiiiiiiiaeinann . 346
Section 5 — Control Area Network (CAN) Bus
82C150DataSheet . ... ... 420
82C200 DataSheet . . ... oo 441
80C592/83C592/87C592 DataSheet ... 479
v



Philips Semiconduntors 80C51-Based 8-Bit Microcontrollers

Contents (Continued)

Section 6 — 80C51 Family Derivatives

BXCHIFBOVEIVIEW .. ... 521
87C51FB Data Sheet .. ... .. ...ttt e e 532
BXCB2 OVEIVIEW .. ...ttt e e 547
8032AH/8052AH DataSheet . . ........ ... ... . ...l 557
80C32/80C52/87C52 DataSheet . .. ......... ... .. .. oiiiiiiiiiiiiinn. 566
8XCOS53/54/55 OVEIVIEW . .. ... i 581
83C053/83C054/87C054 DataSheet .. ..............coiiiiiiiiiinana.. 585
83C055/87C055 DataSheet ... ... ... ... . 601
BXCA51 OVEIVIEW . .. oot et e e e 617

620

641

642

659

676

700

718

777

797

817
80C562/83C562DataSheet .. ... . ... . . . ... 870
BXCE750VEIVIEW . . ... e 883
80C575/83C575/87C575DataSheet .. ... ... ........... ... it 900
BXCB52/654 OVEIVIEW . . . . ... .. 919
80C652/83C652DataSheet .. .. ... ... ... .. ... i 924
87C652DataSheet . ... ... ... 943
83C654 DataSheet .. ........ ... 963
87C654 DataSheet .. ... ... ... 981
80CE654/83CE654 DataSheet .. ........ ... ... ... .. ... 1001
87C750DataSheet .. ... . i 1014
BXCT751OVEIVIEW . . ..ttt e e e 1023
83C751/87C751DataSheet .. ... ... ... ..o 1030
BXCT7B52 OVEIVIEW . .. .t e 1041
83C752/87C752DataSheet .. ........ ... 1046
BXCBET OVEIVIEW . . ..ottt e e 1058
BOCB51/83C85T . ... 1060
83C852 DataSheet . . ........ .. ..ot 1075

Section 7 — Development Support Tools

Development Support Tools .. ...ttt 1116
DB-51 CEIBO DevelopmentBoard ....................... ... .o ouiin... 1125
DS-51 CEIBO In-Circuit Emulator . ....................................... 1127
DS-752 CEIBOEmuIator . . ....... ... . i 1129
MP-51 CEIBO Programmer . .. ...ttt 1131
Metlink ... 1133
NOHAU EMUL51-PC — PC-based In-CircuitEmulator ........................ 1151
LCP 8051 Family Programmers . .................cooiiirinnnneannneenn. 1161
PDS51 Development System for 80C51 and Derivatives .................. .. .. 1163
S87CO00KSD Development System for 80C51 and Derivatives . ............... 1167
OM4129 Symbolic Debugging Package XRAY51 for SDS 8051 Emulator .. ... .. .. 1168
OM4136 8051 C Cross-Compiler . ............. ... .. ... i, 171

OM4142 (ASM51) Cross-Assembler Package for 80C51/8051-Based Systems .... 1173
OM4144 (PLMTI51) PL/M-51 Compiler Package for 80C51/8051-Based Systems .. 1175
SDS 8051 Stand-alone Debug Station for 80C51/8051-Based Systems .......... 1178

March 1993 vi



Philips Semiconduntors 80C51-Based 8-Bit Microcontrollers

Contents (Continued)

March 1993

Section 8 — Package Outlines

0586B  24-Pin (300 mils wide) Ceramic Dual In-Line
with Quartz Window (F)Package .. .........................

0410D  24-Pin (300 mils wide) Plastic Dual In-Line (N) Package .. .......

0583B  28-Pin (600 mils wide) Ceramic Dual In-Line
with Quartz Window (F)Package ...........................

0413B  28-Pin (600 mils wide) Plastic Dual In-line (N) Package .........
SOT117 28-Pin Plastic Dual In-Line (N/P) Package ...................

0401F 28-Pin Plastic Leaded Chip Carrier (A) Package ...............
SOT136A 28-Pin Plastic SO (Small Outline) Dual In-Line (D/T) Package . ...

0590B 40-Pin (600 mils wide) Ceramic Dual In-line (F) Package,

with Window (FA)Package ........... ... ... oiiiioo...
0415C  40-Pin (600 mils wide) Plastic Dual In-Line (N) Package . .............
SOT129 40-Pin Plastic Dual In-Line (P/N) Package ........................

SOT158A 40-Pin Plastic VSO (Very Small Outline) Dual In-Line (D/T) Package . . . .

1680 42-Pin Shrink Dip (NB)Package ...........................
0403G  44-Pin Plastic Leaded Chip Carrier (A) Package . ..............
SOT187 44-Pin Plastic Leaded Chip Carrier; Pocket Version Package . . .. .

1268C  44-Pin Square Ceramic Leaded Chip Carrier, J-Bend,
with Quartz Window (L/LA) Package ........................

1472A  44-Lead CerQuad J-Bend (K)Package ......................
1118D 44-Pin Plastic Quad Flat Pack (B) (MEC) Package ............
SOT205 44-Pin Plastic Quad Flat Pack Package .....................
SOT311  44-Pin Square Plastic Quad Flat Pack (B) Package ............

SOT190 56-Pin Plastic VOS (Very Small Outline) Dual In-line (D/T) Package . ...

0414B  64-Pin (900 mils wide) Plastic Dual In-Line (N) Package . . ... ... .

SOT319 64-Pin Plastic Quad Flat Pack Package .....................

NO330  68-Pin Ceramic Leaded Chip Carrier, with Window Package . . ...
0398E  68-Pin Plastic Leaded Chip Carrier (A) Package ...............

SOT188 68-Pin Plastic Leaded Chip Carrier (PLCC), Pocket Version Package . ..

1240C  68-Pin Lead Chip Carrier, J-Bend Package ................ ...
1473A  68-Lead CerQuad J-Bend (K)Package ......................
SOT219 80-Pin Plastic Quad Flat Pack (B)Package . ..................
SOT318 80-Pin Plastic Quad Flat Pack (B)Package . .. ............. ...

Section 9 ~ North American Sales Offices, Representatives and Distributors
Appendix A - Data Handbook Systems . . . .......................... ...

Appendix B - Pin Configurations . ...................................

vii






Philips Semiconductors -80C51-Based 8-Bit Microcontrollers

Ordering Information

MICROCONTROLLER PRODUCTS

Example:

0 = ROMLESS
3 =ROM
7 = EPROM/OTP

Exceptions:

P80C32 = ROMless
P80C52 = ROM

This can be 2 or 3 digits

P8 XCXXXEBPN

= 32

Philips Package Code

L = Cerquad (window)

Temperature
B = 0°C to +70°C
F =-40°C to +85°C
H =40°C to +125°C

Exceptions:

SC80C31 = ROMless
SC80C51 = ROM

This can be 2 or 3 digits

Speed
E = 16MHz
G = 20MHz
| = 24MHz
Example: SC8XC XXX B CCN 40
0 = ROMLESS 4-[ —I; Pin Count
3=ROM
7 = EPROM/OTP Package Code

Speed
B =0.5to 12MHz
C = 12MHz
G = 16MHz
L = 20MHz
P = 24MHz
Y =33MHz

Temperature

Revision (optional)

Example:

0= ROMLESS
3 = ROM
7 = EPROM/OTP

S8 XCXXX -1N 24

L Pin Count

Package Code

B = Quad Flat Pack (QFP)
F = Ceramic Dual In-Line
K = CerQuad

N = Plastic Dual In-Line

March 1993

T Philips North American Package Code
A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)
FA = Hermetic Cerdip (window)
KA = CerQuad (window)
N = Plastic Dual In-Line

A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)
F = Hermetic Cerdip (window)

P = Plastic Dual In-Line
LA = Ceramic Leaded Chip Carrier (window)

A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)

FA = Hermetic Cerdip (window)

KA = CerQuad (window)

N = Plastic Dual In-Line

C = Commercial 0°C to +70°C
A = Industrial -40°C to +85°C

A = Plastic Leaded Chip Carrier (PLCC)

Speed/ Temperature Range
-1=12MHz, 0°C to +70°C
-2 = 12MHz, -40°C to +85°C
-3=0.5t0 12MHz, 0°C to +70°C
-4 = 16MHz, 0°C to +70°C
-6 = 16MHz, -40°C to +85°C
-6 = 12 or 16MHz, -55°C to +85°C







d s 80C51-B.

Philips S

d 8-Bit Microcontrollers

80C51 microcontroller family features guide
]

Part Number Program Security | Clock Frequency Temperature Ranges (°C) Packages
(ROMless) Available? (MHz) Oto 70 -40to +85 | -55 to +125] PDIP CDIP PLCC CLCC | PQFP
87C750 Y 3510 16 X X N24 F24 A28
83C751 N 0.51t016 X X X N24 A28
87C751 Y 0.5t0 16 X X X N24 F24 A28
83C752 N 3.5t0 16 X X N28 A28
87C752 Y 3510 16 X X X N28 F28 A28
8051AH (8031AH) N 3.5t 15 X X N40 Add
80C51B (80C31B) Y 0.5 10 33 X X X N40 Ad4 B44
87C51 Y 0.5t0 33 X X X N40 F40 Ad4 K44 B44
80CL51 (80CL31) N Oto 12(1) X N40 (2) B44
83CL410 (80CL410] N Oto12(1) X N40 (2)
83C451 (80C451) N 3.510 16 X X X N64 A68 L68
87C451 Y 0.5t018 X X X N64 A68 L68
83C550 (80C550) Y 3.5t0 16 X X N40 Ad4
87C550 Y 3.5t 16 X X N40 F40 Ad4 K44
83C851 (80C851) Y 1.2t0 12 X X N40 Ad4 B44
83C852 Y 1to6 X (die only)
83CL580 N Oto 16 (1) X 3) B64
87C51FB Y 3510 16 X N40 F40 Ad4 K44
8052AH (8032AH) N 3.5t 15 X X N40 Ad4
80C52 (80C32) Y 3510 20 X X N40 Ad4 B44
87C52 Y 3.51t0 20 X X X N40 F40 Ad4 K44 B44
80CL52 (80CL32) N 1.21t0 16 (1) X N40 B44
83652 (80C652) Y 1.2t0 16 X X -40 to +125] N40O A44 B44
87C652 Y 1.21t0 20 X X X N40 F40 Ad4 K44
83C575 (80C575) Y 4t016 X X N40 Ad4 B44
87C575 Y 41016 X X N40 F40 Ad4 K44 B44
83C552 (80C552) N 1.2t0 30 X X -40 to +125 A68 B8O
87C552 Y 1.210 16 X A68 K68
83C562 (80C562) N 1.2t0 16 X X -40 to +125 A68
83C053 N 3510 12 X 42 SDIP
83C054 N 35t0 12 X 42 SDIP
87C054 N 35t 12 X 42 SDIP
87C055 N 3.510 20 X 42 SDIP
83C654 Y 1.2t0 16 X X -40 to +125] N40 Ad4 B44
87C654 Y 1.210 16 X X X N40 F40 Ad4 K44 B44
83CE654 Y 1.2t0 16 X X B44
83CL781 N 0to 16 (1) X N40 B44
87C524 Y 3.51t0 20 X X N40 F40 Ad4 Kd4 B44
83C592 (80C592) N 1.2t0 16 X A68 K68
87C592 Y 1.210 16 X A68 K68
83C528 (80C528) Y 1.210 16 X X N40 Ad4 B44
87C528 Y 3510 20 X X N4o F40 Ad4 K44 B44

1) Oscillator options start from 32kHz.

March 1993

2) Also available in VSO40 package.

3) Also available in VSO56 Package.




Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 microcontroller family features guide

Part Number Memory Counter | VO Serial External Comments/
(ROMiess) ROM |EPROM] RAM Timers Ports Interfaces Interrupts Special Features
87C750 1K 64 1 (16-bit) 2-3/8 - 2 Lowest cost, 24-pin Skinny DIP
83C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 Low-Cost 24-pin Skinny DIP
87C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 Low-Cost 24-pin Skinny DIP
83C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit A/D, PWM Output
87C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit A/D, PWM OQutput
8051AH (8031AH) 4K 128 2 4 UART 2 NMOS
80C51B (80C31B) 4K 128 2 4 UART 2 CMOS
87C51 4K 128 2 4 UART 2 CMOS
80CL51 (80CL31) 4K 128 2 4 UART 10 Low Voltage (1.8V to 6V), Low Power
83CL410 (80CL410)] 4K 128 2 4 12C 10 Low Voltage (1.8V to 6V), Low Power
83C451 (80C451) 4K 128 2 7 UART 2 Extended 1/O, Processor Bus Interface
87C451 4K 128 2 7 UART 2 Extended 1/O, Processor Bus Interface
83C550 (80C550) 4K 128 ]2 +Watchdog{ 4 UART 2 8 Channel 8-bit A/D
87C550 4K 128 ]2 +Watchdog| 4 UART 2 8 Channel 8-bit A/D
83C851 (80C851) 4K 128 2 4 UART 2 256 Bytes EEPROM,
80C51 Pin-for-Pin Compatible
83C852 6K 256 2 (16-bit) 2/8 - 1 Smartcard Controller with 2K EEPROM
(Data, Code) Cryptograhpic Calc Unit
83CL580 6K 256 |3 +Watchdog| 5 UART, 12C 10 4 Channel 8-bit A/D, PWM Output,
Low Voltage (2.5V to 6V), Low Power
87CS51FB 8K 256 3 +PCA 4 UART 2 PCA with capture, compare, and PWM functions
8052AH (8032AH) 8K 256 3 4 UART 2 NMOS
80C52 (80C32) 8K 256 3 4 UART 2 80C51 Pin Compatible with Twice the
Memory and 3rd timer.
87C52 8K 256 3 4 UART 2 (see above)
80CL52 (80CL32) 8K 256 3 4 UART 2 Low Voltage (1.8V to 6V), Low Power
83C652 (80C652) 8K 256 2 4 UART, 12C 2 80C51 Pin Compatible with Twice
Memory and 12C
87C652 8K 256 2 4 UART, I12C 2 (see above)
83C575 (80C575) 8K 256 3 +PCA 4 UART 2 High Reliability, with Low Voltage Detect,
+ Watchdog Osc Fail Detect, Analog Comparators, PCA
87C575 8K 256 (see above) 4 UART 2 (see above)
83C552 (80C552) 8K 256 |3 +Watchdog| 6 UART, 12C 2 8 Channel 10-bit A/D, 2 PWM Outputs,
Capture/Compare Timer
87C552 8K 256 |3+ Watchdog| 6 UART, 12C 2 (see above)
83C562 (80C562) 8K 256 | 3 + Watchdog 6 UART 2 8 Channel 8-bit A/D, 2 PWM Outputs,
Capture/Compare Timer
83C053 8K 192 2 (16-bit) 35 - 2 On-Screen Display, 9 PWM Outputs,
3 Software A/D Inputs
83C054 16K 192 2 (16-bit) 35 - 2 (see above)
87C054 16K 192 2 (16-bit) 35 - 2 (see above)
87C055 16K 256 2 (16-bit) 3.5 - 2 (see above, extra RAM added)
83C654 16K 256 2 4 UART, I12C 2 80C51 Pin Compatible with 4X Program
Memory, 256 RAM, and 12C
87C654 16K 256 2 4 UART, I2C 2 (see above)
83CE654 16K 256 2 4 UART, I12C 2 83C654 with Reduced
Electro Magnetic Interference (EMI)
83CL781 16K 256 3 4 UART, I2C 10 Low Voltage (1.8V to 6V), Low Power
87C524 16K 512 | 3 + Watchdog 4 | UART, I2C (bit) 2 512 RAM
83C592 (80C592) | 16K 512 |3 +Watchdog| 6 UART, CAN 6 CAN Bus Controller with 8 x 10-bit A/D,
2 PWM outputs, Capture/Compare Timer
87C592 16K 512 |3 +Watchdog| 6 UART, CAN 6 (see above)
83C528 (80C528) | 32K 512 |3 +Watchdog| 4 | UART,I2C (bit) 2 Large Memory for High Level Languages
87C528 32K 512 |3 +Watchdog| 4 | UART, I2C (bit) 2 Large Memory for High Level Languages

Note: all combinations of part type, speed, temperature, and package may not be available.

March 1993

xii



Philips Semiconductors Microcontroller Products Product specification

Single-chip 8-bit microcontroller

8031AH/8051AH

PIN DESCRIPTIONS
PIN NO.

MNEMONIC | DIP LCC | TYPE NAME AND FUNCTION

Vss 20 22 | Ground: OV reference.

Vee 40 44 | Power Supply: This is the power supply voltage for normal, idle, and power-down operation.

P0.0-0.7 39-32 | 43-36 | 1/O | Port 0: Port 0 is an open-drain, bidirectional I/O port. Port O pins that have 1s written to them float
and can be used as high-impedance inputs. Port 0 is also the multiplexed low-order address and
data bus during accesses to external program and data memory. In this application, it uses strong
internal pull-ups when emitting 1s.

P1.0-P1.7 1-8 2-9 /O | Port 1: Port 1 is an 8-bit bidirectional I/0 port with internal pull-ups. Port 1 pins that have 1s written
to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 1 pins
that are externally pulled low will source current because of the internal pull-ups. (See DC
Electrical Characteristics: I ).

P2.0-P2.7 21-28 | 24-31 /O | Port 2: Port 2 is an 8-bit bidirectional I/0 port with internal pull-ups. Port 2 pins that have 1s written
to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 2 pins
that are externally being pulled low will source current because of the internal pull-ups. (See DC
Electrical Characteristics: I ). Port 2 emits the high-order address byte during fetches from
external program memory and during accesses to external data memory that use 16-bit addresses
(MOVX @DPTR). In this application, it uses strong internal pull-ups when emitting 1s. During
accesses to external data memory that use 8-bit addresses (MOV @Ri), port 2 emits the contents
of the P2 special function register.

P3.0-P3.7 10-17 11, /O | Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s written

13-19 to them are pulled high by the internal pull-ups and can be used as inputs. As inputs, port 3 pins

that are externally being pulled low will source current because of the pull-ups. (See DC Electrical
Characteristics: ) ). Port 3 also serves the special features of the 80C51 family, as listed below:

10 1 | RxD (P3.0): Serial input port

1 13 O TxD (P3.1): Serial output port

12 14 1 INTO (P3.2): External interrupt

13 15 | INTT (P3.3): External interrupt

14 16 I T0 (P3.4): Timer O external input

15 17 | T1 (P3.5): Timer 1 external input

16 18 O | WR (P3.6): External data memory write strobe

17 19 O | RD (P3.7): External data memory read strobe

RST 9 10 | Reset: A high on this pin for two machine cycles while the oscillator is running, resets the device.
An internal diffused resistor to Vsg permits a power-on reset using only an external capacitor to
Vece.

ALE 30 33 /O | Address Latch Enable: Output pulse for latching the low byte of the address during an access to
external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the oscillator
frequency, and can be used for external timing or clocking. Note that one ALE pulse is skipped
during each access to external data memory.

PSEN 29 32 o Program Store Enable: The read strobe to external program memory. When the device is
executing code from the external program memory, PSEN is activated twice each machine cycle,
except that two PSEN activations are skipped during each access to external data memory.
is not activated during fetches from internal program memory.

EA 31 35 | External Access Enable: EA must be externally held low to enable the device to fetch code from
external program memory locations 0000H to OFFFH. If EA is held high, the device executes from
internal program memory unless the program counter contains an address greater than OFFFH.

XTAL1 19 21 | Crystal 1: Input to the inverting oscillator amplifier.

XTAL2 18 20 (o] Crystal 2: Output from the inverting oscillator amplifier and input to the internal clock generator
circuits.

OSCILLATOR To drive the device from an external clock high and low times specified in the data sheet
CHARACTERISTICS source, XTAL2 should be driven while XTAL1 must be observed.
XTAL1 and XTAL2 are the input and output, is connected to ground. There are no

respectively, of an inverting amplifier. The
pins can be configured for use as an on-chip

oscillator, as shown in the logic symbol.

December 29, 1992

requirements on the duty cycle of the external
clock signal, because the input to the internal
clock circuitry is through a divide-by-two
flip-flop. However, minimum and maximum

DESIGN CONSIDERATIONS

At power-on, the voltage on V¢ and RST
should come up at the same time for a proper
start-up.

110



Philips Semiconductors Microcontroller Products

Product specification

Single-chip 8-bit microcontroller

8031AH/8051AH

BLOCK DIAGRAM
P20-P2.7
rreeeeee - Mmrrr-—mMmMnaT - """ — = 'l
| |
| PORT 2
DRIVERS
Vccl Z4Y i
pasicd} i |
Vssl L 94 |
|
PORT 2
== : LATCH Rom |
| |
| |
| — |
|
L] ] J
|
| B STACK |
| | REGISTER Acc POINTER I
' |
|
l ' . ] e
| I T™P2 —I I ™ I REGISTER |
| |
|
|
_— |
| ALY PCON_| SCON | TMOD| TCON K—)| BurFeR |
: THO | TLO [ TH1 |
| LY |
SBUF| IE P PC |
incre. K
| m INTERRUPT, SERIAL MENTER |
| PORT AND TIMER BLOCKS I
| . -
| |
PROGRAM |
: COUNTER C:> |
|
<L é & < I
ALE TIMING |G I |2 4 |
= 1] A 122 — orR K
"] conTRoL| £ & L |
RST —> 2= l
bl i
|
| |
| OSCILLATOR :
|
| |
XTAL2 |
—

December 29, 1992

109




Philips Semiconductors Microcontroller Products

Product specification

Single-chip 8-bit microcontroller 8031AH/8051AH
PART NUMBER SELECTION
PHILIPS PHILIPS NORTH AMERICA
TEMPERATURE °C FREQ. NUMBER
ROMless ROM ROMiess ROM AND PACKAGE MHz DRAWING
MAF8031AH2-12P | MAF8051AH-2P | SCNBO31HACN40 | SCNBO5THACN40 | —40 to +85, Plastic Dual 12 0415C
In-Line Package
MAB8031AH2-12P MAB8O51AH-2P SCNB8031HCCN40 | SCN8051HCCN40 0 to +70, Plastic Dual 12 0415C
In-Line Package
SCN8031HCFN40 | SCN8OSTHCFN40 | Oto +70, Plastic Dual 15 0415C
In-Line Package
SCN8031HAFN40 | SCN8051HAFN40 —40 to +85, Plastic Dual 15 0415C
In-Line Package
MAB8031AH2-12WP | MABB051AH-2WP | SCN8031HCCA44 | SCN8051HCCA44 0 to +70, Plastic Leaded 12 0403G
Chip Carrier
MAF8031AH2-12WP | MAF8051AH-2WP | SCN8031HACA44 | SCN8051HACA44 —40 to +85, Plastic 12 0403G
Leaded Chip Carrier
SCN8031HCFA44 | SCN8051HCFA44 0 to +70, Plastic Leaded 15 0403G
Chip Carrier
SCNB031HAFA44 | SCN8051HAFA44 —40 to +85, Plastic 15 0403G
Leaded Chip Carrier
LOGIC SYMBOL
Vec Vss
XTAL1 «>
<>
<—» | ADDRESS AND
=] | <> | DATABUS
R
>
XTAL2 «
RST —> -
= K
PSEN <«
@ ALE «—>]
Zz
S| RxD—» e
5l moe— | -
Z| W0 —> _ | —> 8
SR nd = e I~ & 2 |-appress Bus
g T —> I3 —> —
Z| WR<— —> —
Sl RO« = —
w
2]

December 29, 1992

108



Philips S tors Micr

oller Products

Product specification

Single-chip 8-bit microcontroller
|

DESCRIPTION

The Philips 8031AH/8051AH is a
high-performance microcontroller fabricated
with Philips high-density highly reliable +5V,
depletion-load, N-channel, silicon-gate, N500
MOS process technology. It provides the
hardware features, architectural
enhancements and instructions that are
necessary to make it a powerful and
cost-effective controller for applications
requiring up to 64k bytes of program memory
and/or up to 64k bytes of data storage.

The 8051AH contains a 4k x 8 read-only
program memory, a 128 x 8 read-only data
memory, 32 /O lines, two 16-bit
counter/timers, a five-source, two-priority
level nested interrupt structure, a serial /O
port for either multi-processor
communications, 1/O expansion or full duplex
UART, and on-chip oscillator and clock
circuits. The 8031AH is identical, except that
it lacks the program memory. For systems
that require extra capability, the 8051AH can
be expanded using standard TTL compatible
memories and byte oriented peripheral
controllers.

The 8051AH microcontroller, like its 8048
predecessor, is efficient both as a controller
and as an arithmetic processor. It has
extensive facilities for binary and BCD
arithmetic and excels in bit-handling
capabilities. Efficient use of program memory
results from an instruction set consisting of
44% one-byte, 41% two-byte, and 15%
three-byte instructions. With a 12MHz crystal,
58% of the instructions execute in 1ps, 40%
in 2ps and multiply and divide require only
4ps.

December 29, 1992

FEATURES
® Reduced supply current

® 4k x 8 ROM (8051AH)

® 128 x 8 RAM

® Four 8-bit ports, 32 I/O lines

® Two 16-bit timer/event counters

@ High-performance full-duplex serial channel
® External memory expandable to 128k

® Boolean processor

® |ndustry standard 8051 architecture:
- Non-paged jumps
— Direct addressing
— Four 8-register banks
— Stack depth up to 128-bytes
-~ Multiply, divide, subtract, compare
® Most instructions execute in 1us

@ 4ps multiply and divide

107

8031AH/8051AH

PIN CONFIGURATIONS
Pro[1] E Vee
P11 [2] [39] Po.0/aD0
P12 3] [38] Po.1/AD1
P13 (4] 37] Po.27AD2
P14 5] 36] Po.3/AD3
P15 6] 35] Po.4/AD4
P16 [7] [34] po.siaDs
P1.7[8] 33] Po.6/ADE
RsT 9] 32] Po.7/AD7
RxD/P3.0[10] pbﬁﬁc 1) EX
TP 1] A{'&E{‘Ee [30] ALE
TNTO/P3.2 [12) 29] PSEN
TTP3.3 [13] 28] P2.7/A15
Top3.a [1a) [27] P2.61A14
T1P3.5 [15} 26] P2.5/A13
WRP3.6 [16] 25] P2.4/A12
RO/P3.7[17] 24] P2.3/A11
XTAL2 [18 23] P2.27A10
XTAL1 [19) 22) P2.1/A9
Vss E 2__1] P2.0/A8
b 30
[1 29

Pin Function Pin Function Pin Function
1 N 15 INTT/P3.3 30 P2.6/A14
2 P10 16 TO/P3.4 31 P27/A15
3 P11 17 T1/P3.5 32 PSEN
4 P12 18 WR/P36 33 ALE
5 P13 19 RD//P3.7 34 NC
6 P14 20 XTAL2 35
7 P15 21 XTAL1 36 P0.7/AD7
8 P16 22 Vgs 37 P0.6/AD6
9 P17 23 NC 38 P0.5/AD5
10 RST 24 P2.0/A8 39 P0.4/AD4
11 RxD/P3.0 25 P2.1/A9 40 P0.3/AD3
12 NC 26 P2.2A10 41 P0.2AD2
13 TxD/P3.1 27 P23/A11 42 PO.1/AD1

P2.4/A12 43 P0.0/ADO

14 TNTO/P32 28
29 P25/A13 44 V¢

853-0096 08603



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family EPROM products

Table2.  Serial Codes
OPERATION SERIAL CODE P0.1 (PGM/) P0.2 (Vpp)

Program user EPROM 296H - Vpp
Verify user EPROM 296H Vi Viy
Program key EPROM 292H - Vpp
Verify key EPROM 292H Viy Vi
Program security bit 1 29AH - Vep
Program security bit 2 298H - Vep
Verify security bits 29AH Vin Viy
Read signature bytes 294H Vin Vi

NOTE:

.

Pulsed from V| to V| and returned to V.

Program Verification

The EPROM array can be verified by placing
the part in the programming mode as
described above and forcing the Vpp pin to
the Voy level. Four machine cycles after
addressing a location the contents of the
addressed location will appear on Port 1.

87C751 and 87C752 Signature Bytes

The signature bytes for the 87C751 and
87C752 are read differently and are in
different locations than those on the 87C51.
Due to its reduced pin count, the part has to
be put into “Signature Byte Read Mode" by

March 1993

placing a 10-bit serial data stream on the
Reset pin. The proper code and the
conditions of PO.1 and P0.2, for this mode,
are shown in Table 2.

Once the part has been placed into the
Signature Byte Read Mode, the signature
bytes can be read by the same procedure as
a normal verification of locations 01EH and
01FH. The values are:

01EH = 15H indicates the part is made by
Philips

01FH = 91H-87C751

O01FH = 95H-87C752

106

Programming Features

The 87C751 has all of the special
programming features incorporated within its
EPROM array that the 87C51 has. It has an
encryption key table and two security bits
(lock bits). These function exactly as they do
in the 87C51. They are programmed or
verified by sending the proper code over the
RESET pin (see Table 2) and then following
the 87C751 programming procedure as
described previously.

Erasure Characteristics
The erasure procedure is exactly the same
as that described for the 87C51.




Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family EPROM products

EPROM Erasure

Erasure of the EPROM occurs when the chip
is exposed to light with wavelengths shorter
than 4000 angstroms. Sunlight and
fluorescent lighting have wavelengths in this
range, so exposure to these light sources
over an extended period of time (about 1
week in sunlight, or 3 years in room level
fluorescent lighting) could cause inadvertent
erasure. Itis recommended, for this reason,
that an opaque label be placed over the
window. If the part is subject to elevated
temperatures or an environment where
solvents are used, Kapton tape (Fluorglas
part number 2345-5 or its equivalent) can be
used.

The recommended erasure procedure is to
expose the chip to ultraviolet light (at 2637
angstroms) to an integrated dose of at least
15W-sec/cm?. Exposing the EPROM to an
ultraviolet lamp of 12,000uW/cm? rating for
20 to 40 minutes, at a distance of 1 inch, is
adequate.

Programming the 87C751 and
87C752

The 87C751 and 87C752 are programmed
using a Quick-pulse programming algorithm
that is similar to that used for the 87C51. It
differs from the 87C51 in that a serial data

stream is used to place the 87C751 in the
programming mode.

Figure 3 shows a block diagram of the
programming configuration for the 87C751.
Port pin P0.2 is used for the programming
voltage supply input (Vpp signal). Port pin
P0.1 is used for the program (PGM) signal.

Port 3 accepts the address input for the
EPROM location to be programmed. Both the
high and low components of the eleven-bit
address are presented to the part through
port 3. Multiplexing of the address
components is performed using ASEL (P0.0).

Port 1 is used as a bidirectional data bus
during programming and verify operations.
During the programming mode, it accepts the
byte to be programmed. In the verify mode, it
returns the contents of the specified address
location.

The X1 pin is the oscillator input and receives
the master system clock. This clock should
be between 1.2 and 6MHz.

The RESET pin is used to accept the serial
data stream that places the 87C751 into
various programming modes. This pattern
consists of a 10-bit code with the LSB send
first. Each bit is synchronized to the clock
input X1.

To program the 87C751 the part must be put
into the programming mode by presenting the
proper serial code (see Table 2) to the
RESET pin. To do this RESET should be held
high for at least two machine cycles. Port
pins PO.1 and P0.2 will be at VOH as aresult
of this, but they must be driven high prior to
sending the serial data stream on the RESET
pin. The serial data bits can now be
transmitted over the RESET pin placing the
87C751 into one of the programming modes.
Following the transmission of the last data bit,
the reset pin should be held low.

Next the address information for the location
to be programmed is placed on Port 3 and
ASEL is used to perform the address
multiplexing. ASEL should be driven high and
then Port 3 driven with the high-order address
bits. ASEL is then driven low, latching the
high-order bits internally. Port 3 can now be
driven with the low 8 bits of the address,
completing the addressing of the location to
be programmed.

A high-voltage Vpp level is now applied to the
Vpp input. This sets Port 1 as an input port.
The data to be programmed to the EPROM
array should be placed on Port 1. A series of
25 programming pulses is now applied to the
PGM pin (P0.1) to program the addressed
EPROM location.

87C751
————
Vee +5V
AO-A7/A8-A10 —————»| P3.0-P3.7 Vss [* L
Addi Strobe P0.O/ASEL
P1.0-P1.7 [«—— Data Bus
Programming
Puises PO.1
VPpIViH o ede Po.2
Clock Source XTAL1
Reset
Control Reset
Logic
Figure 3. Programming Configuration

March 1993

105



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family EPROM products

Table1. EPROM Programming Modes
MODE RST PSEN ALE/PROG | EANpp P27 P26 P3.7 P3.6

Read signature 1 0 1 1 0 0 0 0
Program code data 1 0 o* Vpp 1 0 1 1
Verify code data 1 0 1 1 0 o] 1 1
Pgm encryption table 1 0 o* Vpp 1 0 1 0
Pgm lock bit 1 1 0 o Vpp 1 1 1 1
Pgm lock bit 2 1 0 o* Vpp 1 1 0 0

NOTES:

1. “0" = valid low for that pin, “1” = valid high for that pin.

2. Vpp =12.7510.25V.

3. Vg = 5V £10% during programming and verification.

minimum of 10ps.

ALE/PROG receives 25 programming pulses while Vpp is held at 12.75V. Each programming pulse is low for 100ms (+10ps) and high for a

+5V
10kx8
Vee [
— N
A0-A7 P1 PO PGM Data
._.___1/
1 ———  »f RST EANVpp Je—— 1
1 ———» P36 ALE/PRUG |[¢——— ]
87C51
1 ———— = P37 PSEN ft—— [}
-[_I— XTAL2 P27 fe—— 0 (ENABLE)
asMz 3 P26 |a—— [
LT
XTAL1 S I — oAty
P23 N—
Vss
Figure 2. Program Verification
Program Verification NOR of the program byte with a byte fromthe  (030H) = 15H indicates the part is made by
g
If lock bit 2 has not been programmed the encryption table. Philips
on-chip program memory canbe read outfor oo (031H) = 90H 87C451 9BH 87C528
program verification. To verify the contents of Thg c yles. . b 92H 87C51 9CH 87C592
the program memory, the address of the e 87C51 contains two signature bytes that 94H 87C552 9DH 87C524
location to be read is applied to ports 1and2 2" be read and used by an EPROM 96H 87C550 9EH 87C598
as shown in Figure 2. The other pins are held ~ >ooram g system to identify the device. 97H 87C52 9FH 87C598
at the *Verify Code Data* levels indicatedin |1 Signature bytes identify the device as an 99H87Ce54  BOH 87C575
Table 1. The contents of the addressed 87C51 manufactured by Philips. /87C652  B2HB7C51FB
9AH 80C52

location will appear on port 0. For this
operation external pull-ups are required on
port 0 as shown in Figure 2. Note that if the
encryption table has been programmed the
data presented at port 0 will be the exclusive

March 1993

The signature bytes are read by the same
procedure as a normal verification of
locations 030H and 031H, except that P3.6
and P3.7 need to be pulled to a logic low. The
values are:

104



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers
]

80C51 family EPROM products
|

80C51 Family

EPROM PRODUCTS

Most of the 80C51 derivative products offered
by Philips are supported with an EPROM
version. Currently available EPROM parts are
the 87C51, 87C451, 87C552, 87C52,
87C752, and the 87C751. EPROM versions
of the 87C550, 87C652, 87C654, and
87C528 are now in development.

All EPROM products are available in both
windowed DIP and OTP package
configurations. The windowed DIP package
allows the EPROM to be erased under a
strong UV light source, making program
development easier and faster. The OTP
(One Time Programmable) version cannot be
erased because there is no window through
which the die could be exposed to UV light.
While the EPROM can only be programmed
once in the OTP package, the part costs less
than in windowed DIP and therefore offers an
advantage for those not desiring to use the
masked ROM version of the part.

The EPROM products are fully supported on
the industry standard EPROM programmers.

Programming the 87C51

The setup for programming the
microcontroller is shown in Figure 1. Note
that the part is running with a 4 to 6 MHz
oscillator. The clock must be running because
the device is executing internal address and
program data transfers during the
programming.

To program the 87C51, the address of the
EPROM location to be programmed is
applied to ports 1 and 2 as shown in Figure 1.
The code byte to be programmed into this
location is applied to port 0. RST, PSEN, and
the pins of ports 2 and 3 specified in Table 1
are held at the “Program Code Data” levels
specified in the table. The ALE/PROG is then
pulsed low 25 times to program the
addressed location.

Encryption Table

The encryption table is a feature of the
87C51, and its derivatives, that protects the
code from being easily read by anyone other
than the programmer. The encryption table is
16 to 64 bytes of code, depending on the
microcontroller, that are exclusive NORed
with the program code data as itis read out.
The first byte is XNORed with the first
location read, the second with the second
read, etc. through the sixteenth byte read.
The seventeenth byte is XNORed with the
first byte of the encryption table, the

eighteenth with the second, etc. and on in
sixteen-byte groups.

After the Encryption table has been
programmed the user has to know its
contents in order to correctly decode the
program code data. The encryption table
itself cannot be read out.

The encryption table is programmed in the
same manner as the program memory, but
using the “Pgm Encryption Table” levels
specified in Table 1. After the encryption table
is programmed, verification cycles will
produce only encrypted information.

Lock Bit

There are two lock bits on the 87C51 that,
when set, prevent the program data memory
from being read out or programmed further.
To program the lock bits, repeat the
programming sequence using the “Pgm Lock
Bit" levels specified in Table 1.

Atfter the first lock bit is programmed, further
programming of the code memory or the
encryption table is disabled. The other lock
bit can of course still be programmed. With
only lock bit one programmed, the memory
can still be read out for program verification.
After the second lock bit is programmed, it is
no longer possible to read out (verify) the
program memory.

+5V
Vee
A0-A7 N P PO PGM Data
1 ——»f RST EANpp [  +1275V
25 100us Pulses
1 ————»f P36 ALE/PROG f«————  to Ground
87C51
1 ———» P37 PSEN je— []
W—— XTAL2 P27 jt——————— 1
Mz T P26 jJe— 0
T T XTAL1
P2.0 K",:
23 AS-AT1
Vss
=
Figure 1. Programming Configuration

March 1993

103



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

and instruction set

80C51 Family
XRL A,Rn
Bytes: 1
Cycles: 1
Encoding: |(T1 1011 r rrJ
Operation:  XRL
(A) & (A) ~ (Rn)
XRL Adirect
Bytes: 2
Cycles: 1
Encoding: [0 1 10 IO 1 01 I Idirectaddressl
Operation:  XRL
(A) < (A) > (direct)
XRL A,@Ri
Bytes: 1
Cycles: 1
Encoding: IO 110 ]0 11
Operation:  XRL
(A) < (A) > (R)
XRL A,#data
Bytes: 2
Cycles: 1
Encoding: [0 1 10 0 1 00 | |immediatedata
Operation:  XRL
(A) < (A) ~ #data
XRL direct,A
Bytes: 2
Cycles: 1
Encoding: |O 1 10 0 0 10 I Idirectaddress
Operation: XRL

(direct) «— (direct) ~ (A)

XRL direct,#data

Bytes:
Cycles:

Encoding:

Operation:

March 1993

3
2

fo 1 10

0o 0 11 | [directaddressl [immediatedatal

XRL

(direct) < (direct) ~ #data

102



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

XCHD A,@Ri
Function:  Exchange Digit
Description:  XCHD exchanges the low-order nibble of the Accumulator (bits 3-0), generally representing a hexadecimal
or BCD digit, with that of the internal RAM location indirectly addressed by the specified register. The
high-order nibbles (bits 7-4) of each register are not affected. No flags are affected.
Example: RO contains the address 20H. The Accumulator holds the value 36H (00110110B). Internal RAM location
20H holds the value 75H (01110101B). The instruction,
XCHD A,@Ro0
will leave RAM location 20H holding the value 76H (01110110B) and 35H (00110101B) in the Accumulator.
Bytes: 1
Cycles: 1
Encoding: |1 1 0 1 [0 1 1
Operation: ~ XCHD

(Aso) & ((Riso))

XRL <dest-byte>,<src-byte>

Function:

Description:

Example:

March 1993

Logical Exclusive-OR for byte variables

XRL performs the bitwise logical Exclusive-OR operation between the indicated variables, storing the
results in the destination. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the
source can use register, direct, register-indirect, or imnmediate addressing; when the destination is a direct
address, the source can be the Accumulator or immediate data.

(Note: When this instruction is used to modify an output port, the value used as the original port data will
be read from the output data latch, notthe input pins.)

If the Accumulator holds 0C3H (11000011B) and register 0 holds 0AAH (10101010B) then the instruction,
XRL ARO
will leave the Accumulator holding the value 69H (01101001B).

When the destination is a directly addressed byte, this instruction can complement combinations of bits in
any RAM location or hardware register. The pattern of bits to be complemented is then determined by a
mask byte, either a constant contained in the instruction or a variable computed in the Accumulator at
run-time. The instruction,

XRL P1,#00110001B
will complement bits 5, 4, and 0 of output Port 1.

101



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

SWAP A
Function:  Swap nibbles within the Accumulator
Description:  SWAP A interchanges the low- and high-order nibbles (four-bit fields) of the Accumulator (bits 3-0 and bits
7-4). The operation can also be thought of as a four-bit rotate instruction. No flags are affected.
Example: The Accumulator holds the value 0C5H (11000101B). The instruction,
SWAP A
leaves the Accumulator holding the value 5CH (01011100B).
Bytes: 1
Cycles: 1
Encoding: I 1 1 00 j0o 10 Oj
Operation: SWAP

XCH A,<byte>

(Aso) & (Aza)

Function:
Description:

Example:

XCH ARn
Bytes:
Cycles:

Encoding:
Operation:

XCH Addirect
Bytes:
Cycles:

Encoding:
Operation:

XCH A,@Ri
Bytes:
Cycles:
Encoding:
Operation:

March 1993

Exchange Accumulator with byte variable

XCH loads the Accumulator with the contents of the indicated variable, at the same time writing the original
Accumulator contents to the indicated variable. The source/destination operand can use register, direct, or
register-indirect addressing.

RO contains the address 20H. The Accumulator holds the value 3FH (00111111B). Internal RAM location
20H holds the value 75H (01110101B). The instruction,

XCH A @Ro

will leave the RAM location 20H holding the values 3FH (00111111B) and 75H (01110101B) in the
Accumulator.

1
1

[t 1 o0 J1 r

XCH

(A) & (R.)

2

1

[t 1 00 Jo 1 o1 | [diectaddress |
XCH

(A) & (direct)

1

1
[1 1 o0 Jo 1 1

XCH
(A) &2 ((R))

100



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Family and instruction set

SUBB A, <src-byte>
Function:  Subtract with borrow

Description:  SUBB subtracts the indicated variable and the carry flag together from the Accumulator, leaving the result
in the Accumulator. SUBB sets the carry (borrow) flag if a borrow is needed for bit 7, and clears C
otherwise. (If C was set before executing a SUBB instruction, this indicates that a borrow was needed for
the previous step in a multiple precision subtraction, so the carry is subtracted from the Accumulator along
with the source operand.) AC is set if a borrow is needed for bit 3, and cleared otherwise. OV is set if a
borrow is needed into bit 6, but not into bit 7, or into bit 7, but not bit 8.

When subtracting signed integers OV indicates a negative number produced when a negative value is
subtracted from a positive value, or a positive result when a positive number is subtracted from a negative
number.

The source operand allows four addressing modes: register, direct, register-indirect, or immediate.

Example: The Accumulator holds 0C9H (11001001B), register 2 holds 54H (01010100B), and the carry flag is set.
The instruction,

SUBB AR2
will leave the value 74H (01110100B) in the Accumulator, with the carry flag and AC cleared but OV set.

Notice that 0C9H minus 54H is 75H The difference between this and the above result is due to the carry
(borrow) flag being set before the operation. If the state of the carry is not known before starting a single or
multiple-precision subtraction, it should be explicitly cleared by a CLR C instruction

SUBB A,Rn
Bytes: 1
Cycles: 1

Encoding: |1 0 0 1 l1 roror I

Operation: SUBB
(A) < (A)—(C) - (Rn)

SUBB Adirect
Bytes: 2
Cycles: 1

—

Encoding: 1 0 0 1 0o 1 0 I Idirectaddress]

Operation: SUBB
(A) « (A) — (C) — (direct)

SUBB A,@Ri
Bytes: 1
Cycles: 1

Encoding: |1 0 0 1 |0 11

Operation: SUBB
(A) « (A)-(C)-(R)

SUBB A#data

Bytes: 2
Cycles: 1
Encoding: 1 0 01 0 1 0O | |immediatedata

Operation: SUBB
(A) « (A) - (C) — (#data)

March 1993 99



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Famil . :
y and instruction set
SETB <bit>
Function:  Set Bit
Description:  SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No

other flags are affected.

Example:  The carry flag is cleared. Output Port 1 has been written with the value 34H (00110100B). The instructions,
SETB C
SETB P1.0
will leave the carry flag set to 1 and change the data output on Port 1 to 35H (00110101B).
SETB C
Bytes: 1
Cycles: 1
Encoding: h 1 01 Jo o 11 ]
Operation: SETB
(Cy«1
SETB bit
Bytes: 2
Cycles: 1
Encoding: |1 1 0 1 o o 1 0 | [ bitaddress
Operation: SETB
(bit) « 1
SJMP rel
Function:  Short Jump
Description:  Program control branches unconditionally to the address indicated. The branch destination is computed by
adding the signed displacement in the second instruction byte to the PC, after incrementing the PC twice.
Therefore, the range of destinations allowed is from 128 bytes preceding this instruction to 127 bytes
following it.
Example:  The label “RELADR” is assigned to an instruction at program memory location 0123H. The instruction,
SJMP RELADR
will assemble into location 0100H. After the instruction is executed, the PC will contain the value 0123H.
(Note: Under the above conditions the instruction following SIMP will be at 102H. Therefore, the
displacement byte of the instruction will be the relative offset (0123H-0102H) = 21H. Put another way, an
SJMP with a displacement of OFEH would be a one-instruction infinite loop.)
Bytes: 2
Cycles: 2
Encoding: |1 0 0 0 (0 0 00 ] l rel. address
Operation: SJMP
(PC) «~ (PC)+2

March 1993

(PC) « (PC) +rel

98



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

RR A
Function:  Rotate Accumulator Right
Description:  The eight bits in the Accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 position. No
flags are affected.
Example:  The Accumulator holds the value 0C5H (11000101B). The instruction,
RR A
leaves the Accumulator holding the value OE2H (11100010B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: [O 0 00 I 0 0 11
Operation: RR
(An) ¢ (Ani1),n=0-6
(A7) « (A0)
RRC A
Function:  Rotate Accumulator Right through the Carry flag
Description:  The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves
into the carry flag; the original state of the carry flag moves into the bit 7 position. No other flags are
affected.
Example:  The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction,
RRC A
leaves the Accumulator holding the value 62 (01100010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: |0 0 01 Jo o 11 ]
Operation: RRC
(An) < (Ans1),n=0-6
(A7) « (C)
(C) « (AD)

March 1993

97



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Family and instruction set
RL A
Function:  Rotate Accumulator Left

Description:

The eight bits in the Accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position. No
flags are affected.

Example:  The Accumulator holds the value 0C5H (11000101B). The instruction,
RL A
leaves the Accumulator holding the value 8BH (10001011B) with the carry unaffected.
Bytes: 1
Cycles: 1
Encoding: EO 10]°° 11—'
Operation: RL
(An+1) — (An): n=0-6
(AO) « (A7)
RLC A
Function:  Rotate Accumulator Left through the Carry flag
Description:  The eight bits in the Accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into
the carry flag; the original state of the carry flag moves into the bit 0 position. No other flags are affected.
Example:  The Accumulator holds the value 0C5H (11000101B), and the carry is zero. The instruction,
RLC A
leaves the Accumulator holding the value 8BH (10001010B) with the carry set.
Bytes: 1
Cycles: 1
Encoding: li o 11 0 0 11 I
Operation: RLC
(Ans1) < (Ay), n=0-86
(A0) « (C)
(C) « (A7)
March 1993 96



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

RET
Function:  Return from subroutine
Description:  RET pops the high- and low-order bytes of the PC successively from the stack, decrementing the Stack
Pointer by two. Program execution continues at the resulting address, generally the instruction
immediately following an ACALL or LCALL. No flags are affected.

Example:  The Stack Pointer originally contains the value OBH. Internal RAM locations 0AH and OBH contain the

values 23H and 01H, respectively. The instruction,
RET
will leave the Stack Pointer equal to the value 09H. Program execution will continue at location 0123H.
Bytes: 1
Cycles: 2
Encoding: |0 0 10 o o 10 |
Operation: RET
(PC1ss) < ((SP))
(SP) « (SP) -1
(PCr.0) « ((SP))
(SP) « (SP) -1
RETI
Function:  Return from interrupt
Description:  RETI pops the high- and low-order bytes of the PC successively from the stack, and restores the interrupt
logic to accept additional interrupts at the same priority level as the one just processed. The Stack Pointer
is left decremented by two. No other registers are affected; the PSW is not automatically restored to its
pre-interrupt status. Program execution continues at the resulting address, which is generally the
instruction immediately after the point at which the interrupt request was detected. If a lower- or same-level
interrupt has been pending when the RET! instruction is executed, that one instruction will be executed
before the pending interrupt is processed.

Example:  The Stack Pointer originally contains the value 0BH. An interrupt was detected during the instruction
ending at location 0122H. Internal RAM locations 0AH and OBH contain the values 23H and 01H,
respectively. The instruction,

RETI
will leave the Stack Pointer equal to 09H and return program execution to location 0123H.
Bytes: 1
Cycles: 2
Encoding: lo 0 11 IO 0 10 I
Operation:  RETI

March 1993

(PCisg) < ((SP))
(SP) « (SP) -1
(PCr.0) < ((SP))
(SP) « (SP) -1

95



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

POP direct

Function:

Description:

Example:

Encoding:
Operation:

PUSH direct

Pop from stack

The contents of the internal RAM location addressed by the Stack Pointer is read, and the Stack Pointer is
decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags
are affected.

The Stack Pointer originally contains the value 32H, and internal RAM locations 30H through 32H contain
the values 20H, 23H, and 01H, respectively. The instruction sequence,

POP  DPH
POP  DPL

will leave the Stack Pointer equal to the value 30H and the Data Pointer set to 0123H. At this point the
instruction,

POP  SP

will leave the Stack Pointer set to 20H. Note that in this special case the Stack Pointer was decremented
to 2FH before being loaded with the value popped (20H).

[t 1 01 Jo o oo | |diectaddress |

POP
(direct) « ((SP))
(SP) « (SP)— 1

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:
Operation:

March 1993

Push onto stack

The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the
internal RAM location addressed by the Stack Pointer. Otherwise no flags are affected.

On entering an interrupt routine the Stack Pointer contains 09H. The Data Pointer holds the value 0123H.
The instruction sequence,

PUSH DPL
PUSH DPH

will leave the Stack Pointer set to 0BH and store 23H and 01H in internal RAM locations OAH and OBH,
respectively.

2
2

L1 1 00 IO 0 0O I ldirectaddress

PUSH
(SP) <« (SP) + 1
((SP)) « (direct)




Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

ORL C,«src-bit>

Function:
Description:

Example:

ORL Cbit
Bytes:
Cycles:

Encoding:

Operation:

ORL C,/bit
Bytes:

Cycles:

Encoding:

Operation:

March 1993

Logical-OR for bit variables

Set the carry flag if the Boolean value is a logical 1; leave the carry in its current state otherwise. A slash
(/") preceding the operand in the assembly language indicates that the logical complement of the
addressed bit is used as the source value, but the source bit itself is not affected. No other flags are
affected.

Set the carry flag if and only if P1.0 =1, ACC.7=1,0rOV =0:

ORL C,P1.0 ;LOAD CARRY WITH INPUT PIN P10

ORL C,ACC.7 ;ORCARRY WITH THE ACC.BIT7

ORL C,.0vV ;OR CARRY WITH THE INVERSE OF OV.
o 1 1 1 0 0 10 I I bit address

ORL

(C) <~ (C) v (bit)

l1 0o 10 IO 0 0O | l bit address

ORL
(C)« (C) v (B)

93



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

ORL Agdirect
Bytes:
Cycles:

Encoding:
Operation:

ORL A,@Ri
Bytes:
Cycles:

Encoding:

Operation:

ORL Aj#data
Bytes:
Cycles:

Encoding:

Operation:

ORL direct,A
Bytes:
Cycles:

Encoding:

Operation:

2
1

IB 1 00 10 1 01 I Idiredaddressl

ORL
(A) « (A) v (direct)

1
1

[o 1t o0 Jo 1 1]

ORL
(A) < (A) v ((R)

2

1
[o 1 00 Jo 1 00 | [immediatedatal

ORL
(A) « (A) v #data

2
9

01 00 |0 0 10 I Idirectaddressl

ORL
(direct) « (direct) v (A)

ORL direct,#data

Bytes:
Cycles:

Encoding:

Operation:

March 1993

3

2
IO 1 00 0o 0 11 l Idirectaddressl |immediatedataﬂ

ORL
(direct) «— (direct) v #data

92



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

NOP
Function:  No Operation
Description:  Execution continues at the following instruction. Other than the PC, no registers or flags are affected.
Example: It is desired to produce a low-going output pulse on bit 7 of Port 2 lasting exactly 5 cycles. A simple
SETB/CLR sequence would generate a one-cycle pulse, so four additional cycles must be inserted. This
may be done (assuming are enabled) with the instruction sequence,
CLR pP2.7
NOP
NOP
NOP
NOP
SETB P27
Bytes: 1
Cycles: 1
Encoding: |0 0 00 |0 0 00
Operation: NOP

(PC) « (PC)+1

ORL <«dest-byte>,<src-byte>

Function:

Description:

Example:

ORL A,Rn
Bytes:
Cycles:

Encoding:

Operation:

March 1993

Logical-OR for byte variables

ORL performs the bitwise logical-OR operation between the indicated variables, storing the results in the
destination byte. No flags are affected.

The two operands allow six addressing mode combinations. When the destination is the Accumulator, the
source can use register, direct, register-indirect, or immediate addressing; when the destination is a direct
address, the source can be the Accumulator or immediate data.

Note: When this instruction is used to modify an output port, the value used as the original port data will
be read from the output data latch, not the input pins.

If the Accumulator holds 0C3H (11000011B) and RO holds 55H (01010101B) then the instruction,
ORL ARO
will leave the Accumulator holding the value 0D7H (11010111B).

When the destination is a directly addressed byte, the instruction can set combinations of bits in any RAM
location or hardware register. The pattern of bits to be set is determined by a mask byte, which may be
either a constant data value in the instruction or a variable computed in the Accumulator at run-time. The
instruction,

ORL P1,#00110010B
will set bits 5, 4, and 1 of output Port 1.

1

;
fo 1 o0 [1r

ORL
(A) <= (A) v (Rn)

91



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide
and instruction set

2
[t 1+ 11 oo 1]

80C51 Family
MOVX @RiA
Bytes: 1
Cycles:
Encoding:
Operation: MOVX
((R)) « (A)

MOVX @DPTRA

Bytes: 1
Cycles: 2
Encoding: |1 1 11 [0 0 00
Operation: MOVX
((DPTR)) «— (A)
MUL AB
Function:  Multiply
Description:  MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The low-order byte
of the sixteen-bit product is left in the Accumulator, and the high-order byte in B. if the product is greater
than 255 (OFFH) the overflow flag is set; otherwise it is cleared. The carry flag is always cleared.
Example:  Originally the Accumulator holds the value 80 (50H). Register B holds the value 160 (0AOH).The
instruction,
MUL AB
will give the product 12,800 (3200H), so B is changed to 32H (00110010B) and the Accumulator is cleared.
The overflow flag is set, carry is cleared.
Bytes: 1
Cycles: 4
Encoding: |1 © 10 |o 1 0o |
Operation: MUL

March 1993

(A)7.0 < (A)x (B)

)\5-8



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Family and instruction set

MOVC A,@A+PC
Bytes: 1
Cycles: 2

Encoding: L‘ 0 00 IO 0 11
Operation: MOVC

(PC)« (PC)+ 1

(A) < ((A) + (PC))

MOVX «dest-byte>,<src-byte> (Not implemented in the 8XC752 or 8XC752)
Function:  Move External

Description:  The MOVX instructions transfer data between the Accumulator and a byte of external data memory, hence
the “X” appended to MOV. There are two types of instructions, differing in whether they provide an eight-bit
or sixteen-bit indirect address to the external data RAM.

In the first type, the contents of R0 or R1 in the current register bank provide an eight-bit address
multiplexed with data on PO. Eight bits are sufficient for external /O expansion decoding or for a relatively
small RAM array. For somewhat larger arrays, port pins can be used to output higher-order address bits.
These pins would be controlled by an output instruction preceding the MOVX.

In the second type of MOVX instruction, The Data Pointer generates a sixteen-bit address. P2 outputs the
high-order eight address bits (the contents of DPH) while PO multiplexes the low-order eight bits (DPL)
with data. The P2 Special Function Register retains its previous contents while the P2 output buffers are
emitting the contents of DPH. This form is faster and more efficient when accessing very large data arrays
(up to 64k bytes), since no additional instructions are needed to set up the output ports.

It is possible in some situations to mix the two MOVX types. A large RAM array with its high-order address
lines driven by P2 can be addressed via the Data Pointer, or with code to output high-order address bits to
P2 followed by a MOVX instruction using RO or R1.

Example:  An external 256 byte RAM using multiplexed address/data lines is connected to the 8051 Port 0. Port 3
provides control lines for the external RAM. Ports 1 and 2 are used for normal I/O. Registers 0 and 1
contain 12H and 34H. Location 34H of the external RAM holds the value 56H. The instruction sequence,

MOVX A @R1
MOVX @RoO,A

copies the value 56H into both the Accumulator and external RAM location 12H.

MOVX A,@Ri
Bytes: 1
Cycles:

2
Encoding: [1 110 |0 0 1

Operation:  MOVX
(A) < ((R))

MOVX A,@DPTR
Bytes: 1
Cycles: 2

Encoding: |1 110 l0 0 0 O]

Operation: MOVX
(A) < ((DPTR))

March 1993 89



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

MOV DPTR,#data16

Function:
Description:

Example:

Bytes:
Cycles:

Encoding:
Operation:

Load Data Pointer with a 16-bit constant

The Data Pointer is loaded with the 16-bit constant indicated. The 16-bit constant is loaded into the second
and third bytes of the instruction. The second byte (DPH) is the high-order byte, while the third byte (DPL)
holds the low-order byte. No flags are affected.

This is the only instruction which moves 16 bits of data at once.

The instruction,
MOV DPTR,#1234H
will load the value 1234H into the Data Pointer: DPH will hold 12H and DPL will hold 34H.

3
2

|1 0 o0 1 IO 0 0O | Iimmed‘data155| |immed.data7-0

MOV
(DPTR) « (#datas.q)
DPH O DPL « #data;5 ¢ O#data;

MOVC A,@A+<base-reg>

Function:

Description:

Example:

Move Code byte

The MOVC instructions load the Accumulator with a code byte, or constant from program memory. The
address of the byte fetched is the sum of the original unsigned eight-bit Accumulator contents and the
contents of a sixteen-bit base register, which may be either the Data Pointer or the PC. In the latter case,
the PC is incremented to the address of the following instruction before being added with the Accumulator;
otherwise the base register is not altered. Sixteen-bit addition is performed so a carry-out from the
low-order eight bits may propagate through higher-order bits. No flags are affected.

A value between 0 and 3 is in the Accumulator. The following instructions will translate the value in the
Accumulator to one of four values defined by the DB (define byte) directive:

REL_PC: INC A
MOVC A@A+PC
RET
DB 66H
DB 77H
DB 88H
DB 99H

If the subroutine is called with the Accumulator equal to 01H, it will return with 77H in the Accumulator. The
INC A before the MOVC instruction is needed to “get around” the RET instruction above the table. If
several bytes of code separated the MOVC from the table, the corresponding number would be added to
the Accumulator instead.

MOVC A,@A+DPTR

Bytes:
Cycles:

Encoding:

Operation:

March 1993

1

2
[1 0 o1 Joo 11]
MOvC

(A) <~ ((A) + (DPTRY))

88



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Family and instruction set

MOV @Ridirect
Bytes: 2
Cycles: 2

Encoding: |1 0 10 Jo 1 1 i | [directaddress |

Operation: MOV
((R))) « (direct)

MOV @Ri,#data
Bytes: 2
Cycles:

1
Encoding: E) 1 11 B 1 1 i l Iimmediatedata]

Operation: MOV
((R)) « #data

MOV <«dest-bit>,<src-bit>

Function:  Move bit data

Description:  The Boolean variable indicated by the second operand is copied into the location specified by the first
operand. One of the operands must be the carry flag; the other may be any directly addressable bit. No
other register or flag is affected.

Example: The carry flag is originally set. The data present at input Port 3 is 11000101B. The data previously written
to output Port 1 is 35H (00110101B). The instruction sequence,

MOV  P13C
MOV  CP33
MOV  P1.2C

will leave the carry cleared and change Port 1 to 39H (00111001B).

MOV C,bit
Bytes: 2
Cycles:
Encoding: |1 0 10 [o 0o 1 0 | [ bitaddress
Operation: MOV
(C) « (bit)
MOV bit,C
Bytes: 2
Cycles: 2

Encoding: I1 0 01 IO 010 | Lbitaddress

Operation: MOV
(bit) « (C

March 1993 87



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Family and instruction set

MOV direct,A
Bytes: 2
Cycles:

Encoding: |1 1 11 Io 1 01 I ldirectaddressJ
Operation: MOV

(direct) « (A)
MOV direct,Rn
Bytes: 2
Cycles: 2

Encoding: [1 0 00 |1 ror rJ Idirectaddressl

Operation: MOV
(direct) « (R;)

MOV direct,direct

Bytes: 3
Cycles: 2
Encoding: |1 0 00 Jo 1 o 1 | | diadd (src) | | dir addr. (dest)]

Operation: MOV
(direct) ¢ (direct)

MOV direct,@Ri

Bytes: 2
Cycles: 2
Encoding: l1 0 00 |0 1 1 | Idirectaddress
Operation: MOV
(direct) « (R)

MOV direct,#data
Bytes: 3
Cycles: 2

Encoding: |0 1 1 1 Jo 1 o 1 | [ diectadaress] [immediate datal

Operation: MOV
(direct) « #data

MOV @Ri,A
Bytes: 1
Cycles: 1

Encoding: |1 1 1 1 Jo 1 1 |

Operation: MOV
((R)) « (A)

March 1993 86



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

*MOV  Adirect

Bytes: 2
Cycles:
Encoding: |1 1 1.0 |0 1 0 1 | [ directaddress|
Operation: MOV
(A) « (direct)
MOV A,@Ri
Bytes: 1
Cycles: 1
Encoding: l‘ 110 IO 11 |
Operation: MOV
(A) < (R)
MOV A #data
Bytes: 2
Cycles: 1
Encoding: |0 1 1 1 1 0 0 | [immediate datal
Operation: MOV
(A) « #data
MOV Rn,A
Bytes: 1
Cycles: 1
Encoding: |1 1 11 L1 roror I
Operation: MOV
(Rn) < (A)

MOV Rn,direct

Bytes:
Cycles:

Encoding:
Operation:

MOV Rndata

Bytes:
Cycles:

Encoding:
Operation:

*MOV A,ACC is not a valid instruction.

March 1993

2
2

1.0 10 |1

r r | |directaddress |

MOV

(Ry) « (direct)

2

1
fo 1 11 ]1

rr I limmediate datq

MOV
(R,) « #data



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

LJMP addr16 (Implemented in 87C751 and 87C752 for in-circuit emulation only.)

Function: Long Jump
Description:  LJMP causes an unconditional branch to the indicated address, by loading the high-order and low-order
bytes of the PC (respectively) with the second and third instruction bytes. The destination may therefore be
anywhere in the full 64k program memory address space. No flags are affected.
Example: The label “JMPADR?" is assigned to the instruction at program memory location 1234H. The instruction,
LJMP JMPADR
at location 0123H will load the program counter with 1234H.
Bytes: 3
Cycles: 2
Encoding: |0 © 00 |0 o 1 0 | [ addri5-add | | addr7-addro |
Operation:  LJIMP
((SP)) « addrys g
MOV <«dest-byte>,<src-byte>
Function:  Move byte variable
Description:  The byte variable indicated by the second operand is copied into the location specified by the first operand.
The source byte is not affected. No other register or flag is affected.
This is by far the most flexible operation. Fifteen combinations of source and destination addressing
modes are allowed.
Example: Internal RAM location 30H holds 40H. The value of RAM location 40H is 10H. The data present at input
port 1 is 11001010B (0OCAH). The instruction sequence,
MOV  RO,#30H ;R0 <=30H
MOV  A@R0 A <=40H
MOV  R1,A ;R1 <=40H
MOV  B@Rt1 ;B<=10H
MOV  @R1,P1 ;RAM (40H) < = OCAH
MOV  P2,P1 ;P2 #0CAH
leaves the value 30H in register 0, 40H in both the Accumulator and register 1, 10H in register B, and
OCAH (11001010B) both in RAM location 40H and output on port 2.
MOV A,Rn
Bytes: 1
Cycles: 1
Encoding: h 1 10l1 roror
Operation: MOV
(A) « (Rn)

March 1993



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Famil ; ;
y and instruction set
JZ rel
Function:  Jump if Accumulator Zero
Description:  If all bits of the Accumulator are zero, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.
Example: The Accumulator originally holds 01H. The instruction sequence,
Jz LABEL1
DEC A
Jz LABEL2
will change the Accumulator to 00H and cause program execution to continue at the instruction identified
by the label LABEL2.
Bytes: 2
Cycles: 2
Encoding: I 01 10 I 0 0 00 l [ rel. address
Operation: JZ
(PC) « (PC) + 2
IFA=0

LCALL addr16

THEN (PC) « (PC) + rel

Function:

Description:

Example:

Bytes:
Cycles:

Encoding:
Operation:

March 1993

Long Call

LCALL calls a subroutine located at the indicated address. The instruction adds three to the program
counter to generate the address of the next instruction and then pushes the 16-bit result onto the stack
(low byte first), incrementing the Stack Pointer by two. The high-order and low-order bytes of the PC are
then loaded, respectively, with the second and third bytes of the LCALL instruction. Program execution
continues with the instruction at this address. The subroutine may therefore begin anywhere in the full
64k-byte program memory address space. No flags are affected.

Initially the Stack Pointer equals 07H. The label "SUBRTN” is assigned to program memory location
1234H. After executing the instruction,

LCALL SUBRTN

at location 0123H, the Stack Pointer will contain 09H, internal RAM locations 08H and 09H will contain
26H and 01H, and the PC will contain 1235H.

3
2

f[o o o1 Jo o 10 | [addtsadds | | adar7-addro

LCALL

(PC) « (PC) +3
(SP) « (SP) + 1
((SP)) < (PC1)
(SP) « (SP) + 1
((SP)) <~ (PC1s.9)
(PC) ¢ addrys.9

83



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Family and instruction set
JNC rel
Function:  Jump if Carry Not set

Description:  If the carry flag is a zero, branch to the address indicated; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the second instruction byte
to the PC, after incrementing the PC twice to point to the next instruction. The carry flag is not modified.

Example: The carry flag is set. The instruction sequence,
JNC  LABEL1
CPL C
JNC  LABEL2
will clear the carry and cause program execution to continue at the instruction identified by the label
LABEL2.
Bytes: 2
Cycles: 2
Encoding: |0 1 0 1 Jo 0 0 0 | | reladdress |
Operation: JNC
(PC) « (PC)+2
IF(C)=0
THEN
(PC) « (PC) +rel
JNZ rel
Function:  Jump if Accumulator Not Zero

Description:  If any bit of the Accumulator is a one, branch to the indicated address; otherwise proceed with the next
instruction. The branch destination is computed by adding the signed relative-displacement in the second
instruction byte to the PC, after incrementing the PC twice. The Accumulator is not modified. No flags are
affected.

Example:  The Accumulator originally holds 00H. The instruction sequence,
JNZ LABEL1
INC A
JNZ LABEL2
will set the Accumulator to 01H and continue at label LABEL2.
Bytes: 2
Cycles: 2
Encoding: I 0o 1 11 l 0 0 00 I I rel. address I
Operation: JNZ
(PC) & (PC)+ 2
IFA#0
THEN (PC) « (PC) + rel
March 1993 82



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 family programmer’s guide

80C51 Family and instruction set

JMP @A+DPTR

Function:  Jump indirect
Description:  Add the eight-bit unsigned contents of the Accumulator with the sixteen-bit data pointer, and load the
resulting sum to the program counter. This will be the address for subsequent instruction fetches.
Sixteen-bit addition is performed (modulo 2'%): a carry-out from the low-order eight bits propagates through
the higher-order bits. Neither the Accumulator nor the Data Pointer is altered. No flags are affected.
Example:  An even number from 0 to 6 is in the Accumulator. The following sequence of instructions will branch to
one of four AJMP instructions in a jump table starting at JMP_TBL:
MOV  DPTR,#MP_TBL
JMP  @A+DPTR
JMP_TBL: AJMP LABELO
AJMP  LABEL1
AJMP LABEL2
AJMP LABEL3
If the Accumulator equals 04H when starting this sequence, execution will jump to label LABEL2.
Remember that AJMP is a two-byte instruction, so the jump instructions start at every other address.
Bytes: 1
Cycles: 2
Encoding: lo 1 11 oo 11]
Operation: JMP
(PC) « (A) + (DPTR)
JNB bit,rel
Function:  Jump if Bit Not set
Description:  If the indicated bit is a zero, branch to the indicated address; otherwise proceed with the next instruction.
The branch destination is computed by adding the signed relative-displacement in the third instruction byte
to the PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified.
No flags are affected.
Example:  The data present at input port 1 is 11001010B. The Accumulator holds 56H (01010110B). The instruction
sequence,
JNB P1.3,LABEL1
JNB ACC.3,LABEL2
will cause program execution to continue at the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: |0 0 1 1 |0 0 0 0 | | bitaddress | [ rel adaress
Operation:  JNB
(PC) «— (PC)+3
IF (bit) =0
THEN
(PC) « (PC) + rel

March 1993

81



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

JBC bit,rel

Function:  Jump if Bit is set and Clear bit
Description:  If the indicated bit is a one, branch to the address indicated; otherwise proceed with the next instruction.
The bit will not be cleared if it is already a zero. The branch destination is computed by adding the signed
relative-displacement in the third instruction byte to the PC, after incrementing the PC to the first byte of
the next instruction. No flags are affected.
Note: When this instruction is used to test an output pin, the value used as the original data will read from
the output data latch, not the input pin.
Example: The Accumulator holds 56H (01010110B). The instruction sequence,
JBC ACC.3,LABEL1
JBC ACC.2,LABEL2
will cause program execution to continue at the instruction identified by the LABEL2, with the Accumulator
modified to 52H (01010010B).
Bytes: 3
Cycles: 2
Encoding: I 0O 0 0 1 [0 0 00 J I bit address I l rel. address —I
Operation: JBC
(PC)« (PC)+3
IF (bit) = 1
THEN
(bit) < 0
(PC) « (PC) + rel
JC rel
Function:  Jump if Carry is set
Description:  If the carry flag is set, branch to the address indicated; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the second instruction byte
to the PC, after incrementing the PC twice. No flags are affected.
Example: The carry flag is cleared. The instruction sequence,
JC LABEL1
CPL C
JC LABEL2
will set the carry and cause program execution to continue at the instruction identified by the label
LABEL2.
Bytes: 2
Cycles: 2
Encoding: |0 1 0 0 Jo 0 00 | | reladdress |
Operation: JC
(PC) « (PC) + 2
IF(C)=1
THEN
(PC) « (PC) + rel
March 1993 80



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

INC DPTR
Function: Increment Data Pointer
Description:  Increment the 16-bit data pointer by 1. A 16-bit increment (modulo 2'%) is performed; an overflow of the
low-order byte of the data pointer (DPL) from OFFH to 00H will increment the high-order byte (DPH). No
flags are affected.
This is the only 16-bit register which can be incremented.
Example: Registers DPH and DPL contain 12H and OFEH, respectively. The instruction sequence,
INC DPTR
INC DPTR
INC DPTR
will change DPH and DPL to 13H and 01H.
Bytes: 1
Cycles: 2
Encoding: |1 0 10 Jo o 11
Operation: INC
(DPTR) « (DPTR) + 1
JB bitrel
Function:  Jump if Bit set
Description:  If the indicated bit is a one, jump to the address indicated; otherwise proceed with the next instruction. The
branch destination is computed by adding the signed relative-displacement in the third instruction byte to
the PC, after incrementing the PC to the first byte of the next instruction. The bit tested is not modified. No
flags are affected.
Example:  The data present at input port 1 is 11001010B. The Accumulator holds 56 (01010110B). The instruction
sequence,
JB P1.2,LABEL1
JB ACC.2,LABEL2
will cause program execution to branch to the instruction at label LABEL2.
Bytes: 3
Cycles: 2
Encoding: I 0O 0 1o I 0 0 00O I [ bit address I I rel. address
Operation: JB
(PC)« (PC)+3
IF (bit) = 1
THEN

March 1993

(PC) « (PC) + rel



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

INC <byte>
Function:  Increment
Description:  INC increments the indicated variable by 1. An original value of OFFH will overflow to 00H. No flags are
affected. Three addressing modes are allowed: register, direct, or register-indirect.
Note: When this instruction is used to modify an output port, the value used as the original port data will be
read from the output data latch, not the input pins.
Example: Register 0 contains 7EH (01111110B). Internal RAM locations 7EH and 7FH contain OFFH and 40H,
respectively. The instruction sequence,
INC @RO
INC RO
INC @RO
will leave register 0 set to 7FH and internal RAM locations 7EH and 7FH holding (respectively) 00H and
41H.
INC A
Bytes: 1
Cycles: 1
Encoding: |° 0 00 lo 1 0o I
Operation:  INC
(A) « (A)+1
INC Rn
Bytes: 1
Cycles: 1
Encoding: [ 0 0 00O 1T r rr
Operation:  INC
(Rn) « (Ry) + 1
INC direct
Bytes: 2
Cycles: 1
Encoding: I 0 000 |0 1 01 I I direct address
Operation: INC
(direct) « (direct) + 1
INC @Ri
Bytes: 1
Cycles: 1
Encoding: |0 0 00 Jo 1 1
Operation: INC

March 1993

((R)) « ((Ry) + 1

78



Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

DJNZ <byte>,<rel-addr>

Function:

Description:

Example:

DJNZ Rn,rel
Bytes:
Cycles:

Encoding:
Operation:

DJNZ direct,rel

Bytes:
Cycles:

Encoding:

Operation:

March 1993

Decrement and Jump if Not Zero

DJNZ decrements the location indicated by 1, and branches to the address indicated by the second
operand if the resulting value is not zero. An original value of 00H will underflow to OFFH. No flags are
affected. The branch destination would be computed by adding the signed relative-displacement value in
the last instruction byte to the PC, after incrementing the PC to the first byte of the following instruction.

The location decremented may be a register or directly addressed byte.

Note: When this instruction is used to modify an output port, the value used as the original port data will be
read from the output data latch, not the input pins.

Internal RAM locations 40H, 50H, and 60H contain the values 01H, 70H, and 15H, respectively. The
instruction sequence,

DJNZ 40H,LABEL _1
DJINZ SOH,LABEL 2
DJNZ 60H,LABEL 3

will cause a jump to the instruction at LABEL_2 with the values 00h, 6FH, and 15H in the three RAM
locations. The first jump was not taken because the result was zero.

This instruction provides a simple was of executing a program loop a given number of times, or for adding
a moderate time delay (from 2 to 512 machine cycles) with a single instruction. The instruction sequence,
MOV R2,#8
TOGGLE: CPL P1.7
DJNZ R2,TOGGLE

will toggle P1.7 eight times, causing four output pulses to appear at bit 7 of output Port 1. Each pulse will
last three machine cycles, two for DUNZ and one to alter the pin.

1 1 01 11 r rr I Irel.address

DJNZ

(PC) « (PC)+2

(Rn) < (Rn)—1

IF(Ry))>00r (R, <0
THEN

(PC) « (PC) +rel

I1 1 01 ]0 1 01 I Ldireddata l Irel.address ]

DJNZ
(PC)« (PC)+2
(direct) «— (direct) — 1
IF (direct) > 0 or (direct) < 0
THEN
(PC) « (PC) +rel




Philips Semiconductors 80C51-Based 8-Bit Microcontrollers

80C51 Family

80C51 family programmer’s guide
and instruction set

DIV AB
Function:  Divide
Description: DIV  <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>