Components and materials Book C4 1986 Ferroxcube potcores, square cores & cross cores ## FERROXCUBE POTCORES SQUARE CORES AND CROSS CORES | Section A | page | |---|--| | General properties of manganese-zinc and nickel-zinc ferrites Introduction | 4
5
9 | | Section B | | | Potcores, square cores and cross cores — General information Introduction | 54
68
73
81
83 | | Section C | | | Potcores and accessories P5,8/2,5 P5,8/3,3 P7,4/4,2 P9/5 P11/7 P14/8 P18/11 P22/13. P26/16 P30/19 P36/22 P42/29 | 95
97
99
105
118
153
171
191
207 | ## Section D Potcores halves and coil formers for inductive proximity detectors Section E Square cores and accessories Section F Cross cores and accessories #### DATA HANDBOOK SYSTEM Our Data Handbook System comprises more than 60 books with specifications on electronic components, subassemblies and materials. It is made up of four series of handbooks: **ELECTRON TUBES** BLUE **SEMICONDUCTORS** RED INTEGRATED CIRCUITS **PURPLE** COMPONENTS AND MATERIALS **GREEN** The contents of each series are listed on pages iv to viii. The data handbooks contain all pertinent data available at the time of publication, and each is revised and reissued periodically. When ratings or specifications differ from those published in the preceding edition they are indicated with arrows in the page margin. Where application information is given it is advisory and does not form part of the product specification. Condensed data on the preferred products of Philips Electronic Components and Materials Division is given in our Preferred Type Range catalogue (issued annually). Information on current Data Handbooks and on how to obtain a subscription for future issues is available from any of the Organizations listed on the back cover. Product specialists are at your service and enquiries will be answered promptly. ## ELECTRON TUBES (BLUE SERIES) The blue series of data handbooks comprises: | T1 | Tubes for r.f. heating | |-----|--| | T2a | Transmitting tubes for communications, glass types | | T2b | Transmitting tubes for communications, ceramic types | | Т3 | Klystrons | | T4 | Magnetrons for microwave heating | | Т5 | Cathode-ray tubes Instrument tubes, monitor and display tubes, C.R. tubes for special applications | | T6 | Geiger-Müller tubes | | Т8 | Colour display systems Colour TV picture tubes, colour data graphic display tube assemblies, deflection units | | Т9 | Photo and electron multipliers | | T10 | Plumbicon camera tubes and accessories | | T11 | Microwave semiconductors and components | | T12 | Vidicon and Newvicon camera tubes | | T13 | Image intensifiers and infrared detectors | | T15 | Dry reed switches | | T16 | Monochrome tubes and deflection units Black and white TV picture tubes, monochrome data graphic display tubes, deflection units | ## SEMICONDUCTORS (RED SERIES) The red series of data handbooks comprises: S13 Semiconductor sensors | S1 | Diodes Small-signal silicon diodes, voltage regulator diodes ($<$ 1,5 W), voltage reference diodes, tuner diodes, rectifier diodes | |-----------|--| | S2a | Power diodes | | S2b | Thyristors and triacs | | S3 | Small-signal transistors | | S4a | Low-frequency power transistors and hybrid modules | | S4b | High-voltage and switching power transistors | | S5 | Field-effect transistors | | S6 | R.F. power transistors and modules | | S7 | Surface mounted semiconductors | | S8a | Light-emitting diodes | | S8b | Devices for optoelectronics Optocouplers, photosensitive diodes and transistors, infrared light-emitting diodes and infrared sensitive devices, laser and fibre-optic components | | S9 | Power MOS transistors | | S10 | Wideband transistors and wideband hybrid IC modules | | S11 | Microwave transistors | | S12 | Surface acoustic wave devices | ## INTEGRATED CIRCUITS (PURPLE SERIES) The purple series of data handbooks comprises: | EXIST | ING SERIES | Superseded by: | |-------|--|-------------------------------| | IC1 | Bipolar ICs for radio and audio equipment | IC01N | | IC2 | Bipolar ICs for video equipment | IC02Na and IC02Nb | | IC3 | ICs for digital systems in radio, audio and video equipment | ICO1N, ICO2Na and ICO2Nb | | IC4 | Digital integrated circuits CMOS HE4000B family | | | IC5 | Digital integrated circuits — ECL
ECL10 000 (GX family), ECL100 000 (HX family), dedica | IC08N
ted designs | | IC6 | Professional analogue integrated circuits | IC03N and Supplement to IC11N | | IC7 | Signetics bipolar memories | | | IC8 | Signetics analogue circuits | IC11N | | IC9 | Signetics TTL logic | ICO9N and IC15N | | IC10 | Signetics Integrated Fuse Logic (IFL) | IC13N | | IC11 | Microprocessors, microcomputers and peripheral circuitry | IC14N | | NEW SERIE | S | | |---------------------|---|------------------| | IC01N | Radio, audio and associated systems
Bipolar, MOS | (published 1985) | | IC02Na | Video and associated systems
Bipolar, MOS
Types MAB8031AH to TDA1524A | (published 1985) | | IC02Nb | Video and associated systems
Bipolar, MOS
Types TDA2501 to TEA1002 | (published 1985) | | IC03N | Integrated circuits for telephony | (published 1985) | | IC04N | HE4000B logic family
CMOS | | | IC05N | HE4000B logic family — incased ICs CMOS | (published 1984) | | IC06N* | High-speed CMOS; PC74HC/HCT/HCU
Logic family | (published 1986) | | IC07N | High-speed CMOS; PC54/74HC/HCT/HCU — uncased ICs Logic family | | | IC08N | ECL 10K and 100K logic families | (published 1984) | | IC09N | TTL logic series | (published 1984) | | IC10N | Memories
MOS, TTL, ECL | | | IC11N | Linear LSI | (published 1985) | | Supplement to IC11N | Linear LSI | (published 1986) | | IC12N | Semi-custom gate arrays & cell libraries ISL, ECL, CMOS | | | IC13N | Semi-custom
Integrated Fuse Logic | (published 1985) | | IC14N | Microprocessors, microcontrollers & peripherals Bipolar, MOS | (published 1985) | | | | | ## IC15N Note Books available in the new series are shown with their date of publication. **FAST TTL logic series** (published 1984) ^{*} Supersedes the IC06N 1985 edition and the Supplement to IC06N issued Autumn 1985. ## COMPONENTS AND MATERIALS (GREEN SERIES) The green series of data handbooks comprises: | C1 | Programmable controller modules PLC modules, PC20 modules | | |------|---|--------------------------| | C2 | Television tuners, coaxial aerial input assemblies, surfa | ce acoustic wave filters | | C3 | Loudspeakers | | | C4 | Ferroxcube potcores, square cores and cross cores | | | C5 | Ferroxcube for power, audio/video and accelerators | | | C6 | Synchronous motors and gearboxes | | | C7 | Variable capacitors | | | C8 | Variable mains transformers | | | C9 | Piezoelectric quartz devices | | | C10 | Connectors | | | C11 | Varistors, thermistors and sensors | | | C12 | Potentiometers, encoders and switches | | | C13 | Fixed resistors | | | C14 | Electrolytic and solid capacitors | | | C15 | Ceramic capacitors | | | C16 | Permanent magnet materials | | | C17 | Stepping motors and associated electronics | | | C18 | Direct current motors | | | C19 | Piezoelectric ceramics | | | C20 | Wire-wound components for TVs and monitors | | | C21* | Assemblies for industrial use HNIL FZ/30 series, NORbits 60-, 61-, 90-series, input | devices | Film capacitors C22 ^{*} To be issued shortly. # SECTION A GENERAL PROPERTIES OF MANGANESE-ZINC AND NICKEL-ZINC FERRITES #### INTRODUCTION The Ferroxcube* range of manganese-zinc and nickel-zinc magnetically soft ferrites are intended for use as core material in coils and transformers operating over a wide range of frequencies. Ferroxcube is a ceramic material, manufactured from high-grade raw materials of controlled composition; the composition defines the electrical and mechanical properties. Ferroxcube products are made by a sequence of ceramic techniques: mixing, pre-firing, milling, drying, shaping by pressing or extruding, sintering and machining. The finished products have a stable structure and high electrical resistivity. This electrical resistivity allows them to be used at high frequencies without the eddy current losses becoming prohibitively high. Ferroxcube is made in a wide range of permeabilities. Ferroxcube cores are available in convenient shapes such as potcores, square cores, E and I-cores, EC-cores, X-cores, U-cores, toroids, aerial rods, yoke rings, screw cores, rods, tubes, beads, cores for magnetic recording and special materials for proton accelerators. Potcores, square cores, E and I-cores and X-cores enable well-defined air gaps to be used without introducing appreciable stray fields. In this way the permeability of the material may be reduced to an effective value at which core and copper losses are matched. The dependence of the permeability on temperature and time is furthermore reduced to values that guarantee correct operation of the equipment. This section contains comprehensive data on manganese-zinc and nickel-zinc ferrites and their various grades. When ordering cores or associated parts, such as coil formers, adjusters and mounting parts, please quote the 12-digit catalogue number for the product in question given in the device data. Whenever this number ends with 'zero', the actual delivered goods may bear a different
figure which is for logistic purposes only. So if you order e.g. type 4322 021 30180 you may receive 4322 021 30182. ^{*} Our trade name for magnetically soft ferrites. ### **APPLICATIONS** The various grades of Ferroxcube, the forms in which they are available and their principal applications are listed in the table below. | grade | core shapes and some preferred applications | |-------------------------------------|---| | • 2A2 | yoke rings | | ● 3B | rods and tubes | | 3B7 | potcores and square cores | | • 3B8 | potcores, square cores and cross cores | | • 3C2 | yoke rings | | 3C6 | rods and tubes | | • 3C8 | E, EC, ETD, U and I cores, square cores | | • 3C85 | E, ETD, square cores | | • 3D3 | potcores, square cores, screw cores | | 3E1 | E and I cores, toroids, potcores, square cores | | • 3E2 | H cores and toroids | | • 3E4 | potcores and square cores | | 3E5 | square cores, toroids | | • 3F3 | ETD, square cores | | • 3H1 | potcores, square cores, cross cores | | 3H2 | tubes, rods, toroids | | • 3H3 | potcores, square cores | | 4A4 | frames for i.f. transformers, rods and tubes | | • 4B1 | frames for i.f. transformers, rods and tubes | | 4C6 | potcores, square cores, toroids, frames for i.f. transformers, rods and tubes | | 4D1, 4D2 | frames for i.f. transformers, screw cores, rods and tubes | | 4E1 | rods and tubes | | 3H22,
3F1, 4E2, | special-purpose ferrites developed for resonant cavities for particle | | 4L2, 4M2,
8C11, 8C12 | accelerators. A technical discussion is usually necessary to determine the correct material for this type of application. | | 8A5, 8C1,
8E1, 8E2, 8E21,
8X1 | cores and structural material for magnetic recording heads. | ### SYMBOLS, TERMS, DEFINITIONS AND BASIC FORMULAE This list of symbols is based on the recommendations of IEC Publications 50, 125 and 401. Where symbols or formulae are used in connection with one application, material or core only, they are explained in the relevant section or data sheet. | symbol | units | definition | |--------------------|------------------|--| | A _{min} | mm² | nominal value of the minimum cross-sectional area. | | A _e | mm² | effective cross-sectional area. | | A _{e min} | mm² | minimum effective cross-sectional area. | | AL | nH | inductance factor = L/N^2 . | | | | Note: unless otherwise stated in this Handbook, $\mathbf{A}_{\boldsymbol{L}}$ is the inductance factor in nH. | | AT | Α | ampere-turns. | | В | T | flux density. | | B_s | Т | saturation flux density. | | B _r | Т | remanence: flux density remaining after magnetization to saturation and removal of the external field. | | B | T | peak flux density. | | C ₁ | mm ⁻¹ | core constant: $C_1 = \Sigma(\ell/A)$. | | D | - | disaccommodation: the fractional change of permeability of a
magnetic material measured at a constant temperature over a
period of time after cessation of a disturbance | | | | $D = \frac{\mu_1 - \mu_2}{\mu_1}$ | | D _F | _ | disaccommodation factor: obtained by dividing D by the first measured relative permeability (at t_1) and the logarithm of the ratio of the measuring times | | | | $D_{F} = \frac{\mu_1 - \mu_2}{\mu_1^2 \log(t_2/t_1)}$ | | | | Times t ₁ and t ₂ are given in the core data. | | E ₁ | V | voltage at fundamental frequency. | | E3 | V | voltage at third harmonic. | | f _{Cu} | _ | space (copper) factor: proportion of the winding cross section occupied by conductor. | | f | Hz | frequency. | | Н | A/m | magnetic field strength. | | H _C | A/m | coercivity: the value of the external field strength for which the flux density is zero after the material has been magnetized to saturation. | α_F | Ĥ | A/m | peak magnetic field strength. | |----|----------------|---| | 10 | Α | direct current. | | ℓe | mm | effective magnetic path length. | | L | Н | inductance. | | N | | number of turns. | | Р | kW/m³ | specific power loss in core material. | | Q | . <u>-</u> | inductance quality factor. | | Rh | Ω | effective series resistance of an inductor due to hysteresis losses in the core. | | Tc | оС | Curie temperature: the temperature at which a ferromagnetic material becomes paramagnetic. | | Ve | mm³ | effective volume of a core: the volume of an ideal toroid of the same material and having the same magnetic properties: | | | | $V_{e} = \frac{\sum (\ell/A)^{3}}{\sum (\ell/A^{2})^{2}}.$ | | α | - . | turns factor: number of turns for an inductance of 1 mH. | definition in IEC 133 $$\alpha_{\text{F}} = \frac{\mu_{\theta} - \mu_{\text{ref}}}{\mu^{2}_{\text{ref}}(\theta - \theta_{\text{ref}})}$$ $$= \frac{0.4\pi(A_{\text{L}\theta} - A_{\text{L}}_{\text{ref}})}{A^{2}_{\text{L}}_{\text{ref}}C_{1}(\theta - \theta_{\text{ref}})}$$ temperature factor of a core without air gap. The original where θ is the applied temperature, was superseded in 1976 by the definition in IEC 367-1: $$\begin{split} \alpha_{\text{F}} &= \frac{\mu_{\theta} - \mu_{\text{ref}}}{\mu_{\theta}\mu_{\text{ref}} \left(\theta - \theta_{\text{ref}}\right)} \\ &= \frac{0.4\pi (A_{\text{L}\theta} - A_{\text{L ref}})}{A_{\text{L}\theta}A_{\text{L ref}} C_{1} \left(\theta - \theta_{\text{ref}}\right)} \end{split}$$ The second definition is required for new, close-tolerance products, and for products whose properties are guaranteed over a wide temperature range. temperature coefficient of a core with an (ground) air gap. Where $\mu_{\rm e}$ is the effective permeability of the core, $$\alpha_{\mu} \simeq \alpha_{F} \mu_{e}$$ Alternatively, $$\alpha_{\mu} \simeq \alpha_{\rm F} \, {\rm C}_1 {\rm A}_{\rm L}/\mu_0$$. These approximations hold for fairly small changes in μ_e or A_L over the temperature range considered. K-1 #### Symbols, terms, definitions and basic formulae ## MnZn and NiZn ferrites βF _ d.c. sensitivity constant for a core: $$\beta_{\mathsf{F}} = \frac{\mu_{\mathsf{e}} - \mu_{\mathsf{e}\Delta}}{\mu_{\mathsf{e}}\mu_{\mathsf{e}\Delta}}$$ where $\mu_{e\Delta}$ is the relative incremental permeability of the core. $\frac{\tan \delta}{\mu_i}$ eddy-current and residual loss constant at a given frequency, measured at $\widehat{B} \le 0.1$ mT. The corresponding R/L value is given by $$R/L = 2\pi f \mu \frac{\tan \delta}{\mu_i}$$ $\Delta \eta_{\mathsf{B}}$ mm T⁻¹ air-gap length. temperature. hysteresis constant: $$\eta_{\mathsf{B}} = \frac{\Delta \mathsf{R}_{\mathsf{h}}}{\Delta \mu_{\mathsf{p}} 2\pi \mathsf{fL}}$$ where $\Delta\widehat{B}=\widehat{B}_2-\widehat{B}_1$ and $\Delta R_h=R\widehat{B}_2-R\widehat{B}_1$. (That is, series resistance $R\widehat{B}_1$ is measured at \widehat{B}_1 and then $R\widehat{B}_2$ at \widehat{B}_2 .) θ μ_a οС ___ relative amplitude permeability for a signal of amplitude greater than that for μ_Δ so that the value is dependent on flux density B: $$\mu_a = \frac{1}{\mu_0} \cdot \frac{B}{H}$$ μ_{e} relative effective permeability: the permeability of a core with an air gap $$\mu_e = \frac{C_1}{\Sigma \ell / A}$$ or $\frac{I}{\mu_e} \cdot \frac{L}{N^2} C_1$ μ_{i} relative initial permeability: measured on a core without air gap for a small field change $\Delta H \to 0.$ $$\mu_i = \lim \mu_a$$ $(H \to 0)$ μ_{rem} _ relative incremental permeability about remanence. μ_{Δ} – relative incremental permeability of a polarized core: at a given d.c. applied field, the permeability observed when a small alternating field is superimposed. $$\mu_{\Delta} = \frac{\Delta B}{\mu_0 \Delta H}$$ Here, $\Delta B \le 0.2$ mT and f = 4 kHz. μ_{θ} ___ relative permeability at a given temperature. ρ Ω m specific resistance for direct current. #### **FORMULAE** $$L = \frac{\mu_0 \mu_e N^2 \times 10^{-3}}{C_1} \qquad H$$ $$A_L = 10^6 \mu_e \mu_0 / C_1 \qquad (nH)$$ $$B = E/(4,44f N A_e) \times 10^{-6} \qquad (T)$$ $$E_3 / E_1 = 0,6 \tan \delta_h$$ $$N = \sqrt{(10^9 L/A_L)} = \alpha \sqrt{(10^3 L)} \qquad (turns)$$ $$Q = 1/\tan \delta_{tot}$$ $$\tan \delta_h = \mu B \eta_B$$ $$1 \text{ mT} = 10 \text{ Gauss}$$ $$1 \text{ Oe} = 79,6 \text{ A/m}$$ inductance. initial induction factor. peak flux density. 3rd harmonic distortion. number of turns. quality factor. hysteresis loss factor 8 #### **TECHNICAL DATA** Ferroxcube data are given in the tables on the following pages in accordance with the recommendations of IEC 401, and using symbols defined in the previous section. #### **GENERAL PROPERTIES** | Specific heat at 25 °C | | |--|---------------------------------| | MnZn ferrites (FXC 3) | 1100 J/(kgK) | | NiZn ferrites (FXC 4) | 750 J/(kgK) | | Thermal conductivity from 25 °C to 85 °C | 3,5 to 4,3 W/(mK) | | Coefficient of linear expansion | 10 to $12 \times 10^{-6}/K$ | | Modulus of elasticity | $15 \times 10^4 \text{N/mm}^2$ | | Ultimate tensile strength | 18 N/mm ² | | Crushing strength | 73 N/mm² | #### **NOTES TO THE DATA TABLES** - The data given apply to medium-sized toroids and should be taken as a guide. Cores that are small or have other shapes will have slightly different properties that cannot readily be predicted on the basis of toroid properties. For this reason, product characteristics are guaranteed for the products themselves and are given on the appropriate data sheets. - The temperature coefficient α_F is measured on circuits without a (ground) air gap, with the exception of 3B7 products, for which α_F is measured on toroidally-wound core halves. For FXC 3-- products, the measuring sequence is that shown in the figure. The measurement circuits for FXC 3H3 and FXC 4-- products
are thermally demagnetized by being heated to 25 $^{\circ}$ C above their Curie temperature, after which they are cooled slowly to room temperature and left for 24 h. | | materials for deflection units | | | | |---|------------------------------------|-------------------|-----------|----| | | unit | •2A2 | •3C2 | | | Initial permeability μ_i at $\hat{B} \leq 0.1$ mT, $\theta = 25$ °C | | 350 ± 20% | 900 ± 25% | | | Induction B, ballistically measured at $H = 500 \text{ A/m} \qquad \theta = 100 \text{ °C}$ $H = 800 \text{ A/m} \qquad \theta = 20 \text{ °C}$ $H = 800 \text{ A/m} \qquad \theta = 25 \text{ °C}$ | | ≈ 200 | ≈ 350 | | | H = 800 A/m | mT | ≈ 140 | ≈ 245 | | | H = 3200 A/m θ = 25 °C
H = 3200 A/m θ = 100 °C
H = 4800 A/m θ = 25 °C
H = 4800 A/m θ = 100 °C | | | | | | Coercivity Hc $\theta = 20^{\circ}$ C | A/m | 60 | | | | Eddy current and residual loss constant $\frac{\tan\delta}{\mu_{\rm i}}$ at $\hat{\rm B} \leqslant 0.1$ mT, $\theta=25^{\circ}{\rm C}$ f = 100 kHz f = 450 kHz f = 500 kHz | | ≈ 50 | | | | f = 700 kHz
f = 1 MHz
f = 1,5 MHz
f = 2 MHz
f = 3 MHz
f = 5 MHz | × 10⁻ ⁶ | | | | | f = 10 MHz
f = 20 MHz
f = 25 MHz
f = 40 MHz | | | | | | Hysteresis constant η_B at $\hat{B} = 0,3 - 1,2 \text{ mT}$
f = 100 kHz | x 10 ⁻³ T ⁻¹ | | | | | Power loss at f = 16 kHz and
B = 50 mT θ = 20 °C
B = 400 mT θ = 25 °C
B = 400 mT θ = 50 °C
B = 400 mT θ = 100 °C | kW/m³ | ≈ 70 | | 1. | | Resistivity $ ho$ measured with d.c. | Ωm | ≥ 10 ⁶ | ≥ 0,1 | | | Dielectric constant at $f = 1 \text{ MHz}$, $\theta = 25 ^{\circ}\text{C}$ | | - | | | | Temperature factor α_F
θ = +25 to +55 °C
θ = +25 to +70 °C | × 10 ⁻⁶ /K | ≈ 35 | 0 to +4,5 | | | Disaccomodation factor DF between 10 and 100 min after demagnetization, $\hat{B} \le 0.1$ mT, $\theta = 25 \pm 1$ °C | × 10 ⁻⁶ | | ≤10 | | | Curie temperature | °C | ≥ 135 | ≥ 150 | | | Mass density | kg/m³ | ≈ 4300 | 4700-4900 | | | Core shapes | | yoke rings | | | preferred material | ●3B | 3C6 | 4A4 | ●4B1 | 4D1 | 4D2 | 4E1 | |----------------------|-------------------------|----------------------|-----------------------|-------------------------|-------------------------|-------------------------| | 900 ± 20% | 1700 ± 25% | 500 ± 20% | 250 ± 20% | 50 ± 20% | 60 ± 10% | 15 ± 20% | | ≈ 345
≈ 230 | ≥ 290 | ≈ 270
≈ 210 | ≈ 325
≈ 260 | ≈ 240
≈ 220 | | ≈ 175
≈ 185 | | * | | | | | 1 | ≈ 165 | | ≤ 50 | | ≤ 30
≤ 40
≤ 70 | ≤ 70
≤ 90
≤ 140 | ≤ 180
≤ 210
≤ 300 | ≤ 100
≤ 200
≤ 600 | ≤ 300
≤ 300
≤ 360 | | | | ≤ 1,8 | | | | | | | ≤ 170
≤ 160
≤ 140 | | | | | | | ≥ 0,2 | | ≥ 10 ⁵ | ≥ 10 ⁵ | ≥ 10 ³ | ≥ 10 ³ | ≥ 10 ³ | | | | 15-20 | | | | | | 0 to +3 | | +5 to +15 | 0 to +8 | 0 to +15 | 0 to +15 | 0 to +15 | | > 150 | > 100 | > 105 | > 250 | > 400 | > 250 | > 500 | | ≥ 150
4700-4900 | ≥ 190 | ≥ 135 | ≥ 250 | ≥ 400 | ≥ 350 | ≥ 500 | | →/\!\!-427\!\ | 4750-4850 | 4700-5100 | 4400-4800 | 4000-4400 | 1 | 3500-4000 | | | unit | | | | | |---|------------------------|---|--|--|--| | Initial permeability μ_i at $\stackrel{\triangle}{B}$ (mT), f = 4 kHz θ (0 \leq 0,1 25 | :) | | | | | | Optimum frequency range | kHz | | | | | | Induction \hat{B} at f (kHz) \hat{H} (A/m) $\overset{\theta}{\theta}$ (° 0 800 25 0 800 100 0 3000 25 25 25 250 25 25 100 | mT | | | | | | Power loss at f (kHz) β (mT) θ (0 25 200 25 25 200 100 25 200 100 100 100 25 100 100 100 400 50 25 400 50 100 | kW/m³ | | | | | | Temperature factor α _F at θ (°C)
+5 to +25
+25 to +55
+25 to +70 | x 10 ⁻⁶ /K | | | | | | Curie temperature | oC | | | | | | Mass density | kg/m³ | - | | | | | D.C. sensitivity constant $\beta = \frac{\mu_{\rm i} \cdot \mu_{\rm i} \Delta}{\mu_{\rm i} \; \mu_{\rm i} \Delta}$ at $\mu_{\rm e} \times \frac{N \times 1}{1}$ = 1,20 \times 10 ⁵ = 1,80 \times 10 ⁵ = 2,60 \times 10 ⁵ | A/m x 10 ⁻⁶ | | | | | | Core shapes | | | | | | | high level transformer materials
(power materials) | | | | | | | | |---|-------------------------|----------------------------------|--|--|--|--|--| | ● 3B8 | • 3C8 | • 3C85 | • 3F3 | | | | | | 2300 ± 20%
up to 150 | 2000 ± 25%
up to 100 | 2000 ± 20%
up to 200 | 2000 ± 20% | | | | | | ≈ 500
≥ 330 | ≈ 500
≥ 330 | ≈ 500
≥ 330 | ≈ 500
≥ 330 | | | | | | ≤ 140
≤ 155 | ≤ 110*
≤ 100* | ≤ 190
≤ 140
≤ 230
≤ 165 | ≤ 120
≤ 90
≤ 110
≤ 80
≤ 150
≤ 150 | | | | | | 5 ± 2
5 ± 2
5 ± 2 | | | | | | | | | ≥ 200 | ≥ 200 | ≥ 200 | ≥ 200 | | | | | | 4700-4900 | 4750-4850 | 4700-4900 | 4650-4850 | | | | | | ≤ 120
≤ 300
≤ 1000 | | | | | | | | | potcores
square
cures | E, EC, ETD,
U and I | E, ETD,
square
cores | square
cores,
ETD | | | | | ^{*} at 16 kHz. Preferred material. | | | unit | | | | |--|---|------------------------------------|--------|--|--| | Initial permeability μ_i at $\hat{\beta} \leqslant 0,1$ mT at $\hat{\beta} \leqslant 1$ mT at $\hat{\beta} \leqslant 1$ mT at $\hat{\beta} \circ 0,7-1$ mT | θ = 25 °C | | | | | | Induction B ballistical
H = 800 A/m | ly measured
θ = 25 °C
θ = 70 °C | mT | | | | | Eddy current and residence $\frac{\tan \delta}{\mu_i}$ at $\stackrel{\triangle}{B} \leq 0,1$ mT, | | х 10 ⁻⁶ | | | | | Hysteresis constant $\eta_{ { m E}}$ | $_{3}$ at $\stackrel{\triangle}{B}$ = 1,5 — 3,0 mT f = 4 kHz | x 10 ⁻³ T ⁻¹ | 3a - 1 | | | | Resistivity $ ho$ measured | l with d.c. | Ω m | | | | | Temperature factor $lpha$ | θ = +5 to +25 °C
θ = +25 to +55 °C
θ = +25 to +70 °C | x 10 ⁻⁶ /K | | | | | | or DF between 10 and gnetization, $\hat{\beta} \le 0,1$ mT $\theta = 25 \pm 1$ °C | x 10 ⁻⁶ | | | | | Curie temperature | | oC | | | | | Mass density | | Kg/m³ | | | | | Core shapes | | | | | | ^{* ± 20%.} [•] preferred material. | low level transformer materials (broadband materials) | | | | | | | |---|-----------------------|------------------------------|------------------------------|-----------------------------|------------------------------|--| | 3E1 | ●3E2 | ●3E4 | ●3E45 | 3E5 | 3H2 | | | 3800 ± 20% | ≥ 5000 | 4700 ± 20% | 6000 ± 20%
≥ 4200 | 10000 ± 20% | 2300 ± 20% | | | ≈ 350
≈ 270 | ≈ 355
≈ 260 | ≈ 350
≈ 270 | ≈ 350
≈ 270 | ≈ 380
≈ 280 | ≈ 400 | | | ≤ 2,5
≤ 20
≤ 200 | ≤ 2,5
≤ 15
≤ 90 | ≤ 2,5
≤ 20
≤ 200 | ≤5
≤40 | ≤3
≤25
≤75 | <1
<6 | | | ≤ 1,1 | ≤ 1,1 | ≤ 0,85 | ≤ 1,0 | ≤ 0,85 | ≤ 0,85 | | | ≥ 0,3 | ≥ 0,1 | ≥ 0,3 | ≥ 0,05 | ≥ 0,01 | ≥ 1 | | | 1 ± 1
1 ± 1
1 ± 1 | 1 | | | | | | | ≤ 4,3 | ≤1,9 | ≤ 4,3 | ≤3 | ≤2 | ≤4,3 | | | ≥ 125 | ≥ 130 | ≥ 125 | ≥ 130 | ≥ 120 | ≥ 160 | | | 4700-4900 | 4700-4900 | 4700-4900 | 4700-4900 | 4800-5000 | 4700-4900 | | | E and I cores,
toroids
potcores
square cores | toroids | potcores,
square
cores | potcores,
square
cores | square
cores,
toroids | toroids
tubes and
rods | | | | unit | | |--|------------------------------------|--| | Initial permeability $\mu_{\hat{i}}$ at $\hat{B} \leq 0.1 \text{ mT}$ $\theta = 25 ^{\circ}\text{C}$ | | | | Induction B ballistically measured at H = 800 A/m θ = 25 °C θ = 70 °C H = 2400 A/m θ = 25 °C θ = 70 °C | mT | | | Eddy current and residual loss constant | | | | $\frac{\tan \delta}{\eta_i} \text{ at } \hat{B} \leqslant 0,1 \text{ mT}, \theta = 25 ^{\circ}\text{C}$ $f = 4 \text{ kHz}$ $f = 30 \text{ kHz}$ $f = 100 \text{ kHz}$ $f = 500 \text{ kHz}$ $f = 1 \text{ MHz}$ $f = 2 \text{ MHz}$ $f = 10 \text{ MHz}$ | × 10⁻ ⁶ | | | Hysteresis constant η_B
at $\hat{B} = 0.3 - 1.2$ mT | × 10 ⁻³ T ⁻¹ | | | Resistivity ρ measured with d.c. | Ωm | | | Temperature factor α_F $\theta = +5 \text{ to } +25 \text{ °C}$ $\theta = +25 \text{ to } +55 \text{ °C}$ $\theta = +25 \text{ to } +70 \text{ °C}$ | × 10 ⁻⁶ /K | | | Disaccomodation factor DF between 10-100 min after demagnetization, $\hat{B} \leqslant 0.1$ mT $\theta = 25 \pm 1$ °C between 24 and 48 h after thermal demagnetization, $\hat{B} \leqslant 0.1$ mT $\theta \leqslant 35$ °C | × 10⁻ ⁶ | | | Curie temperature | °C | | | Mass density | kg/m³ | | | Core shapes | | | | materials for tuned circuits | | | | | | |------------------------------|---|---|---|-------------------------------------|---| | 3B7 | ●3D3 | ●3D35 | ●3H1 | ●3H3 | ●4C6 | | 2300 ± 20% | 750 ± 20% | 1000 ± 20% | 2300 ± 20% | 2000 ± 20% | 120 ± 20% | | ≈ 430
≈ 345 | ≈ 350 | ≈ 350 | ≈ 360
≈ 280 | ≈ 400 | ≈ 380
≈ 350 | | ≤ 1,0
≤ 5,0 | ≤ 8
≤ 12
≤ 24 | ≤3
≤8
≤30 | ≤ 1,0
≤ 5,0 | 1,2 ± 0,4
2 ± 0,5 | ≤ 40
≤ 100 | | ≤ 1,1 | ≤ 0,8 | ≤ 0,5 | ≤
0,85 | ≤ 0,6 | ≤ 6,2 | |
≥ 1 | ≥ 1,5 | ≥7 | ≥ 1 | | ≥ 10 ⁵ | | 0 ± 0,6 | 1 ± 1 | 1 ± 0,5
1 ± 0,5
1 ± 0,5 | 1 ± 0,5
1 ± 0,5
1 ± 0,5 | 0,7 ± 0,3
0,7 ± 0,3
0,7 ± 0,3 | 1 ± 3
3 ± 3 | | ≤ 4,3 | ≤ 12 | 8 ≥ 8 | ≤4,3 | €3 | ≤ 10 | |
≥ 170 | ≥ 200 | ≥ 180 | ≥ 130 | ≥ 160 | ≥ 350 | |
4700-4900 | 4500-4900 | 4300-4500 | 4700-4900 | - 100 | 4000-5000 | | potcores,
square
cores | potcores,
square cores,
screw cores | potcores,
square cores,
screw cores | potcores,
square cores,
cross cores | potcores,
square
cores | potcores
square cores,
toroids,
frames for i.f.
transformers,
rods and tubes | ### CHARACTERISTIC CURVES The curves are valid for toroids of not too small dimensions and should be considered as a guide. For guarantees on products, refer to the pages on the relevant products. Eddy current losses and residual losses as a function of the frequency at low induction level. Amplitude permeability as a function of the induction. #### TYPICAL BH-CURVES (measured ballistically) ballistic curves ballistic curves ballistic curves ballistic curves ## MnZn and NiZn ferrites dynamic curves, f = 10 kHz #### ballistic curves ## MnZn and NiZn ferrites dynamic curves, f = 10 kHz #### ballistic curves ballistic curves ## Relative initial permeability as a function of the temperature ## Permeability factor as a function of the temperature August 1981 ### Power loss as a function of the induction NiZn ferrites MnZn and ## Incremental permeability as a function of the field strength # MnZn and NiZn ferrites D.C. sensitivity Inductance variation as a function of d.c. polarization. The measured values are situated in the area to the right of the curve. ## SECTION B GENERAL ## INTRODUCTION ### TYPE NUMBER COMPOSITION Potcores: P followed by diameter/height of complete core in mm. Potcore halves and coil formers for inductive proximity detectors: diameter x height of core half in mm. **Square cores:** RM followed by the square dimension of the bottom expressed in terms of a grid with a 2,54 mm pitch. Cross cores: X followed by the square dimension of the core in mm. Ferroxcube potcores, square cores and cross cores were originally developed for low-loss filter coils and transformers operating at small-signal levels. However, they now also find some power applications, several types of potcore are used as inductive elements in proximity detectors. These cores are primarily intended for mounting on 2,54 mm (0,1") pitch printed-wiring boards, although potcores of size P18/11 and above can be mounted on conventional panels. The main advantage of square cores and cross cores over potcores is shown in the diagram: improved packing factor due to the use of the (shaded) corner areas. Coil formers and mounting parts are available for most of our potcores, square cores and cross cores. We can supply core sets, or core halves and loose mounting parts. Winding of the coil former and assembly of the core is performed by the user. ## PRE-ADJUSTED CORES Since the air gap in potcores, square cores and cross cores can be ground to any length, any value of A_{L} or μ_{e} can be provided within the limits set by the core size. In practice, the range of A_{L} (and, for potcores, μ_{e}) values has been standardized with values chosen to cover the majority of application requirements. If a core set is provided with an asymmetrical air gap this air gap is ground in the upper half. This half is marked with the FXC grade and A₁ value. Most pre-adjusted cores are provided with an injection-moulded nut for the adjuster. For those users who prefer to insert the nuts themselves, loose nuts are available. Further information is given in the section Inductance adjusters. Continuously-variable adjusters can be supplied for pre-adjusted cores of most μ_e and A_L values. These are especially recommended for filter coils; maximum adjustment range is 10% to 20%, depending on core type. #### α AND AL FACTORS The α factor for a given core is the number of turns required for an inductance of 1 mH. For other values of inductance, N = $\alpha \sqrt{L}$, where L is the inductance in mH (10⁻³ H). The A_L factor is the inductance per turn squared in nH for a given core. $L = N^2 A_L$, L in nH (10-9 H). #### Measurement conditions for the guaranteed α and AL values The α and A_L factors given in the data sheets are guaranteed in the form of a tolerance on the inductance that applies to matched pairs of cores, provided the following 11 conditions are complied with. - The core should be properly demagnetized (magnetically conditioned). All electrical values must be measured at least 24 h after demagnetization. Note that all our cores are demagnetized before they leave the factory. - 2. All particles, if any, must be removed from the mating surfaces of the core. This can be achieved by rubbing on a piece of linen. - 3. Measurements must be carried out using a standard coil selected from the table of standard coils. The standard coils for RM cores are in accordance with IEC Publication 431A. - 4. The axes of the core halves must coincide. - Any silver reference lines on the circumferences of the core halves must coincide. Where there are no reference lines, cores may be arbitrarily positioned. - 6. A force is applied to the flat sides of the core through rings, the inner diameter of which must be equal to the average inner diameter of the core. - 7. The force applied must be that given in the appropriate data sheet. - 8. Measurement must be carried out at a frequency of 4 kHz. - 9. Measurement must be carried out at a temperature of 25 °C ± 10 °C. - The current through, or the voltage across the coil must be such that the peak flux density (B) in the core does not exceed 0,1 mT. - 11. The standard coil must be held against the bottom of the lower core half; that is the unmarked half, or the half without the nut. ## Standard coils for α and $A_{\mbox{\scriptsize L}}$ measurement | core type | catalogue number
of standard coil | | number of t | number | copper wire | | |-------------|--------------------------------------|-------|--------------|----------------|--------------|----------------| | | | total | per
layer | upper
layer | of
layers | diameter
mm | | P5,8/2,5 | _ | 200 | _ | _ | _ | _ | | P5,8/3,3 | _ | 35 | _ | _ | _ | 0,10 | | P7,4/4,2 | _ | 100 | | - | | 0,10 | | P9/5 | 7622 301 00101 | 65 | 11 | 10 | 6 | 0,20 | | P11/7 | 7622 301 00301 | 71 | 12 | 11 | 6 | 0,25 | | P14/8 | 7622 301 00501 | 90 | 13 | 12 | 7 | 0,30 | | P18/11 | 7622 301 00701 | 83 | 12 | 11 | 7 | 0,45 | | P22/13 | 7622 301 00901 | 71 | 12 | 11 | 6 | 0,60 | | P26/16 | 7622 301 01101 | 71 | 12 | 11 | 6 | 0,70 | | P30/19 | 7622 301 01301 | 104 | 15 | 14 | 7 | 0,70 | | P36/22 | 7622 301 01501 | 135 | 17 | 16 | 8 | 0,70 | | P42/29 | 7622 301 01701 | 199 | 20 | 19 | 10 | 0,80 | | P66/56 | 7622 301 01901 | 231 | 29 | 28 | 8 | 1,20 | | RM4 | 7622 300 50101 | 91 | 23 | 22 | 4 | 0,224 | | RM5 | 7622 300 50201 | 107 | 18 | 17 | 6 | 0,25 | | RM6-S/RM6-R | 7622 300 50301 | 113 | 19 | 18 | 6 | 0,315 | | RM8 | 7622 300 50501 | 125 | 21 | 20 | 6 | 0,40 | | RM10 | 7622 300 50601 | 101 | 17 | 16 | 6 | 0,56 | | RM14 | 7622 300 50701 | 113 | 19 | 18 | 6 | 0,90 | | X22 | 7622 301 04001 | 175 | 16 | 15 | 11 | 0,40 | | X25 | 7622 300 13701 | 40 | 14 | 12 | 3 | 0,50 | | X30 | 7622 301 04101 | 175 | 16 | 15 | 11 | 0,70 | | X35 | 7622 301 04201 | 251 | 21 | 20 | 12 | 0,70 | ## Converting μ_e into α and A_L values ## **POTCORES** ## SQUARE CORES ## CROSS CORES #### CORE LOSSES Eddy-current and residual losses are measured at a peak flux density not greater than 0,1 mT and are given in terms of tan δ/μ_i . Hysteresis constant η_B is defined in Section A. The relationships between the various hysteresis constants in current use are given below. Peak flux density \hat{B} at which measurements are carried out is calculated using the minimum cross-sectional area of the centre pole of the core, in accordance with CECC. Measurement conditions, frequencies, temperatures and flux densities, together with guaranteed values are given in the data sheets for the cores. #### Q CURVES Due to the many assumptions that must be made in the design of filter coils, prediction of Q with an accuracy better than 15% is difficult. For this reason, selection of the optimal μ_e or A_L factor for a given core is most easily made by comparing Q curves for various μ_e values. Families of Q curves are included in the data for most types of pot and square core. To simplify comparison, the curves for each type of core were measured using identical sets of coils and wires. As a result, the curves for different $\mu_{\rm e}$ (or $A_{\rm L}$) values and different core sizes can readily be compared. Q values for inductances other than those for which the curves are given can be found by interpolation or extrapolation as appropriate. #### HYSTERESIS CONSTANTS Hysteresis losses add an effective resistance R_h in series with the coil inductance, expressed by the term R_h/L in Eqs (1) and (5). A number of other hysteresis constants are in use, however; they are related to R_h/L in Table 1. Conversion between the various constants is given in Table 2. Table 1 | | R | L | В | Н | ı | V _e | l _e | f | |---|-------|----|---|---------------|----|----------------|----------------|-----| | D /24,000 / / | units | | | | | | | | | $\frac{R_h}{L} = q_{2-24-100} \sqrt{\frac{24000}{V_e}} \sqrt{\left(\frac{\mu_e}{100}\right)^3 \sqrt{(L)} \times I_{rms}} \cdot \frac{f}{800}$ | Ω | Н | | | mA | mm³ | | Hz | | $\frac{R_h}{L} = a.\mu.\hat{B}.f$ | Ω | Н | Т | | | | | Hz | | $\frac{R_h}{L} = \frac{16}{3} \cdot \frac{v}{\mu^3} \cdot \mu^2 \cdot
\widehat{H}.f$ | Ω | Н | | A/m | | | | Hz | | $\frac{R_h}{L} = \frac{h}{\mu^2} \cdot \mu^2 \cdot \frac{N l_{eff}}{l_{eff}} \cdot \frac{f}{800}$ | Ω | H. | | | A | | mm | Hz | | $\frac{R_h}{L} = \frac{h'}{\mu^2} \cdot \mu^2 \cdot H_{eff} \cdot f$ | Ω | Н | | $\frac{A}{m}$ | | | | kHz | | $\frac{R_h}{L} = \eta_B \cdot \mu \cdot \widehat{B} \cdot \omega \ (\omega = 2\pif)$ | Ω | Н | Т | | | | | Hz | Table 2 | | | ^q 2-24-100 | а | $\frac{\nu}{\mu^3}$ | $\frac{h}{\mu^2}$ | $\frac{h'}{\mu^2}$ | η_{B} | |---------------------|------|--------------------------|------------------------|------------------------|--------------------------|--------------------------|--------------------------| | | | x | × | × | × | x | × | | 92-24-10 | 00 = | 1 | 2,59 x 10 ⁶ | 6,9 x 10 ⁶ | 1,82 x 10 ³ | 1,46 x 10 ³ | 1,63 × 10 ³ | | а | = | 0,386 x 10 ⁻⁶ | 1 | 2,67 | 0,703 x 10 ⁻³ | 0,563 x 10 ⁻³ | 0,628 x 10 ⁻³ | | $\frac{\nu}{\mu^3}$ | = | 144,8 x 10 ⁻⁹ | 0,376 | 1 | 0,264 x 10 ⁻³ | 0,212 x 10 ⁻³ | 0,236 x 10 ⁻³ | | $\frac{h}{\mu^2}$ | = | 0,549 x 10 ⁻³ | 1,42 x 10 ³ | 3,79 x 10 ³ | 1 | 0,8 | 0,893 | | $\frac{h'}{\mu^2}$ | = | 0,686 x 10 ⁻³ | 1,78 x 10 ³ | 4,74 x 10 ³ | 1,25 | 1 | 1,12 | | η_{B} | = | 0,615 x 10 ⁻³ | 1,59 x 10 ³ | 4,25 x 10 ³ | 1,12 | 0,896 | 1 | Example: $q_{2-24-100} = 1,46 \times 10^3 \times \frac{h'}{\mu^2}$. ## MEASUREMENT CONDITIONS FOR THE GUARANTEED LOSSES Values for loss factors given in the data apply five minutes after the core halves have been clamped together. Details of the coils used for the measurement of losses are given in the following table; all windings are on single-section coil formers. | core type | FXC grade | 4 kHz
tan δ/μ | 16 to 25 kHz
watt losses | 30 kHz
tan δ/μ | |-----------|--------------------------|----------------------------------|-----------------------------|-------------------------| | P5,8/2,5 | 3H1 | | | | | P5,8/3,3 | 3H1 | | | | | P7,4/4,2 | 3H1 | | | | | P9/5 | 3H1
3D3
4C6 | 60 turns 0,10E | | | | P11/7 | 3H1
3B8
3D3
4C6 | 42 turns 0,18E | | | | P14/8 | 3H1
3B8
3D3 | 53 turns 0,25E | | | | | 3H3
4C6 | | | 53 turns 0,25E | | | 3H1
3B8
3D3 | 42 turns 0,50E | 31 turns 0,50E | | | P18/11 | 3H3
4C6 | | | 20 turns
100 x 0,40E | | | 3H1
3B8
3D3 | 37 turns 0,60E | 30 turns 0,25E | | | P22/13 | 3E4
4C6 | 37 turns 0,60E | | | | P26/16 | 3H1
3B8
3D3 | 34 turns 0,70E
34 turns 0,70E | 22 turns 0,40E | | | | 4C6 | |)
 | | | 100 kHz
tan δ/μ | 0,5 to 1 MHz
tan δ/μ | 2 MHz
tan δ/μ | 10 MHz
tan δ/μ | βF | |---|-------------------------|------------------------|---------------------------|-----------------| | | | | | | | 35 turns 0,10E | | | | | | 35 turns 0,20E | | | | | | 35 turns 0,20E
45 turns 0,16E
90 turns 0,12 | 10 turns 0,16E | 17 turns
40 × 0,04E | 6 turns
40 × 0,04E | | | 42 turns 0,18E | | | | | | 42 turns 0,18E
85 turns 0,10E | 22 turns 0,10E | 16 turns
45 x 0,04E | 6 turns
45 x 0,04E | 100 turns 0,20E | | 37 turns 0,10E | | | | | | 37 turns 0,10E | 19 turns
8 x 0,04E | | | 80 turns 0,25E | | 37 turns 0,10E
176 turns 0,14E | | 14 turns 0,40E | 6 turns
0,5 x 1,9 Cu | | | 35 turns 0,14E | | | | | | 35 turns 0,14E | 16 turns
12 x 0,04E | | | 100 turns 0,30E | | 20 turns
100 x 0,04E | | | | | | 150 turns 0,25E | | 12 turns 0,60E | 5 turns
0,75 x 2,75 Cu | | | 29 turns 0,20E | | | | 100 | | 29 turns 0,20E | 16 turns | | | 100 turns 0,40E | | 29 turns 0,20E | 40 x 0,04E
4 turns | | | | | 140 turns 0,25E | 1,2 x 3,5 Cu | 11 turns 0,70E | 4 turns
1,2 x 3,5 Cu | | | 28 turns 0,28E | | | | 400 | | 28 turns 0,28E
28 turns 0,28E | 14 turns | | | 100 turns 0,40E | | 125 turns 0,40E | 40 x 0,04E | 10 turns 0,90E | 4 turns
2,0 x 4,0 Cu | | # **GENERAL** | core type | FXC grade | 4 kHz
tan δ/μ | 16 to 25 kHz
watt losses | 30 kHz
tan δ/μ | |-----------|--------------------------|----------------------------------|-----------------------------|----------------------------------| | P30/19 | 3H1
3B8
3D3 | 30 turns 1,0E | 27 turns 0,40E | | | P36/22 | 3H1
3B8
3D3 | 27 turns 1,2E | 21 turns 0,56E | | | P42/29 | 3H1 | 26 turns 1,8E | | | | RM4 | 3H1
3E4 | 60 turns 0,18E
60 turns 0,18E | | 60 turns 0,18E
60 turns 0,18E | | | 3H1 | 45 turns 0,30E | | 26 turns
80 x 0,04E | | RM5 | 3D3
3E4
3H3
4C6 | 45 turns 0,30E | | 26 turns
80 x 0,04E | | | 3H1 | 66 turns 0,35E | | 66 turns 0,35E | | RM6 | 3B8
3D3
3E4
3H3 | 40 turns 0,45E | 25 turns 0,25E | 23 turns
100 x 0,04E | | | 3H1 | 35 turns 0,50E | | 35 turns 0,50E | | RM8 | 3B8/3C8
3D3 | | 20 turns 0,40E | | | nivio | 3E4
3H3 | 35 turns 0,50E
35 turns 0,50E | | 35 turns 0,50E | | | 4C6 | | | | | RM10 | 3H1
3B8/3C8
3E4 | 40 turns 0,25E
17 turns 0,60E | 26 turns 0,40E | 40 turns 0,25E | | RM14 | 3B8/3C8 | | 22 turns 0,80E | 30 turns
100 × 0,04E | # **GENERAL** | | talian and the same sam | | | | |--|--|------------------|-------------------|------------------| | 100 kHz
tan δ/μ | 0,5 to 1 MHz
tan δ/μ | 2 MHz
tan δ/μ | 10 MHz
tan δ/μ | β _F | | 23 turns 0,40E
23 turns 0,40E | 8 turns | | | 100 turns 0,40E | | | 2 x 100 x 0,04E | | | | | 22 turns 0,50E | | | | 200 turns 0,40E | | 22 turns 0,50E | 7 turns
2 x 100 x 0,04E | | | | | 20 turns 0,45E | | | | | | 36 turns 0,14E
60 turns 0,18E | 8 turns 0,60E | | | | | 17 turns
24 x 0,04E
45 turns 0,30E
45 turns 0,30E
26 turns
80 x 0,04E | 15 turns 0,30E
9 turns 0,55E | | | | | 45 turns 0,30E | | 15 turns 0,30E | 3 turns 0,50E | | | 29 turns
12 x 0,04E | | | | 100 turns 0,30E | | 66 turns 0,35E
40 turns 0,45E
23 turns
100 x 0,04E | 8 turns 0,80E | | | · | | 66 turns, 0,35E | | 14 turns 0,40E | 4 turns 0,60E | | | 31 turns
20 x 0,04E | | | | 100 turns 0,40E | | 31 turns
20 x 0,04E
35 turns 0,50E
31 turns
20 x 0,04E | 15 turns
24 × 0,07E
6 turns 0,80E | | | 100 tariis 0,400 | | | | 15 turns 0,56E | 4 turns 0,56E | | | 17 turns 0,60E
17 turns 0,60E | 8 turns
45 × 0,04E | | | 100 turns 0,40E | | | - | | | 200 turns 0,55E | | core type | FXC grade | 4 kHz
tan δ/μ | 16 to 25 kHz
watt losses | 30 kHz
tan δ/μ | |-----------|--------------------------|------------------|-----------------------------|-------------------| | X22 | 3H1
3B8
3D3
4C6 | 42 turns 0,45E | 25 turn 0,30E | | | X25 | 3H1
3D3 | 40 turns 0,50E | | | | X30 | 3H1
3B8 | 35 turns 0,25E | 30 turns 0,40E | | | X35 | 3H1
3B8 | 30 turns 0,45E | 27 turns 0,55E | | ## MEASUREMENT OF TEMPERATURE FACTOR Temperature factor α_F is generally determined on magnetic circuits without a ground air gap. Ferroxdure 3-- products are electrically demagnetized before measurement, and Ferroxcube 4-- products are thermally demagnetized before measurement. Thermal demagnetization is accomplished by heating in a pure nitrogen atmosphere to a temperature at least 25 K above the Curie temperature and maintaining the temperature for at least 5 minutes. Cooling takes place at 5 K/minute. The measurement sequence for Ferroxcube 3-- and 4-- products is given in the figure. This sequence is not, however, used for Ferroxcube 3B7 products. In their case, measurement of α_F is carried out on toroid-wound core halves. These are not demagnetized before the start of the measurement sequence, but electrical demagnetization takes place at each measurement temperature, 10 minutes before each measurement. | 100 kHz
tan δ/μ | 0,5 to 1 MHz tan δ/μ | 2 MHz
tan δ/μ | 10 MHz
tan δ/μ | βF | |----------------------------------|-------------------------------|------------------|-------------------------|-----------------| | 33 turns 0,22E | | | | 100 turns 0,30E | | 33 turns 0,22E | 16 turns | | | 100 turns 0,30E | | 150 turns
0,30E | 24 × 0,04E | 10 turns 0,90E | 4 turns
1,4 x 4,4 Cu | | | 36 turns 0,50E
36 turns 0,50E | 12 turns
45 x 0,04E | | | | | 35 turns 0,25E | | | | 100 turns 0,40E | | 30 turns 0,45E | | | | 100 turns 0,80E | ## MEASUREMENT OF DISACCOMMODATION FACTOR Disaccommodation factor DF of Ferroxcube 3-- magnetic circuits is measured between 10 and 100 minutes after magnetic demagnetization at a temperature of 25 °C ± 5 °C, unless otherwise stated. The actual measurement temperature is held constant during the measurement to within 0,2 °C. The disaccommodation factor of magnetic circuits in Ferroxcube 4-- materials is measured between 24 hours and 48 hours after cooling to 35 °C following thermal demagnetization, as described above. # INDUCTANCE ADJUSTERS A major feature of a FXC core assembly is its adjustment mechanism. The inductance adjustment is achieved by inserting into the central hole a tube or cylinder made either of Ferroxcube or of carbonyl-iron powder. This acts as a partial magnetic shunt across the air gap. The adjuster consists of this tube moulded into a thermoplastic carrier, threaded at one end. This screws into a nut which is injection moulded or cemented into the lower half of the core. The magnetic tubes are centreless ground to give very close diameter tolerances. #### INDUCTANCE STABILITY The stability of a correctly-assembled pot, square or cross core depends mainly on the stability of the permeability of the ferrite. The permeability of a ferrite may change with temperature, time, mechanical pressure, magnetic polarization and other factors. The most important changes affecting the inductance stability of the assembly are: - variation of permeability with temperature temperature coefficient; - variation of permeability with time disaccommodation. Changes in inductance may also occur due to: - movement of the adjuster after final setting; - movement of the coil former; - relative movement of the core halves: - movement of the mechanical components of the assembly. Small movements of this kind are usually caused by changes in temperature, mechanical vibration or shock. It is clear from the formulae given in Section A that lowering the value of A_L or μ_e will reduce both temperature coefficient and disaccommodation. However, very low values of A_L and μ_e usually prove incompatible with Q requirements; a typical value for a high-Q inductor using an RM6 core would be $A_L = 315$. For material grade FXC3H1, the corresponding value of temperature coefficient would be about + $120 \cdot 10^{-6}$ /K. A reasonable measure of compensation may be achieved by suitable choice of resonating capacitor: a polystyrene-film capacitor is available with a temperature coefficient of about $-120 \cdot 10^{-6}$ /K. Both nut and adjuster threads are made to much finer tolerances than required by UN-D12 (ISO Recommendations R68, DR782 and DR979). The injection-moulded nut is very firmly fixed in the cote. It is not able to move in any direction, and is precisely centred with its axis parallel to that of the core. The achievement of acceptable long-term inductance stability is mainly a matter of careful assembly and suitable stabilizing treatment before final adjustment. If the inductor is to be used in a critical circuit, it should be artificially aged by temperature cycling as described in the Section 'Mounting Data' (page 85). The long-term change in inductance of an assembly so treated should not be greater than $500 \cdot 10^{-6}$, assuming an ambient temperature between 25 °C and 40 °C that does not vary by more than 15 K. The change in inductance of an RM core assembly using clips with earthing spikes when subjected to IEC 68-2-6, test Fc, vibration conditions is less than $1000 \cdot 10^{-6}$. Such severe conditions are unlikely to be encountered in practice. Bump tests of RM-core assemblies with earthing spikes, IEC 68-2-29, test Eb, have also been carried out. The observed change in the inductance of RM6-R cores of 3H1 material was less than $300 \cdot 10^{-6}$. Inductance adjusters are available in several versions. The drawing shows the principle outlines and the various dimensions are listed per core type in a table which also includes the catalogue number of the adjuster, its colour code, and the material of the core, FXC (Ferroxcube) or cip (carbonyl-iron powder). A second table shows which type of adjuster can be used for typical A_L values of cores in various grades; in this table also the maximum inductance variation ($\Delta L/L$ in %) is listed. In some cases the choice of adjuster is optional and depends on the application. For that reason a suggestion is given for minimum, average and maximum inductance variation, where applicable. Typical curve of a specified adjuster in a core set, pre-adjusted an AL. ## **PACKAGING** The adjusters are packed in plastic bags of 100. Please order in multiples of this quantity. # **GENERAL** | Survey | of | ad | justers | |--------|----|----|---------| |--------|----|----|---------| | Survey of adjusters Core type | catalogue | number | colour code | material * | |---|-----------|---------|-----------------|------------| | P9/5, P11/7 | 4322 02 | | | FXC | | F9/5, F11/7 | 4322 02 | 39840 | brown
yellow | cip | | | | 39850 | green | cip | | | | 39890 | grey | FXC | | D4.4/O | 4000 00 | | | | | P14/8 | 4322 02 | | black | FXC | | | | 39710 | brown | FXC | | | | 39720 | red | cip | | | | 39730 | orange | cip | | | | 39740 | yellow | FXC | | | | 39750 | green | cip | | | | 39780 | white | FXC | | Make the second | | 39790 | grey | FXC | | P18/11 | 4322 02 | | black | FXC | | | | 39610 | brown | FXC | | | | 39620 | red | FXC | | | | 39630 | orange | cip | | | | 39640 | yellow | cip | | | | 39650 | green | cip | | | | 39670 | violet | FXC | | | | 39680 | white | FXC | | P22/13, RM8, X30 | 4322 02 | 1 38400 | black | FXC | | , | | 38410 | brown | FXC | | | | 38420 | red | cip | | | | 38430 | orange | cip | | | | 38440 | yellow | FXC | | | | 38450 | green | cip | | | | 38480 | white | FXC | | | | 38490 | grey | FXC | | P26/16 | 4322 02 | | | FXC | | 120/10 | 4322 02 | 39420 | brown
red | | | | | 39450 | | cip | | | | 39480 | green | cip | | | | 39490 | white | FXC | | 200/40 20440 | | | grey | FXC | | P30/19, RM10 | 4322 02 | | red | cip | | | | 38340 | yellow | cip | | | | 38380 | white | FXC | | | | 38390 | grey | FXC | | P36/22, P42/29, X35 | 4322 02 | 1 39240 | yellow | cip | | | | 39280 | white | cip | | | | 39290 | grey | FXC | | RM4, RM5 | 4322 02 | 1 38700 | black | FXC | | | 1022 02 | 38710 | brown | FXC | | | | 38720 | red | cip | | | | 38750 | green | cip | | | | 38780 | white | FXC | | | | 38790 | grey | FXC | | PM6 P PM6 C V22 | 4222 02 | | | | | RM6-R, RM6-S, X22 | 4322 02 | | black | FXC | | | | 38610 | brown | FXC | | | | 38620 | red | cip | | | | 38640 | yellow | cip | | | | 38650 | green | cip | | | | 38670 | violet | FXC | | | | 38680 | white | FXC | | | | 38690 | grey | FXC | ^{*} FXC = Ferroxcube; cip = carbonyl-iron powder. Dependent on the size, the screw-head of the adjuster is suited for tools of M1,4; M1,7; M2 and M2,6. An adjusting tool, combining M1,4 and M1,7 is available (catalogue number 4322 058 03260) as well as a tool combining M2 and M2,6 (catalogue number 4322 058 03270). For customers who wish to make the adjuster tool themselves, the four outlines are depicted below. One of the ferroxcube core halves of a pre-adjusted core set is provided with an injection moulded nut, in which the adjuster is screwed. Exploded view showing from right to left, adjuster, upper core halve, coil former, bottom core halve with nut, clamps. The thread of both the nut and the adjuster are closely toleranced (4H) to allow smooth rotation without backlash or friction. The gauge-measured maximum torque of the threaded part for the adjusters is: M1,4 types ≤ 2 mNm M1,7 types ≤ 3 mNm
M2 types ≤ 6 mNm M2,6 types ≤ 10 mNm # **GENERAL** The nuts are also available as loose items for those customers who prefer to insert the nut themselves. There are four nuts, made of polycarbonate, allowing a maximum impregnation temperature of 120 °C for 24 hours. Such nuts are packed in bags of 100 and multiples of 100 should therefore be ordered. Instructions for inserting the adjuster nut are given in the general section "Mounting Data" (page 83). Fig. 1 Example of two potcore halves with plain centre hole with a nut inserted by the user in one half. The dimension 'a' is the recommended distance from the mating surface to the nut. See table below. Survey of loose adjuster nuts for mounting by user in core halves with plain center hole. | | | - | | , | | | | 0 | |-------------|----------------|--------------|------|---------|---------|---------|---------|---------------------------------------| | core type | of loose nut | М | Fig. | a
mm | b
mm | c
mm | h
mm | Ø 2,9 _ 0,1 | | P9/5 | 4322 021 31630 | 1,4 | 2 | | | | | 1,8 | | P11/7 | 31630 | 1,4 | 2 | | | | | 1,3 + 0,05 ± 0,05 | | P14/8 | 30140 | 1,7 | 3 | 1,2 | 2,85 | 3,5 | 2,9 | | | P18/11 | 30140 | 1,7 | 3 | 2,3 | 2,85 | 3,5 | 2,9 | M1,4 7Z95567 | | P22/13 | 30150 | 2 | 3 | 2,7 | 4,2 | 4,9 | 3 | Ø1,995 | | P26/16 | 30160 | 2,6 | 3 | 2,9 | 5,2 | 5,9 | 5 | ± 0,005 | | P30/19 | 30160 | 2,6 | 3 | 3,3 | 5,2 | 5,9 | 5 | Fig. 2. | | P36/22 | 30160 | 2,6 | 3 | 2,8 | 5,2 | 5,9 | 5 | | | P42/29 | 30160 | 2,6 | 3 | 4,7 | 5,2 | 5,9 | 5 | | | RM4 | 31850 | 1,4 | 3 | 2,0 | 1,9 | 2,12 | 2,5 | + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ | | RM5 | 31850 | 1,4 | 3 | 2,0 | 1,9 | 2,12 | 2,5 | | | RM6-S/RM6-R | 30140 | 1,7 | 3 | 2,3 | 2,85 | 3,5 | 2,9 | | | RM8 | 30150 | 2 | 3 | 2,7 | 4,2 | 4,9 | 3 | | | RM10 | 30160 | 2,6 | 3 | 4,0 | 5,2 | 5,9 | 5 | \rightarrow M \rightarrow 0 + 0,4 | | X22 | 30140 | 1,7 | 3 | 2,3 | 2,85 | 3,5 | 2,9 | W 0 0 | | X25 | | | | | | | | | | X30 | 30150 | 2 | 3 | 2,7 | 4,2 | 4,9 | 3 | | | X35 | 30160 | 2,6 | 3 | 4,7 | 5,2 | 5,9 | 5 | ± 0,1 | | | | | | | | | | +04 | 7Z95568 Fig. 3. # COIL DESIGN AND CALCULATIONS #### LOSSES Losses in a wound core can be divided into - winding losses: - losses due to the d.c. resistance of the wire, - eddy-current losses in the wire, - dielectric losses in insulation; - core losses: - hysteresis losses in the core material. - eddy-current and residual losses in the core material. With Ferroxcube pot, square and cross cores, screening losses are negligible. Losses appear as series resistances in the coil. The ratio of the total effective series resistance due to all losses to the inductance of the coil is the sum of the resistances due to the individual losses: $$\frac{R_{tot}}{I} = \frac{R_0}{I} + \frac{R_{ec}}{I} + \frac{R_d}{I} + \frac{R_h}{I} + \frac{R_{e+r}}{I} \quad (\Omega/H)$$ (1) As a general rule, maximum Q is obtained when the sum of the winding losses is made equal to the sum of the core losses. ## D.C. resistive losses The d.c. resistive losses in a winding are given by $$\frac{R_0}{L} = \frac{I}{\mu_0} \cdot \frac{I}{f_{CH}} \times \text{constant} \qquad (\Omega/H)$$ (2) The space (copper) factor f_{Cu} depends on wire diameter, the amount of insulation and the method of winding. The value of the constant is given in the data for the coil formers. # Eddy-current losses in the winding $$\frac{R_{eC}}{L} = \frac{C_{WCu}V_{Cu}f^2d^2}{\mu_{e}}$$ (Ω/H) where C_{WCII} is the eddy-current loss factor for the winding and depends on the dimensions of the coil former and core, and V_{CII} is the volume of conductor in mm³; d is the diameter of a single wire in mm. ## Dielectric losses The capacitances associated with the coil are not loss free, they have a loss factor $\tan \delta_c$ that also increases the effective coil resistance: $$\frac{R_d}{L} = \omega^3 LC \left(\frac{2}{\Omega} + \tan \delta_c\right). \tag{\Omega/H}$$ ## **Hysteresis** losses The effective series resistance due to hysteresis losses is calculated from the core hysteresis constant, the peak flux density, the effective permeability and the operating frequency: $$\frac{\mathsf{R}_{\mathsf{h}}}{\mathsf{I}} = \omega \eta_{\mathsf{B}} \hat{\mathsf{B}} \mu_{\mathsf{e}}. \tag{\Omega/H}$$ ## Eddy-current and residual losses The effective series resistance due to eddy-current and residual losses is calculated from the loss factor δ/μ_i given as a function of frequency in the core data: $$\frac{R_{e+r}}{I} = \omega \mu_e (\tan \delta/\mu_i). \qquad (\Omega/H)$$ ## Coil design The specification of an inductor usually includes - the inductance: - minimum Q at the operating frequency; - applied alternating voltage; - maximum size; - maximum and minimum temperature coefficient; - range of adjustment; - variability. To satisfy these requirements, the designer has the choice of - core size. - material grade, - A_L, - type of conductor (solid or bunched), - type of adjuster. ## Frequency, core type and material grade The operating frequency is a useful guide to the choice of core type and material. - Frequencies below 20 kHz: the highest Q will be obtained with large, high-inductance-factor cores in Ferroxcube 3B7, 3H1 or 3H3 material. Winding wire should be solid, with minimum-thickness insulation. Note: high inductance factors are associated with high temperature coefficients of inductance. - Frequencies between 20 kHz and 200 kHz: high Q will generally by obtained with a core also in Ferroxcube 3B7, 3H1 or 3H3. Maximum Q will not necessarily be obtained from the largest-size core, particularly at higher frequencies, so the choice of inductance factor is less important. Bunched, stranded conductors should be used to reduce eddy-current losses in the copper. Above 50 kHz, the strands should not be thicker than 0,07 mm. - Frequencies between 200 kHz and 2 MHz: use a core of Ferroxcube 3D3 material. Bunched conductors of maximum strand diameter 0,04 mm are recommended. - Frequencies between 2 MHz and 12 MHz: use a core of Ferroxcube 4C6. Bunched conductors of maximum strand diameter 0,04 mm are recommended for frequencies up to 5 MHz. Solid conductors should be used at frequencies between 5 MHz and 12 MHz. # Signal level In most applications, the alternating signal voltage is low. It is good practice, wherever possible, to keep the operating flux density of the core below 1 mT, at which level the effect of hysteresis is usually negligible. At higher flux densities, it might be necessary to allow for some hysteresis loss and inductance change. Curves showing the effect of signal level are given in the data for certain core types. The expression for third harmonic voltage E3 given in Section A may be used as a guide to the amount of distortion. For low distortion, RM cores with small hysteresis loss factors should be used. ## D.C. polarization The effect of a steady, superimposed magnetic field, whether due to an external field or a d.c. component of winding current, on a cored inductor is to reduce the inductance obtained with a given number of turns. As with other characteristics, the amount of the decrease depends on the value of the effective permeability, becoming less at lower permeabilities. But for most applications the effect is not serious. Curves from which the amount of the decrease can be obtained are given in the core data sheets. Ferroxcube 3B8 has been developed especially for applications involving d.c. polarization. # Design procedure - On the basis of the operating characteristics and design limitations, select the core size, material grade, inductance factor and conductor type using the information given in the data sheets. - Using the adjustment curve, check that the range of adjustment is sufficient to cover the tolerance on A₁ or μ_e and that of the resonating capacitor. Make an allowance of about 1% for circuit strays. - 3. Calculate the number of turns required from the A_1 or α value for the core. - 4. Select a conductor size to fill the coil former. - 5. From the voltage across the inductor, E_{rms}, determine peak flux density B̂. If this is in excess of 1 mT, check that hysteresis loss and distortion are acceptable by reference to the a.c. signal-level characteristics in the core data. #### **DESIGN EXAMPLES** ## Example 1 Design a filter coil of inductance 2,75 mH operating at a frequency of 100 kHz, with a minimum Q of 900. The temperature coefficient of inductance must be less than $+8.5 \times 10^{-3}$ between +5 °C and +55 °C. The coil will carry an a.c. current of 1 mA. Both operating frequency and the positive temperature coefficient required indicate the use of Ferroxcube 3H1 material for the core. The maximum value of $\mu_{\rm e}$ can be calculated from the maximum temperature coefficient using the expression for core temperature coefficient α_{μ} given in the list of definitions in Section A: $$\alpha_{\mu} = \alpha_{\mathsf{F}} \mu_{\mathsf{e}}$$. Taking the mean value of α_F given in the material data for 3H1, 10^{-6} /K, yields $$\mu_{\rm e} = \frac{8.5 \times 10^{-3}}{50 \times 10^{-6}} = 170.$$ This being the maximum value of $\mu_{\rm e}$ for the required temperature coefficient. The next lower standard value is 150. Examination of the Q curves for the various potcores for $\mu_{\rm e}$ = 150 reveals that the smallest potcore for which the required Q of 900 can be obtained is the P18/11. The catalogue number of the pre-adjusted core with adjuster nut is 4322 022 24270; that of the recommended adjuster is 4322 021 39610. # **GENERAL** To allow for a 10% adjustment range about the nominal inductance, the inductance of the coil without adjuster should be 5% less than nominal, that is $0.95 \times 2.75 = 2.62$ mH. The number of turns required is given by N = $\alpha\sqrt{L} = 56.3 \ 56.3\sqrt{2.62} = 91$ turns. From the window area-available with single-section coil former 4322 021 30270, a suitable conductor comprises 64 strands of 0.04 mm
enamelled-copper wire. It is now possible to calculate the losses in the coil and, hence, the Q. The losses due to the d.c. resistance of the wire can be calculated from Eq. (2) above, using the loss-constant for the coil former: $$\frac{R_0}{I} = \frac{16.4 \times 10^3}{0.38 \times 150} = 288 \Omega/H,$$ where 0,38 is the space factor for the winding. The eddy-current losses in the winding are given by Eq. (3), taking $C_{WCU} = 10^{-7}$, $$\frac{R_{ec}}{L} = \frac{10^{-7} \times 267 \times 10^{10} \times 0,04^2}{150} = 3 \Omega/H.$$ where 267 mm³ is the volume of the conductor determined from the wire diameter number of strands, number of turns and mean turn length given in the coil-former data. The dielectric losses in the coil stray capacitances are given by Eq. (4), assuming $\tan \delta_C = 0.01$ and C = 8 pF: $$\frac{R_d}{L} = (2\pi \ 10^5)^3 \times 2,62 \times 10^{-3} \times 8 \times 10^{-12} \left(\frac{2}{900} + 0,01 \right) = 64 \ \Omega/H.$$ Hysteresis losses are given by Eq. (5), but first it is necessary to calculate \hat{B} . This is simply given by the number of turns, the current carried, the effective permeability and the effective length of the core magnetic path: $$\hat{B} = N\hat{I}\mu_{e}\mu_{0}/\hat{V}_{e}.$$ $$= \sqrt{2 \times 91 \times 10^{-3} \times 150 \times 4\pi \times 10^{-7}/(25.8 \times 10^{-3})}$$ $$= 0.94 \text{ mT}.$$ (7) Using this value in Eq. (5), with η_B = 0,5 x 10⁻⁵/T, a more realistic value than the quoted maximum, yields $$\frac{R_h}{L}$$ = $2\pi \times 10^{-5} \times 0.5 \times 10^{-3} \times 0.94 \times 10^{-3} \times 150 = 44 \Omega/H.$ Eddy-current and residual losses given by Eq. (6), using $\tan \delta/\mu_i = 3 \times 10^{-6}$, a good average value, are $$\frac{R_{e+r}}{L} = 2\pi \times 10^5 \times 150 \times 3 \times 10^{-6} = 283 \Omega/H.$$ Now, from Eq. (1), $$\frac{R_{\text{tot}}}{I}$$ = 288 + 3 + 64 + 44 + 283 = 682 Ω/H so that $$Q = \omega L/R_{tot} = 2\pi \times 10^5/682 = 921.$$ The measured value, given in the Q curves with the data for the P18/11 core, was 995. ## Example 2 Design an 88 mH loading coil to exceed the following requirements by the widest possible margin in the smallest possible volume. Inductance tolerance 1 % D.C. resistance < 4,8 Ω A.C. resistance at 1800 Hz and 1 mA ≤ 5,8 Ω Capacitance between the two line windings ≤ 200 pF ≤ 0,1 % Inductance unbalance between the two line windings Resistance unbalance between the two line windings 0,1 π From the a.c. and d.c. resistance limits. $$\frac{R_0}{L} \le \frac{4.8}{0.088} = 54.5 \Omega/H$$ and $$\frac{R_{\text{tot}}}{I} \le \frac{5.8}{0.088} = 65.9 \ \Omega/H.$$ The R₀/L value is often the most critical requirement for loading coils on ferrite cores. Therefore the potcore size and the A_L (or μ_e) value are determined first. Potcore P30/19 is examined first: $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CII}} \times 5,38.10^3 \text{ (see P30/19, section Coil formers)}$$ assume $f_{CU} = 0.5$ from max. 54,5 = $$\frac{1}{\mu_e} \times \frac{1}{0.5} \times 5,38.10^3$$ follows min. $\mu_e = \frac{5,38.10^3}{54,5 \times 0.5} = 197$. Because a higher $\mu_{\rm e}$ value is more attractive due to a better R₀/L or smaller core size, potcore P26/16 is examined now: $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{GU}} \times 7,79.10^3$$ (see P26/16, section Coil formers) assume again $f_{cu} = 0.5$ from max. $$54,5 = \frac{1}{\mu_{\rm B}} \times \frac{1}{0.5} \times 7,79.10^3$$ follows min. $\mu_{\rm B} = \frac{7,79.10^3}{54,5 \times 0.5} = 286$. This result looks more attractive to continue the calculation. A $$\mu_e$$ of min. 286 corresponds to a min. A_L of 898 according to formula A_L = $\frac{0.4 \pi \mu_e}{C_1}$. C₁ of potcore P26/16 is 0,400 mm⁻¹ (see P26/16, section Potcores). The closest standard A_L value of a P26/16-3H1 core is 1000 (μ_e = 318). Catalogue number of this core is 4322 022 29310. The tolerance on the A_L value is \pm 3%. For most loading coils this is too high. To solve that problem a suitable inductance adjuster is used (see P26/16, Inductance adjusters). The inductance of the coil without adjuster must be a few percent lower, because an adjuster always increases the inductance, e.g. -5%. 88 mH - 5% = 83,6 mH. According to formulae $L = N^2A_1$ the number of turns for this coil should be 289. Because a loading coil must have an even number of turns (often divisible by 4, see outline) 288 turns are chosen. Arrangement of a four-winding loading coil on a two-section former. According to the same formula the inductance of the loading coil without adjuster is now $$L = N^2A_1 = 288^2 \times 1000 \times 10^{-6} \text{ mH} = 82,94 \text{ mH}.$$ The ± 3% tolerance on the A_I value of the core implies: - a minimum inductance of 82,94 mH 3% = 80,45 mH; - a maximum inductance of 82,94 mH + 3% = 85,43 mH. In order to bring 80,45 mH to 88 mH an adjuster is needed which increases the inductance of the coil with maximum 9,3%. A suitable standard adjuster can be found under P26/16 (see Inductance adjusters). Since the lowest value of R_0/L will be obtained with a coil former completely full of wire, solid wire 0,28 mm diameter with double polyvinylformal insulation is used. From Eq. (2), $$\frac{R_0}{L} = \frac{7.79 \times 10^3}{318 \times 0.49} = 50 \ \Omega/H,$$ where 0,49 is the space factor of the winding. The eddy-current resistance is given by Eq.(3) with $$C_{wCu} = 100 \times 10^{-9}$$: $$\frac{R_{eC}}{L} = 100 \times 10^{-9} \times 954 \times 3,24 \times 10^{6} \times 0,28^{2}/318 = 0,08 \Omega/H.$$ Dielectric losses are given by Eq. (4), assuming Q at 1800 Hz to be 200 (from P26/16 Q curves) and tan δ_c = 0,01: $$\frac{\mathsf{R}_\mathsf{d}}{\mathsf{L}} = (2\pi 1800)^2 \times 88 \times 10^{-3} \times 60 \times 10^{-12} \ (\frac{2}{200} + 0.01) = 0.15 \ \Omega/\mathsf{H}.$$ Hysteresis losses are given by Eq. (5), but first it is necessary to calculate B: from Eq. (7): $$\hat{B} = 292 \times 10^{-3} \times \sqrt{2} \times 318 \times 4\pi \times 10^{-7} / (37,6 \times 10^{-3}) = 4,4 \text{ mT}.$$ Then, with $\eta_{\rm B} = 0.5 \times 10^{-3}$, $$\frac{R_h}{I}$$ = $2\pi \times 1800 \times 0.5 \times 10^{-3} \times 4.4 \times 10^{-3} \times 318 = 7.9 \Omega/H.$ Finally, eddy-current and residual losses are given by Eq.(6), assuming tan $\delta/\mu_i = 0.5 \times 10^{-6}$: $$\frac{R_{e+r}}{I}$$ = $2\pi \times 1800 \times 318 \times 0.5 \times 10^{-6} = 1.8 \Omega/H$. Thus, from Eq (1), the total losses are $$\frac{R_{tot}}{L}$$ = 50 3 0,88 + 0,15 + 7,9 + 1,8 = 59,9 Ω/H , so that the total coil resistance at 1800 Hz passing a current of 1 mA is 59,9 x 88 x 10^{-3} = 5,27 Ω . Note the very low contribution of the Ferroxcube 3H1 to the losses. # COIL WINDING RECOMMENDATIONS ## PROTECTING THE COIL FORMER The flanges of the coil former may be as thin as 0,2 mm. For this reason, it is necessary to support them during winding; this is best done by means of a flanged mandrel. As shown in the figure, this supports both barrel and flanges. With wire of overall diameter less than about 0,4 mm, no attempt should be made to layer wind, but a random winding should be built up as evenly as possible. With wire of diameter greater than about 0,4 mm a compromise is usual: approximate layer winding, feasible at the start, should be continued as far as possible in order to achieve a satisfactory space factor. Each lead-out wire should be terminated at a convenient coil-former or tag-plate pin by soldering; dip soldering is the usual method. Solder-bath temperature and immersion time are largely dependent on the type of wire, but should not be more than necessary. A good flux is essential: preferably one that can be removed with warm water. To avoid contamination of coil former and tag plate, do not immerse the pins too far in the bath. Capillary action will ensure that good joints are made when the distance between the soldering-bath surface and coil-former or tag plate is about 1 mm. # **GENERAL** # WIRE TENSION The two accompanying graphs may be used to find the wire tension required during winding. Solid wire: tension F as a function of diameter d with extension $\Delta I/I$ as a parameter. Bunched wire: tension F as a function of number of strands with the strand diameter as a parameter. # MOUNTING DATA ## **ASSEMBLING** Stable inductance is best achieved by gluing the coil former inside the core half with the nut; one small spot of a flexible silicon rubber kit is sufficient. With cores and accessories assembled according to the instructions in the data sheets, normal requirements of temperature, shock and vibration stability are met. Since the clearance of the adjuster in core centre holes is small, core halves must be accurately centred during assembly. For *small-quantity production*, alignment plugs are useful aids. These are, however, not available as accessories, but should be made to the accompanying drawings. The recommended material is brass. P26/16 to P42/29 material: brass Core halves must be centred before mounting parts are fitted. These assembly plugs can also be used during impregnation with wax or other compounds. After impregnation, remove plugs and insert inductance adjusters; see Inductance Adjustment instructions in the data sheets. For large-quantity production, special assembly tools have been designed that first centre the core halves and then bend the container lips of potcores and cross cores. For RM cores, the tools first centre the core halves and then apply the two spring clips. Drawings will be supplied on request; please use the ordering code in the accompanying table. See also the Mounting Parts section of the data sheets. | core type | drawing number of too | |-----------|-----------------------| | P11/7 | 4322 058 00070 | | P14/8 | 4322 058 00000 | | P18/11 | 4322 058 00010 | | P22/13 | 4322 058 00020 | | P26/16 | 4322 058 00030 | | P30/19 | 4322 058 00040 | | P36/22 | 4322 058 00050 | |
P42/29 | 4322 058 00060 | | RM4 | 4322 058 00180 | | RM5 | 4322 058 00170 | | RM6 | 4322 058 00150 | | RM8 | 4322 058 00160 | | RM10 | 4322 058 00190 | | RM14 | 4322 058 00200 | | X22 | 4322 058 00080 | | X30 | 4322 058 00090 | | X35 | 4322 058 00100 | # **INSERTING THE ADJUSTER NUT** Pre-adjusted cores are available with a nut for the inductance adjuster injection-moulded or cemented into one core half. The following instructions are for users who prefer to cement the nut themselves. Push the nut into the central hole of one of the core halves from the flat side. The recommended distance between the nut and the core mating surface is given in the table on page 72. Cement the nut into the hole in the lower core half; a suitable adhesive is 1 part by weight Araldite DY023 5 parts by weight Araldite CY230 curing time: 2 hours at 80 °C. 2,6 parts by weight Versamid 140 Drawings only are available for tools recommended for nut insertion and will be supplied on request. | core type | drawing number of insertion tool | |------------------|----------------------------------| | P14/8 and P18/11 | 7V48160 | | P22/13 | 7V48161 | | P26/16 to P42/29 | 7V48198 | Drawings only are also available for metering devices for applying the adhesive to the inside of the core body. | - | core type | drawing number of metering device | |---|------------------|-----------------------------------| | | P14/8 and P18/11 | 7V12356 | | | P22/13 | 7V12353 | | | P26/16 to P42/29 | 7V12341 | | | | 1 '. | #### **CEMENTING CORE HALVES TOGETHER** # When our mounting parts are used it is not necessary to cement the core halves together The guidelines given below for cementing core halves together are given for those customers who do not use our mounting parts. - 1. Ensure that there is no dust on either the outside or the inside of the core halves. Remove any particles with a dry brush or rotary brushing machine. - 2. Ensure that core halves are free of grease. Degrease in a trichlorethylene vapour bath for at least 10 seconds. After degreasing, protect against dust and do not handle. - 3. Mix Araldite AY18 and hardener HZ18 in proportions of 4: 3 by weight. An equal amount of chalk (marble flour) may be added. Pot life is about 2 weeks, depending on ambient temperature. - 4. Put the wound coil former into the core, cementing to one core half if desired. - Centre the core halves and clamp; the recommended pressure on the mating surfaces is 200 Pa (0,02 kg/mm²). - 6. Heat the core to about 35 °C to drive off any moisture. - 7. Brush adhesive around the cylindrical surface of the core, to about 2 mm either side of the joint line. With the core still clamped, put into an oven at 70 °C for 1 hour, followed by 1½ hours at 100 °C to cure. Cool room to temperature before unclamping. 8. With 4C6 material, more than one coat of adhesive may be necessary; alloy each coat to dry before applying the next. Clamping is necessary only while curing. ## IMPREGNATION AND ENCAPSULATION Encapculation or vacuum impregnation of a complete assembly is not recommended as it can cause the core material to become stressed and this is usually accompanied by unacceptable changes in permeability and temperature coefficient. If encapsulation is necessary, provide the core with a layer of wax by immersion before encapsulating. Restrict vacuum impregnation to wound bobbins only. Note: bobbins wound with silk-covered wire must always be impregnated. After impregnation, take care that wax is not scraped off during coil assembly as it may become trapped between mating surfaces of the core. Note: when extremely good temperature stability is required, subject the complete coil to five temperature cycles with a variation from room temperature to 70 °C at a rate not exceeding 1 °C per minute. This applies to all types of inductor assembly. # **MARKING** # MARKING OF POTCORE HALVES | product | | marking on product | marking on label
of primary pack | marking on label
of storage pack | |---------------|---------|---|---|---| | | | material | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | | | example: | example: | example: | | diameter | without | | PHILIPS | PHILIPS | | ≼ 15 mm
*) | air gap | 3H1 | 07552 17A
P9/5 3H1 Δ0 | 07552 17A
P9/5 3H1 ∆0 | | | | | | | | | | | 4322 022 20982
40 A670 KB 8048 | 4322 022 20982
200 A670 KB 8048 | | | | dimensions
material
∆ and 0 signs | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | | | example: | example: | example: | | diameter | without | | PHILIPS | PHILIPS | | ≥ 15 mm | air gap | 18/11 3H1
Δ 0 | 07552 17A
P18/11 3H1 △0 | 07552 17A
P18/11 3H1 Δ0 | | | | | .4322 020 21513
40 A670 KB 8048 | 4322 020 21513
200 A670 KB 8048 | ^{*} Potcores with a dia. < 9 mm are not marked. # MARKING OF POTCORE SETS | product | | marking on product * | marking on label
of primary pack | marking on label
of storage pack | | | |---------------------|-------------------------------|---|---|---|--|--| | | | material
A or $μ$ sign
A $_{L}$ or $μ_{e}$ value ** | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | | | diameter
≤ 15 mm | without
or with
air gap | example: 3H1 A160 | example: PHILIPS 07552 17A P14/8 3H1 A 160 | example: PHILIPS 07552 17A P14/8 3H1 A 160 | | | | | | | 4322 022 23255
20 A670 KB 8048 | 4322 022 23255
100 A670 KB 8048 | | | | | | dimensions
material
A or μ sign
A _L or μ _e value** | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | | | | | example: | example: | example: | | | | diameter
≥ 15 mm | without
or with
air gap | 26/16 3H1
A250 | 07552 17A
P26/16 3H1 A 250 | 07552 17A
P26/16 3H1 A 250 | | | | | | · | 4322 022 09260
20 A670 KB 8048 | 4322 022 09260
100 A670 KB 8048 | | | - * Marked on the upper half (without nut). - ** The A_L or μ_e sign is omitted where these values are \geq 1000. # MARKING OF POTCORE SETS WITH CECC APPROVAL | product | | marking on
product* | marking on label
of primary pack | marking on label
of storage pack | | |---------------------|-----------------|--|---|---|--| | | | dimensions
material
PH sign
A sign
A L value | Philips shield emblem and wordmark; specification number; delivery lot number; production lot number; designation; CECC symbol, name of national supervising inspectorate, code of authorized factory; code number; quantity; origin/traceability code; date of packing | Philips shield emblem and wordmark; specification number; delivery lot number; production lot number; designation; CECC symbol, name of national supervising inspectorate, code of authorized factory; code number; quantity; origin/traceability code; date of packing | | | diameter
≥ 15 mm | with
air gap | example:
18/11 3H1
PH A250 | example: 25100-018 07552 17A P18/11 3H1 A250 NEC/KEMA NECC-M-03 4322 022 25265 20 A670 KB 8048 | 25100-018
07552 17A
P18/11 3H1 A250
NECC/KEMA
NECC-M-03
4322 022 25265
100 A670 KB 8048 | | ^{*} Marked on the upper half (without nut). # MARKING OF RM-CORE HALVES | product | | marking on
product | marking on label
of primary pack | marking on label
of storage pack | |----------------|---------|---------------------------|---|---| | | | material
∆ and 0 signs | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | square | without | example: | example: PHILIPS | example: PHILIPS | |
core
halves | air gap | 3000 | 07552 17A
RM6S 3H1 Δ0 | 07552 17A
RM6S 3H1 Δ0 | | | | | 4322 020 25025
40 A670 KB 8048 | 4322 020 25025
200 A670 KB 8048 | # MARKING OF RM-CORE SETS | | | material delivery lot number; A sign* production lot number; A _L value designation; code number; quantity; origin/traceability code; date of packing | | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | |------------------------|-------------------------------|---|------------------------------------|---| | square
core
sets | without
or with
air gap | | PHILIPS 07552 17A RM6S 3H1 A 250 | PHILIPS 07552 17A RM6S 3H1 A 250 | | , | | | 4322 022 47266
20 A670 KB 8048 | 4322 022 47266
100 A670 KB 8048 | ^{*} The A sign is omitted from RM5 and smaller cores with A $_{L}$ values \geq 1000. # MARKING OF RM-CORE SETS WITH CECC APPROVAL | product | | marking on
product* | marking on label
of primary pack | marking on label
of storage pack | | |----------------|-----------------|--|---|---|--| | | | material
PH sign (turned
through 90°)
A sign
A _L value | Philips shield emblem and wordmark; specification number; delivery lot number; production lot number; designation; CECC symbol, name of national supervising inspectorate, code of authorized factory; code number; quantity; origin/traceability code; date of packing | Philips shield emblem and wordmark; specification number; delivery lot numbe production lot number; designation; CECC symbol, name of national supervising inspectorate, code of authorized factory; code number; quantity; origin/traceability code; date of packing | | | square
core | with
air gap | example: | example: | example: | | | sets | | The party of p | 25100-019
07552 17A
RM6S 3H1 A250
NEC/KEMA
NECC-M-03
4322 022 67267
20 A670 KB 8048 | 25100-019
07552 17A
RM6S 3H1 A250
NEC/KEMA
NECC-M-03
4322 022 67267
100 A670 KB 8048 | | ^{*} Marked on the upper half (without nut). # MARKING OF X-CORE HALVES | product | | marking on product | marking on label
of primary pack | marking on label
of storage pack | |-------------------------|--------------------|------------------------------------|---|---| | cross
core
halves | without
air gap | material Δ and 0 signs | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | | | example: | example: PHILIPS 07552 17A X22 3H1 Δ0 | example: PHILIPS 07552 17A X22 3H1 Δ0 | | | | | 4322 020 23513
40 A670 KB 8048 | 4322 020 23513
200 A670 KB 8048 | | | with
air gap | material
air-gap length
(mm) | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | | | example: | example: PHILIPS | example: PHILIPS | | | | OF STATE | 07552 17A
X22 3H1 0,25 | 07552 17A
X22 3H1 0,25 | | | | | 4322 022 23742
20 A670 KB 8048 | 4322 022 23742
100 A670 KB 8048 | # MARKING OF X-CORE SETS | product | | marking on
product | marking on label marking on label on primary pack on storage pack | | |---------|--------------------|---|--|---| | cross | without
or with | material
A sign*
A _L value | delivery lot number
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | delivery lot number;
production lot number;
designation; code number;
quantity; origin/traceability
code; date of packing | | | | example: | example: PHILIPS | example: PHILIPS | | sets | air gap | 9350 3HI | 07552 17A
X22 3H1 A250 | 07552 17A
X22 3H1 A250 | | | | Ver die | 4322 022 65262
20 A670 KB 8048 | 4322 022 65262
100 A670 KB 8048 | ^{*} The A sign is omitted where A_L values are \geq 1000. When ordering cores or associated parts, such as coil formers, adjusters and mounting parts, please quote the 12-digit catalogue number for the product in question given in the device data. Whenever this number ends with 'zero', the actual delivered goods may bear a different figure which is for logistic purposes only. So if you order e.g. type 4322 021 30180 you may receive 4322 021 30182. # SECTION C POTCORES AND ACCESSORIES # **POTCORES** • CORE HALVES without air gap can be supplied. Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 100 core halves; a storage pack contains 500 core halves. Please order in multiples of these quantities. ## MECHANICAL DATA Dimensional quantities according to IEC 205: $$C_1 = \Sigma \; \frac{I}{A} = 1,39 \; \text{mm}^{-1} \; ; \; C_2 = \Sigma \; \frac{I}{A^2} = 0,347 \; \text{mm}^{-3} \; ; \; V_e = 22,3 \; \text{mm}^3 \; ; \; I_e = 5,57 \; \text{mm} ; \; A_e = 4,01 \; \text{mm}^2 \; .$$ Mass of a core set: 0.18 q. # **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed A_L value. A measuring coil as described in general section 'Potcores, square cores and cross cores, is inserted; the halves are pressed together with a force of 15 N. The values are valid 5 minutes or more after clamping. | A + 250/ | f = 4 1.11= | β - 1 T | 25 ± 1 °C | 745 | |----------------------|-------------|----------|-----------|-----| | A _L ± 25% | f = 4 kHz | B = 1 mT | 25 ± 1 °C | /15 | Catalogue number of a half core without air gap in grade 3H1: 4322 020 54300. # **POTCORES** • CORE HALVES without air gap can be supplied. Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 100 core halves; a storage pack contains 500 core halves. Please order in multiples of these quantities. # **MECHANICAL DATA** Dimensional quantities according to IEC 205: $$C_1 = \sum \frac{1}{A} = 1,68 \text{ mm}^{-1}$$; $C_2 = \sum \frac{1}{A^2} = 0,358 \text{ mm}^{-3}$; $V_e = 37,0 \text{ mm}^3$; $I_e = 7,90 \text{ mm}$; $A_e = 4,70 \text{ mm}^2$. Mass of a core set: 0,23 g. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed A_L value. A measuring coil as described
in general section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 15 N. The value is valid 5 minutes or more after clamping. | | freq. | B̂ | oC | grade | |----------------------|-------|----|--------|-------| | | kHz | mT | temp. | 3H1 | | A _L ± 25% | 4 | ≤1 | 25 ± 5 | 820 | Catalogue number of a half core without air gap: 4322 020 54400 # **COIL FORMER** Catalogue number Material Window area Mean length of turn Maximum temperature D.C. losses Mass 4322 021 33550 polyamide 1,1 mm² 11,7 mm 130 °C $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 237 \times 10^3 \Omega/H$ 0,03 g # **POTCORES** Two types of core can be supplied: - CORE SETS without nut and pre-adjusted on an A_L value. - CORE HALVES without air gap. Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 100 core halves; a storage pack contains 500 core halves. Please order in multiples of these quantities. ## MECHANICAL DATA Dimensional quantities according to IEC 205: $$C_1 = \sum_{A} \frac{1}{A} = 1,43 \text{ mm}^{-1}$$; $C_2 = \sum_{A} \frac{1}{A^2} = 0,204 \text{ mm}^{-3}$; $V_e = 70 \text{ mm}^3$; $I_e = 10,0 \text{ mm}$; $A_e = 7,0 \text{ mm}^2$. Mass of a core set: 0,46 q. ## **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed A_L value. A measuring coil as described in general section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 20 N. The value is valid 5 minutes or more after clamping. | | freq. | . B | oC | grade | |----------------------|-------|-----|--------|-------| | | kHz | m⊤ | temp. | 3H1 | | A _L ± 25% | 4 | ≤ 1 | 25 ± 5 | 970 | Core halves in 3H1 grade | air gap Δ in mm | catalogue number | |-----------------|------------------| | 0 | 4322 020 54600 | | 0,06 ± 0,01 | 54610 | | 0,12 ± 0,01 | 54620 | # COIL FORMER Catalogue number Material Window area Mean length of turn Maximum temperature D.C. losses Mass 4322 021 32990 polyamide 2,2 mm² 14,6 mm 130 °C $\frac{\rm R_{\rm O}}{\rm L} = \frac{1}{\mu_{\rm e}} \times \frac{1}{\rm f_{\rm cu}} \times 137 \times 10^3 \ \Omega/{\rm H}$ 0,04 q # **CHARACTERISTIC CURVES** $\mu_{e} - \alpha$ curves Relative effective permeability and turn factor for 1 mH as a function of the air gap length. FXC 3H1. # **POTCORES** Three types of core can be supplied: - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value μ_e. - CORE SETS without nut and pre-adjusted on an A₁ or a μ_e value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF83311 (France), DIN 41293 (Germany) and BS4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. ## **MECHANICAL DATA** Dimensional quantities according to IEC 205: $$C_1 = \sum \frac{1}{A} = 1,24 \text{ mm}^{-1}$$; $C_2 = \sum \frac{1}{A^2} = 0,124 \text{ mm}^{-3}$; $V_e = 126 \text{ mm}^3$; $I_e = 12,5 \text{ mm}$; $A_e = 10,1 \text{ mm}^2$; $A_{CPmin} = 7,98 \text{ mm}^2$ Mass of a core set: 1,3 g Pulling-out force of the nut: ≥ 10 N #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores square cores and cross cores, is inserted; the halves are pressed together with a force of 25 N. The values are valid 5 minutes or more after clamping. | | freq. | ĥ | temp. | | grade | | |--|----------------|----------------|----------------------|------------------|-----------------------|------------| | | kHz | mT | oC. | 3D3 | 3H1 | 4C6 | | A _L ± 25%
μ _e ± 25% | 4 | ≤ 0,1
≤ 0,1 | 25 ± 1
25 ± 1 | 630
630 | 1260
1260 | 125
125 | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤ 45,5 | ≤ 32,7 | ≤ 103 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | | | | | | | | · | 100 | ≤ 0,1 | 25 ± 1 | ≤ 10 | < 6,0 | | | | 100 | ≤ 0,1 | 25 ± 1 | ≤ 14 | | | | | 1000 | ≤ 0,1 | 25 ± 1 | ≤ 30 | | 1. | | $\eta_{\text{B}} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 1,1 | | | | 100 | 0,3 to 1,2 | 25 ± 1 | ≤ 2,5 | | ≤ 6,2 | | $\alpha_F \times 10^6/K$ | ≤ 100 | ≤ 0,1 | 5 to 25 | | + 0,5 to 1,5 | -2 to + 4 | | • | ≤ 100 | ≤ 0,1 | 25 to 55 | | + 0,5 to 1,5 | 0 to + 6 | | D _F x 10 ⁶
(10-100 min) | ≤ 100
≤ 100 | ≤ 0,1
≤ 0,1 | 25 to 70
25 ± 0,1 | 0 to + 2
≤ 20 | + 0,5 to 1,5
≤ 4,3 | ≤ 10 | Core sets pre-adjusted on AL. | AL | corre- | catalogue number 4322 022 | | | | | | | | |------------|------------------|---------------------------|-------------|----------|-------------|--|--|--|--| | | sponding | 31 | | 4C6 | | | | | | | | μ_{e} -value | with nut | without nut | with nut | without nut | | | | | | 16 ± 1% | 16 | | | 61800 | 41800 | | | | | | 25 ± 1% | 25 | | | 61810 | • 41810 | | | | | | 40 ± 1% | 40 | | • | 61820 | 41820 | | | | | | 63 ± 1% | 63 | 61230 | 41230 | | | | | | | | 100 ± 1,5% | 100 | ● 61240 | 41240 | | | | | | | | 160 ± 2% | 160 | ● 61250 | 41250 | | | | | | | | 250 ± 5% | 250 | 61260 | 41260 | | - | | | | | Cores with A $_L \leqslant$ 63 have a symmetrical air gap. Cores with A $_L \geqslant$ 100 have an asymmetrical air gap. Core halves without air gap, without nut | Ferroxcube grade | catalogue number | |------------------|------------------| | 3D3 | 4322 020 20900 | | 3H1 | 4322 020 20980 | | 4C6 | 4322 020 20940 | Preferred type. # **COIL FORMER** The dimensions conform with the following specifications: IEC 133 (international), UTE C93-324 livre 1 (France), DIN41294 (Germany) and BS4061 range 2 (Great Britain). Catalogue number Material Window area Mean length of turn Maximum temperature D.C. losses Mass 4322 021 31700 polycarbonate 3.4 mm² 19 mm 130 °C $\frac{R_{O}}{L} = \frac{1}{\mu_{e}} \times \frac{1}{f_{CU}} \times 69,5 \times 10^{3} \Omega/H$ 0,07 g # INDUCTANCE ADJUSTERS Table 1 | Tubic I | | | | |---|----------------------------------|--------------------------|------------------------------| | catalogue number | colour code | material | С | | 4322 021 39810
39840
39850
39890 | brown
yellow
green
grey | FXC
cip
cip
FXC | 1,85
1,92
1,92
1,92 | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. | core
material | AL | low | % | medium | % | high | % | |------------------|-------------------------|---|-------------------|---|----------|---------------------------------------|----| | 3H1 | 63
100
160
250 | 4322 021 39850
39850
39840
39840 | 11
7
9
6 | 4322 021 39840
39840
39810
39890 | 11
14 | 4322 021 39810
39810
39890
— | 22 | | 4C6 | 16
25
40 | -
4322 021 39850 | 7 | 4322 021 39850
39850
39840 | 16 | 4322 021 39840
39840
 | | # CHARACTERISTIC CURVES ## μ_e - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. μ_e = 1260 ± 25% at Δ = 3 μ m for 3H1. # D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. ## **POTCORES** Three types of core can be supplied: - CORE SETS provided with an injection-moulded nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value μ_e. - ullet CORE SETS without nut and pre-adjusted on an A_L or a μ_e value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF 83311 (France), DIN41293 (Germany) and BS4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling out force of the nut ≥ 20 N Torque of the screw thread ≤ 4 mNm Extraction force of adjuster from nut ≥ 20 N Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0.956 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0.059 \text{ mm}^{-3}; V_e = 251 \text{ mm}^3; I_e = 15.5 \text{ mm}; A_e = 16.2 \text{ mm}^2;$$ $A_{CP min} = 13,3 mm^2$ Mass of a core set: 1,8 g. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 35 N. The values are valid 5 minutes or more after clamping. Parameters α_F and D_F of grade 3B7 are measured on toroid-wound halves. | | freq. | Ê | temp. | | | grade | | | |---|--------|------------|----------------|--------|----------|----------------|--|----------| | | kHz | mT | οС | 3B8 | 3D3 | 3H1 | | 4C6 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1650 | 870 | 1700 | | 160 | | μ _e ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1270 | 660 | 1300 | | 125 | | α | 4 | ≤0,1 | 25 ± 1 | ≤ 28,3 | ≤ 39,2 | ≤ 27,9 | | ≤ 90,5 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | | | | | | | 100 | ≤0,1 | 25 ± 1 | · | ≤8,0 | ≤ 5,0 | | | | | 500 | ≤0,1 | 25 ± 1 | | ≤ 14 | | | | | | 1000 | ≤ 0,1 | 25 ± 1 | | ≤ 30 | · • | | | | | 2000 | ≤ 0,1 | 25 ± 1 | | | | | ≤ 40 | | | 10 000 | ≤0,1 | 25 ±
1 | | | | | ≤ 100 | | $\eta_{\rm B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤ 1,1 | | | | | 100 | 0,3 to 1,2 | 25 ± 1 | ĺ | ≤1,8 | | | ≤6,2 | | α _F x 10 ⁶ /K | ≤ 100 | ≤0,1 | 5 to 25 | | | + 0,5 to + 1,5 | | -2 to +4 | | · | ≤ 100 | ≤0,1 | 25 to 55 | | | + 0,5 to + 1,5 | | 0 to + 6 | | | ≤ 100 | ≤0,1 | 25 to 70 | - | 0 to + 2 | | | | | D _F x 10 ⁶
(10-100 min) | ≤ 100 | ≤ 0,1 | 25 ± 0,1 | | ≤ 15 | ≤ 4,3 | | ≤ 10 | | $\beta_{\rm F} \times 10^6$, measured on sets with $\mu_{\rm e} = 300 \pm 10\%$ and 25 ± 1 °C: | | | | | | | | | | at $\mu_e \times \frac{N \times I_0}{I_e} = 1,00 \times 10^5 \text{ A/m}$
= 1,50 x 10 ⁵ A/m | | | ≤ 120
≤ 300 | | | , | | | | | • | x 10⁵ A/m | | ≤ 1100 | | | | | Core sets with nut and pre-adjusted on A_L. | AL | corre | catalogue number 4322 022 | | | | | | |------------|-----------------------------------|---------------------------|---------|---------|---------|--|--| | | sponding
µ _e -value | 3B8 | 3D3 | 3H1 | 4C6 | | | | 16 ± 1% | 12,2 | | 21400 | | 21800 | | | | 25 ± 1% | 19 | | 21410 | | ● 21810 | | | | 40 ± 1% | 30,5 | | ● 21420 | | 21820 | | | | 63 ± 1% | 48 | | 21430 | | | | | | 100 ± 1% | 76 | 01900 | 21440 | ● 21240 | | | | | 160 ± 1,5% | 122 | | | ● 21250 | | | | | 250 ± 3% | 190 | • 01920 | | ● 21260 | | | | | 400 ± 8% | 305 | 01940 | | | ĺ | | | Core sets with nut and pre-adjusted on μ_e . | $\mu_{ extsf{e}}$ | | catalogue number 4322 022 | | | | | | |-------------------|-------|---------------------------|-------|-------|--|--|--| | | α | 3D3 | 3H1 | 4C6 | | | | | 15 ± 1% | 225 | | | 20810 | | | | | 22 ± 1% | 186 | | | 20820 | | | | | 33 ± 1% | 152 | 20430 | | 20830 | | | | | 47 ± 1% | 127 | 20440 | | | | | | | 68 ± 1% | 105,8 | 20450 | 20250 | | | | | | 100 ± 1,5% | 87,5 | | 20260 | | | | | | 150 ± 2% | 71,2 | | 20270 | | | | | | 220 ± 5% | 58,8 | | 20280 | | | | | | 660 ± 25% | 33,9 | 00400 | | | | | | | 300 ± 25% | 24,2 | | 00200 | | | | | Core sets without nut: replace the eighth digit of the catalogue number (2) by 0. Cores with A_L \leqslant 63, or μ_{e} \leqslant 68, have a symmetrical air gap. Cores with A_L \geqslant 100, or μ_{e} \geqslant 100, have an asymmetrical air gap. ## Core halves without air gap, without nut | Ferroxcube grade | catalogue number | |-------------------|--| | 3B8
3D3
3H1 | 4322 020 28760
4322 020 21020
4322 020 21010 | | 4C6 | 4322 020 21140 | # **COIL FORMER** The dimensions conform with the following specifications: IEC 133 (international), NCF 83311 livre 1 (France), DIN 41 294 (Germany) and BS 4061 range 2 (Great Britain). Catalogue number Material Window area Mean length of turn Max. temperature D.C. losses Mass 4322 021 30240 polycarbonate 5.5 mm² 23 mm 130 °C $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 58.1 \times 10^3 \ \Omega/H$ 0,1 g # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 39810 | brown | FXC | 1,85 | | 39840 | yellow | cip | 1,92 | | 39850 | green | cip | 1,92 | | 39890 | grey | FXC | 1,92 | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting pergentage. P11/7 | | | · · · · · · · · · · · · · · · · · · · | | | | · · · · · · · · · · · · · · · · · · · | | |------------------|-----|---------------------------------------|----|----------------|----|---------------------------------------|----| | core
material | AL | low | % | medium | % | high | % | | 3H1, 3B8 | 100 | 4322 021 39850 | 7 | 4322 021 39840 | 13 | 4322 021 39810 | 24 | | | 160 | 39840 | 7 | 39810 | 15 | 39890 | 22 | | | 250 | 39810 | 10 | 39890 | 14 | _ | | | 3D3 | 16 | 4322 021 39850 | 12 | 4322 021 39840 | 19 | _ | | | | 25 | _ | | 39850 | 18 | 4322 021 39840 | 27 | | | 40 | _ | | 39850 | 15 | 39840 | 24 | | | 63 | 4322 021 39850 | 10 | 39840 | 18 | · <u> </u> | | | | 100 | 39850 | 6 | 39840 | 11 | _ | | | 4C6 | 16 | _ | | 4322 021 39850 | 13 | 4322 021 39840 | 19 | | | 25 | _ | | 39850 | 15 | 39840 | 22 | | | 40 | 4322 021 39850 | 9 | 39840 | 16 | _ | | | | 1 | 1 | | l . | | l | | ## MOUNTING PARTS #### MOUNTING (1) tag plate 4322 021 30180 (2) brass container 4322 021 30510 (3) spring 4322 021 30620 The core is suitable for mounting on printed-wiring boards. The four soldering pins and the earth tag are arranged so as to fit a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness of up to 1,6 mm. The board should be provided with holes of 1,3 \pm 0,1 mm diameter. The container is provided with an earth tag. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 35 N. After bending the lips the spring will have the correct tension. ### PART DRAWINGS (dimensions in mm) #### (1) tag plate 4322 021 30180 Plate: polyester reinforced with glass fibre, resistant against dip-soldering at 400 °C for 2 s. Pins: phosphor bronze, dip-soldered The tag plates are packed on a polystyrene plate of 200 and 5 plates (1000 pcs) in a cardboard box. Please order in multiples of these quantities. ## (2) container 4322 021 30510 Material: brass, nickel plated, thereafter tin plated. The containers are packed in cardboard boxes of 2000. Please order in multiples of this quantity. ## (3) Spring 4322 021 30620 Material: chrome-nickel steel A force of min. 25 N is required to compress the spring to 0,5 mm. A force of max. 55 N is required to compress the spring to 0,2 mm. The springs are supplied in quantities of 2500. Please order in multiples of this quantity. # CHARACTERISTIC CURVES # μ_{e} - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. $\mu_{\rm P} \le 975$ at Δ = 3 μ m for 3 H1. ## TYPICAL Q-CURVES FOR FXC 3H1 Enveloping curves. Coil former 4322 021 30240. ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. ## **POTCORES** Three types of core can be supplied: - CORE SETS provided with an injection-moulded nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value μ_e. - CORE SETS without nut and pre-adjusted on an A₁ or a $\mu_{\rm P}$ value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF 83311 (France), DIN41293 (Germany) and BS4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling out force of the nut ≥ 30 N Torque of the screw thread ≤ 8 mNm Extraction force of adjuster from nut ≥ 20 N Note: the 4C6 version has a cemented nut. Dimensional quantities according to IEC 205: $C_1 = \Sigma \frac{1}{\Delta} = 0.789 \text{ mm}^{-1}$; $C_2 = \Sigma \frac{1}{\Delta^2} = 0.0315 \text{ mm}^{-3}$; $V_e = 495 \text{ mm}^3$; $I_e = 19.8 \text{ mm}$; $A_e = 25.1 \text{ mm}^2$; $A_{CP min} = 20,0 mm^2$. Mass of a core set: 3,2 g #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 60 N. The values are valid 5 minutes or more after clamping. Parameters α_F and D_F of grade 3B7 are measured on toroid-wound halves. | | freq. | â | temp. | | | grade | | |---|---|------------------|----------|--------|----------|----------------|-----------| | | kHz | mT | °C | 3B8 | 3D3 | 3H1 | 4C6 | | A _L ± 25% | 4 | ≤0,1 | 25 ± 1 | 2200 | 1080 | 2200 | 200 | | $\mu_{e}^{\pm} 25\%$ | 4 | ≤0,1 | 25 ± 1 | 1400 | 680 | 1400 | 125 | | α | 4 | ≤0,1 | 25 ± 1 | ≤ 24,5 | ≤ 35,1 | ≤ 24,4 | ≤81,8 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | | | | | • | 30 | ≤0,1 | 25 ± 1 | | | | | | | 100 | ≤0,1 | 25 ± 1 | | ≤8,0 | ≤ 5,0 | | | | 500 | ≤0,1 | 25 ± 1 | | ≤ 14 | | | | | 1000 | ≤0,1 | 25 ± 1 | | ≤30 | | | | | 2000 | ≤0,1 | 25 ± 1 | | | | ≤ 40 | | | 10 000 | ≤0,1 | 25 ± 1 | | · | · | ≤ 100 | | $\eta_{\sf B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤ 0,86 | | | | 30 | 1,5 to 3,0 | 25 ± 1 | | | | | | | 100 | 0,3 to 1,2 | 25 ± 1 | | ≤ 1,8 | | ≤6,2 | | α _F x 10 ⁶ /K | ≤ 100 | ≤0,1 | 5 to 25 | | | + 0,5 to + 1,5 | -2 to + 4 | | | ≤ 100 | ≤ 0,1 | 25 to 55 | | | + 0,5 to + 1,5 | 0 to + 6 | | | ≤ 100 | ≤ 0,1 | 25 to 70 | | 0 to + 2 | | | | D _F x 10 ⁶ (10-100 min) | ≤ 100 | ≤ 0,1 | 25 ± 0,1 | | ≤12 | ≤ 4,3 | ≤ 10 | | $\beta_{\rm F} \times 10^6$, meas | ured on sets | s with | | | | | | | $u_{\rm c} = 300 + 109$ | 6 and 25 + 1 | ۱ ۵۲۰ | | | | | | | at $\mu_0 \times \frac{N \times I_0}{I_0}$ | at $\mu_e \times \frac{N \times I_o}{I_e} = 0.90 \times 10^5 \text{ A/m}$
= 1.50 × 10 ⁵ A/m | | | ≤ 100 | | | | | l _e | = 1.50 x 10 | ⁵ A/m | | ≤ 300 | | | | | | = 2,15 x 10 | ⁵ A/m | | ≤ 1050 | | | | # Core sets with nut and pre-adjusted on A_L. | AL | corre-
sponding
µ _e -value | catalogue number 4322 022 | | | | | |------------|---|---------------------------|-------------------------|-------------------------|---------|--| | | | 3B8 | 3D3 | 3H1 | 4C6 | | | 25 ± 1% | 15,7 | | | | 23810 | | | 40 ± 1% | 25 | | 23420 | | • 23820 | | | 63 ± 1% | 39,5 | 20 | 23430 | | 23830 | | | 100 ± 1% | 63 |
*** | 23440 | 23240 | | | | 160 ± 1,5% | 100,5 | | | 23250 | | | | 250 ± 2% | 157 | 03860 | | 23260 | | | | 315 ± 2% | 198 | | | 23270 | | | | 400 ± 2% | 252 | 03880 | - | 23280 | | | | 630 ± 3% | 396 | 03890 | | 23300 | | | # Core sets with nut and pre-adjusted on μ_e . | $\mu_{ extsf{e}}$ | α | catalogue number 4322 022 | | | | | |-------------------|-------|---------------------------|-------|-------|-------|--| | | | 3B8 | 3D3 | 3H1 | 4C6 | | | 15 ± 1% | 205 | | | | 22810 | | | 22 ± 1% | 169 | - | | | 22820 | | | 33 ± 1% | 137,9 | | 22430 | 22230 | 22830 | | | 47 ± 1% | 115,5 | | 22440 | 22240 | | | | 68 ± 1% | 96,1 | | 22450 | 22250 | | | | 100 ± 1,5% | 79,2 | | | 22260 | | | | 150 ± 2% | 64,6 | | | 22270 | | | | 220 ± 3% | 53,3 | | | 22280 | | | | 680 ± 25% | 30,3 | | 02400 | | | | | 1400 ± 25% | 21,2 | | | 02200 | l . | | Core sets without nut: replace the eighth digit of the catalogue number (2) by 0. Cores with A_L \leq 100, or $\mu_e \leq$ 68, have a symmetrical air gap. Cores with A_L \geq 160, or $\mu_e \geq$ 100, have an asymmetrical air gap. ### Core halves without air gap, without nut: | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 21400 | | 3D3 | 4322 020 21270 | | 3H1 | 4322 020 21260 | | 4C6 | 4322 020 21350 | ## • Preferred type. # **COIL FORMERS** Two types of coil former can be supplied: - with one section; - with two sections. The dimensions conform with the following specifications: IEC 133 (international), NCF 83311 (France), DIN 41294 (Germany) and BS 4061 range 2 (Great Britain). #### SINGLE-SECTION COIL FORMER Ø 6,1 + 0,1 Ø 7,1 - 0, 7250874.1 - 0,35 min - 0,55 max Catalogue number 4322 021 30250 Material polycarbonate Window area 9,7 mm² Mean length of turn 29 mm Max. temperature 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 32.3 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 0,15 g #### TWO-SECTION COIL FORMER Catalogue number 4322 021 30260 Material polycarbonate Window area $2 \times 4,5 \text{ mm}^2$ Mean length of turn Max. temperature 29 mm 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 35,1 \times 10^3 \ \Omega/H$$ Mass 0,2 g # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 39700 | black | FXC | 2,86 | | 39710 | brown | FXC | 2,80 | | 39720 | red | cip | 2,80 | | 39730 | orange | cip | 2,90 | | 39740 | yellow | FXC | 2,52 | | 39750 | green | cip | 2,68 | | 39780 | white | FXC | 2,68 | | 39790 | grey | FXC | 2,90 | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. P14/8 | core
material | AL | low | % | medium | % | high | % | |------------------|-----|----------------|----|----------------|----|----------------|----| | 3H1, 3B8 | 100 | 4322 021 39750 | 9 | 4322 021 39730 | 14 | 4322 021 39740 | 19 | | | 160 | 39720 | 11 | 39780 | 17 | 39710 | 23 | | | 250 | 39780 | 11 | 39710 | 15 | 39700 | 19 | | | 315 | 39780 | .9 | 39700 | 15 | 39790 | 19 | | | 400 | 39710 | 9 | 39790 | 15 | _ | | | | 630 | 39710 | 6 | 39790 | 10 | | | | 3D3 | 40 | | | 4322 021 39750 | 16 | 4322 021 39730 | 24 | | | 63 | _ | | 39750 | 13 | 39730 | 20 | | , | 100 | 4322 021 39730 | 11 | 39740 | 15 | _ | | | 4C6 | 25 | | | 4322 021 39750 | 16 | 4322 021 39730 | 20 | | | 40 | 4322 021 39750 | 12 | 39730 | 18 | 39720 | 22 | | | 63 | 39730 | 10 | 39720 | 3 | _ | | ## MOUNTING PARTS #### MOUNTING ON PRINTED-WIRING BOARDS 0.8 7242406.2 - (1) tag plate - (2) brass container - (3) spring - 4322 021 30440 - 4322 021 30520 - 4322 021 30630 The container is suitable only for mounting on printed-wiring boards. The six soldering pins are arranged so as to fit a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness of up to 3 mm. The board should be provided with holes of 1,3 \pm 0,1 mm diameter. The container is provided with an earth tag on its circumference. This tag also serves the purpose of mounting the coil assembly on the printed-wiring board. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 60 N. After bending the lips the spring will have the correct tension. ^{*} There is another mark hole in a similar position on the top of the container. #### PART DRAWINGS #### Tag plate 4322 021 30440 Plate: polyester reinforced with glass fibre resistant against dip-soldering at $400\,^{\circ}\text{C}$ for 2 s. Pins: phosphor bronze, dip-soldered. The tag plates are packed in units of 100 pieces on a polystyrene plate, and with 500 to a cardboard box. Please order in multiples of these quantities. ## Container for mounting on printed-wiring boards 4322 021 30520 Material: brass, nickel plated then tin plated. The containers are packed in a primary pack of 70 pieces and a storage pack of 350 pieces. Please order in multiples of these quantities. Spring 4322 021 30630 Material: chrome-nickel steel A force of 45 to 75 N is required to compress the spring to 0,35 mm. The springs are packed in units of 2000 pieces. Please order in multiples of this quantity. # CHARACTERISTIC CURVES μ_e - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. #### **TYPICAL Q-CURVES** **Enveloping curves** Single-section coil former ## INDUCTANCE VARIATION AS A FUNCTION OF AT~ # D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. ## **POTCORES** Three types of core can be supplied: - CORE SETS provided with an injection-moulded nut for an adjuster and pre-adjusted on an inductance factor A₁ or on a relative effective permeability value μ_e. - CORE SETS without nut and pre-adjusted on an A_1 or a μ_e value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF83311 (France), DIN 41293 (Germany) and BS 4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling-out force of the nut ≥ 30 N Torque of the screw thread ≤ 8 mNm Extraction force of adjuster from nut ≥ 20 N Note: the 4C6 version has a cemented nut. Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,597 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,0138 \text{ mm}^{-3}$; $V_e = 1120 \text{ mm}^3$; $I_e = 25,8 \text{ mm}$; $A_e = 43,3 \text{ mm}^2$; $A_{CPmin} = 36,3 \text{ mm}^2$ Mass of a core set: 6.4 g. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section Potcores, square cores and cross cores is inserted; the halves are pressed together with a force of 100 N. The values are valid 5 minutes or more after clamping. Parameters α_F and D_F of grade 3B7 are measured on toroid-wound halves. | | freq. | B | temp. | | | grade | | | |--|----------|-----------------------|----------|------------------|----------|--------------|-------------|----------| | 1 1 1 | kHz | mT | оС | 3B8 | 3D3 | 3H1 | 3Н3 | 4C6 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 3080 | 1500 | 3650 | 3100 | 260 | | $\mu_{e} \pm 25\%$ | 4 | ≤ 0,1 | 25 ± 1 | 1470 | 700 | 1750 | 1475 | 125 | | α | 4 | ≤0,1 | 25 ± 1 | ≤ 20,8 | ≤ 29,9 | ≤ 19,0 | ≤ 20,0 | ≤ 71,1 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | | | | | | | | 30 | ≤ 0,1 | 25 ± 1 | | | | ≤ 1,8 | | | | 100 | ≤ 0,1 | 25 ± 1 | | ≤8,0 | ≤ 5,0 | ≤2,9 | | | | 500 | ≤ 0,1 | 25 ± 1 | | ≤ 14 | | | 1.0 | | | 1 000 | ≤0,1 | 25 ± 1 | | ≤ 30 | | | | | | 2 000 | ≤0,1 | 25 ± 1 | | | | | ≤ 40 | | | 10 000 | ≤0,1 | 25 ± 1 | | | | | ≤ 100 | | P (W) | 25 | 200** | 25 ± 1 | ≤ 0,30 | | | | | | | | | 100 ± 1 | ≤ 0,35 | | | | | | $\eta_{\rm B} \times 10^{3}$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤0,86 | | | | | 30 | 1,5 to 3,0 | 25 ± 1 | | | | ≤0,75 | | | | 100 | 0,3 to 1,2 | 25 ± 1 | | ≤ 1,8 | | | ≤6,2 | | α _F x 10 ⁶ /K | ≤ 100 | ≤ 0,1 | 5 to 25 | | | + 0,5 to 1,5 | + 0,7 ± 0,3 | -2 to +4 | | | ≤ 100 | ≤ 0,1 | 25 to 55 | | | + 0,5 to 1,5 | + 0,7 ± 0,3 | 0 to + 6 | | | ≤ 100 | ≤ 0,1 | 25 to 70 | | 0 to + 2 | | + 0,7 ± 0,3 | | | D _F x 10 ⁶
(10-100 min) | ≤ 100 | ≤ 0,1 | 25 ± 0,1 | | ≤ 12 | ≤ 4,3 | ≤ 3,0* | ≤ 10 | | β _F x 10 ⁶ , meas | | | | | | | | | | $\mu_{\rm e} = 300 \pm 10^{\circ}$ | | ± 1 °C: | | | | | | | | at u. v N x I _o | = 1.00 \ | (10⁵ A/m | | < 120 | | | | | | at $\mu_e \times \frac{\sigma}{I_e}$ | | (10° A/m | | ≤ 120
 ≤ 300 | | | | | | | | (10 A/III
(10⁵ A/m | | | | | | | | | 2,30 / | | | ~ 1100 | | | | l | ^{*} This value is valid within the temperature range of 25 to 70 °C. ^{**} B is calculated with ACPmin = 36,3 mm². # Core sets with nut and pre-adjusted on A_L . | AL | corre- | catalogue number 4322 022 | | | | | | | | |------------|---|---------------------------|-------------------------|--------------------------|---------|-------------------------|--|--|--| | | s ponding
μ _e -value | 3B8 | 3D3 | 3H1 | 3H3 | 4C6 | | | | | 25 ± 1% | 11,9 | | | | | 25810 | | | | | 40 ± 1% | 19,0 | | 25420 | | | 25820 | | | | | 63 ± 1% | 30 | | 25430 | 25230 | 1 | 25830 | | | | | 100 ± 1% | 47,5 | | 25440 | 25240 | | | | | | | 160 ± 1% | 76 | 05910 | 25450 | 25250 | | | | | | | 250 ± 1,5% | 119 | | |
25260* | ● 25560 | | | | | | 315 ± 2% | 149 | | | ● 25270 | ● 25570 | | | | | | 400 ± 2% | 190 | • 05940 | | 25280 | 25580 | | | | | | 630 ± 3% | 298 | 05950 | | 25300 | 25600 | | | | | | 1000 ± 5% | 475 | | | 25310 | | | | | | | 1250 ± 5% | 593 | | | 05370 | | | | | | ## Core sets with nut and pre-adjusted on μ_e . | μ _e | | catalogue number 4322 022 | | | | | | | |--|--|---------------------------|----------------------------------|---|-----|-------------------------|--|--| | | α | 3B8 | 3D3 | 3H1 | 3H3 | 4C6 | | | | 15 ± 1%
22 ± 1%
33 ± 1%
47 ± 1%
68 ± 1%
100 ± 1,5%
150 ± 2%
220 ± 3%
705 ± 25%
1750 ± 25% | 178
147
120
100,5
83,6
68,9
56,3
46,5
25,9
16,5 | | 24430
24440
24450
04400 | 24230
24240
24250
24260
24270
24280
04200 | | 24810
24820
24830 | | | Core sets without nut: replace the eighth digit of the catalogue number (2) by 0. Cores with A_L \leq 160, or $\mu_e \leq$ 68, have a symmetrical air gap. Cores with A_L \geq 250, or $\mu_e \geq$ 100 and all 3B8 cores have an asymmetrical air gap. #### Core halves without air gap, without nut: | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 21670 | | 3D3 | 4322 020 21520 | | 3H1 | 4322 020 21510 | | 3H3 | 4322 020 21650 | | 4C6 | 4322 020 21610 | - Preferred type. - * Approval according to CECC 25 100-018. # **COIL FORMERS** Three types of coil former can be supplied: - with one section; - with two sections; - with three sections. The dimensions conform with the following specifications: IEC 133 (international), NCF83311 (France), DIN 41294 (Germany) and BS 4061 range 2 (Great Britain). #### SINGLE-SECTION COIL FORMER Catalogue number 4322 021 30270 Material polycarbonate Window area 18 mm² Mean length of turn 37 mm Max. temperature 130 °C D.C. losses $$\frac{R_O}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 16.4 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 0,35 g #### TWO-SECTION COIL FORMER Þ 8.7 0.2'5^{min} 0.35 min 0.55 max 7 - 8.1 Catalogue number 4322 021 30280 polycarbonate Material Window area 2 x 8.7 mm² Mean length of turn 37 mm 130 °C Max. temperature D.C. losses $$\frac{\rm R_{\rm O}}{\rm L} \times \frac{1}{\mu_{\rm e}} \times \frac{1}{\rm f_{\rm cu}} \times 17.2 \times 10^3 ~\Omega/\rm H$$ Mass 0,35 q #### THREE-SECTION COIL FORMER Catalogue number 4322 021 30290 polycarbonate Window area Material $3 \times 5,4 \text{ mm}^2$ Mean length of turn 37 mm Max. temperature 130 °C D.C. losses $$\frac{\rm R_{\rm O}}{\rm L} \times \frac{1}{\mu_{\rm e}} \times \frac{1}{\rm f_{\rm cu}} \times 18.4 \times 10^3 ~\Omega/\rm H$$ Mass 0,4 g # INDUCTANCE ADJUSTERS Table 1 | Tubic i | | | | |------------------|-------------|----------|------| | catalogue number | colour code | material | С | | 4322 021 39600 | black | FXC | 2,90 | | 39610 | brown | FXC | 2,72 | | 39620 | red | FXC | 2,52 | | 39630 | orange | cip | 2,72 | | 39640 | yellow | cip | 2,90 | | 39650 | green | cip | 2,72 | | 39670 | violet | FXC | 2,83 | | 39680 | white | FXC | 2,62 | | | | | | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. P18/11 | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|----|----------------|----|----------------|----| | 3H1, 3H3, | 63 | 4322 021 39650 | 12 | 4322 021 39640 | 17 | 4322 021 39630 | 20 | | 388 | 100 | 39650 | 9 | 39630 | 15 | 39610 | 29 | | | 160 | 39640 | 9 | 39620 | 18 | 39610 | 28 | | | 250 | 39620 | 12 | 39680 | 14 | 39610 | 18 | | | 315 | 39620 | 9 | 39610 | 14 | 39670 | 20 | | | 400 | 39680 | 9 | 39670 | 16 | 39600 | 24 | | | 630 | 39670 | 10 | 39600 | 15 | _ | | | | 1000 | 39670 | 6 | 39600 | 10 | _ | | | | 1250 | _ | | 39600 | 8 | _ | | | 3D3 | 40 | | | 4322 021 39650 | 15 | 4322 021 39640 | 20 | | | 63 | 4322 021 39650 | 13 | 39640 | 17 | 39630 | 20 | | | 100 | 39650 | 9 | 39630 | 14 | 39620 | 24 | | | 160 | 39630 | 8 | 39620 | 15 | _ | | | 4C6 | 25 | 4322 021 39650 | 13 | 4322 021 39640 | 15 | 4322 021 39630 | 19 | | | 40 | 39650 | 13 | 39640 | 17 | 39630 | 20 | | | 63 | 39650 | 8 | 39630 | 12 | _ | | # MOUNTING PARTS #### MOUNTING (1) tag plate 4322 021 30450 (4) nut 4322 021 30710 (2) brass container (3) spring 4322 021 30530 4322 021 30640 (5) fixing bush 4322 021 30720 The core is suitable for mounting on printed-wiring boards and on conventional panels. The parts 1, 2 and 3 are sufficient to construct an assembly for use in combination with printed wiring. The eight soldering pins are arranged so as to fit a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness up to 3 mm. The board should be provided with holes of 1,3+0,1 mm diameter. ^{*} There is another mark hole in a similar position on the top of the container. If one-hole mounting is preferred, the parts 4 and 5 should be added. The coil assembly may then be mounted on panels having a thickness of up to 2 mm. The panel should be provided with a hole of 8.5 mm diameter. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 100 N. After bending the lips the spring will have the correct tension. #### PART DRAWINGS ## (1) Tag plate 4322 021 30450 Plate: polyester reinforced with glass fibre, resistant against dip-soldering at 400 °C for 2 s. Pins: phosphor-bronze, dip-soldered. The tag plates are packed in units of 75 pieces on a polystyrene plate, and with 500 pieces to a cardboard box. Please order in multiples of these quantities. ### (2) Container 4322 021 30530 Material: brass, nickel plated; thereafter tin plated The containers are packed in a primary pack of 70 pieces, in a storage pack of 350 pieces. Please order in multiples of these quantities. ## (3) Spring 4322 021 30640 Material: chrome-nickel steel A force of 68 N to 113 N is required to compress the spring to 0.55 mm. The springs are supplied in quantities of 1000 pieces. Please order in multiples of this quantity. # (4) Nut 4322 021 30710 Material: brass, nickel plated # (5) Fixing bush 4322 021 30720 Material: brass, nickel plated The fixing bushes are supplied in quanties of 2500. Please order in multiples of this quantity. # CHARACTERISTIC CURVES μ_e - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. #### TYPICAL Q-CURVES FOR FXC 3H1 ## INDUCTANCE VARIATION AS A FUNCTION OF AT~ ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. #### **CROSSTALK ATTENUATION** # **POTCORES** Three types of core can be supplied: - CORE SETS provided with an injection-moulded nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value μ_e. - CORE SETS without nut and pre-adjusted on an A_L or a μ_e value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF83311 (France), DIN 41293 (Germany) and BS 4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling-out force of the nut ≥ 40 N Torque of the screw thread ≤ 10 mNm Extraction force of adjuster from nut ≥ 30 N Note: The 4C6 version has a cemented nut. Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,497 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,00784 \text{ mm}^{-3}$; $V_e = 2000 \text{ mm}^3$; $I_e = 31,5 \text{ mm}$; $A_e = 63,4 \text{ mm}^2$; $A_{CPmin} = 51,3 \text{ mm}^2$. Mass of a core set: 12 q. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores' is inserted; the halves are pressed together with a force of 140 N. The values are valid 5 minutes or more after clamping. | | freq. | B | temp. | | | grade | | | |--|----------|---------------------|----------|--------|----------|--------------|----------|----------| | | kHz | mT | oC . | 3B8 | 3D3 | 3H1 | 3E4 | 4C6 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 3870 | 1810 | 4650 | 10 000 | 320 | | μ_e ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1530 | 720 | 1860 | 3955 | 125 | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤ 18,6 | ≤ 27,0 | ≤ 16,8 | ≤11,5 | ≤ 64,7 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | | | ≤ 1,2 | ≤ 2,5 | | | • | 100 | ≤ 0,1 | 25 ± 1 | | ≤8,0 | ≤ 5,0 | ≤ 20 | | | | 500 | ≤ 0,1 | 25 ± 1 | | ≤ 14 | | ≤ 200 | | | | 1000 | ≤ 0,1 | 25 ± 1 | | ≤ 30 | - | | | | | 2000 | ≤ 0,1 | 25 ± 1 | | | | | ≤ 40 | | | 10 000 | ≤ 0,1 | 25 ± 1 | | | | - | ≤ 100 | | P (W) | 25 | 200* | 25 ± 1 | ≤ 0,30 | | | | | | | | | 100 ± 1 | ≤ 0,40 | | | | | | $\eta_{B} \times 10^3$ | 4 | 1,5 to 3,0 | | | 2 | ≤ 0,86 | ≤ 1,1 | | | | 100 | 0,3 to 1,2 | | | ≤ 1,8 | | | ≤ 6,2 | | $\alpha_F \times 10^6/K$ | ≤ 100 | ≤ 0,1 | 5 to 25 | | - | + 0,5 to 1,5 | | -2 to +4 | | | ≤ 100 | ≤ 0,1 | 25 to 55 | | | + 0,5 to 1,5 | | 0 to + 6 | | 5 406 | ≤ 100 | ≤ 0,1 | 25 to 70 | | 0 to + 2 | | 0 to + 2 | | | D _F x 10 ⁶
(10-100 min) | ≤ 100 | ≤0,1 | 25 ± 0,1 | | ≤ 12 | ≤ 4,3 | ≤4,3 | ≤ 10 | | β _F x 10 ⁶ , mea | | | |
| | | | | | $\mu_{\rm e} = 300 \pm 10$ | | ± 1 °C: | | | | | | | | at $\mu_{\rm e} \times \frac{{\rm N} \times {\rm I}_{\rm O}}{{\rm I}_{\rm O}}$ | = 1,00 x | 10 ⁵ Δ/m | | ≤ 120 | | | | | | Ie | | 10 A/m
10⁵ A/m | | ≤ 300 | | | | | | | | 10 A/m
10⁵ A/m | | | | | | | ^{*} \widehat{B} is calculated with A_{CPmin} = 51,3 mm². Core sets with nut and pre-adjusted on A_L. | AL | corre- | | catalogue number 4322 022 | | | | | | | |--|---|---------|---|---------|--|------------------------------------|--|--|--| | | sponding μ_{e} -value | 3B8 | 3D3 | 3E4 | 3H1 | 4C6 | | | | | 25 ± 1%
40 ± 1%
63 ± 1%
100 ± 1%
160 ± 1,5%
315 ± 2%
400 ± 2%
630 ± 3%
1 000 ± 3%
1 250 ± 30
2 500 ± 10%
10 000 ± 25% | 9,9
15,8
39,5
63,5
99
125
158
249
395
495
990
3955 | • 07940 | 27420
• 27430
27440
27450
27460 | • 07900 | 27240
27250
• 27260
• 27270
• 27280
27300
27310
27390 | 27810
• 27820
27830
27840 | | | | Core sets with nut and pre-adjusted on μ_e . | | α | catalogue number 4322 022 | | | | | | | |------------|-------|---------------------------|-------|-------|-------|--|--|--| | μ_{e} | μe α | 3B7 | 3D3 | 3H1 | 4C6 | | | | | 15 ± 1% | 162 | | | | 26810 | | | | | 22 ± 1% | 134 | | | | 26820 | | | | | 33 ± 1% | 109,4 | | 26430 | | 26830 | | | | | 47 ± 1% | 91,7 | | 26440 | | | | | | | 68 ± 1% | 76,2 | 26050 | 26450 | 26250 | | | | | | 100 ± 1,5% | 62,8 | 26060 | | 26260 | | | | | | 150 ± 2% | 51,3 | 26070 | | 26270 | | | | | | 220 ± 3% | 42,4 | 26080 | | 26280 | | | | | | 330 ± 3% | 34,6 | 26090 | | 26290 | | | | | | 720 ± 25% | 23,4 | | 06400 | | | | | | | 840 ± 25% | 14,6 | 06000 | | 06200 | | | | | Core sets without nut: replace the eighth digit of the catalogue number (2) by 0. Cores with A_L \leq 315, or $\mu_e \leq$ 100, have a symmetrical air gap. Cores with A_L \geq 400, or $\mu_e \geq$ 150, have an asymmetrical air gap. Core halves without air gap, without nut: | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 21940 | | 3D3 | 4322 020 21770 | | 3H1 | 4322 020 21760 | | 4C6 | 4322 020 21830 | Preferred type. # **COIL FORMERS** Three types of coil former can be supplied: - with one section; - with two sections; - with three sections. The dimensions conform with the following specifications: IEC 133 (international), NCF83311 (France), DIN 41294 (Germany) and BS 4061 range 2 (Great Britain). #### SINGLE-SECTION COIL FORMER Catalogue number 4322 021 30300 Material polycarbonate Window area 28 mm² 44 mm Max. temperature Mean length of turn 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 11,0 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 0,35 g #### TWO-SECTION COIL FORMER Catalogue number 4322 021 30310 Material polycarbonate Window area $2 \times 13 \text{ mm}^2$ Mean length of turn 44 mm Max. temperature 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 11.6 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 0,4 g #### THREE-SECTION COIL FORMER Catalogue number 4322 021 30320 Material polycarbonate Window area 3 x 8,2 mm² Mean length of turn 44 mm Max. temperature 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 12.4 \times 10^3 \Omega/H$$ Mass 0,45 g # INDUCTANCE ADJUSTERS Table 1 | | | | , | |------------------|-------------|----------|------| | catalogue number | colour code | material | С | | 4322 021 38400 | black | FXC | 4,22 | | 38410 | brown | FXC | 4,04 | | 38420 | red | cip | 4,04 | | 38430 | orange | cip | 4,22 | | 38440 | yellow | FXC | 3,52 | | 38450 | green | cip | 3,80 | | 38480 | white | FXC | 3,80 | | 38490 | grey | FXC | 3,94 | | | | | ' | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. P22/13 | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|----|----------------|----|----------------|----| | 3H1, 3B8, | 100 | 4322 021 38450 | 12 | 4322 021 38420 | 16 | 4322 021 38430 | 21 | | 3B7 | 160 | 38420 | 11 | 38440 | 18 | 38480 | 28 | | | 250 | 38440 | 11 | 38480 | 18 | 38490 | 23 | | | 315 | 38440 | 9 | 38490 | 18 | 38410 | 22 | | | 400 | 38480 | 12 | 38410 | 17 | 38400 | 28 | | | 630 | 38410 | 11 | 38400 | 18 | - | | | | 1000 | 38410 | 7 | 38400 | 11 | _ | | | | 1250 | 38410 | 5 | 38400 | 9 | | | | 3D3 - | 40 | | | 4322 021 38450 | 19 | 4322 021 38430 | 27 | | | 63 | _ | | 38450 | 16 | 38430 | 25 | | | 100 | 4322 021 38450 | 12 | 38420 | 16 | 38440 | 27 | | | 160 | 38420 | 10 | 38440 | 17 | 38490 | 28 | | | 250 | 38440 | 11 | 38490 | 18 | | | | 4C6 | 25 | 4322 021 38450 | 14 | 4322 021 38420 | 16 | | | | | 40 | _ | | 38450 | 16 | 4322 021 38430 | 24 | | | 63 | 38450 | 10 | 38420 | 15 | 38430 | 19 | | | 100 | 38450 | 6 | 38430 | 10 | 38480 | 20 | # MOUNTING PARTS #### MOUNTING (1) tag plate 4322 021 30460 (4) nut 4322 021 30710 (2) brass container 4322 021 30540 (5) fixing bush 4322 021 30720 4322 021 30650 (3) spring The core is suitable for mounting on printed-wiring boards and on conventional panels. The parts 1, 2 and 3 are sufficient to construct an assembly for use in combination with printed wiring. The eight soldering pins are arranged to fit printed-wiring boards with a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness up to 3 mm. The board should be provided with holes of 1,3 + 0,1 mm diameter. ^{*} There is another mark hole in a similar position on the top of the container. If one-hole mounting is preferred, the parts 4 and 5 should be added. The coil assembly may then be mounted on panels having a thickness of up to 2 mm. The panel should be provided with a hole of 8.5 mm diameter. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 140 N. After bending the lips the spring will have the correct tension. ## PART DRAWINGS #### (1) Tag plate 4322 021 30460 Plate: polyester reinforced with glass fibre, resistant against dip-soldering at 400 °C for 2 s. Pins: phosphor bronze, dip-soldered The tag plates are packed in units of 65 pieces on a polysturene plate. 450 pieces are packed in a cardboard box. Please order in multiples of these quantities. #### (2) Container 4322 021 30540 Material: brass, nickel plated, then tin plated. The containers are packed with 40 pieces in a primary pack and 200 pieces in a storage pack. Please order in multiples of these quantities. ## (3) Spring 4322 021 30650 Material: chrome-nickel steel A force of 94 to 156 N is required to compress the spring to 0,45 mm. The springs are supplied in quantities of 750. Please order in multiples of this quantity. # (4) Nut 4322 021 30710 Material: brass, nickel plated # (5) Fixing bush 4322 021 30720 Material: brass, nickel plated The fixing bush is supplied in quantities of 2500. Please order in multiples of this quantity. # CHARACTERISTIC CURVES μ_{e} - α curves Relative effective permeability and turn factor for 1 mH as a function of the air gap length. #### **TYPICAL Q-CURVES FOR FXC 3H1** Enveloping curves. Single-section coil former. ## INDUCTANCE VARIATION AS A FUNCTION OF AT~ # P AS A FUNCTION OF B \widehat{B} calculated with A_{CPmin} = 51,3 mm². FXC 3B8. ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. ## **POTCORES** Three types of core can be supplied: - CORE SETS provided with an injection-moulded nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value μ_e. - CORE SETS without nut and pre-adjusted on an A_I or a μ_e value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF83311 (France), DIN 41293 (Germany) and BS 4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling-out force of the nut ≥ 50 N Torque of the screw thread ≤ 10 mNm Extraction force of adjuster from nut ≥ 40 N Note: The 4C6 version has a cemented nut. Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I_e}{A_e} = 0,400 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I_e}{A_e^2} = 0,00426 \text{ mm}^{-3}$; $V_e = 3530 \text{ mm}^3$; $I_e = 37.6 \text{ mm}$; $A_e = 93.9 \text{ mm}^2$; $A_{CPmin} = 76,5 \text{ mm}^2$. Mass of a core set: 20 g. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores' is inserted; the halves are pressed together with a force of 200 N. The values are valid 5 minutes or more after clamping. | | freq. | B | temp. | | | grade | | | |--|------------|-----------------------|-------------|--------|----------|--------------|---|----------| | | kHz | mT | °C | 3B8 | 3D3 | 3H1 | | 4C6 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 5025 | 2300 | 5900 | | 400 | | μ _e ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1600 | 730 | 1900 | | 125 | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤ 16,3 | ≤ 24,1 | ≤ 14,9 | | ≤
58,0 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | | | ≤ 1,2 | | | | | 100 | ≤ 0,1 | 25 ± 1 | | ≤8,0 | ≤ 5,0 | | | | | 500 | ≤ 0,1 | 25 ± 1 | | ≤ 16 | | | | | | 1000 | ≤ 0,1 | 25 ± 1 | | ≤ 30 | | | | | | 2000 | ≤ 0,1 | 25 ± 1 | | | 15 | | ≤ 40 | | Ì | 10 000 | ≤ 0,1 | 25 ± 1 | | | | - | ≤ 100 | | P (W) | 25 | 200* | 25 ± 1 | ≤ 0,60 | | | | | | | | | 100 ± 1 | ≤0,70 | | | | | | $\eta_{\rm B} \times 10^{3}$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤ 0,86 | | | | | 100 | 0,3 to 1,2 | 25 ± 1 | | ≤ 1,8 | | | ≤6,2 | | α _F x 10 ⁶ /K | ≤ 100 | ≤ 0,1 | 5 to 25 | | | + 0,5 to 1,5 | | -2 to +4 | | | ≤100 | , | 25 to 55 | | | + 0,5 to 1,5 | | 0 to + 6 | | | ≤100 | ≤ 0,1 | 25 to 70 | | 0 to + 2 | | | | | D _F x 10 ⁶
(10-100 min) | ≤ 100 | ≤0,1 | 25 ± 0,1 | | ≤ 12 | ≤ 4,3 | | ≤ 10 | | $\beta_{\rm F} \times 10^6$, meas | sured on s | sets with μ_{e} = | = 300 ± 10% | | | | | | | and 25 ± 1 °C:
N x I _O | | | | | | | | | | | | | - 400 | | | | | | | | | 10 ⁵ A/m | | ≤ 120 | | | | | | | | 10 ⁵ A/m | | ≤ 300 | | | | | | | = 2,25 x | 10⁵ A/m | | ≤ 1100 | | | L | <u></u> | ^{*} \widehat{B} is calculated with A_{CPmin} = 76,5 mm². Core sets with nut and pre-adjusted on AL. | AL | corre- | catalogue number 4322 022 | | | | | | |------------|-----------------------------------|---------------------------|---------|---------|---------|--|--| | , . | sponding
µ _e -value | 3B8 | 3D3 | 3H1 | 4C6 | | | | 63 ± 1% | 20 | | 09430 | 29230 | 29830 | | | | 100 ± 1% | 31,8 | | • 29440 | 29240 | ● 29840 | | | | 160 ± 1% | 51 | | 29450 | 29250 | | | | | 250 ± 1% | 79,5 | 09860 | ● 29460 | 29260 | | | | | 315 ± 1,5% | 100 | | | 29270 | | | | | 400 ± 2% | 127 | • 09880 | 29480 | • 29280 | | | | | 630 ± 3% | 200 | • 09890 | | • 29300 | | | | | 1000 ± 3% | 318 | | | 29310 | | | | | 1600 ± 3% | 510 | 09900 | | 29320 | | | | Core sets with nut and pre-adjusted on μ_e . | | | catalogue number 4322 022 | | | | | | |------------|------|---------------------------|-------|-------|-------|--|--| | μ_{e} | α., | 3B8 | 3D3 | 3H1 | 4C6 | | | | 15 ± 1% | 146 | | 08410 | | 28810 | | | | 22 ± 1% | 120 | | | | 28820 | | | | 33 ± 1% | 98,2 | | 28430 | 28230 | 28830 | | | | 47 ± 1% | 82,3 | | 28440 | 28240 | | | | | 68 ± 1% | 68,4 | | 28450 | 28250 | | | | | 100 ± 1,5% | 56,4 | | | 28260 | | | | | 150 ± 2% | 46,1 | 1 | | 28270 | | | | | 220 ± 3% | 38,1 | | | 28280 | | | | | 330 ± 3% | 31,0 | | | 28290 | | | | | 730 ± 25% | 20,8 | | 08400 | | | | | | 910 ± 25% | 12,9 | } | | 08200 | | | | Core sets without nut: replace the eight digit of the catalogue number (2) by 0. Cores with A_L \leq 400 or $\mu_{\rm e} \leq$ 100, have a symmetrical air gap, except those in 3B8. Cores with A_L \geq 630 or $\mu_{\rm e} \geq$ 150, and all cores in 3B8 have an asymmetrical air gap. Core halves without air gap, without nut. | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 22220 | | 3D3 | 4322 020 22020 | | 3H1 | 4322 020 22010 | | 4C6 | 4322 020 22110 | | | | · Preferred type. ### **COIL FORMERS** Three types of coil former can be supplied: - with one section; - with two sections; - with three sections. The dimensions conform with the following specifications: IEC 133 (international), NCF83311 (France), DIN 41294 (Germany) and BS 4061 range 2 (Great Britain). ### SINGLE-SECTION COIL FORMER | Cata | aunol | num | hor | |------|-------|-----|-----| 4322 021 30330 Material polycarbonate Window area 39 mm² Mean length of turn -- Max. temperature 53 mm 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 7,42 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 0,5 g ### TWO-SECTION COIL FORMER Catalogue number 4322 021 30340 Material polycarbonate Window area 2 mm x 19 mm Mean length of turn Max. temperature 53 mm 130 °C 0.45 min 0.55 max 0.65 max 10.8-8.15 D.C. losses $$\frac{R_o}{L} \times \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 7,79 \times 10^3 \Omega/H$$ Mass 0,6 g #### THREE-SECTION COIL FORMER Catalogue number 4322 021 30350 Material polycarbonate 3 mm x 12 mm Window area 53 mm Mean length of turn Max: temperature 130 °C D.C. losses $$\frac{R_0}{L} \times \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 8,18 \times 10^3 \,\Omega/H$$ Mass 0.7 g # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 39410 | brown | FXC | 4,80 | | 39420 | red | cip | 5,15 | | 39450 | green | cip | 4.80 | | 39480 | white | FXC | 4,60 | | 39490 | grey | FXC | 5,15 | Table 2 Catalogue numbers of recommended adjusters for typical A $_{\mbox{\scriptsize L}}$ values and adjusting percentage. P26/16 | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|----|----------------|----|----------------|----| | 3H1, 3B8 | 63 | _ | | 4322 021 39450 | 18 | 4322 021 39420 | 25 | | | 100 | _ | | 39450 | 15 | 39420 | 22 | | | 160 | 4322 021 39450 | 10 | 39420 | 15 | 39480 | 28 | | | 250 | 39420 | 11 | 39480 | 18 | 39410 | 21 | | | 315 | 39420 | 9 | 39480 | 14 | 39410 | 17 | | | 400 | 39420 | 7 | 39410 | 13 | 39490 | 25 | | | 630 | 39410 | 8 | 39490 | 16 | _ | | | | 1000 | 39410 | 5 | 39490 | 9 | _ | | | | 1600 | | | 39490 | 6 | _ | | | 3D3 | 63 | _ | | 4322 021 39450 | 22 | _ | | | | 100 | _ | | 39450 | 14 | 4322 021 39420 | 21 | | | 160 | 4322 021 39450 | 10 | 39420 | 14 | 39480 | 23 | | | 250 | 39420 | 9 | 39480 | 15 | 39490 | 27 | | | 400 | 39480 | 9 | 39490 | 17 | _ | | | 4C6 | 63 | _ | | 4322 021 39450 | 15 | 4322 021 39420 | 21 | | | 100 | 4322 021 39450 | 10 | 39420 | 15 | _ | | ### MOUNTING PARTS ### MOUNTING (3) spring 4322 021 30470 (1) tag plate 4322 021 30550 (2) brass container 4322 021 30660 (4) nut 4322 021 30710 (5) fixing brush 4322 021 30720 The core is suitable for mounting on printed-wiring boards and on conventional panels. The parts 1, 2 and 3 are sufficient to construct an assembly for use in combination with printed wiring. The eight soldering pins are arranged to fit a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness of up to 3 mm. The board should be provided with holes of 1,3 + 0,1 mm diameter. If one-hole mounting is preferred, the parts 4 and 5 should be added. The coil assembly may then be mounted on panels having a thickness of up to 2 mm. The panel should be provided with a hole of 8,5 mm diameter. ^{*} There is another mark hole in a similar position on the top of the container. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 200 Newton. After bending the lips the spring will have the correct tension. #### PART DRAWINGS #### (1) Tag plate 4322 021 30470 Plate: polyester reinforced with glass fibre, resistant against dip-soldering at 400 °C for 2 s. Pins: phosphor bronze, dip-soldered The tag plates are packed in units of 40 pieces on a polystyrene plate, and with 250 pieces in a cardboard box. Please order in multiples of these quantities. (2) Container 4322 021 30550 Material: brass, nickel plated; thereafter tin plated. The containers are packed with 40 pieces in a primary pack, and 200 pieces in a storage pack. Please order in multiples of these quantities. ### (3) Spring 4322 021 30660 Material: chrome-nickel steel. A force of 136 to 225 N is required to compress the spring to 0,55 mm. The springs are supplied in quantities of 500. Please order in multiples of this quantity. # (4) Nut 4322 021 30710 Material: brass, nickel plated. # (5) Fixing bush 4322 021 30720 Material: brass, nickel plated. The fixing bushes are supplied in quantities of 2500. Please order in multiples of this quantity. ### CHARACTERISTIC CURVES μ_{e} - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air-gap. #### **TYPICAL Q-CURVES FOR FXC 3H1** Enveloping curves. Single-section coil former. ### P AS A FUNCTION OF B AT 16 kHz # A_L AS A FUNCTION OF \widehat{B} AT 16 kHz \widehat{B} calculated with A_{CPmin} = 76,5 mm² INDUCTANCE VARIATION AS A FUNCTION OF AT \sim ### D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. ### CROSSTALK ATTENUATION ### **POTCORES** Three types of core can be supplied: - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value μ_e. - CORE SETS without nut and pre-adjusted on an A₁ or a $\mu_{\rm P}$ value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF 83311 (France), DIN41293 (Germany) and BS4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### MECHANICAL DATA The polyamide nut is moulded-in, except for the 3D3 version in which it is cemented. Pulling-out force of the nut ≥ 50 N Torque of the screw thread ≤ 10 mNm Extraction force of the adjuster from nut ≥ 40 N #### MECHANICAL DATA (continued) Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I_e}{A_e} = 0,330 \text{ mm}^{-1}; C_2 = \Sigma \frac{I_e}{A_e^2} = 0,00241 \text{ mm}^{-3}; V_e = 6190 \text{ mm}^{-3}; I_e = 45,2 \text{ mm}; A_e = 137 \text{ mm}^2; mm$$ A_{CPmin} = 115 mm². Mass of core set: 34 q. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores' is inserted; the halves are pressed together with a force of 250
N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | | grade | | |--|--|------------|----------|--------|----------|--------------| | | kHz | mT | °C | 3B8 | 3D3 | 3H1 | | A _L ± 25% | 4 | ≤0,1 | 25 ± 1 | 7500 | 2800 | 7500 | | $\mu_{e} \pm 25\%$ | 4 | ≤0,1 | 25 ± 1 | 1985 | 740 | 1985 | | α | 4 | ≤0,1 | 25 ± 1 | ≤ 13,3 | ≤ 21,7 | ≤ 13,3 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | | ≤ 1,2 | | | 100 | ≤0,1 | 25 ± 1 | | ≤8,0 | ≤6,0 | | | 500 | ≤0,1 | 25 ± 1 | | ≤ 20 | | | | 1000 | ≤ 0,1 | 25 ± 1 | | ≤ 45 | | | P (W) | 25 | 200* | 25 ± 1 | ≤ 1,0 | | | | | 1 | | 100 ± 1 | ≤ 1,2 | | | | $\eta_{\rm B} \times 10^{3}$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤ 0,62 | | _ | 100 | 0,3 to 1,2 | 25 ± 1 | į. | ≤ 1,8 | | | $\alpha_F \times 10^6/K$ | ≤ 100 | ≤ 0,1 | 5 to 25 | | | + 0,5 to 1,5 | | • | ≤ 100 | ≤0,1 | 25 to 55 | | · | + 0,5 to 1,5 | | | ≤ 100 | ≤ 0,1 | 25 to 70 | | 0 to + 2 | | | D _F x 10 ⁶
(10-100 min) | ≤100 | ≤ 0,1 | 25 ± 0,1 | | ≤12 | ≤ 4,3 | | $\beta_F \times 10^6$, measu and 25 ± 1 $^{\circ}$ C: | | | 10% | | , | | | $N \times I_{\Omega}$ | 1.
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | | | | | | | at $\mu_e \times \frac{N \times I_o}{I_e} =$ | 1,00 x 10⁵ | A/m | | ≤110 | | | | 'e = | 1,60 x 10⁵ | A/m | | ≤ 300 | | | | = | 2,30 x 10⁵ | A/m | | ≤1100 | | | ^{*} \hat{B} is calculated with A_{CPmin} = 115 mm². Core sets with nut and pre-adjusted on A₁. | ۸. | corre- | catalogue number 4322 022 | | | | | |---|--------|---------------------------|---------------------------|---------|---|--| | A _L sponding μ _e -value | 3B8 | 3D3 | 3H1 | | | | | 100 ± 1% | 26,2 | | 31440 | | | | | 160 ± 1% | 42 | | ● 31450 | | 1 | | | 250 ± 1% | 65,5 | | 31460 | 31260 | | | | 315 ± 1,5% | 83 | | | | | | | 400 ± 1,5% | 105 | | | ● 31280 | | | | 630 ± 2% | 165 | ● 11870 | | ● 31300 | | | | 1000 ± 3% | 263 | | | 31310 | | | | 1600 ± 3% | 420 | | | 31320 | | | | 2500 ± 3% | 655 | | | 31330 | | | Core sets with nut and pre-adjusted on μ_e . | | | catalogue number 4322 022 | | | | | | |------------------|------|---------------------------|-------|--|--|--|--| | μ _e α | 3D3 | 3H1 | | | | | | | 33 ± 1% | 89,2 | 30430 | 30230 | | | | | | 47 ± 1% | 74,7 | 30440 | | | | | | | 68 ± 1% | 62,1 | 30450 | 30250 | | | | | | 100 ± 1,5% | 51,3 | | 30260 | | | | | | 150 ± 2% | 41,8 | | 30270 | | | | | | 220 ± 3% | 34,6 | | 30280 | | | | | | 330 ± 3% | 28,2 | | 30290 | | | | | | 740 ± 25% | 18,9 | 10400 | | | | | | | 990 ± 25% | 11,5 | | 10200 | | | | | Core sets without nut: replace the eighth digit of the catalogue number (3) by 1. Cores with A_L \leq 400, or $\mu_e \leq$ 100 have a symmetrical air gap. Cores with A_L \geqslant 630, or $\mu_e \geqslant$ 150 have an asymmetrical air gap. Core halves without air gap, without nut: | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 22390 | | 3D3 | 4322 020 22270 | | 3H1 | 4322 020 22260 | ### **COIL FORMERS** Three types of coil former can be supplied: - with one section; - with two sections; - with three sections. The dimensions conform with the following specifications: IEC 133 (international), NCF 83311 (France), DIN 41294 (Germany) and BS 4061 range 2 (Great Britain). ### SINGLE-SECTION COIL FORMER 7250898 12 8 – 0.2 Catalogue number 4322 021 30360 Material polycarbonate Window area 55 mm² Mean length of turn 62 mm Max. temperature 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 5.07 \times 10^3 \Omega/H$$ Mass 0,75 g #### TWO-SECTION COIL FORMER Catalogue number 4322 021 30370 Material polycarbonate Window area 2 x 26 mm² Mean length of turn 62 mm 130 °C Max. temperature THREE-SECTION COIL FORMER $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 5.38 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 1,0 g Catalogue number 4322 021 30380 Material polycarbonate Window area 3 x 16 mm² Mean length of turn 62 mm Max. temperature 130 °C nperature 130 ^o D.C. losses $$\frac{R_O}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 5,74 \times 10^3 \Omega/H$$ Mass 1,2 g # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour | core
material | C
mm | |------------------|--------|------------------|---------| | 4322 021 38320 | red | cip | 4,68 | | 38340 | yellow | cip | 5,10 | | 38380 | white | FXC | 4,40 | | 38390 | grey | FXC | 5,10 | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. P30/19 | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|----|----------------|----|----------------|----| | 3H1, 3B8 | 250 | 4322 021 38320 | 10 | 4322 021 38340 | 16 | 4322 021 38380 | 20 | | | 400 | 38320 | 7 | 38380 | 12 | _ | | | | 630 | 38340 | 6 | 38380 | 8 | 38390 | 21 | | | 1000 | 38380 | 5 | 38390 | 13 | _ | | | | 1600 | _ | | 38390 | 8 | _ | | | | 2500 | _ | | 38390 | 5 | _ | | | 3D3 | 100 | _ | | 4322 021 38320 | 18 | 4322 021 38340 | 29 | | | 160 | _ | | 38320 | 14 | 38340 | 21 | | | 250 | 4322 021 38320 | 9 | 38340 | 13 | _ | | ### MOUNTING PARTS #### MOUNTING (1) tag plate 4322 021 30480 (4) nut 4322 021 30710 (2) brass container 4322 021 30560 (5) fixing bush 4322 021 30720 (3) spring 4322 021 30670 The core is suitable for mounting on printed-wiring boards and on conventional panels. The parts 1, 2, 3 (and 6) are sufficient to construct an assembly for use in combination with printed wiring. The nine soldering pins are arranged to fit a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness of up to 3 mm. The board should be provided with holes of 1,3 \pm 0,1 mm diameter. ^{*} There is another mark in a similar position on the top of the container. If one-hole mounting preferred, the parts 4 and 5 should be added. The coil assembly may then be mounted on panels having a thickness of up to 2 mm. The panel should be provided with a hole of 8,5 diameter. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 250 Newton. After bending the lips the spring will have the correct tension. #### PART DRAWINGS (dimensions in mm) #### (1) Tag plate 4322 021 30480 PLate: polyester reinforced with glass fibre, resistant against dip-soldering at 400 °C for 2 s. Pins: phosphor bronze, dip-soldered The tag plates are packed in units of 30 pieces on a polystyrene plate, and with 200 pieces in a cardboard box. Please order in multiples of these quantities. ### (2) Container 4322 021 30560 Material: brass, nickel plated; thereafter tin plated The containers are packed with 20 pieces in a primary pack, and 100 pieces in a storage pack. Please order in multiples of these quantities. ### (3) Spring 4322 021 30670 2,3+0,3 A force of 169 to 281 N is required to compress the spring to 0,45 mm. The springs are supplied in quantities of 250. Please order in multiples of ### (4) Nut 4322 021 30710 Material: brass, nickel plated ### (5) Fixing bush 4322 021 30720 this quantity. Material: brass, nickel plated ### CHARACTERISTIC CURVES μ_e - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. ### **TYPICAL Q-CURVES FOR FXC 3H1** Enveloping curves. Single-section coil former. ### INDUCTANCE VARIATION AS A FUNCTION OF AT \sim ### AL AS A FUNCTION OF B FXC 3H1 Without airgap. 1300 A_L (nH) 1200 1100 1000 $\mu_{\rm e} = 300$. \hat{B} calculated with A_{CP min} = 115 mm². ### D.C. SENSITIVITY AT 25 °C ### Guaranteed curve Inductance variation as a function of d.c. polarization. ### **POTCORES** Three types of core can be supplied: - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value $\mu_{\rm p}$. - CORE SETS without nut and pre-adjusted on an A_L or a μ_e value. - CORE HALVES without air gap. The potcores are in accordance with the following specifications: IEC 133 (international), NCF 83311 (France), DIN41293 (Germany) and BS4061 range 2 (Great Britain). Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 80 core sets or 160 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling-out force of the nut Torque of the screw thread Extraction force of the adjuster from the nut Dimensional quantities according to IEC 205: The polyamide nut is moulded-in, except for the 3D3 version, in which it is cemented. $$C_1 = \Sigma \frac{I_e}{A_e} = 0.264 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I_e}{A_e^2} = 0.00131 \text{ mm}^{-3}$; $V_e = 10700 \text{ mm}^3$; $I_e = 53.2 \text{ mm}$; $A_e = 202 \text{ mm}^2$; ≥ 50 N. ≥ 40 N. ≤ 10 mNm. $A_{CP min} = 172 mm^2$. Mass of core set: 54 g. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 350 N. The values are valid 5 minutes or more after clamping. | 1. | freq. | â | temp. | | grade | | |---|---------------|-----------------------------|----------|--------|----------|--------------| | | kHz | mT | oC . | 3B8 | 3D3 | 3H1 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 9500 | 3550 | 9500 | | μ _e ± 25% | 4 | ≤0,1
 25 ± 1 | 2025 | 745 | 2025 | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤11,7 | ≤ 19,3 | ≤ 11,7 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | | ≤1,2 | | | 100 | ≤0,1 | 25 ± 1 | | ≤ 8,0 | ≤6,0 | | | 500 | ≤ 0,1 | 25 ± 1 | | ≤ 22 | | | | 1000 | ≤0,1 | 25 ± 1 | , | ≤ 50 | | | P (W) | 25 | 200* | 25 ± 1 | ≤ 1,5 | | | | | | · | 100 ± 1 | ≤ 1,9 | | | | $\eta_{\rm B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤ 0,62 | | _ | 100 | 0,3 to 1,2 | 25 ± 1 | | ≤ 1,8 | | | αF x 106/K | ≤ 100 | ≤0,1 | 5 to 25 | | <u> </u> | + 0,5 to 1,5 | | | ≤ 100 | ≤0,1 | 25 to 55 | | | + 0,5 to 1,5 | | | ≤ 100 | ≤0,1 | 25 to 70 | | 0 to + 2 | | | D _F x 10 ⁶
(10-100 min) | ≤ 100 | ≤0,1 | 25 ± 0,1 | | ≤ 12 | ≤ 4,3 | | β _F x 10 ⁶ , measu | red on sets v | vith μ _e = 300 ± | 10% | | | | | and 25 ± 1 °C: | | | | | | | | N x I ₀ = 1.00 × 105 A /~ | | | | - 440 | | 1 3 3 | | at $\mu_e \times \frac{1}{100} = 1,00 \times 10^{\circ} \text{ A/m}$ | | | | ≤ 110 | | | | at $\mu_0 \times \frac{N \times I_0}{I_0} = 1,00 \times 10^5 \text{ A/m}$
= 1,60 x 10 ⁵ A/m
= 2,30 x 10 ⁵ A/m | | | | ≤ 300 | | | | | 2,30 X 10° | A/M | | ≤ 1050 | | | ^{*} \hat{B} is calculated with A_{CPmin} = 172 mm². Core sets with nuts and pre-adjusted on A₁. | • | corre- catalogue number 4322 022 | | | | | |------------|-----------------------------------|---------|-------------------------|---------|------------------| | AL | sponding
μ _e -value | 3B8 | 3D3 | 3H1 | 3H1, without nut | | 40 ± 1% | 8,39 | | | | 4322 021 13220 | | 100 ± 1% | 21 | | | 33240 | | | 160 ± 1% | 33,6 | • 13800 | 33450 | 33250 | | | 250 ± 1% | 52,5 | 13810 | 33460 | 33260 | | | 315 ± 1,5% | 66,2 | 13820 | | | | | 400 ± 1,5% | 84 | • 13830 | 33480 | • 33280 | | | 630 ± 2% | 132 | | | • 33300 | | | 1000 ± 3% | 210 | | | 33310 | | | 1250 ± 3% | 262 | | | 33980 | | | 1600 ± 3% | 336 | 13870 | | 33320 | | | 2500 ± 5% | 525 | | | 33290 | | Core sets with nut and pre-adjusted on μ_e . | | | catalogue number 4322 022 | | | | | |----------------|------|---------------------------|-------|--|--|--| | μ _e | α | 3D3 | 3H1 | | | | | 33 ± 1% | 79,7 | 32430 | | | | | | 47 ± 1% | 66,8 | 32440 | | | | | | 68 ± 1% | 55,6 | 32450 | 32250 | | | | | 100 ± 1,5% | 45,8 | | 32260 | | | | | 150 ± 2% | 37,4 | | 32270 | | | | | 220 ± 3% | 30,9 | | 32280 | | | | | 330 ± 3% | 25,2 | | 32290 | | | | | 750 ± 25% | 16,7 | 12400 | | | | | | 2030 ± 25% | 10,2 | | 12200 | | | | Core sets without nut: replace the eighth digit of the catalogue number (3) by 1. Cores with A $_{\rm L}$ \leqslant 630, or $\mu_{\rm e}$ \leqslant 150, have a symmetrical air gap. Cores with A $_{\rm L}$ \geqslant 1000, or $\mu_{\rm e}$ \geqslant 220, and all 3B8 cores have an asymmetrical air gap. #### Core halves without air gap, without nut: | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 22610 | | 3D3 | 4322 020 22520 | | 3H1 | 4322 020 22510 | # **COIL FORMERS** Three types of coil former can be supplied: - with one section; - with two sections: - with three sections. The dimensions conform with the following specifications: IEC 133 (international), NCF 83311 (France), DIN 41294 (Germany) and BS4061 range 2 (Great Britain). #### SINGLE-SECTION COIL FORMER | Catal | ogue | numbe | r | |-------|------|-------|---| |-------|------|-------|---| 4322 021 30390 Material polycarbonate Window area 75 mm² Mean length of turn 74 mm Maximum temperature 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} = 3,59 \times 10^3 \Omega/H$$ Mass 1,3 g #### TWO-SECTION COIL FORMER Catalogue number Material Window area window area Mean length of turn Maximum temperature polycarbonate 2 x 35 mm² 4322 021 30400 74 mm 130 °C 0.65 min 0.85 max 14.4 - 0.2 D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 3,81 \times 10^3 \Omega/H$$ Mass 1,55 g #### THREE-SECTION COIL FORMER 0.65 min 0.85 max 0.85 max 0.85 max Catalogue number 4322 021 30410 Material polycarbonate Window area 3 x 22 mm² Mean length of turn 74 mm Maximum temperature 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 4,06 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 2 g # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour | core
material | C
mm | |------------------|--------|------------------|---------| | 4322 021 39240 | yellow | cip | 5,20 | | 39280 | white | cip | 5,20 | | 39290 | grey | FXC | 5,20 | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. P36/22 | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|---|----------------|----|----------------|----| | 3H1, 3B8 | 100 | | | 4322 021 39240 | 17 | 4322 021 39280 | 28 | | | 160 | _ | | 39240 | 15 | 39280 | 24 | | | 250 | _ | | 39240 | 11 | 39280 | 18 | | | 400 | 4322 021 39240 | 8 | 39280 | 8 | | | | | 630 | 39240 | 5 | 39280 | 8 | _ | | | | 1000 | 39280 | 5 | 39290 | 20 | _ | | | | 1250 | _ | | 39290 | 17 | _ | | | | 1600 | _ | | 39290 | 12 | _ | | | | 2500 | _ | | 39290 | 8 | _ | | | 3D3 | 160 | _ | | 4322 021 39240 | 13 | 4322 021 39280 | 21 | | | 250 | _ | | 39240 | 11 | 39280 | 17 | | | 400 | 4322 021 39240 | 7 | 39280 | 11 | _ | | # MOUNTING PARTS #### MOUNTING | (1) tag plate | 4322 021 30490 | (4) nut | 4322 021 30710 | |---------------------|----------------|-----------------|----------------| | (2) brass container | 4322 021 30570 | (5) fixing bush | 4322 021 30720 | | (3) spring | 4322 021 30680 | | | The core is suitable for mounting on printed-wiring boards and on conventional panels. The parts 1, 2, 3 are sufficient to construct an assembly for use in combination with printed wiring. The ten soldering pins are arranged to fit a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness of up to 3 mm. The board should be provided with holes of 1,3 \pm 0,1 mm diameter. ^{*} There is another mark in a similar position on the top of the container. If one-hole mounting is preferred, the parts 4 and 5 should be added. The coil assembly may then be mounted on panels having a thickness of up to 2 mm. The panel should be provided with a hole of 8.5 mm diameter. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 350 Newton. After bending the lips the spring will have the correct tension. #### PART DRAWINGS #### (1) Tag plate 4322 021 30490 Plate: polyester reinforced with glass fibre, resistant against dip-soldering at 400 $^{\rm o}{\rm C}$ for 2 s. Pins: phosphor bronze, dip-soldered. The tag plates are packed in units of 24 pieces on a polystyrene plate, and with 150 pieces in a cardboard box. Please order in multiples of these quantities. #### (2) Container 4322 021 30570 Material: brass, nickel plated; thereafter tin plated. The containers are packed with 20 pieces in a primary pack, and 100 pieces in a storage pack. Please order in multiples of these quantities. A force of 255 to 425 N is required to compress the spring to 0,55 mm. The springs are supplied in quantities of 200. Please order in multiples of this quantity. ## (4) Nut 4322 021 30710 Material: brass, nickel plated ## (5) Fixing bush 4322 021 30720 Material: brass, nickel plated # CHARACTERISTIC CURVES μ_e - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. #### **TYPICAL Q-CURVES FOR FXC 3H1** Enveloping curves. Coil former 4322 021 30390. #### INDUCTANCE VARIATION AS A FUNCTION OF AT~ #### D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. #### Typical values ## **POTCORES** Three types of cores can be supplied: - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A_L or on a relative effective permeability value μ_P . - ullet CORE SETS without nut and pre-adjusted on an A_L or a μ_e value. - CORE HALVES without air gap. Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 80 core sets or 160 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling-out force of the nut $\geqslant 50$ N Torque of the screw thread $\leqslant 10$ mNm. Extraction force of the adjuster from the nut \geq 40 N #### **MECHANICAL DATA** (continued) Dimensional quantities according to IEC 205: $$C_1 = \Sigma = \frac{I}{A} = 0,259 \text{ mm}^{-1}; C_2 = \Sigma = \frac{I}{A^2} = 0,000977 \text{ mm}^{-3}; V_e = 18 200 \text{ mm}^3; I_e = 68,6 \text{ mm};$$ $A_e = 265 \text{ mm}^2$; $A_{CP \text{ min}} = 214 \text{ mm}^2$. Mass of core set: 104 g. #### **ELECTRICAL DATA** The combination of two potcore halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 550 N. The values are valid 5 minutes or more after clamping. | | freq. | B | temp. | grade | | |---|-------|------------|----------|--------------|--| | | kHz | mT | oC . | 3H1 | | | A ₁ ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 10 250 | | | μ_{e}^{-} ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 2100 | | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤ 11,4 | | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | ≤ 1,2 | | | | 100 | ≤ 0,1 | 25 ± 1 | ≤ 8 | | | $\eta_{\rm B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | ≤ 0,62 | | | $\alpha_F \times 10^6/K$ | ≤ 100 | ≤ 0,1 | 5 to 25 | + 0,5 to 1,5 | | | | ≤ 100 | ≤ 0,1 | 25 to 55 | + 0,5 to 1,5 | | | D _F x 10 ⁶ | ≤ 100 | ≤ 0,1 | 25 to 70 | | | | (10-100
min) | ≤ 100 | ≤ 0,1 | 25 ± 0,1 | ≤ 4,3 | | | • | | 1 | 1 | 1 | | Core sets with nut and pre-adjusted on A₁. | Λ. | corre-
sponding | catalogue number 4322 022 | |----------------|-----------------------|---------------------------| | A _L | μ _e -value | 3H1 | | 100 ± 1% | 20,5 | 35240 | | 250 ± 1% | 51 | 35260 | | 400 ± 1% | 81 | ● 35280 | | 630 ± 2% | 130 | 35300 | | 1000 ± 3% | 205 | ● 35310 | | 1600 ± 3% | 325 | 35320 | | 2500 ± 10% | 510 | _ | Core sets with nut and pre-adjusted on μ_e . | $\mu_{\mathbf{e}}$ | α | catalogue number 4322 022 | |--------------------|-------|---------------------------| | ~e | u
 | 3H1 | | 68 ± 1% | 55,0 | 34250 | | 100 ± 1,5% | 45,0 | 34260 | | 150 ± 2% | 36,8 | 34270 | | 220 ± 3% | 30,4 | 34280 | | 330 ± 3% | 24,8 | 34290 | | 2120 ± 25% | 9,85 | 14200 | Core sets without nut: replace the eighth digit of the catalogue number (3) by 1. Cores with $A_L \leqslant 630$, or $\mu_e \leqslant 150$ have a symmetrical air gap. Cores with $A_L \geqslant 1000$, or $\mu_e \geqslant 220$ have an asymmetrical air gap. Core halves without air gap, without nut. | Ferroxcube grade | catalogue number | |------------------|------------------| | 3H1 | 4322 020 22760 | # **COIL FORMERS** #### **GENERAL** Two types of coil former can be supplied: - with one section: - with two sections. The dimensions conform with the following specifications: IEC 133 (international), NCF 83311 (France) and BS 4061 range 2 (Great Britain). #### SINGLE-SECTION COIL FORMER Catalogue number 4322 021 30420 Material polycarbonate Window area 140 mm² Mean length of turn 86 mm Max. temperature 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 2,16 \times 10^3 \text{ }\Omega/\text{H}$$ Mass 2,4 q #### TWO-SECTION COIL FORMER Catalogue number Material Window area Mean length of turn Max. temperature 4322 021 30430 polycarbonate 2 x 63 mm² 86 mm 130 °C D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 2,40 \times 10^3 \ \Omega/H$$ Mass 3,0 g # **INDUCTANCE ADJUSTERS** Table 1 | catalogue number | colour | core
material | C
mm | |------------------|--------|------------------|---------| | 4322 021 39240 | yellow | cip | 5,20 | | 39280 | white | cip | 5,20 | | 39290 | grey | FXC | 5,20 | Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. P42/29 | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|---|----------------|----|----------------|----| | 3H1 | 100 | _ | | 4322 021 39240 | 14 | 4322 021 39280 | 23 | | | 250 | | | 39240 | 10 | 39280 | 16 | | | 400 | 4322 021 39240 | 7 | 39280 | 11 | _ | | | | 630 | _ | | 39280 | 7 | 39290 | 28 | | | 1000 | | | 39290 | 18 | _ | | | | 1600 | | | 39290 | 11 | _ | | # MOUNTING PARTS #### MOUNTING (1) tag plate 4322 021 30500 (4)4322 021 30710 nut (5) (2) brass container 4322 021 30580 4322 021 30690 fixing bush 4322 021 30720 The core is suitable for mounting on printed-wiring boards and on conventional panels. The parts 1, 2 and 3 are sufficient to construct an assembly for use in combination with printed wiring. The ten soldering pins are arranged to fit a grid of 2,54 mm (0,1 inch). The pin length is sufficient for a board thickness of up to 3 mm. The board should be provided with holes of 1.3 ± 0.1 mm diameter. ^{*} There is another mark in a similar position on the top of the container. If one-hole mounting is preferred, the parts 4 and 5 should be added. The coil assembly may then be mounted on panels having a thickness of up to 2 mm. The panel should be provided with a hole of 8.5 mm diameter. It is recommended that the spring (3) be placed in the position indicated to obtain the best stability against shock and vibration. Before bending the lips of the container, pressure should be exerted evenly on the rim of the tag plate until it meets the container. The force which is required is approximately 550 Newton. After bending the lips the spring will have the correct tension. #### PART DRAWINGS #### (1) Tag plate 4322 021 30500 Plate: polyester reinforced with glass fibre, resistant against dip-soldering at 400 $^{\rm o}$ C for 2 s Pins: phosphor bronze, dip-soldered. The tag plates are packed in units of 15 pieces on a polystyrene plate, and with 100 pieces in a cardboard box. Please order in multiples of these quantities. #### (2) Container 4322 021 30580 Material: brass, nickel plated; thereafter tin plated ## (b) Spring 4322 021 30690 A force of 383 to 638 N is required to compress the spring to 0,67 mm. The springs are supplied in quantities of 100. Please order in multiples of this quantity. # (4) Nut 4322 021 30710 Material: brass, nickel plated # (5) Fixing bush 4322 021 30720 Material: brass, nickel plated # CHARACTERISTIC CURVES μ_{e} - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. # INDUCTANCE VARIATION AS A FUNCTION OF AT \sim ## **HANNA CURVE** Indicating the optimum inductance for a certain μ_{e} -value and direct current. Typical values ## **POTCORES** #### INTRODUCTION Two types of core can be supplied: - Separate core halves, air gap to be ground by the user himself. - Pre-adjusted potcores, available to special order. The $\mu_{\rm e}$ values can be chosen from the E6 standard series of values, the A_I values from the R5 series. Potcores and associated parts are ordered by their 12-digit catalogue number. Quantity: a storage pack contains 12 halves each packed in corrugated fibre cardboard, catalogue number 4322 020 23000, grade 3E1. #### MECHANICAL DATA Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,172 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0,000240 \text{ mm}^{-3}; V_e = 88300 \text{ mm}^3; I_e = 123 \text{ mm};$$ $$A_e = 717 \text{ mm}^2$$; $A_{CP \text{ min}} = 590 \text{ mm}^2$. Mass of core set: 550 g. For the combination of two potcore halves randomly chosen from a batch and pressed together with a force of 1700 N, the values below are quaranteed at 25 \pm 10 °C. | | ₿
mT | freq.
kHz | 3E1 grade | |-----------|---------|--------------|-----------| | μ_{e} | ≤ 0,1 | 4 | ≥ 1970 | | α | ≤ 0,1 | 4 | ≤ 8,25 | # CHARACTERISTIC CURVES Inductance factor, relative effective permeability and turns factor as a function of the air gap length. # **COIL FORMER** #### SINGLE-SECTION COIL FORMER Catalogue number Material Window area Mean length of turn Max. temperature 4322 021 31320 polycarbonate 400 mm² 130 mm 130 °C $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 0.80 \times 10^3 \ \Omega/H$ Mass D.C. losses 11,8 g SECTION D POTCORE HALVES AND COIL FORMERS FOR INDUCTIVE PROXIMITY DETECTORS ## **GENERAL** An inductive proximity detector operates as follows. A metal object A approaches — or recedes from — an open potcore half with coil B. The change in the Q of the oscillator is used to generate an electrical signal that can be used to drive an electromechanical relay, an audible alarm or similar devices. Potcore halves with diameters up to 9,4 mm are manufactured in Ferroxcube grade 3D3 and potcore halves with diameters 14 mm and larger in Ferroxcube grade 3H1, because the operating frequency of oscillators with small potcore halves is higher than that of oscillators with large potcore halves. Suitable coil formers are available for all potcore halves. The polycarbonate material of the coil former limits the maximum potting temperature to 110 °C. The potting material should be somewhat flexible to avoid high mechanical stresses on the Ferroxcube potcore halves. #### **SURVEY OF TYPES** | Ferroxcube potcore half | grade | catalogue number | coil former | |-------------------------|-------|------------------|----------------| | 5,6 x 3,6 | 3D3 | 4322 020 54210 | 4322 021 33540 | | 7,4 x 3,9 | 3D3 | 4322 020 54510 | 4322 021 32990 | | 9,4 x 4,8 | 3D3 | 4322 020 54710 | 4322 021 31700 | | 14 x 7,5 | 3H1 | 4322 020 54800 | 4322 021 30250 | | 26 x 9,2 | 3H1 | 4322 020 54900 | 4322 021 33700 | # POTCORE HALF Non-ground potcore half, intended for use in proximity detectors. #### **MECHANICAL DATA** Material grade: 3D3 Initial permeability, toroidally measured: $\mu_i = 750 \pm 20\%$ Mass of one potcore half: 0,25 g Catalogue number: 4322 020 54210 Quantities: a primary pack contains 100 core halves, a storage pack contains 500 core halves. Please order in multiples of these quantities. # **COIL FORMER** Catalogue number Material Window area Mean length of turn Maximum temperature A_R value* Mass 4322 021 33540 polyamide 1,9 mm² 11,7 mm 130 °C $221 \mu\Omega$ 0,03 g 7Z90575 ^{*} D.C. resistance = $A_R \cdot (number of turns)^2 or R_0 = A_R \cdot N^2$. ## POTCORE HALF Non-ground potcore half, intended for the use in proximity detectors. ## **MECHANICAL DATA** Material grade: 3D3 Initial permeability, toroidally measured: $\mu_i = 750 \pm 20\%$ Mass of one potcore half: 0,3 g Catalogue number: 4322 020 54510 Quantities: A primary pack contains 100 core halves; a storage pack contains 500 core halves. Please order in multiples of these quanties. # **COIL FORMER** This coil former is identical to the single-section coil former for potcore P7,4/4,2. Catalogue number Material Window area Mean length of turn Maximum temperature A_R value* Mass 4322 021 32990 polyamide 2,2 mm² 14,6 mm 130 °C $230~\mu\Omega$ 0,04 g ^{*} D.C. resistance = $A_R \cdot (number of turns)^2 or: R_0 = A_R \cdot N^2$. # POTCORE HALF Non-ground potcore half, intended for use in proximity detectors. ## **MECHANICAL DATA** Material grade: 3D3 Initial permeability, toroidally measured: $\mu_i = 750 \pm 20\%$ Mass of one potcore half: 1,6 g Catalogue number: 4322 020 54710 Quantities: a primary pack contains 50 core halves, a storage pack contains 400 core halves. Please order in multiples of these quantities. # **COIL FORMER** This coil former is
identical to the single-section coil former for potcore P9/5. Catalogue number 4322 021 31700 Material polycarbonate Window area 3,4 mm² Mean length of turn 19 mm Maximum temperature 130 °C A_R value* 200 $\mu\Omega$ Mass 0,07 g ^{*} D.C. resistance = $A_R \cdot (number of turns)^2 or: R_0 = A_R \cdot N^2$. # POTCORE HALF Non-ground potcore half, intended for use in proximity detectors. ## **MECHANICAL DATA** Material grade: 3H1 Initial permeability, toroidally measured: $\mu_i = 2300 \pm 20\%$ Mass of one potcore half: 2,0 g Catalogue number: 4322 020 54800 Quantities: a primary pack contains 40 core halves; a storage pack contains 200 core halves. Please order in multiples of these quantities. March 1984 # **COIL FORMER** This coil former is identical to the single-section coil former for potcore P14/8. Catalogue number Material Window area Mean length of turn Maximum temperature AR value* Mass 4322 021 30250 polycarbonate 9,7 mm 2 29 mm 130 $^{\circ}$ C 110 $\mu\Omega$ 0,15 g ^{*} D.C. resistance = $A_R \cdot (number of turns)^2 or: R_0 = A_R \cdot N^2$. # POTCORE HALF Non-ground potcore half, intended for use in proximity detectors. ## **MECHANICAL DATA** Material grade: 3H1 Initial permeability, toroidally measured: $\mu_i = 2300 \pm 20\%$ Mass of one potcore half: 11 g Catalogue number: 4322 020 54900 Quantities: a primary pack contains 40 core halves, a storage pack contains 200 core halves. Please order in multiples of these quantities. # **COIL FORMER** Catalogue number: Material Window area Mean length of turn Maximum temperature A_R value* Mass 4322 021 33700 polycarbonate 22 mm² 14,6 mm 130 °C $90 \mu\Omega$ 0,4 g ^{*} D.C. resistance = $A_R \cdot (number of turns)^2 or: R_0 = A_R \cdot N^2$. # SECTION E SQUARE CORES AND ACCESSORIES ## SQUARE CORES These cores are available in two executions: - RM4, usually for telecommunication, with centre hole for adjuster - RM4/i, for industrial applications, no centre hole #### RM4 cores can be supplied in three versions - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A₁. - CORE SETS without nut and pre-adjusted on an A₁ value. - · CORE HALVES without air gap. The square cores are in accordance with the following specifications: IEC 341 (international), UTE83-300 (France), DIN 41980 (Germany). Square cores and associated parts are ordered by their 12-digit catalogue number. Quanity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### RM4/i cores can be supplied in two versions - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM4/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quantities and supply conditions upon request. RM4/i ## RM4 SQUARE CORES #### for telecommunication ## **MECHANICAL DATA** Pulling-out force of the nut ≥ 20 N (at ambient temperature) Torque of the screw thread ≤ 4 mNm Extraction force of adjuster from nut ≥ 10 N Dimensional quantities according to IEC 205: a. Version with centre hole: $$C_1 = \sum \frac{I}{A} = 1,94 \text{ mm}^{-1}$$; $C_2 = \sum \frac{I}{A^2} = 0,176 \text{ mm}^{-3}$; $V_e = 230 \text{ mm}^3$; $I_e = 21,3 \text{ mm}$; $A_e = 11,0 \text{ mm}^2$. $A_{min} = 8,1 \text{ mm}^2$. Mass of a core set: 2,5 g. b. Version without centre hole: $$C_1 = \Sigma \frac{I}{A} = 1,69 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,123 \text{ mm}^{-3}$; $V_e = 322 \text{ mm}^3$; $I_e = 23,3 \text{ mm}$; $A_e = 13,8 \text{ mm}^2$. $A_{min} = 11,5 \text{ mm}^2$ mass of a core set: 2,8 g. ## **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 25 N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | grad | de | |--|-------|------------|----------|----------|---------------| | | kHz | mT | °C | 3E4 | 3H1 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | | 1040 | | μ _e ± 25% | 4 | ≤ 0,1 | 25 ± 1 | | 1600 | | N | 4 | ≤ 0,1 | 25 ± 1 | | ≤ 35,8 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | ≤ 2,5 | | | | 30 | ≤ 0,1 | 25 ± 1 | | ≤ 3,0 | | | 100 | ≤ 0,1 | 25 ± 1 | ≤ 20 | ≤ 6,0 | | | 500 | ≤ 0,1 | 25 ± 1 | ≤ 200 | | | $\eta_{\rm B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | ≤ 1,1 | ≤ 1,1 | | α _F x 10 ⁶ /K | ≤ 100 | ≤ 0,1 | 5 to 25 | 0 to +2 | + 0,5 to +1,5 | | - | ≤ 100 | ≤ 0,1 | 25 to 55 | 0 to +2 | + 0,5 to +1,5 | | | ≤ 100 | ≤ 0,1 | 25 to 70 | 0 to + 2 | | | D _F x 10 ⁶
(10 - 100 min) | ≤ 100 | ≤ 0,1 | 25 ± 0,1 | ≤ 4,3 | ≤ 4,3 | Core sets with nut and pre-adjusted on A₁. | <u> </u> | corre- | tol. on | cat. no. 4322 022 | | | |--------------|---------------------|---------|-------------------|---------|--| | | induct-
ance (%) | 3E4 | 3H1 | | | | 40 | 62 | ± 1 | | 77220 | | | 63 | 96 | ± 1,5 | | 77230 | | | 100 | 152 | ± 2 | | ● 77240 | | | • 160 | 242 | ± 5 | | 77250 | | | 250 | 380 | ± 10 | | 77260 | | | 2790 | 3760 | ± 25 | ● 57900* | | | Inductance L = $N^2 A_L$ (in 10^{-9} H). Core sets without nut: replace the eighth digit of the catalogue number (7) by 5. Cores with $A_L \le 40$ have a symmetrical air gap. Cores with $A_L \ge 63$ have an asymmetrical air gap. Types marked* are without centre hole. In order to obtain better performance, type 4322 022 57900 is made without centre hole. Core halves without air gap, without nut. | Ferroxcube grade | catalogue number | |------------------|------------------| | 3H1 | 4322 020 26510 | ## COIL FORMER ## SINGLE-SECTION, 6-PIN COIL FORMER Catalogue number Material Window area Mean length of turn Max. temperature Solderability D.C. losses Inflammability Mass 4322 021 32210 phenol formaldehyde reinforced with glass fibre, dip-soldered pins 8.8 mm² 20 mm 180 °C resistant against dip-soldering at 400 °C for 2 s $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 55,7 \times 10^3 \ \Omega/H$ UL94, class V-0 0,16 g The coil formers are supplied in packs of 200 on a polystyrene plate. Please order in multiples of this quantity. # INDUCTANCE ADJUSTERS Table 1 | to the second se | | | | | |--|-------------|----------|------|--| | catalogue number | colour code | material | С | | | 4322 021 38700 | black | FXC | 1,93 | | | 38710 | brown | FXC | 1,70 | | | 38720 | red | cip | 1,97 | | | 38750 | green | cip | 1,93 | | | 38780 | white | FXC | 1,97 | | | 38790 | grey | FXC | 1,87 | | $\textbf{Table 2 Catalogue numbers of recommended adjusters for typical } A_{L} \ values \ and \ adjusting \ percentage. \ RM4$ | core
material | AL | low | % | medium | % | high | | % | |------------------|-----|----------------|---|----------------|----|------|-------|----| | 3H1 | 40 | _ | | 4322 021 38750 | 20 | | _ | | | | 63 | _ | | 38750 | 14 | | 38720 | 27 | | | 100 | 4322 021 38750 | 9 | 38720 | 17 | 1 | 38710 | 22 | | | 160 | 38750 | 6 | 38710 | 14 | | 38790 | 19 | | | 250 | 38720 | 7 | 38790 | 12 | | 38700 | 17 | ## ASSEMBLING AND MOUNTING #### ASSEMBLING The core halves are clamped together by means of two clips, type 4322 021 31900. As can be seen in the drawing, the hooked ends of each clip fit into recesses made in the core halves. For a stable inductance we recommend that an adhesive be applied between the coil former flange and the lower core half. We also recommend that a tool be used for assembling. (Drawings of a simple tool are available under number 4322 058 00180.) #### MOUNTING The two retaining clips are also used for mounting the assembled core on a printed-wiring board: the pins are simply soldered into the holes in the board. If so desired, one of the pins can also be used for earthing the core. The
soldering pins of coil formers and clips are so arranged that they will fit printed-wiring boards with a 0,1 in grid as well as those with a 2,50 mm grid. The pin length is sufficient for a board thickness of up to 2,4 mm. The recommended hole diameter in the board is $1 \pm 0,1$ mm (according to IEC publication 97). Hole pattern for an assembly of 4 cores. ## PART DRAWING (dimensions in mm) Clip 4322 021 31900 Material: steel; nickel plated thereafter silver plated and finally passivated. (1) Holes for tag on clip 4322 021 31900 (earth points). # CHARACTERISTIC CURVES $\mu_{e} - \alpha$ CURVES Relative effective permeability and turns factor for 1 mH as a function of the air gap length. $\mu_e \geqslant$ 1200 at Δ = 3 μ m for 3H1. ## Q-CURVES ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. # RM4/i SQUARE CORES for industrial use #### MECHANICAL DATA Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 1,69 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0,123 \text{ mm}^{-3}; V_e = 322 \text{ mm}^3; I_e = 23,3 \text{ mm}; A_e = 14,4 \text{ mm}^2.$$ $A_{min} = 11,5 \text{ mm}^2$ Mass of a core set: 2,8 g. #### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 20 N. The values are valid 5 minutes or more after clamping. | | freq. | ĥ | temp. | grad | de | |---|------------|----------------|-------------------|-----------------|----------------| | | kHz | mT | °C | 3E4 | 3F3 | | AL | 4 | ≤ 0,1 | 25 ± 1 | 2500 + 40% -25% | 1000 ± 25% | | P (W) | 25 | 200 | 25 ± 1
100 ± 1 | | 0,08
0,06 | | | 100 | 100 | 25 ± 1
100 ± 1 | | 0,08
≤ 0,06 | | | 400 | 50 | 25 ± 1
100 ± 1 | | 0,10
≤ 0,10 | | $\frac{\tan \delta}{\mu_{\rm i}} \times 10^6$ | 4
10 | ≤ 0,1
≤ 0,1 | 25 ± 1
25 ± 1 | ≤ 2,5 | | | | 100
500 | ≤ 0,1
≤ 0,1 | 25 ± 1
25 ± 1 | ≤ 20
≤ 200 | | | $\eta_{B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | ≤ 1,1 | | #### Notes For the specification of power losses \hat{B} is calculated using $A_e = 14.4 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grade 3F3 is \geqslant 315 mT, based on A_{min} = 11,5 mm². ## Core sets pre-adjusted on AL. | | corre- | tol. on | catalogue number 4322 025 | | | |-----|-----------------------------------|---------------------|---------------------------|-----|--| | AL | sponding
μ _e -value | induct-
ance (%) | 3E4 | 3F3 | | | 40 | | ± 5 | | | | | 63 | | ± 5 | | | | | 100 | | ± 5 | | | | | 160 | | ± 10 | | | | | 250 | 1 | ± 15 | | | | ## Core halves without air gap | Ferrox | cube grade | catalogue number | |--------|------------|-------------------------| | | 3E4
3F3 | 4322 020 26610
26600 | ## SQUARE CORES These cores are available in two executions: - RM5, usually for telecommunication, with centre hole for adjuster - RM5/i, for industrial applications, no centre hole ## RM5 cores can be supplied in three versions - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A₁. - CORE SETS without nut and pre-adjusted on an A₁ value. - CORE HALVES without air gap. The square cores are in accordance with the following specifications: IEC 431 (international), UTE83-300 (France), DIN 41980 (Germany). Square cores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. ## RM5/i cores can be supplied in two versions - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM5/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quantities and supply conditions upon request. RM5/i ## RM5 SQUARE CORES ## for telecommunication #### MECHANICAL DATA Pulling-out force of the nut ≥ 20 N (at ambient temperature) Torque of the screw thread ≤ 4 mNm Extraction force of adjuster from nut ≥ 10 N Dimensional quantities according to IEC 205: a. Version with centre hole: $$C_1 = \Sigma \frac{1}{A} = 1,01 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{1}{A^2} = 0,0479 \text{ mm}^{-3}$; $V_e = 450 \text{ mm}^3$; $I_e = 21,4 \text{ mm}$; $A_e = 21,2 \text{ mm}^2$; $A_{CPmin} = 14,7 \text{ mm}^2$. Mass of a core set: 3,0 g. b. Version without centre hole: $$C_1 = \Sigma \frac{I}{A} = 0,935 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0,0378 \text{ mm}^{-3}; V_e = 574 \text{ mm}^3; I_e = 23,2 \text{ mm}; A_e = 24,8 \text{ mm}^2; I_e = 23,2 \text{ mm}; A_e = 24$$ $A_{min} = 18,1 \text{ mm}^2$. Mass of a core set: 3,2 g. ## **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 35 N. The values are valid 5 minutes or more after clamping. | | freq. | B | temp. | | | | grade | | | |--|----------|------------|----------|----------------|------------|----------|--------------|-------------|-----------| | | kHz | mT | °C | 3B8 | 3D3 | 3E4 | 3H1 | 3H3 | 4C6 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1960 | 840 | | 1960 | 1680 | 150 | | μ_e^{\pm} 25% | 4 | ≤0,1 | 25 ± 1 | 1590 | 670 | | 1590 | 1350 | 124 | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤ 26,0 | ≤ 39,7 | | ≤ 26,0 | ≤ 27,2 | ≤92,6 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | | | ≤ 2,5 | | | | | • • | 30 | ≤0,1 | 25 ± 1 | | | | ≤ 2,5 | ≤ 1,8 | | | | 100 | ≤0,1 | 25 ± 1 | | ≤ 8 | ≤ 20 | ≤ 5,0 | ≤ 2,8 | | | | 500 | ≤0,1 | 25 ± 1 | | ≤ 14 | ≤ 200 | | · | | | | 1000 | ≤0,1 | 25 ± 1 | | ≤ 30 | | | | | | | 2000 | ≤0,1 | 25 ± 1 | | | | | | ≤ 40 | | | 10 000 | | 25 ± 1 | | | | | | ≤ 100 | | $\eta_{B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ĺ | ≤ 1,1 | ≤0,86 | | | | .5 | 30 | 1,5 to 3,0 | 25 ± 1 | } | | | | ≤ 0,85 | | | | 100 | 0,3 to 1,2 | 25 ± 1 | | ≤ 1,8 | | | - | ≤9,2 | | $\alpha_F \times 10^6/K$ | ≤ 100 | ≤0,1 | 5 to 25 | | | 0 to + 2 | + 0,5 to 1,5 | + 0,7 ± 0,3 | -2 to + 4 | | • | ≤ 100 | ≤0,1 | 25 to 55 | ļ | | | + 0,5 to 1,5 | | | | | ≤ 100 | ≤0,1 | 25 to 70 | | 0 to + 2 | | + 0,5 to 1,5 | | | | D _F x 10 ⁶
(10-100 min) | ≤ 100 | ≤0,1 | 25 ± 0,1 | | ≤ 12 | ≤ 4,3 | ≤ 4,3 | ≤ 3,0* | ≤10 | | β _F x 10 ⁶ mea | | | | | | | | | | | $\mu_{e} = 300 \pm 10$ | | | | | | | | | | | N×I | 000 | . 105 4/ | | - 100 | | | | | | | at $\mu_e \times \frac{N \times I_e}{I_e}$ | - = 0,90 | X 10° A/m | | ≤ 120
≤ 220 | | | | | | | C | ., | | | ≤ 300 | | | | | | | | - 2,00 | x 10⁵ A/m | | ≤ 1100 | | | | | | ^{*} This value is valid within the temperature range of 25 to 70 °C. ## Core sets with nut and pre-adjusted on AL. | Λ. | corre- | tol. on | | catalo | gue number 4 | 322 022 | • • • | | |---|----------|---------|----------|-------------------------|--------------|---------|---------|---------| | A _L sponding induct-
μ_{e} -value ance (% | ance (%) | 3B8 | 3D3 | 3E4 | 3H1 | 3Н3 | 4C6 | | | 16 | 13 | ± 1 | | | | | | 79800 | | 25 | 20 | ± 1 | | ● 79410 | | | | ● 79810 | | 40 | 33 | ± 1 | | 79420 | | | | • 79820 | | 63 | 51 | ± 1 | | 79430 | | 79230 | 79530 | 79830 | | 100 | 82 | ± 1 | ● 59470* | 79440 | | • 79240 | ● 79540 | | | 160 | 130 | ± 2 | 1 | | | ●
79250 | ● 79550 | | | 250 | 200 | ± 3 | | | | ● 79260 | ● 79560 | | | 315 | 250 | ± 5 | | | 1 | 79270 | 79570 | | | 400 | 330 | ± 5 | | | | 79280 | 79580 | | | 3450 | 2570 | ± 25 | | | | | | | | 4975 | 3700 | ± 25 | 27 | | ● 59990* | | | | Inductance L = N^2A_L (in 10⁻⁹ H). Core sets without nut: replace the eighth digit of the catalogue number (7) by 5. Cores with A $_L \leqslant 100$ have a symmetrical air gap, except the 3B8 core. Cores with A $_L \geqslant 160$ and the 3B8 core have an asymmetrical air gap. ## Core halves without air gap, without nut. | catalogue number | |------------------| | 4322 020 27080* | | 4322 020 26770 | | 4322 020 26760 | | 4322 020 26790 | | 4322 020 26780 | | | - Have no centre hole. - · Preferred type. # **COIL FORMERS** ## SINGLE-SECTION 4-PIN COIL FORMER Catalogue number 4322 021 32830 Material phenolformaldehyde reinforced with glass fibre, dip-soldered pins Minimum window area Mean length of turn Max. temperature Inflammability +322 021 32030 9,5 mm² 25 mm 180 °C UL94, class V-0 D.C. losses $\frac{R_0}{L} = \frac{I}{\mu_e} \times \frac{I}{f_{CU}} \times 34 \times 10^3 \text{ }\Omega/H$ Solderability: resistant against dip-soldering at 400 $^{\rm o}{\rm C}$ for 2 s Mass 0,28 g The coil formers are supplied in packs of 150 on a polystyrene plate, and in cardboard boxes containing 5 such plates (750 pieces). Please order in multiples of these quantities. ## SINGLE-SECTION 6-PIN COIL FORMER Catalogue number 4322 021 32840 Material phenolformaldehyde reinforced with glass fibre, dip-soldered pins Minimum window area 9,5 mm² Mean length of turn 25 mm 180 °C Max. temperature Inflammability UL94, class V-0 D.C. losses $\frac{R_0}{L} = \frac{I}{\mu_e} \times \frac{I}{f_{CU}} \times 34 \times 10^3 \Omega/H$ Solderability: resistant against dip-soldering at 400 °C for 2 s Mass 0,28 g The coil formers are supplied in packs of 150 on a polystyrene plate, and in cardboard boxes containing 5 such plates (750 pieces). Please order in multiples of these quantities. # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 38700 | black | FXC | 1,93 | | 38710 | brown | FXC | 1,70 | | 38720 | red | cip | 1,97 | | 38750 | green | cip | 1,93 | | 38780 | white | FXC | 1,97 | | 38790 | grey | FXC | 1,87 | $\textbf{Table 2} \ \textbf{Catalogue numbers of recommended adjusters for typical A}_{L} \ \textbf{values and adjusting percentage. RM5}$ | core
material | AL | low | % | medium | % | high | % | |------------------|-----|----------------|---|----------------|----|----------------|----| | 3H1, 3H3 | 63 | _ | | 4322 021 38750 | 12 | 4322 021 38720 | 23 | | | 100 | 4322 021 38750 | 8 | 38720 | 15 | 38710 | 24 | | | 160 | 38720 | 9 | 38710 | 15 | 38790 | 27 | | | 250 | 38720 | 6 | 38710 | 10 | 38790 | 17 | | | 315 | 38710 | 8 | 38790 | 14 | 38780 | 21 | | | 400 | 38710 | 6 | 38700 | 13 | 38780 | 17 | | 3D3 | 25 | _ | | 4322 021 38750 | 19 | _ | | | | 40 | | | 38750 | 16 | _ | | | | 63 | | | 38750 | 11 | 4322 021 38720 | 20 | | | 100 | 4322 021 38750 | 7 | 38720 | 16 | _ | | | 4C6 | 16 | | | 4322 021 38750 | 18 | _ | | | | 25 | | | 38750 | 15 | _ | | | | 40 | | | 38750 | 9 | 4322 021 38720 | 17 | | | 63 | 4322 021 38750 | 6 | 38720 | 8 | _ | | | | 1 | | | 1 | | į. | | ## ASSEMBLING AND MOUNTING #### **ASSEMBLING** The core halves are clamped together by means of two clips, type 4322 021 31900. As can be seen in the drawing, the hooked ends of each clip fit into recesses made in the core halves. For a stable inductance we recommend that an adhesive be applied between the coil former flange and the lower core half. We also recommend that a tool be used for assembling. (Drawings of a simple tool are available under number 4322 058 00170). #### MOUNTING The two retaining clips are also used for mounting the assembled core on a printed-wiring board: the pins are simply soldered into the holes in the board. If so desired, one of the pins can also be used for earthing the core. The soldering pins of coil formers and clips are so arranged that they will fit printed-wiring boards with a 0,1-inch grid as well as those with a 2,50 mm grid. The pin length is sufficient for a board thickness of up to 2,4 mm. The recommended hole diameter in the board is $1 \pm 0,1$ mm (according to IEC publication 97). Hole pattern for an assembly of 4 cores. ## **PART DRAWING** Clip 4322 021 31900 Material: steel; silver plated over nickel and passivated. (1) Holes for tag on clip 4322 021 31900 (earth points). # CHARACTERISTIC CURVES ## μ_{e} - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. μ_e = 1590 at Δ = 3 μ m for 3H1. ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. FXC 3E4. Inductance as a function of the frequency. FXC 3E4. Losses as a function of the frequency at $\boldsymbol{\hat{B}}\approx 0,1$ mT. ### FXC 3B8 $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No air gap. $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C, for $\mu_e = 100$. $P = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No air gap. $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C, for $\mu_e = 300$. # RM5/i SQUARE CORES ## for industrial use ### **MECHANICAL DATA** Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,935 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,0378 \text{ mm}^{-3}$; $V_e = 574 \text{ mm}^3$; $I_e = 23,2 \text{ mm}$; $A_e = 24,8 \text{ mm}^2$; $A_{min} = 18,1 \text{ mm}^2$. Mass of a core set: 3,2 g. ### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 35 N. The values are valid 5 minutes or more after clamping. | | freq. | B | temp. | | gra | ide | | |---|-----------------------|----------------------------------|--------------------------------------|----------------|--------------------------------------|--------------------------------------|----------------| | | kHz | mT | oC. | 3C85 | 3E4 | 3E5 | 3F3 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1800 ± 25% | 4500 ^{+40%} _{-25%} | 6300 ^{+40%} _{-25%} | 1800 ± 25% | | P (W) | 25 | 200 | 25 ± 1
100 ± 1 | 0,25
≤ 0,18 | | | 0,17
≤ 0,12 | | | 100 | 100 | 25 ± 1
100 ± 1 | 0,35
≤ 0,25 | | | 0,17
≤ 0,12 | | | 400 | 50 | 25 ± 1
100 ± 1 | · | | | 0,20
≤ 0,20 | | $\frac{\tan\delta}{\mu_{\rm i}}\times 10^6$ | 4
10
100
500 | ≤ 0,1
≤ 0,1
≤ 0,1
≤ 0,1 | 25 ± 1
25 ± 1
25 ± 1
25 ± 1 | | ≤ 2,5
≤ 20
≤ 200 | ≤7 | | | $\eta_{\rm B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 1,1 | ≤ 1,4 | | #### Notes For the specification of power losses \hat{B} is calculated using $A_e = 24.8 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grades 3C85 and 3F3 is \geqslant 315 mT, based on A_{min} = 18,1 mm². # Core sets pre-adjusted on A_L. | | corre- | tol. on
induct-
ance (%) | catalogue number 4322 025 | | | | | | |-----|-----------------------------------|--------------------------------|---------------------------|-----|-----|-----|--|--| | | sponding
μ _e -value | | 3C85 | 3E4 | 3E5 | 3F3 | | | | 40 | | ± 5 | | | | | | | | 63 | | ± 5 | | | | | | | | 100 | | ± 5 | | | | | | | | 160 | | ± 5 | | | | | | | | 250 | | ± 5 | | | | | | | | 315 | | ± 10 | | | | | | | | 400 | | ± 10 | | | | | | | # Core halves without air gap | Ferroxcube grade | catalogue number | |------------------|------------------| | 3C85 | 4322 020 27100 | | 3E4 | 27120 | | 3E5 | 27130 | | 3F3 | 27110 | . ## SQUARE CORES These cores are available in two executions: - RM6-R, usually for telecommunication, with centre hole for adjuster - RM6-R/i, for industrial applications, no centre hole ### RM6-R cores can be supplied in three versions - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A1. - CORE SETS without nut and pre-adjusted on an A₁ value. - CORE HALVES without air gap. The square cores are in accordance with the following specifications: IEC 431 (international), UTE83-300 (France), DIN 41980 (Germany). Square cores and associated parts are ordered by their 12-digit catalogue number. Quanity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quanitities. RM6-R ### RM6-R/i cores can be supplied in two versions - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM6-R/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quanities and supply conditions upon request. RM6-R/i # **RM6-R SQUARE CORES** ### for telecommunication ### MECHANICAL DATA Note: 4C6 cores have a cemented nut. Pulling-out force of the nut ≥ 30 N (at ambient temperature) Toque of the screw thread ≤ 8 mNm Extraction force of adjuster from nut ≥ 20 N Dimensional quanities according to IEC 205: a. Version with centre hole: $$C_1 = \Sigma \frac{I}{A} = 0.810 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0.0257 \text{ mm}^{-3}$; $V_e = 810 \text{ mm}^3$; $I_e = 25.6 \text{ mm}$; $A_e = 32.0 \text{ mm}^2$; $A_{CPmin} = 23.9 \text{ mm}^2$. Mass of a core set: 4,5 g. b. Version without centre hole: $$C_1 = \Sigma \frac{I}{A} = 0.732 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0.0194 \text{ mm}^{-3}; V_e = 1040 \text{ mm}^3; I_e = 27.5 \text{ mm}; A_e = 38.0 \text{ mm}^2; A_e = 1040 \text{ mm}^3; A_e = 27.5 \text{ mm}; A_e = 38.0 \text{ mm}^2; A_e = 1040 \text{ mm}^3; A_e = 27.5 \text{ mm}; A_e = 38.0 \text{ mm}^2; A_e = 1040 \text{ mm}^3; A_e = 27.5 \text{ mm}; A_e = 38.0 \text{ mm}^2; A_e = 1040 \text{ mm}^3; A_e =
27.5 \text{ mm}; A_e = 38.0 \text{ mm}^2; A_e = 1040 \text{ mm}^3; A_e = 27.5 \text{ mm}; A_e = 38.0 \text{ mm}^2; A_e = 1040 \text{ mm}^3; A_e = 27.5 \text{ mm}; A_e = 38.0 \text{ mm}^2; 3$$ $A_{min} = 31,2 \text{ mm}^2$. Mass of a core set: 4,7 g. ### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 50 N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | | | | grade | | | |--|----------|------------|----------|--------|-----------|---------|-------------|------------|----------| | | kHz | mT | oC | 3B8 | 3D3 | 3E4 | 3H1 | 3H3 | 4C6 | | A _L ± 25% | 4 | ≤0,1 | 25 ± 1 | 2400 | 1080 | | 2640 | 2400 | 194 | | μ _e ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1400 | 700 | | 1700 | 1545 | 125 | | α | 4 | ≤0,1 | 25 ± 1 | ≤23,6 | ≤ 35,0 | ł | ≤ 22,4 | ≤ 23,6 | ≤82,8 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | | ≤ 2,5 | | | | | • • | 30 | ≤0,1 | 25 ± 1 | | | | ≤ 2,5 | ≤ 1,8 | | | | 100 | ≤0,1 | 25 ± 1 | | ≤8 | ≤ 20 | ≤ 5,0 | ≤ 2,6 | | | | 500 ▲ | ≤0,1 | 25 ± 1 | | ≤ 14 | ≤ 200 | | , | | | | 1000 | ≤0,1 | 25 ± 1 | | ≤30 | | | | | | | 2000 | ≤0,1 | 25 ± 1 | | 1 | | | | ≤ 40 | | | 10 000 | ≤0,1 | 25 ± 1 | | | | | | ≤ 100 | | P (W) | 25 | 200* | 25 ± 1 | ≤ 0,30 | } | | | | | | | | | 100 ± 1 | ≤ 0,35 | | | < 0.00 | | | | $\eta_{B} \times 10^3$ | 4 | 1,5 to 3,0 | i e | | ≤ 0,8 | ≤ 1,1 | ≤ 0,86 | | | | | 30 | 1,5 to 3,0 | | | } | | | ≤ 0,65 | -00 | | 406/14 | 100 | 0,3 to 1,2 | | | l | 0 | .0515 | | ≤ 9,2 | | $\alpha_{\rm F} \times 10^6/{\rm K}$ | ≤ 100 | ≤ 0,1 | 5 to 25 | | | ľ | +0,5 to 1,5 | | F | | | ≤ 100 | ≤0,1 | 25 to 55 | | | 1 | +0,5 to 1,5 | | 0 to + 6 | | 5 406 | ≤ 100 | ≤ 0,1 | 25 to 70 | | 1 ± 1 | 0 to +2 | +0,5 to 1,5 | +0,7 ± 0,3 | | | D _F x 10 ⁶
(10-100 min) | ≤ 100 | ≤0,1 | 25 ± 0,1 | | ≤ 12 | ≤ 4,3 | ≤ 4,3 | ≤3,0** | ≤ 10 | | β _F x 10 ⁶ mea | sured or | sets with | | | | | | | | | $\mu_{e} = 300 \pm 10$ | | | | | 1 | | | | | | at $\mu_e \times \frac{N \times I_e}{I_e}$ | | 405 4 / | | - 400 | l | | | | | | at $\mu_e \times \frac{1}{\mu_e}$ | - = 1,00 | x 10° A/m | | ≤ 120 | 1 | 1 | | | | | Ü | - 1,55 | X IU A/III | | ≤ 300 | | | | | | | | = 2,25 | x 10⁵ A/m | | ≤ 1100 | | | | | l | ^{▲ 3}D3 at 700 kHz: 11. ^{*} B is calculated with ACPmin = 31,2 mm². ^{**} This value is valid within the temperature range of 25 to 70 °C. # RM6-R Core sets with nut and pre-adjusted on A₁. | A . | corre- | tol. on | catalogue number 4322 022 | | | | | | | | |------|-----------------------------------|---------------------|---------------------------|---------|----------|-------------------------|---------|---------|--|--| | AL | sponding
μ _e -value | induct-
ance (%) | 3B8 | 3D3 | 3E4 | 3H1 | 3Н3 | 4C6 | | | | 25 | 16,1 | ± 1 | | | | | | 75810 | | | | 40 | 25,8 | ± 1 | 55470* | • 75420 | | 75220 | | ● 75820 | | | | 63 | 40,6 | ± 1 | 55480* | 75430 | | 75230 | | ● 75830 | | | | 100 | 64,5 | ± 2 | | ● 75440 | | 75240 | | | | | | 160 | 103 | ± 2 | 55500* | 75450 | | ● 75250 | 75550 | | | | | 200 | 129 | ± 2 | | 1 | | 75370 | ● 75680 | | | | | 250 | 161 | ± 2 | 54900* | | · | ● 75260 | ● 75560 | | | | | 315 | 203 | ± 2 | | | | 75270 | 75570 | | | | | 400 | 258 | ± 2 | 55510* | 1 | | 75280 | 75580 | | | | | 630 | 406 | ± 3 | | | | 75300 | 75600 | | | | | 1000 | 645 | ± 10 | - | | 1 | 75310 | | | | | | 1250 | 806 | ± 10 | | | | 75390 | | | | | | 4780 | 2780 | ± 25 | | | | | | | | | | 6710 | 3930 | ± 25 | | | ● 55900* | | | | | | Inductance $L = N^2 A_L$ (in 10^{-9} H) Core sets without nut: replace the eighth digit of the catalogue number (7) by 5. Cores with A_L \leq 100 have a symmetrical air gap. Cores with A_L \geqslant 160 and both 3B8 cores have an asymmetrical air gap. Core halves without air gap, without nut. | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 27630* | | 3D3 | 4322 020 25140 | | 3H1 | 4322 020 25130 | | 3H3 | 4322 020 25190 | | 4C6 | 4322 020 25150 | These types have no centre hole. Preferred types. ## COIL FORMERS ### **GENERAL** Four types of coil former can be supplied: - with 1 section and 4 pins - with 2 sections and 4 pins - with 1 section and 6 pins - with 2 sections and 6 pins. The arrangement of the soldering pins is suitable for both 0,1 inch and 2,50 mm grid, see "Mounting". The coil formers are supplied in packs of 100 on a polystyrene plate, and in cardboard boxes containing 5 such plates (500 pieces). Please order in multiples of these quantities. ### SINGLE-SECTION, 4-PIN COIL FORMER Catalogue number 4322 021 32280 Material: phenolformaldehyde reinforced with glass fibre Window area 17,3 mm² 30 mm Mean length of turn Maximum temperature 180 °C Inflammability UL94, class V-0 Solderability resistant against dipsoldering at 400 °C for 2 s D.C. losses: $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 18.9 \times 10^3 \Omega/H$$ Mass 0.4 g ## TWO-SECTION, 4-PIN COIL FORMER Catalogue number 4322 021 32300 Material: phenolformaldehyde reinforced with glass fibre Window area Mean length of turn $2 \times 8.2 \text{ mm}^2$ 30 mm Max, temperature Inflammability 180 °C UL94, class V-0 Solderability resistant against dipsoldering at 400 °C for 2 s D.C. losses: $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 19.9 \times 10^3 \ \Omega/H$$ Mass 0.4 q ## RM6-R ### SINGLE-SECTION, 6-PIN COIL FORMER Catalogue number 4322 021 32290 Material: phenolformaldehyde reinforced with glass fibre Window area 17,3 mm² Mean length of turn Max. temperature 30 mm 180 °C Inflammability UL94, class V-0 Solderability resistant against dipsoldering at $400\ ^{\circ}\text{C}$ for 2 s D.C. losses: $\frac{R_0}{L} \times \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 18,9 \times 10^3 \ \Omega/H$ Mass 0,4 g ## TWO-SECTION, 6-PIN COIL FORMER Catalogue number 4322 021 32310 Material: phenolformaldehyde reinforced with glass fibre 2 x 8.2 mm² Mean length of turn 30 mm Max. temperature 180 °C Inflammability Window area UL94, class V-0 Solderability resistant against dip-soldering at $400 \, ^{\circ}\text{C}$ for 2 s D.C. losses: $$\frac{R_0}{L} \times \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 19.9 \times 10^3 \ \Omega/H$$ Mass 0,4 g Data for when the coil former is partly filled. ### **DIMENSIONAL DIAGRAMS** 14,6 0 12,7 7,62 -0,1 ±0,05 ±0,05 Single-section, 4-pin coil former. 12,7±0,05 - 14,6_0_{,1}- Two-section, 4-pin coil former. ## **DIMENSIONAL DIAGRAMS** (continued) Single-section, 6-pin coil former. Two-section, 6-pin coil former. # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |--|--|--------------------------|--------------------------------------| | 4322 021 38600
38610
38620
38640
38650 | black
brown
red
yellow
green | FXC
FXC
cip
cip | 2,83
2,70
2,93
2,58
2,70 | | 38670
38680
38690 | violet
white
grey | FXC
FXC
FXC | 2,58
2,48
2,93 | # RM6-R Table 2 Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. RM6-R. | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|----|----------------|----|----------------|----| | 3H1, 3H3 | 40 | _ | | 4322 021 38640 | 17 | 4322 021 38650 | 20 | | | 63 | 4322 021 38640 | 12 | 38650 | 14 | 38620 | 22 | | | 100 | 38650 | 10 | 38620 | 16 | _ | | | | 160 | 38650 | 6 | 38620 | 11 | 38680 | 19 | | | 200 | 38620 | 8 | 38680 | 15 | 38670 | 18 | | | 250 | 38680 | 12 | 38670 | 14 | 38610 | 19 | | | 315 | 38680 | 10 | 38610 | 15 | 38600 | 20 | | | 400 | 38670 | 9 | 38600 | 16 | 38690 | 24 | | | 630 | 38600 | 10 | 38690 | 15 | _ | | | | 1000 | 38600 | 6 | 38690 | 10 | _ | | | | 1250 | _ | | 38690 | 8 | _ | | | 3D3 | 40 | | | 4322 021 38640 | 17 | 4322 021 38650 | 20 | | | 63 | 4322 021 38640 | 12 | 38650 | 14 | 38620 | 23 | | | 100 | 38650 | 9 | 38620 | 16 | 38680 | 27 | | | 160 | 38620 | 10 | 38680 | 17 | _ | | | 4C6 | 25 | _ | | 4322 021 38640 | 18 | 4322 021 38650 | 20 | | | 40 | 4322 021 38640 | 12 | 38650 | 14 | 38620 | 20 | | | 63 | 38650 | 8 | 38620 | 12 | _ | | | | | | | | | | | # ASSEMBLING AND MOUNTING The illustration shows the simplicity of the assembly; the core halves are held together by two clips. The tags of the clips are used for mechanical fastening and/or for earthing. For a stable inductance we recommend that an adhesive be applied between the coil former flange and the lower core half. The use of a tool for attaching the clips is recommended. (Drawings of a simple tool for this purpose are available under number 4322 058 00150.) ### MOUNTING The soldering pins of coil formers and clips are so arranged that they will fit printed-wiring boards with a 0,1 inch grid as well as those with a 2,50 mm grid. The pin length is sufficient for a board thickness up to 2,4 mm. The recommended hole diameter in the board is 1,0 \pm 0,1 or 1,3 \pm 0,1 mm (according to IEC publication 97). Hole pattern for an assembly of 4 cores, each fitted with an 4-pin coil. Hole pattern for an assembly of 4 cores, each fitted with a 6-pin coil former. ## PART DRAWING (dimensions in mm) Clip 4322 021 31780 Material: steel; silver-plated over nickel, and then passivated. **Packaging** quantity: 5000 1) Holes for tag on clip 4322 021 31780 (earth points). # CHARACTERISTIC CURVES $\mu_{e} - \alpha$ CURVES Relative effective permeability and turns factor for 1 mH as a function of the air gap length. Inductance as a function of the frequency (typical values). Losses as a function of the frequency at $\hat{B}\approx 0.1$ mT (typical values). Inductance
as a function of the frequency (typical values). Losses as a function of the frequency (typical values). Inductance as a function of the peak induction (typical values). Losses as a function of the peak induction. March 1984 ### **FXC 3B8** $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No air gap. $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C, for $\mu_e = 100$ $P = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No air gap. $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C, for $\mu_e = 300$. \hat{B} is calculated with $A_{CPmin} = 18,1 \text{ mm}^2$. ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. # RM6-R ## **HANNA CURVES** For different material grades. Indicating optimum inductance for a certain air gap and direct current. ## **CROSSTALK ATTENUATION** # RM6-R/i SQUARE CORES for industrial use ### **MECHANICAL DATA** Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,732 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0,0194 \text{ mm}^{-3}; V_e = 1040 \text{ mm}^3; I_e = 27,5 \text{ mm}; A_e = 38,0 \text{ mm}^2; A_e = 1040 \text{ mm}^3; mm$$ $A_{min} = 31,2 \text{ mm}^2$. Mass of a core set: 4,7 g. ### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 50 N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | grade | | | | | | | |-------------------------------------|-------|------------|---------|------------|---------------------------------------|-------------------------------|------------|--|--|--| | | kHz | mT | °C | 3C85 | 3E4 | 3E5 | 3F3 | | | | | A _I | 4 | ≤ 0,1 | 25 ± 1 | 2600 ± 25% | 6200 ^{+ 40%} _{-25%} | 9200 ^{+ 40%}
-25% | 2600 ± 25% | | | | | P (W) | 25 | 200 | 25 ± 1 | 0,35 | | | 0,22 | | | | | | | | 100 ± 1 | ≤ 0,25 | | | 0,16 | | | | | | 100 | 100 | 25 ± 1 | 0,40 | | | 0,22 | | | | | | | | 100 ± 1 | ≤ 0,30 | | | ≤ 0,16 | | | | | | 400 | 50 | 25 ± 1 | | | | 0,30 | | | | | | | | 100 ± 1 | | | | ≤ 0,30 | | | | | $\frac{\tan \delta}{2} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | | ≤ 2,5 | | | | | | | μ_{i} $$ 10 | 10 | ≤ 0,1 | 25 ± 1 | | ~ 2,0 | ≤ 7 | | | | | | | 100 | ≤ 0,1 | 25 ± 1 | | ≤ 20 | ~ / | | | | | | • | ' ' ' | 1 | | | | | | | | | | $\eta_{B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 1,1 | ≤ 1,4 | | | | | | | | | | | | | | | | | ### Notes For the specification of power losses \hat{B} is calculated using $A_e = 38 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grades 3C85 and 3F3 is \geqslant 315 mT, based on A_{min} = 31,2 mm². # RM6-R/i # Core sets pre-adjusted on A_L. | | corre- | tol. on
induct- | catalogue number 4322 022 | | | | | | | |------|-------------------------------|--------------------|---------------------------|-----|-----|-----|--|--|--| | AL | A_L sponding μ_e -value | ance (%) | 3C85 | 3E4 | 3E5 | 3F3 | | | | | 40 | | ± 5 | | | | | | | | | 63 | | ± 5 | 54700 | | | | | | | | 100 | | ± 5 | 54710 | | | | | | | | 160 | | ± 5 | 54720 | ì | | | | | | | 250 | | ± 5 | | | | | | | | | 315 | | ± 5 | | | | | | | | | 400 | | ± 5 | | | 1 | | | | | | 630 | | ± 10 | | | | | | | | | 1000 | | ± 15 | | ł | | | | | | # Core halves without air gap | Ferroxcube grade | catalogue number | |------------------|------------------| | 3C85 | 4322 020 28530 | | 3E4 | 28560 | | 3E5 | 28570 | | 3F3 | 28550 | ## SQUARE CORES These cores are available in two executions: - RM6-S, usually for telecommunication, with centre hole for adjuster - RM6-S/i, for industrial applications, no centre hole ### RM6-S cores can be supplied in three versions - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A_L. - CORE SETS without nut and pre-adjusted on an A₁ value. - CORE HALVES without air gap. The square cores are in accordance with the following specifications: IEC 431 (international), UTE83-300 (France), DIN 41980 (Germany). Square cores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. RM6-S ### RM6-S/i cores can be supplied in two versions - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM6-S/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quantities and supply conditions upon request. RM6-S/i # **RM6-S SQUARE CORES** ### for telecommunication ### MECHANICAL DATA Note: 4C6 cores have a cemented nut. Pulling-out force of the nut ≥ 30 N (at ambient temperature) Torqu of the screw thread ≤ 8 mNm Extraction force of adjuster from nut ≥ 20 N Dimensional quantities according to IEC 205: a. Version with centre hole: $$C_1 = \Sigma \frac{1}{A} = 0,863 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{1}{A^2} = 0,078 \text{ mm}^{-3}$; $V_e = 840 \text{ mm}^{-3}$; $I_e = 27,3 \text{ mm}$; $A_e = 31,0 \text{ mm}^2$; $A_{CP min} = 23.9 \text{ mm}^2$ Mass of a core set: 4,5 g. b. Version without centre hole: $$C_1 = \sum \frac{1}{A} = 0.784 \text{ mm}^{-1}$$; $C_2 = \sum \frac{1}{A^2} = 0.0210 \text{ mm}^{-3}$; $V_e = 1090 \text{ mm}^3$; $I_e = 29.2 \text{ mm}$; $A_e = 37.0 \text{ mm}^2$; $A_{min} = 31,2 \text{ mm}^2$. Mass of a core set: 4,7 g. ### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 50 N. The values are valid 5 minutes or more after clamping. | | freq. | B | temp. | 1 | | | grade | | | |--|-----------|-----------------------|----------|--------|--------|----------|--------------|----------------|----------| | | kHz | mT | oC . | 3B8 | 3D3 | 3E4 | 3H1 | 3H3 | 4C6 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 2730 | 1020 | | 2480 | 2250 | 182 | | μ _e ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1710 | 700 | | 1710 | 1545 | 125 | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤ 22,1 | ≤ 36,2 | Ì | ≤ 23,2 | ≤ 24,3 | ≤ 85,5 | | $\frac{\tan \delta}{\mu_{\rm i}} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | | | ≤ 2,5 | | | | | | 30 | ≤ 0,1 | 25 ± 1 | | | | ≤ 2,5 | ≤ 1,8 | | | | 100 | ≤ 0,1 | 25 ± 1 | | ≤8 | ≤ 20 | ≤ 5,0 | ≤ 2,6 | | | | 500 | ≤ 0,1 | 25 ± 1 | | ≤ 14 | ≤ 200 | | | | | | 700 | ≤ 0,1 | 25 ± 1 | | | | | | | | | 1000 | ≤ 0,1 | 25 ± 1 | | ≤ 30 | ĺ | | | | | | 2000 | ≤ 0,1 | 25 ± 1 | | | | | | ≤ 40 | | | 10 000 | ≤ 0,1 | 25 ± 1 | | | | | | ≤ 100 | | P (W) | 25 | 200* | 25 ± 1 | 0,30 | | | | | | | | | | 100 ± 1 | 0,35 | | | | | | | $\eta_{B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤ 1,1 | ≤ 0,86 | , | | | | 30 | 1,5 to 3,0 | 25 ± 1 | | | ' | , | ≤ 0,65 | | | | 100 | 0,3 to 1,2 | 25 ± 1 | | ≤ 1,8 | | | · | ≤9,2 | | α _F x 10 ⁶ /K | ≤ 100 | ≤ 0,1 | 5 to 25 | | | 0 to + 2 | + 0,5 to 1,5 | $+0.7 \pm 0.3$ | -2 to +4 | | • | ≤ 100 | ≤ 0,1 | 25 to 55 | | | | + 0,5 to 1,5 | | | | | ≤ 100 | ≤ 0,1 | 25 to 70 | | +1±1 | | + 0,5 to 1,5 | $+0.7 \pm 0.3$ | | | D _F × 10 ⁶
(10-100 min) | ≤ 100 | ≤ 0,1 | 25 ± 0,1 | | ≤ 12 | | ≤ 4,3 | ≤ 3,0** | ≤ 10 | | $\beta_{\rm F} \times 10^6 {\rm mea}$
$\mu_{\rm e} = 300 \pm 10^{-1} {\rm mea}$ | sured on | | <u></u> | | | | | | | | N x I | - | J. | | | | | | | | | at μ _e x | - = 1,000 | x 10 ⁵ A/m | | ≤ 115 | | | | | | | l _e | = 1,60 | x 10 ⁵ A/m | | ≤ 300 | | | | | | | | | x 10 ⁵ A/m | | ≤ 1050 | | | | | | $[\]widehat{B}$ is calculated with A_{CPmin} = 31,2 mm². This value is valid within the temperature range of 25 to 70 °C. Core sets with nut and pre-adjusted on AL. | AL | corre-
sponding | tol. on induct- | catalogue number 4322 022 | | | | | | |------|--------------------|-----------------|---------------------------|---------|----------|-------------------------|---------|---------| | | μ_{e} -value | ance
% | 3B8 | 3D3 | 3E4 | 3H1 | 3H3 | 4C6 | | 16 | 11,0 | ± 1 | | | | | | 67790 | | 25 | 17,1 | ± 1 | | | | | | 67810 | | 40 | 27,4 | ± 1 | | ● 67420 | | | | ● 67820 | | 63 | 43,1 | ± 1 | | 67430 | | | | ● 67830 | | 100 | 68,7 | ± 2 | 47740* | ● 67440 | | | | | | 160 | 110 | ± 2 | | 67450 | | ● 67250 | | | | 200 | 137 | ± 2 | | | | 67350 | ● 67680 | | | 250 | 171 | ± 2 | | | | ● 67260** | ● 67560 | | | 315 | 216 | ± 2 | | | | 67270 | 67570 | | | 400 | 274 | ± 2 | | 1 | | 67280 | 67580 | | | 630 | 431 | ± 3 | | | | 67300 | 67600 | | | 1000 | 687 | ± 10 | | | | 67310 | | | | 1250 | 856 | ± 10 | | 1 | | 67390 | | | | 6050 | 3800 | ± 25 | | | • 47920* | | | | Inductance $L = N^2A_L$ (in 10^{-9} H) Core sets without nut: replace the eighth digit of the catalogue number (6) by 4. Cores with $A_L \le 100$, have a symmetrical air gap. Cores with $A_L \ge 160$ and the 3B8 core, have an asymmetrical air gap. Core halves without air gap, without nut. | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 27930* | | 3D3 | 4322 020 25060 | | 3H1 | 4322 020 25020 | | 3H3 | 4322 020 25200 | | 4C6 | 4322 020 25080 | - These types have no centre hole. - ** Approved according to CECC 25 100-019. - Preferred types. ## **COIL FORMERS** #### **GENERAL** Four types of coil former can be supplied: - with 1 section and 4 pins - with 2 sections and 4 pins - with 1 section and 6 pins - with 2 sections and 6 pins The arrangement of the soldering pins is suitable for both 0,1 inch and 2,50 mm grids, see "Mounting". The coil formers are supplied in packs of 100 on a polystyrene plate, and in cardboard boxes containing 5 such plates (500 pieces). Please order in multiples of these quantities. ##
SINGLE-SECTION, 4-PIN COIL FORMER Catalogue number 4312 021 29240 Material phenolformaldehyde reinforced with glass fibre Window area 16,2 mm² Mean length of turn 30 mm Max, temperature 180 °C Inflammability UL94, class V-0 ### TWO-SECTION, 4-PIN COIL FORMER Catalogue number 4322 021 32940 Material phenolformaldehyde reinforced with glass fibre Window area 2 x 7,7 mm² Mean length of turn 30 mm Max. temperature 180 °C Inflammability UL94, class V-0 D.C. losses $\frac{R_O}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 22,6 \times 10^3 \ \Omega/H$ Solderability: resistance against dip-soldering at 400 °C for 2 s Mass 0,4 g D.C. losses $\frac{R_0}{L} = \frac{1}{\mu_0} \times \frac{1}{f_{CH}} \times 23.6 \times 10^3 \ \Omega/H$ Solderability: resistant against dip-soldering at 400 °C for 2 s Mass 0.4 a ### SINGLE-SECTION, 6-PIN COIL FORMER Catalogue number 4312 021 29250 Material phenolformaldehyde reinforced with glass fibre Window area 16,2 mm² Mean length of turn 30 mm Max temperature 180 °C. Max. temperature 180 °C Inflammability UL94, class V-0 ### TWO-SECTION, 6-PIN COIL FORMER Catalogue number 4322 021 32950 Material phenolformaldehyde reinforced with glass fibre Window area 2 x 7,7 mm² Mean length of turn 30 mm Max, temperature 180 °C Inflammability UL94, class V-0 D.C. losses $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 22,6 \times 10^3 \ \Omega/H$ Solderability: resistant against dip-soldering at 400 °C for 2 s Mass 0,4 g D.C. losses $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 23,6 \times 10^3 \,\Omega/H$ Solderability: resistant against dip-soldering at 400 °C for 2 s Mass 0,4 g Data for when the coil former is partly filled. ### **DIMENSIONAL DIAGRAMS** Single-section, 4-pin coil former. Two-section, 4-pin coil former. ## **DIMENSIONAL DIAGRAMS** (continued) Two-section, 6-pin coil former. RM6-S # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |--|---|---|--| | 4322 021 38600
38610
38620
38640
38650
38670
38680 | black
brown
red
yellow
green
violet
white | FXC
FXC
cip
cip
cip
FXC
FXC | 2,83
2,70
2,93
2,58
2,70
2,58
2,48 | | 38690 | grey | FXC | 2,93 | # RM6-S | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|-----|----------------|----|----------------|----| | 3H1. 3H3 | 160 | 4322 021 38650 | 6 | 4322 021 38620 | 11 | 4322 021 38680 | 19 | | | 200 | 38620 | 9 | 38680 | 15 | 38670 | 18 | | | 250 | 38680 | 12 | 38670 | 14 | 38610 | 19 | | | 315 | 38680 | 10 | 38610 | 15 | 38600 | 20 | | | 400 | 38670 | 9 | 38600 | 16 | 38690 | 24 | | | 630 | 38600 | 10 | 38690 | 15 | _ | | | | 1000 | 38600 | 6 | 38690 | 10 | | | | 3D3 | 40 | _ | : - | 4322 021 38640 | 16 | 4322 021 38650 | 19 | | | 63 | 4322 021 38640 | 12 | 38650 | 14 | 38620 | 22 | | | 100 | 38650 | 9 | 38620 | 16 | 38680 | 26 | | | 160 | 38620 | 9 | 38680 | 16 | _ | | | 4C6 | 16 | _ | | 4322 021 38640 | 18 | _ | | | | 25 | | | 38640 | 17 | 4322 021 38650 | 19 | | | 40 | 4322 021 38640 | 12 | 38650 | 14 | 38620 | 21 | | | 63 | 38650 | 8 | 38620 | 13 | _ | | | | 1 | 1 | | 1 | | Į. | | ## ASSEMBLING AND MOUNTING ### ASSEMBLING ### Cementing During the cementing procedure care must be taken that the centre holes are kept in line. ### Assembly with clips The core halves can be clamped together by using two clips. The tags of the clips are used for mechanical fastening and/or for earthing. For a stable inductance we recommend that an adhesive be applied between the coil former and the lower core half. The use of a tool for attaching the clips is recommended. (Drawings of a simple tool for this purpose are available under number 4322 058 00150.) #### MOUNTING The soldering pins of coil formers and clips are so arranged that they will fit printed-wiring boards with a 0,1 inch grid as well as those with a 2,50 mm grid. The pin length is sufficient for a board thickness of up to 2,4 mm. The recommended hole diameter in the board is 1,0 \pm 0,1 (according to IEC publication 97). Hole pattern for an assembly of 4 cores, each fitted with a 4-pin coil former. Hole pattern for an assembly of 4 cores, each fitted with an 6-pin coil former. ## PART DRAWING (dimensions in mm) Clip 4322 021 31780 Material: steel; silver plated over nickel, then passivated 1) Holes for tag on clip 4322 021 31780 (earth points). # CHARACTERISTIC CURVES μ_{e} - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length $\mu_e \ge 1280$ at Δ = 3 μ m for 3H1. Inductance as a function of the frequency. Losses as a function of the frequency at $\hat{B} \approx 0.1 \text{ mT}$. Inductance as a function of the peak induction. Losses as a function of the frequency. ### D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. ## CROSSTALK ATTENUATION ## RM6-S/i SQUARE CORES for industrial use ### MECHANICAL DATA Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0.784 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0.0210 \text{ mm}^{-3}$; $V_e = 1090 \text{ mm}^3$; $I_e = 29.2 \text{ mm}$; $A_e = 37.0 \text{ mm}^2$; $A_{min} = 31,2 \text{ mm}^2$. Mass of a core set: 4,7 g. ### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 50 N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | | grade | | | | | | | |---|-----------|----------------|-------------------|----------------|-------------------------------|-------------------------------|----------------|--|--|--|--| | | kHz | mT | oC . | 3C85 | 3E4 | 3E5 | 3F3 | | | | | | AL | 4 | ≤ 0,1 | 25 ± 1 | 2400 ± 25% | 5800 ^{+ 40%}
-25% | 8600 ^{+ 40%}
-25% | 2400 ± 25% | | | | | | P (W) | 25 | 200 | 25 ± 1
100 ± 1 | 0,35
≤ 0,25 | | | 0,22
0,16 | | | | | | | 100 | 100 | 25 ± 1
100 ± 1 | 0,40
≤ 0,30 | | | 0,22
≤ 0,16 | | | | | | | 400 | 50 | 25 ± 1
100 ± 1 | | , | | 0,30
≤ 0,30 | | | | | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | ≤ 2,5 | - 3 | | | | | | | r-1 | 10
100 | ≤ 0,1
≤ 0,1 | 25 ± 1
25 ± 1 | | ≤ 20 | ≤ 7 | | | | | | | η _B x 10 ³ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 1,1 | ≤ 1,4 | | | | | | #### Notes For the specification of power losses \hat{B} is calculated using $A_e = 37 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grades 3C85 and 3F3 is \geqslant 315 mT, based on A_{min} = 31,2 mm². ## Core sets pre-adjusted on A_L. | | corre- | tol. on | catalogue number 4322 025 | | | | | | | |----------------|-----------------------------------|---------------------|---------------------------|-----|-----|-----|--|--|--| | A _L | sponding
μ _e -value | induct-
ance (%) | 3C85 | 3E4 | 3E5 | 3F3 | | | | | 40 | | ± 5 | | | | | | | | | 63 | | ± 5 | 05030 | | | | | | | | 100 | | ± 5 | 05040 | | | | | | | | 160 | | ± 5 | 05050 | | | | | | | | 250 | | ± 5 | | | | | | | | | 315 | | ± 5 | | | | | | | | | 400 | | ± 5 | | | 1 | | | | | | 630 | | ± 10 | | | | | | | | | 1000 | | ± 15 | | | | | | | | ## Core halves without air gap | Ferroxcube grade | catalogue number | |------------------|------------------| | 3C85 | 4322 020 27950 | | 3E4 | 55500 | | 3E5 | 55510 | | 3F3 | 27970 | # DIL COIL FORMER FOR RM6-S/I SQUARE CORES for power applications ### SINGLE-SECTION, 8-PIN COIL FORMER ### **OUTLINES** ## Dil coil former for RM6-S/i square cores for power applications Catalogue number 4322 021 34040 Material polyterephthalate reinforced with glass fibre Window area 15,7 mm² Mean length of turn Max. temperature 31 mm Inflammability 180 °C UL94, class V-0 D.C. losses $\frac{R_{O}}{L} = \frac{1}{\mu_{e}} \times \frac{1}{f_{CU}} \times 21,3 \times 10^{3} \,\Omega/H$ Solderability: resistance against dip-soldering at 400 °C for 2 s mass 2 g Packaging quantity: 200 Please order in multiples of this quantity. The earth points are holes for tags on mounting clip 4322 021 31780 (See RM6-S, Mounting). ## SQUARE CORES These cores are available in two executions: - RM8, usually for telecommunication, with centre hole for adjuster - RM8/i, for industrial applications, no centre hole ### RM8 cores can be supplied in three versions - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A₁. - CORE SETS without nut and pre-adjusted on an A₁ value. - CORE HALVES without air gap. The square cores are in accordance with the following specifications: IEC 431 (international), UTE83-300 (France), DIN 41980 (Germany). Square cores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. ### RM8/i cores can be supplied in two versions - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM8/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quantities and supply conditions upon request. RM8/i ## **RM8 SQUARE CORES** #### for telecommunication ### **MECHANICAL DATA** Note: 4C6 cores have a cemented nut. Pulling-out force of the nut ≥ 40 N (at ambient temperature) Torque of the screw thread ≤ 10 mNm Extraction force of adjuster from nut ≥ 30 N Dimensional quantities according to IEC 205: a. Version with centre hole: $$C_1 = \Sigma \frac{I}{A} = 0,683 \text{
mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,0131 \text{ mm}^{-3}$; $V_e = 1850 \text{ mm}^3$; $I_e = 35,5 \text{ mm}$; $A_e = 52,0 \text{ mm}^2$; $A_{CP \, min} = 39,5 \, mm^2$. Mass of a core set: 10,9 g. b. Version without centre hole: $$C_1 = \Sigma \frac{I}{A} = 0,604 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,00952 \text{ mm}^{-3}$; $V_e = 2440 \text{ mm}^3$; $I_e = 38,4 \text{ mm}$; $A_e = 63,0 \text{ mm}^2$; $A_{min} = 55,4 \text{ mm}^2$. Mass of a core set: 12,4 g. ### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 80 N. | | freq. | B | temp. | | | | grad | de | | | |--|-------------------|--------------|----------|--------|--------|-------|----------|--------------|-------------|-----------| | | kHz | mT | оС | 3B8 | 3C85 | 3D3 | 3E4 | 3H1 | 3H3 | 4C6 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 3910 | 3300 | 1330 | | 3400 | | 230 | | $\mu_e \pm 25\%$ | 4 | ≼ 0,1 | 25 ± 1 | 1880 | 1600 | 720 | | 1840 | | 126 | | α | 4 | ≼ 0,1 | 25 ± 1 | ≤ 18,0 | ≤ 19,5 | ≤31,6 | | ≤ 19,8 | | ≤ 75,8 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1 | | | | ≤ 2,5 | | | | | | 30 | ≤ 0,1 | 25 ± 1 | | | | | ≤ 2,5 | ≤ 1,8 | | | | 100 | ≤ 0,1 | 25 ± 1 | | | 8 | ≤ 20 | ≤ 5,0 | ≤ 2,9 | | | | 500 | ≤ 0,1 | 25 ± 1 | | | 14 | ≤ 200 | • | | | | | 1 000 | ≤ 0,1 | 25 ± 1 | | | 30 | | | | | | | 2 000 | ≤ 0,1 | 25 ± 1 | | | | | | | ≤ 40 | | | 10 000 | ≤ 0,1 | 25 ± 1 | | | | | | | ≤ 100 | | P(W) | 25 | 200 | 25 | 0,6 | 0,7 | | | | | | | | 20 | 200 | 100 | 0,7 | 0,5 | | 1 | | | | | $\eta_{\rm B} \times 10^{3}$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | | ≤ 1,1 | ≤ 0,86 | ≤ 75 | | | | 30 | 1,5 to 3,0 | 25 ± 1 | | | | 1 | | | | | | 100 | 0,3 to 1,2 | 25 ± 1 | | | ≤ 1,8 | 1 | | | ≤9,2 | | $\alpha_F \times 10^6/K$ | ≤ 100 | ≤ 0,1 | 5 to 25 | | | | 0 to + 2 | + 0,5 to 1,5 | + 0,7 ± 0,3 | -2 to + 4 | | | ≤ 100 | ≤ 0,1 | 25 to 55 | Ì | | | 0 to + 2 | + 0,5 to 1,5 | + 0,7 ± 0,3 | 0 to + 6 | | DF x 106 | ≤ 100 | ≤ 0,1 | 25 to 70 | | | 1 ± 1 | 0 to + 2 | + 0,5 to 1,5 | + 0,7 ± 0,3 | | | (10-100 min) | ≤ 100 | ≤ 0,1 | 25 ± 0,1 | | | ≤ 12 | ≤ 4,3 | ≤ 4,3 | ≤ 3,0 | ≤ 10 | | β _F x 10 ⁶ measu | red on set | s with | | | | | | | | | | $\mu_0 = 300 + 109$ | 6 and 25 + | 1 ºC: | | | | | | | | | | at $\mu_e \times \frac{N \times I_o}{I_o}$ | | | | | | | | • | | | | at μ_e x ——— | $= 1.0 \times 10$ |)⁵ A/m | | ≤ 100 | | | | | | | ≤ 300 ≤ 1000 = $1.0 \times 10^5 \text{ A/m}$ = $1.7 \times 10^5 \text{ A/m}$ $= 2.4 \times 10^5 \,\text{A/m}$ Core sets with nut and pre-adjusted on A₁. | | corre- | tol. on | | | | | | | | |------|-----------------------------------|-----------------|--------------------------|---------|----------|-------------------------|---------|---------|----------| | AL | sponding
μ _e -value | induct-
ance | | | 4322 0 | 22 | | | 4322 025 | | | | % | 3B8 | 3D3 | 3E4 | 3H1 | 3H3 | 4C6 | 3C85 | | 40 | 22 | ± 1 | | 71420 | | | | 71820 | | | 63 | 34 | ± 1 | | 71430 | | 71230 | | ● 71830 | | | 100 | 54 | ± 1 | | ● 71440 | | 71240 | | ● 71840 | 01240* | | 160 | 87 | ± 1,5 | 51470* | 71450 | | 71250 | 1 | 71850 | ● 01250* | | 250 | 135 | ± 2 | ● 51480* | | | ● 71260 | ● 71760 | | ● 01260* | | 315 | 170 | ± 2 | 51490* | | | 71270 | 71770 | | | | 400 | 220 | ± 3 | 51500* | | | 71280 | 71780 | | | | 630 | 340 | ± 3 | | | | 71300 | | | | | 1000 | 540 | ± 10 | | _ | | 71310 | | | | | 1250 | 680 | ± 10 | | las is | 200 | 71390 | | | | | 1600 | 870 | ± 10 | 51400* | | | 51320* | | | | | 5500 | 2985 | ± 25 | | in the | | | 1 | | | | 6300 | 3050 | ± 25 | | | | | | | | | 8000 | 3850 | ± 25 | | | • 51900* | | | | | Inductance $L = N^2A_1$ (in 10^{-9} H) Core sets without nut: replace the eighth digit of the catalogue number (7) by 5. Cores with $A_L \le 250$ have a symmetrical air gap. Cores with $A_L^{\Sigma} \ge 315$ and all 3B8 and 3C85 cores have an asymmetrical air gap. Core halves without air gap, without nut. | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 27420 * | | 3C85 | 4322 020 28100 * | | 3D3 | 4322 020 27270 | | 3H1 | 4322 020 27260 | | 3H3 | 4322 020 27390 | | 4C6 | 4322 020 27280 | - * Types without centre hole. - Preferred types. ## **COIL FORMERS** Four types of coil former can be supplied: - Single-section, 4-pin coil former, catalogue number 4322 021 32360 (Fig. 1) - Single-section, 8-pin coil former, catalogue number 4322 021 32380 (Fig. 2) - Single-section, 12-pin coil former, catalogue number 4322 021 32390 (Fig. 3) - Two-section, 8-pin coil former, catalogue number 4322 021 32420 (Fig. 4) The coil formers are packed on a polystyrene plate of 100 and 5 plates (500 pcs) in a cardboard box. Please order in multiples of these quantities. #### **Properties** Material of former Material of pins Window area single-section coil former two-section coil former Mean length of turn Maximum temperature Inflammability Solderability D.C. losses, $\frac{R_0}{I}$ Mass phenolformaldehyde reinforced with glass fibre, phosphor bronze, dip-soldered 34,2 mm² 2 x 17,0 mm¹ 41 mm 180 °C UL94, class V-0 resistant against dip-soldering at 400 °C for 2 s $$\frac{1}{\mu_{\rm e}} \times \frac{1}{\rm f_{\rm cu}} \times 11.4 \times 10^3~\Omega/H$$ 0,55 g SINGLE-SECTION, 8-PIN COIL FORMER # **INDUCTANCE ADJUSTERS** Table 1 | catalogue | number | colour code | material | С | |-----------|---|---|---|--| | 4322 021 | 38400
38410
38420
38430
38440
38450
38480 | black
brown
red
orange
yellow
green
white | FXC
FXC
cip
cip
FXC
cip
FXC | 4,22
4,04
4,04
4,22
3,52
3,80
3,80 | | | 38490 | grey | FXC | 3,94 | $\textbf{Table 2} \ \textbf{Catalogue numbers of recommended adjusters for typical A}_{L} \ \textbf{values and adjusting percentage}. \\ \textbf{RM8}.$ | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|----|----------------|----|----------------|----| | 3H1/3H3 | 63 | _ | | 4322 021 38450 | 19 | 4322 021 38420 | 25 | | | 100 | 4322 021 38450 | 12 | 38420 | 16 | 38430 | 21 | | | 160 | 38450 | 8 | 38430 | 14 | 38440 | 18 | | | 250 | 38420 | 7 | 38440 | 12 | 38480 | 18 | | | 315 | 38440 | 9 | 38480 | 15 | 38410 | 19 | | | 400 | 38440 | 7 | 38480 | 12 | 38410 | 15 | | | 630 | 38440 | 5 | 38410 | 10 | 38400 | 16 | | | 1000 | 38410 | 6 | 38400 | 10 | _ | | | | 1250 | _ | | 38400 | 8 | _ | | | 3D3 | 40 | · _ | | 4322 021 38450 | 27 | _ | | | | 63 | | | 38450 | 17 | 4322 021 38420 | 24 | | | 100 | 4322 021 38450 | 11 | 38420 | 15 | 38430 | 20 | | | 160 | 38450 | 7 | 38430 | 13 | 38440 | 17 | | 4C6 | 40 | _ | | 4322 021 38450 | 18 | 4322 021 38420 | 23 | | | 63 | 4322 021 38450 | 12 | 38420 | 16 | 38430 | 20 | | | 100 | 38450 | 6 | 38430 | 11 | 38480 | 19 | | | 160 | 38430 | 7 | 38480 | 12 | _ | | ### ASSEMBLING AND MOUNTING #### **ASSEMBLING** The core halves are clamped together by means of two clips, type 4322 021 31840. As can be seen in the drawing, the hooked ends of each clip fit into recesses made in the core halves. For a stable inductance we recommend that an adhesive be applied between the coil former flange and the lower core half. We also recommend that a tool be used for assembling. (Drawings of a simple tool are available under number 4322 058 00160.) #### MOUNTING The two retaining clips are also used for mounting the assembled core on a printed-wiring board: the pins are simply soldered into the holes in the board. If so desired, one of the pins can also be used for earthing the core. The soldering pins of coil formers and clips are so arranged that they will fit printed-wiring boards with a 0,1 – inch grid as well as those with a 2,50 mm grid. The pin length is sufficient for a board thickness of up to 2,4 mm. The recommended hole diameter in the board is 1,0 \pm 0,1 mm (according to IEC publication 97). Hole pattern for an assembly of 4 cores, each fitted with a 4-pin coil former. Hole pattern for an assembly of 4 cores, each fitted with a 8-pin coil former. Hole pattern for an assembly of 4 cores, each fitted with a 12-pin coil former. (1) Holes for tag on clip 4322 021 31840. PART DRAWING (dimensions in mm) Clip 4322 021 31840 Material: steel, silver plated over nickel, then passivated Packing quantity: 2500 # CHARACTERISTIC CURVES μ_e - α CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. μ_e = 1840 ± 25% at Δ = 3 μ m for 3H1. Inductance as a function of the frequency (typical values). Losses as a function of the frequency at $\hat{B}\approx 0.1~\text{mT}$ (typical values). Inductance as a function of the frequency (typical values). Losses as a function of the frequency (typical values). March 1984 #### D.C. SENSITIVITY AT 25 °C Induction variation as a function of d.c. polarization. ### FXC3B8 $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No airgap. $P = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. # RM8/i SQUARE CORES for industrial use #### MECHANICAL DATA Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,604 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0,00952 \text{ mm}^{-3}; V_e = 2440 \text{ mm}^3; I_e = 38,4 \text{ mm}; A_e = 63,0 \text{ mm}^2;$$ $A_{min} = 55,4 \text{ mm}^2$. Mass of a core set: 12,4 g. #### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil
as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 80 N. The values are valid 5 minutes or more after clamping. | | freq. | Â | temp. | grade | | | | | |---|---------|----------------|-------------------|-----------------------|-------------------------------|--------------------------------|----------------|--| | | kHz | mT | °C | 3C85 | 3E4 | 3E5 | 3F3 | | | AL | 4 | ≤ 0,1 | 25 ± 1 | 3300 ± 25% | 8000 ^{+ 40%}
-25% | 13000 ^{+ 40%}
-25% | 3300 ± 25% | | | P (W) | 25 | 200 | 25 ± 1
100 ± 1 | 0,70
≤ 0,50 | | | 0,50
0,35 | | | | 100 | 100 | 25 ± 1
100 ± 1 | 0,80
0,80
≤0,60 | | | 0,50
≤ 0,35 | | | | 400 | 50 | 25 ± 1
100 ± 1 | ₹ 0,00 | | | 0,60
≤ 0,60 | | | $\frac{\tan \delta}{\mu_{\rm i}} \times 10^6$ | 4
10 | ≤ 0,1
≤ 0,1 | 25 ± 1
25 ± 1 | | ≤ 2,5 | ≤ 10 | | | | | 100 | ≤ 0,1 | 25 ± 1 | | ≤ 25 | | | | | $\eta_{\text{B}} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 1,4 | ≤ 1,9 | | | #### Notes For the specification of power losses \hat{B} is calculated using $A_e = 63 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grades 3C85 and 3F3 is \geq 315 mT, based on A_{min} = 55,4 mm². # Core sets pre-adjusted on A_L. | | corre- | tol. on | catalogue number 4322 025 | | | | | | |------|-----------------------------------|---------------------|---------------------------|-----|-----|-----|--|--| | AL | sponding
μ _e -value | induct-
ance (%) | 3C85 | 3E4 | 3E5 | 3F3 | | | | 40 | | ± 5 | | | | | | | | 63 | | ± 5 | | | 1 | | | | | 100 | | ± 5 | 01440 | | | | | | | 160 | | ± 5 | 01450 | | | | | | | 250 | | ± 5 | 01460 |] | | | | | | 315 | | ± 5 | | | | | | | | 400 | | ± 5 | | | | | | | | 630 | | ± 10 | | 1 | | | | | | 1000 | | ± 15 | | | | | | | # Core halves without air gap | Ferroxcube grade | catalogue number | |------------------|------------------| | 3C85 | 4322 020 28170 | | 3E4 | 28190 | | 3E5 | 28230 | | 3F3 | 28220 | | | | # DIL COIL FORMER FOR RM8/i SQUARE CORES for power applications #### **OUTLINES** # Dil coil former for RM8/i square cores for power applications #### SINGLE-SECTION, 12-PIN COIL FORMER Catalogue number 4322 021 34050 Material polyterephthalate reinforced Window area 30,9 mm² Mean length of turn Max. temperature 42 mm Inflammability 180 °C UL94, class V-0 D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 11.4 \times 10^3 \ \Omega/H$$ Solderability: resistance against dip-soldering at 400 °C for 2 s Mass 2,5 g Packaging quantity: 200 Please order in multiples of this quantity Hole pattern The earth points are holes for tags on mounting clip 4322 021 31840, see RM8, mounting. ## SQUARE CORES These cores are available in two executions: - RM10, usually for telecommunication, with centre hole for adjuster - RM10/i, for industrial applications, no centre hole #### RM10 cores can be supplied in three versions - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A₁. - CORE SETS without nut and pre-adjuster on an A₁ value. - CORE HALVES without air gap. The square cores are in accordance with the following specifications: IEC 431 (international), UTE83-300 (France), DIN 41980 (Germany). Square cores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets of 40 core halves; a storafe pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. #### RM10/i cores can be supplied in two versions - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM10/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quantities and supply conditions upon request. RM10/i # RM10 SQUARE CORES #### for telecommunication #### **MECHANICAL DATA** Pulling-out force of the nut ≥ 50 N Dimensional quanitities according to IEC 205: a. Version with centre hole: $$C_1 = \Sigma \frac{1}{A} = 0,501 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{1}{A^2} = 0,00602 \text{ mm}^{-3}$; $V_e = 3470 \text{ mm}^3$; $I_e = 41,7 \text{ mm}$; $A_e = 83,2 \text{ mm}^2$. Mass of a core set: 20 g. b. Version without centre hole: $$C_1 = \Sigma \frac{I}{A} = 0,462 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,00479 \text{ mm}^{-3}$; $V_e = 4310 \text{ mm}^3$; $I_e = 44,6 \text{ mm}$; $A_e = 96,6 \text{ mm}^2$; $A_{min} = 80.9 \text{ mm}^2$. Mass of a core set: 23 g. #### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 130 N. The values are valid 5 minutes or more after clamping. | | freq. | ĥ | Н | temp. | | gra | de | | |--|---|----------------------------------|-----|--------------------------------------|------------------------|------------------------|----------------------------------|--| | | kHz | mT | A/m | oC. | 3B8 | 3C85 | 3E4 | 3H1 | | A _L ± 25%
μ _e ± 25%
α | 4 4 4 | ≤ 0,1
≤ 0,1
≤ 0,1 | | 25 ± 5
25 ± 5
25 ± 5 | 5310
1950
≤ 15,8 | 4500
1650
≤ 16,8 | 11 000
4190
≤ 11,0 | 4900
1950
≤ 16,5 | | $\frac{\tan \delta}{\mu_{\rm i}} \times 10^6$ | 4
30
100
500 | ≤ 0,1
≤ 0,1
≤ 0,1
≤ 0,1 | | 25 ± 5
25 ± 5
25 ± 5
25 ± 5 | | | ≤ 2,5
≤ 20
≤ 200 | ≤ 2,5
≤ 5,0 | | P(W) | 25 | 200 | 25 | 25 ± 5
100 ± 5 | 1,2
1,4 | 1,4
1,0 | | | | $\eta_{B} \times 10^3$ | 4
30 | 1.5-3,0
1,5-3,0 | | 25 ± 5
25 ± 5 | | | ≤ 1,1 | ≤ 0,86 | | α _F x 10 ⁶ /K | ≤ 100 | ≤ 0,1 | | 5 to 25
25 to 55
25 to 75 | | | 0 to + 2
0 to + 2
0 to + 2 | + 0,5 to + 1,5
+ 0,5 to + 1,5
+ 0,5 to + 1,5 | | D _F x 10 ⁶
(10-100 min.) | ≤ 100 | ≤ 0,1 | | 25 ± 5 | | | ≤ 4,3 | ≤ 4,3 | | В́ (mT) (2) | 25 | | 250 | 100 ± 5 | | ≥ 315 | | | | $\beta_F \times 10^6$ measurand 25 ± 1 $^{\circ}$ C: | = 300 ± | | | | | | | | | I _e | 10 ⁵ A/m
10 ⁵ A/m
10 ⁵ A/m | | | ≤ 110
≤ 300
≤ 1050 | | | | | #### Versions 1. Core sets with nut and pre-adjusted on A_L | Αı | corresponding
μ _e - value | tol. on | catalogue number 4322 022 | |-------|---|----------|---------------------------| | ^L | μ _e - value | ance (%) | 3H1 | | 160 | 64 | ± 2 | 70250 | | 250 | 100 | ± 2 | 70260 | | 315 | 126 | ± 2 | 70270 | | 400 | 160 | ± 3 | 70280 | | 630 | 251 | ± 4 | 70300 | | 1 000 | 399 | ± 10 | 70310 | 2. Core sets without centre hole and pre-adjusted on ${\rm A}_{\, L}$ | AL | corresponding | tol. on | catalogue number 4322 022 | | | | | |--------|-----------------------|---------------------|---------------------------|---------|----------|--|--| | | μ _e -value | induct-
ance (%) | 3B8 | 3C85 | 3E4 | | | | 160 | 59 | 2 | 50460 | 50650 | | | | | 250 | 92 | 2 | 50480 | ● 50660 | ľ | | | | 315 | 116 | 2 | 50490 | 50670 | | | | | 400 | 147 | 3 | • 50500 | ● 50680 | | | | | 630 | 232 | 4 | 50520 | 50700 | | | | | 1 000 | 368 | 10 | | 50710 | | | | | 1 600 | 588 | 10 | 50550 | | | | | | 11 000 | 4045 | 25 | | | • 50910* | | | All pre-adjusted RM10 cores have an asymmetrical air gap. #### 3. Core halves | Ferroxcube grade | catalogue number | |------------------|------------------| | 3B8 | 4322 020 28370* | | 3C85 | 4322 020 28380* | | 3H1 | 4322 020 28400 | ^{*} This core has no centre hole. [•] Preferred type. # **COIL FORMERS** Five types of coil formers can be supplied: - Single-section, 5-pin, catalogue number 4322 021 32440 (Fig. 1) - Single-section, 8-pin, catalogue number 4322 021 32450 (Fig. 2) - Single-section, 12-pin, catalogue number 4322 021 32470 (Fig. 3) - Two-section, 8-pin, catalogue number 4322 021 32460 (Fig. 4) - Two-section, 12-pin, catalogue number 4322 021 32790 (Fig. 5) The arrangement of the soldering pins is suitable for both 0,1 inch and 2,50 mm grid. See "Mounting". The coil formers are packed on a polystyrene plate of 50 and 4 plates (200 pcs) in a cardboard box. Please order in multiples of these quantities. #### **PROPERTIES** | | SINGLE-SECTION | TWO-SECTION | |------------------------------|---|--| | Material | phenolformaldehyde reinforce | ed with glass fibre | | Solderability | resistant against dip-soldering | at 400 °C for 2 s | | D.C. losses: $\frac{R_0}{L}$ | $\frac{1}{\mu_{\rm e}}\times\frac{1}{\rm f_{\rm cu}}\times8,17\times10^3\Omega/{\rm H}$ | $\frac{1}{\mu_{\rm e}} \times \frac{1}{\rm f_{\rm cu}} \times 8,12 \times 10^3 \Omega/{\rm H}$ | | Window area | 44,9 mm ² | 2 x 23,6 mm ² | | Mean length of turn | 52 mm | 52 mm | | Max. temperature | 180 °C | 180 °C | | Inflammability | UL94, class V-0 | UL94, class V-0 | | Mass | 1,5 g | 1,7 g | # **INDUCTANCE ADJUSTERS** Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 38320 | red | cip | 4,68 | | 38340 | yellow | cip | 5,10 | | 38380 | white | FXC | 4,40 | | 38390 | grey | FXC | 5,10 | **Table 2** Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. RM10. | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|----|----------------|----|----------------|----| | 3H1 | 160 | _ | | 4322 021 38320 | 16 | 4322 021 38340 | 26 | | | 250 | 4322 021 38320 | 10 | 38340 | 16 | 38380 | 19 | | | 315 | 38320 | 8 | 38340 | 14
| 38380 | 15 | | | 400 | 38320 | 6 | 38338 | 11 | _ | | | | 630 | _ | | 38380 | 8 | 38390 | 20 | | | 1000 | 38380 | 5 | 38390 | 11 | _ | | ## ASSEMBLING AND MOUNTING Fig. 1. #### ASSEMBLING The core halves are clamped together by means of two clips, catalogue number 4313 021 04120. As can be seen in the drawing the hooked ends of both clips fit into the recesses made in the halves. For a stable inductance we recommend that an adhesive be applied between the coil former flange and the lower core half. The use of a suitable tool for attaching the clips is also recommended. #### MOUNTING The two retaining clips are also used for mounting the assembled core on a printed-wiring board. The pins are simply soldered into the holes in the board. If so desired, one of the pins can also be used for earthing. The soldering pins of coil formers and clips are so arranged that they will fit printed-wiring boards with a 0,1 inch grid as well as those with a 2,50 mm grid. The pin length is sufficient for a board thickness of up to 2,4 mm. The recommended hole diameter in the board is 1,0 \pm 0,1 or 1,3 \pm 0,1 mm (according to IEC publication 97). (1) Holes for tag on clip 4313 021 04120 (earth points). Fig. 2 Hole pattern for an assembly of 4 cores, each fitted with a 5-pin coil former. Fig. 3 Hole pattern for an assembly of 4 cores, each fitted with an 8-pin coil former. Fig. 4 Hole pattern for an assembly of 4 cores fitted with a 12-pin coil former. ### D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. FXC 3E4. Inductance as a function of the frequency. FXC 3E4. Losses as a function of the frequency at $\hat{B} \leq 0.1$ mT. #### **FXC 3B8** \hat{B} is calculated with A_{CPmin} = 89,1 mm². $P = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No airgap. February 1986 # RM10/i SQUARE CORES #### for industrial use #### **MECHANICAL DATA** Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,462 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0,00479 \text{ mm}^{-3}; V_e = 4310 \text{ mm}^3; I_e = 44,6 \text{ mm}; A_e = 96,6 \text{ mm}^2; A_e = 44,6 \text{ mm}; 44,6$$ $A_{min} = 80.9 \text{ mm}^2$. Mass of core set: 23 g. #### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 80 N. The values are valid 5 minutes or more after clamping. | | freq. | B | temp. | grade | | | | | | |---|-------|------------|------------------|------------|--------------------------------|--|------------|--|--| | | kHz | mT | oC. | 3C85 | 3E4 | 3E5 | 3F3 | | | | AL | 4 | ≤ 0,1 | 25 ± 1 | 4500 ± 25% | 11000 ^{+ 40%}
-25% | 18000 ^{+ 40%} _{-25%} | 4500 ± 25% | | | | P (W) | 25 | 200 | 25 ± 1 | 1,4 | | | 1,0 | | | | | | | 100 ± 1 | ≤ 1,0 | | | 0,7 | | | | | 100 | 100 | 25 ± 1 | 1,6 | | | 1,0 | | | | |] | | 100 ± 1 | ≤ 1,2 | | | ≤ 0,7 | | | | | 400 | 50 | 25 ± 1 | | | | 1,3 | | | | | | | 100 ± 1 | | | | ≤ 1,3 | | | | $\frac{\tan \delta}{\mu_{\rm i}} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 1
25 ± 1 | | ≤ 2,5 | _ 14 | | | | | • • | 10 | ≤ 0,1 | | | < 00 | ≤ 14 | | | | | | 100 | ≤0,1 | 25 ± 1 | | ≤ 30 | | | | | | $\eta_{\rm B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 1,6 | ≤ 2,2 | | | | #### Notes For the specification of power losses \hat{B} is calculated using $A_e = 96.6 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grades 3C85 and 3F3 is \geqslant 315 mT, based on A_{min} = 80,9 mm². # Core sets pre-adjusted on A_L. | | corre- | tol. on | catalogue number 4322 022 | | | | | | |------|--------|---------------------|---------------------------|-----|-----|-----|--|--| | AL | | induct-
ance (%) | 3C85 | 3E4 | 3E5 | 3F3 | | | | 40 | | ± 5 | | | | | | | | 63 | | ± 5 | | | | | | | | 100 | | ± 5 | 50850 | | | | | | | 160 | | ± 5 | 50990 | | | | | | | 250 | | ± 5 | 50860 | | | | | | | 315 | | ± 5 | | | | | | | | 400 | | ± 5 | 50880 | | | | | | | 630 | | ± 10 | | | | | | | | 1000 | | ± 15 | | | | | | | # Core halves without air gap | Ferroxcube grade | catalogue number | |------------------|------------------| | 3C85 | 4322 020 28430 | | 3E4 | 28490 | | 3E5 | 55250 | | 3F3 | 28450 | # DIL COIL FORMER FOR RM10/i SQUARE CORES for power applications #### **OUTLINES** #### SINGLE-SECTION, 12-PIN COIL FORMER Catalogue number 4322 021 34060 Material polyterephthalate reinforced with glass fibre Window area 44,2 mm² Mean length of turn Max, temperature 52 mm 180 °C Inflammability UL94, class V-0 D.C. losses $\frac{\mathrm{R}_\mathrm{O}}{\mathrm{L}} = \frac{1}{\mu_\mathrm{e}} \times \frac{1}{\mathrm{f}_\mathrm{CU}} \times 7,55 \times 10^3 \; \Omega/\mathrm{H}$ Solderability: resistance against dip-soldering at 400 °C for 2 s Mass 3 g Packaging quantity: 200 Please order in multiples of this quantity. Hole pattern The earth points are holes for tags on mounting clip 4313 021 04120. Clip 4313 021 04120. Material: steel, tin plated, over nickel. # RM12/i SQUARE CORES #### for industrial use These cores are available in two executions: - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM12/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quanitities and supply conditions upon request. #### MECHANICAL DATA #### Outlines Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,388 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,00265 \text{ mm}^{-3}$; $V_e = 8340 \text{ mm}^3$; $I_e = 56,6 \text{ mm}$, $A_e = 146 \text{ mm}^2$; $A_{CPmin} = 124 \text{ mm}^2$. Mass of core set: 45 g #### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 60 N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | - | grade | | |--|----------|----------------|-------------------|--------------|--------------------------------|--------------| | | kHz | mT | °C | 3C85 | 3E4 | 3F3 | | AL | 4 | ≤ 0,1 | 25 ± 1 | 5500 ± 25% | 13000 ^{+ 40%}
-25% | 5500 ± 25% | | P (W) | 25 | 200 | 25 ± 1
100 ± 1 | 2,6
≤ 1,9 | | 1,8
1,3 | | | 100 | 100 | 25 ± 1
100 ± 1 | 3,2
≤ 2,4 | | 1,8
≤ 1,3 | | | 400 | 50 | 25 ± 1
100 ± 1 | • | | 2,5
≤ 2,5 | | $\frac{\tan\delta}{\mu_{\rm j}} \times 10^6$ | 4
100 | ≤ 0,1
≤ 0,1 | 25 ± 1
25 ± 1 | | ≤ 2,5
≤ 50 | | | $\eta_{\text{B}} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 2,0 | | #### Notes For the specification of power losses \hat{B} is calculated using $A_e = 146 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grades 3C85 and 3F3 is \geqslant 315 mT, based on A_{min} = 124 mm². Core sets preadjusted on A₁. | | corre- | tol. on | catalogue number 4322 025 | | | |------|-----------------------------------|---------------------|---------------------------|-----|-----| | AL . | sponding
μ _e -value | induct-
ance (%) | 3C85 | 3E4 | 3F3 | | 40 | | ± 5 | | | | | 63 | | ± 5 | | | | | 100 | | ± 5 | | | | | 160 | | ± 5 | 06050 | - | | | 250 | | ± 5 | 06060 | | | | 315 | | ± 5 | 06070 | | | | 400 | | ± 5 | 06080 | | | | 630 | | ± 10 | | | | | 1000 | | ± 10 | | | | Core halves with air gap: grade 3E4 grade 3C85 catalogue number: 4322 020 55010 catalogue number: 55030 grade 3F3 catalogue number 55020 # DIL COIL FORMER FOR RM12/i SQUARE CORES for power applications #### **OUTLINES** → -0,7 ± 0,05 1,2 ± 0,05 - # RM12/i #### SINGLE-SECTION, 12-PIN COIL FORMER Catalogue number 4322 021 34110 Material polyterephthalate reinforced Window area 75,0 mm² Mean length of turn 61 mm Max. temperature 180 °C Inflammability UL94, class V-0 D.C. losses $$\frac{\mathrm{R_{O}}}{\mathrm{L}} = \frac{1}{\mu_{\mathrm{e}}} \times \frac{1}{\mathrm{f_{\mathrm{cu}}}} \times 4,52 \times 10^{3} \;
\Omega/\mathrm{H}$$ Solderability: resistance against dip-soldering at 400 °C for 2 s Mass 3,3 g Packaging quantity: 200 Please order in multiples of this quantity. Hole pattern The earth points are holes for tags on mounting clip 4322 021 34170. Mounting clip 4322 021 34170, steel, nickel plated, pre-soldered. # SQUARE CORES These cores are available in two executions: - RM14, usually for telecommunication, with centre hole - RM14/i, for industrial applications, no centre hole #### RM14 cores can be supplied in three versions - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A_I. - CORE SETS without nut and pre-adjusted on an A₁ value. - CORE HALVES without air gap. The square cores are in accordance with the following specifications: IEC 431 (international), UTE83-300 (France), DIN 41980 (Germany). Square cores and associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves; a storage pack contains 100 core sets or 200 core halves. Please order in multiples of these quantities. RM14 #### RM14/i cores can be supplied in two versions - CORE SETS pre-adjusted on an A₁ value. - CORE HALVES without air gap. RM14/i cores and associated parts are ordered by their 12-digit catalogue number. Packing quantities and supply conditions upon request. RM14/i # RM14 SQUARE CORES #### for telecommunication #### **MECHANICAL DATA** Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0.390 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0.00219 \text{ mm}^{-3}$; $V_e = 12400 \text{ mm}^3$; $I_e = 70.0 \text{ mm}$; $A_e = 178 \text{ mm}^2$. $A_{min} = 146 \text{ mm}^2$. Mass of a core set: 65,5 g. #### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 80 N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | gra | ade | |---|----------------------------|-------------|---------|--------|--------| | | kHz | mT | оС | 3C85 | 3B8 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 5 | 5775 | 6940 | | μ_{e} ± 25% | 4 | ≤ 0,1 | 25 ± 5 | 1790 | 2150 | | α | 4 | ≤ 0,1 | 25 ± 5 | ≤ 14,9 | ≤ 13,5 | | | | | 25 ± 5 | ≤ 2,0 | ≤ 1,5 | | P (W) | 25 | 200 | 100 ± 5 | 2,5 | 2,5 | | B (mT) | 25 | H = 250 A/m | 100 ± 5 | ≥ 315 | | | $\beta_F \times 10^6$ measure
and 25 ± 1 °C:
at $\mu_e \times \frac{N \times I_o}{I_e} =$ | · | · | | | | | at $\mu_e \times \frac{1}{1} = \frac{1}{1}$ | 1,00 x 10° A/m | | | | ≤ 120 | | 'e = | 1,55 x 10° A/m | | | | ≤ 300 | | = | 2,25 x 10 ⁵ A/m | | | | ≤ 1100 | Core sets without nut pre-adjusted on AL | ۸. | $\begin{array}{cccc} & & & & & & & \\ & & & & & & \\ A_L & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $ | catalogue number | | | |------|--|-----------------------------------|------------------------------------|---------| | ^L | | grade 3B8
4322 022 followed by | grade 3C85
4322 025 followed by | | | 160 | 50 | ± 2 | 56960 | 03250 | | 250 | 77,6 | ± 2 | ● 56950 | • 03260 | | 400 | 124 | ± 3 | 56910 | 03280 | | 630 | 196 | ± 3 | ● 56890 | ● 03300 | | 1000 | 310 | ± 4 | 56900 | 03310 | | 1250 | 388 | ± 5 | | | | 1600 | 497 | ± 10 | 56930 | | | 2000 | 621 | ± 10 | 1 | | | 2500 | 776 | ± 10 | 56940 | - | All pre-adjusted RM14 core sets have an asymmetrical air gap. Core half without air gap, without nut, Ferroxcube grade 3B8, catalogue number 4322 020 28320; Ferroxcube grade 3C85, catalogue number 4322 020 28330. Preferred type. ## **COIL FORMERS** Two types of coil former can be supplied: - Single section, 10-pin, catalogue number 4322 021 33520 (Fig. 1) - Single section, 12-pin, catalogue number 4322 021 33530 (Fig. 2). The arrangement of the soldering pins is suitable for both 0,1 inch and 2,50 mm grid. See "Mounting". The coil formers are packed on a polystyrene plate of 30, and 3 plates (90 pieces) in a cardboard box. Please order in multiples of these quantities. **Properties** Material: phenolformaldehyde reinforced with glass fibre Window area 112 mm² Mean length of turn 71 mm 180 °C Max. temp. Inflammability UL94, class V-0 Solderability: resistant against dip-soldering at 400 °C for 2 s. D.C. losses: $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 3,50 \times 10^3 \ \Omega/H$$ Mass 3 g ## ASSEMBLING AND MOUNTING #### **ASSEMBLING** The core halves are clamped together by means of two clips, catalogue number 4322 021 33690. As can be seen in the drawing the hooked ends of both clips fit into the recesses, made in the halves. Due to the relatively low mechanical pressure of the two clips, it is recommended to cement the two core halves to each other as well (see under Mounting Data in section 'Potcores, square cores and cross cores'). For a stable inductance we recommend that an adhesive be applied between the coil former flange and the lower core half and around the two core halves, see 'Potcores, square cores and cross cores', General under Mounting Data. #### MOUNTING The two retaining clips are also used for
mounting the assembled core on a printed-wiring board. The pins are simply soldered into the holes in the board. If so desired, one of the pins can also be used for earthing. The soldering pins of coil formers and slips are so arranged that they will fit printed-wiring boards with a 0,1 inch grid as well as those with a 2,50 mm grid. The pin length is sufficient for a board thickness of up to 2,4 mm; The recommended hole diameter in the board is 1,3 \pm 0,1 mm (according to IEC publication 97). © 1) Hole pattern for an assembly of 4 cores, each fitted with a 10-pin coil former. Hole pattern for an assembly of 4 cores, each fitted with a 12-pin coil former. 1) Holes, ϕ 1,3 ± 0,1 mm, for tags on clip 4322 021 33690 (earth points). # CHARACTERISTIC CURVES $\mu_{e} - \alpha$ CURVES Relative effective permeability and turn factor for 1 mH as a function of the air gap length. μ_e = 2150 ± 25% at Δ = 3 μ m for FXC 3B8. ### D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. polarization. #### FXC 3B8 $A_L = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No air gap. $P = f(\hat{B})$ at 16 kHz, and at 25 and 100 °C. No air gap. P = f (T) A at 16 kHz and \hat{B} = 200 mT B at 25 kHz and \hat{B} = 200 mT C at 50 kHz and \hat{B} = 100 mT D at 100 kHz and \hat{B} = 50 mT \hat{B} is calculated with A_{CP min} = 146 mm². # RM14/i SQUARE CORES for industrial use #### **MECHANICAL DATA** Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,353 \text{ mm}^{-1}; C_2 = \Sigma \frac{I}{A^2} = 0,00178 \text{ mm}^{-3}; V_e = 13900 \text{ mm}^3; I_e = 70,0 \text{ mm}; A_e = 198 \text{ mm}^2; I_e = 70,0 \text{ mm}; A_e = 198 \text{ mm}^2; I_e = 70,0 \text{ mm}; A_e = 198 \text{ mm}^2; 1$$ $A_{min} = 168 \text{ mm}^2$. Mass of core set: 74 g. #### **ELECTRICAL DATA** The combination of two square core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the General section 'Potcores, square cores and cross cores', is inserted; the halves are pressed together with a force of 60 N. The values are valid 5 minutes or more after clamping. | | freq. | Ê | temp. | grade | | |----------------------|-------|-------|-------------------|--------------|--------------| | | kHz | mT | °C | 3C85 | 3F3 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 6300 | 6300 | | P (W) | 25 | 200 | 25 ± 1
100 ± 1 | 4,3
≤3,2 | 3,0
2,2 | | | 100 | 100 | 25 ± 1
100 ± 1 | 5,8
≤ 4,3 | 3,0
≤ 2,2 | | | 400 | 50 | 25 ± 1
100 ± 1 | | 4,5
≤ 4,5 | #### Notes For the specification of power losses \hat{B} is calculated using $A_e = 198 \text{ mm}^2$. The induction \hat{B} at \hat{H} = 250 A/m (25 kHz and 100 °C) for core sets in grades 3C85 and 3F3 is \geqslant 315 mT, based on A_{min} = 168 mm². Core sets preadjusted on A₁. | corre- | | tol. on | catalogue number 4322 025 | | | |--------|-----------------------------------|---------------------|---------------------------|-----|--| | AL | sponding
μ _e -value | induct-
ance (%) | 3C85 | 3F3 | | | 40 | | ± 5 | | | | | 63 | | ± 5 | | | | | 100 | | ± 5 | | | | | 160 | | ± 5 | 03150 | | | | 250 | | ± 5 | 03160 | | | | 315 | | ± 5 | | | | | 400 | | ± 5 | 03180 | | | | 630 | | ± 10 | | | | | 1000 | | ± 10 | | | | | | 1 | | 1 | | | Core halves without air gap: grade 3C85 catalogue number: 4322 020 28470 grade 3F3 catalogue number: 28480 # DIL COIL FORMER FOR RM14/i SQUARE CORES for power applications ### **OUTLINES** # Dil coil former for RM14/i square cores for power applications ### SINGLE-SECTION, 12-PIN COIL FORMER Catalogue number 4322 021 34070 Material polyterephthalate reinforced with glass fibre Window area 111 mm² Mean length of turn Max. temperature 71 mm 180 °C Inflammability UL94, class V-0 D.C. losses $$\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{CU}} \times 3,47 \times 10^3 \ \Omega/H$$ Solderability: resistance against dip-soldering at 400 °C for 2 s Mass 3,5 g Packaging quantity: 200 Please order in multiples of this quantity. The earth points are holes for tags on mounting clip 4322 021 34220. Mounting clip 4322 021 34220, nickel plated, pre-soldered. # SECTION F CROSS CORES AND ACCESSORIES # **CROSS CORES** Four types of core can be supplied: - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A₁. - CORE SETS without nut and pre-adjusted on an A₁ value. - CORE HALVES without air gap. - CORE HALVES with air gap. Standardized air-gap lengths in each core half are: 0.02, 0.05, 0.15 and 0.25 mm. The cross cores are in accordance with IEC publication 226. Cross cores and their associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 10 core sets or 20 core halves; a storage pack contains 200 core sets or 400 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Dimensions in mm Pulling-out force of the nut \geq 30 N. Dimensional quantities according to IEC 205 $$C_1 = \Sigma \frac{1}{A} = 0.575 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{1}{A^2} = 0.0871 \text{ mm}^{-3}$; $V_e = 2510 \text{ mm}^2$; $I_e = 38 \text{ mm}$; $A_e = 66.0 \text{ mm}^2$; $A_{CPmin} = 62.1 \text{ mm}^2$. Mass of a core set; approx. 12 g #### **ELECTRICAL DATA** The combination of two cross core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the general section' Potcores, square cores and cross cores' is inserted. The halves are pressed together with a force of 120 N. The values are valid 5 minutes or more after clamping. Parameters $a_{\rm F}$ and D_F are measured on toroid-wound halves. | | freq. | B | temp. | | | grade | ·
 | |---|--------------------|------------|----------|-------------|--------|--------------|-----------| | | kHz | mT | oC | 3B8 | 3D3 | 3H1 | 4C6 | | A ₁ ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 4200 | 1600 | 4200 | 275 | | μ_{e}^{-} ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 1920 | 735 | 1920 | 125 | | α | 4 | ≤0,1 | 25 ± 1 | ≤ 17,8 | ≤ 28,8 | ≤ 17,8 | ≤ 70 | | $\frac{\tan \delta}{\mu_{\rm i}} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | | ≤ 1,2 | | | | 100 | ≤ 0,1 | 25 ± 1 | | ≤8,0 | ≤ 5,0 | | | | 500 | ≤0,1 | 25 ± 1 | | ≤ 14 | | | | | 1000 | ≤0,1 | 25 ± 1 | kan arang a | ≤ 30 | | | | | 2000 | ≤ 0,1 | 25 ± 1 | 1 - 1 - 1 | | | ≤ 40 | | | 10 000 | ≤0,1 | 25 ± 1 | 4. | | | ≤ 100 | | $\eta_{\rm B} \times 10^3$ | 4 | 1,5 to 3,0 | 25 ± 1 | | | ≤ 1,1 | | | | 100 | 0,3 to 1,2 | | | ≤ 1,8 | | ≤6,2 | | P (W) | 25 | 200* | 25 ± 5 | ≤ 0,4 | | | | | | 25 | 200* | 100 ± 1 | ≤ 0,5 | | | | | $\alpha_{\rm F} \times 10^6/{\rm K}$ | ≤ 100 | ≤ 0,1 | 5 to 25 | | | + 0,5 to 1,5 | -2 to + 4 | | · | ≤ 100 | ≤ 0,1 | 25 to 55 | | | + 0,5 to 1,5 | 0 to + 6 | | | ≤ 100 | ≤ 0,1 | 25 to 70 | | | | | | D _F x 10 ⁶ | ≤100 | ≤0,1 | 25 ± 1 | | ≤ 12 | ≤4,3 | ≤ 10 | | β _F x 10 ⁶ , meas | sured on set | s with | | | .,. | | | | $\mu_{\rm P} = 300 \pm 10^{\circ}$ | | | | | | | | | | | | | | | | | | at $\mu_e \times \frac{N \times I_O}{I_e}$ | $= 1,10 \times 10$ |)⁵ A/m | | ≤ 110 | | 44,4 | 1 | | 'e | .,00 / | , | | ≤ 300 | | | | | | = 2,55 x 10 |)⁵ A/m | | ≤ 1100 | | | | ^{*} Determined with $A_{CPmin} = 62,1 \text{ mm}^2$. Core sets, grade 3H1 pre-adjusted on A_L. | Aı | corre- | catalogue number 4322 022 | | | | |------------|-----------------------------------|---------------------------|----------|--|--| | пН | sponding
μ _e -value | without nut | with nut | | | | 160 ± 1% | 73 | 45250 | 65250 | | | | 250 ± 1,5% | 115 | 45260 | 65260 | | | | 400 ± 2% | 183 | 45280 | 65280 | | | | 630 ± 3% | 290 | 45300 | 65300 | | | | 1000 ± 10% | 458 | 45310 | | | | | 1600 ± 10% | 732 | 45320 | | | | | | 1 | | L | | | Cores with AL \leq 250 have a symmetrical air gap. Cores with AL \geq 400 have an asymmetrical air gap. Core halves without air gap. | Ferroxcube grade | catalogue number | |------------------|------------------| | • 3B8 | 4322 020 23540 | | 3D3 | 3522 200 03480 | | 3H1 | 4322 020 23510 | | 4C6 | 3522 200 03490 | | | | Core halves with air gap. | Ferroxcube grade | air gap Δ in mm | catalogue number | |------------------|-----------------|------------------| | 3H1 | 0,02 ± 0,01 | 4322 020 23710 | | 3H1 | 0,05 ± 0,015 | 4322 020 23720 | | 3H1 | 0,15 ± 0,015 | 4322 020 23730 | | 3H1 | 0,25 ± 0,015 | 4322 020 23740 | # **COIL FORMER** ### Catalogue number 4322 021 32870 Material phenolformaldehyde reinforced with glass fibre Window area 33,9 mm² Mean length of turn 49 mm Max. temperature 180 °C Packing quantity primary pack: storage pack: 80 400 Please order in multiples of these quantities. Solderability: resistant against dip-soldering at 400 °C for 2 s D.C. losses: $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 11.7 \times 10^3 \ \Omega/H$ Mass 0,4 g # **INDUCTANCE ADJUSTERS** Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 38600 | black | FXC | 2,83 | | 38610 | brown | FXC | 2,70 | | 38670 | violet | FXC | 2,58 | | 38680 | white | FXC | 2,48 | | 38690 | grey | FXC | 2,93 | $\textbf{Table 2} \ \textbf{Catalogue numbers of recommended adjusters for typical A}_{L} \ \textbf{values and adjusting percentage.} \ \textbf{X22}.$ | core
material | AL | low | % | medium | % | high | % | |------------------|--------------------------|---------------------------------------|--------------|---|----------------------|---------------------------------------|----------------| | 3H1 | 160
250
400
630 | _
4322 021 38680
38680
38610 | 13
8
8 | 4322 021 38680
38670
38610
38600 | 20
15
13
13 | _
4322 021 38610
38600
38690 | 21
20
17 | ## MOUNTING PARTS - (1) Cover 4322 021 30230. - (2) Container 4322 021 30040. The cross core has been developed especially for transformers to
be mounted on printed-wiring boards with a grid of 0,1 inch. An advantage of this construction is that the lead-out wires are soldered to pins which are directly mounted on the coil former. The pin length is sufficient for board thicknesses of up to 3,5 mm. The printed-wiring board should be provided with holes of 1,0 \pm 0,1 mm in diameter. The phosphor-bronze cover has four cut-out lips on the corners, consequently the cover acts as a spring at the same time. The cover is provided with a marking hole. The mark on the coil former (see drawing of coil former) has to be in line with this hole. These markings facilitate the numbering of the soldering pins and the positioning on the printed-wiring board. It is recommended that the coil former be cemented in the lower core half in order to obtain the most stable construction possible. Before bending the lips of the container, pressure should be exerted evenly on the four corners of the cover until the latter meets the container. The required force is approximately 120 N. After bending the lips, the core will have the correct tension. # (1) Cover 4322 021 30230. Material: phosphor bronze, nickel plated. Packaging quantity: 2000. Please order in multiples of this quantity. #### (2) Container 4322 021 30040. Material: brass, nickel plated, thereafter tin plated. Packaging quantity: primary pack 40, storage pack 200. Please order in multiples of these quantities. # CHARACTERISTIC CURVES Effective permeability (μ_e), turn factor for 1 mH (α) and inductance factor in nanohenries (A_L) as a function of the air-gap length for grade 3H1. ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. current. ## **CROSS CORES** Two types of core can be supplied: - CORE HALVES without air gap. - CORE HALVES with air gap. The cross cores are in accordance with IEC publication 226. Cross cores and their associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 10 core sets or 20 core halves; a storage pack contains 200 core sets or 400 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Dimensional quantities according to IEC 205: a. Version with centre hole C₁ = $$\Sigma \frac{I}{A}$$ = 0,570 mm⁻¹; C₂ = $\Sigma \frac{I}{A^2}$ = 0,00782 mm⁻³; V_e = 3030 mm³; I_e = 41,5 mm; A_e = 72,7 mm². b. Version without centre hole $$C_1 = \Sigma \frac{I}{A} = 0,517 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{I}{A^2} = 0,00630 \text{ mm}^{-3}$; $V_e = 3482 \text{ mm}^3$; $I_e = 42,4 \text{ mm}$; $A_e = 82,10 \text{ mm}^2$. Mass of a core set: approx. 24 g. #### **ELECTRICAL DATA** The combination of two cross core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the general section' Potcores, square cores and cross cores' is inserted. The halves are pressed together with a force of 150 N. The values are valid 5 minutes or more after clamping. Parameters α_F and D_F are measured on toroid-wound halves. | | freq. | B | temp. | grad | e | |---|-------|------------|----------|-----------|--------------| | | kHz | mT | oC | 3D3 | 3H1 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 5 | 1620 | 4260 | | μ_{e}^{-} ± 25% | 4 | ≤ 0,1 | 25 ± 5 | 735 | 1935 | | α | 4 | ≤ 0,1 | 25 ± 5 | ≤ 28,7 | ≤ 15,3 | | $\frac{\tan \delta}{\mu_{\rm i}} \times 10^6$ | 4 | ≤ 0,1 | 25 ± 5 | | ≤ 1,2 | | • | 100 | ≤ 0,1 | 25 ± 5 | ≤8 | ≤6,0 | | | 500 | ≤ 0,1 | 25 ± 5 | ≤ 14 | · | | | 1000 | ≤ 0,1 | 25 ± 5 | ≤30 | | | $\eta_{\rm B} \times 10^{3}$ | 4 | 1,5 to 3,0 | 25 ± 5 | | ≤ 0,86 | | | 100 | 0,3 to 1,2 | 25 ± 5 | ≤ 1,8 | | | $\alpha_F \times 10^6/K$ | ≤ 100 | ≤0,1 | 5 to 25 | | + 0,5 to 1,5 | | | ≤ 100 | ≤0,1 | 25 to 55 | | + 0,5 to 1,5 | | | ≤ 100 | ≤0,1 | 25 to 70 | 0 to + 2 | + 0,5 to 1,5 | | D _F x 10 ⁶ | ≤ 100 | ≤ 0,1 | 25 ± 1 | ≤ 15 | ≤ 4,3 | ## Core halves without air gap. | Ferroxcube grade | catalogue number | |------------------|------------------| | 3D3 | 4322 020 24270 | | 3H1 | 4322 020 24260 | | | l . | #### Core halves with air gap. | Ferroxcube grade | air gap Δ in mm | catalogue number | | |------------------|------------------------|------------------|--| | 3H1 | 0,16 ± 0,015 | 4322 020 24370 | | | 3H1 | 0,32 ± 0,015 | 4322 020 24470 | | | 3D3 | 0,8 ± 0,015 | 4322 020 24380 | | ### D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c polarization. # **CROSS CORES** Four types of core can be supplied: - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor AL. - CORE SETS without nut and pre-adjusted on an A₁ value. - CORE HALVES without air gap. - CORE HALVES with air gap. Standardized air gap lengths in each core half are: 0,02, 0,05, 0,15 and 0,25 mm. The cross cores are in accordance with IEC publication 226. Cross cores and their associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves, a storage pack contains 80 core sets or 160 core halves. Please order in multiples of these quantities. #### **MECHANICAL DATA** Pulling-out force of the nut \geq 30 N. Dimensional quantities according to IEC 205: $$C_1 = \Sigma \frac{I}{A} = 0,490 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{1}{A^2} = 0,00430 \text{ mm}^{-3}$; $V_e = 6360 \text{ mm}^3$; $I_e = 55,8 \text{ mm}$; $A_e = 114 \text{ mm}^2$; $A_{CPmin} = 82,6 \text{ mm}^2$. Mass of core set approx. 38 g. #### **ELECTRICAL DATA** The combination of two core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the general section' Potcores, square cores and cross cores' is inserted. The halves are pressed together with a force of 250 N. The values are valid 5 minutes or more after clamping. Parameters α_F and D_F are measured on toroid-wound halves. | | freq. | Ê | temp. | grade | е | |---|---|-------------------------|---------------------------------|--------------------------|--| | | kHz | mT | °C | 3B8 | 3H1 | | A _L ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 5230 | 5230 | | $\mu_e \pm 25\%$ | 4 | <pre></pre> | 25 ± 1
25 ± 1 | 2040
≤ 17,7 | 2040
≤ 16,0 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | ≤ 1,2 | | $\eta_{\rm b} \times 10^3$ | 100
4 | ≤ 0,1
1,5 to 3,0 | 25 ± 1
25 ± 1 | | ≤ 6,0
≤ 1,1 | | P (W) | 16 | 200* | 25 ± 1
100 ± 1 | ≤ 1,0
≤ 1,2 | | | α _F x 10 ⁶ /K | ≤ 100
≤ 100
≤ 100 | ≤ 0,1
≤ 0,1
≤ 0,1 | 5 to 25
25 to 55
25 to 70 | .,_ | + 0,5 to 1,5
+ 0,5 to 1,5
+ 0,5 to 1,5 | | D _F x 10 ⁶ | ≤ 100 | ≤ 0,1 | 25 ± 1 | | ≤ 4,3 | | $\beta_{\rm F} \times 10^6$, measure $\mu_{\rm e} = 300 \pm 10\%$ as | nd 25 ± 1 °C: | | | | | | at $\mu_e \times \frac{N \times I_O}{I_e} = 0$ $= 1$ | ,90 x 10 ⁵ A/m
,40 x 10 ⁵ A/m
,00 x 10 ⁵ A/m | | | ≤ 120
≤ 300
≤ 1100 | | Core sets, grade 3H1 pre-adjusted on AL. | AL | corre-
sponding
$\mu_{\mathbf{e}}$ value | tol. on
inductance
% | catalogue number 4322 022 | | | |------|--|----------------------------|---------------------------|----------|--| | nH | | | without nut | with nut | | | 315 | 123 | ± 2 | 19270 | 39270 | | | 400 | 156 | ± 2 | 19280 | 39280 | | | 630 | 246 | ± 3 | 19300 | 39300 | | | 1000 | 390 | ± 3 | ● 19310 | 39310 | | | 1600 | 624 | ± 5 | 19320 | 39320 | | Cores with A $_L \leqslant$ 400 have a symmetrical air gap. Cores with A $_L \geqslant$ 630 have an asymmetrical air gap. - * Determined with ACPmin = 82,6 mm². - Preferred type. ## Core halves without air gap. | Ferroxcube grade | catalogue number | | | |------------------|------------------|--|--| | • 3B8 | 4322 020 23780 | | | | 3H1 | 4322 020 23750 | | | # Core halves with air gap | Ferroxcube grade | air gap Δ in mm | catalogue number | |------------------|-----------------|------------------| | 3H1 | 0,02 ± 0,01 | 4322 020 23960 | | 3H1 | 0,05 ± 0,015 | 4322 020 23970 | | 3H1 | 0,15 ± 0,015 | 4322 020 23980 | | 3H1 | 0,25 ± 0,015 | 4322 020 23990 | # **COIL FORMER** Catalogue number 4322 021 33420 Material phenolformaldehyde reinforced with glass fibre Window area 97 mm² Mean length of turn 65 mm Max. temperature 180 °C Packing quantity primary pack tarana madi storage pack 25 600 Please order in multiples of these quantities Solderability: resistant against dip-soldering at 400 °C for 2 s D.C. losses: $\frac{R_0}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 4,52 \times 10^3 \ \Omega/H$ Mass 2,5 g # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 38400 | black | FXC | 4,22 | | 38410 | brown | FXC | 4,04 | | 38430 | orange | cip | 4,22 | | 38490 | grey | FXC | 3,94 | **Table 2** Catalogue numbers of recommended adjusters for typical A_L values and adjusting percentage. X30. | core
material | AL | low | % | medium | % | high | % | |------------------|------|----------------|---|---------------|------|----------------|----| | 3H1 | 315 | 4322 021 38430 | 7 | 4322 021 3849 |) 18 | 4322 021 38410 | 20 | | | 400 | 38430 | 6 | 3849 | 14 | 38410 | 16 | | | 630 | _ | | 3841 | 10 | 38400 | 19 | | | 1000 | 38410 | 6 | 3840 | 9 | _ | | | | 1600 | _ | | 3840 | 5 | _ | | ## MOUNTING PARTS - (1) Cover 4322 021 31150 - (2) Container 4322 021 31170 or 4322 021 33620 - (3) Spring 4322 021 30210 The cross core has been developed especially for transformers to be mounted on printed-wiring boards with a grid of 0,1 inch. An advantage of this construction is that the leading-out wires are soldered to the pins which are directly mounted on the coil former. The pin length is sufficient for board thickness up
to 2,3 mm. The printed-wiring board should be provided with holes of 1.3 ± 0.1 mm in diameter. The phosphor-bronze cover has four cut-out lips on the corners, consequently the cover acts as a spring at the same time. The cover is provided with a marking hole. The mark of the coil former (see drawing of coil former) has to be in one line with this hole. These markings facilitate the numbering of the soldering pins and the positioning on the printed-wiring board. It is recommended that the coil former be cemented on the lower core half or to use the spring (pos. 3) in order to obtain the most stable construction. Container 4322 021 31170 is identical to container 4322 021 33620, however the latter has four cut-outs (see outline on next page). Container 4322 021 31170 gives better cross-talk attenuation, container 4322 021 33620 makes the X30 construction more suitable for a 2000 V test. Before bending the lips of the container, pressure should exerted evenly on the four corners of the cover until the latter meets the container. The required force is approximately 250 N. After bending the lips, the core will have the correct tension. Mounting parts March 1984 # CHARACTERISTIC CURVES ## INDUCTANCE AS A FUNCTION OF THE INDUCTION ## INDUCTANCE AS A FUNCTION OF THE FREQUENCY ## CORE LOSSES AS A FUNCTION OF THE INDUCTION ## CORE LOSSES AS A FUNCTION OF THE FREQUENCY $\mu_{\rm e}$ - α AND ${\rm A_L}$ CURVES ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. current. ## **CROSSTALK ATTENUATION** ## **CROSS CORES** Four types of core can be supplied: - CORE SETS provided with a nut for an adjuster and pre-adjusted on an inductance factor A1. - CORE SETS without nut and pre-adjusted on an AL value. - CORE HALVES without air gap. - CORE HALVES with air gap. Standardized air gap lengths in each core half are: 0,02, 0,05, 0,15, 0,25 mm. The cross cores are in accordance with IEC publication 226. Cross cores and their associated parts are ordered by their 12-digit catalogue number. Quantity: a primary pack contains 20 core sets or 40 core halves, a storage pack contains 80 core sets or 160 core halves. Please order in multiples of these quantities. Pulling-out force of the nut \geq 50 N. Dimensional quantities according to IEC205. $$C_1 = \Sigma \frac{1}{A} = 0,410 \text{ mm}^{-1}$$; $C_2 = \Sigma \frac{1}{A^2} = 0,00250 \text{ mm}^{-3}$; $V_e = 11000 \text{ mm}^3$; $I_e = 67,3 \text{ mm}$; $A_e = 164 \text{ mm}^2$; $A_{CPmin} = 132 \text{ mm}^2$. CPmin 102 mm. Mass of a core set approx. 58 g. ## **ELECTRICAL DATA** The combination of two core halves without air gap, randomly chosen from a batch, has the following guaranteed properties. A measuring coil as described in the general section' Potcores, square cores and cross cores' is inserted. The halves are pressed together with a force of 330 N. The values are valid 5 minutes ore more after clamping. Parameters α_F and D_F are measured on toroid-wound halves. | | freq. | B | temp. | grad | de | |--|------------------------|------------|----------|--------|----------------| | | kHz | mT | °C | 3B8 | 3H1 | | A ₁ ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 6450 | 6450 | | μ _e ± 25% | 4 | ≤ 0,1 | 25 ± 1 | 2100 | 2100 | | α | 4 | ≤ 0,1 | 25 ± 1 | ≤ 15,8 | ≤ 14,4 | | $\frac{\tan \delta}{\mu_i} \times 10^6$ | 4 | ≤0,1 | 25 ± 1 | | ≤ 1,2 | | • | 100 | ≤ 0,1 | 25 ± 1 | | ≤ 7 | | $\eta_{\rm B} \times 10^{3}$ | 4 | 1,5 to 3,0 | 25 ± 1 | | ≤ 1,1 | | P(W) | 25 | 200* | 25 ± 1 | ≤ 1,5 | | | | | | 100 ± 1 | ≤ 1,9 | | | $\alpha_{\rm F} \times 10^6/{\rm K}$ | ≤ 100 | ≤ 0,1 | 5 to 25 | | + 0,5 to + 1,5 | | • | ≤ 100 | ≤ 0,1 | 25 to 55 | | + 0,5 to + 1,5 | | D _F x 10 ⁶ | ≤ 100 | ≤ 0,1 | 25 ± 1 | ≤8,0 | ≤ 4,3 | | $\beta_{\rm F} \times 10^6$, mea $\mu_{\rm e} = 300 \pm 10$ | | | | | | | Nxlo | | | | | | | at $\mu_e \times \frac{N \times I_o}{I_e}$ | $= 1,00 \times 10^{5}$ | A/m | | ≤ 120 | | | 'е | $= 1,55 \times 10^{5}$ | A/m | | ≤ 300 | | | | $= 2,20 \times 10^{5}$ | A/m | | ≤ 1050 | | Core sets pre-adjusted on A₁. | ۸. | corre-
sponding | catalogue number 4322 022 | | | | | |--|--|---------------------------|-------------------------|---------------------------|--|--| | A _L sponding nH μ _e value | | 3B8 without nut | 3H1 with nut | 3H1 without nut | | | | 400 ± 3%
630 ± 3%
1000 ± 3%
1600 ± 3%
2000 ± 10%
2500 ± 10% | 130
206
326
522
652
816 | • 53990
53100
53110 | 73280
73300
73320 | 53280
● 53300
53320 | | | 3H1 cores with A $_L \le$ 630 have a symmetrical air gap. 3H1 cores with A $_L \geqslant$ 1000 and all 3B8 cores have an asymmetrical air gap. - Determined with A_{CPmin} = 132 mm². - · Preferred type. ## Core halves without air gap. | Ferroxcube grade | catalogue number | |------------------|------------------| | • 3B8 | 4322 020 24030 | | 3H1 | 4322 020 24000 | ## Core halves with air gap. | Ferroxcube grade | air gap ∆ in mm | catalogue number | | |------------------|-----------------|------------------|--| | 3H1 | 0,02 ± 0,01 | 4322 020 24210 | | | 3H1 | 0,05 ± 0,015 | 4322 020 24220 | | | 3H1 | 0,15 ± 0,015 | 4322 020 24230 | | | 3H1 | 0,25 ± 0,015 | 4322 020 24240 | | ## COIL FORMER ## 16-pin coil former Catalogue number Material 4322 021 33430 phenolformaldehyde reinforced with glass fibre Window area 135 mm² Mean length of turn Max. temperature 77 mm 180 °C Packing quantity primary pack 20 storage pack 400, please order in multiples of these quantities. Solderability: resistant against dip-soldering at 400 °C for 2 s D.C. losses: $\frac{R_O}{L} = \frac{1}{\mu_e} \times \frac{1}{f_{cu}} \times 3,26 \times 10^3 \Omega/H$ Mass 4,3 g. # INDUCTANCE ADJUSTERS Table 1 | catalogue number | colour code | material | С | |------------------|-------------|----------|------| | 4322 021 39240 | yellow | cip | 5,20 | | 39280 | white | cip | 5,20 | | 39290 | grey | FXC | 5,20 | $\textbf{Table 2} \ \textbf{Catalogue numbers of recommended adjusters for typical A}_L \ \textbf{values and adjusting percentage.} \ \textbf{X35}.$ | core
material | AL | low | % | medium | % | high | % | |------------------|-----------------------------------|-------------------------|---|---|---------------------|----------------|----| | 3H1 | 315
400
630
1000
1600 | 4322 021 39240
39240 | 8 | 4322 021 3938
3928
3928
3929
3929 | 0 12
0 7
0 17 | 4322 021 39290 | 27 | ## MOUNTING PARTS - (1) Cover 4322 021 31160 - (2) Container 4322 021 31180 or 4322 021 33630 - (3) Spring 4322 021 30220 The cross core has been developed especially for transformers to be mounted on printed-wiring boards with a grid of 0,1 inch. An advantage of this construction is that the leading-out wires are soldered to the pins, which are directly mounted on the coil former. The pin length is sufficient for board thicknesses up to 2,3 mm. The printed-wiring board should be provided with holes of 1.3 ± 0.1 mm in diameter. The phosphor-bronze cover has four cut-out lips on the corners, consequently the cover acts as a spring at the same time. The cover is provided with a marking hole. The mark of the coil former (see drawing of coil former) has to be in one line with this hole. These markings facilitate the numbering of the soldering pins and the positioning on the printed-wiring board. It is recommended that the coil former be cemented in the lower cross core half or to use the spring (pos. 3) in order to obtain the most stable construction. Container 4322 021 31180 is identical to container 4322 021 33630, however the latter has four cut-outs (see outline on next page). Container 4322 021 31180 gives a better cross-talk attenuation, container 4322 021 33630 makes the X35 construction more suitable for a 2000 V test. Before bending the lips of the container, pressure should be exerted evenly on the four corners of the cover until the latter meets the container. The required force is approximately 330 N. After bending the lips, the core will have the correct tension. # CHARACTERISTIC CURVES ## INDUCTANCE AS A FUNCTION OF THE INDUCTION ## INDUCTANCE AS A FUNCTION OF THE FREQUENCY ## CORE LOSSES AS A FUNCTION OF THE INDUCTION ## CORE LOSSES AS A FUNCTION OF THE FREQUENCY # FXC 3B8 $A_L = f(\hat{B})$ at 16 kHz, no air gap. $P = f(\hat{B})$ at 16 kHz, no air gap. μ_{e} - α AND A_L CURVES ## D.C. SENSITIVITY AT 25 °C Inductance variation as a function of d.c. current. #### CROSSTALK ATTENUATION INDEX OF CATALOGUE NUMBERS # INDEX OF CATALOGUE NUMBERS The purpose of this index is to provide identification of the component type when only the catalogue number is known. Details of the particular component are given in the relevant page of this book. See also part C5. | catalogue number | page | description | |------------------|------|----------------------------| | 3522 200 03480 | 405 | Cross core half X22 in 3D3 | | 3522 200 03490 | 405 | Cross core half X22 in 4C6 | | 4312 021 29240 | 317 | Coil former RM6-S | | 4312 021 29250 | 318 | Coil former RM6-S | | 4313 021 04120 | 372 | Clip RM10 | | 4322 020 20900 | 100 | Potcore half P9/5 in 3D3 | | 4322 020 20940 | 100 | Potcore half P9/5 in 4C6 | | 4322 020 20980 | 100 | Potcore half P9/5 in 3H1 | | 4322 020 21010 | 107 | Potcore half P11/7 in 3H1 | | 4322 020 21020 | 107 | Potcore half P11/7 in 3D3 | | 4322 020 21140 | 107 | Potcore half P11/7 in 4C6 | | 4322 020 21260 | 120 | Potcore half P14/8 in 3H1 | | 4322 020 21270 | 120 | Potcore half P14/8 in 3D3 | | 4322 020 21350 | 120 | Potcore half P14/8 in 4C6 | | 4322 020 21400 | 120 | Potcore half P14/8 in 3B8 | | 4322 020 21510 | 137 | Potcore half P18/11 in 3H1 | | 4322 020 21520 | 137 | Potcore half P18/11 in 3D3 | | 4322 020 21610 | 137 | Potcore half P18/11 in 4C6 | | 4322 020 21650 | 137 | Potcore half P18/11
in 3H3 | | 4322 020 21670 | 137 | Potcore half P18/11 in 3B8 | | 4322 020 21760 | 155 | Potcore half P22/13 in 3H1 | | 4322 020 21770 | 155 | Potcore half P22/13 in 3D3 | | 4322 020 21830 | 155 | Potcore half P22/13 in 4C6 | | 4322 020 21940 | 155 | Potcore half P22/13 in 3B8 | | 4322 020 22010 | 173 | Potcore half P26/16 in 3H1 | | 4322 020 22020 | 173 | Potcore half P26/16 in 3D3 | | 4322 020 22110 | 173 | Potcore half P26/16 in 4C6 | | 4322 020 22220 | 173 | Potcore half P26/16 in 3B8 | | 4322 020 22260 | 193 | Potcore half P30/19 in 3H1 | | 4322 020 22270 | 193 | Potcore half P30/19 in 3D3 | | 4322 020 22390 | 193 | Potcore half P30/19 in 3B8 | | 4322 020 22510 | 209 | Potcore half P36/22 in 3H1 | | 4322 020 22520 | 209 | Potcore half P36/22 in 3D3 | | 4322 020 22610 | 209 | Potcore half P36/22 in 3B8 | | 4322 020 22760 | 225 | Potcore half P42/29 in 3H1 | | 4322 020 23000 | 237 | Potcore half P66/56 in 3E1 | | 4322 020 23510 | 405 | Cross core half X22 in 3H1 | | 4322 020 23540 | 405 | Cross core half X22 in 3B8 | | 4322 020 23710 | 405 | Cross core half X22 in 3H1 | | 4322 020 23720 | 405 | Cross core half X22 in 3H1 | | 4322 020 23730 | 405 | Cross core half X22 in 3H1 | | 4322 020 23740 | 405 | Cross core half X22 in 3H1 | | 4322 020 23750 | 419 | Cross core half X30 in 3H1 | | 4322 020 23780 | 419 | Cross core half X30 in 3B8 | | | | de | |------------------|------|----------------------------------| | catalogue number | page | description | | 4322 020 23960 | 419 | Cross core half X30 in 3H1 | | 4322 020 23970 | 419 | Cross core half X30 in 3H1 | | 4322 020 23980 | 419 | Cross core half X30 in 3H1 | | 4322 020 23990 | 419 | Cross core half X30 in 3H1 | | 4322 020 24000 | 435 | Cross core half X35 in 3H1 | | 4322 020 24030 | 435 | Cross core half X35 in 3B8 | | 4322 020 24210 | 435 | Cross core half X35 in 3H1 | | 4322 020 24220 | 435 | Cross core half X35 in 3H1 | | 4322 020 24230 | 435 | Cross core half X35 in 3H1 | | 4322 020 24240 | 435 | Cross core half X35 in 3H1 | | 4322 020 24260 | 414 | Cross core half X25 in 3H1 | | 4322 020 24270 | 414 | Cross core half X25 in 3D3 | | 4322 020 24370 | 414 | Cross core half X25 in 3H1 | | 4322 020 24380 | 414 | Cross core half X25 in 3D3 | | 4322 020 24470 | 414 | Cross core half X25 in 3H1 | | 4322 020 25020 | 316 | Square core half RM6-S in 3H1 | | 4322 020 25060 | 316 | Square core half RM6-S in 3D3 | | 4322 020 25080 | 316 | Square core half RM6-S in 4C6 | | 4322 020 25130 | 290 | Square core half RM6-R in 3H1 | | 4322 020 25140 | 290 | Square core half RM6-R in 3D3 | | 4322 020 25150 | 290 | Square core half RM6-R in 4C6 | | 4322 020 25190 | 290 | Square core half RM6-R in 3H3 | | 4322 020 25200 | 316 | Square core half RM6-S in 3H3 | | 4322 020 26510 | 258 | Square core half RM4 in 3H1 | | 4322 020 26600 | 268 | Square core half RM4/i in 3F3 | | 4322 020 26610 | 268 | Square core half RM4/i in 3E4 | | 4322 020 26760 | 272 | Square core half RM5 in 3H1 | | 4322 020 26770 | 272 | Square core half RM5 in 3D3 | | 4322 020 26780 | 272 | Square core half RM5 in 4C6 | | 4322 020 26790 | 272 | Square core half RM5 in 3H3 | | 4322 020 27080 | 272 | Square core half RM5 in 3B8 | | 4322 020 27100 | 285 | Square core half RM5/i in 3C85 | | 4322 020 27110 | 285 | Square core half RM5/i in 3F3 | | 4322 020 27120 | 285 | Square core half RM5/i in 3E4 | | 4322 020 27130 | 285 | Square core half RM5/i in 3E5 | | 4322 020 27260 | 340 | Square core half RM8 in 3H1 | | 4322 020 27270 | 340 | Square core half RM8 in 3D3 | | 4322 020 27280 | 340 | Square core half RM8 in 4C6 | | 4322 020 27390 | 340 | Square core half RM8 in 3H3 | | 4322 020 27420 | 340 | Square core half RM8 in 3B8 | | 4322 020 27630 | 290 | Square core half RM6-R in 3B8 | | 4322 020 27930 | 316 | Square core half RM6-S in 3B8 | | 4322 020 27950 | 333 | Square core half RM6-S/i in 3C85 | | 4322 020 27970 | 333 | Square core half RM6-S/i in 3F3 | | 4322 020 28100 | 340 | Square core half RM8 in 3C85 | | 4322 020 28170 | 361 | Square core half RM8/i in 3C85 | | 4322 020 28190 | 361 | Square core half RM8/i in 3E4 | | 4322 020 28220 | 361 | Square core half RM8/i in 3F3 | | 4322 020 28230 | 361 | Square core half RM8/i in 3E5 | | 4322 020 28320 | 387 | Square core half RM14 in 3B8 | | 4322 020 28330 | 387 | Square core half RM14 in 3C85 | | 4322 020 28340 | 397 | Square core half RM14/i in 3C85 | | 4322 020 28370 | 367 | Square core half RM10 in 3B8 | | 4322 020 28380 | 367 | Square core half RM10 in 3C85 | | 4322 020 28400 | 367 | Square core half RM10 in 3H1 | | 4322 020 28430 | 378 | Square core half RM10/i in 3C85 | | 1355 050 50430 | 3,0 | Page Core Herr Milolt III 2002 | 451 ``` catalogue number page description 4322 020 28450 378 Square core half RM10/i in 3F3 4322 020 28490 378 Square core half RM10/i in 3E4 4322 020 28530 312 Square core half RM6/i in 3C85 4322 020 28550 312 Square core half RM6/i in 3F3 4322 020 28560 312 Square core half RM6/i in 3E4 4322 020 28570 312 Square core half RM6/i in 3E5 4322 020 28760 107 Potcore half P11/7 in 3B8 4322 020 54210 243 Potcore half 5,6 x 3,6 in 3D3 4322 020 54300 94 Potcore half P5,8/2,5 in 3H1 4322 020 54400 Potcore half P5,8/3,3 in 3H1 95 4322 020 54510 245 Potcore half 7,4 x 3,9 in 3D3 4322 020 54600 97 Potcore half 7,4 x 4,2 in 3H1 4322 020 54610 97 Potcore half 7,4 x 4,2 in 3H1 4322 020 54620 97 Potcore half 7,4 x 4,2 in 3H1 4322 020 54710 247 Potcore half 9,4 x 4,8 in 3D3 4322 020 54800 249 Potcore half 14 x 7,5 in 3H1 4322 020 54900 251 Potcore half 26 x 9,2 in 3H1 4322 020 55010 382 Square core half RM12/i in 3C85 4322 020 55020 382 Square core half RM12/i in 3F3 4322 020 55030 382 Square core half RM12/i in 3E4 4322 020 55250 378 Square core half RM10/i in 3E5 4322 020 55500 383 Square core half RM6-S/i in 3E4 4322 020 55510 383 Square core half RM6-S/i in 3E5 4322 021 13220 209 Pre-adjusted potcore set P36/22 4322 021 30040 410 Container for X22 4322 021 30140 72 Nut for adjuster P14/8, P18/11, RM6-R, RM6-S, X22 4322 021 30150 Nut for adjuster P22/13, RM8, X30 72 4322 021 30160 72 Nut for adjuster P26/16, P30/19, P36/22, P42/29, RM10, X35 4322 021 30180 112 Tag plate P11/7 4322 021 30210 423 Spring X30 4322 021 30220 439 Spring X35 4322 021 30230 410 Cover for X22 4322 021 30240 108 Coil former P11/7 4322 021 30250 121 Coil former P14/8: 14 x 7.5 4322 021 30260 122 Coil former P14/8 4322 021 30270 138 Coil former P18/11 4322 021 30280 139 Coil former P18/11 4322 021 30290 139 Coil former P18/11 4322 021 30300 156 Coil former P22/13 4322 021 30310 157 Coil former P22/13 4322 021 30320 157 Coil former P22/13 4322 021 30330 174 Coil former P26/16 4322 021 30340 175 Coil former P26/16 4322 021 30350 175 Coil former P26/16 4322 021 30360 194 Coil former P30/19 4322 021 30370 195 Coil former P30/19 4322 021 30380 195 Coil former P30/19 4322 021 30390 210 Coil former P36/22 4322 021 30400 211 Coil former P36/22 4322 021 30410 211 Coil former P36/22 4322 021 30420 226 Coil former P42/29 4322 021 30430 227 Coil former P42/29 4322 021 30440 126 Tag plate P14/8 4322 021 30450 143 Tag plate P18/11 4322 021 30460 162 Tag plate P22/13 4322 021 30470 180 Tag plate P26/16 ``` 4322 021 33530 389 Coil former RM14 ``` catalogue number page description 4322 021 30480 199 Tag plate P30/19 4322 021 30490 215 Tag plate P36/22 4322 021 30500 231 Tag plate P42/29 4322 021 30510 112 Container P11/7 4322 021 30520 126 Container P14/8 144 4322 021 30530 Container P18/11 4322 021 30540 163 Container P22/13 4322 021 30550 181 Container P26/16 4322 021 30560 200 Container P30/19 4322 021 30570 216 Container P36/22 4322 021 30580 232 Container P42/29 4322 021 30620 113 Spring P11/7 4322 021 30630 127 Spring P14/8 4322 021 30640 145 Spring P18/11 4322 021 30650 164 Spring P22/13 4322 021 30660 182 Spring P26/16 4322 021 30670 201 Spring P30/19 4322 021 30680 Spring P36/22 217 4322 021 30690 232 Spring P42/29 4322 021 30710 145 Nut P14/8, P18/11, P22/13, P26/16, P30/19, P36/22, P42/29 4322 021 30720 145 Fixing bush P18/11, P22/13, P26/16, P30/19, P36/22, P42/29 4322 021 31150 423 Cover X30 4322 021 31160 439 Cover X35 4322 021 31170 423 Container X30 4322 021 31180 439 Container X35 4322 021 31320 239 Coil former P66/56 4322 021 31630 72 Nut for adjuster P9/5, P11/7 4322 021 31700 101 Coil former P9/5; 9,4 x 4,8 4322 021 31780 298 Clip RM6-R, RM6-S 4322 021 31840 348 Clip RM8 4322 021 31850 72 Nut for adjuster RM4. RM5 4322 021 31900 262 Clip RM4, RM5 4322 021 32210 259 Coil former RM4 4322 021 32280 291 Coil former RM6-R 4322 021 32290 292 Coil former RM6-R 4322 021 32300 291 Coil former RM6-R 4322 021 32310 292 Coil former RM6-R 4322 021 32360 341 Coil former RM8 4322 021 32380 341 Coil former RM8 4322 021 32390 341 Coil former RM8 4322 021 32420 Coil former RM8 341 4322 021 32440 368 Coil former RM10 4322 021 32450 368 Coil former RM10 4322 021 32460 Coil former RM10 368 4322 021 32470 368 Coil former RM10 4322 021 32790 548 Coil former RM10 4322 021 32830 273 Coil former RM5 4322 021 32840 Coil former RM5 274 4322 021 32870 406 Coil former X22 4322 021 32940 317 Coil former RM6-S 4322 021 32950 318 Coil former RM6-S 4322 021 32990 98 Coil former P7,4/4,2; 7,4 \times 3,9 4322 021 33420 420 Coil former X30 4322 021 33430 436 Coil former X35 4322 021 33520 389 Coil former RM14 ``` ``` description catalogue number page 4322 021 33540 244 Coil former 5,6 x 3,6 4322 021 33550 Coil former P5,8/3,3 96 4322 021 33620 423 Container X30 4322 021 33630 439 Container X35 4322 021 33690 392 Clip RM14 4322 021 33700 252 Coil former 26 x 9,2 4322 021 34040 334 Coil former RM6-S/i 4322 021 34050 362 Coil former RM8/i 4322 021 34060 379 Coil former RM10/i 4322 021 34070 399 Coil former RM14 4322 021 34110 384 Coil former RM12 4322 021 34170 384 Clip RM12 4322 021 34220 399 Clip RM14 4322 021 38320 196 Inductance adjuster P30/19, RM10 4322 021 38340 196 Inductance adjuster P30/19, RM10 4322 021 38380 196 Inductance adjuster P30/19, RM10, X35 4322 021 38390 196 Inductance adjuster P30/19,
RM10, X35 4322 021 38400 158 Inductance adjuster P22/13, RM8, X30 4322 021 38410 158 Inductance adjuster P22/13, RM8, X30 4322 021 38420 158 Inductance adjuster P22/13, RM8 4322 021 38430 158 Inductance adjuster P22/13, RM8, X30 4322 021 38440 158 Inductance adjuster P22/13, RM8, X30 4322 021 38450 158 Inductance adjuster P22/13, RM8 4322 021 38480 158 Inductance adjuster P22/13, RM8, X30 4322 021 38490 158 Inductance adjuster P22/13, RM8, X30 4322 021 38600 295 Inductance adjuster RM6-R, RM6-S, X22 4322 021 38610 295 Inductance adjuster RM6-R, RM6-S, X22 4322 021 295 38620 Inductance adjuster RM6-R, RM6-S, X22 4322 021 38640 295 Inductance adjuster RM6-R, RM6-S, X22 4322 021 38650 295 Inductance adjuster RM6-R, RM6-S, X22 4322 021 38670 295 Inductance adjuster RM6-R, RM6-S, X22 4322 021 38680 295 Inductance adjuster RM6-R, RM6-S, X22 4322 021 38690 295 Inductance adjuster RM6-R, RM6-S, X22 4322 021 38700 260 Inductance adjuster RM4, RM5 4322 021 38710 260 Inductance adjuster RM4, RM5 4322 021 38720 260 Inductance adjuster RM4, RM5 4322 021 38750 260 Inductance adjuster RM4, RM5 4322 021 38780 260 Inductance adjuster RM4, RM5 4322 021 38790 260 Inductance adjuster RM4, RM5 4322 021 39240 212 Inductance adjuster P36/22, P42/29, X35 4322 021 39280 212 Inductance adjuster P36/22, P42/29, X35 4322 021 39290 212 Inductance adjuster P36/22, P42/29, X35 4322 021 39410 176 Inductance adjuster P26/16 4322 021 39420 176 Inductance adjuster P26/16 4322 021 39450 176 Inductance adjuster P26/16 4322 021 39480 176 Inductance adjuster P26/16 4322 021 39490 176 Inductance adjuster P26/16 4322 021 39600 140 Inductance adjuster P18/11 4322 021 39610 140 Inductance adjuster P18/11 4322 021 39620 140 Inductance adjuster P18/11 4322 021 39630 140 Inductance adjuster P18/11 4322 021 39640 140 Inductance adjuster P18/11 4322 021 39650 140 Inductance adjuster P18/11 4322 021 39670 140 Inductance adjuster P18/11 4322 021 39680 140 Inductance adjuster P18/11 4322 021 39700 123 Inductance adjuster P14/8 ``` | catalogue number | page | description | |----------------------------------|------------|--| | 4322 021 39710 | 123 | Inductance adjuster P14/8 | | 4322 021 39720 | 123 | Inductance adjuster P14/8 | | 4322 021 39730 | 123 | Inductance adjuster P14/8 | | 4322 021 39740 | 123 | Inductance adjuster P14/8 | | 4322 021 39750 | 123 | Inductance adjuster P14/8 | | 4322 021 39780 | 123 | Inductance adjuster P14/8 | | 4322 021 39790
4322 021 39810 | 123
102 | Inductance adjuster P14/8 Inductance adjuster P9/5, P11/7 | | 4322 021 39840 | 102 | Inductance adjuster P9/5, P11/7 | | 4322 021 39850 | 102 | Inductance adjuster P9/5, P11/7 | | 4322 021 39890 | 102 | Inductance adjuster P9/5, P11/7 | | 4322 022 00 | 107 | Pre-adjusted potcore set P11/7 | | 4322 022 01 | 107 | Pre-adjusted potcore set P11/7 | | 4322 022 02 | 120 | Pre-adjusted potcore set P14/8 | | 4322 022 03 | 120 | Pre-adjusted potcore set P14/8 | | 4322 022 04 | 137 | Pre-adjusted potcore set P18/11 | | 4322 022 05 | 137 | Pre-adjusted potcore set P18/11 | | 4322 022 06 | 155 | Pre-adjusted potcore set P22/13 | | 4322 022 07 | 155 | Pre-adjusted potcore set P22/13 | | 4322 022 08 | 173 | Pre-adjusted potcore set P26/16 | | 4322 022 09 | 173 | Pre-adjusted potcore set P26/16 | | 4322 022 10 | 193 | Pre-adjusted potcore set P30/19 | | 4322 022 11 | 193 | Pre-adjusted potcore set P30/19 | | 4322 022 12 | 209 | Pre-adjusted potcore set P36/22 | | 4322 022 13 | 209 | Pre-adjusted potcore set P36/22 | | 4322 022 14 | 225 | Pre-adjusted potcore set P42/29 | | 4322 022 19 | 418 | Pre-adjusted cross core set X30 | | 4322 022 20 | 107 | Pre-adjusted potcore set P11/7 | | 4322 022 21 | 107 | Pre-adjusted potcore set P11/7 | | 4322 022 22 | 120 | Pre-adjusted potcore set P14/8 | | 4322 022 23 | 120 | Pre-adjusted potcore set P14/8 | | 4322 022 24 | 137 | Pre-adjusted potcore set P18/11 | | 4322 022 25 | 137 | Pre-adjusted potcore set P18/11 | | 4322 022 26 | 155 | Pre-adjusted potcore set P22/13 | | 4322 022 27
4322 022 28 | 155 | Pre-adjusted potcore set P22/13 | | 4322 022 28 | 173
173 | Pre-adjusted potcore set P26/16
Pre-adjusted potcore set P26/16 | | 4322 022 29 | 193 | Pre-adjusted potcore set P20/10 | | 4322 022 30 | 193 | Pre-adjusted potcore set P30/19 | | 4322 022 31 | 209 | Pre-adjusted potcore set P36/22 | | 4322 022 33 | 209 | Pre-adjusted potcore set P36/22 | | 4322 022 34 | 225 | Pre-adjusted potcore set P42/29 | | 4322 022 35 | 225 | Pre-adjusted potcore set P42/29 | | 4322 022 39 | 418 | Pre-adjusted cross core set X30 | | 4322 022 41 | 100 | Pre-adjusted potcore set P9/5 | | 4322 022 45 | 405 | Pre-adjusted cross core set X22 | | 4322 022 47 | 316 | Pre-adjusted square core set RM6-S | | 4322 022 50 | 367 | Pre-adjusted square core set RM10 | | 4322 022 51 | 340 | Pre-adjusted square core set RM8 | | 4322 022 53 | 434 | Pre-adjusted cross core set X35 | | 4322 022 54 | 290 | Pre-adjusted square core set RM6-R | | 4322 022 55 | 290 | Pre-adjusted square core set RM6-R | | 4322 022 56 | 387 | Pre-adjusted square core set RM14 | | 4322 022 57 | 258 | Pre-adjusted square core set RM4 | | 4322 022 59 | 272 | Pre-adjusted square core set RM5 | | 4322 022 61 | 100 | Pre-adjusted potcore set P9/5 | | catalogue number | page | description | |------------------|------|---| | 4322 022 65 | 405 | Pre-adjusted cross core set X22 | | 4322 022 67 | 316 | Pre-adjusted square core set RM6-S | | 4322 022 70 | 367 | Pre-adjusted square core set RM10 | | 4322 022 71 | 340 | Pre-adjusted square core set RM8 | | 4322 022 73 | 434 | Pre-adjusted cross core set X35 | | 4322 022 75 | 290 | Pre-adjusted square core set RM6-R | | 4322 022 77 | 258 | Pre-adjusted square core set RM4 | | 4322 022 79 | 272 | Pre-adjusted square core set RM5 | | 4322 025 01 | 340 | Pre-adjusted square core set RM8 | | 4322 025 03 | 387 | Pre-adjusted square core set RM14 | | 4322 025 05 | 333 | Pre-adjusted square core set RM6-S/i | | 4322 025 06 | 382 | Pre-adjusted square core set RM12/i | | 4322 058 00000 | 84 | Tool drawing for P14/8 | | 4322 058 00010 | 84 | Tool drawing for P18/11 | | 4322 058 00020 | 84 | Tool drawing for P22/13 | | 4322 058 00030 | 84 | Tool drawing for P26/16 | | 4322 058 00040 | 84 | Tool drawing for P30/19 | | 4322 058 00050 | 84 | Tool drawing for P36/22 | | 4322 058 00060 | 84 | Tool drawing for P42/29 | | 4322 058 00070 | 84 | Tool drawing for P11/7 | | 4322 058 00080 | 84 | Tool drawing for X22 | | 4322 058 00090 | 84 | Tool drawing for X30 | | 4322 058 00100 | 84 | Tool drawing for X35 | | 4322 058 00150 | 84 | Tool drawing for RM6-R/RM6-S | | 4322 058 00160 | 84 | Tool drawing for RM8 | | 4322 058 00170 | 84 | Tool drawing for RM5 | | 4322 058 00180 | 84 | Tool drawing for RM4 | | 4322 058 00190 | 84 | Tool drawing for RM10 | | 4322 058 00200 | 84 | Tool drawing for RM14 | | 4322 058 03260 | 71 | Adjustment tool for P9/5,P11/7,P14/8,P18/11,P22/13, | | | • • | RM4, RM5, RM6-S | | 4322 058 03270 | 71 | Adjusted tool for P26/16,P30/19,P42/29,RM8,RM10 | | 7622 300 13701 | 55 | Standard coil to X25 | | 7622 300 50101 | 55 | Standard coil to RM4 | | 7622 300 50201 | 55 | Standard coil to RM5 | | 7622 300 50301 | 55 | Standard coil to RM6-R/RM6-S | | 7622 300 50401 | 55 | Standard coil to RM8 | | 7622 300 50501 | 55 | Standard coil to RM10 | | 7622 300 50601 | 55 | Standard coil to RM14 | | 7622 301 00101 | 55 | Standard coil to P9/5 | | 7622 301 00301 | 55 | Standard coil to P11/7 | | 7622 301 00501 | 55 | Standard coil to P14/8 | | 7622 301 00701 | 55 | Standard coil to P18/11 | | 7622 301 00901 | 55 | Standard coil to P22/13 | | 7622 301 01101 | 55 | Standard coil to P26/16 | | 7622 301 01301 | 55 | Standard coil to P30/19 | | 7622 301 01501 | 55 | Standard coil to P36/22 | | 7622 301 01701 | 55 | Standard coil to P42/29 | | 7622 301 01901 | 55 | Standard coil to P66/56 | | 7622 301 04001 | 55 | Standard coil to X22 | | 7622 301 04101 | 55 | Standard coil to X30 | | 7622 301 04201 | 55 | Standard coil to X35 | | | | | # Electronic components and materials for professional, industrial and consumer uses from the world-wide Philips Group of Companies Argentina: PHILIPS ARGENTINA S.A., Div. Elcoma, Vedia 3892, 1430 BUENOS AIRES, Tel. 541-7141/7242/7343/7444/7545. Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 11 Waltham Street, ARTARMON, N.S.W. 2064, Tel. (02) 439 3322. Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE INDUSTRIE G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111. Belgium: N.V. PHILIPS & MBLE ASSOCIATED, 9 rue du Pavillon, B-1030 BRUXELLES, Tel. (02) 2427400. Brazil: IBRAPE, Caixa Postal 7383, Av. Brigadeiro Faria Lima, 1735 SAO PAULO, SP, Tel. (011) 211-2600. Canada: PHILIPS ELECTRONICS LTD., Elcoma Division, 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161. Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001. Colombia: IND. PHILIPS DE COLOMBIA S.A., c/o IPRELENSO LTD., Cra. 21, No. 56-17, BOGOTA, D.E., Tel. 2497624. Denmark: MINIWATT A/S, Strandlodsvej 2, P.O. Box 1919, DK 2300 COPENHAGEN S, Tel. (01) 541133. Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271. France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 4338 8000. Germany (Fed. Republic): VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-0. Greece: PHILIPS HELLENIQUE S.A., Elcoma Division, 54, Syngru Av., ATHENS 11742, Tel. 9215311/319. Hong Kong: PHILIPS HONG KONG LTD., Elcoma Div., 15/F Philips Ind. Bldg., 24-28 Kung Yip St., KWAI CHUNG, Tel. (0)-245121. India: PEICO ELECTRONIOS & ELECTRICALS LTD., Elcoma Dept., Band Box Building, 254-D Dr. Annie Besant Rd., BOMBAY - 400 025, Tel. 4930311/4930590. Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Div., Setiabudi II Building, 6th Fl., Jalan H.R. Rasuna Said
(P.O. Box 223/KBY) Kuningan, JAKARTA – Selatan, Tel. 512572. Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355. Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6752.1. Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611. (IC Products) SIGNETICS JAPAN LTD., 8-7 Sanbancho Chiyoda-ku, TOKYO 102, Tel. (03) 230-1521. Korea (Republic of): PHILIPS ELECTRONICS (KOREA) LTD., Elcoma Div., Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. 794-5011. Malaysia: PHILIPS MALAYSIA SDN. BERHAD, No. 4 Persiaran Barat, Petaling Jaya, P.O.B. 2163, KUALA LUMPUR, Selangor, Tel. 774411. Mexico: ELECTRONICA, S.A de C.V., Carr. México-Toluca km. 62.5, TOLUCA, Edo. de México 50140, Tel. Toluca 91 (721) 613-00. Netherlands: PHILIPS NEDERLAND, Marktgroep Elonco, Postbus 90050, 5600 PB EINDHOVEN, Tel. (040) 793333. New Zealand: PHILIPS NEW ZEALAND LTD., Elcoma Division, 110 Mt. Eden Road, C.P.O. Box 1041, AUCKLAND, Tel. 605-914. Norway: NORSK A/S PHILIPS, Electronica Dept., Sandstuveien 70, OSLO 6, Tel. 680200. Peru: CADESA, Av. Alfonso Ugarte 1268, LIMA 5, Tel. 326070. Philippines: PHILIPS INDUSTRIAL DEV. INC., 2246 Pasong Tamo, P.O. Box 911, Makati Comm. Centre, MAKATI-RIZAL 3116, Tel. 86-89-51 to 59. Portugal: PHILIPS PORTUGUESA S.A.R.L., Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex, Tel. 683121. Singapore: PHILIPS PROJECT DEV. (Singapore) PTE LTD., Elcoma Div., Lorong 1, Toa Payoh, SINGAPORE 1231, Tel. 3502000. South Africa: EDAC (PTY.) LTD., 3rd Floor Rainer House, Upper Railway Rd. & Ove St., New Doornfontein, JOHANNESBURG 2001, Tel. 614-2362/9. Spain: MINIWATT S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12. Sweden: PHILIPS KOMPONENTER A.B., Lidingövägen 50, S-11584 STOCKHOLM 27, Tel. 08/7821000. Switzerland: PHILIPS A.G., Elcoma Dept., Allmendstrasse 140-142, CH-8027 ZÜRICH, Tel. 01-4882211. Taiwan: PHILIPS TAIWAN LTD., 150 Tun Hua North Road, P.O. Box 22978, TAIPEI, Taiwan, Tel. 7120500. Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Road, P.O. Box 961, BANGKOK, Tel. 233-6330-9. Thailand: PHILIPS ELECTRICAL CO. OF THAILAND LTD., 283 Silom Hoad, P.O. Box 961, BANGKOK, Tel. 233-6330-9. Turkey: TÜRK PHILIPS TICARET A.S., Elcoma Department, Inönü Cad, No. 78-80, P.K.504, 80074 ISTANBUL, Tel. 435910. United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-5806633. United States: (Active Devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000. (Passive Devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000. (Passive Devices & Electromechanical Devices) CENTRALAB INC., 5855 N, Glen Park Rd., MILWAUKEE, WI 53201, Tel. (414)228-7380. (IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 991-2000. Uruguay: LUZILECTRON S.A., Avda Uruguay 1287, P.O. Box 907, MONTEVIDEO, Tel. 914321. Venezuela: IND. VENEZOLANAS PHILIPS S.A., c/o MAGNETICA S.A., Calle 6, Ed. Las Tres Jotas, App. Post. 78117, CARACAS, Tel. (02) 2393931. For all other countries apply to: Philips Electronic Components and Materials Division, International Business Relations, Building BAE, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Tel. +3140723304, Telex 35000 phtcnl AS51 © Philips Export B.V. 1986 This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be reproduced in any way, in whole or in part, without the written consent of the publisher. Printed in The Netherlands 9398 137 80011