PHILIPS

Data handbook

Electronic components and materials

Semiconductors and integrated circuits

Part 5b March 1977

Consumer ICs

SEMICONDUCTORS AND INTEGRATED CIRCUITS

General

Radio - Audio

Television
Index and maintenance type list

DATA HANDBOOK SYSTEM

Our Data Handbook System is a comprehensive source of information on electronic com ponents, subassemblies and materials; it is made up of three series of handbooks each comprising several parts.

ELECTRON TUBES
 BLUE
 SEMICONDUCTORS AND INTEGRATED CIRCUITS RED
 COAPONEATS ANDD MATETEALS

The several parts contain all pertinent data available at the time of publication, and each is revised and reissued periodically.

Where ratings or specifications differ from those published in the preceding edition they are pointed out by arrows. Where application information is given it is advisory and does not form part of the product specification.

If you need confirmation that the published data about any of our products are the latest available, please cohtact our representative. He is at your service and will be glad to answer your inquiries.

This information is furnished for guidance, and with no guarantee as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice: it is not to be reproduced in any way, in whole or in part without the written consent of the publisher.

ELECTRON TUBES (BLUE SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1a	Transmitting tubes for communication		December 1975
	Tubes for r.f. heating Types PE05	25 - TBW15/25	
Part 1b	Transmitting tubes for communication		January 1976
	Tubes for r.f. heating		
	Amplifier circuit assemblies		
Part 2	Microwave products		May 1976
	Communication magnetrons	Diodes	
	Magnetrons for microwave heating	Triodes -	
	Klystrons	T-R switches	
	Travelling-wave tubes	Microwave semiconductor devices	
	Isolators, Circulators		
Part 3	Special Quality tubes Miscellaneous devices		January 1975
		,	
Part 4	Receiving tubes		March 1975
Part 5a	Cathode-ray tubes		August 1976
Part 5b	Camera tubes Image intensifier tubes		May 1975
Part 6	Products for nuclear technology	Geiger-Müller tubes	January 1977
	Channel electron multipliers Neutron tubes		
Part 7a	Gas-filled tubes		March 1977
	Thyratrons Industrial rectifying tubes	Ignitrons	
		High-voltage rectifying tubes	
Part 7b	Gas-filled tubes		March 1977
	Segment indicator tubes	Switching diodes Dry reed contact units	
	Indicator tubes		
Part 8	TV picture tubes		October 1975
Part 9	Photomultiplier tubes Phototubes (diodes)		June 1976

SEMICONDUCTORS AND INTEGRATED CIRCUITS (RED SERIES)

This series consists of the following parts, issued on the dates indicated.

Part 1a	Rectifier diodes, thyristors, triacs	
	Rectifier diodes	Rectifier stacks
	Voltage regulator diodes $(>1,5 \mathrm{~W})$	Thyristors
	Transient suppressor diodes	Triacs

Part 1b	Diodes
	Small signal germanium diodes
	Small signal silicon diodes
	Special diodes

Fari 2 Low-irequency transistors

Part 3 High-frequency and switching transistors
Part 4a Special semiconductors
June 1976
Transmitting transistors
Microwave devices
Field-effect transistors

Part 4b	Devices for optoelectronics
	Photosensitive diodes and transistors
	Light emitting diodes
	Displays

Dual transistors
Microminiature devices for
thick- and thin-film circuits
July 1976
Photocouplers
Infrared sensitive devices
Photoconductive devices
Part 5a Professional analogue integrated circuits
November 1976

Part 5b Consumer integrated circuits

March 1977
Radio - Audio
Television
Part 6 Digital integrated circuits
May 1976
LOCMOS HE family
GZ family

COMPONENTS AND MATERIALS (GREEN SERIES)

This series consists of the following parts, issued on the dates indicated.

April 1976
Ceramic capacitors
Variable capacitors
November 1975

Part 1	Functional units, Input/output devices, Peripheral devices
	High noise immunity logic FZ/30-Se
	Circuit blocks 40 -Series and CSA 70
Counter modules 50-Series	
Part 2a	NORbits 60-Series, 61-Series
Resistors	
	Fixed resistors
	Variable resistors
	Voltage dependent resistors (VDR)
	Light dependent resistors (LDR)

Part 2b Capacitors

Electrolytic and solid capacitors
Paper capacitors and film capacitors

Part 3 Radio, Audio, Television
 FM tuners
 Loudspeakers
 Television tuners and aerial input assemblies

High noise immunity logic FZ/30-Series
Circuit blocks 40 -Series and CSA 70
Counter modules 50 -Series
NORbits 60-Series, 61-Series

Fixed resistors
Variable resistors
Light dependent resistors (LDR)

Part 4a Soft ferrites
Ferrites for radio, audio and television Beads and chokes

Circuit blocks 90-Series Input/output devices
Hybrid integrated circuits Peripheral devices

February 1976
Negative temperature coefficient thermistors (NTC)
Positive temperature coefficient thermistors (PTC)
Test switches

January 1977
Components for black and white television
Components for colour television

October 1976
Ferroxcube potcores and square cores Ferroxcube transformer cores

Part 4b Piezoelectric ceramics, Permanent magnet materials
December 1976
Part 5 Ferrite core memory products
July 1975
Ferroxcube memory cores Matrix planes and stacks
Part 6 Electric motors and accessories.
September 1975
Small synchronous motors
Stepper motors
Part 7 Circuit blocks
September 1971
Circuit blocks 100 kHz -Series
Circuit blocks 1-Series
Circuit blocks 10-Series

Part 8	Variable mains transformers	February 1977
Part 9	Piezoelectric quartz devices	March 1976
Part 10	Connectors	November 1975

General

Preface
Type designation
Package outlines
Ratings
Letter symbols

PREFACE TO DATA OF INTEGRATED CIRCUITS

1. General

The published data comprise particulars needed by designers of equipment in which integrated circuits are to be incorporated, and criteria on which to base acceptance testing of such circuits. For ease of reference, the data on each circuit are groupcd according to the several headings discuissed veluw.
The limiting values quoted under the headings Characteristics and Package Outline may be taken as references for acceptance testing.
Values cited as typical are given for information only.
For an explanation of the type designation code, see the section Type Designation. For an explanation of the letter symbols used in designating terminals and performance of integrated circuits, and the electrical and logic quantities pertaining to them, see the section Letter Symbols.
2. Quick Reference Data

The main properties of the integrated circuit summarized for quick reference
3. Ratings

Ratings are limits beyond which the serviceability of the integrated circuit may be impaired. The ratings given here are in accordance with the Absolute Maximum System as defined in publication no. 134 of the International Electrical Commission; for further details see item 2 of the section Rating Systems.
If a circuit is used under the conditions set forthin the sections Characteristics and Additional System Design Data, its operation within the ratings is ensured.
4. Circuit diagram

Circuit diagrams and logic symbols are given to illustrate the circuit function. The diagrams show only essential elements, parasitic elements due to the method of manufacture normally being omitted. The manufacturer reserves the right to make minor changes to improve manufacturability.
5. System Design Data and Additional System Design Data

System Design Data normally derived from the Characteristics and based on worst-case assumptions as to temperature, loading and supply voltage, are quoted for the guidance of equipment designers. Supplementary information derived from measurements on large production samples may be given under Additional System Design Data.

6. Application information

Under this heading, practical circuit connections and the resulting performance are described. Care has been taken to ensure the accuracy and completeness of the information given, but no liability therefor is assumed, nor is licence under any patent implied.
7. Characteristics

Characteristics are measurable properties of the integrated circuit described. Under a specific set of test conditions compliance with limit values given under this heading establishes the specified performance of the circuit; this can be used as a criterion for acceptance testing.
Values cited as typical are given for information only and are not subject to any form of guarantee.
8. Logic symbols (digital circuits)

Graphical logic symbols accord with MIL standard 806B.
Supplementary drawings correlate logic functions with pin locations as a help to laying out printed circuit boards.

9. Outline drawing and pin 1 identification

Dimensional drawings indicate the pin numbering of circuit packages.
Dual in-line packages have a notch at one end to identify pin 1.
Take care not to mistake adventitious moulding marks for the pin 1 identification. Flat packs identify pin 1 by a small projection on the pin itself and/or by a dot on the body of the package.
Metal can encapsulations identify pin 1 by a tab on the rim of the can.

PRO ELECTRON TYPE DESIGNATION CODE

The type number consists of three letters followed by a four digit serial number (sometimes augmented by a version letter).

First two letters:

Family circuits
The first two letters identify the family.
Solitary circuits
The first letter identifies the circuit as:
S-digital
T-analogue
U-mixed analogue/digital
The second letter has no special significance.
The third letter indicates the operating ambient temperature range or another significant characteristic. Letters B to F stand for the following temperature ranges: ${ }^{1}$)

$$
\begin{aligned}
& \text { B: } \quad 0 \text { to }+70{ }^{\circ}{ }^{\circ} \mathrm{C} \\
& \text { C: }-55 \text { to }+125 \\
& \text { D: }-25 \text { to }+70 \\
& \text { D }{ }^{\circ} \mathrm{C} \\
& \text { E: }-25 \text { to }+85 \\
& \text { F: }-40 \text { to }+85 \\
& { }^{\circ} \mathrm{C} \\
& \hline
\end{aligned}
$$

When no temperature range is specified, the third letter is A. Other third letters identify special family versions or treatments (e.g. radiation hardened).
The serial number following the three letters may be either a 4 -digit number or a proprietary type designation comprising a combination of letters and digits. Proprietary type designations consisting of less than 4 characters are extended to 4 by putting zeros (0) before them.

[^0]Package outlines

14-LEAD DUAL IN-LINE; PLASTIC (SOT-27)

top view
\oplus Positional accuracy.
(M) Maximum Material Condition.
A) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
B) Lead spacing tolerances apply from seating plane to the line indicated.
C) Index may be horizontal as shown, or vertical.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260{ }^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD DUAL IN-LINE; PLASTIC (SOT-38)

top view

Dimensions in mm

\oplus Positional accuracy.
(M) Maximum Material Condition.
A) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
B) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-38M and N)

Dimensions in mm

Positional accuracy.
(M) Maximum Material Condition.
A) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
B) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260{ }^{\circ} \mathrm{C}$ is the maximum aliowable temperature of the solder; it must not be in contact with the joint for more than 5 sec onds. The total contact time of successive . solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD DUAL IN-LINE; PLASTIC POWER (SOT-69B)

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD QUADRUPLE IN-LINE; PLASTIC (SOT-58)

Dimensions in $\mathbf{~ m m}$
\dagger Positional accuracy.
(M) Maximum Material Condition.
A) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
B) Lead spacing tolerances apply from seating plane to the line indicated.

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400{ }^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

16-LEAD QUADRUPLE IN-LINE; PLASTIC POWER (SOT-76B)

SOLDERING

1. By hand

Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below $300^{\circ} \mathrm{C}$ it must not be in contact for more than 10 seconds; if between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, for not more than 5 seconds.
2. By dip or wave
$260^{\circ} \mathrm{C}$ is the maximum allowable temperature of the solder; it must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the allowable limit.
3. Repairing soldered joints

The same precautions and limits apply as in (1) above.

9-LEAD SINGLE IN-LINE; PLASTIC (SOT-IIOA)

Dimensions in mm
Positional accuracy.
(M) Maximum Material Condition.
A) Centre-lines of all leads are within $\pm 0,127 \mathrm{~mm}$ of the nominal position shown; in the worst case, the spacing between any two leads may deviate from nominal by $\pm 0,254 \mathrm{~mm}$.
B) Lead spacing tolerances apply from seating plane to the line indicated.

14-LEAD; PLASTIC (SOT-43)

Dimensions in mm

RATING SYSTEMS

ACCORDING TO I.E.C. PUBLICATION 134

1. DEFINITIONS OF TERMS USED

1.1 Electronic device. An electronic tube or valve, transistor or other semiconductor device.
Note: This definition excludes inductors, capacitors, resistors and similar components.
1.2 Characteristic. A characteristic is an inherent and measurable property of a device. Such a property may be electrical, mechanical, thermal, hydraulic, electro-magnetic, or nuclear, and can be expressed as a value for stated or recognized conditions. A characteristic may also be a set of related values, usually shown in graphical form.
1.3 Bogey electronic device. An electronic device whose characteristics have the published nominal values for the type. A bogey electronic device for any particular application can be obtained by considering only those characteristics which are directly related to the application.
1.4. Rating. A value which establishes either a limiting capability or a limiting condition for an electronic device. It is determined for specified values of environment and operation, and may be stated in any suitable terms.
Note: Limiting conditions may be either maxima or minima.
1.5 Rating system. The set of principles upon which ratings are established and which determine their interpretation.
Note: The rating system indicates the division of responsibility between the device manufacturer and the circuit designer, with the object of ensuring that the working conditions do not exceed the ratings.

2. ABSOLUTE MAXIMUM RATING SYSTEM

Absolute maximum ratings are limiting values of operating and environmental conditions applicable to any electronic device of a specified type as defined by its published data, which should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking no responsibility for equipment variations, environmental variations, and the effects of changes in operating conditions due to variations in the characteristics of the device under consideration and of all other electronic devices in the equipment.
p.t.o.

The equipment manufacturer should design so that, initially and throughout life, no absolute maximum value for the intended service is exceeded with any device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, equipment control adjustment, load variations, signal variation, environmental conditions, and variations in characteristics of the device under consideration and of all other electronic devices in the equipment.

3. DESIGN MAXIMUM RATING SYSTEM

Design maximum ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under the worst probable conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device, taking responsibility for the effects of changes in operating conditions due to variations in the characteristics of the electronic device under consideration.

The equipment manufacturer should design so that, initially and throughout life, no design maximum value for the intended service is exceeded with a bogey device under the worst probable operating conditions with respect to supply voltage variation, equipment component variation, variation in characteristics of all other devices in the equipment, equipment control adjustment, load variation, signal variation and environmental conditions.
4. DESIGN CENTRE RATING SYSTEM

Design centre ratings are limiting values of operating and environmental conditions applicable to a bogey electronic device of a specified type as defined by its published data, and should not be exceeded under normal conditions.

These values are chosen by the device manufacturer to provide acceptable serviceability of the device in average applications, taking responsibility for normal changes in operating conditions due to rated supply voltage variation, equipment component variation, equipment control adjustment, load variation, signal variation, environmental conditions, and variations in the characteristics of all electronic devices.

The equipment manufacturer should design so that, initially, no design centre value for the intended service is exceeded with a bogey electronic device in equipment operating at the stated normal supply voltage.

NOTE

It is common use to apply the Absolute Maximum System in semiconductor published data.

LETTER SYMBOLS FOR LINEAR INTEGRATED CIRCUITS

General

The voltages and currents are normally related to the terminals to which they are applied or at which they appear. Each terminal is indicated by a number. In appropriate cases voltages, currents etc. pertinent to one or more of the circuit elements (transistors, diodes) are given in which case symbols are based un die recuñnendà tions as published in I.E.C. Publication 148.

Quantity symbols.

1. Instantaneous values of current, voltage and power, which vary with time are represented by the appropriate lower case letter.

Examples: i, v, p
2. Maximum (peak), average, d.c. and root-mean-square values are represented by the appropriate upper case letter.

> Examples: I, V, P

Polarity of current and voltage

A current is defined to be positive when its conventional direction of flow is into the device.
A voltage is measured with respect to the reference terminal, which is indicated by the subscripts. Its polarity is defined to be positive when the potential is higher than that of the reference terminal.

Subscripts

For currents the number behind the quantity symbol indicates the terminal carrying the current.

$$
\text { Examples: } \mathrm{I}_{2}, \mathrm{i}_{14}
$$

For voltages normally two number subscripts are used, connected by a hyphen. The first number indicates the terminal at which the voltage is measured and the second subscript the reference terminal.
Where there is no possibility of confusion the second subscript may be omitted.

$$
\text { Examples: } \mathrm{V}_{2-12}, \mathrm{v}_{14-2}, \mathrm{~V}_{5}, \mathrm{v}_{8}
$$

To distinguish between maximum (peak), average,d.c.and root-mean-square values the following subscripts are added:

For maximum (peak) values : M or m
For average values : AV or av
For root-mean-square values: (RMS) or (rms)
For d.c. values : no additional subscripts
The upper case subscripts indicate total values.
The lower case subscripts indicate values of varying components:
Examples: $\mathrm{I}_{2}, \mathrm{I}_{2} A V, \mathrm{I}_{2}(\mathrm{rms}), \mathrm{I}_{2}(\mathrm{RMS})$
If in appropriate cases quantity symbols are pertinent to single elements of a circuit (transistors or diodes), the normal subscripts for semiconductor devices can be used.

> Examples: $\mathrm{V}_{\mathrm{CBO}}, \mathrm{V}_{\mathrm{be}}, \mathrm{V}_{\mathrm{CES}}, \mathrm{I}_{\mathrm{C}}$
> VDSS, VGS, ID

List of subscripts:

E, e	Emitter terminal
B, b	Base terminal for bipolar transistors,
	Substrate for MOS devices
C, c	$=$ Collector terminal
D, d	$=$ Drain terminal
G, g	Gate terminal
S, s	Source terminal for MOS devices
	Substrate for bipolar transistor circuits
$(B R)$	Break-down
M, m	Maximum (peak) value
AV, av	$=$ Average value
(RMS), (rms)	$=$ R.M.S. value

Electrical Parameter Symbols

1. The values of four pole matrix parameters or other resistances, impedances, admittances, etc., inherent in the device, are represented by the lower case symbol with appropriate subscript.

$$
\text { Examples: } h_{i}, z_{f}, y_{o}, k_{r}
$$

Subscripts for Parameter Symbols

1. The static values of parameters are indicated by upper case subscripts.

Examples: $h_{F E}, h_{I}$
2. The small signal values of parameters are indicated by lower case subscripts.

Examples: h_{i}, z_{o}
3. The first subscript, in matrix notation identifies the element of the four pole matrix.
i $($ for 11$)=$ input
o $($ for 22$)=$ output
f $($ for 21$)=$ forward transfer
r (for 12) $=$ reverse transfer

$$
\text { Examples: } \begin{aligned}
\mathrm{V}_{1} & =\mathrm{h}_{\mathrm{j}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{r}} \mathrm{~V}_{2} \\
\mathrm{I}_{2} & =\mathrm{h}_{\mathrm{f}} \mathrm{I}_{1}+\mathrm{h}_{\mathrm{o}} \mathrm{~V}_{2}
\end{aligned}
$$

The voltage and current symbols in matrix notation are indicated by a single digit subscript.
The subscript $1=$ input; the subscript $2=$ output.
The voltages and currents in these equations may be complex quantities.
4. A second subscript is used only for separate circuit elements (e.g. transistors) to identify the circuit configuration:
$\mathrm{e}=$ common emitter
$\mathrm{b}=$ common base
$\mathrm{c}=$ common collector
5. If it is necessary to distinguish between real and imaginary parts of the four pole parameters, the following notation may be used:
$R_{e}\left(h_{i}\right)$ etc. ... for the real part
$\mathrm{I}_{\mathrm{m}}\left(\mathrm{h}_{\mathrm{i}}\right)$ etc. ... for the imaginary part

LIST OF LETTER SYMBOLS IN ALPHABETICAL ORDER

Letter symbol\|	Definition
B	Bandwidth
$\mathrm{b}_{\mathrm{i}}, \mathrm{b}_{0}$	Input, respectively output susceptance
$\mathrm{C}_{\mathrm{i}}, \mathrm{C}_{\mathrm{O}}$	Input, respectively output capacitance
CMMR	Common-mode rejection ratio
d	Distortion
F	Noise figure
f	Frequency
f_{C}	Cut-off frequency
f_{0}	Centre frequency, intermediate frequency
fm_{m}	Modulation frequency
f_{T}	Transition frequency
$\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{o}}$	Input, respectively output conductance
G_{p}	Power gain
$\mathrm{Gtr}^{\text {tr }}$	Transducer gain
Gv	Voltage gain
$h_{F}, h_{F B}, h_{F C}, h_{F E}$	DC current gain (output voltage held constant)
$\mathrm{h}_{\mathrm{f}}, \mathrm{h}_{\mathrm{fb}}, \mathrm{h}_{\mathrm{fc}}, \mathrm{h}_{\mathrm{fe}}$	Small signal current gain (output short-circuited to a.c.)
$\mathrm{I}_{3}, \mathrm{I}_{\mathrm{B}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{E}}, \mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{Q}}, \mathrm{I}_{\mathrm{S}}$	Total d.c. current
$\mathrm{i}_{3}, \mathrm{i}_{\mathrm{B}}, \mathrm{i}_{\mathrm{C}}, \mathrm{i}_{\mathrm{E}}, \mathrm{i}_{\mathrm{D}}, \mathrm{i}_{\mathrm{G}}, \mathrm{i}_{\mathrm{S}}$	Instantaneous total value of the current
$\mathrm{I}_{3 A V}, I_{\text {BAV }}, I_{\text {CAV }}, I_{E A V}$	Total average current
$\mathrm{I}_{3 \mathrm{M}}, \mathrm{I}_{\mathrm{BM}}, \mathrm{I}_{\mathrm{CM}}, \mathrm{I}_{\mathrm{EM}}$	Maximum (peak) value of the total current
$\mathrm{I}_{3 \mathrm{~m}}, \mathrm{I}_{\mathrm{bm}}, \mathrm{I}_{\mathrm{cm}}, \mathrm{I}_{\mathrm{em}}$	Maximum (peak) value of the varying component of the current
$\mathrm{I}_{\mathrm{CBO}}$	Collector cut-off current (open emitter)
${ }^{\text {I }}$ CS	Collector-substrate leakage current
$\mathrm{I}_{\text {DSS }}$	Drain cut-off current (source short-circuited to gate)

Letter symbol	Definition
$\mathrm{I}_{\text {EBO }}$	Emitter cut-off current
$\mathrm{I}_{\mathrm{I}}, \mathrm{I}_{\mathrm{i}}$	Input current of a specified circuit
$\mathrm{I}_{\text {io }}$	Input offset current
$\mathrm{I}_{\mathrm{O}}, \mathrm{I}_{\mathrm{o}}$	Output current of a specified circuit
IOM	Peak value of output current
$\mathrm{I}_{\mathrm{o}}(\mathrm{p}-\mathrm{p})$	Peak to peak value of output current
$\mathrm{I}_{\text {tot }}$	Total supply current
K_{f}	Small signal voltage gain
K_{o}	Output impedance (see K parameters)
K_{r}	Reverse current transfer ratio
M	Modulation depth
$\mathrm{P}_{\mathrm{i}}, \mathrm{P}_{\mathrm{o}}$	Input, respectively output power of a specified circuit
$\mathrm{P}_{\text {tot }}$	Total power dissipation in the device
$\mathrm{R}_{\mathrm{i}}, \mathrm{R}_{\mathrm{o}}$	Input, respectively output resistance of a specified circuit
R_{L}	Load resistance
R_{S}	Source resistance
$\mathrm{R}_{\text {th }}$	Thermal resistance
SVRR	Supply voltage rejection ratio
$\mathrm{T}_{\text {amb }}$	Ambient temperature
$\mathrm{T}_{\text {case }}$	Case temperature
$\mathrm{T}_{\text {stg }}$	Storage temperature
$\mathrm{V}_{3}, \mathrm{~V}_{3-4}, \mathrm{~V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{CB}}$	Total value of the voltage (d.c.)
$\mathrm{v}_{3}, \mathrm{v}_{3}-4, \mathrm{v}_{\mathrm{BE}}, \mathrm{v}_{\mathrm{CB}}$	Instantaneous value of the total voltage
$\mathrm{V}_{\text {BEsat }}, \mathrm{V}_{\text {CEsat }}$	Saturation voltage at specified bottoming conditions
$\begin{aligned} & \mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}, \mathrm{~V}_{(\mathrm{BR}) \mathrm{CEO}}, \\ & \mathrm{~V}_{(\mathrm{BR}) \mathrm{EBO}} \end{aligned}$	Breakdown voltage between the terminal of the first subscript and the reference terminal (second subscript) when the third terminal is open circuited
$V_{\text {(BR) }} \mathrm{CS}$	Collector to substrate breakdown voltage
$\begin{aligned} & \mathrm{v}_{\mathrm{CBO}}, \mathrm{~V}_{\mathrm{CEO}}, \mathrm{~V}_{\mathrm{EBO}}, \mathrm{v}_{\mathrm{CS}}, \\ & \mathrm{v}_{1-3} \end{aligned}$	Voltage of the terminal indicated with respect to the reference terminal '(second subscript)

Letter symbol	Definition
$\mathrm{V}_{\mathrm{i}}, \mathrm{V}_{\mathrm{o}}$	Input, respectively output voltage of a specified cir-
V_{io}	cuit
$\mathrm{V}_{\mathrm{i}} \mathrm{lim}$	Input offset voltage
V_{N}	Input voltage at which limiting starts
V_{P}	Negative supply voltage
V_{n}	Positive supply voltage
$\mathrm{y}_{\mathrm{i}}, \mathrm{y}_{\mathrm{f}}, \mathrm{y}_{\mathrm{O}}, \mathrm{y}_{\mathrm{r}}$	Noise voltage
$\mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{O}}$	Input, transfer, output and feedback admittance
η	Input, respectively output impedance
$\varphi_{\mathrm{i}}, \varphi_{\mathrm{f}}, \varphi_{\mathrm{o}}, \varphi_{\mathrm{r}}$	Efficiency
	Phase angle of input, transfer, output and feed-

Radio - Audio

		hi-fi equipment	portables radios and radio/recorders	car radios	mains radios
a.m. channel receivers		TBA570A	TBA570A TBA700	TBA570A	TBA570A
f.m. channel receivers		TCA420A	TBA570A	TBA570A TCA420A	TBA570A
a.m./f.m. receiver circuits			TBA570A TBA700	TBA570A	TBA570A
Stereo decoders		$\begin{aligned} & \text { TDA1005 } \\ & \text { TCA } 290 \mathrm{~A} \end{aligned}$		TDA1005	
Stabilizer for electronic tuning		$\begin{aligned} & \text { TCA530 } \\ & \text { TCA750 } \end{aligned}$			
d.c. controlled audio circuits	volume and balance tone	TCA730			TCA730
		TCA740			TCA740
	quadruple signalsources switch	TDA1028			
	stereo signal-sources switch\quad TDA1029				
a.f. power amplifiers	2 W audio amplifier			TCA760B	
	5 W audio power amplifier			TDA2611; TDA2611A	
	6 W audio power amplifier			TDA1010	
	10 W audio power amplifier (with thermal shut-down) stereo audio power amplifier up to $2 \times 6 \mathrm{~W}$			$\begin{aligned} & \text { TDA1004A } \\ & \text { TDA1009 } \end{aligned}$	
Miscellaneous	hearing aid amplifienhearing aid amplifier			OM200/S2	
				TAA370A	
	low level amplifier			TAA263	
	integrated MOST amplifier			TAA320	
	integrated MOST level sensor			TAA320A	
	recording preamplifier circuit			TDA1002	
	motor regulator and bias/eraseoscillator circuit			TDA1003A	
	motor regulator with automatic tape-end indicator			TDA1006	
	bipolar frequency dividermagnetic field detector using Hall effect			SAJ110	
				TCA450A	

OM200/S2

INTEGRATED AMPLIFIER

for use in ear hearing aids

Monolithic integrated circuit amplifier in a plastic envelope, primarily intended for use in ear hearing aids.

QUICK REFERENCE DATA				
For meaning of symbols see test circuit on page 3				
Supply voltage	V_{1-3}	\max.	5	V
Supply current	I_{2}	max.	5	mA
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\text {tot }}$	max.	25	mW
The following data are measured in test circuit on page 3				
Total supply current	$\mathrm{I}_{\text {tot }}$	typ.	1	mA
Transducer gain	$\mathrm{G}_{\text {tr }}$	$\xrightarrow{>}$ typ.	77 85	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Output power at $\mathrm{d}_{\text {tot }}=10 \%$	P_{0}	>	0, 2	mW
Cut-off frequency (-3 dB)	f_{c}	$>$	20	kHz

PACKAGE OUTLINE (Dimensions in mm)

CIRCUIT DIAGRAM

The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
For meaning of symbols test circuit on page 3.

Voltages

Supply voltage
Output voltage
Input voltage

Currents

Output current
Input current

V_{1-3}	\max.	5	V
$\mathrm{~V}_{2-3}$	max.	5	$\mathrm{~V} \cdot{ }^{1}$)
$-\mathrm{V}_{4-3}$	\max.	5	V

$\mathrm{I}_{2} \max .5 \mathrm{~mA}$
$\mathrm{I}_{4} \max .5 \mathrm{~mA}$

Power dissipation

Power derating curve

Temperatures
Storage temperature
Ambient temperature (see derating curve above)
$\overline{1)}$ This value may be exceeded during inductive switch-off for transient energies $<10 \mu \mathrm{Ws}$.

CHARACTERISTICS at $\mathrm{V}_{1-3}=1,3 \mathrm{~V} ; \mathrm{I}_{2}=0,7 \mathrm{~mA}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified

Supply currents (no signal)

Transducer gain at $\mathrm{f}=1 \mathrm{kHz}$
Total distortion at $\mathrm{f}=1 \mathrm{kHz}$

$$
\begin{aligned}
& P_{o}=100 \mu \mathrm{~W} \\
& P_{o}=200 \mu \mathrm{~W}
\end{aligned}
$$

Noise figure at $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$
$\mathrm{B}=400$ to 3200 Hz

$$
\mathrm{B}=400 \text { to } 3200 \mathrm{~Hz}
$$

Cut-off frequency (-3 dB)
$\underline{\text { Value of } \mathrm{R}_{\mathrm{F}}}$ to adjust I_{2} at $0,7 \mathrm{~mA}$

$\mathrm{I}_{\text {tot }}$	$<$	1,1	mA
I_{1}	typ.	0,30	mA
	$>$	77	dB
G_{tr}	$>$	typ.	85
		dB	

	typ.	4	$\%$
$\mathrm{~d}_{\text {tot }}$	$<$	6	$\%$
$\mathrm{~d}_{\text {tot }}$	$<$	10	$\%$

F	typ.	$\begin{array}{r} 2,5 \\ 6 \end{array}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
f_{c}	>	20	kHz
R_{F}	170	1000	$k \Omega$
R_{F}	typ.	400	$\mathrm{k} \Omega$

Test circuit

Note
$\mathrm{I}_{2}=0,7 \mathrm{~mA}$; adjusted by means of R_{F} $\mathrm{V}_{1-3}=1,3 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

1) The transducer gain is defined as the ratio of the output power in the load $|\mathrm{Z}|=1,5 \mathrm{k} \Omega$ and the available input power of the source with $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$.

$$
G_{t r}=\frac{P_{o}}{V_{i}^{2} / 4 R_{S}}
$$

${ }^{2}$) Due to special processing and pre-measuring, the flutter -noise level is extremely low.

SOLDERING RECOMMENDATIONS

1. Iron soldering

At a maximum iron temperature of $300^{\circ} \mathrm{C}$ the maximum permissible soldering time is 3 seconds, provided the solder spot is at least $0,5 \mathrm{~mm}$ from the seal and the leads are not soldered at the same time. Soldering in immediate subsequence is allowed.
2. Dipsoldering

At a maximum solder temperature of $250^{\circ} \mathrm{C}$ the maximum permissible soldering time is 3 seconds, provided the soldered spot is at least $0,5 \mathrm{~mm}$ from the seal.

CHARACTERISTICS

The graph applies to test circuit on page 3

SAJIIO

BI-POLAR FREQUENCY DIVIDER

The SAJ110 is a monolithic integrated circuit in bipolar technique, consisting of 7 binary frequency dividers separated in groups of $2,2,1,1$ and 1 , each section having its own trigger input.
The circuit consists of a d.c. flip-flop and can accept any input waveform, making the device particularly suitable for use in electronic organs. The output impedance is low and there is excellent separation between adjacent stages.

QUICK REFERENCE DATA				
Supply voltage	$\mathrm{V}_{7-1}=\mathrm{V}_{\mathrm{P}}$	nom.	9	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	nom.	25	${ }^{\circ} \mathrm{C}$
	$\int V_{\text {IL }}$	\leq	1	V
Input voltage levels	V_{IH}		6 V_{7-1}	V
Output voltage levels	$\left\{\begin{array}{l}\mathrm{v}_{\mathrm{OL}} \\ \mathrm{v}_{\mathrm{OH}}\end{array}\right.$	\leq \geq	0,1 7,3	V
Output impedance (V_{O} in HIGH state)	$\left\|\mathrm{z}_{0}\right\|$	typ.	120	Ω
Total power dissipation every output loaded with $\mathrm{R}_{\mathrm{L}}=2,2 \mathrm{k} \Omega$	$\mathrm{P}_{\text {tot }}$	typ.	200	mW

PACKAGE OUTLINE (see general section)
14-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Pin No. 2; 3; 4; 5; 6 voltage with respect to pin No. 1 (substrate)

Pin No. 7 (supply voltage)
Pin No. 8; 9; 10; 11; 12; 13; 14 voltage

$\left\|V_{I}\right\|$	max. V_{7-1}	$\left.l_{1}\right)$
$V_{7-1}=V_{P}$	0 to +11	V
V_{O}	0 to +5	V

All other pins connected to pin No. 1 (substrate)
Temperature

Storage temperature
Operating ambient temperature (see derating curve below)
Total power dissipation

Note
Power dissipation when all flip-flop outputs are operating at maximum dissipation (extreme condition). In organ practice the average power dissipation is less because the master oscillators cause the flip-flops to switch continuously.

[^1]
CHARACTERISTICS

$\begin{array}{ll}\text { Supply voltage }\end{array} \quad V_{7-1}=V_{P} \begin{array}{rrrr}7,5 \text { to } 11 & \mathrm{~V} \\ \text { typ. } & 9 & \mathrm{~V}\end{array}$
CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{L}}=2,2 \mathrm{k} \Omega$ (see Fig. 1 on page 5).

[^2]
CHARACTERISTICS (continued)

Fig. 1 Test circuit

Fig. 2 Input voltage: V_{I}

Fig. 3 Output voltage: V_{O}

1) t_{L} is depending on the slope of the input signal
2) change -over time: $t_{c}=\frac{t_{0 r}+t_{0 f}}{2}$

Fig. 7

LOW-LEVEL AMPLIFIER

The TAA263 is a semiconductor integrated amplifier in a 4-lead TO-72 metal envelope. It comprises a three-stage, direct coupled low-level amplifier for use from d.c. up to frequencies of 600 kHz .

QUICK REFERENCE DATA				
Supply voltage	V_{B}	\max.	8	V
Output voltage	V_{3-4}	\max.	7	V
Output current	I_{3}	\max.	25	mA
Transducer gain at $\mathrm{P}_{\mathrm{o}}=10 \mathrm{~mW}$				
$\mathrm{R}_{\mathrm{L}}=150 \Omega ; \mathrm{f}=1 \mathrm{kHz}$	G_{tr}	typ.	77	dB
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +100	${ }^{\circ} \mathrm{C}$	

PACKAGE OUTLINE

Dimensions in mm
TO-72

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages
Supply voltage
Output voltage
Input voltage

V_{B}	\max.	8	V
$\mathrm{~V}_{3-4}$	\max.	7	V
$-\mathrm{V}_{\mathrm{I}-4}$	$\operatorname{max.}$	5	V

Currents

Output current	I_{3}	\max.	25	mA
Input current	I_{1}	\max.	10	mA

Power dissipation

Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=65^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max . \quad 70 \mathrm{~mW}$.

Temperatures
Storage temperature
$\mathrm{T}_{\text {stg }} \quad-55$ to $+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature
(see derating curve above)
Tamb $\quad-20$ to $+100 \quad{ }^{\circ} \mathrm{C}$

CHARACTERISTICS

$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Test circuit:

Currents

Output current
Total current drain (no signal)
Over-all small signal current gain
$\mathrm{f}=1 \mathrm{kHz}$
Transducer gain
$\mathrm{f}=1 \mathrm{kHz} ; \mathrm{P}_{\mathrm{O}}=10 \mathrm{~mW}$

Output power at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{d}_{\text {tot }}=10 \%$
$\mathrm{d}_{\mathrm{tot}}=5 \%$
Noise figure
$f=400 \mathrm{~Hz}$ to 6 kHz
$\mathrm{f}=450 \mathrm{kHz} ; \Delta \mathrm{f}=5 \mathrm{kHz}$

\bar{I}_{3}	typ.	i2	ma
$\mathrm{I}_{2}+\mathrm{I}_{3}$	$<$	16	mA

$\mathrm{h}_{\mathrm{f} \text { tot }}$ typ. 5.10^{5}

$G_{t r}$	$>$	70	$d B$
	typ.	77	$d B$

$\mathrm{P}_{\mathrm{o}} \quad>\quad 10 \mathrm{~mW}$
$\mathrm{P}_{\mathrm{o}} \gg 8 \mathrm{~mW}$

1) $\mathrm{Z} \leqslant 10 \Omega$ at $\mathrm{f}=1 \mathrm{kHz}$

CHARACTERISTICS (continued)

y parameters (point 4 common connection)

$$
\mathrm{V}_{\mathrm{B}}=6 \mathrm{~V} ; \mathrm{I}_{3}=3 \mathrm{~mA} ; \mathrm{V}_{3-4}=4.2 \mathrm{~V}
$$

$\mathrm{f}=1 \mathrm{kHz}$

| Input admittance | $y_{i}=g_{i}$ | typ. | 20 | $\mu \Omega^{-1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Transfer admittance | $y_{f}=g_{f}$ | typ. | 11 | Ω^{-1} |
| Output admittance | $y_{o}=g_{o}$ | typ. | 60 | $\mu \Omega^{-1}$ |

$\mathrm{f}=450 \mathrm{kHz}$
Input conductance
Input capacitance
g_{i}

Transfer admittance . - $\left|\mathrm{y}_{\mathrm{f}}\right|$
Phase angle of transfer admittance
φ_{f}
Output conductance
go
Output capacitance
typ. $15, \mu \Omega^{-1}$
typ. 14 pF
typ. $9.4 \Omega^{-1}$
typ. 125°
typ. $20 \mu \Omega^{-1}$
typ. 13 pF

INTEGRATED MOST AMPLIFIER

The TAA320 is a silicon monolithic integrated circuit, consisting of a MOS transistor and an n-p-n transistor in a TO-18 metal envelope.
The device is primarily intended for audio amplifiers with a very high input resis tance (e.g. for crystal pick-ups).
Besides this application the TAA320 is also suitable for other applications where a high input resistance is required, like impedance converters, timing circuits, mi-crophone-amplifiers, etc.

QUICK REFERENCE DATA					
Drain-source voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$-\mathrm{V}_{\mathrm{DSS}}$	\max.	20	V	
Drain current	$-\mathrm{I}_{\mathrm{D}}$	max.	25	mA	
Gate-source voltage $-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$ Gate-source resistance $-\mathrm{V}_{\mathrm{GS}}$ up to $20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}$ up to $125 \mathrm{o}^{\circ} \mathrm{C}$	$-\mathrm{V}_{\mathrm{GS}}$	typ.	11	V	
Transfer admittance at $\mathrm{f}=1 \mathrm{kHz}$ $-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	r_{GS}	$>$	100	$\mathrm{G} \Omega$	

PACKAGE OUTLINE

Dimensions in mm

bottom view
Source connected to the case
Accessories available: 56246, 56263

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Drain-source voltage ($\mathrm{V}_{\mathrm{GS}}=0$)
Gate-source voltage ($I_{D}=0$)
Non repetitive peak gate-source voltage ($\mathrm{t} \leq 10 \mathrm{~ms}$)

Current
Drain current
Power dissipation
Total power dissipation up to $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Temperatures
Storage temperature
Operating ambient temperature
(see derating curve on page 8)
THERMAL RESISTANCE
From junction to ambient in free air
$P_{\text {tot }} \quad \max .200 \mathrm{~mW}$

$-V_{\text {DSS }}$	\max.	20	V
$-\mathrm{V}_{\text {GSO }}$	\max.	20	V

$-\mathrm{V}_{\mathrm{GSM}}$ max. 100 V

$$
{ }^{-1} \mathrm{I} \quad \max . \quad 25 \mathrm{~mA}
$$

$$
P_{\text {tot }}
$$

$$
\mathrm{T}_{\mathrm{stg}} \quad-55 \text { to }+125 \quad{ }^{\circ} \mathrm{C}
$$

$$
\mathrm{T}_{\mathrm{amb}} \quad-20 \text { to }+125{ }^{\circ} \mathrm{C}
$$

$$
R_{\text {th } j-a}=0.5 \circ^{\circ} \mathrm{C} / \mathrm{mW}
$$

CHARACTERISTICS

Drain current

$$
-\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{GS}}=0
$$

Gate-source voltage ${ }^{1}$)

$$
-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}
$$

Gate-source resistance
$-\mathrm{V}_{\mathrm{GS}}$ up to $20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}$ up to $125{ }^{\circ} \mathrm{C} \quad \mathrm{r}_{\mathrm{GS}} \quad>\quad 100 \mathrm{G} \Omega$
Eguivalent noise yoltage
$-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$
$\mathrm{~B}=50 \mathrm{~Hz}$ to 15 kHz
y parameters at $\mathrm{f}=1 \mathrm{kHz}$
$-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$
Transfer admittance
Input capacitance
Feedback capacitance
Output conductance

$$
\begin{array}{llll}
& \text { Ityp. } & 5 & \mathrm{nA} \\
-\mathrm{DSS} & \mathrm{e} & 1 & \mu \mathrm{~A}
\end{array}
$$

$$
\begin{array}{lccc}
-\mathrm{V}_{\mathrm{GS}} & \text { typ. } & 11 & \mathrm{~V} \\
9 \text { to } & 14 & \mathrm{~V}
\end{array}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

\qquad

APPLICATION INFORMATION 2 W audio amplifier with TAA320 and BDll5

* The voltage dependent resistor (2322 55203381) suppresses voltage transients that might otherwise exceed the safe operating limits of the BD115.

Supply voltage
Collector current of BD115
Drain current of TAA320
Primary d.c. resistance of output transformer
Primary inductance of output transformer
A.C. collector load for BD115

Performance at $\mathrm{f}=1 \mathrm{kHz}$; feedback $=16 \mathrm{~dB}$
Output power at $\mathrm{d}_{\text {tot }}=10 \%$ (on primary of the output transformer)

Input voltage for $P_{0}=50 \mathrm{~mW}$
Input voltage for $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$
Total distortion at $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$
Minimụm frequency response (-3 dB)
Signal-noise ratio at $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$

V_{B}	$=$	100	V
I_{C}	typ.	50	mA
-ID	typ.	9.5	mA
		140	Ω
		2.7	H
		1.8	$\mathrm{k} \Omega$

Mounting instruction for BD115
Proper continuous operation is ensured up to $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$, provided the BD115 is directly mounted on a 1.5 mm blackened Al. heatsink of $30 \mathrm{~cm}^{2}$ with a clamping washer of type 56218.
If the transistor is mounted on a heatsink with a mica washer, the heatsink should have an area of $50 \mathrm{~cm}^{2}$.
Recommended diameter of hole in heatsink: 7.7 mm .

APPLICATION INFORMATION (continued)

4 W audio amplifier with TAA320 and 2 transistors of type BD115.

Supply voltage
Collector current of a BD115
Drain current of TAA320

V_{B}	$=$	200	V
I_{C}	typ.	52 mA	
$-\mathrm{I}_{\mathrm{D}}$	typ.	8.6	mA

Performance at $\mathrm{f}=1 \mathrm{kHz}$; feedback $=12 \mathrm{~dB}$
Output power at $d_{\text {tot }}=10 \%$
Input voltage for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$
Input voltage for $\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$
Total distortion at $\mathrm{P}_{\mathrm{o}}=4 \mathrm{~W}$
Minimum frequency response (-3 dB)
Signal-noise ratio at $P_{0}=4 \mathrm{~W}$

P_{o}	typ.	4.5 W	
$\mathrm{~V}_{\mathrm{i}(\mathrm{rms})}$	typ.	7.5	mV
$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	typ.	67	mV
$\mathrm{d}_{\text {tot }}$	typ.	6	$\%$

Mounting instruction for BD115 see page 4

7208134

INTEGRATED MOST LEVEL SENSOR

The TAA320A is a silicon monolithic integrated circuit, consisting of a p-channel enhancement type MOS transistor and an n-p-n transistor, in a TO-18 metal envelope. The device is intended for level sensors with a very high input resistance (e.g. timing circuits, thermostats, liquid level sensors, flame control circuits).

QUICK REFERENCE DATA				
Drain-source voltage ($\mathrm{V}_{\mathrm{GS}}=0$)		$-\mathrm{V}_{\text {DSS }}$	max. 20	V
Drain current		${ }^{-} \mathrm{I}_{\mathrm{D}}$	max. 60	mA
Gate-source voltage ${ }^{1}$)				
$-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}$	group 1.	- GS	10,0 to 11, 2	V
	group 2:	$-\mathrm{V}_{\mathrm{GS}}$	typ. 11,3	V
			10, 7 to 11, 9	V
	group 3:	$-\mathrm{V}_{\mathrm{GS}}$	typ. 12, 0	V
			typ. 12,7	V
	group 4 .	GS	12, 1 to 13, 3	V
Gate cut-off current at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$				
- $-\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0$		$-^{-1} \mathrm{GSO}$	typ. 1	pA
$-\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0$		$-_{\text {I }}^{\text {GSS }}$	typ. 1	pA

PACKAGE OUTLINE

Dimensions in mm
TO-18

bottom view

1 = drain
2 = gate
3 = source
source connected to the case
Accessories available on request: 56246; 56263

[^3]
CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Drain-source voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$-\mathrm{V}_{\mathrm{DSS}}$	\max	20	V
Gate-source voltage $\left(\mathrm{I}_{\mathrm{D}}=0\right)$	$-\mathrm{V}_{\mathrm{GSO}}$	\max.	20	V
Non-repetitive peak gate-source voltage $(\mathrm{t} \leq 10 \mathrm{~ms})$	$\pm \mathrm{V}_{\mathrm{GSM}}$	\max.	100	V

Current

Drain current
Peak drain current ($\mathrm{t}<200 \mathrm{~ms} ; \delta 0,001$)

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature (see curve below)	$\mathrm{T}_{\mathrm{amb}}$	-20 to +125	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS

Drain current

$$
-\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V} ; \mathrm{v}_{\mathrm{GS}}=0
$$

$$
\begin{array}{llll}
\text { - I }_{\text {DSS }} & \text { typ. } & 5 & \text { nA } \\
< & 1 & \mu \mathrm{~A}
\end{array}
$$

Drain-source voltage ${ }^{1}$)

$$
-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}
$$

$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ unless otherwise specified

$-V_{D S}$	$<$	1	V
$-\mathrm{V}_{\mathrm{DS}}$	$<$	1,5	V

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{DS}} \\
& -\mathrm{V}_{\mathrm{DS}}
\end{aligned}
$$

$$
<
$$

$$
1 \quad \mathrm{~V}
$$

$$
-\mathrm{I}_{\mathrm{D}}=60 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}
$$

$$
<\quad 1,5 \quad V
$$

Gate-source voltage (see note b)

$$
-\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA} ;-\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}
$$

group 1:	$-\mathrm{V}_{\mathrm{GS}}$	typ. 10,6	V
		10,0 to 11,2	V
group 2:	$-\mathrm{V}_{\mathrm{GS}}$	typ. 11,3	V
		10,7 to 11,9	V
group 3:	$-\mathrm{V}_{\mathrm{GS}}$	typ. 12,0	V
		11,4 to 12,6	V
group 4:	$-\mathrm{V}_{\mathrm{GS}}$	typ. 12,7	V
		12,1 to 13,3	V

Gate cut-off current

$$
\begin{aligned}
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{I}_{\mathrm{D}}=0 \\
& -\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V} ; \mathrm{V}_{\mathrm{DS}}=0
\end{aligned}
$$

NOTES

a. The leads are short-circuited by a clip to protect the oxide layer against damage due to accumulation (or build-up) of electrostatic charge on the high resistance gate electrode. The clip should not be removed until after the device is mounted.
b. As a service to the customer the $-\mathrm{V}_{\mathrm{GS}}$ group to which a device belongs is identified by a numerical suffix ($1,2,3$ or 4), however, individual groups cannot be ordered separately.

1. See also upper graph on page 4.
2. Being dependent on handling and ambient humidity, the quoted value applies only up to the time of shipping.
Efficient drying treatment is advised before the device is mounted, provided the application requires this low current.

INTEGRATED AM/FM RADIO RECEIVER CIRCUIT

The TBA570A is for use in small low-cost a.m. portable receivers as well as in high quality battery or mains-fed a.m. and a.m./f.m. receivers.
The IC incorporates: a.m. mixer, oscillator, i.f. amplifier, a.g.c. amplifier, a.m. detector and capacitor, f.m./i.f. limiting amplifier and stable base bias for f.m. frontend, and an audio preamplifier and driver.
The unique integrated audio part has an internally limited bandwidth (18 kHz) and negligiole in. f . radiaiun vack to the ferrite rod. This makes the TRA570A ideally cuitablefor small size a. m . receivers because print layout is not critical. The driver stage can directly drive complementary output stages ($\mathrm{P}_{\sigma}=6 \mathrm{~W}$ max.), or operate as a post amplifier ($\mathrm{V}_{\mathrm{O}}=500 \mathrm{mV}$).
In its standard applications, the TBA570A can replace the TBA570.

PACKAGE OUTLINES (see general section)
TBA570A : 16-lead DIL; plastic.
TBA570AQ: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Pin 11 voltage
Pin 8 voltage
Pin 11 current (peak value)
Total power dissipation

V_{11-9}	max.	18	V
$\mathrm{~V}_{8-16}$	max.	8	V
$\mathrm{I}_{11 \mathrm{M}}$	max.	100	mA

Storage temperature
Operating ambient temperature; $\mathrm{V}_{8 ; 4 ; 7 ; 1-16}=8 \mathrm{~V}$;
$\mathrm{I}_{11 \mathrm{M}}=100 \mathrm{~mA}$; see also derating curve below
see derating curve below

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to +85	${ }^{\circ} \mathrm{C}$

DESIGN DATA

Characteristics of integrated components are determined by process and layout data.
Pins not under measuring condition should not be connected.
Voltages with respect to pin 9 and 16 (tolerated minimum : 0 V)
Pins 1 and 7
Pin 4
Pin 8
Pin 3
Pin 5
Pin 14

$\left.\begin{array}{lll}\mathrm{V}_{1-9(16)} \\ \mathrm{V}_{7-9(16)}\end{array}\right\}$	\max.	18	V
$\mathrm{~V}_{4-9(16)}$	\max.	8	V
$\mathrm{~V}_{8-9(16)}$	\max.	8	V
$\mathrm{~V}_{3-9(16)}$	max.	3	V
$\mathrm{~V}_{5-9(16)}$	max.	4	V
$\mathrm{~V}_{14-9(16)}$	max.	1	V

Currents (tolerated minimum : 0 mA)
Pins $2,6,12,13$ and 15
Pin 10
$\left.\begin{array}{l}\mathrm{I}_{2} ; \mathrm{I}_{6} ; \mathrm{I}_{12} \\ \mathrm{I}_{13} ; \mathrm{I}_{15}\end{array}\right\} \quad \max . \quad 80 \quad \mu \mathrm{~A}$
$\mathrm{I}_{10} \quad \max . \quad 5 \mathrm{~mA}$
D.C. CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Saturation voltage of driver stage

$$
\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA} ; \mathrm{I}_{\mathrm{B}}=2,5 \mathrm{~mA}
$$

Collector breakdown voltage of driver stage $\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA} ; \mathrm{R}_{\mathrm{BE}}=7 \mathrm{k} \Omega$
$\mathrm{V}_{11-16 \text { sat }} \stackrel{\text { typ. }}{<} \quad 1,0 \quad \mathrm{~V}$
D. C. current gain of driver stage
$\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$
h_{FE}
25
Total quiescent current
except driver stage collector current ;
f.m. front-end;
discrete output stages; $\mathrm{V}_{8-16}=5,3 \mathrm{~V}$
$\mathrm{V}_{8-16}=4,2 \mathrm{~V}$
Applicable supply voltage range of receiver
$I_{\text {tot }} \quad$ typ. $\quad 9 \mathrm{~mA}$

Base bias voltage for $\mathrm{f} . \mathrm{m}$. front-end total external load current at pin $2:-\mathrm{I}_{2}=150 \mu \mathrm{~A} \quad \mathrm{~V}_{2-16}$ typ. $1,2 \mathrm{~V}$
A.C. CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{8-16}=5,3 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}$ (TR9) $=1 \mathrm{~mA}$

Input conductance at pin 2
Output conductance at pin 1
Input conductance at pin 15

gie	typ.	-	0,4	0,5	$\mathrm{~mA} / \mathrm{V}$
goe	typ.	6	-	90	$\mu \mathrm{~A} / \mathrm{V}$
gie	typ.	0,35	-	0,7	$\mathrm{~mA} / \mathrm{V}$

[^4]
H.F. part of a high quality FM/AM (LW; MW ; SW) receiver.

Fig. 3 Output stage for $\mathrm{V}_{\mathrm{P}}=16 \mathrm{~V}$.

V_{P}	R_{L}	P_{o} at $d_{\text {tot }}=10 \%$
16 V	4Ω	$6,8 \mathrm{~W}$

Fig. 4 Post amplifier for $\mathrm{V}_{\mathrm{O}}=500 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{P}}=6 \mathrm{~V}$.
*In circuit on page 5 volume control resistor ($100 \mathrm{k} \Omega$) and capacitor (100 nF) on pin 12 should be omitted.
**Capacitor value depends on load.

COIL DATA (in circuit on page 5)
High quality AM/FM receiver (for portable and mains-fed applications)
A.M. -I.F. coils ($f_{O}=455 \mathrm{kHz}$)
I.F. bandpass filter :

L9 $\begin{array}{lc}\mathrm{N} 1=284,5 \mu \mathrm{H} & \mathrm{L} 10 \mathrm{~N} 1=680 \mu \mathrm{H} \\ \mathrm{Q}_{\mathrm{O}}=100 & \mathrm{Q}_{\mathrm{o}}=100 \\ \mathrm{~N} 1 / \mathrm{N} 2=40 & \mathrm{~N} 2 / \mathrm{N} 1=74 \\ \mathrm{~N} 2 / \mathrm{N} 3=1 & \text { (N2 }+\mathrm{N} 1) / \mathrm{N} 3=10,7 \\ & \left|\mathrm{Z}_{\mathrm{T}}\right|=3 \mathrm{k} \Omega\end{array}$
F.M. -I.F. coils ($f_{0}=10,7 \mathrm{MHz}$)

Second i.f. bandpass filter :

Ratio detector :

Low-cost 2-band AM portable receiver (see page 9)

$$
\begin{array}{ll}
\text { L11 } & \mathrm{N} 1=2,7 \mu \mathrm{H} \\
\mathrm{Q}_{\mathrm{O}}=85 \\
\text { kQL11-L12 }=0,7 \\
\mathrm{~N} 1 / \mathrm{N} 2=2,2
\end{array}
$$

$\begin{array}{ll}\mathrm{N} 1+\mathrm{N} 2=127 \mu \mathrm{H} & \mathrm{f}_{\mathrm{m}}=1 \mathrm{MHz} \\ (\mathrm{N} 1+\mathrm{N} 2) / \mathrm{N} 2=58 & \mathrm{Q}_{\mathrm{o}}=100 \\ (\mathrm{~N} 1+\mathrm{N} 2) / \mathrm{N} 3=4,8 & \mathrm{C}_{\mathrm{p}}=200 \mathrm{pF} \\ \text { wire }: 0,1 \varnothing & \end{array}$
core material : 7 BR

L12 $\mathrm{N} 2+\mathrm{N} 3=3,25 \mu \mathrm{H}$
$\mathrm{Q}_{\mathrm{o}}=85$
$(\mathrm{~N} 2+\mathrm{N} 3) / \mathrm{N} 1=6$
$\mathrm{~N} 2=\mathrm{N} 3$
L1

$\mathrm{N} 1=11$
L2

$\mathrm{N} 1=60$
$\mathrm{~N} 2=4$
wire: $20 \times 0,03$
L 1 and L 2 on ferrite rod; $10 \mathrm{~mm} \varnothing$;
length $=10 \mathrm{~cm}$

L3

core material : $7 \mathrm{MN}(\mathrm{C})$

$\mathrm{Np}=284,5 \mu \mathrm{H} \mathrm{f}_{\mathrm{m}}=452 \mathrm{kHz}$ $\mathrm{N}_{\mathrm{p}} / \mathrm{N}_{\mathrm{S}}=16,7 \mathrm{Q}_{\mathrm{O}}=100$ $\mathrm{C} 1=430 \mathrm{pF}$
wire : $0,1 \varnothing$
core material : $7 \mathrm{MN}(\mathrm{C})$

Note

In the circuit on page 9 for L3 and L4 a similar coil to L9 in the circuit on page 5 can be used with the following exceptions:
L3: secondary windings N2 and N3 are not used.
L4: secondary windings N 2 and N 3 are connected in series.
When using a resistor between pins 2 and 15 (see dashed resistor in circuit on page 9), signal handling is improved.

Low-cost 2-band (SW-MW) AM portable receiver ($\mathrm{P}_{\mathrm{O}}=250 \mathrm{~mW}$)

Note: C1 and C6 max. 385 pF .

APPLICATION INFORMATION at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

A．M．performance	V_{8-16}		5，3 V^{1} ）	$4,2 \mathrm{~V} 2)$	
R．F．input voltage ： $\mathrm{S} / \mathrm{N}=26 \mathrm{~dB}$（notes 3 and 4） for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$（adjustable）； notes 3， 4 and 5	$\begin{aligned} & \mathrm{V}_{\mathrm{i}} \\ & \mathrm{~V}_{\mathrm{i}} \end{aligned}$	typ． typ．	18 2	10 2	$\mu \mathrm{V}$ $\mu \mathrm{V}$
R．F．input voltage for 10 mV （a．f．） across volume control（notes 3 and 4）	V_{i}	typ．	2，7	4，5	$\mu \mathrm{V}$
A．F．voltage across volume control at $100 \mu \mathrm{~V}$（r．f．）input voltage（notes 3 and 4）	V_{0}	typ．	70	70	mV
Signal－to－noise ratio at 1 mV （r．f．）input voltage（notes 3 and 4）	S／N	typ．	46	47	dB
A．G．C．range（change in r．f．input voltage for 10 dB expansion in audio range）；notes 3 and 4		typ．	60	60	dB
R．F．signal handling capability at 80% modulation； $\mathrm{d}_{\text {tot }}<10 \%$（note 3 ）	V_{i}	typ．	150	7	mV
Harmonic distortion of h．f．part over most of a．g．c．range；$m=0,3 ; f_{m}=1 \mathrm{kHz}$（note 6）	$\mathrm{d}_{\text {tot }}$	typ．	1	1	\％
I．F．selectivity	S_{9}	typ．	33	16	dB
I．F．bandwidth（ 3 dB ）	B	typ．	5	5， 5 ．	kHz

Notes

1．See circuits on pages 5， 6 and 7 （high quality AM／FM receiver）．
2．See circuit on page 9 （low－cost 2－band AM portable receiver）．
3．a．A．F．signal ：measured across volume control．
b．R．F．signal ：measured at pin 2 with the aerial circuit connected（source resistance about $1 \mathrm{k} \Omega$ ）．
c．$f_{o}=1 \mathrm{MHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$ ．
4． $\mathrm{m}=0,3$ ．
5．A．M．sensitivity for $P_{O}=50 \mathrm{~mW}$ can be adjusted by means $⿴ 囗 十$ the a．c．feedback network in the audio part e．g．： $\mathrm{V}_{\mathrm{i}}=1,5 \mu \mathrm{~V}$ for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}(\mathrm{~S} / \mathrm{N} \approx 4 \mathrm{~dB})$ ．

6．Distortion can be decreased to $0,7 \%$ by connecting a resistor of $270 \mathrm{k} \Omega$ between pins 2 and 15.

APPLICATION INFORMATION (continued) at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{8-16}=5,3 \mathrm{~V}$
Measured in the circuit on page 5

F.M. performance

Sensitivity for an f . m. signal 3 dB before limiting at 75Ω aerial input of f.m. front-end (note 1) at pin 2; first i.f. (notes 2 and 6)

V_{i}	typ.	3,5	$\mu \mathrm{~V}$
$\mathrm{~V}_{\mathrm{i}}$	typ.	50	$\mu \mathrm{~V}$

Sensitivity for $26 \mathrm{~dB} \mathrm{~S} / \mathrm{N}$ ratio
at 75Ω aerial input of $\mathrm{f} . \mathrm{m}$. front-end (note 1)
$\mathrm{V}_{\mathbf{i}} \quad$ typ. $\quad 2,5 \quad \mu \mathrm{~V}$
A.F. output voltage across volume control at an i.f. signal beyond limiting (note 2)
V_{O} typ. 120 mV
Signal-to-noise ratio over most of signal range (note 2) $\quad \mathrm{S} / \mathrm{N}$ typ. 65 dB
A. M. suppression over most of signal range (note 3)
I. F. selectivity (note 4)
I. F. bandwidth (3 dB; note 4)
S_{300} typ. 43 dB
A.F. signal distortion

3 dB before i.f. limiting (note 5)
$d_{\text {tot }}$ typ. 0,8 \%

Notes

1. Aerial e.m.f. $\left(\mathrm{V}_{\mathrm{i}}\right)$ at $\mathrm{f}_{\mathrm{O}}=98 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=50 \Omega ; \Delta \mathrm{f}= \pm 22,5 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.
2. $\mathrm{f}_{\mathrm{O}}=10,7 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 22,5 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.
3. A.M. signal : $m=0,3 ; f_{m}=1000 \mathrm{~Hz}$.
F.M. signal : $\mathrm{f}_{\mathrm{O}}=10,7 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 75 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$. Carrier simultaneously modulated with a.m. and f.m.
4. Including ratio detector.
5. $\mathrm{f}_{\mathrm{O}}=98 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 40 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.
6. Pin 3 by-passed to ground with a capacitor of 220 nF .

AUDIO PERFORMANCE

Distortion before clipping (note 1)
Input impedance (note 2)
Noise output power; volume control at min. (note 3)
Overall fidelity; flat within 3 dB (obtainable values)
Open loop voltage gain

V_{P}	V	4,5	6	9	14,4	16
R_{L}	Ω	8	4	4	4	4
P_{O} at $\mathrm{d}_{\text {tot }}=10 \%$	W	0,22	0,6	1,8	5,5	6,8
P_{O} at onset of clipping; $\mathrm{d}_{\text {tot }}=1 \%$	W	0,15	0,4	1,2	4	4,8
V_{i} for $\mathrm{d}_{\text {tot }}=10 \%$ (pin 12$)$	mV	14	16	25	50	45
V_{i} for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$ (pin 12)	mV	5, 5	4,5	4	3,5	3,5
Output transistors		BC327	BC368	BC368	BD329	BD329
		BC337	BC369	BC369	BD330	BD330
Circuit diagrams on page 6,7 or 9		page 9	Fig. 1	Fig. 1	Fig. 2	Fig. 3

Post-amplifier (see Fig. 4 on page 7)
Output voltage . $: 500 \mathrm{mV}$
Audio gain (adjustable): 5
Distortion $\quad: 0,2 \%$

Notes

1. Measured at 1 kHz and a negative feedback of 16 dB .
2. At the maximum tolerated value of resistance-tap/bleeder at pin 12.
3. Measured at a bandwidth of 60 Hz to 15 kHz , pin 12 being connected via a capacitor of $32 \mu \mathrm{~F}$ to $\operatorname{pin} 9 ; \mathrm{R}_{\mathrm{L}}=4 \Omega$.

APPLICATION INFORMATION (continued)

Typical a.g.c. curves for AM reception (circuit diagram on page 5)

A.F. voltage across volume control as a function of r.f. voltage at pin 2 .

[^5]
APPLICATION INFORMATION (continued)

Typical S/N curves for FM reception (circuit diagram on page 5)

A.F. voltage across volume control as a function of aerial e.m.f. from a source with $\mathrm{R}_{\mathrm{S}}=50 \Omega$ to the 75Ω input of the $\mathrm{f} . \mathrm{m}$. front-end.

[^6]
INTEGRATED A.M./F.M. RADIO RECEIVER CIRCUIT

The TBA 700 is a monolithic integrated circuit for use in a.m. (including the short-wave band), a.m. /f.m. receivers.
It incorporates the class $-B$ audio output stage (1 W), stabilization circuit for quiescent current, driver, pre-amplifier, 2 -stage i.f. amplifier, a.g.c. and stabilized bias circuit.
The discrete input stage (for a.m. : mixer-oscillator; for f.m.: 1st i.f.) enables a high fiexibiiity in circuit iay-out with conventionai or iumped seiectivity.
The internal stabilization ensures negligible loss of sensitivity and cross-over distortion over a wide supply voltage range from $2,7 \mathrm{~V}$ to 12 V .

QUICK REFERENCE DATA				
Applicable supply voltage range of receiver	V_{10-8}	2,7 to 12	$\mathrm{~V}^{1}$)	
Ambient temperature Supply voltage	$\mathrm{T}_{\mathrm{amb}}$		25	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE (see general section)

16-lead DIL; plastic with internal copper slug.

1) The data given in this sheet are based on a receiver with $V_{P}=9 \mathrm{~V} ; \mathrm{P}_{\mathrm{O}}=1000 \mathrm{~mW}$.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltages

Pin No. 10 voltage
Pins No, 15, 9, 2 voltages
Pin No. 16 voltage
Pin No. 7 voltage
Pins No. 4, 3, 1 voltages
Pin No. 5 voltage
Pin No. 10 voltage

Currents

Pins No. 14, 12, 11, 6 currents
Pins No. 13, 5, 4, 3, 1 currents
Pins No. 15, 2 currents
Pin No. 8 current
Pin No. 9 current
Pin No. 10 current
V_{10-8}
$V_{15-8}, V_{9-8}, V_{2-8}$
V_{16-8}
$\pm V_{7-8}$
$-V_{4-16},-V_{3-16},-V_{1-16}$
$\pm V_{5-13}$
V_{10-9}
$\mathrm{I}_{14}, \mathrm{I}_{12}, \mathrm{I}_{11}, \mathrm{I}_{6}$
$\mathrm{I}_{13}, \mathrm{I}_{5}, \mathrm{I}_{4}, \mathrm{I}_{3}, \mathrm{I}_{1}$
$\mathrm{I}_{15}, \mathrm{I}_{2}$
$-\mathrm{I}_{8 \mathrm{RM}}$
$\pm \mathrm{I}_{9 \mathrm{RM}}$
$\mathrm{I}_{10 \mathrm{RM}}$

\max.	12	V	
\max.	11,4	V	
\max.	0	V	1
\max.	5	V	
\max.	5	V	
\max.	5	V	
\max.	11,4	V	

max.	5	mA
max.	0,5	mA
max.	10	mA
max.	0, 8	A 2)
max.	0,8	A 2)
max.	0,8	A ${ }^{2}$)

Dissipation

Total power dissipation
at $\mathrm{T}_{\mathrm{amb}}=45^{\circ} \mathrm{C}$
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$

\max.	800	mW
\max.	1000	mW

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\mathrm{O}} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +125	${ }^{\circ} \mathrm{C}$

1) Substrate connected to pin 16.
2) Repetitive peak value; internally limited.

CHARACTERISTICS

D.C. characteristics at $T_{a m b}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=9 \mathrm{~V}$
I. F. amplifier

Collector current of i.f. transistor TR2

> (a.g.c. transistor "off")

Collector current of i.f. transistor TR3 (a.g.c. transistor "off")

Saturation voltage of i.f. transistor TR2 at $\mathrm{I}_{\mathrm{C}} \leq 2 \mathrm{~mA}$
Saturation voltage of i.f. transistor TR3 at $\mathrm{I}_{\mathrm{C}} \leq 5 \mathrm{~mA}$
Bias voltage for mixer and tuner
Temperature dependency of bias voltage V_{14-16}

Bias current (available)
A.F. amplifier

Input common mode voltage range
Input base bias current

Complete circuit

Total quiescent current with $3,3 \mathrm{k} \Omega$ between pins 7 and 8 (inclusive discrete input transistor, exclusive f.m. front end)

CHARACTERISTICS (continued)
A.C. characteristics of i.f. part
y parameters at $f=450 \mathrm{kHz}^{1}$)
Input conductance
Input capacitance
Output conductance
Output capacitance
Transfer admittance
Phase angle of transfer admittance
Feedback admittà̀nce
Phase angle of feedback admittance
y parameters at $\mathrm{f}=10,7 \mathrm{MHz}^{1}$)
Input conductance
Input capacitance
Output conductance
Output capacitance
Transfer admittance
Phase angle of transfer admittance
Feedback admittance
Phase angle of feedback admittance

i.f. transistors:				TR2

i.f. transistors:	TR2	TR3		
$\mathrm{g}_{\text {ie }}$	typ.	0,6	1,5	$\mathrm{~mA} / \mathrm{V}$
$\mathrm{C}_{\text {ie }}$	typ.	22	35	pF
$\mathrm{g}_{\text {oe }}$	typ.	24	30	$\mu \mathrm{~A} / \mathrm{V}$
$\mathrm{C}_{\text {oe }}$	typ.	4,3	4,7	pF
$\left\|\mathrm{y}_{\text {fe }}\right\|$	typ.	35	73	$\mathrm{~mA} / \mathrm{V}$
$\varphi_{\text {fe }}$	typ.	22°	35°	
$\left\|y_{\text {re }}\right\|$ typ.	64	43	$\mu \mathrm{~A} / \mathrm{V}$	
$\varphi_{\text {re }}$	typ.	90°	90°	

1) At typical values for $h_{f e}$ and I_{c}.

IIIIIII

Notes to the circuit on this page

1. The dashed components in the i.f.circuits can be omitted if signal handling of $6 \mathrm{mV}(\mathrm{m}=80 \%)$ at the base of TR26 is accepted. In that case the cold ends of coils L17 and L14 have to be connected directly to +2 .
2. For correct operation on f.m. it is essential that the polarity of the windings of Ll6 is such that input $\left(\mathrm{N}_{1}\right)$ and output $\left(\mathrm{N}_{2}\right)$ are in phase opposition.

Notes to the circuit on page 7
*) For equal a.f. sensitivity: at $\mathrm{R}_{\mathrm{L}}=4 \Omega, \mathrm{~V}_{\mathrm{P}}=6 \mathrm{~V}: \mathrm{R} 36=150 \Omega$ at $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{~V}_{\mathbf{P}}=9 \mathrm{~V}: \mathrm{R} 36=68 \Omega$
**) The dashed capacitors (C61; C62) are only necessary when the ferrite aerial rod is too near to the a.f. output components or the IC. If C61 and C62 are used the value of R42 must be decreased to $2,2 \Omega$.
***) Can be omitted if degraded cross over distortion can be tolerated.

Reference numbers L9 and L11 are not used in this circuit.

APPLICATION INFORMATION (continued) at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=9 \mathrm{~V}$

See also circuit diagram on pages 6 and 7.
A.M. performance
R. F. input voltage for signal to noise ratio of 26 dB
$V_{i} \quad$ typ. $\left.\quad 15 \quad \mu V^{1}\right)^{2}$)
R.F. input voltage for 10 mV (a.f.) across volume control
$V_{i} \quad$ typ. $\left.\quad 3 \quad \mu \mathrm{~V} \quad{ }^{1}\right)^{2}$)
A.F. voltage across volume control at $100 \mu \mathrm{~V}$ (r.f.) input voltage
$\mathrm{V}_{\mathrm{o}} \quad$ typ. $\left.100 \quad \mathrm{mV}^{1}\right)^{2}$)
Signal to noise ratio at 1 mV (r.f.) input voltage
$\mathrm{S} / \mathrm{N} \quad$ typ. $\quad 53,4 \quad \mathrm{~dB} \quad 1)^{2}$)
A. G. C. range (change in r.f. input voltage for 10 dB expansion in audio range)
without a.g.c. diode

typ.	42	dB	$\left.1)^{2}\right)^{3}$)
typ.	72	dB	$\left.1)^{2}\right)$

R. F. signal handling capability on base of

TR26 80% modulation ($\mathrm{d}_{\text {tot }} \leq 10 \%$)
without a.g.c. diode
with a.g.c. diode

	typ.	6	mV^{3}
$\mathrm{~V}_{\mathrm{i}}$	typ.		
V_{i}	typ.	80	mV

Harmonic distortion of h.f. part
(over most of a.g.c. range)
I. F.' selectivity
I. F. bandwidth

$\mathrm{d}_{\text {tot }}$	typ.	1	$\%$	$1)^{2}$)
S_{9}	typ.	30	dB	
$\mathrm{~B}_{3 \mathrm{~dB}}$	typ.	4,5	kHz	

1) a. Negligible influence of supply voltage variations in a range of $2,7 \mathrm{~V}$ to 12 V
b. A.F. signal: measured across volume control.
c. R.F. signal: measured at base of external mixer-oscillator with the antenna -cir cuit connected (source resistance R_{S} of about $1 \mathrm{k} \Omega$).
d. $f_{o}=1 \mathrm{MHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$
2) $m=0.3$
3) Dashed parts of circuit diagram on pages 6 and 7 are omitted.

APPLICATION INFORMATION (continued) See also circuit on pages 6 and 7 .

F.M. performance

Sensitivity for an f.m. signal 3 dB before limiting
at 75Ω aerial input of f . m. front end
at base of external (first i.f.) stage at pin 3
$\left.\begin{array}{lcrcc}\mathrm{V}_{\mathrm{i}} & \text { typ. } & 12 & \mu \mathrm{~V} & \left.1^{1}\right) \\ \mathrm{V}_{\mathrm{i}} & \text { typ. } & 150 & \mu \mathrm{~V} & 2 \\ \mathrm{~V}_{\mathrm{i}} & \text { typ. } & 2,2 & \mathrm{mV} & 2) \\ & & & & \\ \mathrm{V}_{\mathrm{i}} & \text { typ. } & 4 & \mu \mathrm{~V} & 1\end{array}\right)$

Audio performance

A. F. output power at $d_{\text {tot }}=10 \%$ at onset of clipping	$\begin{aligned} & \mathrm{P}_{\mathrm{o}} \\ & \mathrm{P}_{\mathrm{o}} \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{array}{r} 1 \\ 0,7 \end{array}$	$\left.\begin{array}{ll} W & 6 \\ W & 6 \end{array}\right)$
Distortion before clipping	$\mathrm{d}_{\text {tot }}$	typ.	1	\% 6)
A. F. input signal (at pin 13)				
at $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$	V_{i}	typ.	6	mV 6)
at $\mathrm{P}_{\mathrm{o}}=700 \mathrm{~mW}$	V_{i}	typ.	17	$\mathrm{mV}{ }^{6}$)
Noise output power (volume control at minimum)	P_{N}	typ.	20	nW 7)
Typical overall fidelity (flat within 3 dB)		200 H	to 6	$\mathbf{k H z}{ }^{8}$)
Open loop voltage gain	G_{V}	typ.	60	dB

1) Aerial e.m.f. $\left(V_{i}\right)$ at $f_{o}=100 \mathrm{MHz} ; \mathrm{R}_{\mathrm{S}}=50 \Omega$ (source resistance; see page 12) $\Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.
2) $\mathrm{f}_{\mathrm{o}}=10,7 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.
3) A.M. signal: $m=0,3 ; \mathrm{f}_{\mathrm{m}}=400 \mathrm{~Hz}$ (carrier simultaneouslymodulated with a.m. and f. m.).
${ }^{4}$) Including ratio detector.
4) $\mathrm{f}_{\mathrm{O}}=100 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 40 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.
5) Measured at 1 kHz , a negative feedback of 15 dB and a loudspeaker of $8 \Omega ; \mathrm{V}_{\mathrm{P}}=9 \mathrm{~V}$.
6) Measured at a bandwidth of 200 Hz to 6 kHz , pin 13 being connected via a capacitor of $32 \mu \mathrm{~F}$ to pin 16; loudspeaker impedance 8Ω.
${ }^{8}$) Depending on values of capacitors C51 and C55, 50 Hz to 15 kHz is possible.

COIL DATA See also circuit on pages 6 and 7.

1. A.M.-I.F. coils ($f_{O}=452 \mathrm{kHz}$)

First i.f. bandpass filter

Primary	: $\mathrm{L} 14=38 \mu \mathrm{H}$
	$\mathrm{C}_{\mathrm{p}}=3300 \mathrm{pF}$
	$\mathrm{Q}_{0}=90$

Secondary : L15 $\left(\mathrm{N}_{1}\right)=125 \mu \mathrm{H}$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{p}}=1000 \mathrm{pF} \\
& \mathrm{Q}_{0}=80 \\
& \mathrm{~N}_{1} / \mathrm{N}_{2}=18 \\
& \mathrm{kQ} \mathrm{~L}_{1} 4-\mathrm{L} 15=1
\end{aligned}
$$

2. F.M.-I.F. coils ($f_{\mathrm{O}}=10,7 \mathrm{MHz}$)

First i.f. bandpass filter
Primary $\quad: \mathrm{L} 4\left(\mathrm{~N}_{1}\right)=2,6 \mu \mathrm{H}$
$\mathrm{C}_{\mathrm{p}}=82 \mathrm{pF}$
$\mathrm{Q}_{0}=90$
$\mathrm{N}_{1} / \mathrm{N}_{2}=10$

Single tuned coil
$\mathrm{L} 17\left(\mathrm{~N}_{1}\right)=125 \mu \mathrm{H}$
$\mathrm{C}_{\mathrm{p}}=1000 \mathrm{pF}$
$\mathrm{Q}_{0}=80$
$\mathrm{N}_{1} / \mathrm{N}_{2}=30$
$\mathrm{L} 13\left(\mathrm{~N}_{1}+\mathrm{N}_{2}\right)=0,84 \mathrm{mH}$
Detector coil
$\mathrm{C}_{\mathrm{p}}=150 \mathrm{pF}$
$\mathrm{Q}_{0}=130$
$\mathrm{N}_{1} / \mathrm{N}_{2}=3,1$
$\left(\mathrm{N}_{1}+\mathrm{N}_{2}\right) / \mathrm{N}_{3}=4$

$$
: \mathrm{L} 5\left(\mathrm{~N}_{1}\right)=1,44 \mu \mathrm{H}
$$

$\dot{C}_{\mathrm{p}}=150 \mathrm{pF}$
$\mathrm{Q}_{0}=55$
$\mathrm{N}_{1} / \mathrm{N}_{2}=5,7$
$\mathrm{KQ}_{\mathrm{L} 4-\mathrm{L} 5}=1,2$
Ratio detector
Primary

$$
\begin{aligned}
& : \mathrm{L} 10^{\mathrm{L}}\left(\mathrm{~N}_{1}\right)=1,44 \mu \mathrm{H} \\
& \mathrm{C}_{\mathrm{p}}=150 \mathrm{pF} \\
& \mathrm{Q}_{0}=95 \\
& \mathrm{~N}_{1} / \mathrm{N}_{2}=2
\end{aligned}
$$

First single tuned filter Second single tuned filter
$\mathrm{L} 8\left(\mathrm{~N}_{1}\right)=1,44 \mu \mathrm{H}$
L16 $\left(\mathrm{N}_{\mathrm{I}}\right)=1,44 \mu \mathrm{H}$
$\mathrm{C}_{\mathrm{p}}=150 \mathrm{pF}$
$\mathrm{Q}_{0}=45$
$\mathrm{C}_{\mathrm{p}}=150 \mathrm{pF}$
$Q_{0}=45$
$\mathrm{N}_{1} / \mathrm{N}_{2}=5,7$
$\mathrm{N}_{1} / \mathrm{N}_{2}=5,7$
-

Secondary : $\mathrm{L} 5\left(\mathrm{~N}_{1}\right)=1,44 \mu \mathrm{H}$

APPLICATION INFORMATION (continued)

Typical a.g.c. curves at a.m. reception
A.F. voltages across volume control versus r.f. voltage at base of mixer-oscillator.
$\overline{1)}$ Slider at lower end.

APPLICATION INFORMATION (continued)

Typical \mathbf{S} / \mathbf{N} curves at f.m. reception
A.F. voltage across volume control versus aerial e.m.f. represented by the generator voltage V_{i} (e.m.f.) connected to the 75Ω input of the $f . m$. front-end.

Test circuit

${ }^{1}$) Slider at lower end.

F.M. STEREO DECODER

The TCA290A is a high quality monolithic integrated f.m. stereo decoder based on matrix decoding (frequency multiplexing).
The circuit provides automatic mono/stereo switching depending on both the pilot signal and the field strength and directly energizes a stereo indicator lamp. An external connection for mono/stereo switching is also available.

QUICK REFERENCE DATA			
Supply voltage (pin 7)	Vp	nom.	15 V
Ambient temperature	Tamb		$25^{\circ} \mathrm{C}$
Distortion	$\mathrm{d}_{\text {tot }}$	typ.	0,2\%
Cross-talk at $\mathrm{f}=1 \mathrm{kHz}$	α	>	40 dB
19 kHz suppression	α_{19}	$>$ typ.	$\begin{aligned} & 30 \mathrm{~dB} \\ & 35 \mathrm{~dB} \end{aligned}$
38 kHz suppression	α_{38}	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 36 \mathrm{~dB} \\ & 40 \mathrm{~dB} \end{aligned}$

PACKAGE OUTLINE (śee general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134).

Voltages

Supply voltage	V_{7-16}	$\max .18 \mathrm{~V}$
Indicator lamp voltage	V_{11-16}	$\max .28 \mathrm{~V}^{1}$)
Switching voltage mono/stereo	V_{13-16}	$\max . \quad 3 \mathrm{~V}$
Currents		
Indicator lamp current (d.c.)	I_{11}	$\max .100 \mathrm{~mA}$
Indicator lamp turn -on current (peak value)	$\mathrm{I}_{11 \mathrm{M}}$	$\max .200 \mathrm{~mA}$
Dissipation		
Total power dissipation	$\mathrm{P}_{\text {tot }}$	$\max .500 \mathrm{~mW}$
Temperatures		
Storage temperature	$\mathrm{T}_{\text {stg }}$	$-55 \mathrm{to}+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	$-30 \mathrm{to}+80^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{7-16}=15 \mathrm{~V}$.
Input MPX voltage (peak-to-peak value)
Input resistance (pin 14)
Output resistance (pins 9 and 10)
Distortion at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{V}_{9-16(\mathrm{rms})}=1 \mathrm{~V}$;
$\mathrm{V}_{10-16(\mathrm{rms})}=1 \mathrm{~V}$
$\frac{\text { Voltage gain }}{\text { defined as }} \frac{\mathrm{V}_{9-16}}{\mathrm{~V}_{14-16}} ; \frac{\mathrm{V}_{10-16}}{\mathrm{~V}_{14-16}}$ at $\mathrm{V}_{14-16(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V}$
Pilot -tone threshold switching voltage (r.m.s. value)
at stereo "ON"
Switching voltage
to mono
to stereo
hysteresis

Total current (excluding indicator lamp)	$I_{\text {tot }}$	typ.	20 mA
Cross -talk at $\mathrm{f}=1 \mathrm{kHz}$	α	$>$	40 dB
Ultra-sonic frequency rejection			
at 19 kHz	α_{19}	typ.	30 dB
		$>$	36 dB
at 38 kHz	α_{38}	typ.	40 dB
at 57 kHz	α_{57}	$>$	45 dB

${ }^{1}$) Measured in test circuit on page 3.

APPLICATION INFORMATION

il data

$$
\begin{aligned}
& \text { mono/stereo switch } \\
& \text { mono: } V_{13-16}>1,3 \mathrm{~V} \\
& \text { stereo: } V_{13-16}<0,8 \mathrm{~V}
\end{aligned}
$$

L1: 290 turns $0,1 \mathrm{~mm}$ e.c. wire
L2: 220 turns $0,1 \mathrm{~mm}$ e.c. wire (wound around L1) $\} \dot{\text { Bandwidth: } 6,36 \mathrm{kHz}}$
L3: 520 turns $0,1 \mathrm{~mm}$ e.c. wire (tapped at 130 turns from ground); $Q_{0} \approx 50$
L4: 520 turns $0,1 \mathrm{~mm}$ e.c. wire; $\mathrm{Q}_{\mathrm{O}} \approx 50$
L5: 520 turns $0,1 \mathrm{~mm}$ e.c. wire (tapped at 60 turns from pin 8); $\mathrm{Q}_{\mathrm{o}} \approx 80$
All coils wound on:

```
coil former : 4312021 29650
window 3D3 : 4322020 37030
screw core 3D3 : 4312020 32150
```


Damping of cross talk versus audio frequency.

Total harmonic distortion versus supply voltage.

Damping of cross-talk versus the 19 kHz input signal.

I.F. AMPLIFIER

The TCA420A is a monolithic integrated i.f. amplifier for hi-fi f. m. receivers combining the following functions:

- f.m.-i.f. amplifier
- symmetrical f.m. detector
- a.f.c. voltage
- mono/stereo switching voltage
- field-strength depending indicator current
- automatic (adjustable) side response suppression

QUICK REFERENCE DATA				
Supply voltage	V_{P}	typ.	15	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	typ.	25	${ }^{\circ} \mathrm{C}$
Frequency	f_{0}		10, 7	MHz
Input limiting voltage (-3 dB)	$V_{\text {ilim }}$	typ.	35	$\mu \mathrm{V}$
A.F. output voltage at $\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$	V_{6-16}	typ.	115	mV
A. M. rejection at $\Delta f= \pm 15 \mathrm{kHz} ; \mathrm{m}=0,3 ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$; $V_{i}=10 \mathrm{mV}$	α	typ.	50	dB
Centre shift of $f . m$. detector curve at input voltage variation of 1 mV to $30 \mu \mathrm{~V}$	$\left\|\mathrm{f}_{01} \mathrm{f}_{\mathrm{o} 2}\right\|$	typ.	7	kHz
I.F. voltage gain	G_{V}	typ.	65	dB

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage (pin 11)

$$
\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{11-16} \quad \max . \quad 18 \quad \mathrm{~V}
$$

Current
Total current
I_{11} max. 40 mA
Power dissipation
Total power dissipation $\quad \mathrm{P}_{\text {tot }} \quad \max \quad 720 \mathrm{~mW}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +80	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; see circuit on page 7 .
Output voltages (d.c. value) (pins 5 and 6)

$$
\left.\begin{array}{l}
\mathrm{v}_{5-16} \\
\mathrm{v}_{6-16}
\end{array}\right\}
$$

typ. 9,5 V

Voltage difference (d.c. value) (pins 5 and 6)
at $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$

$\Delta \mathrm{V}_{5-6}$	$<$	350	mV
	typ.	26	mA
I_{11}	$<$	35	mA
	$\mathrm{~V}_{\text {i lim }}$	typ.	35
	$<$	5 V	
			$\mu \mathrm{~V}$

APPLICATION INFORMATION measured in the circuit on page 7 at following conditions:

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{o}}=10,7 \mathrm{MHz} ; \mathrm{V}_{\mathrm{p}}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \text { measured after adjustment } \\
& \text { to minimum distortion at: } \mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} \text {, } \\
& \mathrm{R} 1=5 \mathrm{k} \Omega \text { and } \mathrm{C}_{5-6}=220 \mathrm{pF} ; \text { a.c. values are measured on recom- } \\
& \text { mended printed circuit board on page } 6 .
\end{aligned}
$$

A.F. output voltage

$$
\Delta \mathrm{f}= \pm 15 \mathrm{kHz} \quad \mathrm{~V}_{6-16} \quad \begin{aligned}
& \text { typ. } \\
& \\
&
\end{aligned}
$$

Total distortion at $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$

$$
\begin{aligned}
& \Delta \mathrm{f}= \pm 75 \mathrm{kHz} \\
& \Delta \mathrm{f}= \pm 40 \mathrm{kHz} \\
& \Delta \mathrm{f}= \pm 15 \mathrm{kHz}
\end{aligned}
$$

$$
\begin{aligned}
& d_{\text {tot }} \\
& d_{\text {tot }}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { typ. } & 0,8 & \% \\
< & 1,2 & \%
\end{array}
$$

$$
\text { typ. } 0,3 \quad \%
$$

$$
\begin{array}{llll}
\mathrm{d}_{\text {tot }} & \text { typ. } & 0,2 & \%
\end{array}
$$

APPLICATION INFORMATION (continued)

A. M. rejection ${ }^{1}$)

f. m . signal: $\Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=70 \mathrm{~Hz}$
a. m . signal: $\mathrm{m}=30 \% ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{i}}=\mathrm{V}_{5-16}$

at $\mathrm{V}_{\mathrm{i}}=0,3 \mathrm{mV}$	α	$>$	40
at $\mathrm{V}_{\mathrm{i}}=1,0 \mathrm{mV}$	α	$>$	40
at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	α	$\left\{\begin{array}{l} > \\ \text { typ. } \end{array}\right.$	45 50
at $\mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}$	α	$>$	40

Signal to noise ratio

$$
\begin{aligned}
& \text { reference signal: } f_{0}=10.7 \mathrm{MHz}: \Delta f= \pm 15 \mathrm{kHz}: \mathrm{f}_{\mathrm{mi}}=1 \mathrm{kHz} \text {. } \\
& \text { noise signal } \quad: \mathrm{f}_{\mathrm{o}}=10,7 \mathrm{MHz} \text {; without modulation } \\
& \text { filter } \quad: B_{(3 \mathrm{~dB})}=250 \mathrm{~Hz} \text { to } 16 \mathrm{kHz} \\
& \text { at } \mathrm{V}_{\mathrm{i}}=100 \mathrm{mV} \quad \mathrm{~S} / \mathrm{N} \quad>\quad 60 \mathrm{~dB} \\
& \text { at } \mathrm{V}_{\mathrm{i}}=20 \mu \mathrm{~V} \quad \mathrm{~S} / \mathrm{N} \quad \text { typ. } 26 \mathrm{~dB}
\end{aligned}
$$

Centre shift of $\mathrm{f} . \mathrm{m}$. detector curve ${ }^{2}$)

Input voltage levels for obtaining the required output voltages for switching a stereo decoder from mono to stereo vice-versa. These values are adjustable and the published levels are optimized for the TCA290A, where:
switching voltage to mono $>1,3 \mathrm{~V}$
switching voltage to stereo $<0,8 \mathrm{~V}$
Input voltage for $\mathrm{V}_{10-16}=0,8 \mathrm{~V}$
after adjusting R 1 , so $\mathrm{V}_{\mathrm{R} 1}=1,3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{i}}=0$
$\mathrm{V}_{\mathrm{i}} \quad$ typ. $\quad 1,3 \mathrm{mV}$
Input voltage for $\mathrm{V}_{10-16}=1,3 \mathrm{~V}$
after adjusting R 1 , so $\mathrm{V}_{\mathrm{R} 1}=0,8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{i}}=3 \mathrm{mV} \quad \mathrm{V}_{\mathbf{i}} \quad \stackrel{\text { typ. }}{<} \quad \begin{array}{rrr}80 & \mu \mathrm{~V} \\ 200 & \mu \mathrm{~V}\end{array}$
${ }^{1}$) The interfering signal is measured with filter ($B_{(3 \mathrm{~dB})}=700 \mathrm{~Hz}$ to 5 kHz).
${ }^{2}$) Defined as difference between frequency $f_{o 1}$ at $V_{i}=1 \mathrm{mV}$ and frequency $f_{o 2}$ at $\mathrm{V}_{\mathrm{i}}=30 \mu \mathrm{~V}$. The frequencies f_{O} and $\mathrm{f}_{\mathrm{o} 2}$ at equal voltages V_{5-6}.
${ }^{3}$) Detector circuit not connected. Loads between pins 1-16 and 2-16 are equal: 10 M 人 in parallel with 8 pF .

APPLICATION INFORMATION (continued)

Field-strength indicator current

$$
\begin{aligned}
& \text { adjust } \mathrm{R} 2 \text { so } \mathrm{I}_{9}=0 \text { at } \mathrm{V}_{\mathrm{i}}=0 ; \mathrm{R} 3=0 ; \\
& \text { measured at } \mathrm{V}_{\mathrm{i}}=120 \mathrm{mV} ; \mathrm{R}_{\text {indicator }}=2 \mathrm{k} \Omega
\end{aligned} \quad \mathrm{I}_{9} \quad \begin{aligned}
& \text { typ. }
\end{aligned} \begin{aligned}
& 140 \\
&
\end{aligned} \quad \mu \mathrm{~A}
$$

Input voltage for 10 dB side response suppression

```
at S1 = "on"
```

 adjust R 1 , so \(\mathrm{V}_{10-16}=1,3 \mathrm{~V}\) at \(\mathrm{V}_{\mathrm{i}}=0\), \(\mathrm{S} 1=\) "off" \(\quad \mathrm{V}_{\mathrm{i}} \quad\) typ. \(40 \quad \mu \mathrm{~V}\)
 Output signal muting at $\mathrm{S} 2=$ "on"
reference signal at $\mathrm{S} 2=$ "off': $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}, \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$

$$
\Delta \mathrm{f}= \pm 75 \mathrm{kHz} \quad \Delta \mathrm{~V}_{\mathrm{o}} \quad>\quad 60 \quad \mathrm{~dB}
$$

TEST CIRCUIT

Notes

V11-16: supply voltage
$\mathrm{V}_{10}-16$: switching voltage for stereo decoder (field strength dependent)
R1 : pre-set potentiometer for adjusting necessary output voltage V_{10-16}
R2 : pre-set potentiometer for adjusting the zero level of the field strength indicator current
R3 : pre-set potentiometer for adjusting the maximum level of the field strength indicator current
R4 : pre-set potentiometer for adjusting the side response suppression
S1 : side response suppression switch
S2 : output signal muting switch.

MAGNETIC FIELD DETECTOR USING HALL EFFECT

The TCA450A is a monolithic integrated circuit for magnetic field detection. It incorporates a Hall element and a differential amplifier the output stages of which form a long-tailed pair.
The differential voltage generated by the Hall element depends on the density and the polarity of the magnetic flux to be detected.
The minimum available output current of the differential amplifier is 50 mA at saturation.
The circuit can be used for commutation in brushless motors, tachogenerators, measuring probes (field strength; current), speed and position detectors.

QUICK REFERENCE DATA				
Supply voltage	V_{P}		16	V
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-55 to	125	${ }^{\circ} \mathrm{C}$
Output current at pins 6 or 9 $V_{P}=8 \mathrm{~V} ;-\mathrm{I}_{\mathrm{E}}=2 \mathrm{~mA}$	$\mathrm{I}_{6} ; \mathrm{I}_{9}$	max.	50	mA
Magnetic sensitivity of Hall element		typ.	0,4	V/T *
Offset flux density	$\pm \mathrm{B}_{\text {offset }}$	typ.	7,5 20	$\begin{aligned} & \mathrm{mT} *) \\ & \mathrm{mT} \end{aligned}$
Voltage gain of the amplifier	$\underline{\mathrm{V}_{2-13}}$	typ.	15	
Mutual conductance of the amplifier $\underline{I_{6}-I_{9}}$	V_{4-11}		0	
V_{4-11}				
*) $1 \mathrm{~T}($ Tesla $)=1 \mathrm{~Wb} / \mathrm{m}^{2}=10^{4} \mathrm{Gs}$				

PACKAGE OUTLINE (see general section)
14-lead; plastic (SOT-43).

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage with respect to pins 14 and 8
Output current at pins 6 or 9
Power dissipation
Storage temperature
Operating ambient temperature

V_{P}	max.	18	V
$\mathrm{I}_{6} ; \mathrm{I}_{9}$	max.	50	mA
See derating curve below			
$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	-55 to +125	${ }^{\circ} \mathrm{C}$	

Note: IC mounted on printed-circuit board.

CHARACTERISTICS All voltages with respect to pin 14; all currents positive into IC.

The following characteristics are measured in test circuit below.
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{1-14}=8 \mathrm{~V} ; \mathrm{I}_{\mathrm{E}}=-2 \mathrm{~mA}$; unless otherwise specified.
Offset flux density of the Hall element $\quad \pm$ B $\left._{\text {offset }} \quad \begin{array}{ccccc}\text { typ. } & 7,5 & \mathrm{~m} ~ T\end{array}\right]$
Magnetic sensitivity of the Hall element
typ. $0,4 \quad \mathrm{~V} / \mathrm{T}^{1}$)

Voltage gain of the amplifier
Mutual conductance of the amplifier
$\mathrm{I}_{6}-\mathrm{I}_{9} / \mathrm{V}_{4-11}$
$\left|g_{\mathrm{m}}\right|$ typ. $240 \mathrm{~mA} / \mathrm{V}^{2}$)
Offset flux density in balanced condition
$\mathrm{I}_{6}=\mathrm{I}_{9}$
$\pm \mathrm{B}_{\text {offset }} .<20 \mathrm{mT}^{1}$)
Required flux density for 1:10 current ratio
$\mathrm{I}_{6} / \mathrm{I}_{9}$ or $\mathrm{I}_{9} / \mathrm{I}_{6}$.
$\pm \mathrm{B} \quad<\quad 25 \mathrm{mT}^{1}$)

Collector resistors of the output stage
$\begin{array}{lll}\mathrm{R}_{6-1} ; & \mathrm{R}_{9-1} & \text { typ. } 1000 \\ 800 \text { to } 1200 & \Omega \\ \Omega\end{array}$

Note

Output 6 is conducting when the reference side of the integrated circuit is directed towards the north pole of the magnetic field.
Output 9 is conducting when the reference side is directed to the south pole of the magnetic field.
All specified magnetic fields are homogeneous and applied perpendicular to the contact plane.

TEST CIRCUIT

pins 3, 5, 10 and 12 are not connected; pin 7 is internally connected

1) $1 \mathrm{~T}(\mathrm{Tes} 1 \mathrm{a})=1 \mathrm{~Wb} / \mathrm{m}^{2}=10^{4} \mathrm{Gs}$.
2) Without $2,4 \mathrm{k} \Omega$ resistor in application circuit, the expected value will be 5 times better.

APPLICATION INFORMATION

In the circuit diagram below, a resistor of $2,4 \mathrm{k} \Omega$ and an extra RC-filter are connected between pins 2 and 13., which reduce the gain of the voltage amplifier (see formulas).

$$
\mathrm{V}_{1}=\left(\mathrm{I}_{2}-\mathrm{I}_{1}\right) \mathrm{R}_{1}
$$

INTEGRATED VOLTAGE STABILIZER

The TCA530 is an adjustable 30 V integrated circuit voltage stabilizer for use with variable capacitance diodes.
The circuit features: continuous short-circuit protected output, a.f.c. control voltage input, internal switch-on delay (can be adjusted externally), pre-stabilization and crystal temperature control (temperature sensor and heater).

QUICK REFERENCE DATA				
Iniput voltage rạ̈̆̇e	v_{i}		to 6	
Output voltage	V_{6-16}	typ.		V
Amplitude range of output voltage for a.f.c.	ΔV_{6-16}	typ.	$\pm 0,75$	
Variation of output voltage as a function of:				
input voltage		typ.		mV / V
temperature		typ.		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
output current		typ.		$\mathrm{mV} / \mathrm{mA}$
heater voltage		typ.		mV / V
Operating ambient temperature range	$\mathrm{T}_{\text {amb }}$		to +80	

PACKAGE OUTLINE (see general section)
Plastic 16-lead dual in-line.

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage: pin 1 pin 3 (muting switch supply)	$\begin{aligned} & V_{1-16} \\ & V_{3-16} \end{aligned}$	max. max.	20 15	$\begin{aligned} & V^{1} \\ & \mathrm{~V}^{1} \end{aligned}$
A.F.C. input control voltages: pin 10 and 11	$\mathrm{V}_{10}-16=\mathrm{V}_{11-16}$	max.	15	V
pin 10	V_{10-11}	max.	6	V

Currents

Input currents:	pin 5	I_{5}	\max.	25	mA
pin 8	I_{8}	\max.	500	$\mu \mathrm{~A}$	
pin 14	I_{14}	\max.	15	mA	
pin 4	I_{4}	\max.	500	$\mu \mathrm{~A}$	
pin 3	I_{3}	\max.	5	mA	
pin 1	I_{1}	\max.	300	mA	

Power dissipation

Total power dissipation (excluding heater power)

$$
\text { at } \mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max . \quad 500 \mathrm{~mW}
$$

Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-20 to +80	${ }^{\circ} \mathrm{C}$

[^7]CHARACTERISTICS (continued)
Input voltage range at $\mathrm{R}_{\mathrm{i}}=3,3 \mathrm{k} \Omega$
Minimum input voltage at pin 5
Maximum input voltage
Heater voltage range
Heater current at $\mathrm{V}_{1-16}=15 \mathrm{~V}$
Heater peak current when switched on
Stabilization time up to $\pm 150 \mathrm{mV}$ of final value at $V_{1-16}=15 \mathrm{~V}$
Switch-on delay on pin 3 without external capacitor
Output current (start of current limiting)
Amplitude range of output voltage for a.f.c.

V_{i}		50 to 68	V
$\mathrm{~V}_{5-16}$	$>$	32,5	V
$\mathrm{~V}_{\mathrm{i}}$	depends on value of R_{i}		
V_{1-16}		8 to 20	V
I_{1}	typ.	40	mA
	typ.	230	mA
$\mathrm{I}_{1 \mathrm{M}}$	$<$	300	mA
t_{s}	$<$	2	s
t_{d}	$<$	3	s 1
I_{6}	$<$	8	mA
$\pm \Delta \mathrm{V}_{6-16}$	$<$	1	V

Ratio of regulated output voltage to input control voltage

Switching voltage
Switching current
Saturation voltage on pin 3 at $I_{3}=500 \mu \mathrm{~A}$
Reference voltage

Common mode input voltage range of the control amplifier

Control input current
Control input resistance
Common mode rejection ratio

$\Delta \mathrm{V}_{6-16} / \Delta \mathrm{V}_{10-11}$		typ. $\quad 1,2: 1$		
	muting	on	off	
V_{4-16}	$<$	8	8 to 11	V
I_{4}	typ.	1	$>0,1$	$\mu \mathrm{A}$
	$\mathrm{V}_{3-16 \text { sat }}$	$<$	0,5	V
	V_{8-16}	typ.	$\begin{array}{r} 20 \\ \text { to } 21,8 \end{array}$	V

${ }^{1}$) Can be increased by RC circuit.

CHARACTERISTICS (continued)
Hum suppression at $\mathrm{f}>30 \mathrm{~Hz}$
Output noise voltage at $\mathrm{f}=10$ to 15000 Hz (r.m.s. value)
typ. 60 dB
$<\quad 50 \mu \mathrm{~V}$

Variation of output voltage as function of
input voltage
temperature
output current
heater voltage
$\Delta \mathrm{V}_{6-16} / \Delta \mathrm{V}_{5-16}$ typ. $0,2 \mathrm{mV} / \mathrm{V}$ $\Delta \mathrm{V}_{6}-16 / \Delta \mathrm{T}_{\mathrm{amb}}$ typ. $0,1 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ $\Delta \mathrm{V}_{6-16} / \Delta \mathrm{I} 6 \quad$ typ. $0,5 \mathrm{mV} / \mathrm{mA}$ $\Delta V_{6}-16 / \Delta V_{1-16}$ typ. $0,2 \mathrm{mV} / \mathrm{V}$

APPLICATION INFORMATION

F. M. receiver with TCA530 and TCA420A

D.C. VOLUME AND BALANCE CONTROL CIRCUIT

The TCA730 is a monolithic integrated circuit for controlling volume and balance in stereo amplifiers by means of a d.c. voltage.
It also incorporates an externally switchable physiological volume control.
Performance exceeds the DIN45 500 specifications.

QUICK REFERENCE DATA				
Supply voltage	V_{8-15}	typ.	15	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	typ.	25	${ }^{\circ} \mathrm{C}$
Volume control range at $\mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}$				dB
Distortion at $\mathrm{V}_{\mathrm{o}(\mathrm{rms})}=1 \mathrm{~V}$	$\mathrm{d}_{\text {tot }}$	typ.	0, 1	\%
Balance control range			± 10	dB
Input voltage	V_{i}		1	V
Input impedance with external resistor of $270 \mathrm{k} \Omega$	$\left\|Z_{i}\right\|$	typ.	250	$\mathrm{k} \Omega$
Load resistance	R_{L}	$>$	4, 7	k ¢
Output voltage	$\mathrm{V}_{\underline{\text { o }}}$	$<$	1	V
Channel separation		typ.	60	dB
Signal-to-noise ratio	S/N	typ.	57	dB
Frequency response ($\pm 1 \mathrm{~dB}$)		20		kHz
Channel balance		typ.	2	dB

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

BLOCK DIAGRAM of TCA730 with external components
||IIIII

Note: series impedance of input generator $\leq 47 \mathrm{k} \Omega$ in parallel with 250 pF .

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltages

Pin No. 8 voltage	V_{8-15}	\max.	18	V
Pin No. 12 voltage	V_{12-15}	\max.	12	V
Pin No. 13 voltage	V_{13-15}	\max.	12	V
Pin No. 4 voltage	V_{4-15}	\max.	3	V
Total power dissipation	$\mathrm{P}_{\text {tot }}$	\max.	860	mW

Temperatures

storage temperature	$\mathrm{T}_{\text {stg }}$	$-20 \mathrm{iv}+125$	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{8-15}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{f}=1 \mathrm{kHz}$ (unless otherwise specified)
Measured in circuit on page 2.

Supply voltage range
Supply current

Voltage gain
Voltage attenuation
Input resistance
Input impedance with external
resistor of $270 \mathrm{k} \Omega$ between
pins 11-10, 14-10
D.C. input current

Output voltage
$\mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}$ to 1 V
Frequency response (-1 dB)
without physiological volume control
$\mathrm{V}_{8-15} \quad 13,5$ to $16,5 \mathrm{~V}$

I_{8}	typ. $<$	30	mA
40	mA		

$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}$
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}$
0 to $-70 \quad \mathrm{~dB}$
$\mathrm{R}_{11-15}=\mathrm{R}_{14-15}>\quad 3 \mathrm{M} \Omega$
0 to +20 dB

CHARACTERISTICS (continued)

Distortion

$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=+20$ to $+10 \mathrm{~dB} ; \mathrm{V}_{\mathrm{o}(\mathrm{rms})}=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=+10$ to $0 \mathrm{~dB} ; \mathrm{V}_{\mathrm{o}(\mathrm{rms})}=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=0$ to $-50 \mathrm{~dB} ; \mathrm{V}_{\mathrm{i}}(\mathrm{rms})=1 \mathrm{~V}$
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=-50$ to $-70 \mathrm{~dB} ; \mathrm{V}_{\mathrm{i}}(\mathrm{rms})=1 \mathrm{~V}$
Channel separation at $V_{o(r m s)}=1 \mathrm{~V}$
$\mathrm{f}=250 \mathrm{~Hz}$ to $12,5 \mathrm{kHz}$
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz

Channel balance (without physiology)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=0 \text { to }-50 \mathrm{~dB} \\
& \mathrm{~V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=-50 \text { to }-70 \mathrm{~dB}
\end{aligned}
$$

Balance control range
$\mathrm{V}_{\mathrm{o}} / \mathrm{V}_{\mathrm{i}}=0$ to -50 dB
Signal/noise ratio at $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz

$$
\mathrm{V}_{\mathrm{i}(\mathrm{rms})}=100 \mathrm{mV} ; \mathrm{V}_{\mathrm{o}(\mathrm{rms})}=50 \mathrm{mV}
$$

Control voltage range

volume control
balance control
V13-15
V_{12-15}

$>$	52,5	dB
typ.	57	dB

typ.	1	dB
$<$	2	dB
typ.	2	dB
$<$	4	dB

$\pm 10 \quad \mathrm{~dB}$

$>$	56	dB
typ.	60	dB
$>$	46	dB
$>$		
typ.	50	dB

typ.

1 to 9 V
1 to 9 V
Control current
at $V_{13-15}=8 \mathrm{~V}$
at $V_{12-15}=8 \mathrm{~V}$

typ.	0,1	$\%$
$<$	0,2	$\%$
typ.	0,3	$\%$
$<$	0,5	$\%$
typ.	0,3	$\%$
$<$	0,5	$\%$
typ.	0,5	$\%$
$<$	1,0	$\%$

Volume control curve without physiology at $\mathrm{f}=1 \mathrm{kHz}$

Balance control curve at $\mathrm{f}=1 \mathrm{kHz}$

Physiological voltage gain versus frequency (measured in the circuit on page 2)

Physiological volume control (measured in the circuit on page 2)

Balance control (front/rear) at quadrophonic amplification

D.C. TONE CONTROL CIRCUIT

The TCA740 is a monolithic integrated circuit for controlling bass and treble in stereo amplifiers by means of a d.c. voltage.

QUICK REFERENCE DATA				
Supply voltage	V_{8-16}	typ.	15	V
Ambient temperature	$\mathrm{T}_{\text {amb }}$	typ.	25	${ }^{\circ} \mathrm{C}$
Bass boost		$>$	14	dB
Bass cut		$>$	14	dB
Treble boost		$>$	14	dB
Treble cut		$>$	14	dB
Distortion at $\mathrm{V}_{\mathrm{o} \text { (rms) }}=1 \mathrm{~V}$	$\mathrm{d}_{\text {tot }}$	typ.	0, 1	\%
Signal-to-noise ratio	S / N	typ.	60	dB
Channel separation		typ.	60	dB.

PACKAGE OUTLINE (see general section)

16-lead DIL; plastic.

BLOCK DIAGRAM of TCA740 with external components

Note: series impedance of input generator $\leq 600 \Omega$.
10 k
1 lin
Note: series impedance of input generator ≤ 600.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltages

Pin 8 voltage	$V_{8}-16$	max.	18	V
Pin 4 voltage	$\mathrm{V}_{4}-16$	max.	12	V
Pin 12 voltage \cdot	V_{12-16}	max.	12	V
Total power dissipation	$P_{\text {tot }}$	max.	860	mW

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$1 . \mathrm{amb}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{8-16}=15 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)
Measured in circuit diagram on page 2
Supply voltage range

Supply current

Voltage gain at linear frequency response
$\mathrm{V}_{8-16} \quad 13,5$ to $16,5 \mathrm{~V}$

Voltage gain at $\mathrm{f}=1 \mathrm{kHz}$

at maximum bass/treble boost	V_{0} / V_{i}	typ.	$+1,5$	$d B$
at maximum bass/treble cut	V_{0} / V_{i}	typ.	$-1,5$	$d B$

Bass boost at $V_{4-16}=10 \mathrm{~V}$
$\mathrm{f}=40 \mathrm{~Hz}$ (ref. 1 kHz)
$\begin{array}{llll} & \text { typ. } & 30 & \mathrm{~mA} \\ \mathrm{I}_{8} & < & 40 & \mathrm{~mA}\end{array}$
$V_{0} / V_{i} \quad$ typ.
0 dB

Treble boost at $\mathrm{V}_{12-16}=10 \mathrm{~V}$
$\mathrm{f}=15 \mathrm{kHz}$ (ref. 1 kHz)
$\underline{\text { Bass cut }}$ at $V_{4-16}=1 \mathrm{~V}$
$\mathrm{f}=40 \mathrm{~Hz}$ (ref. 1 kHz)
Treble cut at $V_{12-16}=1 \mathrm{~V}$
$\mathrm{f}=15 \mathrm{kHz}$ (ref. 1 kHz)
$>\quad 14 \mathrm{~dB}$

Signal-to-noise ratio

$$
\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \mathrm{V}_{\mathrm{o}(\mathrm{rms})}=50 \mathrm{mV} \quad \mathrm{~S} / \mathrm{N} \quad \begin{aligned}
& > \\
&
\end{aligned} \quad \begin{array}{rlr}
56,5 & \mathrm{~dB} \\
& \text { typ. } & 60
\end{array} \mathrm{~dB}
$$

Distortion at linear frequency response
$\mathrm{f}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{o}(\mathrm{rms})}=1 \mathrm{~V}$
d
typ.
$\begin{array}{ll}0,1 & \% \\ 0,2 & \%\end{array}$

CHARACTERISTICS (continued)

Channel separation at $\mathrm{V}_{\mathrm{O}}(\mathrm{rms})=1 \mathrm{~V}$

| $\mathrm{f}=250 \mathrm{~Hz}$ to $12,5 \mathrm{kHz}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz | typ. | 56
 60 | dB | |
| | | $>$ | 46 | dB |
| | | typ. | 50 | dB |

Input impedance without external components at pins $1,2,6,7,9,10,14$ and 15
$\left|Z_{i}\right|$
$1 \mathrm{M} \Omega$
D. C. input current
at pins $1,2,6,7,9,10,14$ and 15
$\mathrm{I}_{\mathrm{i}} \ll \quad 2 \mu \mathrm{~A}$
Control current

at V_{12-16}	$=8 \mathrm{~V}$	I_{12}	$<$
at V_{4-16}	$=8 \mathrm{~V}$	I_{4}	$<$

Bass control curve at $\mathrm{f}=40 \mathrm{~Hz}$

Treble control curve at $\mathrm{f}=15 \mathrm{kHz}$

TCA750

MULTI-STABILIZER FOR ELECTRONIC TUNING

The TCA750 is basically a stabilizer for use in electronic tuning systems.
The circuit is combined with an external reference diode which entirely determines the thermal stability of the system and can be adapted to the stability requirements of AM, FM or TV receivers.
The reference diode BZV38 used in conjunction with the TCA750 form an ideal pair for FM tuners in radio or TV receivers.
Additionai to a stabiiized voitage ($\overline{\mathrm{v}}_{\mathrm{O}} \mathrm{i}$) tor the eiectronct tuning system, the TCA750 incorporates two other output voltages $\left(V_{0} 2\right.$ and $\left.V_{0} 3\right)$ for stabilized supply of the entire receiver combination as well as the following attractive features:

- The output current of any of the three stabilizers can be increased by a discrete power transistor without affecting circuit stability.
- For mute control at switching on, $\mathrm{V}_{\mathrm{o}} 2$ can be delayed by external components.
- An a.f.c. coupling circuit provides a constant correction factor by superimposing an a.f.c. voltage on $\mathrm{V}_{\mathrm{O}} 1$.
- Adjustable a.f.c. amplification factor (<5).
- Pulse or touch contact operation switches off the a.f.c. whilst changing stations.
- Delayed switching on of the a.f.c., externally adjustable ($\mathrm{t}_{\mathrm{d}}<2 \mathrm{~s}$).
- Search tuning becomes very simple when using the a.f.c. current source (pin 10).
- All three stabilized outputs are protected against short circuit and are individually adjustable.

QUICK REFERENCE DATA see page 2
PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

QUICK REFERENCE DATA

Input voltage range	V_{13-16}	26,5 to 54	V
Ambient temperature	T amb	typ. 25	${ }^{\circ} \mathrm{C}$
Input voltage	V_{13-16}	typ. 45	V
Tuning voltage ($\left.\mathrm{V}_{\mathrm{O}} 1\right)^{*}$	V $12-16$	21 to 31	V
Output current (Il)*	I_{12}	$<14,5$	mA
Stabilizing time	${ }^{\text {tstab }}$	typ. 0,8	s
Temperature coefficient (V_{O}) TCA750 BZV38	$\Delta \mathrm{V}_{\mathrm{o}} \mathrm{l} / \Delta \mathrm{T}$	$\begin{array}{lr} \text { typ. } & 1 \\ \text { typ. } & 30 \end{array}$	$\begin{aligned} & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \end{aligned}$
Line regulation	$\Delta \mathrm{V}_{0} 1 / \Delta \mathrm{V}_{\text {in }}$	typ. 10	ppm/V
Output voltage ($\left.\mathrm{V}_{\mathrm{O}} 2\right)^{\text {* }}$	V_{14-16}	8 to 18	V
Output current (12)*	I_{14}	< 6	mA
Output voltage ($\mathrm{V}_{\mathrm{O}} 3$)*	V2-10́	8 to 26	V
Output current (I3)*	I_{2}	< 6	mA

[^8]

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Input voltage (supply)
A.F.C. input voltages (pins 8 and 9)

V_{13-16}	max.	54	V
$\mathrm{~V}_{8-16}, \mathrm{~V}_{9-16}$	\max.	$17 \cdot \mathrm{~V}$	
$\pm \mathrm{V}_{8-9}$	\max.	$6 \cdot \mathrm{~V}$	

Currents

Output current: pin 12 pin 14 pin 2	$\begin{aligned} & { }^{{ }_{1} 12} \\ & \mathrm{I}_{14} \\ & \mathrm{I}_{2} \end{aligned}$	\max. max. max.	55 20 25	mA mA mA
Input current (pin 11)	$\pm \mathrm{I}_{11}$	max.	6	mA
Temperatures				
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to	150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-25 to	150	${ }^{0} \mathrm{C}^{1}$)

Power dissipation

${ }^{1}$) See power derating curve.

TEST CIRCUIT

*) $\mathrm{V}_{\text {afc }}$ in is superimposed on a common-mode voltage ($\mathrm{V}_{\mathrm{com}}$) of 5 V to 17 V .

Multi-stabilizer peripheral components

Note to power reduction resistor RD

For worst case conditions (max. output currents of the three stabilizers and a high supply voltage V_{in}) the power dissipation ($\mathrm{P}_{\text {tot }}$) must be reduced by the use of the external resistor RD.
Power reduction $=\frac{\left(\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O}} \mathrm{l}\right)^{2}}{\mathrm{RD}}$
The minimum permissible value of $R D$ is derived by the formula

$$
R D_{\min }=\frac{V_{\text {in max }}-V_{0} 1-V_{a_{\text {afcout }}}}{I_{12}-I_{13} \min }
$$

where,

$$
\begin{aligned}
& \mathrm{I}_{13 \mathrm{~min}}=4,5 \mathrm{~mA}\left(\text { stand }- \text { by current } \mathrm{I}_{\mathrm{S}}\right) \\
& \mathrm{I}_{12}=\mathrm{I}_{\mathrm{Z}}+\mathrm{I}_{\mathrm{RA} 1}+\mathrm{II}_{\mathrm{min}}
\end{aligned}
$$

CHARACTERISTICS and APPLICATION INFORMATION (see test circuit on page 5)
at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Supplies
Note Min. . Typ. Max. Unit
Input voltage
$\begin{array}{lll}\mathrm{V}_{\text {in }} & 1 & 26,5 \\ \mathrm{I}_{\text {tot }} & 2 & -\end{array}$

- 54 V

Input current

Output characteristics

D. C. output resistance (all stabilizers)	$\mathrm{R}_{\text {out }}$	-				
Permissible output short-circuit duration stabilizer 1	$\mathrm{t}_{\text {short }}$	-				
stabilizers 2 or 3		-	-		10	s

Stabilizer 1

Output voltage range (adjustable)	$\mathrm{V}_{\mathrm{O}} \mathrm{l}$	3	.21	-	31	V
Output current	Il	4,	5	0	-	5
mA						
Stabilizing time	$\mathrm{t}_{\text {stab }}$	6	-	-	1	s
Output voltage temp. cocfficient	$\Delta \mathrm{V}_{\mathrm{O}} 1 / \Delta \mathrm{T}$	7,8	-	40	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Line regulation	$\Delta \mathrm{V}_{\mathrm{O}} 1 / \Delta \mathrm{V}_{\mathrm{in}} 8$	-	10	-	$\mathrm{ppm} / \mathrm{V}$	

A.F.C. coupling circuit
A.F.C. input voltage ($1 / 2 \mathrm{~V}_{\text {afc }}$ swing) $\mathrm{V}_{\mathrm{afc}}$ in $-\quad-\quad \mathrm{V}$
A.F.C. output voltage ($1 / 2 \mathrm{~V}_{\text {afc }}$ limswing) $\mathrm{V}_{\text {afc }}$ lim
A.F.C. output current threshold
A.F.C. output current swing
A.F.C. off delay

Amplification factor
A.F.C. slope ($\Delta \mathrm{I}_{\mathrm{afc}} / \Delta \mathrm{V}_{\mathrm{afc}}$ in)

Common-mode voltage
$\mathrm{V}_{\mathrm{O}} 1$ change due to a.f.c. switching
Asymmetry of a.f.c. input (a.f.c. off)
I_{10}
$\mathrm{I}_{\mathrm{afc}} \lim$
15, 16 -
$0,9-\quad V$
15,16- - $1,5 \mathrm{~mA}$
15,16- $\quad-\quad 3,0 \mathrm{~mA}$
t_{d} - \quad - \quad -
$\mu \quad-\quad-\quad-5$
$\mathrm{S} \quad 14-2,5-\mathrm{mA} / \mathrm{V}$
V $\begin{array}{llll} & 9 & -17 & \mathrm{~V}\end{array}$
$\Delta \mathrm{V}_{\mathrm{O}} / \mathrm{afc}$ - -25 mV
$\pm\left(\mathrm{I}_{8}-\mathrm{I}_{9}\right) \quad-\quad-\quad-0,5 \mu \mathrm{~A}$

A.F.C. switch operated by manual switch

Input voltage (a.f.c. on)	$\mathrm{V}_{\text {Sw }}$	-	$-0,5$	-	$+0,5 \mathrm{~V}$	
Positive input voltage (a.f.c. off)	$+\mathrm{V}_{\text {Sw }}$	-	0,8	-	6	V
Negative input voltage (a.f.c. off)	$-\mathrm{V}_{\text {Sw }}$	-	0,8	-	-	V
Positive input current (a.f.c. off)	$+\mathrm{I}_{11}$	-	0,004	-	3	mA
Negative input current (a.f.c. off)	$-\mathrm{I}_{11}$	-	0,8	-	2	mA

A.F.C. switch operated by pulse

Positive trigger pulse peak current	$+\mathrm{I}_{11}$ pulse	13			
pulse width $=10 \mu \mathrm{~s}$		-	800	-	$3000 \mu \mathrm{~A}$
$100 \mu \mathrm{~s}$,	-	80	-	$3000 \mu \mathrm{~A}$
1 ms		-	8	-	$3000 \mu \mathrm{~A}$
10 ms		-	4	-	$3000 \mu \mathrm{~A}$
Negative trigger pulse peak current	$-\mathrm{I}_{11}$ pulse	-	0, 8		2 mA
Negative trigger pulse width		-	10	-	$\mu \mathrm{s}$

CHARACTERISTICS and APPLICATION INFORMATION (continued)

Stabilizer 2

Output voltage range (adjustable)
Output current
Output voltage temp. coefficient
Switch-on delay time
Switching voltage

| | Note | Min. | Typ. | Max. Unit | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |
| $\mathrm{V}_{\mathrm{o}} 2$ | 10 | 8 | - | 18 | V |
| 12 | 5 | 0 | - | 5,5 | mA |
| $\Delta \mathrm{~V}_{\mathrm{O}} 2 / \Delta \mathrm{T}$ | 7,8 | - | 45 | - | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{t}_{\text {don }}$ | 11 | 0 | - | 6 | s |
| $\mathrm{~V}_{1-16}$ | - | 0,8 | - | 1 | V |

Stabilizer 3

Output voltage range (adjustable)
Output current
Output voitage temp. coetficient

$\mathrm{V}_{\mathrm{o}} 3$	12	8	-	26	V
I 3	5	0	-	5,5	mA
$\Delta \mathrm{~V}_{\mathrm{O}} 3 / \Delta \mathrm{I}$	7,8	-	45	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Notes (also from page 6)

1. The $\mathrm{V}_{\text {in }}$ range depends on the value of $\mathrm{V}_{0} 1$ (see Fig .1).
2. At $\mathrm{I} 1=5 \mathrm{~mA}, \mathrm{I} 2=\mathrm{I} 3=5,5 \mathrm{~mA}, \mathrm{I}_{10}=0$.
3. Adjustable by means of RA1, RB1 and RP.
4. If a higher level is required from the output of stabilizer 1 , the reference diode supply may be obtained from the emitter of a power transistor connected to the output from stabilizer 3 (see Fig. 5). In this case, the current available from stabilizer 1 is, increased to $12,5 \mathrm{~mA}$ (bleeder current $\mathrm{I}_{\mathrm{RA}}{ }^{\prime}=2 \mathrm{~mA}$).
5. At $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C} \max$. with all stabilizers at rated currents.
6. With $\mathrm{V}_{0} 1$ within $0,05 \%$ of its steady value.
7. Temperature coefficient at $\mathrm{T}_{\text {amb }}$ from $10^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ with $\mathrm{V}_{\text {in }}$ constant, and using metal film bleed resistors having a temperature coefficient of $\leq 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
8. With all stabilizer output currents constant and within the specified limits.
9. Common-mode voltage $=$ voltage between pins 8 and 16 , and 9 and 16 of the IC.
10. $\mathrm{V}_{\mathrm{O}} 2$ depends on the value of $\mathrm{V}_{\mathrm{O}} 1$ (see Fig. 3); adjustable with RA2.
11. Adjustable by means of RT, and CT1. The delay time is limited by the leakage current of CT^{1}.
12. $\mathrm{V}_{\mathrm{O}} 3$ depends on the value of $\mathrm{V}_{0} 1$ (see Fig. 4): adjustable with RA3.
13. The delay time after triggering depends on the value of $\mathrm{CT}^{2} 2$.
14. With $R E=10 \mathrm{k} \Omega$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
15. $\mathrm{V}_{\text {afc }}$ out at $\mathrm{V}_{\text {afc }}$ in after limiting.
16. With $\mathrm{RE}=10 \mathrm{k} \Omega$; RA1 $=12 \mathrm{k} \Omega$.

Fig. 1. Range of values for $\mathrm{V}_{\mathrm{O}} 1$

Fig. 2. Determination of I_{10} and S-factor from RE

Fig. 4. Range of values for $\mathrm{V}_{\mathrm{O}} 3$

Fig. 5. Hi-fi radic receiver with electronic tuning using TCA 750.

INTEGRATED AUDIO AMPLIFIER

The TCA760B is a monolithic integrated audio amplifier incorporating high flexibility for applications in battery and mains-fed equipment.
Due to special internal circuitry (stabilization, temperature correction, high a.c. feedback of 20 dB) the cross-over distortion is negligible over the entire supply voltage range ' (5 to 14 V). Presetting is not required for the quiescent current (5 to $15,7 \mathrm{~mA}$), it is internally adjusted.
Additional features are:

- low noise output voltage;
- high peak current (l A);
- high unloaded supply voltage (15 V);
- high gain (closed loop 15 dB at a feedback of 20 dB);
- safe operation regarding second breakdown;
- high ripple rejection.

The device will withstand repetitive short circuits across the speaker load if the absolute maximum junction temperature is not exceeded.

| | QUICK REFERENCE DATA | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Supply voltage range | V_{P} | | 5 to 14 | V |
| Total quiescent current | $\mathrm{I}_{\text {tot }}$ | | 5 to 15,7 | mA |
| Supply voltage (peak value) | V_{PM} | \max. | 15 | V |
| Output power at $\mathrm{d}_{\text {tot }}=10 \%$ | | | | |
| at $\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$ | P_{o} | typ. | 1,1 | W |
| at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$ | P_{o} | typ. | 2,1 | W |
| Total distortion before clipping | $\mathrm{d}_{\text {tot }}$ | typ. | 0,7 | $\%$ |
| Input impedance | $\left\|\mathrm{Z}_{\mathrm{i}}\right\|$ | typ. | 15 | $\mathrm{k} \Omega$ |
| Sensitivity for P_{o} at $\mathrm{d}_{\text {tot }}=10 \%$ | $\mathrm{~V}_{\mathrm{i}}$ | typ. | 10 | mV |

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Supply voltage (pin 11)
Unloaded supply voltage (pin 11; peak value)
(no-signal condition)

Currents

Output current (pin $13,11,4)$	I_{O}	\max.	1	A
Non-repetitive peak output current (pin 13, 11, 4)	$\mathrm{I}_{\mathrm{OSM}}$	\max.	2	A

Power dissipation ${ }^{1}$)

Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
$P_{\text {tot }} \quad$ max. $\quad 1,4 \quad W$

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-25 to +125	${ }^{\circ} \mathrm{C}$

[^9]

Design data

Pin 6 to 4 voltage
Pin 13 to 16 voltage
Pin 11 to 13 voltage

$\pm V_{6-4}$	\max.	6	V
$\mathrm{~V}_{13-16}$	\max.	14	V
$\mathrm{~V}_{11-13}$	\max.	14	V

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$ unless otherwise specified D.C. characteristics

Supply voltage range	V11-16		5 to 14	V
Total quiescent current	I_{11} tot	1 typ.	$\begin{array}{r} 10 \\ 5 \text { to } 15,7 \end{array}$	$\left.\mathrm{mA}_{\mathrm{mA}}^{1}\right)$
Saturation voltages of output stages at $\mathrm{I}_{0}=0,5 \mathrm{~A}$	$\mathrm{V}_{\text {CEsat }}$	$<$	0,9	V

A.C. characteristics

A.F. output power at onset of clipping at $d_{\text {tot }}=10 \%$	$\begin{aligned} & P_{0} \\ & P_{0} \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 0,8 \\ & 1,1 \end{aligned}$	$\begin{array}{ll}W \\ W & 3\end{array}$
Open loop voltage gain	G_{V}	typ.	70	dB
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=0,7 \mathrm{~W}$	$\mathrm{d}_{\text {tot }}$	$\left\{\begin{array}{l}\text { typ. } \\ <\end{array}\right.$	0,7 3	\% $\%$
Noise output power at $\mathrm{R}_{\mathrm{S}}=0$	P_{n}	typ.	2	$\mathrm{nW})^{2}$)
Input sensitivity at $\mathrm{P}_{\mathrm{O}}=0,7 \mathrm{~W}$	V_{i}		8,5	mV
Input impedance	$\left\|Z_{i}\right\|$	typ.	15	$\mathrm{k} \Omega$
Equivalent input noise voltage at $\mathrm{R}_{\mathrm{S}}=7 \mathrm{k} \Omega$	V_{n}	$\left\{\begin{array}{l}\text { typ. } \\ <\end{array}\right.$	1,5 3,0	$\left.\left.\begin{array}{l} \mu V \\ \mu V \end{array}\right)^{2}\right)$

[^10]
APPLICATION INFORMATION

Supply voltage V_{11-16} Load resistance R_{L}	6 4	6 8	$\begin{aligned} & 7,5 \\ & 4 \end{aligned}$	$\begin{aligned} & 7,5 \\ & 8 \end{aligned}$	9 4	$\begin{aligned} & 9 \\ & 8 \end{aligned}$	$\begin{array}{r} 10 \\ 8 \end{array}$	12 8	$\begin{aligned} & \mathrm{V} \\ & \Omega \end{aligned}$	
A. F. output power	0,45	0,35	0,8	0,6	1,1	0,9	1,2	1,4	W ${ }_{\text {l }}$)	
at onset of clipping	0,42	0,33	0,7	0,57	1,0	0,8	1,1	1,3	W $\mathrm{W}^{\text {) }}$	
A. F. output power	0,66	0,48	1,1	0,8	1,5	1,2	1,5	2,1	W 1)	
at $\mathrm{d}_{\text {tot }}=10 \%$	0,62 ${ }^{\text {c }}$	0,46	1,0	0,78	1,4	1,1	1,45	2,0	W $\mathrm{W}^{\text {) }}$	
Sensitivity										
for $\mathrm{P}_{\mathrm{o}}=50 \mathrm{~mW} \mathrm{~V} \mathrm{~V}_{\mathrm{i}}$	1,4	2,0	1,4	2,0	1,4	2,0	2,0	2,0	mV	
for $\mathrm{d}_{\text {tot }}=10 \% \quad \mathrm{~V}_{\mathrm{i}}$	4,8	7,0	8,0	9,0	10	10	11,0	12, 0	mV	
$\mathrm{T}_{\text {amb }}$ (maximum)	93	107	78	99	45	87	81	45	${ }^{\circ} \mathrm{C}$	
Supply current for full output power	185	125	225	165	300	190	215	250	mA	
Quiescent current $\mathrm{I}_{\text {tot }}$	10,0	10,0	10; 0	10,0	10,0	10,0	10,0	- 10,0	mA	
Value of R1	47	47	47	47	47	47	47	47°	Ω	
R2	100	100	100	100	100	100	100	100	Ω	
R3	1	1	1	1	1.	1	1	1	Ω	
Cl	1,6	1,6	1,6	1,6	1,6	1,6	1,6	1,6	$\mu \mathrm{F}$	
C2	47	47	47	47	47	47	47	47	$\mu \mathrm{F}$	
C3	125	125	125	125	125	125	125	125	$\mu \mathrm{F}$	
C4	470	220	470	220	470	220	220	220	$\mu \mathrm{F}$	
C5	1000	470	1000	470	1000	470	470°	470	$\mu \mathrm{F}$	
C6	150	150	150	150	150	150	150	150	nF	
C7	47	47	47	47	47	47	47	47	$\mu \mathrm{F}$	
Input impedance $\left\|\mathrm{Z}_{\mathrm{i}}\right\|$	15	15	15	15	15	15	15	15	$\mathrm{k} \Omega$	
Closed loop voltage gain $\quad G_{V}$	50	50	50	50	50	50	50	50	$\left.\\|^{3}{ }^{3}\right)$	
Open loop voltage gain $\quad G_{V}$	66	68	70	71	70	74	76	78	dB	
Frequency response	\checkmark -	-		pages	and 10			\longrightarrow		
Noise output power P_{n}			4			2			$\mathrm{nW}{ }^{4}$)	
Noise output power P_{n}			50			25			nW 5)	

l) Measured before output capacitor (C5).
2) Measured across R_{L}.
3) At R $1=47 \Omega$. The gain can be increased by decreasing the value of $R 1$; at decreasing the gain level however the maximum tolerated value of R1 amounts to 100Ω; at further decrease of the gain an attenuator at the input is preferred.
${ }^{4}$) $\mathrm{R}_{\mathrm{S}}=0 \quad \Omega$; frequency range 30 Hz to 15 kHz .
5) $\mathrm{R}_{\mathrm{S}}=7 \mathrm{k} \Omega$; frequency range 30 Hz to 15 kHz .

APPLICATION INFORMATION (continued)

General notes

1. Prescription for print lay-out:

Pin 1 must be used as a ground connection for the input circuit.
Pin 16 must be used for the output circuit and for connection of the negative supply voltage.
The pins 16 and 1 have to be interconnected as close to the package as possible to prevent a common impedance in the ground line.
2. The smoothing capacitor across the supply must be connected close to the pins.
3. To prevent radio signals in the low frequency amplifier a small capacitor of about 560 pF between pins 6 and 1 is preferred.

Basic power amplifier

APPLICATION INFORMATION (continued)

Power amplifier for mains-fed supply

When using a mains-fed power supply with high ripple it is advantageous to connect the speaker to ground by bootstrapping pin 9 .
Pin 7 is available for extra hum suppression (see graphs on page 9).

APPLICATION INFORMATION (continued)

The influence on the hum suppression when a capacitor of $10 \mu \mathrm{~F}$ is connected between pins 7 and 1 is shown in the graph below.
An increase of the capacitor value gives no further improvement in hum suppression.

RECORDING PREAMPLIFIER CIRCUIT

The TDA1002 incorporates all amplifier circuits necessary for the record/playback functions, with the exception of the audio power output amplifier.
It comprises:

- a preamplifier for microphone or playback
- a recording amplifier with automatic level control and a dynamic limiter with a short limiting time.

For radio recorders, the TDA1002 is adapted to existing radio ICs (TBA570A, TBA700), in whichit the ductor uitpuit is accossible for reconding and the audio input for playback.
For cassette recorders, it is adapted to the existing audio power ICs such as TCA760B.

QUICK REFERENCE DATA					
Supply voltage range		V_{P}	nom.	4 to $\begin{array}{r}9 \\ 12\end{array}$	V
Ambient temperature		$\mathrm{T}_{\mathrm{amb}}$	typ.	25	${ }^{\circ} \mathrm{C}$
Total quiescent current		$\mathrm{I}_{\text {tot }}$	typ.	14	mA
Preamplifier			Record (mic.)	Playback	
Voltage gain	G_{V}	typ.	28	50	dB
Distortion before clipping	$\mathrm{d}_{\text {tot }}$	typ.	0,1	0,3	\%
Input impedance	$\left\|Z_{i}\right\|$	typ.	17	17	k ?
Recording amplifier					
Voltage gain (at $\mathrm{f}=1 \mathrm{kHz}$)		G_{V}	typ.	54	dB
Distortion at $\mathrm{V}_{\mathrm{o}}=1 \mathrm{~V}$		$\mathrm{d}_{\text {tot }}$	typ.	0, 4	\%
Impedance level at P (see page 9)		$\left\|z_{i}\right\|$	typ.	40	$k \bigcirc$
Automatic level control			input	output	
			10	400	mV
			1000	900	mV
Limiting time ($\Delta \mathrm{V}_{\mathrm{i}}=20 \mathrm{~dB}$)			typ.	4	ms
Recovery time ($\Delta \mathrm{V}_{\mathrm{i}}=-20 \mathrm{~dB}$)			typ.	20	s

PACKAGE OUTLINE 16-lead DIL; plastic (see general section).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Supply voltage : pin 15

pin 16 \quad| V_{15-10} | \max. | 12 |
| :--- | :--- | :--- |
| V | | |
| $\mathrm{~V}_{16-5}$ | \max. | 12 | V

Dissipation
Total power dissipation
see derating curve below

Temperatures
Storage temperature
Operating ambient temperature
(see also derating curve above)
$\begin{array}{lll}\mathrm{T}_{\text {stg }} & -65 \text { to }+125 & { }^{\circ} \mathrm{C} \\ \mathrm{T}_{\mathrm{amb}} & -20 \text { to }+125 & { }^{\circ} \mathrm{C}\end{array}$
D.C. CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Supply voltages

Quiescent currents
Output voltages

Preamplifier

Recording amplifier

V_{15-10}		4 to 12	V
$\mathrm{~V}_{16-5}$		4 to 13	V
I_{15}	typ.	9	mA
I_{16}	typ.	4,5	mA

A.C. CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=9 \mathrm{~V}$

Preamplifier

Open loop voltege gain
Voltage gain at $\mathrm{f}=1 \mathrm{kHzz}$
Output voltage before clipping
Equivalent noise input voltage
Input impedance
Distortion at $\mathrm{V}_{\mathrm{O}}=500 \mathrm{mV}$
Amplitude response

		$\begin{gathered} \text { Record }{ }^{1} \text {) } \\ \text { (mic.) } \end{gathered}$	Playback ${ }^{2}$)
G_{V}	typ.	80	80 dB
G_{V}	typ.	28	50 dB
V_{O}	$>$	2,2	V
V_{n}	typ.	0, 5	0,5 5 (${ }^{3}$)
$\left\|Z_{i}\right\|$	typ.	17	17 k ?
$\mathrm{d}_{\text {tot }}$	typ.	0, 1^{4})	$\left.0,3^{5}\right) \%$

see note 6

Record"ng amplifier (with automatic level control) ${ }^{7}$)
Open loop voltage gain
Voltage gain at $\mathrm{f}=1 \mathrm{kHz}$
Amplitude response
Impedance level at P (see page 9)
Distortion at $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V}$ (see Fig. 9 on page 10) without automatic level control)

G_{V}	typ.	80	$\left.\left.d B^{8}\right)^{9}\right)$
G_{V}	typ.	54	$\left.\left.d B^{8}\right)^{9}\right)$

see Fig. 8 on page 10
$\left|Z_{i}\right| \quad$ typ. $40 \quad \mathrm{k} \Omega{ }^{10}$)
$\mathrm{d}_{\text {tot }}<0,4 \%$

1) Measured in Fig. I on page 6.
2) Measured in Fig. 3 on page 7.
3) $\mathrm{R}_{\mathrm{S}}=0,5 \mathrm{k} \Omega ; \mathrm{B}=300 \mathrm{~Hz}$ to 15 kHz .
4) See Fig. 2 on page 6 .
5) See Fig. 4 on page 7.
6) See Fig. 5 on page 8.
7) Measured in Fig. 7 on page 9.
8) Referring to V_{O} and V_{i}.
${ }^{9}$) The automatic level control being disconnected.
9) Depencs on impedence level at pin 6.
A.C. CHARACTERISTICS (continued)

Automatic level control ${ }^{1}$)
Output voltage at $\mathrm{V}_{\mathrm{S}}=1 \mathrm{mV}$
at $V_{S}=10 \mathrm{mV}$
at $\mathrm{V}_{\mathrm{S}}=100 \mathrm{mV}$
at $\mathrm{V}_{\mathrm{S}}=1000 \mathrm{mV}$

V_{9-10}	typ.		70	mV
	typ.		400	mV
9-10		300 to	600	mV
V_{9-10}	typ.		600	mV
	typ.		900	mV
V-10		700 to 1	1200	mV

Limiting time (clipping at $\Delta \mathrm{V}_{\mathrm{i}}=+20 \mathrm{~dB}$)
Levei seitiag finice io reach fiinal leved within $\pm 1 \mathrm{~dB}$ after $\Delta \mathrm{V}_{\mathrm{i}}=+20 \mathrm{~dB}$
Recovery time after $\Delta \mathrm{V}_{\mathrm{i}}=-20 \mathrm{~dB}$

t_{1}	$<$	6	$\mathrm{~ms}^{2)}$
t_{s}	$<$	4	$\mathrm{~s}^{2}$
$\mathrm{t}_{\mathbf{r}}$	typ.	20	$\mathrm{~s}^{3}$

[^11]Preamplifier used as microphone amplifier

Fig. 1

Fig. 2. (typical values)

Preamplifier used for playback

Fig. 4. (typical values)

Fig. 6. (typical values)

Fig. 7.

Fig. 8. Amplitude response of recording amplifier (level control not connected) (typical values)

Fig. 9. (typical values)

TIMING DIAGRAMS

$\mathrm{t}_{\mathrm{l}}=$ limiting time
$\mathrm{t}_{\mathrm{S}}=$ level setting time

Fig. 10

$t_{r}=$ recovery time

Fig. 11

MOTOR REGULATOR

AND BIAS/ERASE OSCILLATOR CIRCUIT

The TDA1003A is pin for pin compatible with the TDA 1003 with an extension of features. The TDA1003A is for use in recording/playback systems. It incorporates capstan motor speed control, an automatic stop circuit, and a bias/erase oscillator.
The motor circuit controls the back e.m.f. and delivers a stabilized voltage to the capstan motor. The motor voltage is corrected for line voltage and torque variations, and temperature variations of the magnetic material and windings. The motor speed control is operative as long as a pulse train, derived trom the tape wind spooi mechanism via an interrupter, is applied to the automatic stop circuit. The TDA1003A can also be used without stop circuit by connecting pin 16 to ground. An output is available for a "stop" indicator lamp.
The oscillator section contains a temperature-independent voltage reference source and an a.g.c. circuit controlling the transconductance of a balanced oscillator circuit incorporating the erase head. Any Q variations of the erase head winding are fed back to maintain the oscillator output as a constant undistorted sine-wave so that harmonic products do not cause interference during radio recording.

QUICK REFERENCE DATA				
Supply voltage range	VP	3,5 to 18		V
Ambient temperature	$\mathrm{T}_{\text {amb }}$	typ.	25	${ }^{\circ} \mathrm{C}$
Supply voltage	V_{P}	typ.	9	V
Motor regulator				
Current consumption	I_{4}	typ.	1;8	mA
Motor starting current	I_{3}	$<$	1000	mA
Operating motor current	I_{3}	$<$	250	mA
Minimum operating voltage at $\mathrm{I}_{3}=600 \mathrm{~mA}$	$\mathrm{V}_{3}-2 \mathrm{~min}$	typ.	0,9	V
Supply voltage rejection	$\Delta \mathrm{V}_{3-2} / \Delta \mathrm{V}_{4-2}$	typ.	1	mV / V
Stop circuit				
Output current for "stop" indicator lamp	I_{1}	<	100	mA
Knee voltage at $\mathrm{I}_{1}=100 \mathrm{~mA}$	V_{1-2}	typ.	0,6	V
Input current for $\mathrm{I}_{1}=100 \mathrm{~mA}$	I_{16}	$?$	4	$\mu \mathrm{A}$
Bias and erase oscillator				
Current consumption at $\mathrm{Q}=40$	I_{8}	typ.	25	mA
Erase head voltage at $\mathrm{Q}=40$ (r.m.s. value)	$\mathrm{V}_{\text {erase(rms) }}$	typ.	16	V

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic power.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Supply voltage on: pin 4
pin 8
pin 14

V_{4-2}	\max.	18	V
$\mathrm{~V}_{8-2}$	\max.	18	V
$\mathrm{~V}_{14-2}$	\max.	18	V

Currents

Motor current (pin 3; peak-value)
'Stop" indicator lamp current (d.c.; pin 1)
Maximum input current (pin 15)

$\mathrm{I}_{3 \mathrm{M}}$	max.	1000	mA
I_{1}	max.	100	mA
$\pm \mathrm{I}_{15 \text { max }}$	max.	20	mA

Temperatures
Storage temperature
Operating ambient temperature see also power derating curve below

Power dissipation
Total power dissipation
see derating curve below

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified; see test circuit on page 6
Supply voltage range (pins 4,8 and 14) $\quad \mathrm{V}_{\mathrm{P}} \quad 3,5$ to $18 \quad \mathrm{~V} \quad 1$)
Motor regulator

Current consumption	14	typ.	$\begin{array}{r} 1,8 \\ 1 \text { to } 3 \end{array}$	mA mA
Operating motor current	I3	$<$	250	mA
Motor starting current (peak-value)	$\mathrm{I}_{3 \mathrm{M}}$	$<$	1000	mA
Input off set voltage at $\mathrm{I}_{3}=3 \mathrm{~mA}$	$\left\|v_{7-6}\right\|$	typ.	2 8	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input off set current at $\mathrm{I}_{3}=3 \mathrm{~mA}$	$\left\|1_{7-6}\right\|$	typ.	0, 2	$\mu \mathrm{A}$
Input voltage range (common mode)	$\begin{aligned} & v_{6-2} \\ & v_{7-2} \end{aligned}$		$\begin{aligned} & -0,25) \\ & -0,25) \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input biass current	$\mathrm{I}_{6}: \mathrm{I}_{7}$	typ.	$\begin{aligned} & 0,1 \\ & 1,0 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Input sensitivity (for $\Delta \mathrm{I}_{3}=100 \mathrm{~mA}$)	$\Delta \mathrm{V}_{7-6}$	typ.	1 10	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Minimum operating voltage at $\mathrm{I}_{3}=600 \mathrm{~mA}$	V_{3-2} min	$\stackrel{\text { typ. }}{<}$	0,9 1,8	$\begin{array}{ll} \mathrm{V} & 2 \\ \mathrm{~V} \end{array}$

Automatic motor "stop" circuit

"Stop" indicator lamp current		I_{1}	<	100	mA
Knee voltage at $\mathrm{I}_{1}=100 \mathrm{~mA}$	$\left\{\begin{array}{l} \mathrm{V}_{15-2}=\text { low } \\ \text { ("stop" condition) } \end{array}\right.$	V1-2	typ.	$\begin{aligned} & 0,6 \\ & 1,0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input current for $\mathrm{I}_{1}=100 \mathrm{~mA}$		I_{16}	$>$	4	$\mu \mathrm{A}$
Voltage at pin 1 without external	load (V16 = low)	V_{1-2}	typ.	$\begin{array}{r} 4,1 \\ 3 \text { to } 5,0 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Maximum input current (pin 15)		$\pm \mathrm{I}_{15} \mathrm{max}$	$<$	20	mA

[^12]| CHARACTERISTICS (continued) | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Bias and erase oscillator | | | | |
| Current consumption at $\mathrm{Q}=40$ | I_{8} | typ. | 25 | mA |
| | 18 | \{ typ. | 38 | mA |
| | 18 | $1<$ | 46 | mA |
| Internal current limiting | I_{8} | $<$ | 95 | mA^{1}) |
| Peak output current | $\pm \mathrm{I}_{9}$ | $>$ | 100 | mA |
| Output voltage swing (peak-to-peak value) | V9-2(p-p) | typ. | $\mathrm{V}_{\mathrm{P}}-2$ | V |
| Current consumption of reference source | I_{14} | typ. | $\begin{aligned} & 1,8 \\ & 2,4 \end{aligned}$ | $\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$ |
| Reference voltage (temperature compensated) ${ }^{2}$) | V_{13-2} | $\begin{aligned} & \text { typ. } \\ & 1,55 \text { to } \end{aligned}$ | $\begin{array}{r} 1,7 \\ 1,9 \end{array}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| Erase head voltage; $\mathrm{Q}=40 ; \mathrm{L}=620 \mu \mathrm{H}$ (r.m.s. value) | V erase (rms) | typ. | 16 | V |
| Change of Verase when Q changes from 20 to 60 | $\Delta \mathrm{V}$ erase | $\stackrel{\text { typ. }}{<}$ | 1 1,8 | V |

APPLICATION INFORMATION measured in circuit on page 7

Motor regulator

Scpply voltage rejection
Motor speed variation over $\mathrm{T}_{\mathrm{amb}}=-5$ to $+55^{\circ} \mathrm{C} \quad \pm \Delta \mathrm{n} \quad$ typ. $\quad 2 \%$

Automatic motor "stop" circuit

Input voltage from wind spool supplied via
$10 \mathrm{k} \Omega$ to pin 15 (peak-to-peak value) $\quad \mathrm{V}_{\mathrm{W}}(\mathrm{p}-\mathrm{p}) \quad$ typ. $1,2 \mathrm{~V}$
Input current (pin 15)

$$
\frac{\Delta \mathrm{V}_{3-2}}{\Delta \mathrm{~V}_{4-2}} \quad \text { typ. } \quad 1 \quad \mathrm{mV} / \mathrm{V}
$$

Bias and erase oscillator

Erase head voltage for $Q=40$;

$$
\mathrm{L}=62 \mathrm{C} \mu \mathrm{H} \text { (r.m.s. value) }
$$

Change of $V_{\text {erase }}$ when Q changes from 20 to 60

$V_{\text {erase(rms) }}$	typ.	16	V
$\Delta V_{\text {erase }}$	typ.	1	V
$-\alpha_{2}$ nd $_{\text {harm }}$	typ.	55	$\left.\mathrm{~dB}{ }^{3}\right)$
$-\alpha_{3} \mathrm{rd}_{\text {harm }}$	typ.	40	dB
$-\alpha_{>6} \mathrm{th}_{\text {harm }}$	$>$	80	dB

[^13]
TEST CIRCUIT

Indicator lamp: $9 \mathrm{~V} ; 40 \mathrm{~mA}$

Motor (M): $\mathrm{R}_{\mathrm{a}}=14 \Omega$

$$
\mathrm{E}_{\mathrm{n}}=2,3 \mathrm{~V} \text { at } 1500 \mathrm{r} . \mathrm{p} . \mathrm{m}
$$

Erase head: $\mathrm{L}=620 \mu \mathrm{H}$
$Q=40$
$\mathrm{f}_{\mathrm{O}}=45 \mathrm{kHz}$
*) Capacitor with low losses required; especially for CrO_{2} tape and low battery voltage.
**) Switch closed: suitable for CrO_{2} tape
open : suitable for $\mathrm{F}_{2} \mathrm{O}_{3}$ tape.

10 W AUDIO POWER AMPLIFIER with thermal shut-down

The TDA 1004A is a monolithic integrated circuit in a plastic 16-lead power dual in-line package, intended for use as a low-frequency class-B amplifier.
This circuit can also be used in car radios, even when 2Ω load is required.
The device provides 10 W output power at $20 \mathrm{~V} / 4 \Omega ; 6 \mathrm{~W}$ at $14 \mathrm{~V} / 4 \Omega$ and $7,5 \mathrm{~W}$ at $14 \mathrm{~V} / 2 \Omega$. The supply voltage ranges from 9 to 20 V .
The TDA 1004 A is pin for pin compatible with the TDA 1004.
The d.c. and a.c. gain are equai, which means an externai íeediback neiwurk is nüt necessary.
The circuit comprises two separate amplifiers with the following features:

- low-cost and small number of external components;
- thermal limiting circuit, the gain of the circuit decreases when the crystal temperature exceeds $150^{\circ} \mathrm{C}$;
- continuous short-circuit protection of the load for supply voltages up to 16 V ;
- very good ripple rejection:
- low input impedance:
- low thermal resistance of the package thus requiring relatively small heatsinks;
- filtered but not stabilized supply (pin 6) available for other electronic functions.

QUICK REFERENCE DATA				
Supply voltage range	V_{P}		9 to 20	V
D. C. output current (peak value)	${ }^{\text {IOM }}$	$<$	2,5	A
Output power at $\mathrm{d}_{\text {tot }}=10 \%$				
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	typ.	6,2	W
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$	P_{0}	typ.	7, 0	W
at $\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{O}	typ.	7,0	W
at $\mathrm{VP}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{O}	typ.	11,0	W
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}<1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0, 2	\%
Input impedance	$\left\|Z_{i}\right\|$	typ.	20	$k \Omega$
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V}$	$\mathrm{I}_{\text {tot }}$	typ.	30	mA
Sensitivity at $\mathrm{F}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	V_{i}	typ.	6,6	mV
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$		to +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		to +150	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic power (SOT-69B).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage $\quad \mathrm{V}_{\mathrm{P}} \max .24 \mathrm{~V}$
Currents
Repetitive peak output current (pins 11, 12, 14)
Non-repetitive peak output current (pins 11, 12, 14)
Supply current from pin 6

$\mathrm{I}_{\text {ORM }}$	max.	2,5	A
$\mathrm{I}_{\text {OSM }}$	max.	5,0	A
I_{6}	\max.	30	mA

Power dissipation
Total power dissipation
see derating curve beiow
Temperatures
Storage temperature
Operating ambient temperature

$$
\begin{array}{lll}
\mathrm{T}_{\text {stg }} & -55 \text { to }+150 & { }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{amb}} & -25 \text { to }+150 & { }^{\circ} \mathrm{C}
\end{array}
$$

Short-circuiting

A.C. short-circuit duration of load impedance during sine-wave signal drive;
without heatsink at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} \quad \mathrm{t}_{\mathrm{sc}} \quad \max \quad 100$ hours

1. Infinite heatsink
2. External heatsink of $100 \mathrm{~cm}^{2}$
3. External heatsink of $30 \mathrm{~cm}^{2}$
4. External heatsink of $12 \mathrm{~cm}^{2}$
5. In free air; without external heatsink

Heatsink : blackened aluminium area.

THERMAL RESISTANCE (The power derating curve on page 3 is based on the following data)
From junction to case
From junction to ambient
$R_{\text {th j-c }}=3,3 \quad{ }^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {th } \mathrm{j}-\mathrm{a}}=45 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS

D.C. characteristics

Supply voltage range (pin 11)
Supply voltage (pin 6) at $I_{6}=0 \mathrm{~mA}$ at $I_{6}=20 \mathrm{~mA}$
Output current (peak value)
Output current at pin 6 (peak value)
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V}$

V_{P}		9 to 20	V
$\mathrm{~V}_{6-1}$	$>$	11.0	V
$\mathrm{~V}_{6-1}$	$>$	10,8	V
I_{OM}	$<$	2,5	A
$\mathrm{I}_{6 \mathrm{M}}$	$<$	30	mA
	typ.	30	mA
$\mathrm{I}_{\text {tot }}$	$<$	90	mA

A.C. characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also test circuit on page 5 .
A.F. output power at $d_{\text {tot }}=10 \%{ }^{1}$)

at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$; without bootstrap ${ }^{2}$)	P_{0}	$>\quad 4,8$	W
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	P_{0}	5. 5	W
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} \cdot \mathrm{R}_{\mathrm{L}}=2 \mathrm{~S}$		typ. $\quad 6,2$	W
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$ (${ }^{\text {a }}$ ($\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} \cdot \mathrm{R}_{\mathrm{L}}=8$ (th bootstrap ${ }^{1}$)	P_{0}	typ. 7,0	W
	P_{0}	typ. $\quad 7,0$	W
at. $\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \mathrm{~S}$	P_{0}	typ. 11,0	W
Voltage gain			
	G1	- 17 to 23	dB
power amplifier	$\mathrm{G}_{\mathrm{v} 2}$	typ. 30	dB
		27 to 33	dB
total amplifier	$\mathrm{G}_{\mathrm{v} \text { tot }}$	typ. 50	dB
		47 to 53	dB
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	$\mathrm{d}_{\text {tot }}$	typ. 0,2	\%
		1,0	\%
Frequency response (-3 dB)	B	60 Hz to 17	kHz
Input impedance : preamplifier	$\left\|Z_{i}\right\|$	15	$k \Omega$
		typ. 20	$k \Omega$
power amplifier	$\left\|z_{i}\right\|$	typ. 30	$k \Omega$
Output impedance of preamplifier (pin 4)	$\left\|z_{0}\right\|$	> 10	$\left.k \Omega^{3}\right)$

[^14]CHARACTERISTICS (continued)
Output voltage preamplifier

$$
\text { at } \left.\mathrm{d}_{\mathrm{tot}}=5 \% \text { (r.m.s. value }\right)
$$

Noise output voltage at $R_{S}=0 \Omega$

$$
\text { at } \mathrm{RS}_{\mathrm{S}}=2 \mathrm{k} \Omega
$$

Sensitivity at $P_{O}=1 \mathrm{~W}$
Ripple rejection at $f=100 \mathrm{~Hz}$ at $\mathrm{f}=1 \mathrm{kHz}$

$\mathrm{V}_{4-1(\mathrm{rms})}$	$>$	0,6	V	l
typ.	1,0	V		

V_{n}	typ.	0,3	mV
V_{n}	$<$	1,0	mV
V_{i}	typ.	6,6	mV
RR	typ.	32,5	dB
RR	typ.	50,0	dB

Test circuit

[^15]RIPPLE REJECTION

Typical ripple rejection measured with nominal load impedance
($\mathrm{R}_{\mathrm{L}}=4 \Omega$) and input a.c. shortcircuited.
$\mathrm{V}_{\mathrm{O} \text { max }}=4 \mathrm{mV}$ at $\mathrm{f}=10^{3} \mathrm{~Hz}$.

APPLICATION INFORMATION

Without bootstrap

With bootstrap

APPLICATION INFORMATION (continued)

Supply voltage (V_{11-14})	V_{P}	14			20		V
Load resistance	R_{L}	2	4	8	4	8	S
Total quiescent current	$\mathrm{I}_{\text {tot }}$	30	30	30	40	40	mA
Output power at $\mathrm{d}_{\text {tot }}=10 \%$ with bootstrap without bootstrap	P_{0} P_{O}	$\left.7,0^{1}\right)$ 7,5	6 5	3,5 3,0	12 11	7 6	W
Distortion at $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$	$\mathrm{d}_{\text {tot }}$	1	0, 2	0,2	0, 2	0,2	\%
Input sensitivity for $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W}$	V_{i}	4, 8	6,6	9, 1	6,6	9,1	mV
Ripple rejection at $\mathrm{f}=100 \mathrm{~Hz}$	RR	32, 5	32,5	32, 5	32, 5	32,5	dB
at $\mathrm{f}=1 \mathrm{kHz}$	RR	50, 0	50, 0	50, 0	50, 0	50,0	dB
Noise output voltage at $\mathrm{B}=60 \mathrm{~Hz}$ to 15 kHz							
$\mathrm{R}_{\mathrm{S}}=0 \Omega$	V_{n}	0,30	0,30	0,30	0, 30	0, 30	mV
$\mathrm{R}_{\mathrm{S}}=2 \mathrm{k} \Omega$	V_{n}	0,45	0,45	0,45	0, 45	0,45	mV
Input impedance	$\left\|Z_{i}\right\|$	23	23	23	23	23	$k \Omega$
Maximum power dissipation	$\mathrm{P}_{\text {tot }}$	5, 2	2,8	1, 6^{\prime}	5,5	3, 0	W

[^16]
APPLICATION INFORMATION (continued)

With bootstrap

MOUNTING INSTRUCTIONS

When using an external heatsink, connected to the heat spreader of the IC, the thermal power in the circuit. can be reduced to a negligible value.
The optimum heatsink dimensions (blackened aluminium) for a given operating ambient temperature, can be found from the derating curves on page 3.
The fact that the thermal resistance of the encapsulation is very good, results in a relatively small heatsink for thermal power reduction; e.g. $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$ at $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$ can be obtained without an external heatsink.
Two mounting methods are shown below.
By using these methods, no extra copper area is required on the printed-circuit board, so a saving in printed-wiring area is obtained.
Mounting the external heatsink can be done by screwing or clipping.
Mechanical stresses do not damage the IC.
It is recommended that a heatsink-compound be used between IC heat spreader and heatsink.

Method 1

Method 2

frequency multiplex pll stereo Decoder

The TDA1005 is a high quality PLL stereo decoder based on the frequency-division multiplex (f.d.m.) principle, performing:

- excellent ACI (Adjacent Channel Interference) and SCA (Storecast) rejection
- very low BFC (Beat-Frequency Components) distortion in the higher frequency region

The circuit incorporates the following features:

- with simplified peripheral circuitry the circuit can perform as a time-division multiplex (t.d.m.) decoder, for use in economic medium and low-class apparatus
- for car radios: operation at a supply voltage of 8 V
- extra pin for smooth mono/stereo take-over without "clicks"
- automatic mono/stereo switching, controlled by both pilot signal and field strength level
- low distortion in the loop resonance frequency region ($\approx 300 \mathrm{~Hz}$; $\mathrm{d}_{\mathrm{tot}}=0,25 \%$ typ.)
- external adjustment for obtaining optimum channel separation in the complete receiver
- internal amplification: t.d. m., 6 dB ; f. d. m., 10 dB
- driver for stereo indicator lamp
- externally switchable: VCO-off or mono condition
- guaranteed VCO capture range (> $3,5 \%$ or $2,7 \mathrm{kHz}$)

QUICK REFERENCE DATA					
Supply voltage range			$\mathrm{V}_{8-16} 8$ to 18 V		
Supply voltage			V_{8-16}	typ. 15	V
Ambient temperature			$\mathrm{T}_{\text {amb }}$	typ. 25	${ }^{\circ} \mathrm{C}$
			t.d.m.	f. d. m.	
Channel separation at $\mathrm{f}=1 \mathrm{kHz}$	α	typ.	45	50	dB
Carrier suppression at $\mathrm{f}=19 \mathrm{kHz}$	α_{19}	typ.	35	35	dB
at $\mathrm{f}=38 \mathrm{kHz}$	α_{38}	typ.	45	40	dB
at $\mathrm{f}=76 \mathrm{kHz}$	α_{76}	typ.	-	75	dB
ACI rejection at $\mathrm{f}=114 \mathrm{kHz}$	${ }_{114}$	typ.	52	70	dB
SCA rejection at $\mathrm{f}=67 \mathrm{kHz}$	α_{67}	typ.	85	90	dB
VCO capture range		$>$	3,5	3,5	\%
Distortion: $\mathrm{f}=1 \mathrm{kHz}$	$\mathrm{d}_{\text {tot }}$	typ.	0,25	0,2	\%
at loop resonance	$\mathrm{d}_{\text {tot }}$	typ.	0,35	0,25	\%
BFC suppression	$\mathrm{d}_{\mathrm{BFC}}$,	40	60	dB

PACKAGE OUTLINE (see general section)
16-1ead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages
Supply voltage
Indicator lamp voltage
Currents
Indicator lamp current
Indicator lamp turn-on current (peak value)

V_{8-16}	max.	18	V
$\mathrm{~V}_{15-16}$	max.	22	V

Dissipation
Total power dissipation
See derating curve below
Temperatures
Storage temperature
Operating ambient temperature
(see derating curve below)
I_{15} max. 100 mA
$\mathrm{I}_{15 \mathrm{M}}$ max. 200 mA

A.C. CHARACTERISTICS and APPLICATION INFORMATION

at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{8-16}=15 \mathrm{~V}$ (unless otherwise specified) see circuit diagrams on pages 7 (Fig. 1 but with modified output circuitry; without filter) and 8 (Fig. 2)

	note	pin	parameter		t. d. m.	f.d.m.	unit
Channel separation; adjustable with R_{5-10}; see Figs. 3 and 4	1,2	2,3	$\alpha \quad \mathrm{t}$	typ.	40	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
F.M.-I.F. roll-off correction range	1,2				48 to 72	-	kHz
Input MUX-voltage $\mathrm{d}_{\mathrm{tot}}<0,35 \% ; \mathrm{L}=1 ; \mathrm{R}=1$	1,2	11	$\mathrm{V}_{11-16(p-p)}{ }^{\text {t }}$	typ.	1	1	V
Input impedance		11	$\left\|z_{i}\right\| \quad$ t	typ.	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	35	$k \Omega$ $k \Omega$
Voltage gain per channel	1,2			typ.	$\begin{gathered} 6 \\ 4,8 \text { to } 7,6 \end{gathered}$	8, 8 to $\begin{gathered}10 \\ 11,6\end{gathered}$	$\frac{d B}{d B}$
Channel balance	1,2		$\pm \Delta \mathrm{G}_{\mathrm{V}}$	$<$	1	1	dB
Output voltage (r.m.s. value) $\mathrm{L}=1 ; \mathrm{R}=1$	1,2	2	$\begin{aligned} & \mathrm{V}_{2-16(\mathrm{rms})} \\ & \mathrm{V}_{3-16(\mathrm{rms})} \end{aligned}$	typ.	0,8 0,8	1,1 1,1	V
Output impedance	3	2,3	$\left\|Z_{0}\right\|$	typ.	5,6 4 to 7	5,6 4 to 7	$k \Omega$ $k \Omega$
Distortion; see Figs. 5 and 6 $\begin{aligned} & \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} \text { (all conditions) } \\ & \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; \mathrm{L}=1 ; \mathrm{R}=1 \\ & \text { at loop resonance } ; \mathrm{f}_{\mathrm{m}} \approx 300 \mathrm{~Hz} \\ & \mathrm{~L}=1 ; \mathrm{R}=0 \end{aligned}$	1	2,3 2,3 2,3	$d_{\text {tot }}$ $d_{\text {tot }}$ $d_{\text {tot }}$	typ. $<$ typ.	0,25 0,35 0,35	0,2 0,35 0,25	\%
BFC suppression; Fig. 6	10	2,3	$\mathrm{d}_{\mathrm{BFF}}$	$>$	40	60	dB
Intermodulation at $\mathrm{f}_{\mathrm{m}}=13 \mathrm{kHz}$	6		d_{13}	typ.	55	65	dB
Carrier suppression $\mathrm{f}=19 \mathrm{kHz}$	1		α_{19}	typ.	35	35	dB
$\mathrm{f}=38 \mathrm{kHz}$	1		α_{38}	typ.	$\begin{aligned} & 40 \\ & 45 \end{aligned}$	38 40	dB dB
$\mathrm{f}=76 \mathrm{kHz}$	1		$\alpha^{*} 76$	typ.	-	75	dB
ACI rejection at $\mathrm{f}=114 \mathrm{kHz}$	4		${ }^{\alpha} 114$	typ.	52	70	dB
at $\mathrm{f}=190 \mathrm{kHz}$	4		${ }^{1} 190$	typ.	55	74	dB
SCA rejection at $\mathrm{f}=67 \mathrm{kHz}$	5		${ }^{\alpha} 67$	typ.	85	90	dB
Ripple rejection $f=100 \mathrm{~Hz} ; V_{8}-16(\mathrm{rms})=200 \mathrm{mV}$			RR	$\begin{aligned} & > \\ & \text { typ. } \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	$\mathrm{dB}_{\mathrm{dB}}$

A.C. CHARACTERISTICS and APPLICATION INFORMATION (continued)

Notes

1. $\mathrm{V}_{11-16(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V} ; 9 \%$ pilot signal (19 kHz).
2. $\mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$.
3. At supply voltages of 8 to 11 V , resistors of $5,6 \mathrm{k} \Omega$ have to be connected from ground to pins 2 and 3.
4. Measured with a composite input signal : $L=R ; f_{m}=1 \mathrm{kHz} ; 90 \% \mathrm{M}$-signal;
9% pilot signal ; 1% spurious signal of 110 kHz (for α_{114}) or 186 kHz (for α_{190}).
ACI suppression is defined as : $20 \log \frac{V_{\mathrm{O}}(\text { at } 4 \mathrm{kHz})}{\mathrm{V}_{\mathrm{O}}(\text { at } 1 \mathrm{kHz})}$.
5. Measured with a composite input signal : $\mathrm{L}=\mathrm{R} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz} ; 80 \% \mathrm{~S}$-signal ; 9% pilot signal ; 10% SCA carrier $(67 \mathrm{kHz}) ; \mathrm{d}_{13}=20 \log \frac{\mathrm{~V}_{\mathrm{O}}(\text { at } 9 \mathrm{kHz})}{\mathrm{V}_{\mathrm{O}}(\text { at } 1 \mathrm{kHz})}$.
6. Measured with a composite input signal : $\mathrm{L}=\mathrm{R} ; \mathrm{f}_{\mathrm{m}}=13 \mathrm{kHz}$; interference at 1 kHz ($3 \times 13 \mathrm{kHz}-38 \mathrm{kHz}$ sub-carrier).
7. See also Figs. 7 and 9. Compensated with RC network on pin 7.

Capacitor $\quad:-\mathrm{TC}=750 \mathrm{ppm}$.
Carbon resistor: $-\mathrm{TC} \approx 250 \mathrm{ppm}$ or metal film resistor: $+\mathrm{TC}=100 \mathrm{ppm}$.
8. Adjustable with R_{13-8}; see also Fig. 8 ; for field strength dependent input (pin 14) see page 6.
9. $\Delta \mathrm{V}_{11-16}=20 \log \frac{\mathrm{~V}_{11-16} \text { (mono/stereo) }}{\mathrm{V}_{11-16 \text { (stereo/mono) }}}$.
10. For additional circuitry on pin 6 see Figs. 1 and 2; for graph see Fig. 10.
D.C. CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{8-16}=15 \mathrm{~V}$ (unless otherwise specified)

Supply voltage range
Total current (except indicator lamp)
Power dissipation (operating)
at lamp current $\mathrm{I}_{15}=100 \mathrm{~mA} ; \mathrm{V}_{8-16}=18 \mathrm{~V}$
Saturation voltage of lamp driver
at $\mathrm{I}_{15}=100 \mathrm{~mA}$
Maximum lamp driver voltage
Switching voltage : to mono
to stereo
hysteresis

V_{8-16}		8 to 18	$\mathrm{Vl})$
I_{8}	typ.	21	mA
$\mathrm{P}_{\text {tot }}$	$<$	570	mW

V_{15-16}	typ.	0,9	V
$\mathrm{~V}_{15-16}$	$<$	22	V
$\mathrm{~V}_{14-16}$	$>$	1,2	$\left.\mathrm{~V}^{2}{ }^{2}\right)$
V_{14-16}	$<$	0,65	$\mathrm{~V}^{2}$
$\mathrm{~V}_{14-16}$	typ.	0,2	V

APPLICATION NOTES

1. Switching-off the VCO

If the internal gain is used with AM-reception, the VCO can be switched off by connecting pin 9 via a $100 \mathrm{k} \Omega$ resistor to ground (no h.f. signal on the leads), or connecting pin 7 to ground.
2. Mono button

The decoder can be switched to the mono-position by connecting pin 12 to ground. The VCO then remains operational so this possibility cannot be used with AMreception.

[^17]

Fig. 1 Frequency-division multiplex stereo decoder.
Note: all measurements have been carried out without the output filter, that is with output circuitry on pins 2 and 3, as given in Fig. 2.

Fig. 2 Time-division multiplex stereo decoder.

MUXgenerator

Fig. 3 Channnel separation as a function of frequency.
——— time-division multiplex system

- - frequency-division multiplex system

Conditions: $\mathrm{V}_{8-16}=15 \mathrm{~V} ; \mathrm{V}_{11-16(p-p)}=1 \mathrm{~V}$; optimized only for $\mathrm{f}=1 \mathrm{kHz}$;
additional adjustment at $\mathrm{f}=5 \mathrm{kHz}$ results in about 10 dB improvement.

Fig. 4 Channel separation as a function of resistance between pins 5 and 10 (t.d.m.). For test circuit see page 9 .

Fig. 5 Distortion as a function of audio frequency (f.d.m.).
Conditions: $\mathrm{V}_{8-16}=15 \mathrm{~V} ; \mathrm{V}_{2-16}=\mathrm{V}_{3-16}=1 \mathrm{~V}$ (r.m.s.) .

Fig. 8 Pilot input voltage switching level as a function of resistance between pins 8 and 13 .

Fig. 9 Relative frequency deviation as a function of ambient temperature (VCO free-running).
———pin 7 open

- - pin 7 connected with N750 capacitor and carbon resistor
-..-- pin 7 connected with N750 capacitor and metal-film resistor.

Fig. 10 Channel separation as a function of $\mathrm{V}_{6}-16$ at 1 kHz (smooth take-over).

MOTOR REGULATOR WITH AUTOMATIC TAPE-END INDICATOR

The TDA1006 is for use in car radio tape-decks.
The circuit incorporates the following functions:

- capstan motor speed control;
- an electronic motor stop in conjunction with hysteresis slip-coupling or commutator pulses;
- an automatic switch from playback to radio at tape-end;
- playback indication with lamp;
- tape-end indication with intermittent light.

QUICK REFERENCE DATA			
Supply voltage range	V_{P}	6 to 22	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	typ. 25	${ }^{\circ} \mathrm{C}$
Supply voltage	V_{P}	typ. 14	V
Motor regulator			
Current consumption ($\mathrm{R}_{3-4}=7,5 \mathrm{k} \Omega$)			
playback ($\mathrm{I}_{1}=0$)	$\begin{aligned} & \mathrm{I}_{4} \\ & \mathrm{I}_{4} \end{aligned}$	$\begin{array}{lr}\text { typ. } & 9 \\ \text { typ. } & 12\end{array}$	mA mA
playback	I_{4}	typ. 52	mA
tape-end	I_{4}	typ. 32	mA
Operating motor current	I_{3}	typ. 200	mA
Supply voltage rejection	$\Delta \mathrm{V}_{3-2} / \Delta \mathrm{V}_{4-2}$	typ. 1	mV / V
Automatic stop circuit			
Input current	I_{14}	$>\quad 25$	$\mu \mathrm{A}$
Input voltage at commutator	V_{11-2}	-6 to +6	V

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic power.

9001*al

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage on: pin 4

$$
\operatorname{pin} 9
$$

V_{4-2}	\max.	24	V
$\mathrm{~V}_{9-2}$	\max.	24	V

Currents

Output current at: pin $1 \begin{aligned} & \text { (d.c. value) } \\ & \text { (peak value) }\end{aligned}$	$\begin{aligned} & -\mathrm{I}_{1} \\ & { }^{-\mathrm{I}_{1 M}} \end{aligned}$	max. max.	$\begin{array}{r} 40 \\ 100 \end{array}$	mA
pin 3 (d.c. value)	I_{3}	\max.	250	mA
(non-repetitive peak value)	$\mathrm{I}_{3 \mathrm{SM}}$	max	600	mA
pin 8 (d.c. value)	$-\mathrm{I}_{8}$	max.	45	mA
(peak value)	-I 8 M .	max	80	mA
pin 10 (d.c. and peak value)	$-\mathrm{I}_{10}$	max.	20	mA

Temperatures

$$
\text { Storage temperature } \quad \mathrm{T}_{\text {stg }} \cdot-65 \text { to }+150{ }^{\circ} \mathrm{C}
$$

$$
\begin{array}{ll}
\mathrm{T}_{\text {stg }} & -65 \text { to }+150 \quad{ }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\text {amb }} & -25 \text { to }+150 \cdot{ }^{\circ} \mathrm{C}
\end{array}
$$

Operating ambient temperature see power derating curve below

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ unless otherwise specified (see test circuit on page 7).

Supply voltage range (pins 4 and 9)
V_{p}
6 to 22 V

Motor regulator

Current consumption $\left(R_{3-4}=7.5 \mathrm{k} \Omega\right)$ radio	14	typ.	9	mA
playback ($\mathrm{I}_{1}=0$)	I_{4}		12	mA
	1		to 17	mA
playback	I_{4}	typ.	52	mA
tape-end	I_{4}	typ.	32	mA
Input offset voltage at $\mathrm{I}_{3}=3 \mathrm{~mA}$,	$\left\|V_{7-6}\right\|$	$\left\{\begin{array}{l}\text { typ. } \\ <\end{array}\right.$	2 8	mV
Input voltage range (common mode)	$\mathrm{V}_{6-2} ; \mathrm{V}_{7-2}$	2,4 to	0, 2	V
Input bias current	$\mathrm{I}_{6} ; \mathrm{I}_{7}$	$\left\{\begin{array}{l}\text { typ. } \\ <\end{array}\right.$	80 700	nA
Input sensitivity (for $\Delta I_{3}=100 \mathrm{~mA}$)	ΔV_{7-6}	<	13	mV
Operating voltage of TR 38 at $\mathrm{I}_{3 \mathrm{SM}}=600 \mathrm{~mA}$	V_{3-2}	$\stackrel{\text { typ. }}{<}$	$\begin{array}{r} 900 \\ 1800 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Supply voltage rejection	$\Delta V_{3-2} / \Delta V_{4-2}$	typ.	1	mV / N
Operating motor current	I_{3}	$\left\{\begin{array}{l}\text { typ. } \\ <\end{array}\right.$	200 250	mA mA

Automatic motor "stop" circuit
Input current
Voltage when TR20 is not conducting (pin 16; peak-to-peak value)

Voltage when TR20 is conducting (pin 16)
Input voltage at commutator (pin 11)
${ }_{1} 14>25 \mu \mathrm{~A}$

$\mathrm{V}_{16-2(\mathrm{p}-\mathrm{p})}$	$<$	0,9 to 1,4
$\mathrm{~V}_{16-2}$	V	
$\mathrm{~V}_{11-2}$	250	mV
-6 to +6	V	

Stop signal amplifier

Differential input voltage
$V_{12-13} \quad\left\{\begin{array}{crr}\text { typ. } & 3,5 & \mathrm{mV} \\ 2,6 \text { to } 4,4 & \mathrm{mV}\end{array}\right.$
Voltage without input signal
Input voltage (r.m.s. value)
$\mathrm{V}_{11-2} 85$ to 170 mV
$\mathrm{V}_{12}-13(\mathrm{rms}) \quad>\quad 10 \mathrm{mV}$

CHARACTERISTICS (continued)
Radio and preamplifier supply
Radio supply current (d.c.)
Saturation voltage at $-\mathrm{I} 8 \mathrm{M}=80 \mathrm{~mA}$
Preamplifier supply current (d.c.)
Saturation voltage at $-\mathrm{I}_{10}=20 \mathrm{~mA}$
Lamp driver
Output current (d.c.)
Saturation voltage at $-\mathrm{I}_{1 \mathrm{M}}=100 \mathrm{~mA}$
D.C. voltage level

$-\mathrm{I}_{8}$	\leq	45	mA
$\mathrm{~V}_{8-9}$	\leq	$1,35 \mathrm{~V}$	
$-\mathrm{I}_{10}$	\leq	20	mA
$\mathrm{~V}_{10-9}$	\leq	1,2	V

$-\mathrm{I}_{1}$	\leq	40	mA
$\mathrm{~V}_{4-1}$	\leq	1,85	V
$\mathrm{~V}_{15-2}$	0,75	to 1,2	V

*) Radio : lamp off
Playback : lamp on
Tape-end : intermittent light
**) D.C. motor

$$
\mathrm{E}_{3000}=7,2 \text { to } 8,3 \mathrm{~V}
$$

$$
\mathrm{R}_{\mathrm{m}}=27 \Omega
$$

2×6 W STEREO AUDIO POWER AMPLIFIER

This stereo audio power IC is intended for use as a low frequency class-B amplifier for mains-fed and battery supplied record players tape recorders and domestic radio receivers.
The maximum current is based on 6 W outnut power at 10% distortion into a 4Ω load impedance. The maximum supply voltage is such that 6 W can be delivered into a speaker impedance of 8Ω.
The circuit philosophy is based on a low-cost total amplifier and use in a.c./d.c. apparatus is taken into account. The number of external components must. therefore, be kept to an absolute minimum, and the current consumption must be low.
This IC contains the complete stereo output power function, in addition to control functions. In practical applications the following functions have to be adapted:

1. An emitter-follower input stage is preferred for adaption to a ceramic pick-up.
2. For radio applications, an extra input stage has to be used for gain improvement.
3. For tape recorders an additional preamplifier is required for tone correction.

For a good adaption to one of these external input stages, the IC input impedance is $45 \mathrm{k} \Omega$. The voltage gain of 39 dB provides an input sensitivity of 50 mV for an output power of 6 W into a 4Ω load. This gain allows control losses of about 16 dB , for a typical sensitivity requirement of 350 mV . The internally limited frequency response provides good stability.
The output power can be increased by using the bootstrap arrangement; however, the circuit is designed for maximum performance without the bootstrap capacitor.
The advantages of a monolithic stereo power amplifier are that only one encapsulation has to be mounted. No insulation of the heatsink is required.
The circuit has the following additional features:

- low number of external components
- thermal protection
- nc cross-over distortion
- Low thermal resistance
- short-circuit protection of the load for supply voltages up to 16 V

QUICK REFERENCE DATA see page 2.

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic power (SOT-69B).

QUICK REFERENCE DATA				
Supply voltage (pins 12 and 13)	V_{P}		5 to 24	V
D.C. output current (peak value)	$\mathrm{I}_{\text {OM }}$	$<$	2,5	A
$\begin{aligned} & \text { Output power at } d_{\text {tot }}=10 \% ; \text { per channel } \\ & \text { at } \mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\ & \text { at } \mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega \end{aligned}$	$\begin{aligned} & P_{0} \\ & P_{0} \end{aligned}$	typ.	3, 4	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}<2,5 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	$\mathrm{d}_{\text {tot }}$	typ.	0, 4	\%
Input impedance	$\left\|z_{i}\right\|$	typ.	45	k Ω
$\begin{aligned} \text { Total quiescent current at } V_{P} & =9 \mathrm{~V} \\ \text { at } V_{P} & =16 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {tot }} \\ & \mathrm{I}_{\text {tot }} \end{aligned}$	$\begin{aligned} & \text { typ. } \\ & \text { typ. } \end{aligned}$	35 50	$\begin{gathered} \mathrm{mA} \\ \mathrm{~mA} \end{gathered}$
Sensitivity at $\mathrm{P}_{\mathrm{O}}=1 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$	V_{i}	typ.	23	mV
Channel separation at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=600 \Omega$	α	typ.	45	dB
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$		to +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		to +150	${ }^{\circ} \mathrm{C}$

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage $\quad \mathrm{V}_{\mathrm{P}} \quad \max .24 \mathrm{~V}$

Currents

Non-repetitive peak output current
Repetitive peak output current
Power dissipation
Total power dissipation
Temperatures
Operating ambient temperature
Storage temperature
Short-circuiting
A.C. short-circuit of load impedance
during'sine-wave signal drive at $\mathrm{V}_{\mathrm{P}}=16 \mathrm{~V}$
${ }^{\text {I OSM }}$ max. 4 A
IORM max. 2,5. A
see derating curve on page. 3

Tamb -25 to $+150 \quad{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }} \quad-55$ to $+150 \quad{ }^{\circ} \mathrm{C}$
$t_{s c}$ max. 100 hours

THERMAL RESISTANCE (The power derating curve below is based on the following data)

From junction to case	$R_{t h} j-c$	$=3,3{ }^{\circ} \mathrm{C} / \mathrm{W}$	
From junction to ambient	$R_{\text {th }} j-a$	$=$	$45 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

Total power dissipation

CHARACTERISTICS

D.C. characteristics

Supply voltage range	V_{P}		5 to 24	V
Output current (peak value)	$\mathrm{I}_{\text {OM }}$	$<$	2, 5	A
Total quiescent current (both channels) at $\mathrm{V}_{\mathrm{P}}=9 \mathrm{~V}$	$\mathrm{It}_{\text {tot }}$	typ.	35	mA
at $V_{P}=16 \mathrm{~V}$	Itot	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	50 80	mA mA

A.C. characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise
specified; see also test circuits on page 6.
A.F. output power per channel at $\mathrm{a}_{\text {tot }}=10 \%^{1}$)

at $V_{P}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{O}	typ.	3, 4	W
at $\mathrm{Vp}_{\mathrm{p}}=16 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \mathrm{~s}$	P°		5,5	W
at $\mathrm{V}_{\mathrm{P}}=16 \mathrm{~V} \cdot \mathrm{R}_{\mathrm{L}}-43$		typ.	6,0	W
Voltage gain	Gv	typ.	39	dB
	G			dB
Difference in gain of both channels	$\Delta \mathrm{G}_{\mathrm{V}}$	$<$	1.	dB
Difference in d.c. output voltage of both channels	ΔV_{0}	typ.	0,2	V
Total harmonic distortion at $\mathrm{P}_{0}=2,5 \mathrm{~W}$	$\mathrm{d}_{\text {tot }}$	typ.	0, 4	\%
	tot	<	1,0	\%
Input impedance	$\left\|\mathrm{Z}_{\mathrm{i}}\right\|$	$>$	30.	k Ω^{2}
Inpat impedance	$\left\|\mathrm{Z}_{1}\right\|$	typ.	45	$k \Omega$
Channel separation at $\mathrm{V}_{\mathrm{O}}=1 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=600 \Omega$	α	typ.	45	dB
Signal-to-noise ratio at $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~mW}$ (note 2) $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$	S/N	$>$	53	dB
		typ.	60	dB
$\mathrm{R}_{\mathrm{S}}=\infty$	S/N	typ.	56	dB
Ripple rejection at $\mathrm{f}=100 \mathrm{~Hz} ; \mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega$	RR	typ.	38.	dB^{3})

[^18]
APPLICATION INFORMATION (test circuits)

Without bootstrap

With bootstrap

DEVELOPMENT SAMPLE DATA
APPLICATION INFORMATION (continued)

Supply voltage	V_{P}	9		12		14		16		20	V
Load resistance	R_{L}	4	8	4	8	4	8	4	8	8	Ω
Total quiescent current (2 channels)	$\mathrm{I}_{\text {tot }}$	35	35	43	43	47	47	52	52	61	mA
Output power at $d_{\text {tot }}=10 \%$ with bootstrap without bootstrap	P_{0} P_{0}	2,0 1,5	1,2 0,8	4,0 3,1	2,2 1,7	5,5 4,4	3,1 2,5	7,1 6,0	4,1 3,4	6,6 5,7	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
```Distortion at }\mp@subsup{P}{O}{}=2,5\textrm{W with bootstrap without bootstrap```	$\begin{aligned} & \mathrm{d}_{\text {tot }} \\ & \mathrm{d}_{\text {tot }} \end{aligned}$	-	-	1 3	-	0,7 0,65	3,0 10,0	0,5 0,4	0,4 0,35	0.25 0.15	\% $\%$
Sensitivity for $\mathrm{P}_{0}=1 \mathrm{~W}$	Vi	23	32	23	32	23	32	23	32	32	mV
Ripple rejection at $\mathrm{f}=100 \mathrm{kHz}$	RR					38				$\rightarrow$	dB
Noise output voltage at $\begin{gathered} \mathrm{B}=60 \mathrm{~Hz} \text { to } 15 \mathrm{kHz} \\ \text { at } \mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega \\ \text { at } \mathrm{R}_{\mathrm{S}}=\infty \end{gathered}$	$\begin{aligned} & V_{n} \\ & V_{n} \end{aligned}$					$\begin{aligned} & 0,27 \\ & 0,45 \end{aligned}$					$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input impedance	$\left\|\mathrm{z}_{\mathrm{i}}\right\|$					45				-	$\mathrm{k} \Omega$
Channel separation	$\alpha$					45				$\rightarrow$	dB
Maximum power dissipation	$\mathrm{Ptot}^{\text {t }}$	2,25	1,1	4	1,9	5, 5	2,6	7,2	3,3	5	W

All values per channel unless otherwise specified.

APPLICATION INFORMATION (continued)



## APPLICATION INFORMATION (continued)



With bootstrap; $\mathrm{R}_{\mathrm{L}}=4 \Omega$


## MOUNTING INSTRUCTIONS

When using an external heatsink, connected to the heat spreader of the IC, the thermal power in the circuit can be reduced to a negligible value.
The optimum heatsink dimensions (blackened aluminium) for a given operating ambient temperature, can be found from the derating curves on page 3.
The fact that the thermal resistance of the encapsulation is very good, results in a relatively small heatsink for thermal power reduction; e.g. $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$ at $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C}$ can be obtained without an external heatsink.
Two mounting methods are shown below.
By using these methods, no extra copper area is required on the printed-circuit board, so a saving in printed-wiring area is obtained.
Mounting the external heatsink can be done by screwing or clipping.
Mechanical stresses do not damage the IC.
It is recommended that a heatsink-compound be used between IC heat spreader and heatsink.

Method 1


Method 2


## 6 W AUDIO POWER AMPLIFIER

## in a single in-line package

The TDA1010 is a monolithic integrated circuit in a 9-lead single in-line plastic package intended as a low-cost amplifier that can deliver 6 W output power into a $4 \Omega$ load or a $2 \Omega$ load.
This device is primarily suitable for car radio applications. The maximum allowable supply voltage of 20 V makes it also suitable for domestic radios, tape recorders and record players.
Special features are:

- single in-line (SIL) construction for easy mounting
- high output power
- Iow-cost external components
- good ripple rejection
- thermal protection
- separated preamplifier and power amplifier


PACKAGE OUTLINE (see general section)
9-lead SIL; plastic.


RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage $\quad \mathrm{V}_{\mathrm{P}} \max .24 \mathrm{~V}$

## Currents

Non-repetitive peak output current
Repetitive peak output current

## Power dissipation

Total power dissipation

I OSM	max.	3	A
I ORM	max.	2,5	A

see derating curve below

## Temperatures

Storage temperature
Operating ambient temperature

## Short-circuiting

A.C. short-circuit duration of load impedance during sine-wave signal drive:
without heatsink at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} \quad \mathrm{t}_{\mathrm{Sc}} \quad \max .100$ hours


The single in-line encapsulation offers a solution for a simple and low-cost heatsink connection. The thermal resistance of the encapsulation is: $R_{t h} \mathrm{j}$-c $\approx 12^{\circ} \mathrm{C} / \mathrm{W}$. For a 6 W application into a load impedance of $4 \Omega$, the maximum dissipation is $3,2 \mathrm{~W}$. This means the thermal resistance of the heatsink (at $\mathrm{T}_{\mathrm{amb}}=60^{\circ} \mathrm{C}$ ) is:
$R_{\text {th } c-a}=\frac{T_{j \max }-T_{a m b \max }}{P_{\text {tot }}}-R_{\text {th } j-c}=\frac{150-60}{3,2}-12=16^{\circ} \mathrm{C} / \mathrm{W}$.

## CHARACTERISTICS

D.C. characteristics

Supply voltage range	$\mathrm{V}_{\mathrm{P}}$		6 to 20	V
Output current (peak value)	$\mathrm{I}_{\mathrm{OM}}$	$<$	2,5	A
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V}$		typ.	25	mA
		$\mathrm{I}_{\text {tot }}$	$<$	50
mA				

A.C. characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also test circuit on page 5 .

A.F. output power at $\mathrm{d}_{\text {tot }}=10 \%{ }^{\text {l }}$ )				
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$; without bootstrap	$\mathrm{P}_{\mathrm{O}}$	typ. 5	5, 4	W
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=2 \Omega$	$\mathrm{P}_{\mathrm{O}}$	typ. 6,	6,0	W
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=4 \Omega$ ( with bootstrap $\left.{ }^{1}\right)^{2}$ )	$\mathrm{P}_{0}$	$\begin{array}{ll}> & 5, \\ \text { typ. } & 6,\end{array}$	$\begin{aligned} & 5,5 \\ & 6,0 \end{aligned}$	$\begin{aligned} & \mathrm{W} \\ & \mathrm{~W} \end{aligned}$
at $\mathrm{V}_{\mathrm{P}}=14 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \mathrm{~S}$ )	$\mathrm{P}_{0}$	typ. 3,	3,3	W
Voltage gain preamplifier	$\mathrm{G}_{\mathrm{V} 1}$	$\text { typ. } 21 \text { to }$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
power amplifier	$\mathrm{G}_{\mathrm{v} 2}$	typ. 27 to		$\begin{array}{ll} \mathrm{dB} & 3) \\ \mathrm{dB} \end{array}$
total amplifier	$\mathrm{G}_{\mathrm{V} \text { tot }}$	$\text { typ. }{ }_{51 \text { to }}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=3 \mathrm{~W}$	$\mathrm{d}_{\text {tot }}$	typ. 0 ,	0, 3	\%
Efficiency at $\mathrm{P}_{\mathrm{O}}=6 \mathrm{~W}$	$\eta$		70	\%
Frequency response ( -3 dB ) at $\mathrm{C} 4=1 \mathrm{nF}$	B	60 Hz to		kHz
Input impedance : preamplifier	$\left\|Z_{i}\right\|$	$\begin{aligned} & \text { typ. } \\ & 20 \text { to } \end{aligned}$		$\begin{aligned} & k \Omega \\ & k \Omega \end{aligned}$
power amplifier	$\left\|z_{i}\right\|$	typ. $14 \text { to }$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \\ & 5 \end{aligned}$
Output impedance of preamplifier (pin 7)	$\left\|Z_{0}\right\|$	typ.   14 to		$\left.\begin{array}{l} \mathrm{k} \Omega \\ \mathrm{k} \Omega \\ 5 \end{array}\right)$
```Output voltage preamplifier (r.m.s. value) at d}\mp@subsup{\textrm{d}}{\mathrm{ ot }}{}<1%\mathrm{ (pin 7)```	$\mathrm{V}_{\mathrm{o}}$ (rms)	0,	0,7	V
Noise output voltage at $\mathrm{R}_{\mathrm{S}}=0 \Omega, \quad$ at $\left.\mathrm{R}_{\mathrm{S}}=8,2 \mathrm{k} \Omega \cdot\right\}$	$\begin{aligned} & \mathrm{V}_{\mathrm{n}(\mathrm{rms})} \\ & \mathrm{V}_{\mathrm{n}(\mathrm{rms})} \end{aligned}$	$\begin{array}{ll} \text { typ. } & 0, \\ \text { typ. } & 0, \\ < & 1, \end{array}$	$\begin{aligned} & 0,3 \\ & 0,7 \\ & 1,0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Ripple rejection at $\mathrm{f}=1$ to 10 kHz	RR	$>$	42	dB^{7})

[^19]CHARACTERISTICS (continued)

Sensitivity at $P_{O}=1 \mathrm{~W}$	V_{i}	typ.	4	mV
Bootstrap current at onset of clipping (r.m.s. value)	$I_{4(r m s)}$	typ.	30	mA

Notes from page 4

${ }^{1}$), Measured with an ideal coupling capacitor to the speaker load.
2) Up to $P_{o} \leq 3 W: d_{\text {tot }} \leq 1 \%$.
3) Measured with a load impedance of $20 \mathrm{k} \Omega$.
${ }^{4}$) Independent of load impedance of preamplifier.
5) Output impedance of preamplifier $\left(\left|Z_{0}\right|\right)$ is correlated (within 10%) with the input impedance $\left(\left|Z_{i}\right|\right)$ of the power amplifier.
6) Unweighted r.m.s. noise voltage measured at a bandwidth of 60 Hz to 15 kHz (12 dB/octave).
${ }^{7}$) Ripple rejection measured with a source impedance between 0 and $2 \mathrm{k} \Omega$ (maximum ripple amplitude: 2 V).

Test circuit

SIGNAL-SOURCES SWITCH

The TDA1028 is a quadruple operational amplifier connected as an impedance converter. Each amplifier has 2 switchable inputs which are protected by clamping diodes.
The input currents are independent of the switch position and the outputs are shortcircuit protected.
The device is intended as an electronic four-channel signal-sources switch in a.f. amplifiers.

QUICK REFERENCE DATA			
Supply voltage range (pin 9)	V_{P}	6 to 23	V
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-30 to +80	${ }^{\circ} \mathrm{C}$
Supply voltage (pin 9)	V_{P}	typ. 20	V
Current consumption (pins 4, 5, 12, 13 unloaded)	I9	typ. 2,5	mA
Signal-input voltage (r.m.s. value)	$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	$<\quad 5$	V
Voltage gain	G_{v}	typ. 1	
Distortion	dtot	< 0,1	\%
Crosstalk	a	typ. 70	dB
Signal-to-noise ratio	S/N	typ. 100	dB

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Supply voltage (pin 9)	V_{P}	\max.	23	V
Input voltages (pins 2, 3, $6,7,10,11,14,15)$	V_{I}	\max.	V_{P}	
	$-\mathrm{V}_{1}$	\max.	0,5	V
Switch control voltage (pin 1 and 8)	V_{S}	0 to 23	V	

Currents

Input current	$\pm \mathrm{I}_{\mathrm{I}}$	\max.	20	mA
Switch control current	$-\mathrm{I}_{\mathrm{S}}$	\max.	50	mA

Dissipation
Total power dissipation $\quad P_{\text {tot }} \max .800 \mathrm{~mW}$

Temperatures

Storage temperature $\quad \mathrm{T}_{\mathrm{stg}} \quad-55$ to $+150 \quad{ }^{\circ} \mathrm{C}$
Operating ambient temperature
Tamb -30 to $+80{ }^{\circ} \mathrm{C}$
CHARACTERISTICS at $\mathrm{Vp}_{\mathrm{p}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified
Current consumption
without load: $\mathrm{I}_{4} ; 5 ; 12 ; 13=0$
I9
Supply voltage range

Signal inputs

Input offset voltage of switched-on inputs ($\mathrm{R}_{\mathrm{i}}<1 \mathrm{k} \Omega$)	$\mathrm{V}_{\text {io }}$	typ.	2 10	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Input offset current of switched-on inputs	$I_{\text {io }}$	$\stackrel{\text { typ. }}{ } \times$	20 200	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input offset current of a switched-on input with respect to a non-switched-on input	$\mathrm{I}_{\text {io }}$	$\begin{aligned} & \text { typ. } \\ & \ll \end{aligned}$	$\begin{array}{r} 20 \\ 200 \end{array}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
Input bias current independent of switch position	I_{1}	typ.	250	nA
Capacitance between adjacent inputs	C	typ.	0, 5	pF
D. C. input voltage range	$\mathrm{V}_{\text {I }}$		3 to 19	V
Supply voltage rejection ratio; $\mathrm{R}_{\mathrm{i}}<10 \mathrm{k} \Omega$	SVRR	typ.	100	$\mu \mathrm{V} / \mathrm{V}$

Equivalent input noise voltage
$R_{i} \leq 1 \mathrm{k} \Omega ; \mathrm{f}_{\mathrm{l}}=20 \mathrm{~Hz}$ to 20 kHz (r.m.s. value)
${ }^{V_{p}}$
6 to 23 V

Input offset voltage of switched-on inputs ($R_{i}<1 k \Omega$)

Input offset current of
switched-on inputs
nput offset current of
a switched-on input with respect to
a non-switched-on input
Input bias current

Capacitance between adjacent inputs
D. C. input voltage range

Supply voltage rejection ratio; $\mathrm{R}_{\mathrm{i}}<10 \mathrm{k} \Omega$
$\mathrm{V}_{\mathrm{n}(\mathrm{rms})}$ typ.
$3,5 \mu \mathrm{~V}$

CHARACTERISTICS (continued)

Equivalent input noise current

$$
\mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}
$$

$l_{\mathrm{n}}(\mathrm{rms})$ typ. $0,05 \mathrm{nA}$
Crosstalk between a switched-on input
and a non-switched-on input;
measured at the output at $\mathrm{R}_{\mathrm{i}}<1 \mathrm{k} \Omega ; \mathrm{f}=1 \mathrm{kHz} \quad$ a \quad typ. 100 dB

Signal amplifier

Voltage gain of a switched-on input
at $\mathrm{I}_{4: 5 ; 12 ; 13}=0 ; \mathrm{R}_{\mathrm{L}}=\infty$
Current gain of a switched-on amplifier

G_{V}	typ.	1
G_{i}	typ.	10^{5}

Signal outputs

Output resistance
Output current (pin 4, 5, 12 and 13)

R_{O}	typ.	400	\leqslant
$\pm \mathrm{I}_{\mathrm{O}}$	$>$	5	mA

Frequency limit of the output voltage

$$
\text { at } V_{i(p-p)}=1 V ; R_{i}<1 k \Omega
$$

$R_{L}=10 \mathrm{MS} 2 ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
f^{\prime} typ. $1,3 \mathrm{MHz}$
Slew rate (unity gain) $\Delta \mathrm{V}_{4} ; 5 ; 12 ; 13-16 / \Delta \mathrm{t}$
at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{MO} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
S
typ. $2 \mathrm{~V} / \mu \mathrm{s}$

Switch control

switched-on inputs	interconnected pins	control voltage	
		V_{1-16}	$\mathrm{~V}_{8-16}$
I-1, II-1	$2-4,15-13$	H	-
I-2, II-2	$3-4,14-13$	L	-
III-1, IV-1	$7-5,10-12$	-	H
III-2, IV-2	$6-5,11-12$	-	L

Control inputs (pins 1 and 8)

Required voltage : HIGH	V_{SH}	$>$	3,3	V	$\mathrm{l})$
LOW	V_{SL}	$<$	2,1	V	
Input current HIGH (leakage current)	I_{SH}	$<$	1	$\mu \mathrm{~A}$	
LOW (control current)		$-I_{S L}$	typ.	100	$\mu \mathrm{~A}$
		$<$	250	$\mu \mathrm{~A}$	

[^20]APPLICATION INFORMATION at $\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 2;

$$
\left|\mathrm{Z}_{\mathrm{i}}\right|=47 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{i}}=0,1 \mu \mathrm{~F} ; \mathrm{R}_{\mathrm{S}}=470 \mathrm{k} \Omega: \mathrm{R}_{\mathrm{L}}=4,7 \mathrm{k} \Omega ;
$$

$\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (unless otherwise specified)

Voltage gain
D. C. output voltage variation when switching the inputs (pins $4,5,12$ and 13)

Distortion
at $\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz}$
at $\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V} ; \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz
Noise output voltage (unweighted)
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (r.m.s. value)
Noise output voltage (weighted)
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (in accordance with DIN45405)
Amplitude response (pins 4, 5, 12 and 13)
$\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V} ; \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz
Crosstalk between a switched-on input
and a non-switched-on input:
measured at the output at $\mathrm{f}=1 \mathrm{kHz} \quad$ a \quad typ. $\quad 75 \mathrm{~dB}$ 2)
Crosstalk between switched-on inputs
and the outputs of the other channels; at $\mathrm{f}=1 \mathrm{kHz}$ a , typ. 90 dB 2)

[^21]
APPLICATION INFORMATION (continued)

SIGNAL-SOURCES SWITCH

The TDA1029 is a dual operational amplifier (connected as an impedance converter) each amplifier having 4 mutually switchable inputs.
The input currents are independent of switch position and the outputs are short-circuit protected.
The device is intended as an electronic two-channel signal-source switch in a.f. amplifiers, e.g. as stereo/quadrophony switch.

QUICK REFERENCE DATA				
Supply voltage range (pin 14)	V_{P}		23	V
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-30		${ }^{\circ} \mathrm{C}$
Supply voltage (pin 14)	V_{P}	typ.	20	V
Current consumption	I_{14}	typ.	4	mA
Signal-input voltage (r.m.s. value)	$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}$	typ.	6	V
Voltage gain	G_{V}	typ.	1	
Distortion	$\mathrm{d}_{\text {tot }}$	$<$	0,1	\%
Crosstalk	a	typ.	70	dB
Signal-to-noise ratio	S/N	typ.	100	dB

PACKAGE OUTLINE (see general section)
16-lead DIL: plastic.

BLOCK DIAGRAM

7276181

Note: $\left|\mathrm{Z}_{\mathrm{i}}\right|=47 \mathrm{k} \Omega$ in parallel with 200 pF .

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage (pin 14)	V_{P}	\max.	23	V
Input voltage (pins 1 to 8)	V_{I}	\max.	V_{p}	
	$-\mathrm{V}_{\mathrm{I}}$	\max.	0,5	V
Switch control voltage (pins 11, 12 and 13)	V_{S}		0 to 23	V

Currents

Input current	$\pm I_{\Gamma}$	\max.	20	mA
Switch control current	$-\mathrm{I}_{\mathrm{S}}$	\max.	50	mA

Dissipation
Total power dissipation $\quad \mathrm{P}_{\text {tot }} \quad \max .800 \mathrm{~mW}$

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-30 to +80	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{Vp}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; unless otherwise specified
Current consumption
without load; $\mathrm{I}_{9}=\mathrm{I}_{15}=0$
Supply voltage range (pin 14)

Signal inputs

Input offset voltage				
total of all inputs of both channels				
$\mathrm{R}_{\mathrm{i}} \leq 1 \mathrm{k} \Omega$	$\mathrm{V}_{\text {io }}$	typ.	2	mV
			10	mV
Input offset current		typ.	20	nA
total of all inputs of both channels	I_{i}	<	200	nA
Input offset current				
of a switched-on input with respect to a non-switched-on input of a channel	$\mathrm{I}_{\text {io }}$	typ.	20	nA
Input bias current				
independent of switch position	I_{i}	typ.	250	nA
Capacitance between adjacent inputs	C	typ.	0,5	pF
D. C. input voltage range	V_{I}		3 to 19	V
A.C. input signal handling (peak-to-peak value)	$\mathrm{V}_{\mathrm{i}}(\mathrm{p}-\mathrm{p})$	$<$	16	V
Supply voltage rejection ratio; $\mathrm{R}_{\mathrm{i}} \leq 10 \mathrm{k} \Omega$	SVRR	typ.	100	$\mu \mathrm{V} / \mathrm{V}$

CHARACTERISTICS (continued)

Equivalent input noise voltage

$$
\mathrm{R}_{\mathrm{i}}=0 ; \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text { (r.m.s. value) } \quad \mathrm{V}_{\mathrm{n}}(\mathrm{rms}) \quad \text { typ. } \quad 3,5 \quad \mu \mathrm{~V}
$$

Equivalent input noise current
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz
$I_{n(r m s)} \quad$ typ. $\quad 0,05 \quad n A$
Crosstalk between a switched-on input
and a non-switched-on input;
measured at the output at $\mathrm{R}_{\mathrm{i}}=1 \mathrm{k} \Omega ; \mathrm{f}=1 \mathrm{kHz}$ a \quad typ. 100 dB

Signal amplifier

Voltage gain of a switched-on input
at $\mathrm{I}_{9}=\mathrm{I}_{15}=0 ; \mathrm{R}_{\mathrm{L}}=\infty$
Current gain of a switched-on amplifier

$G_{\dot{V}}$	typ.	1
G_{i}	typ.	10^{5}

Signal outputs

Output resistance (pins 9 and 15)
Output current at $\mathrm{V}_{\mathrm{P}}=6$ to 23 V

R_{o}	typ.	400	Ω
$\pm \mathrm{I}_{9} ; \pm \mathrm{I}_{15}$	typ.	5	mA

Frequency limit of the output voltage

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V} ; \mathrm{R}_{\mathrm{i}}=1 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{L}}-10 \mathrm{M} \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \mathrm{f} \\
& \text { typ. } \quad 1,3 \quad \mathrm{MHz} \\
& \text { Slew rate (unity gain); } \Delta \mathrm{V}_{9-16} / \Delta \mathrm{t} ; \Delta \mathrm{V}_{15-16} / \Delta \mathrm{t} \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{MR} ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\
& \text { S } \\
& \text { typ. } \\
& 2 \mathrm{~V} / \mu \mathrm{s} \\
& \text { D.C. output volt age }
\end{aligned}
$$

Switch control

switched-on inputs	interconnected pins	control voltages		
		V_{11-16}	V_{12-16}	V_{13-16}
I-1, $\mathrm{II}-1$	1-15, 5-9	H	H	H
I-2, II-2	2-15, 6-9	H	H	L
I-3, II-3	3-15, 7-9	H	L	H
I-4, II-4	4-15, 8-9	L	H	H
I-4, II-4	4-15, 8-9	L	L	H
I-4, II-4	4-15, 8-9	L	H	L
I-4, II-4	4-15, 8-9	L	L	L
I-3, II-3	3-15, 7-9	H	L	L

In the case of offset control, an internal blocking circuit of the switch control ensures that not more than one input will be switched on at a time. In that case safe switchingthrough is obtained at $\mathrm{V}_{\mathrm{SL}} \leq 1,5 \mathrm{~V}$.

[^22]
CHARACTERISTICS (continued)

Control inputs (pins 11, 12 and 13)

Required voltage : HIGH	$\mathrm{V}_{\text {SH }}$	>	3, 3	V 1)
LOW	VSL	$<$	2, 1	V
Input current				
HIGH (leakage current)	$\mathrm{I}_{\text {SH }}$	<	1	$\mu \mathrm{A}$
LOW (control current)	${ }^{-1} \mathrm{ISL}$	typ.	100	$\mu \mathrm{A}$

APPLICATION INFORMATION at $\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 2; $\left|\mathrm{Z}_{\mathrm{i}}\right|=47 \mathrm{k} \Omega \% / 220 \mathrm{pF} ; \mathrm{C}_{\mathrm{i}}=100 \mathrm{nF} ; \mathrm{R}_{\mathrm{S}}=470 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{L}}=4,7 \mathrm{k} \Omega$; $\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$ (unless otherwise specified)
Voltage gain
Output voltage variation when sw
the inputs
Distortion
$\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V} ; \mathrm{f}=1 \mathrm{kHz}$
$\mathrm{V}_{\mathrm{j} .}=5 \mathrm{~V} ; \mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz

Noise output voltage (unweighted)
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (r.m.s. value)
\(\left.\begin{array}{ccrc}\mathrm{G}_{\mathrm{V}} \& typ. \& -1,5 \& \mathrm{~dB}

\Delta \mathrm{~V}_{9-16} ;

\Delta \mathrm{V}_{15-16}\end{array}\right\} \quad\)| typ. | 10 | mV |
| :---: | ---: | ---: |
| $\mathrm{d}_{\text {tot }}$ | typ.
 $<$ | 0,02 |
| e | 0,1 | $\%$ |
| $\mathrm{~d}_{\text {tot }}$ | typ. | 0,04 |
| $\%$ | | |

Noise output voltage (weighted)
$\mathrm{f}=20 \mathrm{~Hz}$ to 20 kHz (in accordance with DIN45405) $\mathrm{V}_{\mathrm{n}} \quad$ typ. $12 \mu \mathrm{~V}$
Amplitude response
$\mathrm{V}_{\mathrm{i}}=5 \mathrm{~V}: \mathrm{f}=20 \mathrm{~Hz}$ to $20 \mathrm{kHz} ; \mathrm{C}_{\mathrm{i}}=0,22 \mu \mathrm{~F}$
Crosstalk between a switched-on input
and a non-switched-on input;
measured at the output at $\mathrm{f}=1 \mathrm{kHz} \quad$ a \quad typ. $75 \quad \mathrm{~dB}^{3}$)
Crosstalk between switched-on inputs
and the outputs of the other channels
$\left.\left.\begin{array}{l}\Delta V_{9-16} \\ \Delta V_{15-16}\end{array}\right\}<0,1, \mathrm{~dB}^{2}\right)$

a	typ.	75	$\mathrm{~dB}^{3}$)
a	typ.	90	$\left.\mathrm{~dB}^{3}\right)$

[^23]

5 W AUDIO POWER AMPLIFIER
 in a single in-line encapsulation

The TDA261l is a monolithic integrated circuit in a 9-lead single in-line plastic package with a high supply voltage audio amplif:er.
Special features are:

- very suitable for application in mains-fed apparatus
- extremely low number of external components
- thermal protection
- well defined open loop gain circuitry with simple quiescent current setting, and fixed integrated closed loop gain.

QUICK REFERENCE DATA			
Supply voltage range	V_{P}	6 to 35	V
D. C. output current (peak value)	I_{OM}	$<\quad 1,2$	A
$\begin{aligned} & \text { Output power at } \mathrm{d}_{\text {tot }}=10 \% \\ & \text { at } \mathrm{Vp}_{\mathrm{p}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega \\ & \text { at } \mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{o}} \\ & \mathrm{P}_{\mathrm{o}} \end{aligned}$	$\begin{array}{lr} \text { typ. } & 5 \\ \text { typ. } & 4,5 \end{array}$	W W
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}<2 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=15 \Omega$	dtot	typ. 0,3	\%
Input impedance	$\left\|z_{i}\right\|$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{k} \Omega \end{aligned}$
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=25 \mathrm{~V}$	$\mathrm{I}_{\text {tot }}$	typ. 35	mA
Sensitivity for $\mathrm{P}_{\mathrm{O}}=3 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=15 \Omega$	V_{i}	typ. 90	mV
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to +150	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE (see general section)
9-lead SIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 1.34)
Voltage
Supply voltage . $\quad \mathrm{V}_{\mathrm{P}} \max .35 \mathrm{~V}$
Currents
Non-repetitive peak output current
Repetitive peak output current
Power dissipation
Total power dissipation
see derating curve below

Temperatures

Operating ambient temperature
Storage temperature

$\mathrm{T}_{\mathrm{amb}}$	-25 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-25 to +150	${ }^{\circ} \mathrm{C}$

Total power dissipation

CHARACTERISTICS

D.C. characteristics

Supply voltage range	V_{P}		+ 35	V
Output current (peak value)	I_{OM}	<	1,2	A
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=25 \mathrm{~V}$	$\mathrm{I}_{\text {tot }}$	$\stackrel{\text { typ. }}{ }$	35 60	mA

A.C. characteristics at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{VP}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also test circuit on page 5 .
A.F. output power at $\mathrm{d}_{\mathrm{tot}}=10 \%$

$$
\begin{aligned}
& \text { at } \mathrm{V}_{\mathrm{P}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega \\
& \text { at } \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\
& \text { at } \mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\
& \text { at } \mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega
\end{aligned}
$$

Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=2 \mathrm{~W}$
Efficiency at $\mathrm{P}_{\mathrm{O}}=5 \mathrm{~W}$
Frequency response
Input impedance
Noise output voltage at $R_{S}=5 \mathrm{k} \Omega{ }^{1}$)

Sensitivity for $P_{O}=3 \mathrm{~W}$

P_{O}	typ.	5	W
P_{0}	typ.	1,5	W
P_{0}	typ.	4,5	W
P_{0}	typ.	6	W
$\mathrm{d}_{\text {tot }}$	typ.	0,3	\%
	<	1	\%
η		75	\%
	>	15	kHz
$\left\|Z_{i}\right\|$	typ.	45 6	$\mathrm{k} R \Omega$ $k \Omega$
	typ.	0,2	mV
V_{n}	$<$	0, 5	mV
V_{i}	typ.	90	mV

[^24]
APPLICATION INFORMATION

Test circuit

Note: pin 3 not connected
pins 5 and 9 internally connected

APPLICATION INFORMATION (continued)

APPLICATION INFORMATION (continued)

5 W AUDIO POWER AMPLIFIER

 in a single in-line encapsulationThe TDA2611A is a monolithic interrated circuit in a 9-lead single in-line plastic package with a high supply voltage audio amplifier. Special features are:

- very suitable for application in mains-fed apparatus
- extremely low number of external components
- thermal protection
- well defined open loop gain circuitry with simple quiescent current setting, and fixed integrated closed loop gain
- possibility for increasing the input impedance.

QUICK REFERENCE DATA			
Supply voltage range	V_{P}	6 to 35	V
D. C. output current (peak value)	${ }^{\text {I OM }}$	< 1,5	A
$\begin{array}{r} \text { Output power at dtot }=10 \% \\ \text { at } \mathrm{VP}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega \\ \text { at } \mathrm{V}_{\mathrm{P}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega \end{array}$	$\begin{aligned} & \mathrm{P}_{\mathrm{O}} \\ & \mathrm{P}_{\mathrm{O}} \end{aligned}$	$\begin{array}{lr} \text { typ. } & 4,5 \\ \text { typ. } & 5 \end{array}$	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}<2,5 \mathrm{~W} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	$\mathrm{d}_{\text {tot }}$	typ. 0,3	-
Input impedance	$\left\|\mathrm{Z}_{1}\right\|$	$\begin{gathered} \text { typ. } 45 \\ 45 \mathrm{k} \Omega \text { to } 1 \end{gathered}$	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{M} \Omega \end{aligned}$
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V}$	$\mathrm{I}_{\text {tot }}$	typ. 25	mA
Sensitivity for $\mathrm{P}_{\mathrm{O}}=2,5 \mathrm{~W}$; $\mathrm{R}_{\mathrm{L}}=8 \Omega$	V_{i}	typ. 55	mV
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-25 to +150	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

PACKAGE OUTLINE (see general section)
9-lead SIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage $\quad \mathrm{V}_{\mathrm{P}} \max .35 \mathrm{~V}$

Currents

Non-repetitive peak output current
Repetitive neak output current

$\mathrm{I}_{\mathrm{OSM}}$	max.	3	A
$\mathrm{I}_{\mathrm{ORM}}$	max.	1,5	A

Power dissipation

Total power dissipation
see derating curve below

Temperatures

Operating a mbient temperature
Storage temperature

$\mathrm{T}_{\text {amb }}$	-25 to +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Total power dissipation

CHARACTERISTICS

D. C. characteristics

Supply voltage range
Output current (peak value)
Total quiescent current at $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V}$

V_{P}		6 to 35	V
I_{OM}	$<$	1,5	A
$\mathrm{I}_{\text {tot }}$	typ.	25	mA

$\underline{\text { A. C. characteristics }}$ at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega ; \mathrm{f}=1 \mathrm{kHz}$ unless otherwise specified; see also test circuit on page 5 .
A.F. output power at $d_{\text {tot }}=10 \%$

at $\mathrm{V}_{\mathrm{P}}=18 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{O}	$>$ typ.	4 4,5	$\begin{aligned} & \text { W } \\ & \text { W } \end{aligned}$
at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	typ.	1,7	W
at $\mathrm{V}_{\mathrm{P}}=8,3 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	typ.	0,65	W
at $\mathrm{V}_{\mathrm{P}}=20 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	typ.	6	W
at $\mathrm{V}_{\mathrm{P}}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega$	P_{0}	typ.	5	W
Total harmonic distortion at $\mathrm{P}_{\mathrm{O}}=2,5 \mathrm{~W}$	$\mathrm{d}_{\text {tot }}$	typ. $<$	0,3 1	$\%$ $\%$
Frequency response		$>$	15	kHz
Input impedance	$\left\|\mathrm{Z}_{\mathrm{i}}\right\|$	$\begin{array}{r} \text { typ. } \\ 45 \end{array}$	$\begin{array}{r} 45 \\ \text { t to } 1 \end{array}$	$\begin{aligned} & k \Omega \\ & M \Omega \end{aligned}$
Noise output voltage at $\mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega \mathrm{l}^{1}$)	V_{n}	$\begin{aligned} & \text { typ. } \\ & < \end{aligned}$	$\begin{aligned} & 0,2 \\ & 0,5 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Sensitivity for $\mathrm{P}_{\mathrm{O}}=2,5 \mathrm{~W}$	V_{i}	typ.	55 to 66	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$

[^25]
APPLICATION INFORMATION

Test circuit

$\left\|Z_{i}\right\|$	between pins 5 and 9	
	$\mathrm{R}=$	
$\mathrm{C}=$		
$45 \mathrm{k} \Omega$	not connected	
$100 \mathrm{k} \Omega *$	410Ω	$47 \mu \mathrm{~F}$
$0,5 \mathrm{M} \Omega *$	47Ω	$47 \mu \mathrm{~F}$
$1 \mathrm{M} \Omega *$	0Ω	$47 \mu \mathrm{~F}$

Note: pin 3 not connected

* C2 must be 10 pF .

APPLICATION INFORMATION (continued)

Television

TYPE SELECTION

Vision i.f. demodulators

TCA270S
TCA540
TDA2540
TDA2541
TDA2670
Signal processors
$\left.\begin{array}{l}\text { TBA } 550, \text { TBA } 890, \text { TBA } 900, \\ \text { TDA } 2680, \text { TDA } 2690\end{array}\right\}$

Sound circuits

- TBA750A

TDA2610; TDA2610A
signal processing circuit synchronous demodulator
i.f. amplifier ($n-p-n$ tuner) and signal processor as TDA 2540, but for $\mathrm{p}-\mathrm{n}-\mathrm{p}$ tuner
i.f. amplifier/demodulator

Sync processors; horizontal, vertical

TBA920: TBA920S
TBA720A
TDA 2571
TDA2581
TDA2590

Vertical deflection circuit

TDA2600

Colour decoding

TBA500, TDA 2500
TBA560C, TDA 2560
TCA660B

TBA510, TDA 2510
TCA640
TCA650 chrominance demodulator for SECAM or PAL/SECAM decoders
reference combination
synchronous demodulator for colour difference drive colour demodulator
colour demodulator combination RGB matrix preamplifier

Video recorder circuits

TDA2700
TDA2710
TDA2720
TDA2730

Miscellaneous

horizontal combination
horizontal oscillator circuit
horizontal oscillator with vertical divider
horizontal deflection stabilizer
horizontal combination
switched mode
luminance combination
luminance and chrominance control combination
contrast, saturation and brightness control for colour difference and luminance signals chrominance combination
chrominance amplifier for SECAM or PAL/SECAM decoders

TBA540
TAA630S
TBA520, TBA990, TCA 800
TDA2520, TDA2522, TDA 2523
TBA530, TDA 2530
oscillator
chrominance signal/mixer
colour sub-carrier oscillator
f. m. limiter/demodulator
switched-mode power supply drive circuit
voltage stabilizer (electronic tuning)
touch amplifier, logic and band selection switch tuning voltage switch and driver for programme indicator

VOLTAGE STABILIZER

The TAA550 is an integrated monolithic voltage stabilizer, especially designed to provide the supply voltage for variable capacitance diodes in television tuners independent of supply voltage and temperature variations.

	QUICK REFERENCE DATA				
Supply current	I_{1}	typ.	5	mA	
Stabilized voltage	V_{12}	32 to 35	V		
Differential internal resistance	r_{12}	typ.	10	Ω	

PACKAGE OUTLINE

Dimensions in mm
TO-18; 2 pins

pin 1 connected to the case

RECOMMENDED CIRCUIT

$\mathrm{V}_{\mathrm{B}} \gg \mathrm{V}_{12}$
I_{1} typ. 5 mA
$\mathrm{R} \geq 22 \Omega$
$\mathrm{C}_{1}=300$ to 4700 pF
C_{2} : to be connected if decoupling for low frequent noise is necessary
In practice values up to $10 \mu \mathrm{~F}$ are used.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Maximum allowable supply current versus temperature

Temperatures

Storage temperature
Operating ambient temperature

CHARACTERISTICS

Recommended supply current
Stabilized voltage
Differential internal resistance at $\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{I}_{1}=5 \mathrm{~mA}$
$\mathrm{T}_{\text {stg }}$
-55 to $+150{ }^{\circ} \mathrm{C}$
-20 to $+150{ }^{\circ} \mathrm{C}$
Tamb
I_{I}
V_{12}
r_{12}
$\frac{\Delta \mathrm{V}_{12}}{\Delta \mathrm{~T}_{\mathrm{amb}}}$
$>\quad 2 \mathrm{~mA}$
typ.
5 mA
30 to 35 V
typ. 10Ω
25Ω
typ. $\quad-0,13 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
$-3,1$ to $+1,55 \mathrm{mV} /{ }^{\circ} \mathrm{C}$

SYNCHRONOUS DEMODULATOR FOR COLOUR DIFFERENCE DRIVE

The TAA630 is a synchronous demodulator for direct drive of colour difference output stages with clamping circuits in television sets. The circuit consists of 2 amplifying synchronous demodulators for the B-Y and R-Y signals, a matrix, a PAL switch, a bistable multivibrator and colour killer switch.

QUICK REFERENCE DATA				
Supply voltage	V_{6-16}	nom.	12	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$		25	${ }^{\circ} \mathrm{C}$
Gain of R-Y demodulator	$\mathrm{G}_{\mathrm{V}(\mathrm{R}-\mathrm{Y})}$	typ.	6	
Gain of B-Y demodulator	$\mathrm{G}_{\mathrm{V}(\mathrm{B}} \mathrm{P}$ Y)	typ.	10,7	
Input impedance of $\mathrm{B}-\mathrm{Y}$ and $\mathrm{R}-\mathrm{Y}$ channel	$\mid \mathrm{Z}_{9}-16{ }^{\text {\| }}$	typ.	1	$k \Omega$
	$\left\|Z_{13-16}\right\|$	typ.	1	$\mathrm{k} \Omega$
Output impedance of $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and G-Y channel				
	$\left\|Z_{4-16}\right\|$	\leq	100	Ω
	$\mid Z_{5-16 \mid}$	\leq	100	Ω
	$\mid Z_{7-16 \mid}$	\leq	100	Ω

PACKAGE OUTLINES (see general section)

TAA630S: 16-lead DIL; plàstic.
TAA630T: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage
Pin No. 1 voltage

Currents

Pin No. 4 current	I_{4}	\max.	5	mA
Pin No. 5 current	I_{5}	\max.	5	mA
Pin No. 7 current	I_{7}	\max.	5	mA
Pin No. 1 current	I_{1}	\max.	1	mA

Pin No. 5 current
Pin No. 7 current
Pin No. 1 current
V_{6-16}
V_{6-16}
$-V_{1-16}$
max. 13.2 V
$\max .16 \mathrm{~V}^{1}$)
\max. 5
\checkmark
max. $\quad 5 \mathrm{~mA}$
$\max . \quad 5 \mathrm{~mA}$
$\max .1 \mathrm{~mA}$

Power dissipation

Total power dissipation

$$
\begin{array}{llll}
P_{\text {tot }} & \max . & 550 & \mathrm{~mW} \\
\mathrm{P}_{\text {tot }} & \max . & 800 & \mathrm{~mW}
\end{array}
$$

Temperatures
Storage temperature
Operating ambient temperature
$\begin{array}{ll}\mathrm{T}_{\text {stg }} & -20 \text { to }+125 \\ \mathrm{~T}_{\mathrm{amb}}{ }^{\circ} \mathrm{C} \\ & -20 \text { to }+60 \quad{ }^{\circ} \mathrm{C}\end{array}$

[^26]CHARACTERISTICS at $V_{6-16}=12 \mathrm{~V} ; \mathrm{V}_{10-16} \because 0.9 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Gain of colour difference signals

$V_{i(p-p)}=50 \mathrm{mV} ; f=4.4 \mathrm{MHz}$	$G_{V}(R-Y)$	typ.	6	$1)$
$G-Y=0.51(R-Y)-0.19(B-Y)$	$\frac{G_{V}(B-Y)}{G_{V}(R-Y)}$	typ.	1.78	

Input impedance of $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ channels

Input impedance of reference inputs
$\mathrm{V}_{\mathrm{i}}(\mathrm{rms})=400 \mathrm{mV}$ (sine wave) $: \mathrm{f}=4.4 \mathrm{MHz}$
at reference $\mathrm{R}-\mathrm{Y}$ input

at reference $B-Y$ input \quad| $\left\|Z_{2}-16\right\|$ | 660 to 1250Ω |
| :--- | :--- |
| $\left\|Z_{8-16}\right\|$ | 660 to 1250Ω |

Colour difference output voltages

(peak to peak values)	output R-Y	V_{4-16} (p-p)	\leq	3.2	$\left.\left.\mathrm{V}^{2}\right)^{3}\right)$
	output B-Y	$\mathrm{V}_{7-16}(\mathrm{p}-\mathrm{p})$	\leq	4.0	$\left.\mathrm{V}^{2}\right)^{3}$)
	output G-Y	$\mathrm{V}_{5-10}(\mathrm{p}-\mathrm{p})$	\leq	1.8	$\left.\mathrm{V}^{2}\right)^{3}$)

Output impedances of $\mathrm{R}-\mathrm{Y}, \mathrm{B}-\mathrm{Y}$ and $\mathrm{G}-\mathrm{Y}$ channels

at output $\mathrm{R}-\mathrm{Y}$	$\left\|Z_{4-16}\right\|$	\leq	100	Ω
at output B-Y	$\left\|Z_{7-16}\right\|$	\leq	100	Ω
at output G-Y	$\left\|Z_{5-16}\right\|$	\leq	100	Ω

[^27]
CHARACTERISTICS (contimucd)

Colour difference d.e. outpur voltages

at output $\mathrm{B}-\mathrm{Y}$
at output $\mathrm{R}-\mathrm{Y}$
at output $\mathrm{G}-\mathrm{Y}$
V7-16
typ. 7. $4 \mathrm{~V}^{1}$)
adjustable to the same level as $\left.V_{7-16}{ }^{1}\right)^{2}$)
adjustable to the same level as $\left.V_{7-16}{ }^{1}\right)^{2}$)

Output voltage; 7.8 kHz (square wave; peak to peak value)
$\mathrm{R}_{\text {load }}=4.7 \mathrm{k} \Omega ; \mathrm{V}_{14-16}=\mathrm{V}_{15-16}=2.5$ to $5 \mathrm{~V} \quad \mathrm{~V}_{3-16(\mathrm{p}-\mathrm{p})}$ typ. 2.5 V

Input voltages

Reference voltages (peak to peak value)

at reference $\mathrm{R}-\mathrm{Y}$	$\mathrm{V}_{2}-16(\mathrm{p}-\mathrm{p})$	typ.	1	$\left.V^{3}\right)$
at reference $B-Y$	$\mathrm{~V}_{8}-16(\mathrm{p}-\mathrm{p})$	typ.	1	$\left.V^{3}\right)$

Horizontal deflection pulses (peak value)

at pin No. 14	$-\mathrm{V}_{14-16 \mathrm{M}}$	2.5 to 5	V
at pin No. 15	$-\mathrm{V}_{15}-16 \mathrm{M}$	2.5 to 5	V
Identification signal (peak to peak value)	$\mathrm{V}_{1}-16(\mathrm{p}-\mathrm{p})$	2 to 6	V

ident "on"
ident "off"
$\begin{cases} \begin{cases}\mathrm{V}_{1-16} & \geq 0.75 \mathrm{~V} \\ \mathrm{I}_{1} & \geq\end{cases} \\ \mathrm{V}_{1-16} & \leq 0.4 \mathrm{~V}\end{cases}$

Colour killer voltage and current

colour "on"	V_{10-16}	$\geq 0.9 \mathrm{~V}$
colour 'off"	V_{10-16}	$\leq 0.3 \mathrm{~V}$

${ }^{1}$) Measured in the test circuit on page 6 .
2) To be adjusted with a variable voltage ($\mathrm{V} \leq 1.2 \mathrm{~V}$) or with resistors connected between pin 11 and pin 16 for $G-Y$ and between pin 12 and pin 10 for $R-Y$.
3) Permissible sange 0.5 to 2 V .

CHARACTERISTICS (continued)

Test circuit

APPLICATION INFORMATION

CHROMINANCE COMBINATION

The TBA510 is an integrated chrominance amplifier circuit for colour television receivers incorporating a variable gain a.c.c. chroma amplifer circuit, a d.c. control for chroma saturation which can be ganged to the receiver contrast control, chroma blanking and burst gating functions, a burst output stage, a colour killer stage and a PAL delay line driver stage.

QUICK REFERENCE DATA									
Supply voltage	V_{1-16}	nom.	12	V					
Input signal (colour bars)									
peak -to -peak value	$\mathrm{V}_{4}-16(\mathrm{p}-\mathrm{p})$	nom.	150	mV					
Output signal (peak -to -peak value)	$\mathrm{V}_{9}-16(\mathrm{p}-\mathrm{p})$	typ.	1	V					
Burst signal output (peak-to -peak value)	$\mathrm{V}_{12}-16(\mathrm{p}-\mathrm{p})$	typ.	1	V					

PACKAGE OUTLINES (see general section)
TBA510 : 16-lead DIL; plastic.
TBA510Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

CHARACTERISTICS (continued)

Input of chroma-saturation control

Control voltage range
Input impedance
Input of chroma blanking
Switching level range
Input impedance
Input of burst gate
Switching level range
Input impedance
Input of colour killer

V_{15-16}		
$\left\|Z_{15-16}\right\|$	$>$	1.5 to 4.5

$-V_{14-16}$	1 to 5	V
$\left\|\mathrm{Z}_{14-16}\right\|$	typ.	2

$-\mathrm{V}_{13-16}$	2.2 to 5.0	V	
$\left\|\mathrm{Z}_{13-16}\right\|$	typ.	4	$\mathrm{k} \Omega$

9. Chroma delayline driver(emitter)

10. Screen
11. Colour burst output (collector)
12. Colour burst output (emitter)
13. Burst gate gating pulse
14. Chroma blanking pulse input
15. Chroma saturation control
16. Earth (negative supply)

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Positive 12 V supply
2. A.C.C. control potential input

The potential required at pin 2 for maximumgain is about 2.5 V ; gain reduction occurs when this potential is reduced, $\mathrm{Z}_{\mathrm{in}}>50 \mathrm{k} \Omega$
3. A.C.C. bias ripple compensation

The internal A.C.C. circuit consists of a longtailed pair system. The "cold" side is established internally at +2.5 V and is brought out on pin 3. This enables a decoupling capacitor to be connected and returned to the point which secures the lowest supply line ripple amplitude injection into the a.c.c. loop.
4. Chroma signal input

The allowable input voltage range is from 15 mV to 300 mV peak-to-peak with a colour bar signal. The input impedance is greater than $2 \mathrm{k} \Omega$.

APPLICATION INFORMATION (continued)

5.. Colour killer switching input

The input impedance is greater than 50 k . Colour "on" 2.5 to 4 V ; colour "off" 0 to 1.8 V . The chroma signal suppression when killed is greater than 50 dB .
6. Emitter decoupling network

The series network decouples an emitter of an amplifier stage in the chroma channel. The value of resistance influences the chroma channel gain.
7. Screen

This pin must be connected to pin 10 and taken via a direct path to earth. The function of this is to prevent burst and unwantedchroma appearingat the chroma output of the integrated circuit.
8. Delay line driver (collector)

Supplies the chroma signal drive to the delay line driver transformer, the cold end of which is connected to +12 V . The maximum permittedvoltage excursion at this pin is 20 V peak. Maximum current, 12 mA peak.
9. Delay line driver (emitter)

Supplies the chroma to the network which provides the non-delayed signal to the delay line output transformer. The emitter is established internally at a potential of $6.8 \pm 1 \mathrm{~V}$ and the external network, which must incorporate a resistived.c. path to earth, must not demand more than 20 mA peak current.
10. Screen

Connect to pin 7 and then to earth.
11. Colour burst output (collector)

If a low impedance colour burst is required (from the emitter of the colour burst output, pin 12) pin 11 will be connected to the +12 V supply. The maximum voltage and current excursions permitted on pin 11 are 20 V peak. and 20 mA peak.
12. Colour burst output (emitter)

An external load resistor of $2 \mathrm{k} \Omega$ is required connected to earth and.d.c. potential of $7.7 \pm 1 \mathrm{~V}$ is established on pin 12 due to the internal circuitry. The: burst output voltage is 1 V peak-to-peak.
13. Burst gate gating pulse

The horizontal flyback pulse can be used as a source of gating waveform. A negative-going pulse of not greater than 5 V amplitude is necessary, the input impedance is $4 \mathrm{k} \Omega$ and the switching level is between -2.2 V and -5 V .
14. Chroma blanking pulse input

A negative going horizontal flyback pulse can be used here. Its amplitude should not exceed -5 V. The input impedance at this pin is $2 \mathrm{k} \Omega$ and the switching level is about -1.0 V .
During scan time, the d.c. voltage on this pin should not be negative.

APPLICATION INFORMATION (continued)

15. Chroma saturation control

The d.c. control voltage range required is from 1.5 to 4.5 V (highest gain at 4.5 V).

The input impedance is $>50 \mathrm{k} \Omega$ and a control range from +6 to -30 dB is given.
16. Negative supply or earth

COLOUR DEMODULATOR

The TBA520 is an integrated colour demodulator circuit for colour television receivers, incorporating two active synchronous demodulators for $\mathrm{R}-\mathrm{Y}$ and $\mathrm{B}-\mathrm{Y}$ chrominance signals, a matrix (producing the G-Y colour difference signal), PAL phase switch and flip-flop. It is suitable for d.c.-coupled drive to the picture tube when associated with the matrix integrated circuit (TBA530) and RGB output stages.

QUICK REFERENCE DATA					
Supply voltage (stabilized)	V6-16	nom.	12	V	
Ambient temperature	Tamb		25	${ }^{\circ} \mathrm{C}$	
Gain of $\mathrm{R}-\mathrm{Y}$ demodulator	G13-4	typ.	7		
Gain of B-Y demodulator	G_{9-7}	typ.	12,5		
Impedance of chrominance inputs	\|Z9-16		typ.		
	$\left\|Z_{13}-16\right\|$	paralle	with		
Impedance of colour-difference signal outputs	$\left\|Z_{4-16}\right\|$	typ.	2,7	k Ω	
	$\left\|Z_{7-16}\right\|$	typ.	2,7		
	$\left\|\mathrm{Z}_{5-16}\right\|$	typ.	2,7	k ת	

PACKAGE OUTLINES (see general section)
TBA520 16-lead DIL; plastic.
TBA520Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134).
Voltages

Supply voltage	V_{6-16}	\max.	13.2	V
Ident voltage	$-\mathrm{V}_{1-16}$	\max	5	V

Current
Ident current $\quad \mathrm{I}_{1} \max \quad 1 \quad \mathrm{~mA}$
Power dissipation
Total power dissipation $\quad P_{\text {tot }} \max .550 \mathrm{~mW}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{6-16}=12 \mathrm{~V}$ (stabilised); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Gain of chrominance ($\mathrm{R}-\mathrm{Y}$) signal
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=50 \mathrm{mV} ; \mathrm{f}=4.4 \mathrm{MHz} \quad \mathrm{G}_{13-4} \quad$ typ. $\quad 7 \quad{ }^{1}$)
Ratio of gain of blue channel to red channel at identical input signal voltages

Matrix for generation G-Y signal
Colour-difference d.c. output voltages
$\frac{\text { Drift d.c. output voltage }}{\Delta \mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}}$
Relative change of d.c. output voltages
between channels at $\Delta \mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C}$
Colour difference output signals peak to peak values $R-Y$ B-Y
G-Y
Impedance of chrominance inputs
$\mathrm{V}_{\mathrm{i} \text { (rms) }}=20 \mathrm{mV}$ (sinusoidal);
$\mathrm{f}=4.4 \mathrm{MHz}$
$\frac{\mathrm{G} 9-7}{\mathrm{G}_{13-4}} \quad$ typ. $\quad 1.78$
-0.51 (R-Y) -0. 19 (B-Y)

$\mathrm{V}_{4}-16$	typ.	7.9	V
$\mathrm{~V}_{7}-16$	typ.	7.9	V
$\mathrm{~V}_{5-16}$	typ.	7.9	V

$\leq \quad 50 \mathrm{mV}$
$\leq 20 \mathrm{mV}$
$\begin{array}{llll}V_{4-16}(p-p) & \geq & 3.2 & \left.\left.V^{2}\right)^{3}\right) \\ V_{7-16(p-p)} & \geq & 4.0 & \left.\left.V^{2}\right)^{3}\right) \\ V_{5-16}(p-p) & \geq & 1.8 & \left.\left.V^{2}\right)^{3}\right)\end{array}$
$\left.\begin{array}{l}\left|\mathrm{Z}_{9-16}\right| \\ \left|\mathrm{Z}_{13-16}\right|\end{array}\right\} \geq \begin{aligned} & 800 \Omega \text { in paral- } \\ & \text { lel with } 10 \mathrm{pF}\end{aligned}$

[^28]CHARACTERISTICS (continued)
Impedance of colour-difference
signal outputs

$\left\|\mathrm{Z}_{4-1}\right\|$	typ.	2.7	$\mathrm{k} \Omega$
$\left\|\mathrm{Z}_{7}-16\right\|$	typ.	2.7	$\mathrm{k} \Omega$
$\left\|\mathrm{Z}_{5-16}\right\|$	typ.	2.7	$\mathrm{k} \Omega$

Impedance of reference
signal inputs

$\left\|Z_{2-16}\right\|$	typ.	1	$\mathrm{k} \Omega$
$\left\|\mathrm{Z}_{8-16}\right\|$	typ.	1	$\mathrm{k} \Omega$

Square wave output voltage peak to peak value; $\mathrm{f}=7.8 \mathrm{kHz}$
$V_{3-16(p-p)}>, \quad 3 \quad V$

Input current
Supply current consumption $\quad \mathrm{I}_{6} \quad$ typ. 32 mA
Input voltages
Reference voltages (peak to peak values)
at reference $\mathrm{R}-\mathrm{Y}$
at reference $B-Y$
Identification circuit active
in-active

$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	typ.	1	V
$\mathrm{~V}_{8-16(\mathrm{p}-\mathrm{p})}$	typ.	1	V
$\left\{\begin{array}{llrl}\mathrm{I}_{1} & \geq & 80 & \mu \mathrm{~A} \\ \mathrm{~V}_{1-16} & > & 0.75 & \mathrm{~V} \\ \mathrm{~V}_{1-16} & \leq & 0.4 & \mathrm{~V}\end{array}\right.$			

Flip-flop drive pulses (15625 Hz ; negative)
peak to peak values

$\mathrm{V}_{14}-16(\mathrm{p}-\mathrm{p})$	3 to 4.5	V
$\mathrm{~V}_{15-16(p-p)}$	3 to 4.5	V

PINNING

1. Identification bias
2. $R-Y$ subcarrier reference input
3. P.A.L. square wave output (7.8 kHz)
4. $\mathrm{R}-\mathrm{Y}$ signal output
5. G-Y signal output
6. Supply voltage (12 V)
7. B-Y signal output
8. B-Y subcarrier reference input
9. $B-Y$ chrominance input signal
10. n.c.
11. G-Y d.c. level setting
12. R-Y d.c. level setting
13. $\mathrm{R}-\mathrm{Y}$ chrominance input signal
14. Line pulse input (flip-flop synchronising)
15. Line pulse input (flip-flop synchronising)
16. Earth (negative supply)

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number (see also page 5).

1. Identification bias

The input current required to stop the flip-flop, "Ident on": $I_{\text {on }} \geq 80 \mu \mathrm{~A}$. For "Ident off': $V_{\text {off }}=-5$ to +0.4 V .
2. $\mathrm{R}-\mathrm{Y}$ subcarrier reference input

An I V peak to peak signal is required via a d. c. blocking capacitor. Under no cir cumstances should this signal be less than 0.5 V peak to peak.
The input resistance at this pin lies between 670Ω and 1250Ω.
($\mathrm{y}_{2-16}=0.8$ to $1.5 \mathrm{~m} \Omega^{-1}$)
3. P.A. L. square wave output

The amplitude is $\geq 3 \mathrm{~V}$ peak to peak from an emitter follower.
4. $\mathrm{R}-\mathrm{Y}$ signal output ($\mathrm{G}-\mathrm{Y}$ at pin 5 and $\mathrm{B}-\mathrm{Y}$ at pin 7)

No external d.c. load needed except that direct connection must be made via the low pass filter to the R. G. B. matrix TBA530.

The signals produced are in the following ratios:

$$
\mathrm{V}_{\mathrm{B}-\mathrm{Y}}=1.3 \quad \mathrm{~V}_{\mathrm{R}-\mathrm{Y}} \pm 10 \%
$$

(a) $\mathrm{V}_{\mathrm{G}}-\mathrm{Y}=0.76 \mathrm{~V}_{\mathrm{R}}-\mathrm{Y} \pm 10 \%$
(b) $\mathrm{V}_{\mathrm{G}}-\mathrm{Y}=0.26 \mathrm{~V}_{\mathrm{R}}-\mathrm{Y} \pm 15 \%$

Condition (a) refers to ($\mathrm{B}-\mathrm{Y}$) $+(\mathrm{R}-\mathrm{Y}$) addition in the $\mathrm{G}-\mathrm{Y}$ matrix.
Condition (b) refers to the phase reversed ($\mathrm{R}-\mathrm{Y}$) input signal where ($\mathrm{G}-\mathrm{Y}$) is obtained by subtraction.

The d.c. levels should each be adjusted, starting with the ($\mathrm{B}-\mathrm{Y}$), to +7.5 V at nominal supply voltage.
The maximum peak to peak voltages for the condition $\mathrm{m} \geq 0.7(\mathrm{~m}=$ ratio of minimum to maximum differential gains) are:

$$
\begin{aligned}
& \mathrm{VR}_{\mathrm{R}}-\mathrm{Y}(\mathrm{p}-\mathrm{p}) \geq 3.2 \mathrm{~V} \\
& \mathrm{VG}_{\mathrm{G}}-\mathrm{Y}(\mathrm{p}-\mathrm{p}) \geq 1.8 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{B}}-\mathrm{p}(\mathrm{p}) \geq 4.0 \mathrm{~V}
\end{aligned}
$$

The output impedance for each signal is $2.7 \mathrm{k} \Omega$.
The drifts in d.c. levels of the colour difference output signals for a change in ambient temperature of $40^{\circ} \mathrm{C}$ (after equilibrium is reached from switch-on) are typically:

Absolute shift	-50 to +50 mV
$\mathrm{V}_{\mathrm{R}}-\mathrm{Y}$ relative to $\mathrm{V}_{\mathrm{B}}-\mathrm{Y}$	-20 to +20 mV
$\mathrm{V}_{\mathrm{G}}-\mathrm{Y}$ relative to $\mathrm{V}_{\mathrm{B}}-\mathrm{Y}$	-20 to +20 mV
$\mathrm{V}_{\mathrm{R}}-\mathrm{Y}$ relative to $\mathrm{V}_{\mathrm{G}}-\mathrm{Y}$	-20 to +20 mV

APPLICATION INFORMATION (continued)

The changes in d.c. level with supply voltage are approximately linear and track together.

The -3 dB bandwidth of the colour difference signals is 1.5 MHz .
5. G-Y signal output (see pin 4)
6. L.T. positive supply

Also d.c. level setting for $B-Y$ output (pin 7). The maximum allowable voltage on this pin is 13.2 V . The minimum supply voltage to ensure setting the $\mathrm{B}-\mathrm{Y}$ output d.c. level correctly (+7.5 V) is 11.6 V (in such case RV_{1} would be set to zero).
7. B-Y signal output (see pin 4)
8. B-Y subcarrier reference input

The requirements here are identical with those for pin 2.
9. Chrominance B-Y input signal

An input signal up to 360 mV peak to peak (colour bars) is allowed. For driving the TBA530 an input signal of 160 mV is required. The input impedance is greater than 800Ω and the input capacitance is less than 10 pF (y9-16 and y13-16 \leq $1.25 \mathrm{~m}^{-1}$ in parallel with 10 pF). The spread in gain of the internal circuitry in the chrominance channel is $\pm 10 \%$.
10. Internally connected; no external connection should be made.
11. D.C. level setting for G-Y output signal (circuit diagram on page 5).
12. D.C. level setting for $\mathrm{R}-\mathrm{Y}$ output (see circuit diagram on page 5).
13. Chrominance $\mathrm{R}-\mathrm{Y}$ input signal

An input signal up to 500 mV peak to peak (colour bars) is allowed. The input impedance and spread in gain is the same as for pin 9.
14. Line pulse input (flip-flop synchronising)

A 4 V peak negative going line flyback pulse should be applied via separate 10 nF capacitors to pins 14 and 15. Pulse amplitude to lie between 3 V and 4.5 V peak to peak.
15. Line pulse input (see pin 14)
16. Negative supply (earth)

RGB MATRIX PREAMPLIFIER

The TBA530 is an integrated circuit for colour television receivers incorporating a matrix preamplifier for RGB cathode or grid drive of the picture tube without clamping circuits. The chip lay-out has been designed to ensure tight thermal coupling between all the transistors in each channel to minimise and equalise thermal drifts between channels. Also, each channel follows an identical lay-out to ensure equal frequency behaviour of the three channels.
This integrated circuit has been designed to be driven from the TBA520 synchronous demodulator integrated circuit.

QUICK REFERENCE DATA					
Supply voltage		V_{8-6}	nom.	12	V
Ambient temperature					
Gain of luminance and					
colour-difference channels		G	typ.	100	
Total current consumption		$\mathrm{I}_{\text {tot }}$	typ.	30	mA

PACKAGE OUTLINES (see general section)
TBA530 : 16-lead DIL; plastic.
TBA530Q: 16-lead QIL; plastic.

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage

Supply voltage
Currents
Supply currents
Power dissipation
Total power dissipation

Temperatures

Storage temperature	$\mathrm{T}_{\text {Stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{{ }^{\circ} \mathrm{C}}$

CHARACTERISTICS measured in circuit on page 5
Measuring conditions: $\quad \mathrm{V}_{8-6}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

$$
\begin{gathered}
\text { black level: } \begin{array}{c}
\mathrm{V}_{\mathrm{R}}-\mathrm{Y}=\mathrm{V}_{\mathrm{G}}-\mathrm{Y}
\end{array}=\mathrm{V}_{\mathrm{B}-\mathrm{Y}}=7.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{Y}}=1.5 \mathrm{~V}
\end{gathered}
$$

Colour difference input

peak-to-peak values	$\mathrm{V}_{2}-6(\mathrm{p}-\mathrm{p})$	typ.	1.4	V
	$\mathrm{~V}_{3}-6(\mathrm{p}-\mathrm{p})$	typ.	0.82	V
	$\mathrm{~V}_{4}-6(\mathrm{p}-\mathrm{p})$	typ.	1.78	V
Luminance input signal				
Gain of colour channels				
(B-Y;G-Y;R-Y) at $\mathrm{f}=0.5 \mathrm{MHz}$	G_{2-6}			

Ratio of gain of luminance amplifier to colour amplifiers
typ.
1
D. C. output voltage
$\left.\begin{array}{l}\mathrm{V}_{\mathrm{R}} \\ \mathrm{V}_{\mathrm{G}} \\ \mathrm{V}_{\mathrm{B}}\end{array}\right\} \quad$ typ. $\quad 165 \quad \mathrm{~V}$

[^29]
CHARACTERISTICS (continued)

Input resistance of colour
difference amplifiers at $\mathrm{f}=1 \mathrm{kHz}$

$$
\left.\begin{array}{l}
R_{2-6} \\
R_{3}-6 \\
R_{4-6}
\end{array}\right\} \text { typ. } 60 \quad \mathrm{k} \Omega
$$

Input capacitance of colour
difference amplifiers at $\mathrm{f}=1 \mathrm{MHz}$

$$
\left.\begin{array}{l}
\mathrm{C}_{2}-6 \\
\mathrm{C}_{3}-6 \\
\mathrm{C}_{4}-6
\end{array}\right\} \quad \text { typ. } \quad 3 \quad \mathrm{pF}
$$

Input resistance of luminance				
amplifier at $\mathrm{f}=1 \mathrm{kHz}$	R5-6	typ.	20	$\mathrm{k} \Omega$
Input capacitance of luminance				
amplifier at $\mathrm{f}=1 \mathrm{MHz}$	C5-6	typ.	10	pF
Bandwidth of all channels (3 dB)	B	typ.	6	MHz
Total current drain	$\mathrm{I}_{\text {tot }}$	typ.	30	mA

PINNING see also APPLICATION INFORMATION circuit diagram on page 5.

1. Output load resistor (red signal)
2. $\mathrm{R}-\mathrm{Y}$ input signal
3. G-Y input signal
4. $B-Y$ input signal
5. Luminance signal input
6. Earth (negative supply)
7. Current feed point
8. 12 V positive supply
9. Bluechannel feedback
10. Blue signal output
11. Output load resistor (blue signal)
12. Green channel feedback
13. Green signal output
14. Output load resistor (green signal)
15. Red channel feedback
16. Red signal output

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin numbering (see also page 5)

1. Output load resistor, red signal (pin 11: blue signal, pin 14: green signal)

Resistors ($47 \mathrm{k} \Omega, 1 \mathrm{~W}$) connected to +200 V provide the high value loads for the internal amplifying stages. The nominal operating potential on these pins is defined by an internal zener type junction and the d.c. feedback and is approximately +8 V . The maximum current which can be allowed at each of these pins is 10 mA .
2. $\mathrm{R}-\mathrm{Y}$ input signal

This signal is fed via a low-pass filter from the TBA 520 demodulator i.c. (pin 7) having a d.c. level of +7.5 V and an amplitude of, 1.44 V peak to peak. The input resistance for this pin is typically $60 \mathrm{k} \Omega$ with an input capacitance of less than 3 pF (similarly for pins 3 and 4).
3. G-Y input signal

The d.c. black level of this signal is +7.5 V and its amplitude is 0.82 V peak to peak (see pin 2).
4. $B-Y$ input signal

The d.c. black level of this signal is +7.5 V and its amplitude is 1.78 V peak to peak (see pin 2)
5. Luminance signal input

The d.c. level on this pin for picture black is +1.5 V . The required signal amplitude is 1 V black-to-white with negative-going sync (or blanking) for cathode drive as shown. The input resistance at this pin is $20 \mathrm{k} \Omega$ approximately with a capacitance of typ. 10 pF .
6. Negative supply (earth)
7. Current feed point

A current of approximately 2.5 mA is required at this pin, fed via a $3.9 \mathrm{k} \Omega$ resistor from +12 V , to bias the internal differential amplifiers. A decoupling capacitor of 4.7 nF is necessary.
8. Positive 12 V supply

Maximum supply voltage permitted, 13.2 V . Current consumption approximately 30 mA .
9. Blue channel feedback (green channel, pin 12: red channel, pin 15)

The d.c. working points and gains of both the output stages and thei.c.amplifier stages are stabilised by the feedback circuits. The black level potentials at the collectors of the output stages (tube cut-off) are adjusted by setting correctly the d.c. level of the colour difference signals produced by the TBA520 demodulator i.c. The gains of the $\mathrm{R}-\mathrm{G}-\mathrm{B}$ output stages are adjusted to give the correct white points setting on the picture tube by adjusting the potentiometers in the feedback paths (VR1, VR2). (See notes on setting up decoder).

APPLICATION INFORMATION (continued)

10. Blue signal output (green and red signal outputs on 13 and 16)

These pins are internally connected with pins 11,14 and 1 respectively via zener type junctions to give a d.c. level shift appropriate for driving the output transistor bases directly. To by-pass the zener junctions at h.f. three 10 nF capacitors are required.
11. Output load resistor, blue channel (pin 1).
12. Green channel feedback (see pin 9).
13. Green signal output (see pin 10).
14. Output load resistor , green channel (see pin 1).
15. Red channel feedback (see pin 9).
16. Red signal output (see pin 10).

BRIEF PERFORMANCE DETAILS AND COMMENTS

1. Spread of the ratio of voltage gains for colour difference and luminance signal inputs 0.9 to 1.1 .
2. Very careful attention to earth paths should be given, avoiding common impedances between the input (decoder) side and the output stages. Also, to enable matched performance to be achieved, a symmetrical board and component layout should be adopted for the three output stages. To compensate for the effect upon h.f. response of inevitable differences, e.g., the absence of a potentiometer in one of the stages, the compensating capacitors $\mathrm{C}_{1}, \mathrm{C}_{2}$ and C_{3} may be appropriately selected for any given board layout.
3. The signal black level at the collectors of the R-G-B output stages depends upon the +12 V supply, the d.c. level of the colour difference signals from the TBA520 demodulator i.c. and the black level potential of the luminance signal applied to the TBA530 matrix i.c. The d.c. levels of the signals produced and handled by the i.c.'s are designed to have approximately proportional tracking with the 12 V supply potential,

$$
\text { i.e., } \frac{\Delta V_{(\text {d.c. level, signal) }}}{\Delta V_{12 V}} \approx \frac{V_{\text {nom(d.c. level, signal) }}}{12}
$$

To ensure that changes in picture black level due to variations on the 12 V supply to the i.c.'s occur in a predictable way, all the $\bar{i} . c$.'s should be operated from a common supply line. This is specially important for the TBA520 and TBA530. Furthermore, to limit the changes in picture black level during receiver operation, the 12 V supply should have a stability of not worse than $\pm 3 \%$ due to operational variations, and preferably be tracked with the screen-grid supply of the picture tube.

REFERENCE COMBINATION

The TBA540 is an integrated reference oscillator circuit for colour television receivers incorporating an automatic phase and amplitude controlled oscillator employing a quartz crystal, together with a half-line frequency synchronous demodulator circuit. The latter compares the phases and amplitude of the swinging burst ripple and the PAL flip-flop waveform, and generates appropriate a.c.c., colour killer and identification signals. The use of synchronous demodulation for these functions permits a high standard of noise immunity.

QUICK REFERENCE DATA				
Supply voltage	V3-16	nom.	12	V
Total current drain	I_{3}	typ.	33	mA
$\mathrm{R}-\mathrm{Y}$ reference signal output peak-to-peak value	V4-16(p-p)	typ.	1,5	V
Colour killer output: colour on colour off	$\begin{aligned} & V_{7-16} \\ & V_{7-16} \end{aligned}$	typ.	12 250	$\begin{aligned} & \mathrm{V} \\ & \mathrm{mV} \end{aligned}$
A.C.C. output voltage range at correct phase of PAL switch	V9-16		+4 to +0, 2	V
at incorrect phase of PAL switch	V9-16		+4 to +11	V

PACKAGE OUTLINES (see general section)
TBA540 : 16-lead DIL; plastic
TBA540Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage \quad V3-16 $\max .13 .2 \mathrm{~V}$
Power dissipation
Total power dissipation at $\mathrm{T}_{\mathrm{amb}}=50^{\circ} \mathrm{C} \quad \mathrm{P}_{\text {tot }} \quad \max .680 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V} 3-16=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; $\mathrm{V} 5-16 \mathrm{M}=0.7 \mathrm{~V}$
(burst signal input); $\mathrm{V}_{8-16(p-p)}=2.5 \mathrm{~V}$ (P.A. L. square wave input) Measured in circuit shown on page 4.

Output signals
R-Y reference signal output peak-to-peak value

Colour killer output: colour on colour off

$\mathrm{V}_{4}-16(\mathrm{p}-\mathrm{p})$	typ.	1.5	V
$\mathrm{~V}_{7-16}$	typ.	12	V
$\mathrm{~V}_{7}-16$	$<$	250	mV

A.C.C. output signal range
at correct phase of P.A. L. switch
at incorrect phase of P.A.L. switch

V9-16	+4 to +0.2	V
V9-16	+4 to +11	V

Oscillator section (amplifier)

Input resistance	R_{15-16}	typ.	3.5	$\mathrm{k} \Omega$
Input capacitance	C_{15-16}	typ.	5	pF
Voltage gain	G_{15-1}	typ.	4.7	

Reactance control section
Voltage gain with pins 13 and 14 interconnected G_{15-2} typ. 1.3
Rate of change of gain G_{15-2} with phase difference
between burst and reference signal
Supply current consumption

$\frac{\Delta G_{15-2}}{\Delta \varphi_{5-4}}$	typ.	5	$\frac{1}{\mathrm{rad}}$
I_{3}	typ.	33	mA

PINNING

1. Oscillator feedback output
2. Reactance control stage feedback
3. Supply voltage (12 V)
4. Reference waveform output
5. Burst waveform input
6. Reference waveform input
7. Colour killer output
8. P.A. L. flip-flop square wave input
9. A.C.C. output
10. A.C.C. level setting (see also pin 12)
11. A.C.C. gain setting
12. A.C.C. level setting (see also pin 10)
13. D. C. control points for
14. oscillator phase control loop
15. Oscillator feedback input
16. Earth (negative supply)

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Oscillator feedback output

The crystal receives its energy from this pin. The input impedance is approximately $2 \mathrm{k} \Omega$ in parallel with 5 pF .
2. Reactance control stage feedback

This pin is fed internally with a sinewave derived from the reference input (pin 6) and controlled in amplitude by the internal reactance control circuit. The pltase of the feedback from pin 2 to the crystal via C 1 is such that the value of C 1 is effectively increased. Pin 2 is held internally at a very low impedance therefore the tuning of the crystal is controlled automatically by the amplitude of the feedback waveform and its influence on the effective value of C 1 .
3. Positive 12V supply

The maximum voltage must not exceed 13.2 V .
4. Reference waveform output

This pin is driven internally by the regenerated subcarrier waveform in $R-Y$ phase. An output amplitude of nominally 1.5 V peak-to-peak is produced at low impedance. No d.c.load to earth is required. A d.c.connection between pins 4 and 6 is, however, necessary viathe bifilar coupling inductor. The function of this inductor is to produce, on pin 6, a signal of equal amplitude and opposite phase ($-(\mathrm{R}-\mathrm{Y}$)) to that on pin 4. Acentretap on the inductor, connected to earth via a d.c. blocking capacitor, is therefore necessary.
5. Burst waveform input

A burst waveform amplitude of 1 V peak-to-peak is required to be a.c.-coupled to this pin. The amplitude of the burst will normally be controlled by the adjustment and operation of the a.c.c. circuit. The input impedance at this pin is approximately $1 \mathrm{k} \Omega$ and a threshold level of 0.7 V must be exceeded before the burst signal becomes effective. A d.c. bias of 400 mV is internally derived for pin 5 The absolute level of the, tip of the burst at pin 5 will normally reach $1.25 \mathrm{~V}(1.5 \mathrm{~V}$ peak-to-peak burst amplitude). Under abnormal conditions the burst amplitude should not be allowed to exceed 3 V peak-to-peak and a limiting condition will be reached in the i.c. which inhibits the performance of the phase lock loop.

APPLICATION INFORMATION (continued)

6. Reference waveform input

This pin requires a reference waveform in the - (R-Y) phase, derivedfrom pin 4 via a bifilar transformer (see pin 4), to drive the internal balanced reactance control stage. A d.c. connection between pins 4 and 6 must be made via the transformer.
7. Colour killer output

This pin is driven from the collector of an internal switching transistor and requires an external load resistor (typical $10 \mathrm{k} \Omega$) connected to +12 V . The unkilled and killed voltages on this pin are then +12 V and $<250 \mathrm{mV}$ respectively. (The voltage on pin 9 at which switching of the colour killer output on pin 7 occurs is nominally +2.5 V
8. P.A.L. flip-flop square wave input

A 2.5 V peak-to-peak square wave derived from the P.A.L. flip-flop (in the TBA520 demodulator i.c.) is required at this pin, a.c.-coupled via a capacitor. The input impedance is about $3.3 \mathrm{k} \Omega$.
9. A.C.C. output

An emitter follower provides a low impedance output potential which is negativegoing with a rising burst input amplitude. With zero input signal the d.c. potential produced at pin 9 is set to be +4 V (RV1) The appearance of a burst signal on pin 5 will cause the potential on pin 9 to go in a negative direction in the event that the P.A.L. flip-flop is identified to be in the correct phase. The range of potential over which full a.c.c. control is excercised at pin 9 is determined by the control characteristics of the a.c.c. amplifier i.e. for the TBA560 from 1 V to 0.2 V . The potential at pin 9 will fall to a value within this range as the burst input signal is stabilised at 1.5 V peak-to-peak. The latter condition is achieved by correct adjustment of RV2. If, however, the P.A.L. flip-flop phase is wrong the potential on pin 9 will move positively. The potential divider R5, R6 will then operate a P.A.L. switch cut-off function in the TBA520 demodulator i.c. The switching of the colour killer output at pin 7 is designed to occur as the potential on pin 9 moves past +2.5 V .
10. A.C.C. level setting

The network connected between pins 10 and 12 balances the a.c.c. circuit and RV1 is adjusted to give +4 V on pin 9 with no burst input signal to pin 5. C5 provides filtering.
11. A.C.C. gain control

RV2 is adjusted to give the correct amplitude of burst signal on pin 5 (1.5 V peak--to-peak) under a.c.c. control;
12. See pin 10.
13. See pin 14.

APPLICATION INFORMATION (continued)

14. D. C. control points in reference control loop

Pins 13 and 14 are connected to opposite sides of a differential amplifier circuit and are brought out for the purposes d.c. balancing of the reactance stage and the connection of the bandwidth-determining filter network. The conventional double time constant filter networks are R2, C2, R3, C3 and R_{4}, C_{4}. The d.c. potentials on these pins are nominally $+7,2 \mathrm{~V}$.
15. Oscillator feedback input

The input impedance at this pin is nominally $3.5 \mathrm{k} \Omega$ in parallel with 5 pF . No d.c. connection is required on this pin. The voltage in the i.c. between pin 15 and pin 1 is nominally 4.7 times.
16. Negative supply (earth)

PERFORMANCE AND COMMENTS

Initial adjustment

(a) Remove burst signal.
(b) Short-circuit pins 13-14. Adjust oscillator to correct frequency by C1. Remove short circuit.
(c) Set the a.c.c. level adjustment RV1, to give +4 V on pin 9.
(d) Apply burst signal.
(e) Adjust a.c.c. gain, RV 2, to give a burst amplitude of 1.5 V peak-to-peak on pin 5 .

Phase lock loop performance (with crystal type 43221520110)
(a) Phase difference between reference and burst signals for $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency, $\pm 10^{\circ}$.
(b) Typical holding range, $\pm 600 \mathrm{~Hz}$.
(c) Typical pull-in range, $\pm 300 \mathrm{~Hz}$.
(d) Temperature coefficient of oscillator frequency, i.c. only, $2 \mathrm{~Hz} /{ }^{\circ} \mathrm{C}$.

景

TELEVISION SIGNAL PROCESSING CIRCUIT

The TBA550 is a silicon monolithic integrated signal processing circuit for television receivers. It combines following functions:

- video preamplifier with emitter follower output
- gated a.g.c. detector supplying the a.g.c. voltages for the vision i.f. amplifier and tuner (delayed)
- noise inverter for gating the a.g.c. and sync separator circuits
- sync separator
- automatic horizontal synchronisation
- vertical sync pulse separator
- blanking facility for the video amplifier

The circuit is designed for receivers equipped with tubes or transistors in the deflection and video output stages, and with $n-p-n$ transistors in the tuner and i.f. amplifier. Only signals with negative modulation can be handled by the circuit.

QUICK REFERENCE DATA				
Supply voltage	V_{P}	typ.	12	V
Ambient temperature	$\mathrm{T}_{\text {amb }}$		25	${ }^{\circ} \mathrm{C}$
Video input voltage (peak-to-peak voltage)	$\mathrm{V}_{10}-16$ (p-p)	typ.	2	V
Voltage gain of the the video amplifier	G_{V}	typ.	9,5	dB
A.G.C. voltage for i.f. part ($\left.\mathrm{R}_{4}-16=2 \mathrm{k} \Omega\right)$	V_{4-16}	typ.	0 to 8	V
A.G.C. voltage for tuner ($\left.\mathrm{R}_{6-16}=1 \mathrm{k} \Omega\right)$	V_{6-16}	typ.	0 to 7	V
Output voltage horizontal phase detector	$\pm \mathrm{V}_{2-1}$	typ.	3	V
Vertical sync output voltage (positive going pulse; peak-to-peak value)	$\mathrm{V}_{15-16}(\mathrm{p}-\mathrm{p})$	$>$	10	V

PACKAGE OUTLINES (see general section)
TBA550 : 16-lead DIL; plastic.
TBA550Q: 16-1ead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
V_{P}
\max.
$16 \mathrm{~V}^{1}$)

Power dissipation

$$
P_{\text {tot }}
$$

$$
\text { max. . } 600
$$

mW

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\mathrm{O}} \mathrm{C}$
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +125	${ }^{\mathrm{O}} \mathrm{C}$

[^30]
CHARACTERISTICS

Supply voltage range
V_{P}
10 to 14 V
Measured in circuit on page 6 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$
Video amplifier
$\left.\begin{array}{lllrll}\text { Input resistance (detector load) } & \mathrm{R}_{10-16} & \text { typ. } & 2,7 & \mathrm{k} \Omega & \\ \text { Input capacitance } & \mathrm{C}_{10-16} & < & 1 & \mathrm{pF} & \\ \text { Bandwidth }(3 \mathrm{~dB}) & \mathrm{B} & > & 5 & \mathrm{MHz} & \\ \text { Voltage gain } & \mathrm{G}_{\mathrm{V}} & & \text { typ. } & 9,5 & \mathrm{~dB}\end{array}\right)$

Tolerances on the black level at the output

I.C. processing spreads	$\pm \Delta \mathrm{V}_{12-16}$	$<$	300	mV	
Temperature drift	$\Delta \mathrm{V}_{12-16}$	<	7	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	${ }^{3}$),
Spreads over a.g.c. expansion (entire range)	$\pm \Delta V_{12-16}$	<	250	mV	$\left.{ }^{4}\right)^{6}$
Variation black level at the output due to supply voltage variations	$\frac{\Delta V_{12-16}}{\Delta V_{P}}$	typ.	0,7		

$\begin{array}{llllllll}\text { Available video output current (peak value) } & \mathrm{I}_{12 \mathrm{M}} & \text { typ. } & 14 & \mathrm{~mA} & 7 \text {) }\end{array}$

[^31]CHARACTERISTICS (continued)
Video blanking

Input voltage (peak-to-peak value)
Input resistance
A.G.C. circuit

Control voltage i.f. amplifier
Control voltage tuner
Signal expansion for full control of i.f. amplifier and tuner

Keying input pulse (peak-to-peak value)
Input resistance
Synchronisation circuit
Sync separator
Control voltage line oscillator
Output voltage vertical sync pulse separator (peak-to-peak value)
Output impedance

$V_{11-16(p-p)}$		1 to 5	V
R_{11-16}	typ.	1	$\mathrm{k} \Omega$

APPLICATION INFORMATION

LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TBA560C is a monolithic integrated circuit used in the decoding system of colour television receivers. The circuit consists of a luminance and a chrominance amplifier. The lurninance amplifier input is matched to the luminance delay line and performs the following functions:
d.c. contrast control * brightness control * black level clamping * blanking.

The chrominance amplifier comprises:
gain-controlled amplifier $*$ chrominance gain control tracked with contrast control $*$ separate d.c. saturation control * PAL delay line driver * burst gate * colour killer. Compared with the TBA560B the TBA560C produces a higher gain of the burst signal and consequently a smaller ratio of the chrominance output signal to the burst output signal.

QUICK REFERENCE DATA					
Supply voltage	V_{11-16}	nom.	12	V	
Supply current	I_{11}	nom.	30	mA	
Luminance signal input current	$\mathrm{I}_{3}(\mathrm{p}-\mathrm{p})$	typ.	1,5	mA	
Chrominance input signal	$\mathrm{V}_{1-15}(\mathrm{p}-\mathrm{p})$	$\left\{\begin{array}{l}> \\ <\end{array}\right.$	4 80	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \end{gathered}$	
Luminance output signal at nominal contrast setting	$\mathrm{V}_{5}-16(\mathrm{p}-\mathrm{p})$	typ.	3	V	${ }^{1}$)
Chrominance output signal at nominal contrast and saturation setting	V9-16(p-p)	typ.	1	V	${ }^{1}$)
Contrast control range		\geq	20	dB	
Saturation control range		\geq	20	dB	
Burst output (closed a.c.c. loop)	$\mathrm{V}_{7}-16(\mathrm{p}-\mathrm{p})$	typ.	1	V	
${ }^{1}$) Nominal setting: maximum contrast and/or saturation minus 6 dB					

PACKAGE OUTLINES (see general section)
TBA560C : 16-lead DIL; plastic.
TBA560CQ: 16-lead QIL; plastic.

CIRCUIT DIAGRAM

Note: the circuits are interconnected in the numerical sequence I, II, III, IV

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage
$V_{11-16} \quad \max \quad 13 \quad \mathrm{~V} \quad 1$)
Power dissipation
Total power dissipation $\quad P_{\text {tot }} \quad \max . \quad 510 \quad \mathrm{~mW}{ }^{1}$)

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	0 to +60	${ }^{\circ} \mathrm{C}$

Voltages with respect to pin 16

V_{1-16}	0 to +5 V	$\mathrm{~V}_{10-16}$	min. -5	V
$\mathrm{~V}_{2-16}$	0 to $+12 \mathrm{~V}^{2}$)	V_{12-16}	-5 to +6	V
$\mathrm{~V}_{4-16}$	0 to +6 V	$\mathrm{~V}_{13-16}$	-3 to $+6,5 \mathrm{~V}^{2}$)	
V_{6-16}	0 to +3 V	$\mathrm{~V}_{14-16}$	min. -5	V
$\mathrm{~V}_{8-16}$	-5 to +5 V	$\mathrm{~V}_{15-16}$	0 to +5	V

Currents (positive when flowing into the integrated circuit)

I_{1}	0 to +1 mA	I_{7}	-3 to +2	mA
I_{3}	-1 to +3 mA	I_{9}	-10 to 0	mA
I_{5}	-5 to 0 mA	I_{10}	$\max .+3$	mA
I_{6}	-1 to +1 mA	I_{14}	$\max .+1$	mA
		I_{15}	0 to +1	mA

[^32]CHARACTERISTICS measured in the circuit on page 6

| Supply voltage | V |
| :--- | :--- | :--- | :--- |\quad| $11-16$ | typ. |
| ---: | :--- |
| | 10 to 13 |$\quad \mathrm{~V}$

Required input signals at $\mathrm{V}_{11-16}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Chrominance input signal
peak-to-peak value
Luminance input current
black-to-white value
I_{3}
$\mathrm{V}_{\text {2-16 }}$ see graph on page 11
V_{6-16}
for 20 dB of control $\quad \mathrm{V}_{13-16}$ see graph on page 11
$I_{10(p-p)}$
0,05 to 1 mA
Fly-back blanking pulses (negative)
peak-to-peak value
for 0 V blanking level at pin 5
for $1,5 \mathrm{~V}$ blanking level at pin 5
Colour killer
Automatic chrominance control starting
$V_{1-15(p-p)} \quad 4$ to $80 \quad \mathrm{mV}$
typ. $1,5 \mathrm{~mA}$
Contrast control voltage range
for 20 dB of control
Brightness control voltage
Saturation control voltage range

Burst keying pulse (positive)
peak-to-peak value

$\mathrm{V}_{8-16(p-p)}$ typ. $-0,5 \quad \mathrm{~V}$
$\mathrm{V}_{8-16(p-p)}$ typ. $-2,5 \quad \mathrm{~V}$
$\mathrm{V}_{13-16}<1 \quad \mathrm{~V}$
$\mathrm{V}_{14-16} \quad$ typ. $1,2 \quad \mathrm{~V} \quad{ }^{2}$)

[^33]
CHARACTERISTICS (continued)

Obtainable output signals

Luminance output voltage at nominal
contrast (peak-to-peak value)
Burst signal (peak-to-peak value)

$V_{5-16(p-p)}$	typ.	3	V	$\left.{ }^{1}\right)$
$V_{7-16(p-p)}$	typ.	1	\dot{V}	$\left.{ }^{2}\right)$

Chrominance signal at nominal
$\begin{array}{llllllll}\text { contrast and saturation (peak-to-peak value) } & \mathrm{V}_{9}-16(\mathrm{p}-\mathrm{p}) & \text { typ. } & 1 & \mathrm{~V} & { }^{1} \text {) }\end{array}$
3 dB bandwidth of chrominance and
luminance amplifier
B
typ.
5 MHz

Change of ratio luminance to
chrominance signals at 10 dB
contrast control $\ll 2 \mathrm{~dB}$

APPLICATION INFORMATION

Application diagram for operation in combination with the TBA540.

APPLICATION INFORMATION (continued)

Pinning

1. Balanced chroma signal input
2. Contrast control
3. Luminance signal input
4. Black level clamp capacitor
5. Luminance signal output
6. Brightness control
7. Burst output
8. Fly-back blanking input
9. Chroma signal output
10. Burst gate and clamping pulse input
11. Supply voltage (12 V)
12. D. C. feedback for chroma channel
13. Chroma saturation control
14. A.C.C. input
15. Chroma signal input
16. Earth (negative supply)

The function is quoted against the corresponding pin number

1. Balanced chroma signal input (in conjunction with pin 15)

This is derived from the chroma signal bandpass filter, designed to provide the push-pull input. An input signal amplitude of at least 4 mV peak-to-peak is required on pins 1 and 15. Both pins require a d.c. potential of approximately $+3,0 \mathrm{~V}$. This is derived as a common -mode signal from a network connected to pin 7 (burst output). In this way d.c. feedback is provided over the burst channel to stabilise its operation.
All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i. e. burst -to-chroma ratio of input signal is $1: 2$.
2. D.C. contrast control

With $+3,7 \mathrm{~V}$ on this pin, the gain in the luminance channel is such that a $1,5 \mathrm{~mA}$ peak-to-peak input signal to pin 3 gives a luminance output signal amplitude on pin 5 of 3 V black-to-white. A variation of voltage on pin 2 between +6 V and +2 V gives a corresponding gain variation of +6 to $>-14 \mathrm{~dB}$. A similar variation in gain in the chroma channel occurs in order to provide the correct tracking between the two signals.
3. Luminance signal input

This terminal has a very low input impedance and acts as a current sink. The lumi nance signal from the delay line is fed via a series terminating resistor and must have about $1,5 \mathrm{~mA}$ black-to-white amplitude.
4. Charge storage capacitor for black level clamp ($5,0 \mu \mathrm{~F}$)
5. Luminance signal output

An emitter follower provides a low impedance output signal of 3 V black-to-white amplitude at nominal contrast setting having a black level in the range 0 to +3 V . An external emitter load resistor is required, not less than $1 \mathrm{k} \Omega$.
Black level shift at contrast control is max. $\pm 20 \mathrm{mV}$ if the luminance input current during black level is about $0,75 \mathrm{~mA}$. When this current has a different value a larger black level shift has to be taken into account. If the input current during black level differs 1 mA from the nominal value of $0,75 \mathrm{~mA}$, the black level shift will be about 100 mV over the complete contrast control range. For smaller differences of the input current the black level shift will be correspondingly smaller.
Black level shift with video signal content occurs only when the input signal is a.c. coupled. The value depends on the drive current amplitude and can be calculated from

APPLICATION INFORMATION (continued)

the figures given above (for maximum contrast; for a lower contrast setting the variation is correspondingly smaller).
Black level shift over an ambient temperature variation of $30^{\circ} \mathrm{C}$ is typ. -140 mV .
6. The d.c. level of the luminance output signal may be controlled by the d.c. potential applied to this pin

Over the range of potential $+0,9$ to $+1,7 \mathrm{~V}$ the black level of the luminance output signal (pin 5) is increased from 0 to $+2,7 \mathrm{~V}$. The output signal black level remains at $+2,7 \mathrm{~V}$ when the potential on pin 6 is increased above $+1,7 \mathrm{~V}$.
7. Burst output

A 1 V peak-to-peak burst (kept constant by the a.c.c. system) is produced here. Also, to achieve good d.c. stability by negative feedback in the burst channel the d.c. potential at this pin is fed back to pins 1 and 15 via the chroma input transformer. When limiting occurs the burst amplitude is min. 2,5 V.
8. Fly-back blanking input waveform

Negative-going horizontal and vertical blanking pulses may be applied here. If rectangular blanking pulses of not greater than -1 V negative excursion are applied the signal level at the luminance output (pin 5) during blanking will be 0 V . However, if the blanking pulses applied to pin 8 have an amplitude of -2 to -3 V the signal level at the luminance output during blanking will be $+1,5 \mathrm{~V}$.
9. Chroma signal output

With an 1 V peak -to-peak burst output signal (pin 7) and at nominal contrast and saturation setting (pins 2 and 13) the chroma signal output amplitude is 1 V peak-topeak. An external d.c. network is required which provides negative feedback in the chroma channel via pin 12.
10. Burst gating and clamping pulse input

A positive pulse of minimum $50 \mu \mathrm{~A}$ is required on this pin to provide gating in the burst channel and luminance channel black-level clamp circuit. The timing and width of this current pulse should be such that no appreciable encroachment occurs into the sync pulse or picture line periods during normal operation of the receiver.
11. +12 V L. T power supply

Correct operation occurs within the range 10 to 13 V . All signal and control levels have a linear dependency on supply voltage but, in any given receiver design this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels. The power dissipation must not exceed 550 mW at $60^{\circ} \mathrm{C}$ ambient temperature.
12. D. C. feedback for chroma channel (see pin 9)
13. Chroma saturation control

A control range of +6 to $>+14 \mathrm{~dB}$ is provided over a range of d.c. potential on pin 13 from $+2,7$ to $+6,2 \mathrm{~V}$. Colour killing is also done at this terminal by reducingthe d. c . potential to less than +1 V , e.g., from the TBA540 colour killer output terminal. The kill factor is min. 40 dB .

APPLICATION INFORMATION (continued)

14. A.C.C. input

A negative-going potential gives a 26 dB range of a.c.c. starting at $+1,2 \mathrm{~V}$ and giving maximum gain reduction at an input voltage of min. 500 mV .
15. Chroma signal input (see pin 1)
16. Negative supply (earth)

Contrast control of luminance amplifier

Saturation of chrominance amplifier

Control of black level at output luminance amplifier

LINE OSCILLATOR CIRCUIT

This circuit has been designed for use as line-oscillator and reactance stage in colour and monochrome t.v. receivers.
The circuit consists of a Miller-integrator-oscillator followed by a pulse shaping circuit, which delivers a positive pulse of 8 V and adjustable width. The available output current is in excess of 60 mA . Finally a supply voltage take-over switch for starting purposes is built in. The TBA720A can co-operate with the TBA890, TBA900, TAA700 and TBA550.

QUICK REFERENCE DATA	
Supply voltage	V_{11-16} typ. 12 V
Starting voltage	$\mathrm{V}_{9-16} 8$ to 12 V
Required input signals	
D. C. control voltage at pin 1 at pin 3	$\begin{array}{ll} \mathrm{V}_{1-16} & 2,4 \text { to } 5,3 \mathrm{~V} \\ \mathrm{~V}_{3-16} & 2,4 \text { to } 5,3 \mathrm{~V} \end{array}$
Delivered output signals	
Output voltage at pin 5 no load; peak-to-peak value	$\mathrm{V}_{5-16(p-p)}$ typ. 8 V
Output current at pin 5	$\mathrm{I}_{5}<60 \mathrm{~mA}$

PACKAGE OUTLINES ; (see general section)
TBA720A : 16-lead DIL; plastic.
TBA720AQ: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134). Voltages

Supply voltage
Starting voltage
Currents
Output current

Power dissipation

Total power dissipation
when mounted on a printed-wiring board

Temperatures

Storage temperature
Operating ambient temperature
$P_{\text {tot }} \quad$ max. $\quad 280 \mathrm{~mW}$
$\begin{array}{lll}\mathrm{V}_{11-16} & \max . & 16 \mathrm{~V} \\ \mathrm{~V}_{9-16} & \max . & 15 \mathrm{~V}\end{array}$
$\mathrm{I}_{5} \quad \max . \quad 60 \mathrm{~mA}$
$\mathrm{T}_{\text {stg }}$
$\mathrm{T}_{\mathrm{amb}}$

$$
\begin{array}{r}
-55 \text { to }+125^{\circ} \mathrm{C} \\
0 \text { to }+60^{\circ} \mathrm{C}
\end{array}
$$

CHARACTERISTICS Measured in the test set-up on page 4

Supply voltage	V_{11-16}	typ.	10 to 13 V
Starting voltage			8 V
	$\mathrm{~V}_{9-16}$	$>$	8

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-16}=12 \mathrm{~V}$
Supply current ${ }^{2}$)

Required input signals

D.C. control voltage for nominal frequency
at pin No. 1 and pin No. 3
Sensitivity of reactance stage
Duty cycle regulation at pin No. 14
Delivered output signals
Output voltage at pin No. 5
no load; peak-to-peak value
Output current
Duty cycle; without regulation
with regulation
Rise time at pin No. 5
leading edge of output pulse
$v_{1-16}=v_{3-16}$
V_{1-3} typ.
typ.
$14+400$ to $-400 \mu \mathrm{~A}$
2,4 to 5,3 V
$2 \mathrm{kHz} / \mathrm{V}$
$0 \mu \mathrm{~A}$

${ }^{1}$) Maximum starting voltage should not exceed the value of the supply voltage minus 1 volt.
${ }^{2}$) No load connected to the output. When the output is loaded, the extra current is: $\delta \times I$, in which $\delta=$ duty cycle of output pulse and $I=$ current flowing during output pulse.

CHARACTERISTICS (continued)

Relative frequency deviation for $\Delta \mathrm{V}_{11}=1 \mathrm{~V} \quad 2 \%$
Relative frequency deviation for change of
ambient temperature 25 to $55^{\circ} \mathrm{C}$$\quad 3 \%$ o
Allowable hum-ripple on supply line (peak-to-peak value)
$\Delta V_{11-16(p-p)} \quad$ typ. $\quad 100 \mathrm{mV}$
Test set-up

APPLICATION INFORMATION

The TBA720A with the TBA890 or TBA900 in a receiver with transistorized line deflection.

|IIIIII

APPLICATION INFORMATION (continued)

Notes

1. The TBA720A is intended to drive a line deflection circuit equipped with transistors.
2. The duty cycle δ can be adjusted by connecting a resistor between pin 14 and ground or the supply.
3. The oscillation frequency can be set between 10 kHz and 25 kHz by connecting a resis tor between pins 4 and 13, and a capacitor between pins 12 and 13 .
4. At a nominal oscillation frequency of $15,625 \mathrm{kHz}$, the frequency deviation is limited to $\pm 1,3 \mathrm{kHz}$ to safeguard the line timebase output circuits.
5. Besides the oscillator, the TBA 720A incorporates a reactance stage and a supply voltage take-over switch for starting purposes (pin 9). The latter can be used to advantage if the 12 V supply is derived from the line flyback pulse.
6. Pins $2,7,10$ and 15 should not be connected.

LIMITER-AMPLIFIER

The TBA750A is a limiter-amplifier with f.m. detector, d.c. volume control and a.f. preamplifier. It is intended for $4,5 \mathrm{MHz}, 5,5 \mathrm{MHz}$ or $10,7 \mathrm{MHz}$.
The limiter-amplifier is a four-stage differential amplifier that gives very good noise and interference suppression.
The detector is of the balanced type. The d.c. volume control stage has excellent control characteristics with a control range of more than 80 dB .
The a.f. preamplifier can drive a triode-pentode output stage or a class-A push-pull transistor output stage.

| QUICK REFERENCE DATA | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Supply voltage | V_{2-5} | typ. | 12 | V |
| Total current drain | $\mathrm{I}_{\mathrm{tot}}$ | typ. | 34 | mA |
| Frequency | f_{O} | | 5,5 | MHz |
| Input voltage at start of limiting | $\mathrm{V}_{\mathrm{i} \text { lim }}$ | typ. | 130 | $\mu \mathrm{~V}$ |
| A. M. rejection at $\mathrm{V}_{\mathrm{i}}=1 \mathrm{mV}$ | α | typ. | 45 | dB |
| A.F. output voltage at $\Delta \mathrm{f}= \pm 15 \mathrm{kHz}$
 at pin 16 | $\mathrm{~V}_{\mathrm{o}(\mathrm{rms})}$ | typ. | 2,7 | V |
| D.C. volume control range | | $>$ | 80 | dB |

PACKAGES OUTLINES (see general section)
TBA 750A : 16-lead DIL; plastic. TBA 750AQ: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
V_{2-5}
\max.
16
v ${ }^{1}$)

Power dissipation

Temperatures

Storage temperature

$$
\mathrm{T}_{\mathrm{stg}}
$$

$$
-55 \text { to }+125
$$

Operating ambient temperature
CHARACTERISTICS measured in the test circuit on page 5.
Supply voltage range
(See graph R_{S} versus supply voltage on page 6)
$\mathrm{V}_{2-5} \quad 10$ to $25 \quad \mathrm{~V}$

Total current drain
I_{2}
25 to 45
$\mathrm{mA}{ }^{2}$)
Input limiting voltage at $V_{O}=-3 \mathrm{~dB}$
$\mathrm{V}_{\mathrm{i} \lim (\mathrm{rms})}$ typ. $\quad 130$
$\mu \mathrm{V}$
I.F. output voltage at pin 6 and 7
(peak-to-peak value)
$\left.\begin{array}{l}V_{6-5(p-p)} \\ V_{7-5(p-p)}\end{array}\right\}$ typ. $380 \quad \mathrm{mV}$

[^34]
CHARACTERISTICS (continued)

A. M. rejection at $V_{i}=1 \mathrm{mV}$	α	typ.	45	dB	
$\mathrm{~V}_{\mathrm{i}}=10 \mathrm{mV}$	α	typ.	50	dB	
$\mathrm{~V}_{\mathrm{i}}=100 \mathrm{mV}$	α	typ.	55	dB	
D.C. volume control range		$>$	80	dB	$\left.{ }^{1}\right)$

A.F. preamplifier voltage gain

(pin 1 to pin 16)	G_{v}	typ.	10	
nput resistance at pin 1	R_{i}	\geq	35	$\mathrm{k} \Omega$

A.F. output voltages
$\Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$

$$
\left.\begin{array}{llll}
\mathrm{V}_{10-5}(\mathrm{rms}) \\
\mathrm{V}_{11-5}(\mathrm{rms})
\end{array}\right\} \text { typ. } \quad 65 \mathrm{mV}
$$

Total harmonic distortion

at pin $12 ; \Delta \mathrm{f}=15 \mathrm{kHz}$	$\mathrm{d}_{\text {tot }}$	typ.	3	$\%$
at pin l with respect to pin $16 ; \mathrm{V}_{\mathrm{o}(\mathrm{rms})}=3 \mathrm{~V}$	$\mathrm{~d}_{\text {tot }}$	typ.	2,6	$\%$

Test circuit for f.m. : $\mathrm{f}_{\mathrm{o}}=5,5 \mathrm{MHz} ; \Delta \mathrm{f}= \pm 15 \mathrm{kHz} ; \mathrm{f}_{\mathrm{m}}=70 \mathrm{~Hz}$ for a.m. : $\mathrm{m}=0,3 ; \mathrm{f}_{\mathrm{m}}=1 \mathrm{kHz}$

[^35]CHARACTERISTICS (continued)

Maximum and minimum values for the power supply series resistance (R_{S})

APPLICATION INFORMATION at $\mathrm{f}=5,5 \mathrm{MHz}$

$\mathrm{L} 1=18 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{L} 1}=36$
$\mathrm{L} 2=2,2 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{L} 2}=21$
$\mathrm{L} 3=0,84 \mu \mathrm{H} ; \mathrm{Q}_{\mathrm{L} 3}=22$
Note: $\mathrm{Q}_{\mathrm{L} 1}, \mathrm{Q}_{\mathrm{L} 2}$ and $\mathrm{Q}_{\mathrm{L} 3}$ are the loaded Q-factors.

The transfer ratio of the input bandpass filter: $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=0,54$
The peak-to-peak bandwidth of the detector S-curve is 300 kHz .

TELEVISION SIGNAL PROCESSING CIRCUIT

The TBA890 is a silicon monolithic integrated signal processing circuit for monochrome and colour television receivers.
It combines the following functions:

- video pre-amplifier with emitter-follower output and short circuit protection.
- blanking facility for the video amplifier.
- gated a.g.c. detector supplying the a.g.c. voltages for the vision i.f. amplifier and tuner.
- noise cancelling circuit in the a.g.c. and sync separator circuits.
- sync separator.
- automatic horizontal phase detector
- vertical sync pulse separator.

The circuit is designed for receivers equipped with tubes or transistors in the deflection and video output stages.
The control stages in the i.f. amplifier and the tuner have to be equipped with $n-p-n$ transistors. The equivalent circuit for tuners equipped with a $p-n-p$ transistor is the TBA900. The circuit is developed for signals with negative modulation.

QUICK REFERENCE DATA				
Supply voltage	V_{P}	typ.	12	V
Ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	typ.	25	${ }^{\circ} \mathrm{C}$
Video input voltage (peak-to-peak value)	V9-16(p-p)	typ.	2,7	V
Voltage gain of the video amplifier	G_{V}	typ.	7	dB
A.G.C. voltage for i.f. part	V_{7-16}	1,0 to	12	V
A.G.C. voltage for tuner	V_{6-16}	0,3 to	12	V
Output voltage range horizontal phase detector	V_{2-16}	2 to	10	V
Vertical sync output voltage (positive going pulse; peak-to-peak value)	$\mathrm{V}_{14-16}(\mathrm{p}-\mathrm{p})$	typ.	11	V

PACKAGE OUTLINES (see general section)
TBA890 : 16-lead DIL; plastic.
TBA890Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	max		20	$\mathrm{v}^{1)}$
Power dissipation	$\mathrm{P}_{\text {tot }}$	max		700	mW
Temperatures					
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55	to	+125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	' $\mathrm{T}_{\text {amb }}$	-25	to	+80	${ }^{\circ} \mathrm{C}$

Maximum allowable nominal supply voltage as a function of the maximum ambient temperature.
${ }^{1)}$ Allowed only while receiver is warming up.

CHARACTERISTICS

Supply voltage range
The following characteristics are measured in the circuit on p. 7 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
$\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V}$.
Video amplifier

Input resistance,	R9-16	$>$	30	$k \Omega$
Input capacitance	C_{9-16}	$<$	3	pF
Bandwidth (3 dB)	B	$>$	5	MHz
Linearity (m)		$>$	0.9	
Rise time and fall time at the output	$\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}$	<	50	ns
Voltage gain	$\mathrm{G}_{\mathbf{v}}$	typ.	7	dB
Video input voltage (peak-to-peak value)	V9-16(p-p)	typ.	2.7	$\mathrm{V}^{1)}$
D. C. bias video detector voltage	Vbias	typ.	6	v^{2}
Video output voltage (peak-to-peak value)	$\mathrm{V}_{11-16}(\mathrm{p}-\mathrm{p})$	typ.	6	$\mathrm{V}^{1)}$
Black level at the output	V11-16	typ.	5	V^{3}
Available video output current (peak value)	$\mathrm{I}_{11 \mathrm{M}}$	\leq	30	mA^{4})
Tolerances on the video output voltages				
I. C. processing spreads	$\pm \Delta \mathrm{V}_{11-16}$	$<$	420	$m V^{5}$)
Temperature drift	$-\Delta \mathrm{V}_{11-16}$	typ.	1.8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Spreads over a.g.c. expansion (entire range)	$\pm \Delta \mathrm{V}_{11-16}$	<	100	mV6)
Supply voltage	ΔV_{11-16}	typ.	0.5	
	$\Delta \mathrm{V}_{P}$			

1) Signal with negative going sync.; this value is obtained only when the input signal meets the C.C.I.R. standard.
2) A voltage divider with 5% tolerance resistors is required between pin 9 and sup ply terminal.
3) Only valid if the video signal is in accordance with the C.C.I.R. standard.
4) The total load on pin 11 must be such that the d.c. output current $I_{11} \leq 15 \mathrm{~mA}$.
5) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure.
6) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.

CHARACTERISTICS (continued)

Tolerances on the black level at the output
I. C. processing spreads

Temperature drift
Spreads over a.g.c. expansion (entire range)

Supply voltage

$\pm \Delta \mathrm{V}_{11-16}$	$<$	420	$\left.\mathrm{mV}{ }^{1}\right)$
$-\Delta \mathrm{V}_{11-16}$	typ. 1.7	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
$\pm \Delta \mathrm{V}_{11-16}$	$<$	130	$\mathrm{mV}^{2)}$
$\frac{\Delta \mathrm{V}_{11-16}}{\Delta \mathrm{~V}_{\mathrm{P}}}$	typ.	0.4	

Video blanking
Input voltage (peak-to-peak value)
Input resistance
Output voltage during blanking
A. G.C. circuit

Range of control voltage i.f. amplifier
Range of control voltage tuner

$V_{10-16(p-p)}$		1 to 5	V
R_{10-16}	typ.	1	$\mathrm{k} \Omega$
V_{11-16}	$<$	500	mV

Signal expansion for full control of i. f. amplifier and tuner

Current i.f. control point
Current tuner control point
1 to $12 \quad \mathrm{~V}^{3}$)
V_{6-16}
0.3 to $12 \quad \mathrm{~V} 3$)

Current i.f. control point for tuner take -over

Keying input pulse (peak-to-peak value)
Input resistance

	typ.	0.5	dB
I_{7}	$<$	20	mA
I_{6}	$<$	20	mA
I_{7}	see note 4		
$\mathrm{~V}_{5-16(\mathrm{p}-\mathrm{p})}$	see note 5		
R_{5-16}	typ.	2	$\mathrm{k} \Omega$

1) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure (pin 9).
2) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.
3) Positive going at increasing input signal.
4) This value depends on the ratio between the external impedances on pins 6 and 7 . With equal impedances the current of the i.f. control point at tuner take-over will be about 16% from its maximum value (minimum control voltage).
5) Negative going pulse is required. The voltage during scan should be between 1 V and 2 V .

CHARACTERISTICS (continued)			
Horizontal synchronization circuit			
Sync. separator		see note 1	
Output voltage range of phase detector	V_{2-16}	2 to 10	$\mathrm{V}^{2)}$
Control steepness	S_{φ}	typ. 2.5	$\mathrm{V} / \mu \mathrm{s}^{3}$
Phase deviation between front edge sync. pulse and front edge flyback pulse	φ_{0}	typ. 1.5	μs
Variation φ_{0} caused by internal spreads	$\pm \Delta_{\varphi 0}$	typ. 0.3	$\mu \mathrm{s}^{4}$
Output voltage range as a frequency detector	V_{2-16}	4 to 8	$\mathrm{V}^{5)}$
Vertical synchronization circuit			
Output voltage vertical sync. pulse generator	V_{14-16}	typ. 11	V
Output impedance	R_{14-16}	typ.	$\mathrm{k} \Omega$

1) The sync. pulse is sliced about 25% below top sync. level: A sliding bias circuit makes the slicing level independent of the signal strength.
2) Nominal voltage 6 V .
3) Higher values of this control steepness can be obtained by changing R_{S} (see cir cuit on page 7). For example $\mathrm{R}_{\mathrm{S}}=56 \Omega, \mathrm{~S}_{\varphi}=5 \mathrm{~V} / \mu \mathrm{s}$ and $\mathrm{R}_{\mathrm{S}}=0, \mathrm{~S}_{\varphi}=\geq 25 \mathrm{~V} / \mu \mathrm{s}$.
4) In addition to this figure $\pm 7 \%$ of the retrace time of the sawtooth generated on pin 3 has to be added to find the total spreads of φ_{0}. This value of $\pm 7 \%$ is obtained only when the tolerance of the capacitor connected to pin 3 does not exceed $\pm 10 \%$.
5) Nominal voltage 6 V .

The load impedance on pin 2 of the circuit on page 7 is about $50 \mathrm{k} \Omega$. When a higher impedance is used (tube equipped reactance stage) values from 2 V to 10 V can be reached.

APPLICATION INFORMATION

TELEVISION SIGNAL PROCESSING CIRCUIT

The TBA900 is a silicon monolithic integrated signal processing circuit for monochrome and colour television receivers.
It combines the following functions:

- video pre-amplifier with emitter-follower output and short circuit protection.
- blanking facility for the video amplifier.
- gated a.g.c. detector supplying the a.g.c. voltages for the vision i.f. amplifier and tuner.
- noise cancelling circuit in the a.g.c. and sync separator circuits.
- sync separator.
- automatic horizontal phase detector
- vertical sync pulse separator.

The circuit is designed for receivers equipped with tubes or transistors in the deflection and video output stages.
The control stage in the i.f. amplifier has to be equipped with an $n-p-n$ transistor and the tuner with a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor.
The circuit is developed for signals with negative modulation.

QUICK REFERENCE DATA				
Supply voltage	V_{P}	typ.	12	V
Ambient temperature	$\mathrm{T}_{\text {amb }}$	typ.	25	${ }^{\circ} \mathrm{C}$
Video input voltage (peak to-peak value)	V9-16(p-p)	typ.	2,7	
Voltage gain of the video amplifier	G_{V}	typ.	7	dB
A.G.C. voltage for i.f. part	V_{7-16}	1,0 to	12	V
A.G.C. voltage for tuner	V_{6-16}	0,3 to	12	V
Output voltage range horizontal phase detector	V_{2-16}	2 to	10	V
Vertical sync output voltage (positive going pulse; peak-to-peak value)	$\mathrm{V}_{14-16}(\mathrm{p}-\mathrm{p})$	typ.	11	V

PACKAGE OUTLINES (see general section)
TBA 900° : 16-lead DIL; plastic.
TBA900Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{P}	\max.	20	$V^{1)}$
Power dissipation	$\mathrm{P}_{\text {tot }}$	\max.	700	mW
Temperatures				
Storage temperature	$\mathrm{T}_{\text {Stg }}$	-55 to	+125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-25 to	+80	${ }^{\circ} \mathrm{C}$

Maximum allowable nominal supply voltage as a function of the maximum ambient temperature.
${ }^{1)}$ Allowed only while receiver is warming up.

CHARACTERISTICS

Supply voltage range $\quad \mathrm{V}_{\mathrm{P}} \quad$ See curves on page 3

The following characteristics are measured in the circuit on $\dot{p} .7$ at $T_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{P}}=\mathrm{I} 2 \mathrm{~V}$.
Video amplifier

Input resistance	R9-16	$>$	30	$k \Omega$
Input capacitance	C_{9-16}	$<$	3	pF
Bandwidth (3 dB)	B	$>$	5	MHz
Linearity (m)		>	0.9	
Rise time and fall time at the output	$t_{r} ; \mathrm{t}_{\mathrm{f}}$	$<$	50	ns
Voltage gain	G_{V}	typ.	7	dB
Video input voltage (peak-to-peak value)	V9-16(p-p)	typ.	2.7	$\mathrm{V}^{1)}$
D. C. bias video detector voltage	Vbias	typ.	6	v^{2}
Video output voltage (peak-to-peak value)	$\mathrm{V}_{11}-16$ (p-p)	typ.	6	$\mathrm{V}^{1)}$
Black level at the output	V_{11-16}	typ.	5	v^{3})
Available video output current (peak value)	$\mathrm{I}_{11 \mathrm{M}}$	\leq	30	mA^{4}
Tolerances on the video output voltages				
I. C. processing spreads	$\pm \Delta \mathrm{V}_{11-16}$	$<$	420	mV ${ }^{5}$
Temperature drift	$-\Delta V_{11-16}$	typ.	1.8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Spreads over a.g.c. expansion (entire range)	$\pm \Delta \mathrm{V}_{11-16}$	<	100	mV6)
Supply voltage	$\underline{\Delta V_{11-16}}$	typ.	0.5	
	$\Delta \mathrm{V}_{\mathrm{P}}$			

1) Signal with negative going sync.; this value is obtained only when the input signal meets the C.C.I. R. standard.
2) A voltage divider with 5% tolerance resistors is required between pin 9 and sup ply terminal.
3) Only valid if the video signal is in accordance with the C.C.I.R. standard.
4) The total load on pin 11 must be such that the d.c. output current $I_{11} \leq 15 \mathrm{~mA}$.
5) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure.
6) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.

CHARACTERISTICS (continued)

Tolerances on the black level at the output
I. C. processing spreads

Temperature drift
Spreads over a.g.c. expansion (entire range)

Supply voltage

Video blanking

Input voltage (peak -to -peak value)
Input resistance
Output voltage during blanking
A.G.C. circuit

Range of control voltage i.f. amplifier
Range of control voltage tuner
Signal expansion for full control of i.f. amplifier and tuner

Current i.f. control point
Current tuner control point
Current i.f. control point for tuner take-over

Keying input pulse (peak-to-peak value)
Input resistance

$\pm \Delta V_{11-16}$	$<$	420	mV
$-\Delta V_{11-16}$	typ.	1.7	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

$$
\left.\pm \Delta \mathrm{V}_{11-16}<130 \mathrm{mV}^{2}\right)
$$

$$
\frac{\Delta \mathrm{V}_{11-16}}{\Delta \mathrm{~V}_{\mathrm{P}}} \quad \text { typ. } 0.4
$$

$V_{10-16(p-p)}$		1 to 5	V
R_{10-16}	typ.	1	$\mathrm{k} \Omega$
V_{11-16}	$<$	500	mV

V_{7-16}	1 to 12	$\left.\mathrm{~V}^{3}\right)$
V_{6-16}	0.3 to 12	$\left.\mathrm{~V}^{4}\right)$

typ.	0.5	dB
\lessdot	20	mA
$<$	8	mA

| I_{7} | typ. $\quad 2$ | mA |
| :--- | :--- | :---: | :---: |
| $\mathrm{~V}_{5-16(p-p)}$ | see note 5 | |
| R_{5-16} | typ. $\quad 2$ | $\mathrm{k} \Omega$ |

1) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure (pin 9).
2) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.
3) Positive going at increasing input signal.
${ }^{4}$) Negative going at increasing input signal.
${ }^{5}$) Negative going pulse is required. The voltage during scan should be between 1 V and 2 V .

CHARACTERISTICS (continued)
Horizontal synchronization circuit

Sync. separator		see note 1		
Output voltage range of phase detector	V_{2-16}		to 10	v^{2}
Control steepness	S_{φ}	typ.	2.5	$\mathrm{V} / \mu \mathrm{s}^{3}$)
Phase deviation between front edge sync. pulse and front edge flyback pulse	φ_{0}	typ.	1.5	$\mu \mathrm{s}$
Variation φ_{0} caused by internal spreads	${ }^{ \pm} \Delta_{\varphi}$	typ.	0.3	$\mu \mathrm{s}^{4}$)
Output voltage range as a frequency detector	V_{2-16}		4 to 8	V^{5}
Vertical synchronization circuit				
Output voltage vertical sync. pulse generator	V_{14-16}	typ.	11	V
Output impedance	R_{14-16}	typ.	2	$k \Omega$

$\overline{1)}$ The sync. pulse is sliced about 25% below top sync. level. A sliding bias circuit makes the slicing level independent of the signal strength.
2) Nominal voltage 6 V .
3) Higher values of this control steepness can be obtained by changing R_{S} (see cir cuit on page 7). For example $\mathrm{R}_{\mathrm{S}}=56 \Omega, \mathrm{~S}_{\varphi}=5 \mathrm{~V} / \mu \mathrm{s}$ and $\mathrm{R}_{\mathrm{S}}=0, \mathrm{~S}_{\varphi}=\geq 25 \mathrm{~V} / \mu \mathrm{s}$.
4) In addition to this figure $\pm 7 \%$ of the retrace time of the sawtooth generated on pin 3 has to be added to find the total spreads of φ_{0}.
This value of $\pm 7 \%$ is obtained only when the tolerance of the capacitor connected to pin 3 does not exceed $\pm 10 \%$.
5) Nominal voltage 6 V .

The load impedance on pin 2 of the circuit on page 7 is about $50 \mathrm{k} \Omega$.
When a higher impedance is used (tube equipped reactance stage) values from 2 V to 10 V can be reached.

APPLICATION INFORMATION

HORIZONTAL COMBINATION

The TBA 920 is a monolithic integrated circuit intended for television receivers with transistor -thyristor -or tube equipped output stages.
It combines the following functions:

- noise gated sync separator
- line oscillator
- phase comparison between sync pulse and oscillator
- loopgain and time constant switching (also for video recorder applications)
- phase comparison between line-flyback pulse and oscillator
- output stage for drive a variety of line output stages

QUICK REFERENCE DATA				
Sùpply voltage	V_{1-16}	nom.	12	V
Ambient temperature	Tamb		25	${ }^{\circ} \mathrm{C}$
Input signals				
Video input voltage (positive-going sync) top sync to white value	$\mathrm{V}_{8-16}(\mathrm{p}-\mathrm{p})$		$\begin{array}{r} 3 \\ 1 \text { to } \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Noise gate input current (peak value)	$\mathrm{I}_{9 \mathrm{M}}$	$>$	30	$\mu \mathrm{A}$
Input resistance of noise gate	R9-16	typ.	200	\bigcirc
Flyback signal input voltage (peak value)	$\mathrm{V}_{5-16 \mathrm{M}}$	typ.	± 1	V
Flyback signal input current (peak value)	$\mathrm{I}_{5 \mathrm{M}}$	typ.	1	mA
Output signals				
Line driver output voltage (peak -to-peak value)	$\mathrm{V}_{2-16(p-p)}$	typ.	10	V
Line driver output current (average value)	$\mathrm{I}_{2(\mathrm{AV})}$	max.	20	mA
Line driver output current (peak value)	$\mathrm{I}_{2 \mathrm{M}}$	max.	200	mA
Composite sync output voltage (peak value)	$\mathrm{V}_{7-16 \mathrm{M}}$	typ.	10	V

PACKAGE OUTLINES (see general section)
TBA920 : 16-1ead DIL; plastic.
TBA920Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage	V_{1-16}	max.	13,2	V
Pin No. 3 voltage	V_{3-16}	0 to 13, 2		V
Pin No. 8 voltage	$-\mathrm{V}_{8-16}$	max.	12	V
Pin No. 10 voltage	V_{10-16}	-0, 5 to +5		V
Currents				
Pin No. 2 current (average value) (peak value)	$\begin{aligned} & \mathrm{I}_{2(\mathrm{AV})} \\ & \mathrm{I}_{2 \mathrm{M}} \end{aligned}$	max. \max.	20 200	mA mA
Pin.No. 5 current (peak value)	$\mathrm{I}_{5 \mathrm{M}}$	max.	10	mA
Pin.No. 7 current (peak value)	$\mathrm{I}_{7 \mathrm{M}}$	max.	10	mA
Pin No. 8 current (peak value)	$\mathrm{I}_{8 \mathrm{M}}$	max.	10	mA
Pin No. 9 current (peak value)	$\mathrm{I}_{9 \mathrm{M}}$	max.	10	mA

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 600 \mathrm{~mW}{ }^{1}$)

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$
Measured in circuit on page 6 (CCIR standard).
Current consumption at $I_{2}=0$
$\mathrm{I}_{1} \quad$ typ. 36 mA

Required input signals

Video signal

Input voltage (positive going sync) peak-to-peak value	$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}$	typ.	$\begin{array}{r} 3 \\ 1 \text { to } \end{array}$	V
Input current during sync pulse (peak value)	$\mathrm{I}_{8 \mathrm{M}}$	typ.	100	$\mu \mathrm{A}$
Noise gating (pin 9)				
Input voltage (peak value)	$\mathrm{V}_{9-16 \mathrm{M}}{ }^{\text {a }}$	$>$	0,7	V
Input current (peak value)	$\mathrm{I}_{9 \mathrm{M}}$	>	30 10	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Input resistance	R9-16	typ.	200	Ω

$\overline{1)} 800 \mathrm{~mW}$ permissible while tubes are heating up.

CHARACTERISTICS (continued)

Flyback pulse (pin 5)

Input voltage (peak value)	$\mathrm{V}_{5-16 \mathrm{M}}$	typ.	± 1	V
Input current (peak value)		$\mathrm{I}_{5 \mathrm{M}}$	$>$	50
	$\mu \mathrm{~A}$			
Input resistance	R_{5-16}	typ.	1	mA
Pulse duration at 15625 Hz	t 5	400	Ω	
In	$>$	10	$\mu \mathrm{~s}$	

Delivered output signals

Composite sync pulses (positive; pin 7)
Output voltage (peak-to-peak value)
Output resistance
at leading edge of pulse (emitter follower)
at trailing edge
Additional external Ioad resistance
V7-16(p-p) typ. 10 V

R_{7-16}	\approx	50	Ω
R_{7-16}	typ.	2,2	$\mathrm{k} \Omega$
$\mathrm{R}_{7-16(\mathrm{ext})}$	$>$	2	$\mathrm{k} \Omega$

Driver pulse (pin 2)
Output voltage (peak-to-peak value)
Average output current
Peak output current
Output resistance (low ohmic)
Output pulse duration when synchronised
Permissible delay between leading edge
of output pulse and flyback pulse at $t_{5}=12 \mu \mathrm{~s}$

$\mathrm{V}_{2-16}(\mathrm{p}-\mathrm{p})$	typ. 10	V
$\mathrm{I}_{2(\mathrm{AV})}$	< 20	mA
$\mathrm{I}_{2 \mathrm{M}}$	< 200	mA
R_{2-16}	typ. 2,5 or 15	Ω
t_{2}	12 to 32	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{o} \text { tot }}$	0 to 15	μs

Supply voltage at which output pulses are obtained
$\mathrm{V}_{1-16}>\quad 4 \mathrm{~V}$
${ }^{1}$) Depends on switch position and polarity output current. $R_{2-16}=2,5 \Omega$ is valid for $\mathrm{V}_{2-16}=+10,5 \mathrm{~V}$ and a load between pins 2 and 16 (e.g. an external resistor).
${ }^{2}$) The output pulse duration is adjusted by shifting the leading edge $\left(\mathrm{V}_{3-16}\right.$ from 6 V to $8 \mathrm{~V})$. The pulse duration is a result of delay in the line output device and the action of the second control loop in the TBA920.
For a line output stage with a BU108 high voltage transistor the resulting duration is about $22 \mu \mathrm{~s}$, and in such a way that the line output transistor is switched on again about $8 \mu \mathrm{~s}$ after the middle of the line flyback pulse. This pulse duration must be taken into account when designing the driver stage and driver transformer as this way of driving the line output device differs from the usual, i.e. a driver duty cycle of about 50%.

CHARACTERISTICS (continued)

Oscillator
$\left.\begin{array}{llllllll}\text { Frequency; free running }\left(R_{15-16}=3,3 \mathrm{k} \Omega\right) & \mathrm{f}_{\mathrm{o}} & 15 & 625 & \mathrm{~Hz} & 1\end{array}\right)$

Control loop 1 (between sync pulse and oscillator)
Control voltage range
Control current (peak values)
$\begin{array}{lllll}\text { at } \mathrm{V}_{10-16}>4,5 \mathrm{~V} ; \mathrm{V}_{6-16}>1,5 \mathrm{~V} & \mathrm{I}_{12 \mathrm{M}} & \text { typ. } & \pm 2 \mathrm{~mA} \\ \text { at } \mathrm{V}_{10-16}<2 \mathrm{~V} ; \mathrm{V}_{6-16}>1,5 \mathrm{~V} & \mathrm{I}_{12 \mathrm{M}} & \text { typ. } & \pm 6 & \mathrm{~mA}\end{array}$
Loopgain of APC system
a. Time coincidence between sync pulse and flyback pulse or $\mathrm{V}_{10-16}>4,5 \mathrm{~V}$

$\frac{\Delta \mathrm{f}}{\Delta \mathrm{t}}$	typ.	1	$\mathrm{kHz} / \mu \mathrm{s}$
$\frac{\Delta \mathrm{f}}{\Delta \mathrm{t}}$	typ.	3	$\mathrm{kHz} / \mu \mathrm{s}$

Catching and holding range
Δf

0,8 to $5,5 \quad \mathrm{~V}$ $\pm 1 \mathrm{kHz}^{`}{ }^{3}$)

[^36]
CHARACTERISTICS (continued)

Pull -in time for $\Delta \mathrm{f} / \mathrm{f}_{\mathrm{o}}= \pm 3 \%(\Delta f=470 \mathrm{~Hz})$	t	\approx	20	ms	1)
Switch-over from large control 'sensitivity to small control sensitivity after catching	t	\approx	20	ms	$\left.{ }^{1}\right)$
Control loop II (between flyback pulse and oscillator)					
Permissible delay between leading edge of output pulse (pin 2) and leading edge of flyback pulse	t_{d} tot		0 to 15	$\mu \mathrm{s}$	
Static control exror	$\frac{\Delta t}{\Delta t_{\mathrm{d}}}$	<	0,5	\%	2)
Output current during flyback pu1se (peak value)	$\mathrm{I}_{4 \mathrm{M}}$	typ	$\pm 0,7$	mA	

Overall phase relation

| Phase relation between leading edge of sync | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \quad pulse and middle of flyback pulse | t | typ. | 4,9 | $\mu \mathrm{~s}$ | $3)$ |
| Tolerance of phase relation | $\|\Delta \mathrm{t}\|$ | $<$ | 1 | $\mu \mathrm{~s}$ | $4)$ |
| Voltage for $\mathrm{T}_{2}=12$ to $32 \mu \mathrm{~s}$ | $\mathrm{~V}_{3-16}$ | | 6 to 8 | V | |
| Adjustment sensitivity | $\frac{\Delta \mathrm{T} 2}{\Delta \mathrm{~V}_{3}-16}$ | typ. | 10 | $\mu \mathrm{~s} / \mathrm{V}$ | |
| Input current | I_{3} | $<$ | 2 | $\mu \mathrm{~A}$ | |

External switch-over of parameters (loop filter and loop gain) of control loop I (e.g. for video recorder application) see note 5.

Required switch -over voltage

$$
\text { at } R_{11-16}=150 \Omega
$$

$$
\begin{array}{rrrr}
\mathrm{V}_{10-16} & > & 4,5 & \mathrm{~V} \\
\mathrm{~V}_{10-16} & < & 2 & \mathrm{~V}
\end{array}
$$

Required switch -over current
at $\mathrm{R}_{11-16}=150 \Omega ; \mathrm{V}_{10-16}=4,5 \mathrm{~V}$
$\mathrm{I}_{10} \quad$ typ. $\quad 80 \quad \mu \mathrm{~A}$
at $\mathrm{R}_{11-16}=2 \mathrm{k} \Omega ; \mathrm{V}_{10-16}=2 \mathrm{~V}$
$I_{10} \quad$ typ. $\quad 120 \quad \mu \mathrm{~A}$

1) See application information circuit on page 6.
2) The control error is the remaining error in reference to the nominal phase position between leading edge of the sync pulse and the middle of the flyback pulse caused by a variation in delay of the line output stage.
3) This phase relation assumes a luminance delay line with a delay of 500 ns between the input of the sync separator and the drive to the picuture tube. If the sync separator is inserted after the luminance delay line or if there is no delay line at all (black-andwhite sets), then the phase relation is achieved at $\mathrm{C}_{5-16}=560 \mathrm{pF}$.
4) The adjustment of the overall phase relation and consequently the leading edge of the output pulse at pin 2 occurs automatically by the control loop II or by applying a d.c. voltage to pin 3.
5) With sync pulses at pin 7 and 8 ; without RC network at pin 10 .

WTW

TBA920S

HORIZONTAL COMBINATION

The TBA920S is identical to the TBA920, except for the following data:

Oscillator

Spread of frequency at
$\mathrm{R}_{15-16}=3,3 \mathrm{k} \Omega ; \mathrm{C}_{14-16}=10 \mathrm{nF}$

$$
\begin{array}{lll}
\frac{\Delta \mathrm{f}_{\mathrm{O}}}{\mathrm{f}_{\mathrm{O}}} & < & 1,5
\end{array} \begin{aligned}
& \% \\
& \frac{\Delta \mathrm{f}_{\mathrm{O}}}{\mathrm{f}_{\mathrm{O}}}
\end{aligned} \text { typ. } \quad \pm 5 \% \%
$$

Adjustment range of frequency
(in network below)

Note: The above network is the only part that differs from the circuit given on page 6 of TBA920 data.

Overall phase relation
Tolerance of phase relation between
leading edge of sync pulse and
middle of flyback pulse $|\Delta t|<0,4 \mu s$
Other circuit possibilities for oscillator frequency adjustment

-

COLOUR DEMODULATOR

The TBA990 is an integrated colour demodulator circuit for colour television receivers incorporating two active synchronous demodulators for the $R-Y$ and $B-Y$ chrominance signals, a matrix (producing the $G-Y$ colour difference signal), PAL phase switch and flip-flop. It is suitable for d.c. -coupled drive to the picture tube when associated with the matrix integrated circuit (TBA530) and RGB output stages.
Special attention has been given in the design to minimising d. c. level drift with temperature.

PACKAGE OUTLINES (see general section)

TBA990 : 16 -lead DIL; plastic.
TBA990Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Supply voltage	V_{6-16}	$\max .13,2 \mathrm{~V}$
Total power dissipation	$\mathrm{P}_{\text {tot }}$	$\max .300 \mathrm{~mW}$
Temperatures		
Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to $+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to $+60{ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{6-16}=12 \mathrm{~V}$ (stabilised); $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Gain of chrominance ($R-Y$) signal
$\mathrm{V}_{\mathrm{i}(\mathrm{p}-\mathrm{p})}=50 \mathrm{mV} ; \mathrm{f}=4,4 \mathrm{MHz}$ (see note 1) $\quad \mathrm{G}_{13-4}$ typ. 3,8
Ratio of gain of blue channel to
red channel defined at equal chroma
signal inputs (see also pin 4 on page 6)
$\frac{\mathrm{G}_{10-7}}{\mathrm{G}_{13-4}} \quad$ typ. $\quad 1,78$
Matrix for generation G-Y signal
-0, 51 ($\mathrm{R}-\mathrm{Y}$) $-0,19$ ($\mathrm{B}-\mathrm{Y}$)
Colour difference d.c. output voltage (see note 2)

V_{4-16}	typ.	$7,5 \mathrm{~V}$
$\mathrm{~V}_{7}-16$	typ.	$7,5 \mathrm{~V}$
$\mathrm{~V}_{5-16}$	typ.	$7,5 \mathrm{~V}$

Drift d.c. output voltage
$\Delta \mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C} ; \mathrm{V}_{11-16}=\mathrm{V}_{12-16}=6 \mathrm{~V}< \pm 50 \mathrm{mV}$
Relative change of d.c. output voltages
between channels at $\Delta \mathrm{T}_{\mathrm{amb}}=40^{\circ} \mathrm{C} \quad<20 \mathrm{mV}$
Colour difference output signals
peak -to -peak values (see note 3): R-Y
B-Y
G-Y
$\begin{array}{ll}\mathrm{V}_{4-16(\mathrm{p}-\mathrm{p})^{>}}> & 1,6 \mathrm{~V} \\ \mathrm{~V}_{7}-16(\mathrm{p}-\mathrm{p})^{>} & 2,0 \mathrm{~V} \\ \left.\mathrm{~V}_{5-16(\mathrm{p}} \mathrm{p}\right)^{>} & 0,9 \mathrm{~V}\end{array}$
Impedance of chrominance inputs
$\mathrm{V}_{\mathrm{i}(\mathrm{rms})}=20 \mathrm{mV}$ (sinusoidal); $\mathrm{f}=4,4 \mathrm{MHz}$

Impedance of reference signal inputs

Impedance of colour-difference signal outputs

$\left.\begin{array}{l} \left\|Z_{10-16}\right\| \\ \left\|Z_{13-16}\right\| \end{array}\right\}$	$>\begin{aligned} & 800 \Omega \text { in paral- } \\ & \text { lel with } 10 \mathrm{pF} \end{aligned}$	
$\mid Z_{2-16 \mid}$	typ.	$5 \mathrm{k} \Omega$
$\left\|z_{8-16}\right\|$	typ.	$5 \mathrm{k} \Omega$
$\left\|Z_{4-16}\right\|$	typ.	$3 \mathrm{k} \Omega$
$\left\|Z_{5}-16\right\|$	typ.	$3 \mathrm{k} \Omega$
\| $Z_{7-16 \mid}$	typ.	$3 \mathrm{k} \Omega$

1. Ratio of peak -to-peak values of input and output signals.
2. These can be adjusted, by the potentiometers shown in circuit on page 5 , by $\pm 0,2 \mathrm{~V}$ to compensate for spreads in the matrix and output circuitry.
3. Linearity $\geq 0,7$ measured in the circuit on page 5 .

CHARACTERISTICS (continued)

Square wave output voltage

peak -to -peak value; $\mathrm{f}=7,8 \mathrm{kHz}$

Input voltages

Reference voltages (peak -to -peak)
at reference $R-Y$
at reference $B-Y$

Identification circuit

line pulse input (triggers on negative going edge)

Identification sigrial

required voltage for "ident on" required voltage for "ident off"
required current for "ident on"

Input current

Supply current consumption

PINNING

1. Identification bias
2. $\mathrm{R}-\mathrm{Y}$ sub-carrier reference input
3. P.A.L. square wave output ($7,8 \mathrm{kHz}$)
4. $\mathrm{R}-\mathrm{Y}$ signal output
5. G-Y signal output
6. Supply voltage (12 V)
7. B-Y signal output
8. B-Y sub-carrier reference input

$$
\mathrm{V}_{3-16(\mathrm{p}-\mathrm{p})} \text { typ. } 3,5 \mathrm{~V}
$$

$$
\begin{array}{lll}
\left.\mathrm{V}_{2-16(\mathrm{p}}-\mathrm{p}\right) & \text { typ. } & 1 \mathrm{~V} \\
\mathrm{~V}_{8-16(\mathrm{p}-\mathrm{p})} & \text { typ. } & 1 \mathrm{~V}
\end{array}
$$

$$
\mathrm{V}_{14-16(p-p)} \quad 2 \text { to } 5 \mathrm{~V}
$$

$$
\begin{aligned}
& \mathrm{V}_{1-16}>6,5 \mathrm{~V} \\
& \mathrm{~V}_{1-16}< \\
&-\mathrm{I}_{1}<0,5 \mathrm{~V} \\
& 0,1 \mathrm{~mA}
\end{aligned}
$$

$I_{6} \quad$ typ. $\quad 17 \mathrm{~mA}$
9. B-Y d.c. level setting
10. $\mathrm{B}-\mathrm{Y}$ chrominance input signal
11. G-Y d.c. level setting
12. R-Y d.c. level setting
13. $\mathrm{R}-\mathrm{Y}$ chrominance input signal
14. Line pulse input (flip-flop synchronising)
15. п.c.
16. Earth (negative supply)

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number (see also page 5).

1. Identification bias

The P.A. L. flip-flop is stopped, for identification purposes, when the voltage on pin 1 increases above 6 V . This threshold is internally generated and has a propor tional behaviour with the 12 V supply voltage. The threshold level of 6 V is chosen to match the output characteristic of the TBA540 and has a sufficiently high safety margin above the zero chroma signal level of 4 V to eliminate spurious identifying.
2. $R-Y$ subcarrier reference input

A 1 V peak-to-peak signal is required via a d.c. blocking capacitor. Under no circumstances should this signal be less than $0,5 \mathrm{~V}$ peak-to-peak. The input resistance at this pin is typically $5 \mathrm{k} \Omega$.
3. P.A. L. Square wave circuit

The amplitude is $3,5 \mathrm{~V}$ peak-to-peak from an emitter follower.
4. $\mathrm{R}-\mathrm{Y}$ signal output ($\mathrm{G}-\mathrm{Y}$ at pin 5 and $\mathrm{B}-\mathrm{Y}$ at pin 7)

These outputs require no external d.c. loads except that direct connection must be made via the low pass filter to the appropriate pins on the R.G.B. matrix TBA530.

The signals produced are in the following ratios:

$$
V_{B-Y}=1,78 V_{R}-Y \pm 10 \%
$$

(a) $\mathrm{V}_{\mathrm{G}}-\mathrm{Y}=0,85 \mathrm{~V}_{\mathrm{R}}-\mathrm{Y} \pm 10 \%$
(b) $\mathrm{V}_{\mathrm{G}-\mathrm{Y}}=0,17 \mathrm{~V}_{\mathrm{R}}-\mathrm{Y} \pm 10 \%$

Condition (a) refers to ($\mathrm{B}-\mathrm{Y}$) $+(\mathrm{R}-\mathrm{Y})$ addition in the $\mathrm{G}-\mathrm{Y}$ matrix.
Condition (b) refers to the phase reversed ($R-Y$) input signal where ($G-Y$) is obtained by subtraction.

The d.c. levels should each be adjusted, starting with the ($\mathrm{B}-\mathrm{Y}$), to $+7,5 \mathrm{~V}$ at nominal supply voltage. However, in a complete circuit using the TBA530 matrix and feedback integrated circuit these d.c. levels will be adjusted to give the correct setting of the picture tube drive black levels.
The changes in d.c. level with supply voltage are approximately linear and track together.
The unwanted products of demodulation occurring in the colour difference outputs are chiefly $8,86 \mathrm{MHz}$ and harmonics together with a small amount of $4,43 \mathrm{MHz}$ due to possible unbalance in the demodulators. To avoid possible troubles in the receiver because of the radiation of these demodulation products from the R.G.B. drive circuits, filters must be employed in each of the colour-difference outputs from the TBA990. The roll-off should begin at about $1,5 \mathrm{MHz}$ and attention should be given to the parallel resonance of the inductors to ensure that no serious attenuation will occur at less than $1,5 \mathrm{MHz}$. Also, some advantage may be secured by designing the inductor so that the dip due to its self-resonance occurs at about $4,43 \mathrm{MHz}$.

APPLICATION INFORMATION

5. G-Y signal output (see pin 4)
6. Positive supply

The maximum allowable voltage on this pin is $13,2 \mathrm{~V}$.
7. B-Y signal output (see pin 4)
8. B-Y subcarrier reference input

The requirements here are identical with those for pin 2.
9. D.C. level setting for B-Y output signal (see circuit diagram on page 5, and also pin 7)
10. Chrominance $B-Y$ input signal

An input signal of apprximately 360 mV peak-to-peak (colour bars) is required at this pin. The input impedance is greater than 800Ω and the input capacitance is less than 10 pF . The spread in gain of the internal circuitry in the chrominance channel is $\pm 10 \%$.
11. D.C. level setting for $\mathrm{G}-\mathrm{Y}$ output signal (see circuit diagram on page 5, and also pin 5)
12. D.C. level setting for $R-Y$ output signal (see circuit diagram on page 5 , and also pin 4)
13. Chrominance $R-Y$ input signal

An input signal of approximately 500 mV peak-to-peak (colour bars) is required at this pin. The input impedance and spread in gain is the same as for pin 9 .
14. Line pulse input (flip -flop synchronising)

A waveform derived from the line timebase can be used for sychronising providing that its amplitude lies between 2 V and 5 V peak-to-peak. The trigger point occurs where the negative going edge crosses approximately $+0,6 \mathrm{~V}$.
15. Not connected

This pin should not be used for external connections.
16. Negative supply (earth)

TELEVISION SIGNAL PROCESSING CIRCUIT

The TCA270S is a monolithic integrated circuit combining the following functions:

- synchronous demodulator
- video amplifier with buffer output stages
- noise inverters
- A. G.C. detector with output stages for $n-p-n$ tuner and i.f. amplifier
- A.F.C. demodulator with buffer output stage

Opposite polarity video signals are available from emitter followers, the negative-going signal being matched to integrated circuit type TBA 920.

QUICK REFERENCE DATA				
Supply voltage	V_{3-16}	nom.	12	V
Ambient temperature	Tamb	typ.	25	${ }^{\circ} \mathrm{C}$
Frequency	f	typ.	38,9	MHz
Supply current	I3	typ.	47	mA
Video output voltage (peak value)	$\mathrm{V}_{9-16 \mathrm{M}}$	typ.	3	V
Bandwidth (3 dB)	B	typ.	5	MHz
Intermodulation products (blue colour bar)				
$1,1 \mathrm{MHz}$ with respect to $\mathrm{B}-\mathrm{W}$ level		typ.	-60	dB
$3,3 \mathrm{MHz}$ with respect to $\mathrm{B}-\mathrm{W}$ level		typ.	-67	dB
A.F.C. output control voltage swing (peak-to-peak value)	$\left.\mathrm{V}_{11-16} \mathrm{p}-\mathrm{p}\right)$	$>$	10	V
A. G. C. control current for $n-p-n$ i.f. (pin 4)	I_{4}	$>$	10	mA
A. G. C. control current for tuner (pin 5)	I_{5}	>	10	mA

PACKAGE OUTLINES (see general section)

${ }^{`}$ TCA270S : 16-lead DIL; plastic.
TCA270SQ: 16-lead QIL; plastic.

CIRCUIT DIAGRAM

CIRCUIT DIAGRAM (continued)

RATINGS Limiting values in accoidance with the Absolute Maximum System (IEC134)
Supply voltage during switch on ($\mathrm{t} \leq 10 \mathrm{~s}$)
Power dissipation

Temperatures

Storage temperature
Operating ambient temperature

CHARACTERISTICS

Supply voltage range

Supply current range
D. C. output voltage (zero signal; pin 9)
D. C. output voltage (zero signal; pin 10)
D.C. output voltage at start of a.g.c. (pin 9)

Unbalanced r.m.s. input voltage for a.g.c.
Input resistance at pin 1
Input resistance at pin 2
Bandwidth (3 dB) of video output
Differential gain
Differential phase

	typ.	12,0	V
$\mathrm{~V}_{3-16}$	10,2 to	13,8	V
	typ.	47	mA
I_{3}	33 to	62	mA
$\mathrm{~V}_{9-16}$	typ.	6	V
$\mathrm{~V}_{10-16}$	typ.	6	V
$\mathrm{~V}_{9-16}$	typ.	3	V

$\mathrm{V}_{\mathrm{i}(\mathrm{rms})} \quad$| typ. | 70 | mV |
| ---: | ---: | ---: |
| 50 to 100 | mV | |

R_{1-16}	typ.	3	$\mathrm{k} \Omega$	
R_{2-16}	typ.	3	$\mathrm{k} \Omega$	
B	typ.	5	MHz	
	$<$	10	$\%$	
	$1)$			
	$<$	10	0	

Intermodulation products (blue colour bar)
$1,1 \mathrm{MHz}$
$3,3 \mathrm{MHz}$

typ.	-60	dB
typ.	-67	dB
$>$	40	dB
$>$	40	dB

Carrier frequency rejection at pins 9, 10 and 11
Twice carrier frequency rejection at pins 9, 10 and 11

V_{3-16}	max.	18	V
$\mathrm{P}_{\text {tot }}$	\max	1	W

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-25 to +55	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS (continued)

A. G. C. circuit

A.F.C. circuit
Output control voltage swing (peak -to-peak value) $\quad \mathrm{V}_{11-16(\mathrm{p}-\mathrm{p})}>\quad 10 \quad \mathrm{~V}$
Change of frequency for complete output
voltage swing

Change of frequency to maintain peak output voltage
$>\quad \pm 1 \quad \mathrm{MHz}$
Noise inverters ${ }^{1}$)
Negative-goingnoise pulses in pin 9 inversion threshold
typ. 2,55 V
Positive-going noise pulses in pin 9
inversion threshold
typ. 6,6 V

1) Noise pulses are inverted to a point near black level.

APPLICATION INFORMATION

Unloaded Q of L1 and L2 must be >50.

A.F.C. output voltage versus frequency

SYNCHRONOUS DEMODULATOR FOR TV RECEIVERS

The TCA540 is a silicon monolithic integrated synchronous demodulator for television receivers which combines the following functions:

- synchronous demodulator with passive regeneration of the reference carrier
- white spot inverter (inverts white spots, which can occur because of the principle of synchronous demodulation).
- video preamplifier
- a.f.c. circuit

PACKAGE OUTLINES (see general section)
TCA540 : 16-lead DIL; plastic.
TCA540Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage (pin 11)
V_{11-14}
max.
$18 \mathrm{~V}^{\mathrm{l}}$)

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-25 to +55	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS
Supply voltage range (pin 11)
Supply current
V_{11-14}
10,2 to $13,2 \quad \mathrm{~V}$
$\mathrm{I}_{11} \quad$ typ. $\quad 40 \mathrm{~mA}$

The following characteristics are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-14}=12 \mathrm{~V}$; $\mathrm{f}_{\mathrm{o}}=38,9 \mathrm{MHz}$ unless otherwise specified.

Demodulator circuit

Zero signal d.c. outputs	$\begin{aligned} & V_{7-14} \\ & V_{8-14} \end{aligned}$	typ. typ.	$\begin{array}{r} 5,7 \\ 6 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input voltage (r.m.s. value) for 3 V peak-to-peak output voltage	V_{4-5}	typ.	70	$\mathrm{mV}{ }^{2}$)
Input resistance	R_{4-5}	typ.	6	$\mathrm{k} \Omega$
Input capacitance	C4-5	typ.	4,7	pF
Bandwidth of video output (3 dB ; pin 8)	B	typ.	5	MHz
Output resistances	$\begin{aligned} & \mathrm{R}_{8-14} \\ & \mathrm{R}_{7-14} \end{aligned}$	typ. typ.	$\begin{aligned} & 35 \\ & 75 \end{aligned}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
$\begin{array}{r} \text { Differential gain (pin 8) D.S.B. } \\ \text { S.S.B. } \end{array}$	$\begin{gathered} \mathrm{dG} \\ \mathrm{dG} \end{gathered}$	typ. typ.	2	$\begin{aligned} & \% \\ & \% \end{aligned}$
Differential phase (pin 8) D.S.B. S.S.B.	$\begin{aligned} & \mathrm{d} \varphi \\ & \mathrm{~d} \varphi \end{aligned}$	typ. typ.	2 3	$\begin{aligned} & \mathrm{o} \\ & \mathrm{o} \end{aligned}$

[^37]
CHARACTERISTICS (continued)

Intermodulation (see input conditions below)

Blue spectrum (pin 8)	typ.	60	$d B$
Yellow spectrum (pin 8)	typ.	52	$d B$

Input conditions for intermodulation measurements (75% saturation):

S.C. : sound carrier attenuation
C.C. : chrominance carrier attenuation P.C. : picture carrier attenuation
with respect to top sync level

The sound-chrominance beat suppression is related to the B. W. amplitude with a top sync level of 3 V .
A.F.C. circuit (see figures 1 and 2 on pages 8 and 9)

Output control voltage	V_{3-14}		1 to 11	V
Sensitivity per $\mathrm{kHz}\left(\mathrm{R}_{\mathrm{L}}=50 \mathrm{k} \Omega\right)$	V_{3-14}	typ.	40	mV

PINNING

1. Not connected
2. Not connected
3. A. F.C. output
4. Balanced i.f. input
5. Balanced i.f. input
6. Not connected
7. Video output (pos. going sync)
8. Video output (neg. going sync)
9. Not connected
10. Not connected
11. Supply voltage (positive)
12. Tank coil connection (reference carrier)
13. Tank coil connection (reference carrier)
14. Earth (negative supply)
15. Tank coil connection (a.f.c.)
16. Tank coil connection (a.f.c.)

APPLICATION INFORMATION

Below some information is given about the external circuit.
The function is quoted against the corresponding pin numbers.

1. Not connected
2. Not connected
3. A.F.C. output

This output is a current source, so for driving the tuner the current must be translated into a voltage and this has been done by means of a network as shown in figure 3 on page 9. The network load is about $50 \mathrm{k} \Omega$.
With this load, a sensitivity is obtained of about $40 \mathrm{mV} / \mathrm{kHz}$.
Since a.f.c. is most important at u.h.f., the control network has been designed for optimum holding range and correction factor in this band, combined with the ELC2000S tuner.
The holding range with this control network is limited to about 6 MHz for u.h.f., so in this case it is not necessary to switch off the a.f.c. during tuning.
The correction factor ranges from 3, 3 for v.h.f. to more than 20 in the u.h.f. band. The table below gives examples for some channels in an application using the ELC2000S.

channel	catching range (MHz)	holding range (MHz)	correction factor
4	$-0,6$ to $+0,5$	$-0,6$ to $+0,5$	3,3
9	$-0,8$ to $+0,8$	$-0,8$ to $+0,8$	5
28	$-2,8$ to $+0,9$	$-2,8$ to $+2,8$	18
60	$-2,3$ to $+0,7$	$-2,3$ to $+2,3$	14

APPLICTATION INFORMATION (continued)

4. Balanced i.f. input (in conjunction with pin 5)

A balanced input is provided at pins 4 and 5. The d.c. level is set internally, and the signal should be applied from a floating transformer winding or through coupling capacitors. An unbalanced signal may be applied to either pin, the other has to be decoupled to earth by a capacitor of about $1,5 \mathrm{nF}$. The input impedance is typically $6 \mathrm{k} \Omega / 4,7 \mathrm{pF}$. The input signal for 3 V peak-to-peak output signal is about 70 mV (rms).
5. Balanced i.f. input (see pin 4).
6. Not connected
7. Video output (positive going sync)

The a.c. performance of this output is the same as that of pin 8. The d.c. level has a spread of $\pm 10 \%$.
8. Video output (negative going sync)

This video signal is intended to be used for driving the video output stage in a black--and-white receiver or the luminance channel in a colour receiver. The signal has excellent figures for differential gain and phase so that also chroma and sound takeoff is possible at this output.
This output is matched with the TBA890 or TBA 900 signal processing integrated circuit (see figure 1 on page 8).
For use with the TBA500 (luminance combination) an external matching network is required (see figure 2 on page 9).
A $5,5 \mathrm{MHz}$ trap can be connected in series with the video output for driving the lumi nance channel, to avoid sound-chroma beat in the video part of the receiver.
This type of demodulator will cause white peaks in the video signal when interferences are received. For this reason a white spot inverter is used which detects white peaks and reverses them to black level.
The zero signal d.c. level is $6 \mathrm{~V} \pm 5 \%$.
9. Not connected
10. Not connected
11. Positive supply (12 V)

Correct operation is obtained at voltages between $10,2 \mathrm{~V}$ and $13,2 \mathrm{~V}$.
During short periods (e.g. while tubes are warming up) a supply voltage of 18 V is allowed.
12. Reference tuned circuit (in conjunction with pin 13)

A tuned circuit is connected between pins 12 and 13 to provide the carrier filtering. The damping impedance between these two pins is about $6 \mathrm{k} \Omega$. The choice of the L/C ratio of the tuned circuit is a compromise between a good figure for differential gain and intermodulation products. Excellent differential gain/phase performance requires a low tuning capacitance. However, the lowest intermodulation products will be obtained by a large tuning capacitance. A proved practical value of 47 pF gives good results. The unloaded quality factor in this circuit has to be >50.
13. Reference tuned circuit (see pin 12)

APPLICATION INFORMATION (continued)

14. Negative supply (earth)
15. A.F.C. tuned circuit (in conjunction with pin 16)

This circuit is loosely coupled to the reference tuned circuit of the demodulator by means of the collector-base capacitances of TR 35 and TR36 (see circuit diagrams on pages 2 and 3). The unloaded quality factor of this tuned circuit has to be >70.
The temperature stability is important for the a.f.c. reference tuned cicuit. Using a miniature coil-former with powder iron core a good compensation is obtained with a NP 0 temperature coefficient capacitor.
The drift of the a.f.c. is typical $+1 \mathrm{kHz} /{ }^{\circ} \mathrm{C}$.
16. A.F.C. tuned circuit (see pin 15)

Fig. 1 Interface connections of the TCA540 with the TBA 890 or TBA900

APPLICATION INFORMATION (continued)

Note: The two supply voltages must be stabilized.

Fig. 2 Interface connection of the TCA540 with the TBA500

Fig. 3 A.F.C. with TCA540

TCA640

CHROMINANCE AMPLIFIER

FOR SECAM OR PAL/SECAM DECODERS

The TCA640 is an integrated chrominance amplifier for either a SECAM decoder or a double standard PAL/SECAM decoder.
Switching of the standard is performed internally, controlled by an external applied d.c. signal.
In addition to the chrominance amplifier the circuit also incorporates a $7,8 \mathrm{kHz}$ flip-flop and an identification circuit for SECAM.
For PAL identification the circuit included in the TBA540 should be used.
Furthermore, the TCA640 incorporates a blanking circuit, a burst gating circuit and a colour killer detector.

PACKAGE OUTLINE (see general section)

16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage
V14-2 max. $13,2 \mathrm{~V}$
Power dissipation
Total power dissipation : $P_{\text {tot }} \quad \max \quad 625 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature
$\mathrm{T}_{\text {stg }} \quad-25$ to $+125^{\circ} \mathrm{C}$
Tamb $\quad-25$ to $+65^{\circ} \mathrm{C}{ }^{1}$)
CHARACTERISTICS measured in the circuit on page 6
Supply voltage
V_{14-2}
typ. 12 V
10,2 to $13,2 \mathrm{~V}$
Required input signals at $\mathrm{V}_{14-2}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Chrominance input signal
peak-to-peak value
Automatic chrominance control starting
Flyback pulses for blanking and
burst/identification lines-keying
$V_{3-5(p-p)}\left\{\begin{array}{lr}\text { PAL } & 4 \text { to } 80 \mathrm{mV} \\ \text { SECAM } & 72 \text {) to } 400 \mathrm{mV}\end{array}\right.$
$\mathrm{V}_{16-2} \mathrm{PAL}$
typ. $\quad 1,2 \mathrm{~V}^{3}$)

Line flyback pulses (positive)
peak-to-peak value
$\mathrm{V}_{6-2(p-p)}$
4,5 to 12 V
Field idenfication pulses (positive)
peak-to-peak value
$\mathrm{V}_{7-2(\mathrm{p}-\mathrm{p})}$
$V_{4-2} \quad\left\{\begin{array}{l}\text { PAL } \\ \text { SECAM }\end{array}\right.$
7 to $\mathrm{V}_{14-2} \mathrm{~V}$
See note 4

System switch signal
Colour killer threshold
$\mathrm{V}_{16-2} \quad \mathrm{PAL}$
typ.

[^38]CHARACTERISTICS (continued)

Obtainable output signals

Chrominance output signals					
peak-to-peak value	$\begin{aligned} & V_{15-2(p-p)} \\ & V_{1-2(p-p)} \end{aligned}$	PAL SECAM		$\begin{aligned} & 425 \text { to } 575 \\ & 1,8 \text { to } 2,3 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \end{aligned}$
Phase difference between output pins	$\Delta \varphi$ 15-1	PAL		170° to 190°	${ }^{1}$)
Burst signal (peak-to-peak value)	$\mathrm{V}_{13-2}(\mathrm{p}-\mathrm{p})$	PAL	typ.	. 1	$2)$
Identification signal					
peak-to-peak value	$\mathrm{I}_{11}(\mathrm{p}-\mathrm{p})$	SECAM		1,4 to 2,4	mA
Output resistance	R_{11-2}			2 to 2,9	$\mathrm{k} \Omega$
Flip-flop signal					
peak-to-peak value	$\mathrm{V}_{12-2}(\mathrm{p}-\mathrm{p})$			2,5 to 3,5	V
Colour killer killed unkilled	V_{8-2}		$<$	0, 5	V
	I_{8}		$<$	10	mA
	V_{8-2} I_{8}		$<$	V_{14-2} 10	$\begin{aligned} & V \\ & \mu \mathrm{~A} \end{aligned}$
Bandwidth of chrominance amplifier (-1 dB)					
at a carrier frequency of $4,2 \mathrm{MHz}$			>	± 1	MHz
Blanking					
burst rejection		PAL	$>$	40	dB
rejection identification lines with field identification		SECAM	$>$	40	dB

1) Over the a.c.c.. control range the phase difference varies less than $2,5^{\circ}$.
${ }^{2}$) The burst is kept constant at 1 V peak-to-peak by automatic gain control.

APPLICATION INFORMATION

Pinning

1. Chrominance output
2. Earth (negative supply)
3. Chrominance input
4. System switch input
5. Chrominance input
6. Line fly-back pulse input
7. Field identification pulse input
8. Colour killer output
9. Identification integrating
10.) capacitor (SECAM)
10. Identification tank circuit (SECAM)
11. Flip-flop output
12. Burst output (PAL)
13. Supply voltage (12 V)
14. Chrominance output
15. A.C.C. input

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Chrominance output (in conjunction with pin 15)

A balanced output is available at pins 1 and 15.
At SECAM reception a limited signal of 2 V peak-to-peak is available, starting from an input voltage of 15 mV peak-to-peak.
At PAL reception the output signal is 500 mV peak-to-peak for a burst signal of 1 V peak-to-peak.
An external d.c. network is required which provides negative feedback to pin 3. The same holds for the feedback from pin 15 to pin 5.
The figures for input and output signals are based on a 100% saturated colour bar signal.
2. Negative supply (earth)
3. Chrominance input (in conjunction with pin 5)

The input signal is derived from a bandpass filter which provides the required 'bell" shape bandpass for the SECAM signal and a flat bandpass for the PAL signal.
The input signal can be supplied either in a balanced mode or single ended. Both inputs (pins 3 and 5) require a d.c. potential of about $2,5 \mathrm{~V}$ obtained from a resistive divider connected to output pins 1 and 15. The figures for the input signals are based on a 100% saturated colour bar signal and a burst-to-chrominance ratio of $1: 3$ of the input signal (PA L).
4. System switch input

Between 7 V and the supply voltage, the gain of the chrominance amplifier is controlled by the a.c.c. voltage at pin 16 .
The chrominance amplifier then provides linear amplification required for the PA L signal. Between 0 V and 1 V the chrominance amplifier operates as a limiter for the SECAM signal.
5. Chrominance input (see pin 3)
6. Line fly-back pulse input (in conjunction with pin 11)

Positive going pulses provide

- blanking of the chrominance signal at the outputs (pins 1 and 15).
- burst gating for both PAL and SECAM.

The carrier signal present during the second half of the back porch of the SECAM signal is gated. It provides line identification when the circuit $\mathrm{L}_{1} \mathrm{C}_{1}$ (see circuit on page 6) is tuned to $4,25 \mathrm{MHz}$ (at $\mathrm{C}_{1}=470 \mathrm{pF}$).

- trigger signal for the flip-flop.

7. Field identification pulse input (in conjunction with pin 11)

Like the line fly-back pulses, positive going identification pulses provide blanking and burst gating.
To operate the TCA640 on the identification lines (SECAM) in the field blanking period the circuit $L_{1} C_{1}$ (see circuit on page 6) should be tuned to $3,9 \mathrm{MHz}$ and the capacitor C_{1} should be increased to 1 nF . The field fly-back pulse should be shaped so that its amplitude exceeds 4 V during the identification lines.

APPLICATION INFORMATION (continued)

8. Colour killer output

This pin is driven from the collector of an internal switching transistor and requires an external load resistor connected to the supply voltage. The killer is operative when the a.c.c. voltage exceeds the threshold, when the SECAM chrominance signal at the input is below the limiting level or when the flip-flop operates in the wrong phase.
9. Identification integrating capacitor (SECAM)
10. Identification integrating capacitor (SECAM)
11. Identification detector tank circuit (see pins 6 and 7)
12. Flip-flop output

A square wave of $7,8 \mathrm{kHz}$ with an amplitude of 3 V is available at this pin. An external load resistor is not required.
13. Burst output (PAL)

A 1 V peak-to-peak burst (kept constant by the a.c.c. system) is produced here.
14. Supply voltage (12 V)

Correct operation occurs within the range 10,2 to $13,2 \mathrm{~V}$.
The power dissipation must not exceed 625 mW at $65{ }^{\circ} \mathrm{C}$ ambient temperature.
15. Chrominance output (see pin 1)
16. A, C.C. input

With the system switch input ($\operatorname{pin} 4$) connected for PAL operation, a negative going potential gives a 26 dB range of a.c.c. starting at $+1,2 \mathrm{~V}$
During SECAM operation, the voltage at the input should not exceed $+0,5 \mathrm{~V}$, otherwise the SECAM identification circuit and the colour killer become inoperative.

CHROMINANCE DEMODULATOR FOR SECAM OR PAL/SECAM DECODERS

The TCA650 is an integrated synchronous demodulator for both the SECAM and PAL chrominance signals.
Switching of the standard is performed internally, controlled by an external applied d.c. signal.

In addition to the synchronous demodulator, which delivers colour difference signals, the circuit also incorporates:

- a PAL matrix, used for adding the delayed and non-delayed signals to obtain separately the ($R-Y$) and ($B-Y$) components of the chrominance signal.
- a PAL switch, which reverses the phase of the ($R-Y$) component of the chrominance signal on alternating lines.
- a SECAM switch, which performs the separation of the D_{R} and D_{B} components of the chrominance signal by switching the delayed and non-delayed signals.
- a SECAM limiter.

PACKAGE OUTLINE (see general section)
16-Iead DIL; plastic.

0S9*)1

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage
Power dissipation
Total power dissipation $\quad P_{\text {tot }} \quad \max .510 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature
$\mathrm{T}_{\text {stg }}$
Tamb
CHARACTERISTICS measured in the circuit on page 6
Supply voltage
V_{14-2}
-25 to $+125{ }^{\circ} \mathrm{C}$
-25 to $+65 \quad{ }^{\circ} \mathrm{C}^{\mathrm{l}}$)
typ. 12 V
10,2 to 13,2 V
Required input signals at $\mathrm{V}_{14-2}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Chrominance input signal

peak-to-peak value

Input impedance
\(\left.\begin{array}{l}\mathrm{V}_{1-2(p-p)}

\mathrm{V}_{3-2(p-p)}\end{array}\right\}\)| PAL |
| :--- |
| SECAM |

$\left|\begin{array}{l}\left|z_{1-2}\right| \\ \left|z_{3-2}\right|\end{array}\right|$

PAL matrix
Gain from both inputs to pin 13
Gain from both inputs to pin 15
Gain difference from line-to-line
Phase errors from line-to-line in the
($\mathrm{R}-\mathrm{Y}$) output for zero error in the ($\mathrm{B}-\mathrm{Y}$) output
Output impedance

SECAM permutator

Diaphotie
Output signal (peak-to-peak value)

Output impedance

$\left.\begin{array}{l}\mathrm{V}_{13-2(p-p)} \\ \mathrm{V}_{15-2(p-p)}\end{array}\right\}$
$\left|Z_{13-2}\right|$
$\left|Z_{15-2}\right|$

1,2 to $2,6 \mathrm{k} \Omega$
35 to 75 mV 150 to 400 mV

2,3 to 3 , 3
2, 6. to 3, 6
$<\quad 5 \%$
$<2,5^{\circ}$
$<\quad 100 \Omega$
$<-46 \mathrm{~dB}$
$1,6^{2}$) to $2,2 \quad \mathrm{~V}$
$<\quad 100 \Omega$

[^39]
CHARACTERISTICS (continued)

Demodulator
Chrominance input signal amplitude
PAL: ($B-Y$); peak-to-peak value ($\mathrm{R}-\mathrm{Y}$); peak-to-peak value

SECAM: peak-to-peak value

Input impedance
Reference input signal amplitude
PAL: peak-to-peak value
SECAM: peak-to-peak value

Colour difference output signal

($\mathrm{R}-\mathrm{Y}$); peak-to-peak value	$\mathrm{V}_{12-2(p-p)}$	0,99 to 1,21	V^{2})
(B-Y); peak-to-peak value	$\mathrm{V}_{10-2(p-p)}$	1,32 to 1, 62	V^{2})
Output impedance	$\left.\begin{aligned} & \left\|\mathrm{Z}_{10-2}\right\| \\ & \left\|\mathrm{Z}_{12-2}\right\|\end{aligned} \right\rvert\,$	2,4 to 4,2	$\mathrm{k} \Omega$

$$
0,99 \text { to } 1,21 \quad \mathrm{~V}^{2} \text {) }
$$

$$
1,32 \text { to } 1,62 \quad \mathrm{~V}^{2} \text {) }
$$

$$
2,4 \text { to } 4,2 \quad \mathrm{k} \Omega
$$

Diaphotie at SECAM operation
Diaphotie of the total circuit at frequencies corresponding to saturated green $\mathrm{D}_{\mathrm{R}}=4,72 \mathrm{MHz}$ and $\mathrm{D}_{\mathrm{B}}=4,04 \mathrm{MHz}$

Square wave input

peak-to-peak value	$\mathrm{V}_{16-2(\mathrm{p}-\mathrm{p})}$	2,5 to 3,5 Input impedance	$\mid \mathrm{Z}_{16-2 \mid}$

System switch input ${ }^{3}$)
PAL:
$\begin{array}{rc}7 \text { to } V_{14-2} & Y \\ 0 \text { to } 1 & V\end{array}$
SECAM:

$$
\left.\begin{array}{l}
\left|Z_{5-2}\right| ;\left|Z_{7-2}\right| \\
\left|Z_{6-2}\right| ;\left|Z_{8-2}\right|
\end{array}\right\} \quad 0,75 \text { to } 1,25 \quad \mathrm{k} \Omega
$$

Input impedance

$$
0 \text { to } 1 \quad V
$$

$\overline{I_{)} \text {Limiting starts }}$ at the quoted value.
2) The peak-to-peak clipping level for PAL is about $4,7 \mathrm{~V}$ for ($\mathrm{B}-\mathrm{Y}$) and 3 V for ($\mathrm{R}-\mathrm{Y}$). The discriminator characteristic allows a maximum peak-to-peak output signal of $3,6 \mathrm{~V}$ for ($\mathrm{B}-\mathrm{Y}$) and $2,4 \mathrm{~V}$ for ($\mathrm{R}-\mathrm{Y}$) (SECAM).
3) The switching signal is applied to pin 4 via a resistor of $2,7 \mathrm{k} \Omega(\pm 10 \%)$.

APPLICATION INFORMATION

Pinning

1. Chrominance input
2. Earth (negative supply)
3. Chrominance input
4. System switch input
5. Reference ($R-Y$) input SECAM
6. Reference ($\mathrm{R}-\mathrm{Y}$) input PAL
7. Reference ($B-Y$) input PAL
8. Reference ($\mathrm{B}-\mathrm{Y}$) input SECAM
9. Chrominance ($\mathrm{B}-\mathrm{Y}$) , D_{B} input
10. Colour difference ($B-Y$) output
11. Chrominance ($\mathrm{R}-\mathrm{Y}$), D_{R} input
12. Colour difference ($\mathrm{R}-\mathrm{Y}$) output
13. Chrominance ($\mathrm{R}-\mathrm{Y}$) , D_{R} output
14. Supply voltage (12 V)
15. Chrominance ($\mathrm{B}-\mathrm{Y}$) , D_{B} output
16. Square wave input

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Chrominance input

The blanked composite chrominance signal from pin 1 of the TCA640 is applied to this input via a resistive divider.
2. Negative supply (earth)
3. Chrominance input

The blanked composite chrominance signal from pin 15 of the TCA640 is applied to this input via a delay-line, which has a delay time of $64 \mu \mathrm{~s}$.
4. System switch input

The control voltage for switching the standard is applied to this input via a resistor of $2,7 \mathrm{k} \Omega(\pm 10 \%)$. A decoupling capacitor of at least 10 nF is recommended. Between 7 V and the supply voltage the circuit operates in the PAL mode, whereas between 0 V and 1 V the mode SECAM is selected.
5. Reference input for the $(\mathrm{R}-\mathrm{Y})$ demodulator

The SECAM reference signal is applied to this pin. The reference signal is obtained from pin 11 via a tank circuit. The tank circuit is tuned such that the level at the ($\mathrm{R}-\mathrm{Y}$) output (pin 12) during black ($\mathrm{f}_{\mathrm{o}}=4,4 \mathrm{MHz}$) equals the level during blanking (no signal). The output voltage amplitude at pin 12 can be adjusted by damping the tank circuit.
6. Reference input for the $(\mathrm{R}-\mathrm{Y})$ demodulator

A PAL reference signal having ($\mathrm{R}-\mathrm{Y}$) phase is applied to this pin.
7. Reference input for the ($\mathrm{B}-\mathrm{Y}$) demodulator

A PAL reference signal having ($B-Y$) phase is applied to this pin.
8. Reference input for the ($\mathrm{B}-\mathrm{Y}$) demodulator

The SECAM reference signal is applied to this pin. The reference signal is obtained from pin 15 via a tank circuit. The tank circuit is tuned such that the level at the ($\mathrm{B}-\mathrm{Y}$) output (pin 10) during black ($\mathrm{f}_{\mathrm{o}}=4,25 \mathrm{MHz}$) equals the level during blanking (no signal). The output voltage amplitude at pin 10 can be adjusted by damping the tank circuit.
9. Chrominance input to the $(B-Y), D_{B}$ demodulator

The output signal of pin 15 is applied via a coupling capacitor of $4,7 \mathrm{nF}$.
10. Output of the ($\mathrm{B}-\mathrm{Y}$) demodulator

The output signal of the balance demodulator contains an r.f. ripple of twice the chrominance frequency to be filtered by a π filter. At SECAM the required deemphasis circuit should be applied.
11. Chrominance input to the $(\mathrm{R}-\mathrm{Y}), \mathrm{D}_{\mathrm{R}}$ demodulator

The output signal of pin 13 is applied via a coupling capacitor of $4,7 \mathrm{nF}$.

APPLICATION INFORMATION (continued)

12. Output of the $(\mathrm{R}-\mathrm{Y})$ demodulator

See pin 10.
13. Chrominance ($\mathrm{R}-\mathrm{Y}$), D_{R} output

The ($R-Y$) component of the chrominance signal (D_{R} component at SECAM) is present at this pin.
The signal is applied to the input of the ($\mathrm{R}-\mathrm{Y}$) demodulator (pin 11) and to the tank circuit for the SECAM reference signal.
The emitter follower output should be loaded with a $2,7 \mathrm{k} \Omega$ resistor to obtain an output impedance of $<100 \Omega$.
14. Supply voltage (12 V)

Correct operation occurs within the range 10,2 to $13,2 \mathrm{~V}$.
The power dissipation must not exceed 510 mW at $65{ }^{\circ} \mathrm{C}$ ambient temperature.
15. Chrominance (B-Y), D_{B} output

The ($\mathrm{B}-\mathrm{Y}$) component of the chrominance signal (DB_{B} component at SECAM) is present at this pin.
The signal is applied to the input of the ($\mathrm{B}-\mathrm{Y}$) demodulator (pin 9) and to the tank circuit for the SECAM reference signal.
The emitter follower output should be loaded with a $2,7 \mathrm{k} \Omega$ resistor to obtain an output impedance of $<100 \Omega$.
16. Square wave input

A square wave with an amplitude of 3 V drives the PAL switch or the SECAM permutator.
The square wave is available at pin 12 of the TCA640.

CONTRAST, SATURATION AND BRIGHTNESS CONTROL CIRCUIT FOR COLOUR DIFFERENCE AND LUMINANCE SIGNALS

The TCA 660 B is an integrated circuit performing the control functions of contrast, saturation and brightness in colour television receivers.
Contrast is controlled by three tracking electronic potentiometers; one for the luminance signal and the other two for the ($\mathrm{R}-\mathrm{Y}$) and ($\mathrm{B}-\mathrm{Y}$) colour difference signals.
In addition two tracking electronic potentiometers provide the saturation control of the colour difference signals.
Brightness is controlled by varying the black level of the luminance signal at the output. An inverting amplifier is also included for matrixing the ($G-Y$) signal from the ($R-Y$) and ($B-Y$) colour difference signals.

QUICK REFERENCE DATA					
Supply voltage	V_{13-4}	nom.	12	V	
Supply current	I 13	nom.	35	mA	
Luminance input current (black-to-white positive video signal)	${ }^{1} 16$	typ.	0,7	mA	
Luminance output voltage (black-to-white positive video signal; peak-to-peak value)	V_{1-4} (p	typ.	3		
Black level (nominal value)	V_{1-4}	typ.	4,2	V	
Brightness control (around nominal black level)	V_{1-4}			V	
Gain of the ($\mathrm{R}-\mathrm{Y}$) and ($\mathrm{B}-\mathrm{Y}$) amplifier			5		
Gain of the ($\mathrm{G}-\mathrm{Y}$) amplifier		typ.	1		
Contrast control range			-20		
Saturation control range			-20		
${ }^{1}$) At nominal contrast setting (max. contrast -3 dB)					
${ }^{2}$) At nominal saturation control setting (max. saturation -6 dB)					
${ }^{3}$) Nominal contrast and nominal saturation are specified as 0 dB .					

PACKAGE OUTLINE (see general section)

16-lead DIL; plastic.

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)
Voltage
Supply voltage $\quad \mathrm{V}_{13-4} \max \quad 13,2 \mathrm{~V}$

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 600 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature
$\mathrm{T}_{\mathrm{stg}}$
Tamb
-25 to $+125^{\circ} \mathrm{C}$
-25 to $+65^{\circ} \mathrm{C}{ }^{1}$)

CHARACTERISTICS measured in the circuit on page 7.
Supply voltage
$\mathrm{V}_{13-4} \quad$ typ. 12 V
Required input signals at $\mathrm{V}_{13-4}=12 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Luminance input current

black-to-white positive video signal	I_{16}	typ.	$\begin{array}{r} 0,7 \mathrm{~mA} \\ 0 \text { to } 2,5 \mathrm{~mA} \end{array}$
Input impedance at $\mathrm{I}_{16}=1 \mathrm{~mA}$	$\left\|Z_{16-4}\right\|$		60 to 90Ω
Input impedance variation for an			
input current variation $\Delta \mathrm{I}_{16}= \pm 0,5 \mathrm{~mA}$	$\left\|\Delta Z_{16-4}\right\|$		$\mp 25 \Omega$
Colour difference input voltage			
($\mathrm{R}-\mathrm{Y}$); peak-to-peak value	$\mathrm{V}_{9-4(p-p)}$	<	$0,7 \mathrm{~V}$
($\mathrm{B}-\mathrm{Y}$); peak-to-peak value	V_{8-4} (p-p)	$<$	0,9 V

Input voltage variation before clipping
of the output voltage occurs

Input impedance
$\left.\begin{array}{l}\Delta V_{8-4} \\ \Delta V_{9-4}\end{array}\right\} \quad$ typ. $\quad 0,8 \mathrm{~V}$
$\left.\begin{array}{l}\left|Z_{8-4}\right| \\ \left|Z_{9-4}\right|\end{array}\right\} \quad 3,5$ to $6,5 \mathrm{k} \Omega$
$\mathrm{V}_{3-4 \mathrm{M}}$
$-1,5$ to -10 V
$\mathrm{V}_{3}-4 \mathrm{M}$
$\mathrm{V}_{2-4 \mathrm{M}}$
+2 to $+12 \mathrm{~V}^{2}$)
+1 to +12 V .
Luminance output voltage at nominal contrast
black-to-white positive video signal; peak-to-peak value

[^40]CHARACTERISTICS (continued)

Black level at nominal brightness setting	V_{1-4}	typ.	4,2	V
Black level variation with brightness				
setting	$\Delta \mathrm{V}_{1-4}$		+1 to -2	V
Contrast control voltage range	V_{5-4}	See	on page 6	
Black level variation				
with contrast control	ΔV_{1-4}	$<$	40	mV
Black level variation				
with video contents	ΔV_{1-4}	$<$	20	mV
$\underline{\text { Variation between video black level }}$				
and reinserted black level				
at $\Delta \mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ and $\Delta \mathrm{V}_{13-4} \pm 10 \%$	V_{1-4}	$<$	± 20	mV
Blanking level with respect to				
nominal brightness	V_{1-4}		to -1,2	V
Bandwidth (-3 dB) of luminance signal	B	$>$	6	MHz

Bandwidth (-3 dB) of luminance signal
Colour difference output signal for
nominal contrast and saturation ${ }^{4}$) ${ }^{5}$)
($\mathrm{R}-\mathrm{Y}$); peak-to-peak value
($\mathrm{B}-\mathrm{Y}$); peak-to-peak value
D.C. output level

Output level variation
with contrast and saturation control

Permissible d.c. load impedance
Saturation control voltage range
Saturation control at $\mathrm{V}_{6-4}<0,5 \mathrm{~V}$
Bandwidth (-3 dB) of colour difference signal B
$\left.\begin{array}{llrll}V_{10-4(p-p)} & \text { typ. } & 1,25 & \mathrm{~V} & 6) \longleftarrow \\ \mathrm{V}_{7-4(p-p)} & \text { typ. } & 1,6 & \mathrm{~V} & 6) \longleftarrow \\ \mathrm{V}_{7-4} \\ \mathrm{~V}_{10-4}\end{array}\right\}$

$$
\left.\begin{array}{llll}
\left.\begin{array}{l}
\Delta \mathrm{V}_{7-4} \\
\Delta \mathrm{~V}_{10-4}
\end{array}\right\} & < & 500 & \mathrm{mV} \\
\left|\mathrm{Z}_{7-4}\right| \\
\left|\mathrm{Z}_{10}-4\right|
\end{array}\right\} \quad>\quad 4 \quad \mathrm{kS}
$$

See graph on page 6

$<$	-50	dB
$>$	2,5	MHz

[^41]CHARACTERISTICS (continued)

(G-Y) amplifier

input voltage (peak-to-peak value)
output voltage (peak-to-peak value)
voltage gain

$\mathrm{V}_{11-4(\mathrm{p}-\mathrm{p})}$	$<$	l
$\mathrm{V}_{12-2(\mathrm{p}-\mathrm{p})}$	$<$	V
G_{11-12}		-1 to $+0,5 \mathrm{~dB}$

Tracking during contrast and saturation control
at a contrast decrease of 20 dB
change of the ratio $\frac{(\mathrm{R}-\mathrm{Y})}{(\overline{\mathrm{B}-\mathrm{Y}})}$
change of the ratio $\frac{Y}{(B-Y)}$
0 to 4 dB
0 to
at a saturation decrease of 20 dB
change of the ratio $\frac{(\mathrm{R}-\mathrm{Y})}{(\mathrm{B}-\mathrm{Y})}$
Cross coupling
luminance signal to colour difference signal
($\mathrm{B}-\mathrm{Y}$) signal to ($\mathrm{R}-\mathrm{Y}$) signal
colour difference signal to luminance signal

APPLICATION INFORMATION

Pinning

1. Luminance signal output
2. Black level clamp pulse input
3. Blanking pulse input
4. Earth (negative supply)
5. Contrast control input
6. Saturation control input
7. (B-Y) signal output
8. (B-Y) signal input
9. ($\mathrm{R}-\mathrm{Y}$) signal input
10. ($\mathrm{R}-\mathrm{Y}$) signal output
11. ($\mathrm{G}-\mathrm{Y}$) signal input
12. (G-Y) signal output
13. Supply voltage (12 V)
14. Brightness control input
15. Black level clamp capacitor
16. Luminance signal input

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Luminance signal output

A positive video signal of 3 V peak-to-peak is available at nominal contrast setting. The black level is clamped internally on the back porch.
By means of the brightness control the black level can be varied between $2,2 \mathrm{~V}$ and $5,2 \mathrm{~V}$. The blanking level of the output signal will assume a value of 3,0 to $3,4 \mathrm{~V}$.
2. Black level clamp pulse input

A positive pulse with a peak value between +1 V and +12 V will clamp the black level of the video signal to a nominal level of $4,2 \mathrm{~V}$. The pulse may only be present during the back porch and should have a duration of about $3 \mu \mathrm{~s}$.
3. Blanking pulse input

Two modes operation can be selected by the choice of the amplitude of the pulse applied:

- blanking
- black level reinsertion

Blanking of the luminance output signal is obtained when the peak value of the pulse ranges from $-1,5$ to -10 V . An artificial black level of nominally $+4,2 \mathrm{~V}$ is inserted in the luminance output signal during the blanking period when the peak value of the pulse ranges from +2 to +12 V .
During scan the amplitude at pin 3 should remain between $+0,7 \mathrm{~V}$ and $-0,7 \mathrm{~V}$ to avoid blanking.
4. Negative supply (earth)
5. Contrast control input

The contrast curve is given on page 4. To avoid damaging of the circuit by flashover pulses, picked-up by the leads, it is recommended that a capacitor of 100 nF de connected between this pin and earth.
6. Saturation control input

The control curve is given on page 4. To avoid damaging of the circuit by flashover pulses, picked-up by the leads, it is recommended that a capacitor of 100 nF be connected between this pin and earth.
7. (B-Y) signal output

The amplitude of this signal is controlled by the contrast setting and the saturation setting simultaneously. At nominal contrast and nominal saturation setting an amplitude of $1,6 \mathrm{~V}$ peak-to-peak is obtained at an input amplitude of $0,9 \mathrm{~V}$ peak-to-peak. The average level is typically $6,1 \mathrm{~V}$.
8. ($\mathrm{B}-\mathrm{Y}$) signal input

The signal has to be a.c. coupled to the input.
To cope with the variation of picture contents an input voltage margin of $\pm 0,8 \mathrm{~V}$ is provided, whereas the input signal has a typical value of $\pm 0,45 \mathrm{~V}$ for a saturated colour bar signal.

APPLICATION INFORMATION (continued)

9. ($\mathrm{R}-\mathrm{Y}$) signal input

The signal has to be a.c. coupled to the input.
To cope with the variation of picture contents an input voltage margin of $\pm 0,8 \mathrm{~V}$ is provided, whereas the input signal has a typical value of $\pm 0,35 \mathrm{~V}$ for a saturated colour bar input.
10. ($\mathrm{R}-\mathrm{Y}$) signal output

The amplitude of this signal is controlled by the contrast setting and saturation setting simultaneously. At nominal contrast and nominal saturation setting an amplitude of $1,25 \mathrm{~V}$ peak-to-peak is obtained at an input amplitude of $0,7 \mathrm{~V}$ peak to peak. The average level is typically $6,1 \mathrm{~V}$.
11. (G-Y) signal input

The ($\mathrm{G}-\mathrm{Y}$) signal is obtained by matrixing a part of the ($\mathrm{R}-\mathrm{Y}$) and ($\mathrm{B}-\mathrm{Y}$) signals in a resistor network. The input may range from 1 to $6,5 \mathrm{~V}$.
An average level of typical $5,9 \mathrm{~V}$ is required to produce an average output level of $6,1 \mathrm{~V}$. The gain of the inverter stage is typically 1 .
12. (G-Y) signal output

An inverted signal with an amplitude of maximum 1 V peak-to-peak is available at this pin.
13. Supply voltage (12 V)

Correct operation occurs within the range 10,2 to $13,2 \mathrm{~V}$.
The power dissipation must not exceed 600 mW at $65^{\circ} \mathrm{C}$ ambient temperature.
14. Brightness control input

The black level of the luminance output signal tracks the potential applied to this pin. A typical value for setting the brightness control is $5,7 \mathrm{~V}$, for which a black level of $4,2 \mathrm{~V}$ is obtained.
It is recommended that a capacitor of at least $10 \mu \mathrm{~F}$ be connected between this pin and earth.
15. Black level clamp capacitor

The level of the back porch of the luminance output signal is stored in an external capacitor of about $0,68 \mu \mathrm{~F}$; the latter to be connected between pins 14 and 15 .
16. Luminance signal input

A positive luminance signal of $0,7 \mathrm{~mA}$ peak-to-peak between black and white level drives the luminance amplifier.
A black level of about $0,3 \mathrm{~mA}$ is recommended. For a.c. coupling a bias resistor to the supply line is required to bias the amplifier properly.
The resistance depends on the signal amplitude e.g.: $15 \mathrm{k} \Omega$ is recommended for a input signal of $0,7 \mathrm{~mA}$ peak-to-peak.

COLOUR DEMODULATOR

with feed-back clamp

The TCA 800 is a monolithic integrated circuit for colour television receivers incorporating the following functions:

- two synchronous demodulators for the ($\mathrm{B}-\mathrm{Y}$) and ($\mathrm{R}-\mathrm{Y}$) signals
- (G-Y) matrix
- PAL switch bistable
- RGB matrix

The device can drive simple single transistor RGB output stages.
The circuit also incorporates three feedback clamps to stabilize the black level, to eliminate the thermal drift in the demodulators.

QUICK REFERENCE DATA					
Supply voltage	V_{9-16}	typ.	12	V	
Supply current at $\mathrm{I}_{8}=0,5 \mathrm{~mA}$	I_{9}	typ.	47	mA	
Voltage gain of chrominance $(\mathrm{R}-\mathrm{Y})$ signal channel at $\mathrm{V}_{11-16}=50 \mathrm{mV} ; \mathrm{f}=4,43 \mathrm{MHz} ;$ video gain $=20 \mathrm{x}$					
Voltage gain of luminance (Y) channel	G_{11-3}	typ.	17,5		
$\mathrm{V}_{1-16(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V}$ (black to white)					
Operating ambient temperature range	$\mathrm{G}_{\mathrm{I}-3 ; 5 ; 7}$ typ.	5			

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

CIRCUIT DIAGRAM

CIRCUIT DIAGRAM (continued)

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage
$\mathrm{V}_{9-16} \max \quad 13,2 \mathrm{~V}$
Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-20 to +80	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to +55	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{9-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$
Supply voltage range
$\begin{array}{ccc} \\ \mathrm{V} 9-16 & \text { typ. } \\ 10,8 \text { to } & 12,2 & \mathrm{~V} \\ \mathrm{~V}\end{array}$
Voltage gain of chrominance ($\mathrm{R}-\mathrm{Y}$) signal channel

$$
\mathrm{V}_{11-16}=50 \mathrm{mV} ; \mathrm{f}=4,43 \mathrm{MHz} \text {; video gain }=20 \mathrm{x} \quad \mathrm{G}_{11-3} \quad \text { typ. } 17,5
$$

Voltage gain of luminance (Y) channel
$\mathrm{V}_{1-16(\mathrm{p}-\mathrm{p})}=1 \mathrm{~V}$ (black to white)
$\mathrm{G}_{1-3 ; 5 ; 7}$ typ.
5
Bandwidth (-3 dB) of luminance channel
from Y input to R.G.B. outputs \quad B \quad typ. $\quad 10 \mathrm{MHz}$
Bandwidth (-3 dB) of chrominance channel
from ($\mathrm{R}-\mathrm{Y}$), ($\mathrm{B}-\mathrm{Y}$) inputs to R.G.B. outputs
B typ. $\quad 1 \quad \mathrm{MHz}$
Ratio of demodulated signals (defined with equal
chrominance input signals and measured at the
outputs (pins 3,5 and 7) (see note 1 below)

$$
\begin{aligned}
& \frac{\mathrm{V}_{(\mathrm{B}-\mathrm{Y})}}{\mathrm{V}_{(\mathrm{R}-\mathrm{Y})}}\left\{\begin{array}{cr}
\text { typ. } & 1,78 \\
1,60 \text { to } & 1,96
\end{array}\right. \\
& \frac{\mathrm{V}_{(\mathrm{G}-\mathrm{Y})}}{\mathrm{V}_{(\mathrm{R}-\mathrm{Y})}}\left\{\begin{array}{cr}
\text { typ. } & 0,85 \\
0,76 \text { to } 0,94
\end{array}\right.
\end{aligned}
$$

Input signals

Chrominance input impedance
at $\mathrm{f}=4,43 \mathrm{MHz} ; \mathrm{V}_{10-11}=20 \mathrm{mV}$ (sinusoidal)
defined as resistance (R) and parallel
capacitance (C)

R	typ.	1000	Ω
C	$<$	10	pF

[^42]CHARACTERISTICS (continued)
Luminance (pin 1)
a. Y signal input blanking level (fixed by TBA560C)

$$
\mathrm{V}_{1-16} \quad \text { typ. } \quad \begin{array}{ll}
1,5 & \mathrm{~V} \\
1,4 \text { to } 1,8 & \mathrm{~V}
\end{array}
$$

b. Y input signal, দlack level potential (nominal brightness set by brightness control of TBA560C)

V_{1-16}	typ.	1,7	V
$\mathrm{~V}_{1-16}$	typ.	1,0	V

c. Y input black to white amplitude
(adjusted by contrast control of TBA 560C)
V_{1-16} typ.
$1,0 \quad \mathrm{~V}$

Reference

a. Input impedance
defined as resistance (R) and parallel
capacitance (C) at $\mathrm{f}=4,43 \mathrm{MHz}$
b. Reference input voltage (from TBA540)
peak-to-peak value $\quad V_{15-16(p-p)} ; V_{13-16(p-p)}\left\{\begin{array}{rl}\text { typ. } \\ 0,5 \text { to } 2,0 & V\end{array}\right.$
c. Phase shift between reference inputs and chrominance input required to give coincidence at the synchronous demodulators
typ. $\quad 10^{\circ}$
Identification (pin 14)
a. Input voltage for ident. "off"
b. Input voltage for ident. "on"
c. Input current for ident. "off"
R
C $\quad\left\{\begin{array}{lrl}\text { typ. } & 5 & \mathrm{k} \Omega \\ \text { typ. } & 5 & \mathrm{pF} \\ < & 10 & \mathrm{pF}\end{array}\right.$
d. Tracking of ident. threshold with a supply variation of $\pm 10 \%$ ($\mathrm{V}_{\mathrm{T}}=$ threshold voltage)

V_{14-16}	$>$	6	V
$\mathrm{~V}_{14-16}$	$<$	7	V
I_{14}	$<$	0,1	mA

$\frac{\Delta \mathrm{V}_{\mathrm{T}} \times \mathrm{V}_{9}-16}{\mathrm{~V}_{\mathrm{T}} \times \Delta \mathrm{V}_{9-16}}$ typ. $\quad 1,0$

CHARACTERISTICS (continued)

Line pulse

a. Required line pulse input current to clamps and $\mathrm{H} / 2$ bistable

$$
\mathrm{I}_{8}
$$

typ.
$0,45 \mathrm{~mA}$ 0,3 to $0,6 \mathrm{~mA}$
b. Window level (see note below)
c. Input impedance
typ. $\quad 12,5$ V
typ. $\quad 1,0 \quad k \Omega$
R_{8-16} 0,6 to $1,4 \mathrm{k} \Omega$

Note

In order to provide a clamp pulse which occurs inside the blanking waveform and free from the edge spikes, it is necessary to window the line pulse at about two thirds of its amplitude

Output signals

R. G.B. outputs (pins 3,5 and 7)

Common mode variation of black level over
the temperature range of $40^{\circ} \mathrm{C}$ see note below

Note

In order to partially compensate for drift in output stages a negative temperature coefficient to compensate for the variation in the video output transistor has been incorporated.

CHARACTERISTICS (continued)
Blanking to white level output voltage capability of each output amplifier channel (peak-to-peak value)

$$
\begin{array}{lll}
\mathrm{V}_{3 ; 5} ; 7-16(\mathrm{p}-\mathrm{p}) & & 6 \text { to } 8 \mathrm{~V} \\
& < & 50 \mathrm{mV} \\
& < & 25 \mathrm{mV} \\
& & \\
& & \\
\text { red } & < & 150 \\
\text { blue } & 300 & \mathrm{mV}
\end{array}
$$

Difference in clamped blanking level of outputs i.e. R to B to G

H/2 output (pin 12)

$\mathrm{H} / 2$ square wave output amplitude (peak-to-peak value)

APPLICATION NOTES

1. For alternative applications in a simple decoder circuit, it must be possible to trigger the bistable so that it runs in the correct ident. phase means of an a.c. coupled, 2 V peak-to-peak square wave derived from the a.p.c. loop in the reference generator circuit. (The normal input line timebase pulse would still be applied in order to provide clamp pulses).
2. Input impedance of output amplifier (BF 337) (Expressed as parallel resistance and capacitance) :

R (typ.) $5 \mathrm{k} \Omega$
C (typ.) 80 pF
The above values are given for suitable design of output stages i.e. emitter follower with 5 mA current capability.

[^43]

DOUBLE BALANCED MODULATOR/DEMODULATOR

The TCA 820 is a monolithic integrated circuit for use at frequencies up to 650 MHz . Typical applications are:

- modulator
- mixer
- switch/chopper
- a.m. synchronous demodulator
- f.m. quadrature demodulator
- phase comparator
-differential amplifier
The circuit is arranged to offer very flexible circuit design possibilities.
The excellent matching and temperature tracking of the transistors in the circuit allow the use of circuit techniques which are not available when using discrete devices.

PACKAGE OUTLINE (see general section)
14-lead; plastic (SOT-43).

CIRCUIT DIAGRAM

Note
Pins, 8 and 14 are connected to the substrate.
RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134).

Voltages

Supply voltage range $\quad \mathrm{V}_{10-8} ; \mathrm{V}_{10-14} ; \mathrm{V}_{12-8} ; \mathrm{V}_{12-14} \quad 0$ to $16 \quad \mathrm{~V}$
Voltages (each transistor)
Collector-substrate voltage (open base
and emitter)
Collector-base voltage (open emitter)
Collector-emitter voltage (open base)
Emitter-base voltage (open collector)
Currents (each transistor)

| Emitter current | I_{E} | \max. | 10 | mA |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Base current | I_{B} | \max. | 10 | mA |

TCA820

RATINGS (continued)
Total power dissipation
mounted on a printed-wiring board $\quad P_{\text {tot }} \max .250 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

From junction to ambient
$R_{\text {th j-a }}=220 \quad{ }^{\circ} \mathrm{C} / \mathrm{W}$

CHARACTERISTICS at $\mathrm{V}_{10-8}=\mathrm{V}_{10-14}=\mathrm{V}_{12-8}=\mathrm{V}_{12-14}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in test circuit on page 4 .

Supply current

$$
\mathrm{I}_{10}+\mathrm{I}_{12} \quad \text { typ. } \begin{array}{rr}
2,5 & \mathrm{~mA} \\
2 \text { to } 3 & \mathrm{~mA}
\end{array}
$$

Input signals
carrier signal (r.m.s. value)

$\mathrm{V}_{3-4(\mathrm{rms})} ; \mathrm{V}_{5-4(\mathrm{rms})}$	$\stackrel{\text { typ. }}{<}$	80	mV
		160	mV
		$\stackrel{\text { typ. }}{<}$	1,0
$\mathrm{<}$	V		
		1,8	V

Output signal at top sync over 75Ω
(peak-to-peak value)
$\mathrm{V}_{10-12(\mathrm{p}-\mathrm{p})} \quad>\quad 25 \mathrm{mV}$

Carrier suppression in balanced condition

	$>$	30	$d B$
V_{10-12}	typ.	40	$d B$

Differential phase
8^{0}

Differential gain

16 \%
Distortion of video signal $<\quad \cdot 5 \%$

L = aircoil; 3 turns; $\phi 3 \mathrm{~mm}$
*) U.H.F. decoupling capacitor 221266998003

LUMINANCE COMBINATION

The TDA2500 is an integrated luminance circuit for colour television receivers incorporating the following functions:

- luminance amplifier
- linear electronic potentiometer for luminance and chrominance control (contrast control)
- brightness control
- beam current limiter via contrast and brightness
- black level clamp
- matched luminance delay line driver
- emitter follower output for direct drive of the luminance output
- luminance inverter stage (drive for TDA2590)
- blanking or artificial black level insertion

QUICK REFERENCE DATA			
Supply voltage	V_{8-16}	typ. 12	V
Supply current	I_{8}	typ. see note	mA
Composite video input voltage (peak-to-peak value)	V_{11-16}	typ. 2,8	V
Luminance output (max. contrast; peak-to-peak value)	V_{3-16}	typ. 4,5	V
Contrast control voltage range	V_{13-16}	2, 3 to 4	V
Inverted video output voltage (peak-to-peak value)	V_{12-16}	typ. 6,8	V
Video output voltage for chrominance separation (max. contrast; peak-to-peak value)	V_{10-16}	typ. 4, 6	V
Brightness control range (black level of luminance signal)	V_{15-16}	0, 5 to 2, 5	V
Beam current limiting threshold voltage	V_{14-16}	typ. 0,75	V

PACKAGE OUTLINES (see general section)
TDA2500 : 16-lead DIL; plastic.
TDA2500Q : 16-lead QIL; plastic.

Note: to be established.

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134) Voltages

Supply voltage (pin 8)	V_{8-16}	\max.	15 V
Voltage at pin 1	$\mathrm{~V}_{1-16}$	\max.	15 V
Voltage at pin 13	$\mathrm{~V}_{13-16}$	\max.	10 V
Voltage at pins 14 and 15	$\mathrm{~V}_{14-16} ; \mathrm{V}_{15-16}$	\max.	8 V

Currents (positive when flowing into the circuit)

Current at pin 2
Current at pin 3; average value peak value
Current at pin 6
Currents at pins 7, 9, 10 and 12
Current at pin 14
Power dissipation
Total power dissipation $P_{\text {tot }} \quad \max .850 \mathrm{~mW}$
Temperatures
Storage temperature
Operating ambient temperature

$\pm \mathrm{I}_{2}$	\max.	2 mA
$-\mathrm{I}_{3(\mathrm{AV})}$	\max.	$15 \mathrm{~mA} \longleftarrow$
$-\mathrm{I}_{3 \mathrm{M}}$	\max.	$30 \mathrm{~mA} \longleftarrow$
I_{6}	\max.	15 mA
$\mathrm{I}_{7},-\mathrm{I}_{9},-\mathrm{I}_{10},-\mathrm{I}_{12}$	\max.	10 mA
$-\mathrm{I}_{14}$	\max.	1 mA

CHARACTERISTICS measured in circuit on page 6
Supply voltage
The following characteristics are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{8-16}=12 \mathrm{~V}$; composite video input voltage (peak-to-peak value) $\mathrm{V}_{11-16(p-p)}=1 \mathrm{~V}$

Pre-stages

Delay line driver voltage	V_{9-16}	typ.	3 V
Composite video output voltage (max. contrast; peak-to-peak)	$\mathrm{V}_{10-16(p-p)}$	typ.	$1,5 \mathrm{~V}$
Inverted luminance output voltage (peak-to-peak)	$\mathrm{V}_{12-16(\mathrm{p}-\mathrm{p})}$	typ.	3 V
Input resistance (pin 11)	R_{11-16}	typ.	$12 \mathrm{k} \Omega$
Input capacitance (pin 11)	C_{11-16}	see note	on page 1
Voltage gain between pins 12 and 11	G_{12-11}	typ.	3
Voltage gain at maximum contrast and $\mathrm{V}_{1-16}=0$ between pins 9 and 11 between pins 10 and 11	$\begin{aligned} & \mathrm{G}_{9-11} \\ & \mathrm{G}_{10-11} \end{aligned}$	typ. typ.	$\begin{array}{r} 3 \\ 1,5 \end{array}$
Voltage gain between pins 10 and 11 at any contrast setting and $V_{1-16}=2,3$ to 7 V	G_{10-11}	typ.	1,5

CHARACTERISTICS (continued)

Linearity of V_{9-16} and V_{10-16} at $V_{11-16(p-p)}=1 \mathrm{~V}$
$\mathrm{m} \quad>\quad 0,9$
\rightarrow Frequency response of luminance stage for $\mathrm{f}=0$ to 5 MHz ; between pins 9 and 11 . between pins 10 and 11
\rightarrow Output resistances (emitter follower)

Contrast control range
Contrast control voltage for maximum contrast for -6 dB setting for minimum contrast

Contrast control current

d_{9-11}	$<$	1	dB
$\mathrm{~d}_{10-11}$	$<$	1	dB
R_{10-16}	typ.	30	Ω
R_{9-16}	typ.	$\mathrm{V}_{\mathrm{T}} / \mathrm{I}_{9}$	Ω
	typ.	15	dB
$\mathrm{~V}_{13-16}$	typ.	4	V
$\mathrm{~V}_{13-16}$	typ.	3	V
$\mathrm{~V}_{13-16}$	typ.	2,3	V
I_{13}	typ.	5	$\mu \mathrm{~A}$

Luminance intermediate stage

A.C. current gain

Linearity of current gain at $\mathrm{I}_{7}(\mathrm{p}-\mathrm{p})=1 \mathrm{~mA}$
$-\mathrm{I}_{6} / \mathrm{I}_{7} \quad$ typ.
3

Frequency response of current gain for $\mathrm{f}=0$ to 5 MHz ; between pins 6 and 7
Control current at $\mathrm{V}_{5-16}=0 ; \mathrm{V}_{7-16}=0,5 \mathrm{~V}$
\rightarrow Control current at $\mathrm{V}_{5-16}=9,5 \mathrm{~V} ; \mathrm{I}_{7}=0$

Luminance output stage

\rightarrow Output voltage range
(the linearity of the voltage gain $\mathrm{V}_{3-16} / \mathrm{V}_{6-16}>0,9$) $\quad \mathrm{V}_{3-16}$
$\mathrm{d}_{3}-6<$
1 dB
Output resistance (pin 3)
\longrightarrow Blanking leyel at luminance output
Clamp level reinsertion at luminance output
emitter follower

Brightness control via clamping circuit

Brightness control voltage
at min. brightness
at nom. brightness
at max. brightness
Black level at luminance output
at min. brightness
at nom. brightness
at max. brightness

V_{15-16}	typ.	0,5	V
$\mathrm{~V}_{15-16}$	typ.	1,5	V
$\mathrm{~V}_{15-16}$	typ.	2,5	V
$\mathrm{~V}_{3-16}$	typ.	0,5	V
$\mathrm{~V}_{3-16}$	typ.	1,5	V
$\mathrm{~V}_{3-16}$	typ.	2,5	V

CHARACTERISTICS (continued)
Black level stability when changing; contrast video content
temperature

	$<$	± 30	mV
	$<$	± 30	mV
	$<$	± 10	mV
I_{15}	typ.		
V_{14-16}	typ.	0,75	V
$-\mathrm{I}_{14}$	typ.	1,5	$\mu \mathrm{~A}$

Beam current limiter ${ }^{1}$)

Beam current limiting threshold voltage
D.C. input current

	$<$	± 30	mV
	$<$	± 30	mV
	$<$	± 10	mV
I_{15}	typ.		
V_{14-16}	typ.	0,75	V
$-\mathrm{I}_{14}$	typ.	1,5	$\mu \mathrm{~A}$

Positive pulse at pin 1

Voltage for switching to maximum contrast in the chrominance stage (between pins 10 and 11) during line flyback

Voltage for clamping the brightness control circuit during back porch
Input resistance at $\mathrm{V}_{1-16}=2,3$ to 7 V

| V_{1-16} | $>$ | $2,3 \mathrm{~V} 2) \longleftarrow$ |
| ---: | :--- | ---: | :--- |
| V_{1-16} | $>$ | $6,3 \mathrm{~V} \quad \leftarrow$ |
| R_{1-16} | $>$ | $200 \mathrm{k} \Omega<$ |

Positive pulse at pin 2

Voltage for blanking at luminance output (pin 3)
V_{2-16}
2,2 to $4,5 \quad \mathrm{~V}$
Voltage for constant clamp level reinsertion at luminance output (pin 3)
D. C. input current

Input resistance

APPLICATION INFORMATION

CHROMINANCE COMBINATION

The TDA2510 is an integrated chrominance amplifier circuit for colour television receivers incorporating the following functions:

- chrominance amplifier with a.c.c.
- control voltage amplifier
- burst separator
- colour killer and colour killer voltage detector
- linear electronic potentiometer for saturation control
- Schmitt trigger for colour killer
- chrominance delay line driver stage
- colour burst output stage

	QUICK REFERENCE DATA		
Supply voltage Input signal (colour bars) peak-to-peak value	V_{1-16}	typ. $\quad 12 \mathrm{~V}$	
Output signal (colour bars) peak-to-peak value Burst signal output peak-to-peak value	$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	typ.	100 mV

PACKAGE OUTLINES (see general section)
TDA2510 : 16-lead DIL; plastic.
TDA'2510Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage

Supply voltage (pin 1)

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \max \quad 500 \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature
CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Chrominance input signal

Input voltage (symmetrical or asymmetrical) colour bars (peak-to-peak value)

Input voltage range
Input impedance
Burst signal output (emitter follower)
D.C. voltage
Output signal (peak-to-peak value)
Limiting level of output signal (peak-to-peak value)

Chrominance output signal (without burst)
D.C. voltage

Output signal (colour bars)
at nominal saturation (see note 2) and
maximum contrast (peak-to-peak value)
Signal-to-noise ratio
Saturation control range
Phase angle compared to burst output at nom. saturation

Phase angle shift during saturation control range +6 to -50 dB
Collector current of output transistor
$\mathrm{V}_{1-16} \max .15 \mathrm{~V}$

$\mathrm{T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$	\longleftarrow
$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{\circ} \mathrm{C}$	\leftarrow

$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	typ.	100	mV	
V_{2-16}	10 to 200	mV	\leftarrow	
$\left\|\mathrm{Z}_{2-16}\right\|$	$>$	2	$\mathrm{k} \Omega$	

$\left.\begin{array}{llrl}V_{8-16} & \text { typ. } & 9 & V \\ V_{8-16(p-p)} & \text { typ. } & 0,5 & \mathrm{~V}\end{array}\right)$

V6-16 typ. 7 V

$\mathrm{V}_{6-16(\mathrm{p}-\mathrm{p})}$	typ.	0,5	V
$\mathrm{~S} / \mathrm{N}$	$>$	50	dB
	+6 to -50	dB	

$\Delta \varphi_{\mathrm{B}} \quad<\quad \pm 5^{\circ}$

$\Delta \varphi_{\mathrm{C}}$	$<$	$\pm 5^{\circ}$	\leftarrow
I_{7}	$<$	20 mA	

[^44]
CHARACTERISTICS (continued)

Collector voltage of output transistor

$$
\text { at } P_{\text {tot } \max }=100 \mathrm{~mW}
$$

$$
\mathrm{V}_{7-16}<20 \mathrm{~V}
$$

Control voltage amplifier input

Reference voltage
Control voltage
Input impedance

Linearization for saturation input

Linear part of control curve
Threshold voltage for 50 dB suppression
Adjustment voltage behaviour for higher

Input impedance
Colour killer input at pin 15
Input voltage for : colour on for : colour off
Signal suppression at colour off
Colour killer output
Switching voltage for: colour on for : colour off

Internal resistance
Collector current of output transistor

V_{15-16}	$<$	5,7	V
$\mathrm{~V}_{15-16}$	$>$	6,0	V
	$>$	50	dB

Burst gating and blanking pulse
Burst gating and blanking pulse (positive or negative)

Input impedance

$\pm V_{9-16}$	\ddots	1 to 4	V
$\left\|Z_{9-16}\right\|$	typ.	1	$k \Omega$

Colour killer

Colour unkill delay; depends on C_{d} (see circuit on page 5)

$$
\mathrm{t}_{\mathrm{d}} \quad \text { typ. } \quad 24 \quad \mathrm{~ms} / \mu \mathrm{F}
$$

IIIIIII

COLOUR DEMODULATOR COMBINATION

The TDA2520 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:
$-8,8 \mathrm{MHz}$ oscillator followed by a divider giving two $4,4 \mathrm{MHz}$ signals used as reference signals

- keyed burst phase detector for optimum noise behaviour
- a stage to obtain chrominance signal control (a.c.c.) and an a.c.c. reference level
- a colour killer and identification signal detector
- two synchronous demodulators for the ($\mathrm{B}-\mathrm{Y}$) and ($\mathrm{R}-\mathrm{Y}$) signals
- temperature compensated emitter follower outputs
- PAL switch
- PAL flip-flop
- integrated capacitors in the symmetrical demodulators reduce unwanted carriersignals at the outputs.

QUICK REFERENCE DATA					
Supply voltage		V_{12-16}	typ.	12	V
Supply current		I_{12}	typ.	40	mA
Colour difference output signals peak-to-peak values	$\begin{aligned} & -(\mathrm{R}-\mathrm{Y}) \\ & -(\mathrm{G}-\mathrm{Y}) \\ & -(\mathrm{B}-\mathrm{Y}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{3-16(p-p)} \\ & \mathrm{V}_{2-16(p-p)} \\ & \mathrm{V}_{\mathrm{I}}-16(\mathrm{p}-\mathrm{p}) \end{aligned}$	$\begin{aligned} & > \\ & > \end{aligned}$	$\begin{array}{r} 2,4 \\ 1,35 \\ 3 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Impedance of colour difference signal outputs			typ.	250	Ω

PACKAGE OUTLINES (see general section)
TDA2520 : 16-lead DIL; plastic.
TDA2520Q: 16-lead QIL; plastic.

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage $\quad \mathrm{V}_{12-16} \max .14 \mathrm{~V}$

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max .600 \mathrm{~mW}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{12-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Demodulator part

Ratio of demodulated signals

$$
\begin{array}{lllll}
\text { B-Y/R-Y: } & \frac{V_{1-16}}{V_{3-16}} & \text { typ. } & 1,78 & \\
\text { G-Y/R-Y: } & \frac{V_{2-16}}{V_{3-16}} & \text { typ. } & 0,85 & \left.{ }^{1}\right) \\
& & & & \\
\text { G-Y/R-Y }: & \frac{V_{2-16}}{V_{3-16}} & \text { typ. } & 0,17 & 2 \text {) }
\end{array}
$$

Colour difference output signals ${ }^{3}$)
peak-to-peak values

$-(\mathrm{R}-\mathrm{Y})$	$\mathrm{V}_{3}-16(\mathrm{p}-\mathrm{p})$	$>$	2,4	V
$-(\mathrm{G}-\mathrm{Y})$	$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	$>$	1,35	V
$-(\mathrm{B}-\mathrm{Y})$	$\mathrm{V}_{1-16(\mathrm{p}-\mathrm{p})}$	$>$	3	V

Impedance of colour difference
signal outputs
$\mathrm{H} / 2$ ripple at $\mathrm{R}-\mathrm{Y}$ output (peak-to-peak value)

$\left\|Z_{3-16}\right\|$	typ.	250	Ω
$\left\|Z_{2}-16\right\|$	typ.	250	Ω
$\left\|Z_{1-16}\right\|$	typ.	250	Ω
	$<$	10	mV

Blanking and keying pulse
burst keying: active for
inactive for
blanking : active for inactive for

V_{15-16}	$>$	7,5	V
$\mathrm{~V}_{15-16}$	$<$	6,5	V
$\mathrm{~V}_{15-16}$	$>$	2	V
$\mathrm{~V}_{15-16}$	$<$	1	V

${ }^{1}$) The demodulators are driven by a chrominance signal of equal amplitude for the ($R-Y$) and the ($B-Y$) components. The phase of the ($\mathrm{R}-\mathrm{Y}$) chrominance signal equals the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal.
The same holds for the ($B-Y$) signals.
${ }^{2}$) As under note 1 , but the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal reversed.
3) The d.c. level of the colour difference outputs can be adjusted from 6 to 10 V at pin 4 .

CHARACTERISTICS (continued)

Reference part

Colour burst (peak-to-peak value)
Phase difference between reference and burst signals for $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency
Overall holding range with typical crystal
A.C.C. reference output voltage
A.C.C. voltage at $0,5 \mathrm{~V}$ peak-to-peak burst at correct phase with zero burst

Oscillator input resistance
Oscillator input capacitance
Oscillator output resistance
$\mathrm{V}_{7-16(p-p)}$ typ. $\quad 0,5 \mathrm{~V}$
$< \pm 5^{\circ}$
$\Delta f \quad$ typ. $\pm 500 \mathrm{~Hz}$
$\mathrm{V}_{13-16} \quad$ typ. $\quad 7 \mathrm{~V}$
V_{14-16}
V_{14-16}
$\mathrm{R}_{11-16} \quad$ typ. 270Ω
C_{11-16} see note
$\mathrm{R}_{10-16} \quad$ typ. $\quad 200 \Omega$

COLOUR DEMODULATOR COMBINATION

The TDA2522 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- $8,8 \mathrm{MHz}$ oscillator followed by a divider giving two $4,4 \mathrm{MHz}$ signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a.c.c. detector and amplifier
- a colour killer
- two synchronous demodulators for the ($B-Y$) and ($\mathrm{R}-\mathrm{Y}$) signals
- temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- integrated capacitors in the symmetrical demodulators reduce unwanted carrier signals at the outputs

QUICK REFERENCE DATA					
Supply voltage		V_{11-4}	typ.	12	V
Supply current		I_{11}	typ.	40	mA
Colour difference output signals peak-to-peak values; for the following input signals	$\begin{aligned} & -(\mathrm{R}-\mathrm{Y}) \\ & -(\mathrm{G}-\mathrm{Y}) \\ & -(\mathrm{B}-\mathrm{Y}) \end{aligned}$	$\begin{aligned} & V_{3-4(p-p)} \\ & V_{2-4(p-p)} \\ & V_{1-4(p-p)} \end{aligned}$	$\begin{aligned} & > \\ & > \\ & > \end{aligned}$	$\begin{array}{r} 2,4 \\ 1,35 \\ 3 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Chrominance input signal (including burst) peak-to-peak value	$\begin{aligned} & \mathrm{R}-\mathrm{Y} \\ & \mathrm{~B}-\mathrm{Y} \end{aligned}$	$\begin{aligned} & \mathrm{v}_{6}-4(\mathrm{p}-\mathrm{p}) \\ & \mathrm{V}_{5}-4(\mathrm{p}-\mathrm{p}) \end{aligned}$		$\begin{aligned} & 500 \\ & 350 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Impedance of colour difference signal outputs			typ.	250	Ω

PACKAGE OUTLINES (see general section)
TDA2522 : 16-lead DIL; plastic.
TDA2522Q : 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Total power dissipation
Storage temperature
Operating ambient temperature

V_{11-4}	max.	14	V
$\mathrm{P}_{\text {tot }}$	max.	600	mW
$\mathrm{~T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	-20 to	+60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{11-4}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Demodulator part

Ratio of demodulated signals

B-Y/R-Y :	$\frac{V_{1-4}}{V_{3-4}}$	typ.	1,78	
G-Y/R-Y:	$\frac{V_{2-4}}{V_{3-4}}$	typ.	0,85	1)
G-Y/R-Y:	$\frac{V_{2-4}}{V_{3-4}}$	typ.	0,17	2)

Colour difference output signals
peak-to-peak values; for the
following input signals

Chrominance input signal (including
burst) peak-to-peak value; note 3

$-(R-Y)$	$V_{3-4(p-p)}$	$>$	2,4	V
$-(G-Y)$	$V_{2-4(p-p)}$	$>$	1,35	V
$-(B-Y)$	$V_{1-4(p-p)}$	$>$	3	V

$R-Y$	$V_{6}-4(p-p)$	500	mV
$B-Y$	$\mathrm{~V}_{5}-4(\mathrm{p}-\mathrm{p})$	350	mV

Impedance of colour difference
signal outputs
$\mathrm{H} / 2$ ripple at $\mathrm{R}-\mathrm{Y}$ output (peak-to-peak value)
Blanking and keying pulse
burst keying: active for
inactive for
blanking: active for inactive for

$\left\|Z_{3-4}\right\|$	typ.	250	Ω
$\left\|Z_{2-4}\right\|$	typ.	250	Ω
$\left\|Z_{1-4}\right\|$	typ.	250	Ω
	$<$	10	mV

V_{15-4}	$>$	7,5	V
$\mathrm{~V}_{15-4}$	$<$	6,5	V
$\mathrm{~V}_{15-4}$	$>$	2	V
$\mathrm{~V}_{15-4}$	$<$	1	V

${ }^{1}$) The demodulators are driven by a chrominance signal of equal amplitude for the ($R-Y$) and the ($B-Y$) components. The phase of the ($\mathrm{R}-\mathrm{Y}$) chrominance signal equals the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal.
The same holds for the ($\mathrm{B}-\mathrm{Y}$) signals.
${ }^{2}$) As under note 1 , but the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal reversed.
3) Colour bar with 75% saturation.

CHARACTERISTICS (continued)

Reference part

Phase difference between reference and burst
signals for $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency
$<\quad \pm 50$
Overall holding range with typical crystal
Δf
typ. $\pm 500 \mathrm{~Hz}$
Burst signal input at keying pulse width of $4 \mu \mathrm{~s}$ (peak-to-peak value)
Oscillator input resistance
Oscillator input capacitance
Oscillator output resistance
A.C.C. reference voltage
A.C.C. voltage at $0,25 \mathrm{~V}$ peak-to-peak burst

at correct phase :	V_{14-4}	typ.	5,5	V
with zero burst :	V_{14-4}	typ.	7,0	V

A.C.C. amplifier output voltage range at $\pm \mathrm{I}_{13}<200 \mu \mathrm{~A}$

V13-4
0,5 to 5 V

Colour killer

Via pin 14
Colour off
Colour on

V_{14-4}	$>$	6	V
$\mathrm{~V}_{14-4}$	$<$	5,6	V
$\mathrm{~V}_{16-4}$	$>$	7	V
$\mathrm{~V}_{16-4}$	$<$	5	V
t_{d}	typ.	20	$\mathrm{~ms} / \mu \mathrm{F} 3)$

[^45]
COLOUR DEMODULATOR COMBINATION

The TDA2523 is an integrated synchronous demodulator combination for colour television receivers incorporating the following functions:

- $8,8 \mathrm{MHz}$ oscillator followed by a divider giving two $4,4 \mathrm{MHz}$ signals used as reference signals
- keyed burst phase detector for optimum noise behaviour
- a.c.c. detector and amplifier
- a colour killer
- two synchronous demodulators for the ($\mathrm{B}-\mathrm{Y}$) and ($\mathrm{R}-\mathrm{Y}$) signals
- temperature compensated emitter follower outputs
- PAL switch and PAL flip-flop with internal identification
- integrated capacitors in the symmetrical demodulators reduce unwanted carrier signals at the outputs

QUICK REFERENCE DATA					
Supply voltage		V_{11-4}	typ.	12	V
Supply current		I_{11}	typ.	40	mA
Colour difference output signals peak-to-peak values; for the following input signals	$\begin{aligned} & (\mathrm{R}-\mathrm{Y}) \\ & (\mathrm{G}-\mathrm{Y}) \\ & (\mathrm{B}-\mathrm{Y}) \end{aligned}$	$\begin{aligned} & V_{3-4(p-p)} \\ & V_{2-4(p-p)} \\ & V_{1-4(p-p)} \end{aligned}$	$>$	2,4 1,35 3	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
Chrominance input signal (including burst) peak-to-peak value	$\begin{aligned} & R-Y \\ & B-Y \end{aligned}$	$\begin{aligned} & \mathrm{V}_{6}-4(p-p) \\ & \mathrm{V}_{5}-4(\mathrm{p}-\mathrm{p}) \end{aligned}$		500 350	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
Impedance of colour difference signal outputs			typ.	250	Ω

PACKAGE OUTLINES (see general section)
TDA2523 : 16-lead DIL; plastic.
TDA2523Q : 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage
Total power dissipation
Storage temperature
Operating ambient temperature

V_{11-4}	max.	14	V
$\mathrm{P}_{\text {tot }}$	max.	600	mW
$\mathrm{~T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\mathrm{amb}}$	-20 to	+60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{11-4}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

Demodulator part

Ratio of demodulated signals

$$
\begin{array}{lllll}
\text { B-Y/R-Y: } & \frac{V_{1-4}}{V_{3-4}} & \text { typ. } & 1,78 & \\
\text { G-Y/R-Y: } & \frac{V_{2-4}}{V_{3-4}} & \text { typ. } & 0,85 & 1) \\
\text { G-Y/R-Y: } & \frac{V_{2-4}}{V_{3-4}} & \text { typ. } & 0,17 & 2)
\end{array}
$$

Colour difference output signals peak-to-peak values; for the following input signals

Chrominance input signal (including
burst) peak-to-peak value; note 3 .

$(\mathrm{R}-\mathrm{Y})$	$\mathrm{V}_{3-4}(\mathrm{p}-\mathrm{p})$	$>$	2,4	V
$(\mathrm{G}-\mathrm{Y})$	$\mathrm{V}_{2}-4(\mathrm{p}-\mathrm{p})$	$>$	1,35	V
$(\mathrm{~B}-\mathrm{Y})$	$\mathrm{V}_{1-4(\mathrm{p}-\mathrm{p})}$	$>$	3	V

$R-Y$	$V_{6-4(p-p)}$	500	$m V$
$B-Y$	$V_{5-4(p-p)}$	350	$m V$

Impedance of colour difference
signal outputs

$\left\|Z_{3-4}\right\|$	typ.	250	Ω
$\left\|Z_{2-4}\right\|$	typ.	250	Ω
$\left\|Z_{1-4}\right\|$	typ.	250	Ω
	$<$	10	mV

$\mathrm{H} / 2$ ripple at R - Y output (peak-to-peak value)
Blanking and keying pulse
burst keying: active for inactive for
blanking : active for
inactive for

V_{15-4}	$>$	7,5	V
$\mathrm{~V}_{15-4}$	$<$	6,5	V
$\mathrm{~V}_{15-4}$	$>$	2	V
$\mathrm{~V}_{15-4}$	$<$	1	V

${ }^{1}$) The demodulators are driven by a chrominance signal of equal amplitude for the ($\mathrm{R}-\mathrm{Y}$) and the ($\mathrm{B}-\mathrm{Y}$) components. The phase of the ($\mathrm{R}-\mathrm{Y}$) chrominance signal equals the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal.
The same holds for the ($B-Y$) signals.
${ }^{2}$) As under note 1 , but the phase of the ($\mathrm{R}-\mathrm{Y}$) reference signal reversed.
3) Colour bar with 75% saturation.

CHARACTERISTICS (continu:d)

Reference part

Phase difference between reference and burst signals for $\pm 400 \mathrm{~Hz}$ deviation of crystal frequency

Overall holding range with typical crystal
$\Delta \mathrm{f} \quad$ typ. $\pm 500 \mathrm{~Hz}$
Burst signal input at keying pulse width of $4 \mu \mathrm{~s}$ (peak-to-peak value)
Oscillator input resistance
Oscillator input capacitance
Oscillator output resistance
A.C.C. reference voltage
$\mathrm{V}_{5-6(\mathrm{p}-\mathrm{p})}$ typ. $0,25 \mathrm{~V} \quad 1$)
A.C.C. voltage at $0,25 \mathrm{~V}$ peak-to-peak burst

at correct phase:	V_{14-4}	typ.	5,5	V
with zero burst:	V_{14-4}	typ.	7,0	V

A.C.C. amplifier output voltage range at $\pm \mathrm{I}_{13}<200 \mu \mathrm{~A}$

V13-4 0,5 to 5 V

Colour killer

Via pin 14
Colour off
Colour on

V_{14-4}	$>$	6	V
$\mathrm{~V}_{14-4}$	$<$	5,6	V

Alternatively via pin 16
Colour off
Colour on
Colour unkill delay

V_{16-4}	$>$	7	V
$\mathrm{~V}_{16-4}$	$<$	5	V
t_{d}	typ.	20	$\mathrm{~ms} / \mu \mathrm{F}^{3}$)

[^46]
RGB MATRIX PREAMPLIFIER

The TDA2530 is an integrated RGB matrix preamplifier for colour television receivers, incorporating a matrix preamplifier for RGB cathode drive of the picture tube with clamping circuits. The three channels have the same layout to ensure identical frequency behaviour.
This integrated circuit has been designed to be driven from the TDA2522 synchronous demodulator and oscillator IC.

QUICK REFERENCE DATA					
Supply voltage	$\mathrm{V}_{9}-16$	typ.	12 V		
Operating ambient temperature range	$\mathrm{T}_{\mathrm{amb}}$	-20 to $+60{ }^{\circ} \mathrm{C}$			
Luminance input resistance	R_{1-16}	$>$	$100 \mathrm{k} \Omega$		
Input current of colour difference inputs	$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	typ.	$2 \mu \mathrm{~A}$		
during clamping	$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	$-0,2$ to $+0,2 \mathrm{~mA}$			
Clamping pulse input current	$-\mathrm{I}_{8}$	$<$	$20 \mu \mathrm{~A}$		
Gain of RGB preamplifiers	G	typ.	0 dB		
Gain d. c. adjustment range	$\Delta \mathrm{G}$	typ.	$\pm 3 \mathrm{~dB}$		
Gain of error amplifier (conductance)		typ.	$20 \mathrm{~mA} / \mathrm{V}$		
Input current of feedback inputs	$\mathrm{I}_{11}, \mathrm{I}_{13}, \mathrm{I}_{15}$	typ.	$2 \mu \mathrm{~A}$		
Output current swing	$\mathrm{I}_{10}, \mathrm{I}_{12}, \mathrm{I}_{14}$	$-4,4$ to $+4,4 \mathrm{~mA}$			

PACKAGE OUTLINES (see general section)
TDA2530 : 16-lead DIL; plastic.
TDA2530Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage (pin 9)
Pin 1
Pins 3, 5 and 7
Pins 2, 4 and 6
Pin 8
Pin 10
Pin 12
Pin 14
Pins 11, 13 and 15

$V_{P}\left(V_{9-16)}\right.$	max.
V_{1-16}	0 to V_{P}
$V_{3 ; 5 ; 7-16}$	0 to V_{P}
$V_{2 ; 4 ; 6-16}$	0 to V_{P}
V_{8-16}	max.
V_{10-16}	V_{P}
V_{12-16}	V_{13-16} to $V_{P}+3 \mathrm{~V}$
V_{14-16}	V_{15-16} to $V_{P}+3 \mathrm{~V}$
$V_{11 ; 13 ; 15-16}$	$0,3 V_{P}$ to V_{P}

Current
Pin 8
$-\mathrm{I}_{8} \quad \max \quad 1 \mathrm{~mA}$

Power dissipation
Total power dissipation
$P_{\text {tot }} \quad \max \quad 1 \mathrm{~W}$

Temperatures
Storage temperature $\mathrm{T}_{\text {stg }}-20$ to $+125{ }^{\circ} \mathrm{C}$
Operating ambient temperature
Tamb $\quad-20$ to $+60^{\circ} \mathrm{C}$
CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{V}_{1-16}=1,5 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 5 .

Current consumption
I9 \quad typ. $\quad 50 \mathrm{~mA}$
Luminance input

Black level	V_{1-16}	typ.	$1,5 \mathrm{~V}$
Black-to-white input voltage (peak-to-peak value)	$\mathrm{V}_{1-16(\mathrm{p}-\mathrm{p})}$ typ.	$1,0 \mathrm{~V}$	
Input resistance	$\mathrm{R}_{1-16}>$	$100 \mathrm{k} \Omega$	

Colour difference input
Input signals (peak-to-peak values) $\mathrm{R}-\mathrm{Y} \quad 1$)

$\mathrm{G}-\mathrm{Y}$	$1)$
$\mathrm{B}-\mathrm{Y}$	$1)$

Input currents

Input currents during clamping

$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$	typ.	$1,4 \mathrm{~V}$
$\mathrm{~V}_{4-16(\mathrm{p}-\mathrm{p})}$ typ.	$0,82 \mathrm{~V}$	
$\mathrm{~V}_{6-16(\mathrm{p}-\mathrm{p})}$ typ.	$1,78 \mathrm{~V}$	
$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	typ.	$2 \mu \mathrm{~A}$
	$<$	$4 \mu \mathrm{~A}$
$\mathrm{I}_{2}, \mathrm{I}_{4}, \mathrm{I}_{6}$	$-0,2$ to $+0,2 \mathrm{~mA}$	

${ }^{1}$) This prescribed order is not mandatory, as all three channels are identical.

CHARACTERISTICS (continued)
Clamp pulse input for d.c. feedback

Input voltage for clamping: on level	$\begin{aligned} & V_{8-16} \\ & V_{8-16} \end{aligned}$		$\begin{array}{r} 6,5 \text { to } 12 \\ 0 \text { to } 5,5 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Input current for clamping: on level	I_{8}	$<$	1	$\mu \mathrm{A}$
off level	$-\mathrm{I}_{8}$	<	20	$\mu \mathrm{A}$

Feedback input

D. C. level during clamping
$\mathrm{V}_{11 ; 13 ; 15-16}$ typ. $0,5 \mathrm{~V}_{\mathrm{P}}$
Gain adjustment for colour drive
Adjustment voltage range
Adjustment voltage for nominal gain
$\mathrm{V}_{3 ; 5 ; 7-16}$
$\mathrm{V}_{3 ; 5 ; 7-16}$

G
$\Delta \mathrm{G}$
$\left.\begin{array}{llrl}\mathrm{I}_{11}, \mathrm{I}_{13}, \mathrm{I}_{15} & \text { typ. } & 2 & \mu \mathrm{~A} \\ & \text { typ. } & 20 & \mathrm{~mA} / \mathrm{V} \\ \mathrm{I}_{10}, \mathrm{I}_{12}, \mathrm{I}_{14} & -4,4 \text { to }+4,4 & \mathrm{~mA} \\ \mathrm{R}_{10 ; 12 ; 14-9} & \text { typ. } & 680 & \Omega{ }^{3} \text {) } \\ & & & \\ \mathrm{V}_{10 ; 12 ; 14-16} & \text { typ. } & 8 & \mathrm{~V}\end{array}{ }^{3}\right)$

APPLICATION INFORMATION (see circuit on page 5)
Clamping level $\left(\mathrm{V}_{\mathrm{cl}}\right)$ of video output stages, with set clamping level potentiometers in their mid-positions:

$$
V_{c l}=V_{P}\left(1+\frac{R 1}{R 2}-\frac{R 1}{R 3}\right)
$$

Gain of video output stages: $\mathrm{G}=1+\frac{\mathrm{R} 1}{\mathrm{R} 2}+\frac{\mathrm{R} 1}{\mathrm{R} 3}+\frac{\mathrm{R} 1}{\mathrm{R} 4}$

1) Switching from clamping on to off occurs at about 6 V .
2) Error signal is assumed to be negligible.
${ }^{3}$) The fact that the load resistors have series diodes (D; see block diagram on page 2), means that the resistors can be ignored when $\mathrm{V}_{10 ; 12 ; 14} \geq \mathrm{V}_{\mathrm{P}}$.
In that case, external load resistors must be chosen such that the nominal current will be $4,4 \mathrm{~mA}$.

$00 \varepsilon s z \forall a 1$
$0 \varepsilon s z \forall a 1$
IIIIIII

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2540 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using n-p-n tuners.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f. gain
- synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit which can be switched on/off by a d.c. level, e.g. during tuning
- a.g.c. circuit with noise gating
- tuner a.g.c. output ($\mathrm{n}-\mathrm{p}-\mathrm{n}$ tuners)
- VCR switch, which switches off the video output; e.g. for insertion of a VCR playback signal

QUICK REFERENCE DATA							
Supply voltage	V_{11-13}	typ.	12	V			
Supply current	I_{11}	typ.	50	mA			
I.F. input voltage at $\mathrm{f}=38,9 \mathrm{MHz}$.(r.m.s. value)	$\mathrm{V}_{1-16}(\mathrm{rms})$	typ.	100	$\mu \mathrm{~V}$			
Video output voltage	V_{12-13}	typ.	3	V			
I.F. voltage gain control range	G_{V}	typ.	64	dB			
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	$\mathrm{S}_{\mathrm{i}} \mathrm{N}$	typ.	58	dB			
A.F.C. output voltage swing for $\Delta \mathrm{f}=100 \mathrm{kHz}$	V_{6-13}	$>$	10	V			

PACKAGE OUTLINES (see general section)
TDA2540 : 16-lead DIL; plastic.
TDA 2540Q : 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage	V_{11-13}	\max.	13,8
V			
Tuner a.g.c. voltage	V_{4-13}	\max.	12
Power dissipation	$\mathrm{P}_{\mathrm{tot}}$	\max.	V

Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	-25 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS measured in circuit on page 6

		typ. 12
Supply voltage range	V_{11-13}	10, 2 to 13,8

The following characteristics are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{11-13}=12 \mathrm{~V}$
I.F. input voltage for onset of a.g.c.
at $\mathrm{f}=38,9 \mathrm{MHz}$ (r.m.s. value)

Differential input impedance

$\mathrm{V}_{1-16(\mathrm{rms})}$	$\begin{array}{l}\text { typ. } \\ <\end{array}$	100	$\mu \mathrm{~V}$

Zero-signal output level
Top sync output level
A.F.C. output voltage swing for $\Delta f=100 \mathrm{kHz}$
I.F. voltage gain control range

$\left\|\mathrm{Z}_{1-16}\right\|$	$\text { typ. } \begin{aligned} & 2 \mathrm{k} \Omega \text { in paralle } \\ & \text { with } 2 \mathrm{pF} \end{aligned}$	
V_{12-13}	typ. $6 \pm 0,3$	V
	(typ. 3, 07	V
-12-13	(2, 9 to 3, 2	V
	1> 10	V
6-13	typ. 11	V

Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$
Bandwidth of video amplifier (3 dB)
$\mathrm{G}_{\mathrm{v}} \quad$ typ. $64 \quad \mathrm{~dB}$

Differential gain

Differential phase
$\mathrm{d} \varphi$

Carrier signal at video output

2nd harmonic of carrier at video output
Change of frequency at a.f.c: output
voltage swing of 10 V .

$\Delta f \quad$| typ. | 100 | kHz |
| :--- | :--- | :--- |
| $<$ | 200 | kHz |

${ }^{1}$) $\mathrm{S} / \mathrm{N}=\frac{\mathrm{V}_{\text {o black-to- white }}}{\mathrm{V}_{\mathrm{n}(\mathrm{rms})}^{\text {? }}}$ at $\mathrm{B}=5 \mathrm{MHz}$.

CHARACTERISTICS (continued)

Intermodulation at $1,1 \mathrm{MHz}$; blue ${ }^{1}$)	$>$	46 60
yellow ${ }^{1}$)	typ.	46 50
at $3,3 \mathrm{MHz} \quad 2$)	>	46 54

Input conditions for intermodulation measurements:
standard colour bar with 75% contrast

S.C. : sound carrier level

Test set-up for intermodulation

${ }^{1}$) $20 \log \frac{V_{\mathrm{O}} \text { at } 4,4 \mathrm{MHz}}{\mathrm{V}_{\mathrm{O}} \text { at } 1,1 \mathrm{MHz}}+3,6 \mathrm{~dB} . \quad{ }^{2}$) $20 \log \frac{\mathrm{~V}_{\mathrm{O}} \text { at } 4,4 \mathrm{MHz}}{\mathrm{V}_{\mathrm{O}} \text { at } 3,3 \mathrm{MHz}}$.

CHARACTERISTICS (continued)
A.F.C. switches off at: $\quad \mathrm{V}_{6-13}<2,5 \mathrm{~V}$

VCR switches off at:
White spot inverter threshold level
White spot insertion level
Noise inverter threshold level
Noise insertion level
Tuner a.g.c. output current range
Tuner a.g.c. output voltage at $\mathrm{I}_{4}=10 \mathrm{~mA}$

Video output waveform showing white spot and noise inverter threshold levels.

[^47]APPLICATION INFORMATION

\qquad

A.F.C. output voltage $\left(\mathrm{V}_{6-13}\right)$ as a function of the frequency.

December 1976

Signal-to-noise ratio as a function of input voltage (V_{1-16}).

TELEVISION I.F. AMPLIFIER AND DEMODULATOR

The TDA2541 is an i.f. amplifier and demodulator circuit for colour and black and white television receivers using p-n-p tuners.
It incorporates the following functions:

- gain-controlled wide-band amplifier, providing complete i.f gain
- synchronous demodulator
- white spot inverter
- video preamplifier with noise protection
- a.f.c. circuit which can be switched on /off by a d.c. level, e.g. during tuning
- a.g.c. circuit with noise gating
- tuner a.g.c. output (p-n-p tuners)
- VCR switch, which switches off the video output; e.g. for insertion of a VCR playback signal.

QUICK REFERENCE DATA					
Supply voltage	V_{11-13}	typ.	12	V	
Supply current	I_{11}	typ.	50	mA	
I.F. input voltage at $\mathrm{f}=38,9 \mathrm{MHz}$ (r.m.s. value)	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ.	100	$\mu \mathrm{~V}$	
Video output voltage	V_{12-13}	typ.	3	V	
I.F. voltage gain control range	G_{V}	typ.	64	dB	
Signal-to-noise ratio at $\mathrm{V}_{\mathrm{i}}=10 \mathrm{mV}$	S_{N}	typ.	58	dB	
A.F.C. output voltage swing for $\Delta \mathrm{f}=100 \mathrm{kHz}$	V_{6-13}	$>$	10	V	

PACKAGE OUTLINES (see general section)
TDA2541 : 16-lead DIL; plastic.
TDA2541Q : 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Supply voltage
Tuner a.g.c. voltage
Power dissipation
$\mathrm{V}_{11-13} \max .13,8 \mathrm{~V}$

Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-25 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS measured in circuit on page 6

Supply voltage range	V_{11-13}	$\begin{array}{cr} \text { typ. } & 12 \\ 10,2 \text { to } & 13,8 \end{array}$	V
The following characteristics are measured at $\mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C} ; \mathrm{V}_{11-13}=12 \mathrm{~V}$			
I.F. input voltage for onset of a.g.c. at $\mathrm{f}=38,9 \mathrm{MHz}$ (r.m.s. value)	$\mathrm{V}_{1-16(\mathrm{rms})}$	$\begin{array}{ll}\text { typ. } & 100 \\ < & 150\end{array}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \end{aligned}$
Differential input impedance	$\left\|Z_{1-16}\right\|$	$\text { typ. } \begin{gathered} 2 \mathrm{k} \Omega 2 \mathrm{i} \\ \text { lel wit } \end{gathered}$	$\begin{aligned} & \mathrm{n} \text { paral- } \\ & \mathrm{h} 2 \mathrm{pF} \end{aligned}$
Zero-signal output level	V_{12-13}	typ. $6 \pm 0,3$	V
Top sync output level	$\mathrm{V}_{12-1.3}$	$\left\{\begin{array}{r} \text { typ. } \quad 3,07 \\ 2,9 \text { to } 3,2 \end{array}\right.$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
A.F.C. output voltage swing for $\Delta \mathrm{f}=100 \mathrm{kHz}$	V_{6-13}	$\begin{cases}> & 10 \\ \text { typ. } & 11\end{cases}$	V
I. F. voltage gain control range	G_{V}	typ. 64	dB
Signal-to-noise ratio at $\mathrm{V}_{\mathbf{i}}=10 \mathrm{mV}$	S / N	typ. 58	dB^{1})
Bandwidth of video amplifier (3 dB)	B	typ.	MHz
Differential gain	dG	$\begin{array}{lr} \text { typ. } & 4 \\ < & 10 \end{array}$	$\begin{aligned} & \% \\ & \% \end{aligned}$
Differential phase	$\mathrm{d} \varphi$	$\begin{array}{lr}\text { typ. } & 2^{\circ} \\ < & 10^{\circ}\end{array}$	
Carrier signal at video output		$\begin{array}{lr} \text { typ. } & 4 \\ < & 30 \end{array}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$
2nd harmonic of carrier at video output		$\begin{array}{ll} \text { typ. } & 20 \\ < & 30 \end{array}$	$\begin{gathered} \mathrm{mV} \\ \mathrm{mV} \end{gathered}$
Change of frequency at a.f.c. output voltage swing of 10 V	$\Delta \mathrm{f}$	$\begin{array}{ll} \text { typ. } & 100 \\ < & 200 \end{array}$	$\begin{aligned} & \mathrm{kHz} \\ & \mathrm{kHz} \end{aligned}$

${ }^{1}$) $\mathrm{S} / \mathrm{N}=\frac{\mathrm{V}_{\mathrm{O}} \text { black-to-white }}{\mathrm{V}_{\mathrm{n}(\mathrm{rms})^{\text {at }} \mathrm{B}=5 \mathrm{MHz}}}$

CHARACTERISTICS (continued)

Input conditions for intermodulation measurements:
standard colour bar with 75% contrast

S.C. : sound carrier level
$\left.\begin{array}{l}\text { C.C. : chrominance carrier level } \\ \text { P.C. : picture carrier level }\end{array}\right\}$ with respect to top sync level
Test set-up for intermodulation

1) $20 \log \frac{V_{0} \text { at } 4,4 \mathrm{MHz}}{\mathrm{V}_{\mathrm{o}} \text { at } 1,1 \mathrm{MHz}}+3,6 \mathrm{~dB} . \quad{ }^{2}$) $20 \log \frac{\mathrm{~V}_{\mathrm{o}} \text { at } 4,4 \mathrm{MHz}}{\mathrm{V}_{\mathrm{o}} \text { at } 3,3 \mathrm{MHz}}$

CHARACTERISTICS (continued)

A.F.C. switches off at;

VCR switches off at:
White spot inverter threshold level
White spot insertion level
Noise inverter threshold level
Noise insertion level
Tuner a.g.c. output current range
Tuner a.g.c. output voltage at $\mathrm{I}_{4}=10 \mathrm{~mA}$

v_{6-13}	$<$	2,5	V
V_{14-13}	<	1,1	V
	typ.	6,6	V^{1})
	typ.	4,7	V^{l})
	typ.	1,8	V^{1})
	typ.	3,8	V^{1})
I_{4}		0 to 10	mA
V_{4-13}	$<$	0, 3	V
I_{4}	$<$	15	$\mu \mathrm{A}$

$$
\mathrm{V}_{14-13}=11 \mathrm{~V} ; \mathrm{V}_{4-13}=12 \mathrm{~V}
$$

Video output waveform showing white spot and noise inverter threshold levels.

[^48]

Q of L 1 and $\mathrm{L} 2 \approx 80$

A.F.C. output voltage $\left(\mathrm{V}_{6}-13\right)$ as a function of the frequency.

Signal-to-noise ratio as a function of input voltage (V_{1-16})

LUMINANCE AND CHROMINANCE CONTROL COMBINATION

The TDA2560 is a monolithic integrated circuit for use in decoding systems of colour television receivers. The circuit consists of a luminance and chrominance amplifier. The luminance amplifier has a low input impedance so that matching of the luminance delay line is very easy.
It also incorporates the following functions:

- d.c. contrast control;
- d.c. brightness control;
- black level clamp;
- blanking;
- additional video output with positive-going sync.

The chrominance amplifier comprises:

- gain controlled amplifier;
- chrominance gain control tracked with contrast control;
- separate d.c. saturation control:
- combined chroma and burst output, burst signal amplitude not affected by contrast and saturation control;
- the delay line can be driven directly by the IC.

QUICK REFERENCE DATA				
Supply voltage	V_{8-5}	typ.	12	V
Supply current	I_{8}	typ.	45	mA
Luminance signal input current (black-to-white value)	I_{14}	typ.	0, 2	mA
Chrominance input signal (peak-to-peak value)	$\mathrm{V}_{2-1(p-p)}$		4 to 80	mV
Luminance output signal at nominal contrast (black-to-white value)	V_{10-5}	typ.	3	V
Chrominance output signal at nominal contrast and saturation and $1,25 \mathrm{~V}$ peak-to-peak burst output (peak-to-peak value)	$\mathrm{V}_{6}-5(\mathrm{p}-\mathrm{p})$	typ.	2,5	V
Contrast control range		$>$	20	dB
Saturation control range		>	20	dB

PACKAGE OUTLINES (see general section)

TDA2560 : 16-lead DIL; plastic.
TDA2560Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltage

Supply voltage
$\mathrm{V}_{8-5} \quad \max \quad 14 \quad \mathrm{~V}$
Power dissipation
Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 930 \quad \mathrm{~mW}$

Temperatures

Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	0 to +65	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS measured in the circuit on page 7
Supply voltage range

	typ.	12	V
$\mathrm{~V}_{8-5}$	10 to 14	V	
I_{8}	typ.	45	$\left.\mathrm{~mA}^{1}\right)$
$\mathrm{V}_{8-5(\mathrm{p}-\mathrm{p})}$	$<$	100	mV

The following data are measured at $\mathrm{V}_{8-5}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{G}}=2,7 \mathrm{k} \Omega$

Luminance amplifier

Input signal current; black-to-white value
Input bias current
Input impedance
Gain (pin 13)
Contrast control range
Contrast control voltage range
Contrast control current
Black level range
Brightness control voltage range
Brightness control current
Black level stability when c̀hanging temperature
Black level stability when changing contrast
Bandwidth (-3 dB)

I_{14}	typ.	0,2	mA
I_{14}	typ.	0,25	mA
$\left\|\mathrm{Z}_{14-5}\right\|$	typ.	150	$\left.\Omega^{2}\right)$

see note 1 on page 5
V_{16-5} (see control curve on page 6)

I_{16}	$<$	8	$\mu \mathrm{~A}$
$\mathrm{~V}_{10-5}$		1 to 3	V
$\mathrm{~V}_{11-5}$	typ.	1 to 3	V
I_{11}	$<$	20	$\left.\mu \mathrm{~A}^{3}\right)$
	typ.	0,1	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$

see page 9 (pin 10)
B $\quad>\quad 5 \quad \mathrm{MHz}^{4}$)

1) At a load on pin 6 of $1,5 \mathrm{k} \Omega$, and no load on pins 10 and 15.
${ }^{2}$) At an input bias current of $0,25 \mathrm{~mA}$.
${ }^{3}$) At $V_{11-5}>4 \mathrm{~V}$.
${ }^{4}$) At nominal contrast (max. contrast setting -3 dB).

CHARACTERISTICS (continued)
Output voltage (black-to-white value)
Output voltage (additional; positive-going sync) peak-to-peak value

Black level clamp pulse (see note 2 on page 5) on level
off level
Blanking pulse (see note 3 on page 5)
for 0 V on pin 10: on level off level
for $1,5 \mathrm{~V}$ on pin 10: on level off level

V_{10-5}	typ. 3	V
$\mathrm{V}_{15-5}(\mathrm{p}-\mathrm{p})$	typ. 3,4	v ${ }^{1}$)
V_{7-5}	7 to V_{8-5}	V
V_{7-5}	<5	V
V_{9-5}	2,5 to 4,5	V
V_{9-5}	< 1,5	V
V9-5	6 to V_{8-5}	V
V9-5	$<\quad 4,5$	V

Chrominance amplifier 2)

Input signal (peak-to-peak value)
Chrominance output signal at nominal contrast and saturation setting (peak-to-peak value)
Maximum chrominance output signal
Bandwidth (-3 dB)
$\mathrm{V}_{2-1(p-p)} \quad 4$ to 80 mV

Ratio of burst and chrominance at nominal contrast and saturation
A.C.C. starting voltage (see note 6 on page 5)
A.C.C. range

Tracking between luminance and chrominance with contrast control (10 dB control)
Saturation control range
Saturation control voltage range
Gating pulse for chrominance amplifier on level
off level
width
Signal-to-noise ratio at nominal input voltage
Phase shift between burst and chrominance

V_{3-5}	typ.	1,2	V
	$>$	30	dB

typ. $\pm 1 \mathrm{~dB}$ $>20 \mathrm{~dB}$
V_{4-5} (see control curve on page 6)

V_{7-5}		2,3 to 5	V
$\mathrm{~V}_{7-5}$	$<$	1	V
t_{7}	$>$	8	$\mu \mathrm{~s}$
$\mathrm{~S} / \mathrm{N}$	$>$	46	dB
	$<$	5°	

[^49]
NOTES

1. The gain of the luminance amplifier can be adjusted, by setting the gain of the contrast control circuit by selection of discrete resistor R_{G} (see also circuit on page 7). This circuit configuration has been chosen to reduce the spread of the gain to a minimum (main cause of spread is now the spread of the ratio of the delay line matching resistors and the resistor R_{G}. At $\mathrm{R}_{\mathrm{G}}=2,7 \mathrm{k} \Omega$ the output voltage at nominal contrast (maximum -3 dB) is 3 V black-to-white for an input current of $0,2 \mathrm{~mA}$ black-to-white.
2. This pulse (pin 7) is used for gating of the chrominance amplifier and black level clamping. The latter function is actuated at a +7 V level. The input pulse must have such an amplitude that the clamping circuit is active only during the back porch of the blanking interval. The gating pulse switches the gain of the chroma amplifier to maximum during the flyback time, when the pulse rises above $2,3 \mathrm{~V}$ and switches it back to normal setting when the pulse falls below 1 V .
3. This pulse (pin 9) is used for blanking the luminance amplifier. When the pulse exceeds the $+2,5 \mathrm{~V}$ level the output signal is blanked to a level of about 0 V . When the input exceeds a +6 V level a fixed level of typ. $+1,5 \mathrm{~V}$ is inserted in the output signal. This level can be used for clamping purposes.
4. The chrominance and burst signal are both available on this pin (6).

The burst signal is not affected by the contrast and saturation control and is kept constant by the a.c.c. circuit of the TDA2522.
The output of the delay line matrix circuit, which is the input of the TDA2522, is thus automatically compensated for the insertion losses. This means that the output signal of the TDA 2560 is determined by the insertion losses of the delay line.
At nominal contrast and saturation setting the ratio of burst to chrominance signal at the output is typically identical to that at the input.
5. Nominal contrast is specified as maximum contrast -3 dB .

Nominal saturation is specified as maximum saturation - 6 dB .
6. A negative-going control voltage gives a decrease in gain.

Contrast control of luminance and chrominance amplifier

Saturation control of chrominance amplifier

APPLICATION INFORMATION

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Balanced chrominance input signal (in conjunction with pin 2)

This is derived from the chrominance signal bandpass filter, designed to provide a push-pull input. A signal amplitude of at least 4 mV peak-to-peak is required between pins 1 and 2. The chrominance amplifier is stabilized by an external feedback loop from the output (pin 6) to the input (pins 1 and 2). The required level at pins 1 and 2 will be 3 V .
All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst-to-chrominance ratio of input signal is $1: 2$.
2. Chrominance signal input (see pin 1)
3. A.C.C. input

A negative-going potential, starting at $+1,2 \mathrm{~V}$, gives a 40 dB range of a.c.c. Maximum gain reduction is achieved at an input voltage of 500 mV .
4. Chrominance saturation control

A control range of +6 dB to $>-14 \mathrm{~dB}$ is provided over a range of d.c. potential on pin 4 from +2 to +4 V . The saturation control is a linear function of the control voltage.
5. Negative supply (earth)
6. Chrominance signal output

For nominal settings of saturation and contrast controls (max. -6 dB for saturation, and max. -3 dB for contrast) both the chroma and burst are available at this pin, and in the same ratio as at the input pins 1 and 2 . The burst signal is not affected by the saturation and contrast controls. The a.c.c. circuit of the TDA2522 will hold constant the colour burst amplitude at the input of the TDA2522. As the PAL delay line is situated here between the TDA2560 and TDA2522 there may be șome variation of the nominal 1 V peak-to-peak burst output of the TDA2560, according to the tolerances of the delay line. An external network is required from pin 6 of the TDA2560 to provide d.c. negative feedback in the chroma channel via pins 1 and 2.
7. Burst gating and clamping pulse input

A two-level pulse is required at this pin to be used for burst gate and black level clamping. The black level clamp is activated when the pulse level is greater than 7 V . The timing of this interval should be such that no appreciable encroachment occurs into the synic pulse on picture line periods during normal operation of the receiver. The burst gate, which switches the gain of the chroma amplifier to maximum, requires that the input pulse at pin 7 should be sufficiently wide, at least $8 \mu \mathrm{~s}$, at the actuating level of $2,3 \mathrm{~V}$.

APPLICATION INFORMATION (continued)

8. +12 V power supply

Correct operation occurs within the range 10 to 14 V . All signal and control levels have a linear dependency on supply voltage but, in any given receiver design, this range may be restricted due to considerations of tracking between the power supply variations and picture contrast and chroma levels.
9. Flyback blanking input waveform

This pin is used for blanking the luminance amplifier. When the input pulse exceeds the $+2,5 \mathrm{~V}$ level, the output signal is blanked to a level of about 0 V . When the input exceeds a +6 V level, a fixed level of about $1,5 \mathrm{~V}$ is inserted in the output. This level can be used for clamping purposes.
10. Luminance signal output

An emitter follower provides a low impedance output signal of 3 V black-to-white amplitude at nominal contrast setting having a black level in the range 1 to 3 V . An , external emitter load resistor is not required.
The luminance amplitude available for nominal contrast may be modified according to the resistor value from pin 13 to the +12 V supply. At an input bias current I_{14} of $0,25 \mathrm{~mA}$ during black level the amplifier is compensated so that no black level shift more than 10 mV occurs at contrast control. When the input current deviates from the quoted value the black level shift amounts to $100 \mathrm{mV} / \mathrm{mA}$.
11. Brightness control

The black level at the luminance output (pin 10) is identical to the control voltage required at this pin. A range of black level from 1 to 3 V may be obtained.
12. Black level clamp capacitor

13. Luminance gain setting resistor

The gain of the luminance amplifier may be adjusted by selection of the resistor value from pin 13 to +12 V . Nominal luminance output amplitude is then 3 V black-to-white at pin 10 when this resistor is $2,7 \mathrm{k} \Omega$ and the input current is $0,2 \mathrm{~mA}$ black-to-white. Maximum and minimum values of this resistor are $3,9 \mathrm{k} \Omega$ and $1,8 \mathrm{k} \Omega$.
14. Luminance signal input

A low input impedance in the form of a current sink is obtained at this pin. Nominal input current is $0,2 \mathrm{~mA}$ black-to-white. The luminance signal may be coupled to pin 14 via a d.c. blocking capacitor and, in addition, a resistor employed to give a d.c. current into pin 14 at black level of about $0,25 \mathrm{~mA}$. Alternatively d.c. coupling from a signal source such as the TDA2540 and TDA2541 may be employed.

APPLICATION INFORMATION (continued)

15. Luminance signal output for sync separator purposes

A luminance signal output with positive-going sync is available which is not affected by the contrast control or the value of resistor at pin 13. This voltage is intended for drive of sync separator circuits. The output amplitude is $3,4 \mathrm{~V}$ peak-to-peak when the luminance signal input is $0,2 \mathrm{~mA}$ black-to-white.
16. Contrast control

With 3 V on this pin the gain of the luminance channel is such that $0,2 \mathrm{~mA}$ black-towhite at pin 14 gives a luminance output on pin 10 of 3 V black-to-white. The nominal value of $2,7 \mathrm{k} \Omega$ is then assumed for the resistor from pin 13 to the +12 V supply. The variation of control potential at pin 16 from 2 to 4 V gives -17 to +3 dB gain variation of the luminance channel. A similar variation in the chrominance channel occurs in order to provide correct tracking between the two signals.

HORIZONTAL SYNCHRONIZATION AND VERTICAL DIVIDER

The TDA2571 is designed in combination with the TDA2581 as a matched pair for switched-mode driven horizontal deflection stages.
When supplied with a composite video signal the TDA2571 delivers drive pulses for the TDA2581 and sync pulses for the vertical deflection.
The circuit incorporates the following functions:

- Horizontal sync separator with sliding bias in such a way that the sync pulse is always sliced between top-sync level and blanking level.
- Noise gate.
- Horizontal phase detector switching to a small time constant during catching. The phase detector is gated when the oscillator is synchronized.
- Horizontal oscillator.
- Burst-key pulse gencrator. This pulse can also be applied as black level clamp pulse.
- Vertical sync pulse separator.
- Automatic vertical synchronization (divider system).
- Automatic VCR recognition (on VCR identification signal).

QUICK REFERENCE DATA				
Supply voltage; horizontal				
vertical	V_{12-11}	typ.	12	V
	$\mathrm{~V}_{16-11}$	typ.	12	V
Sync input voltage (peak-to-peak value)	$\mathrm{V}_{2-11(\mathrm{p}-\mathrm{p})}$	0.07 to	1	V
Slicing level		typ.	50	$\%$
Control sensitivity of horizontal PLL		typ.	1800	$\mathrm{~Hz} / \mathrm{V}$
Holding range		$\Delta \mathrm{f}$	typ.	± 1000
Catching range	$\Delta \mathrm{Hz}$			
Horizontal output pulse (peak-to-peak value)	$\mathrm{V}_{8-11(\mathrm{p}-\mathrm{p})}$	typ.	11	V
Vertical sync output pulse (peak-to-peak value)	$\mathrm{V}_{1-11(\mathrm{p}-\mathrm{p})}$	typ.	11	V
Burst-key output pulse (peak-to-peak value)	$\mathrm{V}_{13-11(\mathrm{p}-\mathrm{p})}$	typ.	11	V

PACKAGE OUTLINES (see general section)
TDA2571 : 16-lead DIL; plastic.
TDA2571Q: 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 1.34)
Voltages

Supply voltage (horizontal)
(vertical)

V_{12-11}	\max.	13,2	V
$\mathrm{~V}_{16-11}$	\max.	13,2	V

Power dissipation
Total power dissipation
$\mathrm{P}_{\text {tot }} \quad \max \quad 1 \quad \mathrm{~W}$

Temperatures

| Storage temperature | $\mathrm{T}_{\text {stg }}$ | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| :--- | :--- | :--- | :--- | :--- |
| Operating ambient temperature | $\mathrm{T}_{\mathrm{amb}}$ | -25 to +65 | ${ }^{\circ} \mathrm{C}$ |

CHARACTERISTICS at $\mathrm{V}_{12-11}=12 \mathrm{~V} ; \mathrm{V}_{16-11}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ measured in the circuit on page 2

Supply voltage range (pins 12 and 16)

Current consumption
$\mathrm{V}_{12-11} ; \mathrm{V}_{16-11} \begin{array}{rrr}\text { typ. } & 12 & \mathrm{~V} \\ 10 \text { to } 13,2 & \mathrm{~V}\end{array}$
$\begin{array}{llll}\mathrm{I}_{12}+\mathrm{I}_{16} & \text { typ. } & 50 & \mathrm{~mA} \\ < & 70 & \mathrm{~mA}\end{array}$

Sync separator and noise gate

Sync pulse amplitude (negative going) peak-to-peak value

Top-sync level
Slicing level
Slicing level noise gating
$\left.\begin{array}{lrrll}\mathrm{V}_{2-11(\mathrm{p}-\mathrm{p})} & & 0,07 \text { to } 1 & \mathrm{~V} & \mathrm{l}\end{array}\right)$

Phase locked loop

Holding range
Catching range
Control sensitivity of horizontal PLL
Control sensitivity of phase detector

$\Delta \mathrm{f}$	typ.	± 1000	Hz
$\Delta \mathrm{f}$	typ.	± 900	Hz
	typ.	1800	$\mathrm{~Hz} / \mathrm{V}$
	typ.	1,2	$\mathrm{~V} / \mathrm{\mu s}$

typ. $\pm 900 \mathrm{~Hz}$
typ. $1,2 \mathrm{~V} / \mu \mathrm{s}$

[^50]CHARACTERISTICS (continued)

Horizontal oscillator

Frequency; free running	f_{0}	typ.	31,250	kHz
Frequency at output pin 8	f_{8}	typ.	15, 625	kHz
Spread of frequency without spread of external components	$\Delta \mathrm{f}_{\text {o }}$	typ.	± 4	\%
Temperature coefficient	T	<	$2,5 \times 10^{-4}$	
Change of frequency when $\mathrm{V}_{12-11} \mathrm{dropsto} 6 \mathrm{~V}$	$\Delta \mathrm{f}_{0}$	$<$	10	\%
Change of frequency when V_{12-11} increases from 10 to $13,2 \mathrm{~V}$	$\Delta \mathrm{f}_{0}$	$<$	0,5	\%
Output voltage; no load (peak-to-peak value)	$\mathrm{V}_{8-11(p-p)}$	>	10	V
Output resistance	R_{8-11}	typ.	300	S.
Output current range (peak-to-peak value)	$\mathrm{I}_{8}(\mathrm{p}-\mathrm{p})$		0 to 40	mA
Duty factor of output pulse	δ	typ.	46	\% ${ }^{\text {l }}$
Delay between falling edge of output pulse and end of sync pulse at pin 2	${ }^{t}{ }_{d}$	typ.	0,9	$\mu \mathrm{s}{ }^{2}$)
Burst-key pulse				
Output voltage (peak-to-peak value)	$\mathrm{V}_{13}-11(\mathrm{p}-\mathrm{p})$	$<$	10	V
Duration of upper part of output pulse	t_{p}	typ.	3,3	$\mu \mathrm{s}{ }^{2}$)
Duration of lower part of output pulse	t_{p}	typ.	8,8	$\mu \mathrm{s}^{2}$)
Amplitude of lower part of output pulse	$\mathrm{V}_{13-11(p-p)}$	typ.	3	V ${ }^{2}$)
Output resistance	R_{13-11}	typ.	200	Ω
Delay between the end of the sync pulse at pin 2 and the rising edge of the burst key pulse	${ }^{\text {t }}$ p	typ.	0,9	$\mu \mathrm{s}{ }^{2}$)

[^51]
$$
\delta=\frac{\mathrm{t}}{\mathrm{~T}} \times 100 \% .
$$
${ }^{2}$) See waveforms on page 5 .

CHARACTERISTICS (continued)

Vertical sync pulse

Output voltage (peak-to-peak value)
Duration of output pulse during indirect synchronization

Load resistor to pin 2
Ratio between basic horizontal oscillator frequency and vertical pulse

$\mathrm{V}_{1-11(p-p)}$	$>$	10	V
t_{p}	typ.	170	$\mu \mathrm{~s}$
R_{L}	$>$	2	$\mathrm{k} \Omega$

Relationship between the video input signal to the TDA2571 and the horizontal sync and burst-key pulse output.

1) When a $n o n$-standard sync signal is applied the separated vertical sync pulse of the incoming signal is connected to pin 1 ; the pulse of the divider circuit is switched off.

PINNING

1. Vertical sync pulse output
2. Video input
3. Sync separator slicing level output
4. Black level detector output
5. Vertical integrator bias network
6. Horizontal phase detector output
7. Reference voltage horizontal frequency control stage
8. Horizontal sync pulse output
9. Time constant switch
10. Coincidence detector output
11. Negative supply (ground)
12. Positive supply (horizontal)
13. Burst-key pulse output
14. RC-network horizontal oscillator
15. Control horizontal oscillator
16. Positive supply (vertical)

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Vertical sync pulse output

A resistor of about $10 \mathrm{k} \Omega$ must be connected between pin 1 and the positive supply line (pin 16 ; vertical supply).
The output pulse will come from the 625 divider stage (standard signal) or from the vertical sync pulse separator (non-standard signal), depending on the input signal on pin 2.
The standard and $n o n-s t a n d a r d$ signals are detected automatically.
2. Video input

The input signal must have negative-going sync pulses. The top-sync level can vary between 1 V and $3,5 \mathrm{~V}$ without affecting the sync separator operation.
The slicing level of the sync separator is fixed at 50%, for the sync pulse amplitude range 0,07 to 1 V . As a consequence the circuit gives a good sync separation down to pulses with an amplitude of 70 mV peak-to-peak (sync pulse compression). For sync pulses in excess of 1 V peak-to-peak the slicing level will increase.
The noise gate is activated at an input level $<0,7 \mathrm{~V}$, thus, when noise gating is required the top-sync level should be chosen close to the minimum level of 1 V . When i.f. circuits with a noise gate are used (e.g. TDA2540; TDA2541) the noise gate of the TDA2571 is not required.
3. Sync separator slicing level output

The sync separator slicing level is determined on this pin. A slicing level of 50% is obtained by comparing this level with the black level of the video signal, which is detected at pin 4 . The capacitor connected to pin 3 must be about $1 \mu \mathrm{~F}$.
4. Black level detector output

The black level of the input signal is detected on this pin, which is required to obtain good sync separator operation. A capacitor of $47 \mu \mathrm{~F}$ in' series with a resistor of 82Ω has to be connected to this pin. A $4,7 \mathrm{k} \Omega$ resistor must be connected between pins 3 and 4.

APPLICATION INFORMATION (continued)

5. Vertical sync pulse integrator bias network

The vertical sync pulse is obtained by integrating the composite sync signal in an internal RC-network. An external RC-network is required for the correct biasing of this circuit for various input conditions. Typical values are: $\mathrm{R}=220 \mathrm{k} \Omega ; \mathrm{C}=10 \mu \mathrm{~F}$.
6. Horizontal phase detector output

The control voltage for the horizontal oscillator is obtained on this pin. The output current is about 2 mA .
7. Reference voltage horizontal frequency control stage

This pin has two functions. It is used to decouple the reference voltage for the frequency control of the horizontal oscillator (so a good suppression of interference is obtained which may be present on the supply line). This pin is also used to control the reference waveform for the phase detector to the middle of the gating, giving a good noise immunity of the synchronization.
8. Horizontal sync pulse output

This pulse is obtained from the horizontal oscillator via a divider circuit.
The duty factor is 46%. The falling edge of this pulse has a delay of $0,9 \mu \mathrm{~s}$ with respect to the end of the sync pulse. Because of this phase relationship this pulse can directly drive the TDA2581.
9. Time constant switch

This pin is used to switch the time constant of the flywheel filter. The pin condition is determined by the coincidence detector (pin 10). During in-sync or when only noise is received pin 9 assumes ground level, which results in a long time constant and good noise immunity.
During out-of-sync or VCR playback for signals containing VCR identification signal only, pin 9 has a high impedance and consequently only the short time constant is available. In this condition a large catching range is obtained.
10. Coincidence detector output

A $10 \mu \mathrm{~F}$ capacitor must be connected to this pin. The output voltage depends on the oscillator condition (synchronized or not) and on the video input signal.
The following output voltages can occur:

- when in-sync: $\quad 0,4 \mathrm{~V}$
- when out-of-sync: $\quad 2,0 \mathrm{~V}$
- during noise at input: $1,0 \mathrm{~V}$
- with gap in sync pulse : $2,35 \mathrm{~V}$

APPLICATION INFORMATION (continued)

The gap in the sync pulse is intended for a VCR identification signal, and has a width of $0,5 \mu \mathrm{~s}$.
When such an identification is recognized, the receiver will automatically switch to a short flywheel filter time constant during VCR playback.
When the output voltage $<1,85 \mathrm{~V}$, the flywheel filter is switched to a long time constant, the phase detector output current to a low value and the gating of the phase detector is switched-on.
For a voltage $>1,85 \mathrm{~V}$, the flywheel filter has a short time constant. the phase detector has a high current and the gating of the phase detector is switched-off. The result is that during noise the flywheel time constant remains long thus preventing large shifts in the frequency of the horizontal oscillator (and screeming of the horizontal output transformer).
The output impedance is high thus the time constant can be switched-off manually (to +12 V).
11. Negative supply (ground)
12. Positive supply horizontal oscillator

Interference and hum on this supply line can affect the oscillator frequency. It is therefore necessary to have a separate decoupling of this pin with respect to pin 16. The current-draw of this pin is typically 33 mA .
13. Burst-key pulse output

This pulse is composed of two parts. The lower part has an amplitude of 3 V peak-to-peak and a width of $8,8 \mu \mathrm{~s}$ (for phase relation see page 5). The upper part has a total amplitude in excess of 10 V peak-to-peak and a width of $3,3 \mu \mathrm{~s}$. The leading edge of this pulse has a delay of $0,9 \mu \mathrm{~s}$ with respect to the falling edge of the sync pulse at the input (pin 2).
This pulse can directly drive the burst gate/black level clamp input of the, TDA2560.
14. RC-network horizontal oscillator

Stable components should be chosen for good frequency stability. For adjusting the frequency a part of the total resistance must be variable.
This part should be as small as possible, because of poor stability of variable carbon resistors.
The oscillator can be adjusted when pins 7 and 15 are short-circuited.
15. Horizontal oscillator control pin
16. Positive supply sync separator and divider circuit (vertical)

For this supply only a simple decoupling is required. The current-draw of this pin is typically 17 mA .

CONTROL CIRCUIT FOR SMPS

The TDA2581 is a monolithic integrated circuit for controlling switched-mode power supplies (SMPS) which are provided with the drive for the horizontal deflection stage. The circuit features the following:

- Voltage controlled horizontal oscillator.
- Phase detector.
- Duty factor control for the positive-going transient of the output signal.
- Duty factor increases from zero to its normal operation value.
- Adjustable maximum duty factor.
- Over-voltage and over-current protection with automatic re-start after switch-off.
- Counting circuit for permanent switch-off when n-times over-current or over-voltage is sensed.
- Protection for open-reference voltage.
- Protection for too low supply voltage.
- Protection against loop faults.
- Positive tracking of duty factor and feedback voltage when the feedback voltage is smaller than the reference voltage minus $1,5 \mathrm{~V}$.

QUICK REFERENCE DATA				
Supply voltage	V_{9-16}	typ.	12	V
Supply current	I_{9}	typ.	15	mA
Input signals				
Horizontal drive pulse (peak-to-peak value)	V_{3-16} (p-p)	typ.	11	v
Flyback pulse (differentiated deflection current); peak-to-peak value	$\mathrm{V}_{2-16(p-p)}$	typ.	5	V
External reference voltage	V_{10-16}	typ.	6,7	V
Output signals				
Duty factor of output pulse	δ		0 to 98	\%
Output voltage at $\mathrm{I}_{\mathrm{O}}<20 \mathrm{~mA}$ (peak value)	$\mathrm{V}_{11-16 \mathrm{M}}$	typ.	11,8	V
Output current (peak value)	$\mathrm{I}_{11 \mathrm{M}}$	$<$	40	mA

PACKAGE OUTLINES (see general section)
TDA2581 : 16-lead DIL; plastic.
TDA2581Q: 16-lead QIL; plastic.

BLOCK DIAGRAM

Note: trip levels are nominal values.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Supply voltage	V_{9-16}	$\max .$14 V Pin 11	$\mathrm{~V}_{11-16}$

Current

Output current $\mathrm{I}_{11} \max .40 \mathrm{~mA}$

Power dissipation
Total power dissipation $\quad \mathrm{P}_{\text {tot }} \quad \max .340 \mathrm{~mW}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	-25 to +80	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{9-16}=12 \mathrm{~V} ; \mathrm{V}_{10-16}=6,7 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ measured in the circuit on page 2

Supply voltage range	V_{9-16}	$\begin{array}{lr} \text { typ. } \begin{array}{r} 12 \\ 10 \text { to } \end{array} \frac{14}{} \end{array}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Protection voltage for too low supply voltage	V_{9-16}	$\begin{array}{cc} \text { typ. } & 9,4 \\ 8,6 \text { to } & 9,9 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Supply current at $\delta=50 \%$	I_{9}	typ. 15	mA
Supply current during protection	I9	typ. 15	mA
Minimum required supply current	I9	18,5	mA ${ }^{1}$)
Power consumption	P	typ. 180	mW

Required input signals

Reference voltage	V_{10-16}	typ. $5,6 \text { to }$	6,7 7,5	
High reference voltage protection : thresholdvoltage	V_{10-16}	typ. $7,7 \text { to }$	8,4 9,1	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Feedback input impedance at pin 8	$\left\|z_{8-16}\right\|$	typ.	100	k Ω
Horizontal drive pulse (square-wave or differentiated; negative transient is reference) peak-to-peak value	$\mathrm{V}_{3-16(p-p)}$	typ. $5 \text { to }$		$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$

[^52]CHARACTERISTICS (continued)
Flyback pulse or differential deflection current
V_{2-16}

1 to 5 V
Over-current protection :
threshold voltage
$\pm \mathrm{V}_{6} \quad$ typ.
typ. $\left.\quad \begin{array}{rl}710 & \mathrm{mV} \\ & 1\end{array}\right)$
Over-voltage protection :
threshold voltage
$\begin{array}{crrc} & \text { typ. } V_{10-16-0,1} & \mathrm{~V} \\ \mathrm{~V}_{7-16} & \mathrm{~V}_{10-16}-0,35 \text { to } \mathrm{V}_{10-16}+0,15 & \mathrm{~V} \\ & > & 5,8 & \mathrm{~V} \\ \mathrm{~V}_{4-16} & < & 4,5 & \mathrm{~V}\end{array}$
Delivered output signals
Horizontal drive pulse (loaded with a
resistor of 560Ω to +12 V)
peak-to-peak value
Output current; peak value

| $\mathrm{V}_{11-16(p-p)}$ | $>$ | $11,6 \mathrm{~V}$ |
| :--- | :--- | ---: | :--- |
| $\mathrm{I}_{11 \mathrm{M}}$ | $<$ | 40 mA |

Saturation voltage of output transistor at $\mathrm{I}_{11}=20 \mathrm{~mA}$
at $\mathrm{I}_{11}=40 \mathrm{~mA}$
, Duty factor of output pulse
Charge current for capacitor on pin $4 \quad \mathrm{I}_{4}$
Charge current for capacitor on pin $5 \quad \mathrm{I}_{5}$
Supply current for reference
${ }^{\mathrm{I}} 10$
typ. $\quad 0,9 \mathrm{~mA}$ 0,6 to $1,45 \mathrm{~mA}$

[^53]
$$
\delta=\frac{\mathrm{t}}{\mathrm{~T}} \times 100 \%
$$

The maximum duty factor value can be set to a desired value (see application information pin 12).

CHARACTERISTICS (continued)

Oscillator

Temperature coefficient
Relative frequency deviation for V_{10-16} changing from 6 to 7 V

Oscillator frequency spread (with fixed external components)

Frequency control sensitivity at pin 15

typ.	-300	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
$<$	-400	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
typ.	$-1,5$	$\%$
$<$	-2	$\%$
$<$	± 3	$\%$
typ.	4,5	$\mathrm{kHz} / \mathrm{V} \mathrm{l}^{2}$

Phase control loop

Loop gain of APC-system (automatic phase control)

Catching range

Phase relation between negative transient of sync pulse and middle of flyback

Tolerance of phase relation

	typ.	5	$\mathrm{kHz} /$
$\Delta \mathrm{f}$	typ.	$\pm 1,5$	kHz
t	typ.	1	$\mu \mathrm{~s}$
$\Delta \mathrm{t}$	$<$	$\pm 0,4$	$\mu \mathrm{~s}$

PINNING

1. Phase detector output
2. Flyback pulse position input
3. Reference frequency input
4. Re-start count capacitor/ remote control input
5. Slow start and transfer characteristic for low feedback voltages
6. Over-current protection input
7. Over-voltage protection input
8. Feedback voltage input
9. Positive supply
10. Reference input
11. Output
12. Maximum duty factor adjustment/ smoothing
13. Oscillator timing network
14. Reactance stage reference voltage
15. Reactance stage input
16. Negative supply (ground)
[^54]
APPLICATION INFORMATION

The TDA2571 and TDA2581 controlling an SMPS driver stage.

APPLICATION INFORMATION (continued)

The function is quoted against the corresponding pin number

1. Phase detector output

The output circuit consists of a bidirectional current source which is active for the time that the signal on pin 2 exceeds 1 V .
The current values are chosen such that the correct phase relation is obtained when the reference signal on pin 3 is delivered by the TDA2571.
With a resistor of $18 \mathrm{k} \Omega$ and a capacitor of $2,7 \mathrm{nF}$ the control steepness is $0,55 \mathrm{~V} / \mu \mathrm{s}$.
2. Flyback pulse input

The signal applied to pin 2 is normally a flyback pulse with a duration of about $12 \mu \mathrm{~s}$. However, the phase detector system also accepts a signal derived by differentiating the deflection current by means of a small toroidal core (pulse duration $>3 \mu \mathrm{~s}$).

(a)

(b)

The toroidal transformer in (a) is for obtaining a pulse representing the mid-flyback from the deflection current. The connection of the picture phase information is shown in (b).

3. Reference frequency input

The input circuit can be driven directly by the square-wave output voltage from pin 8 of the TDA2571.
The negative-going transient switches the current source connected to pin 1 from positive to negative. The input circuit is made such that a differentiated signal of the square-wave from the TDA2571 is also accepted (this enables mains isolation).
The input circuit switching level is about 3 V and the input impedance is about $10 \mathrm{k} \Omega$.
4. Re-start count capacitor/remote control input

Counting

An external capacitor ($\mathrm{C} 4=47 \mu \mathrm{~F}$) is connected between pins 4 and 16. This capacitor controls the characteristics of the protection circuits as follows.
If the protection circuits are required to operate, e.g. over-current at pin 6 , the duty factor will be set to zero thus turning off the power supply.
After a short interval (determined by the time constant on pin 5) the power supply will be restarted via the slow start circuit.
If the fault condition has cleared, then normal operation will be resumed. If the fault condition is persistent, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated.

APPLICATION INFORMATION (continued)

The number of times this action is repeated (n) for a persisting falt condition is now determined by: $\mathrm{n}=\mathrm{C} 4 / \mathrm{C} 5$.

Remote control input

For this application the capacitor on pin 4 has to be replaced by a resistor with a value between 4,7 and $18 \mathrm{k} \Omega$. When the externally applied voltage $\mathrm{V}_{4-16}>5,8 \mathrm{~V}$, the circuit switches off; switching on occurs when $\mathrm{V}_{4-16}<4,5 \mathrm{~V}$ and the normal startingup procedure is followed. Pin 4 is internally connected to an emitter-follower, with and emitter voltage of $1,5 \mathrm{~V}$.
5. Slow start and transfer characteristics for low feedback voltages

Slow start
An external shunt capacitor ($\mathrm{C} 5=4,7 \mu \mathrm{~F}$) and resistor ($\mathrm{R} 5=270 \mathrm{k} \Omega$) are connected between pins 5 and 16. The network controls the rate at which the duty factor increases from zero to its steady-state value after switch-on. It provides protection against surges in the power transistor.

Transfer characteristic for low feedback voltages
The duty factor transfer characteristic for low feedback voltages can be influenced by R5.
The transfer for three different resistor values is given in the graph on page 11 .
6. Over-current protection input

A voltage proportional to the current in the power switching device is applied to the integrated circuit between pins 6 and 16 .
The protection circuit operates at a typical value of about 710 mV . The circuit trips on both positive and negative polarity.
7. Over-voltage protection input

When the voltage applied to this pin exceeds the threshold level, the protection circuit will operate. When this function is not used, pin 7 should be connected to pin 16 .
8. Feedback voltage input

The control loop input is applied to pin 8. This pin is internally connected to one input of a differential amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 10.
Under normal operating conditions, the voltage on pin 8 will be about equal to the reference voltage on pin 10. For further information refer to the graphs on pages 11 and 12 .

APPLICATION INFORMATION (continued)

9. 12 V positive supply

The maximum voltage that may be applied is 14 V . Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 9 and 16 to ensure that the maximum voltage does not exceed 14 V . When the voltage on this pin falls below a minimum of $8,6 \mathrm{~V}$ (typically $9,4 \mathrm{~V}$), the protection circuit will switch-off the power supply.
10. Reference input

An external reference diode must be connected between this pin and pin 16.
The reference voltage must be between 5,6 and $7,5 \mathrm{~V}$. The IC delivers about $0,9 \mathrm{~mA}$ into the external regulator diode. When the external load on the regulator diode approaches this current, replenishment of the current can be obtained by connecting a suitable resistor between pins 9 and 10 .
11. Output

An external resistor determines the output current fed into the base of the driver transistor. The output circuit uses an n-p-n transistor with 3 series-connected clamping diodes to the internal 12 V supply rail. This provides a low impedance in the "ON" state, that is with the drive transistor turned-off.
12. Maximum duty factor adjustment/smoothing

Maximum duty factor adjustment
Pin 12 is connected to the output voltage of the amplitude comparator $\left(\mathrm{V}_{10-8}\right)$. This voltage is internally connected to one input of a differential amplifier, the other input of which is connected to the sawtooth voltage of the horizontal oscillator. A low voltage on pin 12 results in a low duty factor. This enables the maximum duty factor to be adjusted by limiting the voltage by connecting pin 12 to the emitter of a $\mathrm{p}-\mathrm{n}-\mathrm{p}$ transistor used as a voltage source.
The graph on page 12 plots the maximum duty factor as a function of the voltage applied to pin 12. If some spread is acceptable the maximum duty factor can also be limited by connecting a resistor from pin 12 to pin 16 . A resistor of $12 \mathrm{k} \Omega$ limits the maximum duty factor to about 50%.
This application also reduces the total IC gain.

Smoothing

Any double pulsing of the IC due to circuit layout can be suppressed by connecting a capacitor of about 470 pF between pins 12 and 16 .
13. Oscillator timing network

The timing network comprises a capacitor between pins 13 and 16, and a resistor between pin 13 and the reference voltage on pin 10.
The charging current for the capacitor (C13) is derived from the voltage reference diode connected to pin 10 and discharged via an internal resistor of about 330Ω.

APPLICATION INFORMATION (continued)

14. Reactance stage reference voltage

This pin is connected to an emitter follower which determines the nominal reference voltage for the reactance stage ($1,5 \mathrm{~V}$ for reference voltage $\mathrm{V}_{10-16}=6,8 \mathrm{~V}$).
Free-running frequency is obtained when pins 14 and 15 are short-circuited.
15. Reactance stage input

The output voltage of the phase detector (pin 1) is connected to pin 15 via a resistor. The voltage applied to pin 15 shifts the upper level of the voltage sensor of the oscillator thus changing the oscillator frequency and phase. The time constant network is connected between pins 14 and 15 .
Control sensitivity is typically $4,5 \mathrm{kHz} / \mathrm{V}$.
16. Negative supply (ground)

Duty factor of output pulses as a function of V_{8-16} with R5 as a parameter", and with V_{12} as a limiting value; $\mathrm{V}_{10-16}=6,8 \mathrm{~V}$.

Maximum duty factor limitation as a function of V_{12-16}.

Duty factor of output pulses as a function of error amplifier input $\left(\mathrm{V}_{8-10}\right)$.

Change in duty factor of output pulses for a 1 mV error amplifier input change (V_{8-10}) as a function of initial duty factor.

LINE OSCILLATOR COMBINATION

The TDA2590 is an integrated line oscillator circuit for colour television receivers using thyristor or transistor line deflection output stages.
The circuit incorporates the following functions:

- line oscillator based on the threshold switching principle
- phase comparison between sync pulse and oscillator voltage
- phase comparison between line flyback pulse and oscillator voltage
- switch for changing the filter characteristic and the gate circuit (when used for VCR)
- coincidence detector
- sync separator
- noise separator
- vertical sync separator and output stage
- colour burst keying and line flyback blanking pulse generator
- phase shifter for the output pulse
- output pulse duration switching
- output stage for direct drive of thyristor deflection circuits
- sync gating pulse generator
- low supply voltage protection

QUICK REFERENCE DATA			
Supply voltage	V_{1-16}	typ. 12	V
Supply current		typ. 30	mA
Input signals			
Sync separator input voltage (peak-to-peak value)	$\mathrm{V}_{9-16(p-p)}$	typ.	V
Noise separator input voltage (peak-to-peak value)	$\mathrm{V}_{10-16(p-p)}$	typ.	V
Pulse duration switch input voltage at $\begin{aligned} \mathrm{t} & =6 \mu \mathrm{~s} \\ \mathrm{t} & =14 \mu \mathrm{~s}+\mathrm{t}_{\mathrm{d}}\end{aligned}$	$\begin{aligned} & \mathrm{V}_{4-16} \\ & \mathrm{v}_{4-16} \end{aligned}$	$\begin{gathered} 9,4 \text { to } V_{1-16} \\ 0 \text { to } 4,0 \end{gathered}$	$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Voltage for switching on VCR	V_{11-16}	$\left\{\begin{array}{c} 0 \text { to } 1,5 \\ 9 \text { to } V_{1-16} \end{array}\right.$	V
Output signals			
Vertical sync output pulse (peak-to-peak value)	$\mathrm{V}_{8-16(p-p)}$	typ. 11	V
Burst gating output pulse (peak-to-peak value)	$\mathrm{V}_{7-16(\mathrm{p}-\mathrm{p})}$	typ. 11	V
Line drive pulse (peak-to-peak value)	$V_{3-16(p-p)}$	typ. 10,5	V

PACKAGE OUTLINES (see general section)
TDA2590 : 16-lead DIL; plastic.
TDA2590Q : 16-lead QIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages

Supply voltage at pin 1 (when supplied by the IC) at pin 2

Pin 4
Pin 9
Pin 10
Pin 11
Currents
Pin 2 (peak value)
Pin 3 (peak value)
Pin 4
Pin 6
Pin 7
Pin 11
Power dissipation
Total power dissipation
$P_{\text {tot }} \max .800 \mathrm{~mW}$
Temperatures
Storage temperature
Operating ambient temperature
$\stackrel{V}{v}_{1-16}$
V_{2-16}
V_{4-16}
V_{9-16}
V_{10-16}
V_{11-16}

\max.	13,2	V
\max.	18	V
0 to 13,2	V	
-6 to +6	V	
-6 to +6	V	
0 to 13,2	V	

\max.	400	mA
\max.	400	mA
\max.	1	mA
\max.	10	mA
\max.	10	mA
\max.	2	mA

CHARACTERISTICS at $V_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\text {amb }}=25{ }^{\circ} \mathrm{C}$
Required input signals
Sync separator

Input switching voltage	V_{9-16}	typ.	0,8	V
Input keying current	I_{9}	5 to 100		$\mu \mathrm{A}$
Input blocking current at $\mathrm{V}_{9-16}=-5 \mathrm{~V}$	I_{9}	$<$	1	$\mu \mathrm{A}$
Input switching current	I_{9}	\leq	5	$\mu \mathrm{A}$
Noise separator				
Input switching voltage	V_{10-16}	typ.	1,4	V
Input keying current	${ }^{\text {I }} 10$		100	$\mu \mathrm{A}$
Input switching current	${ }^{1} 10$	typ.	150	$\mu \mathrm{A}$
Input blocking current at $\mathrm{V}_{10-16}=-5 \mathrm{~V}$	${ }^{1} 10$	<	1	$\mu \mathrm{A}$

CHARACTERISTICS (continued)

Line flyback pulse

Input current
Input switching voltage
Input limiting voltage
Input resistance

Pulse duration switch

For $\mathrm{t}=6 \mu \mathrm{~s}$
Input voltage
Input current
For $t=14 \mu \mathrm{~s}+\mathrm{t}_{\mathrm{d}}$
Input voltage
Input current
For $\mathrm{t}=0 ; \mathrm{V}_{3-16}=0$
Input voltage
Input current (input open)
Switching on VCR
Input voltage

Input current

Vertical sync pulse (positive-going)
Output voltage (peak-to-peak value)
Output resistance
Burst gating pulse (positive-going)
Output voltage (peak-to-peak value)
Output resistance

Delivered output signals

Output voltage (peak-to-peak value)	$\mathrm{V}_{8-16(p-p)}$		typ.	$\begin{aligned} & 10 \mathrm{~V} \\ & 11 \mathrm{~V} \end{aligned}$
Output resistance	R_{8}		typ.	$2 \mathrm{k} \Omega$
Burst gating pulse (positive-going)				
Output voltage (peak-to-peak value)	V_{7-16}	typ.		$\begin{aligned} & 10 \mathrm{~V} \\ & 1 \mathrm{~V} \end{aligned}$
Output resistance	R_{7}	typ.		$0,4 \mathrm{k} \Omega$

I_{6}	$>$	$10 \mu \mathrm{~A}$
$\mathrm{~V}_{6-16}$	typ.	$1,4 \mathrm{~V}$
$\mathrm{~V}_{6-16}$	$-0,7$ to $+1,4 \mathrm{~V}$	
R_{6-16}	typ.	$0,4 \mathrm{k} \Omega$

$$
\begin{array}{lr}
\mathrm{V}_{4-16} \\
\mathrm{I}_{4} & >
\end{array} \begin{array}{r}
9,4 \text { to } \mathrm{V}_{1-16} \mathrm{~V} \\
200 \mu \mathrm{~A}
\end{array}
$$

$$
0 \text { to } 4,0 \mathrm{~V}
$$

$$
200 \mu \mathrm{~A}
$$

1) Can also be not connected.
2) When supplied by the IC.

CHARACTERISTICS (continued)
Blanking pulse
Output voltage (peak-to-peak value)
Output resistance

$$
\begin{array}{ll}
\mathrm{V}_{7-16(\mathrm{p}-\mathrm{p})} & 2,5 \text { to } 3,5 \mathrm{~V} \\
\mathrm{R}_{7} & \text { typ. } 0,4 \mathrm{k} \Omega
\end{array}
$$

Line drive pulse (positive-going)
Output voltage (peak-to-peak value)
Output current (average value)
Output resistance for leading edge of line pulse for trailing edge of line pulse

Oscillator

Threshold voltage low level
Threshold voltage high level
Discharge current
Phase comparison (φ_{1}; sync pulse/oscillator)
Control voltage range
Control current (peak value)
Output blocking current

$$
\text { at } V_{13-16}=4 \text { to } 8 \mathrm{~V}
$$

Output resistance at $\mathrm{V}_{13-16}=4$ to 8 V
at $\mathrm{V}_{13-16}^{13-3,8 \mathrm{~V} \text { or }>8,2 \mathrm{~V}}$

Time constant switch

Output voltage
Output current
Output resistance
at $V_{11-16}=2,5$ to 7 V
at $V_{11-16}^{11}<1,5 \mathrm{~V}$ or $>9 \mathrm{~V}$

V_{12-16}	typ.	6 V
$\pm \mathrm{I}_{12}$	$<$	1 mA

$\begin{array}{llr}\mathrm{R} \\ \mathrm{R}_{12-16} & \text { typ. } & 0,1 \mathrm{k} \Omega \\ { }_{12-16} & \text { typ. } & 60 \mathrm{k} \Omega\end{array}$

[^55]CHARACTERISTICS (continued)
Coincidence detector (φ_{3})

Output voltage	V_{11-16}	0,5 to 6 V
Output current (peak value) without coincidence		
with coincidence	$\mathrm{I}_{11 \mathrm{M}}$	typ. $0,1 \mathrm{~mA}$
	$-\mathrm{I}_{11 \mathrm{M}}$	typ. $0,5 \mathrm{~mA}$

Phase comparison (φ_{2}; oscillator/line flyback pulse)
Control voltage range
$\mathrm{V}_{5-16} \quad 5,4$ to $7,6 \mathrm{~V}$
Control current (peak value)
$\pm \mathrm{I}_{5 \mathrm{M}} \quad$ typ. 1 mA
Output resistance
high ohmic
1)
at $V_{5-16}=5,4$ to $7,6 \mathrm{~V}$
at $\mathrm{V}_{5-16}<5,4 \mathrm{~V}$ or $>7,6 \mathrm{~V} \quad \mathrm{R}_{5-16} \quad$ typ. $8 \mathrm{k} \Omega$
Input current at blocked phase detector
$\mathrm{V}_{5-16}=5,4$ to $7,6 \mathrm{~V}$
I_{5}
$<\quad 5 \mu \mathrm{~A}$
APPLICATION INFORMATION at $\mathrm{V}_{1-16}=12 \mathrm{~V}$; measured in circuit on page 9
Sync separator

Input voltage (positive video signal; peak-to-peak value)	$\mathrm{V}_{9-16(p-p)}$	$\text { typ. } \begin{aligned} & 3 \mathrm{~V} \\ & 1 \text { to } 7 \mathrm{~V} \end{aligned}$
Input keying current	I_{9}	5 to $100 \mu \mathrm{~A}$

, Noise gating

Input voltage (positive video signal; peak-to-peak value)	$\mathrm{V}_{10-16(p-p)}$	typ. $\begin{array}{r}3 \\ 1 \text { to } \\ 7\end{array}$
Input keying current	${ }_{1} 10$	5 to $100 \mu \mathrm{~A}$
Superimposed noise voltage (peak-to-peak value)	$\mathrm{V}_{\mathrm{n}(\mathrm{p}-\mathrm{p})}$	$<7 \mathrm{~V}$
Vertical sync pulse separator		
Delay between leading edge of input and output signal	$\mathrm{t}_{\text {on }}$	typ. $12 \mu \mathrm{~s}$
Delay between trailing edge of input and output signal	${ }^{\text {off }}$	$\mathrm{t}_{\text {on }} \mu \mathrm{s}$
Output voltage (peak-to-peak value)	$\mathrm{V}_{8-16(p-p)}$	typ. 11 V
Output resistance	R_{8-16}	typ. $2 \mathrm{k} \Omega$

[^56]
APPLICATION INFORMATION (continued)

Oscillator				
$\begin{aligned} & \text { Frequency; free running (} \mathrm{C}_{14-6}=4,7 \mathrm{nF} ; \\ & \left.\mathrm{R}_{15-16}=12 \mathrm{k} \Omega\right) \end{aligned}$	f_{0}	typ.	15,625	kHz
Spread of frequency	$\Delta \mathrm{f}_{\mathrm{o}} / \mathrm{f}_{\mathrm{O}}$	<	± 5	\% 1)
Frequency control sensitivity	$\Delta \mathrm{f}_{\mathrm{o}} / \Delta \mathrm{I}_{15}$	typ.	31	$\mathrm{Hz} / \mu \mathrm{A}$
Adjustment range of network in circuit on page 2	$\Delta \mathrm{f}_{\mathrm{o}} / \mathrm{f}_{\mathrm{O}}$	typ.	± 10	\%
Influence of supply voltage on frequency at $\mathrm{V}_{1-16}=12 \mathrm{~V}$	$\frac{\Delta \mathrm{f}_{\mathrm{o}} / \mathrm{f}_{\mathrm{o}}}{\Delta \mathrm{~V} / \mathrm{V}_{\mathrm{nom}}}$	<	$\pm 0,05$	${ }^{1}$)
Change of frequency when V_{1-16} drops to 5 V	$\Delta \mathrm{f}_{\mathrm{O}}$	$<$	± 10	\% 1)
Temperature coefficient of oscillator frequency per ${ }^{\circ} \mathrm{C}$		$<$	$\pm 10^{-4}$	1)
Control sensitivity		typ.	2	$\mathrm{kHz} / \mu \mathrm{s}$
Catching and holding range ($82 \mathrm{k} \Omega$ between pins 13 and 15)	Δf	typ.	± 780.	Hz
Spread of catching and holding range	$\Delta(\Delta f)$	typ.	± 10	\% 1)
Phase comparison (φ_{2}; oscillator/line flyback pulse)				
Permissible delay between leading edge of output pulse and leading edge of flyback pulse ($\mathrm{t}_{\mathrm{fp}}=12 \mu \mathrm{~s}$)	t_{d}		0 to 15	$\mu \mathrm{s}$
Static control error	$\Delta t / \Delta t_{d}$	$<$	0,2	\%
Overall phase relation				
Phase relation between middle of sync pulse and the middle of the flyback pulse	t	typ.	2,6	$\mu \mathrm{s}$
Tolerance of phase relation	$\|\Delta t\|$	<	0,7	$\mu \mathrm{s}$

The adjustment of the overall phase relation and consequently the leading edge of the output pulse occurs automatically by phase control φ_{2}.
If additional adjustment is applied the following values are valid.
Adjustment sensitivity

$$
\begin{array}{clrl}
\text { caused by : adjustment voltage } & \Delta \mathrm{V}_{5-16} / \Delta \mathrm{t} \text { typ. } & 0,1 & \mathrm{~V} / \mu \mathrm{s} \\
\text { adjustment current } & \Delta_{15} / \Delta \mathrm{t} \text { typ. } & 30 & \mu \mathrm{~A} / \mu \mathrm{s}
\end{array}
$$

1) Excluding external component tolerances.

APPLICATION INFORMATION (continued)

Burst gating pulse

Phase relation between middle of sync pulse at the input and the trailing edge of the burst gating pulse; $\mathrm{V}_{7-16}=7 \mathrm{~V}$

Phase relation between middle of sync pulse at the input and the leading edge of the burst gating pulse ; $\mathrm{V}_{7-16}=7 \mathrm{~V}$
typ. $\quad 1,9 \quad \mu \mathrm{~s}$
1,0 to $2,8 \quad \mu \mathrm{~s}$
Line drive pulse

> Output pulse duration
> at $\mathrm{V}_{4-16}>9,4 \mathrm{~V}$
> at $\mathrm{V}_{4-16}<4 \mathrm{~V}$

Supply voltage for switching off the output pulse
$t_{p} \quad$ typ. $\quad 6 \quad \mu \mathrm{~s}$
p 4,5 to $7,5 \quad \mu \mathrm{~s}$
t_{p}
$\left.14+t_{d} \quad \mu_{s}{ }^{1}\right)$
V_{1-16} typ. 4 V
Internal gating pulse
Pulse duration
$t_{p} \quad$ typ. $\quad 7,5 \quad \mu \mathrm{~s}$

1) $t_{d}=$ switch-off delay of line output stage.

APPLICATION INFORMATION (continued)

*) These components are not needed if the TDA2540; TDA2541 ICs are used, because these devices already incorporate a noise inverter.

VERTICAL DEFLECTION CIRCUIT

The TDA2600 is a monolithic integrated circuit in a plastic 16-lead power dual in-line package intended for use in a vertical deflection circuit in both 90° and 110° colour television receivers.
The circuit operates in the class-D switching mode with modulated pulse width and is capable of handling currents up to 7 A peak-to-peak at a maximum power dissipation of 7 W.
A feature is excellent immunity against e.h.t. flashover.

| | QUICK REFERENCE DATA | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Supply voltage | V_{15-1} | typ. | 36 | V |
| Supply current | I_{15} | typ. | 380 | mA |
| Output current (peak-to-peak value) | $\mathrm{I}_{16(\mathrm{p}-\mathrm{p})}$ | typ. | 4 | A |
| Total power dissipation | $\mathrm{P}_{\text {tot }}$ | typ. | 4,5 | W |
| Positive sync sensitivity | V_{13-1} | 2,5 to 8 | V | |
| Negative sync sensitivity | $-\mathrm{V}_{11-1}$ | typ. | 10 | V |

PACKAGE OUTLINES (see general section)
TDA2600 : 16-lead DIL; plastic power (SOT-69B).
TDA2600Q: 16-lead QIL; plastic power (SOT-76B).

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage
Short-term setting; V_{15-1} up rating

V_{15-1}	max.	40	V
$\mathrm{~V}_{15-1}$	\max.	42	V

Current
Output current (peak-to-peak value)
$\mathrm{I}_{16(\mathrm{p}-\mathrm{p})} \max .7 \mathrm{~A}$
Power dissipation
Total power dissipation
$P_{\text {tot }} \max \quad 7 \mathrm{~W}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-25 to +150	${ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\text {amb }}$	0 to +65	${ }^{\circ} \mathrm{C}$

January 1977

TYPICAL OPERATING CONDITIONS

For 20AX system with series dynamic correction and AT4043/35 class-D filter choke and AT1080 deflection coils.

Supply voltage	V_{15-1}	typ.	37	V
Supply current	I_{15}	typ.	0,38	A
Deflection coil current (6% overscan)	I_{16}	typ.	3,6	A
Dissipation	$\mathrm{P}_{\text {tot }}$	typ.	4,4	W
Non-linearity of deflection circuit		<	5	\%
Average d.c. output level		typ.	18 ± 1	V
Switching frequency		typ.	150	kHz
Scan height variation at $\mathrm{T}_{\mathrm{amb}}=0$ to $65^{\circ} \mathrm{C}$			1	\%
Vertical deflection flyback time		typ.	900	$\mu \mathrm{s}$
Recommended thermal resistance of heatsink (driving the 20AX systemat $\mathrm{T}_{\mathrm{amb}}=65^{\circ} ; \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$)	$\mathrm{R}_{\text {th h-a }}$	typ.	7	${ }^{\circ} \mathrm{C} / \mathrm{W}$
CHARACTERISTICS at $\mathrm{V}_{15-1}=36 \mathrm{~V}: \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$; me on page 7	easured in a		n ci	
Triangle level (pin 4)	V_{4-9}	typ.	7,5	V
Triangle amplitude (peak-to-peak value)	$\left.\mathrm{V}_{4-9} \mathrm{p}-\mathrm{p}\right)$	typ.	2,1	V
Preamplifier average output level (pin 5)	$\mathrm{V}_{5-9(a v)}$	typ.	7,5	V
Preamplifier input voltage for internal biasing (pins 6 and 7)	V6;7-9	typ.	2	V
D.C. feedback reference voltage (pin 8)	V_{8-1}	typ.	14	V
Sawtooth generator output current capability (pin 10)	I_{10}	$>$	5	mA^{1})
Current from pin 11	I_{11}	<	20	$\mu \mathrm{A}$
Current into pin 12 during scan	I_{12}	<	2	$\mu \mathrm{A}$
Current into pin 12 during flyback	I_{12}	typ.	2, 5	mA
Sawtooth voltage (peak-to-peak value; pin 12)	V_{12-9} (p-p)	typ.	5	V
Positive sync pulse clamping voltage (pin 13)	V_{13-9}	typ.	8	V

[^57]

ШШІ

APPLICATION INFORMATION (continued)
 Pinning

1. Negative supply (ground)
2. Bottom drive input of power output stage
3. Output of pulse-width modulator
4. Triangle generator timing capacitor
5. High frequency decoupling of preamplifier output
6. Preamplifier input
7. Preamplifier input
8. D.C. feedback reference voltage
9. Common of small signal stages
10. Ramp generator output; amplitude and linearity control
11. Negative sync input and frequency control
12. Ramp timing capacitor
13. Positive sync input
14. Top drive input of power output stage
15. Positive supply
16. Output

The function is quoted against the corresponding pin number

1. Negative supply (ground)
2. Bottom drive input of power output stage

The square wave from the pulse-width modulator is a.c. coupled to pin 2 allowing either positive or negative drive of the output stage.
This method ensures reliable switching of the output transistors.
3. Output of pulse-width modulator

The power output stage must be driven by an a.c. signal, so the modulator output at pin 3 is externally connected via a capacitor to pin 2 . A 39Ω resistor in series with a $3,3 \mathrm{nF}$ capacitor is also connected to pin 3 . These components, together with some others suppress the radiation which may occur in class-D circuits.
4. Timing of the triangle oscillator

The frequency of the signal generated in the triangle oscillator is determined by the capacitor between pins 4 and 9. With a capacitor of 330 pF the frequency is 150 kHz (typical). The triangle generator waveform is internally fed into the pulse-width modulator which transforms it into a square-wave signal.
5. Preamplifier output

The preamplifier output varies with the 50 Hz ramp generator frequency around an average level of $7,5 \mathrm{~V}$ (typical). This signal is also fed into the modulator. A $2,2 \mathrm{nF}$ capacitor is connected between pins 5 and 9 to avoid a 150 kHz ripple at the average level.

6;7 Preamplifier input

The part of the preamplifier which is connected to pin 6 should be biased with a constant d.c. voltage of 2 V (typical).
Therefore pin 6 is decoupled for the 150 kHz signal by means of a $2,2 \mathrm{nF}$ capacitor. The sawtooth signal, which is composed of the sawtooth of the ramp generator and a feedback sawtooth from the output stage, is applied to the preamplifier input via pin 7 (by varying the ramp sawtooth amplitude, the height of the picture can be adjusted). The signal is nominally amplified 15 times and internally fed into the modulator, which then modulates the width of the 150 kHz pulses into a 50 Hz rhythm.

APPLICATION INFORMATION (continued)

8. D.C. feedback reference voltage

A d.c. reference voltage with an imposed parabolic waveform is derived from the capacitor in series with the deflection unit and supplied into pin 8.
This feedback signal gives a proper biasing of the output stage.
9. Common of small signal stages

The common rail of the small signal stages must be connected to ground (pin 1) via a diode, avoiding common impedance with the "high current" ground leads.
10. Ramp generator output

A 50 Hz sawtooth signal with a nominal amplitude of 5 V is fed from pin 10 to the external components for amplitude and linearity control. The signal is also applied to the preamplifier input via a $3,9 \mathrm{k} \Omega$ resistor in series with a $4,7 \mu \mathrm{~F}$ electrolytic capacitor.
11. Negative sync input and frequency control

The voltage to this pin is applied via an external 470Ω variable resistor, and controls the timing capacitors charging level (connected to pin 12). When the appropriate level is reached, the flyback starts. Pin 11 is also the input for negative-going sync pulses. The amplitude of these pulses determines the pull-in range of the oscillator. When sync pulses with a high amplitude are available a resistive divider circuit should be used to obtain the right pull-in range.
Because of the very high input impedance of the sync inverter input (pin 13), it is recommended that when negative-going sync is being employed, pin 13 should be connected to ground (pin 9) to avoid any leakage currents or "pick-up" disturbing the oscillator.
12. Ramp timing

The timing network comprises two capacitors in series between pins 12 and 9 .
The linearity of the sawtooth can be adjusted by means of a controlled signal which is fed back from the output (pin 10) to the mid-tap of the capacitors.
13. Positive sync input

The ramp signal frequency can be synchronized by positive-going sync pulses with amplitudes between $2,5 \mathrm{~V}$ and 8 V peak-to-peak. The smaller amplitudes result in a smaller pull-in range. A series resistor of $4,7 \mathrm{k} \Omega$, or (better) a resistive divider, should be used to obtain the correct pull-in range at those sync pulse amplitudes in excess of 8 V which have a low impedance.
14. Top drive input of power output stage

The top power transistor is driven from the 37 V supply via an external resistor of $1,5 \mathrm{k} \Omega$.

APPLICATION INFORMATION (continued)

15. Positive supply

The maximum voltage to be applied is 40 V (42 V for short-term operation). The integrated circuit comprises an internal stabilized voltage of $14,6 \mathrm{~V}$ to supply the small signal stages. This internal voltage stabilizer already operates at a supply voltage of 21 V , and enables the TDA2600 to drive deflection systems with supply voltages $<36 \mathrm{~V}$.
16. Output

From pin 16 the 150 kHz square wave with 50 Hz modulated pulse-width is applied to an external low-pass filter. The resulting 50 Hz signal is fed to the vertical deflection unit. The maximum current derived from pin 16 is 7 A peak-to-peak.

SOUND OUTPUT CIRCUIT

The TDA2610 and TDA2610A are sound output circuits for use in colour and black and white television receivers.
The output circuit in the TDA2610 is a class-B arrangement and can deliver an output power of 7 W . A current stabilizing circuit is incorporated in the TDA2610A to obtain a constant current drain and an output power of 4 W is available.
This constant current mode allows the TDA2610A to be supplied by the horizontal output transformer.
Furthermore the TDA2610 and TDA2610A feature:

- short circuit protected output
- thermal shut-down circuit
- low number of external components

| QUICK REFERENCE DATA | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Supply voltage | V_{5-11} | typ. | 25 | V |
| Supply current | I_{5} | typ. | 300 | mA |
| Load resistance | R_{16-11} | typ. | 15 | Ω |
| Output power at $\mathrm{f}=1 \mathrm{kHz} ; \mathrm{d}_{\text {tot }}=10 \%$ | P_{O} | typ. | 4 | W |
| Input voltage for $\mathrm{P}_{\mathrm{O}}=\mathrm{P}_{\mathrm{O} \text { max }}$ | V_{10-11} | typ. | 100 | mW |
| Input impedance | $\left\|\mathrm{Z}_{10-11}\right\|$ | typ. | 45 | $\mathrm{k} \Omega$ |

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic power (SOT-69B).

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
$\begin{array}{rllll}\text { Supply voltage at pin } 5 & \mathrm{~V}_{5-11} & \max . & 35 & \mathrm{~V} \\ \text { at pin } \mathrm{I}\end{array} \quad \begin{aligned} & \mathrm{V}_{1-11}\end{aligned}$

Current

Output current (peak value)
$\mathrm{I}_{16 \mathrm{M}}$
max.
2 A
Power dissipation
Total power dissipation
see derating curve on page 3
Temperatures
Storage temperature
Operating ambient temperature
$\mathrm{T}_{\mathrm{stg}}$
$\mathrm{T}_{\mathrm{amb}}$
-55 to $+150 \quad{ }^{\circ} \mathrm{C}$
-25 to $+150{ }^{\circ} \mathrm{C}$

RATINGS (continued)
Power derating curve

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in the top circuit on page 4
Supply voltage

25	V
15 to 35	V

Performance at $\mathrm{V}_{5-11}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=15 \Omega ; \mathrm{f}=1 \mathrm{kHz}$
Stabilizing current

	typ.	0,3	A
I_{4}	$<$	0,5	A
	typ.	4	W
P_{o}	typ.	0,8	A
$\mathrm{I}_{16 \mathrm{RM}}$	typ.	0,8	A
$\mathrm{~V}_{10-11}$	typ.	100	mV
$\left\|\mathrm{Z}_{10-11}\right\|$	typ.	45	$\mathrm{k} \Omega$
f	$>$	15	kHz

Noise output voltage

$$
\text { at } \mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega ; \mathrm{B}=60 \mathrm{~Hz} \text { to } 15 \mathrm{kHz} \quad \mathrm{~V}_{16-11}<0,5 \mathrm{mV}
$$

CHARACTERISTICS at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in the bottom circuit on page 4
Performance at $\mathrm{V}_{1-11}=25 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=10 \Omega ; \mathrm{f}=1 \mathrm{kHz}$
Output power at $d_{\text {tot }}=10 \%$
Output current (repetitive peak value)
Input voltage for $\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$
Total quiescent current

P_{o}	typ.	7	W
$\mathrm{I}_{16 \mathrm{RM}}$	typ.	1,2	A
$\mathrm{~V}_{10-11}$	typ.	90	mV
$\mathrm{I}_{\text {tot }}$	typ.	22	mA

APPLICATION INFORMATION

Sound output circuit with shunt stabilizer ($\mathrm{P}_{\mathrm{O}}=4 \mathrm{~W}$)

Sound output circuit without shunt stabilizer ($\mathrm{P}_{\mathrm{o}}=7 \mathrm{~W}$)

[^58]
TUNING VOLTAGE SWITCH AND DRIVER FOR PROGRAMME INDICATOR

The TDA2620 provides the drive for four digits of a gas-filled numeral indicator tube and effects the tuning voltage switching.
Temperature-compensated "floating" switches are used to select the tuning voltage.
Together, the TDA2620 and TDA2630 contain all the circuits for touch selection of four television programmes and generate the drive for a gas-filled numeral indicator tube to indicate the selected programme.
Selection and indication capacity can be extended to 8,12 or 16 programmes by using additional pairs of ICs (one TDA2620 and one TDA2631).

QUICK REFERENCE DATA			
Supply voltage	V_{9-10}	typ. 33	V
Tuning output voltage at $<0,3 \mathrm{~V}$ on pins $3,4,5$ and 6	V_{7-10}	$<0,3$	V
Voltage drop of each switch		typ. ± 10	mV
Thermal drift of each switch		typ. 15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input voltage: switches active	$\mathrm{V}_{1 ; 2 ; 15 ; 16-10}$	$0 \text { to } 2$	V
switches non-active	$\mathrm{V}_{1 ; 2 ; 15 ; 16-10}$	10 to 16,5	V
Tuning voltage switch input current	$-\mathrm{I}_{3}$	typ. 0,2	$\mu \mathrm{A}$
Supply current (output pin 7: unloaded)	I9	<550	$\mu \mathrm{A}$
(output pin 7: loaded)	I9	<800	$\mu \mathrm{A}$
Output voltage: output selected (indication)	$\mathrm{V}_{11 ; 12 ; 13 ; 14-10}$	$<\quad 2,5$	V
output not selected	$\mathrm{V}_{11 ; 12 ; 13 ; 14-10}$	60	V

PACKAGE OUTLINES (see general section)

TDA2620 : plastic 16-lead dual in-line.
TDA2620Q : plastic 16-lead quadruple in-line.

BLOCK DIAGRAM

CIRCUIT DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltages
Supply voltage
Voltage at pins 3, 4, 5 and 6
Voltage at pins 1, 2, 15 and 16

V_{9-10}	\max.	36	V
$\mathrm{~V}_{3 ; 4 ; 5 ; 6-10}$	\max.	36	V
$\mathrm{~V}_{1 ; 2 ; 15 ; 16-10}$	\max.	18	V

Currents

Output current at pins $11,12,13$ and 14
output selected (indication) ${ }^{1}$)
${ }^{\mathrm{I}} 11, \mathrm{I}_{12}, \mathrm{I}_{13}, \mathrm{I}_{14}$ max. 15 mA
output not selected ${ }^{2}$)
$\mathrm{I}_{11}, \mathrm{I}_{12}, \mathrm{I}_{13}, \mathrm{I}_{14} \max .2 \mathrm{~mA}$

Power dissipation
Total power dissipation $\quad P_{\text {tot }} \quad \max .500 \mathrm{~mW}$
Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-20 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	0 to +70	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{9-10}=33 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=0$ to $70^{\circ} \mathrm{C}$; one channel preset; unless otherwise specified

Tuning output voltage ${ }^{3}$)

$$
\begin{aligned}
& \text { at } \mathrm{V}_{3-10}<0,3 \mathrm{~V} \\
& \text { at } \mathrm{V}_{3-10}=0,3 \mathrm{~V} \text { to } \mathrm{V}_{9-10^{-1} \mathrm{~V}} \\
& \text { at } \mathrm{V}_{3-10}>\mathrm{V}_{9-10^{-1}} \mathrm{~V}
\end{aligned}
$$

Tuning voltage switch input current

Thermal drift of each switch

$$
\begin{array}{rlrl}
\mathrm{V}_{7-10} & < & 0,3 & \mathrm{~V} \\
& > & \mathrm{V}_{3-10^{-25}} \mathrm{mV} \\
\mathrm{~V}_{7-1,0} & < & \mathrm{V}_{3-10^{+25}} \mathrm{mV} \\
\mathrm{~V}_{7-10} & > & \mathrm{V}_{9-10^{-1}} & \mathrm{~V} \\
-\mathrm{I}_{3},-\mathrm{I}_{4},-\mathrm{I}_{5},-\mathrm{I}_{6} & & \begin{array}{llrl}
\text { typ. } & 0,2 & \mu \mathrm{~A} \\
& < & 1,0 & \mu \mathrm{~A} \\
& & \text { typ. } & 15 \\
& \mu \mathrm{~V} /{ }^{\circ} \mathrm{C} \\
& < & 50 & \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{array}
\end{array}
$$

[^59]
CHARACTERISTICS (continued)

Output voltage at pins 11, 12, 13 and 14

```
output selected (indication);
    \(\mathrm{I}_{11}, \mathrm{I}_{12}, \mathrm{I}_{13}, \mathrm{I}_{14}=8 \mathrm{~mA}\) (see also note 1 p .4 ) \(\mathrm{V}_{11 ; 12 ; 13 ; 14-10}<2,5 \mathrm{~V}^{\text {l }}\) )
    output not selected ;
    \(\mathrm{I}_{11}, \mathrm{I}_{12}, \mathrm{I}_{13}, \mathrm{I}_{14}=0,5 \mathrm{~mA}\) (see also note 2 p .4 ) \(\mathrm{V}_{11} ; 12 ; 13 ; 14-10>60 \mathrm{~V}\)
```

Input voltage to indicator and tuning voltage switch

switches active	$\mathrm{V}_{1} ; 2 ; 15 ; 16-10$	0 to 2	V
switches non-active	$\mathrm{V}_{1} ; 2 ; 15 ; 16-10$	10 to 16,5	V

Supply current ${ }^{2}$)
at $\mathrm{V}_{1 ; 2 ; 15 ; 16-10}=16,5 \mathrm{~V}$ (switches non-active) and
pin 7: unloaded I_{9}

typ.	300	$\mu \mathrm{~A}$
$<$	550	$\mu \mathrm{~A}$
$<$	800	$\mu \mathrm{~A}$

Input current to indicator and tuning voltage switch
switches non-active

$$
\begin{array}{ccccc}
\left(\mathrm{V}_{1 ; 2} ; 15 ; 16-10=10 \text { to } 16,5 \mathrm{~V}\right) & \Sigma \mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{15}, \mathrm{I}_{16} & \text { typ. } & 13 & \mathrm{~mA} \\
\text { Propagation delay from input to output } & \mathrm{t}_{\mathrm{d}} & \text { typ. } & 135 & \left.\mathrm{~ms}^{3}\right)
\end{array}
$$

[^60]
APPLICATION INFORMATION

Touch control circuit for 8 programmes with $2 \times$ TDA2620, TDA2630 and TDA2631.

TOUCH AMPLIFIER, LOGIC AND BAND SELECTION SWITCH

The TDA2630 provides amplification and "memorizing" of the touch signals, band switching and automatic resetting to the same programme after switch-on.
Facilities are provided for muting the receiver sound circuits during programme switching. The logic information from the output of the selected touch amplifier is stored in a latch (flip-flop) and is also used to reset the latches associated with the remaining touch contacts. The same signal also activates the sound muting circuit.
Together, the TDA2630 and TDA2620 contain all the circuits for touch selection of four television programmes and generate the drive for a gas-filled numeral indicator tube to indicate the selected programme.
Selection and indication capacity can be extended to 8,12 or 16 programmes by using additional pairs of ICs (one TDA2620 and one TDA2631).

The TDA2631 is similar to the TDA2630 except for omission of the switch-on resetfacility which is not required in the additional ICs that are only used for extending the selection capacity of the system.

QUICK REFERENCE DATA									
Supply voltage	V_{15-5}	typ.	15	V					
Supply current	I_{15}	typ.	8,5	mA					
Resistance paralle! to input									
to set latch	$\mathrm{R}_{1 ; 2 ; 3 ; 4-5}$	$<$	25	$\mathrm{M} \Omega$					
at which latch will not be set	$\mathrm{R}_{1 ; 2 ; 3 ; 4-5}$	$>$	50	$\mathrm{M} \Omega$					
Input current									
to set latch	$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}$	$>$	500	nA					
at which latch will not be set	$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}$	$<$	250	nA					
Muting amplifier output voltage at $\mathrm{I}_{6}=5 \mathrm{~mA}$	$\mathrm{~V}_{6-5}$	$<$	1,5	V					

PACKAGE OUTLINES (see general section)
TDA2630 ; TDA2631 : plastic 16-lead dual in-line.
TDA2630Q; TDA2631Q: plastic 16-lead quadruple in-line.

BLOCK DIAGRAM

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage	V_{15-5}	\max.	20 V
Touch amplifier input voltage	$\mathrm{V}_{1 ; 2 ; 3 ; 4-5}$	\max.	$\mathrm{V}_{15-5} \mathrm{~V}$

Currents
Output current of band switches to TDA $2620-\mathrm{I}_{7},-\mathrm{I}_{8},-\mathrm{I}_{9},-\mathrm{I}_{10}$ max. 15 mA
Output current to band selectors
$-\mathrm{I}_{11},-\mathrm{I}_{12},-\mathrm{I}_{13},-\mathrm{I}_{14} \max .50 \mathrm{~mA}$ $\Sigma-\mathrm{I}_{11}, \mathrm{I}_{12},-\mathrm{I}_{13},-\mathrm{I}_{14} \max .80 \mathrm{~mA}$

I6
I_{16}
Power dissipation
Total power dissipation
$P_{\text {tot }} \quad \max \quad 500 \mathrm{~mW}$
Temperatures

Storage temperature	$\mathrm{T}_{\text {stg }}$	-20 to $+125{ }^{\circ}{ }^{\circ} \mathrm{C}$
Operating ambient temperature	$\mathrm{T}_{\mathrm{amb}}$	0 to $+70{ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\left.\mathrm{V}_{15-5}=15 \mathrm{~V}^{\mathrm{l}}\right) ; \mathrm{T}_{\mathrm{amb}}=0$ to $+70^{\circ} \mathrm{C}$; one channel activated; unless otherwise specified

Supply current	I_{15}	typ.	$8,5 \mathrm{~mA}$
Power dissipation	$\mathrm{P}_{\text {tot }}$	typ.	200 mW
Touch amplifier (input sensitivity)			
Resistance parallel to input			
to set latch	$\mathrm{R}_{1 ; 2 ; 3 ; 4-5}$	$<$	25 M ¢
at which latch will not be set	$\mathrm{R}_{1 ; 2 ; 3 ; 4-5}$	$>$	50 M ¢
Input current			
to set latch	$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}$	$>$	500 nA
at which latch will not be set	$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}, \mathrm{I}_{4}$	<	250 nA
Band switch output (to TDA2620)			
Output voltage when latch is set ($\left.\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$	$V_{7} ; 8 ; 9 ; 10-5$	$<$	2 V
Output voltage when latch is not set	$V_{7} ; 8 ; 9 ; 10-5$	$>$	9 V
Output current when latch is not set	$-\mathrm{I}_{7},-\mathrm{I}_{8},-\mathrm{I}_{9},-\mathrm{I}_{10}$	$<$	4 mA
Muting amplifier output			
Output voltage when active ($\mathrm{I}_{6}=5 \mathrm{~mA}$)	V_{6-5}	$<$	$1,5 \mathrm{~V}$

[^61]
CHARACTERISTICS (continued)

Output to band selectors
Output current ${ }^{1)}$
Voltage drop at 35 mA

$-\mathrm{I}_{11},-\mathrm{I}_{12},-\mathrm{I}_{13},-\mathrm{I}_{14}$	$<$	35 mA
$-\mathrm{V}_{11} ; 12 ; 13 ; 14-15$	$<$	$1,5 \mathrm{~V}$
	$<$	250 nA

Leakage current at $\mathrm{V}_{11} ; 12 ; 13 ; 14-5=-5 \mathrm{~V}$

APPLICATION INFORMATION

Touch control circuit for 8 programmes with $2 \times$ TDA2620, 'TDA2630 and TDA2631.

${ }^{1}$) The outputs may be loaded during $\mathrm{t} \leq 2 \mathrm{~s}$ with a resistance of 39Ω.

SWITCHED-MODE POWER SUPPLY DRIVE CIRCUIT

The TDA2640 is a monolithic integrated circuit for driving the switched-mode power supply of a colour or black and white television receiver.
Except for the drive and output voltage stabilizing circuitry the TDA2640 incorporates the following functions:

- fixed frequency determined by external components
- remote switch off and restart
- over-current protection
- over-voltage protection
- slow starting
- low supply voltage protection
- open-circuit feedback protection
- optional synchronization

| QUICK REFERENCE DATA | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Supply voltage | V_{1-16} | typ. | 12 | V |
| Supply current | I_{1} | typ. | 8,1 | mA |
| Output voltage (peak-to-peak value) | $\mathrm{V}_{6-16(\mathrm{p}-\mathrm{p})}$ | $>$ | 11,5 | V |
| Output current (peak value) | $\mathrm{I}_{6 \mathrm{M}}$ | $<$ | 20 | mA |
| Duty factor of output pulse | δ | typ. | 20 to 85 | $\%$ |
| Reference input voltage | V_{9-16} | typ. | 6,2 | V |
| Sync pulse (peak-to-peak value) | $\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$ | | 1 to 10 | V |

PACKAGE OUTLINES (see general section)
TDA2640 : 16-lead DIL; plastic.
TDA2640Q : 16-lead QIL; plastic.

BLOCK DIAGRAM

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC134)

Voltages

Supply voltage
Pin 2
Pin 8
Pin 9
Pin 10
Pin 9 with respect to pin 10
Pin 11 (pin 12 not connected)

Current

Output current (peak value) $\quad \mathrm{I}_{6 \mathrm{M}} \max \quad 20 \mathrm{~mA}$

Power dissipation

Total power dissipation

Temperatures

Storage temperature
Operating ambient temperature
CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Supply current at $\delta=50 \%$

Reference voltage
Sync pulse (peak-to-peak value)
Remote switch: inhibit (switched off) normal (switched on)

Over-voltage protection: threshold voltage input current temperature coefficient

Over-current protection: threshold voltage
Low supply voltage protection: threshold voltage
Horizontal drive pulse (peak-to-peak value)
Duty factor of output pulse: maximum
minimum
For notes see page 5 .

V_{1-16}	max.$13,8 \mathrm{~V}$ $\mathrm{~V}_{2-16}$$\quad-5$ to +10 V
$\mathrm{~V}_{8-16}$	0 to +10 V
$\mathrm{~V}_{9-16}$	0 to +10 V
$\mathrm{~V}_{10-16}$	0 to $\mathrm{V} 9-16+1 \mathrm{~V}$
$\mathrm{~V}_{9-10}$	-1 to +7 V
$\mathrm{~V}_{11-16}$	-1 to 0 V

$P_{\text {tot }} \quad \max . \quad 145 \mathrm{~mW}$
$\mathrm{T}_{\mathrm{stg}}$
$\mathrm{T}_{\mathrm{amb}}$
-25 to $+65^{\circ} \mathrm{C}$
I_{1}
$\left.\begin{array}{lcc} & \text { typ. } & 6,2 \mathrm{~V}, \mathrm{l}) \\ & & 5,6 \text { to } 6,5 \mathrm{~V}\end{array}\right)$

CHARACTERISTICS (continued)

Saturation voltage of output transistor at $I_{6}=20 \mathrm{~mA}$

Feedback input impedance at pin 10

$V_{\text {CEsat }}$	typ. $<$	280 mV $<$
$\left\|\mathrm{Z}_{10-16}\right\|$	typ.	100 mV

Temperature coefficient for constant duty factor at pin 10
typ. $\quad 0,3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
Oscillator frequency spread (with fixed external components)

Rise time of leading edge of output pulse

typ.	$0,3 \mathrm{mV} /{ }^{\circ} \mathrm{C}$
$<$	$\pm 3 \%$
typ.	$0,1 \mu \mathrm{~s}$

PINNING

1. Positive supply
2. Sync pulse input
3. Oscillator timing capacitor
4. Junction of oscillator timing C and R
5. Oscillator timing resistor
6. Output
7. Low feedback protection external resistor
8. Over-voltage protection input
9. Reference input
10. Feedback voltage input
11. Over-current protection input (emittex)
12. Over-current protection input (base)
13. Slow start C and R controlling network
14. Inhibitor
15. Re-start count capacitor
16. Negative supply (ground)

Notes (from page 4)

1. Voltage obtained via an external reference diode ($6,2 \mathrm{~V}$).
2. Or pin 14 not connected.
3. The over-voltage protection threshold is equal to the reference voltage $\mathrm{V}_{9}-16 \pm 50 \mathrm{mV}$.
4. The temperature coefficient is typ. $-1,7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ (pin 11 or pin 12 can be connected to pin 16).
5. The maximum voltage on pin 6 is limited to approximately the supply voltage (pin 1) by an internal diode.
6. Valid for normal operating conditions. The circuit starts with 0% duty factor, controlled by the switch-on circuit; the duty factor then rises to the normal operating value.

The duty factor is specified as follows:

$$
\delta=\frac{\mathrm{t}}{\mathrm{~T}} \times 100 \%
$$

APPLICATION INFORMATION (see circuits on pages 3 and 8)

The function is quoted against the corresponding pin number

1. 12 V positive supply

The maximum voltage that may be applied is $13,8 \mathrm{~V}$. Where this is derived from an unstabilized supply rail, a regulator diode (12 V) should be connected between pins 1 and 16 to ensure that the maximum voltage does not exceed $13,8 \mathrm{~V}$. When the voltage on this pin falls below a minimum of 8 V the protection circuit will switch off the power supply.
2. Sync pulse input

The switching repetition rate may be synchronized to a source of positive-going sync pulses between 1 and 10 V . The free-running frequency of the TDA2640 oscillator must be above the synchronized frequency.
The minimum duration of the sync pulses is the difference between the period of the oscillator pulses and the period of the sync pulses. Synchronization reduces the maximum obtainable duty factor. If synchronization is not required, connect pin 2 to pin 16.

3, 4 and 5. Oscillator timing network
The timing network consists of a capacitor connected between pins 3 and 4 , and a resistor connected between pins 4 and 5 . The value of these components determines the switching period of the SMPS drive pulses.
6. Output

An external resistor connected between this pin and the supply rail determines the base drive current for the drive transistor. The integrated output circuit consists of an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor with a catching diode connected between its collector and an internal 12 V supply. This provides a low impedance in the "ON" state, that is with the drive transistor turned off.
7. Low feedback protection

An external resistor connected between this pin and pin 13 determines the maximum obtainable duty factor for the output pulses if the feedback voltage (pin 10) remains below the specified limit during starting.
8. Over-voltage protection

A voltage that is proportional to the power supply output voltage can be connected to this pin to operate a protection circuit if a threshold level is exceeded. The threshold level is determined by the external voltage reference diode connected to pin $9(6,2 \mathrm{~V}$ nominal). If over-voltage protection is not required, pin 8 should be connected to pin 16 .
9. Reference input

An external voltage reference diode ($6,2 \mathrm{~V}$ nominal) must be connected between this pin and pin 16. The stability of the reference source determines the overall stability of the power supply output voltage. The voltage reference diode current is derived from within the integrated circuit; it has a typical value of $0,8 \mathrm{~mA}$.

APPLICATION INFORMATION (continued)

10. Feedback voltage input

The control loop input is applied to pin 10 . This pin is internally connected to one input of a differential error amplifier, functioning as an amplitude comparator, the other input of which is connected to the reference source on pin 9 . Under normal operating conditions with the comparator at balance, the voltage on pin 10 will be about equal to the reference voltage on $\operatorname{pin} 9(6,2 \mathrm{~V})$, and the d.c. feedback factor of the external network should be designed for this value.

11 and 12. Over-current protection

A voltage proportional to the output current of the SMPS is applied to these pins. Pin 11 is connected to the emitter of an internal $n-p-n$ detection transistor; pin 12 is connected to its base. Either of these pins may be grounded (pin 16) depending on the polarity of the input during increasing current. For example, if pin 11 is grounded the trip level on pin 12 is 660 mV to 760 mV ; if pin 12 is grounded, the trip level on pin 11 is -660 mV to -760 mV .
13. Slow start

A resistor and capacitor in parallel must be connected between this pin and pin 16 ($1 \mu \mathrm{~F}$ and $390 \mathrm{k} \Omega$). This network controls the rate at which the duty factor of the SMPS drive pulses increases to its normal operating value after switch-on. This minimizes inrush current. The network also influences the repetition period of the slow start during a fault.
14. Inhibitor

The power supply is switched off if the voltage on this pin is between 0 V and 3 V $\left(-1_{14}>0,1 \mathrm{~mA}\right)$. The power supply is switched on if this pin is not connected, or is connected to a voltage of between 5 V and the 12 V supply. The slow start and protection circuits remain operative under both conditions.
15. Re-start count capacitor

An external capacitor ($\mathrm{C} 15=10 \mu \mathrm{~F}$) should be connected between pins 15 and 16 . This capacitor controls the characteristics of the protection circuits as follows. When the protection circuit operates due to a fault, the duty factor of the drive pulses is reduced to zero. After an interval determined by the time-constant of the circuit connected to pin 13, the duty factor of the pulses slowly increases toward its normal operating value. If the fault persists, the duty factor of the pulses is again reduced to zero and the protection cycle is repeated. The number of times that the cycle is repeated before the power supply drive pulses are permanently discontinued is determined by the value of the capacitor connected to pin 15 . The number of counts is roughly C15/C13.
16. Negative supply (ground)

APPLICATION INFORMATION (continued)

Note: To operate with other supply and output voltages, alternative values of resistors marked thus $*$ must be chosen.

1. Change of transfer characteristic against duty factor for $\Delta \mathrm{V}_{10-16}=1 \mathrm{mV}$.
2. Percentage change of transfer characteristics against duty factor for $\Delta V_{10-16}=1 \mathrm{mV}$.

TELEVISION I.F. AMPLIFIER-DEMODULATOR

The TDA2670 is an i. f. amplifier and demodulator circuit for black and white television receivers.
It incorporates the following functions:

- gain-controlled wide-band amplifier;
- passive synchronous demodulator;
- video pre-amplifier with white-spot inverter (inverts the white noise peaks to grey).

The TDA 2670 is primarily designed to be used in conjunction with the TBA 890 or TBA900. The latter circuits provide the automatic gain control voltage for the i.f. amplifier in this device.

	QUICK REFERENCE DATA			
Supply voltage	$\mathrm{V}_{4-3 ; 10}$	typ.	12	V
Supply current	I_{4}	typ.	35	mA
I. F. input voltage (r.m.s. value)	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ.	900	$\mathrm{\mu V}$
Video output voltage (peak-to-peak value)	$\mathrm{V}_{6-3 ; 10(\mathrm{p}-\mathrm{p})}$	typ.	2,7	V
I.F. voltage gain control range.	G_{V}	typ.	23	dB
Signal-to-noise ratio at 23 dB gain control	S / N	typ.	59	dB
Intermodulation at $1,1 \mathrm{MHz}$ and $3,3 \mathrm{MHz}$		typ.	52	dB

PACKAGE OUTLINE (see general section)

16-lead DIL; plastic.

0く9てもの1

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Supply voltage (pin 4)
Power dissipation
Temperatures
Storage temperature
Operating ambient temperature

CHARACTERISTICS

Supply voltage range
$\mathrm{V}_{\mathrm{P}} \quad \max \quad 14 \mathrm{~V}$
$P_{\text {tot }} \quad \max \quad 720 \mathrm{~mW}$

$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-25 to +80	${ }^{\circ} \mathrm{C}$

Maximum permissible nominal supply voltage as a function of the maximum ambient temperature.

The following characteristics are measured in the circuit on page 7 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{4-3}=\mathrm{V}_{4-10}=12 \mathrm{~V}$.

Supply current

Required input signals

I.F. input voltage (r.m.s. value)	$\mathrm{V}_{1-16(\mathrm{rms})}$	typ.	900	$\mu \mathrm{V}{ }^{\text {l }}$
Input impedance	$\left\|Z_{1-16}\right\|$	typ.	$3 \mathrm{k} \Omega$ in lel with	$\begin{aligned} & \text { paral- } \\ & 4 \mathrm{pF} \end{aligned}$
White-spot inverter: threshold level	$\mathrm{V}_{6-3 ; 10}$	typ.	6,6	V
clamping level	V6-3;10	typ.	4,7	V

[^62]
CHARACTERISTICS (continued)

Obtainable output signals

Video output voltage (peak-to-peak value)
Zero signal output level
Top sync output level
$\left.\begin{array}{llrll}\mathrm{V}_{6}-3 ; 10(\mathrm{p}-\mathrm{p}) & \text { typ. } & 2,7 & \mathrm{~V} & 1\end{array}\right)$

Performance

I. F. voltage gain control range	G_{V}	typ.	23	dB^{3})
Signal-to-noise ratio at 23 dB a.g.c.	S / N	typ.	59	dB ${ }^{4}$)
Differential gain	dG	$<$	10	\%
Differential phase	$\mathrm{d} \varphi$	$<$	10°	
Intermodulation at $1,1 \mathrm{MHz}$ at $3,3 \mathrm{MHz}$		>		$\begin{aligned} & \left.\mathrm{dB} 5^{5}\right) \\ & \mathrm{dB} 5 \end{aligned}$

Input conditions for intermodulation measurements:
standard colour bar with 75% saturation and 75% contrast

S.C. : sound carrier level
C. C. : chrominance carrier level
P.C. : picture carrier level
with respect to top sync level

The sound-chrominance beat suppression is related to the B. W. amplitude with a peak-topeak value of $2,7 \mathrm{~V}$. Unmodulated carrier $=0 \mathrm{~dB}$.

1) The quoted i.f. input signal level is required to obtain the specified output.
2) The zero output level changes proportionally with the supply voltage.
3) See gain control graph on page 6.
$\left.{ }^{4}\right)$ See S / N graph on page 6.
4) See test set-up for intermodulation on page 6 .

Gain control characteristic.

Signal-to-noise ratio as a function of gain control.

Test set-up for intermodulation

1,95 V (b-w)
Intermodulation $=\frac{\text { peak-to-peak value of } 1,1 \text { or } 3,3 \mathrm{MHz} \text { beat }}{\text { per }}$

APPLICATION INFORMATION

IIIIIII

TELEVISION SIGNAL PROCESSING CIRCUIT

The TDA2680 is a silicon monolithic integrated signal processing circuit for monochrome and colour television receivers.
It combines the following functions:
-video pre-amplifier with emitter-follower output and short-circuit protection.
-blanking facility for the video amplifier.
-gated a. g.c. detector supplying the a.g.c. voltages for the vision i.f. amplifier and tuner.
-noise cancelling circuit in the a.g.c. and sync separator circuits.
-sync separator with sliding bias.
-automatic horizontal phase detector.
-vertical sync pulse separator.
The control stages in the i.f. amplifier and the tuner have to be equipped with $n-p-n$ transistors. The equivalent circuit for tuners equipped with a $p-n-p$ transistor is the TDA2690.
The circuit is intended for signals with negative modulation.

QUICK REFERENCE DATA				
Suppl y voltage	V_{1-16}	typ.	12	V
Ambient temperáture	Tamb	typ.	25	${ }^{\circ} \mathrm{C}$
Video input voltage (peak-to-peak value)	V9-16(p-p)	typ.	2,7	V
Voltage gain of the video amplifier	G_{v}	typ.	7	dB
A.G.C. voltage for i.f. part	V7-16			V
A.G.C. voltage for tuner	V_{6-16}			V
Output voltage range horizontal phase detector	V_{2-16}		± 4	V
Vertical sync output voltage (positive going pulse; peak-to-peak value)	$\mathrm{V}_{4-16(p-p)}$	typ.	11	V

PACKAGE OUTLINE (see general section)

16-lead DIL; plastic.

1111111

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage $\quad \mathrm{V}_{1-16} \max .14 \mathrm{~V}$

Power dissipation

Total power dissipation

$$
P_{\text {tot }} \quad \max . \quad 980 \quad \mathrm{~mW}
$$

Temperatures

Storage temperature

Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-25 to +80	${ }^{\circ} \mathrm{C}$

Maximum permissible nominal supply voltage as a function of the maximum ambient temperature.

CHARACTERISTICS

Supply voltage range
V_{1-16}
See curves on page 3
The following characteristics are measured in the circuit on p. 7 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
$\mathrm{V}_{1-16}=12 \mathrm{~V}$.

Video amplifier

Input resistance	$\mathrm{R} 9-16$	$>$	30	$\mathrm{k} \Omega$	
Input capacitance	C_{9-16}	$<$	3	pF	
Bandwidth (3 dB)	B	$>$	5	MHz	
Linearity	m	$>$	0,9		
Rise time and fall time at the output	$\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}$	$<$	50	ns	
Voltage gain	G_{V}	typ.	7	dB	
Video input voltage (peak-to-peak value)	$\mathrm{V}_{9-16(\mathrm{p}-\mathrm{p})}$	typ.	2,7	V	$1)$
D.C. bias video detector voltage	$\mathrm{V}_{\mathrm{bias}}$	typ.	6	V	$2)$
Video output voltage (peak-to-peak value)	$\mathrm{V}_{11-16(\mathrm{p}-\mathrm{p})}$	typ.	6	V	$1)$
Black level at the output	V_{11-16}	typ.	5	V	$3)$
Avail able video output current (peak value)	$\mathrm{I}_{11 \mathrm{M}}$	\leq	30	mA	$4)$

Tolerances on the video output voltages
IC processing spreads
Temperature drift

$\pm \Delta \mathrm{V}_{11-16}$	$<$	420	mV	5)
$-\Delta \mathrm{V}_{11-16}$	typ.	1,8	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	

Supply voltage

1) Signal with negative-going sync ; this value is obtained when the input signal meets the C.C.I.R. standard (90% modulation depth).
2) When the bias is obtained from a resistive divider, resistors with a tolerance of 5% are required.
3) Only valid if the video signal is in accordance with the C.C.I.R. standard.
4) The total load on pin 11 must be such that the d.c. output current $I_{11} \leq 15 \mathrm{~mA}$.
5) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure.
6) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.

CHARACTERISTICS (continued)

Tolerances on the black level at the output

IC processing spreads	$\pm \Delta \mathrm{V}_{11-16}$	<	420	mV 1)
Temperature drift	$-\Delta V_{11-16}$	typ.	1,7	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Spreads over a.g.c. expansion (entire range)	$\pm \Delta \mathrm{V}_{11-16}$	$<$	130	$\mathrm{mV} 2)$
Supply voltage	$\frac{\Delta \mathrm{V}_{11-16}}{\Delta \mathrm{~V}_{1-16}}$	typ.	0,4	
Video blanking				
Input voltage (peak-to-peak value)	V10-16(p-p)		1 to 5	V
Input resistance	R_{10-16}	typ.	1	$k \Omega$
Output voltage during blanking	V11-16	$<$	500	mV
A.G.C. circuit				
Range of control voltage i.f. amplifier	V_{7-16}		1 to 12	$\mathrm{V} 3)$
Range of control voltage tuner	V_{6-16}		0,3 to 12	V 3)
Signal expansion for full control of i.f. amplifier and tuner typ. 0, 5 dB				
Current i.f. control point	I_{7}	<	20	mA
Current tuner control point	I_{6}	$<$	20	mA
Current i.f. control point for tuner take-over $\quad \mathrm{I}_{7} \quad$ see note 4				
Keying input pulse (peak-to-peak value)	V_{5-16} (p-p)		see note 5	
Input resistance	R_{5-16}	typ.	2	$k \Omega$

[^63]
CHARACTERISTICS (continued)

Horizontal synchronization circuit

Sync separator
Output voltage range of phase detector
Control steepness
Phase deviation between front edge sync pulse and front edge flyback pulse

Variation φ_{0} caused by internal spreads
Output voltage range as a frequency detector
Vertical synchronization circuit
Output voltage vertical sync pulse generator
Output impedance
Output current
see note 1

V_{2-16}		± 4	V
$\mathrm{~S}_{\varphi}$	typ.		

$\varphi_{0} \quad$ typ. $\left.\quad 1,5 \quad \mu \mathrm{~s} \quad 4\right)$
$\pm \Delta \varphi_{0} \quad$ typ. $\quad 0,5 \quad \mu \mathrm{~s} \quad$ 5) $\mathrm{V}_{2-16} \pm 2 \quad \mathrm{~V}$

V_{4-16}	typ.	11	V
R_{4-16}	typ.	2	$\mathrm{k} \Omega$
I_{4}	$<$	50	mA

[^64]
APPLICATION INFORMATION

TELEVISION SIGNAL PROCESSING CIRCUIT

The TDA2690 is a silicon monolithic integrated signal processing circuit for monochrome and colour television receivers.
It combines the following functions:

- video pre-amplifier with emitter-follower output and short-circuit protection.
- blanking facility for the video amplifier.
- gated a.g.c. detector supplying the a.g.c. voltages for the vision i.f. amplifier and tuner.
- noise cancelling circuit in the a.g.c. and sync separator circuits.
- sync separator with sliding bias.
- automatic horizontal phase detector.
- vertical sync pulse separator.

The control stage in the i.f. amplifier has to be equipped with an $n-p-n$ transistor and the tuner with a $p-n-p$ transistor. The equivalent circuit for tuners equipped with an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ transistor is the TDA2680.
The circuit is intended for signals with negative modulation.

QUICK REFERENCE DATA				
Supply voltage	V_{1-16}	typ.	12	V
Ambient temperature	Tamb	typ.	25	${ }^{\circ} \mathrm{C}$
Video input voltage (peak-to-peak value)	$\mathrm{V}_{9-16}(\mathrm{p}-\mathrm{p})$	typ.	2,7	V
Voltage gain of the video amplifier	G_{v}	typ.	7	dB
A. G.C. voltage for i.f. part	V_{7-16}		1, 0 to 12	V
A. G.C. voltage for tuner	V_{6-16}		0,3 to 12	V
Output voltage range horizontal phase detector	V_{2-16}		± 4	V
Vertical sync output voltage (positive going pulse; peak-to-peak value)	$\mathrm{V}_{4-16(p-p)}$	typ.	11	V

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)
Voltage
Supply voltage

$$
V_{1-16} \max . \quad 14 \quad V
$$

Power dissipation
Total power dissipation
$P_{\text {tot }} \max \quad 980 \mathrm{~mW}$
Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-25 to +80	${ }^{\circ} \mathrm{C}$

Maximum permissible nominal supply voltage as a function of the maximum ambient temperature.

CHARACTERISTICS

Supply voltage range $\quad \mathrm{V}_{1-16} \quad$ See curves on page 3
The following characteristics are measured in the circuit on p. 7 at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$;
$\mathrm{V}_{1-16}=12 \mathrm{~V}$.

Video amplifier

Input resistance
Input capacitance
Bandwidth (3 dB)
Linearity
Rise time and fall time at the output
Voltage gain
Video input voltage (peak-to-peak value)
D. C. bias video detector voltage

Video output voltage (peak-to-peak value)
Black level at the output
Available video output current (peak value)

R_{9-16}	$>$	30	$\mathrm{k} \Omega$
C_{9-16}	$<$	3	pF
B	$>$	5	MHz
m	$>$	0,9	
$\mathrm{t}_{\mathrm{r}} ; \mathrm{t}_{\mathrm{f}}$	$<$	50	ns
G_{v}	typ.	7	dB
$\mathrm{~V}_{9-16(\mathrm{p}-\mathrm{p})}$	typ.	2,7	V
$\mathrm{~V}_{\text {bias }}$	typ.	6	V
$\mathrm{~V}_{11-16(\mathrm{p}-\mathrm{p})}$	typ.	$6)$	
V_{11-16}	typ.	5	V
$\mathrm{I}_{11 \mathrm{M}}$	\leq	30	V
	$3)$		
		mA	$4)$

Tolerances on the video output voltages
IC processing spreads
Temperature drift
$\begin{array}{llll} \pm \Delta \mathrm{V}_{11-16} & < & 420 & \mathrm{mV} \\ -\Delta \mathrm{V}_{11-16} & \text { typ. } & 1,8 & \mathrm{mV} /{ }^{\circ} \mathrm{C}\end{array}$
Spreads over a.g.c. expansion (entire range)

Supply voltage

$\pm \Delta V_{11-16}$	$<$	100
$\frac{\Delta V_{11-16}}{\Delta V_{1-16}}$	typ.	0,5

1) Signal with negative-going sync ; this value is obtained when the input signal meets the C.C.I.R. standard (90% modulation depth).
2) When the bias is obtained from a resistive divider, resistors with a tolerance of 5% are required.
3) Only valid if the video signal is in accordance with the C.C.I.R. standard.
4) The total load on pin 11 must be such that the d.c. output current $\mathrm{I}_{11} \leq 15 \mathrm{~mA}$.
5) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure.
6) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.

CHARACTERISTICS (continued)

Tolerances on the black level at the output

IC processing spreads
Temperature drift
Spreads over a.g.c. expansion (entire range)

Supply voltage

Video blanking
Input voltage (peak-to-peak value)
Input resistance
Output voltage during blanking
A. G.C. circuit

Range of control voltage i.f. amplifier
Range of control voltage tuner
Signal expansion for full control of i.f. amplifier and tuner

Current i.f. control point
Current tuner control point
Current i.f. control point for tuner take-over

Keying input pulse (peak-to-peak value)
Input resistance

$\pm \Delta V_{11-16}$	$<$	420	mV	$1)$
$-\Delta V_{11-16}$	typ.	1,7	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	
$\pm \Delta \mathrm{V}_{11-16}<$	130	mV	$2)$	
$\frac{\Delta V_{11-16}}{\Delta V_{1-16}}$	typ.	$0,4$.		

$\mathrm{V}_{10-16(p-p)}$		1 to 5	V
R_{10-16}	typ.	1	$\mathrm{k} \Omega$
V_{11-16}	$<$	500	mV

V_{7-16}	1 to 12	V	$3)$
V_{6-16}	0,3 to 12	V	$4)$

	typ.	0,5	dB
I_{7}	$<$	20	mA
I_{6}	$<$	8	mA
I_{7}	typ.	2	mA
$\mathrm{~V}_{5-16(p-p)}$	see note 5		
R_{5-16}.	typ.	2	$\mathrm{k} \Omega$

1) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure.
2) Variation about a nominal condition, the i. f. being fully controlled and the tuner uncontrolled.
3) Positive going at increasing input signal.
4) Negative going at increasing input signal.
5) Negative-going pulse is required. The voltage during scan should be between 1 V and 2 V .

CHARACTERISTICS (continued)

Horizontal synchronization circuit

Sync separator	see note 1				
Output voltage range of phase detector	V_{2-16}		± 4		2)
Control steepness	S_{φ}	typ.	2,5		3)4)
Phase deviation between front edge sync pulse and front edge flyback pulse	φ_{0}	typ.	1,5	$\mu \mathrm{s}$	4)
Variation φ_{0} caused by internal spreads	$\pm \Delta \varphi_{0}$	typ.	0,5	μs	5)
Output voltage range as a frequency detector	V_{2-16}		± 2	V	6)

Vertical synchronization circuit

Output voltage vertical sync pulse generator
Output impedance
Output current

V_{4-16}	typ.	11	V
R_{4-16}	typ.	2	$\mathrm{k} \Omega$
I_{4}	$<$	50	mA

1) The sync pulse is sliced about half way between top sync and black level. A sliding bias circuit makes the slicing level largely independent of the signal strength and sync pulse compression.
2) Nominal voltage 6 V .
3) Higher values of this control steepness can be obtained by changing R_{S} (see circuit on page 7). For example $\mathrm{R}_{\mathrm{S}}=56 \Omega, \mathrm{~S}_{\varphi}=5 \mathrm{~V} / \mu \mathrm{s}$ and $\mathrm{R}_{\mathrm{S}}=0, \mathrm{~S}_{\varphi}=\geq 25 \mathrm{~V} / \varphi \mathrm{s}$.
4) Measured in the circuit on page 7 .
5) In addition to this figure $\pm 7 \%$ of the retrace time of the sawtooth generated on pin 3 has to be added to find the total spreads of φ_{0}.
This value of $\pm 7 \%$ is obtained only when the tolerance of the capacitor connected to pin 3 does not exceed $\pm 10 \%$.
6) Nominal voltage 6 V .

The load impedance on pin 2 of the circuit on page 7 is about $50 \mathrm{k} \Omega$.

APPLICATION INFORMATION

OV

OSCILLATOR FOR VIDEO RECORDERS

The TDA2700 is a monolithic integrated circuit for video recorders incorporating the following functions:

- $562,5 \mathrm{kHz}$ oscillator
- pulse separator
- noise separator
- phase detector
- pulse generator
- low-ohmic output stage

PACKAGE OUTLINE 16-lead DIL; plastic (see general section).

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage	V_{1-16}	\max.	13,2	V
Pin 3	$\mathrm{~V}_{3-16}$	0 to V_{1-16}	V	
Pin 8	$-\mathrm{V}_{8-16}$	\max.	12	V

Currents

Pin 2 (average value)	$-\mathrm{I}_{2(\mathrm{AV})}$	\max.	20	mA
(peak value)	$-\mathrm{I}_{2 \mathrm{M}}$	\max.	200	mA
Pin 6 (peak value)	$\pm \mathrm{I}_{6 \mathrm{M}}$	\max.	10	mA
Pin 7 (peak value)	$-\mathrm{I}_{7 \mathrm{M}}$	\max.	10	mA
Pin 8 (peak value)	$\mathrm{I}_{8 \mathrm{M}}$	\max.	10	mA
Pin 9 (peak value)	$\pm \mathrm{I}_{9 \mathrm{M}}$	\max.	10	mA

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max .600 \mathrm{~mW}$

Temperatures

Storage temperature

Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{amb}}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{1-16}=12 \mathrm{~V}$; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 4 Inputs
Supply
Supply current at $\mathrm{I}_{2}=0 \quad \mathrm{I}_{1} \quad$ typ. 36 mA
Sync pulse separator

Negative video input signal (peak-to-peak value)	$\mathrm{V}_{8-16}(\mathrm{p}-\mathrm{p})$	typ.	$\begin{array}{r} 3 \\ 1 \text { to } 7 \end{array}$	V
Input current (peak value)	$\mathrm{I}_{8 \mathrm{M}}$	\geq	10	$\mu \mathrm{A}$
Input leakage current at $\mathrm{V}_{8-16}=-3 \mathrm{~V}$	$-\mathrm{I}_{8}$	\leq	1	$\mu \mathrm{A}$

Noise separator
Input voltage
Input current range
Input resistance

V_{9-16}	typ.	0,7	V
I_{9}	0,03 to 10	$\mu \mathrm{~A}$	
R_{9-16}	typ.	200	Ω

CHARACTERISTICS (continued)

Outputs

Sync pulse separator

Output voltage (peak-to-peak value)
Output resistance : at leading edge of sync pulse at trailing edge of sync pulse
Additional external load resistance
Output stage
Output voltage (peak-to-peak value)
Output resistance
Duty factor of output pulse

Phase detector

Input voltage
Input current range
Control voltage range
Output resistance in the control voltage range
Control current
Input voltage range for I_{12} positive
for I_{12} negative
Input current at $V_{13-16} \geq 7,2 \mathrm{~V}$
at $\mathrm{V}_{13-16} \leq 5,5 \mathrm{~V}$
Catching and holding range (based on $15,625 \mathrm{kHz}$)
D. C. level at pin 11

Internal resistance at pin 11

Oscillator

Output voltage (peak-to-peak value)
Charge and discharge current
Voltage at pin 15
Frequency ; free running
Frequency adjustment range

$V_{7-16}(p-p)$	typ.	10	V
R_{7-16}	typ.	50	Ω
R_{7-16}	$\left.1_{)}\right)$		
$\mathrm{R}_{7-16(e x t)}$	\geq	typ.	2,2
$\mathrm{k} \Omega$			

$\mathrm{V}_{2-16(\mathrm{p}-\mathrm{p})}$ typ. $\quad 10 \mathrm{~V}$
R_{2-16} low-ohmic
$\delta \quad$ typ. $\quad 50 \%$

V_{6-16}	typ. 1,5	V
I_{6}	0,03 to 3	mA
V_{12-16}	1,3 to 5,5	V
R_{12-16}	high-ohmic	2)
$\pm \mathrm{I}_{12}$	typ. , 7,5	mA
$\mathrm{V}_{13} 16$	7, 2 to 9	V
V_{13-16}	0 to 5,5	V
I_{13}	<6	$\mu \mathrm{A}$
I_{13}	$<\quad 1$	$\mu \mathrm{A}$
$\Delta \mathrm{f}$	typ. ± 1	kHz^{3})
V_{11-16}	typ. 3,1	V
R_{11-16}	typ. 2	$k \Omega$

$\mathrm{V}_{14-16(\mathrm{p}-\mathrm{p})}$ typ. $\quad 3 \mathrm{~V}$
$\mathrm{I}_{14}= \pm \mathrm{I}_{15} \quad$ typ. $\quad 0,94 \mathrm{~mA}$
$\mathrm{V}_{15-16} \quad$ typ. $3,1 \mathrm{~V}$
$f_{O} \quad$ typ. $562,5 \mathrm{kHz}$
$\Delta f_{\mathrm{O}} / \mathrm{f}_{\mathrm{O}} \quad$ typ. $\quad 10 \%$

1) Emitter follower.
2) Current source.
3) Adjustable with $\mathrm{R}_{12-15(e x t)}$.
||||||||

APPLICATION INFORMATION

CHROMINANCE SIGNAL/MIXER FOR VIDEO RECORDERS

The TDA2710 is a monolithic integrated circuit for video recorders incorporating the following functions :

- controlled chrominance amplifier
- control voltage amplifier
- mixer for the chrominance signal
- electronic recording/playback switch
- Schmitt trigger for killing the chrominance signal
- colour killer output stage

BLOCK DIAGRAM

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage (pin 1)
At pin 4
At pin 5
At pin 12
At pin 13
At pin 15
At pin 9

$V_{P}\left(V_{1-16}\right)$	0 to 13,2	V
V_{4-16}	0 to V_{P}	V
V_{5-16}	0 to V_{P}	V
V_{12-16}	0 to V_{P}	V
V_{13-16}	0 to V_{P}	V
V_{15-16}	0 to V_{P}	V
$\pm V_{9-16}$	\max.	4
		V

Currents
At pin 6
At pin 7
-I 6

At pin 8
$-\mathrm{I}_{7}$

At pin 11
$-\mathrm{I}_{8}$
I_{11}
$\max \quad 5 \quad \mathrm{~mA}$
\max. 5 mA
\max. 5 mA
\max. 5 mA

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max .700 \mathrm{~mW}$
Temperatures
Storage temperature
Operating ambient temperature

$\mathrm{T}_{\text {stg }}$	-25 to +125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {amb }}$	-20 to +60	${ }^{\circ} \mathrm{C}$

CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$; measured in circuit on page 4

Inputs

Chrominance input (pins 2 and 3)

Input resistance	$\mathrm{R}_{2 ; 3-16}$	typ.	3,3	$\mathrm{k} \Omega$
D. C. input voltage (without signal)	$\mathrm{V}_{2 ; 3-16}$	typ.	5,9	V
Input voltage range at a peak-to-peak burst of $0,5 \mathrm{~V}$				
	$\mathrm{~V}_{2 ; 3-16}$	2,5 to 75	mV	

Sub-carrier (pin 10)

Input resistance	R_{10-16}	typ.	2	$\mathrm{k} \Omega$
D. C. input voltage (without signal)	V_{10-16}	typ.	4,4	y
Input voltage range (peak-to-peak value)	$\mathrm{V}_{10-16(\mathrm{p}-\mathrm{p})}$	60 to	500	mV

CHARACTERISTICS (continued)

Reference voltage (pin 12)
External reference voltage
$\mathrm{V}_{12-16} \quad$ typ. 7 V
Control voltage (pin 15)
Voltage at control voltage input
for colour on
for colour off
Colour killer input (pin 13)
Input voltage for colour off
Recording/playback switch (pin 9)
Input resistance
Input voltage : for recording
for playback

R_{9-16}	typ.	1	$\mathrm{k} \Omega$
V_{9-16}	\leq	0,3	V
$\mathrm{~V}_{9-16}$	\geq	0,85	V

Outputs

Colour killer output (pin 11)
Output resistance for colour on
Output voltage for colour off

Recording

Output voltages (peak-to-peak values)
at a peak-to-peak burst of $0,5 \mathrm{~V}$
Output voltage at pin 8 (peak-to-peak value) at $\mathrm{V}_{6-16(\mathrm{p}-\mathrm{p})}=0,5 \mathrm{~V}$

Playback

Sub-carrier suppression at pins 6 and 7 at $V_{10-16(p-p)}=300 \mathrm{mV} ; \mathrm{V}_{6-16(p-p)}=$ $V_{7-16(p-p)}=1 \mathrm{~V}$; sub-carrier suppression at pins 4 and 5

R_{11-1}	typ.	10	$\mathrm{k} \Omega$
V_{11-16}	\leq	0,5	V

$\mathrm{V}_{6 ; 7-16(p-p)}$ typ. $0,5 \quad \mathrm{~V}$
$V_{8-16(p-p)} \quad 0,35$ to $0,5 \quad V$

COLOUR SUB-CARRIER OSCILLATOR FOR VIDEO RECORDERS

The TDA2720 is a monolithic integrated circuit for video recorders incorporating the following functions:

- $8,8 \mathrm{MHz}$ colour sub-carrier oscillator with divider stage
- keyed phase comparison for optimum noise behaviour
- a stage to obtain automatic chrominance control
- a stage to obtain a colour killer signal and an identification signal
- 2 mixer stages to obtain the $4,99 \mathrm{MHz}$ sub-carrier frequency

BLOCK DIAGRAM

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltages

Supply voltage (pin 12)
At pin 1
At pin 2
At pin 3
At pins 5, 6, 7 and 11
At pin 13
At pin 14
At pin 15

Currents

At pins 2, 5 and 6
At pins 7, 11 and 13
At pin 10

Power dissipation

Total power dissipation $\quad P_{\text {tot }} \quad \max \quad 750 \mathrm{~mW}$
Temperatures
Storage temperature
Operating ambient temperature
CHARACTERISTICS at $\mathrm{V}_{\mathrm{P}}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
Supply current (pin 12)
$8,8 \mathrm{MHz}$ oscillator

Input resistance	R_{11-16}	typ.	270	Ω
Output resistance	R_{10-16}	typ.	200	Ω
Overall holding range	Δ_{f}	typ.	± 500	Hz
Oscillator output voltage	V_{10-16}	typ.	10	V

CHARACTERISTICS (continued)

Reference voltage part

Burst signal (peak-to-peak value)

Linear output voltage range

 (peak-to-peak value)D. C. voltage at pin 14 with a peak-to-peak
burst of $0,5 \mathrm{~V}$
without burst
Reference voltage
Burst keying pulse
Voltage at pin $2 ; 4,4 \mathrm{MHz}$ (peak-to-peak value)
$V_{7-16(p-p)} \quad$ typ. $\quad 0,5 \quad V$
$V_{7-16(p-p)} \leq 1,5 \quad V$

V_{14-16}	typ.	5,5	V
$\mathrm{~V}_{14-16}$	typ.	7,0	V
$\mathrm{~V}_{13-16}$	typ.	7,0	V
$\mathrm{~V}_{15-16}$	\geq	2,0	V
$\mathrm{~V}_{2-16(p-p)}$	typ.	0,5	V

Mixer
Carrier suppression at 1 V peak-to-peak; $4,99 \mathrm{MHz}{ }^{1}$)
Recording mixer
Playback mixer
Gain for both mixers
Gain variation
Gain difference of mixers
Linear output voltage range (peak-to-peak value) pin 5 pin 6
Voltage at pin $4 ; 4,4 \mathrm{MHz}$ (peak-to-peak value)
D. C. voltage at pin 4
at pin 5
at pin 6
$\geq \quad 20 \mathrm{~dB}$
$\geq 20 \mathrm{~dB}$
typ. $\quad 7$
$\leq \quad 3 \mathrm{~dB}$
$\leq \quad 3 \mathrm{~dB}$
$\begin{array}{llll}V_{5-16}(p-p) & \leq & 0,6 & V \\ V_{6-16(p-p)} & \leq & 0,6 & V\end{array}$
$\mathrm{V}_{4-16(\mathrm{p}-\mathrm{p})}$ typ. $0,4 \mathrm{~V}$
V_{4-16} typ. $5,0 \quad \mathrm{~V}$
$V_{5-16} \quad$ typ. $3,5 \quad \mathrm{~V}$
V_{6-16} typ. $3,5 \mathrm{~V}$

[^65]
APPLICATION INFORMATION

FM LIMITER/DEMODULATOR

The TDA2730 is a monolithic integrated circuit for use in audio-visual equipment, e.g.; video recorders and video disc players.
The circuit comprises an f.m. limiter/demodulator for the playback signal, a video amplifier and an electronic switch, which can be used for drop-out elimination.

QUICK REFERENCE DATA				
Supply voltage	V_{6-11}	typ.	12	V
Supply current	I_{6}	typ.	42	mA
Input signal range (peak-to-peak value)	$\mathrm{V}_{4-5(\mathrm{p}-\mathrm{p})}$	30 to 2000	mV	
Video output signal (peak-to-peak value)	$\mathrm{V}_{2-11(\mathrm{p}-\mathrm{p})}$	typ.	4	V

BLOCK DIAGRAM

PACKAGE OUTLINE (see general section)
16-lead DIL; plastic.

RATINGS Limiting values in accordance with the Absolute Maximum System (IEC 134)

Voltage

Supply voltage
Power dissipation
Total power dissipation
(see also derating curve below)
$\mathrm{V}_{6-11} \max .13 \mathrm{~V}$

Temperatures
Storage temperature
Operating ambient temperature
$\mathrm{T}_{\text {stg }} \quad-65$ to $+125 \quad{ }^{\circ} \mathrm{C}$
see derating curve below

CHARACTERISTICS measured in the circuit on page 7 (Fig.1)
Supply voltage range

typ.	12
11	to
13	V

The following characteristics are measured at $\mathrm{V}_{6-11}=12 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25{ }^{\circ} \mathrm{C}$

Supply current $\quad \mathrm{I}_{6} \quad$| typ. |
| :---: |
| 25 to |
| 42 |
| 54 | mA

Limiter

Start of limiting (-3 dB)
$\mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz}$; peak-to-peak value $\quad \mathrm{V}_{4-5}(\mathrm{p}-\mathrm{p})$ typ. 0,8 V
Input signal range for constant luminance output (peak-to-peak value)

$\mathrm{V}_{4-5(\mathrm{p}-\mathrm{p})}$	30 to 2000	mV
$\mathrm{V}_{12-13(\mathrm{p}-\mathrm{p})}$	typ.	750

Available output voltage at an external load of $1 \mathrm{k} \Omega$; peak-to-peak value
$\mathrm{V}_{12-13(\mathrm{p}-\mathrm{p})}>\quad 5 \mathrm{~V}$

Demodulator

Measured at $\mathrm{I}_{1}=4 \mathrm{~mA} ;\left|\mathrm{Z}_{16-11}\right|=1,5 \mathrm{k} \Omega$; delay time $\tau=64 \mathrm{~ns} ; \Delta \mathrm{f}=1,4 \mathrm{MHz}$ ($\mathrm{f}_{\mathrm{L}}=3,0 \mathrm{MHz}, \mathrm{f}_{\mathrm{H}}=4,4 \mathrm{MHz}$)

Current ratio
Output voltage (peak-to-peak value)

Drop-out switch

Input drive voltage range
Voltage drop between input and output for signal flow from pin 7 to pin 8 for signal flow from pin 9 to pin 8

Input offset voltage
Switch actuating input voltage
for signal flow from pin 7 to pin 8
for signal flow from pin 9 to pin 8
Output impedance at $1,5 \mathrm{~mA}$ by internal load

$\mathrm{I}_{1} / \mathrm{I}_{16}$	typ.	1	
$\mathrm{~V}_{16-11}$	typ.	540	mV

V7;9-11 6,5 to 12 V

V_{7-8}	typ.	1,5	V
$\mathrm{~V}_{9-8}$	typ.	1,5	V
$\left\|\mathrm{~V}_{7-8}-\mathrm{V}_{9-8}\right\|$	$<$	20	mV

V_{10-11}	0 to 2,7
$\mathrm{~V}_{10-11}$	V
Z_{8-11}	3,7 to $6,0 \quad \mathrm{~V}$
emitter follower	

CHARACTERISTICS (continued)

Video amplifier

Input voltage level	V_{3-11}	typ.	730	mV
Output voltage level	V_{2-11}	typ.	5,5	V
Open loop gain	G	typ.	43	dB
Bandwidth (3 dB)	B	typ.	8,8	MHz
Output voltage (peak-to-peak value; see note)	$\mathrm{V}_{2-11(p-p)}$	typ.	4	V

Note

The gain of the amplifier is determined by the feedback network comprising the impedances between pins 2 and 3 , and pins 8 and 3 . The values quoted apply to the circuit on page 7 (Fig.1).

PINNING

1. Current setting demodulator
2. Switch input
3. Video amplifier output
4. Switch actuating input
5. Video amplifier input
6. Negative supply (ground)
7. F. M. signal input
8. Limiter output
9. F. M. signal input
10. Limiter output
11. Positive supply
12. Demodulator input
13. Switch input
14. Demodulator input
15. Switch output
16. Demodulator output

APPLICATION INFORMATION

The function is quoted against the corresponding pin number

1. Current setting of demodulator

The current into this pin directly determines the amplitude and the d.c. level of the demodulator output. At $\mathrm{I}_{1}=4 \mathrm{~mA}$, optimum temperature compensation is obtained.
2. Video amplifier output

A signal up to 4 V peak-to-peak is available from this output (Fig.1).
This can be the video signal (Fig.1) or the f.m. signal to the delay line (drop-out elimination; Fig. 2).
3. Video amplifier input

The demodulator output signal is the input signal to this pin (Fig.1) or the f.m. modulated signal (Fig. 2).
4. F.M. signal input (in conjunction with pin 5)

A frequency modulated signal of 1 V peak-to-peak is applied between pins 4 and 5. D.C. feedback from the limiter output is applied to stabilize the operation.
5. F.M. signal input

See pin 4.

APPLICATION INFORMATION (continued)

6. Positive supply

Correct operation can be obtained in the range 11 to 13 V .
7. Switch input

The signal applied to pin 7 or to pin 9 is transferred to pin 8 , depending on the switch position. For an input level between 0 and $2,7 \mathrm{~V}$ at pin 10, the signal at pin 7 is transferred to pin 8, and when between 3,7 and 6 V the input signal at pin 9 is transferred to pin 8.
The signal at pin 7 or pin 9 may vary from 6,5 to 12 V . The signal at pin 8 is $1,5 \mathrm{~V}$ below the value at pin 7 or 9 .
The difference in input level at pins 7 and 9 , to obtain equal output at pin 8 , will be less than 20 mV .
8. Switch output

See pin 7.
9. Switch input

See pin 7.
10. Switch actuating input

See pin 7.
11. Negative supply (ground)
12. Limiter output

A balanced signal is available between pins 12 and 13. The signal amplitude is limited to 750 mV at both outputs.
13. Limiter output

See pin 12.
14. Demodulator input

A phase shifted signal (with respect to the internally applied signal) is applied between pins 14 and 15 .
15. Demodulator input

See pin 14.
16. Demodulator output

The output signal is proportional to :

- current into pin 1
- slope of the phase characteristic of the network between pins 12 and 13 , and pins 14 and 15
- impedance level at the output
- the sweep ($\Delta \mathrm{f}$) of the f. m. signal.

A signal of typically 540 mV is available at this pin when using the component values in Fig. 1 and $\Delta f=1,4 \mathrm{MHz}$.

APPLICATION INFORMATION (continued)
Test circuit

Fig. 1

APPLICATION INFORMATION (continued)

Fig. 2. Drop-out eliminator.

INDEX

INDEX OF TYPE NUMBERS

The inclusion of a type number in this publication does not necessarily imply its availability.

Type no.	Section						
OM200/S2	RA	TBA900Q	TV	TDA1028	RA	TDA2610	TV
SAJ110	RA	TBA920	TV	TDA1029	RA	TDA2610A	TV
TAA263	RA	TBA920Q	TV	TDA2611	RA	TDA2620	TV
TAA320	RA	TBA920S	TV	TDA2611A	RA	TDA2620Q	TV
TAA320A	RA	TBA990	TV	TDA2500	TV	TDA2630	TV
TAA550	TV	TBA990Q	TV	TDA2500Q	TV	TDA2630Q	TV
TAA630S	TV	TCA270S	TV	TDA2510	TV	TDA2631	TV
TAA630T	TV	TCA270SQ	TV	TDA2510Q	TV	TDA2631Q	TV
TBA510	TV	TCA290A	RA	TDA2520	TV	TDA2640	TV
TBA510Q	TV	TCA420A	RA	TDA2520Q	TV	TDA2640Q	TV
TBA520	TV	TCA450A	RA	TDA2522	TV	TDA2670	TV
TBA520Q	TV	TCA530	RA	TDA2522Q	TV	TDA2680	TV
TBA530	TV	TCA540	TV	TDA2523	TV	TDA2690	TV
TBA530Q	TV	TCA540Q	TV	TDA2523Q	TV	TDA2700	TV
TBA540	TV	TCA640	TV	TDA2530	TV	TDA2710	TV
TBA540Q	TV	TCA650	TV	TDA2530Q	TV	TDA2720	TV
TBA550	TV	TCA660B	TV	TDA2540	TV	TDA2730	TV
TBA550Q	TV	TCA730	RA	TDA2540Q	TV		
TBA560C	TV	TCA740	RA	TDA2541	TV		
TBA570CQ	TV	TCA750	RA	TDA2541Q	TV		
TBA570A	RA	TCA760B	RA	TDA2560	TV		
TBA570AQ	RA	TCA800	TV	TDA2560Q	TV		
TBA700	RA	TCA820	TV	TDA2571	TV		
TBA720A	TV	TDA1002	RA	TDA2571Q	TV		
TBA720AQ	TV	TDA1003A	RA	TDA2581	TV		
TBA750A	TV	TDA1004A	RA	TDA2581Q	TV		
TBA750AQ	TV	TDA1005	RA	TDA2590	TV		
TBA890	TV	TDA1006	RA	TDA2590Q	TV		
TBA890Q	TV	TDA1009	RA	TDA2600	TV		
TBA900	TV	TDA1010	RA	TDA2600Q	TV		

RA = Radio - Audio
$\mathrm{TV}=\mathrm{Television}$

MAINTENANCE TYPE LIST

The type numbers listed below are not included in this handbook except for those marked with an asterisk.

Detailed information will be supplied on request.
TAA310A
TAA370A
TBA500N; NQ
TBA500P; PQ
TCA160B (successor type : TCA760B)
TCA160C
TCA490

* TBA550; Q

General

Radio - Audio

Television
Index and maintenance type list

Argentina: FAPESA I.y.C., Av. Crovara 2550, Tablada, Prov: de BUENOS AIRES, Tel. 652-7438/7478.
Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 421261.
Austria: ÖSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 629111.
Belgium: M.B.L.E., 80 , rue des Deux Gares, B-1070 BRUXELLES, Tel 5230000.
Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 287-7144.
Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.
Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-4001.
Colombia: SADAPE S.A., P.O. Box 9805 Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600600.
Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 691622.
Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 17271.
France: R.T.C. LA RADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.
Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2HAMBURG 1, Tel. (040) 3296-1.
Greece: PHILIPS S.A. HELLENIQUE, EIcoma Divisionn, 52, Av. Syngrou, ATHENS, Tel. 915311.
HongKong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.
India: PHILIPS INDIA LTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.
Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, 'Timah' Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44163.
Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 693355.
Italy: PHILIPS S.P.A., Sezione Elcoma, Piazza IV Novembre 3, I-20124 MILANO, Tel. 2-6994.
Japan: NIHON PHILIPS CORP., Shuwa Shinagawa BIdg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.
(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.
Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL, Tel. 44-4202.
Mexico: ELECTRONICA S.A. de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.
Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 793333.
New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 70-72 Kingsford Smith Street, WELLINGTON, Tel. 873156.
Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 150590.
Peru: CADESA, Jr. Ilo, No. 216, Apartado 10132, LIMA, Tel. 277317.
Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, TeI. 86-89-51 to 59.
Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 683121.
Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 538811.
South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.
Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 3016312.
Sweden: A.B. ELCOMA, Lidingövägen 50, S-10250 STOCKHOLM 27, Tel. 08/679780.
Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZÜRICH, Tel. 01/44 2211.
Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5. Turkey: TÜRK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 435910.
United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.
United States: (Active devices \& Materials) AMPEREX SALES CORP., 230, Duffy Avenue, HICKSVILLE, N.Y. 11802, Tel. (516) 931-6200.
(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, TeI. (408) 739-7700. Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 94321.
Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 3605

[^0]: ${ }^{1}$) If a circuit is published for a wider temperature range, but does not qualify for another classification, the letter designating the nearest narrower temperature range is used.

[^1]: l) Negative going input signals cause some distortion in the output pulse so that an optimal application using only positive going input signals as advised.

[^2]: ${ }^{1}$) See also Fig. 2 on page 5 and Fig. 4 on page 6.
 ${ }^{2}$) See also Fig. 3 on page 5, Fig. 5 and Fig. 6 on page 6.
 ${ }^{3}$) See also Fig. 3 on page 5.
 ${ }^{4}$) See also Fig. 7 on page 6.
 ${ }^{5}$) Typical value under condition that all flip-flop outputs are operating at max. dissipation.
 ${ }^{6}$) Measured when output stage is in LOW state.
 ${ }^{7}$) Occasional short circuiting pins $8,9,10,11,12,13$ and 14 is allowed; the output currents are internally limited to about 100 mA .
 ${ }^{8}$) This range is based on requirements for applications in organs; in practice the frequency range is much larger (from d.c. to about 1 MHz).
 ${ }^{9}$) Input voltage must be in LOW state.

[^3]: ${ }^{1}$) For explanation of the group codefication see note b on page 3 :

[^4]: ${ }^{1}$) Adjustable by a dropping resistor in the V -line; see also maximum tolerated voltages for pins $1,4,7$ and 8 in design data on page 3.

[^5]: *) Slider at lower end.

[^6]: *) Slider at lower end.

[^7]: ${ }^{1}$) $\mathrm{V}_{3-16}<20 \mathrm{~V}$ if the application circuit corresponds to the circuit above.

[^8]: * Symbols used in test circuit on page 5 .

[^9]: 1) See derating curve on page 3 .
[^10]: 1) Measured without signal.
 ${ }^{2}$) Measured at a frequency ranging from 30 Hz to 15 kHz .
 ${ }^{3}$) Measured across R_{L}.
[^11]: ${ }^{1}$) The input signal V_{S} of 1 kHz is applied via $33 \mathrm{k} \Omega$ to pins 6 and 8 (see Fig. 6 on page 8).
 ${ }^{2}$) See Fig. 10 on page 11.
 ${ }^{3}$) See Fig. 11 on page $11 ; 2 \mathrm{~dB}$ value depends on $\mathrm{R}_{\mathrm{R}} / \mathrm{C}_{\mathrm{R}}$ (see page 9).

[^12]: ${ }^{1}$) To guarantee proper functioning with $V_{P}=3,5 \mathrm{~V}$ to 18 V , the external component values as shown in test circuit on page 6 should be modified.
 ${ }^{2}$) The minimum operating voltage is defined as the voltage $\left(V_{3-2}\right)$ at which the motor still operates at correct speed.

[^13]: 1) If erase head is defective.
 2) Typical value of temperature coefficient $0 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
 ${ }^{3}$) At unsaturated erase head, with respect to 45 kHz .
[^14]: ${ }^{1}$) Output power is always measured at the d.c. output of the amplifier, so losses in coupling capacitor are not taken into account.
 ${ }^{2}$) See circuit on page 7. With this circuit $4,8 \mathrm{~W}$ is guaranteed.
 ${ }^{3}$) At this impedance value from pin 4 to ground, the maximum output power can be delivered.

[^15]: ${ }^{1}$) Measured with a $30 \mathrm{k} \Omega$ a.c. Ioad impedance at pin 4 (disconnected from pin 5).
 2) Measured at a bandwidth of 60 Hz to 15 kHz .
 ${ }^{3}$) See ripple rejection on page 6 .

[^16]: ${ }^{\text {l }} \mathrm{P}_{\mathrm{O}}=9 \mathrm{~W}$, when a resistor of 220Ω is connected between pins 9 and 11 .

[^17]: 1) At supply voltages of 8 to 11 V , resistors of $5,6 \mathrm{k} \Omega$ have to be connected from ground to pins 2 and 3.
 2) Maximum voltage for safe operation: $\mathrm{V}_{14-16}<6 \mathrm{~V}$.
[^18]: $\left.{ }^{1}\right)$ Measured with an ideal coupling capacitor to the speaker load.
 2) Bandwidth of 60 Hz to 15 kHz is defined as being the -3 dB points of the filter with slopes of 12 dB per octave.
 3) The ripple rejection is defined as : $20 \log \frac{V_{P R}}{V_{O R}}$ in which
 $\mathrm{V}_{\mathrm{PR}}=$ ripple voltage on supply line $\left(\mathrm{V}_{\mathrm{PR}}=500 \mathrm{mV}\right)$
 $\mathrm{V}_{\mathrm{OR}}=$ ripple voltage across speaker load.

[^19]: For notes see page 5 .

[^20]: ${ }^{1}$) Or control inputs open.

[^21]: 1) The lower cut-off frequency depends on values of R_{S} and C_{i}.
 ${ }^{2}$) Depends on external circuitry and R_{i}. The value will be fixed mostly by capacitive crosstalk of the external components.
[^22]: $\left.{ }^{1}\right) \mathrm{V}_{10-16}$ is typically $\mathrm{V}_{14-16 / 2}+0,7 \mathrm{~V}$.

[^23]: ${ }^{1}$) Or control inputs open.
 ${ }^{2}$) The lower cut-off frequency depends on values of R_{S} and C_{i}.
 ${ }^{3}$) Depends on external circuitry and $\mathrm{R}_{\mathbf{i}}$. The value will be fixed mostly by capacitive crosstalk of the external components.

[^24]: ${ }^{\text {l }}$) Measured at a bandwidth of 60 Hz to 15 kHz .

[^25]: 1) Nieasured at a bandwidth of 60 Hz to 15 kHz .
[^26]: ${ }^{1}$) Permissible while tubes are heating up.

[^27]: 1) Ratio of peak to peak values of input and output voltage measured in test circuit on page 6.

 $$
 G_{V(R-Y)}=\frac{V_{4}-16}{V_{13}-16} ; G_{V}(B-Y)=\frac{V 7-16}{V_{9}-16}
 $$

 2) Linearity of gain ≥ 0.7
 3) Measured in the test circuit on page 6.

[^28]: ${ }^{1}$) Ratio of peak to peak values of input and output signals.
 ${ }^{2}$) Linearity ≥ 0.7 measured in the circuit on page 5.
 ${ }^{3}$) Maximum output signal. For driving the TBA530 the input signal should be reduced by a factor 2.2.

[^29]: ${ }^{1}$) At increasedvoltages due to external failures (e.g. collector-basis breakdown in the output transistors) a maximum current of 50 mA is permitted between pins 16 and 8,13 and 8,10 and 8 , The maximum allowable dissipation in this case is 500 mW .
 ${ }^{2}$) G is defined as the voltage ratio between the input signals at the pins 2, 3, 4 and the output signals at the collectors of the output transistors.

[^30]: ${ }^{1}$) Permissible while tubes are heating up.

[^31]: ${ }_{2}^{1}$) Negative going video signal (no pre-bias needed for the detector).
 ${ }_{3}^{2}$) Video signal with negative going sync pulse.
 ${ }^{3}$) Because the integrated circuit reaches 95% of its final working temperature in 100 seconds, the temperature variations to be considered are those caused by the slower rise in cabinet temperature and by changes in room temperature.
 ${ }^{4}$) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled. The video signal increases and the black level decreases with increasing antenna signal.
 ${ }^{5}$) Only valid if the video signal is in accordance with the CCIR standard.
) To this must be added $0,7 \Delta \mathrm{~V}_{\mathrm{P}}$, if operation of the a.g.c. causes a change in V_{P}. The total load on pin 12 must be such that under nominal conditions $I_{12 M} \leq 14 \mathrm{~mA}$.

[^32]: ${ }^{1}$) Permissible while tubes are heating up: $\mathrm{V}_{11-16} \mathrm{max} .16 \mathrm{~V}$ and $\mathrm{P}_{\text {tot }} \max .700 \mathrm{~mW}$.
 2) V_{2-16} and V_{13-16} must always be lower than $V_{11-16 .}$

[^33]: 1) When $\mathrm{V}_{6}-16$ is increased above $1,7 \mathrm{~V}$ the black level of the output signal remains at $2,7 \mathrm{~V}$
 ${ }^{2}$) A negative going potential provides a 26 dB a.c.c. range with negligible signal dis tortion. Maximum gain reduction is obtained at an input voltage of min. 500 mV .
[^34]: ${ }^{1}$) Allowable only if the dissipation in the IC is limited by means of a series resistor in the supply (see upper graph on page 6).
 ${ }^{2}$) Pin 15 not connected.

[^35]: ${ }^{1}$) See lower graph on page 6.

[^36]: ${ }^{1}$) The oscillat or frequency can be changed far other t.v. standards by an appropriate value of $\mathrm{C}_{14-16^{-}}$
 ${ }^{2}$) Exclusive external components tolerances.
 3) Adjustable with R_{12-15}.

[^37]: 1) Allowed only while receiver is warming up.
 ${ }^{2}$) Input signal modulated in accordance with the CCIR standard system B.
[^38]: ${ }^{1}$) When a stabilized power supply of $\leqslant 12 \mathrm{~V}$ is applied, $\mathrm{T}_{\mathrm{amb}}$ is máx. $75^{\circ} \mathrm{C}$.
 2) Start of limiting.
 3) A negative-going potential provides a 26 dB a.c.c. range.
 ${ }^{4}$) The line flyback pulses also provide the clock pulses for the flip-flop.
 ${ }^{5}$) The colour killer is operative above the quoted input voltage.

[^39]: ${ }^{1}$) When a stabilized power supply of $\leq 12 \mathrm{~V}$ is applied, Tamb is max. $75^{\circ} \mathrm{C}$.
 ${ }^{2}$) At an input voltage of $0,15 \mathrm{~V}$; at an input voltage $>0,2 \mathrm{~V}$ the figure is $1,7 \mathrm{~V}$.

[^40]: ${ }^{1}$) When a stabilized power supply of $\leq 12 \mathrm{~V}$ is applied, $\mathrm{T}_{\mathrm{amb}}$ is max. $75^{\circ} \mathrm{C}$.
 ${ }^{2}$) During scan V_{3-4} must be kept lower than $0,7 \mathrm{~V}$ (positive and negative) to avoid blanking of the luminance signal.
 ${ }^{3}$) Nominal contrast is specified as maximum contrast -3 dB .

[^41]: ${ }^{1}$) Nominal brightness setting $V_{14-4}=5,7 \mathrm{~V}$.
 ${ }^{2}$) Only valid if the input current does not exceed $0,5 \mathrm{~mA}$ during black.
 3) For a.c. coupling only.
 ${ }^{4}$) Nominal contrast is specified as maximum contrast -3 dB .
 ${ }^{5}$) Nominal saturation is specified as maximum saturation -6 dB.
 ${ }^{6}$) This value is obtained at the specified maximum input voltage.

[^42]: ${ }^{1}$) These values are chosen to minimise visible errors in flesh tones and of the luminance of the green component. The matrix equation for the derivation of the ($\mathrm{G}-\mathrm{Y}$) component is given by $(G-Y)=-0,51(R-Y)-0,19(B-Y)$. (This is derived from the basic colour equation $Y=0,30 R+0,59 G+0,11 \mathrm{~B}$). Measured at the tube cathodes with 100 V peak-to-peak video drive.

[^43]: 1) H/2 measured when loaded by TBA540 i.e. $3 \mathrm{k} \Omega$ load.
[^44]: 1) Kept constant by a.c.c. circuit.
 2) Nominal saturation is defined as maximum saturation' -6 dB .
[^45]: 1) The amplitude of the burst is kept constant by a.c.c. action, but depends linearly on the keying pulse width.
 2) To be established.
 3) The delay depends on the value of C_{d}.
[^46]: ${ }^{1}$) The amplitude of the burst is kept constant by a.c.c. action, but depends linearly on the keying pulse width.
 2) To be established.
 ${ }^{3}$) The delay depends on the value of C_{d}.

[^47]: ${ }^{1}$) See waveform above.

[^48]:) See waveform above.

[^49]: 1) For $\mathrm{I}_{14}=0,2 \mathrm{~mA}$ (black-to-white value).
 ${ }^{2}$) All figures for the chrominance signals are based on a colour bar signal with 75% saturation: i.e. burst-to-chrominance ratio is 1:2.
 ${ }^{3}$) At a burst signal of 1 V peak-to-peak; see also notes 4 and 5 on page 5.
[^50]: ${ }^{1}$) Up to 1 V peak-to-peak the slicing level is constant; at amplitudes exceeding 1 V peak-to-peak the slicing level will increase.
 ${ }^{2}$) The slicing level is defined as the ratio of the amplitude of the slicing level to black level to the amplitude of the sync pulse.

[^51]: ${ }^{1}$) The duty factor is specified as follows:

[^52]: ${ }^{1}$) This value refers to the minimum required supply current that will start all devices under the following conditions: $\mathrm{V}_{9-16}=10 \mathrm{~V} ; \mathrm{V}_{10-16}=6,8 \mathrm{~V} ; \delta=50 \%$.
 ${ }^{2}$) Voltage obtained via an external reference diode. Specified voltages do not refer to the nominal voltages of reference diodes.

[^53]: ${ }^{1}$) The temperature coefficient is typical $-1,7 \mathrm{mV} /{ }^{\circ} \mathrm{C}$.
 2) See pin 4 pages 7 and 8 .
 3) The duty factor is specified as follows:

[^54]: 1) For component values see circuit diagram on page 2 .
[^55]: 1) Current source.
 2) Emitter follower.
[^56]: 1) Current source.
[^57]: 1) The voltage waveform at pin 10 is substantially the same as at pin 12 .
[^58]: * Obtained via a transformer.

[^59]: ${ }^{1}$) Output selected means that the output transistor is conducting and the numeral indicator tube shows appropriate number.
 ${ }^{2}$) Output not selected means that the output transistor is non-conducting and current flows into voltage limiting circuit connected in parallel to the transistor.
 ${ }^{3}$) The circuit consists of four identical indicator and tuning voltage switches. Values quoted for pin 3 also apply to pins 4,5 and 6.

[^60]: ${ }^{1}$) At a voltage $\geqslant 12 \mathrm{~V}$ at pins $1,2,15$ and 16 (switches non-active) an output current at pins $11,12,13$ and 14 of 8 mA will be quaranteed at $\mathrm{V}_{11 ; 12 ; 12 ; 14-10<2,5 \mathrm{~V} \text {. }}$ The IC includes a current limiting circuit to avoid switching transients.
 ${ }^{2}$) The supply current with pin 7 not loaded is typ. $300 \mu \mathrm{~A}$. If pin 7 is loaded, I_{9} increases by twice the load current; when extending the system (to 8,12 or 16 programmes), the total current I9 rises by 100μ A per additional connected TDA2620.
 ${ }^{3}$) At a load capacitance of max. $0,5 \mu \mathrm{~F}$ between pins 7 and $10, \mathrm{~V}_{1 ; 2 ; 15 ; 16-10}=14 \mathrm{~V}$ and V_{7-10} increased to 27 V .

[^61]: ${ }^{1}$) Supply voltage range 11,5 to $16,5 \mathrm{~V}$.

[^62]: ${ }^{1}$) Top sync level of an i.f. signal modulated in accordance with CCIR standard. Top sync level 0% modulation, peak of white signal 90% modulation.

[^63]: 1) The spreads of the voltage divider for the bias of the video detector of $\pm 5 \%$ is included in this figure.
 2) Variation about a nominal condition, the i.f. being fully controlled and the tuner uncontrolled.
 3) Positive going at increasing input signal.
 4) This value depends on the ratio between the external impedances on pins 6 and 7 . With equal impedances the current of the i.f. control point at tuner take-over will be about 16% from its maximum value (minimum control voltage).
 5) Negative-going pulse is required. The voltage during scan should be between 1 V and 2 V .
[^64]: 1) The sync pulse is sliced about half way between top sync and black level. A sliding bias circuit makes the slicing level largely independent of the signal strength and sync pulse compression.
 2) Nominal voltage 6 V .
 3) Higher values of this control steepness can be obtained by changing R_{S} (see circuit on page 7). For example $\mathrm{R}_{\mathrm{S}}=56 \Omega, \mathrm{~S}_{\varphi}=5 \mathrm{~V} / \mu \mathrm{s}$ and $\mathrm{R}_{\mathrm{S}}=0, \mathrm{~S}_{\varphi}=\geq 25 \mathrm{~V} / \mu \mathrm{s}$.
 4) Measured in the circuit on page 7.
 5) In addition to this figure $\pm 7 \%$ of the retrace time of the sawtooth generated on, pin 3 has to be added to find the total spreads of φ_{0}. This value of $\pm 7 \%$ is obtained only when the tolerance of the capacitor connected to pin 3 does not exceed $\pm 10 \%$.
 6) Nominal voltage 6 V .

 The load impedance on pin 2 of the circuit on page 7 is about $50 \mathrm{k} \Omega$.

[^65]: 1) Pin 4 connected to pin 2 via a 1 nF capacitor.
