m MOTOROLA

M6800 Microprocessor
Applications Manual

Benchmark Family
For Microcomputer Systems

by Microcomputef !:Applications Engineering

MOTOROLA

Semiconductor Products Inc.

M6800
MICROPROCESSOR
APPLICATION MANUAL

Circuit diagrams external to Motorola products are included as a means of illustrating typical Microprocessor
applications; consequently, complete information sufficient for construction purposes is not necessarily given. The
information in this manual has been carefully checked and is believed to be entirely reliable. However, no
responsibility is assumed for inaccuracies. Furthermore, such information does not convey to the purchaser of the
semiconductor devices described any license under the patent rights of Motorola Inc. or others.

Motorola reserves the right to change specifications without notice.

EXORciser MIKBUG and EXbug are trademarks of Motorola Inc.

First Edition
Second Printing
© MOTOROLA INC., 1975
““All Rights Reserved’’

Printed in U.S.A.

i

TABLE OF CONTENTS

CHAPTER 1

1 Introduction to the MC6800 Microprocessoroviiiiiinvenvunen...
1-1 System Organizationo i i i
1-1.1 MC6800 Family Elements it
1-1.1.1 Memoryon The Bus i e
1-1.1.2 /O On the BUS ..ottt ittt ittt et e e
1-1.2 Typical System Configuration i,
1-1.2.1 Memory Allocation i e i e e
1-1.2.2 Hardware Requirements it
1-2 Source Statements and Addressing Modes Y P
1-2.1 Source Statementsv.iintiiiii i i
1-2.2 Labels ..o e
1-2.3 Addressing Modes e e
1-2.3.1 Inherent (Includes ‘‘Accumulator Addressing”> Mode)oooiu...
1-2.3.2 Immediate Addressing Modet e
1-2.33 Direct and Extended Addressing Modes e e
1-2.34 Relative Addressing Mode i e
1-2.3.5 Indexed Addressing Mode i e
1-2.3.6 Mode Selectionouu ittt e e
1-3 Instruction Set i e e
1-3.1 Condition Code Register Operationsc..co it iiniinnnnn..
1-3.2 Number Systemsottt e e
1-3.3 Accumulator and Memory Operations P
1-3.3.1 Arithmetic Operations i,
1-3.3.2 Logic Operationsuuuiniintnn it
1-3.3.3 Data Test Operationsouviniiiet it i in it iaeaanns
1-3.3.4 Data Handling Operationsuuininninniinnninenaenaenannnn
1-3.4 Program Control Operationsc.oeiiuiiiiien o nnenennn.
1-3.4.1 Index Register/Stack Pointer Operationsoouuiiiiniiiiiinnn...
1-3.4.2 Jump and Branch Operations................... P P
CHAPTER 2

2 Programming Techniques i
2-1 Arithmetic Operationttt ittt
2-1.1 Number Systemsttt i i
2-1.2 The Condition Code Register
2-1.3 OV oW . . oo e
2-14 The Arithmetic Instructions ittt
2-14.1 Use of Arithmetic Instructions P
2-1.5 Addition and Subtraction Routines i i,

iii

2-1.6 Multiplicationoiuiii i i e e e 2-12
2-1.7 DivVISION . ..o e e e 2-18
2-2 Counting and Delay Measurement/Generationovuniveennneennn.. 2-26
2-3 Evaluating Peripheral Control Routines. i, 2-30
2-3.1 Service Requests and Programs as Waveforms on a Timing Diagram —

Notation Used i e i e e e e 2-30
2-3.2 Development of Equations and Inequalities Used to Test Successful

System Operationcouuiinntit et i e 2-32
2-3.3 Floppy Disk Data Transfer Routinecciiiiiin... 2-34
2-3.4 Cassette Data Transfer Routine it 2-35
2-3.5 Utilization of MPU Processing Timeo iiiiiineinniinennenn.. 2-36
2-3.6 Program Model for Two Prioritized Service Requests.......................... 2-38
2-3.7 Requirements That Must Be Satisfied When an MPU Services Multiple SR’s 2-39
2-3.8 Serial Data Transfer and Dynamic Refresh Processing 2-41
2-3.9 Increasing MPU Processing Efficiency with the Flip-Flop Model for Two

“Equal Period SRS e et 2-42
2-4 Use of the Index Registerccoiuiiiiiiiiriii it ieeaeenn. 2-44
CHAPTER 3
3 Input/Output TeChNIQUES\ttt ettt ie et e e iiinnee e 3-1
3-1 Introduction i e e 3-1
3.2 MC6800 Interrupt SEqUENCESo .vvnie et ettt aaee e 3-2
3-2.1 Interrupt Request MRQ) oottt 3.2
32.2 Non Maskable Interrupt (NMI)ottt eia e 34
3-2.3 Reset (RES) ..ottt e e e e e e e e e e 34
324 Software Interrupt (SWI) o e e 3-6
3-3 Interrupt Prioritizing 3-7
34 Program Controlled Data Transferscoiiiiinnrinenenennennn. 3-8
34.1 MC6820 Peripheral Interface Adaptercoiiiiiiiiiiiiiiinn 3-8
3-4.1.1 Input/Output Configurationouuennirnrrnreeeeeeeeeneeneeeen. 3-8
3-4.1.2 Internal Orgamization ittt eie et iieeeeneeenenns 39
3-4.1.3 Addressing and Initialization i i 3-16
34.14 System Considerationsiuuieinniie it e 3-20
3-4.2 MC6850 Asynchronous Communications Interface Adapter 3-21
3-4.2.1 Input/Output Configurationuuiinnnnnurrrerrennnnnnns 3-21
3422 Internal Organization P 3-22
3-42.3 Addressing and Initialization it i i 3-25
3-4.2.4 System Considerations ittt ittt 3-26
34.3 MC6860 Low Speed Modemoiiiiiiiimiineeeeeenaaeaeennn 3-28

TABLE OF CONTENTS (Continued)

iv

TABLE OF CONTENTS (Continued)

3-4.3.1 Input/Output Configurationuinuuuuuternireeeeniineneen.. 3-29
34.3.2 Internal Organizationt iunnmin e, 3-33
3-4.3.3 Handshake and Control 3-34
3-5 Direct MEmMOIY ACCESSttt t ittt e e 3-38
CHAPTER 4

4 M6800 Family Hardware CharacteriSticsccveuieiinennnennennnn. 4-1
4-1 Clock Circuitry for the MC6800 i eieen. 4-1
4-1.1 Clock Requirements and CirCuitryc.uuiieieiiineennnneennnennn. 4-1
4-1.1.2 Clock Module e e e 4-6
4-1.2 Halting the MC6800 and Single Instruction Execution 4-13
4-1.3 MC6800 Reset and Interrupt Controlscovuuuiiiniiienn... 4-13
4-1.4 Three-State Control Line Operationc ittt innenennn.. 4-19
4-1.5 M6800 Family Interface and Enabling Considerations 4-19
4-2 M6800 System Hardware Techniquesccooiiiiiiinneean.. 4-24
4-2.1 Interrupt Priority Circuitryt i i i e 4-24
4-2.1.1 8-Level Prioritizing it i i e 4-24
4-2.1.2 13-Level Prioritizing ittt i i e 4-27
4-2.2 Direct Memory Access (DMA) oottt e ettt et e e 4-31
42.2.1 DMA Transfers by Halting Processor i, 4-32
4-2.2.2 DMA Transfers by Cycle Stealing 4-35
4-2.2.3 Multiplexed DMA/MPU OpPerationuuuuuuureeeerenenenennaen n. ...4-38
4-2.2.4 Summary of DMA Techniques ittt iiiiiiininenn... 4-42
4-2.3 Automatic Reset and Single Cycle Execution Circuitry......................... 4-42
4-2.4 Interval Timer. 4-46
4-2.5 Memory System Design.ttt i e 4-48
4-2.5.1 Interfacing the MC6800 with Slow and Dynamic Memories 4-48
4-2.5.2 2KX8 RAM Memory Design Example............o, 4-62
4-2.5.3 8KX8 Non-Volatile RAM Design Examplecoiviiniiiiiiienn.. 4-69
4-2.54 Design Considerations When Using Non-Family Memories with the MC6800 4-88
CHAPTERS |

5 Peripheral Control Techniques i, 5-1
5-1 Data Input Devicesttt it e et e e e 5-1
5-1.1 Keyboards for Manual Entry of Data 5-1
5-1.1.1 Decoded Keyboard for a POS Terminal, 5-1
5-1.1.2 Non Encoded Keyboard i ettt e et e st ntaten et 5-6
5-1.2 Scanning Wand for Capturing Data From Printed Symbols 5-12
5-1.2.1 Universal Product Code (UPC) Symbolttt iinnnneann. 5-12
5-1.2.2 Hardware Requirements i 5-16
5-1.2.3 Data Recovery Technique i, S 5-18
5-1.24 Wand/MPU INterfaceouuuutttiniiniiieeeraiiiieeenannnns 5-18

5-1.2.5

5-2
5-2.1
5-2.1.1
5-2.1.2
5-2.1.3
5-2.1.4
5-2.2

5-3
5-3.1
5-3.1.1
5-3.1.2
5-3.1.3
5-3.1.4
5-3.2
5-3.2.1
5-3.2.2

5-4
5-4.1
5-4.2
5-4.3
5-4.4
5-4.5
5-4.5
5-4.6.1
5-4.6.2
5-4.6.3
5-4.6.4
5-4.7
5-4.7.1
5-4.7.2
5-4.7.3
5-4.7.4
5-4.8
5-4.9

5-4.A
5-4.B
5-4.C
5-4.D
5-4.E

TABLE OF CONTENTS (Continued)

Data Recovery Control Program O 5-22

Data Output DeviCesouuiitit it 5-34
Printer Control oo, e 5-34
SEIKO AN-101F Operating Characteristicscouunnineinnn.. 5-42
Printer Hardware/Software Tradeoffscoiiiiiirnnnnnnn. 5-43
Printer I/O Configurationttt i 5-43
Printer Control Program i i 5-44
Burroughs Self-Scan Display Control oo, 5-57
Data Interchange Devices it 5-57
Introduction to Data Communicationscouiiiiinineennn..n. 5-57
TTY to ACIA Hardwarettt ea e 5-57
TTY t0 ACIA SOFtWAIE\ eeeeeaeeeans, I 5-63
ACIA to Modem Hardwarettt it 5-71
ACITA to Modem Softwareiiiuirireine i, 5-71
Tape Cassette SYSIeIMttt ittt ittt i e 5-73
Hardware Descriptionttt 5-74
Software Description o0t e 5-88
Floppy Disk o e ..5-113
Introduction e 5-113
Overall Considerationscuutuunetnn ettt iie e ieenens 5-114
System Hardware/Software Interface P 5-119
Disk Program Routine Linking Control oiiiiiiiieo... 5-128
Seek and Restore Operationsovtitittntn ettt in i 5-129
Read Operation i i e e e 5-143
The Read Operation Interface ot 5-144
Data RECOVEIYttt it it ettt et 5-147
Read Data Logic ittt i e 5-153
Read Operation Program Routine, 5-156
Write OPeration ottt e e 5-163
The Write Operation Interface 5-167
Formatter Write Logic e 5-171
Formatter Error Detect LOZICoouuintit i ee i 5-174
Write Operation Program Routine i ... 5-175
Special Operations — UPC Lookupoouniiiiiiiniin i, 5-181
Integrated Read/Write LOZICttt 5-198
SA900/901 Diskette Storage DIIVEovuututteteeiieeeaiiieeenns 5-203
Orbis Model 74 Diskette Drive e 5-219
Cal Comp 140 Diskette Drive T 5-228
Recording Formats i e i 5-239
Floppy Disk Program Listingso ittt 5-246

vi

TABLE OF CONTENTS (Continued)

CHAPTER 6 :

6 System Design Techniquesot 6-1
6-1 INtroduction i s 6-1
6-2 Transaction Terminal Definition 6-2
6-3 Hardware/Software Tradeoffscoouiiiiiiiiiiiinnennn.. 6-6
6-3.1 Memory Reference IO vs DMA I/O i 6-6
6-3.2 Software vs Hardware Peripheral Service Prioritizing 6-7
6-3.3 Software vs Hardware Timer.............. ... it 6-7
6-3.4 Display With or Without Memory iiiiiiiiiiiinninnn, 6-8
6-4 Transaction Terminal Hardware and Software 6-10
6-4.1 Hardware Configuration ittt 6-10
6-4.2 Transaction Terminal Software Development......................... e 6-21
6-4.2.1 Software Background Preparation o i i, 6-21
6-4.2.2 Development of Macro Flow Diagram o iiiiiii.n 6-48
6-4.2.3 Technique of Executive Program Organizationcovvuniinon... 6-50
6-4.2.4 Description of Macro Flow Diagram o iiiiinin... 6-57
6-4.3 Interrupt Control. ot i e e 6-90
CHAPTER 7

7 System Development Tasks ittt 7-1
7-1 Assembly of the Control Program i 7-2
7-1.1 M6800 Cross-Assembler SYNaxovvuvetne e tineneeeeaenennennnn 7-2
7-1.1.1 Line Numberst e e 7-13
7-1.1.2 Fields of the Source Statementiuiiiiiuiiiniiininennnns 7-13
7-1.1.3 Labels ... e e 7-13
7-1.1.4 OPeTandSot e 7-13
7-1.1.5 COMMENLS . . . ottt ittt et e e ettt ittt 7-14
7-1.2 Accessing a Timeshare Service ittt iieaeennn 7-14
7-1.3 Entering a Source Program i 7-15
7-1.4 Assembling a Source Program i i 7-18
7-1.5 SIMUlationo e e 7-21
7-1.5.1 Simulator Commands i e i i 7-21
7-1.5.2 Operating the SIMulator i it it ei s 7-29
7-1.5.3 Macro Commandsiiniintite e e 7-30
7-1.5.4 Sample Simulated Program i 7-34
7-1.5.5 Simulation Results i e e 7-39
7-1.6 HEL P . e 7-40
7-1.7 Build Virtual Machine i i s 7-50
7-2 The EXORCISErcvitiit it i i it et e i eas 7-69
7-2.1 Hardware COmponentsuuueinniin it ariaeaannnenens 7-71

vii

7-2.1.1
7-2.2

7-2.2.1
7-2.2.2
7-2.3

7-2.4

7-2.4.1
7-2.4.2
7-2.4.3
7-2.4.4
7-2.4.5
7-2.4.6
7-2.5

7-2.5.1
7-2.5.2
7-2.5.3
7-2.5.4
7-2.6

7-3

TABLE OF CONTENTS (Continued)

Hardware Specifications P 7-71
Software COMPONENTSottt ettt ettt et et ie e i ens 7-74
EXORciser Controlttt e et e 7-74
MAID L. e 7-74
Memory Utilizationttt e e e e 7-75
Hardware Operations and Controlsc.oiiuiiiniiineinnennnnn. 7-78
Combined Hardware/Softwarettt 7-78
ABORT Button CirCUitcoiitit ittt ittt 7-79
RESTART Button CIrcuitttt ittt 7-79
VMA Inhibit Decoderiuiiiiii ittt e 7-79
Asynchronous Communications Interface iuu... 7-80
Scope SYNC L. 7-80
I eI U DS . . o o e e 7-80
NI L 7-80
RESET .. 7-81
S e 7-81
Hardware Interrupt i i e 7-81
Test Signals e e 7-82
Evaluation Module e 7-88

APPENDIX A: Questions and Answers

1.

2.
3.
4

Systems Operationttt e A-1
Control A-5
Interrupt Operation e A-9
Programming A-15

viii

LIST OF FIGURES

CHAPTER 1

1-1.1 MC6800 Bus and Control Signals

1-1.1.1-1 MCM6810 RAM Functional Block Diagram
1-1.1.1-2 MCM6830 ROM Functional Block Diagram
1-1.1.2-1 MPU Parallel I/O Interface

1-1.1.2-2 MPU/PIA Interface

1-1.1.2-3 PIA Registers

1-1.1.2-4 MPU Serial I/O Interface

1-1.1.2-5 MPU/ACIA Interface

1-1.1.2-6 ACIA Registers

1-1.2-1 MPU Minimum System

1-2.1 Programmable Registers
1-2.3.1-1 Accumulator Addressing
1-2.3.1-2 Inherent Addressing
1-2.3.2-1 Immediate Addressing Mode
1-2.3.3-1 Direct Addressing Mode
1-2.3.4-1 Relative Addressing Mode
1-2.3.4-2 Extended Addressing Mode
1-2.3.5-1 Indexed Addressing Mode
1-2.3.6-1 Addressing Mode Summary

1-3.1 MC6800 Instruction Set
1-3.1-1 Condition Code Register Bit Definition
1-3.1-2 Condition Code Register Instructions

1-3.3.1-1 Arithmetic Instructions

1-3.3.2-1 Logic Instructions

1-3.3.3-1 Data Test Instructions

1-3.3.4-1 Data Handling Instructions

1-3.4.1-1 Index Register and Stack Pointer Instructions
1-3.4.1-2 Stack Operation, Push Instruction

1-3.4.1-3 Stack Operation, Pull Instruction

1-3.4.2-1 Jump and Branch Instructions

1-3.4.2-2 Program Flow for Jump and Branch Instructions
1-3.4.2-3 Program Flow for BSR

1-3.4.2-4 Program Flow for JSR (Extended)

1-3.4.2-5 Program Flow for JSR (Indexed)

1-3.4.2-6 Program Flow for RTS

1-3.4.2-7 Program Flow for Interrupts

1-3.4.2-8 Program Flow for RTI

1-3.4.2-9 Conditional Branch Instructions

iX

LIST OF FIGURES (Continued)

CHAPTER 2

2-1.5-1 Decimal Subtract Assembly Listing

2-1.6-1 Multiplication Using Booth’s Algorithm

2-1.6-2 Flow Chart for Booth’s Algorithm

2-1.6-3 Assembly Listing for Booth’s Algorithm

2-1.6-4 Simulation of Booth’s Algorithm

2-1.6-5 XKMULT Flow Chart

2-1.6-6 XKMULT Assembly Listing

2-1.7-1 XKDIVD Flow Chart

2-1.7-2 XKDIVD Assembly Listing

2-3.1-1 Peripheral Service Request (SR) and Data Transfer Program Waveforms and Notation
2-3.1-2 Flow Chart for a Typical Data Transfer Program for a Single Service Request
2-3.1-3 Data Transfer Program Indicating Method Used to Calculate Program Parameters
2-3.1-4 Relationship of Peripheral Data Stream to Program Timing

2-3.4-1 Flow Chart for Serial Data Transfer

2-3.4-2 Cassette Bit Serial Data Transfer Program

2-3.6-1 Program Model for Two Prioritized Time Dependent Service Requests
2-3.7-1 Timing Constraints for Successful System Operation for Prioritized Multiple Service Requests
2-3.7-2 Timing Diagram Showing Requirements of Equation 14 for Two SR’s
2-3.7-3 Timing Diagram Showing Requirements of Equation 15 for Two SR’s
2-3.8-1 Serial Data Transfer and Dynamic Display Refresh Routine

2-3.8-2 Serial Data Display SR Parameters and System Requirement Test

2-3.9-1 Flip-Flop Model for Two ‘‘Equal’’ Period SR’s

CHAPTER 3

3-2.1-1 Hardware Interrupt Request Sequence

3-2.1-3 Interrupt Vectors, Permanent Memory Assignments

3-2.2-1 Non-Maskable Interrupt Sequence

3-2.3-1 Reset Interrupt Sequence

3-2.4-1 Software Interrupt Sequence

3-3-1 Hardware Interrupt Prioritizing — Block Diagram

3-4.1.1-1 MC6820 PIA 1/O Diagram

3-4.1.2-1 MC6820 PIA — Block Diagram

3-4.1.2-2 PIA Output Circuit Configurations

3-4.1.2-3 PIA Control Register Format

3-4.1.2-4 Read Timing Characteristics

3-4.1.2-5 Write Timing Characteristics

3-4.1.3-1 PIA Register Addressing

3-4.1.3-2 Family Addressing

3-4.1.3-3 Typical I/O Configuration

LIST OF FIGURES (Continued)

3-4.2.1-1 MC6850 ACIA I/O Diagram

3-4.2.2-1 ACIA Block Diagram

3-4.2.2-2 ACIA Status Register Format

3-4.2.2-3 ACIA Control Register Format

3-4.23-1 ACIA Register Addressing

3-4.2.4-1 Asynchronous Data Format

3-4.3.1-1 Typical MC6860 System Configuration
3-4.3.1-2 /O Configuration for MC6860 Modem
3-4.3.2-1 MC6860 Modem Block Diagram

3-4.3.3-1 Answer Mode

3-4.3.3-2 Automatic Disconnect — Long or Short Space
3-4.3.3-3 Originate Mode

3-4.3.3-4 Initiate Disconnect

CHAPTER 4

4-1.1-1 MPU Clock Waveform Specifications

4-1.1-2 MPQ6842 Clock Buffer

4-1.1-3 MPU Clock Circuit

4-1.1-4 Clock Circuit Waveforms

4-1.1-5 Monostable Clock Generator

4-1.1-6 Monostable Clock Circuit Waveforms

4-1.2-1 Halt and Single Cycle Execution

4-1.3-1 RESET Timing '

4-1.3-2a Interrupt Timing

4-1.3-2b Wait Instruction Timing

4-1.3-3 Interrupt Signal Format

4-1.34 Interrupt Enabling

4-1.3-5 Interrupt Not Properly Enabled

4-1.3-6 Alternate Enable Generation

4-1.4-1 Three State Control Timing

4-1.5-1 Buffered M6800 System

4-1.5.2 M6800 Bus Expansion Example

4-2.1-1 8-Level Priority Interrupt Configuration Block Diagram
4-2.1.1-1 8-Level Hardware Prioritized Interrupt Logic
4-2.1.1-2 Prioritizing Interrupt Circuitry Relative Timing
4-2.1.1-3 Interrupt Vector Memory Allocation
4-2.1.2-1 13-Level Hardware Prioritized Interrupt Logic
4-2.1.2-2 13-Level Priority Circuitry Truth Table
4-2.1.2-3 Interrupt Vector Memory Allocation
4-2.2.1-1 DMA Transfers by Halting Processor

Xi

4-2.2.1-2
4-2.2.2-1
4-2.2.2-2
4-2.2.3-1
4-2.2.3-2
4-2.2.3-3
4-2.3-1
4-2.3-2
4-2.3-3
4-2.4-1
4-2.4-2
4-2.5.1-1/
4-2.5.1-2
4-2.5.1-3
4-2.5.1-4
4-2.5.1-5
4-2.5.1-6
4-2.5.1-7
4-2.5.1-8
4-2.5.1-9
4-2.5.1-10
4-2.5.1-11
4-2.5.1-12
4-2.5.2-1
42522
4-2.5.2-3
4-2.5.2-4
4-2.5.2-5
4-2.5.3-1
4-2.5.3-2a
4-2.5.3-2b
4-2.5.3-2c
4-2.5.3-3
4-2.5.3-4
4-2.5.3-5
4-2.5.3-5
4-2.5.3-7
4-2.5.3-8
4-2.5.39

LIST OF FIGURES (Continued)

Timing of DMA Transfers by Halting the MPU
Block Diagram of DMA Transfers by Cycle Stealing
Timing of DMA Transfers by Cycle Stealing
Multiplexed DMA/MPU Operation

Timing of Multiplexed DMA/MPU Operation
Timing of Multiplexed DMA/MPU Operation Using MCM6605 4K RAM
Automatic Reset and HALT Synchronization
Single Instruction Timing

Single Cycle Instruction Execution

fnterval Timer

Timer Software Examples

MPU Clock Waveform Specifications

Read Data From Memories or Peripherals

Write Data to Memories or Peripherals

Read Cycle with 1.0us Memory

Write Cycle with 1.0us Memory

Effect of Memory Ready on Clock Signals
General MPU to Memory Interface

Dynamic Memory Interface

M6800 Clock Circuitry with Interface for Slow and Dynamic Merhory
MPU Clock Circuitry Waveforms

MPU Clock Circuitry Waveforms

Monostable Clock Generator with Memory Ready
2KX8 Memory System Block Diagram

2KX8 Memory System Schematic Diagram
MPU/2KX8 Memory Read Cycle

MPU/2KX8 Memory Write Cycle

2KX8 Memory System with Memory Ready
MCM6605 4K RAM Block Diagram

Read Cycle Timing (Minimum Cycle)

Write and Refresh Cycle Timing (Minimum Cycle)
Read-Modify-Write Timing (Minimum Cycle)
Non-Volatile Memory System Block Diagram
EXORciser/4K Memory System Timing Diagram
Memory Timing in Standby Mode

Address Buffers and Decoding Logic

Data Buffers and Memory Array

Refresh Control Logic

Refresh Timing

Xii

LIST OF FIGURES (Continued)

4-2.5.3-10 Power Fail Logic and Chip Enable Driver
4-2.5.3-11 Power Up/Down Synchronization
4-2.5.3-12 Memory System Breadboard

4-2.5.3-13 Alternate Read and Write Memory Accesses
4-2.5.3-14 Memory PC Board Array

4-2.5.3-15 Power Line Ripple

CHAPTER 5

5-1.1.1-1 POS Keyboard Configuration

5-1.1.1-2 Keyboard Coding/PIA Interface

5-1.1.1-3 Keyboard/PIA Hardware Interface

5-1.1.1-4 Flow Chart for Keyboard Service Routine
5-1.1.1-5 Keyboard Service Assembly Listing
5-1.1.2-1 Keyboard/PIA Interface

5-1.1.2-2 Keyboard Control Flow Chart

5-1.1.2-3 Keyboard Control Assembly Listing
5-1.1.2-4 Initial PIA I/O Configuration

5-1.1.2-5 Result of Key Closure

5-1.1.2-6 Contents of Accumulator A

5-1.1.2-7 1/O Conditions Reversed

5-1.1.2-8 Generation of Output Word

5-1.1.2-9 Lookup Table

5-1.2.1-1 UPC Symbol from Box of Kleenex Tissues
5-1.2.1-2 UPC Standard Symbol

5-1.2.1-3 UPC Character Structure

5-1.2.1-4 Nominal Dimensions of Printed UPC Symbol
5-1.2.1-5 Encoding for UPC Characters

5-1.2.2-1 UPC Wand Signal Conditioning Circuitry
5-1.2.3-1 Dimensions for Standard Symbol Characters
5-1.2.3-2 UPC Symbol Printing Tolerances

5-1.2.3-3 Worst Case Printing Tolerances

5-1.2.4-1 Transaction Terminal Flow Diagram
5-1.2.5-1 Flow Chart for XKIWND Initialization Routine
5-1.2.5-2 XKIWND Assembly Listing

5-1.2.5-3 Flow Chart for YKWAND Routine
5-1.2.5-4 YKWAND Assembly Listing

5-1.2.5-5 Flow Chart for WSORT Routine

5-1.2.5-6 ' WSORT Assembly Listing

5-1.2.5-7 Flow Chart for WCNVRT UPC to BCD Conversion Routine
5-1.2.5-8 WCNVRT Assembly Listing

Xiii

5-1.2.5-9

5-1.2.5-10
5-1.2.5-11
5-1.2.5-12
5-1.2.5-13

5-2.1.1-1
5-2.1.1-2
5-2.1.1-3
5-2.1.3-1
5-2.1.4-1
5-2.1.4-2
5-2.1.4-3
5-2.1.4-4
5-2.1.4-5
5-2.1.4-6

LIST OF FIGURES (Continued)

XKWAND Table and Buffer Memory Locations
Flow Chart for WERCHK ERROR Check
WERCHK Assembly Listing

Flow Chart for WBCDPK Packing Routine
WBCDPK Assembly Listing

SEIKO AN-101F Printing Mechanism
Timing Signal Generation

Timing Signals

SEIKO Printer Circuit Requirements

Print Cycle Timing: ‘‘MICROPROCESSOR”’
Initialization

Printer Enable

Reset Service

Printer/MPU Relative Activity

Print Service

5-2.1.4-7(a) PKSCAN Flow Chart
5-2.1.4-7(b) PKSCAN Assembly Listing

5-2.1.4-8
5-2.1.4-9
5-2.2-1
5-2.2-2
5-3.1-1
5-3.1-2
5.3.1.1-1
5-3.1.2-1
5-3.1.2-2
5-3.1.3-1
5-3.2.1-1
5-3.2.1-2
5-3.2.1-3
5-3.2.1-4
5-3.2.1-5
5-3.2.1-6
5-3.2.1-7
5-3.2.1-8
5-3.2.1-9
5-3.2.1-10
5-3.2.1-11
5-3.2.1-12
5-3.2.1-13

Roll Left Operation on PIA Registers

Printer Column/Text Buffer Relationship

Burroughs Self-Scan Display Characteristics

PIA/Burroughs Display Interface

Paper Tape Format

TTY/ACIA and Modem/ACIA Systems

MPU to TTY Interface

Flow Chart for Comm. Program

Data Comm. Assembly Listing

MPU to Remote Site

800 BPI Recording Format

PIA, Tape Drive and Read/Write Control Electronics Interface
Read/Write Circuitry

Write Operation Timing and Format Conversion

Read Operation Timing

EOT/BOT Circuitry with Hardware Safety Feature

Phase Locked Loop Data Recovery

Read Data Recovery Timing (After Preamble, with Loop in Lock)
Cassette Serial Read/Write and Control Logic

Read Operation Sequence Timing

Write Operation Sequence Timing

Start, Stop, and Interblock Gaps Derived From the Tape Velocity Profile
Load Point

Xiv

LIST OF FIGURES (Continued)

5-3.2.2-1 System Integration of Rewind to Load Point
5-3.2.2-2 Move to Load Point Flow Chart

5-3.2.2-3 Move to Load Point Assembly Listing
5-3.2.2-4 System Integration of Write Routine
5-3.2.2-5 Flow Chart of Write Routine

5-3.2.2-6 Write Routine Assembly Listing

5-3.2.2-7 Flow Chart of Read Routine

5-3.2.2-8 Read Routine Assembly Listing

5-4.1-1 M6800/Floppy Disk Subsystem

5-4.1-2 Floppy Disk System

5-4.2-1 Example of a Serial Task System

5-4.2-2 Multiple MPU System

5-4.2-3 Radial Interface

5-4.2-4 Daisy Chain Interface

5-4.3-2 Byte Ready/Request Interface

5-4.3-1 Floppy Disk Functional Interface

5-4.5-1 Typical Host/Floppy Disk Program Interaction
5-4.5-2 Seek/Restore Interface

5-4.5-3 ‘FKSKIN’ Flow

5-4.5-4 ‘FKSEEK’ Flow

5-4.6.1-1 Read Operation Interface

5-4.6.1-2 Read Clock Logic

5-4.6.1-3 Error Detect Logic

5-4.6.2-1 Floppy Disk IBM 3740 Format Data and Clock Recovery
5-4.6.2-2 Data and Clock Recovery Timing

5-4.6.2-4 VCM Frequency Faster Than Data Rate
5-4.6.2-5 PLL Response — Worst Case Capture Time
5-4.6.2-6 MC4024 Voltage vs Frequency for Floppy Disk Data Recovery
5-4.6.3-1 Read Data Logic (Read Shift Register, Read Buffer, Bit Counter and CRC Check)
5-4.6.3-2 Start Read Timing

5-4.6.4-2 Read Routine Flow Chart

5-4.6.4-3 System Integration of Floppy Disk Routines
5-4.7.1-1 Write Operation Interface

5-4.7.1-2 Write Control Signal Sequence

5-4.7.2-1 Floppy Disk Write Logic

5-4.7.2-3 Append CRC Timing

5-4.7.3-1 Error Detect Logic

5-4.7.4-2 Write Flow

5-4.8-1 UPC Track Format

5-4.8-2 UPC Lookup Program Integration

XV

5-4.8-4
5-4.9-1
5-4.9-2
5-4.9-3
5-4.A-2
5-4.A-3
5-4.A-4
5-4.A-5
5-4.A-6A
5-4.A-6B
5-4.A-7
5-4.A-8
5-4.A-9
5-4.A-10
5-4.A-11
5-4.A-12
5-4.A-13
5-4.A-14
5-4.A-15
5-4.A-15
5-4.A-17
5-4.B-1
5-4.B-3
5-4.B-4
5-4.B-5
5-4.C-1
5-4.C-8
5-4.C-9
5-4.C-10
5-4.C-11
5-4.C-12
5-4.C-13
5-4.D-1
5-4.D-2
5-4.D-4
5-4.D-3
5-4.D-5
5-4.D-6
5-4.D-7
5-4.D-8

LIST OF FIGURES (Continued)

UPC Search Program Flow Chart

Combined Read/Write Data Logic

Combined Read/Write Clock Logic

Error Detect Logic

Loading SA900/901

SA900 Functional Diagram, One Sector Hole
SA901 Functional Diagrarh, 32 Sector Holes
Head Load and Carriage Assembly

SA100 Diskette and Cartridge Layout

SA101 Diskette and Cartridge Layout
Standard Interface Lines, SA 900/901

Index Timing, SA 900/901

Index/Sector Timing, SA 900/901

Data Line Driver/Receiver Combination, SA 900/901
Control Signal Driver/Receiver, SA 900/901
Sector Recording Format, SA 901

Track Access Timing, SA 900/901

Read Initiate Timing, SA 900/901

Read Signal Timing, SA 900/901

Write Initiate Timing, SA 900/901

File Inop Circuit, SA 900/901

Orbis Model 74 Functional Block Diagram
Power Up Sequence, Orbis Model 74
Read/Write Sequence, Orbis Model 74
Interface Drive & Receiver, Orbis Model 74
Floppy Disk Cartridge, Cal Comp 140

The CDS 140, Cal Comp 140

Driver Mechanism, Cal Comp 140

Centering Cone and Driver Hub, Cal Comp 140
Positioning Mechanism, Cal Comp 140
Model 140 Functional Block Diagram, Cal Comp 140
Tunnel Erase, Cal Comp 140

Data Pattern

Bit Cell

Data Bytes

Byte-

Track Format

Index Recording Format

Sector Recording Format

Index Address Mark

Xvi

LIST OF FIGURES (Continued)

5-4.D-9 ID Address Mark
5-4.D-10 Data Address Mark
5-4.D-11 Deleted Data Address Mark

CHAPTER 6

6-1-1 Conventional Design Cycle

6-1-2 MPU-Based Design Cycle

6-2-1 POS Keyboard Configuration
6-4.1-1 Transaction Terminal Block Diagram
6-4.1-2 Control Circuitry Configuration

6-4.1-3 I/O Control Card Schematic Diagram
6-4.1-4 MPU/Control Card Schematic

6-4.1-5 MIKBUG™ PIA and TTY/RS-232 Circuitry
6-4.1-6 Transaction Terminal Memory Map
6-4.1-7 Transaction Terminal Address Decoding Chart
6-4.1-8 Bus Extender Enable/Disable

6-4.1-9 MCS8T26, Partial Schematic

6-4.2.1-1 Flow for Key Entry Data

6-4.2.2-1 Transaction Terminal Flow Diagram
6-4.2.3-1 XLABEL Assembly Listing

6-4.2.4-1 System Initialization Assembly Listing
6-4.2.4-2 Software Poll for Service Assembly Listing
6-4.2.4-3 Keyboard PIA Hardware Interface
6-4.2.4-4 Keyboard Coding/PIA Interface

6-4.2.4-5 Keyboard Decode Assembly Listing
6-4.2.4-6 XKSAFE General Flow Diagram

6-4.2.4-7 XKSAFE Initialization Section Flow Chart
6-4.2.4-8 XKSAFE Entry Point Flow Charts
6-4.2.4-9 XKSAFE Main Processing Flow Chart
6-4.2.4-10 XKSAFE Defining Section

6-4.2.4-11 XKSAFE Service Routine Flow Charts
6-4.2.4-12 Flag Reference Summary

6-4.3-1 Interrupt Control Flow Chart

6-4.3-2 Interrupt Poll Assembly Listing

CHAPTER 7

7-1 System Development: Like an Iceberg
7-1.3-1 Entering the Source Program ‘‘AAA”’
7-1.3-2 Listing of the Source Program ‘‘AAA’’
7-1.4-1 Fields of Assembly Listing

Xvii

7-1.4-2
7-1.5.4-1
7-2

7-2-1
7-2-2
7-2.3-1
7-2.6-1
7-3-1
7-3-2
7-3-3

LIST OF FIGURES (Continued)

Assembly Listing for Sample Program ‘*‘AAA”’
Simulation of “AAA”’

Procedure for Designing and Verifying a System Using the M6800 Microcomputer
Motorola EXORciser

Typical EXORciser System Block Diagram

Memory Map and Addressing

EXORciser Backplane Connections for All Boards

Motorola Evaluation Module
Evaluation Module Block Diagram
Evaluation Module Memory Map

Xviii

LIST OF TABLES

CHAPTER 2

2-1.2-1 Condition Code Register

2-1.3-1 Overflow for Addition

2-1.3-2 Overflow for Subtraction

2-1.4-1 Arithmetic Instructions

2-1.4-2 Effect of DMA instruction

2-1.4.1-1 Truth Table for ‘‘Add with Carry”’
2-1.4.1-2 Truth Table for ‘‘Subtract with Borrow’’
CHAPTER 4)

4-1.1-1 Performance of Circuit in Figure 4-1.1.1-3
4-1.1-2 Performance of Circuit in Figure 4-1.1.1-6
4-2.1.1-1 8 Level Priority Circuitry Truth Table
4-2.1.1-2 PROM Code for Priority Encoder
4-2.2.1-1 Address Assignment

4-2.2.4-1 Summary of DMA Techniques

4-2.4-1 Interval Timer Programming Chart
4-2.5.3-1 8KX8 Non-Volatile Memory System Power Requirements
4-2.5.3-2 Standby Mode Current Allocation
4-2.5.3-3 Battery Characteristics

4-2.5-4-1 MPU Family Interface Chart

CHAPTER 5

5-4.4-1 ‘FUDELT’ RAM Location

5-4.4-2 ‘FVABOR’ RAM Location

5-4.4-3 ‘FVSTAT’ RAM Location

5-4.5-5 Seek/Restore Preparation Routine

5-4.5-6 Interrupt Driven Seek/Restore Routine
5-4.5-7 Seek Examples

5-4.6.4-1 Floppy Disk Read Routine

5-4.7.4-1 Floppy Disk Write Data Routine

5-4.8-3 UPC Search Routine

5-4.C-2 Physical Characteristics, Cal Comp 140
5-4.C-3 Power Requirements, Cal Comp 140
5-4.C-4 Operating Environment, Cal Comp 140
5-4.C-5 Specifications, Cal Comp 140

5-4.C-6 140 Disk Drive Output Signals, Cal Comp 140
5-4.C-7 Interface Logic Levéls, Cal Comp 140

Xix

LIST OF TABLES (Continued)

CHAPTER 6

6-4.2.1-1

Transaction Terminal Keyboard/Wand Entry

6-4.2.1-2 Transaction Terminal Keyboard Buffers

6-4.2.1-3 Transaction Terminal Keyboard Flags
CHAPTER 7

7-1-1 Alphabetic Listing of Instruction Mnemonics
7-1.1-1 Assembler Directives

7-1.1-2 ASCI Code

7-1.4-1 Assembler Error Messages

7-1.5.5-1 Typical Simulator Errors

7-1.6-1 HELP Error Messages

7-1.6-2 HELP Listing of Simulator and BVM Commands
7-1.6-3 HELP Messages

7-1.7-1 BVM Machine File and Output Memory Commands
7-2.2.2-1 MAID Control Commands

7-3-1 Evaluation Module Specifications

CHAPTER 1

1. INTRODUCTION TO THE MC6800 MICROPROCESSOR

Motorola has elected to provide a microprocessor family of parts headed by the MC6800
Microprocessing Unit (MPU). The MC6800 MPU is an eight-bit parallel microprocessor with addressing
capability of up to 65,536 words. It is TTL compatible requiring only a single five-volt supply and no external
TTL devices for bus interface in small systems.

In support of the MPU are several memory and I/O interface devices. To date, the family consists of
a 128 X 8 RAM (MCM6810), a 1024 X 8 ROM (MCM6830), a parallel I/O interface (MC6820 PIA), and an
asynchronous serial I/O interface (MC6850 ACIA). In keeping with the family concept, each operates on a
single five-volt power supply and is compatible with the system bus signals. The family of parts is not a chip set
in the sense that the MPU operation is dependent upon other family elements; the MC6800 is a self-contained
microprocessor capable of operating with virtually any MOS or standard TTL device. The significant point is
that the other family members merely add additional capability and/or flexibility. They provide excellent tools
in configuring a full microprocessor operafing system.

1-1 SYSTEM ORGANIZATION

Before describing the individual parts in any detail, an explanation of the MPU bus and control
structure will serve to demonstrate how a system is brought together. Figure 1-1-1 is organized to show the
processor’s inputs and outputs in four functional categories; data, address, control, and supervisory.

The width and drive capability of the Data Bus has become a standard means of measuring
microprocessors. The MC6800 has an 8-bit bidirectional bus to facilitate data flow throughout the system. The
MPU Data Bus will drive up to 130 pf and one standard TTL load. As a result of the load characteristics of the
RAM, ROM, ACIA, and PIA, the MPU can drive from 7 to 10 family devices without buffering.

Using the family 1/O interface devices allows the 16-bit Address Bus to assume additional
responsibility in the M6800 system. Not only does the Address Bus specify memory, but it becomes a tool to
specify I/O devices. By means of its connections to the Data Bus, Control Bus, and selected address lines, the
1/O interface is allocated an area of memory. As a result, the user may converse with I/O using any of the
memory reference instructions, selecting the desired peripheral with a memory address.

In addition to the Data and Address Bus, a Control Bus is provided for the memory and
interface devices. The Control Bus consists of a heterogeneous mix of signals to regulate system opera-
tion. Following is a brief review of the designated Control Bus signals shown in Figure 1-1-1. ¢2 is one
phase of the system clock applied to the MPU. It is applied to the enable or chip select inputs of the
family parts to insure that the devices are enabled only when the address bus and VMA are stable. Reset
is used to reset and start the MPU from a power down condition. It is also routed to the Reset inputs

of the PIAs for use during power on initialization. Interrupt Request is generated by the PIA, ACIA, or
user defined hardware to notify the MPU of a request for service.

1-1

Read/Write (R/W) and Valid Memory Address (VMA) are MPU outputs characterizing the Data
Bus and Address Bus, respectively. R/W designates whether the MPU is in a Read or Write mode for each
cycle. VMA indicates to memory and I/O that the MPU is performing a read or write operation in a given cycle.
This signal is applied to the enable or chip select inputs of each family device in order to disable data transfer
when VMA is low.

The last set of signals in Figure 1-1-1, the MPU Supervisory, is used for timing and control of the
MC6800 itself. Note that three of the Supervisory signals are shared with the control bus and affect the memory
and 1/O devices as well.

&1 is one of the two clock phases to the MPU. Non-Maskable Interrupt (NMI) is similar to the
interrupt request input mentioned earlier, except that NMI will always be serviced regardless of the state of a
programmable interrupt mask contained within the processor. Data Bus Enable (DBE) is the three-state control
signal for the MPU data bus. Normally, this signal will be ¢2, derived from the clock. Three-State Control
(TSC) affects the addreés bus and the R/W line in the same manner that DBE controls the data bus. This signal
can be used, for example, to accomplish a direct memory access by putting the Address Bus and the R/W line in
the high impedance state. The last supervisory input is the Halt signal. When Halt is low, the MPU will stop
processing. In the Halt mode, all three-state signals will be in a high impedance state (address, data and R/W),
VMA will be low, and Bus Available will be high.

The Bus Available supervisory output from the MPU is normally in an inactive low state. It is
brought high by the occurrence of the ﬁz—iﬂinput low or by execution of a WAIT instruction. In either case, the
MPU stops program execution and sets Bus Available high, indicating that all the three-state buffers are in the
high impedance state. If the MPU has stopped as a result of the Halt signal, Bus Available will remain high until
the Halt input is again taken high. If the MPU has stopped as a result of the WAIT instruction, itis waiting for an
interrupt and Bus Available will remain active until a non-maskable interrupt or interrupt request occurs. Bus

Available may be used to signal external hardware that the MPU is off the bus for multiprocessor or direct
memory access applications.

+5V GND
1 |
ey
BUS AVAILABLE DATA
HALT —] BUS
% | THREE-STATE CONTROL =g
]
2 DATA BUS ENABLE =
z 4 ADDRESS
‘g NON-MASKABLE INT, ——m MC6800 16 > BUS
o _—
> RESET
o
S
#1
VALID MEM.W
92 - [——"— ADDRESS
~ iINT. REQ — i READ/WRITE
> CONTROL
— BUS
INT. REQ
— 32
N RESET)
—— e ! ———
TO/FROM : TO/FROM
6800 CONTROL | MEMORY AND
CIRCUITS PERIPHERALS

FIGURE 1-1-1. MC6800 Bus and Control Signals

1-2

1-1.1 M6800 FAMILY ELEMENTS

With the MC6800 as the focal point, a variety of memory and I/O devices may be tied onto the bus
network. The busses will provide TTL compatible voltage levels (Vou = 2.4 volts, VoL = 0.4 volts) while
driving capacitive loads up to 130 picofarads with current loads of up to 1.6 ma sink current and 100 na source k
current.
1-1.1.1 Memory On The Bus

Memory is connected in a straightforward fashion by tieing directly to the MC6800 busses.
Motorola currently provides two byte oriented memory devices as part of the microprocessor family: The 128 X
8 RAM (MCM6810) and the 1024 X 8 ROM (MCM6830). Block diagrams of the RAM and ROM are shown
in Figures 1-1.1.1-1 and 1-1.1.1-2, respectively. Notice that the data lines have three-state buffers permitting
the memory data signals to wire-OR directly onto the system data bus. Address decoding is minimized by
providing multiple enable (E) inputs. The enable inputs, when active, select the specified device as defined by
the address inputs. For a small to medium size system, no additional address decoding is necessary. The
memories operate from a single 5V power supply and are TTL compatible. Static operation eliminates the need
for clocks or refresh.

o—1 -—o [
o . ls—»
; > L]
REESTATE [ag—g»
pooess | soonesf o | ey
. 128 X 8 TTL BUFFERS [w—%
—] ° ja—
o1 | -
: ja—

2
=

MEMORY CONTROL

7

mmm m m

il

FIGURE 1-1.1.1-1. MCM6810 RAM Functional Block Diagram

E'l'
E* l *DEFINED BY USER

AND
| GATE

f
L[4 . L3
-
L —o
g .—1 [
= o) | o
2 | o ADDRESS | , | MEMORY THREE TR TE
] < DECODER MATRIX BUFFERS * } DATA BUS
) o . | —e
2 | e . ——
8 *—] [] ——o —
o . _.J
\.*

FIGURE 1-1.1.1-2. MCM6830 ROM Functional Block Diagram

1-3

MPU

PIA

[
1l

JLJV L

Data

K— & =)

Contro!
(8) ﬂ} Periphera!

FIGURE 1-1.1.2-1. MPU Parallel 1/O Interface

|[§——® cConwol
4\—L 4LL
ATA LCONTROL MPU
4J
ADDRESS
PN
Do
peals
—— » D2
—— -<+»{ D3
D4
<> D5
<»{ D6
D7
FIGURE 1-1.1.2-2. MPU/P1A Interface cs0 PIA
l—— cs1
— —={ CS2
l —{ RSO
RS1
¢
g R{W
-« |IRQA
AJ- M- vl I'_- IRECSB
| RESET
DATA \pDRESS
CONTROL
jtp———— CA1
“A” CONTROL
“A” DATA > CA2
DIRECTION
DATA A" DATA 4___‘D PAO—PA?
REGISTER
ADDRESS :>
ft———— By FIGURE 1-1.1.2-3. PIA Registers
“B” CONTROL
CONTROL :; ~— CB2
“B” DATA
DIRECTION
“B” DATA C:‘.:> PBO—PB7
REGISTER:
MPU
£ I 2
R TRANSMIT DATA
P e B
_ v oA RECEIVE DATA PERIPHERAL
FIGURE 1-1.1.2-4. MPU Serial 1/0 Interface Y <'|:::> OR MODEM
—N
v 1/0 CONTROL
L\l
DATA | | cONTROL
ADDRESS

14

1-1.1.2 T/O On The Bus

The family I/O devices are also tied directly to the bus network. In the M6800 architecture, I/O is
configured to respond to MPU instructions in the same fashion as memory. This is accomplished by tapping off
the MPU busses such that I/O has a ‘‘“memory’’ address that the MPU references. Two devices available for
interfacing the microprocessor with the outside world are the MC6820, Peripheral Interface Adapter (PIA), for
parallel interface, and the MC6850, Asynchronous Communication Interface Adapter (ACIA), for serial
interface. Both are designed to tie directly to the MPU busses and transfer signals between peripherals and the
MPU under program control.

Interfacing the MPU to a variety of I/O devices is straightforward with the Peripheral Interface
Adapter (PIA). It is a programmable general purpose parallel interface device designed to interface the MPU to
peripherals through two 8-bit bidirectional peripheral data busses and four control lines as shown in Figure
1-1.1.2-1. ‘

The MPU/PIA interface consists of three elements: 8 data lines, 5 address lines, and 5 control lines
(see Figure 1-1.1.2-2). The data lines are bidirectional common to the MPU data bus. The PIA taps off 5 bits
from the 16-bit MPU address bus. These 5 inputs are utilized to select the PIA (CSO, CS1, (_‘,—S_Z) as well as
registers within the PIA (RSO and RS1).

The PIA uses all of the signals on the MPU Control Bus. The R/W input ties directly to the MPU
R/W output to control direction of data flow. The PIA has two independent Interrupt Request outputs that may
be wire-ORed together and tied to the IRQ line of the Control Bus or applied separately to prioritizing circuitry.
The Reset input may be tied directly to the MPU control bus to initialize the PIA to an all zero condition when
required. Finally, the Enable input is the timing signal to be supplied to the PIA. This input is typically the ¢2
clock.

The PIA is programmable in the sense that the MPU can Read and/or Write into its internal registers.
There are a total of six 8-bit registers in the PIA. They are separated into an A and B side, each side containing a
Control Register, Data Direction Register, and an Output Data Register (Figure 1-1.1.2-3). To define operation
of the PIA control lines, an 8-bit word is loaded into the Control Register. Likewise, to define the
PIA/peripheral data lines to be inputs or outputs, an 8-bit word is loaded into the Data Direction Register.
Finally, data being transferred to peripherals may be saved in the PIA Output Data Register.

Motorola has also made available a serial interface device to accommodate asynchronous data
transfer. The MC6850 Asynchronous Communications Interface Adapter (ACIA) is a general purpose
programmable interface for use between the MPU and asynchronous I/O as shown in Figure 1-1.1.2-4. The
ACIA ties into the MPU Address, Data, and Control Busses enabling the MPU to handle the serial I/O using
memory reference instructions.

1-5

The MPU/ACIA interface consists of three elements (see Figure 1-1.1.2-5): 8 data lines, 4 address
lines, and 3 control lines. The data lines are bidirectional common to the MPU data bus. Four of the sixteen
MPU address signals are used to select a particular ACIA (CSO, CS1, CS2), and to select registers within the
ACIA (RS). : :

The control signals from the bus are Read/Write (R/W) and Enable (E). The R/W input is common to
the MPU control bus R/W signal and the E input in a typical application is the ¢2 clock.

The internal structure of the ACIA is centered around four registers (Figure 1-1.1.2-6): Control,
Status, Transmit Data, and Receive Data. The ACIA is programmed by storing an 8-bit word into the write only
Control Register. This register controls the function of the receiver, transmitter, interrupt enables, and the

MPU

cso ACIA

il

18! '1|? ik

L L.l- J-

DATA
ADDRESS
CONTROL

FIGURE 1-1.1.2-5. MPU/ACIA Interface

DATA :'IJ> TRANSMIT DATA [TRANSMIT DATA
 tf———————— R ECE "
ADDRESS __v RECEIVE DATA RECEIVE DATA

I CONTROL I [~ CLEAR-TO-SEND
CONTROL ﬂ STATUS ==— DATA CARRIER DETECT

REQUEST-TO-SEND

FIGURE 1-1.1.2-6. ACIA Registers

modem control signals. ACIA status and error conditions are monitored by reading the 8-bit Satus Register.

The ACIA also has independent transmit and receive data buffers to save data and perform serial/parallel
transformation.

1-1.2 TYPICAL SYSTEM CONFIGURATION

With the preceding material as background, the family devices and bus structure can be combined in
a system configuration. Figure 1-1.2-1 shows a system controlled by the MC6800 containing one each RAM,
ROM, PIA, and ACIA. With the exception of suitable peripherals, this block diagram represents all of the
hardware required for a fully operational MPU system. The family of parts represents 5 devices, clock circuitry
can be designed with 2 devices, and start-up can be accomplished with one device'. Therefore, a functional
system can be configured with as few as eight devices and have both parallel and serial I/O capability.

The configuration of Figure 1-1.2-1 represents typical interconnections regardless of the size of the
system. The data bus is shared fully between all devices in the system. The control bus is shared by all devices,
with each tapping off signals as required. The I/O devices wire-OR all interrupt request signals to the MPU IRQ
input. The PIA has two interrupts and the ACIA, one. VMA and ¢2 are both required inputs to the family
devices and are, therefore, applied to the inputs as shown in Figure 1-1.2-1. ¢2 guarantees that all busses are
stable and VMA designates a valid memory cycle whenever a memory or 1/O device is enabled.

1-1.2.1 Memory Allocation

The Address Bus lends itself to very flexible memory allocation. Different combinations of signals

may be tapped off the Address Bus to define where in ““memory’’ each device is located. The chip select signals
(CS0, CS1, CS2) of the PIA/ACIA and the enable inputs of the RAM/ROM are used to select specific

devices. In Figure 1-1.2-1, for example, A2, A14, and A15, are used to enable the PIA for MPU data
transfer. The least significant address bits (AO, A1) are then utilized to select a memory word or I/O
register within the selected device. Therefore, a given address will specify the device, and a location

within the device. ,
Table 1-1.2.1-1 shows the ‘‘memory map’’ of the example system. This map represents the area in

memory where each device is located, including I/O. For example, address bits A14 and A15 are both tied to
the E inputs of the RAM. Therefore, whenever both of these address signals are low, the RAM will be
conversing with the MPU on the data bus. It should be noted that without address decoding, the devices will be
allocated a block of memory because the ‘‘don’t care’’ address bits may be either logical ‘0’ or *‘1”’, thereby
widening the devices apparent address band. Having defined the memory map, the user may then determine the
address of registers in a specific I/O device. Table 1-1.2. 1-2 shows the corresponding register addresses for
each ACIA and PIA register. Notice that bit 2 of the control registers (CRAb2 and CRBb2) and R/W are used to
assist the address signals to select PIA and ACIA registers, respectively.

1-1.2.2 Hardware Requirements

The final point to consider is that the example configuration represents a minimum system. To
expand the system, the user need only make further use of the bus network. If, for example, an additional PIA is
required, A4, Al4, and A15 may be tied to CSO, CS1, and CSzZ, respectively. This procedure could be
continued to add multiple memory and I/O devices without address decoding.

1See Chapter 4 for typical clock and start-up circuits.

1-7

<- TRQ
START-
uP RESET
BA
—DB7
oBE DBO-DB
92 : .[] 92
crock & o MPU
VMA « 92) I TSC
+5 V| HALT
r NAT RIW
VMA | ™\
/| A0-A15 VMA ——\
/ t AO-A3)| A0- A9 DBO-DB7?
ROM VMA o $2
/ __ A5 £ £ .
/ N € £
/ : A0- A6 Y A0-A6 DBO—DB7
é e RN e g
lE E
(2 A4 E R/W | /W
@ E
8/
2
/ \———ﬁ? RSO
/\.—_—_—- RS1 DBO-DB7
A2
/\ VMA - Al4 22‘1’ PIA . 52
R/W |t
_ iRGA
cA2 TROB
/ CA1 __PA PB CB1CB2
/ —
/ PARALLEL 1/0 (DATA AND CONTROL)
? e b B0-DB7
/ \ VWA AT ACIA
N A15 cs1 . 62 _J
Ccs2 E A
/ R/W
TRQ |’
/ Tx Rx CispeoRts | MO
4 RN

NN g

L

coNTROL A S S SA ST T T T TN T TV TR TSN T T TR TV T TN TTY Y

ANNNANN NN

AN

<
DAT,

.

SERIAL 1/O (DATA AND CONTROL)

FIGURE 1-1.2-1. MPU Minimum System

1-8

ASSSN NN N TANNNNSNNNNSNNNSNAINNNNNN

AN NNNNANANNNN

-

The MC6800 microprocessor complemented by its family of parts was designed with ease of use in
mind. Interfacing peripherals to the microprocessor with PIAs and ACIAs eases the burden of hardware design
and minimizes software requirements by distributing intelligence to these interfaces. Power supply
requirements are uncomplicated: one five-volt supply throughout the family. Neither decode nor buffering
circuitry is required in systems containing less than 7 to 10 family devices. As the system grows, the design may
require buffers to prevent overloading or address decoders to more precisely define memory blocks. Be that as
it may, the rules don’t change and bussing continues to be straightforward.

ADDRESS ' DEVICE MEMORY MAP

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
o o0 - . . - - X X X X X X X RAM 0000-007F HEX
1 1 . X X XX X X X X XX ROM C000-C3FF HEX
0 1 1 X X PIA 4004-4007 HEX
0 1 1 X ACIA 4008-4009 HEX

X = Variable address 0 = Logical zero

- =Don’t care 1 = Logical one

TABLE 1-1.2.1-1
ADDRESS(HEX) I/O REGISTER
(4004-4007) RS1 RSO (P1A)

' 4004 0 0 Data direction register A (CRAb2 =0)
4004 0 0 Peripheral interface register A (CRAb2 = 1)
4005 0 1 Control register A
4006 1 0 Data direction register B (CRBb2 = 0)
4006 1 0 Peripheral interface register B (CRBb2 = 1)
4007 1 -1 Control register B ‘

(4008-4009) RS (ACIA)
4008 - 0 Control register (write only)
4008 0 Status register (read only)
4009 1 Transmit data register (write only)
4009 1 Receiver data register (read only)

TABLE 1-1.2.1-2

19

1-2 SOURCE STATEMENTS AND ADDRESSING MODES

A hardware configuration similar to that described in the preceding Section provides the nucleus for
a system based on the M6800 Microprocessor Family. Three additional elements are required to complete a
typical system design: (1) the actual peripheral equipment that is dictated by the system specification; (2) any
auxiliary electronics required to control the peripherals; (3) the ‘‘intelligence’’ that enables the MPU to perform
the required control and data processing functions.

In an MPU based design, *‘intelligence’’ refers to the control program, a sequence of instructions
that will guide the MPU through the various operations it must perform. During development, the designer uses
the MC6800’s predefined instruction set to prepare a control program that will satisfy the system requirements.
The program, usually called ‘‘software’’ at this point, is then stored in ROM memory that can be accessed by
the MPU during operation, thus becoming the system’s intelligence. Once in ROM, the program is often called
‘““firmware’’, however, it is common to find the terms software and firmware used interchangeably in this
context.)

Definition of suitable peripheral interfaces is discussed in detail in Chapter 5. The remainder of this
Chapter provides the background information necessary for generation of the control program. Source
statement format and the MPU’s addressing modes are introduced in this section. The instruction set is
described in Section 1-3.

The MPU operates on 8-bit binary numbers presented to it via the Data Bus. A given number (byte)
may represent either data or an instruction to be executed, depending on where it is encountered in the control
program. The M6800 has 72 unique instructions, however, it recognizes and takes action on 197 of the 256
possibilities that can occur using an 8-bit word length. This larger number of instructions results from the fact
that many of the executive instructions have more than one addressing mode.

These addressing modes refer to the manner in which the program causes the MPU to obtain its
instructions and data. The programmer must have a method for addressing the MPU’s internal registers and all
of the external memory locations. The complete executive instruction set and the applicable addressing modes
are summarized in Figure 1-3-1, however, the addressing modes will be described in greater detail prior to
introducing the instruction set later in this chapter. A programming model of the MC6800 is shown in Figure
1-2-1. The programmable registers consist of: two 8-bit Accumulators; a 6-bit Condition Code Register; a
Program Counter, a Stack Pointer, and an Index Register, each 16 bits long. '

7 0
ACCA ACCUMULATOR A
7 0
ACCB ACCUMULATOR B
15 0
IX INDEX REGISTER
15 0
PC PROGRAM COUNTER
15 0
SP STACK POINTER

5

0
H] 1 |n]z]v]c] conpiTion copes regisTER

FIGURE 1-2-1. Programming Model of MC6800

1-10

1-2.1 SOURCE STATEMENTS

While programs can be written in the MPU’s language, that is, binary numbers, there is no easy way
for the programmer to remember the particular word that corresponds to a given operation. For this reason,
instructions are assigned a three letter mnemonic symbol that suggests the definition of the instruction. The
program is written as a series of source statements using this symbolic language and then translated into
machine language. The translation can be done manually using an alphabetic listing of the symbolic instruction
set such as that shown in Appendix Al. More often, the translation is accomplished by means of a special
computer program referred to as a cross-assembler. The cross-assembler and other ‘‘software’’ design aids
available to the user are described in Chapter 7.

During assembly, each source statement or executive instruction is converted to from one to three
bytes of operating code (opcode), depending on the addressing mode used. The term *‘executive instruction’’ is
used here to distinguish between statements that generate machine code and ‘‘assembly directives’’ that are
useful in controlling and documenting the source program but generate no code. The Assembly Directives are
described in Section 7-1.1.

Each statement in the source program prepared by the user may have from one to four fields: a label,
a mnemonic operator (instruction), an operand, and a comment. The four fields are illustrated in the following
typical source statement:

Label Operator Operand Comment
BEGINI1 TST DATA1B TEST CONTENTS OF DATA1B

(This instruction causes the MPU to test the contents of the memory location labeled DATA1B and set the
Condition Code Register bits accordingly.)

Each source statement must have at least the mnemonic operator field. An operand may or may not
be required, depending on the nature of the instruction. The comment field is optional, at the programmer’s
convenience, for describing and documenting the program.

1-2.2 LABELS

Labels and their use are described in greater detail in Chapter 7. In general, they may correspond to
either a numerical value or a memory location. This use of symbolic references to memory permits
programming without using specific numerical memory addresses. For instance, the operand label ‘‘DAA1B’’
in the example may be anywhere in memory. Labels are required for source statements that are the destination
of jump and branch instructions. In the example, ‘‘BEGIN1’’ identifies the statement as the destination of a
branch or jump instruction located elsewhere in the control program. That instruction will, in turn, have
“BEGIN1”’ as its operand.

Labels may be up to six characters long and use any alphanumeric combination of the character set
shown in Appendix A2 with the restriction that the first character be alphabetic. Three single character labels,
A, B, and X, are reserved for referring to accumulator A, accumulator B, and the Index RegiSter, respectively.

1-2.3 ADDRESSING MODES

1-2.3.1 Inherent (Includes ‘‘Accumulator Addressing’’ Mode) -

The successive fields in a statement are normally separated by one or more spaces. An exception to
this rule occurs for instructions that use dual addressing in the operand field and for instructions that must
distinguish between the two accumulators. In these cases, A and B are ‘‘operands’’ but the space between them
and the operator may be omitted. This is commonly done, resulting in apparent four character mnemonics for
those instructions.

The addition instruction, ADD, provides an example of dual addressing in the operand field:

Operator Operand Comment
ADDA MEMI12 ADD CONTENTS OF MEM12 TO ACCA
or ADDB MEM12 ADD CONTENTS OF MEM12 TO ACCB

The example used earlier for the test instruction, TST, also applies to the accumulators and uses the
‘‘accumulator addressing mode’’ to designate which of the two accumulators is being tested:

Operator - Comment
TSTB TEST CONTENTS OF ACCB
or TSTA TEST CONTENTS OF ACCA

A number of the instructions either alone or together with an accumulator operand contain all of the
address information that is required, that is, the address is ‘‘inherent’’ in the instruction itself. For instance, the
instruction ABA causes the MPU to add the contents of accumulators A and B together and place the result in
accumulator A. The instruction INCB, another example of ‘‘accumulator addressing’’, causes the contents of
accumulator B to be increased by one. Similarly, INX, increment the Index Register, causes the contents of the
Index Register to be increased by one.

Program flow for instructions of this type is illustrated in Figures 1-2.3.1-1 and 1-2.3.1-2. In these
figures, the general case is shown on the left and a specific example is shown on the right. Numerical examples

are in decimal notation. Instructions of this type require only one byte of opcode.
MPU MPU

MPU MPU }
INDEX
= | peen_ | A
» K—
RAM i
RAM RAM RAM
SroGRAM N N ~_
PROGRAM PROGRAM PROGRAM
MEMORY MEMORY MEMORY MEMORY
ec| insTR K . PC = 5000 INx - K .
o ‘ pc[nsTR K pc=5001{ INCB K
I N /_J
T GENERAL FLOW EXAMPLE
GENERAL FLOW EXAMPLE
FIGURE 1-2.3.1-1. Inherent Addressing FIGURE 1-2.3.1-2. Accumulator Addressing

1-12

MPU MPU MPU MPU

ACCA ACCA
<] =K < = 1K
RAM RAM RAM RAM
<: ’\C ApDR [DATA K ADDR = 100 35 K
/-\ /\ — | %
OGRAM k PROGRAM PROGRAM
wkMORY ?;gﬁ;Qy MEMORY MEMORY
PC INSTR PC = 5002 LDA A PC INSTR PC = 5004 LDA A
DATA K 25 K pc+1| AbbrR K 5005 100
EXAMPLE ADDR = 0 £ 255
GENERAL FLOW GENERAL FLOW EXAMPLE
FIGURE 1-2.3.2-1. Immediate Addressing Mode FIGURE 1-2.3.3-1. Direct Addressing Mode

1-2.3.2 Immediate Addressing Mode

In the Immediate addressing mode, the operand is the value that is to be operated on. For instance,
the instruction

Operator Operand Comment
LDAA #25 LOAD 25 INTO ACCA

causes the MPU to ‘‘immediately load accumulator A with the value 25; no further address reference is
required. The Immediate mode is selected by preceding the operand value with the *‘#’’” symbol. Program flow
for this addressing mode is illustrated in Figure 1-2.3.2-1.

The operand format allows either properly defined symbols or numerical values. Except for the instructions
CPX, LDX, and LDS, the operand may be any value in the range O to 255. Since Compare Index Register
(CPX), Load Index Register (LDX), and Load Stack Pointer (LDS), require 16-bit values, the immediate mode
for these three instructions require two-byte operands. In the Immediate addressing mode, the ‘‘address’’ of the
operand is effectively the memory location immediately following the instruction itself.

1-2.3.3 Direct and Extended Addressing Modes

In the Direct and Extended modes of addressing, the operand field of the source statement is the
address of the value that is to be operated on. The Direct and Extended modes differ only in the range of
memory locations to which they can direct the MPU. Direct addressing generates a single 8-bit operand and,
hence, can address only memory locations O through 255; a two byte operand is generated for Extended
addressing, enabling the MPU to reach the remaining memory locations, 256 through 65535. An example of
Direct addressing and its effect on program flow is illustrated in Figure 1-2.3.3-1.

The MPU, after encountering the opcode for the instruction LDAA (Direct) at memory location
5004 (Program Counter = 5004), looks in the next location, 5005, for the address of the operand. It then sets

1-13

the program counter equal to the value found there (100 in the example) and fetches the operand, in this case a
value to be loaded into accumulator A, from that location. For instructions requiring a two-byte operand such as
LDX (load the Index Register), the operand bytes would be retrieved from locations 100 and 101.
Extended addressing, Figure 1-2.3.3-2, is similar except that a two-byte address is obtained from
locations 5007 and 5008 after the LDAB (Extended) opcode shows up in location 5006. Extended addressing
can be thought of as the ‘‘standard’’ addressing mode, that is, it is a method of reaching anyplace in memory.
Direct addressing, since only one address byte is required, provides a faster method of processing data and
generates fewer bytes of control code. In most applications, the direct addressing range, memory locations

0-255, are reserved for RAM. They are used for data buffering and temporary storage of system variables, the
area in which faster addressing is of most value.

MPU MPU
ACCB
- | -
RAM RAM
ADDR DATA ADDR = 300 45 N
] ~—i FIGURE 1-2.3-3-2. Extended Addressing Mode
PROGRAM PROGRAM
MEMORY MEMORY
INSTR PC = 5006 LDA B
PC ADDR 300
ADDR
|~ 5009 —~
ADDR > 256
GENERAL FLOW EXAMPLE

1-2.3.4 Relative Addressing Mode

In both the Direct and Extended modes, the address obtained by the MPU is an absolute numerical
address. The Relative addressing mode, implemented for the MPU’s branch instructions, specifies a memory
location relative to the Program Counter’s current location. Branch instructions generate two bytes of machine
code, one for the instruction opcode and one for the ‘‘relative’’ address (see Figure 1-2.3.4-1). Since it is
desirable to be able to branch in either direction, the 8-bit address byte is interpreted as a signed 7-bit value; the
8th bit of the operand is treated as asign bit, *‘0”’ = plus and ‘‘1’’ = minus. The remaining seven bits represent
the numerical value. This results in a relative addressing range of =127 with respect to the location of the
branch instruction itself. However, the branch range is computed with respect to the next instruction that would
be executed if the branch conditions are not satisfied. Since two bytes are generated, the next instruction is
located at PC + 2. If D is defined as the address of the branch destination, the range is then:

(PC + 2) — 127 < D < (PC + 2) + 127
or PC—125<D <PC + 129

that is, the destination of the branch instruction must be within — 125 to +129 memory locations of the branch
instruction itself. For transferring control beyond this range, the unconditional jump (JMP), jump to subroutine
(JSR), and return from subroutine (RTS) are used.

1-14

In Figure 1-2.3.4-1, when the MPU encounters the opcode for BEQ (Branch if result of last
instruction was zero), it tests the Zero bit in the Condition Code Register. If that bit is “‘0”’, indicating a
non-zero result, the MPU continues execution with the next instruction (in location 5010 in Figure 1-2.3.4-1).
If the previous result was zero, the branch condition is satisfied and the MPU adds the offset, 15 in this case, to
PC + 2 and branches to location 5025 for the next instruction.

The branch instructions allow the programmer to efficiently direct the MPU to one point or another
in the control program depending on the outcome of test results. Since the control program is normally in
read-only memory and cannot be changed, the relative address used in execution of branch instructions is a
constant numerical value.

MPU MPU

RAM

RAM

=]

V'_’

Program Program
Memory Memory
PC Instr.
Offset PC 5008 BEQ
(PC + 2) Next Instr. 15
PC 5010 Next Instr.
(PC + 2) + (Offset) Next Instr. PC 5025 Next instr.

FIGURE 1-2.3.4-1. Relative Addressing Mode

1-2.3.5 Indexed Addressing Mode

With Indexed addressing, the numerical address is variable and depends on the current contents of

the Index Register. A source statement such as

Operator Operand Comment
STAA X PUT A IN INDEXED LOCATION

causes the MPU to store the contents of accumulator A in the memory location specified by the contents of the
Index Register (recall that the label ““X’’ is reserved to designate the Index Register). Since there are
instructions for manipulating X during program execution (LDX, INX, DEX, etc.), the Indexed addressing
mode provides a dynamic ‘‘on the fly’” way to modify program activity.

The operand field can also contain a numerical value that will be automatically added to X during

execution. This format is illustrated in Figure 1-2.3.5-1.

When the MPU encounters the LDAB (Indexed) opcode in location 5006, it looks in the next
memory location for the value to be added to X (5 in the example) and calculates the required address by adding
5 to the present Index Register value of 400. In the operand format, the offset may be represented by a
label or a numerical value in the range 0-255 as in the example. In the earlier example, STAA X, the operand is
equivalent to 0,X, that is, the 0 may be omitted when the desired address is equal to X.
1-2.3.6 Mode Selection

Selection of the desired addressing mode is made by the user as the source statements are written.
Translation into appropriate opcode then depends on the method used. If manual translation is used, the
addressing mode is inherent in the opcode. For example, the Immediate, Direct, Indexed, and Extended modes
may all be used with the ADD instruction. The proper mode is determined by selecting (hexidecimal notation)
8B, 9B, AB, or BB, respectively (see Figure 1-3-1).

The source statement format includes adequate information for the selection if an assembler
program is used to generate the opcode. For instance, the Immediate mode is selected by the Assembler
whenever it encounters the ‘‘#’’ symbol in the operand field. Similarly, an ‘X’ in the operand field causes the
Indexed mode to be selected. Only the Relative mode applies to the branch instructions, therefore, the
mnemonic instruction itself is enough for the Assembler to determine addressing mode.

MPU MPU
ACCB
- b
NDE X
RAM RAM
ADDR = INDX =7 ADDR =
+ OFFSET ATA R = 405 59
PROGRAM PROGRAM
MEMORY MEMORY
pc| INSTR PC=5006 | LDAB
OFFSET K 5 <

\

OFFSET < 255
GENERAL FLOW EXAMPLE

FIGURE 1-2.3.5-1. Indexed Addressing Mode

1-16

For the instructions that use both Direct and Extended modes, the Assembler selects the Direct mode
if the operand value is in the range 0-255 and Extended otherwise. There are a number of instructions for which
the Extended mode is valid but the Direct is not. For these instructions, the Assembler automatically selects the
Extended mode even if the operand is in the 0-255 range. The addressing modes are summarized in Figure

1-2.3.6-1.

Direct: n DO Instruction Immediate: n Instruction
Example: SUBB Z E .
e " - xample: LDAA #K + =
Addr. Range = 0—265 n+1 Z = Oprnd Address (K = One-Byte Oprnd) n+1 K = Operand
& n+2 Next Instr. n+2 Next Inst.
[OR
(K = Two-Byte Oprnd) n .
hd {CPX, LDX, and LDS) Instruction
. n+1 Ky = Operand
(K = One-Byte Oprnd) z K = Operand n+2 K| = Operand
OR n+3 Next Instr.
(K = Two-Byte Oprnd) z K = Operand
Z+1 K = Operand
Relative: n Instruction
/A 1f 2 <255, Assembler Select Direct Mode Example: BNE K n+1 | XK =Brnch Offset
If Z>> 255, Extended Mode is selected
(K = Signed 7-Bit Value) n+2 Next Instr. é
Addr. Range: [
—125 to +129
Relative to n.
[]
)
Extended: n FO Instruction
(n +2)*K Next Instr. é
Example: CMPA 2 n+1 1 2, =0prnd Address
Addr. Range: é If Brnch Tst False @ If Brnch Tst True.
n+2 ZL=0 A !
256—65535 L prnd Address
n+3 Next Instr.
° Indexed: n Instruction
PY Example: ADDA Z, X n+1 Z = Offset
[Addr. Range: n+2 Next instr.
0-—255 Relative to
(K = One-Byte Oprnd) z K = Operand index Register, X)
OR [J
(K = Two-Byte Oprnd) z Ky = Operand [)
_ (Z = 8-Bit Unsigned X+ 2Z K = Operand
Z+1 K| = Operand Value) P

FIGURE 1-2.3.6-1. Addressing Mode Summary

ADDRESSING MODES

BOOLEAN/ARITHMETIC OPERATION

COND. CODE REG.

ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (ANl register labals sfal3jz2|1]o0
OPERATIONS MNEMONICjOP | ~ | # |OP |~ | # |oP |~ #|or]~|#|op|~|# refer to contents) Hl1{n|2Z|v|C
Add ADDA |88 | 2 [2 |98 [3 |2 |AB{S5 |2 BB[4 |3 A+M—>A D EIEIEAE
ADD8 |cB| 2 {2|oB |3 |2 |e8 |5 |2]|FB|4 |3 B+M-B L ERE EA K
Add Acmitrs ABA Bl2]1]A+B>A K] IR R
Add with Carry ADCA 89| 2 | 2|99 [3 |2 |As |5 |2[Bo]| 4|3 A+M+C—~A I EAEIEA R
aDcB |c9 |2 |2]os {3 |2 |es|5|2]{Fa]a |3 B+M+C~>B ottt
And ANDA (84 | 2 | 2|94 |3 2 |Am4 |5 2|Bs|4a]|3 AeM—>A olofi|t|R|e
ANDB fca 2 | 2|Da |3 |2 |€4 |65]| 2|Fa]|4a]3 BeM—B eleft|t{R]|®
Bit Test BITA 85 |2 |2j95 [3|2|as|{5)2|B5]{4]3 AeM oleft|t|R]|e®
BITB cs|2|2fos|3|2|es|5|2]F5]4a]|3 BeM oloft|t|R|®
Clear CLR 6F | 71217 |86 |3 00 ->M e|lo|R[S|R|R
CLRA k2] 1100~n elelR|S|R|R
CLRB SF 2] 1]00-8 e|e|R[(S|R|R
Compare CMPA 81 | 2 2 |9 3 2 |At [5| 2(|B1] 413 A-M ejof | S|t
CMPB ctl2i2fot}3|2|en|s|2lFr|a]s B-M ofolt|t[s]2
Compare Acmlitrs CBA nla2{1]a-8 e|leftitlt|t
Complement, 1's com 63 |712113|6]3 M-M o|lo|t[t|R]S
COMA 3|21 1]A-aA eleoftitIR}S
coms 53 2] t|B~B elolt{t|R]S
Complement, 2's NEG 60 [7 | 2]70|6 |3 06 -M->M e|el t|IQOIG®
(Negate) NEGA 40| 2|1]00-A~A elel 1] +|O|®
NEGB 50 [2 1]|00-8-8 ofe|t]|t|O®
Decimal Adjust, A DAA 19 | 2 | 1| Conerts Binary Add. of BCD Characters 1 o | o 4| £] 4 |®
Decrement DEC 6A |7 | 2]|7A]86 |3 M-—1-M oleft|t|@D| e
UECA A 2 i | A-1—A DRI OIRY
DECB 5A| 2 [1[B-1-8 eloft|t(@fe
Exclusive OR EORA |88 | 2 | 21]98 [3 |2 |A8|5 | 2|88 4|3 AeM->A eleftit[R|e®
EORB |C8 | 2 j2{D8 {3 |2 [E8 |5 |2|F8| 4|3 BoM-B oo t[t|R|®
Increment INC sc |7 |2fjmc|{s6]|3 M+1->M ofeftt|®|e
INCA ac | 2] 1| A+1>A oo t[t]|®)]e
INCB sC |2 1]B+1->8B elo|t[ti®| e
Load Aemitr LpAA |86 12|29 [3]2]iae}5|2]86|4]3 M-A efleft]|slR]|e®
toaB |c6 [2|2 (|o6 |3 |2 |e6 |5 |2|F6| 4|3 M-B oottt R|e
Or, Inclusive ORAA |8A| 2| 2|sa|3 |2 faa|5|2]8Ba|4 |3 A+M—A oleft|tir|e
oRAB |CA| 2 |2 |oAal3 | 2fea|s5|2{Ffa]| 4|3 B+M -8 ofe[t|t|R]e
Push Data PSHA 36 | 4 |]| A>Mgp, SP-1->5SP LA RARIRA RS
PSHB 37 | 4 | 1| 8->Mgp, SP-1->3P ejelolojele
Pull Data PULA 32| 4] 1|sP+1-SP, Mgp>A efoflofejo|e
‘ PuLB 33 |4]) 1/|8sP+1->SP,Mgp—>8 SRIERIRIEIE]
Rotate Left ROL 69 | 72171963 [eje(titI®]t
ROLA 49 | 2 IA[::J«DII:DID:] efel tit|®ft

c b, « by
ROLB 59 | 211]8 elel t|2|®?
Rotate Right ROR 66 | 7|27 |63 M olelt|t|®]?
RORA 46 | 2| 1]aA Co - oo ele|t|t|@®]¢

c b7 - bp
RORB 56 (2118 oleit| i@
Shift Left, Arithmetic ASL 68 |7 |21 |6 |3 M - ILIEARAC]E
ASLA 8 |211]A EJ«EIDZIIEO«u o|o|t| @)
ASLB 581218 elel | t®|?
Shift Right, Arithmetic ASR 67 {7 |2{17 |63] o o|leltit|®|?
ASRA 4721A[:[5:EDID:1->|:1 ole|t|t@®]¢

3 bp [
ASRB 51 |12{1](8 IEAERCIE
Shift Right, Logic. LSR 64 |7 |2|7ajs6 |3 M o ejolR|®|t
LSRA “l2]11A 0~ 110 - 0O o|e|R| @]
LSRB 54 | 2] 118 & o o|oRit|®]?
Store Acmitr. STAA 97 | 4 2 |AT | 6 2{B7 |5 3 A->M o|(o]t[t|R|e
STAB p7 |4 |2 (ev |6 |2]F7 |5 |3 B->M ele[t|t|R]|e®
Subtract SUBA 8 [2 | 2480 |3 |2 |a0fs5]|2]|B0| 4|3 A-M—A oflejtisft]e
suBB co|l2{2|oo|3|2[e0|5}|2}F0|4a]3 B-M-B oleftltit]s
Subract Acmitrs. SBA 0W{2]1]|A-8-A eleoft|t(t]t
Subtr. with Carry SBCA 82| 2|22 3|2 |A2|5|2]|8B2]4]|3 A-M-C-A eloftit|t|2
SBCB c2| 2 |2|o2|3 |2 |e2|s|2|F2]a]3 B-M-C—8 ejolt|t|t]s
Transfer Acmlitrs TAB 6|2 §11A-8 ojo[tltIR]|e
TBA 17 |2{1]8=A ejojt|t|R]|e
Test, Zero or Minus TST 6D | 7 2116 3 M- 00 eleit|tIRIR
TSTA ap | 2]1]|A-00 olelt|t|R|R
. TSTB D} 2| 1]|8-00 olo|t|tiR|R

FIGURE 1-3-1 MC6800 Instruction Set

INDEX REGISTER AND STACK IMMED DIRECT INDEX EXTND INHER 5la|3|2(11}0
POINTER OPERATIONS MNEMONICJOP| ~ | # | OP | ~}t # |OP |~ # {OP|~]| #]|0OP|~ | # | BOOLEAN/ARITHMETIC OPERATION | H| 1 [N|Z]V |C
Compare Index Reg CPX sc|3|3|sc|a]2|ac]e|2]|sc|s]3 (Xy/XL) - (MM +1) ole|@|t .
Decrement Index Reg DEX 09 |41 X-1->X o|lo|e|[t]e]e
Decrement Stack Pntr DES 3 | 4 1 SP—1->SP ejololefe]e
Increment Index Reg INX 08 | 4 1 X+1-X eloejoel|l|e]e
Increment Stack Pntr INS 31 4} SP+1->SP ele]oe|o]e]e
Load Index Reg Lox CE| 3|3 |0E}{4 | 2 [EE|6]2 {FE[5]3 M= Xy, (M +1) = X e|le|®|t]R]e
Load Stack Pntr LDS 8E| 3 | 319E 4|2} AE|6 |2 |BE|51]3 M —>5Py, (M+1) >8P o|e|@|t|r]|e
Store Index Reg STX OF {512 |EF |7 |2 |FF|6]3 Xp=>M X > (M+1) ele{®|t|R]|
Store Stack Pntr STS SF | s]2 AF| 7 |2 {BF | 6} 3 SPy >M, SP > (M +1) ele|®ft]n|e
Indx Reg ~Stack Pntr XS 3B 411 X-1->SpP o|lo|ojejeie
Stack Pntr > indx Reg TSX 30141 SP+1->X elele]e|o|e
JUMP AND BRANCH RELATIVE INDEX EXTND INHER 5lal3t2j1}o
OPERATIONS MNEMONIC JOP | ~ | # JOP| ~| #jOP} ~ | #|OP| ~ | # BRANCH TEST HILN|Z|V]|C
Branch Always BRA 201 4 2 None oleloejelele
Branch (f Carry Clear BCC 2414 2 c=0 o|leje|o|o]|e
Branch If Carry Set BCS 25 4 2 c=1 olojoeje|e|e
Branch If = Zero BEQ 271 | 4 2 Z=1 o|leje|eo|oje
Branch tf > Zero BGE 2141 2 NeV=0 ejo|e|e|o]e
Branch If > Zero BGT 26| 4 2 Z+(NoV)=0 ojoeleleojo]e
Branch If Higher BHI 22 1 4 2 C+Z=0 ole|o|lo|e|e
Branch If < Zero BLE 2F | 4 2 Z+{NeVv)=1 ojoe|ojo|oie
Branch if Lower Or Same BLS 23 4 2 cC+2Z=1 o|loe|oe|eojo]e
Branch If < Zero BLT 20| 4 2 NeV=1 eje|oje|o]e
Branch If Minus BMI 281 4 2 N=1 ejloelolejoje
Branch If Not Equal Zero BNE 26 4 2 Z2=0 o|loe|ojoio e
Branch {f Overflow Clear BVC 28 4 2 V=0 ojlo|o|ojoje
Branch It Qverfiow Set BVS 23 1 4 2 V=1 s|ojojs0oe
Branch If Plus BPL 2A | 4 2 N=0 eoloe|ojeo|eo]e
Branch To Subroutine BSR 80| 8| 2 olef{oleiole
Jump JMP 6E | 4 2 17E | 3 3 See Special Operations olejojeje 0
Jump To Subroutine JSR AD}| 8 2 {BD| 9 3 ejojojleio]e
No Operation NOP [A Advances Prog. Cntr. Only elojo]ole]e
Return From Interrupt RTI 38|10 1
Return From Subroutine RTS 3915 |1 . .
Software Interrupt swi 3F 12}t See special Operations e{S]le o|e
Wait for Interrupt WAI 3E] 9 1 3 @ oleole
CONDITIONS CODE REGISTER INHER BOOLEAN 5 (a3]2[1 0t 00N coDE REGISTER NOTES:
OPERATIONS MNEMONIC | OP | ~ | = | OPERATION | H [[N | 2Z |V |C {Bit set if test is true and cleared otherwise)
Clear Carry cLC oc 2 1 0~C oo |oe|ofe R @ {Bit V) Test: Result = 100000007
Clear Interrupt Mask cLi 113 2 1 01 e/R|oe|e|e |e] @ (BitC Test: Result = 00000000
Clear Overflow cLV 0A 2 1 0V eloe|oejelR |e @ (BitC) Test: Decimal value of most significant BCD Character greater than nine?
Set Carry SEC 00 2 1 1-¢ oe|lololele]s (Not cieared if previousty set.}
Set Interrupt Mask SEI OF 2 1 1 els|e|efe |e] @ (BitV) Test: Operand = 10000000 prior to execution?
Set Overflow SEV 08 2 1 1>V e |o|ojejs |e (® (BitV) Test: Operand = 01111111 prior to execution?
Acmitr A = CCR TAP 06 2 1 A-CCR (® (BitV) Test: Set equal to result of N @ C after shift has occurred.
CCR — Acmitr A TPA 07 2 1 CCR—~>A ° | ° l . l . l P l: (@ (BitN) Test: Sign bit of most significant {MS) byte of result = 1?
(Bit V} Test: 2's complement overflow from subtraction of LS bytes?
(® (BitN) Test: Result less than zero? (Bit 15= 1)
LEGEND: 00 Byte= Zero; @ (AN} Load Cendition Code Register from Stack. (See Special Operations)
0P Operation Code (Hexadecimal); H Half-carry from bit 3; @ (Bith Set Wben interrupt occurs. I previously set, a Non-Maskable Interrupt is
~ Number of MPU Cycles; 1 Interrupt mask required to exit the wait state.
Number of Pragram Bytes; N Negative (sign bit) @ (ALL) Set according to the contents of Accumulator A.
+ Arithmetic Plus; 4 Zero (byte)
- Arithmetic Minus; \ Overftow, 2's complement
. Boolean AND; c Carry from bit 7
MSP Contents of memory location R Reset Always
pointed to be Stack Pointer; s Set Always .
+ Boolean Inclusive OR; 1 Test and set if true, cieared otherwise
® Boolean Exclusive OR; L] Not Affected
M Complement of M; CCR Condition Code Register
- Transfer into; LS Least Significant
0 Bit = Zero; MS Most Significant

FIGURE 1-3-1 (continued)

1-19

1-3 INSTRUCTION SET

The MC6800 instructions are described in detail in the M6800 Programming Manual. This Section
will provide a brief introduction and discuss their use in developing MC6800 control programs.

The instruction set is shown in summary form in Figure 1-3-1. Microprocessor instructions are often
divided into three general classifications: (1) memory reference, so called because they operate on specific
memory locations; (2) operating instructions that function without needing a memory reference; (3) I/O
instructions for transferring data between the microprocessor and peripheral devices.

In many instances, the MC6800 performs the same operation on both its internal accumulators and
the external memory locations. In addition, the M6800 interfaces adapters (PIA and ACIA) allow the MPU to
treat peripheral devices exactly like other memory locations, hence, no I/O instructions as such are required.
Because of these features, other classifications are more suitable for introducing the MC6800°s instruction set:
(1) Accumulator and memory operations; (2) Program control operations; (3) Condition Code Register
operations.

1-3.1 CONDITION CODE REGISTER OPERATIONS

The Condition Code Register (CCR), also called the Program Status Byte, will be described first
since it is affected by many of the other instructions as well as the specific operations shown in Figure 1-3.1-2.
The CCR is a 6-bit register within the MPU that is useful in controlling program flow during system operation.
The bits are defined in Figure 1-3.1-1.

The instructions shown in Figure 1-3.1-2 are available to the user for direct manipulation of the
CCR. In addition, the MPU automatically sets or clears the appropriate status bits as many of the other
instructions are executed. The effect of those instructions on the condition code register will be indicated as
they are introduced and is also included in the Instruction Set Summary of Figure 1-3-1.

bs bg b3z bz by bg

nl Inz]v]c]

H = Half-carry; set whenever a carry from b3 to bg of the result is generated
by ADD, ABA, ADC; cleared if no b3 to by carry; not affected by other
instructions. :

I = Interrupt Mask; set by hardware or software interrupt or SE| instruction;
cleared by CLI instruction. {(Normally not used in arithmetic operations.)
Restored to a zero as a result of an RT1 instruction if Iy stored on the
stacked is low.

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.
Z = Zero; set if result = 0; cleared otherwise.

V = Overlow; set if there was arithmetic overflow as a result of the operation;
cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (by) of the
result; cleared otherwise.

FIGURE 1-3.1-1. Condition Code Register Bit Definition

1-20

CONDITIONS CODE REGISTER 51413 j2|1]0
BOOLEAN
OPERATIONS MNEMONIC OPERATION |H |t [N] Z]|V |C
Clear Carry CLC 0—~C ¢ o | e e |e R
Clear Interrupt Mask CLl 01 ® IR |o|eo]e |o
Clear Overflow CLVv 0>V e o |eo e | R |e
Set Carry SEC 1->C oo |eoleje |S
Set Interrupt Mask SEI Iad| o |S |e|je|e |e
Set Overflow SEV 1->V o |o |eo]e|S je
Acmitr A~ CCR - TAP A~ CCR ™
CCR—~Acmitr A . TPA CCR—A L] I‘ l o | [IO IO
R = Reset
S = Set

o = Not affected
@ (ALL) Setaccording to the contents of Accumulator A.

FIGURE 1-3.1-2. Condition Code Register Instructions

1-3.2 NUMBER SYSTEMS

Effective use of many of the instructions depends on the interpretation given to numerical data, that
is, what number system is being used? For example, the ALU always performs standard binary addition of two
eight bit numbers using the 2’s complement number system to represent both positive and negative numbers.
However, the MPU instruction set and hardware flags permit arithmetic operation using any of four different

representations for the numbers:

(1) Each byte can be interpreted as a signed 2’s complement number in the range —128 to +127:
26 25 24 23 22 Q1 20
bz be bs bas bz bz b1 bo
0 (—128 in 2’s complement)
1 (=1 in 2’s complement)
0 (0 in 2’s complement)
1 (+1 in 2’s complement)
1 (+127 in 2’s complement)

O O O = o
- O O = O
-~ o O = O
-0 O = O
—_ O O = O
—_—0 O == O
-0 O = O

1-21

(2) Each byte can be interpreted as a signed binary number in the range —127 to +127:
26 25 24 28 22 21 20
bz bs bs bse bz b2z b1 bo
(—127 in signed binary)
(—1 in signed binary)
(0 in signed binary)
(+1 in signed binary)
(+127 in signed binary)

O O O =
— O O O =
-0 O O
_ 0 O O =
O O O =
—_—0 O O
_ o O O =
—_— e O =

(3) Each byte can be interpreted as an unsigned binary number in the range 0 to 255:
27 26 25 24 23 22 QU 20
bz bs bs bs bz bz b1 bo
o 0 0 O 0 o o0 o (0 in unsigned binary)
1 1 1 1 1 1 1 1 (255 in unsigned binary)

(4) Eachbyte can be thought of as containing two 4-bit binary coded decimal (BCD) numbers. With
this interpretation, each byte can represent numbers in the range 0 to 99:

23 22 21 20 23 22 21‘ 20
bz be bs bs bz bz b1 bo

0 0 0 0 0 0 0 O (BCD 0)
0o 0 1 0 0 1 1 1 (BCD 27)
1 0 0 1 1 0 0 1 (BCD 99)

The two’s complement representation for positive numbers is obtained simply by adding a zero (sign
bit) as the next higher significant bit position:
27 26 25 24 23 22 21 Q0

a7 ae as a4 as az ai ao

1 1 1 1 1 1 1 (binary 127)

0 1 1 1 1 1 1 1 (+127 in 2’s complement representation)
0O 0 O o0 o0 o0 1 (binary 1)

0 0 o0 o0 O o0 o0 1 (+1 in 2’s complement representation)

1-22

When the negative of a number is required for an arithmetic operation, it is formed by first
complementing each bit position of the positive representation and then adding one.

64 32 16 8 4 2 1
a7 as as a4 as az ai ao
0 1 1 1 1 1 1 1 (+127 in 2’s complement representation)
1 0 0 O 0 ¢ o0 O (1’s complement)
1 (add one)
1 0 0 0 O 0 o0 1 (—127 in 2’s complement representation)

o 0o o0 o o0 o0 0 o (0 in 2’s complement representation)
1 1 1 1 1 1 1 1 (1’s complement)
1 (add one)
o 0 0 0 O O o0 o (°‘0”’ is same in either notation)
o 0 o0 o0 o0 o0 o0 1 (+1 in 2’s complement representation)
1 1 1 1 1 1 1 0 (1’s complement)
1 (add one)
1 1 1 1 1 1 1 1 (—1 in 2’s complement representation)

Note that while +127 is the largest positive two’s complement number that can be formed with 8
digits, the largest negative two’s complement number is 10000000 or —128. Hence, with this number system,
an eight bit byte can represent integers on the real number line between — 128 and +127 and a7 can be regarded
as a sign bit; if a7 is zero the number is positive, if az is one the number is negative:

IOOOPOOO . 11111111 00000000 00000001 _ 011 lll 111
] [l 1
—128 7 +127

—1 0 +1

Since much of the literature on arithmetic operations presents the information in terms of signed
binary numbers, the difference between 2’s complement and signed binary notation is of interest. Signed binary
number notation also uses the most significant digit as a sign bit (0 for positive, 1 for negative). The remaining
bits represent the magnitude as a binary number.

+ 64 32 16 8 4 2 1

az7 a6 as a4 as az a1 ao

(—127 in signed binary)
(—1 in signed binary)
(0 in signed binary)
(+1 in signed binary)
(+127 in signed binary)

S O O = =
_ O O O =
—_ O O O =
—_— O O O =
—_ o O O =
- O O M=
- o O O =
= I e

An 8-bit byte in this notation represents integers on the real number line between —127 and +127:

11111111) 10000001 00000000 00000001 - 01111111
—127 1 0 +1 24 +127

1-23

Comparing this to the 2’s complement representation, the positive numbers are identical and the negative
numbers are reversed, i.e., —127 in 2’s complement is —1 in signed binary and vice versa. In normal
programming of the MPU, the difference causes no particular problem since numerical data is automatically
converted to the correct format during assembly of the program source statements. However, if during system
operation, incoming data is in signed binary format, the program should provide for conversion. This is easily
done by first complementing each bit of the signed binary number except the sign bit and then adding one:

+ 64 32 16 8 4 2 1

a7 ae as a4 as az ai ao

1 1 1 1 1 1 1 1 (—127 in signed binary)

1 o 0 O O O o O (1’s complement except for sign bit)
0 0 o0 O o o0 o0 1 (add 1)

1 0O 0 0 o o0 o 1 (=127 in 2’s complement)

The MPU instruction set provides for a simple conversion routine. For example, the following

program steps can be used:

10 CONVRT TSTA Test sign bit, a7, and set Nifaz = 1
20 BPL NEXT Go to NEXTif N =0

30 NEGA Form 2’s complement of A

40 ORAA %10000000 Restore sign bit

50 NEXT STAA DATAI Store data in DATA1

This routine assumes that the signed binary data is stored in accumulator A (ACCA). The program tests the sign
bit and if the number is negative (N= 1) performs the required conversion. The contents of ACCA and the N bit
of the Condition Code Register would be as follows after each step of a typical conversion:

Instr N a7 as a as+ as a2 a1 ao

TSTA 1 1 1 1 i 0 0 O 1 (—113 in signed binary)
BPL NEXT 1 1 1 1 1 0 0 o0 1

NEGA 0 0 0o o o0 1 1 1 1 (2’s complement of ACCA)
ORAA #%10000000 1 0 0 0 0 1 1 1 1 (—113 in 2’s complement)

Note that the sign bit status, N, is updated as the NEG and ORA instructions are executed. This is typical for
many of the instructions; the Condition Code Register is automatically updated as the instruction is executed.

1-3.3 ACCUMULATOR AND MEMORY OPERATIONS

For familiarization purposes, the Accumulator and Memory operations can be further subdivided
into four categories: (1) Arithmetic Operations; (2) Logic Operations; (3) Data Testing; and (4) Data Handling.
1-3.3.1 Arithmetic Operations

The Arithmetic Instructions and their effect on the CCR are shown in Figure 1-3.3.1-1. The use of
these instructions in performing arithmetic operations is discussed in Section 2-1.

1-24

BOOLEAN/ARITHMETIC OPERATION

COND. CODE REG.

ACCUMULATOR AND MEMORY (AIl register labels 5(4/3{2(1(0
OPERATIONS MNEMONIC refer to contents) H]iI|N|Z]V]C
Add ADDA A+M—>A tlel [t

ADDB B+M-B el 3|t]¢

Add Acmltrs ABA A+B—>A Ol U O B O
Add with Carry ADCA A+M+C—>A 3 BB (O3 I O
ADCB B+M+C—B I O O B
Complement, 2's NEG 00 —M—>M el t|¢|ODIO
(Negate) NEGA | 00 —A—A ole 1] 1]|0®®
NEGB 00 -B—B \ o|e| |3 OO

Decimal Adjust, A DAA ﬁl(;EvBerésDBFigerueratA*dd. of BCD Characters ool t]t]s @
Subtract SUBA A-M—>A ejlel L1t
SUBB B-M-B L2 I3 IR BN BN

Subract Acmltrs. SBA A-B—>A elel |1t
Subtr. with Carry SBCA A-M-C—A efel]ttt
SBCB B-M-C—B U2 I 2 O O B

*Used after ABA, ADC, and ADD in BCD arithmetic operation; each 8-bit byte regarded as containing two 4-bit
BCD numbers. DAA adds 0110 to lower half-byte if least significant number >1001 or if preceding instruction
caused a Half-carry. Adds 0110 to upper half-byte if most significant number >1001 or if preceding instruction
caused a Carry. Also adds 0110 to upper half-byte if least significant number >1001 and most significant num-

ber=9.

(Bit set if test is true and cleared otherwise)

@

@
®

(Bit C)

(Bit V) Test: Result = 10000000?
Test: Result = 00000000?
(Bit C) Test: Decimal value of most significant BCD Character greater than nine?

(Not cleared if previously set.)

FIGURE 1-3.3.1-1. Arithmetic Instructions

1-25

1-3.3.2 Logic Operations

The Logic Instructions and their effect on the CCR are shown in Figure 1-3.3.2-1. Note that the
Complement (COM) instruction applies to memory locations as well as both accumulators.

1-3.3.3 Data Test Operations

The Data Test instructions are shown in Figure 1-3.3.3-1. Bit Test (BIT) is useful for updating the
CCR as if the AND function was executed but does not change the contents of the accumulator. The Test (TST)
instruction also operates directly on memory and updates the CCR as if a comparison (CMP) to zero had been
executed.

1-3.3.4 Data Handling Operations

The Data Handling instructions are summarized in Figure 1-3.3.4-1. Note that the Clear (CLR),
Decrement (DEC), Increment (INC), and Shift/Rotate instructions all operate directly on memory and update
the CCR accordingly.

i-3.4 PROGRAM CONTROL OPERATIONS

Program Control operation can be subdivided into two categories: (1) Index Register/Stack Pointer
instructions; (2) Jump and Branch operations.

1-3.4.1 Index Register/Stack Pointer Operations

The instructions for direct operation on the MPU’s Index Register and Stack Pointer are summarized
in Figure 1-3.4.1-1 Decrement (DEX, DES), increment (INX, INS), load (LDX, LDS), and store (STX, STS)
instructions are provided for both. The Compare instruction, CPX, can be used to compare the Index Register
to a 16-bit value and update the Condition Code Register accordingly.

The TSX instruction causes the Index Register to be loaded with the address of the last data byte put
onto the “‘stack’’. The TXS instruction loads the Stack Pointer with a value equal to one less than the current
contents of the Index Register. This causes the next byte to be pulled from the ‘‘stack’’ to come from the
location indicated by the Index Register. The utility of these two instructions can be clarified by describing the
‘‘stack’’ concept relative to the M6800 system.

The “*stack’ can be thought of as a sequential list of data stored in the MPU’s read/write memory.
The Stack Pointer contains a 16-bit memory address that is used to access the list from one end on a
last-in-first-out (LIFO) basis in contrast to the random access mode used by the MPU’s other addressing modes.

* The M6800 instruction set and interrupt structure allow extensive use of the stack concept for
efficient handling of data movement, subroutines and interrupts. The instructions can be used to establish one
or more ‘‘stacks’’ anywhere in read/write memory. Stack length is limited only by the amount of memory that is
made available.

1-26

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION

ACCUMULATOR AND MEMORY (All register labels 5(af3|2[1]0
OPERATIONS MNEMONIC refer to contents) HII|N]Z|V]|C
And ANDA AeM—A oleo| | $|R|e
ANDB BeM—>B e|lol L t|R|e

Complement, 1's com M->M ejo| I $IR|S
COMA A->A o|eo| 3| t|R|S

comB B-B o|o| t|F|R|S

Exclusive OR EORA AoM—A o e L|L|R|e®
EORB BoM-B eole| | J|R|e

Or, inclusive ORA A+M—A ele| 1| tIR]e®
ORB B+M—B e/ o| L |L|R]|o

FIGURE 1-3.3.2-1. Logic Instructions

COND. CODE REG.
BOOLEAN/ARITHMETIC OPERATION .

ACCUMULATOR AND MEMORY (All register labels 51413121110
OPERATIONS MNEMON!C) refer to contents) HiI{N|[Z|{V|C
Bit Test BITA AeM ool [3[R|e

BITB BeM e(o| | f|R|o
Compare CMPA A—M oleo| S (2|3 ¢
cmPB B-M LIS Bl o o
Compare Acmitrs CBA A-B ele; (3T
Test, Zero or Minus TST M —00 efeoflt|3|R|R
TSTA A-00 ele| L |LJR|R
TSTB B-00 e|eo|[F|3|R|R

FIGURE 1-3.3.3-1. Data Test Instructions

1-27

COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION
ACCUMULATOR AND MEMORY (Al register labels 5(af3|2[1]0
OPERATIONS MNEMONIC refer to contents) HII[N|JZ]|V]|C
Clear CLR 00 >M e|®| R|S|R|R
CLRA 00 > A e|le|R|S|[R|R
v CLRB 00 ~>B ele|R|S|R]|R
Decrement DEC M-1->M ole| | t[@]| e
DECA A-1->A oleft|s|@|e
DECB B-1-8 I EAEAO] K
Increment INC M+1->M ole|t[t[®]|e
INCA A+1>A ojo| |t ®B)] e
INCB B+1-B ole| || e
Load Acmitr LDAA M—>A efefl | tIR|e
LDAB | M-B ole| st R|e
Push Data PSHA A —>Mgp, SP—1 >8P o|lojo o0jo|e
PSHB B ->Mgp, SP—1->SP o|lo/o|e|0]e
Pull Data PULA SP+1->8P, Mgp—~A ejejojejoio0e
PULB SP+1—>SP,Mgp—~>B o|jo(fojefo]e
Rotate Left ROL M ole t[t®]?
ROLA A L—g « EJIEEEDJ ele|t(3|®|?¢
ROLB | B 7 ele|t|t|@®¢
Rotate Right ROR M eje|t(t|®]?
RORA | A L—>%1 I bD:Dg):lIbDO—‘ ele|t|t|®|¢
RORB | B 7 eleft|t|®]1
Shift Left, Arithmetic ASL M - ele| @]
ASLA A lgeIEEEEED]EO«O efle] titI®]?
ASLB B ofef2|2]|®]¢
Shift Right, Arithmetic ASR M N ele|tt|®]?
ASRA A QEEEEIID > O ole| t|2|®?

by bg C

ASRB B ele| [t]|®]?
Shift Right, Logic. LSR M N o|e|R|$|®]?
LSRA A O»EIEDIEO»EI e|le|R[|®|?
LSRB B e(eofR|$IG|?
Store Acmltr. STAA A—->M o|ol $(LIR|e®
STAB B—->M o|le| L |s|R|e
Transfer Acmltrs TAB A—-B eje|t|3|R]|e
TBA B—>A oo/t |f[R|e

@ (Bit V} Test: Operand = 10000000 prior to execution?
@ (Bit V) Test: Operand = 01111111 prior to execution?
(® (BitV) Test: Set equal to result of N ® C after shift has occurred.

FIGURE 1-3.3.4-1. Data Handling Instructions

1-28

INDEX REGISTER AND STACK 5|1413}2)11140
POINTER OPERATIONS MNEMONIC BOOLEAN/ARITHMETIC OPERATION HII|N|Z |V]|C
Compare Index Reg CPX (XH/XL) — (M/M + 1) ele ||t |@]e
Decrement Index Reg DEX X-1->X olo|oe|t|e]|e
Decrement Stack Pntr DES SP—1->8P o|o|[eo|oje]e
Increment Index Reg INX X+1->X ejlejo|l|o]e
Increment Stack Pntr INS SP+1—~>SP e|loejojoloe|e
Load Index Reg LDX M =Xy, (M+1) =X e|le|®|t|R|e
Load Stack Pntr LDS M —>SPy, (M+1) ->SP oe|le|®|t|R]|e
Store Index Reg STX Xy=M, X ~>(M+1) o{e || t|R|e
Store Stack Pntr STS SPLy =M, SP > (M +1) o|e|®]|t|R]|e
Indx Reg —> Stack Pntr XS X-1—->8P olejejoje e
Stack Pntr - Indx Reg TSX SP+1->X olojojojo]e

@ (Bit N) Test: Sign bit of most significant (MS) byte of result = 1?
@ (Bit V) Test: 2's complement overflow from subtraction of LS bytes?
® (BitN) Test: Result less than zero? (Bit 15= 1)

FIGURE 1-3.4.1-1. Index Register and Stack Pointer Instructions

1-29

Operation of the Stack Pointer with the Push and Pull instructions is illustrated in Figures 1-3.4.1-2
& 1-3.4.1-3. The Push instruction (PSHA) causes the contents of the indicated accumulator (A in this example)
to be stored in memory at the location indicated by the Stack Pointer. The Stack Pointer is automatically
decremented by one following the storage operation and is ‘‘pointing’’ to the next empty stack location. The

MPU MPU

1]
i

ACCA ACCA

m—2 m—2
m—1 SP = m — 1
v 4
SP ——— m a New Data m E3
P '
m+1 7F 8 m+ 1 7F
Previously Previously
Stacked m+2 63 Stacked m+2 63 L
Data Data
m+3 FD m+3 FD

PC —> PSHA < ' PSHA

Next Instr. / PC ——> Next instr.
,__\-‘
(a) Before PSHA (b) After PSHA

FIGURE 1-3.4.1-2. Stack Operation, Push Instruction

1-30

ACCA

m+ 1 1A
Previousiy
Stacked m+ 2 3C
Data
m+3 D5

__—
/

PC —> PULA

Next Instr.

L —

(a) Before PULA

FIGURE 1-3.4.1-3. Stack Operation, Pull Instruction

MPU

ACCA

m—2
m—1
m

SP—» m+1

m+2
Previously
Stacked m+3
Data

PC ————

1A

3C

D5

EC

___—
7

PULA

Next instr.

/

(b) After PULA

JUMP AND BRANCH 51413121110
OPERATIONS MNEMONIC BRANCH TEST HIl|N]Z]|V]C
Branch Always BRA None o|/o|e|eo|o]|e
Branch If Carry Clear BCC c=0 o|lo|(o|ojo|e
Branch If Carry Set BCS C=1 ejejejojo 0o
Branch If = Zero BEQ Z=1 eojleo|ojofo]e
Branch If > Zero BGE NeVv=0 o|loj(o|o|le]e
Branch If > Zero BGT Z+(NoV)=0 o|jo(oj|ojo]e
Branch If Higher BHI C+z-=0 o|o|o]oje]|e
Branch If <C Zero LE Z+(INsV)=1 I A EEF R AE B}
Branch If Lower Or Same BLS C+2=1 o|ojojojo]e
Branch If < Zero BLT NoV=1 o|lo|o|o|e]e
Branch If Minus BMI N=1 o|lo|o|o|o]e
Branch If Not Equal Zero BNE Z2=0 ele|jojoeje|e
Branch If Overflow Clear BVC V=90 o|o o0 0|0
Branch If Overflow Set BVS V=1 ojloj|ojeoleo|e
Branch If Plus BPL N=0 ojlojojojo 0o
Branch To Subroutine BSR ojojoejoje 0o
Jump JMP See Special Operations o|®|oj|oj0o 0o
Jump To Subroutine JSR ejoj|ojoje o
No Operation NOP Advances Prog. Cntr. Only ojlojojeje]oe
Return From Interrupt RTI @

Return From Subroutine RTS) . elefe
Software Interrupt SWI See special Operations e|S ° [}
Wait for Interrupt WAI o|@|e]| e °

(@ (Ail} Load Condition Code Register from Stack. (See Special Operations)

@ (Bit 1) Set when interrupt occurs. If previously set, a Non-Maskable Interrupt is
required to exit the wait state.

FIGURE 1-3.4.2-1. Jump and Branch Instructions

1-32

Pull instruction (PULA or PULB) causes the last byte stacked to be loaded into the appropriate accumulator.
The Stack Pointer is automatically incremented by one just prior to the data transfer so that it will point to the
last byte stacked rather than the next empty location. Note that the PULL instruction does not ‘‘remove’’ the
data from memory; in the example, 1A is still in location (m+ 1) following execution of PULA. A subsequent
PUSH instruction would overwrite that location with the new ‘‘pushed’’ data.

Execution of the Branch to Subroutine (BSR) and Jump to Subroutine (JSR) instructions cause a
return address to be saved on the stack as shown in Figures 1-3.4.2-3 through 1-3.4.2-5. The stack is
decremented after each byte of the return address is pushed onto the stack. For both of these instructions, the
return address is the memory location following the bytes of code that correspond to the BSR and JSR
instruction. The code required for BSR or JSR may be either two or three bytes, depending on whether the JSR
is in the indexed (two bytes) or the extended (three bytes) addressing mode. Before it is stacked, the Program
Counter is automatically incremented the correct number of times to be pointing at the location of the next
instruction. The Return from Subroutine instruction, RTS, causes the return address to be retrieved and loaded
into the Program Counter as shown in Figure 1-3.4.2-6.

There are several operations that cause the status of the MPU to be saved on the stack. The Software
Interrupt (SWI) and Wait for Interrupt (WAI) instructions as well as the maskable (IRQ) and non-maskable
(NMI) hardware interrupts all cause the MPU’s internal registers (except for the Stack Pointer itself) to be
stacked as shown in Figure 1-3.4.2-7. MPU status is restored by the Return from Interrupt, RTI, as shown in
Figure 1-3.4.2-8.

1-3.4.2 Jump and Branch Operations

The Jump and Branch instructions are summarized in Figure 1-3.4.2-1. These instructions are used
to control the transfer of operation from one point to another in the control program.

The No Operation instruction, NOP, while included here, is a jump operation in a very limited sense.
Its only effect is to increment the Program Counter by one. It is useful during program development as a
‘‘stand-in”’ for some other instruction that is to be determined during debug. It is also used for equalizing the
execution time through alternate paths in a control program.

Execution of the Jump Instruction, JMP, and Branch Always, BRA, effects program flow as shown
in Figure 1-3.4.2-2. When the MPU encounters the Jump (Indexed) instruction, it adds the offset to the value
in the Index Register and uses the result as the address of the next instruction to be executed. In the extended
addressing mode, the address of the next instruction to be executed is fetched from the two locations
immediately following the JMP instruction. The Branch Always (BRA) instruction is similar to the JMP
(extended) instruction except that the relative addressing mode applies and the branch is limited to the range
within —125 or +127 bytes of the branch instruction itself (see Section 1-2.3.4 for a description of the
addressing modes). The opcode for the BRA instruction requires one less byte than JMP (extended) but takes
one more cycle to execute.

The effect on program flow for the Jump to Subroutine (JSR) and Branch to Subroutine (BSR) is
shown in Figures 1-3.4.2-3 through 1-3.4.2-5. Note that the Program Counter is properly incremented to be
pointing at the correct return address before it is stacked. Operation of the Branch to Subroutine and Jump to
Subroutine (extended) instruction is similar except for the range. The BSR instruction requires less opcode than
JSR (2 bytes versus 3 bytes) and also executes one cycle faster than JSR. The Return from Subroutine, RTS, is
used at the end of a subroutine to return to the main program as indicated in Figure 1-3.4.2-6.

The effect of executing the Software Interrupt, SWI, and the Wait for Interrupt, WAI, and their

1-33

INDXD

PC Main Program
n | 6E=JMP
n+1 | K= 0Offset

X+K LNext Instructioﬂ

EXTND

(a) Jump

PC
n
n+1
n+2

K rNext In;truction]

Main Program

7E = JMP
Ky = Next Address

K = Next Address

Main Program

n

2¢=BRA

n+1

K = Offset*

(n+2) K I Next Instruction]

*K = Signed 7-bit value

FIGURE 1-3.4.2-2. Program Flow for Jump and Branch Instructions

)
m—2
m —1
SP—>» m
m+1 7E
7A
f
—]
PC=——> n BSR
n+1 +K = Offset*
n+2 Next Main Instr.
/

*K = Signed 7-Bit Value

(a) Before Execution

n+1

n+2

PC—(n + 2) K

FIGURE 1-3.4.2-3. Program Flow for BSR

1-34

(n+2)H

(n+2)L

7E

—

f_.

BSR

1K = Offset

Next Main Instr.

i

1st Subr. Instr.

L —

(b) After Execution

{b) Branch

SP == m

m+ 1

m+2

PC = n

n+1

n+2

n+3

SP ——— m

m+ 1

*K = 8-Bit Unsigned Value

7€

7A

70

-
7

JSR = BD

SH = Subr. Addr.

S| = Subr, Addr.

Next Main Instr,

f

(a) Before Execution

m+1

m+ 2

PC—>»S

(S formed from
Sy and S)

(n+3)H

(n+3)L

7€

7A

7C

—

JSR

Sp = Subr. Addr.

S = Subr. Addr.

Next Main Instr.

—

1st Subr. Instr.

f

(b) After Execution

FIGURE 1-3.4.24. Program Flow for JSR (Extended)

7E

o

JSR = AD

K = Offset*

Next Main Instr.

/

(a) Before Execution

n+1

n+2

PC—»X* + K

(n+2)H

(n+2)L

7E

7A

L
J

JSR = AD

K = Offset

Next Main Instr.

—

1st Subr. Instr.

.

*Contents of index Register

(b) After Execution

FIGURE 1-3.4.2-5. Program Flow for JSR (Indexed)

1 /

7
SP—»m — 2 m—2
m—1 (n +3)H m-—1
m {n+3)L SP—>» m
m+1 7€ m+1 7E
L—}ﬁ 7A
~/ —____/‘
n JSR=8D n JSR = BD
n+1 S = Subr. Addr. n+1 Sy = Subr. Addr.
n+2 S| = Subr. Addr. n+2 S|_ = Subr. Addr.
n+3 Next Main Instr. PC —» n+3 Next Main Instr.
—— /——
—— —
Last éubr. Instr, Last Subr. Instr.
PC —> Sy RTS Sp RTS
_— ——

(a) Before Execution (b) After Execution

FIGURE 1-3.4.2-6. Program Flow for RTS

1-36

n+1

Wait For

Hardware Interrupt or

Software Interrupt Interrupt Non-Maskable Interrupt (NM1)
Main Program Main Program Main Program
3F = SWI n | 3eE=WAI

Next Main Instr.

—

n+1 | Next Main Instr.

n Last Prog. Byte

Mask Set?

YES
{CCR 4)
Continue Main Prog.
‘ n+1 Next Main Instr . }
| Iy
Stack
' SP—> m—7
Stack MPU m — 6 | Condition Code
Register Contents l:> m —5 | Acmitr. B
m—4| Acmitr. A
m — 3] Index Register (Xy)
m — 2| Index Register (X})
m — 1 PC(n + 1)H
m | PCln+ 1)L
SWi HDWR WA} NMI ‘ Restart)
INT
Int NMI
(CCR 4) a7 oo
FFFA FFF8 FFFC FFFE
Y FFFB ¥ FFF9 FreD Y FFFF
Interrupt Meniory Assignment
Set Interrupt
FFF8 | Constant, Hdware | MS Mask (CCR 4)
FFF9 Constant, Hdware LS *
FFFA | Software mMs First Instr.
FFFB Software LS Addr. Formed Load Interrupt
Ms By Fetching Vector Into
FFFC | Non-Maskable Int. 2-Bytes From Program Counter
FFFD | Non-Maskable Int. | LS Per. Mem.
FFFE | Restart ms Assign. i
FFFF | Restart LS
(4 N\

NOTE: MS = Most Significant Address Byte;

Interrupt Program

1st Interrupt Instr.

LS = Least Significant Address Byte;

FIGURE 1-3.4.2-7. Program Flow for Interrupts

1-37

relationship to the hardware interrupts is shown in Figure 1-3.4.2-7. SWI causes the MPU contents to be
stacked and then fetches the starting address of the interrupt routine from the memory locations that respond to
the addresses FFFA and FFFB. Note that as in the case of the subroutine instructions, the Program Counter is
incremented to point at the correct return address before being stacked. The Return from Interrupt instruction,
RTI, (Figure 1-3.4.2-8) is used at the end of an interrupt routine to restore control to the main program. The
SWI instruction is useful for inserting break points in the control program, that is, it can be used to stop
operation and put the MPU registers in memory where they can be examined. The WAI instruction is used to
decrease the time required to service a hardware interrupt; it stacks the MPU contents and then waits for the
interrupt to occur, effectively removing the stacking time from a hardware interrupt sequence.

/ ’/‘—\

SP—m= m —7 m—7

m—6 CCR m—6 CCR

m—5 ACCB m—5 ACCB

m—4 ACCA m-—4 ACCA

m-—3 Xp (Index Reg) m—3 XH

m—2} X (index Reg) ‘ m—2 XL

m—1 PC(n+1)H m—1 PCH
m PC(n+1)L SP—tm— m PCL

| E — | e —
n+1 Next Main Instr. PC—a=— n+1 Next Main Instr.

Sn Last Inter. Instr. Last Subr. Instr.
PC —t RTI Sn RTI
(a) Before Execution (b) After Execution

FIGURE 1-3.4.2-8. Program Flow for RTI

1-38

BMI : N=1 BEQ : z=1 ;
BPL : N=¢ BNE : Z=¢
BVC : V=¢ ; BCC : C=¢ ;
BVS : v=1 ; BCS : c=1 ;
BHI : C+Z2=¢ ; BLT : N®V=1 ;
BLS : cC+Z=1 ; BGE : N®V=¢ ;
BLE : Z+(NDV)=1 ;
BGT : Z+(N&V)=9 ;

FIGURE 1-3.4.2-9. Conditional Branch Instructions

The conditional branch instructions, Figure 1-3.4.2-9, consist of seven pairs of complementary

instructions. They are used to test the results of the preceding operation and either continue with the next

instruction in sequence (test fails) or cause a branch to another point in the program (test succeéds).
Four of the pairs are used for simple tests of status bits N, Z, V, and C:

)

@

3

4)

Branch On Minus (BMI) and Branch On Plus (BPL) tests the sign bit, N, to determine if the
previous result was negative or positive, respectively.

Branch On Equal (BEQ) and Branch On Not Equal (BNE) are used to test the zero status bit, Z,
to determine whether or not the result of the previous operation was equal to zero. These two
instructions are useful following a Compare (CMP) instruction to test for equality between an
accumulator and the operand. They are also used following the Bit Test (BIT) to determine
whether or not the same bit positions are set in an accumulator and the operand.

Branch On Overflow Clear (BVC) and Branch On Overflow Set (BVS) tests the state of the V
bit to determine if the previous operation caused an arithmetic overflow.

Branch On Carry Clear (BCC) and Branch On Carry Set (BCS) tests the state of the C bit to
determine if the previous operation caused a carry to occur. BCC and BCS are useful for testing
relative magnitude when the values being tested are regarded as unsigned binary numbers, that
is, the values are in the range 00 (lowest) to FF (highest). BCC following a comparison (CMP)
will cause a branch if the (unsigned) value in the accumulator is higher than or the same as the
value of the operand. Conversely, BCS will cause a branch if the accumulator value is lower
than the operand.

The fifth complementary pair, Branch On Higher (BHI) and Branch On Lower or Same (BLS) are in
a sense complements to BCC and BCS. BHI tests for both C and Z = 0; if used following a CMP, it will cause a
branch if the value in the accumulator is higher than the operand. Conversely, BLS will cause a branch if the

unsigned binary value in the accumulator is lower than or the same as the operand.

The remaining two pairs are useful in testing results of operations in which the values are regarded as

signed two’s complement numbers. This differs from the unsigned binary case in the following sense: In

unsigned, the orientation is higher or lower; in signed two’s complement, the comparison is between larger or

smaller where the range of values is between —128 and +127 (see Section 1-3.2 for a review of number

systems).

Branch On Less Than Zero (BLT) and Branch On Greater Than Or Equal Zero (BGE) test the status
bits for N V = 1 and N@ V = 0, respectively. BLT will always cause a branch following an operation in

1-39

which two negative numbers were added. In addition, it will cause a branch following a CMP in which the value
in the accumulator was negative and the operand was positive. BLT will never cause a branch following a CMP
in which the accumulator value was positive and the operand negative. BGE, the complement to BLT, will
cause a branch following operations in which two positive values were added or in which the result was zero.

The last pair, Branch On Less Than Or Equal Zero (BLE) and Branch On Greater Than Zero (BGT)
test the status bits for Z+ (N@® V) = 1and Z + (N@ V) = 0, respectively. The action of BLE is identical to
that for BLT except that a branch will also occur if the result of the previous result was zero. Conversely, BGT is
similar to BGE except that no branch will occur following a zero result.

1-40

CHAPTER 2

2. PROGRAMMING TECHNIQUES

The objective of this Chapter is to present examples of programs and techniques that have been
found useful in developing control programs for the MC6800 MPU. Much of the material in subsequent
Chapters also covers programming methods. I/O techniques are discussed in Chapter 3. Chapter 5 is devoted to
peripheral programming; Chapter 6 discusses system integration programming techniques. In this Chapter, the
emphasis is on three programming areas: (1) arithmetic processing; (2) counter and delay operations; (3) use of
the indexed addressing mode. In addition, Section 2-3 presents techniques for determining if a given program is
usable and/or efficient for a particular application. '

2-1 ARITHMETIC OPERATION

2-1.1 NUMBER SYSTEMS

The ALU always performs standard binary addition of two eight bit numbers with the numbers
represented in 2’s complement format. However, the MPU instruction set and hardware flags permit arithmetic
operation using any of four different representations for the numbers:

(1) Each byte can be interpreted as a signed 2’s complement number in the range —127 to +127:
+ 26 25 2¢ 23 22 21 20
b bs bs bs bz bz b1 bo
(—127 in 2’s complement representation)
(—1in 2’s complement representation)
(0 in 2’s complement representation)
(+1 in 2’s complement representation)

S O O =
_ O O = O
-0 O = O
ot ek D e

(+127 in 2’s complement representation)

(2) Each byte can be interpreted as an unsigned binary number in the range 0 to 255:
27 26 25 2¢ 23 22 21 20
br bse bs bs bz bz b1 bo

o 0 o0 o o0 o o0 o (0 in unsigned binary)
1 1 1 1 1 1 1 1 (255 in unsigned binary)

(3) Each byte contains one 4-bit BCD number in the 4 LSBITS, the 4 MS bits are zeros. This is
referred to as unpacked BCD and can represent numbers in the range of 0-9:
27 26 25 2¢ 28 2% 21 20
b bs bs bs bz bz b1 bo
O 0 0 O O O o0 o0 «((BCDO
o o 0 o O 1 o0 1 (BCD 5)
o o0 o0 o 1 0 0 1 (BCD 9)
Always must be 0

2-1

(4) Eachbyte can be thought of as containing two 4-bit binary coded decimal (BCD) numbers. With
this interpretation, each byte can represent numbers in the range 0 to 99:
28 22 2t 20 238 22 21 20
b bs bs bs bz bz b1 bo
0O 0 0 O O O O o0 (BCDOO
0o o 1 0 0 1 1 1 (BCD 27)
1 0 0 1 1 0 0 1 (BCD 99)

Each of these number systems will be illustrated with programming examples after the condition
code flags and instruction set have been introduced in more detail.

2-1.2 THE CONDITION CODE REGISTER

During operation, the MPU sets (or clears) flags in a Condition Code Register as indicated in Table

2-1.2-1:
bs bs bz bz b1 bo
H|{I | N|Z]|V |C | Condition Code Register
H = Half-carry; set whenever a carry from bs to b4 of the result is generated; cleared otherwise.

I = Interrupt Mask; set by hardware interrupt or SEI instruction; cleared by CLI instruction. (Normally not
used in arithmetic operations).

N = Negative; set if high order bit (b7) of result is set; cleared otherwise.

Z = Zero, set if result = 0; cleared otherwise.

V = oVerflow; set if there was arithmetic overflow as a result of the operation; cleared otherwise.

C = Carry; set if there was a carry from the most significant bit (b7) of the result; cleared otherwise.

TABLE 2-1.2-1: Condition Code Register

2-1.3 OVERFLOW

The description of most of the condition code bits is straight forward. However, overflow requires
clarification. Arithmetic overflow is an indication that the last operation resulted in a number beyond the +127
range of an 8-bit byte. Overflow can be determined by examining the sign bits of the operands and the result as
indicated in Table 2-1.2-1 where the results for addition of A + B is shown.

Row az7 b7 |V
1 0O 0 o010
2 0 0 1 1
3 0O 1 0]0
4 0 1 1|0
5 1 0 0|0 A+B=R
6 1 0 1]0 '
7 1 1 011
8 1 1 1[0

TABLE 2-1.3-1: Overflow for Addition

2-2

If the sign bits of the operands, az and bz, are different (rows 3 through 6 of the Table) no overflow can occur
and the V flag is clear after the operation. If the operand sign bits are alike and the result exceeds the byte
capacity, the sign bit of the result (r7) will change and the overflow bit will be set. This is illustrated in the
following example. The example follows actual ALU operation in that the starting number A is initially in the

accumulator but is replaced by the result of the current operation.

A%
0

7 6 5 4 3 2 1 0
0 0 1 1 0 1 1 0
1 0 0 0 0 1 1 1
1 0 1 1 1 1 0 1
1 0 1 1 1 1 0 1
1 1 0 1 1 1 1 1
1 0 0 1 1 1 0 O
7 6 5 4 3 2 1 0
1 0 0 1 1 1 0 O
1 1 1 0 0 O o0 o
0 1 1 1 1 1 0 O

= +54;

—121; (negative numbers are in 2’s complement
notation)

A+B = —67; (signs of A & B different; no
overflow)

= —67;

—33;
Ro + B = —100; (Signs alike but byte capacity
not exceeded; no overflow)

—100;

—-32;

+124 (Signs of R1 & B alike and sign of result
occurred)

Here the capacity of the register has been exceeded and the result is + 124 rather than —132. Overflow is said to

have occurred.

In subtraction operations, the possibility of overflow exists whenever the operands differ in sign.
Overflow conditions For A — B are illustrated in Table 2-1.3-2.

Row

0 I AN N RA W

ar br |V
0O 0 O0}0
0O 0 11}1
0O 1 01O
0 1 10
1 0 0] 0
1 0 1{0
1 1 0|1
1 1 10

(A —-B)=R

TABLE 2-1.3-2: Overflow for Subtraction

Note that Table 2-1.3-2 is identical to the addition table except that brhas been replaced by br. This is explained
by the fact that the ALU performs subtraction by adding the negative of the subtrahend B to the minuend A.
Hence, the ALU first forms the 2’s complement of B and then adds. The subtraction table with b7 negated then

2-3

reflects the sign bits of two numbers that are to be added. If a7 and b are alike, overflow will occur if the byte
capacity is exceeded.

2-1.4 THE ARITHMETIC INSTRUCTIONS

Table 2-1.4-1 summarizes the instructions used primarily for arithmetic operations. The effect of
each operation on memory and the MPU’s Accumulators is shown along with how the result of each operation
effects the Condition Code Register.

The carry bit is used as a carry for addition and as a borrow for subtraction and is added to the
Accumulators with the Add With Carry Instructions and subtracted from the Accumulators in the Subtract With
Carry instructions. '

The Decimal Adjust instruction, DAA, is used in BCD addition to adjust the binary results of the
ALU. Used following the operations, ABA, ADD, and ADC on BCD operands, DAA will adjust the contents
of the accumulator and the C bit to represent the correct BCD Sum.

Table 2-1.4-2 shows the details of the DAA instruction and how it affects and is effected by the
Condition Code Register bits.

2-1.4.1 Use of Arithmetic Instructions

Typical use of the arithmetic instructions is illustrated in the following examples:

The ABA instruction adds the contents of ACCB to the contents of ACCA:

ACCA 10101010 ($AA)
ACCB 11001100 ($CC)

ACCA 01110110 ($76) with a carry.
CARRY 1

The ADCA instruction adds the operand data and the carry bit to ACCA:

bz bs bs ba bz bz b1 boe

ACCA 1 0 1 0 1 0 1 0 $AA
OPERAND DATA 1 1 0 O 1 1 0O 0 CC
CARRY 1
ACCA 0O 1 1 1 0 1 1 1 $77 with carry
CARRY 1

In both of these examples, the 2’s complement overflow bit, V, will be set as shown in Table
2-1.4.1-1.

24

ADDRESSING MODES COND. CODE REG.

BOOLEAN/ARITHMETIC OPERATION
ACCUMULATOR AND MEMORY IMMED DIRECT INDEX EXTND INHER (Al register labels 5(4(3}2]1]0
OPERATIONS MNEMONICjOP | ~ | # (oP |~ | # JOP |~ | #|OP|~] #]OP|~] # refer to contents) H{I|N|[Z]|V]C
Add ADDA 88 | 2 2198 |3 2 tAB | 5 2|8BB| 4 3 A+M—>A Ol I R R BN
ADDB CB | 2 2 (DB |3 2 |EB | 5 2 | FB| 4 3 B+M—B P I I IR IR
Add Acmltrs ABA B2 11 A+B—~>A tleltt|T|t
Add with Carry ADCA 89 2 2199 |3 2 [A9 | 5 28B4 3 A+M+C—>A 3 N O BN O
ADCB [: I 3 2 (D9 |3 2 |E9 | 5 2|F9 | 4 3 B+M+C—8B tleptl et
Complement, 1's coM 63 |7 |27 |6]|3 M-M o|eol t|tIR]S
COMA 32| 1]|A-A ofeft|t|R]S
coms 53 2| 1[B~8B efeft|¢|R]|S
Complement, 2's NEG 60 |7 2|76 |3 00 -M—>M ole| t|t|OI®
(Negate NEGA 40 [2]1]00-a->A ‘ole| t]|1|D@
NEGB 5 | 2| 1]00-8-8B ool t]| t|DI®
Decimal Adjust, A DAA 19 [2 | 1| Gonverts Binary Add. of 60D Characters | o | | 4| 4| ¢ @
Rotate Left ROL 69 7 2119 6 3 M ool 11 @ $
ROLA 4921AL%|<—DZEEEIID<—J ele| t1I®]?
ROLB s9 {218 A elelt|t]|@®|1
Rotate Right ROR 66 7 2|76 6 3 M olef |t @ ?
RORA 62| 1({a!l Lo o oo ole|i|t|®]¢
c b7 - bg
RORB 6 | 2|18 eleltiti®]?
Shift Left, Arithmetic ASL 68 |7 | 2{78 |63 M - ele|tit|®|?
ASLA 48 12| 1fA geLEEEED]:Eo«u eleitit|®|t
ASLB 58 2| 1|8 ele|t|t]|@®|
Shift Right, Arithmetic ASR 67 7 2|77 6 3 M N efe| i @ $
L_+I£EDIIZEEEJ -
ASRA 4712 1}|A J 1 L g IR ER O]
ASRB 5712 |11]8 elel tlt|®|¢
Shift Right, Logic. LSR 64 |7 |27 |86 |3 M N eleir|t|@®|1
LSRA 4“4 12 |1]aA O»IEED]ZEDbZ‘I)e%I elefRI[@®|
LSRB 54 (2| 1]{8) o|o|R(T|G|?
Subtract SUBA 80 | 2 2 (9 |3 2 A0 | S 2180 4 3 A-M-A efel sttt
SusB co | 2 2 1003 2 |EO | & 2| F0O| 4 3 B-M-B elo|tl31¢12
Subract Acmltrs. SBA 10 | 2 1{A-B—-A LI 3 B O N
Subtr. with Carry SBCA 82 2 2 192 3 2 |A2 | B 21821 4 3 A-M-C—A LN I N o)
SBCB c2{ 2 2 (D2 |3 2 |[E2 |5 2| F2| 4 3 B8-M-C—8B N BN I O
LEGEND: 00 Byte= Zero; CONDITION CODE REGISTER NOTES:
0P Operation Code (Hexadecimal); H Half-carry from bit 3; (Bit set if test is true and cleared otherwise}
~ Number of MPU Cycles; 1 Interrupt mask @ (BitV) Test: Result = 100000007
Number of Program Bytes; N Negative (sign bit) (@ (BitC) Test: Result = 000000007
+ Arithmetic Plus; z Zero (byte) ® (Bt C) Test: Decimal value of most significant BCD Character greater than nine?
- Arithmetic Minus; v Qverflow, 2's complement (Not cleared if previously set.)
. Boolean AND; C Carry from bit 7 (® (BitV) Test: Set equal to result of N © C after shift has occurred.
Mgp Contents of memory location R Reset Always
pointed to be Stack Pointer; s Set Always
+ Boolean inclusive OR; $ Test and set if true, cleared otherwise
® Boolean Exclusive OR; (4 Not Affected
M Complement of M; CCR Condition Code Register
- Transfer into; LS Least Significant
0 Bit = Zero; MS Most Significant

TABLE 2-1.4-1. Arithmetic Instructions

Operation: Adds hexadecimal numbers 00, 06, 60, or 66 to ACCA, and may also set the carry

bit, as indicated in the following table:

State of Upper Initial Lower Number Added State of
C-Bit Half-Byte Half-Carry Half-Byte to ACCA C-Bit
Before DAA (Bits 4—7) H-Bit (Bits 0—3) by DAA After DAA
(Col. 1) {Col. 2) {Col. 3) (Col. 4) {Col. 5) {Col. 6)
0 0-9 0 0-9 00 0
0 0-8 0 A—F 06 0
0 0-9 1 0-3 06 0
0 A—-F 0 0-9 60 1
0 9—F 0 A—F 66 1
0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A—F 66 1
1 0-3 - 1 0-3 66 1

NOTE: Columns (1) to (4) of the above table represent all possible cases which can result from

any of the operations ABA, ADD, or ADC, with initial carry either set or clear, applied
to two binary-coded-decimal operands. The table shows hexadecimal values.

Effect on Condition Code Register:

H

O< N2 —

Not affected.

Not affected.

Set if most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.

Not defined.

Set or reset according to the same rule as if the DAA and an immediately preceding ABA,
ADD, or ADC were replaced by a hypothetical binary-coded-decimal addition.

TABLE 2-1.4-2. Effect of DAA Instruction

2-6

2’s complement bz bz b7

overflow carry ACC ACC OPERAND (OR ACCB)
after after after before before
0 0 0 0 0
1 0 1 0 0
0 0 1 0 1
0 1 0 0 1
0 0 1 1 0
0 1 0 1 0
1 1 0 1 1
0 1 1 1 1

TABLE 2-1.4.1-1 Truth Table for ‘°‘Add with Carry”’

The SUBA instruction subtracts the operand data from ACCA:

bz bs bs bs bs bz bi Dboe

ACCA O 1t 1 0 O 1 o0 1 $65
OPERAND DATA 1 0 0 o o 1 1 1 $87
ACCA 1 1. 0 1 1 1 1 0 $DE with a borrow
BORROW 1

The SBCA instruction subtracts the operand and the borrow (carry) it from ACCA.

bz bs bs ba bz bz b1 bo

ACCA 1 0 1 1 1 1 0 0 $BC
OPERAND DATA 0o 1 1 1 1 0 1 1 $7B
BORROW (carry) 1 C=1
o 1t 0 0O O 0 o0 O $40 no borrow

0

BORROW

The 2’s complement overflow and carry bits are set in accordance with Table 2-1.4.1-2 as a result of
a subtraction operation.

2-7

2’s b7 b7 b7

complement carry ACCA ACCA OPERAND
overflow after after before before

0 0 0 0 0

1 1 0 0
0 1 0 0 1
1 1 1 0 1
1 0 0 1 0
0 0 1 1 0
0 0 0 1 1
0 1 1 1 1

TABLE 2-1.4.1-2: Truth Table for ‘‘Subtract with Borrow”’

2-1.5 ADDITION AND SUBTRACTION ROUTINES

Most MPU based systems will require that the arithmetic instruction set be combined into more
complex routines that operate on numbers larger than one byte. If more than one number system is used,
routines must be written for each, or conversion routines to some common base must be used. In many cases,
however, it is more efficient to write a specialized routine for each system requirement, i.e., hexadecimal
(HEX) versus unpacked BCD multiplication, etc. In this section, several algorithms will be discussed with
specific examples showing their implementation with the MC6800 instruction set.

The basic arithmetic operations are binary addition and subtraction:

ALPHA + BETA =GAMMA ALPHA — BETA =GAMMA
LDAA ALPHA LDAA ALPHA
ADDA BETA SUBA BETA
STAA GAMMA STAA GAMMA

These operations are so short that they are usually programmed in line with the main flow. Addition
of single packed BCD bytes requires only one more instruction. The DAA instruction is used immediately after
the ADD, ADC, or ABA instructions to adjust the binary generated in accumulator A (ACCA) to the correct
BCD value:

LDAA ALPHA
ADDA BETA
DAA
STAA GAMMA
Carry ACCA

X 67 0110 0111 =ACCA

X +79 carry 0111 1001 = MEMORY

0] 146 0 1110 0000 =ACCA binary result

46 1 0100 0110 =ACCA after DAA; the carry bit will also be set

because of the BCD carry.

2-8

Since no similar instruction is available for BCD subtraction, 10’s complement arithmetic may be
used to generate the difference. The follow routine performs a BCD subtraction of two digit BCD numbers:

LDAA #%$99

SUBA BETA (99-BETA) = ACCA

SEC carry = 1

ADCA ALPHA ACCA + ALPHA + C = ACCA
DAA DECIMAL ADJUST (—100)

STAA GAMMA ALPHA-BETA = GAMMA

The routine implements the algorithm defined by the following equations.

ALPHA — BETA = GAMMA
ALPHA + (99-BETA) —99 = GAMMA 9’s COMPLEMENT OF BETA
ALPHA + (99-BETA+1) —100 = GAMMA 10’s COMPLEMENT OF BETA

One is added to the 9’s complement of the subtrahend by setting the carry bit to find the 10’s complement of
BETA which is then added to the minuend ALPHA and saved in ACCA. The DAA instruction adjusts the result
in ACCA to the proper BCD values before storing the difference in GAMMA. Since 100 has been added (99 +
1) to the subtrahend by finding the 10’s complement, 100 must also be subtracted. This is accomplished by the
DAA instruction since the resulting carry is discarded.

Multiple precision operations mean that the data and results require more than one byte of memory.
The simplest multiple precision routines are addition and subtraction of 16 bit binary or 2’s éomplement
numbers. This is often called double precision since 2 consecutive bytes are required to store 16 binary bits of

information. The following routines illustrate these functions:

LDAA ALPHA +1
LDAB ALPHA

ADDA BETA +1 ADD LS BYTES

ADCB BETA ADD MS BYTES WITH CARRY FROM LS BYTES
STAA " GAMMA +1

STAB GAMMA

LDAA ALPHA +1

LDAB ALPHA

SUBA BETA +1 SUBTRACT LS BYTES

SBCB BETA SUBTRACT MS BYTES WITH BORROW FROM LS BYTES
STAA GAMMA +1

STAB GAMMA

Four digit BCD addition can be accomplished in a similar fashion with the use of the DAA
instruction. The following routine has been expanded to a 2N digit addition where N is the max number of
packed BCD bytes used:

29

START CLC

LDX #N

LOOP LDAA ALPHA X
ADCA BETA X
DAA
STAA GAMMA X
DEX
BNE LOOP

NOTE: ALPHA, BETA, and GAMMA must be in the direct addressing range and adjusted for
offset for this example (See indexed addressing for further details).

This routine uses indexed address to select the bytes to be added, starting with the least significant.
The carry is cleared at the start and is affected only by the DA A and ADCA instructions. This allows the carry to
be included in the next byte addition.

Expanding subtraction to multiple precision is accomplished in a manner similar to the single byte
case; 10’s complement arithmetic is used. A suitable routine is shown in the Assembly Listing of Figure
2-1.5-1.

This routine first finds the 9’s complement of the subtrahend and stores it in the result buffer. The
carry is then set to add 1 to 9’s complement, making it the 10’s complement which is then added to the minuend
and stored in the result buffer. Note that this routine has 2 loops, the first to calculate the 9’s complement, the
second to add anddecimal adjust the result. The decimal add and subtract routines operate on 10’s complement
numbers as well as packed BCD numbers. A number is known to be negative in 10’s complement form when
the most significant digit in the most significant byte is a 9. When in the 10’s complement form, this digit is
reserved for the sign and the actual number of magnitude digits is one less than 2 times the number of bytes. A
routine similar to the above subtract program will convert the 10’s complement number to decimal magnitude
with sign for display or output purposes:

DCONV CLR SINFLG CLEAR SIGN FLAG
LDAA RESULT+1 GET MSBYTE
BPL END POSITIVE:END
LDX #8 NEGATIVE:
DCONV1 LDAA #$99
SUBA RSLT, X SUBTRACT RESULT FROM
STAA RSLT X ALL 9’s INCLUDING
DEX SIGN DIGIT
BNE DCONV1
LDX #8
CLRA ‘
SEC
DCONV2 ADCA RSLT,X ADD 1 TO RESULT
DAA
STAA RSLT,X
DEX
BNE DCONV2
DEC SINFLG SET SIGN FLAG
END RTS RETURN

The sign flag would be used to indicate plus when clear and minus whén not clear.

2-10

anolo

noosE
IEE

Poee}
D

Eooe B]
¥y

et
]
e A |

ot

ao1on
nat1o

1izn
HN1z0
aaign
ooLsa
ool1ss
oonivn
oa1sn
AR RETY
nos1n
OnEsn
Ooz2z0

nnE4an

8 I |
13—

o

i I"-l_'l

]

ZYMEOL TRELE

TEUE

o100

a100
010z
a1ns
0107
nios
o168
oo
o10F
niio
o1ie
o114
G115
011y
ia11=
01in

o100 DEUE1L
JETRH 0000

[] l:f'u m

D]

v T D D00

= moaTs

Wil o e T D
)

ORI (S Yy

MAM DEUELe

arFT EZTME sMEM=MEMZLIE
ZUBTRH EQL L
MIMUEM EQL =
RZLT EQi 1

OrG 2
+ DECIMAL ZUETE

T ZUEROUTIME FOR 1& DECIMAL DIGIT

T on T
T

+ THIZ ROUTIME ZUETRACTE THE EZUEBTRAHEMD <¢"SUBTRH™" X
+ FROM THE MIMUEMD <"MIMUEM"» AND PLACEE THE
+ DIFFEREMCE IMN "REZLT.”

+ THE MEMORY ALLOCATION I: A% FOLLOWEZ:
* AROOREZE REAMGE L
* ZUETEAHEMD 1-2

* MIMUIEMT F-15
*
*

o]

M= 00 0

£ (T

LIFFERENCE |7ema
ADDREZS WALUES ARE DECIMAL

2 DTUE LD o ZET EYTE COUMTER

LDEZUEL LITIR g3
SUE ZUETEH » = FIHD =3°% COMFLEMEMT
=TH RELT 2 UZE "REZLT™ AT TEMF ZTORE
DEX DECREMENT EYTE COUMTER
EME DZUE] LOOF UHTIL LAET EYTE
LI nE FEEZTORE EYTE COUMTER
=EC ZET CARERY TO RDD 1 TO COMFL
DEZUE: LDA A MIMUEM & LORDT MIMUEND
ADC A RFELT ADL COMFLEMEMT ZUETREARHEMID
DAR DECIMAL ADJUET
ETA A REILT s ZTORE DIFFEEEMCE
DEX DECREMENT EYTE COUMTER
EHE DzUES LOOF UMTIL LAET EYTE
RTE FETURMN TO HOZT FPROGEAM

T I

THE E<ECUTION TIME OF THIE® ZUEROUTIME IZ
384 MPL CYCLEE EXCLUDING THE KTEZ.

EMI

010z DEUEZ 0110 MIMUEM 0008 RELT IRIB Y

FIGURE 2-1.5-1. Decimal Subtract Assembly Listing

2-11

2-1.6 MULTIPLICATION

Multiplication increases programming complexity. In addition to the addition and subtraction
instructions, the use of the shift and rotate instructions is required. The general algorithm for binary
multiplication can be illustrated by a short example:

(1) Test the least significant multiplier bit for 1 or O.
(a) If it is 1, add the multiplicand to the result, then 2.
(b) If it is O, then 2.

(2) Shift the multiplicand left one bit.

(3) Test the next more significant multiplier bit; then 1la or 1b.

DECIMAL BINARY
13 1101 MULTIPLICAND
11 1011 MULTIPLIER LSB=1; ADD MULTIPLICAND TO RESULT (A)
o 1101 (A)
13 1101 (B) SHIFT MULTIPLICAND LEFT ONE BIT (B)
i00i1i (C) LSB+1 = i; ADD MULTIPLICAND TO RESULT (C)
13 1101 (D) SHIFT MULTIPLICAND LEFT ONE BIT (D)
T 1101 (E) LSB+2 = 0; SHIFT MULTIPLICAND LEFT 1 (E)
143 10001111 (F) LSB+3 = 1; ADD MULTIPLICAND TO RESULT (F)
128 + 15 =143

Signed binary numbers in 2’s complement form cannot be multiplied without correcting for the cross
product terms which are introduced by the 2’s complement representation of negative numbers. There is an
algorithm which generates the correct 2’s complement product. Since positive binary numbers are correct 2’s
complement notations, they also may be multiplied using this procedure. It is called Booth’s Algorithm.
Simply stated the algorithm says:

(1) Test the transition of the multiplier bits from right to left assuming an imaginary O bit to the
immediate right of the multiplier.

(2) If the bits in question are equal, then 5.
(3) If there is a O to 1 transition, the multiplicand is subtracted from the product, then 5.
(4) If there is a 1 to O transition, the multiplicand is added to the product, then 5.

(5) Shift the product right one bit with the MSBit remaining the same. (This has the same effect as
shifting the multiplicand left in the previous example).

(6) Go to 1 to test the next transition of the multiplier‘.

2-12

The following example (Figure 2-1.6-1) shows the typical steps involved in an actual calculation.

A Flowchart and Assembly Listing for a program using the MC6800 instruction set is shown in
Figures 2-1.6-2 and 2-1.6-3, respectively. The results of simulating this program, Figure 2-1.6-4, shows worst
case processing time to be approximately 1.662 msec. The worst case condition results when alternate
additions and subtraction are required in each of the 16 loops required to have the result in the proper location.

Sign Bits 5 Bits
111101 = -3
111011 =-b
00\0000001111/=+15
—_—
10 Bits
11101 Muitiplicand
11101 1<L0) Multiplier
000000O 0 to 1; subtract by adding the 2’s
+ 000011 complement of the multiplicand
000011 PRODUCT
0000011 Shift PRODUCT
00000011 1 to 1 shift PRODUCT
+ 111101 1 to 0 add
11110111 PRODUCT
111110111 Shift PRODUCT
+ 000011 0 to 1 subtract
000001111 PRODUCT
0000001111 Shift PRODUCT
00000001111 1 to 1 shift
&,9\00002211111 1 to 1 shift
Sign 15

FIGURE 2-1.6-1. Multiplication Using Booth's Algorithm

2-13

‘ MULT 16 }

Clear the Working Registers
This Includes the Previous LS Bit
of the Multiplier Test Byte
Initialize the Shift Count to 16

Does the

LS Bit of the

Multiplier = the

Previous LS Bit
?

Does

YES the LS Bit
7 N of the Multiplier
{ h = 0?
NO
Add the Multiplicand Subtract the Multiplicand
to the Product with from the Product with
the MS Bytes Lines Up the MS Bytes Lined Up

N J

N

Clear the Previous
LS Bit of the Multiplier Test Byte

Shift the Multiplier Right One
Bit with the LS Bit Going into
the LS Bit of the
Multiplier Test Byte

Shift the Product Right One Bit,
the MS Bit Remaining the Same

Decrement the
Shift Counter

Does

Return the Shift
rom Counter
Subroutine = 0?

FIGURE 2-1.6-2. Flow Chart for Booth's Algorithm

2-14

FREE 1

oaaaln
goosn

UUUjU
onoionon
ool in

oolso G030
oL R0 n0sn
noi4d4n gnss

D0

[

aniso 0o
Ools0 o0
aniyen
aoisEn
n434n

GESHY

MULTIs

ooaz
onos
fang
YR

LR R BE R N B B AR J

T o

* # % % ¥ v T

P
g=T

MILTLE
fEM

THIT ROUTIME MULTIFLIES
COMFLIMENT HUMEERS L2TrG

THE
THE
THE
THE

MULTIFLIER =
ML T IFLICAMD
SROTUCT = o =
TEST EVTE FOR

)
Fowet

A
=
[x]
e S AR ™

THE MILTIFLIER
STORED 1M % AMD
MOLTLE WIcl
05y /MDA

SEMERATE

I 1,

THE ML T IFL TCANT

MULTIFLTER Wllo

MR R ANEE

4
ke EtﬁTHGFEJ.

Tuid 1 k
BOOTH =

UL TIEL LRI
THEM F
‘f“i CM*WJ TMENT

THE

SHRMHGETD .

FIGURE 2-1.6-3: Assembly Listing for Booth's Algorithm (Sheet 1 of 2)

PO

-+

C?HGE

anaTn

o040
0ngin
0030
Do an
onggn
050
angs
0ag 70
o0
[IESSTT
Dosan
o310
O0sa0
ans=0
0540
OO=En0
Dous7T0
ousEn
nossn
&1 o
o020

niEd 0

iTi
it

00
ndin=
44
R W
e R
0
RN
1
410
IES N
0413
041=
041e
ngis
4R
TES N
n41e
ng=z0
DL ey
03z4
I el
fHdze
S s
gz
142E
ng=n
gd3=
L
0433
04 2E
4 2E
0441
444
447
(S s]
144E
44D

O o D

L]

i B I I Y

DO B S B

S AN e LY (O O v Y v B B o LY AN AN RN TN R B

o

=3 00 T fa i

-1

P BEANEEN &)

~§ g T

T i

ot T

T T =

RN R RN

LT1e

oons

FE
noia
=1
1

MULTLE

LE

1

L
CLE
TR
LHEX
BHE
LI
L.OA
HHD
THE
EOF
e
T=T
EEQ
LA
L. LA
=R
TR
=TH
ZTH
ERH
LDA
LA
S0
anc
=TH
TTH
CLF
ROR
EOF
ROl
AERE
=0OR
~0r
=OF
DE=
EHE
ETE
EMD

I I D I

Laal

brd oo Dby T

m Tt bt T

CLEAR THE WIRKIM: RESIZTERE

IMIT i ZAIFT COUMTER TO 1%
GET YOLEZEIT?

IAVE OLERITY IM RCCE

DOEE YOLERITY = YiuZE-1 7
WYEZT G0 TO EHIFT ROUTIME
Mde DOET YOLEEITY = 007
YEZ: 50 TO ADD ROUTIME

MO RURTRERCT MULTIPLICAND
PRODCT WITH THE MEIEYTER
LIMED UF

THEM 30 TO ZHIFT ®OUTIME
ADD THE MULTIFLICAMD TO THE
FRODICT WITH THE MIEBYVTEER
JIMED UR

CLERR THE TEEZT BYTE

IHIFT THE ML TIFLIER RIGHT
OME EBEIT WITH THE LEERIT

IMTOD THE LEZEIT OF FF

EHIFT THE FRODUCT RIGHT ONE
EIT. THE MEE REMRIMIMG THE
TAME

DECREMEMT THE =ZHIFT COUMNT
IF HOT 0O CONTINUE

FIGURE 2-1.6-3: Assembly Listing for Booth’s Algorithm (Sheet 2 of 2)

2-16

P
Foagarialkle g

FaaiiaTi,

Lo LR

ITHZT FRalT

HH P # I 4
X N

G0l AR R

- - ¥ i =
T s =

HH R

GO01 an0ag

0D G0 55 S5 ER BE T

Y

‘M8 w¥ EE RS =%

s OFE .

HH o CE
Dot ooon L
ToOM Eheg

FIGURE 2-1.6-4: Simulation of Booth’s Algorithm

2-17

In the transaction terminal design described in Chapter 6, it is necessary to multiply price by
quantity, price by weight, and total price by tax. All these operations, as definéd, require a 5 by 3 digit
unpacked BCD multiply, where unpacked means one BCD digit per byte. Decimal point poisition is
determined by the executive program’s use of the subroutine buffers. The main multiply loop XKMPLY (refer
to the flow chart of Figure 2-1.6-5 and the Assembly Listing of Figure 2-1.6-6) is similar to the basic multiply
algorithm shown in the first example of this Section except that it has been modified to test the shifted multiplier
byte for zero. This minimizes the number of shifts required to generate the correct result. This result or partial
product is generated in ACCA and then decimal adjusted to determine the number of tens and the number of
ones it contains. The number of ones results is in ACCA and the number of tens is in ACCB. ACCA is then
added to the result buffer for the present partial product, ACCB is added to the result buffer for the next more
significant partial product. The maximum number stored in any result buffer before it is added to the new partial
product is 18 (9 max from its previous decimal adjustment plus 9 max from number of tens from the adjustment
of the next least significant partial product.) This value, when added to the maximum partial product of 81, is
less than 255, the maximum value in one byte so no carry or overflow will occur. This combined with the fact
that the multiplication progresses from the least to the most significant byte says that the last partial product to
be adjusted will be for the most significant result and that it and all previous result bytes will be in the proper
decinal format.

The simulation for XKMULT gave the following results:

99999
X 999
99899001 in 4.651 ms

00009
X 007

63 in 1.108ms

00079
X 700

55300 in 1.426 ms

00005
X 100

500 in 974 ms

From this, the worst case multiplication is approximately 4.7 milliseconds, most of which is used up
in determining the number of 10’s and 1’s in each partial product. The program is general in nature, i.e., it can
easily be expanded (or shortened) to any number of unpacked BCD digits by increasing or decreasing the
maximum value of the various address pointers and their corresponding memory buffers.

2-1.7 DIVISION

Another arithmetic routine developed for the transaction terminal demonstrator divides a timing

2-18

MULTCND
MULTPLR
RESULT

T1T2Ta T4 Ts > Ty
X Sy Sz 83 Sy
Rq R R3 Ag Rg Rg Ry Rg—> Ry

XKMULT

Clear Result Buffer R
Initialize Multiplier Address

Initialize Result Address Pointer: P = 8
> Rg
ointer: M =3

If Multiplier Digit =0
Skip Partial Product Loops

XKMSTR

YES

I Initialize Multiplicand Pointer: N =5

]

If Multiplicand Digit = 0
Skip this Partial Product Loop

Right Shift
BCD Multiplier CLR ACCA
One Bit

N

YES

XKMPLY

L

Left Shift
Tn One Bit

{ ACCA = ACCA + Ty

Left Shift
BCD Muitiplicand
One Bit

Has the Last

Significant
Muitiplier Bit
Been Used?
[ACCB = 0]

Set Multij

Pointer for Next N=N-—1

Multiplicand Digit ACCA < ACCA + Ry

Add Partial

Product to

Accumulator A
YES

Decimal Adjust
Partial Product

in ACCA NO

ACCA = ACCA — 10

ACCA = # of Units
ACCB =ACCB +1

ACCB = # of Tens

Update Result Buffer Hp = Rp + ACCA
Set Result Pointer for Rp-1 = Rp-1 + ACCB
Next Multiplicand Digit P=P—-1

Set Result and

Multiplicand Pointers
d for Next
Multiplicand Digit

NO:
Get Next Multiplicand
Digit

NO

YES:
Reset Result Pointer
for Next Muitiplier
Digit

Has the Last Mul
Digit Been Used:

ttiplicand
4

Set Result and
Multiplier Pointers P
for Next

Multiplier Digit

NO

NO:
Get Next
Muttiplier Digit

2-19

FIGURE 2-1.6-5. XKMULT Flow Chart

Has the Last Multiplier
Digit Been Used?

YES:
feturn to Main

Program

onian
oo100
noti1ao
oni1zn
agizn
noisn
aoian
o170
Ca0iEn
ooian

]

[Xn]

3%
P

* e
*e
e
*e
-
e
*4
*e
*e
*9
*e
* e
*$
*4
* 4
*e
*

arFrT L

RISyl HSEMILT

arT HMEM

REY 1.0

ars ESRe0
THIZ ZURROUTIME MULTIFLIEE THE 5 DIGIT DECIMAL
MUMEBER STORED IM THE 5 EYTE: ZTARTIMG AT
SEMT CES» BY THE 2 DISIT DECIMAL HMUMEBER ZTORED
IM THE = EYTES EZTARTIMHE AT #=EMI CEZ) AMD
ITOREZ THE REZULT IM THE 2 EBEYTEZ EZTHRTIME AT
AEMRE O CERY . THE MULTIRPLICAMD CT1s THE
MULTIPLIER (21 BHD THE REZULT [RJI ARRE UMFACEED
RIGHT JUSTIFIED ECD MUMEERE
SEMTHM = M IMDEXEL RDDREZZIMG FOIMTER FOR =

MAX 4 OF DECIMAL DIGITE IM =

IMDEXED RUODORESZIMG FOIMTER FOR T
MAX & OF DECIMAL DIGITE IM T
IHDESED ALOREZZING FOINTER FOR
MAx & OF DECIMAL DIGITE IM R
HEMEICR = MULTIAFLICAMD TISIT SCRATCH FRD
BEY CHAMGIMGE THE POIMTER IMIT L ++ AMD THE
MEMORY EBUFFER ZIZES LARGER MHUMEERS MAY EE

FMGLTIFLIED WITH THIZ SUBROUTIME.

FEMTMM

H

O

HEMTMF

Fn

[F I T O [A

FIGURE 2-1.6-6: XKMULT Assembly Listing (Sheet 1 of 2)

2-20

b
m
5

G0S =EMULT LB\ *a e IMIT L P=S=sh+M e
= =T sEMTME IMIT . F POIMTER

%]
=

e

T

|
ﬁ

I I

ES sEMLEFL TH SEME=1 8k CLEAR RESULT EUFFER

11Ty liﬂ D
] ll

w0

e U Tl g P e Teg o X070 e =4 1T 070 0

T

L=
= L
m

Hll-‘-lll-l
onga1n s
aog4=n0

FE EMHE S AR T |
nonz D r3 +¢ ITHITL M=3 e
El SEMETR LR B XEME-1 % E=%

7Y O

0420 5270 Fz =T HEMTHMM TAVYE M POIMTER

G440 537 zE EER s“EMDCF IF B=0 THEM GO TO MexT "Z°
ong4sn 5274 ooos LI 5 #+ IHIT L M=T ++

00410 a £4 SEMETT LIOR A/

oo4F0 ! e =TH A TAVE T IM ®EMEICE

gugd=n oE

EED %*HT—D S TO MERT CTe
0n4a0 : TaYI " OM STACK
A0S0

ﬂ 'Ici: I'I

FIGHT THIFT ACCE INTI CARRY
IF C=0 30 TO THIFT T

Mds A=A+T

THIFT T: DOOET SnCE=0

YETs FIMIZHED wITH THIZ T.
MOs LEZFT ZHIFT T ANE EIT

n
[ix]
I
LS I A R
[an BN N]

uui;u
Dﬂﬁ?ﬂ

BT IR E = == I A SIS I TR A R s I
[
!
A
Lo B I o]

1

1

i

AR
A A

M=f-1

SRMCY nesd

[

FETTIM
”'hTMF

s

ARNTEE I SO0 = TO ACCH
RN DECIMSL [DJUET A
: g o= #JF 1°3

00510
nnﬁan

S TN

o o aa

g
B}

il 21 RN AR R PR
s
T =
Ty i
n
¥
=
=
T
L
H
e

f
DD
it
=z
(]
T
tm

il
i
e
ey
[

minmmnm

OOs30
OO7on
noyin
anvEn
noyzo 52
nacgn :
norsn
ooyso
Oar7o
DavVEn
ﬂﬂ?ﬂn

I

L ET T T e
W A A D

—~
s B 1]
A1
mu
[
M
n
m
¥
—

T

yJEN

Eou OO =
i
_.l 5
— I or LI
e lan S Al ae)

=
1~ 7)1
il

S LA B PRI AR R B I« B

T
HETT

sEPIDE BHE

M TP+
-‘.‘f L2 4 1i =
SEMTHP+1 F=FPeHoIHIT LY

o
i T

v I KR
i
oy
Lo e IR Y
= b

T L

Lk RE o npr e [0 rT

[&]
1
i
I

GoFy HeMDCR LEC
TR D

ATHS+1 F=E-]
AT M

vt

E T R I e BN

B4 EME WM TTR 16 M HAT 0 30 TO HEXT 3¢

QOF 7 #eMTZ0 DEC HEMTMP+1 |

= E=S ot D

FIGURE 2-1.6-6: XKMULT Assembly Listing (Sheet 2 of 2)

2-21

XKDIVD

DVDEND

Initialize Shift Count to 8 (S = 8)
Clear Quotient Buffers

Subtract 9 from Saved Shift Count

~

Increment Shift Count (S)
S=S+1

DVDERR

Divisor = 0

Left Shift Divisor

L.SB Goes into Carry

\r YES

Save Shift Count for Determining
the Offset of the Remainder
Shift Divisor Back Right One Bit

Divisor is Now Left
Justified and the Shift
Count is in ACCB

Result

NO
Less than 4
?

Subtract 4
from Result

YES

Store Result in Remainder
Displacement Buffer

DVDERR

d

Store $FF in Quotient

DVDEND

J

NO Dividend

Less than
Divisor
?

v

Shift Quotient Left One Bit
with LSB =1
Subtract: Dividend (MS Byte) =
Dividend (MS Byte) — Divisor

L

YES

I

Shift Quotient Left One Bit
with LSB =0

~

§=8—-1

Decrement Shift Count

DVDEND

Shift Dividend Left One Bit with:
LSB = 0 and MSB into Carry

YES Does

NO

Carry =
1

FIGURE 2-1.7-1. XKDIVD Flow Chart

222

count accumulated in the index register (up to 4 HEX digits) by the constant 7. This routine is used to determine
an average module width during a portion of the UPC label scan routine. (See the description of the UPC label
scanner in Chapter 5 for further details.) The routine permits division by a 2-digit Hex number as shown in
Figures 2-1.7-1 and 2-1.7-2; it calculates the displacement of the remainder left in the dividend and sets the
quotient to FFFF if division by zero is attempted.

The algorithm used for this straight forward binary division is as follows:

(1) Left justify the divisor byte.

(2) If the MS byte of the dividend is less than the divisor byte, shift quotient left one bit with the LS
bit = 0; then 4.

(3) Ifthe MS byte of the dividend is greater than or equal to the divisor, (2) shift the quotient left one
bit with the LS Bit = 1; (b) subtract the divisor from the MS byte of the dividend, the result
being stored in the MS byte of the dividend; then 4.

(4) Shift the dividend left one bit with the LS Bit = 0, and the MS Bit going into the carry.
(5) If the carry is set, go to 3a.
(6) If the carry is not set, go to 2a.

The process continues until the number of quotient shifts equals 8 + the number of shifts required to
left justify the divisor. A simulation (Figure 2-1.7-3) shows a typical divide takes approximately 1 millisecond.

This section is, by no means, comprehensive. It is intended to provide some examples that can be
used as is or that will suggest the direction for modifying them for other specialized applications.

f‘s n1 r; n a7 T i
i DI
arT e
ST ars FER00

L sEm’" ITINE Tr‘ LIVIDE Arf UNZIGHEDR 4 DIGIT
HES fEER T16 EIT BIMNARY 3 EY AN UM IGHED
& DI IT HeEx MUMBER Oz EIT EIMARY .

il THE DIVIZOR = 4 = SEVIE = (F3]
aonsa THiE BIVIDEMD = oMol
oo = AR MDD e SEDVHOH
gOing = ’CQ-EBJ
i1 THE 2IOTIENT = BN
ani=n = e ECHIOT+
oolsn = H
g1 g0 THE =ZHIFT LFUH = H_ILE
Guisn THE Le2FT DIZFL MT T THeE ReMAIMDER = SHEDE
01 = EFEE
0170
ari1=o THE DIVIZOR AdD THE DIYIDTMD MIET BE LOADED
0oL sn IMTO =EDvseE AaMD =Dyl SR THORD REIFECTIVELY

OOznn THEM & JZF T3 =ewDIVD,.
THE ZEMAIMEER WILL EE IM viorma DEEDWVMT Is
ZHIFTED LEFT THE 4 OF EITE IMLDICRTED IM «wIDSFL
THa DINIZOR WIliL BE BIMARILY LEFT JUSTIFIELD

T

LK R K R R B B R B B R R R CEE R I R

»

FIGURE 2-1.7-2: XKD1VD Assembly Listing (Sheet 1 of 2)
2-23

F'H"t: - {1

n=an

i ~-4H

o

HLTQﬂ

0od0n
Gogin
O0ga0
Ong=n
44
ao4sn
Oide
Oitg 7o
G4
Dagsn
aosnn
ﬂﬂﬁ]ﬁ
nns
N
oo=4a
oossn
Doseq
aosva

O0saEn
nn?:n

DOST0
o

NI
+

b

P IR N
i

]

T
Fao]
)
n

—

DRI | Bty B)

[IE et N
{1 = 17

[X KT R SRR Y]

o]

d

et

i - L

O L

1 i
I LR IR]
10

EREEN R B W B B W BN | M B B s S R RRET R BEY § B Mt

AT o 10

"
o)

=K
T
K

(NS IR 1)

. T

b

e B E IR I

A

e BV B

[

i

T om0 oef

[FRE Ry EA R N

NN T

¥

e
—t

i
i
1

(e BT IRNY]

s

T

.Il J? o
I

Enn I

I3

RN

n
n

Lo IRAY

T T Ted i T
OME T T T T

id

=~

~
T

Do IS

L

[AR A
=T U e
]

T D T e = T}

o]
o
M &

s
Y

S

s &
g 1 G
_[I-x i =0
TERPL

A T

N D"HI"

04 D3

M

“E DM+

ik LT
kLA
LR R

VD™l

2-24

IHIT L E=3
SERT SUOTISHT BUFFER

OIVIDE Z&F0R
eFT SHIFT DINIEOR
1T LanrF

" S DERFL o= RHIFT
=T THE DIWIZgOr B
TET COUMNT -0 M =Ac
I3/ CEFT HUZT. I

B B 2
T

g deeef e
LI T

L;i
1

IS THT LDIVILDEMD ¢ DIVIEOR

LOMH-T SURTRACT

IF THZ LDIVIDEMD »3%= LIVIZT
EHIFT 9 LEFT 1 EIT

WITH LEIE

]
e

; 1T
LEFT OME BITS L,S=f

GET SHIFT COUNT IMTO RICE
s DEe = MEDERL -9

WEDTREL ¢ 3

o 1[‘ TD =ETIRMN

A0 HA=DE HDERL -4
LIEPLes “."U:“T OF FREMRAINDER
STO=ED IM #ADERL

FIGURE 2-1.7-2: XKDIVD Assembly Listing (Sheet 2 of 2)

ZTRETS =E.

ITRTs IE.

ZTRT: DE 15,

ITRTY IR PSEE0IFFF-TO.
ETRETS =D PRBWCT.

ZTRTS HE 5.

TOER OPSROO0

ZM OF % 03 OFF « OFF,

Fo10n0

MEM FARULT
#1001 QOOO0e00«02 000000 OO001020=1ms

T OFCa 2

oM aFc,. =
I0FC 55 55 00

FIGURE 2-1.7-3: Simulation Results, Division

2-25

2-2 COUNTING DELAY MEASUREMENT/GENERATION

When microprocessor systems are initially considered as replacements for conventional logic
designs there is a natural tendency to formulate such questions as: What is the program that replaces a flip-flop?
A counter? A shiftregister? A one-shot? Etc.? Such questions are better posed as; What is the function that must
be performed? The answer to the question then often falls in one of two categories: (1) The number of times
something occurs must be determined (counted); (2) A particular time interval must be measured or generated
prior to taking some action.

These functions are also commonly used for controlling internal program flow; the MC6800
provides a variety of ways for performing them. Short (up to 8-bits or decimal 255) counter requirement can be
implemented using either of the two accumulators or any RAM location. The increment (INC) and decrement
(DEC) instructions apply to random access memory locations outside the MPU as well as the accumulators.
(The instruction set for the MC6800 is discussed in Section 1-3) The data test instructions BITA, BITB, CMPA,
CMPS, CBA, TST (memory), TSTA, and TSTB that are available for updating the Condition Code Register
combined with the branch instructions permit complete control of counter operations.

For applications requiring long counters (up to 16-bits or decimal 65,535) the Index Register and its
fuil compiement of instructions are avaiiabie. When more than one iong counter is required simuitaneously, a
short program can be written that permits two adjacent RAM locations to be used as a 16-bit counter:

INC N+1 Increment mem. loc. (N+1)

BNE CNTNUE if result not = O continue
INC N
CNTNUE XXX XXXXXX Next program instruction

This sequence effectively increments a 16-bit word located in memory locations N and N+1. A similar
procedure is available for decrementing a 16-bit word:

TST N+1 Memn. loc. N+1 = 0?

BNE NEXT No, go decr. N+1
DEC N Yes, first decr. N
NEXT DEC N+1 Decr. N=1

2-26

In addition to their use for long counters, these instruction sequences can be used for modifying return
addresses. During execution of subroutines and interrupt service routines the program counter containing the
return address is stored on the stack, a designated area in RAM. The increment or decrement sequences can be
used to change the program counter value on the stack and thus cause the return from subroutine or interrupt to
be to a different location in the main program.

It is possible in some cases to use the index Register and Accumulators for two functions
simultaneously when one is a counting function. As an example, assume that data from a peripheral device is to
be entered into the MPU’s memory via an MC6820 PIA!. The peripheral is to indicate the presence of data by
setting a flag, bit 7 of the PIA’s Control Register. Each time the flag is set the MPU is to retrieve the data from
the PIA Data Register and store it in an internal memory location until a total of 8 bytes have been accumulated.
Since the PIA’s Data Register and Control Register look like memory to the MPU, a program is required that
will cause the MPU to monitor one memory location for a change in a flag bit and then fetch the data from
another location. This operation is to be repeated the specified number (8) of times.

The following sequence of instructions uses a single register, Accumulator B, for both the
monitoring and counting functions:

LDAB #08 Put 2°s Compl. of byte count in ACCB.
LOOP1 BITB PIACRA Byte Available flag set?

BPL LOOP1 Not yet; loop back, chk. again.

LDAA PIADRA Yes; Fetch byte.

PSHA Put byte on stack.

INCB Eight bytes yet?

BNE LOOP1 No, go wait for next byte.
XXX XXXXXX Yes, continue with program.

This program takes advantage of the fact that incrementing an accumulator containing FF cause it to “‘roll
over”’ to 00. The two’s complement of the required count is entered as the byte count. Since this will cause the
sign bit (bit 7) of ACCB to be positive and since the BIT test does not affect ACCB but does update the
Condition Code Register, the Bit test followed by the Branch on Plus instruction can be used to monitor the flag
bit. As soon as bit 7 of the Control Register is set to one, the BPL test fails and the MPU fetches the current data
byte by reading the Data Register (PIADR A) and then pushes the byte onto a stack location in RAM. The design
of the PIA is such that the flag is automatically cleared by the LDAA PIADRA operation. The byte count is then
‘‘reduced’’ by incrementing ACCB and tested by the Branch on Not Equal Zero instruction. Unless the eighth
byte has just been transferred the program loops back to wait on the next data byte. 1f the current byte was the
eighth, the INC B instruction cause the count to roll over to zero, the branch test fails, and program flow falls
through to the next instruction. The other test instructions (TST, CMP, and CBA) can also be used in a similar

!Operation of the PIA is described in detail in Section 3-4.

2-27

fashion since they too update the condition Code bits but do not affect register contents. Note also that it was not
necessary to bring the contents of the Control Register into the MPU in order to examine the flag.

Delays can be generated in a variety of ways. A typical procedure is shown in the following
sequence:

LDAA #32 Takes 4 cycles to execute.
LOOP1 DECA (2 cycles)
BNE LOOP1 (4 cycles)

In this example, the MPU will go through LOOP1 32 times so that the total delay introduced by these
instructions is, for a 1.0 usec cycle time:

4 + 32 (2+4) = 196 usec

The number of times through the loop is calculated as the program is developed. If, for instance, the required
delay is 200 usec, the value to be loaded into ACCA is determined from:

(200 — 4)/6 = 32.6 =~ 32

Note that since the nearest smaller integer is selected, the actual delay generated in only 196 usec. If greater
accuracy is required, the sequence above could be followed by two NOP instructions, since each NOP advances
the program counter and takes up two cycles. Delays beyond the capacity of an 8-bit Register and a single loop
can be generated by using the Index Register and/or multiple loops. It is also sometimes desirable to write the
delay sequence as a callable subroutine that can be used to generate variable delays. This is illustrated by the
following routine. This sequence assumes that the amount of delay, in milliseconds, is loaded into a RAM
location identified as ‘‘DLYBFR’’ prior to calling the routine.

DELGEN LDAA DLYBFR (a) 4 cycles

LOOP1 LDAB #165 (b) 4 cycles
LOOP2 DECB (c) 2 cycles
BNE LOOP2 (d) 4 cycles
DECA (e) 42cycles
BNE LOOP1 ® 4 cycles
RTS (g) 5 cycles

228

The MPU will go through LOOP2 165 times each time it is entered: 165 (¢+d) = (165)(6) + 990 cycles. For
every time through LOOP1 there will be a total LOOP2 time plus the b, e, and f cycle times, or the total time,
including the RTS cycle time, is:

Total delay = DLYBFR (990+4+2+4) + 5
= DLYBER(1000) + 5

If, for example, DLYBFR had been loaded with 17, indicating that a 17 msec delay was required, then fora 1.0
usec cycle time. The total delay is 17,005 wsec = 17 msec with small error. The value 165 that is loaded into
ACCB was of course selected to provide the desired scale factor, i.e., so that the delay could be entered as an
integral number of milliseconds. Variation on these procedures can be used to generate virtually any amount of
delay. Note that if for some reason it is undesirable to disturb the contents of the Accumulators or Index Register
while generating a delay, RAM memory registers may be used. The INC and DEC instructions also operate
directly on memory.

2-29

2-3 EVALUATING PERIPHERAL CONTROL ROUTINES

Data handling often involves the transfer of data between a microprocessor’s memory and a time
dependent peripheral. It is necessary to synchronize the data transfer program to the peripheral because the
peripheral data clock is asynchronous with respect to the program clock. The I/O controller which handles the
data transfer consists of both hardware and software. An implicit assumption is that the best trade-off occurs by
minimizing the hardware in the controller.

In a microprocessor based I/O controller, it is necessary to determine:

(1) How fast can the microcomputer transfer program move data (as contrasted with a direct
memory access scheme)?

(2) Will a given data transfer program work successfully in the system?

(3) Is there any processing time remaining after handling the data movement?

(4) Can any additional time dependent functions be performed?

(5) What is the maximum length routine that can be performed in addition to the data transfer?

An analysis is required that will provide a technique for testing the operation of a proposed program. In
addition, if there is unused processing time in the system, it may be possible to eliminate additional hardware
(e.g., buffer registers). If a given program does not work in the system, the analysis should enable the user to
modify the program or add additional hardware to allow the system to work.

Specific examples of the word transfer problem for a floppy disk and the bit transfer problem for a
cassette system will be used to illustrate the typical problems. The cassette data transfer example also illustrates
the technique for increasing the amount of usable spare time by borrowing it from adjacent data cells. In this
case, the spare time is used to refresh a display.

When a peripheral signals the MPU requesting processing time, it will be referred to as a Service
Request, (SR). When the service request is periodic, as in the above mentioned examples, it is called a time
dependent service request. Read or Write Data Transfers are both examples of such service requests and where
the examples show programs or terms referring to a Read Data Transfer, they are meant to be illustrative of both
Read and Write Data Transfers.

2-3.1 NOTATION USED SERVICE REQUESTS AND PROGRAMS AS WAVEFORMS ON A
TIMING DIAGRAM

The process of synchronizing a data transfer program to a peripheral can be visualized more easily
when the SR’s and the program are both represented as waveforms on a timing diagram. The peripheral SR
waveform is developed from the specifications of the peripheral which identify the maximum time, T1m it takes
to load the data buffer (the period during which data is invalid), and the minimum period, Tom between service
requests. The subscript m refers to the parameters of the mth peripheral.

The data transfer waveform is developed by writing the actual data transfer program and then
calculating the time it takes to:

(1) Capture the data (Tam)

2-30

(2) Process the data (Tem — includes period T4m)

(3) Loop in a synchronization delay loop until a SR is active. (nTs — where Ts is the single loop
time and n is the number of times the program loops).

These values are calculated by counting the number of processor clock cycles required to execute
each function, and multiplying the numbers by the MPU clock rate. The waveforms and notation for a typical
situation are illustrated in Figure 2-3.1-1. Figure 2-3.1-2 shows a flow chart for a data transfer program for a
single peripheral. Figure 2-3.1-3 details the technique for calculating the program parameters and Figure
2-3.1-4 illustrates the relation between the peripheral word ready service request and the program timing. The
values of the SR parameters are for a floppy disk data transfer. '

The period To1 is the worst case (fastest) peripheral data word rate, and it is calculated taking into
consideration floppy disk motor speed variations. The SR update time T11, is the time during which a new word
is being loaded into the data buffer, and at the end of which there exists an active SR.

The timing diagram of Figure 2-3.1-4 shows a processor clock running at a 1 usec cycle time and
shows how the word capture time is developed from a knowledge of the point in the instruction cycle when the
word capture begins and ends. In this case, the program begins the word transfer at the positive edge of the
fourth processor clock cycle during the LDAA RDCTL instruction and completes it at the negative edge of the
fourth clock cycle during the LDAA RDDATA instruction which moves the data. Therefore, T41 is equal to the
number of clock periods between initiation and the end of transfer, 8.5 cycles = 8.5us. The first two
instructions form the sync loop (T3) and the total program represents the program processing time (Tz1).

Tom
T
PERIPHERAL SRm | — j—Tim
{(word ready) I I LJ LJ
—ﬂ T4m l‘—-
PROGRAM DATA

TRANSFER - " .
(word fetch) J‘_
tm je——T2m "Ts—oL Tom

T = Period of service request of mth peripheral (word ready period).
Om

Tym = Service request update time (Data Invalid) for mth peripheral.

Tom = Program Processing Time of the mth SR. Includes

time to capture data.

T3 = Synchronization Loop time when the program has checked
and found no active service requests.

T4m = Data Capture Time of the mth SR. :

tyn = Initial offset between the SR and Program Data ’
Transfer Waveforms.

n = number of times the program goes through the

synchronization delay loop.

FIGURE 2-3.1-1. Peripheral Service Request (SR) and Data
Transfer Program Waveforms and Notation .

2-31

2-3.2 DEVELOPMENT OF EQUATIONS AND INEQUALITIES USED TO TEST SUCCESSFUL
SYSTEM OPERATION

A successful data transfer means that each time the peripheral indicates, via an SR, that a data word
is available, the program is able to capture the data before it is replaced by the next data word. It is implied that
the program is able to proces the data between data word transfers. (In the floppy disk data transfer program,
processing involves storing the data in Random Access Memory (RAM) and checking whether it was the last
word that needed to be transferred.) Similarly for data transfers to the peripheral, the program must make the
data word requested available before the succeeding request arrives. In other words, a successful data transfer
consists of avoiding an overrun (during READ) and underflow (during WRITE).

If the SR is not ative at the time that the program checks for a SR, (i.e., the data word is not ready),
then the program goes into a synchronization (sync) loop, which causes a delay (Ts). At the end of a sync loop,
the program again checks for an active SR.

In the following analysis, it is assumed that the values of the parameters detailed in Figure 2-3.1-1
are at their worst case limits and are constant for simplicity, the single SR model (where m = 1) will be used
initially.

For the system to transfer data successfully the average word processing time TAVC must be

approximately equal to the peripheral data word SR period To1.
TAVG =~ Tu 1)

More precisely stated, in the limit as the number of words transferred, p, approaches infinity, the
average word processing time, TAVG, is exactly equal to the byte cell period To:.

‘ BEGIN '

WORD
READY?

",
H

_

STORE
WORD

T2

DECREMENT
WORD COUNTER

FIGURE 2-3.1-2. Flow Chart for a Typical Data Transfer Program
for a Single Service Request

2-32

LABEL MNEMONIC OPERAND COMMENT PROCESSOR CYCLES

RDLOOP LDAA RDCTL LOAD CONTROL WORD SYNC 4
BPL RDLOOP LOOP IF SR IS INACTIVE LooP 4
LDAA RDDATA LOAD READ DATA DATA
PSHA STORE ON STACK CAPTURE| prograw
M | PROCESSING
TIME
DEX DECREMENT WORD COUNT {T21) a4
BNE RDLOOP IF WORD COUNT IS NOT :
ZERO RETURN FOR NEXT WORD
— 4
EXIT 4
TOTAL 24 CYCLES

IF THE MPU CLOCK PERIOD IS 1us THEN SYNC LOOP TIME T3 = 8,
PROGRAM PROCESSING TIME Tyq = 24 ¢
DATA CAPTURE TIME T4 = 8.5us (See Text)

FIGURE 2-3.1-3. Data Transfer Program Indicating Method Used to
Calculate Program Parameters

PERIPHERAL je—T To1_b1

Wi
ORD READY SR il T ™ IF T

WORD IN READ _r-——-_] J I_—_

BUFFER

cLocK 104 _,] le—

]
! I‘—O.Sus
a i a < a a o <
INSTRUCTION S |<f!| §|q%! S| <k 2 2 g
INSTRUCTIC |8 g5l 2 leiils 1 LBlahl 2161 8lsals | |81
s -« o x| & a dx T sz -« G 92 ¢ 8 %E
PROGRAM RECOGNIZES TF_ : ﬂ IL
]
WORD 05 !m‘ n
! us
PROGRAM TRANSFERS ! §
WORD __m‘ oo =
PROGRAM h———‘m ——————-bk—-——Ts —9
WORD FETCH T01 =.29.7 Hs,fo = 33.6K WORDS/SEC (FLOPPY DISK FASTEST DATA RATE)
Ty = 0.75us (BUFFER PROPAGATION DELAY)
T21 = 24/.(5
T3 = gus
T41 = 8.5[15

" FIGURE 2-3.1-4. Relationship of Peripheral Data Stream to
Program Timing

2-33

Lim ;
TAVG = Tos €]
p [o.0]
The time TAVG consists of the program word processing time T21 and a time nTs while the program
loops until the next word is ready. Stated mathematically,

1 o0]
TAVG = Tar + — (anTs) 3

p=1

Where np is the number of sync loops taken while waiting for the pth SR, and whose value may vary
from 0 to n (n = np maximum).

The program byte processing time, T21, must be equal to or less than the SR period To1, or else the
program could not keep up with the word rate of the peripheral. Therefore,

Tz1 < Tox €]

If the program loops n times in the sync delay loop before the next data word is ready, then equation

(4) can be modified to read:

T21 + (n—1) Ts < To1 -)

Also, the time T21 + nTs must be greater than To1 so that the program may begin the transfer of the
next word even if the offset T11 is equal to zero. This is true simply because the program loops until the next
word SR is active. Hence,

To1 < Ta21 + nTs 6

Therefore, the peripheral word ready period is bounded by Tz1 + (n—1) T3 and Te1 + nTs for
successful operation:

Te1 + (n—1) Ts < Tor < To1 <Ts (7

If To1 = T21 then the program and peripheral are said to be synchronous. If To1 > T21 (equation 4),
then the offset T11 gets smaller and smaller until it is negative or zero, which means that after the program has
processed one word, the next word will not be ready. At this time, the program goes into the synchronization
loop, and samles the peripheral Word Ready line until the SR is again active.

The maximum value of the synchronization loop for which the system will work may be determined
from the following argument. Since the peripheral SR and the program are independent, it is entirely possible
that the SR occurs immediately after the program has initiated a sync loop. Since the data capture time is T41
and the data is invalid for a period T11 out of every Tou, it is necessary that:

Ts < Tor — T11 - Ta1 ®)

This is the inequality used to calculate the maximum permissible value of Ts.

2-3.3 Floppy Disk Data Transfer Routine

The parameters of the Floppy Disk Data transfer routine are listed in Figure 2-3.1-4. The parameters

234

can now be tested with equations (7) and (8):

From Equation (7)
T21 < To < T21 + Ts n=1 ©)]
24 < 29.7 < 32us

and from Equation (8)
Ts <To1 — T11 — Tax ®)
8 <29.7-0.75 - 8.5

Both requirements are met and the program will transfer data successfuily, (at a maximum rate when To1 =
Ta1).

1 1
Max Data Rate = — =

= = 41.6K Bytes/sec.
T21 24us

Note that in this example, the time left over in each data byte after processing is:
To1 — Te1 = 29.7 — 24 = 5.7us (10)

This time is too small to be usable for other tasks by the M6800.

2-3.4 CASSETTE DATA TRANSFER ROUTINE

The data transfer routine of Figure 2-3.1-3 is equally valid for the case of word data transfer between
the cassette and an MPU. The significant difference is the slqwer datarate, i.e., the SR period for word transfer
is much longer. For the cassette with a worst case data transfer rate of 1.85 KBytes/sec (15KBits/sec):

1
Toi = —— = 540.5
' 71850 Hs

All other parameters remain essentially the same.

T = 1lus
T21 = 24us
Ts = 8us
T41 = 8.5us

It may be verified that both Equation 7 and 8 are satisfied by the above parameters for n=65. The time available

after processing the word is:
To1 — Te21 = 540.5 — 24 = 516.5us

This time is normally used up in synchronization delay loops. Since so much additional time is
available, it may be possible to transfer cassette data in serial form (bit transfer), and eliminate the hardware

2-35

associated with the serial to parallel conversion. The Serial Data Transfer Flow Chart and Program are shown in
Figures 2-3.4-1 and 2-3.4-2 respectively. Equation 7 and 8 are both satisfied for n=4. The unused processing
time per bit cell is: V

To1 — Ta1 = 66.6 — 40 = 26.6us (11)

2-3.5 UTILIZATION OF MPU PROCESSING TIME

Assume that it is required that a program must service a cassette for serial data transfers, as described
earlier, and simultaneously refresh a dynamic display (display without memory). Let the subscripts 1 and 2 be
used to refer to parameters of the cassette and displays respectively. Assume that the program processing time
T22, to refresh the display, is longer than the available processing time in a single bit cell, i.e.

T22 > 26.6 s (From Equation 11)

However, if the period of the display SR is longer than that of the Cassette (Toz > To1) an interesting question
arises. Is it possible to borrow time from adjacent data cells and process SR2 without losing SR1 data? The
following analysis shows that it is, if the parameters meet certain requirements.

To maximize the utilization of an MPU’s processing time the extra time spent in synchronization
delay loops can be used for doing other routines. This is similar to adding a time equal to the additional delay
loops to the program processing time T11. The condition that must now be satisfied by the program and the
peripheral SR period may be stated as:

T’21 = To1 <T’21+ Ts an
where
T’21 = Ta1 + (n—1) T3 (12)

and (n—) Ts is the additional time now used for processing. The length of the program processing time has been
extended; however, there is still only one independent service request being serviced as illustrated in the flow
chart in Figure 2A.

It is often required that the unused processing time be used to process SR’s from another time
dependent peripheral. Assume that it is required that the unused processing time be used to process SR’s from a
display,i.e., to refresh the display. Will the system be able to successfully handle the two SR’s? This question
leads to considering the program model for handling multiple SR’s, and the conditions that must be satisfied for
successful operation.

2-36

LABEL
LOOPC

EXIT

FIGURE 2-3.4-1. Flow Chart for Serial Data Transfer

MNEMONIC
LDAA

BPL
RORA
ROLB

BCC

PSH B

LDA B
DEC
BNE

FIGURE 2-3.4-2. Casette Bit Serial Data Transfer Program

ENTER

BIT READY?

STORE BIT

v

INCREMENT
BIT COUNT

STORE
WORD

)

RESET BIT
COUNTER

v

DECREMENT
wi

OPERAND COMMENT

CLKDAT LOAD CLOCK & DATA WORD
{CLOCK IN BIT 7, DATA IN
BIT 1)

LOOPC LOOP IF SR IS INACTIVE
TRANSFER DATA BIT TO CARRY
ASSEMBLE WORD IN
ACCUMULATOR B

LooPC IF WORD IS NOT ASSEMBLED
RETURN FOR NEXT BIT
STORE ASSEMBLED WORD ON
STACK

#01 RESET BIT COUNTER

COUNT DECREMENT WORD COUNT

LOOPC IF WORD COUNT NOT ZERO

WORD
TRANSFER

DONE?

RETURN FOR NEXT WORD

TOTAL
At MPU clock rate of 1 MHZ
T3 = 8us
Tyq = 40us
Tgq1 =0.5us
and To1 = 1 = 66.6 us
15000

2-37

PROCESSOR CYCLES

4

A ON A

40 CYCLES

2-3.6 PROGRAM MODEL FOR TWO PRIORITIZED SERVICE REQUESTS

When two independent periodic SR’s are allowed, the program model for servicing them may be
prioritized. The prioritizing is done such that the SR with the shorter period (hgher frequency) has the higher
priority. Figure 2-3.6-1 indicates the programming model for two SR’s where SR #1 (SR1) has higher priority.
Notice that SR1 is tested first, regardless of which SR was last processed.

The parameters of the SR1, SR2 waveforms are derived as before, from specifications of the two
peripherals. The parameters for the program are derived in conjunction with the prioritized model. For
example, the synchronization loop time T3, is now the time it takes the program to test for an active SR1, and

ENTER

[\
SR #1? NO T
y

]

PROCESS PROCESS
SRt SR2

NO

EXIT #1 EXIT #2

FIGURE 2-3.6-1. Program Model for Two Prioritized Time Dependent
Service Requests

2-38

then test for an active SR2, and find them both inactive. Similarly, Tz2, the program processing time for SR2,
includes the time to test for SR1, (which is inactive) and then test for SR2 (active), process SR2, and test if it is
the end of SR2 processing.

2-3.7 REQUIREMENTS THAT MUST BE SATISFIED WHEN AN MPU SERVICES MULTIPLE
SR’s

The following requirements were developed by studying the failure mechanisms using the program
model for two prioritized time-dependent service requests. A failure was defined as an overflow or underflow,
and the program was run to process a very large number of consecutive SR’s (up to 100,000 service requests).
Each time there was a failure, the timing relationships between the two SR waveforms and the program
processing waveform was studied to give a clue to the failure mechanism. The results are listed in Figure
2-3.7-1. Of the requirements listed in Figure 2-3.7-1, Equations 7 and 8 have already been discussed. Equation
12 is really implied by the program flowchart model for a single SR where the data capture time is included in
the SR processing time.

Equation 13 states that the sum of the processing times expressed as a fraction of the SR frequency is
no greater than unity. This is true because of the periodic nature of each SR and the fact that each SR uses
T2m/Tom of the MPU’s processing time. As an example, if the cassette serial data transfer routine uses 40us
every 66.6us then it uses 40/66.6 = 60% (approx.) of the MPU’s capability. Hence, 40% of the remaining
MPU capability may be used by another SR. This result is used shortly to test the cassette-display service
program.

For each SR it is required that:

A Tom < Tom < Tom + nTy (7)
B. T3 < Tom = Tim - Tam (8
C. Tam < Tom (12)
For the system it is required that:
T
z 2m > 0
D. 1 - m (———TOm) (13)

The equality is the synchronous case where no synchronization loops are taken.
E. For each peripheral when compared to the fastest peripheral k,
Tok — Tk — Ta = Ty, foralink (14)

Where k is the peripheral with the highest frequency of operation, and the
SR’s are prioritized by frequency with the highest frequency SR being first.

FIGURE 2-3.7-1. Timing Constraints for Successful System Operation
for Prioritized Multiple Service Requests

2-39

Equation 14 is best illustrated by the timing diagram in Figure 2-3.7-2 where SR2 and SR1 occur
almost simultaneously, but SR2 is active first. This implies that just prior to this occurrence, the last SR from
both SR1 and SR2 has already been processed and SR1 has been tested first, according to the prioritized model,
and found to be inactive. SR2 must be processed in a time T22; then data from SR 1 must be captured in time T41,
before it becomes invalid. The data becomes invalid a time T11 prior to the next SR1. Therefore, the condition

that must be satisfied is:
To1r — T11 — T41 = T2z (m=2) (14)

Equation 15 implies that the program should be able to synchronize, then process SR1, and capture
data from SR2 before it becomes invalid. This situation occurs after the last SR1 has just been processed, and
then neither SR1 nor SR2 are active (see Figure 2-3.7-3). After the sync loop, SR1 is processed, and SR2 data
must be captured:

Toz — Ti12 — Ta2 = T21 + T3 (m=2) (15)
Equations 14 and 15 are stated in a general form for m SR’s in Figure 2-3.7-1 but they have been verified only

for the case of two SR’s. Equations 7, 8 and 13 of that Figure, however, must be satisfied by any set of m SR’s,

SR1

ju L

SR2

Ty starts just

before SR2 is
active

- T12

""': Y Y

'

T
1
I
1
|
|
1
i
|
|
)
|
i
i
I
i

PROGRAM o
PROCESSING — T21 —dlt— T3 — i To1—p| 142 ylr/

T12

Tozg = Tig * Tgp + Ty + T3

Toz = Tiz — Tag = Ty + T3 (m=2) (15)

FIGURE 2-3.7-2. Timing Diagram Showing Requirements of
Equation 15 for Two SR’s

SR1 —»l n
SR2 is active LI
before SR1 by a

| nominal time

I
[
SR2 l;

i
Program I I | !
1
1

Processing —.: l’Q—T”
L— T22 —Jﬂ—%——»}

Tor = T2 * T4+ Tpy

or Tor — T11 — Ty = Ty (m=2) (14)

FIGURE 2-3.7-3. Timing Diagram Showing Requirements of
Equation 15 for Two SR's

2-40

2-3.8 SERIAL DATA TRANSFER AND DYNAMIC DISPLAY REFRESH PROCESSING

The cassette serial data transfer program is now modified and extended to service both the cassette
data SR and the Display Refresh SR. The combined program, listed in Figure 2-3.8-1 follows the model of two
prioritized SR’s of Figure 2-3.6-1. SR2 is generated by a 16 character dynamic display, and the characters are
refreshed cyclically. Figure 2-3.8-2 lists the parameters of the two SR’s and verifies that all requirements are
met for the two SR’s to be successfully serviced. Note that use of Equation 13 provides a measure of the
efficiency of usage of the MPU processing time. In this case:

1(4O+50—1 0.985 = 0.015
66.6 130/ -~ T T

which implies that 98.5% of the total processing time is being used.
The amount of spare time remaining is calculated by multiplying the left-hand side of Equation 13 by
the period of the highest frequency SR. Thus,

Unused processing time = 0.015 x 66.6 = 1.00us every SR1 period.

LABEL MNEMONIC QPERAND COMMENT PROCESSOR CYCLES
LOOPC LDAA CLKDAT LOAD CLOCK & DATA WORD»{=Tq1 a
BPL LOOPD BRANCH TO DISPLAY IF SR1 |— "D~ 4
1S INACTIVE v
~ i
RORA -
t
ROLB ' 6
To1 1
BCC LOOPC > SEE FIG. 3B i
PSH B Lo
I
LDA B #01 Lo,
[}
DEC COUNT _—
1
BNE Loorc J 0
EXIT e TOTAL | 40
LOOPD LDAA DSPCTL LOAD DISPLAY CONTROL WORD 1 " 4
BPL LOOPC BRANCH TO CASSETTE IF SR2 } 4
IS INACTIVE
BSR DSP2 BRANCH TO DISPLAY -
: SUBROUTINE IF SR2 IS ACTIVE 8
DSP2 LDAA DATAX LOAD DISPLAY CHARACTER Ta2
(INDEXED ADDRESSING)
STAA DISPLY REFRESH DISPLAY] 5
T
DEX DECREMENT INDEX REG 22,
BNE DSPEND 16 CHARACTERS REFRESHED? 4
LDX #16 LOAD THE NUMBER 16 IN INDEX 3
REGISTER
DSPEND RTS RETURN FROM SUBROUTINE J 5
EXIT2 ... TOTAL 45,4

FIGURE 2-3.8-1. Serial Data Transfer and Dynamic Display Refresh Routine

2-41

PARAMETERS OF SR1 (SERIAL DATA)

Tor = 66.6us T21 < To1 < T29 *+ nT3
Ty = lus 40 < 666 <40 + 2x16
AND T3 < Tgq - Tqq - Ta
Ty1 = 40us 16 < 666 - 1 - 05
T41 = 0.5}15
Tor < To2

PARAMETERS OF SR2 (DISPLAY REFRESH)

T02 = 130us T22 < T02 < T22 + nT3
Tz = s 50 < 130 < 50 + 5x16
T22 = 42 + 8 = b0us AND
T42 = 26us T3 < T02 - T12 - T42
16 < 130 - 1 - 28
T3 = 16us
FROM EQU. 13
1 - Tom =0
1 -(40 +_51) = 0015 > 0
66.6 130
FROM EQU. 14

Tor - T11 - Ta1 = T2

666 - 1-05 > 50

FROM EQU. 15

Toza = T2 = Ty2 2Ty + T3
130 - 1 - 26 > 40 + 16

FIGURE 2-3.8-2. Serial Data Display SR Parameters and
System Requirement Test

2-3.9 INCREASING MPU PROCESSING EFFICIENCY WITH THE FLIP-FLOP MODEL FOR
TWO ““EQUAL”’ PERIOD SR’S

When the SR’s have approximately equal SR periods, as in Read/Write, or bi-directional data flow,
the processing time for SR2 may be reduced if a flip-flop model is used in place of the prioritized model. Figure
2-3.9-1 shows the Flip-Flop model in which, after completion of SR1 processing, the program checks SR2 first
and vice versa.

242

ENTER

¢

s = ‘ o = |

YES YES

PROCESS PROCESS
SR1 SR2

NO NO
>
YES

EXIT #1 ‘ EXIT #2 »

FIGURE 2-3.9-1. Flip-Flop Model for Two ““Equal” Period SR’s

The advantage gained in processing efficiency is reflected in the fastest data rate that the program
can successfully transfer for both SR’s. This can be illustrated using the example of cassette serial data transfer.
Let SR1 and SR2 programs be identical in form such that:

T41 = T4z = 0.5us
T11 = Ti2 = lus
Ts = 16us

MAX To1 =To2 = "

If the prioritized model is used, then:
T21 = 40us and T22 = 50us

because it takes 8us to test if SR1 is active and this is always tested first.
In this case, the maximum data transfer rate for the two SR’s may be calculated by using the equality
in Equation 13.

40 50
+ =1
Tor (Toz = Toy)

1
To1 =90 ="11.1Kbits/sec.

us
If the flip-flop model is used then.

T21 = T2z = 40us

243

and the maximum data transfer rate for the two SR’s may be calculated from Equation 13 as:

40 40
_—t =1
To1 (Toz = To1)
1 .
To1 = = 12.5 Kbits/sec.
80us

This provides approximately a ten percent increase in maximum data rate.

Note, however, that when the flip-flop model is used there is an additional condition that now must
be satisfied. This is required because both SR1 and SR2 may occur simultaneously. Therefore,

To1 = Toz = Ta1 + Tae (16)

The techniques described in this section enable the user to determine if a given data transfer program
will work in the microprocessor system. If it is found that the program does not work, the user may modify the
program/hardware to allow the system to work. The techniques also provide a measure of the utilization of the
microprocessor’s capability. This provides the opportunity to add functions to or delete hardware from the
system until the microprocessor is being used to its full capability. The techniques may be extended to cover
operation of systems where interrupts are the periodic service requests.

2-4 USE OF INDEX REGISTER

Effective programming of the MPU makes extensive use of the Indexed Addressing mode. For this
mode, the address is variable and depends on the current contents of the Index Register. A source statement
such as

Operator Operand Comment

LDAA X Load ACCA from M=X

will cause the contents of the memory location specified by the contents of the Index Register to be loaded into
accumulator A, that is, the effective address is determined by X. Since there are instructions for manipulating
the contents of the Index Register during program execution (LDX, INX, DEX, etc.), the Indexed Addressing
mode provides a dynamic ‘‘on the fly’” way to modify program activity.

The Index Register can be loaded either with ‘‘constants’’ such as the starting address of a file in
ROM or with a variable located in RAM that changes as the program runs. The Indexed Addressing mode also
allows the address to be modified by an offset. The operand field can include a value that will be automatically
added to X during execution. The format for this technique is:

Operator Operand Comment

STAA K,X Store ACCA in M=(X+K)

When the MPU encounters the opcode for LDAA (Indexed), it looks in the next memory location for the value
to be added to X and calculates the required address, X + K in this example. (See Section 1-2.3.5 for additional
information on the Indexed Addressing Mode.) The control program is normally in ROM, hence, the offset is a

2-44

constant that was established during program development and cannot be changed during program execution.

There are numerous examples of indexed addressing techniques in the sample programs throughout
this Manual, however, it is of interest to summarize some of the methods in this Section. A common usage is
shown in the following sequence of instructions for setting a series of RAM locations to zero (perhaps part of an
initialization routine):

Label Operator Operand Comment

LDX #FIRST Get starting Address
LOOP1 CLR X Clear current location.

INX Move to next location.

CPX LAST+1 Finished yet?

BNE LOOP1 No, continue clearing.
NEXT xxx XXXXXX Yes, continue with program.

This sequence causes the consecutive memory locations FIRST through LAST to be cleared. The labels
FIRST, LAST, NEXT, etc., will have been assigned specific values during assembly of the program. Note that
only every other memory location would be operated on if a second INX had been included in the program:

LDX

LOOP1 CLR X
INX
INX
CPX LAST +2
BNE LOOPI
NEXT xxx XXXXXX

This technique is commonly used to establish the ‘‘size”’ of the increment that will be stepped through. If the
size of the step is large (many INXs) or if it is desirable to have a variable step size, another procedure can be
used to advantage. The following sequence of instructions can be used to effectively add a variable offset to X:

245

Label Operator Operand Comment

LDAB VALUE Get variable into ACCB.

LDX #FIRST Get Starting Address.
LOOP1 INX Advance address pointer.
DECB Is ACCB zero yet?
BNE LOOP1 No, continue advancing pointer.
NEXT xxx XXXXXX Yes, proceed with program.

This sequence has the effect of adding the contents of accumulator B to the Index Register, that is, a variable
offset is generated. If, for example, the value in ACCB is one, the INX instruction increases X by one and the
DECB instruction reduces ACCB to zero. The program flow falls through to NEXT since the BNE test fails but
the Index Register is now loaded with X+ 1 rather than X. A different value for B would cause the program to
pass through the loop until B is reduced to zero. Since X is increased by one during each pass, the net effect is to
add the variable ‘“VALUE”’ to X.

This technique is illustrated in the following example: A program is required that will check for a
zero result in every 8th location in a block of memory extending from FIRST to LAST. The first zero result
encountered is to cause the program to branch to location ZROTST. If no zero results are encountered,
processing is to continue:

BEGIN LDX #FIRST Get starting address.

START LDAB #3$08 Load step size.
LOOP1 INX Advance address pointer.
DECB Next location yet?
BNE LOOP1 No, continue advancing pointer.
TST X Yes, test for zero result.
BEQ ZROTST Branch to zero test if zero.
CPX LAST+1 Finished?
BNE START No, move to next location.
NEXT xxx XXXXXX Yes, continue with program.

In this case, the program will pass through LOOP1 eight times prior to each test, effectively adding eight to the
value in the Index Register. Note also that the INX instruction could be replaced by the decrement X
instruction, DEX, thus providing a means of ‘‘negative’’ or backward indexing if desired.

There is another ‘‘variable indexing technique’’ that combines the Indexed Addressing mode with
suitable memory allocation to obtain dynamic indexed addressing. Assume that a program is required that will

246

select a mask pattern that is determined by the current contents of a counter. The counter content is variable and
depends on the results of previous program operation. Such sequences are useful for establishing particular bit
patterns required by the program.

As an example, assume that one of the bit patterns shown below is required, depending on the
current value of BITCNT, a value that has been previously computed and stored in RAM:

Bit Count Bit Pattern
bz be bs bs bs b2 b1 bo
0 1 o 0 O 0o o0 O O
1 0o 1 0 0 O o0 o0 O
2 o o0 1 o0 o0 o0 o0 o0
3 o o0 0 1 o0 o0 0 o0
4 o o0 0 o0 1 o0 o0 O
5 o 0 0 O o0 1 0 O
6 o 0 0 o0 o0 o0 1 o0
7 0o 0 0 O o0 o0 o0 1
The following memory allocation can be used to permit indexed addressing of the desired pattern:
COLBIT STARTI (XH) } RAM
BITCNT (XL) | n+1
START1 (0 10000000 |m |
1 01000000 | m+1
2 00100000 | .
3 00010000 | . > ROM
BIT COUNTY 4 00001000
5 00000100
6 00000010
L7 00000001]

By putting the upper byte of the starting address of the table (upper byte of m = START1) in the RAM location
immediately preceding BITCNT, the LDX instruction can be used to load the Index Register with the address of
the desired bit pattern. This method has the limitation that the lookup table must begin (START1 above) at an
address whose least two significant Hex digits are zero, that is, of the form XX00. Such tables can be at the
beginning of any multiple of 256 ROM locations.

This technique is illustrated in the following sample program for updating a bit pattern stored in two
PIA Output Registers, PIAORA and PIAORB. The registers contain a pattern for driving an external display
array that must be updated to include the results of each new calculation of a word count, WRDCNT, and a bit
count, BITCNT. The current update goes to PIAORA if the word count is odd and to PIAORB if even. The
steps involved in the update are:

(1) Test WRDCNT for odd or even and set a flag.

(2) Get PIAORA (0odd WRDCNT) or PIAORB (even WRDCNT) into accumulator A.

247

(3) Determine the bit pattern that corresponds to the current BITCNT.
(4) Combine with the contents of accumulator A, preserving any previously set bits.
(5) Write updated pattern back into appropriate PIA register.

The following program can be used if the memory allocation recommended above is used:

ROR WRDCNT Sets Carry if odd.

ROR COLFLG Set sign bit on odd WRDCNT.
BMI TAG1 Get appropriate register.
LDAA PIAORB * into
BRA TAG2 * ACCA

TAG1 LDAA PIAORA * for update

TAG2 LDX COLBIT Point to bit pattern.
ORAA X Combine with previous pattern.
TST COLFLG Put updated pattern.
BMI TAG3 * back.
STAA PIAORB * out
BRA TAG4 * to

TAG3 STAA PIAORA * display

TAG4 XXX XXXXXX

Note that the single instruction LDX COLBIT is all that is required to locate a ROM location that depends on a
dynamic program result.

2-48

CHAPTER 3

3. INPUT/OUTPUT TECHNIQUES

3-1 INTRODUCTION

Due to the type of applications in which they are used, the capability to efficiently handle
Input/Output (I/O) information is perhaps the most important characteristic of microprocessor systems. The
M6800 architecture incorporates supervisory controls and interface devices that permit a wide variety of 1/O
techniques to be used. This Chapter describes the I/O characteristics of the M6800 system and their use in
typical applications.

Most I/O information can be placed in one of two general categories: (1) control and status signals;
(2) data that is to be processed by the MPU. Much of the MC6800’s flexibility in handling control and status
information depends on three system features:

(1) Many of the routine peripheral control tasks can be delegated to the interface adapters.

(2) Because the design of the interface adapters allows the MPU to treat peripherals exactly like
other memory locations, the memory reference instructions that operate directly on memory are
also used to control peripherals.

(3) While all MPU’s must be able to continuously control simple peripherals under program
control, in many typical applications, the peripheral information to the MPU is often
asynchronous in nature and is best handled on an interrupt basis. The interrupt structure of the
MC6800 allows such applications to be processed in an orderly manner, that is, interrupts are

handled without disrupting other system tasks in progress.

The currently available interface devices are described in detail in Section 3-4. The various interrupt
control techniques are discussed in Sections 3-2 and 3-3.

In the M6800 system, all data movement between family elements (memory and/or peripheral
interface adapters) is normally done through the MPU via the Data Bus. This means that the transfers are
program controlled, that is, the movement is accomplished by execution of instructions such as Load, Store,
Push, Pull, etc. Numerous examples of programmed controlled data transfers are shown throughout this
manual. For example, a program for moving 8-bit bytes from a peripheral to memory (at the rate of 43,000
bytes per second) is described in conjunction with the floppy disk application discussed in Section 5-4.

In most system designs, it is possible to ‘‘speed up’’ data movement by surrendering program
control and transferring data directly between the other system elements. This bypassing of the MPU, usually
called Direct Memory Access (DMA), requires that the MPU be provided with supervisory signals. In addition,
external hardware for generating addresses and controlling the transfer must be provided. The MC6800’s
supervisory control features allow DMA to be accomplished in a variety of ways. The details of implementation
depend on the particular system configuration and timing requirements. Several methods and their relative
merits are discussed in Section 3-5 of this Chapter.

3-1

3-2 MC6800 INTERRUPT SEQUENCES

In a typical application, the peripheral devices may be continuously generating asychronous signals
(interrupts) that must be acted on by the MPU. The interrupts may be either requests for service or
acknowledgements of services performed earlier by the MPU. The MC6800 MPU provides several methods for
automatically responding to such interrupts in an orderly manner.

In the control of interrupts, three general problems must be considered: (1) It is characteristic of most
applications that interrupts must be handled without permanently disrupting the task in process when the
interrupt occurs. The MC6800 handles this by saving the results of its current activity so that processing can be
resumed after the interrupt has been serviced. (2) There must be a method of handling multiple interrupts since
several peripherals may be requesting service simultaneously. (3) If some signals are more important to system
operation or if certain peripherals require faster servicing than others, there must be a method of prioritizing the
interrupts. Techniques for handling each of these problems with the MC6800 will be described in the following
paragraphs.

The MPU has three hardware interrupt inputs, Reset (RES)!, Non-Maskable Interrupt (NMI), and
Interrupt Request (ﬁ—(j). An interrupt sequence can be initiated by applying a suitable control signal to any of
these three inputs or by using the software SWI instruction. The resulting sequence is different for each case.

3.2.1 INTERRUPT REQUEST (IRQ)

‘The IRQ input is the mainstay of system interrupt control. Inputs to TRQ are normally generated in
PIAs and ACIAs but may also come from other user-defined hardware. In either case, the various interrupts
may be wire-ORed and applied to the MPU’s IRQ input. This input is level sensitive; a logic zero causes the
MPU to initiate the interrupt sequence®. A flow chart of the IRQ sequence is shown in Figure 3-2.1-1.

After finishing its current instruction and testing the Interrupt Mask in the Condition Code
Register, the MPU stores the contents of its programmable registers in memory locations specified by
the Stack Pointer. (Operation of the Stack Pointer is discussed in Section 1-3.4.1.) This stacking process
takes seven memory cycles: two each for the Index Register and Program Counter, and one each for
Accumulator A, Accumulator B, and the Condition Code Register. The Stack Pointer will have been
decremented seven locations and is pointing to the next empty memory location.

The MPU’s next step of setting the Interrupt Mask to a logic one is an important aspect of system
interrupt control. Setting the mask allows the control program to determine the order in which multiple
interrupts will be handled. If it is desirable to recognize another interrupt (of higher priority, for example)
before service of the first is complete, the Interrupt Mask can be cleared by a CLI instruction at the beginning of
the current service routine. If each interrupt is to be completely serviced before another is recognized, the CLI
instruction is omitted and a Return from Interrupt instruction, RTI, placed at the end of the service routine
restores the Interrupt Mask status from the stack, thus enabling recognition of subsequent interrupts.

Note that if the former method is selected (immediate enable of further interrupts), the original
interrupt service will still eventually be completed. This is due to the fact that the later interrupt also causes the
current status to be put on the stack for later completion. This process is general and means that interrupts can be

'The bar convention over the symbols is used to indicate an active low signal condition.

2IRQ is a maskable input. If the Interrupt Mask Bit within the MPU is set, low levels on the IRQ line will not be recognized; the MPU
will continue current program execution until the mask bit is cleared by encountering the Clear Interrupt (CLI) instruction in the control
program, or an RTI is encountered.

32

Instruction
Finished?

Y . .
%5 Continue Executing

Current Program

—p» SP-7
Stack MPU r_-_—:> SP-6 CCR
Contents SP-5 ACCB
* SP-4 ACCA
SP-3 INX
Set Iy, SP-2 INX
SP-1 PChH
* spP PC

Load Program Counter

With Contents of Memory \
Locations: FFF8 —#» PCH
FFFO—® PC|

1

Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.1-1: Hardware Interrupt Request Sequence

CONTENTS ADDRESS
RES (Low Byte) FFFF
RES (High Byte) FEFE
NMI (Low Byte) FEFD
NMTI (High Byte) FFFC
SWi (Low Byte) FFFB
SWI (High Byte) FFFA
IRQ (Low Byte) FFF9
TRQ (High Byte) FFFS

—

FIGURE 3-2. 1-2: Interrupt Vector, Permanent Memory Assignments

33

“‘nested’’ to any depth required by the system limited only by memory size. The status of the interrupted
routines is returned on a Last-In-First-Out (LIFO) basis. That is, the last result to be stacked is the first to be
returned to the MPU.

After setting the Interrupt Mask, the MPU next obtains the address of the first interrupt service
routine instruction from memory locations permanently assigned to the IRQ interrupt input. This is
accomplished by loading the Program Counter’s high and low bytes from memory locations responding to
addresses, FFF8 and FFF9, respectively. The MPU then fetches the first instruction from the location now
designated by the Program Counter.

This technique of indirect addressing (also called vectoring) is also used by the other interrupt
sequences. The ‘“vectors’’ are placed in the memory locations corresponding to addresses FFF8 through FFFF
as shown in Figure 3-2.1-2 during program development.

The MPU places two of the address bytes in the range FFF8 — FFFF on the Address Bus during
interrupt sequences. It should be noted that the vector data is fetched from the memory locations that respond to
these addresses even though they may not actually be FFF8 — FFFF. For example, in the memory allocation
that was illustrated in Section 1-1.2.1 of Chapter 1, the ROM was assigned the 1024 memory locations between
C000 and C3FF (decimal 49152 to 50175) by tying Address Lines A1s and Ai4 to the ROM’s chip enables:

Address

Lines Ais A4 A1z Az Ain Ao As As A7 As As As As Az A1 Ao

ROM

Connections E E X X X X As As A7 As As A4 Az Az A1 Ao
N ———

Not Connected

Notice that if the MPU outputs the address FFFF (all ones) while fetching the vector data for a Reset,
it is actually addressing memory location C3FF in the system memory.

The significant point is that the eight locations that respond to FFF8 — FFFF must be reserved for
the interrupt vectors.

3-2.2 NON-MASKABLE INTERRUPT (NMI)

As implied by its name, the Non-Maskable Interrupt (NMI) must be recognized by the MPU as soon
as the NMI line goes to logic zero. This interrupt is often used as a power-failure sensor or to provide interrupt
service to a “‘hot’’ peripheral that must be allowed to interrupt.

Except for the fact that it cannot be masked, the NMI interrupt sequence is similar to IRQ (See
Figure 3-2.2-1). After completing its current instruction, the MPU stacks its registers, sets the Interrupt mask

and fetches the starting address of the NMI interrupt service routine by vectoring to FFFC and FFFD. (See
Figure 3-2.1-2).

323 RESET (RES)

The Reset interrupt sequence differs from NMI and IRQ in two respects. When RES is low, the
MPU places FFFE (the high order byte of the RES vector location) on the Address Bus in preparation for
executing the R_ESinteIrupt sequence. It is normally used following power on to reach an initializing program
that sets up system starting conditions such as initial value of the Program Counter, Stack Pointer, PIA Modes,

34

etc. It is also available as a restart method in the event of system lockup or runaway. Because of its use for
starting the MPU from a power down state, the RES sequence is initiated by a positive going edge. Also, since it
is normally used only in a start-up mode, there is no reason to save the MPU contents on the stack. The flow is
shown in Figure 3-2.3-1. After setting the Interrupt mask, the MPU loads the Program Counter from the
memory locations responding to FFFE and FFFF and then proceeds with the initialization program.

Instruction
Finished?

- SP-7
Stack MPU —> SP-6 CCR
Contents SP.5 ACCE
* sP-4 ACCA
SP-3 IN Xy
Set |, SP-2 INX,
SP-1 PCH
+ SP PCL
Load Program Counter
With Contents of Memory - ‘t
Locations: FFFC —=PCH
FFFD—p=PCy
Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.2.1: Non-Maskable Interrupt Sequence

Set Ipg

]

L_oad Program Counter
With Contents of Memory
Locations: FFFE— PCyy
FFFF-~#PC|

Y

Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.3-1: Reset Interrupt Sequence

3-2.4 SOFTWARE INTERRUPT (SWI)

The MPU also has a program initiated interrupt mode. Execution of the Software Interrupt (SWI)
instruction by the MPU initiates the sequence shown in Figure 3-2.4-1. The sequence is similar to the hardware
interrupts except that it is initiated by ‘software’” and the vector is obtained from memory locations responding
to FFFA and FFFB.

The Software Interrupt is useful for inserting break-points in the program as an aid in debugging and
troubleshooting. In effect, SWI stops the process in place and puts the MPU register contents into memory
where they can be examined or displayed.

TN
SWI
’_—_————\
—» SP-7
Stack MPU —> SP-6 CCR
Contents SP.5 AccE
* sP-4 ACCA
SP-3 INX
Set ty, SP-2 INX
‘ SP-1 PCH
sP PCL
Load Program Counter
With Contents of Memory —
Locations: FFFA PCy
FFFB PC|_
Jump to Interrupt
Service Routine as
Determined by PC

FIGURE 3-2.4-1: Software Interrupt Sequence

36

3-3 INTERRUPT PRIORITIZING

In the previous section, the various methods available for finding the ‘‘beginning’’ of an interrupt
control program were described. If there is only one peripheral capable of requesting service, the source of the
interrupt is known and the control program can immediately begin the service routine. More often, several
devices are allowed to originate interrupt requests and the first task of the interrupt routine is to identify the
source of the interrupt.

There is also the possibility that several peripherals are simultaneously requesting service. In this
case, the control program must also decide which interrupt to service first. The IRQ interrupt service routine in
particular may be complex since most of the I/O interrupts are wire-ORed on this line.

The most common method of handling the multiple and/or simultaneous IRQ interrupts is to begin
the service routine by ‘“polling’’ the peripherals to see which one generated the request. If the interrupts are
generated by peripheral signals coming in through a PIA or an ACIA, the polling procedure is very simple. In
addition to causing IRQ to go low, the interrupting signal also sets a flag bit in the PIA’s or ACIA’s internal
registers. Since these registers represent memory locations to the MPU, the polling consists of nothing more
than stepping through the locations and testing the flag bits3.

Establishing the priority of simultaneous interrupts can be handled in either of two ways. The
simplest is to establish priority by the order in which the PIAs and ACIAs are polled. That is, the first I/O flag
encountered gets the service, so higher priority devices are polled first. The second method first finds all the
interrupt flags and then uses a special program to select the one having highest priority. This method permits a
more sophisticated approach in that the priority can be modified by the control program. For example, it might
be desirable to select the lower priority of two simultaneous requests if the lower priority has not been serviced
for some specified period of time.

Software techniques can, in theory, handle any number of devices to any sophistication level of
prioritizing. In practice, if there are many sources of interrupt requests, the time required to find the appropriate
interrupt can exceed the time available to do so. In this situation, external prioritizing hardware can be used to
speed up the operation.

One method for implementing hardware prioritized interrupts is shown in block diagram form in
Figure 3-3-1. With this technique, each interrupting device is assigned its own address vector which is stored in
ROM memory similarly to the RES, SWI, IRQ, and NMI vectors. An external hardware priority encoder
selects the interrupt to be recognized and directs the MPU to the proper locations in memory for obtaining the
vectors.

Operation of the MPU itself is unchanged; after recognizing an IRQ, the MPU still outputs addresses
FFF8 and FFF9 as before. However, some of the address lines are no longer tied directly to memory but go
instead to a 1-of-2 Data Selector. The other set of inputs to the Data Selector are generated by a Priority Encoder
that outputs a binary number corresponding to the highest priority interrupt signal present at the time the
interrupt was recognized by the MPU.

Detection of the FFF8 and FFF9 addresses by the Address Bus monitoring circuitry then causes the
outputs of the priority encoder to be substituted for part of the normal address. Hence, even though the MPU
outputs FFF8 and FFF9, other locations in ROM are read by the MPU. Suitable vectors for sending the MPU
directly to the appropriate service routine are stored in these locations. Specific circuits for implementing this
prioritizing method are described in Section 4-2.1,

3See Section 5-4 for a specific example of software polling.

3-7

Interrupt
Address
Decode <' Address Bus 2
1 >—
12 >—
13 >— 1-0f.2 MPU
L4 Priority o Memory
o | Encoder [Data [N (ucmesso
° Selector ROM)
>— fnterrupt Data
1) Partial Address Bus
n >—
FIGURE 3-3-1: Hardware Interrupt Prioritizing Block Diagram
3-4 PROGRAM CONTROLLED DATA TRANSFERS

3-4.1 MC6820 PERIPHERAL INTERFACE ADAPTER

3-4.1.1 Input/Output Configuration:

The MC6820 Peripheral Interface Adapter (PIA) provides a flexible method of connecting
byte-oriented peripherals to the MPU. The PIA, while relatively complex itself, permits the MPU to handle a
wide variety of equipment types with minimum additional logic and simple programming. An Input/Output
Diagram of the MC6820 is shown in Figure 3-4.1.1-1.

Data flows between the MPU and the PIA on the System Data Bus via eight bi-directional data lines,
DO through D7. The direction of data flow is controlled by the MPU via the Read/Write input to the PIA.

The ‘“MPU side’’ of the PIA also includes three chip select lines, CS0, CS1, and CT2, for selecting a
particular PIA. Two addressing inputs, RS0, and RS1, are used in conjunction with a control bit within the PIA
for selecting specific registers in the PIA. The MPU can read or write into the PIA’s internal registers by
addressing the PIA via the system Address Bus using these five input lines and the R/W signal. From the MPU’s
point of view, each PIA is simply four memory locations that are treated in the same manner as any other
read/write memory.

The MPU also provides a timing signal to the PIA via the Enable input. The Enable (E) pulse is used
to condition the PIA’s internal interrupt control circuitry and for the timing of peripheral control signals. Since
all data transfers take place during the ¢2 portion of the clock cycle, the Enable pulse is normally ¢2*.

The *‘Peripheral side’’ of the PIA includes two 8-bit bi-directional data buses (PAO-PA7 and
PBO0-PB7), and four interrupt/control lines, CA1, CA2, CB1, and CB2. All of the lines on the ‘‘Peripheral
Side’’ of the PIA are compatible with standard TTL logic. In addition, all lines serving as outputs on the ‘‘B*”
side of each PIA (PBO-PB7, CB1, CB2) will supply up to one milliamp of drive current at 1.5 volts.

*See Section 4-1.3 for exceptions required in some applications.

3-8

N
=
_ CA1l |——
qu TRQA
— CA2 |t—
Nes{ TROB
= LLRLLY Pas-pa7 T
| | Rse MC6820
L—q 8 RS1 Peripherai
L— B CS¢ Interface
A » CS1 A(dapt;sr
— PIA
N~ 8 CS2
PB - PB7 <:>
i R/W
- N—a» Enable CcB2 ::
a| | 2| o Res cB1
2] g —
3 I [o]
@ R
RIRE
fa}
L~ L
L

FIGURE 3-4.1.1-1: MC6820 PIA /0O Diagram

3-4.1.2 Internal Organization:

An expanded Block Diagram of the PIA is shown in Figure 3-4.1.2-1. Internally, the PIA is divided
into two symmetrical independent register configurations. Each half has three main features: an Output
Register, a Control Register, and a Data Direction Register. It is these registers that the MPU treats as memory
locations, i.e., they can be either read from or written into. The Output and Data Direction Registers on each
side represent a single memory location to the MPU. Selection between them is internal to the PIA and is
determined by a bit in their Control Register.

The Data Direction Registers (DDR) are used to establish each individual peripheral bus line as
either an input or an output. This is accomplished by having the MPU write ‘‘ones’’ or ‘‘zeros’’ into the eight
bit positions of the DDR. Zeros or ones cause the corresponding peripheral data lines to function as inputs or

outputs, respectively.
The Output Registers, ORA and ORB, when addressed, store the data present on the MPU Data Bus

during an MPU write operation®. This data will also appear on those peripheral lines that have been

®As used here, an ““MPU Write’” operation refers to the execution of the “‘Store’” instruction, i.e., writing into Output Register A is
equivalent to execution of STAA PIAORA by the MPU. Similarly, an ‘‘MPU Read’’ operation is equivalent to execution of the
“Load’’ instruction: LDAA PIAORA.

39

IRQA 38 =

DO 33

D1 32 w—
D2 31 -—o
D3 30 -—

D4 29 =—>
D5 28 -a—b

D6 27 -a—

Data Bus
Buffers
(DBB)

D7 26 <—>1
Bus inpui
Register
(BIR)
Ve = Pin 20
VSS =Pin 1
CS0 22 ——»
CS1 24 —»
CS2 23 —— Chip
RSO 36 —w Select
and
RS1 35 ——» R/W
Control

R/W 21 ——
Enable 25 ——
Reset 34 ——b»

|¢—— 40 CA1
Interrupt Status
Control A 39 CA2
Control
Register A
(CRA)
'\ Data Direction
—/ Register A
L] [__ (DDRA)
Qutput Bus v
leg—= 2 PAO
Output la— 3 PA1
Register A >
: (ORA) > 4 PA2
Peripheral lt— 5 PA3
Inte;‘face 6 PA4
@ la—» 7 PAS
o
- l¢— 8 PAG6
3
g. l—» 9 PA7
le— 10 PBO
Output ,\\ lt—= 11 PB1
Register B
:;> (ORB)]/ q—» 12 PB2
Peripheral la— 13 PB3
interface
B lt— 14 PB4
l¢—» 15 PBS
l¢— 16 PB6
l— 17 PB7
> Data Direction
Control Register B
_::> Register B (DDRB)
(CRB)
> le—— 18 CB1
Interrupt Status
|
Control B 19 cB2

FIGURE 3-4.1.2-1: MC6820 PIA — Block Diagram

3-10

programmed as outputs. If a peripheral line has been programmed as an input, the corresponding bit
position of the Output Register can still be written into by the MPU, however, the data will be

influenced by the external signal applied on that peripheral data line.
During an MPU Read operation, the data present on peripheral lines programmed as inputs is

transferred directly to the system Data Bus. Due to differing circuitry, the results of reading positions
programmed as outputs differ slightly between sides A and B of the PIA. On the B side, there is three-state
buffering between Output Register B and the peripheral lines such that the MPU will read the current contents
of ORB for those bit positions programmed as outputs. (See Figure 3-4.1.2-2.) During an MPU Read of the A
side, the data present on the Peripheral lines will effect the MPU Data Bus regardless of whether the lines are
programmed as outputs or inputs. The bit positions in ORA designated as outputs will be read correctly only if
the external loading on the Peripheral lines is within the specification for one TTL load. That is, a logic one
level could be read as a logic zero if excessive loading reduced the voltage below 2.0 volts.

The two Control Registers, CRA and CRB, allow the MPU to establish and control the operating
modes of the peripheral control lines, CA1, CA2, CB1, and CB2. It is by means of these four lines that control
information is passed back and forth between the MPU and peripheral devices. The control word format and a
summary of its features is shown in Figure 3-4.1.2-3.

The Data Direction Register access bit (b2 = DDR Access) is used in conjunction with the register
select lines to select between internal registers. For a given register select combination, the status of the DDR
bit determines whether the Data Direction Register (b2 of DDR = 0) or the Output Register (bz of DDR = 1) is
addressed by the MPU.

+5

To Data

Bus <lr PAx

From ORA D>~

4

0 = True Data

A) A — Side —

From DDR

+5

3
<

T C
To Data Bus]

From ORB > I m

1 = True Data

- PBx

B) B — Side =

FIGURE 3-4.1.2-2: PIA Output Circuit Configurations

3-11

Determine Active CA1 (CB1) Transition for Setting
Interrupt Flag IRQA(B)1 —(bit b7)
b1=0:1RQA(B}1 set by high-to-low transition on
CA1 {CB1).

b1 =1:1RQA(B)1 set by low-to-high transition on
CA1 (CB1).

1RQA(B) 1 Interrupt Flag {(bit b7)

Goes high on active transition of CA1 (CB1); Automatically
cleared by MPU Read of Output Register A(B). May also be

CA1 (CB1) Interrupt Request Enable/Disable

b0 = 0 : Disables | RQA(B) MPU Interrupt by CA1 (CB1)

active transition,1

b0 = 1: Enable IRQA(B) MPU Interrupt by CA1 (CB1)

1.

active transition.

IRQA(B) will occur on next (MPU generated) positive
transition of b0 if CA1 (CB1) active transition occurred

while interrupt was disabled.

1 I

cleared by hardware Reset.
b7

b6 bs | ba | b3 b2 b1 | bo
IRQA(B)1 | IRQA(B)2 CA2(CB2) DDR CA1(CB1)
Flag Flag Control Access Control
— J

—

IRQA(B)2 Interrupt Flag (bit b6)

CAZ2 (CB2) Established as input (b5 = 0): Goes high on active
transition of CA2 (CB2): Automatically cleared bv MPU Read
of Output Register A{B). May also be cleared by hardware
Reset.

CA?2 (CB2) Established as Output (b5 = 1): IRQA(B)2 =0,
not affected by CA2 (CB2) transitions.

L

Determines Whether Data Direction Register Or OQutput
Regisier is Addressed

b2 = 0 : Data Direction Register selected.

b2 =1 : Output Register selected.

1

CA2 (CB2) Established as Output by b5 = 1

b5 b4 Eg (Note that operation of CA2 and CB2
output functions are not identical)

1 0
—»CA2

b3 =0: Read Strobe With CA1 Restore

CA2 goes low on first high-to-
low E transition following an
MPU Read of Output Register
A; returned high by next
active CA1 transition.

b3 =1: Read Strobe with E Restore

CA2 goes low on first high-to-
low E transition following an
MPU Read of Output Register
A; returned high by next
high-to-low E transition.

—pCB2
b3 =0: Write Strobe With CB1 Restore

CB2 goes on low on first low-
to high E transition following
an MPU Write into Output
Register B; returned high by
the next active CB1 transition.

b3 =1: Write Strobe With E Restore

CB2 goes low on first low-to-
high E transition following an
5 b4 b3 MPU Write into Output
- - Register B; returned high by the
1 1 next low-to-high E transition.

Set/Reset CA2 (CB2)

CAZ2 (CB2) goes low as MPU writes
b3 = 0 into Control Register.

CA2 (CB2) goes high as MPU writes
b3 = 1 into Control Register.

CA2 (CB2) Established as Input by b5 =0

b4 b3

-
-I_—b CA2 (CB2) Interrupt Request Enable/
Disable

b3 =0: Disables RQA(B) MPU
Interrupt by CA2 (CB2)
active transition. !

b3=1: Enables |[RQA(B) MPU
Interrupt by CA2 (CB2)
active transition.

1. IRQA(B) will occur on next (MPU
generated) positive transition of b3
if CA2 (CB2) active transition
occurred while interrupt was
disabled.

L Determines Active CA2 (CB2) Transition
for Setting Interrupt Flag | RQA(B)2 —
(bit b6)

b4 =0: IRQA(B)2 set by high-to-low
transition on CA2 (CB2).

b4 =1: IRQA(B)2 set by low-to-high
transition on CA2 (CB2).

3-12

FIGURE 3-4.1.2-3: PIA Control Register Format

Each Control Register has two interrupt request flags, bz = IRQA(B)1 and be = IRQA(B)2; they are
set by transitions on the CA1(CB1) and CA2(CB2) control lines and can be read by an MPU read Control
Register operation. The status of the interrupt flags cannot be altered by an MPU write instruction, that is,
IRQA(B)1 and IRQA(B)2 are Read Only with respect to the MPU. They are indirectly reset to zero each time
the MPU reads the corresponding Output Register or can be cleared with the hardware Reset.

Bits bo and bi of the Control Registers determine the CA1(CB1) operating mode. A ‘‘one’” written
into b1 by the MPU will cause subsequent positive-going transitions of the CA1(CB1) input to set IRQA(B) 1; if
b1 = 0, negative-going transitions on CA1(CB1) cause IRQA(B)1 to set. If bo = 1 when the IRQA(B)1 flag
goes high, the PIA’s external interrupt request line, IRQA(B), immediately goes low, providing a hardware
interrupt signal to the MPU. The external interrupt is disabled if bo = 0 when the internal interrupt is set by
CA1(CB1). If bo is later set by an MPU Write Control Register operation, the disable is immediately released
and a pending external interrupt request will occur. ‘

When bs = 0, bs and b4 of the Control Register perform similarly to bo and b1, controlling the
TIRQA(B)2 interrupt via the CA2(CB2) input. The IRQA(B) interrupt terminal, when enabled, responds to
either IRQA(B)1 or IRQA(B)2.

Ifbs = 1, CA2(CB2) acts as an output and will function in one of three modes. If b4 is also equal to
one, CA2(CB2) serves as a program-controlled set/reset output to the peripheral and follows bs as it is changed
by MPU Write Control Register operations. If b+ = 0 when bs = 1, CA2(CB2) can be used in either a
pulse-strobed or handshake mode. Operation of the two sections differ slightly for these two operating modes.
In the handshake mode (bs = 0) CA2 is taken low by the negative transition of the MPU Enable Pulse following
an MPU Read Output Register operation and returns high when IRQA1 is next set by CAl. This, in effect, tells
the peripheral it has been read and allows it to acknowledge via CA1. The ‘‘B’’ Side operation is similar except
that CB2 is taken low following an MPU Write Output Register operation and returned high by the next CB1
transition; this tells the peripheral it has been written into and allows it to respond via CB1.

In the pulse-strobed mode (bs = 1), CA2 is again set low by a Read Output Register command, but is
now returned high by the negative transition of the next MPU originated Enable Pulse. CB2 operation is similar
except that an MPU Write Operation initiates the pulse. Relative timing waveforms for the strobe control
modes are shown in Figures 3-4.1.2-4 and 3-4.1.2-5. The use of A side for Read and B side for Write in those
figures is not meant to imply that the A and B sides must be used only for peripheral data in and out,
respectively. However, the strobe modes are implemented only as shown, i.¢., a strobe is not generated by an A
side Write or a B side Read. Strobes can be generated for these cases by including ‘‘dummy’’ instructions in the
program. For example, an A side Write instruction can be followed immediately by an A side dummy Read to
generate the strobe. Similarly, a B side Read can be followed by a dummy Write.

3-13

TAEW—'{ e
Vgg + 2.4 V
Enable R oov /T N/ N
et
—TEDRfe—
24v
Address gg\\;
. 04V
TPDSU_
Peripheral)(20V 2av
Data 0.8V
. = 04v
—] !<-THR
- 24V
Data Bus X %g \\;}
e I
04V
) Tcaz2 —™ TRs1
CA2 Sov 24V
(CRA-5=CRA-3= 1, CRA-4= 0) 08V ’
04V
nr i §~§\‘,’ 24V
- = 0.4V
t, tf — TRs2
CA2 20V 24V
(CRA-5=1,CRA-3=CRA-4=0)
0.4V

Loading = 30 pF and one TTL load for PAO-PA7, PBO-PB7, CA2, CB2
= 130 pF and one TTL load for DO-D7, IRQA, IRQB)

Characteristic Symbol Min Typ Max Unit
Delay Time, Address valid to Enable positive transition TAEW 180 — - ns
Delay Time, Enable positive transition to Data valid on bus TEDR — - 395 ns
Peripheral Data Setup Time TPDSU 300 - = ns
Data Bus Hold Time THR 10 - - ns
Delay Time, Enable negative transition to CA2 negative transition Tca?2 - - 1.0 us
Delay Time, Enable negative transition to CA2 positive transition TRS1 - - 1.0 us
Rise and Fall Time for CA1 and CA2 input signals tr, t¢ — — 1.0 us
Detay Time from CA1 active transition to CA2 positive transition TRs2 - — 20 us
Rise and Fall Time for Enable input) tE, HE - - 25 ns

FIGURE 3-4.1.2-4: Read Timing Characteristics

3-14

<—TE
Vgg + 2.4 V -
Enable / 0.4V
TAEW —» S l«e— tDSU
24V
Address gg \\; X
8V 04V
Twe f‘“‘
2.4V
Read/Write 0.8V / 04V
! .
—= Thw
50V 24V
Data Bus x 0.8 v Temos
=i Y o;%g
TPDW m=F —————————————————— €€ oAy
Peripherai Data Sg\\;
- 04V
~»l e—Tce2 — TRS1
cB2 20V 24V
(CRB-5=CRB-3=1,CRB-4=20)
Joc " 0.4V
it 2.4V
B1 20V .
C 08V -
0.4V
TRS2—"
24V
cB2 \2.0 v 20V
(CRB-5=1,CRB-3=CRB-4=0) 0.4V
Characteristic Symbol Min Typ Max Unit
Enable Pulse Width TE 0.470 - 25 us
Delay Time, Address valid to Enable positive transition TAEW 180 — - ns
Delay Time, Data valid to Enable negative transition Tpsu 300 — - ns
Delay Time, Read/Write negative transition to Enable positive transition TwE 130 - - ns
Data Bus Hold Time THW 10 — - ns
Delay Time, Enable negative transition to Peripheral Data valid Teow - - 1.0 us
Delay Time, Enable negative transition to Peripheral Data Valid, CMOS Temos - - 20 us
(Vee — 30%) PAO-PA7, CA2
Delay Time, Enable positive transition to CB2 negative transition Tce2 - - 1.0 us
Delay Time, Peripheral Data valid to CB2 negative transition Toc 4] - 15 us
Delay Time, Enable positive transition to CB2 positive transition Trs1 - - 1.0 us
Rise and Fall Time for CB1 and CB2 input signais ty, tf - - 1.0 us
Delay Time, CB1 active transition to CB2 positive transition TRs2 — — 20 us

FIGURE 3-4.1.2-5: Write Timing Characteristics

3-15

3-4.1.3 Addressing and Initialization:

Chapters 6 and 7 of this manual include numerous examples of PIA addressing and initialization,
however, some basic considerations are discussed in the following paragraphs. As indicated in Section3-4.1.1,
the MPU addresses the PIA via the five chip select and register select inputs and bit 2 of the Control Registers.
The correspondence between internal registers and the address inputs is shown in Figure 3-4.1.3-1.

(9]
[

2

O
[}

CSp RS1 RS¢ b2

Data Direction Register A (PIADRA)
Output Register A (PIAORA)
Control Register A (PIACRA)

Data Direction Register B (PIADRB)
Output Register B (PIAORB)
Control Register B (PIACRB)

PlA Not Selected

PIA Not Selected

PIA Not Selected

XX X=2 =200
XX X=290 =296
XX XX=SX=O

XXS o= s

AXXEODOOOS

X = Doesn’t Matter

FIGURE 3-4.1.3-1: PIA Register Addressing

Addressing a PIA can be illustrated in conjunction with the simple system configuration shown in

Figure 3-4.1.3-26 The method shown is typical y exclusive memoiy addresses to the
family devices without using additional address decode logic. The connections shown in Figure 3-4.1.3-2

assign memory addresses as follows:

fa—

RAM 0000 - 007F
PIA 4004 — 4007
ACIA 4008 — 4009
ROM C000- C3FF

(Hexadecimal notation)

In most cases, the desired 1/O configuration and Control Register modes are established as part of an
initialization sequence. The steps involved depend on the particular application but can be clarified by means of
a specific example.

Assume that a PIA is to be used as the interface between two peripherals. When interrupted by a
positive transition on a control line, the MPU is to fetch 8 bits of data from Peripheral #1 and then send an
acknowledgement pulse. The MPU must be able to transfer a byte of data to Peripheral #2 and receive
acknowledgement that it was accepted. Peripheral #2 must be provided with a control signal indicating that
there is data ready for it.

A suitable hardware configuration is shown in Figure 3-4.1.3-3. Peripheral Lines PAQ-PA7 are
assigned to “‘read’’ Peripheral #1 and, hence, must be established as inputs. CA1 provides the interrupt input
and must be conditioned to recognize incoming positive transitions. CA2 will be used to signal that data has
been read, hence, it must be established as an output using the pulse strobe mode, i.e., reading PIAORA7 will
automatically transmit a pulse to the peripheral.

Peripheral Lines PBO-PB7 are assigned for transmitting data to Peripheral #2 and, hence, must be

established as outputs. CB2 will be used as an output for signalling that there is data ready. CB1 will be
®Figure 3-4.1.3-2 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

7In order to use symbolic labels instead of absolute addresses in the initialization program, the labels introduced in Figure 3-4.1.3-1 will
be used to refer to PIA registers.

3-16

START-

up

CLOCK

02

o1

VMA « 02 /

+

VMA

\

5V

AONUNONNNONNN N NNONNNCNRPES N NN \\ NN

N\

N\

\

-4
wttd X
— B

x

FIGURE 3-4.1.3-2: Family Addressing

3-17

P
pr—— 1
iRQ "
RESET g
1
BA
DB0-DB7 d
DBE "
g
02 ¢
L1
@1 MPU d
£ se j
—t: HALT L1
Ny 1
NI RIW g
V
: A0— A15 VMA —— a
A
e
AO—A9 JAO-A9 DB0-DB7 A
ROM VMA o 62 j
\———--‘E E -
A
‘E E L
¢
A /
1
AO— A6 AO0—-AB6 DB0O-DB7 |1
A
A15 E RAM el VMA ¢ 02 [
~ e et w12
- R
A4 E RIW W ; E
E 13
|
A
N—AL_o] Rs1 DBO-DB7 -
N__A2_] N
VMA < AT4 | Co0 PIA 62 J]
N2l st E = j
A15 cs2 RES | y,
RIW 1
IRQA d
IRQB ¢
cm PB CB1 CB2 1
LA
L1
-
/
L
L1
PARALLEL 1/0 (DATA AND conmou ”
g
Ao s DBO-DB7 g
&__A_._S_» CSOo /—/
VMA -« Al4 ACIA %
N i 02 /1
cs2 E A
RIW A
=75 565 RQ‘ IRQ g
CTS DI]
3¢

[f
.

AN NN NNNNN NN NN NNNNNNNNN

DATA

Data Ready

CA1
Data Accepted
CA2 -

PAO
PA1
PA2

Peripheral
PA2 #1

PA4
PAS
PAG6

PA7

PB1
PB2
PIA PB3
PB4 |
PBS
PB6
PB7

Peripheral
#2

[————
e
| p—————————
-
PBO
_—
—
— e
EEEEEEE—

Data Ready
cB2

cB1

Data Accepted

FIGURE 3-4.1.3-3: Typical 1/0 Configuration

3-18

conditioned to accept a negative transition acknowledgement signal from Peripheral #2. CB2 is to be restored
by that transition.

If it is known that a hardware system Reset is to be applied prior to initializing, all PIA register bits
will be zero initially and the following sequence can be used:

10 LDAA #$2F SELECT ORA; SET MODE CONTROL
20 STAA PIACRA FOR ‘A’ SIDE

30 COM PIADRB ESTABLISH PBO-PB7 AS OUTPUTS
40 LDAA #$24 SELECT ORB; SET MODE CONTROL
50 STAA PIACRB FOR ““B*’ SIDE

The constant® $2F = 00101111 loaded into the A Control Register by Instruction 20 has the following effect: b0
= 1 enables a CA1 interrupt; bl = 1 selects positive transition for interrupt recognition; b2 = 1 selects ORA
(the initial zeros in DDRA establish PAO-PA7 as inputs); b3 = 1, b4 = O selects read strobe with E restore; b5 =
I establishes CA2 as an output; b6 and b7 are don’t cares since MPU cannot write into those two positions:

b7 b6 b5 b4 b3 b2 bl n0
0 0 1 0 1 1 1 1 =2F(Hex

Instruction 30 writes ‘‘ones’” into the B Data Direction Register, thus establishing PBO-PB7 as outputs. The
constant loaded into the B Control Register by instruction 50 has the following effect: b0 = 0 disables IRQB
interrupt by CB1 transition (it is assumed that the MPU will read flag bit b7 to check for acknowledgement
rather than allowing an interrupt); bl = 0 selects recognition of negative transition on CB1 for setting flag bit 7;
b2 = 1 selects ORB; b3 = 0, b4 = 1 selects Write strobe with CB 1 restore; b5 = 1 establishes CB2 as an output;
b6 and b7 are don’t cares:

b7 b6 bS5 b4 b3 b2 bl b0
0 0 1 0 o0 1 0 0 =24(Hex)

If there is no assurance that the PIA internal register bit positions are initially zero prior to
initialization, the following sequence can be used:

10 CLRA SELECT
20 STAA PIACRA DATA DIRECTION REGISTER A
30 STAA PIACRB AND DATA DIRECTION REGISTER B.

40 STAA PIADRA ESTABLISH PAO-PA7 AS INPUTS.
50 LDAA #$2F SELECT ORA; SET MODE

60 STAA PIACRA CONTROL FOR ““A’’ SIDE.
70 LDAA #S$FF ESTABLISH

80 STAA PIADRB PBO-PB7 AS OUTPUTS.

90 LDAA #$24 SELECT ORB; SET MODE
100 STAA PIACRB CONTROL FOR ‘““B”’ SIDE.

Note that if the initialization sequence is started from a known hardware clear only half as many instructions are
required.

8Refer to Figure 3-4.1.2-3 for derivation of the Control Register words.

3-19

3-4.1.4 System Considerations:

The information provided in the preceding paragraphs has been limited to only the more obvious
characteristics of the PIA. The features described greatly simplify I/O processing, as will be seen in the
examples of later chapters. There are several general techniques worth considering as a system is configured.

The fact that the PIA registers are treated as memory combined with the fact that many of the MPU’s
instructions (CLR, ASL, COM, TST, etc) operate directly on memory makes possible a variety of 1/O
techniques. This characteristic should be given careful attention when hardware/software tradeoffs are being
considered.

The flexibility inherent in being able to change the I/O direction of individual peripheral lines under
program control was not adequately stressed in the initialization discussion. A detailed example making use of
this feature to decode a switch matrix is included in Section 5-1.1.1.

Only a simple case of address assignment was considered. Other approaches may lead to a more
efficient system. As an example, consider the memory allocation that results from applying AO, and A1 of the
address bus to RSO and RS1, respectively:

RS1 RSO

(A1) (AD)
0 0 PIAORA
0 1 PIACRA
1 0 PIAORB
1 1 PIACRB

Here the registers alternate between output and Control® Registers. If AO is connected to RS1 and A1 to RSO,
the following result is obtained:

RS1 RSO

(AQ) (AD)
0 0 PIAORA
1 0 PIAORB
0 1 PIACRA
1 1 PIACRB

Notice that the output registers are now in adjacent memory locations. This configuration can be used to
advantage in applications where 16 bits must be brought into memory. With both the A and B sides established
as input ports, the LDX and STX instructions can be used to efficiently transfer two bytes at a time. A specific
example of this technique is described in Section 5-4. If this allocation is selected, initialization routines such as
the first example of Section 3-4.1.3 can also be simplified:

10 LDX #$2F24 ESTABLISH CONTROL MODES
20 STX PIACRA FOR BOTH SIDES.

In this sequence, the single instruction STX causes the appropriate constant to be loaded into both Control
Registers.

9This assumes that b2 of the Control Registers has been set to select the Output Registers.

3-20

3-4.2 MC6850 ASYNCHRONOUS COMMUNICATIONS INTERFACE ADAPTER
3-4.2.1 Input/Output Configuration

The MC6850 Asynchronous Communications Interface Adapter (ACIA) provides a means of
efficiently interfacing the MPU to devices requiring an asynchronous serial data format. The ACIA includes
features for formatting and controlling such peripherals as Modems, CRT Terminals, and teletype
printer/readers. An Input/Output Diagram of the MC6850 is shown in Figure 3-4.2.1-1.

Data flow between the MPU and the ACIA is via 8 bi-directional lines, DBO through DB7, that
interface with the MPU Data Bus. The direction of data flow is controlled by the MPU via the Read/Write input
to the ACIA.

The *“MPU side”” of the ACIA also includes (see Figure 3-4.1.3-2) three chip select lines, CSO,
CS1, and CS2, for addressing a particular ACIA. An additional addressing input, Register Select (RS), is used
to select specific registers within the ACIA. The MPU can read or write into the internal registers by addressing
the ACIA via the system Address Bus using these four input lines. From the MPU’s addressing point of view,
each ACIA is simply two memory locations that are treated in the same manner as any other read/write memory.

The MPU also provides a timing signal to the ACIA via the Enable input. The Enable (E) pulse is
used to condition the ACIA’s internal interrupt control circuitry and for the timing of status/control changes.
Since all data transfers take place during the ¢2 portion of the clock cycle, ¢2 is applied as the E signal.

The “‘Peripheral side’” of the ACIA includes two serial data lines and three control lines. Data is
transmitted and received via the Tx Data output and Rx Data inputs, respectively. Control signals
Clear-To-Send (m), Data Carrier Detect (ﬁ), and Request-To-Send (ﬁ) are provided for interfacing
with Modems such as the MC6860. Two clock inputs are available for supplying individual data clock rates to
the receiver and transmitter portions of the ACIA.

T ™
N
Clk Tx
Nt TRO —» T x Data
<: | :> DBO - DB7 CTS |eg—o
N » RS RTS —»
MC6850
N I
- CSO Asynchronous DCD fel—
N— - CS1 Communications
A »| G527 Interface
Adapter
(ACIA)
N R/W
Nl E
@ |-—— Rx Data
ol |5 Clk Rx
ol lm
8l |3 *
31l 3|2
) < 8
i
S
5 \ U

FIGURE 3-4.2.1-1: MC6850 ACIA 1/0 Diagram

321

Clk Tx 4 — Transmit Parity
— g Clk. Gen. Generation

DO 22 --— [Transmit Transmit (e
D1 21 < | Data Reg. > Shift Reg. » 5 Tx Data
D2 20 -t—p
D3 19 <t—ii Data Bus l
Multiplexor/
D4 18 Buffers < 4
b5 17 = s - Transmit - 24T
D6 16 ~a— o | e Control
D7 15 =& Status
‘——— Register i L
TRG 7 - - Interrupt —~ L Clock
Control g @--{ select
- —5 RTS
N - ———
/] Controtl -4 23 DCD
Register
- Ly Receive Parity
CSO 8 ——m] N - Control - Check
CS1 10—
CS2 9-——p= Chip Select A '
RS 11— and g]
R/W Control
R/W 13 — Receive A Receive
E 14— Data Reg. [Shift Reg. 2 Rx Data
L’ Receive Sync.
Clk Rx 3 -#» Clik. Gen. Logic

FIGURE 3-4.2.2-1: ACIA Block Diagram
3-4.2.2 Internal Organization

An expanded Block Diagram of the ACIA is shown in Figure 3-4.2.2-1. While the ACIA appears to
the MPU as two addressable memory locations, internally there are four registers, two that are Write Only and
two that are Read Only. The Read Only registers are for status and received data and the Write Only registers
are for ACIA control and transmit data.

The Status Register format and a summary of the status bits is shown in Figure 3-4.2.2-2. The first
two bits b0 and bl indicate whether the Receiver Data Register is full (RDRF) or if the Transmit Data Register is
empty (TDRE). b0 will go high when Rx data has been transferred to the Receiver Data Register (RDR). b0 will
go low on the trailing edge of the Read Data command (reading the Receiver Data Buffer) or by a master reset
command from bits b0 and bl of the Control Register.

Status bit bl (Tx Data Register Empty) will go high when a transmitter data transfer has taken place
indicating that the Transmit Data Register (TDR) is available for new data entry from the MPU Bus. Bitb1 will
return low on the trailing edge of a write data command. bl will be held low if Clear-To-Send is not received
from a peripheral device (CTS = “17")

Status bits b2 (Data Carrier Detect) and b3 (Clear-To-Send) are flag indicators from an external
modem. Bit b2 (DCD) will be hi gh when the received carrier at the modem has been lost (ACIA’ sDCD input is
high). Bit b2 will remain high until the interrupt is cleared by reading the Status Register and the Receiver Data
Register. Bit b3 (CTS) is low durin g reception of a Clear-To-Send command from a modem or other peripheral
device.

3-22

Data Carrier Detect

b2=0: Indicates carrier is present.

b2 = 1: Indicates the loss of carrier.

1. The low-to-high transition of the DCD in-
put causes b2=1 and generates an interrupt
(b7=1), (IRQ=0)

2. Reading the Status Register and Rx Data
Register or master resetting the ACIA
causes b2=0 and b7=0.

Interrupt Request

The interrupt request bit is the complement of
the TRQ output. Any interrupt that is set and
enabled will be available in the status register
in addition to the normal IRQ output.

1

Receiver Data Register Full

b0 = 0: Indicates that the Receiver Data
Register is empty.
b0 = 1: Indicates that data has been trans-

ferred to the Receiver Data Register
and status bits states are set (PE,
OVRN, FE).

1. The Read Data Command on the high-to-

low

E transition or a master reset causes

b0 = 0.

2. A"
and

high’’ on the DCD input causes b0=0
the receiver to be reset.

L

b7
IRQ

b6
PE

b5
OVRN

b4
FE

b3
CTS

b2
DCD

TxDRE

b1

b0
RxDRF

Framing Error
b4 = 1:

a Break condition.

Indicates the absence of the first stop
bit resulting from character synchro-
nization error, faulty transmission, or

1. Theinternal Rx data transfer signal causes
b4=1 due to the above conditions and causes
b4=0 on the next Rx data transfer signal if
conditions have been rectified.

Overrun Error

Transmitter Data Register Empty

b1 =1: Indicates that the transmitter data
Register is empty.
b1 =0: Indicates that the transmitter data
Register is full.
1. The internal Tx transfer signal forces b1=1.
2. The Write Data Command on the high-to-
fow E transition causes b1=0.

b5 = 1: Indicates that a character or a num-

ber of characters were received but

not read from the Rx data register
prior to subsequent characters being
received.

1. The Read Data Command on the high-to-
low E transition causes b5=1 and b0=1 if an
overrun condition exists. The next Read
Data Command on the high-to-iow E transi-
tion causes b5=0 and b0=0.

Parity Error
b6 = 1:

1. The parity error status is updated during
the internal receiver data transfer signal.

Indicates that a parity error exists.
The parity error bitis inhibited if no
parity is selected.

3. A “high’’ on the CTS input causes b1=0.

Clear to Send
The CTS bit reflects the CTS input status for
use by the MPU for interfacing to a modem.

NOTE: The CTS input does not reset the
transmitter.

FIGURE 3-4.2.2-2: ACIA Status Register Format

3-23

Bit b4 (Framing Error) will be high whenever a data character is received with an improper start/stop
bit character frame. The framing error flag b4 is cleared by the next data transfer signal if the condition causing
the framing error has been rectified. Bit bS (Receiver Overrun) being high indicates that the Receiver Data
Register has not been read prior to a new character being received by the ACIA. This bit is cleared by reading
the Receiver Data Register. Status Register bit b6 (Parity Error) is set whenever the number of high (‘‘1’s”’
the received character does not agree with the preselected odd or even parity. Bit b7 (Interrupt Request) when
high indicates the ACIA is requesting interrupt to the MPU via the ACIA TRQ output and may be caused by b0
or bl or b2 being set. All of the Status Register bits (except b3) will be cleared by an ACIA Master Reset.

The Control Register is an eight bit write only buffer which controls operation of the ACIA receiver,
transmitter, interrupt enables, and the modem Request-To-Send control line. The Control Register format and a
summary of its features is shown in Figure 3-4.2.2-3.

Control bits b0 and bl select a Master Reset function for the ACIA when both bits are high and
selects different clock divide ratios for the transmitter and receiver sections for the other combinations:

)in

bl b0
(CDS2) (CDS1) Clock Division
0 0 + 1
0 1 =16
1 0 +64
1 1 Master Reset

The next 3 control bits, b2, b3, and b4, are provided for character length, parity, and stop bit
selection. The encoding format is as follows:

b4 b3 b2

(WS3) (WS2) (WS1) Character Frame
0 0 0 7 Bit + Even Parity + 2 Stop Bits
0 0 1 7 Bit + Odd Parity + 2 Stop Bits
0 1 0 7 Bit + Even Parity + 1 Stop Bit
0 1 | 7 Bit + Odd Parity + 1 Stop Bit
1 0 0 8 Bit + No Parity + 2 Stop Bits
1 0 1 8 Bit + No Parity + 1 Stop Bit
1 1 0 8 Bit + Even Parity + 1 Stop Bit
1 1 1 8 Bit + Odd Parity + 1 Stop Bit

The ACIA transmitter section is controlled by control bits b5 (TC1) and b6 (TC2). The four
combinations of these two inputs provide transmission of a break command, Modem Request-To-Send (RTS)
command, and a transmitter inhibit/enable for the ACIA Interrupt Request output. When both b5 and b6 are
low, the Request-To-Send (RTS) output will be active low and the transmitter data register empty flag is
inhibited to the ACIA’s Interrupt Request (IRQ) output. If b5 is high and b6 is low the RTS output remains
active low but the transmit IRQ input is enabled. To turn off the RTS output b6 should be high and b5 low. This
selection also inhibits the transmitter interrupt input to the IRQ output. When both b5 and b6 of the control
register are high, Request-To-Send is on (RTS) = 0, IRQ is inhibited for the transmitter, and a break is
transmitted (a space).

3-24

Enable for Receiver Interrupt Counter ratio and Master reset select used
in both transmitters and receiver sections
b7 =1: Enables Interrupt Outputin

Receiving Mode b1 b0 Function (Tx, Rx)
b7 = 0: Disables Interrupt Qutput in 0 0 =1
Receiving Mode 1] 1 +16
1 0 +64
1 1 MASTER RESET

b7 b6 b5 b4 b3 b2 b1 b0

RIE TC2 | TC1 | WS3 | WS2 | WSt | CDS2 | CDS1

— |

Word Length, Parity, and Stop Bit Select

Transmitter Control Bits: Controls the Interrupt Output* and RTS b4 b3 b2 Word Length + Parity + Stop Bits
Output, and provides for Transmission of a Break 00 0 7 Even 2
b6 b5 Function 0 0 1 7 Odd 2
0 o] Sets RTS = 0 and inhibits Tx interrupt (T1E) o010 7 Even 1
(o] 1 Sets RTS = 0 and enables Tx interrupt (TIE) 01 1 7 Odd 1
1 0 Sets RTS = 1 and inhibits Tx interrupt (TIE) 1 00 8 None 2
1 1 Sets RTS = 0, Transmits Break and inhibits Tx 1.0 1 8 None 1
interrupt (TIE) 11 0 8 Even 1
*TIE is the enable for the interrupt output in transmit mode. 101 1 8 odd 1

FIGURE 3-4.2.2-3: ACIA Control Register Format

Bits b7 controls the Receiver Interrupt Enable to the IRQ output. When b7 is high IRQ will indicate
an interrupt request of the Receiver Data Register is Full (RDRF).

3-4.2.3 Addressing and Initialization

A specific example of ACIA usage is shown by the application described in Section 5-3, however,
some basic considerations are discussed in the following paragraphs. As indicated in Section 3-4.1.2, the MPU
addresses the ACIA via the chip select and register select inputs from the Address Bus. The correspondence
between internal registers and the address inputs is shown in Figure 3-4.2.3-1.

With the chip selects properly enabled and RS = 0, either the Status or Control Register will be
selected, depending on the current state of the Read/Write line: R/W = 0 = Write, Control Register is selected;

3-25

€82 €St CS¢ RS R/W
[} 1 1 [0] ¢ Control Register
] 1 1 0] 1 Status Register
[1 1 1 (0] Transmit Data Register
] 1 1 1 1 Receive Data Register
X X 0] X X ACIA Not Selected
X ® X X X AC!A Not Selected
1 X X X X ACIA Not Selected

X = Don’t Care

FIGURE 3-4.2.3-1: ACIA Register Addressing

R/W = 1 = Read, Status Register is selected. Similarly, when RS = 1, either the Receive Data Register (R/'W
= 1 = Read) or the Transmit Data Register (R/W = 0 = Write) is selected.

Addressing the ACIA can be illustrated in conjunction with the simple system configuration shown
in Figure 3-4.1.3-21°. The method shown is typical for assigning mutually exclusive memory addresses to the

family devices without the use of additional decode logic. The connections shown assign memory addresses as
follows:

RAM 0000 — 007F
PIA 4004 - 4007
ACIA 4008 — 4009
ROM C000- C3FF

(Hexadecimal notation)

As voltage is applied to the ACIA during the power-on sequence, its internal registers are cleared to
zero''by circuitry within the ACIA to prevent spurious outputs. This initial condition means that interrupts are
disabled, IRQ to the MPU is high (no interrupt request), and the Ready-To-Send,R—-TS , output is high. The first
step in preparation for using the ACIA must be a master reset via bits b0 and b1 of the Control Register, that is,
the MPU must write ones into those positions. Once reset, the ACIA operating mode is established by writing
the appropriate data into the Control Register.

3-4.2.4 System Considerations

The ACIA is used primarily to transfer serial data between the microprocessor and real time
peripheral devices such as teletypes, CRT terminals, etc. The most common data format used for the transfer of
real-time data is the asynchronous data format. Use of this format is generally limited to low transmission rates
— below 1200 bps or 120 char/sec. For example, the maximum transmission rate of a teletype is 10 char/sec.
Here, the transmission of data to the MPU depends on the operator’s dexterity of depressing a key on the
keyboards. Since the transmission of data is dependent on the operator, gaps (non transmission of data)
between data characters occur as a general rule.

In the transmission of asynchronous data, there is no pre-synchronized clock provided along with
the data. Also, the gaps between data characters in this transmission mode requires that synchronization be
re-established for each character. Therefore, the receiving device must be capable of establishing bit and

1%Figure 3-4.1.3-1 is identical to Figure 1-1.2-1 and is discussed in Section 1-1.2 of Chapter 1.

!1If external high signals are present on the DCD and CTS inputs, their respective bits, b2 and b3, in the Status Register will also be
high.

3-26

character synchronization from the characteristics of the asynchronous format. Each character consists of a
specified number of data bits preceded by a start bit and followed by one or more stop bits as shown in Figure
3-4.2.4-1.

These start and stop elements do not contain any information and they actually slow down the
effective transmission rate. Since the asynchronous format is used in real time systems, the effect of the start
and stop bits on the transmission rate is negligible. The purpose of the start bit is to enable a receiving system to
synchronize its clock to this bit for sampling purposes and thereby establish character synchronization. The
stop bit is used as a final check on the character synchronization.

Since the MPU processes eight bit parallel bytes that do not include start and stop elements,
received serial data in an asynchronous format must be converted to parallel form with the start and
stop elements stripped from the character. Likewise, in order to transmit serial data the parallel data
byte from the MPU must be converted to serial form with the start and stop elements added to the
character. This serial-to-serial/parallel-to-parallel conversion is the primary function of the ACIA.

Desired options such as variable clock divider ratios, variable word length, one or two stop bits, odd
or even parity, etc. are established by writing an appropriate constant into the ACIA’s Control Register. The
combination of options selected depends on the desired format for a particular application. The general
characteristics of data flow through the ACIA are described in the following paragraphs.

A typical transmitting sequence consists of reading the ACIA status register either as a result of an
interrupt or in the ACIA’s turn in a polling sequence. A character may be written into the Transmit Data
Register if the status read operation has indicated that the Transmit Data Register is empty. This character is
transferred to a shift register where it is serialized and transmitted from the Tx Data output preceded by a start
bit and followed by one or two stop bits. Internal parity (odd or even) can be optionally added to the character
and will occur between the last data bit and the first stop bit. After the first character is written in the data
register, the Status Register can be read again to check for a Transmit Data Register Empty condition and
current peripheral status. If the register is empty, another character can be loaded for transmission even though
the first character is in the process of being transmitted. This second character will be automatically transferred
into the shift register when the first character transmission is completed. The above sequence may be continued
until all the characters have been transmitted.

Start 1 l 2

4 5 I 6 7 8 Stop ! Stop
| | I |

Start Bit — ‘‘Space’ — Logic Zero
Start Bits — “Mark’’ — Logic One
ldling Bits — ‘“Mark"’

FIGURE 3-4.2.4-1: Asynchronous Data Format

3-27

Data is received from a peripheral by means of the Rx Data input. A divide by one clock ratio is
provided for an external clock that is synchronized to its data; the divide by 16 and 64 ratios may be used for
internal synchronization. Bit synchronization in the divide by 16 and 64 modes is obtained by detecting the
leading mark-to-space transition of the start bit. False start bit detection capability insures that a full half bit of a
start bit has been received before the internal clock is synchronized to the bit time. As a character is being
received, parity (odd or even) will be checked and the possible error indication will be available in the status
register along with framing error, overrun error, and receiver data register full. In a typical receiving sequence,
the Status Register is read to determine if a character has been received from a peripheral. If the receiver data
register is full, the character is placed on the Data Bus when the MPU reads the ACIA Receive Data Register.
The status register can be read again to determine if another character is available in the receiver data register.
The receiver is also double buffered so that a character can be read from the data register as another character is

being received in the shift register. The above sequence may be continued until all characters have been
received.

Data Flow Telephone
MC6860
- Network
Transmit T T Data
Data Bufter y Duplexer Coupler
-~ Modulator |- }
Receive
Filter
Rle)(::nave De - Limiter
modulator [**
Asynchronous
Communications

Interface Auto —

Adapater Control Term. Answer/

(ACIA) - Control Di - Threshold -

Logic fscon. Detector
Logic
1 1 Control Signals
Clock &
Timing

FIGURE 3-4.3.1-1: Typical MC6860 System Configuration

3-4.3 MC6860 LOW SPEED MODEM

3-4.3.1 Input/Output Configuration

The MC6860 Modem provides a very effective method of interfacing a MPU based system, via a
MC6850 ACIA, to a telephone network as shown in Figure 3-4.3.1-1. The modem provides full automatic
answer/originate and initiate disconnect capability under MPU program control thru the ACIA. Data may be
asynchronously sent and received over the telephone network at data rates up to 600 bits per second.

3-28

Data Bus

The Input/Output configuration of the MC6860 when used with the MC6850 ACIA and the MC6800
MPU family is shown in Figure 3-4.3.1-2. Data flow from the terminal side of the modem enters in serial digital
format via the transmit data line of the modem. It is then digitally processed by the modulator section and exits
the telephone network side of the modem via the transmit carrier line. This digitized sinewave FSK signal is
post filtered by an output buffer/low pass filter. The filtered analog sinewave passes through a line duplexer to
the telephone line via a data coupler.

The returning analog signal from the remote modem at the other end of the telephone line passes
through the data coupler and duplexer and is applied to a bandpass filter/amplifier. The receive bandpass filter
bandlimits the incoming signal to remove noise and adjacent transmit channel interference. After being band-
limited the analog signal is full limited to a 50% duty cycle TTL level signal by the input limiter. This digital
signal is the receive carrier that is applied to the modem. The output signal from the bandpass filter is also
routed to a threshold detector to determine if the input signal to the limiter is above the minimum detectable sig-
nal level presented to the modem. When the signal input level exceeds the bias point of the threshold detector,
the detector’s output goes low at the threshold input pin to the MC6860 modem indicating that carrier is present.

A complete listing and functional description of all I/O pins for the MC6860 (Figure3-4.3.2-1)is
provided in the following;:

Data Terminal Ready (DTR)
The Data Terminal Ready signal must be low before the modem function will be enabled. To initiate
a disconnect, DTR is held high for 34 msec minimum. A disconnect will occur 3 seconds later.

N))
Threshoid
12A4C11 Bandpass
BRG " Filter/
Amplifier
(]_ Limiter
DB¢ - DB7 =
N —X— Mode
\ Txc Rxc xTal TD gx —
RTS DTR ar
— 2 RS Tx
A3 Car Low Pass
N— |———=f CS¢ Tx Data ————{ Tx Data Filter
N— _@L. cs1 MC Rx Dat - C
—_— —_ x Data |egg—— t
] 213 gl csz 5850 x Dsta - 6860
VMA$2 ACIA CTS CTs Mode.)
3 5 R/W ©
- o) NEW gl r/w _
73
3 g \ IR RO DCD
T c
kel o &—-—. — e
< o AnPh Rl S Ry v
T ot ||
DT
U L SH CBT Data
Ri Coupler
OH Telephone
Line
DA
= DR Gnd

FIGURE 3-4.3.1-2: 1/O Configuration For MC6860 Modem

329

Data Terminal

Ready 20 O— - —#0O 4 Answer Phone

Clear-to-Send 23 Ow— Auto l«e——O 19 Ring Indicator
Terminal Answer/ =

Break Release 9 O——{ Control Disconnect la———O 21 Switch Hook

Logic Logic
Receive Break 3 Owg—— 0O 15 Mode
Transmit Break 8 O——~ j«¢t——O 7 Threshold Detect

Vpp = Pin 12

Digital Carrier 11 O<— Vgg = Pin 1

Transmit Data 2 O—®{ Modulator

Transmit Carrier 10 O~-—

Receive Data 24 O-a——

Receive De-
Data Rate modulator

NOTE 1.

Receive Carrier 17 O—w -t I
ESD = Enable Space Disconnect

FI' S = Fnahle Lang Space Disconnect

ESS = Enable Short Space Disconnect
Crystal 13 O— Osc

Y

Test Clock 18 O——®{ Timing

o is 6 o
22 5 6 ESS (Note 1)

Self Test 16

S LS

O

FIGURE 3-4.3-2-1: MC6860 Modem Block Diagram

Clear-To-Send (CTS)
A low on the CTS output indicates the Transmit Data input has been unclamped from a steady Mark,
thus allowing data transmission.

Ring Indicator (RI)

The modem function will recognize a receipt of a call from the CBT if at least 20 cycles of the 20-47
Hz ringing signal are present. The CBS RI signal must be level-converted from EIA RS-232 levels before
interfacing it with the modem function. The receipt of a call from the CBS is recognized if the RI signal is
present for at least 51 msec. This input is held high except during ringing. A RI signal automatically places the
modem function in the Answer Mode.

Switch Hook (SH)

SH interfaces directly with the CBT and via a EIA RS-232 level conversion for the CBS. An SH
signal automatically places the modem function in the Originate Mode.

'SH is low during origination of a call. The modem will automatically hang up 17 seconds after the
release of SH if the handshaking routine between the local and remote modem has not been accomplished.

3-30

Threshold Detect (TD)

This input is derived from an external threshold detector. If the signal level is sufficient, the TD
input must be low for 20us at least once every 32 msec to maintain normal operation. An insufficient signal
level indicates the absence of the Receive Carrier; an absence for greater than 32 msec will not cause channel
establishment to be lost; however, data during this interval will be invalid.

Answer Phone (An Ph)

Upon receipt of Ring Indicator or Switch Hook signal and Data Terminal Ready, the Answer Phone
output goes high [(SH + RI) ¢ DTR]. This signal drives the base of a transistor which activates the Off Hook
(OH) and Data Transmission (DA) control lines in the data coupler. Upon call completion, the Answer Phone
signal returns to a low level.

Mode
The Mode output indicates the Answer (low) or Originate (high) status of the modem. This output
changes state when a Self Test command is applied.

Transmit Break (Tx Brk)

The Break command is used to signal the remote modem to stop sending data.

A Transmit Break (low) greater than 34 msec forces the modem to send a continuous space signal for
233 msec. Transmit Break must be initiated only after CTS has been established. This is a negative edge sense
input. Prior to initiating Tx Brk, this input must be held high for a minimum of 34 msec.

Receive Break (Rx Brk)
Upon receipt of a continuous 150 msec space, the modem automatically clamps the Receive Break
output high. This output is also clamped high until Clear-To-Send is established.

Break Release (Brk R)
Afterreceiving a 150 msec space signal, the clamped high condition of the Receive Break output can
be removed by holding Break Release low for at least 20 us.

Transmit Data (Tx Data)
Transmit Data is the binary information presented to the modem function for modulation with FSK
techniques. A high level represents a Mark.

Receive Data (Rx Data)
The Receive Data output is the data resulting from demodulating the Receive Carrier. A Mark is a
high level.

Receive Data Rate (Rx Rate)
The demodulator has been optimized for signal-to-noise performance at 300 bps and 600 bps. The
Receive Data Rate input should be low for 0-600 bps and should be high for 0-300 bps.

Digital Carrier (FO)
A test signal output is provided to decrease the chip test time. The signal is a square wave at the
transmit frequency.

3-31

Transmit Carrier (Tx Car)
The Transmit Carrier is a digitally-synthesized sinewave derived from the 1.0 MHz crystal
reference. The frequency characteristics are as follows:

Transmit
Mode , Data Frequency Accuracy*
Originate Mark 1270 Hz -0.15 HZ
Originate Space 1070 Hz +0.09 Hz
Answer Mark 2225 Hz —0.31 Hz
Answer Space 2025 Hz —0.71 Hz

*The reference frequency tolerance is not included.

The proper output frequency is transmitted within the 3.0 us following a data bit change with no
more than 2.0 us phase discontinuity. The typical output level is 0.35 V (RMS) into a 200 k-ohm load
impedance.

The second harmonic is typically 32 dB below the fundamental.

Receive Carrier (Rx Car)

The Receive Cuarrier is the FSK input to the demoduiator. The iocal Transmit Carrier must be
balanced or filtered out prior to this input, leaving only the Receive Carrier in the signal. The Receive Carrier
must also be hard limited. Any half-cycle period greater than or equal to 429 = 1.0 us for the low band or 235 +
1.0 ws for the high band is detected as a space.

Enabled Space Disconnect (ESD)

When ESD is strapped low and DTR is pulsed to initiate a disconnect, the modem transmits a space
for either 3 seconds or until a loss of threshold is detected, whichever occurs first. If ESD is strapped high, data
instead of a space is transmitted. A disconnect occurs at the end of 3 seconds.

Enable Short Space Disconnect (ESS)
ESS is a strapping option which, when low, will automatically hang up the phone upon receipt of a
continuous space for 0.3 seconds. ESS and ELS must not be simultaneously strapped low.

Enable Long Space Disconnect (ELS)

ELS is a strapping option which, when low, will automatically hang up the phone upon receipt of a
continuous space for 1.5 seconds.

Crystal (Xtal)
A 1.0-MHz crystal with the following parameters is required to utilize the on-chip oscillator. A
1.0-MHz square wave can also be fed into this input to satisfy the clock requirement.

Mode: Parallel
Frequency: 1.0 MHz +0.1%
Series Resistance: 750 ohms max
Shunt Capacitance: 7.0 pF max
Temperature: 0-70°C

Test Level: 1.0 mW

Load Capacitance: 13 pF

3-32

When utilizing the 1.0-MHz crystal, external parasitic capacitance, including crystal shunt
capacitance, must be <9 pF at the crystal input.

Test Clock (TST)
A test signal input is provided to decrease the test time of the chip. In normal operation this input
must be strapped low.

Self Test (ST)

When a low voltage level is placed on this input, the demodulator is switched to the modulator
frequency and demodulates the transmitted FSK signal. Channel establishment, which occurred during the
initial handshake, is not lost during self test. The Mode Control output changes state during Self Test,
permitting the receive filters to pass the local Transmit Carrier.

INPUTS OUTPUT
ST SH RI Mode
H L H H
H H L L
L L H L
L H L H

MODE CONTROL TRUTH TABLE

3-4.3.2 Internal Organization

The MC6860 Modem may be broken down into internal functional sections as shown in Figure
3-4.3.2-1. The terminal control logic and auto answer/disconnect logic sections are referred to as the
supervisory control section. This section contains digital counters which provide the required time out intervals
and necessary control gating logic. This provides logic outputs Clear-To-Send and Answer Phone from inputs
Ring Indicator, Switch Hook, and Data Terminal Ready. Also the control section has some local strapping
options available on pins 5, 6, and 22. These options provide time outs for line hang-up or termination of the
data communication channel.

The oscillator/timing blocks accept a 1.0 MHz clock into pin 13 either from an external clock source
or by connecting a 1.0 MHz crystal between pin 13 and ground. A test clock input is provided to allow more
rapid testing of the MC6860 timing chains used for various timeouts. This input must be strapped low during
normal operation.

The modulator section takes the input digital data and converts it to one of two FSK tones for
transmission over the telephone network. There are two tones for transmission and two tones used for reception
during full depulx operation. During data transmission from the call origination modem the transmit tones are:
1270 Hz for a Mark and 1070 Hz for a Space. This originating modem will receive two frequencies in the high
band which are: 2225 Hz for a Mark and 2025 Hz for a space. If the local modem answers the data call it will
transmit in the high band 2225/2025 Hz and receive in the low band 1270/1070 Hz. The modulator section
generates these frequencies digitally by synthesizing a sinewave with an 8 step D to A available on pin 10 and a
digital square wave output at the above frequencies available on pin 11.

The demodulator accepts a 50% duty cycle TTL level square wave derived from amplifying,
filtering, and limiting the incoming line FSK analog signal. The binary data is recovered from the FSK signal
by detecting when the signal has a zero crossing and digitally using post detection techniques to discriminate

3-33

between the two incoming mark/space tones. A receive data rate input (pin 14) is used to optimize the post
detection filter at either 300 or 600 bits per second.

3-4.3.3 Handshaking and Control

The supervisory control section of the modem can function in four different modes. Two are
associated with data communication channel initialization (Answer Mode and Originate Mode) and two are for
channel termination or hang-up (Automatic Disconnect and Initiate Disconnect).

Answer Mode

Automatic answering is first initiated by a receipt of a Ring Indicator (R) si gnal. This can be eithera
low level for atleast 51 msec as would come from a CBS data coupler, or atleast 20 cycles of a 20-47 Hz ringing
signal as would come from a CBT data coupler. The presence of the Ring Indicator signal places the modem in
the Answer Mode; if the Data Terminal Ready line is low, indicating the communication terminal is ready to
send or receive data, the Answer Phone output goes high. This output is designed to drive a transistor switch
which will activate the Off Hook (OH) and Data Transmission (DA) relays in the data coupler. Upon answering
the phone the 2225-Hz transmit carrier is turned on.

The originate modem at the other end detects this 2225-Hz signal and after a 450 msec delay (used to
disable any echo suppressors in the telephone network) transmits a 1270-Hz signal which the local answering
modem detects provided the amplitude and frequency requirements are met. The amplitude threshold is set
external to the modem chip. If the signal level is sufficient the TD input should be low for 20 us at least once
every 32 msec. The absence of a threshold indication for a period greater than 51 msec denotes the loss of
Receive Carrier and the modem begins hang-up procedures. Hang-up will occur 17 seconds after RI has been
released provided the handshaking routine is not re-established. The frequency tolerance during handshaking is
+100 Hz from the Mark frequency.

After the 1270-Hz signal has been received for 150 msec, the Receive Data is unclamped from a
Mark condition and data can be received. The Clear-To-Send output goes low 450 msec after the receipt of
carrier and data presented to the answer modem is transmitted.

Automatic Disconnect

Upon receipt of a space of 150 msec or greater duration, the modem clamps the Receive Break high.
This condition exists until a Break Release command is issued at the receiving station. Upon receipt of a 0.3
second space, with Enable Short Space Disconnect at the most negative voltage (low), the modem
automatically hangs up. If Enable Long Space Disconnect is low, the modem requires 1.5 seconds of
continuous space to hang up.

Originate Mode

Upon receipt of a Switch Hook (S_H) command the modem function is placed in the Originate Mode.
If the Data Terminal Ready input is enabled (low) the modem will provide a logic high output at Answer Phone.
The modem is now ready to receive the 2225-Hz signal from the remote answering modem. It will continue to
look for this signal until 17 seconds after SH has been released. Disconnect occurs if the handshaking routine is
not established.

Upon receiving 2225 +100 Hz for 150 msec at an acceptable amplitude, the Receive Data output is
unclamped from a Mark condition and data reception can be accomplished. 450 msec after receiving a 2225-Hz

3-34

signal, a 1270-Hz signal is transmitted to the remote modem. 750 msec after receiving the 2225-Hz signal, the
Clear-To-Send output is taken low and data can now be transmitted as well as received.

Initiate Disconnect

In order to command the remote modem to automatically hang up, a disconnect signal is sent by the
local modem. This is accomplished by pulsing the normally low Data Terminal Ready into a high state for
greater than 34 msec. The local modem then sends a 3 second continuous space and hangs up provided the
Enable Space Disconnect is low. If the remote modem hangs up before 3 seconds, loss of Threshold Detect will
cause loss of Clear-To-Send, which marks the line in Answer Mode and turns the carrier off in the Originate
Mode.

IfESD is high the modem will transmit data until hang-up occurs 3 seconds later. Transmit Break is
clamped 150 msec following the Data Terminal Ready interrupt.

Each of the four above operational modes are shown in Figures 3-4.3.3-1 through 3-4.3.3-4.

Call Received

—] sime b—
esl____|

CBS

Ring Indicator
|

Ring Indicator
g CBT||||“]|||U

Originate] Answer (Low)
Mode {Answer ez

Data Terminal On (Low)

Ready
Answer Phone 2225 Hz, 900 ms Ai‘ 2025 Hz or 2225 Hz
Transmit Carrier
450 ms 1270 Hz, 300 ms—=t=——— 1070 Hz or 1270 Hz

Receive Carrier /\/\/\/\/\/

—_ (High)
Threshold Detect

1T 1T 1T 1 IIII | I 7

S — Off (High
Clear-to-Send (High) On (Low)
450 ms | On(Low
|
Transmit [Mark
Unclamped
Data Space Clamped at Mark V 5 %
Receive Mark %
Data Space =150 ms .1‘150 ms
Clamped o Unclamped

at Mark

FIGURE 3-4.3.3-1: Answer Mode

3-35

Ring Indicator
Ring Indicator

Mode

Data Terminal

Ready
Answer Phone

Transmit Carrier

Receive Carrier

Threshold Detect

Clear-to-Send

Transmit { “SA:;:e

Receive { Mark
Data \ Space

Switch Hook

High

ces High
Answer (lL.ow) csT
on (Low)

~——————————————— 2025 Hz or 2225 Hz
Cc
--1070 Hz or 1270 Hz—|~—

ontinuous Space — 1070 Hz

0.3sESSor 1.5s ELS

/j‘ Clamped at Mark

Unclamped

| Clamped at Marl

}_ Unclamped

FIGURE 3-4.3.3-2: Automatic Disconnect - Long or Short Space

H Can Be Released

Data Terminal On (Low)
Ready Originate (High)
Originate V
Mode
Answer Answer (High)
Answer Phone —l 202‘;5r Hz
I-—Establish Call — w1 e—— 2225 Hz, 450 ms le—— 2225 Hz, 450 ms t= 2225 Hz
Receive Carrier
Threshold Detect Tr T 1rrrr 1 1 1 v rrrrrr rr 11171
=150 ms=~—— 300 ms —
Receive Data -
Clamped at Mark
1070 Hz or
450 ms 1270 Hz 1270 Hz™
Transmit Carrier /\/
Clear-to-Send
@ 750 ms On (Low)
Transmit Data
Clamped at Mark —=)

Enable Space

On (Low)

Unclamped

Disconnect

FIGURE 3-4.3.3-3: Originate Mode

3-36

Switch Hook

Data Terminal

High

—

On (Low)

1

r<—— 34 ms Pulse Initiates Space Disconnect

Ready
Mode

Answer Phone

Receive Carrier

Threshold Detect

Receive Data

Transmit Carrier ./\/\/\/\/\/\./\/\/\/\./L

Ciear-to-Send

Transmit Data

Enable Space

Disconnect

Originate (High)

Off Hook

0.3 s €58
~— 2025 Hz or 2225 Hz —-}-——1.5 s B3

VAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA

|_©on Hook

ST rrr T T T T T T T T T T

Unclamped 50 ms Internal Threshold Detect Delay
V Ctamped at Mark
-—1070 Hz or 1270 Hz { 1070 Hz

On (Low)

3s

%

Unclamped

A

Clamped at Space

Off (High)

r

On (Low)

Clamped at Mark

FIGURE 3-4.3.3-4:

3-37

Initiate Disconnect

3-5 DIRECT MEMORY ACCESS

The term Direct Memory Access (DMA) is applied to a variety of techniques for speeding up overall
system operation by loading and unloading memory faster than can be done using an MPU control program.
DMA is often described as a means of allowing fast peripherals (perhaps another Microprocessor), to access the
system memory without ‘bothering’’ the MPU. However, most DMA procedures do interfere with normal
operation to some extent. The capability for handling the various techniques is an often used figure of merit for
evaluating Microprocessors.

The MC6800’s supervisory control features permit any of three commonly used DMA techniques to
be used; (1) Transfer data with MPU halted; (2) Transfer data on burst basis (cycle stealing) with MPU running;
(3) Transfer data synchronously with MPU running. Methods for implementing each of these techniques are
described in Section 4-2.2 therefore, only qualitative descriptions are included here.

The simplest procedure for DMA merely uses the Halt control to shut the MPU down while the
DMA takes place. In the Halt state, the MC6800 effectively removes itself from the Address and Data Buses by
putting all buffers in the high impedence off state. This method has the disadvantage that it can take arelatively
long time for the MPU to ‘‘vacate’’ the buses. The MC6800 is designed to finish executing its current
instruction before entering the Halt or Wait state; the resulting delay depends on which instruction is being
executed and may be as much as 13 machine (clock) cycles. However, due to its simplicity this is the preferred
method if the delay can be tolerated and long transfers are required.

In contrast to this, the Three-State Control (TSC) may be used to obtain DMA control within 500
nanoseconds of initiation but must be used only for short transfers. Activation of TSC puts the MPU’s buffers in
the high impedence off state. This technique has the disadvantage that activation of TSC should be
synchronized with the ¢1 clock and both clocks must be ‘‘frozen’’ (¢1 high, ¢2 low) for the duration of the
DMA. Due to the MPU’s address and R/W refresh requirements, the clocks can only be frozen for a maximum
of 5 microseconds, thus limiting the duration of the transfer.

A third method can be used that is completely transparent to the MPU. This technique takes
advantage of the fact that MPU data transfers take place only during ¢2 of the clock cycle. If the DMA control
signals are properly synchronized and the memory is fast enough, DMA can be accomplished during ¢ 1 of each
clock cycle.

Each of these three methods is described in greater detail in Section4-2.2. It should be noted that the
faster methods impose additional external hardware requirements on the system.

The techniques described above of course do not exhaust all methods for performing DMA. As an
additional example, DMA can be program controlled in the sense that a control program and hence the MPU
can be used to establish the memory area to be used and to grant permission for the DMA.. In this case the DMA
circuitry is treated as another peripheral from which status and control signals can be passed through a PIA.
This technique is also outlined in Section 4-2.2.

3-38

CHAPTER 4

4 M6800 FAMILY HARDWARE CHARACTERISTICS

There are four classes of control signals which control the execution of the MC6800 MPU. The first
pair of control signals is the two phase clock ¢1 and ¢2 which time the entire MPU system. The second pair of
signals, HALT and Bus Available (BA), are used to stop program execution and free up the Address and Data
Bus for other uses such as a DMA channel. The interrupt signals make the MPU responsive to outside control
and are listed in decreasing order of priority:WSET, Non-Maskable Interruptm and Maskable Interrupt
(—I-IT@. The Three-State Control (TSC) and Data Bus Enable (DBE) control lines provide a way to momentarily
remove the MPU from the busses and can be used for implementing a burst type DMA channel.

4-1 CLOCK CIRCUITRY FOR THE MC6800 MPU
4-1.1 Clock Requirements and Circuitry

Figure 4-1.1-1 is a summary of the MC6800 Microprocessor clock waveform requirements. The ¢1
and ¢2 clock inputs require complementary 5 volt non-overlapping clocks. The clock inputs of the MPU appear
primarily capacitive being 110 pf typical and 160 pf maximum plus 100 pa of leakage. Provision is made in the
specification for the undershoot and overshoot that will result from the generation of a high speed transistion
into a capacitive load.

The clock specifications which constrain the clock driver the most are the rise and fall times required
to meet the pulse widths at the maximum operating frequency of 1 MHz, the non-overlapping requirement, and
the logic level requirements of Vss + 0.3 volts and Vcc —0.3 volts. The clock buffer circuit that drives the
MPU clock inputs must be designed to meet the rise and fall time requirements as well as the logic level
requirements. The non-overlapping requirement of the clock signals can be met by the design of the control
logic which drives the buffers. A clock buffer, the MPQ6842*, will guarantee the clock designer the speed and
saturation voltages necessary to design the clock circuit to meet the MPU clock requirements. Relevant
specifications of the MPQ6842 for this design are detailed in Figure 4-1.1-2. Note that the VCE (SAT)’s, rise
and fall times are specified to meet this clock driver requirement.

Figure 4-1.1-3 is a circuit designed with TTL logic devices and the MPQ6842 buffer to meet the
MPU clock requirements while operating from a single +5 volt supply. The oscillator can be any source with a
maximum frequency of 1 MHz, TTL logic levels and 50% duty cycle. This oscillator signal source could vary
from a commercial oscillator such as a K1100A available from Motorola’s Component Product Department,*
to a signal derived from a higher frequency signal already available in the system. The TTL gates shown are
standard MC3000 and MC3001 (74H00 and 74HO8) which were chosen for their speed and drive characteris-
tics. The discrete buffers require good ‘“1°” level pullup and drive capability which is provided by the MC3001.
The circuit was constructed on a wire wrap board and tested on an EXORciser.? Good power and ground
distribution practice was followed but no special care was taken in parts layout.

12553 N. Edgington, Franklin Park, Illinois 60131, 312-451-1000
2A system prototyping tool for the M6800 Microprocessor family.

*To be introduced first quarter 1975.

4-1

— — —Vos
e ey B
— ViHc MIN
¢ — —Vos
= Tos
- td OVERSHOOT
Tos
¢2 - — — _Vos
— T VjLc MIN
tr -] PWOH] tg
— — —Vos
UNDERSHOOT
CHARACTERISTIC SYMBOL MIN TYP MAX UNITS
Input High Voltage ¢1, ¢2 VIHC Vce-0.3 — Vce + 0.1 Vde
Input Low Voltage ¢1, ¢2 ViLc Vss-0.1 — Vss + 0.3 Vde
Clock Overshoot/Undershoot Vos Ve
Input High Voltage Vce-0.5 vcc + 0.5 Ve
Input Low Voltage Vss-0.5 Vss + 0.5
Input Leakage Current ¢1, ¢2
(VIN =010 5.25V, Vcc = MAX) IN —_ — 100 ma
Capacitance
(VIN = 0, TA = 25°C, f = 1.0MHz) CiN 80 120 160 pf
Frequency of Operation f 0.1 — 1.0 MHz
Clock Timing
Cycle Time teye 1.0 — 10 MS
Clock Pulse Width
(Measured at Vcc-0.3 V) ¢1 PWon 430 — 4500 ns
¢2 450 — 4500 ns
Rise and Fall Times ¢1, ¢2 te, tf 5 — 50 ns

(Measured between
Vss + 0.3 V and Vcc-0.3 V)

Delay Time or Clock Overlap td 0 — 9100 ns
(Measured at Vov = Vss + 0.5 V)

Overshoot/Undershoot Duration tos 0 —_ 40 ns
Clock High Times tuT 940 — — ns

FIGURE 4-1.1-1 MPU Clock Waveform Specifications

4-2

CONNECTION DIAGRAM
MPQ6842

1 14
DEVICE CHARACTERISTICS: T = 25°C, Vee =5.00 vDC
Characteristic Symbol Measurement Levels Min | Typ | Max Units
Propagation Delay TpD 50% Points TP1 to TP3 — 5 15 nsec
50% Points TP2 to TP4 — 5 15 nsec
Rise Time ty 0.3V to4.7V 5 20 25 nsec
TP3 and TP4
Fall Time tf 4.7V 10 0.3V 5 15 | 25 nsec I —
TP3 and TP4
Collector-Emitter VCE(sat) lc =0.5ma,lg=0.05ma - 0.10 | 0.15 vDC
Saturation Voltage T = 09C to 70°C
—4 -
7 8
TEST CIRCUIT
Vce
33 pf
.1 uf Ceramic
1/4 MC3001 (74H08)
TP3
TP
NOTES:
1. Unless otherwise noted, all resistors
carbon composition % W 5%, all
Pulse capacitors dipped mica £2%.
Generator - 2. Use short interconnect wiring with
0 to 5<V2 51 Vee good power and ground busses.
;V\;Vti\zoons 3. TP1—>TP4 are coaxial connectors to
= ns accept scope probe tip and provide a
Period = 1000 ns good ground.
- X 4. Device under test is MPQ6842.
-1 Ceramic 5. 200 pf load includes strays plus
scope probe capacitance.
1/4 MC3000
(74H00)
TP4
TP2

FIGURE 4-1.1-2. MPQ6842 Clock Buffer

Oscillator

K1100A

1 MHz 50 £ 2% Duty Cycle

v

NOTES:
1.

2.

1uf Ceramic

al

+5V

i

% MC3000 % MC3000 % MC3001 % MC3001 | % MC3000 % MC3001

(74H00) (74H08)

SPARE

1-

Y% MC3001

.1uf Ceramic

By

+5V

L
1

Unless otherwise noted

All resistors are carbon compaosition %W, = 5%
All capacitors are dipped mica £ 2% ,
* MPQ6842 % M

{]

FIGURE 4-1.1-3 MPU Clock Circuit

<3000

B,

MPU ¢1

MPU ¢2 and
DBE

Waveforms typical of the circuit in Figure 4-1.1-3 at T =20°C and VcC = 5.00 volts are shown in
Figure 4-1.1-4. Figure 4a and 4b depict the logic levels and pulse widths achieved by this circuitry with VcC
and GND as reference levels. Figure 4c superimposes the two clock waveforms so that their phase relationship
can be seen. Figure 4d shows the phase relationship of BUS ¢2 and MPU ¢2. Figures 4e and 4f examine the
non-overlap regions as well as rise and fall times typical of this clock drive circuit. Table 4-1.1-1 presents
test data taken over a voltage range of 4.75 volts to 5.25 volts and over a temperature range of 0°C to 70°C. Note
the stability of these measured parameters and that the logic levels achieved will provide noise margin on the
system clocks. Both ¢1 and ¢2 clock high times were designed to be about 20 ns wider than the minimum
required by the MPU (¢1 — 430 ns, $2 — 450 ns) to provide system margin. Rise and fall times were
minimized to provide maximum clock high times consistent with non-critical circuit layout considerations. The
overlap margin shown easily meets the MPU requirement of O ns at 0.5 volts but will decrease as the capacitive
loading increases. The MPU tested for this data had a clock input capacitance on the order of the 110 pf typical

Non-Owerlap:

value.
MPU ¢1 MPU ¢2 Non-Overlap Region
Test Conditions PW RT FT |“17 LL* (0" LL*| PW RT FT “1LL* | 0" LL* ¢1¢to ¢2T ¢2l« to ¢1T
T =20°C
Vcec =475V 460ns | 15ns|10ns{ 475V | 0.1V |466ns| 15ns|105ns | 475V oV 105 ns 12ns
Vce =5.00V 460 16 1 5.00 0.1 465 16 10 5.00 0 10 11
Vec =56.25 V 460 16 1 5.25 0.1 465 16 11 5.25 0 9.5 105
Vee =5.00V,C =210pf | 450 21 155 | 5.00 0.1 460 22 15 5.00 0 2 55
T =70°C
Vcc =475V 460 15 12 4.75 0.1 465 16 12 4.75 0 9 10.5
Ve =5.00V 460 16 12 5.00 0.1 465 16 12 4.75 0 8.5 10
Vee=5.25V 455 17 125 | 5.25 0.1 465 17 13 5.26 0 8 9
T=0°
Vec =475V 460 14 10 4.75 0.1 465 15 10.5 4.75 0 1" 12
Vce =5.00V 460 15 10 5.00 0.1 465 15 10 5.00 0 105 115
Vee=56.25V 460 15 105 | 5.25 0.1 465 15 10 5.25 0 10 10.5
*Resolution of this measurement =~ 50 mv
LEGEND:

PW: Pulse width measured at Vgc — 0.3 V

RT: Rise time measured from 0.3V to Voo — 0.3V

FT: Fall time measured from Vgc — 0.3V 10 0.3V TABLE 4-1.1-1. Performance of Circuit in Figure 4-1.1-3

0" LL: Zero logic level
1 LL: One logic level

Measured from 0.5 volt levels

In many systems, especially in the breadboard and evaluation stage, it may be desirable to have the
flexibility to vary the system clock to test the effects on data throughput, real time operation with interrupts or to
help diagnose a system timing problem. In these applications, or in those not requiring crystal oscillator
stability, an even simpler clock circuit can be used. A pair of cross coupled monostable multivibrators with
individual pulse width adjustments can be used as the clock oscillator with the previously described clock
driver. This approach is shown in Figure 4-1.1-5. The non-overlapping clock is generated by the propagation
delays through the monostable multivibrators. Figure 4-1.1-6 shows waveforms resulting from this circuit.
Table 4-1.1-2 shows test data taken of this circuit over the voltage and temperature range driving a typical MPU
(CL = 110 pf). Note the small variations in the pulse widths.

45

MPU ¢1 MPU ¢2 Non-Overlap Region
Test Conditions PW RT | FT {“1”LL* “0"LL*| PW RT | FT “17 LL* [“0” LL* o1 to 02T [962] to o1t
T =20°C
Veg =475V 470 ns | 11 ns{11.5ns]4.75 V 0.1V |450ns | 12ns |12 ns 475V ov 12 ns 11ns
Vge =5.00 vV 470 125 |13 5.00 0.1 460 13 125 5.00 0 1 9.5
Vee =5.25V 470 13 12 5.25 0.1 460 135 (125 5.25 0 10 9
T =70°C
Ve =475V 455 125 {135 }4.75 0.1 450 13 13 4,75 0 11 10
Vee =5.00 v 455 13 14 5.00 0.1 450 14 14 5.00 0 10
Vee =525V 455 13 145 |5.25 0.1 450 14 14 5.25 0 8.5 7
T=0°
Ve =475V 473 12 12 4.75 0.1 470 12 12 4.75 0 1 11
Vee =5.00 Vv 475 12 12 5.00 0.1 470 125 (12 5.00 0 9 11
Ve =525V 475 125 (125 [5.25 0.05 473 125 (12 5.25 0 9 8

*Resolution of this measurement & 50 mv

LEGEND:
PW: Pulse width measured at Voc — 0.3V
RT: Rise time measured from 0.3V to Vgc — 03V
FT: Fall time measured from Voc — 0.3V t0 03V
0" LL: Zero logic level TABLE 4-1.1-2. Performance of Circuit in Figure 4-1.1-5

1 LL: One logic level
Non-Overlap: Measured from 0.5 volt points

The fast rise and fall times produced by this circuitry and the highly capacitive loads require some
care in layout to avoid excessive ringing and/or pulse distortion. While no particular care was taken in the
construction of the wirewrap test boards other than placing all of the discretes into one header board, the
following construction guidelines are recommended. Wide power and ground lines (50-100 mils) should be
used to provide low impedance voltage and ground sources. The clock driver should be physically located as
near the MPU as possible to avoid ringing down long lines. Close proximity of the clock circuitry to the MPU
allows common power and ground connections so that any noise appears common mode rather than differential
to the MPU and clock driver. Finally, it is recommended that the MPU ¢2 clock signal not be used to clock any
device other than the MPU so that it is not distributed all over the system with the possibility of picking up noise
and causing reflections. The circuits shown in this section provide an additional buffer for the other ¢2 loads in
the system to isolate MPU ¢2 from all the other ¢2 loads.

, For further discussion on clock generators for the MC6800 including interface with dynamic and
slow memories, the reader is referred to Section 4-2.5.1.

4-1.1.2 Clock Module

A hybrid clock module is being developed by the Communications Division of Motorola® for the
M6800 Microprocessor family. This module is composed of a crystal oscillator and associated buffering
circuitry to provide either | MHz or user specified frequency operation of the M6800 family. Provision is made

within this module for cycle stealing in order to interface with dynamic memory (see Section 4-2.5.1) or
implement a DMA channel (see Section 4-2.2.2). The module is designed to providle a MEMORY READY

'Component Products, 2553 N. Edgington St., Franklin Park, Illinois 60131, 312-625-0020

4-6

+5.00 V

1 V/em

Gnd e 4 P s E—

200nS 4§ 10x

200 ns/cm

FIGURE 4-1.1-4a MPU ¢1 Clock

+5.00 V

1 V/em

Gnd

s

200nS yS 40x

200 ns/cm

FIGURE 4-1.1-4b. MPU ¢2 Clock

+5.00 Vv

1 V/em
Gnd ; "
i0ons #§ 10x
100 ns/cm
FIGURE 4-1.1-4c. MPU ¢1 and $2 Clocks
Bus ¢2: 4V Pulse MPU ¢2: 5 V Pulse
+5.00 V
1 V/em

Gnd

100 ns/cm

FIGURE 4-1.1-4d. MPU ¢2 Clock and Bus $2

5.00 Vv

1 V/em
Gnd
5 ns/cm
FIGURE 4-1.1-4e. MPU Clock Non-Overlap Region
5.00 vV
1 V/em
Gnd

5 ns/cm

FIGURE 4-1.1-4f. MPU Clock Non-Overlap Region

+5V +5 V +5 V

1 @2
11 K 1% 11 K 1%
100 pf 100 pf
T1 T2 T1 T2
MC8602 Q W——_——’ Bus ¢2
1/3 MC7404 +5V
—_ 33 pf i
c . c o) P .1 uf Ceramic
ol s L
Cp Cp -
& ¢ | *
+5 V
MPU 01
470
+5V

NOTE:

1) Unless otherwise noted 33 pf .
All resistors are carbon composition %W, £5% 470 $ P -1 pf Ceramic
All capacitors are dipped mica £2% <

2) *MPQ 6842

MPU ¢2 and
DBE

*MPQ6842

FIGURE 4-1.1-5. Monostable Clock Generator

5.00 vV

1 V/em
200nS S 10x
200 ns/cm
FIGURE 4-1.1-6a. MPU Clock Waveforms
5.00 V
1 V/em
GND

5 ns/em

FIGURE 4-1.1-6b. MPU Clock Non-Overlap Region

4-11

5.00 v

1 V/ecm

GND

5 ns/cm

FIGURE 4-1.1-6¢c. MPU Clock Non-Overlap Region

Bus ¢2

2 V/ecm

MPU ¢2

200 ns/cm

FIGURE 4-1.1-6d. MPU ¢2 Clock and Buss ¢2

4-12

function in order to interface with slow memories (see Section 4-2.5.1). Those interested in this device should
contact their Motorola salesman for further details.

4-1.2 HALTING THE MC6800 AND SINGLE INSTRUCTION EXECUTION

The HALT line provides an input to the MPU to allow control of program execution by an outside
source. IfHALT is high, the MPU will execute; if it is low, the MPU will go to a halted or idle mode. A response
signal, Bus Available (BA) provides an indication of the MPU’s current status. When BA is low, the MPU is in
the process of executing the control program; if BA is high, the MPU has halted and all internal activity has
stopped. When BA is high, the Address Bus, Data Bus, and R/W line will be in a high impedance state,
effectively removing the MPU from the system bus. VMA is forced low so that the floating system bus will not
activate any device on the bus that is enabled by VMA.

While the MPU is halted, all program activity is stopped and, if either a NMI or IRQ interrupt
occurs, it will be latched into the MPU and acted on as soon as the MPU is taken out of the halted mode. If a
RESET command occurs while the MPU is halted, the following states occur: VMA-low, BA-low (while
RESET is low), Data Bus-high impedance, R/W-Read state (while RESET is low), and the Address Bus will
contain the reset address FFFE (while RESET is low). As soon as the HALT line goes high, the MPU will go
to locations FFFE and FFFF for the address of the reset routine.

Figure 4-1.2-1 shows the timing relationships involved when halting the MPU and executing a
single instruction. Both of the instructions illustrated are single byte, 2 cycles, such as CLRA and CLRB. The
MPU always halts after completing execution of an instruction when HALT is low. If HALT is low within 100
nsec after the leading edge of ¢1 in the last cycle of an instruction (point A in the figure) then the MPU will halt
at the end of the current instruction. The fetch of the OP code by the MPU is the first cycle of an instruction. If
HALT had not been low at point A but went low during ¢2 of that cycle, the MPU would have halted after
completion of the next instruction after instruction X. BA will go high within 470 nsec of the leading edge of the
next ¢2 clock after the last instruction cycle executed. At this point in time, VMA is low and the R/W line,
Address Bus, and the Data Bus are in the high impedance state.

To single cycle the MPU, HALT must be brought high for one MPU cycle and then returned low as
shown at (B). Again, the transitions of HALT must occur within 100 nsec of the leading edge of ¢1. BA will go
low within 300 nsec of the leading edge of the next ¢1 indicating that the Address Bus Data Bus, VMA and
R/W lines are back on the bus. A single byte, 2 cycle instruction, such as CLRB is used for this example also.
During the first cycle, the instruction Y is fetched from address M+ 1. BA returns high 470 nsec after ¢2 on the
last cycle indicating the MPU is off the bus. If instruction Y had more than two cycles, the width of the BA’s
low time would have been increased proportionally.

4-1.3 MC6800 RESET AND INTERRUPT CONTROLS

The RESET input is used to reset and start the MPU from a power down condition resulting from a
power failure or initial start-up of the processor. This input can also be used to reinitialize the machine at any
time after start up. If a positive edge is detected on this input, this will signal the MPU to begin the restart
sequence. During the reset sequence, all of the higher order address lines will be forced high. The contents of
the last two locations (FFFE, FFFF) in memory will be loaded into the program counter to point to the reset
program. During the reset routine, the interrupt mask bit is set and must be reset by an Instruction in the
initializing program before the MPU can be interrupted by IRQ. While RESET is low (assuming 8 clock cycles

4-13

147

Last Cycle
of Current

Instruction

o

Single Cycle Single Cycle
Fetch Execute

a A e Y

L
[

L
o L[]
—>

"‘ 100 ns Max
Halt A \

{ [
——I ' '4-— 470 ns Max)1{ 300 ns Max
BA [7)

([
)]
/ Note 2
\ ((—
Fetch Execute
Add Add ([
o MY XY NN f
Data Inst ((
Bus & X })

Example: M~ 10007g, X = CLRA (OP = 4F)
NOTE 1: Crosshatch indicates data not valid
intervals.
NOTE 2: Midrange waveform indicates high
impedance state. FIGURE 4-1.2-1.

Halt and Single Instruction Execution

M+ 1=10014g, Y = CLRB (OP = 5F)

have occurred) the MPU output signals will be in the following states: VMA-low, BA-low, Data Bus-high
impedance, R/W (Read State) and the Address Bus will contain the reset address FFFE.

Figure4-1.3-1 illustrates a power up sequence using the RESET control line. After the power supply
reaches 4.75 volts, eight clock cycles are required for the processor to stabilize in preparation for restarting.
During these eight cycles, VMA will be in an indeterminate state so any devices that are enabled by VMA
which could accept a false write during this time (such as a battery backed RAM) must be disabled until VMA is
forced low after 8 cycles. RESET can go high asynchronously with the system clock, however, its rise time
must be less than 500 nsec. If RESET is high at least 200 nsec before the leading edge of ¢1 in any given cycle,
then the restart sequence will begin in that cycle as shown in Figure 4-1.3-1. The RESET control line may also
used to reinitialize the MPU system at any time during its operation. This is accomplished by pulsing RESET
low for the duration of at least three complete ¢2 pulses. The RESET pulse can be completely asynchronous
with the MPU system clock.

The MC6800 is capable of handling two types of interrupts, maskable ZIR—Q) and non-maskable
(NMI). The handling of these interrupts by the MPU is the same with the exception that each has its own vector
address. The behavior of the MPU when interrupted by these two types of interrupts falls into two categories as
shown in Figure 4-1.3-2. Figure 4-1.3-2a details the MPU response to an interrupt while the MPU is executing
the control program. The interrupt shown could be either an IRQ or NMI and can be asynchronous with respect
to ¢1. The Interrupt is shown going low 200 nsec before the leading edge of ¢1 in cycle #2 which is the first
cycle of an instruction (OP code fetch). This instruction is not executed but instead the Program Counter, Index
Register, Accumulators, and the Condition Code Register are pushed onto the stack. The Interrupt Mask is then
set to prevent further IRQ interrupts. The address of the interrupt service routine is then fetched from FFFC,
FFFD, for a NMlinterrupt and from FFF8, FFF9 for an IRQ interrupt. Upon completion of the interrupt service
routine, the execution of RTI will pull the PC, X, ACCUMULATORS, and CCR off of the stack.

Figure 4-1.3-2b is a similar interrupt sequence except, in this case, a WAIT instruction has been
executed in preparation for the interrupt. This technique speeds up the MPU’s response to the interrupt because
the stacking of the PC, X, ACCUMULATORS, and the CCR is already done. While the MPU is waiting for the
Interrupt, Bus Available will go high indicating the following state of the control lines: VMA-low, Address
Bus-R/W-Data Bus all in the high impedance state. After the interrupt occurs, it is serviced as previously
described. ‘

4-15

oI+

o1

Power on
Switch

Power
Supply

Reset

R/W

VMA

Data
Bus

n+1

| n+2 I n+3

S

—]
A

<4
-T

=]

lagg—— 200 ns min.

L— 500 ns max

WHLaus

X X___X____X_ X

FFFE

=V

o P

FFFE FFFE FFFF

W

DN

Kl
-Vv. -

FIGURE 4-1.3-1.

RESET Timing

Reset Routine

Address Bits 8-15

/ Reset Routine
Address Bits 0-7

OO e U

Reset Routine

L1-¥

1

Address
PLS

VMA

Address
Bus

R/W

VMA

M
RO

NMI

Data
Bus

BA

NOTE 1: Midrange waveform indicates high

Cycle Cycie
#1 #2

Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle
#3 #4 #5 #6 #7 #8 #9 #10

Cycle
#11

Cycle Cycle Cycle ‘Cycle
#12 #13 14 #15

X X X X X X X_ XX

XXX X X

Next inst.
Fetch

SP(n) SP(n-1) SP(n-2) SP{(n-3) SP(n-4) SP(n-5) SP(n-6)

FFF8 FFF9 New PC
Address Address Address

| ja@—200ns

New PCO-7
Address

A X XX X XX A XX X X A X

Inst (X) PCO-7 PC8-15 X0-7 X8-15 ACCA ACCB CCR New PC8-15 First Inst. of
Address Interrupt Routine
N\ /
FIGURE 4-1.3-2a Interrupt Timing _—/
Cycle Note 1 Cycle
#1 2 3 4 5 6 7 8 9 n ! n+1 n+2 n+3 n+4 #n+5
X X X X X X X X Vel
Instruction

Vg
SP(n) SP(n-1) SP(n-2) SP(n-3) SP(n-4) SP(n-5) SP(n-6) 4 FFF8 FFF9 *::
>__/

N\

New PC
Address

/

I3
7

/

{
-4
{

—’;{i‘- 200 ns

D S

XX XXX X —+——C X XXX

Wait
Inst

PCO-7 PC8-15 1X-0-7 1X8-15 ACCA ACCP CCR

¢2 of Cycle b Address Address
#10 "’"_W \

impedance state.

FIGURE 4-1.3-2b Wait Instruction Timing

New PC8-15 New PC-0-7 f

L]
First Inst.
of Interrupt
Routine

Interrupt l 4
Signals

Into PIA
CA(B)1/CA(B)2 l

FIGURE 4-1.3-3. Interrupt signal Format

INTERRUPT ENABLING DURING HALT AND/OR WAI

While there are nominally no restrictions on the format of interrupt signals into CA1, CA2, CB1,
and CB2 of the PIA, there are certain combinations of system situations that require special consideration.
Assume that the interrupt signal format follows one of the cases shown in Figure 4-1.3-3 and that the PIA has
been conditioned by the MPU to recognize the transition polarity represented by the *‘trailing edge’’ of the
interrupt pulse.

The design of the PIA is such that at least one E pulse must occur between the inactive and active
edges of the input signal if the interrupt is to be recognized. Relative timing requirements are shown in Figure
4-1.3-4. Note that an internal enable signal that is initiated by the first positive transition of E following the
inactive edge of the input signals is included.

S A AR SN AR AR AR YA

PIA internal Enable

Enables
Int, to CA(B) Inputs Q)

RQ (Int. req. to MPU) q

FIGURE 4-1.3-4: Interrupt Enabling

When the MPU has been halted either by hardware control or execution of the Wait For Interrupt
(WAI) instruction, its VMA output goes low. Since VMA is normally used to generate the Enable signal (E =
VMA e ¢2) either of these two conditions temporarily eliminates the E signal. The effect of this on the trailing
edge interrupt format is shown in Figure 4-1.3-5 where it is assumed that VMA went low and eliminated the
Enable pulses before the PIA’s interrupt circuitry was properly conditioned to recognize the active transition. It

should be noted that this condition occurs only when an active transition is preceded by an inactive transition
and there are no intervening E pulses.

VMA P,_- After Halt or WAI

7\ - ~ =" =\ r-
F = VMA-$2 / \ ' \ ' \ ’ \ '
L \ L 3\ L \ [\ L

PIA Internal Enable /

Interrupt to CA(B) Inputs E

—— I
IRQ (Int. req. to MPU) Missed

FIGURE 4-1.3-5. Interrupt not properly enabled

4-18

v

If this combination occurs during system operation, valid interrupts will be ignored. Either of two
simple precautions can be adopted. If the format of the interrupt signals is up to the designer, the potential
problem can be avoided by not using the pulse-with-trailing-edge-interrupt format.

If this format is compulsory, the Chip Select signal can be generated by ANDing VMA and one of
the PIA’s chip select inputs as shown in Figure 4-1.3.6, while the ¢2 clock is used to enable the PIA.

AP O&—
Al ®

From
Address { A3 @—

Bus
A130—]
A14 @ L

VMA @——i) I
ND
62 A Gate

FIGURE 4-1.3-6. Alternate Enable Generation

4-1.4 THREE-STATE CONTROL LINE OPERATION

When the Three-State Control (TSC) line is a logic one, the Address Bus and the R/W line are placed
in a high impedance state. VMA and BA are forced low whenever TSC = ‘1’ to prevent false reads or writes
on any device enabled by VMA. BA is low to indicate that the bus is not available for long term use. While TSC
is held high, the ¢1 and ¢2 clocks must be held high and low, respectively, in order to delay program execution
(this is required because of the bus lines being in the high impedance state). Since the MPU is a dynamic device,
the clocks can be stopped for no more than 4.5 usec without destroying data within the MPU.

Figure 4-1.4-1 shows the effect of TSC on the MPU. TSC must have its transitions within 50 nsec of
the leading edge of ¢1 while holding ¢1 high and ¢2 low as shown. Within 500 nsec of TSC going high, the
Address Bus, and R/W line will reach the high impedance state with VMA being forced low. In this example,
the Data Bus is also in the high impedance state while ¢2 is being held low because DBE is controlled by ¢2. At
this point in time, a DMA transfer could occur as explained in Section 4-2.2.2.

When TSC is returned low, the MPU’s Address and R/W lines return to the bus within 500 nsec.
Because it is too late in cycle number 5 to access memory, this cycle is a dead cycle used for synchronization
and program execution resumes in cycle 6.

4.1.5 M6800 FAMILY INTERFACE AND ENABLING CONSIDERATIONS

The specifications of the M6800 family allow easy interfacing with other family members and with
TTL systems. All logic levels (with the exception of the clocks) are TTL compatible with the outputs having a
fanout of 17400 TTL load and 130 pf shunt capacitance at a 1.0 MHz clock rate. TTL logic level compatibility
allows the system designer access to a whole realm of standard interface and memory devices to complement
the M6800 family.

The limiting factor on size in building a M6800 system without buffering will usually be the loading
on the data bus. Data bus loading by family devices in the high impedance state is 10 ua of leakage current with
10 pf of capacitance each for the PIA and ACIA and 15 pf of capacitance each for the MPU, RAM, and ROM.

4-19

Cycle

w2 | 3 | 4 | s 1 e | 7 g | 9 | I I |
System
1
"—-—— 4.5us Max ‘—l———H
MPU ¢1 I
Address 5“32"”8 55\)/'03:5
Bus N { X N R Ny
R/W 3 X
VMA
Data \Q@(_W r——w
Bus & W
$2 = DBE | | 1 1 | l
RS 50 ns 50 ns N Pata Not Valid
> I - Max Max .
FIGURE 4-1.4-1. Three-State Control Timing
Each family device can scurce 100 pa and drive a 130 pfload at rated speed (refer 1o ihe family daia sheets for

more detail), thus, the data bus fanout varies from 7 to 10 family parts when assuming 25-30 pf of stray
capacitance. Once the system becomes larger than the 7 to 10 family parts of a minimum system, Bus Extenders
(BEX) are necessary in order to increase the fanout.

Figure 4-1.5-1 shows a generalized block diagram of a buffered M6800 system. The different
modules shown could be composed of family members (PIA, ACIA, 128 X 8 RAM, and 1K X 8 ROM) or other
devices such as 4K RAMS (for large memory arrays) or bipolar PROMs (for bootstrap loaders). Bus drivers and
receivers are available which provide a fanout on the order of 50 receivers for each driver, providing almost
unlimited system expansion.

The buffers shown are used on the unidirectional lines, i.e., Address, R/'W, VMA and ¢2 clock.
Devices used for this function can vary from MC7404 hex buffers for a fanout of 10 to Bus Interface devices
such as the MC8T97* which can provide fanout on the order of 50 MC8T97 receivers from one MC8T97
driver. These buffer devices may have three state capability but unless the bus is needed for something like a
DMA channel, the buffers can remain enabled all the time. Devices that can be used for the bidirectional data
transceivers are the MC8T26* and the MC8833*, The data transceiver at the MPU should be controlled by the
following signals, 2, VMA, and R/W. ¢2 and VMA can be used to enable the data transceivers only during
the data transfer portion of the cycle and only on memory reference cycles. The R/W line is used to control the
direction of the data transfer. The data transceivers for each module are enabled by these same signals plus an
additional signal which selects one module from the others. This additional signal can be derived from a full
decode of the Address Bus or it could be as simple as one of the high order address lines in an abbreviated
address decoding method as described in Section 1-1.2.

Figure 4-1.5-2 is an example of a buffered system using MC8T97 buffers and MC8T26 data
transceivers. In this example, all MC8T97s are enabled permanently because they are used with unidirectional
lines and no DMA channel is included. The drivers from the MPU could be disabled to allow control of the bus
by a DMA channel. The MC8T26 is used as the data bus transceiver in Figure 4-1.5-2. The enabling logic

*To be introduced third quarter, 1975.

4-20

shown places the transceiver in the mode of normally driving the bus except during ¢2 of a valid read cycle in
which case the driver is disabled and the receiver enabled. The logic of the data transceivers for the module
enables the receiver and disables the driver except during ¢2 of a valid read cycle for that module (For a valid
read cyéle, the receiver is disabled and the driver enabled). The ADDR input to this logic is used to enable only
one driver of the modules on the bus at any one time and is dependent on the address decoding method used.

Address and Data
Control Bus A 4 Bus

AO-A15, R/W
VMA, ¢2
19

——F——b>

MC6800 Buffer
MPU (Driver) N F————————_—— — =

lg—— | Module #1

$1 P2 48 ‘ Buff A0-A15
\ |y uffer
Do-b7 (Receiver) = R/W, ¢2

VMA

Data
1 Transceiver ‘__’\

|
|
|
I
N | o Dat >
| Transac:iver DO-D7
! |
|
|

$2, VMA, R/W
L 92, VMA, R/W, Addr]

I ————— e — — —
| Moduie #N —i
| |
I |

AO0-A15

N ' » Buffer |
I (Receiver) B R\//V'\VA,gZ I
| I
| |
| I
| |
| Data |

Transceiver [« DO-D7 |
I |
: [
| I
L P2, VMA RIW, Addr J

FIGURE 4-1.5-1. Buffered M6800 System

4-21

OTHER MODULES

[}

MC8T97

MC6800
MPU

AQ

~

A15

R/W

VMA

YRV Y

NN
)
rg)

¥

¢2 MODULE #N

AO

J\ —
|]/C_“ A15

MC8T26

DO

t!

1 ¢2

1/3
@2

VMA —

- NN = VMA
|

I 3 RAM

L]
- 2 ROM

D7 s .
~ 1 PIA

MC8T26 — .
DE r RE _/ ACIA

L]

MC7410 *

A

I
-LDO L oﬁa.___* oo

1/2 MC7420

A
Iy

—~
Y
w)
N

\J

OTHER MODULES

FIGURE 4-1.5.2. M6800 Bus Expansion Example

4-22

Enabling Considerations of Module Devices

VMA, R/W, and ¢2 are all available to enable RAMs, ROMs, and PIA/ACIAs. In some cases, it
may be desirable to eliminate one of these enabling signals so that the enable input is available for address
decoding. The following discussion indicates which control signals could be deleted for a given device and the
effects on the system operation:

ROM

R/W and ¢2 can be used to enable the ROMs without using the VMA signal. Not using
the VMA signal means that the ROM may be enabled during a non-memory reference read cycle
(VMA would be low but since it is not used, the ROM may be enabled). A false read of the ROM
will have no effect on the system and if the non-memory reference cycle had been a write, then the
R/W signal would have disabled the ROM.

RAM

VMA can be left off as an enable to a RAM if the MPU will not be halted, the WAI instruction
not used, or if the TSC will not be used. Either of these conditions cause the Address lines and the
R/W lines to float which could produce a false write into RAM if not prevented by VMA.. During
normal operation of the MPU, only one instruction, TST, causes a false write to memory (i.e., the
R/W line going low without VMA going high). This instruction does not pose a problem because it
first reads the memory and then rewrites the same data. If VMA was used to enable the RAM, this
false write would not occur, however, since the memory is rewritten with the same data, no problem
occurs by not using VMA as an enable.

PIA/ACIA

All three signals must be used to enable or select a PIA or ACIA. Both of these devices
automatically clear the Interrupt Flags when the MPU reads the PIA or ACIA data registers so that a
false read of a PIA or ACIA may cause an interrupt on CAl, CB1, CA2, or CB2 to be missed. In
addition, it is suggested that VMAe @2 not be used as an Enable signal for a PIA because, if the
machine is halted, VMA is forced low removing the clocks from the PIA. Without the Enable input
to the PIA, an external interrupt may not be recognized.! ¢2 should be used for the PIA Enable
signal so that the PIA Enable clock always occurs whether or not the MPU is halted. VMA may then
be taken directly to Chip Select inputs or be gated with address signals to the Chip Select inputs.

!Refer to Section 4-1.3 for a complete explanation.

4-23

4-2 M6800 SYSTEM HARDWARE TECHNIQUES

4-2.1 INTERRUPT PRIORITY CIRCUITRY

The interrupt control features of the MC6800 are described in Sections 3-2 & 3-3. The software
polling and prioritizing methods discussed there are adequate for most applications. However, in systems
having several interrupts that must be handled quickly on a priority basis, hardware prioritizing circuitr}; can be
used to advantage.

The prioritizing method recommended in Chapter 3 is shown in more detail in the block diagram of
Figure 4-2.1-1. With this technique, each interrupting device is assigned a separate ROM location which is
used to store the starting address of a service routine. After the MPU recognizes an interrupt, external circuitry
selects the interrupt that is to be serviced and directs the MPU to the proper location in memory.

The MPU responds to an IRQ by trying to fetch the IRQ vector address from locations FFF8 and
FFF9. However, some of the address lines are no longer tied directly to memory but go instead to a 1-of-2 Data
Selector. The other set of inputs to the Data Selector is generated by a Priority Encoder that outputs a binary
number corresponding to the highest priority interrupt signal present at the time the interrupt is recognized by
the MPU. '

Detection of addresses FFF8 and FFF9 by the INTERRUPT ADDRESS DECODE circuitry then
causes the outputs of the Priority Encoder to be substituted for part of the normal address. Hence, even though
the MPU outputs FFF8 and FFF9, other locations are read by the MPU.

4-2.1.1 8-Level Prioritizing

Specific circuitry for prioritizing eight interrupts is shown in Figure 4-2.1.1-1. The interrupting

System interrupt

Clock o Address
Decode Address Bus /

Cor‘:rol r(rrrrr(
e Il

{RQ To MPU
A9
A8
Clk

1
o A7 Read
» - Only
) — » 1 A6 Memory Data Bus
2 Interrupt Quad A5
“;';e"l';::t X » :T:f;:t:; Priority 1-0f-2 A4
In grder < 4 or Encoder o Data o A3
f 5 fli] Selector ol A2
o lip-flops)
Priority 6 —B] [o a1
’ —— A
——
g8 —i

.

FIGURE 4-2.1-1. 8-level Priority Interrupt Configuration Block Diagram

4-24

ST

A1
A2
——————J A3
Mc7430 | a4
(2 Places)
-~ A5
adl ae
A7 Interrupt Vector Location
As RES FFFF - FFFE
NMI FFFD - FFFC
Interrupt | A9 SWI FFFB - FFFA
Address Decode #8 FFF9 - FFF8
#7 FFF7 - FFF6
——J A10 #6 FFF5- FFF4
#5 FFF3 - FFF2
—y AT #4 FFF1-FFFO
5 A12 #3 FFEF - FFEE
#2 FFED - FFEC
A13 #1 FFEB - FFEA
1/2MC7479 A4
3
D Q 4 A15
L h ——-0 VMA
o1 C ajo atc
R Clock |—©O +5
Disable A1 A2 A3 A4 A9 A8 A7 A6 A5 A4 Address
e G o - Bus
+5
#2 E E|———@ VMA ® $2
E — R/W
1/4MC7402 Latch . /
(4 Places) Clock — {RQ to MPQ AQ E pb——e@ +5
As
MTCH B YO Y1.Y2 Y3 A7 1024 D7 f——
Al
1 &—— DO 0o 210 Do X0 A6 ;(D6 |—
2 @—— D1 Q1 11 a1 A2 A5 ROM D5 ——
3 &——I D2 02121 a0 Priority’ p9q x1 z0 A4 (MCM6830) pgl—y|
Interrupt Interrupt 13 Encoder Data 21 A3
Inputs < 4 &—— D3 Register a3 4 A3 256 x 4 A3 Selector D3 \
In order \ 5 @—— D4 (Mcgssoz o4 A4 HPROM. D2 X2 (MC8266) Zz2 A2 D2
. . 15
of priority | 6 @———{ D5 LRcc/Data Q5 o A5 1024 A4 z3 A1 D1 Data
7@——— D6 Register) a6 A6 D3 X3 1 A0 DO Bus
L 8 &——— D7 Q7 174 a7 ‘e
D8 osl—e E E A
Mode | I I
Reset - - -

FIGURE 4-2.1.1-1. 8 Level Hardware Prioritized Interrupt Logic

signals are tied to the D inputs of an MC8502.! In the absence of interrupts, all the inputs are low and the—IR—Q
line to the MPU is high. One or more interrupts going high causes IRQ to go low (following the next positive
transition of ¢2), thus initiating an IRQ. '

After setting the Interrupt Mask and stacking its contents, the MPU responds in the normal manner
by outputting FFF8 and FFF9 onto the Address Bus where it is decoded by the INTERRUPT ADDRESS
DECODE circuitry. The resulting decode pulses are shown in the relative timing diagram of Figure 4-2.1.1-2.

The INTERRUPT DECODE signal causes the MC8266 Data Selector to select the Priority Encoder
outputs for addressing inputs A1 through A4 of the ROM. If any address other than FFF8 or FFF9 is on the
Address Bus, INTERRUPT ADDRESS DECODE is low and the normal A1-A4 address lines are routed to the
ROM. '

The INTERRUPT ADDRESS DECODE signal is also used in generating the LATCH CLOCK
DISABLE signal. When the INTERRUPT DECODE pulses are not present, the contents of the D flip-flops in
the Interrupt Register are updated by each negative transition of ¢2. During retrieval of the current interrupt
vector, further changes on the interrupt inputs are shut out by disabling the LATCH CLOCK. The clock is
disabled by the presence of the INTERRUPT DECODE signal on the D input of the LATCH CLOCK Disable
flip-flop which causes the disable signal to go high on the next negative transition of ¢1.

On the negative transition of ¢1 following the FFF9 decode pulse the D input to the disable flip-flop
will again be low, the disable signal will go low, and sampling of the interrupts will be resumed.

When no interrupts are present, all inputs to the Interrupt Register/Priority Encoder are low and IRQ
is high. With one or more of the interrupt inputs high, the Priority Encoder translates the highest priority input
into a corresponding 4-bit output. The priority is an indicated in Table 4-2.1.1-1; I0 is the highest, 11 is second
highest, etc. The response of the Priority Encoder to various combinations of interrupts is shown in Table
4-2.1.1-1.

The A1-A4 outputs corresponding to each priority are obtained by encoding a 256 X 4 PROM with
the desired results.? The code is determined by where the vectors are to be located in memory. In this case, the

Int. Addr.
Decode

Latch Clk.
Disable

Latch
Clock

FIGURE 4-2.1.1-2. Prioritizing Interrupt Circuitry Relative Timing

The MC8502 Longitudinal Redundancy Check/Data Register is a dual-mode circuit developed for use in 9-channel magnetic tape
systems. It contains nine flip-flops and logic to detect an all zeros condition. All nine flip-flops have common reset, clock, and mode
control inputs. Each flip-flop may operate either as a Toggle (mode control high) or D (mode control low) flip-flop. The flip-flops are
edge-triggered and are updated on the negative edge of the clock input. An all zero condition in the register is indicated by alow state at
the Match output.

2A complete code listing is shown in Table 4-2.1.1-2.

4-26

TRQ vectors are contiguous with the RES, NMI, and SWI vectors as shown in Figure 4-2.1.1-3. The code that
must be generated by the Priority Encoder to accomplish this is enclosed by dashed lines in the Figure.

If a conventional 8-input priority encoder such as the MC9318 (see next section) was used only five
interrupts could be implemented without additional address decoding. This is due to the fact that three of its
inputs would, if active, cause the addresses for RES, NMI, and SWI to be accessed by an IRQ. Use of the
PROM allows any desired code and, hence, any memory locations to be selected.

In this example, addressing is shown for an MCM6830 1024 X 8 ROM assigned memory locations
FF00 to FFFF with the interrupt vectors located at the top of memory. If no interrupts are being processed, lines
AOthrough A9 of the Address Bus select individual ROM locations in the usual manner. A suitable chip enable
for locating the ROM at FFXX is developed by decoding A10-A15 and tying it to an E on the ROM. The chip

enable requires no additional logic since A10-A15 must be decoded for the interrupt circuitry anyway.

Interrupt

Priority DO D1 D2 D3 D4 D5 D6 D7 Ad A3 A2 A1 IRQ Vector Location
1 (Highest) 1 X X X X X X X 1 1 (4] [} 0 FFF8 - FFF9
2 o} 1 X X X X X X 1 o 1 1 o FFF6 - FFF7
3 0 o] 1 X X X X X 1 0 1 0 o] FFF4 -FFF5
4 [0} 0 0 1 X X X X 1 0 o] 1 (o} FFF2 - FFF3
5 o o] 0 o 1 X X X 1 o} o 0 0 FFFO- FFF1
6 [¢] 0 0 0 o] 1 X X o] 1 1 1 0 FFEE - FFEF
7 0 0 0] 4] 0] 1 X 0 1 1 o [0} FFEC- FFED
8 (Lowest) (o] o 4] o] o} o] o 1 o 1 0 1 0 FFEA-FFEB
o o]] o (4] (4] 0 4] 0 o] (o] o] 1

X = Doesn’t matter

TABLE 4-2.1.1-1. 8-Level Priority Circuitry Truth Table

4-2.1.2 13-level Prioritizing

For the 8-level prioritizing circuitry described in the preceding section, the vector addresses were
located near the top of a block of memory assigned locations FF0O to FFFF. This required decoding address
lines A10-A15; in addition, for purposes of illustration, the Interrupt Address Decode signal was generated by
doing a complete decode of the Address Bus.

In a typical application, the block memory assignments may be different and the decoding can be
simplified. This is illustrated in Figure 4-2.1.2-1 where the specific circuitry for prioritizing 13 levels of
interrupt is shown. The addressing follows the example of Section 1-1.2.1 and assigns the ROM to memory
locations C000 through C3FF by tying address lines A14 and A1S5 to chip enables on the ROM.

The requirements for decoding the IRQ Interrupt Address Decode signal are determined by the
following considerations:

(1) When the MPU places addresses on the Address Bus during interrupt sequences the vector data
is fetched from the memory locations that respond to those addresses even though they are not
actually locations FFF8 through FFFF. For example, if the MPU outputs the address FFFF (all
ones) while fetching the vector data for a Reset, in this case it is actually addressing memory
locations C3FF in the ROM since the A15 and A14 ‘“‘ones’’ on the chip enable selects the
particular ROM and the X3FF portion of the address is determined by the ones on A0-A9.

4-27

I8I7T6I5T41312T1 A4A3A2A1

ADDR
172

o

1

01to1 0
0101 0

1
1

100

1

173
174

0
000

1011
0 00O
0 001

0

175

1
1

176

0o

1

177

178

0

1001

1

0

179
180
181

0101
0

1
1

1

182

1100

1

1
000
0 01

183
184
185
186

1
1

1
1

1
1

0

1

187
188
189
190

191

1000O0O0O0

192
193

0

1

1

0

00001

194

0

1
0
0

0000
000
000
00o0
000
o0

1
1
1
1

195
196
197
198

0

1

1

[¢]

1

1

199
200
201

1
1

000
001

1

1]

001

202

203
204
205
206

207

1010

0

0
0

001
0 01

1

0

1

0000

1

208
209
210

21

0001

0

a0 11

1

212
213
214
215

000 100
001

1
1

216
217
218

0

1

219

220
221

222
223
224
225
226

0

000O00O0
0000
0001
0001

1
1
1
1

1

0

227

00100 0
001

1
1

228
229
230
231

1

0

0011
0 00O
00

1

0 01

1

1
1

232

0

233
234
235
236
237
238
239
240
241

o 1o

1

10000 1000

1

1

o]

1

1000
0 01
0 01

1
1

0

1

242

243
244

0

1

245

246
247

00

000
00 1

1

248
249
250
251

0

1

1

252

253
254
255

A4A3A2A1

I8I7I6 1541312 I

ADDR

01010110
10101
010

86
87

[}
1t 001

1

1000
1001

1
1

88

0

0

89

90
91

0

1

1

101

0101

10 0

0

92

101110

0

93
94
95
96
97

1
00000
0000

10001

0101
0

1

0

1

0

0

1

1

0

98
29
100
101

0001
001

1

00 1010

1

(4]

0

00 11
1
000
10100

1

102
103

11001
1

0

00

1

0

1
1
1

0
0
0

105

0101
0101

0

1

1

107

0

110
m

000

1
1

0000

1

1

12

0

0001

113
114
115
116

17

0011

1

0

1

118
119
120
121

1000 100

1

1

122
123
124

125
126
127
128
129

00000O0O0CO 0

1
1

1

0 00O0O0OO

1

0 00DO00O0
0 00O00O0
00001
0000
0 00O

130

131

1
1

00
0

132
133

1

1

134
135
136
137
138
139
140
141

0 0 1

1

1000
100

00O
000
000
000
000
000
000
000
0 0 1
001
0 01
0 01

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1

0

1

1
1

142
143
144

0 00

1

0000O0
000

1

145

001
00

146
147

0

0
0

0010

0 01

148

1

0

1

149

150

151

o1 1
000
o0

1
1

0 01
00

[}

1

162

00

153
154

[¢]

0 01
001 1

1
1

155

0

1

156
157

1
1

001
001

1
1

168

159

0 000O00O0

160

161

1

0 00O
000110

1
1

1

162

1

163 01000
164 0

165
166

(¢]

0

0

100 1 1

[¢]

167
168

000 1001

1

169
170
171

A4A3A2ZA1T

ADDR IBI I8 IS I3I2T1

0 00O

0 000O0O0OCOCO
000O0O0O0GO0ON"1
0 00O0O0OI1
0 00O0COCO 1
0 00O00O0

1

0
0

1

00

10

1

0000O0OT1TO01
0 00O0O0I"

1

0 00O0O0n1
0000
0000

0 01

1
1

000
001
0]
0

1

1
1

]

1

0000

10
11
12

0000

1010

00

0 0001
0000

1

0

1
1

00001

14
15
16
17
18

00001

10000 1000

00O
0 001

0001
G 01
00

0

0001

1

0

1

000
00O

19
20
21

1
1

o

000 1

011

0001
00O
000

22

0

1

23
24
25
26
27

1 000 100 1

0 001

1

100

o

0001

1

000

28
29
30
31

0001

1
00000
00001
0001
000

0001

0
0

0
0
0
0
0
0
0
0

32

1

33
34

0

1

0

1

0

1

0
0
0
0
0

35
36
37

010
1

1

0
01

0 01

38

0011

1
1

39

000 100 1
00

1

0
0

40
a1

0

42

01
Q0

o]
0

43

1

a4

a5

46

a7

110000 1000
1

1

0
0

48
49

1

000

50
51

52

53

54

56

000 1001

1
1

0

56
57

1 001

1

58

59
60

61

62

63

0

0 00O0O00O
0 00O0OC0C
0000
0 00O
000

1
1
1
1
1

64

65

1
1

0

v}

66

67

68

0

o1 1

000 1

69

1
1

000
000

70
71

0
00

1

001000
00 00

72
73

1

0

74
75
76
77

00

001

0

1
1
1

01001

0
0

0 0 1
001

78
79
80
81

0
000

1

1

0 000

1

0 01

0101

82

83
84
85

1

1010

0

TABLE 4-2.1.1-2 PROM Coding for Priority Encoder

428

(2) During system operation,k the unused lines A11 and A12 will be high only when the MPU is
processing an interrupt; otherwise the address generated would be outside (below) the highest
system assignment.

(3) If one of the lines A11-A13 is included in the decode, the MPU’s response to an IRQ can be
decoded by distinguishing between XXX8 and XXX9 and the other fourteen possibilities that
can be generated by Al through A4.

The resulting decode requirement is simply Al-A2.A3-A13, as shown in Figure 4-2.1.2-1. INTER-
RUPT ADDRESS DECODE will be high only when the MPU has put FFF8 or FFF9 on the Address Bus.

Operation of the clock disable and data selection control for the 13-level circuitry is identical to that
described in the preceeding section for the 8-level case. However, a different priority encoding method that
uses two cascaded MC9318 8-input Priority Encoders is shown (this technique can be extended to any required

ADDRESS BUS A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 Ab A4 A3 A2 Al AO
(VMA@ A58 AT40A130AT20A110A10)

Y
ROM Connection E A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

0 1 1 1 1 1 1 1 1 1 1 FFFF}FS
0 1 1 1 1 1 1 1 1 1 o FFFE

0 1 1 1 1 1 1 1 1 6] 1 FFFD}N_|
0 1 1 1 1 1 1 1 1 (o] o FFFC

o 1 1 1 1 1 1 1 0 1 1 FFFB}SWI
0 1 1 1 1 1 1 1 0 1 o FFFA

0 1 1 1 1 1 T—T—T—_b__o—{ 1 FFFQ} ;

o 1 1 1 1 11 1 0 0 | o FFF8

0 1 1 1 1 1] 1 0 1 1] 01 FFF7} 2
0 1 1 1 1 1] o 1 1 | o FFFe

0 1 1 1 1 1] 1 o 1 0 I 1 FFF5} 3
o] 1 1 1 1 1] 0 1 o | 0 FFF4

o 1 1 1 1 L 0 o 1 : 1 FFF3} 4

0 1 1 1 1 101 0 o) 1 | © FFF2

0 1 1 1 1 1] 0 0 0y 1 FFF1} 5

o] 1 1 1 1 11 o 0 0 | o FFFO

o] 1 1 1 1 1] 0 1 1 1)1 FFEF} 6

o] 1 1 1 1 11 0 1 1 1] 0 FFEE

o] 1 1 1 1 11 0 1 1 I FFED} ;

o] 1 1 1 1 11 0 1 1 0 | o FFEC

0 1 1 1 1 110 1 (o] T FFEB} 8

o] 1 1 1 1 1 L.O_.. 1 2 _ _1._] 0 FFEA

FIGURE 4-2.1.1-3. Interrupt Vector Memory Allocation

number of priority levels). The five additional interrupt register stages are obtained by using the ninth flip-flop
in the MC8502 and an MC4015 Quad D Flip-Flop.

The characteristics of the MC9318 Priority Encoder introduce several other minor differences
between the 13-level and 8-level circuits. Their operation requires active low input signals, hence the interrupts
must be active low. The OUT of the lowest priority MC9318 stage can be used to generate IRQ. EOUT of the
highest priority stage (E’OUT in Figure 4-2.1.2-1) is used for the fourth bit, A4.

The resulting truth table for this configuration is shown in Figure 4-2.1.2-2. The ‘‘substitute partial

4-29

Interrupt Address Decode:

1/2 7479 I
_ AieAZe A3 e A3 1/6 MC7404
@2 +15 (T AT3 (2 Places)
s amm A2
@ b A3 A1 A13 Address Bus
l 7 7
1/3 7427 \ (((((((((([
(3 Places) —lQ@ C Y% MC3001
R (4 Places) VMA-
i 1»‘,\5 @2
E 1024 Ef
R/W
+5 fale ’é el
A9l A9 ROM
A&j (MCM6830)
A8
7 DO [
e ‘ Alfa2|A3]Ad] A7 D1
¢ck WMTCH |-] —
Az’ B YOYivY2Y3 A6l ng D2
—— Ein 9 xo AS)
INT 134 DO Qo Do == AS D3 }—|
—_— 4
INT 12— b1 Q1f—o| D1 Qop- zo|2 Ad D4
NT 11 4{p2 Q2 py Priority X1 et 54 A8 A3)
T MC8502 Encoder A5 Selector Az D5
INT 70— D3 LrRCc/ Q3 D3 o1p— o (MC8266) 7, A2 06
- A1
NTs —{pa R':;t:tero,; o D4 (MC9318) — z3 Al D7
AT
4 L | A0
INT 8 D5 Q5 —d b5 Q2 xa by |
INT 7 —{D6 a6 —9 D6 A glaJtsa
INT6 b7 a7f—do7 ¢, Gsp 4 A
ou -
INT5 —1R8 Q8 Interrupt Vector Location
Mode RES C3FE-C3FF
TRG to MPU N1 C3FC-C3FD
- Reset SwWi C3FA-C3FB
= 1 C3F8-C3F9
=] 2 C3FG-C3F7
e = 3 C3F4-C3F5
Clk pgr " 4 C3F2-C3F3
a1 , , 5 C3F0-C3F1
INT 4 ——D1 — D1 N 6 C3EE-C3EF
| MC4015 g2 , Priority C3EC-C3ED
s P27 Quad P2 Encoder o C3EA-C3EB
— a3 D3’ a1p
INT 2 D3 9 C3E8-C3E9
iINT1——D4 F.p Q44— D4 (MC9318) 10 C3E6-C3E7
, AR 11 C3E4-C3E5
b5 Q2 12 C3E2-C3E3
+5 Reset Dé’ 13 C3E0-C3E1
D7 g GS'p—
out
¢ T |
FIGURE 4-2.1.2-1. 13—Level Hardware Prioritized Interrupt Logic
INT D7 D6’ D5 D4 D3 D2 DI’ DO D7 D6 D5 D4 D3 D2 D1 DO G'S Eout
(A4) A3 A2 A1 TRQ A4 A3 A2 At
11 1 1 0 X X X X X X X X X X X X 0 0 1 1 0 1 1 0 0 C3F8C3FO
2 1 1 1 1 4] X X X X X X X X X X X 0 1 0 0 0 1 V] 1 1 C3F6-C3F7
3 1 1 1 1 1 0 X X X X X X X X X X 0 1 0 1 0 1] 1 0 C3F4-C3F5
4 1 1 1 1 1 1 0] X X X X X X X X X o] 1 1 0 0 1 (1] 0 1 C3F2-C3F3
5 1 1 1 1 1 1 1 4] X X X X X X X X 4] 1 1 1 0 1 0 0 0 C3FO0-C3F1
6 1 1 1 1 1 1 1 1 0 X X X X X X X 1 ©0 0 0 0 ©o 1 1 1 C3EEC3EF
7 1 1 1 1 1 1 1 1 1 4] X X X X X X 1 o D] 1 (0] (V] 1 1 0 C3EC-C3ED
8 1 1 1 1 1 1 1 1 1 1 0 X X X X X 1 [¢] 1 0 0 0 1 0 1 C3EA-C3EB
9 1 1 1 1 1 1 1 1 1 1 1 0 X X X X 1 0 1 1 0 0 1 0o 0 C3EBCES
10 1 1 1 1 1 1 1 1 1 1 1 1 0 X X X 1 1] [¢] 4] (4] 1] 1 1 C3E6-C3E7
" 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X X 1 1 0 1 0 o] 4] 1 1] C3E4-C3E5
12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 X 1 1 1 4] 1] (V] 0 0 1 C3E2-C3E3
13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 4]] V] 0 C3EC-C3E1
1] 0] (4]

X = Doesn't Matter

FIGURE 4-2.1.2-2. Truth Table, 13-Level Priority Circuitry

'The MC4015 contains 4 type D flip-flops. All four flip-flops have common resets and common positive edge triggered clocks.

4-30

addresses”” that are selected during processing of an IRQ are shown in the memory map of Figure 4-2.1.2-3.
Note that low signals on inputs D5’, D6’ and D7’ of the high priority encoder stage would generate addresses in
the range C3FA- C3FF. As mentioned in the preceding section, this would cause accessing of the locations
reserved for RES, NMI, and SWI vectors so those encoder inputs are not used.

This method can be expanded as required. For example, 21 levels could be obtained by adding one
additional MC8502 register stage, one more MC9318 Priority Encoder, and one more bit of data selection.
Three-input AND gates would be required for combining the encoder outputs.

A15 A14 A13 A12 A1t A10 A9
ROM Connection E E

>
[ee]
>
~N
>
(o]
>
(4]
>
H
>
w
>
N
2
>
o

>
©
>
s
>
~
>
o
>
o
>
N
>
w
>
N
>
=}

A m a m oa A
- oed el = o -
O O = a2 a2 =

—

D s o 4 s e e & O e i m A MmO M aAm e s e a A A a o

|

|

|

|
o Y S S N W S S S S S N i S T T T T S S S
e S S S S S S S S N S S i e e e e
e S S g N N i S N N S T T T e e S S e
T S N N S S N i N S e T T T S S S e e e
S Y S S S S N O L e S S e e T . T R e I e
oo-aoo--‘oo-a-xoo-‘-oo-\aoo—\-oo'-—\oo-\-\J>
O = O =2 0O = 0O = 0O = 0O = 0 2 0 = 0 =2 0 20 -0 <20 =0 0=0-=

o

m

m

e e e e e e

FIGURE 4-2.1.2-3. Interrupt Vector Memory Allocation.

4-2.2 DIRECT MEMORY ACCESS (DMA)

In this section, three methods of implementing DMA using the MC6800 microprocessor are
discussed along with the advantages and disadvantages of each method. The methods range from completely
halting the processor in order to do the DMA transfer, to ‘‘sandwiching’’ in the DMA transfer during an MPU
cycle without reducing throughput or increasing execution time appreciably.

4-31

4-2.2.1 DMA Transfers by Halting Processor

A block diagram of a minimum system configured for a DMA channel is shown in Figure 4-2.2.1-1.
This system is shown with only four family parts for simplicity in demonstrating the DMA concept and can be
expanded to a larger system without affecting the DMA methods discussed here. The DMA interface consists
of a 16-bit address bus, an 8-bit bi-directional data bus, and the following control signals ¢2, BA or DMA
GRANT, VMA, HALT or DMA REQUEST, and R/W. The ¢2 clock occurs whether the MPU is halted or not
and is used to synchronize the DMA data.

The Bus Available (BA) signal from the MPU goes to a logic ‘‘1°* when the MPU has halted and all
three-state lines are in the high impedance state. The VMA signal is from an open collector gate and is high
when the MPU is halted. This signal can be wire-ORed with an external signal from the DMA circuitry to
enable the RAM during a DMA transfer. The HALT (DMA REQUEST) signal from the DMA circuitry
commands the MPU to halt and place all three-state lines in the high impedance state. The R/W line is a
command signal from the DMA channel to control the direction of transfer through the DMA interface. For this
system to operate correctly, the DMA circuitry connected to the MPU’s Address Bus, Data Bus, and R/W line
must have three-state outputs which are in the high impedance state when BA is low and the MPU is controlling
the Address, Data, and Control Busses. The address assignment of this system is given in Table 4-2.2.1-1.

A timing diagram of the DMA/MPU interface using this technique is presented in Figure 4-2.2.1-2.
A DMA transfer is initiated by the DMA channel pulling the HALT (DMA REQUEST) low. HALT must go low
synchronously with ¢1. The negative transition of HALT must not occur during the last 250 nsec of ¢1 for
proper MPU operation to occur. It is suggested that HALT be brought low coincident with the rising edge of ¢1.
The MPU always completes the current instruction before halting. If the HALT line is low within 100 nsec after
the leading edge of the ¢ 1 in the last cycle of an instruction, the MPU will halt at the end of that instruction (this
case is shown in Figure 4-2.2.1-2). Ifthe HALT line goes low after this 100 nsec region from the leading edge of
¢1 in the last cycle of an instruction, then the MPU will not halt at the end of the current instruction but will halt
at the end of the next instruction.

SELECTION ADDRESS AMOUNT OF
BITS DEVICE ADDRESS MEMORY

A15 A14

1 1 ROM CO00-C3FF 1024 Bytes

0 0 RAM 0000-007F 128 Bytes

0 1 PIA 4000-4003 4 Bytes

TABLE 4-2.2.1-1. Address Assignment

What this means to the DMA channel is that the time from the HALT line going low to the MPU
halting and producing a BA (DMA GRANT) will be variable depending on what instruction is being executed
at the time HALT goes low and in which cycle of that instruction HALT goes low. Since the HALT (DMA
REQUEST) signal will probably be asynchronous with respect to the instruction currently being executed, this
will result in a variable time delay from HALT going low to BA (DMA GRANT) responding by going high. The
minimum time delay between HALT and BA is shown in Figure 4-2.2.1-2 as being two cycles which would be
2 useconds at the maximum clock rate of 1 MHz. The maximum time delay would occur if the HALT line goes
low on the first cycle of a long instruction such as Software Interrupt (SWI), which is 12 cycles long. Added to

4-32

VMA —
IRQ
Start- RESET
Up |
BA DBO-DB7
¢2
DBE
2
o] >l o2
lock 1 D, | o1 MPU
I & TSC
VMA ;—D HALT
+5 V ——— M R/W
VMA V
| A0-A15
- VMA
MPU MC6800
AD-A9 A0-A9 DBO-DB7
A15 ROM
E
A14
| E €
MCM6830
AQ-A6 AO0-A6 DBO-DB7
A15 -
E E
A4 - RAM
E €
| E R/W
— E
VMA MCM6810
2
® 1
T
5
MC6820
CcSop
AO
RSO
DBO-DB7
Al
RS1
PIA £l
A4 -
cs1 RES
R/W
A15 —
cs2 IRQA
IRQB
CA1 CA2 PB CB1 CB2

Address
Bus

AO0-A15

FIGURE 4-2.2.1-1. DMA Transfers by Halting Processor

il

Parallel 1/0O
(Data & Control)

4-33

Control
Data

DMA
Interface

- T
HALT RW g%
DO-D7

isanbay
vYinNg

vev

Last Cycle
of Current
Instruction
j}———————————]
430 ns (F .
MPU ¢1 | ____l
470 ns '
MPU ¢2 |

100 ns — o |aa— —i— —>| [—100 s

HALT or
DMA REQUEST e .
)
470 n y 300 ns Max
BA or I
DMA GRANT

— 300 ns Max
A M @ &N —f /
R/W W)@ W——L DMA :)—”-(DMA (

\
/
Address x Adar)D(W—(DMA >—H—C DMA‘/\ ﬁ<
w \ERANNEIRNN\\ (o }—ff—{oma p\\5
DMA Channel

FIGURE 4-2.2.1-2. Timing of DMA Transfers by Halting the Microprocessor

the twelve cycles required to complete SWI is the one cycle required for the MPU’s address, data and R/W
signals to go into the high impedance state. In summary then, the delay time for the BA signal to go high after
HALT goes low (assuming it occurs within 100 nsec of the leading edge of ¢1) will vary from two to thirteen
machine cycles. This delay must be taken into account in the design of the DMA channel, however, it should
not present a significant problem in most systems.

The other signals shown in Figure 4-2.2.1-2 indicate the response of the MPU to the HALT
command. The VMA signal is forced low within 300 nsec of the leading edge of the ¢1 signal that occurs after
the last instruction cycle has been completed. This signal going low will prevent false reads or writes to memory
or peripherals on the MPU bus as the address and R/W lines go into the high impedance state. VMA from the
MPU will remain low as long as the MPU is halted. The address, R/W, and data lines will be in the high
impedance state when BA reaches the logic “‘1’’ state, indicating that DMA transfers can begin. Addresses,
R/W commands, and Data to or from the DMA interface are shown in the timing diagram synchronized with ¢2
to indicate the DMA transfers. The MPU can remain in the halted mode indefinitely placing no constraints on
the length of the DMA transfer.

Note that the RAM is enabled by VMA which is the output of an open collector inverting gate with
VMA (from the MPU) as its input. This VMA signal is provided to the DMA interface so that the RAM can be
enabled during the DMA transfer. During the transition into the DMA mode, the VMA signal from the MPU
was forced low (forcing VMA high) to disable the RAM in order to protect it from false writes or reads as the
address and R/W lines went into a high impedance condition. During DMA transfers, the VMA signal is
wire-ORed with a DMA controller signal to enable the RAM. In order to exit the DMA mode, the HALT line is
switched high (synchronously with the leading edge of ¢1), the BA signal returns low and the MPU resumes
control. When BA returns low, it is required that the DMA channel’s address, R/W and data lines be in the high
impedance state and that VMA from the DMA channel be high so as not to affect MPU operation.

4-2.2.2 DMA Transfers by Cycle Stealing

The previous section discussed the transfer of DMA information by completly halting the MPU
which stops program execution. This section discusses a technique of DMA transfer which slows down
program execution during DMA transfer but does not completely stop execution. The basic technique is to
“‘steal’” MPU clock cycles for a DMA transfer; this results in a apparently lower clock rate and, therefore,
slower program execution during the DMA transfer.

The block diagram of Figure 4-2.2.2-1 uses the same minimum system concept as was used in
Section 4-2.2.1 to illustrate this DMA technique. The DMA Interface using this technique is composed of the
following signals: a 16-bit Address Bus, an 8-bit Data Bus, CLOCK, VMA, Three-State Control (TSC), and
Read/Write (R/W). The CLOCK signal is an uninterrupted system clock that is used to synchronize DMA data
transfers with the execution of the MPU. The VMA signal frrom the DMA interface is wire-ORed with the
VMA signal generated in the clock circuitry to enable the RAM for either MPU access or a DMA transfer. The
Three-State Control (TSC) or DMA ENABLE signal causes the address bus and the R/W signal to go into the
high impedance state and forces the VMA signal low. This signal can also ‘‘stretch’’ the ¢1 and ¢2 clock
signals. The Read/Write (R/W) line controls the direction of the data in or out of the DMA Interface. The
Address Bus, Data Bus, and R/W signals at the DMA Interface must have three-state outputs so that when TSC
is low, the DMA signals will not interfere with normal MPU execution.

A timing diagram of the DMA/Microprocessor interface using this technique is shown in Figure
4-2.2.2-2. Assume that the clock rate is initially adjusted to 1usec and that the MPU is executing the control

4-35

7 7
IRQ
Start-
RESET
Up l =
BA DBO-DB7
Clock 2
DBE
2
a - $2
Clock 91 1
Generator s hd MPU
— TSC
VMA HALT
+5 V NMI R/W
VMA TSC AG-A15
\Y
MPU MC6800 MA
A0-A9 DBO-DB7
ROM
E
MCM6830 E
AO-A6 DBO-DB7
E E
- RAM
E E
3 R/W
= E
MCM6810
2
2
o
2
MC6820
CS¢
RSO
DBO0O-DB7
RS1
PIA E
Csi1 RES
R/W |
cs2 IRQA
IRQB
CA1 CA2 PA PB CB1 CB2
" J\-. J
Parallel 1/0O
{Data & Control)
Address Clock
Bus
AO0-A15

VMA

b

©

[a]

DMA
" Interface

1sc mw 2
mg DO-D7
o g
g »
(]

FIGURE 4-2.2.2-1. Block Diagram of DMA Transfers by Cycle Stealing

4-36

LEY

lag— 1 s Min
—
Clock
el — 4.5 us —l
]
e——
o | []
= 3 us Max .—{
DMA ENABLE
or TSC —%—50ns
— '4—500 ns Max
ADDRESS N\ N
R/W =
—— |<——500 ns Max
VMA MPU @ MPU & MPU MPU MPU MPU
VMA MPU W \ DMA/ ~ DMA z MPU w DMA/ \ DMA MPU MPU MPU MPU
MPU DMA DMA MPU DMA DMA MPU MPU MPU
Data < ® <
DBE |

FIGURE 4-2.2.2-2 Timing of DMA Transfers by Cycle Stealing

program. In order to initiate a DMA transfer, the DMA controller takes the DMA ENABLE (TSC) line to a
logic *‘1’” within 50 nsec of the leading edge of the ¢1 clock. This signal goes to the TSC input of the MPU to
command the Address Bus and the R/W line into the high impedance state. This will occur within 500 nsec of
the rising edge of the TSC signal. The DMA ENABLE signal also goes to the clock generating circuitry to
control the ¢1 and ¢2 clocks to the MPU as shown in Figure 4-2.2.2-2. ¢1 must be held in the high state while
DMA ENABLE is high and for one CLOCK cycle after DMA ENABLE goes low. ¢2 is held in the low state
while DMA ENABLE is high and for one CLOCK cycle after DMA ENABLE goes low. Neither ¢1 nor ¢2 to
the MPU can be held high for longer than 4.5 usec because of the need to refresh dynamic registers within the
MPU. This constraint places a maximum time limit on DMA ENABLE being high of 3 usec using this
technique, so that the ¢1 high time will not be greater than4.5 usec. DMA ENABLE may occur on the leading
edge of any ¢1 signal and MPU execution will be stopped regardless of the instruction currently being
executed. This feature provides a fast and constant response of the MPU to the DMA ENABLE line.

The DMA address, R/W, and data signals can be placed on the MPU bus 500 nsec after DMA
ENABLE (TSC) goes high (this is the time required for the MPU outputs to go to the high impedance state). In
order to maintain a fully synchronous system, the DMA data is shown transferred during the CLOCK high time
inFigure 4-2.2.2-2. The signal labeled VMA is from the MPU and is forced low when TSC is high. VMA is the
output of a three-state or open collector inverter which normally follows VMA but can be pulled low by the
DMA controller to enable the RAMs during the DMA transfer. DBE of the MPU is driven by the ¢2 clock and
enables the MPU data buffers only during the MPU cycles.

In the timing diagram, only two DMA transfers (of two bytes each) are shown before the full
execution rate of the MPU is resumed for simplicity in drawing the figure. There is no limit to the number of
DMA transfers that can be made using this technique, which can range from one byte transfers (by shortening
the DMA ENABLE high time to 2 usec and only pulsing it once) to a continuous average DMA transfer rate of
one byte every 2.5 usec (by pulsing DMA ENABLE high for 3 usec at a periodic rate of 5.0 us). By using the
continuous DMA transfer mode, one can handle a DMA channel with a maximum date rate of one byte every
2.5 ps and still execute the control program at a minimum rate of one cycle every 5.0 us.

4-2.2.3 Multiplexed DMA/MPU Operation

This method of implementing DMA results in the highest DMA transfer rate and, at the same time,
allows the highest MPU execution rate when compared to the previous DMA techniques discussed, but requires
higher speed memories.

A block diagram of this technique is shown in Figure 4-2.2.3-1. The three-state buffers and
transceivers shown are enabled when the control signals are high and provide the high speed multiplexing
required to transfer DM A data to the memory during ¢1 and to allow MPU access during ¢2. The signals at the
DMA INTERFACE are the following: 16 bit Address bus, 8-bit bidirectional Data Bus, Read/Write (R/W),
Valid Memory Address (VMA), DMA SYNCH and the DMA CLOCK.

Figure 4-2.2.3-2 is a timing diagram of a multiplexed DMA/MPU operation. C1 and C2 are positive
enables for the three-state buffers and transceivers and bracket the ¢1 and ¢2 signals so that the buffers are out
of the high impedance state before either ¢1 or ¢2 goes high. The MPU operation has been slowed down to a 1.2
s clock rate in order to show the timing requirements for a specific memory, the MCM660S; in general, the
MPU clock rate will have to be adjusted for the speed of the memory devices dused. This timing diagram
assumes that the memory cycle is equal to or less than 560 nsec. During ¢ 1, the buffers associated with C1 are

4-38

6t

PIA, ACIA, ROM

2\

C1

NS

3-State Transceiver

RAM
Memory

AN

Addresses, R/W, VMA, Clock

c2
[}
>
‘®
@
S
DATA =
@
(=)
]
@
(V]
Cc1 c2
®1
MC6800
Ciock 02 Microprocessor
C1 c2 HALT = "7
TSC ="'0"
DBE = ¢2
NMI = 1
o
E
>
7]
2
S
@
(V]
c2

N

PIA, ACIA, ROM

3-State Buffer

C1

DMA

INTERFACE

FIGURE 4-2.2.3-1. Multiplexed DMA/MPU Operation

DMA
DATA

DMA ADDR
R/W, VM1
DMA Cilock

1L> DMA Synch

I‘ 600 ns ’l

Cc1

ja— 600 ns ﬁ>|

c2

fe— 560 ns >

1

. 560 ns D'
$2 l

Address
R/W, VMA

Data Bus
Memory Write & & DMA

TR

FIGURE 4-2.2.3-2. Timing of Multiplexed DMA/MPU Operation

shaliati

Data Bus
Memory Read

enabled and the buffers associated with C2 are strobed into the high impedance state. The DMA SYNCH signal
(C1) causes the DMA channel to place valid addresses, R/W, VMA and Data signals on the DMA INTER-
FACE. When C2 goes high, the buffers from the DMA Interface are switched to the high impedance state and
the MPU buffers are strobed on, applying the MPU’s address, R/W, and VMA signals (which become valid
during ¢ 1) to the memory. The Data Bus signals from the MPU are applied to the memory at the leading edge of
C2, however, the Data Bus signals do not become valid until 200 nsec after the leading edge of ¢2.

By multiplexing in this manner, the MPU will have one ¢2 cycle every 1.2 us and the DMA channel
can have access to the memory every 1.2 us during ¢ 1. This concept is not limited to DMA channels alone. For
example, a multiprocessing system with two MPU’s accessing one memory system could be implemented by
connecting another MPU to the DMA INTERFACE. The second MPU will execute during the high portion of
¢1 in place of the areas marked DMA on Figure 4-2.2.3-2.

Figure 4-2.2.3-3 details the timing interface with a memory device that is capable of meeting the
speed requirements dictated by a 560 nsec memory system cycle time. This memory device is the MCM6605, a
4K X 1 dynamic RAM, which has an access time of 210 nsec and a Write Cycle Time of 490 nsec. Only the
timing for the MPU data transfer is shown, however, the same timing would apply during ¢1 for a DMA
transfer. The address bus becomes valid 30 nsec (the delay of the bus buffers and transceivers in responding to
the C2 signal) after the leading edge of C2. Addresses will remain valid until after ¢2’s negative edge, however,
they are only required for 60 nsec after the leading edge of CE to the memory as they are latched on the memory
device. 100 nsec is allocated for delays in the memory system to receive the address, drive the memory array,
and decode and drive the R/W and CS inputs of the memory array.

The CE signal is created from ¢2 when the memory system has been selected by the Address Bus,
and is delayed 180 nsec from the leading edge of ¢2. The CE signal remains high until the trailing edge of ¢2,
creating a 380 nsec CE pulse which is 50 nsec longer than the 330 nsec minimum specification of the
MCM6605.

4-40

Iq 600 ns L
Cc1
N
600 ns "
c2
e 560 ns >
ey
= 560 ns >
¢2
——I je—— 30 ns
MPU Address
Bus, VMA, R/W \ N
—.{ l‘— 100 ns
MCMGE605 Address,
R/W, CS Inputs
D'd 380
L.‘180 ns ne >|
MCM6605 CE
Input
190 ns 190 ns
MCM6605 \
Data Bus
@
S 40 ns—" I‘mﬁ‘
2 \ weu
8 Data Bus
1o 200 ns,
® 360 ns
2 H—h’d—— ———D‘
3 (MPU
Iy Data Bus
=
2 40 ns-—.' ‘4— 320 ns
MCM6605
Data Bus
N .
m Not Valid

FIGURE 4-2.2.3-3. Timing of Multiplexed DMA/MPU Operation Using MCM6605 4k RAM

During a Read cycle, data is specified to be valid 190 nsec after the leading edge of the CE signal,
assuming that the addresses are valid 20 nsec before the CE signal (which is the case here). Assuming a 40 nsec
delay between the data lines of the memory array and the MPU data bus results in 150 nsec of valid data before
the trailing edge of ¢2. This exceeds the MPU requirement of 100 nsec by 50 nsec. In a Write cycle, the data is
valid on the MPU Data Bus within 200 nsec of the leading edge of ¢2. Again, assuming a 40 nsec delay
between the MPU data bus and the data lines of the memory array results in 320 nsec of valid data before the
trailing edge of CE. This exceeds the minimum Diy stable requirement of the 4K RAM (160 nsec) by a factor of
2.

This timing has been based on the MCM6605, which is one of the faster MOS memories available.
Even with this memory, the processor is required to run slightly slower to avoid exceeding the memory’s speed.
Many other timing diagrams could be drawn for the variety of memory devices available but the exact system
implemention depends on the following considerations: DMA channel speed requirement, MPU execution rate
requirement, and the speed of memory devices available.

4-41

4-2.2.4 Summary of DMA Techniques

Table 4-2.2.4-1 summarizes the DMA techniques previously discussed plus a comparison with a
technique of bringing the data in through a PIA under software control, which is described in Section 5-4 on the
Floppy Disk Controller design.

MPU PROGRAM HARDWARE
TECHNIQUE MAX DMA CHANNEL RATE EXECUTION RATE COMPLEXITY
Halt Processor 1 byte/1ust 0 Lowest
Cycle Steal 1 byte/2.5us 1 cycle/Sus Medium
Multiplexed DMA 1 byte/1.2us 1 cycle/1.2us Highest
Software/PIA 1 byte/14 us Dedicated to service Lowest
DMA Channel

1Limited only by memory speed.

TABLE 4-2.2-4.-1: Summary of DMA Techniques

The first DMA technique is to halt the processor and transfer the DMA data at the maximum rate the
memories can handle. This technique has the advantage of requiring the least amount of hardware of the
techniques discussed, but has the disadvantage of stopping program execution. The second technique of cycle
stealing is a compromise between DMA transfer rate, MPU execution rate, and hardware cbmplexity. The
MPU execution time and the DMA transfer rate can be maximized using the third technique with an increase of
system hardware complexity and memory speed by using a multiplexing technique for DMA. The Software/
PIA technique is based on the data being brought into memory through a PIA or ACIA interface under MPU
software control. Using this technique, the MPU can be used at full capacity to service a data channel with a
date rate of approximately 1 byte every 14 us.

This brief description of DMA techniques is intended to provide a basic understanding of how the
various control signals of the MPU can be used to implement a DMA channel. Each system design will involve
different tradeoffs in order to satisfy the specific system requirements.

4-2.3 AUTOMATIC RESET AND SINGLE CYCLE EXECUTION CIRCUITRY

In an MPU based system where a manual reset is not desirable (manual reset can be accomplished
with a switch'and a debounce circuit), such as a remote peripheral controller, an automatic RESET signal must
be provided. A circuit designed to accomplish this must satisfy the two start up criteria:

(1) It must insure that the power supply to the MPU has reached the minimum required operating
voltage of 4.75 Vdc.

(2) The RESET line must then be held low for a minimum of 8 complete clock periods.

Of the many ways in which these criteria can be met, the circuit shown in Figure 4-2.3-1 is among the cheapest
and simplest.

The MC1455 TIMER MODULE provides the delay necessary to complete a minimum of 8 clock
cycles with the R2C: time constant after the R1C1 time constant input has triggered the device insuring that VCC

442

v

All resistors are 10% % W carbon
all capacitors are ceramic

Vee

RESET Inputs «ag§

Maskable Interrupts —b—-—‘

Non-Maskable Interrupts —{fgm—u~_g@-

®
&1 Flip-Flop

——— Ccik

Output =i
5 .
~—— o Input

Halt Inputs

*HALT may be tied high similarly to IRQ

-and NME as long as the HALT circuitry

will not allow the HALT transition to
occur during the last 250 ns of ¢1

FIGURE 4-2.3-1. Automatic Reset and HALT Synchronization

8
4 R1
RST VCC 2
Trig]
Thres
| DScRaG. o
p—— 40
_{Vss O Reset fm——m—o—] out
2 Halt TSC 32 MC1455
38
N.C. 1/6 MC7405
43 d o1 Gnd CV
—1] IRQ 02 E 37 1
5 CJvMA DBE[36 . l 5
6 —
i INTYTRRR N} 35
C3
7] BA R/W D 34
.
| Vee DO 3 33
RESET Circuit for Automatic
9 ™ A0 ° D1 F 32 Power on RESET or
10 d A1 S p2l 31 Power Failure Restart
@
11cdaz 8 b330
S
12 A3 D4 29
13 3 A4 D5 B 28 R1=1Megn}
C1=.1uf Delay for a
14] A5 D6 |3 27 R2 =1 Mfs(;“ﬂ 0 } Minimum of
C2=.4u x 1M 8 Clock
15] A6 D7 A 26 C3 =.1puf Periods
16 [A7 A15 [25
17 &3 A8 A14 3 24
18] A9 A13 3 23 Note: A RESET switch may be used where
automatic operation is not required
19 [A10 -A12 ;22
21 v
20 [A11 Vss cC
€L ¢
— +5 + 5% L
{ ¢
B ¥
d = }
LI 4 ’ ST
5 ms 400 ms
Time ————{i»

has reached the minimum level. The particular RC values shown were chosen to be used with a crystal oscillator
clock circuit which has a start-up time of approximately 100 ms. A 400 ms time out was used to cover the
tolerances of the components used with room to spare. In an application requiring minimum reset delay, a
counter could be used to determine when the 8 clock cycles were complete.

The interrupt inputs, IRQ and NMI, need not be tied high if they are not used due to internal pull up
resistors, but greater noise immunity will be had if they are tied high with a 5.1K() resistor. In wired-or
interrupt applications, a pull up resistor of 3.3K() will provide optimum device operation.

The HALT input must not make a transition during the last 250 ns of ¢1. If this input is to be used in
applications requiring the MPU status be saved (most applications), it must be synchronized with the leading
edge of ¢1 or the trailing edge of ¢2. A flip-flop will accomplish this synchronization, or the circuitry
generating the HALT request may use the system clock and not require extra hardware. This input also may be
wire-ORed using an external 3.3K(} pull up resistor.

Single instruction operation, which is useful during debug, is accomplished by holding the HALT
high for one ¢1 clock cycle (Figure 4-2.3-2).

2
1 ~ ?_‘
Non Overlapping Clock
’. r—‘L Is Exaggerated
2 l_
92 &

HALT

_% ? For Single Instruction

Operation ONLY
-— No MPU Activity —{jegg————————— Execute One Instruction 4—_"

FIGURE 4-2.3-2. Single Instruction Timing

The circuit and timing diagrams of Figure 4-2.3-3 show how the single instruction execution can be
accomplished in conjunction with the HALT input restrictions.

When the GO/HALT switch (S2) is in the GO position, A will be low after the first ¢1 clock
causing the HALT input to be high. When the GO/HALT switch (S2) is in the HALT position, A will be high
after the first ¢1 clock. Since S1’s normal position causes C tobe low, signal B willbe high. A and B
high cause the HALT to go low halting MPU activity.

When S1is pushed, C goes high allowing the next positive ¢1 transition to clock F1. Since the J
and K inputs of F1 are 1 and O respectively, this clock will cause D togohighand B togolow. TheJand K
inputs of F1 are now both 1. The next positive ¢1 transition will cause D to go low and B to go high
clocking F2. J of F1 now goes low. With both J and K of F1 low, any further clock transitions will cause no

change in the outputs until C isagainmadetogolow. A and B are NANDed to produce the HALT input
signal.

4-44

Vee

S1 is a Momentary
Contact Push Button
Switch

10k

Vee
% 1K
C I <
5
2 6
Step One Instruction CLR CLR
When §2 in HALT 14 12 D 7 L9
J Q J
1
P1 l——OjCLK 7473 —Oj CLK
Fi F2
3 = —
7400 k aps] PRy
E
Vce
+5
1K
10 13 B
9 7400 TO HALT
Q Of MC6800
A
11
S2 Toggle CLK
Switch
G
s2 o 12 D -8 Timing for GO to HALT/one instruction
m 10k %7479 1 I | l I l
Vce

-~

(L J)‘
52 I i

Timing for HALT to GO

((L
&1 |_l ﬂ l—l A l‘f{ 1]
) —f]
S2 ¢ ___H_]
(L ([
1A

A_—l‘_____ B BL | l

HALT GO

L
—r

HALT r
Execute One
GO .l - .| - Instruction > I - HALT —

HALT

FIGURE 4-2.3-3. Single Cycle Instruction Execution

4-45

4-2.4 INTERVAL TIMER

A hardware interval timer circuit can be used to provide the MPU system with timing interrupts that
are under program control. This allows the system to perform other functions while long critical timing
functions, e.g., disk head step time during seek, printer line feed solenoid hold period, cassette gap and record
length, etc., are performed by the interval timer. An interval timer using an MC6820 PIA to interface to TTL
timing circuitry shown in Figure 4-2.4-1.

Table 4-2.4-1 shows how the interval timer of Figure 4-2.4-1 is programmed. An 8 bit binary count
(COUNT) is preset into the MC74455 up/down counter from Output Register B of the controlling PIA (If a
MC74454 counter was used, a 2-digit BCD value may be used). The counter then counts this value down to
zero using the clock rate provided by the programmable divider circuits. When the counter reaches O, the SEO’
output triggers the CB1 input of the PIA generating an interrupt to the operating system.

CB1 [wal
PBO LI o
2
1 D1
3
I 2 D2
[29]
4
8 3 D3
= 5
4 D4
5 84 ps 0
6 7 o6 §
8
7 D7 g
9
cB2 PRST
= Ill‘———10 SET
PRESET(Load) I 11
J ||l-—-— UE
13
T T
14
Clock
— | 15
SEO
o=
14
1 z
PA ¢ A
o 12
I 1 s B MC9312
3] 2 c
b 10
3 E Xg Xgq X3 Xo Xq XgXg X7
- —
| I | 9 8 4 13 12 I 4 13 12
o1 3 3
MC74452 MC74452
Clock
In 1 2 14 15 1 2 14 15
I I—L———{Il I — i

FIGURE 4-2.4-1. Interval Timer

4-46

PAQ-PA3 CLOCK INTERVAL

b3 [b2 [b1] bo FREQ TIMER DELAY

00|00 0 -

007101 100 Hz COUNT X 10 ms

00 1 0 1 KHz COUNT X 1 ms

0| 01 1 10 KHz COUNT X 100us

0|1 0| O 100 KHz | COUNT X 10us

0] 1 0] 1 1 MHz COUNT X 1us

0 1 1 0 0 —

01 1 1 0 -

1 0|0]| O 0 —

Count = Binary Value of PBO — PB7

01800 ® |nterval Timer 8-Bit Prescale Constants
01800 0005 o1uUs EQU 5 1 Microsecond Clock
01800 0004 010US EQU 4 10 Microsecond Clock
01800 0003 0100US EQU 3 100 Microsecond Clock
01800 0002 0oi1Ms EQU 2 1 Millisecond Clock
01800 0001 010MS EQU 1 10 Millisecond Clock
01801 ® Interval Timer 16-Bit Prescale Constants
01801 0500 S1US EQU 1280 1 Microsecond Clock
01801 0400 S10US EQU 1024 10 Microsecond Clock
01801 0300 S10PUS EQU 768 100 Microsecond Clock
01801 0200 S1MS EQU 512 1 Millisecond Clock
01801 0100 S10MS EQU 256 10 Millisecond Clock
01900 5000 ORG 15000 10 Millisecond Clock

TABLE 4-2.4-1. Interval Timer Programming Chart

The programmable divider uses the PAO-PA?2 lines of the PIA to control the MC9312 8-channel data
selector which acts as a single pole 8 position switch. A 4 decade divider chain is provided by the 2-MC74452
dual decade counters. The input clock (¢1, nominally 1 MHz) and all 4 decade outputs (100 KHz, 10KHz, 1
KHz, 100 Hz) are provided as inputs to the data selector. Table 4-2.4-1 shows the various data selector output
frequencies and the resulting delay generated. The binary value of COUNT is preset into the MC74454 counter
as the starting point of the count down. The counter counts down at the rate determined by the code in PAO-PA3
until the zero state is reached at which time SEO goes low causing a MPU interrupf. A one written in bz of
Peripheral Register A causes PA3 to go high, disabling the clocks to the MC74455 and the interval timer. The
timer may also be disabled by selecting a grounded input code on the 9312 as noted by ‘‘0”* clock frequency in
Table 4-2.4-1.

Figure 4-2.4-2 shows examples of software control of the interval timer hardware in Figure 4-2.4-1.
In these examples, it is assumed that the PIA’s are already intialized to provide PBO-PB7 and PAO-PA3 as data
output lines (ones in the Data Direction Registers). In the first example, the control registers for the A and B
sides of the PIA are initialized to provide access to Peripheral Register B, to provide a negative pulse on CB2
when the B Data Register is written into, and to cause an interrupt on the IRQ line when CB1 sees a negative
transition. Control Register A is set up to provide access to Peripheral Register A. The clock rate of 1
millisecond is binary 0010 or decimal 2 from Table 4-2.4-1 and is stored in XP2DRA (Peripheral Data Register
A) which outputs 0010 on PAO-PA3 selecting the clock rate. The counter value of decimal 236 is stored into
XP2DRB (Peripheral Data Register B) causing binary 1110 1100 to appear on PBO-PB7 and CB2 to pulse low,

4-47

** 236 MS TIME OUT USING 8 BIT PRESCALE

LDAA #%00101101 PRB ACCESS, CB2 PULSE LOW, CB1 {

STA XP2CRB STORE IN CONTROL REGISTER B

LDAA #%00000100 PRA ACCESS

STA XP2CRA STORE IN CONTROL REGISTER A

LDAA #C1IMS CLOCK RATE

LDAB #236 COUNTER VALUE

STAA XP2DRA OUTPUT RATE TO PAO-PB3

STAB XP2DRB OUTPUT COUNTER VALUE TO PBO-PB7
C1MS EQU 2 1 MILLISECOND CLOCK RATE

** 236 MS TIME Ol..JT USING 16 BIT PRESCALE

LDAA #$0010101 PRB ACCESS, CB2 PULSE LOW, CB1 ‘,

STA XP2CRB STORE IN CONTROL REGISTER B

LDX #S1MS+236 LOAD INDEX REGISTER WITH S1MS+236

STX SP2DRA RATE TO PAO-PA3, VALUE TO PBO-PB7
S1TMS EQU 512 1 MILLISECOND CLOCK RATE

FIGURE 4-2.4-2. Timer Software Examples

thereby, presetting the MC74455 counter. CB1 is monitoring the SEO output of the counter waiting for a low
transition indicating that the counter has reached the zero state, resulting in the required 236 msec delay.

The second example uses different software code to arrive at the same result. The initialization of the
PIA’s is the same as discussed previously. In this case, the index register is used to form a 16-bit word which is
then loaded into PRA and PRB. Address line AO is connected to RS1 and A1 is connected to RSO of the PIA so
that PRA and PRB are consecutive memory locations. The 16-bit word is formed by loading the sum of S2MS
and decimal 236 into the index register. Note that SIMS always will occupy XH and the offset (which has to be
less than 255) will always occupy XL of the index register. By storing this value to XP2DRA (Peripheral
Register A), SIMS will be loaded into PRA and 236 will be loaded into PRB (the next memory location). This
technique of connecting the PIA for adjacent Peripheral Reg. locations and using the Index instructions to store
two bytes at a time produces the same result as the previous example with less code.

4-2.5 MEMORY SYSTEM DESIGN
4-2.5.1 Interfacing the MC6800 with Slow and Dynamic Memories

There are many different system configurations utilizing the MC6800 microprocessor (MPU) with
memories that are not a part of the M6800 family. In many applications, the most cost effective system will use

memories that are slower than the 575 ns access time required by the MC6800 running at maximum speed or
will be of the dynamic type so that the refresh requirement of the memory will have to bé handled by the system.

448

The purpose of this section is to discuss methods of operating the MC6800 with these two classes of memories
and to describe the operation of the MC6800 in relationship to memory usage in enough detail so that the user
can develop system configurations using slow and/or dynamic memories.

The MC6800 microprocessor uses two non-overlapping clocks to time the execution of the program
by the MPU. Figure 4-2.5.1-1 details the specification of the clock requirements for the M6800 family. The use
of dynamic registers inside of the MC6800 places the following timing restriction on the clock waveforms. The
clocks can be held in one state for a maximum of 5 us without loss of the information contained in the dynamic
registers.

In Figures 4-2.5.1-2 and 4-2.5.1-3 are the timing diagrams of a M6800 Read and Write cycle. As
can be seen from these timing diagrams, during ¢1 control lines (address, R/W and VMA) are placed valid on
the MPU bus and during ¢2, data is transferred between the MPU and memories or peripherals.

The minimum cycle time is 1.0 usec and the following control signals are valid 300 nsec after the
leading edge of ¢1: R/W (TASR), address lines (TASC), and VMA (TVsC). During a read cycle, the data must be
valid on the data bus 100 nsec (TDSU) before the trailing edge of ¢2, allowing 575 nsec for memory or
peripheral access time (TACC) assuming a rise time on the clock waveform of 25 nsec. During a write cycle, the
timing is the same for the control signals; the MPU places data to be written on the data bus within 200 nsec
(TASD) after the leading edge of ¢2 and will hold the data valid for a minimum of 10 nsec (TH) after the trailing
edge of ¢2. This produces a minimum of 280 nsec (470 + 10 —200) of valid data (TDATA vALID) available to be
written into the memory or peripheral. Many memory or peripheral devices including the M6800 family
devices can meet this timing requirement and their use poses no problems.

SLOW MEMORY INTERFACE

The following discussion will describe some techniques that can be used to interface the MC6800
with memories or peripherals that have an access time slower than 575 nsec and/or require data valid during a
write operation for longer than 280 nsec. The basic technique of using the MC6800 with slower memories is to
lengthen or stretch ¢2, the data transfer portion of the MPU cycle. ¢2 can be stretched to a maximum of 5.0
usec, allowing use of memories with an access time of 5,105 nsec (575 + 5000 —470) and a write data valid
time of 4,810 nsec (280 + 5000 — 470). Operation of the MPU at these speeds is slow enough for the vast
majority of memory or peripheral devices on the market today. Operation with a slower device than can be
accomplished by stretching ¢2 to 5 usec is possible by using the interrupt feature of the MC6820 Peripheral
Interface Adapter and treating the extremely slow memory as one would a slow peripheral.

There are two ways to implement the stretching of ¢2 to accommodate slower memories. The first
and the simplest method is to stretch ¢2 every cycle regardless of whether the current cycle is an access to slow
memory or not. ¢2 should be lengthened by the amount the access time of the slowest peripheral or memory
exceeds 575 nsec (TACC of 6800). Examples are shown in Figures 4-2.5.1-4 and 4-2.5.1-5 for a slow memory
with access time of 1000 nsec with ¢2 increased by 425 nsec (1000-575). The cycle time of the MPU has now
become 1.425 usec, resulting in slower program execution by about 30% due to the slow memory. The
advantage of this approach is that it is the simplest to implement in hardware (only a change in the clock
waveforms is required). The disadvantage is the reduction of execution time and corresponding reduction in
data throughout.

If the MPU is servicing several slow peripherals, the reduction in MPU speed may not affect system
operation. However, in many systems such as real time control, the MPU speed is critical to system operation
and a 30% reduction would be undesirable. The second method of operation with slow memories that has a

4-49

— — —Vos

— Vjhc MIN
— —Vos
Tos

OVERSHOOT

Tos

—_ — —VOs
= T ViLc MIN

— — —Vos
UNDERSHOOT

CHARACTERISTIC SYMBOL MIN TYP MAX UNITS
Input High Voltage ¢1, ¢2 VIHC Vce-0.3 — Vce + 0.1 Vde
Input Low Voltage ¢1, ¢2 ViLc Vss-0.1 — Vss + 0.3 Ve
Clock Overshoot/Undershoot Vos Vde
Input High Voltage Vce-0.5 Vcec = 0.5 Ve
Input Low Voltage Vss-0.5 Vss + 0.5
Input Leakage Current ¢1, ¢2
(VIN = 0t05.25 V, Vcc = MAX) IIN — — 100 ua
Capacitance
(VIN = 0, TA = 25°C, f = 1.0MHz) CIN 80 120 160 pf
Frequency of Operation f 0.1 — 1.0 MHz
Clock Timing
Cycle Time teye 1.0 — 1.0 MSs
Clock Pulse Width
(Measured at Vcc-0.3 V) ¢l PWoH 430 — 4500 ns
d2 450 — 4500 ns
Rise and Fall Times ¢1, ¢2 tr, tf 5 — 50 ns
(Measured between
Vss + 0.3 V and Vcc-0.3 V)
Delay Time or Clock Overlap td 0 — 9050 ns
(Measured at Vov = Vss + 0.5 V)
Overshoot/Undershoot Duration tos 0 — 40 ns
Clock High Times tut 940 — — ns

FIGURE 4-2.5.1-1. MPU Clock Waveform Specifications

4-50

’/— Start of Cycle

teye
&1 Vee -0.3 V \
—_—a|03V
— |-t
2 —\ / 0.3 \x
< TAspR—> 24V
20V
R/W
[U— 24V
Address 2.0 Vo iR
From MPU o8 v 0.4V
fe—— T ASC——
20V 24V
VMA
Tvsc Tacc e Tpsy— [+—TH
Data 20V 24V
From Memory
or Peripherals 08 V 0.4V
NN Pata Not Vatid
FIGURE 4-2.5.1-2. Read Data From Memories or Peripherals
/——— Start of Cycle
Teye >
o1 [Vee - 0.3V \ /
0.3V
— .t
Vee - 0.3V
” Y,
je— T —
AR - 2.0 V
R/W
08V 0.4V
24V
Address 20V \
From MPU 08 Vv 0.4V
+— Tasc—* :
20V 2.4V
VMA
o8v
la— Tygc— le— T Asp—™ TH— [a—
24V
20V "
From MPU 08V e 04V

DBE = ¢2 \

2‘44\//

m Data Not Valid

FIGURE 4-2.5.1-3. Write Data to Memories or Peripherals

4-51

TeH

0.4V

’/—— Start of Cycle

teye

o1 Z Vce -0.3 Vv \
103V

— -1

=\ / N

|e——T AgR—
20V 24V
R/W
— 24V
Address 2 gV VRSN
From MPU g8 v k 04V
—_— p .
20V 2.4V
VMA
re—Tvsc Tacc Tpsyu—s (+—TH
Data 20V 24v
From Memory
or Peripherals 08V 0.4V
m Data Not Vatid
teye = 1.425 us ¢1 PWg 1y = 430 ns Min
Tasa = Tasc = Tvsc = 300 ns Min 91 PWgoH = 895 ns Min

Tacc = 1.0 us Max
Tpsyu = 100 ns Min

FIGURE 4-2.5.1-4. Read Cycle With 1.0 us Memory

4-52

1

¢2

R/W

Address
From MPU

VMA

Data
From MPU

DBE = ¢p2

/—— Start of Cycle

7
/
é

teye = 1.425 us
TASR = Tasc = Tvsc = 300 ns Max

Tasp = 200ns

Data Not Valid

$1 PWQg =430 ns Min

Max

FIGURE 4-2.5.1-5. Write Cycle With 1.0 us Memory

$2PWo=TgH = 895 ns Min

teye >
Vece -0.3 Vv
03V Z cc \ /
|
— et
Vee - 0.3V/
ja—T —
ASR \ 2.0V
0-8 V 0.4 V
— e I 2.4V
20V
08V - 0.4V
20V i ASC —™ \ 2.4v
08V
la— TygCc—» re— T ASD—™ TH——] |——
24V
08V ~— 0.4V
2.4V \
/] osv
TeH

smaller reduction in MPU execution time involves the use of a Memory Ready concept. In this configuration, a
MEMORY READY signal is used between the slow memory and the MPU clock circuitry to indicate that a
slow memory has been accessed. This signal goes low long enough for data to become valid out of the slow
memory. While MEMORY READY is low, ¢2, is stretched or lengthened as shown in Figure 4-2.5.1-6. This
technique only slows execution of the processor when the slow memory is being accessed. The amount by

which the throughput of the MPU is reduced due to the slow memory is directly proportional to the number of

slow memory accesses and can be evaluated for each system configuration. Memory devices do not inherently
provide a MEMORY READY type signal; this signal must be generated by the interface circuitry associated

with the slow memory system.

MPU ¢1

MPU ¢2

Memory Ready

I

|

L

FIGURE 4-2.5.1-6. Effect of MEMORY READY on Clock Signals

4-53

[L
—

I

A block diagram of a generalized MPU to memory interface is shown in Figure 4-2.5.1-7. The
address and control signals are shown buffered from the MPU bus to increase fanout (in a small system, this
may not be required). The low order address lines (AO to A9 for a 1K memory) and the R/W signal are routed to
the memory devices directly. The high order address lines, VMA, and ¢2 are decoded to select this memory
system using the Chip Select input of the memory devices. All high order address lines may be decoded,
however, in many small systems, this decoding logic may be eliminated by selecting the memory devices with
only one or two of the high order address bits. By not decoding all address lines, multiple areas of the 65K
address map are selected at the same time requiring careful assignment of addresses for memory and peripherals
(see the minimum system discussion in Chapter 1 for further explanation). The data buffers may be required for

AP —
. Low Order
Address Lines
. M A
(A0 — A9 For A emory Array
. Address 1K of Memory)
. Buffers
® High Order
. N
A15 Address Lines
*
R/w* Ts ?
R/W—@{ Control ——J *
Signal VMA_ | Memory
VMA —pm{ Sig ————
e Buffers ¢2 Decode
o P2 —f- | ogic
D *
% LER]
Pulse »
D¢ —m > Generator Memory Ready
.
. * %
° Data
. Buffers Input and Output Data Lines
.
.
D7~ .

*Optional Depending on Size of MPU System
**Required For Memory Ready Feature
***Can Be Replaced by Muitiple Chip Select Inputs on Memory Devices

FIGURE 4-2.5.1-7. General MPU to MEMORY INTERFACE

system fanout considerations or may be required to combine the separate data input and data output lines found
on many memory devices into bidirectional data lines as required by the MPU. If the memory devices chosen
are not fast enough to meet the MPU timing requirements at maximum operating frequency of 1 MHz, pulse
generating circuitry can be added to provide the MEMORY READY signal. This signal can be triggered by the
Chip Select decoding logic to stretch ¢2 of the current cycle long enough to allow proper operation of the slow
memory devices.

4-54

DYNAMIC MEMORY INTERFACE

All dynamic memories have the basic characteristic that they require periodic refreshing of their data
storage elements (usually capacitors). Most dynamic memory devices handle this refresh requirement by
performing 32 or 64 refresh cycles every 2 msec. During these refresh cycles, the memory is not available for a
Read or Write cycle from the system bus (by MPU or DMA). The ‘‘memory busy’’ period for most dynamic
memory devices is of short duration, normally 1-5% of the total time.

The simplest method for handling this refresh requirement is to steal MPU cycles in order to refresh
the memory. The effect of the stolen processor cycles on system operation is to slow program execution or data
throughput. Figure 4-2.5.1-8 shows the dynamic memory interface and the clock waveforms associated with a
cycle steal configuration. During ¢1, address control signals are set valid by the MPU in preparation for the

[0}] Address and
> Control Bus
#2 MC6800
AN
1 9
Clock 3} Dynamic
Circuitry] Memory
©
—¢$2 Q
[)

v

Refresh Request

Refresh Grant

Memory Clock

MPU Bus ¢1

]
N L]
wosre [[] 1

Occurs Every 62.5 us

Refresh Grant I |
Memory Clock | LT LT 1

Don’t Care

LI
|

|

N
)

FIGURE 4-2.5.1-8. Dynamic Memory Interface

4-55

data transfer during ¢2. By stretching or lengthening the ¢1 portion of the cycle, program execution is delayed,
allowing memory refresh to take place. Circuitry in the memory system controller multiplexes in the refresh
addresses and controls the memory R/W and CS lines to provide proper signals for the refresh cycle. For a
dynamic memory that requires 32 cycles of refresh every 2 msec and with the MPU running at the maximum
clock rate of 1 usec, the reduction in MPU speed due to clock stealing would be 32 x 1 usec (100) = 1.6%.

2 msec
In most systems, this reduction in program execution time would not affect system performance.

In some systems, the design constraints may be such that a reduction in program execution time due
to memory refresh requirements cannot be tolerated. For these types of systems, a ‘‘hidden’’ refresh
configuration may be used. The place to hide or perform the memory refresh independent of MPU program
execution time is during ¢1 as no data is being transferred between the MPU and memory or peripherals. This
technique places the additional constraint on the dynamic memory system of being able to perform a complete
refresh cycle during ¢1 (430 ns minimum) and a complete Read or Write cycle during ¢2 (470 ns minimum) if
the MPU is to operate at full speed. Using this concept only 32 of the ¢1 periods every 2 msec are used for
refreshing (for the dynamic memory discussed earlier) leaving the other ¢1 time periods open for other uses.
One use would be for a DMA transfer from some external source. In this mode, DMA and memory refresh
would share the ¢1 portion of the cycle while the MPU would have access to the memory during ¢2 portion of
the cycle. See Section 4-2.2 for a further discussion of DMA techniques.

4-56

CLOCK CIRCUITRY FOR SLOW AND DYNAMIC MEMORIES

The circuitry to modify the clock signals to interface the M6800 with dynamic and slow memories as
described above can be evolved from the clock circuitry described in Section 4-1.1.1. Figure 4-2.5.1-9
illustrates a previous clock circuit (Figure 4-1.1.1-3) with a crystal stabilized source which has been extended
to include interface signals for dynamic (REFRESH REQUEST and REFRESH GRANT) and slow memories
(MEMORY READY). Note that the only extra parts required are a MC7479 dual latch, MC7404 hex inverter,
and a pair of 10K ohm pull-up resistors. The state of REFRESH REQUEST is sampled during the leading edge
of ¢1 and, if it is low, the ¢1 and ¢2 clocks to the MPU are held in the high and low states respectively for at
least one full clock cycle. A high REFRESH GRANT signal is issued to indicate to the dynamic memory
system that this cycle is a refresh cycle. Upon receipt of the REFRESH GRANT signal, the memory system
controller sets REFRESH REQUEST back high which is clocked through on the next leading edge of ¢1,
thereby restoring the system back to normal operation. The MEMORY READY line is sampled on the leading
edge of ¢2 and, if low, the MPU ¢1 and ¢2 clocks are held in the low and high states, respectively. The clocks
will be held in these states until the MEMORY READY line is brought high by the slow memory controller,
allowing the slow memory controller to determine the amount by which ¢2 is stretched. Figures 4-2.5.1-10a, b
show the effect of REFRESH REQUEST and MEMORY READY signals on the MPU clocks. Note that the
REFRESH REQUEST signal is asynchronous with the MPU clocks as it is generated by the refresh oscillator in
the dynamic memory controller. Figures 4-2.5.11a, b shows the phase relationship between MPU ¢2, BUS
¢2, and DYNAMIC MEMORY CLOCK. Note that BUS ¢2 and MPU ¢2 are in phase and that DYNAMIC
MEMORY CLOCK leads MPU ¢2 to help offset delays added by the memory system controller in decoding
the level shifting this signal onto the memory array.

4-57

8S-v

1/6 MC7404 ¥% MC3001

+5V

T
I

DA

% MC3000 % MC3001

\ Dynamic
Memory
L/ Clock
.1uf Ceramic
Oscillator
[D€ T
K1100A % MC3000 % MC3000 % MC3001 % MC3001
1 MHz 50 2% Duty Cycle - 4H00) (74H08)
+5v h o
10K %2 MC7479 % MC7479
Refresh
> D ol)—-J — D Ql-¢
Request
.1uf Ceramic
—-l >0—{ C a —Do—— c
1/6 Mc7404 RS 1/6 RS
T T MC7404 ? ?
+5vVv +5Vv
Refresh
Grant
+5V
10K
Memory ~
Ready ~
NOTES:
1. Unless otherwise noted
All resistors are carbon composition %W, = 5%
All capacitors are dipped MICA £ 2%

2. *MPQ 6842

MPU 91

1
T

MPU ¢2
DBE

% Mc3000

[

FIGURE 4-2.5.1-9. MPU Clock Circuitry with Interface for

Slow and Dynamic Memory

5V/cm

MPU ¢1

MPU ¢2

REFRESH REQUEST

5V/cm

REFRESH GRANT

- 500 ns/cm
(a)
MPU Clocks, REFRESH REQUEST, REFRESH GRANT

MPU ¢1

MPU ¢2

MEMORY READY

500nS pS 10x

500 ns/cm

(b}
MPU Clocks, MEMORY READY

FIGURE 4-2.5.1-10: MPU Clock Circuitry

4-59

Mem Clk: 4 V Pulse MPU ¢2: 5 V Pulse

1 V/em
100 ns/cm
(a)
Dynamic Memory Clock and MPU 02
Bus ®2: 4 V Pulse MPU ¢2: 5 V Pulse
1 V/em

100nS 4§ 10X

100 ns/cm
(b)
Bus ¢2 and MPU ¢2

FIGURE 4-2.5.1-11: MPU Clock Circuitry

4-60

The circuit in Figure 4-2.5.1-12 shows how the MEMORY READY concept can be added to the
cross coupled monostable clock generator of Figure 4-1.1.1-5. The MEMORY READY feature is incorporated
into this circuit by switching an additional timing resistor in or out of the ¢2 pulse width generator. By selection
of the timing resistors for ¢1 and ¢2, all combinations of ¢1, ¢2, and stretched ¢2 pulse width can be
generated.

+5 V +5 V +5 V +5 V
01 02 L
11K 1% S 22K 1% 22K 1%
100 pf 100 pf €
o Memory
r'i v Ready
1N4148
T1 T2 T T2
MC8602 e —(>°—{>F & Bus¢2
] 1/3 MC7404 +5 V
E > c . c ey .1 uf Ceramic
{ Q 4
¢p Cp
3 4 -
+5 V
MPU ¢1
470
NOTE:
1) Unless otherwise noted .1 uf Ceramic
All resistors are carbon composition %W, £t5% 470
All capacitors are dipped mica £2%
2) *MPQ6842

MPU ¢2
DBt

*MPQ6842

FIGURE 4-2.5.1-12. Monostable Clock Generator with Memory Ready

4-61

4-2.5.2 2K X 8 RAM Memory Design Example

This section will describe the design of a memory system for the MC6800 microprocessor using
memory devices that are not a part of the MPU family but that are cost-effective choices in many MPU based
system designs. The intent is to demonstrate the ease with which memory systems can be designed around the
MC6800 because of its straightforward architecture. The MPU signals to be considered in the memory system
design are the clock signals (¢1 and ¢bz), the 16 bit Address Bus, the 8-bit bidirectional Data Bus and the control
signals: Valid Memory Address (VMA), Read/Write (R/W), and clock control signals such as MEMORY
READY, REFRESH REQUEST or REFRESH GRANT if they are required.

The MCM6602, 1K X 1 static RAM, can be a cost-effective choice for MPU memory systems in the
size range of 1K bytes up to about 8K bytes. Below 1K bytes, memory systems composed of the MCM6810
will probably be the cost effective choice. Memory systems larger than 8K bytes will probably use a 4K RAM
such as the MCM6605 in order to be cost effective. In this section, the detailed design of a 2K X 8 memory
system is described for the MC6800 MPU using sixteen MCM6602 L-1 N-channel static MOS RAMs. This
memory system is available from Motorola as a component module of the EXORCciser.

The 2K Static Memory System (illustrated in Figure 4-2.5.2-1) receives the 16 address bits A0
through A15, the ¢2 timing signal, the 8 bit bidirectional data bus, VMA (Valid Memory Address) signal, and
a R/W (Read/Write) command during each MPU memory operation. The system address lines connect to the
address bus interface and the ¢2, VMA, and R/W inputs from the MPU connect to the control bus interface.
Data lines connect to the Data Bus Interface.

CE1
Ram1
Memory |«
Array
3
8 BDoO-D7
AQ-A9 , %aut: DO-D7
7/ 8
10 Interface
Address A10-A15 CE> “
_ VA Bus >
AO-A15 Interface
16 = RAMI1 RAM2
Select —® Memory |-&
’_J Circuit Array
—
//6
/6 » RAM2
/ —_ Select
A10-A1 Circuit
[& o
2
42—l ¢
Control VMA
VMA —p»{ | Bufs —
ntertace R/W & R/W 2
R/W —p» / —R1
R/W
Control
L Logi
ogte R2 R/W
DOE

FIGURE 4-2.5.2.1. 2k X 8 Memory System Block Diagram

4-62

The address bus interface, after buffering the inputs, applies the ten address bits A0 through A9 to
the RAM 1 and RAM 2 memory blocks. (Refer to Figure 4-2.5.2-2, the Schematic Diagram) The address bus
interface, at the same time, applies the six address bits A10 through A15 with their complements to the RAM 1
and RAM 2 select circuits. The control bus interface applies the VMA signal to the RAM 1 and RAM 2 select
circuits and ¢2 with the R/W signal and its complement to the control logic. The two RAM select circuits
decode the address bits and determine whether the MPU is addressing their respective RAM memory block.
Since the two RAM select circuits and the RAM memory blocks are identical, only the RAM 1 select circuit and
the RAM 1 memory block will be discussed in detail.

The RAM 1 select circuit consists of two base memory address switches and a decoding circuit. The
address switches allow the 2K X 8 of memory to be allocated as two independent 1K X 8 blocks any where in
the system’s 65K memory field. The base address switches select the base memory address for the RAM 1
memory block and the decoding circuit determines when its memory is being addressed. The RAM 1 select
circuit, on determining that its memory is being addressed, couples a CE1 (Chip Enable 1) signal to the RAM 1

“memory block and to the control logic. The RAM 1 memory block, consisting of eight 1K X 1 bit MOS static
RAM chips, is then enabled to perform a memory read or memory write operation.

During a memory read operation, the control bus interface receives a high level R/W signal and
applies this signal with its complement to the control logic. The control logic now transfers a high level R1 R/W
(Read Memory 1 Read/Write) pulse to the RAM 1 memory block and couples a DOE (Data Output Enable)
signal to the data bus interface. The high level R1 R/W pulse instructs the RAM 1 memory block to perform a
memory read operation (providing the address select signal, CEl, is low) and the DOE signal instructs the data
bus interface to transfer the memory’s output to the MPU via the system bus.

During a memory write operation, the control bus interface receives a low level R/W signal and the
data bus interface receives the eight data bits DO through D7. The control bus interface applies the low level
R/W signal and its complement to the control logic and the data bus interface applies the data bits to the RAM
memory blocks. The control logic now reads the position of the RAM 1 RAM/ROM switch and determines
whether the RAM 1 memory block is protected or may be written into. When this RAM/ROM switch is in the
ROM position, the switch inhibits the control logic from initiating a memory write operation. When the switch
is in the RAM position, however, it enables the control logic to generate a 470 nsec low level R1 R/W pulse.
This low level pulse instructs the RAM 1 memory block to perform a memory write operation and to store the
data it receives from the data bus interface. (If the address select signal (CE1) is low).

The following paragraphs discuss the operation of the various circuits contained on the 2K Static
RAM Module. Refer to the module’s block diagram in Figure 4-2.5.2-1 and schematic diagram in Figure
4-2.5.2-2 as required.

The address bus interface, consisting of U1 through U4, receives and buffers the 16 MPU address
bits Al through A15. Address bits AO through A9 are applied to the RAM 1 and RAM 2 memory blocks. The
address bus interface applies the six address bits A10 through A15 and their complements to the RAM 1 and
RAM 2 select circuits. The control bus interface, US, receives and buffers the ¢2, the VMA, and the R/W
signals. The control bus interface couples the ¢2 and VMA signals to the RAM 1 and RAM 2 select circuits and
applies the R/W signal and its complement to the control logic circuit. Ul through U5 are MCS8T26 bus
receivers which provide very light loading on the MPU bus so that the fanout is not reduced appreciably. The
loading of these devices is —200 pa for a logic 0 and +20 ua for a logic 1.

The RAM 1 and RAM 2 select circuits decode the address bits and determine whether the MPU is
addressing their respective RAM memory blocks. Since the two RAM select circuits are identical, only the
*To be introduced third quarter, 1975.

4-63

RAM 1 select circuit is discussed in detail with the RAM 2 select circuit components identified parenthetically
after the RAM 1 select circuit components.

The RAM 1 select circuit consists of the two switches S1 and S2 (S3 and S4) along with gate U8
(U9). Switches S1 and S2 (S3 and S4) are set during use and, through their switching of bits A10 through A15,
select the base memory address for their respective memory block. The position of each switch determines
whether the switch is coupling the address bit or its complement to gate U8 (U9). Gate U8 (U9), on receiving a
VMA signal, decodes the switches outputs and determines whether the MPU is addressing its memory block. If
its memory block is being addressed, U8 (U9) couples a CEl (CE2) signal to the RAM 1 memory block (RAM
2 memory block) and to gate UL0A of the control logic circuit.

The control logic circuit decodes the CEl (EE_)2_)— signal, the R/W, the ¢2 clock signal, and the
position of the RAM/ROM switches to determine whether to read data from, to write data into, or to inhibit the
write function of the selected RAM memory block. Each time one of the RAM select circuits determines that
the MPU is addressing its RAM memory block, this circuit causes gate U10A to couple a high level to gates
U6A and U6B. During a memory read operation, the control bus interface applies a high level R/W pulse to gate
U6A and R/W to gate U6B. Gate U6A is enabled by U10A when either memory is selected and with gate U6D
applies the DOE Data Out Enable signal to the data bus interface. The low level R/W pulse to U6B inhibits this
gate. The output of gate U6B remains low and forces gates U10B and U10C to continue holding the R1 R/W
and R2 R/W signals high. The high level R1 R/W and R2 R/W signals instruct the enabled RAM memory block
to perform a memory read operation.

During a memory write operation, the control bus interface applies a low level R/W pulse to gate
U6A and R/W to gate U6B. Gate U6A is now inhibited from generating a DOE signal. The high level R/'W
pulse to U6B enables this gate and gates U10B and 10C. Gates U10B and U10C decode their RAM/ROM
switches and determine whether the selected RAM memory block is to perform a memory write operation. If
the RAM/ROM switch to the selected RAM memory block (switch S5 for the RAM 1 memory block and switch
S6 for the RAM 2 memory block) is in the ROM position, the low level from this switch inhibits its respective
gate from going low. If, on the other hand, the RAM/ROM switch is in the RAM position, the ¢2 pulse is
coupled to U10B and U10C to generate a low going write pulse. This low level pulse instructs the enabled RAM
memory block to perform a write operation.

The RAM 1 and RAM 2 memory blocks consist of eight 1024 X 1 bit memory chips. The ten address
bits AQ through A9 and the output of its RAM select circuit determine when the MPU is addressing this memory
block. The control logic determines whether data is to be written into or read from the selected RAM memory
block.

The data bus interface, consisting of U27 and U28, provides a two-way data transfer of data bits DO
through D7 between the MPU and the 2K Static RAM Memory. These integrated circuits provide TTL
compatible inputs and three-state outputs. When the MPU has selected one of the module’s RAM memory
blocks during a memory read operation, the data bus interface receives a high level DOE signal and is enabled
to transfer data from the 2K Static RAM. At all other times, these outputs are in the high impedance state.

The timing diagram of Figure 4-2.5.2-3 shows a Read operation of the memory system design in
Figure 4-2.5.2-2 operating with the MPU’s control lines and busses driving the memory board directly. The
waveforms assume a delay of 20 nsec through the driver portion and 18 nsec through the receiver portion of the
MCB8T26. The control lines R/W, Address, and VMA are specified to be valid within 300 nsec after the leading
edge of ¢1 (TASR, TASC, and TVSC). The delay from the address bus of the MPU to the address inputs of the
MCM6602 is composed of a receiver and a driver portion of a MC8T26 in series. This time totals 20 + 18 = 38

4-64

3
S22k
b3
18 ———
P/OP1 r p/ouu-:
l‘ 1
]
12) 1 14
A9 R 1 |
! :
9 [IRKl
ST ¥ vs voe —
Ly- - - ==R3 - . . ? A I
T 1 1—¢ 1—¢ 1o ¢ —eT —e 1T
¥ - - , - - - : < 12 10 9 11 12 10 9 n 12 10 9 1 122 10 9 1 v—
e) | 2 10 9 m 12 10 08 1 12 10 09 u 12 10 9 m . N e o e o 2 U
) b ! DIN D OUT DIN DO ouT DIN DouTr DIN Dou 17 06 v18 D7
' i e D1 U113 D2 u14 D3 uis D4 U16 DS
! U1l Do vi2) ;
im 3 3 5 13 1416 2 6 4 13 14 16
14 16 4 13 14 16
8| s T | a 16 2 6 4 13 2 16 13 1416 13 1416 4 13 - e ST H TR THET
1 b1 T F1 PLE] BLd: sl T Tl BT L aiaiana _l:_s-l|753 753lv " o {
1 l < P P A
=l 9 LT} E1 Py
A5 T T
H]
' i
1
12 |‘ | 14
A4 T ’:
'
[SRR
15
15
ISR
F, va '
4 | 12
A [T
' :
14 5
5 71 [}
A2
! i: 11
i i
-l 1 114
Al v 1 T
1 1 - ; :
| } el 1 i T? seYA: CIAREEANEME o 111 7] Isl s fs T L T ST [=1 Y- E s] Ie] 1s
. § = 7 - - = e = . 4 16 2 6 4 13 14 16 2 6 4 13
“1" - : 2 l . e J 4 16 2 6 a4 13 1 % 2 6 a 13 14 165 2 6 a4 13 i
’ 'J 14 16 2 6 4 13 14 18 2 6 4 13 14 16 2 6 4 13 1
1 uU23 D4 24 D5 U25 D6 U26 D7
oeee v e e e o D ouT D IN O ouT DIN DouT DIN D?;JY . N D'I:V
15—-—-- - il e e o it D|I1N D?:Y 10 9 ‘HN 12 10 9 11 12 10 9 11 12 10 9 11 .
' - k 3 . 2 1210 9 11 1210 g 1 1210 9 2 2 - o2 3)
A ' 2 : 1% 3 1= T3 =]
7 1 Is 12 _g_l_-——ﬁ ¥ 1] T
Al15 33 T T X o o 2 <
2 s1 o—
H e O MSB 14 1 £
X : E104 o -
—1a1 2 3 =
aal M 0 ’I 10 15 E
13
]
14 [
12) |14
A13 1 T ° " .
1 b3 1035 O
19 T [F154 A
L (il kil bO s2 o U10A
Al2 34] l o S
] | 10 o [e] 5
1
[S — g o
r_U27 ﬂl
14l 13
| TI
210 ’ s) 1 o :
10 e
: g : e |13 : | -
n o L
8 CE2 !
2o ves_fia D 1 |] !
: . — ! | 1 '
: 12 | I
2 oF + || | il 9 l1o
[o
1 1 | :
| ol |
15 o . | ' I
————— B ‘ g{
~ P/O LT a wly - - |
14 ! 12 : |
71 |5 10 5 i : ' |
Al 35 ' ['OSA g l I I
: 6 OLSBO ! | |
o | |
" ADDITIONAL MEMORY l | l
| s 2 o o READY CIRCUITRY ! ! ' ‘
a0 © : o i ‘ | s
] 13 | I |
! ! v10D N I | I
| Y P N | o ‘ ' 7 '
MEMORY m ' | ' | |
READY . 2| 13 ‘
: [} ! | l}
| 3 &'r T| I l
€ o '
15 — g ' I I ‘
it - k | | 2| 13
K
9 | 1 | | I i
h [} al 1
' ! ' | l
t 1 I ‘ ' AT
X I y 3
4) |12 ‘ | -
vmal *
' .I 71)
' " L A
' JRER I PR,
S Is >
R
[} t
1 i
[} [}
L === +5vDC +5 vDC
usA
1 2 s
5 L — 1)~
3
A " 1
+svocK 8
c
o . N
A e oARS? FIGURE 4-2,5.2-2 2K x 8 Memory System Schematic Diagram
L <l L 3 dmca decs doce L c7 - =< =<
f\:gﬂv /\ﬁz e) T~ T T T T 1
L
GROUND

4-65

Start of Cycle

teye
b1 Vecc-03 vV
0.3V
lg—t, '
2\ / os v\
t— TASR —>]
0.2V - 24v
R m
MPU 20 V himmsSs = 2.4V
Address Bus 2.0V §\\\\\\\\\\\\\“‘A“\\\\ \ 4
24V
t—T AsC —8
20V 2.0vVv
VMA \x
—Tvsc—

38 ns —gp |eg—

Memory 20V
Addresses N
~—
— — — 60 ns — F
CE1 or CE2 60 ns
- Tacc —
Memory 2.0V
Output
0.8V —

20 ns —- — Ty
Tosu —#»
MPU Data 2.0 v
Bus
o8 Vv

W Data Not Valid

MPU/2k X 8 Memory Read Cycle

FIGURE 4-25.2.3

nsec. At this point in time, the addresses on the memory devices are valid and the access time can begin. The
access time of the MCM6602L-1 is 500 nsec maximum, that is, data out of the RAMs during a read cycle is
valid 500 nsec after the addresses are valid. The data encounters an MC8T26 driver delay of 20 nsec before
reaching the MPU data bus. The data set up requirement of the MPU is 100 nsec before the falling edge of ¢2.
By using the above data, the margin in this system when operating at the maximum MPU clock period of 1000
nsec can be calculated as follows (refer to Figure 4-2.5.2-3):

tr 25 nsec

TASR 300 nsec
MCS8T26 38 nsec
TACC 500 nsec
MC8T26 20 nsec
TDSU 100 nsec
TCYCLE 983 nsec

4-67

Since this is 17 nsec less than the minimum MPU clock period of 1000 nsec, this MPU/memory
system configuration has a margin of 17 nsec during a read cycle. The CE signals are enabled by decoding the
upper address lines, A10-A15, in gates U8 and U9. Since the addresses are valid during ¢1, the CE signals
become the inversion of VMA when the correct addresses are decoded. The CE si gnals will be held low past the
falling edge of ¢2 due to the holding effect of bus capacitance and the delay into the next ¢1 for the MPU to set
new addresses. |

The write cycle of this system may be analyzed in the same manner using the timing diagram shown
in Figure 4-2.5.2-4. The control signals from the MPU (Addresses, VMA, and R/W) become valid within 300
nsec after the Ieadingvédge of ¢1. The CE signals are delayed from the address and VMA valid points by a
receiver and driver section of the MC8T26 and the delay of the MC7430 Nand gate. This delay is 18 + 20 + 22
= 60 nsec. Assuming that the RAM/ROM switch is in the RAM position, the R/W pulse on the memory devices
is ¢2 delayed by a receiver and driver of the MC8T26 plus the delay of U10 (MC7400). This time is (18 + 20 +
22) also 60 nsec producing a write pulse skewed from ¢2 as shown. The data hold requirement of 100 nsec for
the MC6602 is met by extending Data Bus Enable (DBE) beyond the trailing edge of ¢2 to hold the data on the

Teye
1 [—Vee-03V
: r—0.3 \Y
|-y
#2 \) Vee-03V 7L_ _)K
TASR—mm|
20V
R/W
8V
o] 0.4 V
— JE— 2.4V
Address 2.0V
From MPU 0.8 V] ——
rt— TASC —i]
20V
VMA
0.8V
l— Tvsc—i
b 60 ns — ~ 150 ns
CE1 or CE2
(750 ns)

R/W } 60 NS —p! \&‘ ——’{ 60 ns
\ TASD—# ht— «@—— 100 ns Min

2.0V 2.4
MPU Data Output §
0.8 Vv — - 0.4
18 ns—pun| leg— . ‘ ~—» (g§—18 ns
e 2.4
Memory Data Input 2.0 Vg
0.8 Vv I~ 0.4

DBE 24 V7r— ; 4.‘*__—
Data Not Valid

FIGURE 4-2.5.2-4. MPU/2 k x 8 Memory Write Cycle

4-68

bus valid. Memories of this type vary in their data setup requirement (tpw) from 150 ns to 330 ns depending on
manufacturer. The MCM6602L-1 as well as the 2102 types have the 330 ns requirement. In order to meet this
requirement the ¢2 pulse width required can be calculated as follows (see Figure 4-2.5.2-4):

¢2 PW =TAsSD + 18 ns + tpw — 60 ns.
¢2 PW = 200 + 18 + 330 — 60 = 488 ns.

In many system designs, it may be cost effective to design this memory system with the MCM6602L
which has an access time of 1 us. This slower memory can be handled using one of the two methods discussed
in Section 4-2.5.1. The first method is to stretch ¢2 every processor cycle to accommodate the slow memory as
detailed in Figures 4-2.5.1-4 and 4-2.5.1-5. The other method is to use the Memory Ready concept. This can be
accomplished as simply as the following: Assume that the clock circuitry used for the MPU is as shown in
Figure4-2.5.1-9. Alow level on the MEMORY READY line will stretch ¢2 for that cycle. The time constants
of the U1-B monostable can be adjusted to provide the correct ¢2 width during normal operation (470 nsec) and
to provide the correct width (895 nsec for TACC = 1 usec) when the MEMORY READY line is low indicating a
slow memory access. The additional circuitry required in the 2K memory system of Figure 4-2.5.2-2 to
implement MEMORY READY consists of one inverter. The output of U10A goes high 360 nsec after the
leading edge of ¢1 if this memory is addressed. The inverse of this signal, called MEMORY READY, controls
the clock circuit of Figure 4-2.5.1-9. These signals are shown in Figure 4-2.5.2-3.

Normal Slow Memory
Cycle Access
1 us 1.425 us
- -

MPU ¢1 —

MPU ¢2 =

——D{ |<—360 ns

U10A Output
Fig. 4-2.5.2-2

Memory Ready

FIGURE 4-2.5.2-5. 2 k X 8 Memory System with Memory Ready

4-2.5.3 8K X 8 Non-Volatile RAM Deisgn Example

Many system designs can be optimized by using the high bit density and low cost/bit offered by
dynamic memories (i.e., those that store information on a capacitor which must periodically be recharged or
refreshed). At this time, the 4K X 1 dynamic RAM is the most cost effective choice for large memory systems
(=4K bytes). Because these memories are dynamic and require refreshing, the system designer must handle the

4-69

~

dynamic memory slightly differently than static memories. Refer to Section 4-2.5.1 for a discussion of
techniques and clock circuitry used for interfacing the MPU with dynamic memories.

This section describes the design of a 8192 byte Non- Volatile memory system for an MPU based
system using dynamic 4K RAMs and CMOS control logic. This system was designed to be an add-on memory
for the EXORCciser,* a System Development Tool in the M6800 Microprocessor family.

MEMORY DEVICE DESCRIPTION

The memory device used in this system is the MCM6605L-1, a 4096 word X 1 bit, dynamic Random
Access Memory (RAM). The dynamic characteristic of this memory device requires that refreshing of the
memory cells be performed at periodic intervals in order to retain the stored data. This device was chosen for the
following features: high bit density per chip and correspondingly low price per bit, standby mode with low
power dissipation, TTL compatability of inputs and outputs, and speed characteristics compatible with
microprocessors and the EXORciser. ,

Figure 4-2.5.3-1 is a functional block diagram of the MCM6605L-1. The single external Chip

A10A8A8 A7A6 A5 AOA2A4
20 1918 17 16 15 1310 9
. — 1 o ? S 00
Chip
Enable 60 > $2
- 1[It
__J Bit Bit o Bit Bit
4095 4064 2047 2016
3 3
£ £
J <4
] Q
%] (%]
R R4
. . 2] [+1]
Bit Bit Bit Bit
) 3103 3072 1055 1024
1 [o [] [
’ Decode * . ’
Al 21 O————] And
Column Decode Bit Column Decode
A3 20 Sense
+ Line i
Select
Bit Bit L Bit Bit L]
3071 3040 - . 1023 992
Q [}
£ £
4 -
Q [}
7} %}
g had
) o
Bit Bit Bit Bit
_1 2079 2048 l— ;“l 31 o} l——
Preset 3 O Data Control Cells I
Data In 4 3 o
Chi 7 Data Out
P go i
Select
l Vpp = Pin 22
R d/wu'l A115 Vss ~ Pin 12
ea rite Vgg = Pin 1

Vee = Pin 11

FIGURE 4-2.5.3-1. MCM6605 4 k RAM Block Diagram

*Trademark of Motorola, Inc.

4-70

Enable clock starts an internal three phasve clock generator which controls data handling and routing on the
memory chip. The lower 5 address lines (A0 to A4) control the decoding of the 32 columns and the upper 7
address lines control the decoding of the 128 rows within the memory chip. Theai—p Select (CS) input is used
for memory expansion and controls the I/O buffers: when CS is low the data input and output are connected to
the memory data cells and when CS is high, the data input is disconnected and the data output is in the high
impedance state. Refreshing is required every 2 ms and is accomplished by performing a write cycle with CS
high on all 32 columns selected by Ao through A4. The read/write line controls the generation of the internal ¢3
signal which transfers data from the bit sense lines into storage.

All inputs and outputs with the exception of the high level Chip Enable signal are TTL compatible
and the outputs feature 3-state operation to facilitate wired-or operation. The Chip Enable signal has GND and
+12V as logic levels. Power requirements are typically 330 mw per device in the active mode from +12V,
+5V, and —5 volt power supplies and 2.6 mw in standby with refresh from the +12V and —5 volt power
supplies (the +5V supply powers the output buffers and is not required during standby operation).

Memory timing is outlined in Figure 4-2.5.3-2 and operates as follows for a read cycle (2a). The
Chip Enable line is brought high after the correct addresses are set up, which starts the internal three phase clock
and latches the addresses into an internal register. m must be brought low in order to connect the data
input and output to the data cells and the Read/Write line must be brought high to inhibit the ¢3 cycle which
writes data into the storage cells. A write cycle (2b) occurs in exactly the same manner as a read cycle except
that the R/W line is placed in the Write mode, which gates the input data onto the bit sense lines, and enables a
¢3 cycle to write into the data cells.

A write and a refresh cycle are the same with the exception of al_é Select, which is held high for a
refresh cycle and low for a write cycle.

The Read-Modify-Write cycle is a read followed by a write within the same CE cycle. CSisbrou ght
low shortly after the leading edge of CE and R/W is held high long enough for the Data Out to become valid.
The R/W line can then be strobed low for a minimum write time to enter the Data In (which has been placed on
the input) into the data cells.

By holding the Chip Select high during refresh, the input data is inhibited from modifying the bit
sense lines and the original data is returned to the data cells during ¢3 of the cycle. This refreshing action
recharges the storage cells and must be done at least every two milliseconds if the memory is to retain the
information. The fact that the data is stored on a capacitor in a dynamic memory (rather than an ‘‘ON”’
transistor in a static memory) requires that the capacitor be recharged periodically. This capacitive storage
produces a low power standby mode of operation where only refreshing takes place, which is the foundation of
this low current drain non-volatile memory design. The memory device typically dissipates 330 mw in the
active mode but only 2.6 mw in the standby mode (refreshing only).

MEMORY SYSTEM DESIGN REQUIREMENTS

This memory system was designed with the following major design goals:

First, non-volatility for a period of time in the range of 7 to 10 days from a reasonable sized battery.
It is also desirable for the system to operate from one battery voltage during the standby mode to simplify the
battery requirements. Second, the memory size was desired to be 8K bytes on a PC card easily expandable
upward and addressable in 4K byte blocks. Third, the memory system must be able to interface with the
MC6800 microprocessor which has a basic cycle time of 1 usec. Fourth, the memory system controller must
handle all refresh requirements in a manner as invisible as possible to microprocessor operation.

4-71

[tcyc(R) =

470 nsmin—

Vee 0 ns minJe—=! |e—60 ns min—e] le—20 ns — |le—20ns
VDD -20V——— — — o
Chip Enable le—— 310 ns min——= | (4——120 ns Min —
VeeEL — — —
Via | —-—T70 ns max = —— ro ns min |
A\
Chip Select / \ \ \
S N D \
‘ }4—-‘—70 ns max —| }4—0 ns min |
VIH / / 2.6 v AY
Vie >
Vou l }‘—280 ns max ______ .
Data Out

= 300 ns max

Timing Shown for MCM6605L-1.

2.0V e —
-——FJoating le——Floating — /
08V——————— W
Vo T T T ————
oL I-—tacc Valid

FIGURE 4-2.5.3-2a. Read Cycle Timing (Minimum Cycle)

‘. teyciw) = 470 ns min -

ViH —
2.6 V- \
Address Stable Address A
v 1.2 V- N
e
VcEH 0ns min+—- |<~60 ns min—»l —>| e— 20 ns — '<—20 ns
Vpp-2.0V———
430 ns min—bl l«—120 ns minhﬁl
Chip Enable

70 ns max

(Refresh) —o

0 ns min

A\\\\\\\\\\\\

0 ns min—s]

M\\W

70 ns max
Vid

0 ns min

D Stable

PO

\ 2.6 V

Data In

\ 12V
ViL

Timing Shown for MCM6605L.-1.

NN

- Don’t Care

FIGURE 4-2.5.3-2b. Write and Refresh Cycle Timing (Minimum Cycle)

4-72

tcyc(R/W) = 590 ns min

ViH
2.6 v—><
Address
1.2vV—
Vio

0 ns min 60 ns min—e 20 ns —s] 20 ns
VCEH m _H "_ S 4'] *‘-
Vpp20V — —— L —— :
‘ —430 ns min———————{\ }+-120 nsmin-{
Chip Enable :
20V———
VceL
70 ns max 0 ns min 0 ns min
ViH :
ChlpSelect \:;;; E;;sz l ‘;;;;;;:;
r‘——430ns min

}=+210 ns min

e VA

70 ns max | l‘— | 0 ns min i<——->| Ons mm}'ﬂ

N NN \\W:sv cwsee SOMLLLM

1 }'—-280 ns max

. T ;
OV——————+— +

Data Out -+—— Floating Valid Floating ———»

o8vV—————1—

\Y ——— PR e
oL F—tacc =300 ns max—»l
: \
" Timing shown for MCM6605L-1. m - Don't Care

FIGURE 4-2,5.3-2c. Read-Modify-Write Timing (Minimum Cycle)

MEMORY SYSTEM DESCRIPTION

A block diagram of the memory system is shown in Figure 4-2.5.3-3. This system can be split into
three main sections as follows. The first section is comprised of the address buffers, Read/Write and Chip
Select decoding logic. The second section consists of the data bus buffering and the memory array. The
memory array consists of sixteen memory devices (4K words X 1 bit) organized into two rows of 4096 bytes
each. The third section consists of the refresh and control logic for the memory system. This logic provides the
timing of the refresh handshaking, request for refresh, generation of the refresh addresses, synchronization of
the POWERFAIL si ignal, multiplexing of the external MEMORY CLOCK with the internal clock (used during
standby), and generation of the —5 volt supply on the board by a charge pump method.

“Figure 4-2.5.3-4 is a worst case timing diagram of the read and write cycles of the EXORciser and
the 4K memory system. The timing is composed of two phases. During phase 1 (¢1) addresses are setup and
during phase 2 (¢2) data is transferred. Figure 4-2.5.3-5 is a timing diagram of the memory system in standby
showing refresh cycles only. This timing analysis will be referred to in the following discussions of the memory
control circuitry. ' ‘

ADDRESS BUFFERS AND DECODING

Figure 4-2.5.3-6 is a schematic of the address buffers, decoding logic, and refresh address
multiplexer. Address and data lines from the EXORCciser are buffered from the capacitance of the memory. array
in order to provide a small load to the bus. Since the addresses are valid on the EXORciser bus 300 nsec into ¢1,
200 nsec is available to setup the address on the memories. The worst case input capacitance on the address

4-73

F———————————— e e ——— —'——__——————__'j
l Address Buffers and Decoding Logic | Refresh and Power Fail Logic '
| |

AO '
I BAG - ‘ AO w
| T | cmos —[—" | I
] A4 Multiplex H |
| : # Buffer |[—1— A4 | |
L ¥ | '
| —_— Refresh Addresses
l I A0 A4 N A4 |
I : Address Refresh Addresses | Power Fail L .? |
Buffers * ———
l : T AS : Refresh :
' ofr
! ' . A1 | cMOos Request
| ! o | Refresh/Power Fail
: | CSp Logic Refresh |
I Lcsi _ | Grant I

g l BA15 "—1—. ogic » CSg o l + ‘ '

@ | > Memory |

£l Aw— RW | »R/Wal Array | CEA CEp l

13 .

o Logic R/W |

0 : vMA Buffers 8 I |

w ' Memory Memory Clock | :

Clock !

! L]

r |

: DO 1 - Douto '
i

i ! -4 Dout7 |

| : Dat§ 8K x 8 Memory Array |
j | Transceivers —# Ding 16 MCM6605L-1 |

i 1 ! 2 Rows x 8 Columns l

: p7 —1— - Din7 J |

Data Buffers and Memory Array
b o o e e e DR e e Y e]

FIGURE 4-2,5.3-3. Non-Volatile Memory System Block Diagram

lines of the MCM6605 is 5 pf/input. A system of 16 memory devices (8K bytes) presents a total capacitive load
on the address lines of only 100 pf (20 pf stray capacitance). Since 200 nsec is available to set up the addresses
on the memory devices, no high current buffers are required to drive the memories. For address lines A5
through A11 the output of the MC8T26 address receiver drives the address lines directly. AO through A4 must
be multiplexed with the refresh addresses so that all 32 columns will be refreshed every 2 msec. Because of the
requirement of low current drain in the standby mode, an MM80C97* CMOS buffer with a 3-state output is
used to meet the multiplexing requirement. The buffers have sufficient current drive capability to drive the
address line’s capacitance within 100 nsec. An open collector TTL gate (MC7406) is used to translate to +12
volt CMOS levels. A0 through A4 are driven with GND and 12 volt logic levels so that +5 volts is not required
in the standby mode.

The high order address lines (A12-A15) are used to decode one 4K block of memory out of the 16
total possible blocks in the 65K address map. The addresses and their complements are routed through
hexidecimal switches to MC7430 Nand gates in order to create a CS signal for each 4K bytes of memory. By
rotating the hexidecimal switches (S3 and S4), all combinations of true and complement addresses can be
routed to the Nand gates, thereby selecting one of the sixteen 4K blocks. VMA and REFA are also inputs to
these Nand gates VMA is a Valid Memory Address signal on the bus indicating that the address lines are valid
and REFA is a control signal indicating that a refresh cycle is taking place. During a refresh cycle-l-{m goes
low forcingE_S_Z\ and CSB high (a refresh cycle for the memory devices is a write cycle with the Chip Select

*To be introduced as MC14503, third quarter 1975

4-74

Time (ns) 0 200 400 600 800 1000 1200
1 \
Memory Clock f \\
(¢2)
CEp.CEg // \
300 ns *j ~—=1 80 ns
EXORciser Address .
ana v Bus KSR
100 ns —= g —
Memory Address Bus %m
120 ns—me=
e v o RS DL
- 350 n] i
VAVAWAW AW AW ANy W
EXORciser R/W % XK OCOK XX OO
OReter) SaO,0.92%29.9.9.4
120 ns

Memory R/W
(Read Cycle)

Memory R/W
(Write Cycle)

Memory Output Data
(Read Cycle)

EXORciser Data Bus
(Read Cycle)

EXORciser Data Bus
{Write Cyctle)

Memory Input Data
(Write Cycle)

L

=

280 ns—q

280 ns

X

K|

25 ns —]

~%— Data Hold =

I
TASD = 200 ns —w=]

Refresh Clock

CEa. CEg

6§A1 &8 i I

R/Wa, R/Wg "0

Notes:

=

10 ns min

RERREREEE:

~%—tpata Valid = 120 ns

R
R

210 ns min

Valid

\lnvalid /

Ail timing measured from 50% points.

FIGURE 4-2.5.3-4. EXORciser/4K Memory System Timing Diagram

32 us

64 us

~

Refresh Address Counter Incremented

|

FIGURE 4-2.,5.3-5. Memory Timing in Standby Mode

4-75

tData Stable =

8T94

r

To
Memory
Array

>~

MC14503

A3

A3
Ref
Ref

=
|
|
1

MC14503

A3

1 57 7

A2
Y
Refresh
Addresses

A1l

A0

BAO

5 L4

1
[
|
|
1
I
|
[

A1
Ref
Ref

-
l
|

MC14503

3.3k
I-M/V—O 12v

BA1

BA2

3.3k
l—NW—O12V

MC14503

N
T

Fes
|

Al
BA7
BAS8
BA9

sng Jes1oH0X 3

4-76

FIGURE 4-2.5.3-6: Address Buffers and Decoding Logic

EXORciser Bus

MC7430

S3
AMP 531371

>

5VO—£

RENASCEE RN AT

1/6.mMc7407 | |
MC7430) |
|
12v
[
1k
r-wv
5V ¢
1/6-
MC7407

Bat

S1/" write Inhibit A > Cp
BA12 »Cg
——— =
| Mciasos |
sV 1k
1/2:MC7420 2v
1/4-MC7408 | |
| R'Wa
*
1/6-MC7407 I P |
| | 33k
}
T
| | -
1k —t
12v |
1/4-M
1/2:MC7420 7408 | s l aw
8
1 |
sS4 1/6-MC7407| | | 33k
AMP 531371 |
ROM f |
e
Inhibit 8 Writ | |
1 BT
= 1/4-MC7408 . Bat
5V 1/4-MC7400
VMA 6.11k ‘
1% "E
T T2
1/2-
MC8602 Fof
280 ns . A
Write Tnhibit Pulse
a1
5V
5VvO 1/2 MC7404
Memory Clock ;
Memory Clock

FIGURE 4-2.5.3-6. Address Buffers and Decoding Logic
(continued from preceding page)

4-77

held high). The output of the MC7430 is translated to 12 volt CMOS levels with the open collector gates and
buffered with the MM80C97 3-state buffer. The capacitive loading on each set of 3 paralleled drivers is 60 pf
allowing W to be decoded and valid 120 nsec after addresses are valid on the data bus. During the
standby mode (BAT = ““1’") the CMOS buffer is disabled allowing the 3.3K ohm resistors to pull CSA and
CSB high for continuous refreshing.

The Read/Write signal is received by an MC8T26 and then decoded in the following manner. A
write inhibit feature is provided using switches S1 and S2 for each 4K byte block of memory so that in a ROM
simultation application, the memory can be protected from inadvertant writes due to programming or operator
errors. The Ready-Modify-Write cycle of the MCM6605 is used in this application because it requires a shorter
data valid time (TData Stable) than a normal write cycle (See Figure 4-2.5.3-2b and 4-2.5.3-2c). This feature is
desirable because the EXORciser places valid data on the bus for the last 300 nsec of a Write cycle. In order to
delay the write pulse to the memory array until the data is valid on the Data Inputs of the memory array, a write
inhibit pulse is combined with the EXORciser’s R/W signal in the MC7420 Nand gates. This write inhibit pulse
is generated by the MC8602 monstable multivibrator triggered from the leading edge of the memory clock
(MEM CLOCK) bus signal. The effect of this added delay can be seen from Figure 4-2.5.3-4 when comparing
the memory array’s R/W line for a read and a write cycle. Note that for a write cycle, the R/W of the memory
array is inhibited from dropping to the Write mode until memory input data is valid.

The refresh control signal (REFA) is combined with the output of the MC7420 in a MC7408 AND
gate in order to force a write signal on the memory array’s R/W lines while in a refresh cycle. Translation and
buffering is accomplished in a similar manner to that for the Chip Select signals. When in the standby mode
(BAT = ““1”’) the MMBOC97 buffers are disabled allowing the 3.3K resistor to establish a zero level on the
R/W line of the memory array for continuous refreshing.

DATA BUFFERS AND MEMORY ARRAY

The EXORCciser data bus is bidirectional while the MCM6605 memory has separate data inputs and
outputs. The MC8T26* data bus receiver/driver buffers the capacitance of the memory array (very low, about
30 pf per data line) and combines the Data Input and MOf the memory array into one bidirectional bus
as shown in Figure 4-2.5.3-7. The Data Out of the memory devices is inverted from the Data In requiring an
extra inverter (MC7404) in the data path when working with a non-inverting bus (i.e. , the data is returned to the
bus in the same sense it was received).

During a memory write cycle, the data is valid on the data bus 200 nsec (TASD) after the leading edge
of ¢2. With a 50 nsec delay through the bus translators, the data setup requirement of the memories (210 nsec)
is easily met (See Figure 4-2.5.3-4). A memory read cycle requires a data setup time on the data bus of 120
nsec. The access time of the memory from the leading edge of the CE signal plus the bus transceiver delay of
305 nsec is compatible with this setup time.

REFRESH AND CONTROL LOGIC

The refresh control logic shown in Figure 4-2.5.3-8 handles the refreshing of the memory during
both operating and standby modes. The timing is shown in Figure 4-2.5.3-9.

The refresh timing is controlled by an astable multivibrator constructed with a MC3302 comparator.
This device was chosen for its low current consumption (1.5 ma max) and single supply voltage operation, both

*To be introduced third quarter 1975

4-78

EXORciser Bus

DO

D1

D2

D4

D6

D7

10k
5V

RE DE
| MC8T26 h
| 10 k
| 5V
DC #- Dino
1/6 MC7404
| < Douto
| I l 10 k
I 5V
4} Din1
|
| { 1/6-MC7404
| Dout1
| | 10 K
| 5V
JI {>C> —8 Din2
| | 1/6-MC7404
| J\ Dout2
| 10 k
| | 5V
y {>o > Din3
[I 1/6-mc740a
: \'\F 1| j/ Dout3
b— — — —
| MC8T26 t
| I 10 k
| | 5V
T {>O > Ding
| | 1/6-mc7404
: } < Pouts
! |
| ! ’ 10 k
| : | [—AN\/-—O 5 v
Al Dc —» Di,5
| | 1/6-mc7404
} % i < Bouts
I

Ding
| 1/6-mc7404
1 5

T Doute

I 10k
5V

Din7

| 1/6-MC7404
I < Dout7

FIGURE 4-2,5.3-7. Data Buffers and Memory Array (Sheet 1 of 2)

4-79

08-v

R/Wp Csp CEa
! 1 ! ! 1 I
R/W Ts CE R/W cs CE R/W [CE R/W Ts CE R/W cs CE R/W cs CE R/W Cs CE R/W és cE
McMM6605L-1 Dour MCMMB0SL-1 Bggp MCM6605L-1 Doue MCM660SL-1 g5y MCM6605L-1 Bgoy MCME605L-1 B - MCMB605L-1 Dgne MCMBB05L-1 Doy
AO...AT1 Preset Dj, AO...A11 Preset Djy AD...A11 Preset Dj, AO...A11 Preset Djy AO...A11 Preset Dj, AO...A11 Preset Din AD...A11 Preset Djg, AD...A11 Preset Djp
o = Dosta | __ = Boutt = Dourz = Dout3 o = Oouta | __ = Souts . = Douts _ = Dout?
AO...A11 Dino AD...A1T1 Din1 AD...A11 Din2 AD... A1 Din3 AOQ...A11T Ding AD...A11 Dins AD...A11 Ding Din7
R/Wg csg CEg
R/W s CE R/W cs CE RIW cs CE R/W [CE R/W cs CE R/W s CE R/W cs CE R/W s cE
MCMMB605L-1 Dgur MCMM605L-1 Doy MCM6605L-1 Dour MCM660SL-1 Bgoy MCME605L-1 Dgyy MCM6605L-1 T MCM6B05L-1 Bgur MCME605L-1 Doy
AO...A11 Preset Djn AO...A11 Preset Djg AD...A11 Preset Djn AO...A11 Preset Din AO...A1T Preset Dj, AO...A11 Preset DOjq AO...A11 Preset Djq AQ...A11 Presat Dig }
o = Sowo | _ = Boutt | = Dotz | ___ = Boutd o = Doud | _ _ = Dot o = Boute L . = Dout?
LA Dino AQ...A11 Din1 AD... AT Dinz AO...AT1 Din3 AO...A11 Dina AO...A1T Dins A0 ...A11 Dine AQ... AN Din7
FIGURE 4-2.5.3-7: Data Buffers and Memory Array
(Sheet 2 of 2)

important for battery operation. The refresh requirement of 32 refresh cycles every 2 msec is handled by
stealing cycles from the processor. This cycle stealing results in a 1.6% slower program execution rate than the
basic microprocessor clock frequency. During the refresh cycle, the clocks to the microprocessor are
““‘stretched’’ during the ¢1 high and the ¢2 low times by 1 usec as shown in Figure 4-2.5.3-9. During this 1
usec period, the memory executes a refresh cycle. In order to minimize the effects of memory refresh on
microprocessor program execution the 32 refresh cycles are distributed over the 2 msec period, one occuring
every 62.5 usec. Refresh could be done in a burst of 32 cycles every 2 msec but this would cause a larger gap in
program execution which in this case was undesirable.

The MC3302 produces the 62.5 usec signal to time the refresh requirement and also is used in the
generation of the —5 VDC supply required by the MCM6605 memory. Since these functions are required in the
standby mode, which is powered by the battery, a CMOS buffer is used in a charge pump circuit to minimize
current drain from the battery. This charge pump creates —5 VDC at 3 ma from the +12 volt battery to satisfy
the bias requirements of the memory devices.

The REFRESH CLOCK is used to increment the address counter (MC14024) and to clock the
refresh handshaking logic (MC14027). REFRESH REQUEST goes low on the leading edge of the REFRESH

12 v
100pF 221k 1%

0.022 pF 1N4148

i \ 5.1V 1o
7 \Y
8B
1120 Refresh Addresses 1N4148 100 uF MZ4625
+
A v 10V
~ 12 = —

= f
100 & “A0 A1 A2 A3 A4 = = Ref 1/2.MC14049

1% Lol L T_ A +so0v
; 47.5k 1% Q1 Q2 Q3 Qa4 as ¥ a S 3
L dc MC14024 ¢ 1/2-MC14027 c1/2-MC14027
Refresh K — _

ah a
Clock _T_ S R [‘K s R “l
= = —-L = et
2V

1/4 MC3302 %22k 1/6-MC 14049

100 k
1%

5V
1/6-MC7406 2 3.3k 1/6.MC14001 >:
DCH'_DO_ 1/6-MC14049 1/6-MC7404
1/6-MC14049 ¢

1/6-MC 14049

FIGURE 4-2.5.3-8. Refresh Control Logic

1 us —=
EXORciser Bus ¢1 I | | | I 1 | l |
EXORciser Bus ¢2 I J I I L J l l |_
Occurs Every 64 us
Refresh Request % A/l

Refresh Grant ______r—l
Memory Ciock 1 | 1] L J B |

-

U] Don’t Care

FIGURE 4-2.5.3-9. Refresh Timing

4-81

CLOCK thus requesting a refresh cycle. Logic in the clock generation circuitry stretches the high portion of ¢1
and the low portion of ¢2 while sending back a REFRESH GRANT signal. This stretching of the ¢1 signal
delays program execution during this cycle. The leading edge of REFRESH GRANT starts the refresh cycle
and cancels REFRESH REQUEST. The trailing edge of REFRESH GRANT returns the refresh logic to the
normal state and the memory is ready for a memory access. The trailing edge of the REFRESH CLOCK then
increments the refresh counter in preparation for the next refresh cycle.

Decoding of the memory clock (CEA and CEB) and the circuitry to synchronize the POWERFAIL
signal is shown in Figure 4-2.5.3-10 with the timing given in Figure 4-2.5.3-11.

The memory device clock (CEA and CEB) during standby is generated by a monostable multivib-
rator (MC14528) and buffered from the memory array by three MM80C97 buffers in parallel. This clock is
multiplexed with the MEMORY CLOCK by use of the 3-state feature of the MM80C97. The MEMORY
CLOCK (used during normal operation) is translated to 12 volt levels by use a MC3460 clock driver.*
Decoding of the CE signals (i.e., only clocking the memory bank addressed) to conserve power is
accomplished by internal logic within the MC3460.

Since the POWERFAIL signal will occur asynchronously with both the MEM CLOCK and the
refreshing operation (REF CLOCK), it is necessary to synchronize the POWERFAIL signal to the rest of the
system in order to avoid aborting a memory access cycle or a refresh cycle. An MC14027 dual flip flop is used
as the basic synchronization device. The leading edge of the REFRESH CLOCK triggers a 3 usec monostable
multivibrator which is used as a refresh pretrigger. The trailing edge of this pretrigger triggers a 500 nsec
monostable which creates the CE pulse during standby operation. The 3 usec pretrigger signal is used to direct
set half of the MC14027 flip-flop, the output of which then inhibits a change over from the standby to the
operating modes (or vice versa). This logic prevents the system from aborting a refresh cycle should the
POWERFAIL signal change states just prior to or during a refresh cycle. The trailing edge of the 500 nsec
monostable clears the MC14027 flip-flop enabling the second flip-flop in the package. The state of
POWERFAIL and POWERFAIL is applied to the K and J inputs, respectively, of this second flip-flop and is
synchronized by clocking with MEM CLOCK.

The outputs of this flip-flop, labeled BAT and BAT, lock the system into the refresh mode and
multiplexes in the internal clock for standby operation when BAT = ““1”’.

SYSTEM PERFORMANCE

Figure 4-2.5.3-12 is a photograph of the breadboard of this dynamic memory system. This
breadboard was interfaced with an EXORciser system and tested using a comprehensive memory test program
written in-house.

Figure 4-2.5.3-13 is a photograph of waveshapes associated with alternate reads and writes in one
4K bank of the memory system. Included also is the simple MC6800 program used to generate these
waveforms. This type of operation produces repetitive signals on the memory board in order to aid
troubleshooting. Note the refresh cycle sandwiched in amongst the read and write cycles and that the decoding
of the CE signals produces no clocks on CEA (accesses are to bank B), except during refresh.

Figure 4-2.5.3-14 shows the printed circuit memory array used to interconnect the memories. The
addresses are bused between the 4K memory chips in the horizontal direction. Data lines are bused in the
vertical direction. The MCM6605 4K RAM has power and ground pins on the corners of the package allowing

*To be introduced first quarter 1975

4-82

AMN—O012 V MA—O012 Vv MC14503
B 5.11k 82 oF 2< 511k - ——— —
520 pF 1% 2 p AF | |
l
Tt T2 T1 T2 | I
Q Q |]\ |
RO
Refresh Clock 1/2-MC14528 1/2-MC14528 K I
3us 500 ns |
| |
a —ﬂ a 19 f
cp cp +
| « |
I I
' 1
12v 12V
]_—_\ ! |
= | b
1/4-MC14001 | |
s S Bat ' |
J aQ
J Q | I
1/3:MC14049 = 1/2-MC14027 1/2-MC14027 | ! - CEa
c c L= 1 .
1/4-MC14001 L —» CEg
12 VO—K Qb K a Bat
+12 R R
MC14503
" I I s
_ _ - - |
Memory Clock ——D 4 l)
1/6-MC7407 2v : |
1/4-MC3302 | ;Q—H.
JE [
Power Fail —————— 4 |]
12V t
| J»—l/li\ |
100 k : J\ }
[-7 I
] ’\ i
| |
12 k | |
MC3460 1
a ASEL | |
A | |
| |
Refp REF SEL L |
- Bat
CB BSEL
B
Memory Clock Clock J—
CSEL DSEL E1

FIGURE 4-2.5.3-10. Power Fail Logic and Chip Enable Driver

0 1.0 us 2.0 us 3.0 us 4.0 us
Refresh Clock
(64 us Period) _/

3 s Monostable
(Refresh Pretrigger) ——/ \
500 ns Monostable S\
CEpoOr CEg ’
(Standby) /L
Clock Input @ \ /
Inhibit / —\

Power Fail signal changes will not i
be recognized during this time.

FIGURE 4-2,5.3-11. Power Up/Down Synchronization

FIGURE 4.2.5.3-12. Memory System Breadboard

wide, low impedance power and ground interconnects within the memory array. Decoupling capacitors were
used as follows within the memory array: +12 volt — one 0.1 uf ceramic per package, +5 volt— one 0.01 uf
ceramic for every three packages, and —5 volt — one 0.01 uf ceramic for every three packages. Figure
4-2.5.3-15is a photograph showing the ripple on the power supplies in the memory array caused by accesses to
one 4K byte bank of memory as shwon in the photograph. The +12 volt line supplies the most current to the
array and is the one on which the most care in decoupling (wide PC lines and distributed capacitance) should be
taken. Placement of the VDD pin on the corner of the package gives the designer the option to do this easily.

The dc power dissipation of this memory system is shown in Table 4-2.5.3-1. Of these current
drains, the most critical to non-volatile operation is the current requirement in the Standby mode where the
current would probably be supplied from a battery. A breakdown of the typical current required from + 12 volts
to maintain the memory in the Standby mode is shown in Table 4-2.5.3-2.

By using CMOS for the refresh logic and capacitance drivers, a dynamic memory, and alow current
refresh oscillator; the standby current has been reduced to a level that can be supplied easily by a battery. Table
3 is a brief list of various capacity 12 volt batteries that could be used to power a system of this type in the
Standby mode. Support time runs from one-half to 35 days and can be made as long as desired if sufficient
battery capacity is available.

4-84

10 V/Div

)
X
T
2

Read

Write

Read
Refresh

Write
Read

Write
Read

CEg .
CSg
R/Wg
CEp
5 us/Div
M6800 Program to Generate Waveforms Shown
Address Data Mnemonic Comment
0000 B6 LDA #$55 Load data to be written (55)
0001 55
0002 B7 | STA A $3000 |Store data in address 30004¢
0003 30
0004 00
0005 F6 LDA B $3000 | Read data from address 3000¢
0006 30
0007 00
0008 7E JMP $0002 Loop back
0009 00
000A 02
FIGURE 4.2.5.3-13. Alternate Read and Write Memory Accesses
TABLE 4.2.5.3-1 8K x 8 Non-Volatile Memory System Power
Requirements (1-MHz EXORciser Clock Rate)
Current
Mode Power Supply* Typical Maximum
+12 V** 100 mA 300 mA
Operating
+5V 600 mA 860 mA
+12V 14 mA 20 mA
Standby
+HV No +5 V Supply required

*5 V supply is not listed because it is generated on the board

from +12 V

**Because memory is dynamic, the +12 V current requirement
is dependent on rate of memory access.

4-85

4K x 8
Bank A

S 4K x 8
Bank B

gg

+5.0 vV

—_———— ——w %

Address Lines

+12V +12V

\\ 5\ I~ /N

o [} ° /
[Lo
(-,
o o o ol |of|o o o o
[o d
9 o
2 10 d o1 10 ad ad rd ~d
CE3O A
]
<
VBB O
A30 é -0 0 Al
o~ 0AI0
0 O O O [O © o 049
ANQ é OAS
CcLKO é ©- OA7
' 10 0 o [- -] O rd O 2 QA6
CE4O OAS
A40 ¢ OR/W
A20 o~ 1 S 0A0
/ vee

Gnd Gnd

LX)

0¢Q

°Q

Lomoo ol 00 o0 LX) o

o0
vCC DODI vDD DODI VvS$S DODI DO DI DO DI po DI poDI DO Dl\
Data Out Data In Data Out Data In
Bit 0 Bit 7

FIGURE 4-2.5.3-14. Memory PC Board Array

4-86

Circuit Section Typical Current

+12 V Current (VDD) 5 mA

Charge Pump 3mA

Comparator 2mA

Capacitance Drivers 4 mA

Total 14 mA

TABLE 4.2.5.3-2 Standby Mode Current Allocation
Size

Globe GC 12200 20 6.9” x 6.5” x 4.9” 16.75 Ibs. 35 days (850 hrs)
Globe GC 1245-1 4.5 6" x 25" x4" 4.51 lbs. 8 days (192 hrs)
Globe GC 1215-1 1.5 7" x1.3" x 2.6" 1.51 lbs. 2.6 days (63.75 hrs)
Burgess MP 202 0.6 34" x1.4" x2.3" 11.6 oz. 1.25 days (30 hrs)
Burgess 12.0V 225 Bh 0.225 3.5"” H x 1" Diam, 4.65 oz. .47 days (11.25 hrs)

*Assumes 20 ma average current drain (14 ma for memory and 6 ma for powerfail detection
circuitry) and a battery voltage range during discharge of from 13 to 11 volts.

TABLE 4-2,5.3-3. Battery Characteristics

CEg B R =m9 10 V/Div
+12 V Power Line Eg " 1 V/Div
+5 V Power Line kifg® ®® 1V/Div
-5 V Power Line ZRrmemrsits 1V/Div

S us/Div
FIGURE 4.2.5.3-15 Power Line Ripple

4-87

4-2.5.4 Design Considerations When Using Non-Family Memories with the MC6800

The previous sections have discussed general interfacing with slow and dynamic memories and two
design examples using the MCM6602 1K X 1 static RAM and the MCM6605 4K X 1 dynamic RAM.In this
section, the general interface characteristics of the M6800 family will be discussed as well as methods for
interfacing with various classes of memory devices. The categories of memories to be discussed are the
following: Bipolar PROMS/ROMS, MOS PROMS/ROMS, Bipolar RAMS, and MOS RAMS.

Table 4-2.5.4-1 lists the relevant characteristics of the M6800 family parts to be considered when
interfacing with each other or with non-family parts. In most small systems, the limiting factor will be the data
bus load exceeding 130 pf maximum capacitance and/or 1 TTL (7400) load. Depending on the mix of
PIA/ACIA and memories, the fanout can be 7 to 10 family parts before buffering is required.

BIPOLAR PROMS/ROMS

The PROMS available in bipolar technology are constructed with nichrome or poly silicon links
which can be ‘‘blown’’ or programmed in the field to provide a custom program for small quantity, quick turn
around, requirements. In many cases, a pin for pin equivalent is available in a mask programmable ROM for
large quantity usages of a known bit pattern. Common memory organizations available are 64 X 8, 256 X 4,
512 X 4, and 512 X 8 from several manufacturers. Because these devices are constructed in bipolar TTL
technology, their speed is much greater than required by the MPU. A typical device of this type will have a

IDATA™ '
DEVICE CIN. CouT N (3st) IDATA (drive)
MC6800 MPU 10 pf logic 12 pf logic -100ua +130 of
15pfdata 15pfdata 2.5ua 10ua 1.6 ma P
MCM6810 RAM -100ua
(128X 8) 7.5 pf 15 pf 26ua 10ua 1.6 ma 130 Pf
MCM6605 RAM
MCM6815 RAM 100ua | . of
(4K X 1) 5 pf 5 pf 10ua 10ua 2 ma
7 pf logic -100ua
MC6820 PIA . 10pfdata 10 pf 26ua 10ua 1.6 ma 130Pf
MCM6830 ROM -100ua
(1K X 8) 7.5 pf 15 pf 26ua 10ua 1.6 ma 130 Pf
MCM6832 ROM 40pa o0
(2K X 8) 8 pf 10 pf 10ua 10pa 1.6ma P
MC6850 ACIA 7 pf logic -100ua +130 pf
10 pf data 10 pf 2.5ua 10ua 1.6 ma

*Current leakage on data bus in high impedance state is into the device.

TABLE 4-2.5.4-1. MPU Family Interface Chart

4-88

maximum access time of 70 nsec from address valid while the MPU only requires 575 nsec access time when
operating at full speed. Because of their programmability, these types of devices find use in system prototypes,
bootstrap loaders, and system debug packages. Devices of these types are the MCM5003 PROM and its mask
programmable equivalent, the MCM4003.

- Interfacing with these devices requires buffers for the MPU because each bipolar PROM/ROM is
one unit TTL load. Since the MPU has TTL levels on all inputs and outputs, no level translation is necessary.
Timing interface between the MPU operating at full speed and these TTL memories can be accomplished easily
because the TTL memories are much faster.

MOS PROMS/ROMS

The mask programmable MOS ROMS are both P-channel and N-channel with the newer faster
devices being N-channel. Memory organizations commonly available at 1K X 8 and 2K X 8. Most of these
ROMS require multiple power supplies with +12V, +5V, =3V, or +5V, —12V, being common. Current
requirements on the non—3V supply voltages are in many cases low so that charge pump techniques can be
used. The majority of these devices are TTL compatible on the inputs and outputs making MPU interfacing
easy. Because of the MOS technology, these devices all present light loads on their inputs usually 10 na leakage
and 5-10 pf shunt capacitance and, therefore, can be interfaced without buffering up to 130 pf + 1 TTL load.
Those parts with an access time of longer than 575 nsec will require usage of the slow memory techniques
described in Section 4-2.5.1 in order to operate with an MPU ata 1 MHz clock rate. These devices vary in speed
from 350 nsec to 1800 nsec depending on manufacturer and process type. Devices of this type are the
MCM6830 and the MCM6832.

The PROMS available in MOS technology are electrically programmable and erasable by exposure
to ultraviolet light. Device organizations available are 256 X 8 with 512 X 8 under development. Inputs and
outputs are TTL compatible with the use of pull up resistors on the inputs and access times range from 500 nsec
to 2.5 usec. Inputloading is on the order of 1-5 ua and 15 pf. A MPU system operating at full speed may require
the slow memory techniques described in Section 4-2.5.1 to operate with the devices.

DYNAMIC MOS RAMS

These devices are available in P-channel in a 1K X 1 organization with the newer devices being
N-channel and 4K X 1 organization. Their dynamic characteristics require that periodic refreshing of the
memory take place. The number of refresh cycles varies from 16 to 64 every 1 or 2 ms. Several ways to handle
this refresh requirement in the MPU system were described in Section4-2.5.1. The access time of these devices
is usually less than 500 nsec resulting in easy timing interface with the MPU at full speed. Inputs and outputs of
most of these devices are TTL compatible with input loading being typically 10 ua leakage and 5 pf shunt
capacitance. These devices typically require a clock signal which can be derived from the ¢2 MPU clock
signal. A design of a memory system for the MPU using dynamic memories is detailed in Section 4-2.5.3.
Devices of this type are the MCM6605 and the MCM6815.

4-89

STATIC MOS RAMS

Static RAMS do not require refreshing and as such are simple to interface into a MPU system. In
N-channel MOS technology, the common organizations are 128 X 8, 256 X 4, and 1024 X 1. The inputs and
outputs are TTL level compatible with the input loading on the order of 10 ua and 5-10 pf Output drive
capability typically is one TTL gate and 100 pf shunt capacitance. These devices operate from a single 5 volt
power supply with access times between 200 and 1000 nsec.

Example of this type of device are the MCM6810 and the MCM6602. A design of a static memory
design for the MPU using the MCM6602 is detailed in Section 4-2.5.2

4-90

CHAPTER 5

5. PERIPHERAL CONTROL TECHNIQUES

The MC6800’s general I/O handling capability is described in detail in Chapter 3 of this manual.
This Chapter further demonstrates the I/O characteristics of the M6800 system by applying them to a variety of
specific peripheral control problems. The emphasis here is on control of the peripherals; system integration
procedures are described in Chapter 6.

The development of both hardware and software is described for representative peripherals in the
following categories:

(1) Input devices such as keyboards and label scanning wands;
(2) Output devices such as visual displays and hard-copy printers;

(3) Data interchange devices such as teletype terminals, tape cassettes, and floppy disks. Where
appropriate, the possible hardware/software trade-offs and their effect on system efficiency and
cost are discussed. However, the main objective was to minimize the external conventional
circuit requirements by using the MC6820 PIA and the MC6850 ACIA family interface
devices. The PIA and ACIA are described in detail in Sections 3-4.1 and 3-4.2, respectively, of
Chapter 3.

5-1 DATA INPUT DEVICES
5-1.1 KEYBOARDS FOR MANUAL ENTRY OF DATA

Keyboards represent particularly good examples of the hardware/software tradeoffs that should be
considered when configuring a system. They can be obtained from original equipment manufacturing (OEM)
sources with widely varying amounts of electronics provided. |

At one extreme is the fully decoded* keyboard complete with multiple key rollover protection® and a
strobe signal for indicating that data is available. Use of these units with an MPU results in the simplest
interface and also requires a minimum control program.

At the opposite extreme is the keyboard with no electronics at all; only the terminals of the individual
key switches are provided. With this type, the designer may choose to add a full complement of external
electronics, do a partial decode, or let the MPU perform the complete task in software.

Representative examples of each approach are described in the following paragraphs. In each case,
the MC6820, Peripheral Interface Adapter (PIA), is used for interfacing to the MC6820 Microprocessor.

5-1.1.1 Decoded Keyboard for a POS Terminal

A MICROSWITCH 26SW3-1 POS Keyboard was selected for use with the Transaction Terminal
described in Chapter 6. A schematic representation of the key configuration is shown in Figure 5-1.1.1-1. The
function keys CODE ENTRY, SUBTOTAL (+), SUBTOTAL (-), and CLEAR each provide a logic level out
when depressed. The remaining keys are decoded, that is, closure generates a 6-bit code word accompanied by

1Each switch closure is converted to a unique code word.

2The first of near-simultaneous closures is selected.

5-1

Grocery Wght. Code Entry
Dairy 1 2 3
Meat

4 5 6

Coupon

Produce

7 8 9

Bottles
Hshld

—— o

Stamps

Subtotal
No -
Tax
Total
Q
T
Y
Cash
Check
Sub
Tol
+
Clear

FIGURE 5.1.1.1-1 POS Keyboard Configuration

Key Function Key Number Code to PIA
b7 b bs bg b3z b2 bt bp
0 43 60 0 0O O O 0 o0 o
1 13 o 0 0o O O 0 o0 1
2 14 o o 0o o o0 0 1 0
3 15 0o 0 o o o0 o0 1 1
4 23 0 0 0O O 0O 1 0 O
5 24 o 0 o o O 1 0 1
6 25 0O 0 0 0 0 1 1 0
7 33 0 0 0 0 0 1 1 1
8 34 0O 0 0o o 1 0 0 O
9 35 o 0 o o 1 o0 o0 1
. (Demical pt.) 45 0O 0 0 o 1 0 1 0
Grocery 1 o 0 o0 o O o o0 1
Dairy 1 0O 0 o o O 0 1 o
Meat/Coupon 21 o 0 0O 0 0. 0 1 1
Produce/Bottles 31 o 0 o0 o0 o0 1 0 O
Hshld/Stamps 41 0 0 0 0 0 1t 0 1
Weight 3 0o 0 1 0 0 0 0 o
No Tax - 7 o 0 1t 0 0.0 1 1
Quantity 17 0o 0 1 0o 0 1 1 1
Total 20 -~ o 0 1 0 1 0 1 0
Cash 30 - 0o 0.1 0 1 1 1 1
Check 40 0 0 1 10 0 1 1
Code Entry 5 01 Will be holding
Subtotal (—) 10 1 0 data from
Subtotal (+) 37 11 previous entry
Clear 50 [C2 interrupt]
A o 0 0 1 1 0 O
~ Strobe . - [C1 interrupt]

1. Strobe will be high while-any key is closed

FIGURE 5.1.1.1-2 Keyboard Coding/PIA Interface

5-2

a strobe pulse. The code generated by the keyboard is shown in Figures 5-1.1.1-2. That Figure also shows the
interconnection to an MC6820 PIA as represented schematically in Figure 5-1.1.1-3.

For system purposes, it was decided that any key closure should cause an interrupt via the PIA’s CA1
Input. The interrupt was generated by using a Quad Exclusive OR gate package to combine the four function
key outputs and the STROBE signal. The CLEAR signal was also required as a separate interrupt and is, hence,
applied to the CA2 Interrupt Input. The remaining three function outputs, CODE ENTRY, SUBTOTAL (+),
and SUBTOTAL (—), were decoded by using two 2-input NAND gates applied to PA6 and PA7 of the PIA.

Operation of the system executive program described in Chapter 6 is largely determined by data that
is input through this keyboard. However, the control program for the actual capture of the data is relatively
simple. When the MPU is ready to accept manually entered data, it polls the keyboard PIA interrupt flag bits
until an input is detected. A Flowchart and an Assembly Listing of the relevant portion of the executive
program?® are shown in Figures 5-1.1.1-4 and 5-1.1.1-5, respectively.

After recognizing an interrupt, the MPU checks for a keyboard closure by testing flag bits 6 and 7 of
the keyboard PIA’s Control Register. These bits would have been set by transitions on CA1 or CA2. If neitheris
set, the MPU branches to check for a Wand interrupt service request. If one is set, the MPU tests for a CLEAR
closure (bit 6) and, if it is present, branches to the CLEAR service routine. If the CLEAR flag is not set, the
MPU assumes bit 7 was set and proceeds with the keyboard service routine.

This sequence is typical for encoded keyboards. Aside from the interrupt service housekeeping,
capturing the data consists of nothing more than the MPU “‘reading’’ a PIA Data Register as it would any other

memory location.
3See Section 6-4.2.4 of Chapter 6 for the relationship to the remainder of the executive program.

Microswitch

Vce Gnd Strobe

265W3-1
Keyboard PIA — Side A
—
L
—
>
-
L
g
Code Entry —@
Sub Total - y >
Sub Total +
-
Clear —¢ -
e

FIGURE 5-1.1.1-3 Keyboard/PIA Hardware Interface

5-3

XKSTP

Turn On
Ready Light

Get PIA Control
Register Byte

No
Is Is
Either Wand
Interrupt Reading
Flag Data
Set? 2
Yes
Is It
ves Turn Off
The Clear)
Key Interrupt Ready Light
Request?
Turn Off Ready No
Light
Go To Wand
Data Processing
Get Keyboard Routine

Data From Keybaord
P1A Data Register

Go To Clear

Key Processing

Turn Off Ready
Light

Go To Keyboard Data

Processing Routine

FIGURE 5-1.1.1-4 Flow Chart for Keyboard Service Routine

5-4

aounvyre
aooyg
DOOve

aonre

aaioo
a01io
a1
a1z
ool
naiso
Ghled
goiv o
noisn
B RERY]
IRy
aosla
QUsSzn
QoSS
BRI SN
aaz2sn

NTET: 31
gUuzs0
oDozZeg

i 1 L
HiCgY
H1CS
HiCe
H1iC 7@
H1CH
FH1CC
H1LF

H1T0
=102
HILS
H1D7
H1D3
AHIDE
ALILOD
H1ER
HlES
RIES
H1EZ

RIER |

A1ED

HL1F G
HIFZ
H1FS
H1FS
F1FFA
ALFL
Sr=aily]

B
0F
il

a1

s
-4 v T

= Ty
m -

AR B | Bt I I

ST b [T 00 DD Do e
o

I R S

[as}
o}

Ty
(RSB < s BEY

i3
F7
EL
=

oo
Fo

-t
[N ER i

SO0
0

. Lt n
D CE
= 010

EF

BT
B0z
AICz

SKIFTR

+ HKEYVEORFLD

ALV
SE1 045

»
* LiAND
»

SR 10eS

HOF
ZEI
NMCF
HOF
LIR E
grA E
ZTA E
CLI

wECDFA
S F O
“FeDRA

FECLEZT Y
SFZCFA
HR Iy

HE LGRS
SRS

S QLN
HR S

WP ZORA
S O T = S
=PZLEA
“PEZIRA
4+ 3 EF
T

Lok A
EIT
EED

Ing]
I o
L I U e TS T (s (e O

ot i I

ZumH

sk TH

[T (I S s
[TG

TERVICE REGLES

Lorn B HFPSLER
EMI N
LR E
HMD E
TR B
AZR
AMFE

wF 2 ORA
HR 9SS

MFE DRA
b biAND
Mk EFTF

T

TUREN OM FERDY
ZET PA-%

EMAELE IMTERFEL

FERD EKEYEORRD
CHECE CRATCRA
IF O REQDUEZEZT
CHECKE FOR CLER
IF HOs COMTIMU
IF YEZs LORD
CLERF IMTERKLUF

LOAD KYED
TURM OFF SERLY
LR A=

=0 TO EYED

1% WwRMHD OM ZFR
i HCT LGOF EH
TilRM OFF KERDY
CLRE FA-2

OTHERWI ZE»

FIGURE 5-1.1.1-5 Keyboard Service Assembly Listing

5-5

LIGHT

FTE

FIR CONTROL

£

CHECK
= OEEY
E EYED
LEFAF
T

LIGHT

CE »
LK
LIGHT

=0 7O WAMD

Wik

TERYIC

IZO0DE

IATA-CLERRE INTERR

FROUTIME RCCAR=0DST

EvV=07

FOUTI

cB1

+5
10k y/ y/? y/‘ y/
r B0 odol O 2K 2 K2 RS
+5 {
10k9% §/'/P 7/' y/" 7//
S WL LK Wl all FIGURE 5-1.1.2-1: Keyboard/PIA Interface
< +5 |
by b b
) 10kn§ s s s g
S GVl W) Wad sl S Kn
+5 |
10kQ '}// 5// y/ 4]
o83 ob_o K12 P K13 K14 _PKis
> T A5 AAN 45— b t5AAMA-$ 15N
10 kQ ¢ 10k & 10k & 10k2§
PB4 PBS PB6 P87
ToRIA

5-1.1.2 Non Encoded Keyboard

An example of capturing data from a keyboard with no external electronics is shown in Figure
5-1.1.2-1 where half of a PIA being used to interface with a sixteen function keyboard connected in a matrix
configuration. The row lines of the matrix are connected to PBO through PB3, the column lines to PB4 through
PB7. A suitable keyboard control Flowchart is shown in Figure 5-1.1.2-2. The corresponding Assembly
Listing is shown in Figure 5-1.1.2-4.

An initialization sequence uses the Data Direction Register, DDR, to establish the Row lines
(PBO-PB3) as outputs and the Column lines (PB4—PB7) as inputs. In addition, ones are written into the
Column section and zeros are written into the Row section, leading to the situation shown in Figure 5-1.1.2-4.

Any key closure will now couple a Row zero through the key switch, causing one of the Column
lines to go low and generate a CB1 interrupt via the 4-input NAND gate. A typical case (K6 closed) is illustrated
in Figure 5-1.1.2-5.

The programmable features of the PIA can be used to generate a simple program for capturing the
data. Refer to the Flow Chart and Assembly Listing of Figures 5-1.1.2-2 and 5-1.1.2-3, respectively as
additional aids to understanding. The MPU, as its first step in servicing the keyboard, reads Peripheral Interface
Register B (PIRB), thus clearing the interrupt (b7 of Control Register B) and storing the current contents of
PIRB in accumulator A. Note that because of the initial conditions, the word stored in ACCA must be one of the
four* shown in Figure 5-1.1.2-6 depending on which column the closure was in.

The MPU, using the DDR as in the Initialization sequence, next reverses the I/O relationship of the
column and row lines, that is, PBO—PB3 are established as inputs and PB4—PB7 as outputs (see Figure

*This assumes only one key was closed. Multiple key closures will be discussed in a later paragraph.

5-6

(KSETUP ’

Establish Row lines
(PBO-PB3) as Outputs,
Column lines (PB4-
PB7) as Inputs. Write

‘ KBOARD '

Fetch data from
KBRDPR; Reverse
Column/Row |/O
(PBO-PB3=Inputs,

initial pattern ($FO0) PB4-PB7=0utputs)

into PIRB (KBRDPR)

'

Load row section of
data word with ones
and write back
into KBRDPR

'

Fetch closure data
from KBRDPR; Set
Index Reg. to Starting
Addr of lookup table.

Comp. Closure data
to current word table

Match?

t

Store key countin
Number buffer

‘ Increment key count
- — and move to next
table location.
Check for end of
tabie,

Re-initialize Row/
Column 1/0: PBO-PB3
=Qutputs; PB4-PB7=

Inputs. Write ones
into Col. Sect., zeros

into Row Section.

Search
Compiete?

i

Enable interrupt by
next key closure

Perform BDREAD
Subroutine

]

FIGURE 5-1.1.2-2 Keyboard Control Flow Chart

ooon
wnu}n

uutlu
aoizn
010
anlda
L= a

aniso

oodzn

O0d=0
00440
andsn
ang=0
LR S
nngd=n

R
oLnG
10z
aios
BRI
0l 0N
nyomn
e
2iin

#THIT FROSFAM CRUTET THE MCEE00 M
+TD CAETURE KEY CLOSURES 02 A 16
*AMD PLACE THE BIARRY EQUTVALENT
HAMED MERELF. THE B TIDE OF AM MCAEE0 FIA
+13 UIED TO ENMTER THE DETE.

T

in

w5 EORR LR

=4 1T

I T

LOdw R ope

ST 0T b a0 T T T D

Lo BEX SR IR NS

KN NS E Y K

e}

{10 00

R
000

B |

ar T z_—_

RO URR BEE LS B R BN K o o B

=

BDFERT EFP EEETLIF ﬁiwn; E
P THELE FCE FEE 2 EDE S BEE L7 {rL,fDﬁ.}Lp‘{ T REE

[T} =) b md 01 Teasd T T T170
T TTT

LEND FCE
FERDCR E0id
VPPDDF Enid

= T
e Bl B v
e VIS TR Y

HEPEUr B

e
Ty

HAM KEQRRT

CROFROCESIOR
EEYEDRFT

A ELFFER

arT 1

a== EL00

FERTIFR RERD THE ~IA PEFIFH REG.

R I LORD ACCE MITH 000600100
FERDCRE SELECT IRTH TIR RER:

#EE 0 TELECT PEO-2EI AT INFUTE AN
HERDDR #FE4-FET AT OQUTRUTZ,

LIA
ZTH
(]
ZTH
CLE
OrF RIS LORD BO-E2 IF ACCH WITH OHE
TTH KERLIFR WEITE BROE OIMTO FERIFH RES
(A Als] KERTFR FETOH CULOYURE DHTH,
LI ETHRELE FOIMT TO TE. ZTFT ADLE
" DETAR = CURRZHT TRTLE WRLLETY
EEv TTRYH #YED . 30 FUT DATA IM FUFFER
IMNT B MO s RTVHCE MER TOUNT RSN
I +MOVE TD MEST THELE LCCATID
R “TP FHI ZERRTHE COMSLETEY
] #0300 TO O LJ0RUF CONT ZRIDH
EL& EHW +5CET R T BRAUFERT FTH
HERBLIF STORE FEY HUOMEER,
WEETUR G0 ORE-IMITIALLIZE
(+= EMATLE MAT TLDSURE IMTERT
KEBRTCR *
SETURM TD MITH FPROGRAM,
BRHE LD COMTROL 2EG WTH PRITERHN
EERTCE T ZELECTY WIFL'(IDH REG,
EER At TELECT PEG AL QUTRUTIS
HERDDR AT FRA-FET IHFUTw
SEF O WAEITE 11110ace PATTERM IMTD
EERDOCF +FERIFHZRAL. REZIZTER.
FETURM T NATH FROGCRERM
READ FREOGERAM

DDt bd bd T T

pyl

1,

te

o i

FCE BDESEEE»$7B«FET 307+ £ET

FIFR ERd

EMT

FIGURE 5-1.1.2-3: Keyboard Contro! Assembly Listing

5-8

TO PIA

TO PIA

10k
PBO Db Pl <K 2K < <3
+5 | $
10 m% ’5/'/ 7/' 7/ }’/
PBI Db VAl Pl LK ra
+5 ! Y
wat 7] s s g
pB2 Db ./ K8 P K9 -./.K"’ 7 KN
0
+5
]
wag gl gl gl g
L res) K12 23 2K s
0 N/ % 3 \ 2
Pi‘s4 P85 P!136 Pé?
TO PIA

FIGURE 5-1.1.2-4: Initial PIA 1/O Configuration

]
44 /] /| 7
pa0 Yo KO 3/«1 ‘3/'(2 3/.(3
o/ g
A\
/ A e},« /|
PB1> '2/K4 ;KS = < K6 _;/pq
0
sl s s 4]
N '/' K8 / K9 K10 sl
0
. B S B
NN 3:(12 ;us }lxu K
0 v W \ 2 \' 4
1 1 0 1
PB4 PBS PB6 PB7
70 PiA

FIGURE 5-1.1.2-5: Result of Key Closure

59

TO PIA

b7 b6 b5 b4 b3 b2 bl b0
1{1]1]0]0oflofo0o]o
OR [1]|1|lo]l1|o0o}lofo]oO
OR [1]o0|1|[1]l0o]o]lo]oO
OR |0]1]1]1]0]0]O0]oO

FIGURE 5-1.1.2-6: Contents of Accumulator A

CB1

s v 5 5
pB0 & LK Walll s Il
1
. W\ »
5// ' y./ (\\\ }/f y/
PB1 ((./.m ./Ks < K8 Y
0
s s s s
b2 & ﬁ/ K8 5/ K9 =/’K1o =/K11
1
o g gl s
pB3 & ./'“2 K3 '/Km _/'ms
! ~ A ~ /N
PB4 P8BS PB6 PB7
TO PIA

FIGURE 5-1.1.2-7: /0 Conditions Reversed

5-10

5-1.1.2-7). ACCB is used in order to avoid disturbing the contents of ACCA. The ORAA instruction is then
used to replace the row bit positions with ones (see Figure 5-1.1.2-8) and the resulting word is written back into
PIRB.

The time required for the MPU to perform the steps just described is very short compared to typical
minimum switch closure times. Therefore, the switch is still closed and the conditions are as shown in Figure
5-1.1.2-7. The column zero that was preserved and written back into PIRB is coupled through the still closed
switch and applies a low signal to a row input now established as an input. PIRB is immediately re-read back
into ACCA by the MPU. For a single key closure, the word thus captured must be one of the sixteen stored in
memory locations 0143 to 0152 in the Assembly Listing of Figure 5-1.1.2-3. The first four values are also
illustrated in Figure 5-1.1.2-9.

The MPU sequentially compares the contents of ACCA to the lookup table (stored in ROM)
containing the words until a match is obtained. ACCB is incremented following each comparison; when the
match occurs, a binary number corresponding to the key number is stored in ACCB and is available for transfer
to a buffer location in RAM.

If a match is obtained, the MPU stores the key count, re-initializes the PIA, and returns from the
service routine interrupt. If no match is obtained, it is assumed that the data is bad and a Bad Read subroutine is
called. Since only data corresponding to valid single key closures is stored in the lookup table, this approach
automatically takes care of both multiple key closures and inadvertent noise.

The specific action to be taken following a bad read is not shown since it depends on the particular
application. In many practical designs, affirmative action such as an audible approval tone is taken following
the entry of good data. The Bad Read subroutine in this case would merely disable the approval sequence. A
different routine would be used in designs requiring positive indication (blinking light, tone, etc.) of bad data.
In either case, the Bad Read sequence should end with a return from subroutine instruction, RTS, so that the
PIA will be properly re-initialized.

Many mechanical switches exhibit contact bounce when they are initially closed. A bad read will
result if the MPU reads PIRB during one of the bounce intervals. This problem can be avoided by inserting a
suitable delay routine (see Section 2-2 for examples) as the initial steps of the keyboard service routine. The
duration of the bounce varies with switch design but is normally in the range of one millisecond or less. The
keyboard manufacturer should be able to provide specific information.

The extension of this procedure to larger keyboards is straight forward. For instance, a sixty-four
key matrix could be implemented using both halves of a PIA and similar programming techniques.

b7 b6 b5 b4 b3 b2 bl b0

b7 b6 b5 b4 b3 b2 bl bO ACCAI1|°l1l1f1I1]°I1
ACCA [1Jol1]l1]loflo]ofal 4 Ko 11l 1]olafal1]o
constant=0ff oJof ol o] 1] 1] 1] 1] Z K 1{1]ol1]1]1]1]o0
ORA #0F [1lo]ala]al]a]1] %KZ tjojryrfryrfrgo
QS k3 of1}1}l1f{1]1)1]o
' '
FIGURE 5-1.1.2-8: Generation of Output Word FIGURE 5-1.1.2-9: Lookup Table

5-11

5-1.2 SCANNING WAND FOR CAPTURING DATA FROM PRINTED SYMBOLS

The use of scanning techniques to retrieve information from machine readable labels, badges, credit
cards, etc., is gaining acceptance in a wide variety of business machine applications. This is due in large part to
the development and acceptance of industry-wide standards. The simultaneous growth of systems based on
microprocessors will give additional impetus to this trend.

Few tasks are as made-to-order for an MPU as the conversion of scanned data to a usable format. The
specifications for both magnetic and optical recording formats were designed to allow for either mechanical or
manual capture techniques. In addition, it was desirable for the labels to be humanly readable and verifiable in
case of equipment failure. The net result is that emphasis is given to the human aspects of the problem rather
than simplification of the electronics involved.

5-1.2.1 Universal Product Code (UPC) Symbol

The grocery industry’s Universal Product Code (UPC) symbol is an excellent example of the genre.
Labels similar to the example shown in Figure 5-1.2.1-1 are beginning to appear on virtually every kind of retail
grocery product. They are intended to facilitate the use of automatic checkstand equipment and are the result of
an industry-wide effort to improve productivity in the grocery industry!. The symbol is optimized for ease of
printing, reading, and manually checking results. The symbol is designed to minimize the cost of marking by
the manufacturers and their suppliers. The symbol size is infinitely variable to accommodate the ranges in
quality achievable by various printing processes. It can be uniformly magnified or reduced from the nominal
size without significantly affecting the degree to which it can be scanned. An example of the human orientation
is indicated by the error check calculation described in Section 5-1.2.5. The error check is an involved addition,
multiplication, and modulo-ten reduction, a formidable task for conventional digital IC’s, but relatively simple
for people (and microprocessors).

A suitable control method depends on both the characteristics of the symbol and the scanning
technique that is used. The symbol is designed for use with either fixed position scanners (label passes by on a
conveyor belt) or handheld wands. The ‘‘wandable’’ approach will, in general, be more difficult to implement
since allowance must be made for variable human scanning techniques. The control program described in this
section is suitable for either but was developed specifically for use with handheld wands.

A 10-digit numbering system was adopted by the grocery industry for product identification. Each
participating supplier is issued a 5-digit manufacturer’s identification number. The remaining 5 digits are
assigned to generic product categories, that is, tomato soup, canned peas, tissue paper, etc., each have specific
numbers regardless of brand name. This 10-digit number? is combined with error checking features and
encoded into a symbol similar to that shown in Figure 5-1.2.1-2.

The standard symbol consists of a series of parallel light and dark bars of different widths. The
symbol will be referred to as the ‘‘bar code’’ to distinguish it from the ‘‘UPC code’’ that it represents. The basic
characteristics of the bar code are summarized in Figures 5-1.2.1-2 and 5-1.2.1-3 and the following list of
features from the UPC specification:

!Information concerning the UPC symbol described in this Section is from the UPC Symbol Specification obtained from: Distribution
Number Bank, 1725 K Street N.W., Washington, D.C. (Telephone — (202)833-1134), Administrator of the Universal Product Code
and UPC Symbol for the Uniform Grocery Product Code Council.

? Although the symbol is primarily designed for these 10-digit codes, it also includes growth capacity for longer codes to facilitate future
compatibility in other distribution industries.

5-12

fder.
.ol payable
.ar good only in
_.ates. Aliow 4 to 6
.clivery. Offer void where
«d, restricted or license re-
’,..red, Offer expires June 30, 1975.

-
‘heck or

‘or:

leenex®

Is from

s,

leenex®

Delsey® 0

E—— 36000"27210
TE——

Y-CLARK CORP., NEENAH, WiS. 54956 MADE IN U.SA. ALL RIGHTS RESERVED.

FIGURE 5-1.2.1-1 UPC Symbol from Box of Kleenex1 Tissues
Registered trademark of Kimberly-Clark Corp., Neenah, Wis.

Right 5 Characters of Code

Left-Hand Left 5 Characters of Code c Right-Hand
Guard Bars Pattern (101) oz Tall Center Guard Bar Pattern (101)
g:{tem Modulo
Number System (01010) Check —+@
4 Character o Character a

Left Light Margin

]
|
1
|
I
|
|
|
f
Minimum 11 Modules Wide!

Number System

I
|
|
|
{
{
1
I
|
|
| Right Light Margin
| Minimum 7 Modules Wide
|
.—1’/
|
|
|
|
i
|
Character |
3 l
1
)

1 Tl 11234, 5167890

Not to Scale y
\ \ Characters Per

OCR-B Font
11-Character Regular Number System
NDC Code or or UPC Code Character Format
3 Number
3 System: | 4 | 3| 3] 0
H|O | N
National Health- R p | National H N
Related Items Code | c Drug Code R D
Digit Correspond- | c

ing to Lead Digit
if NDC Grows to
6-Digit Labeler
Code

FIGURE 5-1.2.1-2: UPC Standard Symbol

5-13

Dark Bar &4—— 1 Character 1 Character =——p

Dark Module \J e
Light Module —
- a——
~ 7~
\/ —V
7 Modules 7 Modules
2 Bars/2 Spaces 2 Bars/2 Spaces
The Above The Above
Character Character
Represents a Represents a
Left-Hand 6" Left-Hand 0"
Which is Which is
Encoded 0101111 Encoded 0001101

FIGURE 5-1.2.1-3: UPC Character Structure

Series of light and dark parallel bars (30 dark and 29 light for any 10-character code) with a light
margin on each side.

Overall shape is rectangular.
Each character or digit of a code is represented by 2 dark bars and 2 light spaces.

Each character is made up of 7 data elements; a data element hereinafter will be called a
‘‘module.”’

A module may be dark or light.

A bar may be made up of 1, 2, 3, or 4 dark modules, as shown in Figure 5-1.2.1-3.
Each character is independent.

The symbol also includes two characters beyond the 10 needed to encode the UPC.

— One character, a modulo check character (see Section 5-1.2.5 for details) is embedded in the

right-most position of the symbol to insure a high level of reading reliability. (See Figure
5-1.2.1-2))

— Another character, embedded in the left-most position of the symbol, shows which number
system a particular symbol encodes. Concurrent number sets are used to accommodate such
things as meat and produce without the need to set aside code numbers in the UPC.

5-14

e The symbol prevents tampering. Unauthorized addition of lines is readily detectable by scanning
devices. In the same way, poor printing will not result in scanning devices reading a wrong
number. This is facilitated by multiple error-detecting features which allow scanner designers to
build equipment to automatically detect and reject a very poorly printed symbol or one that has
been tampered with. »

e The symbol also incorporates and presents the code number in a human-readable form.

The nominal dimensions of a typical symbol (as printed on a product) are shown in Figure 5-1.2.1-4.
The dark and light bars are built up from nominal 0.0130-inch modules, however, some of the characters
involve undersize dark bars and oversize light spaces. There are 95 modules in the symbolitself and 18 modules
in the white marginal guard bands.

Starting at the left side of the symbol, it is encoded first with ‘‘guard bars’’, then a number system
character (‘‘0”’ in the figure) followed by five UPC characters on the left side of the center ¢‘guard bars.”’ To the
right of the center bars is the remaining five UPC characters followed by a modulo ten check character. Finally,
the same guard bar pattern is repeated on the right-hand side.

Y
.0650 @~ 130

.182 m, . 1 —— 1 — .
4 | N

| Il , T
0| N
) | 3 ,

. "2345%6 78901 |

.039 _ | -039
i,! ~ : -~
4 3 Yy ¢

i .039
| b

462

900

912

.965

1.020

! ¢
| 1.469
NOTES
[1I] (6x) .0910 MAY VARY £.0005 FROM X-X| TOLERANGES APPLY
(6X) .0910 MAY VARY +.0005 FROM Y-Y | TO ARTWORK ONLY
NUMBERS ARE OCR-B .

FIGURE 5-1.2.1-4: Nominal Dimensions of Printed UPC Symbol

5-15

On the left-to-right basis, each character on the left side of the center bars begins with a light space
and ends with a dark bar; characters to the right of the center bars begin with a dark bar and end with a light
space. Dark modules represent 1’s while light modules represent 0’s. The number of dark modules per
character on the left side is always three or five; the number of dark modules is always two or four for right-hand
characters. Encoding is identical for all similar characters on a given side of the symbol, whether it is a number
system character, UPC Character, or check character. The first two bars at either end encode the guard bar
pattern, 101. The guard bars in the center encode as 01010. The corresponding encodation for the characters is
summarized in Figure 5-1.2.1-5.

Since the UPC number encoded in the symbol does not include price information, the primary
objective is to recover the 10-digit number and store it in RAM where it can be used by a price lookup routine.
As is usually the case in MPU-based systems, stripping of the extraneous information, performing error checks
and recovering the data can be accomplished in a variety of ways. A software oriented approach was selected in
this case; external hardware processing is held to a minimum.

Decimal Left Right
Value Characters Characters
(Odd Parity — 0) (Even Parity — E)

0 0001101 1110010
1 0011001 1100110
2 0010011 1101100
3 0111101 1000010
4 0100011 0011100
5 0110001 0001110
6 0101111 1010000
7 0111011 1000100
8 0110111 1001000
9 0001011 1110100

FIGURE 5.1.2.1-5 Encoding For UPC Characters

5-1.2.2 Hardware Requirements

For the wand used in this application, the data is captured by using a photo-cell to detect the variation
in reflectivity as a light source as passed across the light (high reflectivity) and dark (low reflectivity) areas on
the symbol. Circuitry suitable for recovering the resulting analog signal is shown in Figure 5-1.2.2-1. Two
MC1747 Dual Operational Amplifiers are used to amplify and condition the photo-cell output. The conditioned
output provides a TTL levellogic ‘‘1°” while the wand is scanning black and alogic *‘0”” while scanning white.
This is all the external hardware that is required; the MPU can perform all additional processing.

5-16

47uf
6V

+12 VvV

10 k
r - — T Clip on Photo-cell
| | Assembly Port No. 4
Spec. Unknown
1k |
| Wand Lamp: 5 V @ 750 mA
L +12 V
+
= 10k 3.9k
N 47uf
i ev sV
10 k %-MC1747L.
= 6.8 k 8k = 15
— 6.8 Orange 0BV k %-MC1747L
.022 —
L 6
- 9
%-MC1747L b AAA—¢ 7 10 ’ | out
+
\]’ 12 82 k
A
VWA
2
4 13 12
1
‘/14/
-5
100 k
L MV
368k
10 k

FIGURE 5-1.2.2-1 UPC Wand Signal Conditioning Circuitry

5-17

5-1.2.3 Data Recovery Technique

The output of the conditioning circuitry is effectively an asynchronous waveform with a widely
variable and unknown datarate. An initial decision must be made as to what synchronization techniques will be
used and what range of scanning rates can be expected. Lacking more specific information, it was deemed
reasonable to expect rates from one-half inch per second to fifty inches per second.

Having a uniform constant pattern at the beginning and middle of each scan suggests that data
recovery could be accomplished as follows: (1) Assume that the data rate is constant; (2) use the known initial
guard bar pattern to establish a sampling rate; (3) use that rate to sample the data at the expected midpoint of
each module for the next six characters; (4) use the middle guard bar to update the sampling rate; (5) sample the
last six characters at the expected module midpoints.

A second data recovery method that does not require a synchronization technique could also be used:
(1) Again assume a reasonably constant data rate during the scan; (2) measure and store in memory the time
between transitions for an entire scan; (3) calculate the total time and divide it by the known number of modules
per symbol (95) to determine an ‘‘average’’ module time; (4) use this and a comparison of ‘bar widths’’ (time
between adjacent transitions) to one another; (5) use ratios established by (4) to determine bit patterns for each
character.

An analysis of the expected rate variations, symbol printing tolerances, and computing complexity
indicated that either of these two methods would lead to'marginal results. A major difficulty lies in the way the
module patterns for the individual characters are specified (see Figure 5-1.2.3-1). It is important to note that the
dimensional specifications for each character are referenced to the edge of the pattern nearest the middle of the
symbol. This means that left-hand characters are specified from their right edge and the right-hand characters
are specified from their left edge. In addition, a printing tolerance (see Figure 5-1.2.3-2) is specified that
swamps the tolerances shown in Figure 5-1.2.3-1. For example, the artwork tolerance of +0.0002 inches is lost
in the tolerance of 0.013 + 00397 inches that is permitted for printing a nominal module width. The net result is
that legitimate symbols can have both undersize and oversize bars. This is illustrated in Figure 5-1.2.3-3, where
a worst case situation for a left-hand ‘‘zero’’ is shown.

There, the right-hand black bar could be only 0.010 inches wide and still be in tolerance. Since the
specification requires that the combination of the right-hand bar and the adjacent white bar be 0.0260 + 0.0002
inches, this implies that the white bar could be 0.016 inches wide and still be in tolerance. Variations of this
magnitude were observed when actual symbols on a variety of products were examined.

When the allowable dimensional variations across an entire symbol are considered, neither of the
two methods proposed would give reliable results. The procedure finally selected incorporates features from
both methods.

5-1.2.4 WAND/MPU Interface

Obtaining a record of the time between transitions is the first step in capturing the data. This raises
the question of how the waveform recovered by the wand is to be entered into the MPU system. Since it is a

5-18

61-$

| LEFT RIGHT | |LEFT RIGHT | |LEFT RIGHT
Wl o | A4 Il AW 8 0l NOTE
T . || | n ‘ [| | “ ! [i] TYPICALWIDTH OF ONE CHARACTER
i EIN
.0130 _] L Lozeo oze0_| | LOB(‘) oa00 || | || loweo ARTWORK TOLERANCES t .0002
} I | [l | ! |
| |
0260 | | .|oeso 065(! (N 0s20 | | | l_ 0390

mi' AN
i L alll]l
) ; | NIRRT
| |)
.0390, Loszo 0520 1 0590 .0390_1 .0520
i ~ T 0 = 1 R [
| 1 |
0640 .0790 0780 L ['o780 .0520 N .0650
| | ! I ! I
| | g i 0910 ' l.os10
: | | | REF [T] —t+=—"= REF [1]
| | I I
] [| ! START OF ADJACENT
TER
1L ER 1T NN T o
!] -i | | I | !
-_@9.1 L U.ﬁ? QQ,_I L Jlloso e | 1 {1}
! { || | ! EDGEN o:3o_u | l !
0520 | - 0390 .0650 o [l.0260 | — 0130 !
[[1 [_1 |
| .0260 |
0640 !.6660 0780 o] L0390 : ﬂi’g;ﬁ L |
! II ! : | 9390 .0260) L,J
! | | | Tl
: | | | 182 iy Q;Q_ll_ +
| |
! I LEFT GUARD it
| : | | | ! .0130
| 3] ' 710 [
lIll 1 i .
| |
0130 0130 oerol| | |00 l} RIGHT CENTER PATTERN
[[EDGE
) 1

1 |
) Lo 2 |
0260 | | ‘ ‘Iosso .ossalo L 1.0'520 0130 | :/
| e | L] | foce

.0390

130w
RIGHT GUARD

FIGURE 5-1.2.3-1: Dimensioning for Standard Symbol Characters

Module Width Magnification Total Bar-Width Tolerance

(Thousandths of an Inch) Factor (Thousandths of an Inch)

11 .85 +2

12 .92 £3

13 1.00 +3.97
14 1.08 +4.4
15 1.15 +4.9
16 1.23 +5.4
17 1.30 +5.8
18 1.38 6.3
19 1.46 £6.8
20 1.54 +7.2
21 1.62 +7.7
22 1.69 +8.2
23 1.77 + 8.6
24 1.84 +9.1
25 1.92 +9.6

FIGURE 5.1.2.3-2 UPC Symbol Printing Tolerances

Nominal Character Width: .091""

1 2 3 4 5 6 7

Z 7z

Nominal Module jt—— 016" —tep—— . 010" ——]
Width: .013""

(—————— 026"’ * 002" ————

(Approximately 100 x Nominal Size)

FIGURE 5-1.2.3-3 Worst Case Printing Tolerances for “’Lefthand 0.

5-20

serial stream and there are no handshaking requirements, only a single PIA input to the MPU is involved. The
data can be introduced either through an interrupt line[CA(B)1,CA(B)2] or one of the data lines, PA(B)0—
—PA(B)7. Input through a data line was selected based on the system flow shown in Figure 5-1.1.4-1. The
wand is assumed to be one of the two manual input devices (the other is a keyboard) to a transaction terminal.
The terminal’s executive program enters a polling loop when it is willing to accept data®. This approach
assumes that both devices will not be in use at the same time, hence, there is no need to handle the incoming data

on an interrupt driven basis.

3The relationship of the wand routines to system flow is duscussed in greater detail in Section 6-4.2.4.

Power On

\

System
Start Up
Initialization

>— Initialization
New

- Transaction
Initialization

Y

New

e — Item

Initialization

S

Keyboard/ Wand
Load Pon”
Transaction
Data On
Cassette

)

Keyboard Wand
Decode Interpreter

l Item
> Entry
NOGO
Fail Safe
Interlock
‘ GO

Process > Disk UPC

Data
Continue e l——————{ Lookup

Entry

Item Entry
Complete

Transaction Entry)
Complete

FIGURE 5-1.2.4-1: Transaction Terminal Flow Diagram

5-21

5-1.2.5 Data Recovery Control Program
3 The encoded wavefore enters the MPU via the seventh bit, PB7, on the B side of the Wand PIA.

Selecting bit 7, the sign bit, provides the simplest means of testing to see if the current status of the waveform is

one or zero.
Recovery of the UPC data consists of the following steps:

(1) Initialization — XKIWND - (Figures 5-1.2.5-1 and 5-1.2.5-2) Clears the various memory
locations that will be used for buffers and data storage. This routine is entered each time a UPC

Code is to be read.

Get Starting Address of
Memory block $00-$75
Into Index Register

-)
)

Use Indexed Addressing
to clear current location.
Test for finished

N
° Finished?

Yes

Move to starting Address
of next block to be cleared
($102-$122)

i
|

>

Use Indexed Addressing
to clear current location.
Test for finished

No

FIGURE 5-1.2.5-1 Flow Chart for XKIWND Initialization Routine

oooio HEAM 1k T

U00E0 BRSEER arE LEESEER

Qa0321 EBSER CE Q00D LI R 0D GET =TRTHG ALGDR OF BUFFER
gogan ESEE &F 00 HOLREL CLE) CLERR CURRESAT LOCATION
ooonss BSFQ2 02 I MOWE TO MEST LOCATION
anoen BSF1L 20 0074 I S HETE FIMIZHEDY

anova BSF4 22 F2 EMHE WZLREEL MO COMTUE S YEZ G0 MHET BLE
goosd BSEFe CE oRioe (AL CER S W GET =TRT ADDF OF HXT BLECKE
OQolo0 BSF3 &F 00 WCOLRES CLE ! CLEAR CURREMT LOCATION
ooiio BSFE o= T MOWE TO H=T LOCATION
goiso ®BSFC 20C 01273 CPH wflzz FIMIZHED™

anizn BEEF 2& FE EMHE WCLRES MO COMTIMLE ZEARRCHIME
001409 Beal =29 ET= YEZ s RETURM TDO EHECUTIVE

FIGURE 5-1.2.5-2: XKIWND Assembly Listing

(2) DataRecovery — YKWAND — (Figure 5-1.2.5-3 and 5-1.2.5-4) This routine is entered from
the executive’s Keyboard/Wand Interrogation loop. The Interrogation loop continually tests bit
7 of XP4DRB, the PIA Data Register until a “‘zero’’ is encountered. The zero is assumed to
result from reading the high reflectivity white space caused by the wand passing across the white
guard band at the edge of a symbol. The wand output will normally be high at other times. For
example, the wand just laying on a counter is equivalent to reading ‘‘black’ or some other low
reflectivity surface. The objective of YK WAND is to measure the time between transitions and
store the results in RAM memory.

(3) Data Processing — WSORT — (Figures 5-1.2.5-5 and 5-1.2.5-6) The objective of WSORT is
to reduce the timing data captured during YK WAND to set up UPC characters in binary format.

There are several additional routines associated with recovering the data: WERCHK tests the data to
see if it is a valid UPC number by performing an error check based on the check character included in the
symbol; (2) WBCDPK converts the data into packed BCD (two digits per byte), the format required for the
price look-up routine; (3) WBADRD, the error processing routine, may be called for a variety of reasons during
execution of YKWAND, WSORT, WCDTST, or WPACK. Each of these routines include validation tests and
will call WBADRD if a bad read occurs. The action to be taken following a bad read depends on the particular
application and may be performed by either the MPU or the human operator. Therefore, no specific WBADRD
routine is included in this description. The system described in Chapter 6 generates an audible ‘‘approval’’ tone
for “‘good data.’’ In this case, the WBADRD routine could be nothing more than a deletion of the approval
tone, indicating that either another scan or manual entry is required.

Details of the YKWAND routine are shown in the Flow Chart and Assembly Listing of Figures
5-1.2.5-3 and 5-1.2.5-4, respectively. Following entry from the Keyboard/Wand Interrogation Loop, bit 7 of
the PIA Register (XP4DRB) is again tested to insure that the data is still low. If the entry was caused by a short

5-23

ve-$

YKWAND

Enter from
Interrogation Loop

WBDRLP

Yes (Reading White)

Increment Start Timer

Timer.

No ““From Yes

Black'' Set?

Start
Yes Timer.

(Too Long)

Start Timer.

WBLKLP
Increment
Storage Buff. Addr.
] [|
Increment Incr. Bar Count Incr. Space Count
Timer. Set 'From Black” Reset '’From Black’’

Store Time per
Storage Buffer
Address.

L

WSTRGE

Figure 5-1.2.5-3 Flow Chart for YKWAND Routine

Space
Count = 30?

WHITLP

Increment
Timer.

aooin MAM AR WMAMNT
onoiln aFT LIET
GOoin MAME: =EWAMD
Goosn + REVE 1213274

ooo=0 EsOC OrG TR O
Doagdn *
Oonsn *4 240t retttrteseree AMD ROUTIMNE +eeetstese0404

+

DOOED -

DonEn -

auoosl BaOC FE BRLD =EMAMD JIMP YEMAMD EMTRY FOIMTE
Qo0ss BeOF 39 AR IMHD RTE MO IMITIRLIZATION
assn
aozsn

DO=00

+ EECTION "HEWMAMD" »

*

+*

*

2 THIZ PRRET OF THE ROUTIME IZ THE

+ DARATA GATHERIMG ZECT. OF =EMAMD.

+ IT READE THE UFC CODED LAEBEL

+ A% &0 EBELACE AMD WHITE EBARS AMD

+ ZTORE: THE ZCAMHMIMG TIME OF ERCH
* EBAR OF ZPACE IM LOCATIOHE E00-E75
*

0106 yEWAMD CLE WERLCMT

0104 CLE WMFLAG

0103 CLE WEFCMT

0114 CLE WEEFAD

0115 CLE WEZBFALI+1

- Co1n LA B HPEDIRA LIME LOWs EZFRCET

00400 Baegs SR OO0 EMl WERD HO: ERROR

o420 *

oogdE0 BeEsd CEOO0DO0 LD SER AR YEZ

o044 BESY Fe CO010 WERDRLP LR B =FE2DIRA LIME HIGHs EREY

nod4en Be2d 2B 05 Erl WELELF YEZ: TO TIMIMG ERR LOOF
oo47 0 *

oogdsn0
oog4sn *

ir
XL

ZET MAXIMOM TIME ALLOWED OM EORDER

+

OOZ00 Begc 20 FFOO CF R #EFF OO0 MOz GLUARD BAMD DELAY

nos10 Beck 27 23 BE®Q WEAL TOO LOMG O GUARD ERMD: ERE
000 Bezl 032 IH=

00530 Be3Z2 20 F2 ERH WEDRLF LOOF EACK

FIGURE 5-1.2.5-4: YKWAND Assembly Listing (Sheet 1 of 2)

5-25

oos40 +*
OS50 BeZ4 oo WEBLELF LIL= #E0000 BELACK EBAR TIMIMG LOOF
noSen BeZT o100 WEBLELLT LDA “RPZDRA LINE LOWs ZFACET
0F EFL WH=1 YEZ: ENMD LOOF
1 0e LIA WERCHT MO
1E CHP #E1E EAR COUNT = 307
4E EED WEORT YEEs EMD ZCAHM

[5.a)

noss0 ES3A
GOSssn BeziC
DOE0D BREF
el Begl

My S Mo T
I D

=} = T T T T

+ ZET MA=IMUM TIME ALLOWED OM EBELE EAF

)= CFs #EOEZT HOs TIMER = 4i<id7
o EER WEAD YES

IMx MO
EC ERA WELEKL1L LOOF ERCE

(=1 ARy
— 3=

oFOn BedR TCO0106 WHEL IHC WERCHT IMC ERF COUMT

novin Bed4E FCOoG104 IMC WFLAG ZET "FROM ELACKE" FLAG
poyzd BeS1 VE EBEFS AME WETREGE

oouvTEn +*

00740 BeSd 2F WMERD AN

OO7S0 *

QUveEn ool WHITLFE LDs FEOQ000 WMHITE ERFE TIMING LOOF
narvao Col0 WHITLY LDR B - “FEDRA LIME HIGH: ERRT

oV OF EMI WMHEE YEZ: ENMD LOOF

H10s LDA WEFCHT HO

1E ZrP #F1E TRPACE COUNT = Zav

Fi EED WMERD YEEZs TOO MAMY ZPRCEZ: ERRO

[}

o v B o o XN R

1T

[yl
I I

aa sl el o n Bl x)
g
D) B)

fir o0 b D T
= = T2 bt Ty N

[S
g
[

00540 . SET MAXIMUM TIME ALLOWED OM WHITE ERR
I l:l E: ‘fl l:l *
1400 CP $E1400 HO» TIMER=THIT
EE EED WEAT VES
M MO
EC ERF MHITL1

X

2 IS S u A3
IR R A
[R N =Y

[}
T 0
i

anla s lanlln]

T o 0o

Pem BN 1)

0210
noazi

FoO0105 WHIZE M MEPCNT IMC ZPACE COUMT

n10g CLE WFLAG FEZET "FROM BLRCE" FLRAG
TE BETS AMF WETRGE

nosgn *

FF 0102 WETRBE =Tw WDUMEF LORD A AMD B

FE 0114 LIis WEZEFRD WITH COMTENTE OF

Ee 010z L.IA WMIUMEF IMDES EEG. <TIMEEX

Fe 0103 LIA WINUMEF+1

an =TH #

1 =TH

X T
T
{
r

[s W
=

[n i
-J I

1T

T

[OUS B B B |

T P T T T

= ol Tl < o B

Flek ZTORE TIMER IM EZTORAGE EUFF

o1on

= M T

01020 EBes IM= IHCREMENT =TORAGE
01030 E& i IM= EUFFEF ADDRESE
01040 EE 0114 ET= WEEFAD

01059 B& 0104 TET WFLAG TEET FLAG

010sn
01070

AS EER WELKLF JUME TO CORRECT
C4 ERA MHITLF TIMIMG LOOFP

b o bd b bt b b b b b b b
[n)

[n SR)

B I e B RN N R BN 1 < BE XN

nans=-jm

Pan Bt B e Bin 3 BN BN A RN

000 00 0 00

FIGURE 5-1.2.5-4: YKWAND Assembly Listing (Sheet 2 of 2)

5-26

LTS

Addr. 1st Group of

4. Reset WF612.
Set Addr (WSBFAD=06).

Initialize WCBFAD.
Load Bar

with Mod. time

¥

Set 4 Bar End*
Values (WBEND)

Yes

WODDBR WEVNBR
Yes No
Shift a Zero Shift a One Shift a One Shift a Zero
into WCHBUF into WCHBUF into WCHBUF into WCHBUF
Add WMODTM
to WTSAMP,

WTSAMP <
WBEND1?

WTSAMP <
WBEND2?

WTSAMP <
WBEND3?

WTSAMP <
WBEND4?

Char.
Count = 67

Set WF712
Set WSBFAD

¥

Char.
Count = $C?

I

Determine WMODTM,
1st WTSAMP.

End #1 = Time for Bar 1;

End #2 = Time for 1st 2 Bars;
End #3 = Time for 1st 3 Bars;
End #4 = Time for all 4 Bars;

Addr. Next Char. Buff;
Incr. Char. Count;
Addr. Next Group of 4.

FIGURE 5-1.2.5-5 Flow Chart for WSORT Routine

e
ot ek ok ek b sk

U e 0 Dl L Dl

SRR B VR I OO AN I
P I Lo}

i we)

« ZECTIOMN "WEZORT™ +

s e}

THIZ FPART OF THE ROUTINE UZEZ
THE DATHR IM REAM FO0-E75 AMD
DECIFHERZ IT INMTO 12 7-EIT
EIMARY WORDE WHICH ARE CODED
AT OME OF THE UPC CHARACTER
CODES AMD LOADED IMTO WETGEF
A 12 EYTE EUFFEE

[

1220
01400
01410
01420
014320
01440

Lo
—
!
8]
o]
LR K K SR R AR K 2R IR K B N 2

n1450 BTl CE 0006 WEORT LDX CH = IMIT DATH TO ETARET
01451 Es%d FF 0114 ETH WEEFRD AFTER GUARD EREE
01470 EBe TF o104 CLE WFF1& FEZET FLAG 7F-1&

[xg
L]

n11e LD W ZTREF IMIT CHREALCTER EUFFER
01430 FF 01noz o ETHE WZEFRARD AODREZE

01530 010 CLE WCHRECT CLEAR CHRREACTER COUMT
01540 *

31550 FE 01td WERTLF LID= WZEFRD ZET WEREMD:: YARLUEE
015a0 HE OO0 LITiA #

01570 Ee 01 LIH
g15:20 o102 ZTH
G1s=0 F7 niog =TH
Die0n nz HLD
gieln A3 02 AL
Olezi E7Y 010R =TH
01esn F7 010k ZTH
01640 EE 0% AL
01e50 HZ g RO
aiesn ol =“TH
Jiaedo Foo1an =TH
al1ezn EE u7 HLID
n1e30 A2 O RIOC
G1von EY 0O10E =ZTH
o1vin F¥ Ol1oF =ZTH
g1vVen +*

Q17z0 Lie =TH
n1van o7 =TH
01750 oy LA
D17 s ETH
a1vvo EARSE iR Ak DIV nIivwlne EY 7

aivao o= LDA ARRIOT+H FECOYER AMIWER
d1720 niiu ZLFE WMODTM LORD MODIUNLE TIME EUF.
o1=o0 n111 =TH WMOnTM+1

nD1=10 CLE

14z

[anllanlimallaallonilinsl
L

= s R Ay
(]
m

l:r'n I_T'l I:r':
T v
=}

T T

Tl
WEEMD1

T P 1T (T

s b T 00 T)
[}
=J

m
e

T

Fos
WEEMIZ
WEEMIIZ+1
FSy
Tda
WMEBEHDZ
WMEBEMHD=Z+1
7T

FE e
IWEEMD4
WEEMHDG+1

T T T T

[SN 0 '

o

T
D R A R I o o o B o B o B o e o B o B O 0 A0 K

oo T faoee [TV T e T
ot
=4
[0 I e e 0 e e e o O T T v o O £ o O

[lnalnoliian ine andlonieniloniooiaoiiianies
iT

[n 1)

:jr-
» M
SR e B xS AR R KON o BN

~j M T

HETWHT ZET DINVIDEMD
AR DM+

EO7

AR DVER SET DIVIEZOR

2R ST A
I T I

== -

T
e

T 1T

nl

T T

A
n

LDIVIDE EY 2

T T

gisen Se FOF
012320 EBEe 7 al1eE ZTRH WTZAMF LOARD ZAMF. TIME EBLUF.

T
e G Ty o T b3 o0 0T Ju 0

T
mimimme e
et okt Dok

-4

n1s4n n11z =ETH WTEAMF+1 WITH IMIAL “HRLUE

[

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 1 of 3)

5-28

nizso
ni2e0
nisvyo
n1Esn
nis9n
13040
0110
n1zzn
013s0
113410
01350
a13e0
01370
n12En
01=an
azonn
= 0z0
asng o

asosn

o100
nciin
nzicn
nsiz=n
ns14n
ogzisa
nelen
02170
nEzi=a
0130
Tt R 1]

g2210

BEeE=
BeEC
EcED
EeFD

EeF3
EeFe&
EeFs

E&FLC
E=FE
EF Q0
EvVas
EV 04
EF O
EV O
BV OA
EvVoc
ETOE
EFii
<
Ev14
EF1E
ET12
EF1A

Ny o
T I Do

N EYEYRYEY

[niln il on o n e xRl e

M ey N

o i m

g g]

E&
44
EE

el

FE
Fe
E: Ec

fom]

=T D 0 0 T PO T g D P ¥ DO R Do O M0 TN D D O
L N T B Sk RO B v B B B o 8 'R s B v R R 1 Ao PO o Mo B N IS £

Mo X foro=g e T
cxor o m

=i m

o o= e M
1T

D]

i1z

011z
01ov

0114
ni11
o1a7

BEFT

nlas
(H
G104

1oz
(K1
o104
0
g

+*+ + 4+

* 4 4+

WCHFL

WCMF2

WCMPZ

+
*
WOLLER

*
WENVHER

ADJUETMENT TEET: IX ONE OF THE

BARE

LDA
LEH
ALDD
=TH

LI
LA
LIIA

o 2 i s 1

Im

IF AMY
MODULE WIDTH I=

THI=
T=T
EHE
CHF
ECE
=TH
EERA
T=T
EMHE
CHMF
ECE
ZTH
ErRH
T=T
EMHE
CHF
EBCE
ZTH
ERRA
TT
EHE
CHF
ECE
=TH
AMF

LI
SR
T=T
EEQ
IHC
ERA

LI
ASL
TET
EME
IHC

ALLOW:E

A

E

I

OFr =ZPRCEE TOO HARROWT

WTEAMF+1

WTEAMF+1
W24mon

WEEBFRD
LMODTHM+1
LWE4MOn

CRLCULRTE
ZTOKE FOR UE

Z-4 OF MODULE T
E

EAFR 1= TOO HARREOWs THE MOMIMAL
UZED TO REFLACE ITs

WMCMF1
EleH
WCHP L
¥l
WERTLF

WERTLF
Eta i
WCMP =
M&HPE
ESa 5
WERTLF
Fean s
WOLDER
1T
WOLDER
ET a5

WIETLF

WCEFAD

WFyiz
WHZS

;_lj HL&
WCEFAD

WET1E
bIHEE

FOR MOKE ACCURATE DATH FEOC.

CHECK FIEST EAR

CHECKE =ZECOMD

CHECE THIED

ERE

ERFE

CHECE FOURTH BAR

LORDING

LOARTIIMG

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 2 of 3)

5-29

Loor

Loor

1

=

02400
02410
02420
02430
02440
02450
D245 0
02470
02450
02490
n2san
02510

heSz0

r

F;gﬁﬂ
nEs40

n=ss0

n2Ee i

esdn

=520

D
LA}
]

)
B
=

DET40
027sS0
neved

YR b Y
Ud{fU

=
&
.-l

w0
DM
[2a BEW A n o B B

=J 1T

-.‘j '-.,j '.‘j -.J ‘..j

LSl

:EF-.

Mo
X B

el

2allianl
i)

~J =

I I O O B R T O I e B e I O e O B BT I e i =

o e o T 0 s O e 0N e) e (T T T

[M|

R N W VN
=3 T 71 T s (T

P =g 00 b

P 1 M B R S 0

o11e
i1z
o111
niio
o1z
0611z

i1z
011z
o102
(R

1k
il 33

|w!ﬂ

i
UIBH
CE
05
o10E
-4
01 ac
E1
)
o1on
HHA
ﬂlnE

01 0F
R

o103
N =
o115
nE

niLs

n10e
e
e
ofnog
310
0i1s

nine

(1IN

]
~H3

tmi
1Ty

)

WHES

WHES

WHE1O0

WMH=11

*
WH=13

*
WHZ14

WHZ15

LTA
LDA
ADD
AOC
=TH
=TH

LIA
LITA
CHMP
ECE
EHE
CMF
EBCE
CHF
BCE
EME
CHMF
BCE
CMF
EC=
EHE
CHMF
ECE
CHF
BCE
EHE
CHE
EBCE

ITHLC
ITHC
LDA
HID
ETH

LIA
CMF
EME
IMC
LLA
ZTH

LIDA
CHP
EED
AME
ERA

Lo 0 0 e B o 0

I m D

bt o 1] T oI I

T

WTEZHMF
WTEAMF+1
WMODTM+1
WMODTM
WTEZAMF
WTEZAMF+1

WTZAMF
WTEZAMF+1
WEEMD1
WODDER
hHEZ3
WEENMD1+1
WODDEE
WEEMIZ
WEYHER
WHE10
WMEEMDZ+1
WEVMHER
WMEEMD:Z
WOLDER
WMH=11
WMEEMDZ+1
WODLER
WMEEML4
WEYMER
WH=12
MEEMDS+1
WEVYHER

WCEFAL+1
WCHRCT
WEZEFRD+1
R A NES
WEZEFAD+1

WCHRCT
R
WHEZ14
WFE712
=E4 D
WEZBFAL+1

WCHRCT
SEOC
WHE1S
WERTLP
WFHCE

UFDATE ZRMF. TIME

FIRET TEET

IF
IF

TEAMP <EMEIL
TEZAMP>END1
IF TEZAMF<EMDI1

IF
IF

TEAMF <EHDZ
TEZAMP:EMDE
IF TZAMFP<EMDZ

IF
IF

TEAMF<EHDZ
TZAMP>EMDE
IF TE=AMP<ENDZ

IF
IF

TZAMP <EMD4
TZAMF:END4Y

IF TZAMF<EMND4

ADDREZT MEXT CHAR.
IMC. CHAR. COUMT

ADDRESS MEXT GROUF OF
FOUR STRGE. EUF.

ELIF.

EEGINMHIMG ¥
MO

YEZs ZET FLRAG
ZEIF OVER

TH CHRRE.T

T-1g

BARE

FOF
GUARED

FIMIZHED
YEE

MHOs LOOF ERCE
=0 TO FARCKIMG

12 TH CHRR. ¥

ZECT.

FIGURE 5-1.2.5-6: WSORT Assembly Listing (Sheet 3 of 3)

5-30

“‘noise’” pulse on the data line, the program causes the MPU to exit to the bad read routine, WBADRD. If the
line is still low, indicating that the wand is passing over a white space, the MPU enters a delay loop, WBDRLP,
to wait for the expected first white-to-black transition.

Exit from the loop occurs when the first black guard bar is encountered or after too much time has
passed for the white space to be a symbol border. The count loaded into the Index Register determines a number
of passes through the 23 microsecond waiting loop and hence the maximum time that will be spent on white
before exiting to the bad read routine. The required time is derived from the slowest allowed scan rate and the
nominal dimensions of the symbol. A minimum scan rate of one-half inches per second was deemed reasonable
for this application. The nominal module width of 0.013 inches yields a time per module, ty, width of 0.13
inches/o.5 inches per second = 0.026 seconds at the slowest scan rate. The white guard bar is specified to be at
least eleven modules wide, hence, the waiting time should be at least (.026) (11) = 0.286 seconds. The
program causes the MPU to wait approximately 1.5 seconds before exiting in order to allow for operator
variance at the beginning of a scan.

The next section of the program is used to determine the elapsed time between transitions during a
scan. The first low-to-high (white-to-black) transition following the white border cuases the MPU to enter the
Black Bar Timing Loop, WBLKLP. The symbol consists of 30 black bars and 30 white bars (the last white bar
is the white border at the end of a scan). The program alternates between WBLKLP and a similar White Bar
Timing Loop, WHITLP. The elapsed times are stored in sixty memory locations for later use by the WSORT
processing routine. The Index Register and a 35 microsecond timing loop are used to measure the elapsed time
until the next transition.

The WBLKLP loop will cause an exit to the bad read routine if the elapsed time becomes greater than
what is anticipated for the maximum black bar width of 4 modules at the slowest scan rate. This is monitored by
comparing the number of passes through the 35 microsecond loop to $0B9B, corresponding to (.026) (4) =
0.104 seconds.

When the subsequent black-to-white transition occurs, the current bar count, WBRCNT, is in-
creased by one, a flag indicating ‘‘From Black’’ is set, and the current time between transitions is stored. Since
the count in the Index Register may be as large as $0B9A, two bytes or storage are required for each timeout
(maximum single byte storage is $FF). The storage segment of the program, WSTRGE, is entered from both
the Black Bar Timing Loop and the White Bar Timing Loop and causes the current elapsed time to be stored in
the appropriate buffer.

The time to be stored (current contents of the Index Register) is temporarily placed in RAM locations
WDUMBF and WDUMBF+1. The current storage buffer address, WSBFAD, points to the storage address
and is loaded into the Index Register. The indexed addressing mode is used to retrieve the time from WDUMBF
and WDUMBF+1 and store it in the proper storage buffer location. The Index Register is advanced to the next
storage address and placed in WSBFAD for use during the next storage cycle. Control is returned to the proper
timing loop by testing the ‘‘From Black’’ flag.

The White Bar Timing Loop, WHITLP, functions similarly to WBLKLP except that it measures the
time between black-to-white and white-to-black transitions. If a white bar count of 30 is encountered, the
program exits to WBADRD since a black bar count of 30 should have been reached on the previous pass
through WBLKLP. A time in excess of seven module units. corresponding to the maximum anticipated for a
white (right-hand) border, will also cause an exit to WBADRD. The white bar count is increased by one and the
““From Black’’ flag is cleared prior to branching to WSTRGE.

The WSORT section of the program recovers the 12 UPC characters by operating on the black and

5-31

white timing measurements that were captured and stored as the wand scanned the symbol. The process is based
on the following assumption: since the nominal width of a given character within the symbol is only 0.091
inches, the per character scan rate should be very nearly constant. The format of the black bar — white bar
pattern is specified. Each of the 12 UPC characters are known to consist of 7 modules encoded as 2 white and 2
black bars. The WSORT procedure uses these facts to generate a sampling procedure for recovering the data.

The bar times (from the storage buffer) for each character are used to compute a total time for that
character. This time is then divided by seven to obtain an ‘‘average time per module.”” Due to the allowable
variations in the symbol, each module should be sampled within +10% of its midpoint for reliable results.
Therefore, the average module width is used to generate a series of sampling times that occur near the expected
center of each character’s seven modules. The sample times then used to test the bar times and determine the
bit pattern of the character.

A Flow Chart and an Assembly Listing of the WSORT program are shown in Figures 5-1.2.5-5 and
5-1.2.5-6, respectively. The recovery process is best explained with the aid of a representative example.
Assume that the times recorded in memory locations $0006 through $000D of the storage buffer are as follows:

Memory Location Contents
$0006 $ 00
$0007 $ 29
$0008 $ 00
$0009 $ Co
$000A $ 00
$000B $ 1E
$000C $ 00
$000D $ 30

These locations contain the timing information for the first character to be scanned following the 101 guard bar
pattern (the guard bar data is in locations $0000 through $0005 and is not used in this sequence). Note that for
this example the even positions, $0006, $0008, etc., all contain zero. This simply indicates that none of the

times between transitions were long enough to require the second byte of storage. From the data, the bar pattern
times are:

$29 Cé 1E 30 (Hexadecimal)
or: 41 198 30 48 (Decimal)

After an initialization sequence, the program starting at WSRTLP, establishes the Bar End values by
computing accumulative totals and storing them in buffers as:

WBEND1 WBEND2 WBEND?3 WBEND4
41 239 269 317 (Decimal)

The total, 317 in this case, is then divided by seven to obtain an average module time (the division is performed
by a subroutine located elsewhere in system memory). The result, 45, is stored in buffer WMODTM and the
first sampling time, one-half of WMODTM, is obtained as WTSAMP = 22. The MPU next performs a
sequence to determine if any of the bars are too narrow for accurate data recovery. The procedure assumes that

5-32

each bar must be at least three-quarters of the nominal calculated width of 45 or %(45) = 33:

41 >33
198 > 33
30 <33
48 > 33

If all the bars are greater than % of the nominal bar width, the program branches to the next main
sequence, WODDBR. If, as in the case of the third bar in this example, some of the bars are undersize, they are
replaced with the nominal value and the checking procedure is repeated until all bars are at least the nominal

width. For example, this leads to:

41 198 (45) 48
30

with new values:

WBENDI: 41
WBEND2: 239
WBEND3: 284
WBEND4: 332
WMODTM: 47
WTSAMP: 23
%(WMODTM): 33

and the test is now satisfied by all four bars.
By repeatedly increasing the initial sample time by WMODTM, a set of sampling times are
generated that can be compared to the Bar End values in order to determine which bars are currently being

sampled. For the example:

23 < WBEND = 41; therefore, in 1st Bar.
41 < 23 + 47 = 70) < WBEND2 = 239;
41 <70 + 47 = 117 < 239;

41 < 164 < 239;

41 < 211 < 239,
239 < 258 < WBEND?3 = 284, therefore, in 3rd Bar.
284 < 305 < WBEND4 = 332; therefore, in 4th Bar.
332 < 352; therefore, beyond last Bar.

therefore, in 2nd Bar.

Since the symbol and code are defined such that the first module of a character (scanning from either
direction) is a zero, the result of this sequence indicated that the UPC code for this characteris 0111101, or from
Figure 5-1.2.1-5, the decimal value is ‘‘3.”” Note that it was assumed that the code was a left-hand character
implying a left-to-right sweep since the character was recovered immediately followed the initial guard bar
pattern. The program as shown in Figure 5-1.2.5-6 is for left-to-right scans only. A simple parity check is
adequate to determine whether left or right hand characters are being read since each side has opposite parity.

The data for all 12 characters is recovered in this fashion and stored in consecutive RAM buffer

5-33

locations. At this point, the data is still encoded in the UPC format of Figure 5-1.2.1-5. The UPC code follows
no simple algorithm and, hence, must be converted to weighted binary before error check calculations can be
made.

The Flow Chart and Assembly Listing for WCNVRT, a suitable conversion routine, is shown in
Figures 5-1.2.5-7 and 5-1.2.5-8, respectively. The conversion routine uses a table look-up procedure. Code
words corresponding to each of the ten UPC characters is stored in a permanent table in ROM (see Figure
5-1.2.5-9). The MPU tests each recovered data byte against the values in the table until a match is obtained.
When this occurs, the current UPC data is replaced with its weighted binary equivalent. Since the desired
equivalent is weighted binary, it can be generated by using accumulator B as a counter that tracks with the UPC
look-up table position. When a match results, the value that is to be substituted is then available in the B
accumulator. Note that while there are two sets of codes, left-hand and right-hand, for the UPC characters, only
one table is required. This is due to one’s complement relationship of the two sets. The look-up table contains
the left-hand set. If the MPU tests a given data byte against all ten left-hand words without obtaining a match, it
then complements each bit of the UPC data and goes through the look-up table again. If no match is obtained
after a second pass, the program causes an exit to WBADRD. When all twelve characters have been
successfully converted, the MPU proceeds to the next sequence, an error calculation to determine if the data
represents a valid UPC number.

The Error Check Character included in the symbol was originally obtained by applying the
following steps to the UPC number:

Step 1. Starting at the left, sum up all the characters in the odd positions (that is, first on the left, third from
the left, etc.), starting with the number system character.

Step 2. Multiply the sum obtained in Step 1 by 3.
Step 3. Again starting at the left, sum all the characters in the even positions.
Step 4. Add the product of Step 2 to the sum of Step 3.

Step 5. The modulo-10 check character value is the smallest number which when added to the sum of Step 4
produces a multiple of 10.

The error check routine, WERCHK, applies this algorithm to the first eleven digits of the recovered
data and checks the result against the recovered check character. The Flow Chart and Assembly Listing are
shown in Figures 5-1.2.5-10 and 5-1.2.5-11, respectively.

The error check is performed by duplicating the steps taken during the original generation of the
check character and comparing the result to the recovered check character. The modulo-10 result for Step 5 is
obtained by repeated subtraction of 10 until the result is less than or equal to zero. If no match is obtained the
program exits to WBADRD. If the test is satisfied, the program proceeds to the last step in the sequence,
placement of the 10-digit UPC number in five bytes of RAM as packed BCD characters.

The Flow Chart and Assembly Listing for the packing routine, WBCDPK, are shown in Figures
5-1.2.5-12 and 5-1.2.5-13, respectively. The packing order is indicated in Figure 5-1.2.5-9.

5-1.2 PRINTER CONTROL

A great many different printers are in use; they range from the slow but economical devices for

5-34

UPC Characters are in WSTGBF

WPACK

Put Starting Addr.
of WSTGBF into
WSBFADCLR 2nd
Pass Flag

Load X with Current
addr. of Strg. Buff.
Load A with Current
UPC Character. Point
X at next Buff.
Location, Store in
WSBFAD.

Complement Current
UPC Char,, Set 2nd
Pass Flag, go thru
Table Again.

[}

CirB (Char. Value).
Load X with Starting
Addr. of UPC Table.

Compare UPC Char.
In A to Current
Table Value

Match?

Yes

No

$

Incr. Char. Value.
Move to next table
Location and Test
For Srch W/O Match

Replace UPC Char.
with BCD Equiv.
Reduce Conversion

Count.

End of
UPC Table?

Test for 2nd Pass

WBADRD

Conversion
Complete?

-WERCHK

Figure 5-1.2.5-7 Flow Chart for WCNVRT UPC to BCD Conversion Routine

5-35

aooin
ooozo

aongo
goasn

0100
ooiLn
aoizn

00140
No1so

aoivo
agis=ao
noi=an

oua230

anzsn
aa2an
PR
GRaan
onzan
aoznn
on=ion
npzzn
Qos30
oo3a0
aozd1
a0z42
00343
A3
aoads

=
s
4
T

BEVEY

BYEV
EVER
EFED
EVEF

Dl

o o b
I R
RN ET Y

Lyt g

ea)

w4
I

) i

s}
-
]
M

ETD
BEVDZ
EVDe&
EFDS
EVTIE
ETDD

EFDOF
BETED

R R
T iT T (M
o o T e

BFF1
EvFZ
BYF 2
EFF4
BFFS
BFF&
BYFT
ETFZ
BFFS
EFFA

CE 0116
tii4

LTSS TN

LU =

aiin
oo

114

BFF1

ag
nc
niidgd
nn
niiz
&0

o Y Mt & M - o B O

M ~LmMNhy I

E7F1
Ew
114

T

=) o U oo O s
[BRI O e B O O i B X

ati0
=0 DA
ETF1
1114
aiis
11z
01iin
13

iz

ie

11

0E

a7

0

2

04

iR

MCHVET

WHETCH

WRHRZE2

WCHPRE

=L O

WERTRED
WEEBFAT
WETERF
WEFZHT
WFLAG

WRCTEL

HAEM
Oriz

LI
ZTH
LDA
ZTA

CLF
LDA
TN
2T

CLE
LI

CHMP
EME
LI
ITA
TED
BED
BRH

Ir
IHC
CPH
ErHE
T=T
EME
MR
Mo
ERH
E
E
(RN
el
L
FIE

“CE

I

an)

[fa]

MCMWYET
FEVEY

WS TEEF
WEZEFRD
A

WEPCHMT

WFLRAG
WEZEFAD
SWFCTEL

QHELDE
WEREFAT

WERPCHT
WECTFE
i TECH

HWECTEL
WCMPRE
WFLRAG
WERTIED

MELAR
MFRZZZ
+
Fiti4
EOl11&
F1iE

FO110

GET ZTARTIHNE ADDREST OF
STREE BUFF IMTC BUF RIDR 2
LOAD WEPFTHT WITH = OF
CHRRT. TO B COMVERTELD
CLERR 2ZHD PrAzZE FLAG
GET CURRENT UWPC CHARRACTER
FOINT TO MEST WRC LOCATION
AHD ETORE I BLUFFER

INITIARLIZE CHRRE ECD YWRLUE
FET EZTART ADLDR OF UFPC THEL

LIFD CHAR MATCH TELE CHARY
MO COMTIMUZ ZEARCH

BET CURREMT RDDR FROM ELF
YEIZ s REFLACZ UPC WITH ECD E
FETUCE COMMERZION COUNT

IF DOME. ESIT TO WECDFE

IF HOT» GET MEHET CHRRE

MOVE TO MEXT UPCTEL LOCATIO
IMCREATE BCD CHAR WALLE
ZEARCHED ENTIRE TRELET

NOs COMTIMUS THRU TAELE

YEZ, SEE IF OM ZECOND PAIS

2 PATIES W74 MO MTCH = ERDR
13T PAZZ: COMPLEMENT UPC CH

TET 2ML FAZEI FLAG

50 THROUGH TARELE SSAIH

FL1PsR120F16aE3 0] B0 2 207 2B 00 2R 02

EOd 51

FIGURE 5-1.2.5-8: WCNVRT Assembly Listing

5-36

YKWAND

WPCTBL

ROM

]

$7F(CLR)

$01
~———]

/\

$3B(RTI)

$19

$13

$16

$01

$0E

$07

$08

$02

$04

$LA

—

$B610

$B
$B

$B

WSBFAD

WSTGBF

WSTGBF+11

RAM

UPC#Q UPC#10

UPC#7 UPC#8

UPC#5 UPC#6

UPC#3 UPC#4

UPC#1 UPC#2

/—_J

#System Char.

UPC #1

UPC #2

UPC #3

UPC #4

UPC #5

UPC #6

UPC #7

UPC #8

UPC #9

UPC #10

Check Char.

¥/<

FIGURES 5-1.2.5-9 XKWAND Table and Buffer Memory Allocation.

5-37

$0000

$0004

$0114

$0116

$0121

BCD Equivalents of UP Char. are in WSTGBF

WERCHK

Load X with Starting
addr. of data

Add Current Value

of WSTGBF to A.
Incr, X twice.

Added
All Odd?

Yes

Multiply Odd Sum
by 3, Get Strting
addr. of Even focs.

—3

Add Current Value of
WSTGBF to A. Incre-
ment X twice

-

Subtract 10. Test
for Result < Zero

Added
All Even?

Result
< Zero?

Test for Binary
Value less than 127

Form Binary from
2's compl. and test
for match with
Check Character

Binary
<127?

WBADRD

WBCDPK

Subtract 10

l

FIGURE 5-1.2.5-10 Flowchart for WERCHK Error Check

5-38

anaio

noLon
aniin

oL =n
aoidan
nniso

aoiFn

noisg

Oazonn

oaz1i

NO=3240
00sdn

an=sn

D=0

HESRL

T

fu

I
i)

o

[N
T T

Vi
1

'R]

it

(RN i]

-y ==

SR Y

i

)
)
5
E
E
b
o

SO0 0 6

T

[

i R W

R R <%

-

i

(s bt o 0T

R N

FAM
ors

1o

CUF

AT
Ih
I

CFH
ErE

DD
s B N

i
[I

oI I

P

ot
]

Pt bt T
ot

he o Bt

Pt

SCE A

ErE

TET
Bl
TZUE
BERA

ZidE A

EaT
HEIR
I E
ErHE

I

T

T

s

i

WERCHY
TETFE

HWETHEF GET ETRETHE =0T OF ODD
LOCATIOMTZ S ZLERR R,

- ADD FROM CUSFEMT ODD LOCARTI
FavE T MEXT LOCARTION

L
SRETHEF+12 ADDREDT Hoi ODT LDCHATIOMT

WITEFL TF HO COMTHOEITF YEZ X560 ITE

PULILTIFLY 2T,

By THREE. L.

I [CChR
HETHRERF+] GET EVEM EZTRTHG RDUR

FOD FROM CUSREHT LOCRTION
MOwe TO MEST LOCRTION

W ZTHER RODET ALL SVEM LOCKRTIONEY
WETERS IF MO-COMTHIER IF YET. &0

GREATER THAMA 127

I HE R M. COMTIMNDZ MOTL
10 TEZs EUETREAZ
WEZTEFD FOR OZTILL

i SURTRACT 10

WO O EEER ZUBBIM: LIMTIL O OR
FORM BIMREY FROM Z27Z COMRLE

WEZTREF+11 MATCH WITH CHE DHRRET

MERDSD Hdx 30 BRDFZADY YET. COMNTIM

FIGURE 5-1.2.5-11: WERCHK Assembly Listing

5-39

0 WECTRE

BE 0114 MIEFALD IRVE TURRENT TP

SEODOns L a00d EOTHT ST MT PECEIHG L0
TEOGIT BWETEER+1 SET OTTR THS ATDR OF UNFAC
S 0 LR AP UL BLD CHAR

DO N

i‘l
UEPER FOUR
CURREMT O

IF

T

aniao
TR R

1ak PRCK CURREMT ZVEM CHAR
FPLEH IWATO PACEIM: LOCRTION
MOVE TO MEST ATDRE
s BUFFER LOCRTION
1 CF HWETHES+ 11 FRORE TG COMFLETEY
S HELF MO COMTIMUS PROETIMG
WEREFAD TELZ s Fo IRORAME

RETIIRM TO EAECUTIVE

4
)
[

R R o o
T DI T DD

]

Lol
S0 T

i

e

el
LR}
d

e

[

TP =
o

0114

FIGURE 5-1.2.5-13: WBCDPK Assembly Listing

Save Old S.P. Point S.P.
at Packing location. Get
starting addr of unpacked

data into X.

Get current ODD BCD
Char. from WSTGBF and
move to leftmost 4 bits
of A. Pack EVEN Char.
into rightmost 4 bits of
A. Push A into Packing
L.ocation. Move to next
ODD location and test
for finished

No

Yes

Restore old SP and
Return to Executive

FIGURE 5-1.2.5-12 WBCDPK Flowchart for WBCDPK Packing Routine

540

printing out supermarket receipts, to the super-machines capable of printing 1200 132-character lines per
minute. The broadest common ground for printers and microprocessors appears to be in the medium to low
speed printing applications.

Medium performance is taken here to include auxiliary printers used with terminals or small
computing systems printing up to a maximum of 200 132-character lines/minute. The gamut of printers
spanning the medium to low speed range includes: electronic discharge printers, thermal printers, chain
printers, drum printers, matrix printers, serial printers, etc., with types and speed ranges available for almost
any conceivable application.

High performance microprocessors like the MC6800 provide an efficient means for controlling the
higher speed printers and in the lower speed applications, additional functions can be combined with the
controller function to produce a more cost-effective system.

Designing the microprocessor into the controlling system allows hardware (logic)/software (prog-
ramming) tradeoffs to be made to satisfy the specific system requirements. For example, in the high speed
printers, additional logic might be required if the desired data transfer rate is to be met even though the MPU is
only used for printer control.

At the other end of the spectrum, using one of the newer high performance MPUs as a dedicated
controller for a slower printer amounts to gross overkill. More often the relationship is similar to that shown in
Figure 6-4.1-1, a generalized diagram of an MPU based transaction terminal described in Chapter 6. In
applications of this type, the printer is merely one of several peripherals and its control is a relatively minor task
that involves a small percentage of the MPU’s attention.

It is in applications such as this that the real value of an MPU shows. They permit the designer to
reduce a relatively complex system to a number of manageable tasks. Service routines are developed for the
various peripherals and a suitable executive control program then ties the system together.

In a typical case, there are several factors to be considered in the development of a peripheral control
routine. The device selected must, of course, satisfy the basic system requirements such as speed, reliability,
etc. Beyond that, some devices of the same class are more amenable to MPU control than others. Some of these
factors are illustrated in the following paragraphs where the development of hardware and software for a
representative low speed printer application is discussed.

541

5-2.1.1 SEIKO AN-101F Operating Characteristics

A SEIKO AN-101F printer was selected as the hard copy output device for the transaction terminal
design described in Chapter 6. The SEIKO AN-101F Printer employs a continually rotating print drum
mechanism using what is referred to as the flying printer technique. The printing principle of the mechanism is
indicated schematically in Figure 5-2.1.1-1.

The print drum and the ratchet shaft are geared together and rotate continuously in the direction
shown. During a non-print condition, the right end of the trigger lever is removed from the ratchet’s pawl locus
by the downward force of the trigger lever spring. In the non-printing condition, the trigger magnet is not
actuated and the hammers are lifted upward to a neutral position by the hammer lever springs.

When actuated, the trigger magnet’s actuating lever forces the opposite end of the trigger lever into
the locus of the ratchet pawl. During its next rotation, the pawl will engage the right end of the trigger lever
causing a downward motion to the right hand end of the hammer. The hammer thus strikes through the inked
ribbon and paper, causing the character then under the hammer to be printed.

Hammer Lever Spring

Paper Feeding Roller

Hammer

i Inked Ribbon
Paper
NS

P

Print Drum

FIGURE 5-2.1.1-1 SEIKO AN-101F Printing Mechanism

(rrorgrrrrry
’

H
S100p 220000000077/
H& ’//tlllétzt/l.“

Ratchet Shaft

Hammer
\Trigger Lever Spring

Trigger Lever \/ Inked Ribbon _Paper
—_—

Trigger Lever Guide

Trigger Magnet

Characters

Print Drum

FIGURE 5-2.1.1-2 Timing Signal Generation

Detecting Wheel T Detecting Wheet R

.. Ferrite Chip

___—Detecting Head R
TPa1q Tigq TPg TLg TP1

Timing Signal -—\J w k} \A w L-

‘ Detecting Head T
Reset Signal ‘A’

FIGURE 5-2.1.1-3 Timing Signals

Ratchet Shaft

Ferrite Chip

Any of 42 characters (alphanumeric plus special characters *, $, ’, -, ., and /) may be printed in a
21-column format. Each column position has a complete character set spaced evenly around the drum. Because
of a 42:1 gear ratio, the ratchet rotates 42 times for each complete drum rotation. Hence, each character of the
set is positioned under a print hammer once during every rotation of the drum.

From this brief description of the printer mechanisms characteristics, it is evident that the control
circuitry must actuate the hammers at just the right time if printing is to occur. Timing signals are generated
electromagnetically by means of detection heads and ferrite magnets associated with the ratchet shaft and drum
(See Figures 5-2.1.1-2 and 5-2.1.1-3).

Rotation of the ratchet shaft generates signals TP and TL for each of the 42 characters. TP provides
timing for energizing the trigger magnets, TL for de-energizing. A reset signal R is generated by each complete
rotation of the drum. The resulting waveform for a complete drum rotation is illustrated in Figure 5-2.1.4-1.

5-2.1.2 Printer Hardware/Software Tradeoffs

It is at this point that a designer must start considering trade-offs in order to arrive at the most
effective design. A suitable peripheral device has been selected and its characteristics have been studied. In this
case, the manufacturer provides a suggested controller design that can be implemented (exclusive of Trigger
Magnet drive circuitry) with 16-20 SSI and MSI integrated circuits. If this approach is adopted, the MPU
merely monitors status and transfers data bytes to the controller at the proper time.

At the other extreme, the MPU could assume as much of the control function as possible and
eliminate all of the external conventional circuits. When overall system timing permits it, this is usually the
most cost effective approach.

There may be reason to adopt some intermediate approach. For example, a sixteen column format
was required for the application described here. The required information for identifying one of the sixteen
items can be handled by four encoded bits. The design could have been implemented using 4 PIA data lines and
external decode circuitry. However, it was decided to assign each column its own PIA data line, using up the
data capability of one PIA but requiring little external circuitry (See Figure 5-2.1.3-1). Had there been four
‘‘spare’’ PIA lines elsewhere in the system, the alternate approach would have been given greater considera-
tion. \
As a further consideration in the trade-off area, note that while only 16 columns are used in this
design, the AN-101F has 21 columns available. If all 21 were to be used, the designer could decide between
using five more PIA lines as opposed to an external 5-bit shift register. Unless there happened to be 5 *‘spare”’
PIA lines somewhere, the relative cost would probably dictate using the shift register.

Selection of a particular configuration is, of course, not made in pure hardware vacuum. Knowledge
concerning the MPU’s capability to handle the control problem heavily influences the method that is finally

selected.

5-2.1.3 Printer I/O Configuration

As is generally the case with MPU based designs, there are numerous ways to solve a given problem.
The method to be discussed here was selected to satisfy three basic objectives: (1) Use minimum external
electronics; (2) Use the timing signals provided with no additional external processing other than pulse shaping;
(3) Minimize the time in which the MPU must be involved with printer control activity. The hardware
configuration selected is shown in Figure 5-2.1.3-1.

543

MC6820
PIA

CcB1

CB2

PBO
PB1

PB2
PB3

PB4

PBS

PB6
PB7

PAOQO

PA1

PA2

PA3

PA4

PAS

PAG
PA7

CA2

CA1

1.2K 5K 1.6K

< Timing
=)
MC74452
—-
o> & -
| MC74452 —@
-
*— L
MC74452 | —@
L
& =
MC74452 ¢
> > To Hammer
» Magnets
* MC74452
—
*— L
F MC74452 —@
4>
J— sl
MC74452 —@
}—) -
*—- -
1 MC74452
‘>')
% 9—P Paper
1/6 MC7404
(4 Places)
2N6037
1/4 MC3302
(2 Places) 2N6037 1
620 =
|3 Ribbon
+5
5K < Reset
1.2K 1.6K é
+5

FIGURE 5-2.1.3-1: SEIKO Printer Circuit Requirements

5-44

As indicated in the earlier discussion of hardware/software trade-offs, each hammer driver is
controlled by one of the PIA’s sixteen data lines. These lines are the outputs of Registers ORA and ORB in the
PIA which are regarded as memory locations by the MPU; hence, the MPU can enable the activation of a
particular column hammer by setting the appropriate bit position in the memory locations assigned to ORA and
ORB.

During initialization, CB2 is established as an output and is used by the MPU to strobe the enabled
hammer drivers at the proper time. At the end of a print cycle, the printer’s paper and ribbon must be advanced.
This requires a 36 msec pulse which is generated by the control program and is applied through CA2 which is
also established as an output during initialization.

After being shaped and inverted by the MC3302 Comparators, the printer timing and reset pulses are
applied to the CB1 and CAl inputs, respectively. It is by means of these signals and the MC6800 interrupt
structure that the Printer ‘tells’’ the MPU it requires servicing. Part of the printer control program’s function is
to establish suitable interrupt modes using the PIA Control Registers.

As an example, in the control sequence described below, negative transitions on the CB1 timing
input during a print cycle must cause the MPU to service the printer. The MPU sets this up by writing b0=1 and
b1=0 into Control Register B during initialization. The subsequent timing transitions then cause the PIA to
issue an Interrupt Request to the MPU via the system IRQ line.

The MPU responds by interrupting its current activity (the MPU’s internal registers are saved on a
““stack’” so that the task may be resumed later) and fetches the starting address of an executive service routine
from a memory location permanently assigned to the Interrupt Request. The service routine directs the MPU to
“‘poll”’ its peripherals by testing the flag bits in the PIA Control Registers to see which one needs servicing.
Flag bit b7 of the printer PIA’s Control Register was set by the same transition that caused the interrupt. When
the MPU finds this flag set, it jumps out of the polling routine to -an appropriate printer control program.

5-2.1.4 Printer Control Program

The basic task, or algorithm, of the control program is to examine the text of the message to be
printed and make sure that the appropriate bits in the PIA’s Output Registers, ORA and ORB, are set at the
proper time. The details of timing and program flow are shown in Figures 5-2.1.4-2 through 5-2.1.4-7.

Understanding of the operation is aided by regarding the time for one print drum rotation as
forty-two equal intervals, to through ts1. With this in mind, note that all similar characters in the text are printed
simultaneously, i.e., all 0’s are printed during to, all 1’s during t1, etc. For example, if the text requires the letter
C in columns 3 and 9 (as in Figure 5-2.1.4-1), column hammers 3 and 9 must be engaged during the time
interval ti2 during which all C’s are under the hammers.

Following each ‘“TL’ interrupt, the MPU examines the entire message to see if there are any
characters to be printed during the next time interval. The text to be printed may be either a ‘‘canned’’ message
stored in ROM or variable information generated by the executive program and stored in RAM. Messages are
stored in memory in 16-byte blocks with each memory position corresponding to a printer column position.
Prior to calling the printer, the executive program loads the starting address of the message to be printed intoa
buffer. The printer routine then uses this address in conjunction with the MPU’s indexed addressing mode to
locate the desired message; this technique permits using the same subroutine for all of the system printer
requirements.

545

9-S

Column Hammer Signals
A

Reset

U %)‘“ ﬁ')L
U
\—‘ o - N [o2} o -
BOR R e 2R A7 PPoRR
(
IIIIIIIIIF’lIIlII [T 11 IHHIHIIIIIIIIIHIIIIIIlIIIﬂ”ll||||||||||
0 c D I

iR

(1 ™ fo |_|
]

2 J_l

3 ¢ M

4 R

5 0

6 P

7 R

g8 o

. al

10 E I—L

" M
12 s 1
13 0

14 R |—L

15

16

FIGURE 5-2.1.4-1 Print Cycle Timing: “Microprocessor” .

00230
00300
00310
00320
00330
00340
00350
00350
00370
00380
00330
00400
00410

rC4C
TC4F
7Ca2
7GO3
FCS4
757
rCSA
rCSC
7CSF
rCée
FC65
7Cé8

7F
7F
4F
43
E?
E7
£6
E7
E7
B6

39

8009
800B

2008
200R
3C

2009
200R
2008
800R

PKIPRT

Set PIA Interface Reg’s
as outputs. Disable hammer
strobe and paper ribbon
feed control lines. Set P1A
Interrupt Masks

RTS = Return from Subroutine

R = Reset Timing Pulse

+¢ INITIRLIZE

(a)

PRINTER PIR

PKIPRT CLR AF1CRHA
CLR XPICRB
CLR R
com R
STH AR XP1DRA
*TH A KFPI1DRE
LDR A #$3C
3TH R ®FICRHA
ETR A XPICRB
LDR A XP1DRA
LR B KXP1DRE
RTS

(b)

SET PIA DRATA LINES RS OUT

SET FIR CONTROL REGSTRS TO
DISAELE DOUTPUTS

AHD SET INTRFT MASKS

READ DIRTR RGSTRS TO CLERKR
INTRPTS BND FLAGS

FIGURE 5-2.1.4-2: Initialization

547

A 42-byte Character File corresponding to the printer’s character set is stored! in ROM in the same
sequence as it appears on the printer drum. As each TL interrupt is serviced, the Character File Pointer is
incremented pointing to the address of the next character on the drum.

The MPU then compares every character of the text to the current Character File character, keeping a
running column count as it does so. Each bit position in the PIA Output Registers is set or cleared depending on
whether or not the respective text characters matched the Character File characters.

The flow charts and control programs that resulted are shown in Figures 5-2.1.4-2 through
5-2.1.4-6. The control problem was broken into four tasks: (1) Initialization; (2) Printer Enable; (3) Reset
Service Routine; (4) Print Service Routine. _

The Initialization routine, PKIPRT?, defines the housekeeping tasks that are routinely taken care of
by the executive program during system power-up.

Referring to Figure 5-2.1.4-2(b), lines 300 and 310 clear CRA and CRB (XPICRA, XPICRB)
setting b2 = 0 so that DDRA and DDRB can be addressed. Lines 320—350 store ones in all of the DDR bits
defining the 16 data lines of ORA and ORB as outputs. Lines 360—380 load the control registers with the
hexadecimal (HEX) value 3C resulting in the control lines being defined as shown below:

b7z | be | bs | ba | ba | bz | b1 | be
01]0 1 1 1 1 0|0
3 C

CRA(B)

bo = 0 IRQ interrupts are disabled.

b1 = 0 CAl, CBI are established as negative edge sensitive inputs

bz = 1 ORA, ORB are now selected

bs =1

bs = 1 ¢ CA2, CB2 are established as outputs which follow bs; they are now high.
bs =1

With CA2 and CB2 high, all the driver circuits are disabled since one input of each driver AND gate
is held low (see Figure 5-2.1.4-1). Note that CA2 and CB2 are inverted prior to reaching the AND gates.

Lines 390 and 400 are ‘‘dummy reads’’ of ORA and ORB which clear the IRQ flags that may have
been set and insure that the IRQA(B) lines are high, i.e., inactive. Line 410 returns control to the executive
program.

The Printer Enable routine, PKNTRL, is called by the executive program whenever a line of text is
to be printed (refer to Figure 5-2.1.4-3(b). Since the printer drum is continuously generating reset pulses at
CAl, the IRQA flag will be set but the IRQA line will be inactive (it was disabled during initialization by setting
bo = 0). In order to insure that the next reset pulse starts the print cycle instead of the CA1 interrupt enable, the
IRQA flag is cleared by a dummy read of ORA (XPICRA) prior to enabling CA1, lines 490—510.

The *‘printer done’’ flag (#$29) is cleared by another service routine before returning to the main
program. Subsequent interrupts generated by the printer will cause the line of text to be printed with further
control by the executive program unnecessary.

!Both Character File data and message characters are stored in memory using ASCII code. Any convenient code could be used,
however, in this application, the ASCII message format is required by other peripherals in the system.

%Labels appearing in the following discussion conform to a format adopted for the Transaction Terminal system: In complex systems, it
is advisable to sacrifice some mnemonic meaningfulness in favor of system documentation requirements.

548

00430
00440
00450
00460
00470
00490
00500
00510
00520
00530
00540

7Ce9
7CeC
vC6E
fC71
7C73
fCvé

BE
85
E7
55
ED
39

PKNTRL

Clear previous
R Interrupts

Y

Enable R Int
on nextnega-
tive transition

Y

Reset Printer
Finished Fiag

RTS = Return from Subroutine

R = Reset Timing Puise

(a)

FPRINT 16 CHRRACTERS BEGINNING AT THE MEM ADD
STORED IN PVYTXBF (C7sC3> ON ONE LINE
JSR PENTRL TO STARTs INTRPTS WILL SYNC REMRININ

v

.

..

¢¢ OFERATIONS.

+¢ FEEDs CH1:
S0G02 PKMTRL LDAR A XP1DRR
3D LA A #%3D
2009 STA A XPICRA
29 LI A #%29
6309 JSR XKRSTF

RTS

(b)

CB2: HAMMER ENRBLEs CRZ2:
RESET INTRPTs CB1:

PPR/RBN
TIMING INTRPT..
CLR PREV. RESET INTRPTS
SET CA1 TO INTRPT ON NEXT
NEG TRANSI OF RESET

CLEAR PRINTER DONE FLAG
RETURMN - WRIT FOR START INT

FIGURE 5-2.1.4-3 Printer Enable

5-49

When the CA1 input is triggered by the printer reset pulse, the MPU interrupt sequence directs
processing control to the PRNTIR routine (Figure 5-2.1.4-4(b)). Since the IRQ flag and line are active, they
must be disabled prior to exiting from the routine in order to allow further interrupts. Line 590 reads ORA
(XPIDRA) to accomplish this as the first instruction. Lines 600—620 test b1 of CRA to determine whether the
CA1 input was positive or negative edge sensitive:

(A) Ifb1 = 0, CA1 was a negative transition and the program branches to PKSCN1. Lines 780 and
790 set CRA to 3C as was done in the initialization routine to mask or disable the CA1 interrupt input. The
starting address of the printer character file, PCKFO00, is stored by lines 800—-810 for use during the first scan
loop. Lines 820—840 clear the previous timing interrupts and set CRB to allow the next negative CB1 transition
to interrupt the MPU. The RTI instruction at line 850 returns the MPU to the status that existed at the time the
interrupt occurred and program execution continues from there.

(B) If bi = 1, CA1 was positive signalling the end of the printing cycle. The routine disables the
line, CA1, the hammer strobe and the interrupts CA1, CB1, CB2, with lines 630—640 by setting CRA(B) to
3C. The next two lines store 34 in CRA clearing bz and making CA2 go low. A delay loop is then generated with
lines 670—720. Accumulators A and B are loaded with the values 48 and A6. Accumulator B is then
decremented (A6 times) to zero each time Accumulator A is decremented once. When Accumulator A is zero
(=~36ms), the program jumps out of the delay loop and stops the paper ribbon feed by loading CRA with 3C (bs
= 1) making CA2 go high. Note that the delay loop accumulator values depend on the system clock frequency;
here, 1 MHz.

The printer done flag (#$29) is then set by a jump to another service subroutine before returning to
the program flow where the interrupt occurred.

The printer timing signals are asynchronous with respect to the MPU clock. Hence, if the printer
interrupt is enabled immediately following an interrupt, it could take nearly two full print drum rotations or
approximately 1.5 seconds to print a line of text. This is a relatively long period in terms of MPU processing
time; if the printer required continuous control during this period, it would be impractical in many applications.
Fortunately, the printer signals may be used in an interrupt driven approach that will be clarified as more control
program is described.

The printer interrupt service routines are designed so that the MPU can resume other system tasks
shortly after each printer interrupt is serviced. The relationship between the printer signals and MPU activity is
shown in Figure 5-2.1.4-5. The approximate time in which the MPU is busy servicing the printer is indicated by
the cross-hatched area following each allowed interrupt. Using this interrupt driven approach involves the
MPU for less than 30 msec out of each 850 msec print cycle.

The majority of this time is used during the Print Service routine, PRNTIT (Figure 5-2.1.4-6).
Printer operation requires that the selected print hammers be engaged only during the time between TPn and
TLn (See Figure 5-2.1.4-1). The PRNTIT routine selects the hammers that are required during a given interval
and causes them to engage and disengage at the required times. Most of the processing time (approximately 0.6
msec following each TL pulse) is spent determining which hammers should be engaged during the next
interval.

Referring again to Figure 5-2.1.4-5, TL41 will be the first CB1 transition after PRNTIR has enabled
CBI to be negative edge sensitive. TL41 will cause the IRQB line to go low interrupting the MPU in the same
manner as before, except that this time the IRQB flag is set by CB1. The interrupt sequence will jump to
PRNTIT (Figure 5-2.1.4-6) instead of PRNTIR.

5-50

560
570
590
600
510
520
530
540
230
&5l
570
&30
530
700
710
el
730
740
7S50
760
770
730
730
300
810
320
530
840
850

7C?7
7C7A
7C7D
7C7F
rcel
FU83
fo36
TCR3
2R
T8I
FTLEF
7C90
rooe
FC93
FC95
7C97
7C9R
7C9C
7COF
7CARO
7CR2
YCARS
7CAH2
YCAR
7CARD
7CAF
7CB2

B&
B6
85
27
£é
F?
86
BP
86
Cé
SH
26
4H
ce
=13
B?
=1
BD
3B
=1
b7
CE
DF
Fé
cé
F?
3B

5003
3009
o2
1F
3C
5008
34
5009
43
se

FD

F3
20
3009
29
6303

3C
50609
TEBS
(g
200R

800B

\

Disable Ham-
mers, Mask TP/
TL interrupts

'

for 36 ms)

Mask R Inter-
rupt. Generate
ribbon/paper
feed. (CA2 low

{

Set Printer
Finished Flag

PRNTIR

Cir. Ints. (Figs)

|

Mask R Inter-
rupt. Initial-
ize CF Pointer

{

Clear previous
timting inter-
rupts. Enable

TP/TL Interrupt
on next nega-
tive transition

(a).

RTI = Return from Interrupt
R = Reset Timing Pulse

¢¢ INTRPT VYECTORED HERE IF CA1 INTRPT
¢ SCAN TEXT

PRNTIR LDA
LDH
BIT
EEL
LDA
STH
LDA
iTH
LDH
PKTG01 LDA
FKTG02 DEC
EHE
LEC
EBME
LDA
=TH
LDA
JER
RTI
PKECHL LIDRA
3TH
LDX
3TR
LDR
LDH
STH
RTI

T

id T X0 bt b

I

I I

X

o o o

FOR FIRS
XP1DER
RPICRA
#%02
FKSCN1
#3300
#AFI1CRB
#5344
#“P1CEA
EHE 3
#3592

PETGO2

PKTG01
#E3C
P 1CRHA
#$29
NKSETF

T e
#P1CREH
#PKCF OO
PYREFR
~AF1DRE
#$3D
XPICEB

(b)

T CHRR OR MAKE FPR/RBN FEED
CLR IMTRFT AND FLRAG
TEST IF CA1 POS OR MEG
INTRPT
NEGs 5O INT-L SCRAN LDOP
TRUEs PFPR-/REN FEED
DIZRELE HAMMERSSINTRPT MASKED

3TRRT PPRAREM FEEDSINTRPT M
DELRY LOOP = 3& MILLISECOMD
SCYCLES=RACCAHCCRICE Y3450

FOR A 1MHZ CLOCK

LET ACCRH = %43
ACCE = RAS
LOOF

ETOF FFR/REBM FEEDSINTRFT MSKD

SET FRINTER DOME FLRG 29
RETURN
MZAK CA1 INTRPT

INT”L CF FOINTER
CLF PREY TIMING INTRPTS
SET CE1 TO IMTRPT OM MEXT

MES TIMIMS PULZE
RETUREN

FIGURE 5-2.1.4-4 Reset Service

5-51

(4%

- W i

Timing

TL41

o~
n

0.2 ms

0.6 ms

N =

GHhWN =

E /AL %

A

(=]

TLO

L

—
o~

le-

~8.0 ms ’Jt ~10.0 ms

PRINTIR active * Enables interrupt by TLgq.
PRNTIT active

PRINTIR active — Enables interrupt by TLg1.

PRNTIT active — Selects hammers to be engaged at PTp.

PRNTIT active — Enagages selected hammers.

PRNTIT active — Disengages hammers and selects hammers to be engaged at next TP.
PRINTIR active — Terminating the print cycle; then performs a paper/ribbon feed.

FIGURE 5-2.1.4-5 Printer Loading of MPU Activity

der
P

8vo
830
300
910
920
930
940
950
950
970
930
990
1000
1010
1020
1030

7CB3
7CB6
7CB9
TCBB

7CBD
7CCO
7Cce
7CCS
7CC?
7CCR
fCCC
7CCF
7CDO

Fé
Fé

27
BS

B7Y
cé
F?

F?
3B
DE

PRNTIT

Cir. Ints./Flgs

Clear Previous
R Interrupts
Unmask CA1

[}

Print Charac-
ters under ham-
mers (CB2 low,

back high on

next TP/TL Int.)

jirg

No

Store Character
File Pointerin
the index Reg.

PKSCAN
(Figure 16)

RTI = Return from Interrupt

R = Reset Timing Pulse

(a)

¢e INTRPT VECTORED HERE IF CR1 INTRFT
UNLER HRAMMERS OR SCHAN TEXT

+¢ PRINT CHRR

PRNTIT LIR
LDA
BIT
BEQ

LDR
LDR
STR
LDR
3TR
LDRA
3TH
RTI
FKSCNe LDX

B
B
B

s T

»FP1DEB
»P1CRE
aE02

FKECNZ

%P1DRHA
#+53F

#P1CRHA
#3295

NF1CRB
BF1DRE
*P1DEER

FYxBFR

(b)

CLE INTRPT AND FLAG

TEET IF CB1 IS R FOS

Or NEB INTRPT

MEGs O SCAN

POSITIVEs FRINT

CLR PREY RESET INTRPT

SET CA1 TO INTRPT ON NEXT
FOS TRANS OF RESET PULSE
PFRINT CHAR MOW UMDER HAMMA
CE2 LOWs HI NEXT NEG CB
GET ZIDE B OUTPUT INFO
STORE IT AND STRRT FRINT
FETUREMN - WRIT FOR MEXT
LORD CURRENT CF POINTER

FIGURE 5-2.1.4-6 Print Service

5-53

Again the first thing done is to clear the IRQB flag and the —Iﬁaline by reading ORB (XP1DRB).
Then lines 910—-930 test b1 of CRB to determine whether the CB1 input was positive or negative edge sensitive.

(A) If br = 0, CB1 was a negative transition and the program branches to PKSCN2 (line 1030)
which loads the index register with the current character file (CF) address pointer. The scan loop follows and
will be discussed later.

(B) Ifb: = 1, CB1 was a positive transition, i.e., a TP timing pulse. This means that the hammers
must now be strobed. Before this is done, CA1 is cleared and enabled (lines 950—970) to allow the next positive
reset transition at CA1 to signal the end of the print cycle. The hammer strobe is then armed to be set low on the
next write in ORB by storing #$25 in CRB (lines 980 and 990). This combination of bs, b4, and bs also returns
CB2 high on the next CB1 interrupt at TL. The 8 data bits set by the previous scan loop for the B side outputs are
then stored in ORB (lines 1000 and 1010) causing CB2 to go low. The strobe inputs on the driver AND gates go
high activating those hammers whose data lines have been set high.

Line 1020 returns control to the place the interrupt occurred. The scan loop, PSKCAN (Figure
5-1.2.4-7), is the actual data processing section of the program. The column counter (Accumulator B) is
cleared and the current character file character stored in the test buffer (lines 1410-1430). The next character
file character address is then stored (lines 1440—1450) for initializing the next loop. The first text character
address is loaded into the index register before starting the scanning process.

The first instruction in the actual loop (line 1470) compares the column count with #$10 (decimal
16) to see if the last text character has been checked. If it has, the program enables an interrupt by the next
positive timing pulse transition (lines 1490—1510) and returns control to the executive program. If the last
character has not been tested, the program branches to PVNXT1. Line 1520 loads accumulator A (ACCA) with
the text character corresponding to the present column counter value. This is then compared with the current
character file (CF) character (lines 1530 and 1540) with the carry bit being set if they match (line 1550), cleared
if they don’t (line 1570). The carry is then saved by the TPA instruction so that it will not be destroyed by the
following test. Lines 1550 and 1600 determine which output register is to be operated on. If the column count is
=8, ORA;if <8, ORB. In either case the carry bit is restored by the TAP instruction (line 1610 for side B, 1640
for side A) before it is shifted into ORA or the ORB buffer, BFIDRB, using the ROL instructions on line 1620
for side B and line 1650 for side A, (since a write into ORB is required to activate CB2, the data is stored in a
buffer until time for hammer activation). Figure 5-2.1.4-8 is the schematic representation of the ROL
instruction. As the scan progresses, the bits are shifted from right to left. At the end of the loop, the bits
representing the character to be printed will be shifted into the position indicated in Figure 5-2.1.4-9. When the
shift has been completed, the column counter and text address pointers are incremented (lines 1660 and 1680),
then a branch is executed to the start of the loop. '

The control operation just described might appear at first glance to be a slow and cumbersome
approach. However, it should be kept in mind that during an actual print operation, less than 4% (30 msec out of
850 msec) of the MPU’s capability is used.

This combined with the fact that only twenty conventional integrated circuits are being replaced
seems to indicate that the control of printers of this class is a trivial task for high performance microprocessors.
The proper perspective in this situation is to remember that the MPU is controlling 7—10 other peripheral
devices while also performing the executive function and that the control of the printer is accomplished with a
minimum of additional expense in hardware (200 bytes of ROM) and engineering development time.

5-54

PKSCAN

Zero Column
counter, Store
CF character in

test buffer.

!

Increment CF
pointer. Ini-
tialize text

char. pointer.

Yes Last
Column

tested?

No (ACCB = $10)*

PVNXT1
Store text
Set PIA for char. in ACCA
interrupt on

next positive
transition of
TL/TP

SAVE CARRY

SIDE B SIDE A (ACCB > *
Which { > $08)

PIA word?

Restore Carry

Restore Carry

i i Shift Carry in-
Shift Carry in- h
to side B Data to Side A Data

Buffer Register

ORA
Increment col-
CF = Character File umn counter,

Increment text
char. pointer.

* $ Indicates that a (ACCB+1)
hexadecimal number
follows. L

FIGURE 5-2.1.4-7(a): PKSCAN Flow Chart

5-55

01320 *+ ZCAM TEXT FOR CLURRENT CHARF AMD SET OUTPUT LIMES
1410 BIES SF FEZCAN CLE E ZERQO COLIMM COUMTER

01420 EBE3IE? Ac 00 LR A =

01430 BIEE EFT 01232 =TH A
1440 EB3IEBE 02 IH'
11450 EIEF 1z o FYSEFR ETORE MEXT CF RDDREZE
01450 BICS 0i1F ;D FYWT=EF GET TEXT CHAR HDDF -~
01470 B3CS ia FECLOF CHMFP wh10 HRZ LAST TEXET COLUMH
nig4an BICP) EME FWHET BEEN TE=TED

01430 BIC9 3F LDA #EEF SET CEL TO IHMTRFT 0OH HEXT
01500 BICE COoR =TAR =F1CRE FOE TRAME OF TIMIMG FULSE
01510 EBE3CE FTI YEZ Y RETURM

01520 BICF a0 FYMH=T1 LIDA = STORE T# CHAR IM RACCA
01520 B2D1 n1es ZMP FYCFEF DOES TEST MRTCH

1540 B304 nz EME FYHETES CURREMT CF CHRRRCTER
01550 BE3IDe ZEC YEZ ZET CARRY

H1Sen BIDT 01 EFA FYH=TS

01570 B3D3 OC FiWM=TE CLC HOs ZLERR CRERY

11520 E3DA FYM=TZ TPA ZRYE CHREEY

01530 E3DE 0z CHP R 0= WHICH FIR ZILET

n1&00 BILD LS BEGE FWHsETS

01510 ESDF THF ' ZIDE E: GGET CARRY

01&s0 B2EQ nizg FOL EF1LRE ZHFT C IMTO FREMNT EUFFEER
N1s30 RB9ES e ERA FYM=TT COMTINUE

Hiedn BIES FYH=T4 TRF ZIDE A: GET CARRY

D150 E3Es cons FOL aF10RA EHFT © INTO PIA OFA

Higsn BEIES FYMSTVY IMC B IMCREMEMT COLUMM CTR
170 BIER IH- IMCREMENT TEST FOIMTER
11520 EB3EE I ERA FECLOP

FYCFEF ZTORE CF CHARE IM TET EBUF

mTn
mm

[y
b
fual

I T

R == B R KN o BEE R O
I

o s
Rl = I s DO R I 2

=
Loy |

w) o T T
LY SR |

1 Rl e A W

[Y NN &

ot
i)

s

FIGURE 5-2.1.4-7(b): PKSCAN Assembly Listing

ORA or ORB’s BUFFER Carry

b7 b0

FIGURE 5-2.1.4-8: Roll Left Operation on PIA Registers

PRINTER COL. # 19 |18 {17 |16 |15 |14 |13 |12 |11 |10 [9 | 8 |7 |6 |5 | 4

OUTPUT FORMAT M]I C |[R |O [P |IR |O |C |IE [S |S |0 |R

COLUMN COUNTER 0o (1 |2 |3 4 |5 16 |7 |8 |19 |[A B |[C |[D |[E |F

PIA OUTPUT LINE PB7|PB6|PB5(PB4|PB3|PB2|PB1| PBO|PA7|PAG|PAS|PA4|PA3|PA2|PA1|PAD

TEXT BUFFER ADDR. [+0 (1 (2 (3 (4 |5 |6 (7 (8 |9 |10 (11 |12 [13 (14 |15

FIGURE 5-2.1.4-9: Printer Column/Text Buffer Relationship

5-56

5-2.2 BURROUGHS SELF-SCAN DISPLAY CONTROL

Interfacing displays such as the Burroughs Self-Scan Model SSD 1000-0061 Gas Discharge Display
(with memory) to the MC6800 MPU can be done using half of one PIA. The display has a sixteen position,
single row array with a 64 character repertoire.

Each character is entered in the right most position, and is shifted left upon entry of another
character. When the display has filled to sixteen characters, the left most position will be shifted off the display
as subsequent characters ate shifted into the right most position. The display is also equipped with a
““backspace’’ (effectively a right shift) and ‘‘clear’”’ capability for flexible error correction. Additional
characteristics of the display are shown in Figure 5-2.2-1.

The PIA/DISPLAY Interface is shown in Figure 5-2.2-2. The ¢‘B’’ side of the PIA is used to connect
both control and data signals, leaving the ‘A’ side available for another peripheral. During initialization, the
PBO throughPB7lines are established as outputs;CA lis an interrupt input and CB2 is a strobe output. Data can
be transferred from the MPU to the display using a single instruction, STAA PIADRB, where the data was in
accumulator A and the ‘‘B’’ Data Register address was equated to the label PIADRB during assembly. This
instruction transfers the next character to the display and simultaneously generates a ‘‘data present”” pulse. The
MPU can then resume other tasks until it is interrupted by a ‘‘data taken’’ pulse from the display.

5-3.1 INTRODUCTION TO DATA COMMUNICATIONS

The following sections contain the hardware and software requirements for a teletype connected
directly to the ACIA and for a teletype connected to the ACIA through a pair of modems. The modems enable
data stored at a remote site to be transmitted over the telephone lines to an MPU system. Therefore, the only
major difference in the software required for the two systems is the modem control functions. For the software
examples, data from a teletype tape is stored into memory under MPU control. After the complete message is
stored in memory, the data is transferred to a Burroughs Self-scan Display for viewing purposes. The data
contained on the tape is stored by program control in memory locations that are specified by the address field on
the tape. Data received from the teletype is in the format shown in Figure 5-3.1-1, which is consistent to that
used in other MPU software packages. The records consist of a header record (SO), data record (S1), and an
end of file record (S89). A data record begins with an S1 preamble, followed by the byte count in that
record, the beginning address to store data, the data and the checksum (one’s complement of the summation of
8-bit bytes). Since an error could occur in the reception of the data, the data is repeated several times on tape and
an S8 is used to indicate the end of tape. Examples of the TTY/ACIA and MODEM/ACIA are shown in Figure
5-3.1-2.

5-3.1.1 TTY To ACIA Hardware

The hardware requirements to interface a teletype to the MPU system include the Asynchronous
Communications Interface Adapter (ACIA) and some form of voltage to current interface circuit or RS232C
type interface. The current interface circuits may vary to suit the particular teletype used within the data system.
Two of the most common methods of receiving data from a teletype are from a teletype keyboard or teletype
paper tape reader. Also, the paper tape reader can have either manual or automatic control. The automatic paper
tape reader turns on and off by internally decoding words received on the serial input line. A *““DC1’’ Control
word turns the reader ‘‘on’’ while a ¢‘DC3’’ Control word turns the reader ‘‘off;”’ DC1 and DC3 control words

5-57

INPUTS (Figures 3 and 5)

Data Input .
Positive logic (a high is written into memory as "'1"'). Data
may not be changed during the period in which the WRITE
cycle line is in the logic '1"" state.

Data Present Pulse
A logical “0"" causes the INPUT DATA to be written into
memory. Minimum pulse width is 1.0 us. This function is
triggered on the high-to-low transitional edge.

Clear Pulse
A logical 0" clears the memory. Minimum duration for
the SSD1000-0041 is 33 us. Minimum duration for the
SSD1000-0061 is 66 us.

Blank Disable
A logical "1 blanks the display. This input does not affect
the memory portion of the system.

Back Space
A logical 0" causes @ left-to-right shift of one character.
Minimum pulse width is 1.0 us. This function is triggered on
the high-to low transitional edge.

OUTPUTS (Figure 3)

Write Cycle
A logical 17 appears at this output during the WRITE
CYCLE beginning with the negative edge of the DATA
PRESENT pulse and encing with the DATA TAKEN pulse.
Data Taken
A logical Q" pulse occurs when INPUT DATA is written
into memory or when BACK SPACE occurs. New data may
be entered no less than 100 ns following the low-to-high
transition of the DATA TAKEN pulse.

REQUIRED DRIVE SIGNALS

BLANK
DISABLE
A
DATAINPUT | peFRESH CHARACTER D%T,s":,fgx
(SIX LINES) | MEMORY GENERATOR DEVICE
CLEAR
DATA PRESENT CONTROL 34 CATHODE
> | CIRCUITRY DRIVE
—
BACK SPACE
(SSDIDOO-006! ONLY)
DATA TAKEN
WRITE CYCLE

BLOCK DIAGRAM

CLEAR
o
MEMORY CYCLE TIME ~ ~
- 1 —= e AR pangL 1 e
DATA , gl t3 |
PRESENT —/
AND BACK © u

SPACE (SSDIOOO-006! ONLY)
CHARACTER | [*~ '™ =) ~* CHARACTER 2

({7 W
W7 i, /L
|
S, " U I
ATA
IDNPUTS
o/ . W SN
&Y, W Sl NI

Lé'////,__f//,o S/
DATA TAKEN ————] (————— (—
RITE | i Note: Occurs only
:vcu.e i ¥ after Data Present.
o m 100 ns MIN

TIMING DIAGRAM

BINARY CHAR. | BINARY CHAR.
INPUT INPUT
o @ 32 (BLANK)
1 A 33 !
2 B 34 .
3 [35 #
a [s) 36 $
5 € 37 v
6 F 38 &
7 G 39 /
8 H 40 <
9 | a1 >
10 J 42 .
1 K 43 +
12 L a4 ,
13 ™M a5 -
14 N a6 .
15 o 47 ~
16 3 a8 [/
17 Q a9 1
18 R 50 2
19 s 51 3
20 T 52 4
21 U 53 5
22 v 54 6
23 w 55 7
24 X 56 8
25 ¥ 57 9
26 z 58
27 [59 ;
28 v 60 <
29] 61 =
30 { 62
31 } 63 §

TRUTH TABLE

FIGURE 5-2.2-1: Burroughs Self-Scan Display Characteristics

5-58

cvovg

PIA

PBO

PB1

PB2

PB3

PB4

PB5

PB6

PB7

CB1

cB2

Pin 15 Pin C
Pin 16 Pin 3
-
Pin 17 Pin B
=
Pin 18 Pin 2 .J
Pin 19 Pin A .‘
Pin 20 Pin 1
Pin 21
Pin 22 Pin E
Pin 5
Pin 23 Pin F
Pin 24 Pin 0

B5 (1)
B4 (2)
B3 (4)
B2 (8) Display

B1 (16)

BO (32)

¥ Backspace

Clear

Data Taken

P> Data Present

Pin 4 Pin 10 PinJ Pin L

FIGURE 5-2.2-2: PIA/Burroughs Display Interface

5-59

B

-12V 4250V +5V &

oD
0A
F
rame 00
1 53
2 cC
3 _ —}
4 [+4]
5 g - -
s 3 -
-3} 23 — —
€ ~ X
°oE L 2
by c o — —
10 R 3 }
. % ©
= 8
. = >
o
N _ }

—

Leader (Nulls)

(CR) Formatting for printer
(LF) readability ; ignored
(NULL) by leader

S = Start-of-record
CC = Type of Record

Byte Count (two frames =
one byte)

Address/Size

Date

Checksum

Frames 3 through N are hexadecimal digits (in 7-bit ASCII) which are converted
to BCD. Two BCD digits are combined to make one 8-bit byte.

The checksum is the one’s complement of the summation of 8-bit by tes.

CC=30 CC= 31 CC=39
Header Data End-of-File
Frame Record Record Record
1. Start-of-Record __ 53 S 53 S 53 S
2. Type of Record __ 30 0 31 1 39 9
3. 31 31 30
4 Byte Count 32 12 26 16 23 03
5. 30 31 30
6. Address/Size 30 31 1100 30 0000
7. 30 0000 30 30
8. 30 30 30
9. 34 39 46 FC
10. Data 38 48-11 38 98 43
. 34 30 (Checksum)
. 34 44D /EE_J 32
: :3;3 52.R f;’rﬂ -
— A8 (Checksum)
. r’% 48
39
N. Checksum 45 9E Data

End of File

FIGURE 5-3.1-1: Paper Tape Format

5-60

Head of Record

19-¢

TELETYPE

- TTY
Current
l— |nterface

ACIA

TELETYPE

TTY
Current
Interface

MODEM

FIGURE 5-3.1-2 TTY/ACIA and MODEM/ACIA Systems

TTY to ACIA System

MODEM to ACIA System

MPU
SYSTEM

PlIA

Burroughs Self Scan

MODEM

ACIA

MPU
SYSTEM

PIA

Burroughs Self Scan

TTY
Relay

MC1489A

c
[e]
||...:_m
cl I T
< oLl “m ».lll_ ||||||| we.
N © I
] 2 £LH)i g = awmm . 3
o _ s |® 2E o =
U A S 3 e =
“ r n N0 N r
! . - - 1
“ “ 0 € m..___ !
| I > I I M o ;o
! gl a0 [+
T I ! |
s e _
| | i 1 |
g o “ “
? g I !
5 “ | S [Q “%
1
—= | __ s | 3
[" " ! " | © “
] ~ [P9
| | 10 ° __ ! ~ | + ¥
| I b I o ! ~
] I I P |_ - i <
I | {
| | |
i I {
I I [
L i
IIIIIIIIIIIII — e e [PR |
L_-zzzzzzzoz ey |
s 3
z s
< o
s |

-

MPU
System

Relay Driver

——— e
562

FIGURE 5-3.1.1-1 MPU to TTY Interface

are teletype requirements. The manual paper tape reader requires an externally provided relay to turn the reader
on and off via the ACIA. For the system shown in Figure 5-3.1.1-1, the Request to Send m output of the
ACIA is used to control the relay; the RTS output is normally used for interfacing to a modem. There are
separate data lines for serial-in and serial-out data transfer from the teletype which connect to the transmit data
output and receive data input of the ACIA via the interface circuits. The current/voltage options for the serial-in
and serial-out data lines of the teletype are (1) 20 ma, (2) 60 ma, or (3) RS232C. Typical interface circuits for
options 1 and 3 are shown in Figure 5-3.1.1-1. The 4N33 optical coupler can provide the 20 ma requirement,
and the MC1488 and MC1489A line driver/receiver provide the RS232C specifications. Communication
between the teletype and other devices is accomplished with an asychronous data format. This format requires
that the data bits are preceded by a START bit (space) and followed by 1 or more STOP bits (mark). The
teletype requires a minimum of 1% STOP bits for completion of mechanical operations within the teletype.

5-3.1.2 TTY To ACIA Software

The flow diagram and assembled program for the communications routine are shown in Figure
5-3.1.2-1 and 5-3.1.2-2 respectively. The shaded areas in these figures represent requirements for using a
modem and therefore would be deleted in a program that does not utilize a modem. Referring to the assembled
program and flow diagram, the internal power-on reset of the ACIA is released by master resetting the ACIA
via the control register. Then, the control register of the ACIA is set for word length, parity, etc. If at any time a
power-fail occurs, these two steps must be repeated to initialize the ACIA. Next, in lines 150—200 the PIA is
initialized to receive data from the MPU System and output this data to the Burroughs Self-Scan display.

Line 240 turns on the teletype by the control character ‘‘DC1.”" If a relay is being used to turn the
reader on instead of a control character, the RTS output of the ACIA could have been used to control the relay.

Line 260 initializes a memory location that stores error conditions from the data that is received.

Lines 280—370 ignores all data that is on the tape until an S1, S9, or S8 indication is found. An S1
indicates a data record as shown in Figure 5-3.1-1, and the following is performed on the data record in lines
400-590. The memory location for accumulating a checksum is cleared. Next, the number of bytes in the data
record (minus two for the byte count) is stored in memory. The next four bytes on the tape represent the
beginning address for the data and these four bytes are loaded into two consecutive addresses. Line 480 loads
the X register with the two consecutive addresses making a 16-bit address.

In lines 520—590 the remaining data in the record is stored in consecutive addresses beginning at the
address specified on the tape. A byte count of zero indicates the end of the record and the checksum is checked
for a data error indication. The final checksum is generated by adding the accumulated checksum to the
checksum (1’s complement) at the end of the record and incrementing the total by one resulting in all zero’s
with a carry. If the checksum does not equal zero, the error memory location is loaded with a one at line 580.

The remaining data records are handled as above until the end of file (S9) is read. Then, at line
600-620 the error memory location is checked for an error indication. If an error was stored in this location, the
routine looks for a duplicate of the message on the tape and processes data as before. If data is read into the MPU
without any errors the tape reader is turned off by a ““DC3’’ control word at line 680. Again, if a teletype with a
relay is used, the RTS output of the ACIA could be used to turn off the relay. In lines 810—970 the data is
fetched from memory and displayed at a program controlled rate on the Burroughs self-scan display.

The input and output of characters through the ACIA is done by the subroutine contained in lines
980—1300. Beginning at line 980, the status of the receiver data register is checked until a full condition exists.

563

Master
Reset
ACIA

Set ACIA

Control Word

Initialize
PIA

Transmit
DC1

Load Accum B
with 0"’

1

Clear
Check Sum

Subtract 2
From Bite Count

Load X-Reg
with Address

\

Load Accum B
with 4"’

Decrement
Byte Count

Store Data
at Address

!

Increment
X-Reg

Increment
Check Sum

Yes

Load 1" into
Error

5-64

(Sheet 1 of 4)

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program

No !

No

Load Accum B
with '2"

OVN‘?S
?
No
? /
No

Buffer Full
?

s

Yes

Yes
E?
(

Load Accum B
with ‘3"

Load 1"
into ERROR

1

Load 1"
into ERROR

Load Char
into A-Reg

Mask Out
Parity Bit

Ign

Rubouts

ore

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program;

{Sheet

2 of 4)

5-65

1S
Char Less

Than 9
?

Yes

Sub 7 From
Char

Shift Left
4 Times

Transfer
AtoB

1S

Char Less

Than 9
?

Yes

Sub 7 From
Char

Mask Out Most
4-Sig. Bits

Add B to A

Transfer
AtoB

Store B in
Checksum

RTS

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program
(Sheet 3 of 4)

5-66

Transmit
DC3

Load “PAD”
Characters

Set RTS =1

Time Delay
For Display

All

Yes Characters

Displayed
?

Return to Store Char
Executive in Self Scan

FIGURE 5-3.1.2-1 Flow Diagram for Comm. Program
(Sheet 4 of 4)

5-67

aoosn 2 colon ol R ACI|CE

(KRN 2¥]
n:n

Qe S201 oociio BEod I R-IARDA
gonFo 2023 IR Efil ¥ FIA
oooz0 L (P FIADI ECd iz

gooaIn azan arG
QoL 0 +EMTER FOMER

i1
T R ER
[y

g
—
[as]

(SR e B 2 B

ooiig 0z00 28 B3 CE140 DA R HEEE MAZTER REZETsRFTE=0
golaa 0202 BY S ZTA A C1nn
DU R e = T S LI A 38 TAMTROL WRD
dutd4n 2207 BT 2200 TR A Co1an
Ooisn 0S0A 28 23 LI R a2l
DIien 0200 BY 20832 STA 8 PIAC
gouiFo 0E0F 25 FF LIir A #%F
z 7 B A
- =
o

anisn oo = TTH FIATI
R et DA #EZ
3] i1 = IR

HiN

aal
“.J Iy
I D D s

DU
223 3s INITIALIZE ZEFO
0227 BV
EECE
Gesn =
TE o

%)

i
SN e B KO

e
i

T

Ty o

VO £t 4ad
TR
o
(A1
ot

Wl
n

fand

=l

O
A4S0
g
P

FIGURE 5-3.1.2-2 Assembled Data Comm Program (Sheet 1 of 3)

5-68

aosan o
00sdn
Q0s50
Onsan
GOS7T0
oonss0

o050

o)
D)
L

T

BRA
CES2G I
BED
]
=THA
BRA
LA

b

fa} 'T';

i
T
o
.

LB
Tt o 30

Fea 0 o 7 g 5o o B
LN RS B B s CUPS RS LR

B f‘;‘l I“L,! Tog OB

[R N Y

e B K Mo B SR RN B B

3

Jor SR

13
3o
i
fix}

b

fas)
o vax o+ Do il

= i

f—

CTHEDH ERRCOR

Loont
ot
[ae
AR
i1
el
[
-
Lot
I

=R BEX

20 /7 ERA
(=T LR E
0OBEA SEO0 =
T =

[PO %
i B |
]

XSy
Ty ~f 1T Ja

[}

I

[aa

it

G
Qo710
ovan
TGRS
R A

nuTSn

AR
XXRE

I e

DI

b

()

B
i

SO N S IR

)
Ty s e o T T,
i

b

[}
i

noresd

anyeyi

RN
I N
Y
I O AL Kt

5

i ZTARRET LI
EFEIZ1 LOA
TiMeEz DR
TIMEL DEC
BHE TimeEd
neEC

- B TIMES

1T
4o
Ti o

[k}

T4

7
T T oud

i! :)‘x T 3
n
1

fan}

T
T

“E FE 00 BTG L T R
TEN s T
a0 1 ER TP R sRER
=R Y o 0i HE MEST
L ey 4 Erh OF FROG7AM
BT 2 H
e B
(e =R E

1o THY i
g1

T T T HER

Lt NN

g T T

v

i o}

D

FIGURE 5-3.1.2-2 Assembled Data Comm Program (Sheet 2 of 3)

5-69

a1osa 0202 47
ol os0 G203 47
Q1070 0304 47
g1oz0 02ps 47
d10s0 02D 24 04
01100 a2Dhi e 0O
01110 02DR 20 A4
ai120 G2nc 47

FT
TR
. BR

=3 02
[
=}

IR
4

]
g

01130 4200 24 05 CEEZL0
0140 O2DF 28 O2 =
1150 0ZE1 gEze CEZR20

d11s0 O2E4d
01170 02ES

[}
[gh]
R
n

ok O3 Mo J i

1 k
olilag O2ET i A @3
31130 0zE= IS HOCEIaIn
01z00 02EC a0l RoCCitag LOAD CHAR
21210 02EF 24 F A ETF
aiz20 GzFl 21 7 CHMFP R uETF IGMHORE RUBDITE
Digzn 02FE CF BED CEE000
niZd40 0EFS SELD TE2ER0 LDR B OCCLOG ECHD CHARR

a1zsn
Oizan
gLEs0
g12an

HyE30

AZF B
HZF B
Fa BOC
= ZTA A

LR TG

[

O I N BN s VR B "0 Tt B U R (¥ B 31
|

[
E
H
Doer]
.

W

il
Ti

i = CLE B
Dlz00 0200 2= RTE
o1zl o3l 20 < CEZO0T] y N A Y
Dlzse 0E0T o2t omw = TR e BEEL =
a1z3n 2F ag CESDAD
DiEan an a7 n7 BSTIT T HES

01

ni:

.3
it

£

Poose 00 g

CEZINAN

[RE)

W
Lol
2

.......

o I B T e I X

~d
1
ird

S I ol

Pana I ok IR B 5 o

o
FN
-
]

T ‘Tl et
X
i
i s
U

e e
"
)

X

Glado0 e

"

NS« B AN » » BN
g
im

H1asn 0216 07 e
d1ddan nE1s nF REETEn ' MEEE T 4 BITE

RENR]
=
[o BT ¥

D

01gas0 0
G1d4z0 0
Giad70 0
31430 0
01430
gisdo

o151

)

h
i
-

TR IR]

KR I I I e B O
Ry

-
IE
TH
AT
T

T
RT

1
]

i
L
i
1
i1
1
1
i
1

I
-

[T ¢ e T = T X I K

BYWTECT

ERFOR

01530
1540
UEE

a1S=0

[

an
JREREE]
Gt

“H1

LU i
AR N

]

i
1
i
1
1
1

)

FIGURE 5-3.1.2-2 Assembled Data Comm Program
(Sheet 3 of 3)

5-70

Then the remaining status bits (framing, overrun, and parity error) are checked for an error condition on the
received character. If a framing error condition exists, indicating a possible loss of character synchronization,
the program is terminated. The fact that an overrun or parity error occurred is stored and the program continues
to receive characters. The character is loaded into the A-register of the MPU from the ACIA in line 1200. In
lines 1240 to 1280, the received character is transmitted back to the source. This is accomplished by checking
the status of the transmitter and when empty the character is loaded into the transmitter data register.

The characters stored on tape are in ASCII notation but represent hexadecimal numbers; the
alpha-numeric representation for 0—15 in hexadecimal is 0—9, A—F (10-15). Therefore, the eight bit ASCII
notation must be converted to a four bit binary number (0000—1111). For the ASCII characters 0—9, the four
least significant bits are equivalent to the binary representation 0000—1001. For the ASCII characters A-F,
subtracting 7 from the ASCII character results in the four least significant bits being equivalent to binary
representation 1010-1111. Inlines 1310—1490, ASCII characters are converted to four bit binary numbers and
then two 4-bit numbers are stored in an eight bit register.

5-3.1.3 ACIA to Modem HARDWARE

The MPU system can communicate over the telephone lines to a remote peripheral by utilizing a
modem and an ACIA as shown in Figure 5-3.1.3-1. The modem takes serial digital data and converts it to an
analog signal for transmission over the telephone lines. Incoming data in analog form from the remote modem
is converted to serial digital form by the on-site modem. The ACIA provides the MPU with the ability to control
the handshaking requirements of the modem. The first step requires that the Data Terminal Ready (DTR) input
be “‘low’’ to enable the modem to complete the handshaking. Response by the remote modem to the on-site

modem completes the handshaking and results in a “‘low’” logic level from the Clear to Send (CTS) output of
the modem. After handshaking has been completed, the remote and on-site systems can transmit and receive
data. When communications is lost between the modems, the CTS output returns ‘‘high.”’

In the transmitter portion of the ACIA, the Transmitter Data Register Empty (TxDRE) flag and
associated interrupt (ﬁ(—)_), are enabled when both the CTS and Transmitter Interrupt Enable (TIE) functions
are enabled. In the receiver portion of the ACIA, the Receiver Data Register Full (RxDRF) flag and associated
interrupt M are enabled when both the Data Carrier Detect m and Receiver Interrupt Enable (RIE)
functions are enabled; the low to high transition of the ECEinput with RIE enabled generates an interrupt
(IR_Q) . Since the MC6860 modem does not have a Data Carrier Detect output, the DCD and CTS inputs of the
ACIA can be tied together which results in an interrupt ZIR_Q) being generated when communications is lost.

Used separately, the DCD and CTS inputs of the ACIA allow the use of higher performance
modems. For example, a high-performance modem will transmit on one pair of wires and receive on another
pair referred to as a four-wire modem system. As in the low speed modem system, the MPU, via the ACIA,
generates a DTR and after a time delay, the Eﬁoutput of the high-performance modem goes ‘‘low.’” The
transmitter can start transferring data immediately after CTS goes ‘‘low.”” After the on-site modem receives the
carrier frequency from the remote modem, the DCD output goes ‘‘low’’ and data can be received. The transmit
and receive lines of the modem are completely independent of each other which, for example, allows
transmission to the remote site when the other line is down.

5-3.1.4 ACIA To Modem Software

The program used to receive data from a teletype with the addition of the modem control functions is

5-71

s

3lig ajowuay 01 NN L-€°L°E-G IHNDIA

BRG
MC14411

To ROM, RAM, DIA

Lot

'

N/A

Y

| Enable
Logic

20

Cik.
Gen.

U

E TxC RxC

ACIA
XC6850

R/N iRQ

RTS
Tx Data

Rx Data

DCDCTB

DTR

os

SH

MODEM
XC6860
(Answer Mode)

ANS

RI

RI

DAA

Amp

|

Lim

BPF

AN

L e

IMA

MPU
XC 6800

> To ROM, RAM, PIA

-

Thres-

hold

u ON/DA

used for the following explanation. The local modem is initially enabled by writing a control word into the
ACIA as shown in line 130. This control word sets the RTS output of the ACIA “‘low’” and in turn enables the
Data Terminal Ready (_IS'IT) input of the modem. In lines 210 to 230, the completion of the handshaking
between the remote and local modem (indicated by a ‘‘low’’ on the CTS bit) is checked until established. Also,
during the reception of characters the status of CTS is checked as shown in lines 1010 to 1020 to insure that the
program does not remain in an endless loop if the transmission lines go ‘‘down.’” At the end of the program the
modem is disabled in line 790 by writing a control word into the ACIA to set the RTS output ‘‘high.”” This
immediately terminates transmission from the modem.

To insure that the last character to be transmitted is received at the remote site, two ‘“pad’’ characters
must be inserted between the last character and the control word (_I{T—S = 1) as shown in lines 700—780. This
enables the last character to be completely transmitted prior to disabling the modem.

5-3.2 TAPE CASSETTE SUBSYSTEM

This section describes the design of an MPU based Tape Cassette Subsystem. The scope is limited to
the control of a single transport operated in a bit serial format.

The technique used may be extended to the control of multiple transports, however, this requires
some additional hardware (multiplexers for data lines and either an encoder to encode additional control and
status lines, or half of another PIA). A similar approach may be used when data is transferred in parallel format.
This will require additional data lines (8 lines instead of one). The additional data lines could be bidirectional
PIA lines, programmable to be outputs during write, inputs during read. Note also that if data is transferred in
parallel, the MPU can handle the faster data transfer rates resulting from use of more than one transport. In
multiple transport applications, the system will also require additional lines to monitor tape drive status signals
such as ““‘READY’’ and ““‘BUSY"’ that provide an indication of whehter the selected transport is available or
busy.

In a typical tape subsystem, many functions must be performed, however, only the following basic
routines are described in this section.

(1) Search to a given record.
(2) Stop in an interrecord gap.
(3) Write (Fwd).

(4) Read (Fwd).

(5) Write filemark.

5-73

5-3.2.1 HARDWARE DESCRIPTION
Tape Transport Description

The data recorded on the tape conforms to the A.N.S.I. “‘Specification For Information Inter-
change’’ (X3B1/579 — September 14, 1972). The data recording format is shown in Figure 5-3.2.1-1 below.
A block recording format is used with each data block consisting of: (A) a preamble (1 byte); (B) data (4-256
bytes) including the Cyclic Redundancy Check Character (2 bytes); and a (C) postamble (} byte).

The Tape Transport that was used has an adjustable capstan controlled Read/Write speed which was
set at 15 ips. The search speed was adjusted for an average speed of 100 ips. The pinch roller engagement time
is 30 msec (max). Disengagement time is 20 msec. The tape acceleration time is 20 msec to stabilized speed.
Speed stability is within the A.N.S.I. specifications. Photo-detectors are used for sensing End Of Tape (EOT)
and Beginning Of Tape (BOT). The transport is provided with both a Cassette-In-Place sensor and a
File-Protect sensor (also called a Write-Protect sensor). A single Read/Write head is used which is also used to
write gaps in erase polarity.

Four control lines are provided for the control of tape motion and to select a given transport. These
are:

(1) SELECT/NOT SELECT

(2) STOP/GO

(3) FORWARD/REVERSE

(4) SEARCH/REWIND or READ/WRITE SPEED

Since in the present subsystem only a single tape drive is used, the select line is not used. The interfaces
between the PIA, the tape drive, and the control electronics are shown in Figure 5-3.2.1-2.

800 BPI _.I ‘4_
@ :lnterblock Gap @ :Initial Gap @

— —A‘——-— Data Block ~————————pt— -~
1.45 mm Nom. 7 P 33 mm Min.
(0.057 in.) (0.3 i . (1.3 in. Min.)
</ In. Min. Postamble Data Portion Preamble
—— ot — — — --
8 Bits 32 to 2064 Bits 8 Bits
|

S~ 1
284 £ 037t

£ - 0.51 mm -
£ Y (0.0146 10 Track 2 £ <
1) © 0.020in.) € o
Q S} w 9
\ = — - - - D o _9

o Y oo 29
£ < RS
= - 0.37 to 5 B
€ o 05T mm 6 =
£l 5 (0014610 Track 1 8
83 o 0.020 in.) l

——3@» Forward Tape Motion L
Bot Marker
NOTES:
The last 2 characters (16 bits) of the data
1 Tape is shown with oxide side out. portion is the Cyclic Redundancy Check (CRC).
Tape is fully saturated in the erase direction @ Shown without phase flux reversals that may
in the interblock gap and the initial gap. exist between data bits.

FIGURE 5-3.2.1-1. Recording Format 800 BPI

5-74

PIA Interface
cA1 p—— Clock (lo to hi) ol —
CA2 }=—— Strobe (rd, wrt handshake — hi to lo} -
PAQ p— Read Data —tl—
PA1 CRC Error = 1 —
PA2 b—— Notin Sync =0 —l— Ready
PA3 }——Ready = 1 el — < Cas 1
PA4 jee— Cassette in Place = 1 el — __ln_
PAS |——Wrt Protected = 0 —— "P—I'v;%ﬂ
PA6 Available = 0 ~al)— Read/Write Protect. Tape
Drive
EOT-B = and
PA7 [——EOT-BOT Suen = 1 - e [
PIA Electronics

PBO = Write Data — EOT/BOT.
PB1 |——write = 0, Read = 1 -
PB2 p—=—Erase = 1, Rd Enable = 0 —- Data
PB3 ——CRC Reset = 1, CRC Enable = 0 —

Speed
PB4 |——.Speeds RD-WRT = 0, Search = 1 —
PB5 jm— «Directions Fwd = 1, Rev = 0 > Direction
PB6 |——CRC Shift = 0, Wrt Data Enab. = 1 -] '

Motion
PB7 ’—sMotion: Stop =1, Go =0 A
CB1 p—sIntrpt Dvfl-Undfl (lo to hi) -
cB2 r__ +Intrpt EOT-BOT Timeout (lo to hi)) —

—_—

FIGURE 5-3.2.1-2. PIA, Tape Drive and Read/Write Control Electronics Interface

READ/WRITE Electronics Description

The data to be recorded on the tape is presented to the tape transport in Non-Return-to-Zero (NRZ)
format but is recorded in Phase Encoded (PE) format. The data conversion is performed by the logic shown in
Figure 5-3.2.1-3. The timing diagram for the conversion from NRZ to PE format is shown in Figure 5-3.2.1-4.

Write data (or CRC Data) is gated through a data selector to flip-flop FF1 which provides a one-bit
storage. This storage is necessary because in P.E. format, a phase transition is required whenever the next data
bit is the same as the current bit. The exclusive-OR gate compares the next bit with the current bit, and provides
ahigh level to FF2 at phase time whenever the two are equal. The 12KHz clock is low at data time, and provides
a high level to FF2 input at data time. Thus, FF2 always toggles at data time and also toggles at phase time if the
next data bit is the same as the current data bit. '

The Write data is also sent through a Cyclic Redundancy Check Character Generator (MC8503
CRCC Generator). The CRCC is appended to the data block and the CRC data passes through the same circuitry
as the Write data for conversion to the P.E. format for recording. The timing for this operation is also detailed in
Figure 5-3.2.1-4. Both the preamble and the postamble are 8-bit patterns of alternating ones and zeros
(01010101-M.8S. bit). (This can be used to establish the data rate during data recovery since there is a single
transition per bit). During the Write operation, the CRC Generator is enabled after the preamble data has been
written. The CRC Generator remains enabled throughout the data block. At the end of the data block, the CRC
Data is shifted out of the generator into the Write circuitry.

5-75

The read-write head is switched to carry the write current from FF2, via three-state gates enabled by
the Read-Write Line (PB1). The series resistors R adjust the write current to a nominal value of 4 ma.
During a Read operation (Ref. Figures 5-3.2.1-3 and 5-3.2.1-5), the write circuits are disabled, and
one end of the read head is switched to ground via a three-state gate. The other end passes the read signals onto
the read circuits which amplify and convert the read signals to logic levels in P.E. format. The P.E. read data
goes to the Phase Locked Loop data recovery circuit which decodes the data and clock signals. The P.E. data
also goes to a monostable multivibrator which is used to detect gaps during a search operation.

PAT7

PB7

PB2

PBO

PAOQ

PB3

PAT

CA1
PAB

CA2

T

Overflow/Underflow

Not-in-Sync

Error
FF

> Tape Drive

L.

@ Stop/Go

=

Overflow/Underflow Error
Not-in-Sync

EOT
BOT BOT
Osc. g EOT
From
> Search (From Auto/ 12kHz 24 kHz ‘F e Drive
Man. Selector)
Stop/Go
» (B stop/Go
Erase/Rd-Wrt
Enable Read Enable
Data Selector #1
CRC shift [: aa
a R
Write Data 3 N a Read
v Ckts.
Rd-Wrt
b C FF1 C FF2 Head
CRC Data >_?_A/F\%A'—‘
K K >
Read/Write Do—q _E___ R
'_,:D;"
Protected
NRZ Data
P.L.L.
l Data Recovery
Clock
Read Data Data Selector #2]
Rd/Wrt or Search/Rewind Speed {>c
Gap
Detect F—-—d—-—
S.S.
SDI
CRC Enable SR
R sSpPO —ud
MC8503 Clock
CRC Error
o Az CRCCGen. o Selector
2
Fwd/Rev ¥
») +
>
Clock (Read/Write)
Available Cable Interconnects
Strobe °<lf Drive
D Available from Ground

———— To Tape Drive

FIGURE 5-3.2.1-3: Read-Write Circuitry

5-76

Clock
24 kHz 4

Clock
12 k Hz -

Erase

Data Time

Strobe S||l|||H||||||||’|'||

CRC

Enable

Write Data
N.R.Z. (PBO)

CRC Gen.

[1 ;_-___‘___..H.'_ﬁ—r__
L'-— Preamble ‘—‘l"— Write Data ———|<-b‘-4— Postamble -—I

CRC Data

FF #1
Qutput

N\
g I ey BN L_.1__{;_.__f'_'

]
EF #2 [{
Output
L M o
|

CRC
Shift

Stop/Go _—l_{/
L)

{
R |
_ shift CRC

FIGURE 5-3.2.1-4. Write Operation Timing and Format Conversion

Recovered Clock

P2 Ty I 1 o Yy Ty PPy T P

g

Strobe
CRC Enable
L . crc Reg. Reset
CRC Error
Check All Zeros
(No Error)
Read Data
(PAO) | S— Ly | I - i
0 1 1 1 o] 0
|—— Preamble —-—|-——— Data ‘—— Postamble ——'
\CHC Data

FIGURE 5-3.2.1-5. Read Operation Timing

577

The Read data goes to the PIA directly (PAO) while the recovered clock goes to the PIA (CA1) via
the clock selector circuit. The clock selector selects between the read and write clock during a read or write
operation. During a search operation, the gap-detector retriggerable single shot output is substituted for the
read-write clock.

During a Read operation, the CRC Generator is turned on after the preamble has been read and
remains on throughout the data block, including the appended CRC character. At the end of the CRC character
the CRC Error line is examined to see if it is low (all zeros line out of the MC8503, CRC Generator). If the data
has been read correctly, the line will be low. (For additional details on the use of the CRCC Generator see the
Applications Section of the MC8503 Data Sheet.)

An UNDERFLOW-OVERFLOW Error interrupt is provided in order to abort the current operation
in the event of such an error. The interrupt signal is generated when the MPU fails to either write or read data
after every clock pulse during the write or read operation. The error flip-flop output should always be high. The
normal response to a clock pulse on the clock line (CA1) is to provide a strobe by reading the data and clearing
the flag set by the clock pulse.

Status Signals from Transport and Electronics

The tape transport contains two microswitches, one to sense the presence of a tape cassette in place,
and the other to see if the write protect tab is removed. If the tab is removed, the tape is ‘‘ Write-protected’’, and
hardware logic disables the write circuitry (the three-state gates at the output of the write flip-flop are turned off,
and the clock to the write flip-flop is gated off.) These two signals are available at the PIA interface, and the
MPU checks them prior to issuing any ‘‘motion’’ commands.

_ The Available signal from the electronics and tape drive is essentially a ground-loop which checks
whether all of the cables interconnecting the PIA to the electronics and drive are in place. If a cable is
disconnected, the group loop is not completed and a high logic level will be present at the PIA interface.

The EOT/BOT sensor on the tape drive provides a transition when the EOT or BOT is seen. During a
Read or Write Operation, this transition triggers a single shot whose output appears at CB2 and PA7 of the PIA
(Figure 5-3.2.1-6). The single-shot period is set to a time such that one complete record may be read or written.
If the single shot times out, then it will generate an interrupt to the MPU system via the PIA, and will stop the
tape transport. This hardware controlled stop is a safety feature, and prevents damage to the tape cassette if
there is system failure. Normally, the MPU examines the EOT/BOT line at the end of each record being read or
written. If the EOT/BOT transition has occurred, the MPU will stop the transport (and this will reset the
single-shot). During a Search Operation if EOT or BOT is seen an interrupt is generated to the PIA
immediately. Note that the EOT/BOT signal is used both as a status signal (on PA7) and as an interrupt signal
(CB2). This allows the MPU to read the EOT/BOT status before system operation is interrupted. If tape is at
Clear Leader, then PA7 will remain low when the speed select line (PB4) is at a Search Speed (high).

The Phase-Locked-Loop (PLL) Data Recovery circuit is shown in Figure 5-3.2.1-7. The first PE
transition after Read is enabled sets the First Bit Detector flip-flop, FF2. P.E. Data is clocked into a two bit shift
register (FF3 and FF4) by the PLL clock (Fout). Each time there is a transition on the P.E. data line, a pulse, one
VCM period in duration is generated from the exclusive OR gate tied to the outputs of the two bit shift register.
The VCM also clocks a window counter whose carry-out output (TC = 1 during count $F) generates the read
clock which clocks the Read Data to the PIA (PAO). The time during which the Q3 output of the counter is high
(count 8 through $F) is defined as the data window (or data time). If a P.E. transition occurs during the data
window, it is gated through to the Preset Enable (PE) input of the counter, and presets the counter to the middle

5-78

EOT or BOT

Clear Leader

+V

—
—_/

EOT

BOT \

From }_1)

Tape >——4¢

Drive

g

Auto/Manual
Switch

Stop/Go — Xq Zy
Manual Speed Rd-Wrt/Search— X4
Fwd/Rev —Jx, 41

Auto

(PB7) — Stop/Go— Yg 22
?IOAW\ (PB4) Speed Rd-Wrt/Search-| Y4
(PB5) Fwd/Rev—] v,

cB2

i
|

— Start/Stop Signal
to Drive
(Stop = 1)

g D
I S S N
— C o—
S.8. Hardware
St
c adu |
Clr
w——Dck— -(>cr——

Delay 4

Inverters
A Stop/Go

Speed (Rw-Search)

Direction (Fwd/Rev)

Auto/Manual

Multiplexer

5-79

FIGURE 5-3.2.1-6. EOT/BOT Circuitry with Hardware Safety Feature

g

Read
e - Data In NRz
Read Ckts. D —— Read Data to
______________ .I PIA (PAO)
| ’ Read
! | L —— C Data
| P.E. Data F.F.
D] D D ~/
Positive and FF1 | FF3 FF4 g
Negative Pulses
from Read c : c — €
Comparator Exclusive OR
| L T Output
_________ — |
FF2
First Bit c
Detector F.F. — g
Read i
Enable
Read Clock
To Clock Selector
PE Pg Py Py Py
c MC9316 TC L |
| —Enable CRC
MR CET CEP Q3 | —Read |
[1 |
! |
) ! |
Wrt. } 1insr Window |
Osc. " Counter i T
(12 kHz) 44; | | Not in Sync
|
l
| :
|
| |
| | Not-in-Sync
i { Circuit
r -{--"-"1t"t--"-"-"""—"""—-"~-~"~-"~"~"~"~"~*"¥”*"”"¥”"¥7”"”"¥7*¥"¥=” *" 7=”" -/ -~" -/ -, -/ - A
| MC4044 MC4024 Fout = 16 x Data Rate (192 kHz) |
| Active I
| R Filter |
I vem |
| Det. |
1 |
| |
| |
: |
g |
|I g 1 |
| | |
i I
i PE Pp Py Py P3 1
|
|' ’—Dc c MC9316 TC |
Prescaler
| MR CET CEP |
! |
| l
e ase-Locked-Loop
| 1 Phase-Locked-L |
f !
| |
e e e il

FIGURE 5-3.2.1-7: Phase Locked Loop
Data Recovery

5-80

of the data window (count of $C). The timing diagram in Figure 5-3.2.1-8 shows nominal system operation
after the preamble has been read and the system is in exact lock. If the P.E. transitions occur anywhere within
the ‘‘data window’’, the P.L.L. system will track them and adjust its output frequency accordingly. P.E.
transitions during window-counter counts of 0 to 7 will be gated off because the Q3 output will be low. Thus,
only the data transitions affect the P.L.L. system frequency. For additional details of P.L..L. data recovery, see
Section 5.4 (Floppy Disk). Additional details on the design of the P.L.L. system are described in Motorola’s
Phase Locked-Loop Systems Data Book and Application Note AN-535, ‘‘Phase Locked Loop Design Funda-
mentals.”” These publications may be obtained by writing to the Literature Distribution Center, Motorola
Semiconductor Products, Inc., P. O. Box 20912, Phoenix, Arizona 85036.

The Not-In-Sync circuit checks to see if a data transition occurred during the data window. (The
circuit is enabled after the preamble has been read, and remains enabled throughout the data record via the
Enable CRC line.) If there is no P.E. transition within the ‘‘data window’’, the Not-In-Sync latch is set. The
Not-In-Sync signal is ORed with the Overflow/Underflow signal, and generates an interrupt to the PIA (on line
CB1).

An Auto/Manual multiplexer (see Figure 5-3.2.1-6) is used to allow tape motion operation either
under MPU or manual control. Manual operation is useful during program and system debugging.

A complete logic diagram of the tape-cassette Read-Write and Control circuitry that was used is
shown in Figure 5-3.2.1-9.

VEM Frequency MMM UMMM MM MU U U U U UL UL U uUnLnuIn L L e

Data Transition Phase Transition No Phase
P.E. Data m ¥ Transition fr——r

Read Data in

to Rd. Data F.F. ___l@ T =—— == o ~e 0"
Exclusive it 1 I | | g TG
OR Output yi
1st Bit —h —. Preamble 1st Bit
Window lalslcIDlEIF|o]11213l4l5l6l7]|8kolAalBlciDlElFjol1i213)4als]6l7)8lolAalBlC]
z Data Time
Q3 Output of] L I
Window Counter W phase Time js#——Data Window —am]
Preset Input to
Window Counter 1 1 |
Carry-Out
Window Counter m
(Ref. Input —I 1
to PLL)
Prescaler
Carry-Out M
(Feedback L
Input to PLL)
Rd Data
NRZ to PIA —_— siqee
- 1 * 1

FIGURE 5-3.2.1-8. Read Data Recovery Timing (After Preamble, with Loop in Lock)

5-81

{PAT7) -l

_D indicates signals to sheet 2

EOT
g D.. indicates signals from sheet 2
BOT -
+5
b 50 K 2)
+5
20 uF (3)
1N914
4
@ ° ¢
MC8602
(CB2) ‘_——(@ 9 300ms
a
2k R Ca (4)
T I (5)
+5 >
Man (6)
o Auto/Manual (0°1) T AAA-O o (7)
+5
Auto .5 — (8)
— Stop/Go (1/0) A
(pB7) ">~ 4 X0
RW/Srch Yo zo
(PB4) g o) (9)
Fwd/Rev (1/0) n =
(PBS) g x2 22
Y2
X3 23—
+5 +5 Y3
4)
Stop Srch g I
GAP —
= Ge ‘= Rw Glitch =
Manusl Mc74157
+5 +5
Fwd/Rev -t
RW/srch g
Stop/Go =l
CRC
(PB6) A
Shift -l
g [
! ¢
<Pso>w T wceses |
Data SR SDL
Cas. Rd. Data «jg C sSDoj =4
AZR X Y 2
(PAO)‘-—————J |_°< l_
Wrt/Read(0/1)
(PB1) == At Transport e
+5
can 10K Clock H
A1) -t Low R I
At . CRC Error(1) ow Read L
Wrt. Protect =jim I +5
(PAS) ey Available
(PAB)
CRC Enable (0) (10
(PB3) =i
RD/WRT Strobe
(CA2) =g DS
a 7
CR F
Erase/Rd Enable (1/0) |
(PB2) g Jl>'.> *® DN
Overrun/Underflow
(CB1) e @_G (n
Notin Sync (1)
(PA2) - (12)

FIGURE 5-3.2.1-9: Cassette Serial Read/Write and Control Logic (Sheet 1 of 3)

5-82

(2)

(3)

(4)
(s)

(6)

MC3001
Typical

MC7479 b
s

g o a

(7)

(8)

ol

+5

47K

Gap Glitch

For Manual
Testing Only

.02 uF
MC8602

7 1

l s 5 s
Sal—eo®e [}
— b c p :[:D c

A R
R

}—————————@» Cassette Read Data

T
[=
=
PEPQO P1P2P3 Q3
g Cet TC

CEP mMce316

Cix

MR

Vv
1600pf
B 4 MC4044 1K |'| h
(= U 5KF 48K <
A ve o4
1K
vCM
v - ro e
| o P
(10) — PE OT I rT'o MC4024
+5 O=——=AAAs CET POP1P2P3
CEP mco3ie =
Tc Clk
MR
11
(12)

FIGURE 5-3.2.1-9: Cassette Serial Read/Write and Control Logic (Sheet 2 of 3)

5-83

36K 36K

10K

15pf

MLM301

1K
%MC3062 Signetic
F D> %:MC3062 74126 3N170
A 1
. .Y
s S
L% J ca
c
c —OJ C —O] C
K o
Kg
[+
e > >0
+24
+5 6200p1
I..ll_.l oy e
S S
ve D Q O Q
2K 1K o —l
Osc. c b c 1 10 UF

MC4024

g

>~ indicates signals from sheet 1

indicates signals to sheet 1

>

g

2N3904

12082

6.2V Zener

+5

2K

O

5182

g >3

M

MC1514

FIGURE 5-3.2.1-9: Cassette Serial Read/Write and Control Logic (Sheet 3 of 3)

5-84

Read

Read/Write
(PBU—r{’E Pinch Roller

’ Disengages

s Stop Stop
tart Fwd G
Motion (PB7) 2 Dl_’inch Ro_lll_.er
Pinch Roller Engages » isengage Time
Rd Enable —-—-‘ r_-“_
(PB2) Pinch Roll
er l‘ﬁ
Engagement +|"—- Read Postamble
Tape Accin,
Time l\‘ Tape up to Speed Check for Data(Accu)racy
CRC Error (PA1 \
CRC Enable d

(PB3) _’l j "_

Data Recovery Circuits Synchronized
Read |

Preamble

Read or* lﬁ[é?]]]ﬂ][/]ZZZfZZZ/ZﬂZD][/]ZZ/ZZ/ZZ][H]Z[/ﬂ

(PAO)
Valid Read Data
to MPU

Pinch Roller Engage/Disengage Time = 30 msec
. Tape Acceleration Time = 20 msec
.+ Tape up to Speed 50 msec after start motion command

FIGURE 5-3.2.1-10. Read Operation Sequence Timing

For MPU controlled operation, the Auto/Manual switch is placed in the Auto position. Tape Motion
and Read/Write functions are then controlled via the PIA interface. For example, if it is desired that the tape be
moved forward at Read/Write speed, the interface at the PIA must be set to:

Data Reg. B 7 6 5 4 3 2 1 0
0 X 1 0 X X X X
GO FWD RD/WRT
where X denotes a ‘‘don’t care’’ condition
e.g. 0 0 1 0 0 0 0 0

If the binary word 00100000 is present at the interface, then the tape will move in a forward direction
at Read/Write speed. Similarly if the binary word 00000000 is present at PB0-7, then the tape will move in a
reverse direction at Read/Write Speed.

Examples of other basic tape motion commands are shown below:

Operation Required PIA Word Example HEX
7 6 54 3 2 1 0 PB 7 6 5 4 3 2 1 0 EQUIV
STOP I X X X X X X X 1 0 0000 0O 80
Motion-Fwd-RD.WRT.SPD. 0 X1 0 X X X X 0 01 01 01 O 2A
Motion-Rev-RD.WRT.SPD. 0 X0 0 X X X X 0 0 001 01O 0A
Motion-Fwd-SEARCH SPD. 0 X1 1 X X X X 0 01 11 0 1 0 3A
Motion-Rev-SEARCH SPD. 0 X 0 1 X X X X 0 0011 010 1A

For a typical read operation, the MPU issues a sequence of commands to the circuitry via the PIA.
The sequence may be depicted by the timing diagram of Figure 5-3.2.1-10. The tape motion command initiates
motion in the forward direction at Read/Write Speed. The MPU then allows sufficient time for the pinch roller

5-85

to engage the capstan and for the tape to come up to stable Read/Write speed. The MPU next reads the preamble
(by counting eight P.E. transitions) and then enables the CRC generator. It is assumed that by this time the
P.L.L. read circuitry is in lock and has begun to successfully track the data rate variations. The MPU begins to
transfer data in bit serial form to the Read/Write Data Buffer in the MPU system. If any read errors occur due to
loss of synchronization in the P.L.L. circuits or due to overflow, the hardwired logic generates an interrupt to
the MPU system via the PIA.

In the description of the above sequence, only the PIA B side interface operation has been discussed.
Typically, the MPU performs other operations, such as initializing the PIA so that it can communicate with the
read/write and control electronics; checking to see if the tape drive is available for the desired operation;
enabling the EOT/BOT and Read Error interrupts; and using an Interval Timer to generate the required delays
for allowing the tape to come up to speed. These additional operational details are discussed within the software
documentation.

The Write operation sequence is illustrated in Figure 5-3.2.1-11. Tape motion is started in the Erase
mode, and a start-gap is written. The Start-Gap duration is slightly longer than the total time it takes for pinch
roller engagement and for the tape to come up to stable speed. The MPU then disables the Erase mode and
enables write data to be gated to the P.E. write circuits. After the preamble word has been transferred, the CRC
is enabled (so that it accumulates the checksum). The CRC remains enabled till the data from the MPU has been
transferred. Next, the CRC is shifted out to the Write circuitry followed by the postamble word from the MPU.
The MPU then issues a stop command and allows the stop-gap to be written by keeping the write current on until
the tape stops. At this time, the tape drive is placed in a Read-Forward Mode (PB1 = 1;PB5 = 1; PB7 = 1) if no
other records are to be written.

Start, Stop, and Interblock Gaps

An Interblock gap is defined as the distance between two successive blocks of data, and it is
specified by the A.N.S.I. specification, referenced earlier, to have a nominal length of 20.3 mm (0.8 in) with a
minimum length of 17.8 mm (0.7 in) and a maximum length of 500 mm (19.7 in). Any gap in excess of 500 mm
(19.7 in) is considered to be end of data.

From a study of the tape drive specifications, a tape motion velocity profile may be generated (see
Figure 5-3.2.1-12) and used to calculate Start, Stop, and Interblock gap lengths. With reference to Figure 8,
note that tape motion begins 30 msec after the motion command is issued and reaches stable speed 20 msec

Read

Read/Write == Write
(PB1) Stop
Motion | Go —
(PB7)
1l Tape up 1
Write Data , to Speed '
Enable/CRC Shift 1 1 .
(Pee) Startgap —l Shift jeg— | i
Erased : CRC H !
Erase Tape | ' 1 v
(PB2) : . T + Erased
CRC Enabl ' : T soonee
nable 41-_-—.——'
(PB3) L ! ! ! fopgee
Wit Bata ———— [T T\I TTLINLTATT T NTONTR AT, e
. Write Data — -F!-EZ-I {
h \ MPU to Tape 1 C | i
i
Preamble Data ! _ Postamble

FIGURE 5-3.2.1-11. Write Operation Sequence

5-86

later. This is the Startgap delay. Since the tape is actually moving for only the last 20 msec of the start gap delay,
the Physical Startgap corresponds to the length of tape moved during the Startgap delay. If desired, a longer
Startgap may be written by continuing in Erase even after stable tape speed has been reached. Similarly, the
Physical Stopgap is the length of tape moved after the Stop command and until tape motion actually stops. If
desired, a longer Stop-Gap may be written by enabling Erase at the end of data, prior to issuing a Stop
command.

Two operations are performed at Search speed: (1) Rewinding tape; (2) Searching to a given record
on tape.

Typically, tape is rewound at Search speed until the BOT marker is seen and then moved forward at
Read/Write speed to the Load Point. The Load Point (Figure 5-3.2.1-13) is the logical beginning of tape and
establishes the reference point from which record counts are kept. The Load Point is located in the Initial Gap
between the BOT marker hole and the first record to be written or read.

Note that when rewinding tape to Load Point, the BOT marker is encountered twice, and this must
be accounted for in the MPU control program for this operation.

Startgap End of .
Set by MPU ———————gi Data Stop Motion
(50 Msec) omman Tape
Speed
Time
Motion
Start Starts
Motion
Command ta=0 Tape Motion
’ 3 Stops
ty =20 Msec
ty) — g 12 Msec — g
Tape Pinch Roll
Acceleration I'Dnicsen : eer
Pinch Roller Time to ngage.
i 90% Speed Time
Engage. Time Stable 90% Drop
(30 Msec) |a@——— Total Time to ——8 Read/Write ——®1 'in Speed
s:g%‘?wiz:',ed Speed (15 ips)
#—— Physical —— o k £hysical S
Startgap pgap
(Tape Motion)
Approximate L.ength of Startgap = ; axt% oty tvsts where
a = tape acceleration = v,/t;

ty = time of acceleration (8 Msec)
_1 .9 x 15 ips 3\2 vy = tape speed at end of acceleration (13.5 ips)
T2 x(8 x 107)x (8 x10 > ty = time to final speed after acceleration (12 Msec)
vy = final speed = 15 ips

f -3
+15ipsx 12 x 10 _
[vq =90% va]

= 0.054 + 0.18 t3 = additional time after stable speed = 0
= 0.23 inches
Approximate Length of Stopgap = Vo X1y + Startgap length (when tg = 0) ty = pinch roller disengagement time = 20 Msec

= 15 ips x 20 Msec + 0.23
= 0.30 + 0.23
= 0.53 inches

Interblock Gap Length = Startgap Length + Stopgap Length
=0.53 + 0.23
= 0.76 inches

FIGURE 5-3.2.1-12: Start/Stop and Interblock Gaps Derived from the Tape Velocity Profile

5-87

To search to a given record, the MPU counts the interrecord gaps while moving the tape at Search
Speed. Since the tape is moving at a much faster speed during Search, it is necessary to slow down the tape to a
Read/Write speed prior to getting to the desired record to enable the tape to stop within the required Interrecord
gap. For example, to read or write the 15th record, tape is moved at search speed until the 13th Inter-Record
Gap (I.R.G.) and then switched to a Read/Write speed until the 14th I.R.G. is reached before a stop command
is issued. (It may not be necessary to stop the tape in the I.R.G. prior to reading or writing the 15th record. The
two operations may be performed sequentially without issuing the stop command.)

5-3.2.2 SOFTWARE DESCRIPTION

The Tape Cassette Subsystem uses a 256-byte Data Buffer for storage of Read and Write data and 20
bytes of storage for flags and variables. The variables determine the direction and speed of tape motion, the
number of records being written, and other similar directive commands to the subsystem.

At Power-On, the Tape PIA is initialized so that the A-side is defined as inputs and the B-side is
defined as outputs, and the tape is moved to the Load Point. An Interval Timer is used to generate the delays
needed during tape operations.

Move to Load Point

When a tape cassette is inserted in the Drive, it may be at Clear Leader either on the BOT or EOT
end, or it may be in the ‘‘Middle’’ of the tape between the BOT and EOT markers. A number of different
schemes may be used to move the tape to the Load Point. The method used may be either completely automatic
or require some operator intervention. The Rewind to Load Point operation described here assumes that the tape
has, at some prior time, been advanced past the BOT marker and it is desired to rewind the tape to the Load
Point. (This operation is distinguished from the Load Forward operation where the tape has been rewound to
Clear Leader and needs to be moved forward to the Load Point. The Load Forward operation requires that the
tape be moved forward until the BOT is seen and then advanced past the BOT to the Load Point. To enable the
MPU to determine if the tape has been rewound to clear leader, where both EOT and BOT sensors will be
triggered, it may be desirable to bring the EOT and BOT lines as separate inputs to the PIA interface. It is also
possible to generate a Clear Leader status signal from the EOT and BOT sensors.) The flow chart for the System
Integration of the Rewind to Load Point operation is shown in Figure 5-3.2.2-1. Additional details are shown in
the Flow Chart and Assembly Listing of Figures 5-3.2.2-2 and 5-3.2.2-3, respectively.

BOT LOAD POINT
Marker
Hole

Oxide Coated Tape

" Jh
f/<§ : E /|||||||||| RN ENEN }”,
Clea/r M‘irﬁ;:ﬁ@aap Rl;i:r::d_.' t l‘-——sﬂ‘:‘;%';g _.,' K] I’

Leader ——————» Forward First nd
Tape Motion Interrecord I.R.G.
Gap (1.R.G.)

FIGURE 5-3.2.1-13. Load Point

5-88

EXECUTIVE PROGRAM

Call Rewind to
Load Point Subroutine
("TKRELP")

Y

“TKRELP"”

Rewind Tape

TAPE DRIVERS

Arm for BOT
Interrupt

Arm Timer and Counter
to Interrupt if Rewind
Takes too Long

YES

Execute
Task

Interrupt

Complete
?

Rewind
to Load
Point

L

Normal
Exit

Rewind
to Load
Point
Aborted
?

Alert Operator

Go to Tape Error
Processing

[}

~

Return

S

I

Timer Interrupt
when Rewinding
to BOT

BOT Interrupt
when Rewinding
to BOT

i

Move Forward
at R/W Speed

|

Arm Timer to

Abort Operation
and Stop Tape

Restart Timer

Return from
interrupt

Interrupt if
BOT is Not
Decrement Timer Sensed Soon
Extension Counter Enough
Time
Exhausted
YES

Arm Timer to
Interrupt when
Tape has Reached
Load Point

Return from
Interrupt

Ime,,upt

1

Abort Operation
and Stop Tape

I

Adjust Stack
Pointer to Return
1o Executive

Return from
1st Interrupt

FIGURE 5-3.2.2-1: System Integration of
Rewind to Load Point

5-89

~

Timer Interrupt
when Moving Forward
to Load Point

Set Rewind to
Load Point
Complete OP Flag

Abort Operation

e

Stop Tape

Return from
Interrupt

Write Routine

The Write Routine consists of three subroutines, TKWRT1, TKWRT2, and TKWRTS8. TKWRT1 is
used to write the Startgap, TKWRT?2 is used to write one complete record (Preamble, Data, CRCC, and
Postamble), and TKWRTS is used to write the Stopgap. If more than one record is to be written, tape motion is
not stopped in the Interrecord Gaps.

The Executive Program determines the ending address of the Data Buffer and stores the address in
the end address buffer TKDATA.

There are three possible sources of Interrupts during the execution of the Write program. They are:
(1) Underflow Interrupt, (2) EOT Interrupt, and (3) Interval Timer Interrupt. The Underflow Interrupt occurs if
the MPU does not provide the next Data Bit when it is requested by the Write Clock transition on the CAl
Interrupt input to the PIA. The operation will then be aborted by the MPU. The EOT interrupt should not
normally occur during the Write operation since the EOT single-shot period is set to a time greater than the
length of one record. The hardware design is such than even if an EOT transition is seen on starting Write
motion, there is enough time to complete that record before being interrupted by the EOT single-shot. The
MPU, via the Executive Program, checks if EOT was seen and alerts the operator to insert a new tape cassette
into the drive when necesary. If no Write Clock is present, then the Write Operation is aborted after a time
slightly longer than the length of one record. This results in one record being erased. It may be desirable to set a
shorter time period (e.g., a time equal to two bit times or 166.6 milliseconds) to abort the Write operation. The
details of the Write Operation are shown in the Flow Charts of Figures 5-3.2.2-4 and 5-3.2.2-5 and in the
accompanying Assembly Listing of Figure 5-3.2.2-6.

Read Forward Routine

The Read Forward Routine consists of four subroutines: TKRD00,TKRD02, TKRDO09, and
TKRDST. TKRDOO is used to check tape status and to bring the tape up to speed if the status is good. The Tape
Status check consists of checking for Tape Available, Ready, Cassette in Place, In Sync, EOT Seen, and CRCC
Error. Whenever the tape is stopped, the hardware sets the In Sync and CRCC Error status bits to a good status.
This allows a single Read Status Check subroutine, TKRDST, to be used both while the tape is stopped and
while it is in motion. TKRDO?2 is the basic Read Routine which reads the Data portion of a record including the
two bytes of CRCC. (Data is transferred to the Read Data Buffer in serial format). The CRCC is checked at the
end of the Data portion, and appropriate operation codes are set to inform the Executive of the operation status.
TKRDO9 is used to stop the tape motion and store ending status.

The details of the Read operation are described in the Flow Chart and Assembly Listing of Figures
5-3.2.2-7 and 5-3.2.2-8, respectively. There are three possible sources of Interrupts during the execution of the
Read program. They are: (1) Overflow Interrupt, (2) EOT Interrupt, and (3) Interval Timer Interrupt. The
Overflow interrupt occurs if the MPU does not read the next Data Bit when its presence is indicated by the Read
Clock transition on the CAl Interrupt input to the PIA. The operation will then be aborted by the Overflow
Interrupt. The EOT interrupt should not normally occur during the Read operation since the EOT single-shot
period is set to a time greater than the length of one record. This implies that even if an EOT transition is seen on
starting Read motion, there is enough time to complete that record before being interrupted by the EOT
single-shot. If no Read Clock is present, then the Read Operation is aborted after a time corresponding
approximately to the length of one record.

590

Begin Rewind
to L.oad Point

Interval
Timer
Interrupt
for 40 Sec
Delay Routine

TKRLP 1

“TKRELP"

Store Operation
Code

Rewind Tape
(Go Backward)
at Search Speed

Set Delay Counter
for 40 Sec

Set Interval Timer
Interrupt Vector for
Delay Routine

.

—
‘TKRLP 1"

Preload Abort
Operation Code

Call 'TKSTAT”

NO

Status Checked
- - = a. Available
b. Cassette in Place

c. Ready

Decrement
Delay Counter

TKRLP 2

TKRLP 7

Store OP Flag

Restart Interval Timer
for 0.99 Sec

Stop

Tape

FIGURE 5-3.2.2-2: Move to Load Point Flow Chart (Sheet 1 of 2)

591

Move Forward
to Load Point

TKRLP 3

<z— BOT Interrupt

Save Stack Pointer
for Error Interrupt
Return Pointer

Move Tape Forward
at R/W Speed

Set Move Forward
OP Flag

Disable BOT
interrupt

Arm for 0.99 Sec Delay
and Set Interval Timer
Interrupt Vector for
Error Abort Routine

I

Clear Interrupt
Mask

TKRLP 4

Arm for 1 Sec Delay

Interrupt Vector for
Stop at Load Point

and Arm Interval Timer

Interva

Mov
to

Stop at Load
Point Routine

f Timer

tnterrupt when

ing Forward
Load Point

TKRLP 6

RT1

Load

OP Code

Abort

Restor

Pointer

e Stack

TKRLP 7

Store OP

Fl

ag

Stop

Tape

RTS

TKRLP 5

Preload Error
OP Code

Call “TKSTAT”

Preload Rewind to
Load Point Complete
OP Code

-t

Interval Timer
Interrupt for
L.oad Point Delay

TKRLP 7

Store OP Code

Stop Tape

FIGURE 5-3.2.2-2: Move to Load Point Flow Chart (Sheet 2 of 2)

592

agooiln
oonzn
(G XY

D00En
ooian
o110
o010

anida
nolsn
anisn
noivFo
notlsn
BRI
nozin
po2cn
o0z40

Nassn

anzin
onzsn
DO320
noz40

aozvn
a0zs0
noz3n
oognn

ood420
oo4:z0
o044
00450

L Yl
ao4s0
o040
aosnng
oos10
aosz0

HAM TERELF

OFT =
+ REY 0.6 AZ OF 1-2-75

+ .
«+REMIND TO LORD-POIMT ZUEROUTIMESeIMNTEFT-DIRIVEMH+e

THIEZ ZUEROUTINE MOWEZ THE TARFPE FROM

EETWEEN THE EOT AMD EOT MARKERZS TO THE

LORTD- FOIMT. IT REWIMNDE THE TAFE AT ZEARRCH
ZFEED TO THE EOT MARKER AMD THEM MOYESE

FORWARELD FAZT THE EDOT MARKER TO THE LOAD-FOIMT.

LR K IR R J

THE IMTERMWAL TIMER IZ UZED TO REORT

THE OFERRTIOM IF MO EOT IMTERRUFT IE ZEEN
DURIMS THE TIME IT ZHOULD TAKE TO REWIMD

THE TAFE FEOM EOT. THIZ TIME I: AFFROXIMATELY
40 ZECOMDE AT 100 IT.FP.S.0.

MOTE THAT THE DRIVER FROGREARM MUET ENZUEREE

THAT THE IMTERWYAL TIMER I= AWAILAELE FOR

UZE BY THIE TUEROUTIME. ZIMCE THE MAXIMUM
DELRY FRDOM THE IMTERWAL TIMER I 990 MIECE.

A DELAY COUMTER TVWDLYC IS UZED TO COUNT TO

THE REGUIRED DELAY TIME. THE INTERMAL TIMER IZ
FRESTARTED AMD ALLOWED TO IMTERRUFT THE MFL LNTIL
THE DELAY COUMT IE COMFLETE.

LR R B IR IR R B B I B IR 2 J

ERROR SUEBROUTIMEE TO ZTOF INTERVAL TIMER
AMD ZET OFPERATION ZTATUE FLAGE.
OFERARTION =TATUE FLAGE IM TYOFET

AZ FOLLOWE

- O =COMFLETES 1=IMCOMPLETE

- 0 =MO ERF. i 1=ERFOR

- 0 =EBACEWARDS 1= FWD DIRCTH.
1 =M0 ERARZE: 1=ERR:E

- 0 =RD-WRET ZF 1=2ERRCH ZFD.
~ 0 =MO WEITES 1=WRITE

- 0 =MO RERD § 1=FERD

1 =EZTOF o 1=00

EIT
EIT
EIT
EIT
EIT
EIT
EIT
EBIT

L B R R R K K R I R B R
s b= [0 D0 e O X =
|

THE OFERATIOM =TATUS CODES USED ARE
AT FOLLOWMS

*+ + e

REWIND TO E.O.T. IN FROGREEZE tooo1oal
FREWIMD TO E.O.T. REORT 11001001
MOYE FWD TO L.FT. IN FROGRESE 10100001
MOVE FWD TO E.O.T. REBORT 111a0001
MOYE FWD TO L.FT. ABORT 11100000
FEWIMD TO LOARD FPT. COMPLETE oo1o00000

LR BE K K BN

FIGURE 5-3.2.2-3. Move to Loadpoint Assembly Listing (Sheet 1 of 4)

593

AT XA

J

0015

go7an
an71n0
onyFzEn
nou7E0
aavd 0

anyvyn

nnyw3an

anssn
onsnn
o0s10
ooszn

Oa=4n
0os50

a3y n
oogsn
oossn
a1ano
giro1n0

01020
1040

010e0
1070
01020

anto

o0aln
not11
IR
ni1d
0n1s

00
azo3
O30E
n=on
nz10

nz1e
nzi4
021y
0213
0z1c

0z1E
0321
0324

ool
anng
annt
ol

aons

—o1n
IR
calz
co1s
1oa00
1001
1anz
1003
o100

DY X o B e B

M =) T o= X~ (T

It
T

e B 1)

[I = < Ry

~] D

CE
FF

-
33

014
3F

0139
o010

Orz F10
+ YARIAELEE UIED EBY THE ROUTIME

TYOFET FME 1 OFERRTIOM ZTRTUZ EUFF.
IVZERY EME z IMTRFT =ZERWICE RIDDF. EUFF.
TWETAT EME 1 TRFE =TATUEZ EYTE EUFF.
TWDLYC REHME 1 DELRY COUNTER

TWENEFR EME o ETRCE POIMTER =TORE

+ COMETAMTE UEED BY ROUTIME

#“PeDRA EGL RCOLO ITIMER FIAR RLDR & COMTREL
“FPZDRE EGL ECO1d

=PECER ER ¥co1s

=“PECRE ERL FECO13

“FPSIREA EGL E1o0m0 THFE FIA RDLRE & DRTH
“PSDEEB EGQIL E1001

HSPSCEAR ERIL Elo0z

“=PSCRE EQU E1003

T10ME EGU] = 10 MILLIZECOND CLOCE

ariz Fz00)

+ EEGIM REWIMD TO LOARD FPOIMT ROUTINE

TERELF LDHA
=TH
LDA
=TH

#EX10001001 OFERATION IM PROGRELE:
TWORET EZTORE OFERATION ZTATUE
wxO0001111 ERCH-RWND CHTRL. WD
HSPSORE REWMIND AT ZRCH. ZFD.
LDA g1 ZET DELAY CHTE TO o
=ZTH TWDLYC COUMT 40 DELAY IMTERYALZ.
LI #TEELF1
ETH IVEZERY ZET FRETRM RDLE FOR ITIMER
ZUEROUTIME TO CHECK IF DELAY COUMT IT COMFLETE
THIZ ZUEBROUTINE IZ: IMTERRUFT DRIWEM.
IF THE DELARY COUMT IZ COMPLETE THEN THE
FEDGREAM WILL COMTIMUE WITH THE REET
OF THE LOARD-FOIMT ROUTIME. IF THE LELRY
IT HOT COMPLETEs. THE FROGREM WILL =ET THE
ZAME IMTRFT ZERVWICE RLODREZZsRESTARRT
THE IMTERMAL TIMER AMD REETLREN.

DI I

LR B B K R R R J

TEELF1 LDA B s#x11001001 ERFROR IMCOMFLETE FLAG
JER TEETAT CHE . =TATU:
EME TERLFT
DEC TWDLYC DECREMENT DELRY COUNTER
BEL TERLFY DELAY COUNT COMPLETE *

+ NOTE : ZINCE THE INTEFT. ZERVICE RTM. =TOPRE
» THE TIMERs IT MUZT BE RESTARTED EACH TIME

TERELFE LDX #Z10ME+ESS DELAY\390 MIEC.
ETk “P2DRA ZET & =TRRT ITIMER
RETE FETRM FROM ZUEROUTINE

FIGURE 5-3.2.2-3. Move to Loadpoint Assembly Listing (Sheet 2 of 4)

594

01100
n1110
n11z0
01130

01150
niien
01185
01170
g1120
01120
olenn
niz1n
nolzzu
p1zz0
0iz3s
o1z40
g1zsn
0120
n1zvn
gizs0
1230
01300

01220

01340
01250
01360
01z270
g132n0

01400
01410

014320
01435

01430

01470
01430
014940
01500

]
0l e 0 G0 D

Do I o '}

T T T TOFO

» M D~

n=z4n =E

[
E
=
(1
2

o0
LI L
) D

hon
i

0350
035F
03e1
02364

++=UERTH TO MOYE TO LORD POINT AFTEFR
+ REMIMNDIMG TO EOT.ee

+ THE FPROGREAM GETS TO THIE POINT FROM
« A EBOT IMTRFT.

[B2 3

= 2E

1001

1000

11
0199
coin

LR B sx00101110 FO. FWL. CHTEL. WD.
ETH B =PSDRE MOVYE FWD AT ED-WRT =PEED
ETE TYWEMEFR EZAYE E=TACK POIMTER

LDA #X10100001 MOVE-FWD- IN FROG.
=TH TVORET ETORE OPERATION ETATUE
LDA S Ooa0a DIZAELE TAPE INMTRFTZE.
ETA HPSCER

LDk #TERLFE

ETH IVEZERY ZET EETEMN RDDE FORE ITIMERE
BER TERLFE ARM TIMER FOR 230 MZ

CLI CLEAF IMTERRUFPT MAZK

LDA “PSDRA LOARD =TATUE WORED

EPL TERLF4 MOVE FWD UNTIL EOT ZEEHM
LI #TERLFS

ET= IVEERY ZET EETEM RAIDE FOR ITIMER

bt b b
fary

I

LD #E1OME+HEID ETARTGAP DELARY TO LD.FT

ETs “P2DREA ZET & EZTART TIMER
RTI FETURM TO HO=T FROGEAM

AT LOAD FOINT EUBROUTIME

[n SR A

m

v

W 0
L5 TV 1 ¥ |

ED LA B #¥11100000 FRELOAD ERE. COLDE
0365 JER TEETAT CHE EMDIMG ZTHTUE

0s EMHE TERLFY

= LDR B #X00100000 MOYE TO LD.

5

ERA TERLFY

+ IMTERVAL TIMER ERROR INTERRUPT EMTREY POINT

+ WHEM MOVING FORWARRD TO E.O.T.

El TERLFE LDR B 311100001 ERROR OM MOVE FORWARD .
FOINTER

15 LD= TYWEVEP RESTORE STRACE

+ EXIT FROM INTERVAL TIMER INTERRUPT

10 TERLFY =TA B TYOPET STORE OPERATION STARTUZ
EE LDR A #Xx11101110 RD-FWD-ETOP CHTRL.

1001 XTR A HPSDRE ZTOP TARPE
RTE RETURN

FIGURE 5-3.2.2-3. Move to Loadpoint Assembly Listing (Sheet 3 of 4)

595

01530

01550
01sen
n1%7n
niss

Diegn
01850
N1es

01ean

=ZYMEOL

IV EERY
TERLFZ
TEZTRT
mP2CRA
PSCRE

10006 TEETHT LDRA

N I A s
RV B OB]

1
S
=
]
c
:ﬁ

++ EZTATLE CHECK ZUEBROUTIMNE e

* 4+ e

AMI
EQF
]
BT= FETLREM

#R11011000 ME=EE
w0001 1000 THFE

T LD

EHD

S10ME 0100 TERELF 0Z00 TERELF1 0212 TEELFPEZ
TERLF4 0230 TKRLPS 034E TKELFE 03259 TEKRELF?
TVWDLYC o014 TWOFRET 0010 “‘THT G013 THV'
“PECEER CO13 WFEDRA CO10 =P2DRE CO11 HPS
=“PSOREA 1000 <FSDRE 1001

FIGURE 5-3.2.2-3. Move to Loadpoint Assembly Listing (Sheet 4 of 4)

5-96

THIZ EZUEROUTIME CHECE: THE CURRENT EZTATUE
OF THE THFE WHICH I%Z AVWAILABLE AT FRO-FARY.
THE ZTARTUZ IZ COMPARELD WITH THE EXFECTED
=000 EZTATUE CAVAIL.sCHE. IM PLACES
AMD THE REZULT OF THE COMFARRIZOMN IZ =R
IM THE TARFE =TATUEZ EBUFFER TWEITAT.

=“PSDREA RERL THE ETATUES
OuT UMWAMTED E
RYARIL RD WD
TWEZTART TAVYE ERROR EZTATLE

CLR FLRAGE

Call “TKWRT 1”

1. Check Tape Status
“TKWRT 1 2. Initiate Startgap (Erase)

3. Initiate Startgap Timer
(RTS I

Startgap Interrupt

“TKWRT2”

1. Write One Record

2. Check if More Records
to Write

3. Initiate Stopgap

NO

Executive
Processing
to Do?

Record
Complete
?

Record Error Interrupt

“TKRECE"

Do Executive
Processing

L 1

Abort On
Error?

1. Stop Transport
2. Set Record Error
Abort Flag

Go to Error
Processing

Stopgap Interrupt

“TKWRT 8"~

1. Stop Tape if no More
Records to Write

Stop Tape
Alert Operator
to Insert
New Tape

—

‘TKWRST'

|
I
1
I
I
|
|
|
I
I
I
|
I
|
I
|
|
|
|
|
I
|
I
I
|
|
|
I

FIGURE 5-3.2.2-4: System Integration of Write Routine

5-97

‘TKWRST’

Load Tape Status

:

Mask Out
Unwanted Bits

|

Save Error Status

‘TKWRT 1°

Preload Error
OP Code

Check Tape Status

Status OK
for Write?

Preload OP Code
(Move Forward)

Check
Write
Status

TKWRST

1. Available

2. Cas In Place

3. Write Protected
4. EOT Seen

>

TKDEL 1

TKWRT 2

Check Tape
Write Status

TKSYN 1

A

Y

Set CRC Flag,
Preset 1st Preamble
Data Bit.

Y

Start Forward Motion
in Write-Erase.

i

Set and Start Timer
for Startgap.

°y

l Store OP Code.

|

Return from
Subroutine

? Startgap Interrupt

Set Write in Progress
Code.
Enable MPU Interrupts,
Set Interval Timer
to Abort if No
Write Clock.

v

Start Timer.
Set Data Buffer
Starting Address

in Index Register.

to

Bit
Request?

Clear Interrupt Fiag.
Preload Shifted Preamble.
Enable Underflow
Interrupt.

Set Bit Counter to 7.
Disable Erase.

Write
Startgap

Synchronization

Write Clock

TKWRT 5

(1)

TKWRT 5

Bit
Request?

NO

Move Next Bit to PIA,
Clear Interrupt Flag.
Increment Bit Counter.

Increment Word
Address Counter.

YES

NO

Change CRC
Enabled Flag.

8it
Request?

Save Tape Status.
Decrement
Record Counter.

[

FIGURE 5-3.2.2-5 Flow Chart of Write Routine (Sheet 1 of 2)

5-98

- (2)
—(3)

()

(1)

(2)
(3) TKWRT 3 +
TKCRCS i
~
Get Next Word
L Preload Shift CRCC J | ©
Any More TKWRT 4
Records —
to Write?
Store in Current
TKWRT 6 Bit NO Word Buffer.
Set Erase—Stop—Reset Request? Set Bit Counter to 8.
CRC Control Word. q iy Preload CRC Enable.
Preload Erase—Reset Set Operation Status Word,
CRC—Go Word. Disable Tape Error
Preload OP Code. Interrupts.
Enable Shift CRC,
Clear Interrupt Flag.
Enable Erase
Stopgap
(Go/or Stop)
Set Bit Counter
+ for 2 CRC Bytes.
Set and Start Timer + $ gvgrgec
to Time to Stopgap.
Store Operation Code. Increment Word
Counter to Allow
TKRECE for Postable.
RTI
Set Write Error
Stopgap Interrupt Flag.
Stop Tape. .
Bit
Request?
Update Record
TKWRT 8 Count from BOT.
Set Operation Status, m
v Clear interrupt Flag.
Increment Bit Counter,
Any More NO
Records Preset Record
to Write? Complete Flag.
Stop Tape in Read.
Disable Tape
Interrupt. S
YES CRC Write
] Complete?
Store Operation
Status Preload
Postamble Word.
ENDOS RTS |
(4)

FIGURE 5-3.2.2.5 Flow Chart of Write Routine (Sheet 2 of 2)

5-99

L

Write
Loop

00010
ooo2a
0on30
00040

noosSn
oonsn
notion
oni1io
nniso

nozzn
noz40

a2sa

ong ;:I i

ongsn
oo4z0
e
00450

nogFn
o040
ST
ﬁﬁéiﬁ

oS0

*
*

HAM TEWET1

REY 0.13 AZ OF 1-32-73

oPT =

++WRITE ZUEBROUTIMES+INTRFT-LIRIVEM®+

*+ 4+ LR N L B B R R R K N BE B B SR K BE K B B J LA R R 3R J

* * e

* 4+ 4+ 4

THI= ZUEROUTIME I: UZED 7O WRITE

WYARIRELE LEMSTH RECORDE.

EACH RECORD COMEZIETE OF A 1-EYTE FPREAMELE s
FROM 4-25¢ EYTES OF DRTA CWHICH IMCLUDES.
A 2-BYTE CRCCs AMD A 1-EBEYTE FOSTAMELE.

THE ZTAFRTIHG ARDDREZE OF THE DATA

EUFFER I% DEFIMED EY TEDARTA. THE

EMDIME RDODREZZ ZTORED IM TVWDATA DEFIMNER

THE HUMEER OF EYTE= IM THE HMEXT RECORD.

THE EMDIMSE RDDREZZ I% DETERMIMED A=
CTEDATA+TYDATL Y WHERE TWDATL HOLDE

THE MHUMEER OF WORDZ IM THE MEXT RECORD.

THE TEWRT1 FROGFEAM MOWES DATA ZTORED

EETWEENM THE ADDREZZES TEDATA AMD TYLDATH.

A ZTARTGAF OF EFAZED TAPE IZ WRITTEM FRIOR

TO THE FIRET EIT OF FREAMELE AMD A ZTOFGARF

OF ERASED TAFE I= WRITTEN AT THE END OF THE
LAET EIT OF THE FOZTAMELE. DURIMG THE ETOFGAHF
THE WRITE CURREMT FEMAIME O UNTIL TAFE
MOTION HAZ ZTOFFPED. AM IMTERVAL TIMER IZ LZED
FOR =TARTGAR AMD ZTOFGAF TIMIMG AMD TO

REORT THE WRITE OFERATION IF HO WRITE CLOCE
IZ PREZENMT. THE OFERRTIOMN IZ HEORTED

AFTER A DURATION CORREZFOMDING AFFRO-.

TO THE LEMETH OF OHE RECORI.

IF MORE THAM OME RECORD I= TO EE WRITTEM
THE WRITE CERASE» CURRENT I TURNED OM
EUT 1 =TOF COMMAMD I% HOT IEZZUED DURIHG
THE :=TOFGAF. THE ETHRETGEAF OF THE HE=T
RECORD IZ WRITTEN A3 THE CONMTIMUARTIOM

OF THE FEECEDIMG =TOFGAF.

THE OFERATIOM =TATUE CODE: UZED RARE

AL FOLLOWE: ©USE THE THELE SIVEM IM THE
TERELF ROUTIHE FOFR FURETHER DETARILE OMN
O THE OFERRTIOM =TARTUE FLAGE::

EARD THFE =TATUSZ t11aao0n
WEITE EFAZE IN FROG. 10110101
EFARSE ZTOF IM FROG. 11101600
WET. DATH COMFL.-ZTOF goroa0aln
WET.DATA COMPL .~ERAZE-SRD oo110101
WRET. ERFR. -MO CLOCK 11100100

FIGURE 5-3.2.2-6. Write Routine Assembly Listing (Sheet 1 of 6)

5-100

a0540 0020
0osSs0

nozn
onz1
anas
nosd
062s
nnzy
0127
0129
012A
0ickE
niec

oOe3n
oosEdn

OnNvan
noavFyon
aaysn

aOvyan

=R Y
o350

alo0n
m1a1n
niozo
D10z0
01040
n1osn
a1 a0
01070
01020
010390
1100
01110
n11z0
01120
n1140

gool
noos
oonl
oong
aons
100
anng
ool
oont
aool
aons

Ca10
cotl
U 1D
N
1000
1001
100z
10032
0100

OrG
+ YREIRELEZ
TWCRCF RME
IVEZERN EME
TVWEECC EME
TWEZTAT FEME
YODARTL FEME
TEDIRTR EME
TWLWA RME
TYCDART FEME
TYOFET EME
TORECC RME
TYIARTH EME
+ COMSTAMTS
HRFeDRAR EGIL
“PZIRE EGU
HPECER ERL
HPZCRE EGU
“FSDEA ECN
HPSDIRE EGL
=PSCRA EQL
“PECRE EGU
Zioms Ead

+¢+ FIA IMTERFACE

FEO -
FE1 -
FEZ —
FEZ -
FE4
FES
FEE
FET

CRC

- ZRC

IMFUTZ

CRLC
FRZ — HWOT

WET

D N

i3 =
I

LK B R 2N R K B R R B K BE B 2R _BE K IR R _EE R R R R S R
o (i]

kel vt

Tig

DI B

WRITE =0

WRITE DATH
EFAZE =1 »

—++LPEETIee REO-WRT = 0
—++0IREECTIONS FWD =1

—++MOTIOMH»»
~RI
FAND - FERD

FRZ - RERDY =1
- CAZEETTE IN

CLOCE
- EZTROEE

- #IMTRPT+ OYFL-UMIFL
= +IMTRFT+

20
UZED EY ROUTINE
CRC EMAELED FLAG
INTRFT ZERVICE ARIDE.
FECORD COUMT FROM EOT
ZTATUE EYTE
HO. OF WORDE
FD-WFT EBUFFEE
LAET wWOFRD ALDRE OF DATA EUFF
CURFRENT DATAR-WORD EUFF
OFERATION =TAHT. EBUFF.
MO. OF RECORDEZ TO RD OR WET
CTEDRTA + TVYDATL» ADDREZE
FOUTIME
ITIMER FIA RALIE &

ELIFF

IM RECORD

n
[

Pl o= M T o= s 1)

U=ZED BY
FCO10
FC011
Fo012
FC013
B1O00
Filool
Bl OOz
F1003

— e
oS58

COMTRL
%&TARTA

THFE TRFE FIAR ADLE

10 MILLISECOMD CLOCK
DEFIMHITIOHS® 4444400044558 444

OQUTPUTE- WRT DATH AHD COMTROL

FERD = 1

FEDN EMHELE =1

sCRC EMRELE = 1}
+ZEAFCH =1
«REY =1

ZHIFT = 0 «WFET DARTAH EMHELE =1
ZTOR = 1+ 50 = 0

FEZET = 1

ATA RAMHD ZTHTLUE
DRTH

EFREOR =1

IM ZYHC = 0

FROTECTED

£ - AWAILAELE = 0
7 - EOT-

ECT ZEEM = 1

cLOW TO HIGH:
TRD WRT HAMDEHREE- HIGH TO LOWD?

cLOW TO HIGH?
EOT-EOT TIMEDOUT <LOW TO HIGH?

FIGURE 5-3.2.2-6. Wr