Lattice Handbook

Lattice Handbook

1994

= attice

Lattice

Copyright © 1994 Lattice Semiconductor Corporation

E2CMOS, GAL, ispGAL, pDS, pLSlI, Silicon Forest and UltraMOS are registered trademarks of Lattice Semiconductor
Corporation. Generic Array Logic, ISP, ispCODE, ispDOWNLOAD, ispGDS, ispLSl, ispSTREAM, Latch-Lock, pDS+ and
RFT are trademarks of Lattice Semiconductor Corporation

All brand names or product names mentioned are trademarks or registered trademarks of their respective holders.

Lattice Semiconductor Corporation products are made under one or more of the following U.S. and international patents:
4,761,768 US, 4,766,569 US, 4,833,646 US, 4,852,044 US, 4,855,954 US, 4,879,688 US, 4,887,239 US, 4,896,296 US,
5,130,574 US, 5,138,198 US, 5,162,679 US, 5,191,243 US, 5,204,556 US, 5,231,315 US, 5,231,316 US, 5,237,218 US,
5,245,226 US, 5,251,169 US, 0194091 EP, 0196771B1 EP, 0196771 UK, 0196771 WG.

LATTICE SEMICONDUCTOR CORP.
5555 Northeast Moore Court
Hillsboro, Oregon 97124 U.S.A.

Tel.: (503) 681-0118

FAX: (503) 681-3037

How To Use This Handbook

Background

Lattice Semiconductor Corporation, foundedin 1983 and based in Hillsboro, Oregon, for over
a decade has been providing innovative solutions to the manufacturers of high performance
systems. Lattice pioneered non-volatile, reprogrammable logic with its UltraMOS E2CMOS
technology. This technology, combined with the Lattice GAL architectures, have established
Lattice products as the industry standard in low density programmable logic. Lattice's ispLSI
and pLSI families of high density PLDs combine leadership performance and density with in-
system programmability to establish the high-density programmable logic standard of the
1990's.

What This Handbook Contains

This handbook offers product overviews, architecture overviews, applications notes, and
various other pieces of information about Lattice's programmable devices and development
tools. Please consultthe latest Lattice Data Book for more detailed information on device and
software specifications.

Additional Information

For information on product availability and pricing, please contact your Lattice Sales
Representative or Distributor. A listing of all Lattice Sales Offices, Sales Representatives,
and Distributors is at the end of this handbook.

For immediate help with technical questions or access to selected applications described
inside, please call:

Applications Hotline
GAL Products: Tel. 1-800-FASTGAL (327-8425), FAX (503) 681-3037
ispLSI and pLSI Products: Tel. 1-800-LATTICE (528-8423), FAX (408) 944-8450

Electronic Bulletin Board
GAL Products: (503) 693-0215
ispLSI and pLSI Products: (408) 980-9814

Acknowledgments
We thank those dedicated employees whose hard work and long hours have made Lattice products, and this
book, a reality.

Table of
Contents

Section 1: Introduction
INEFOAUCTION ... e et e et ete e et e e e e e e e aaeeeesaaeeeeseeesneeesenreeeannns 1-1

Section 2: ispLSI and pLSI Architecture Overview
Introduction to ispLSI and pLSI Familiesccccoeiiieiimiineccee e 2-1
1000 Family Architecture Description
2000 Family Architecture Description
3000 Family Architecture Description
ispLSI Architecture and Programmingcccceeverieeeeiereesesieieeseesessessesssssssseesssessessesnes 2-39

Section 3: ispLSI and pLSI Development Tools
Lattice Design TOO! SIrategycoceeiiiiiireiien ettt
System Design Process............
ispLSI and pLSI Design Flow

Section 4: ispLSI and pLSI Application Notes

Selecting the Right High Density DEVICEc.ccccoiiiiircrincieeeeeee e 4-1
Beginner's Guide t0 iSPLSI and PLS|coiiiiiieiecee ettt 4-7
ispLSI and pLSI: A Multiple Function SolUtionccceceiiiieeiereciecieseece e, 4-21
Programming Multiple ISP Devices: Daisy Chain Configurationccccccoveeneniescnnnnen. 4-41
Compiling Multiple PLDs into ispLS| and pLSI Devices4-47
Adders/Subtractors in pLSIcccoeceveiieneeiieciceeneee e ... 4-55
Crosspoint Switch Implementation Using the pLSI 10324-61
Building Modulo N Counters Using ispLSI and pLSI DeViCeSccccevveruirrereenecreeeseeneene. 4-69
Phase Locked Loops (PLL) in High Speed DeSignsccccceririeiinireneninnceese e 4-71
Video GraphiCs CONLrOIIENccccoviiiierierieiience ettt ettt ettt e ae ettt neeseeeneesbeeananes 4-75
A Digital Clock Design EXamplecccceriiiiiiieniiieeceieeseestese e st eeeeeeses e e snestasne e ennenes 4-95
ispLSI Configurable Memory CONtrollErcceciceeeieeeeieieeeecee st sre e eaens 4-105
Bar Code REAAET ..ottt ettt e e e e eae s et e sae s ennaneas 4-121
High Density PLD Solutions for High Speed RISC/CISC Systems4-139
SCSI Interface with the iSpLSI 3256ccoeviiiiininecnienineercees ...4-145

PCI Bus Implementationc.cccceeceenune. ...4-155
Programming ispLSI Devices with @ Testerc.cccoviiiiininee e 4-179

Section 5: GAL Architecture Overview
Introduction t0 GENEriC Array LOGICeeevterureiieereeeiieectieeteeneesaeeseeesseesseesseesseessaeesneeessnanes 5-1

Section 6: GAL Development Tools

Using GAL Development TOOISccccoeririeririeieeriee st esesee e sacie st siesaeseeneaeens 6-1
GAL Development SUPPOITc.ccuriririiieeeieeertee e s seeaeses e ssesaeseesaeeeseeses e s eneesessesseasassens 6-11
Copying PAL, EPLD and PEEL Patterns into GAL DeViCeSccccerervenireneenieeienerenenns 6-13

Section 7: GAL Application Notes

ZEr0-POWET GAL DEVICESueeeueieeiiecieietteeeeeeste et e se e ceteestaeestessaeessaeeseeesaesseesaseessseennnesssens 7-1
The GAL16VP8 and GAL20VPScoooeieieeceeceeeeete e v etee e eneeeeseesae e sseeebaesneennes 7-5
The GALT8V10 AQVANTAGEoiuiiiieieieeie ettt et n et neas 7-7

GAL20RA10: Programmable Clocks Improve System Performancec.cecoivcniunecns 7-11

GAL6002 Designs Using ABEL and CUPL ..o 7-13
GALGB002: 4-t0-1 RS232 Port MUHIPIEXETcccoiiiireeiiieee ettt s 7-17
VME Bus Arbitration Using @ GAL22V10.........ccuiieviniiinieieinee e saese e saeas 7-21
GAL16VP8/20VP8: Bus Arbitration CirCuitccceerververecverreeeiesreeseee e s eeeeseeeeeseese s 7-25
GAL20XV10: Data Block Transfer Address Detectorcoccvvveevveveeencensceeccee e 7-29

GAL26CV12: Prégrammable Frequency DIVIdErccveriieireeneecineeeee s e 7-33

Section 8: In-System Programmable Generic Digital Switch (ispGDS)

Introduction to the ispGDS ‘Family
Using ispGDS Devicescccceeenenne

ISPGDS COMPIIET SUPPOIToeecitireiieircrees et s st tseesaesee e sae e seesaase st e e saese e s ssestesesaesaestanes
Lattice’s Solution for PIug-and-Playccccecieiiiienineniene st eeessie e sseeseesseeseenne 8-9

Section 9: Design Techniques

User EIeCtronic Signaturecceirirircirinetinieceee st re s s s e sne e e 9-1
Driving CMOS Inputs With GAL DEVICESc.ceceeiirreririnieniireeeteneeesreseeesesse s seeesaessessienne 9-3
Metastability REPOItcociiiiiiiiiiiiie e 9-5
LatCh-Up ProteCHONcooiiiiriieiciiiii sttt sttt ettt sn e sr s 9-19

Section 10: Article Reprints

Selecting the Best Device for In-System Programmabilityccocceevrveriencinicnniiecieeenes 10-1
Enhanced E?PLDs Hit Speed and Density HighSc.ccoueviririinineneneeseee e
Complex State Machine Design with Complex PLDs
Avoid the Pitfalls of Hi Speed LogiC DeSIgNccoceciiiineriiniriccinie e
PLD-Design Methods Migrate Existing Designs to High-Capacity Devicescc.ccc...... 10-23
In-System Programmable Logic in High Volume Manufacturing...........c.ccccveeccnnmncenenenees 10-30
A Token Ring Network Adapter Cardccccevvniiiniiiiiiiiissse e 10-37
A Decision Process Used for FPGA Selection in

Digital Signal Processing for Fiber Optic SENSOrscccovevievcrnineneeiercreeereceeens 10-44
Learn the Fundamentals of Digital Filter Designccocociiiiiiniininennincsess 10-51
State Machine Design for High Speed PowerPC RISC Microprocessor Systems 10-59
Applying In-System Reprogrammability in a REFLECTIVE MEMORY Bus Controller 10-66
PLD Usage Generalizes HDTV Frame Buffer Interface...........c.ceccevrevnrnicnenenceneccnenees 10-73

Section 11: Technology, Quality, and Reliability Overview

Quality ASSUrANCE PrOGramccccorueiemmestiineeesereseneesiesies e s ss s tssesssesasnsseenes 111
Qualification PrOGramccococcoeriicierie ettt et s s s 11-3
E2CMOS Testability Improves Quality ...

Technology and Reliabilityc...cccovviriiiiii e 11-7
1SO 9000 PrOGramc.ceiuieuieeiiniinieirerieiee st re st b e s e s b e sr e she s sae b a b ie s 11-11

Section 12: General Section

Lattice Bulletin Board Systems ... s
Cost of OWNErship: AN OVEIVIEWccceiiuiiiiiereeerierreeeseesreneeitessnessessesssne s saesstassaesnses snenes
Hidden Costs inN PLD USAQEcccuoverveeririeiirie et s e st sresae e s essesnesaessesnneenns
ISP: Winning at the Bottom Linec.cccccenecinnene
Gate Array and High Density PLD Cost Analysis
SAIES OffICES ..ouveiueeuiriiriestien ettt ettt s et a e s e et e e e

vi

Section 1: Introduction
INEFOAUCTION ... rae e e e s e aa e e e e e s e aa e e e e s s esaeaaeessanaeaseeensnnsnnnnaen

Section 2: ispLSI and pLSI Architecture Overview

Section 3: ispLSI and pLSI Development Tools

Section 4: ispLSl and pLSI Application Notes

Section 5: GAL Architecture Overview

Section 6: GAL Development Tools

Section 7: GAL Application Notes

Section 8: In-System Programmable Generic Digital Switch (ispGDS)
Section 9: Design Techniques

Section 10: Article Reprints

Section 11: Technology, Quality, and Reliability Overview

Section 12: General Section

1-ii

Introduction

Background

Through pioneering efforts in applying E2CMOS® tech-
nology to programmable logic, Lattice has established
the GAL® family of products as the industry standard
worldwide. With the introduction of the high-density
programmable Large Scale Integration (pLSI®) devices
and in-system programmable Large Scale Integration
(ispLSI™) devices, Lattice has become the world’s larg-
est supplier of low-density CMOS PLDs and the fastest
growing supplier of high-density CMOS PLDs.

Lattice has recently introduced two new low-density in-
system programmable devices: the ispGAL22V10 and
ispGDS™. The ispGAL22V10 brings on-the-fly system
logic reconfigurability to the industry standard GAL22V10.
The ispGDS (in-system programmable Generic Digital
Switch) family further extends Lattice's programmable
technology beyond logic to board interconnect and signal
routing. The ispGDS family opens new possibilities for
system designers and is just the first of a series of
application specific programmable solutions that will be
provided by Lattice in the future.

The Lattice Advantage

Time-to-Market

E2CMOS PLDs enable system designers to meet ever-
shrinking time-to-market constraints while avoiding the
significant development costs, lead times and dedicated
inventories associated with traditional ASIC and bipolar
PLD solutions.

Flexibility
Programmable and reprogrammable devices enable fast
and easy modifications to system designs.

Product Differentiation

Lattice's programmable devices allow design engineers
to easily differentiate their end-product through propri-
etary feature enhancements. This is particularly true

The Lattice PLD product offering can be segmented into
two strategic product thrusts:

Low Density: GAL Family
¢ 100 - 1,000 Gates

* The Highest Performance PLDs from any Supplier

* Superior Replacements for Bipolar and CMOS PLD
Architectures

« E2CMOS Low-Power, Quality and Reliability

» Broadest Range of PLD Architectures Offering Fea-
tures not Available in other PLDs

* Pioneering Non-volatile In-System Programmability
(ISP)
High Density: ispLSlI and pLSI Families
¢ 1,000 - 14,000 Gates (World's Largest)
* World’s Fastest High-Density PLDs (HDPLDs)

» Superior HDPLD Architecture (Flexible, Predictable
Performance)

¢ Pioneering Non-volatile In-System Programmability
(ISP)

¢ Range of Effective Development Tool Options

Lattice Product Features

Figure 1. Five GAL devices replace virtually all bipolar
PAL devices.

ti AL Devices
16V8
20v8
20RA10
20XV10°
2210

when a system utilizes the non-volatile ISP™ (In-System Bipolar Programm i
. . 10H8 14H4 16H2 16P2 16RP4 18P8 20L10" 20RP6
Programmable) technology pioneered by Lattice. 108 14H8 16H6 16P6 16RP6 18U8 20PB 20RPB
10P8 14L4 16H8 16P8 16RP8 20H2 20R4 20RA10
. 12H6 1418 1612 16R4 18H4 20H8 20R6 20;3'
12L6 14P4 16L6 16R6 18L4 20L2 20R8 20X8*
Inventory RedUCtlon X 12P6 14P8 16L8 16R8 18P4 20L8 20RP4 20X10*
A single standard part type can be used in multiple, 22V10
diverse applications. Justfive GAL architectures replace * GAL20XV10 replaces 20L10, 20X10, 20X8 and 20X4
virtually all bipolar PAL® architectures (see figure 1).
1-1 1994 Handbook

Introduction

There are three fundamental features which Lattice PLDs
share: E2CMOS technology, performance leadership
and innovation.

E2CMOS Technology

All GAL, pLSI and ispLSI devices are manufactured
using Lattice’s proprietary high-speed UltraMOS®
E2CMOS technology. Lattice is unique among “fab-less”
companies in that the process technology development
is actually done by Lattice. UltraMOS technology
successfully combines the best features of CMOS and
NMOS process technology to yield PLDs with the follow-
ing key features:

¢ Industry Leading Performance

* High Logic Densities

e Low Power Consumption

* Non-Volatile, In-System Programmability
* Fast Erase and Reprogram Times

* 100% Full Parametric Testability

* 100% Programming and Functional Yields

Performance Leadership

Lattice continues its long track record of producing the
fastest CMOS PLDs in the market. These industry-
leading high-performance products are typically available
to the market months ahead of any other PLD supplier.
As a result, Lattice customers have always been able to
take full advantage of next generation microprocessor
speeds and bring out industry leading end-products of
their own, thus fueling their own success.

While speed continues to be a top priority, Lattice has
also introduced PLD families which address other logic
design concerns such as low power (“Zero-Power”
GAL16/20V8Z and GAL16/20V8ZD), high output drive
(GAL16/20VP8) and logic density (GAL26CV12).

Innovation

The third, and perhaps the most important attribute of
Lattice's products is technology and architectural
innovation. Lattice's most far-reaching innovation may
have been the decision in 1984 to combine E2CMOS
technology with the PLD architecture when all other PLD
suppliers were offering UV erasable EPROM technology.
This marriage yielded the GAL product family - the “1st
Revolution in PLD Design.”

Lattice innovation also started the “2nd Revolution in
PLD Design” with the introduction of the first non-volatile
in-system programmable high-density PLD family —
ispLSI and reinforced with the introduction of the
ispGAL22V10 and ispGDS families.

The ISP concept, and the ispLSl, ispGAL and ispGDS
families in particular, dramatically impact system devel-
opmentand manufacturing. Lattice ISP solutions deliver:

Effortless Prototyping: Design iterations can be
downloaded directly to the ISP device soldered onto
the prototype board.

Reconfigurable Systems: A single generic board
can be “personalized” to one of many system con-
figurations at final board-level test.

Simplified Manufacturing: Eliminates all stand-
alone programming steps. Device programming can
be done as part of board-level testing. The result is
no misprogrammed devices, noinventory headaches
keeping track of patterned devices, and no PLD
rework costs.

No More Bent Leads: ISP technology also solves
the handling problems associated with high pin count,
fine pitch packages (PQFP, TQFP etc.). Program-
ming devices in-system eliminates bent leads and
unreliable solder joints.

Lattice, the leader in E2CMOS PLDs, is committed to
providing its customers with industry-leading program-
mable solutions. We realize that your system design
requirements and time-to-market pressures will only get
tougher in the future. Lattice is committed to supporting
you with state-of-the-art products with the performance,
architecture, quality and reliability that satisfy your re-
quirements.

1-2

1994 Handbook

Section 1: Introduction

Section 2: ispLSI and pLSI Architecture Overview

Introduction to ispLSI and pLSI Familiesccocccciiiinenieieeeiecsieeee
1000 Family Architecture DeSCIHPtioNcoceveereeceieineeirrente e
2000 Family Architecture DesCriptionccccceceeurecincrieinceeneseeceeeeeens
3000 Family Architecture Descriptionc.coceeieeininieienenreceere e
ispLSI Architecture and Programmingcccceeevcerinenienniesienueneeseeneenens

Section 3: ispLSI and pLSI Development Tools

Section 4: ispLSI and pLSI Application Notes

Section 5: GAL Architecture Overview

Section 6: GAL Development Tools

Section 7: GAL Application Notes

Section 8: In-System Programmable Generic Digital Switch (ispGDS)
Section 9: Design Techniques

Section 10: Article Reprints

Section 11: Technology, Quality, and Reliability Overview

Section 12: General Section

2-ii

Introduction to

ispLSI" and pLSI° Families

The Lattice ispLSI and pLSI Families

The Lattice programmable Large Scale Integration (pLSI)
and in-system programmable Large Scale Integration
(ispLSI) families are the logical choice for your next
design project. They're the first programmable logic
devices to combine the performance and ease of use of
PLDs with the density and flexibility of FPGAs. And at 135
MHz system speed, and up to 14000 PLD gates, they're
the world’s fastest and highest density programmable
logic devices!

There are three ispLSI and pLSI families to fit your
specific application needs. Lattice’s premier ispLSI and
pLSI 1000 family implements high integration functions
such as controllers, LANs and encoders at high speeds.
The high performance ispLSI and pLSI 2000 family with
its large number of I/Os handles timers, counters as well
as timing critical interfaces to high speed RISC/CISC
microprocessors. The highest density ispLSI and pLSI
3000 family integrates complete system logic, DSP func-
tions, and entire encryption or compression logic into a
single package, while delivering superior performance.

The ispLSI 1000, 2000 and 3000 families pioneer non-
volatile, in-system programmability, a technology that
allows real-time programming, less expensive manufac-
turing and end-user system reconfiguration.

All the development tools you need are available from
Lattice - tools ranging from Lattice’s own entry level
software to higher level, third-party design environments.
With these tools, you’ll be completing your circuit designs
in hours instead of weeks or months.

Lattice's ispLSI and pLSI Families

ispLSI and pLSI 1000: The Premier High
Density Family

Qa 110 MHz system performance

Q 10 ns pin-to-pin delay (maximum)
1 2000-8000 PLD gates

Q 44-pin to 128-pin packages

ispLSI and pLSI 2000: Unparalleled System
Performance

Q 135 MHz system performance (world’s fastest!)
Q 7.5 ns pin-to-pin delay (maximum)

Q 1000-4000 PLD gates

Q 44-pin to 128-pin packages

Q High /O to Logic Ratio

ispLSI and pLSI 3000: Density with
Performance

Q 110 MHz system performance

Q 10 ns pin-to-pin delay (maximum)

Q1 8000-14000 PLD gates (world’s largest!)
Q 128-pin to 208-pin packages

0 Boundary scan for enhanced testability
(IEEE 1149.1)

Applications

* Glue Logic

128

Applications

* Address
Decoders

7| * State Machines

« Counters/Timers

2000 Series Performance

* Address Decoders
* State Machines
* Counters/Timers

* Processor Buses/
New | 1O Requirements
ispLSl and pLSI | Pentium System

New isplL.Sl and pLSI
14,000
Gates

Applications

« VLS| Chips

 Graphics/DSP
Functions

* Cache Controllers
.

* Glue Logic yp YP!
47 1000 LAN Controliers Cpaslon
E
l8pLS! and pLSI Memory/DMA Controllers || o
. Gates 1000 Series . Grapm Sub Glue Logic
« Interrupt Controllers
Traditional GAL. 2000 Gates - Deta Packen Encorers
Product Line * Glue Logic
0 T T T T T T T T T T
0 32 64 96 128 192 256 320
Density (Macrocells)
0823A
2-1 1994 Handbook

Introduction to ispLSI and pLSI|

Family Overview

From registers to counters, from multiplexers to complex
state machines, these families of high-density program-
mable logic will address your high-performance system
logic needs.

With PLD gate densities ranging from 1,000 to 14,000,
the ispLSI and pLSI devices provide the range of pro-
grammable logic solutions you need to meet design
requirements today and tomorrow.

Table 1. ispLSI and pLSI Family Attributes

Density
(PLD Gates)

Speed:
Fmax (MHz)

Speed:
Tpd (ns)

Macrocells
Registers
Inputs & I/Os

Pins/Package

Each device contains multiple Generic Logic Blocks
(GLBs), architectured to maximize system flexibility and
performance. And a generous supply of registers and
1/0 cells provides the optimum balance of internal logic
and external connections. A global interconnect scheme
ties everything together, enabling high logic utilization .

ispLSI and pLSI 1000

1/2/3000-2A

1994 Handbook

Introduction to ispLSI and pLSI

Q Flexible architecture

The ispLSI and pLSI architecture was constructed with
real system design requirements in mind. Figure 1
shows the representation of the pLSI 3256 architecture.
This architecture provides the designer with the following Q Design portability across all the families
advantages.

Q Easy to use

Q Non-volatile in-system programmable (ispLSl)
Q High Speed

Q Advanced Global Clock Network
Q Predictable performance

Q0 Boundary Scan (3000 Family)

ispLSI and pLSI 2000 ispLSI and pLSI 3000

1/2/3000-3A

2-3 1994 Handbook

Introduction to ispLSI and pLSI

The Global Routing Pool

Central to the ispLSI and pLSI architecture is the Global
Routing Pool (GRP), which connects all of the internal
logic and makes it available to the designer. The GRP
provides complete interconnectivity with fixed and pre-
dictable delays. This unique interconnect scheme
consistently provides high performance and allows ef-
fortless implementation of complex designs.

Figure 1. pLSI 3256 Functional Block Diagram

The Output Routing Pool (ORP)

The Output Routing Pool (ORP) is a unique ispLSI and
pLSI architectural feature which provides flexible con-
nections between the GLB outputs and the output pins.
This flexibility allows for “last minute” logic design changes
to be implemented without changing the external pin-out.

g G
[Tnput Bus [Tnput Bus m
[Output Routing Pool (ORP) | [Output Routing Pool (ORP) | Bog:::rv m
BRI EIRREER G1—” GO | HI
(o e
21l a0 F3 &
3 At 2|8
a .
o|L__] L_J| o
£l I GLB-
&[4 Fe § Generic
5= — 1 Logic
g- .g- Block
S| A3 Fo [|l&
L] L GRP-
:>) | N Gilobal
Global Routing Pool ’N\——— | Routing
=] (GRP) =8| Pool
Y =r
== L_lisll |3/ ore-
] K] Output
2|81 E2 § é’s Routing
2= L— | 2ll5 Pool
=N EllE
8|82 |2 FE CLK-
Bl ——1] Clock
= £ PN
2l es] Distribution
(_3_ L | _E‘i_ 3 Network

[co]fct|lcalfcs]

Loo [or Jj o2 | os |

| Output Routing Pool (ORP) |

[Output Routing Pool (ORP) |

“Input Bus
[] D (N 5

Generic Logic Block (GLB)

The key element in the ispLS| and pLS| architecture is the
Generic Logic Block (GLB). This powerful logic block
provides a high input-to-output ratio for best logic effi-
ciency. The GLB (figure 2) used in the ispLSI and pLSI
1000 and 2000 families feature 18 inputs which drive an
array of 20 Product Terms (PTs). These product terms
feed four outputs which effectively handle both wide and
narrow gating functions. The ispLSI and pLSI 3000 family

utilizes a Twin GLB (figure 3) which delivers wider logic
functionality. The Twin GLB accepts 24 inputs and feeds
two arrays of 20 Product Terms that ultimately drive two
sets of four outputs.

The architectural flexibility of the ispLSI and pLSI GLB,
combined with its optimum input-to-output ratio, allows
the GLB to implement virtually all 4-bit and 8-bit MSI
functions.

1994 Handbook

Introduction to ispLSI and pLSI

An additional element of architectural flexibility is the
Product Term Sharing Array (PTSA). The PTSA allows
the 20 PTs from the AND array to be shared with any and
all of the four GLB outputs. This ability to share PTs
between all of the four GLB outputs provides a highly
efficient means to implement complex state machines by
eliminating duplicate product term groups.

Each of the four outputs from the PTSA feeds into a
flexible Output Logic Macrocell (OLMC), consisting of a
D-type flip-flop with an Exclusive-OR gate on the input.

Figure 2. ispLSI and pLSI 1000 and 2000 Family GLB

The OLMC allows each GLB output to be configured as
either combinatorial or registered. Combinatorial mode is
available as AND-OR or Exclusive-OR. Registered mode
is available as D, T or J-K.

The power of the GLB is further enhanced by a flexible
clock distribution network. This network provides a choice
of clock signals to each GLB: global synchronous clock
signals or internally generated asynchronous product
term clock signals.

20 Product 4 Output Logic
Terms Macrocells
| \L
\ Registered
————— or
Ded2' ated oLMmC Combinatorial
icate . .
Inputs Product * Combinatorial Outputs
Logic Term AND-OR-XOR L
e . e
16 Array 20 | Sharing 4) 4
Inputs Array * Registered Output
From GRP D, T, J-K toquFll’;
Synch/Asynch ORP or /O
Clocking
0289
Figure 3. ispLSI and pLSI 3000 Family "Twin GLB"
20 Product 4 Output Logic
Terms Macrocells
\ Registered
or
Combinatorial
R Outputs
OLMC
Product * Combinatorial
Term \—A‘ >
20 | Sharing 41 . Reggxgrrejl K 4
Array Synéh/’A_synch gué[gl;s
Clocking ORP or 110
Logic
24 Array
Inputs
From GRP ?Ugrl‘"gs
o GRP,
OoLmC ORP or I/0
Product * Combinatoral .
Term . -
20 | Sharing 4 « Registered 4 T
Array Synch/Asynch
Clocking
sonory oL
2-5 1994 Handbook

Introduction to ispLSI and pLSI

Figure 4. GLB: Multi-Mode Configuration

Jo4 Inputs From Giobal Routing Pool

I 16 Inputs From Global Routing Pool /2 Dedicated Inputs |
Al

........ |

Product Term
Sharing Array

A

1000

and 2000
R Family
D,J-Kand T GLB

03

To
02 Giobal

4.
™
u
X
™

Routing
Pool and
Output

—
u Routi
o u-{>01 Pool

—

Control
Functions

Reconfigurable
o v 3000
————— Exclusive OR Family
;;%%_D il L)Doa GLB
éjﬁ 14T Bypes ! E’ 02 I;?obal
“Ir=b Hel | | SinglePT i ™ Eg‘f;?"
T D e
i : i
g’g%llj 7+4PTs ﬂj‘lﬂ“ﬂw

AND Array

Control
Functions

Standard Configuration

Q GLB Outputs Comprised of 4, 4, 5 and 7 Product

Terms

Q The PTSA can Combine up to 20 Product Terms

per GLB Output to Meet the Needs of Both Wide

and Narrow Logic Functions

High-Speed Bypass Configuration

Q
u]

For Speed-Critical Timing Paths

Bypasses the PTSA and the Internal Exclusive-
OR gate of the OLMC

Provides Four Product Terms per Output

Supports Design of Fast Address Decoders

Exclusive-OR Configuration

Q
Q

Utilizes Powerful Exclusive-OR Architecture

Greatfor Counters, Comparators and ALU Func-
tions

Single PT Configuration

Q

Small Logic Functions at Fast Speed

Multi-Mode Configuration

Q

Q

Individual Independently

Configurable

Outputs are

PTSA Gives Flexibility in the Number and Selec-
tion of Product Terms per Output

2-6

1994 Handbook

Introduction to ispLSI and pLSI

Security Cell

A security cell is provided in the ispLS| and pLS| devices
to prevent unauthorized copying of the array patterns.
Once programmed, this cell prevents further read access
to the functional bits in the device. This cell can only be
erased by reprogramming the device, so the original
configuration can never be examined once this cell is
programmed.

Device Programming

ispLSI and pLSI devices can be programmed using a
Lattice-approved device programmer, available from a
number of third party manufacturers. Complete
programming of the device takes only a few seconds.
Erasing of the device is automatic and is completely
transparent to the user. In-system programming is also
available with ispLSI devices which allows programming
onthe circuit board using Lattice programming algorithms
and standard 5V system power.

Latch-up Protection

ispLSI and pLSI devices are designed with an on-board
charge pump to negatively bias the substrate. The
negative bias is of sufficient magnitude to prevent input
undershoots from causing the internal circuitry to latch-
up. Additionally, outputs are designed with n-channel
pull-ups instead of the traditional p-channel pull-ups to
eliminate any possibility of SCR induced latching.

In-System Programmability

Lattice's ispLSI devices (in-system programmable) are
the industry’s only high-density programmable logic fam-
ily offering non-volatile, in-system reconfigurability.

ispLSI devices are available in all three families: 1000,
2000 and 3000. The ispLSI devices are 100 percent
functionally and parametrically compatible with their pLSI
counterparts, with the added capability for 5-volt in-
system programmability and reprogrammability.

Complex logic functions can be implemented in multiple
ispLS| devices with complete on-board configurability.
In-system programming of a multiple ispLSI chip solution
is easily achieved through a proprietary in-system erase/
program/verify technique.

In-system programmability can revolutionize the way you
design, manufacture and service systems.

Prototype Board Designs

In-system programming allows you to program and modify
your logic designs “in-system” without removing the
device(s) from the board. This accelerates the system
and board-level debug process and enables you to
define the board layout earlier in the design process.

Fine Pitch Package Handling

When programming traditional PLDs, manual handling is
required during both design/debugging and manufactur-
ing stages. When using PQFPs or TQFPs, fragile leads
as thin as 0.5 mm can easily bend in the programmer
socket causing coplanarity damage. With ispLSI, you
can solder these packages onto your printed circuit

board and still program and reprogram the devices °

during debugging and manufacturing — without ever
losing a single part due to bent leads.

Reconfigurable Systems

Your options become boundless when you have the
ability to change the functionality of devices already
soldered on a p.c. board. You can now implement mul-
tiple hardware configurations with the same circuit board
design. Avariety of protocols or system interfaces canbe
implemented on a generic board as the last step in the
manufacturing flow.

Easier Field Updates

With software reconfigurable systems, field updates are
as easy as loading a new configuration from a floppy or
downloading it through a modem.

Enhanced Manufacturing Flow with ispLSI

Perhaps the most exciting benefit of the ispLSI family is
its potential to streamline the manufacturing process by
eliminating the separate programming and labeling steps
usually associated with PLDs. Quality is enhanced when
product handling steps are reduced, in this case, those
associated with programming, labeling and re-inventory-
ing multiple device types. Eliminating socketing further
improves quality and reduces board cost. Figure 6
shows the enhanced manufacturing with the ispLSI de-
vice.

2-7 1994 Handbook

Introduction to ispLSI and pLSI

Figure 5. In-System Programmable Graphics Board

ispLSl :
Vector
Manip-
ulation

ispLSI :
Memory
Control

ispLSI :
Graphic
Control

isp22Vv10

I
[
[M

1

Micro
Processor

>
£ H
=+
1+

—

| ispLSI Devices
[l 'SP Interface

0290D

All necessary programming is achieved via five TTL-level
logic interface signals (see figure 7). These five signals
control the on-chip programming circuitry, which protects
against inadvertent reprogramming via on-chip state
machines. The ispLSI family can also be programmed

Figure 6. Manufacturing Flow Comparison

Standard Flow
Using PLDs/FPGAs

Enhanced Flow
Using ispLSI Devices

Draw Parts From Stores
(One P/N)

'

Program
Each Part

!

Label Each
Programmed Part

v

Return Parts to Stores
(Multiple P/Ns)

'

Draw Parts from
Stores to Assembly

I

Board Assembly

!

Board Test

Draw Parts From Stores
(One P/N)

!

Board Assembly

!

Board Test
 Diagnostics Using ispLSI
« Final Programming
* Final Board Test

using popular third-party logic programmers.

Figure 7. In-System Programming Interface (Multi-
Chip Solution)

SDO

SDI

MODE
SCLK
ispEN

5-wire ISP
Programming

It

Interface
L

ispLSI ispGAL

ispGDS

ispLSI

1=

2-8

1994 Handbook

Introduction to ispLSI and pLSI

Boundary Scan

An emerging trend in board-level testing is boundary
scan test, an attractive feature helping designers test
system boards efficiently while lowering test and manu-
facturing costs. The ispLSI and pLSI 3000 family offers
dedicated |IEEE 1149.1 boundary scan support for all test
functions required by the standard. By using ispLSI and
pLSI devices you not only eliminate expensive "bed-of-
nails" testers but also simplify testing of surface-mount
boards, multi-layer boards and boards using fine-pitch
packages. Boundary scan is ideal wherever tight board
layout limits access to logic signals.

It only takes 4 pins to implement the boundary scan
interface. The ispLSI 3000 devices share the four bound-
ary scan signals with the in-system programming pins.
This enhances the testability of system designs allowing
logic to be reconfigured to improve controllability and
observability.

Lattice Development Systems

The Lattice pLSI and ispLSI Development System (pDS)
software is used to implement designs inispLSI and pLSI
devices. Design alternatives can be quicklyimplemented
using Lattice's low cost pDS Software or the pDS+ family
of Fitters that interface with third-party development
software packages. This section describes the pDS and
pDS+ Development Systems. Programmer support is
also discussed.

pLSI and ispLSI Development System (pDS)

Features

Q High-Performance, Low-Cost Development
Environment

Supports ispLSI and pLSI Device Families
Boolean Logic and Text File Design Entry

Windows Based Graphical User Interface

Over 275 Macros Available

Automatic Place and Route

Static Timing Table

Logic Simulation with Viewlogic Viewsim

0 00 0 0 0 0 0

JEDEC File Download Direct to Programmer or
ispLSI Device

General Description

AllispLSIand pLSI families are supported by Lattice's low-
cost pDS Software. It runs on IBM-compatible (386/486/
Pentium) PCs with Microsoft Windows.

The graphical user interface employs an easy-to-use
mouse and pull-down menu driven approach. Combined
with Boolean logic data entry using an ABEL-like syntax,
pDS makes design entry with ispLSI and pLSI quick and
straightforward (see figure 8).

Figure 8. pDS Design Flow

¢ Boolean Equations

Logigg:;sign * Macros (>275)
¢ “ABEL"-Like Syntax
Y
Verification * Logic Minimization

* Checks for Signal Availability

/

¢ Automatic
¢ Optimized
* Fast

Place and Route

A

¢ Viewsim

Simulation « EDIF Compatible

Y

¢ JEDEC File Generation

* Download to Programmer
or to Device (ispLSl)

Programming

0292A

The pDS Software supports over 275 macros to assist
the design process. These macros cover most TTL
functions, from gate primitives to 16-bit counters. The
software also supports user-definable macros which can
be modifications of existing macros or custom creations.

The pDS Software automatically verifies the design,
performs logic minimization and checks for signal avail-
ability.

The Lattice Place and Route software assigns pins and
critical speed paths while routing the design.

Quick compilation speeds the design, debug and rework
process dramatically. Incremental design techniques are
also supported.

1994 Handbook

Introduction to ispLSI and pLSI

Timingand functional simulation is available from Lattice,
using Viewsim simulation software.

The Windows graphical user interface makes
programming easy, using pull-down menus, intuitive
point-and-click commands and self explanatory
instructions. Without any up-front training, designs can
be completed within hours instead of days or weeks.

pLSI and ispLSI Development System Plus (pDS+)

Features

Q Supports ispLSI and pLSI Device Families

O Schematic Capture, State Machine, Design Entry
HDL, and Boolean Equations

Expanded Macro Library (>300)

Automatic Logic Minimization and Partitioning
Automatic Place and Route

Logic and Timing Simulation

EDIF Compatible

JEDEC File Download Direct to Programmer or
ispLSI Device

| Ry S R

General Description

For higher level design entry environments, Lattice offers
pDS+ development software packages, which expand on
the core capabilities of pDS. Schematic capture, state
machine, HDL and Boolean entry are supported, along
with an expanded macro library.

The pDS+ software utilizes industry standard third-party
design environments such as Viewlogic's Viewdraw and
Data I/0's ABEL.

Running on IBM compatible (386/486/Pentium) PCs or
workstation platforms, pDS+ software supports automatic
logic minimization and partitioning as well as place and
route, resulting in high logic utilization.

For logic and timing simulation, support is available from
Lattice through Viewlogic Viewsim simulation tools.

Third Party Programming Support

The ispLSI and pLSI families are supported by popular
third-party logic programmers including Data I/O, Logical
Devices, BP-Microsystems, Stag, System General, SMS
Micro Systems and Advin. Table 2 describes eachvendor's
specific programmer models that support the ispLSI and

pLSI devices. No proprietary, expensive, high pin-count
programmers are required.

High pin-count socket adapters are available from Emu-
lation Technology, Procon Technology, EDI Corporation
and Logical Systems Corporation.

Additionally, the ispLSI family can be programmed on the
board (in-system), which eliminates the need for a stand-
alone programmer. For specific details refer to the
Lattice Programming Tools Guide available from your
local Sales Representative.

Table 2. Programming Support

Programmer Vendor Model
Pilot-U84
Advin Systems Pilot-U40
Pilot-GL/GCE
) PLD-1128
BP Microsystems
CP-1128
2900
Data I/O 3900
Unisite 40/48
Allpro 40
Logical Devices
Alipro 88
SMS Micro Systems Sprint Expert
System 3000
Stag
ZL.30/A
System General TURPRO-1

isp Engineering Kit

The ispLSl family may also be programmed with Lattice's
isp Engineering Kit Model 100 for PCs and Model 200 for
Sun workstations. The kit is designed for engineering
purposes only and is not intended for production use. By
connecting an 8 wire cable to the parallel printer port of
a PC, JEDEC files can be easily downloaded into the
ispLSI device. Additionally, this cable can be connected
directly to the circuit board facilitating on-board in-system
programming.

1994 Handbook

1000 Family

Architectural Description

ispLSI and pLSI 1000 Family Introduction

The basic unit of logic for the ispLSI and pLSI families is
the Generic Logic Block (GLB). Figure 1 illustrates the
pLSI 1032 with its 32 GLBs labelled A0, A1 .. D7. Each
GLB has 18 inputs, a programmable AND/OR/XOR ar-
ray, and four outputs which can be configured to be either
combinatorial or registered. Inputs to the GLB come from
the Global Routing Pool (GRP) and dedicated inputs. All
of the GLB outputs are brought back into the GRP so that
they can be connected to the inputs of any other GLB on
the device.

As an example, the pLSI 1032 has 64 I/O cells, each of
which is directly connected to an I/O pin. Each 1/O cell
can be individually programmed to be a combinatorial
input, registered input, latched input, output or bi-direc-
tional I/O pin with 3-state control. Additionally, all outputs
are polarity selectable, active high or active low. The
signal levels are TTL compatible voltages and the output
drivers can source 4 mA or sink 8 mA.

The 1/O cells are grouped into sets of 16 as shown in
figure 1. Each of these I/O groups is associated with a
Megablock through the use of the Output Routing Pool
(ORP).

Figure 1. pLSI 1032 Functional Block Diagram

Eight GLBs, 16 1/O cells, one ORP and two dedicated
inputs are connected together to make a Megablock. The
outputs of the eight GLBs are connected to a set of 16
universal I/O cells by the ORP. Each megablock shares
a common Output Enable (OE) signal. The pLSI 1032
device, shown in figure 1, contains four Megablocks.

The GRP has asits inputs the outputs from all of the GLBs
and all of the inputs from the bi-directional I/O cells. All
of these signals are made available to the inputs of the
GLBs. Delays through the GRP have been equalized to
minimize timing skew.

Clocks in the devices are selected using the Clock
Distribution Network. The dedicated clock pins
(YO, Y1, Y2 and Y3) are brought into the distribution
network, and five outputs (CLK 0, CLK1, CLK 2, IOCLK
0 and IOCLK 1) are provided to route clocks to the GLBs
and I/O cells. The Clock Distribution Network can also be
driven from a special GLB (CO on the ispLSI and pLSI
1032 device). The logic of this GLB allows the user to
create an internal clock from a combination of internal
signals within the device.

Reset | B

Megablock Generic

Logic Blocks

(GLBs)

]
]

3 w042
- ‘é - Vo4t
& Global c4 £l1 o4
2 Routing iR .
g Pool Hin vo3e
§ (GRP) c2 || © o
(o]

2-11

1994 Handbook

1000 Family Architectural Description

Generic Logic Block

The Generic Logic Block (GLB) is the standard logic
block of the Lattice high-density ispLSI and pLSI devices.
A GLB has 18 inputs, four outputs and the logic neces-
sary to implement most standard logic functions. The
internal logic of the GLB is divided into four separate
sections: the AND Array, the Product Term Sharing Array
(PTSA), the Reconfigurable Registers, and the Control
Functions (see figure 2). The AND array consists of 20
product terms which can produce the logical sum of any
of the 18 GLB inputs. Sixteen of the inputs come from the
Global Routing Pool, and are either feedback signals
from any of the GLBs or inputs from the external I/O cells.
The two remaining inputs come directly from two dedi-
cated input pins. These signals are available to the
product terms in both the logical true and the comple-
mented forms which makes boolean logic reduction more
efficient.

The PTSA takes the 20 product terms and routes them
to the four GLB outputs. There are four OR gates, with
four, four, five and seven product terms each (see figure

Figure 2. GLB: Product Term Sharing Array Example

2). The output of any of these OR gates can be routed to
any of the four GLB outputs, and if more product terms
are needed, the PTSA can combine them as necessary.
In addition, the PTSA can share product terms similar to
an FPLA device. Ifthe user's main concernis speed, the
PTSA can use a bypass circuit which provides four
product terms to each output, to increase the perfor-
mance of the cell (see figure 3). This can be done to any
or all of the four outputs from the GLB.

The Reconfigurable Registers consist of four D-type flip-
flops with an XOR gate on the input. The XOR gate in the
GLB can be used either as a logic element or to reconfig-
ure the D-type flip-flop to emulate a J-K or T-type flip-flop
(seefigure 4). This greatly simplifies the design of counters,
comparators and ALU type functions. The registers can
be bypassed if the user needs a combinatorial output.
Each register output is brought back into the Global
Routing Pool and is also brought to the I/O cells via the
Output Routing Pool. Reconfigurable registers are not
available when the four product term bypass is used.

Inputs From Dedicated
Global Routing Pool Inputs Reconfigurable
—_—— Product Term Registers
0 1 23 456 7 8 9 1011121314 1516 17 Sharing Array D,J-K,and T
M da A kA thdedn
D21 4 pQ x> 03
S -
05 O | !
D pQ X To
D-8- 02 Global
D9 o Routing
5 Pool and
1 1 -b_‘-‘ Output
Routing
3 oo B
eI~
pDle 7 v
DL V]
D18 F/ l--_'|I:'Q| X 00
AND Array
PT Reset
Global RESET
Control
Functions
PT Output . To Output
Enable " Enable Mux
2-12 1994 Handbook

1000 Family Architectural Description

Figure 3. GLB: Four Product Term Bypass Example

Inputs From Dedicated
Global Routing Pool Inputs
0 123456 789 1011121314 1516 17 Product Term Sharing i
Lol oL Lo 0 Aray (Four Product Term D Registers
MMM MMMMNMNMNMMMNMMMMMN o Dypass Shown) o
1 u
4 — —— x-P— 03
s
™
| oY)]iD 02 To
Giobal
Routing
a Pool and
l IM] Output
u Routing
i) e
b1
u
.
AND Array PT Reset
Global RESET
Control CLKO
Functions CLK 1
CLK 2 MUX l MUX
PT Clock
PT Output To Output
Enable Enable Mux
0131A
Figure 4. GLB: XOR Gate Example
Inputs From Dedicated
] i | [
Global Routing Pool nputs Product Term Sharing
0 123456 7 8 9 1011121314 1516 17 Array (XOR
P P S B R T R R G R Configuration Shown) D Registers
V- AV AV AV-AV-A VR VA VARV V-AV-A VA VA VAV VAV
u M
u
3 w xj->-03
)_;} 74 N b
5] 1 m)
5D e
D1 DX 02 Giopy
Routing
%‘1;4\ 8 = Pool and
D1) u Rouing
DQ
DI2,) i:l— x[->-o01 Fou
1]
51| f ol
2 6 Y\ L oalx 00
X
D12 L]
AND Array
PT Reset:
Global RESET
Control CLKO
Functions CLK1
CLK 2 MUX MUX
PT Clock
PT Output To Output
Enable Enable Mux
o132a

2-13

1994 Handbook

1000 Family Architectural Description

Generic Logic Block (continued)

The PTSA is flexible enough to allow these features to be
used in virtually any combination that the user desires. In
the GLB showninfigure 5, Output Three (O3)is configured
using the XOR gate while Output Two (02) is configured
using the four Product Term Bypass. Output One (O1)
uses one of the inputs from the five Product Term OR
gate while Output Zero (O0) combines the remaining four
product terms with all of the product terms from the seven
Product Term OR gate for a total of eleven (7+4).

Various signals which control the operation of the GLB
outputs are driven from the Control Functions (see figure
5). The clock for the registers can come from any of three
sources developed in the Clock Distribution Network
(see Clock Distribution Network section) or from a product
term within the GLB. The Reset Signal for the GLB can
come from the Global Reset pin (RESET) or from a

Figure 5. GLB: Mixed Mode Configuration Example

product term within the block. The global reset pin is
always connected and is logically "ORed" with the PT
reset (if used). An active reset signal always sets the Q
of the registers to a logic 0 state. The Output Enable for
the 1/0O cells associated with the GLB comes from a
product term within the block. Use of a product term for
a control function makes that product term unavailable
foruse as alogicterm. Refertothe Product Term Sharing
Matrix (table 1) to determine which logic functions are
affected.

There are many additional features in a GLB which allow
implementation of logic intensive functions. These
features are accessible using the Hard Macros from the
software and require no intervention on the part of the
user.

Inputs From Dedicated
Global Routing Pool Inputs
0 123 456 7 8 9 1011 12 13 14 1516 17 Product Term D Registers
Sharing Array
[v3vivivivivivivavivavs ' 3.+4 (Shared)
] PT's and XOR M
SN p
52— 3 x> 08
53] 2 p
: 4 1 —
HoD e
4 1.4 PT Bypass u To
3? P QIXH> 02 giopg
Routing
5 8 i — Pool and
y_g_% Single PT l x Output
}L“ Routin
Stz | ia ol»-z_—l>01 oo
1 =
o] ;
516 1114 | 7+4 (Slhared) U
D%r I PT's l b o{x 00
19
AND Array
PT Reset
Global RESET
Control CLKO
Functions CLK 1
CLK 2 MUX l MUX
PT Clock
PT Output __, To Output
Enable Enable Mux
2-14 1994 Handbook

1000 Family Architectural Description

Product Term Sharing Matrix

This matrix shows how each of the product terms are
used in the various modes. As an example, Product
Term 12 can be used as an input to the five input OR gate
in the standard configuration. This OR gate under stan-
dard configuration can be routed to any of the four GLB
outputs. Product Term 12 is not used in the four product

Table 1. Product Term Sharing Matrix

term bypass mode. When GLB output one is used in the
XOR mode Product Term 12 becomes one of the inputs
to the four input OR Gate. If Product Term 12 is not used
in the logic, then it is available for use as either the
Asynchronous Clock signal or the GLB Reset signal.

Product | Standard Configuration Four Product Term
Term # Output Number Bypass Output Number

3 2 1 0 3 2 1 0 3

Single Product Term
Output Number

XOR Function
Output Number

2 2 1 1 0 O

Alternate
Function

1 0 3 3

Nidoew |Nouas|lwnao
EEENR

BCLK/Reset

13
14
15
16
17
18
19

W OE/Reset

The Megablock

A Megablock consists of eight GLBs, an ORP, 16 1/O
cells, two dedicated inputs and a common product term
OE. Each of these will be explained in detail in the
following sections. These elements are coupled together
as shownin figure 6. The various members of the ispLSI
and pLSI families combine from one to eight Megablocks
on a single device (see table 2).

Forthe 1000 Family, the eight GLBs within the Megablock
share two dedicated input pins. These dedicated input
pins are not available to GLBs in any other Megablock.
These pins are dedicated (non-registered) inputs only

and are automatically assigned by software. The product
term OE signal is generated within the Megablock and is
common to all 16 of the I/O cells in the Megablock. The
OE signal can be generated using a product term (PT19)
in any of the eight GLBs within the Megablock (see the
section on the Output Enable Control for further details).

Because of the shared logic within the Megablock, signals
which share a common function (counters, busses, etc.)
should be grouped within a Megablock. This will allow the
user to obtain the best utilization of the logic within the
device and eliminate routing bottlenecks.

2-15

1994 Handbook

1000 Family Architectural Description

Table 2. Device Resources

ispLSl and pLSI Devices Megablocks GLBs I/O Cells Dedicated Inputs
1016 2 16 32 4
1024 3 24 48 6
1032 4 32 64 8
1048/1048C 6 48 96 10/12

Figure 6. The Megablock Block Diagram

Table 2-00158

Global Routing Pool |
N\
e e e e (e (o {Fe (Fe {)
L
g H gl H aiB H aiB H aB H 6B H aB H B | |16
o A0 H A1 H A2 A3 H A4 H A5 H A6 H A7
YYYY YVYVYY YYVYY VYYVYY VYVYYY VYYVY VVYVY VYVYVY
Output Routing Pool
[I/0 Cell Inputs to GRP
Y Y A A A A
\ 4 A \4 Y A A Y A \ 4 Y A Y A A Y A
wollvol{woflvol{wol|lvol{voljwo]fvol]ro]lvolvollrolfvol]vo]|ro
ARy |Celll|Celt||Celi||Cell|[Cellf[Cell| [Cellf fCelt| | Cell||Cell||Cell| | Cell || Cell || Cell || Cell | Cell
@@0123456789101112131415

Input Routing

Signal inputs are handled in two ways within the device.
First, each I/O cell within the device has its input routed
directly to the GRP. This gives every GLB within the
device access to each I/O cell input. Second, each
Megablock has two dedicated inputs which are directly
routed to the eight GLBs within the Megablock. Both
input paths are shown in figure 6.

The Output Routing Pool

The ORP routes signals from the GLB outputs to I/O cells
configured as outputs or bi-directional pins (see figure
7). The purpose of the ORP is to allow greater flexibility
when assigning I/O pins. It also simplifies the job for the
routing software which results in a higher degree of
utilization.

By examining the ORP in figure 7, it can be seen that a
GLB output can be connected to one of four I/O cells.
Further flexibility is provided by using the PTSA, (figures
2 through 5) which makes the GLB outputs completely
interchangeable. This allows the routing program to
freely interchange the outputs to achieve the best
routability. This is an automatic process and requires no
intervention on the part of the user.

The ORP bypass connections (see figure 8) further
increase the flexibility of the device. The ORP bypass
connects specific GLB outputs to specific 1/0 cells at a
faster speed. The bypass path tends to restrict the
routability of the device and should only be used for
critical signals.

2-16

1994 Handbook

1000 Family Architectural Description

Figure 7. Output Routing Pool

1/0 Cell Inputs
A0 Al A2 A3 A4 A5 A6 A7 o CRE
0123|lo123]|[o123||o123]||o123|lo123]|[lo123[|0o123 {71
|
Y YYY VYV _YYYY _YYYY_ YYYY _YYVY __YYYV__yVVY. |6
! =
=S == H b— .
ORP —»! i=si ig S
: ® i3 it =
|
| v i 'l v ' L V_L 1
o |[vo|[vo] [vo][wo][vo] [vo][vo][vo] [vo][vo|[vo][vo][vo][vo][vo
ol)23l al|s||e|l7]|l8f|9]|l10][11]]12]|13]]14]]15
Figure 8. Output Routing Pool Showing Bypass
I/O Cell Inputs
to GRP
Al A2 A3 A4 A5 A6 A7 ‘
23|lo123[lo123|[o123|lo123][|lo123]||lo123||lo123]
Iy b Yoy e

/[e]
13

y y
/0 || /O
14 || 15

The 1/O cell (see figure 9) is used to route input, output
or bi-directional signals connected to the I/0O pin. The two
logic inputs come from the ORP (see figure 9). One
comes from the ORP, and the other comes from the
faster ORP bypass. A pair of multiplexers select which
signal will be used, and its polarity. The Output Enable
of the 1/O cell is controlled by the OE signal generated
within each Megablock.

As with the data path, a multiplexer selects the signal
polarity. The Output Enable can be set to a logic high
(enabled) when an output pin is desired, or logic low
(disabled) when an input pin is needed. The Global
Reset (RESET) signal is driven by the active low chip
reset pin. This reset is always connected to all GLB and
I/0O registers. Each I/O cell can individually select one of

the two clock signals (IOCLK 0 or IOCLK 1). These clock
signals are generated by the Clock Distribution Network.

Using the multiplexers, the 1/0 cell can be configured as
an input, an output, a 3-stated output or a bi-directional
I/0. The D-type register can be configured as a level
sensitive transparent latch or an edge triggered flip-flop
to store the incoming data. Figure 10 illustrates some of
the various I/O cell configurations possible.

There is an active pull-up resistor on the I/O pins which
is automatically used when the pin is not connected. An
option exists to have active pull-up resistors connected to
all pins. This improves the noise immunity and reduces
Icc for the device.

2-17

1994 Handbook

1000 Family Architectural Description

Figure 9. /O Cell Architecture

From OE MUX

MUX Vee
Output
Enable

Active
Pull Up

g

From Output
Routing Pool
)
From Output MUX MUX
Routing Pool =
Bypass Z) ' KIO Pin}
To Global q)
Routing Pool MUX
I D Q
IOCLK 0 —— =
MUX —{ MUX RIL _i_
IOCLK 1 —

Reset] =

FF T

® Represents an E2CMOS Cell.

2\

|

r

From Gilobal
RESET

Figure 10. Examples of /O Cell Configurations

Bi-Directional
1/0 Pin

$
;

Input Buffer Output Buffer

8
\V
T

D
<
e

O0Cel ____ |LE O m Bi-Directional
Clock ’ I/O Pin With
Inverting Output Buffer Registered Input
Latch Input [7 N
P KO Pin)
Pin D Qf— il - L 1b o _l
1/0 Cell /O Cell
Clock Output Buffer with cl i
3-State Enable oc
Registered Input
Input Cells Output Cells Bi-Directional Cells

2-18 1994 Handbook

1000 Family Architectural Description

The Output Enable Control

One OE signal can be generated within each GLB using
the OE Product Term (PT19). One of the eight OE
signals within a Megablock is then routed to all of the /O
cells within that Megablock (see figure 11). This OE
signal can simultaneously control all of the 16 I/O cells
which are used in 3-state mode. Individual I/O cells also
have independent control for permanently enabling or

Figure 11. Output Enable Control for a Megablock

disabling the output buffer (refer to the 1/O cell section).
Only one OE signal is allowed per Megablock for 3-state
operation. The advantage to this approach is that the OE
signal can be generated in any GLB within the Megablock
which happens to have an unused OE productterm. This
frees up the other OE product terms for use as logic.

GLB
A0

GLB
Al

GLB
A2

GLB
A3

GLB
A4

GLB
A5

GLB
A6

GLB
A7

8:1 OE MUX

Flﬂf—_

A

l

Ponionz
of 11O :
Cell 14

2-19

1994 Handbook

1000 Family Architectural Description

Global Routing Pool

The GRP is a Lattice proprietary interconnect structure
which offers fast predictable speeds with complete con-
nectivity. The GRP allows the outputs from the GLBs or
the 1/O cell inputs to be connected to the inputs of the
GLBs. Any GLB output is available to the input of all other
GLBs, and similarly an input from an 1/O pin is available

as an input to all of the GLBs. Because of the uniform
architecture of the ispLSI and pLSI devices, the delays
through the GRP are both consistent and predictable.
However, they are slightly affected by GLB loading as
shown in the example pLSI 1032-80 GLB Loading Delay
graph (see figure 12).

Figure 12. Example Graph of GRP Delay vs GLB Loading

50—

45

GRP Delay (ns)
n 0w ow A
[6,] o (6] o
| | | |

o
o
I

pLSI 1032-80

-
o

—_

H

12 16

GLB Loads

Clock Distribution Network

The Clock Distribution Networks are shown in figure 13.
They generate five global clock signals CLK 0, CLK 1,
CLK 2, IOCLK 0 and IOCLK 1. The first three, CLK 0,
CLK 1 and CLK 2 are used for clocking all the GLBs in the
device. Similarly, IOCLK0and IOCLK 1 signals are used
for clocking all of the I/O cells in the device. There are four
dedicated system clock pins (YO, Y1, Y2, Y3), three for
the ispLSI and pLS! 1016 (YO, Y1, Y2), which can be
directed to any GLB or any I/O cell using the Clock
Distribution Network. The other inputs to the Clock Dis-
tribution Network are the four outputs of a dedicated
clock GLB ("C0" for the pLSI 1032 is shown in figure 1).
These clock GLB outputs can be used to create a user-
defined internal clocking scheme.

For example, the clock GLB can be clocked using the
external main clock pin YO connected to global clock

signal CLK 0. The outputs of the clock GLB in turn can
generate a "divide by" signal of the CLK 0 which can be
connected to CLK 1, CLK 2, IOCLK 0 or IOCLK 1 global
clock lines.

All GLBs have the capability of generating their own
asynchronous clocks using the clock Product Term
(PT12). CLK O, CLK 1 and CLK 2 feed to their corre-
sponding clock MUX inputs on all the GLBs (see figure
2).

The two I/O clocks generated in the Clock Distribution
Network IOCLK 0 and IOCLK 1, are brought to all the /O
cells and the user programs the /O cell to use one of the two.

2-20

1994 Handbook

1000 Family Architectural Description

Figure 13. Clock Distribution Networks

ispLSl and pLSI 1024,
1032 and 1048

Generic Logic
Block "C0O"

00 O1 02 O3

Clock Distribution
Network

» CLK 0

Dedicated Clock
Input Pins

BRI

01638(3)

» CLK 1
» CLK 2
—» |IOCLK 0
— IOCLK 1

Generic Logic

ispLSl and pLSI 1016 Block "B0"
00 O1 02 03
Clock Distribution
Network

» CLK O

@ » CLK 1

j Q- » CLK 2
© » [OCLK 0
—» IOCLK 1

IO

CLK/

Reset

Dedicated Clock
Input Pins

*Note: Pin Y1 has the Clock and
Reset Functions Multiplexed
on the ispLSI and pLSI 1016,
Selection is controlled in
the software tools.

0095A1

Timing Model

The task of determining the timing through the device is
simple and straightforward. A device timing model is
shown in figure 14. To determine the time that it takes for
data to propagate through the device, simply determine

the path the data is expected to follow, and add the
various delays together (figure 15). Critical timing paths

Figure 14. ispLSI and pLSI Timing Model'

[Ded. n

</ Pin>—¢-

Reset

[y123

are shown in figure 14, using data sheet parameters.
Note that the Internal timing parameters are given for
reference only, and are not tested. (External timing
parameters are tested and guaranteed on every device).

#55

1/0 Cell GRP GLB ORP 1/0 Cell
Feedback
#26 «
16} Fl:g2 OBypass ".I _ C:':: 4 g 4 P:g;pass | o GLB Rig7Bypass | ORP Bypass |
(Input) 3 #46 A (Output)
Input J' GRP 20 PT GLB Reg ORP #48, 49
D Register L%aatfg;’g XOR Delays Delay Delay
RST
#21-25 #2729 1 434.35.36 D a Pl e
l 30,31, 32 RST
' #55 #38, 39,
\ 4 > 40, 41
Clock || Control R
Distribution PTs OE
» #51,52, M #42 43, CK
53,54 44

[vo

*Note: Y1 and Y2 only for the ispLSI and pLS! 1016.

#50

e

2-21

1994 Handbook

1000 Family Architectural Description

Figure 15. ispLSI and pLSI Timing Model Examples!

Combinatorial Paths

tpdi = tiobp + tgmp4

#1 = #20 + #28

tpd2 = tiobop + tgmp4

#2 = #20 + #28
Registered Paths

General Form:
tsu = Logic + Regsu
th =Clock(max) + Regh
tco =Clock(max) + Regco
Specific Examples:

tsut = (tiobp + tgrp4
#6 = (#20 + #28
th1 =tgyo(max) + tgh
#8 = #50 + #39
tcot =tgyo(max) + tgco
#7 = #50 + #40
tsu2 = (tiobp + tgrp4
49 = (#20 + #28
th2 =tgyo(max) + tgh
#11 = #50 + #39
tco2 = tgyomax) + tgco
#10 = #50 + #40

+ +

+

+ +

+ +

+

+

taptbp +
#33 +
txoradj +
#36 +
Clock(min)
Logic
Output
taptop) +
#33) +
(tiobp +
#20 +
(torpbp +
#46 +
txorad)) +
#36) +
(tiobp +
(#20 +
(torp +
(#45 +

torpbp
#46

torp
#45

tgsu
#38

tgrp4
#28

tob)
#47)

tgsu
#38

tgrp4
#28

tob)
#47)

+ tob

+ #47

+ tob

+ #47

- tgyo(min)
- #50

+ taptop)
+ #33)

+ tgyo(min)
+ #50

+ txoradj)
+ #36)

1. The timing parameter reference numbers refer to the Internal Timing Parameters contained in the individual data sheets.

Circuit Timing Example

Figure 16. Timing Calculation Example

A design requires two logic levels (each uses the 20PTXOR path). The design then uses a GLB register before exiting
the device using the ORP bypass. Calculate tsu, th and tco.

Logic Level Logic Level RP
[N D>——| # > 2 > GLBReg |—» ngass —»[out >
20PTXOR 20PTXOR
AN
A
l YO >
2-22 1994 Handbook

1000 Family Architectural Description

Figure 16. Timing Calculation Example (continued)

tsu = Logic +Reg su - Clock (min)
= (tiobp + tgrp4 + t20ptxor + tgbp + tgrp4 + t20ptxor) + tgsu - tgyo(min)
= (#20 + #28 + #35 + #37 + #28 + #35) + #38 - #50

19.5ns = (20+2.0+80+1.0+2.0+80)+1.0-45

th = Clock (max) + Reg h - Logic
= tgyo(max) + tgh - (tiobp + tgrpa + t2optxor + tgbp + tgrps + t2optxor)
= #50 + #39 - (#20 + #28 + #35 + #37 + #28 + #35)

-14.0ns = 45+45-(20+2.0+80+1.0+2.0+8.0)

tco = Clock (max) + Reg co + Output
= tgyo(max) + tgco + (torpbp + tob)
= #50 + #40 + (#46 + #47)

100ns = 45+2.0+(0.5+3.0)

1. The delay values used are for a pLSI 1032-80 device.

2-23 1994 Handbook

Notes

2-24 1994 Handbook

2000 Family

Architectural Description

ispLSI and pLSI 2000 Family Introduction

The basic unit of logic of the ispLSI and pLSI 2000 family
is essentially the same as that of the ispLSI| and pLSI
1000 family. However, there are some specific architec-
tural differences: Global clock structure, /0 Cell and OE
structure, and ORP structure. A functional block diagram
of the 2032 device is shown in figure 1. These architec-
tural differences are described in detail below.

Global Clock Structure

The clock GLB distribution network of the 1000 family has
been eliminated and replaced by three dedicated global

Figure 1. pLSI 2032 Functional Block Diagram

GLB clock input signals CLKO, CLK1, and CLK2. These
three clocks are used for clocking all the GLBs configured
as registers in the device. They feed directly to the GLB
clock input via a clock multiplexer. CLKO is associated
with system clock pin YO, CLK1 corresponds to system
clock pin Y1, and finally CLK3 corresponds to system
clock pin Y2. This is illustrated in figure 2. The GLB
global clocks do not have inversion capability, but all
GLBs continue to have the capability of generating their
own asynchronous clocks using the clock product term
(PT12) with inversion capability. The GLB global clocks
and the GLB product term clock feed to their correspond-
ing clock multiplexer shown in figure 3.

| A0 l | A7 I
= o
o o
S S
3 MJ Global Routing Pool | 26 | 3
2 a (GRP) a ||9
Q| o o |2
5l < £llz
£ é é £
<[| » ||
i=3 =
= 3
le) o
A3 | A4 ,

*Note: Y1 and RESET
are multiplexed
on the same pin
012398(1)isp/2000

2-25 1994 Handbook

2000 Family Architectural Description

Figure 2. Global Clock Structure

Clock Distribution
» CLKO
» CLK 1
» CLK 2
Dedicated Clock 0095A3isp/2000

Input Pins

Figure 3. GLB with Clock Multiplexer Scheme

Inputs From Dedicated
Global Routing Pool Inputs
0 12 3 456 7 8 9 1011 12 13 14 1516 17 Broduct Term D Registers
Sharing Array
AVvA 3 AVA 3 3 3 PT's and
14114 18 14 16 1A 1A N4 18 N4 T8 N4 A 161 16 _
S 1o
-2 3 w X o3
D 3 /¢ b
: 4
1 M
-6 4 1 4 PT Bypass I To
D1 iD QI [X[>02 giopa
Routing
5 '91 i — Pool and
%}%ﬁ@ Single PT 1 'S Output
Routin
}12-3 D iD Ql x> 01 pool ¢
DﬁL: - W]
M
D16 7 y
7 +4PTs u
1 J l D Qx> 00
1
0133A/2000 AND Array
PT Reset
Global RESET
Control
Functions PT Clock
CLKO
CLK 1 | MUX
CLK 2
PT Output . To Output
Enable " Enable Mux
0133A/2000

2-26 1994 Handbook

2000 Family Architectural Description

/0 Cell and OE Structure

The reconfigurable input register or latch has been re-
moved to simplify the I/O cell architecture. Each I/O cell
can be individually programmed to be a combinatorial
input, combinatorial output, or a bi-directional I/O pin with
3-state control. With the simplified 1/O cell architecture,
the I/O clocks have also been removed. This is illustrated
in figure 4. The product term output enable (PTOE)

signal is still generated within each GLB using product
term 19. The PTOE is generated in one of the eight
GLBs. In addition to the PTOE, there is a global output
enable (GOE) pin which can control any of the device’s
3-state output buffers. The multiplexing between the
GOE and PTOE is illustrated in figure 5. The 2032 device
has one GOE, and the 2064 and 2096 devices each have
2 GOEs.

Figure 4. ispLSI and pLSI 2000 Family I/O Cell Architecture

Gilobal OE 0 —— Programmable
Megablock OE — MUX MUX Pull Up
I Vee
ORP MUX —
MUX MUX
ORP Bypass —
/ N\
E T 1 Ko Pin
To Global
Routing Pool
0138A-7/2000
Note:
® Represents an E2CMOS Cell.
Figure 5. ispLSI and pLSI 2000 Family Output Enable Controls
GLB GLB GLB

GLB GLB GLB GLB
A0 Al A2 A3

GLB
A4

| 5] L%

A5 A6 A7

‘ Y

T

8:1 OE MUX

["coeo
I 2:1 I

2-27

1994 Handbook

2000 Family Architectural Description

Output Routing Pool (ORP)

Each megablock now contains two ORPs to increase
output routability. A set of four GLBs is associated with
one of the two ORPs within the megablock. The 16
outputs of the four GLBs within a megablock will feed to
any of the 16 associated I/O cells. Inthe 1000 family, the

32 GLB outputs feed only 16 associated I/O cells. In this
device family, 32 GLB outputs of a megablock can feed
32 1/O cells. Output routability has doubled. This is
illustrated in figure 6. Each GLB output has an ORP
bypass capability so more designs can have critical
output signals. This is shown in figure 7.

Figure 6. ispL.Sl and pLSI 2000 Family Output Routing Pool

1/0 Cell Inputs

A0 At A2 A3 A4 AS A6 A7 to GRP
0123|[o123]|lo123]|]|0123 0123]|[0123]||0123]|0123 17
CYYYY YYYY _ YYYY Yy L YYYY _YYYY J yYy __yyyy.. 4=
ORP—» iZimaai i Zaiarl
E:'—‘ - ,L’L 1T :E: 1 L%j‘ T t:
I
y TVf! y T VTVTT Y Y VTV? Y T Y Y I YV VY i VTV
/O Cells—> H ,,| = QEH .;Hg :,‘J Ifk Hl_gk
| 0031E/2000
Figure 7. ispLSI and pLSI 2000 Family Output Routing Pool Showing Bypass
1/0 Cell Inputs
to GRP
A0 Al A2 A3 A4 A5 A6 A7 PN
0123 flo0123}|0123|{0123]]0123 {0123]]|0123([|0123
B
XX J’.V-__V!.J[LY VAN YYYLY NNV YYYY VY YooYy,
! ! :
ORP —» ' !
SRR AR R N |
|
ARINAN VIVVV L YIVY YL VY VVtVtV vV vy i yvy YVYVY Y
I R X " .
" "~ BN 00348/2000
2-28 1994 Handbook

2000 Family Architectural Description

The task of determining the timing through the device is are shownin figure 8, using data sheet parameters. Note
simple and straightforward. A device timing model is that the Internal timing parameters are given for refer-
shown in figure 8. To determine the time that it takes for ence only, and are nottested. (External timing parameters
data to propagate through the device, simply determine are tested and guaranteed on every device).

the path the data is expected to follow, and add the

various delays together (figure 8). Critical timing paths

Figure 8. ispL.Sl and pLSI 2032 Timing Model

1/0 Cell GRP GLB ORP /O Cell
Feedback
| Ded. In 426 I_.'
1/0 Dela _’I GRP 4 PT B GLB Reg Bypass ORP Bypass
[0 Pin #20 - [#28 [#S:DBSS 327 = “;p -1
(Input) l/ (Output)
20 PT GLB Reg ORP
XOR Delays Delay Delay
™1 434.35.36 P a Tl ws
RST
[Reset #55 ol #38.39,
Control RE #48, 49
L_|PTs OE .
#42, 43, CK
il I
| Yo12 #50, #51 >
| GOEo #56, 57
0491A/2032

Derivations of tsu, th and tco from the Product Term Clock’!

tsu = Logic + Reg su - Clock (min)
= (tiobp + tgrp + t20ptxor) + (tgsu) - (tiobp + tgrp + tptck(min))
= (#24 + #28 + #35) + (#38) - (#20 + #28 + #44)

22ns = (1.0+1.3+4.7)+(0.8)-(1.0+1.3+3.3)

th = Clock (max) + Reg h - Logic
= #tiobp + tgrp + tptck(max)) + (tgh) - (tiobp + tgrp + t20ptxor)
= (#20 + #28 + #44) + (#39) - (#20 + #28 + #35)

16ns = (1.0+1.3+33)+(3.0)-(1.0+1.3-4.7)

tco Clock (max) + Reg co + Output

tiobp + tgrp + tptck(max)) + (tgco) + (torp + tob)
#20 + #28 + #44) + (#40) + (#45 + #47
88ns= (1.0+1.3+3.3)+(0.7) + (1.3 +1.2)

1. Calculations are based upon timing specs for the ispLSI and pLSI 2032-135L

2-29 1994 Handbook

Notes

2-30 1994 Handbook

3000 Family

Architectural Description

R R R N A e e differences: Boundary Scan, Megablock and GLB struc-

ture, Global clock structure, and 1/0 cell structure. A

The basic unit of logic of the ispLSI and pLSI 3000 family functional block diagram of the ispLSI 3256 device is
is closely related to that of the pLSI and ispLSI 1000 shown in figure 1. The architectural differences are
family. However, there are some notable architectural described in the following sections.

Figure 1. ispLSl 3256 Functional Block Diagram

35

3852 2355 5355 3353

5

5555 5555 5555 5350
2888 NBRY BR2S 33Is

RESET

|

[Output Routing Pool (ORP) |

Lz lx1=]%]

Input Bus

Input Bus

|

|§ 5y
Q
2 @ S8R Q¥s® Peng gEes £288 5883 8858 ge5g § H
3 8 2222 2822 2222 288% 2222 2222 2222 gggg § e e
@ | B D O BTE 05D B @ L
L Thpul Bus [Input Bus ispand HEJ| TOUSDI
B | Output Routing Pool (ORP) | [Output Routing Pool (ORP) | BO;\:N‘/ L@ | st
n
[Ha || v || m |[ro] | [[as][e2] e | co] AP | Tooisoo

[Output Routing Pool (ORP) |

Lz ll& J[=]s]

Global Routing Pool

2 |
ORP) |
]
5558
8828

|

I

@

35
(]
F
=

by

5555 5555 50600
B2I8 REIZ 8382

8
a
=
£
5
)
o
5
2|
-]
°f

Lz

|

Bz
e 077
S 076
= 3] vo7s

o
11074
2| ® 1073
= 1072
£|[Bleg|von
g3 1070
[vd /0 69
= 10 68

3
gl Bz
E0 || 1065
/0 64

(oo) (e (o]

[oo] ot |[o2]| b3 |

[Output Routing Pool (ORP) |

| Output Routing Pool (ORP) |

__Input Bus
R BIR EEE B

Input Bus

BN N B R m

8338 8588 TIP IVES
2992 2992 2992 2922

2235 B3IB BHRI 5B pasios
2999 99992 9992 2999

2-31 1994 Handbook

3000 Family Architectural Description

Generic Logic Block

The Twin GLB is the standard logic block of the Lattice
ispLSI and pLSI 3000 Family. This Twin GLB has 24
inputs, eight outputs and the logic necessary to imple-
ment most standard logic functions. The internal logic of
the Twin GLB is divided into four separate sections: The
AND Array, the Product Term Sharing Array, the
Reconfigurable Registers, and the Control section.

The AND array consists of two 20 Product Term Sharing
Arrays which can produce the logical sum of any of the 24
Twin GLB inputs. These inputs all come from the GRP,
and are either feedback signals from any of the 32 Twin
GLBs or inputs from the external I/O Cells. All Twin GLB

Figure 2. Twin GLB: Product Term Sharing Array

Inputs
Global Routing Pool

012345678 9101 1213141516 171819202122 23

input signals are available to the Product Terms in both
the logical true and complemented forms which makes
Boolean logic reduction easier.

The two Product Term Sharing Arrays (PTSA) take the 20
Product Terms each and allocate them to four Twin GLB
outputs. There are four OR gates, with four, four, five and
seven inputs respectively. The output of any of these
gates can be routed to any of the four Twin GLB outputs,
and if more Product Terms are needed, the PTSA can
combine them as necessary. If the user’s main concern
is speed, the PTSA can use a bypass circuit with four
Product Terms to increase the performance of the cell.
This can be done to any or all of the eight outputs of the
Twin GLB.

MMM N M N M N W No N0 N o Mo N NG NS NG NS NS N NS NS NG

Reconfigurable
Product Term Registers
Sharing Array D,J-K, and T
M|
U
2 O Pt
r im|
2D - o
D o
)_B_ Q X o1 Global
gi r_ Routing
10 5 Pool and

._
]
=)

—
Y| Routi
| I’b ing
X102 pog
ol

F GLB

[x<z

D Q) o3

FEERPFERE

Control

g& ; MUX Functions
Twin PT Clock 'M
PT Output 9 To
GLB e Eoamaniux
%%) f Q—ﬁ@» o
N Im|
g : [DaQ -|§|—-{> o5 To
Global
ing
Pool and

B o
% 7 i I} > GLB
AND Array
Control
Functions
Eravioux
2-32 1994 Handbook

3000 Family Architectural Description

Megablock Structure ciated outputs. A total of 32 GLB outputs are fed to the

ORP. However, only 16 out of the 32 outputs feed to 16
Four Twin GLBs make up a Megablock. Each GLB hasa /0 cells. The Megablock structure is shown in figure 3.
maximum fan-in of 24 inputs, and no dedicated inputs H
associated with any Megablock. A GLB has eight asso-

Figure 3. ispLSl and pLSI 3000 Family Megablock Block Diagram

@24 @24 @24 @24 N\
4T 16
GLB GLB GLB GLB
A0 Al A2 A3

HMVHMW HVHV \L 22222210 212221
Output Routing Pool

I [[[T T 1 [] [[T T 1T [T 1
o |fwo|fvo||wollwoljvo{|vollvoljro|fvolfro o || vo [| vo [[vo
Cell{|Cell||Cell|{Cell || Cell| Cell| | Cell |{Cell | [Cell || Cell| |Cell | | Cell | | Cell || Cell }| Celi] | Celt
ol {23l alls el 7 L8]l o flof{11] 12]13]| 14[[15
Global Clock Structure is designed into the 1000 device family has been re-

moved so all input clock signals are fed directly to the
The global clock structure is made up of five global clock GLB clock input via a clock multiplexer. The GLB global
inputpins, YO, Y1,Y2,Y3,and Y4. Thisis showninfigure clocks do not have inversion capability, but the product
4. Three of the clock pins are dedicated for GLB clocks term clock does have inversion capability before it reaches
and the remaining two clock pins are dedicated for I/O the clock multiplexer.
registerclocks. The clock GLB generation network which

Figure 4. ispLSl and pLSI 3000 Family Global Clock Structure

YO | »CLK 0
yi[» CLK 1
y2 [» CLK 2
Y3 | -+ |OCLK 0
Y4 [» |OCLK 1

0163A/3256

2-33 1994 Handbook

3000 Family Architectural Description

I/O Cells

The I/0O cell structure architecture remains nearly the
same as the 1000 Family as illustrated in figure 5. Each
I/O cellnow contains Boundary Scan Registers as shown
in figure 8. An input pin has only one scan register as
shownin figure 9. A global test OE signal is hardwired to

all I/O cells and is useful to perform static testing of all the
3-state output buffers within the device. In addition to the
test OE signal, two global OEs are connected to all I/O
pins. The product term OE is shared between two
Megablocks resulting in twice the GLBs being able to use
asingle OE signal. The Megablock OE signal and global
OE signals are fed to an OE multiplexer. The OE signals,
with the exception of the test OE, have inversion capabil-
ity after going through the OE multiplexer as shown in
figure 6.

Figure 5. ispLSI and pLSI 3000 Family I/O Cell Architecture

Programmable
Pullup

Output
Enable

\ See Boundary

1
Scan For Details |
1
1
1

Test OE
4
Global OE0 —
Global OE1 —| MUX —{; MUX
Megablock OE0 —
=
From ORP —
MUX —E MUX
From __ |
ORP Bypass
To Global MUX
Routing Pool
i —D
I0CLK 0
IOCLK 1 MUX p

R/L-i

1

Note:
J;é* Represents an E2CMOS Cell.

0138A/3256

2-34

1994 Handbook

3000 Family Architectural Description

Figure 6. ispLSl and pLSI 3000 Family Output Enable Controls

* 7o Other
/O Cells

To Other

Boundary Scan

Boundary Scan (IEEE 1149.1 compatible) is a test fea-
ture incorporated within the device to provide on-chip test
capabilities during PCB testing. Five input signal pins,
BSCAN, TDI, TCLK, TMS, TRST, and one output signal
pin, TDO, are associated with the boundary scan logic
cells. These signal pins occupy the same dedicated
signal pins used for ISP programming. The signal BSCAN
is associated with the ispEN pin, TDI corresponds to the
SDI pin, TCLK corresponds to the SCLK pin, TMS corre-

Figure 7. Boundary Scan Block Diagram

~ /O Cells

sponds to the MODE pin, and TDO corresponds to the
SDO pin. When ispEN is asserted low, the MODE, SDI,
SDO, and SCLK options become active for ISP program-
ming. Otherwise, BSCAN, TDI, TCLK, TMS, TDO, and
TRST options become active for boundary scan testing
of the device. The boundary scan block diagram is
shown in figure 7. TDl is the testdata serial input, TCLK
is the boundary scan clock associated with the serial shift
register, TMS is the test mode select input, TDO is the
test data output, and finally TRST is the reset signal pin.

Test Data Input (TDI) _

Test Mode Select (TMS)

Test Data Output (TDO)

To I/0 Cell Boundary
Scan Registers

Boundary Scan Enable (BSCAN) Boundary Scan —
Boundary Scan CLK (TCLK)
Reset Signal (TRST) _
0846
2-35 1994 Handbook

3000 Family Architectural Description

The userinterfaces to the boundary scan circuitry through
the Test Access Port (TAP). The TAP consists of a
control state machine, instruction decoder and instruc-
tion register.

The TAP is controlled using the test control lines: Test
Data IN (TDI), Test Data Out (TDO), Test Mode Select
(TMS), Test Reset (TRST) and Test Clock (TCK).

The TAP controls the operation of the Boundary Scan
Registers after decoding the instruction code sent to the
instruction register (see table 1).

The Boundary Scan Registers for the I/0O cells are shown
in figure 8. As illustrated in the figure, each /O cell
contains 3 registers, 2 latches and 5 multiplexers to

Figure 8. Boundary Scan Registers for I/O Cells

implement the ability to capture the state of the I/O cell or
set the state of the output path of the cell or function as
a conventional /O cell.

The Boundary Scan Registers required for an input only
cell are showninfigure 9. Aninputonly cellcanonly have
its state captured, which only requires one MUX and one
register.

All of the input cells and I/O cells are serially connected
together in a long chain. The scan out of one cell is
connected to the scan in of the next cell. The cells are
connected in the following order: TDI to 1063 thru |032
to Y4,Y3, Y2, Y1, Reset, TOE, GOE1, GOEQ, YO0, 031
thru 100 to 1064 thru 10127 to TDO.

SCAN IN (from previous pad)

|

]
<

Shift DR —

I

D Q M
u
GLB __| x
OE
EXTEST
D Q . N\
ws_ |V D
Output
-

—

-

Re,

Clock DR —

/O IN

SCANOUT (to next pad)

Update DR

0847

2-36

1994 Handbook

3000 Family Architectural Description

Figure 9. Boundary Scan Registers for an Input Only Cell

| Input >

Scan In
(from previous pad)

xc=Z

Shift DR Clock DR —

Table 1. Boundary Scan Instruction Codes

D QpF— SCANOUT
(to next pad)

0848

Instruction Name Code Description
SAMPLE/ PRELOAD 01 Loads and shifts data into BScan registers
EXTEST 00 Drives external I/O with BScan registers
BYPASS 1 Bypasses registers of selected device(s)

Note: MSB shifts in first.

Timing Model

Table 10- 0006

The task of determining the timing through the device is
simple and straightforward. A device timing model is
shown in figure 10. To determine the time that it takes for
data to propagate through the device, simply determine
the path the data is expected to follow, and add the

Figure 10. ispLSl and pLSI 3256 Timing Model

1/0 Cell GRP

various delays together (figure 11). Critical timing paths
are shown in figure 10, using data sheet parameters.
Note that the Internal timing parameters are given for
reference only, and are not tested. (External timing
parameters are tested and guaranteed on every device).

GLB ORP 1/0 Cell

Feedback

#26 L’
Ry RP | 4PT P
<|/0 Pin> o /O Reg Bypass Gl Bypass | _ GLB Reg Bypass | ORP Bypass | {4y D)

#20 #, #44
inpu) 28 | #33 #37 6 (Gutputy
Input 20PT GLB Reg ORP #48, 49
D RegisterQ XOR Delays Delay Delay

IS #55

RST q D Q N
456 F -2 #34, 35,36 ast #45

[Reset >

#38, 39,
> 40, 41

Control

L—»{PTs

#42, 43,
44

RE
OE >

#50

(g

2-37 - 1994 Handbook

3000 Family Architectural Description

Figure 11. Timing Calculation Example

Derivations of tsu, th and tco from the Product Term Clock!
Logic + Reg su - Clock (min)
tiobp + tgrp4 + t20ptxor) + (tgsu) - (tiobp + tgrp4 + tptck(min))
#24+ #31+ #39) + (#42) - (#24+ #31+ #48)
(2+4+85)+(15)-(2+4+35)
Clock (max) + Reg h - Logic
tiobp + tgrp4 + tptck(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor)
#24+ #31+ #48) + (#43) - (#24+ #31+ #39)
2+4+75)+(9)-(2+4+85)

Clock (max) + Reg co + Output

tiobp + tgrp4 + tptck(max)) + (tgco) + (torp + tob)
#24 + #31 + #48) + (#44) + (#49 + #51)
20ns= 2+4+75)+ (1.5 +(2+3)

tsu

6.5 ns
th

8ns
tco

1. Calculations are based upon timing specs for the ispLSI and pLSI 3256-70L

2-38 1994 Handbook

ispLSI Architecture and

Programming

ispLSI Programming Information

The following general programming information on the
ispLSI (in-system programmable Large Scale Integra-
tion) devices describes how the internal state machine is
implemented for programming and how to use the five
programming interface signals to step through the state
machine. The device specificinformation, such as timing
and pin-outs, can be found in the Lattice Data Book. This
section describes how to program ispLSI devices in a
parallel configuration. For information on programming
ispLSl devices in a serial daisy chain configuration please
refer to the "Programming Multiple ISP Devices: Daisy
Chain Configuration" Application Note located in Section
4 of this Handbook.

Programming Overview

To distinguish between normal operation and program-
ming, two modes are defined: normal mode and edit
mode. Once the device is in edit mode, the entire
programming operation of the device is controlled by the

Figure 1. ispLSI Programming Interface

ispLSI
1032

internal ISP state machine. The in-system programming
enable (ispEN) signal controls the device operation
modes.

The programming is controlled by the on-chip state
machine via five programming interface signals. The
ispEN signal is used to enable and disable the four
programming control signals which include Serial Data In
(SDI), Mode (MODE), Serial Data Out (SDO) and Serial
Clock (SCLK). When the device is in normal mode, the
four programming control signal pins can be used as
normal Dedicated Input Pins. Figure 1 illustrates one
such possible configuration for programming multiple
ispLSI devices. With this scheme the ispEN signal for
individual devices is enabled separately and one device
is placed in the edit mode at a time. Since the other
devices are in the normal mode, they can continue to
perform normal system functions. This simple scheme
requires connecting all four programming control signal
pins together and precludes their use as dedicated inputs
for normal system functions. ispEN is the only program-
ming interface signal that is dedicated to a pin.

—@

.

ISP-Enable *CF)

[—
5-Pin ISP Interface

><—— serial DataIn

] Serial Data Out
N4 ISP-Mode
ISP-Clock

2-39

1994 Handbook

l

ispLSI Architecture and Programming

Normal Mode

In Normal Mode the four programming control pins be-
come Dedicated Input pins. By multiplexing the
programming control pins, these programming control
pins can have a normal input function during Normal
Mode. Figures 2 and 3 illustrate two alternate schemes
which allow the designer to utilize the four programming
control signal pins for performing normal system func-
tions. Internal to the device, the programming functions
are completely isolated from the normal operating func-
tions when the device is in Normal Mode. Keeping the
ispEN signal high puts the device in Normal Mode. For
simplicity, the four programming control pins can be left
unused for normal input functions. These pins can be
reserved for ISP by using the ISP switch in the develop-
ment tools. By leaving these pins unused, the
programming interface is simplified when the program-
ming signals and the Normal Mode input signals are not
multiplexed.

Edit Mode

Programming circuitry is enabled by driving the ispEN
signal low which puts the device in Edit Mode. In Edit
Mode, all the functional I/0 pins and input pins that are
not used during programming are 3-stated. With the
exception of the SDO signal, the remainder of the pro-
gramming interface signals are input signals. When
multiplexing the programming interface signals, the input
driving the SDO pin must be 3-stated to make sure that
there is no signal contention. All programming is accom-
plished in the Edit Mode by controlling the programming
state machine with the MODE and SDI signals. SCLKis
used to clock programming data in and out through SDI
and SDO pins. SDI has a dual role as one of the two
control signals for the state machine and as the serial
data input. To avoid any internal register data conten-
tions, Lattice recommends that the device Reset pin be
pulled to ground when the device is in Edit Mode.

Programming Interface

The five programming interface pins are ispEN, SDI,
MODE, SDO and SCLK. Once in Edit Mode, program-
ming is controlled by SDI, MODE, SDO and SCLK
signals. In Normal Mode, the programming control pins
can be used as dedicated inputs to the device.

ispEN is an active low, dedicated enable pin, which
enables the four programming control pins when it is
driven low (V).) and disables the programming control
pins when it is driven high (V). All other |/O pins are 3-
stated during Edit Mode and pulled up by the internal
active pull-up resistors (equivalent to 100K<Q).

SDI performs two different functions. First, as the input
to the serial shift register and second, as one of the two
control pins for the programming state machine. Be-
cause of this dual role, SDI's function is controlled by the
MODE signal. When MODE is low SDl is the serial input
to the shift registers and when MODE is high SDI be-
comes the control signal. Internal to the device, the SDI
is multiplexed to address shift register, high order data
shift register and low order data shift register. The
different shift instructions of the state machine determine
which of these shift registers gets the input of the SDI.

The MODE signal combined with the SDI signal controls
the programming state machine. This signal connects in
parallel to all ispLSI devices.

SCLK s the serial shift register clock that is used to clock
the internal serial shift registers. A low-to-high (positive)
clock transition clocks the state machine. It also con-
nects in parallel to all ispLSI devices. Similarto SDI, the
shift instructions determine which of the shift registers
are clocked for the data input from SDI.

SDO is the output of the serial shift registers. The
selection of the shift register is determined by the state
machine’s shiftinstruction. In the flow through instruction
and when MODE is driven high, SDO connects directly to
SDI, and bypasses the device’s shift registers. Since this
is the only output pin for the Edit Mode, this signal will
drive the external devices that are connected to this pin.

2-40

1994 Handbook

ispLSI Architecture and Programming

Programming Details

Programming is completely controlled by the state ma-
chine, once the device is in the Edit Mode. The state
machine consists of three states, in which all program-
ming related operations are performed. In order to run
these programming operations, five bit instructions are
defined (see table 2). Each instructionis then shifted into
the device in one of the three states and executed in
another state. The initial state of the state machine is
used when the device is idle during edit, or to shift out the
eight bit device identification code.

The following sections describe the general information
aboutthe critical timing parameters, state machine, state
machine instructions, and device layout that apply to all
the ispLSI devices. Any device specific information like
the size of the shift registers and the device specific
timing information can be found in the individual device
data sheets.

Figure 2. The Scan and Multiplex Programming Mode

There are various ways of programming the ispLSI de-
vices. The easiest is to dedicate the ISP programming
pins only for the programming functions. With dedicated
ISP pins, one can program the devices in a parallel
programming configuration (figure 1) where the pro-
gramming signals are multiplexed. The paraliel
multiplexed programming method gives the user another
advantage of being able to use the programming pins for
system functions. Figure 2 illustrates a multiplexing
scheme which allows the user to control the ISP program-
ming through multiple ispEN signals. The multiple ispEN
signals not only control the ispEN inputs of the ispLSI
devices, but also is the control signal for multiplexing the
functional signals and the ISP programming signals. The
ISP programming signals MODE, SDI and SCLK function
as inputs for normal functional mode as well as the ISP
programming mode. SDO, however, functions as an
input in normal functional mode and as an output in ISP
programming mode. Figure 2 also shows the difference
in controlling these different programming signals.

System System
Input [| | | Input
Signals] | I 1 [] Signals
2:1 2:1 2:1 2:1 2:1 2:1
MUX Mux‘l MUX [MUX [MUX J'Mux
VT TS
y Y Y
SDO MODE SDI SCLK MODE SDI SCLK SDO
iSpLS| iSpEN [—9 N?L}X ispLSI ispEN——l
v
Sz WwaX O
Eag%g 8
gz °
2-41 1994 Handbook

ispLSI Architecture and Programming

Critical Timing Parameters

When programming ispLSI devices, there are several
critical timing parameters that must be met to ensure
proper programming. The two most critical parameters
are the programming pulse width (tpwp) and the bulk
erase pulse width (tpew). These pulse widths determine
the programming and erasing of the E2 cells. Figure 3
shows these critical program and erase timing specifica-
tions.

Along with the two programming and erasing specifica-
tion, the following timing specifications must also be met.

Specifies the time it takes to get into the ISP
mode after ispEN signal is activated or the time
it takes to come out from the ISP mode after the
ispEN becomes inactive.

tisp -

Figure 3. Program, Verify & Bulk Erase Timing

tsu - Set up time of the control signals before the
SCLK or the set up time of input signals against
other control signals where applicable.

th - Hold time of the control signal after the SCLK. It
also applies to the same input signals from the
set up time.

teng, - Minimum clock pulse width.

teikh

tow- Verify or read pulse width. The minimum time
requirement from the rising clock edge of verify/
load instruction execution to the next rising clock
edge (see figure 3).

Power on reset timing requirement. t.g must
elapse after power up before any operations are
performed on the device.

trst -

All the programming timing parameters are summarized
in the timing diagram (see figure 4).

Execute State (Program, Verify or Bulk Erase Instruction)

’4— tpwp, tbew, or tpwv

N—
N—

\
MODE N
N
SDI N th NC
]
le— toikn —>| < tsu

SCLK

l"— tolki -—PI

Figure 4. ISP Programming Timing Requirements

VCCP
7 | trst |e— _
Un;:]spedu@t ispLSI Pins are 3-Stated During Programming *\
Unused ~ H-Z
Output m./
— ‘<—tlsp
ispEN N
—Ol!smk— th —>|
le—th—| tisple—
MODE / \\
SDI
—| tckh 14—
SCLK
ViH ts“l‘"“lth VoH
D0 777X

2-42

1994 Handbook

ispLSI Architecture and Programming

Figure 5. Programming State Machine

Load
ID

HL
e Site snit state e e
Operation) 003'{%3?1 ds) Command)

Note:
Control signals: MODE, SDI

State Machine Operation

The state machine has three states to control program-
ming and uses the MODE and SDI signals as inputs for
each state. Based on these input signals, the state
machine makes decisions to either stay in the same state
or to branch to another state. The three states are Idle/
ID State, Command Shift State and Execute State. The
programming state machine diagram in figure 5 shows
the three states and the logic levels of the control signals
needed to force each transition state.

Idle/ID State

The Idle/ID state is the first state which is active when the
device gets into the Edit Mode. The state machine is in
the Idle/ID state when the device is idle, in the Edit Mode,
or when the user needs to read the device identification.
The eight bit device identification is loaded into the shift
register by driving MODE high, SDI low and clocking the
state machine with SCLK. Oncethe IDisloaded, itis read
out serially by driving MODE low. Notice that when
reading the device ID serially, SDI can either be high or
low (don’t care) and the state machine needs only seven
clocks to read out eight bits of ID. The default state for the
control signals is MODE high and SDI low. State transi-
tion to Command Shift State occurs when both MODE
and SDI are high while state machine gets a clock
transition. Table 1 lists the eight bit device ID’s for all the
ispLS| devices. As with most shift registers the Least
Significant Bit (LSB) of the ID gets shifted out from the
SDO first.

Command Shift State

This state is strictly used for shifting in the command
instructions into the state machine. The entire five-bit
instruction set is listed in the next section. When MODE
is low and SDlI is don’t care in the Command Shift State,

Load
Command

Execute
Command

Table 1. ispLSI Device ID Codes

Device MsB LSB
ispLSI 1016 00000001
ispLS| 1024 00000010
ispLSI 1032 00000011
ispLS| 1048 00000100
ispLSI 1048C 00000101
ispLSI 2032 00010101
ispLS| 3256 00100010

SCLK shifts the instruction into the state machine. Once
the instructionis shifted into the state machine, the state
machine must transition to the Execute State to execute
the instruction. Driving both MODE and SDI high and
applying the clock will transfer the state machine from the
Command Shift State to Execute State. If needed, the
state machine can move from Command Shift State to
Idle/ID State by driving MODE high and SDI low.

Execute State

In the Execute State, the state machine executes instruc-
tionsthat are loaded into the device inthe Command Shift
State. For some instructions, the state machine requires
more than one clock to execute the command. An
example of this multiple clock requirement is the address
or data shift instruction. The number of clock pulses
required for these instructions depends on the device
shift register sizes (refer to the ISP programming section
of the data sheet). When executing instructions such as
Program, Verify or Bulk Erase, the necessary timing
requirements must be followed to make sure that the
commands are executed properly. For specific timing
information refer to the individual data sheets.

2-43

1994 Handbook

ispLSl Architecture and Programming

To execute a command, the MODE is driven low and SDI
is "don’'tcare.” For multiple clock instructions the control
signals must remain in the same state throughout the
duration of the execution. MODE high and SDI high will
take the state machine back to the Command Shift State

device identification is done during the Idle/ID State and
does not require an instruction.

While it is possible to erase the individual arrays of the
device, it is recommended that the entire device be

erased (UBE) and programmed in one operation. This
Bulk Erase operation should precede every program-
ming cycle as an initialization.

and MODE high and SDI low will take the state machine
to the Idle/ID State.

Instructions o .]
When a device is secured by programming the security

cell (PRGMSC), the on-chip verify and load circuitry is
disabled. Securing of the device should be done as the
last procedure after all the device verifications have been
completed. The only way to erase the security cell is to
perform a bulk erase on the device.

Table 2 lists the instructions that can be loaded into the
state machine in the Command Shift State and then
executed in the Execute State. Notice that reading the

Table 2. State Machine Instruction Set

Instruction Operation Description
00000 NOP No operation performed
00001 ADDSHFT ngdress Register Shift: Shifts address into the address shift register from
IN.

00010 DATASHFT Data Register Shift: Shifts data into or out of the data serial shift register.

00011 UBE User Bulk Erase: Erase the entire device. ‘

00100 GRPBE Global Routing Pool Bulk Erase: Bulk erases the GRP array only.

00101 GLBBE Generic Logic Block Bulk Erase: Bulk erases all the GLB array only.

00110 ARCHBE Architecture Bulk Erase: Bulk erases the architecture array and I/O
configuration only.

00111 PRGMH Program High Order Bits: The data in the data shift register is pro-
grammed into the addressed row's high order bits.

01000 PRGML Program Low Order Bits: The data in the data shift register is pro-
grammed into the addressed row's low order bits.

01001 PRGMSC Program Security Cell: Programs the security cell of the device.

01010 VER/LDH Verify/Load High Order Bits: Load the data from the selected row's high
order bits into the data shift register for verification.

01011 VER/LDL Verify/Load Low Order Bits: Load the data from the selected row's low
order bits into the data shift register for verification.

01100 GLBPRLD Generic Logic Block Preload: Preloads the registers in the GLB with the
data from SDIN. All registers in the GLB form a serial shift register. Refer
to device layout section for details.

01101 IOPRLD I/O Preload: Preloads the I/O registers with the data from SDIN. All
registers in the 1/O cell form a serial shift register (the same order as GLB
registers).

01110 FLOWTHRU Flow Through: Bypasses all the internal shift registers and SDOUT be-
comes the same as SDIN.

10010 VE/LDH Verify Erase/Load High Order Bits: Load the data from the selected row's
high order bits into the data shift register for erased verification.

10011 VE/LDL Verify Erase/Load Low Order Bits: Load the data from the selected row's
low order bits into the data shift register for erased verification.

2-44 1994 Handbook

ispLSI Architecture and Programming

Device Layout

The purpose of knowing the device layout is to be able to
translate the JEDEC format programming file into the
serial data stream format for programming ispLSI de-
vices. Two main factors determine how the translation is
implemented: the length of the address shift register and
the length of the data shift register. The length of the
address shift register indicates how many rows of data
are to be programmed into the device. The length of the
data shift register indicates how many bits are to be
programmed in each row. Both registers operate on the
First In First Out (FIFO) basis where the Least Significant
Bit (LSB) of the data or address is shifted in first and the
Most Significant Bit (MSB) of the data or address is
shiftedinlast. Forthe data shift register, the low order bits
and the high order bits are separately shifted.

Each ispLSI device has a predefined number of address
rows and data bits needed to access its E2CMOS® cells
during programming. The data bits span the columns of
the E2 array. From this information the number of
programming cells (or fuses) are determined. Table 3
highlights the address and data shift register (SR) sizes
for all ispLSI devices. The JEDEC file for these ispLSI
devices will reflect the number of cells (fuses) seen in
table 3. The total number of cells becomes critical if the
programming patterns are to be stored in an on-board
memory storage of limited capacity such as EPROM or
PROM.

The L-field in the JEDEC programming file indicates the
first cell number of each row. The JEDEC standard
requires that there is at least the beginning cell number
LO0000. L-fields of the subsequent lines are optional.
From this reference cell location all other cell locations
can be determined. Zeroin the cell location indicates that
the E2 cell in that particular location is programmed (or
has a logic connection equivalent to a metal fuse being
intact). A one (1) in the cell location indicates that the cell
is erased (equivalent to a blown fuse). The fusemap
operation in the Lattice software generates this JEDEC
standard programming file.

Fuse Map to Device Conversion

One of the major elements needed to program an ispLSI
device is the JEDEC fuse map in which the specific logic
implementation is stored. While the ispCODE software
takes care of these details, it is important to understand
how this JEDEC fuse map is mapped onto the physical
ispLSI device during programming. The physical layout
of the fuse pattern begins with Address Row 0 and ends
with the maximum Address Row N and is determined by
the length of the Address SR as described in table 3.
Spanning the Address Rows are the outputs of the High-
Order Data SR and Low-Order Data SR, as described in
table 4. Programming fuses on a given row are enabled
by a "1" within the Address Shift Register for the appro-
priate row and the use of state machine instructions that
selectively operate on the High-Order Data SR or the
Low-Order Data SR. For example, the PRGMH instruc-
tion programs the High-Order data bits within the device
for the selected Address Row andthe PRGML instruction
programs the Low-Order data bits (table 2 lists the ISP
state machine instructions). Referring to figure 6, the
starting cell (L00000) of the JEDEC fuse map shifts into
the device at the physical location corresponding to
Address Row 0, High-Order Data SR bit0. nand min the
figure refer to the Address SR length and the Data SR
length, respectively, of the device (refer to table 3). A
series of sequential shifts eventually results in the last
cell location (Total # of Cells - 1) of the JEDEC fuse map
shifting into Address Row (n-1), Low-Order Data SR bit
(m-1) on the actual device.

The ispCODE Software routines make use of a bit packed
data format, called ispSTREAM™, to transfer data be-
tween the JEDEC fuse map and the physical device
locations. The JEDEC fuse map can be translated into
ispSTREAM using the isp_jedtoisp function and the
ispSTREAM format can be translated into a JEDEC fuse
map using the isp_isptojed function.

Command Stream

The first step of programming the ispLSI devices is to
determine the type of device to be programmed. This can
be done by reading the eight-bit device ID of all the

Table 3. ispLSI Address and Data Shift Register and Total Cell Summary

ispLSI 1016 | ispLSI1024 | ispLSI1032 | ispLSI1048/C | ispLSI 2032 | ispLSI 3256
Address SR Length 96 102 108 120 102 180
Data SR Length/Address 160 240 320 480 80 676
Total Number of Cells 15,360 24,480 34,560 57,600 8,160 121,680
2-45 1994 Handbook

ispLSI Architecture and Programming

Table 4. Summary of Data Shift Register Bits

Data SR Bits ispLSlI 1016 ispLSl 1024 ispLSI 1032 ispLSI 1048
High Order Data SR LSB 0 0 0 0
High Order Data SR MSB 79 119 159 239
Low Order Data SR LSB 80 120 160 240
Low Order Data SR MSB 159 239 319 479
Data SR Size (Bits) 160 240 320 480

Figure 6. ispLSI Device to Fuse Map Translation

DATA

¢

DATA

'

Data In l—-l - -
(SDIN) (m-1) ... Low Order Shift Register ... (m/2)

[(m/2)-1] ... High Order Shift Register ...0 |—:|_> SDOUT

Row Addr. In (SDIN)

E2CMOS

Low-Order SR

Cell Array

High-Order SR

Fuse# (m-1) «—— Fuse# (m/2)| Fuse# [(m/2)-1] «———— Fuse# 0

(0-1)]

Address Shift Register

4
SDOUT

2-46

1994 Handbook

ispLSI Architecture and Programming

devices. By keeping the SDI to a known level (either high
or low), the 1D shift can be terminated when a sequence
of eight ones or eight zeros is read. From the device ID
the serial bit stream for programming can be arranged. A
typical programming sequence is as follows:

1) ADDSHFT command shift

2) Execute ADDSHFT command

3) Shift address

4) DATASHFT command shift

5) Execute DATASHFT command

6) Shift high order data

7) PRGMH command shift

8) Execute PRGMH

9) DATASHFT command shift

10) Execute DATASHFT command

11) Shift low order data

12) PRGML command shift

13) Execute PRGML

14) Repeat from 1) until all rows are programmed.
Diagnostic Register Preload

This section explains how to preload all of the buried
registers and 1/O registers to a known state to test the
logic function of a device. The process of loading the
register will reduce the time necessary to test a function
that is deeply embedded in the logic of an ispLS| device.

To preload a device the ISP state machine is used with
the same five pins that are used for programming ispEN,
SDI, MODE, SDO and SCLK. Two state machine com-
mands preload all of the registers: GLBPRLD and

Table 5. Preload Shift Registers

IOPRLD. These two commands enable two different shift
registers and enable data to be loaded into the device.
The process of loading data into the device is:

1. Enter the ISP programming mode by driving ispEN pin
to Vil.

2. Load command GLBPRLD and execute command
(wait one tclk).

3. Clock in the GLB preload data.

4. Load the command IOPRLD and execute the com-
mand (wait one tclk).

5. Clock in the 1/O preload data.

6. Return to the normal mode by driving the ispEN pin to
Vih.

7. Execute the vectors.

When preloading a device it is important to keep the
dedicated input pins (RESET, Y0, Y1, Y2 and Y3) in the
same state as the previous vector. If the state of these
pins is switched during the preload sequence the register
may not load correctly and the results cannot be guaran-
teed.

The preload feature is not recommended on designs
which use product term resets. The asynchronous na-
ture of these resets can cause registers to be reset
unexpectedly, therefore the results cannot be guaran-
teed.

There are two shift registers used to preload an ispLSI
device, the GLB shift register and the 1/O shift register
(see table 5). The data format for both devices is shown
infigure 7. The GLB registers are listed with their outputs
(i.e. (A7 OO0) indicating output 0, of GLB A7).

Device GLB Shift Reg. Length /O Shift Reg. Length
ispLSI 1016 64 bits 32 bits
ispLSI 1024 96 bits 48 bits
ispLSI 1032 128 bits 64 bits
ispLSI 1048 192 bits 96 bits
ispLSI 2032 32 bits N/A
ispLSI 3256 256 bits 128 bits

2-47

1994 Handbook

ispLSI Architecture and Programming

Figure 7. GLB Shift Register and I/O Shift Register Format

Data In
(SD1)

Data In
(SDI)

Data In
(SDI)

Data In
(SD1)

Data In
(SDI)

Data In
(SDI)

Data In
(SD1)

Data In
(SDI)

Data In
(SD1)

Data In
(SD1)

Data In
(SDI)

GLB Shift Register Format
1016 GLB Register Preload Format

—»| (A700) (A7 O1)..(A0 02) (A0 03) (BOOO) (BO Of)..(B7 02) (B7 03)

—»

1024 GLB Register Preload Format

—|{ (B3 00)...(B0O 03) (A7 00)...(A0 03) (B4 00)...(B7 03) (CO 00)...(C7 03)

>

1032 GLB Register Preload Format

—| (B7 00)...(B0 03) (A7 00)...(A0 03) (C000)...(C7 03) (DO 00)...(D7 03)

>

1048 GLB Register Preload Format

——| (C7 00)...(CO 03) (B7 00)...(B0 03) (A7 00)...(A0 O3) (continued)

(continued) (DO 00)...(D7 03) (EO0 O0)...(E7 O3) (FO O0)...(F7 03)

—>

2032 GLB Register Preload Format

—| (A3 00)...(A0 03) (A4 00)...(A7 03)

3256 GLB Register Preload Format

—| (D7 00)...(D0 03) (C7 00)...(CO 03) (B7 O0)...(BO 03) (A7 O0)...(A0 O3) (continued)

(continued) (E0 00)...(E7 03) (FO 00)...(F7 03) (GO 00)..(G7 03) (HO 00)..(H7 03)

—

I/0 Shift Register Format
1016 I/O Register Preload Format

—{(1/0 15) (O 14) (/O 13)...(VO 1) (O 0) (/O 16) (IO 17)...(I/O 29) (/O 30) (/O 31)

—»

1024 I/0 Register Preload Format

—»{ (/0 23) (O 22) (I/O 21)...(/O 1) (/O 0) (I/O 24) (/O 25)...(1/O 45) (I/O 46) (/O 47)

-

1032 1/O Register Preload Format

—|(I/0 31) (I/0 30) (1/O 29)...(/O 1) (i/0 0) (/O 32) (I/O 33)...(1/0 61) (/0 62) (I/O 63)

-

1048 1/O Register Preload Format

—{ (/0 47) (/O 46) (I/O 45)...(/O 1) (1/O 0) (I/O 48) (/O 49)...(1/O 93) (I/O 94) (/O 95)

>

3256 1/0 Register Preload Format

—| (I/0 63) (I/0 62) (1/0 61)...(/O 1) (/0 0) (/O 64) (/O 65)...(1/O 125) (/O 126) (/O 127)

—»

Data Out
(SDO)

Data Out
(SDO)

Data Out
(SDO)

Data Out
(SDO)

Data Out
(SDO)

Data Out
(SDO)

Data Out

(SDO)

Data Out
(SDO)

Data Out
(SDO)

Data Out
(SDO)

Data Out
(SDO)

2-48

1994 Handbook

ispLSI Architecture and Programming

ISP Programming Support

To assist users in implementing the ISP programming,
Lattice provides the isp Engineering Kit hardware and
ispCODE C language software routines which implement
the basic ISP functions for programming. The Lattice ISP
programming support uses the PC parallel port to pro-
gram the devices.

isp Engineering Kit Hardware Definition

Lattice provides both a PC-based (Model 100) and a Sun
Workstation-based (Model 200) isp Engineering Kit. PC-
based, parallel 1/0 port programming interface
implementation is explained in this section. For details
on the Model 200 refer to the Model 200 isp Engineering
Kit datasheet. The main function of this ispLSI program-
ming interface is to provide four properly timed
programming signals and the ispEN signal to the device.
The PC parallel port is used in the isp Engineering Kit to
provide these programming signals. The signals driven
by the parallel port can be used either by the Lattice isp
Programming Module (part of isp Engineering Kit Model

100) or on the system board if the circuit board is built with
provisions to connect the ISP programming signals to the
appropriate traces.

Inthe case of users using the PC serial port as the /O port
for programming, the serial data must be converted by
additional circuitry into the appropriate programming
signals. There must also be timing circuitry that trans-
lates the serial instructions into timed ISP programming
signals. This section only discuss the parallel port
interface. Lattice's isp Engineering Kit Model 200 sup-
ports serial port programming.

In order to use the PC parallel port, the parallel port
operation must be defined properly. After defining the
port, it is just a matter of developing the programming
software to read and write from the parallel port. To
guarantee the signal integrity and drive capability, a
74HC367 buffer should be directly connected at the
parallel port's DB25 connector. Figure 9 defines the
parallel port DB25 pins and the associated ISP program-
ming signals. The global RESET signal is also provided
to ensure a proper register reset after programming.

Figure 8. Configuring an ispLSI Device from a Remote System

ispLSI
Control
Software

End-Product P.C. Board

Parallel Port
Connection

ispLSI
Device

2-49

1994 Handbook

ispLSI Architecture and Programming

The buffer then drives the cable that connects the output
of the buffer to the ISP pins of the device. It is important
to keep the cable length to a minimum to reduce the
loading on the signal drivers. Since ispEN, SDI, SCLK
and MODE are inputs to the ispLSI device, they are being
driven by the buffer connected to the parallel port. SDO,
on the other hand, is an output signal which the ispLSI
device has to drive. fthe load on the SDO signal is more
than a minimum length cable and the parallel port input,
it is recommended that the user provide a buffer on the
circuit board to ensure signal integrity.

For the parallel port interface, the software must access
the proper parallel port address. Once the portis defined,
the data transfer is accomplished by simply reading from
the port and writing to the port. The software must also
guarantee proper timing between the ISP programming
signals. When the programming software is executed,
most of the shorter hardware timing requirements are
automatically met due to the relatively long instruction
execution times. The programming pulse width (tpwp)
and bulk erase pulse width (tbew), which are in the 40ms
to 200ms range, are the hardware timings that typically
require wait states in the software. The example func-
tions inthe ispCODE illustrates reading of the computer's
timer chip to generate these wait states.

Based on the programming pulse width requirement, the
total programming time can be estimated. Since the
shifting the address and data is relatively small compared
to the programming time, the total programming time can
be estimated by the following formula.

Total Programming Time = Address SR Length X 2 X towp

Assuming that the programming pulse width (tpwp) is
100ms, the total programming time for the ispL S| 1048 is
approximately 24 seconds.

Microprocessor-Based Programming

Similar to PC-based I/0O port controlled programming, a
processor or a microprocessor can be used to directly
supply the ISP programming signals with minimum de-
coding logic and an optional storage device (see figure
10). The discussion in this section pertains to the
implementation of ISP programming on a circuit board
with a microprocessor. The discussion is based on the
assumption that the patterns and the code are stored in
EPROMs. Since an efficient use of storage is desirable,
the bit packed ispSTREAM format will use the least
amount of storage. The basic requirement here, again,
is to supply properly timed ISP programming signals.

Figure 9. PC Parallel Port Buffer & RJ45 Connector Definition

DB25 Parallel Port
Connector Pins

Di6 Pin10

DO0 Pin2

DO1 Pin3

DO2 Pin4

DO3

DO4

Do6 an 8 '_ Port Sense
DI5 Pin 12

DI3 Pin 15 - Vce Sense

GND Pin 20 - GND

isp Interface
SDOUT

87654321

2-50

1994 Handbook

ispLSI Architecture and Programming

Hardware Configuration

There are several ways to define the ISP programming
hardware depending on the type of storage device and
how the ispLSI| devices are to be programmed. The
hardware configuration shown in figure 11 uses an 8-bit
wide EPROM to store the fuse maps and code. The
patterns are then read from the EPROM by the micropro-
cessor and converted into serial stream format. The ISP
signals are driven from the decoder and 1/O port which
decodes the proper ISP read/write address space similar
to the I/O port definition of the previous setup. Similarly,
fuse map memory addresses must also be defined to be
properly read from the EPROM.

Programming pattern storage requirements are directly
dependent upon the ispLSI device type and which ISP
functions must be executed by the microprocessor. As-
suming the bit packed ispSTREAM format for the fuse
map, the number of bytes required for each ispLS| device
is simply the total number of cells divided by eight. Inthe
case of ispLSI| 1048, 7.2K bytes is required to store the
JEDEC fuse map.

Similar to the parallel port interface, most hardware
timing requirements can be satisfied by the software
instruction execution time. Only the program, verify and
bulk erase times requires the software to have wait
cycles. Many microprocessor boards will not have a
timer chip to time the wait states. However, the instruc-
tion execution times typically can be accurately estimated.
Therefore, timing loops must be inserted into the instruc-
tions control critical hardware timing.

Software support for this case is very similar to the
previous. Within the software, however, address spaces
for the ISP read/write locations and the EPROM read
locations must be defined. The storage space require-
ment for the code must also be determined if the code is
going to reside in the storage device. Based on the
ispCODE functions, the object code which is capable of
executing basic ISP functions typically does not exceed
8K byte of memory. This memory requirement is directly
proportional to the amount of ISP and user interface
functions.

ISP Software Interface

In addition to the hardware interface, the ispCODE C
language routines take care of the ispLS| programming
software interface. The software interface must imple-
ment routines to read and write from the parallel port, to
translate the JEDEC fusemap to and from the stream file
format, and to toggle the ISP hardware signals con-
nected at the output port. Predefined routines for these
functions such as isp_program, isp_read, isp_verify, etc.
are provided with the ispCODE. The ispLSI user only
needs to integrate these routines into their overall system
software.

The ispCODE routines makes use of the ispSTREAM bit
packed data format to transfer data between the JEDEC
fuse map and the physical device location. The JEDEC
fuse map can be translated into ispSTREAM using the
isp_jedtoisp function and the ispSTREAM format can be
translated into a JEDEC fuse map using the isp_isptojed
function. In addition to the fuse map translation routines,
the ispCODE provides functions to check the device ID,
to read and write the User Electronic Signature (UES),

Figure 10. Configuring an ispLSI Device from an On-Board Microprocessor

‘ System -
Code :

ispCODE
ispSTREAM
Patterns

5-Pin Programming
Interface

ispLSI
Device

2-51

1994 Handbook

ispLSI Architecture and Programming

and to keep track of the program cycle counter. Refer to
the ispCODE User Manual for more details.

ispLSI Device Special Features

In addition to transfering the fuse pattern into the ispLSI
device with proper ISP timing, there are a few administra-
tive functions that can make device programming more
efficient when implemented in the ISP programming
algorithm.

All ispLSI devices have hardwired device identification
codes. These ID codes should be used to identify proper
device and fuse map compatibility. The ID check should
be run as the very first procedure before any device
programming procedures. The ispCODE routines pro-
vided by Lattice include the isp_get_id function to facilitate
this process.

The ispLSI devices also provide several programmable
locations for the UES and program cycle counter. The
UES can be used to identify which patternis programmed

Figure 11. Microprocessor Board Configuration

into the device. This is a very useful way of electronically
identifying the devices and their programs, especially
when the devices are secured. A 16-bit program cycle
countercan be implemented within the reserved loacation,
similarto the UES, to keep track of the number of program
cycles which the device experiences to avoid exceeding
the maximum programming cycle limit. UES and pro-
gram cycle counter routines are provided as part of
Lattice’s ispCODE software.

One of the diagnostic features of the ispLSI devices is
register preload. GLB and /O registers become serial
shift registers during the register preload command exe-
cution. Data can either be shifted into or out of these shift
registers for system diagnostic functions. Special atten-
tion must be paid to the GLB and I/O clocks in order to use
the register preload features properly. One must drive all
GLB or all I/O clocks high throughout the execution of the
GLB or I/O preload commands. This means that when
defining the test pattern that uses the preload commands
all GLB or all I/O clock polarities must be the same.

Aaar Address
AS » Decode -
aw =1 110 POI‘(» EN
Register
(Bidirect-
jonal) » MODE
P SCLK
D0-D7 g > SDI
l@+— SDO
[SpER ispLSI Device
Control Signals (R/W,AS etc..) | Decoder
g & 4o
DATA
< . 4 ${ 1/0 Port Ml
.| Logic 3%0 g
: > SDOT
Micro- SDI2
processor
L IspLSI Device
—» PROM
or
< EPROM
SDO2
ADDRESS SD13
“—9> ispLSi Device
< SDO3
2-52 1994 Handbook

ispLSI Architecture and Programming

Boundary Scan

The Lattice 3000 family of devices supports the |IEEE
1149.1 Boundary Scan specifications. The following
sections explain in detail how to interface to the devices
through the Test Access Port (TAP), how the boundary
scan registers are implemented within the devices, and
the boundary scan instructions that are supported by the
ispLSI and pLSI 3000 family

Test Access Port (TAP)

The test access port of the boundary scan is accessed
through six interface signals. These interface signals
have dual functions in the case of ispLSI 3000 family and
are used for Boundary Scan interface and in-system
programming interface signals. For the pLSI 3000 family
the six interface signals are only used for the boundary
scan TAP interface. Table 6 describes the interface
signals.

The above mentioned six signals are dedicated for Bound-
ary Scan use for the pLSI family of devices. Since ISP
programming is accomplished through the same pins,
five of the six signals have both Boundary Scan interface
and ISP functions on the ispLS| devices. The TRST s the
only signal that does not have a dual function. It is only
used to reset the TAP controller state machine. The
sequencing of test routines are governed by the TAP
controller state machine. The state machine uses the
TMS and TCK signals as its inputs to sequence the
states. Figure 12A is the IEEE1149.1 specified state
machine where the condition for the state transtion is the
state of the TMS input condition before TCK within a

Table 6. Boundary Scan Interface Signals

given state. The timing specification is also shown on
figure 12B.

The main features of the TAP controller state machine
consists of Test-Logic-Reset state to reset the controller
and the Run-Test states. Two main components of the
Run-Test states are Data Register (DR) control states
and Instruction Register (IR) control states. Both of these
register control states are organized in a similar manner
where one can capture the registers, shift the register
string, or update the registers. Capturing the DRs simply
loads the DR with the data from the corresponding
functional input, output, or /0 pins. The IR capture, on
the other hand, loads the IRs with the previously ex-
ecuted instruction bits. Shift register states serially shifts
the DR and IR. In the case of DR shift, the data is shifted
according to the order of the inputs, outputs, and 1/Os
defined in the Boundary Scan section of each device data
sheet. The IRs are shifted out from the least significant bit
first. During update registers states, the DRs update the
latches to drive the external pins and IRs update the
instruction bits with the instruction that is to be executed.

Boundary Scan Registers

In order to support Boundary Scan, two types of data
registers are defined for the ispLSI and pLSI devices —
I/0 cell registers and input cell registers. The main
purpose of these registers is to capture test data from the
appropriate signals and shift data to either drive the test
pins or examine captured test data.

Figure 13 describes the register for the I/O cell. The I/O
cell, by definition, must have three components. One
register component captures the output enable (OE)
signal, the second component captures the output data

pLSI 3.000 ispLSI 3000 Pin Function Description
Family Family

Active high signal on this pin selects the Boundary Scan function while active low signal

BSCAN BSCAN/ispEN | selects the ISP function on the ispLSI devices. Internal pullup on this pin drives the
signal high when the external pin is not driven.

TCK TCK/SCLK Test Clock function for Boundary Scan and serial clock for the ISP function.

™S TMS/MODE Test Mode Select for Boundary Scan and MODE control for ISP function.
Test Data Input for Boundary Scan and Serial Data Input for ISP pin functions as serial

TDI TDI/SDI . . .
data input pin for both interfaces.

TRST TRST Test Resgt Input is an asynchronous signal to initialize the TAP controller to
Test-Logic-Reset state.

00 TDO/SDO Tes} Data Output fqr Boundary Scan and Serial Data Output for ISP pin functions as
serial data output pin for both interfaces.

2-53 1994 Handbook

ispLSI Architecture and Programming

(1 |Test-Logic-Reset|¢
lo

(0 |[Run-Test/Idle |—‘1‘—>| Select-DR-Scan|-1—————->| Select-IR-Scan
[) 0 0

1

Capture-DR

Exit2-DR

y1

1

Capture-IR
¥
I Shift-IR

Exit1-IR

Y
1

y

\

Figure 12A. TAP Controller State Machine

TCK

TMS or
TDI

TDO

tsu = 0.1pus (min.)

-/

:*q-tsu th—p{

[g—tco—p

Y
M

Figure 12B. TAP Controller Timing Diagram

th =0.1us (min.) tco =0.1us (min.)

y

y
| Pause-IR | 0)
1
Y
[Update-DR J«— [Update-IR_|«—
1 0 1 0

2-54

1994 Handbook

ispLSI Architecture and Programming

/o@

SCANIN M
(from U D of-e———p Q
previous X
cell) EXTEST
—P —P
GLB
m OUTPUT |y >
u D Q¢ D Q] X
X
+— +h +_>
Update DR
M
u D Q SCANOUT (to next cell)
X
@ —
—p
Shift DR Clock DR

Figure 13. Boundary Scan I/0 Cell

and the third captures the input data. These components
make up the three registers that are part of the shift
register string for each of the I/0 pins. Only parts of the
1/0 cell registers will have valid data when I/O pins are
configured as input only or output only and the test
routines must be able to monitor the appropriate register
bits. The update registers are used mainly to store data
that is to be driven onto the I/O pins. The multiplexer
controls are driven by the signal from the TAP controller
at appropriate states.

The function of an input cell register is much simpler than
that of an I/O cell. Figure 14 illustrates the single input
register cell. The purpose of the I/O cell is to capture the
input test data and shift the data out of the shift register
string.

SCANIN
(from previous
cell)

Qp— SCANOUT
(to next cell)

I— >
Shift DR Clock DR

Figure 14. Boundary Scan Input Cell

2-55

1994 Handbook

ispLSI Architecture and Programming

Boundary Scan Instructions

Lattice ispLSI and pLSI devices support the three man-
datory instructions defined by the Boundary Scan
definition. The following paragraphs describe each of the
instructions and its instruction code. A two bit long shift
register is defined within the devices to implement the
instruction shift register.

The SAMPLE/PRELOAD (Instruction Code - 01) instruc-
tion is used to sample the pins that are to be tested.
During Capture-DR state, while executing this instruc-
tion, the DRs are loaded with the state of the pins which
can then be examined after shifting the data through
TDO. The PRELOAD part of this instruction is simply

Figure 15. Bypass Register

From TDI — & D al- To TDO
Shift DR —|
Clock DR — >

loading the DRs during Shift-DR state with the desired
condition for each of the pins.

The EXTEST (Instruction Code - 00) instruction drives
the external pins with the previously updated values from
the DR during Update-DR state.

The BYPASS (Instruction Code - 11) instruction is used
to bypass any device that is not accessed during any part
of the test. The definition of BYPASS instruction allows
the TDI not to be driven during Shift-IR state. In order to
shift in the correct instruction code the TDI pin has an
internal pull-up to drive a logic high. A bypassed bound-
ary scan device has a single bypass register as shown in
figure 15 below.

2-56

1994 Handbook

Section 1: Introduction
Section 2: ispL.S| and pLSl Architecture Overview

Section 3: ispLSI and pLSI Development Tools

Lattice Design Tool Strategyccccueeiereriienierieeeee ettt e s 3-1
SysStem DeSigN PrOCESScc..eiiiiiieerieiiie ettt et ba b s 3-3
iSPLSI and pLSI DESIGN FIOWc..ovueiiiiieiiiirieeeiieie sttt ettt s s s s 3-5

Section 4: ispLSI| and pLSI Application Notes

Section 5: GAL Architecture Overview

Section 6: GAL Development Tools

Section 7: GAL Application Notes

Section 8: In-System Programmable Generic Digital Switch (ispGDS)
Section 9: Design Techniques

Section 10: Article Reprints

Section 11: Technology, Quality, and Reliability Overview

Section 12: General Section

3

Lattice Design Tool Strategy

Introduction

The Lattice design tool strategy for the ispLSI| and pLSI
families is to support a wide range of design environ-
ments. Lattice provides both a proprietary PC-based
solution (pDS®) as well as third-party compatible CAE
tools (pDS+™ Fitters) that run on PC and Sun worksta-
tion platforms.

The Lattice pDS (pLSI and ispLSI Development System)
software provides a comprehensive, high-performance,
low-cost package for logic development. Developed and
supported by Lattice, pDS provides an easy-to-use Win-
dows-based graphical interface using a mouse and
pull-down menus. Design entry includes Boolean equa-
tions and macros. For simulation, timing tables are
included as a standard offering. Additionally, pDS inter-
faces with Viewlogic’s PROsim simulation package for
full functional and timing simulation. pDS Software gen-
erates industry standard JEDEC programming files and
supports direct download into ispLSI devices.

Figure 1. pDS and pDS+ Design Flows

Lattice’s pDS+ (pDS Plus) solution supports multiple
third-party CAE tools, providing designers with the capa-
bility to design in familiar CAE environments. These
third-party CAE tools offer schematic capture, hardware
description language (such as VHDL), state machine
language, Boolean equation, and macro design entry as
well as functional and timing simulators for design verifi-
cation.

Lattice’s pDS and pDS+ solutions give designers power-
ful, easy to use, cost-effective design tools to meet their
development needs. Each third-party vendor must ad-
here to strict quality and certification requirements before
becoming qualified, thus ensuring superior support.
Contact your local Lattice Sales Representative for avail-
ability.

Design Idea
L=
pDS pDS+ (Third-Party Environments)
st y y v v v
Design . " Data /O ISDATA Cadence
Entry Viewlogic ABEL LOG/C MINC Concept
pDS+ Viewlogic| | pDS+ ABEL pDS+ LOG/AC pDS+ MINC pDS+ Cadence
Device Logic Partitioning
Fitting Auto Place & Route Lattice Fitter | | || Lattice Fitter Lattice Fitter Lattice Fitter Lattice Fitter
JV A \ 4 v
Design Viewlogic Viewlogic Functional and Timing Simulator
Verification or Cadence Verilog-XL
New Support
31 1994 Handbook

Lattice Design Tool Strategy

Lattice Design Flow

There are three steps in the Lattice ispLSI| and pLSI
design flow: design entry, device fitting (logic partition-
ing, place and route), and design verification. (See the
pDS and pDS+ Design Flow). This section outlines the
design flow of the pDS and pDS+ solutions.

Lattice pDS

Lattice’s pDS solution is a comprehensive, self-con-
tained design solution which operates on a PC under
Microsoft Windows. pDS uses familiar ABEL-like Bool-
ean equation and macro design entry, and provides
manual partitioning, high speed automatic place and
route, and simulation timing tables for design verification.
Viewlogic’s PROsim simulation package is compatible
with pDS for functional and timing simulation.

After the development work has been completed, the
designis ready to be programmed into a device. For third-
party programming support, the pDS package generates
a JEDEC fusemap . Alternatively, the ispLSI devices can
be programmed directly from the PC or Sun workstation
with the Lattice isp Engineering Kit.

The pDS development systems are ideal for designers
who desire a cost-effective, user friendly approach to
ispLSI and pLSI design.

Lattice pDS+

The pDS+ solution combines third-party CAE tools for
design entry and verification with the Lattice pDS+ Fitter
for device fitting to offer a powerful and complete devel-
opment solution. Initial Fitter products include the pDS+
ABEL Fitter, pDS+ Viewlogic Fitter, pDS+ LOG/iC Fitter,
pDS+ MINC Fitter, and pDS+ Cadence Fitter which
interface with their respective third party design tools.

The design entry step is typically performed with sche-
matic capture, Boolean equations, state machines, truth
tables or a Hardware Description Language (HDL). Once
design entry is complete, the design is ready to be
implemented into a Lattice ispLSI or pLSI device.

The Lattice pDS+ Fitter uses architecture-specific algo-
rithms to synthesize a logic description into an ispLS! or
pLSI device. Steps in the device fitting process include
logic optimization and minimization, automatic logic par-
titioning, and automatic place and route.

pDS+ also supports design verification. Design verifica-
tion options include both functional and timing simulation.
Various combinations of graphical and text-based func-
tional and timing simulators are supported by third-party
CAE vendors.

Following design verification, the Lattice pDS+ Fitter
generates a JEDEC fusemap for device programming.
The design can be programmed into a pLSI device using
third-party programmers. In addition, the ispLSI devices
can be programmed directly from the PC or Sun worksta-
tion system using Lattice’s isp Engineering Kit, or from
dedicated logic designed into the end-system.

3-2

1994 Handbook

System Design Process

Introduction

Conceptually, system definition is the first step in the
design process. This involves visualizing the PLD's inter-
action with the rest of the electronic system and defining
a general flow diagram to determine the design’s basic
sequential behavior. This organizational flow, used to
integrate an entire subsystem into high density devices,
is described in the following topics and shown in figure 1.

Figure 1. System Design Flow

L Define System J

I Partition into Functional Blocks |
L Specify Components J
\

IResign Logic into Targeted DeviceJ

| Test and Debug Device I

A
| PCB Layout J

!

l Test and Debug System I

!

| Deliver System |

Partitioning

After completing the conceptual design, the designer
partitions the system into modules or functional blocks.
These blocks can be a few components or multiple circuit
boards with numerous components. The designer orga-
nizes these functional blocks to match the capabilities of
the devices being targeted, for example, the number of
1/O pins, flip-flops and gates needed. The user should
also consider the frequency at which the targeted device
must operate, the number of clocks required, and the
timing relationships of signals (AC specifications).

Specifying Components

After the partitioning is defined, the designer chooses the
components which will be used to implement the desired
functions. The design should meet the system specifica-
tions using the least number of components in order to
keep the system cost as low as possible while keeping
the system reliability as high as possible.

System specifications calling for low weight, low power
and reduced size also drive designers to higher levels of
logic integration. These added requirements can ad-
versely affect the design schedule and project completion.
The ispLSI and pLSI high-density devices can meet such
design requirements while delivering excellent perfor-
mance. The ispLSI and pLSI family of high-speed,
high-density PLDs supported by easy-to-use effective
software for fast design implementation and verification.

Design Entry and Optimization

After the functional partitioning and component specifi-
cations are completed, the logic necessary to implement
the functions is defined block by block. The logic may
include standard TTL functions, CMOS logic functions, or
functions from a library, such as the Lattice Macro Li-
brary. The implementation of logic into a high density
device is optimized for the targeted device by the design
software. The partitioning also affects the optimization.
Optimization can be for speed, utilization or a combina-
tion of both.

Logic entry for a Lattice high density device is done with
the pLSI and ispLSI Development System or with any of
Lattice's pDS+ Fitter products (pDS+ Viewlogic, pDS+
ABEL, pDS+ LOGI/IC, etc.). The pDS Software utilizes
the Graphical User Interface (GUI) of Microsoft's Win-
dows™ to provide acomplete design flow from logic entry
to programming ispLSI and pLSI devices within hours.
pDS+ ABEL software supports textual design entry using
aHardware Description Language (HDL) as well as other
entry methods. Standard CAE schematic design entry is
supported by the pDS+ Viewlogic software. pDS+ LOG/
iC supports Boolean, truth table and state machine entry.

3-3 1994 Handbook

System Design Process

Test and Debug

When designing a system, or a portion of a system, it is
easier to test and debug pieces or modules rather than
the entire system. In this manner, the designer can
confirm module designs, or functional blocks, and find
problems earlier in the design cycle.

Logic can be verified by either timing simulation or actual
testing of the programmed device. Simulation can be
accomplished using the Viewlogic Viewsim logic simula-
tor (available from Lattice) and other simulators supported
by Lattice. Design errors detected by software simulation
can be corrected by the designer before the printed circuit
board is laid outand manufactured, which saves time and
reduces cost. Board and system level simulation can be
accomplished through behavioral simulation using Logic
Modeling Corporation's models.

Reprogrammable devices allow the designer to test,
debug, and modify logic right on the p.c. board. ispLSI
and pLSI devices can be reprogrammed multiple times.
This reprogrammability further assists the designers by
allowing them to temporarily program the devices with
diagnostic and design verification logic.

The designer should always attempt to design logic with
testability in mind. Testability means different things to
different designers. Key guidelines to be aware of are:

Q Large counters should be segmented for quick and
easy testing.

Q Logic should be designed for controllability and
observability.

Q There should be no floating nets.

Q All nets should be at a known state or are able to be
set or reset.

To assist system testability, the ispLSI devices offer
preload and verification features. These features allow
register contents to be verified without using logic analyz-
ers or other debugging tools.

Printed Circuit Board Layout

Once the logic has been verified, the Printed Circuit
Board (PCB) s laid out and manufactured. Since the logic
may be changed during design, this phase of the system
design is usually executed after the logic has been -
validated. It is recommended that board design and
layout be done after verifying designs using ispLSI and
pLSI parts.

System Test and Debug

System test and debug is the final stage of the design
process. The logic and the PCB are tested as a system
and minor enhancements or bug fixes are implemented.
Because of the flexibility of the ispLS| and pLSI devices,
minor changes can be made without affecting the layout
of the PCB or the pinout of the device.

3-4

1994 Handbook

ispLSI and pLSI Design Flow

Introduction

Once the system design has been organized into func-
tional components, and the logic functions which need to
be incorporated in the selected components defined, the
logic design phase begins. The general design flow is
shown in figure 1. An ispLSI or pLSI design may be
implemented from a number of design environments.
This section will discuss four popular ones: pLSI and
ispLSI Development System (pDS), pDS+ ABEL, pDS+
Viewlogic, pDS+ LOG/iC, pDS+ MINC, and pDS+ Ca-
dence.

Figure 1. General Design Flow

I Design Entry I

v

L Design Verify |

r Place and Route]

v |
| Fusemap Generation I

Simulation |

LDevice Programming 1

These design environments offer various levels of design
implementation from logic entry through programming
the device. They support a variety of user interfaces and
entry methods including: MS Windows GUI, Data I/O
ABEL HDL or VHDL, Viewlogic Viewdraw/Viewsynthesis
and PROcapture/PROsynthesis, ISDATA LOG/iC De-
sign System, Cadence Concept/Verilog-XL, and MINC
PLDesigner-XL. The design flows using these develop-
ment software systems are showninfigures 2, 2a, 2b, 2c,
2d and 2e.

Design Entry

The pDS Software allows the user to manually partition
the logic to control design fit and performance. Using the
MS Windows environment, logic functions are placed
into Generic Logic Blocks (GLBs) and I/0O Cells. This can
be done by using the Edit, Cut, Copy, and Paste functions
to enter Boolean equations and/or predefined functions
from the Lattice Macro or user libraries.

In addition to Boolean design entry, the ABEL HDL and
MINC HDL and VHDL formats allow high-level descrip-
tions of counters, adders, comparators, etc. These HDL
languages also support state machines, truth tables and
case constructs for behavioral design implementations.
The Lattice interfaces allow many existing PLD designs
to be easily integrated and converted into an ispLSI or
pLSI devices.

For standard CAE schematic designs, the pDS+ View-
logic and pDS+ Cadence software provide support for
graphical and hierarchical logic implementations using
the Lattice library of primitives and macros. The inter-
faces also allow easy integration of system or user-created
functions into a hierarchical schematic using a top-down
or bottom-up design methodology.

Design Verification

Verification using the pDS Software is accomplished in
two steps after logic has been placed. First, each cell may
be individually verified to ensure that the minimized logic
will fit into the GLB architecture. After all GLB and 1/O
cells are incrementally checked, the entire design is then
verified to ensure that all nets have proper sources and
destinations.

Because the advanced pDS+ tools perform automatic
partitioning, design verification is done at a higher-level
(pre-partitioned). For example, inthe ABEL environment
the Compile (ahdl2pla) function performs the syntax and
design rule checks. After the Compile phase, the Opti-
mize (plaopt) function (optionally) minimizes the design.

In other pDS+ environments, pre-partitioned design veri-
fication is performed by the Design Analyzer which ensures
the logic conforms to the Lattice design rules.

Partitioning

Partitioning using the pDS Software is done by the user
as part of the design entry process. The advanced pDS+
Fitter tools incorporate Lattice’s automatic partitioner
which accepts converted data from designs entered in
ABEL, Viewlogic, LOG/iC, MINC and Cadence tools.
Lattice specific attributes for design entry are available to
guide the partitioner in order to optimize usage of device
features and performance.

3-5

1994 Handbook

ispLSI and pLSI Design Flow

Place and Route

All Lattice design tools offer automatic place and route.
This entails placement of GLB and IOC logic and then
routing (or interconnecting) the source signals to their
destinations. In the ispLSI and pLSI devices, the Global
Routing Pool (GRP) provides fast interconnects from
external inputs and GLB feedbacks to the GLB inputs.
The Output Routing Pool (ORP) provides flexible inter-
connects from GLB outputs to external pins. To take
advantage of the architectural features, Lattice offers an
extended route option for more comprehensive routing of
complex designs.

Post-route Simulation

After place and route, a netlist for full timing and function
simulation may be passed to the Viewsim or Verilog-XL
simulator. Viewsim supports simulation using both tex-
tualand graphicalinput and interfaces. Board and system
level simulation models are also available from Logic
Modeling Corporation.

Documentation

Reportfiles, containing partitioned equations and pin-out
information, may be generated for routed or un-routed
designs. The pDS Software can also generate reports
with post-route maximum timing delays.

Device Programming

Programming information is generated on a routed de-
sign by the FuseMap Generator for a specific ispLSI and
pLSI device. It is an ASCII file written in the JEDEC
format. Using ABEL and MINC software, the user may
optionally append test vectors onto the JEDEC file. This
allows post-programming functional test on the actual
device.

Two programming methods are used to program the
ispLSI and pLSI devices. The first method uses the
Device Programming Mode for both types of devices.
This method facilitates device programming support from
third-party vendors. The second method uses the Lattice
In-System Programming Mode and applies to the ispLSI
family of devices.

Both methods of device programming allow the user to
program and read back the fusemap from the programmed
device for verification (if the security cell has not been
set).

Figure 2. pDS Design Fiow

Design
Preparation

Design Entry

Design
Verification

Automatic
Place and Route

Timing Sl
Ubraries -optional

~

Fusemap
Generation

pDS

y

Download to
ISP Device
or Programmer

3-6

1994 Handbook

ispLSI and pLSI Design Flow

Figure 2a. pDS+ Viewlogic Design Flow

Viewlogic Library and Interface

Schematic| £ Lattice Lattice
ohem: unctional | | Timing
Uibraries, Ubraries] |_Libraries
Y I

3 3

Schematic

DesignEntry | L— CcMD
Compile Functional Simulation test
Synthesis | vectors
Design Entry
Timing
- l::’
pDS+ Fitter
Netiist
Translation
DA PARTITIONER ROUTER PARTITIONER FUSEGEN JED
Design Analysis Optimizer/Partitioner Place & Route Post-Route Optimizer Fuse Map JEDEC
Generation file

VL2iaf

Figure 2b. pDS+ ABEL Design Flow

Design Entry
.ABL

ABEL Simulation
Compile

] I

JT2
PLA file

Libraries

Timing

test
vectors

!

pDS+ Fitter

}

PLACHK
Design Analysis

Lattice
Parameter
File
PARTITIONER
Optimizer/Partitioner

ROUTER
Place & Route

PARTITIONER FUSEGEN TMV2JED JED
Post-Route Optimizer Fuse Map Translator JEDEC

PAR file

=L

FIT

Report File

3-7 1994 Handbook

Figure 2c. pDS+ LOG/iC Design Flow

ISDATA LOG/C
Plus or Perfect

Figure 2d. pDS+ MINC Design Flow

§
?

o1V
test
vectors
pDS+ LOG/C Fitter l
s s | PARTITIONER | | ROUTER | PARTITIONER FUSEGEN
l Design Analysis Logic Partitioner Place & Route Post-Route Fuse Map
Optimizer Generation
Report File
Design
Entry
PLDesigner-XL™
Test Vector File
Optional
Timing
Simulation

Netlist
Translation

pDS+ Fitter

DA PARTITIONER ROUTER
Design Analysis Optimizer/Partitioner Place & Route

PARTITIONER

Post-Route Optimizer

|_ FUSEGEN

JED
JEDEC file

3-8

1994 Handbook

Figure 2e. pDS+ Cadence Design Flow

Lattice
Cadence Concept Schematic
Library
wedifnet
(Cadence EDIF Cadence
Netlister) Library and Interface :
vioglink Veril
(Cadence Verilog erilog Sim 4 Functional
Netlister) -Functional Simulation m:"y"
design.edt
e
Verilog Si
-Timing Simulation
Verilog
Test
Vectors
pDS+ Fitter
PLACHK PARTITIONER ROUTER PARTITIONER FUSEGEN JED
Design Analysis Optimizer/Partitioner Place & Route Post-Route Optimizer Fuse Map JEDEC
file

Report File

3-9 1994 Handbook

Notes

3-10 1994 Handbook

Section 1: Introduction
Section 2: ispLSI and pLSl Architecture Overview
Section 3: ispLSI and pLSI Development Tools

Section 4: ispLSI and pLSI Application Notes
Selecting the Right High Density Device
Beginner’s Guide to ispLSl| and pLSI
ispLSI and pLSI: A Multiple FUnction SOIUtIONcooieiiiiiiienceeeie e
Programming Multiple ISP Devices: Daisy Chain Configuration
Compiling Multiple PLDs into ispLSI and pLSI DeVicescccccocervuirriiiiicieniniciinsceene l
Adders/Subtractors in PLSH ..ot
Crosspoint Switch Implementation Using the pLSI 1032
Building Modulo N Counters Using ispLSI and pLSI Devices
Phase Locked Loops (PLL) in High Speed Designs
Video Graphics CONMIOIIETccouiiiririieieeie ettt s
A Digital Clock Design EXample ..ot
ispLS| Configurable Memory Controller ..ottt
Bar Code REAETcocuieuiiiiiii ittt e s e
High Density PLD Solutions for High Speed RISC/CISC Systemsc.ccocovvivieeniinicniiennns 4-139
SCSI Interface With the iISPLSI 3256cccuereiriirieiineeieeie et
PCI Bus Implementationcccoccevceeniennen.

Programming ispLSI Devices with a Tester

Section 5: GAL Architecture Overview

Section 6: GAL Development Tools

Section 7: GAL Application Notes

Section 8: In-System Programmable Generic Digital Switch (ispGDS)
Section 9: Design Techniques

Section 10: Article Reprints

Section 11: Technology, Quality, and Reliability Overview

Section 12: General Section

4-ii

Selecting the Right
High Density Device

Introduction

Board designers today have several options for imple-
menting their designs in high density programmable
devices. Due to technology and design considerations,
no single device provides the best solution for the chal-
lenges facing designers. To address this, design
engineers often use multiple types of high density de-
vices on a single board. This paper will outline various
applications issues and examine the appropriate high
density solutions. It will also examine from the perspec-
tive of the user, the impact of design implementation, on
the process of selecting a device.

High density programmable devices can be broadly
classified into two major types: Field Programmable
Gate Arrays (FPGA) and High Density Programmable
Logic Devices (HDPLD). FPGA devices are cell based
and usually have small grain-size logic blocks with dis-
tributed interconnects across the device. High Density
Programmable Logic Devices are array based and have
large grained AND-OR array logic blocks with centralized
interconnects (see figure 1). Similarly, board designs can
be broadly classified into two types: control intensive and
data intensive. Control intensive designs, usually con-
tain such subfunctions as Cache control, DRAM control,
DMA control and require limited data manipulation. Data
intensive designs, on the other hand, require complex
manipulation of data bits which are typically found in
telecommunications type applications. To select a high
density device a designer must examine:

Q Performance
Q Utilization
Q Ease of Use

Figure 1. Cell based and Array based Devices
CELL BASED ARRAY BASED

h O
mjeo
00

[
[©]

Performance

When implementing a logic design into a high density
device, itis typically partitioned into multiple logic blocks
orcells and then the various cells are connected together
using interconnect resources. The performance of a
design is determined by the combination of the cell
speed and the interconnect speed.

Cell Speed

A logic function is divided into subfunctions which fit the
basic building block of the high density device. Often the
number of inputs is the most important consideration.
The subfunctions should require no more inputs than are
available in the logic block of the device. Smaller logic
blocks tend to be faster but they offer fewer inputs.
Functional implementation often requires a number of
logic blocks cascaded into multiple levels of delay to
implement the logic. This slows down the functional
speed of the logic dramatically. Control functions are
typically input intensive and will be faster in devices with
building blocks that allow for a large number of inputs.
Data functions require fewer inputs and may be faster in
devices which have fewer inputs per logic block.

Cellbased devices are very granular and have very small
logic blocks. They have four to eightinputs per logic block
with cell speeds of 6 to 7 ns. While these devices can
implement critical data functions at fast speeds, for most
control functions they require 2 to 3 levels of cascading
delays.

The array based devices have larger building blocks with
16 to 48 inputs and delays of 8 to 10 ns. They can
accommodate most control logic function requirements
in terms of inputs to the logic block and implement them
inone level of delay. However, an overly large input logic
blockis ineffective as it only adds to the logic block delay.

Another alternative is the ispLSI and pLS| devices which
offer a large number of inputs (18-24) in every Generic
Logic Block (GLB). These inputs are sufficient to accom-
modate the logic requirements of control functions from
8 to 12 inputs with the fastest possible speed. They also
accommodate data functions which require 2 to 4 inputs
per output, while maintaining high speed.

4-1

1994 Handbook

Selecting the Right High Density Device

Figure 2. pLSI GLB

24 Inputs From Gl.obal Routing Pool 1 000
! 16 Inputs From Global Routing Pool /2 Dedicated Inputs | and 2000
A ! A Reconfigurable H
VYAV V-RY. ithQQQQunuuu«$t Product Term Registers Famlly
Sharing Array D,J-Kand T
3PT's and G L B
Exclusive OR
).0_,.! m
).2.-:" 3 9 —L D xj-03
D3 K b
4 | 4 PT Bypass | | i I [
L %> u 02 Giopal
-8 Routing
T |
D12 | D b o LD_D Routlng
= -
1
Dj“:”r 1| 7+4PTs = i I ;
18 [
19
D= .
—_—
Control
Functions
Product T Regonﬁgurable
uct Term egisters
Sharing Array D,J-Kand T 3000
3 PT's and -
J—-————~Ll5_x\;lusive OR ﬂ Fami ly
U
- x> 03
S of) D-plies 6B
4 —
D5 M
4 4 PT Bypass l) v To
L D O 1XI> 02 Giohy
8 Routing
5—91 . ___ Pool and
10 @-ﬂ»—— Single PT f 3 Output
Routi
; D iD °| x>01 pool
o] ! =
DIe 7 M| 7earrs || x
berd ; D arr{xH> 00
19
D+ .
AND Array
—_
Control
Functions

0845

4-2 1994 Handbook

Selecting the Right High Density Device

The graph illustrates (see figure 3) multiple logic block
delays required to perform common logic functions in
some of the popular high density devices available
today. Due to alimited number of inputs available in Cell
based devices the number of logic blocks cascaded to
perform a function can be as high as 4 to 7. The Array
based devices (vendor C) require only one level of delay.
ispLSI and pLSI devices require only one logic block for
most functions. The logic block delay is small and is
comparable to most Cell based devices.

Interconnect Speed

Interconnect speed is another important consideration
not only for connecting subfunction logic blocks, but also
for connecting signals from one logic function to another.
Interconnects affect final system performance as much
as logic blocks do.

The cell based devices offer distributed interconnects
with variable length lines spanning the length and the
width of the device and interconnecting various logic
blocks with finite delay interconnect points. Frequently,
signals have to traverse multiple line segments and

Figure 3. Building Block Performance

40+ Cell Based Array Based

—_ 7
2 7
£ o
= 30+ 6 //4’
® AT 5+

N 9y
o N % 1
X% 20+ 3R 47
m 4

2+ .
2 Y 2 7 1l
2 10+ 1A 7
3 1
@
Vendor Vendor Vendor LATTICE

SOURCE: Lattice Applications, Vendor Literature

interconnect points for a connection. In general, closely
located logic blocks have a shorter delay since signals
travel through fewer lines and interconnect points. The
opposite is true for logic blocks located further apart.
There is a large variation in the interconnect delays
based on the placement of the related logic blocks (see
figure 4). In general, to improve system performance for
control oriented functions in a cell based device, a large
number of signals and related logic blocks need to be

placed in close proximity. Frequently, this is physically
impossible and/or requires many placement iterations.
Often, for such designs as state machines, counters,
etc., the final performance is determined by the worst
case signal speed. In such cases, the cell based devices
with distributed interconnects offer slower interconnect
performance and consequently slower overall system
performance. Data functions require fewer delays and
can be implemented relatively faster. Placement of re-
lated data bits close to each other facilitates fast
performance for data oriented functions. However, some-
times with a large number of data bits this becomes
difficult to achieve.

The array based devices with centralized interconnects
offer uniform interconnect delays. The ispLSI and pLSI
devices offer uniform interconnect delays with signifi-
cantly faster interconnect performance than existing
array based devices, and consistently provide best case
cell based device delays as illustrated in Figure 4.

Figure 4. Interconnect Performance

50+ Cell Based Array Based
404

>

K]

8 304

©

Q

c

g 20 T

9

£
10+

AMD
MACH

Xilinx Actel Altera LATTICE

3K ACT 1 5K

The state-of-the-art for Automatic Place and Route (APR)
software has not reached a point where the interconnect
performance can be called optimal. In general, the cell
based devices either require a long APR time, typically a
number of hours or days, in order to reach near-optimal
interconnect speeds. Shorter route times result in rea-
sonable performance. Uniform delays in array based
devices eliminate the need for intelligently placing re-
lated logic blocks closer, thereby reducing APR time to a
few minutes. ispLS! and pLSI devices go a step further
and offer fasterinterconnect delays using the proprietary
centralized Global Routing Pool (GRP) (see figure 5)
which retains fast APR times. This is especially good for
dataintensive designs where all data bits perform equally.

4-3

1994 Handbook

Selecting the Right High Density Device

Figure 5. pLSI 1032 Block Diagram

| Output Routing Pool I

0 2 5 e e

o
)

[] —I
<[] [cslls
H=)]
4| < Global £
13 Routing 3
i Pool o
2] (GRP) c2] &
S|zl [c1]|3
[CO]

N
Q
=]

[
B8

o] el]

I Output Routing Pool |
| , EER

CL

B

When mapping a design, the utilization is defined by how
much of a device is used. In general, granular architec-
tures are more effective in offering higher utilization for
data intensive designs than large logic block architec-
tures which are better for control intensive designs.

Typically, array based architectures require sophisti-
cated synthesis algorithms to compress logic from multiple
stages into a large single stage block to increase utiliza-
tion. While array based devices implement control
intensive designs more effectively, the cell based archi-
tectures with their smaller logic blocks have less need to
compress logic into one stage of the design. Data inten-
sive designs which typically require a large number of
registers are more effectively implemented in a cell
based architecture which have higher register to logic
ratios.

The ispLSI and pLSI devices are neither as granular as
some cell based architectures, nor as large as some
array based architectures, since they offer a grain size of
four outputs per logic block (GLB). However, they offer
effective utilization because real life designs are a com-
bination of data and control functions.

Within each GLB, ispLSI and pLSI devices offer a Prod-
uct Term Sharing Array (PTSA). The PTSA optionally
shares GLB product terms between the four GLB outputs
thereby enhancing logic block utilization.

As devices are scaled to higher densities, the intercon-
nect resources should increase at the same pace as the
logic resources. This ensures that all of the available
logic is fully utilized in the device. The distributed nature
of cell based interconnects does not lend itself well to this
scaling. Figure 6 shows the logic-to-interconnect ratio for
one of the families of cell based high density devices. At
higher densities, this means a lower utilization of the
device since the logic cannot be mapped as easily as at
the lower end of the spectrum. The array based devices
scale the interconnect resources at the same level as the
logic resources and offer better utilization at the higher
end range of devices as well.

TheispLSIand pLSI Global Routing Pool (GRP) provides
all signals globally to all device GLBs. The GRP size is
scaled to provide full 1:1 logic to interconnect ratio
ensuring ali device logic is fully utilized, irrespective of the
device size.

Figure 6. Logic to Interconnect Ratio

-
n

Q

=

<

st --- FPGA-TYPE

Eé} — HDPLD - TYPE

=z 4

Z 1

(&)

[

B

E 9T

e

o 7T

8

- 5 ==
)) 120 150 180

1/0 PIN COUNT

Most designers use high density devices as a means for
logic implementation and concentrate on the main func-
tionality of the board, e.g., the microprocessor or the
graphics section. Their time is spent on the overall func-
tionality of the board and not on the basic logic. Ease of
use and quick design turnaround times are critical to any
digital designer. Ease of use is determined by a number
of factors. Some critical factors directly related to the
choice of device architecture are:

O Predictability of Performance
0 Design Rework
QO Design Entry

Q Turnaround time

4-4

1994 Handbook

Selecting the Right High Density Device

Predictability of Performance

The performance of the design is determined by the
system considerations and is usually driven by the pro-
cessorrequirements or other considerations like graphics
screen resolution, etc. High density devices frequently
do not determine the final system speed. Designers will
need to know in advance the final performance of the
logic implemented in the high density device to deter-
mine the feasibility of the part selected. A designer also
needs to know the speed grade required in advance, in
order to estimate the cost of the design.

For cell based devices, the number of delay levels it
would take to implement the design function is not
typically known. Also modifications to the design often
may cause a change in the number of delay levels.
Similarly, it is difficult to predict how the software will
place the logic blocks as explained earlier. Even if only
one out of ten critical signals ends up being slow, it will
slow down the device system speed. Array based
devices as well as ispLSI and pLSI devices, have
predictable levels of logic and interconnect delays, which
allows the designer to not only estimate speed in ad-
vance but maintain fast speeds.

Design Rework

Very few designs work the first time after entering the
logic into a device. Most designs not only require logic
addition or subtraction but frequently require pinout
changes, and rework. This rework is often due to logic
debugging and can sometimes be due to changes in the
specification of the final product, etc. Also a large cat-
egory of digital designers prefer an incremental design
approach where small chunks of designs are imple-
mented at a time and debugged before new chunks are
added.

For cellbased devices every logic change requires anew
set of logic mappings into the device cells and a new set
of interconnect mapping into device interconnect lines.
This leads to significant changes in the performance of
the device and to undesired pinout change.

Array based devices typically do not have any adverse
performance changes due to logic changes. However,
pinout changes frequently occur.

ispLSI and pLSI devices were developed to allow users
to make logic changes without any performance impact
and to freeze pinouts when incremental design changes

are done. ispLS| and pLS| devices offer an Output
Routing Pool (ORP) which allows GLB outputs to be
routed to many different /O pins. Also the ispLSI and
pLSI GRP allows I/O pin inputs to be available to all
GLBs. These two features when combined offer the
flexibility necessary to maintain pinouts in subsequent
iterations of designs while maintaining the same perfor-
mance.

Design Entry

There are two categories of digital designers using high
density devices. The first is the designer who is a PLD
user, such as with GAL devices and is familiar with
Boolean, State Machine or HDL type of design entry
syntax. For these designers, array based devices offer
direct mapping correlation from the entry syntax to de-
sign implementation, which is very helpful in control
intensive designs. This makes such factors as the logic
implementation, speed of functions and race conditions
etc., predictable to the designer and simplifies the design
task. The other category is the gate array designer who
migrates to programmable gate array devices. For these
designers the cell based devices offer a closer correla-
tion between schematic entry to actual design
implementation. These designers also implement data
intensive designs effectively, since they have a number
of TTL type data function macros available to them. With
synthesis techniques however, the schematic entry is
also offered for array based devices. Familiar design
entry methodology also speeds design entry time and
simplifies the design process.

ispLSI and pLSI devices offer direct correlation with
Boolean/HDL/State Machine entry syntax. Extensive
synthesis techniques are also used in the ispLSI and
pLSI Development System software to offer easy sche-
matic capture along with a large library of TTL-type
Macros.

Turnaround Time

Once a design is entered, the next critical step is design
compilation and programming of the part. For cell based
devices with smaller logic blocks, the distributed nature of
interconnects complicates matters. The Place and Route
algorithm needs to satisfy multiple and often conflicting
requirements for:

1 Placing Related Logic Closer for Faster Speed.

Q Moving Logic to Satisfy Critical Timing
Requirements.

4-5 1994 Handbook

l

Selecting the Right High Density Device

1 Moving Logic Due to the Lack of Interconnect
Resources.

1 Repartitioning Logic to Satisfy the Above Three
Conditions.

These four basic requirements are interrelated and com-
plex, making the compilation process very time
consuming. Typical cell based devices require 2 to 8
hours for compilation in order to achieve reasonable
system performance objectives.

The array based devices with global connectivity and
uniforminterconnect delays eliminate the need to closely
place related logic. The ispLSI and pLSI devices with
centralized interconnect offer compilation times of min-
utes versus hours for the cell based devices thereby
improving designer productivity. This combined with the
ispLSI version of the family which allows on-board repro-
gramming of multiple devices simultaneously, offers a
whole new dimension for logic design.

Conclusion

A digital designer has multiple choices available for high
density designs. The current solutions broadly catego-
rized as cell based and array based devices offer
alternative advantages and disadvantages for digital
designers. The type of solution chosen depends upon
the type of logic functions being implemented, the perfor-
mance required and other design specific trade-offs. The
ispLSl and pLSI devices offer the advantages of both cell
based and array based devices.

High Performance - ispLS! and pLS! devices are de-
signed to be extremely fast for both
control and data intensive functions
and are particularly excellent for
functions requiring more than eight
inputs per logic block.

Predictable Delays - The centralized GRP structure com-
bined with wide input GLBs offers
uniform delays which allows the de-
signerto determine system speedin
advance as well as maintain con-
stant speeds in subsequent
iterations of the design.

High Utilization - The ability to scale interconnect re-

sources at the same level as logic

resources combined with built-in flex-
ibility of the GRP and ORP assure
high device utilization. Also the

PTSA adds another level of fiexibil-

ity for increasing logic block

utilization.

Ease of Use - Predictable performance, quick de-
sign entry and rework time provide
fast design turnaround. This simpli-
fies the design process and

enhances time to market.

The combination of high performance, predictable de-
lays, high utilization and ease of use, not only offers a
superior solution for design requirements; it is delivered
in E2CMOS technology with reprogrammability and 100%
testability offering unparalleled device quality.

1994 Handbook

s attice’

Beginner's Guide to

ispLSI and pLSI

Introduction

This Beginner's guide is designed to help you become
familiar with the Lattice pL.S| 1032 device, ispLS| 1032
device and the Lattice pLS| and ispLSI Development
System (pDS™). To do this, a complete design of a
simple four-bit counter is discussed from specification
through programming and testing the part. The following
assumptions are being made. First, you have read and
understood the pLSI 1032 data sheet. Next, you have the
documentation for Microsoft® Windows™ readily avail-
able. Everything else should be here in this Beginner's
Guide.

The Lattice pDS Software is designed to run under
Microsoft Windows Version 3.1 or later (see figure 1).

Windows is an industry standard Graphical User Inter-
face (GUI) for pull down menus, text editing commands
and screen control commands. Because the Lattice
interface is the same as other Windows programs, it is
very easy to learn. If you know how to run any Windows
program, you can run the Lattice software.

Figure 1. Lattice pDS Software Opening Screen

It is necessary to have Windows for the Lattice pDS
Software to run. Windows runs on most standard IBM
PCs or clones. If your computer runs Windows 3.1, it will
runthe Lattice pDS Software. The recommended system
configuration for running pDS Software is:

A 386 or 486 Processor

4 Megabytes of RAM

40 Megabyte Hard Disk

A Floppy Disk Drive

00000

A Microsoft Windows Compatible Mouse
Q VGA or Super VGA Graphics

In addition, the pDS Software requires that either a spare
parallel printer port be available to perform in-system
programming, or a spare serial port be available to
communicate with an RS-232 controlled programmer.

pLSIfispLS| Development System 2.50 File: cnt8.lif
File Design Cell Macro Library Zoom Search Message Help
[E3) [B3TE2[EI o0 53 (B[S [IS [BATS3 B2 SIS0 &[48] [T71TE) *
EIBREIREBEIEIBEIE) E
0[] o] @
i Al cs
(4 % | o |
SR o 2
[pLSI1032-80L) —
7] A3 o} D
%1 A a| B
] A5 c2
_1% A a| B
iy [ol| B
[0 [mame[ms]na]ns [s [or][aoxx |
[1113) Z [+
- -
= Messages v|a
Edit Clear
Welcome To pLSI Development System! +
R4

4-7 1994 Handbook

Beginner's Guide

Getting Started

If you have not previously installed the Lattice pDS
Software, see the installation procedure which came
with your development system.

1. Tostart Windows, type WIN atthe DOS Prompt (C:>).
2. Install the Lattice pDS Software according to the
installation instructions. A new program group called
LATTICE is created. This program group should

contain a single icon, called LATTICE.EXE, which
looks like the Lattice company logo (see figure 2).

3. To startthe pDS Software, double click on the Lattice
Logo Icon.

Before you can proceed any further, some of the Microsoft
Windows tasks that you should be able to perform are:

QO Selecting a Menu Item Using the Mouse
Q Using Open, Save and Save As Menu ltems

Q Entering Commands and Text into Message Win-
dows and Dialog Boxes

Q Moving Around the Screen with the Scroll Bars
Q Editing Text Using the Keyboard and Mouse to:
- Select the Insertion Point
- Select Text by Highlighting It
- Cut, Paste and Copy Text

Figure 3. Design Entry Window

Generic

pl SWispl Sl Development System 2.50
Bar \‘Lﬂle Design Cell Macro Library Zoom Scarch Message Hel

If you are unfamiliar with any of these options, then take
some time to go through the Windows Users Guide. If
you have ever worked with the Apple™ Macintosh™,
you will find that many of the commands and operations
are similar.

Figure 2. Lattice Program Group Window

A Brief Tour of the Screen

Once you invoke the Lattice pDS Software, two windows
are displayed (see figure 8-9).

The larger of the two windows displays a graphical
representation of the pLSI 1032 logic diagram. This
window is called the Data Entry Window. The design is
entered by editing equations in the Data Entry Window.

The smaller of the two windows is the Message Window
and it is located at the bottom of the screen. The pDS
Software communicates with you by placing messages
in the message window.

The part that is displayed in the block diagram shows the
elements of the pLSI 1032 that can be modified by the
user. These elements are the GLBs, the I/O Cells, the
dedicated input pins, and the clock input pins, as
indicated in figure 3.

File: cnth lif

Pulidown
—1— Menus

[I7]15)

7

D

Logic —__|

RHEIBIBEIEIBIE)

Blocks

Design
Entry —
Window

I/0 Cells ——_]

Dedicated

pLSI1032-80L)

/Megablock

j / Clock
H / Inputs

Input Pins™—__|

3 QJs[nlnlzlu[ala
4 &

Message

; D04 "
= Messages vla
Edit Clear
Window To pLSI Devel Sy 1] *
T~ Scroll
*

48

1994 Handbook

Beginner's Guide

The design is entered into the development software by
clicking on the block that you wish to edit and entering
equations or Macros (library elements already parti-
tioned and optimized for high performance) into the Edit
Window that appears (see figure 4).

The method of entering the configuration data into a cell
depends on what type of cell it is:

Configuration data for Generic Logic Blocks is entered
using a combination of Boolean Equations or Macros
from the Lattice Standard Library.

Configuration data for VO Cells is entered using Macros
only. There is a complete set of Macros which describes
all possible combinations of input, output, and /O cell
configurations.

Configuration data for the Dedicated Input Pins and the
Clock Input Pins is entered using a subset of the /O Cell
Macros. Because these pins are inputs only, and do not
have input registers, many of the standard I/O Cell
Macros cannot be used.

Figure 4. Open Edit Windows

The Design Flow

Before starting our sample design, it is valuable to
understand the Design Flow. The following steps are
observed to complete a design. Refer to figure 5 for more
information.

Specifying the Design

A design is specified using one of the two approaches.
With the first method, you use an existing design, con-
sisting of 7400 Series TTL Logic elements, and fit the
design into the pLSI part. With the second method, you
design a circuit that is optimized for best performance
and utilization of the pLS| architecture.

=] pLSYispLS] Development System 2.50 File: untitied [«]~
File Design Cell Macro Library Zoom Search Message Help
L8] FHFFHIEEHHEREmcamEmcar rila sl +
mm 5 "‘I Edit GLB C1 -1~
Edit CellVerify Done
a0] g
—
A GLB
| A2 | ol | Il L— Edit Window
43 |
v | H
e | +
| &5) ry
A - v|a
T Edit CellYerify Done
L— | | *
]
W o : | VO Cell
| = Edit Window
— / -
Edit Clear L
LB Cell C1. A I
tatus : Is Empty. hd |
dit GLB Ct.
0 Cell 45. 0
0003

49

1994 Handbook

Beginner's Guide

Figure 5. Design Process Flow

I Specify the Design |

Partition the Logic
Into GLBs

»
L

/

Enter Equation for the
Single Generic
Logic Blocks

Enter Data for
1/0 Cells

Enter Fixed
Pin Location

L

Fixed Pin
?

No

\

The first approach consists of simply selecting Macros
from the Lattice library that approximate the functions of
the TTL or CMOS circuits and then connecting them to
each other. Using this approach a design can be com-
pleted quickly and has a high degree of probability of
workingthe first time because the circuit has been tested.

The second approach ensures better performance and
higher utilization, but may require some circuit redesign.
Many designs are a combination of the two approaches.

To selectthe correct pLSI device, partition the designinto
GLBs, and count the number of GLBs and I/O Cells used.
Next, select the pLSI device that can hold the amount of
logic required. Selection of the proper device is based on
the amount of logic required and on the number of I/O
cells needed.

A
Global Verify All |

Chip Logic
No Correct Data
and Re-verify
Yes
I Route —I<—

Unfix Pins, Remove
Critical Nets, and
Try Again

| Fuse Map I

A
I Program Part |

A
| Test Design I

!

The best utilization and routability are achieved by allow-
ing the software to assign the I/O pin placement. It is a
goodidea to design the pLS| partfirst, and then lay outthe
printed circuit board or wire-wrap board after the device
has been routed. Once the software intelligently assigns
the pin placement the first time, the pins can be fixed, and
changes can be made to the logic with few problems.

Partitioning the Design

Partitioning consists of carving the logic into chunks that
conveniently fit into the pLSI Generic Logic Blocks.
These general rules should be followed when partitioning
logic:

02538

Q Look atthe Macro library and decide if any of the logic
can be implemented using the standard Macros.
Macros are already partitioned and are optimized for
high utilization and high performance. Macros are
also the fastest method to input the logic design.

4-10

1994 Handbook

Beginner's Guide

QO Know the capabilities of the GLB. Ithas 18 Inputs and
4 Outputs. The GLB has 20 Product Terms (PTs) that
are grouped together in groups of 4, 4,5, and 7 PTs.
The registers in the GLB share a common clock. The
registers within the GLB also share acommon Reset
Product Term.

Q When an output has been fixed to a specific I/O pin,
the signal thatis used to generate that output must be
generated within the same Megablock.

Q There is only one Output Enable signal per Mega-
block. Outputs which share acommon Output Enable
signal should be placed in the same Megablock (see
figure 3).

Q Signals that are related to each other, such as those
used for counters, shift registers, etc., should be
placed into the same Megablock. This is done to
reduce routing congestion.

Compiling the Design

Compiling the design is done using the Lattice pDS
Software and consists of four steps:

1. Entering the design. Boolean equations or Macros
are entered into the various cells and blocks on the
pLSI device using a built in text editor. After each cell
has been entered, a Local Verify is done to check for
syntactical or logical errors within that cell.

2. Verifying the design. This is done globally after all
the design has been entered. This verification looks
for such problems as inputs that are not connected to
the GLBs or nets that have duplicate names. The
design must completely pass a Global Verify before
any of the following steps can happen.

3. Routing the design. This is the next step after a
successful Verify. The Router interconnects the Ge-
neric Logic Block and I/0O Cell inputs and outputs. The
option of fixing certain input and output signals to
specific device pins is available.

4. Generating the Fusemap. This takes the verified
and routed design and creates the JEDEC (a stan-
dard binary fuse file) necessary to program the part.
This is a modified format JEDEC file, and the file
generated has a suffix of .JED.

Programming the Part

Once the design has been compiled, the next step is to
program the part. This can either be done on the board if
using in-system programming (ISP) or in a separate
programmer. Using a separate programmer requires that
the part be removed from the target system socket and
inserted into the programmer to program the part.

Testing the Design

The last step in the process is testing the design. The
design is tested by putting it on the board and seeing if it
works correctly. If corrections need to be made, the
appropriate GLBs or I/O Cells are reprogrammed, and
the design is recompiled. Because the pLSI 1032 is an
electrically erasable and reprogrammable part, the same
part can be used again.

The Sample Design

The sample design is a simple one. We are going to
design a 4-bit binary counter using Boolean equations
and place itinto a pLSI 1032 device. We will then take the
design through the compilation process, generate a fuse
file and program a part.

The counter has the following specifications:

Q A 4-bit Synchronous Binary Counter.

Q An Active High Cascade In (Cl) and Cascade Out
(CO) Pins.

O An Active High Count Enable (CE) Pin.

Q A Synchronous Reset Pin.

Figure 6 shows the schematic diagram and Figure 7
shows the logic symbol for this counter. Because the
counter has 5 outputs (Q0, Q1, Q2, Q3, and Cascade
Out) it occupies two GLBs.

In this design example, the Clock and I/O pins are
assigned to be compatible with the Lattice ispLSI 1032
Demonstration board. This allows the design to be tested
easily.

The input signals Cascade In, Count Enable and Reset are
connected to three bits of the 8-bit DIP switch, and the five
outputs are connected to five of the discrete LED outputs.

Defining the Counter

In defining the counter, the first step is to write the equations.
The equations for the 4-bit binary counter are expressed in
Listing 1.

There are two inputs to the Exclusive-OR gate in front of the
D input to the register. We shall call the one that receives its
input from the feedback of the same register as the data
input. It is to the left of the $$ (XOR) symbol in the above
equations. The other inputis connected to the control terms
Cascade Inand Count Enable. These are called the control
input. When the control input to the XOR is a zero the output
of the XOR follows the data input (Hold.) When the control
Input is a one, the output of the XOR is inverted from the
input (Increment.)

4-11

1994 Handbook

Beginner's Guide

Figure 6. Counter Schematic Diagram

| |

o | D— D Q Qo

CE —1* [L-
D—— D Q Qi

[&

1 I_
D— D Ql-e—q2

[S

g ¢
o D— D Q 1—03

RESET = o

CLOCK
co
Figure 7. Sample Cascadable Counter Logic
/00 Carry In Carry Out 1/0 32
Count _hit Ri
Enable 4-Dit Binary
Cascadable
Clock Counter
Reset Q0 Q1 Q2 Q3

f

1/0 36

1/0 37

1/0 38

When either Cascade In or Count Enable is low and RST
is low, the QO output from the counter remains in its
current state (Hold). When Cascade Inand Count Enable
are both high and RST is low, the QO output toggles on
each successive clock (increment.) When RST goes
High, the inputs to the Data side of the XOR gate and the
Control side go low. This causes the output of the counter
to go low on the next clock edge (Reset.)

1/0 39

U“i

Each successive stage operates similarly, except during
transition, (Increment), when the outputs of all previous
stages are at logic level one. The Carry Out signal is only
generated when all the stages have reached a one and
both Cascade In and Counter Enable are a one.

4-12

1994 Handbook

Beginner's Guide

Once the equations have been defined, enter them into
the GLBs. Follow these steps:

1. From within Windows, start the Lattice pDS Software
by double clicking on the Lattice Icon.

2. When the Lattice software starts, it displays the block
diagram of the pLSI 1032 part. Open GLB C1 for
editing by double clicking on it. The edit window
displays.

3. Enter the equations shown in Listing 2 into the edit
window for GLB C1.

4. Verify the equations by clicking on the Cell Verify
menu option. If errors appear in the Message window,
find out what is wrong, and correct it. Things to look
for are typing errors, missing semicolons, or incorrect
symbols. Re-verify after making corrections.

5. Close the Edit window for GLB C1 by selecting the
Done option from the Cell Edit Menu.

6. Open GLB C2 for editing by double clicking on it.

7. Enter the following equations into the edit window for
GLB C2:

SIGTYPE CO OUT;
EQUATIONS

CO =0Q0 & Q1 & Q2 & Q3 & CI & CE;
END

Listing 1. Counter Equations

8. Verify the equations by clicking on the Cell Verify
menu option.

9. Close the Cell Edit window by clicking on the Done
option in the menu bar. See figure 8.

At this point, the logic for the counter is completely
specified, but we still must connect the Clock and the
Inputs and Outputs.

10. Open Clock Input YO by double clicking on it. It
may be necessary to Zoom in on the Clock area of
the Logic Diagram to determine which pin is YO.

11. Enter the following equations into the edit window
for Clock Input YO:

XPIN CLK X_CLK LOCK 20;
IB11 (_CLK, X _CLK);

12. Verify the equations by clicking on the Cell Verify
menu option.

13. Once the cell verifies correctly, close the Cell Edit
window by clicking on the Done option in the menu
bar.

Q0 = (Q0 & ! RST) $$ (CI & CE & ! _RST)
Ql = (Q1 & ! RST) $$ (Q0 & CI & CE & !_RST)
Q2 = (Q2 & ! RST) $$ (Q0 & Ql & CI & CE & ! _RST)
Q03 = (Q3 & ! _RST) $$ (Q0 & Ql & Q2 & CI & CE & ! _RST)
CO =00 & Q1 & 02 & Q3 & CI & CE
Listing 2. GLB Equations
SIGTYPE Q0 REG OUT;
SIGTYPE Q1 REG OUT;
SIGTYPE Q2 REG OUT;
SIGTYPE Q3 REG OUT;
EQUATIONS
Q0.CLK = _CLK;
Q0 = (QO0 & ! RST) $$ (CI & CE & ! _RST);
Ql = (Q1 & ! _RST) $$ (Q0 & CI & CE & ! _RST);
Q2 = (Q2 & ! _RST) $$ (Q0 & Q1 & CI & CE & ! _RST);
Q3 = (Q3 & ! RST) $$ (Q0 & Q1 & Q2 & CI & CE & ! _RST);
END

4-13

1994 Handbook

Beginner's Guide

14. Repeat Steps 10 through 13 for the Cascade In
input pin located at I/0 0 using these equations:

XPIN IO XCI LOCK 26;

IB11 (CI, XCI);

Repeat Steps 10 through 13 for the Count Enable
input pin located at I/0 1 using these equations:

15.

XPIN IO XCE LOCK 27;

IB11 (CE, XCE);

Repeat Steps 10 through 13 for the Reset input pin
located at I/O 2 using these equations:

16.

XPIN IO X_RST LOCK 28;
IB11 (_RST, X_RST);

17. Repeat Steps 10 through 13 for the QO output pin

18. Repeat Steps 10 through 13 for the Q1 output pin
located at I/O 38 using these equations:

XPIN IO XQ1 LOCK 74;

OB11l (XQ1, Q1);
Note: With the Lattice pDS Software you can have two
separate Edit Windows open at the same time. This
means that you can Copy the equations from I/O Cell 39
and Paste them into I/O Cell 38. The data in both cells is
similar, and you can use the Windows editing commands
to make changes.

19. Repeat Steps 10 through 13 for the Q2 output pin
located at I/0 37 using these equations:

XPIN IO XQ2 LOCK 73;

located at I/O 39 using these equations: OBll (XQ2, Q2);
XPIN IO XQO0 LOCK 75;
OB11 (XQ0, QO0);
Figure 8. Cell Entry Windows with Counter Equations.
=] pLSlispLSI Development System 2.50 File: cntd.lif [~]~
File Design Cell Macro Library Zoom Search Message Help
=] EditGLBAD Line:8 [~ |+] [*]
Edit CellVerify Done
IGTYPE Q0 REG OUT; +
SIGTYPE Q1 REG OUT;
IGTYPE Q2 REG OUT;
&S ' E[55ll1GTYPE Q3 REG OUT:
| 07 | 06 | D5 | p4 | JEQUATIONS
- Q0.CLK=CLK; 1
j A0 Q0 = [QD & !_RST) $5 [CI & CE & !_RS
Bl Q1 = (1 & |_RST) $$ (Q0 & CI & CE &
[3 |
| a2
5 LR B Edit GLB A1 Line: 4 ME
7] Edit CellVerify Done
Nl SIGTYPE CO OUT; :
1] [45 QUATIONS
[11] CO=Q0080Q180Q228032&CI&CE;
Hel | a6 END; r
*
= Messa
Edit Clear
dit GLB AO. y Dl C
LB Cell Al.
tatus:ls Empty.
Edit GLB Al. +
4-14 . 1994 Handbook

Beginner's Guide

20. Repeat Steps 10 through 13 for the Q3 output pin
located at I/O 36 using these equations:

XPIN IO XQ3 LOCK 72;
OBll (XQ3, 0Q3);

21. Repeat Steps 10 through 13 for the Carry Out output
pin located at I/0 35 using these equations:

XPIN IO XCO LOCK 71;

OBll (XCO, CO);

Now, the Inputs, Outputs and Clocks are connected,
and the equations for the counter have been entered
and verified. The design is complete and ready to be
Globally Verified. Before proceeding, save the work.

22.From the Menu Bar, select the File Option, and
choose Save As. The pDS Software prompts you for
the name of the file that you are saving. Type in the
name COUNTER. The suffix .LIF (Lattice Internal
File) is automatically appended.

The next step in the development process is to Globally
Verify the integrity of the design. Global Verify first
performs a Cell Verify on GLBs or I/O Cells which have
not already been verified, or which have changed since
the last Cell Verification. Then it checks interconnections
between the GLBs looking for problems such as outputs
which are not used or inputs that are not connected.

23. From the Design Menu option in the Menu Bar, select
Verify. This starts the Global verify process. If Verify
finds any problems, it lists themin the Message window
at the bottom of the screen. The verifier also creates a
netlistfile that the Router uses to route the design. Once
the design passes verify, it is ready to be routed.

24. From the Design Menu option in the Menu Bar, select
Route. This module places I/O pins that have not
previously had their positions defined, and intercon-
nects all the logic blocks and I/O cells on the device.
When Route is invoked, a list of all the I/O pins displays.
If you have not previously defined which signals are
connected to which pins, this is the time to do it.

25. From within the Route Message Window, click on the
Execute button. This starts the router. Routing is an
entirely automatic process, and requires no interven-
tion. As before, if any problems occur, they are listed
in the message window.

26. The last step in the compilation process is to gener-
ate the Fusemap. This is accomplished by clicking on
the Fusemap option in the design menu. Like Route,
Fusemap is an entirely automatic process, and should
require nointervention. The output fromthe Fusemap
program is the .JED file and itis used to program the
part.

The design is now complete. Because it was given a
name previously (COUNTER.LIF) you can simply click
on the Save command in the File menu to save the work.
Allthat remains is to program the partand test the design.

This is a brief review of the syntax used in the
example design. For complete information see the
Language Reference section of the Software Manual
included with the Lattice pDS Software.

The operators that the Lattice pDS Software uses are
similartothose usedbythe Datal/O ABEL program. The
operators and an example of how they are used are
shown in the table below. The Precedence of Evalua-
tion is also shown where 1 is the highest precedence.
Seetable showing Precedence of evaluation.

Review of the Syntax

Table: Precedence of Evaluation

Operator | Precedence Description | Example
! 1 NOT 1A
$$ 2 XOR (XOR A$$B
Gate in GLB
& 3 AND A&B
4 OR A#B
$ 5 XOR (Soft) A$B
1$ 5 XNOR (Soft) A'$SB

4-15

1994 Handbook

Beginner's Guide

Review of the Syntax (Continued)

In addition to the equations, there are several other
lines that need to be included in the GLB or I/O Cell
definition. They are:

SYM; The symbol line consists of five parts:

The Keyword SYM that indicates
what type of line this is to be.

- The Symbol Name. This is either
GLB or IOC.

- The Cell location.

The Symbol Level used by other soft-
ware packages. For our purposes,
always use a 1.

- The Symbol User Name. This is an
assigned name that appears in the
GLB or IOC in place of its location
designation.

SIGTYPE; Used to define signal attributes within a

GLB.

OUT defines a combinatorial output.

REG OUT defines a Registered Out-
put.

EQUATIONS; Indicate the start of the Equation Sec-
tion for a GLB or I/O Cell.

MACRO; Indicates the usage of a Macro Logic
Element from the Macro Library.
END; Signifies the end of an Equation Sec-

tion, a GLB or I/O Cell definition, a
Declaration

Section, or a Macro Definition.
There can be more than one END
statement in a GLB.

Comments are indicated by preceding the comment
with two forward slashes:

// This is an example comment line.

Programming the Device

The Fusemap program generated a fuse (.JED) file
which needs to be permanently programmed into an
ispLSI or pLSI 1032 device. Programming the part is
done using one of three methods:

Q RS-232 Link Programmer for ispLSI or pLSI

device
Q In-system program for ispLSI device
Q Motherboard Programmer for ispLSI device

For a programmer that is controlled by a serial RS-232
link, the Lattice pDS Software can call up the Windows
Terminal Program. By using your PC to emulate a termi-
nal, you can give the programmer the commands
necessary to set it up to receive the .JED file. The
Download command in the Windows Terminal program
transfers the file to the programmer. Because the .JED
file is an ASCII format, a text download is used.

AnispDOWNLOAD Cable is offered as an option with the
pDS Software . The cable connects to the parallel porton
a PC and controls the programming process. If the target
system is designed to use in-system programming, the

part can be programmed right on the board or using the
isp Engineering Kit.

For designers who need to integrate isp into their on
board programming control using a microprocessor, Lat-
tice provides ispCODE (C source code) to allow for
customization of the isp user interface.

For programming the ispLSI 1032 part, follow these
commands.

1. From the Design Menu select the Program Option.
This invokes the In-system programming module.

2. The isp module prompts for the name of the JEDEC
file. Click on COUNTER.JED in the file list and then
click on OK. It may already have COUNTER.JED as
the default file name. If this is so, then just click on OK.

3. Programming takes a few seconds. If any errors
are encountered, they are listed in the message
box.

When programming is complete, the part is reset and sent
back into the operating mode. It can then be tested by
applying the required inputs and looking at the outputs.

4-16

1994 Handbook

Beginner's Guide

Advanced Design Concepts

Working with Macros

The Lattice pDS Software comes with a library of over 200
Macro logic elements. These logic blocks are similarto 7400
TTL logic. Some example Macros are listed in Table 1.

For complete information on the Macro Library refer to
the Macro Reference Manual that comes with the Lattice
pDS Software. In addition to using Macros from the
Lattice library, you can either create custom Macros from
scratch, or modify Macros from the Lattice library to
satisfy design requirements.

We are going to take a Macro from the library that is identical
to the counter just created, and cascade it with the counter.
The Macro element that is used to do this is named CBU24.
The schematic diagram is shown in figure 9.

1.

Read in the previous design using the File Open
command. The name of the file is COUNTER.LIF.

Choose the Library menu option and highlight Select
to invoke the library window. Click on the System Lib
button and then click on OK.

Invoke the Macro window by clicking on MACRO in
the Menu Bar.

Select the Macro CBU24 from the list of Macros.

Table 1. Macro Logic Element Examples

9.

Click on GLB C3 to Select it.

Click on the PLACE command in the Macro Menu.
This places the first half of the 4-bit counter Macro in
GLB C3. The signal names that were placed in the
GLB are the default signal names, and need to be
changed to correspond to the signal names that used
so that the router is able to connect them.

The original text in the cell was:

CBU24_2(CRO, [Q0..Q3],CAI,EN);
Change that to read:

CBU24_2(CAO,[Q4..Q7],CO,CE);
The default signal names are changed to match
those already used in as shown in Table 2.

Perform a Cell Verify to ensure that no errors were
introduced.

Click on DONE to close that GLB.

10. The Macro occupies two GLBs, so the second half of

the Macro now needs to be placed. Click on GLB C4
to place the second half.

Macro Name | 7400 Part Description Number of
Equivalent GLBs Used

AND2 7408 2 Input AND Gate 1/4
XOR2 7486 2 Input Exclusive OR Gate 1/4
FJK21 74112 J-K Flip-Flop with Asynchronous Clear 1/4
CBU34 74161 4-Bit Preloadable Binary Counter with Reset 11/4
BIN27 74247 BCD to 7 Segment Decoder 2
SRR38 74166 8-Bit Parallel In-Serial Out Shift Register 2
ADDF4 74283 4-Bit Full Adder with Look Ahead Carry 4 3/4

Table 8- 0002

4-17

1994 Handbook

Beginner's Guide

Figure 9. Custom Binary Counter Cascaded with a Standard Macro Counter

Carry In Carry Out Carry In Carry Out
701) Count 4 guthom Count Mac': o QBU24
Enable 4-bit Binary Enable 4-bit Binary
Cascadable Cascadable

[> clock ~ Counter — bolock Counter
Reset Q0 Q1 Q2 Q3 Reset Q0 Q1 Q2 Q3
1/0 36
[wo2>

1/0 39
1/0 40

1/0 41
1/0 42
1/0 43

UUUUU“

Table 2. Default Signal Names

Defauit Signal Is Notes

CAO Cascade Out CAO This is a new signal. We can use the default name.

Qo0..Q3 Counter Outputs Q4..Q7 We used QO through Q3 in the first counter. We need to
assign new names so the router will not get confused.

CAl Cascade In CcO CO is the name that we assigned to the Cascade Out pin
on the counter that we designed.

EN Enable CE We called our Enable pin CE (Count Enable). This comes
from a pin external to the device.

11. As before, the signal names that were placed in the The counter has now been placed, and the inputs
GLB were the default names. They also need to be connected, but the outputs are still floating. Connect
edited. The Lattice software placed the following them to the 1/O Cells as you did with the previous
code into the cell: counter.
CBU24_1([Q0..Q3],CAI,CLK,EN,CD); 13. Select the Macro called OB11 from the Macro list.

Change it to read:

14. Click on 10 Cell #40 to select it.
CBU24_1([Q4..Q7],CO,_CLK,CE,RST);))) i i
As before, we have changed the default signalnames 15 Clickon PLACE inthe Macro window. This configures
to match those that we are already using. See Table 8- 1/0 Cell #40 as an output buffer, but it used the default
3. signal names. The textthat was placed in the cell was:

12. As before, perform a CELL VERIFY, and click on OB11l (X00,A0);
DONE when through.

4-18 1994 Handbook

Beginner's Guide

OB1l1l (X04,0Q4);

Q4 is the name of the first output of the counter. XO0
was changed to XO4 so that there would not be
duplicate /O cell names when we place the next
cells. Q

We have tried to give a feeling of how to design using
pDS Software from definition to completion. In this
Beginner's Guide, we:

Looked at the Lattice pDS Software and its vari-
15. Click on 10 Cell #41 to select it. ous elements.

16. Click on PLACE in the Macro window. Change the D Explained the design flow from beginning to end.

default signal names to match those used in your { Looked at the syntax needed for entering a de-

design: sign.

OB11 (X00,A0); Q Defined a small counter and partitioned it into

Becomes: GLBs.

OB11l (XO05,0Q5); Q Entered the design for that counter into the devel-
17.Use the same technique to connect 1/O cell #42 to opment system.

counter output Q6. QO Took that design through the compilation process.
18. Use the same technique to connect I/O cell #43 to (Verify, Route, and Fusemap).

- counter output Q7. Q Programmed a part.

All the outputs are now connected, and the design is O Tested the design.

complete. As in the first design, you now needtodoa ([Changed the design, and introduced the use of
Global Verify on the design, Routethe nets and generate
the Fusemap. You can see from this exercise how much
simpler it is to complete a design when using Macros. O Recompiled that design and tested it.

The use of Macros is not limited to those in the Lattice T romthisyoucansee how simpleitis to design using the
Macro library. Sometimes the standard Macro is close to, Lattice ispLSI or pLSI families. If you have followed_ all of
but not exactly what you need. You can copy any of the these steps, then you are ready to complete a design of
standard Lattice soft Macros into a personal library, and ~ YOUr own.

modify them to meet specific needs. You can also create

Macros using Boolean equations and save them in your

personal library for future use.

Macros.

Table 3. Renaming Default Signal Names

Default Signal Is Notes

Q0..Q3 Counter Outputs Q4..Q7 We used QO through Q3 in the first counter. We need to
assign new names so the router will not get confused.

CAl Cascade In CcO CO is the name that we assigned to the Cascade Out pin
on the counter that we designed.

CLK Clock _CLK We named the signal that we brought in on pin YO _CLK

We called our Enable pin CE (Count Enable). This comes.
EN Enable CE in from pin 27.

CD Clear Direct RST Our reset signal was brought in on pin 28 and called RST.

4-19 1994 Handbook

Notes

4-20 1994 Handbook

| attice™ ispLS! and pLSI: A Multiple

Function Solution

Introduction

As high density programmable logic becomes more
common place, determining exactly which functions to
integrate and how to integrate these functions becomes
more challenging. Some of the obvious considerations
when integrating a design include speed and density.
Beyond these concerns several other design and system
details must be evaluated. In the following example,
these design details will be examined and fully ad-
dressed. Design considerations can be broken into the
following hierarchy: 1) System considerations including
technology, reliability, and testability. 2) Design consid-
erations which include partitioning a design for a specific
architecture, determining |/O, and speed concerns. 3)
Integration of the design into an ispLSI device. This
includes utilizing the ispLSI and pLSI architecture for the
best speed and efficient random logic consolidation.

A Dual Processor Controller

The design shown in figure 1 is a dual processor control-
ler which sits on a backplane bus to which other CPUs
have access. All of the CPUs communicate via the
backplane bus by sending interrupts back and forth. This
design also contains an independent 32-bit general
purpose counter along with CPU control logic for memory
and /0.

Before partitioning the design, one must consider board
space and reliability. For example, in some systems
where board space and reliability are at a premium, it

Figure 1. Dual Process Controller Block Diagram

may be desirable to surface mount all components. In
these cases, using sockets may be necessary to mini-
mize manufacturing problems for the programmable
devices. Of course, all Lattice ispLSI devices are in-
system programmable, so removing devices from the
board is not necessary if reprogramming is required.
Another benefit to directly soldering components on the
board is that less board space is needed and less
capacitance will load the outputs. Therefore, soldering
devices directly on the board will not increase propaga-
tion delay. To reprogram the ispLSI device, 5 volts and a
five wire interface are all that is needed. In addition,
choosing an instantly reprogrammable technology al-
lows complete testability. Lattice tests forand guarantees
100% AC, DC, functional and programming yields.

Having considered these overall issues, we can now look
at partitioning the design. Many designers partition by
using GAL devices or other PLDs for speed and fast state
machine control, and FPGAs for interface and random
logic. The Lattice ispLSI family rewrites these basic
design rules. With the Lattice ispLSI and pLSI families of
high density programmable logic devices, the designer
acquires speed and density in one device! The design
must still be partitioned, but within the Generic Logic
Blocks of the Lattice ispLSI device instead of between
several discrete PLDs and/or FPGAs.

This design can be broken up into three major blocks: the
two interrupt and bus random logic blocks, the data block
consisting of a 32-bit counter with a 32-to-16 multiplexer,
and the memory and 1/O control logic state machine.

/\

Memory

CPU Control
and I/O i

Logic

CPU1

Interrupt and | g
Bus Logic -

10

32-bit Counter | g T o

Backplane
and Multiplexer J A Bus
G| INterrupt and | ey
cPu2 I Bus IPogic - " L
vV
4-21 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

Figure 2. The Partitioned Design

Traditional FPGA devices would integrate the interrupt
and bus logic and the 32-bit counter since the speed is
not critical. The memory and I/O control logic would be
lefttothe GAL devices. With the Lattice pLSl architecture’s
density and speed, many designs of this type can be fully
integrated into one device.

Because of the architecture of the ispLSI and pLSI
devices, the key concern for engineers will be 1/O pin
conservation. Counting the I/Os in this design (62 includ-
ing the clocks), the pLSI 1032 with 64 I/O pins and 8
dedicated inputs will fit this application nicely. There are
4 types of input/output configurations which can be
implemented by the pLSI 1032 architecture. These con-
figurations are input only, output only, 3-state output, and
bi-directional I/O. In addition, input registers and latches
are also available. When executing designs with the
Lattice software, it is necessary to label all of the I/O
signals. 1/0 examples will follow later in this article. All
Boolean equations are in a syntax format which can be
used in an ASCII text file and then imported into, or used
directly in the Lattice ispLSI and pLSI Development
Systems (pDS) environment. Figure 2 shows the portion
of the design implemented in the pLSI 1032 device.

AAL
; >
. Set Decode
Main |
. to Set <
Memo CPU | Clear | | |
and I/g o = | Interrupt | | Iterrupt “
Ee | 321016 Backplane
Resettable | . Multiplexer with
i Counter | |16 Registered Bits |
Bus | Decode to | Sett Dgc?de
CPU | Clear | | ? €|
| Interrupt | | Interrupt |
Note: —f
I(_LSOgiC in) .
| pLSI1032) | 4 b

Interrupt and Bus Random Logic

Let us examine the details of each of the three sections
to see how they would be implemented into the pLSI
architecture. First, how to implement the decoding and
latching of the interrupts. For this design, integration of
the decoding logic for the set and reset terms and set/
reset flip-flops is necessary.

The decoding logic is easily integrated, because the
architecture has the familiar AND-OR structure. The less
obvious detail which must be dealt with is exactly how to
perform the Set/Reset flip-flop function. There are two
choices to be explored. The first would be to use the
product term reset in the Generic Logic Block, or GLB, as
reset and use the product term clock as the preset with
the “D” input tied to a “1.” (see figure 3).

This approach works fine to implement a small number of
unique S-R flip-flops. If many unique S-R flip-flops are
needed (this example requires 12), a differentimplemen-
tation must be used. This is because each Generic Logic
Block has all four registers sharing a common clock.
Therefore using just one register would require the other

4-22

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

Figure 3. D-Type flip-flop Configured as an S-R flip-
flop

Vee
T Lol
Set ——
CD

three outputs to be combinatorial, or registers with the
same clock and reset. If there are several unique S-R flip-
flops, each would have to exist in separate GLBs. This
is not an efficient use of the architecture, unless the other
outputs can be used as combinatorial logic. For this
example, a more effective use of the GLBs can be
achieved by making an S-R flip-flop from gates. The logic
equations necessary are shown in Listing 1.

With this implementation, two S-R registers can fit into
one GLB. The limiting factor in deciding whether two
registers will fit, is the number of inputs necessary to
perform the S-R function. Each GLB has a maximum of
18 inputs. If the number of inputs (including fast feed-
backs), for the two registers is 18 or less, then both
equations can be used in one GLB. In this design we
have a total of 12 S-R registers. Listing 1 shows the
equations for two S-R registers from the design, followed
by the same equations reconfigured using the gate S-R
implementation in Listing 2.

The number of unique input and feedback signals in the
4 equations above, is 14. Since this is less than 18, the

Listing 1.

Q = !Set # !Qbar;
Qbar = !Reset # !Q;

Listing 2.

equations will fit in one GLB. To implement the other
10 S-R registers, simply use the same strategy and
partition the logic into five other GLBs.

Data Path: 32-bit Counter and 32-to-16 Multiplexer

The next task is deciding how to build the 32-bit counter
and the 32-to-16 multiplexer data latch. Using the ispLSI
architecture, counter implementations up to 16-bits are
straightforward. Up to 16-bits, the counter can run at the
full speed of the device. Two reasons the counter is able
to execute at full speed are: 1) the wide input GLBs, and
2) T-type flip-flops configurable in the architecture. The
T-type flip- flop is created by inserting an XOR gate
before a D-type flip-flop and feeding back the D output
into one of the two inputs to the XOR gate. The otherinput
to the XOR gate becomes the T-type flip-flop input.
Beyond 16-bits, a counter must be cascaded into an-
other level of logic because the total number of inputs
needed exceeds the maximum allowed by the GLB
architecture. Recall that each GLB has an 18 input limit.
Two of the inputs are dedicated input pins and the other
16 are I/O pins or fast feedbacks. Therefore, to imple-
ment a 32-bit counter, we must use two more GLBs to
decode the point at which the counter has reached the
full 16-bit mark. This is accomplished by setting an output
true when all bits (0 - 15) are a “1.” Also, it is necessary
to decode the point at which the counter has reached the
full 24-bit mark. This is done by setting an output true
when all bits (0-23) are a “1.” Using these intermediate
terminal count outputs, a 32-bit counter can be imple-
mented in 10 GLBs. This 32-bit counter can run at 40
MHz as implemented here, or up to 80 MHz if the carry
outis pipelined. The equations for this counter are shown
in Listing 3.

// Q is the output of the S-R flip-flop
// Qbar is the inversion of Q

resetl = bp_int_clr & bp datal2 # bp reset;
reset2 = bp_int clr & bp_datall # bp_reset;

setl =
set2 =

!m_as & !ipc_int & mdata8 & !mdatal0 & !mdatall & !mdatal2;
!m as & !ipc_int & mdata8 & mdatal0 & !mdatall & !mdatal2;

These equations are now optimized to combine the logic in one GLB:

Q1 =
Isetl
Qlbar =
Q2 =
Iset2
Q2bar =

{(bp_int_clr & bp_datal2 # bp reset) # !Q1 ;
!(!m_as & l!lipc_int & mdata8 & mdatal0 & !mdatall & !mdatal2) #!Q2bar; //

!(bp_int _clr & bp_datall # bp_reset) # !Q2;

!(!m_as & !ipc_int & mdata8 & !mdatal0 & !mdatall & !mdatal2) # !Qlbar; //

//lresetl

// ‘reset2

4-23

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

Listing 3.

// 0-7 decode

TC_1 = (00 0 & Q0 1 & Q0 2 & Q0 3 & Q0 4 & Q0 5 & Q0 6 & QQ 7);

// 0-15 decode

TC 2 = (00 8 & 00 9 & Q0 10 & Q0 11 & Q0 12 & 0Q 13 & QQ 14 & QQ 15 & TC_1);
// 0-23 decode

TC_3 = (Q0_16 & Q0 17 & QQ 18 & Q0 19 & 0Q 20 & QQ 21 & QQ 22 & QQ 23 & TC_2);
// The QQ 0 to QQ 31 signals are the 32 counter output bits.

Q0 0 = QQ 0 $$ VCC ;

Q0 1 =00 1 $$ QQ 0;

Q0 2 =002 $$ Q00 1 & Q00 ;

00 3 =003 $$ 002 &001&0Q00 ;

Q0 4 =004 $5 00 3 &002&0Q01&0QQ0 ;

00 5 =005 $$ 00 4 & 003 &0Q02&0Q01&Q00 ;

Q0 6 =00 6 $5 00 5 & Q0 4 & 00 3 & Q0 2 & Q0 1 & QQ 0 ;

Q0 7 =007 $$ Q006 & 00 5 & Q0 4 & Q00 3 & Q02 &0Q01&0QQ0;
Q0 8 =00 8 $§ TC_1 ;

Q0 9 =00 9 $$ Q0 8 & TC_1 ;

Q0 10 = QQ 10 $$ Q0 9 & QQ 8 & TC_1 ;

00 11 = Q0 11 $$ Q0 10 & QQ 9 & QQ 8 & TC_1 ;

Q0 12 = Q0 12 $$ Q0 11 & Q0 10 & QQ 9 & Q0 8 & TC_1 ;

Q0 13 = Q0 13 $$ 00 12 & Q0 11 & Q0 10 & Q0 9 & QQ 8 & TC_1 ;

Q0 14 = Q0 14 $$ 00 13 & Q00 12 & Q0 11 & QQ 10 & Q0 9 & QQ 8 & TC_1 ;

Q0 15 = Q0 15 $$ Q0 14 & Q0 13 & Q0 12 & QQ 11 & QQ 10 & QQ 9 & QQ_8 & TC_1 ;
QQ_ 16 = QQ 16 $$ TC_2 ;

Q0 17 = QQ_ 17 $$ QQ 16 & TC_2 ;

Q0 18 = QQ 18 $$ Q0 17 & QQ 16 & TC_2 ;

Q0 19 = Q0 19 $$ Q00 18 & QQ 17 & QQ_16 & TC_2 ;

Q0 20 = QQ_20 $$ Q0 19 & QQ 18 & QQ 17 & QQ 16 & TC_2 ;

Q0 21= Q0 21 $$ Q0 20 & 00 19 & QQ 18 & QQ 17 & QQ 16 & TC_2 ;

00 22= Q0 22 $$ Q0 21 & Q0 20 & QQ 19 & QQ 18 & QQ 17 & QQ 16 & TC_2;

Q0 23= Q0 23 $$ Q0 22 & QQ 21 & QQ 20 & QQ 19 & QQ 18 & QQ 17 & QQ 16 & TC_2;
QQ_24= QQ 24 $$ TC_3 ;

00 25= QQ 25 $$ QQ 24 & TC_3 ;

Q0 _26= QQ 26 $$ Q0 25 & QQ 24 & TC_3 ;

Q0 27= QQ 27 $$ QQ 26 & QQ 25 & QQ 24 & TC_3 ;

Q0 28= Q0 28 $$ Q0 27 & QQ 26 & QQ 25 & QQ 24 & TC_3 ;

00 29= Q0 29 $$ Q0 28 & QQ 27 & QQ 26 & QQ 25 & QQ 24 & TC_3 ;

00 _30= Q0 30 $$ 00 29 & QQ 28 & Q0 27 & QQ 26 & QQ_25 & QQ 24 & TC_3 ;

Q0 31= Q0 31 $$ Q0 30 & Q0 29 & Q0 28 & QQ 27 & QQ 26 & QQ_25 & QQ 24 & TC_3 ;

4-24 1994 Handbook

ispLSI and pLSI:

A Multiple Function Solution

The 32-to-16 multiplexer latch is the next logic block to be
constructed. In this design, the multiplexer allows the
system bus access to 16-bits of the counter at a time.
Either the high 16-bits (16-31) or the low 16-bits (0-15)
are enabled to the bus. Since this multiplexer latch is a
simple OR gate control function into a register, these 16-
bits can be placedinto 4 GLBs. Recall thateach GLB has
a maximum of four outputs. The equations for one GLB
are shown in listing 4.

These 16-bits are also 3-stated by a control pin. In the
ispLSI 1032 architecture, 4 unique output enable terms
are allowed. Each output enable can control up to 16
outputs or bi-directional pins. For example, a design
could have 64 3-state outputs, but 4 output enable
control signals would be used to control 16 outputs each.
It is important to note that if an output enable signal is to
control more than 16 outputs, the output enable signal
will need to be defined more than once. In this design

Listing 4.
OMDATAOI.CLK = CLK;
OMDATAOI = (!CNTELO & QQ 16) # (CNTELO
OMDATALlI = (!CNTELO & QQ 17) # (CNTELO
OMDATA2I = (!CNTELO & QQ_ 18) # (CNTELO
OMDATA3I = (!CNTELO & QQ 19) # (CNTELO
*
*
*
OMDATA31I = (!CNTELO & QQ 31)
Listing 5.

BP_INT RDI.OE = BP_INT RDO;

only 16 outputs are controlled by one output enable
signal, therefore only one output enable is used. This
signal is provided by defining the output enable ina GLB
as shown in listing 5.

Memory and I/O State Machine

Considering the memory and I/O state machine and
decoding logic, the ispLSI GLB architecture has a path
which is optimal for decoding logic. This path is utilized
by choosing the 4 product term bypass mode. This mode
allows an output with 4 product terms or less to exhibit
input pin to output pin propagation delays of no more than
15 ns! Since decoding logic typically uses 4 product
terms or less, this mode can be used for the critical
propagation delay paths. The designer is cautioned to
use the 4 Product Term Bypass Mode sparingly, be-
cause too many paths designated as critical in any one
design may result in a failure of the Place and Route
algorithm. The syntax necessary to invoke the 4 product
term bypass mode is shown in listing 6.

); //select high or low word
)i
)i
)i

(CNTELO & QQ 15);

//PROGRAMMABLE OUTPUT ENABLE SIGNAL

4 PRODUCT

// BYPASS MODE FOR THIS COMBINATORIAL OUTPUT

Listing 6.
SIGTYPE IO_SELECT 1 CRIT; // CRIT - TELLS THE SOFTWARE TO USE THE
TERM
EQUATIONS
IO_SELECT = MA23 & MPA22 & !MPA21 & MPIO_MEM & !MPWR_RD #
MPA23 & !MPA22 & MPA21 & MPIO_MEM & MPWR_RD;
END;

4-25

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

Figure 4. GLB Product Term Sharing Array

Inputs From Dedicated
Global Routing Pool Inputs Reconfigurable
—_— Product Term Registers
0 1 23 456 7 8 9 1011121314 1516 17 Sharing Array D,J-K,and T
VM]
>‘°—: 1 I [M]
U
D2 4 [oal—{x|->- 03
54 el
_
S]
4
7 [U
D1+ IRy x> 02 To
D8 = Global
D%&S\ Routing
10 5 - Pool and
>1 W 'S Outpyl
).3_:1 [oa xH>- o1 Houting
Di4 —
Dis
DIs 7]
D | | |u
18 DQ xH>— 00
Die | —
AND Array
PT Reset
Global RESET
Control CLKO
Functions CLK1
CLK 2 MUX l MUX
PT Clock
PT Output To Output
Enable Enable Mux

The ispLSI 1032 is ideal for state machine applications
because of two specific features. First, the I/O cellcanbe
used to register or latch input signals. This attribute gives
designers assurance that setup times to GLB registers
will not be violated and metastability concerns are greatly
diminished.

The second feature which configures efficient state ma-
chines is the standard GLB configuration with 4, 4, 5 and
7 product terms (see figure 4). The product terms can be
tied together to perform wider product term functions
which are always needed for complex state machines.
For example, in a state machine which has an output
consisting of 9 product terms, the architecture will allow
4 of the product terms to be tied to 5 additional product
terms, to add up to the total of 9, which is required by the
state machine output. Any configuration of product term
grouping is possible, including all twenty! That's right, if
the design needs twenty product terms for one output,
this is handled in one pass through just one GLB.

The key to successfully implementing state machines
into the ispLSI 1032 is to utilize the 18 maximum inputs
with up to 4 outputs, and the ability to tie the 20 product
terms together. Intelligent use of these features permit
the designer to streamline state machine design.

Conclusion

As can be illustrated from the above discussion, the
ispL S| architecture provides designers with unparalleled
flexibility, density and speed. ispLSI devices are dense
and flexible enough to incorporate random logic. The
architecture also contains 18-wide inputs and XOR capa-
bility ineach GLB which enable counters to be effortlessly
implemented. The 4 product term bypass mode allows
designers to successfully realize high speed applica-
tions. Finally, the ability to tie product terms together
along with the input registers available at each I/O pin
make this device ideal for state machine designs.

The complete Lattice Design File containing the Boolean
equations for this design appears on the following pages.

4-26

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

// tedfulla.ldf generated using Lattice pDS Version 2.50

LDF 1.00.00 DESIGNLDF;
DESIGN cdx_design 1.00;
PART pLSI 1032-90LJ;
DECLARE

END; //DECLARE

SYM GLB A4 1 INTA52; // Here are 2 S-R flip-flops
// OUT signifies a combinatorial output
SIGTYPE INTA2I OUT;
SIGTYPE INTA3I OUT;
SIGTYPE INTA2IBAR OUT;
SIGTYPE INTA3IBAR OUT;
SIGTYPE BP_INT RDI OE; // OE signifies Output Enable

EQUATIONS
BP_INT RDI =BP_INT RDO;
INTA2I =!(!MAS & !IPC_INTI & !MDATAl1l2I & !MDATAllI & !MDATAl0I & MDATASI)

! INTA2IBAR.PIN;
INTA2IBAR = !INTA2I.PIN
! (BP_INT _CLRI & BP_DATAl0I RSETI);
INTA3I =1 (IMAS & !IPC_INTI &
IMDATA12I & !MDATA1II & MDATA10I & MDATASI)
| INTA3IBAR.PIN;
INTA3IBAR = !INTA3I.PIN
1 (BP_INT CLRI & BP_DATA15I RSETI);
END;
END;

SYM GLB A5 1 INTA52;

SIGTYPE INTA4I OUT;

SIGTYPE INTA5I OUT;

SIGTYPE INTA4IBAR OUT;

SIGTYPE INTASIBAR OUT;

EQUATIONS

INTA4I =1 (!MAS & !IPC_INTI & !MDATA12I & !MDATA1lI & !MDATA10I & MDATASI)
| INTA4IBAR.PIN;

INTA4IBAR = !INTA4I.PIN
1 (BP_INT CLRI & BP_DATA14I RSETI);

INTASI =!(!MAS & !IPC_INTI & !MDATA12I & !MDATA11lI & MDATA1l0I & MDATASI)
!INTASIBAR.PIN;

INTASIBAR = !INTAS5I.PIN
! (BP_INT_CLRI & BP_DATA13I RSETI);

END;

END;

4-27 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM GLB B3 1 INTAMP45;
SIGTYPE INTAMP4I OUT;
SIGTYPE INTAMP5I OUT;
SIGTYPE INTAMP4IBAR OUT;
SIGTYPE INTAMP5IBAR OUT;
EQUATIONS
INTAMP4I =

!INTAMP4IBAR.PIN;
INTAMP4IBAR = !INTAMP4I.PIN

#
INTAMPS5I =

!INTAMPS5IBAR.PIN;
INTAMP5IBAR = !INTAMPS5I.PIN

#
END;
END;
SYM GLB B4 1 INTAMP23;
SIGTYPE INTAMP2I OUT;
SIGTYPE INTAMP3I OUT;
SIGTYPE INTAMP2IBAR OUT;
SIGTYPE INTAMP3IBAR OUT;
SIGTYPE MP_INT RDI OE;
EQUATIONS
MP_INT RDI = MP_INT RDO;
INTAMP2I =

!INTAMP2IBAR.PIN;
INTAMP2IBAR = !INTAMP2I.PIN

#
INTAMP3I =

!INTAMP3IBAR.PIN;
INTAMP3IBAR = !INTAMP3I.PIN

#
END;
END;
SYM GLB B5 1 INTAMPO1;
SIGTYPE INTAMPOI OUT;
SIGTYPE INTAMP1I OUT;
SIGTYPE INTAMPOIBAR OUT;
SIGTYPE INTAMP1IBAR OUT;
EQUATIONS
INTAMPOI =

!INTAMPOIBAR.PIN;
INTAMPOIBAR = !INTAMPOI.PIN

#
INTAMP1I =

!INTAMP1IBAR.PIN;
INTAMP1IBAR = !INTAMP1I.PIN
END;
END;

!(!MAS & !IPC_INTI & !MDATAl12I &

! (MP_INT CLRI & MP_DATAl4I RSETI);
!(!MAS & !IPC_INTI & !MDATAl12I & !MDATAllI & MDATA1l0I & MDATAS8I)

! (MP_INT CLRI & MP_DATA13I RSETI);

!(!MAS & !IPC_INTI & !MDATAl12I & !MDATALII &

! (MP_INT CLRI & MP_DATA1l0I # RSETI);
!(!MAS & !IPC_INTI & !MDATAIL2I &

! (MP_INT CLRI & MP_DATA15I RSETI);

! (MP_INT CLRI & MP_DATA12I RSETI);
1(IMAS & !IPC_INTI & !MDATA12I & !

| (MP_INT CLRI & MP_DATAllI RSETI);

!{MDATA1lI & !MDATA1l0I &

!(!MAS & !IPC_INTI & !MDATA12I & !MDATAllI & !MDATALlOI & MDATASI)

!{MDATA10I & MDATAS8I)

!MDATA11lI & MDATAl0I & MDATAS8I)

IMDATASI)

MDATA11lI & MDATAl1OI & MDATAS8I)

4-28

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM GLB B6 1 INTAO1l;

SIGTYPE INTAOI OUT;

SIGTYPE INTAlI OUT;

SIGTYPE INTAOIBAR OUT;

SIGTYPE INTA1lIBAR OUT;

EQUATIONS

INTAOI =1(I!MAS & !IPC_INTI & !MDATAl1l2I & !MDATAllI & !MDATAl0I & MDATAS8I)
! INTAOIBAR.PIN;

INTAOIBAR = !INTAOI.PIN
| (BP_INT_CLRI & BP_DATA12I RSETI);

INTALlI =!(!MAS & !IPC_INTI & !MDATA1l2I & !MDATAllI & MDATA1l0I & MDATAS8I)
!INTA1IBAR.PIN;

INTA1IBAR = !INTAlI.PIN
| (BP_INT_CLRI & BP_DATAllI RSETI);

END;

END;

SYM GLB A7 1 BPIPLS;
SIGTYPE BP_IPLOI OUT;

SIGTYPE BP_IPL1I OUT;
SIGTYPE BP_IPL2I OUT;

EQUATIONS
BP_IPLOI = !INTAOI & !INTA2I & !INTA4I & BP_NMII & !DSP_INTI
!INTAOI & !INTA2I & !INTA4I & OS_TICKI & BP_NMII
BP_NMII & !TMS_INTI;
BP_IPL1I = !INTA1lI & !INTA3I & !INTAS5I & OS_TICKI & BP_NMII & TMS_INTI
BP_NMII & TMS_INTI & !DSP_INTI
INTA4I & BP_NMII & TMS_INTI
INTA2I & BP_NMII & TMS_INTI
INTAOI & BP_NMII & TMS_INTI;
BP_IPL2I = !INTAOI & !INTA2I & !INTA4I & BP_NMII & TMS_INTI & DSP_INTI;
END;
END;

SYM GLB BO 1 MPIPLS;
SIGTYPE MP_IPLOI OUT;

SIGTYPE MP_IPL1I OUT;
SIGTYPE MP_IPL2I OUT;

EQUATIONS
MP_IPLOI = !INTAMPOI & !INTAMP2I & !INTAMP4I & MP_NMII & !ROLL_TICKI
!INTAMPOI & !INTAMP2I & !INTAMP4I & OS_TICKI & MP_NMII
MP_NMII & EXP_TICKI;
MP_IPL1I = !INTAMP1I & !INTAMP3I & !INTAMP5I & OS_TICKI & MP_NMII & !EXP_TICKI
MP_NMII & !EXP_TICKI & ROLL_TICKI
INTAMP4I & MP_NMII & !EXP_TICKI
INTAMP2I & MP_NMII & !EXP_TICKI
INTAMPOI & MP_NMII & !EXP_TICKI;
MP_IPL2I = !INTAMPOI & !INTAMP2I & !INTAMP4I & MP_NMII & !EXP_TICKI&!ROLL_TICKI;
END;
END;

4-29 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

// 16 BIT COUNTERS

SYM GLB DO 1 QO03; // BITS Q0-Q3

SIGTYPE [QQ_0..QQ 3] REG OUT; // SIGNIFIES A REGISTERED OUTPUT
EQUATIONS

00 _0.CLK = CLK;

00 1.CLK = CLK;

QQ 2.CLK = CLK;

00 3.CLK = CLK;

00 0 = 0QQ 0 $$ VCC ;

Q0 1 =00 1 $$ QQ 0;

00 2 =002 $5001&0Q00 ;

00 3 =003 55002 &001&0Q00 ;

END;

END;

SYM GLB D1 1 0Q47; // BITS Q4-Q7

SIGTYPE [QQ 4..0QQ 7] REG OUT;

EQUATIONS

Q0 4.CLK = CLK;

Q0 _5.CLK = CLK;

Q0 6.CLK = CLK;

Q0 7.CLK = CLK;

Q0 4 =00 4 $$ 00 3 & 00 2 & Q0 1 & Q00 ;

Q0 5 =005 $$ 004 &003&002&0Q01&000;

Q0 6 =00 6 $$ 00 5 & Q0 4 & 00 3 & 00 2 & Q0 1 & QQ 0 ;
Q0 7 =007 $$ Q0 6 & 00 5 & Q0 4 & Q0 3 & Q0 2 & 00 1 & Q0 O ;
END;

END;

SYM GLB D2 1 0Q811; // BITS Q8-Q1l1

SIGTYPE [QQ 8..QQ 11] REG OUT;

EQUATIONS

00 _8.CLK = CLK;

Q0 9.CLK = CLK;

00 10.CLK = CLK;

0Q_11.CLK = CLK;

Q0 8 = Q0 8 $§$ TC_1 ;

00 9 =00 9 5 Q0 8 & TC_1 ;

00 10 = Q0 10 $5 QQ 9 & QQ 8 & TC_1 ;

Q0 11 = Q0 11 $$ Q0 10 & 0Q 9 & QQ 8 & TC_1 ;

END;

END;

SYM GLB D3 1 0Q1215; // BITS Q12-Q15

SIGTYPE [QQ_12..QQ 15] REG OUT;

EQUATIONS

QQ 12.CLK = CLK;

Q0 13.CLK = CLK;

QQ 14.CLK = CLK;

Q0 _15.CLK = CLK;

Q0 12 = Q0 12 $$ Q0 11 & QQ 10 & QQ 9 & QQ 8 & TC_1 ;
00 13 = Q0 13 $$ Q00 12 & 00 11 & 00 10 & QQ 9 & Q0 8 & TC_1 ;
00 14 = 00 14 $$ Q0 13 & Q00 12 & Q0 11 & QQ_ 10 & Q0 9 & QQ 8 & TC_1 ;

4-30 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

Q0 15 = QQ 15 $$ Q0 14 & QQ 13 & Q0 12 & 00 11 & Q0 10 & Q0 9 & Q0 8 & TC_1 ;
END;

END;

SYM GLB D4 1 TC1; // CARRY OUT OF BITS Q0-Q7 = HIGH
SIGTYPE TC_1l OUT;

EQUATIONS

TC_1 = (QQ 0 & 00 1 & Q0 2 & Q0 3 & Q0 4 & Q0 5 & Q0 6 & QQ 7);
END;

END;

SYM GLB C3 1 TC2; // CARRY OUT OF BITS Q0-Q15 = HIGH
SIGTYPE TC_2 OUT;

EQUATIONS

TC_2 = (QQ 8 & Q00 9 & Q0 10 & QQ 11 & Q0 12 & QQ 13 & QQ 14 & QQ 15 & TC_1);
END;

END;

SYM GLB D5 1 TC3; // CARRY OUT OF BITS Q0-Q23 = HIGH
SIGTYPE TC_3 OUT;

EQUATIONS

TC_3 = (QQ 16 & Q0 17 & 00 18 & QQ 19 & Q0 20 & QQ 21 & QQ 22 & QQ 23 & TC_2);
END;

END;

SYM GLB D6 1 TERM; // CARRY OUT OF BITS Q0-Q31 = HIGH
SIGTYPE TERMCNT REG OUT;

EQUATIONS

TERMCNT.PTCLK = (TC_1 & TC_2 & TC_3 & QQ 24 & QQ 25 & QQ 26 & Q0 27 & QQ 28 &
00 29 & 00_30 & QQ_31);
TERMCNT = VCC;

END;

END;

SYM GLB D7 1 Q1619; // BITS Q16-Q19
SIGTYPE [QQ_16..Q0 19] REG OUT;

EQUATIONS

Q0 16.CLK = CLK;

QQ 17.CLK = CLK;

QQ 18.CLK = CLK;

QQ 19.CLK = CLK;

Q0_16 = QQ_16 $$ TC_2 ;

Q0 17 = QQ 17 $$ Q0 16 & TC_2 ;

Q0 18 = QQ 18 $$ Q0 17 & QQ_16 & TC_2 ;

00 19 = Q0 19 $$ QQ 18 & Q0 17 & QQ 16 & TC 2 ;
END;

END;

4-31 : 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM GLB CO 1 02023; // BITS Q20-023
SIGTYPE [QQ 20..Q0Q 23] REG OUT;

EQUATIONS

Q0 20.CLK = CLK;

Q0 21.CLK = CLK;

Q0 22.CLK = CLK;

00 23.CLK = CLK;

Q0 20 = Q0 20 $$ Q0 19 & Q0 18 & QQ 17 & QQ 16 & TC_2 ;

Q0 21 = QQ 21 $$ Q0 20 & QQ_19 & QQ_18 & QQ 17 & QQ 16 & TC_2 ;
00 22 = Q0 22 $$ Q0 21 & QQ 20 & QQ 19 & Q0 18 & QQ 17 & QQ 16 & TC_2;
00 23 = Q0 23 $$ 00 22 & Q0 21 & Q0 20 & QQ 19 & QQ 18 & QQ 17 & QQ 16 & TC_2;
END;

END;

SYM GLB Cl 1 Q2427; // BITS Q24-Q27

SIGTYPE [QQ 24..QQ 27] REG OUT;

EQUATIONS

QQ 24.CLK = CLK;

QQ 25.CLK = CLK;

00 _26.CLK = CLK;

QQ 27.CLK = CLK;

Q0 24 = QQ 24 $$ TC_3 ;

Q0 25 = QQ_ 25 $$ QQ 24 & TC_3 ;

Q0 26 = Q0 26 $$ Q0 25 & QQ 24 & TC_3 ;

Q0 27 = QQ 27 $$ QQ 26 & QQ 25 & QQ_24 & TC_3 ;

END;

END;

SYM GLB C2 1 Q2831; // BITS Q28-0Q31

SIGTYPE [QQ 28..QQ 31] REG OUT;

EQUATIONS

QQ_28.CLK = CLK;

Q0 29.CLK = CLK;

Q0 30.CLK = CLK;

Q0 31.CLK = CLK;

Q0 28 = Q0 28 $$ Q0 27 & QQ 26 & QQ 25 & QQ 24 & TC_3 ;

00 29 = 00 29 $$ Q0 28 & Q0 27 & QQ 26 & QQ 25 & QQ 24 & TC_3 ;

00 30 = Q0 30 $$ Q0 29 & QQ 28 & Q0 27 & QQ 26 & QQ 25 & QQ 24 & TC_3 ;

00 31 = Q0 31 $$ 00 30 & QQ 29 & Q0 28 & QQ 27 & QQ 26 & QQ_25 & Q0 _24 & TC_3 ;
END;

END;

// MULTIPLEXER GLBs

// SELECT HI ORDER BITS (16-31) IF !CNTELO
// OR SELECT LOW ORDER BITS (0-15) IF CNTELO
SYM GLB Bl 1 MDATO1;

SIGTYPE OMDATAOI REG OUT;

SIGTYPE OMDATA1lI REG OUT;

EQUATIONS

XCNT_SEL1.0E = XCNT_SELI;

OMDATAOI.CLK = CNT_LTCH;

OMDATAOI = (!CNTELO & QQ 16) # (CNTELO & QQ 0);
OMDATALI = (!CNTELO & QQ 17) # (CNTELO & QQ 1);
END;
END;

4-32 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM GLB C4 1 MDATA23;
SIGTYPE OMDATA2I REG OUT;
SIGTYPE OMDATA3I REG OUT;

EQUATIONS
OMDATA2I.CLK = CNT LTCH;
OMDATA2I = (!CNTELO & QQ 18
OMDATA3I = (!CNTELO & QQ 19
END;

END;

SYM GLB B2 1 MDAT4S5;
SIGTYPE OMDATA4I REG OUT;

SIGTYPE OMDATAS5I REG OUT;

EQUATIONS

OMDATA4I.CLK = CNT_LTCH;
OMDATA4I = (!CNTELO & QQ 20
OMDATAS5I = (!CNTELO & QQ 21
END;

END;

SYM GLB C5 1 MDATé67;

SIGTYPE OMDATA6I REG OUT;
SIGTYPE OMDATAT7I REG OUT;

EQUATIONS

OMDATA6I.CLK = CNT_LTCH;
OMDATA6I = (!CNTELO & QQ 22
OMDATA7I = (!CNTELO & QQ 23
END;

END;

SYM GLB C6 1 MDATS811;
SIGTYPE OMDATA8I REG OUT;

SIGTYPE OMDATA9I REG OUT;
SIGTYPE OMDATA10I REG OUT;
SIGTYPE OMDATA1lI REG OUT;

EQUATIONS
XCNT_SEL.OE = XCNT_SELI;
OMDATA8I.CLK = CNT_LTCH;

(CNTELO & QQ 2
(CNTELO & QQ 3

) # (CNTELO & QQ 4
) # (CNTELO & QQ 5

) # (CNTELO & QQ_6
) # (CNTELO & QQ 7

OMDATA8I = (!CNTELO & QQ 24) # (CNTELO & QQ 8

OMDATA9I = (!CNTELO & QQ 25) # (CNTELO & QQ 9
OMDATA10I = (!CNTELO & QQ 26) # (CNTELO & QQ 10
OMDATA11I = (!CNTELO & QQ 27) # (CNTELO & QQ 11
END;
END;

4-33

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM GLB C7 1 MDAT1215;
SIGTYPE OMDATA12I REG OUT;
SIGTYPE OMDATA13I REG OUT;
- SIGTYPE OMDATAl4I REG OUT;
SIGTYPE OMDATA15I REG OUT;

EQUATIONS
OMDATA12I.CLK = CNT_ LTCH;
OMDATA12I = (!CNTELO & QQ 28) # (CNTELO & QQ 12);

OMDATA13I = (!CNTELO & QQ 29) # (CNTELO & QQ 13);
OMDATA14I = (!CNTELO & QQ 30) # (CNTELO & QQ 14);
OMDATA15I = (!CNTELO & QQ 31) # (CNTELO & QQ 15);
END;
END;

SYM GLB Al 1 IOMEMOE;

SIGTYPE IO SELECTO0 OUT CRIT;

SIGTYPE IO _SELECT1 OUT CRIT; // Signifies ORP Bypass
SIGTYPE MEMOE OUT;

EQUATIONS

I0_SELECTO = MPA23 & MPA22 & !MPA21 & MPIO MEM & !MPWR RD;
10 _SELECT1 = MPA23 & !MPA22 & MPA21 & MPIO MEM & MPWR_RD;
MEMOE = !MPIO MEM & !MPWR_RD & MPRDY;

END;

END;

SYM GLB A0 1 MEMCSWR;
SIGTYPE MEMCS REG OUT;
SIGTYPE MEMWR REG OUT;

EQUATIONS

MEMCS.CLK = CLK;

MEMCS = MPA23 & !MPA22 & !MPA21 & !MPIO_MEM # MEMCS & MPRDY; // CHIP
SELECT

MEMWR = MPA23 & !MPA22 & !MPA21 & !MPIO_MEM & MPWR_RD # MEMWR & MPRDY; // MEMORY
WRITE
OR READ
END;
END;

// I0 CELL ASSIGNMENTS

SYM IOC 1IO51 1 MPIPLS;

XPIN IO DSP_INT;

IB11 (DSP_INTI,DSP_INT); // IBl11l = INPUT BUFFER
END;

SYM IOC 1IO0O 1 MPDATI1S5;

XPIN IO MP_DATA15 ;
BI11 (MP_DATA15I,MP DATA15,INTAMP5I,MP INT RDI);
END;

SYM IOC IOl 1 MPDAT14;

XPIN IO MP_DATA14;

BI1l (MP_DATA14I,MP_DATAl4,INTAMP4I,MP_INT RDI); //BI1l = BIDIRECTIONAL I/O
END;

4-34 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM IOC 1I02 1 MPDAT13;
XPIN IO MP_DATAl3;

BIll (MP_DATA13I,MP_DATA13,INTAMP3I,MP_INT_RDI);

END;

SYM IOC 1IO3 1 MPDAT12;
XPIN IO MP_DATAl2;

BI1l (MP_DATA12I,MP_DATA1l2,INTAMP2I,MP_INT RDI);

END;

SYM IOC 104 1 MPDATI11;
XPIN IO MP_DATAll;

BI1l (MP_DATA11I,MP DATAll,INTAMP1I,MP_INT RDI);

END;

SYM IOC 1IO5 1 MPDATI1O0;
XPIN IO MP_DATALO;

BIl1l (MP_DATA10I,MP_DATA1l0,INTAMPOI,MP_INT_ RDI);

END;

SYM IOC 1I08 1 MPINTCL;
XPIN IO MP_INT CLR LOCK 40;
IB11 (MP_INT_ CLRI,MP_INT_CLR);
END;

SYM IOC I09 1 RSET;
XPIN IO RSET;

IB11 (RSETI,RSET);
END;

SYM IOC 1IO10 1 MDATAlS;

XPIN IO MDATAl5 LOCK 53 ;

OT11 (MDATA15,OMDATALSI,!XCNT SEL);
END;

SYM IOC 1I011 1 MDATAl4;

XPIN IO MDATAl4 LOCK 54 ;

OT11 (MDATA14,0MDATA14I,!XCNT SEL);
END;

SYM IOC 1I012 1 MDATAl3;

XPIN IO MDATAl3 LOCK 55 ;

OT11 (MDATA1l3,OMDATA13I,!XCNT_SEL);
END;

SYM IOC 1I013 1 MDATAl2;
XPIN IO MDATAl2 LOCK 56 ;

// LOCK = FIXED PIN

// TRISTATE OUTPUT

BI1l (MDATA12I,MDATAl2,0MDATA12I, !XCNT_ SEL);

END;

4-35

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM IOC 1I0Ol14 1 MDATAll;

XPIN IO MDATAll LOCK 57 ;

BI11 (MDATA11I,MDATA1l,OMDATA11I,!XCNT_SEL);
END;

SYM IOC 1IO15 1 MDATAlO;

XPIN IO MDATAl0 LOCK 58 ;

BI11 (MDATA10I,MDATA10,OMDATA10I,!XCNT SEL);
END;

SYM IOC 1016 1 MDATA9;

XPIN IO MDATA9 LOCK 59 ;

OT11 (MDATA9,OMDATA9I, !XCNT SEL);
END;

SYM IOC 1I017 1 MDATAS;

XPIN IO MDATA8 LOCK 60 ;

BI11l (MDATA8I,MDATA8,OMDATA8I, !XCNT_ SEL);
END;

SYM IOC 1026 1 MAS;
XPIN IO MASX LOCK 27 ;
IB11 (MAS,MASX);

END;

SYM IOC 1I027 1 IPC_INT;
XPIN IO IPC_INT LOCK 26 ;
IB1l1l (IPC_INTI,IPC_INT);
END;

SYM IOC 1I028 1 MPIPL2;
XPIN IO MP_IPL2;

OBl11l (MP_IPL2,MP_IPL2I);
END;

SYM IOC 1IO029 1 MPIPL1;
XPIN IO MP_IPL1;

OBl11 (MP_IPL1,MP_IPL1I);
END;

SYM IOC I030 1 MPIPLO;
XPIN IO MP_IPLO;

OB1l (MP_IPLO,MP_IPLOI);
END;

SYM IOC I031 1 MPINTRD;
XPIN IO MP_INT RD;

IB11 (MP_INT_RDO,MP_INT RD);
END;

4-36

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM IOC 1032 1 BPINTRD;
XPIN IO BP_INT RD;

IB11 (BP_INT RDO,BP_INT RD);
END;

SYM IOC I033 1 BPDATIS;

XPIN IO BP_DATAlS;

BI1l (BP_DATA15I,BP_DATA15,INTA5I,BP_ INT RDI);
END;

SYM IOC 1034 1 BPDAT14;

XPIN IO BP_DATAl4;

BI11 (BP_DATA14I,BP_DATAl4,INTA4I,BP_ INT RDI);
END;

SYM IOC 1035 1 BPDATL3;

XPIN IO BP_DATA13;

BIll (BP_DATA13I,BP DATA13,INTA3I,BP_INT RDI);
END;

SYM IOC 1036 1 BPDAT12;

XPIN IO BP_DATAl2;

BI1l (BP_DATA12I,BP_DATAl2,INTA2I,BP_INT RDI);
END;

SYM IOC 1037 1 BPDAT11;

XPIN IO BP_DATAll;

BI1ll (BP_DATAllI,BP_DATAll,INTAlI,BP_INT RDI);
END;

SYM IOC 1038 1 BPDATI1O0;

XPIN IO BP_DATAlOQ;

BIll (BP_DATA10I,BP_DATAl0,INTAOI,BP_INT RDI);
END;

SYM IOC 1I041 1 BPINTCL;
XPIN IO BP_INT_CLR;

IB11 (BP_INT CLRI,BP_INT_CLR);
END;

SYM IOC 1I042 1 BPIPL2;
XPIN IO BP_IPL2;

OB11l (BP_IPL2,BP_ IPL2I);
END;

SYM IOC 1I043 1 BPIPLI;
XPIN IO BP_IPLl;

OBll (BP_IPL1,BP_IPL1I);
END;

SYM IOC 1044 1 BPIPLO;
XPIN IO BP_IPLO;

OBll (BP_IPLO,BP_IPLOI);
END;

4-37

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM IOC I045 1 MP_NMI;
XPIN IO MP_NMI;

IB11 (MP_NMII,MP NMI);
END;

SYM IOC 1I046 1 OS_TICK;
XPIN IO OS_TICK;

IB11 (OS_TICKI,OS_TICK);
END;

SYM IOC 1047 1 EXPTICK;
XPIN IO EXP_TICK;

IB11 (EXP_TICKI,EXP_TICK);
END;

SYM IOC 1048 1 ROLTICK;
XPIN IO ROLL_TICK;

IB11 (ROLL_TICKI,ROLL_TICK);
END;

SYM IOC 1049 1 BP_NMI;
XPIN IO BP_NMI;

IBl11 (BP_NMII,BP_NMI);
END;

SYM 10C I050 1 TMS_INT;
XPIN IO TMS_INT;

IB11 (TMS_INTI,TMS_INT);
END;

SYM IOC 1018 1 MPCLR13;

XPIN IO MDATA7;

OT11 (MDATA7,OMDATA7I, !XCNT SEL1);
END;

SYM IOC 1I019 1 MPCLR13;

XPIN IO MDATA6;

OT11 (MDATA6,OMDATA6I,!XCNT SELl);
END;

SYM IOC 1020 1 MPCLR13;

XPIN IO MDATA5 LOCK 6;

OT11 (MDATA5,OMDATAS5I,!XCNT SEL1);
END;

SYM IOC 1I021 1 MPCLR13;

XPIN IO MDATA4 LOCK 5;

OT11 (MDATA4,OMDATA4I,!XCNT_SELl);
END;

SYM IOC 1022 1 MPCLR13;

XPIN IO MDATA3;

OT11 (MDATA3,OMDATA3I,!XCNT SEL1);
END;

4-38

1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM IOC 1023 1 MPCLR13;

XPIN IO MDATA2;

OT11 (MDATA2,OMDATA2I,!XCNT SEL1);
END;

SYM IOC 1I024 1 MPCLR13;

XPIN IO MDATAl LOCK 4 ;

OT11 (MDATA1l,OMDATALI, !XCNT_SELl);
END;

SYM IOC 1I025 1 MPCLR13;

XPIN IO MDATAO LOCK 3 ;

OT11 (MDATAO,OMDATAOI, !XCNT_SELl);
END;

SYM IOC 1I063 1 LTCH;

XPIN IO XCNTSEL;

IB11 (XCNT_SELI, XCNTSEL);
END;

SYM I0C Y1 1 LTCH;
XPIN CLK LTCH;

IB11 (CNT LTCH,LTCH);
END;

SYM IOC YO0 1 CLOCK;
XPIN CLK XCLK;

IB11 (CLK, XCLK);
END;

SYM IOC 1062 1 CNTELO;
XPIN IO OCNTELO;

IB11 (CNTELO, OCNTELO);
END;

SYM IOC 1I061 1 TERMCNT;
XPIN IO XTERMCNT;

OB11 (XTERMCNT, TERMCNT);
END;

SYM IOC IO59 1 MPA23;
XPIN IO MPA230;

IB11 (MPA23, MPA230);
END;

SYM IOC 1058 1 MPA21;
XPIN IO MPA220;

IB11 (MPA22, MPA220);
END;

SYM IOC 1057 1 MPA2l;
XPIN IO MPA210;

IB11 (MPA21, MPA210);
END;

4-39 1994 Handbook

ispLSI and pLSI: A Multiple Function Solution

SYM IOC 1I056 1 MPIO_MEM;
XPIN IO MPIO_MEMO;

IB11 (MPIO_MEM, MPIO_MEMO);
END;

SYM IOC 1IO55 1 MPWR_RD;
XPIN IO MPWR_RDO;

ID11 (MPWR_RD, MPWR_RDO,CLK);
END;

SYM IOC IO054 1 MPRDY;
XPIN IO MP_RDYO;

IB11 (MPRDY, MP_RDYO);
END;

SYM IOC I053 1 IO SELECT;
XPIN IO IO SELECT00;

OB11 (IO _SELECT00, IO _SELECTO0);
END;

SYM I0C 1052 1 IO _SELECTI;
XPIN IO IO SELECT10;

OB11 (IO_SELECT10, IO_SELECT1);
END;

SYM IOC IO7 1 MEMCS;
XPIN IO MEMCSO ;

OBll (MEMCSO, MEMCS);
END;

SYM IOC IO60 1 MEMOE;
XPIN IO MEMOEO;

OB11 (MEMOEO, MEMOE);
END;

END; //LDF DESIGNLDF

4-40

1994 Handbook

Hl atlice'

Programming Multiple
ISP Devices: Daisy Chain

Configuration

Introduction

There are several ways to program multiple In-System
Programmable (ISP™) devices — each ISP device can
be programmed individually through an independent ISP
interface, or multiple devices can share a parallel multi-
plexed or serial daisy chained interface. Each method
hasits unique advantages. The serial daisy chain method
is the most efficient and easiest to implement as it uses
a simple hardware interface and programming proce-
dures.

This applications note explains how to program multiple
ISP devices in a daisy chained configuration. It will also
explain the general ISP programming interface and the
unique programming features of each ISP device.

ISP Overview

Programming Interface

Programming of Lattice's ispLSI™, ispGAL®, and
ispGDS™ devices is based on a similar programming

Figure 1. Multiple ISP Device Programming Interface

SDO
SDI 5-wire ISP
MODE Programming
SCLK Interface
ispEN

interface. The basic components of the ISP program-
ming interface are the three-state programming control
state machine and mode control (MODE), serial data in
(SDI), serial data out (SDO) and serial clock (SCLK)
inputs. The state machine built into each ISP device is
controlled by three inputs — MODE, SDI and SCLK. In
addition, ispLS! devices use a fourth input, ispEN, to
multiplex the functions of the SDI, SDO, SCLK and
MODE pins between the ISP programming functions and
user defined logic signals during normal PLD operation.
The state machine controls the sequence of program-
ming operations such as identifying the ISP device,
shifting in appropriate data and commands, program-
ming pulse widths, and erasing the device. All
programming information is shifted in and out of the
device serially through the SDI and SDO pins. Each ISP
device comes with a unique eight bit hardwired device ID
to make the electronic identification of the devices by the
programming software easy. The following sections
explain the ISP programming interface using multiple
daisy chained ISP devices. Figure 1 illustrates a typical
block diagram of multiple ISP devices cascaded to-
gether.

Lt
|

ispLSI

ispGAL

—]ispGDS ispLSI

A

4-41

1994 Handbook

Programming Multiple ISP Devices

Figure 2. ISP State Machine

State Transition Control Signals : MODE SDI

Load ID Shift ID

Idle/ID State

State Machine

The state transitions of the three-state state machine
shown in figure 2 are controlled by the MODE and SDI
signals. Within each state the MODE signal directs
whether SDlis a controlinput (MODE =H) or SDlis adata
input (MODE =L). When MODE is high, the SDI's logic
level is reflected on SDO. This feature allows devices to
transparently pass the SDI control input to devices fur-
ther down the daisy chain.

When MODE is low, SDI and SDO become data inputs
and outputs, respectively, to the various shift registers.
In a cascaded daisy chain, the shift register’s output

Command Shift State

Load
Command

Execute
Command

Execute State

(SDO) is connected to the next device’s shift register
input (SDI). Programming data is shifted into the SDI
input of the first device in the daisy chain. All shift
registers in the daisy chained devices are connected
together so data can be shifted to the last device's SDO
where the ISP programming controller can verify the
data.

Similarities and Differences Between Devices

For the purpose of cascading the ISP devices, the de-
vices can be categorized into two device groups —ispLSI
and ispGDS/ispGAL22V10. Table 1 highlights the simi-
larities and differences between the various device types.

Table 1. Similar and Different Features of the ISP Devices

controls for state transitions

Similar Features ispLSI ispGDS/ispGAL

ID shift register length 8-Bits 8-Bits

Command shift register length 5-Bits 5-Bits

Programming signals MODE, SDI, SDO, & SCLK MODE, SDI, SDO, & SCLK
State Machine 3-state with same MODE & SDI 3-state with same MODE & SDI

controls for state transitions

FLOWTHRU instruction Yes Yes
Different Features
ispEN signal Yes No

Address & data shift register

Different shift instructions for
address & data

Both address and data is shifted
with one shift command

Fuse map sizes

Varies for different high density
devices

Varies for different low density devices

4-42

1994 Handbook

Programming Multiple ISP Devices

Using the same state machine controls makes it possible
to program multiple ISP devices by operating all the
cascaded devices' state machines in parallel. This
synchronizes all the devices during programming within
the daisy chain to aknown state. However, having all ISP
devices in the same state does not mean that all devices
are executing the same instruction. The ability of each
device in the daisy chain to execute a differentinstruction
makes selectively programming one or multiple ISP
devices at a time possible.

For the ispLSI devices, the active ispEN signal enables
the programming mode of the device. By driving ispEN
low, all I/Os of the devices are put into a high-impedance
state for programming and the programming functions for
SDI, SDO, Mode and SCLK are enabled. A difference in
the ispGDS/ispGAL devices is that the I/Os are put into
a high-impedance state when the programming state
machine goes into Command Shift State. The ispGDS/
ispGAL devices do not use a dedicated ispEN pin for this
function.

Most shift operations such as ID shift and command shift
operations are the same between the ispLS| and the
ispGDS/ispGAL devices. One shift operation that is
different between the two types of devices is the way the
address and data is shifted into the devices. The ispLSI
devices have separate address and data shift com-
mands. The row(s) are selected by the address that is
shifted-in prior to each programming command for that
row. The data can then be shifted with the data shift
instruction. In the case of ispGDS/ispGAL devices, both
address and data are shifted-in with a single shift com-

Figure 3. ISP Daisy Chain Example

mand (the address is part of the data shift register).
When executing commands that only require a row
address, a dummy data stream or no data can be shifted
in place of the data stream.

With an understanding of the ISP programming interface
and the differences between different types of devices, a
specific daisy chained design example will be used to
illustrate the details of programming different ISP
devices.

Daisy Chained Interface

Advantages

One of the main advantages of daisy chained ISP pro-
gramming is the simplified hardware interface. The
number of ISP devices that can be connected to the same
5-wire interface is limited only by the signal drive capabil-
ity of the ISP programming control logic. One serial daisy
chain is capable of providing all the necessary program-
ming interface which minimizes the hardware overhead
for in-system programming. Software controls generat-
ed from PCs, microcontroliers and test equipments can
program and reconfigure all ISP devices during various
board level design, test, and manufacturing stages.

ISP Daisy Chain Programming

A specific illustration of multiple device programmingin a
daisy chained environment is shown in figure 3. The
example shows the ISP programming aspects such as
identifying the devices in the daisy chain, shifting com-
mands, bypassing devices, and executing commands.

SDO
SDI 5-wire ISP
MODE Programming
SCLK Interface
ispEN
L] 1
ispLSI is . ispLSI
pGAL — ispGDS
1032 20V10 20 2032

A

4-43

1994 Handbook

Programming Multiple ISP Devices

Table 2. ISP Programming Information

Description ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032
Device ID (8-bits) 0000 0011 0000 1000 0111 0010 0001 0101
Command Register 5 bits 5 bits 5 bits 5 bits
Address Shift Register 108 bits n/a n/a 102 bits
Data/Addr. & Data Shift 160 bits (6+132) bits (6+18) bits 40 bits
Register
Table 3. State Machine Instruction Set
Instruction Operation Description
00000 NOP No operation performed
- 00001 ADDSHFT é%?’(‘ess Register Shift: Shifts address into the address shift register from

00010 DATASHFT Data Register Shift: Shifts data into or out of the data serial shift register.

00011 UBE User Bulk Erase: Erase the entire device.

00100 GRPBE Global Routing Pool Bulk Erase: Bulk erases the GRP array only.

00101 GLBBE Generic Logic Block Bulk Erase: Bulk erases all the GLB array only.

00110 ARCHBE Architecture Bulk Erase: Bulk erases the architecture array and I/O
configuration only.

00111 PRGMH Program High Order Bits: The data in the data shift register is pro-
grammed into the addressed row's high order bits.

01000 PRGML Program Low Order Bits: The data in the data shift register is pro-
grammed into the addressed row's low order bits.

01001 PRGMSC Program Security Cell: Programs the security cell of the device.

01010 VER/LDH Verify/Load High Order Bits: Load the data from the selected row's high
order bits into the data shift register for verification.

01011 VER/LDL Verify/Load Low Order Bits: Load the data from the selected row's low
order bits into the data shift register for verification.

01100 GLBPRLD Generic Logic Block Preload: Preloads the registers in the GLB with the
data from SDIN. All registers in the GLB form a serial shift register. Refer
to device layout section for details.

01101 IOPRLD I/0 Preload: Preloads the I/O registers with the data from SDIN. All
registers in the 1/O cell form a serial shift register (the same order as GLB
registers).

01110 FLOWTHRU Flow Through: Bypasses all the internal shift registers and SDOUT be-
comes the same as SDIN.

10010 VE/LDH Verify Erase/Load High Order Bits: Load the data from the selected row's
high order bits into the data shift register for erased verification.

10011 VE/LDL Verify Erase/Load Low Order Bits: Load the data from the selected row's
low order bits into the data shift register for erased verification.

All the programming state machines run in parallel which
keeps the devices synchronized. The programming
information for the ISP devices is summarized in tabie 2.
The ISP programming commands are seen in table 3.
Similar details for any ISP device can be found in the
ispLSI Architecture Description and in the data sheet of
the ISP devices.

The first procedure of the programming sequence iden-
tifies the devicesinthe ISP chain. The following procedure
describes one way of reading the device IDs.

Load_ID Procedure

set ispEN = L

set MODE, SDI = H, L

clock SCLK (Load ID)

Continue to Shift_ ID Procedure ...

4-44

1994 Handbook

Programming Multiple ISP Devices

At this point the 8-bit ID registers are loaded with the
hardwired device IDs. Figure 4 shows the configuration
of the ID shift registers.

After the device ID has been loaded, the following shift ID
procedure sequentially shifts the IDs through to the last
device's SDO. While the ID is being shifted out, keep SDI
at a known logic level so that the end of the ID stream can
be identified. This is especially important when an
unknown number of devices are in the ISP daisy chain.
By detecting a sequence of 8 zeros or 8 ones, the ISP
controller can detect the end of the ID string.

Shift_ID Procedure

... Continued from Load_ID Procedure

set MODE, SDI = L, H

clock SCLK (Shift ID)

if last 8 SDO =
else goto Shift ID

H then goto End

End

At this point all devices within the ISP daisy chain and
their order in the chain can be properly identified. The
next step is to match the proper JEDEC fuse map file to
the appropriate device. There are several programming
options at this point. To simplify the programming rou-
tines, this example programs the devices one at a time.

The following procedures illustrate how to shift com-
mands, shift data and execute the commands to program
theispGAL22V10. Since the 22V10is the second device
of the ISP daisy chain, these procedures also illustrate
how to put the other devices into flow through mode. The

Figure 4. ID Shift Register Configuration
ispLSI 1032 ispGAL22V10

following procedure shifts SHIFT_DATA command into
the 22V10 and FLOWTHRU command into the rest of the
ISP devices.

Load_Command Procedure

.. Continued from end of Shift_ ID Proce-
dure
set MODE, SDI = H, H
clock SCLK (Shift State)

set MODE = L

Loop
set SDI = command stream (figure 5)
clock SCLK (Shift Command)

End Loop

End Procedure

Execute_Command Procedure

set MODE, SDI = H, H

clock SCLK (Execute State)

set MODE = L

Loop 138 times
set SDI = data stream (figure 6)
clock SCLK (Execute

SHIFT_DATA Command)

End Loop

set MODE, SDI = H, H

clock SCLK (Shift State)

End Procedure

ispGDS22 ispLSI 2032

sDI —»Foooo I 0011 }———| 0000 | 1000 }-—[0111J 0010H 0001

0101 i—> SDO

Figure 5. ISP Command Stream

ispLSI 1032 ispGAL22V10

ispGDS22 ispLSI 2032

» l SHIFT_DATA
(00010)

FLOWTHRU
sol " (01110)

‘ »| FLOWTHRU
(01110)

FLOWTHRU
l‘—’l (01110) l'_'SDO

Figure 6. ISP Data Stream
ispLSI 1032 ispGAL22V10

ispGDS22 ispLSI 2032

sm—»l 0 Bit SR |_~>| 138 Bit SR

—>l 0 Bit SR

—>| 0 Bit SR i—» SDO

4-45

1994 Handbook

Programming Multiple ISP Devices

Atthe end of the Execute_Command Procedure the state
machine is returned to the Shift State. This readies the

devices for another command shift procedure. For the:

ispGAL22V10, the DATA_SHIFT instruction of 138 bits
includes the row address and the data associated with
the row. Similar procedures can be used to complete the
programming of the ispGAL22V10.

H/W & S/W Considerations

In order to keep the software procedures concise, Lattice
recommends programming multiple devices of the same
device type together. This creates modular shift routines
and programming routines as opposed to havmg tomake
each routine a special case.

All ispLSI devices are shipped bulk erased which means
all outputs are in high impedance state for the blank
devices. The Lattice manufacturing outgoing pattern for

the ispGDS/ispGAL22V10 devices also puts all I/Os in
highimpedance state. The ispEN signal controls whether
the ispLSI device is in programming or normal mode.
MODE and SDI controls this function on the ispGDS/
ispGAL devices. It is recommended to put pull-down
resistors on the MODE & SDI signals on the ispGDS/
ispGAL devices in order to keep the default state of the
device in normal operation mode.

This applications note provides an example of one way to
program multiple ISP devices. Daisy chaining provides
an easy-to-implement, cost-effective means to program
multiple ISP devices. The flexibility of ISP allows the user
to customize the programming to fit a specific application.
For additional information on ISP, contact your local
Lattice sales representatives or call Lattice Literature
and Applications support at 1-800-327-8425.

1994 Handbook

a)
=
]
@

" Compiling Multiple PLDs
into ispLSI and pLSI Devices

Introduction

As high density programmable devices become more
complex, they can combine larger designs previously imple-
mented with low density PLDs and SSI/MSI glue logic. The
use of ispLSI and pLSI devices from Lattice Semiconductor
can reduce manufacturing costs by: shrinking board size,
simplifying test procedures, speeding development, and
reducing the type and number of parts required to be kept
in inventory. Designers familiar with PLDs and SSI/MSI
devices can convert to Lattice ispLSI and pLSI devices with
little effort. This application note addresses a procedure to
converta circuit designed with PLDs, MS|, and SSI devices
into the Lattice Semiconductor pLSI and ispLSI device
format.

The basic steps required to convert the design are:
Q Define the I/Os

Convert the Low Density PLD Equations

Combine the PLD Source Files

Add any MSI, SSI Functions

Partition the Logicinto Generic Logic Blocks (GLBSs)

O 0O 0 0 O

Import the File into the ispLSI and pLSI Design
Environment

Q Place and Route Using the pLSI and ispLSI Devel-
opment System (pDS®)

Define the I/0s

The first task in the conversion process is to define the I/O
pins of the Lattice ispLSI| and pLSI device based on the
circuit developed using lower density devices. One must
determine if the design is I/O limited or gate limited. If the
design is I/O limited the circuit must be partitioned into a
higher pin count device, or two (or more) lower pin count
devices. A gate limited design will mandate the design be
partitioned into a higher density ispLSI and pLSI device.
This implies that there will be unused I/O pins. This can
allow additional functionality to be designed into the Lattice
ispLSI and pLSI device, providing the device does not
become gate limited again.

A straightforward approach to estimate gate count is to
use SSI, MSland PLD equivalents. By adding up the total
number of these circuit blocks required for a circuit, one
candetermine if the design will fitinto a Lattice ispLSl and
pLSl device. For example, the 1000 and 2000 family GLB
(Generic Logic Block) of the Lattice ispLSI and pLSI
family has 18 inputs and 4 outputs. Numerous functions
implemented in 16V8, 20V8 and 22V10 devices can be
fit easily into one GLB. However, in cases where five or
more outputs are desired, partitioning into 2 GLBs will be
necessary. Expanding this analogy, approximately 1
MSI device and 2 SSI devices can fit into a single GLB.

When converting a circuit implemented with MSI, SSI
and PLDs, partitioning can be achieved by recognizing
which nodes are best suited for interconnection within
the ispLSI and pLSI device. The partitioning of logic will
vary for different MSI, SSI or PLD devices. By determin-
ing which of these devices will be implemented completely
within the Lattice ispLSI| and pLSI device, it will become
readily apparent which of the nodes should be kept within
the ispLSI and pLSI device or allocated as an 1/O pin.
Signals which connect to a device not implemented
within the Lattice ispLSI and pLSI device will be required
to be an I/O. As a shot gun approach, one can simply
draw a box around the circuit, count the /O and gate
requirement, and select the ispLSI and pLSI device
meeting the requisite gate and 1/0 count. This task
requires good engineering judgement and knowledge of
device architecture to effectively utilize the ispLSI and
pLSI device. architecture.

Nodes which have a broad fanout should be considered
for 1/0 unless all destination devices are implemented
within the Lattice ispLSI and pLSI device. Naturally,
nodes going off-board must be implemented as I/O pins
on the Lattice ispLSI and pLSI device.

Clocking is another factor to consider when partitioning
a circuit. In the 1000 family, if the circuit requires more
than the four global clocks available in the ispLSI and
pLSI device, the circuit should be partitioned so that
circuits with common clocks are in the same ispL.S| and
pLSldevice. The global clockinputs are available on pins
Y0, Y1, Y2 and Y3. YO, Y1 and Y2 can be directly
connected to any GLB, while Y2 and Y3 can be directly

4-47

1994 Handbook

Compiling Multiple PLDs
into ispLSI and pLSI Devices

connected to any I/O cell. For the 3000 family, there are
5 clocks available. The pins YO, Y1, and Y2 are GLB
clocks and Y3 and Y4 are available for I/O cells. Alterna-
tively, each GLB can generate its own Product Term (PT)
clock from the output of a single product term within the
GLB. This will allow up to 32 separate PT clocks within
the ispLSI and pLSI 1032 device.

PLD File Conversion

Once the circuit to be placed into the Lattice ispLSI and
pLSI device has been defined, the process of converting
the design into the ispLSI and pLSI format begins. Typi-
cally a design will be implemented with PLDs and a small
number of MS| and SSI devices. Most of the PLD devices
will have an associated source equation file. This file can
be used as the basis for the design equations to be
imported into the Lattice pDS Software.

Adding MSI and SSI Functions

" By creating Boolean equations which emulate an SS| or
MSiI function, and subsequently importing that file into the
Lattice pDS Software, SSI and MSI functions can be

Figure 1. Implementation of 3-State Function

easily integrated into the design. Another method of
implementing these functions is to look through the
Lattice pDS Software Macro Library (or the ispLSI and
pLSI Software Manual), to find the closest equivalent
circuit to the function desired. This Macro can then be
edited if necessary, to provide the exact function re-
quired. The net result of either of these processes is to
derive functionally correct equations which best utilize
the ispLSI and pLSI device architecture.

Conversion of 3-Stated to Multiplexed Signals

Internal 3-state functions implemented in an ASIC or high
density PLD can create problems such as undefined
outputs. A better implementation of internal 3-state func-
tions is to implement them with a ONE of N multiplexer
function. The inputs to the multiplexer are the signals that
are 3-stated together. The select lines of the multiplexer
are individual 3-state enable signals. This technique is
commonly used in the design of ASICs. Figure 1 illus-
trates an implementation of a 3-state function. The block
diagram in figure 2 shows a multiplexer emulating a 3-
state function. The 3-state equations of listing 1 would be
rewritten for a ONE of N multiplexer as shown in listing 2.

P To Oth
OE_B o Other
- /> Logic Blocks
OE_A
SIG_A 1 BSIG_A
/
Logic | SIG_B N~ ([BSIG_B 4
Block |~
SIG_C I\(—BSIG_C) oma
l/
Figure 2. Block Diagram of Multilevel Emulating a 3-State Function
OE_C
OE_B
OE_A
SIG_A
Logic | SIG_B| .. MUX_OUT _ To Other
Blogck 3:1 MUX Logic Blocks
SIG_C
0775

4-48

1994 Handbook

Compiling Multiple PLDs

into ispLSI and pLSI Devices

Listing 1. Original 3-State Equations
BSIG_A = SIG_A
BSIG_A.OE = OE_A
BSIG_B = SIG_B
BSIG_B.OE = OE_B
BSIG_C = SIG_C
BSIG_C.OE = OE_C

Listing 2. Multiplexer Equations

MUX_OUT = !OE B & !OE_A & SIG A #
I0OE B & OE A & SIG B #

OE B & !0E_A & SIG C;

// SELECT SIG_A
// SELECT SIG_B
// SELECT SIG_C

*Note that OE_C is not needed in this implementation.

The AND function of the output enables (OE_A, OE_B)
does not increase the number of product terms required
to implement the various bus signal functions. This will
always be true for product term oriented architectures
such as the Lattice ispLSI and pLSI devices. There are
ten ONE of N multiplexer Macros currently available in
the ispLSI and pLSI Macro Library. By using these
Macros, the conversion may be readily accomplished by
simply changing the default signal names within the
Lattice Macro.

Inversion Placement

Proper placement of active low internal signals may
provide a significant savings in the utilization of the
Lattice ispLSI and pLSI device resources as described in
the following example.

Listing 3. Original Function Required
ouT =

Consider the equations shown in Listing 3. The original
was enteredin a “Product of Sums" form which becomes
the "Sum of Products" form showninlisting 4. Traditional
PLDs require that logic be in Sum of Products form to be
implemented in the architecture. This equation requires
nine product terms to implement.

Abetter way toimplement this function is to Demorganize
(invert) the equation, as shown in listing 5. By doing this
the implementation becomes two product terms versus
nine for the non-inverted form. There are inversions
available in each 1/O cell and each input to the GLBs to
re-invert the signal to get the original function.

(!IN1 # LIN2 # IIN3) & (!IN4 # 1IN5 # !IN6);

Listing 4. Showing Sum of Products Form of Listing 14

out = (!in3 & !in6

1in2 & !iné6

!inl & !iné

!1in3 & !in5

1in2 & !in5

!'inl & !in5

!in3 & !in4

!in2 & !in4

1inl & !ind);

Listing 5. Showing Reduction of Product Terms with ! Use

out = !((!inl # !in2 # !in3) & (!in4 # !'in5 # !in60));
out = (inl & in2 & in3) # (in4 & in5 & in6);

4-49

1994 Handbook

Compiling Multiple PLDs
into ispLSI and pLSI Devices

Therefore, when manipulating equations to fit the Lattice
ispLSI and pLSI architecture, consider placing inversions
for active low outputs at the signal destination or at the I1/O
cell. The Lattice ispLSI and pLSI family can accommodate
any active low signal with this technique as all inputs to the
logic block have both true and complementary inputs. In
other words a signal “A” routed to a GLB, will have both “A”
and “IA” available within the GLB AND array. The outputs of
the Lattice ispL.Sl and pLSI devices can also be selected as
active high or active low.

Defining a Preset/Reset Mechanism

A frequently neglected but necessary requirement is a
reset mechanism. All state machine designs should have
aknown power up state. If aresetline is routed to all state
machine registers for reset, significant routing resources
will be unnecessarily used. The reset mechanism should
take advantage of the hardware reset resources avail-
able in the Lattice ispLSI and pLSI device. Individual
reset signals should be removed from the design equa-
tions and the hardware reset should be used. The Lattice
ispLSI and pLSI devices have two reset mechanisms: a
global reset for all registers and an asynchronous reset
for each GLB or I/O cell.

Many high density device architectures provide only
reset and no preset mechanism. Consider complement-
ing the output requiring preset and using the hardware
reset. If that is not possible, make the preset synchro-
nous by adding a preset term into the design equations.

Circuit Partitioning

The *.DOC files produced by third party compilers are in
an industry standard format. These files contain the
reduced equations which are derived from the source file,
JEDEC maps, high level state machine language, truth
table, or standard Boolean equations. The individual PLD
and SSI/MSI *.DOC files should be combined into a
single source file for partitioning into the ispLSI and pLSI
a device.

By grouping the equations into groups of no more than
four outputs, the PLD equations can be partitioned to fit
into the GLBs of the ispLSI and pLSI device since there
are 4 outputs per GLB. Headers and trailers must be
placed around the four equations to indicate to the Lattice
pDS Software, into which GLB the equations should be
loaded. The syntax is shown in table 1.

In the 1000 and 2000 family, each GLB has 18 inputs, 20
product terms and 4 registered or combinatorial outputs.
Additionally, there is product term combining among the
four outputs and an optional Exclusive OR gate which is
fed by a single product term and an AND/OR term. The
software will automatically place a given set of four
equations into a GLB. The 3000 family has 24 inputs in
each twin GLB (see figure 3), aprogrammable AND array
and two OR/exclusive-OR arrays, and either outputs
which can be configured to be either combinatorial or
registered.

If the PLD equations do not fitinto a GLB, the Lattice pDS
Software will give a message as to why. If there are too
many inputs, the equation can be moved into another
GLB and a new equation brought into the current GLB
which does not exceed the limit of 18 inputs.

As previously stated, every GLB is allowed one clock.
This clock may come from either one of the four global
clocks ora clock generated from a product term (.PTCLK).
Ensure all registered outputs in a GLB have a single
clock.

If an equation contains product terms which cannot be
allocated into one GLB, consider exchanging a complex
equation for one of less complexity in another GLB. If this
trading of equations is not possible, simply move the
equation into an empty GLB. In general, try to keep
equations with common inputs in the same GLB. If a
function requires a high number of product terms (prod-
uct term combining), try to make use of the product term
groups.

Moving a registered equation from one GLB to the next
will not degrade performance as the interconnect delays
between all GLBs are constant. Combinatorial equations
may have an extra GLB and unit interconnect delay
added to the propagation delay - if the implementation
requires more than 18 inputs and 20 product terms. If an
equation will not partition into a single GLB, the equation
must be split into two equations and then cascaded. For

Registered equations consider pipelining the intermedi-

ate equation(s) to keep the performance at the same
level.

4-50

1994 Handbook

Compiling Multiple PLDs
into ispLSI and pLSI Devices

The previous steps are all that are required to place PLD
type designs into the GLBs of the ispLSI and pLSI
devices. Note that no syntax changes of the AND/OR
portions of the equations were required.

Definition of I/0 Cells

The final step in the conversion process is to define the
1/0 cells. The basic I/O cell definition for an input and
output pin is shown in listing 6 and 7 respectively.
Because the device is routed according to signal names,
all I/O cells will automatically be connected to the proper
internal nodes. Other variations are shown in Table 2.

Table 1. Header and Trailer Syntax

For more details refer to the pDS Development Manual
under Macro Library.

Import and Verify the Design

Now that the design has been partitioned into the GLBs,
the device ASCII design source file needs to be imported
into the Lattice pDS Software so that it can be verified,
placed, and routed. By using the FILE and IMPORT LDF
commands, the ASCII file containing the design will be
imported into the Lattice pDS Software. The pDS Soft-
ware will check the syntax of each GLB and I/O cell and
translate the ASCII file to a binary LIF (Lattice Internal
Format) file.

Header PLD Equations Trailer
SYM GLB A0 <GLB NAME> 1; Signal1.clk=......; END;
SIGTYPE Signal1 REG OUT; Signali=......; END;
SIGTYPE Signal2 OUT; Signal2=......;
SIGTYPE Signal3 CRITICAL OUT; Signal3=......;
SIGTYPE Signal4 REG OUT; Signal4=......;
EQUATIONS
Listing 6. Basic Input I/O Cell Definition
SYM IOC IOXX 1; // I0XX = IO CELL NUMBER
XPIN IO/I X_SIG; // IO = IO PIN; I = DEDICATED INPUT CELL
IBl1l (SIG, X_SIG); // IB = INPUT SIGNAL
END;
Listing 7. Basic Output I/O Cell Definition
SYM IOC IOXX 1; // IOXX = I0 CELL NUMBER
XPIN IO/I X_SIG; // I0 = IO PIN; I = DEDICATED INPUT CELL
OBll (SIG, X_SIG); // OB = OUTPUT SIGNAL

END;

Table 2. I/O Cell Signal Type Description

Signal Description

Tri-state Output Pin

Bidirectional Pin with Registered Input

/O Cell Type
IBXX Input Pin
IDXX Input Register
ILXX Input D Latch
OBXX Output Pin
OTXX
BIXX Bidirectional Pin
BIDXX
BIILXX

Bidirectional Pin with Latched Input

4-51

1994 Handbook

Compiling Multiple PLDs

into ispLSI and pLSI Devices

All syntax errors must be eliminated to successfully PLDs to the Lattice ispLSI and pLSI family of high density
importafile. Afterasuccessfulimportintothe LatticepDS PLDs is quick and easy as long as a few guidelines are
Software, any SSI or MSI devices can be placed into followed:

GLBs. This can be done by using the available Macros
from the Lattice Macro Library, by using the designer's
custom macros, or using Boolean equations. After this is
accomplished, select DESIGN VERIFY command which
performs a global design rule and connectivity check.
After a successful global design verify, the design is
ready for automatic Place and Route.

Place and Route is invoked with the DESIGN ROUTE
commands. After place and route the fusemap can be
generated and the design downloaded to a programmer.
In the case of an ispLSI device, it can be programmed via
the ispDOWNLOAD Cable connected to a parallel port of
an IBM compatible PC.

As can be seen from the information contained in this
technical note, converting a design from low density

1)
2)
3)

4)

5)

6)

7)

Decide if the Design is I/0 or Gate Limited.
Choose the Appropriate ispLSI or pLSI Device.

Use as Much of the Original Boolean Equations
From the Low Density Source File asis Practical.

Convert 3-state Outputs to a ONE of N Multi-
plexer Scheme.

For Reset Functions, use the Global Reset for
the Entire Device or the Asynchronous Reset for
Specific GLBs.

Use no more than 18 Inputs or 4 Outputs per GLB
When Partitioning the Logic for 1000 or 2000
family devices and no more than 24 inputs and 8
outputs for 3000 family devices.

Use no more than one clock per GLB.

4-52

1994 Handbook

Compiling Multiple PLDs
into ispLSI and pLSI Devices

Figure 3. GLB Diagram Showing Product Term Sharing Combinations

1000

124 Inputs From Global Routing Pool
N

! 16 Inputs From Global Rouﬁ‘ng Pool / 2 Dedicated Inputs 1 and 2000
g Reconfigurabl H
T by by igurable
N A R R R e e Product Term foseee Family
Sharing Array D,J-Kand T
3 PT's and G LB
EEE—— Exclusive OR ™
5 2-
3 L] X 03
D 3 Y/ b
; 4
1 M
4 4 PT Bypass u
Z ! = b x> 02 G
8 Routing
" 4 Pool and
10 @_*» Single PT Iri7 e
u Routin
I b oo or o
D3
1 L = v
DIz M| _7+4pT: u
s
beradl — * 1 D QFrx 00
1
—_
Control
Functions
Product T Reconfigurable
roduct Term Registers
Sharing Array D,J-Kand T 3000

3 PT's and

Family

M
i L)D_Ljﬁ o GLB
Y/ b
M
14 PT Bypass l 0o ;(J OZI;?obm

Routing
d Pool and

Ll Single PT :J‘ Output
Routin

MI
u
| 7+4PTs E’X 00

>

FEERFEFRERFEFEIFEREE

AND Array
—_

Control
Functions

0845

4-53 1994 Handbook

Notes

4-54 1994 Handbook

Lattice

Adders/Subtractors

in pLSI

Carry-Lookahead Adders

Arithmetic logic blocks, like adders and subtractors, are
increasingly becoming performance bottienecks in high
performance logic designs. Carry-lookahead adders are
generally faster than cascaded adders because they
reduce the time needed to generate carry propagation.
The carry-lookahead can be achieved if the input carry bit
for stage i is generated directly from the inputs to the
preceding stages i - 1, i - 2, ..., i - krather than allowing
the carry bit to be cascaded and rippled from stage to
stage. An n - bit carry-lookahead adder can be con-
structed using k stages, each of which is a full adder
stage modified by replacing its carry output line co by two
signals called carry generate and propagate. These
signals gi and pi are defined by the following logic:

gi =ai-bi

pi =ai+ bi

That is, a stage will generate a carry if both of its addend
bits are 1, and it propagates carries if at least one of its
addend bits is 1.

Therefore, the carry signal that will be generated for the
stage i + 1 is defined as follows from the generate and
propagate signals:

ci+l=gi+pi-ci

If we recursively expand the ci term for each stage, and
multiply out to obtain a 2-level sum-of-products expression
we can eliminate the carry ripple that is associated with
cascaded adders. If this technique is followed, we can
obtain equations for the carry out bits for each stage as
shown below.

cl =g0 + p0-cO
c2 =gl + pl-cl

pl (g0 + pO.c0)
pl-g0 + pl- p0.cO

o 0o
~ O~
+ +

c3 =g2 +p2-c2
=g2 + p2 (gl + pl-g0 + pl-p0-c0)
=g2+ p2.gl+ p2- pl-g0+ p2.pl-p0-cO

c4

g3+p3-c3
g3+p3(g2+p2-gl+p2-pl-g0+p2. pl-p0-cO

=g3+p3.-82+p3-p2.gl+p3-p2-pl-g0 + p3 -p2
-pl-p0-cO

Each one of the above equations corresponds to a circuit
with only three levels of delay associated with it — one for
the generate and propagate signals, and two for the sum-
of-products shown. A carry-lookahead adder uses
three-level equations such as these in each adder stage.

Building blocks of an n - bit carry-
lookahead adder

F3ADD (F3ADD_1, F3ADD_2): Athree bitfulladder with
propagate and generate outputs

PG1 .. PG4: Carry/Borrow bit generator utilizing propa-
gate and generate inputs

F3ADD

The F3ADD macro shown below performs the 3 bit
addition of a0 .. a2 + b0 .. b2, it also performs the
propagate and generate functions. The propagate func-
tion determines if any of the addend bits are 1 by Oring
each set of addend bits. If any of the addend bits are a
one a propagate will be generated.

As shown below we see that when either of a digits
addend bits are one a propagate will be generated:

a2 al a0 o 1 1
b2 b1 b0 0 0 1
propagate pi a2+b2 al+bl a0+b0 0o 1 1

Note: only a single propagate will be produced although
more than one may be generated as shown.The gener-
ate function determines if a carry to the next digit should
be generated from the previous digit addition, as shown
earlier in the binary addition basics section. Basically, it
performs the same function as the carry out of a regular
adder, but does not incorporate the carry in signal in its
logic. Shown below is an example of how a generate bit
would be produced.

4-55

1994 Handbook

Adders/Subtractors in pLSI/

Here we show a three bit addition with a generate being
produced:

1 1 1 0 - Carry bits from digit addition

a2 al a0 0111-07
gi b2 b1 b0 0001-01
1 0 0 0-Gives08
Generate gi

gi will be generated because = a0-al - a2 - b0; here
we can see thatifa0 - b0 =1 a carry will be generated for
those two addend bits. Therefore, if that carry propagates
to the next set of bits a1. b1 and either of them are aone
a carry will be generated to the next set. This function is
recursive and if you look at the logic for the generate
function below you will see that all combinations have
been accounted for.

gi=(a0-al-a2.bo
#al.a2-bl
#a0-a2-b0-bl
#a2.b2
#a0-al-b0-b2
#al -bl-b2
#a0-b0-bl-b2)

PG1..PG4

The propagate-generate macros are carry bit generators
utilizing propagate and generate inputs. Shown below is
the logic and the truth table for the PG1 macro.

Figure 1. Logic and Truth Table for the PG1 Macro

PGI1| P11 | GI1 | PGO1
X X 1 1

The PGI1 input of the macro is the carry in input from the
initial stage of your adder, the PI1, and Gl1 inputs are the
propagate and generate inputs associated with the F3ADD
macro outputs. Looking at the logic of the PG1 macro it
can be seen that whenever a generate bit was produced
from the F3ADD macro a carry out signal will be gener-
atedfrom the PG macro, assuming the PG macrois using
the inputs from the F3ADD macro outputs. This also
holds true if both of the propagate inputs into the PG1 are
one since the initial carry in would be a one and one of the
addend bits is one, this would result in a carry out.
Basically, the PG1 macro performs the function associ-
ated with the carry out of a regular adder.

As shown previously in the carry-lookahead adder
section the carry signal that will be generated for the
stage i + 1 is defined as follows from the generate and
propagate signals:

ci+1 =gi + pi-ci (whereci+ 1 =PG0l,gi =GIl,pi =
PIl, and ci = PGIl)

Therefore: PGOI = GII + PII - PGI1

If we recursively expand the PGO1 term for each stage,
i.e. PG02 .. PGOnand multiply out to obtain a 2-level sum-
of-products expression we can eliminate the carry ripple
thatis associated with cascaded adders. Ifthis technique
is followed, we can obtain equations for any PGOn bits for
each stage as shown previously, but substituting the
generate and propagate signals into the ¢i equations as
we did above.

For stage two (macro PG02):

c2

gl + pl.cl

gl + pl (g0 + p0-c0)
=gl + pl-g0+pl-p0-cO
PG02 = GI2 + PI2. GIl + PI2- PIl - PGO1

Here we show a six bit adder utilizing two F3ADD macros,
PG1 and PG2. The key thing to remember is that the
propagate and generate inputs to the PGn macro is
associated with that stages adders outputs.

i.e. for PG02, GI1 and PI1 would come from the first
adder, and GI2 and PI2 would come from
the second adder.

4-56

1994 Handbook

Adders/Subtractors in pLSI

Figure 2. Six Bit Adder

i cl
Ci 20..2
A0.2 >+ ao.2
B0.2 >43 Bo.2 Golz 202 Gl
poiz (P12 PIt
PGOT
F3ADD PGI2
PG1
ol 35
3
A3.5>+>— AD.2
\ Gorz [-8345 Gl2
B3.5>+>——B0.2 Pol2 | P345 PI2 co
PGO1
Gl
P
F3ADD PGI1
PG2

0897

4-57 1994 Handbook

Adders/Subtractors in pLSI

In the case of the six bit adder the co will be the PG02 of extra bits and the ci of the adder would be driven by the
the second propagate and generate macro PG2, but for last PGOn in that network. This is shown in the 14 bit
adders that do not have a multiple of three one of the adder.

other regular adders should be used to account for the

Figure 3. Fourteen Bit Adder

i cl
Ci : 20.2
A0.2 >+ ao.2
80.2>+3 1 po.2 Goiz [CO2 Gh
poi2 | POI2 PIt
PGO1
F3ADD- PGI2
PG1
o 23.5
3
A3E>+2—{ A2
. Goiz G345 Gl2
B3.5 >—+——— B0.2 Pol2 | P345 PI2
PGO1
Gl
PIt
F3ADD PGH
PG2
23.5
Cl ———
A6.8 >+ n0.2 G678
Goi2 GI3
s POI2 PI3
B6..8 >+4—— B0..2 P678 Gl2
P2
PGO1
F3ADD e
PI1
PGI1
PG3
29.11
cl
3
A9.11>——— A0..2 Gol2 |.G9.10.11 Gl4
3 POI2 Pl4
B9..11>——— B0.2 P9,10,11 i3 PEO1
PI3
Gl2
F3ADD Pl
L an
PI
PG
ol PG4
) 20 > Zi2
A12.13>42—— 04 0896
2 Zf———» 713
B12.13>+42>—1 Bo.1
cob——»Bo

ADDF2

4-58 1994 Handbook

Adders/Subtractors in pLSI

Subtractors

F3SUB (F3SUB_1, F3SUB_2): 3 Bit full subtractor with
propagate and generate outputs

PG1 .. PG4: Carry/Borrow bit generator utilizing propa-
gate and generate inputs

The same convention that was followed with the adders
is followed with the subtractors. The only difference is

Figure 4. Fourteen Bit Subtractor

instead of having a carry in a borrow in is used. The
subtraction technique is shown in the subtractor basics
section, and the propagate-generate macros are identi-
cal to those used in the adder section. As shown below
in the 14-bit subtractor, the borrow bit is generated by
each of the PGOn macros whereas a carry bit was
generated with the adders. This bit then propagates
through the subtractors.

Bi B 20.2
A0.2>+2— no.2
80.2>+2— {802 Goi2 ,@'2 an
poi2 [POR2 -
PGO1
F3sUB PGI2
PG1
Bl 23.5
3
A3.5 >—+2——1 A0.2
R Goi2 [845 G2
B3.5 >+——— B0.2 Poi2 | P345 iz
PGO1
¢—an T
Pl
F3sUB PG
PG2
23.5
B
3
A6.8 >—+——— A0.2
o 12678 GI3
3 POI2 P13
B86.8 >+ B0.2 P68 Gl2
PI2
PGO1
Fasus e
P
PGI1
PG3
29.11
Bl
3
A9..11>—A———1 A0..2 Golz |.89.10.11 Gl4
3 POI2 P4
B9.11>—~/=—— B0.2 9,101 s POOT
PI3
G2
F3suB P2
L—an
PI1
PGIY
PG4

Bl

20

zi2

A12.13>—2—1 A1
B12.13>+2—| Bo.1

SUBF2

Ztf————» 213

C0 p—————— BO

4-59

1994 Handbook

Notes

4-60 1994 Handbook

attice

Crosspbint Switch
Implementation Using
the pLSI 1032

This application note describes a crosspoint switch that
will allow any of four input busses to be connected to any
or all of the four output busses. The input and output
busses are eight bits wide. Wider busses can be accom-
modated by paralleling multiple pLSI 1032s. By pairing
the input and output busses, the design can be changed
to a two by two by sixteen crosspoint switch.

The design provides for simplex data transfers but the
addition of a second device will allow duplex operation
with separate transmit and receive data paths. Figure 1
shows the basic switch architecture.

Figure 1. Switch Architecture

The actual implementation of the switch consists of 32 4-
to-1 multiplexers controlled in groups of eight. The input
signal selection for each group of eight is controlled by a
2-bit register. The data written into this register is pro-
vided by an external source on the SELO and SEL1 pins.
The address of the register to which the SELO and SEL1
data is to be written is provided by an external source as
an address on the SELAO and SELA1 pins. The writing of
the data to the register is controlled by a write signal on
the WR pin. The data stored in the register is decoded to
specify the source of the data appearing at the outputs of
a group of eight multiplexers.

OUT A l — — ouTC
]
]]
OouTB — — OUTD
|
T
—_—
I 0892
BITO BIT1 BIT2 BIT3
IN IN IN IN

4-61

1994 Handbook

Crosspoint Switch Implementation

Using the pLSI 1032

A listing of the Lattice Design File (LDF) is shown on the
following pages.

The signals broughtin on the dedicated input pins needed

END;
SYM GLB B7 1 MBOBI;
SIGTYPE [B0O,Bl] OUT CRIT;

S ! | *d EQUATIONS
to be provided to registers outside of the megablock in BO = AI0 & !BSEL1 & !BSELO
which the dedicated inputs were located. In order for the # BIO & !BSEL1 & BSELO
dedicated input signals to appear as a global signal in the # CI0O & BSELl & !BSELO
global. routing pool (GRP), thgy were routed through a # DIO & BSELl & BSELO;
generic logic block (GLB) with the output of the GLB Bl = ATl & !BSELl & !BSELO
appearing in the GRP. This implementation was used # BI1 & !BSEL1 & BSELO
only on control paths where speed was not critical as on # CI1 & BSEL1 & !BSELO
data paths. # DI1 & BSELL & BSELO;
The data paths all use the four product term bypass in the END
GLBs but do not bypass the output routing pool. The use END:
of the four product term bypass does not affect routability !
mthls.desngp. Themax1mumpropagatlpndelayfromthe SYM GLB C7 1 MCOCI;
data input pins to the data output pins is 12ns when the A
Lattice pLSI 1032-90 is used SIGTYPE [CO,C1] OUT CRIT;
’ EQUATIONS
- —y CO = AIO & !CSELl & !CSELO
Design LDF Listing # BIO & !CSEL1 & CSELO
// an_4.1df generated using Lattice pDS # CI0O & CSEL1 & !CSELO
2.50 # DIO & CSELl & CSELO;
LDF 1.00.00 DESIGNLDF: Cl = AIl & !CSELl & !CSELO
DESIGN XBAR 4X4X8: ! # BIl & !CSELl & CSELO
REVISION 0: ! # CI1 & CSELl & !CSELO
PROJECTNAME Crossbar Application Note; END # DIl & CSEL1 & CSELO;
PART pLSI1032-90J;
END;
DECLARE
SYM GLB A7 1 MAOAL;
END; //DECLARE SIGTYPE [AO,Al] OUT CRIT;
SYM GLB D7 1 MDODI1; EQUATIONS , '
SIGTYPE [D0,D1] OUT CRIT; A0 = AIO & !ASELl & !ASELO
EQUATTIONS # BIO & !ASELl & ASELO
DO = AIO & !DSEL1 & !DSELO # CI0 & ASELL & IASELO
BIO & !DSEL1 & DSELO # DIC & ASELL & ASELO;
CI0 & DSEL1 & !DSELO Al = AIl & !ASELl & !ASELO
DIO & DSELL & DSELO: # BIl & !ASEL1 & ASELO
4
D1 = ATl & !DSEL1 & !DSELO # CIl & ASELL & IASELO
BI1 & !DSEL1 & DSELO # DI1 & ASELl & ASELO;
CI1 & DSELl & !DSELO END
DIl & DSELl & DSELO;
END END;
4-62 1994 Handbook

Crosspoint Switch Implementation

Using the pLSI 1032

SYM GLB A6 1 MA2A3;
SIGTYPE [A2,A3] OUT CRIT;

EQUATIONS
A2 = AI2 & !ASEL1 &
BI2 & !ASEL1 &
CI2 & ASEL1 &
DI2 & ASELl &
A3 = AI3 & !ASEL1 &
BI3 & !ASELl &
CI3 & ASELl &
DI3 & ASELl &
END
END;
SYM GLB B6 1 MB2B3;

SIGTYPE [B2,B3] OUT CRIT;

EQUATIONS
B2 = AI2 & !BSELl &
BI2 & !BSEL1 &
CI2 & BSEL1l &
DI2 & BSELl &
B3 = AI3 & !BSELl &
BI3 & !BSELl &
CI3 & BSELl &
DI3 & BSELl &
END
END;
SYM GLB C6 1 MC2C3;

SIGTYPE [C2,C3] OUT CRIT;

EQUATIONS
C2 = AI2 & !CSELl &
BI2 & !CSEL1 &
CI2 & CSELl &
DI2 & CSELl &
C3 = AI3 & !CSELl &
BI3 & !CSEL1 &
CI3 & CSEL1 &
DI3 & CSELl &
END
END;

{ASELO
ASELO
{ASELO
ASELO;
1ASELO
ASELO
|ASELO
ASELO;

{BSELO
BSELO
!BSELO
BSELO;
{BSELO
BSELO
!BSELO
BSELO;

1CSELO
CSELO
{CSELO
CSELO;
{CSELO
CSELO
1CSELO
CSELO;

SYM GLB D6 1 MD2D3;
SIGTYPE [D2,D3] OUT CRIT;

EQUATIONS
D2 = AI2 & !DSEL1 &
BI2 & !DSEL1 &
CI2 & DSELl &
DI2 & DSEL1 &
D3 = AI3 & !DSELl &
BI3 & !DSEL1 &
CI3 & DSELl &
DI3 & DSEL1 &
END
END;
SYM GLB B0 1 GSEL;

SIGTYPE [SELO,SEL1l] OUT;

EQUATIONS
SELO0 = ISELO;
SEL1 = ISEL1l;
END
END;

SYM GLB A5 1 MA4A5;
SIGTYPE [A4,A5] OUT CRIT;

EQUATIONS
A4 = AT4 & !ASELL &
BI4 & !ASELl &
CI4 & ASELl &
DI4 & ASELl &
A5 = AI5 & !ASELl &
BI5 & !ASEL1 &
CI5 & ASELl &
DIS5 & ASELl &
END
END;
SYM GLB A4 1 MA6AT;

SIGTYPE [A6,A7] OUT CRIT;

EQUATIONS
A6 = AI6 & !ASELl &
BI6 & !ASEL] &
CI6 & ASELl &
DI6 & ASELl &
A7 = AI7 & !ASELl &
BI7 & !ASELl &
CI7 & ASELl &
DI7 & ASEL1 &
END
END;

IDSELO
DSELO
!DSELO
DSELO;
IDSELO
DSELO
!DSELO
DSELO;

{ASELO
ASELO
{ASELO
ASELO;
{ASELO
ASELO
!ASELO
ASELO;

{ASELO
ASELO
!ASELO
ASELO;
!ASELO
ASELO
!ASELO
ASELO;

4-63

1994 Handbook

Crosspoint Switch Implementation
Using the pLSI 1032

SYM GLB B5 1 MB4B5;
SIGTYPE [B4,B5] OUT CRIT;

SYM GLB C4 1 MC6C7;
SIGTYPE [C6,C7] OUT CRIT;

EQUATIONS EQUATIONS
B4 = AI4 & !BSEL1 & !BSELO C6 = AI6& !CSEL1l & !CSELO
BI4 & !BSEL1 & BSELO # BI6 & !CSELl1 & CSELO
CI4 & BSELl & !BSELO # CI6 & CSELl1 & !CSELO
DI4 & BSEL1 & BSELO; # DI6 & CSELl1 & CSELO;
B5 = AI5 & !BSELl1l & !BSELO C7 = AI7 & !CSELl & !CSELO
BI5 & !BSEL1l & BSELO # BI7 & !CSEL1 & CSELO
CI5 & BSELl1 & !BSELO # CI7 & CSELl1 & !CSELO
DI5 & BSEL1 & BSELO; # DI7 & CSELl1 & CSELO;
END END
END; END;
SYM GLB B4 1 MB6B7; SYM GLB D5 1 MD4D5;
SIGTYPE [B6,B7] OUT CRIT; SIGTYPE [D4,D5] OUT CRIT;
EQUATIONS EQUATIONS
B6 = AI6 & !BSEL1l & !BSELO D4 = AI4 & !DSEL1l & !DSELO
BI6 & !BSEL1 & BSELO # BI4 & !DSEL1 & DSELO
CI6 & BSEL1l & !BSELO # CI4 & DSELl1 & !DSELO
DI6 & BSELl & BSELO; # DI4 & DSEL1 & DSELO;
B7 = AI7 & !BSEL1l & !BSELO D5 = AI5 & !DSEL1 & !DSELO
BI7 & !BSEL1 & BSELO # BI5 & !DSEL1 & DSELO
CI7 & BSELl & !BSELO # CI5 & DSEL1 & !DSELO
DI7 & BSEL1 & BSELO; # DI5 & DSELl1 & DSELO;
END END
END; END;
SYM GLB C5 1 MC4C5;
SIGTYPE [C4,C5] OUT CRIT; SYM GLB D4 1 MD6D7;
EQUATIONS SIGTYPE [D6,D7] OUT CRIT;
C4 = AI4 & !CSEL1 & !CSELO EQUATIONS
BI4 & !CSELl & CSELO D6 = AI6 & !DSEL1 & !DSELO
CI4 & CSEL1 & !CSELO # BI6 & !DSEL1 & DSELO
DI4 & CSELl1 & CSELO; # CI6 & DSELl1 & !DSELO
C5 = AI5 & !CSEL1l & !CSELO # DI6 & DSEL1l & DSELO;
BI5 & !CSEL1 & CSELO D7 = AI7 & !DSELl1 & !DSELO
CI5 & CSEL1l & !CSELO # BI7 & !DSEL1 & DSELO
DI5 & CSEL1 & CSELO; # CI7 & DSELl1 & !DSELO
END # DI7 & DSELl1 & DSELO;
END
END;
END;
4-64 1994 Handbook

Crosspoint Switch Implementation
Using the pLSI 1032

SYM GLB A3 1 CONA;
SIGTYPE [ASELO,ASEL1l] REG
EQUATIONS
ASELO.PTCLK = !WR & !
ASELO = SELO;
ASEL1 = SEL1;
END
END;

SYM GLB DO 1
SIGTYPE WR OUT;
EQUATIONS WR = IWR;

GWR;

END
END;

SYM GLB Bl 1 GSELA;
SIGTYPE [SELAO,SELAl] OUT;
EQUATIONS
SELA0 = ISELAO;
SELAl = ISELAL;
END
END;

SYM GLB B3 1 CONB;
SIGTYPE [BSELO,BSEL1] REG
EQUATIONS
BSELO.PTCLK = !WR &
BSELO = SELO;
BSEL1 = SEL1;
END
END;

SYM GLB C3 1 CONC;
SIGTYPE [CSELO,CSEL1] REG
EQUATIONS

CSELO.PTCLK = !WR &
CSELO = SELO;
CSEL1 = SEL1;

END

END;

SYM GLB D3 1 COND;

SIGTYPE [DSELO,DSEL1] REG
EQUATIONS
DSELO.PTCLK = !WR &
DSELO = SELO; DSEL1
END
END;

OouT;

SELAO & !SELAL;

ouT;

SELAO & !SELAl;

OuT;

ISELA0 & SELAL;

ouT;

SELAO0 & SELAl;
= SEL1;

SYM IOC 1015
OB11 (XAO,A
END;

SYM IOC 1014
OB11 (XAl,Al);
END;

SYM IOC 1I013
OB11 (XA2,A2);
END;

SYM IOC 1I012
OB11 (XA3,A3);
END;

SYM IOoC 1031
OB1l (XB0,B0);
END;

SYM IOC 1030
OB1l (XB1,Bl);
END;

SYM IOC 1029
OBll (XB2,B2);
END;

SYM IOC 1028
OB11 (XB3,B3);
END;

SYM IOC 1047
OBl11 (XCO0,CO0);
END;

SYM IOC 1I046
OB11 (XC1,Cl);
END;

SYM IOC 1045
OB1l1l (XC2,C2);
END;

SYM IOC I044
OB11 (XC3,C3);
END;

SYM IOC 1063
OB11l (XDO,D0);
END;

1

OAO;

OAl;

OA2;

OA3;

OBO;

OB1;

OB2;

OB3;

0CoO;

0oC1l;

0C2;

0OC3;

0oDO0;

4-65

1994 Handbook

Crosspoint Switch Implementation

Using the pLSI 1032

SYM IOC 1I062 1
OBl11 (XD1,D1);
END;

SYM I0C 1061 1
OB1l (XD2,D2);
END;

SYM TOC 1060 1
0B11 (XD3,D3);
END;

SYM I0C 1IOl11 1
IB11 (AIO,XAIO);
END;

SYM IoC 1010 1
IB11 (AIl,XAIl);
" END;

SYM I0C 109 1
IB11 (AI2,XAI2);
END;

SYM I0oC 108 1
IB11 (AI3,XAI3);
END;

SYM IOC 1024 1
IB11 (BI3,XBI3);
END;

SYM IOC 1025 1
IB11 (BI2,XBI2);
END;

SYM IOC 1026 1
IB11 (BI1,XBIl);
END;

SYM I0C 1027 1
IB11 (BIO,XBIO);
END;

SYM TOC 1043 1
IB11 (CIO,XCIO);
END;

SYM IOC 1I042 1
IB11 (CI1,XCIl);
END;

SYM IOC 1041 1
IB11 (CI2,XCI2);
END;

OoD1;

0oD2;

0oD3;

IAOQ;

IALl;

IA2;

IA3;

IB3;

IB2;

IB1;

IBO;

ICO;

IC1;

IC2;

SYM I0C 1I040 1
IB11 (CI3,XCI3);
END;

SYM IOC 1I056 1
IB11 (DI3,XDI3);
END;

SYM IOC 1057 1
IB11 (DI2,XDI2);
END;)

SYM IOC 1058 1
IB11 (DI1,XDI1);
END;

SYM IOC 1I059 1
I1B11 (DIO,XDIO);
END;

SYM IOC IO0 1
IB11 (AI7,XAl7);
END;

SYM I0C IOl 1
IB11 (AI6,XAI6);
END;

SYM IOC 102 1
IB11 (AI5,XAI5);
END;

SYM IOC 103 1
IB11 (AI4,XAT4);
END;

SYM IOC 104 1
OB1l (XA7,A7);
END;

SYM IOC I05 1
OB11 (XA6,A6);
END;

SYM I0C 106 1
OB11 (XA5,A5);
END;

SYM IOC TIO07 1
OBll (XA4,R4);
END;

SYM 10C 1016 1
IB11 (BI7,XBI7);
END;

IC3;

ID3;

ID2;

ID1;

ID0;

IA7;

IAG;

IAS;

IA4;

OA7;

OA6;

OAS5;

OA4;

IB7;

4-66

1994 Handbook

Crosspoint Switch Implementation

Using the pLSI 1032

SYM IOC 1017 1
IB11 (BI6,XBI6);
END;

SYM IOoC 1018 1
IB11 (BI5,XBI5);
END;

SYM IOC 1019 1
IB11 (BI4,XBI4);
END;

SYM IOC 1I020 1
OBl11 (XB7,B7);
END;

SYM IOC 1021 1
OBl1l (XB6,B6);
END;

SYM IOC 1022 1
OB1l (XB5,B5);
END;

SYM IOC 1I023 1
OBl11 (XB4,B4);
END;

SYM IOC 1I032 1
IB11 (CI7,XCI7);
END;

SYM IOC 1033 1
IB11 (CI6,XCI6);
END;

SYM IOC 1034 1
IB11 (CI5,XCIS);
END;

SYM IOC 1035 1
IB11 (CI4,XCI4);
END;

SYM I0C 1036 1
OB11 (XC7,C7);
END;

SYM IOC 1037 1
OBll (XC6,C6);
END;

SYM I0C 1038 1
OB11 (XC5,C5);
END;

IB6;

IB5;

IB4;

OB7;

OB6;

OB5;

OB4;

IC7;

IC6;

IC5;

1C4;

OC7;

0C6;

0C5;

SYM IOC 1IO39 1 O0C4;
OBll (XC4,C4);
END;

SYM IOC 1048 1 1ID7;
IB11 (DI7,XDI7);
END;

SYM IOC 1I049 1 1ID6;
IB11 (DI6,XDI6);
END;

SYM IOC 1I050 1 1ID5;
IB11 (DI5,XDI5);
END;

SYM IOC 1IO51 1 1ID4;
IB11 (DI4,XDI4);
END;

SYM IOC 1IO52 1 OD7;
OBl1l (XD7,D7);
END;

SYM IOC 1IO53 1 OD6;
OBl1l (XD6,D6);
END;

SYM IOC I054 1 OD5;
0B11l (XD5,D5);
END;

SYM IOC 1IO55 1 OD4;
OBl1l (XD4,D4);
END;

SYM IOC IO 1 1IS0;
IB1l1 (ISELO,XSELO);
END;

SYM I0C I1 1 1ISl;
IB11 (ISEL1,XSEL1);
END;

SYM IOC I2 1 ISAO
IB11 (ISELAO,XSELAO)
END;

~e ~e

SYM I0C I3 1 1SAl
IB11 (ISELAl,XSELA1l)
END;

~e e

SYM I0OC I4 1 IWR;
IB11 (IWR,XWR);

END; END; //LDF DESIGNLDF

4-67

1994 Handbook

Notes

4-68 1994 Handbook

| attice”

Building Modulo N Counters
Using ispLSI and pLSI Devices

Building counters where the terminal count is not a power
of two can be done using various logic configurations.
Many designers simply decode the output of a binary
counter and reset or load the counter when the modulo or
terminal countis reached. If the reset orload is asynchro-
nous, glitches may occur on the counter outputs.
Synchronous resets and loads can eliminate the glitches
but require more logic and may reduce the maximum
count rate. The counter/decoder approach has an addi-
tional drawback on power up. If the counter initializes to
a count higher than the decoded terminal count, the first
reset or load of the counter may not occur at the proper
time.

By designing the modulo n counter as a state machine
with each valid state defined, the glitch problem and the
long count error on initialization are eliminated. This
approach allows the four product term bypass in the
ispLS! and pLSI devices to be used to achieve high clock
rates in prescalers and small counters.

The AND/OR/REGISTER architecture of the ispLSI and
pLSI devices provides an efficient means of forcing the all
ones state on the next clock edge after the terminal count
is reached and forcing the counter outputs to zeroes on
the clock edge following invalid output states.

Figure 1. Bit Values For a 4-Bit Up Counter

MODULO B3 B2 B1 BO
2 0 0 0 0
0 0 0 1
4 0 0 1 0
5 0 0 1 1
6 0 1 0 0
7 0 1 0 1
8 0 1 1 0
9 0 1 1 1
10 1 0 0 0
11 1 0 0 1
12 1 0 1 0
13 1 0 1 1
14 1 1 0 0
15 1 1 0 1
16 1 1 1 0
No count 1 1 1 1

The table in figure 1 lists the bit values for a 4 bit up
counter with the values under the “Modulo” heading
indicating which states should be included for various
modulo counters.

The following design example is for a modulo 11 counter.
Using the table in figure 1 locate 11 under the modulo
heading. The binary value to the right of the 11 indicates
the terminal count that will be used to force the next state
to be all ones. The counter states must include the
terminal count state and all the states for lesser counts.

Figure 2. Unreduced Equations For a Modulo 11
Counter

BO B0 & IB1 & B2 & IB3
'BO & B1&!B2&!B3
'BO & !B1 & B2 &!B3
1BO& B1 & B2& B3
'BO & !B1 &!B2& B3

BO &!B1 &!B2& B3

L SR |

B1 B0 & !B1 & !B2 & !B3
'BO & B1&!B2&!B3
BO & !B1 & B2 & !B3
'BO& B1 & B2&!B3

B0 & 'B1 & !B2 & B3

L S

B2 BO & B1 &!B2 & !B3
1BO & !Bt & B2 & B3
BO & !B1 & B2 & 'B3
'BO& B1& B2&!B3

B0 & !B1 &!B2& B3

B0 & B1 & B2&!B3
'BO & !B1 &!B2& B3
B0 & 1B1 & !B2 & B3

HH o3 H N

B3

H* 3|

The unreduced equations for a modulo 11 counter are
shown in figure 2. A set of reduced equations for a
modulo 11 counter are shownin figure 3. Whenusing the
pDS Software to design the counter, either the FASTMIN
or STRONGMIN option should be used to reduce the
product terms to four or less per output if counter speed

4-69

1994 Handbook

Building Modulo N Counters Using

ispLSI and pLSI Devices

is important. If speed is not critical, additional functions
can be added to the counter by adding product terms.

Figure 3. Reduced Equations For a Modulo 11
Counter

BO =!B0 & !B3
#1B1&!B2 & B3

B1 = BO&!B1&!B2
#1B0 & B1&!B3
BO&!Bt1 & B2 &!B3

B2 = BO& B1&!B2&!B3
#1B1& B2&!B3
#1B0& B1& B2&!B3
BO&!B1&!B2& B3

B3 = B0O& B1 & B2&!B3
#1B1 &!B2 & B3

The reduced equations each have four product terms or
less and allow the ispLSI and pLSI devices to utilize the
4 product term bypass to implement a fast counter.
Counters from modulo 2 through 16 can be implemented
to take advantage of the 4 product term bypass configu-
ration. In prescaler applications, the outputs of the
modulo n counter can be used to clock or enable addi-
tional counter stages to provide fast divider chains of any
size. By controlling the modulo of additional stages,
counters of any modulo can be constructed.

4-70

1994 Handbook

] attice”

Phase Locked Loops (PLL)
in High Speed Designs

Introduction

This Application note describes the construction of a
Phase Detector (PD) in conjunction with a Voltage Con-
trolled Oscillator (VCO) to create a frequency generator
synthesizer. All of the logic except the VCO and “RC"
(time constant) is implemented inthe ispLSI| 2032 device.
The logic consists of two 4-bit loadable down counters
and the phase detector.

The ispLS1 2032 device has been specified because of its
performance and device size. The ispLSI 2032 device is
the fastest High Density Programmable Logic Device
available today.

Phase Locked Loop (PLL) circuits are used in many
applications ranging from communications to video and
audio equipment. They are used to ensure that a clock
and/or phase of that clock is stable and in sync with a
reference signal.

General Information

A PLL is a circuit that consists of a phase detector, a loop

filter and a reference clock. A VCO (Voltage Controlled -

Oscillator) is usually employed to generate the desired
output frequency. Figure 1 is a block diagram of a simple
PLL circuit.

Figure 1. PLL Block Diagram

Phase
Detect

Loop
Filter

4

VvCO

When operating correctly, a PLL will “lock on” to an input
and track its frequency and phase relationship. The
circuit is used to synthesize or generate a frequency and
maintain the phase of the generated signal to the refer-

ence. It can also be used to synchronize signals (clocks)
to a reference.

In the digital design world, the PLL is more accurately a
phase detector. With the ability to create digital circuits
that emulate analog functions, more designers are mov-
ing away from analog. Many functions can now be
implemented more easily and with more flexibility due to
digital design techniques.

Phase Detector

The phase detector circuit in figure 2 is analogous to an
analog PLL, it could be considered a Digital Phase
Locked Loop (DPLL). The results of the PLL and the
DPLL will be the same, even though the method of
operation between the analog and digital versions is
different.

Figure 2. DPLL Block Diagram

Phase
Detect

A

There are different types of phase detectors. A phase
detector must be able to detect a change in the state of
one of the two inputs and tell which input stayed constant.
This is important in the basic function of the phase
detector. The circuit must have the ability to detect if the
reference (or the feedback signal of the PLL) changed.
As a result, the phase detector will adjust its output to
cause the VCOto raise or lower the frequency and phase
accordingly.

47

1994 Handbook

Phase Lock Loops (PLL)
in High Speed Designs

The most basic phase detector is an Exclusive Or gate
(XOR). The XOR has a limited usefulness in feedback
circuitry because of its inability to indicate which input
changedfirst. Figure 3 shows the output relationship with
respect to the input signals changing. This deficiency
means a circuit with this type of PD would not be able to
attain loop lock in some situations.

Figure 3. XOR Input/Output Wave form

. r

or TIUUUL

0860

A better way to implement a phase detector is with a
cross-coupled latch. This single ended phase detector
can be either arising or a falling edge detector, based on
the polarity of the inputs. This circuit is adequate for most
applications. Figure 4 is the falling edge phase detector,
and is used in the example design of this application note.

Figure 4. Single Ended, Falling Edge Phase Detector

Theory of Operation

A phase detector determines the difference in time of the
edges of the two input signals. Those inputs are the
reference (R) and the variable feedback (V). The differ-
ence causes the phase detector to generate pulses that
cause the VCO to “correct’ the frequency/phase. The
loop filter is designed to allow small phase or frequency
errors to be ignored. If the phase detector were to detect
all changes, the PLL would go into an uncontrollable
oscillation.

The PLL described in this application note uses a single
ended, falling edge phase detector. This is a single ended
phase detector because there is only one output for each
cross-coupled NAND latch. The phase detector will detect
adifferencein thetwoinput signals, howeverit will only react
on the falling edge. The minimum phase error detected is
approximately 3ns, which corresponds to the delay of the
ispLS| 2032 device. The PLL will attain and remain in “loop
lock” if both outputs (UP and DN) remain high. For use with
a VCO, only one output is used, and the other is pulled up
(if the output is an open drain). Phase error is independent
of the input waveform duty cycle or its amplitude. The
detector will only respond to transitions. Figure 5 shows the
input and output waveform relationships of the phase
detector.

Figure 5. Waveforms of the Phase Detector in figure 4

R |: | up A _] | f LI 1 [I
v f L [1 I L I [
o v L] L] L LI
DN
A i | I |]] J L
%D"“‘ v | I I I | I —
NQ1
NG2 *
L L] L [
AR S I S O N O I
: v L L
Q2
v o LA [[LTl 1
_:_IDE’T" o
0840
If a Rising edge version of this detector is required, the
inputs can be inverted to produce the desired result.
4-72 1994 Handbook

Phase Locked Loops (PLL)
in High Speed Designs

Frequency Multiplier

As seen in figure 2, the DPLL has a divider which is the
feedback to the phase detector. This DPLL only has the
ability to generate a frequency of equal to or less than the
input or reference frequency. Figure 6 is ablock diagram
of the frequency multiplier. By having two counters, the
output of the VCO can be multiplied by a number less
than, greater than, or equalto 1. This enables the output
of the DPLL to be a range of frequencies less than or
greaterthanthe input. Each counter input can be brought
to an external pin on the ispLSI 2032 device to preset the
counters to a value (which can change) by anotherdevice
such as a microprocessor. If the inputs could be elimi-
nated, the “load value” would be fixed.

Figure 6. Frequency Multiplier

DMO0..DM3
L
Bt Prase _,{} o oo g
A
+N
onj« L]
TT1
DNO..DN3

Phase Detector Equations

The following equations describe the phase detector
portion of the frequency muitiplier. The equations have
been demorganized to show the actualimplementationin
the ispLSI 2032.

NQ2 = (!DN & Q2.PIN & Q1.PIN & !UP)
(Q2.PIN)
(!V & 02.PIN & Q1.PIN& !R)
(!V & Q2.PIN & QL.PIN & !UP)
(!DN & Q2.PIN & QL.PIN &!R);
NQl = (Q1.PIN)
(!V & Q2.PIN & QL.PIN & !R)
(!V & Q2.PIN & Q1.PIN & !UP)
(!DN & Q2.PIN & QL.PIN & !R)
(!DN & Q2.PIN & QL.PIN &!UP);
Q2 = (!NQ2.PIN)

(!V) # (!DN);

(!{NQ1.PIN)

(!R) # (!UP);

(!V & Q2 & 'R & Q1)

(!V & Q2 & !UP.PIN & Q1)

(V &DN.PIN)

(!DN.PIN & Q2 & 'R & Q1)

(!DN.PIN & Q2 & !UP.PIN & Q1)
#(102);

(!DN.PIN & Q2 & !UP.PIN & Q1)
(R & UP.PIN) # (!Q1)

(!V & Q2& 'R & Q1)

(!V & Q2 & !UP.PIN & Q1)

4 (!DN.PIN & Q2 & !R & Q1);

0
[y
]

=)
4
L}

[=1
o
n

Figure 7 shows the pins used on the ispLSI| 2032 device
for the frequency multiplier. It also shows the external
components needed to design the PLL.

Figure 7. ispLSI 2032 Pin Connections for the PLL
Design

Voo DMO0..DM3
L
Ret[" 6 5 4 3
'y 8: ?o ispLSI e
1 2032
T 1 481920 21
e -
DNO..DN3
Summary

With systems and devices increasing in speed and per-
formance, faster and more accurate clocks are required.
In many situations a clock must not only be accurate, it
must also have error correcting capabilities. Witha DPLL
users can accomplish these requirements. By using a
Lattice ispLSI 2032 device, the user can also achieve
these required results with greater predictability. The
ispLSI 2032 also provides the user with a more accurate
circuit because of its high system performance.

4-73

1994 Handbook

Notes

4-74 1994 Handbook

] ™ -
[BN
:=:| atuce Video Graphics
Introduction with a general purpose graphics interface. The generic
design of the controller allows customization by adding
This Graphics Controller design consists of two pLSI additional circuitry for a Graphics Controller System

1032 chips programmed identically to produce most of ~ based on the design specific requirements (see system
the basic video functions and timing signals associated ~ block diagram, figure 1).

Figure 1. Video Graphics Controller System Block Diagram

Horizontal Vertical
Video Controller Video Controller
CPU
Data Bus $D0-D7 SYNC*pP— | D0-D7 SYNC*
(D0-D7) BLANK*D—— BLANK* 31_
CPU LOAD*D—— LOAD*p—
Address Bu! | AO-A9 & AC-A9
(AO-A19)
. CPU START|— START|—
ontrol Bus N SSET o - SSET
. »| RST' »{ R
(RST", RIW, »| WR" SRST|— - w?qt SRST
ETC) »|csor VEND csor VEND
»|CS1 »{ CS1
MAO—-MAQ s cs MAO—-MAQ famn
Pixel —»{ VCLR — VCLR
Clock VCLK » VCLK
pLSI 1032 pLSI 1032
Video
Memory }
¥ Addresses y I YVYV)
L —{ Video
I—1 Summing
] [Circuitry
A Video
Video RAM | Shift I Video
Array Planes |_| Registers Out
-
] Y v
|
> 1
7| RAS-CAS >
Generator and ~ Data
Bus Arbitration —| Buffers
Logic
I CPU
- Data Bus
(DO-DN)

4-75 1994 Handbook

Video Graphics Controller

This design is capable of a maximum 1024 X 1024 non-
interlaced display with programmable blanking and sync
signal positioning. One of the pLSI 1032s is used for
Horizontal Video Control (HVC) and the other for Vertical
Video Control (VVC). Because the two pLSI 1032s are
programmed identically, the LOAD* signal (Schematic 2)
is redundant on the VVC chip and only used on the HVC
chip.

Referencing figure 2, the Video Graphics Controller Chip
block diagram, the signals which the CPU sends to the
Video Graphics Controller (VGC), are: WRITE (WR*),
CHIP SELECT 0*/1 (CSO*/1), DATA BUS (D0-D7), AD-
DRESS BUS (A0-A9), and MULTIPLEXER SELECT
(MUX). The Address Decoder receives an address from

the CPU. Once decoded, this address enables one of the
Video Setup Registers (VSRs) which then receives video
information from the CPU data bus. This setup data is
then fed to the appropriate counter or comparator, which
actually controls that specific display parameter.

The CPU address bus is also interfaced to the Memory
Multiplexer (MMUX) “A” inputs. The “B” inputs of the
MMUX are connected to the outputs of the Video Counter
(VCNTR). The MMUX allows either the CPU or the
VCNTR to access video memory depending on the
polarity of the MUX signal from the CPU. Additionally, the
VCNTR produces the LOAD* signal to the video shift
register, which is external to the pLSI 1032.

Figure 2. Video Graphics Controller Chip Block Diagram

Video Setup Registers Video
P 769 Start
Address ; No. of Counter
Decoder Address| Function Bits (6 Bits)
WR*>-d REG4|—| 4 | VideoStart | 6 [eemmmmmmmmip! D0-D5
. »|CLK CAO [>- sTART
cso*>d REG3}—| 3 | Syncwidth | 4 LD
csi->—| REG2[—| 2 [SyncPosition| 6 |
REG1[—» 1 |VideoEndHi| 2 |uu
- Sync
REGO[—»| 0 |VideoEndLo| 8 Width
AO-A3 Counter
7Y (4 Bits)
$-| D0-D3
Do-07=> > EBK CAO P> sseT
Memory I
Multiplexer
(10 Bits) Sync
AO-A9={> | A0-A9 Position
Z0—Z9 e Counter
»| Bo-B9 (6 Bits)
MUX SO | D0-D5
> »| CLK CAO > smsT
—»{LD
MAO-
MA9
VEND
Video End
Comparator
Video ‘ (10 Bits)
(C Ougteli Ad\éllgesges —P| A0-A A& R
10 Bits -
(VAO-VA9) — Sync and
velR-P>— ao-a9 »| B0-B9 BI?’-'rl‘k > syner
Flip Flops
VCLK—> CAO P _ CL':(S P BLANK*
> Loap*
4-76 1994 Handbook

Video Graphics Controller

The VCNTR also feeds the Video End Comparator
(VEC). The VEC compares the addresses from the
VCNTR and the Video End Hi and Lo registers which are
located in the VSRs. When true, the VEC outputs the
Video End (VEND) signal and simultaneously enables
the load for the Sync Position Counter (SPC), while
clearing the Blanking flip-flop.

The SPC data is loaded from the Sync Position register
which is located in the VSRs. The SPC counts down to
zero at which point it outputs the Sync Reset (SRST)
signal. SRST also enables the load for the Sync Width
Counter (SWC), and clears the Sync flip-flop.

The SWC's data comes from the Sync Width register in
the VSRs. The SWC counts down to zero. At zero, it
enables the load for the Video Start Counter (VSC), and
also sets the Sync flip-flop.

The VSC receives its data from the Video Start VSR. The
VSC counts down to zero, and while at zero it produces
the START signal simultaneously setting the Blanking
flip-flop.

1) Address Decoder (Schematic 2)

The address decoder is enabled by the WR* and CS0*/
1 signals and decodes address bits A0-A2 into one of
five active high select output signals, R0-R4. These are
the select lines to the video attribute setup registers
(schematic 3). The CS0* active low chip-select and CS1
active high chip-select are for differentiating between the
horizontal controller and the vertical controller when
interfacing to the CPU bus as two of these chips must be
used in the system. The WR* is used to synchronize the
access to the registers with CPU write cycle. All ac-
cesses to this block are write only.

2) Video Setup Registers (Schematic 3)

Thecircuitis designed to interface to an 8-bit data bus but
could be easily redesigned to interface to a 16-bit bus.
The Video attribute Setup Register's addresses and
widths are as shown in table 1.

Address Name-Function Number of bits

0 Video End Low (Ve 7:0) 8
Video End High (Ve 9:8) 2
Sync Position (Sp 5:0) 6
Sync Width (Sw 3:0) 4
Video Start (Vs 5:0) 6

A ON =

These registers provide the data to be compared or
loaded into one of the dead-end down counters used for
positioning the display viewing area or sync pulse posi-
tions and widths (see figure 3).

Figure 3. Typical Video Display Set up

()
Blank
Display
Area
I I
Video Video
Start End
Blank

\ /

Video End Low and High Registers

These registers combine to form the 10-bit address
location of the video display endpoints. In the case of the
horizontal display location, this is the right hand side of
the screen and the vertical display location is the bottom,
or last visible scan line. In other words this is the point
where video ends and blanking begins.

Sync Position Register

This 6-bit register holds the value of the distance from
where video ends and the horizontal or vertical sync
pulses start thus allowing for sync pulse positioning
relative to video end. This is counted in pixels in the
horizontal plane and lines in the vertical plane. The value
of this register cannot be less than 1.

Sync Width Register

This 4-bit register holds the value of the sync pulse width.
This is counted in pixels in the horizontal plane and lines
in the vertical plane. The value of this register cannot be
less than 1.

Video Start Register

This 6-bit register holds the value of the distance from
where the sync pulse or blanking ends and video starts.
This is counted in pixels in the horizontal plane and lines
in the vertical plane. The value of this register cannot be
less than 1.

4-77

1994 Handbook

Video Graphics Controller

3) Video Counter (Schematic 2)

This is a 10-bit counter which provides the video addresses
VAO-VAQ. In the case of the horizontal controller, this
register provides the LOAD* signal for the video RAM shift
registers. This register's synchronous outputs, clock, and
asynchronous reset lines are accessible from the I/0 pins of
the chip for interfacing with the system’s horizontal and
vertical functions. The reset to the counter is VCLR and is
typically connected externally to the SSET signal (sche-
matic 5). SSET resets the counter at the end of the sync
pulse. This can be customized for the specific application.
VCLK is the clock input to the counter. VCLK is connected
to the pixel clock of the horizontal controller (HVC) and is
driven by the VEND signal from the horizontal controller
(HVC) in the case of the vertical controller (VVC). The
LOAD"signal outputis a 1 cycle-wide pulse every 16 pixels.
This can be reduced to 8 pixels by modifying the counter's
boolean statements.

4) Video End Comparator (Schematic 5)

Thisis a 10-bit comparator which compares the 10-bit value
in the Video End Low and High registers (RO-R1 schematic
3), to the 10-bit value of the Video Counter. When the
compare is true a 1 cycle-wide pulse is generated called
VEND. This is the end of visible video and starts the sync
position counter running while also clearing the blanking
flip-flop.

5) Sync Position Counter (Schematic 4)

This is a 6-bit loadable, dead-end down counter which
counts until it reaches 0 and then holds until it is loaded with
a value greater than or equal to 1. The load is activated by
the VEND signal generated by the Video End Comparator.
The count is a maximum of 64 pixels (horiz) or lines (vert)
and is loaded each time with the value of the Sync Position
Register (R2). When the count reaches zero the counter
produces the signal SRST which starts the Sync Width
Counter and clears the Sync flip-flop (schematic 5).

6) Sync Width Counter (Schematic 5)

This is a 4-bit loadable, dead-end down counter which
counts until it reaches 0 and then holds until itis loaded with
a value greater than or equal to 1. The load is activated by
the SRST signal which is generated by the sync position
counter. The count is a maximum of 16 pixels (horiz) orlines
(vert) and is loaded each time with the value of the Sync
Width Register (R3 schematic 3). When the count reaches
zero the counter produces the signal SSET which starts the
Video Start Counter running and sets the sync flip-flop.

7) Video Start Counter (Schematic 4)

This is a 6-bit loadable, dead-end down counter which
counts until it reaches 0 and then holds until it is loaded with
a value greater than or equal to 1. The load is activated by

the SSET signal (schematic 5), generated by the Sync
Width Counter. The count is a maximum of 64 pixels (horiz)
or lines (vert) and is loaded each time with the value of the
Video Start Register (R4 schematic 3). When the count
reaches zero the counter produces the signal START which
sets the Blanking flip-flop (schematic 5).

8) Sync flip-flop (Schematic 5)

This flip-flop is cleared by the signal SRST (schematic 4),
and set by the signal SSET to produce the sync pulse for
either horizontal or vertical. It is a J-K flip-flop which is
clocked by VCLK that delays the actual edges by one clock.
This factor must be taken into account when calculating the
sync position and sync width values as the value is one less
thanthe true position or width. These values mustbe noless
than 1.

9) Blanking flip-flop (Schematic 5)

This flip-flop is cleared by the signal VEND and set by the
signal START (schematic 4), to produce the blanking signal
for either horizontal or vertical controllers. Itis a J-K flip-flop
which is clocked by VCLK This flip-flop delays the actual
edges by 1 clock. This must be taken into account when
calculating the sync position and sync width values as the
value is one less than the true position or width. Thus the
Sync position and width values must be greater than or
equal to one.

10) Memory Address Multiplexer (Schematic 6)

This is a dual input 10-bit multiplexer which outputs either
the video addresses (VAO-VA9), or the CPU addresses
(AO-A9), to the output pins (MAO-MA9). This allows for
either the video counters or the CPU to directly address the
video memory. The multiplexer is controlled by the signal
MUX and when MUXiis low selects the CPU address. When
MUX is high it selects the video counters (horizontal and
vertical).

This system design is generic in terms of the size and
number of the video memory planes. It is based on the
additional support of RAS-CAS logic, if multiplexed dy-
namic RAM is used, along with bus arbitration logic to allow
for transparent accesses by the CPU. It also assumes that
the shift registers (if used), are correctly chosen and inter-
faced to the video RAM. The final support circuitry is video
summing which, depending on the type of display to be
driven (analog or digital), and the polarity of the blanking and
sync signals has a wide variation of layouts. All of these
functions, when finally chosen, can be easily incorporated
into the additional 25% of each of the HVC and VVC chips
remaining, or placedinto additional pLS| devices as needed.
This design allows for quick and flexible programmable
video graphic interface to numerous applications.

4-78

1994 Handbook

Video Graphics Controller

Pin functional descriptions

NAME TYPE FUNCTION

WR* Input Allow strobe used to write data into video attribute set up register.
Selected by address lines A0-A2. Also qualified with CS0*/1.

CSo0*1 Input Active low/high chip select used to enable writes to attribute set up
registers.

AO-A9 Input AO0-A2 are used to select one of the video attribute set up registers. AO-
A9 are used to address the video memory.

DO-D7 Input Data input to the video attribute set up registers.

MUX Input Mux select line for video memory access. High select CPU addresses
(A0-A9), low select video counter addresses (VAO-VA9).

MAO-MA9 Output Video memory address lines.

VEND Output - Active high signal used to indicate the end of a horizontal or vertical scan.

SRST Output Active high signal used to indicate the end of horizontal or vertical Sync.

SSET Output éctive high signal used to indicate the beginning of a horizontal or vertical

ync.

START Output Active high signal used to indicate the start of a horizontal or vertical
visible scan.

LOAD* Output Active low signal used to load the external video shift registers with data
from the video memory.

BLANK* Output Active low signal used to indicate the blanking of horizontal or vertical
display.

SYNC* Output Active low signal used to indicate the horizontal or vertical Sync pulse.

VCLK Input System clock running at same frequency as the monitor.

VCLR Input Active high signal used to asynchronously reset the video counters. This

allows for either horizontal or vertical operation of the device.

Video attribute formulas
The following are the formulas for calculating the display characteristics:
tc = pixel clock time period (ie: 10Mhz = 100ns)
Ve = video end (0-1024)
Sp = sync position (1-63)
Sw = sync width (1-15)
Vs = video start (1-63)

Horizontal (HVC)
horizontal scan line period = [Ve+(Sp+1)+(Sw+1)+(Vs+1)] *tc
horizontal scan rate = 1/horizontal scan line period
horizontal display period = [Ve-(Vs+1)] * tc
LOAD* frequency =tc * 1

Vertical (VVC)
vertical scan line period = [Ve+(Sp+1)+(Sw+1)+(Vs+1)] * horizontal scan line period
vertical scan rate = 1/vertical scan line period
vertical display period = [Ve-(Vs+1)] *horizontal scan line period

000 pOOO0Oo

4-79 1994 Handbook

Video Graphics Controller

Figure 4. Video Graphics Controller Timing

MAO-MA9 g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0O

ADDRESS X X

DATA N D¢
csor — 1 - 1

cs1 [

WR*

MAO-MAQ Y e
MUX — L

ADDRESS i1 i1
SET-UP TIME — =

1. Note:
See Sidebar for Description

The major timing relationships for this device are shown in figure 4. All signals are shown in relation to VCLK.

As can be seen from the diagram, LOAD* is generated every 16 VCLKs. LOAD* loads the video shift registers
with data from the video memory. BLANK is activated by the falling edge of VEND and is inactivated at the
falling edge of START. SYNC goes low at the falling edge of SRST and rises with the falling edge of SSET.

The CPU related signals are shown in waveforms 9 to 13. CSO* and CS1 are really complimentary versions
of the same signal. Because two pLSI 1032s are used in the design, CS0*, for example, would be used as
the chip select for the horizontal controller chip CS1 would then be used as the chip select for the vertical
controller chip. In any case, there is a set-up and hold time associated with a data write into the chip. This
is indicated by the short solid lines bounded by the dashed lines in between the DATA and CS0* waveforms.
The actual set-up and hold times involved are dependent upon the frequency of VCLK, but the relationship
to VCLK is clearly shown.

The last two waveforms on the diagram show the delay from MUX rising or falling and the validity of the
addresses on MAQO to MA9. This delay employs the same caveat as above - the actual time depends upon
the frequency of VCLK.

4-80 1994 Handbook

Video Graphics Controller

The pLSI Advantage

The pLSI 1032 is an excellent choice for this type of
design because of its density, flexibility, and speed. The
device utilization percentages for this particular design
are: 75% GLB, 66% GLB output, and 61% 1/O. This
means that there is enough of the device left to interface
to a 16-bit bus or to add glue logic which might be
associated with a specific design. The I/O assignmentin
the pLSI 1032 is extremely flexible. 1/Os can be fixed to

a specific pin, or left for the router to decide the best
connection. With no fixed pins, this design took 1.5
minutes to route, and re-routing with all pins fixed was
completed in a matter of seconds.

The rest of this design example consists of an appendix
which contains the schematics and a hardcopy of the
LDF file for this design.

4-81

1994 Handbook

Video Graphics Controller

Appendix

// graphfix.ldf generated using Lattice pDS Software V2.50

LDF 1.00.00 DESIGNLDF;

DESIGN GRAPHICS 1.00;

PROJECTNAME

DESCRIPTION

This is one of two identical chips used for either horizontal or vertical control
in

the graphics controller design. Two of these chips produce most of the basic
video functions and timing signals associated with a general purpose graphics
interface. The design is capable of up to a 1024 X 1024 non-interlaced display
with programmable blanking and sync signal positioning. One of the chips is
used for horizontal video control (HVC) and the other, vertical video control
(VWe).;

PART pLSI1032-90LJ;

DECLARE

END; //DECLARE

SYM GLB D4 1 MISC. SIGNALS 2;
// SSET signal generation, SYNC & BLANK;
// intermediate signal generation;
SIGTYPE SYNC REG OUT;
SIGTYPE BLANK REG OUT;
SIGTYPE SSET OUT;
EQUATIONS
SYNC.CLK=VCLK
SSET=!SSET1&SSETO;

SYNC.D = !(!(!SYNC.Q & SSET) & (!SYNC.Q # SRST));
BLANK.D = !(!(!BLANK.Q & START) & (!BLANK.Q # VEND));
END;

END;

SYM GLB C7 1 ENABLE - !WR&!CS0&CS1;
// Write enable qualification for address decoder;
SIGTYPE ENABLE OUT;
EQUATIONS
ENABLE = !WR & !CSO & CS1;
END;
END;

SYM GLB Al 1 VIDEO COUNTERS;
// Video memory address counter bits VA4-VA7;
SIGTYPE [VA4..VA7] REG OUT;
EQUATIONS
VA4.CLK = VCLK;
VA4.RE = VCLR;
VA4=(VAO & VAls VA2 & VA3) $$ VA4;
VA5=(VAO0 & VAl & VA2 & VA3 & VA4) $$ VAS;
VA6=(VAO & VAl & VA2 & VA3 & VA4 & VA5) $$ VA6;
VA7=(VAO & VAl & VA2 & VA3 & VA4 & VA5 & VA6) $$ VA7;
END;
END;

4-82 1994 Handbook

Video Graphics Controller

SYM GLB A0 1 VIDEO COUNTERS;
// Video memory address counter bits VA0-VA3;
SIGTYPE [VAO..VA3] REG OUT;
EQUATIONS
VAO.CLK =
VAO.RE =
VAO =
VAl
VA2
VA3
END;

VCLK;
VCLR;

VAO $$ VCC;

VAO $$ VAIl;

(VAO & VAl) $$ VA2;

(VA0 & VAls VA2) $$ VA3;

END;

SYM GLB A2 1 VIDEO COUNTERS;

// Video memory address counter bits VAS8,VA9;
// and LOAD signal output generation;
SIGTYPE VA8 REG OUT;

SIGTYPE VA9 REG OUT;

SIGTYPE LOAD OUT;

EQUATIONS
VA8.CLK = VCLK;
VA8.RE = VCLR;

VA8=(VAO & VAl & VA2 & VA3 & VA4 & VA5 & VA6 & VA7) $$ VAS;

VA9=(VAO & VAl & VA2 & VA3 & VA4 & VA5 & VA6 & VA7 & VA8) S VA9;

LOAD=VAO0 & VAl
END;

& VA2 & VA3;
END;
SYM GLB A3 1 ADDRESS DECODE;

// Register address decoder;
SIGTYPE [RO..R3] OUT;

EQUATIONS
RO = ENABLE & !A0 & !Al & !A2;
R1 = ENABLE & A0 & !Al & !A2;
R2 = ENABLE & !AO0 & Al & !A2;
R3 = ENABLE & A0 & Al & !A2;
END; -

END;

SYM GLB A4 1 END HI (VIDEO);

// R4 of register address decoder and video;
// data registers (video end hi);

SIGTYPE R4 OUT;

SIGTYPE [R1Q0..R1Q1] OUT;

EQUATIONS
R4 = IWR & !CSO & CS1 & !AO0 & !Al & A2;
[R1Q0..R1Q1] = [D4..D5] & R1;
END;
END;

4-83

1994 Handbook

Video Graphics Controller

SYM GLB A5 1 END LO 1 (VIDEO);
// Video data registers (video end lo);
SIGTYPE [R0QO..R0Q3] OUT;
EQUATIONS
[ROQO..R0Q3] = [DO..D3] & RO;
END;
END;

SYM GLB A6 1 END LO 2 (VIDEO);
// Video data registers (video end lo);
SIGTYPE [R0Q4..R0Q7] OUT;
EQUATIONS
(ROQ4..R0Q7] = [D4..D7] & RO;
END;
END;

SYM GLB A7 1 POSITION, SYNC 1;
// video data registers (sync position);
SIGTYPE [R2Q0..R2Q3] OUT;
EQUATIONS
[R2Q0..R2Q3] = [D0..D3] & R2;
END;
END;

SYM GLB BO 1 START & POSITION 2;

// Video data registers (sync position);
// Video data registers (video start);
SIGTYPE [R2Q4..R2Q5] OUT;

SIGTYPE [R4Q4..R4Q5] OUT;

EQUATIONS
[R2Q4..R2Q5] = [D4..D5] & R2;
[R4Q4..R4Q5] = [D4..D5] & R4;
END;

END;

SYM GLB Bl 1 WIDTH, SYNC;
// Video data registers (sync width);
SIGTYPE [R3Q0..R3Q3] OUT;
EQUATIONS
[R3Q0..R3Q3] = [D0..D3] & R3;
END;
END;
SYM GLB B2 1 START, VIDEO 1;
// Video data registers (video start);
SIGTYPE [R4Q0..R4Q3] OUT;
EQUATIONS
[R4Q0..R4Q3] = [D0..D3] & R4;
END;
END;

4-84

1994 Handbook

Video Graphics Controller

SYM GLB B3 1 SYNC POSITION CNTR 1;
// Low four bits of sync position counter;
SIGTYPE [Q0..0Q3] REG OUT;
EQUATIONS
[Q0..03].CLK = VCLK;
Q0 = (QO0&!VEND)$$((R2QO&VEND)#(! VEND&!SRSTO));

Q1 = (Ql&!VEND)$$((R2Q1&VEND)#(!Q0&!VEND&!SRSTO));

02 = (Q2&!VEND)$$((R2Q2&VEND)#(!Q0&!Q1l&!VEND&!SRST0));

03 = (Q3&!VEND)$$((R2Q3&VEND)#(!Q0&!01&!02& ! VEND& ! SRSTO0)) ;
END;

END;

SYM GLB B4 1 SYNC POSITION CNTR 2;
// Upper two bits of sync position counter;
// and sync reset signal generation;
SIGTYPE [Q4..Q5] REG OUT;
SIGTYPE SRSTO OUT;
SIGTYPE SRST1 REG OUT;
EQUATIONS
Q4.CLK = VCLK;
SRST1.CLK=VCLK;
Q4 = (Q4&!VEND)$$((R2Q4&VEND)#(!1Q0&!Q1&!0Q2&!Q3& ! VEND&!SRSTO));
Q5 = (Q5&!VEND)S((R2Q5&VEND)#(!Q0&!Q1&!0Q2&!Q3&0Q4&! VEND&!SRSTO));
SRSTO0=!Q0&!Q1&!Q2&!Q3&!0Q4&!Q5;
SRST1.D=SRSTO;
END;
END;

SYM GLB B5 1 VIDEO START CNTR 1;
// Low four bits of video start counter;
SIGTYPE [QQ0..QQ03] REG OUT;
EQUATIONS
[Q00..003].CLK = VCLK;
000 = (QQO0&!SSET)S$$((R4QO&SSET)#(!SSET&!STARTO));

001 = (QQ1&!SSET)$$((R4QL&SSET)#(!QQ0&!SSET&!STARTO));

002 = (QQ2&!SSET)$$((R4Q2&SSET)#(!QQ0&!QQ1&! SSET& ! STARTO)) ;

003 = (QQ3&!SSET)$$ ((R4Q3&SSET)#(!0Q00&!001&!0Q0Q2&!SSET& ! STARTO)) ;
END;

END;

SYM GLB B6 1 VIDEO START CNTR 2;
// Upper four bits of video start counter and;
// START signal generation;
SIGTYPE [QQ4..0Q005] REG OUT;
SIGTYPE STARTO OUT;
SIGTYPE START1 REG OUT;
EQUATIONS

QQ4.CLK = VCLK;

STARTO0=!QQ0&!Q01&!0Q02&!0Q003&!004&!QQ5;

Q04 = (QQ4&!SSET)S((R4Q4&SSET)#(!QQ0&!0Q01&!002&!0Q03&!SSET&!STARTO));

4-85 1994 Handbook

Video Graphics Controller

QQ5 =
(QQ5&!SSET)$$((R4Q5&SSET)#(1000&!0Q01&!002&!Q03&QQ4&! SSET& ! STARTO)) ;
START1.D=STARTO
END;
END;

SYM GLB B7 1 SYNC WIDTH COUNTER;
// Sync width counter;
SIGTYPE [QQQ0..Q003] REG OUT;
EQUATIONS
[Q0Q0..0003].CLK = VCLK;
0000 = (QQQO&!SRST)S((R3Q0&SRST)#(!SRST&!SSET0));

0001 = (QQQ1&!SRST)$$((R3QL&SRST)#(!QQQ0&!SRST&!SSET0));

Q002 = (QQQ2&!SRST)$$((R3Q2&SRST)#(!Q00Q0&!00Q1&!SRST&!SSET0));

Q003 = (QQQ3&!SRST)SS((R3Q3&SRST)#(!Q0Q0&!Q001&!Q0Q2& ! SRST&!SSET0));
END;

END;

SYM GLB Cl1 1 MISC. LOGIC 1;
// Sync width counter SSet signal set-up;
// Sync reset signal generation, video START;
// signal generation;
SIGTYPE SSETO0 OUT;
SIGTYPE SSET1 REG OUT;
SIGTYPE SRST OUT;
SIGTYPE START OUT;
EQUATIONS
SSET1.CLK=VCLK;
SSET0=!0000&!000Q1&!0Q002&!0Q00Q3;
SSET1.D=SSETO0;
SRST=!SRST1&SRSTO;
START=!START1&STARTO;
END;
END;

SYM GLB C2 1 COMPARE, VIDEO END1;
// First eight bits of video end (VEND) comparator;
SIGTYPE VEND1 OUT;

EQUATIONS
VEND1 = ! ((ROQOSVAO) # (ROQL$VAl) # (ROQ2$VA2) # (ROQ3$VA3) # (ROQ4SVA4L)
(ROQS5S$VAS5) # (ROQ6$VA6) # (ROQ7$VA7));
END;

END;

SYM GLB C3 1 COMPARE, VIDEO END 2;
// Last two bits of video end (VEND) comparator;
// and VEND signal generation;
SIGTYPE VEND OUT;
EQUATIONS
VEND = ! ((R1Q0O$VA8) # (R1Q1$VA9)) & VENDIL;
END;
END;

4-86 1994 Handbook

Video Graphics Controller

SYM GLB C4 1 MEM ADDR MUX 1;

// Video memory address multiplexer bits;

// MAO-MA3;
SIGTYPE [MAO..MA3] OUT;
EQUATIONS

[MAO..MA3] = ([AO..A3] & !MUX) # ([VAO..VA3] & MUX);

END;
END;

SYM GLB C5 1 MEM ADDR MUX 2;

// Video memory address multiplexer bits;

// MA4-MA7;
SIGTYPE [MA4..MA7] OUT;
EQUATIONS

[MA4..MA7] = ([A4..A7] & !MUX) # ([VA4..VA7] & MUX);

END;
END;

SYM GLB C6 1 MEM ADDR MUX 3;

// Video memory address multiplexer bits;

// MA8 & MA9;
SIGTYPE [MA8,MA9] OUT;
EQUATIONS

[MAS,MA9] = ([A8,A9] & !MUX) # ([VA8,VA9] & MUX);

END;
END;

SYM IOC 1021 1 ;
// Read/Write control signal;

XPIN IO XWR LOCK 48 ;
IB11l (WR,XWR);
END;

SYM IOC 1020 1 ;

// Active high chip select;
XPIN IO XCS1 LOCK 3 ;
IB11 (CS1,XCS1);

END;

SYM IOC 1019 1 ;
// Active low chip select;

XPIN IO XCsSO LOCK 4 ;
IB11 (CS0,XCS0);
END;

SYM IOC 100 1
// Address bus A0

3
i

XPIN IO XAO LOCK 14
IB11 (AO,XA0);
END;

SYM I0OC 101 1 ;

~

4-87 1994 Handbook

Video Graphics Controller

// Address bus Al;
XPIN IO XAl

IB11 (Al,XAl);
END;

SYM IOC 102 1 ;
// Address bus A2;
XPIN IO XA2

IB11 (A2,XA2);
END;

SYM IOC IO3 1 ;
// Address bus A3;
XPIN IO XA3

IB11 (A3,XA3);
END;

SYM IOC I04 1 ;
// Address bus A4;
XPIN IO XA4

IB11 (A4,XA4);
END;

SYM IOC IO5 1 ;
// Address bus A5;
XPIN IO XAS5

IB11 (A5,XA5);
END;

SYM IOC IO6 1 ;
// Address bus A6;
XPIN IO XA6

IB1l (A6,XA6);
END;

SYM I0oC 107 1 ;
// Address bus A7;
XPIN IO XA7

IB11 (A7,XA7);
END;

SYM IOC 108 1 ;
// Address bus AS8;
XPIN IO XAS8

IB11 (A8,XA8);
END;

SYM IOC I0O9 1 ;
// Address bus A9;
XPIN IO XA9

IB11 (A9,XA9);
END;

LOCK

LOCK

LOCK

LOCK 16

LOCK

LOCK

LOCK

LOCK

LOCK

72

15

71

70

17

69

18

68

’

’

’

~e

~e

~

~e

~

SYM IOC 1I010 1
// Data bus DO;

XPIN
IB11
END;

10 XDO
(DO ,XDO0) ;

SYM IOC 1IOll1 1
// Data bus D1;

XPIN
IB11
END;

I0 XD1
(D1,XD1);

SYM IOC 1I0l12 1
// Data bus D2;

XPIN
IB11
END;

10 XD2
(D2,XD2);

SYM IOC 1IO013 1
// Data bus D3;

XPIN
IB11
END;

10 XD3
(D3,XD3);

SYM IOC 1I014 1
// Data bus D4;

XPIN
IB11
END;

10 XD4
(D4,XD4);

SYM IOC 1I015 1
// Data bus D5;

XPIN
IB11
END;

I0 XD5
(D5,XD5) ;

SYM IOC 1I0l6e 1
// Data bus D6;

XPIN
IB11
END;

I0 XD6
(D6,XD6) ;

SYM IOC 1IO0l17 1
// Data bus D7;

XPIN
IB11
END;

10 XD7
(D7,XD7);

SYM IOC 1018 1
// Video memory address multiplexer;

XPIN
IB11
END;

I0 XMUX
(MUX, XMUX) ;

~

.
’

LOCK

LOCK

LOCK

LOCK

LOCK

LOCK

LOCK

LOCK

LOCK 55

26

~e

60

~

27

~

59

~e

28

~

58

~

29

~e

57

~e

.
’

4-88

1994 Handbook

Video Graphics Controller

SYM IOC 1025 1 ;

// Video memory address MAO;
XPIN IO XMAO LOCK 49
OB1l1l (XMAO,MAO);

END;

SYM IOC 1I026 1 ;

// Video memory address MAl;
XPIN IO XMAl LOCK 79
OB11 (XMA1l,MAl);

END;

SYM IOC 1I027 1 ;
// Video memory address MA2;

XPIN IO XMA2 LOCK 50
OB11l (XMA2,MA2);

END;

SYM IOC 1028 1 ;

// Video memory address MA3;
XPIN IO XMA3 LOCK 78
OB11 (XMA3,MA3);

END;

SYM IOC 1I029 1 ;

// Video memory address MA4;
XPIN IO XMA4 LOCK 51
OBl11l (XMA4,MA4);

END;

SYM IOC 1IO30 1 ;

// Video memory address MAS5;
XPIN IO XMAS LOCK 77
OB11 (XMA5,MAS5);

END;

SYM I0oC IO031 1 ;

// Video memory address MA6;
XPIN IO XMA6 LOCK 52
OB11 (XMA6,MA6);

END;

SYM IoC I032 1 ;
// Video memory address MA7;

XPIN IO XMA7 LOCK 76
OB11l (XMA7,MA7);

END;

SYM IOC I033 1 ;

// Video memory address MAS;
XPIN IO XMAS8 LOCK 53
OB1l (XMA8,MAS);

END;

~

~e

~e

~

~

~

~

~

~

SYM IOC 1I034 1 ;

// Video memory address MA9;
XPIN IO XMA9 LOCK 75
0B11 (XMA9,MA9);

END;

SYM IOC 1IO035 1 ;

// Video end output signal;
XPIN IO XVEND LOCK 45 ;
OB11 (XVEND,VEND);

END;

SYM IOC I036 1 ;

// Video sync reset signal;
XPIN IO XSRST LOCK 46
OB11 (XSRST,SRST);

END;

~e

SYM IOC 1037 1 ;

// Video sync width set output signal;

XPIN IO XSSET
OB1ll (XSSET,SSET);

LOCK 30 ;

END;

SYM IOC 1038 1 ;

// vVideo start output signal;
XPIN IO XSTART LOCK 47 ;
OB11 (XSTART,START);

END;

SYM IOC IO039 1 ;

// Video load output signal;
XPIN IO XLOAD LOCK 32 ;
OB11 (!XLOAD, !LOAD);

END;

SYM IOC 1I040 1 ;

.
’

// Video Blanking output signal;

XPIN IO XBLANK LOCK 36 ;
OB11 (XBLANK,BLANK);
END;

SYM IOC 1041 1 ;

// Video sync output signal;
XPIN IO XSYNC LOCK 31 ;
OB11 (XSYNC,SYNC);

END;

SYM IOC YO 1 ;

// video clock input signal;
XPIN CLK XVCLK LOCK 20
IB11 (VCLK,XVCLK);

END;

.
’

4-89

1994 Handbook

Video Graphics Controller

SYM 1I0C I0 1 ;

// Video counter clear input;
XPIN I XVCLR LOCK 25 ;
IB11 (VCLR,XVCLR);

END;

END; //LDF DESIGNLDF

N
xe
VA(8:9]) VA[O19] AL R4
cmuaa VIDEO ADDRESSES A
ne

L "
e
w
. g D
AO AdN A 3N0~AO0
12T Ao
2 VAlta:7) a
cmuae X1
. []

AL RO

<@

] ADDRESS

DECODER
B val(0o:3) B

cavae ~LoaD ~XLOAD
A
VoD v
om1

xveLx
1o voLx
xvern - LATTICE
se vCLR
VIDEO COUNTER SEMICONDUCTOR
= (10 BITS)
XRST RST Tieler Pae=
. — e . Video Graphics Controller | 1 |,
= I
Page deseriprien: Rev.
Video Counter / Address Controller(A
[rizer
Video.1l pase A 2 oe Engineer

2.

4-90 1994 Handbook

Video Graphics Controller

A | . I . 1 o
Dlo:3)
D1 R1 5 R4QS
Q1 Y R3Q(0:3) = 2 °
N Q103) S i
oas ra oae Loa1
[I A b
Sp- <p o
L_ l SYNC WIDTH]
L (4 BITS)
Do R1QO D4 R4Q4
DS R2Q5
a oar a2
r1 Loas L
. T
VIDEO END HI L T
RST (2 BITS) B
]

D[O0:3]

bovay ROQ[4:7) Da R2Q4 .
Qtor)~ e— » R4Q([0:3)
[

Loae

T
RsT VIDEO START

(6 BITS)
D(0:3)
__l tara1 ROQ(0:3] D(o:3) - R2Q(0: 3]
ators 0. | — LATTICE
e SEMICONDUCTOR
RO o3e
o B2 N pyeTen Toes
2
- RST l VIDEOG END LO RsT I SYNC POSITION Video Graphics Controller L_{*
(8 BITS) -— Paee wesaripiien: nev
(6 BITS) Video Setup Registers A
o S pre
VIDEO.2 T" "Sce Engineer

I . T T o

: T . I = I s
N v b
N - o oo =N, .
Rzalars) POTERRPRTR I . ReQ(4:S) 11 etenip—
L] : e soanr |
e L. o -
"
. L I .
o . . N
VEND -——J SSET ._—_—,
< rzaro:3) 31 ateinif— R4Q(0:3) (31 aters)) -
veo A XSRST voo =A‘F XSTART
e ik
. "
. f t .
. net
svne posizron couwrEn (& BrTs) vioEo sTaRT coustER (6 mITS:
. Video Graphics Controller .
Video Blanking and Sync Generation
— i
1bEO. 3 Joe Engineer

4-91 1994 Handbook

Video Graphics Controller

N I N 1 < I o
. .GND N
I ~XSYNC
SRST p @SSET A9 xee (3 -
-— SRST ke
(0031 arorssfm 2R3 on
r3q (8737 Vioas
| —- ek . L -swng | |
s
VCLK L cox rsT I
RST -
2 START XBLANK L
SYNC WIDTH COUNTER (4 BITS) ._-'VEND I~
roxaa L —BLANG
- . I
R1Q(O0:1) —_J
——— 0 31
vA[8:9]) 22 XVENI BLANK AND SYNC FLIP-FLOPS
n » _qME—%
om
) cnra R
VEND
L VEND g
Roaio:71 |
H TN
VA[0:7) = LATTICE
kioin
SEMICONDUCTOR
hintd VIDEO END COMPARATOR (10 BITS)
preven voer
. Video Graphics Controller 4
Paee aseeripiion:
Video Blank and Syne Oeneration - 2z
VIDEG. 4 l Sevet o
[Joe Enginee
N I »] < | o
N 1 . I < I 2
A[9:8] MA[9:0]
n
1) MAS9 XMA9
VA(9:8) MA(9:8] om1
: Bresty MAS8 N XMAS :
nuxzs
om
MA7 XMAT
AL7:6) o
L) MA6 XMA6 -
"
om
VA(7:6) MA([7:6) MAS XMAS
P 00
woxaz oms
MA4 XMA4
2 ont a
A[S5:4) MA3 XMA3
N
o om
VA(5:4) MA(S:4) MA2 XMA2
L_ 200 om
- . -
MAO XMAO
A[3:2)
8 om
3 1 3
VA(3:2] MA[3:2)
VIDEO RAM ADDRESS MULTIPLEXER (10 BITS)
A[1:0) LATTICE
N
1 SEMICONDUCTOR
VA[1:0] MA[1:0]
v >
. xMUx s> Mux | uxas Video Graphics Controller .
1 Peve amoeripvion:
VIDEO RAM ADDRESS MULTIPLEXER A
Tiiey o o
VIDEO.S Joe Engin 3

s T

4-92

1994 Handbook

Video Graphics Controller

VID32

CLK CD

H

)
3
Hﬂs
!

D[0:1)
e
L—J
VID34
CLK CD
Q(0:3]
e— —
LD e e T
2
CAI —::'BJ‘L IQ‘.’V"‘ i
EN as | st~
PYN v T o T 2 - @0
s ot vy g r::t/ Loms
<p

:

D[(O:3 1#
o ne
m oy as N
22 @Al_l_nb A_Dulg_g oy
Ab l 3-AL AL AL 5 o
vy =g [on H— cae
- e
o a = ey
TS v .
—ta)— —

|
i

4-93 1994 Handbook

Notes

4-94 1994 Handbook

A Digital Clock
Design Example

Introduction

The intent of this application note is to show how easy it
is to design with an ispLSI 1032 device by implementing
a simple design using many of the features of the device
and design software. The digital clock was chosen be-
cause its operation is understood by most designers.
This example concentrates on the design process rather
than the design itself. The design also fits easily into the
ispLSI 1032 demonstration box which makes it easy to
debug and demonstrate. Figure 1 shows an example of
a digital clock design.

Figure 1. Digital Clock Design Example

2 JY5EF

Inimplementing this design, advanced features are used
to demonstrate the flexibility of the design environment.
With the pLSI and ispLSI Development System (pDS)
Software, it is simple to do a complete design using
Macro library elements which are similar to parts from a
typical 7400 TTL Data Book. The logic in a Macro can
also be modified to meet exact design requirements. At
the other extreme for complete control over the logic
within the device, the circuit may be implemented with
Boolean Equations. Once a custom circuit is created it
can be saved as a Macro in a personal Macro library for
future use.

Itis assumed that the reader has read the data sheet and
understands the architecture of the ispLSI device. Read-
ing the pDS Software manuals makes it easier to
understand what is being presented, but is not neces-

sary.
The tools used in implementing this design are:

Q The pDS Software Running Under Windows™ 3.1
on an IBM™ Compatible PC
QO The ispDOWNLOAD Cable

Entering & Compiling the Design

Before discussing details of the clock design, the follow-
ing is a quick review of the design flow. In the pDS
Software, designs are created using either Boolean
Equations or Macros taken from the Lattice Macro li-
brary.

Boolean logic is utilized because it is easy to use. The
syntax used is similar to that used in Data I/O’s ABEL™
software to design GAL® devices. With Boolean equa-
tions, designers have total control over the logic within
the pLSI or ispLSI devices. Also, complete access to the
advanced architectural features such as the product
term Clocks and Reset, the Output Enable control, the
hardware XOR is provided.

As powerful as Boolean Equations are, itis time consum-
ing to enter a large design using them. For that reason
the pDS Software comes complete with a Macro library
of standard logic functions which designers can draw
from. The Macro library consists of several hundred logic
elements ranging from simple gates (AND, OR, XOR) to
complex functions like counters, multiplexers and adders.
If a standard Lattice library Macro is close to design
requirements, it can be copied to a personal library and
modified. This new Macro is then saved and used in
other designs when needed.

For a non-standard logic function used repeatedly in a
design, a Macro can be created using a combination of
Boolean Equations and other Macros as described above.

Design Process

The design process in figure 2 includes the following
simple steps:

Enter the Design

Verify the Logic

Route the Cells

Generate the Fusemap

g A~ W N =

Program the Part

4-95

1994 Handbook

A Digital Clock Design Example

Enter the Design

Entering the design is done using the graphical interface.
The Lattice pDS Software displays a block diagram of the
part similar to the one shown in the data sheet. The
design equations or Macros are entered by clicking on
one of the Logic or I/0O Cells using the Mouse, and writing
the equations into the cell using a simple text editor. This
editor is similar to the Windows Notepad. The graphical
interface also allows advanced functions such as clear-
ing a cell, naming a cell, copying the contents of one cell
to another or saving the data in a cell to be recalled later.

Verify the Logic

Verifying the logic is done in two places. Each GLB and
1/0 Cell is verified individually. A Cell Verify is a local
verify of that single cell only. It checks for problems such
as syntax errors, exceeding the number of allowable cell
inputs, outputs or product terms, and logic errors. Once
the design is completely entered, the next step is to
perform a Design Verify. The Design Verify performs a
Cell Verify on cells which were not previously checked,
and then checks all the interconnections within the
device fordangling inputs and unconnected outputs. The
design must pass a Design Verify before the following
steps are performed.

Route the Cells

Routing the cells is the next step. The Router module
moves the GLBs and I/O Cells around in such a way that
all of the networks which you have specified can be
interconnected. If you have connected certain signals to
specific pins, this information is entered into the design
using a menu option in the Router module. Aside from
fixing the I/O pins, this is an entirely automatic process
and requires no intervention. Due to the optimized
design of the Global Routing Pool, route times can be
very fast (averaging a few minutes), depending on the
size of the design and type of PC.

Generate the Fusemap

The Fusemap generation module uses the routed design
to generate the JEDEC file. The JEDEC file provides the
data used to program the part. This file has a suffix of
.JED. Like the Router program, this is an automatic
process.

Programming the Device

The part can be programmed in one of two ways. When
using an external device programmer, the user can
invoke a comrunication program to transmit the JEDEC
file to the programmer. When using in-system program-
ming (ISP) in a design, the Lattice design system invokes
its own ISP control program (ISP Download). This pro-
gram uses a cable connected to the PC's Parallel Port to
program the part or multiple parts on the board itself.

Clock Design Description

The clock design includes the following modules:

Q Control Logic

Q Prescaler

Q Counters
- Seconds
- Minutes
- Hours

Figure 3 shows a block diagram of the clock modules.

Control Logic

The Control Logic reads the input switches and controls
the speed at which the seconds, minutes, and hours are
incremented. This allows a user to set the clock.

4-96

1994 Handbook

A Digital Clock Design Example

Figure 2. Design Process

Enter Data for the
Generic Logic Blocks I Route | ¢

No |Unfix Pins, Remove
Critical Nets, and
Try Again

Enter Data for
1/0 Cells

Transfer Fuse File

Enter Fixed to Programmer

Pin Location lee;i Pin
. No y
‘} Program Part in Program Part
- Target System in Programmer
Global Verify All
o Chip Logic B

A

Correct Data

and Re-verify End

Hours Minutes Seconds
To AM/PM From
ampPm +—] Counter [« Counter [« Counter DEE | Hours
Clock Reset Clock Reset Clock Reset
A f A A JA
Clock Pulse
PTCLK
- - 128 Hz Reset Control Reset
Divide Divide > .
] bye2s00 by16 | 16Hz Hr/Min Pulse Sfaconds
1Mhz = 8Hz Control Logic
Oscillator'[_ >
Prescaler 1Hz | Slow Fast
> Set Set Hold

R
A

4-97 1994 Handbook

-

A Digital Clock Design Example

Slow Set, Fast Set, and Hold Signals

The Control Logic, shown in figure 4, generates the
signals necessary to set and run the clock. The inputs to
the Control Logic are the three switches: Slow Set, Fast
Set and Hold. These inputs are clocked using the Input
Register in the I/O Cells. This eliminates switch bounce
which affects how the logic operates.

Timing Signals

The other signals coming into the control logic are the
timing signals 128 Hz, 8 Hzand 1 PPM. These come from
the prescaler and are used for the Fast Set function, Slow
Set function and normal operating function respectively.
The hours and minutes counters are normally clocked at

Figure 4. Timing Signal Schematic

a rate of 1 Pulse per Minute (1PPM). When you are
setting the clock, this frequency is increased to 8 Hz for
Slow Set and 128 Hz for Fast Set.

Figure 4 shows the schematic for this circuit and table 1
shows the Truth Table.

The Prescaler

The Prescaler divides the 1TMHz clock into the frequen-
cies needed by the clock. The Prescaler is designed
entirely using Macros from the Lattice library. The
prescaler circuit has two purposes. It divides the 1MHz
XTAL Oscillator signal down to 1 Hz for the seconds
counter clock and also provides the frequencies neces-
sary for the Slow Set and Fast Set functions.

\ . Reset
/ " Clock
DFast D Q 128 Hz — \ Fast Set
8 Hz —j \ Slow Set Clock
ISIow > D Q / Pulse
) \ Normal Operation
|Ho|d> D Q 1PPM ———/
; \ o Hold
-[' / " Seconds
16 Hz—
Table 1. Control Logic Truth Table
Slow Fast Hold Clock Pulse RST RST Operation
SEC HR_MIN
0 0 0 1 Pulse Per Minute | 0 0 Normal Operation
1 0 0 8 Hz 1 0 Slow Set
0 1 0 128 Hz 1 0 Fast Set
1 1 0 None 1 1 Reset to 12:00 AM
X X 1 None 1 0 Hold Time

4-98

1994 Handbook

A Digital Clock Design Example

The circuit is implemented using two standard Macros
from the Lattice library (see figure 5).

A 20-bit divider is necessary to divide the 1MHz clock
signal down to 1 Hz, but the largest counter in the library
is 8-bits. Therefore, three counter stages are needed to
complete the division.

The approach chosen was to use two 8-bit preloadable
counters and a 4-bit binary counter cascaded together.
The two 8-bit counters are configured as a single 16-bit
divider in this circuit. Because a binary counter was
chosen for the 4-bit function, the mathematics are as
follows:

1,000,000 Hz Divided by 16 = 62500 Hz.

Therefore, the output required of the 16-bit divider is
62500 Hz.

65535 Minus 62500 = 3035
Maximum Minus The = Preload
count of the 16 desired Value
bit counter Division

A 16-bit divider preloaded to 3035 (0BDB in Hexadeci-
mal) at each terminal count has an output frequency of 16
Hz.

The frequencies necessary for the clock set functions are
then chosen from the counter outputs. The 8 Hz signal
(CBU14, Output Q0) advances the minutes counter at
the rate of 1 minute every 7.5 Seconds. This is accept-
able for the Slow Set function. The Fast Set function uses
a 128Hz signal (C16Up, Output Q12) to advance the

Figure 5. Prescaler Sample with Standard Macros

clock at a rate of 1 Hour every 2 seconds. The 16 Hz
signalis usedin the I/O cellinput registers as a debounce
clock for the switches.

In the final design, the 16-bit counter is placed in GLBs
A0 through A7, and the 4-bit counterin GLBs BO and B1.

Counters

The Seconds and Minutes Counters are Modulo 60
counters which display a decimal count ranging from 00
to 59.

The Hours counter is a special Modulo 24 counter which
counts from 1to 12, and has a separate output bit for AM-
PM indication. This counter resets to 12 AM and never
displays a count of 00.

The Seconds counter is designed by using a standard
Macro from the Lattice library and modifying it to suit the
needs of the design. This combines the use of Macros
with the use of Boolean equations.

The Minutes and Hours counters are designed using
state machines optimized for the pLSI 1032 and ispLSI
1032 architectures. The counter which is created is then
saved as a custom Macro for later use. This optimization
saves time and effort on future designs.

There are three controls for setting the clock. These are
Slow Set, Fast Set, and Hold. The Slow Set button
advances the clock at a rate suitable for selecting the
correct minute. The Fast Set button advances the clock
at a rate suitable for selecting the correct hour. When
either of these buttons are pressed, the seconds counters
are reset to 00.

Preload to 0BDB
B D B 0
11011011 11010000
I O | I T I
Preload DO——— D7 Preload D8 D15
Preload Inputs Preload Inputs
Cascade Cascade Cascade
Voo n Cascai\)du? In Cascagjlﬁ n Casce(l)c{ﬁ —1Hz
— lenae . CBU38 Jdenabe . CBU38 enabe CBU14
Vee Enable g pitPreloadable | YCCT|F"%® g.pit Preloadable | Yoo T|F"®® T 4bit
Y(1J (laﬁCk Up Counter . Up Counter] Up Counter
Z
Counter Outputs Counter Outputs
Reset QO0—— = Q7 Reset Q8—= Q12— Q15 Reset Q0 — Q3
IR IR T
GNDJ GNDJ
Hold 8 Hz
16 Hz
128 Hz
4-99 1994 Handbook

A Digital Clock Design Example

When Slow Set and Fast Set are pressed at the same
time, the clock resets to 12:00 A.M.. The Hold button
disables the minutes and hours counters from counting,
and resets the seconds to 00 and holds that count until
the button is released. This allows the clock to be set to
the exact second.

The outputs from the circuit are the seven segment
outputs from the Hours, Minutes and Seconds counters,
and the AM/PM Indicator.

Seconds Counter

The Seconds counter is implemented using both a stan-
dard Macro from the library for the ones-of-seconds, and
a modified counter Macro for the tens-of-seconds. The
outputs of these counters is sent to two BCD and then to
Seven Segment Display Macros to drive the LEDs.

The seconds counter counts from 0 to 59, and then
resets to 0. An unmodified CDU24 decimal up counter is
used for the Least Significant Digit, but the Most Signifi-
cant Digit is a modulo 6 counter. This is not a standard
function in the library. The easiest way to implement this
function is to select a standard 4-bit binary counter
(CDU24) and modify as shown in listing 3.

Listing 3.

MACRO MODULO6 ([Q0..Q2],CLK,EN,CS);
MACROTYPE RX;
MACROCOMMENT Custom 3 bit Modulo 6

Figure 6. Sample Seconds Counter

counter with Sync clear and enable
for clock design;
SIGTYPE [Q0..Q2] REG OUT;
EQUATIONS
Q0.CLK = CLK;
Q0 = (QO&!EN&!CS)
$$ (!QO0&EN&!CS);
// Output Q0 toggles after counts
// 0,2,and 4.
01 = (Ql&!EN&!CS)
$$ ((!02&!01&Q0&EN&!CS)
(1Q02&Q1&!QO0&EN&!CS));
// Output Q1 toggles after counts 1
// and 2.
02 = (Q2&!EN&!CS)
$$ ((!02& Ql& QO&EN&!CS)
(Q2&!Q1&!Q0&EN&!CS));
// Output Q2 toggles after counts 3
// and 4.
END
END

This counter can then be saved in a personal library for
future use.

The synchronous reset inputs to the seconds counters
are driven by the Hold signal from the control logic. The
clock is set to the exact second by setting the Hours and
Minutes counters to a point several minutes ahead, and
then pressing the Hold button until the correct second
arrives (see figure 6).

The counters and the seven segment decoders were
placed in GLBs, B2 through B7.

\
ce | [
Load DO D1 D1 D3
Cascade Cascade o_| Cascade Cascade
Vee In Out In Out 1PPM
Voe Enable Stock CDU 24 Enable Modified CDU 24
Decade Counter Decade Counter
r Reset Q0 Q1 Q2 Q3 r Reset Q0 Q1 Q2
1Hz—e
Hold
Vee ? I [GND
Enable 10 11 12 13 Enable 0o 1 12 13
BIN27-BCD BIN27-BCD
to 7 Segment Decoder to 7 Segment Decoder
T T T T 1T 17T T 17 171
A B C D E F G A B CDE F G
Segments Segments
4-100 1994 Handbook

A Digital Clock Design Example

A modulo 6 counter is needed for the tens-of-seconds,
and it is easily created by modifying a standard Modulo
10 Counter Macro. Once that new Macro is created, it is
named and saved in the personal library.

The Minutes Counter

The architecture of the Lattice ispLSI and pLSI devices
has been optimized for state machine use. The registers
in the GLBs are synchronous and several product terms
per register are added. Each product term has 18 inputs.

In the seconds counter, since the counters and the
decoders are separate, seven GLBs are used. Taking
advantage of the wide input gating available to create a
state machine counter which directly drives the seven
segment outputs, then the number of GLBs is reduced to
four. Figure 7 shows a sample minutes counter.

The truth table for a seven segment display is shown in
figure 8.

The state machine is simple. The outputs are the seg-
ment drivers, and each output decodes the current state

Figure 7. Sample Minutes Counter

to determine what the next state is. The simplified equa-
tion for segment A is shown in listing 4.

Listing 4. Segment A Equations

seg_ A = seg A & seg B & seg C & seg D

& seg_E & seg_F & !seg G

// Decode state Zero

seg_ A & seg_B & seg_C & seg D

& !seg E & !seg_F & seg_G

// Decode state Three

seg A & !seg B & seg C

& seg_ D & !seqg E & seg_F

& seg_G

// Decode state Five
The output for segment A goes to zero on the following
clock whenever states Zero, Three or Five occur. For
each of the segments there are fewer zero transitions
than one. The zero transitions are decoded to save
product terms, and then inverted in the output buffers.
This is true on all of the segments except Segment G,
which is left in its logic true form. This allows the counter
to reset to a Zero when a hardware reset is applied. All
segments are on except segment G.

1 PPM ﬁ:‘ascade Casca(l)c:ﬁ ﬁascade Casc«z\)duet 1PPH
Modulo 10 Modulo 6
7 Segment State Machine 7 Segment State Machine
Clock Pulse D
Reset A B C D E F G rnesetABCDEFG
Reset Clock

ABCDETFG®G
Segments

Figure 8. Seven Segment Truth Table

ABCDETFG
Segments

SEGMENT
STATE| A B C DE F GTC
0 11 111100
1 01 100000
2 11 011010
3 t1 110010
4 01 100110
5 10 110110
6 00 111110
7 11 10000 0
8 11 111110
9 11 10011 1

4-101 1994 Handbook

A Digital Clock Design Example

The Terminal Count (TC) output enables the next stage.
The tens-of-minutes counter is similar in construction
except that only the states from zero to five are decoded,
and the terminal count occurs at state five instead of nine
(see figure 9).

By designing the counters to make best use of the
features of the pLSI device family, logic for this counter
function is reduced by 40%. The minutes counters are
placed in GLBs CO0 through C7 in the final design.

The Hours Counter

The hours counter is constructed using a state machine
similar to the one used in the minutes counter. The count
sequence for hours is unique compared to most counters.

Figure 9. Terminal Count at State 5

In the hours stage, both digits are designed as a single
counter stage. The reset signal for the hours stage resets
the counter to 12 rather than zero (see figure 10).

A carry out signal is still generated from this counter
because an AM/PM indicator is desired, but the carry out
is generated when the counter reaches 12 instead of
when it rolls over to one. This is consistent with the way
clocks operate. Morning starts at 12:00 AM and after-
noon starts at 12:00 PM. The AM/PM stage is a D-type
flip-flop which uses the carry out signal as an asynchro-
nous product term clock. This register also uses an
asynchronous reset to force it to start at 12:00 AM when
the clock is reset (see figure 11).

The hours counter and the AM/PM logic are placed in
GLBs DO through D4 in the example file.

< A SEGMENT
STATE| A B CD E F GTC
0 11 11100 0
1 01 10000 O
2 11 01011 0
3 11 1101 1 0
5> 4 01 101110
5 10 11 11 1 1
Figure 10. Sample Hours Counter
1 PPH— ICr:‘ascade Cascadlﬁ | D Q PM
CustomISVIodqu12 | ProcgjctTerm DFF
ment State Machine lock —
Clock Pulse — 9 Seg D Q AM
Resst A B C D E F G H J Reset
Reset Clock
ABCDETFG®G H J
Segments
Figure 11. Sample 9 Segment Digit
SEGMENT
STATE |JA BCD E F GHJTC
1 0110 000001
2 1101 101001
3 1111 001001
4 0110 011001
5 |1t 011 011001
6 |00 11 111001
7 1110 000001
8 1111 111001
9 1110 011001
10 |11 11 110111
11 (01 10 000 110
12 111 01 101 111
4-102 1994 Handbook

A Digital Clock Design Example

Clock Management

This design makes maximum use of the various Clock
modes of the ispLSI| and pLSI Family. In each GLB, there
are four possible clock sources, CLK 0, CLK 1, CLK 2,
and a PTCLK. The first source, CLK 0, is a synchronous
clock, and is permanently connected to the YO Clock
Input pin on the device. CLK 1 and CLK 2 are also
synchronous and can come from either the external
clock pins (Y1 or Y2) or can be generated within the
device using the internal clock GLB, “C0”. The fourth,
PTCLK, comes from a Product Term within the GLB. This
clock is asynchronous (see figure 12).

In this clock design, the 1MHz reference clock from the
Demo Board is brought in using the YO Clock pin and is
the clock source used to drive the Prescaler. The 1 Hz
output of the Prescaler is then routed through the “C0”
GLB to become the CLK 1 Source. This clock is used to
increment the seconds counters. The minutes and hours
counters are clocked by the signal Clock Pulse on the
CLK 2 distribution line. This signal is 1 Pulse per Minute
during normal operation, 8 Hz during Slow Set and 128
Hz during Fast Set Operations.

The AM/PM Indicatoris a D-type flip-flop whichiis clocked
asynchronously using a product term clock (see figure
10).

Figure 12. Clock Management Modes

Generic Logic
Block "C0"

00 01 02 O3

» CLK 0 (1 MHz)
& + CLK 1 (1 Hz)

Q —» CLK 2 (Clock Puise)
— |//OCLK 0 (16 Hz)
I/OCLK 1

ﬂ v2|v3

Dedicated Clock
Input Pins

4-103

1994 Handbook

Notes

4-104 1994 Handbook

ispLSI Configurable
Memory Controller

Introduction

There are many advantages of using the in-system pro-
grammable ispLSI devices. In board level designs, as well
as during manufacturing, the flexibility of hardware
reconfiguration can lead to many innovative system de-
signs. Once configured, the ispLSI devices' non-volatile
E2CMOS cells will retain their configuration even when the
power is turned off. The guaranteed 1,000 programming
cycles and 20 year data retention of the ispLSI device will
allow the user to reliably reconfigure the device as often as
required.

This application note highlights the advantages of design-
ing with ispLS| devices and how they can lead to innovative
design ideas which translate to ease of use and instant
updates without board layout changes. The flexibility of
design is illustrated with the use of the Dynamic Random
Access Memory (DRAM) controller. This example shows a
typical microprocessor and memory interface with the
memory controller controlling the DRAM access and re-
fresh timing requirements. The use of Lattice pLSI and
ispLSI Development System (pDS) Software is also illus-
trated in this application note. The Lattice Design File (.Idf)
listing file generated by the software is also attached at the
end of this section.

Memory Controller Logic Overview

When interfacing the microprocessor to the DRAM, the
control signal and timing requirements of both the proces-

Figure 1. DRAM Timing Controller Block Diagram

sor and the DRAM must be satisfied. In order to satisfy
these requirements, the external timing controller must take
the processor address, data and control signals and trans-
late them into the control signals for the DRAM. Atthe same
time, the DRAM timing controller must take into account the
refresh requirements of the DRAM.

Figure 1 shows the block diagram of the DRAM timing
controller thatis implemented in the ispLSI 1032. The state
machine and address multiplexerblocks are used to control
the memory access request of the processor and supply the
DRAM with the necessary address and control signals.
DRAM refresh requirements are controlled by the refresh
timer block, refresh address counter block and the address
multiplexer block.

Any access request from the processor is processed by
the state machine based on the processor control signals
such as Read/Write (R/W), Memory/IO access (M/IO),
Address Latch Enable (ALE) and the microprocessor
address signals. The Ready (RDY) signal is used to
inform the processor the status of the requested data. In
other words, itis used to acknowledge the processor that
the memory is ready to respond to the processor. The
address multiplexer generates the row and column ad-
dresses necessary for the memory access cycle. The
appropriate Row Address Strobe (RAS), Column Ad
dress Strobe (CAS), and Write (W) signals are also
generatedby the state machine based on the processor

_ |_Refresh Complete (RFC)
SYSCLK ~| Refresh
RESET | Timer | Refresh
=" RAS0-RAS3
< 3 CAS0-CASS
R/W > State =W
M/I0 Machine
#65‘ ROW/COL | _|
- 2, ACC/REF
7
Lciesd Address |10, _ RAM
eropr;\);gfesgsr 22// . 20/1 Multiplexer ADDRESS
|: Refresh
| Address 13’
#{ Counter

4-105

1994 Handbook

ispLSI Configurable Memory Controller

inputs. To arbitrate between the memory access request
and the refresh request, the state machine also gener-
ates the status signal called Access. The purpose of this
signalis to keep track of an access cycle when the refresh
sequence is in progress. This status signal is then used
to determine whether or notto begin an access sequence
after the refresh sequence. As part of the access/refresh
arbitration, the state machine also issues an Access/
Refresh (ACC/REF) signal to the address multiplexer
logic block. Based on this signal the address multiplexer
block routes the appropriate access or refresh address
on to the external DRAM address bus.

As for all DRAMs, memory refresh must be completed
within a specified time. This process is completely
controlled by the DRAM timing controller. The refresh
timer block generates the internal refresh request signal
according to the system clock speed and the DRAM
refresh rate requirements. When the state machine
detects this refresh request signal, the refresh sequence
forthe DRAM is generated as soon as time permits. This
means that the refresh sequence is generated right after
the refresh request or if the timing controller is in the
middle of a memory access cycle the refresh sequence
is generated right after the memory access cycle is
complete. During the refresh sequence the row address
and all the RAS signal must be activated to perform the
basic RAS-only refresh. The row addresses are supplied
by the refresh address counter logic block. This logic
block keeps track of the rows that are being refreshed
and it gets incremented every time a refresh sequence is
performed. Allthe RAS signal are activated for refresh by
the state machine.

With the basic understanding of the DRAM timing control
logic complete, the next section will discuss the imple-
mentation of the logic in an ispLSI device and how to take
advantage of the ISP features to make the system
design, manufacturing and field updates easy and flex-
ible.

Figure 2. ISP State Machine

Load
ID

Idle State/
(Normal
Operation)

Note:
Control signals: MODE, SDI

Taking Advantage of ISP Features

Implementing a basic DRAM timing control logic in the
ispLSI 1032 takes up approximately 65% of the total logic
available in the device. (It is with this in mind that the
features needed for a specific design can be added to
these basic logic blocks). With the ISP capability, many
features can be added to accommodate the ever chang-
ing requirements of the system, microprocessor speeds,
availability of DRAMs, and the memory configurations.
Moreover, the changes are made only under the software
control. Instead of having different production runs for
various different options, the options are added at the in-
system programming stage.

The programming of the ispLSI devices are handled via
five TTL levelinterface signals. Of these five signals, four
signals can be dual function, a programming function as
well as an input during normal device operation. The ISP
Enable (ispEN) signal is the one dedicated programming
pin used to enable and disable the programming func-
tion. Once in programming mode, the mode control
(MODE), serial data input (SDI), serial data clock (SCLK),
and serial data output (SDO) signals control the entire
programming process. The address and data required to
program the device are serially shifted into the internal
shift registers and the three state programming state
machine steps through the programming sequence. The
five-bitinstructions within the state machine define all the
necessary steps for programming. Figure 2 shows the
ISP programming state machine with the control signal
requirements for the state transitions. Refer to the ISP
architecture and programming section of this handbook
for a more detailed programming description.

Different System Speed

Designing with a different speed microprocessor re-
quires a different DRAM timing controller. The

Load
Command

Execute
Command

Shift State
(Load
Comments)

Execute State
(Execute
Command)

4-106

1994 Handbook

ispLSI Configurable Memory Controller

adjustments must be made in the state machine and
refresh timer logic of the controller to account for the
difference in speed. Without the capabilities of the ISP
features, different boards with different PLD codes must
be built to work with different processor speeds. By
providing a simple programming circuitry on board to
support the isp programming, the logic adjustments for
different speed processor can be accomplished by in-
system programming the different patterns via software
control. Manufacture of these options are made simple
and cost effective by not having to keep an inventory of
prepatterned devices.

DRAM Feature Flexibility

DRAMs have many features from which the system
designer can select. For the same DRAM configuration,
the system designer can select from DRAMs that have
different access schemes such as nibble mode, static
column mode and page mode. Similarly, differentmemory
refresh schemes can be chosen. The two choices of
refresh schemes include the simple RAS only refresh
and the option to perform hidden refresh with the CAS
before RAS refresh scheme. Most of these various
DRAM options can be supported by in-system program-
ming the ispLSI devices. Again, the flexibility lies in the
fact that the decision of what function the ispLSI will
perform on board can be made after the decision has
been made on which type of DRAMSs are used on board.

Different DRAM Configuration

TheispLSlimplementation of the DRAM timing controller
makes the change of memory configuration very simple.
Reprogramming of the address decoding and turning on
the appropriate address strobe signals for different
memory configuration can be done by in-system
reconfiguration of the state machine and the address
decoding of the ispLSI device. All of these changes can
be accomplished under software control.

Memory Timing Controller Details

As shown in figure 1 the memory timing controller con-
sists of four different logic blocks. The refresh timer,
state machine, refresh address counter and memory
address multiplexer. All boolean equations for the logic
blocks are developed within the Lattice pDS Software.
The entire memory timing controller design assumes that
all the processor signals are typical of a commercially
available processor with a clock speed of 25 MHz.
DRAMSs are arranged in four banks of 1M X 32-bit
arrangement. All timing for the access and refresh
sequences are shown in the timing diagram.

Refresh Timer

The function of the refresh timer is to generate a refresh
request signal every 15.5 ps. This refresh period is
derived from the DRAM refresh requirement of 512 rows
of refresh every 8 ms for the 1M X 1 DRAM. Based on
the 25 MHz system clock frequency, the count value to
divide the clock period to the refresh period is 200.
Changing processor speed will only require a change of
count value. Once the count value expires, the refresh
timer generates an internal refresh signal to inform the
state machine to perform a refresh cycle. When the state
machine completes the refresh cycle, a refresh complete
(RFC) signal is generated for the refresh timer. The
refresh timer then resets the internal counter for the next
refresh period.

ispLSIlimplementation of the refresh timer takes up three
GLBs (A0-A2) within the device. The system clock is
used to run the nine bit counter, RFC is the input signal
to this block and REFRESH is the output signal of this
logic block.

State Machine

The state machine can be further divided into four
different sub-logic blocks. These sub-logic blocks con-
sists of a RAS generator, CAS generator, 4-bit state
machine which is divided into two state variable bits and
two counter bits, and control signal generator. In the
ispLSI 1032 implementation, the state machine logic
block takes up 9 GLBs.

The 4-bit state machine is divided into a 2-bit state
variable, named STO and ST1, and 2-bit state counter,
named SCNTO and SCNT1. The state diagram with its
state transitions are shown in figure 3. In each of the
access and refresh states, the state counter sequences
through the operation until the sequence is complete.
The purpose of the state variable bits are only to keep
track of the state transitions. Once the state transition
has occurred, the state counter bits take the responsibil-
ity of sequencing through the state.

The three states are divided as idle state, access state
and refresh state. Based on the processor control signal
and the internal refresh request signal, the state transi-
tion occurs from idle state to either access state or
refresh state. If the refresh and access request happen
atthe same time, refresh request takes precedence over
access request. When the refresh request is asserted
during an access cycle, the refresh cycle follows right
after the access cycle. The only other condition between
the access and refresh request that the state machine
needs to arbitrate is when the access request occurs

4-107

1994 Handbook

ispLSI Configurable Memory Controller

during the refresh sequence. The access feedback
signal of the state machine is activated when the access
request occurs during the refresh cycle. When the
refresh cycle is complete, the access feedback signal is
used to determine whether or not the access sequence
needs to begin. The timing diagrams in figure 4 and 5
illustrate the control signal sequence for the access and
refresh cycles, respectively.

Figure 3. DRAM Timing Controller State Machine

In addition to the external DRAM control signals, the state
machine also generates the control signal for the address
multiplexer and the refresh address counter. The ROW/
COL signal directs the address muitiplexer to output the
appropriate row and column address during the access
cycle. Furthermore, the address multiplexer accepts the
access/refresh (ACC/REF) control signal to either direct
the memory access address from the processor, or direct
the refresh row address from the refresh address counter
to the DRAM.

m

Idle State
ST1,8T0=0,0

<

IALE
and M/IO or
ACC?ESS

Yes

Refresh State
ST1,8T0=0,1

Access State
ST1,8T0=1,0

R

Figure 4. Access Cycle Timing

CLK

ALE I

won T

DATA

RoY L LLLGAVVRIRRRT

RAS

]

CAS

w

1
ROW/COL //// !
I
1

ACC/REF

4-108

1994 Handbook

ispLSI Configurable Memory Controller

Refresh Address Counter

The refresh address counter keeps track of the rows of
DRAM to be refreshed. This counteris only incremented
on the falling edge of the RAS signal during refresh
sequence. The ispLSI device implementation of this
counter takes 3 GLBs.

Memory Address Multiplexer

In access mode, determined by the ACC/REF internal
signal, the memory address multiplexer multiplexes be-
tween the row and column address. Once in the refresh
cycle, the refresh address comes from the refresh ad-
dress counter. It takes 3 GLBs to implement the
multiplexer in the ispLSI 1032.

Figure 5. Refresh Cycle Timing

] 1

CLK | | I |

Conclusion

The intention of this application section is to give an
overview of how the ISP features can be used to improve
the design features and the manufacturing process by
using an example of a generalized DRAM timing control-
ler. In addition, the software example given in the
document should provide a good starting point for de-
signers who need to implement a state machine based
design. With the flexibility of the ispLSI| devices the
possibilities are limited only by one's imagination to
implement innovative designs. The following sections
list the Lattice Design file with the Boolean Equations
and pinout for the ispLSI 1032.

REFRESH

XACC/REF

RAS '

RFC

_______________________ [
ACCESS E : v ! l !
T

w

4-109

1994 Handbook

ispLSI Configurable Memory Controller

Design LDF Listing

//isp_app.ldf generated using Lattice pDS Version 2.50
LDF 1.00.00 DESIGNLDF;
DESIGN DRAM CONTROLLER 1.00;
PROJECTNAMEispAPPLICATIONS;
DESCRIPTION
DRAM CONTROLLER DESIGN FORispAPPLICATION.
IT INCLUDES FOUR MAJOR BLOCKS.
- REFRESH TIMER
REFRESH ROW ADDRESS COUNTER
ADDRESS MUX
STATE MACHINE;

PART pLSI 1032-90LJ;
DECLARE
END; //DECLARE

SYM GLB C2 1 ;
/11717 ROW ADDRESS STROBE (RAS1,RAS0) GLB
SIGTYPE IRAS1 REG OUT;
SIGTYPE IRASO REG OUT;
EQUATIONS
IRAS1.CLK = ICLK;
IRAS1 ISTO & !IA20 & IRAS1 & !IRESET
!ST1 & IA21 & IRAS1 & !IRESET
ISTO & STl & SCNTO & SCNT1 & IA20 &
STO & !ST1 & SCNTO & SCNT1 & !IRESET
ISTO & !ST1 & IRAS1 & !IRESET
STO0 & ST1 & IRAS1 & !IRESET
SCNT1 & IRAS1 & !IRESET
SCNTO0 & IRAS1 & !IRESET;

11117

11177

1IA21 &

IR R R R

IA20 & IRASO & !IRESET /11117
IA21 & IRASO & !IRESET
ST1 & SCNTO & SCNT1 &
!ST1 & SCNTO & SCNT1 &
!ST1 & IRASO & !IRESET
ST1 & IRAS2 & !IRESET
SCNT1 & IRASO & !IRESET

SCNTO & IRASO & !IRESET;

I1STO &
IST1 &
I1STO &

IRASO
1IA20 & !IA21 &
!IRESET

END
END;

SYM GLB A2 1 ;
/17117 REFRESH TIMER GLB2
SIGTYPE RQ8 REG OUT;
SIGTYPE RQ9 REG OUT;
SIGTYPE REFRESH REG OUT;
FJK11l (REFRESH,R RATE,RFC,ICLK);
EQUATIONS
RQ8.CLK = ICLK;
RQ8 = (RQ8 & !RFC)
$$ (RQ7 & RQ6 & RO5 & RQ4 & RQ3 & RQ2 & RQ1 & RQO &
RQ9 = (RQ9 & !RFC)
$$ (RQ8 & RQ7 & RQ6 & RQ5 & RQ4 & RQ3 & RQ2 & RQ1 &
R_RATE = RQ7 & RQ6 & !RQ5 & !RQ4 & RQ3 & !RQ2 & !RQl &
END
END;

/1117

/11117 REFRESH REQUEST

REDUCED RAS1

REDUCED RASO

SIGNAL

/1177

! IRESET

11117

{IRESET

/1117

IRFC) ;

RQO &
IRQO;

IRFC) ;

4-110

1994 Handbook

ispLSI Configurable Memory Controller

SYM GLB Al 1 ;
/17117 REFRESH TIMER GLB1
SIGTYPE RQ4 REG OUT;
SIGTYPE RQ5 REG OUT;
SIGTYPE RQ6 REG OUT;
SIGTYPE RQ7 REG OUT;
EQUATIONS
RQ4.CLK = ICLK;
RQ4 = (RQ4 & !RFC)
$$ (RQ3 & RQ2 & RQ1
RQ5 = (RQ5 & !RFC)
$$ (RQ4 & RQ3 & RQ2
RQ6 = (RQ6 & !RFC)
$$ (RQ5 & RQ4 & RQO3 &
RQ7 = (RQ7 & !RFC)
$$ (RQ6 & RQ5 & RQ4 &

/1117

& RQO & !RFC);

& ROl & RQO &

RQ2 & RQl & RQO &

RQ3 & RQ2 &
END
END;

SYM GLB A0 1 ;
////// REFRESH TIMER GLBO
SIGTYPE RQO REG OUT;
SIGTYPE RQl REG OUT;
SIGTYPE RQ2 REG OUT;
SIGTYPE RQ3 REG OUT;
EQUATIONS
RQO.CLK = ICLK;
RQO = !RQO & !RFC;
ROl = (RQl & !RFC)
$$ (RQO & !RFC);
RQ2 = (RQ2 & !RFC)
$$ (RQLl & RQO &
RQ3 = (RQ3 & !RFC)
$$ (RQ2 & ROl & RQO &

/1117

IRFC) ;

IRFC) ;
END
END;

SYM GLB DO 1 ;

/1117 ADDRESS MUX GLBO

SIGTYPE IRAMO ASYNC OUT;

SIGTYPE IRAM1 ASYNC OUT;

SIGTYPE IRAM2 ASYNC OUT;

SIGTYPE IRAM3 ASYNC OUT;

EQUATIONS
IRAMO =

/11117

ROW_COL & ACC_REF & IA0
IACC_REF & RCNTRO;
IRAM1 = ROW COL & ACC_REF & IAl
I|ROW_ CoL & ACC_ REF & IAll
IACC_REF & RCNTR1;
IRAM2 = ROW COL & ACC_REF & IA2
IROW_ COL & ACC_] REF & IAl2
1ACC REF & RCNTR2;
IRAM3 = ROW COL & ACC_REF & IA3
!|ROW_ COL & ACC_] REF & IAl3
'ACC REF & RCNTR3,
END
END;

IRFC);

RQ1 & RQO &

///// ROW SELECT
JROW_COL & ACC_REF & IAl0 ///// COLUMN SELECT
/1177

IRFC

IRFC);

11117
/1117

REFRESH ADDR SELECT /////

4-111

1994 Handbook

ispLSI Configurable Memory Controller

SYM GLB D1 1 ;
1111/ ADDRESS MUX GLB1 11711/
SIGTYPE IRAM4 ASYNC OUT;
SIGTYPE IRAM5 ASYNC OUT;
SIGTYPE IRAM6 ASYNC OUT;
SIGTYPE IRAM7 ASYNC OUT;
EQUATIONS
IRAM4 = ROW_COL & ACC_REF & IA4 ///// ROW SELECT /////
|IROW_COL & ACC_REF & IAl4 ///// COLUMN SELECT /////
IACC_REF & RCNTR4; ///// REFRESH ADDR SELECT /////
IRAM5 = ROW_COL & ACC_REF & IAS5
IROW COL & ACC_REF & IAl5
IACC_REF & RCNTR5;
IRAM6 = ROW_COL & ACC_REF & IA6
IROW_COL & ACC_REF & IAl6
IACC_REF & RCNTR6;
IRAM7 = ROW_COL & ACC_REF & IA7
IROW_COL & ACC_REF & IAl7
IACC_REF & RCNTR7;
END
END;

SYM GLB D2 1 ;
1111/ ADDRESS MUX GLB2 1171/
SIGTYPE IRAM8 ASYNC OUT;
SIGTYPE IRAM9 ASYNC OUT;

EQUATIONS
IRAM8 = ROW_COL & ACC_REF & IA8 ///// ROW SELECT /////
IROW_COL & ACC_REF & IA18 ///// COLUMN SELECT /////
JACC_REF & RCNTRS; ///// REFRESH ADDR SELECT /////

IRAM9 = ROW COL & ACC_REF & IA9
IROW COL & ACC_REF & IAl9
IACC_REF & RCNTRY;
END
END;

SYM GLB D5 1 ;
////// REFRESH ROW COUNTER GLBO /11117
SIGTYPE RCNTRO REG OUT;
SIGTYPE RCNTR1 REG OUT;
SIGTYPE RCNTR2 REG OUT;
SIGTYPE RCNTR3 REG OUT;

EQUATIONS
RCNTRO.PTCLK = !IRASO; 17117 USE RAS AS THE COUNTER CLOCK ////
RCNTRO = !RCNTRO & !ACC_REF ///// COUNT DURING REFRESH 11117
RCNTRO & ACC_REF; 11117 HOLD DURING ACCESS 11117

RCNTR1 = (RCNTR1 & !ACC_REF)
$$ ((RCNTRO & !ACC_REF)
(RCNTR1 & ACC_REF));
RCNTR2 = (RCNTR2 & !ACC_REF)
$$ ((RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR2 & ACC_REF));
RCNTR3 = (RCNTR3 & !ACC_REF)
$$ ((RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR3 & ACC_REF));
END
END;

4-112 1994 Handbook

ispLSI Configurable Memory Controller

SYM GLB D6 1 ;
////// REFRESH ROW COUNTER GLB1 /////
SIGTYPE RCNTR4 REG OUT;
SIGTYPE RCNTR5 REG OUT;
SIGTYPE RCNTR6 REG OUT;
SIGTYPE RCNTR7 REG OUT;
EQUATIONS
/1117 USE RAS AS THE COUNTER CLOCK ////
RCNTR4.PTCLK = !IRASO;
RCNTR4 = (RCNTR4 & !ACC_REF)
///// COUNT DURING REFRESH /////
$$ ((RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR4 & ACC_REF));
11117 HOLD DURING ACCESS /11111
RCNTRS = (RCNTR5 & !ACC_REF)
$$ ((RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR5 & ACC_REF));
RCNTR6 = (RCNTR6 & !ACC_REF)
$$ ((RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR6 & ACC_REF));
RCNTR7 = (RCNTR7 & !ACC_REF)
$$ ((RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO &
IACC_REF)
(RCNTR7 & ACC_REF));
END
END;

SYM GLB D7 1 ;
////// REFRESH ROW COUNTER GLB2 1111/
SIGTYPE RCNTR8 REG OUT;
SIGTYPE RCNTR9 REG OUT;
EQUATIONS
RCNTR8.PTCLK = !IRASO; 11117 USE RAS AS THE COUNTER CLOCK /717
RCNTR8 = (RCNTR8 & !ACC_REF)
$$ ((RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4
///// COUNT DURING REFRESH /11117
& RCNTR3 & RCNTR2 & RCNTR1 & RCNTRO & !ACC_REF) # (RCNTR8 & ACC_REF));
1117/ HOLD DURING ACCESS /1117
RCNTR9 = (RCNTR9 & !ACC_REF)
$$ ((RCNTR8 & RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 &
RCNTR1 & RCNTRO & !ACC_REF)
(RCNTR9 & ACC_REF));
END
END;

SYM GLB C7 1 ;
/171117 STATE BITS GLB /11117
SIGTYPE STO REG OUT;
SIGTYPE ST1 REG OUT;
FJK11 (STO,JST0,KSTO0,ICLK);
FJK11 (ST1,JST1,KST1,ICLK);

EQUATIONS
JSTO = !ST1 & !STO & REFRESH; /11117 STATE BITO SET INPUT /11117
KSTO = !ST1 & STO & SCNT1 & SCNTO; /1117 STATE BITO RESET INPUT /17
//
JST1 = IST1 & !STO & !REFRESH & !IALE & IMIO_

4-113 1994 Handbook

ispLSI Configurable Memory Controller

1ST1 & !STO & !REFRESH & ACCESS; /71117 STATE BIT1 SET INPUT /
1117/
KST1 = ST1 & !STO & SCNT1 & SCNTO
1ST1 & STO & SCNT1 & SCNTO; /11117 STATE BITO RESET INPUT /
/1177
END
END;

SYM GLB C6 1 ;
11117 STATE COUNTER BITS GLB /11117
SIGTYPE SCNT0 REG OUT;
SIGTYPE SCNT1 REG OUT;
FJK11 (SCNTO,JSCNTO,KSCNTO,ICLK);
FJK11 (SCNT1,JSCNT1,KSCNT1,ICLK);
EQUATIONS
JSCNTO = !SCNTO & ST1 & !STO
ISCNTO & !ST1 & STO; ///// STATE COUNTER BITO SET INPUT /////
KSCNTO = SCNTO0 & ST1 & !STO
SCNTO & !ST1 & STO
ST1 & !STO & SCNT1 & SCNTO
1ST1 & STO & SCNT1 & SCNTO; /////STATE COUNTER BITO RESET INPUT /

/117
JSCNT1 = ISCNT1 & SCNTO & ST1 & !STO
ISCNT1 & SCNTO & !ST1 & STO; ///// STATE COUNTER BIT1 SET INPUT /
///
KSCNT1 = SCNT1 & SCNTO & ST1 & !STO
SCNT1 & SCNTO & !ST1 & STO
ST1 & !STO & SCNT1 & SCNTO
I1ST1 & STO & SCNT1 & SCNTO; ///// STATE COUNTER BIT0 RESET INPUT /
/1717
END
END;

SYM GLB C5 1 ;
11111 CONTROL SIGNALS GLBO 11117
SIGTYPE RFC REG OUT;

SIGTYPE ACC_REF REG OUT;
FJK11 (RFC,JRFC,KRFC,ICLK);
FJK11 (ACC_REF,JACC_REF,KACC_REF,ICLK);

EQUATIONS
JRFC = IST1 & STO & SCNT1 & !SCNTO; ///// REFRESH COMPLETE SET INPUT
/1117
KRFC = !ST1 & STO & SCNT1 & SCNTO; ///// REFRESH COMPLETE RESET INPUT ///
//

JACC_REF = !ST1 & STO & SCNT1 & SCNTO
IRESET; /1117 ACCESS/REFRESH SET INPUT 11717
KACC_REF = !ST1 & !STO & REFRESH & !IRESET;/////ACCESS/REFRESH RESET INPUT
/1117
END
END;

SYM GLB Cl1 1 ;
/1117 ROW ADDRESS STROBE (RAS3,RAS2) GLB 11111
SIGTYPE IRAS3 REG OUT;
SIGTYPE IRAS2 REG OUT;
EQUATIONS
IRAS3 = !STO & !IA20 & IRAS3 & !IRESET ///// REDUCED RAS3 171111
1ST1 & !IA21 & IRAS3 & !IRESET
!STO & ST1 & SCNTO & SCNT1 & IA20 & IA21 & !IRESET
STO & !ST1 & SCNTO & SCNT1 & !IRESET

4-114 1994 Handbook

ispLSI Configurable Memory Controller

!STO & !ST1 & IRAS3 & !IRESET

STO & ST1 & IRAS3 & !IRESET

SCNT1 & IRAS3 & !IRESET

SCNTO & IRAS3 & !IRESET;
IRAS3.CLK = ICLK;

IRAS2 = !STO & IA20 & IRAS2 & !IRESET /11117 REDUCED RAS2 11117
1ST1 & !IA21 & IRAS2 & !IRESET
1STO & ST1 & SCNTO & SCNT1 & !IA20 & IA21 & !IRESET
STO & !ST1 & SCNTO & SCNT1 & !IRESET
!STO & !ST1 & IRAS2 & !IRESET

STO & ST1 & IRAS2 & !IRESET

SCNT1 & IRAS2 & !IRESET

SCNTO & IRAS2 & !IRESET;
IRAS2.CLK = ICLK;

END
END;
SYM GLB B7 1 ;

/11111 COLUMN ADDRESS STROBE (CAS0,CAS1) GLBO /11111

SIGTYPE ICASO REG OUT;
SIGTYPE ICAS1 REG OUT;
FJK11 (ICASO,JCASO,KCASO,ICLK);
FJK11 (ICAS1,JCAS1,KCAS1,ICLK);
EQUATIONS
/11117 CASO SET INPUT /11117
JCASO = ST1 & !STO & !IAl & !IA0 & SCNT1 & SCNTO
IRESET;
/////CASO RESET INPUT /////
KCASO = ST1 & !STO & !TIAl & !IA0 & !SCNT1 & SCNTO & !IRESET;
///// CAS1 SET INPUT /////
JCAS1 = ST1 & !STO & !IAl & IAO & SCNT1 & SCNTO
IRESET;
/////CAS1 RESET INPUT /////
KCAS1 = ST1 & !STO & !IAl & IAO & !SCNT1 & SCNTO & !IRESET;

END
END;

SYM GLB B6 1 ;
/1117 COLUMN ADDRESS STROBE (CAS2,CAS3) GLB1 /1117
SIGTYPE ICAS2 REG OUT;
SIGTYPE ICAS3 REG OUT;
FJK11 (ICAS2,JCAS2,KCAS2,ICLK);
FJK11 (ICAS3,JCAS3,KCAS3,ICLK);
EQUATIONS
JCAS2 = ST1 & !STO & IAl & !IAO0 & !SCNT1l & SCNTO ///// CAS2 SET INPUT
1111/
IRESET;
///// CAS2 RESET INPUT /1117
KCAS2 = ST1 & !STO & IAl & !IA0 & SCNT1l & SCNTO & !IRESET;
JCAS3 = ST1 & !STO & IAl & IAO0 & !SCNT1 & SCNTO///// CAS3 SET INPUT /////

IRESET;

///// CAS3 RESET INPUT /1117
KCAS3 = ST1 & !STO & IAl & IAQ0 & SCNT1 & SCNTO & !IRESET;
END

END;

4-115 1994 Handbook

ispLSI Configurable Memory Controller

SYM GLB B5 1 ;
/11117 CONTROL SIGNALS (ACCESS,WRITE) GLB1 171117
SIGTYPE ACCESS REG OUT;
SIGTYPE IWREG REG OUT;
FJK11 (ACCESS,JACCESS,KACCESS,ICLK);
FJK11 (IWREG,JWREG,KWREG,ICLK);

EQUATIONS
JACCESS = !IALE & IMIO_; /11117 MEMORY ACCESS REQUEST SET INPUT /117
/
KACCESS = ST1 & !STO & SCNT1 & SCNTO;/////MEMORY ACCESS REQUEST RESET
INPUT/////
JWREG = !ACCESS & IRW_ /11117 WRITE REGISTER SET INPUT /11717
STl & !STO & SCNT1 & SCNTO
IRESET;
KWREG = !ACCESS & !IRW_ & !IRESET; /1117 WRITE REGISTER RESET INPUT
/11117
END
END;

SYM GLB B4 1 ;

11117 CONTROL SIGNALS (ROW/COL,RDY)GLB2 /11117

SIGTYPE ROW_COL REG OUT;

SIGTYPE IRDY REG OUT;

FJK11 (ROW_COL,JROW_COL,KROW_COL, ICLK);
FJK11 (IRDY,JRDY,KRDY,ICLK);

EQUATIONS
JROW_COL = ST1 & !STO & SCNT1 & SCNTO///// ROW/COL SELECT SET INPUT /1117
IRESET;
KROW_COL = ST1 & !STO & !SCNT1 & SCNTO & !IRESET/////ROW/COL SELECT RESET SET
INPUT/////

JRDY = ST1 & !STO & SCNT1 & !SCNTO; /1117 READY SET INPUT /1117
KRDY = ST1 & !STO & SCNT1 & SCNTO; /11117 READY RESET INPUT /1117

END

END;

SYM IOC 1016 1 ;
// ADDR 12 I/O CELL W/REG. INPUT //
XPIN IO XAl2;
ID11 (IAl2,XAl2,IICLK);

END;

SYM IOC 1I015 1 ;
// ADDR 11 I/O CELL W/REG. INPUT //
XPIN IO XAll;
ID11 (IAll1l,XAll1,IICLK);

END;

SYM IOC 1014 1 ;
// ADDR 10 I/O CELL W/REG. INPUT //
XPIN IO XAl0;
ID11 (IAl10,XA10,IICLK);

END;

SYyM 1I0C I013 1 ;
// ADDR 9 I/O CELL W/REG. INPUT //
XPIN IO XA9;
ID11 (IA9,XA9,IICLK);

END;

4-116

1994 Handbook

ispLSI Configurable Memory Controller

SYM IOC 1I012 1 ; SYM IOC I03 1 ;
// ADDR 8 I/0O CELL W/REG. INPUT // // READY I/0 CELL, OUTPUT //
XPIN IO XAS8; XPIN IO XRDY;
ID11 (IA8,XA8,IICLK); OBll (XRDY,IRDY);
END; END;
SYM I0C 1I0l11 1 ; SYM IOC 102 1 ;
// ADDR 7 I/O CELL W/REG. INPUT // // ADDRESS LATCH ENABLE I/0 CELL /
XPIN IO XA7; /
ID11 (IA7,XA7,IICLK); XPIN IO XALE;
END; IB11 (IALE,XALE);
SYM IOC 1I010 1 ; END;
// ADDR 6 I/0O CELL W/REG. INPUT //
XPIN IO XA6; SYM IOC I01 1 ;
ID11 (IA6,XA6,IICLK); // MEMORY OR I/O ACCESS //
END; XPIN IO XMIO_;
IBl11 (IMIO_,XMIO_);
SYM IOC I09 1 ; END;
// ADDR 5 I/O CELL W/REG. INPUT //
XPIN IO XAS; SYM IOC I00 1 ;
ID11 (IA5,XA5,IICLK); // READ WRITE SELECTION //
END; XPIN IO XRW_;
IB11 (IRW_,XRW_);
SYM IOC I08 1 ; END;
// ADDR 4 I1I/0 CELL W/REG. INPUT // SYM IOC YO0 1 ;
XPIN IO XA4; // SYSTEM CLOCK INPUT //
ID11 (IA4,XA4,IICLK); XPIN CLK XSYS_CLK LOCK 20;
END; IB11 (ICLK,XSYS_CLK);
END;
SYM IOC I07 1 ;
// ADDR 3 I/0 CELL W/REG. INPUT // SYM IOC 1I017 1 ;
XPIN IO XA3; // ADDR 13 1/0 CELL W/REG. INPUT /
ID11 (IA3,XA3,IICLK); /
XPIN IO XAl3;
END; ID11 (IA13,XAl13,IICLK);
SYM IOC Y2 1 ; END;
// INPUT REGISTER CLOCK (ALE) //
XPIN CLK XICLK; SYM IOC 1I018 1 ;
IBl11l (IICLK,XICLK); // ADDR 14 I/0 CELL W/REG. INPUT /
END; /
XPIN IO XAl4;
SYM IOC I06 1 ; ID11 (IA14,XAl4,IICLK);
// ADDR 2 I/O CELL W/REG. INPUT // END;
XPIN IO XA2;
ID11 (IA2,XA2,IICLK); SYM IO0C IO19 1 ;
END; // ADDR 15 I/O CELL W/REG. INPUT /
SYM IOC IO5 1 : XPIN IO XAl5;
//" ADDR 1 1/0O CELL W/REG. INPUT // ID11 (IAl5,XAl5,IICLK);
XPIN IO XAl; END;
ID11 (IAl,XAl,IICLK);
END; SYM IOC 1020 1 H
// ADDR 20 I/O CELLW/REG. INPUT //
SYM IOC I04 1 ; XPIN IO XA20;
// ADDR 0 I/O CELL W/REG. INPUT // ID11 (IA20,XA20,IICLK);
XPIN IO XAO; END;
ID11 (IAO,XA0,IICLK);
END;
4-117 1994 Handbook

ispLSI Configurable Memory Controller

SYM IOC IO21 1;

// ADDR 21 I/O CELL W/REG.INPUT //

XPIN IO XA21
ID11 (IA21,XA21,IICLK);
END;

SYM IOC I022 1;

XPIN IO XRESET;
IB11 (IRESET, XRESET);
END;
SYM IOC 1023 1;
XPIN IO XREFRESH;
IB11 (REFRESH, XREFRESH);
END;
SYM IOC 1024 1;
XPIN IO XRAMO;
OB11 (XRAMO, IRAMO);
END;
SYM IOC 1025 1;
XPIN IO XRAMI;
OB11l (XRAM1, IRAM1);
END;
SYM IOC 1I026 1 ;
XPIN IO XRAM2;
OBll (XRAM2, IRAM2);
END;
SYM IOC 1027 1 ;
XPIN IO XRAM3;
OBl1l (XRAM3, IRAM3);
END;
SYM TIOC 1028 1 ;
XPIN IO XRAM4;
OB1l1l (XRAM4, IRAM4);
END;
SYM IOC 1I029 1 ;
XPIN IO XRAM5;
OBl11 (XRAM5, IRAMS);
END;
SYM IOC 1I030 1;
XPIN IO XRAM6;
OB1l1l (XRAM6, IRAM6);
END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;

SYM

END;
SYM

END;

SYM

END;

SYM

END;

I0C
XPIN
0B11

I0C
XPIN
OB1l1

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB1l1

I0C
XPIN
OB1l1

I0C
XPIN
OB11

I0C
XPIN
OB11

I0C
XPIN
OB11

1031 1 ;
10 XRAM7;
(XRAM7, IRAM7);

1032 1 ;
I0 XRAMS;
(XRAM8, IRAMS);

1033 1 ;
I0 XRAM9;
(XRAM9, IRAM9);

1034 1 ;
I0 XSTO;
(XST0, STO);

1036 1 ;
I0 XST1;
(XST1, ST1);

1038 1 ;
IO XSCNTO;
(XSCNTO, SCNTO);

1040 1 ;
I0 XSCNT1;
(XSCNT1, SCNT1);

1041 1 ;
I0 XACCESS;
(XACCESS, ACCESS);

1042 1 ;
I0 XIWREG;
(XIWREG, IWREG);

1043 1;
IO XROW_COL;
(XROW_COL, ROW_COL);

1044 1 ;
I0 XIRDY;
(XIRDY, IRDY);

4-118

1994 Handbook

ispLSI Configurable Memory Controller

SYM 1I0C
XPIN
OB11

END;

SYM IOC
XPIN
OB11

END;

1045 1 ;
I0 XRFC;
(XRFC, RFC);

1046 1 ;
I0 XACC_REF;
(XACC_REF, ACC_REF);

4-119

1994 Handbook

Notes

4-120 1994 Handbook

] attice”

Bar Code Reader

Introduction

The Universal Product Code was first implemented by
the grocery industry in 1973 as a method of improving
inventory control and checkout times. As its benefits
were realized, it soon spread throughout the retail indus-
try. UPC Version A is a simple numeric only code encoding
a 12 digit number into a continuous, fixed length symbol.
UPC Version E is similar to Version A except that it only
encodes 6 digits.

Figure 1. UPC Version A - 12 Digit Code

Left Center
Guard
Pattem

Right
Guard Guard

0dd Parity Digits Pattem Even Parity Digits ~ Pattem

A
[N S Sy Uy S S S} [S Sy S
[1 2 3 4 5 6 7 8 9 o 5

0861

Figure 1 shows an example Version A pattern which
encodes the number sequence 01234567890. The Ver-
sion A pattern is divided into two halves. Each half
consists of a guard pattern and six digits, with a guard
pattern separating them. The patterns used to encode
the digits on the left half have an odd number of bits (Odd
Parity), and the patterns used to encode the digits on the
right half have an even number of bits (Even Parity). This
allows error checking to be performed, and a symbol
which has been scanned backwards can be detected by
detecting even parity codes being received before odd
parity codes.

The basic width of a bar or space is determined by the
width of the guard bars. This is defined to be in the range
of 10.4 to 26 mils wide. Bar and space widths can be
anywhere from 1 to 4 guard bar widths wide. The guard
bars are usually printed with a slightly longer length than
the data bars to allow a greater scanning tilt angle.

As mentioned before, the code which is used to represent
numbers on the left side of the code is different from the
code used on the right half. The data is encoded as a 2
of 7 Code using two bars and two spaces to describe 20
unique patterns. These 20 patterns encode the 10 num-
bers with both odd and even parity. The patterns are
shown in Figure 2.

Figure 2. UPC Encodation Patterns

Left Digit
(Odd Parity)

Right Digit
(Odd Parity)

©ONDOOHEWN=O

0862

The first digit of the twelve is called the number system
digit and is used to indicate the type of product the code
is identifying. The next five digits are the Manufacturers
ID Number as assigned by the Uniform Code Council,
and the next five digits are the ltem ID number assigned
by the manufacturer. The last digit is a check digit. The
value of this digit is based on the weighted sum of all of
the other digits in the number. Using a weighted sum
allows checking for transposition errors to be performed
if the number is manually entered.

Figure 3 shows an example UPC Version E symbol which
encodes the digits 123456. This code was specified to
label small items. Because many of the digits in the
Manufacturers ID Number and Item ID Number are
frequently zeros, by suppressing these zeros using a
standard compression process the number of digits can
be reduced from 12 to 5. The last digit in the symbol
indicates the type of suppression used in defining the
symbol. This pattern uses intermixed digits of odd and
even parity using the same encoding patterns shown in
Figure 1.

4-121

1994 Handbook

Bar Code Reader

Figure 3. UPC Version E - 6 Digit Code This example design shows how to use a Lattice pLSI
Guard Guard device to implement a standard Universal Product Code
Bars Bars (UPC), or Bar Code reader in a single chip. The chip that
o —= will be designed will receive digital signals from a Bar

Code wand, determine the timing of those signals, sepa-
rate the data from the wavetrain, and transmit that data
asynchronously to a P.C. RS232 serial port. Both UPC
Version A (12 Digit) and UPC version E (6 Digit) types will
be decoded.

The main components of the block diagram in Figure 4
are described in the Theory of Operation section.

A~~~

1 2 3 4 5 6
Even Even Odd Odd Even Odd

Figure 4. UPC (Bar Code) Reader Block Diagram

Clock . Bit Time
oc >
— Clock Divider - C.oun.ter
Circuit
N
Counter ::) Latch | Multiplexer
\
Status Flags >
— Output Shift UART Out
f > Register F——
Control
Last Character .| State
Counter ~| Machine
_ Data/CR
} o Multiplexer
Last Bit L f r
Counter 0Dh
Data Shift
Data In t > Register

4-122 1994 Handbook

Bar Code Reader

Theory of Operation

The UPC, or Bar Code, Reader consists of six major
parts, which are the Clock Divider, Bit Time Counter,
Data Shift Register, Control State Machine, Status Bits
and UART. A complete description of each component
follows:

Clock Divider

The Clock Divider Circuit (shown in Figure 8) can be
divided into three parts. The divider takes the 1.8432
MHz reference clock and first divides it by 16 using a four
bit counter CBU44 to generate 115.2 KHz. This is used
as the main reader frequency, and was chosen primarily
for two reasons. First, a frequency was needed that was
fast enough so the clock skew at the edges of the
received wand data is minimal in relation to Terminal
Count (when the data is valid). Clock skew is caused by
the data edge not being aligned with the rising edge of the
clock. They can be, in the worse case, a complete clock
period apart. If, for example, the data period is very small
and the clock frequency is very slow, the width of the first
guard bar will correspond to only a few counts. Again
under worse case conditions, the clock skew at the
starting edge of data added to the clock skew at the end
of data can cause the data to be either sampled twice, or
not at all. This condition is worsened if the data periods
are varying. Secondly, the frequency had to be slow
enough so that a nine bit counter would be sufficient to
determine the width of the guard bar. Thus 115.2 KHz
was selected as the reader frequency.

The 115.2 KHz is further divided using a two bit counter
CBU42. By preloading one and counting up, the end
result is 38.4 KHz. In the final stage, 38.4 KHz is divided
by four using CBU22 to generate 9.6 KHz, which is used
in the transfer of data over the UART.

BIT TIME COUNTER

The Bit Time Counter Circuit (shown in Figure 9) consists
of two counters, storage flip-flops and logic gates. The
two counters namely CBUD8 and CBUD1 form the nine
bit counter which is used in determining the width of the
first guard bar in the code. Once the leading edge of the
first guard bar is received, the counters collectively start
counting down. At the end of the first guard bar, the
counters will contain a value relative to the width of the
guard bar. For the most reliable reading, the data should
be sampled in the middle of a bar or space. To achieve
this, the value corresponding to the relative width of the
first guard bar is divided by two and stored in the three

sets of flip-flops namely two FD24s and one FD21. Thus,
for each subsequent bar or space, the shifted value is
preloaded into the counters and the counters are allowed
to count up to terminal count. Terminal count is then used
to strobe the input data into the data shift register. The
terminal count circuitry which determines when the data
becomes valid consists of two parts, namely the edge
detector and the CNTTC detector. The edge detector
generates a pulse when the data makes a transition from
either low to high or high to low and reloads the nine bit
counter with the stored width value. The duration of the
pulse is one clock period. The edge pulse also resets the
toggle flip-flop which is part of the CNTTC detector
circuitry. Thus when the nine bit counter reaches zero
and the Sample signal goes high, the CNTTC flip-flop is
set, which enables the data shift register, and data is
latched. If an edge is not detected, the toggle flip-flop lets
the counter count the stored guard bar width twice before
CNTTC flip-flop is set and data is taken. The actual pDS
code for this portion of the Bar Code Reader can be found
in Figure 17.

The reason behind having the edge detector circuitry is
to align the CNTTC pulses with the center of the data
(bars and spaces). Since it is extremely hard to move the
wand at a constant rate, the data pulses tend to have
varying periods. If absolutely no alignment is done, the
CNTTC pulses become invalid once the accumulated
change in the data pulses is greater than half the width of
the guard bar. Thus by starting the nine bit counter at the
edges of the data, the above mentioned problem is
greatly reduced. However, the problem still remains if the
data periods reduce or enlarge more than half the width
of the first guard bar. Therefore, it is recommended to
move the wand as steadily as possible to keep the data
pulses within a small margin, roughly half the width of the
first guard bar.

DATA SHIFT REGISTER

The Data Shift Register (shown in Figure 12) consists of
two 4-bit shift registers (SRR24). The Data Shift Register
is used to store the incoming data until a complete
character has been received. As discussed in the de-
scription of the Universal Product Code section, the bar
code is 2 of 7 code. Thus, a complete character is
received after every 7 bits. Moreover, Version E and
Version A codes are 6 and 12 characters long respec-
tively. Thus two counters are needed to keep track of the
bit and the character counts. Although not directly part of
the Data Shift Register, two CBU34 counters keep track
of the number of bits and characters received. Since
CBU34s are 4-bit counters, they are preloaded with nine

4-123

1994 Handbook

Bar Code Reader

for the bit count and ten for the character count respec-
tively. The character counter, when reading the Version
A case, is reset after the sixth character to accommodate
the 12 characters in the Bar Code. After counting the
seven bits, the bit counter generates LASTBIT signal
which tells the rest of the logic a complete character has
beenreceived. The character counter, on the other hand,
after receiving six characters asserts the LASTCHAR
signal. The LASTCHAR signal is used by the Control
State Machine to define various machine states.

Figure 5. State Diagram

CONTROL STATE MACHINE

The Control State Machine (shown in figure 14 and 15) is
the heart of the design. It is based on three state deter-
mining variables namely SBO, SB1 and SB2. The job of
the state machine is to detect and generate the basic
width timing signals, generate the control signals for the
Data Shift register and detect errors. The state diagram
is shown in figure 5. Figure 6 shows a typical wave form
highlighting the various machine states. A complete
description of each state is as follows:

Guard 1 & Din
Guard 2 & IDin

Guard 3 & Din

Figure 6. Data Waveforms Showing Machine States

115.2 KHz
Clock

Input
Data

I | I

Edge
Detector

M__I1

[[T T

I

CNTTC

M rfr -’ 7’7 71 71

LATCH

GUARD1

GUARD2

[
11
[
[

DATA

4-124

1994 Handbook

Bar Code Reader

The first state is the IDLE state. In this state, the Reader
is waiting for a low to high data transition. This
corresponds to the wand and seeing the first guard bar
signifying the start of the Bar Code. IDLE is reached after
6 consecutive zeros are seen in the input data stream
signifying the end of the Bar Code. IDLE is also reached
immediately after an error or after the end of the first half
of a Version A pattern.

Once a low to high transition is detected, the Reader goes
into the START state. As figure 5 shows, this is initiated
by a DIN value which means the data received was a logic
high. Another point to note is START can only be reached
from the IDLE state. Once in the START state, the Bit
Time Counter continuously decrements from zero. This
state continues until the end of the first guard bar.

The end of the first guard bar is detected when a high to
low data transition takes place. This places the Reader in
the LATCH state, which is only a single 115.2 KHz bit
wide. LATCH disables the Bit Time Counter and loads the
counted value into the storage flip-flops. Remember that
the value stored is actually one half the counted value.
This is done to shift the sampling point to the middle of the
bit period. LATCH also loads the stored value in the flip-
flops into the Bit Time Counter.

Once the value is loaded in the Bit Time Counter, the
Reader enters the GUARD1 state. In this state, the Bit
Time Counter is again enabled but instead of counting
down, the counter counts up. The Edge Detector circuit
is also enabled. Once the Bit Time Counter reaches zero,
the Sample signal goes high. This sets the CNTTC flip-
flop which enables the shift register and data is read, and
should be logic low. If it is, the Reader goes into the
GUARD2 state. Otherwise, IDLE state is reached follow-
ingthe ERROR state. Before entering the GUARD?2 state
but after CNTTC, the stored bit width value is again
loaded into the counter.

As figure 5 shows, the GUARD?2 state is reached when
the Reader is in the GUARD1 state and a IDIN is
received. In the GUARD2 state, the Bit Time Counter is
again enabled and allowed to count up. However, the
CNTTC flip-flop is disabled so the next Sample does not
force the Shift Register to take data. This is achieved
through the toggle flip-flop which is part of the CNTTC
circuitry. Thus when the Bit Time Counter counts up to
zero, the bit width value is again loaded into the counter
and is allowed to count up. However, the Sample signal
does reset the toggle flip-flop so the next Sample signal
sets the CNTTC flip-flop which in turn enables the Shift
Register and data is taken in. Remember the Edge
Detector circuitry was enabled in the GUARD1 state.

Thus what really happens is after the first Sample is
detected in the GUARD?2 state, the Edge Detector cir-
cuitry also notices the low to high transition of data and
loads the stored bit width into the counter and resets the
CNTTC flip-flop. Thus the GUARD2 state is the first time
data alignment takes place. Once the Bit Time counter
counts up to zero and Sample is enabled, data is taken
in. If the data is logic high, the control circuitry checks if
LASTHALF status bit is high. Ifitis, then the Reader goes
into the GUARD3 state. Otherwise, the Reader enters
the DATA state. If instead of a logic high, a logic low is
received, the Reader goes to the IDLE state following the
ERROR state.

In the GUARDS state, the same sequence of steps are
repeated as in the GUARD?2 state except that IDIN is the
correct data type used to bring the Reader in the DATA
state. Also, the Edge Detector circuitry is in effect and
influences the CNTTC flip-flop. One important point to
noteisthe GUARDG3 state is entered only if the LASTHALF
status bit is high. The GUARDS is the extra guard bit
foundin the center guard pattern of a Version A code. The
GUARDZS state looks for that bit to be low at the proper
time to enter the DATA state and goes to the ERROR
state if it is not.

In the DATA state, the Reader is ready to receive data
bits, assemble them into 7 bit data words and transfer
them out over the UART. In the DATA state, Edge
Detector circuitry is again enabled and, depending on the
edge transitions, Bit Time Counter alignment with input
data takes place. If an edge is not detected, the toggle
flip-flop ensures proper operation of the Reader. Once
six characters are read, the Reader goes into the IDLE
state. The IDLE state can also be reached if six consecu-
tive zeros are read as discussed in the IDLE state
description above.

The ERROR state is reached if in either of the GUARD
bits the correct data type is not read in. Thus the ERROR
state indicates an abnormal condition has been detected.
When this happens, the Reader sets the ERROR flag and
reverts to the IDLE state and awaits the start of a new
character.

Table 1 provides a list of all the states, including a short
description of each state and a list of conditions which
cause that particular state to occur.

4-125

1994 Handbook

Bar Code Reader

Table 1. State Table
S S S Name Equation Description
2 1 0
0 0 0 IDLE DEFAULT Waiting for the first guard bit to appear
0 0 1 START DIN&IDLE Bit width counter is decremented
0 1 0 LATCH START&!DIN Counted width stored and loaded back
into the bit width counter
0 1 1 GUARD1 LATCH Verifies a space was seen
1 0 0 GUARD2 GUARD1 & IDIN Verifies a bar was seen
1 0 1 GUARD3 GUARD2 & LASTHALF & DIN Verifies a space was seen
1 1 0 DATA GUARD2 & DIN & ILASTHALF # Device ready to receive data
GUARD3 & IDIN & LASTHALF
1 1 1 ERROR GUARD1 & DIN & CNTTC # Abnormal condition has been detected
GUARD2 & IDIN & CNTTC #
GUARD3 & DIN & CNTTC
STATUS BITS Version A code are read. Finally, DATAREADY is used to

Four Status Bits are used (shown in figure 12 and 13) to
keep track of the progress of the read. LASTCHAR is
used to store the fact that six characters have been read.
Thisflip-flop is reset when the Reader is in the IDLE state.
ERRORL stores the fact an error occurred while reading
the code. As mentioned before, the ERROR state occurs
when in either of the GUARD bits, the correct data type
is not read. Moreover, since a seven bit data word is read
and an eight bit data transfer word is used, the ERRORL
bit is transmitted as the most significant bit of each data
word transferred out. Thus the data receiving device on
the other end of the UART can check the eighth bit and
determine if any errors had occurred while reading the
Bar Code. The ERRORL flip-flop is also reset when the
Reader is in the IDLE state. The LASTHALF bit keeps
track of which part of the Version A code is being
scanned. Since the two halves of the Version A code are
decoded independently (the reader goes into the IDLE
state after the first six characters are read), the logic
needs to keep track of which half is being processed.
Thus when the character counter counts the first six
characters, the LCHAR signal goes high which in turn
sets the LASTHALF flip-flop. The LASTHALF bit is used
in decoding the extra GUARD bit present in the center
guard pattern which is the beginning of the second half of
the code. The logic knows if the LASTHALF bit is low, the
DATA state follows the GUARD2 state. Otherwise, the
GUARDS state follows the GUARD2 state. The DATA
state comes after the GUARD3 state. Reset of the
LASTHALF flip-flop is either caused by reading six con-
secutive zeros or when complete twelve characters of the

gate the transfer of a data word from the Data Shift
Register to the Output Shift Register. From the Output
Shift Register, data is transferred over the UART.
DATAREADY flip-flop is set every time seven bits are
read. Reset is caused by the DATTAKEN signal.

NOTE: LASTHALF setsandresetsanotherflip-flop called
SECOND_HALF shown in Figure 12.
SECOND_HALF is only used in decoding the
last bit of the twelfth character in Version A code.
The reason for SECOND_HMALF is because the
last bit of even parity digits is always logic low.
Whenthe lastbitis read, the Readerimmediately
goes into the IDLE state without transferring the
correct byte out because as soon as LCHAR is
enabled, the LASTHALF flip-flop is reset. This
takes the State Machine out of the DATA state
and into the IDLE state. By having the State
Machine depend on SECOND_HALF ratherthan
LASTHALF for the twelfth character, the prob-
lem is resolved.

UART

The UART circuitry (shown in Figure 16) consists prima-
rily of a shift register SRR31. Also shown on the schematic
are two other shift registers and four sets of multiplexers.
All these components are used in transferring the data
out properly. The multiplexers, namely MUX22, select
between data from the Data Shift Register and a hard
coded 0D Hex (ASCIl Carriage Return). The carriage
return is sent whenever six consecutive ones are re-

4-126

1994 Handbook

Bar Code Reader

ceived. It informs the receiver on the other end of the
UART that the Bar Code has been read. The shift register
SRR38 is the Output Shift Register. The data which
accumulated in the Data Shift Register is transferred to
the Output Shift Register once the DATTAKEN signal
goes high which is driven by the DATAREADY signal. In

Figure 7. Serial Data Word Diagram

the Output Shift Register, using the second shift register
SRR31 for clocking purposes, data is converted into the
standard RS232 format and shifted into the UART Shift
Register. The UART supports TTL signals. Thus a level
shifter is needed at the output of the UART shift register.
Figure 7 shows the data format out of the UART Shift
Register.

9600 BPS
104 uS
fe—=
0 1 0 0 1 0 1 0
E Stat 1 Bit8 1 Bit7 E Bit 6 i Bit 5 E Bit4 1 Bit3 1 Bit2 E Bit 1 E Stop E
0867
HINTS ON TRANSLATING BAR CODE DATA RIGHT TO LEFT SCANNING:
TO Asci Number Odd Parity (Hex) Even Parity (Hex)

The Lattice pLSI device receives data from the wand and
tranfers it out through the UART Register. The UART
Register supports TTL logic levels. An RS232 level
shifter is needed before the data can be properly pro-
cessed by the PC. The data format is: 8 Data bits, No
parity, 1 Stop bit. The data rate is 9600 BAUD. The PC’s
serial port has to configured accordingly. As mentioned
in the Universal Product Code description, the data
words either have even parity or odd parity. Thus a look
up table is needed so that the received data words can be
converted to their ASCII equivalent. Each type of parity
has ten different codes for the ten digits. Since the wand
can be scanned either from left to right or fromright to left,
the look up table has to have forty entries. Once the look
up table is implemented, the received data can be com-
pared and the proper ASCII code can be printed out. The
look up table is as follows:

LEFT TO RIGHT SCANNING:
Odd Parity (Hex)

oD
19
13
3D
23
31

2F
3B
37
0B

Number Even Parity (Hex)

72
66
6C
42
5C
4E
50
44
48
74

©CONOUPWN-—=O

27
33
iB
21

1D
39
05
11

09
17

58
4C
64
5E
62
46
7A
6E
76
68

OCoONODOBDWN-—-+O

4-127

1994 Handbook

Bar Code Reader

Figure 8. Clock Divider
DIVIC
)
PS
PL [4:5] LD LK (0]
DIV [4:5] . :
. 11 Qo1
D[0:1] Qjo:1] 38.4 KHz [0:1]
CAl cA0 cAl cA0
cBU42 cBU22
m-vee EN EN
CLK D> CLK
cD
cs CLKO A0 7o 192KHZ
D-50e .
115.2 KHz
GND
[CLK1 A0 o S6KHZ
55 D50 .
LD oIV
D[0:3] Q[03 03l
e PR 0
|
T CBU44 DIV [0:5]
EN
1.8432 MHz ooee
| & CLK
cs
GND
|

= vce AQ D Z0 PL4
BUF

.GND AQ 20 PL3
BUF

A0 D z0 PL2
BUF

A0 Zo0 PL1
D BUF

PL[0:5]

4-128

1994 Handbook

Bar Code Reader

Figure 9. Bar Width Clock Circuitry

GND
l SAMPLE
PS
CNTLD D
»(D8 Q8 >
vce cal Ve
CAOL |, ©BUD1 . —1D0 Q8
START DNUP FD21
SMCLK S oLk
cD CS P> CLK
CD
T |
IDLE GND RST|
LATCH
CAOL
GND Q[s:8] ()
l p— Y () Q6]
CNTLD PS FD24
—»(LD
—
Moz a7 Ao P o
vVCC y
——»CAl)
ACTIVE
C en CBUDB L [T
START /oo AsT
SMCLK S CLK
cD Cs l
T T Q[1:4] cD
D[0:3
IDLE GND (o:3) Q[0:3]
FD24
——1> CLK
LATCH
CNTTC A0 ZNo CNTTC o
INV
= IDLE A0 ZNO _ ACTIVE o
INV A0
Al AND 3
A2
START A0 ZNO — 0
- LATCH INV A1 JOR2 20 CNTLD
0869

4-129

1994 Handbook

Bar Code Reader

Figure 10. CNTTC Detector Circuitry

Toggle
Flip Flop
SAMPLE DO Qo CNTS
SMCLK CLK
CD
Edge
o
Flip Flop
SAMPLE

CNTS DO Qo m——»

SMCLK CLK

0870

GET_DATA

GET_DATA = RST # (EDGE & GUARD2) #
(EDGE & GUARD3) #
(EDGE & DATA)

4-130 1994 Handbook

Bar Code Reader

Figure 11. Edge Detector Circuitry

o o
Flip Flop Flip Flop
DIN DO Qo DIN1 > DO Qo DIN2
SMCLK
»> CLK > CLK

RST RST
A A
/T

RST

4-131

1994 Handbook

ceL-v

JooqpueH 661

DATA
SHIFT
REGISTER SR0:3] _
Qo:3] R (ASTCHAR o
DIN cal LNV
SRR24
L onrre o ° . LASTCHAR
IDLE ERRORL
Ko LASTHALF
CLK LASTCHAR -
. DATARDY
FJK21 ———1
. FESET ~ LASTHALF o
SR3 CLK LCHAR TN
co
N
— @GN0
SR[47] ERROR Bl
Qo3 'L Jo Qo LATCH PS
cal w2E - 0 LCQ [0:3]
SRR24 ERROR —D[0:3] Q[0:3] -
EN FJK21 e CAIl cao—
19.2KHz caus
[PRLE > CLK cLK LASTBIT N
¢ oo L
») 192KHz oK
D
- 1 L c
Jo Qo vce LCDL3
IDLE
LASTBIT LBLD LD Ps LASTHALF __[anD2) Ko = DFUF UNCERTACTER
Jor2> - LHK GND LcoL2 COUNTER
LBQ [0:3] LASTHALF [} >50F
pee{ D [0:3] Q[0:3] — GND D LeoL [0:3)
vee ~.___ LASTBIT FJK21 .———D—&
» CAl CA0 o i BUF
DATA CBU34 INV CLK vee LCDLO
cp P2
CNTTC AND 2, TBEN EN T
. 19:2KHz > ok
co LASTBIT " @
LAST BIT DT KODATA READY
COUNTER
vee LBDL3 Rzt
Ly D50 19.2KHz
GND LBDL2 ® oK .
= D0 .
G0 oLt | LeoLioea)
>a0r
vce LBDLO RESET
» Dﬁjp L 0872

s)ig smejs pue Ja)sibay HiyS eleq 1 ainbyy

Japeay apos) Jeg

Bar Code Reader

Figure 13. Second Half Circuit

LASTHALF

RST
CcD
LCHAR Do Qo
LHK — »lko
FJK21
LASTHALF
SMCLK
———>CLK
o
Flip Flop
» DO

LATCH
—>

SECOND_HALF

> CLK

SECOND_HALF
>

cD
RST

LCHAR

LASTHALF LHK

IZEROS o7

4-133

1994 Handbook

12154

3oogpueH $661

FD21

CD FD21
DATA A0 »
=usrc"nﬁ At .—J
CLK
o 20 20 61
SECONDHALF A0 LASTCHAR Al .
LASTCHAR Al 2 GU/ A0 ;
| DR A2 \ND 3, » DIN Al AN 20
oI A2 Y
ZEROES- GUARDT A0
.. T9.2KHz b
i FESET
oo P
DIN At SECONDHALF a0
LATCH 3 LASTCHAR Al 20
B uarpi A0 - T Atfano 3
e A
$B0,
o1
82,
Do E
0874
FD21
LASTCHAR At w 20 SH
GUARD2 A0
.. BiN X -] CLK
HEE a2 MNPYT7 co
GUARDI __ A0 @
SECONDHALF A0
LASTCHAR Al AND 20
DIN A2

si9)s1bay aulyoe ajels v ainbig

Jopeay apo) Jeg

Bar Code Reader

Figure 15. State Machine Decode

DATA
|
SR5 A0~ 2ZNO
>
NV A0
SR4 A0~ ZNO Al
NV A2
MDQZ&—M 2ZNo ZEROS-~
INV vy ot A0
SR2 A0 lNf/No a5 NAND 7 A Lyzo IDLE o
SR A0 [ZNO A6 A0 | ZNO A2 °
sB2 A0
INV. INV
SRO A0 __ZNO AL P20 START -
77 s
SR [0:5] A0 2ZNO ’;&J—J !
—
sB1 NV AQ
Al]"‘;\ZO LATCH o
AND 3
A0 [ZNO :ﬁ 2
DATARDY SBO NV Al [o920 GUARDY o
a2 |03
A0
Al I‘D'D 20 GUARD2 o
A0 o s
20 CR2 DATTAKEN A0
A0 ,l>TZNO » Qo |—CR A1 @ Do a A1_—\Z0 GUARD3
INV AND 3) |
o | n2 |5
A0
FJK21
FD21 M o920 DATA g
KH; KH o °
19.21 9.6l
| = CLK 2 CLK A0
. o Al m\zo ERROR o
La2 /=7
RESET
|3
0875
4-135 1994 Handbook

Bar Code Reader

Figure 16. Output Shift Register

1

SAM [6:7]
Af0:1] o ™
B[0:1] UARTOUT
UMUX [6:7]
CRIET Z[01] oo 0 .
MUX22 cAl
. en SRR31
R P
SR[0:7] SR[4:5] cD
e I usrs |
Srls) 0 UMUX [4:5]
Z[0:1) 1 USR[1:8
x22 s (e
LD
CR[0:7] UMUX [0:7] D[0:7]) Q[0:7]
A0 20 CR7 — SO
D>E—= CcAl
A0 70 R | gy SRR
SR[2:3]
A0 N_Z0 CR5 Afo:1]
D B[0:1]
y UMUX [2:3] —>cik
pA0 1,20 CRd | CRIENcRten zio co
AOr 70 ORI Mux22 J
A0 ',: z0 CR2 »——lSO 1
A0 z0 CR1 Lo Ps
A0 70 CRO sRlf0:1] bo @
> A0:1] oA
B[0:1] : SRR31
: UMUX [0:1
CRl01) CR[6:7) zm;uJ EN
MUX22
—> CLK
cp
mDLE o
- DATTAKEN
mFESET
) 9.6KHz
a_vee
N
| 3 GND 0678
4-136 1994 Handbook

Bar Code Reader

Figure 17. Portion of .LDF file

SYM GLB A2 1;

// 8-bit up/down counter wih Async preset, parallel load,

// enable, up/dn, Async and Sync clear. Uses 3 GLBs

// Used as part of 9-bit counter to store the first bar’s width value.
// Bit 9 is located in GLB AS5.

CBUD8 ([CO0..C7]}, CNTTC, [LO..L7], VCC, SMCLK, GND, CNTLD, ACTIVE, START, IDLE, GND)]; l
END;

SYM GLB A3 1;

// This is bit 9 of the 9-bit value storing the first bar’s width
CBUD1 (8, SAMPLE, L8, VCC, SMCLK, GND, CNTLD, CNTTC, START, IDLE, GND)];
END;

SYM GLB A4 1;

// This is the Flip Flop to store the lower 4 bits of the bar’s width
FD24 ([CO0..C3]), [LO..L3], LATCH, RST);

END;

SYM GLB A5 1;

// This is the Flip Flop to store the upper 4 bits of the bar’s width
FD24 ([C4..C7]), [L4..L7], LATCH, RST);

END;

SYM GLB A6 1;

// This is the Flip Flop to store the MSB of the bar’s width

FD21 (C8, VCC, LATCH, RST);

END;

4-137 1994 Handbook

Notes

4-138 1994 Handbook

#L attice

High Density PLD Solutions For
High Speed RISC/CISC Systems

As the next generation Pentium™, PowerPC™ and
Alpha™ processors reach new heights in speed, design-
ers face increasingly difficult system design problems
when trying to realize each processor’s full speed capa-
bility. ASIC solutions are a viable option in terms of
speed, but the decision to go with such a solution is
influenced by another variable which is becoming ever
more important - time-to-market.

Winners of the race to introduce a new product stand to
reap the lion's share of profits from the product’s life-
cycle. Although ASICs are capable of keeping pace with
the new generation of processors, they are often losers
in the race for time to market. Low-density PLDs are a
popular choice because of their speed and ease of
programming. Another option now exists which provides
the benefits of low-density PLDs while supplying higher
densities and more 1/Os. Lattice Semiconductor offers
two new families of high speed programmable logic
devices, the ispLS| and pLSI 2000 family and the ispLSI
and pLSI 3000 family to address these speed and time-
to-market issues. Both these families, as well as the
ispLSI and pLSI 1000 family, are available as in-system
reprogrammable devices which eliminate the need for
sockets that often result in unreliable operation due to

bent leads.

A Case For Speed

A rule of thumb for designers is that microprocessor
systems typically require external logic to operate at
twice the speed of the processor clock. It stands to
reason that if the external logic was to consume the entire
clock cycle for some computation, there would be no
remaining time to satisfy any system setup requirements.
This rule implies that Pentium, with its 15ns clock cycle,
requires logic devices which have a speed rating of
7.5ns. If analyzed in more detail, Pentium, which has a
maximum clock-edge to control-signal-valid delay of 8ns'
(figure 1), retains 7ns of its clock cycle for external logic
to perform a computation and satisfy setup requirements
if a registered action is expected on the next clock edge.
Logic devices with a 7.5ns Tpd rating typically have set-
up times in the 4ns range. Thus, such devices can
realistically conform to Pentium’s bus specifications.
Another constraint is that external logic is to provide valid
output signals in time to meet Pentium’s setup require-

ment of 5ns. This implies that logic devices must have a
clock-to-out time of no more than 10ns. As seen in figure
1, 7.5ns logic devices have a clock-to-out time of 4ns to
5ns which easily satisfies Pentium’s setup requirements.
While 7.5ns speeds are attainable from fast low-density
PLDs, the requirements of today’s wide buses make it
desirable to have higher levels of integration with more
1/0. Address decoders and bus logic are examples of
circuits which demand such speed, density and I/O.

Lattice’s ispLSI and pLSI 2000 family specifically targets
these applications. This family has devices which are
able to integrate up to 10 traditional PLDs into a single
package while supplying up to 102 I/Os. These devices,
while being much higher density than PLDs, suffer no
speed penalty. With propagation delays of 7.5ns and
clock rates of 135 MHz, the ispLSI and pLSI 2000 family
operates comfortably in systems which were once the
sole domain of ASICs and the fastest low density PLDs.
The set-up times of the 2000 family devices are within the
7ns requirement of the Pentium bus thus allowing the
generation of registered control signals such as Bus
Ready (BRDY#) (figure 1).

Figure 1. Pentium™ Burst Read-Cycle With Relative
Timings

0 15 30 45 60
a” /N S
ADDR X
ADSH \ /
WIR# \
sROYF \

DATA READ)—— READ)—— DATA }—
> -+
T T2 13

PN

Setup & Clock-to-Out for Lattice ispLSI/pLSI 2032

T1 = 8ns = Max time for Pentium™ signals valid.
T2 = 7ns = Time remaining for external logic setup to next clock edge.
T3 = 5ns = Bus Ready (BRDY#) min setup time.

0887

4-139

1994 Handbook

High Density PLD Solutions For
High Speed RISC/CISC Systems

Address decoders are circuits which usually sit directly in
the critical path of memory accesses. For this reason,
Tpd is all important. For example, if we were to use
Pentium with its 8ns Address-Valid time, a 7.5ns logic
device for the address decoder, and a RAM with a 10ns
Chip-Enable to Data-Out time, we would generate valid
read data 25.5ns after the start of the read cycle. Pentium
requires that read data be valid no later than 26.2ns
(assuming no wait states). With a 7.5ns logic device, we
have met Pentium’s requirements with 0.7ns to spare.
The ispLSI and pLSI 2032 and 2064 are designed to
economically implement circuits such as this. These
devices provide 32 and 64 macrocells respectively with
34 and 68 signal pins.

A Design Example

An example of a design which requires both high speed
and a high degree of integration is a circuit to interface a
16-bit wide memory into a Pentium system with its 64-bit
wide data bus. This 16-bit memory might possibly be a
memory-mapped I/O device or a specialized RAM sub-
system. The Lattice ispLSI and pLSI 2096 can be
effectively used to integrate this 16-bit memory system
into the Pentium’s 64-bit environment while meeting all
speed requirements. Figure 2 shows a block diagram of
how this high-density PLD can be used to integrate the
logic functions required for such an interface.

Figure 2. Interfacing A 16-bit Memory Sub-System To Pentium™

_ D7-DO0 >
| o D15-D8 g
<D23D16 >
_ D31-D24 >
< D39-D32 i
__ D47-D40 > 64-Bit
, _ D55-D48 5| Memory
™ (e
Pentium ™ 545 556 -
Processor [o
ADS#
W/R#
64BRDY
A A
A31-A3 A31-A3
BE7#-BEO# BE7#-BEO#
Yy vy
A\
ADS#
WIR#
Lattice D7-DO0 _
ispLSI or pLSI 2096 " D15-D8 .
P P <2508 16-Bit
A2-A1_ | Memory
Byte Select, Swap
168RDY and Assembly
BHE# A4 o
BLE#

4-140

1994 Handbook

High Density PLD Solutions For
High Speed RISC/CISC Systems

Intel specifies that to perform a read from a 16-bit write operations are depicted in figure 3. In addition, the
memory, external logic is required to assemble four Pentium decodes the three least-significant address bits
consecutive 16-bit reads into one 64-bit word. Writes into eight unary byte-select signals. These byte select
require that the 64-bit word be broken into four 16 bit signals must be re-encoded into the binary A2-A1 ad-
words which are consecutively written. These read and dress bits.

Figure 3. Read And Write Operations

Read Operation

16-Bit Memory Word

4th Read

3rd Read

2nd Read

1st Read
DM15 DMO

\ DO

64-Bit Pentium Word

Write Operation

D63 64-Bit Pentium Word DO
T T

DM15 ¥ DMo

1st Write

16-Bit Memory Word

0889

4-141 1994 Handbook

High Density PLD Solutions For

High Speed RISC/CISC Systems

Within the 2096, the 16-bit write data path is created by such writes occur for every one 64-bit Pentium word. The
the use of sixteen 4-to-1 multiplexers which selectone of 64-bit read data path is implemented with four sequential
four Pentium byte pair bits. These multiplexer outputs reads of the 16-bit memory into a 64 bit wide register. The
form a 16-bit word which is written into the 16-bitmemory. read path is shown in the lower portion of figure 4.

This circuit is shown in the upper portion of figure 4. Four

Figure 4. Memory Interface Data Path

W_Sel_0,1
Do . W_OE
D16 L
D32
’ D48 '
"
i
18
. i MUXES !
11 Total
"
o

D15 N

DO

1
1
H
D31 q DM15
D47
D63

DMO

TTTTTTTTITTT

DM15

o
2
’..

=
o
a
&
§ D16 1 DM
2 o
L] =
s - .
S . = .
3 -
-
% D31 = DM15
-
<
J R_Sel_2
£ D32 5 DMo
3 .
] =
S . =
a . E
. -
Da7 5 = DM15
R_Sel_3
D48 5 1 DMo
. =
- .
. -
- .
. =
= .
i D63 g DM1s

16-Bit Memory - Data Bus (DM15-DM0)

4-142

1994 Handbook

High Density PLD Solutions For
High Speed RISC/CISC Systems

Control of the read and write operations is accomplished
with a portion of the 2096 dedicated to control, decode
and state machine functions. This control unit is shown
asablockdiagraminfigure 5. The state machine concep-
tually generatesthe W_Sel_nand R_Sel_ncontrolsignals.
These signals in actuality do not exist. Instead they are

Figure 5. Memory Interface Control Logic

locally decoded from state bits in the 4 to 1 MUXes and
inthe read register. This is done to eliminate an additional
pass through the HDPLD logic and thereby improves
speed. The 16BRDY signal is generated by the state
machine and signals that the Pentium can advance to the
next transaction.

ADS# —p| L (W_Sel_1)
W/R# — — (W_Sel0) =
o —— (R_Sel_3) -‘é
E BE7# —»| —» (R_Sel_2) 8
D BE6# —» —» (R_Sel_1) §
7]
g BESt — — (R_Sel0) &
2
2 BE4# —» Control, Decode —»WOE E
E BE3# —» And ——» R_OE
BE2# —» State Machine Logic
BE1# —»
BEO# — -
——» BHE# 2
16BRDY <€—— §
——» BLE# =
—r
— A1 ®
©
o
-

Note: Signals in parenthesis are shown for logical clarity.
In practice these signals are encoded as state-bits.

For full 64-bit Pentium reads and writes, the BHE# and
BLE# signals are always active. A2 and A1 are sequen-
tially incremented to provide the read and write operations
as shown in figure 3. For aligned 32-bit and 16-bit reads
and writes, BHE# and BLE# also remain active and the
BEn bits are decoded to generate appropriate A2 and A1
bits. The sequence of address counts is reduced to 2
counts for 32-bit operations and no counts for 16-bit

0891

operations. 8-bit operations require similar decoding but
only the appropriate BHE# or BLE# signal is activated.

All these circuits can be efficiently and simply imple-
mented in a single Lattice ispLSI and pLSI 2096 device.
This interface requires 95 signal pins for which the 2096
provides 102inputs and I/Os. 96 macrocells are available
of which approximately 90 are required for this design.

4-143

1994 Handbook

High Density PLD Solutions For
High Speed RISC/CISC Systems

For Higher Density Functions

Although the ispLSI and pLSI 2000 family addresses
many of the needs in today’s microprocessor systems,
more complex subsystems may require a greater amount
of logic than is available in the ispLSI and pLSI 2000
family. Such subsystems might include graphics func-
tions, multiprocessor support, bus adapters, etc. For
example, Intel does not at the time of this writing supply
a Memory Bus Controller (MBC) for Pentium systems.
Lattice has introduced the 3000 family of devices to
specifically address such high density applications. This
family, with clock rates of 110 MHz, pushes high density
PLDs to new heights in terms of density, offering up to
14,000 gate equivalents. This new level of density offers
microprocessor systems designers the ability to design
gate-array class subsystems with the ease and time to
market advantages of programmable logic devices. In
addition, this family with its in-system reprogrammability
and dedicated IEEE 1149.1 boundary scan test capabil-
ity, is able to greatly enhance system test capabilities,
thus improving system quality.

1. “Bus Functional Description”, Pentium™ Processor User's Manual,
Volume One, Intel Literature Number 241428, 1993.

4-144

1994 Handbook

Lattice

SCSI Interface with

the ispLSI 3256

Introduction

Today’s high performance computer systems require
greater data storage capacity and higher throughput. The
SCSI (Small computer System Interface) bus interface
has risen to become the standard in peripheral commu-
nications for high-end computer systems. The versatility
and flexibility of SCSI allow for higher integration without
sacrificing cost and space. This applications note de-
scribes the implementation of a Programmable SCSI
Controller (PSC) using Lattice’s ispLSI 3256 Device.
Figure 1 shows a block diagram of a PSC application.

SCSl is an intelligent bus interface that provides high
performance data transfers between the host computer
and peripheral devices. SCSI allows a maximum of eight
devices to be attached to the bus without any additional
hardware. Control of the SCSI bus is shared through
arbitration using a prioritized ID assigned to each SCSI
device. When two SCSI devices communicate, one acts
as aninitiator, and the other acts as a target. The initiator
originates an operation, and the target executes the
operation. The ispLSI 3256 PSC design implements a
SCSl initiator.

Figure 1. Application Using an ispLSI 3256 Device as Programmable SCSI Controller

CLK
/RESET

vy

W
/R

\

CPU oS

A2.0]
D[7.0]

\

H

f e mempeeprmmr e

Scsi

INT ispLSI 3256
Programmable

Controller

SDI[7.0,P]
SDO[7.0,P]
SELI !
SELO '
BSYI
BSYO
REQI

ACKO
MSGI
MSGO
C/DI
C/DO
1101

1100
ATNI
ATNO
RSTI

RSTO

SCsI
Bus

H

Network

i

'
'

'

1

L}

'

'

:

! .

' Transceiver
'

'

"

'

L}

'

+

'

'

'

!

!

0879

4-145

1994 Handbook

SCSI Interface with the ispLSI 3256

SCSI Bus Phases

The communication between the devices is governed by
the SCSI bus phases. Figure 2 shows a simple state flow
for the different SCSI bus phases. Initial system power up
and all SCSI reset conditions puts the SCSI bus in the
Bus Free state. Although optional, almost all SCSI sys-
tems support and utilitize the arbitration facility to prevent
bus contention. Either the Selection or Reselection phases
follow after winning arbitration. The Information Transfer
state is really composed of the Command, Data, Status
and Message phases. These specific phases determine
the type of data on the bus and in what direction the data
travel.

BUS FREE - The Bus Free phase indicates that the SCSI
bus is available for use and that no SCSI device is
actively using it. SCSI operations normally start and end
with the Bus Free phase.

ARBITRATION - The Arbitration phase allows an SCSI
device to acquire control of the SCSI bus. Depending on
the control signals the device will become either the
initiator or target.

SELECTION - During the Selection phase, an initiator
selects a target to begin an operation such as a READ or
WRITE.

RESELECTION - During the Reselection phase, a target
reconnects to an initiator after operation was suspended
by the target.

COMMAND - The Command phase allows the target to
request instructions from the initiator.

DATA IN - During the Data In phase, data is transferred
from the target to the initiator.

Figure 2. SCSI bus phase sequences

/RESET

sel_cmd

Arbitration

arb_cmpl & lwon

arb_cmpl & won

xfer_cmpl

DATA OUT - During the Data Out phase, data is trans-
ferred from the initiator to the target.

STATUS - The Status phase allows the target to pass
status information to the initiator.

MESSAGE IN - During the Message In phase, the target
sends message(s) to the initiator.

MESSAGE OUT - During the Message Out phase, the
initiator sends message(s) to the target.

SCSI Bus Signals

The SCSI bus phases are determined by the configura-
tion of the control signals.

BSY (BUSY) Signalindicating the SCSI busis being used
by a device.

SEL (SELECT) Signal driven by an initiator to select a
target or by a target to reselect an initiator.

C/D (CONTROL/DATA) Signal driven by a target that
indicates the direction of data transfer on the data bus.
True signal indicates data flow from the target to the
initiator.

MSG (MESSAGE) Signal used by a target during the
MESSAGE phase.

REQ (REQUEST) Signal driven by a target to request for
data transfer.

ACK (ACKNOWLEDGE) Signal driven by an initiator to
acknowledge a data transfer.

Select
(Reselect)

Information
Transfer

sel_cmpl
(rsel_cmpl)

0880

4-146

1994 Handbook

SCSI Interface with the ispLSI 3256

ATN (ATTENTION) Signal driven by an initiator to indi-
cate the ATTENTION condition.

RST (RESET) Signal that indicates the RESET condi-
tion.

DB(7-0,P) (DATA BUS) Data bus signals that include
eight data-bits and a parity-bit. Data parity is odd.

Design Description

A complex programmable logic device such as the ispLSI
3256 is an ideal solution for a Programmable SCSI
Controller (PSC) device where flexibility is attained with-
out sacrificing speed or density. The 11,000 PLD gates
ispLSI 3256 with 80 MHz operating frequency and 15ns
delay provides optimal performance for this application.
In addition, the ispLSI 3256 provides not only in-system
programmability but also reconfigurability without the
need to remove the device from the PCB. The following
discussion shows an ispLSI| 3256 device implementing
the role of an initiator with support for arbitration, selec-
tion, and reselection sequences.

Figure 3 shows the functional blocks of the ispLSI 3256
design which consists of three main modules: sequenc-
ers, decoding logic, registers and counters.

Figure 3. Block Diagram of Programmable SCSI
Controller

Decode
Logic l

\ Sequencers

Register
Counters

0881

The sequencers module consist of five state machines
which process the SCSI bus data and control the flow of
information. The RESEL_SM state machine handles the
reselection phase sequences. The SEL_SM state ma-
chine processes all control signals and executes the
selection of the target device. The ARB_SM state ma-
chine supports the arbitration phase. The DDXFER_SM
state machine controls the transfer protocol between the
initiator and the target. The SEQ_SM state machine is
the main sequencer which oversees all other state ma-
chines.

The ispLSI 3256 architecture is ideal for building complex
state machines. State transitions and conditional branch-
ing are supported by the AND-OR arrays and Product-
Term Sharing Arrays (PTSA) logic. With up to 20 product-
terms and hard-XOR gates, high speed complex combi-
natorial logic can be realized. The PSC’s state machines
require a large number of inputs and many product-terms
to implement. With 24 inputs per GLB, the ispLSI| 3256
can maintain single delay levels for high fan-in functions.

The registers of the PSC include: CMD_REG, IN_REG,
OUT_REG, STAT_REGandINTR_REG. The CMD_REG
(address 0) is a write-only register used to store the
commands for the PSC. The IN_REG, utilizing the input
registers of the ispLSI 3256, holds all the input signals
from the SCSI bus. The OUT_REG stores data to be sent
to the SCSI bus. The STAT_REG is a readable register
giving status of the PSC and the SCSI operation.

Input Register (IN_REG)

Output Register (OUT_REG)
Command Register (CMD_REG)
SEL_CMD

Status Register (STAT_REG)
Interrupt Register (INTR_REG)
SCSI ID Register (SID_REG)

In addition to the 256 GLB registers, the ispLSI 3256
offers 128 registers/latches in the I/O cells. Besides
implementing input latches (as used in the PSC design),
the 1/O registers/latches can also be used for signal
synchronization, double registering for mestability, etc.

There are a number of counters in the PSC used to
provide timing delays associated with the SCSI opera-
tions. The BSFR_DLY counter provides the necessary
delay before arbitration may begin. The BSST_DLY
counter provides the bus settle delay before the PSC may

4-147

1994 Handbook

SCSI Interface with the ispLSI 3256

be reselected by the target device. The ARB_DLY counter
gives the arbitration delay timing.

Fast loadable counters can be easily implemented in an
ispLSI 3256 device. Wide GLB inputs allow up to 24
signals including counter load inputs and Q feedbacks to
drive single logic level flip-flop equations without using
additional logic.

The ispLSI 3256 also provides two Global Output Enables
(GOEs) which are dedicated input pins driving all of the
127 1/O cells for output or directional operations. In the
PSC design, the two GOEs can be used for transfering
bidirectional data to the CPU and SCSI buses without
requiring internal product-terms or routing resources.

Typical SCSI Operations

A typical SCSI operation can be used to i!'lustrate the
functionality of the Programmable SCSI Controller. The
first section describes sequences associated with the
target selection by the PSC. The second section details
the reselection of the PSC by the target device.

PSC Selects Target

INITIALIZATION - For the PSC, a typical SCSI operation
starts with the SEQ_SM (main sequencer) state machine
in the IDLE state and waits for a SEL command from the
CPU. Figure 4 shows a state machine diagram for
SEQ_SM. Once the SEL command is received, the
SEQ_SM goes into the arbitrate state and remain there
until arbitration is complete. Listing 1 details the ABEL
implementation of the main sequencer.

Figure 4. Main Sequencer State Machine Diagram (SEQ_SM)

4-148

1994 Handbook

SCSI Interface with the ispLSI 3256

Listing 1.
STATE_DIAGRAM main_sm

STATE main_idle:
IF sel_cmd==1 THEN arb_st
“ Receive Select command “
WITH arb phs.d =1
ELSE IF (resel_phs) THEN resel_ st
“ Detect Reselection Phase “
ELSE main_idle;

STATE arb_st:
“ Arbitration Phase “

IF (arb_cmpl & won) THEN sel_st
“ Won Arbitration “

- WITH sel_phs.d =1
“ Goto Selection Phase *“

ELSE IF (arb_cmpl & !won) THEN
main_idle “ Lost Arbitration “

WITH intr.d = 1;

“# Interrupt CPU “

STATE sel_st:
“ Selection Phase “
IF (sel_cmpl) THEN xfer_st

WITH xfer phs.d = 1
ELSE sel_st;

STATE resel_st:
“ Reselection Phase *“
IF (resel_cmpl) THEN xfer_ st
WITH xfer_phs.d =1
ELSE resel_st;

STATE xfer_ st:

“ Data Transfer Phase “
IF (xfer_cmpl) THEN main_idle
ELSE xfer_st;

END

Figure 5. Arbitration State Machine Diagram

IDLE
ASSRT ARB
SY

B

(ARB_SM)

LOST

Listing 2.
STATE_DIAGRAM arb_sm

STATE arb_idle:
IF (arb_phs) THEN bus_free
“ Detect start of Arbitration
ELSE arb_idle;

STATE bus_free:
IF (!bsyi & !seli) THEN sett_free
“ Detect Bus Free state
WITH timer.ar = 1
ELSE IF (arb_phs) THEN bus_free
ELSE arb_idle;

4-149 1994 Handbook

SCSI Interface with the ispLSI 3256

STATE sett_ free:

IF (l!bsyi & !seli & timer.q ==
sett_free_dly) “ Bus settle & bus free
delays

THEN assrt_bsy WITH timer.ar =1

ELSE IF (!bsyi & !seli & timer.q <
“D11)

THEN sett_ free WITH timer.d =
timer.q + 1
ELSE arb_idle;

STATE assrt_bsy:

bsyo.j = 1;
“ Assert BSY
dbo0 = sid==0; “
Assert RSC’s SCSI ID
dbol = sid==1;
dbo2 = sid==2;
dbo3 = sid==3;
dbo4 = sid==4;
dbo5 = sid==5;
dbo6 = sid==6;
dbo7 = sid==7;

IF (!seli & won & (timer.g==arb dly))
“ Won Arbitration
THEN arb won WITH timer.ar = 1
ELSE IF (seli # ((timer.g==arb_dly &
fwon))) “ Failed Arbitration
THEN arb_lost
ELSE assrt_bsy WITH timer.d = timer.q
+ 1; *“ Arbitration delay period

STATE arb_won:
selo.j = 1;

“ Assert SEL
GOTO arb_cmpl;

STATE arb_cmpl:
IF (timer.g==sett_clr_dly)
“ Wait for bus settle & clear
THEN arb_idle WITH arb cmplt = 1
“ End of Arbitration
ELSE arb_cmpl WITH timer.d = timer.q +
1;

STATE arb_lost:
arb_cmplt = 1;

“ End of Arbitration
bsyo.k = 1;

“ Negate BSY
arb_fail int = 1;

“ Set Interrupt
GOTO arb_idle;

END

BUS FREE PHASE - Before arbitration can begin, the
PSC must detect the Bus Free phase. The ARB_SM
state machine must read the BSY and SEL signals false
for a bus free delay until the arbitration phase is entered.
Figure 5 shows a state machine diagram for ARB_SM
and Listing 2 details the ABEL implementation of the
arbitration process.

Figure 6. Selection State Machine Diagram (SEL_SM)

ABORT

4-150

1994 Handbook

SCSI Interface with the ispLSI 3256

Listing 3.
STATE_DIAGRAM selection

STATE sel_idle_st:
IF (sel_phs) THEN sel_dly_st
ELSE sel_idle_st;

STATE sel_dly st:
IF (sel_dly_cnt == 12) THEN dest_id_st
ELSE sel_dly_st
WITH sel_dly_cnt.D = sel_dly cnt.Q +
1;

STATE dest_id_st:

dbo0 = (dest_id==0);

dbol = (dest_id==1);

dbo2 = (dest_id==2);

dbo3 = (dest_id==3);

dbo4 = (dest_id==4);

dbo5 = (dest_id==5);

dbo6 = (dest_id==6);

dbo7 = (dest_id==7);

IF (id_dly_cnt==4 & atn_cmd) THEN
release_bsy st WITH atno=1

ELSE IF (id_dly_cnt==4 & !atn_cmd)
THEN release_bsy_ st

ELSE dest_id_st WITH
id_dly_cnt.D=id_dly cnt.Q+1;

STATE release_bsy st:
bsyo.K = 1;
IF (bsy_dly_cnt==4) THEN

timeout_bsy_st
ELSE release bsy st WITH bsy_dly cnt.D
= bsy dly cnt.Q + 1;

STATE timeout_bsy st:

IF (bsyi & resel_cmd) THEN deskew_ st

ELSE if (!bsyi & timeout_cnt==timeout)
THEN abort_st

ELSE timeout_bys_st WITH timeout.D =
timeout.Q + 1;

STATE deskew_st:
GOTO deskewl_st;

STATE deskewl_st:
GOTO deskew2_st;

STATE deskew2_st:
GOTO release_sel_st;

STATE release_sel_st:
selo.K = 1;
sel_cmplt = 1;
GOTO sel_ idle_st;

STATE abort_st:
selo.K = 1;
disc_int.D = 1;
cmd_reg.re = 1;
GOTO sel_idle_st;

END

Figure 7. Data Transfer State Machine Diagram (XFER_SM)

XFER

~

1

IDLE

CcMD

‘@?)

§

4151

1994 Handbook

SCSI Interface with the ispLSI 3256

ARBITRATION PHASE - In the arbitration phase, one or
more devices will try to gain control of the SCSI bus. In
state machine ARB_SM shown in figure 5 and Listing 2,
the PSC asserts BSY and drives its SCSI ID bit onto the
8-bit data bus. At the same time, the PSC reads the data
bus to determine whether a device with higher priority
wants control of the bus. The highest priority device wins
control of the bus and continues to assert the BSY and
SEL signals. All other devices participating in the arbitra-
tion must release BSY and their SCSI ID bit when SEL
become active.

SELECTION PHASE - After winning the arbitration, the
PSC (acting as initiator) asserts both SEL and BSY
signals. Figure 6 shows the Selection state diagram and
Listing 3 details the ABEL implementation. In state ma-
chine SEL_SM, to select a target, the PSC releases the
BSY signal, drives the target’s SCSI ID bit and its own ID
bit active on the data bus, and de-asserts the 1/0 signal.
The PSC will continue to drive SEL until the target asserts
BSY.

ATTENTION CONDITION - The PSC may assert the
ATN signal during the Selection phase and while the SEL
signal is still asserted, thus indicating that it wants the
target to go to the Message Out phase immediately after
the Selection phase.

MESSAGE OUT PHASE - Figure 7 and Listing 4 show
the Data Transfer State Machine. During the Message
Out phase, the target asserts CD and MSG and de-
asserts 1/0. The PSC sends the Identify message to
indicate which logical unit of the target is to be selected
and that the PSC supports the Disconnect/Reselect
operation.

COMMAND PHASE - The target starts the Command
phase by asserting CD and de-asserting I/0 and MSG to
indicate the Command phase. The PSC responds by
sending the command information to the target.

MESSAGE IN PHASE - When the target has determined
that it needs to perform a disconnect operation, it asserts
the CD, 1/0 and MSG signals indicating the Message In
phase. The PSC then reads the Disconnect message
from the target.

DISCONNECTED STATE - After sending the Disconnect
message, the target goes to a disconnected state, sus-
pending operationsin the Bus Free phase by de-asserting
all control signals.

Listing 4
STATE_DIAGRAM xfer_ sm

STATE xfer_idle:

IF (atno == 1) THEN xfer_idle
WITH atno.k =1
" Clear ATN "

ELSE IF (atn_cmd) THEN atn_st
" Attention requested "
WITH atno.j =1

" Assert ATN "

ELSE IF (reqi & cmd_phs) THEN cmd_st

ELSE IF (reqi & stat_phs) THEN stat_st

ELSE IF (reqi & datin_phs) THEN
datin_st

ELSE IF (reqi & datout_phs) THEN
datout_st

ELSE IF (reqi & msgout_phs) THEN
msgout_st

ELSE IF (reqi & msgin_phs) THEN
msgin_st

ELSE xfer_idle;

STATE atn_st:
IF (req & msgout_phs) THEN msgout_st
ELSE IF (req & !msgout_phs)
THEN func_cmpl_st
ELSE atn_st;

STATE cmd_st:
sdout_reg.d = din_reg.q
xfr_cnt.d = xfr_cnt.q - 1
ack =1
GOTO next_cmd_st;

STATE next_cmd_st:
IF (req & !cmd_phs) # (xfr_cnt == 0)
THEN func_cmpl_st
ELSE IF (req & cmd_phs) THEN
send_cmd_st
ELSE next_cmd_st;
" Wait for REQ "

STATE stat_st:
dout_reg.d =
ack =1
IF (parity == 0) THEN func_cmpl_st

" Check SCSI data parity "
WITH bad_parity = 1
ELSE func_cmpl_st

sdin_reg.q

STATE datain_st:
dout_reg.d = sdin_reg.q

4-152

1994 Handbook

SCSI Interface with the ispLSI 3256

ack =1

IF (parity == 0) THEN func_cmpl_st
WITH bad parity =1

ELSE next_datin_st;

STATE next_datin_st:
IF (req & !datain_phs) # (xfr_cnt == 0)
THEN func_cmpl_ st
ELSE IF (req & datain_phs) THEN
datain_st
ELSE next_datin_st;

STATE dataout_st:
sdout_reg.d = din_reg.q
xfr cnt.d = xfr_cnt.q - 1
ack =1
GOTO next_datout_st;

STATE next_datout_st:
IF (req & !dataout_phs) # (xfr_cnt ==
0)
THEN func_cmpl_st
ELSE IF (req & dataout_phs) THEN
dataout_st
ELSE next_datout_st;

STATE msgout_st:
sdout_reg.d = din_reg.q
xfr cnt.d = xfr cnt.q - 1
ack =1
GOTO next_msgout;

STATE next_msgout:
IF (req & !msgout_phs) # (xfr_cnt == 0)
THEN func_cmpl_st
ELSE IF (req & msgout_phs) THEN
msgout_st
ELSE next_msgout;

STATE msgin_st:
dout_reg.d = sdin_reg.q
xfr_cnt.d = xfr_cnt.q - 1
ack =1
IF (parity == 0) THEN func_cmpl_st
WITH bad_parity =1
ELSE next _msgin;

STATE next_msgin:
IF (req & !msgin phs) # (xfr_cnt == 0)
THEN func_cmpl_st
ELSE IF (req & msgin_phs) THEN msgin_st
ELSE next msgin;

END

Figure 8. Reselection State Machine Diagram
(RESEL_SM)

Target Reselects PSC

The target remains in the disconnected state until it is ready
to continue with the next SCSI operation. The PSC is also
in the disconnected state until the target reselects it.

ARBITRATION PHASE - Before reselecting the PSC, the
target goes through the arbitration process to acquire
control of the SCSI bus. The target asserts BSY and its
SCSI ID bit.

RESELECTION PHASE - The target drives its SCSI ID,
and the PSC’s ID on to the data bus, and then asserts
SEL and I/O and de-asserts BSY. The PSC reads its
SCSI ID and the control signals to determine that it has
been reselected by the target. Figure 8 and Listing 5
show the Reselection State Machine.

4-153

1994 Handbook

SCSI Interface with the ispLSI 3256

When reselected, the PSC responds to the target by
asserting BSY. The target then drives the BSY signal
active and releases SEL, thus indicating the end of the
Reselection phase. When the PSC detects the SEL
signal going inactive, it releases the BSY signal. How-
ever, BSY will still be held active because the target is
driving it. This transfer of control is necessary because it
allows the target to regain control of the BSY signal and
control the usage of the bus.

MESSAGE IN PHASE - The target asserts CD, 1/0 and
MSG to indicate the Message In phase and to send a
message to the PSC. The target places the message
byte on the data bus and asserts the REQ signal to
indicate the beginning of data transfer.

DATA IN PHASE - The target begins the Data In phase
by asserting 1/0 and de-asserting CD and MSG. The
target then places the first byte of the data on the data bus
and starts the transfer protocol. After reading the data
byte, the PCK acknowledges the transfer. The target
continues to transfer bytes, in the same manner, until all
requested data have been transferred.

STATUS PHASE - To begin the Status phase, the target
asserts CD and 1/0 and de-asserts MSG. The target then
places the status information on the data bus and begins
the transfer protocol. The PSC reads the status byte and
completes the transfer process.

MESSAGE IN PHASE - The target asserts the CD, I/0
and MSG signals indicating the Message In phase. The
target places the message byte on the data bus and
begins the transfer protocol. The PSC reads the mes-
sage byte and completes the transfer process.

BUS FREE PHASE - After sending the “Command Com-
plete” message, the target releases control of the SCSI
bus by de-asserting all control signals. After the PSC and
target physically and logically disconnect from the bus,
the Bus Free phase begins.

Listing 5.
STATE_DIAGRAM reselection

STATE resel_idle_st:
IF (resel_phs) THEN resel dly st
ELSE resel_idle_st;

STATE resel_dly_st:
IF (timer == bsst_dly & resel_phs) THEN
id_match_st
ELSE IF (!resel_phs) THEN resel_ idle_st
ELSE resel _dly st
WITH timer.d = timer.q + 1;

STATE id_match_st:
IF (tar_id_match & psc_id_match & par-
ity)
THEN detect_sel_ st WITH bsyo.j =1
ELSE resel_idle_st;

STATE detect_sel_st:

IF (!seli) THEN resel_cmp_ st WITH
bsyo.k =1

ELSE detect_sel_st;

STATE resel_cmp_st:
resel_cmpl = 1;
GOTO resel_idle_st;

END

Conclusion

Lattice’s ispLSI 3256 is the ideal solution for implement-
ing a Programmable SCSI Controller. The ispLSI 3256's
input registers allows asynchronous signals to be syn-
chronized to the PSC’s system clock. The in-system
programmability and reconfigurability of the ispLSI 3256
enables different SCSI configurations to be implemented
or upgraded without the need to remove the device from
the board.

4-154

1994 Handbook

Lattice

PCI Bus
Implementation

Introduction

The Peripheral Component Interconnect (PCl) Local bus
was designed as a high bandwidth bus that provides a
data path between the CPU and multiple high perfor-
mance peripherals. Proposed as a total system solution,
PCI provides interconnects to networks, disk drives,
video and other high speed peripherals. Processor inde-
pendence allows the PCI bus to be optimized for /O
functions and enables concurrent operation of the local
bus with the processor/memory subsystem. A 32 bit
synchronous bus that provides data throughput of 132
Mbytes/sec, the PCl bus is expandable up to a 64 bit data
path which doubles the throughput. On account of its
futuristic processor independent orientation, PCI allows
manufacturers to significantly trim development costs by
not having to completely redesign every product cycle.

This ties in elegantly with the Lattice ispLSI (in-system
programmable Large Scale Integration) family, designed
to implement high integration functions, such as control-
lers, while delivering superior performance and the
flexibility of In-System Programmability (ISP). The basic
PCI compliant Master/Target state machines can be
implemented in the ispLSI device, while the remaining
glue logic can be modeled around a given peripheral/
processor. The options become enormous, when one
has the ability to change the functionality of devices

Processor

——L Cache

already soldered on the board. ISP continues to emerge
as the design methodology of choice by providing recon-
figurable systems with diagnostic capabilities, field
upgradeability and simplification of manufacturing flow.

PCl flexibility brings with it new design challenges for the
system designer. This application note presents a Mas-
ter/Target-PClinterface designimplementedin anispLSI
device. The attached source code contains the basic PCI
compliant state machines and is intended to be used as
a guideline on which a PCI bridge design for a specific
interface can be based. The benefits of ispLSI as applied
to the PClI bus, and AC/DC and timing specifications are
reviewed.

PCl/Lattice ispLSl Interface

The following section presents the PCI interface based
on the PCI Local Bus Specifications, Revision 2.0. A
concise overview of the PCI bus and ispLSl architecture
and the relevant electrical and timing characteristics are
discussed. The Lattice 1994 Data Book and the PCI
Specification should be consulted to obtain more detailed
information.

PCI Overview

The PCI bus is a non-proprietary local bus solution,
providing increased performance for Graphical User In-

Bridge/ Audio Motion Video
Memory DRAM
Controller
<: PCI Local Bus >
| | |
LAN scsi Exp bus
Xface Graphics

Base /O
Functions

1
{‘ ISA/EISA - MicroChannel >

N

Figure 1. PCI System Block Diagram

Portions of this

were repril with the

L4

ion of the PCI Special interest Group. Copyright 1992, 1993 PCI Special interest Group.

4-155

1994 Handbook

PCI Bus Implementation

terfaces and other high bandwidth functions such as
SCSI, full motion video, LANs etc.. The PCI component
and the add-in card interface is processor independent,
enabling an efficient transition to future processor gen-
erations and use with multiple processor architectures.
Processor independence allows the bus to be optimized
for 1/O functions, enabling concurrent operation of the
bus with the processor/memory subsystem. Figure 1
shows a typical PCI system.

The processor/memory subsystem is connected to PCI
through a bridge, which provides a low latency path for

Required Pins Optional Pins
AD[31::00] AD[63:32])
Address and Data
{_CIBE@:0[%__) C/BE[7::4]
64-Bit Extension
PAR PARS4.
REQ64#
< FRAME: | ACK64#
TRDY#
IRDY# LOCK#
e
Interface Control STOPH ror } Interface Control
DEVSEL# COMPLIANT INTA#
IDSEL# DEVICE INTB#
— "
INTC# Interrupts
| PERR# INTD#
Error Reporting | SERR# SBO#
SDONE } Cache Support
Atviration | 40t | oI
i
(masters only) {—% 700
ClLk# TOK
e—————— ' JTAG (IEEE 1149.1,
System { RST# ™S ()
TRST#

Figure 2. PCI Pin List

Dedicated
Inputs
—_

Inputs From
Global Routing Pool

5 6 7 8 9 10 11 12 13 14 15 16 17

Sharing Array

the agentto directly access the PCl devices mapped onto
the processor address space. The PCI specifications
defines both a Master and Target bridge implementation.
Both can be implemented in one device, however each
has to have an independent controller state machine.
Figure 2 shows the pins required on a PCI controller in
order to handle addressing, arbitration, interface control
and other system functions. A minimum of 47 pins are
needed for a Target only device and 49 pins for a Master.

The PClinterface consists of two different types of buses
and control signals which govern the timing of data
transfer on the address/data bus by the insertion of wait
states. The larger of the two buses is the multiplexed
Address/Data (AD) bus. The transfer of data onto the AD
bus is not required to be the full width of the bus. The
width of the data transfer is indicated by control informa-
tions present at the time of the bus transaction. The
second bus is the Command/Byte Enable (C/BE) bus.
The C/BE bus contains information about the activity that
is to occur, i.e. read/write and memory or I/O access,
during the address phase of the bus transaction, and
contains the byte enables during the data phase of the
bus transaction. Byte lane swappingis not allowed on the
PCI bus since all devices must connect to 32 address/
data bits. Furthermore, automatic bus sizing is not
supported and the byte enables determine which bytes
carry meaningful data. The PCl bus interface requires
that every active member connected to the PCI bus be
synchronized to a system clock. This allows information
to be transferred between the active agents with wait

Reconfigurable
Product Term

Li

3PTsand

Registers
M
u
X 03

D,J-Kand T
M
u

pt

b

1.4 PT Bypass To
X702 Giobal
Routing
" a Pool and
Single PT x Output
Routin
b aHx{-01 peor

FEE iﬁ%‘%ﬁg@@

7+4PTs

ql

M
u
X 00

BEE

AND Array
PT Reset:
RESET-

CLKO
CLK1
CLK2
PT Clock

Output

Control
Functions

|

MUX Mux

Output

Enable

Figure 3. Mixed Mode Generic Logic Block

Enable

4-156

1994 Handbook

PCI Bus Implementation

states, inserted by Master or Target, to match the timing
requirements of either party that is involved in bus activ-
ity. The wait states are inserted through the use of the
signals IRDY and TRDY. The signal FRAME indicates
that a Master is currently active on the bus and that all
other bus Masters are not to become active on the bus
until the current activity is completed.

Lattice ispLSl Architectural Overview

Lattice's ispLSI HDPLDs are ideally suited to high speed
controller, state machine intensive applications. This
section provides a broad overview of the architecture.
Relevant features will be discussed in further detail as
they relate to this application note. In addition to In-
System Reprogrammability, characteristics such as wide
input gating (18 input/20 product terms per register),
hardware XOR gates on each register, low skew (less
than 2 ns), input clamping capability and high speed
make the ispLSI device ideal for complex state machine
implementation. The ispLS| devices contain program-
mable logic, registers, I/0 pins, multiple clocks, a Global
Routing Pool and Output Routing Pool. The basic unit of
logic is the Generic Logic Block (GLB). Figure 3 shows
a simplified logic diagram of the ispLSI GLB.

The Lattice ispLSI| devices are programmable, in circuit,
on a powered board. This simplifies the design flow by
eliminating the time consuming simulation process. The
design can be tested in the final system by downloading
the JEDEC file directly into the part. This is especially
useful in surface mount environments where the parts
cannotbe removed from the board for programming. Test
points are brought out to unused I/O pins during the
debug cycle, and eliminated for standard operation. A

Load ID

Idle/ID State

Figure 4. ISP Programming State Machine

Shift ID

HH

Command Shift State

designer can complete the design in steps by creating
smaller modules of the design, testing them as stand
alone circuits, and then combining them once they are all
working correctly. In addition to being a design tool, in-
System Programming also offers production advantages.
Field service upgrades can be performed by simply
reprogramming the boards, and options added by pro-
gramming them into the logic. If several boards are
similar in function, but have different logic, a single
printed circuit board can be designed, and the specific
function programmed into the logic just before the board
is shipped. This reduces both production and inventory
costs.

The only requirements of the system are that it must have
a stable 5 volt power supply, and a connection point for
the ispDOWNLOAD Cable. The standard interface used
on the ispLSI prototype boards is a common 8-pin tele-
phone connector. This connector is selected because it
is small, reliable and inexpensive. Five pinson the ispLSI
1032 device are dedicated to programming when the part
is used in the ISP mode. They are:

ispEN In-System Programming Enable
MODE ISP Mode Control

SCLK Shift Clock

SDI Serial Data In

SDO Serial Data Out

The algorithm which is used to program the part is
straightforward. The MODE, SCLK and SDI pins are
used to control a state machine internal to the ispLSl
device. The device is controlled by serially shifting in a
series of commands and data streams. The state dia-
gram for that operation is shown in Figure 4.

Load
Command

Execute
Command

NOTE: Control Signals MODE, SDI

HH

4-157

1994 Handbook

PCI Bus Implementation

PCI Electrical Specifications

The PCI specification provides for both 5V and 3.3V
signaling environments, but all components in a PCI
design must use the same signaling environment. The
PCl bus is a CMOS bus, i.e., steady state currents are
minimal (after transients have died out), with most of the
current spent on pull-up resistors. PCI is based on
reflective wave signaling, rather than incident wave,
which implies that the bus drivers have to switch the bus
halfway to the required high or low voltage. The fact that
the bus is unterminated, causes the reflected wave at the
unterminated end of the transmission line to add to the
incident wave to achieve the required voltage level. (See
figure 5). The bus driver is actually in the middie of its
switching range during this propagation time, which lasts
up to 10ns, or one third the bus cycle frequency of
33MHz. The PCl bus drivers are specified in terms of the
AC switching characteristics or V/I curves. Figure 6
shows the V/I curves of the PCl bus under a 5V signaling
environment.

The PCI specification dictates that pins used for ex-
tended data path (64 bit) such as high order AD lines, C/
BE lines and PAR64 (64-bit extension parity-- see figure

HIGH

(test load)
Figure 5. Measurement of Tprop (from PCI spec.)

2) have pullups in order to prevent oscillation or high
power drain through the input buffer. Some signals have
to be pulled up in order to have stable values when no
agent is driving the bus. In addition, the inputs are
required to be clamped to ground. According to the PCI
Local Bus specification, clamps to 5V are optional, but
may be needed to protect 3.3V devices. When using dual
power rails, parasitic diodes exist from one supply to
another. These diode paths can become forward biased,
if one of the power rails goes out of spec. for an instant.
The diode clamps to the power rail and to the output
devices must be able to withstand short circuit current
until the drivers can be tristated.

It should be noted that PCl compliant devices that directly
drive the bus have extremely high output drive capability
(greater than 48mA). This high drive is required to over-
come incident wave effects that may occur within the
design and not so much from a DC drive perspective.
Hence, the ispLSI devices may be used in conjuction with
external buffers (GAL16VP8 or 20VP8) or with series
termination applied. In many cases, the loading condi-
tions are such that no external buffering or termination is
needed. This must be determined by the system de-
signer.

Low

Pull Up \ Pull Down
Vee Vee j\ AC drive
22 Q2 load line . point
§ &\
s = AN
. \.
24
2.2
[+]e}
drive point DC drive
1.4 : oot
7 { ;
/ X H
C drive 0.55 test
point S 22 Q load life pml
A } Ny,
-2 -44 Current (mA) -176 3,6 915 Current (mA) 3’80 ik

Figure 6. V/l curve for 5V signaling (from PCI spec.)

4-158

1994 Handbook

PCI Bus Implementation

5.00

10.00

15.00

20.00

25.00

lik (mA)

30.00

35.00

40.00

50.00

Vol (5V 0- PCIL) PCI(H)
[*)

il

Voh Voh Voh
(Vee=5. (Vee=4. (5V 70-
0,Am. 75,
Temp.) RAm.
Temp)

—0—Voh —O—PCIL) —8— PCI(H)
{5V 0-
)

Figure 7c. ispLSI Voh vs. loh

Lattice ispLSI Electrical Specifications

The Lattice ispLSI family has programmable pull-up
resistors that may be used instead of the external resis-
tors, saving real estate. The ispLS| devices have aninput
clamp that turns on at approximately -1.7v, -18mA (see
figure 7). These clamps exist on each of the dedicated
inputs and I/Os. In addition, the ispLSI| devices are
capable of operating under conditions of “excessive”
overshoot or undershoot. Figure 8 depicts the results
when a 16 volt peak-to-peak pulse is injected into the
input or 1/0 pin.

Finally, with respect to input capacitance, the PCI spec-
ification stipulates that the input capacitance should not
exceed 10 pF for an input pin and 12 pF for the clock and
1/0 pin. The ispLSI devices have input capacitance of 8
pF on input pins and 10 pF on I/O and clock pins.

PCI Timing Requirements

The PCl specification provides strict timing requirements
in terms of setup time (7ns minimum). The Lattice ispLSI
1032-80 device has a minimum set up time of 7ns on the
inputs.

Please refer to the PCI specifications and the Lattice
Data Book for detailed specifications of the PCI bus and
Lattice ispLSI devices.

Controller Logic Implementation

This section describes the implementation of the Master
and Target state machines. Simulation waveforms are
provided for the read cycle in Appendix A. The equations
are for illustrative purposes only, and may have to be
modified to support the actual design requirements.
Lattice Semiconductor Corp. is not responsible for con-
flicts between the design and the specification. The PCI
protocol has priority if any conflict arises in the equations.

Master State machine

The PCI Master performs the following functions:

1. Data reads and writes on the PCI bus along with
address stepping

2. Initiate a time-out if cycle is not decoded by any
Target (no subtractive decoding)

. Initiate a PCI bus latency time-out

. Responds to the system reset

. Generate parity error

. Can address memory or |/O space

. PCl bus locked cycles

NOoO O, W

The Master state machine supports several options as
specified in the PCI protocol. The bus interface consists

4-159 1994 Handbook

PCI Bus Implementation

-250.000 ns 0.00000 s 250.000 ns
J : f‘/\ /J\
/i /i / / /
| |
Ch. 1
|
(Input) \ / / j y,
I ! L
1 H
I
N e e = P . o - ool PN - - o - 5
Ch.2 1
(Output) [Waa AL e - N
\"/ v \4 \Y4
. :
Ch. 1 = 5.000 Volts/div
Ch. 2 = 2.000 Volts/div
Timebase = 50.0 ns/div

Figure 8. ispLSI Overshoot/Undershoot Characteristics

of two parts. First, the Master Sequencer state machine
which actually performs the bus operation. The second
part, the backend (processor), initiates the transaction
and provides the address, data, command, byte enables
and the length of the transfer. It is responsible for the
address if the transaction is retried. The backend can
request a locked transfer or terminate a transfer. Each
state of the sequencer machine will be discussed, with
viable options. There are seven valid states of the se-
quencer machine:

IDLE is when the Master waits for a request from the
backend to do a bus operation. The only possible option

Parity Master Lock Target

1 | Circuit |« State State State

' Machine Machine Machine |

: I I Buffer
' >

H Timeout Devsel : Control
' Counter Counter
oo IepLS! Device |

Back-end/Target

Figure 9. Controller Block Diagram

in this state is the ‘step’ option. This is extremely useful
in stepping through a bus cycle, in the initial prototype
stages of the product cycle. It can be removed if address
stepping is not desired.

ADDR state is reached when the transaction is initiated
by the processor. It is used to drive the address onto the
bus, in this implementation it enables the address buffers
and drives the commands on the bus.

DATA state is reached unconditionally from the ADDR
state and the data is transferred in this state.

DATAT1 state is reached from the DATA state only if more
than one data phase is needed. This state is needed for
the parity generation. The parity for the address lines
needs to be generated in the clock after the address
phase. Similarly, the data parity is generated in the next
clock.

TURN_AR is where the Master desserts signals in prep-
aration of tri-stating them. If back to back transitions are
not required the path to the ADDR state may be removed.
A turnaround cycle is required on all signals that may be
driven by more than one agent in order to avoid conten-
tion when one agent stops driving the bus and another
starts driving it.

S_TAR is reached when the current Target requests the
Master to stop the transaction.

4-160

1994 Handbook

PCI Bus Implementation

DR_BUS is used when the PCI bus has been granted to
the current Master and the Master either is not prepared
to start a transaction (for address stepping) or has none
pending.

The following is the state diagram for the Master se-
quencer state machine. The transitions to various states
will be discussed in greater detail following the state
machine.

The attached equations (Appendix A) listing should be
used as reference along with the Master Sequencer
State Machine diagram in order to interpret the following
state machine logic description.

The machine is in IDLE state when there are no requests
for a bus transfer. On a processor PCl transaction re-
quest (generated by decoder, included in design), and
the PCI bus grant from the external arbiter, the state
machine transitions to the ADDR state. The PCI specifi-
cation requires that there be only one central arbiterin the
PCI system. This design assumes that the arbiter is
implemented off board. If the processor is using address
stepping, then the transition is to the DR_BUS state from
the IDLE state.

Once in ADDR state, on the next clock the DATA state is
reached unconditionally. In the ADDR state the appropri-
ate command bus signals are driven. These define the
PCI bus command, for example, 0010 specifies an 1/0
read cycle. These are generated from the processor
read/write, I0/memory and data/code signals, which are

poreq*gnt*step

used by the i486 to define the processor cycle. FRAME,
which signals the start of a PCl cycle, is generated in the
ADDR state and is held active through the DATA state till
the Target/processor asserts a cycle complete signal.

In the DATA state, data is transferred from the Master to
Target in case of a write, or from the Target to Master in
case of a read. Wait states can be added by the Target
by asserting TRDY or by Master by deasserting IRDY. In
case of a read cycle, a turnaround cycle is required
between the ADDR and DATA phases in order to avoid
contention when one agent stops driving the signal and
another agent starts driving. The turnaround wait state is
asserted by the Target. (See PCI read cycle timing
diagram, Figure 11 and Appendix A.). The DATA and
DATAT1 state are identical, the DATAT1 state is needed for
parity purposes.

In case of fast back to back processor cycles, the ma-
chine remains in the DATAT1 state. A flag SA is used to
determine if the current PCI cycle is going to the same
Target as the previous cycle. FlagL_CYCis set when the
current cycle is a write and the previous cycle was also a
write. These flags determine the presence of fast back to
back cycles. The state machine transitions to TURN_AR
state if the cycles are not back to back, in preparation for
completing the cycle and tri-stating the bus signals. If the
Target asserts a STOP (stop current cycle), the machine
transitions from the DATAT1 state to the S_TAR state

The DR_BUS state is needed only if address stepping is
used. In this design, transitions to this state are used for
the Master to park on the PCI bus, while the processor is
stepping though a cycle.

pbreg*gnt*lframe*siep

.!ﬂ“‘l

phregtg*isep

Figure 10. Master Sequencer State machine

4-161

1994 Handbook

PCI Bus Implementation

ek ANS NI\ S\ S\ S\ S\ S\
1 3 4 5 6 8 ?
FRAMES |\ j ; / e
AD —i— (pooriessY DA 1 X DATAZ) X DATA3 Y/—
C/BE# ——i— (BUS CMD, BE#‘;—! BEr;z BE#s-3)_é/-
S S L
wov# ... SN § &/ \ [
. B E 3 5 %
TRDY# £ = 2/ PN_=
; e e g
— H H H —
DEVSEL# N\ ; L
Al DRE& DATA’ DATA’ DATA
PHASE PHASE PHASE PHASE

BUS TRANSACTION

Figure 11. PCI Bus Read Cycle (from PCI spec.)

Finally, inthe S_TAR state, if grant is valid, the machine
transitions to DR_BUS state.

PCI provides an access mechanism which allows non-
exclusive access to processors in the face of an exclusive
access. This is referred to resource lock. This mecha-
nism is based on locking only the PCI resource to which
the original locked access was Targeted. The LOCK
signal indicates that an exclusive lock is underway. The
Master state machine controls the master lock mecha-
nism. It has only 2 states, BUSY and FREE. The FREE
state implies that the bus is not locked by any Master or
the current Master has it locked. If another Master owns
the lock, the state transitions to BUSY and stays there till
LOCK and FRAME are deasserted. The LOCK state
machine has not been simulated, since resource locks
are notimplemented in the on board Target, however, the
equations are as per the PCI protocol.

The Devsel State machine is used to control the time-out.
DEVSEL is driven by the Target of the current transac-
tion. DEVSEL mustbe driven within three clocks following
the address phase, i.e., a Target must issue a DEVSEL
before any response. If there is no subtractive decoding
in the system, then the Devsel state machine will reach
state SIX and time-out will be generated, signifying that

lock*!own_lock

GR__ED

llock*!frame

Figure 13. Master Lock State machine

7 E)
_ .-
FRAMEX |\ : / d
AD— —ﬁ@—/‘:‘,—(DAT:A-‘) X oataz X oATAS)——/;_‘,—
c/BE# i @us oM | eews =
: : - :
IRDY# b [N B
= E 3
OYE SN0/ - -
e 8
DEVSEL# 5 : AR
DATA DATA
PHASE PHASE
-BUS TRANSACTION-

Figure 12. PCI Bus Write Cycle (from PCI spec.)

no Target decoded the address. This will enable the
Master to terminate the transaction.

In addition to the above state machines, the Master
Controller has a five bit counter, which runs on a 1 MHz
clock. This counter is used to generate the MAS_TO
signal. This provides a 32 micro seconds latency for all
PCI transactions. Latency is defined as the time from
when FRAME is asserted to TRDY being asserted.
Typical latencies are relatively short, however worst case
latencies may be quite long and unpredictable, for exam-
ple, latency to a standard expansion adapter (ISA/EISA)
through a bridge is often a function of the adapter behav-
ior, not PCl behavior. The length of the latency time-out
can be modified In-System as desired for a low latency
system.

Target State Machine

The target located on the PCI bus performs the following
functions:
1. Decode the PCI bus cycle and provide data during a

frame*!stop

frame*!devsel

Figure 14. Devsel State Machine

4-162

1994 Handbook

PCI Bus Implementation

read
2. Generate parity on PCl bus
3. Generate target abort to terminate a bus cycle
4.Insert wait state during a read cycle between address
and data phase

The PCI specification requires that the Target state
machine be independent of the Master state machine.
The Targetinterface has abackendthatis responsible for
determining when a transaction is terminated. The
location of the Target in the Master backend address
space can be changed In-System. Furthermore, subtrac-
tive decoding can be introduced if desired. This will make
sure that the DEVSEL time-out is never asserted. The
backend can also implement a resource lock. In this
design, resource locks are not included in the target and
zero wait state address decoding is assumed. The proto-
col for the target is fairly simplistic. The Master asserts
the address, on a read cycle, if the target has a address
hit, it initiates its internal state machine and either sup-
plies the data or asserts an abort signal. Following is the
Target state machine state description:

TGT_IDLE: In this state the machine is waiting for a
decode to the target, i.e., the on board decoder sees a
bus cycle directed to the target. The machine transitions
to TGT_DATA on HIT. This path can be removed if the
Target cannot do single cycle decodes. If STOP is
asserted by the Target, the machine transitions to
BACKOFF. The machine goes to state B_BUSY when it
sees FRAME asserted on the bus, but the HIT signal is
still invalid.

B_BUSY: The Target waits for the current transaction to
complete and the bus to returntoidle. This state is useful
for devices that do slow address decode or perform
subtractive decode. In this design , both these are not
supported, hence there is no transition to the TGT_DATA
and BACKOFF states.

TGT_DATA: The Target transfers data in this state. The
machine transitions to BACKOFF if FRAME and STOP
are asserted. In case of read cycle, the target asserts a
wait state after the address is driven on the bus by the
processor. This wait state is asserted by delaying the
assertion of TRDY.

BACKOFF: The target goes to this state after it asserts
STOP and waits for the Master to dessert FRAME.

TURN: This state is reached when the transaction is
completed. In preparation for the bus signals to be tri-
stated.

Figure 15. Target State Machine

In addition to the above state machine the Target also
contains a trivial command bus state machine. This
machine is responsible for storing the command bus
information during the address phase of the bus cycle.
This is required since the command bus carries the byte
enables during the data phase and the cycle type infor-
mation is lost.

Parity

PCI compliant devices are required to implement parity
control. PCI bus has two signals, PAR and PERR that
driven by the Master or Target. PAR is used to drive an
even parity, covering AD3..ADO0 and C/BE3..C/BEO, dur-
ing address and data phases. To ensure the correct bus
operation is performed, the four command lines are
included in the parity calculation. In this design, parity
generation is supported. The i486 processor drives
DPO0..DP3 lines which contain the parity bits for the 4
bytes of the processor bus. These bits and the data/
address lines are used to generate PAR. The Lattice
ispLSI device has a hardware 8-input XOR that can be
used for this purpose. The Master drives the PAR onto
the PCI bus during a write cycle. The Target is respon-
sible for driving the PERR signal during the write cycle, if
it has a parity error. During a read cycle, the Master
generates the PERR based onthe PCHK signal provided
by the i486 processor. The Master also generates the
PAR signal based on the state of PAR which is asserted
by the Target in the read cycle. The PAR signal is
generated by the Target on a read cycle. This design
does not incorporate this feature, however it can be
implemented quite nicely in an additional ispLSI device,
since all the AD lines and the local processor lines are
needed for generating the PAR bit.

4-163

1994 Handbook

PCI Bus Implementation

Design Options/Enhancements

The PCI bridge can be designed to include various
options, some of them are discussed here.

1. Cache Support

A system may have some cacheable memory located on
the PCl bus. The PCI specification allows the bridge to
implement a standard interface which supports a snoop-
ing cache coherency mechanism. The supportfor cache
is optimized for simple, entry level systems and assumes
a flat address space. PCI provides support for both
Write-through and Write-back caches. The ispLSI de-
vices provide an efficient implementation of a
programmable cache controller on account their in In-
System Programmability, which makes the design flexible
to support various cache schemes.

2. 64 Bit Data Bus

PCI provides a 64 bit extension to the data bus for agents
with a 64 bit data bus. This requires 39 additional pins:
REQ64,ACK64, PAR64, C/BE4..C/BE7 and AD32..AD63.
Basically the 64 bit bus works the same way as the 32 bit
bus. In this design, the data lines are not driven by the
ispLSI device, which actually drives the control signals to
enable the external buffers. This would make the expan-
sion to 64 bit mode real simple. The internal logic can be
modified to support the additional control signals. REQ64
is the pin used by the Master to request a 64 bit transfer.
This is an extremely attractive option for 64 bit proces-
sors such as Pentium. When implementing this option,
one has to be careful since Double Word swapping is
allowed on the 64 bit data bus.

3. 64 Bit Addressing

PCI supports addressing beyond 4GB by defining a
mechanism to transfer a 64 bit address from the Master
to Target. A 64 bit address can be provided in one clock
if the 64 bit address/data bus is being used. The Dual
Address Cycle mode can be used, for 32 bit systems
where the address is transferred in two clocks. This
option cannot support address stepping on account of
the two clock address transfer.

4. Slow Decoding Targets/Subtractive Decoding

This design assumes that the target can decode the PCI
bus address with no wait state. For slower Targets,
additional transitions can be added into the Target state
machine, namely, transition from B_BUSY state to
TGT_DATA and BACKOFF can be added. In addition,
the path from IDLE to TGT_DATA can be removed if the
Target cannot do single cycle decoding. Additional logic
will depend on the specific Target implementation.

Other design options would be to include interrupt gener-
ation or even implement the entire interrupt controller in
the master interface for PCl as well as local interrupts.
Target Resource lock is another viable option. In a
resource lock, exclusivity of an access is guaranteed by
the target of the access, not by excluding all other
accesses. This allows future processors to hold a hard-
ware lock across several accesses without interfering
with non-exclusive accesses such as video.

Conclusion

This application note has presented a broad overview of
the PCI bus along with a sample PCI Master/Target
interface implemented in a Lattice ispLSI device. With
the popularity of the non-proprietary, high performance
and extremely flexible local bus, it is not surprising that
designers are looking to programmable logic to meet the
challenges offered by a PClinterface design. The Lattice
In-System Programmable device family is ideally suited
to such complex state machine intensive applications.
While the sample design in this application note is spe-
cific enough to cover the required PCI protocol, it is
adaptable and can be molded around any given periph-
eral or processor. In fact, it can even be reconfigured in
the system from one peripheral to another, as long as the
hardware interface is not too rigid. Additional features
can always be added either in more ispLSI devices or
discrete logic on account of the modular layout of the
design.

The source file for the design is included in the following
pages. This design is implemented using ABEL 4.1.3
software with Lattice pDS+ ABEL Fitter. pLSI Property
Statements provide the user direct control over hardware
specific features of the ispLSI and pLSI devices. The
simulations were carried out using Viewlogic ViewSim
software. Alternatively, the design can be implemented
quite easily using the Lattice pDS+ Development Sys-
tem.

References

1. PCI Local Bus Specification, Rev. 2.0
2. Lattice Data Book, 1994

3. Lattice PDS+ Software, User Manual.
4. ABEL Design Software, User Manual.

4-164

1994 Handbook

PCI Bus Implementation

Design Equations and Simulation Waveform

module pci_master .
title 'pci bus master interface for i486 cpu';

"NOTES:

"this design assumes that there is no cacheable memory located
"as a target on the pci bus

"This design is a guideline for implementing PCI bus bridge

"for a 486 cpu interface. This design does not implement a 100%
"PCI compatible bridge, however, the basic state machine is
"implemented and provides a baseline to build a complete PCI
"master interface

"hkkhkhkkhhkhhkhkkhkhkhdhhkhkhhkhhdkhhkhkhdhkhhkhhhhkhhkhhkdhhkhhkhhhhhhhkhhbhkdrhkhhhhdk
"hhkhkdkhkhdkhhkhkhkhkhhkkhkhhhkhhhhhkhdhkhhhhhhhhhkhhhhkkhrhhhhkhhhkhkhkhkhkhkhkhkkhkkdkdkx
" plsi properties

Mhkdkhkhdkhhkhkhkhhkhhkhhhkhkhhhhkkhdkhhkhhhhkhkhhkhhkhhkhhkhhhhkhhhhkhhrkhhkhkhkhkdhkdhkk
"hdkhhkkhhkhkhkkhkkhhkhhkhhkhhdhhhkdhhkdkhhkhhhhhhkhhkhhkhhkhhkhhhhhhhkkhhrhhhkhkhhkhhkdhkk

plsi property 'timing_sim pci_mast';
plsi property 'strong_route extended';
plsi property 'try 4';

plsi property 'max_delay 1';

Vdhkhkhhhhkhhhkhkhhhhkhhdhhhhhhhhhhhkhhhhhhhhhkhhhhhhhhkhhhhhhhkhkhkkkhhkkhrkk
Vdhhkdkkhkhkhkdhhhkhkhhhkhkhhhhhkhdhhhhkhhhhrhkhkhhhhkhhhhkrhhhkkhhhkhkrkkhhrkkhhhkkkk

declarations
odhdkkkhkhkhkhkhkhkhkhkkhkkhkhhhhkhhhhkhkhhhhhkhhkhhhkhkhkhhhhkkrhdhkhhhkhkhkdhhkhbhkrhhhkd

Nhdkdkhdkhhkhkhkhkhhkhkkhkhhkhhkhhhkhhkhhhhhhhkhhkhhkhhhhhkdhhhhkhhhkhhkhkhhhkhhkkhkhkhkkkk

pci_master device 'pl1032j09°';

Tdhhhhkkhkhkhhhkhhhhkhkhhhhhhhhhhhkhkkkhhkhhhrhkkhhkrhkdhrhkkkhkhkhhkhhhkkkhkkkkk

" inputs
"hkdkhkkhkhhkhkhhkhhkhhkhhkhhkhhkhkhhkhkhhkhhrhkrhkhhkhhhkbhkdhkhhdhhhrhkhkdhbhrhdkkhdk

"inputs for processor interface

pa0 pin; "processor address lines
pal pin; "processor address lines
pa2 pin; "processor address lines
pa3 pin; "processor address lines
pa4 pin; "processor address lines
pa5 pin; "processor address lines
pa6é pin; "processor address lines
pa7 pin; "processor address lines
pa8 pin; "processor address lines
pa9 pin; "processor address lines
pal0 pin; "processor address lines
pall pin; "processor address lines
pal2 pin; "processor address lines
pal3 pin; "processor address lines
pal4 pin; "processor address lines
pal5 pin; "processor address lines
palé pin; "processor address lines
pal7 pin; "processor address lines
pal8 pin; "processor address lines
pal9 pin; "processor address lines
pa20 pin; "processor address lines
pa2l pin; "processor address lines
pa22 pin; "processor address lines
pa23 pin; "processor address lines
pa24 pin; "processor address lines
pa25 pin; "processor address lines
pa26 pin; "processor address lines

4-165

1994 Handbook

PCI Bus Implementation

pa27 pin; "processor address lines
pa28 pin;) "processor address lines
pa29 pin; "processor address lines
pa30 pin; "processor address lines
pa3l pin; "processor address lines
pbe0 pin; "processor byte enables
pbel pin; "processor byte enables
pbe2 pin; "processor byte enables
pbe3 pin; "processor byte enables
!plock pin; "processor lock pin

!pdata pin; "processor C/D pin

!piom pin; "processor IO/m pin

!pbreq pin; "processor bus request
Ipread pin; "processor read/write
dp0,dpl,dp2,dp3 pin; "processor parity pins

step pin; "stepping input for debugging
cclk pin; "clock - 1lmhz

pclk pin; . "clock for timeout counter

"master input pins from pci

!gnt pin; "from bus arbiter

ttrdy pin; "from target

Istop pin; "from target

tdevsel pin; "indicates tgt has been selected
ready pin; "indicates ready to transfer
comp pin;

par pin; "bidirectional parity pin

"slave inputs
term pin; "slave wants to terminate the bus cycle
tar_dly pin;

"hkhkhkhkhhkhkhkhkhkdkhkhhhkhhkhhhhhkhhhkdhkhhkhhkhhkhhkhhkhhhhkhhkhhkhhhhkhkdhhhkdhdhdhx

" outputs
Mhhkdkhhkhkkhkhhkdhhkhhkhkhkhhkhhkhhkdhhhdhhkdhhhdhhhhhrhhkdrhhkhkhkdhkhdhhkhhkhhkhhkhhhd

"master output pins and bi directionals

cbel pin;
cbel pin;
cbe2 pin;
cbe3 pin;
data_en pin;

enables the data buffers on the pCI bus

{frame pin;

!lock pin;

lreq pin;

!irdy pin;

addr_en pin;

mas_abort pin; "transaction aborted by master due to timeout

"The following is the output enable for the external buffers
ad_oe pin;

Mhkhkhkhkkhhhdhhhhhhdkhhkhkhhhhdhhhkhkhhkhkkhkkhhkhkhkhhhhhhhhhhhkhhhhhhhhhhhkkhkhk

" nodes
Thhkkkhkhkhhkhhhhhkhdhhhhhkhhkhhrkhhhhhhkhdhkdhrdhkbhkdhhhhrhkdhkdhhkhhhhhdhhdhkd

mas_to node; "internal timer has expired

pci node; " cpu access is on pci bus from built in address decoder
dev_to node; "devsel timeout on pci bus,ie, DEVSEL was not asserted
sa node ; "last cycle to same tgt as current

L_cyc node; "last cyc was a write, bit set in register

Oown_lock node; "master owns lock

4-166 1994 Handbook

PCI Bus Implementation

tgt_abort node; "target aborts access

tgtl node;

tgtlr node istype 'buffer,reg d'; "used to store tgt access info.

1dt pin;

preadr node istype 'buffer,reg _d'; "used to store write/read cycle bit

"target related nodes
hit node;
cmdr3,cmdr2,cmdrl,cmdr0 node;

R R R R R R R R R R R RS

" Other Definitions *
R R]

"defn. of all bus cycles

int_ack =10,0,0,07];

spec_cyc =[0,0,0,17];

io_read = [0,0,1,0];

io_write =1[0,0,1,1];

resl =10,1,0,0]; "RESERVED

res2 =[0,1,0,1]; "RESERVED

mem_read =110,1,1,01;

mem write =10,1,1,11;

res3 =[1,0,0,0]; "RESERVED

res4 =11,0,0,1]; "RESERVED

config read =111,0,1,01;

config write =11,0,1,1];

mem_wr_mult =11,1,0,0];

dual_add_cyc =11,1,0,1];

"for 64 bit addressing only- not supported by this design
mem_read_line =11,1,1,01;

mem _wr_inval =11,1,1,1];

cmd = [cbe3..cbel]; " for convenient definition of cbeX lines used in ist phase
of bus cycle

cmdr = [cmdr3..cmdr0]; "storage for command bus
pbex = [pbe3..pbel]; "processor byte enables

"kkkk* MASTER MACHINE DEFN. **%kkkkkkkhkkhkkhhhkhhhhkkhhkhkx
"master lock machine

lreg node;

lreg istype 'buffer,reg_d';

"state definitions for lock machine
free = 0;
busy = 1;

"devsel timer machine
d2,d1,d0 node;

dreg = [d2..d0];

dreg istype 'buffer,reg d';

"state defn. for devsel state machine

null = [0,0,0] ;
one = [0,0,1] ;
three = [0,1,1]1 ;
seven = [1,1,131 ;
six = [1,1,0] ;

"master sequencer machine
s0,sl,s2 node;

sreg = [s2..s50];

sreg istype 'buffer,reg d';

"state defn. for master sequencer machine

4-167 1994 Handbook

PCI Bus Implementation

idle
addr
data
datal

HOOO

wnun
Nl —~r———

"counter defn.
q0,q4,93,92,q1 node;

count = [g4..90];

count istype ‘buffer,reg_d';

"k%%k*x* TARGET MACHINE DEFN.**%*kkkhkkkhkhhkhhkhhhhkhhhhhhhhhhhrhh®
t2,t1l,t0 node;

treg = [t2..t0];

treg istype 'reg_d,buffer';

tgt_idle = [0,0,0];
backoff = [0,0,1];
b_busy =10,1,0];
tgt_data = [0,1,1];
turn = [1,0,1];

"state machine to clock comand bus for target
cl,c0 node;

creg = [cl,c0];

creg istype 'reg_d, buffer';

no_ack =
strobe =
hold = [

[0,0];
[0,1);
1,1];

M"hkdkdhhkkhhkhdhhhkhhhkhhhhkhhhhhhkhhhhhhhhkhhhhhhhhhhhhhhhhhhdhrhdhhhkhddrk

" State machines
*

Thhkdkhkhdhkhhhhhhhhkhhhhhhkhhhhhkhhkhhkhhkhhkhhkhhhhkhhkhhhrhkhrhhhhhhhhhhhkhhkrhd
"state diagram for sequencer machine
state_diagram sreg;

state idle: "idle state on the bus

if (pbreq & gnt & !frame & !irdy & !step) "cpu has a pci bus request and ad-
dress strobe
then addr;
else if ((!pbreq & gnt) # (pbreq & gnt & step)) & (!frame & !irdy) "park on
bus if stepping
then dr_bus;

else idle;

state addr: "master starts a transaction
goto data; "goto data state on next clock
state data: "master transfers data first data phase
if (frame) # ((!frame & !irdy & !trdy.pin & !stop.pin & !dev_to) & !((cmd==spec_cyc)
& comp))

then datal;
else if (!frame & lstep & trdy.pin & !stop.pin & !(cmd==spec_cyc) & sa & L_cyc &
pbreq & gnt)
then addr; " only if fast back to back cycles are supported

else if (!frame & trdy.pin & !stop.pin & !(sa & L_cyc & pbreq & gnt) #

4-168 1994 Handbook

PCI Bus Implementation

(!(cmd==spec_cyc) & comp))
then turn_ar; "turnaround state if no back-back cycles

else if (!frame & stop.pin # !frame & dev_to & !trdy.pin)
then s_tar;

state datal:
if (frame) # ((!frame & !irdy & !trdy.pin & !stop & !dev_to) & !((cmd==spec_cyc) &
comp))

then datal;

if (!frame & !step & trdy.pin & !stop.pin & !(cmd==spec_cyc) & sa & L_cyc &
pbreq & gnt)
then addr; " only if fast back to back cycles are supported

else if (!frame & trdy.pin & !stop.pin & !(sa & L_cyc & pbreq & gnt) #
(!(cmd==spec_cyc) & comp))
then turn_ar; "turnaround state if no back-back cycles

else if (!frame & stop.pin # !frame & dev_to & !trdy.pin)
then s_tar;

state turn_ar: state for houskeeping purposes
if (pbreqg & gnt & !step)

then addr;

else if (!pbreq & gnt # pbreq & gnt & step)
then dr_bus;

else if (!gnt)
then idle;

else turn_ar;
state s_tar: " turnaround state when stop is asserted
if (gnt)
then dr_bus;

else if (!gnt)
then idle;

else s_tar;
state dr_bus: "bus parked or address stepping is used
if (pbreq & gnt & step # !pbreq & gnt)
then dr_bus;

else if (pbreq & !gnt & !step)
then addr;

else if (!gnt)
then idle;

else dr_bus;
"kxxkxxxkkxkxx*x end of master sequencer state machine® k%% dkk ks kdk Kk ddkdk kK kkx KKk K

"state diagram for LOCK machine
state_diagram lreg;

state free: "bus is locked by current master
if (!lock # lock & Own_lock)
then free;

4-169 1994 Handbook

PCI Bus Implementation

else if (lock & !Own_lock)
then busy;

state busy: " some other master has the bus locked
if (!lock & !frame)
then free;

else if (lock # frame)
then busy;

"kkkkkkkkxkkxkx* end of master lock state machine**xkkxkkdkkdkkkkhkkhkhkdkhhkdkkdkkkkx

state_diagram dreg;

state null: "machine is waiting for frame to be asserted
if (frame & !stop)
then one;
else null;

state one:
goto three;

state three:
goto seven;

state seven:

if (!devsel & frame)
then six;
else null;

state six:
goto null;
"xdkkdhkhkhhkhkhkkkhkkhk end of devsel state machine**********************

" okkkkkkkkkkkok target state machine khkkhkkkhkhkhkhkhkhkhkhkhhkhkhkhkhkhhkhkhkhkhkhdxx
state_diagram treg;
state tgt_idle: "target state machine is idle
if (!frame.pin)
then tgt_idle;

else if (frame.pin & !hit)
then b_busy;

else if (frame.pin & hit & (!term # term & ready))
then tgt_data;

else if (frame.pin & hit & term & !ready)
then backoff;

else tgt_idle;
state b_busy:
if ((frame.pin # irdy.pin) & !hit)
then b_busy;

else if (!frame.pin)
then tgt_idle;

else b_busy;

state tgt_data:
if (frame.pin & stop & trdy & !irdy.pin # frame.pin & !stop # !frame.pin & !trdy &

4-170 1994 Handbook

PCI Bus Implementation

Istop)
then tgt_data;

else if (frame.pin & stop & (!trdy # irdy.pin))
then backoff;

else if (!frame.pin & (stop # trdy))
then turn;

else tgt_data;

state backoff:
if (frame.pin)
then backoff;

else if (!frame.pin)
then turn;

state turn:
if (!frame.pin)
then tgt_idle;

else if (frame.pin & !hit)
then b_busy;

else if (frame.pin & hit & (!term # term & ready))
then tgt_data;

else if (frame.pin & hit & (term & !ready))
then backoff;
"kxkxxxkkkxkxx* end of target state machine***x*xxkxkkkkkkkkhkknxx

" cmd bus store state machine
state diagram creg;

state no_ack:
if (!frame.pin)
then no_ack;

else if (frame & hit)
then strobe;

state strobe:
goto hold;

state hold:
if (frame.pin)
then hold;

else if (!frame.pin)
then no_ack;
R X X

equations

B R s
lreg.c = pclk;

dreg.c = pclk;

sreg.c = pclk;

treg.c = pclk;

creg.c= pclk;

count.c = cclk;
count.re = trdy & gnt; "reset counter when trdy is generated by master

"5 bit counter initiated by asserting frame,runs on a 1Mhz clock

4-171 1994 Handbook

-

PCI Bus Implementation

"will generate mas_to signal at end of count

g0.d = g0 $ frame;

gl.d = (g0 & frame) $ qgl;

g2.d = (g0 & gl & frame) $ q2;

g3.d = (q0 & gl & g2 & frame) $ g3;

g4é.d = (g0 & g1 & g3 & g3 & frame) $ qg4;

mas_to = (gl & g2 & g3 & g4 & g0 & frame); "master timed out

pci = (pa3l & pa30 & pa29 & pa28 & pbreq); " decoded pci address space £0000000-
fEFEEEFSf

Own_lock = !lock & !frame & !irdy & pbreq & gnt & plock # Own_lock & (frame # lock);

frame = (sreg==addr) # ((sreg==data)#(sreg==datal) & !dev_to & ((l!comp & (!mas_to #
gnt) & !stop.pin) # !ready));

lock = !((Own_lock & (sreg==addr)) # tgt_abort # dev_to #
(((sreg==data)#(sreg==datal)) & stop.pin & !trdy.pin & !1dt)

(Own_lock & l!plock & comp & ((sreg==data)#(sreg==datal)) & !frame &
trdy.pin));
req = (pbreq & !plock # pbreq & plock & (lreg==free)) & !(sreg==s_tar);
irdy = ((sreg==data)#(sreg==datal)) & (ready # dev_to);
dev_to = (dreg==six);

mas_abort = mas_to;

cmd = (int_ack & ((sreg==addr) & pread & piom & pdata)
io_read & ((sreg==addr) & pread & piom & !pdata)
io_write &((sreg==addr) & !pread & piom & !pdata)
mem_read & ((sreg==addr) & pread & !piom & !pdata)
mem _write & ((sreg==addr) & !pread & !piom & !pdata)
spec_cyc & ((sreg==addr) & !pread & piom & pdata)
pbex & (sreg==data)
pbex & (sreg==datal)
pbex & ((sreg==dr_bus) & step & pbreq));

addr_en = (sreg==addr);
data_en = (sreg==data)#(sreg==datal)#(sreg==dr_bus);

"preadr is used to store the write/read access
preadr.d = pread & gnt;

preadr.clk = pclk;

preadr.ar = (!gnt & !pci);

L_cyc = l!pread & preadr.q;

tgt_abort = (stop.pin & !devsel.pin & ((sreg==data)#(sreg==datal)) & !frame & irdy);

"the following equations assume only 1 target device. The access to the device
"is stored for back to back transfers. this can be expanded to include more devices

tgtl = (pbreq & pa3l & pa30 & pa29 & pa28 & pa27 & pa26 & pa25 & pa24); "FF000000-
FFFFFFFF

tgtlr.d = tgtl;

tgtlr.ar = (!gnt & !pci); ‘"reset the register when there is a non-pci access

4-172 1994 Handbook

PCI Bus Implementation

tgtlr.c = pclk;

sa = tgtlr.q & tgtl;

MhkkkkkKhkkkkkk KK kKRR KRR KKK KKk * QUEDUL EnAbleskrkkkkkkkkkhkkkkkkhkhhhk kKR kK k*k
cmd.oe = (sreg==addr) # (sreg==data) # (sreg==dr_bus) # (sreg==datal);

lock.oe = Own_lock & ((sreg==data)#(sreg==datal)) # (lock.oe & (frame # lock));
ad_oe = (sreg==addr) # (sreg==dr_bus) & step & pbregq;

"irdy needs to be asserted when addr or data are the previous states
irdy.oe = (sreg==addr)

#((sreg==idle) & pbreq & gnt & !frame & !irdy & pci & !step) "asserted
when addr is next state

#((sreg==turn_ar) & pbreq & gnt & !step)
next state

#((sreg==data) & !frame & !step & trdy.pin & !stop.pin & !(cmd==spec_cyc)
& sa & L_cyc & pbreq & gnt)

#((sreg==dr_bus) & pbreq & !gnt & !step) "asserted when addr is
next state

#(((sreg==data) & frame) # ((!frame & !irdy & !trdy.pin & !stop.pin &
!dev_to) & !((cmd==spec_cyc) & comp)))

#(((sreg==datal) & frame) # ((!frame & !irdy & !trdy.pin & !stop.pin &
!dev_to) & !((cmd==spec_cyc) & comp)));

asserted when addr is

L S T Y
" Parity logic

B Y
par = ((dp0 $ dpl) $ (dp2 $ dp3));

" # (from slave par circuit);

par.oe = (sreg==data) & (cmd==io_write) # (cmd==mem write) "for address parity
(sreg==datal) & (cmd==io_write) # (cmd==mem _write) "for data parity
(treg==tgt_data) & trdy & ((cmdr==io_read) # (cmdr==mem read)); " for

slave driven par
Mhdkkdhdkhhdkhhkhhkhdhhkdkhhhkkkdhkdkkdkkdhkkx target equations***********************
trdy = !(ready & !tgt_abort & (treg==tgt_data)

& (((cmdr==io_write) # (cmdr==mem write))

((cmdr==io_read) # (cmdr==mem read) & tar_dly)));
stop = !((treg==backoff) # (treg==tgt_data) & (tgt_abort # term)

& (((cmdr==io_write) # (cmdr==mem write))

((cmdr==io_read) # (cmdr==mem read) & tar_dly)));
devsel = ! ((treg==backoff) # (treg==tgt_data) & !tgt_abort);
"perr = (from parity circuit)
trdy.oe = (treg==backoff) # (treg==tgt_data) # (treg==turn);
stop.oe = (treg=¥backoff) # (treg==tgt_data) # (treg==turn);

devsel.oe = (treg==backoff) # (treg==tgt_data) # (treg==turn);

"hit = (decode of PCI address lines);
cmdr = cmd & (creg==strobe); "store the command bus info for use
END;

4-173 1994 Handbook

PCI Bus Implementation

PCI Bus Read Cycle (Simulation)

0]
o
.)
L 5 % ° N
: s
o
— N
N
> >< >< L
N a
WA © — —
o
: : >< L o
L N
o
. Fred
L I\
: : 13
B °
. : L— Lo
n -
o
. . N
1
u >< o
: . Fin
-
H L] & X L
— o
o
L ~
— b
[¢)
©° S Lo
L -
—) [I0
o
>
]) Lo
~
o
] [lo
L L in
[<
— [
OB ET - o
H x % : ; e
=< w
% Q | o
¥ % X X V]] b » By a]
H %] ol 5] 11 Q B H a] a] = [
9] < m [} 11 M] Z 9] [o 0 5]
[\ [\ [\ 9] 9] [\ 14 0 [K H 3] 9] [11

4-174 1994 Handbook

PCI Bus Implementation

pDS+ Fitter Report

Ahkhkhkhkhkhdkhkhkhkhhkhkhkdhkhdkhkdkdrhkhkhhhkhkhkhkhhkhdhhkrkhdrbhrhkhhkkd

* *
* Lattice pDS+ Fitter Report *
* *

Ahkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkrhkhkhhkhkhkhhkhkhkhkhkhkhdkrhkhkhkhkhhdkkkx

Copyright (c) Lattice Semiconductor Corp. 1992. All Rights Reserved.

Design Name: pci_mast
File: pci_mast.doc
Date/Time: Mon Apr 25 12:13:33 1994
Targeted Device: pLSI1032-90LJ84
Software Version: DPM 1.60 12/8/93

Fitter Parameters Used

AVG_GLB_IN: 16
EFFORT: 4
IGNORE_FIXED PIN: OFF
MAX DELAY: 1
MAX GLB_IN: 16
PARAM FILE: (null)
PART: pLSI1032-90LJ84
TIMING SIM: pci_mast
TRY: 4
FAST ROUTE: OFF
STRONG_ROUTE: EXTENDED

Process Status

Design Analysis: complete

Logic Partitioning: complete

Place and Route: complete

Post Route: complete

Fuse File Generation: complete
Merging TMV in JEDEC: incomplete

LR R SRS R SRR SRR SR SRR SRS RS EEEESES

* *
* Post-Route Report *
* *

hkhkhkhkhkhkkhkhhkhkhkhkhhhhhhhhkhhhhkhhhkhkxhhkk

Design Name: pci_mast
Targeted Device: pLSI1032-90LJ84
Date/Time: Mon Apr 25 13:09:06 1994

Software Version: 1.00.35

All strategy results:

Strategy 4 - Estimated No. of GLBs : 19
Strategy 4 - Estimated No. of GLB Levels: 3

Final Selected Strategy 4 - Estimated No. of GLBs : 19
Strategy 4 - Estimated No. of GLB Levels: 3

Partitioning:

Total number of GLBs : 31

4-175 1994 Handbook

PCI Bus Implementation

Total number of Product Terms used : 193
Average number of Product Terms : 6.2

Total number of nets created : 119

Average number of Inputs per GLB : 9.6
Average number of Outputs per GLB : 2.2

Number of I/Os Generated : 46

Number of Dedicated Inputs Generated : 4

Type of Clocks Generated : 2 System Clocks

0 I/O Clocks

0 Product Term Clocks

o e o

4-176

1994 Handbook

PCI Bus Implementation

Post Route Pin Report
Post-Route Pin Report

Pin Number Signal Name Fixed Pin Type

1 GND Yes Gnd

3 mas_abort No Output

5 pa29 No Input

6 frame No Output

7 irdy- No Input

9 devsel- No Input
10 irdy No Bidi
11 par No Output
14 comp No Input
16 pa28 No Input
20 pclk Yes Clock
21 vce Yes Vee
22 GND Yes Gnd
25 pbe2 No Input
26 hit No Input
27 cbe3 No Bidi
28 cbe2 No Bidi
29 req No Output
30 addr_en No Output
31 term No Input
32 tar_dly No Input
33 frame- No Input
34 pa3l No Input
35 devsel No Bidi
37 pa27 No Input
38 dp0 No Input
39 data_en No Output
40 stop No Bidi
41 pa26 No Input
42 pbe3 No Input
43 GND Yes Gnd
44 pbel No Input
45 cbe0 No Bidi
46 gnt No Input
47 pdata No Input
48 cbel No Bidi
49 trdy- No Input
50 dp3 No Input
51 dp2 No Input
52 dpl No Input
54 pread No Input
55 plock No Input
56 ad_oe No Output
64 GND Yes Gnd
65 vce Yes Vece
66 cclk Yes Clock
68 pbreq No Input
69 pbel No Input
70 ready No Input
71 piom No Input
72 paz24 No Input
77 #lock No Bidi
78 step No Input
79 pa30 No Input
81 stop- No Input
82 pa25 No Input
83 trdy No Bidi
84 1dt No Input

4-177 1994 Handbook

Notes

4-178 1994 Handbook

Laﬂlce Programming i

spLSI Devices
with a Tester

Overview

Increasing demand for high pin count programmable
logic and FPGAs creates many manufacturing chal-
lenges. These devices can require extra steps in the
manufacturing flow due to device programming require-
ments, marking and storage. The Lattice family avoids
these extra steps through its In-System Programming
(ISP) interface, allowing the devices to be installed prior
to programming, and then programmed by the Auto-
mated Test Equipment (ATE), as shown in Table 1.

This reduction in the number of steps results in large cost
savings to the manufacturer, and offers other advan-
tages as well:

¢ no dedicated programmers needed

* programmable parts no longer need to be socketed

¢ thefinal productis easily upgraded in the field, reduc-
ing maintenance costs

Standard Flow
Using Non-ISP Devices

Enhanced Flow
Using ISP Devices

DRAW PARTS FROM
STORES (1 P/N)

DRAW PARTS FROM
STORES (1 P/N)

BOARD ASSEMBLY

|

BOARD TEST
*Diagnostics using ISP
+Final Programming
*Final Board Test
*Boundary Scan

PROGRAM EACH
PART

LABEL EACH
PROGRAMMED PART

RETURN PARTS
TO STORES
(MULTIPLE P/N's)

DRAW PARTS FROM
STORES TO ASSEMBLY

BOARD ASSEMBLY

|

BOARD TEST

Table 1. Detail of the ISP interface.

ISP interface

The ISP interface is based on a simple 5 signal 5V
interface much like the boundary scan chain. The pro-
gramming of the device is controlled 'on chip' by a simple
state machine. Figure 1 illustrates a typical configuration
where the programming signals are generated by a
generic block called programming control circuitry. The
programming process consists of transferring the logic
implementation stored in a JEDEC compatible fuse pat-
tern into the device. The method by which the transfer is
accomplished is dependent on the end system's defini-
tion. The programming control circuitry can be
implemented by traditional PLD programmers, IC or
printed circuit board testers, the 1/O port of a computer
such as PC parallel port or a micro controlier or micropro-
cessor directly on the system board. In this case we shall
concentrate on using the tester as the programming
control circuitry.

Device Programming Architecture

The in-system programming of the ispLSI device is
controlled by the five programming control interface
signals — ispEN, MODE, SCLK, SDI and SDO. The
programming information from the JEDEC file is serially
shifted into the device via the SDI pin and shifted out
through the SDO pin. The ispEN signal controls whether
the device is in normal operating mode or programming

Serial Data In
Serial Data Out
ISP-Mode
ISP-Clock

ISP-Enable »

Programming
Control Circuitry

Figure 1. Detail of the ISP Interface

4-179

1994 Handbook

Programming ispLSI Devices with a Tester

mode. SCLK provides the clock to run the state machine.
MODE and SDI provide control inputs to the state ma-
chine. The internal state machine has a simple instruction
set to control the flow of data to either the address
registers, data registers or to implement the program-
ming options. Table 2 lists some of the key instructions
that can be implemented by the state machine.

The programming circuitry for the ispLSI 1032 is detailed
in Figure 2. SDI can drive either the SDO pin, the high
order shift register, the low order shift register or the
address shift register. The ISP state machine controls
where SDI is being driven to and what SDO is being
driven by.

Table 2. State Machine Instruction Set

The ISP state machine consists of three basic states:

o |dle
e Shift
¢ Execute

Transition between the state are controlled by the SDI
and Mode pins as detailed in Figure 3. The idle state
allows the programming to be halted or the device iden-
tification data to clocked out of the device. Address, Data,
or Command information is shifted in or out of the shift
registers while in the shift state. The Execute state is
used to execute or 'run' the loaded command. All of the
state transitions are controlled by the synchronous clock
(SCLK).

The first step when programming the ispLSI devices is to
determine what type of device is being programmed.

Instruction Operation Description

00000 NOP No operation performed

00001 ADDSHFT échli'(less Register Shift: Shifts address into the address shift register from

00010 DATASHFT Data Register Shift: Shifts data into or out of the data serial shift register.

00011 UBE User Bulk Erase: Erase the entire device.

00100 GRPBE Global Routing Pool Bulk Erase: Bulk erases the GRP array only.

00101 GLBBE Generic Logic Block Bulk Erase: Bulk erases all the GLB array only.

00110 ARCHBE Architecture Bulk Erase: Bulk erases the architecture array and 1/0
configuration only.

00111 PRGMH Program High Order Bits: The data in the data shift register is pro-
grammed into the addressed row's high order bits.

01000 PRGML Program Low Order Bits: The data in the data shift register is pro-
grammed into the addressed row's low order bits.

01001 PRGMSC Program Security Cell: Programs the security cell of the device.

01010 VER/LDH Verify/Load High Order Bits: Load the data from the selected row's high
order bits into the data shift register for verification.

01011 VER/LDL Verify/Load Low Order Bits: Load the data from the selected row's low
order bits into the data shift register for verification.

01100 GLBPRLD Generic Logic Block Preload: Preloads the registers in the GLB with the
data from SDIN. All registers in the GLB form a serial shift register. Refer|
to device layout section for details.

01101 IOPRLD 1/O Preload: Preloads the I/O registers with the data from SDIN. All
registers in the 1/O cell form a serial shift register (the same order as GLB
registers).

01110 FLOWTHRU Flow Through: Bypasses all the internal shift registers and SDOUT be-
comes the same as SDIN.

10010 VE/LDH Verify Erase/Load High Order Bits: Load the data from the selected row's
high order bits into the data shift register for erased verification.

10011 VE/LDL Verify Erase/Load Low Order Bits: Load the data from the selected row's
low order bits into the data shift register for erased verification.

4-180

1994 Handbook

Programming ispLSI Devices with a Tester

Figure 2. Detail of the ispLSI 1032 Programming Architecture

DATA DATA

! '
[(m/2)-1] ... High Order Shift Register oJ-—>}__'
| T
Data n_.D——’I (m-1) ... Low Order Shift Register ... (m/2) Sbou

(SDIN)
Row Addr. In (SDIN)
[0-1)]
S
K]
o))
2 s
E<CMOS Cell Array e
e
%)
1]
%]
o
ke
i)
<
Low-Order SR High-Order SR
Fuse# (m-1) «——— Fuse# (m/2)| Fuse# [(m/2)-1] «———— Fuse# 0 _L
SDOUT
Figure 3. The ISP control state machine.
Load Shift Load Execute
ID Command Command

Execute State

Idle State

Shift State

(Normal (Execute
Operation) Con('rl;t?naa%ds) Command)

Note:
Control signals: MODE, SDI

4-181 1994 Handbook

Programming ispLSI Devices with a Tester

Since the size of the data and address registers is device
dependent, this will affect the programming algorithm.
After this device identification is completed, the program-
ming sequence can begin. A typical programming
sequence is described below.

The programming sequence can be broken down into a
few basic functions:

« identifying the device
bulk erase

shifting in the row address
shifting in the row data
verifying the row

In Table 3, steps 1 and 2 perform a bulk erase on the
device, clearing the device of any pre- programmed
information or earlier designs. Once the device has been
cleared, a loop is set up and the first address to be
programmed is shifted into the device through SDI (steps
3, 4 and 5). Each address is split into high order and low
order data bits; these are programmed separately. In this
example, we have chosen to program the high order bits
first. Steps 6,7, and 8 load in the high order data for the
address, then steps 9 and 10 program the E2 cells with
the high order data for the address specified in the
address register. This sequence is repeated for the low
order bits in steps 11 through to 15. The loop is then

Table 3. Programming ispLSI devices

1) UBE

2) Execute UBE

3) ADDSHFT command shift

4) Execute ADDSHFT command
5) Shift address

6) DATASHFT command shift

7) Execute DATASHFT command
8) Shift high order data

9) PRGMH command shift

10) Execute PRGMH

11) DATASHFT command shift

12) Execute DATASHFT command
13) Shift low order data

14) PRGML command shift

15) Execute PRGML

16) Repeat from 1) until all rows are programmed.

repeated with the next address until the device is fully
programmed. After programming, the device can be
verified and the made secure by similar methods.

Programming ISP Devices with a Tester

There are two basic approaches to programming the ISP
family using a tester:

* write a custom program in the tester's high level
programming language

e create test vectors which drive the ISP program-
ming pins to program the device

Using Test Vector input

To use the test vector input option, you will need to get a
copy of Lattice's JEDEC to PCF translation utility, called
JEDTOPCF, available on the Lattice BBS (503 693-
0215) as JEDTOPCF.ZIP. This utility will read a JEDEC
file and convert the JEDEC file into test vectors which can
be used to program the device. Complete documentation
on using the JEDTOPCF utility is included in the
JEDTOPCEF.ZIP file. The conversion process is illus-
trated in the following diagram:

Currently, the utility converts the information into an HP-
PCF format, but this information can easily be translated
into another format with some simple modifications to the
output routines. A portion of a PCF file is shown below.

unit "ul"
pcf
"X0101"
"X0111"

! Vector 100460
"X0000"
"X0010"
"X0001"
"X0011"
"X0000"
"X0010"
"X0000"
"X0010"
"X0000"

Contact Lattice with your tester's input vector format
requirements for help in performing these modifications.

4-182

1994 Handbook

Programming ispLSI Devices with a Tester

Writing a Custom Test Program

Another approach is to develop a custom test program in
the tester's language. In this example, we show how the
GenRad test language can be used to program an ispLSI
1032. The GenRad language is based on PASCAL, with
simple additions to control properties of the tester. To

Figure 4. AWK program for modifying the JEDEC file

speed up the programming time, the address shift regis-
ter is not reloaded for each location. Instead, a 1 is
clocked through the shift register. This saves time but
requires the JEDEC file to be altered so that the first
addressis last. A simple AWK program, detailed in Figure
4, completes this task before the file is moved over to the
tester.

£! /bin/sh

if test $£ -1t 1
then
echo
echo
echo
exit 1
fi

£
echo
echo
echo
echo
echo
echo
£

Usage : jedconv [filename.jed]

is saved as isp.tsr.
converting ispLSI jedec file

......

awk '{x[NR]=$0}
END {for(i=NR; i>0; i=i-4)

Please re-enter file name with extention !

This program takes the standard Lattice JEDEC file and
converts it for accelerated programming. The new version

awk 'lenth($1)>79 && length($1)<81 {print $1 > "tempjed"}' $*

printf("%s\n%s\n%s\n%s\n",x[i-3],x[i-2],x[i-1],x[1i])> "isp.tsr"}' tempjed
\rm tempjed
echo Conversion complete.
echo
4-183 1994 Handbook

Programming ispLSI Devices with a Tester

The GenRad ISP Program

The following is a complete listing of a GenRad program.
(* Test and programming routine for ispLSI 1032.

Test & program sequence is :
1. ID-CHECK

2. FLOWTHROUGH TEST
3. BULK-ERASE

4. PROGRAM TEST S/W
5. TEST DEVICE

6. BULK-ERASE

7. PROGRAM MAIN S/W
8. VERIFY DEVICE

9. SET UES

10. SECURE

*)

test Ul dproc=d_fail_proc ;

signal IN6, IO48, I049, 1050, IO51, I052, I0O53, IO54, IO55,
1056, IO57, IO58, 1059, I060, IO61, IO62, IO63, IN7, YO, Y2,
yl, IN4, IOO, IOl, IO2, 103, I0o4, IO5, 106, 107, IO8, IO9,
1010, IOl11, IOl12, IO13, IOl4, IO15, IN5, IOl6, IOl17, IO18,
1019, 1020, IO21, I0O22, 1023, 1024, IO25, 1026, IO27, 1028,
1029, IO030, IO31, IO46, Y3, IO038, IO39, I040, I032, IO033,
1034, IO35, I036, I037, 1047, I043, 1044, 1041, IO042, I045,
SDO_IN2
: hcmos_logic hcmos_currentset verify;
SDI_INO, SCLK_IN3, MODE_IN1l, ISPEN, RESETX
: hcmos_logic hcmos_currentset;

VAR

yesno : char;

testjed : text;

mainjed : text;

verfout : text;

lapse : integer;

err_cnt : integer;

addr_reg : integer;

addr_num : integer;

line_num : integer;

char_num : integer;

fuse_num : integer;

veri_cnt : integer;

data_reg : array[l..320] of logic;
verflgic : array[l..320] of logic;
verfchar : array([l..320] of char;
fuse _map : array[l..34560] of char;

cycle default interval:=500n;
@(400n) sense()

4-184 1994 Handbook

Programming ispLSI Devices with a Tester

end;

cycle sck interval:=2.7u;
sclk _in3 :@(700n, 1.7u) drive (1) gO;
sdi_in0 :@0n drive();
mode_inl :@0n drive();
sdo_in2 :@2.5u sense();
ispen :@0n drive();
resetx :@0n drive();
end cycle;

cycle prog_delay interval:= 2m;
end cycle;

cycle verify pause interval:= 30u;
end cycle;

cycle isp sig interval:= 10u;
ispen :@0n drive();

end cycle;

begin
d_component:='Ul";

writeln('Initial sequence running');

burst initialize active nomaxtime;
begin

(* test ml *)

(***************************)

(* SEQUENCE 1 : ID CHECK *)

(***************************)

sck ISPEN:=1 SDI_INO:=1 MODE_IN1l:=1 RESETX:=1
SDO_IN2=b'U; (*initialize clk¥*)

isp_sig ISPEN:=0; (*ispen low for 10us to enter prog state*)

$ ISPEN:=0 SDI_INO:=0 MODE_IN1:=0 ; (*put device in idle state¥*)

$ RESETX:=0; (*hold low throughout to prevent internal data contention%*)

sck MODE_IN1:=1; (*load device id to shift reg¥)

$ SDI_INO:=1 MODE_IN1l:=0; (*prepare to read id¥)

(*the ID for an ispLSI 1032 is 00000011. The first bit is active as soon as
mode goes low and is the 1lsb. Seven more clocks will shift out the ID on
the SDO pin, then on clk#8 the level at SDI (as it was at clk#l)

will appear at SDO¥*)

$ SDO_IN2=1; (*read 1st ID bit*)

4-185 1994 Handbook

Programming ispLSI Devices with a Tester

sck SDO_IN2=1;
sck SDO_IN2=0;
sck SDO_IN2=0;
sck SDO_IN2=0;
sck SDO_IN2=0;
sck SDO_IN2=0;
sck SDO_IN2=0;
sck SDO_IN2=1;
$ SDO_IN2=b'U;

(*read
(*read
(*read
(*read
(*read
(*read
(*read

(*SDI i/p shifted from clk#1l*)

2nd
3rd
4th
5th
6th
7th
8th

bit¥)
bit*)
bit*)
bit¥)
bitx)
bit¥)
bitx)

(***********************************)

FLOWTHROUGH TEST

(***********************************)

(* SEQUENCE 2 :

sck MODE_IN1:=1 SDI_INO:=1;

(*load flowthru command, instruction is 01110 loading lsb first¥)

sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;
sck SDI_INO:=1;
sck SDI_INO:=1;
sck SDI_INO:=0;

sck MODE_IN1:=1 SDI_INO:=1;

sck MODE_IN1:=0;

(*execute flowthru command*)

(* check sdi = sdo ¥*)

“nLrnrnnnennnnn

SDO_IN2=b'u;

SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;
SDI_INO:=1 SDO_IN2=1;
SDI_INO:=0 SDO_IN2=0;

(*load complete*)

(*****************************)

(* SEQUENCE 3 :

BULK ERASE

*)

(*****************************)

sck MODE_IN1:=1 SDI_INO:=1;

(*load bulk erase command, instruction is 00011 loading lsb first *)

sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=1;
sck SDI_INO0:=0;
sck SDI_INO0:=0;
sck SDI_INO0:=0;

(*load complete*)

*)

(*move to shift state*)

(*move to execute state¥)

(*move to shift state*)

4-186

1994 Handbook

Programming ispLSI Devices with a Tester

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state*)
sck MODE_IN1:=0; (*execute erase command*)

for lapse := 1 to 120 do (*wait 240ms for erase to finish¥*)
begin

prog_delay;

end;

(***********************************)

(* SEQUENCE 4 : PROGRAM TEST S/W *)

(***********************************)

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load address shift command, instruction is 00001 loading 1lsb first *)
sck MODE_IN1l:=0 SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)
$ MODE_IN1:=0 SDI_INO:=0; (*execute address shift command*)

for addr reg := 1 to 107 do (*initialize address registerx)
begin

sck;

end; (*addr reg now full of zerost*)

sck SDI_INO:=1; (*address row 107 set to 'l' and ready to program*)
sck MODE_INl:=1 SDI_INO:=0; (*enter idle state¥*)

end burst initialise; (* END OF BURST *)

writeln('Reading ISP data from file');
reset(testjed, ' /work2/fk/isp/isp.data'); (*open ispdata file*)

(*load the jedec data from file to burst array*)

for line_num := 0 to 431 do (*432 lines in the ISP file¥)

begin

for char num := 1 to 80 do (*each line is 80 chars long*)

begin

read(testjed, fuse_map[(char_num + (80 * line num))]);(*load the array*)
end;

readln(testjed); (*ignore carriage return at end of line*)

end;

(* the array 'fusemap' now contains the ISP file¥*)

(* START OF DEVICE ARRAY PROGRAMMING LOOP *)

4-187 1994 Handbook

Programming ispLSI Devices with a Tester

writeln('Programming loop running');

for addr_num := 0 to 107 do (*address loop counter*)
begin

(*load fuse map array one address at a time to data reg array and
simultaneously convert type 'char' to type 'logic'*)

for fuse num := 1 to 320 do

begin

if fuse_map[(fuse_num + (320 * addr_num))] = 'l1l' then
data_reg[fuse_num] := b'l

else

data_reg[fuse num] := b'0;

end;

burst blow_test_function active nomaxtime inherit initialize;
begin

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state¥*)

(*load data shift command, instruction is 00010 loading lsb first¥*)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state*)

$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command*)

(* shift in 160 high order bits for row to be programmed *)

for fuse_num := 1 to 160 do

begin

sck SDI_INO:= data_reg[fuse_num];

end;

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift state)

(*load program high data command, instruction is 00111 loading lsb first¥)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=1;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load completet*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state¥*)

sck MODE_IN1l:=0 SDI_INO:=0; (*execute program high data command*)

for lapse := 1 to 25 do (*wait 50ms for high bits of row to be programmed*)
begin

4-188 1994 Handbook

Programming ispLSI Devices with a Tester

prog_delay;
end;

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load data shift command, instruction is 00010 loading 1lsb first¥)

sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load complete*) !

sck MODE_INl:=1 SDI_INO:=1; (*move to execute statex)
$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command¥*)
(* shift in 160 low order bits for row to be programed *)

for fuse num := 161 to 320 do
begin

sck SDI_INO:= data_reg[fuse_num];
end;

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load program low data command, instruction is 01000 loading 1lsb first¥)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0; (*load complete*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*);
sck MODE_IN1:=0 SDI_INO:=0; (*execute program low data command¥*)

for lapse := 1 to 25 do (*wait 50ms for low bits of row to be programmed*)
begin

prog_delay;

end;

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift state*)

(*load address shift command, instruction is 00001 loading lsb first¥)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=0;
sck SDI_INO:=0;
sck SDI_INO:=0;
sck SDI_INO:=0; (*load complete*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state¥)

sck MODE_IN1:=0 SDI_INO:=0; (*move addr reg to next row, the address
reg will be clear after the last loop¥*)

4-189 1994 Handbook

Programming ispLSI Devices with a Tester

sck MODE_INl:=1; (*move to idle state¥*)

end burst blow_test_function; (* END OF BURST *)
end; (* END OF ARRAY PROGRAMMING LOOP *)
writeln('Device programmed.');
(******************************)

(* SEQUENCE 8 : VERIFY DEVICE *)

(******************************)
writeln('Verifying...');

burst verification active nomaxtime inherit blow_test_ function;
begin

(* device is in idle state ¥*)

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)
(*load address shift command, instruction is 00001 loading lsb first¥*)
sck MODE_IN1l:=0 SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO0:=0;

sck SDI_INO0:=0;

sck SDI_INO0:=0; (*load complete¥*)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute state*)

$ MODE_IN1:=0; (*execute address shift command*)

sck SDI_INO:=1; (* address last row *)

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)
(*load ver/ldh command, instruction is 01010 loading 1lsb first¥)
sck MODE_IN1:=0 SDI_IN0:=0;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0; (*load complete¥*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state¥)
sck MODE_IN1:=0 SDI_IN0:=0; (*execute ver/ldh command*)
verify pause; (* wait 30u for data reg to load *)

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state¥)

(*load data shift command, instruction is 00010 loading lsb first¥)
sck MODE_IN1:=0 SDI_INO:=0;

4-190 1994 Handbook

Programming ispLSI Devices with a Tester

sck SDI_INO:=1;
sck SDI_INO:=0;
sck SDI_INO:=0;
sck SDI_INO:=0; (*load complete¥*)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute state*)
$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command*)
(*clock out the high order bits from the data reg *)

for veri_cnt := 1 to 160 do
begin

$ verflgic[veri_cnt]:=sdo_in2;
sck ;

end;

sck MODE_IN1l:=1 SDI_INO:=1; (*move to shift state*)

(*load ver/1ldl command, instruction is 01011 loading lsb first¥)
sck MODE_IN1:=0 SDI_INO:=1;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0; (*load complete¥)

sck MODE_INl:=1 SDI_INO:=1; (*move to execute statex*)
sck MODE_IN1:=0 SDI_INO:=0; (*execute ver/1ldl command*)
verify pause; (* wait 30u for data reg to load *)

sck MODE_INl:=1 SDI_INO:=1; (*move to shift state*)

(*load data shift command, instruction is 00010 loading lsb firstx)
sck MODE_IN1:=0 SDI_INO:=0;

sck SDI_INO:=1;

sck SDI_INO:=0;

sck SDI_INO:=0;

sck SDI_INO:=0; (*load completet)

sck MODE_IN1l:=1 SDI_INO:=1; (*move to execute statex)
$ MODE_IN1:=0 SDI_INO:=0; (*execute data shift command*)

(*clock out the low order bits from the data reg *)
for veri_cnt := 161 to 320 do

begin

$ verflgic[veri_cnt]:=sdo_in2;

sck ;

end;

sck MODE_INl:=1 SDI_INO:=0; (*move to idle state*)

4-191 1994 Handbook

Programming ispLSI Devices with a Tester

end burst verification; (* END OF BURST *)
(* convert data type and compare data *)

err_cnt := 0
yesno := 'n'

~e ~e

for veri_cnt := 1 to 320 do
begin

if verflgic[veri_cnt] = b'l then (*convert type logic to type char*)
verfchar[veri_cnt]:="'1"

else

verfchar[veri cnt]:='0";

if verfchar[veri_cnt] <> fuse map[veri cnt] then (*compare with jedfile*)
err cnt := err_cnt + 1;

end;

(* failure routine *)

if err_cnt > 0 then

begin

setfail;

writeln('Verification failure!!');
writeln('failed ',err _cnt,' bit(s) out of 320.');
write('Write error file? [y/n]');
readln(yesno);

end

else

writeln('Verify has passed.');

(* write out error file if req'd for programmers attention*)
if yesno = 'y' then

begin

write('Writing to file...');

rewrite(verfout, '/work2/fk/isp/verify.err');

for line_num := 0 to 3 do

begin

for veri_cnt := 1 to 80 do

begin

write(verfout,verfchar[(veri_cnt + (80 * line_num))]);
end;

writeln(verfout);

end;

writeln('Done."');

writeln('Last line written to "verify.err"');

end;

(******************************)

(* SEQUENCE 5 : TEST DEVICE *)

(******************************)

writeln('Testing function');

4-192 1994 Handbook

Programming ispLSI Devices with a Tester

burst test_device active nomaxtime inherit verification;
begin

(*test vectors here to test counter example in lattice book*)
isp_sig ISPEN:=1; (*wait 10us to leave prog statet)

$ SDI_INO:=1 MODE_INl:=1 RESETX:=1; (*hold prog pins*)

Y0:=0 IO0:=1 IOl:=1 I02:=0;

I102:=1;

Y0:=1;

Y0:=0; (*CNTR IS RESET O/P'S ARE LOWY*)
102:=0; (*READY TO CNT*)

w v n

I036=0 I037=0 I1038=0 I039=0 I032=0;(*0000*)
Y0:=1 nofails;
$ Y0:=0 nofails;

v

I036=0 IO37=0 1038=0 IO39=1 I032=0;(*0001*)
Y0:=1 nofails;
Y0:=0 nofails;

v

1036=0 I037=0 IO38=1 I039=0 I032=0;(*0010%*)
Y0:=1 nofails;
Y0:=0 nofails;

«“ W »n

$ 1036=0 I037=0 I038=1 I039=1 I032=0;(*0011¥*)
$ Y0:=1 nofails;
$ Y0:=0 nofails;

I036=0 IO37=1 I1038=0 IO39=0 I032=0;(*0100%*)
Y0:=1 nofails;
Y0:=0 nofails;

w

I1036=0 IO37=1 I038=0 I039=1 I032=0;(*0101%*)
Y0:=1 nofails;
Y0:=0 nofails;

v W W»

I036=0 I037=1 I038=1 I039=0 I032=0;(*0110%*)
Y0:=1 nofails;
Y0:=0 nofails;

" - W»n

I036=0 IO37=1 IO038=1 I039=1 I032=0;(*0111%*)
Y0:=1 nofails;
Y0:=0 nofails;

v »n n

I036=1 IO37=0 I038=0 IO39=0 I032=0;(*1000%*)
Y0:=1 nofails;
Y0:=0 nofails;

w »n n

I036=1 I037=0 I038=0 I039=1 1032=0;(*1001*)
Y0:=1 nofails;

wvr 0

4-193 1994 Handbook

Programming ispLSI Devices with a Tester

w n " w n n v v

w W n

«“ W »n

v

Y0:=0 nofails;

I036=1 I037=0 I038=1

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=0 I038=1

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 IO037=1 I038=0

Y0:=1 nofails;
Y0:=0 nofails;

I1036=1 I037=1 I038=0

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=1 I038=1

Y0:=1 nofails;
Y0:=0 nofails;

I036=1 I037=1 I038=1

Y0:=1 nofails;
Y0:=0 nofails;

I036=0 I037=0 I038=0

Y0:=1 nofails;
Y0:=0 nofails;

I036=b'u I037=b'u I038=b'u I039=b'u I032=b'u

1039=0 I032=0;(*1010%)

1039=1 I032=0; (*1011%)

1039=0 I032=0;(*1100%)

1039=1 I032=0;(*1101%)

1039=0 I032=0;(*1110%)

I039=1 I032=1;(*1111 + carry¥*)

1039=0 I032=0;(*0000%)

I00:=b'z I0l:=b'z I02:=b'z Y0:=b'z

SDI_INO:=b'z MODE_INl:=b'z RESETX:=b'z ISPEN:=b'z;

end burst test device;

writeln('Finished');

end test Ul;

(* END OF BURST ¥*)

4-194

1994 Handbook

Section 1: Introduction

Section 2: ispLSI and pLSI Architecture Overview
Section 3: ispLSI and pLSI Development Tools
Section 4: ispLSI and pLSI Application Notes

Section 5: GAL Architecture Overview

Introduction to Generic Array LOGICcccoceviiiieiiniriienieseere e

Section 6: GAL Development Tools

Section 7: GAL Application Notes

Section 8: In-System Programmable Generic Digital Switch (ispGDS)
Section 9: Design Techniques

Section 10: Article Reprints

Section 11: Technology, Quality, and Reliability Overview

Section 12: General Section

5-ii

Introducti