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How To Use This Handbook 

Background 
Lattice Semiconductor Corporation, founded in 1983 and based in Hillsboro, Oregon, for over 
a decade has been providing innovative solutions to the manufacturers of high performance 
systems. Lattice pioneered non-volatile, reprogrammable logic with its UltraMOS E2CMOS 
technology. This technology, combined with the Lattice GAL architectures, have established 
Lattice products as the industry standard in low density programmable logic. Lattice's ispLSI 
and pLSI families of high density PLDs combine leadership performance and density with in­
system programmability to establish the high-density programmable logic standard of the 
1990's. 

What This Handbook Contains 
This handbook offers product overviews, architecture overviews, applications notes, and 
various other pieces of information about Lattice's programmable devices and development 
tools. Please consult the latest Lattice Data Book for more detailed information on device and 
software specifications. 

Additional Information 
For information on product availability and pnc1ng, please contact your Lattice Sales 
Representative or Distributor. A listing of all Lattice Sales Offices, Sales Representatives, 
and Distributors is at the end of this handbook. 

For immediate help with technical questions or access to selected applications described 
inside, please call: 

Applications Hotline 
GAL Products: Tel. 1-800-FASTGAL (327-8425), FAX (503) 681-3037 

ispLSI and pLSI Products: Tel. 1-800-LATTICE (528-8423), FAX (408) 944-8450 

Electronic Bulletin Board 
GAL Products: (503) 693-0215 

ispLSI and pLSI Products: (408) 980-9814 
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Background 

Through pioneering efforts in applying E2CMOS® tech­
nology to programmable logic, Lattice has established 
the GAL® family of products as the industry standard 
worldwide. With the introduction of the high-density 
programmable Large Scale Integration (pLSI®) devices 
and in-system programmable Large Scale Integration 
(ispLSI™) devices, Lattice has become the world's larg­
est supplier of low-density CMOS PLDs and the fastest 
growing supplier of high-density CMOS PLDs. 

Lattice has recently introduced two new low-density in­
system programmable devices: the ispGAL22V10 and 
ispGDS™. The ispGAL22V10 brings on-the-fly system 
logic reconfigurability to the industry standard GAL22V10. 
The ispGDS (in-system programmable Generic Digital 
Switch) family further extends Lattice's programmable 
technology beyond logic to board interconnect and signal 
routing. The ispGDS family opens new possibilities for 
system designers and is just the first of a series of 
application specific programmable solutions that will be 
provided by Lattice in the future. 

The Lattice Advantage 

Time-to-Market 
E2CMOS PLDs enable system designers to meet ever­
shrinking time-to-market constraints while avoiding the 
significant development costs, lead times and dedicated 
inventories associated with traditional ASIC and bipolar 
PLO solutions. 

Flexibility 
Programmable and reprogrammable devices enable fast 
and easy modifications to system designs. 

Product Differentiation 
Lattice's programmable devices allow design engineers 
to easily differentiate their end-product through propri­
etary feature enhancements. This is particularly true 
when a system utilizes the non-volatile ISP™ (In-System 
Programmable) technology pioneered by Lattice. 

Inventory Reduction 
A single. standard part type can be used in multiple, 
diverse applications. Just five GAL architectures replace 
virtually all bipolar PAL® architectures (see figure 1 ). 
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Products 

The Lattice PLO product offering can be segmented into 
two strategic product thrusts: 

Low Density: GAL Family 
• 100 - 1,000 Gates 

• The Highest Performance PLDs from any Supplier 

• Superior Replacements for Bipolar and CMOS PLO 
Architectures 

• E2CMOS Low-Power, Quality and Reliability 

• Broadest Range of PLO Architectures Offering Fea­
tures not Available in other PLDs 

• Pioneering Non-volatile In-System Programmability 
(ISP) 

High Density: ispLSI and pLSI Families 
• 1,000 - 14,000 Gates (World's Largest) 

• World's Fastest High-Density PLDs (HDPLDs) 

• Superior HDPLD Architecture (Flexible, Predictable 
Performance) 

• Pioneering Non-volatile In-System Programmability 
(ISP) 

•Range of Effective Development Tool Options 

Lattice Product Features 

Figure 1. Five GAL devices replace virtually all bipolar 
PAL devices. 
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Introduction 

Therearethreefundamentalfeatureswhich Lattice PLDs The ISP concept, and the ispLSI, ispGAL and ispGDS 
share: E2CMOS technology, performance leadership families in particular, dramatically impact system devel­
and innovation. opment and manufacturing. Lattice ISP solutions deliver: 

E2CMOS Technology 
All GAL, pLSI and ispLSI devices are manufactured 
using Lattice's proprietary high-speed UltraMOS® 
E2CMOS technology. Lattice is unique among ''tab-less" 
companies in that the process technology development 
is actually done by Lattice. UltraMOS technology 
successfully combines the best features of CMOS and 
NMOS process technology to yield PLDs with the follow­
ing key features: 

• Industry Leading Performance 

• High Logic Densities 

• Low Power Consumption 

• Non-Volatile, In-System Programmability 

• Fast Erase and Reprogram Times 

• 100% Full Parametric Testability 

• 100% Programming and Functional Yields 

Performance Leadership 
Lattice continues its long track record of producing the 
fastest CMOS PLDs in the market. These industry­
leading high-performance products are typically available 
to the market months ahead of any other PLO supplier. 
As a result, Lattice customers have always been able to 
take full advantage of next generation microprocessor 
speeds and bring out industry leading end-products of 
their own, thus fueling their own success. 

While speed continues to be a top priority, Lattice has 
also introduced PLO families which address other logic 
design concerns such as low power ("Zero-Power" 
GAL16/20V8Z and GAL16/20V8ZD), high output drive 
(GAL 16/20VP8) and logic density (GAL26CV12). 

Innovation 
The third, and perhaps the most important attribute of 
Lattice's products is technology and architectural 
innovation. Lattice's most far-reaching innovation may 
have been the decision in 1984 to combine E2CMOS 
technology with the PLO architecture when all other PLO 
suppliers were offering UV erasable EPROM technology. 
This marriage yielded the GAL product family - the "1st 
Revolution in PLO Design." 

Lattice innovation also started the "2nd Revolution in 
PLO Design" with the introduction of the first non-volatile 
in-system programmable high-density PLO family -
ispLSI and reinforced with the introduction of the 
ispGAL22V10 and ispGDS families. 

Effortless Prototyping: Design iterations can be 
downloaded directly to the ISP device soldered onto 
the prototype board. 

Reconfigurable Systems: A single generic board 
can be "personalized" to one of many system con­
figurations at final board-level test. 

Simplified Manufacturing: Eliminates all stand­
alone programming steps. Device programming can 
be done as part of board-level testing. The result is 
no misprogrammed devices, no inventory headaches 
keeping track of patterned devices, and no PLO 
rework costs. 

No More Bent Leads: ISP technology also solves 
the handling problems associated with high pin count, 
fine pitch packages (PQFP, TQFP etc.). Program­
ming devices in-system eliminates bent leads and 
unreliable solder joints. 

Summary 

Lattice, the leader in E2CMOS PLDs, is committed to 
providing its customers with industry-leading program­
mable solutions. We realize that your system design 
requirements and time-to-market pressures will only get 
tougher in the future. Lattice is committed to supporting 
you with state-of-the-art products with the performance, 
architecture, quality and reliability that satisfy your re­
quirements. 
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Introduction to 
ispLSI™ and pLSI® Families 

The Lattice ispLSI and pLSI Families 

The Lattice programmable Large Scale Integration (pLSI) 
and in-system programmable Large Scale Integration 
(ispLSI) families are the logical choice for your next 
design project. They're the first programmable logic 
devices to combine the performance and ease of use of 
PLOs with the density and flexibility of FPGAs. And at 135 
MHz system speed, and up to 14000 PLO gates, they're 
the world's fastest and highest density programmable 
logic devices! 

ispLSI and pLSI 1000: The Premier High 
Density Family 

D 110 MHz system performance 

D 10 ns pin-to-pin delay (maximum) 

D 2000-8000 PLO gates 

D 44-pin to 128-pin packages 

ispLSI and pLSI 2000: Unparalleled System 
Performance 

D 135 MHz system performance (world's fastest!) 

D 7.5 ns pin-to-pin delay (maximum) 

D 1000-4000 PLO gates 

D 44-pin to 128-pin packages 

D High 1/0 to Logic Ratio 

There are three ispLSI and pLSI families to fit your 
specific application needs. Lattice's premier ispLSI and 
pLSI 1000 family implements high integration functions 
such as controllers, LANs and encoders at high speeds. 
The high performance ispLSI and pLSI 2000 family with 
its large number of I/Os handles timers, counters as well 
as timing critical interfaces to high speed RISC/CISC 
microprocessors. The highest density ispLSI and pLSI 
3000 family integrates complete system logic, OSP func­
tions, and entire encryption or compression logic into a 
single package, while delivering superior performance. 

ispLSI and pLSI 3000: Density with 
Performance 

The ispLSI 1000, 2000 and 3000 families pioneer non­
volatile, in-system programmability, a technology that 
allows real-time programming, less expensive manufac­
turing and end-user system reconfiguration. 

All the development tools you need are available from 
Lattice - tools ranging from Lattice's own entry level 
software to higher level, third-party design environments. 
With these tools, you'll be completing your circuit designs 
in hours instead of weeks or months. 

Lattice's ispLSI and pLSI Families 
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D 110 MHz system performance 

D 10 ns pin-to-pin delay (maximum) 
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(IEEE 1149.1) 
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Introduction to ispLSI and pLSI 

Family Overview 

From registers to counters, from multiplexers to complex 
state machines, these families of high-density program­
mable logic will address your high-performance system 
logic needs. 

With PLO gate densities ranging from 1,000 to 14,000, 
the ispLSI and pLSI devices provide the range of pro­
grammable logic solutions you need to meet design 
requirements today and tomorrow. 

Table 1. ispLSI and pLSI Family Attributes 

Density 
(PLO Gates) 

Speed: 
Fmax (MHz) 

Speed: 
Tpd (ns) 

Macrocells 

Registers 

Inputs & I/Os 

Pins/Package 

Each device contains multiple Generic Logic Blocks 
(GLBs), architectured to maximize system flexibility and 
performance. And a generous supply of registers and 
1/0 cells provides the optimum balance of internal logic 
and external connections. A global interconnect scheme 
ties everything together, enabling high logic utilization . 

ispLSI and pLSI 1000 

1/2/30D0-2A 
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Introduction to ispLSI and pLSI 

ispLSI and pLSI Architecture 

The ispLSI and pLSI architecture was constructed with 
real system design requirements in mind. Figure 1 
shows the representation of the pLSI 3256 architecture. 
This architecture provides the designer with the following 
advantages. 

D High Speed 

D Predictable performance 

ispLSI and pLSI 2000 

2-3 

D Low power 

D Flexible architecture 

D Easy to use 

D Design portability across all the families 

D Non-volatile in-system programmable (ispLSI) 

D Advanced Global Clock Network 

D Boundary Scan (3000 Family) 

1/2/3000-3A 
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Introduction to ispLSI and pLSI 

The Global Routing Pool 

Central to the ispLSI and pLSI architecture is the Global 
Routing Pool (GRP), which connects all of the internal 
logic and makes it available to the designer. The GRP 
provides complete interconnectivity with fixed and pre­
dictable delays. This unique interconnect scheme 
consistently provides high performance and allows ef­
fortless implementation of complex designs. 

Figure 1. pLSI 3256 Functional Block Diagram 

The Output Routing Pool (ORP) 
The Output Routing Pool (ORP) is a unique ispLSI and 
pLSI architectural feature which provides flexible con­
nections between the GLB outputs and the output pins. 
This flexibility allows for "last minute" logic design changes 
to be implemented without changing the external pin-out. 

11111!111 ---1111 

• 

n ut us n ut us 

I Output Routing Pool (ORP) I I Output Routing Pool (ORP) I 

~~~~ ~[§]~~ 

Global Routing Pool 
(GRP) 

~@][§][§] 
I Output Routing Pool (ORP) I 

n ut us ----
000~ 
I Output Routing Pool (ORP) I 

In ut Bus ----
Generic Logic Block (GLB) 

GLB­
Generic 
Logic 
Block 

GRP.. 
Global 
Routing 
Pool 

ORP­
Output 
Routing 
Pool 

CLK­
Clock 
Distribution 
Network 

The key element in the ispLSI and pLSI architecture is the 
Generic Logic Block (GLB). This powerful logic block 
provides a high input-to-output ratio for best logic effi­
ciency. The GLB (figure 2) used in the ispLSI and pLSI 
1000 and 2000 families feature 18 inputs which drive an 
array of 20 Product Terms (PTs). These product terms 
feed four outputs which effectively handle both wide and 
narrow gating functions. The ispLSI and pLSI 3000 family 

utilizes a Twin GLB (figure 3) which delivers wider logic 
functionality. The Twin GLB accepts 24 inputs and feeds 
two arrays of 20 Product Terms that ultimately drive two 
sets of four outputs. 

The architectural flexibility of the ispLSI and pLSI GLB, 
combined with its optimum input-to-output ratio, allows 
the GLB to implement virtually all 4-bit and 8-bit MSI 
functions. 

2-4 1994 Handbook 



Introduction to ispLSI and pLSI 

An additional element of architectural flexibility is the 
Product Term Sharing Array (PTSA). The PTSA allows 
the 20 PTs from the AND array to be shared with any and 
all of the four GLB outputs. This ability to share PTs 
between all of the four GLB outputs provides a highly 
efficient means to implement complex state machines by 
eliminating duplicate product term groups. 

Each of the four outputs from the PTSA feeds into a 
flexible Output Logic Macrocell (OLMC}, consisting of a 
D-type flip-flop with an Exclusive-OR gate on the input. 

Figure 2. ispLSI and pLSI 1000 and 2000 Family GLB 
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Figure 3. ispLSI and pLSI 3000 Family "Twin GLB" 
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The OLMC allows each GLB output to be configured as 
either combinatorial or registered. Combinatorial mode is 
available as AND-OR or Exclusive-OR. Registered mode 
is available as D, Tor J-K. 

The power of the GLB is further enhanced by a flexible 
clock distribution network. This network provides a choice 
of clock signals to each GLB: global synchronous clock 
signals or internally generated asynchronous product 
term clock signals. 
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Figure 4. GLB: Multi-Mode Configuration 
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2-6 1994 Handbook 



Introduction to ispLSI and pLSI 

Security Cell 

A security cell is provided in the ispLSI and pLSI devices 
to prevent unauthorized copying of the array patterns. 
Once programmed, this cell prevents further read access 
to the functional bits in the device. This cell can only be 
erased by reprogramming the device, so the original 
configuration can never be examined once this cell is 
programmed. 

Device Programming 

ispLSI and pLSI devices can be programmed using a 
Lattice-approved device programmer, available from a 
number of third party manufacturers. Complete 
programming of the device takes only a few seconds. 
Erasing of the device is automatic and is completely 
transparent to the user. In-system programming is also 
available with ispLSI devices which allows programming 
on the circuit board using Lattice programming algorithms 
and standard 5V system power. 

Latch-up Protection 

ispLSI and pLSI devices are designed with an on-board 
charge pump to negatively bias the substrate. The 
negative bias is of sufficient magnitude to prevent input 
undershoots from causing the internal circuitry to latch­
up. Additionally, outputs are designed with n-channel 
pull-ups instead of the traditional p-channel pull-ups to 
eliminate any possibility of SCR induced latching. 

In-System Programmability 

Prototype Board Designs 

In-system programming allows you to program and modify 
your logic designs "in-system" without removing the 
device(s) from the board. This accelerates the system 
and board-level debug process and enables you to 
define the board layout earlier in the design process. 

Fine Pitch Package Handling 

When programming traditional PLDs, manual handling is 
required during both design/debugging and manufactur­
ing stages. When using PQFPs or TQFPs, fragile leads 
as thin as 0.5 mm can easily bend in the programmer 
socket causing coplanarity damage. With ispLSI, you 
can solder these packages onto your printed circuit 
board and still program and reprogram the devices · 
during debugging and manufacturing - without ever 
losing a single part due to bent leads. 

Reconfigurable Systems 

Your options become boundless when you have the 
ability to change the functionality of devices already 
soldered on a p.c. board. You can now implement mul­
tiple hardware configurations with the same circuit board 
design. A variety of protocols or system interfaces can be 
implemented on a generic board as the last step in the 
manufacturing flow. 

Easier Field Updates 

With software reconfigurable systems, field updates are 
as easy as loading a new configuration from a floppy or 
downloading it through a modem. 

Lattice's ispLSI devices (in-system programmable) are Enhanced Manufacturing Flow with ispLSI 
the industry's only high-density programmable logic fam­
ily offering non-volatile, in-system reconfigurability. 

ispLSI devices are available in all three families: 1000, 
2000 and 3000. The ispLSI devices are 100 percent 
functionally and parametrically compatible with their pLSI 
counterparts, with the added capability for 5-volt in­
system programmability and reprogrammability. 

Complex logic functions can be implemented in multiple 
ispLSI devices with complete on-board configurability. 
In-system programming of a multiple ispLSI chip solution 
is easily achieved through a proprietary in-system erase/ 
program/verify technique. 

In-system programmability can revolutionize the way you 
design, manufacture and service systems. 

Perhaps the most exciting benefit of the ispLSI family is 
its potential to streamline the manufacturing process by 
eliminating the separate programming and labeling steps 
usually associated with PLDs. Quality is enhanced when 
product handling steps are reduced, in this case, those 
associated with programming, labeling and re-inventory­
ing multiple device types. Eliminating socketing further 
improves quality and reduces board cost. Figure 6 
shows the enhanced manufacturing with the ispLSI de-
vice. 
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Figure 5. In-System Programmable Graphics Board 

Figure 6. Manufacturing Flow Comparison 
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All necessary programming is achieved via five TTL-level 
logic interface signals (see figure 7). These five signals 
control the on-chip programming circuitry, which protects 
against inadvertent reprogramming via on-chip state 
machines. The ispLSI family can also be programmed 
using popular third-party logic programmers. 

Figure 7. In-System Programming Interface (Multi­
Chip Solution) 
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Boundary Scan 

An emerging trend in board-level testing is boundary 
scan test, an attractive feature helping designers test 
system boards efficiently while lowering test and manu­
facturing costs. The ispLSI and pLSI 3000 family offers 
dedicated IEEE 1149.1 boundary scan support for all test 
functions required by the standard. By using ispLSI and 
pLSI devices you not only eliminate expensive "bed-of­
nails" testers but also simplify testing of surface-mount 
boards, multi-layer boards and boards using fine-pitch 
packages. Boundary scan is ideal wherever tight board 
layout limits access to logic signals. 

It only takes 4 pins to implement the boundary scan 
interface. The ispLSI 3000 devices share the four bound­
ary scan signals with the in-system programming pins. 
This enhances the testability of system designs allowing 
logic to be reconfigured to improve controllability and 
observability. 

Lattice Development Systems 

The Lattice pLSI and ispLSI Development System (pDS) 
software is used to implement designs in ispLSI and pLSI 
devices. Design alternatives can be quickly implemented 
using Lattice's low cost pDS Software or the pDS+ family 
of Fitters that interface with third-party development 
software packages. This section describes the pDS and 
pDS+ Development Systems. Programmer support is 
also discussed. 

pLSI and ispLSI Development System (pDS) 

Features 

0 High-Performance, Low-Cost Development 
Environment 

0 Supports ispLSI and pLSI Device Families 

0 Boolean Logic and Text File Design Entry 

0 Windows Based Graphical User Interface 

O Over 275 Macros Available 

O Automatic Place and Route 

0 Static Timing Table 

O Logic Simulation with Viewlogic Viewsim 

0 JEDEC File Download Direct to Programmer or 
ispLSI Device 

General Description 

All ispLSI and pLSI families are supported by Lattice's low­
cost pDS Software. It runs on IBM-compatible (386/486/ 
Pentium) PCs with Microsoft Windows. 

The graphical user interface employs an easy-to-use 
mouse and pull-down menu driven approach. Combined 
with Boolean logic data entry using an ABEL-like syntax, 
pDS makes design entry with ispLSI and pLSI quick and 
straightforward (see figure 8). 

Figure 8. pDS Design Flow 
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The pDS Software supports over 275 macros to assist 
the design process. These macros cover most TTL 
functions, from gate primitives to 16-bit counters. The 
software also supports user-definable macros which can 
be modifications of existing macros or custom creations. 

The pDS Software automatically verifies the design, 
performs logic minimization and checks for signal avail­
ability. 

The Lattice Place and Route software assigns pins and 
critical speed paths while routing the design. 

Quick compilation speeds the design, debug and rework 
process dramatically. Incremental design techniques are 
also supported. 

2-9 1994 Handbook 



Introduction to ispLS/ and pLSI 

Timing and functional simulation is available from Lattice, 
using Viewsim simulation software. 

The Windows graphical user interface makes 
programming easy, using pull-down menus, intuitive 
point-and-click commands and self explanatory 
instructions. Without any up-front training, designs can 
be completed within hours instead of days or weeks. 

pLSI and ispLSI Development System Plus (pDS+) 

Features 

D Supports ispLSI and pLSI Device Families 

O Schematic Capture, State Machine, Design Entry 
HDL, and Boolean Equations 

0 Expanded Macro Library (>300) 

0 Automatic Logic Minimization and Partitioning 

0 Automatic Place and Route 

0 Logic and Timing Simulation 

0 EDIF Compatible 

0 JEDEC File Download Direct to Programmer or 
ispLSI Device 

General Description 

For higher level design entry environments, Lattice offers 
pDS+ development software packages, which expand on 
the core capabilities of pDS. Schematic capture, state 
machine, HDL and Boolean entry are supported, along 
with an expanded macro library. 

The pDS+ software utilizes industry standard third-party 
design environments such as Viewlogic's Viewdraw and 
Data I/O's ABEL. 

Running on IBM compatible (386/486/Pentium) PCs or 
workstation platforms, pDS+ software supports automatic 
logic minimization and partitioning as well as place and 
route, resulting in high logic utilization. 

For logic and timing simulation, support is available from 
Lattice through Viewlogic Viewsim simulation tools. 

Third Party Programming Support 

The ispLSI and pLSI families are supported by popular 
third-party logic programmers including Data 1/0, Logical 
Devices, BP-Microsystems, Stag, System General, SMS 
Micro Systems and Advin. Table 2 describes each vendor's 
specific programmer models that support the ispLSI and 

pLSI devices. No proprietary, expensive, high pin-count 
programmers are required. 

High pin-count socket adapters are available from Emu­
lation Technology, Procon Technology, EDI Corporation 
and Logical Systems Corporation. 

Additionally, the ispLSI family can be programmed on the 
board (in-system), which eliminates the need for a stand­
alone programmer. For specific details refer to the 
Lattice Programming Tools Guide available from your 
local Sales Representative. 

Table 2. Programming Support 

Programmer Vendor Model 

Pilot-U84 

Advin Systems Pilot-U40 

Pilot-GUGCE 

PLD-1128 
BP Microsystems 

CP-1128 

2900 

Data 110 3900 

Unisite 40/48 

Allpro 40 
Logical Devices 

Allpro 88 

SMS Micro Systems Sprint Expert 

System 3000 
Stag 

ZL30/A 

System General TURPR0-1 

isp Engineering Kit 

The ispLSI family may also be programmed with Lattice's 
isp Engineering Kit Model 100 for PCs and Model 200 for 
Sun workstations. The kit is designed for engineering 
purposes only and is not intended for production use. By 
connecting an 8 wire cable to the parallel printer port of 
a PC, JEDEC files can be easily downloaded into the 
ispLSI device. Additionally, this cable can be connected 
directly to the circuit board facilitating on-board in-system 
programming. 
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1000Family 
Architectural Description 

ispLSI and pLSI 1000 Family Introduction 

The basic unit of logic for the ispLSI and pLSI families is 
the Generic Logic Block (GLB). Figure 1 illustrates the 
pLSI 1032 with its 32 GLBs labelled AO, A1 .. D7. Each 
GLB has 18 inputs, a programmable AND/OR/XOR ar­
ray, and four outputs which can be configured to be either 
combinatorial or registered. Inputs to the GLB come from 
the Global Routing Pool (GAP) and dedicated inputs. All 
of the GLB outputs are brought back into the GAP so that 
they can be connected to the inputs of any other GLB on 
the device. 

As an example, the pLSI 1032 has 64 1/0 cells, each of 
which is directly connected to an 1/0 pin. Each 1/0 cell 
can be individually programmed to be a combinatorial 
input, registered input, latched input, output or bi-direc­
tional 1/0 pin with 3-state control. Additionally, all outputs 
are polarity selectable, active high or active low. The 
si~nal levels are TTL compatible voltages and the output 
drivers can source 4 mA or sink 8 mA. 

The 1/0 cells are grouped into sets of 16 as shown in 
figure 1. Each of these 1/0 groups is associated with a 
Megablock through the use of the Output Routing Pool 
(OAP). 

Figure 1. pLSI 1032 Functional Block Diagram 
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a common Output Enable (OE) signal. The pLSI 1032 
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The GAP has as its inputs the outputs from all of the GLBs 
and all of the inputs from the bi-directional 1/0 cells. All 
of these signals are made available to the inputs of the 
GLBs. Delays through the GAP have been equalized to 
minimize timing skew. 

Clocks in the devices are selected using the Clock 
Distribution Network. The dedicated clock pins 
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network, and five outputs (CLK 0, CLK1, CLK 2, IOCLK 
0 and IOCLK 1) are provided to route clocks to the GLBs 
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1000 Family Architectural Description 

Generic Logic Block 

The Generic Logic Block (GLB) is the standard logic 
block of the Lattice high-density ispLSI and pLSI devices. 
A GLB has 18 inputs, four outputs and the logic neces­
sary to implement most standard logic functions. The 
internal logic of the GLB is divided into four separate 
sections: the AND Array, the Product Term Sharing Array 
(PTSA), the Reconfigurable Registers, and the Control 
Functions (see figure 2). The AND array consists of 20 
product terms which can produce the logical sum of any 
of the 18 GLB inputs. Sixteen of the inputs come from the 
Global Routing Pool, and are either feedback signals 
from any of the GLBs or inputs from the external 1/0 cells. 
The two remaining inputs come directly from two dedi­
cated input pins. These signals are available to the 
product terms in both the logical true and the comple­
mented forms which makes boolean logic reduction more 
efficient. 

The PTSA takes the 20 product terms and routes them 
to the four GLB outputs. There are four OR gates, with 
four, four, five and seven product terms each (see figure 

Figure 2. GLB: Product Term Sharing Array Example 
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2). The output of any of these OR gates can be routed to 
any of the four GLB outputs, and if more product terms 
are needed, the PTSA can combine them as necessary. 
In addition, the PTSA can share product terms similar to 
an FPLA device. If the user's main concern is speed, the 
PTSA can use a bypass circuit which provides four 
product terms to each output, to increase the perfor­
mance of the cell (see figure 3). This can be done to any 
or all of the four outputs from the GLB. 

The Reconfigurable Registers consist of four D-type flip­
flops with an XOR gate on the input. The XOR gate in the 
GLB can be used either as a logic element or to reconfig­
ure the D-type flip-flop to emulate a J-K or T-type flip-flop 
(see figure 4 ). This greatly simplifies the design of counters, 
comparators and ALU type functions. The registers can 
be bypassed if the user needs a combinatorial output. 
Each register output is brought back into the Global 
Routing Pool and is also brought to the 1/0 cells via the 
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available when the four product term bypass is used. 
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Figure 3. GLB: Four Product Term Bypass Example 
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Generic Logic Block (continued) 

The PTSA is flexible enough to allow these features to be 
used in virtually any combination that the user desires. In 
the GLB shown in figure 5, Output Three (03) is configured 
using the XOR gate while Output Two (02) is configured 
using the four Product Term Bypass. Output One (01) 
uses one of the inputs from the five Product Term OR 
gate while Output Zero (00) combines the remaining four 
product terms with all of the product terms from the seven 
Product Term OR gate for a total of eleven (7+4). 

Various signa~ which control the operation of the GLB 
outputs are driven from the Control Functions (see figure 
5). The clock for the registers can come from any of three 
sources developed in the Clock Distribution Network 
(see Clock Distribution Network section) or from a product 
term within the GLB. The Reset Signal for the GLB can 
come from the Global Reset pin (RESET) or from a 

Figure 5. GLB: Mixed Mode Configuration Example 

Inputs From 
Global Routing Pool 

Dedicated 
Inputs 

~-----~-------

AND Array 
PT Reset 

Global RESET 

product term within the block. The global reset pin is 
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reset (if used). An active reset signal always sets the Q 
of the registers to a logic 0 state. The Output Enable for 
the 1/0 cells associated with the GLB comes from a 
product term within the block. Use of a product term for 
a control function makes that product term unavailable 
for use as a logic term. Refer to the ProductTerm Sharing 
Matrix (table 1) to determine which logic functions are 
affected. 

There are many additional features in a GLB which allow 
implementation of logic intensive functions. These 
features are accessible using the Hard Macros from the 
software and require no intervention on the part of the 
user. 
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Product Term Sharing Matrix 

This matrix shows how each of the product terms are 
used in the various modes. As an example, Product 
Term 12 can be used as an input to the five input OR gate 
in the standard configuration. This OR gate under stan­
dard configuration can be routed to any of the four GLB 
outputs. Product Term 12 is not used in the four product 

Table 1. Product Term Sharing Matrix 

term bypass mode. When GLB output one is used in the 
XOR mode Product Term 12 becomes one of the inputs 
to the four input OR Gate. If Product Term 12 is not used 
in the logic, then it is available for use as either the 
Asynchronous Clock signal or the GLB Reset signal. 

Product Standard Configuration Four Product Term Single Product Term XOR Function Alternate 
Term# Output Number Bypass Output Number Output Number Output Number Function 

3 2 1 0 3 2 1 0 3 

0 • • • • • • 1 • • • • • 2 • • • • • 
3 • • • • • 
4 • • • • • 
5 • • • • • 
6 • • • • • 
7 • • • • • 
B • • • • • 9 • • • • • 10 • • • • • 11 • • • • • 12 • • • • 
13 • • • • • 14 • • • • • 15 • • • • • 16 • • • • • 17 • • • • 18 • • • • 19 • • • • 

The Megablock 

A Megablock consists of eight GLBs, an OAP, 16 1/0 
cells, two dedicated inputs and a common product term 
OE. Each of these will be explained in detail in the 
following sections. These elements are coupled together 
as shown in figure 6. The various members of the ispLSI 
and pLSI families combine from one to eight Megablocks 
on a single device (see table 2). 

For the 1000 Family, the eight GLBs within the Megablock 
share two dedicated input pins. These dedicated input 
pins are not available to GLBs in any other Megablock. 
These pins are dedicated (non-registered) inputs only 

2 

• 

1 0 3 3 2 2 1 1 0 0 

• • • • 
• • • • 

• • • • • • •CLK/Reset 

• • • • • • • • •OE/Reset 

and are automatically assigned by software. The product 
term OE signal is generated within the Megablock and is 
common to all 16 of the 1/0 cells in the Megablock. The 
OE signal can be generated using a product term (PT19) 
in any of the eight GLBs within the Megablock (see the 
section on the Output Enable Control for further details). 

Because of the shared logic within the Megablock, signals 
which share a common function (counters, busses, etc.) 
should be grouped within a Megablock. This will allow the 
user to obtain the best utilization of the logic within the 
device and eliminate routing bottlenecks. 
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Table 2. Device Resources 

ispLSI and pLSI Devices Megablocks GLBs 1/0 Cells Dedicated Inputs 

1016 2 16 32 4 

1024 3 24 48 6 

1032 4 32 64 8 

1048/1048C 6 48 96 10/12 
Table 2-00158 

Figure 6. The Megablock Block Diagram 

Global Routing Pool 

Input Routing 

Signal inputs are handled in two ways within the device. 
First, each 1/0 cell within the device has its input routed 
directly to the GRP. This gives every GLB within the 
device access to each 1/0 cell input. Second, each 
Megablock has two dedicated inputs which are directly 
routed to the eight GLBs within the Megablock. Both 
input paths are shown in figure 6. 

The Output Routing Pool 

The OAP routes signals from the GLB outputs to 1/0 cells 
configured as outputs or bi-directional pins (see figure 
7). The purpose of the OAP is to allow greater flexibility 
when assigning 1/0 pins. It also simplifies the job for the 
routing software which results in a higher degree of 
utilization. 

By examining the OAP in figure 7, it can be seen that a 
GLB output can be connected to one of four 1/0 cells. 
Further flexibility is provided by using the PTSA, (figures 
2 through 5) which makes the GLB outputs completely 
interchangeable. This allows the routing program to 
freely interchange the outputs to achieve the best 
routability. This is an automatic process and requires no 
intervention on the part of the user. 

The OAP bypass connections (see figure 8) further 
increase the flexibility of the device. The OAP bypass 
connects specific GLB outputs to specific 1/0 cells at a 
faster speed. The bypass path tends to restrict the 
routability of the device and should only be used for 
critical signals. 
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Figure 7. Output Routing Pool 
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The 1/0 cell (see figure 9) is used to route input, output 
or bi-directional signals connected to the 1/0 pin. The two 
logic inputs come from the ORP (see figure 9). One 
comes from the ORP, and the other comes from the 
faster ORP bypass. A pair of multiplexers select which 
signal will be used, and its polarity. The Output Enable 
of the 1/0 cell is controlled by the OE signal generated 
within each Megablock. 

As with the data path, a multiplexer selects the signal 
polarity. The Output Enable can be set to a logic high 
(enabled) when an output pin is desired, or logic low 
(disabled) when an input pin is needed. The Global 
Reset (RESET) signal is driven by the active low chip 
reset pin. This reset is always connected to all GLB and 
1/0 registers. Each 1/0 cell can individually select one of 

A4 AS A6 A7 

0 1 2 3 0 1 2 3 

16 

' --" 

the two clock signals (IOCLK 0 or IOCLK 1 ). These clock 
signals are generated by the Clock Distribution Network. 

Using the multiplexers, the 1/0 cell can be configured as 
an input, an output, a 3-stated output or a bi-directional 
1/0. The D-type register can be configured as a level 
sensitive transparent latch or an edge triggered flip-flop 
to store the incoming data. Figure 1 O illustrates some of 
the various 1/0 cell configurations possible. 

There is an active pull-up resistor on the 1/0 pins which 
is automatically used when the pin is not connected. An 
option exists to have active pull-up resistors connected to 
all pins. This improves the noise immunity and reduces 
Ice for the device. 
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Figure 9. 1/0 Cell Architecture 
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The Output Enable Control 

One OE signal can be generated within each GLB using disabling the output buffer (refer to the 1/0 cell section). • 
the OE Product Term (PT19). One of the eight OE Only one OE signal is allowed per Megablock for 3-state 
signals within a Megablock is then routed to all of the 1/0 operation. The advantage to this approach is that the OE 
cells within that Megablock (see figure 11 ). This OE signal can be generated in any GLB within the Megablock 
signal can simultaneously control all of the 16 1/0 cells which happens to have an unused OE productterm. This 
which are used in 3-state mode. Individual 1/0 cells also frees up the other OE product terms for use as logic. 
have independent control for permanently enabling or 

Figure 11. Output Enable Control for a Megablock 
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1000 Family Architectural Description 

Global Routing Pool 

The GAP is a Lattice proprietary interconnect structure as an input to all of the GLBs. Because of the uniform 
which offers fast predictable speeds with complete con- architecture of the ispLSI and pLSI devices, the delays 
nectivity. The GAP allows the outputs from the GLBs or through the GAP are both consistent and predictable. 
the 1/0 cell inputs to be connected to the inputs of the However, they are slightly affected by GLB loading as 
GLBs. Any GLB output is available to the input of all other shown in the example pLSI 1032-80 GLB Loading Delay 
GLBs, and similarly an input from an 1/0 pin is available graph (see figure 12). 

Figure 12. Example Graph of GRP Delay vs GLB Loading 

5.0 
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Ul 4.0 
c: 

>- 3.5 
ca 
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0 3.0 
a.. 
a: 
CJ 2.5 

2.0 

1.51 4 

Clock Distribution Network 

The Clock Distribution Networks are shown in figure 13. 
They generate five global clock signals CLK 0, CLK 1, 
CLK 2 , IOCLK 0 and IOCLK 1. The first three, CLK 0, 
CLK 1 and CLK 2 are used for clocking all the GLBs in the 
device. Similarly, IOCLK 0 and IOCLK 1 signals are used 
forelocking all of the 1/0 cells in the device. There are four 
dedicated system clock pins (YO, Y1, Y2, Y3), three for 
the ispLSI and pLSI 1016 (YO, Y1, Y2), which can be 
directed to any GLB or any 1/0 cell using the Clock 
Distribution Network. The other inputs to the Clock Dis­
tribution Network are the four outputs of a dedicated 
clock GLB ("CO" for the pLSI 1032 is shown in figure 1 ). 
These clock GLB outputs can be used to create a user­
defined internal clocking scheme. 

For example, the clock GLB can be clocked using the 
external main clock pin YO connected to global clock 

pLSI 1032-80 

8 12 16 

GLB Loads 

signal CLK 0. The outputs of the clock GLB in turn can 
generate a "divide by" signal of the CLK 0 which can be 
connected to CLK 1, CLK 2, IOCLK 0 or IOCLK 1 global 
clock lines. 

All GLBs have the capability of generating their own 
asynchronous clocks using the clock Product Term 
(PT12). CLK 0, CLK 1 and CLK 2 feed to their corre­
sponding clock MUX inputs on all the GLBs (see figure 
2). 

The two 1/0 clocks generated in the Clock Distribution 
Network IOCLK 0 and IOCLK 1, are brought to all the 1/0 
cells and the user programs the 1/0 cell to use one of the two. 
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1000 Family Architectural Description 

Figure 13. Clock Distribution Networks 
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lspLSI and pLSI 1016 

Clock Distribution 
Network 

Generic Logic 
Block 'BO' 

00 01 02 03 
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w--------w--t--t .. IOCLK1 

Dedicated Clock 
Input Pins 

*Note: Pin Y1 has the Clock and 
Reset Functions Multiplexed 
on the ispLSI and pLSI 1016, 
Selection is controlled in 
the software tools. 

The task of determining the timing through the device is 
simple and straightforward. A device timing model is 
shown in figure 14. To determine the time that it takes for 
data to propagate through the device, simply determine 
the path the data is expected to follow, and add the 
various delays together (figure 15). Critical timing paths 

are shown in figure 14, using data sheet parameters. 
Note that the Internal timing parameters are given for 
reference only, and are not tested. (External timing 
parameters are tested and guaranteed on every device). 

Figure 14. lspLSI and pLSI Timing Model1 

1/0 Cell GAP GLB OAP 1/0 Cell 
~----- ______ , ..... ______ ~.-'"'--

YO 

*Note: Y1 and Y2 only for the ispLSI and pLSI 1016. 
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1000 Family Architectural Description 

Figure 15. ispLSI and pLSI Timing Model Examples 1 

Combinatorial Paths 

tpd1 tiobp + tgrp4 + t4ptbp + torpbp + tob 
#1 #20 + #28 + #33 + #46 + #47 

tpd2 tiobp + tgrp4 + txoradj + torp + tob 
#2 #20 + #28 + #36 + #45 + #47 

Registered Paths 

General Form: 

tsu = Logic + Regsu - Clock(min) 
th = Clock(max) + Regh Logic 
tco = Clock(max) + Reg co + Output 

Specific Examples: 

tsu1 = (tiobp + tgrp4 + t4ptbp) + tgsu - tgyO(min) 
#6 (#20 + #28 + #33) + #38 #50 

th1 = tgyO(max) + tgh (tiobp + tgrp4 + t4ptbp) 
#8 #50 + #39 (#20 + #28 + #33) 

tco1 = tgyO(max) + tgco + (torpbp + tob) 
#7 #50 + #40 + (#46 + #47) 

tsu2 = (tiobp + tgrp4 + txoradj) + tgsu + tgyO(min) 
#9 (#20 + #28 #36) + #38 + #50 

th2 = tgyO(max) + tgh (tiobp + tgrp4 + txoradj) 
#11 = #50 + #39 (#20 + #28 + #36) 

tco2 = tgyO(max) + tgco + (torp + tob) 
#10 = #50 + #40 + (#45 + #47) 

1. The timing parameter reference numbers refer to the Internal Timing Parameters contained in the individual data sheets. 

Circuit Timing Example 

Figure 16. Timing Calculation Example 

A design requires two logic levels (each uses the 20PTXOR path). The design then uses a GLB register before exiting 
the device using the ORP bypass. Calculate tsu, th and tco. 

~ Logic Level Logic Level 
L!.'.!...../ ~ #1 1-----l.i #2 1---..i 

20PTXOR 20PTXOR 

2-22 
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1000 Family Architectural Description 

Figure 16. Timing Calculation Example (continued) 

tsu 

19.5 ns 

th 

-14.0 ns 

tco 

10.0 ns 

Logic +Reg su - Clock (min) 

(tiobp + tgrp4 + t20ptxor + tgbp + tgrp4 + t20ptxor) + tgsu - tgyO(min) 
(#20 + #28 + #35 + #37 + #28 + #35) + #38 - #50 
(2.0 + 2.0 + 8.0 + 1.0 + 2.0+8.0)+1.0-4.5 

Clock (max) + Reg h - Logic 

tgyO(max) + tgh - (tiobp + tgrp4 + t2optxor + tgbp + tgrp4 + t20ptxor) 
#50 + #39 - (#20 + #28 + #35 + #37 + #28 + #35) 
4.5 + 4.5 - (2.0 + 2.0 + 8.0 + 1.0 + 2.0 + 8.0) 

Clock (max) + Reg co + Output 

tgyO(max) + tgco + (torpbp + tob) 
#50 + #40 + (#46 + #47) 
4.5 + 2.0 + (0.5 + 3.0) 

1. The delay values used are for a pLSI 1032-80 device. 
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2000Family 
Architectural Description 

ispLSI and pLSI 2000 Family Introduction 

The basic unit of logic of the ispLSI and pLSI 2000 family 
is essentially the same as that of the ispLSI and pLSI 
1000 family. However, there are some specific architec­
tural differences: Global clock structure, 1/0 Cell and OE 
structure, and OAP structure. A functional block diagram 
of the 2032 device is shown in figure 1. These architec­
tural differences are described in detail below. 

Global Clock Structure 

The clock GLB distribution network of the 1000 family has 
been eliminated and replaced by three dedicated global 

Figure 1. pLSI 2032 Functional Block Diagram 

GOEO 

GLB clock input signals CLKO, CLK1, and CLK2. These 
three clocks are used forelocking all the GLBs configured 
as registers in the device. They feed directly to the GLB 
clock input via a clock multiplexer. CLKO is associated 
with system clock pin YO, CLK1 corresponds to system 
clock pin Y1, and finally CLK3 corresponds to system 
clock pin Y2. This is illustrated in figure 2. The GLB 
global clocks do not have inversion capability, but all 
GLBs continue to have the capability of generating their 
own asynchronous clocks using the clock product term 
(PT12) with inversion capability. The GLB global clocks 
and the GLB product term clock feed to their correspond­
ing clock multiplexer shown in figure 3. 
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2000 Family Architectural Description 

Figure 2. Global Clock Structure 
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2000 Family Architectural Description 

1/0 Cell and OE Structure 

The reconfigurable input register or latch has been re­
moved to simplify the 1/0 cell architecture. Each 1/0 cell 
can be individually programmed to be a combinatorial 
input, combinatorial output, or a bi-directional 1/0 pin with 
3-state control. With the simplified 1/0 cell architecture, 
the 1/0 clocks have also been removed. This is illustrated 
in figure 4. The product term output enable (PTOE) 

signal is still generated within each GLB using product 
term 19. The PTOE is generated in one of the eight 
GLBs. In addition to the PTOE, there is a global output 
enable (GOE) pin which can control any of the device's 
3-state output buffers. The multiplexing between the 
GOE and PTOE is illustrated in figure 5. The 2032 device 
has one GOE, and the 2064 and 2096 devices each have 
2 GOEs. 

Figure 4. ispLSI and pLSI 2000 Family 1/0 Cell Architecture 

GlobalOEO 
Megablock OE 

ORPMUX 

OAP Bypass 
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Note: 
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Figure 5. ispLSI and pLSI 2000 Family Output Enable Controls 
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2000 Family Architectural Description 

Output Routing Pool (ORP) 

Each megablock now contains two ORPs to increase 
output mutability. A set of four GLBs is associated with 
one of the two ORPs within the megablock. The 16 
outputs of the four GLBs within a megablock will feed to 
any of the 16 associated 1/0 cells. In the 1000 family, the 

32 GLB outputs feed only 16 associated 1/0 cells. In this 
device family, 32 GLB outputs of a megablock can feed 
32 1/0 cells. Output mutability has doubled. This is 
illustrated in figure 6. Each GLB output has an ORP 
bypass capability so more designs can have critical 
output signals. This is shown in figure 7. 

Figure 6. ispLSI and pLSI 2000 Family Output Routing Pool 
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2000 Family Architectural Description 

Timing Model 

The task of determining the timing through the device is are shown in figure 8, using data sheet parameters. Note 2 simple and straightforward. A device timing model is that the Internal timing parameters are given for refer-
shown in figure 8. To determine the time that it takes for ence only, and are nottested. (External timing parameters 
data to propagate through the device, simply determine are tested and guaranteed on every device). 
the path the data is expected to follow, and add the 
various delays together (figure 8). Critical timing paths 

Figure 8. ispLSI and pLSI 2032 Timing Model 

1/0 Cell GAP GLB OAP VO Cell 

__...._._ -------- ------------- .-"----~ 

#26 

1/0 Delay 
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Control RE 
PTs OEt----__,, _______ _, 
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Derivations of tsu, th and tco from the Product Term Clock 1 

tsu Logic+ Reg su - Clock (min) 
(tiobp + tgrp + t20ptxor) + (tgsu) - (tiobp + tgrp + tptck(min)) 
(#24 + #28 + #35) + (#38) - (#20 + #28 + #44) 

2.2 ns (1.0 + 1.3 + 4.7) + (0.8) - (1.0 + 1.3 + 3.3) 

th Clock (max) + Reg h - Logic 
(tiobp + tgrp + tptck(max)) + (tgh) - (tiobp + tgrp + t20ptxor) 
(#20 + #28 + #44) + (#39) - (#20 + #28 + #35) 

1.6 ns (1.0 + 1.3 + 3.3) + (3.0)- (1.0+1.3- 4.7) 

tco = Clock (max) + Reg co + Output 
= (tiobp + tgrp + tptck(max)) + (tgco) +(tarp+ tob) 
= (#20 + #28 + #44) + (#40) + (#45 + #47) 

8.8 ns = (1.0 + 1.3 + 3.3) + (0.7) + (1.3+1.2) 

1. Calculations are based upon timing specs for the ispLSI and pLSI 2032-135L 
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3000Family 
Architectural Description 

ispLSI and pLSI 3000 Family Introduction 

The basic unit of logic of the ispLSI and pLSI 3000 family 
is closely related to that of the pLSI and ispLSI 1000 
family. However, there are some notable architectural 

Figure 1. ispLSI 3256 Functional Block Diagram 
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differences: Boundary Scan, Megablock and GLB struc­
ture, Global clock structure, and 1/0 cell structure. A 
functional block diagram of the ispLSI 3256 device is 
shown in figure 1. The architectural differences are 
described in the following sections. 
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Generic Logic Block 

The Twin GLB is the standard logic block of the Lattice 
ispLSI and pLSI 3000 Family. This Twin GLB has 24 
inputs, eight outputs and the logic necessary to imple­
ment most standard logic functions. The internal logic of 
the Twin GLB is divided into four separate sections: The 
AND Array, the Product Term Sharing Array, the 
Reconfigurable Registers, and the Control section. 

The AND array consists of two 20 Product Term Sharing 
Arrays which can produce the logical sum of any of the 24 
Twin GLB inputs. These inputs all come from the GAP, 
and are either feedback signals from any of the 32 Twin 
GLBs or inputs from the external 1/0 Cells. All Twin GLB 

Figure 2. Twin GLB: Product Term Sharing Array 

-'~ GlobalRoutlngPool 

01 23488T8910110131410~17~19m~~~ 

input signals are available to the Product Terms in both 
the logical true and complemented forms which makes 
Boolean logic reduction easier. 

The two Product Term Sharing Arrays (PTSA) take the 20 
Product Terms each and allocate them to four Twin GLB 
outputs. There are four OR gates, with four, four, five and 
seven inputs respectively. The output of any of these 
gates can be routed to any of the four Twin GLB outputs, 
and if more Product Terms are needed, the PTSA can 
combine them as necessary. If the user's main concern 
is speed, the PTSA can use a bypass circuit with four 
Product Terms to increase the performance of the cell. 
This can be done to any or all of the eight outputs of the 
Twin GLB. 
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Megablock Structure 

Four Twin GLBs make up a Megablock. Each GLB has a 
maximum fan-in of 24 inputs, and no dedicated inputs 
associated with any Megablock. A GLB has eight asso-

ciated outputs. A total of 32 GLB outputs are fed to the 
OAP. However, only 16 out of the 32 outputs feed to 16 
1/0 cells. The Megablock structure is shown in figure 3 . 

Figure 3. ispLSI and pLSI 3000 Family Megablock Block Diagram 

16 

Global Clock Structure is designed into the 1000 device family has been re-
moved so all input clock signals are fed directly to the 

The global clock structure is made up of five global clock GLB clock input via a clock multiplexer. The GLB global 
input pins, YO, Y1, Y2, Y3, andY4. This is shown in figure clocks do not have inversion capability, but the product 
4. Three of the clock pins are dedicated for GLB clocks termclockdoeshaveinversioncapabilitybeforeitreaches 
and the remaining two clock pins are dedicated for 1/0 the clock multiplexer. 
register clocks. The clock GLB generation network which 

Figure 4. ispLSI and pLSI 3000 Family Global Clock Structure 
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1/0 Cells 

The 1/0 cell structure architecture remains nearly the 
same as the 1 ooo Family as illustrated in figure 5. Each 
1/0 cell now contains Boundary Scan Registers as shown 
in figure 8. An input pin has only one scan register as 
shown in figure 9. A global test OE signal is hardwired to 

all 1/0 cells and is useful to perform static testing of all the 
3-state output buffers within the device. In addition to the 
test OE signal, two global OEs are connected to all 1/0 
pins. The product term OE is shared between two 
Megablocks resulting in twice the GLBs being able to use 
a single OE signal. The Megablock OE signal and global 
OE signals are fed to an OE multiplexer. The OE signals, 
with the exception of the test OE, have inversion capabil­
ity after going through the OE multiplexer as shown in 
figure 6. 

Figure 5. lspLSI and pLSI 3000 Family 1/0 Cell Architecture 
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3000 Family Architectural Description 

Figure 6. lspLSI and pLSI 3000 Family Output Enable Controls 

~-------------------------------------l~------------------------------------

,~--~----'--~------~:P' --~~-M_e_ga~b-lo_c_k_8_~---~ 
: GL8AO GL8 81 GL8 82 GL8 83 

To Other 

>-----.++----.....4-+------------+-+------1-l----- llOColls 

Boundary Scan 

Boundary Scan (IEEE 1149.1 compatible) is a test fea­
ture incorporated within the device to provide on-chip test 
capabilities during PCB testing. Five input signal pins, 
BSCAN, TOI, TCLK, TMS, TRST, and one output signal 
pin, TOO, are associated with the boundary scan logic 
cells. These signal pins occupy the same dedicated 
signal pins used for ISP programming. The signal BSCAN 
is associated with the ispEN pin, TOI corresponds to the 
SDI pin, TCLK corresponds to the SCLK pin, TMS corre-

Figure 7. Boundary Scan Block Diagram 

Test Data Input (TOI) 

Test Mode Select (TMS) 

sponds to the MODE pin, and TOO corresponds to the 
SDO pin. When ispEN is asserted low, the MODE, SDI, 
SDO, and SCLK options become active for ISP program­
ming. Otherwise, BSCAN, TOI, TCLK, TMS, TOO, and 
TRST options become active for boundary scan testing 
of the device. The boundary scan block diagram is 
shown in figure 7. TOI is the test data serial input, TCLK 
is the boundary scan clock associated with the serial shift 
register, TMS is the test mode select input, TOO is the 
test data output, and finally TRST is the reset signal pin. 

Test Data Output (TOO) 

To 1/0 Cell Boundary 
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The user interfaces to the boundary scan circuitry through 
the Test Access Port (TAP). The TAP consists of a 
control state machine, instruction decoder and instruc­
tion register. 

The TAP is controlled using the test control lines: Test 
Dafa IN (TOI), Test Data Out (TOO), Test Mode Select 
(TMS), Test Reset (TRST) and Test Clock (TCK). 

The TAP controls the operation of the Boundary Scan 
Registers after decoding the instruction code sent to the 
instruction register (see table 1). 

The Boundary Scan Registers for the 1/0 cells are shown 
in figure 8. As illustrated in the figure, each 1/0 cell 
contains 3 registers, 2 latches and 5 multiplexers to 

Figure 8. Boundary Scan Registers for 1/0 Cells 

SCAN IN (from previous pad) 

implement the ability to capture the state of the 1/0 cell or 
set the state of the output path of the cell or function as 
a conventional 1/0 cell. 

The Boundary Scan Registers required for an input only 
cell are shown in figure 9. An input only cell can only have 
its state captured, which only requires one MUX and one 
register. 

All of the input cells and 1/0 cells are serially connected 
together in a long chain. The scan out of one cell is 
connected to the scan in of the next cell. The cells are 
connected in the following order: TOI to 1063 thru 1032 
to Y4, Y3, Y2, Y1, Reset, TOE, GOE1, GOEO, YO, 1031 
thru 100 to 1064 thru 10127 to TOO. 

I----+-- SCANOUT (to next pad) 

2-36 1994 Handbook 



3000 Family Architectural Description 

Figure 9. Boundary Scan Registers for an Input Only Cell 

Table 1. Boundary Scan Instruction Codes 

Instruction Name Code 

SAMPLE/ PRELOAD 01 

EXTEST 00 

BYPASS 11 

Qt----

Description 

SCA NO UT 
(to next pad) 

Loads and shifts data into BScan registers 

Drives external 1/0 with BScan registers 

Bypasses registers of selected device(s) 

Note: MSB shifts in first. Table 10- 0006 

Timing Model 

The task of determining the timing through the device is 
simple and straightforward. A device timing model is 
shown in figure 10. To determine the time that ittakes for 
data to propagate through the device, simply determine 
the path the data is expected to follow, and add the 

Figure 10. ispLSI and pLSI 3256 Timing Model 

various delays together (figure 11 ). Critical timing paths 
are shown in figure 10, using data sheet parameters. 
Note that the Internal timing parameters are given for 
reference only, and are not tested. (External timing 
parameters are tested and guaranteed on every device). 

l/O Cell GAP GLB OAP 1/0 Cell 

~ _,,__ ----------- ---------- ------
Feedback 

GAP 

#28 

Y0,1,2 }--------_:::#5-0""---------+J 

GOE0,1 ;;>---------------------~ 

~~---------------------~ 
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Figure 11. Timing Calculation Example 

Derivations of tsu, th and tco from the Product Term Clock 1 

tsu Logic+ Reg su - Clock (min) 
(tiobp + tgrp4 + t20ptxor) + (tgsu) - (tiobp + tgrp4 + tptck(min)) 
(#24+ #31+ #39) + (#42) - (#24+ #31+ #48) 

6.5 ns = (2+ 4 + 8.5) + (1.5) - (2 + 4 + 3.5 ) 

th 

8 ns = 

tco 

Clock (max) + Reg h - Logic 
(tiobp + tgrp4 + tptck(max)) + (tgh) - (tiobp + tgrp4 + t20ptxor) 
(#24+ #31+ #48) + (#43) - (#24+ #31+ #39) 
(2 + 4 + 7.5) + (9) - (2 + 4 + 8.5) 

Clock (max) + Reg co + Output 
= (tiobp + tgrp4 + tptck(max)) + (tgco) + (torp + tob) 
= (#24 + #31 + #48) + (#44) + (#49 + #51) 

20 ns = (2 + 4 + 7.5) + (1.5) + (2 + 3) 

1. Calculations are based upon timing specs for the ispLSI and pLSI 3256-?0L 
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ispLSI Programming Information 

The following general programming information on the 
ispLSI (in-system programmable Large Scale Integra­
tion) devices describes how the internal state machine is 
implemented for programming and how to use the five 
programming interface signals to step through the state 
machine. The device specific information, such as timing 
and pin-outs, can be found in the Lattice Data Book. This 
section describes how to program ispLSI devices in a 
parallel configuration. For information on programming 
ispLSI devices in a serial daisy chain configuration please 
refer to the "Programming Multiple ISP Devices: Daisy 
Chain Configuration" Application Note located in Section 
4 of this Handbook. 

Programming Overview 

To distinguish between normal operation and program­
ming, two modes are defined: normal mode and edit 
mode. Once the device is in edit mode, the entire 
programming operation of the device is controlled by the 

Figure 1. ispLSI Programming Interface 

internal ISP state machine. The in-system programming 
enable (ispEN) signal controls the device operation 
modes. 

The programming is controlled by the on-chip state 
machine via five programming interface signals. The 
ispEN signal is used to enable and disable the four 
programming control signals which include Serial Data In 
(SDI), Mode (MODE), Serial Data Out (SDO) and Serial 
Clock (SCLK). When the device is in normal mode, the 
four programming control signal pins can be used as 
normal Dedicated Input Pins. Figure 1 illustrates one 
such possible configuration for programming multiple 
ispLSI devices. With this scheme the ispEN signal for 
individual devices is enabled separately and one device 
is placed in the edit mode at a time. Since the other 
devices are in the normal mode, they can continue to 
perform normal system functions. This simple scheme 
requires connecting all four programming control signal 
pins together and precludes their use as dedicated inputs 
for normal system functions. ispEN is the only program­
ming interface signal that is dedicated to a pin. 

Serial Data In 
Serial Data Out 
ISP-Mode 
ISP-Clock 

L,-J 
5-Pin ISP Interface 
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Normal Mode 

In Normal Mode the four programming control pins be­
come Dedicated Input pins. By multiplexing the 
programming control pins, these programming control 
pins can have a normal input function during Normal 
Mode. Figures 2 and 3 illustrate two alternate schemes 
which allow the designer to utilize the four programming 
control signal pins for performing normal system func­
tions. Internal to the device, the programming functions 
are completely isolated from the normal operating func­
tions when the device is in Normal Mode. Keeping the 
ispEN signal high puts the device in Normal Mode. For 
simplicity, the four programming control pins can be left 
unused for normal input functions. These pins can be 
reserved for ISP by using the ISP switch in the develop­
ment tools. By leaving these pins unused, the 
programming interface is simplified when the program­
ming signals and the Normal Mode input signals are not 
multiplexed. 

Edit Mode 

Programming circuitry is enabled by driving the ispEN 
signal low which puts the device in Edit Mode. In Edit 
Mode, all the functional 1/0 pins and input pins that are 
not used during programming are 3-stated. With the 
exception of the SDO signal, the remainder of the pro­
gramming interface signals are input signals. When 
multiplexing the programming interface signals, the input 
driving the SDO pin must be 3-stated to make sure that 
there is no signal contention. All programming is accom­
plished in the Edit Mode by controlling the programming 
state machine with the MODE and SDI signals. SCLK is 
used to clock programming data in and out through SDI 
and SDO pins. SDI has a dual role as one of the two 
control signals for the state machine and as the serial 
data input. To avoid any internal register data conten­
tions, Lattice recommends that the device Reset pin be 
pulled to ground when the device is in Edit Mode. 

Programming Interface 

The five programming interface pins are ispEN, SDI, 
MODE, SDO and SCLK. Once in Edit Mode, program­
ming is controlled by SDI, MODE, SDO and SCLK 
signals. In Normal Mode, the programming control pins 
can be used as dedicated inputs to the device. 

ispEN is an active low, dedicated enable pin, which 
enables the four programming control pins when it is 
driven low (V1L) and disables the programming control 
pins when it is driven high (ViH). All other 1/0 pins are 3-
stated during Edit Mode and pulled up by the internal 
active pull-up resistors (equivalent to 1 OOKQ). 

SDI performs two different functions. First, as the input 
to the serial shift register and second, as one of the two 
control pins for the programming state machine. Be­
cause of this dual role, SDl's function is controlled by the 
MODE signal. When MODE is low SDI is the serial input 
to the shift registers and when MODE is high SDI be­
comes the control signal. Internal to the device, the SDI 
is multiplexed to address shift register, high order data 
shift register and low order data shift register. The 
different shift instructions of the state machine determine 
which of these shift registers gets the input of the SDI. 

The MODE signal combined with the SDI signal controls 
the programming state machine. This signal connects in 
parallel to all ispLSI devices. 

SCLK is the serial shift register clock that is used to clock 
the internal serial shift registers. A low-to-high (positive) 
clock transition clocks the state machine. It also con­
nects in parallel to all ispLSI devices. Similar to SDI, the 
shift instructions determine which of the shift registers 
are clocked for the data input from SDI. 

SDO is the output of the serial shift registers. The 
selection of the shift register is determined by the state 
machine's shift instruction. In the flow through instruction 
and when MODE is driven high, SDO connects directly to 
SDI, and bypasses the device's shift registers. Since this 
is the only output pin for the Edit Mode, this signal will 
drive the external devices that are connected to this pin. 
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Programming Details 

Programming is completely controlled by the state ma­
chine, once the device is in the Edit Mode. The state 
machine consists of three states, in which all program­
ming related operations are performed. In order to run 
these programming operations, five bit instructions are 
defined (see table 2). Each instruction is then shifted into 
the device in one of the three states and executed in 
another state. The initial state of the state machine is 
used when the device is idle during edit, or to shift out the 
eight bit device identification code. 

The following sections describe the general information 
about the critical timing parameters, state machine, state 
machine instructions, and device layout that apply to all 
the ispLSI devices. Any device specific information like 
the size of the shift registers and the device specific 
timing information can be found in the individual device 
data sheets. 

Figure 2. The Scan and Multiplex Programming Mode 

SDO MODE SDI 

ispLSI 

There are various ways of programming the ispLSI de­
vices. The easiest is to dedicate the ISP programming 
pins only for the programming functions. With dedicated 
ISP pins, one can program the devices in a parallel 
programming configuration (figure 1) where the pro­
gramming signals are multiplexed. The parallel 
multiplexed programming method gives the user another 
advantage of being able to use the programming pins for 
system functions. Figure 2 illustrates a multiplexing 
scheme which allows the user to control the ISP program­
ming through multiple ispEN signals. The multiple 1spEN 
signals not only control the ispEN inputs of the ispLSI 
devices, but also is the control signal for multiplexing the 
functional signals and the ISP programming signals. The 
ISP programming signals MODE, SDI and SCLK function 
as inputs for normal functional mode as well as the ISP 
programming mode. SDO, however, functions as an 
input in normal functional mode and as an output in ISP 
programming mode. Figure 2 also shows the difference 
in controlling these different programming signals. 

0 
Cl 
(/) 

MODE SDI SCLK SDO 

ispLSI 
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Critical Timing Parameters 

When programming ispLSI devices, there are several 
critical timing parameters that must be met to ensure 
proper programming. The two most critical parameters 
are the programming pulse width (tpwp) and the bulk 
erase pulse width (tbew)- These pulse widths determine 
the programming and erasing of the E2 cells. Figure 3 
shows these critical program and erase timing specifica­
tions. 

Along with the two programming and erasing specifica­
tion, the following timing specifications must also be met. 

Specifies the time it takes to get into the ISP 
mode after IBpEN signal is activated or the time 
it takes to come out from the ISP mode after the 
ispEN becomes inactive. 

Figure 3. Program, Verify & Bulk Erase Timing 

tclkl, -
lclkh 

tpwv· 

lrst • 

Set up time of the control signals before the 
SCLK or the set up time of input signals against 
other control signals where applicable. 

Hold time of the control signal after the SCLK. It 
also applies to the same input signals from the 
set up time. 

Minimum clock pulse width. 

Verify or read pulse width. The minimum time 
requirement from the rising clock edge of verify/ 
load instruction execution to the next rising clock 
edge (see figure 3). 

Power on reset timing requirement. trst must 
elapse after power up before any operations are 
performed on the device. 

All the programming timing parameters are summarized 
in the timing diagram (see figure 4). 

Execute State (Program, Verify or Bulk Erase Instruction) 

MODE 

tpwp, tbew, or tpwv 

SDI 

SCLK "-------
Figure 4. 

_.. trst 

ISP Programming Timing Requirements 

VCCP _/I 
Un::;i:~ ====~==:====i=sp=L=Sl=P=in=s=a=ra=3=-S=t=ru=ed=D=u=ri=ng=P=r=og:r:am=m=i=ng============ ........ ~ 
Unused Hl-Z 
Output 

ispEN 

lisp 
MODE 

SDI 

SCLK 

VOH - tco -j 
SDO Valid 

VIL VOL 
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Figure 5. Programming State Machine 

Note: 

Load 
ID 

Control signals: MODE, SDI 

State Machine Operation 

Shift 
ID 

The state machine has three states to control program­
ming and uses the MODE and SDI signals as inputs for 
each state. eased on these input signals, the state 
machine makes decisions to either stay in the same state 
or to branch to another state. The three states are Idle/ 
ID State, Command Shift State and Execute State. The 
programming state machine diagram in figure 5 shows 
the three states and the logic levels of the control signals 
needed to force each transition state. 

Idle/ID State 

The Idle/ID state is the first state which is active when the 
device gets into the Edit Mode. The state machine is in 
the Idle/ID state when the device is idle, in the Edit Mode, 
or when the user needs to read the device identification. 
The eight bit device identification is loaded into the shift 
register by driving MODE high, SDI low and clocking the 
state machine with SCLK. Once the ID is loaded, it is read 
out serially by driving MODE low. Notice that when 
reading the device ID serially, SDI can either be high or 
low (don't care) and the state machine needs only seven 
clocks to read out eight bits of ID. The default stateforthe 
control signals is MODE high and SDI low. State transi­
tion to Command Shift State occurs when both MODE 
and SDI are high while state machine gets a clock 
transition. Table 1 lists the eight bit device ID's for all the 
ispLSI devices. As with most shift registers the Least 
Significant Bit (LSB) of the ID gets shifted out from the 
SDO first. 

Command Shift State 

This state is strictly used for shifting in the command 
instructions into the state machine. The entire five-bit 
instruction set is listed in the next section. When MODE 
is low and SDI is don't care in the Command Shift State, 

Load 
Command 

Execute 
Command 

Table 1. ispLSI Device ID Codes 

Device MSB LSB 

ispLSI 1016 00000001 

ispLSI 1024 00000010 

ispLSI 1032 00000011 

ispLSI 1048 00000100 

ispLSI 1048C 00000101 

ispLSI 2032 00010101 

ispLSI 3256 00100010 

SCLK shifts the instruction into the state machine. Once 
the instruction is shifted into the state machine, the state 
machine must transition to the Execute State to execute 
the instruction. Driving both MODE and SDI high and 
applying the clock will transfer the state machine from the 
Command Shift State to Execute State. If needed, the 
state machine can move from Command Shift State to 
Idle/ID State by driving MODE high and SDI low. 

Execute State 

In the Execute State, the state machine executes instruc­
tions that are loaded into the device in the Command Shift 
State. For some instructions, the state machine requires 
more than one clock to execute the command. An 
example of this multiple clock requirement is the address 
or data shift instruction. The number of clock pulses 
required for these instructions depends on the device 
shift register sizes (refer to the ISP programming section 
of the data sheet). When executing instructions such as 
Program, Verify or Bulk Erase, the necessary timing 
requirements must be followed to make sure that the 
commands are executed properly. For specific timing 
information refer to the individual data sheets. 
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To execute a command, the MODE is driven low and SDI 
is "don't care." For multiple clock instructions the control 
signals must remain in the same state throughout the 
duration of the execution. MODE high and SDI high will 
take the state machine back to the Command Shift State 
and MODE high and SDI low will take the state machine 
to the Idle/ID State. 

device identification is done during the Idle/ID State and 
does not require an instruction. 

While it is possible to erase the individual arrays of the 
device, it is recommended that the entire device be 
erased (UBE) and programmed in one operation. This 
Bulk Erase operation should precede every program­
ming cycle as an initialization. 

Instructions 
When a device is secured by programming the security 

Table 2 lists the instructions that can be loaded into the cell (PRGMSC), the on-chip verify and load circuitry is 
state machine in the Command Shift State and then disabled. Securing of the device should be done as the 
executed in the Execute State. Notice that reading the last procedure after all the device verifications have been 

completed. The only way to erase the security cell is to 
perform a bulk erase on the device. · 

Table 2. State Machine Instruction Set 

Instruction Operation Description 

00000 NOP No operation performed 

00001 ADDSHFT Address Register Shift: Shifts address into the address shift register from 
SDIN. 

00010 DAT ASH FT Data Register Shift: Shifts data into or out of the data serial shift register. 

00011 UBE User Bulk Erase: Erase the entire device. 

00100 GRPBE Global Routing Pool Bulk Erase: Bulk erases the GAP array only. 

00101 GLBBE Generic Logic Block Bulk Erase: Bulk erases all the GLB array only. 

00110 ARCH BE Architecture Bulk Erase: Bulk erases the architecture array and 1/0 
configuration only. 

00111 PRGMH Program High Order Bits: The data in the data shift register is pro-
grammed into the addressed row's high order bits. 

01000 PRGML Program Low Order Bits: The data in the data shift register is pro-
grammed into the addressed row's low order bits. 

01001 PRGMSC Program Security Cell: Programs the security cell of the device. 

01010 VER/LOH Verify/Load High Order Bits: Load the data from the selected row's high 
order bits into the data shift register for verification. 

01011 VER/LDL Verify/Load Low Order Bits: Load the data from the selected row's low 
order bits into the data shift register for verification. 

01100 GLBPRLD Generic Logic Block Preload: Preloads the registers in the GLB with the 
data from SDIN. All registers in the GLB form a serial shift register. Refer 
to device layout section for details. 

01101 IOPRLD 1/0 Preload: Preloads the 1/0 registers with the data from SDIN. All 
registers in the 1/0 cell form a serial shift register (the same order as GLB 
r~ster~ 

01110 FLOWTHRU Flow Through: Bypasses all the internal shift registers and SDOUT be-
comes the same as SDIN. 

10010 VE/LOH Verify Erase/Load High Order Bits: Load the data from the selected row's 
high order bits into the data shift register for erased verification. 

10011 VE/LDL Verify Erase/Load Low Order Bits: Load the data from the selected row's 
low order bits into the data shift register for erased verification. 
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Device Layout 

The purpose of knowing the device layout is to be able to 
translate the JEDEC format programming file into the 
serial data stream format for programming ispLSI de­
vices. Two main factors determine how the translation is 
implemented: the length of the address shift register and 
the length of the data shift register. The length of the 
address shift register indicates how many rows of data 
are to be programmed into the device. The length of the 
data shift register indicates how many bits are to be 
programmed in each row. Both registers operate on the 
First In First Out (FIFO) basis where the Least Significant 
Bit (LSB) of the data or address is shifted in first and the 
Most Significant Bit (MSB) of the data or address is 
shifted in last. For the data shift register, the low order bits 
and the high order bits are separately shifted. 

Each ispLSI device has a predefined number of address 
rows and data bits needed to access its E2CMOS® cells 
during programming. The data bits span the columns of 
the E2 array. From this information the number of 
programming cells (or fuses) are determined. Table 3 
highlights the address and data shift register (SR) sizes 
for all ispLSI devices. The JEDEC file for these ispLSI 
devices will reflect the number of cells (fuses) seen in 
table 3. The total number of cells becomes critical if the 
programming patterns are to be stored in an on-board 
memory storage of limited capacity such as EPROM or 
PROM. 

The L-field in the JEDEC programming file indicates the 
first cell number of each row. The JEDEC standard 
requires that there is at least the beginning cell number 
LOOOOO. L-fields of the subsequent lines are optional. 
From this reference cell location all other cell locations 
can be determined. Zero in the cell location indicates that 
the E2 cell in that particular location is programmed (or 
has a logic connection equivalent to a metal fuse being 
intact). A one (1) in the cell location indicates thatthe cell 
is erased (equivalent to a blown fuse). The fusemap 
operation in the Lattice software generates this JEDEC 
standard programming file. 

Fuse Map to Device Conversion 

One of the major elements needed to program an ispLSI 
device is the JEDEC fuse map in which the specific logic 
implementation is stored. While the ispCODE software 
takes care of these details, it is important to understand 
how this JEDEC fuse map is mapped onto the physical 
ispLSI device during programming. The physical layout 
of the fuse pattern begins with Address Row 0 and ends 
with the maximum Address Row N and is determined by 
the length of the Address SR as described in table 3. 
Spanning the Address Rows are the outputs of the High­
Order Data SR and Low-Order Data SR, as described in 
table 4. Programming fuses on a given row are enabled 
by a "1" within the Address Shift Register for the appro­
priate row and the use of state machine instructions that 
selectively operate on the High-Order Data SR or the 
Low-Order Data SR. For example, the PRGMH instruc­
tion programs the High-Order data bits within the device 
for the selected Address Row and the PRGML instruction 
programs the Low-Order data bits (table 2 lists the ISP 
state machine instructions). Referring to figure 6, the 
starting cell (LOOOOO) of the JEDEC fuse map shifts into 
the device at the physical location corresponding to 
Address Row 0, High-Order Data SR bit 0. n and min the 
figure refer to the Address SR length and the Data SR 
length, respectively, of the device (refer to table 3). A 
series of sequential shifts eventually results in the last 
cell location (Total# of Cells - 1) of the JEDEC fuse map 
shifting into Address Row (n-1), Low-Order Data SR bit 
(m-1) on the actual device. 

The ispCODE Software routines make use of a bit packed 
data format, called ispSTREAM™, to transfer data be­
tween the JEDEC fuse map and the physical device 
locations. The JEDEC fuse map can be translated into 
ispSTREAM using the ispjedtoisp function and the 
ispSTREAM format can be translated into a JEDEC fuse 
map using the isp_isptojed function. 

Command Stream 

The first step of programming the ispLSI devices is to 
determine the type of device to be programmed. This can 
be done by reading the eight-bit device ID of all the 

Table 3. ispLSI Address and Data Shift Register and Total Cell Summary 

ispLSI 1016 lspLSI 1024 ispLSI 1032 ispLSI 1048/C lspLSI 2032 ispLSI 3256 

Address SR Length 96 102 108 120 102 180 

Data SR Length/Address 160 240 320 480 80 676 

Total Number of Cells 15,360 24,480 34,560 57,600 8,160 121,680 
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Table 4. Summary of Data Shift Register Bits 

Data SR Bits ispLSI 1016 ispLSI 1024 ispLSI 1032 

High Order Data SR LSB 0 0 0 

High Order Data SR MSB 79 119 159 

Low Order Data SR LSB 80 120 160 

Low Order Data SR MSB 159 239 319 

Data SR Size (Bits) 160 240 320 

Figure 6. ispLSI Device to Fuse Map Translation 
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devices. By keeping the SDI to a known level (either high 
or low), the ID shift can be terminated when a sequence 
of eight ones or eight zeros is read. From the device ID 
the serial bit stream for programming can be arranged. A 
typical programming sequence is as follows: 

1) ADDSHFT command shift 

2) Execute ADDSHFT command 

3) Shift address 

4) DATASHFT command shift 

5) Execute DATASHFT command 

6) Shift high order data 

7) PRGMH command shift 

8) Execute PRGMH 

9) DATASHFT command shift 

10) Execute DATASHFT command 

11 ) Shift low order data 

12) PRGML command shift 

13) Execute PRGML 

14) Repeat from 1) until all rows are programmed. 

Diagnostic Register Preload 

This section explains how to preload all of the buried 
registers and 1/0 registers to a known state to test the 
logic function of a device. The process of loading the 
register will reduce the time necessary to test a function 
that is deeply embedded in the logic of an ispLSI device. 

To preload a device the ISP state machine is used with 
the same five pins that are used for programming ispEN, 
SDI, MODE, SDO and SCLK. Two state machine com­
mands preload all of the registers: GLBPRLD and 

Table 5. Preload Shift Registers 

Device GLB Shift Reg. Length 

ispLSI 1016 64bits 

ispLSI 1024 96 bits 

ispLSI 1032 128bits 

ispLSI 1048 192 bits 

ispLSI 2032 32 bits 

ispLSI 3256 256 bits 

IOPRLD. These two commands enable two different shift 
registers and enable data to be loaded into the device. 
The process of loading data into the device is: 

1. Enter the ISP programming mode by driving ispEN pin 
to Vil. 

2. Load command GLBPRLD and execute command 
(wait one tclk). 

3. Clock in the GLB preload data. 

4. Load the command IOPRLD and execute the com­
mand (wait one tclk). 

5. Clock in the 1/0 preload data. 

6. Return to the normal mode by driving the ispEN pin to 
Vih. 

7. Execute the vectors. 

When preloading a device it is important to keep the 
dedicated input pins (RESET, YO, Y1, Y2 and Y3) in the 
same state as the previous vector. If the state of these 
pins is switched during the preload sequence the register 
may not load correctly and the results cannot be guaran­
teed. 

The preload feature is not recommended on designs 
which use product term resets. The asynchronous na­
ture of these resets can cause registers to be reset 
unexpectedly, therefore the results cannot be guaran­
teed. 

There are two shift registers used to preload an ispLSI 
device, the GLB shift register and the 1/0 shift register 
(see table 5). The data format for both devices is shown 
in figure 7. The GLB registers are listed with their outputs 
(i.e. (A7 00) indicating output 0, of GLB A7). 

l/O Shift Reg. Length 

32 bits 

48 bits 

64 bits 

96 bits 

NIA 

128 bits 
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Figure 7. GLB Shift Register and 1/0 Shift Register Format 

GLB Shift Register Format 
1016 GLB Re ister Preload Format 

Data In 
(SDI) - (A7 00) (A7 01) ... (AO 02) (AO 03) (BO 00) (BO Of) ... (B7 02) (B7 03) 

1024 GLB Re ister Preload Format 

1032 GLB Re ister Preload Format 
Data In 
(SDI) - (B7 00) ... (BO 03) (A7 00) ... (AO 03) (CO OO) ... (C7 03) (DO OO) ... (D7 03) 

1048 GLB Re ister Preload Format 
Data In 
(SDI) - (C7 00) ... (CO 03} (B7 00) ... (BO 03) (A7 00) ... (AO 03) (continued) 

(continued) (DO OO) ... (D7 03) (EO OO) ... (E7 03) (FO OO) ... (F7 03) 

2032 GLB Re ister Preload Format 
Data In 
(SDI) - (A3 00) ... (AO 03} (A4 OO) ... (A7 03) 

3256 GLB Re ister Preload Format 
Data In 
(SDI} - (07 00) ... (DO 03) (C7 00) ... (CO 03) (87 00) ... (BO 03) (A7 00) ... (AO 03) (continued) 

(continued) (EO OO) ... (E7 03) (FO 00) ... (F7 03) (GO 00) ... (G7 03) (HO 00) ... (H7 03) 

1/0 Shift Register Format 
1016 1/0 Re ister Preload Format 

Data In 
(SDI) - (1/0 15} (1/0 14) (1/0 13) ... (1/0 1) (1/0 O} (1/0 16) (1/0 17) ... (1/0 29) (1/0 30) (1/0 31) 

1024 1/0 Re ister Preload Format 

~~~l~n - (1/0 23) (1/0 22) (1/0 21) ... (1/0 1) (1/0 O} (1/0 24) (1/0 25) ... (1/0 45) (1/0 46) (1/0 47) 

1032 1/0 Re ister Preload Format 

~~~1~" - (1/0 31) (1/0 30) (1/0 29) ... (1/0 1) (1/0 0) (1/0 32) (1/0 33) ... (1/0 61) (1/0 62) (1/0 63) 

1048 1/0 Re ister Preload Format 

~~~l~n - (1/0 47) (1/0 46) (1/0 45) ... (1/0 1) (1/0 0) (1/0 48) (1/0 49) ... (1/0 93) (1/0 94) (1/0 95) 

3256 1/0 Re ister Preload Format 
Data In 
(SDI) - (1/0 63) (1/0 62) (1/0 61) ... (1/0 1) (1/0 0) (110 64) (1/0 65) ... (1/0 t25) (1/0 126) (1/0 127) 
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ISP Programming Support 

To assist users in implementing the ISP programming, 
Lattice provides the isp Engineering Kit hardware and 
ispCOOE C language software routines which implement 
the basic ISP functions for programming. The Lattice ISP 
programming support uses the PC parallel port to pro­
gram the devices. 

isp Engineering Kit Hardware Definition 

Lattice provides both a PC-based (Model 100) and a Sun 
Workstation-based (Model 200) isp Engineering Kit. PC­
based, parallel 1/0 port programming interface 
implementation is explained in this section. For details 
on the Model 200 refer to the Model 200 isp Engineering 
Kit datasheet. The main function of this ispLSI program­
ming interface is to provide four properly timed 
programming signals and the ispEN signal to the device. 
The PC parallel port is used in the isp Engineering Kit to 
provide these programming signals. The signals driven 
by the parallel port can be used either by the Lattice isp 
Programming Module (part of isp Engineering Kit Model 

100) or on the system board if the circuit board is built with 
provisions to connect the ISP programming signals to the 
appropriate traces. 

In the case of users using the PC serial port as the 1/0 port 
for programming, the serial data must be converted by 
additional circuitry into the appropriate programming 
signals. There must also be timing circuitry that trans­
lates the serial instructions into timed ISP programming 
signals. This section only discuss the parallel port 
interface. Lattice's isp Engineering Kit Model 200 sup­
ports serial port programming. 

In order to use the PC parallel port, the parallel port 
operation must be defined properly. After defining the 
port, it is just a matter of developing the programming 
software to read and write from the parallel port. To 
guarantee the signal integrity and drive capability, a 
74HC367 buffer should be directly connected at the 
parallel port's 0825 connector. Figure 9 defines the 
parallel port 0825 pins and the associated ISP program­
ming signals. The global RESET signal is also provided 
to ensure a proper register reset after programming. 

Figure 8. Configuring an ispLSI Device from a Remote System 

Parallel Port 
Connection 
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The buffer then drives the cable that connects the output 
of the buffer to the ISP pins of the device. It is important 
to keep the cable length to a minimum to reduce the 
loading on the signal drivers. Since ispEN, SDI, SCLK 
and MODE are inputs to the ispLSI device, they are being 
driven by the buffer connected to the parallel port. SDO, 
on the other hand, is an output signal which the ispLSI 
device has to drive. If the load on the SDO signal is more 
than a minimum length cable and the parallel port input, 
it is recommended that the user provide a buffer on the 
circuit board to ensure signal integrity. 

For the parallel port interface, the software must access 
the proper parallel port address. Once the port is defined, 
the data transfer is accomplished by simply reading from 
the port and writing to the port. The software must also 
guarantee proper timing between the ISP programming 
signals. When the programming software is executed, 
most of the shorter hardware timing requirements are 
automatically met due to the relatively long instruction 
execution times. The programming pulse width (tpwp) 
and bulk erase pulse width (tbew), which are in the 40ms 
to 200ms range, are the hardware timings that typically 
require wait states in the software. The example func­
tions in the ispCODE illustrates reading of the computer's 
timer chip to generate these wait states. 

Based on the programming pulse width requirement, the 
total programming time can be estimated. Since the 
shifting the address and data is relatively small compared 
to the programming time, the total programming time can 
be estimated by the following formula. 

Total Programming Time= Address SR Length X 2 X tpwp 

Assuming that the programming pulse width (tpwp) is 
1 OOms, the total programming time for the ispLSI 1048 is 
approximately 24 seconds. 

Microprocessor-Based Programming 

Similar to PC-based 1/0 port controlled programming, a 
processor or a microprocessor can be used to directly 
supply the ISP programming signals with minimum de­
coding logic and an optional storage device (see figure 
10). The discussion in this section pertains to the 
implementation of ISP programming on a circuit board 
with a microprocessor. The discussion is based on the 
assumption that the patterns and the code are stored in 
EPROMs. Since an efficient use of storage is desirable, 
the bit packed ispSTREAM format will use the least 
amount of storage. The basic requirement here, again, 
is to supply properly timed ISP programming signals. 

Figure 9. PC Parallel Port Buffer & RJ45 Connector Definition 
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Hardware Configuration 

There are several ways to define the ISP programming 
hardware depending on the type of storage device and 
how the ispLSI devices are to be programmed. The 
hardware configuration shown in figure 11 uses an 8-bit 
wide EPROM to store the fuse maps and code. The 
patterns are then read from the EPROM by the micropro­
cessor and converted into serial stream format. The ISP 
signals are driven from the decoder and 1/0 port which 
decodes the proper ISP read/write address space similar 
to the 1/0 port definition of the previous setup. Similarly, 
fuse map memory addresses must also be defined to be 
properly read from the EPROM. 

Programming pattern storage requirements are directly 
dependent upon the ispLSI device type and which ISP 
functions must be executed by the microprocessor. As­
suming the bit packed ispSTREAM format for the fuse 
map, the number of bytes required for each ispLSI device 
is simply the total number of cells divided by eight. In the 
case of ispLSI 1048, 7.2K bytes is required to store the 
JEDEC fuse map. 

Similar to the parallel port interface, most hardware 
timing requirements can be satisfied by the software 
instruction execution time. Only the program, verify and 
bulk erase times requires the software to have wait 
cycles. Many microprocessor boards will not have a 
timer chip to time the wait states. However, the instruc­
tion execution times typically can be accurately estimated. 
Therefore, timing loops must be inserted into the instruc­
tions control critical hardware timing. 

Software support for this case is very similar to the 
previous. Within the software, however, address spaces 
for the ISP read/write locations and the EPROM read 
locations must be defined. The storage space require­
ment for the code must also be determined if the code is 
going to reside in the storage device. Based on the 
ispCODE functions, the object code which is capable of 
executing basic ISP functions typically does not exceed 
BK byte of memory. This memory requirement is directly 
proportional to the amount of ISP and user interface 
functions. 

ISP Software Interface 

In addition to the hardware interface, the ispCODE C 
language routines take care of the ispLSI programming 
software interface. The software interface must imple­
ment routines to read and write from the parallel port, to 
translate the JEDEC fusemap to and from the stream file 
format, and to toggle the ISP hardware signals con­
nected at the output port. Predefined routines for these 
functions such as isp_program, isp_read, isp_verify, etc. 
are provided with the ispCODE. The ispLSI user only 
needs to integrate these routines into their overall system 
software. 

The ispCODE routines makes use of the ispSTREAM bit 
packed data format to transfer data between the JEDEC 
fuse map and the physical device location. The JEDEC 
fuse map can be translated into ispSTREAM using the 
ispjedtoisp function and the ispSTREAM format can be 
translated into a JEDEC fuse map using the isp_isptojed 
function. In addition to the fuse map translation routines, 
the ispCODE provides functions to check the device ID, 
to read and write the User Electronic Signature (UES), 

Figure 1 o. Configuring an ispLSI Device from an On-Board Microprocessor 
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and to keep track of the program cycle counter. Refer to 
the ispCODE User Manual for more details. 

ispLSI Device Special Features 

In addition to transfering the fuse pattern into the ispLSI 
device with proper ISP timing, there are a few administra­
tive functions that can make device programming more 
efficient when implemented in the ISP programming 
algorithm. 

All ispLSI devices have hardwired device identification 
codes. These ID codes should be used to identify proper 
device and fuse map compatibility. The ID check should 
be run as the very first procedure before any device 
programming procedures. The ispCODE routines pro­
vided by Lattice include the isp_get_id function to facilitate 
this process. 

The ispLSI devices also provide several programmable 
locations for the UES and program cycle counter. The 
UES can be used to identify which pattern is programmed 

Figure 11. Microprocessor Board Configuration 
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into the device. This is a very useful way of electronically 
identifying the devices and their programs, especially 
when the devices are secured. A 16-bit program cycle 
counter can be implemented within the reserved loacation, 
similar to the UES, to keep track of the number of program 
cycles which the device experiences to avoid exceeding 
the maximum programming cycle limit. UES and pro­
gram cycle counter routines are provided as part of 
Lattice's ispCODE software. 

One of the diagnostic features of the ispLSI devices is 
register preload. GLB and 1/0 registers become serial 
shift registers during the register preload command exe­
cution. Data can either be shifted into or out of these shift 
registers for system diagnostic functions. Special atten­
tion must be paid to the GLB and 1/0 clocks in order to use 
the register preload features properly. One must drive all 
GLB or all 1/0 clocks high throughout the execution of the 
GLB or 1/0 preload commands. This means that when 
defining the test pattern that uses the preload commands 
all GLB or all 1/0 clock polarities must be the same. 
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Boundary Scan 

The Lattice 3000 family of devices supports the IEEE 
1149.1 Boundary Scan specifications. The following 
sections explain in detail how to interface to the devices 
through the Test Access Port (TAP), how the boundary 
scan registers are implemented within the devices, and 
the boundary scan instructions that are supported by the 
ispLSI and pLSI 3000 family 

Test Access Port (TAP) 

The test access port of the boundary scan is accessed 
through six interface signals. These interface signals 
have dual functions in the case of ispLSI 3000 family and 
are used for Boundary Scan interface and in-system 
programming interface signals. For the pLSI 3000 family 
the six interface signals are only used for the boundary 
scan TAP interface. Table 6 describes the interface 
signals. 

The above mentioned six signals are dedicated for Bound­
ary Scan use for the pLSI family of devices. Since ISP 
programming is accomplished through the same pins, 
five of the six signals have both Boundary Scan interface 
and ISP functions on the ispLSI devices. The TRST is the 
only signal that does not have a dual function. It is only 
used to reset the TAP controller state machine. The 
sequencing of test routines are governed by the TAP 
controller state machine. The state machine uses the 
TMS and TCK signals as its inputs to sequence the 
states. Figure 12A is the IEEE1149.1 specified state 
machine where the condition for the state transtion is the 
state of the TMS input condition before TCK within a 

Table 6. Boundary Scan Interface Signals 

pLSl3000 ispLSI 3000 
Pin Function Description 

Family Family 

given state. The timing specification is also shown on 
figure 12B. 

The main features of the TAP controller state machine 
consists of Test-Logic-Reset state to reset the controller 
and the Run-Test states. Two main components of the 
Run-Test states are Data Register (DR) control states 
and Instruction Register (IR) control states. Both of these 
register control states are organized in a similar manner 
where one can capture the registers, shift the register 
string, or update the registers. Capturing the DRs simply 
loads the DR with the data from the corresponding 
functional input, output, or 1/0 pins. The IR capture, on 
the other hand, loads the IRs with the previously ex­
ecuted instruction bits. Shift register states serially shifts 
the DR and IR. In the case of DR shift, the data is shifted 
according to the order of the inputs, outputs, and I/Os 
defined in the Boundary Scan section of each device data 
sheet. The I Rs are shifted out from the least significant bit 
first. During update registers states, the DRs update the 
latches to drive the external pins and IRs update the 
instruction bits with the instruction that is to be executed. 

Boundary Scan Registers 

In order to support Boundary Scan, two types of data 
registers are defined for the ispLSI and pLSI devices -
1/0 cell registers and input cell registers. The main 
purpose of these registers is to capture test data from the 
appropriate signals and shift data to either drive the test 
pins or examine captured test data. 

Figure 13 describes the register for the 1/0 cell. The 1/0 
cell, by definition, must have three components. One 
register component captures the output enable (OE) 
signal, the second component captures the output data 

-- Active high signal on this pin selects the Boundary Scan function while active low signal 
BSCAN BSCAN/ispEN selects the ISP function on the ispLSI devices. Internal pullup on this pin drives the 

signal high when the external pin is not driven. 

TCK TCK/SCLK Test Clock function for Boundary Scan and serial clock for the ISP function. 

lMS TMS/MODE Test Mode Select for Boundary Scan and MODE control for ISP function. 

TOI TOI/SDI Test Data Input for Boundary Scan and Serial Data Input for ISP pin functions as serial 
data input pin for both interfaces. 

TRST TRST Test Reset Input is an asynchronous signal to initialize the TAP controller to 
Test-Logic-Reset state. 

TOO TDO/SDO Test Data Output for Boundary Scan and Serial Data Output for ISP pin functions as 
serial data output pin for both interfaces. 
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Test-Logic-Reset1---------------------. 
0 

.-------------. 1 1 
1-r----i~ Select-DR-Scan 1----....i Select-IA-Scan 

~-~-~ 

0 0 
1..---~-~ 1.-----~-~ 
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Exit2-DR 

1 
Update-DR 
1 0 

Figure 12A. TAP Controller State Machine 
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Figure 13. Boundary Scan 1/0 Cell 

and the third captures the input data. These components 
make up the three registers that are part of the shift 
register string for each of the 1/0 pins. Only parts of the 
1/0 cell registers will have valid data when 1/0 pins are 
configured as input only or output only and the test 
routines must be able to monitor the appropriate register 
bits. The update registers are used mainly to store data 
that is to be driven onto the 1/0 pins. The multiplexer 
controls are driven by the signal from the TAP controller 
at appropriate states. 

The function of an input cell register is much simpler than 
that of an 1/0 cell. Figure 14 illustrates the single input 
register cell. The purpose of the 1/0 cell is to capture the 
input test data and shift the data out of the shift register 
string. 
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i-----ID 

Shift DR Clock DR 

Figure 14. Boundary Scan Input Cell 
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Boundary Scan Instructions 

Lattice ispLSI and pLSI devices support the three man­
datory instructions defined by the Boundary Scan 
definition. The following paragraphs describe each of the 
instructions and its instruction code. A two bit long shift 
register is defined within the devices to implement the 
instruction shift register. 

The SAMPLE/PRELOAD (Instruction Code - 01) instruc­
tion is used to sample the pins that are to be tested. 
During Capture-DR state, while executing this instruc­
tion, the DRs are loaded with the state of the pins which 
can then be examined after shifting the data through 
TDO. The PRELOAD part of this instruction is simply 

Figure 15. Bypass Register 

From TDI 

Shift DR 

Clock DR 

D Q ToTDO 

loading the DRs during Shift-DR state with the desired 
condition for each of the pins. 

The EXTEST (Instruction Code - 00) instruction drives 
the external pins with the previously updated values from 
the DR during Update-DR state. 

The BYPASS (Instruction Code - 11) instruction is used 
to bypass any device that is not accessed during any part 
of the test. The definition of BYPASS instruction allows 
the TDI not to be driven during Shift-IA state. In order to 
shift in the correct instruction code the TDI pin has an 
internal pull-up to drive a logic high. A bypassed bound­
ary scan device has a single bypass register as shown in 
figure 15 below. 
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Lattice Design Tool Strategy 

Introduction 

The Lattice design tool strategy for the ispLSI and pLSI 
families is to support a wide range of design environ­
ments. Lattice provides both a proprietary PC-based 
solution (pDS®) as well as third-party compatible CAE 
tools (pDS+™ Fitters) that run on PC and Sun worksta­
tion platforms. 

The Lattice pDS (pLSI and ispLSI Development System) 
software provides a comprehensive, high-performance, 
low-cost package for logic development. Developed and 
supported by Lattice, pDS provides an easy-to-use Win­
dows-based graphical interface using a mouse and 
pull-down menus. Design entry includes Boolean equa­
tions and macros. For simulation, timing tables are 
included as a standard offering. Additionally, pDS inter­
faces with Viewlogic's PROsim simulation package for 
full functional and timing simulation. pDS Software gen­
erates industry standard JEDEC programming files and 
supports direct download into ispLSI devices. 

Figure 1. pDS and pDS+ Design Flows 

Lattice's pDS+ (pDS Plus) solution supports multiple 
third-party CAE tools, providing designers with the capa­
bility to design in familiar CAE environments. These 
third-party CAE tools offer schematic capture, hardware 
description language (such as VHDL), state machine 
language, Boolean equation, and macro design entry as 
well as functional and timing simulators for design verifi­
cation. 

Lattice's pDS and pDS+ solutions give designers power­
ful, easy to use, cost-effective design tools to meet their 
development needs. Each third-party vendor must ad­
here to strict quality and certification requirements before 
becoming qualified, thus ensuring superior support. 
Contact your local Lattice Sales Representative for avail­
ability. 
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Lattice Design Flow 

There are three steps in the Lattice ispLSI and pLSI 
design flow: design entry, device fitting (logic partition­
ing, place and route), and design verification. (See the 
pDS and pDS+ Design Flow). This section outlines the 
design flow of the pDS and pDS+ solutions. 

Lattice pDS 

Lattice's pDS solution is a comprehensive, self-con­
tained design solution which operates on a PC under 
Microsoft Windows. pDS uses familiar ABEL-like Bool­
ean equation and macro design entry, and provides 
manual partitioning, high speed automatic place and 
route, and simulation timing tables for design verification. 
Viewlogic's PROsim simulation package is compatible 
with pDS for functional and timing simulation. 

After the development work has been completed, the 
design is ready to be programmed into a device. For third­
party programming support, the pDS package generates 
a JEDEC fusemap. Alternatively, the ispLSI devices can 
be programmed directly from the PC or Sun workstation 
with the Lattice isp Engineering Kit. 

The pDS development systems are ideal for designers 
who desire a cost-effective, user friendly approach to 
ispLSI and pLSI design. 

Lattice pDS+ 

The pDS+ solution combines third-party GAE tools for 
design entry and verification with the Lattice pDS+ Fitter 
for device fitting to offer a powerful and complete devel­
opment solution. Initial Fitter products include the pDS+ 
ABEL Fitter, pDS+ Viewlogic Fitter, pDS+ LOG/iC Fitter, 
pDS+ MING Fitter, and pDS+ Cadence Fitter which 
interface with their respective third party design tools. 

The design entry step is typically performed with sche­
matic capture, Boolean equations, state machines, truth 
tables or a Hardware Description Language (HDL). Once 
design entry is complete, the design is ready to be 
implemented into a Lattice ispLSI or pLSI device. 

The Lattice pDS+ Fitter uses architecture-specific algo­
rithms to synthesize a logic description into an ispLSI or 
pLSI device. Steps in the device fitting process include 
logic optimization and minimization, automatic logic par­
titioning, and automatic place and route. 

pDS+ also supports design verification. Design verifica­
tion options include both functional and timing simulation. 
Various combinations of graphical and text-based func­
tional and timing simulators are supported by third-party 
CAE vendors. 

Following design verification, the Lattice pDS+ Fitter 
generates a JEDEC fusemap for device programming. 
The design can be programmed into a pLSI device using 
third-party programmers. In addition, the ispLSI devices 
can be programmed directly from the PC or Sun worksta­
tion system using Lattice's isp Engineering Kit, or from 
dedicated logic designed into the end-system. 
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System Design Process 

Introduction 

Conceptually, system definition is the first step in the 
design process. This involves visualizing the PLD's inter­
action with the rest of the electronic system and defining 
a general flow diagram to determine the design's basic 
sequential behavior. This organizational flow, used to 
integrate an entire subsystem into high density devices, 
is described in the following topics and shown in figure 1. 

Figure 1. System Design Flow 

Define System 
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Test and Debug Device 

PCB Layout 

Test and Debug System 

Deliver System 

Partitioning 

After completing the conceptual design, the designer 
partitions the system into modules or functional blocks. 
These blocks can be a few components or multiple circuit 
boards with numerous components. The designer orga­
nizes these functional blocks to match the capabilities of 
the devices being targeted, for example, the number of 
1/0 pins, flip-flops and gates needed. The user should 
also consider the frequency at which the targeted device 
must operate, the number of clocks required, and the 
timing relationships of signals (AC specifications). 

Specifying Components 

Afterthe partitioning is defined, the designer chooses the 
components which will be used to implement the desired 
functions. The design should meet the system specifica­
tions using the least number of components in order to 
keep the system cost as low as possible while keeping 
the system reliability as high as possible. 

System specifications calling for low weight, low power 
and reduced size also drive designers to higher levels of 
logic integration. These added requirements can ad­
versely affect the design schedule and project completion. 
The ispLSI and pLSI high-density devices can meet such 
design requirements while delivering excellent perfor­
mance. The ispLSI and pLSI family of high-speed, 
high-density PLDs supported by easy-to-use effective 
software for fast design implementation and verification. 

Design Entry and Optimization 

After the functional partitioning and component specifi­
cations are completed, the logic necessary to implement 
the functions is defined block by block. The logic may 
include standard TIL functions, CMOS logic functions, or 
functions from a library, such as the Lattice Macro Li­
brary. The implementation of logic into a high density 
device is optimized for the targeted device by the design 
software. The partitioning also affects the optimization. 
Optimization can be for speed, utilization or a combina­
tion of both. 

Logic entry for a Lattice high density device is done with 
the pLSI and ispLSI Development System or with any of 
Lattice's pDS+ Fitter products (pDS+ Viewlogic, pDS+ 
ABEL, pDS+ LOG/iC, etc.). The pDS Software utilizes 
the Graphical User Interface (GUI) of Microsoft's Win­
dows™ to provide a complete design flow from logic entry 
to programming ispLSI and pLSI devices within hours. 
pDS+ ABEL software supports textual design entry using 
a Hardware Description Language (HDL) as well as other 
entry methods. Standard GAE schematic design entry is 
supported by the pDS+ Viewlogic software. pDS+ LOG/ 
iC supports Boolean, truth table and state machine entry. 
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Test and Debug 

When designing a system, or a portion of a system, it is 
easier to test and debug pieces or modules rather than 
the entire system. In this manner, the designer can 
confirm module designs, or functional blocks, and find 
problems earlier in the design cycle. 

Logic can be verified by either timing simulation or actual 
testing of the programmed device. Simulation can be 
accomplished using the Viewlogic Viewsim logic simula­
tor (available from Lattice) and other simulators supported 
by Lattice. Design errors detected by software simulation 
can be corrected by the designer before the printed circuit 
board is laid out and manufactured, which saves time and 
reduces cost. Board and system level simulation can be 
accomplished through behavioral simulation using Logic 
Modeling Corporation's models. 

Reprogrammable devices allow the designer to test, 
debug, and modify logic right on the p.c. board. ispLSI 
and pLSI devices can be reprogrammed multiple times. 
This reprogrammability further assists the designers by 
allowing them to temporarily program the devices with 
diagnostic and design verification logic. 

The designer should always attempt to design logic with 
testability in mind. Testability means different things to 
different designers. Key guidelines to be aware of are: 

D Large counters should be segmented for quick and 
easy testing. 

D Logic should be designed for controllability and 
observability. 

D There should be no floating nets. 

D All nets should be at a known state or are able to be 
set or reset. 

To assist system testability, the ispLSI devices offer 
preload and verification features. These features allow 
register contents to be verified without using logic analyz­
ers or other debugging tools. 

Printed Circuit Board Layout 

Once the logic has been verified, the Printed Circuit 
Board (PCB) is laid out and manufactured. Since the logic 
may be changed during design, this phase of the system 
design is usually executed after the logic has been 
validated. It is recommended that board design and 
layout be done after verifying designs using ispLSI and 
pLSI parts. 

System Test and Debug 

System test and debug is the final stage of the design 
process. The logic and the PCB are tested as a system 
and minor enhancements or bug fixes are implemented. 
Because of the flexibility of the ispLSI and pLSI devices, 
minor changes can be made without affecting the layout 
of the PCB or the pinout of the device. 
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ispLSI and pLSI Design Flow 

Introduction 

Once the system design has been organized into func­
tional components, and the logic functions which need to 
be incorporated in the selected components defined, the 
logic design phase begins. The general design flow is 
shown in figure 1. An ispLSI or pLSI design may be 
implemented from a number of design environments. 
This section will discuss four popular ones: pLSI and 
ispLSI Development System (pDS), pDS+ ABEL, pDS+ 
Viewlogic, pDS+ LOG/iC, pDS+ MINC, and pDS+ Ca­
dence. 

Figure 1. General Design Flow 
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These design environments offer various levels of design 
implementation from logic entry through programming 
the device. They support a variety of user interfaces and 
entry methods including: MS Windows GUI, Data 1/0 
ABEL HDL or VHDL, Viewlogic ViewdrawNiewsynthesis 
and PROcapture/PROsynthesis, ISDATA LOG/iC De­
sign System, Cadence ConcepWerilog-XL, and MINC 
PLDesigner-XL. The design flows using these develop­
ment software systems are shown in figures 2, 2a, 2b, 2c, 
2d and 2e. 

Design Entry 

The pDS Software allows the user to manually partition 
the logic to control design fit and performance. Using the 
MS Windows environment, logic functions are placed 
into Generic Logic Blocks (GLBs) and 1/0 Cells. This can 
be done by using the Edit, Cut, Copy, and Paste functions 
to enter Boolean equations and/or predefined functions 
from the Lattice Macro or user libraries. 

In addition to Boolean design entry, the ABEL HDL and 
MINC HDL and VHDL formats allow high-level descrip­
tions of counters, adders, comparators, etc. These HDL 
languages also support state machines, truth tables and 
case constructs for behavioral design implementations. 
The Lattice interfaces allow many existing PLO designs 
to be easily integrated and converted into an ispLSI or 
pLSI devices. 

For standard CAE schematic designs, the pDS+ View­
logic and pDS+ Cadence software provide support for 
graphical and hierarchical logic implementations using 
the Lattice library of primitives and macros. The inter­
faces also allow easy integration of system or user-created 
functions into a hierarchical schematic using a top-down 
or bottom-up design methodology. 

Design Verification 

Verification using the pDS Software is accomplished in 
two steps after logic has been placed. First, each cell may 
be individually verified to ensure that the minimized logic 
will fit into the GLB architecture. After all GLB and 1/0 
cells are incrementally checked, the entire design is then 
verified to ensure that all nets have proper sources and 
destinations. 

Because the advanced pDS+ tools perform automatic 
partitioning, design verification is done at a higher-level 
(pre-partitioned). For example, in the ABEL environment 
the Compile (ahdl2pla) function performs the syntax and 
design rule checks. After the Compile phase, the Opti­
mize (plaopt) function (optionally) minimizes the design. 

In other pDS+ environments, pre-partitioned design veri­
fication is performed by the Design Analyzer which ensures 
the logic conforms to the Lattice design rules. 

Partitioning 

Partitioning using the pDS Software is done by the user 
as part of the design entry process. The advanced pDS+ 
Fitter tools incorporate Lattice's automatic partitioner 
which accepts converted data from designs entered in 
ABEL, Viewlogic, LOG/iC, MINC and Cadence tools. 
Lattice specific attributes for design entry are available to 
guide the partitioner in order to optimize usage of device 
features and performance. 
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Place and Route 

All Lattice design tools offer automatic place and route. 
This entails placement of GLB and IOC logic and then 
routing (or interconnecting) the source signals to their 
destinations. In the ispLSI and pLSI devices, the Global 
Routing Pool (GRP) provides fast interconnects from 
external inputs and GLB feedbacks to the GLB inputs. 
The Output Routing Pool (ORP) provides flexible inter­
connects from GLB outputs to external pins. To take 
advantage of the architectural features, Lattice offers an 
extended route option for more comprehensive routing of 
complex designs. 

Post-route Simulation 

After place and route, a netlist for full timing and function 
simulation may be passed to the Viewsim or Verilog-XL 
simulator. Viewsim supports simulation using both tex­
tual and graphical input and interfaces. Board and system 
level simulation models are also available from Logic 
Modeling Corporation. 

Documentation 

Report files, containing partitioned equations and pin-out 
information, may be generated for routed or un-routed 
designs. The pDS Software can also generate reports 
with post-route maximum timing delays. 

Device Programming 

Programming information is generated on a routed de­
sign by the FuseMap Generator for a specific ispLSI and 
pLSI device. It is an ASCII file written in the JEDEC 
format. Using ABEL and MINC software, the user may 
optionally append test vectors onto the JEDEC file. This 
allows post-programming functional test on the actual 
device. 

Two programming methods are used to program the 
ispLSI and pLSI devices. The first method uses the 
Device Programming Mode for both types of devices. 
This method facilitates device programming support from 
third-party vendors. The second method uses the Lattice 
In-System Programming Mode and applies to the ispLSI 
family of devices. 

Both methods of device programming allow the user to 
program and read back the fusemap from the programmed 
device for verification (if the security cell has not been 
set). 

Figure 2. pDS Design Flow Design 
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Figure 2a. pDS+ Viewlogic Design Flow 
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Figure 2b. pDS+ ABEL Design Flow 
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Figure 2c. pDS+ LOG/iC Design Flow 

Figure 2d. pDS+ MINC Design Flow 
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Figure 2e. pDS+ Cadence Design Flow 
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Selecting the Right 
High Density Device 

Introduction 

Board designers today have several options for imple­
menting their designs in high density programmable 
devices. Due to technology and design considerations, 
no single device provides the best solution for the chal­
lenges facing designers. To address this, design 
engineers often use multiple types of high density de­
vices on a single board. This paper will outline various 
applications issues and examine the appropriate high 
density solutions. It will also examine from the perspec­
tive of the user, the impact of design implementation, on 
the process of selecting a device. 

High density programmable devices can be broadly 
classified into two major types: Field Programmable 
Gate Arrays (FPGA) and High Density Programmable 
Logic Devices (HDPLD). FPGA devices are cell based 
and usually have small grain-size logic blocks with dis­
tributed interconnects across the device. High Density 
Programmable Logic Devices are array based and have 
large grained AND-OR array logic blocks with centralized 
interconnects (see figure 1 ). Similarly, board designs can 
be broadly classified into two types: control intensive and 
data intensive. Control intensive designs, usually con­
tain such subfunctions as Cache control, DRAM control, 
OMA control and require limited data manipulation. Data 
intensive designs, on the other hand, require complex 
manipulation of data bits which are typically found in 
telecommunications type applications. To select a high 
density device a designer must examine: 

D Performance 

D Utilization 

D Ease of Use 

Figure 1. Cell based and Array based Devices 
CELL BASED ARRAY BASED 

D 

DD 
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Performance 

When implementing a logic design into a high density 
device, it is typically partitioned into multiple logic blocks 
or cells and then the various cells are connected together 
using interconnect resources. The performance of a 
design is determined by the combination of the cell 
speed and the interconnect speed. 

Cell Speed 

A logic function is divided into subfunctions which fit the 
basic building block of the high density device. Often the 
number of inputs is the most important consideration. 
The subfunctions should require no more inputs than are 
available in the logic block of the device. Smaller logic 
blocks tend to be faster but they offer fewer inputs. 
Functional implementation often requires a number of 
logic blocks cascaded into multiple levels of delay to 
implement the logic. This slows down the functional 
speed of the logic dramatically. Control functions are 
typically input intensive and will be faster in devices with 
building blocks that allow for a large number of inputs. 
Data functions require fewer inputs and may be faster in 
devices which have fewer inputs per logic block. 

Cell based devices are very granular and have very small 
logic blocks. They have four to eight inputs per logic block 
with cell speeds of 6 to 7 ns. While these devices can 
implement critical data functions at fast speeds, for most 
control functions they require 2 to 3 levels of cascading 
delays. 

The array based devices have larger building blocks with 
16 to 48 inputs and delays of 8 to 10 ns. They can 
accommodate most control logic function requirements 
in terms of inputs to the logic block and implement them 
in one level of delay. However, an overly large input logic 
block is ineffective as it only adds to the logic block delay. 

Another alternative is the ispLSI and pLSI devices which 
offer a large number of inputs (18-24) in every Generic 
Logic Block (GLB). These inputs are sufficient to accom­
modate the logic requirements of control functions from 
8 to 12 inputs with the fastest possible speed. They also 
accommodate data functions which require 2 to 4 inputs 
per output, while maintaining high speed. 
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Figure 2. pLSI GLB 
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Selecting the Right High Density Device 

The graph illustrates (see figure 3) multiple logic block 
delays required to perform common logic functions in 
some of the popular high density devices available 
today. Due to a limited number of inputs available in Cell 
based devices the number of logic blocks cascaded to 
perform a function can be as high as 4 to 7. The Array 
based devices (vendor C) require only one level of delay. 
ispLSI and pLSI devices require only one logic block for 
most functions. The logic block delay is small and is 
comparable to most Cell based devices. 

Interconnect Speed 

Interconnect speed is another important consideration 
not only for connecting subfunction logic blocks, but also 
for connecting signals from one logic function to another. 
Interconnects affect final system performance as much 
as logic blocks do. 

The cell based devices offer distributed interconnects 
with variable length lines spanning the length and the 
width of the device and interconnecting various logic 
blocks with finite delay interconnect points. Frequently, 
signals have to traverse multiple line segments and 

Figure 3. Building Block Performance 
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interconnect points for a connection. In general, closely 
located logic blocks have a shorter delay since signals 
travel through fewer lines and interconnect points. The 
opposite is true for logic blocks located further apart. 
There is a large variation in the interconnect delays 
based on the placement of the related logic blocks (see 
figure 4). In general, to improve system performance for 
control oriented functions in a cell based device, a large 
number of signals and related logic blocks need to be 
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placed in close proximity. Frequently, this is physically 
impossible and/or requires many placement iterations. 
Often, for such designs as state machines, counters, 
etc., the final performance is determined by the worst 
case signal speed. In such cases, the cell based devices 
with distributed interconnects offer slower interconnect 
performance and consequently slower overall system 
performance. Data functions require fewer delays and 
can be implemented relatively faster. Placement of re­
lated data bits close to each other facilitates fast 
performance for data oriented functions. However, some­
times with a large number of data bits this becomes 
difficult to achieve. 

The array based devices with centralized interconnects 
offer uniform interconnect delays. The ispLSI and pLSI 
devices offer uniform interconnect delays with signifi­
cantly faster interconnect performance than existing 
array based devices, and consistently provide best case 
cell based device delays as illustrated in Figure 4. 

Figure 4. Interconnect Performance 
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The state-of-the-art for Automatic Place and Route (APR) 
software has not reached a point where the interconnect 
performance can be called optimal. In general, the cell 
based devices either require a long APR time, typically a 
number of hours or days, in order to reach near-optimal 
interconnect speeds. Shorter route times result in rea­
sonable performance. Uniform delays in array based 
devices eliminate the need for intelligently placing re­
lated logic blocks closer, thereby reducing APR time to a 
few minutes. ispLSI and pLSI devices go a step further 
and offer faster interconnect delays using the proprietary 
centralized Global Routing Pool (GRP) (see figure 5) 
which retains fast APR times. This is especially good for 
data intensive designs where all data bits perform equally. 
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Figure 5. pLSI 1032 Block Diagram . -----1 Output Routing Pool I 
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Utilization 

When mapping a design, the utilization is defined by how 
much of a device is used. In general, granular architec· 
tures are more effective in offering higher utilization for 
data intensive designs than large logic block architec· 
tures which are better for control intensive designs. 

Typically, array based architectures require sophisti­
cated synthesis algorithms to compress logic from multiple 
stages into a large single stage block to increase utiliza­
tion. While array based devices implement control 
intensive designs more effectively, the cell based archi­
tectures with their smaller logic blocks have less need to 
compress logic into one stage of the design. Data inten· 
sive designs which typically require a large number of 
registers are more effectively implemented in a cell 
based architecture which have higher register to logic 
ratios. 

The ispLSI and pLSI devices are neither as granular as 
some cell based architectures, nor as large as some 
array based architectures, since they offer a grain size of 
four outputs per logic block (GLB). However, they offer 
effective utilization because real life designs are a com· 
bination of data and control functions. 

Within each GLB, ispLSI and pLSI devices offer a Prod­
uct Term Sharing Array (PTSA). The PTSA optionally 
shares GLB product terms between the four GLB outputs 
thereby enhancing logic block utilization. 

As devices are scaled to higher densities, the intercon· 
nect resources should increase at the same pace as the 
logic resources. This ensures that all of the available 
logic is fully utilized in the device. The distributed nature 
of cell based interconnects does not lend itself well to this 
scaling. Figure 6 shows the logic-to-interconnect ratio for 
one of the families of cell based high density devices. At 
higher densities, this means a lower utilization of the 
device since the logic cannot be mapped as easily as at 
the lower end of the spectrum. The array based devices 
scale the interconnect resources at the same level as the 
logic resources and offer better utilization at the higher 
end range of devices as well. 

The ispLSI and pLSI Global Routing Pool (GAP) provides 
all signals globally to all device GLBs. The GAP size is 
scaled to provide full 1 :1 logic to interconnect ratio 
ensuring all device logic is fully utilized, irrespective of the 
device size. 

Figure 6. Logic to Interconnect Ratio 
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Ease of Use 

Most designers use high density devices as a means for 
logic implementation and concentrate on the main func­
tionality of the board, e.g., the microprocessor or the 
graphics section. Their time is spent on the overall func­
tionality of the board and not on the basic logic. Ease of 
use and quick design turnaround times are critical to any 
digital designer. Ease of use is determined by a number 
of factors. Some critical factors directly related to the 
choice of device architecture are: 

o Predictability of Performance 

0 Design Rework 

0 Design Entry 

0 Turnaround time 
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Predictability of Performance 

The performance of the design is determined by the 
system considerations and is usually driven by the pro­
cessor requirements or other considerations like graphics 
screen resolution, etc. High density devices frequently 
do not determine the final system speed. Designers will 
need to know in advance the final performance of the 
logic implemented in the high density device to deter­
mine the feasibility of the part selected. A designer also 
needs to know the speed grade required in advance, in 
order to estimate the cost of the design. 

For cell based devices, the number of delay levels it 
would take to implement the design function is not 
typically known. Also modifications to the design often 
may cause a change in the number of delay levels. 
Similarly, it is difficult to predict how the software will 
place the logic blocks as explained earlier. Even if only 
one out of ten critical signals ends up being slow, it will 
slow down the device system speed. Array based 
devices as well as ispLSI and pLSI devices, have 
predictable levels of logic and interconnect delays, which 
allows the designer to not only estimate speed in ad­
vance but maintain fast speeds. 

Design Rework 

Very few designs work the first time after entering the 
logic into a device. Most designs not only require logic 
addition or subtraction but frequently require pinout 
changes, and rework. This rework is often due to logic 
debugging and can sometimes be due to changes in the 
specification of the final product, etc. Also a large cat­
egory of digital designers prefer an incremental design 
approach where small chunks of designs are imple­
mented at a time and debugged before new chunks are 
added. 

Forcell based devices every logic change requires a new 
set of logic mappings into the device cells and a new set 
of interconnect mapping into device interconnect lines. 
This leads to significant changes in the performance of 
the device and to undesired pinout change. 

Array based devices typically do not have any adverse 
performance changes due to logic changes. However, 
pinout changes frequently occur. 

ispLSI and pLSI devices were developed to allow users 
to make logic changes without any performance impact 
and to freeze pinouts when incremental design changes 
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are done. ispLSI and pLSI devices offer an Output 
Routing Pool (OAP) which allows GLB outputs to be 
routed to many different 1/0 pins. Also the ispLSI and 
pLSI GAP allows 1/0 pin inputs to be available to all 
GLBs. These two features when combined offer the 
flexibility necessary to maintain pinouts in subsequent 
iterations of designs while maintaining the same perfor­
mance. 

Design Entry 

There are two categories of digital designers using high 
density devices. The first is the designer who is a PLO 
user, such as with GAL devices and is familiar with 
Boolean, State Machine or HDL type of design entry 
syntax. For these designers, array based devices offer 
direct mapping correlation from the entry syntax to de­
sign implementation, which is very helpful in control 
intensive designs. This makes such factors as the logic 
implementation, speed of functions and race conditions 
etc., predictable to the designer and simplifies the design 
task. The other category is the gate array designer who 
migrates to programmable gate array devices. For these 
designers the cell based devices offer a closer correla­
tion between schematic entry to actual design 
implementation. These designers also implement data 
intensive designs effectively, since they have a number 
of TTL type data function macros available to them. With 
synthesis techniques however, the schematic entry is 
also offered for array based devices. Familiar design 
entry methodology also speeds design entry time and 
simplifies the design process. 

ispLSI and pLSI devices offer direct correlation with 
Boolean/HDUState Machine entry syntax. Extensive 
synthesis techniques are also used in the ispLSI and 
pLSI Development System software to offer easy sche­
matic capture along with a large library of TTL-type 
Macros. 

Turnaround Time 

Once a design is entered, the next critical step is design 
compilation and programming of the part. For cell based 
devices with smaller logic blocks, the distributed nature of 
interconnects complicates matters. The Place and Route 
algorithm needs to satisfy multiple and often conflicting 
requirements for: 

Q Placing Related Logic Closer for Faster Speed. 

Q Moving Logic to Satisfy Critical Timing 
Requirements. 
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D Moving Logic Due to the Lack of Interconnect 
Resources. 

D Repartitioning Logic to Satisfy the Above Three 
Conditions. 

These four basic requirements are interrelated and com­
plex, making the compilation process very time 
consuming. Typical cell based devices require 2 to 8 
hours for compilation in order to achieve reasonable 
system performance objectives. 

The array based devices with global connectivity and 
uniform interconnect delays eliminate the need to closely 
place related logic. The ispLSI and pLSI devices with 
centralized interconnect offer compilation times of min­
utes versus hours for the cell based devices thereby 
improving designer productivity. This combined with the 
ispLSI version of the family which allows on-board repro­
gramming of multiple devices simultaneously, offers a 
whole new dimension for logic design. 

Conclusion 

A digital designer has multiple choices available for high 
density designs. The current solutions broadly catego­
rized as cell based and array based devices offer 
alternative advantages and disadvantages for digital 
designers. The type of solution chosen depends upon 
the type of logic functions being implemented, the perfor­
mance required and other design specific trade-offs. The 
ispLSI and pLSI devices offer the advantages of both cell 
based and array based devices. 

High Performance - ispLSI and pLSI devices are de­
signed to be extremely fast for both 
control and data intensive functions 
and are particularly excellent for 
functions requiring more than eight 
inputs per logic block. 

Predictable Delays - The centralized GAP structure com­
bined with wide input GLBs offers 
uniform delays which allows the de­
signer to determine system speed in 
advance as well as maintain con­
stant speeds in subsequent 
iterations of the design. 

High Utilization - The ability to scale interconnect re­
sources at the same level as logic 
resources combined with built-in flex­
ibility of the GAP and OAP assure 
high device utilization. Also the 
PTSA adds another level of flexibil­
ity for increasing logic block 
utilization. 

Ease of Use - Predictable performance, quick de­
sign entry and rework time provide 
fast design turnaround. This simpli­
fies the design process and 
enhances time to market. 

The combination of high performance, predictable de­
lays, high utilization and ease of use, not only offers a 
superior solution for design requirements; it is delivered 
in E2CMOS technology with reprogrammability and 100% 
testability offering unparalleled device quality. 
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Beginner•s Guide to 
ispLSI and pLSI 

Introduction 

This Beginner's guide is designed to help you become 
familiar with the Lattice pLSI 1032 device, ispLSI 1032 
device and the Lattice pLSI and ispLSI Development 
System (pDS™). To do this, a complete design of a 
simple four-bit counter is discussed from specification 
through programming and testing the part. The following 
assumptions are being made. First, you have read and 
understood the pLSI 1032 data sheet. Next, you have the 
documentation for Microsoft® Windows™ readily avail­
able. Everything else should be here in this Beginner's 
Guide. 

The Lattice pDS Software is designed to run under 
Microsoft Windows Version 3.1 or later (see figure 1 ). 

Windows is an industry standard Graphical User Inter­
face (GUI) for pull down menus, text editing commands 
and screen control commands. Because the Lattice 
interface is the same as other Windows programs, it is 
very easy to learn. If you know how to run any Windows 
program, you can run the Lattice software. 

Figure 1. Lattice pDS Software Opening Screen 

It is necessary to have Windows for the Lattice pDS 
Software to run. Windows runs on most standard IBM 
PCs or clones. If your computer runs Windows 3.1 , it will 
run the Lattice pDS Software. The recommended system 
configuration for running pDS Software is: 

0 A 386 or 486 Processor 

D 4 Megabytes of RAM 

D 40 Megabyte Hard Disk 

D A Floppy Disk Drive 

0 A Microsoft Windows Compatible Mouse 

0 VGA or Super VGA Graphics 

In addition, the pDS Software requires that either a spare 
parallel printer port be available to perform in-system 
programming, or a spare serial port be available to 
communicate with an RS-232 controlled programmer. 
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Getting Started 
If you have not previously installed the Lattice pDS 
Software, see the installation procedure which came 
with your development system. 

1. To start Windows, type WIN atthe DOS Prompt (C:>). 

2. Install the Lattice pDS Software according to the 
installation instructions. A new program group called 
LATIICE is created. This program group should 
contain a single icon, called LATIICE.EXE, which 
looks like the Lattice company logo (see figure 2). 

3. To start the pDS Software, double click on the Lattice 
Logo Icon. 

Before you can proceed any further, some of the Microsoft 
Windows tasks that you should be able to perform are: 

D Selecting a Menu Item Using the Mouse 

D Using Qpen, §;;Ive and Save ,1s Menu Items 

D Entering Commands and Text into Message Win­
dows and Dialog Boxes 

D Moving Around the Screen with the Scroll Bars 

D Editing Text Using the Keyboard and Mouse to: 

- Select the Insertion Point 

- Select Text by Highlighting It 

- Cut, Paste and Copy Text 

Figure 3. Design Entry Window 

If you are unfamiliar with any of these options, then take 
some time to go through the Windows Users Guide. If 
you have ever worked with the Apple TM Macintosh TM, 

you will find that many of the commands and operations 
are similar. 

Figure 2. Lattice Program Group Window 
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A Brief Tour of the Screen 

Once you invoke the Lattice pDS Software, two windows 
are displayed (see figure 8-9). 

The larger of the two windows displays a graphical 
representation of the pLSI 1032 logic diagram. This 
window is called the Data Entry Window. The design is 
entered by editing equations in the Data Entry Window. 

The smaller of the two windows is the Message Window 
and it is located at the bottom of the screen. The pDS 
Software communicates with you by placing messages 
in the message window. 

The part that is displayed in the block diagram shows the 
elements of the pLSI 1032 that can be modified by the 
user. These elements are the GLBs, the 1/0 Cells, the 
dedicated input pins, and the clock input pins, as 
indicated in figure 3. 
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The design is entered into the development software by 
clicking on the block that you wish to edit and entering 
equations or Macros (library elements already parti­
tioned and optimized for high performance) into the Edit 
Window that appears (see figure 4). 

The method of entering the configuration data into a cell 
depends on what type of cell it is: 

Configuration data for Generic Logic Blocks is entered 
using a combination of Boolean Equations or Macros 
from the Lattice Standard Library. 

Configuration data for VO Cells is entered using Macros 
only. There is a complete set of Macros which describes 
all possible combinations of input, output, and VO cell 
configurations. 

Configuration data for the Dedicated Input Pins and the 
Clock Input Pins is entered using a subset of the VO Cell 
Macros. Because these pins are inputs only, and do not 
have input registers, many of the standard 1/0 Cell 
Macros cannot be used. 

Figure 4. Open Edit Windows 
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The Design Flow 

Before starting our sample design, it is valuable to 
understand the Design Flow. The following steps are 
observed to complete a design. Refer to figure 5 for more 
information. 

Specifying the Design 

A design is specified using one of the two approaches. 
With the first method, you use an existing design, con­
sisting of 7400 Series TTL Logic elements, and fit the 
design into the pLSI part. With the second method, you 
design a circuit that is optimized for best performance 
and utilization of the pLSI architecture. 
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Figure 5. Design Process Flow 

Enter Fixed 
Pin Location 

Specify the Design 

Partition the Logic 
Into GLBs 

Enter Equation for the 
Single Generic 

Logic Blocks 

Enter Data for 
1/0 Cells 

The first approach consists of simply selecting Macros 
from the Lattice library that approximate the functions of 
the TTL or CMOS circuits and then connecting them to 
each other. Using this approach a design can be com­
pleted quickly and has a high degree of probability of 
working the first time because the circuit has been tested. 

The second approach ensures better performance and 
higher utilization, but may require some circuit redesign. 
Many designs are a combination of the two approaches. 

To selectthe correct pLSI device, partition the design into 
GLBs, and count the number of GLBs and 1/0 Cells used. 
Next, select the pLSI device that can hold the amount of 
logic required. Selection of the proper device is based on 
the amount of logic required and on the number of 1/0 
cells needed. 

Global Verify All 
Chip Logic 

Route 

Fuse Map 

Program Part 

Test Design 

Correct Data 
and Re-verify 

Unfix Pins, Remove 
Critical Nets, and 

Try Again 

02536 

The best utilization and routability are achieved by allow­
ing the software to assign the 1/0 pin placement. It is a 
good idea to design the pLSI part first, and then lay out the 
printed circuit board or wire-wrap board after the device 
has been routed. Once the software intelligently assigns 
the pin placement the first time, the pins can be fixed, and 
changes can be made to the logic with few problems. 

Partitioning the Design 
Partitioning consists of carving the logic into chunks that 
conveniently fit into the pLSI Generic Logic Blocks. 
These general rules should be followed when partitioning 
logic: 

D Look at the Macro library and decide if any of the logic 
can be implemented using the standard Macros. 
Macros are already partitioned and are optimized for 
high utilization and high performance. Macros are 
also the fastest method to input the logic design. 
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D Know the capabilities of the GLB. It has 18 Inputs and 
4 Outputs. The GLB has 20 Product Terms (PTs) that 
are grouped together in groups of 4, 4, 5, and 7 PTs. 
The registers in the GLB share a common clock. The 
registers within the GLB also share a common Reset 
Product Term. 

D When an output has been fixed to a specific 1/0 pin, 
the signal that is used to generate that output must be 
generated within the same Megablock. 

D There is only one Output Enable signal per Mega­
block. Outputs which share a common Output Enable 
signal should be placed in the same Megablock (see 
figure 3). 

D Signals that are related to each other, such as those 
used for counters, shift registers, etc., should be 
placed into the same Megablock. This is done to 
reduce routing congestion. 

Compiling the Design 
Compiling the design is done using the Lattice pDS 
Software and consists of four steps: 

1. Entering the design. Boolean equations or Macros 
are entered into the various cells and blocks on the 
pLSI device using a built in text editor. After each cell 
has been entered, a Local Verify is done to check for 
syntactical or logical errors within that cell. 

2. Verifying the design. This is done globally after all 
the design has been entered. This verification looks 
for such problems as inputs that are not connected to 
the GLBs or nets that have duplicate names. The 
design must completely pass a Global Verify before 
any of the following steps can happen. 

3. Routing the design. This is the next step after a 
successful Verify. The Router interconnects the Ge­
neric Logic Block and 1/0 Cell inputs and outputs. The 
option of fixing certain input and output signals to 
specific device pins is available. 

4. Generating the Fusemap. This takes the verified 
and routed design and creates the JEDEC (a stan­
dard binary fuse file) necessary to program the part. 
This is a modified format JEDEC file, and the file 
generated has a suffix of .JED. 

Programming the Part 
Once the design has been compiled, the next step is to 
program the part. This can either be done on the board if 
using in-system programming (ISP) or in a separate 
programmer. Using a separate programmer requires that 
the part be removed from the target system socket and 
inserted into the programmer to program the part. 

Beginner•s Guide 

Testing the Design 

The last step in the process is testing the design. The 
design is tested by putting it on the board and seeing if it 
works correctly. If corrections need to be made, the 
appropriate GLBs or 1/0 Cells are reprogrammed, and 
the design is recompiled. Because the pLSI 1032 is an 
electrically erasable and reprogrammable part, the same 
part can be used again. 

The Sample Design 

The sample design is a simple one. We are going to 
design a 4-bit binary counter using Boolean equations 
and place it into a pLSI 1032 device. We will then take the 
design through the compilation process, generate a fuse 
file and program a part. 

The counter has the following specifications: 

D A 4-bit Synchronous Binary Counter. 
D An Active High Cascade In (Cl) and Cascade Out 

(CO) Pins. 
D An Active High Count Enable (CE) Pin. 
D A Synchronous Reset Pin. 

Figure 6 shows the schematic diagram and Figure 7 
shows the logic symbol for this counter. Because the 
counter has 5 outputs (00, 01, 02, 03, and Cascade 
Out) it occupies two GLBs. 

In this design example, the Clock and 1/0 pins are 
assigned to be compatible with the Lattice ispLSI 1032 
Demonstration board. This allows the design to be tested 
easily. 

The input signals Cascade In, Count Enable and Reset are 
connected to three bits of the 8-bit DIP switch, and the five 
outputs are connected to five of the discrete LED outputs. 

Defining the Counter 

In defining the counter, the first step is to write the equations. 
The equations for the 4-bit binary counter are expressed in 
Listing 1. 

There are two inputs to the Exclusive-OR gate in front of the 
D input to the register. We shall call the one that receives its 
input from the feedback of the same register as the data 
input. It is to the left of the $$ (XOR) symbol in the above 
equations. The other input is connected to the control terms 
Cascade In and Count Enable. These are called the control 
input. When the control input to the XOR is a zero the output 
of the XOR follows the data input (Hold.) When the control 
Input is a one, the output of the XOR is inverted from the 
input (Increment.) 
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Figure 6. Counter Schematic Diagram 
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Figure 7. Sample Cascadable Counter Logic 

1/00 Carry In Carry Out 1/032 

1/01 Count 4-bit Binary Enable 
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Counter 
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When either Cascade In or Count Enable is low and RST Each successive stage operates similarly, except during 
is low, the QO output from the counter remains in its transition, (Increment), when the outputs of all previous 
current state (Hold). When Cascade In and Count Enable stages are at logic level one. The Carry Out signal is only 
are both high and RST is low, the QO output toggles on generated when all the stages have reached a one and 
each successive clock (increment.) When RST goes both Cascade In and Counter Enable are a one. 
High, the inputs to the Data side of the XOR gate and the 
Control side go low. This causes the output of the counter 
to go low on the next clock edge (Reset.) 

4-12 1994 Handbook 



Once the equations have been defined, enter them into 
the GLBs. Follow these steps: 

1. From within Windows, start the Lattice pDS Software 
by double clicking on the Lattice Icon. 

2. When the Lattice software starts, it displays the block 
diagram of the pLSI 1032 part. Open GLB C1 for 
editing by double clicking on it. The edit window 
displays. 

3. Enter the equations shown in Listing 2 into the edit 
window for GLB C1. 

4. Verify the equations by clicking on the Cell Verify 
menu option. If errors appear in the Message window, 
find out what is wrong, and correct it. Things to look 
for are typing errors, missing semicolons, or incorrect 
symbols. Re-verify after making corrections. 

5. Close the Edit window for GLB C1 by selecting the 
Done option from the Cell Edit Menu. 

6. Open GLB C2 for editing by double clicking on it. 

7. Enter the following equations into the edit window for 
GLB C2: 

SIGTYPE CO OUT; 
EQUATIONS 

CO = QO & Ql & Q2 & Q3 & CI & CE; 
END 

Listing 1. Counter Equations 

QO (QO & !_RST) $$ (CI & CE & !_RST) 

Beginner's Guide 

8. Verify the equations by clicking on the Cell Verify 
menu option. 

9. Close the Cell Edit window by clicking on the Done 
option in the menu bar. See figure 8. 

At this point, the logic for the counter is completely 
specified, but we still must connect the Clock and the 
Inputs and Outputs. 

10. Open Clock Input YO by double clicking on it. It 
may be necessary to Zoom in on the Clock area of 
the Logic Diagram to determine which pin is YO . 

11. Enter the following equations into the edit window 
for Clock Input YO: 

XPIN CLK X_CLK LOCK 20; 
IBll (_CLK, X_CLK ); 

12. Verify the equations by clicking on the Cell Verify 
menu option. 

13. Once the cell verifies correctly, close the Cell Edit 
window by clicking on the Done option in the menu 
bar. 

Ql (Ql & !_RST) $$ (QO & CI & CE & !_RST) 
Q2 (Q2 & !_RST) $$ (QO & Ql & CI & CE & !_RST) 
Q3 (Q3 & !_RST) $$ (QO & Ql & Q2 & CI & CE & !_RST) 
co QO & Ql & Q2 & Q3 & CI & CE 

Listing 2. GLB Equations 

SIGTYPE QO REG OUT; 
SIGTYPE Ql REG OUT; 
SIGTYPE Q2 REG OUT; 
SIGTYPE Q3 REG OUT; 
EQUATIONS 

QO.CLK = _CLK; 
QO (QO & !_RST) $$ (CI & CE & !_RST); 
Ql (Ql & !_RST) $$ (QO & CI & CE & !_RST); 
Q2 (Q2 & !_RST) $$ (QO & Ql & CI & CE & !_RST); 
Q3 (Q3 & !_RST) $$ (QO & Ql & Q2 & CI & CE & !_RST); 

END 
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14. Repeat Steps 10 through 13 for the Cascade. In 
input pin located at 1/0 0 using these equations: 

XPIN IO XCI LOCK 26; 
IBll (CI, XCI); 

15. Repeat Steps 10 through 13 for the Count Enable 
input pin located at 1/0 1 using these equations: 

XPIN IO XCE LOCK 27; 
IBll (CE, XCE); 

16. Repeat Steps 10 through 13 for the Reset input pin 
located at 1/0 2 using these equations: 

XPIN IO X_RST LOCK 28; 
IBll (_RST, X_RST); 

17. Repeat Steps 10 through 13 for the 00 output pin 
located at 1/0 39 using these equations: 

XPIN IO XQO LOCK 75; 
OBll (XQO, QO); 

Figure 8. Cell Entry Windows with Counter Equations. 

18. Repeat Steps 10 through 13 for the 01 output pin 
located at 1/0 38 using these equations: 

XPIN IO XQl LOCK 74; 
OBll (XQl, Ql); 

Note: With the Lattice pDS Software you can have two 
separate Edit Windows open at the same time. This 
means that you can Copy the equations from 1/0 Cell 39 
and Paste them into 1/0 Cell 38. The data in both cells is 
similar, and you can use the Windows editing commands 
to make changes. 

19. Repeat Steps 10 through 13 for the 02 output pin 
located at 110 37 using these equations: 

XPIN IO XQ2 LOCK 73; 
OBll (XQ2, Q2) ; 

pLSl/ispLSI Development System 2.50 File: cnt4.lif 
file .Qesign ~ell Macro Library Zoom ~earch 

f.dlt ~lear 

Edit GLB AO. 
GLB Cell Al. 
Status:ls Empty. 
Edit GLB Al. 

Edit GLB AO Line: 8 
fdit Cell!i[erify .Qone 

SIGlYPE ao REG OUT; 
SIGlYPE 01 REG OUT; 

.,,6,..,3 .,62.,......,,.,,,,.,,,..,.,.,,..,.,,.,.,,.,..,,,55~ 1.s1G1YPE 02 REG OUT; 
~~~~~~"'-"-'-''SIGlYPE 03 REG OUT; 

D7 EQUATIONS 
.____._ _ _.___..___._-t11Q O.CLK=CLK; 

ao = (00 & !_RST] SS (Cl & CE & !_R 
01 = (01 & !_RST] SS (00 & Cl & CE 

SIGlYPE CO OUT; 
QUATIONS 

CO =00 & 01 & 02 & 03 & Cl & CE; 
END; 
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20. Repeat Steps 1 O through 13 for the 03 output pin 
located at 1/0 36 using these equations: 

XPIN IO XQ3 LOCK 72; 
OBll (XQ3, Q3); 

21. Repeat Steps 10 through 13 for the Carry Out output 
pin located at 1/0 35 using these equations: 

XPIN IO XCO LOCK 71; 
OBll (XCO, CO); 
Now, the Inputs, Outputs and Clocks are connected, 
and the equations for the counter have been entered 
and verified. The design is complete and ready to be 
Globally Verified. Before proceeding, save the work. 

22. From the Menu Bar, select the File Option, and 
choose Save As. The pDS Software prompts you for 
the name of the file that you are saving. Type in the 
name COUNTER. The suffix .LIF (Lattice Internal 
File) is automatically appended. 

The next step in the development process is to Globally 
Verify the integrity of the design. Global Verify first 
performs a Cell Verify on GLBs or 1/0 Cells which have 
not already been verified, or which have changed since 
the last Cell Verification. Then it checks interconnections 
between the GLBs looking for problems such as outputs 
which are not used or inputs that are not connected. 

Beginner•s Guide 

23. From the Design Menu option in the Menu Bar, select 
Verify. This starts the Global verify process. If Verify 
finds any problems, it lists them in the Message window 
at the bottom of the screen. The verifier also creates a 
netlist file that the Router uses to route the design. Once 
the design passes verify, it is ready to be routed. 

24. From the Design Menu option in the Menu Bar, select 
Route. This module places 1/0 pins that have not 
previously had their positions defined, and intercon­
nects all the logic blocks and 110 cells on the device. 
When Route is invoked, a list of all the 110 pins displays . 
If you have not previously defined which signals are 
connected to which pins, this is the time to do it. 

25. From within the Route Message Window, click on the 
Execute button. This starts the router. Routing is an 
entirely automatic process, and requires no interven­
tion. As before, if any problems occur, they are listed 
in the message window. 

26. The last step in the compilation process is to gener­
ate the Fusemap. This is accomplished by clicking on 
the Fusemap option in the design menu. Like Route, 
Fusemap is an entirely automatic process, and should 
require no intervention. The outputfrom the Fusemap 
program is the .JED file and it is used to program the 
part. 

The design is now complete. Because it was given a 
name previously (COUNTER.LIF) you can simply click 
on the Save command in the File menu to save the work. 
All that remains is to program the part and testthe design. 

This is a brief review of the syntax used in the Table: Precedence of Evaluation 
example design. For complete information see the 
Language Reference section of the Software Manual 
included with the Lattice pDS Software. 

The operators that the Lattice pDS Software uses are 
similartothose used by the Data 1/0 ABEL program. The 
operators and an example of how they are used are 
shown in the table below. The Precedence of Evalua­
tion is also shown where 1 is the highest precedence. 
See table showing Precedence of evaluation. 

4-15 

Operator 

! 

$$ 

& 
# 
$ 
!$ 

Precedence 

1 
2 

3 
4 
5 
5 

Description Example 

NOT !A 
XOR(XOR A$$B 
Gate in GLB 
AND A&B 

OR A#B 
XOR(Soft) A$B 
XNOR (Soft) A!$B 
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In addition to the equations, there are several other 
lines that need to be included in the GLB or 110 Cell 
definition. They are: 

SYM; 

SIGTYPE; 

The symbol line consists of five parts: 

- The Keyword SYM that indicates 
what type of line this is to be. 

- The Symbol Name. This is either 
GLBorlOC. 

- The Cell location. 

- The Symbol Level used by other soft-
ware packages. For our purposes, 
always use a 1. 

- The Symbol User Name. This is an 
assigned name that appears in the 
GLB or IOC in place of its location 
designation. 

Used to define signal attributes within a 
GLB. 

Programming the Device 

The Fusemap program generated a fuse (.JED) file 
which needs to be permanently programmed into an 
ispLSI or pLSI 1032 device. Programming the part is 
done using one of three methods: 

0 

0 
0 

RS-232 Link Programmer for ispLSI or pLSI 
device 
In-system program for ispLSI device 
Motherboard Programmer for ispLSI device 

For a programmer that is controlled by a serial RS-232 

OUT defines a combinatorial output. 

REG OUT defines a Registered Out­
put. 

EQUATIONS; Indicate the start of the Equation Sec­
tion for a GLB or 1/0 Cell. 

MACRO; 

END; 

Indicates the usage of a Macro Logic 
Element from the Macro Library. 

Signifies the end of an Equation Sec­
tion, a GLB or 1/0 Cell definition, a 
Declaration 

Section, or a Macro Definition. 
There can be more than one END 
statement in a GLB. 

Comments are indicated by preceding the comment 
with two forward slashes: 

II This is an example comment line. 

part can be programmed right on the board or using the 
isp Engineering Kit. 

For designers who need to integrate isp into their on 
board programming control using a microprocessor, Lat­
tice provides ispCODE (C source code) to allow for 
customization of the isp user interface. 

For programming the ispLSI 1032 part, follow these 
commands. 

1. From the Design Menu select the Program Option. 
This invokes the In-system programming module. 

link, the Lattice pDS Software can Ccall up th1 etWintdow~ 2. 
Terminal Program. By using your P to emu a ea erm1- The isp module prompts for the name of the JEDEC 

file. Click on COUNTER.JED in the file list and then 
click on OK. It may already have COUNTER.JED as 
the defaultfile name. If this is so, then just click on OK. 

nal, you can give the programmer the commands 
necessary to set it up to receive the .JED file. The 
Download command in the Windows Terminal program 
transfers the file to the programmer. Because the .JED 
file is an ASCII format, a text download is used. 

An ispDOWNLOAD Cable is offered as an option with the 
pDS Software . The cable connects to the parallel port on 
a PC and controls the programming process. If the target 
system is designed to use in-system programming, the 

3. Programming takes a few seconds. If any errors 
are encountered, they are listed in the message 
box. 

When programming is complete, the part is reset and sent 
back into the operating mode. It can then be tested by 
applying the required inputs and looking at the outputs. 
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Working with Macros 

The Lattice pDS Software comes with a library of over 200 
Macro logic elements. These logic blocks are similar to 7 400 
TTL logic. Some example Macros are listed in Table 1. 

For complete information on the Macro Library refer to 
the Macro Reference Manual that comes with the Lattice 
pDS Software. In addition to using Macros from the 
Lattice library, you can either create custom Macros from 
scratch, or modify Macros from the Lattice library to 
satisfy design requirements. 

We are going to take a Macro from the library that is identical 
to the counter just created, and cascade it with the counter. 
The Macro element that is used to do this is named CBU24. 
The schematic diagram is shown in figure 9. 

1 . Read in the previous design using the File Open 
command. The name of the file is COUNTER.LIF. 

2. Choose the Library menu option and highlight Select 
to invoke the library window. Click on the System Lib 
button and then click on OK. 

3. Invoke the Macro window by clicking on MACRO in 
the Menu Bar. 

4. Select the Macro CBU24 from the list of Macros. 

Table 1. Macro Logic Element Examples 

Macro Name 7400 Part 
Equivalent 

Beginner•s Guide 

5. Click on GLB C3 to Select it. 

6. Click on the PLACE command in the Macro Menu. 
This places the first half of the 4-bit counter Macro in 
GLB C3. The signal names that were placed in the 
GLB are the default signal names, and need to be 
changed to correspond to the signal names that used 
so that the router is able to connect them. 

7. The original text in the cell was: 

CBU24_2(CAO,[QO .. Q3],CAI,EN); 
Change that to read: 

CBU24_2(CAO,[Q4 .. Q7],CO,CE); 
The default signal names are changed to match 
those already used in as shown in Table 2. 

8. Perform a Cell Verify to ensure that no errors were 
introduced. 

9. Click on DONE to close that GLB. 

10. The Macro occupies two GLBs, so the second half of 
the Macro now needs to be placed. Click on GLB C4 
to place the second half. 

Description Number of 
GLBs Used 

AND2 7408 2 Input AND Gate 1/4 
XOR2 7486 2 Input Exclusive OR Gate 1/4 
FJK21 74112 J-K Flip-Flop with Asynchronous Clear 1/4 
CBU34 74161 4-Bit Preloadable Binary Counter with Reset 1 1/4 
BIN27 74247 BCD to 7 Segment Decoder 2 
SRR38 74166 8-Bit Parallel In-Serial Out Shift Register 2 
ADDF4 74283 4-Bit Full Adder with Look Ahead Carry 4 3/4 

Table 8- 0002 
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Beginner•s Guide 

Figure 9. Custom Binary Counter Cascaded with a Standard Macro Counter 
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Table 2. Default Signal Names 

Default Signal Is Notes 

CAO Cascade Out CAO This is a new signal. We can use the default name. 

00 .. 03 Counter Outputs 04 .. 07 We used 00 through 03 in the first counter. We need to 
assign new names so the router will not get confused. 

CAI Cascade In co CO is the name that we assigned to the Cascade Out pin 
on the counter that we designed. 

EN Enable CE We called our Enable pin CE (Count Enable). This comes 
from a pin external to the device. 

11. As before, the signal names that were placed in the 
GLB were the default names. They also need to be 
edited. The Lattice software placed the following 
code into the cell: 

CBU24_l([QO .• Q3],CAI,CLK,EN,CD); 
Change it to read: 

CBU24_l([Q4 •• Q7],CO,_CLK,CE,RST); 
As before, we have changed the default signal names 
to match those that we are already using. See Table 8-
3. 

12. As before, perform a CELL VERIFY, and click on 
DONE when through. 

The counter has now been placed, and the inputs 
connected, but the outputs are still floating. Connect 
them to the 1/0 Cells as you did with the previous 
counter. 

13. Select the Macro called 0811 from the Macro list. 

14. Click on 10 Cell #40 to select it. 

15. Click on PLACE inthe Macro window. This configures 
1/0 Cell #40 as an output buffer, but it used the default 
signal names. The text that was placed in the cell was: 

OBll (XOO,AO); 
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You should change it to read: 

OBll ( X04, Q4); 
04 is the name of the first output of the counter. XOO 
was changed to X04 so that there would not be 
duplicate 1/0 cell names when we place the next 
cells. 

15. Click on 10 Cell #41 to select it. 

16. Click on PLACE in the Macro window. Change the 
default signal names to match those used in your 
design: 

OBll (XOO,AO); 
Becomes: 

OBll (XOS,QS); 

17. Use the same technique to connect 1/0 cell #42 to 
counter output 06. 

18. Use the same technique to connect 1/0 cell #43 to 
'counter output 07. 

All the outputs are now connected, and the design is 
complete. As in the first design, you now need to do a 
Global Verify on the design, Route the nets and generate 
the Fusemap. You can see from this exercise how much 
simpler it is to complete a design when using Macros. 

The use of Macros is not limited to those in the Lattice 
Macro library. Sometimes the standard Macro is close to, 
but not exactly what you need. You can copy any of the 
standard Lattice soft Macros into a personal library, and 
modify them to meet specific needs. You can also create 
Macros using Boolean equations and save them in your 
personal library for future use. 

Table 3. Renaming Default Signal Names 

Default Signal Is 

Beginner's Guide 

Conclusion 

We have tried to give a feeling of how to design using 
pDS Software from definition to completion. In this 
Beginner's Guide, we: 

D Looked at the Lattice pDS Software and its vari-

ous elements. 

D Explained the design flow from beginning to end. 

D Looked at the syntax needed for entering a de-

sign. 

D Defined a small counter and partitioned it into 

GLBs. 

D Entered the design for that counter into the devel-

opment system. 

D Took that design through the compilation process. 

(Verify, Route, and Fusemap). 

D Programmed a part. 

D Tested the design. 

D Changed the design, and introduced the use of 

Macros. 

D Recompiled that design and tested it. 

From this you can see how simple it is to design using the 
Lattice ispLSI or pLSI families. If you have followed all of 
these steps, then you are ready to complete a design of 
your own. 

Notes 

00 .. 03 Counter Outputs 04 .. 07 We used 00 through 03 in the first counter. We need to 

assign new names so the router will not get confused. 

CAI Cascade Jn co CO is the name that we assigned to the Cascade Out pin 

on the counter that we designed. 

CLK Clock - CLK We named the signal that we brought in on pin YO_ CLK 

We called our Enable pin CE (Count Enable). This comes. 

EN Enable CE in from pin 27. 

CD Clear Direct RST Our reset signal was brought in on pin 28 and called RST. 
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ispLSI and pLSI: A Multiple 
Function Solution 

Introduction 

As high density programmable logic becomes more 
common place, determining exactly which functions to 
integrate and how to integrate these functions becomes 
more challenging. Some of the obvious considerations 
when integrating a design include speed and density. 
Beyond these concerns several other design and system 
details must be evaluated. In the following example, 
these design details will be examined and fully ad­
dressed. Design considerations can be broken into the 
following hierarchy: 1) System considerations including 
technology, reliability, and testability. 2) Design consid­
erations which include partitioning a design for a specific 
architecture, determining 1/0, and speed concerns. 3) 
Integration of the design into an ispLSI device. This 
includes utilizing the ispLSI and pLSI architecture for the 
best speed and efficient random logic consolidation. 

A Dual Processor Controller 

The design shown in figure 1 is a dual processor control­
ler which sits on a backplane bus to which other CPUs 
have access. All of the CPUs communicate via the 
backplane bus by sending interrupts back and forth. This 
design also contains an independent 32-bit general 
purpose counter along with CPU control logic for memory 
and 1/0. 

Before partitioning the design, one must consider board 
space and reliability. For example, in some systems 
where board space and reliability are at a premium, it 

Figure 1. Dual Process Controller Block Diagram 
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CPU Control 
Logic CPU 1 

CPU2 

may be desirable to surface mount all components. In 
these cases, using sockets may be necessary to mini­
mize manufacturing problems for the programmable 
devices. Of course, all Lattice ispLSI devices are in­
system programmable, so removing devices from the 
board is not necessary if reprogramming is required. 
Another benefit to directly soldering components on the 
board is that less board space is needed and less 
capacitance will load the outputs. Therefore, soldering 
devices directly on the board will not increase propaga­
tion delay. To reprogram the ispLSI device, 5 volts and a 
five wire interface are all that is needed. In addition, 
choosing an instantly reprogrammable technology al­
lows complete testability. Lattice tests for and guarantees 
100% AC, DC, functional and programming yields. 

Having considered these overall issues, we can now look 
at partitioning the design. Many designers partition by 
using GAL devices or other PLDs for speed and fast state 
machine control, and FPGAs for interface and random 
logic. The Lattice ispLSI family rewrites these basic 
design rules. With the Lattice ispLSI and pLSI families of 
high density programmable logic devices, the designer 
acquires speed and density in one device! The design 
must still be partitioned, but within the Generic Logic 
Blocks of the Lattice ispLSI device instead of between 
several discrete PLDs and/or FPGAs. 

This design can be broken up into three major blocks: the 
two interrupt and bus random logic blocks, the data block 
consisting of a 32-bit counter with a 32-to-16 multiplexer, 
and the memory and 1/0 control logic state machine. 

Backplane 
Bus 
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Figure 2. The Partitioned Design 
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Traditional FPGA devices would integrate the interrupt 
and bus logic and the 32-bit counter since the speed is 
not critical. The memory and 1/0 control logic would be 
left to the GAL devices. With the Lattice pLSI architecture's 
density and speed, many designs of this type can be fully 
integrated into one device. 

Because of the architecture of the ispLSI and pLSI 
devices, the key concern for engineers will be 1/0 pin 
conservation. Counting the I/Os in this design (62 includ­
ing the clocks), the pLSI 1032 with 64 1/0 pins and 8 
dedicated inputs will fit this application nicely. There are 
4 types of input/output configurations which can be 
implemented by the pLSI 1032 architecture. These con­
figurations are input only, output only, 3-state output, and 
bi-directional 1/0. In addition, input registers and latches 
are also available. When executing designs with the 
Lattice software, it is necessary to label all of the 1/0 
signals. 1/0 examples will follow later in this article. All 
Boolean equations are in a syntax format which can be 
used in an ASCII text file and then imported into, or used 
directly in the Lattice ispLSI and pLSI Development 
Systems (pDS) environment. Figure 2 shows the portion 
of the design implemented in the pLSI 1032 device. 

Set Decode 
to Set 

Interrupt 

Set Decode 
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Interrupt 

16-bit 
Backplane 

Bus 

Interrupt and Bus Random Logic 

Let us examine the details of each of the three sections 
to see how they would be implemented into the pLSI 
architecture. First, how to implement the decoding and 
latching of the interrupts. For this design, integration of 
the decoding logic for the set and reset terms and set/ 
reset flip-flops is necessary. 

The decoding logic is easily integrated, because the 
architecture has the familiar AND-OR structure. The less 
obvious detail which must be dealt with is exactly how to 
perform the Set/Reset flip-flop function. There are two 
choices to be explored. The first would be to use the 
product term reset in the Generic Logic Block, or GLB, as 
reset and use the product term clock as the preset with 
the "D" input tied to a "1." (see figure 3). 

This approach works fine to implement a small number of 
unique S-R flip-flops. If many unique S-R flip-flops are 
needed (this example requires 12), a different implemen­
tation must be used. This is because each Generic Logic 
Block has all four registers sharing a common clock. 
Therefore using just one register would require the other 
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Figure 3. D-Type flip-flop Configured as an S-R flip­
flop 
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three outputs to be combinatorial, or registers with the 
same clock and reset. If there are several unique S-R flip­
flops, each would have to exist in separate GLBs. This 
is not an efficient use of the architecture, unless the other 
outputs can be used as combinatorial logic. For this 
example, a more effective use of the GLBs can be 
achieved by making an S-R flip-flop from gates. The logic 
equations necessary are shown in Listing 1. 

With this implementation, two S-R registers can fit into 
one GLB. The limiting factor in deciding whether two 
registers will fit, is the number of inputs necessary to 
perform the S-R function. Each GLB has a maximum of 
18 inputs. If the number of inputs (including fast feed­
backs), for the two registers is 18 or less, then both 
equations can be used in one GLB. In this design we 
have a total of 12 S-R registers. Listing 1 shows the 
equations for two S-R registers from the design, followed 
by the same equations reconfigured using the gate S-R 
implementation in Listing 2. 

The number of unique input and feedback signals in the 
4 equations above, is 14. Since this is less than 18, the 

Listing 1. 

equations will fit in one GLB. To implement the other 
10 S-R registers, simply use the same strategy and 
partition the logic into five other GLBs. 

Data Path: 32-bit Counter and 32-to-16 Multiplexer 

The next task is deciding how to build the 32-bit counter 
and the 32-to-16 multiplexer data latch. Using the ispLSI 
architecture, counter implementations up to 16-bits are 
straightforward. Up to 16-bits, the counter can run at the 
full speed of the device. Two reasons the counter is able 
to execute at full speed are: 1) the wide input GLBs, and 
2) T-type flip-flops configurable in the architecture. The 
T-type flip- flop is created by inserting an XOR gate 
before a D-type flip-flop and feeding back the D output 
into one of the two inputs to the XOR gate. The other input 
to the XOR gate becomes the T-type flip-flop input. 
Beyond 16-bits, a counter must be cascaded into an­
other level of logic because the total number of inputs 
needed exceeds the maximum allowed by the GLB 
architecture. Recall that each GLB has an 18 input limit. 
Two of the inputs are dedicated input pins and the other 
16 are 1/0 pins or fast feedbacks. Therefore, to imple­
ment a 32-bit counter, we must use two more GLBs to 
decode the point at which the counter has reached the 
full 16-bit mark. This is accomplished by setting an output 
true when all bits (0 - 15) are a "1." Also, it is necessary 
to decode the point at which the counter has reached the 
full 24-bit mark. This is done by setting an output true 
when all bits (0-23) are a "1." Using these intermediate 
terminal count outputs, a 32-bit counter can be imple­
mented in 10 GLBs. This 32-bit counter can run at 40 
MHz as implemented here, or up to 80 MHz if the carry 
out is pipelined. The equations forth is counter are shown 
in Listing 3. 

Q = !Set # !Qbar; 
Qbar = !Reset # !Q; 

II Q is the output of the S-R flip-flop 
II Qbar is the inversion of Q 

Listing 2. 

reset! = bp_int_clr & bp_data12 # bp_reset; 
reset2 = bp_int_clr & bp_datall # bp_reset; 
setl = !m_as & !ipc_int & mdata8 & !mdatalO & !mdatall & !mdata12; 
set2 = !m_as & !ipc_int & mdata8 & mdatalO & !mdatall & !mdata12; 
These equations are now optimized to combine the logic in one GLB: 
Ql = !(!m_as & !ipc_int & mdata8 & lmdatalO & !mdatall & !mdatal2) # !Qlbar; II 
!setl 
Qlbar = !(bp_int_clr & bp_data12 # bp_reset) # !Ql ; lllresetl 
Q2 = !(lm_as & !ipc_int & mdata8 & mdatalO & !mdatall & lmdata12) #!Q2bar; II 
!set2 
Q2bar = l(bp_int_clr & bp_datall # bp_reset) # !Q2; II !reset2 
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Listing 3. 

II 0-7 decode 

TC_l = (QQ_O & QQ_l & QQ_2 & QQ_3 & QQ_4 & QQ_5 & QQ_6 & QQ_7); 

II 0-15 decode 

TC_2 = (QQ_8 & QQ_9 & QQ_lO & QQ_ll & QQ_12 & QQ_13 & QQ_14 & QQ_15 & TC_l); 

II 0-23 decode 

TC_3 = (QQ_16 & QQ_17 & QQ_18 & QQ_19 & QQ_20 & QQ_21 & QQ_22 & QQ_23 & TC_2); 

to QQ_31 II The QQ_O 

QQ_O = QQ_O 

QQ_l = QQ_l 

QQ_2 = QQ_2 

QQ_3 = QQ_3 

QQ_4 = QQ_4 

QQ_5 = QQ_5 

QQ_6 = QQ_6 

QQ_7 = QQ_7 

QQ_8 = QQ_8 

QQ_9 = QQ_9 $$ 

QQ_lO = QQ_lO 

QQ_ 11 = QQ_ 11 

QQ_12 = QQ_12 

QQ_13 = QQ_13 

QQ_14 = QQ_14 

QQ_15 = QQ_15 

signals are the 32 counter output bits. 

$$ vcc ; 
$$ QQ_O; 

$$ QQ_l & QQ_O 

$$ QQ_2 & QQ_l & QQ_O 

$$ QQ_3 & QQ_2 & QQ_l & QQ_O 

$$ QQ_4 & QQ_3 & QQ_2 & QQ_l & QQ_O 

$$ QQ_5 & QQ_4 & QQ_3 & QQ_2 & QQ_l & QQ_O 

$$ QQ_6 & QQ_5 & QQ_4 & QQ_3 & QQ_2 & QQ_l & QQ_O 

$$ TC_l 

QQ_8 & TC_l 

$$ QQ_9 & QQ_ 8 & TC_l ; 

$$ QQ_lO & QQ_9 & QQ_8 & TC_l ; 

$$ QQ_ll & QQ_lO & QQ_9 & QQ_8 & TC_l ; 

$$ QQ_12 & QQ_ll & QQ_lO & QQ_9 & QQ_8 & TC_l ; 

$$ QQ_13 & QQ_12 & QQ_ll & QQ_lO & QQ_9 & QQ_8 & 

$$ QQ_14 & QQ_13 & QQ_12 & QQ_ll & QQ_lO & QQ_9 

QQ_16 = QQ_16 $$ TC_2 ; 

QQ_17 = QQ_17 $$ QQ_16 & TC_2 ; 

QQ_l8 = QQ_18 $$ QQ_17 & QQ_16 & TC_2 ; 

QQ_19 = QQ_19 $$ QQ_18 & QQ_17 & QQ_16 & TC_2 ; 

QQ_20 = QQ 20 $$ QQ_19 & QQ 18 & QQ_17 & QQ 16 & TC_2 

QQ_21= QQ_21 $$ QQ_20 & QQ_19 & QQ_18 & QQ_17 & QQ_16 & TC_2 ; 

TC_l ; 

& QQ_8 

QQ_22= QQ_22 $$ QQ_21 & QQ_20 & QQ_19 & QQ_18 & QQ_17 & QQ_16 & TC_2; 

& TC_l 

QQ_23= QQ_23 $$ QQ_22 & QQ_21 & QQ_20 & QQ_19 & QQ_18 & QQ_17 & QQ_16 & TC_2; 

QQ_24= QQ_24 $$ TC_3 ; 

QQ_25= QQ_25 $$ QQ_24 & TC_3 ; 

QQ_26= QQ_26 $$ QQ_25 & QQ_24 & TC_3 ; 

QQ_27= QQ_27 $$ QQ_26 & QQ_25 & QQ_24 & TC_3 ; 

QQ_28= QQ_28 $$ QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 ; 

QQ_29= QQ_29 $$ QQ_28 & QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 ; 

QQ_30= QQ_30 $$ QQ_29 & QQ_28 & QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 ; 

QQ_31= QQ_31 $$ QQ_30 & QQ_29 & QQ_28 & QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 
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The 32-to-16 multiplexer latch is the next logic block to be 
constructed. In this design, the multiplexer allows the 
system bus access to 16-bits of the counter at a time. 
Either the high 16-bits (16-31) or the low 16-bits (0-15) 
are enabled to the bus. Since this multiplexer latch is a 
simple OR gate control function into a register, these 16-
bits can be placed into 4 GLBs. Recall that each GLB has 
a maximum of four outputs. The equations for one GLB 
are shown in listing 4. 

These 16-bits are also 3-stated by a control pin. In the 
ispLSI 1032 architecture, 4 unique output enable terms 
are allowed. Each output enable can control up to 16 
outputs or bi-directional pins. For example, a design 
could have 64 3-state outputs, but 4 output enable 
control signals would be used to control 16 outputs each. 
It is important to note that if an output enable signal is to 
control more than 16 outputs, the output enable signal 
will need to be defined more than once. In this design 

Listing 4. 

OMDATAOI.CLK = CLK; 
OMDATAOI ( !CNTELO & QQ_l6 # (CNTELO 

only 16 outputs are controlled by one output enable 
signal, therefore only one output enable is used. This 
signal is provided by defining the output enable in a GLB 
as shown in listing 5. 

Memory and 1/0 State Machine 

Considering the memory and 1/0 state machine and 
decoding logic, the ispLSI GLB architecture has a path 
which is optimal for decoding logic. This path is utilized 
by choosing the 4 product term bypass mode. This mode 
allows an output with 4 product terms or less to exhibit 
input pin to output pin propagation delays of no more than 
15 ns! Since decoding logic typically uses 4 product 
terms or less, this mode can be used for the critical 
propagation delay paths. The designer is cautioned to 
use the 4 Product Term Bypass Mode sparingly, be­
cause too many paths designated as critical in any one 
design may result in a failure of the Place and Route 
algorithm. The syntax necessary to invoke the 4 product 
term bypass mode is shown in listing 6. 

& QQ_O ); //select high or low word 
OMDATAlI ( ICNTELO & QQ_l7 # (CNTELO & QQ_l ); 
OMDATA2I ( ICNTELO & QQ_l8 # (CNTELO & QQ_2 ) ; 
OMDATA3I ( !CNTELO & QQ_l9 # (CNTELO & QQ_3 ); 

* 
* 
* 

OMDATA31I (ICNTELO & QQ_31 # (CNTELO & QQ_l5); 

Listing 5. 

BP INT_RDI.OE BP_INT_RDO; //PROGRAMMABLE OUTPUT ENABLE SIGNAL 

Listing 6. 

SIGTYPE IO_SELECT 1 CRIT; 
TERM 

// CRIT - TELLS THE SOFTWARE TO USE THE 4 PRODUCT 
// BYPASS MODE FOR THIS COMBINATORIAL OUTPUT 

EQUATIONS 
IO_SELECT = MA23 & MPA22 & IMPA21 & MPIO_MEM & IMPWR_RD # 

MPA23 & IMPA22 & MPA21 & MPIO_MEM & MPWR_RD; 
END; 
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Figure 4. GLB Product Term Sharing Array 
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The ispLSI 1032 is ideal for state machine applications 
because of two specific features. First, the 1/0 cell can be 
used to register or latch input signals. This attribute gives 
designers assurance that setup times to GLB registers 
will not be violated and metastability concerns are greatly 
diminished. 

The second feature which configures efficient state ma­
chines is the standard GLB configuration with 4, 4, 5 and 
7 product terms {see figure 4). The product terms can be 
tied together to perform wider product term functions 
which are always needed for complex state machines. 
For example, in a state machine which has an output 
consisting of 9 product terms, the architecture will allow 
4 of the product terms to be tied to 5 additional product 
terms, to add up to the total of 9, which is required by the 
state machine output. Any configuration of product term 
grouping is possible, including all twenty! That's right, if 
the design needs twenty product terms for one output, 
this is handled in one pass through just one GLB. 

The key to successfully implementing state machines 
into the ispLSI 1032 is to utilize the 18 maximum inputs 
with up to 4 outputs, and the ability to tie the 20 product 
terms together. Intelligent use of these features permit 
the designer to streamline state machine design. 

Conclusion 

As can be illustrated from the above discussion, the 
ispLSI architecture provides designers with unparalleled 
flexibility, density and speed. ispLSI devices are dense 
and flexible enough to incorporate random logic. The 
architecture also contains 18-wide inputs and XOR capa­
bility in each GLB which enable counters to be effortlessly 
implemented. The 4 product term bypass mode allows 
designers to successfully realize high speed applica­
tions. Finally, the ability to tie product terms together 
along with the input registers available at each 1/0 pin 
make this device ideal for state machine designs. 

The complete Lattice Design File containing the Boolean 
equations forth is design appears on the following pages. 
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Design LDF Listing 

II tedfulla.ldf generated using Lattice pDS Version 2.50 

LDF 1.00.00 DESIGNLDF; 
DESIGN cdx_design 1.00; 
PART pLSI 1032-90LJ; 
DECLARE 
END; //DECLARE 

SYM GLB A4 1 INTA52; //Here are 2 S-R flip-flops 
II OUT signifies a combinatorial output 

SIGTYPE INTA2I OUT; 
SIGTYPE INTA3I OUT; 
SIGTYPE INTA2IBAR OUT; 
SIGTYPE INTA3IBAR OUT; 
SIGTYPE BP_INT_RDI OE; II OE signifies Output Enable 
EQUATIONS 
BP_INT_RDI = BP_INT_RDO; 
INTA2I =!(!MAS & !IPC_INTI & !MDATA12I & !MDATAllI & !MDATAlOI & MDATABI) 

# ! INTA2 IBAR. PIN; 
INTA2IBAR = ! INTA2I.PIN 

# !(BP_INT_CLRI & BP_DATAlOI RSETI); 
INTA3I = ! (!MAS & ! IPC_INTI & 

# !MDATA12I & !MDATAllI & MDATAlOI & MDATA8I) 
# !INTA3IBAR.PIN; 

INTA3 IBAR = ! INTA3 I. PIN 

END; 
END; 

SYM GLB 
SIGTYPE 
SIGTYPE 
SIGTYPE 
SIGTYPE 

# !(BP_INT_CLRI & BP DATA15I RSETI); 

A5 1 INTA52; 
INTA4I OUT; 
INTA5I OUT; 
INTA4IBAR OUT; 
INTA5IBAR OUT; 

EQUATIONS 
INTA4I =!(!MAS & !IPC INTI & IMDATA12I & IMDATAllI & !MDATAlOI & MDATABI) 

# !INTA4IBAR.PIN; 
INTA4IBAR = !INTA4I.PIN 

# ! (BP_INT_CLRI & BP_DATA14I RSETI); 
INTA5I =!(!MAS & !IPC_INTI & !MDATA12I & !MDATAllI & MDATAlOI & MDATABI) 

# I INTA5 IBAR. PIN; 
INTA5IBAR = !INTA5I.PIN 

# ! (BP_INT_CLRI & BP DATA13I RSETI); 
END; 
END; 

4·27 1994 Handbook 

• 



ispLSI and pLSI: A Multiple Function Solution 

SYM GLB B3 1 INTAMP45; 
SIGTYPE INTAMP4I OUT; 
SIGTYPE INTAMPSI OUT; 
SIGTYPE INTAMP4IBAR OUT; 
SIGTYPE INTAMPSIBAR OUT; 
EQUATIONS 
INTAMP4I l(IMAS & IIPC INTI & IMDATA12I & IMDATAllI & !MDATAlOI & MDATABI) 

# IINTAMP4IBAR.PIN; 
INTAMP4IBAR = IINTAMP4I.PIN 

# !(MP_INT_CLRI & MP_DATA14I RSETI); 
INTAMPSI !(!MAS & !IPC_INTI & !MDATA12I & !MDATAllI & MDATAlOI & MDATA8I) 

# !INTAMPSIBAR.PIN; 
INTAMPSIBAR = !INTAMPSI.PIN 

END; 
END; 

# !(MP_INT_CLRI & MP_DATA13I RSETI); 

SYM GLB B4 1 INTAMP23; 
SIGTYPE INTAMP2I OUT; 
SIGTYPE INTAMP3I OUT; 
SIGTYPE INTAMP2IBAR OUT; 
SIGTYPE INTAMP3IBAR OUT; 
SIGTYPE MP_INT_RDI OE; 
EQUATIONS 
MP_INT_RDI = MP_INT_RDO; 
INTAMP2I l(IMAS & !IPC_INTI & !MDATA12I & lMDATAllI & !MDATAlOI & MDATABI) 

# !INTAMP2IBAR.PIN; 
INTAMP2IBAR = IINTAMP2I.PIN 

# l(MP_INT_CLRI & MP_DATAlOI # RSETI); 
INTAMP3I !(!MAS & !IPC_INTI & !MDATA12I & !MDATAllI & MDATAlOI & MDATABI) 

# IINTAMP3IBAR.PIN; 
INTAMP3IBAR = IINTAMP3I.PIN 

END; 
END; 

# !(MP_INT_CLRI & MP DATA15I RSETI); 

SYM GLB BS 1 INTAMPOl; 
SIGTYPE INTAMPOI OUT; 
SIGTYPE INTAMPlI OUT; 
SIGTYPE INTAMPOIBAR OUT; 
SIGTYPE INTAMPlIBAR OUT; 
EQUATIONS 
INTAMPOI !(!MAS & !IPC INTI & !MDATA12I & IMDATAllI & IMDATAlOI & !MDATABI) 

# IINTAMPOIBAR.PIN; 
INTAMPOIBAR = !INTAMPOI.PIN 

INTAMPlI 
# l(MP_INT_CLRI & MP_DATA12I RSETI); 

!(!MAS & IIPC_INTI & IMDATA12I & !MDATAllI & MDATAlOI & MDATABI) 
# IINTAMPlIBAR.PIN; 

INTAMPlIBAR = lINTAMPlI.PIN 

END; 
END; 

# !(MP_INT_CLRI & MP_DATAllI RSETI); 
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SYM GLB B6 1 INTAOl; 
SIGTYPE INTAOI OUT; 
SIGTYPE INTAlI OUT; 
SIGTYPE INTAOIBAR OUT; 
SIGTYPE INTAlIBAR OUT; 
EQUATIONS 
INTAOI =!(!MAS & IIPC INTI & !MDATA12I & IMDATAllI & IMDATAlOI & MDATA8I) 

# IINTAOIBAR.PIN; 
INTAOIBAR = !INTAOI.PIN 

#I (BP_INT_CLRI & BP_DATA12I RSETI); 
INTAlI =!(!MAS & !IPC_INTI & !MDATA12I & !MDATAllI & MDATAlOI & MDATASI) 

# ! INTAlIBAR. PIN; 
INTAlIBAR = !INTAlI.PIN 

# ! (BP_INT_CLRI & BP DATAllI RSETI); 
END; 
END; 

SYM GLB A7 1 BPIPLS; 
SIGTYPE BP_IPLOI OUT; 
SIGTYPE BP_IPLlI OUT; 
SIGTYPE BP IPL2I OUT; 
EQUATIONS 
BP_IPLOI !INTAOI & !INTA2I & IINTA4I & BP NMII & !DSP INTI - -

# !INTAOI & !INTA2I & !INTA4I & OS TICKI & BP NMII - -
#BP NMII & !TMS_INTI; 

BP_IPLlI !INTAlI & !INTA3I & !INTA5I & OS TICKI & BP NMII & TMS INTI 
# BP NMII & TMS INTI & !DSP INTI 
# INTA4I & BP NMII & TMS INTI 
# INTA2I & BP NMII & TMS INTI 
# INTAOI & BP NMII & TMS_INTI; 

BP IPL2I 
END; 
END; 

!INTAOI & !INTA2I & !INTA4I & BP NMII & TMS INTI & DSP_INTI; 

SYM GLB BO 1 MPIPLS; 
SIGTYPE MP_IPLOI OUT; 
SIGTYPE MP IPLlI OUT; 
SIGTYPE MP IPL2I 
EQUATIONS 

OUT; 

MP IPLOI = !INTAMPOI & !INTAMP2I & !INTAMP4I & MP NMII & !ROLL TICKI - -
# !INTAMPOI & !INTAMP2I & !INTAMP4I & OS_TICKI & MP_NMII 
# MP_NMII & EXP_TICKI; 

MP IPLlI = !INTAMPlI & !INTAMP3I & !INTAMP5I & OS_TICKI & MP NMII & !EXP TICKI 
# MP NMII & !EXP TICKI & ROLL_TICKI 
# INTAMP4I & MP NMII & !EXP_TICKI 
# INTAMP2I & MP NMII & !EXP_TICKI 
# INTAMPOI & MP NMII & !EXP_TICKI; 

MP_IPL2I !INTAMPOI & !INTAMP2I & !INTAMP4I & MP NMII & !EXP_TICKI&!ROLL_TICKI; 
END; 
END; 
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II 16 BIT COUNTERS 
SYM GLB DO 1 Q03; II BITS Q0-Q3 
SIGTYPE [QQ_O •• QQ_3] REG OUT; II SIGNIFIES A REGISTERED OUTPUT 
EQUATIONS 
QQ_O.CLK = CLK; 
QQ_ 1. CLK = CLK; 
QQ_2.CLK = CLK; 
QQ_3.CLK = CLK; 
QQ_O = QQ_O $$ VCC 
QQ_l QQ_l $$ QQ_O; 
QQ_2 QQ_2 $$ QQ_l & QQ_O 
QQ_3 QQ_3 $$ QQ_2 & QQ_l & QQ_O 
END; 
END; 

SYM GLB Dl 1 Q47; II BITS Q4-Q7 
SIGTYPE [QQ_4 .• QQ_7] REG OUT; 
EQUATIONS 
QQ_4.CLK = CLK; 
QQ_S.CLK = CLK; 
QQ_6.CLK = CLK; 
QQ_7.CLK = CLK; 
QQ_4 = QQ_4 $$ QQ_3 & QQ_2 & QQ_l & QQ_O ; 
QQ_S = QQ_S $$ QQ_4 & QQ_3 & QQ_2 & QQ_l & QQ_O 
QQ_6 = QQ_6 $$ QQ_S & QQ_4 & QQ_3 & QQ_2 & QQ_l & QQ_O 
QQ_7 = QQ_7 $$ QQ_6 & QQ_S & QQ_4 & QQ_3 & QQ_2 & QQ_l & QQ_O 
END; 
END; 

SYM GLB D2 1 QBll; II BITS QB-Qll 
SIGTYPE [QQ_8 •• QQ_ll] REG OUT; 
EQUATIONS 
QQ_8.CLK = CLK; 
QQ_9.CLK = CLK; 
QQ_lO.CLK = CLK; 
QQ_ll.CLK = CLK; 
QQ_B = QQ_B $$ TC_l ; 
QQ_9 = QQ_9 $$ QQ_B & TC_l ; 
QQ_lO QQ_lO $$ QQ_9 & QQ_B & TC_l ; 
QQ_ll QQ_ll $$ QQ_lO & QQ_9 & QQ_B & TC 1 
END; 
END; 

SYM GLB D3 1 Q1215; II BITS Q12-Q15 
SIGTYPE [QQ_12 •• QQ_l5] REG OUT; 
EQUATIONS 
QQ_12.CLK CLK; 
QQ_13.CLK CLK; 
QQ_14.CLK CLK; 
QQ_15.CLK = CLK; 
QQ_12 = QQ_12 $$ QQ_ll & QQ_lO & QQ_9 & QQ_B & TC_l ; 
QQ_13 = QQ_13 $$ QQ_12 & QQ_ll & QQ_lO & QQ_9 & QQ_B & TC_l ; 
QQ_14 = QQ_14 $$ QQ_13 & QQ_12 & QQ_ll & QQ_lO & QQ_9 & QQ_B & TC_l 
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QQ_15 QQ_15 $$ QQ_14 & QQ_13 & QQ_12 & QQ_ll & QQ_lO & QQ_9 & QQ_B & TC_l 
END; 
END; 

SYM GLB D4 1 TCl; 
SIGTYPE TC_l OUT; 
EQUATIONS 

II CARRY OUT OF BITS QO-Q7 HIGH 

TC_l = (QQ_O & QQ_l & QQ_2 & QQ_3 & QQ_4 & QQ_5 & QQ_6 & QQ_7); 
END; 
END; 

SYM GLB C3 1 TC2; 
SIGTYPE TC 2 OUT; 
EQUATIONS 

II CARRY OUT OF BITS QO-Q15 HIGH 

TC_2 = (QQ_B & QQ_9 & QQ_lO & QQ_ll & QQ_12 & QQ_13 & QQ_14 & QQ_15 & TC_l); 
END; 
END; 

SYM GLB D5 1 TC3; 
SIGTYPE TC_3 OUT; 
EQUATIONS 

II CARRY OUT OF BITS QO-Q23 HIGH 

TC_3 = (QQ_16 & QQ_17 & QQ_lB & QQ_19 & QQ_20 & QQ_21 & QQ_22 & QQ_23 & TC_2); 
END; 
END; 

SYM GLB D6 1 TERM; 
SIGTYPE TERMCNT REG OUT; 
EQUATIONS 

II CARRY OUT OF BITS QO-Q31 HIGH 

TERMCNT.PTCLK = 
QQ_29 & 

(TC 1 & TC_2 & TC_3 & QQ_24 & QQ_25 & QQ_26 & QQ_27 & QQ_28 & 
QQ_30 & QQ_31); 

TERMCNT = VCC; 
END; 
END; 

SYM GLB D7 1 Q1619; II BITS Q16-Q19 
SIGTYPE [QQ_16 .• QQ_l9] REG OUT; 
EQUATIONS 
QQ_16.CLK = CLK; 
QQ_17.CLK CLK; 
QQ_lB.CLK = CLK; 
QQ_19.CLK = CLK; 
QQ_16 QQ_16 $$ TC_2 ; 
QQ_17 QQ_17 $$ QQ_16 & TC_2 ; 
QQ_lB QQ_lB $$ QQ_17 & QQ_16 & TC_2 ; 
QQ_19 QQ_19 $$ QQ_lB & QQ_17 & QQ_16 & TC_2 
END; 
END; 
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SYM GLB CO 1 Q2023; II BITS Q20-Q23 
SIGTYPE [QQ_20,,QQ_23] REG OUT; 
EQUATIONS 
QQ_20.CLK = CLK; 
QQ_21.CLK = CLK; 
QQ_22.CLK = CLK; 
QQ_23.CLK = CLK; 
QQ_20 QQ_20 $$ QQ_l9 & QQ_lB & QQ_l7 & QQ_l6 & TC_2 ; 
QQ_21 QQ_21 $$ QQ_20 & QQ_l9 & QQ_lB & QQ_l7 & QQ_l6 & TC_2 ; 
QQ_22 QQ_22 $$ QQ_21 & QQ_20 & QQ_l9 & QQ_lB & QQ_l7 & QQ_l6 & TC_2; 
QQ_23 QQ_23 $$ QQ_22 & QQ_21 & QQ_20 & QQ_l9 & QQ_lB & QQ_l7 & QQ_l6 & TC_2; 
END; 
END; 

SYM GLB Cl 1 Q2427; II BITS Q24-Q27 
SIGTYPE [QQ_24 •• QQ_27] REG OUT; 
EQUATIONS 
QQ_24.CLK = CLK; 
QQ_25.CLK = CLK; 
QQ_26.CLK = CLK; 
QQ_27.CLK = CLK; 
QQ_24 = QQ_24 $$ TC_3 ; 
QQ_25 = QQ_25 $$ QQ_24 & TC_3 ; 
QQ_26 = QQ_26 $$ QQ_25 & QQ_24 & TC_3 ; 
QQ_27 QQ_27 $$ QQ_26 & QQ_25 & QQ_24 & TC_3 
END; 
END; 
SYM GLB C2 1 Q2831; II BITS Q28-Q31 
SIGTYPE [QQ_28 •• QQ_31] REG OUT; 
EQUATIONS 
QQ_28.CLK = CLK; 
QQ_29.CLK = CLK; 
QQ_30.CLK = CLK; 
QQ_31.CLK = CLK; 
QQ_28 QQ_28 $$ QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 ; 
QQ_29 = QQ_29 $$ QQ_28 & QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 ; 
QQ_30 = QQ_30 $$ QQ_29 & QQ_28 & QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 ; 
QQ_31 QQ_31 $$ QQ_30 & QQ_29 & QQ_28 & QQ_27 & QQ_26 & QQ_25 & QQ_24 & TC_3 
END; 
END; 

II MULTIPLEXER GLBs 
II SELECT HI ORDER BITS (16-31) IF ICNTELO 
II OR SELECT LOW ORDER BITS (0-15) IF CNTELO 
SYM GLB Bl 1 MDATOl; 
SIGTYPE OMDATAOI REG OUT; 
SIGTYPE OMDATAlI REG OUT; 
EQUATIONS 
XCNT_SELl.OE = XCNT_SELI; 
OMDATAOI.CLK = CNT_LTCH; 
OMDATAOI (!CNTELO & QQ_l6 
OMDATAlI = (ICNTELO & QQ_l7 
END; 
END; 

# (CNTELO & QQ_O ) ; 
# (CNTELO & QQ_l ) ; 
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SYM GLB C4 1 MDATA23; 
SIGTYPE OMDATA2I REG OUT; 
SIGTYPE OMDATA3I REG OUT; 
EQUATIONS 
OMDATA2I.CLK = CNT_LTCH; 
OMDATA2I (!CNTELO & QQ_18 
OMDATA3I = (!CNTELO & QQ_19 
END; 
END; 

SYM GLB B2 1 MDAT45; 
SIGTYPE OMDATA4I REG OUT; 
SIGTYPE OMDATA5I REG OUT; 
EQUATIONS 
OMDATA4I.CLK = CNT_LTCH; 
OMDATA4I (!CNTELO & QQ_20 
OMDATASI = (!CNTELO & QQ_21 
END; 
END; 

SYM GLB CS 1 MDAT67; 
SIGTYPE OMDATA6I REG OUT; 
SIGTYPE 
EQUATIONS 

OMDATA7I REG OUT; 

OMDATA6I.CLK = CNT_LTCH; 
OMDATA6I (!CNTELO & QQ_22 
OMDATA7I = (!CNTELO & QQ 23 
END; 
END; 

SYM GLB C6 1 MDAT811; 
SIGTYPE OMDATA8I REG OUT; 
SIGTYPE OMDATA9I REG OUT; 
SIGTYPE OMDATAlOI REG OUT; 
SIGTYPE OMDATAllI REG OUT; 
EQUATIONS 
XCNT_SEL.OE = XCNT_SELI; 
OMDATASI.CLK = CNT_LTCH; 

# (CNTELO & QQ_2 ); 
# (CNTELO & QQ_3 ) ; 

# (CNTELO & QQ_4 ) ; 
# (CNTELO & QQ_5 ); 

# (CNTELO & QQ_6 ); 
# (CNTELO & QQ_7 ); 

OMDATASI = (ICNTELO & QQ_24 ) # (CNTELO & QQ_S ); 
OMDATA9I = (ICNTELO & QQ_25 ) # (CNTELO & QQ_9 ); 
OMDATAlOI (!CNTELO & QQ_26 ) # (CNTELO & QQ_lO ); 
OMDATAllI = (!CNTELO & QQ_27 ) # (CNTELO & QQ_ll ); 
END; 
END; 
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SYM GLB C7 1 MDAT1215; 
SIGTYPE OMDATA12I REG OUT; 
SIGTYPE OMDATA13I REG OUT; 
SIGTYPE OMDATA14I REG OUT; 
SIGTYPE OMDATA15I REG OUT; 
EQUATIONS 
OMDATA12I.CLK = CNT_LTCH; 
OMDATA12I (!CNTELO & QQ_28) # (CNTELO & QQ_l2); 
OMDATA13I (!CNTELO & QQ_29) # (CNTELO & QQ_l3); 
OMDATA14I (ICNTELO & QQ_30) # (CNTELO & QQ_l4); 
OMDATA.15I (ICNTELO & QQ_31) # (CNTELO & QQ_15); 
END; 
END; 

SYM GLB Al 1 IOMEMOE; 
SIGTYPE IO_SELECTO OUT CRIT; 
SIGTYPE IO_SELECTl OUT CRIT; 
SIGTYPE MEMOE OUT; 
EQUATIONS 

II Signifies ORP Bypass 

IO_SELECTO = MPA23 & MPA22 & !MPA21 & MPIO_MEM & !MPWR_RD; 
IO_SELECTl = MPA23 & !MPA22 & MPA21 & MPIO_MEM & MPWR_RD; 
MEMOE !MPIO_MEM & !MPWR RD & MPRDY; 
END; 
END; 

SYM GLB AO 1 MEMCSWR; 
SIGTYPE MEMCS REG OUT; 
SIGTYPE MEMWR REG OUT; 
EQUATIONS 
MEMCS.CLK = CLK; 
MEMCS = MPA23 & !MPA22 & IMPA21 & !MPIO_MEM # MEMCS & MPRDY; 
SELECT 

II CHIP 

MEMWR = MPA23 & !MPA22 & IMPA21 & IMPIO_MEM & MPWR RD# MEMWR & MPRDY; II MEMORY 
WRITE 

END; 
END; 

OR READ 

II IO CELL ASSIGNMENTS 
SYM IOC I051 1 MPIPLS; 
XPIN IO .DSP_INT; 
IBll (DSP_INTI,DSP_INT); 
END; 

11 IBll INPUT BUFFER 

SYM IOC IOO 1 MPDAT15; 
XPIN IO MP_DATA15 
Bill (MP_DATA15I,MP_DATA15,INTAMP5I,MP_INT_RDI); 
END; 

SYM IOC IOl 1 MPDAT14; 
XPIN IO MP_DATA14; 
Bill (MP_DATA14I,MP_DATA14,INTAMP4I,MP_INT_RDI); 
END; 
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SYM IOC I02 1 MPDAT13; 
XPIN IO MP_DATA13; 
Bill (MP_DATA13I,MP_DATA13,INTAMP3I,MP_INT_RDI); 
END; 

SYM IOC I03 1 MPDAT12; 
XPIN IO MP_DATA12; 
Bill (MP_DATA12I,MP_DATA12,INTAMP2I,MP_INT_RDI); 
END; 

SYM IOC I04 1 MPDATll; 
XPIN IO MP_DATAll; 
Bill (MP_DATAllI,MP_DATAll,INTAMPlI,MP_INT_RDI); 
END; 

SYM IOC I05 1 MPDATlO; 
XPIN IO MP_DATAlO; 
Bill (MP_DATAlOI,MP_DATAlO,INTAMPOI,MP_INT_RDI); 
END; 

SYM IOC IOB 1 MPINTCL; 
XPIN IO MP_INT_CLR LOCK 40; 
IBll (MP_INT_CLRI,MP_INT_CLR); 
END; 

II LOCK FIXED PIN 

SYM IOC I09 1 RSET; 
XPIN IO RSET; 
IBll (RSETI,RSET); 
END; 

SYM IOC IOlO 1 MDATA15; 
XPIN IO MDATA15 LOCK 53 ; 
OTll (MDATA15,0MDATA15I,!XCNT_SEL); 
END; 

SYM IOC IOll 1 MDATA14; 
XPIN IO MDATA14 LOCK 54 ; 
OTll (MDATA14,0MDATA14I,!XCNT_SEL); 
END; 

SYM IOC I012 1 MDATA13; 
XPIN IO MDATA13 LOCK 55 ; 
OTll (MDATA13,0MDATA13I,!XCNT_SEL); 
END; 

SYM IOC I013 1 MDATA12; 
XPIN IO MDATA12 LOCK 56 ; 
Bill (MDATA12I,MDATA12,0MDATA12I,!XCNT_SEL); 
END; 
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SYM roe I014 1 MDATAll; 
XPIN IO MDATAll LOCK 57 ; 
Bill (MDATAllI,MDATAll,OMDATAllI,IXCNT_SEL); 
END; 

SYM roe I015 1 MDATAlO; 
XPIN IO MDATAlO LOCK 58 ; 
Bill (MDATA10I,MDATA10,0MDATA10I,IXCNT_SEL); 
END; 

SYM roe I016 1 MDATA9; 
XPIN IO MDATA9 LOCK 59 ; 
OTll (MDATA9,0MDATA9I,IXCNT_SEL); 
END; 

SYM roe I017 1 MDATAB; 
XPIN IO MDATA8 LOCK 60 ; 
Bill (MDATA8I,MDATA8,0MDATA8I,IXCNT_SEL); 
END; 

SYM roe I026 1 MAS; 
XPIN IO MASX LOCK 27 
IBll (MAS,MASX); 
END; 

SYM roe I027 1 IPC_INT; 
XPIN IO IPC_INT LOCK 26 
IBll (IPC_INTI,IPC_INT); 
END; 

SYM roe I028 1 MPIPL2; 
XPIN IO MP_IPL2; 
OBll (MP_IPL2,MP_IPL2I); 
END; 

SYM roe I029 1 MPIPLl; 
XPIN IO MP_IPLl; 
OBll (MP_IPLl,MP_IPLlI); 
END; 

SYM roe I030 1 MPIPLO; 
XPIN IO MP_IPLO; 
OBll (MP_IPLO,MP_IPLOI); 
END; 

SYM roe I031 1 MPINTRD; 
XPIN IO MP_INT_RD; 
IBll (MP_INT_RDO,MP_INT_RD); 
END; 
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SYM IOC I032 1 BPINTRD; 
XPIN IO BP INT_RD; 
IBll (BP_INT_RDO,BP_INT_RD); 
END; 

SYM IOC I033 1 BPDAT15; 
XPIN IO BP_DATA15; 
Bill (BP_DATA15I,BP_DATA15,INTA5I,BP_INT_RDI); 
END; 

SYM IOC I034 1 BPDAT14; 
XPIN IO BP_DATA14; 
Bill (BP_DATA14I,BP_DATA14,INTA4I,BP_INT_RDI); 
END; 

SYM IOC I035 1 BPDAT13; 
XPIN IO BP_DATA13; 
Bill (BP_DATA13I,BP_DATA13,INTA3I,BP_INT_RDI); 
END; 

SYM IOC I036 1 BPDAT12; 
XPIN IO BP_DATA12; 
Bill (BP_DATA12I,BP_DATA12,INTA2I,BP_INT_RDI); 
END; 

SYM IOC I037 1 BPDATll; 
XPIN IO BP_DATAll; 
Bill (BP_DATAllI,BP_DATAll,INTAlI,BP_INT_RDI); 
END; 

SYM IOC I038 1 BPDATlO; 
XPIN IO BP_DATAlO; 
Bill (BP_DATA10I,BP_DATA10,INTAOI,BP_INT_RDI); 
END; 

SYM IOC I041 1 BPINTCL; 
XPIN IO BP INT_CLR; 
IBll (BP_INT_CLRI,BP_INT_CLR); 
END; 

SYM IOC I042 1 BPIPL2; 
XPIN IO BP_IPL2; 
OBll (BP_IPL2,BP_IPL2I); 
END; 

SYM IOC I043 1 BPIPLl; 
XPIN IO BP_IPLl; 
OBll (BP_IPLl,BP_IPLlI); 
END; 

SYM IOC I044 1 BPIPLO; 
XPIN IO BP_IPLO; 
OBll (BP_IPLO,BP_IPLOI); 
END; 
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SYM IOC I045 1 MP_NMI; 
XPIN IO MP_NMI; 
IBll (MP_NMII,MP_NMI); 
END; 

SYM IOC I046 1 OS_TICK; 
XPIN IO OS_TICK; 
IBll (OS_TICKI,OS_TICK); 
END; 

SYM IOC I047 1 EXPTICK; 
XPIN IO EXP_TICK; 
IBll (EXP_TICKI,EXP_TICK); 
END; 

SYM IOC I048 1 ROLTICK; 
XPIN IO ROLL_TICK; 
IBll (ROLL_TICKI,ROLL_TICK); 
END; 

SYM IOC I049 1 BP_NMI; 
XPIN IO BP_NMI; 
IBll (BP_NMII,BP_NMI); 
END; 

SYM IOC I050 1 TMS INT; 
XPIN IO TMS_INT; 
IBll (TMS_INTI,TMS_INT); 
END; 

SYM IOC I018 1 MPCLR13; 
XPIN IO MDATA7; 
OTll (MDATA7,0MDATA7I,!XCNT_SEL1); 
END; 

SYM IOC I019 1 MPCLR13; 
XPIN IO MDATA6; 
OTll (MDATA6,0MDATA6I,!XCNT_SEL1); 
END; 

SYM IOC I020 1 MPCLR13; 
XPIN IO MDATA5 LOCK 6; 
OTll (MDATA5,0MDATA5I,!XCNT_SEL1); 
END; 

SYM IOC I021 1 MPCLR13; 
XPIN IO MDATA4 LOCK 5; 
OTll (MDATA4,0MDATA4I,!XCNT_SEL1); 
END; 

SYM IOC I022 1 MPCLR13; 
XPIN IO MDATA3; 
OTll (MDATA3,0MDATA3I,!XCNT_SEL1); 
END; 
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SYM IOC I023 1 MPCLR13; 
XPIN IO MDATA2; 
OTll (MDATA2,0MDATA2I,!XCNT_SEL1); 

END; 

SYM IOC I024 1 MPCLR13; 
XPIN IO MDATAl LOCK 4 ; 
OTll (MDATAl,OMDATAlI,lXCNT_SELl); 
END; 

SYM IOC I025 1 MPCLR13; 
XPIN IO MDATAO LOCK 3 ; 
OTll (MDATAO,OMDATAOI,!XCNT_SELl); 
END; 

SYM IOC I063 1 LTCH; 
XPIN IO XCNTSEL; 
IBll (XCNT_SELI, XCNTSEL); 
END; 

SYM IOC Yl 1 LTCH; 
XPIN CLK LTCH; 
IBll (CNT_LTCH,LTCH); 
END; 

SYM IOC YO 1 CLOCK; 
XPIN CLK XCLK; 
IBll (CLK, XCLK); 
END; 

SYM IOC I062 1 CNTELO; 
XPIN IO OCNTELO; 
IBll (CNTELO, OCNTELO); 
END; 

SYM IOC I061 1 TERMCNT; 
XPIN IO XTERMCNT; 
OBll (XTERMCNT, TERMCNT); 
END; 

SYM IOC I059 1 MPA23; 
XPIN IO MPA230; 
IBll (MPA23, MPA230); 
END; 

SYM IOC I058 1 MPA21; 
XPIN IO MPA220; 
IBll (MPA22, MPA220); 
END; 

SYM IOC I057 1 MPA21; 
XPIN IO MPA210; 
IBll (MPA21, MPA210); 
END; 
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SYM IOC I056 1 MPIO_MEM; 
XPIN IO MPIO_MEMO; 
IBll (MPIO_MEM, MPIO_MEMO); 
END; 

SYM IOC I055 1 MPWR_RD; 
XPIN IO MPWR_RDO; 
IDll (MPWR_RD, MPWR_RDO,CLK); 
END; 

SYM IOC I054 1 MPRDY; 
XPIN IO MP_RDYO; 
IBll (MPRDY, MP_RDYO); 
END; 

SYM IOC I053 1 IO_SELECT; 
XPIN IO IO_SELECTOO; 
OBll (IO_SELECTOO, IO_SELECTO); 
END; 

SYM IOC I052 1 IO_SELECTl; 
XPIN IO IO_SELECTlO; 
OBll (IO_SELECTlO, IO_SELECTl); 
END; 

SYM IOC I07 1 MEMCS; 
XPIN IO MEMCSO 
OBll (MEMCSO, MEMCS); 
END; 

SYM IOC I060 1 MEMOE; 
XPIN IO MEMOEO; 
OBll (MEMOEO, MEMOE); 
END; 
END; //LDF DESIGNLDF 
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Programming Multiple 
ISP Devices: Daisy Chain 

Configuration 
Introduction 

There are several ways to program multiple In-System 
Programmable (ISP™) devices - each ISP device can 
be programmed individually through an independent ISP 
interface, or multiple devices can share a parallel multi­
plexed or serial daisy chained interface. Each method 
has its unique advantages. The serial daisy chain method 
is the most efficient and easiest to implement as it uses 
a simple hardware interface and programming proce­
dures. 

This applications note explains how to program multiple 
ISP devices in a daisy chained configuration. It will also 
explain the general ISP programming interface and the 
unique programming features of each ISP device. 

ISP Overview 

Programming Interface 

Programming of Lattice's ispLSI™, ispGAL ®, and 
ispGDS™ devices is based on a similar programming 

Figure 1. Multiple ISP Device Programming Interface 

SDO } SDI 5-wire ISP 
MODE Programming 

SCLK Interface 
ispEN 

interface. The basic components of the ISP program­
ming interface are the three-state programming control 
state machine and mode control (MODE), serial data in 
(SDI), serial data out (SDO) and serial clock (SCLK) 
inputs. The state machine built into each ISP device is 
controlled by three inputs - MODE, SDI and SCLK. In 
addition, ispLSI devices use a fourth input, ispEN, to 
multiplex the functions of the SDI, SDO, SCLK and 
MODE pins between the ISP programming functions and 
user defined logic signals during normal PLD operation. 
The state machine controls the sequence of program­
ming operations such as identifying the ISP device, 
shifting in appropriate data and commands, program­
ming pulse widths, and erasing the device. All 
programming information is shifted in and out of the 
device serially through the SDI and SDO pins. Each ISP 
device comes with a unique eightbit hardwired device ID 
to make the electronic identification of the devices by the 
programming software easy. The following sections 
explain the ISP programming interface using multiple 
daisy chained ISP devices. Figure 1 illustrates a typical 
block diagram of multiple ISP devices cascaded to­
gether. 

ispLSI ispGAL ispGDS 
ispLSI 

4-41 1994 Handbook 

I 



Programming Multiple ISP Devices 

Figure 2. ISP State Machine 
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The state transitions of the three-state state machine 
shown in figure 2 are controlled by the MODE and SDI 
signals. Within each state the MODE signal directs 
whether SDI is a control input (MODE= H) or SDI is a data 
input (MODE= L). When MODE is high, the SDl's logic 
level is reflected on SDO. This feature allows devices to 
transparently pass the SDI control input to devices fur­
ther down the daisy chain. 

When MODE is low, SDI and SDO become data inputs 
and outputs, respectively, to the various shift registers. 
In a cascaded daisy chain, the shift register's output 

HH 

HL 

(SDO) is connected to the next device's shift register 
input (SDI). Programming data is shifted into the SDI 
input of the first device in the daisy chain. All shift 
registers in the daisy chained devices are connected 
together so data can be shifted to the last device's SDO 
where the ISP programming controller can verify the 
data. 

Similarities and Differences Between Devices 

For the purpose of cascading the ISP devices, the de­
vices can be categorized into two device groups - ispLSI 
and ispGDS/ispGAL22V10. Table 1 highlights the simi­
larities and differences between the various device types. 

Table 1. Similar and Different Features of the ISP Devices 

Similar Features ispLSI ispGDS/ispGAL 

ID shift register length 8-Bits 8-Bits 

Command shift register length 5-Bits 5-Bits 

Programming signals MODE, SDI, SDO, & SCLK MODE, SDI, SDO, & SCLK 

State Machine 3-state with same MODE & SDI 3-state with same MODE & SDI 
controls for state transitions controls for state transitions 

FLOWTHRU instruction Yes Yes 

Different Features 

ispEN signal Yes No 

Address & data shift register Different shift instructions for Both address and data is shifted 
address & data with one shift command 

Fuse map sizes Varies for different high density Varies for different low density devices 
devices 
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Using the same state machine controls makes it possible 
to program multiple ISP devices by operating all the 
cascaded devices' state machines in parallel. This 
synchronizes all the devices during programming within 
the daisy chain to a known state. However, having all ISP 
devices in the same state does not mean that all devices 
are executing the same instruction. The ability of each 
device in the daisy chain to execute a different instruction 
makes selectively programming one or multiple ISP 
devices at a time possible. 

For the ispLSI devices, the active ispEN signal enables 
the programming mode of the device. By driving ispEN 
low, all I/Os of the devices are put into a high-impedance 
state for programming and the programming functions for 
SDI, SDO, Mode and SCLK are enabled. A difference in 
the ispGDS/ispGAL devices is that the I/Os are put into 
a high-impedance state when the programming state 
machine goes into Command Shift State. The ispGDS/ 
ispGAL devices do not use a dedicated ispEN pin for this 
function. 

Most shift operations such as ID shift and command shift 
operations are the same between the ispLSI and the 
ispGDS/ispGAL devices. One shift operation that is 
different between the two types of devices is the way the 
address and data is shifted into the devices. The ispLSI 
devices have separate address and data shift com­
mands. The row(s) are selected by the address that is 
shifted-in prior to each programming command for that 
row. The data can then be shifted with the data shift 
instruction. In the case of ispGDS/ispGAL devices, both 
address and data are shifted-in with a single shift com-

Figure 3. ISP Daisy Chain Example 
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mand (the address is part of the data shift register). 
When executing commands that only require a row 
address, a dummy data stream or no data can be shifted 
in place of the data stream. 

With an understanding of the ISP programming interface 
and the differences between different types of devices, a 
specific daisy chained design example will be used to 
illustrate the details of programming different ISP 
devices. 

Daisy Chained Interface 

Advantages 

One of the main advantages of daisy chained ISP pro­
gramming is the simplified hardware interface. The 
number of ISP devices that can be connected to the same 
5-wire interface is limited only by the signal drive capabil­
ity of the ISP programming control logic. One serial daisy 
chain is capable of providing all the necessary program­
ming interface which minimizes the hardware overhead 
for in-system programming. Software controls generat­
ed from PCs, microcontrollers and test equipments can 
program and reconfigure all ISP devices during various 
board level design, test, and manufacturing stages. 

ISP Daisy Chain Programming 

A specific illustration of multiple device programming in a 
daisy chained environment is shown in figure 3. The 
example shows the ISP programming aspects such as 
identifying the devices in the daisy chain, shifting com­
mands, bypassing devices, and executing commands. 

ispGDS 
22 

ispLSI 
2032 
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Table 2. ISP Programming Information 

Description ispLSI 1032 ispGAL22V10 ispGDS22 ispLSI 2032 

Device ID (8-bits) 0000 0011 0000 1000 0111 0010 0001 0101 

Command Register 5 bits 5 bits 5 bits 5 bits 

Address Shift Register 108 bits n/a n/a 102 bits 

Data/Addr. & Data Shift 160 bits (6+ 132) bits (6+18) bits 40 bits 
Register 

Table 3. State Machine Instruction Set 

Instruction Operation Description 

00000 NOP No operation performed 

00001 ADDSHFT Address Register Shift: Shifts address into the address shift register from 
SDIN. 

.00010 DAT ASH FT Data Register Shift: Shifts data into or out of the data serial shift register. 

00011 UBE User Bulk Erase: Erase the entire device. 

00100 GRPBE Global Routing Pool Bulk Erase: Bulk erases the GAP array only. 

00101 GLBBE Generic Logic Block Bulk Erase: Bulk erases all the GLB array only. 

00110 ARCH BE Architecture Bulk Erase: Bulk erases the architecture array and 1/0 
configuration only. 

00111 PRGMH Program High Order Bits: The data in the data shift register is pro-
grammed into the addressed row's high order bits. 

01000 PRGML Program Low Order Bits: The data in the data shift register is pro-
grammed into the addressed row's low order bits. 

01001 PRGMSC Program Security Cell: Programs the security cell of the device. 

01010 VER/LOH Verify/Load High Order Bits: Load the data from the selected row's high 
order bits into the data shift register for verification. 

01011 VER/LDL Verify/Load Low Order Bits: Load the data from the selected row's low 
order bits into the data shift register for verification. 

01100 GLBPRLD Generic Logic Block Preload: Preloads the registers in the GLB with the 
data from SDIN. All registers in the GLB form a serial shift register. Refer 
to device layout section for details. 

01101 IOPRLD 1/0 Preload: Preloads the 1/0 registers with the data from SDIN. All 
registers in the 1/0 cell form a serial shift register (the same order as GLB 
registers). 

01110 FLOWTHRU Flow Through: Bypasses all the internal shift registers and SDOUT be-
comes the same as SDIN. 

10010 VE/LOH Verify Erase/Load High Order Bits: Load the data from the selected row's 
high order bits into the data shift register for erased verification. 

10011 VE/LDL Verify Erase/Load Low Order Bits: Load the data from the selected row's 
low order bits into the data shift register for erased verification. 

All the programming state machines run in parallel which 
keeps the devices synchronized. The programming 
information for the ISP devices is summarized in table 2. 
The ISP programming commands are seen in table 3. 
Similar details for any ISP device can be found in the 
ispLSI Architecture Description and in the data sheet of 
the ISP devices. 

The first procedure of the programming sequence iden­
tifies the devices in the ISP chain. The following procedure 
describes one way of reading the device IDs. 

Load ID Procedure 
set ispEN = L 
set MODE, SDI = H, L 
clock SCLK (Load ID) 
Continue to Shift_ID Procedure 
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At this point the 8-bit ID registers are loaded with the following procedure shifts SHIFT_DATA command into 
hardwired device IDs. Figure 4 shows the configuration the 22V10 and FLOWTHRU command into the rest of the 
of the ID shift registers. ISP devices. 

Afterthe device ID has been loaded, the following shift ID 
procedure sequentially shifts the IDs through to the last 
device's SDO. While the ID is being shifted out, keep SDI 
at a known logic level so that the end of the ID stream can 
be identified. This is especially important when an 
unknown number of devices are in the ISP daisy chain. 
By detecting a sequence of 8 zeros or 8 ones, the ISP 
controller can detect the end of the ID string. 

Shift_ID Procedure 

Continued from Load_ID Procedure 

set MODE, SDI = L, H 

clock SCLK (Shift ID) 

if last 8 SDO = H then goto End 

else goto Shift ID 

End 

At this point all devices within the ISP daisy chain and 
their order in the chain can be properly identified. The 
next step is to match the proper JEDEC fuse map file to 
the appropriate device. There are several programming 
options at this point. To simplify the programming rou­
tines, this example programs the devices one at a time. 

The following procedures illustrate how to shift com­
mands, shift data and execute the commands to program 
the ispGAL22V10. Since the 22V10 is the second device 
of the ISP daisy chain, these procedures also illustrate 
how to put the other devices into flow through mode. The 

Figure 4. ID Shift Register Configuration 
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Figure 5. ISP Command Stream 
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Figure 6. ISP Data Stream 
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Load Command Procedure 

.•• Continued from end of Shift_ID Proce-
du re 

set MODE, SDI = H, H 

clock SCLK (Shift State) 

set MODE L 

Loop 

set SDI = command stream (figure 5) 

clock SCLK (Shift Command) 

End Loop 

End Procedure 

Execute_Command Procedure 

set MODE, SDI = H, H 

clock SCLK (Execute State) 

set MODE = L 

Loop 138 times 

set SDI = data stream (figure 6) 

clock SCLK (Execute 

SHIFT_DATA Command) 

End Loop 

set MODE, SDI = H, H 

clock SCLK (Shift State) 

End Procedure 
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Atthe end of the Execute_Command Procedure the state 
machine is returned to the Shift State. This readies the 
devices for another command shift procedure. For the· 
ispGAL22V10, the DATA_SHIFT instruction of 138 bits 
includes the row address and the data associated with 
the row. Similar procedures can be used to complete the 
programming of the ispGAL22V10. 

H/W & S/W Considerations 

In order to keep the software procedures concise, Lattice 
recommends programming multiple devices of the same 
device type together. This creates modular shift routines 
and programming routines as opposed to having to make 
each routine a special case. 

All ispLSI devices are shipped bulk erased which means 
all outputs are in high impedance state for the blank 
devices. The Lattice manufacturing outgoing pattern for 

the ispGDS/ispGAL22V10 devices also puts all I/Os in 
high impedance state. The ispEN signal controls whether 
the ispLSI device is in programming or normal mode. 
MODE and SDI controls this function on the ispGDS/ 
ispGAL devices. It is recommended to put pull-down 
resistors on the MODE & SDI signals on the ispGDS/ 
ispGAL devices in order to keep the default state of the 
device in normal operation mode. 

Summary 

This applications note provides an example of one way to 
program multiple ISP devices. Daisy chaining provides 
an easy-to-implement, cost-effective means to program 
multiple ISP devices. The flexibility of ISP allows the user 
to customize the programming to fit a specific application. 
For additional information on ISP, contact your local 
Lattice sales representatives or call Lattice Literature 
and Applications support at 1-800-327-8425. 
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Compiling Multiple PLDs 
into ispLSI and pLSI Devices 

Introduction 

As high density programmable devices become more 
complex, they can combine larger designs previously imple­
mented with low density PLDs and SSl/MSI glue logic. The 
use of ispLSI and pLSI devices from Lattice Semiconductor 
can reduce manufacturing costs by: shrinking board size, 
simplifying test procedures, speeding development, and 
reducing the type and number of parts required to be kept 
in inventory. Designers familiar with PLDs and SSl/MSI 
devices can convert to Lattice ispLSI and pLSI devices with 
little effort. This application note addresses a procedure to 
convert a circuit designed with PLDs, MSI, and SSI devices 
into the Lattice Semiconductor pLSI and ispLSI device 
format. 

The basic steps required to convert the design are: 

D Define the I/Os 

D Convert the Low Density PLO Equations 

D Combine the PLO Source Files 

D Add any MSI, SSI Functions 

D Partition the Logic into Generic Logic Blocks (GLBs) 

D Import the File into the ispLSI and pLSI Design 
Environment 

D Place and Route Using the pLSI and ispLSI Devel­
opment System (pDS®) 

Define the I/Os 

The first task in the conversion process is to define the 1/0 
pins of the Lattice ispLSI and pLSI device based on the 
circuit developed using lower density devices. One must 
determine if the design is 1/0 limited or gate limited. If the 
design is 1/0 limited the circuit must be partitioned into a 
higher pin count device, or two (or more) lower pin count 
devices. A gate limited design will mandate the design be 
partitioned into a higher density ispLSI and pLSI device. 
This implies that there will be unused 1/0 pins. This can 
allow additional functionality to be designed into the Lattice 
ispLSI and pLSI device, providing the device does not 
become gate limited again. 

A straightforward approach to estimate gate count is to 
use SSI, MSI and PLO equivalents. By adding up the total 
number of these circuit blocks required for a circuit, one 
can determine if the design will fit into a Lattice ispLSI and 
pLSI device. For example, the 1000 and 2000 family GLB 
(Generic Logic Block) of the Lattice ispLSI and pLSI 
family has 18 inputs and 4 outputs. Numerous functions 
implemented in 16V8, 20V8 and 22V10 devices can be 
fit easily into one GLB. However, in cases where five or 
more outputs are desired, partitioning into 2 GLBs will be 
necessary. Expanding this analogy, approximately 1 
MSI device and 2 SSI devices can fit into a single GLB. 

When converting a circuit implemented with MSI, SSI 
and PLDs, partitioning can be achieved by recognizing 
which nodes are best suited for interconnection within 
the ispLSI and pLSI device. The partitioning of logic will 
vary for different MSI, SSI or PLO devices. By determin­
ing which of these devices will be implemented completely 
within the Lattice ispLSI and pLSI device, it will become 
readily apparent which of the nodes should be kept within 
the ispLSI and pLSI device or allocated as an 1/0 pin. 
Signals which connect to a device not implemented 
within the Lattice ispLSI and pLSI device will be required 
to be an 1/0. As a shot gun approach, one can simply 
draw a box around the circuit, count the 1/0 and gate 
requirement, and select the ispLSI and pLSI device 
meeting the requisite gate and 1/0 count. This task 
requires good engineering judgement and knowledge of 
device architecture to effectively utilize the ispLSI and 
pLSI device. architecture. 

Nodes which have a broad fanout should be considered 
for 1/0 unless all destination devices are implemented 
within the Lattice ispLSI and pLSI device. Naturally, 
nodes going off-board must be implemented as 1/0 pins 
on the Lattice ispLSI and pLSI device. 

Clocking is another factor to consider when partitioning 
a circuit. In the 1000 family, if the circuit requires more 
than the four global clocks available in the ispLSI and 
pLSI device, the circuit should be partitioned so that 
circuits with common clocks are in the same ispLSI and 
pLSI device. The global clock inputs are available on pins 
YO, Y1, Y2 and Y3. YO, Y1 and Y2 can be directly 
connected to any GLB, while Y2 and Y3 can be directly 
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connected to any 1/0 cell. For the 3000 family, there are 
5 clocks available. The pins YO, Y1, and Y2 are GLB 
clocks and Y3 and Y4 are available for 1/0 cells. Alterna­
tively, each GLB can generate its own ProductTerm (PT) 
clock from the output of a single product term within the 
GLB. This will allow up to 32 separate PT clocks within 
the ispLSJ and pLSI 1032 device. 

PLO File Conversion 

Once the circuit to be placed into the Lattice ispLSI and 
pLSI device has been defined, the process of converting 
the design into the ispLSI and pLSI format begins. Typi­
cally a design will be implemented with PLOs and a small 
number of MSI and SSI devices. Most of the PLO devices 
will have an associated source equation file. This file can 
be used as the basis for the design equations to be 
imported into the Lattice pOS Software. 

Adding MSI and SSI Functions 

· By creating Boolean equations which emulate an SSI or 
MSI function, and subsequently importing that file into the 
Lattice pOS Software, SSI and MSI functions can be 

Figure 1. Implementation of 3-State Function 
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easily integrated into the design. Another method of 
implementing these functions is to look through the 
Lattice pOS Software Macro Library (or the ispLSJ and 
pLSI Software Manual), to find the closest equivalent 
circuit to the function desired. This Macro can then be 
edited if necessary, to provide the exact function re­
quired. The net result of either of these processes is to 
derive functionally correct equations which best utilize 
the ispLSI and pLSI device architecture. 

Conversion of 3-Stated to Multiplexed Signals 

Internal 3-state functions implemented in an ASIC or high 
density PLO can create problems such as undefined 
outputs. A better implementation of internal 3-state func­
tions is to implement them with a ONE of N multiplexer 
function. The inputs to the multiplexer are the signals that 
are 3-stated together. The select lines of the multiplexer 
are individual 3-state enable signals. This technique is 
commonly used in the design of ASICs. Figure 1 illus­
trates an implementation of a 3-state function. The block 
diagram in figure 2 shows a multiplexer emulating a 3-
state function. The 3-state equations of listing 1 would be 
rewritten for a ONE of N multiplexer as shown in listing 2. 
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Listing 1. Original 3-State Equations 

BSIG_A = SIG_A 
BSIG A.OE = OE A - -
BSIG B = SIG B - -
BSIG_B.OE = OE_B 

BSIG C = SIG C - -
BSIG C.OE = OE C - -

Listing 2. Multiplexer Equations 

MUX_OUT = !OE_B & !OE_A & SIG_A # 
!OE_B & OE_A & SIG_B # 
OE_B & !OE_A & SIG_C; 

Compiling Multiple PLDs 
into ispLSI and pLSI Devices 

II SELECT SIG A 
II SELECT SIG B 
II SELECT SIG C 

*Note that OE_C is not needed in this implementation. 

The AND function of the output enables (OE_A, OE_B) 
does not increase the number of product terms required 
to implement the various bus signal functions. This will 
always be true for product term oriented architectures 
such as the Lattice ispLSI and pLSI devices. There are 
ten ONE of N multiplexer Macros currently available in 
the ispLSI and pLSI Macro Library. By using these 
Macros, the conversion may be readily accomplished by 
simply changing the default signal names within the 
Lattice Macro. 

Inversion Placement 

Proper placement of active low internal signals may 
provide a significant savings in the utilization of the 
Lattice ispLSI and pLSI device resources as described in 
the following example. 

Listing 3. Original Function Required 

Consider the equations shown in Listing 3. The original 
was entered in a "Product of Sums" form which becomes 
the "Sum of Products" form shown in listing 4. Traditional 
PLDs require that logic be in Sum of Products form to be 
implemented in the architecture. This equation requires 
nine product terms to implement. 

A better way to implement this function is to Demorganize 
(invert) the equation, as shown in listing 5. By doing this 
the implementation becomes two product terms versus 
nine for the non-inverted form. There are inversions 
available in each 1/0 cell and each input to the GLBs to 
re-invert the signal to get the original function. 

OUT= (!INl # !IN2 # !IN3) & (!IN4 #!INS# !IN6); 

Listing 4. Showing Sum of Products Form of Listing 14 

out = ( !in3 & !in6 
# in2 & lin6 
# inl & in6 
# in3 & ins 
# in2 & ins 
# inl & ins 
# in3 & in4 
# in2 & in4 
# inl & in4); 

Listing 5. Showing Reduction of Product Terms with ! Use 

out= !((!inl # !in2 # !in3) & (!in4 # !ins# !in60)); 
out = ( inl & in2 & in3) # ( in4 & inS & in6); 
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Therefore, when manipulating equations to fit the Lattice 
ispLSI and pLSI architecture, consider placing inversions 
for active low outputs at the signal destination or at the 1/0 
cell. The Lattice ispLSI and pLSI family can accommodate 
any active low signal with this technique as all inputs to the 
logic block have both true and complementary inputs. In 
other words a signal "A" routed to a GLB, will have both "A" 
and "!A" available within the GLB AND array. The outputs of 
the Lattice ispLSI and pLSI devices can also be selected as 
active high or active low. 

Defining a Preset/Reset Mechanism 

A frequently neglected .but necessary requirement is a 
reset mechanism. All state machine designs should have 
a known power up state. If a reset line is routed to all state 
machine registers for reset, significant routing resources 
will be unnecessarily used. The reset mechanism should 
take advantage of the hardware reset resources avail­
able in the Lattice ispLSI and pLSI device. Individual 
reset signals should be removed from the design equa­
tions and the hardware reset should be used. The Lattice 
ispLSI and pLSI devices have two reset mechanisms: a 
global reset for all registers and an asynchronous reset 
for each GLB or 1/0 cell. 

Many high density device architectures provide only 
reset and no preset mechanism. Consider complement­
ing the output requiring preset and using the hardware 
reset. If that is not possible, make the preset synchro­
nous by adding a preset term into the design equations. 

Circuit Partitioning 

The *.DOC files produced by third party compilers are in 
an industry standard format. These files contain the 
reduced equations which are derived from the source file, 
JEDEC maps, high level state machine language, truth 
table, or standard Boolean equations. The individual PLO 
and SSl/MSI *.DOC files should be combined into a 
single source file for partitioning into the ispLSI and pLSI 
a device. 

By grouping the equations into groups of no more than 
four outputs, the PLO equations can be partitioned to fit 
into the GLBs of the ispLSI and pLSI device since there 
are 4 outputs per GLB. Headers and trailers must be 
placed around the four equations to indicate to the Lattice 
pDS Software, into which GLB the equations should be 
loaded. The syntax is shown in table 1 . 

In the 1000 and 2000 family, each GLB has 18 inputs, 20 
product terms and 4 registered or combinatorial outputs. 
Additionally, there is product term combining among the 
four outputs and an optional Exclusive OR gate which is 
fed by a single product term and an AND/OR term. The 
software will automatically place a given set of four 
equations into a GLB. The 3000 family has 24 inputs in 
each twin GLB (see figure 3), a programmable AND array 
and two OR/exclusive-OR arrays, and either outputs 
which can be configured to be either combinatorial or 
registered. 

If the PLO equations do not fit into a GLB, the Lattice pDS 
Software will give a message as to why. If there are too 
many inputs, the equation can be moved into another 
GLB and a new equation brought into the current GLB 
which does not exceed the limit of 18 inputs. 

As previously stated, every GLB is allowed one clock. 
This clock may come from either one of the four global 
clocks or a clock generated from a product term (. PTCLK). 
Ensure all registered outputs in a GLB have a single 
clock. 

If an equation contains product terms which cannot be 
allocated into one GLB, consider exchanging a complex 
equation for one of less complexity in another GLB. If this 
trading of equations is not possible, simply move the 
equation into an empty GLB. In general, try to keep 
equations with common inputs in the same GLB. If a 
function requires a high number of product terms (prod­
uct term combining), try to make use of the product term 
groups. 

Moving a registered equation from one GLB to the next 
will not degrade performance as the interconnect delays 
between all GLBs are constant. Combinatorial equations 
may have an extra GLB and unit interconnect delay 
added to the propagation delay - if the implementation 
requires more than 18 inputs and 20 product terms. If an 
equation will not partition into a single GLB, the equation 
must be split into two equations and then cascaded. For 
Registered equations consider pipelining the intermedi­
ate equation(s) to keep the performance at the same 
level. 
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Compiling Multiple PLDs 
into ispLSI and pLSI Devices 

The previous steps are all that are required to place PLO 
type designs into the GLBs of the ispLSI and pLSI 
devices. Note that no syntax changes of the AND/OR 
portions of the equations were required. 

For more details refer to the pDS Development Manual 
under Macro Library. 

Import and Verify the Design 

Definition of 1/0 Cells 

The final step in the conversion process is to define the 
1/0 cells. The basic 1/0 cell definition for an input and 
output pin is shown in listing 6 and 7 respectively. 
Because the device is routed according to signal names, 
all 1/0 cells will automatically be connected to the proper 
internal nodes. Other variations are shown in Table 2. 

Now that the design has been partitioned into the GLBs, 
the device ASCII design source file needs to be imported 
into the Lattice pDS Software so that it can be verified, 
placed, and routed. By using the FILE and IMPORT LDF 
commands, the ASCII file containing the design will be 
imported into the Lattice pDS Software. The pDS Soft­
ware will check the syntax of each GLB and 1/0 cell and 
translate the ASCII file to a binary LIF (Lattice Internal 
Format) file. 

Table 1. Header and Trailer Syntax 

Header PLO Equations Trailer 

SYM GLB AO <GLB NAME> 1; Signal 1 .elk= ...... ; END; 

SIGTYPE Signal1 REG OUT; Signal1= ...... ; END; 

SIGTYPE Signal2 OUT; Signal2= ...... ; 

SIGTYPE Signal3 CRITICAL OUT; Signal3= ...... ; 

SIGTYPE Signal4 REG OUT; 

EQUATIONS 

Listing 6. Basic Input 1/0 Cell Definition 

SYM roe IOXX 1; 
XPIN IO/I X_SIG; 
IBll (SIG, X_SIG); 
END; 

Listing 7. Basic Output 1/0 Cell Definition 

SYM roe IOXX 1; 
XPIN IO/I X_SIG; 
OBll (SIG, X_SIG); 
END; 

Table 2. 1/0 Cell Signal Type Description 

1/0 Cell Type 

IBXX 

IDXX 

ILXX 

OBXX 

OTXX 

BIXX 

BllDXX 

BllLXX 

Signal4= ...... ; 

// IOXX = IO CELL NUMBER 
// IO IO PIN; I =DEDICATED INPUT CELL 
/I IB =INPUT SIGNAL 

// IOXX = IO CELL NUMBER 
// IO IO PIN; I= DEDICATED INPUT CELL 
!/ OB= OUTPUT SIGNAL 

Signal Description 

Input Pin 

Input Register 

Input D Latch 

Output Pin 

Tri-state Output Pin 

Bidirectional Pin 

Bidirectional Pin with Registered Input 

Bidirectional Pin with Latched Input 
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Compiling Multiple PLDs 
into ispLSI and pLSI Devices 

All syntax errors must be eliminated to successfully 
import a file. After a successful import into the Lattice pDS 
Software, any SSI or MSI devices can be placed into 
GLBs. This can be done by using the available Macros 
from the Lattice Macro Library, by using the designer's 
custom macros, or using Boolean equations. After this is 
accomplished, select DESIGN VERIFY command which 
performs a global design rule and connectivity check. 
After a successful global design verify, the design is 
ready for automatic Place and Route. 

Place and Route is invoked with the DESIGN ROUTE 
commands. After place and route the fusemap can be 
generated and the design downloaded to a programmer. 
In the case of an ispLSI device, it can be programmed via 
the ispDOWNLOAD Cable connected to a parallel port of 
an IBM compatible PC. 

As can be seen from the information contained in this 
technical note, converting a design from low density 

PLDs to the Lattice ispLSI and pLSI family of high density 
PLDs is quick and easy as long as a few guidelines are 
followed: 

1) Decide if the Design is 1/0 or Gate Limited. 

2) Choose the Appropriate ispLSI or pLSI Device. 

3) Use as Much of the Original Boolean Equations 
From the Low Density Source File as is Practical. 

4) Convert 3-state Outputs to a ONE of N Multi­
plexer Scheme. 

5) For Reset Functions, use the Global Reset for 
the Entire Device or the Asynchronous Reset for 
Specific GLBs. 

6) Use no more than 18 Inputs or 4 Outputs per GLB 
When Partitioning the Logic for 1000 or 2000 
family devices and no more than 24 inputs and 8 
outputs for 3000 family devices. 

7) Use no more than one clock per GLB. 
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Compiling Multiple PLDs 
into ispLSI and pLSI Devices 

Figure 3. GLB Diagram Showing Product Term Sharing Combinations 
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Adders/Subtractors 
in pLSI 

Carry-Lookahead Adders 

Arithmetic logic blocks, like adders and subtracters, are 
increasingly becoming performance bottlenecks in high 
performance logic designs. Carry-lookahead adders are 
generally faster than cascaded adders because they 
reduce the time needed to generate carry propagation. 
The carry-lookahead can be achieved if the input carry bit 
for stage i is generated directly from the inputs to the 
preceding stages i - 1, i - 2, ... , i - k rather than allowing 
the carry bit to be cascaded and rippled from stage to 
stage. An n - bit carry-lookahead adder can be con­
structed using k stages, each of which is a full adder 
stage modified by replacing its carry output line co by two 
signals called carry generate and propagate. These 
signals gi and pi are defined by the following logic: 

gi = ai ·bi 

pi = ai +bi 

That is, a stage will generate a carry if both of its addend 
bits are 1 , and it propagates carries if at least one of its 
addend bits is 1 . 

Therefore, the carry signal that will be generated for the 
stage i + 1 is defined as follows from the generate and 
propagate signals: 

ci + 1 = gi + pi . ci 

If we recursively expand the ci term for each stage, and 
multiply out to obtain a 2-level sum-of-products expression 
we can eliminate the carry ripple that is associated with 
cascaded adders. If this technique is followed, we can 
obtain equations for the carry out bits for each stage as 
shown below. 

cl = gO + pO-cO 

c2 = gl + pl· cl 

=gl +pl (gO + pO. cO) 

= gl + pl · gO + pl . pO. cO 

c3 = g2 + p2 . c2 

= g2 + p2 (gl + pl. gO + pl. pO. cO) 

= g2 + p2. gl + p2. pl. gO + p2. pl. pO. cO 

c4 = g3 + p3 . c3 

= g3 + p3 (g2 + p2. gl + p2. pl. gO + p2. pl. pO. cO 

= g3 + p3 · g2 + p3 · p2 · gl + p3 · p2 ·pl· gO + p3 . p2 
. pl. pO. cO 

Each one of the above equations corresponds to a circuit 
with only three levels of delay associated with it- one for 
the generate and propagate signals, and two for the sum­
of-products shown. A carry-lookahead adder uses 
three-level equations such as these in each adder stage. 

Building blocks of an n - bit carry­
lookahead adder 

F3ADD (F3ADD_ 1, F3ADD_2): A three bitfull adder with 
propagate and generate outputs 

PG1 .. PG4: Carry/Borrow bit generator utilizing propa­
gate and generate inputs 

F3ADD 

The F3ADD macro shown below performs the 3 bit 
addition of aO . . a2 + bO . . b2, it also performs the 
propagate and generate functions. The propagate func­
tion determines if any of the addend bits are 1 by Oring 
each set of addend bits. If any of the addend bits are a 
one a propagate will be generated. 

As shown below we see that when either of a digits 
addend bits are one a propagate will be generated: 

a2 a1 ao 0 1 

b2 b1 bO 0 0 1 

propagate pi a2+b2 a1+b1 aO+bO 0 1 

Note: only a single propagate will be produced although 
more than one may be generated as shown.The gener­
ate function determines if a carry to the next digit should 
be generated from the previous digit addition, as shown 
earlier in the binary addition basics section. Basically, it 
performs the same function as the carry out of a regular 
adder, but does not incorporate the carry in signal in its 
logic. Shown below is an example of how a generate bit 
would be produced. 
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Here we show a three bit addition with a generate being 
produced: 

1 1 1 o - Carry bits from digit addition 

a2 a1 ao 0 1 -07 

gi b2 b1 bO 0 0 0 1 - 01 

1 0 O O - Gives 08 

I 
Generate gi 

gi will be generated because = ao. a1 . a2. bO; here 
we can see that if ao . bO = 1 a carry will be generated for 
those two addend bits. Therefore, if that carry propagates 
tothenextsetofbits a1. b1 andeitherofthemareaone 
a carry will be generated to the next set. This function is 
recursive and if you look at the logic for the generate 
function below you will see that all combinations have 
been accounted for. 

PG1 .. PG4 

gi = (aO ·al· a2 · bO 

#al. a2. bl 

# aO · a2 · bO · bl 

# a2 · b2 

# aO · al · bO · b2 

#al· bl· b2 

# aO· bO· bl· b2) 

The propagate-generate macros are carry bit generators 
utilizing propagate and generate inputs. Shown below is 
the logic and the truth table for the PG1 macro. 

Figure 1. Logic and Truth Table for the PG1 Macro 

PGl1 Pl1 Gl1 PG01 

x x 1 1 

1 1 x 1 

Gl1: LD 
p~:~ ~>----101---- o89e >----t .. ~ PG01 

The PGI 1 input of the macro is the carry in inputfrom the 
initial stage of your adder, the Pl1, and Gl1 inputs are the 
propagate and generate inputs associated with the F3ADD 
macro outputs. Looking at the logic of the PG1 macro it 
can be seen that whenever a generate bit was produced 
from the F3ADD macro a carry out signal will be gener­
ated from the PG macro, assuming the PG macro is using 
the inputs from the F3ADD macro outputs. This also 
holds true if both of the propagate inputs into the PG 1 are 
one since the initial carry in would be a one and one of the 
addend bits is one, this would result in a carry out. 
Basically, the PG1 macro performs the function associ­
ated with the carry out of a regular adder. 

As shown previously in the carry-lookahead adder 
section the carry signal that will be generated for the 
stage i + 1 is defined as follows from the generate and 
propagate signals: 

ci + 1 = gi + pi. ci (where ci + 1 = PGOl, gi = GJJ, pi = 
Pll, and ci = PGJJ) 

Therefore: PGOl = GJJ + Pll · PGJJ 

If we recursively expand the PG01 term for each stage, 
i.e. PG02 .. PGOnand multiply outto obtain a 2-level sum­
of-products expression we can eliminate the carry ripple 
that is associated with cascaded adders. If this technique 
is followed, we can obtain equations for any PGOn bits for 
each stage as shown previously, but substituting the 
generate and propagate signals into the ci equations as 
we did above. 

For stage two (macro PG02): 

c2 = gl + pl . cl 

= gl + pl (gO + pO · cO) 

= gl + pl· gO +pl· pO · cO 

PG02 = Gl2 + Pl2 · GJJ + Pl2 · Pll · PGOl 

Here we show a six bit adder utilizing two F3ADD macros, 
PG1 and PG2. The key thing to remember is that the 
propagate and generate inputs to the PGn macro is 
associated with that stages adders outputs. 

i.e. for PG02, Gl1 and Pit would come from the first 
adder, and Gl2 and Pl2 would come from 
the second adder. 
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Figure 2. Six Bit Adder 
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In the case of the six bit adder the co will be the PG02 of 
the second propagate and generate macro PG2, but for 
adders that do not have a multiple of three one of the 
other regular adders should be used to account for the 

Figure 3. Fourteen Bit Adder 

Ci Le, 
A0 .. 2 ~ A0 .. 2 

B0 .. 2 ~ 80 .. 2 G0/2 

P0/2 

F3ADD· 

CCI 

A3 .. 5 

83 .. 5 

~ 
~ 

'---------i 

A6 .. 8 ·~ 

·~ 86 .. 8 

A0 .. 2 
G0/2 

80 .. 2 P0/2 

F3ADD 

Cl 

A0 .. 2 
G0/2 

P0/2 
80 .. 2 

F3ADD 

~Cl 
A9 .. 1 1~ A0 .. 2 GOl2 

89 .. 1 1~ 80 .. 2 POl2 

F3ADD 

[___Cl 
zo 

l~ A0.1 A12 .. 13 

~ 

G0/2 

P0/2 

~ 
G345 

P345 

~ 
G678 

P678 

~ 
G9,10,11 

P9,10,11 

extra bits and the ci of the adder would be driven by the 
last PGOn in that network. This is shown in the 14 bit 
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Subtractors 

F3SUB (F3SUB_ 1, F3SUB_2): 3 Bit full subtracter with 
propagate and generate outputs 

instead of having a carry in a borrow in is used. The 
subtraction technique is shown in the subtractor basics 
section, and the propagate-generate macros are identi­
cal to those used in the adder section. As shown below 
in the 14-bit subtractor, the borrow bit is generated by 
each of the PGOn macros whereas a carry bit was 
generated with the adders. This bit then propagates 
through the subtractors. 

PG1 .. PG4: Carry/Borrow bit generator utilizing propa­
gate and generate inputs 

The same convention that was followed with the adders 
is followed with the subtractors. The only difference is 

Figure 4. Fourteen Bit Subtractor 
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This application note describes a crosspoint switch that 
will allow any of four input busses to be connected to any 
or all of the four output busses. The input and output 
busses are eight bits wide. Wider busses can be accom­
modated by paralleling multiple pLSI 1032s. By pairing 
the input and output busses, the design can be changed 
to a two by two by sixteen crosspoint switch. 

The design provides for simplex data transfers but the 
addition of a second device will allow duplex operation 
with separate transmit and receive data paths. Figure 1 
shows the basic switch architecture. 

Figure 1. Switch Architecture 
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Crosspoint Switch 
Implementation Using 

the pLSI 1032 
The actual implementation of the switch consists of 32 4-
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vided by an external source on the SELO and SEL 1 pins. 
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data is to be written is provided by an external source as 
an address on the SE LAO and SELA 1 pins. The writing of 
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a group of eight multiplexers. 
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Crosspoint Switch Implementation 
Using the pLSI 1032 

A listing of the Lattice Design File (LDF) is shown on the 
following pages. 

The signals brought in on the dedicated input pins needed 
to be provided to registers outside of the megablock in 
which the dedicated inputs were located. In order for the 
dedicated input signals to appear as a global signal in the 
global routing pool (GRP), they were routed through a 
generic logic block (GLB) with the output of the GLB 
appearing in the GRP. This implementation was used 
only on control paths where speed was not critical as on 
data paths. 

The data paths all use the four product term bypass in the 
GLBs but do not bypass the output routing pool. The use 
of the four product term bypass does not affect routability 
in this design. The maximum propagation delay from the 
data input pins to the data output pins is 12ns when the 
Lattice pLSI 1032-90 is used. 

Design LDF Listing 

11 an_4. ldf generated using Lattice pDS 
2.50 
LDF 1.00.00 DESIGNLDF; 
DESIGN XBAR_4X4X8; 
REVISION 0; 
PROJECTNAME Crossbar Application Note; 

PART pLSI1032-90J; 

DECLARE 

END; //DECLARE 

SYM GLB D7 1 MDODl; 
SIGTYPE [DO,Dl] OUT CRIT; 
EQUATIONS 

END 

DO = AIO & 

# BIO & 
# CIO & 
# DIO & 

Dl = Ail & 

# BU & 

#en & 

# Dil & 

!DSELl & 
IDSELl & 
DSELl & 
DSELl & 

IDSELl & 
!DSELl & 
DSELl & 
DSELl & 

IDSELO 
DSELO 

!DSELO 
DSELO; 

!DSELO 
DSELO 

!DSELO 
DSELO; 

END; 
SYM GLB B7 1 
SIGTYPE [BO,Bl] 
EQUATIONS 

BO = AIO & 
# BIO & 
# CIO & 
# DIO & 

Bl Ail & 
# Bil & 
#en & 
# Dil & 

END 

END; 

SYM GLB C7 1 
SIGTYPE [CO,Cl] 
EQUATIONS 

CO = AIO & 
# BIO & 
# CIO & 
# DIO & 

Cl = Ail & 
#Bil & 
#en & 
# Dil & 

END 

END; 

SYM GLB A7 1 
SIGTYPE [AO,Al] 
EQUATIONS 

AO = AIO & 
# BIO & 
# CIO & 
# DIO & 

Al = Ail & 
#Bil & 
#en & 
# Dil & 

END 

END; 

4-62 

MBOBl; 
OUT CRIT; 

!BSELl & !BSELO 
IBSELl & BSELO 
BSELl & !BSELO 
BSELl & BSELO; 

IBSELl & !BSELO 
!BSELl & BSELO 
BSELl & IBSELO 
BSELl & BSELO; 

MCOCl; 
OUT CRIT; 

!CSELl & !CSELO 
!CSELl & CSELO 
CSELl & ICSELO 
CSELl & CSELO; 

!CSELl & !CSELO 
!CSELl & CSELO 
CSELl & ICSELO 
CSELl & CSELO; 

MAOAl; 
OUT CRIT; 

!ASELl & IASELO 
!ASELl & ASELO 
ASELl & IASELO 
ASELl & ASELO; 

IASELl & !ASELO 
IASELl & ASE LO 
ASELl & !ASELO 
ASELl & ASELO; 
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Using the pLSI 1032 

SYM GLB A6 1 MA2AJ; SYM GLB D6 1 MD2DJ; 
SIGTYPE [A2,AJ) OUT CRIT; SIGTYPE [D2,DJ) OUT CRIT; 
EQUATIONS EQUATIONS 

A2 AI2 & !ASELl & !ASELO D2 AI2 & !DSELl & !DSELO 
# BI2 & IASELl & ASELO # BI2 & !DSELl & DSELO 
# CI2 & ASELl & IASELO # CI2 & DSELl & !DSELO 
# DI2 & ASELl & ASELO; # DI2 & DSELl & DSELO; 

AJ = AIJ & !ASELl & !ASELO DJ AI3 & IDSELl & IDSELO 
# BIJ & IASELl & ASELO # BIJ & !DSELl & DSELO 
# CIJ & ASELl & IASELO # CIJ & DSELl & !DSELO 
# DI3 & ASELl & ASELO; # DI3 & DSELl & DSELO; 

END END 

I END; END; 

SYM GLB B6 1 MB2BJ; SYM GLB BO 1 GSEL; 
SIGTYPE [B2,BJ) OUT CRIT; SIGTYPE [SELO,SELl] OUT; 
EQUATIONS EQUATIONS 

B2 = AI2 & !BSELl & !BSELO SELO ISELO; 
# BI2 & !BSELl & BSELO SELl ISELl; 
# CI2 & BSELl & IBSELO END 
# DI2 & BSELl & BSELO; 

BJ = AI3 & !BSELl & !BSELO END; 
# BI3 & !BSELl & BSELO 
# CIJ & BSELl & !BSELO SYM GLB AS 1 MA4AS; 
# DIJ & BSELl & BSELO; SIGTYPE [A4,AS] OUT CRIT; 

END EQUATIONS 
A4 AI4 & !ASELl & !ASELO 

END; # BI4 & IASELl & ASELO 
# CI4 & ASELl & !ASELO 

SYM GLB C6 1 MC2CJ; # DI4 & ASELl & ASELO; 
SIGTYPE [C2,CJ) OUT CRIT; AS AIS & IASELl & !ASELO 
EQUATIONS # BIS & !ASELl & ASELO 

C2 AI2 & !CSELl & !CSELO # CIS & ASELl & IASELO 
# BI2 & !CSELl & CSELO # DIS & ASELl & ASELO; 
# CI2 & CSELl & !CSELO END 
# DI2 & CSELl & CSELO; 

CJ AIJ & !CSELl & ICSELO END; 
# BIJ & !CSELl & CSELO 
# CIJ & CSELl & !CSELO SYM GLB A4 1 MA6A7; 

# DIJ & CSELl & CSELO; SIGTYPE [A6,A7) OUT CRIT; 

END EQUATIONS 
A6 = AI6 & !ASELl & !ASELO 

END; # BI6 & IASELl & ASELO 
# CI6 & ASELl & !ASELO 
# DI6 & ASELl & ASELO; 

A7 = AI7 & !ASELl & !ASELO 
# BI7 & IASELl & ASELO 
# CI7 & ASELl & !ASELO 
# DI7 & ASELl & ASELO; 

END 

END; 
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SYM GLB BS 1 MB4BS; SYM GLB C4 1 MC6C7; 
SIGTYPE [B4,BS] OUT CRIT; SIGTYPE [C6,C7] OUT CRIT; 
EQUATIONS EQUATIONS 

B4 = AI4 & IBSELl & IBSELO C6 = AI6& ICSELl & ICSELO 
# BI4 & IBSELl & BSELO # BI6 & ICSELl & CSELO 
# CI4 & BSELl & IBSELO # CI6 & CSELl & ICSELO 
# DI4 & BSELl & BSELO; # DI6 & CSELl & CSELO; 

BS = AIS & IBSELl & IBSELO C7 = AI7 & ICSELl & ICSELO 
# BIS & IBSELl & BSELO # BI7 & ICSELl & CSELO 
# CIS & BSELl & !BSELO # CI7 & CSELl & !CSELO 
# DIS & BSELl & BSELO; # DI7 & CSELl & CSELO; 

END END 

END; END; 

SYM GLB B4 1 MB6B7; SYM GLB DS 1 MD4DS; 
SIGTYPE [B6,B7] OUT CRIT; SIGTYPE [D4,DS] OUT CRIT; 
EQUATIONS EQUATIONS 

B6 = AI6 & IBSELl & IBSELO D4 = AI4 & IDSELl & IDSELO 
# BI6 & IBSELl & BSELO # BI4 & IDSELl & DSELO 
# CI6 & BSELl & IBSELO # CI4 & DSELl & !DSELO 
# DI6 & BSELl & BSELO; # DI4 & DSELl & DSELO; 

B7 = AI7 & IBSELl & IBSELO DS = AIS & !DSELl & !DSELO 
# BI7 & IBSELl & BSELO # BIS & !DSELl & DSELO 
# CI7 & BSELl & IBSELO # CIS & DSELl & IDSELO 
# DI7 & BSELl & BSELO; # DIS & DSELl & DSELO; 

END END 

END; END; 
SYM GLB cs 1 MC4CS; 
SIGTYPE [C4,CS] OUT CRIT; SYM GLB D4 1 MD6D7; 
EQUATIONS SIGTYPE [D6,D7] OUT CRIT; 

C4 = AI4 & ICSELl & ICSELO EQUATIONS 
# BI4 & ICSELl & CSELO D6 = AI6 & IDSELl & IDSELO 
# CI4 & CSELl & ICSELO # BI6 & IDSELl & DSELO 
# DI4 & CSELl & CSELO; # CI6 & DSELl & IDSELO 

cs = AIS & ICSELl & !CSELO # DI6 & DSELl & DSELO; 
# BIS & ICSELl & CSELO D7 = AI7 & !DSELl & !DSELO 
# CIS & CSELl & ICSELO # BI7 & IDSELl & DSELO 
# DIS & CSELl & CSELO; # CI7 & DSELl & IDSELO 

END # DI7 & DSELl & DSELO; 
END 

END; 
END; 
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SYM GLB A3 1 CONA; SYM IOC I015 1 OAO; 
SIGTYPE [ASELO,ASELl] REG OUT; OBll (XAO,A 
EQUATIONS END; 

ASELO. PTCLK = !WR & ISELAO & !SELAl; 
ASE LO SELO; SYM IOC I014 1 OAl; 
ASELl = SELl; OBll (XAl,Al); 

END END; 
END; 

SYM IOC I013 1 OA2; 
SYM GLB DO 1 GWR; OBll (XA2,A2); 
SIGTYPE WR OUT; END; 
EQUATIONS WR = IWR; 

I SYM IOC I012 1 OA3; 
END OBll (XA3,A3); 
END; END; 

SYM GLB Bl 1 GSELA; SYM IOC I031 1 OBO; 
SIGTYPE [SELAO,SELAl] OUT; OBll (XBO,BO); 
EQUATIONS END; 

SE LAO ISELAO; 
SELAl ISELAl; SYM IOC I030 1 OBl; 

END OBll (XBl,Bl); 
END; END; 

SYM GLB B3 1 CONB; SYM IOC I029 1 OB2; 

SIGTYPE [BSELO,BSELl] REG OUT; OBll (XB2,B2); 

EQUATIONS END; 

BSELO.PTCLK = !WR & SELAO & !SELAl; 
SYM IOC I028 1 OB3; 

BSELO SELO; 
BSELl = SELl; 

OBll (XB3,B3); 

END 
END; 

END; SYM IOC I047 1 OCO; 
OBll (XCO,CO); 

SYM GLB C3 1 CONC; END; 
SIGTYPE [ CSELO I CSEL l ] REG OUT; 
EQUATIONS SYM IOC I046 1 OCl; 

CSELO.PTCLK = !WR & !SELAO & SELAl; OBll (XCl,Cl); 
CSELO SELO; END; 
CSELl = SELl; 

END SYM IOC I045 1 OC2; 

END; OBll (XC2,C2); 
END; 

SYM GLB D3 1 COND; 
I044 OC3; SIGTYPE [DSELO,DSELl] REG OUT; 

SYM IOC 1 

EQUATIONS 
OBll (XC3,C3); 

DSELO.PTCLK = !WR & SELAO & SELAl; 
END; 

DSELO = SELO; DSELl = SELl; SYM IOC I063 1 ODO; 
END OBll (XDO,DO); 
END; END; 
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SYM IOe 1062 1 ODl; SYM lOe 1040 1 Ie3; 
OBll (XDl,Dl); IBll (eI3,XeI3); 
END; END; 

SYM lOe 1061 1 OD2; SYM lOe lOS6 1 ID3; 
OBll (XD2,D2); IBll (DI3,XDI3); 
END; END; 

SYM lOe 1060 1 OD3; SYM lOe lOS7 1 ID2; 
OBll (XD3,D3); IBll (DI2,XDI2); 
END; END; 

SYM IOe 1011 1 IAO; SYM roe lOSB 1 IDl; 
IBll (AIO,XAIO); IBll (Dil,XDil); 
END; END; 

SYM roe 1010 1 IAl; SYM lOe lOS9 1 IDO; 
IBll (All I XAil); IBll (DIO,XDIO); 
END; END; 

SYM IOe 109 1 IA2; SYM lOe 100 1 IA7; 
IBll (AI2,XAI2); IBll ( AI7 / XAI 7 ) ; 
END; END; 

SYM lOe 108 1 IA3; SYM IOe 101 1 IA6; 
IBll ( AI3 I XAI3 ) ; IBll (AI6,XAI6); 
END; END; 

SYM IOe 1024 1 IB3; SYM roe 102 1 IAS; 
IBll (BI3,XBI3); IBll (AIS,XAIS); 
END; END; 

SYM IOe I02S 1 IB2; SYM lOe 103 1 IA4; 
IBll (BI2,XBI2); IBll (AI4,XAI4); 
END; END; 

SYM IOe 1026 1 IBl; SYM lOe 104 1 OA7; 
IBll (Bil ,XBil); OBll (XA7,A7); 
END; END; 

SYM roe 1027 1 IBO; SYM roe lOS 1 OA6; 
IBll (BIO,XBIO); OBll (XA6,A6); 
END; END; 

SYM IOe 1043 1 reO; SYM roe 106 1 OAS; 
IBll (eIO,XeIO); OBll (XAS ,AS); 
END; END; 

SYM IOe 1042 1 rel; SYM IOe 107 1 OA4; 
IBll (eil,Xeil); OBll (XA4,A4); 
END; END; 

SYM lOe 1041 1 Ie2; SYM lOe 1016 1 IB7; 
IBll (eI2,XeI2); IBll (BI7 ,XBI7); 
END; END; 
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SYM IOC IOl 7 1 IB6; 
IBll (BI6,XBI6); 
END; 

SYM IOC I018 1 IBS; 
IBll (BIS,XBIS); 
END; 

SYM IOC I019 1 IB4; 
IBll (BI4,XBI4); 
END; 

SYM IOC I020 1 OB7; 
OBll (XB7,B7); 
END; 

SYM IOC I021 1 OB6; 
OBll (XB6,B6); 
END; 

SYM IOC I022 1 OBS; 
OBll (XBS,BS); 
END; 

SYM IOC I023 1 OB4; 
OBll (XB4,B4); 
END; 

SYM IOC I032 1 IC7; 
IBll (CI7 ,XCI7); 
END; 

SYM IOC I033 1 IC6; 
IBll (CI6,XCI6); 
END; 

SYM IOC I034 1 ICS; 
IBll (CIS,XCIS); 
END; 

SYM IOC I03S 1 IC4; 
IBll (CI4,XCI4); 
END; 

SYM IOC I036 1 OC7; 
OBll (XC7,C7); 
END; 

SYM IOC I037 1 OC6; 
OBll (XC6,C6); 
END; 

SYM IOC I038 1 OCS; 
OBll (XCS,CS); 
END; 

Crosspoint Switch Implementation 
Using the pLSI 1032 

SYM IOC I039 1 OC4; 
OBll (XC4,C4); 
END; 

SYM IOC I048 1 ID7; 
IBll (DI7 ,XDI7); 
END; 

SYM IOC I049 1 ID6; 
IBll (DI6,XDI6); 
END; 

SYM IOC IOSO 1 IDS; 
IBll (DIS,XDIS); 
END; 

SYM IOC IOSl 1 ID4; 
IBll (DI4,XDI4); 
END; 

SYM IOC IOS2 1 OD7; 
OBll (XD7,D7); 
END; 

SYM roe IOS3 1 OD6; 
OBll (XD6,D6); 
END; 

SYM IOC IOS4 1 ODS; 
OBll (XDS ,DS); 
END; 

SYM IOC IOSS 1 OD4; 
OBll ( XD4 I D4); 
END; 

SYM IOC IO 1 ISO; 
IBll (ISELO,XSELO); 
END; 

SYM IOC I1 1 ISl; 
IBll (ISELl,XSELl); 
END; 

SYM IOC I2 1 ISAO; 
IBll (ISELAO,XSELAO); 
END; 

SYM IOC I3 1 lSAl; 
IBll ( ISELAl, XSELAl) ; 
END; 

SYM IOC I4 1 IWR; 
IBll (IWR,XWR); 
END; END; //LDF DESIGNLDF 
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Building Modulo N Counters 
Using ispLSI and pLSI Devices 

Building counters where the terminal countis not a power The table in figure 1 lists the bit values for a 4 bit up 
of two can be done using various logic configurations. counter with the values under the "Modulo" heading 
Many designers simply decode the output of a binary indicating which states should be included for various 
counter and reset or load the counter when the modulo or modulo counters. 
terminal count is reached. If the reset or load is asynchro­
nous, glitches may occur on the counter outputs. 
Synchronous resets and loads can eliminate the glitches 
but require more logic and may reduce the maximum 
count rate. The counter/decoder approach has an addi­
tional drawback on power up. If the counter initializes to 
a count higher than the decoded terminal count, the first 
reset or load of the counter may not occur at the proper 
time. 

By designing the modulo n counter as a state machine 
with each valid state defined, the glitch problem and the 
long count error on initialization are eliminated. This 
approach allows the four product term bypass in the 
ispLSI and pLSI devices to be used to achieve high clock 
rates in prescalers and small counters. 

The AND/OR/REGISTER architecture of the ispLSI and 
pLSI devices provides an efficient means of forcing the all 
ones state on the next clock edge after the terminal count 
is reached and forcing the counter outputs to zeroes on 
the clock edge following invalid output states. 

Figure 1. Bit Values For a 4-Bit Up Counter 

MODULO B3 B2 B1 BO 

2 0 0 0 0 
3 0 0 0 1 
4 0 0 1 0 
5 0 0 1 1 
6 0 1 0 0 
7 0 1 0 1 
8 0 1 1 0 
9 0 1 1 1 
10 1 0 0 0 
11 1 0 0 1 
12 1 0 1 0 
13 1 0 1 1 
14 1 1 0 0 
15 1 1 0 1 
16 1 1 1 0 

No count 1 1 1 1 

The following design example is for a modulo 11 counter. 
Using the table in figure 1 locate 11 under the modulo 
heading. The binary value to the right of the 11 indicates 
the terminal count that will be used to force the next state 
to be all ones. The counter states must include the 
terminal count state and all the states for lesser counts. 

Figure 2. Unreduced Equations For a Modulo 11 
Counter 

BO !BO & !B1 & !B2 & !B3 
# !BO & B1 & !B2 & !B3 
# !BO & !B1 & B2 & !B3 
# !BO & B1 & 82 & !B3 
# !BO & !B1 & !B2 & B3 
# BO & !B1 & !B2 & B3 

81 BO & !B1 & !B2 & !B3 
# !BO & B1 & !B2 & !B3 
# BO & !B1 & B2 & !B3 
# !BO & B1 & B2 & !B3 
# BO & !B1 & !B2 & B3 

82 BO & B1 & !B2 & !B3 
# !BO & !B1 & B2 & !B3 
# BO & !B1 & B2 & !B3 
# !BO & B1 & B2 & !B3 
# BO & !B1 & !B2 & B3 

83 BO & B1 & B2 & !B3 
# !BO & !B1 & !B2 & B3 
# BO & !B1 & !B2 & B3 

The unreduced equations for a modulo 11 counter are 
shown in figure 2. A set of reduced equations for a 
modulo 11 counter are shown in figure 3. When using the 
pDS Software to design the counter, eitherthe FASTMIN 
or STRONGMIN option should be used to reduce the 
product terms to four or less per output if counter speed 
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is important. If speed is not critical, additional functions 
can be added to the counter by adding product terms. 

Figure 3. Reduced Equations For a Modulo 11 
Counter 

BO =!BO & !B3 
# !B1 & !B2 & B3 

B1 = BO & !B1 & !B2 
# !BO & B1 & !B3 
# BO & !B1 & B2 & !B3 

B2 = BO & B1 & !B2 & !B3 
# !B1 & B2 & !B3 
# !BO & B1 & B2 & !B3 
# BO & !B1 & !B2 & B3 

B3 = BO & B1 & B2 & !B3 
# !B1 & !B2 & B3 

The reduced equations each have four product terms or 
less and allow the ispLSI and pLSI devices to utilize the 
4 product term bypass to implement a fast counter. 
Counters from modulo 2 through 16 can be implemented 
to take advantage of the 4 product term bypass configu­
ration. In prescaler applications, the outputs of the 
modulo n counter can be used to clock or enable addi­
tional counter stages to provide fast divider chains of any 
size. By controlling the modulo of additional stages, 
counters of any modulo can be constructed. 
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Phase Locked Loops (PLLJ 
in High Speed Designs 

Introduction 

This Application note describes the construction of a 
Phase Detector (PD) in conjunction with a Voltage Con­
trolled Oscillator (VCO) to create a frequency generator 
synthesizer. All of the logic except the VCO and "RC" 
(time constant) is implemented in the ispLSI 2032 device. 
The logic consists of two 4-bit loadable down counters 
and the phase detector. 

The ispLSI 2032 device has been specified because of its 
performance and device size. The ispLSI 2032 device is 
the fastest High Density Programmable Logic Device 
available today. 

Phase Locked Loop (PLL) circuits are used in many 
applications ranging from communications to video and 
audio equipment. They are used to ensure that a clock 
and/or phase of that clock is stable and in sync with a 
reference signal. 

General Information 

A PLL is a circuit that consists of a phase detector, a loop 
filter and a reference clock. A VCO (Voltage Controlled 
Oscillator) is usually employed to generate the desired 
output frequency. Figure 1 is a block diagram of a simple 
PLL circuit. 

Figure 1. PLL Block Diagram 

Phase 
Detect 

Loop 
Filter 

.... 
When operating correctly, a PLL will "lock on" to an input 
and track its frequency and phase relationship. The 
circuit is used to synthesize or generate a frequency and 
maintain the phase of the generated signal to the refer-

ence. It can also be used to synchronize signals (clocks) 
to a reference. 

In the digital design world, the PLL is more accurately a 
phase detector. With the ability to create digital circuits 
that emulate analog functions, more designers are mov­
ing away from analog. Many functions can now be 
implemented more easily and with more flexibility due to 
digital design techniques. 

Phase Detector 

The phase detector circuit in figure 2 is analogous to an 
analog PLL, it could be considered a Digital Phase 
Locked Loop (DPLL). The results of the PLL and the 
DPLL will be the same, even though the method of 
operation between the analog and digital versions is 
different. 

Figure 2. DPLL Block Diagram 

Phase 
Detect 

+M 

.... 
There are different types of phase detectors. A phase 
detector must be able to detect a change in the state of 
one of the two inputs and tell which input stayed constant. 
This is important in the basic function of the phase 
detector. The circuit must have the ability to detect if the 
reference (or the feedback signal of the PLL) changed. 
As a result, the phase detector will adjust its output to 
cause the VCO to raise or lower the frequency and phase 
accordingly. 
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The most basic phase detector is an Exclusive Or gate 
(XOR). The XOR has a limited usefulness in feedback 
circuitry because of its inability to indicate which input 
changed first. Figure 3 shows the output relationship with 
respect to the input signals changing. This deficiency 
means a circuit with this type of PD would not be able to 
attain loop lock in some situations. 

Figure 3. XOR lnpuVOutput Wave form 

IN1 

IN2 

OUT 

0860 

A better way to implement a phase detector is with a 
cross-coupled latch. This single ended phase detector 
can be either a rising or a falling edge detector, based on 
the polarity of the inputs. This circuit is adequate for most 
applications. Figure 4 is the falling edge phase detector, 
and is used in the example design of this application note. 

Figure 4. Single Ended, Falling Edge Phase Detector 

R 

v 

0840 

If a Rising edge version of this detector is required, the 
inputs can be inverted to produce the desired result. 

Theory of Operation 

A phase detector determines the difference in time of the 
edges of the two input signals. Those inputs are the 
reference (R) and the variable feedback (V). The differ­
ence causes the phase detector to generate pulses that 
cause the VCO to "correct" the frequency/phase. The 
loop filter is designed to allow small phase or frequency 
errors to be ignored. If the phase detector were to detect 
all changes, the PLL would go into an uncontrollable 
oscillation. 

The PLL described in this application note uses a single 
ended, falling edge phase detector. This is a single ended 
phase detector because there is only one output for each 
cross-coupled NANO latch. The phase detector will detect 
a difference in the two input signals, however it will only react 
on the falling edge. The minimum phase error detected is 
approximately 3ns, which corresponds to the delay of the 
ispLSI 2032 device. The PLL will attain and remain in "loop 
lock" if both outputs (UP and DN) remain high. For use with 
a VCO, only one output is used, and the other is pulled up 
(if the output is an open drain). Phase error is independent 
of the input waveform duty cycle or its amplitude. The 
detector will only respond to transitions. Figure 5 shows the 
input and output waveform relationships of the phase 
detector. 

Figure 5. Waveforms of the Phase Detector in figure 4 

up~~~~~~~~~~~~~~~~~~ 
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Frequency Multiplier 

Phase Locked Loops (PLLJ 
in High Speed Designs 

Ql (!NQl.PIN} 

As seen in figure 2, the DPLL has a divider which is the 
feedback to the phase detector. This DPLL only has the ON 
ability to generate a frequency of equal to or less than the 

# ( ! R} # ( ! UP} ; 

( !V & Q2 & !R & Ql} 

# ( !V & Q2 & !UP.PIN & Ql} 

# (V &ON. PIN} 
input or reference frequency. Figure 6 is a block diagram 
of the frequency multiplier. By having two counters, the 
output of the VCO can be multiplied by a number less 
than, greater than, or equal to 1. This enables the output 
of the DPLL to be a range of frequencies less than or 
greater than the input. Each counter input can be brought 

# (!ON.PIN & Q2 & !R & Ql} 

# (!ON.PIN & Q2 & !UP.PIN & Ql) 

# ( !Q2); 
to an external pin on the ispLSI 2032 device to preset the UP 
counters to a value (which can change) by another device 

(!ON.PIN & Q2 & !UP.PIN & Ql} 

# (R & UP.PIN)# (!Ql) such as a microprocessor. If the inputs could be elimi­
nated, the "load value" would be fixed. 

Figure 6. Frequency Multlpller 
DMO •• DM3 

Fout 

DNO .. DN3 

Phase Detector Equations 

The following equations describe the phase detector 
portion of the frequency multiplier. The equations have 
been demorganized to show the actual implementation in 
the ispLSI 2032. 

NQ2 = 

NQl 

Q2 

(!ON & Q2.PIN & Ql.PIN & !UP} 

# (Q2 .PIN} 

# (!V & Q2.PIN & Ql.PIN& !R} 

# ( ! V & Q2 . PIN & Ql.PIN & !UP} 

# (!ON & Q2.PIN & Ql.PIN &!R}; 

(Ql.PIN) 

# ( ! V & Q2 . PIN & Ql.PIN & !R} 

# (!V & Q2.PIN & Ql.PIN & !UP} 

# (!ON & Q2.PIN & Ql.PIN & !R} 

# (!ON & Q2.PIN & Ql.PIN &!UP}; 

( !NQ2.PIN} 

# (!V} # (!ON}; 

# ( !V & Q2& !R & Ql} 

# ( !V & Q2 & !UP.PIN & Ql} 

# (!ON.PIN & Q2 & !R & Ql); 

Figure 7 shows the pins used on the ispLSI 2032 device 
tor the frequency multiplier. It also shows the external 
components needed to design the PLL. 

Figure 7. lspLSI 2032 Pin Connections for the PLL 
Design 

vcc DMO .. DM3 
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DNO .. DN3 

Summary 

With systems and devices increasing in speed and per­
formance, taster and more accurate clocks are required. 
In many situations a clock must not only be accurate, it 
must also have error correcting capabilities. With a DPLL 
users can accomplish these requirements. By using a 
Lattice ispLSI 2032 device, the user can also achieve 
these required results with greater predictability. The 
ispLSI 2032 also provides the user with a more accurate 
circuit because ot its high system performance. 
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~Hlattice™ Video Graphics 
Controller •••••• •••••• •••••• 

Introduction with a general purpose graphics interface. The generic 
design of the controller allows customization by adding 

This Graphics Controller design consists of two pLSI additional circuitry for a Graphics Controller System 
1032 chips programmed identically to produce most of based on the design specific requirements (see system 
the basic video functions and timing signals associated block diagram, figure 1). 

Figure 1. Video Graphics Controller System Block Diagram 
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Video Graphics Controller 

This design is capable of a maximum 1024 X 1024 non­
interlaced display with programmable blanking and sync 
signal positioning. One of the pLSI 1032s is used for 
Horizontal Video Control (HVC) and the other for Vertical 
Video Control (VVC). Because the two pLSI 1032s are 
programmed identically, the LOAD* signal (Schematic 2) 
is redundant on the VVC chip and only used on the HVC 
chip. 

Referencing figure 2, the Video Graphics Controller Chip 
block diagram, the signals which the CPU sends to the 
Video Graphics Controller (VGC), are: WRITE (WR*), 
CHIP SELECT 0*/1 (CS0*/1 ), DATA BUS (DO-D7), AD­
DRESS BUS (AO-A9), and MULTIPLEXER SELECT 
(MUX). The Address Decoder receives an address from 

the CPU. Once decoded, this address enables one of the 
Video Setup Registers (VS Rs) which then receives video 
information from the CPU data bus. This setup data is 
then fed to the appropriate counter or comparator, which 
actually controls that specific display parameter. 

The CPU address bus is also interfaced to the Memory 
Multiplexer (MMUX) "A" inputs. The "B" inputs of the 
MMUX are connected to the outputs of the Video Counter 
(VCNTR). The MMUX allows either the CPU or the 
VCNTR to access video memory depending on the 
polarity of the MUX signal from the CPU. Additionally, the 
VCNTR produces the LOAD* signal to the video shift 
register, which is external to the pLSI 1032. 

Figure 2. Video Graphics Controller Chip Block Diagram 
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The VCNTR also feeds the Video End Comparator 
(VEC). The VEC compares the addresses from the 
VCNTR and the Video End Hi and Lo registers which are 
located in the VSRs. When true, the VEC outputs the 
Video End (VEND) signal and simultaneously enables 
the load for the Sync Position Counter (SPC), while 
clearing the Blanking flip-flop. 

The SPC data is loaded from the Sync Position register 
which is located in the VSRs. The SPC counts down to 
zero at which point it outputs the Sync Reset (SRST) 
signal. SRST also enables the load for the Sync Width 
Counter (SWC), and clears the Sync flip-flop. 

The SWC's data comes from the Sync Width register in 
the VSRs. The SWC counts down to zero. At zero, it 
enables the load for the Video Start Counter (VSC), and 
also sets the Sync flip-flop. 

The VSC receives its data from the Video Start VSR. The 
VSC counts down to zero, and while at zero it produces 
the ST ART signal simultaneously setting the Blanking 
flip-flop. 

1) Address Decoder (Schematic 2) 

The address decoder is enabled by the WR* and CSO*/ 
1 signals and decodes address bits AO-A2 into one of 
five active high select output signals, RO-R4. These are 
the select lines to the video attribute setup registers 
(schematic 3). The CSO* active low chip-select and CS1 
active high chip-select are for differentiating between the 
horizontal controller and the vertical controller when 
interfacing to the CPU bus as two of these chips must be 
used in the system. The WR* is used to synchronize the 
access to the registers with CPU write cycle. All ac­
cesses to this block are write only. 

2) Video Setup Registers (Schematic 3) 

The circuit is designed to interface to an 8-bit data bus but 
could be easily redesigned to interface to a 16-bit bus. 
The Video attribute Setup Register's addresses and 
widths are as shown in table 1. 

Address Name-Function Number of bits 

0 Video End Low (Ve 7:0) 8 
1 Video End High (Ve 9:8) 2 
2 Sync Position (Sp 5:0) 6 
3 Sync Width (Sw 3:0) 4 
4 Video Start (Vs 5:0) 6 

Video Graphics Controller 

These registers provide the data to be compared or 
loaded into one of the dead-end down counters used for 
positioning the display viewing area or sync pulse posi­
tions and widths (see figure 3). 

Figure 3. Typical Video Display Set up 
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Video End Low and High Registers 

Blank 
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These registers combine to form the 10-bit address 
location of the video display endpoints. In the case of the 
horizontal display location, this is the right hand side of 
the screen and the vertical display location is the bottom, 
or last visible scan line. In other words this is the point 
where video ends and blanking begins. 

Sync Position Register 

This 6-bit register holds the value of the distance from 
where video ends and the horizontal or vertical sync 
pulses start thus allowing for sync pulse positioning 
relative to video end. This is counted in pixels in the 
horizontal plane and lines in the vertical plane. The value 
of this register cannot be less than 1. 

Sync Width Register 

This 4-bit register holds the value of the sync pulse width. 
This is counted in pixels in the horizontal plane and lines 
in the vertical plane. The value of this register cannot be 
less than 1. 

Video Start Register 

This 6-bit register holds the value of the distance from 
where the sync pulse or blanking ends and video starts. 
This is counted in pixels in the horizontal plane and lines 
in the vertical plane. The value of this register cannot be 
less than 1. 
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3) Video Counter (Schematic 2) 

This is a 10-bit counter which provides the video addresses 
VAO-VA9. In the case of the horizontal controller, this 
register provides the LOAD* signal for the video RAM shift 
registers. This register's synchronous outputs, clock, and 
asynchronous reset lines are accessible from the 1/0 pins of 
the chip for interfacing with the system's horizontal and 
vertical functions. The reset to the counter is VCLR and is 
typically connected externally to the SSET signal (sche­
matic 5). SSET resets the counter at the end of the sync 
pulse. This can be customized for the specific application. 
VCLK is the clock input to the counter. VCLK is connected 
to the pixel clock of the horizontal controller (HVC) and is 
driven by the VEND signal from the horizontal controller 
(HVC) in the case of the vertical controller (VVC). The 
LOAD* signal output is a 1 cycle-wide pulse every 16 pixels. 
This can be reduced to 8 pixels by modifying the counter's 
boolean statements. 

4) Video End Comparator (Schematic 5) 

This is a 10-bit comparator which compares the 10-bit value 
in the Video End Low and High registers (RO-R1 schematic 
3), to the 10-bit value of the Video Counter. When the 
compare is true a 1 cycle-wide pulse is generated called 
VEND. This is the end of visible video and starts the sync 
position counter running while also clearing the blanking 
flip-flop. 

5) Sync Position Counter (Schematic 4) 

This is a 6-bit loadable, dead-end down counter which 
counts until it reaches 0 and then holds until it is loaded with 
a value greater than or equal to 1. The load is activated by 
the VEND signal generated by the Video End Comparator. 
The count is a maximum of 64 pixels (horiz) or lines (vert) 
and is loaded each time with the value of the Sync Position 
Register (R2). When the count reaches zero the counter 
produces the signal SRST which starts the Sync Width 
Counter and clears the Sync flip-flop (schematic 5). 

6) Sync Width Counter (Schematic 5) 

This is a 4-bit loadable, dead-end down counter which 
counts until it reaches 0 and then holds until it is loaded with 
a value greater than or equal to 1 . The load is activated by 
the SRST signal which is generated by the sync position 
counter. The count is a maximum of 16 pixels (horiz) or lines 
(vert) and is loaded each time with the value of the Sync 
Width Register (R3 schematic 3). When the count reaches 
zero the counter produces the signal SS ET which starts the 
Video Start Counter running and sets the sync flip-flop. 

7) Video Start Counter (Schematic 4) 

This is a 6-bit loadable, dead-end down counter which 
counts until it reaches 0 and then holds until it is loaded with 
a value greater than or equal to 1. The load is activated by 

the SSET signal (schematic 5), generated by the Sync 
Width Counter. The count is a maximum of 64 pixels (horiz) 
or lines (vert) and is loaded each time with the value of the 
Video Start Register (R4 schematic 3). When the count 
reaches zero the counter produces the signal ST ART which 
sets the Blanking flip-flop (schematic 5). 

8) Sync flip-flop (Schematic 5) 

This flip-flop is cleared by the signal SRST (schematic 4), 
and set by the signal SSET to produce the sync pulse for 
either horizontal or vertical. It is a J-K flip-flop which is 
clocked by VCLK that delays the actual edges by one clock. 
This factor must be taken into account when calculating the 
sync position and sync width values as the value is one less 
than the true position or width. These values must be no less 
than 1. 

9) Blanking flip-flop (Schematic 5) 

This flip-flop is cleared by the signal VEND and set by the 
signal START (schematic 4), to produce the blanking signal 
for either horizontal or vertical controllers. It is a J-K flip-flop 
which is clocked by VCLK This flip-flop delays the actual 
edges by 1 clock. This must be taken into account when 
calculating the sync position and sync width values as the 
value is one less than the true position or width. Thus the 
Sync position and width values must be greater than or 
equal to one. 

10) Memory Address Multiplexer (Schematic 6) 

This is a dual input 10-bit multiplexer which outputs either 
the video addresses (VAO-VA9), or the CPU addresses 
(AO-A9), to the output pins (MAO-MA9). This allows for 
either the video counters or the CPU to directly address the 
video memory. The multiplexer is controlled by the signal 
MUX and when MUX is low selects the CPU address. When 
MUX is high it selects the video counters (horizontal and 
vertical). 

This system design is generic in terms of the size and 
number of the video memory planes. It is based on the 
additional support of RAS-CAS logic, if multiplexed dy­
namic RAM is used, along with bus arbitration logic to allow 
for transparent accesses by the CPU. It also assumes that 
the shift registers (if used), are correctly chosen and inter­
faced to the video RAM. The final support circuitry is video 
summing which, depending on the type of display to be 
driven (analog or digital), and the polarity of the blanking and 
sync signals has a wide variation of layouts. All of these 
functions, when finally chosen, can be easily incorporated 
into the additional 25% of each of the HVC and WC chips 
remaining, or placed into additional pLSI devices as needed. 
This design allows for quick and flexible programmable 
video graphic interface to numerous applications. 
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Pin functional descriptions 

NAME TYPE FUNCTION 

WR* Input Allow strobe used to write data into video attribute set up register. 
Selected by address lines AO-A2. Also qualified with CS0*/1. 

CS0*/1 Input Active low/high chip select used to enable writes to attribute set up 
registers. 

AO-A9 Input AO-A2 are used to select one of the video attribute set up registers. AO-
A9 are used to address the video memory. 

DO-D7 Input Data input to the video attribute set up registers. 

MUX Input Mux select line for video memory access. High select CPU addresses 
(AO-A9), low select video counter addresses (VAO-VA9). 

MAO-MA9 Output Video memory address lines. 

VEND Output Active high signal used to indicate the end of a horizontal or vertical scan. 

SRST Output Active high signal used to indicate the end of horizontal or vertical Sync. 

SSET Output Active high signal used to indicate the beginning of a horizontal or vertical 
Sync. 

START Output Active high signal used to indicate the start of a horizontal or vertical 
visible scan. 

LOAD* Output Active low signal used to load the external video shift registers with data 
from the video memory. 

BLANK* Output Active low signal used to indicate the blanking of horizontal or vertical 
display. 

SYNC* Output Active low signal used to indicate the horizontal or vertical Sync pulse. 

VCLK Input System clock running at same frequency as the monitor. 

VCLR Input Active high signal used to asynchronously reset the video counters. This 
allows for either horizontal or vertical operation of the device. 

Video attribute formulas 
The following are the formulas for calculating the display characteristics: 

tc = pixel clock time period (ie: 1 OMhz = 1 OOns) 
Ve= video end (0-1024) 
Sp= sync position (1-63) 
Sw =sync width (1-15) 
Vs =video start (1-63) 

Horizontal (HVC) 
0 horizontal scan line period = [Ve+( Sp+ 1)+(Sw+1)+(Vs+1 )] * tc 
0 horizontal scan rate= 1/horizontal scan line period 
D horizontal display period= (Ve-(Vs+1)] * tc 
D LOAD* frequency = tc * 1 

Vertical (VVC) 
D vertical scan line period = [Ve+( Sp+ 1)+(Sw+1)+(Vs+1 )] • horizontal scan line period 
D vertical scan rate= 1/vertical scan line period 
0 vertical display period = [Ve-(Vs+ 1 )] *horizontal scan line period 
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Figure 4. Video Graphics Controller Timing 
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1. Note: 
See Sidebar for Description 

The major timing relationships for this device are shown in figure 4. All signals are shown in relation to VCLK. 

As can be seen from the diagram, LOAD* is generated every 16 VCLKs. LOAD* loads the video shift registers 
with data from the video memory. BLANK is activated by the falling edge of VEND and is inactivated at the 
falling edge of START. SYNC goes low at the falling edge of SRST and rises with the falling edge of SSET. 

The CPU related signals are shown in waveforms 9 to 13. CSO* and CS 1 are really complimentary versions 
of the same signal. Because two pLSI 1032s are used in the design, CSO*, for example, would be used as 
the chip select for the horizontal controller chip CS1 would then be used as the chip select for the vertical 
controller chip. In any case, there is a set-up and hold time associated with a data write into the chip. This 
is indicated by the short solid lines bounded by the dashed lines in between the DAT A and CSO* waveforms. 
The actual set-up and hold times involved are dependent upon the frequency of VCLK, but the relationship 
to VCLK is clearly shown. 

The last two waveforms on the diagram show the delay from MUX rising or falling and the validity of the 
addresses on MAO to MA9. This delay employs the same caveat as above - the actual time depends upon 
the frequency of VCLK. 
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The pLSI Advantage 

The pLSI 1032 is an excellent choice for this type of 
design because of its density, flexibility, and speed. The 
device utilization percentages for this particular design 
are: 75% GLB, 66% GLB output, and 61 % 1/0. This 
means that there is enough of the device left to interface 
to a 16-bit bus or to add glue logic which might be 
associated with a specific design. The 1/0 assignment in 
the pLSI 1032 is extremely flexible. I/Os can be fixed to 

Video Graphics Controller 

a specific pin, or left for the router to decide the best 
connection. With no fixed pins, this design took 1.5 
minutes to route, and re-routing with all pins fixed was 
completed in a matter of seconds. 

The rest of this design example consists of an appendix 
which contains the schematics and a hardcopy of the 
LDF file for this design. 
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Appendix 

II graphfix.ldf generated using Lattice pDS Software V2.SO 
LDF 1.00.00 DESIGNLDF; 
DESIGN GRAPHICS 1.00; 
PROJECTNAME 
DESCRIPTION 
This is one of two identical chips used for either horizontal or vertical control 
in 
the graphics controller design. Two of these chips produce most of the basic 
video functions and timing signals associated with a general purpose graphics 
interface. The design is capable of up to a 1024 X 1024 non-interlaced display 
with programmable blanking and sync signal positioning. One of the chips is 
used for horizontal video control (HVC) and the other, vertical video control 
(VVC).; 

PART pLSI1032-90LJ; 
DECLARE 
END; //DECLARE 

SYM GLB D4 1 MISC. SIGNALS 2; 
II SSET signal generation, SYNC & BLANK; 
II intermediate signal generation; 
SIGTYPE SYNC REG OUT; 
SIGTYPE BLANK REG OUT; 
SIGTYPE SSET OUT; 

EQUATIONS 
SYNC.CLK=VCLK 
SSET=!SSETl&SSETO; 
SYNC.D = !(!(!SYNC.Q & SSET) & (!SYNC.Q # SRST)); 
BLANK.D = !(!(!BLANK.Q & START) & (!BLANK.Q #VEND)); 

END; 
END; 

SYM GLB C7 1 ENABLE - !WR&ICSO&CSl; 
II Write enable qualification for address decoder; 
SIGTYPE ENABLE OUT; 

EQUATIONS 
ENABLE = !WR & !CSO & CSl; 

END; 
END; 

SYM GLB Al 1 VIDEO COUNTERS; 
II Video memory address counter bits VA4-VA7; 
SIGTYPE [VA4 •• VA7] REG OUT; 

EQUATIONS 
VA4.CLK = VCLK; 
VA4.RE = VCLR; 
VA4=(VAO & VAl& VA2 & VA3) $$ VA4; 
VAS=(VAO & VAl & VA2 & VA3 & VA4) $$ VAS; 
VA6=(VAO & VAl & VA2 & VA3 & VA4 & VAS) $$ VA6; 
VA7=(VAO & VAl & VA2 & VA3 & VA4 & VAS & VA6) $$ VA7; 

END; 
END; 
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SYM GLB AO 1 VIDEO COUNTERS; 
II Video memory address counter bits VA0-VA3; 
SIGTYPE [VAO .. VA3] REG OUT; 

END; 

EQUATIONS 
VAO.CLK = VCLK; 
VAO.RE = VCLR; 
VAO VAO $$ VCC; 
VAl VAO $$ VAl; 
VA2 (VAO & VAl) $$ VA2; 
VA3 (VAO & VAl& VA2) $$ VA3; 

END; 

SYM GLB A2 1 VIDEO COUNTERS; 
II Video memory address counter bits VAS,VA9; 
II and LOAD signal output generation; 
SIGTYPE VAS REG OUT; 
SIGTYPE VA9 REG OUT; 
SIGTYPE LOAD OUT; 

EQUATIONS 
VAS.CLK = VCLK; 
VAS.RE = VCLR; 
VAS=(VAO & VAl & VA2 & VA3 & 
VA9=(VAO & VAl & VA2 & VA3 
LOAD=VAO & VAl & VA2 & VA3; 

END; 
END; 

SYM GLB A3 1 ADDRESS DECODE; 
II Register address decoder; 
SIGTYPE [RO •. R3] OUT; 

EQUATIONS 

& 
VA4 
VA4 

RO ENABLE & !AO & !Al & !A2; 
Rl ENABLE & AO & !Al & IA2; 
R2 ENABLE & !AO & Al & !A2; 
R3 ENABLE & AO & Al & !A2; 

END; 
END; 

SYM GLB A4 1 END HI (VIDEO); 

& VA5 
& VA5 

II R4 of register address decoder and video; 
II data registers (video end hi); 
SIGTYPE R4 OUT; 
SIGTYPE [RlQO •• RlQl] OUT; 
EQUATIONS 

R4 = !WR & !CSO & CSl & !AO & !Al & A2; 
[RlQO •• RlQl] = [D4 •• D5] & Rl; 

END; 
END; 
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SYM GLB AS 1 END LO 1 (VIDEO); 
II Video data registers (video end lo); 
SIGTYPE [ROQO •. ROQ3] OUT; 

EQUATIONS 
(ROQ0 .. ROQ3] = [DO .• D3] & RO; 

END; 
END; 

SYM GLB A6 1 END LO 2 (VIDEO); 
II Video data registers (video end lo); 
SIGTYPE [ROQ4 .• ROQ7] OUT; 

EQUATIONS 
[ROQ4 •• ROQ7] = [D4 .. D7] & RO; 

END; 
END; 

SYM GLB A7 1 POSITION, SYNC 1; 
II Video data registers (sync position); 
SIGTYPE [R2QO .. R2Q3] OUT; 

EQUATIONS 
[R2Q0 •• R2Q3] = [DO .• D3] & R2; 

END; 
END; 

SYM GLB BO 1 START & POSITION 2; 
II Video data registers (sync position); 
II Video data registers (video start); 
SIGTYPE [R2Q4 .• R2Q5] OUT; 
SIGTYPE [R4Q4 •. R4Q5] OUT; 

END; 

EQUATIONS 

END; 

[ R2Q4 •. R2Q5] 
[R4Q4 .• R4Q5] 

[ D4 •. DS ] & R2 ; 
[ D4 •. DS ] & R4 ; 

SYM GLB Bl 1 WIDTH, SYNC; 
II Video data registers (sync width); 
SIGTYPE [R3Q0 .. R3Q3] OUT; 

EQUATIONS 
[R3QO •. R3Q3] = [DO .. D3] & R3; 

END; 
END; 
SYM GLB B2 1 START, VIDEO 1; 
II Video data registers (video start); 
SIGTYPE [R4QO .. R4Q3] OUT; 

EQUATIONS 
[R4QO .• R4Q3] = [DO •• D3] & R4; 

END; 
END; 
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SYM GLB B3 1 SYNC POSITION CNTR 1; 
II Low four bits of sync position counter; 
SIGTYPE [QO .• Q3] REG OUT; 

END; 

EQUATIONS 
[QO •• Q3].CLK = VCLK; 
QO (QO&IVEND)$$((R2QO&VEND)#(IVEND&ISRSTO)); 
Ql (Ql&IVEND)$$((R2Ql&VEND)#(IQO&IVEND&!S~STO)); 

Q2 (Q2&1VEND)$$((R2Q2&VEND)#(IQO&!Ql&!VEND&!SRSTO)); 
Q3 (Q3&!VEND)$$((R2Q3&VEND)#(!QO&!Ql&IQ2&!VEND&ISRSTO)); 

END; 

SYM GLB B4 1 SYNC POSITION CNTR 2; 
II Upper two bits of sync position counter; 
II and sync reset signal generation; 
SIGTYPE [Q4 •• Q5] REG OUT; 
SIGTYPE SRSTO OUT; 
SIGTYPE SRSTl REG OUT; 

EQUATIONS 
Q4.CLK = VCLK; 
SRSTl.CLK=VCLK; 
Q4 = (Q4&!VEND)$$((R2Q4&VEND)#(!QO&!Ql&!Q2&!Q3&1VEND&ISRST0)); 
QS = (Q5&!VEND)$$((R2Q5&VEND)#(!QO&!Ql&!Q2&!Q3&Q4&1VEND&ISRST0)); 
SRSTO=!QO&!Ql&!Q2&!Q3&1Q4&1Q5; 
SRSTl.D=SRSTO; 

END; 
END; 

SYM GLB BS 1 VIDEO START CNTR 1; 
II Low four bits of video start counter; 
SIGTYPE [QQO •• QQ3] REG OUT; 

EQUATIONS 
[QQO •• QQ3].CLK = VCLK; 
QQO (QQO&ISSET)$$((R4QO&SSET)#(ISSET&ISTARTO)); 
QQl (QQl&!SSET)$$((R4Ql&SSET)#(!QQO&ISSET&ISTARTO)); 
QQ2 (QQ2&1SSET)$$((R4Q2&SSET)#(IQQO&IQQ1&!SSET&!START0)); 
QQ3 (QQ3&1SSET)$$((R4Q3&SSET)#(!QQO&!QQ1&1QQ2&1SSET&ISTARTO)); 

END; 
END; 

SYM GLB B6 1 VIDEO START CNTR 2; 
II Upper four bits of video start counter and; 
II START signal generation; 
SIGTYPE (QQ4 •• QQ5] REG OUT; 
SIGTYPE STARTO OUT; 
SIGTYPE STARTl REG OUT; 

EQUATIONS 
QQ4.CLK = VCLK; 
STARTO=!QQO&!QQ1&1QQ2&!QQ3&!QQ4&1QQ5; 
QQ4 = (QQ4&!SSET)$$((R4Q4&SSET)#(!QQO&IQQ1&!QQ2&1QQ3&!SSET&ISTARTO)); 
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QQS = 
(QQ5&!SSET)$$((R4QS&SSET)#(!QQO&!QQl&!QQ2&!QQ3&QQ4&!SSET&!STARTO)); 

STARTl.D=STARTO 
END; 

END; 

SYM GLB B7 1 SYNC WIDTH COUNTER; 
II Sync width counter; 
SIGTYPE [QQQO •. QQQ3] REG OUT; 

EQUATIONS 
[QQQ0 •. QQQ3].CLK = VCLK; 
QQQO (QQQO&!SRST)$$((R3QO&SRST)#(!SRST&!SSETO)); 
QQQl (QQQl&!SRST)$$((R3Ql&SRST)#(!QQQO&!SRST&!SSETO)); 
QQQ2 (QQQ2&!SRST)$$((R3Q2&SRST)#(!QQQO&!QQQl&!SRST&!SSETO)); 
QQQ3 (QQQ3&!SRST)$$((R3Q3&SRST)#(!QQQO&!QQQl&!QQQ2&!SRST&!SSETO)); 

END; 
END; 

SYM GLB Cl 1 MISC. LOGIC l; 
II Sync width counter SSet signal set-up; 
II Sync reset signal generation, video START; 
II signal generation; 
SIGTYPE SSETO OUT; 
SIGTYPE SSETl REG OUT; 
SIGTYPE SRST OUT; 
SIGTYPE START OUT; 

END; 

EQUATIONS 
SSETl.CLK=VCLK; 
SSETO=!QQQO&!QQQl&!QQQ2&!QQQ3; 
SSETl.D=SSETO; 
SRST=!SRSTl&SRSTO; 
START=!STARTl&STARTO; 

END; 

SYM GLB C2 1 COMPARE, VIDEO ENDl; 
II First eight bits of video end (VEND) comparator; 
SIGTYPE VENDl OUT; 

EQUATIONS 
VENDl = !((ROQ0$VAO) # (ROQ1$VA1) # (ROQ2$VA2) # (ROQ3$VA3) # (ROQ4$VA4) 

# (ROQ5$VA5) # (ROQ6$VA6) # (ROQ7$VA7)); 
END; 

END; 

SYM GLB C3 1 COMPARE, VIDEO END 2; 
II Last two bits of video end (VEND) comparator; 
II and VEND signal generation; 
SIGTYPE VEND OUT; 

EQUATIONS 
VEND= !((RlQ0$VA8) # (RlQ1$VA9)) & VENDl; 

END; 
END; 
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SYM GLB C4 1 MEM ADDR MUX 1; 
II Video memory address multiplexer bits; 
II MAO-MA3; 
SIGTYPE [MAO •• MA3] OUT; 

EQUATIONS 
[MAO .• MA3] = ([AO .• A3] & !MUX) # ( [VAO .• VA3] & MUX); 

END; 
END; 

SYM GLB C5 1 MEM ADDR MUX 2; 
II Video memory address multiplexer bits; 
II MA4-MA7; 
SIGTYPE [MA4 •• MA7] OUT; 

EQUATIONS 
[MA4 .. MA7] = ([A4 .. A7] & !MUX) # ([VA4 •• VA7] & MUX); 

END; 
END; 

SYM GLB C6 1 MEM ADDR MUX 3; 
II Video memory address multiplexer bits; 
II MAB & MA9; 
SIGTYPE [MA8,MA9] OUT; 

EQUATIONS 
[MAB,MA9] = ([AB,A9] & !MUX) # ([VA8,VA9] & MUX); 

END; 
END; 

SYM IOC I021 1 
II Read/Write control signal; 
XPIN IO XWR LOCK 48 ; 
IBll (WR,XWR); 
END; 

SYM IOC I020 1 
II Active high chip select; 
XPIN IO XCSl LOCK 3 
IBll (CSl,XCSl); 
END; 

SYM IOC I019 1 
II Active low chip select; 
XPIN IO XCSO LOCK 4 
IBll (CSO,XCSO); 
END; 

SYM IOC IOO 1 
II Address bus AO; 
XPIN IO XAO LOCK 14 
IBll (AO,XAO); 
END; 
SYM IOC IOl 1 
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II Address bus Al; SYM IOC IOlO 1 
XPIN IO XAl LOCK 72 II Data bus DO; 
IBll (Al,XAl); XPIN IO XDO LOCK 26 
END; IBll (DO,XDO); 

END; 
SYM IOC I02 1 
II Address bus A2; SYM IOC IOll 1 
XPIN IO XA2 LOCK 15 II Data bus Dl; 
IBll (A2,XA2); XPIN IO XDl LOCK 60 
END; IBll (Dl,XDl); 

END; 
SYM IOC I03 1 
II Address bus A3; SYM IOC I012 1 
XPIN IO XA3 LOCK 71 II Data bus D2; 
IBll (A3,XA3); XPIN IO XD2 LOCK 27 
END; IBll (D2,XD2); 

END; 
SYM IOC I04 1 
II Address bus A4; SYM IOC I013 1 
XPIN IO XA4 LOCK 16 II Data bus DJ; 
IBll (A4,XA4); XPIN IO XD3 LOCK 59 
END; IBll (D3,XD3); 

END; 
SYM IOC IOS 1 
II Address bus AS; SYM IOC I014 1 
XPIN IO XAS LOCK 70 II Data bus D4; 
IBll (AS,XAS); XPIN IO XD4 LOCK 28 
END; IBll (D4,XD4); 

END; 
SYM IOC I06 1 
II Address bus A6; SYM IOC I015 1 
XPIN IO XA6 LOCK 17 II Data bus DS; 
IBll (A6,XA6); XPIN IO XDS LOCK 58 
END; IBll (DS,XDS); 

END; 
SYM IOC I07 1 
II Address bus A7; SYM IOC I016 1 
XPIN IO XA7 LOCK 69 II Data bus D6; 
IBll (A7,XA7); XPIN IO XD6 LOCK 29 
END; IBll (D6,XD6); 

END; 
SYM IOC IOS 1 
II Address bus AS; SYM IOC I017 1 
XPIN IO XA8 LOCK 18 II Data bus D7; 
IBll (A8,XA8); XPIN IO XD7 LOCK 57 
END; IBll (D7,XD7); 

END; 
SYM IOC I09 1 
II Address bus A9; SYM IOC I018 1 
XPIN IO XA9 LOCK 68 II Video memory address multiplexer; 
IBll (A9,XA9); XPIN IO XMUX LOCK 55 ; 
END; IBll (MUX,XMUX); 

END; 
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SYM IOC I02S 1 
II Video memory address MAO; 
XPIN IO XMAO LOCK 49 
OBll (XMAO,MAO); 
END; 

SYM IOC I026 1 
II Video memory address MAI; 
XPIN IO XMAl LOCK 79 
OBll (XMAl,MAl); 
END; 

SYM IOC I027 1 
II Video memory address MA2; 
XPIN IO XMA2 LOCK SO 
OBll (XMA2,MA2); 
END; 

SYM IOC I02S 1 
II Video memory address MAJ; 
XPIN IO XMA3 LOCK 7S 
OBll (XMA3,MA3); 
END; 

SYM IOC I029 1 
II Video memory address MA4; 
XPIN IO XMA4 LOCK Sl 
OBll (XMA4,MA4); 
END; 

SYM IOC I030 1 
II Video memory address MAS; 
XPIN IO XMAS LOCK 77 
OBll (XMAS,MAS); 
END; 

SYM IOC I031 1 
II Video memory address MA6; 
XPIN IO XMA6 LOCK S2 
OBll (XMA6,MA6); 
END; 

SYM IOC !032 1 
II Video memory address MA7; 
XPIN IO XMA7 LOCK 76 
OBll (XMA7,MA7); 
END; 

SYM IOC I033 1 
II Video memory address MAS; 
XPIN IO XMAS LOCK SJ 
OBll (XMAS,MAS); 
END; 
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SYM IOC !034 1 
II Video memory address MA9; 
XPIN IO XMA9 LOCK 7S 
OBll (XMA9,MA9); 
END; 

SYM IOC I03S 1 
II Video end output signal; 
XPIN IO XVE~D LOCK 4S 
OBll (XVEND,VEND); 
END; 

SYM IOC I036 1 
II Video sync reset signal; 
XPIN IO XSRST LOCK 46 
OBll (XSRST,SRST); 
END; 

SYM IOC I037 1 
II Video sync width set output signal; 
XPIN IO XSSET LOCK 30 ; 
OBll (XSSET,SSET); 
END; 

SYM IOC I03S 1 
II Video start output signal; 
XPIN IO XSTART LOCK 47 ; 
OBll (XSTART,START); 
END; 

SYM IOC !039 1 
II Video load output signal; 
XPIN IO XLOAD LOCK 32 ; 
OBll ( !XLOAD, !LOAD); 
END; 

SYM IOC I040 1 
II Video Blanking output signal; 
XPIN IO XBLANK LOCK 36 ; 
OBll (XBLANK,BLANK); 
END; 

SYM IOC I041 1 
II Video sync output signal; 
XPIN IO XSYNC LOCK 31 ; 
OBll (XSYNC,SYNC); 
END; 

SYM IOC YO 1 
II Video clock input signal; 
XPIN CLK XVCLK LOCK 20 
IBll (VCLK,XVCLK); 
END; 
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SYM IOC IO 1 
II Video counter clear input; 
XPIN I XVCLR LOCK 25 ; 
IBll (VCLR,XVCLR); 
END; 
END; llLDF DESIGNLDF 
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Introduction 

The intent of this application note is to show how easy it 
is to design with an ispLSI 1032 device by implementing 
a simple design using many of the features of the device 
and design software. The digital clock was chosen be­
cause its operation is understood by most designers. 
This example concentrates on the design process rather 
than the design itself. The design also fits easily into the 
ispLSI 1032 demonstration box which makes it easy to 
debug and demonstrate. Figure 1 shows an example of 
a digital clock design. 

Figure 1. Digital Clock Design Example 

In implementing this design, advanced features are used 
to demonstrate the flexibility of the design environment. 
With the pLSI and ispLSI Development System (pDS) 
Software, it is simple to do a complete design using 
Macro library elements which are similar to parts from a 
typical 7400 TTL Data Book. The logic in a Macro can 
also be modified to meet exact design requirements. At 
the other extreme for complete control over the logic 
within the device, the circuit may be implemented with 
Boolean Equations. Once a custom circuit is created it 
can be saved as a Macro in a personal Macro library for 
future use. 

It is assumed that the reader has read the data sheet and 
understands the architecture of the ispLSI device. Read­
ing the pDS Software manuals makes it easier to 
understand what is being presented, but is not neces­
sary. 

The tools used in implementing this design are: 

O The pDS Software Running Under Windows™ 3.1 

on an IBM™ Compatible PC 

0 The ispDOWNLOAD Cable 

A Digital Clock 
Design Example 

Entering & Compiling the Design 

Before discussing details of the clock design, the follow­
ing is a quick review of the design flow. In the pDS 
Software, designs are created using either Boolean 
Equations or Macros taken from the Lattice Macro li­
brary. 

Boolean logic is utilized because it is easy to use. The 
syntax used is similar to that used in Data I/O's ABEL TM 

software to design GAL® devices. With Boolean equa­
tions, designers have total control over the logic within 
the pLSI or ispLSI devices. Also, complete access to the 
advanced architectural features such as the product 
term Clocks and Reset, the Output Enable control, the 
hardware XOR is provided. 

As powerful as Boolean Equations are, it is time cons urn­
ing to enter a large design using them. For that reason 
the pDS Software comes complete with a Macro library 
of standard logic functions which designers can draw 
from. The Macro library consists of several hundred logic 
elements ranging from simple gates (AND, OR, XOR) to 
complex functions like counters, multiplexers and adders. 
If a standard Lattice library Macro is close to design 
requirements, it can be copied to a personal library and 
modified. This new Macro is then saved and used in 
other designs when needed. 

For a non-standard logic function used repeatedly in a 
design, a Macro can be created using a combination of 
Boolean Equations and other Macros as described above. 

Design Process 

The design process in figure 2 includes the following 
simple steps: 

Enter the Design 

2 Verify the Logic 

3 Route the Cells 

4 Generate the Fusemap 

5 Program the Part 
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Enter the Design 

Entering the design is done using the graphical interface. 
The Lattice pDS Software displays a block diagram of the 
part similar to the one shown in the data sheet. The 
design equations or Macros are entered by clicking on 
one of the Logic or 1/0 Cells using the Mouse, and writing 
the equations into the cell using a simple text editor. This 
editor is similar to the Windows Notepad. The graphical 
interface also allows advanced functions such as clear­
ing a cell, naming a cell, copying the contents of one cell 
to another or saving the data in a cell to be recalled later. 

Verify the Logic 

Verifying the logic is done in two places. Each GLB and 
1/0 Cell is verified individually. A Cell Verify is a local 
verify of that single cell only. It checks for problems such 
as syntax errors, exceeding the number of allowable cell 
inputs, outputs or product terms, and logic errors. Once 
the design is completely entered, the next step is to 
perform a Design Verify. The Design Verify performs a 
Cell Verify on cells which were not previously checked, 
and then checks all the interconnections within the 
device for dangling inputs and unconnected outputs. The 
design must pass a Design Verify before the following 
steps are performed. 

Route the Cells 

Routing the cells is the next step. The Router module 
moves the GLBs and 1/0 Cells around in such a way that 
all of the networks which you have specified can be 
interconnected. If you have connected certain signals to 
specific pins, this information is entered into the design 
using a menu option in the Router module. Aside from 
fixing the 1/0 pins, this is an entirely automatic process 
and requires no intervention. Due to the optimized 
design of the Global Routing Pool, route times can be 
very fast (averaging a few minutes), depending on the 
size of the design and type of PC. 

Generate the Fusemap 

The Fusemap generation module uses the routed design 
to generate the JEDEC file. The JEDEC file provides the 
data used to program the part. This file has a suffix of 
.JED. Like the Router program, this is an automatic 
process. 

Programming the Device 

The part can be programmed in one of two ways. When 
using an external device programmer, the user can 
invoke a communication program to transmit the JED EC 
file to the programmer. When using in-system program­
ming (ISP) in a design, the Lattice design system invokes 
its own ISP control program (ISP Download). This pro­
gram uses a cable connected to the PC's Parallel Port to 
program the part or multiple parts on the board itself. 

Clock Design Description 

The clock design includes the following modules: 

0 Control Logic 

0 Prescaler 

0 Counters 

Seconds 

Minutes 

Hours 

Figure 3 shows a block diagram of the clock modules. 

Control Logic 

The Control Logic reads the input switches and controls 
the speed at which the seconds, minutes, and hours are 
incremented. This allows a user to set the clock. 
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Figure 2. Design Process 
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Slow Set, Fast Set, and Hold Signals 

The Control Logic, shown in figure 4, generates the 
signals necessary to set and run the clock. The inputs to 
the Control Logic are the three switches: Slow Set, Fast 
Set and Hold. These inputs are clocked using the Input 
Register in the 1/0 Cells. This eliminates switch bounce 
which affects how the logic operates. 

Timing Signals 

The other signals coming into the control logic are the 
timing signals 128 Hz, 8 Hz and 1 PPM. These come from 
the prescaler and are used for the Fast Set function, Slow 
Set function and normal operating function respectively. 
The hours and minutes counters are normally clocked at 

Figure 4. Timing Signal Schematic 

128 Hz 

8 Hz 

1 PPM 

16 Hz 

Table 1. Control Logic Truth Table 

Slow Fast Hold Clock Pulse 

a rate of 1 Pulse per Minute (1 PPM). When you are 
setting the clock, this frequency is increased to 8 Hz for 
Slow Set and 128 Hz for Fast Set. 

Figure 4 shows the schematic for this circuit and table 1 
shows the Truth Table. 

The Prescaler 

The Prescaler divides the 1 MHz clock into the frequen­
cies needed by the clock. The Prescaler is designed 
entirely using Macros from the Lattice library. The 
prescaler circuit has two purposes. It divides the 1 MHz 
XTAL Oscillator signal down to 1 Hz for the seconds 
counter clock and also provides the frequencies neces­
sary for the Slow Set and Fast Set functions. 

Reset 
t----------------Clock 

Fast Set 

Slow Set 

Normal Operation 

Clock 
Pulse 

Hold 
>---------------..Seconds 

AST AST Operation 
SEC HR_MIN 

0 0 0 1 Pulse Per Minute 0 0 Normal Operation 

1 0 0 8 Hz 1 0 Slow Set 

0 1 0 128 Hz 1 0 Fast Set 

1 1 0 None 1 1 Reset to 12:00 AM 

x x 1 None 1 0 Hold Time 
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The circuit is implemented using two standard Macros 
from the Lattice library (see figure 5). 

A 20-bit divider is necessary to divide the 1 MHz clock 
signal down to 1 Hz, but the largest counter in the library 
is 8-bits. Therefore, three counter stages are needed to 
complete the division. 

The approach chosen was to use two 8-bit preloadable 
counters and a 4-bit binary counter cascaded together. 
The two 8-bit counters are configured as a single 16-bit 
divider in this circuit. Because a binary counter was 
chosen for the 4-bit function, the mathematics are as 
follows: 

1,000,000 Hz Divided by 16 = 62500 Hz. 

Therefore, the output required of the 16-bit divider is 
62500 Hz. 

65535 

Maximum 
count of the 16 
bit counter 

Minus 62500 

Minus The 
desired 
Division 

3035 

Preload 
Value 

A 16-bit divider preloaded to 3035 (OBDB in Hexadeci­
mal) at each terminal count has an output frequency of 16 
Hz. 

The frequencies necessary for the clock set functions are 
then chosen from the counter outputs. The 8 Hz signal 
(CBU14, Output QO) advances the minutes counter at 
the rate of 1 minute every 7.5 Seconds. This is accept­
able for the Slow Set function. The Fast Set function uses 
a 128Hz signal (C16Up, Output 012) to advance the 

Figure 5. Prescaler Sample with Standard Macros 

Pre load 

Cascade 
In 

Preload to OBDB 

B D --11011011 

----07 
Preload Inputs 

Pre load 

Cascade 
In 

clock at a rate of 1 Hour every 2 seconds. The 16 Hz 
signal is used in the 1/0 cell input registers as a debounce 
clock for the switches. 

In the final design, the 16-bit counter is placed in GLBs 
AO through A7, and the 4-bit counter in GLBs BO and B1. 

Counters 

The Seconds and Minutes Counters are Modulo 60 
counters which display a decimal count ranging from 00 
to 59. 

The Hours counter is a special Modulo 24 counter which 
counts from 1 to 12, and has a separate output bit for AM­
PM indication. This counter resets to 12 AM and never 
displays a count of 00. 

The Seconds counter is designed by using a standard 
Macro from the Lattice library and modifying it to suit the 
needs of the design. This combines the use of Macros 
with the use of Boolean equations. 

The Minutes and Hours counters are designed using 
state machines optimized for the pLSI 1032 and ispLSI 
1032 architectures. The counter which is created is then 
saved as a custom Macro for later use. This optimization 
saves time and effort on future designs. 

There are three controls for setting the clock. These are 
Slow Set, Fast Set, and Hold. The Slow Set button 
advances the clock at a rate suitable for selecting the 
correct minute. The Fast Set button advances the clock 
at a rate suitable for selecting the correct hour. When 
either of these buttons are pressed, the seconds counters 
are reset to 00. 
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When Slow Set and Fast Set are pressed at the same 
time, the clock resets to 12:00 A.M .. The Hold button 
disables the minutes and hours counters from counting, 
and resets the seconds to 00 and holds that count until 
the button is released. This allows the clock to be set to 
the exact second. 

The outputs from the circuit are the seven segment 
outputs from the Hours, Minutes and Seconds counters, 
and the AM/PM Indicator. 

Seconds Counter 

The Seconds counter is implemented using both a stan­
dard Macro from the library for the ones-of-seconds, and 
a modified counter Macro for the tens-of-seconds. The 
outputs of these counters is sent to two BCD and then to 
Seven Segment Display Macros to drive the LEDs. 

The seconds counter counts from 0 to 59, and then 
resets to 0. An unmodified CDU24 decimal up counter is 
used for the Least Significant Digit, but the Most Signifi­
cant Digit is a modulo 6 counter. This is not a standard 
function in the library. The easiest way to implement this 
function is to select a standard 4-bit binary counter 
(CDU24) and modify as shown in listing 3. 

Listing 3. 

MACRO MODUL06 ([QO •• Q2],CLK,EN,CS); 
MACROTYPE RX; 

MACROCOMMENT Custom 3 bit Modulo 6 

Figure 6. Sample Seconds Counter 
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Yee 
Yee 
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Cascade Cascade 
In Out 
Enable Stock CDU 24 

Decade Counter 

Reset ao 01 02 03 

counter with Sync clear and enable 
for clock design; 

SIGTYPE [QO •• Q2] REG OUT; 
EQUATIONS 

QO.CLK = CLK; 
QO = (QO&IEN&!CS) 

$$ (!QO&EN&!CS); 
II Output QO toggles after counts 
II 0,2,and 4. 

Ql = (Ql&!EN&!CS) 
$$ ((?Q2&!Ql&QO&EN&!CS) 
# (!Q2&Ql&?QO&EN&!CS)); 

II Output Ql toggles after counts 1 
II and 2. 

Q2 = (Q2&!EN&!CS) 
$$ ((!Q2& Ql& QO&EN&!CS) 
# (Q2&!Ql&!QO&EN&!CS)); 

II Output Q2 toggles after counts 3 
II and 4. 

END 
END 

This counter can then be saved in a personal library for 
future use. 

The synchronous reset inputs to the seconds counters 
are driven by the Hold signal from the control logic. The 
clock is set to the exact second by setting the Hours and 
Minutes counters to a point several minutes ahead, and 
then pressing the Hold button until the correct second 
arrives (see figure 6). 

The counters and the seven segment decoders were 
placed in GLBs, 82 through 87. 
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A modulo 6 counter is needed for the tens-of-seconds, 
and it is easily created by modifying a standard Modulo 
10 Counter Macro. Once that new Macro is created, it is 
named and saved in the personal library. 

The Minutes Counter 

The architecture of the Lattice ispLSI and pLSI devices 
has been optimized for state machine use. The registers 
in the GLBs are synchronous and several product terms 
per register are added. Each product term has 18 inputs. 

In the seconds counter, since the counters and the 
decoders are separate, seven GLBs are used. Taking 
advantage of the wide input gating available to create a 
state machine counter which directly drives the seven 
segment outputs, then the number of GLBs is reduced to 
four. Figure 7 shows a sample minutes counter. 

The truth table for a seven segment display is shown in 
figure 8. 

The state machine is simple. The outputs are the seg­
ment drivers, and each output decodes the current state 

Figure 7. Sample Minutes Counter 

to determine what the next state is. The simplified equa­
tion for segment A is shown in listing 4. 

Listing 4. Segment A Equations 

seg_A = seg_A & seg_B & seg_C & seg_D 
& seg_E & seg_F & !seg_G 
II Decode state Zero 
# seg_A & seg_B & seg_C & seg_D 
& lseg_E & !seg_F & seg_G 
II Decode state Three 
# seg_A & !seg_B & seg_C 
& seg_D & !seg_E & seg_F 
& seg_G 
II Decode state Five 

The output for segment A goes to zero on the following 
clock whenever states Zero, Three or Five occur. For 
each of the segments there are fewer zero transitions 
than one. The zero transitions are decoded to save 
product terms, and then inverted in the output buffers. 
This is true on all of the segments except Segment G, 
which is left in its logic true form. This allows the counter 
to reset to a Zero when a hardware reset is applied. All 
segments are on except segment G. 
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Figure 8. Seven Segment Truth Table 
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A Digital Clock Design Example 

The Terminal Count (TC) output enables the next stage. 
The tens-of-minutes counter is similar in construction 
except that only the states from zero to five are decoded, 
and the terminal count occurs at state five instead of nine 
(see figure 9). 

By designing the counters to make best use of the 
features of the pLSI device family, logic for this counter 
function is reduced by 40%. The minutes counters are 
placed in GLBs CO through C7 in the final design. 

The Hours Counter 

The hours counter is constructed using a state machine 
similar to the one used in the minutes counter. The count 
sequence for hours is unique compared to most counters. 

Figure 9. Terminal Count at State 5 

STATE 
F B 

0 

1 

2 
E C 

3 

4 

5 

Figure 10. Sample Hours Counter 

In the hours stage, both digits are designed as a single 
counter stage. The reset signal for the hours stage resets 
the counter to 12 rather than zero (see figure 10). 

A carry out signal is still generated from this counter 
because an AM/PM indicator is desired, but the carry out 
is generated when the counter reaches 12 instead of 
when it rolls over to one. This is consistent with the way 
clocks operate. Morning starts at 12:00 AM and after­
noon starts at 12:00 PM. The AM/PM stage is a D-type 
flip-flop which uses the carry.out signal as an asynchro­
nous product term clock. This register also uses an 
asynchronous reset to force it to start at 12:00 AM when 
the clock is reset (see figure 11 ). 

The hours counter and the AM/PM logic are placed in 
GLBs DO through 04 in the example file. 

SEGMENT 

A B C D E F G TC 

1 1 1 1 1 0 0 0 

0 1 1 0 0 0 0 0 

1 1 0 1 0 1 1 0 

1 1 1 1 0 1 1 0 

0 1 1 0 1 1 1 0 

1 0 1 1 1 1 1 1 

1 PPH 
Cascade 

Out 
Cascade 
In 

Custom Modulo 12 
9 Segment State Machine 

D Q PM 

Clock Pulse 
ResetABCDEFG HJ 

Product Term 
Clock 

OFF 

Reset 

Reset Clock-----1--1--+--+--1--1---1--~~---------' 

A B C D E F G H J 
Segments 

Figure 11. Sample 9 Segment Digit 

SEGMENT 
STATE A B C D E F G H J TC 

,-< A >-. 1 0 1 1 0 0 0 0 0 0 1 
2 1 1 0 1 1 0 1 0 0 1 
3 1 1 1 1 0 0 1 0 0 1 

H F B 4 0 1 1 0 0 1 1 0 0 1 
5 1 0 1 1 0 1 1 0 0 1 

)< G x 6 0 0 1 1 1 1 1 0 0 1 
7 1 1 1 0 0 0 0 0 0 1 
8 1 1 1 1 1 1 1 0 0 1 

E c 9 1 1 1 0 0 1 1 0 0 1 
10 1 1 1 1 1 1 0 1 1 1 

'< D -11 0 ~ ll 111 lll 1 
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A Digital Clock Design Example 

Clock Management 

This design makes maximum use of the various Clock 
modes of the ispLSI and pLSI Family. In each GLB, there 
are four possible clock sources, CLK 0, CLK 1, CLK 2, 
and a PTCLK. The first source, CLK 0, is a synchronous 
clock, and is permanently connected to the YO Clock 
Input pin on the device. CLK 1 and CLK 2 are also 
synchronous and can come from either the external 
clock pins (Y1 or Y2) or can be generated within the 
device using the internal clock GLB, "CO". The fourth, 
PTCLK, comes from a Product Term within the GLB. This 
clock is asynchronous (see figure 12). 

In this clock design, the 1 MHz reference clock from the 
Demo Board is brought in using the YO Clock pin and is 
the clock source used to drive the Prescaler. The 1 Hz 
output of the Prescaler is then routed through the "CO" 
GLB to become the CLK 1 Source. This clock is used to 
increment the seconds counters. The minutes and hours 
counters are clocked by the signal Clock Pulse on the 
CLK 2 distribution line. This signal is 1 Pulse per Minute 
during normal operation, 8 Hz during Slow Set and 128 
Hz during Fast Set Operations. 

The AM/PM Indicator is a D-type flip-flop which is clocked 
asynchronously using a product term clock (see figure 
10). 

Figure 12. Clock Management Modes 
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Block "CO" 

00 01 02 03 

.-----t--+--+---+-~ CLK 0 (1 MHz) 
oo------c<1--+--+--+- CLK 1 (1 Hz) 

oo---~>--t--+-- CLK 2 (Clock Pulse) 
co---®----oo----+-1/0CLK 0 (16 Hz) 
oo----1511----®--- l/OCLK 1 

Dedicated Clock 
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ispLSI Configurable 
Memory Controller 

Introduction 

There are many advantages of using the in-system pro­
grammable ispLSI devices. In board level designs, as well 
as during manufacturing, the flexibility of hardware 
reconfiguration can lead to many innovative system de­
signs. Once configured, the ispLSI devices' non-volatile 
E2CMOS cells will retain their configuration even when the 
power is turned off. The guaranteed 1,000 programming 
cycles and 20 year data retention of the ispLSI device will 
allow the user to reliably reconfigure the device as often as 
required. 

This application note highlights the advantages of design­
ing with ispLSI devices and how they can lead to innovative 
design ideas which translate to ease of use and instant 
updates without board layout changes. The flexibility of 
design is illustrated with the use of the Dynamic Random 
Access Memory (DRAM) controller. This example shows a 
typical microprocessor and memory interface with the 
memory controller controlling the DRAM access and re­
fresh timing requirements. The use of Lattice pLSI and 
ispLSI Development System (pDS) Software is also illus­
trated in this application note. The Lattice Design File (.ldf) 
listing file generated by the software is also attached at the 
end of this section. 

Memory Controller Logic Overview 

When interfacing the microprocessor to the DRAM, the 
control signal and timing requirements of both the proces-

Figure 1. DRAM Timing Controller Block Diagram 

sor and the DRAM must be satisfied. In order to satisfy 
these requirements, the external timing controller musttake 
the processor address, data and control signals and trans­
late them into the control signals for the DRAM. Atthe same 
time, the DRAM timing controller must take into account the 
refresh requirements of the DRAM. 

Figure 1 shows the block diagram of the DRAM timing 
controller that is implemented in the ispLSI 1032. The state 
machine and address multiplexer blocks are used to control 
the memory access request of the processor and supply the 
DRAM with the necessary address and control signals. 
DRAM refresh requirements are controlled by the refresh 
timer block, refresh address counter block and the address 
multiplexer block. 

Any access request from the processor is processed by 
the state machine based on the processor control signals 
such as Read/Write (R/W), Memory/IQ access (M/10), 
Address Latch Enable (ALE) and the microprocessor 
address signals. The Ready (ADY) signal is used to 
inform the processor the status of the requested data. In 
other words, it is used to acknowledge the processor that 
the memory is ready to respond to the processor. The 
address multiplexer generates the row and column ad­
dresses necessary for the memory access cycle. The 
appropriate Row Address Strobe (RAS), Column Ad 
dress Strobe (CAS), and Write (W) signals are also 
generatedbythestatemachine based on the processor 

SYSCLK 

RESET 

Refresh Complete (RFC) 

Refresh 

l----........ ---4'i-----RASO-RAS3 

l-----+---~4 '----•CASO-CAS3 
RJW--+--------' State 1-----+-------w 
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ispLSI Configurable Memory Controller 

inputs. To arbitrate between the memory access request 
and the refresh request, the state machine also gener­
ates the status signal called Access. The purpose of this 
signal is to keep track of an access cycle when the refresh 
sequence is in progress. This status signal is then used 
to determine whether or notto begin an access sequence 
after the refresh sequence. As part of the access/refresh 
arbitration, the state machine also issues an Access/ 
Refresh (ACC/REF) signal to the address multiplexer 
logic block. Based on this signal the address multiplexer 
block routes the appropriate access or refresh address 
on to the external DRAM address bus. 

As for all DRAMs, memory refresh must be completed 
within a specified time. This process is completely 
controlled by the DRAM timing controller. The refresh 
timer block generates the internal refresh request signal 
according to the system clock speed and the DRAM 
refresh rate requirements. When the state machine 
detects this refresh request signal, the refresh sequence 
for the DRAM is generated as soon as time permits. This 
means that the refresh sequence is generated right after 
the refresh request or if the timing controller is in the 
middle of a memory access cycle the refresh sequence 
is generated right after the memory access cycle is 
complete. During the refresh sequence the row address 
and all the RAS signal must be activated to perform the 
basic RAS-only refresh. The row addresses are supplied 
by the refresh address counter logic block. This logic 
block keeps track of the rows that are being refreshed 
and it gets incremented every time a refresh sequence is 
performed. All the RAS signal are activated for refresh by 
the state machine. 

With the basic understanding of the DRAM timing control 
logic complete, the next section will discuss the imple­
mentation of the logic in an ispLSI device and how to take 
advantage of the ISP features to make the system 
design, manufacturing and field updates easy and flex­
ible. 

Figure 2. ISP State Machine 

Note: 

Load 
ID 

Control signals: MODE, SDI 

Shift 
ID 

Taking Advantage of ISP Features 

Implementing a basic DRAM timing control logic in the 
ispLSI 1032 takes up approximately 65% of the total logic 
available in the device. (It is with this in mind that the 
features needed for a specific design can be added to 
these basic logic blocks). With the ISP capability, many 
features can be added to accommodate the ever chang­
ing requirements of the system, microprocessor speeds, 
availability of DRAMs, and the memory configurations. 
Moreover, the changes are made only under the software 
control. Instead of having different production runs for 
various different options, the options are added at the in­
system programming stage. 

The programming of the ispLSI devices are handled via 
five TTL level interface signals. Of these five signals, four 
signals can be dual function, a programming function as 
well as an input during normal device operation. The ISP 
Enable (ispEN) signal is the one dedicated programming 
pin used to enable and disable the programming func­
tion. Once in programming mode, the mode control 
(MODE), serial data input (SDI), serial dataclock(SCLK), 
and serial data output (SDO) signals control the entire 
programming process. The address and data required to 
program the device are serially shifted into the internal 
shift registers and the three state programming state 
machine steps through the programming sequence. The 
five-bit instructions within the state machine define all the 
necessary steps for programming. Figure 2 shows the 
ISP programming state machine with the control signal 
requirements for the state transitions. Refer to the ISP 
architecture and programming section of this handbook 
for a more detailed programming description. 

Different System Speed 

Designing with a different speed microprocessor re­
quires a different DRAM timing controller. The 

Load 
Command 

Execute 
Command 
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adjustments must be made in the state machine and 
refresh timer logic of the controller to account for the 
difference in speed. Without the capabilities of the ISP 
features, different boards with different PLD codes must 
be built to work with different processor speeds. By 
providing a simple programming circuitry on board to 
support the isp programming, the logic adjustments for 
different speed processor can be accomplished by in­
system programming the different patterns via software 
control. Manufacture of these options are made simple 
and cost effective by not having to keep an inventory of 
prepatterned devices. 

DRAM Feature Flexibility 

DRAMs have many features from which the system 
designer can select. For the same DRAM configuration, 
the system designer can select from DRAMs that have 
different access schemes such as nibble mode, static 
column mode and page mode. Similarly, different memory 
refresh schemes can be chosen. The two choices of 
refresh schemes include the simple RAS only refresh 
and the option to perform hidden refresh with the CAS 
before RAS refresh scheme. Most of these various 
DRAM options can be supported by in-system program­
ming the ispLSI devices. Again, the flexibility lies in the 
fact that the decision of what function the ispLSI will 
perform on board can be made after the decision has 
been made on which type of DRAMs are used on board. 

Different DRAM Configuration 

The ispLSI implementation of the DRAM timing controller 
makes the change of memory configuration very simple. 
Reprogramming of the address decoding and turning on 
the appropriate address strobe signals for different 
memory configuration can be done by in-system 
reconfiguration of the state machine and the address 
decoding of the ispLSI device. All of these changes can 
be accomplished under software control. 

Memory Timing Controller Details 

As shown in figure 1 the memory timing controller con­
sists of four different logic blocks. The refresh timer, 
state machine, refresh address counter and memory 
address multiplexer. All boolean equations for the logic 
blocks are developed within the Lattice pDS Software. 
The entire memory timing controller design assumes that 
all the processor signals are typical of a commercially 
available processor with a clock speed of 25 MHz. 
DRAMs are arranged in four banks of 1 M X 32-bit 
arrangement. All timing for the access and refresh 
sequences are shown in the timing diagram. 

Refresh Timer 

The function of the refresh timer is to generate a refresh 
request signal every 15.5 µs. This refresh period is 
derived from the DRAM refresh requirement of 512 rows 
of refresh every 8 ms for the 1 M X 1 DRAM. Based on 
the 25 MHz system clock frequency, the count value to 
divide the clock period to the refresh period is 200. 
Changing processor speed will only require a change of 
count value. Once the count value expires, the refresh 
timer generates an internal refresh signal to inform the 
state machine to perform a refresh cycle. When the state 
machine completes the refresh cycle, a refresh complete 
(RFC) signal is generated for the refresh timer. The 
refresh timer then resets the internal counter for the next 
refresh period. 

ispLSI implementation of the refresh timer takes up three 
GLBs (AO-A2) within the device. The system clock is 
used to run the nine bit counter, RFC is the input signal 
to this block and REFRESH is the output signal of this 
logic block. 

State Machine 

The state machine can be further divided into four 
different sub-logic blocks. These sub-logic blocks con­
sists of a RAS generator, CAS generator, 4-bit state 
machine which is divided into two state variable bits and 
two counter bits, and control signal generator. In the 
ispLSI 1032 implementation, the state machine logic 
block takes up 9 GLBs. 

The 4-bit state machine is divided into a 2-bit state 
variable, named STO and ST1, and 2-bit state counter, 
named SCNTO and SCNT1. The state diagram with its 
state transitions are shown in figure 3. In each of the 
access and refresh states, the state counter sequences 
through the operation until the sequence is complete. 
The purpose of the state variable bits are only to keep 
track of the state transitions. Once the state transition 
has occurred, the state counter bits take the responsibil­
ity of sequencing through the state. 

The three states are divided as idle state, access state 
and refresh state. Based on the processor control signal 
and the internal refresh request signal, the state transi­
tion occurs from idle state to either access state or 
refresh state. If the refresh and access request happen 
at the same time, refresh request takes precedence over 
access request. When the refresh request is asserted 
during an access cycle, the refresh cycle follows right 
after the access cycle. The only other condition between 
the access and refresh request that the state machine 
needs to arbitrate is when the access request occurs 
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during the refresh sequence. The access feedback 
signal of the state machine is activated when the access 
request occurs during the refresh cycle. When the 
refresh cycle is complete, the access feedback signal is 
used to determine whether or not the access sequence 
needs to begin. The timing diagrams in figure 4 and 5 
illustrate the control signal sequence for the access and 
refresh cycles, respectively. 

Figure 3. DRAM Timing Controller State Machine 

Initialize 

Figure 4. Access Cycle Timing 

CLK 

ALE 

: : 
'-----------· 

In addition to the external DRAM control signals, the state 
machine also generates the control signal for the address 
multiplexer and the refresh address counter. The ROW/ 
COL signal directs the address multiplexer to output the 
appropriate row and column address during the access 
cycle. Furthermore, the address multiplexer accepts the 
access/refresh (ACC/REF) control signal to either direct 
the memory access address from the processor, or direct 
the refresh row address from the refresh address counter 
to the DRAM. 
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Refresh Address Counter 

The refresh address counter keeps track of the rows of 
DRAM to be refreshed. This counter is only incremented 
on the falling edge of the RAS signal during refresh 
sequence. The ispLSI device implementation of this 
counter takes 3 GLBs. 

Memory Address Multiplexer 

In access mode, determined by the ACC/REF internal 
signal, the memory address multiplexer multiplexes be­
tween the row and column address. Once in the refresh 
cycle, the refresh address comes from the refresh ad­
dress counter. It takes 3 GLBs to implement the 
multiplexer in the ispLSI 1032. 

Figure 5. Refresh Cycle Timing 

0 

CLK 

REFRESH 

XACC/REF 

RFC 

Conclusion 

The intention of this application section is to give an 
overview of how the ISP features can be used to improve 
the design features and the manufacturing process by 
using an example of a generalized DRAM timing control­
ler. In addition, the software example given in the 
document should provide a good starting point for de­
signers who need to implement a state machine based 
design. With the flexibility of the ispLSI devices the 
possibilities are limited only by one's imagination to 
implement innovative designs. The following sections 
list the Lattice Design file with the Boolean Equations 
and pinout for the ispLSI 1032. 

2 3 4 

, ___________________ _l __ r- ________ l_~ __ ........., 

: ! :: :I 1 ~I ____ _ ACCESS 

' ' 
' ' I I I I -------------------------------------------------------
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Design LDF Listing 

//isp_app.ldf generated using Lattice pDS Version 2.50 
LDF 1.00.00 DESIGNLDF; 
DESIGN DRAM CONTROLLER 1.00; 
PROJECTNAMEispAPPLICATIONS; 
DESCRIPTION 
DRAM CONTROLLER DESIGN FORispAPPLICATION. 
IT INCLUDES FOUR MAJOR BLOCKS. 

- REFRESH TIMER 
- REFRESH ROW ADDRESS COUNTER 
- ADDRESS MUX 
- STATE MACHINE; 

PART pLSI 1032-90LJ; 

DECLARE 
END; //DECLARE 

SYM GLB C2 1 ; 
///// ROW ADDRESS STROBE (RASl,RASO) GLB ///// 
SIGTYPE IRASl REG OUT; 
SIGTYPE IRASO REG OUT; 
EQUATIONS 

IRASl.CLK = ICLK; 
IRASl = ISTO & !IA20 & IRASl & !IRESET ///// REDUCED RASl 

# !STl & IA21 & IRASl & IIRESET 
# !STO & STl & SCNTO & SCNTl & IA20 & !IA21 & !IRESET 
# STO & !STl & SCNTO & SCNTl & !IRESET 

END 
END; 

# !STO & ISTl & IRASl & !IRESET 
# STO & STl & IRAS! & !IRESET 
# SCNTl & IRASl & !IRESET 
# SCNTO & IRASl & !IRESET; 

IRASO = !STO & IA20 & IRASO & !IRESET 
# !STl & IA21 & IRASO & !IRESET 
# !STO & STl & SCNTO & SCNTl & 
# STO & !STl & SCNTO & SCNTl & 
# ISTO & !STl & IRASO & IIRESET 
# STO & STl & IRAS2 & !IRESET 
# SCNTl & IRASO & !IRESET 
# SCNTO & IRASO & IIRESET; 

SYM GLB A2 1 1 
///// REFRESH TIMER GLB2 ///// 
SIGTYPE RQ8 REG OUT; 
SIGTYPE RQ9 REG OUT; 
SIGTYPE REFRESH REG OUT; 

/Ill/ REDUCED RASO 

!IA20 & !IA21 & IIRESET 
!IRESET 

/Ill/ 

/Ill/ 

FJKll (REFRESH,R RATE,RFC,ICLK); ///// REFRESH REQUEST SIGNAL ///// 
EQUATIONS -

END 
END; 

RQ8.CLK = ICLK; 
RQS = (RQ8 & !RFC) 

$$ (RQ7 & RQ6 & RQS & RQ4 & RQ3 & RQ2 & RQl & RQO & !RFC); 
RQ9 = (RQ9 & !RFC) 

$$ (RQ8 & RQ7 & RQ6 & RQS & RQ4 & RQ3 & RQ2 & RQl & RQO & !RFC); 
R_RATE = RQ7 & RQ6 & IRQS & IRQ4 & RQ3 & !RQ2 & IRQl & !RQO; 
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SYM GLB Al 1 
///// REFRESH TIMER GLBl 
SIGTYPE RQ4 REG OUT; 
SIGTYPE RQS REG OUT; 
SIGTYPE RQ6 REG OUT; 
SIGTYPE RQ7 REG OUT; 
EQUATIONS 

RQ4.CLK = ICLK; 

//Ill 

RQl & RQO & !RFC); 

RQ2 & RQl & RQO & !RFC); 

RQ3 & RQ2 & RQl & RQO & !RFC 

RQ4 = (RQ4 & !RFC) 
$$ (RQ3 & RQ2 & 

RQS = (RQS & !RFC) 
$$ (RQ4 & RQ3 & 

RQ6 = (RQ6 & !RFC) 
$$ (RQS & RQ4 & 

RQ7 = (RQ7 & !RFC) 
$$ (RQ6 & RQS & RQ4 & RQ3 & RQ2 & RQl & RQO & 

END 
END; 

SYM GLB AO 1 
////// REFRESH TIMER GLBO ///// 
SIGTYPE RQO REG OUT; 
SIGTYPE RQl REG OUT; 
SIGTYPE RQ2 REG OUT; 
SIGTYPE RQ3 REG OUT; 
EQUATIONS 

END 
END; 

RQO.CLK = ICLK; 
RQO = !RQO & !RFC; 
RQl = (RQl & !RFC) 

$$ (RQO & !RFC); 
RQ2 = (RQ2 & !RFC) 

$$ (RQl & RQO & !RFC); 
RQ3 = (RQ3 & !RFC) 

$$ (RQ2 & RQl & RQO & !RFC); 

SYM GLB DO 1 
///// ADDRESS MUX GLBO ///// 
SIGTYPE IRAMO ASYNC OUT; 
SIGTYPE IRAMl ASYNC OUT; 
SIGTYPE IRAM2 ASYNC OUT; 
SIGTYPE IRAM3 ASYNC OUT; 
EQUATIONS 

!RFC); 

IRAMO =ROW COL & ACC REF & IAO ///// ROW SELECT ///// 
# !ROWCOL & ACCREF & IAlO ///// COLUMN SELECT ///// 
# !ACC=REF & RCNTRO; ///// REFRESH ADDR SELECT ///// 

END 
END; 

IRAMl = ROW COL & ACC REF & IAl 
# !ROW_COL & ACC_REF & IAll 
# !ACC_REF & RCNTRl; 

IRAM2 = ROW_COL & ACC_REF & IA2 
# !ROW_COL & ACC_REF & IA12 
# !ACC_REF & RCNTR2; 

IRAM3 = ROW_COL & ACC_REF & IA3 
# !ROW_COL & ACC_REF & IA13 
# !ACC REF & RCNTR3; 
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SYM GLB Dl 1 ; 
///// ADDRESS MUX GLBl ///// 
SIGTYPE IRAM4 ASYNC OUT; 
SIGTYPE !RAMS ASYNC OUT; 
SIGTYPE IRAM6 ASYNC OUT; 
SIGTYPE IRAM7 ASYNC OUT; 
EQUATIONS 

IRAM4 =ROW COL & ACC REF & IA4 ///// ROW SELECT ///// 
# !ROW COL & ACC REF & IA14 ///// COLUMN SELECT ///// 
# !ACC=REF & RCNTR4; ///// REFRESH ADDR SELECT ///// 

END 
END; 

!RAMS = ROW_COL & ACC_REF & !AS 
# !ROW COL & ACC REF & IAlS 
# !ACC=REF & RCNTRS; 

IRAM6 = ROW COL & ACC REF & IA6 
# !ROW_COL & ACC_REF & IA16 
# !ACC_REF & RCNTR6; 

IRAM7 = ROW COL & ACC REF & IA7 
# !ROW COL & ACC REF & !Al 7 
# !ACC=REF & RCNTR7; 

SYM GLB D2 1 ; 
///// ADDRESS MUX GLB2 ///// 
SIGTYPE !RAMS ASYNC OUT; 
SIGTYPE IRAM9 ASYNC OUT; 
EQUATIONS 

!RAMS =ROW COL & ACC REF & !AB ///// ROW SELECT ///// 
# !ROWCOL & ACCREF & IA18 ///// COLUMN SELECT ///// 
# !ACC-REF & RCNTRB; ///// REFRESH ADDR SELECT ///// 

IRAM9 = ROW COL & ACC REF & IA9 

END 
END; 

# ! ROW COL & ACC -REF & !Al 9 
# !ACC=REF & RCNTR9; 

SYM GLB DS 1 ; 
////// REFRESH ROW COUNTER GLBO 

SIGTYPE RCNTRO REG OUT; 
SIGTYPE RCNTRl REG OUT; 

Ill// 

SIGTYPE RCNTR2 REG OUT; 
SIGTYPE RCNTR3 REG OUT; 
EQUATIONS 

END 
END; 

RCNTRO.PTCLK = !!RASO; ///// USE RAS AS THE COUNTER CLOCK 
RCNTRO = !RCNTRO & IACC REF ///// COUNT DURING REFRESH 

# RCNTRO & ACC REF; ///// HOLD DURING ACCESS 
RCNTRl = (RCNTRl & !ACC REF) 

$$ ((RCNTRO & !ACC REF) 
# (RCNTRl & ACC_REF)); 

RCNTR2 = (RCNTR2 & !ACC REF) 
$$ ((RCNTRl & RCNTRO & !ACC REF) 

# (RCNTR2 & ACC REF)); -
RCNTR3 = (RCNTR3 & !ACc::_REF) 

$$ ((RCNTR2 & RCNTRl & RCNTRO & !ACC_REF) 
# (RCNTR3 & ACC_REF)); 
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SYM GLB D6 1 
////// REFRESH ROW COUNTER GLBl ///// 
SIGTYPE RCNTR4 REG OUT; 
SIGTYPE RCNTR5 REG OUT; 
SIGTYPE RCNTR6 REG OUT; 
SIGTYPE RCNTR7 REG OUT; 
EQUATIONS 

///// USE RAS AS THE COUNTER CLOCK //// 
RCNTR4.PTCLK = !IRASO; 
RCNTR4 = (RCNTR4 & IACC_REF) 
///// COUNT DURING REFRESH ///// 

$$ ((RCNTR3 & RCNTR2 & RCNTRl & RCNTRO & IACC_REF) 
# (RCNTR4 & ACC REF)); 

///// HOLD DURING ACCESS ///// 
RCNTR5 = (RCNTR5 & !ACC REF) 

$$ ((RCNTR4 & RCNTR3 & RCNTR2 & RCNTRl & RCNTRO & !ACC_REF) 
# (RCNTR5 & ACC_REF)); 

RCNTR6 = (RCNTR6 & !ACC REF) 
$$ ((RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTRl & RCNTRO & !ACC_REF) 
# (RCNTR6 & ACC_REF)); 

RCNTR7 = (RCNTR7 & !ACC REF) 
$$ ((RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & RCNTRl & RCNTRO & 

!ACC_REF) 
# (RCNTR7 & ACC_REF)); 

END 
END; 

SYM GLB D7 1 ; 
////// REFRESH ROW COUNTER GLB2 ///// 

SIGTYPE RCNTR8 REG OUT; 
SIGTYPE RCNTR9 REG OUT; 
EQUATIONS 

RCNTR8.PTCLK = !IRASO; ///// USE RAS AS THE COUNTER CLOCK //// 
RCNTRS = (RCNTRS & IACC REF) 

$$ ((RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4 
///// COUNT DURING REFRESH ///// 

& RCNTR3 & RCNTR2 & RCNTRl & RCNTRO & !ACC REF)# (RCNTRS & ACC_REF)); 
///// HOLD DURING ACCESS ///// -
RCNTR9 = (RCNTR9 & IACC REF) 

$$ ((RCNTRS & RCNTR7 & RCNTR6 & RCNTR5 & RCNTR4 & RCNTR3 & RCNTR2 & 
RCNTRl & RCNTRO & !ACC REF) 

# (RCNTR9 & ACC_REF)); -
END 

END; 

SYM GLB C7 1 ; 

II 

///// STATE BITS GLB ///// 
SIGTYPE STO REG OUT; 
SIGTYPE STl REG OUT; 
FJKll (STO,JSTO,KSTO,ICLK); 
FJKll (STl,JSTl,KSTl,ICLK); 
EQUATIONS 

JSTO !STl & !STO & REFRESH; 
KSTO !STl & STO & SCNTl & SCNTO; 

/Ill/ 
Ill/I 

JSTl ISTl & !STO & !REFRESH & IIALE & IMIO_ 
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/Ill 

/Ill 
END 

END; 

# ISTl & ISTO & !REFRESH & ACCESS; 

KSTl = STl & !STO & SCNTl & SCNTO 
# ISTl & STO & SCNTl & SCNTO; 

SYM GLB C6 1 ; 
///// STATE COUNTER BITS GLB ///// 

SIGTYPE SCNTO REG OUT; 
SIGTYPE SCNTl REG OUT; 
FJKll (SCNTO,JSCNTO,KSCNTO,ICLK); 
FJKll (SCNTl,JSCNTl,KSCNTl,ICLK); 
EQUATIONS 

JSCNTO = !SCNTO & STl & !STO 

I/Ill STATE BITl SET INPUT 

Ill/I STATE BITO RESET INPUT 

# !SCNTO & ISTl & STO; ///// STATE COUNTER BITO SET INPUT ///// 
KSCNTO = SCNTO & STl & !STO 

# SCNTO & !STl & STO 
# STl & !STO & SCNTl & SCNTO 

I 

I 

# !STl & STO & SCNTl & SCNTO; /////STATE COUNTER BITO RESET INPUT / 
Ill/ 

JSCNTl = !SCNTl & SCNTO & STl & !STO 
# !SCNTl & SCNTO & ISTl & STO; ///// STATE COUNTER BITl SET INPUT I 

Ill 
KSCNTl = SCNTl & SCNTO & STl & !STO 

# SCNTl & SCNTO & !STl & STO 
# STl & ISTO & SCNTl & SCNTO 
# ISTl & STO & SCNTl & SCNTO; ///// STATE COUNTER BITO RESET INPUT / 

Ill/ 
END 

END; 

SYM GLB CS 1 ; 
///// CONTROL SIGNALS GLBO ///// 
SIGTYPE RFC REG OUT; 
SIGTYPE ACC REF REG OUT; 
FJKll (RFC,JRFC,KRFC,ICLK); 
FJKll (ACC_REF,JACC_REF,KACC_REF,ICLK); 
EQUATIONS 

JRFC !STl & STO & SCNTl & ISCNTO; ///// REFRESH COMPLETE SET INPUT 
I/Ill 

II 
KRFC = I STl .& STO & SCNTl & SCNTO; //I// REFRESH COMPLETE RESET INPUT 111 

JACC REF = !STl & STO & SCNTl & SCNTO 
- # IRESET; ///// ACCESS/REFRESH SET INPUT ///// 

KACC_REF = !STl & !STO & REFRESH & IIRESET;/////ACCESS/REFRESH RESET INPUT 
//Ill 

END 
END; 

SYM GLB Cl 1 
///// ROW ADDRESS STROBE (RAS3,RAS2) GLB ///// 

SIGTYPE IRAS3 REG OUT; 
SIGTYPE IRAS2 REG OUT; 
EQUATIONS 

IRAS3 = ISTO & IIA20 & IRAS3 & IIRESET ///// REDUCED RAS3 
# ISTl & IIA21 & IRAS3 & IIRESET 
# ISTO & STl & SCNTO & SCNTl & IA20 & IA21 & !IRESET 
# STO & ISTl & SCNTO & SCNTl & !IRESET 
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# ISTO & ISTI & IRASJ & !IRESET 
# STO & STI & IRASJ & IIRESET 
# SCNTI & IRAS3 & IIRESET 
# SCNTO & IRAS3 & !IRESET; 

IRAS3.CLK = ICLK; 

IRAS2 = ISTO & IA20 & IRAS2 & IIRESET ///// REDUCED RAS2 
# ISTI & IIA2I & IRAS2 & IIRESET 
# !STO & STI & SCNTO & SCNTI & !IA20 & IA2I & IIRESET 
# STO & ISTI & SCNTO & SCNTI & IIRESET 

END 
END; 

# !STO & ISTI & IRAS2 & !IRESET 
# STO & STI & IRAS2 & IIRESET 
# SCNTI & IRAS2 & IIRESET 
# SCNTO & IRAS2 & IIRESET; 

IRAS2.CLK = ICLK; 

SYM GLB B7 I 
///// COLUMN ADDRESS STROBE (CASO,CASI) GLBO ///// 
SIGTYPE ICASO REG OUT; 
SIGTYPE ICASI REG OUT; 
FJKII (ICASO,JCASO,KCASO,ICLK); 
FJKII (ICASI,JCASI,KCASI,ICLK); 
EQUATIONS 

///// CASO SET INPUT ///// 
JCASO = STI & ISTO & IIAI & IIAO & SCNTI & SCNTO 

# IRESET; 
/////CASO RESET INPUT ///// 
KCASO STI & !STO & IIAI & IIAO & ISCNTI & SCNTO & !IRESET; 
///// CASI SET INPUT ///// 
JCASI STI & !STO & !IAI & IAO & SCNTI & SCNTO 

# IRESET; 
/////CASI RESET INPUT ///// 
KCASI = STI & !STO & IIAI & IAO & ISCNTI & SCNTO & !IRESET; 

END 
END; 

SYM GLB B6 I ; 
///// COLUMN ADDRESS STROBE (CAS2,CAS3) GLBI 
SIGTYPE ICAS2 REG OUT; 
SIGTYPE ICAS3 REG OUT; 
FJKII (ICAS2,JCAS2,KCAS2,ICLK); 
FJKII (ICAS3,JCAS3,KCAS3,ICLK); 
EQUATIONS 

/Ill/ 

/Ill/ 

JCAS2 = STI & !STO & IAI & !IAO & ISCNTI & SCNTO 
/Ill/ 

///// CAS2 SET INPUT 

# IRESET; 
///// CAS2 RESET INPUT ///// 
KCAS2 = STI & !STO & IAI & !IAO & SCNTI & SCNTO & !IRESET; 
JCASJ = STI & !STO & IAI & IAO & ISCNTI & SCNTO///// CASJ SET INPUT ///// 

# IRESET; 
///// CASJ RESET INPUT ///// 
KCASJ = STI & !STO & IAI & IAO & SCNTI & SCNTO & IIRESET; 

END 
END; 
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SYM GLB BS 1 ; 
///// CONTROL SIGNALS (ACCESS,WRITE) GLBl ///// 

SIGTYPE ACCESS REG OUT; 
SIGTYPE IWREG REG OUT; 
FJKll (ACCESS,JACCESS,KACCESS,ICLK); 
FJKll (IWREG,JWREG,KWREG,ICLK); 
EQUATIONS 

JACCESS !IALE & IMIO_; ///// MEMORY ACCESS REQUEST SET INPUT //// 
I 

KACCESS STl & !STO & SCNTl & SCNTO;/////MEMORY ACCESS REQUEST RESET 
INPUT///// 

JWREG !ACCESS & IRW ///// WRITE REGISTER SET INPUT ///// 
# STl & ! STO & SCNTl & SCNTO 
# IRESET; 

KWREG = !ACCESS & !IRW & IIRESET; ///// WRITE REGISTER RESET INPUT 
//Ill 

END 
END; 

SYM GLB B4 1 ; 
///// CONTROL SIGNALS (ROW/COL,RDY)GLB2 ///// 
SIGTYPE ROW_COL REG OUT; 
SIGTYPE IRDY REG OUT; 
FJKll (ROW COL,JROW COL,KROW COL,ICLK); 
FJKll (IRDY,JRDY,KRDY,ICLK);­
EQUATIONS 
JROW COL= STl & !STO & SCNTl & SCNTO///// ROW/COL SELECT SET INPUT ///// 

- # IRESET; 
KROW COL STl & ISTO & ISCNTl & SCNTO & IIRESET/////ROW/COL SELECT RESET SET 

- INPUT///// 
JRDY STl & ISTO & SCNTl & ISCNTO; ///// READY SET INPUT ///// 
KRDY STl & ISTO & SCNTl & SCNTO; ///// READY RESET INPUT ///// 

END 
END; 

SYM IOC I016 1 ; 
// ADDR 12 I/O CELL W/REG. INPUT // 
XPIN IO XA12; 
IDll (IA12,XA12,IICLK); 

END; 

SYM IOC I015 1 ; 
// ADDR 11 I/O CELL W/REG. INPUT // 
XPIN IO XAl l; 
IDll (IAll,XAll,IICLK); 

END; 

SYM IOC I014 1 ; 
// ADDR 10 I/O CELL W/REG. INPUT // 
XPIN IO XAlO; 
IDll (IA10,XA10,IICLK); 

END; 

SYM IOC I013 1 ; 
// ADDR 9 I/O CELL W/REG. INPUT // 
XPIN IO XA9; 
IDll (IA9,XA9,IICLK); 

END; 
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SYM IOC I012 1 
II ADDR 8 IIO CELL WIREG. INPUT II 
XPIN IO XAB; 
IDll (IA8,XAB,IICLK); 

END; 

SYM IOC IOll 1 
II ADDR 7 IIO CELL WIREG. INPUT II 
XPIN IO XA7; 
IDll (IA7,XA7,IICLK); 

END; 
SYM IOC IOlO 1 ; 

II ADDR 6 IIO CELL WIREG. INPUT II 
XPIN IO XA6; 
IDll (IA6,XA6,IICLK); 

END; 

SYM IOC I09 1 
II ADDR 5 IIO CELL WIREG. INPUT II 
XPIN IO XA5; 
IDll (IA5,XA5,IICLK); 

END; 

SYM IOC IOB 1 

II ADDR 4 IIO CELL WIREG. INPUT II 
XPIN IO XA4; 
IDll (IA4,XA4,IICLK); 

END; 

SYM IOC I07 1 ; 
II ADDR 3 IIO CELL WIREG. INPUT II 
XPIN IO XA3; 
IDll (IA3,XA3,IICLK); 

END; 
SYM IOC Y2 1 

II INPUT REGISTER CLOCK (ALE) II 
XPIN CLK XICLK; 
IBll (IICLK,XICLK); 

END; 

SYM IOC I06 1 
II ADDR 2 IIO CELL WIREG. INPUT II 
XPIN IO XA2; 
IDll (IA2,XA2,IICLK); 

END; 

SYM IOC I05 1 ; 
II ADDR 1 IIO CELL WIREG. INPUT II 
XPIN IO XAl; 
IDll (IAl,XAl,IICLK); 

END; 

SYM IOC 104 1 
II ADDR 0 IIO CELL WIREG. INPUT II 
XPIN IO XAO; 
IDll (IAO,XAO,IICLK); 

END; 
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SYM IOC I03 1 
II READY IIO CELL, OUTPUT II 
XPIN IO XRDY; 
OBll (XRDY,IRDY); 

END; 

SYM IOC I02 1 
II ADDRESS LATCH ENABLE IIO CELL I 

I 
XPIN IO XALE; 
IBll (IALE,XALE); 

END; 

SYM IOC IOl 1 ; 
II MEMORY OR IIO ACCESS II 
XPIN IO XMIO_; 
IBll (IMIO_,XMIO_); 

END; 

SYM IOC IOO 1 
II READ WRITE SELECTION II 
XPIN IO XRW_; 
IBll (IRW_,XRW_); 

END; 

SYM IOC YO 1 
II SYSTEM CLOCK INPUT II 
XPIN CLK XSYS CLK LOCK 20; 
IBll (ICLK,XSYS_CLK); 

END; 

SYM IOC I017 1 
II ADDR 13 IIO CELL WIREG. INPUT I 

I 
XPIN IO XAl 3; 
IDll (IA13,XA13,IICLK); 

END; 

SYM IOC I018 1 
II ADDR 14 IIO CELL WIREG. INPUT I 

I 
XPIN IO XA14; 
IDll (IA14,XA14,IICLK); 

END; 

SYM IOC I019 1 ; 
II ADDR 15 IIO CELL WIREG. INPUT I 

I 
XPIN IO XA15; 
IDll (IA15,XA15,IICLK); 

END; 

SYM IOC I020 1 ; 
II ADDR 20 IIO CELLWIREG. INPUT II 
XPIN IO XA20; 
IDll (IA20,XA20,IICLK); 

END; 
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SYM IOC 1021 l; 
II ADDR 21 IIO CELL WIREG.INPUT II 
XPIN IO XA21 
IDll (IA21,XA21,IICLK); 

END; 

SYM IOC I022 1; 
XPIN IO XRESET; 
IBll (!RESET, XRESET); 

END; 

SYM IOC 1023 1 ; 
XPIN IO XREFRESH; 
IBll (REFRESH, XREFRESH); 

END; 

SYM IOC 1024 1 ; 

END; 

XPIN IO XRAMO; 
OBll (XRAMO, !RAMO); 

SYM IOC 1025 1 ; 

END; 

XPIN IO XRAMl; 
OBll (XRAMl, IRAMl); 

SYM IOC 1026 1 ; 

END; 

XPIN IO XRAM2; 
OBll (XRAM2, IRAM2); 

SYM IOC 1027 1 ; 

END; 

XPIN IO XRAM3; 
OBll (XRAM3, IRAM3); 

SYM IOC 1028 1 ; 

END; 

XPIN IO XRAM4; 
OBll (XRAM4, IRAM4); 

SYM IOC 1029 1 ; 

END; 

XPIN IO XRAMS; 
OBll (XRAMS, !RAMS); 

SYM IOC !030 1 ; 

END; 

XPIN IO XRAM6; 
OBll (XRAM6, IRAM6); 
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SYM IOC 
XPIN 
OBll 

END; 

I031 1 . 
I 

IO XRAM7; 
( XRAM7 I IRAM7); 

SYM IOC !032 1 ; 

END; 

XPIN IO XRAMB; 
OBll (XRAMB, !RAMS); 

SYM IOC 1033 1 ; 

END; 

XPIN IO XRAM9; 
OBll (XRAM9, IRAM9); 

SYM IOC 1034 1 ; 
XPIN IO XSTO; 
OBll (XSTO, STO); 

END; 

SYM IOC 1036 1 ; 
XPIN IO XSTl; 
OBll (XSTl, STl); 

END; 

SYM IOC 
XPIN 
OBll 

END; 

I038 1 . 
' IO XSCNTO; 

(XSCNTO, SCNTO); 

SYM IOC 1040 1 ; 

END; 

XPIN IO XSCNTl; 
OBll (XSCNTl, SCNTl); 

SYM IOC 1041 1 ; 
XPIN IO XACCESS; 
OBll (XACCESS, ACCESS); 

END; 
SYM IOC 1042 1 ; 

END; 

XPIN IO XIWREG; 
OBll (XIWREG, IWREG); 

SYM IOC 1043 1 ; 
XPIN IO XROW_COL; 
OBll (XROW COL, ROW_COL); 

END; 

SYM IOC 
XPIN 
OBll 

END; 

I044 
IO 

1 . 
' XIRDY; 

( XIRDY, IRDY) ; 
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SYM roe 1045 1 ; 
XPIN IO XRFC; 
OBll (XRFC, RFC); 

END; 

SYM roe 1046 1 ; 
XPIN IO XACC_REF; 

ispLSI Configurable Memory Controller 

OBll (XACC_REF, ACC_REF); 
END; 
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Introduction 

The Universal Product Code was first implemented by 
the grocery industry in 1973 as a method of improving 
inventory control and checkout times. As its benefits 
were realized, it soon spread throughout the retail indus­
try. UPC Version A is a simple numeric only code encoding 
a 12 digit number into a continuous, fixed length symbol. 
UPC Version E is similar to Version A except that it only 
encodes 6 digits. 

Figure 1. UPC Version A - 12 Digit Code 

Left Center 
Guard Guard 
Pattem Odd Parity Digits Pattern 

11 1111 

Right 
Guard 

Even Parity Digits Pattern 

I I I 
Figure 1 shows an example Version A pattern which 
encodes the number sequence 01234567890. The Ver­
sion A pattern is divided into two halves. Each half 
consists of a guard pattern and six digits, with a guard 
pattern separating them. The patterns used to encode 
the digits on the left half have an odd number of bits (Odd 
Parity), and the patterns used to encode the digits on the 
right half have an even number of bits (Even Parity). This 
allows error checking to be performed, and a symbol 
which has been scanned backwards can be detected by 
detecting even parity codes being received before odd 
parity codes. 

The basic width of a bar or space is determined by the 
width of the guard bars. This is defined to be in the range 
of 10.4 to 26 mils wide. Bar and space widths can be 
anywhere from 1 to 4 guard bar widths wide. The guard 
bars are usually printed with a slightly longer length than 
the data bars to allow a greater scanning tilt angle. 

Bar Code Reader 

As mentioned before, the code which is used to represent 
numbers on the left side of the code is different from the 
code used on the right half. The data is encoded as a 2 
of 7 Code using two bars and two spaces to describe 20 
unique patterns. These 20 patterns encode the 1 O num­
bers with both odd and even parity. The patterns are 
shown in Figure 2. 

Figure 2. UPC Encodation Patterns 

Left Digit 
(Odd Parity) 

Right Digit 
(Odd Parity) 

0862 

The first digit of the twelve is called the number system 
digit and is used to indicate the type of product the code 
is identifying. The next five digits are the Manufacturers 
ID Number as assigned by the Uniform Code Council, 
and the next five digits are the Item ID number assigned 
by the manufacturer. The last digit is a check digit. The 
value of this digit is based on the weighted sum of all of 
the other digits in the number. Using a weighted sum 
allows checking for transposition errors to be performed 
if the number is manually entered. 

Figure 3 shows an example UPC Version E symbol which 
encodes the digits 123456. This code was specified to 
label small items. Because many of the digits in the 
Manufacturers ID Number and Item ID Number are 
frequently zeros, by suppressing these zeros using a 
standard compression process the number of digits can 
be reduced from 12 to 5. The last digit in the symbol 
indicates the type of suppression used in defining the 
symbol. This pattern uses intermixed digits of odd and 
even parity using the same encoding patterns shown in 
Figure 1. 
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Figure 3. UPC Version E - 6 Digit Code 

Guard Guard 
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Figure 4. UPC (Bar Code) Reader Block Diagram 
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This example design shows how to use a Lattice pLSI 
device to implement a standard Universal Product Code 
(UPC), or Bar Code reader in a single chip. The chip that 
will be designed will receive digital signals from a Bar 
Code wand, determine the timing of those signals, sepa­
rate the data from the wavetrain, and transmit that data 
asynchronously to a P.C. RS232 serial port. Both UPC 
Version A (12 Digit) and UPC version E (6 Digit) types will 
be decoded. 

The main components of the block diagram in Figure 4 
are described in the Theory of Operation section. 

Bit Time 
Counter 
Circuit 

~ 
Latch Multiplexer 

I--
~ !----

.._ 

Output Shift UART Out ..... Register 

Control 1l State 
Machine 

Data/CR 
Multiplexer 

ODh~ 11 
Data Shift 
Register 

0864 
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Theory of Operation 

The UPC, or Bar Code, Reader consists of six major 
parts, which are the Clock Divider, Bit Time Counter, 
Data Shift Register, Control State Machine, Status Bits 
and UART. A complete description of each component 
follows: 

Clock Divider 

The Clock Divider Circuit (shown in Figure 8) can be 
divided into three parts. The divider takes the 1.8432 
MHz reference clock and first divides it by 16 using a four 
bit counter CBU44 to generate 115.2 KHz. This is used 
as the main reader frequency, and was chosen primarily 
for two reasons. First, a frequency was needed that was 
fast enough so the clock skew at the edges of the 
received wand data is minimal in relation to Terminal 
Count (when the data is valid). Clock skew is caused by 
the data edge not being aligned with the rising edge of the 
clock. They can be, in the worse case, a complete clock 
period apart. If, for example, the data period is very small 
and the clock frequency is very slow, the width of the first 
guard bar will correspond to only a few counts. Again 
under worse case conditions, the clock skew at the 
starting edge of data added to the clock skew at the end 
of data can cause the data to be either sampled twice, or 
not at all. This condition is worsened if the data periods 
are varying. Secondly, the frequency had to be slow 
enough so that a nine bit counter would be sufficient to 
determine the width of the guard bar. Thus 115.2 KHz 
was selected as the reader frequency. 

The 115.2 KHz is further divided using a two bit counter 
CBU42. By preloading one and counting up, the end 
result is 38.4 KHz. In the final stage, 38.4 KHz is divided 
by four using CBU22 to generate 9.6 KHz, which is used 
in the transfer of data over the UART. 

BIT TIME COUNTER 

The Bit Time Counter Circuit (shown in Figure 9) consists 
of two counters, storage flip-flops and logic gates. The 
two counters namely CBUD8 and CBUD1 form the nine 
bit counter which is used in determining the width of the 
first guard bar in the code. Once the leading edge of the 
first guard bar is received, the counters collectively start 
counting down. At the end of the first guard bar, the 
counters will contain a value relative to the width of the 
guard bar. For the most reliable reading, the data should 
be sampled in the middle of a bar or space. To achieve 
this, the value corresponding to the relative width of the 
first guard bar is divided by two and stored in the three 

Bar Code Reader 

sets of flip-flops namely two FD24s and one FD21. Thus, 
for each subsequent bar or space, the shifted value is 
preloaded into the counters and the counters are allowed 
to count up to terminal count. Terminal count is then used 
to strobe the input data into the data shift register. The 
terminal count circuitry which determines when the data 
becomes valid consists of two parts, namely the edge 
detector and the CNTTC detector. The edge detector 
generates a pulse when the data makes a transition from 
either low to high or high to low and reloads the nine bit 
counter with the stored width value. The duration of the 
pulse is one clock period. The edge pulse also resets the 
toggle flip-flop which is part of the CNTTC detector 
circuitry. Thus when the nine bit counter reaches zero 
and the Sample signal goes high, the CNTTC flip-flop is 
set, which enables the data shift register, and data is 
latched. If an edge is not detected, the toggle flip-flop lets 
the counter count the stored guard bar width twice before 
CNTTC flip-flop is set and data is taken. The actual pDS 
code for this portion of the Bar Code Reader can be found 
in Figure 17. 

The reason behind having the edge detector circuitry is 
to align the CNTTC pulses with the center of the data 
(bars and spaces). Since it is extremely hard to move the 
wand at a constant rate, the data pulses tend to have 
varying periods. If absolutely no alignment is done, the 
CNTTC pulses become invalid once the accumulated 
change in the data pulses is greaterthan half the width of 
the guard bar. Thus by starting the nine bit counter at the 
edges of the data, the above mentioned problem is 
greatly reduced. However, the problem still remains ifthe 
data periods reduce or enlarge more than half the width 
of the first guard bar. Therefore, it is recommended to 
move the wand as steadily as possible to keep the data 
pulses within a small margin, roughly half the width of the 
first guard bar. 

DATA SHIFT REGISTER 

The Data Shift Register (shown in Figure 12) consists of 
two 4-bit shift registers (SRR24). The Data Shift Register 
is used to store the incoming data until a complete 
character has been received. As discussed in the de­
scription of the Universal Product Code section, the bar 
code is 2 of 7 code. Thus, a complete character is 
received after every 7 bits. Moreover, Version E and 
Version A codes are 6 and 12 characters long respec­
tively. Thus two counters are needed to keep track of the 
bit and the character counts. Although not directly part of 
the Data Shift Register, two CBU34 counters keep track 
of the number of bits and characters received. Since 
CBU34s are 4-bit counters, they are preloaded with nine 

4-123 1994 Handbook 

• 



Bar Code Reader 

for the bit count and ten for the character count respec­
tively. The character counter, when reading the Version 
A case, is reset after the sixth character to accommodate 
the 12 characters in the Bar Code. After counting the 
seven bits, the bit counter generates LASTBIT signal 
which tells the rest of the logic a complete character has 
been received. The character counter, on the other hand, 
after receiving six characters asserts the LASTCHAR 
signal. The LASTCHAR signal is used by the Control 
State Machine to define various machine states. 

Figure 5. State Diagram 

Figure 6. Data Waveforms Showing Machine States 

115.2 KHz 
Clock 

Input 
Data 

Edge 
Detector 

CNTIC 

LATCH ____ _J 

GUARD1 ------' 

GUARD2 ______ ___J 

DATA -----------' 

CONTROL STATE MACHINE 

The Control State Machine (shown in figure 14 and 15) is 
the heart of the design. It is based on three state deter­
mining variables namely SBO, SB1 and SB2. The job of 
the state machine is to detect and generate the basic 
width timing signals, generate the control signals for the 
Data Shift register and detect errors. The state diagram 
is shown in figure 5. Figure 6 shows a typical wave form 
highlighting the various machine states. A complete 
description of each state is as follows: 

Guard 1 & Din 
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The first state is the IDLE state. In this state, the Reader 
is waiting for a low to high data transition. This 
corresponds to the wand and seeing the first guard bar 
signifying the start of the Bar Code. IDLE is reached after 
6 consecutive zeros are seen in the input data stream 
signifying the end of the Bar Code. IDLE is also reached 
immediately after an error or after the end of the first half 
of a Version A pattern. 
Once a low to high transition is detected, the Reader goes 
into the START state. As figure 5 shows, this is initiated 
by a DIN value which means the data received was a logic 
high. Another point to note is START can only be reached 
from the IDLE state. Once in the START state, the Bit 
Time Counter continuously decrements from zero. This 
state continues until the end of the first guard bar. 

The end of the first guard bar is detected when a high to 
low data transition takes place. This places the Reader in 
the LATCH state, which is only a single 115.2 KHz bit 
wide. LATCH disables the Bit Time Counter and loads the 
counted value into the storage flip-flops. Remember that 
the value stored is actually one half the counted value. 
This is done to shift the sampling point to the middle of the 
bit period. LATCH also loads the stored value in the flip­
flops into the Bit Time Counter. 

Once the value is loaded in the Bit Time Counter, the 
Reader enters the GUARD1 state. In this state, the Bit 
Time Counter is again enabled but instead of counting 
down, the counter counts up. The Edge Detector circuit 
is also enabled. Once the Bit Time Counter reaches zero, 
the Sample signal goes high. This sets the CNTTC flip­
flop which enables the shift register and data is read, and 
should be logic low. If it is, the Reader goes into the 
GUARD2 state. Otherwise, IDLE state is reached follow­
ing the ERROR state. Before entering the GUARD2 state 
but after CNTTC, the stored bit width value is again 
loaded into the counter. 

As figure 5 shows, the GUARD2 state is reached when 
the Reader is in the GUARD1 state and a !DIN is 
received. In the GUARD2 state, the Bit Time Counter is 
again enabled and allowed to count up. However, the 
CNTTC flip-flop is disabled so the next Sample does not 
force the Shift Register to take data. This is achieved 
through the toggle flip-flop which is part of the CNTTC 
circuitry. Thus when the Bit Time Counter counts up to 
zero, the bit width value is again loaded into the counter 
and is allowed to count up. However, the Sample signal 
does reset the toggle flip-flop so the next Sample signal 
sets the CNTTC flip-flop which in turn enables the Shift 
Register and data is taken in. Remember the Edge 
Detector circuitry was enabled in the GUARD1 state. 

Bar Code Reader 

Thus what really happens is after the first Sample is 
detected in the GUARD2 state, the Edge Detector cir­
cuitry also notices the low to high transition of data and 
loads the stored bit width into the counter and resets the 
CNTTC flip-flop. Thus the GUARD2 state is the first time 
data alignment takes place. Once the Bit Time counter 
counts up to zero and Sample is enabled, data is taken 
in. If the data is logic high, the control circuitry checks if 
LASTHALF status bit is high. If it is, then the Reader goes 
into the GUARD3 state. Otherwise, the Reader enters 
the DATA state. If instead of a logic high, a logic low is 
received, the Reader goes to the IDLE state following the 
ERROR state. 

In the GUARD3 state, the same sequence of steps are 
repeated as in the GUARD2 state except that !DIN is the 
correct data type used to bring the Reader in the DATA 
state. Also, the Edge Detector circuitry is in effect and 
influences the CNTTC flip-flop. One important point to 
note is the GUARD3 state is entered only if the LASTHALF 
status bit is high. The GUARD3 is the extra guard bit 
found in the center guard pattern of a Version A code. The 
GUARD3 state looks for that bit to be low at the proper 
time to enter the DATA state and goes to the ERROR 
state if it is not. 

In the DATA state, the Reader is ready to receive data 
bits, assemble them into 7 bit data words and transfer 
them out over the UART. In the DATA state, Edge 
Detector circuitry is again enabled and, depending on the 
edge transitions, Bit Time Counter alignment with input 
data takes place. If an edge is not detected, the toggle 
flip-flop ensures proper operation of the Reader. Once 
six characters are read, the Reader goes into the IDLE 
state. The IDLE state can also be reached if six consecu­
tive zeros are read as discussed in the IDLE state 
description above. 

The ERROR state is reached if in either of the GUARD 
bits the correct data type is not read in. Thus the ERROR 
state indicates an abnormal condition has been detected. 
When this happens, the Reader sets the ERROR flag and 
reverts to the IDLE state and awaits the start of a new 
character. 

Table 1 provides a list of all the states, including a short 
description of each state and a list of conditions which 
cause that particular state to occur. 
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Table 1. State Table 

s s s Name Equation Description 
2 1 0 

0 0 0 IDLE DEFAULT Waiting for the first guard bit to appear 

0 0 1 START DIN&IDLE Bit width counter is decremented 

0 1 0 LATCH START&!DIN Counted width stored and loaded back 
into the bit width counter 

0 1 1 GUARD1 LATCH Verifies a space was seen 

1 0 0 GUARD2 GUARD1 & !DIN Verifies a bar was seen 

1 0 1 GUARD3 GUARD2 & LASTHALF & DIN Verifies a space was seen 

1 1 0 DATA GUARD2 & DIN & !LASTHALF # Device ready to receive data 

GUARD3 & !DIN & LASTHALF 

1 1 1 ERROR GUARD1 & DIN & CNTTC # Abnormal condition has been detected 

GUARD2 & !DIN & CNTTC # 

GUARD3 & DIN & CNTTC 

STATUS BITS 

Four Status Bits are used (shown in figure 12 and 13) to 
keep track of the progress of the read. LASTCHAR is 
used to store the fact that six characters have been read. 
This flip-flop is reset when the Reader is in the IDLE state. 
ERRORL stores the fact an error occurred while reading 
the code. As mentioned before, the ERROR state occurs 
when in either of the GUARD bits, the correct data type 
is not read. Moreover, since a seven bit data word is read 
and an eight bit data transfer word is used, the ERRORL 
bit is transmitted as the most significant bit of each data 
word transferred out. Thus the data receiving device on 
the other end of the UART can check the eighth bit and 
determine if any errors had occurred while reading the 
Bar Code. The ERRORL flip-flop is also reset when the 
Reader is in the IDLE state. The LASTHALF bit keeps 
track of which part of the Version A code is being 
scanned. Since the two halves of the Version A code are 
decoded independently (the reader goes into the IDLE 
state after the first six characters are read), the logic 
needs to keep track of which half is being processed. 
Thus when the character counter counts the first six 
characters, the LCHAR signal goes high which in turn 
sets the LASTHALF flip-flop. The LASTHALF bit is used 
in decoding the extra GUARD bit present in the center 
guard pattern which is the beginning of the second half of 
the code. The logic knows ifthe LASTHALF bit is low, the 
DAT A state follows the GUARD2 state. Otherwise, the 
GUARD3 state follows the GUARD2 state. The DATA 
state comes after the GUARD3 state. Reset of the 
LASTHALF flip-flop is either caused by reading six con­
secutive zeros or when complete twelve characters of the 

Version A code are read. Finally, DATAREADYis used to 
gate the transfer of a data word from the Data Shift 
Register to the Output Shift Register. From the Output 
Shift Register, data is transferred over the UART. 
DATAREADY flip-flop is set every time seven bits are 
read. Reset is caused by the DATTAKEN signal. 

NOTE: LASTHALF sets and resets another flip-flop called 

UART 

SECOND_HALF shown in Figure 12. 
SECOND_HALF is only used in decoding the 
last bit of the twelfth character in Version A code. 
The reason for SECOND_HALF is because the 
last bit of even parity digits is always logic low. 
When the last bit is read, the Reader immediately 
goes into the IDLE state without transferring the 
correct byte out because as soon as LCHAR is 
enabled, the LASTHALF flip-flop is reset. This 
takes the State Machine out of the DATA state 
and into the IDLE state. By having the State 
Machine depend on SECOND_HALF ratherthan 
LASTHALF for the twelfth character, the prob­
lem is resolved. 

The UART circuitry (shown in Figure 16) consists prima­
rily of a shift register SRR31. Also shown on the schematic 
are two other shift registers and four sets of multiplexers. 
All these components are used in transferring the data 
out properly. The multiplexers, namely MUX22, select 
between data from the Data Shift Register and a hard 
coded OD Hex (ASCII Carriage Return). The carriage 
return is sent whenever six consecutive ones are re-
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ceived. It informs the receiver on the other end of the 
UART that the Bar Code has been read. The shift register 
SRR38 is the Output Shift Register. The data which 
accumulated in the Data Shift Register is transferred to 
the Output Shift Register once the DATIAKEN signal 
goes high which is driven by the DATAREADY signal. In 

Figure 7. Serial Data Word Diagram 

0 

Start BitB 

9600BPS 
104µ$ 

I• •I 

Bit7 

0 

Bit6 

HINTS ON TRANSLATING BAR CODE DATA 
TO ASCII 

0 

BltS 

The Lattice pLSI device receives data from the wand and 
tranfers it out through the UART Register. The UART 
Register supports TIL logic levels. An RS232 level 
shifter is needed before the data can be properly pro­
cessed by the PC. The data format is: 8 Data bits, No 
parity, 1 Stop bit. The data rate is 9600 BAUD. The PC's 
serial port has to configured accordingly. As mentioned 
in the Universal Product Code description, the data 
words either have even parity or odd parity. Thus a look 
up table is needed so that the received data words can be 
converted to their ASCII equivalent. Each type of parity 
has ten different codes for the ten digits. Since the wand 
can be scanned either from left to right or from rightto left, 
the look up table has to have forty entries. Once the look 
up table is implemented, the received data can be com­
pared and the proper ASCII code can be printed out. The 
look up table is as follows: 

LEFT TO RIGHT SCANNING: 

Number Odd Parity (Hex) Even Parity (Hex) 

0 OD 72 
1 19 66 
2 13 6C 
3 3D 42 
4 23 SC 
s 31 4E 
6 2F so 
7 3B 44 
8 37 48 
9 OB 74 

Bar Code Reader 

the Output Shift Register, using the second shift register 
SRR31 for clocking purposes, data is converted into the 
standard RS232 format and shifted into the UART Shift 
Register. The UART supports TIL signals. Thus a level 
shifter is needed at the output of the UART shift register. 
Figure 7 shows the data format out of the UART Shift 
Register. 

0 0 

Bit4 Bit3 Bit2 Bit1 Stop 

0867 

RIGHT TO LEFT SCANNING: 

Number Odd Parity (Hex) Even Parity (Hex) 

0 S8 27 
1 4C 33 
2 64 1B 
3 SE 21 
4 62 1D 
s 46 39 
6 7A OS 
7 6E 11 
8 76 09 
9 68 17 
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Figure 8. Clock Divider 

~------------, DIVTC 

._ GND 

PL [4:5] ------ILD 
PS 

-------ID[O:I] Q[0:1] DIV[4:5] Q[O:!Jf-o--Cl-..,K[0-.:-.1] 
38.4KHz 

r---1 CAI CBU42 CAO 1-------.-1----lCAI CBU22 CAD f--

=----~VC"-'C'---1--+--+----I EN '-----I EN 

CS CD 
,-j> CLK J~--•C>"> CLK 

115.2KHz 
._ GND -

PS 
~---+--ilD DIV 

t-P"'L""[0-:3""1---~D ro:3J a [0:3J l--+ro_:3""'J .. 

CAI CBU44 CAO t--­

~---+---1 EN 
1.8432MHz 
·-----.__----+---t">CLK 

._ GND -
AD ZO PLS 

VBUF 
._ __ v_cc_+.M........_. zo PL4 
- "°VBUF 
._._f-'G~N~D-..=AD'-iv ~F PL3 

AD ZO PL2 
V BUF 

~zo PL1 
I v--miF" 
LM...f> ~~F PLO 

cs 

PL[0:5] 

4-128 

J 
CU<o AD zo 19.2KH~ 

·veuF ~ 

CLK1 AD 
BUF 

9.6KHZ .... 

DIV[0:5] ... 

1994 Handbook 



Bar Code Reader 

Figure 9. Bar Width Clock Circuitry 
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Figure 10. CNTTC Detector Circuitry 
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Figure 11. Edge Detector Circuitry 
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Figure 13. Second Half Circuit 
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Figure 15. State Machine Decode 
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Figure 16. Output Shift Register 
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Figure 17. Portion of .LDF file 

SYM GLB A2 1; 

II B-bit up/down counter wih Async preset, parallel load, 

II enable, up/dn, Async and Sync clear. Uses 3 GLBs 

II Used as part of 9-bit counter to store the first bar's width value. 

// Bit 9 is located in GLB AS. 

CBUDB ([CO •• C7], CNTTC, [LO •• L7], VCC, SMCLK, GND, CNTLD, ACTIVE, START, IDLE, GND)]; I END; 

SYM GLB A3 1; 

II This is bit 9 of the 9-bit value storing the first bar's width 

CBUDl (B, SAMPLE, LB, VCC, SMCLK, GND, CNTLD, CNTTC, START, IDLE, GND) ]; 

END; 

SYM GLB A4 1· I 

II This is the Flip Flop to store the lower 4 bits of the bar's width 

FD24 ([CO •• C3]), [LO •• L3], LATCH, RST); 

END; 

SYM GLB AS 1; 

II This is the Flip Flop to store the upper 4 bits of the bar's width 

FD24 ( [C4 •• C7]) I [L4 •• L7], LATCH, RST); 

END; 

SYM GLB A6 1; 

II This is the Flip Flop to store the MSB of the bar's width 

FD21 (CB, VCC, LATCH, RST); 

END; 
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~~~Lattice TM High Density PLD Solutions For 
: : : : : : High Speed RISC/CISC Systems 
•••••• 
As the next generation Pentium™, PowerPC™ and 
Alpha TM processors reach new heights in speed, design­
ers face increasingly difficult system design problems 
when trying to realize each processor's full speed capa­
bility. ASIC solutions are a viable option in terms of 
speed, but the decision to go with such a solution is 
influenced by another variable which is becoming ever 
more important - time-to-market. 

Winners of the race to introduce a new product stand to 
reap the lion's share of profits from the product's life­
cycle. Although ASICs are capable of keeping pace with 
the new generation of processors, they are often losers 
in the race for time to market. Low-density PLDs are a 
popular choice because of their speed and ease of 
programming. Another option now exists which provides 
the benefits of low-density PLDs while supplying higher 
densities and more I/Os. Lattice Semiconductor offers 
two new families of high speed programmable logic 
devices, the ispLSI and pLSI 2000 family and the ispLSI 
and pLSI 3000 family to address these speed and time­
to-market issues. Both these families, as well as the 
ispLSI and pLSI 1000 family, are available as in-system 
reprogrammable devices which eliminate the need for 
sockets that often result in unreliable operation due to 
bent leads. 

A Case For Speed 

A rule of thumb for designers is that microprocessor 
systems typically require external logic to operate at 
twice the speed of the processor clock. It stands to 
reason that if the external logic was to consume the entire 
clock cycle for some computation, there would be no 
remaining time to satisfy any system setup requirements. 
This rule implies that Pentium, with its 15ns clock cycle, 
requires logic devices which have a speed rating of 
7.5ns. If analyzed in more detail, Pentium, which has a 
maximum clock-edge to control-signal-valid delay of ans 1 

(figure 1 ), retains 7ns of its clock cycle for external logic 
to perform a computation and satisfy setup requirements 
if a registered action is expected on the next clock edge. 
Logic devices with a 7.5ns Tpd rating typically have set­
up times in the 4ns range. Thus, such devices can 
realistically conform to Pentium's bus specifications. 
Another constraint is that external logic is to provide valid 
output signals in time to meet Pentium's setup require-

ment of 5ns. This implies that logic devices must have a 
clock-to-out time of no more than 1 Ons. As seen in figure 
1, 7.5ns logic devices have a clock-to-out time of 4ns to 
5ns which easily satisfies Pentium's setup requirements. 
While 7.5ns speeds are attainable from fast low-density 
PLDs, the requirements of today's wide buses make it 
desirable to have higher levels of integration with more 
1/0. Address decoders and bus logic are examples of 
circuits which demand such speed, density and 1/0. 

Lattice's ispLSI and pLSI 2000 family specifically targets 
these applications. This family has devices which are 
able to integrate up to 10 traditional PLDs into a single 
package while supplying up to 102 I/Os. These devices, 
while being much higher density than PLDs, suffer no 
speed penalty. With propagation delays of 7.5ns and 
clock rates of 135 MHz, the ispLSI and pLSI 2000 family 
operates comfortably in systems which were once the 
sole domain of ASICs and the fastest low density PLDs. 
The set-up times of the 2000 family devices are within the 
7ns requirement of the Pentium bus thus allowing the 
generation of registered control signals such as Bus 
Ready (BADY#) (figure 1 ). 

Figure 1. Pentium™ Burst Read-Cycle With Relative 
Timings 
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High Density PLD Solutions For 
High Speed RISC/CISC Systems 

Address decoders are circuits which usually sit directly in 
the critical path of memory accesses. For this reason, 

A Design Example 

Tpd is all important. For example, if we were to use An example of a design which requires both high speed 
Pentium with its ans Address-Valid time, a 7.5ns logic and a high degree of integration is a circuit to interface a 
device for the address decoder, and a RAM with a 1 Ons 16-bit wide memory into a Pentium system with its 64-bit 
Chip-Enable to Data-Out time, we would generate valid wide data bus. This 16-bit memory might possibly be a 
readdata25.5nsafterthestartofthereadcycle. Pentium memory-mapped 1/0 device or a specialized RAM sub­
requires that read data be valid no later than 26.2ns system. The Lattice ispLSI and pLSI 2096 can be 
(assuming no wait states). With a 7.5ns logic device, we effectively used to integrate this 16-bit memory system 
have met Pentium's requirements with 0.7ns to spare. into the Pentium's 64-bit environment while meeting all 
The ispLSI and pLSI 2032 and 2064 are designed to speed requirements. Figure 2 shows a block diagram of 
economically implement circuits such as this. These how this high-density PLO can be used to integrate the 
devices provide 32 and 64 macrocells respectively with logic functions required for such an interface. 
34 and 68 signal pins. 

Figure 2. Interfacing A 16-blt Memory Sub-System To Pentium™ 
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Intel specifies that to perform a read from a 16-bit write operations are depicted in figure 3. In addition, the 
memory, external logic is required to assemble four Pentium decodes the three least-significant address bits 
consecutive 16-bit reads into one 64-bit word. Writes into eight unary byte-select signals. These byte select 
require that the 64-bit word be broken into four 16 bit signals must be re-encoded into the binary A2-A1 ad­
words which are consecutively written. These read and dress bits. 

Figure 3. Read And Write Operations 
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Within the 2096, the 16-bit write data path is created by 
the use of sixteen 4-to-1 multiplexers which select one of 
four Pentium byte pair bits. These multiplexer outputs 
form a 16-bit word which is written into the 16-bit memory. 
This circuit is shown in the upper portion of figure 4. Four 

Figure 4. Memory Interface Data Path 
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such writes occur for every one 64-bit Pentium word. The 
64-bit read data path is implemented with four sequential 
reads of the 16-bit memory into a 64 bit wide register. The 
read path is shown in the lower portion of figure 4. 
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Control of the read and write operations is accomplished 
with a portion of the 2096 dedicated to control, decode 
and state machine functions. This control unit is shown 
as a block diagram in figure 5. The state machine concep­
tually generates the W _Sel_n and R_Sel_n control signals. 
These signals in actuality do not exist. Instead they are 

Figure 5. Memory Interface Control Logic 
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locally decoded from state bits in the 4 to 1 MUXes and 
in the read register. This is done to eliminate an additional 
pass through the HDPLD logic and thereby improves 
speed. The 16BRDY signal is generated by the state 
machine and signals that the Pentium can advance to the 
next transaction. 
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Note: Signals in parenthesis are shown for logical clarity. 
In practice these signals are encoded as state-bits. 

For full 64-bit Pentium reads and writes, the BHE# and 
BLE# signals are always active. A2 and A1 are sequen­
tially incremented to provide the read and write operations 
as shown in figure 3. For aligned 32-bit and 16-bit reads 
and writes, BHE# and BLE# also remain active and the 
BEn bits are decoded to generate appropriate A2 and A 1 
bits. The sequence of address counts is reduced to 2 
counts for 32-bit operations and no counts for 16-bit 

0891 

operations. 8-bit operations require similar decoding but 
only the appropriate BHE# or BLE# signal is activated. 

All these circuits can be efficiently and simply imple­
mented in a single Lattice ispLSI and pLSI 2096 device. 
This interface requires 95 signal pins for which the 2096 
provides 102 inputs and I/Os. 96 macrocells are available 
of which approximately 90 are required for this design. 
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For Higher Density Functions 

Although the ispLSI and pLSI 2000 family addresses 
many of the needs in today's microprocessor systems, 
more complex subsystems may require a greater amount 
of logic than is available in the ispLSI and pLSI 2000 
family. Such subsystems might include graphics func­
tions, multiprocessor support, bus adapters, etc. For 
example, Intel does not at the time of this writing supply 
a Memory Bus Controller (MBC) for Pentium systems. 
Lattice has introduced the 3000 family of devices to 
specifically address such high density applications. This 
family, with clock rates of 110 MHz, pushes high density 
PLDs to new heights in terms of density, offering up to 
14,000 gate equivalents. This new level of density offers 
microprocessor systems designers the ability to design 
gate-array class subsystems with the ease and time to 
market advantages of programmable logic devices. In 
addition, this family with its in-system reprogrammability 
and dedicated IEEE 1149.1 boundary scan test capabil­
ity, is able to greatly enhance system test capabilities, 
thus improving system quality. 

1. "Bus Functional Description", Pentium TM Processor User's Manual, 
Volume One, Intel Literature Number 241428, 1993. 
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SCSI Interface with 
the ispLSI 3256 

Introduction 

Today's high performance computer systems require 
greater data storage capacity and higher throughput. The 
SCSI (Small computer System Interface) bus interface 
has risen to become the standard in peripheral commu­
nications for high-end computer systems. The versatility 
and flexibility of SCSI allow for higher integration without 
sacrificing cost and space. This applications note de­
scribes the implementation of a Programmable SCSI 
Controller (PSC) using Lattice's ispLSI 3256 Device. 
Figure 1 shows a block diagram of a PSC application. 

SCSI is an intelligent bus interface that provides high 
performance data transfers between the host computer 
and peripheral devices. SCSI allows a maximum of eight 
devices to be attached to the bus without any additional 
hardware. Control of the SCSI bus is shared through 
arbitration using a prioritized ID assigned to each SCSI 
device. When two SCSI devices communicate, one acts 
as an initiator, and the other acts as a target. The initiator 
originates an operation, and the target executes the 
operation. The ispLSI 3256 PSC design implements a 
SCSI initiator. 

Figure 1. Application Using an ispLSI 3256 Device as Programmable SCSI Controller 
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SCSI Bus Phases 

The communication between the devices is governed by 
the SCSI bus phases. Figure 2 shows a simple state flow 
for the different SCSI bus phases. Initial system power up 
and all SCSI reset conditions puts the SCSI bus in the 
Bus Free state. Although optional, almost all SCSI sys­
tems support and utilitize the arbitration facility to prevent 
bus contention. Eitherthe Selection or Reselection phases 
follow after winning arbitration. The Information Transfer 
state is really composed of the Command, Data, Status 
and Message phases. These specific phases determine 
the type of data on the bus and in what direction the data 
travel. 

BUS FREE - The Bus Free phase indicates that the SCSI 
bus is available for use and that no SCSI device is 
actively using it. SCSI operations normally start and end 
with the Bus Free phase. 

ARBITRATION - The Arbitration phase allows an SCSI 
device to acquire control of the SCSI bus. Depending on 
the control signals the device will become either the 
initiator or target. 

SELECTION - During the Selection phase, an initiator 
selects a target to begin an operation such as a READ or 
WRITE. 

RESELECTION - During the Reselection phase, a target 
reconnects to an initiator after operation was suspended 
by the target. 

DATA OUT- During the Data Out phase, data is trans­
ferred from the initiator to the target. 

STATUS - The Status phase allows the target to pass 
status information to the initiator. 

MESSAGE IN - During the Message In phase, the target 
sends message(s) to the initiator. 

MESSAGE OUT - During the Message Out phase, the 
initiator sends message(s) to the target. 

SCSI Bus Signals 

The SCSI bus phases are determined by the configura­
tion of the control signals. 

BSY (BUSY) Signal indicating the SCSI bus is being used 
by a device. 

SEL (SELECT) Signal driven by an initiator to select a 
target or by a target to reselect an initiator. 

CID (CONTROUDATA) Signal driven by a target that 
indicates the direction of data transfer on the data bus. 
True signal indicates data flow from the target to the 
initiator. 

MSG (MESSAGE) Signal used by a target during the 
MESSAGE phase. 

REQ (REQUEST) Signal driven by a target to request for 
data transfer. 

COMMAND - The Command phase allows the target to ACK (ACKNOWLEDGE) Signal driven by an initiator to 
request instructions from the initiator. acknowledge a data transfer. 

DATA IN - During the Data In phase, data is transferred 
from the target to the initiator. 

Figure 2. SCSI bus phase sequences 

xfer_cmpl 
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ATN (ATTENTION) Signal driven by an initiator to indi­
cate the ATTENTION condition. 

RST (RESET) Signal that indicates the RESET condi­
tion. 

DB(7-0,P) (DATA BUS) Data bus signals that include 
eight data-bits and a parity-bit. Data parity is odd. 

Design Description 

A complex programmable logic device such as the ispLSI 
3256 is an ideal solution for a Programmable SCSI 
Controller (PSC) device where flexibility is attained with­
out sacrificing speed or density. The 11,000 PLO gates 
ispLSI 3256 with 80 MHz operating frequency and 15ns 
delay provides optimal performance for this application. 
In addition, the ispLSI 3256 provides not only in-system 
programmability but also reconfigurability without the 
need to remove the device from the PCB. The following 
discussion shows an ispLSI 3256 device implementing 
the role of an initiator with support for arbitration, selec­
tion, and reselection sequences. 

Figure 3 shows the functional blocks of the ispLSI 3256 
design which consists of three main modules: sequenc­
ers, decoding logic, registers and counters. 

Figure 3. Block Diagram of Programmable SCSI 
Controller 
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The sequencers module consist of five state machines 
which process the SCSI bus data and control the flow of 
information. The RESEL_SM state machine handles the 
reselection phase sequences. The SEL_SM state ma­
chine processes all control signals and executes the 
selection of the target device. The ARB_SM state ma­
chine supports the arbitration phase. The DDXFER_SM 
state machine controls the transfer protocol between the 
initiator and the target. The SEQ_SM state machine is 
the main sequencer which oversees all other state ma­
chines. 

The ispLSI 3256 architecture is ideal for building complex 
state machines. State transitions and conditional branch­
ing are supported by the AND-OR arrays and Product­
Term Sharing Arrays (PTSA) logic. With upto20 product­
terms and hard-XOR gates, high speed complex combi­
natorial logic can be realized. The PSC's state machines 
require a large number of inputs and many product-terms 
to implement. With 24 inputs per GLB, the ispLSI 3256 
can maintain single delay levels for high fan-in functions. 

The registers of the PSC include: CMD_REG, IN_REG, 
OUT _REG, STAT _REG and INTR_REG. TheCMD_REG 
(address O) is a write-only register used to store the 
commands for the PSC. The IN_REG, utilizing the input 
registers of the ispLSI 3256, holds all the input signals 
from the SCSI bus. The OUT _REG stores data to be sent 
to the SCSI bus. The STAT _REG is a readable register 
giving status of the PSC and the SCSI operation. 

Input Register (IN_REG) 

Output Register (OUT _REG) 

Command Register (CMD_REG) 

SEL_CMD 

Status Register (STAT _REG) 

Interrupt Register (INTR_REG) 

SCSI ID Register (SID_REG) 

In addition to the 256 GLB registers, the ispLSI 3256 
offers 128 registers/latches in the 1/0 cells. Besides 
implementing input latches (as used in the PSC design), 
the 1/0 registers/latches can also be used for signal 
synchronization, double registering for mestability, etc. 

There are a number of counters in the PSC used to 
provide timing delays associated with the SCSI opera­
tions. The BSFR_DL Y counter provides the necessary 
delay before arbitration may begin. The BSST _DL Y 
counter provides the bus settle delay before the PSC may 
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be reselected by the target device. The ARB_DL Y counter 
gives the arbitration delay timing. 

Fast loadable counters can be easily implemented in an 
ispLSI 3256 device. Wide GLB inputs allow up to 24 
signals including counter load inputs and Q feedbacks to 
drive single logic level flip-flop equations without using 
additional logic. 

The ispLSI 3256 also provides two Global Output Enables 
(GOEs) which are dedicated input pins driving all of the 
127 1/0 cells for output or directional operations. In the 
PSC design, the two GOEs can be used for transfering 
bidirectional data to the CPU and SCSI buses without 
requiring internal product-terms or routing resources. 

Typical SCSI Operations 

A typical SCSI operation can be used to wustrate the 
functionality of the Programmable SCSI Controller. The 
first section describes sequences associated with the 
target selection by the PSC. The second section details 
the reselection of the PSC by the target device. 

PSC Selects Target 

INITIALIZATION- For the PSC, a typical SCSI operation 
starts with the SEQ_ SM (main sequencer) state machine 
in the IDLE state and waits for a SEL command from the 
CPU. Figure 4 shows a state machine diagram for 
SEQ_SM. Once the SEL command is received, the 
SEQ_SM goes into the arbitrate state and remain there 
until arbitration is complete. Listing 1 details the ABEL 
implementation of the main sequencer. 

Figure 4. Main Sequencer State Machine Diagram (SEQ_SM) 
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Listing 1. 

STATE_DIAGRAM main_sm 

STATE main_idle: 
IF sel_cmd==l THEN arb st 

" Receive Select command " 
WITH arb_phs.d = 1 

ELSE IF (resel_phs) THEN resel_st 
" Detect Reselection Phase " 

ELSE main_idle; 

STATE arb_st: 
" Arbitration Phase " 

IF (arb_cmpl & won) THEN sel st 
" Won Arbitration " 

WITH sel_phs.d = 1 
Goto Selection Phase " 

ELSE IF (arb_cmpl & !won) THEN 
main idle " Lost Arbitration " 

WITH intr.d = 1; 
Interrupt CPU " 

STATE sel_st: 
" Selection Phase " 

IF (sel_cmpl) THEN xfer st 

WITH xfer_phs.d = 1 
ELSE sel_st; 

STATE resel_st: 
" Reselection Phase " 

IF (resel_cmpl) THEN xfer st 
WITH xfer_phs.d = 1 

ELSE resel_st; 

STATE xfer_st: 
" Data Transfer Phase " 

IF (xfer_cmpl) THEN main idle 
ELSE xfer_st; 

END 

Figure 5. Arbitration State Machine Diagram 
(ARB_SM) 

Listing 2. 

ARB 
WON 

STATE_DIAGRAM arb_sm 

STATE arb_idle: 
IF (arb_phs) THEN bus_free 

" Detect start of Arbitration 
ELSE arb_idle; 

STATE bus_free: 
IF (!bsyi & !seli) THEN sett_free 

" Detect Bus Free state 

4-149 

WITH timer.ar = 1 
ELSE IF (arb_phs) THEN bus free 
ELSE arb_idle; 
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STATE sett_free: 
IF (lbsyi & Iseli & timer.q == 

sett_free_dly) " Bus settle & bus free 

BUS FREE PHASE - Before arbitration can begin, the 
PSC must detect the Bus Free phase. The ARB_SM 
state machine must read the BSY and SEL signals false 
for a bus free delay until the arbitration phase is entered. 
Figure 5 shows a state machine diagram for ARB_SM 
and Listing 2 details the ABEL implementation of the 
arbitration process. 

delays 
THEN assrt_bsy WITH timer.ar 1 

ELSE IF (lbsyi & Iseli & timer.q < 
ADll) 

THEN sett free WITH timer.ct = 
timer.q + 1 

ELSE arb_idle; 

STATE assrt_bsy: 
bsyo.j = l; 

" Assert BSY 
dboO = sid==O; 

Assert RSC's SCSI 
dbol sid==l; 
dbo2 sid==2; 
dbo3 sid==3; 
dbo4 sid==4; 
dbo5 sid==5; 
dbo6 sid==6; 
dbo7 sid==7; 

ID 

IF (Iseli & won & (timer.q==arb_dly)) 
" Won Arbitration 

THEN arb won WITH timer.ar = 1 
ELSE IF (seli # ((timer.q==arb_dly & 

!won))) "Failed Arbitration 
THEN arb_lost 

ELSE assrt_bsy WITH timer.ct = timer.q 
+ l; " Arbitration delay period 

STATE arb_won: 
selo.j = l; 

" Assert SEL 
GOTO arb_cmpl; 

STATE arb_cmpl: 
IF (timer.q==sett_clr_dly) 

" Wait for bus settle & clear 
THEN arb_idle WITH arb_cmplt = 1 

" End of Arbitration 
ELSE arb_cmpl WITH timer.ct = timer.q + 

l; 

STATE arb_lost: 
arb_cmplt = 1; 

" End of Arbitration 
bsyo.k = l; 

" Negate BSY 
arb_fail_int 

" Set Interrupt 
GOTO arb_idle; 

END 

l· , 

Figure 6. Selection State Machine Diagram (SEL_SM) 
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Listing 3. 

STATE_DIAGRAM selection 

STATE sel idle st: 
IF (sel_phs) THEN sel_dly_st 
ELSE sel_idle_st; 

STATE sel_dly_st: 

1; 

IF (sel_dly_cnt == 12) THEN dest id_st 
ELSE sel_dly_st 

WITH sel_dly_cnt.D = sel_dly_cnt.Q + 

STATE dest_id_st: 
dboO (dest_id==O); 
dbol (dest_id==l); 
dbo2 (dest_id==2); 
dbo3 (dest_id==3); 
dbo4 (dest_id==4); 
dbo5 (dest_id==S); 
dbo6 (dest_id==6); 
dbo7 (dest_id==7); 
IF (id_dly_cnt==4 & atn_cmd) THEN 

release_bsy_st WITH atno=l 
ELSE IF (id_dly_cnt==4 & !atn_cmd) 

THEN release_bsy_st 
ELSE dest_id_st WITH 

id_dly_cnt.D=id_dly_cnt.Q+l; 

STATE release_bsy_st: 
bsyo.K = 1; 
IF (bsy_dly_cnt==4) THEN 

timeout_bsy_st 
ELSE release_bsy_st WITH bsy_dly_cnt.D 

= bsy_dly_cnt.Q + 1; 

STATE timeout_bsy_st: 
IF (bsyi & resel_cmd) THEN deskew st 
ELSE if (!bsyi & timeout_cnt==timeout) 

THEN abort st 
ELSE timeout_bys_st WITH timeout.D = 

timeout.Q + 1; 

STATE deskew_st: 
GOTO deskewl_st; 

STATE deskew! st: 
GOTO deskew2 st; 

STATE deskew2 st: 
GOTO release_sel_st; 

STATE release_sel_st: 
selo.K = 1; 
sel_cmplt = 1; 
GOTO sel_idle_st; 

STATE abort_st: 
selo.K = 1; 
disc_int.D = 1; 
cmd_reg. re = 1; 
GOTO sel idle_st; 

END 

Figure 7. Data Transfer State Machine Diagram (XFER_SM) 

4·151 1994 Handbook 

I 



SCSI Interface with the ispLSI 3256 

ARBITRATION PHASE- In the arbitration phase, one or 
more devices will try to gain control of the SCSI bus. In 
state machine ARB_SM shown in figure 5 and Listing 2, 
the PSC asserts BSY and drives its SCSI ID bit onto the 
8-bit data bus. At the same time, the PSC reads the data 
bus to determine whether a device with higher priority 
wants control of the bus. The highest priority device wins 
control of the bus and continues to assert the BSY and 
SEL signals. All other devices participating in the arbitra­
tion must release BSY and their SCSI ID bit when SEL 
become active. 

SELECTION PHASE - After winning the arbitration, the 
PSC (acting as initiator) asserts both SEL and BSY 
signals. Figure 6 shows the Selection state diagram and 
Listing 3 details the ABEL implementation. In state ma­
chine SEL_SM, to select a target, the PSC releases the 
BSY signal, drives the target's SCSI ID bit and its own ID 
bit active on the data bus, and de-asserts the 1/0 signal. 
The PSC will continue to drive SEL until the target asserts 
BSY. 

ATTENTION CONDITION - The PSC may assert the 
ATN signal during the Selection phase and while the SEL 
signal is still asserted, thus indicating that it wants the 
target to go to the Message Out phase immediately after 
the Selection phase. 

MESSAGE OUT PHASE - Figure 7 and Listing 4 show 
the Data Transfer State Machine. During the Message 
Out phase, the target asserts CD and MSG and de­
asserts 1/0. The PSC sends the Identify message to 
indicate which logical unit of the target is to be selected 
and that the PSC supports the Disconnect/Reselect 
operation. 

COMMAND PHASE - The target starts the Command 
phase by asserting CD and de-asserting 1/0 and MSG to 
indicate the Command phase. The PSC responds by 
sending the command information to the target. 

MESSAGE IN PHASE - When the target has determined 
that it needs to perform a disconnect operation, it asserts 
the CD, 1/0 and MSG signals indicating the Message In 
phase. The PSC then reads the Disconnect message 
from the target. 

DISCONNECTED STATE -After sending the Disconnect 
message, the target goes to a disconnected state, sus­
pending operations in the Bus Free phase by de-asserting 
all control signals. 

Listing 4 

STATE_DIAGRAM xfer_sm 

STATE xfer_idle: 
IF (atno == 1) THEN xfer_idle 

WITH atno.k = 1 
" Clear ATN " 

ELSE IF (atn_cmd) THEN atn st 
" Attention requested " 

WITH atno.j 1 
" Assert ATN " 

ELSE IF (reqi & cmd_phs) THEN cmd_st 
ELSE IF (reqi & stat_phs) THEN stat_st 
ELSE IF (reqi & datin_phs) THEN 

datin st 
ELSE IF (reqi & datout_phs) THEN 

datout st 
ELSE IF (reqi & msgout_phs) THEN 

msgout_st 
ELSE IF (reqi & msgin_phs) THEN 

msgin_st 
ELSE xfer_idle; 

STATE atn st: 
IF (req & msgout_phs) THEN msgout_st 
ELSE IF (req & !msgout_phs) 

THEN func_cmpl_st 
ELSE atn_st; 

STATE cmd_st: 
sdout_reg.d = din_reg.q 
xfr cnt.d xfr_cnt.q - 1 
ack = 1 
GOTO next_cmd_st; 

STATE next cmd st: 
IF (req & !cmd_phs) # (xfr_cnt 

THEN func_cmpl_st 
ELSE IF (req & cmd_phs) THEN 

send_cmd_st 
ELSE next_cmd_st; 

" Wait for REQ " 

STATE stat_st: 
dout_reg.d sdin_reg.q 
ack = 1 
IF (parity == 0) THEN func_cmpl_st 

" Check SCSI data parity " 
WITH bad_parity = 1 

ELSE func_cmpl_st 

STATE datain_st: 
dout_reg.d = sdin_reg.q 

0) 
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ack = 1 
IF (parity == 0) THEN func_cmpl_st 

WITH bad_parity = 1 
ELSE next_datin_st; 

STATE next_datin_st: 
IF (req & !datain_phs) # (xfr_cnt 0) 

THEN func_cmpl_st 
ELSE IF (req & datain_phs) THEN 

datain st 
ELSE next_datin_st; 

STATE dataout st: 
sdout reg.d = din_reg.q 
xfr_cnt.d = xfr_cnt.q - 1 
ack = 1 
GOTO next_datout_st; 

STATE next_datout_st: 
IF (req & !dataout_phs) # (xfr_cnt 

0) 
THEN func_cmpl_st 

ELSE IF (req & dataout_phs) THEN 
dataout st 

ELSE next_datout_st; 

STATE msgout_st: 
sdout_reg.d = din_reg.q 
xfr_cnt.d = xfr_cnt.q - 1 
ack = 1 
GOTO next_msgout; 

STATE next_msgout: 
IF (req & !msgout_phs) # (xfr_cnt 

THEN func_cmpl_st 
ELSE IF (req & msgout_phs) THEN 

msgout_st 
ELSE next_msgout; 

STATE msgin_st: 
dout_reg.d = sdin_reg.q 
xfr_cnt.d = xfr_cnt.q - 1 
ack = 1 
IF (parity == 0) THEN func_cmpl_st 

WITH bad_parity = 1 
ELSE next_msgin; 

STATE next_msgin: 

0) 

IF (req & !msgin_phs) # (xfr_cnt == 0) 
THEN func_cmpl_st 

ELSE IF (req & msgin_phs) THEN msgin_st 
ELSE next_msgin; 

END 

Figure 8. Reselection State Machine Diagram 
(RESEL_SM) 

Target Reselects PSC 

ID 
MATCH 

RES EL 
CMPLT 

0665 

The target remains in the disconnected state until it is ready 
to continue with the next SCSI operation. The PSC is also 
in the disconnected state until the target reselects it. 

ARBITRATION PHASE - Before reselecting the PSC, the 
target goes through the arbitration process to acquire 
control of the SCSI bus. The target asserts BSY and its 
SCSI ID bit. 

RESELECTION PHASE - The target drives its SCSI ID, 
and the PSC's ID on to the data bus, and then asserts 
SEL and 1/0 and de-asserts BSY. The PSC reads its 
SCSI ID and the control signals to determine that it has 
been reselected by the target. Figure 8 and Listing 5 
show the Reselection State Machine. 
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When reselected, the PSC responds to the target by 
asserting BSY. The target then drives the BSY signal 
active and releases SEL, thus indicating the end of the 
Reselection phase. When the PSC detects the SEL 
signal going inactive, it releases the BSY signal. How­
ever, BSY will still be held active because the target is 
driving it. This transfer of control is necessary because it 
allows the target to regain control of the BSY signal and 
control the usage of the bus. 

MESSAGE IN PHASE - The target asserts CD, 1/0 and 
MSG to indicate the Message In phase and to send a 
message to the PSC. The target places the message 
byte on the data bus and asserts the REQ signal to 
indicate the beginning of data transfer. 

DATA IN PHASE -The target begins the Data In phase 
by asserting 1/0 and de-asserting CD and MSG. The 
target then places the first byte of the data on the data bus 
and starts the transfer protocol. After reading the data 
byte, the PCK acknowledges the transfer. The target 
continues to transfer bytes, in the same manner, until all 
requested data have been transferred. 

STATUS PHASE -To begin the Status phase, the target 
asserts CD and 1/0 and de-asserts MSG. The target then 
places the status information on the data bus and begins 
the transfer protocol. The PSC reads the status byte and 
completes the transfer process. 

MESSAGE IN PHASE - The target asserts the CD, 1/0 
and MSG signals indicating the Message In phase. The 
target places the message byte on the data bus and 
begins the transfer protocol. The PSC reads the mes­
sage byte and completes the transfer process. 

BUS FREE PHASE - After sending the "Command Com­
plete" message, the target releases control of the SCSI 
bus by de-asserting all control signals. After the PSC and 
target physically and logically disconnect from the bus, 
the Bus Free phase begins. 

Listing 5. 

STATE_DIAGRAM reselection 

STATE resel_idle_st: 
IF (resel_phs) THEN resel_dly_st 
ELSE resel_idle_st; 

STATE resel_dly_st: 
IF (timer == bsst_dly & resel_phs) THEN 

id_match_st 
ELSE IF (!resel_phs) THEN resel_idle_st 
ELSE resel_dly_st 

WITH timer.ct = timer.q + 1; 

STATE id_match st: 
IF (tar_id_match & psc_id_match & par­

ity) 
THEN detect sel_st WITH bsyo.j = 1 

ELSE resel_idle_st; 

STATE detect_sel_st: 
IF (Iseli) THEN resel_cmp_st WITH 

bsyo.k = 1 
ELSE detect_sel_st; 

STATE resel_cmp_st: 
resel_cmpl = 1; 
GOTO resel_idle_st; 

END 

Conclusion 

Lattice's ispLSI 3256 is the ideal solution for implement­
ing a Programmable SCSI Controller. The ispLSI 3256's 
input registers allows asynchronous signals to be syn­
chronized to the PSC's system clock. The in-system 
programmability and reconfigurability of the ispLSI 3256 
enables different SCSI configurations to be implemented 
or upgraded without the need to remove the device from 
the board. 
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Introduction 

The Peripheral Component Interconnect (PCI) Local bus 
was designed as a high bandwidth bus that provides a 
data path between the CPU and multiple high perfor­
mance peripherals. Proposed as a total system solution, 
PCI provides interconnects to networks, disk drives, 
video and other high speed peripherals. Processor inde­
pendence allows the PCI bus to be optimized for 1/0 
functions and enables concurrent operation of the local 
bus with the processor/memory subsystem. A 32 bit 
synchronous bus that provides data throughput of 132 
Mbytes/sec, the PCI bus is expandable up to a 64 bit data 
path which doubles the throughput. On account of its 
futuristic processor independent orientation, PCI allows 
manufacturers to significantly trim development costs by 
not having to completely redesign every product cycle. 

This ties in elegantly with the Lattice ispLSI (in-system 
programmable Large Scale Integration) family, designed 
to implement high integration functions, such as control­
lers, while delivering superior performance and the 
flexibility of In-System Programmability (ISP). The basic 
PCI compliant Master/Target state machines can be 
implemented in the ispLSI device, while the remaining 
glue logic can be modeled around a given peripheral/ 
processor. The options become enormous, when one 
has the ability to change the functionality of devices 

Cache 

DRAM 

PC/ Bus 
Implementation 

already soldered on the board. ISP continues to emerge 
as the design methodology of choice by providing recon­
figurable systems with diagnostic capabilities, field 
upgradeability and simplification of manufacturing flow. 

PCI flexibility brings with it new design challenges for the 
system designer. This application note presents a Mas­
ter/Target-PC I interface design implemented in an ispLSI 
device. The attached source code contains the basic PCI 
compliant state machines and is intended to be used as 
a guideline on which a PCI bridge design for a specific 
interface can be based. The benefits of ispLSI as applied 
to the PCI bus, and AC/DC and timing specifications are 
reviewed. 

PCl/Lattice ispLSI Interface 

The following section presents the PCI interface based 
on the PCI Local Bus Specifications, Revision 2.0. A 
concise overview of the PCI bus and ispLSI architecture 
and the relevant electrical and timing characteristics are 
discussed. The Lattice 1994 Data Book and the PCI 
Specification should be consulted to obtain more detailed 
information. 

PCI Overview 

The PCI bus is a non-proprietary local bus solution, 
providing increased performance for Graphical User In-

PCI Local Bus 

Figure 1. PCI System Block Diagram 
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terfaces and other high bandwidth functions such as 
SCSI, full motion video, LANs etc .. The PCI component 
and the add-in card interface is processor independent, 
enabling an efficient transition to future processor gen­
erations and use with multiple processor architectures. 
Processor independence allows the bus to be optimized 
for 1/0 functions, enabling concurrent operation of the 
bus with the processor/memory subsystem. Figure 1 
shows a typical PCI system. 

the agent to directly access the PCI devices mapped onto 
the processor address space. The PCI specifications 
defines both a Master and Target bridge implementation. 
Both can be implemented in one device, however each 
has to have an independent controller state machine. 
Figure 2 shows the pins required on a PCI controller in 
order to handle addressing, arbitration, interface control 
and other system functions. A minimum of 47 pins are 
needed for a Target only device and 49 pins for a Master. 

The processor/memory subsystem is connected to PCI 
through a bridge, which provides a low latency path for 

The PCI interface consists of two different types of buses 
and control signals which govern the timing of data 
transfer on the address/data bus by the insertion of wait 
states. The larger of the two buses is the multiplexed 
Address/Data (AD) bus. The transfer of data onto the AD 
bus is not required to be the full width of the bus. The 
width of the data transfer is indicated by control informa­
tions present at the time of the bus transaction. The 
second bus is the Command/Byte Enable (C/BE) bus. 
The C/BE bus contains information about the activity that 
is to occur, i.e. read/write and memory or 1/0 access, 
during the address phase of the bus transaction, and 
contains the byte enables during the data phase of the 
bus transaction. Byte lane swapping is not allowed on the 
PCI bus since all devices must connect to 32 address/ 

Required Pins 
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Arbitrarion 
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Figure 2. PCI Pin List 
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data bits. Furthermore, automatic bus sizing is not 
JrAa11£Ern49.11 supported and the byte enables determine which bytes 

carry meaningful data. The PCI bus interface requires 
that every active member connected to the PCI bus be 
synchronized to a system clock. This allows information 
to be transferred between the active agents with wait 
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states, inserted by Master or Target, to match the timing 
requirements of either party that is involved in bus activ­
ity. The wait states are inserted through the use of the 
signals IRDY and TROY. The signal FRAME indicates 
that a Master is currently active on the bus and that all 
other bus Masters are not to become active on the bus 
until the current activity is completed. 

Lattice ispLSI Architectural Overview 

Lattice's ispLSI HDPLDs are ideally suited to high speed 
controller, state machine intensive applications. This 
section provides a broad overview of the architecture. 
Relevant features will be discussed in further detail as 
they relate to this application note. In addition to In­
System Reprogrammability, characteristics such as wide 
input gating (18 input/20 product terms per register), 
hardware XOR gates on each register, low skew (less 
than 2 ns), input clamping capability and high speed 
make the ispLSI device ideal for complex state machine 
implementation. The ispLSI devices contain program­
mable logic, registers, 1/0 pins, multiple clocks, a Global 
Routing Pool and Output Routing Pool. The basic unit of 
logic is the Generic Logic Block (GLB). Figure 3 shows 
a simplified logic diagram of the ispLSI GLB. 

The Lattice ispLSI devices are programmable, in circuit, 
on a powered board. This simplifies the design flow by 
eliminating the time consuming simulation process. The 
design can be tested in the final system by downloading 
the JEDEC file directly into the part. This is especially 
useful in surface mount environments where the parts 
cannot be removed from the board for programming. Test 
points are brought out to unused 1/0 pins during the 
debug cycle, and eliminated for standard operation. A 

Load ID Shift ID 

PCI Bus Implementation 

designer can complete the design in steps by creating 
smaller modules of the design, testing them as stand 
alone circuits, and then combining them once they are all 
working correctly. In addition to being a design tool, In­
System Programming also offers production advantages. 
Field service upgrades can be performed by simply 
reprogramming the boards, and options added by pro­
gramming them into the logic. If several boards are 
similar in function, but have different logic, a single 
printed circuit board can be designed, and the specific 
function programmed into the logic just before the board 
is shipped. This reduces both production and inventory 
costs. 

The only requirements of the system are that it must have 
a stable 5 volt power supply, and a connection point for 
the ispDOWNLOAD Cable. The standard interface used 
on the ispLSI prototype boards is a common 8-pin tele­
phone connector. This connector is selected because it 
is small, reliable and inexpensive. Five pins on the ispLSI 
1032 device are dedicated to programming when the part 
is used in the ISP mode. They are: 

ispEN 
MODE 
SCLK 
SDI 
SDO 

In-System Programming Enable 
ISP Mode Control 
Shift Clock 
Serial Data In 
Serial Data Out 

The algorithm which is used to program the part is 
straightforward. The MODE, SCLK and SDI pins are 
used to control a state machine internal to the ispLSI 
device. The device is controlled by serially shifting in a 
series of commands and data streams. The state dia­
gram for that operation is shown in Figure 4. 

Load 
Command 

Execute 
Command 

Idle/ID State Command Shift State Execute State 

HL 
NOTE: Control Signals MODE, SDI 

Figure 4. ISP Programming State Machine 
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PCI Electrical Specifications 

The PCI specification provides for both 5V and 3.3V 
signaling environments, but all components in a PCI 
design must use the same signaling environment. The 
PCI bus is a CMOS bus, i.e., steady state currents are 
minimal (after transients have died out), with most of the 
current spent on pull-up resistors. PCI is based on 
reflective wave signaling, rather than incident wave, 
which implies that the bus drivers have to switch the bus 
halfway to the required high or low voltage. The fact that 
the bus is unterminated, causes the reflected wave at the 
unterminated end of the transmission line to add to the 
incident wave to achieve the required voltage level. (See 
figure 5). The bus driver is actually in the middle of its 
switching range during this propagation time, which lasts 
up to 1 Ons, or one third the bus cycle frequency of 
33MHz. The PCI bus drivers are specified in terms of the 
AC switching characteristics or V/I curves. Figure 6 
shows the V /I curves of the PCI bus under a 5V signaling 
environment. 

The PCI specification dictates that pins used for ex­
tended data path (64 bit) such as high order AD lines, Cl 
BE lines and PAR64 (64-bit extension parity-- see figure 

HIGH 

Figure 5. Measurement of Tprop (from PCI spec.) 

Vee 

2.4 

1.4 

-2 

Figure 6. VII curve for 5V signaling (from PCI spec.) 

2) have pullups in order to prevent oscillation or high 
power drain through the input buffer. Some signals have 
to be pulled up in order to have stable values when no 
agent is driving the bus. In addition, the inputs are 
required to be clamped to ground. According to the PCI 
Local Bus specification, clamps to 5V are optional, but 
may be needed to protect 3.3V devices. When using dual 
power rails, parasitic diodes exist from one supply to 
another. These diode paths can become forward biased, 
if one of the power rails goes out of spec. for an instant. 
The diode clamps to the power rail and to the output 
devices must be able to withstand short circuit current 
until the drivers can be tristated. 

It should be noted that PCI compliant devices that directly 
drive the bus have extremely high output drive capability 
(greater than 48mA). This high drive is required to over­
come incident wave effects that may occur within the 
design and not so much from a DC drive perspective. 
Hence, the ispLSI devices may be used in conjuction with 
external buffers (GAL 16VP8 or 20VP8) or with series 
termination applied. In many cases, the loading condi­
tions are such that no external buffering or termination is 
needed. This must be determined by the system de­
signer. 
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Lattice ispLSI Electrical Specifications 

The Lattice ispLSI family has programmable pull-up 
resistors that may be used instead of the external resis­
tors, saving real estate. The ispLSI devices have an input 
clamp that turns on at approximately -1.7v, -18mA (see 
figure 7). These clamps exist on each of the dedicated 
inputs and I/Os. In addition, the ispLSI devices are 
capable of operating under conditions of "excessive" 
overshoot or undershoot. Figure 8 depicts the results 
when a 16 volt peak-to-peak pulse is injected into the 
input or 1/0 pin. 

Finally, with respect to input capacitance, the PCI spec­
ification stipulates that the input capacitance should not 
exceed 10 pF for an input pin and 12 pF for the clock and 
1/0 pin. The ispLSI devices have input capacitance of 8 
pF on input pins and 10 pF on 1/0 and clock pins. 

PCI Timing Requirements 

The PCI specification provides strict timing requirements 
in terms of setup time (7ns minimum). The Lattice ispLSI 
1032-80 device has a minimum set up time of 7ns on the 
inputs. 

Please refer to the PCI specifications and the Lattice 
Data Book for detailed specifications of the PCI bus and 
Lattice ispLSI devices. 

Controller Logic Implementation 

This section describes the implementation of the Master 
and Target state machines. Simulation waveforms are 
provided for the read cycle in Appendix A. The equations 
are for illustrative purposes only, and may have to be 
modified to support the actual design requirements. 
Lattice Semiconductor Corp. is not responsible for con­
flicts between the design and the specification. The PCI 
protocol has priority if any conflict arises in the equations. 

Master State machine 

The PCI Master performs the following functions: 
1. Data reads and writes on the PCI bus along with 

address stepping 
2. Initiate a time-out if cycle is not decoded by any 

Target (no subtractive decoding) 
3. Initiate a PCI bus latency time-out 
4. Responds to the system reset 
5. Generate parity error 
6. Can address memory or 1/0 space 
7. PCI bus locked cycles 

The Master state machine supports several options as 
specified in the PCI protocol. The bus interface consists 
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Figure 8. lspLSI Overshoot/Undershoot Characteristics 

in this state is the 'step' option. This is extremely useful 
in stepping through a bus cycle, in the initial prototype 
stages of the product cycle. It can be removed if address 
stepping is not desired. 

ADDA state is reached when the transaction is initiated 
by the processor. It is used to drive the address onto the 
bus, in this implementation it enables the address buffers 
and drives the commands on the bus. 

of two parts. First, the Master Sequencer state machine 
which actually performs the bus operation. The second 
part, the backend (processor), initiates the transaction 
and provides the address, data, command, byte enables 
and the length of the transfer. It is responsible for the 
address if the transaction is retried. The backend can 
request a locked transfer or terminate a transfer. Each 
state of the sequencer machine will be discussed, with 
viable options. There are seven valid states of the se­
quencer machine: 

DAT A state is reached unconditionally from the ADDA 
IDLE is when the Master waits for a request from the state and the data is transferred in this state. 
backend to do a bus operation. The only possible option 

------ ------------------------------!!IP.~'-~Y!~-- ----
Back-end/Target 

Figure 9. Controller Block Diagram 

DAT A 1 state is reached from the DAT A state only if more 
than one data phase is needed. This state is needed for 
the parity generation. The parity for the address lines 
needs to be generated in the clock after the address 
phase. Similarly, the data parity is generated in the next 
clock. 

TUAN_AA is where the Master desserts signals in prep­
aration of tri-stating them. If back to back transitions are 
not required the path to the ADDA state may be removed. 
A turnaround cycle is required on all signals that may be 
driven by more than one agent in order to avoid conten­
tion when one agent stops driving the bus and another 
starts driving it. 

S_ TAA is reached when the current Target requests the 
Master to stop the transaction. 
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DR_BUS is used when the PCI bus has been granted to 
the current Master and the Master either is not prepared 
to start a transaction (for address stepping) or has none 
pending. 

The following is the state diagram for the Master se­
quencer state machine. The transitions to various states 
will be discussed in greater detail following the state 
machine. 

The attached equations (Appendix A) listing should be 
used as reference along with the Master Sequencer 
State Machine diagram in order to interpret the following 
state machine logic description. 

The machine is in IDLE state when there are no requests 
for a bus transfer. On a processor PCI transaction re­
quest (generated by decoder, included in design), and 
the PCI bus grant from the external arbiter, the state 
machine transitions to the ADDA state. The PCI specifi­
cation requires that there be only one central arbiter in the 
PCI system. This design assumes that the arbiter is 
implemented off board. If the processor is using address 
stepping, then the transition is to the DR_BUS state from 
the IDLE state. 

Once in ADDR state, on the next clock the DATA state is 
reached unconditionally. In the ADDR state the appropri­
ate command bus signals are driven. These define the 
PCI bus command, for example, 0010 specifies an 1/0 
read cycle. These are generated from the processor 
read/write, 10/memory and data/code signals, which are 

PCI Bus Implementation 

used by the i486 to define the processor cycle. FRAME, 
which signals the start of a PCI cycle, is generated in the 
ADDR state and is held active through the DATA state till 
the Target/processor asserts a cycle complete signal. 

In the DATA state, data is transferred from the Master to 
Target in case of a write, or from the Target to Master in 
case of a read. Wait states can be added by the Target 
by asserting TROY or by Master by deasserting IRDY. In 
case of a read cycle, a turnaround cycle is required 
between the ADDR and DATA phases in order to avoid 
contention when one agent stops driving the signal and 
another agent starts driving. The turnaround wait state is 
asserted by the Target. (See PCI read cycle timing 
diagram, Figure 11 and Appendix A.). The DATA and 
DATA 1 state are identical, the DATA 1 state is needed for 
parity purposes. 

In case of fast back to back processor cycles, the ma­
chine remains in the DATA1 state. A flag SA is used to 
determine if the current PCI cycle is going to the same 
Target as the previous cycle. Flag L_CYC is set when the 
current cycle is a write and the previous cycle was also a 
write. These flags determine the presence of fast back to 
back cycles. The state machine transitions to TURN_AR 
state if the cycles are not back to back, in preparation for 
completing the cycle and tri-stating the bus signals. If the 
Target asserts a STOP (stop current cycle), the machine 
transitions from the DATA1 state to the S_ TAR state 

The DR_BUS state is needed only if address stepping is 
used. In this design, transitions to this state are used for 
the Master to park on the PCI bus, while the processor is 
stepping though a cycle. 

Figure 10. Master Sequencer State machine 
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Figure 11. PCI Bus Read Cycle (from PCI spec.) 

Finally, in the S_ TAR state, if grant is valid, the machine 
transitions to DR_BUS state. 

PCI provides an access mechanism which allows non­
exclusive access to processors in the face of an exclusive 
access. This is referred to resource lock. This mecha­
nism is based on locking only the PCI resource to which 
the original locked access was Targeted. The LOCK 
signal indicates that an exclusive lock is underway. The 
Master state machine controls the master lock mecha­
nism. It has only 2 states, BUSY and FREE. The FREE 
state implies that the bus is not locked by any Master or 
the current Master has it locked. If another Master owns 
the lock, the state transitions to BUSY and stays there till 
LOCK and FRAME are deasserted. The LOCK state 
machine has not been simulated, since resource locks 
are not implemented in the on board Target, however, the 
equations are as per the PCI protocol. 

The Devsel State machine is used to control the time-out. 
DEVSEL is driven by the Target of the current transac­
tion. DEVSEL must be driven within three clocks following 
the address phase, i.e., a Target must issue a DEVSEL 
before any response. If there is no subtractive decoding 
in the system, then the Devsel state machine will reach 
state SIX and time-out will be generated, signifying that 

lock* !own_Iock 

~ C8 ~ 
~ 

!lock* !frame 

Figure 13. Master Lock State machine 
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Figure 12. PCI Bus Write Cycle (from PCI spec.) 

no Target decoded the address. This will enable the 
Master to terminate the transaction. 

In addition to the above state machines, the Master 
Controller has a five bit counter, which runs on a 1 MHz 
clock. This counter is used to generate the MAS_ TO 
signal. This provides a 32 micro seconds latency for all 
PCI transactions. Latency is defined as the time from 
when FRAME is asserted to TRDY being asserted. 
Typical latencies are relatively short, however worst case 
latencies may be quite long and unpredictable, for exam­
ple, latency to a standard expansion adapter (ISA/EISA) 
through a bridge is often a function of the adapter behav­
ior, not PCI behavior. The length of the latency time-out 
can be modified In-System as desired for a low latency 
system. 

Target State Machine 

The target located on the PCI bus performs the following 
functions: 

1. Decode the PCI bus cycle and provide data during a 

Figure 14. Devsel State Machine 

4-162 1994 Handbook 



read 
2. Generate parity on PCI bus 
3. Generate target abort to terminate a bus cycle 
4. Insert wait state during a read cycle between address 

and data phase 

The PCI specification requires that the Target state 
machine be independent of the Master state machine. 
The Target interface has a backend that is responsible for 
determining when a transaction is terminated. The 
location of the Target in the Master backend address 
space can be changed In-System. Furthermore, subtrac­
tive decoding can be introduced if desired. This will make 
sure that the DEVSEL time-out is never asserted. The 
backend can also implement a resource lock. In this 
design, resource locks are not included in the target and 
zero wait state address decoding is assumed. The proto­
col for the target is fairly simplistic. The Master asserts 
the address, on a read cycle, if the target has a address 
hit, it initiates its internal state machine and either sup­
plies the data or asserts an abort signal. Following is the 
Target state machine state description: 

TGT _IDLE: In this state the machine is waiting for a 
decode to the target, i.e., the on board decoder sees a 
bus cycle directed to the target. The machine transitions 
to TGT _DATA on HIT. This path can be removed if the 
Target cannot do single cycle decodes. If STOP is 
asserted by the Target, the machine transitions to 
BACKOFF. The machine goes to state B_BUSY when it 
sees FRAME asserted on the bus, but the HIT signal is 
still invalid. 

B_BUSY: The Target waits for the current transaction to 
complete and the bus to return to idle. This state is useful 
for devices that do slow address decode or perform 
subtractive decode. In this design , both these are not 
supported, hence there is no transition to the TGT _DATA 
and BACKOFF states. 

TGT _DATA: The Target transfers data in this state. The 
machine transitions to BACKOFF if FRAME and STOP 
are asserted. In case of read cycle, the target asserts a 
wait state after the address is driven on the bus by the 
processor. This wait state is asserted by delaying the 
assertion of TROY. 

BACKOFF: The target goes to this state after it asserts 
STOP and waits for the Master to dessert FRAME. 

TURN: This state is reached when the transaction is 
completed. In preparation for the bus signals to be tri­
stated. 

PC/ Bus Implementation 

Figure 15. Target State Machine 

In addition to the above state machine the Target also 
contains a trivial command bus state machine. This 
machine is responsible for storing the command bus 
information during the address phase of the bus cycle. 
This is required since the command bus carries the byte 
enables during the data phase and the cycle type infor­
mation is lost. 

Parity 

PCI compliant devices are required to implement parity 
control. PCI bus has two signals, PAR and PERR that 
driven by the Master or Target. PAR is used to drive an 
even parity, covering AD3 .. ADO and C/BE3 .. C/BEO, dur­
ing address and data phases. To ensure the correct bus 
operation is performed, the four command lines are 
included in the parity calculation. In this design, parity 
generation is supported. The i486 processor drives 
DPO .. DP3 lines which contain the parity bits for the 4 
bytes of the processor bus. These bits and the data/ 
address lines are used to generate PAR. The Lattice 
ispLSI device has a hardware 8-input XOR that can be 
used for this purpose. The Master drives the PAR onto 
the PCI bus during a write cycle. The Target is respon­
sible for driving the PERR signal during the write cycle, if 
it has a parity error. During a read cycle, the Master 
generates the PERR based on the PCHK signal provided 
by the i486 processor. The Master also generates the 
PAR signal based on the state of PAR which is asserted 
by the Target in the read cycle. The PAR signal is 
generated by the Target on a read cycle. This design 
does not incorporate this feature, however it can be 
implemented quite nicely in an additional ispLSI device, 
since all the AD lines and the local processor lines are 
needed for generating the PAR bit. 
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Design Options/Enhancements 

The PCI bridge can be designed to include various 
options, some of them are discussed here. 

1. Cache Support 
A system may have some cacheable memory located on 
the PCI bus. The PCI specification allows the bridge to 
implement a standard interface which supports a snoop­
ing cache coherency mechanism. The support for cache 
is optimized for simple, entry level systems and assumes 
a flat address space. PCI provides support for both 
Write-through and Write-back caches. The ispLSI de­
vices provide an efficient implementation of a 
programmable cache controller on account their in In­
System Programmability, which makes the design flexible 
to support various cache schemes. 

2. 64 Bit Data Bus 
PCI provides a 64 bit extension to the data bus for agents 
with a 64 bit data bus. This requires 39 additional pins: 
REQ64, ACK64, PAR64, C/BE4 .. C/BE7 and AD32 .. AD63. 
Basically the 64 bit bus works the same way as the 32 bit 
bus. In this design, the data lines are not driven by the 
ispLSI device, which actually drives the control signals to 
enable the external buffers. This would make the expan­
sion to 64 bit mode real simple. The internal logic can be 
modified to support the additional control signals. REQ64 
is the pin used by the Master to request a 64 bit transfer. 
This is an extremely attractive option for 64 bit proces­
sors such as Pentium. When implementing this option, 
one has to be careful since Double Word swapping is 
allowed on the 64 bit data bus. 

3. 64 Bit Addressing 
PCI supports addressing beyond 4GB by defining a 
mechanism to transfer a 64 bit address from the Master 
to Target. A 64 bit address can be provided in one clock 
if the 64 bit address/data bus is being used. The Dual 
Address Cycle mode can be used, for 32 bit systems 
where the address is transferred in two clocks. This 
option cannot support address stepping on account of 
the two clock address transfer. 

4. Slow Decoding Targets/Subtractive Decoding 
This design assumes that the target can decode the PCI 
bus address with no wait state. For slower Targets, 
additional transitions can be added into the Target state 
machine, namely, transition from B_BUSY state to 
TGT_DATA and BACKOFF can be added. In addition, 
the path from IDLE to TGT _DATA can be removed if the 
Target cannot do single cycle decoding. Additional logic 
will depend on the specific Target implementation. 

Other design options would be to include interrupt gener­
ation or even implement the entire interrupt controller in 
the master interface for PCI as well as local interrupts. 
Target Resource lock is another viable option. In a 
resource lock, exclusivity of an access is guaranteed by 
the target of the access, not by excluding all other 
accesses. This allows future processors to hold a hard­
ware lock across several accesses without interfering 
with non-exclusive accesses such as video. 

Conclusion 

This application note has presented a broad overview of 
the PCI bus along with a sample PCI Master/Target 
interface implemented in a Lattice ispLSI device. With 
the popularity of the non-proprietary, high performance 
and extremely flexible local bus, it is not surprising that 
designers are looking to programmable logic to meet the 
challenges offered by a PCI interface design. The Lattice 
In-System Programmable device family is ideally suited 
to such complex state machine intensive applications. 
While the sample design in this application note is spe­
cific enough to cover the required PCI protocol, it is 
adaptable and can be molded around any given periph­
eral or processor. In fact, it can even be reconfigured in 
the system from one peripheral to another, as long as the 
hardware interface is not too rigid. Additional features 
can always be added either in more ispLSI devices or 
discrete logic on account of the modular layout of the 
design. 

The source file for the design is included in the following 
pages. This design is implemented using ABEL 4.1.3 
software with Lattice pDS+ ABEL Fitter. pLSI Property 
Statements provide the user direct control over hardware 
specific features of the ispLSI and pLSI devices. The 
simulations were carried out using Viewlogic ViewSim 
software. Alternatively, the design can be implemented 
quite easily using the Lattice pDS+ Development Sys­
tem. 
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Design Equations and Simulation Waveform 

module pci_master 
title 'pci bus master interface for i486 cpu'; 

"NOTES: 
"this design assumes that there is no cacheable memory located 
"as a target on the pci bus 
"This design is a guideline for implementing PCI bus bridge 
"for a 486 cpu interface. This design does not implement a 100% 
"PCI compatible bridge, however, the basic state machine is 
"implemented and provides a baseline to build a complete PCI 
"master interface 

"**************************************************************** 
"**************************************************************** 

plsi properties 
"**************************************************************** 
"**************************************************************** 

plsi property 'timing sim pci mast'; 
plsi property 'strong-route extended'; 
plsi property 'try 4'T 
plsi property 'max_delay l'; 

"**************************************************************** 
.. **************************************************************** 
declarations 
"**************************************************************** 
II**************************************************************** 

pci master device 'pl032j09'; 

.. **************************************************************** 
inputs 

"**************************************************************** 
"inputs for processor interface 
paO pin; 
pal pin; 
pa2 pin; 
pa3 pin; 
pa4 pin; 
pa5 pin; 
pa6 pin; 
pa7 pin; 
paB pin; 
pa9 pin; 
palO pin; 
pall pin; 
pal2 pin; 
pal3 pin; 
pal4 pin; 
pals pin; 
pal6 pin; 
pal7 pin; 
palB pin; 
pal9 pin; 
pa20 pin; 
pa21 pin; 
pa22 pin; 
pa23 pin; 
pa24 pin; 
pa25 pin; 
pa26 pin; 

"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
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pa27 pin; 
pa28 pin; 
pa29 pin; 
pa30 pin; 
pa31 pin; 
pbeO pin; 
pbel pin; 
pbe2 pin; 
pbe3 pin; 
!plock pin; 
lpdata pin; 
lpiom pin; 
!pbreq pin; 

"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor address lines 
"processor byte enables 
"processor byte enables 
"processor byte enables 
"processor byte enables 
"processor lock pin 
"processor C/D p~n 
"processor IO/m pin 
"processor bus request 
"processor read/write !pread pin; 

dp0,dpl,dp2,dp3 pin; "processor parity pins 

step pin; 
cclk pin; 
pclk pin; 

"master input pins from pci 
!gnt pin; 
!trdy pin; 
!stop pin; 
!devsel pin; 
ready pin; 
comp pin; 

par pin; "bidirectional parity pin 

"slave inputs 

"stepping input for debugging 
"clock - lmhz 
"clock for timeout counter 

"from bus arbiter 
"from target 
"from target 
"indicates tgt has been selected 
"indicates ready to transfer 

term pin; "slave wants to terminate the bus cycle 
tar_dly pin; 

''**************************************************************** 
outputs 

.. **************************************************************** 
"master output pins and bi directionals 

cbeO pin; 
cbel pin; 
cbe2 pin; 
cbe3 pin; 
data_en pin; " enables the data buffers on the pCI bus 

!frame pin; 
!lock pin; 
!req pin; 
!irdy pin; 
addr en pin; 
mas_abort pin; "transaction aborted by master due to timeout 

"The following is the output enable for the external buffers 
ad_oe pin; 

"**************************************************************** 
nodes 

"**************************************************************** 
"internal timer has expired mas to node; 

pci-node; 
dev to node; 
sa node ; 

" cpu access is on pci bus from built in address decoder 
"devsel timeout on pci bus,ie, DEVSEL was not asserted 

"last cycle to same tgt as current 
L eye node; 
own_lock node; 

"last eye was a write, bit set in register 
"master owns lock 
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tgt_abort node; "target aborts access 
tgtl node; 
tgtlr node istype 'buffer,reg_d'; "used to store tgt access info. 
ldt pin; 
preadr node istype 'buffer,reg_d'; "used to store write/read cycle bit 

"target related nodes 
hit node; 
cmdr3,cmdr2,cmdrl,cmdr0 node; 

''**************************************************************** 
Other Definitions * 

.. **************************************************************** 
"defn. of all bus cycles 
int ack = [ 0, 0, 0, 0]; 
spec eye = [ 0, 0, 0, l ] ; 
io read [0,0,1,0]; 
io-write [0,0,1,1]; 
res 1 [ 0, 1, 0, 0 ] ; "RESERVED 
res2 [0,1,0,l]; "RESERVED 
mem read = [0,1,1,0]; 
mem write = [0,1,1,l]; 
res} [1,0,0,0]; "RESERVED 
res4 [l,0,0,l]; "RESERVED 
config read [l,0,1,0]; 
config-write = [l,0,1,1]; 
mem wr-mult [1,1,0,0]; 
dual add eye = [l,1,0,l]; 
"for-64 bit addressing only- not supported by this design 
mem read line [l,1,1,0]; 
mem=wr_inval [l,1,1,l]; 

cmd [cbe3 .. cbeO]; 
cycle 

" for convenient definition of cbeX lines used in ist phase 
of bus 
cmdr 
pbex = 

[ cmdr3 .. cmdrO]; 
( pbe3 .. pbeO] ; 

"storage for command bus 
"processor byte enables 

"***** MASTER MACHINE DEFN. *************************** 
"master lock machine 
lreg node; 
lreg istype 'buffer,reg_d'; 

"state definitions for lock machine 
free = O; 
busy = l; 

"devsel timer machine 
d2,dl,d0 node; 
dreg= [d2 .. d0]; 
dreg istype 'buffer,reg_d'; 

"state defn. for devsel state machine 
null [0,0,0] 
one [O,O,l] 
three [0,1,1] 
seven [l,l,l] 
six [l,l,O] 

"master sequencer machine 
s0,sl,s2 node; 
sreg = (s2 .. s0]; 
sreg istype 'buffer,reg_d'; 

"state defn. for master sequencer machine 

4-167 1994 Handbook 

• 



PCI Bus Implementation 

[O,O,O] ; 
[O,O,l] ; 
[O,l,l]; 

idle 
addr 
data 
datal 
dr bus 
turn ar 
s_tar 

[ 1, 0, 1]; " for parity purpose 
[l,l,l]; 
[l,1,0]; 

"counter defn. 
q0,q4,q3,q2,ql node; 
count= [q4 •. q0]; 

[l,O,O]; 

count istype 'buffer,reg_d'; 

"****** TARGET MACHINE DEFN.************************************ 
t2,tl,t0 node; 
treg = [t2 •• t0]; 
treg istype 'reg_d,buffer'; 

tgt_idle = [O,O,O]; 
backoff = [O,O,l]; 
b busy [O,l,O]; 
tgt_data [0,1,1]; 
turn = [l,O,l]; 

"state machine to clock comand bus for target 
cl,cO node; 
creg = (cl,cO); 
creg istype 'reg_d, buffer'; 

no ack 
strobe 
hold 

[O,O]; 
[O,l]; 

[l,l]; 

"**************************************************************** 
State machines 

* 
"**************************************************************** 
"state diagram for sequencer machine 
state_diagram sreg; 

state idle: "idle state on the bus 
if (pbreq & gnt 
dress strobe 

& !frame & lirdy & !step) "cpu has a pci bus request and ad-

then addr; 

else if ((lpbreq & gnt) # (pbreq & gnt & step)) & (!frame & lirdy) 
bus if stepping 

then dr_bus; 

else idle; 

"master starts a transaction 

"park on 

state addr: 
goto data; "goto data state on next clock 

"master transfers data first data phase state data: 
if (frame) # 
& comp)) 

((!frame & lirdy & ltrdy.pin & !stop.pin & ldev_to) & l((cmd==spec_cyc) 

then datal; 

else if (!frame & lstep & trdy.pin & !stop.pin & l(cmd==spec_cyc) & sa &·L_cyc & 
pbreq & gnt) 

then addr; " only if fast back to back cycles are supported 

else if (!frame & trdy.pin & !stop.pin & l(sa & L_cyc & pbreq & gnt) # 
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(!(cmd==spec eye) & comp)) 
- then turn_ar; "turnaround state if no back-back cycles 

state datal: 

else if (!frame & stop.pin# !frame & dev to & !trdy.pin) 
then s_tar; 

if (frame)# ((!frame & lirdy & !trdy.pin & !stop & !dev_to) & !((cmd==spec_cyc) & 
comp)) 

then datal; 

if (!frame & !step & trdy.pin & !stop.pin & !(cmd==spec_cyc) & sa & L_cyc & 
pbreq & gnt) 

then addr; " only if fast back to back cycles are supported 

else if (!frame & trdy.pin & !stop.pin & !(sa & L_cyc & pbreq & gnt) # 
(!(cmd==spec eye) & comp)) 

- then turn_ar; "turnaround state if no back-back cycles 

else if (!frame & stop.pin# !frame & dev to & !trdy.pin) 
then s_tar; 

state turn ar: 
if (pbreq & gnt & !step) 

then addr; 

" state for houskeeping purposes 

else if (!pbreq & gnt # pbreq & gnt & step) 
then dr_bus; 

else if ( !gnt) 
then idle; 

else turn_ar; 

state s tar: 
if (gnt) 

" turnaround state when stop is asserted 

then dr_bus; 

else if ( !gnt) 
then idle; 

else s_tar; 

state dr bus: "bus parked or address stepping is used 
if (pbreq & gnt & step # !pbreq & gnt) 

then dr_bus; 

else if (pbreq & !gnt & !step) 
then addr; 

else if ( !gnt) 
then idle; 

else dr_bus; 

"************** end of master sequencer state machine**************************** 

"state diagram for LOCK machine 
state_diagram lreg; 

state free: 
if (!lock# lock & Own_lock) 

then free; 

"bus is locked by current master 
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else if (lock & IOWn_lock) 
then busy; 

state busy: " some other master has the bus locked 
if (!lock & !frame) 

then free; 

else if (lock # frame) 
then busy; 

"************** end of master lock state machine**************************** 

state_diagram dreg; 

state null: "machine is waiting for frame to be asserted 
if (frame & !stop) 

then one; 
else null; 

state one: 
goto three; 

state three: 
goto seven; 

state seven: 
if (!devsel & frame) 

then six; 
else null; 

state six: 
goto null; 

"************** end of devsel state machine********************** 

" ************ target state machine ***************************** 
state_diagram treg; 

state tgt_idle: 
if (!frame.pin) 

then tgt_idle; 

else if (frame.pin & !hit) 
then b_busy; 

"target state machine is idle 

else if (frame.pin & hit & (!term# term & ready)) 
then tgt_data; 

else if (frame.pin & hit & term & !ready) 
then backoff; 

else tgt_idle; 

state b_busy: 
if ((frame.pin# irdy.pin) & !hit) 

then b_busy; 

else if (!frame.pin) 
then tgt_idle; 

else b_busy; 

state tgt data: 
if (frame:pin & stop & trdy & lirdy.pin # frame.pin & !stop# !frame.pin & ltrdy & 
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!stop) 
then tgt_data; 

else if (frame.pin & stop & (!trdy # irdy.pin)) 
then backoff; 

else if (!frame.pin & (stop# trdy)) 
then turn; 

else tgt_data; 

state backoff: 
if (frame.pin) 

then backoff; 

else if (!frame.pin) 
then turn; 

state turn: 
if (!frame.pin) 

then tgt_idle; 

else if (frame.pin & !hit) 
then b_busy; 

else if ( frame.pin & hit & (!term# term & ready)) 
then tgt_data; 

else if (frame.pin & hit & (term & !ready)) 
then backoff; 

''************* end of target state machine********************** 

" cmd bus store state machine 
state_diagram creg; 

state no ack: 
if (!frame.pin ) 

then no_ack; 

else if (frame & hit) 
then strobe; 

state strobe: 
goto hold; 

state hold: 
if (frame.pin) 

then hold; 

else if (!frame.pin) 
then no ack; 

''***************~************************************************ 
equations 
''**************************************************************** 
lreg.c 
dreg.c 
sreg.c 
treg.c 
creg.c= 

pclk; 
pclk; 
pclk; 
pclk; 
pclk; 

count.c = cclk; 
count.re = trdy & gnt; "reset counter when trdy is generated by master 

"5 bit counter initiated by asserting frame,runs on a lMhz clock 

4-171 1994 Handbook 

I 



PC/ Bus Implementation 

"will generate mas to signal at end of count 
qO.d qO $ frame;-
ql.d (qO & frame) $ ql; 
q2.d = (qO & ql & frame) $ q2; 
q3.d = (qO & ql & q2 & frame) $ q3; 
q4.d = (qO & ql & q3 & q3 & frame) $ q4; 
mas_to = (ql & q2 & q3 & q4 & qO & frame ); "master timed out 

pci = {pa31 & pa30 & pa29 & pa28 & pbreq); " decoded pci address space fOOOOOOO-
ffffffff 

Own_lock = !lock & !frame & !irdy & pbreq & gnt & plock # Own_lock & (frame# lock); 

frame= (sreg==addr) # ((sreg==data)#(sreg==datal) & !dev to & ((!comp & (!mas_to # 
gnt) & !stop.pin)# !ready)); 

lock= !((Own_lock & (sreg==addr)) # tgt_abort # dev_to # 
(((sreg==data)#(sreg==datal)) & stop.pin & !trdy.pin & !ldt) 

# (Own_lock & !plock & comp & ((sreg==data)#(sreg==datal)) & !frame & 
trdy.pin)); 

req = (pbreq & !plock # pbreq & plock & (lreg==free)) & !(sreg==s_tar); 

irdy = ((sreg==data)#(sreg==datal)) & (ready# dev_to); 

dev_to = (dreg==six); 

mas_abort = mas_to; 

cmd = ( int_ack & ({sreg==addr) & pread & piom & pdata) 
# io read & ((sreg==addr) & pread & piom & !pdata) 
# io=write &((sreg==addr) & !pread & piom & !pdata) 
# mem_read & ({sreg==addr) & pread & !piom & !pdata) 
# mem write & ((sreg==addr) & !pread & !piom & !pdata) 
#spec eye & ((sreg==addr) & !pread & piom & pdata) 
# pbex-& (sreg==data) 
# pbex & (sreg==datal) 
# pbex & ((sreg==dr_bus) & step & pbreq)); 

addr en (sreg==addr); 

data_en (sreg==data)#(sreg==datal)#(sreg==dr_bus); 

"preadr is used to store the write/read access 
preadr.d = pread & gnt; 

preadr.clk = pclk; 

preadr.ar = (!gnt & !pci); 

L_cyc = !pread & preadr.q; 

tgt_abort = (stop.pin & !devsel.pin & ((sreg==data)#(sreg==datal)) & !frame & irdy); 

"the following equations assume only 1 target device. The access to the device 
"is stored for back to back transfers. this can be expanded to include more devices 

tgtl = (pbreq & pa31 & pa30 & pa29 & pa28 & pa27 & pa26 & pa25 & pa24 ); "FFOOOOOO­
FFFFFFFF 

tgtlr.d = tgtl; 

tgtlr.ar = (!gnt & !pci); "reset the register when there is a non-pci access 
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tgtlr.c = pclk; 

sa = tgtlr.q & tgtl; 

"****************************** output enables***************************** 

cmd.oe = (sreg==addr) # (sreg==data) # (sreg==dr_bus) # (sreg==datal); 

lock.oe = OWn_lock & ((sreg==data)#(sreg==datal)) # (lock.oe & (frame# lock)); 

ad_oe (sreg==addr) # (sreg==dr_bus) & step & pbreq; 

"irdy needs to be asserted when addr or data are the previous states 
irdy.oe = (sreg==addr) 

#((sreg==idle) & pbreq & gnt & !frame & lirdy & pci & !step) "asserted 
when addr is next state 

#((sreg==turn_ar) & pbreq & gnt & !step) " asserted when addr is 
next state 

#((sreg==data) & !frame & !step & trdy.pin & !stop.pin & !(cmd==spec_cyc) 
& sa & L_cyc & pbreq & gnt) 

#((sreg==dr bus) & pbreq & !gnt & !step) "asserted when addr is 
next state -

#(((sreg==data) & frame)# ((!frame & !irdy & !trdy.pin & !stop.pin & 
!dev_to) & !((cmd==spec_cyc) & comp))) 

#(((sreg==datal) & frame)# ((!frame & !irdy & !trdy.pin & !stop.pin & 
!dev_to) & !((cmd==spec_cyc) & comp))); 

"*************************************************************************** 
Parity logic 

"*************************************************************************** 
~ar ((dpO $ dpl) $ (dp2 $ dp3)); 

# (from slave par circuit); 

par.oe (sreg==data) & (cmd==io_write) # (cmd==mem_write) "for address parity 
# (sreg==datal) & (cmd==io_write) # (cmd==mem_write) "for data parity 

slave 
# (treg==tgt_data) & trdy & ((cmdr==io_read) # (cmdr==mem_read)); "for 

driven par 

"******************************** target equations*********************** 
trdy = !(ready & !tgt abort & (treg==tgt data) 

& (((cmdr==io-write) # (cmdr==mem write)) 

stop 

# ((cmdr==Io_read) # (cmdr==mem_read) & tar_dly))); 

!((treg==backoff) # (treg==tgt_data) & (tgt_abort #term) 
& (((cmdr==io write)# (cmdr==mem write)) 

# ((cmdr==Io_read) # (cmdr==mem_read) & tar_dly))); 

devsel = !((treg==backoff) # (treg==tgt_data) & !tgt_abort); 

"perr = (from parity circuit) 

trdy.oe 

stop.oe 

(treg==backoff) # (treg==tgt_data) # (treg==turn); 

(treg==backoff) # (treg==tgt_data) # (treg==turn); 

devsel.oe = (treg==backoff) # (treg==tgt_data) # (treg==turn); 

"hit (decode of PCI address lines ); 

cmdr cmd & (creg==strobe); "store the command bus info for use 

END; 
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PCI Bus Implementation 

pDS+ Fitter Report 

******************************************** 
* 
* 
* 

Lattice pDS+ Fitter Report 
* 
* 
* 

******************************************** 

Copyright (c) Lattice Semiconductor Corp. 1992. All Rights Reserved. 

Design Name: 
File: 

Date/Time: 
Targeted Device: 

Software Version: 

pci mast 
pci=mast.doc 
Mon Apr 25 12:13:33 
pLSI1032-90LJ84 
DPM 1.60 12/8/93 

Fitter Parameters Used 

AVG GLB IN: 
-EFFORT: 

IGNORE FIXED PIN: 
-MAX DELAY: 
MAX GLB IN: 
PARAH FILE: 

-PART: 
TIMING SIM: 

-TRY: 
FAST ROUTE: 

STRONG=ROUTE: 

16 
4 
OFF 
1 
16 
(null) 
pLSI1032-90LJ84 
pci mast 
4 -
OFF 
EXTENDED 

Process Status 

Design Analysis: 
Logic Partitioning: 

Place and Route: 
Post Route: 

Fuse File Generation: 
Merging TMV in JEDEC: 

complete 
complete 
complete 
complete 
complete 
incomplete 

********************************* 
* 
* 
* 

Post-Route Report 
* 
* 
* 

********************************* 

Design Name: 
Targeted Device: 

pci mast 
pLSI1032-90LJ84 

1994 

Date/Time: Mon Apr 25 13:09:06 1994 

Software Version: 1.00.35 

All strategy results: 
Strategy 4 - Estimated No. of GLBs : 19 
Strategy 4 - Estimated No. of GLB Levels: 3 

Final Selected Strategy 4 - Estimated No. of GLBs 19 
Strategy 4 - Estimated No. of·GLB Levels: 3 

Partitioning: 

Total number of GLBs 31 
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Total number of Product Terms used 193 
Average number of Product Terms : 6.2 
Total number of nets created : 119 
Average number of Inputs per GLB : 9.6 
Average number of Outputs per GLB : 2.2 
Number of I/Os Generated : 46 
Number of Dedicated Inputs Generated : 4 
Type of Clocks Generated 2 System Clocks 

o I/O Clocks 
0 Product Term Clocks 
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Post Route Pin Report 
Post-Route Pin Report 
--------------------------
Pin Number Signal Name Fixed Pin Type 

1 GND Yes Gnd 
3 mas_abort No Output 
5 pa29 No Input 
6 frame No Output 
7 irdy- No Input 
9 devsel- No Input 

10 irdy No Bidi 
11 par No Output • 14 comp No Input 
16 pa28 No Input 
20 pclk Yes Clock 
21 vcc Yes Vee 
22 GND Yes Gnd 
25 pbe2 No Input 
26 hit No Input 
27 cbe3 No Bidi 
28 cbe2 No Bidi 
29 req No Output 
30 addr en No Output 
31 term No Input 
32 tar_dly No Input 
33 frame- No Input 
34 pa31 No Input 
35 devsel No Bi di 
37 pa27 No Input 
38 dpO No Input 
39 data en No Output 
40 stop No Bi di 
41 pa26 No Input 
42 pbe3 No Input 
43 GND Yes Gnd 
44 pbel No Input 
45 cbeO No Bi di 
46 gnt No Input 
47 pdata No Input 
48 cbel No Bi di 
49 trdy- No Input 
50 dp3 No Input 
51 dp2 No Input 
52 dpl No Input 
54 pre ad No Input 
55 plock No Input 
56 ad oe No Output 
64 GND Yes Gnd 
65 vcc Yes Vee 
66 cclk Yes Clock 
68 pbreq No Input 
69 pbeO No Input 
70 ready No Input 
71 pi om No Input 
72 pa24 No Input 
77 #lock No Bidi 
78 step No Input 
79 pa30 No Input 
81 stop- No Input 
82 pa25 No Input 
83 trdy No Bi di 
84 ldt No Input 
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Programming ispLSI Devices 
with a Tester 

Overview 

Increasing demand for high pin count programmable 
logic and FPGAs creates many manufacturing chal­
lenges. These devices can require extra steps in the 
manufacturing flow due to device programming require­
ments, marking and storage. The Lattice family avoids 
these extra steps through its In-System Programming 
(ISP) interface, allowing the devices to be installed prior 
to programming, and then programmed by the Auto­
mated Test Equipment (ATE), as shown in Table 1. 

This reduction in the number of steps results in large cost 
savings to the manufacturer, and offers other advan­
tages as well: 

no dedicated programmers needed 
programmable parts no longer need to be socketed 
the final product is easily upgraded in the field, reduc­
ing maintenance costs 

Standard Flow 
Using Non-ISP Devices 

DRAW PARTS FROM 
STORES (1 PIN) 

PROGRAM EACH 
PART 

LABEL EACH 
PROGRAMMED PART 

RETURN PARTS 
TO STORES 

(MULTIPLE PIN'S) 

DRAW PARTS FROM 
STORES TO ASSEMBLY 

BOARD ASSEMBLY 

BOARD TEST 

Table 1. Detail of the ISP interface. 

Enhanced Flow 
Using ISP Devices 

DRAW PARTS FROM 
STORES (1 PIN) 

BOARD ASSEMBLY 

BOARD TEST 
•Diagnostics using ISP 
•Final Programming 
•Final Board Test 
•Boundary Scan 

ISP interface 

The ISP interface is based on a simple 5 signal 5V 
interface much like the boundary scan chain. The pro­
gramming of the device is controlled 'on chip' by a simple 
state machine. Figure 1 illustrates a typical configuration 
where the programming signals are generated by a 
generic block called programming control circuitry. The 
programming process consists of transferring the logic 
implementation stored in a JEDEC compatible fuse pat­
tern into the device. The method by which the transfer is 
accomplished is dependent on the end system's defini­
tion. The programming control circuitry can be 
implemented by traditional PLO programmers, IC or 
printed circuit board testers, the 1/0 port of a computer 
such as PC parallel port or a micro controller or micropro­
cessor directly on the system board. In this case we shall 
concentrate on using the tester as the programming 
control circuitry. 

Device Programming Architecture 

The in-system programming of the ispLSI device is 
controlled by the five programming control interface 
signals - ispEN, MODE, SCLK, SDI and SDO. The 
programming information from the JEDEC file is serially 
shifted into the device via the SDI pin and shifted out 
through the SDO pin. The ispEN signal controls whether 
the device is in normal operating mode or programming 

<.....L~-- Serial Data In 

4 

MMll 

Serial Data Out 
ISP-Mode 
ISP-Clock 

Figure 1. Detail of the ISP Interface 
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Programming ispLSI Devices with a Tester 

mode. SCLK provides the clock to run the state machine. 
MODE and SDI provide control inputs to the state ma­
chine. The internal state machine has a simple instruction 
set to control the flow of data to either the address 
registers, data registers or to implement the program­
ming options. Table 2 lists some of the key instructions 
that can be implemented by the state machine. 

The ISP state machine consists of three basic states: 

• Idle 
• Shift 
• Execute 

Transition between the state are controlled by the SDI 
and Mode pins as detailed in Figure 3. The idle state 
allows the programming to be halted or the device iden­
tification data to clocked out of the device. Address, Data, 
or Command information is shifted in or out of the shift 
registers while in the shift state. The Execute state is 
used to execute or 'run' the loaded command. All of the 
state transitions are controlled by the synchronous clock 
(SCLK}. 

The programming circuitry for the ispLSI 1032 is detailed 
in Figure 2. SDI can drive either the SDO pin, the high 
order shift register, the low order shift register or the 
address shift register. The ISP state machine controls 
where SDI is being driven to and what SDO is being 
driven by. 

The first step when programming the ispLSI devices is to 
determine what type of device is being programmed. 

Table 2. State Machine Instruction Set 

Instruction Operation Description 

00000 NOP No operation performed 

00001 ADDSHFT Address Register Shift: Shifts address into the address shift register from 
SDIN. 

00010 DAT ASH FT Data Register Shift: Shifts data into or out of the data serial shift register. 

00011 UBE User Bulk Erase: Erase the entire device. 

00100 GRPBE Global Routing Pool Bulk Erase: Bulk erases the GRP array only. 

00101 GLBBE Generic Logic Block Bulk Erase: Bulk erases all the GLB array only. 

00110 ARCH BE Architecture Bulk Erase: Bulk erases the architecture array and 1/0 
configuration only. 

00111 PRGMH Program High Order Bits: The data in the data shift register is pro-
grammed into the addressed row's high order bits. 

01000 PRGML Program Low Order Bits: The data in the data shift register is pro-
grammed into the addressed row's low order bits. 

01001 PRGMSC Program Security Cell: Programs the security cell of the device. 

01010 VER/LOH Verify/Load High Order Bits: Load the data from the selected row's high 
order bits into the data shift register for verification. 

01011 VER/LDL Verify/Load Low Order Bits: Load the data from the selected row's low 
order bits into the data shift register for verification. 

01100 GLBPRLD Generic Logic Block Preload: Preloads the registers in the GLB with the 
data from SDIN. All registers in the GLB form a serial shift register. Refer 
to device layout section for details. 

01101 IOPRLD 1/0 Preload: Preloads the 1/0 registers with the data from SDIN. All 
registers in the 1/0 cell form a serial shift register (the same order as GLB 
re_gisters). 

01110 FLOWTHRU Flow Through: Bypasses all the internal shift registers and SDOUT be-
comes the same as SDIN. 

10010 VE/LOH Verify Erase/Load High Order Bits: Load the data from the selected row's 
high order bits into the data shift register for erased verification. 

10011 VE/LDL Verify Erase/Load Low Order Bits: Load the data from the selected row's 
low order bits into the data shift register for erased verification. 
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Figure 2. Detail of the lspLSI 1032 Programming Architecture 

Data In 
(SDIN) 

DATA 

SCOUT 

Row Addr. In (SDIN) 
....-------------------. (n-1) 

E2 CMOS Cell Array 

Low-Order SR High-Order SR 

Fuse# (m-1)- Fuse# (m/21Fuse# [(m/2)-1]- Fuse# o 

Figure 3. The ISP control state machine. 
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Programming ispLSI Devices with a Tester 

Since the size of the data and address registers is device 
dependent, this will affect the programming algorithm. 
After this device identification is completed, the program­
ming sequence can begin. A typical programming 
sequence is described below. 

The programming sequence can be broken down into a 
few basic functions: 

• identifying the device 
• bulkerase 
• shifting in the row address 
• shifting in the row data 
• verifying the row 

In Table 3, steps 1 and 2 perform a bulk erase on the 
device, clearing the device of any pre- programmed 
information or earlier designs. Once the device has been 
cleared, a loop is set up and the first address to be 
programmed is shifted into the device through SDI (steps 
3, 4 and 5). Each address is split into high order and low 
order data bits; these are programmed separately. In this 
example, we have chosen to program the high order bits 
first. Steps 6,7, and 8 load in the high order data for the 
address, then steps 9 and 10 program the E2 cells with 
the high order data for the address specified in the 
address register. This sequence is repeated for the low 
order bits in steps 11 through to 15. The loop is then 

Table 3. Programming ispLSI devices 

1) UBE 

2) Execute UBE 

3) ADDSHFT command shift 

4) Execute ADDSHFT command 

5) Shift address 

6) DATASHFT command shift 

7) Execute DATASHFT command 

8) Shift high order data 

9) PRGMH command shift 

10) Execute PRGMH 

11) DATASHFT command shift 

12) Execute DATASHFT command 

13) Shift low order data 

14) PRGML command shift 

15) Execute PRGML 

16) Repeat from 1) until all rows are programmed. 

repeated with the next address until the device is fully 
programmed. After programming, the device can be 
verified and the made secure by similar methods. 

Programming ISP Devices with a Tester 

There are two basic approaches to programming the ISP 
family using a tester: 

• write a custom program in the tester's high level 
programming language 

• create test vectors which drive the ISP program­
ming pins to program the device 

Using Test Vector Input 

To use the test vector input option, you will need to get a 
copy of Lattice's JEDEC to PCF translation utility, called 
JEDTOPCF, available on the Lattice BBS (503 693-
0215) as JEDTOPCF.ZIP. This utility will read a JEDEC 
file and converttheJEDEC file into test vectors which can 
be used to program the device. Complete documentation 
on using the JEDTOPCF utility is included in the 
JEDTOPCF.ZIP file. The conversion process is illus­
trated in the following diagram: 

Currently, the utility converts the information into an HP­
PCF format, but this information can easily be translated 
into another format with some simple modifications to the 
output routines. A portion of a PCF file is shown below. 

unit "ul" 
pcf 
"X0101" 
"XOlll" 
I vector 100460 
"XOOOO" 
"XOOlO" 
"XOOOl" 
"XOOll" 
"XOOOO" 
"XOOlO" 
"XOOOO" 
"XOOlO" 
"XOOOO" 

Contact Lattice with your tester's input vector format 
requirements for help in performing these modifications. 
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Writing a Custom Test Program 

Another approach is to develop a custom test program in 
the tester's language. In this example, we show how the 
Gen Rad test language can be used to program an ispLSI 
1032. The GenRad language is based on PASCAL, with 
simple additions to control properties of the tester. To 

speed up the programming time, the address shift regis­
ter is not reloaded for each location. Instead, a 1 is 
clocked through the shift register. This saves time but 
requires the JEDEC file to be altered so that the first 
address is last. A simple AWK program, detailed in Figure 
4, completes this task before the file is moved over to the 
tester. 

Figure 4. AWK program for modifying the JEDEC file 

El /bin/sh 
if test $£ -lt 1 
then 
echo Usage : jedconv [filename.jed] 
echo Please re-enter file name with extention I 
echo 
exit 1 
fi 
£ 
echo This program takes the standard Lattice JEDEC file and 
echo converts it for accelerated progranuning. The new version 
echo is saved as isp.tsr. 
echo 
echo converting ispLSI jedec file .•.••. 
echo 
£ 
awk 'lenth($1)>79 && length($1)<81 {print $1 > "tempjed"}' $* 
awk '{x[NR]=$0} 

END {for(i=NR; i>O; i=i-4) 
printf( "%s\n%s\n%s\n%s\n" ,x[i-3] ,x[i-2] ,x[i-l] ,x[i] )> "isp.tsr"}' tempjed 

\rm tempjed 

echo Conversion complete. 
echo 
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The GenRad ISP Program 

The following is a complete listing of a GenRad program. 

(* Test and programming routine for ispLSI 1032. 

Test & program sequence is : 

1. ID-CHECK 
2. FLOWTHROUGH TEST 
3. BULK-ERASE 
4. PROGRAM TEST S/W 
5. TEST DEVICE 
6. BULK-ERASE 
7. PROGRAM MAIN S/W 
8. VERIFY DEVICE 
9. SET UES 

10. SECURE 
*) 

test Ul dproc=d_f ail_proc 

signal IN6, I048, I049, IOSO, I051, I052, I053, I054, I055, 
I056, I057, I058, I059, I060, I061, I062, I063, IN7, YO, Y2, 
Yl, IN4, IOO, IOl, I02, I03, I04, IOS, I06, I07, I08, I09, 
IOlO, IOll, I012, I013, I014, I015, INS, I016, I017, I018, 
I019,,I020, I021, I022, I023, I024, I025, I026, I027, I028, 
I029, I030, I031, I046, Y3, I038, I039, I040, I032, I033, 
I034, I035, I036, I037, I047, I043, I044, I041, I042, I045, 
SDO_IN2 
: hcmos_logic hcmos_currentset verify; 
SDI_INO, SCLK_IN3, MODE_INl, ISPEN, RESETX 
: hcmos_logic hcmos_currentset; 

VAR 
yesno 
testjed 
mainjed 
verfout 
lapse 
err_cnt 
addr_reg 
addr_num 
line_num 
char_num 
fuse_num 
veri_cnt 
data_reg 
verflgic 
verfchar 
fuse_map 

char; 
text; 
text; 
text; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
integer; 
array[l •• 320] of logic; 
array[l •• 320] of logic; 
array[l •• 320] of char; 
array(l •• 34560] of char; 

cycle default interval:=SOOn; 
@(400n) sense() 
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end; 

cycle sck interval:=2.7u; 
sclk_in3 :@(700n, 1.7u) drive (1) qO; 
sdi_inO :@On drive(); 
mode_inl :@On drive(); 
sdo_in2 :@2. 5u sense(); 
ispen :@On drive(); 
resetx :@On drive(); 

end cycle; 

cycle prog_delay interval:= 2m; • 
end cycle; • 

cycle verify_pause interval:= 30u; 
end cycle; 

cycle isp_sig interval:= lOu; 
ispen :@On drive(); 

end cycle; 

begin 
d_component:='Ul'; 

writeln('Initial sequence running'); 

burst initialize active nomaxtime; 
begin 

(* test ml *) 

(***************************) 
(* SEQUENCE 1 : ID CHECK *) 
(***************************) 

sck ISPEN:=l SDI_INO:=l MODE_INl:=l RESETX:=l 
SDO_IN2=b'U; (*initialize elk*) 

isp_sig ISPEN:=O; (*ispen low for lOus to enter prog state*) 

$ ISPEN:=O SDI_INO:=O MODE_INl:=O ; (*put device in idle state*) 

$ RESETX:=O; (*hold low throughout to prevent internal data contention*) 

sck MODE_INl:=l; (*load device id to shift reg*) 

$ SDI_INO:=l MODE_INl:=O; (*prepare to read id*) 

(*the ID for an ispLSI 1032 is 00000011. The first bit is active as soon as 
mode goes low and is the lsb. Seven more clocks will shift out the ID on 
the SDO pin, then on clk#B the level at SDI (as it was at clk#l) 
will appear at SDO*) 

$ SDO_IN2=1; (*read 1st ID bit*) 
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sck SDO_IN2=1; (*read 2nd bit*) 
sck SDO_IN2=0; (*read 3rd bit*) 
sck SDO_IN2=0; (*read 4th bit*) 
sck SDO_IN2=0; (*read 5th bit*) 
sck SDO_IN2=0; (*read 6th bit*) 
sck SDO_IN2=0; (*read 7th bit*) 
sck SDO_IN2=0; (*read 8th bit*) 
sck SDO_IN2=1; (*SDI i/p shifted from clk#l*) 
$ SDO_IN2=b'U; 

(***********************************) 
(* SEQUENCE 2 : FLOWTHROUGH TEST *) 
(***********************************) 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load flowthru command, instruction is 01110 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=l; 
sck SDI_INO:=l; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*) 

sck MODE_INl:=O; (*execute flowthru command*) 

(* check sdi = sdo *) 
$ SDI - INO:=l SDO_IN2=1; 
$ SDI INO:=O SDO IN2=0· - - , 
$ SDI INO:=l SDO_IN2=1; 
$ SDI - INO:=O SDO_IN2=0; 
$ SDI - INO:=l SDO_IN2=1; 
$ SDI - INO:=O SDO_IN2=0; 
$ SDI - INO:=l SDO_IN2=1; 
$ SDI - INO:=O SDO_IN2=0; 
$ SDI - INO:=l SDO_IN2=1; 
$ SDI - INO:=O SDO_IN2=0; 
$ SDO_IN2=b'u; 

(*****************************) 
(* SEQUENCE 3 : BULK ERASE *) 
(*****************************) 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load bulk erase command, instruction is 00011 loading lsb first *) 
sck MODE_INl:=O SDI_INO:=l; 
sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 
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sck MODE INl:=l SDI_INO:=l; (*move to execute state*) 

sck MODE_INl:=O; (*execute erase command*) 

for lapse := 1 to 120 do (*wait 240ms for erase to finish*) 
begin 
prog_delay; 
end; 

(***********************************) 
(* SEQUENCE 4 : PROGRAM TEST S/W *) 
(***********************************) 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load address shift command, instruction is 00001 loading lsb first *) 
sck MODE_INl:=O SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE INl:=l SDI_INO:=l; (*move to execute state*) 

$ MODE_INl:=O SDI_INO:=O; (*execute address shift command*) 

for addr_reg := 1 to 107 do (*initialize address register*) 
begin 
sck; 
end; (*addr reg now full of zeros*) 

sck SDI_INO:=l; (*address row 107 set to '1' and ready to program*) 

sck MODE_INl:=l SDI_INO:=O; (*enter idle state*) 

end burst initialise; (* END OF BURST *) 

writeln( 'Reading ISP data from file'); 

reset(testjed,'/work2/fk/isp/isp.data'); (*open ispdata file*) 

(*load the jedec data from file to burst array*) 
for line_num := 0 to 431 do (*432 lines in the ISP file*) 
begin 
for char_num := 1 to 80 do (*each line is 80 chars long*) 
begin 
read(testjed,fuse_map[(char_num + (80 * line_num))]);(*load the array*) 
end; 
readln(testjed); (*ignore carriage return at end of line*) 
end; 
(*the array 'fusemap' now contains the ISP file*) 

(* START OF DEVICE ARRAY PROGRAMMING LOOP *) 
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writeln('Programming loop running'); 

for addr_num := 0 to 107 do (*address loop counter*) 
begin 

(*load fuse map array one address at a time to data reg array and 
simultaneously convert type 'char' to type 'logic'*) 

for fuse_num := 1 to 320 do 
begin 
if fuse_map[(fuse_num + (320 * addr_num))] 
data_reg[fuse_num] := b'l 
else 
data_reg[fuse_num] := b'O; 
end; 

'1' then 

burst blow_test_function active nomaxtime inherit initialize; 
begin 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load data shift command, instruction is 00010 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*) 

$ MODE_INl:=O SDI_INO:=O; (*execute data shift command*) 

(* shift in 160 high order bits for row to be programmed *) 

for fuse_num := 1 to 160 do 
begin 
sck SDI_INO:= data_reg[fuse_num]; 
end; 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load program high data command, instruction is 00111 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=l; 
sck SDI_INO:=l; 
sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*) 

sck MODE_INl:=O SDI_INO:=O; (*execute program high data command*) 

for lapse := 1 to 25 do (*wait SOms for high bits of row to be programmed*) 
begin 
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prog_delay; 
end; 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load data shift command, instruction is 00010 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE INl:=l SDI_INO:=l; (*move to execute state*) 

$ MODE_INl:=O SDI_INO:=O; (*execute data shift command*) 

(* shift in 160 low order bits for row to be programed *) 

for fuse_num := 161 to 320 do 
begin 
sck SDI_INO:= data_reg[fuse_num]; 
end; 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load program low data command, instruction is 01000 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*); 

sck MODE_INl:=O SDI_INO:=O; (*execute program low data command*) 

for lapse := 1 to 25 do (*wait 50ms for low bits of row to be programmed*) 
begin 
prog_delay; 
end; 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load address shift command, instruction is 00001 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*) 

sck MODE_INl:=O SDI_INO:=O; (*move addr reg to next row, the address 
reg will be clear after the last loop*) 
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sck MODE_INl:=l; (*move to idle state*) 

end burst blow_test_function; (* END OF BURST *) 

end; (* END OF ARRAY PROGRAMMING LOOP *) 

writeln('Device programmed.'); 

(******************************) 
(* SEQUENCE 8 : VERIFY DEVICE *) 
(******************************) 

writeln('Verifying ••• '); 

burst verification active nomaxtime inherit blow_test_function; 
begin • 

(* device is in idle state *) 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load address shift command, instruction is 00001 loading lab first*) 
sck MODE_INl:=O SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*) 

$ MODE_INl:=O; (*execute address shift command*) 

sck SDI_INO:=l; (* address last row *) 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load ver/ldh command, instruction is 01010 loading lab first*) 
sck MODE_INl:=O SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*) 

sck MODE_INl:=O SDI_INO:=O; (*execute ver/ldh command*) 

verify__pause; (* wait 30u for data reg to load *) 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load data shift command, instruction is 00010 loading lab first*) 
sck MODE_INl:=O SDI_INO:=O; 
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sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE_INl:=l SDI_INO:=l; (*move to execute state*) 

$ MODE_INl:=O SDI_INO:=O; (*execute data shift command*) 

(*clock out the high order bits from the data reg *) 

for veri_cnt := 1 to 160 do 
begin 
$ verflgic[veri_cnt):=sdo_in2; 
sck ; 
end; 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load ver/ldl command, instruction is 01011 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=l; 
sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=O; (*load complete*) 

sck MODE INl:=l SDI_INO:=l; (*move to execute state*) 

sck MODE INl:=O SDI_INO:=O; (*execute ver/ldl command*) 

verify__pause; (* wait 30u for data reg to load *) 

sck MODE_INl:=l SDI_INO:=l; (*move to shift state*) 

(*load data shift command, instruction is 00010 loading lsb first*) 
sck MODE_INl:=O SDI_INO:=O; 
sck SDI_INO:=l; 
sck SDI_INO:=O; 
sck SDI_INO:=O; 
sck SDI_INO:=O; (*load complete*) 

sck MODE INl:=l SDI_INO:=l; (*move to execute state*) 

$ MODE_INl:=O SDI_INO:=O; (*execute data shift command*) 

(*clock out the low order bits from the data reg *) 
for veri_cnt := 161 to 320 do 
begin 
$ verflgic[veri_cnt]:=sdo_in2; 
sck ; 
end; 

sck MODE INl:=l SDI_INO:=O; (*move to idle state*) 
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end burst verification; (* END OF BURST *) 

(* convert data type and compare data *) 

err_cnt := O; 
yesno := 'n'; 

for veri_cnt := 1 to 320 do 
begin 

if verflgic[veri_cnt] b'l then (*convert type logic to type char*) 
verfchar[veri_cnt]:='l' 
else 
verfchar[veri_cnt]:='O'; 

if verfchar[veri_cnt] <> fuse_map(veri_cnt] then (*compare with jedfile*) 
err_cnt := err_cnt + 1; 

end; 

(* failure routine *) 
if err_cnt > O then 
begin 
setfail; 
writeln('Verification failure!!'); 
writeln('failed ',err_cnt,' bit(s) out of 320.' ); 
write('Write error file? [y/n]'); 
readln(yesno); 
end 
else 
writeln('Verify has passed.'); 

(* write out error file if req'd for programmers attention*) 
if yesno = 'y' then 
begin 
write('Writing to file ••• '); 
rewrite(verfout,'/work2/fk/isp/verify.err'); 
for line_num := 0 to 3 do 
begin 
for veri_cnt := 1 to 80 do 
begin 
write(verfout,verfchar[(veri_cnt + (80 * line_num))]); 
end; 
writeln(verfout); 
end; 
writeln('Done.'); 
writeln('Last line written to "verify.err"'); 
end; 

(******************************) 
(* SEQUENCE 5 : TEST DEVICE *) 
(******************************) 

writeln('Testing function'); 
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burst test device active nomaxtime inherit verification; 
begin 

(*test vectors here to test counter example in lattice book*) 

isp_sig ISPEN:=l; (*wait lOus to leave prog state*) 

$ SDI_INO:=l MODE_INl:=l RESETX:=l; (*hold prog pins*) 

$ YO:=O IOO:=l IOl:=l 102:=0; 
$ 102:=1; 
$ YO:=l; 
$ YO:=O; (*CNTR IS RESET O/P'S ARE LOW*) 
$ 102: =O:~ (*READY TO CNT*) 

$ 1036=0 !037=0 1038=0 1039=0 1032=0;(*0000*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=0 1037=0 1038=0 1039=1 1032=0;(*0001*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ !036=0 1037=0 1038=1 1039=0 1032=0;(*0010*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=0 1037=0 !038=1 1039=1 1032=0;(*0011*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=0 1037=1 1038=0 1039=0 1032=0;(*0100*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=0 1037=1 1038=0 1039=1 1032=0;(*0101*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=0 1037=1 1038=1 1039=0 1032=0;(*0110*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=0 1037=1 1038=1 1039=1 1032=0;(*0111*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=1 1037=0 1038=0 1039=0 1032=0;(*1000*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=1 1037=0 1038=0 1039=1 1032=0;(*1001*) 
$ YO:=l nofails; 
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$ YO:=O nofails; 

$ 1036=1 1037=0 1038=1 1039=0 1032=0;(*1010*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=1 1037=0 1038=1 1039=1 1032=0;(*1011*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=1 1037=1 1038=0 1039=0 1032=0;(*1100*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=1 1037=1 1038=0 1039=1 1032=0;(*1101*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=1 1037=1 1038=1 1039=0 1032=0;(*1110*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=1 1037=1 1038=1 1039=1 1032=1;(*1111 +carry*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ 1036=0 1037=0 1038=0 1039=0 1032=0;(*0000*) 
$ YO:=l nofails; 
$ YO:=O nofails; 

$ l036=b'u l037=b'u l038=b'u l039=b'u l032=b'u 
lOO:=b'z lOl:=b'z l02:=b'z YO:=b'z 
SDl_lNO:=b'z MODE_lNl:=b'z RESETX:=b'z lSPEN:=b'z; 

end burst test_device; (* END OF BURST *) 

writeln('Finished'); 

end test Ul; 
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Introduction to 
Generic Array Logic 

Overview 

In 1985, Lattice introduced a new type of programmable 
logic device (PLO) that transformed the PLO market: the 
Generic Array Logic (GAL) device. The E2CMOS tech­
nology of the GAL devices gave them significant 
advantages over their bipolar PAL counterparts; not only 
could GAL devices be programmed quickly and effi­
ciently, but they could also be erased and _reprogrammed. 
Today, Lattice is the leading supplier, worldwide, of low­
density PLOs. Industry leading performance, low power 
E2CMOS technology, 100% testability and 100% pro­
gramming yields make the GAL family the preferred 
choice among system designers. 

The GAL family includes fourteen distinct product archi­
tectures, with a variety of performance levels specified 
across commercial, industrial, and military (MIL-ST0-
883) operating ranges, to meet the demands of any 
system logic design. 

These GAL products can be segmented into two broad 
categories: 

Base Products - Aimed at providing superior design 
alternatives to bipolar PLOs, these five architectures 
replace over 98% of all bipolar PAL devices. The GAL 16V8 
and GAL20V8 replace forty-two different PAL devices. 
The GAL22V10, GAL20RA10, and GAL20XV10 round 
out the base products. These GAL devices meet and, in 
most cases, beat bipolar PAL performance specifica­
tions while consuming significantly lower power and 
offering higher quality and reliability via Lattice's electri­
cally reprogrammable E2CMOS technology. High speed 
erase times (<100ms) allow the devices to be repro­
grammed quickly and efficiently. 

Extension Products - These products build upon the 
Base GAL product features to provide enhanced func­
tionality including innovative architectures (GAL 18V10, 
GAL26CV12, GAL6001/6002), 64mA high output drive 
(GAL 16VP8 & GAL20VP8), "Zero power'' operation 
(GAL 16V8Z/ZO & GAL20V8Z/ZO) and in-system pro­
grammability (ispGAL22V10). 

A Product for any System Design Need 

Lattice GAL products have the performance, architec­
tural features, low power, and high quality to meet the 
needs of the most demanding system designs. 

Lattice offers the broadest line of high-performance PLDs. 
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The GAL 16V8 and GAL20V8 

The GAL 16V8 (20-pin) and GAL20V8 (24-pin) provide 
the highest speed performance available in the PLO 
market. CMOS circuitry allows the GAL 16V8 and 
GAL20V8 low power devices to consume just 75mA 
typical Ice, which represents a 50% savings in power 
when compared to bipolar counterparts. Quarter power 
versions save even more at 45mA Ice. 

The GAL 16V8 is a 20-pin device which contains eight 
dedicated input pins and eight 1/0 pins. The GAL20V8 is 
a 24-pin version of the 16V8 device with twelve dedicated 
input pins and eight 1/0 pins. Their generic architecture 
provides maximum design flexibility by allowing the Out­
put Logic Macrocell (OLMC) to be configured by the user. 
An important subset of the many architecture configura­
tions possible with the GAL 16V8 and GAL20V8 are the 
standard PAL architectures. Providing eight OLMCs with 
eight product terms each, GAL 16V8 and GAL20V8 de-

l/CLK 

I 

vices are capable of emulating virtually all PAL architec­
tures with full function/fuse map/parametric compatibility. 

Output Logic Macrocell 

There are three OLMC configuration modes possible in 
GAL 16V8 and GAL20V8 devices: registered, complex, 
and simple. These are illustrated in the diagrams on the 
following pages. You cannot mix modes; all OLMCs are 
either simple, complex, or registered (in registered mode, 
the output can be combinational or registered). 

The outputs of the AND array are fed into an OLMC, 
where each output can be individually set to active high 
or active low, with either combinational (asynchronous) 
or registered (synchronous) configurations. A common 
output enable is connected to all registered outputs, or a 
product term can be used to provide individual output 
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GAL20V8 Only 1 
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GAL16V8 and GAL20V8 Block Diagram 
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enable control for combinational outputs in the registered 
mode or combinational outputs in the complex mode. 

There is no output enable control in the simple mode. The 
OLMC provides the designer with maximum output flex-

Registered Configuration for Registered Mode 

CLK 

OE 

Combinatorial Configuration for Registered Mode 

Combinatorial Output Configuration for Complex 
Mode 

?:r 
~-

D~ • 
• X 0 R • 

5:J . ·. -. . 

ibility in matching signal requirements, thus providing 
more functionality than possible with standard PAL de­
vices. 

Combinatorial Output with Feedback 
Configuration for Simple Mode 

Combinatorial Output Configuration for Simple 
Mode 

Vee 

-±Pr.~ D 

Dedicated Input Configuration for Simple Mode 
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The GAL22V10, GAL 18V10 and GAL26CV12 

Three devices are offered in the high-speed, E2CMOS 
GAL22V10 family: the GAL22V10 (24-pin), GAL 18V10 
(20-pin), and GAL26CV12 (28-pin). Each of these de­
vices uses the industry standard 22V10 universal 
architecture, which provides maximum design flexibility 
by allowing the OLMC to be configured by the user. The 
GAL22V10 family low power devices consume just 90mA 
typical Ice, with quarter power versions consuming only 
45mA Ice. The devices differ in the number of I/Os, pins, 
and product terms offered. 

The 24-pin GAL22V10 contains twelve dedicated input 
pins and ten macrocells and 1/0 pins. The device has a 
variable number of product terms per OLMC, ranging 
from eight to sixteen per output. 

The GAL 18V10 is a 20-pin version of the popular 22V10 
device. It provides a smaller footprint and lower cost 
alternative to the 22V10 device. The GAL 18V10 contains 
eight dedicated input pins and ten macrocells and 1/0 
pins. 
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0 > I 

CD 
N > ... 

-I > ~ <C 
CJ 0 I 
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The GAL26CV12 is a 28-pin version of the 22V10 device. 
It features more inputs and outputs in order to provide 
greater functionality and increased 1/0. The GAL26CV12 
contains fourteen dedicated input pins and twelve 
macrocells and 1/0 pins. 

Output Logic Macrocell 

The GAL22V10, 18V10, and 26CV12 each have a vari­
able number of product terms per OLMC. Of the ten 
OLMCs available in the GAL22V10, two have access to 
eight product terms, two have ten product terms, two 
have twelve product terms, two have fourteen product 
terms, and two have sixteen product terms. Of the ten 
OLMCs available in the GAL 18V10, eight have access to 
eight product terms, and two have ten product terms. Of 
the twelve OLMCs available in the GAL26CV12, eight 
have access to eight product terms, two have ten product 
terms, and two have twelve product terms. 

l/OIQ 

l/OIQ 

l/OIQ "D 
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GAL22V10, GAL 18V10 and GAL26CV12 Block Diagram 
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The output polari~ of each OLMC can be individually 
programmed to be true or inverting, in either combina­
tional or registered mode. This allows the user to reduce 
the overall number of product terms required in a design 
and/or to invert the output signal. 

GAL22V10 family devices have a product term for Asyn­
chronous Reset (AR) and a product term for Synchronous 
Preset (SP). These two product terms are common to all 
registered OLMCs. 

GAL22V10, GAL18V10 and GAL26CV12 Output Logic Macrocell 
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The GAL20RA 10 

The GAL20RA10 (24-pin) supports high performance, 
asynchronous logic. It is a direct parametric compatible 
CMOS replacement for the PAL20RA10 device. How­
ever, Lattice's E2CMOS circuitry achieves power levels 
as low as 75mA typical Ice, which represents a substan­
tial savings in power when compared to bipolar 
counterparts like the PAL20RA 10. 

The GAL20RA 10 contains ten dedicated input pins and 
ten 1/0 pins. As with other GAL devices, it has user­
configurable OLMCs. 

Output Logic Macrocell 

The GAL20RA 10 OLMC consists of ten D flip-flops with 
individual asynchronous programmable reset, preset, 
and clock product terms. The four product terms and an 
Exclusive-OR gate provide a programmable polarity D­
input to each flip-flop. An output enable term, combined 
with a dedicated output enable pin, provide tri-state 
control of each output. Each OLMC has a flip-flop by­
pass, allowing any combination of registered or 
combinational outputs. 

An independent clock control product term is provided for 
each GAL20RA 10 macrocell. Data is clocked into the 
flip-flop on the active edge of the clock product term. The 
use of individual clock control product terms allows up to 
ten separate clocks. These clocks can be derived from 
any pin or combination of pins and/or feedback from 
other flip-flops. Multiple clock sources allow a number of 
asynchronous register functions to be combined into a 
single GAL20RA 10. This allows the designer to combine 
discrete logic functions into a single device. 

The polarity of the D-input to each macrocell flip-flop is 
individually programmable to be active high or low. This 
is accomplished with a programmable Exclusive-OR 
gate on the D-input of each flip-flop. While any one of the 
four logic function product terms are active, the D-input 
to the flip-flop will be low if the Exclusive-OR bit is set to 
zero, and high if the Exclusive-OR bit is set to one. It 
should be noted that the programmable polarity only 
affects the data latched into the flip-flop on the active 
edge of the clock product term. The reset, preset, and 
preload will alter the state of the flip-flop independent of 

the state of the programmable polarity bit. The ability to 
program the active polarity of the D-inputs can be used to 
reduce the total number of product terms used, by allow­
ing the DeMorganization of the logic functions. This logic 
reduction is accomplished by the logic compiler, and 
does not require the designer to define the polarity. 

GAL20RA 10 Block Diagram 
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GAL20RA10 Output Logic Macrocell Diagram 
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The GAL20XV10 

The GAL20XV10 (24-pin) provides the highest speed, 
low-density Exclusive-OR PLD available in the market, 
making it perfect for the fast counters, decoders, or 
comparators common in video, multimedia, and graphics 
applications. At 75mA typical Ice, the E2CMOS 
GAL20XV10 reduces power by over 50% from bipolar 
XOR architectures. 

The GAL20XV10 is a 24-pin device which contains ten 
dedicated input pins and ten 1/0 pins. Its generic architec­
ture provides maximum design flexibility by allowing the 
Output Logic Macrocell (OLMC) to be configured by the 
user. An important subset of the many architecture con­
figurations possible with the GAL20XV10 are the standard 
PAL architectures. Providing ten OLMCs with four prod­
uct terms each, the GAL20XV10 is capable of emulating 
the PAL 12L 10, PAL20L10, PAL20X10, PAL20X8, and 
PAL20X4 devices. 

Output Logic Macrocell 

Each OLMC has an Exclusive-OR gate capability with 
programmable polarity. This minimizes product term 
usage. 

The GAL20XV10 has two global OLMC architecture 
configurations that allow it to emulate PAL architectures. 
Input mode emulates combinatorial PAL devices, whereas 
Feedback mode emulates registered PAL devices. 

Each OLMC has four possible logic function configura­
tions: XOR Registered, Registered, XOR Combinatorial, 
and Combinatorial. Four product terms are fed into each 
macrocell. 

When the macrocell is set to the Exclusive-OR Regis­
tered configuration, the fourproductterms are segmented 
into two OR-sums of two product terms each, which are 
then combined by an Exclusive-OR gate and fed into a D­
type register that is clocked by the low-to-high transition 
of the l/CLK pin. 

When the macrocell is set to Registered configuration, 
three of the four product terms are used as sum-of­
productterms for the D input of the register. The inverting 
output buffer is enabled by the fourth product term. The 
output is enabled while this productterm is true. The XOR 
bit controls the polarity of the output. 

When the macrocell is set to the Exclusive-OR combina­
torial configuration, the four product terms are segmented 
into two OR-sums of two product terms each, which are 
then combined by an Exclusive-OR gate and fed to an 
output buffer. 
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GAL20XV10 Block Diagram 
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GAL20XV10 OLMC Configurations 
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The GAL 16VP8 and GAL20VP8 

The GAL 16VP8 (20-pin) and 20VP8 (24-pin), with 64 mA 
drive capability, are ideal for Bus and Memory control 
applications. System bus and memory interfaces require 
control logic before driving the bus or memory interface 
signals. The GAL 16VP8 and 20VP8 combine the familiar 
GAL 16V8 and 20V8 architectures (refer to the GAL 16V8 
and GAL20V8 section in this article) with bus drivers at 

GAL 16VP8 Block Diagram 
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their outputs. Programmable open-drain or totem pole 
outputs and 64mA output drive eliminate the need for 
additional devices to provide bus-driving capability. Also, 
Schmitt trigger inputs are provided to screen out noise. 

GAL20VP8 Block Diagram 
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The GAL 16V8Z/ZD and GAL20V8Z/ZD 

The GAL 16V8Z/ZD (20-pin) and GAL20V8Z/ZD (24-
pin), at 1 OOuA standby current, provide the highest speed 
and lowest power combination PLDs available in the 
market. These devices are ideal for battery powered 
systems. 

The GAL 16V8Z and 20V8Z use Input Transition Detec­
tion (ITD) to put the device in standby mode and are 
capable of emulating the full functionality of the standard 

GAL16V8Z/ZD Block Diagram 

GAL 16V8 and 20V8 respectively (refer to the GAL 16V8 
and GAL20V8 section in this article). The GAL 16V8ZD 
and 20V8ZD utilize a dedicated power-down pin (OPP) to 
put the device in standby mode. 

The GAL 16V8ZD has 15 inputs available to the AND 
array, whereas the GAL20V8ZD has 19 inputs available 
to the AND array. 

GAL20V8Z/ZD Block Diagram 
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1/0/0 

1/0/0 

1/0/0 

1/0/0 

I/OE 
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The GAL6001 and GAL6002 

Having an FPLA architecture, known for its superior 
flexibility in state-machine design, the GAL6001 (24-pin) 
and GAL6002 (24-pin) offer a high degree of functional 
integration and flexibility in a 24-pin device. 

The GAL6001 and GAL6002 have ten programmable 
Output Logic Macrocells (OLMCs) and eight program­
mable Buried Logic Macrocells (BLMCs). In addition, 
there are ten Input Logic Macrocells (ILMCs) and ten 1/0 
Logic Macrocells (IOLMCs). Two clock inputs are pro­
vided for independent control of the input and output 
macrocells. 

The GAL6001 and 6002 contain two E2 reprogrammable 
arrays, an AND array and an OR array. The AND array is 
organized as 78 inputs by 75 product term outputs. Ten 
ILMCs, ten IOLMCs, eight BLMC feedbacks, ten OLMC 
feedbacks, and ICLK comprise the 39 inputs into this 
array. The OR array is organized as 64 inputs by 36 sum 
term outputs. 64 product terms from the AND array serve 
as the inputs to the OR array. 

ICLK 

Input Logic Macrocell (ILMC) and 1/0 Logic 
Macrocell (IOLMC) 

The GAL6001 and 6002 feature two configurable input 
sections. The ILMC section corresponds to the dedicated 
input pins, and the IOLMC section corresponds to the I/ 
0 pins. On the GAL6001, each input section is configurable 
as a block for asynchronous, latched, or registered in­
puts. On the GAL6002, however, each input section is 
individually configurable as asynchronous, latched, or 
registered inputs. ICLK is used as an enable input for 
latched macrocells or as a clock input for registered 
macrocells. Configurable input blocks provide system 
designers with unparalleled design flexibility. With the 
GAL6001 and 6002, external input registers and latches 
are not necessary. 

For the GAL6001, both the ILMC and the IOLMC are 
block configurable; however, the ILMC can be configured 
independently of the IOLMC. For the GAL6002, both the 
ILMC and the IOLMC are individually configurable, and 
the ILMC can be configured independently of the IOLMC. 

IOLMC 

{ OUTPUTS 
14-23 

GAL6001 and GAL6002 Block Diagram 
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Output Logic Macrocell (OLMC) and Buried 
Logic Macrocell (BLMC) 

The outputs of the OR array feed two groups of macrocells. 
One group of eight macrocells is buried; its outputs feed 
back directly into the AND array rather than to device 
pins. These cells are called the Buried Logic Macrocells 
(BLMCs), and are useful for building state machines. The 
second group of macrocells consists of ten cells whose 
outputs, in addition to feeding back into the AND array, 
are available at the device pins. Cells in this group are 
known as Output Logic Macrocells (OLMCs). 

The Output and Buried Logic Macrocells are configurable 
on a macrocell by macrocell basis. They may be set to 
one of three configurations: combinatorial, D-type regis­
ter with sum term (asynchronous) clock, or DIE-type 
register. Output macrocells always have 1/0 capability, 

with directional control provided by the ten output enable 
(OE) product terms. Additionally, the polarity of each 
OLMC output is selected through the "D" XOR. Polarity 
selection is available for BLMCs, since both the true and 
complemented forms of their outputs are available in the 
AND array. Polarity of all "E" sum terms is selected 
through the "E" XOR. 

Registers in both the OLMCs and BLMCs feature a 
common RESET product term. This active high product 
term allows the registers to be asynchronously reset. 
Registers are reset to a logic zero. If connected to an 
output pin, a logic one will occur because of the inverting 
output buffer. 
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The ispGAL22V10 

The ispGAL22V10 (28-pin) provides the industry's first 
in-system programmable 22V10 device. It is fully func- llCLK 

tion/fuse map/parametric compatible with standard bipolar 
and CMOS 22V10 devices (refer to the GAL22V10, 
GAL 18V10, and GAL26CV12 section in this article). The 
standard 28-pin PLCC package provides the same func-
tional pinout at the standard 22V10 PLCC package with 
the four No-Connect pins being used for ISP interface 
signals. 

The in-system programming capability of the 
ispGAL22V10 allows designers to define and develop 
systems with capabilities previously unattainable. ISP 
provides the ability to program and reprogram logic 
devices while attached to the printed circuit board (PCB). 
No other logic technology is better for reducing time to 
market, while assuring the highest system quality and 
lowest overall cost. With ISP technology, hardware as 
flexible and easy to modify as software becomes a reality: 
hardware functions can be programmed and modified in 
real time to expand product features, shorten system 
design and debug time, enhance product 
manufacturability and simplify field upgrades. 

:iii:: :iii:: 
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4 2 28 26 
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12 14 16 18 
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ispGAL22V10 Pinout Diagram 
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1/0/Q 
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ispGAL22V10 Block Diagram 
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Using GAL 
Development Tools 

GAL Hardware and Software Tools 

Lattice Semiconductor specializes in the design and 
manufacture of high-speed E2CMOS programmable logic 
devices. It is not our intention to provide custom software 
and/or hardware for the purpose of developing patterns 
for the GAL family of devices, and, as such, we leave the 
software/hardware task to the respective third-party ex­
perts in those fields. 

Such universal tool suppliers provide support for all major 
devices, from a variety of manufacturers. If you're just 
starting our with programmable logic, and plan to pur­
chase development tools, rest assured that 
industry-standard hardware and software will handle 
GAL device development. If you're already using stan­
dard tools for PLO development, the move to GAL devices 
won't require sophisticated or expensive upgrades; cur­
rent third-party development tools support Lattice GAL 
devices to their full extent. At most, an upgrade to the 
current revision of the support tool may be required. 

Lattice's Applications Department remains on call to 
assist you in the task of logic development using third­
party tools. Our engineers, trained on a variety of standard 
equipment, are prepared to answer any questions you 
may have. In addition, they are able to use the tools to 
more fully exploit the unique benefits of GAL devices. 
Here we provide the basis for getting started with GAL 

START 

DEFINE LOGIC 

COMPILE/ASSEMBLE 
EDIT 

SIMULATE/TEST 
EDIT 

DOWNLOAD AND PROGRAM _D_E_B_U_G _ _. 

DOCUMENT 

COMPLETE 

Figure 1. PLO Design Flow 
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devices. As you proceed with the development of your 
applications, call us - we'd like to hear how it's going. 

The typical PLO design flow, shown in figure 1, begins 
with a design specification, iterates the logic to achieve 
proper functionality, and ends with a 'download' of the 
information to a programming fixture that patterns the 
device for the system. Critical to the accuracy and ulti­
mate success of the PLO design process is the use of 
logic development tools to minimize the chance of error 
and improve design efficiency. 

Software Tools 

In the early days of programmable logic devices, fuse 
maps were entered by hand on a piece of paper with a 
fuse map table, and then manually transferred into the 
hardware programmers. This basic concept of fuse map 
generation is still valid for modern devices, such as 
Lattice's GAL devices or any other PLDs, but the soft­
ware tools have greatly advanced from those early days. 
Although the final result of any software tool is the 
generation of a fuse map, there are many methods in 
which logic designs can be entered. Most third party logic 
compiler software environments offer Boolean equation, 
truth table and state machine design entry methods. 
These three basic design entry methods vastly improved 
the efficiency and accuracy of logic design. To further 
improve efficiency of design entry, newer software pack­
ages offer schematic entry, macro library, timing 
waveform, and hardware description language (HDL) 
design entry methods. By combining these multiple 
design entry methods within each third party software 
package, system design engineers are able to select the 
method that suits his or her logic design. Accuracy of the 
logic implementation is further improved by the ability to 
perform functional and timing simulation within the soft­
ware. 

Software packages, such as ABEL from Data 1/0, CUPL 
from Logical Devices, PLDesignerfrom Mine, and OrCAD­
PLD from OrCAD, provide various combinations of the 
above mentioned design entry methods. With these 
software packages, the required logic design can be fully 
designed, simulated, and debugged using software, be­
fore any hardware is built. All of these software packages 
perform a similar function; they process and synthesize 
the design idea entered by the specified method, convert 
this result into an intermediate file, such as netlist or PLA 
file, and finally generate the fuse map file for the program­
mer. As part of this process, a documentation file is also 
created. As we are moving in to the future with higher 
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density PLDs, third party supplied universal software 
tools are becoming more of an integral part of the hard­
ware. 

Hardware Tools 

The same arguments as those expressed above for 
universal software tools apply to universal hardware. 
Hardware that is developed by third parties is more 
flexible and provides a future growth path to the user. 
Lattice recommends the use of third party programming 
hardware for GAL device development. 

Universal programming hardware allows the program­
ming of a variety of devices without the aid of custom 
fixtures or manufacturers' adapters. Since the Lattice 
GAL programming algorithm requires no abnormal volt­
ages or timings, as some one-time programmable 
technologies do, most all hardware manufacturers sup­
port GAL devices on existing models. 

Patterning the PLO is the process of providing it with the 
data (the JEDEC file) to perform a specific custom 
function, and applying the appropriate series of voltage 
pulses. 'Support' by the hardware manufacturer refers to 
his ability to provide the appropriate voltage pulses and 
timings for a given PLO. After that, patterning a device 
merely requires downloading the JEDEC file. 

Downloading is the process of 'teaching' the hardware 
programmer the pattern that is necessary to program a 
device. This data can come from a pre-patterned device 
(or 'master'), from a computer via direct connection or 
modem, or from an attached peripheral, such as a floppy 
disk. If the file is transferred in JEDEC format, as most 
are, a checksum is calculated and verified at the end of 
the data transfer to ensure that no data was dropped or 
garbled during transmission. Most programmers have 
either a single button or simple command string that puts 
the hardware into the download mode. 

The programming of the GAL device is controlled by the 
programming hardware. Since the GAL device uses a 
nonvolatile, reprogrammable E2CMOS technology, the 
device can be erased; in fact, the device is automatically 
erased as the first step in the programming algorithm. 

The patterning of the GAL device array is done using a 
parallel-programming scheme, which keeps the total 
programming time to well under a second. The algorithm 
is so efficient that it programs devices nearly 50% faster 
than typical bipolar PLO algorithms, and an order or 
magnitude faster than UV-CMOS approaches. During 
this programming time, both the logic array and the 
architecture matrix are patterned. 

Finally, an analog verify of each and every cell in the GAL 
device takes place, to ensure that the cell is fully pro­
grammed and will retain data for a minimum of 20 years. 

It is worth noting here that GAL devices offer a security 
cell that can be programmed to prevent examination (or 
further verification) of the pattern in the programmable 
arrays - a feature provided so that a proprietary design 
can be obscured from competitive or enemy eyes. 

Somewhat ironically, the GAL device security cell is itself 
erasable; it can only be erased, however, in conjunction 
with an array 'Bulk Erase,' during which all bits are 
cleared at once. This allows the designer or manufactur­
ing person to reuse previously secured devices - a 
feature never before available in PLDs. 

Debugging and Pattern Revisions 

GAL devices bring extensive advantages to the manu­
facturing and design engineering areas, due to their 
unique combination of E2CMOS technology, generic 
architecture, and unmatched quality levels. Only GAL 
devices are instantly erasable in a standard hardware 
programming fixture. As mentioned, erasure takes place 
automatically just prior to the re-patterning of the array. 
No time-consuming 'trips to a UV lamp' are necessary, as 
with UV-erasable PLDs. Both the GAL device's logic 
array and device architecture configuration are fully 
reprogrammable and reconfigurable. In addition, the 
erasable GAL device is assembled in a low-cost plastic 
package, not an expensive quartz-windowed package. 
Pattern revisions can be recorded in the device's elec­
tronic signature, allowing the traceability, tracking and 
verification of every device. Finally, inventories are kept 
to a minimum, thanks to the generic 'one device fits all' 
macrocell approach. 

The Design Process 

By choosing generic, compiler-based software, generic 
hardware and generic silicon (such as GAL devices), the 
biggest decisions in the design process have already 
been made. The choice of the appropriate programmable 
logic device has traditionally been a difficult first step in 
starting a design, since with bipolar PLDs, you must 
guess which one of the dozens of architectures has the 
right combination of outputs, I/Os and registers. If your 
choice is wrong, you must guess again. The Lattice GAL 
concept simplifies the approach, requiring that you merely 
count the number of inputs and outputs, then select a 
speed/power option. The development software auto­
matically and dynamically allocates the inputs, I/Os, 
registers, and so on. 
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The following design example shows how to implement 
two basic logic gates in a GAL device. The specific syntax 
is that of ABEL; however, other generic software (CUPL) 
has similar syntax and functions. In this cursory 'walk­
through ', segments of code are presented as they would 
appear on the screen of the personal computer running 
the ABEL software. The manufacturers of the software 
would, of course, be glad to provide a more comprehen­
sive tutorial. 

All the design processes are envoked from the ABEL 
design environment as shown in figure 2. The File Menu 
allows the user to manipulate file options such as open­
ing, merging, and closing design files. 

Once you open a new design file, fields are normally 
provided for optional information, such as company name, 
design description, etc.: 

module gates 

Title 'Tutorial Using a GAL16VB 

Lattice Semiconductor' 

The device, its pinout, pin labels, and intermediate vari­
ables need to be specified next. Use names that are 
convenient for you to reference, since the software doesn't 
care what you call a pin, as long as you are consistent: 

gates device 'pl6v8' ; 

''**** inputs **** 
A, ! B PIN 1, 2; 

"**** outputs **** 
Y, !Z PIN 18,19 ISTYPE 

'COM, INVERT'; 
11 **** intermediate definitions **** 

c,x, H,L=.C. I .x. I 1, 0; 

It's a good idea to specify pin names in a format that is 
consistent with the actual pin state. In the above pin 
definitions, signals A and Y are active-high, while B and 
Z are active-low. We have chosen to indicate active-low 
data signals by prefixing the labels with exclamation 
points in the definition statement. The use of an active 
high variation of these signals in subsequent design 
statements will automatically be resolved by the software 
compiler. 

Entry of the logic functions is next. This entry is in the form 
of Boolean equations, truth-table, state machine and 
schematic-entry formats. 

Here, the Boolean equation-entry format is used to cre­
ate an AND function on Y (pin 18) and an XOR function 
on Z (pin 19). Since Z has been defined as an active low 
signal, however, we will actually end up with XNOR on pin 
19: 

"**** logic equations **** 
equations 

Y = A & B; 

Z = A & B # !A & !B; 

The operators used in the ABEL language are '!' for 
invert, '&'for the AND function and'#' for the OR function. 
The equations are written exactly as needed. All of the 
inversions for active-low inputs and outputs will be auto­
matically resolved, a routine procedure for compiler 
software. Although these are simple equations, had they 
been complex ones that needed automatic reduction to a 
specific number of product terms for a given PLO, the 
software would have performed the reduction, as well. 

When a design source file is complete, the Compile Menu 
options compile the source file where various input file 

Data I/O ABEL-5 Design Environment 
File Edit View Compile Optimize SmartPart PartMap Xfer Defaults Help 

+---------------+-----------------untitled.abl---------------------------------+ 
,, New 
,, Open •.• 
,, Insert ••• 
+---------------/ 
,, Save 
,, Save As ••• 
,, Save Options 
+---------------/ 
,, Print •.• 
,, DOS Shell 
+---------------/ 
,, Save and Exit ,, 
,, Exit 
+---------------+ 

Figure 2. Data 1/0 ABEL-5 Design Environment 
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formats are converted to equation format. Next, the 
Optimize Menu option minimizes the equations. 

The last step of the process is to generate the JEDEC 
fusemap under the PartMap Menu. JEDEC, a standards 
organization with representatives from major semicon-

Listing 1. ABEL Documentation File 

ABEL Device Utilization Chart 

Tutorial Using a GAL16V8 
Lattice Semiconductor 

Module 

Input files: 
ABEL PLA file 
Vector file 
Device library 

Output files: 
Report file 
Programmer load file 

P16V8AS Programmed Logic: 

Y ( A & !B ) ; 
Z ! ( A & !B 

# IA & B ) ; 

P16V8AS Chip Diagram: 

: 'gates' 

gates.tt3 
gates.tmv 
Pl6V8AS.dev 

gates.doc 
gates.jed 

ductor companies on its committees, has approved a 
standard for the interchange of PLO data. The JEDEC file 
is used as the medium of transfer from the development 
computer environment to that of the hardware device 
programmer. Included in the file are control bits that 
determine the status of security cells or fuses, test 

Pl6V8AS 

+---------\ /---------+ 
\ I 

A 1 20 Vee 

B 2 19 IZ 

3 18 IY 

4 17 

5 16 

6 15 

7 14 

8 13 

9 12 

GND 10 11 

---------------------------
SIGNATURE: N/A 
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Listing 1. ABEL Documentation File (Continued) 

Pl6V8AS Resource Allocations: 

Device Resource Design Part 
Resources Available Requirement Utilization Unused 

Dedicated input pins 10 
Combinatorial inputs 10 
Registered inputs 

Dedicated output pins 2 
Bidirectional pins 6 
Combinatorial outputs 8 
Registered outputs 
Two-input XOR 

Buried nodes 
Buried registers 
Buried combinatorials 

P16V8AS Product Terms Distribution: 

Signal 
Name 

Pin 
Assigned 

2 
2 
0 

2 
0 
2 
0 
0 

0 
0 
0 

Terms 
Used 

2 
2 

0 
2 
2 

Terms 
Max 

Terms 
Unused 

y 18 1 8 7 
z 19 2 8 6 

==== List of Inputs/Feedbacks ==== 

Signal Name Pin Pin Type 

A 1 INPUT 
B 2 INPUT 

Pl6V8AS Unused Resources: 

Pin Pin 
Number Type 

3 
4 
5 
6 
7 
8 
9 

11 
12 
13 
14 
15 
16 
17 

INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
INPUT 
BIDIR 
BID IR 
BID IR 

OUTPUT 
OUTPUT 

BIDIR 

Product Flip-flop 
Terms Type 

NORMAL 8 
NORMAL 8 
NORMAL 8 
NORMAL 8 
NORMAL 8 
NORMAL 8 

6-5 

8 
8 

2 
4 
6 

80 %) 
80 %) 

(100 %) 
( 66 %) 
( 75 %) 
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vectors, and data-transmission checksums. (The JE­
DEC standard is available from Lattice Semiconductor 
upon request.) A portion of the JEDEC file for our ex­
ample is reproduced here: 

QP20* QF2194* QVS* FO* 

XO* 

NOTE Table of pin names and numbers* 

NOTE PINS A:l B:2 Y:lB Z:l9* 

LOOOO 10011111111111111111111111111111* 

L0032 01101111111111111111111111111111* 

L0256 10011111111111111111111111111111* 

L2048 01000000* 

of the file is to provide a hard-copy documentation of the 
final (reduced) equations, the cell map or 'fuse plot,' and 
a chip-pinout diagram, if desired (see listing 1 ). 

Example: Two-Story Elevator Controller 

This example is designed to step the reader through the 
process of creating and implementing a logic design 
using GAL devices. Whether a novice or intermediate 
user of PLDs, the reader is encouraged to familiarize 
himself with this section, as well as with the applications 
in the GAL application notes section, which provides 
examples of how to implement basic functions such as 
decoders, shifters, multiplexers, counters, and so on. 

L212 a Here we will be building a two-story elevator control unit. 
111111111111111111111111111111111111111111111111111111111111nttte function of the unit is to monitor the state of the call 
L219 2 1 * buttons, respond to calls for service, and display the 
Cl3DA* status of the elevator by means of floor and direction 

Test vectors, which indicate the stimulus and response 
for a PLO, serve primarily to validate the functionality of 
a design source file. The ABEL compiler thus simulates 
the source file on paper, so that, hopefully, only properly 
functioning patterns are ever programmed into a PLO for 
system debug. In our basic gates example, the source file 
for the simulator routine provides the expected data: 

11 * * * * test vector definition **** 
test_vectors 

([A,B] -> [Y,Z]); 

[ 0' 0 l -> [L,X]; "**** test AND gate **** 
[ 0, l] -> [L,X]; 

[ 1, 0 l -> [L,X]; 

[ 1, l] -> [H,X]; 

[ o,o l -> [X,H]; II**** test XNOR gate **** 
[ 0, l] -> [X,L]; 

[ 1, 0 l -> [X,L]; 

[ 1, l] -> [X,H]; 

end 

While some PLO manufacturers claim that test vectors 
are also necessary for verifying functionality of the inte­
grated circuit after programming, Lattice E2CMOS GAL 
devices are fully tested and guaranteed to yield 100% all 
of the time. In Section 11 of this handbook, the issue of 
testability and how Lattice achieves this unmatched 
quality level is discussed in detail. 

Once the JEDEC fusemap is generated, the design is 
ready to be programmed into a device. ABEL also gener­
ates a documentation file (.DOC) for the design which 
can be viewed under the View Menu option. The purpose 

displays. The operating control function requires a small 
state machine and a latch function, while the display logic 
uses only combinational circuits. 

Our elevator travels between two floors. Arriving at a floor 
in response to a call for service, the elevator opens its 
doors, pauses, then closes them automatically. If the Up 
or Down button is pushed, the elevator travels to the other 
floor. A microswitch mounted on the car informs the 
controller that the elevator has arrived at a new floor. 

Once the elevator arrives at a floor to discharge passen­
gers, it opens its doors, pauses to let the passengers out, 
then closes the doors and assumes its wait position. A 
call for service at the floor where the elevator is resting 
will result in the doors being opened. 

A free-running clock controls the elevator's operation, 
toggling every 5 to 1 O seconds to allow a brief pause 
during each arrival and departure activity. While this slow 
clock rate is appropriate for the timing of the elevator 
doors and car movement, it is far too slow to capture a 
time-independent call for service. As such, a latch func­
tion that captures data instantly (actually within 25 ns) is 
designed using two of the GAL device macrocells. 

As shown in Figure 3, the total elevator control unit uses 
two GAL 16V8s - one to perform the actual control 
function, the other to handle the display. 

The control of the elevator consists of two basic func­
tions: the call-button latches and the state machine. The 
latches, constructed from the GAL device's available 
AND and OR gates (instead of using the on-chip D-type 
register), are instantaneous and not dependent on a 
clock for holding data. The truth table of the S-R latch 
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l ~"""" 
DOOR 
CONTROL 

MOTION 
CONTROL 

DIRECTION 
CONTROL 

FLOOR 
DISPLAY 

DIRECTION/ 
CALL DISPLAY 

used is shown in Figure 4. As shown in the truth table, the 
latch is set by applying a logic 1 to SET, and reset by 
applying a logic 1 to RESET. Applying a logic O to both 
inputs causes a hold state, while applying a logic 1 to both 
is undefined for this type of latch. The various call signals 
(UCALL, DCALE, OCALL, 1 CALL, 2CALL} are applied to 
the two latches to command the elevator to travel to the 
requested floor. 

The first step in this GAL implementation is to translate 
the functional operation of the elevator (described in the 
text in the preceding paragraphs) to a logical format. This 
is realized through the use of a state-transition diagram, 
which literally describes all the allowed stable states (on 
floor two, doors open, etc.) that our elevator can be in. An 
unacceptable state, for example, would be resting be­
tween floors. 

---
Set Reset Output Output 

0 0 Hold Hold 
0 1 0 1 
1 0 1 0 
1 1 - Not Valid-

Figure 4. SR Latch Truth Table 

2CALL 
ORUP 

Figure 5. State-Transition Diagram 
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Figure 5 shows the state-transition diagram. Inside each 
state circle, the diagram indicates the state name (top 
half) and the condition of each of the state variables: 
DOOR, MOTION, and DIRECTION. The transitions out 
of the state are shown with the logic level requirements 
to make the transition. Also shown is the destination of 
each of the transfers. 

The latched signals L 1 CALL and L2CALL are used to 
start the states changing. The ARRIVAL inputtells the car 
when to stop its motion. The normal wait state of the 
elevator is either CLOSE1 or CLOSE2 (not moving with 
door closed). 

The information is then transferred from the transition 
diagram to the ABEL state-machine syntax, shown in 
Listing 2. Notice the use of defaults in the state syntax to 
indicate what state should be selected (or held) if none of 
the criteria for exit is met. There is also an identifiable 1-
to-1 correspondence from the state transition diagram to 
the state-machine syntax. The portion of the documenta­
tion file which includes reduced equations is shown in 
Listing 3. Notice that the compiler automatically chose 

Listing 2. Design Input File for Control Section 

module elev ctl 

the proper polarity to fit the reduced equations into the 
GAL device, using DeMorgan's Law: pins 12, 13, and 14 
are inverted, relative to the other output pins. 

Display Design 

The source file for the up/down arrow display is shown in 
Listing 4. The UPARROW is active only when the car is 
moving up. DNARROW is true only when the car is 
moving down. The common bar, SEGARROW, is active 
during any call, in any direction. This signal is also active 
when an unserviced call is active. As such, the 
SEGARROW signal is a call waiting indicator that ac­
knowledges a call button being pushed. The logic 
equations for the arrow functions are self-explanatory; its 
input signals come from the controller. 

The floor indicator is a simplified decoder. A truth table 
input format is used for the design. Notice that a floor is 
always indicated, and that the change occurs when the 
direction bit changes. This bit is constrained by the state 
machine to change only when the car arrives at a floor. 
The documentation file showing the reduced equations is 
reproduced in Listing 5. 

Title 'Two Story Elevator Control Logic Example Using a GAL16V8 
Lattice Semiconductor 

ABEL Source File' 

"**** device declaration **** 
elev_ctl device 'p16v8'; 

11 **** inputs **** 
CLK, !OE 
CALL1,CALL2 
" Up , Down , Open 
UCALL,DCALL,OCALL 
ARRIVE 

**** 

PIN 1, 11; 
PIN 2,3; 

PIN 4, 5, 6; 
PIN 7; 

"Buttons on Floors 

"Buttons in Elevator 
"Floor Arrival Sensor 

"**** outputs 
DOOR 
MOTION 
DIRECTION 

PIN 12 IS TYPE 'REG D, INVERT' ; "O=Open, l=Close 
PIN 13 ISTYPE 'REG-D,INVERT'; "O=Wait, l=Move 

PIN 14 ISTYPE 'REG_D,INVERT'; "O=Up , l=Down 

LlCALL,LlCALL 
L2CALL,L2CALL= 

PIN 16, 17 ISTYPE 'COM, INVERT' ; "Latched call to 1st floor 
PIN 18,19 ISTYPE 'COM, INVERT'; "Latched call to 2nd floor 

11 **** state definitions **** 
CONTROL [DOOR,MOTION,DIRECTION]; 

RES Tl 
CLOSEl 
UP 
REST2 
CLOSE2 
DOWN 

'BOOO; 
'BlOO; 
'BllO; 
'BOOl; 
'BlOl; 
'Blll; 

"**** intermediate definitions **** 
C,X,H,L=.C.,.X.,1,0; 
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FLOORl = DIRECTION. FB; 
FLOOR2 IDIRECTION.FB; 

"**** logic equations **** 
equations 

LlCALL !( LlCALL - # CALLl # (FLOORl & OCALL) 
# (FLOOR2 & DCALL)); 

LlCALL_ I( LlCALL # ( IDOOR.FB & IMOTION.FB & I DIRECTION. FB) ) ; 
L2CALL I( L2CALL - # CALL2 # (FLOOR2 & OCALL) 

# (FLOORl & UCALL)); 
L2CALL - I( L2CALL # ( !DOOR.FB 

CONTROL.CLK = CLK; 

"**** state machine definition **** 
state diagram CONTROL 
state-RESTl: if (L2CALL) then UP; 

else CLOSEl; 
state CLOSEl: if (L2CALL) then UP; 

& IMOTION.FB 

else if (LlCALL) then RESTl; 
else CLOSEl; 

state UP: if (ARRIVE) then REST2; 
else UP; 

state REST2: if (LlCALL) then DOWN; 
else CLOSE2; 

state CLOSE2: if ( LlCALL) then DOWN; 
else if (L2CALL) then REST2; 

else CLOSE2; 
state DOWN: if (ARRIVE) then RESTl; 

else DOWN; 

end 

Listing 3. Expanded Product Terms for Control Section 

& DIRECTION. FB) ) ; 

LlCALL = ( !DIRECTION.Q & !LlCALL_ & !CALLl & IOCALL 
# DIRECTION.Q & ILlCALL_ & !CALLI & IDCALL ) ; 

LlCALL_ ! ( DIRECTION.Q & DOOR.Q & MOTION.Q 
# LlCALL ) ; 

L2CALL DIRECTION.Q & !OCALL & !L2CALL_ & !CALL2 
# IDIRECTION.Q & IL2CALL_ & ICALL2 & IUCALL ); 

L2CALL_ ! ( !DIRECTION.Q & DOOR.Q & MOTION.Q 
# L2CALL ) ; 

DOOR.D IDIRECTION.Q & IDOOR.Q & MOTION.Q & !LlCALL & L2CALL 
# DIRECTION.Q & IDOOR.Q & MOTION.Q & LlCALL & IL2CALL 
# !DOOR.Q & !MOTION.Q & ARRIVE); "ISTYPE 'INVERT' 

DOOR.C CLK ); 

MOTION.D IDIRECTION.Q & MOTION.Q & ILlCALL 
# DIRECTION. Q & MOTION. Q & ! L2CALL 
# !DOOR.Q & !MOTION.Q & ARRIVE);" ISTYPE 'INVERT' 

MOTION.C CLK ); 

DIRECTION.D DIRECTION. Q & MOTION. Q 
# IDIRECTION.Q & IDOOR.Q & !MOTION.Q & ARRIVE 
# DIRECTION. Q & ! DOOR. Q & ! ARRIVE ) ; " ISTYPE ' INVERT' 

DIRECTION.C CLK ); 
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Listing 4. Design Input File for Display Section 

module elev dsp 
Title 'Two Story Elevator Display Logic Example Using a GAL16VB 

Lattice Semiconductor 
ABEL Source File' 

"**** device declaration **** 
elev_dsp device 'p16v8'; 

11 **** inputs **** 
L1CALL,L2CALL 
MOTION,DIRECTION 

PIN 2,3; 
PIN 4,5; 

"Call Status 
"Control Status 

"**** outputs **** arrow display diagram 

UPARROW 
SE GARROW 
DNARROW 

PIN 12 ISTYPE 'COM, INVERT' ; " 
PIN 13 ISTYPE 'COM, INVERT' ; " 
PIN 14 ISTYPE 'COM, INVERT'; " v 

SEG1,SEG2,SEG12 PIN 15,16,17 ISTYPE 'COM, INVERT'; "LED Segment Drivers 
segment display diagram 

2 

2 I 12 

2 I 
2 

"**** intermediate definitions **** 
C,X,H,L=.C.,.X.,1,0; 

11 **** logic equations **** 
equations 

UPARROW = MOTION & DIRECTION; 
SEGARROW= LlCALL # L2CALL; 
DNARROW = MOTION & I DIRECTION; 

"**** truth table definition **** 
truth table 
( [DIRECTION, MOTION] -> [SEGl, SEG2, 

[ 0 0 I -> [ 1 , 0 , 
[ 0 1 I -> [ 1 , 0 , 
[ 1 0 I -> [ 0 , 1 , 
[ 1 1 I -> [ 0 , 1 , 

end 

SEG12]) 
1 I 
1 I 
1 I 
1 I 

Listing 5. Expanded Product Terms for Display Section 

UPARROW ( MOTION & DIRECTION ) ; 
SEGARROW I ( !LlCALL & IL2CALL ); 
DNARROW ( MOTION & !DIRECTION ) ; 
SEGl I ( DIRECTION ) ; 
SEG2 I ( I DIRECTION ); 
SEG12 I (0); 
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GAL Development 
Support 

Lattice Semiconductor recommends the use of qualified 
programming equipment when programming Lattice de­
vices. Lattice works with several programming 
manufacturers to insure that there is cost effective equip­
ment available. We have approved programmers in each 
of the following catagories: 

• Low Cost GAL Only Programmers 
• Mid Range 28-pin Programmers 
• Full Universal Programmers 
• Production Programming Equipment 

Qualified Programmers 

Vendor Programmer 

Autosite 

Unisite 

3900 
Data 110 

2900 

298 

60A/H 

Allpro 88 
Logical Devices 

Allpro40 

System 3000 

Stag ZL30B & ZL30A 

Quasar-U84 & Quasar-U40 

TURPR0-1 & TURPR0-1/FX 
System General 

SGUP-85A 

SMS Microcomputer 
Sprint Expert 

Sprint Plus 

BP-1200 

BP-Microsystems PLD-1128 & CP-1128 

PLD-1100 

Pilot-U84 & Pilot-U40 

Advin Pilot-U256 & Pilot-168 

Pilot-GL & Pilot-GCE 

Lattice conducts a very stringent qualification procedure, 
which includes a complete evaluation of the program­
ming, verification and load algorithms; verification of 
critical pulse widths and voltage levels, along with a 
complete yield analysis. The result is the best program­
ming yields in the industry and a guarantee of 100% 
programming yields to customers using qualified pro­
gramming equipment. Below are the third-party 
programmers which are qualified to program Lattice 
devices. 

For a current listing of Lattice qualified programmers, 
please call Lattice's Literature Distribution Department 
(Tel: 503-693-0287; FAX: 503-681-3037). 

Logic Compiler Support 

Vendor Logic Compiler 

AccelTech. Tango PLO 

Cadence 
PIC Designer Composer 

PIC Designer Concept 

Data 1/0 ABEL 

ISDATA LOGliC 

Logical Devices CUPL 

Mentor Graphics PLSynthesis II 

Mine PLDesigner-XL 

OrCAD OrCAD PLO 

Omation Schema-PLO 

View logic View PLO 
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PROGRAMMER/COMPILER VENDORS 

Accel Technologies 
6825 Flanders Dr. 
San Diego, CA 92121 
Tel: (619) 554-1000 
FAX: (619) 554-1019 

Advin Systems 
1050-L Duane Ave 
Sunnyvale, CA 94086 
Tel: (408) 243-7000 
FAX: (408) 736-2503 

BP Microsystems 
1000 N Post Oak Road 
Houston, TX 77055-7237 
Tel: (713) 688-4600 

1-800-225-2102 
FAX: (713) 688-0902 
BBS: (713) 688-9283 

Cadence Design Systems 
555 River Oaks Parkway 
San Jose, CA 95134 
Tel: (408) 943-1234 
FAX: (408) 943-0513 

Data 1/0 Corp. 
10525 Willows Road N.E. 
P.O. Box 97046 
Redmond, WA 98073-9746 
Tel: (206) 881-6444 
Tel: 1-800-247-5700 
FAX: (206) 882-1043 

In Europe contact: 
Data 1/0 Corp. 
Tel: +31 (0) 20-6622866 

In Japan contact: 
Data 1/0 Corp. 
Tel: (03) 432-6991 

ISDATAGmbH 
Haid-und-Neu-StraBe 7 
7500 Karlsruhe 1 
Germany 
Tel: 0721-693092 
FAX: 0721-174263 

In the U.S. contact 
ISDATA Inc. 
Tel: (408) 373-7359 
FAX: (408) 373-3622 

Logical Devices 
692 South Military Trail 
Deerfield Beach, FL 33442 
Tel: (305) 428-6868 
FAX: (305) 428-1181 

Mentor Graphics 
8005 S.W. Boeckman Rd. 
Wilsonville, OR 97070 
Tel: (503) 685-7000 
FAX: (503) 685-1204 

Mine Incorporated 
6755 Earl Dr. 
Colorado Springs, CO 
80918 
Tel: (719) 590-1155 
FAX: (719) 590-7330 

Omation 
801 Presidential 
Richardson, TX 75081 
Tel: (214) 231-5167 
FAX: (214) 783-9072 

OrCAD Systems Corp. 
3175 N.W. Aloclek Dr. 
Hillsboro, OR 97124 
Tel: (503) 690-9881 
FAX: (503) 690-9891 

SMS Micro Systems 
IM Grund 15 
D-7988 Wangen 
Germany 
Tel: (49) 7522-5018 
FAX: (49) 7522-8929 

In the U.S. contact: 
SMS North America, Inc. 
16522 N.E. 135th Pl. 
Redmond, WA 98052 
Tel: (206) 883-8447 
FAX: (206) 883-8601 

Stag Microsystems 
Martinfield 
Welwyn Garden City 
Herts AL? 1JT 
United Kingdom 
Tel: 011-44-707-332148 
FAX: 011-44-707-371503 

In the U.S. contact: 
Stag Microsystems 
1600 Wyatt Dr. 
Santa Clara, CA 95054 
Tel: (408) 988-1118 
FAX: (408) 988-1232 
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System General 
3FI., No. 1, Alley 8, Lane 45 
Bao Shing Rd. 
Shin Dian 
Taipei, Taiwan R.O.C. 
Tel: 886-2-9173005 
FAX: 886-2-9111283 

In the U.S. contact: 
System General 
510 S. Park Victoria Dr. 
Milpitas, CA 95035 
Tel: (408) 263-6667 
FAX: (408) 262-9220 

Viewlogic Systems 
293 Boston Post Rd. West 
Marlboro, MA 01752 
Tel: (508) 480-0881 
FAX: (508) 480-0882 
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Copying PAL, EPLD & PEEL 
Patterns Into GAL Devices 

Introduction 

The generic/universal architectures of Lattice GAL de­
vices are able to emulate a wide variety of PAL, EPLD 
and PEEL devices. GAL devices are direct functional 
and parametric replacements for most PLD device archi­
tectures. To use GAL devices in place of other PLD 
types, some conversion of the original device pattern 
may be needed. This conversion is not difficult, and can 
be accomplished at either the design or manufacturing 
level. The following sections describe several tech­
niques available to convert PAL, EPLD and PEEL device 
patterns to Lattice GAL device patterns. 

Cross Programming: GAL 16V8 and GAL20V8 

The GAL 16V8 and GAL20V8 devices replace most stan­
dard 20-pin and 24-pin PAL devices. To simplify the 
conversion process, Lattice has worked with program­
mer hardware manufacturers to provide the ability to 
program GAL devices directly from existing PAL JEDEC 
files, or master PAL devices. Lattice qualified program­
mers can automatically configure the architecture of a 
GAL device to emulate the source PAL device. 

To provide a conceptual framework for the conversion 
from PAL devices to GAL devices, a mythical device 
known as a RAL device was created. A RAL device is 
simply a GAL device configured to emulate a PAL. There 
is a one-to-one correspondence between the name of a 
PAL device and that of a RAL device. For example, a 
RAL 16L8 is simply a GAL 16V8 configured as a PAL 16L8. 
Some programmers list the RAL device types as choices 
for cross-programming, while others specifically state 
that a cross-programming operation is to be performed 
using a PAL device type as the architecture type. Other 
programmers list devices such as a Lattice 16L8. Even 
though Lattice does not make a 16L8 device, choosing 
this selection allows the programmer to accept a 16L8 
JEDEC file, and will program a GAL 16V8 device to 
emulate a PAL16L8. 

To program a GAL 16V8 or GAL20V8 device from an 
existing PAL JEDEC file, simply select the appropriate 
device code (either RAL type, or PAL type to cross­
program from), then download the PAL JEDEC file to the 
programmer. Insert the appropriate GAL device that can 
directly emulate the PAL device (according to the chart in 
the GAL 16V8 or GAL20V8 datasheets). The program­
merwill automaticallyconfigurethe GALdevicetoemulate 
the PAL device during programming. The resulting GAL 
device is 100% compatible with the original PAL device. 

A GAL device may also be programmed from a master 
PAL device by reading the pattern of the master PAL into 
the programmer memory, then selecting the appropriate 
RAL device or PAL type to cross-program from. The GAL 
device can then be programmed from the programmer 
memory. 

Cross Programming: GAL22V10/GAL20RA10 

The GAL22V10 and GAL20RA10 are direct replace­
ments for bipolar PAL devices, and are JEDEC fuse map 
compatible with these industry standard devices. To 
program a GAL22V10 or GAL20RA 10 device from an 
existing PAL JEDEC file, simply select the appropriate 
GAL device code, then download the PAL JEDEC file to 
the programmer. The resulting GAL device is 100% 
compatible with the original PAL. 

GAL devices also may be programmed from Master PAL 
devices by reading the pattern of the Master PAL into the 
programmer memory, then selecting the appropriate 
GAL device code. The GAL device can then be pro­
grammed from the programmer memory. 

The GAL22V10 and GAL20RA 1 O also can store a User 
Electronic Signature (see the datasheets on these de­
vices for more information). To use this feature, the 
JEDEC file must contain this information. To add the 
signature data to the JEDEC map, use the PALtoGAL 
conversion utility or recompile the source equations for a 
Lattice GAL device instead of a generic 22V10 type. 
Many programmers list two device types to differentiate 
between the two types of JEDEC files, and list both a 
GAL22V10 and a name such as GAL22V10-UES or 
GAL22V10-ES. Other programmers allow both types of 
JEDEC files to be accepted, and simply don't program 
the Signature fuses if they are not present in the file. 

Cross Programming: GAL20XV1 O 

The GAL20XV10 can be configured as a direct replace­
ment for bipolar PAL20X10, 20X8, 20X4, and 20L 10 
devices. Many programmers provide cross-programming 
support similar to that provided for the GAL 16V8/GAL20V8 
devices. This allows the use of existing PAL device files 
to program the GAL20XV10 to emulate the PAL devices. 
The PALtoGAL conversion software (described below) 
also supports conversion of the PAL JEDEC files to a 
functionally equivalent GAL device file. 
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PALtoGAL Conversion Utility Software 

Lattice has created a software utility that will convert an 
existing PAL device JEDEC file to the appropriate GAL 
device JEDEC format. Called PAL!oGAL, this software 
utility can be used to convert PAL device files to GAL 
device files, add/or change the User Electronic Signature 
without changing device functionality, and reformat exist­
ing GAL JEDEC files for readability. 

Since a few programmable logic devices have features 
that a GAL device cannot exactly emulate, the PAL!oGAL 
utility will clearly describe the incompatibility but will not 
create an output file. GAL devices programmed using 
files converted by PAL!oGAL will be 100% compatible 
with the original logic device. PALtoGAL is just another 
method of cross-programming, and should produce the 
same results as using a programmer. The advantage is 
that a full GAL device JEDEC map is created, meaning 
that the appropriate GAL device may then be selected on 
the programmer, which may simplify the manufacturing 
flow. Also, the PALtoGAL conversion software provides 
conversions that programmers do not. 

A copy of the PALtoGAL conversion utility software can 
be obtained through your local Lattice representative, or 

by contacting the GAL Applications Hotline at 1-800-
FASTGAL (327-8425) or (503) 693-0201. The software 
also may be downloaded from Lattice's Electronic Bulle­
tin Board at (503) 693-0215; the file name is 
"PALTOGAL.EXE". 

Software Compiler Conversion 

If the equation source file is available forthe PAL device, 
it can be converted by re-compiling using a suitable logic 
compiler that supports GAL devices. If there are any 
device incompatibilities (there shouldn't be in most cases), 
the compiler will describe the errors. The output of the 
compiler will be a GAL JEDEC file that can be used to 
program a GAL device directly. The resulting GAL device 
will be 100% functionally compatible with the original 
device. 

Suitable logic compilers are listed in the Development 
Tools section. If additional questions arise, contact your 
compiler manufactureror a Lattice Applications Engineer 
by calling the GAL Applications Hotline at 1-800-FAST­
GAL or (503) 693-0201. 
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Introduction 

The Zero Power GAL 16V8 and GAL20V8 families of 
devices provide the highest speed and lowest power 
combination available in the PLO market. They operate 
at a Tpd of 12ns and an Fmax of 83.3MHz, while at a 
maximum Ice of 55mA and an lsb (standby current) of 
50µA typical. These zero power PLDs have industry 
standard GAL 16V8 and GAL20V8 architectures, and are 
manufactured with Electrically Erasable CMOS 
(E2CMOS) technology, offering 100% programmability, 
functionality and testability. 

This family offers two zero power options for each archi­
tecture: An Input Transition Detection version and a 
Dedicated Power-Down Pin version. The GAL 16V8Z and 
the GAL20V8Z use input transition detection to enter into 
the zero power mode- if there are no input transitions for 
a specified interval, the device powers down. The 
GAL 16V8ZD and GAL20V8ZD enter the zero power 
mode by using a dedicated power-down pin which takes 
the place of a logic input. 

Since these zero power E2CMOS PLDs have the same 
architectures as the GAL 16V8 and GAL20V8, they can 
be used in similar applications. OMA control, state ma­
chines, and other standard 16/20V8 applications that 
become very power conscious when implemented in 
battery powered systems are ideal for the zero power 
GAL families. Also, zero power GAL devices help reduce 
overall system cost: they allow the user to specify smaller, 
less expensive power supplies and may even allow the 
system to be implemented without cooling fans. 

This application note describes the timing parameters 
and architectural features of the zero power GAL devices 
and describes a few applications in which these devices 
are particularly well suited. 

GAL 16V8Z and GAL20V8Z 

Timing Parameters 

Figure 1 illustrates the timing parameters of the GAL 16/ 
20V8Z devices associated with standby mode. The 
GAL 16/20V8Z devices enter into standby mode if there is 
a lack of activity on their inputs or I/Os for a period of time 
greater than Tas (140 ns). This makes it possible for the 
GAL 16/20V8Z devices to automatically go into standby 
mode when the system or any section of the system 
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Zero-Power 
GAL Devices 

containing the zero power devices goes dormant. Since 
the GAL 16/20V8Z devices may or may not be in a 
dormant state at any given time, they have two different 
propagation delays depending on which state they are in. 
The first propagation delay is the time taken if the devices 
are not in standby mode: 12ns maximum for 12ns Tpd 
rated devices. The second propagation delay, as indi­
cated in figure 1, is for the first transition after sleep mode: 
25ns (Tsa+Tpd) maximum for 12 ns devices. 

Current Consumption 

Figure 1 can be redrawn as shown in figure 2 (titled 
"Power Timing Waveforms") to better illustrate the calcu­
lation of average Ice current consumed by the devices. 
Figure 2 shows that the Ice current over time has a 
periodicity or cycle time (Tsr). There are two separate 
cases of current consumption to consider. 

Case 1: If the transition timing on the I/Os or inputs is less 
than Tas+ Tpd, the GAL 16/20V8Z devices will not go into 
standby mode, and current consumption will be the Ice 
active specification (55mA). 

Case 2: If the time between any successive transitions is 
greaterthan Tas+ Tpd, then the GAL 16/20V8 devices will 
go into standby mode. If the input signals are repetitive in 
nature, the average Ice current consumed will be given by 
the following equation: 

lcc(Average) = ((Ice Active)x(Tas+ Tpd)/Tsr) 
+ (Ice Standby)x(1 ·((Tas+ Tpd)/Tsr)) 

Architectural Features 

The GAL 16/20V8Z devices incorporate transition detec­
tion and timing circuitry on the inputs and I/Os to determine 
if the devices are to enter standby mode. A unique input 
buffer makes the inputs and I/Os less susceptible to noise 
that might be present, thus keeping the devices from 
leaving standby mode unnecessarily. The circuitry used 
can be thought of as a current barrier that is not of 
sufficient magnitude to interfere with normal logic opera­
tions; inputs or I/Os must either source or sink typically 30 
µA of current for a state transition to occur. 

The current barrier is useful as it functions as either a pull­
up or pull-down resistor depending on the state of the 
input. Since the drive direction of these active resistors 
reverses when the signal passes through the threshold 
switching region, a monotonic input signal is latched. The 
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Figure 1. ITD Standby Power Timing Waveform 
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Figure 2. Power Timing Waveforms 

current barrier also helps maintain the input logic level if 
the driver of the input goes into the high impedance state. 
This is valuable as it keeps the inputs out of the threshold 
voltage region. 

Applications 

Use of GAL 16/20V8Z devices in systems with fast, 
free running clocks. 

Systems that require the operation of a PLO device for 
small periods of time and are driven by fast, free running 
clocks can become energy misers through the use of 
GAL 16/20V8Z devices. These devices can be selectively 
placed into standby mode by gating off of the system 
clock, while still retaining the capability to respond to 
asynchronous signals. 

Figure 4 gives an example clock interface to GAL 16/ 
20V8Z devices that allows simple gating off of the system 
clock without false clocking of the devices. This clocking 
scheme supports high performance systems that con­
sume minimal amounts of power. Clocking of the GAL 16/ 
20V8Z devices can be turned off, yet the devices will still 
be able to respond to asynchronous inputs. This is 
impossible for dedicated power-down pin devices. The 
GAL 16/20V8Z clock needs to be disabled while the 
source clock is in the high state to avoid false clocking; 

this has the effect of keeping the GAL 16/20V8Z device 
clock frozen in the high state. However, the clock gating 
signal may be enabled at any time during the clock cycle. 
Note that the user must not violate setup and hold times 
to ensure proper operation of the circuits. 

Use of GAL 16/20V8Z devices in systems with slow, 
free running clocks. 

For slow clock applications, where clock edge transitions 
are more than 140ns apart, circuits such as those shown 
in figure 5 may be used as clock drivers to GAL 16/20V8Z 
devices. Either circuit produces a clock signal that is 
rising edge sensitive; when a rising edge occurs, a 
negative going pulse is generated. Timing waveforms 
showing this are in figure 6. Again, the user of such 
circuits is encouraged to look at the setup and hold time 
requirements to ensure proper circuit operation. 

This negative going pulse has a falling edge which 
causes the GAL 16/20V8Z device to go from standby 
mode to active mode, so that the rising edge of the 
negative pulse clocks the device. This circuit allows the 
system to be clocked down to 0 MHz. The width of the 
negative clock pulse, which is controlled by the delay 
introduced by the string of inverters, should have a 
minimum pulse width of Tsa+ Tsu. It should be noted that 
the active rising clock edge is now delayed by the circuitry 
in its path. This should be taken into account in the 
system's timing analysis. 

Figure 3. OPP Timing Waveform 
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GAL 16V8ZD and GAL20V8ZD 

Timing Parameters 

The GAL 16/20V8ZD zero power devices have a dedi­
cated power-down pin (DPP). When this pin is placed into 
the active high (DPP=H) state, the GAL 16/20V8ZD de­
vices go into standby mode, and current consumption 
(Ice) decreases from 55mA to 1 OOµA. The DPP pin is not 
available for logic input into the AND array, as it is with the 
GAL 16/20V8Z devices. Since the GAL 16/20V8ZD de­
vices suspend their state when in standby mode, there 
are also setup and hold times on inputs to the devices 
with respect to the rising edge of the DPP signal. Figure 
3 shows the AC timing diagrams for standby mode on the 
GAL 16/20V8ZD devices. 

The setup timing parameter for combinatorial signals is 
Tivdh, and the hold time is Tdhix. If these timing param­
eters are met, then a standard propagation delay will 
apply to the output. If the DPP pin is held high, the state 
of the output will be preserved independent of any changes 
to the inputs or I/Os, including the clock signal. The setup 
and hold times for the clock signal are Tcvdh and Tdhcx, 
respectively. Note that in all cases, if the timing param­
eters are violated then proper operation of the devices 
should not be expected. 

Architectural Features 

Operation of the DPP pin may be thought of as perform­
ing a "Chip Enable" type of function, with the exception 
that all of the I/Os retain the same configuration and drive 
state they had before going into standby mode. 

Figure 5. Low Frequency Clock Drive Circuits 
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Zero-Power GAL Devices 

Similarly, the DPP pin may be compared to a "Latch 
Enable" type of function, where taking the DPP pin to the 
high state will in effect freeze the state of the device, 
including all input and 1/0 pins. Therefore, latches on the 
PCB may be replaced by the functionality of the power­
down pin. This double functionality of the GAL 16/20V8ZD 
devices is beneficial as the overall part count of the 
system may be reduced, resulting in the benefits of lower 
cost, reduced board space and greater reliability. 

Applications 

The DPP lets the microprocessor or controller explicitly 
control how the battery or other energy sources are used. 
This is especially valuable when used in a system with 
other power-down devices and a global power-down 
control signal; power consumption can be reduced to 
nearly nothing. Also, the dedicated power-down pin can 
be effectively used for power management at critical 
times, such as during power drop out, when the proces­
sor or controller may be getting its power from the 
residual energy left in the electrolytic capacitors of the 
power supply. Since exercising the power-down pin puts 

Figure 6. Low Frequency Clock Drive Circuit Timing 
Waveforms 
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the GAL 16/20V8ZD devices in standby mode and a 
frozen state, by placing the power-down pin into standby 
mode (DPP=L), resuming operation from where the 
GAL 16/20V8ZD operation was suspended can be easily 
accomplished. Therefore, the processor/controller can 
effectively execute a power-down routine when power 
drops out, suspend the routine when the power critical 
time has ended, and allow the GAL 16/20V8ZD devices to 
be in the same state as before power drop out. 

Conclusion 

Having introduced the GAL 16/20V8Z and GAL 16/20V8ZD 
devices, Lattice makes available extremely low power, 
high performance components. Since power savings at 
the component level translates to power savings at the 
system level, existing high performance systems can 
now be converted to power misers without even chang­
ing JEDEC files. 

7-4 1994 Handbook 



•••••• •••••• •••••• 
Introduction 

Lattice's two high-drive "VP" series devices, the 
GAL 16VP8 and GAL20VP8, are based upon the industry 
standard GAL 16V8 and GAL20V8 architectures, adding 
programmable output configuration for higher drive ca­
pability. The "VP" series has programmable output buffers 
that can be configured to either open-drain or totem-pole 
outputs. Their output buffers can be independently pro­
grammed by setting the appropriate control bits in the 
architectural array. Additionally, their input buffers con­
tain Schmitt trigger inputs for greater noise immunity and 
active pull-up resistors on all inputs and I/Os. 

The GAL "VP" high drive adds value to the popular 
GAL 16V8 and GAL20V8 product line. The advantages 
of the "VP" series include: 

• Higher Output Drive Current 
Low-Level Output Current 

-lol = 64 mA vs. 24mA 
High Level Output Current 

-loh = -32 mA vs. -3.2mA 

• Schmitt Trigger Input Buffers - Schmitt trigger 
input buffers with 200mV of hysteresis between 
positive and negative input transitions. The Schmitt 
trigger inputs offer improved noise immunity during 
switching transitions, especially on the clock input. 
Hysteresis prevents double clocking when non­
monotonic rise and fall times are present. 

• Programmable Output Buffers - Two indepen­
dent types of output buffers can be programmed 
for each OLMC (Output Logic Macro Cell). A com­
bination of open-drain and totem-pole outputs can 
be used. For example, four totem-pole outputs for 
interfacing 1/0 functions and four open-drain out­
puts for bus interfacing with pull-up resistors. Any 
mixed combination of output buffers can be used 
since each output macrocell contains a dedicated 
fuse to assign the configuration of the output buffer. 

- Totem-pole output for standard high-drive in­
terfacing to external logic systems with heavy 
capacitive loading. This configuration has Vol 
and Voh levels that are standard TIL-level data 
sheet values, Vol=0.5 V max., Voh=2.4 V min. 

The GAL 16VPB 
and GAL20VPB 
- Open-drain output for bus interfacing and arbi­

tration circuits. Low logic level Vol has the 
standard TIL-level data sheet value, Vol= .5 V 
max. High logic level Voh is set from external 
pull-up resistors and is a function of the exter­
nal loading. 

These advantages allow the designer greater flexibility 
when interfacing to bus and memory logic. 

The series offers 64mA lol output drive for driving heavy 
capacitive loads associated with memory elements, such 
as those on data buses and back plane type systems. 

One of the advantages of using high drive programmable 
logic for interfacing is that it eliminates the need for 
74XX240 type drivers that are used in conjunction with 
decoding logic as a multiple device solution. In many 
microprocessor applications, decoding logic is used to 
decode address space for 1/0 or memory, then these 
signals are fed to bus driver components, such as the 
7 4XX240 series, to drive heavy loads on busses or back 
planes. 

Using the Lattice "VP" high drive series allows the de­
signer to accomplish this with a single chip solution. The 
GAL20VP8 or GAL20VP8 devices are used to decode 
the address space needed and the appropriate output 
configuration is chosen to supply the drive capability 
needed to interface with the system. 

Programming the 16/20VP8 

Development systems such as ABEL from Data 1/0 or 
CUPL from Logical Devices support both the GAL 16VP8 
and the GAL20VP8 with compiler support. Logic equa­
tions and syntax remain the same as with standard 
GAL 16V8 and GAL20V8 devices. There are three pos­
sible modes that are used for different OLMC 
configurations along with the output drive configuration 
mode: Registered, Complex and Simple. Each of these 
modes is set according to the logic functions imple­
mented in the source or design file. The only additional 
information needed in the source file is the configuration 
of the output buffers. The output buffer configuration is 
set with a dedicated architecture fuse for each OLMC, 
architecture fuse AC2. 

• AC2 = 1 Defines totem-pole output. 

• AC2 = 0 Defines open-drain output. 

7-5 1994 Handbook 

I 



The GAL 16VPB and GAL20VPB 
Each OLMC has an associated set of architecture fuses; 
the fuses SYN, AC1, ACO will be set by the compiler 
software for the appropriate OLMC mode (Registered, 
Complex or Simple). 

Each output also contains an AC2 fuse. The following is 
a list of AC2 fuse locations: 

GAL16VP8 GAL20VP8 

Output 19 (AC2 = 2194) Output22 (AC2 =2706) 
Output 18 (AC2 = 2195) Output 21 (AC2 =2707) 
Output 17 (AC2 =2196) Output 20 (AC2 =2708) 
Output 16 (AC2 = 2197) Output 19 (AC2 =2709) 
Output 14 (AC2 = 2198) Output 17 (AC2 =2710) 
Output 13 (AC2 = 2199) Output 16 (AC2 = 2711) 
Output 12 (AC2 =2200) Output 15 (AC2 = 2712) 
Output 11 (AC2 = 2201) Output 14 (AC2 = 2713) 

These fuses must be set using the compiler software. 
The following statements for ABEL and CUPL compilers 
show how to implement the programmable output buff­
ers. 

Example 1. ABEL Example for the GAL 16VP8-15LP (Setting the Output Driver Fuses) 

Module TESTl 
TITLE 'This is an example for the GAL16VPS-15LP that sets the output driver fuses'; 

TESTl Device 'P16VPS'; 
" Note: The GAL16VPS-15LP is a center-pin device. Ground Pin 15 , Vee Pin 5 
" Pin Assignments 

INl, IN2, IN3, IN4, IN6, IN7, INS, IN9 
OUTll, OUT12, OUT13, OUT14 
OUT16, OUT17, OUTlS, OUT19 

Pin 1,2,3,4,6,7,S,9; 
Pin 11,12,13,14; 
Pin 16,17,lS,19; 

" Use the FUSES statement to individually set AC2 fuses for output configurations. 

FUSES [2194 •• 2197] [l,1,1,l]; "Set output pins 19,lS,17,16 to totem-pole 
FUSES [219S •• 2201] [O,O,O,O]; "Set output pins 14,13,12,11 to open-drain 

EQUATIONS 

OUT19 INl & !IN2 & IIN4; " Pin 19 configured as totem-pole. 
OUTlS !INl & !IN2 & IIN3; " Pin lS configured as totem-pole. 
OUT17 IN4 & IN6 & !INS; " Pin 17 configured as totem-pole. 
OUT16 IN6 & IN7 & !INS; " Pin 16 configured as totem-pole. 

OUT14 IIN3 & !INS; " Pin 14 configured as open-drain. 
OUT13 IN2 & IN7; " Pin 13 configured as open-drain. 
OUT12 IIN2 & IIN4 & IN7; " Pin 12 configured as open-drain. 
OUTll IIN4 & IN6 & INS; " Pin 11 configured as open-drain. 
end 
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Introduction 

Although the GAL 16V8 is able to replace a number of 
different standard PLDs, such as the common PAL 16L8 
and PAL 16R8, there are times when a designer needs 
more flexibility than standard 20-pin PLDs offer. Moving 
the PLO design to the next package size means using a 
24-pin DIP or 28-pin PLCC package. Often the increase 
in functionality does not justify the increase in package 
size. 

This application brief describes the most common limita­
tions of a standard 20-pin PLO and how the GAL 18V1 O's 
unique architecture allows the designer much greater 
functionality while maintaining the same 20-pin package. 
In addition, the architecture of the 18V1 O is virtually the 
same as the industry-standard 22V10 device, which 
means that learning a new device architecture is not 
necessary. 

More Inputs 

As with the GAL22V10, the Lattice GAL 18V1 O macrocell 
structure allows for greater flexibility than the common 
20-pin PAL-type devices. Whereas the GAL 16V8, be­
cause of its exact emulation of many PAL devices, must 
limit the 1/0 pins that can have feedback or be configured 
as inputs, the 18V10 has no such limitations. Every one 
of the 1/0 pins on the GAL 18V10 can be configured as 
registered or combinatorial, has feedback capability, and 

Carry-Jn -

Carry-Out -
GAL 18V10 1-;.,..8 <;.."'"'.•~ 

4----· 

Counter Bits 

Figure 1. 8-bit Counter with Carry-In and Carry-Out 

The GAL 1BV10 
Advantage 

can be configured as a dedicated input or dynamic 1/0 
pin. 

GAL 16V8 Emulation Mode 
Complex Mode (16L8) 
Simple Mode (16H4, etc.) 

No Feedback or Input 
pins 12, 19 
pins 15, 16 

More Outputs 

As the name suggests, the GAL 18V1 O has a total of 10 
possible outputs. In cases where more than eight outputs 
are needed on the standard PLO, a GAL 18V10 is an ideal 
replacement. One demonstration of the additional capa­
bility of the GAL 18V10 is an eight-bit counter with a 
carry-out signal. A GAL 16V8 or PAL 16R8 device can be 
used to build an eight-bit counter. However to provide a 
carry-out and/or carry-in signal, more outputs are re­
quired. The GAL18V10 fits the bill nicely, since it is a 
functional superset of the already flexible GAL 16V8. 
Adding an few extra lines of equations in the source file 
and re-compiling produces a JEDEC file for a totally pin­
compatible rel!>lacement, but with extra functionality. Other 
uses for the additional output macrocells include imple­
menting nine or ten bit counters and decoded outputs 
from eight or nine bit counters. All of these functions 
could be done in a 22V10 as well (at extra cost), but could 
not be done in any of the common 20-pin PAL devices. 
Below is an example of two implementations of an eight­
bit counter with carry-in and carry-out. While this design 
fits in one GAL 18V10, it would require two different 20-pin 
PAL devices. 

Carry-In -

Carry-Out 

PAL16R4 2 
I-.......... ~ 

..,.. ____ 1 

Counter Bits 

1---~ Carry-Out 

PAL16Rs-6--
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The GAL 1BV10 Advantage 

Reset and Preset 

Another benefit of the 22V1 O nature of the GAL 18V1 O is 
the inclusion of Asynchronous Reset and Synchronous 
Preset of the registers. These dedicated product terms 
can allow any pin or combination of inputs and/or feed­
backs to trigger a global reset or preset to occur. In many 
other devices this can only be accomplished by using 
valuable product terms and extra design time to build this 
capability into the logic for each output. Since each 
output in these devices has only seven or eight product 
terms, the addition of the reset/preset logic may make it 
impossible to fit in the desired logic functions. Example 
1 illustrates what the eighth output of an eight-bit counter 
may look like. 

To add the capability for a synchronous preset would 
require the use of an additional product term, which may 
not be available. This same problem may come up in a 
complex state machine. 

The Asynchronous Reset function cannot even be dupli­
cated in the GAL 16V8 or standard PAL devices. The 
GAL 18V1 O can be asynchronously reset, therefore sim­
plifying the power-up routine by not requiring a clock 
cycle to put the device into a known state. 

Flexible Output Enable 

Again because of its exact emulation of the common 20-
pin PAL devices, the GAL 16V8 has limited options for 
placement of the Output Enable control pins. A GAL 16V8 
with any 1/0 macrocells configured in registered mode 
always has pin 11 dedicated to the output enable of the 
register. Pin 11 is then no longer available as an input to 
the array. This means that any combinatorial outputs that 
need output enable control must use an additional pin, 
since the output enable control of combinatorial outputs 
is through a product term. A design with a mix of 
registered and combinatorial outputs using a GAL 16V8 
(or 20-pin PAL device) must always use two pins to get 

Q7 := QO & Ql & Q2 & Q3 & Q4 & Q5 & Q6 & !Q7 "Product Term 1 
# !Q6 & Q7 "Product Term 
# !Q5 & Q7 "Product Term 
# IQ4 & Q7 "Product Term 
# IQ3 & Q7 "Product Term 
# IQ2 & Q7 "Product Term 
# !Ql & Q7 "Product Term 
# IQO & Q7 ) ; "Product Term 

# I Synch_ Preset " NO MORE PRODUCT TERMS AVAILABLE! 

Example 1. Eighth Output of an Eight-bit Counter 
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OE 
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Figure 2. Output Enable Pin Consolidation 
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output enable control on all outputs. The GAL 18V10 has 
no such restrictions. All output enable control is from a 
product term, regardless of whether the output is config­
ured as registered or combinatorial. 

Saving one pin on a 20-pin device can mean the differ­
ence between keeping the design in a 20-pin device and 
having to go to a larger (and more expensive) device. 
Figure 2 illustrates how the GAL 18V10 can use one less 
pin than a GAL 16V8 or 20-pin PAL device when both 
registered and combinatorial outputs must be tri-stated. 

Conclusion 

It is clear that standard PAL architectures have definite 
limitations. Lattice first addressed this issue with the 
GAL 16V8 and GAL20V8 devices, which were able to 
replace all standard 20 and 24-pin PAL devices. For 
replacing those same PAL devices, and adding some 
additional flexibility, the GAL 16V8 and GAL20V8 devices 
are a vast improvement and have become an industry 
standard in their own right. 

However, as the previous examples have pointed out, 
there are many cases where the old standby program­
mable logic architectures, and even the first-generation 
GAL replacements, don't have the flexibility required. For 
20-pin devices, the GAL 18V10 provides complete design 
flexibility by using the familiar 22V10 architecture, while 
maintaining the ability to provide a pin-compatible superset 
of the GAL 16V8. 
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GAL20RA 10: Programmable 
Clocks Improve System 

Performance 
Introduction 

There is a growing need for innovative design techniques 
to increase the system throughput using the currently 
available Programmable Logic Devices (PLDs). One 
way of improving the system throughput is to make use 
of Lattice's GAL20RA 10. By taking advantage of the 
unique architecture featuring an individually controlled 
clock on each of the Output Logic Macro Cell (OLMC) 
registers, the resolution of the control signals generated 
by a GAL20RA 10-based state machine can be doubled. 
The design example shown in this Application Brief takes 
advantage of this feature in a Dynamic RAM (DRAM) 
control logic design. 

Design Example 

The most common control signals generated by DRAM 
control logic are the Row Address Strobe (RAS) and the 
Column Address Strobe (CAS). The timing requirements 
of these control signals are strictly governed by the 
DRAM's timing requirements. Based on the DRAM's 

CLK 

D Q {>--- CAS 

timing requirement, Figure 1 a shows how the RAS and 
CAS control signals are generated from a standard PLO 
device which has only one dedicated active high clock 
signal driving all the output registers. The basic con­
straint of the high-to-low transition of RAS signal to the 
high-to-low transition of CAS signal for the 1 OOns DRAM 
is 15ns minimum (row address hold time after RAS). 

As illustrated in Figure 1 b, the activation of CAS signal is 
unnecessarily delayed because of the limitations of the 
standard PLD's single active-high clock driving all the 
output registers. This limitation is not a reflection of the 
DRAM's requirements but rather a limitation of the stan­
dard PLO. 

Design engineers can improve this design method by 
using the GAL20RA 1 O's independent OLMC clocks. Fig­
ure 2b shows the RAS and CAS signals being driven by 
both the rising and falling edges of the clock signal. This 
technique can be implemented in the GAL20RA 1 o by 
simply feeding the complement of the clock inputfrom the 
RAS control register to the CAS control register, as 
shown in figure 2a. 

I .. 
30 ns + 15 ns 

•I 
3~ I L.9:-K 

I .. 12 ns I 
(tco) • 

k2ns 

~ 
(, RAS 

30ns* ~ 

CAS 

*Only 15 ns needed for the row address hold time 

Figure 1 a. Standard PLO design with a single active- Figure 1 b. Control signal generation with a single 
high clock active-high clock 
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Summary 

The individual clock control on the OLMC is one of 
several different individual product-term controlled fea­
tures which are available on the GAL20RA 10. Other 
individual product-term controlled signals of the 
GAL20RA 10 include the Asynchronous Preset (AP) and 
Asynchronous Reset (AR). These signals can also be 
used, similar to the clock signal, to enhance system 
performance. In addition to these features, the 
GAL20RA 10 has an external preload (PL) capability to 
improve the control over the register contents - espe­
cially in state machine design. The full GAL20RA 10 
macrocell architecture is shown below, in figure 3. 

CLK 

--+---< D Q RAS I• 
3~ 

I· 12 ns j 

(tco) •· 

30ns + 15 ns •I 
I ~ 

12 ns 

(tco) RAS 
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• Only 15 ns needed for the row address hold time 

Figure 2a. Standard PLO design with dual-polarity Figure 2b. Control signal generation using a 
clocks GAL20RA10 
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Figure 3. GAL20RA10 Macrocell 
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GAL6002 Designs Using 
ABEL and CUPL 

Introduction 

The Lattice GAL6002 is the most dense 24 pin PLO 
available. The GAL6002 is an FPLA (Field Program­
mable Logic Array) which has a programmable AND 
array and a programmable OR array. It has a total of thirty 
eight registers and two synchronous clock pins. Each of 
the logic outputs can be configured for multiple clock 
control. 

This document covers the ABEL and CUPL syntax re­
quired to fully utilize the GAL6002 and its many features. 
Contained in this application note is an example source 
file for both the ABEL and CUPL compilers that has been 
compiled. This utilizes the features described in this 
application note. 

Architecture Description 

The GAL6002 has an FPLA architecture that contains 
both a programmable AND array and a programmable 
OR array. Inputs from the 1/0 pins as well as from internal 
registered feedback signals are brought into the AND 
array. The AND array then feeds the OR array, which in 
turn feeds the logic macrocells. 

All input signals from the outside world that come into the 
AND array may be registered, latched, or directly con­
nected to the AND array. Access from the outside world 
into the AND array is is obtained through the Input Logic 
Macrocell (ILMC) or by the Input Output Logic Macrocell 
(IOLMC). Latch or register control is applied through a pin 
called l/CLK. The l/CLK pin may also be brought into the 
AND array and used as normal input. Inputs into the AND 
array from the Output Logic Macrocells (OLMCs) as well 
as from the Buried Logic Macrocells (BLMCs) are fed 
directly to the AND array. 

The architecture of the GAL6002 allows the OLMC to be 
used as a BLMC if the inverting output buffer is placed 
into the high impedance state. The non-driven I/Os by 
way of the IOLMC then have access to the AND array 
where they may be used. 

Logic function formation is done in eitherthe OLMC or the 
BLMC. There are ten OLMCs and eight BLMCs. Only the 
ten OLMCs have access to pins and the AND array, while 
the BLMCs are fed back to the AND array. The OLMC has 

a polarity selection capability at the D input of the Flip 
Flop, where as the BLMC does not. 

The output of the OLMC is passed to the pins through an 
inverting buffer. The buffer controls output enable by 
using a product term. 

BLMC I OLMC Configurations 

Each of the OLMCs as well as the BLMCs have three 
possible configurations, listed below for the ABEL syn­
tax. 

1 . Combinational 

2. DE - type register, synchronously clocked, with a 
clock enable 

3. D - type register, synchronously clocked 

The OLMC and BLMC, if configured for registered opera­
tion, share a product term that is used for resetting the 
D-Flip-Flop. Each OLMC and BLMC in the registered 
mode of operation may be clocked from the dedicated 
clock pin called OCLK. If OCLK is used, then the clock 
may be gated off with a Clock Enable Sum Of Terms 
which may be unique to each OLMC or BLMC. Other­
wise, a unique clock may be created from a Sum Of 
Terms. If a Clock Enable or a Clock Sum Of Terms is 
used, then either a positive or negative edge may be 
selected as the active edge. 

ABEL Syntax and Logic Construction 

Node Definitions Specific to ABEL for the use of pins as 
inputs to be either latched or registered. 

"Pn# Fnt. Nd. Pn# Fnt. Nd. 
" 1 Clk 24 vcc 
" 2 InR 70 23 InR I/O 89 
" 3 InR 71 22 InR I/O 88 
" 4 InR 72 21 InR I/O 87 
" 5 InR 73 20 InR I/O 86 
" 6 InR 74 19 InR I/O 85 
" 7 InR 75 18 InR I/O 84 
" 8 InR 76 17 InR I/O 83 
" 9 InR 77 16 InR I/O 82 
" 10 InR 78 15 InR I/O 81 
" 11 InR 79 14 InR I/O 80 

" 12 GND 13 CLK 
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GAL6002 Designs Using ABEL and CUPL 

Buried register node definitions: 

nodes 33, 32, 31, 30, 29, 28, 27, 26; 

Device Declaration: 

XXXX device 'f6002'; 

Input Pin declared as combinatorial: 

No declaration statements are required as this is the 
default condition of the inputs. 

Input Pin declared as registered: 

IRO node 75; "Present in the declaration 
section of source file 

Pin7 Pin 7; 
EQUATIONS 
IRO.D Pin7;"Present in the declaration 

section of source file 
IRO.C Pinl; 

Input Pin declared as latched: 

ILO node 70; "This line should be 
present prior to the 
equations statement 

EQUATIONS 
ILO.D = Pin2; "Defining inputs to the 

latches 
!LO.LE = Pinl; "Defining Latch control 

to the latched inputs 

1/0 Pin declared as combinatorial input: 

No declaration statements are required as this is the 
default condition of the inputs. 

1/0 Pin used as input and declared as 
registered: 

IRO I/O node 80; "Present in the 
declaration section of 
source file 

Pinl4 Pin 14; 

EQUATIONS 
IRO I/O .D 

IRO I/O .C 

Pinl4; "Present in the 
declaration section 
of source file 

Pinl; 

1/0 Pin used as input and declared as latched: 

ILO I/O node 81; "This line should be 
present prior to 
the equations 
statement 

EQUATIONS 
ILO_I/O .D = Pinl5; "Defining inputs to 

the latches 
ILO_I/O .LE = Pinl; "Defining Latch 

control to the 
latched inputs 

OLMC as a combinatorial: 

"I/O pins definitions 
Pin23 Pin 23; 
Pin23 istype 'com'; 

EQUATIONS 
Pin23 = ILO.Q & IRO.Q; 

"Straight combinatorial feed 
through of signals that have 
been previously latched and 
registered 

OLMC as D-type flip-flop: 

Pin21 Pin 21; 
Pin21 istype 'reg_d'; "Clocked by 

product term. 

EQUATIONS 
Pin21 := IL2.Q & IR2.Q; 

"Pin21 is registering values 
that have been latched 

Pin21.clk = PinlO; "and registered at 
the input pins. 
Default is clocking 
through OCLK pin. 

OLMC as D-type flip-flop with a gated clock: 

Pin22 Pin 22; 
Pin22 istype 'reg_g'; "clocking by OCLK 

.CE control 

EQUATIONS 
Pin22 := ILl.Q & IRl.Q; "Pin22 is 

registering values 
that have been latched 
and registered at the input pins 

Pin22.ce = IL3.Q; "Clock enable control 
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is by a latched 
value at the input 
Pins Clocking of 
Pin22 is through the 
clock pin OCLK 

BLMC as a combinatorial: 

BN7 node 33; 
BN7 istype 'com'; "This definition may 

be omitted as it is 
achieved by default 

EQUATIONS 
BN7= PinlO& ILO.Q & IRO.Q; 

BLMC as D-type flip-flop: 

BN7 node 33; 
BN7 istype 'reg_d'; 

EQUATIONS 
BN7:= PinlO; 
BN7.clk = IRO.Q; "Clock input may come 

from OCLK or from the 
array Default clocking 
is through OCLK pin. 

BLMC as D-type flip-flop with a gated clock: 

BN6 node 32; 
BN6 istype 'reg_g'; "clocking by OCLK 

.CE control 

EQUATIONS 
BN6 := ILl.Q & IRl.Q; 

BN6.ce IL3.Q; 

"Equation is 
clocked by the 
pin OCLK 

"Clock enable is 
by use of a 
latched input 

CUPL Syntax and Logic Construction 

Buried register node definitions: 

Nodes 25 through to 32 are assigned to BLMCs O 
through 7 respectively. 

OLMC used as Buried Logic Macrocells 

Use of the OLMC as buried registers requires the use 
of node numbers and the NODE declaration. The node 
numbers 33 through 42 are assigned to the OLMCs 14 
through 23 respectively. If the OLMC are not to be 
buried then the PIN declaration statement is to be 
used. 

Device Declaration: 

Device g6002; 

Inputs declared as combinatorial: 

Inputs that do not have extensions associated with 
them are configured as combinatorial inputs that go 
straight through to the AND array. 

Example of usage­
Pin declarations: 
Pin 2 = IN2; 
Pin 14 = OUT; 

Use in equations: 
OUT = IN2; 

Use of 1/0 pins as combinatorial inputs­
Pin declarations: 
Pin 15 = OUT2; 

Use in equations: 
OUT = OUT2; 

Inputs Declared as registered: 

The extension .DQ declares pins that are used as 
inputs to be configured as registered. 

Example of usage-
Use of dedicated input pins as registered inputs­
Pin declarations: 
Pin 14 = OUT; 
Pin 2 = IN2; 

Use in equations: 
OUT = IN2.DQ; 

Use of 1/0 pins as registered inputs to combinatorial 
outputs-
Pin declarations: 
Pin 14 OUT; 
Pin 15 = OUT2; 

Use in equations: 
OUT = OUT2.DQ; 
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Inputs Declared as latched: 

The extension .IOL declares pins that are used as 
inputs to be configured as latched. 

Example of usage-
Use of dedicated input pins as latched inputs­
Pin declarations: 
Pin 14 = OUT; 
Pin 2 = IN2; 

Use in equations: 
OUT = IN2.IOL; 

Use of 1/0 pins as latched inputs­
Pin declarations: 
Pin 14 OUT; 
Pin 15 = OUT2; 

Use in equations: 
OUT = OUT2.IOL; 

BLMC & OLMC as a combinatorial: 
For use as a combinatorial output no extension is to be 
used as this is the default state of the outputs. 

Example of OLMC usage­
Pin declarations: 
Pin 2 = IN2; 
Pin 15 = OUT2; 

Use in equations: 
OUT2 = OUT2; 
OUT2 .OE = IN2; 

If an output enable equation is not present the 
compiler causes the output always to be driven .. 

Example of BLMC usage-
Pin declaration and BLMC declaration: 
Pin 2 = IN2; 
NODE BLMCOUTl; 

Use in equations: 
BLMCOUTl = IN2; 

Note that there is no output enable capability in the 
BLMC as there is no direct access to the pins. Outputs 
from the BLMC are brought directly back into the AND 
array. 

BLMC & OLMC as D-type flip-flop: 

Clock for this configuration is obtained from a product 
term rather than the dedicated clock pin. 

Example of OLMC usage­
Pin declarations: 
Pin 2 = IN2; 
Pin 15 = OUT2; 

Use in equations: 
OUT2.CK IN2; 
OUT2.0E = IN2; 
OUT2 .AR = IN2; 
OUT2.D = OUT2 & IN2; 

Example of BLMC usage-
Pin declaration and BLMC declaration: 
Pin 2 = IN2; 
NODE BLMCOUTl; 

Use in equations: 
BLMCOUTl.CK = IN2; 
BLMCOUTl.AR = IN2; 
BLMCOUTl.D = OUT2 & IN2; 

BLMC & OLMC as D-type flip-flop with a gated 
Zclock: 

Clock for this configuration is obtained from the 
dedicated clock pin rather than a product term. The 
clock can be gated off by use of a Clock Enable 
product term. 

Example of OLMC usage-
Pin declarations and BLMC declaration: 
Pin 2 = IN2; 
Pin 15 = OUT2; 

Use in equations: 
OUT2. CE IN2; 
OUT2.0E = IN2; 
OUT2.AR = IN2; 
OUT2.D = OUT2 & IN2; 

Example of BLMC usage­
Pin declarations: 
Pin 2 = IN2; 
NODE BLMCOUTl; 

Use in equations: 
BLMCOUTl.CE = IN2; 
BLMCOUTl.AR = IN2; 
BLMCOUTl.D = OUT2 & IN2; 
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GAL6002: 4-to-1 RS232 
Port Multiplexer 

Introduction 

The GAL6002 is the most versatile 24-pin PLO available 
today. Its FPLA architecture offers buried macrocells, 
D/E registers, programmable clocks and dedicated input 
pins which can be individually configured as latches or 
registers. These features combine to provide the de­
signer with an ideal platform on which to build complex 
state machines and other complex logic functions. 

This application note will provide an example of how a 
GAL6002 might be used in a system. Additionally, it will 
show how software tools are used to exploit some of the 
device's unique features. The circuit to be described is a 
4-to-1 RS-232 serial port multiplexer (Port MUX). The 
concept for the circuit arose from the need to replace a 
mechanical switch used to connect four computers to a 
high speed laser printer. 

The Port MUX application uses every input and output 
pin, as well as all eight State Logic Macrocells. Other than 
a single GAL6002, the only ICs needed are RS-232 line 
driver/receiver chips and a clock source. 

Basic RS-232 Protocol 

To understand the operation of the port MUX, it is 
necessary to have a basic knowledge of RS-232 commu­
nications protocol. 

Though the RS-232 protocol is standardized, its defini­
tion is loose enough to allow liberties to be taken in its 
implementation. When the port MUX was designed, the 
assumption was made that communication can take 
place with only four signals: transmit data, receive data, 
printer ready/busy, and computer ready/busy. In RS-232 
parlance these signals are called TxD, RxD, DTR, and 
DSR, respectively. 

An RS-232 link is digital (bistable) in nature, but the 
voltages used to represent logic ones and zeros are not 
TTL level. Instead, -12VDC represents a logic one and 
+ 12VDC represents a logic zero. Another consideration 
is that the idle or deasserted state of an RS-232 signal is 
a logic one, although data is transmitted in its "true" form. 
A typical single byte transfer can be seen in figure 1. 

1 (-12V) 

0(+12V) 

I I I I I I I I I I I I 
S10 0 0 1 1 0 1 O!P S 
T I A T 

A ASCII "X" R O 
R I P 
T T 

y 

Figure 1. TxD during single byte transfer 

A typical RS-232 data transfer between a computer and 
a printer would proceed as follows: 

1 ) The printer, being powered-up and ready to accept 
data, has its DTR line asserted (logic zero), while its TxD 
line is idle (logic one). The computer, also powered-up 
but not yet sending data, is in a similar state: TxD is idle 
and DSR is asserted. 

2) When the computer is ready to send a byte of data, it 
asserts its TxD line for 1 "bit period." This is called the 
start bit. A "bit period" is dependent on the data transmis­
sion speed (300 baud (bits/sec), 9600 baud, etc.) . After 
the start bit, 7 or 8 bits of data will follow, optionally 
followed by a parity bit, and ending with 1 or 2 stop bits 
(logic one). Data is transmitted least significant bit first. 

Note: Asserted= 0 (+12V) 

"Idle"= 1 (-12V) 

The condition of TxD and DSR after sending a byte of 
data is the same as before sending it. So, from an 
electrical perspective, there is no indication whether or 
not the computer is going to send another byte. If it is 
going to, it simply does so "when it feels like it." 

3) Somewhere in the middle of the transfer, the printer 
runs out of paper, or its print buffer fills up, or for some 
other reason it must suspend communications. When 
this happens, the printer deasserts its DTR line, telling 
the computer to stop sending data. When the printer is 
again ready to accept data, it will reassert DTR. 

As alluded to in #2 above, there is no absolute way to tell 
when the computer is finished sending data. In fact, the 
computer can be said to have "finished" its transmission 
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after sending only the first byte of a multi-byte transmis­
sion. Each subsequent byte transfer can be viewed as an 
entirely new transaction. Extended periods of time may 
even elapse between byte transfers if the computer has 
to access a disk or is interrupted for some reason. 
Remember, RS232 is an asynchronous communications 
protocol. 

Functional Description 

The Port MUX has five ports, numbered 0 to 4. Port 0 is 
connected to the printer, while ports 1 through 4 are 
connected to the computers. The port MUX merely acts 
as an intelligent switch; data flows through it unhindered 
and unaltered. At any given time, there will always be one 
(and only one) computer connected to the printer. 

Four signals per port are switched: TxD, RxD, DTR, and 
DSR. This arrangement is known to work for connecting 
IBM-PC compatible computers to an HP LaserJet. The 
RS-232 specification has no lack of ready/busy signals, 
so others could be substituted for DTR and DSR if 
necessary (CTS and RTS, for example). See figure 2 for 
a block diagram of the port multiplexer. 

Since RS-232 signal levels are not compatible with TTL 
levels, line driver/receiver circuits are needed for trans­
lation. For this project, Maxim MAX235 Driver/Receiver 
chips were used, though others devices will work as well. 
Each MAX235 IC has five drivers and five receivers; two 
MAX235 ICs are needed to build the Port MUX. 

TxD- Port 1 
DSR-

TxD-

DSR-
Port 2 

TxD-

DSR-
Port 3 

TxD-

DSR-
Port 4 

RxD 

DTR 

RxD 

DTR 

RxD 

DTR 

RxD 

DTR 

p 
0 
r TxD 
t DSR 

0 

Select Controller Clock 

p 
0 
r 
t 

0 

•----+----- RxD 

•-------- DTR 

Figure 2. Block diagram of Port MUX 

The multiplexer functions by sequentially scanning the 
four input ports until data appears at one of them. 

Scanning a port involves connecting that port to the 
printer and waiting for data to flow. If no data appears 
within a predetermined time period, the period of the 
system clock (- .25s), the process is repeated at the next 
port. When data does appear at a port, the port MUX 
"locks onto" that port and goes into the transmit mode. At 
the end of the transmission, the port MUX returns to the 
scan mode. 

As mentioned in the discussion of RS-232 protocol, 
detecting the end of a transmission is non-trivial. To 
peripheral devices such as printers, the "end of transmis­
sion" concept is fiction - to them, life is one big data 
transmission. The port MUX, on the other hand, must be 
able to determine when it is permissible to resume 
scanning. It should not return to the scan mode before the 
end of a transmission, and at the same time it must not 
lock onto a port for an inordinately long time. Both 
requirements are met by timing how long the computer's 
TxD line is idle, and returning to the scan mode if TxD is 
idle for longer than a predetermined time period (5 -10 
seconds is reasonable). 

The data routing logic of the port multiplexer is controlled 
by two loosely coupled state machines and a status 
register. The state machines and the status register use 
the State Logic Macrocells (labeled as state bits SO - S7). 
The status register determines the operating mode (scan 
or transmit); the first state machine de.termines the active 
port; and the second state machine is used as a timer. 

The basis for most state machines is the simple binary 
counter, with added logic to allow branching, state skip­
ping, etc. The most efficient way to build a binary counter 
in the GAL6002 is to configure the registers to emulate T­
flip flops. This way, only the conditions that should cause 
the state bits to change state need to be specified. In the 
case of simple up counters, there is only one condition 
when all lower order bits are ones. The equations for a 4-
bit up counter are as follows: 

BO.D /BO.Q; 
BO.E l· I 

Bl.D /Bl.Q; 
Bl.E BO; 

B2.D /B2.Q; 
B2.E Bl*BO; 

B3.D /B3.Q; 
B3.E B2*Bl*BO; 

As you can see, counters of any size can be built using 
only two product terms per bit. 
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In the following discussions POTx and PODT are TxD 
and DTR respectively. 

Status Register 

Recall that the beginning of a data transfer is signaled by 
POTx becoming active for one bit period. By using the 
start bit event to asynchronously set a status register, set 
= transmit, the operating mode of the port MUX is 
determined. Once set, the status bit will remain set until 
a time-out occurs. 

The status register is implemented using state bit SO, 
configured to emulate a T-flip flop with a programmable 
clock. With such an arrangement, meeting the specified 
state transition conditions doesn't just allow a transition 
at the next clock, but actually causes the transition. 

There are two situations that must cause the status 
register to toggle: if it is clear, clear= scan, and data is 
flowing, or if it is set and a timeout has occurred. The 
equations for the status register are: 

SO.D 
SO.CK 

/SO.Q; 
/SO.Q*/POTx + 
sO.Q*POTx*PODT*57.Q 
*56.Q*55.Q*54.Q*53.Q; 

The same function could have been implemented by 
"building" a latch from combinational equations, but the 
approach taken here is more efficient in terms of product 
term usage and is less prone to functional hazards. 

Primary State Machine 

The primary state machine directly determines the active 
port. It is simply a 2-bit counter with a hold function. The 
conditions necessary for the counter to increment are 
that the status register be clear and that PODT be active. 

The primary state machine uses state bits 51 and 52 in 
the D/E configuration to emulate T-flip flops. The equa­
tions for 51 and 52 are: 

Sl.D /Sl.Q; 
Sl.E PODT*/SO.Q; 

52.D /52.Q; 
52.E PODT*/SO.Q*Sl.Q; 

Timer 

The second state machine, a 5-bit counter/timer, will only 
count while the status register is set, POTx is idle, and 
PODT is active. The counter synchronously resets to 
zero if these conditions are not met. Thus, if PODT is 

active and POTx is idle on 31 consecutive OCLK edges, 
the ti mer will reach its maximum value, causing the status 
register to be cleared and the primary state machine to 
continue counting. 

The 5-bit timer uses state bits 54 - 57 in the D/E 
configuration, again emulating T-flip flops. The equations 
for the timer are: 

53.D /53.Q*SO.Q*POTx*PODT; 
53.E 1; 

54.D /54.Q*SO.Q*POTx*PODT; 
54.E 53.Q 

+ /SO.Q; 

55.D = /55.Q*SO.Q*POTx*PODT; 
55.E = S3.Q*S4.Q 

+ /SO.Q; 

56.D = /S6.Q*SO.Q*POTx*PODT; 
56.E = S3.Q*S4.Q*S5.Q 

+ /SO.Q; 

57.D = /57.Q*SO.Q*POTx*PODT; 
57.E = S3.Q*S4.Q*S5.Q*S6.Q 

+ /SO.Q; 

Time-out during a byte transfer, though statistically pos­
sible, is unlikely. If it should occur, however, it is not 
harmful. Because a time-out simply clears the status 
register and scanning does not resume until the next 
OCLK edge, the driving computer still has one OCLK 
period to finish the byte transfer (plenty of time!), during 
which time a logic zero on POTx returns the status 
register to the transmit mode. Thus, it is virtually impos­
sible for a byte of data to be lost. 

If the port MUX should time-out and resume scanning 
between byte transfers, but before the end of a transmis­
sion, and another computer is waiting to use the printer, 
then that computer will be serviced before the first com­
puter is again granted use of the printer. This would 
cause the second computer's data to be inserted into the 
middle of the first computers transmission. This situation, 
though undesirable, is unavoidable. The good news is 
that the probability of this happening is very low. 

Conclusion 

The Port MUX provides a "real life" example of how the 
flexibility of the GAL6002 can simplify a complex design. 
Equally important, this example shows how various soft­
ware tools are used to take advantage of the device's 
features. Unfortunately, the Port MUX is not a speed 
critical application; in fact, the GAL6002's 15ns tpo is 
overkill. 
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Though this example is complex, it still does not push the 
GAL6002 to its limits. The state machine and data routing 
equations use only 33 product terms, leaving over 48% of 
the AND array free for expansion. The GAL6002's FPLA 
architecture allowed 5 product terms to be merged. If this 
design were implemented using a standard 24-pin PLO, 
it would take at least two devices to accomplish this task. 
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VME Bus Arbitration 
Using a GAL22V10 

Introduction 

The GAL22V1 O provides a quick solution to bus arbitra­
tion and control needs. In this application note, we 
discuss how a VME bus arbitration circuit can be easily 
implemented within a GAL22V10, while leaving logic 
available on the GAL for other functions. 

In any bus-oriented system, there may be multiple de­
vices that need exclusive access to the bus. You need to 
provide some form of arbitration, ensuring that only one 
device has control of the bus at any point in time. This 
arbitration function is an ideal candidate for a GAL-based 
solution. For this example, we have chosen the VME bus 
standard and describe an approach for a GAL22V10 
VME bus arbiter, including the ABEL source code for 
programming. 

Design Example 

A VME-based system is a good example of a bus that 
supports multiple bus masters, by requiring bus arbitra­
tion logic on the bus to resolve possible conflicting 
requests. The VME bus has a bus request line that a 
device asserts when it wants to gain control of the bus. 
The arbiter prioritizes these bus requests and asserts a 
bus grantto the device with the highest priority. Since you 
may wish to give some devices higher priority to bus 
access than others, the VME bus provides four bus 
request lines, with BR3 designated as the highest priority 
request, and BRO as the lowest priority request. And 
since you may have more than four devices on the bus, 
or you may want to have more than one device sharing 
the same priority level, the bus standard must also 
support multiple masters with the same priority level. The 
VME bus allows more than one device on the bus to share 
a bus request line by "daisy-chaining" the bus grant signal 
- the device physically closest to the bus arbitrator 
"sees" the bus grant first. If this device didn't generate the 
bus request, then the bus grant is allowed to proceed to 
the next device on the bus. Figure 1 shows a simplified 
block diagram of a VME system, showing the handshak­
ing between the arbiter and the other devices on the bus. 

Master 1 -· Im-I -~ 
BR(3o0) 
BG(3o0 
BBSY 
BCLR 

Figure 1. The Bus Arbitration Process 

The bus arbitration process is defined in the following 
steps (the level of a bus master indicates which bus 
request line it used to gain access to the bus) : 

1) A bus request signal (BR3:0) is received by the arbiter. 

2) If the bus is not busy, the arbiter returns a correspond­
ing bus grant (BG3:0) 

3) If the bus is busy, the arbiter asserts a bus clear 
request (BCLR) as long as one of the following conditions 
is true: 

• The current bus master is level 2, 1, or 0, and the 
active bus request line is 3 or 2. 

• The current bus master is level 0, and any other 
device is requesting the bus 

This protocol allows a higher priority device to take 
control of the bus in an orderly manner - the arbiter 
asserts BCLR, the current bus master releases BBSY, 
and then the higher priority device gains control of the 
bus. Also note that if the current bus master is 3, then the 
arbiter gives control to another level 3 requester only 
when BBSY goes inactive - in other words, a level 3 
master will be allowed uninterrupted access to the bus. 

ABEL Source 

The following is an ABEL source file that implements a 
VME bus arbiter in a GAL22V10. Note that the internal 
signals, Master1 and Master2, are used to hold the level 
of the bus request currently being served. 
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Example 1: Module Arbiter 

Title 
Bus Arbiter with Priority Handling for GAL22Vl0 
Lattice Semiconductor' 

Declarations 
arbiter device 'p22vl0'; 

"Inputs 
CLK 
!BBUSY 
!BRO,!BR1,!BR2,!BR3 
!RESET 
!OE 

"Outputs 

pin 
pin 
pin 
pin 
pin 

l· , 
2; 
3,4,5,6; 
11; 
13; 

pin 23 istype 'invert,reg_d'; !BCLR 
!BGINO,!BGINl!BGIN2!BGIN3 
MASTERl,MASTERO 

pin 22,21,20,19istype 'invert,reg_d'; 
pin 15,14 istype 'buffer,reg_d'; 

MASTER 

Equations 
BGIN3 

BGIN3.C 
BGIN3.AR 
BGIN3.0E 

BGIN2 

BGIN2 .C 
BGIN2 .AR 
BGIN2.0E 

BGINl 

BGINl.C 
BGINl .AR 
BGINl.OE 
BGINO 

BGINO.C 
BGINO.AR 
BGINO.OE 

MASTER! 

MASTERO 

MASTER.AR 
MASTER.OE 
MASTER.C 

BCLR 

BCLR.AR 

[MASTER!, MASTERO]; C, X, Z, L, H = .C., .X., .z., O, l; 

:= IBBUSY & BR3 
# IBBUSY & BGIN3; 

CLK; 
= RESET; 
= OE; 

:= !BBUSY & IBR3 & BR2 
# !BBUSY & BGIN2; 

CLK; 
= RESET; 
= OE; 

:= !BBUSY & !BR3 & !BR2 & BRl 
# IBBUSY & BGINl; 
= CLK; 
= RESET; 
= OE; 
:= !BBUSY & !BR3 & IBR2 & IBRl & BRO 
# !BBUSY & BGINO; 

CLK; 
= RESET; 
= OE; 

:= BBUSY & BGIN3 "Master MSB 
# BBUSY & BGIN2 
# BBUSY & MASTER!; 
:= BBUSY & BGIN3 "Master LSB 
# BBUSY & BGINl 
# BBUSY & MASTERO; 

RESET; 
OE; 
CLK; 

:= BBUSY & BR3 & (MASTER<= 2) 
# BBUSY & BR2 & (MASTER<= 2) 
# BBUSY & BRl & (MASTER <= 1) 
# BBUSY & BRO & (MASTER == 0) 
# BBUSY & BCLR; 
= RESET; 
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BCLR.OE 
BCLR.C 

OE; 
CLK; 

Test vectors 
((CLK,!RESET,!BBUSY,!BR3,!BR2,!BR1,!BRO,!OE]-> 
[!BCLR,!BGIN3,!BGIN2,!BGIN1,!BGINO,MASTER]) 

I I l M 
R B B B B B A 
E B B G G G G S 

u c s u B B B B l c I I I I T 
• L E S R R R R 0 L N N N N E 
• L T y 3 2 1 0 E R 3 2 1 0 R 

[X,X,X,X,X,X,X,l]->[Z,Z,Z,Z,Z,Z];"tristate 
[C,l,1,1,1,1,0,0]->[H,H,H,H,L,O];"BRO request 
[C,l,1,1,1,1,0,0]->[H,H,H,H,L,O]; 
[C,l,1,1,1,1,0,0]->[H,H,H,H,L,O]; 
[C,l,0,1,1,l,l,O]->[H,H,H,H,H,O]; 
[C,1,0,1,1,1,l,O]->[H,H,H,H,H,O]; 
[C,1,0,1,1,1,0,0]->[L,H,H,H,H,O];"test bus clear line>= O 
[C,1,1,1,1,0,0,0]->[H,H,H,L,H,O];"BRl request higher priority 
[C,l,0,1,1,1,l,O]->[H,H,H,H,H,l]; 
[C,l,0,1,1,1,0,0J->[H,H,H,H,H,l];"test bus clear line>= 1 
[C,l,0,1,1,0,l,0]->[L,H,H,H,H,l]; 

[C,l,1,1,0,0,0,0]->[H,H,L,H,H,0]; 
[C,l,0,1,1,1,l,O]->[H,H,H,H,H,2]; 
[C,l,0,1,1,1,0,0]->[H,H,H,H,H,2]; 
[C,1,0,1,1,0,l,O]->[H,H,H,H,H,2]; 
[C,l,0,1,0,1,l,O]->[L,H,H,H,H,2]; 

"BR2 request higher priority 

END 

[C,1,1,0,1,1,l,O]->[H,L,H,H,H,O]; 
[C,1,0,1,1,l,l,O]->[H,H,H,H,H,3]; 
[C,l,0,1,1,1,0,0]->[H,H,H,H,H,3]; 
[C,l,0,1,1,0,l,O]->[H,H,H,H,H,3]; 
[C,l,O,l,0,1,l,O]->[H,H,H,H,H,3]; 
[C,l,0,0,1,1,l,O]->[H,H,H,H,H,3]; 
[X,O,X,X,X,X,X,O]->[H,H,H,H,H,O]; 

7-23 

•test bus clear line >= 2 

"BR3 request higher priority 

•test bus clear line 
•requests ignored 

•reset 
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Bus Arbitration Circuit 

Introduction 

Lattice's GAL 16VP8 and GAL20VP8 devices combine 
the programmable logic flexibility of the industry standard 
GAL 16V8 and GAL20V8 devices with the high output 
drive capability of the 74240 series of TTL devices. The 
GAL 16VP8 and GAL20VP8 devices have been designed 
to implement bus and memory interface logic as a one 
chip solution, as opposed to the historical two chip 
solution. 

The addition of 64mA output drive capability, and the 
option to individually configure the outputs either as 
standard totem pole outputs or open-drain outputs, has 
taken these 16/20VP8 devices beyond the realm of 
common glue logic integration. These capabilities allow 
the devices to drive heavy capacitive loads in applica­
tions such as bus and memory address and control signal 
drivers. 

The following bus arbitration design example takes full 
advantage of the bus driving capability and the open­
drain option of the GAL 16VP8 to implement the bus 
arbitration circuit. 

Design Example 

A bus arbitration circuit is used to determine which board 
connected to the system bus gets control of the bus for 
data transfers. One of the most common methods of 
arbitrating the bus is to assign a priority level to each 
board and to award bus ownership to the board with the 
highest priority request. This normally requires a combi­
nation of a priority encoder and decoder logic to determine 
the priority. The GAL 16VP8 highlighted in this design 
example uses wired-OR logic on the bus, implemented 
with open-drain outputs, to determine the relative priority, 
eliminating the use of dedicated priority encoder/decoder 
logic. This scheme is similar to the one used in IBM's 
Micro Channel bus standard. 

Using this scheme, the board with the lowest numeric 
value ID has the highest priority-0000 beingthe highest 
priority and 1111 being the lowest priority. Priority is 
resolved between competing boards by making the arbi­
tration outputs (ARB3-ARBO) and bus request signals 
(BREQ) open-drain with external pull-up resistors. 

A typical bus arbitration cycle begins by detection of an 
active BREQ signal driven by all requesting boards. (If 
BREQ is inactive, it means that none of the boards on the 
bus has requested the bus.) The requesting boards drive 
the ARB3-ARBO signals according to the predetermined 
priority that is assigned by the 103-IDO inputs. The bit-by­
bit resolution of the arbitration begins with a comparison 
at ARB3. When comparing the ARB3 bit, a logic low on 
ARB3 will prevail over a logic high on ARB3 since the bus 
has a wired-OR structure. 

The comparison continues with ARB2, which compares 
ARB3 from the previous stage as well as the prevailing 
ARB2. The requesting boards that do not match the 
priority driven on ARB3 will no longer drive ARB2-ARBO. 
For example, if ARB3=0 on the bus but a board has 
103=1, the board will no longer drive the low order bits 
(ARB2-ARBO). This process continues until ARBO is 
reached. After resolving ARBO, the lowest numerical 
value (highest priority) will be driven on ARB3-ARBO. A 
local bus grant signal is generated from the result of the 
arbitration if the value on ARB3-ARBO matches that on 
the 103-IDO inputs to a given board. The board winning 
the bus keeps BREQ active until its bus access is 
complete. 

An example CUPL source file which implements the 
arbitration logic is shown on the following pages. Figure 
1 illustrates a typical bus interface block diagram. As a 
footnote to the open-drain configuration, use the FUSES 
statement and the fuse numbers provided in the datasheet 
to implement open-drain outputs in ABEL. 
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GAL 16VPB/20VPB: Bus Arbitration Circuit 

Summary 

The unique ability for a logic device to drive 64mA and the 
option to have open-drain outputs have made the 
GAL 16VP8 and GAL20VP8 ideal for bus and memory 
interface logic. The GAL 16/20VP8 devices allow the 
design engineer a one chip solution for complex memory 
or bus applications that require 64mA lol. The one chip 
solution reduces power and cost, while increasing speed 
and reliability. 

IDO 
101 
ID2 
103 

IDO 
101 
ID2 
103 

BOARD 1 
GAL16VP8 

ARBO 
ARB1 
ARB2 
ARB3 

BREQ 

• 
• 
• 
• 

BOARD n 
GAL 16VP8 

ARBO 
ARB1 
ARB2 
ARB3 

BREQ 

Vee 

Figure 1. Typical System Interface. 
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GAL 16VPB/20VPB: Bus Arbitration Circuit 

Listing 1. Example of a CUPL Source File. 

Name VP8ARB; 

Partno UOO; 

Device Gl6VP8MA; 

Revision 1. 0; 

Date 09/09/99; 

Designer John Doe; 

Company Lattice Semiconductor Corp.; 

Location Hillsboro, OR; 

Assembly 16VP8 bus arbitration circuit; 

/**************************************************************/ 

/* This bus arbitration circuit is based on the priority */ 

/* assigned to the board. ID3 .. 0 is configured to the board */ 

/* priority code. This example uses ID 3 .. 1=0111 for the */ 

/* priority code. ARB3 .. 0 is driven to the same priority */ 

/* code. */ 

/**************************************************************/ 

/** Dedicated Inputs definition**/ 

Pin 1 ID3; /* priority ID must be driven to .... */ 

Pin 2 ID2; /* the appropriate priority levels . .. *I 

Pin 3 IDl; /* by the local board. */ 

Pin 4 IDO; 

/** Note Pin 5 is Vee on this package **/ 

Pin 6 LARB; /* Local arbitrate signal. Enables local board arbitration */ 

/** I/O pin definitions **/ 

Pin 17 

Pin 12 

BREQ; /* active low open-drain bus request */ 

ARB3; /* open-drain arbitration bits */ 
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GAL 16VPB/20VPB: Bus Arbitration Circuit 

Pin 13 

Pin 14 

Pin 16 

ARB2; 

ARBl; 

ARBO; 

/** Note Pin 15 is GND on this package **/ 

/** Output Equations **/ 

!BREQ = !ARB3 & ARB2 & ARBl & ARBO; 

BREQ.TEC = 'b'O; /* .TEC=O specifies the open-drain output •• TEC=l or 

the default is the totem pole output. */ 

BREQ.OE LARB; /* Enables local board arbitration */ 

!ARB3 !ARB3 & !BREQ 

# ID3 & BREQ; /* arbitration bit 3 */ 

ARB3.TEC 

ARB3.0E 

'b' O; 

LARB; /* Enables local board arbitration */ 

ARB2 !ARB3 & ARB2 & !BREQ 

# ID2 & BREQ; /* arbitration bit 2 */ 

ARB2.TEC 

ARB2.0E 

'b' 0; 

LARB; /* Enables local board arbitration */ 

ARBl !ARB3 & ARB2 & ARBl & !BREQ 

# IDl & BREQ; 

ARBl.TEC 'b'O; 

ARBl.OE LARB; 

/* arbitration bit 1 */ 

/* Enables local board arbitration */ 

ARBO !ARB3 & ARB2 & ARBl & ARBO & !BREQ 

# IDO & BREQ; 

ARBO.TEC 'b'O; 

ARBO.OE LARB; 

/* arbitration bit 0 */ 

/* Enables local board arbitration */ 
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GAL20XV10: Data Block 
Transfer Address Detector 

Introduction 

The Exclusive-OR (XOR) gate can efficiently implement 
arithmetic functions such as counters, adders and de­
coders, using fewer product terms than the standard 
sum-of-products PLD architecture (AND, fixed OR ar­
ray). This is demonstrated by logic equation example 1. 

To take full advantage of product term usage in a high 
speed system design, a high speed device with a built-in 
XOR function is needed. The Lattice GAL20XV1 O fills the 
need for such a device. The GAL20XV10 achieves a 
10ns Tpd while consuming only 90mA Ice (Max.). The 
closest competitor's device offers only a Tpd of 30ns at 
180mA Ice. In addition, the generic architecture of the 
GAL20XV10 gives system designers the ability to config­
ure outputs to any combination of registers, combinatorial, 
XOR and AND/OR structures. 

Design Example 

An address counter that uses a comparator to keep track 
of the block data transfer is a typical application which 
illustrates the advantages of the GAL20XV10's XOR 
architecture. If the starting and ending addresses are 
given, the address counter will generate and increment 

Example 1. XOR Logic Equation 

the transfer address. The comparator will then compare 
the counter bits with the ending address. When the 
counter value equals the ending address, the address 
comparator will issue a transfer complete signal. The 
following CUPL example source file (example 2) shows 
how this function can be implemented using CUPL com­
piler syntax. Notice that the syntax demonstrates the 
usage of .OE and .OEMUX to control the AND/OR 
product term configuration and XOR configuration, re­
spectively. 

Conclusion 

This design example illustrates the efficient usage of the 
XOR function by implementing the address counter with 
11 product terms instead of the 14 product terms required 
with a standard programmable AND, fixed OR configura­
tion. The bit-wise comparator, implemented with the 
XOR function, also makes the design clear and under­
standable, as illustrated by the logic equations. With this 
efficient, easy to understand design, the system can run 
at up to 1 OOMHz with 1 Ons tpd. 

$ - XOR function syntax 
# - OR function syntax 

& - AND function syntax 
! - INVERT function syntax 

XOR Function 
A $ B /* 2 PT used 

(A & B) $ (C & D) /* 2 PT used 

Equivalent AND/OR Function 
(A & !B) #(!A & B) /* 2 PT used 
(A & B & !C) # (A & B & !D) /* 4 PT used 
#(!A & C & D) # (!B & C & D) 
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GAL20XV10: Data Block Transfer Address Detector 

Example2. CUPL Source File 

Name APPXVlO; 
Part no 00; 
Date 09/09/99; 
Revision 00; 
Designer Jane Doe; 
Company Lattice; 
Assembly None; 
Location None; 
Device g20xvl0; 

/******************************************************/ 
/* This CUPL example uses the GAL20XV10 to build the */ 
/* 4-bit up counter with load function and a 4-bit */ 
/* comparator. This counter implementation takes */ 
/* advantage of the built-in XOR function of the */ 
/* GAL20XV10. It also shows the XOR and AND/OR */ 
/* configuration in CUPL syntax */ 
/******************************************************/ 

/** Input definition **/ 

PIN 1 SYSCLK; 
PIN 2 SAO; /* STARTING ADDRESS BITS */ 
PIN 3 SAl; 
PIN 4 SA2; 
PIN 5 SA3; 
PIN 6 EAO; /* ENDING ADDRESS BITS */ 
PIN 7 EAl; 
PIN 8 EA2; 
PIN 9 EA3; 
PIN 10 STARTLD; /* STARTING ADDRESS LOAD */ 
PIN 11 OE_ COMP; 
PIN 13 OUT_EN; 

/** Output Definition **/ 

PIN 23 !ACO; /* ADDRESS COUNTER BITS */ 
PIN 22 !ACl; 
PIN 21 !AC2; 
PIN 20 !AC3; 
PIN 19 !CMPO; /* ADDRESS COMPARE BITS */ 
PIN 18 !CMPl; 
PIN 17 !CMP2; 
PIN 16 !CMP3; 
PIN 15 EQUAL; /* EQUALITY COMPARE */ 

/** Equations **/ 

ACO.D !STARTLD & ACO 
$ STARTLD & SAO; 

/** ACO TOGGLE WITH CLOCK **/ 
/** LOAD SAO **/ 

ACO.OEMUX OUT_EN; 
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ACl .D !STARTLD & ACO /** ACl CNT UP CONDITION 
$ !STARTLD & ACl /** TOGGLE ACl **/ 
# STARTLD & SAl; /** LOAD SAl **/ 

ACl .OEMUX OUT_EN; 

AC2.D !STARTLD & ACO & ACl /** AC2 CNT UP CONDITION 
$ !STARTLD & AC2 /** TOGGLE AC2 **/ 
# STARTLD & SA2; /** LOAD SA2 **/ 

AC2.0EMUX OUT_EN; 

AC3.D !STARTLD & ACO & ACl & AC2 /** AC3 CNT UP CONDITION 
$ !STARTLD & AC3 /** TOGGLE AC3 **/ 
# STARTLD & SA3; /** LOAD SA3 **/ 

AC3.0EMUX OUT_EN; 

CMPO = ACO $ EAO; /** COMPARE ADDR BITO **/ 
CMPO.OEMUX OUT_EN; 

CMPl = ACl $ EAl; /** COMPARE ADDR BITl **/ 
CMPl .OEMUX OUT_EN; 

CMP2 = AC2 $ EA2; /** COMPARE ADDR BIT2 **/ 
CMP2.0EMUX OUT_EN; 

CMP3 = AC3 $ EA3; /** COMPARE ADDR BIT3 **/ 
CMP3.0EMUX OUT_EN; 

EQUAL = !CMPO & !CMPl & !CMP2 & !CMP3; 
EQUAL.OE = OE_COMP; 

/** MAGNITUDE COMPARE **/ 

7-31 

**/ 

**/ 

**/ 

1994 Handbook 

I 



Notes 

7-32 1994 Handbook 



~~~LatticeTM 
•••••• •••••• •••••• 
Introduction 

When designing with standard PLDs such as the GAL20V8 
and GAL22V10, system design engineers are some­
times faced with a situation where a few extra product 
terms or extra macrocells are required to implement the 
design. These situations usually do not warrant adding 
a second standard PLO. The ideal solution is to find a 
way to add these extra product terms and/or outputs 
while still keeping the design in one device. The design 
example given in this applications brief illustrates one 
example of how the extra outputs of the GAL26CV12 can 
solve the common problem of needing additional out­
puts. The design will show a programmable frequency 
divider that uses a 10-bit counter as a base and can 
therefore divide the incoming frequency by up to 1024. 

Design Example 

The design requirements for the programmable logic 
device are 10 macrocells for the internal counter, one 
macrocell for the programmable output frequency, 4 
inputs for the frequency selection and one input clock. 

Master 
Clock 

GAL26CV12: 
Programmable 

Frequency Divider 
Figure 1 below shows the simple block diagram of the 
programmable frequency divider. 

This frequency divider implementation, using D type 
registers, requires more than 8 product terms for the two 
most significant counter bits on the 10-bit counter. The 
programmable frequency output also requires more than 
8 products terms. Therefore, even two GAL20V8 de­
vices (or other standard PAL devices) would not work for 
this design, since they only have a maximum of 8 product 
terms per output. Since a total of 11 macrocells is 
required to implement the counter and the programmable 
frequency output, even a 22V10 device would not work. 

A single GAL26CV12 device satisfies both the product 
term requirements and the ouput macrocell requirements 
for the example design. The equations and output pin 
assignments required to implement the 10-bit program­
mable frequency divider are provided in example 1. 
Notice that the outputs that require more than 8 product 
terms are assigned to the inner-most pins of the device, 
since the inner-most pins have the highest number of 
product terms available. 

Divided 
Frequency 

L+.I Frequency 

Frequency 
Select 

~ 
/ 

Divide 
Logic 

10 
"7 ..._ ____ ' ' 

' 

Buried 
Counter Bits 

Figure 1. Block Diagram of Programmable Frequency Divider 
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Summary neers are frustrated by the limitations on the number of 
available product terms, output macrocells, or input pins 

The GAL26CV12 has a total of 12 output logic macrocells on standard PLD devices, using the GAL26CV12 is a 
and a product term distribution of 8 terms on the outer- valuable design alternative. Since the GAL26CV12 can 
most pins to 12 on the innermost pins. It comes in a often save the cost of adding a second PLD, the design 
28-pin DIP and PLCC package, with center Vee and is simplified while also cutting cost and board space 
Ground pins on the DIP package. When design engi- requirements. 

Example 1. Equations and Output Pin Assignments for a 10-Bit Programmable Frequency Divider 

QO.D = ( !QO); "PIN 27 

Ql.D = (QO & !Ql 
# !QO & Ql); "PIN 26 

Q2.D = ( QO & Ql & !Q2 
# !Ql & Q2 
# !QO & Q2); "PIN 25 

Q3.D = (QO & Ql & Q2 & !Q3 
# !Q2 & Q3 
# !Ql & Q3 
# !QO & Q3); "PIN 23 

Q4.D = (QO & Ql & Q2 & Q3 & !Q4 
# !Q3 & Q4 
# !Q2 & Q4 
# !Ql & Q4 
# !QO & Q4); "PIN 15 

Q5.D = (QO & Ql & Q2 & Q3 & Q4 & !Q5 
# !Q4 & Q5 
# !Q3 & Q5 
# !Q2 & Q5 
# !Ql & Q5 
# !QO & Q5); "PIN 16 

Q6.D = (QO & Ql & Q2 & Q3 & Q4 & Q5 & !Q6 
# !Q5 & Q6 
# !Q4 & Q6 
# !Q3 & Q6 
# !Q2 & Q6 
# !Ql & Q6 
# !QO & Q6); "PIN 17 

Q7.D = (QO & Ql & Q2 & Q3 & Q4 & Q5 & Q6 
& !Q7 

# !Q6 & Q7 
# !Q5 & Q7 
# !Q4 & Q7 
# !Q3 & Q7 
# !Q2 & Q7 
# !Ql & Q7 
# !QO & Q7); "PIN 18 

Q8.D = (QO & Ql & Q2 & Q3 & Q4 & Q5 & Q6 & Q7 
& !Q8 

# !Q7 & Q8 
# !Q6 & Q8 
# !Q5 & Q8 
# !Q4 & Q8 
# !Q3 & Q8 
# !Q2 & Q8 
# !Ql & Q8 
# !QO & Q8); "PIN 19 

Q9.D = (QO & Ql & Q2 & Q3 & Q4 & Q5 & Q6 & Q7 
& Q8 & !Q9 

# !Q8 & Q9 
# !Q7 & Q9 
# !Q6 & Q9 
# !Q5 & Q9 
# !Q4 & Q9 
# !Q3 & Q9 
# !Q2 & Q9 
# !Ql & Q9 
# !QO & Q9); "PIN 20 

FDIV = (SELO & !SELl & !SEL2 & SEL3 & Q9 
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# !SELO & !SELl & !SEL2 & SEL3 & Q8 
# SELO & SELl & SEL2 & !SEL3 & Q7 
# !SELO & SELl & SEL2 & !SEL3 & Q6 
# SELO & !SELl & SEL2 & !SEL3 & Q5 
# !SELO & ISELl & SEL2 & !SEL3 & Q4 
# SELO & SELl & !SEL2 & !SEL3 & Q3 
# !SELO & SELl & !SEL2 & !SEL3 & Q2 
# SELO & !SELl & !SEL2 & !SEL3 & Ql 
# !SELO & !SELl & !SEL2 & !SEL3 & QO); 
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Lattice, the pioneer of non-volatile in-system program­
mable (ISP™) logic has expanded the application of ISP 
to include programmable system interconnect. The 
ispGDS (Generic Digital Switch) family combines the in­
system programmability, high performance and low power 
of Lattice's GAL programmable logic technology with a 
switch matrix architecture, resulting in an innovative 
programmable signal router. The ispGDS device is a 
configurable switch matrix which provides the ability to 
quickly implement and change p.c. board connections 
without changing mechanical switches or other system 
hardware. ISP allows the connections to be repro­
grammed without removal from the p.c. board via a 
simple 5V, 4-wire serial interface. This capability allows 
the system designer to define hardware which can be 
reconfigured in-system to meet a variety of applications. 
The ispGDS also conserves board real estate, providing 
up to 22 I/Os in about a quarter square inch of board 
space. 
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Introduction to 
the ispGDS Family 

With today's demand for user-friendly systems, there is 
an increasing need for hardware which is easily 
reconfigured under software control without manual 
intervention. The Lattice ispGDS family is an ideal 
solution for end-system feature reconfiguration and signal 
routing applications. The fast 7.5ns propagation delay 
through the devices supports high-performance signal 
routing applications. Easier system upgrades, user feature 
selection and system manufacturing are the results. 

The ispGDS device also provides higher quality and 
reliability than other switch solutions due to the nature of 
E2CMOS technology. E2CMOS technology supports 
100% testability which guarantees 100% in-system pro­
grammability and functionality. 

There are three members of the ispGDS family: the 
ispGDS22, ispGDS18, and ispGDS14. Each of the 
devices operates identically with the only difference 
being the number of 1/0 cells available. 

Programming 
Circuitry 

SCLK 
SDI 
MODE 

.__ ____ _,--- SDO 

Figure 1. 
Diagram 

ispGDS22 Functional Block 

Each 1/0 macrocell can be configured as an 
input, an inverting or non-inverting output, or 
a fixed TTL high or low output. Any 1/0 pin 
can be driven by any other 1/0 pin in the 
opposite bank. A single input can also drive 
one or more outputs in the opposite bank, 
allowing a signal (such as a clock) to be 
distributed to multiple designations on the 
board under software control. 

8-1 1994 Handbook 

I 



Introduction to ispGDS 

ispGDS Applications 

With ispGDS devices, designs can be reconfigured with­
out mechanical devices or user intervention. Provision 
for easier system upgrades and feature selection can 

COM 
Port 

System 
Logic 

~ 
0 
E 
Q) 

::?: 

Port Interface 
and 1/0 Bus 
Arbitration 

2:1 

ispGDS 
Device 

MUX 

ispGDS 
Device 

PC Bus Interface 

ISP Programming 
Interface Software 

System µP 
Executes 
ispGDS 

S/W 

Clock Generator 

µP 

µP 

now be included in the system's original design. A few 
examples of actual ispGDS applications demonstrate the 
possibilities. 

8-2 

PC add-on cards can be configured for 
plug-and-play applications with an 
ispGDS device. 

The ispGDS device supports reconfiguration 
of COM port characteristics and interrupt 
levels via software updates through the PC 
bus interface. The ispGDS device provides 
the flexibility so one generic PC card can be 
reconfigured by software for multiple applica­
tions. 

One board design can support two 
different microprocessor speeds with the 
ispGDS device. 

Based on the motherboard processor con­
figuration, the system software directs the 
ispGDS to set the clock speed and the 
hardware for the correct configuration. The 
ispGDS eliminates the need to manually 
reconfigure the hardware to support manu­
facturing motherboards with different 
processors. 

Create a crosspoint switch with the 
ispGDS device. 

A crosspoint switch enables the MSB and 
LSB bytes on a bus to be swapped. The 
ispG DS acts as a crosspoint switch and swaps 
the MSB and LSB bytes of data for the 
different microprocessors. 
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2 DIP Switches + 14 Resistors 
14 pins which can be pulled high or low manually 

Vee Vee 

ispGDS14 
14 pins which can be set high or low by SOFTWARE 

SCSI 
Port 

SCSI Port 
Controller 

········~ l/OCell 
(subset of functionality) 

ispGDS 
Device 

PC Bus Interface 

ISP Programming 
Interface Software 
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Introduction to ispGDS 

Replace DIP switches with a software 
controlled switch alternative. 

The ispGDS can be configured as a program­
mable replacementfor standard DIP switches, 
providing space savings, in-system 
reconfigurability, higher reliability as well as 
ease of use. The programmable nature of the 
ispGDS eliminates the need to manually select 
DIP switch settings. 

SCSI port interface configurations can be 
set using the ispGDS. 

Software can reconfigure the ispGDS via the 
PC bus which in turn controls the SCSI port 
and interrupt level selection. Hardware 
changes become transparent to the user as 
the ispGDS device is reconfigured by soft­
ware while in-system, eliminating the need 
for manual intervention. 
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Introduction to ispGDS 

In-System Programming 

The ispGDS devices can be programmed in-system 
using 5 volt only signals through a simple 4-wire 
programming interface using TTL level signals. 
Programming and erasure of the entire device can be 
done in less than one second. 

In addition to third party programmers, the ispGDS de­
vice can be programmed from your automatic test 
equipment (ATE) or even from a PC on your manufactur­
ing line. For more flexibility, you can have your product's 
embedded microprocessor configure the ispGDS de­
vices though one of its 1/0 ports, making a field upgrade 
a snap. 

Lattice provides free compiler support and 
ispDOWNLOAD software to support the software side of 
these programming options. The ispDOWNLOAD rou­
tines are written in ANSI-standard C language which can 
be integrated directly into your system. 

Designing with the ispGDS device provides you with the 
flexibility to reconfigure your design while in-system. It 
revolutionizes the way systems are designed and main­
tained. 

Figure 2. In-System Programming Using ispGDS Download Routines 

Parallel Port 
Connection 

End-Product P.C. Board 

Figure 3. Configuring an ispGDS Device from a Remote System 
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Introduction 

A common problem among board designs is that they 
require a means to configure hardware options, such as 
driving signals to a fixed high or low state, or controlling 
the routing of signals between two or more points. Al­
though a DIP switch can solve these problems, it has the 
drawback that someone must physically set the switches, 
introducing the possibility of user error, mechanical dam­
age, and the need for customer support to resolve these 
problems. The ispGDS family is a cost effective solution 
to these problems, since they can duplicate the function­
ality of a DIP switch without requiring manual switch 
setting. You also gain additional functionality through in­
system programmability and nonvolatile E2CMOS storage 
of the switch configuration. By using the four-pin TTL 
interface for in-system programmability, you can config­
ure the device under software control, allowing a user to 
change the hardware setup without physically removing 
a card or manipulating a DIP switch. By simplifying the 
task the user faces in configuring the hardware, you 
improve system reliability and ease of use while reducing 
your customer support requirements. 

Significant Gains in Reliability and Cost 

You can significantly improve !>YStem reliability using the 
ispGDS family. Since the ispGDS family can provide the 
same functionality with fewer pins than a DIP switch, and 
since ispGDS devices don't require pull-up resistors, 

Using ispGDS 
Devices 

your design will require fewer solder joints and external 
parts, improving mechanical reliability and lowering as­
sembly cost. The ispGDS family also provides additional 
capability for system test. Since you can set each 1/0 pin 
of an ispGDS device to either Vee or Ground (GND), your 
system software can control the ispGDS device to pro­
vide test signals to other parts of the circuit, reducing test 
complexity and time. 

More Efficient Utilization of Board Space 

In many applications, a DIP switch is configured with one 
side of the switch tied to GND, and the other side 
connected to pull-up resistors, as shown in the diagram 
below. The ispGDS family eliminates the need for these 
connections to GND and pullups, freeing package pins 
that would have been tied to GND to do something useful. 
For instance, an ispGDS14 has 14 pins available that can 
be internally tied to either Vee or GND. This is accom­
plished in a 20 pin package. The equivalent DIP switch 
solution would require two 7-position DIP switches (which 
means two 14 pin packages) and pull-up resistors for 
each of the 14 switch outputs (see figure 1 ). 

Digital Cross-Point Switch 

Simple DIP switch replacement is not the only use for 
ispGDS devices. Since ispGDS devices are configured 
as two banks of 1/0 pins, with any pin in one bank able to 
make a connection to any pin in the other bank, an 

Figure 1. ispGDS Devices Offer a Software Controlled Alternative to DIP Switches. 

2 DIP Switches + 14 Resistors ispGDS14 
14 pins which can be pulled high or low manually 14 pins which can be set high or low by SOFTWARE 

Vee Vee 

VOCell 
(subset of functionality) 
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Using ispGDS Devices 

ispGDS device can also function as a digital cross-point 
switch. This cross-point switch capability provides the 
designer with the ability to change the routing and distri­
bution of signals under software control. For example, 
the ispGDS could select one of several interrupt lines 
from a bus and route to a single net on the board. Another 
example would be swapping MSB and LSB bytes from a 
databus. 

A Variety of Different Matrix Sizes 

Lattice offers the ispGDS in three different switch matrix 
sizes: 

Device Name Matrix Size 1/0 Pins 

ispGDS22 11 x 11 22 

ispGDS18 9x9 18 

ispGDS14 7x7 14 

As noted above, the ispGDS22 provides an 11 x 11 
cross-point matrix, the ispGDS18 provides a 9 x 9 matrix, 
and the ispG OS 14 provides a 7 x 7 matrix. The size of the 
matrix indicates the size of the banks - for example, the 
ispGDS22 has two banks that are 11 pins wide. In this 
case, you can route any one of the 11 pins on one bank 
to any one, several or all of the 11 pins on the other bank. 

Free ispGDS Programming Software 

To assist you in designing software to program ispGDS 
devices, Lattice provides a library of ANSI-standard C 
language routines that implement the ispGDS program­
ming algorithms. These routines allow you to program 
and read the devices simply by making a function call to 
the appropriate library function. Sample applications are 
provided which use the PC parallel port for programming, 
allowing you to program the ispGDS through a PC 
parallel port without modifying or compiling any code. 

If you want to program ispGDS devices through some 
other custom interface, you can modify the ispGDS 
source code. The hardware dependent portion of the 
code is isolated in a few functions, allowing you to easily 
and quickly change this interface to accommodate your 
custom hardware needs. The diagram below shows a top 
level block diagram of a typical system using an ispGDS. 

Summary 

ispGDS devices offer DIP switch functionality and in­
system programmability at a price that is competitive with 
traditional DIP switch approaches. You can also use an 
ispGDS device to emulate a digital cross-point switch, 
where any input on one bank can be driven to one or more 
outputs on any other bank. Through in-system program­
mability ispGDS devices can also provide software 
controlled test capability, by driving signals either high or 
low, or rerouting signals for test. Software controlled 
board-configuration is now a reality. 

Figure 2. Typical System Using an ispGDS device and ispGDS Download Software 

4-Pin Programming 
Interface 

4 
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Introduction 

To simplify the development of ispGDS devices, Lattice 
offers an ispGDS assembler named "GASM" which pro­
cesses the input ASCII files to generate the JEDEC 
compatible fusemap files required for the ispGDS de­
vices. Free ispGDS assembler software is available from 
the Lattice BBS at 503-693-0215 under GDSPKG.ZIP 
file. This software is also available on diskette by calling 
the Lattice Hotline at 1-800-327-8425 (FASTGAL). For 
design engineers who are familiar with standard third 
party compiler software packages, ABEL from Data 1/0 
and CUPL from Logical Devices also support all ispGDS 
devices. 

Using the ispGDS Compiler 

ispGDS Compiler 
Support 

pin 28 is an input that is routed to three outputs - pin 1 , 
pin 2 and pin 3. Further, each output's polarity can be 
individually defined. The example shows pin 3 as an 
active low polarity whereas pin 1 and pin 2 are defined to 
be active high polarity. An example source file is ap­
pended at the end of this document. 

pin 1=pin28 
pin 2 =pin 28 

!pin 3 = pin 28 

Assembling a File 
To use the assembler, create an ASCII ispGDS source 
file, then invoke the assembler from the DOS command 
line. For example: 

gasm <test.gds> 

The compiler will accept an ASCII text file containing the 
ispGDS programming instructions, and will create JE- where test.gds is the name of the ispGDS source file. 
DEC and .DOC files. once a JEDEC file has been GASMwillcreateaJEDECfilewiththesamebasename, 
created, the ispGDS device can be programmed by and a .JED extension, like "test.jed," and a doc file with 
either downloading the JEDEC file to a programmer, or a .DOC extension, like "test.doc." 

by using the ispGDS Download utility to program the 
device using the parallel port of an IBM compatible PC. 

Compiler Syntax 
The basic compiler syntax supports inserting comments, 
title, device type, pin assignments and input/output as­
signments. The ispGDS compiler source file comment 
lines are denoted with quote marks at the beginning of the 
comment lines. The title is defined with the key word "title 
= ". Any text following the "title =" key word that is within 
single quotes is defined to be the title of the design. 
Similarly, the device type is defined by the key word 
"device=" followed by one of the three valid device types 
-- ispgds22, ispgds18, ispgds14. The compiler syntax 
also allows the user to assign pin names by typing in a 1 O 
character pin name followed by at least a single space, 
the "pin" key word and the pin number. This pin assign­
ment is optional since the compiler syntax allows the user 
to use the "pin" key word and the pin number directly in 
the input/output assignments. 

The output pins are assigned on the left side of the 
equation and the input pins are assigned on the right side 
of the equation. To assign an output pin to either high or 
low, simply assign "H" or "L" respectively on the right side 
of the equation. If you need to assign an input pin to 
multiple output pins, use one line for each assignment, as 
shown in the following example. In the example below, 

Programming the ispGDS 

You can either program the ispGDS using a JEDEC file 
output from the ispGDS assembler, or by using the 
GDS_PROG routines included in the GDSPKG software 
package. To program the ispGDS using a programmer, 
follow these steps: 

1. Create an ASCII ispGDS source file 
2. Assemble the ispGDS file using the ispGDS assem­

bler (GASM ). 
3. Download the JEDEC file created by the assembler 

to the programmer and program the device. The 
JEDEC file will have the same name as your ispGDS 
source file, but will have a .JED extension 
(for example, "test.jed"). 

Alternatively, you may want to program the ispGDS 
devices either through the parallel port of an IBM compat­
ible PC, or through some custom hardware configuration. 
The routines included in the ispGDS compiler software 
package are configured to use the PC parallel port for 
programming. If you want to use a custom hardware 
configuration, read through the comments in GDS_PROG 
for information on which routines need to be modified. If 
you are programming using the PC, you will need an 
ispDOWNLOAD Cable and ISP programming interface 
signals on the circuit board which will plug into the printer 
port on your PC. 

8-7 1994 Handbook 

• 



ispGDS Compiler Support 

To program using the parallel port of the PC, follow these 
steps: 

1. Create an ASCII ispGDS source file 

2. Assemble the ispGDS file using the ispGDS assem­
bler (GASM) 

3. Convert the JEDEC file to ispSTREAM format by 
running JEDTOISP. See the documentation on 
JEDTOISP for further information. 

4. Run ispGDS _PROG to program the device using 
the parallel port. 

ispGDS Source Format 
The following text is an example of a ispGDS source file. 

"This is a comment (line begins with quote mark) 
title = 'DIP SWITCH REPLACEMENT CONFIGURATION' 

" the ispgds device type (ispgds22, ispgds18, ispgdsl4) 
device = ispgds22 

" pin names are defined as follows 

pin_name pin 28 

" pin 1 is an output connected to pin 28 
pin 1 = pin_name 
pin 2 pin 27 

" pin 3 is another output connected to pin 28 

pin 3 pin 28 

" pin 5 is always high 
pin 5 h 

"pin 6 is always low 
pin 6 = 1 
pin 8 = pin 22 

"! defines the inverted output for pin 9 
!pin 9 pin 20 

pin 10 pin 19 
pin 12 pin 17 
pin 13 pin 16 
pin 14 pin 15 

Notes 
If you get an error regarding "pin O", you may have duplicated an output pin assignment (by assigning different input signals to 
the same output pin). Refer to the line number in the assembler error message to locate the source of the problem. 
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Introduction 

As PC systems migrate from the desktop to the laptop, 
add-on hardware configuration becomes even more chal­
lenging. The concept of Plug-and-Play has been 
advanced, making hardware configuration a software 
controlled function. Plug-and-Play employs configura­
tion software to automatically configure add-on hardware 
so it will coexist with the rest of the system. A Plug-and­
Play compliant system eliminates the need for user 
manipulation of add-on hardware switches or jumpers 
prior to card installation. Lattice's in-system program­
mable (ISP) technology allows Plug-and-Play systems to 
be implemented with ease. 

The traditional method to upgrade a PC with add-on 
cards is subject to human error and usually becomes a 
frustrating process of trial and error. Before installation, 
the PC must be powered off and partially disassembled. 
Then, each add-on card's unique address and interrupt 
levels must be set manually set by mechanical DIP 
switches or jumpers. Finally, the card is installed and the 
PC is powered up. If the first attempt is unsuccessful, the 
user must remove the card, reread the manual, reset the 
jumper or DIP switch, plug the card back in, and hope that 
the jumpers are set correctly. If not, the process is 
repeated. Mechanical components are also historically 
unreliable, further complicating the procedure. When the 
user is unsuccessful, frustration results along with lost 
time and effort. 

ispGDS Solution 

The solution to this problem is provided by Lattice's 
family of in-system prgrammable Generic Digital Switches 
(ispGDS), which easily replace mechanical DIP switches 
and jumpers. At 14, 18, and 22 outputs, even the smallest 
ispGDS device contains enough I/O's to replace up to two 
seven-bit wide DIP switches or seven jumpers. Each 
ispGDS output can either be set to a logic "1" or "O" to 
emulate a DIP switch. In addition, the ispGDS I/O's are 
equally divided into two banks: bank A and bank B. Any 
input in bank A can be connected to any or all outputs in 
bank Band vice-versa, effectively emulating mechanical 
jumpers. Jumper emulation allows devices to act as a 
cross switch matrix, providing 7x7, 9x9 and 11x11 matrix 
solutions. Furthermore, as semiconductors have no 
moving parts, they are more reliable than their mechani­
cal counterparts. 

Lattice's Solution 
for Plug-and-Play 

System Implementation of Plug-and-Play 

Although ispGDS devices can be configured either by in­
system programming (ISP) or by using industry standard 
PLO programmers, in-system programming better satis­
fies the Plug-and-Play requirements of the add-on card. 
By programming the ispGDS devices "in-system," add­
on cards can be inserted into the PC without having to 
manually set any DIP switches or jumpers; the configu­
ration software for the add-on card can set the card's 
address and interrupt configurations. The ability to pro­
gram the card using 5V TTL level signals, combined with 
the ispGDS C language routines from Lattice, provides 
the user with an easy approach to implement Plug-and­
Play compliant add-on cards. 

There are two system design problems to consider when 
programming ispGDS devices in-system. First, the 
ispGDS device must have its own address space so that 
it can be addressed and programmed anywhere on the 
PC bus. Unfortunately, most PC addresses are already 
dedicated for specific purposes per the IBM PC specifi­
cation. However, some addresses are specified as read 
only, which means they are uncommitted for write func­
tions. For example, the address for the game port 
(200-207) is specified as read only. By using an external 
GAL device to decode the ispGDS address to 200-207 
(write only), the ispGDS can be programmed across the 
PC bus. 

The second problem occurs when two or more PC bus 
add-on cards have ispGDS devices residing at the same 
write address. If the add-on card configuration software 
tries to program an ispGDS device on one of these cards, 
the ispGDS devices on the other cards are also ad­
dressed and programmed. This problem is remedied by 
using the logic in the interface GAL device and the ISP 
feature of the ispGDS device. Take, for example, a card 
with three daisy-chained ispGDS devices on it (see figure 
1 ). By assigning three of the outputs of the first serial 
ispGDS device (as shown by GDSSEL0 .. 2 in figure 1) the 
card's ispGDS write address can be moved within the 
address space. ispGDS devices come from the factory 
with their outputs set to the high impedance state. By 
using external pull-up resistors on the three ispGDS 
outputs dedicated for the ispGDS write address space, 
the three Least Significant Bit (LSB) outputs default to 
111. Hence, straight from the factory, the ispGDS ad­
dress space can be made to default to address 207. 
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Lattice Solution for Plug-and-Play 

When the add-on card is inserted into the PC for the first 
time, the configuration software finds an unused write 
address, other than the default 207, and programs the 
ispGDS chain address to this address. This is accom­
plished by programming the ispGDS devices with a 
JEDEC fuse map, in-system, via the PC bus. This sets 
the dedicated ispGDS address to the desired write ad­
dress value. Once the ispGDS address has been set, the 
address of the card, interrupt levels, and other compo­
nents can be set in-system by downloading another 
JEDEC fuse map. 

The block diagram (Figure 1) and the ABEL example file 
that implements the GAL decoder logic are included with 
this application note. The ispGDS C source code is 
provided by Lattice. For a detailed explanation of this 

Figure 1. ispGDS Interface Block Diagram 

GOS SEL0 .. 2 

DECODE ADDRESS 200H 

source code, please consult the ispCODE Reference 
Manual. Using the ABEL example file, it is easy to 
implement ISP on the ispGDS. Simply modify the ispGDS 
C source code to control data bit O across the PC bus; in 
the GAL decoder logic provided, data bit o acts like an 
ISP enable signal when written to the ispGDS write 
address. 

Conclusion 

The DIP switch and jumper approach is obsolete for Plug­
and-Play add-on cards. Using minimal decoder logic, the 
ispGDS C source code provided by Lattice, and the in­
system programming capability, ispGDS devices can 
effectively provide a real Plug-and-Play solution for those 
who exploit them. 

GDS_MSB_ADDR 

GOS SEL0 .. 2 GOS SEL L TH0 .. 3 lspGDS f""S=DO~-~SD~I lspGDS µ>18'------"SD~I ispGDS SDO 
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SDI 
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SCLK 

OE (l/O Read Addreaa 
Decode From A3 •. A9 and PA0 .. 2) 
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Decoder Logic ABEL Source File 

module gdsdcode 

title 'gds isp controller/decoder'; 

gdsdcode device 'p20v8' ; 

iow pin 1; 

a2,al,a0 pin 2,3,4; 
lsb_addr=[a2,al,a0]; 

gds_msb_addr pin 23; 
"a9,a8,a7,a6,a5,a4,a3 pin 5,6,7,8,9,10,11 

gds_sel2,gds_sell,gds_sel0 pin 5,6,7; 
gds_sel=[gds_sel2,gds_sell,gds_sel0]; 

gds_sel_ltch2,gds_sel_ltchl,gds_sel_ltch0 pin22,21,20; 
gds_sel_ltch=[gds_sel_ltch2,gds_sel_ltchl,gds_sel_ltch0]; 

gds_addr pin 19; 

isp_en pin 18 istype 'reg_d,invert'; 

dO pin 8; 

mode in pin 9; 
mode- pin 17 istype 'reg_d,invert'; 

sdi in 
sdi 

sclk in 
sclk-

pin 10; 
pin 16 istype 'reg_d,invert'; 

pin 11; 
pin 15 istype 'reg_d,invert'; 

"gds_msb_addr=a9 & !a8 & !a7 & !a6 & !a6 & !a5 & !a4 & !a3 
gds_lsb_addr=!((gds_sel_ltch2 $ a2) # (gds_sel_ltchl $al)# (gds_sel_ltchO $ aO)); 

equations 

gds_sel_ltch= gds sel & lisp en 
# gds=sel_ltch &-isp_en; 

gds_addr=(gds_lsb_addr & gds_msb_addr); 

isp en.d=isp en & !gds_addr 
- 1 dO & gds_addr; 

isp_en.clk=iow; 

mode.ct= mode & !gds addr 
# (isp_en & mode_in) & gds_addr; 

mode.clk=iow; 

sclk.d= sclk & !gds addr 
# sclk_In & gds_addr; 

sclk.clk=iow; 

sdi.d= sdi & !gds addr 
# sdi=in & gds addr; 

sdi.clk=iow; 

end; 
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User Electronic Signature 

Introduction 

In the course of system development and production, the 
proliferation of PLO architectures and patterns can be 
significant. To further complicate the record-keeping 
process, design changes often occur, especially in the 
early stages of product development. The task of main­
taining "which pattern goes into what device for which 
socket" becomes exceedingly difficult. What's more, once 
a manufacturing flow has been set, it becomes important 
to "label" each PLO with pertinent manufacturing infor­
mation, which can be quite beneficial in the event of a 
customer problem or return - traceability aided by a 
manufacturing history can help to quickly reconstruct 
details of a defective product and thereby effect a speedy 
solution. 

The Lattice GAL, ispGAL, ispGDS and ispLSI families 
can ease the problems associated with document control 
and traceability, thanks to a feature called User Elec­
tronic Signature (UES). This brief describes the concept 
behind the UES, how it is used, and the advantages 
associated with manufacturing flow control, documenta­
tion, and traceability. 

The UES is basically a user's "notepad" provided in 
electrically erasable (E2) cells on each GAL, ispGAL, 
ispGDS and ispLSI device. Essentially an extra row that's 
appended to the array and allocated for data storage, the 
physical size of the UES varies by device type. The table 
below indicates the various sizes of the UES. 

Device 

GAL 16V8/20V8 
GAL 16VP8/20VP8 
GAL 16V8Z/20V8Z 
GAL 16V8ZD/20V8ZD 
GAL18V10 
GAL22V10 
GAL26CV12 
GAL20XV10 
GAL20RA10 
GAL6001 /6002 
ispGAL22V10 
ispGDS 
ispLSI 1016 
ispLSI 1024 
ispLSI 1032 
ispLSI 1048 

UESSize 

64 bits 
64 bits 
64 bits 
64 bits 
64 bits 
64 bits 
64 bits 
40 bits 
64 bits 
72 bits 
64 bits 
32 bits 
64 bits 
104 bits 
144 bits 
224 bits 

9-1 

Lattice incorporated the UES to store such design and 
manufacturing data as the manufacturer's ID, program­
ming date, programmer make, pattern code, checksum, 
PCB location, revision number, and product flow. The 
intent was to assist users with the complex chore of 
record maintenance and productflow control. In practice, 
the UES can be used for any of a number of ID functions. 

Within the various number of bits available for UES data 
storage, users may find it helpful to define specific fields 
to make better use of information storage. A field may use 
only one bit (or all bits), and may contain a variety of 
topics. Some fields should probably be reserved for 
future expansion. The possibilities for fields are endless, 
and completely up to the user. As an example for the 
GAL 16V8, the UES could be divided into five fields: 
manufacturer's ID (2 Bytes or 16 Bits), device program 
data code (2 Bytes), programmer ID code (1 Byte), 
pattern ID code (2 Bytes), and a reserved section (1 
Byte). 

Even with the device's security feature enabled, the UES 
can still be read. If a pattern code were stored in the UES, 
the user could always identify which pattern had been 
used in a given device. In this way, a device pattern could 
be confidentially retrieved. As a second safety feature, 
when a device is erased and repatterned, the UES row is 
automatically erased. This prevents any situation in which 
an old UES might be associated with a new pattern (no 
information is better than wrong information). It is the 
user's responsibility to update the UES when reprogram­
ming. It should be noted that UES information will be 
included in the checksum reading. Therefore when the 
UES is modified the checksum will also change. 

The UES may be accessed (read or write) through one of 
three methods. First, most third party programmers sup­
port the UES option through the programmer's user 
interface, so programming or verifying the UES is as 
simple as programming or verifying any other array. 
Second, the UES may be installed within the JEDEC file 
by selecting the proper fuse locations in the fuse map. 
Please consult the latest Lattice Data Book for the fuse 
locations of the UES. Third, the UES can be written or 
read using Lattice's ispCODE software with routines 
provided in the ispCODE library. Further information on 
using ispCODE software to program the UES can be 
found in the latest Lattice Data Book. 

Though provided to assist the designers and manufactur­
ers who utilize Lattice products, making use of the UES 
is not essential to enjoying the many benefits of our 
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devices. For those willing to invest in it, however, the 
reduction of "hidden costs" associated with PLDs can be 
significant. The following outlines some of the opportuni­
ties presented; the reader is referred to the brief "Hidden 
Costs in PLO Usage" in this handbook to ascribe the 
value of each benefit. 

Eliminating Labels 

By automatically storing the appropriate identification 
information into device UES locations while the program­
ming hardware is patterning the device, the need for a 
costly additional handling step to apply messy gummed 
labels or ink is eliminated. What's more, throughput and 
quality of the patterned devices are greatly increased. 

Document Control 

The job of document control becomes more manageable 
when using the device UES, since a pattern code in the 
UES can specify each pattern and its application. This 
proves an absolute boon in Military programs, where 
accurate documentation is essential. If a change occurs, 
it is easily handled with a new pattern code. In fact, with 
a pattern code in each device, a readout can actually be 
conducted during board assembly. Code verification 
would ensure the use of properly patterned devices and 
serve as a quality-monitor step. Moreover, validation is 
simplified when checking against a lot or board-traveler, 
since master devices are not required. 

Software Revisions 

With the UES, a software ID code can be stored and 
referenced in Document Control to a current pattern 
version. When a revision occurs, a new pattern code is 
simultaneously stored in the UES. Pattern codes can be 
monitored to verify that incorrect versions of software are 
not inadvertently being used. Since Lattice devices are 
reprogrammable, any material flagged with an improper 
pattern code can simply be sent back and reprogrammed 
to the current pattern revision. Also, when security is 
enabled, a LIES-resident pattern ID code is the only 
certain means of documenting which pattern resides 
within a device. 

Manufacturing Information 

As described earlier, manufacturing information stored in 
the UES can help track down problems, should product 
be serviced in the field or returned. A field technician 
could easily read checksum and pattern revision informa­
tion to facilitate rapid debug assuming these fields were 
stored in the UES. Additionally, if each board-assembly 
location were coded into the devices used at that assem­
bly site, customer board returns might be linked to a 
common source. 

Manufacturing Flow 

With the UES, devices can all be preprogrammed at one 
location and given a destination code. Upon shipment 
and receipt, sample readouts of destination codes could 
be performed to ensure that the proper devices were 
received. 

As systems become more complex, production and docu­
ment control costs can become dominant. UES is one of 
the many valuable ease-of-use features offered in the 
Lattice GAL, ispGAL, ispGDS and ispLSI families that 
can tame such costs. 
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Driving CMOS Inputs with 
GAL Devices 

Introduction 

While Lattice GAL® devices do not have a true CMOS 
output structure, in most cases they are able to reliably 
drive CMOS inputs. GAL devices are designed with TTL­
level input and output specifications. There are two 
reasons for this. First, because Lattice GAL devices are 
as fast, or faster than the fastest equivalent bipolar 
devices, they are often used as bipolar replacements. 
While a design may initially be implemented with bipolar 
devices, often the designer has the opportunity to replace 
the bipolar device with the lower-power and better tested 
GAL device. In these cases, the GAL device must drop 
into the same socket with identical functionality. Second, 
switching noise is greatly reduced by using TTL-level 
outputs. Switching an output from Vee to Ground will 
generate considerably more noise than switching from a 
TTL high to a TTL low. 

NMOS Outputs 

GAL devices use a NMOS output structure, which does 
not allow the output signal to go to the rail but still gives 
plenty of margin to TTL specs. The NMOS output struc­
ture also completely eliminates any possibility of latch-up. 

---[)or-0 PIN 

Feedback~---/-- .J 

PIN 

Feedback 
(To Input Buffer) 

Typ. Vref = 3.2V 

Typical Output 

Under typical conditions of room temperature and nomi­
nal Vee, GAL devices will exhibit a VoH of about 4.2 volts. 
This value will change somewhat with temperature, Vee, 
and normal process variations. Process and temperature 
are the most important factors, in that they affect the 
amount of voltage drop between Vee and the output pin. 
Therefore the most valuable way to specify a VOH value 
is to specify the difference between Vee and VOH. In this 
manner, a designer with greater control over Vee can 
know exactly what the true worst-case VOH value will be. 
The following tables show the VoH values that can be 
expected under different conditions. 

One factor that helps to make it all work is that even 
though the output voltage or the GAL device will drop with 
Vee, the input transition point of the CMOS devices being 
driven will also drop. 

Using pull-up resistors on the outputs of the GAL device 
will also help to assure proper CMOS output levels. A 10 
Kohm pull-up resistor will pull a GAL device's output to 
the rail. Of course the time required to do so depends on 
the total capacitance on the output pin, which includes 
the 1/0 capacitance of the GAL device output, the input 
capacitance of the devices being driven, and the parasitic 
capacitances on the board. 

As for the GAL 16/20V8Z and GAL 16/20V8ZD zero­
power devices, the DC specification guarantee the CMOS 
output specification at IOH of -1 OOµA at VoH of Vcc-1 V. 
These devices will be able to drive CMOS inputs without 
the pull-up resistors on the output of the GAL devices. 

Commercial and Industrial Devices 

Specification Condition Min. Value 

VoH loH = -3.2 mA 2.4 v 

Military Devices 

r Specification Condition Min. Value 

[voH loH = -2.0 mA 2.4 v 
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Introduction 

The dictionary definition of metastability is "a situation 
that is characterized by a slight margin of stability." 
When applied to bi-stable (digital) logic, the term refers 
to an undesirable, marginally stable output state be­
tween V 1L max and V1H min. 

Metastability can occur in bi-stable storage elements 
(registers, latches, memories, etc.) when setup and/or 
hold times are violated. Since setup and hold times vary 
with temperature and operating voltage, among other 
factors, the times referred to here are not the min/max 
numbers printed in data sheets, but rather the actual 
times for the given set of operating conditions. Typical 
applications where such times are likely to be violated 
include bus and memory arbiters, interfaces, synchro­
nizers, and other state machines employing 
asynchronous inputs or asynchronous clocks. 

Metastability manifests itself in a number of different 
ways. Common responses are (shown as they might be 
captured on a digital oscilloscope in Figure 1 ): runt 
pulse (1 a), decreased output slew rate (1 b), output 
oscillation (1 c), and increased clock-to-outputtime (1 d). 
By definition, the phenomenon of metastability is statis­
tical in nature. Not only is entry into the metastable state 
uncertain, but the time spent there can also vary. 

Because PLDs are commonplace in today's designs, a 
thorough understanding of their metastable behavior is 
crucial. In some applications, output anomalies shorter 
than one clock cycle may be acceptable, but in applica­
tions where the register output is used as a control 
signal (clock, bus grant, chip select, etc.) for other 
circuitry, faults such as runt pulses and oscillation 
cannot be tolerated. 

This report will not study the causes or characteristics of 
metastability in great detail; excellent material has al­
ready been prepared on this subject [1-5]. Rather, this 
report will introduce a mathematical model for the 
metastable phenomenon, discuss potential test meth­
odologies, present and compare test results from various 
bipolar and CMOS PLDs, and discuss how to interpret 
the data. This report will close with suggestions on how 
to design metastable tolerant systems. 

Derivation of Constants 

The basic premise of all metastability models is that a 
device's output is more likely to have settled to a vaHd 
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state in time(t) than in time(t-n). In fact, the failure 
probability distribution follows an exponential curve. 
Figure 2 shows a typical failure frequency plot. 

It is accepted [1] that metastable failures can be accu­
rately modeled by the equation: 

log Failure = log MAX-b(~ - &>) (1) 

In this equation, MAX represents the maximum failure 
rate for a particular environment, ~ is the time delayed 
before sampling the OUT (Device Under Test) output, 
and&> is the time at which the number of failures starts 
to decrease. On a failure frequency plot (such as the 
one in Figure 2), &> represents the knee of the curve. 
The constant b is the rate at which the frequency of 
failures decreases after the knee is reached. 

Recall that: 

log X =a In (X), where a= log (e) 

Substituting this into (1 ): 

a• In Failure= a• In MAX - b(~ - &>) (2) 

MAX is related to the clock frequency (fCLOCK) and 
data frequency (fDATA). That is, 

MAX= (k1 • fCLOCK • fDATA) (3) 

Substituting (3) into (2) and applying some algebra: 

a• In Failure= a• In (k1 • fCLOCK • fDATA) - b(~ - &>) 

In Failure - In (k1 • fCLOCK • fDATA) = -b/a(~ - &>) 

Setting k2 = b/a and rearranging the equation yields: 

Failure= (k1 • fCLOCK • fDATA)e·k2(t>-Llo) (4) 

When used with equation (4), the constants k1, k2, and 
&>, completely describe a particular device's meta­
stable characteristics; they indicate how quickly a device 
can resolve the metastable condition. Devices which 
transition out of the metastable region quickly are char­
acterized by a small &> and a large k2. 

The constant k1 is peculiar to the test apparatus (it can 
be thought of as a "scaling factor"). The maximum 
metastable failure rate (MAX) is limited by fCLOCK; a 
failure cannot occur if the device isn't clocked. Likewise, 
it is true that a metastable failure cannot occur unless 
data has changed. So, if fDATA < fCLOCK, then MAX 
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= fDATA. This was the case in the test fixture Lattice 
used (fCLOCK=10MHZ, fDATA=2.5MHz). Substituting 
MAX= fDATA back into equation (3) yields: k1 = 1/ 
fCLOCK, so k1 = 1 OOns for our tests. 

Test Fixture 

The goal of testing a particular device's metastable 
characteristics is to generate real numbers for the 
constants k2 and !!JJ. To do this, the device must first be 
forced into the metastable state. This is done by inten­
tionally violating setup and/or hold times. Once 
metastable, the output can be observed on an oscillo­
scope or used to increment an event counter. 

,,.,, ... ~ . ..... ...... ~ 

clock Teo 
Figure 1 a. Runt Pulse 

I/ 

clock Teo 
Figure 1 c. Output Oscillation 

u 
Q) 

~ 106 
~ MAX----··------····-----------· 
i5 10 6 
~ 

~ 104 

"' 

Traditional Approach 

One approach to characterizing a device's metastable 
behavior employs a test fixture similar to that shown in 
Figure 3a. In such a fixture, data to the device includes 
a "jitter band" so that the device sees changing data as 
it is clocked. The OUT output is fed to a window 
comparator to determine when it is in the metastable 
region (between V1L max and V1H min). The comparator 
output can be sampled periodically and used to incre­
ment an event counter. 

This method of testing, though it directly yields MTBF 
numbers, has some drawbacks. The first is that it does 
not distinguish between the different types of meta­
stable behavior (runt pulse, oscillation, slow rise/fall 
time, delayed transition), and it may have difficulty 

Figure 1 b. Decreased Slew Rate 

I/ output 

""" 
-.:·.·. 

clock 

Figure 1d. Increased Teo 

..::l.o 

1 0 20 30 40 50 60 70 60 

..::l. time (ns) 

Figure 2. Typical Failure Frequency Plot 
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detecting every type. Also, the registers used in the 
detector circuit itself may become metastable, which 
would adversely affect the results. 

A New Approach 

The test method used to gather data for this report used 
the circuit shown in Figure 3b. The tester employed an 
"infinite precision" variable delay circuit to control clock 
placement with respect to data. This arrangement al­
lowed exact worst case placement of the clock, so as to 
induce metastability with nearly every clock pulse. 

Using a digital oscilloscope (Tektronix 11403A) in point 
accumulate mode, metastable failures were recorded 
over a lengthy period of time. A hardcopy was then 
made and the constants empirically obtained (details 
below). 

The oscilloscope approach, being visual in nature, 
enables the designer to make educated decisions re-

VARIABLE DELAY 

VIL 

Figure 3a. Traditional Metastability Test Circuit 

0 M 

Metastability Report 

garding maximum clock and data rates, as well as the 
suitability of using the output to drive other circuitry. The 
five minute sample period used in our tests contained 
approximately 750 million failures. Much longer sample 
periods were evaluated, but they provided no percep­
tible gain in usable information. 

A slight disadvantage of this approach is that extracting 
k2 and oo values from the hardcopies is not straightfor­
ward. Because each point on the hardcopy can represent 
any number of actual samples (between one and 1.5 
million), one cannot simply count the points at time(t) for 
the MTBF at that time (although, in the case of the 
scattered points, the probability is low that a single 
isolated point represents more than one sample). 

To generate values for k2 and oo, it was necessary to 
refer to previous metastability studies [1 ]. By studying 
the output plots of devices with known constants, cer­
tain relationships were established. For example, it was 
determined that oo represents the time from the leading 

+V 

TO 
COUNTER 

u1-~~~~~~~~~~~-, 

7 x 

E o M 
L U 1------1 _.. __ J""',....... 
A 7 X 
y 

Figure 3b. Lattice Mestability Test Circuit 
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edge of the output until the "dot density'' starts to 
decrease measurably. It should be noted that t1cJ in 
previous studies included device propagation delays, 
whereas in our test it does not. 

The time from t1cJ until the dot density equals zero was 
defined to be the "time to metastable release" or simply 
time(r). The relationship between k2 and time(r) is given 
below in (5), and shown graphically in Figure 4. Recall 
that MAX=2.5x106 and a=log(e). 

k2 = log(MAX) I (time(r) •a)= 14.73/time(r) (5) 

Interpreting the Results 

In addition to examining E2CMOS GAL devices, this 
study also tested several bipolar PAL devices as well as 
other CMOS PLDs. To insure that the results of this 
study would be relevant, all necessary precautions 
were observed: the devices were of recent vintage and 
were acquired blindly through distributors; multiple 
samples of each device were tested and the results 
combined; all devices had either fixed 16R8 architec­
tures or were configured to emulate the 16R8 
architecture; the devices were programmed from the 
same JEDEC fuse map file (the source equations and 
the JEDEC fuse map file are presented in Listing 1 ). 

Plots 1 th rough 8 on the following pages are some of the 
oscilloscope plots generated for this study. The top 
waveform in each plot is the clock signal, the middle 
trace is the metastable data output and the bottom trace 
is the histogram of the accumulated samples between 
1 V and 2V of the output signal. The horizontal scale is 

12.5 
I 

10 

k2in 
75 

1/ns"2 

.5 

2ns per division, so the exact clock to output time of the 
metastable output condition can be read directly. The 
vertical scale is 2V per division for the top trace, and 1 V 
per division for the middle trace. 

The middle waveform in each plot is the metastable 
device output which is the only signal captured in point 
accumulate mode. In every case, the output signal plot 
shows two stable levels after the transition. This is a 
direct result of the "indecision" caused by metastability; 
on some cycles the output settled to a high level, while 
on others it settled to a low level. 

Plot 4 shows the response of a bipolar PAL 16R8-7. 
Notice the very well defined runt pulse (this correlates 
with previous data gathered on similar devices by the 
manufacturer [1]). The absence of a secondary trace 
along ground indicates that the output always starts to 
transition to a high level, even when it finally settles to 
a low level. This characteristic makes the device unsuit­
able for use in control path applications (when 
metastability is possible). All of the bipolar parts exam­
ined showed similar results. 

Plot 1, 2 and 5 are from GAL 16V8C-5, ispLSI 1016-80, 
GAL 16VBB-7, GAL22V10B-10 and GAL60028-15, re­
spectively. Aside from the fact that setup time violations 
may cause tco to increase by a small (but random) 
amount, the outputs are very clean and well behaved. 
The fact that there are no runt pulses or other anomalies 
is extremely significant, as the GAL60028 not only 
allows asynchronous clocking, but encourages that 
activity. Although GAL6002B is a much slower device 
as compared to GAL 16V8 and GAL22V10, the similar 
metastable characteristics of the GAL6002B to the 

"l 2.5 +--+--+"""l:r-:--lf--+-+--+--+-+--1-t-+--+--t--i 
~ tr---+-t-r. 

0-+--+---+-t--+--+--+--+---+---lt--t-+--+--+---+--t 

Figure 4. K2 Constant time (r) 
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much faster GAL devices indicate that the inherent 
metastable characteristics of all the GAL devices have 
consistently desirable characteristics across all speed 
grades. Comparing Plot 1 through 5 with Plot 6 and 7 
shows that characteristics of the GAL devices are 
superior to those of bipolar PLDs. Plot 8 illustrates 
metastable characteristics of the TTL flip-flop 
(TISN74AS74). 

For reference purposes, Plots 9 through 11 are in­
cluded. Plot 9 shows a normal (ie. non-metastable) 
GAL 16V8B-7transition, and Plot 1 Oa normal PAL 16R8-
7 transition. Plot 11 is the normal transition of the TIL 
flip-flop (Tl SN74AS74). For consistency, only rising 
edges have been shown. Our tests also covered falling 
edges which, in general, were interesting but did not 
provide any additional information. 

For a more quantitative look at the phenomenon of 
metastability, refer to the table beneath each plot. 
These tables list the measured values of the constants 
/10 and k2 for the device whose plot is shown, and for 
similar devices. Recall that large k2 and small /10 values 
are desirable. The numbers in the tables correlate 
closely with the results of earlier tests [1,5]. confirming 
the validity of our test method. 

Since all current GAL devices possess very similar 
register and output buffer circuitry, and all are fabricated 
using the same basic process, the data shown in Table 
1 for the GAL 16V8 is considered applicable to all 
devices and speed grades in the GAL family. 

Using the Results 

If a register enters the metastable state in a system, 
then data was obviously unstable as the register was 
being clocked. The argument over which data should 
have been captured (old or new) is academic as the 
register will randomly pick one or the other. Signals in 
most asynchronous systems are active for more than 
one clock cycle, so if they are missed initially, they could 
be captured on a subsequent clock cycle. 

It is the task of the state machine designer to take 
adequate precautions against metastability causing 
illegal states to be entered. One way to do this is by 
using "gray codes" when ordering states. Gray code 
state equations allow only one state bit to change during 
a state transition. Thus, the worst metastability could do 
would be to delay a state transition by one clock cycle. 
If more than one bit were allowed to change, the 
outcome would be purely random, and probably illegal. 
Figure 5 shows examples of both cases. 
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Other solutions are to externally (or internally) synchro­
nize the asynchronous signals, or to increase cycle 
times to allow time for metastable outputs to settle. An 
example of the latter solution is given below. 

It is worth noting at this point that state machines 
(synchronous or asynchronous) can fail for reasons 
other than metastability. A not insignificant component 
of a PLD's specified setup time is directly attributable to 
internal data skewing [2]. Data skewing is the inevitable 
result of differing signal path lengths, loading condi­
tions, and gate delays. Stated another way, each input 
to output path has its own set of actual AC specifica­
tions. If insufficient setup time has passed, different 
"versions" of the same data may be present at the inputs 
of different registers as they are clocked. A good ex­
ample of this is: 

Output_Pin19 := lnput_Pin2; 
Output_Pin15 := !lnput_Pin2; 

If clocked at precisely the right moment after an input 
transition, one register will capture old data while the 
other captures new data, resulting in a system failure. 
This condition, though also the result of a setup time 
violation, should not be confused with metastability (the 
"incorrect" data that is captured has normal output 
characteristics); it is, pure and simply, the result of a 
violation of specifications. 

Example 

To determine the maximum clock rate (given an accept­
able error rate) that a particular device will allow in an 
asynchronous environment, equation (4) is used. For 
example, the system shown in Figure 6 utilizes a 9600 
baud (bits/sec) asynchronous data stream. The system 
clock period is tCO+tPD+tSU+/1. For one failure per 
year: 

3.2x10-8 = [(1x10-7)(1/(M22))(9600)]e·l4(o- 4411 

Solving for 11yields11=2.22ns, or about 2ns, for a cycle 
time of 24ns. Referring back to Plot 1, the additional 
delay of 2ns intuitively makes sense. Remember, in 
terms of setup and hold time violations, the oscilloscope 
plots were made under worst case failure conditions; 
the scattered dots could represent MTBFs of days, 
years, or even millenniums in a typical asynchronous 
environment. 

Due to the extremely quick metastable settling times of 
GAL devices, a relatively small increase in the cycle 
time will produce a dramatic improvement in reliability. 
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GRAY CODE STATE ORDERING 

GAL16V8 

If metastability occurs 
while transitioning 
from 01, the possible 
next states are O 1 
and 11. 

~-----' Tpd = 10ns OUTPUT 

Teo =5ns Tsu =7ns 

CLOCK C>------'----------------~ 

Figure 6. 

MODULE metastable 
TITLE 'Metastable Test 
Pattern' 
uOO Device 'Pl6R8'; 
d PIN 2; 
ql,q2 PIN 12,19; 

EQUATIONS 
ql := d; 
q2 := d; 

End metastable 

Listing 1 a. Source equations 

JEDEC file for: Pl6R8 
Metastability Test Pattern* 
QP20* QF2048* FO* 
LOOOO 101111111111111111111111111111* 
L1792 101111111111111111111111111111* 
C07F4* 

Listing 1 b. JEDEC file 
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Listing 2. ispLSI 1016 Metastability Test Source Equation from Lattice pDS Software 

II 
II metastbl.ldf generated using Lattice pDS Version 2.20 

LDF 1.00.00 DESIGNLDF; 
DESIGN metastbl; 
REVISION 00; 
AUTHOR ; 
PROJECTNAME METASTABILITY STUDY; 
PART pLSI1016-80LJ; 
OPTION Yl_AS_RESET ON; 
DECLARE 
END; //DECLARE 
SYM GLB B7 1 
SIGTYPE IMOUT REG OUT; 
SIGTYPE IROUT REG OUT; 
EQUATIONS 

END; 
END; 

IMOUT.CLK=ICLK; 
IROUT.CLK=ICLK; 
IMOUT.D IMIN; 
IROUT.D = IRIN; 

SYM roe I031 1 
XPIN IO MOUT LOCK 10; 
OBll (MOUT,IMOUT); 
END; 

SYM roe I030 1 
XPIN IO ROUT LOCK 9; 
OBll (ROUT,IROUT); 
END; 

SYM roe I029 1 
XPIN IO MIN LOCK 8; 
IBll (IMIN,MIN); 
END; 

SYM roe I028 1 
XPIN IO RIN LOCK 7; 
IDll (IRIN,RIN,ICLK); 
END; 

SYM roe Y2 1 
XPIN CLK XCLK LOCK 33; 
IBll (ICLK,XCLK); 
END; 
END; //LDF DESIGNLDF 
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1V/div 

Plot 1. GAL 16V8C-5 Metastable Output 

Part# 

GAL16V8C-5 

1V/div 

Plot 2. ispLSI 1016-80 Metastable Output 

Part# 

ispLSI 1016-80 

2ns/div 

Manufacturer 

Lattice 

ti ; 
L 
2ns/div 

Manufacturer 

Lattice 

9-12 

60 (ns) k2 (1/ns2) 

1.4 9.82 

60 (ns) k2 (1/ns2) 

.854 11.0 
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2V/div 

1V/div 

2ns/div 

Plot 3. GAL 16V8B-7 Metastable Output 

Part# Manufacturer ~o (ns) k2 (1/ns2) 

GAL16V88-7 Lattice .44 5.0 

2V/div 

I 

1V/div 

2ns/div 

Plot 4. GAL22V10B-10 Metastable Output 

Part# Manufacturer ~o (ns) k2 (1/ns2) 

GAL22V108-10 Lattice .51 5.2 
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Clock 

2V/div 

~utput · 

I 
1V/div 

2ns/div 

Plot 5. GAL6002B-15 Metastable Output 

Part# Manufacturer ~o (ns) k2 (1/ns2) 

GAL60028-15 Lattice 1.1 6.52 

2V/div 

1V/div 

2ns/div 

Plot 6. PAL16R8-7 Metastable Output 

Part# Manufacturer ~o (ns) k2 (1/ns2) 

PAL16R8-7 AMO 1.2 2.5 
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2V/div 

1V/div 

2ns/div 

Plot 7. TIBPAL 16R6-7 Metastable Output 

Part# Manufacturer ~o (ns) k2 (1/ns2) 

TIBPAL16R6-7 Tl 1.5 1.5 

2V/div 

I 

1V/div 

2ns/div 

Plot 8. SN74AS74 Metastable Output 

Part# Manufacturer ~o (ns) k2 (1/ns2) 

SN74AS74 Tl .91 3.5 
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2V/div 

1V/div 

2ns/div 

Plot 9. Normal GAL 16V8B-7 Transition 

2V/div 

1V/div 

2ns/div 

Plot 10. Normal PAL 16R8-7 Transition 
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2V/div 

1V/div 

2ns/div 

Plot 11. Normal SN74AS74 Transition 

• 
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Introduction 

Lattice programmable devices are manufactured using a 
high-performance E2CMOS process. CMOS processing 
provides maximum AC performance with minimal power 
consumption. A drawback common to all CMOS tech­
nologies is the potentially destructive phenomenon known 
as latch-up. 

This brief defines latch-up, how it manifests itself, and 
what techniques have been used to control it. Also 
described are three device features, employed in Lattice 
devices constructed with E2CMOS technology (up to and 
including UltraMOS IV), that prevent the occurrence of 
latch-up. 

Latch-up is a destructive bipolar device action that can 
potentially occur in any CMOS processed device. It is 
characterized by extreme runaway supply current and 
consequential smoking plastic packages. Latch-up is 
peculiar to CMOS technology, which integrates both P 
and N channel transistors on one chip. 

In the doping profile of a CMOS inverter, parasitic bipolar 
(PNPN) silicon-controlled-rectifier (SCR) structures are 
formed. Figure 1 shows the process cross section of a 

Figure 1. CMOS Inverter Cross-Section 

CMOS inverter, as well as the bipolar components to the 
parasitic SCR structure. In steady-state conditions, the 
SCR structure remains off. Destruction results when 
stray current injects into the base of either 0 1 or 02 (see 
figure 1 ). The current is amplified with regenerative 
feedback (assuming that the beta product of 0 1 and 0 2 
is greater than unity), driving both 0 1 and 0 2 into satura­
tion and effectively turning on the SCR structure between 
the device supply and ground. With the parasitic SCR on, 
the CMOS inverter quickly becomes a nonrecoverable 
short circuit; metal trace lines melt and the device be­
comes permanently damaged. 

Causes of Latch-Up 

It has been explained that parasitic bipolar SCR struc­
tures are inherent in CMOS processing. If triggered, the 
SCR forms a very low-impedance path from the device 
supply to the substrate, resulting in the destructive event. 
Two conditions are necessary for the SCR to turn on: The 
beta product of 0 1 and 0 2 must be greater than unity, 
which, although minimized, is usually the case; and a 
trigger current must be present. The cause of latch-up is 
best understood by examining the mechanisms that 
produce the initial injection current to trigger the SCR 
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network. Figure 2 is a schematic of the parasitic bipolar 
network present in a CMOS inverter, where node "b" is 
the inverter output. It can be seen that two events might 
trigger latch-up: 1) the inverter output could overshoot 
the device supply, thereby turning on 0 3 and injecting 
current directly into the base of 0 2; and 2) the inverter 
output could undershoot the device ground, turning on 
0 2 immediately. However, a third condition could also 
trigger latch-up; if the supply voltage to the P+ diffusion 
was to rise more quickly than the N-well bias, 0 1 could 
turn on. Within the device circuitry, overshoot and under­
shoot can be controlled by design. A problem area exists 
at the device inputs, outputs and I/Os because external 
conditions are not always perfect. Powering up can also 
be a potential problem because of unknown bias condi­
tions that may arise. 

With CMOS processing the possibility of latch-up is 
always present. The major causes of latch-up are under­
stood and it is clear that if CMOS is to be used, solutions 
to latch-up will have to be created. As the technology 
evolves, solutions to latch-up are becoming more cre­
ative. Two of the more straightforward solutions are 
presented here. 

One direct way to reduce the threat of latch-up is to inhibit 
0 2 (figure 1) from turning on. This has been accom­
plished by grounding the substrate and reducing the 
magnitude of Rsub through the use of wafers with a 
highly conductive epitaxial layer. While the technique is 
successful, the wafers are more expensive to manufac­
ture, due to the extra processing required to form the 
epitaxial layers. 

The extensive use of "guard rings" helps to collect stray 
currents which may inadvertently trigger an SCA struc-

Vee 

* 1SUPPLY 

ture. A disadvantage to heavy use of guard rings is the 
constraints placed on circuit design and topological lay­
out, and the resulting increase in die size and cost. 

The Latch-Lock™ Approach 

The intent of the GAL family was to implement cost­
effective solutions to each major cause of latch-up. The 
goal was met through three device features. 

The most susceptible areas for latch-up are the device 
inputs, outputs and I/Os. Extreme externally applied 
voltages may cause a P+N junction to forward-bias, 
leading to latch-up. The inputs, by design, are safe; but 
outputs and I/Os present a danger. 

To prevent latch-up by large positive swings on the 
device outputs or 1/0 pins, NMOS output drivers were 

Vee 

v 

Vee 

Figure 2. Parasitic SCR Schematic Figure 3. NMOS Output Driver 
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used. This eliminates the possibility of turning on 0 3 
(figure 2) with an output bias in excess of the device 
supply voltage. Figure 3 contains the effective NMOS 
output driver and its switching characteristics. Note that 
the output does not fully reach the supply voltage, but still 
provides adequate VoH margin for TTL compatibility. 

To prevent negative swings on device output and 1/0 pins 
from forward-biasing the base-emitter junction of 0 2, a 
substrate- bias generator was employed. By producing 
a Vsub of approximately -2.5v, undershoot margin is 
increased to about -3V. 

To insure that no undesired bias conditions occur with P+ 
diffusions, Lattice Semiconductor has developed propri­
etary Latch-Lock power-up circuitry, illustrated in Figure 
4. In short, the drain of all P channel devices normally 
connected to the device supply is now connected to an 
alternate supply that powers up after the device N-wells 
have been biased and the substrate has reached its 
negative clamp value. This prevents any hazardous bias 
conditions from developing in the power-up sequence. 
After power-up is complete, the Latch-Lock circuitry 
becomes dormant until a full power-down has occurred; 

Vee 

LLC 
VLL 

v 

Figure 4. Latch-Lock Power-up Circuitry 

Latch-up Protection 

this eliminates the chance of an unwanted P channel 
power-down during device operation. 

To determine the amount of latch-up immunity achieved 
with the three device features utilized in Lattice devices, 
an intensive investigation was carried out. Each step was 
conducted at 25° and 100°C; inputs, outputs, and I/Os 
were sequentially forced to -BV and + 12V while the 
device underwent fast and slow power-ups; devices were 
repeatedly "hot socket" switched with up to 7.0V. 

Even under the extreme conditions specified, no in­
stance of latch-up occurred. In an attempt to provoke 
latch-up,± 50mA was forced into each output and 1/0 pin. 
The device output drivers were damaged in the battle, 
and still latch-up was not induced. 

Based on the data, it is evident that Lattice devices based 
on the Latch-Lock technology are completely immune to 
latch-up, even when subjected to a wide variety of ex­
treme conditions, including current at inputs, outputs, 
and I/Os, power-supply rise time, hot-socket power-up 
and temperature. 

• • • 
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Selecting the Best Device for 
In-system Programmability 

This article is reprinted from Conputer Design's ASIC Design - December 1993. 
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SeleCUng the best device tor 
in-s•m programmability 
Familiarity with the technologies, as well 
as the benefits and drawbacks involved 
with each, will help you choose the 
in-system-programmable complex PW or 
FPGA that best suits your design needs. 

I n developing an HDTV interface, 
David Harper, a senior design en­

gineer at Convex Computer, faced a 
problem very common in leading­
edge electronics companies: The in­
dustry standards were not yet com­
plete, but product development had 
to go on. His interface board had to 
connect a Convex UO channel to the 
emerging industry-standard frame­
buffer format in the infant HDTV elec­
tronics market. But two different 
frame-buffer formats were contend­
ing for industry leadership, and it 
wasn't clear which format would 
emerge as the dominant standard. 

exotic benefit of in-system-program­
mable technology, but it isn't the 
only one. Designing in-system-pro­
grammable devices into a product 
can improve productivity and reduce 
costs across the life cycle of a prod­
uct: engineering, production, mainte­
nance, and in-field upgrades. 

Why in-system programmability? 

The first PLO programming technol­
ogy, dating from the early days of the 

Furthermore, manufacturing person­
nel had to execute a programming 
step in product manufacturing prior 
to assembly. 

As programmable devices now 
hurdle the 10,000-gate barrier, how­
ever, they incorporate many more uo 
pins and are manufactured in very 
fine pin-pitch plastic quad flat packs 
and thin quad flat packs. As a result, 
they're increasingly delicate and 
intolerant to the manual program­
ming techniques previously uSed 
with older packages. Moreover, sock­
ets can reduce the signal integrity of 
the programmable device and intro­
duce handling and inventory steps 
that often compromise end-product 
quality as well as add extra cost. 

With an in-system programmable 
device, on the other hand, the pro­
gramming pattern can be changed at 
any time by applying signals to the 
programming pins of the in-system 
programmable device. This program­
ming can even be performed after the 
device is soldered onto the board if 
the engineer has made an accommo­
dation for the programming inter­
face. This very simple change in the 
programming step means that design-

Harper needed to design a system 
that could accommodate either one, 
or possibly both, frame-buffer stand­
ards. By populating the interface cir­
cuit board with several Lattice ispLSI 
high-density PLDs, Harper designed a 
product that could be configured to 
conform to either frame-buffer speci­
fication after the logic devices were 
soldered onto the circuit board. This 
in-system programmability led to a 
product with a wider addressable 
market, as well as lowering design 
and production costs for Convex, 
because a single piece of hardware 
could be programmed for two differ­
ent products. 

As PLDs have migrated from bipolar one-time-programmable technology to UV 
EPROM and FCMOS, engineers have had to maintain device sockets and a separate 
programming step in manufacturing. But in-system-programmable technology does 
away with all that. 

The ability to design one product 
for multiple uses is perhaps the most 

Richard Mitchell 
Senior product planner, 
high-density devices, 
Lattice Semiconductor 
Hillsboro, OR 

bipolar PAL, programmed tiny fuses 
on a PLO using a standalone device 
programmer. As PLDs migrated 
through subsequent technologies-­
notably UV EPROM and E2CMOS­
engineers continued to rely upon a 
standalone programming step to load 
the logic into each device. As a 
result, engineers would add sockets 
for the PLDs to their circuit boards in 
case design changes required new 
PLDs to be programmed and inserted. 

ers don't need to add sockets to have 
reprogrammability. Nor is a: program­
mer needed. Moreover, in-system 
programmability makes possible a 
new way of organizing and execut­
ing product development for higher 
productivity and lower costs. 

Selection criteria to consider 
To select an in-system-programma­
ble device, you must consider several 
factors before committing large finan-
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cial and engineering resources to a 
particular technology or architecture. 
The most fundamental criterion is 
process technology. 

Today's high-density, programma­
ble-logic market offers four basic 
storage technologies: antifuse, UV 
EPROM, SRAM and E2cMOS. 
Although most devices use one of 
these four technologies exclusively, 
a few offer a hybrid approach, using 
SRAM for the logic and EPROM for 
power-off storage. Of the four basic 

configuration when system power is 
turned off. Every time the system is 
powered up, the programming pat­
tern must be transferred from an 
external memory device into the 
SRAM in-system-programmable 
devices. This creates two key difficul­
ties. First, the SRAM-based devices 
require a power-up delay to allow 
time to load the data from the EPROM 
device into the SRAM logic cells. Sec­
ond, additional chips and valuable 
board real estate are required. Some 

Using in-system-programmable devices, companies can bypass separate program­
ming, marking. and inventory steps, thereby simplifying the manufacturing flow. 

technologies, only SRAM and 
E2CMOS offer in-system programma­
bility. Of the devices manufactured 
using these two technologies, not all 
incorporate in-system-programmable 
interfaces. 

The significant advantage of 
SRAM devices is that they may be 
reprogrammed on the fly an almost 
unlimited number of times. This fea­
ture makes SRAM a desirable technol­
ogy for applications that require con­
tinual updates or dynamic-reprogram­
ming capability. 

The main drawback of SRAM­
based devices, on the other hand, is 
their volatility. SRAM in-system-pro­
grammable devices lose their logic 

manufacturers have attempted to 
eliminate the effect of the second lim­
itation by including the EPROM as 
part of the device. Although these 
drawbacks do not always present a 
serious problem, they eliminate 
SRAM in-system-programmable 
devices from consideration in appli­
cations requiring fully functional 
logic at power-up. Examples include a 
memory decoder for a CPU that must 
be operational at CPU power-up and 
applications where board real estate 
carries a particularly high premium. 

The second key in-system-pro­
grammable technology, E2CMOS, is 
non-volatile and electrically erasable 
within milliseconds. Because there is 
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no need for a memory chip to load 
the logic at each power up, the 
E2cMOS solution requires no support 
circuitry, saving critical real estate. 
E2cMOS devices may be repro­
grammed up to 1,000 times, which is 
sufficient for virtually all in-system­
programmable applications except 
those requiring dynamic or continu­
ous reprogramming. 

After device technology, you need 
to consider programming require­
ments. Some in-system-programma­
ble devices require a special 12 to 14-
V supply to program the device. A 
board with such devices must incor­
porate extra control circuitry and 
must provide this special voltage 
with an extra power supply such as a 
de-to-de converter. These require­
ments add up to lost board space 
with lower reliability, higher power 
consumption and, ultimately, higher 
design costs. Other in-system-pro­
grammable devices in both SRAM 
and E2cMOS technologies use a stand­
ard 5-V logic supply voltage for pro­
gramming and reprogramming. This 
key feature will ultimately lower 
system design costs and power con­
sumption. 

Programming interface options 

The next consideration is the simplic­
ity of the programming interface. A 
simple programming interface con­
serves board real estate and mini­
mizes layout complexity and design 
costs compared to complex connec­
tors or programming pad configura­
tions. The key distinction you should 
consider is whether the interface is 
serial or parallel. Parallel program­
ming options require extra layout 
resources for running interface sig­
nals across the board. These extra 
resources inevitably lead to higher 
design costs. In-system-programma­
ble devices with serial interfaces usu­
ally require far fewer interface 
signals, making them more reliable 
and cost-effective, as well as easier 
to design into the system. Serial-inter­
face in-system-programmable 
devices are available in both SRAM 
and E2CMOS technologies. 

The final consideration concerns 
the use of in-system-programmable 
devices as test resources. If test capa­
bilities are a critical design consider­
ation, you should look for devices 
with interfaces compatible with the 
IEEE 1149.1 boundary-scan standard. 



In the optimal boundary-scan, in-sys­
tem-programmable solution, the in­
system-programmable and boundary­
scan signals share the same dedicated 
pins. This enables a single interface 
and the use of identical pins to imple­
ment both board test and device 
reconfiguration. 

The need for boundary scan is 
becoming ever more evident as more 
components per square inch are 
packed onto every board. Boundary 
scan significantly increases test cov­
erage for design errors at the board­
test level before they become expen­
sive system-level test problems. 
Using an in-system-programmable 
device that isn't compliant with 
boundary scan offsets this advantage, 
increasing the risk of higher product­
failure rates due to poor testability. 

f.andidate applications 

As systems become denser and more 
highly integrated, in-system program­
mability becomes a more critical 
technology. This is because program­
mable-logic die is less accessible, 
making conventional programmer 
technology inefficient. This situation 
is especially true for multi-chip mod­
ules (MCMs). 

In-system programmability offers 
advantages for many design and sys­
tem challenges, but not all. This tech­
nology is usually not appropriate for 
extremely high-volume or very cost­
sensitive designs because even the 
minimal additional costs associated 
with in-system-programmable board 
overitead may become prohibitive. 
Products in the early stages of their 
life cycles, including high-volume 
applications, are excellent candidates 
for in-system-programmable devices 
because they often need numerous 
changes before they are committed to 
inflexible ASIC chip sets, for exam­
ple. A large percentage of new 
designs can benefit from in-system 
programmability in production, field 
upgrades, and generic functionality. 
And engineers are continually find­
ing more innovative uses for in-sys­
tem-programmable devices. 

More mature products that do not 
need to be changed during manufac­
turing or in the field, or only serve 
one function, however, may not need 
the benefits that in-system-program­
mable devices offer because by their 
very nature they do not require many 
engineering change orders. 

Multi-chip module packaging has 
perhaps the most critical need for in­
system programmability. As demon­
strated earlier, in-system programma­
bility streamlines design processes 
using delicate fine-lead packaging 
and increasingly dense circuit 
boards. It also contributes to a more 
complete test strategy. With the 
higher integration and intricacies of 
MCMs, each of these advantages 
becomes more significant. Conven­
tional non-in-system-programmable 
technologies require the die to be 
removed from the module, a practice 
that often damages the MCM. With in­
system programmability this problem 
is nonexistent. 

Test is another point of contention 
with MCMs as the modules cannot be 
tested with conventional techniques. 
Using an in-system-programmable 

greatly reduce the design/debug 
cycle as well as prototype-develop­
ment time. In a normal design cycle, 
an engineer generally designs the cir­
cuit, has a circuit board built, and 
begins debugging the board. In most 
circuits, the engineer corrects the 
inevitable errors and implements 
specification and design changes by 
physically removing socketed PLDs 
and inserting updated versions. He 
may have to modify the circuit 
board's traces and layout to 
accommodate resulting design and 
pinout changes. 

When using in-system-program­
mable devices, design changes that 
previously took a half day of cuts 
and jumpers on the prototype board 
take just minutes. You make changes 
to the logic equations within the PLO 
and send the new programming to 

Programmable logic parts with in-system programming capabilities continue to grow 
in popularity as more board designs adopt PQFP. TQFP and other fine-lead pack­
ages. Frank Morris, Valerie Young and Brian Reilly implemented the logic on NEC 
Americas digital loop carrier board with four in-system programmable devices from 
Lattice to ensure lead conformance and overall product quality. 

design strategy that incorporates 
boundary scan will enable almost full 
testability of an MCM. The designer 
may fully develop the MCM package 
and attach the die before the design 
is fully tested. When errors are 
found, the design can be repro­
grammed inside the MCM with a very 
short tum-around time. 

Optimized development cycle 

The use of in-system-programmable 
devices in the engineering lab can 

the PLO on the circuit board through 
the programming interface. This 
quick design-turnaround time can 
save you days to weeks within a 
development schedule. 

Since in-system-programmable 
devices eliminate the need for pro­
totyping sockets, there's no need to 
redesign the prototype board for pro­
duction. Because the prototype and 
production boards may be identical, 
their capacitance and inductance, 
and, therefore, their ac performance, 
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may also be identical. This elimi­
nates unpleasant surprises in product 
performance when the first produc­
tion units are manufactured. 

The opening Convex example 
points out another benefit A single 
circuit board may be designed for 
multiple uses. This technique is also 
known as reconfigurable hardware. 
With reconfigurable hardware, an 
engineer can design and build a prod­
uct and then reconfigure it to 
accommodate any number of indus­
try standards or product features. A 

... ~· .. 

.E2£Mos 
·"Yes:· 

·.• .. 'Yes··· 

generic PC card could be customized, 
for instance, to work with different 
network protocols. 

Optimized production flow 
Using typical PLOS, the production 
flow consists of taking blank parts 
from inventory, programming and 
marking them, sending each part 
back to inventory with a specific part 
number, then pulling the appropriate 
part number a~ needed to assemble 
the production cards. Programming a 
high-pin-count PLO is problematic 
because its fine pin pitch makes it 
incompatible with automatic pro­
grammer handlers. Consequently, 
production personnel must program 
all conventional high-density PLO 
devices manually. An operator has to 
place and remove each device from 
the socket on the programmer, a task 
that's very difficult to accomplish 
without severely bending the fine 
leads or destroying lead coplanarity. 

A product using in-system-pro­
grammable devices enjoys a much 

simplified manufacturing flow, lead­
ing to higher quality and more accu­
rate prototypes. First, as thin quad 
flat packs, plastic quad flat packs and 
other fragile chip packaging gain in 
popularity, manufacturing and assem­
bly of circuit boards with sockets can 
become a serious quality-control 
problem. The additional handling 
steps for programming often leads to 
bent pins and lower part-utilization 
rates. With an in-system-programma­
ble design strategy, inventory hassles 
are significantly reduced because the 

·SRAM·, .Aatlfuae VVEPROM 

No Ye$ 
.. 

Yes 

No ··>·Yes Yes• 

parts go directly from the receiving 
dock to placement on the printed cir­
cuit board, eliminating the stand­
alone programming and mark opera­
tion entirely. In addition, multiple, 
blank in-system-programmable 
devices can be loaded into auto-inser­
tion equipment and placed direct! y 
onto the board without sockets and 
without regard for which pattern 
goes into a particular board location. 
During final circuit-board test, the 
individual logic patterns are pro­
grammed into each device using the 
board-test station via the simple in­
system-programmable programming 
interface. 

Many products also require field 
upgrades to maintain their accuracy 
or to update their functionality. 
Instrumentation equipment is a good 
example because it often requires 
recalibration over a period of months 
or years to maintain accuracy and 
precision. With in-system-program­
mable parts embedded in the system 
and an appropriate interface to the 
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programming pins, a field-service 
technician or even a customer can 
upgrade a product's hardware as eas­
ily as software upgrades are distrib­
uted today. 

System reliability i!sues 
Socketing of programmable devices 
can be a consistent source of system­
reliability problems. By removing 
sockets from the circuit board and 
soldering an in-system-programma­
ble device directly onto the board, 
the signal integrity of the leads isn't 
compromised by the socket connec­
tions. In addition, properly soldered 
joints are much more reliable than 
socket connections. These benefits 
result in greater system performance 
and overall reliability in terms of 
MTBF. 

The use of in-system-programma­
ble devices also lets the test engineer 
develop more flexible circuit-board­
test procedures. For example, a test 
engineer can program in-system-pro­
grammable devices to interconnect 
the circuit-board traces and so 
achieve nearly full fault coverage of 
those traces. He or she can then 
quickly reconfigure the in-system­
prograrnmable devices to generate 
test signals for exercising dedicated 
logic devices on the board. By doing 
so, test engineers can significantly 
enhance the fault coverage of the 
board and the speed of tests. After 
board test, the test engineer can pro­
gram the final logic patterns into the 
in-system-programmable devices. 

Design engineers can use in-sys­
tem-programmable devices to design 
boards with programmable configura­
tion options, instead of dip switches 
or component swapping. This multi­
ple-configuration approach can 
greatly improve system-level perfor­
mance and reliability by reducing 
device counts, eliminating the need 
for sockets and improving testability. 

The Lattice isp solution 

After considering in-system program­
mable benefits, you can evaluate vari­
ous device families for features that 
match their system requirements. Lat­
tice Semiconductor, for example, 
fields three in-system-programmable 
LSI (ispLSI) device families based on 
the company's proprietary E2CMOS 
technology: the flagship ispLSI 1000 
family and the recently announced 
ispLSI 2000 and ispLSI 3000 families. 



·--~lily 

The ispLSI 1000 family, introduced in 
1991, was the first available E2cMos 
in-system-programmable solution on 
the market to offer 2,000 to 8,000 
gates and up to 110-MHz speed. The 
ispLSI 2000 family expanded upon the 
ispLSI 1000 family architecture to 
deliver speeds of up to 135 MHz. 
The ispLSI 3000 family offers device 
densities of up to 14,000 gates with 
I IO-MHz speed and IEEE 1149.1 
boundary-scan test capabilities. 

The Lattice ispLSI devices follow 
a simple reprogramming scheme. 
Five pins are dedicated to in-system 
programming: serial data in (SDI), 

The ability to design 
one product for multiple 

uses is perhaps the 
most exotic benefit of 

in-system-programmable 
technology, but it isn't 
the only one. Designing 

in-system-programmable 
devices into a product can 
improve productivity and 
reduce costs across the life 

cycle of a producL 

serial data out (SDO). mode control 
(Mode), serial clock (SCLK) and isp 
enable (ispEN). During the repro­
gramming operation, ispEN is 
asserted low, the four remaining 
ispLSI pins become active, and all 
other output pins become three­
stated to prevent any bus contention 
during the reprogramming cycle. The 
programming of the device is then 
controlled by an internal state 
machine that's operated by using the 
SDI and Mode pins. You would use 
the design software provided by Lat­
tice on a workstation or PC to serially 
load a 5-bit command into the 
device, followed by the design file in 
JEDEC format, all using a 5-V repro­
gramming voltage. Lattice also offers 
a software routine called ispCODE 
which gives you pre-written working 
C routines that can be incorporated 
in a system processor as part of the 
working system code. 

Lattice's ispLSI 3000 family of 
devices share the isp programming 
signals with the standard boundary­
scan signals, enabling the same inter­
face to do both board test and logic 
reconfiguration. 

An isp design example 
Brian Reilly of NEC America (Hills­
boro, OR) found an application that 
may not have been completed with­
out ispLSI devices. Reilly's task was 
to design new circuit boards for an 
NEC digital loop carrier that accepts 
96 phone pairs and digitally com­
presses them down to eight pairs. 
The boards were to be part of the sys­
tem's common control unit and con­
sisted of a 68020-based control CPU 
board and a custom high-capacity, 
serial-interface board. NEC encoun­
tered a set of engineering problems: 
trying to successfully implement the 
functional requirements which 
included the need for non-volatility, 
maximizing the amount of logic in 
the smallest amount of board real 
estate, minimizing board- and sys­
tem-test costs, maintaining high prod­
uct reliability and minimizing board 
rework caused by engineering 
change orders. 

While all these constraints pointed 
to in-system programmability, the cri­
terion that made in-system program­
mability unavoidable was the need 
for NEC to start building the hard­
ware before the logic was fully 
designed. By implementing the 
design with Lattice ispLSI devices, 
NEC was able to meet a very tight 
product-development cycle, one 
which would have been impossible 
without an in-system-programmable 
strategy. Board layout was finished, 
and assembly took place weeks 
before the final logic was completed 
and implemented into the devices. 
Looking back on the experience, 
Reilly says, ''The ability to change 
the logic on the board really saved 
our bacon." Cl 
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Enhanced E2PLDs Hit Speed 
and Density Highs 

This article is reprinted from Electronic Design - October 14, 1993. 
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PRODUCT INNOVATION 

ENHANCED E2PLDS HIT 
SPEED AND DENSITY HIGHS 

Two COMPLEX 
PLD FAMILIES 
LET DESIGNERS 
RuNSYSTEMS 
AT135MHz 
OR TRIM CHIP 
COUNT WITH 
14-KGATE 
PROGRAMMABLE 
LOGIC ARRAYS. 

DAVEBURSKY 

ncreasing complexity in programmable logic devices presents de­
signers with two key challenges: How to maintain the short propa­
gation delays found in the low-complexity devices while achieving 
the high functionality possible with gate-array alternatives. To ad­
dress both of these areas, two enhanced families of high-density 
programmable logic were developed by Lattice Semiconductor. 

Both families will use the company's electrically-erasable programmable 
logic devices (E2PLDs). Each will come in Lattice's standard programmable 
LSI (pLSI) and in its unique in-system programmable LSI (ispLSI) form. 

The first of the two families, the 2000 series, offers the shortest propaga­
tion delays for complex PLDs. The other family, the 3000 series, focuses on 
gate density, I/O count, and enhanced testability through the use ofan IEEE 
1149.1-compatible boundary-scan test port. Each family will initially have 
three density options. Both will join the company's original pLSI and ispLSI 
1000 families of E2CMOS high-density PLDs. 

The 2000 family, with operating frequencies up to 135 MHz and pin-to-pin 
logic delays of as little as 7 .5 ns, suits many of the applications that currently 
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ENHANCED COMPLEX PLDS 

employ high-speed but 
low-density PLDs. This se- Inputs lrom global muling pool Dedicated 
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the earlier 1000 family. In 
part, the high speed was 
achieved by using the com­
pany's 0.65-,...m, UltraMOS 
V E2CMOS process. Addi­
tional speed gains were the 
result of architectural 
streamlining. 
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The family's three densi­
ty options-the 2032, 2064 
and 2096-contain the 
equivalent of 1000, 2000, 
and 4000 PLD gates, re­
spectively. Those gates 
are divided among 8, 16, 
and 24 generic logic blocks 
(GLBs), respectively, on 
each of the three chips. 
Each GLB possesses 20 
product-term inputs and 
provides four registered 
or combinatorial outputs. 
It allows the designer to 
configure each of the four 
GLB flip-flops as aJK-, T-, 
or D-type element, and 
gives the designer multi­
ple clocks for synchronous 
or asynchronous applica­
tions. Inputs and I/Os to­

12. EACH GLOBAL LOGIC BLOCK <GLBl used in the pLSI/ispl.SI 2000 series offers a simil~r 
level of functionality as the GLBs in Lattice's original pLSI 1000 series. The blocks, which provide 18 
inputs, 20 product terms, and 4 register outputs, are well suited for control applications. The more complex 
macrocell used in the 3000 series packs close to double the functionality and more readily handles data· 
path type functions. 

tal 34 for the 2032, 68 for the 2064, 
and 102 for the 2096. Package op­
tions include PLCC, plastic quad flat 
pack (PQFP) and thin quad flat pack 
(TQFP), with pin counts ranging 
from 44 to 128 leads. 

Taking the high road in terms of 
logic density, 110 counts, and fea­
tures, the 3000 family will initially of­
fer three densities ranging from 
8000 to 14,000 PLD-type gates-the 
3192, 3256, and 3320. The pLSI and 
ispLSI versions will offer top clock 
speeds and minimal propagation de­
lays that span from 110 MHz/10 ns 
for the 3192 to 80 MHz/15 ns for the 
3320. These chips provide 24, 32, and 
40 programmable GLBs, respective­
ly, with inputs and 1/0 pins totalling 
96 for the 3192, 128 for the 3256, and 
160 for the 3320. 

The 3000-family GLBs are more 
complex than those in the 2000 se­
ries-each 3000-series GLB has 24 in­
puts from the global routing pool 
and 8 register outputs. That gives 

E L E 

the series 3000 almost twice the com­
plexity of the 2000 series, considera­
bly improving the flexibility and abil­
ity to implement more-complex func­
tions in the GLB. The programmable 
circuits will be available in 128-, 160-, 
and 208-lead PQFPs. 

The ispLSI version in all three 
families makes it possible for them 
to be programmed using only a stan­
dard 5-V power supply and a five­
wire serial interface. In-system pro­
grammability addresses many of the 
manufacturing concerns voiced by 
companies using fine-pitch, high-pin­
count programmable devices on sur­
face-mount pc boards. By eliminat­
ing separate programming steps and 
socketing operations, ispLSI chips 
minimize concerns about bent device 
leads and out-of-specification lead 
coplanarity due to handling. 

Providing short-delay program­
mable logic to support high-perfor­
mance system designs has been the 
exclusive domain of low-density but 
CTRONIC DESIG 
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fast PLDs. High-speed address de­
coding and minimal-delay bus-con­
troller functions must typically oper­
ate at twice the processor clock fre­
quency. Even the fastest 20- and 24-
pin PLDs have been hard-pressed to 
keep up with the performance re­
quirements of the Pentium, Alpha, 
and other RISC and CISC CPUs. 

The Pentium's 66-MHz clock rate 
dictates that the support logic oper­
ate at speeds of at least 132 MHz. 
Thanks to Lattice's UltraMOS V pro­
cess, the 44-pin, 8-GLB pLSI and 
ispLSI 2032, which operate at 135 
MHz, are now the first high-density 
PLDs to exceed this threshold (the 
132-MHz minimum frequency). And 
because the 2032 integrates the 
equivalent of 4 to 6 low-density PLDs 
like PALs into a single package, de­
signers can cut power consumption 
and board space by up to 6: 1. 

The 2000 family architecture is 
similar to that of the earlier 1000 
family. It consists of a central global 

N 
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routing pool (GRP) surrounded by 
the programmable GLBs (Fig. 1). 
The GRP adds a fixed delay of less 
than 2 ns between any two points on 
the device. That limits signal skew 
and possible logic hazards while en­
hancing performance. 

A second level of programmable 
interconnect, the output routing pool 
(ORP), provides programmable rout­
ing between the outputs of the GLB 
and the 110 cells. The ORP gives de­
signers more freedom in selecting 
the pin assignments-other high­
density PLD architectures often as­
sociate one fixed 110 pin with each 
logic-cell output. 

The GLB found in all three of Lat­
tice's high-density PLD families 
shares a common set of programma­
ble features: an input AND array 
that feeds a programmable product­
terrn sharing array (PTSA), which in 
turn feeds some exclusive-OR gates 
that deliver the signals to the regis­
ters or directly to the output-routing 
matrix (Fig. 2). For example, the 
2000-family GLB programmable log­
ic array takes 18 inputs from the 
GRP and generates combinatorial 
AND-OR functions. The outputs of 
the OR gates are routed through the 
PTSA, in which common functions 
can be efficiently shared and incor­
porated into multiple GLB output 
functions. The integral XOR gates 
make the GLB particularly efficient 
in handling arithmetic and compara­
tor functions. 

For very-high-speed functions, the 
PTSA can be bypassed to give the 
fastest input-to-output path. The 
registers in the GLB can be indepen­
dently programmed for either JK-, T­
or D- operation. In addition, multiple 
clock options, including product­
term clocking, make synchronous 
circuit implementations easier. 

Sticking to its role as a fast, cost­
conscious family of devices, Lattice 
took a "lean and mean" approach 
with the 2000-family architecture. 
For example, unlike the original 
1000- and the new 3000-family archi-

ENHANCED COMPLEX PLDS 

tectures, the 2000 devices don't in­
corporate dedicated 110 registers at 
the device pins. That's because most 
of the applications expected for the 
2000 family will consist primarily of 
control logic rather than data-path 
functions. Control functions usually 
dc.n't require signal latching at the 
device pins. Thus, Lattice's design­
ers eliminated the infrequently used 
feature, reducing the chip size, chip 
cost, and ultimately the selling price. 

In the 3000 family, Lattice's inclu­
sion of twin GLBs lets the circuits 
implement data-path-oriented struc­
tures (each twin contains twice the 
programmable logic of the G LB used 
in the 1000 and 2000 families). Conse­
quently, the new 3000 family GLB is 
more silicon-efficient, allowing high­
er logic densities, while supporting 
up to 24-bit functions. With the twin 
G LB, the 3000 family devices provide 
from 96 (the pLSllispLSI 3192) to 
480 (3320) registers in one device. 

The 3000 family also is enhanced 
significantly by the integration of 
dedicated boundary-scan logic into 
the I/O structure. The 3000-family 
devices include IEEE Standard 
1149.1-compliant JTAG (Joint Test 
Advisory Group) circuitry, which al­
lows the scan data pattern to be 
shifted in or out. As part of the JTAG 
port, each device includes a test-ac­
cess-port (TAP) controller and asso­
ciated 110 scan registers. All manda­
tory 1149.1 public instructions are 
supported, including Bypass, Sam­
ple/Preload and EXtest. The bound­
ary-scan feature enables complex­
pc-board and systems designs to ex­
haustively test overall logic func­
tionality to ensure the highest 
quality and reliability levels. 

The isp programming interface 
and boundary-scan TAP in the 3000 
family use the same set of four pins, 
selected by an isp/boundary-scan 
mode-select pin. Clock, Serial Data 
In, Serial Data Out, and Mode con­
trol pins are present in both inter­
faces. By combining in-system pro­
gramming and boundary scan, de-
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sign and manufacturing engineers 
will be able to define new test meth­
odologies, for more thorough testing 
and higher quality. 

The capacity, testability, and per­
formance of the 3000 series devices 
make them ideal for implementing 
complex system functions such as 
DMA, LAN, and memory subsystem 
controllers, as well as high-perfor­
mance glue-logic integration. In con­
trast to the 2000 family, which aims 
at control functions, the 3000 family 
will be used to implement significant 
data-path functions, including ad­
ders and multipliers. As a result, the 
3000-series chips include the dedicat­
ed 1/0 registers that were originally 
introduced in the pLSI 1000 family. 

Design-tool support for the new 
families includes PC-based support 
from Lattice's pDS design tool. The 
pDS provides a complete Windows­
based design tool, including Boolean 
entry and design editing along with 
automatic logic routing. Lattice cur­
rently provides support for popular 
third-party design environments on 
the PC and Sun platforms, such as 
pDS+ Viewlogic, pDS+ ABEL and 
pDS+ LOG/iC design fitters. View­
logic's Viewsim timing simulation 
and Logic Modeling system-level 
simulation models are also available. 
Support for Cadence, Mentor Graph­
ics and Synopsys design tools is also 
planned.D 



Complex State Machine Design 
with Complex PLDs 

This paper was presented at the 1993 Silicon Valley Personal Computer Design Conference in Santa Clara, 
California, and appeared in the SVPC '93 Conference Proceedings Volume II. 
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COMPLEX STATE MACllJNE DESIGN wMi COMPLEX l'LDI 

By Bcrtnmd Leigh 
Senior Applications Engineer 

Lattice SemicoDductor Corporation 

State Machines have become an integral part of 
the system design. With the price reduction and 
fast time to market of Programmable Logic more 
design engineers are incorporating their control 
functions into Programmable Logic State 
Machines. This increase in popularity bas 
spurred an increase in the available PLD 
architectures suitable for high performance state 
machine applications. 

State machines appear in a large amount of 
PLD designs, and are at the heart of almost all 
control an interface/arbitrate functions. State 
machines are generally very product term 
intensive, with many product terms required per 
output and with a high percentage of the product 
tenns used within a state machine design 
common to multiple outputs. 

State machines require PLO architectures that 
are very product tenn rich and support product 
term sharing if an efficient and economical 
design is to be implemented. For these reasons 
an FPLA (Field Programmable Logic Array) 
which contains an programmable AND array 
and a programmable OR array is optimum as 
opposed to an standard PAL architecture which 
contains a single programmable AND array. 

By using an FPLA architecture, product term 
sharing may be used, which allows the user to 
"share" terms among registers. This capability 
is the result of the programmable OR array. 

Some PAL architectures attempt product term 
sharing by steering clusters of product terms to 
adjacent outputs, or by having a common pool of 
product terms that are shared among all the 
outputs. 

In the case of architectures that incorporate 
product steering, typically what occurs is that to 
satisfy the high product term requirements, 
product terms are borrowed from adjacent 
macrocells. The disadvantage to this approach is 
that in reality the product terms are stolen from 
the adjacent cell rendering the cell unusable and 
wasting a register. 
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The ahemative to stealing product terms with a 
PAL type architecture is to cascade macrocells 
to implement the state machine. In this case 
multiple layers of product tenn blocks are ORed 
together to supply the required number of 
product terms. 

Another approach is to use an architecture 
which contains a pool of uncommitted product 
terms which must be cascaded in single product 
term blocks to provide the total number of 
product terms needed. The down side to this 
approach is that each ofthe "spare" or 
uncommitted product terms will add an 
additional delay. With some devices the 
additional delay may be as much as I Snsec for 
each additional product term used. This delay is 
accumulative and results in extremely slow 
operating speeds and unpredictable delays. It is 
difficult if not impossible to determine how 
many product terms are required for a given 
state of a multiple state state machine, therefore 
the cumulative delay of the device is not known 
until after the design is complete. If the state 
machine is required to operate at 30Mhz or 
faster than a product term pool architecture is 
probably not a wise choose. 

A FPLA type of architecture is typically the best 
solution for PLO based state machine designs. 
The following section will discuss why. 

State Machine Design Requirements 

Having enough registers is a paramount concern 
in designing state machines. Some architectures 
provide a register in the 110 macrocell that 
allows the user to "latch" or "register" input 
signals. This is an ideal feature in bus 
arbitration/sequencer applications. Input 
registers or latches also facilitate the design of 
fully synchronous stale machines. 

TI1c type and quantil)· of registers contained in a 
particular device can not be over stressed. The 
type of register will have a dramatic impact on 
the number of product terms and internal 
resources required to implement the state 
machine. 



The first consideration should be which registers 
are available in hardware. While many 
manufactures claim that a "D" type Oip-Oop can 
emulate a JK., T or SR, the logic required to do 
so is typically prohibitive due the additional 
product terms and time penalties since 
additional feedback is required. Thus, having 
the right flip-Oop in hardware can greatly 
improve the efficiency and speed of the design. 
This is why PAL type architectures are 
ineffective in implementing state machines. 

T flip-flops do well in counter applications 
where state/output bits must toggle upon a 
transition of the clock. JK or SR flip-Oops 
efficiently implement the "if .. then .. else" 
statement in state machine language. The JK 
flip-flop can also have a T flip-flop function 
when both J and K inputs are active. 

State machines often require a portion of the 
output registers and state bit registers to remain 
in the same logic condition during a transition 
from one state to another, in other words the 
register must "hold" its value. For example. 
when state bits S3-SO change from 1111 state to 
1110 state. the only state bit that makes the 
transition is the SO state bit. The state bits S3-
S I must hold the logic 'I' state. When 
implementing this state transition with D flip­
flops. one must define the conditions for each of 
the register that must hold the logic condition. 
As a result the equation is defined as follows. 

S3.D = S3 & S2 & SI & SO 
Hold S3 high when S3-SO = 1111 

S2.D = S3 & S2 & SJ & SO 
Hold S2 high when S3-SO = 1111 

S I.D = S3 & S2 & SI & SO 
Hold SI high when S3-SO = 1111 

Similarly. when implementing the same state 
transition with the JK flip-flops, one must onl) 
define the state bit that made the transition. 
State bit SO transition equation is defined as 
follows. 

SO.K = S3 & S2 & SI & SO 
Reset SO high when S3-SO = 1111 

As a result. the D flip flop implementation takes 
three product tenns where the JK flip-flop 
implementation only takes one product term to 
implement the same state transition. The D flip· 
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flops generally requires extta product term(s) 
over the JK flip-flops in order to bold its value 
which result in a less efficient implementation. 

Many of the state bits used in a state machine 
design are imbedded or "buried". If a standard 
PAL type architecture is used in a state machine 
design any bits that are feed back into the array 
will use or occupy an 110 pin. Because of this, 
extra attention must be paid when defining the 
state bits. If an Output Logic Macrocells output 
is feed back into the AND array and cannot be 
used as the functional output, the 110 pin 
associated with that macrocell can no longer be 
used. Therefore device architectures that provide 
a separate feed back path, allow the OMLC to be 
buried without losing the 1/0 pin. 

Enhanced DE Flip-Flop 

Several FPLA manufactures have developed a 
DE flip flop. The clock Enable signal of a DE 
flip-flop can be used to hold the current register 
value by disabling the clock. This has the 
advantage that changes on the data signal will 
not affect at the register's output when the 
register is "holding" a state bit. Using the same 
state transition example as above. the equations 
are deli ned as follows. 

SO.E = S'.\ & S2 & SI & SO 
Enable SO clock when S3-SO = 1111 

Notice that the DE flip flop has the same 
efficiency as the JK. Additionally. with an DE 
type register the "E" term can be used as an 
asynchronous clock input for the flip-flop. 
Devices that incorporate DE type registers allow 
the user to synchronously or asynchronous)) 
clock macrocells on a macrocell by macrocell 
basis. 

FPLA Basics 

Signetics Corp. was the first PLO manufacture 
to appl) a programmable AND arra) with a 
programmable OR array with their PLS famil) 
of devices. The problem with the PLS dC\ices 
\\Crc that they contained \'cry little internal logic 
resources and were slow by today's standards. 

I 
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Several manufactures have taken the original 
concept of the PLS FPLAs to the next stage by 
incorporating input capture registers. buried 
registers. independent 1/0 and feed back routing 
channels and DE type registers. 

An architecture that incorporates the features 
required to design an efficient high speed state 
machine can be found in the GAL6002 device. 
The GAL6002 is the most complex low density 
PLD in the world. It should also be noted that 
the GAL6002 is provided in a 24 pin DIP or 28 
pin PLCC package and is input, output and 
power pin compatible to the industry standard 
22VIO PAL architecture. 

GAL6002 
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The GAL6002 is the most densely populated 24 
pin PLD available. The GAL6002 is an FPLA 
(Field Programmable Logic Array) which has an 
programmable AND array and a programmable 
OR array. The 6002 contains a total of thirty 
eight registers and two synchronous clocks. The 
device has input macro cells which can be 
configured as a D type register, a D latch or as a 
combinatorial input. These input macrocells can 
be individually configured by the user. The 
input macrocells feeds into the programmable 
AND array and then into the programmable OR 
array. Within the programmable OR array there 
are eight buried macrocells that feed back into 
the programmable AND array and ten output 
macrocells that can either feed back into the 
AND array or drive the outputs directly. 

The DE flip flops within the buried and output 
macrocells can be configured as a T, D, JK or 
SR type flip flop. The truth table below shows 
the input and output conditions for the DE flip 
flop. 

D E _Q_ ou!l!_ut 
() () Q 
() l () 

I () ~ 
1 1 1 

Table I. DE Flip-Flop Truth Table 

The following paragraphs provides the simple 
conversions of each of the JK, SR and T 
registers to the DE register. 

SR to DE: 
The original SR definition provides the 
Q_OUT.S and Q_OUT.R equations. These 
equations are then converted as: 

Q_OUT.D = Q_OUT.S 
Q_OUT.E = Q_OUT.S # Q_OUT.R 

JK to DE: 
The original JK definition provides the 
Q_ OUT.I and Q_ OUT.K equations. These 
equations are then converted as: 

Q_OUT.D = Q_OUT.J # (!Q_OUT & 
Q_ OUT.I & Q_ OUT.K) 

Q_OUT.E = Q_OUT.J # Q_OUT.K 



The term (!Q_OUT & Q_OUT.J & Q_OUT.K) 
is needed only if the toggle function of the JK is 
used. 

Tto DE or D: 
The original T definition provides the Q_OUT.T 
equation. This equation is then converted to DE 
as: 

Q_OUT.D = !Q_OUT 
Q_OUT.E = Q_OUT.T 

The toggle flip flop can also be converted to a D 
register as: 

Q_OUT.d = !Q_OUT & Q_OUT.T 

One of the main factors for the conversion is 
that the DE has the same product term and 
speed efficiency as the original registers. The 
6002 macrocell is also selectable with a 
synchronous or asynchronous clock on an output 
by output basis. The output logic macrocells 
outputs either feedback into the AND array 
through an 1/0 macrocell or exit the device 
through an 1/0 pin. 

If the devices output macrocell feeds back into 
the array the user may still use the UO pin as an 
input unlike other PLDs where when a signal is 
feed back. the UO pin is lost. The 6002 has 
15nsec Tpd and a 6.5nsec Teo. It should be 
noted that one GAL6002 is capable of directly 
replacing up to 2 1/2 22Vl0 with a signal 
device. 

Summary 

If control logic function are to implemented in 
programmable logic dC\ices it is then incumbent 
on the design engineer to use 
devices/architectures that best meets their design 
requirements. The state machine designer 
should establish a set a criteria by which to 
choose a solution to a particular state machine 
challenge. Parameters such as input and UO 
count, pin densities. number and type of 
registers. performance. price and power should 
all be C\·aluated when choosing a state machine 
device. 

I 
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Avoid the Pitfalls of 
High-Speed Logic Design 

This article is reprinted from Electronic Design- November 9, 1989. 
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DESIGN APPLICATIONS 

MAKE SURE THAT YOUR TURBO-CHARGED LOGIC 
SYSTEM WORKS BY PAYING As MUCH ATTENTION 

To PRINTED-CIRCUIT BOARD LAYOUT TECHNIQUES 
As To LOGIC DESIGN CONSIDERATIONS. 

AVOID THE PITFALLS OF 
HIGH-SPEED LOGIC DESIGN 

odern high-speed systems demand modern high­
speed logic families. Consequently, semiconduc­
tor houses have developed such product lines as 
ACT, FACT, and AS. But these systems also de­
mand that the lay-out of their boards conform 
with the results of distributed-element theory, 

otherwise ringing, crosstalk, and other transmission·line phenomena render 
those systems inoperative. Meeting this second requirement necessitates some­
thing more than a new product introduction-it insists on a change in the way 
logic boards are engineered. The logic-systems designer and the board-layout 
designer must work hand-in-hand if a viable high-speed board or system is to be 
produced. 

In the past, logic design and board layout were usually regarded as separate 
parts of the design process. First the system designer configured the logic, then 
the board engineer laid it out. That approach worked because slew rates were so 
low (0.3 to 0.5 V /ns) that crosstalk wasn't much of a problem; rise times were so 
long (4 to 6 ns) that ringing 
could settle down before a logic 
element could change state; 
and in general, the assump­
tions of lumped-element circuit 
theory usually worked out 
pretty well. 

For systems designed with 
today's high-speed logic cir­
cuitry, those underlying as­
sumptions no longer hold true. 
Today's slew rates are on the 
order of 2 to 3 V /ns, rise times 
are below 2 ns (frequently, be­
low 1 ns), and transmission-line 
phenomena, such as ringing, 
can be a problem for trace 

JOCK TOMLINSON 

High-current Logic circuit nitdling derice g1Gund plane 
g1Gundplane 

I\ 
~ -Gap_ 1/Bin. 

11. TO MINIMIZE NOISE, THEcrouncl 
plane should be fragmented into separate areas for 
noisy high-current devices and for sensitive logic 
circuits. For best results, the number of signal lines 
that cross the gap between the fragments should be 
minimized. 

Lattice Semiconductor Corp., P.O. Box 2500, Portland, OR 97208; (503) 681-0118. 

Reprinted with permission from ELECTRONIC DESIGN· November 9, 1989 
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lengths as short as 7 in. As a result, 
logic designers must take certain 
steps: 

•Use ground and power planes. 
•Control conductor spacings to elim­
inate crosstalk. 
• Make extensive use of decoupling 
capacitors. 
•Pay attention to ac loading. 
• Terminate lines properly to mini­
mize reflections. 

PLANE ADVICE 
For high-speed logic, ground 

planes aren't simply suggested for 
reliable board performance-they 
are absolutely necessary. It's essen­
tial that one layer of the board be as­
signed for a ground plane and that it 
cover as large an area as possible. A 
solid ground plane lowers the 
ground-return-path impedance as 
well as the device-to-device ground 
pin impedance. 

But a common ground plane for all 
of the circuitry in a system can cause 
problems by coupling noise from 
high-current switching devices into 
sensitive logic inputs. Therefore, the 
ground plane for such high-current 
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DESIGNING WITH 
HIGH-SPEED LOGIC 

Cet1tral system ground 

Circuit ground 

Logiccin:uits 

Hardware ground 

Noisy ground 

Hard drives, 
relays, 

lamps, etc. 

Chauis 

12. SEPARATE DEDICATED 
grounds should be supplied for the logic 
circuitry, noisy high-current devices, and 
the chassis. The three should come 
together at one point, the central system 
ground, which is usually located near the 
power supply. 

devices as relays, lamps, motors, and 
hard drives should be separated 
from· the logic ground. This can be 
accomplished by fragmenting the 
ground plane into discrete areas 
(Fig. I). 

But fragmentation causes prob­
lems of its own-it creates discontin­
uities in the characteristic imped-

ance of any transmission line that 
crosses the separation between frag­
ments. Therefore, for best results, 
boards should be laid out so that only 
two fragments are needed. The gap 
between those fragments should be 
kept as narrow as possible (an eighth 
of an inch works well in most applica­
tions), and the number of signal lines 
that cross the gap should be mini­
mized. Designers should also bear in 
mind that through-holes and vias 
subtract from the effective area of 
the plane, increasing its effective im­
pedance. 

As with grounding, an entire layer 
of the board should be designated as 
a power plane. Even though it is at a 
different potential, the power plane 
should be implemented in accor­
dance with the same concepts as the 
ground plane. Therefore, it should be 
fragmented when necessary to iso­
late noisy components from delicate 
logic circuits. 

A WELI.rGROUNDED SYSTEM 
In addition to properly designed 

power and ground planes, high­
speed logic systems require the es­
tablishment of a good, clean (low-

SIGNAL LINES BECOME TRANSMISSION LINES 

For the transmission line 
model illustrated in the di­
agram, the rise time ( tR) is 
less than the line propaga­

tion delay (T 0 ). In other words, a 
complete TTL level transition will 
occur before the pulse is received 
at the receiving end of the line and 
reflections (ringing) will result. 
The voltage change at point A on 
the line is expressed in Eq. 1: 

AV A= AV;nt(Zo I (Ro+ Zo)) 

Where: V;nt = internal voltage on 
the output of the driver; 

R0 = output impedance of the 
driving gate; 

RL = load impedance; 

Z0 = the characteristic line 
impedance; 

and VA= the source voltage at the 
sending end of the line. 

Because R0 is so small when 
compared to the line impedance, 
the change in voltage at point A 
(AV A) will approximately equal 
the change in internal voltage 
(AV;ntl· This voltage transition 
propagates down the line and is 
seen at point B after the line prop­
agation delay, T 0 . 

At point B, a portion of the 
wave will be reflected back to­
wards point A in accordance with 
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the formula (Eq. 2): 

Eq.2 

PL= (RL -Zo) I (RL + Z0 ) 

where PL• called the voltage re­
flection coefficient (rho), is the ra­
tio of the reflected voltage to the 
incident voltage. 

After examining Eq. 2, it should 
be evident that -1 ~ p ~ + 1. It 
should also be evident that there 
will be no reflected wave if RL = 
Z0-if the line is terminated in its 
characteristic impedance. Note 
that the reflected wave can, in 
principle, be as large as the inci­
dent voltage and of either positive 
or negative polarity. 

This analysis holds true for the 
sending end of the line, as well as 
the receiving end. That is, 

Eq.3 

Ps = (Ro - Zo) I (Ro + Zo) 
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DESIGNING WITH 
HIGH-SPEED LOGIC 

noise) system ground for reliable data line cross-couples or superim- creating a stub or a high-frequency 
performance. A clean system poses its signal onto the clock line, antenna. 
ground ensures less noise within the the device that the clock is driving Another step that can be taken to 
system, and thus ensures good, maydetectanillegalleveltransition. reduce crosstalk is to lower the im­
strong transistor margins. At least Methods to reduce crosstalk are pedance of those traces into which 
10% of the ground connections on the straightforward, though not partic- crosstalk is especially to be avoided. 
pc card should be connected to the ularly elegant. The coupling can be The lower the impedance that a trace 
system ground to reduce card-to- attenuated by separating the adja- presents, the harder it will be to 
ground impedance. cent traces as much as possible. The cross-couple a signal into it. 

Like the ground and power planes trouble with this approach is that Even with the use of power and 
of the individual boards, the overall available board real estate often Jim- ground planes on a pc board, decou-
grounding scheme should piing capacitors must be 
be fragmented with sepa- used on the Vn pins of ev-
rate conductors provided ery high-speed device. 
for the various sections of Those devices demand a 
the system. For example, +2 nearly instantaneous 
all relays, lamps, hard (a) change in current whenev-
drives, and other noise- t < 0 er they switch states. Be-
generating devices should cause the power plane 
have their own separate can't meet that demand, a 
ground path. The system's high-quality decoupling 
mechanical package (chas- (b) capacitor is required, oth-
sis, panels, and cabinet erwise the switching will 
doors) should have a dedi- cause noise on the V<T 
cated ground. And, of plane. 
course, the logic circuitry (c) A 0.1-µF multilayer ce-
should have a ground of its ramie (MLC) or other RF 
own. quality (low-inductance) 

Those three grounds capacitor should be placed 
should then come together on every fast-slew-rate cle-
at the central system (d) vice as close to the Vee pin 
ground point, which will as possible. The commer-
usually be located nearthe cially available DIP sock-
power supply (Fig. 2). This ets with built-in decou-
common-point grounding piing capacitors also work 
technique can also be very (e) well in this application. 
effective in reducing radi- Most designers, when 
ated interference (EM! they think of loading at all, 

and RF!). 13. WA VE PROPAGATION along a transmission line ;~in_1'._~~a~i~%sn~~I de lo~~: 
TAMING CROSSTALK occurs as follows: :rior to time zero, there is a steady-.tate voltage fe~red to as fan-~ut and 

Crosstalk-the undesir- of 2.5 V de on the hne (a). Al I= 0, the voltage al pomt A drops lo fan in But that type of 
able coupling of a signal on . 0.5 V,sending a negative pulse of-2 V tow~rd point B (b). At t = loading rarely presents a 
one conductor to one on a To, that negative pulse os reflected from pomt 8. It adds problem with today's 
nearby conductor-be- algebra1tally lo the 0.5 Von th~ lme and se~sa-1.~V pulse back state-of-the-art logic de-
comes an increasingly seri- toward pomt A (c). The renect1ons then contmue as m (d) and (e). vices. Much more signifi-
ous problem as slew rates go up. This its the possible separation to an inad- cant when designing with high­
signal coupling is made worse if the equate amount. speed logic are input and output ac 
second trace has a high impedance or Ground striping, or shielding, is an loading. 
if the traces run parallel to one an- effective way to reduce crosstalk 

) other for more than a few inches and and it makes better use of available INPUT CAPACITANCE 
' are spaced less than 100 to 150 mils board area. With ground striping, a 

apart. ground trace (the stripe) is run be-
Crosstalk can be catastrophic to a tween the two parallel traces to act 

logic board, sabotaging a conceptu- as a shield. If ground striping is 
ally flawless piece of logic design. used, through holes to the ground 
Forexample, ifaclocklineandadata plane should be placed every 1to1.5 
line run parallel to each other for inches along the ground strip to elim­
more than several inches, and if the inate the possibility of inadvertently 
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Because the input capacitance of a 
device impacts the overall perfor­
mance of the logic circuit, it should 
be examined before a particular de­
vice is selected for a design. To en­
sure specified performance, the total 
load capacitance that a device 
drives-including the distributed ca-

I 
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v, 

(b) 

I 4. IDEALLY, THE VOLTAGE at point B oscillates forever between +2.5 V and-
1.5 V (a). In reality, it will be a damped ringing (b). 

pacitance of the trace-shouldn't ex­
ceed the device's specified capacitive 
load. Most high-speed logic devices 
have a maximum loading of 50 pF. As 
a rule of thumb, the maximum load 
on any logic element should be no 
more than four to six devices for best 
speed/load performance. However, 
there are some high-slew-rate de­
vices on the market that have higher 
output drive capabilities. 

BEWARE OF AUTOROUTER 
The most common reason for not 

following the board-layout princi­
ples mentioned so far is having an 
autorouter do the layout. Autor­
outers do what they were designed 
to do very well: They place traces so 
as to make the most efficient use of 
the pc-board real estate. But most 
autorouters don't have the capability 
to determine which devices are high­
speed and which are not. This is 
where the logic designer must step in 

The following ten rules 
summarize everything 
the logic designer needs 
to know when designing 

with high-speed CMOS. 

1) Keep signal interconnections as 
short as possible. 

2) Use a multilayer PCB. 

3) Provide ground and power 
planes. Discontinuities in the 
planes should be avoided because 
reflections can occur from abrupt 
changes in the characteristic im­
pedance. 

and lay out sections, or islands, of 
high-speed logic by hand in order to 
avoid the pitfalls of designing with 
high-speed logic. 

TRANSMISSION LINES 
In addition to the common-sense 

layout considerations discussed so 
far, designers of high-speed systems 
must have at least a basic under· 
standing of transmission lines and 
proper termination techniques (see 
"Signal Lines Become Transmis­
sion Lines," p. 76). The reason: As 
frequencies go up, wavelengths 
come down to the point where they 
are of the same order as circuit­
board dimensions. Once that hap­
pens, any connection between de­
vices should be considered a trans­
mission line. The lumped-element as­
sumption is simply invalid above that 
point. 

The most common consequence of 
failing to consider the distributed na-

RULES TO REMEMBER 

4) Fragment the ground and pow­
er planes to supply separate sec­
tions for high-current switching 
devices. 

5) Use decoupling capacitors on 
every high-speed logic device (0.1 
µF MLC type) located as close to 
the V cc pin as possible. 

6) Provide the maximum possible 
spacing among all high-speed par­
allel signal leads. 

7) Terminate high-speed signal 
lines where tR < 2T D· 
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ture of a high-speed logic board is 
ringing, which is caused by multiple 
reflections from the ends of unter­
minated transmission lines. An un­
terminated line has no load imped­
ance (R1, = oo) and is therefore an im­
pedance-mismatched line. The be­
havior of this line when connected to 
a device with a fast slew rate can be 
understood from the following ex­
ample: Prior to time zero, there's a 
steady-state voltage of 2.5 V de at all 
points on the line (Fig. 3a). At t = 0, 
an initial TTL voltage transition 
from 2.5 V to 0.5 V occurs at point A 
(Fig. 3b). Time Tn later, the signal 
reaches point B and is reflected by 
the load reflection coefficient, PL· 

The input impedance of the device 
at point Bis very high with respect to 
Z0 ; RL can be approximated by infin­
ity. By plugging into Eq. 2 from the 
box (p. 76), the reflection coefficient 
approximately equals + 1. In other 
words, the voltage reflected by the 
load is equal to the incident voltage 
(Fig. 3c). The reflected wave passes 
back along the signal path toward 
point A (Fig. 3d). 

Repeating the calculations for the 
sending end of the line (point A), 
where R0 ;::: 0, you get a value for the 
source reflection coefficient, p8, of 
-1. In other words, there are reflec­
tions from the source as well as the 
load,, but the source reflects the in­
version of the wave that is incident 
upon it (Fig. 3e). 

Looking just at the behavior of the 
signal at point B, the single-step volt-

8) Beware of ac loading conditions 
within the design. Exceeding the 
manufacturer's recommended op­
erating conditions, especially for 
capacitance, can cause problems. 

9) When using parallel termina­
tion, put bends in all high-speed 
signal runs that go to more than 
one load. Use a termination load 
at the absolute end of the line. 

10) Create islands of high-speed 
devices on the pc board. This sim­
plifies board layout and ropes-off 
the high-speed areas. 



~ 
(•) +5.0Vdc 

lo 5/3Zo 

(b) +5.DVdc 1 5/2Zo 

~ 
(c) 

5. THE BASIC PARALLEL 
termination scheme works well but 
requires a separate 3-V supply (a). The 
Thevenin equivalent eliminates the need 
[or a separate supply, but dissipates 
extra power rrom the regular H supply 
(b). The use or a capacitor cuts de 
dissipation altogether while supplying ac 
termination (c). 

age transition at t = 0 leads to an end­
lessly oscillating signal· with a total 
voltage swing of 4.0 V-twice the 
original level transition. The voltage 
doubling comes about because the 
voltage at point Bis the sum of the in­
cident and reflected waves at that 
point (Fig. 4a). Actually, because of 
the non-ideal nature of a real circuit 
board (finite input and output imped­
ances, losses in the transmission 
lines, and so forth), p1, will be less 
than+ 1, and Ps will be greaterthan-
1. As a result, the reflections will be­
come successively smaller, causing 
the familiar damped ringing condi­
tion (Fig. 4b). 

If the ringing amplitude is large 
enough, it can cause the receiving de­
vice to see an illegal level transition 
and possibly result in spurious logic 
states occupying the logic design. In 
some cases, the amplitude of the 
ringing can actually be large enough 
to damage the input of the receiving 
device. 

TERMINATE YOUR TROUBLES 
The way to eliminate ringing on a 

transmission line is to terminate the 
line in its characteristic impedance at 
either the sending or receiving end. 
The most common way to terminate 
a line is with a parallel termination at 
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the receiving end (Fig. S). 
In the configuration (Fig. Sa), RL 

= Z0 and RL is pulled up to 3 V de. In 
principle, RL could be tied to ground, 
but TTI.,.compatible devices could 
not then supply the necessary drive. 

Solving for PL (Eq. 2), it can be seen 
that PL = 0. Terminating a line in its 
characteristic impedance results in a 
reflection coefficient of zero, which 
means that there will be no reflec­
tions or distortions on the line. Other 
than the time delay, T0 , the line will 
act as if it were a de circuit. It's im­
portant to note that even though de­
vices or gates may be placed at any 
location on the line, the terminating 
resistor should be placed at the end 
of the line. In no case should the line 
be split like a Tee to feed several de­
vices in parallel (Fig. 6a). Instead, it 
should be serpentined to feed them 
sequentially (Fig. 6b). 

The 3-V power source shown (Fig. 
Sa) appears at first to be a major 
drawback, but RL and the power sup­
ply can be expressed as a Thevenin 
equivalent running off the system 
power supply of 5 V de (Fig. Sb). This 
variant works well, but the designer 
should bear in mind that it dissipates 
additional power. 

REDUCING DISSIPATION 
A solution that dissipates less 

power than either of the others uses 
a capacitor to cut the de dissipation 
to zero (Fig. Sc). The recommended 
capacitor is a 0.1-µF MLC type. Sev­
eral manufacturers produce both ca­
pacitor-resistor and pull-up/pull­
down termination packs. The pull­
up/pull-down packs usually come in 
a single in-line package (SIP) with 
pins on 0.1-in. centers, while the ca­
pacitor-resistor combination comes 
in a standard 16-pin DIP. The most 
common SIP pull-up/pull-down re­
sistor values are 2200/3300, 3300/ 
4700 combinations. 

An alternative to a parallel termi­
nation at the receiving end is a series 
termination at the sending end (Fig. 
7). The idea behind serial termination 
is to make Ps = 0 and PL= +l. To do 
so, RL is made equal to infinity (left 
unterminated) and a series resistor is 
added at the source to make the over­
all source impedance equal to the 

10-21 

characteristic impedance of the 
line-that is, Rs+ R0 = ZoL· 

Making Rs + R0 equal to ZoL• of 
course, creates a voltage divider, 
which puts half of the signal ampli­
tude across the line and half across 
the series combination of Rs and R0 . 

Therefore, with the series termina­
tion, the amplitude of the transmit­
ted wave is half of what it would be 
without the termination. 

Interestingly enough, the unter­
minated receiving end of the line pre­
cisely compensates for this halving 
of the amplitude. The reason is as fol­
lows: At the receiving end, the half­
amplitude wave is received and a 
half-amplitude wave is reflected. 
But bear in mind that those are two 
separate waves whose amplitudes 
add at the point of reflection. As a 
result of this addition; the only thing 
seen at the receiving end of the line is 
a full-size pulse. 

The main disadvantage of a series 
termination is that the receiving 
gate or gates must be at the end of 
the line-no distributed loading is 
possible. The obvious advantage of a 
series termination over a parallel one 
is that a series termination doesn't 

(1) 

(b) 

16. SERPENTINING IS essential 
when terminating a line. Never split the 
line to feed parallel devices (a). Rather, 
feed them sequentially with a serpentined 
line(b). 

I 



require any connection to a power 
supply. 

Transmission-line effects must be 
taken into consideration whenever 
line propagation delays get up to the 
point where a signal transition can 
be completed before that signal can 
travel down a line, be reflected, and 
travel back to its starting point. In 

1~1 
17. THE SERIES terminauonneetts 

no pull-up supply. Its main disadvantage 
is that ii can't handle distributed loods. 
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other words. lines must be terminat­
ed when, 

2To=TR. 

CALCULATING DELAY 
Taking 2 ns as a typical rise time for a 
state-of-the-art high-speed logic de­
vice, how long can a board trace get 
before its propagation delay gets to 
be 1-ns long? For a pc board with a 
continuous ground plane and a sig­
nal trace on the adjacent layer, the 
propagation delay depends on only 
one variable, the dielectric constant 
of the board material. That delay 
time is given by: 

tpo = 1.017 (0.475 eR + 0.67)112 ns/ft 
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For a typical board constructed of 
FR4 material, eR (the dielectric con­
stant) is4.7 to4.9. If an averageeR of 
4.8 is used in the equation, then tp0 

turns out to be 1.75 ns/ft, which 
works out to 6.86 in.Ins. As a rule of 
thumb, then, any line that is over 7 in. 
long should be considered a trans­
mission line and approached accord­
ingly .D 

Jock Tomlinson, senior applica­
tions engineer at Lattice, holds a 
BSEE from Colorado State Uni­
versity. 



PLD - Design Methods Migrate Existing 
Designs to High-Capacity Devices 

This article is reprinted from EON - February 17, 1994. 
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PLD-design methods 
migrate existing designs 
to high-capacity devices 

Mike Trapp, Lattice Semiconductor Corp 

Moving to newer higher capacity programma­
ble devices can give you higher density and 
better performance. But if you use common 
CAE design tools, transferring your old 
design's description to the new device's devel­
opment environment may be difficult. PLD­
design methods help ensure that your design 
remains transportable. 

All CAE tools accept PLD-design methods. Thus, using 
PLD-design metho1l8 leads to a very simple method for mov­
ing designs to new types of PLDs. Using these methods helps 
you take advantage of the increased performance and lower 
cost of newer devices and lets you combine new designs with 
existing ones. 

Overcoming proprietary databases 
Each CAE vendor has developed a proprietary database 

for sharing circuit-design information among its own tool set. 
To transfer circuit-design information from one vendor's tool 
set to another's, you must perform a complex translation. 
This translation may misinterpret or drop information alto­
gether, yielding an erroneous result. 

The ostensible "industry-standard" Electronic Design 
Interchange Format (EDIF) netlist typifies this problem. 
EDU' can represent circuits at levels ranging from a com­
plete graphical, functional. and parametric representation to 
only a primitive functional representation. As a result, one 

vendor's EDIF netlist reader may not totally understand 
another's EDIF netlist. Consequently, using incompatible 
netlists would make your translation at least incomplete and 
at worst inaccurate. 

However, translation becomes simple and reliable if you use 
PLD-design methods to express your design. In particular, 
most designers use Boolean equations to describe their PLDs' 
functions because of the AND/OR architecture of PLDs. For­
tunately, because PLDs have become extremely popular as a 
"can-do-anything" circuit element, CAE vendors have inte­
grated PLD-development tools into their CAE tools. These 
tools produce Boolean equations in various formats, which 
you can easily translate from one to another, giving an accu­
rate and complete functional description of a circuit. 

To illustrate, consider the high-level description of a 10-
bit, up/down, preloadable counter in Listing 1 (see EDN 
BBS). This functional description uses ABEL 4.XX, a 
device-independent language. A device's description at 
this level does not translate easily to any specific PLD. 
However, you can use a PLD compiler to transform the 

BUS 

SIG1 

3-T0-1 
SIG2 MULTI-

PLEXER 

SIG3 

Fig 1-You can translate 3-state buses into 1-of-N selection func­
tions for implementing in a high-density programmable device. 
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FEEDBACK ITEMS 

OUTPUT 
MACROCELL 

TO OUTPUT 
BUFFER 

Fig 2-Boolean expansion may improve device utilization but can 
introduce feedback terms. 

high-level ABEL description into reduced Boolean equa­
tions (Listing 2 on EDN BBS)-the fundamental descrip­
tion of a 10-bit up/down counter. Now, you can move this 
Boolean representation of the counter to virtually any 
development environment with only minor changes. 

Because all mainstream PLD compilers produce reduced 

INPUT ROM DECODED 
GLOBAL ROUTING POOL INPUTS 

~~~~~~~~~~~~~~~~~~~~ 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
...L ...L .l. .l. ...L ...L ...L ...L ...L .l. .l. .l. .l. .l. .l. ...L ...L ...L 

equations with virtually identical syntax, migrating these 
equations from tool to tool is simple. For instance, the PDS 
tool from Lattice for developing devices in the company's 
pLSI family has an equation syntax virtually identical to 
ABEL's reduced-equations syntax. Similarly, the PLA files 
that ABEL, Mine, and CUPL produce all follow the standard 
rules for PLA-file syntax. 

You can even extend this technique of obtaining reduced, 
transferable equations from a schematic diagram. Many 
CAE companies include PLD compilers, with associated PLD 
libraries, in their design environments. With components 
from their PLD library, you can use the CAE tools to pro­
duce reduced Boolean equations that describe the schematic. 
You can then integrate these equations with functions 
expressed in a PLD-description language to form a set of 
equations that completely describes your circuit. The design 
tools may produce these equations in the familiar textual 
form or in an industry-standard format known as PLA (see 
box, "Interpreting PLA files"). 

If you capture your old designs in the form of these equa­
tions, you just follow a series of basic steps to implement 
them in a new programmable device: 
• Define the I/Os. 

PRODUCT TERM 
SHARING ARRAY 

RECONFIGURABLE 
REGISTER 

D J·KANDT 

1~~~~~c:A~\~~ ~ 
AND EXCLUSIVE OR iv iv M iv iv iv iv iv iv M M M M iv t-1 t-1 iv iv "o 
~D F 

MULTIPLEXER 
0 

1 ~ 

2 ~ ~3 
4 

~5 

~ 6 

7 

B 

9 

10~ 11 

12 

13 

f-..14 

:~ 
15 

16 

17 

18 

19 

AND ARRAY 

PRODUCT-TERM RESE~=D-
RESET 

CONTROL 
CLOCKO 

FUNCTION CLOCK 1 MULTIPLEXER 
CLOCK2 

PRODUCT· TERM CLOCK 

PRODUCT-TEAM OUTPUT 
ENABLE 

4 PRODUCT· TERM 
SHARING ARRAYS 

BYPASS 

l 
SINGLE 

PRODUCT-TERM 
SHARING ARRAY 

":" 

7+4 
PRODUCT-TERM 

SHARING ARRA VS 

11v 02 
MUL TIPLEXEA 

TO GLOB AL· 
GPOOL 
TPUT 
GPOOL 

ROUTIN 
AND OU 
ROUTIN 

[MULTIPLEXER [to 01 

~ 
1---1 00 
~ MULTIPLEXER 

0 

'-I J----1 

MULTIPLEXER}-

OUTPUT 
ENABLE 

Fig 3-The plSI logic block allows different product·term·sharing combinations for implementing various logic functions. 

EDN February 17, 1994 10-25 

I 



I 

l'LD-DESIGN METHODS 

Interpreting PLA files 
Listing A shows the PLA-formot file for 
the 10-bit up/down counter. The state­
ments preceded by #$ indicate that 
information is not necessary to the cir­
cuit description but moy be used by post 
processors such as litters. An example 
is the#$ PIN statement, which is on 1/0 
list of all signals entering ond exiting the 
device and may even indicate a speci­
fied PIN number. The plus (or minus) 
symbol following the pin name indi­
cates that the register node has a buffer 
or inverted between the register ond the 
output pin. Polarity designators hove no 
meaning for inputs or combinatorial out­
puts. 

The .i and .o statements indicate the 
number of inputs and outputs, respec­
tively. The number of inputs includes 
nodes feeding bock os circuit inputs. 
The number of outputs includes actual 
combinatorial signal outputs and signal 
outputs controlling the D input, the D 
asynchronous set, and the output­
enoble equations. 

The .type I statement indicates the 
format of the PLA file. The F format 
shows equations implemented in only 
positive logic, and the alternative FR 
format shows the equations imple­
mented in both positive and negative 
logic. 

The .ilb and .ob statements identify 
inputs and outputs, respectively, of the 
PLA file. Feedback nodes included as 
inputs have an . FB extension. The out­
puts also use dot extensions to indicate 
that the output signal is registered 
(.REG) or part of an exclusive-or equa­
tion (.Xl and .X2). 

The .phase statement indicates ii the 
signal should be complemented 
(.phase 0) or not complemented 
(.phase 1 ). The .p indicates the number 
of product terms required to define the 
circuit's function. The table following 
the .p statement defines the product 
terms. 

The table has two sections. The first 
section defines the inputs to the product 
term and has a column for every input 
defined. A minus sign in a row indicates 
the input for that column is a "don't 
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care" for that product term. A one or a 
zero in a column indicates that the prod­
uct is true when that input is a one or a 
zero, respectively. 

The output section reads similarly. 
This section has a column for every out­
put defined. A one in a column indicates 
that the product term defined in the 
input section is a product term required 
for that output. 

Following these rules, you would 
interpret the equations for Q9.REG as 
follows (Q9 .FB is the first output defined 
in the .ob section): When loodl is com­
plement, and 09 and cir are true, the 

product term becomes the output 
Q9.REG. When load!, cir, ce, and 
Q9 .fB are true, the product term 
becomes the output Q9 .FBn. And 
so on ... 

This file looks very cryptic, but it is 
actually a very compact way to 
describe large complex circuits. The 
PLA format is an industry standard; 
hence, tools that use it as input can inter­
lace with tools that produce PLA file as 
output. 

Listing A-PLA·format file 
#$TOOL ABEL 4.10 
#$DATE Mon Oct 5 14:41:381992 
#$TITLE 1 Obit up down loadable counter 
#$ TITLE Michael Trapp Lattice Semiconductor Oct 1990 
#$ MODULE _ 1 Obitctr 
#$ JEDECFILE count10 
#$ VECTORFILE _ 1 Obitct.tmv 
#$PINS 26 Osc OE 09+ 08+ 07+ 06+ 05+ 04+ 03+ 02+ 01+ 00+ loadl D9 D8 D7 D6 D5 

D4 D3 D2 D1 DO u_d ce cir 
.i26 
.030 
.type I 
.ilb Osc OE loadl D9 D8 D7 D6 D5 D4 D3 D2 D1 DO u_d ce cir 09.FB 08.FB 07.FB 
06.FB 05.FB 04.FB 03.FB 02.FB 01 .FB 00.FB 
ob 09.REG QB.REG 07.REG 06.REG 05.REG 04.REG 03.REG 02.REG 01 .REG 
OO.REG09.C 
08.C 07.C 06.C 05.C 04.C 03.C 02.C 01 .C 00.C 09.0E 08.0E 07.0E 06.0E 05.0E 
04.0E 03.0E 02.0E 01 .OE 00.0E 

.phase 111111111111111111111111111111 

.p 131 
---01---1--- 100000000000000000000000000000 
-1---111--- 100000000000000000000000000000 
-1------0010000000000 100000000000000000000000000000 
-1------0-11---1 100000000000000000000000000000 
-1------0-11--1- 100000000000000000000000000000 
-1------0-11--1- 100000000000000000000000000000 
-1------0-11-1- 100000000000000000000000000000 
-1------0-11-1- 100000000000000000000000000000 
-1------0-11-1- 100000000000000000000000000000 
-1------0-11-1-- 100000000000000000000000000000 
-1------0-11-1--- 100000000000000000000000000000 
-1------0-111--- 100000000000000000000000000000 

-1------001----00 000000001000000000000000000000 
-1------0-1---11 000000001000000000000000000000 
-1---1-1---10 000000001000000000000000000000 
-1---101----01 000000001000000000000000000000 
--0----1-1--- 000000000100000000000000000000 
-1----11---1 000000000100000000000000000000 
-1----01----0 000000000100000000000000000000 
1 000000000011111111110000000000 
o--------000000000000000000001111111111 

.e 
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• Compile and minimize PLD equations. 
• Add MSI and SSI functions. 
• Implement 3-state circuits, inversions, and preset/reset. 
• Combine all PLD source files into a single file. 
• Partition the circuit over the new device's logic blocks. 
• Import and verify the design. 
• Place and route the design using tools for high-density 

devices. 
• Assign the 1/0 pins. 

An upgraded PLD design begins with defining the I/Os of 
the new device based on the circuit developed for the old 
devices. You must first determine if the new design will be 
pad-limited (the new device does not have enough 1/0 pins) 
or gate-limited (the new device does not have enough inter­
nal logic). 

If the design is pad-limited, you must choose a device with 
a higher pin count or partition the design among two or more 
lower-pin-count devices. Using a higher-pin-count device 
raises the cost of the implementation and typically results in 
a large amount of unused internal logic. Multiple lower den­
sity devices typically incur a lower cost and better utilization 
of available logic. 

A gate-limited design mandates that you select a higher 
density device. This choice usually leads to unused 1/0 pins. 
You can take advantage of the unused pins to introduce addi­
tional functions, providing that the design does not become 
gate-limited again. 

A shotgun approach 
As a shotgun approach, you can simply draw a box around 

a circuit, count the 1/0 and gate requirements, and select a 
programmable device meeting this gate and 1/0 count. How­
ever this simple-seeming task can be complex, requiring 
good engineering judgment of how to best use the high-den­
sity device. 

Another straightforward method to estimate gate count 
uses SSI, MSI, and PLD equivalents. By adding the number 
of these circuit blocks required for a circuit, you can deter­
mine if the design fits into a high-density device. For 
instance, the generic logic block of the pLSI family of high­
density devices is roughly equivalent to one-half of a 20V8 
PAL device. Extending this approximation, roughly one MSI 
device or two SSI devices can fit into each logic block. 

To partition a circuit implemented with MSI, SSI, and 
PLDs, look for those nodes that are best suited for intercon­
nection within the new device. These nodes typically travel 
from one device to only one or two other devices. Assign 
nodes that connect to many devices to the new device's 1/0 
pins, unless you vacuum all the destination devices into the 
new high-density device. 

This approach eases determining whether you should 
implement a node within the high-density device or allocate 
it as an 1/0 pin. Signals that connect to a device not imple­
mented in the high-density device become I/O pins by 
default. Naturally, nodes going off-board must become 1/0 
pins of the high-density device. 

Clocking affects partitioning 
Clocking can also impact how you partition a circuit. If the 

circuit requires more clocks than are available in one of the 
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new devices, for example, you should partition the circuit 
over multiple devices, such that circuits with common clockH 
are in the same device. 

After rlefining the circuitry to be placed into the new 
rlevice, you begin converting the design into the new 
device's format. A typical design contains many PLDs and a 
few MSI and SS! devices. Most PLDs have an associated 
source-equation file, the source for design equations to be 
imported into the device-specific software for the new high­
density device. 

You should reminimize the old equations in the original 
PLD design before converting them into the high-density 
device's format. While designing with PLDs, you typically 
use only Boolean reduction. Advanced reduction algorithms 
available with standard third-party compilers can further 
reduce the number of product terms required for a function. 
These reductions produce a lower gate count and easier 
implementation into the high-density device. 

In some cases, the original design's documentation ma~· 
not be available. In such a case, you may have only to access 
a JED EC fuse map for some PLDs. You must decompile this 
fuse map into the source equations and reminimize the 
equations. The decompilers produce raw equations that 
have generic names for the equation's variables and para­
meters: 

Pin23 := PinOl & Pin02 
# Pin03 & Pin04 & Pines 
# Pin09 & PinlO; 

Pin23.0E= Pin06; 

Although functionally correct, these equations are diffi­
cult to read. Using the "search-and-replace" function arnil­
able on word processors, you can recast the generic signal 
names to match those on your schematic. Signal naming is 
important because development software and high-densit~· 
development software connect signals with common names. 

Add MSI and SSI functions 
At this point, you should add any MS! and SSI functions 

that you want in your revised design. You can easil~· inte­
grate MSI and SSI functions into the new device by creatinir 
a PLO-design file that emulates the functions and importing 
that file into the device's design software. Most MS! func­
tions fit neatly into a PLD, especially when a designer uses a 
PLD such as a 22V10 PAL device whose flexible architecture 
simplifies 1/0 and product-term allocating. The same proce­
dure for SSI devices is applicable, but combining AND. OR. 
and INVERTERS into the MSI- or PLD-design equation,; 
should be very simple. 

By using the same names on the inputs and outputs of the 
MSI PLD as on the schematic, the resulting file become,; 
ready for converting and importing. 

An alternative method for implementing these functions i,; 
to find the closest equivalent circuit to the desired function 
within the macro library provided with the high-density­
device software. Both of these techniques aim to rle\·elop 
functionally correct equations that best utilize the pLSJ",; 
architecture. 

You can then add PLD files containing MSI and SSI func-
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tions to the files containing the converted PLD equations. 
The goal is to derive functionally correct equations in stan­
dard compiler format. 

Convert 3-state signals to multiplexers 
Trying to implement 3-state buses within an ASIC or high­

density devices can create problems, such as causing outputs 
to go undefined. In fact, many high-density devices can't 
implement internal 3-state buses at all. As a solution, you can 
implement 3-state functions with a 1-of-N select function 
(Ref I). The inputs to the selector are the signals that would 
be tied together on the 3-state bus. The select lines of the 
selector are the individual 3-state enable signals. This tech­
nique, commonly used in ASICs, appears in Fig 1. 

You would rewrite the 3-state equations for a 1-of-N selec­
tor this way: 

BUSA SIGl=SIG lA 
BUSA-SIGl.OE=SIGl OE 
BUSB-SIGl=SIG lB -
BUSB=SIGl.OE=SIGl_OE 

BUSA SIG2=SIG 2A 
BUSA-SIG2.0E=SIG2 OE 
BUSB-SIG2=SIG 2B -
BUSB=SIG2.0E=SIG2_0E 

BUSA SIG3=SIG 3A 
BUSA-SIG3.0E=SIG3 OE 
BUSB-SIG3=SIG 3B -
BUSB=SIG.OE=SIG3.0E 

BUSA OUT= (ISIGl OE & !SIG2 OE) & SIG lA 
# (-SIGl OE & !SIG2 OE) & SIG 2A -
# ( SIGl=OE & SIG2_0E) & SIG_JA; 

BUSB OUT= (!SIGl OE & !SIG2 OE) & SIG_lB 
# (-SIGl OE & !SIG2 OE) & SIG 2B 
# ( SIGl=OE & SIG2_0E) & SIG_JB; 

The six original equations now appear as the two functions 
of BUSA_OUT and BUSB_OUT. Note that you do not need 
SIG3_0E. 

Assuming that the SIG_lA and SIG_2A expressions use 
typical PAL-type equations, they would have this AND/OR 
structure: 

SIG lA= SIGAl & SIGA2 & SIGA3 
# SIGA4 & SIGAS & SIGA6; 

SIG 2A= SIGBl & SIGB2 & SIGB3 
# SIGB4 & SIGBS & SIGB6 

Then the selector equation becomes 

BUSA OUT= (!SIGl OE & !SIGl OE) & SIGl & SIG2 & SIG3 
# (ISIGl OE & !SIGl OE) & SIG4 & SIGS & SIG6 
# ( SIGl-OE & ISIG2-0E) & SIGBl & SIGB2 & SIGB3 
# ( SIGl-OE & ISIG2-0E) & SIGB4 & SIGBS & SIGB6 
# ( SIGl=OE & SIG2=0E) & SIG_3A; 

The AND function on the output enables (SIGl_OE, 
SIG2_0~~) does not increase the number of product terms 
required to implement the various bus-signal functions. This 
result holds true for product-term-oriented architectures, 
such as the pLSI devices. 

Investigate inversions 
Given the wide variety of device architectures, you should 

investigate active-high vs active-low internal signals to 

achieve the highest utilization of the device's resources. The 
following equation is an example: 

!OUT= INl & IN2 & IN3 # IN4 & INS & IN6; 

If you can't implement this equation with a hardware invert­
er, you can use Boolean expansion to produce an alternative: 

OUT=!INl # !IN2 # !IN3 & !IN4 # !INS # !IN6; 

This equation requires seven product terms as opposed 
to two when implemented into a PLD-type device architec­
ture like that in the pLSI devices (Fig 2). The expanded 
Boolean equation also requires two extra feedback terms to 
implement the OR-AND function in an AND-OR device 
architecture. 

Define preset/reset mechanism 
A frequently neglected, but nonetheless necessary, 

requirement for digital designs is a reset mechanism. All 
state-machine designs should have a known power-up 
state. If you attach a reset line to all your state-machine 
registers, such a line would unnecessarily use significant 
routing resources. The reset mechanism should take 
advantage of the hardware-reset resources available in the 
new device. You should remove individual reset signals 
from your design equations and instead use hardware 
reset. 

Many programmable-device architectures provide only 
reset and no preset mechanism. In these cases, you can com­
plement outputs requiring a preset signal and still use the 
hardware reset. Alternatively, you can make the preset func­
tion synchronous by adding a preset term into the design's 
equations. 

Last, when placing new logic in the high-density device, 
you should partition that logic into available logic resources. 
For the pLSI family, you simply write Boolean equations or 
use the available macros. With the exception of a few key­
words, you can enter the equations just as you would using 
third-party design tools. 

Combining source files and partitioning 
The *.DOC files produced by third-party compilers come 

in an industry-standard format. These files contain reduced 
equations derived from the source file, JEDEC maps, high­
level state-machine language, truth tables, and standard 
equations. You should combine all the individual PLD and 
MSI *.DOC files into a single source file for partitioning over 
the high-density device. 

Using a pLSI device as an example, you can collect equa­
tions into groups of four outputs to partition the PLD equa­
tions to fit into the four outputs of the pLSI device's logic 
blocks (Fig 5). (You must place headers and trailers around 
the four equations to direct the pLSI design software to par­
tition the equations into a particular logic block.) 

The software then maps the equations into the logic block's 
18 inputs, 20 product terms, and four registered or combina­
torial outputs. Additional logic capacity results from prod­
uct-term sharing among the four outputs and an optional 
exclusive-OR gate fed by a product term and an AND-OR 
term. 
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The final conversion step is defining the I/O cells. The 1/0 
cell for the pLSI device's definition is 

SYM roe IOXX 1; 
XPIN XSIGNAME PIN# LOCK#; 
IBl/OBl {SIGNAMEIN/SIGNAMEOUT,SIGNAMEIN/SIGNAMEOUT); 
END; 

(Because the pLSI software routes the pLSI devices accord­
ing to signal name, it automatically connects all 1/0 cells to 
the proper internal nodes.) 

Import, verify, and lay out the design 
Once you have partitioned your design over the new 

device(s), you must import the device's source file into the 
design software for verifying, placing, and routing. You then 
follow the steps outlined for the device's development envi­
ronment. 

This technique for creating a design for a programmable 
device builds upon PLO-design methods. In summary, the 
following guidelines can simplify your efforts: 
• Decide if the design is 1/0- or gate-limited. 
• Choose the appropriate new device. 
• Use as many of the original Boolean functions from low­

density source files as possible. 
• Convert 3-state outputs to 1-of-N multiplexer outputs. 
• For reset functions, use the global reset for the entire 

device or asynchronous reset for specific logic resources. 

• Remain within the logic resources when partitioning the 
circuit. 

Following this method brings you the significant manufac­
turing benefits of new generations of programmable devices: 
smaller boards, simpler test procedures, faster development, 
and fewer parts in inventory and assembly. l!iiiJ 

Reference 
1. Small, Charles H, "Where CMOS rules, multiplexers 

slave," EDN, August 5, 1993, pg 57. 
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In System Programmable Logis; in High Volume Manufacturing 
Jock Tomlinson, Field Application Manager 

Lattice Semiconductor Corporation 

Introduction 

With systems and PC boards continuing to decrease in 
size with increased logic functionality, combined with 
the high integration levels of today's logic devices, 
there has never been greater pressure on board level 
testability. Traditional board test methodologies are no 
longer adequate for today's highly integrated systems. 
Several IC manufactures are attempting to address this 
problem by supplying devices which actually aid the 
test engineer in their testing of the board. 

The challenge for today's design and test engineers is 
to design in a comprehensive board test methodology 
while at the same time reduce the cost of test fixturing. 
As the PC board becomes more and more complex it 
becomes harder and more expensive to have a bed of 
nails test to test each portion of the logic on the board. 

Help comes from an unlikely source, In-system 
programmable logic or ISP HDPLDs. In system 
programmable logic can aid in virtually evc:cy stage of 
the product design and manufacturing cycle, up to and 
including installation at the customer. However this 
paper will focus specifically on the high volume 
manufacturing and testability areas. 

In System Programmability (ISP), the ability to 
program and reprogram logic devices while "in­
system". This concept is being pioneered primarily 
with High-Density PLDs (hereafter referred to 
collectively as HDPLDs). 

ISP is revolutionizing the system designs of the 90's. 
ISP is an enabling technology that allows designers to 
define and develop systems with capabilities previously 
unachievable. With ISP technology, Vutual Hardware, 
the concept of hardware as Oexible and easy to modify 
as software, becomes a reality. Hardware functions can 
be programmed and modified real lime to expand 
product features, shorten system design and debug, 
simplify field upgrades, and perhaps most importantly, 
enhance product testability. 

Technology Overyiew 

The HDPLDs available on the market today can be 
categorized into four different and distinct CMOS 
technologies; Anti-fuse, SRAM, EPROM (UVCMOS) 

and E2PROM (E2CMOS). Of these four technologies, 
only three offer reprogrammability. 

Of the three ~rogrammable CMOS technologies, only 
SRAM and E2CMos provide in-system 
reprogrammability. UVCMOS can only be 
reprogrammed after the device bas been erased by 
exposure to UV light (up to 20 minutes erasure time). 
The following manufactures offer in-system 
reprogrammability: Lattice Xilinx, AT&T and 
Concurrent. 

In-system programmable and reprogrammable devices 
can be programmed, erased and reprogrammed while 
soldered directly to the printed circuit board (PCB). 
The actual implementation of ISP defers slightly 
between manufactures but the major concepts are the 
same. In circuit reprogrammable logic devices program 
and reprogram using a single S Vdc supply and either 
a serial or parallel programming interface for the 
loading and programming of binary bit patterns 
(JEDEC files). Conversely standard programmable 
logic devices require a super voltage (typically over 12 
volts) to be applied to program and erase. 

Reconfigurability for Test 

Testability 

Device board level testability is becoming the limiting 
factor in the high-tech manufacturing arena, the 
success or failure of a state-of-the-art product often 
depends upon the time rcquiJed to build that product. 
In the case of products incorporating dedicated 
microprocessors, data transmission circuiuy, or other 
complex electronic hardware, most of the time-to-build 
is consumed by testing and integration. 

Advances in packaging technology have allowed the 
development of smaller and more dependable carriers, 
and have facilitated the onset of exttemely high 
density, .lights-out", automated manufacturing. 
Advances in a number of interrelated areas (such as IR 
soldering, pick-and-place, adhesives, sensor 
tecbnology,etc.) have opened the way to high density 
assembly techniques that would bave been considered 
impossible only a few years ago. Although not 
commonplace, some siz.c and/or weight critical 
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products are currently built using a number of unique 
bulk-reducing construction techniques. Assembly 
processes which effect double-sided surface mount. 
chip-and-wire with epoxy cover, dense pack SIPs, or 
sandwich-mounted flat-packs are all valid means of 
producing a smaller, lighter, and more reliable final 
product. Unfortunately, highly advanced high density 
products are, at best, painfully difficult to test, and can 
be utterly impractical to repair. 

In the manufacturing environment. where replacement 
parts. known good (golden) prototypes, and 
sophisticated test equipment are available, the major 
bottleneck to testing is related to circuit access. Quite 
simply, many device packages and the boards or sub­
assemblies in which these packages are incorporated 
have few to no internal access paths. This is due. in 
some cases, to the density and placement of device-to­
board interconnects (i.e., adjacent, stacked, double­
sided. sandwiched, or epoxied surface mount. .. ). In 
other cases it can be a result of package pin-<:ount 
limitations (de-rated LCC,PLCC, pin-grid. or ceramic 
hybrid packages ... ). In rare i.nslances, it can even be 
due to manufacturing or marketing concerns (sync, 
async, or mixed state machines with secured control 
patterns and/or "trap" states ... ). It becomes literally 
impractical to attempt to drive or receive test signals to 
or from a unit under test (UUT) from any physical 
location other than the designed-in system-level 
contact points. 

This situation often renders externally applied test 
solutions inefficient or unreliable. The consequences, to 
automated test. are clear. Feedback loops cannot be 
eliminated. Test (stimulus) vectors cannot be inserted. 
Response vectors cannot be captured. Digital logic 
"lumps" cannot be simplified. State machines cannot 
be reduced. Asynchronous control paths cannot be 
opened or manipulated. By default. the product or sub­
assembly will be verified via some form of BIST (built­
in self test) or functional (power-up) diagnostics or 
may not be tested at all. BIST, even when implemented 
during the early stages of a design, it is expensive in 
terms of design time, real estate, and parts count. 
Functional diagnostics (F-diags), at either the system 
or sub-assembly level, are expensive in terms of 
development and support. Non-test is expensive in 
terms of raw yield. None of these solutions arc either 
comprehensive or comfortable. As circuit complexity 
continues to increase, driven by the synergctic 
advances in electronic technology mentioned above, 
the bottleneck(s) associated with high volume 
manufacture cannot but worsen. Existing approaches to 
BIST, OFT (Design For Test), and F-diags, will 
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become more expensive and less effective. Current 
uur access techniques will become more costly and 
less reliable. Only a radical departure from traditional 
automated test practices and procedures will be able to 
provide a cost effective solution to tomorrow's test, 
diagnostic, and verification challenges. 

Help comes to the test and manufacturing community 
from an unlikely source, in system programmable high 
density logic devices. The ISP approach to BIST was 
to add serial networking capability to the PCB. With 
the addition of ISP HDPLDs, independent synchronous 
serial port capability can help uncover hidden logic. 
The result is an entirely new approach to testability, 
RFT (Reconfiguration For Test). Like the IT AG­
MSDS 4-wire serial interface (a.k.a. IEEE Pl 149. l 
proposal), the ISP protocol defines a clock input, a 
serial data input, a mode/control input, and a serial 
data output. 

The serial output of one device can be connected to the · 
serial data input of another, thus allowing an unlimited 
number of devices to be cascaded. 

(NOTE: The ISP serial communication protocol is 
NOT IT AG-MSDS compatible! ISP devices do not 
incorporate compliant IT AG-MSDS instruction, data. 
or identification registers.) Also like the IT AG-MSDS 
4-wire serial interface, the ISP protocol can be 
visuali7.ed as an on-board, synchronous, serial FIFO 
(First-In, First-Out), ring style, local-area-network for 
devices. An off-board host (or communication master) 
can communicate with any device on the ring by noting 
its' relative position and by appropriately transmitting 
data through the FIFO loop. An ISP device can be 
completely crascd,complctcly examined, and 
completely rcpatterned via the ISP protocol. No 
unusual voltages or control signals (beyond the signals 
ncccssary to cxcrcisc the FIFO) arc required. 

All the voltage/currenl sources, timing control 
circuitry, pulse generators, and algorithmic state 



generators arc built into the device itself (EECMOS). 
This capabili~· allows ISP based hardware to be 
modified, or reconfigured. at any point in the life cycle 
of any given unit or sub-assembly. Thus an extremely 
complex circuit, composed of interlocked state 
machines of different types, can be reconfigured into a 
simpler. more easily tested, configuration. In the 
factory. feedback loops can be re-routed or eliminated. 
Latches and/or memory elements can be reduced or 
isolated. Signal paths into the core of an inaccessible 
"lump" of hardware can be opened. Test vectors can be 
introduced without back-<irive. In brief, all of the 
testability problems associated with HDPLO based 
designs which include feedback or asynchronous 
paths.can be addressed without the need for physical 
access to an implementation. 

How ISP can solve potential test problems, let us look 
at the manufacturing needs of a large-volume,medium 
scale. high speed digital logic design. For the sake of 
argumenl we Y>ill assume that all OFT (design for 
testability) SSI and MSI functions have been 
implemented using ISP HDPLO devices This means 
that all the A TE/ ATP (automatic test 
equipment/automauc test procedure) defeating nuances 
of a typical small to medium scale logic design can be 
circumvented. We will further assume that this is a 
consumer application. and that in-system logic 
reconfiguration. field seMce access. and design 
securi~ are not an issue. This means that the ISP 
protocol interface( s) can be brought to a spring pin 
(pOgo-pin) compatible pad array on the board or 
substrate. and that electrical access can be achieved via 
a ~pica! vacuum or clamp type fixture. To be brief. we 
will describe the design application as a "board". In 
reali~ tlus application could as well be any type of 
module or assembly incorporating logic devices. 
With any PCB or cucuit assembly there is a 
quantifiable level of testability that is achievable, 
which ts dependent on the complexity of the board 
design. 

In an attempt to quantify this uncenainty. a board is 
typically assigned a "fault-coverage" rating. Good 
(highly testable) boards are rated at 70% to 99"/o. Bad 
(difficult to test) boards are rated at 70% and under. 
The rating is usually described as "stuck-at fault 
coverage". This is due to the theory that any function­
inhibit1ng failure can be traced to a "stuck" node or 
equivalent. Given enough time and effort, anything 
can be tested well. The reason many boards receive a 
low fault-coverage rating is because: 

10-33 

I. 2 .2.A 

(I) The resources necessary to improve the rating by 
creating a better test exceed the anticipated savings 
which will be realized throughout the product's life 
cycle by repairing defective boards identified by the 
better test. 

(2) The resources necessary to perfonn an improved 
test on a given Jot of boards exceeds the anticipated 
savings which will be realized by repairing defective 
boards identified by the improved test. 

NOTE: This analysis often does not include the cost to 
salvage defective boards identified by the customer or 
by the end-user. 

Boards which fail in service must often be replaced or 
repaired at any cost. Thus, in the case of an unusually 
long product life cycle, there may be ongoing and 
increasing pressure to improve the fault-coverage of a 
given board or sub-assembly due to a high field failure 
rate. Statistically, the logic circuit configurations 
which most often cause a loss of confidence in the 
functionality of a new-board are typified in the 
implementation of a multiple-device state-machine. 

The design function of an ISP device is to permit the 
device to be repeatedly reprogrammed, via the 
programming interface, after permanent installation. 
This provides two important secondary capabilities 
which, as a side-effect, eliminate the loss of confidence 
which HDPLDs, programmed and arranged as 
multiple-<ievice state-machines. normally introduce 
into a logic design. Essentially, any multiple-<ievice 
state-machine, or any logic circuit which incorporates 
OFT violations nonnally associated with a multiple­
device state-machine, can be effectively tested if the 
components have an ISP compatible interface. 

ISP HDPLOs have the capability ofbemg externally 
interconnected (SDOUT to SDIN). This allows the ISP 
device to be configured in a serial cascadeable 
arrangement. The ISP "daisy chain" allows all ISP 
compatible devices to be verified independent of the 
function or placement of~· given device. The ISP 
protocol interface is a very sunple, low speed, 
synchronousring, which can be quickly and easily 
verified by A TE or by entry-level test personnel. Given 
a verified "daisy chain". confidence in the functionali~ 
of the individual devices in the chain approaches 90%. 
Thus the devices which were previously the most 
difficult and expensive to verify have become the 
easiest and most cost effective to verify. 
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Once the chain is verified, any or all of the devices in 
the chain can be reprogrammed with special self-test 
patterns. or may be reprogrammed to accept A TE 
originated stimuli or to drive A TE receivers. 

Given a "daisy chain" which has accepted a stimulus 
and generated a response which does NOT depend 
upon the design function(s) of any adjacent non-ISP 
devices, confidence in the functionality of the 
individual devices in the chain exceeds 90%. Thus the 
portions of a design which previously exhibited the 
worst fault-coverage rating now exhibit the best rating. 

A verified ISP "daisy chain" greatly facilitates access to 
and verification of adjacent non-ISP devices and 
modules. An entire ISP chain or any portion or device 
may be programmed such that all inputs and outputs 
remain in a high impedance state whenever the device 
is powered-up or put into the programming mode. 
This capability allows a board to be divided into small 
"lumps" of logic which tremendously reduces the 
resources required to generate test software. A major 
cause of new-board mortality, excessive back-drive 
current, can be completely eliminated via the 
thoughtful placement of ISP compatible devices by an 
RFT (reconfiguration for test) conscious design 
engineer. In the event of an unusually difficult to test 
"lump", an ISP chain can be programmed to serve as a 
source of elementary test stimuli. Simple counters, 
decoders. A TE controlled enable/disable signals, A TE 
controlled read/write signals, and the like, can be 
reprogrammed into an ISP chain via the ISP interface. 

This new functionality can be entirely dedicated to an 
intermediate step in the test process for a new-board, 
and the chain later returned to its primary function 
after the non-ISP portions of the new-board are 
satisfactorily verified. This capability, is referred to as: 
Reconfiguration For Test (RFT) 

Unfortunately. such practices extract a high price in 
tenns of production costs (extra gates, solder holes, 
board area. etceteras) and in terms of performance (Sos 
to JOns per A TE controllable gate. infant mortality due 
to back drive related stress). In the absence of 
traditional OFT, the price extracted is in terms of fault 
coverage and diagnostic engineering resources.These 
problems can all be solved by using ISP protocol 
devices where ever feedback signals need to be 
generated or interpreted. RFT allows feedback loops to 
be opened. eliminated,or tied to a test node. Given an 
unused input and an unused output on an ISP protocol 
device used to generate a feedback signal. that signal 
can be routed to the unused output where it may be 

sensed by A TE without influencing the UUT. 
Additionally, the unused input can be routed to the 
portion of logic which is normally driven by the 
feedback. Thus the A TE itself is made into a series 
component in the asynchronous feedback loop. Once 
the feedback signal has been examined by the A TE, a 
replica can be created and driven back into the logic 
normally driven by the feedback signal. 

This serves the intent of the traditional OFT 
requirement for physical interruption of asynchronous 
feedback loops, but without the need for switches or 
jumpers. It allows an electrical interruption in the 
feedback circuit, but without propagation delays due to 
extra gates, and without potential stress failures due to 
excessive backdrive. Overall, the use of ISP de\ices in 
critical asynchronous feedback circuits allows: 

(I) A reduction in time required to achieve 
acceptable fault coverage; 

(2) A reduction in resources required to achieve 
acceptable fault coverage; 

(3) No performance penalties; 
(4) No backdrive overstress; 
(5) Minimal additional hardware; 
(6) Full OFT compliant loop control and 

interruption. 

Reduction of tight hardware kernels In any system 
design there are invariably certain sections or modules 
which are uncompromisingly speed critical. An 
example of such a speed critical logic module or sub­
module would be the address decode and access 
arbitration circuitry for a multiple-port cache RAM 
bank. Fundamentally, the response time of such a 
circuit is so critical that no allowance can be made for 
added functionality or for control which does not 
enhance the primary design goal or which, at a 
minimum, incurs no performance overhead. This 
includes any circuitry which might facilitate testability. 
As a rule, such circuits constitute less than 200/o of a 
typical system's real estate and consume more than 
80% of the diagnostic resources applied to that 
particular system. This is not a comfortable 
situation.but until recently the economics which 
evaluate the return on diagnostic-related expenditures 
(versus the life-cycle of a system or viability of a 
manufacturing process) have mandated this style of 
diagnostic resource allocation. The usual approach to 
testing such circuitry (since it is known in advance that 
some compromise in both fault coverage and fault 
isolation will have to be made), is to attempt to model 
the group of devices that make up the perfonnance 
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critical ponions of the system as though they were a 
single MSI or LSI full custom component. 

This requires considerable ingenuity on the pan of the 
diagnostic engineer since be/she must generate a 
complete set of test software/patterns for this pseudo­
device as though it were an outside vendor's 
unsupponed new product. This approach can be 
tremendously improved via the use of ISP HDPLDs to 
implement the performance critical portions (and 
therefore the least A TE accessible portions) of any 
given system. Since ISP HDPLDs are state-of-the-art 
CMOS programmable logic devices, there is no 
performance penalty. A "threaded signal" performance 
critical logic circuit can be completely repattemed, 
many times.during the performance of an A TE 
program. to allow the ISP protocol devices to be fully 
tested. Also. given a high enough percentage of ISP 
protocol devices in any group of devices which make 
up a performance critical design. even non-ISP device 
testability can be improved by using the ISP HDPDSs 
to implement A TE access paths during the execution of 
an A TE program. 

Although more diagnostic resources (testability guru 
time) are required to implement an ATE program 
which includes ISP device RFr control array patterns. 
the o,·erall savings in time required to test a tight, 
performance critical hardware module. is actually 
reduced. This allows increased fault coverage and 
greatl~ increased fault isolation. but with an overall 
reduced demand for resources.Trade-offs can be made 
which allow greatly increased testability without the 
expenditure of ei..-ira resources. or which provide a net 
savings in diagnostic resource utilization without any 
testability loss. 

Using ISP to increase visibility into the board in the 
previous RFT discussions. little mention has been 
made regarding the tremendous opportunities offered 
by ISP protocol devices for increased visibility into a 
new-board during the ATE/ATP (automatic test 
equipment/automatic test procedure) portions of the 
manufacturing process. Points mentioned earlier deal 
mainly with single function. lumped logic modules, 
constructed partially or even entirely of ISP protocol 
devices. While this perspective encourages increased 
fault coverage and better fault isolation of performance 
critical circuits and/or multiple-device state-machines 
via the introduction of RFr principles, it does not 
adequately describe the benefits available by using ISP 
protocol devices to partition an entire new-board or 
system for the purpose of enhancing system-level 
testabili~'. 

1.2.2.A 

Most system-level designs incorporate a varie~· of 
special-purpose devices (example: RAMs. ROMs. 
UARTs, controllers, processors, etc.) which are nestled 
among, and interconnected by. a large quantity of 
general purpose ("glue• chips) devices. In the last few 
years, PLDs and HDPLDs have come to replace many 
of the older SSI and MSI "glue• devices. But for most 
practical purposes, a HDPLD can be conceptually 
classified as a multiple SSI and MSI devices 
breadboard in a package. From a testability viewpoint, 
HDPLDs offer a reduction in "glue"device package 
count, but not in logic complexity or in density. In an 
average large-volume, medium scale. high speed 
digital logic design, HDPLDs will often account for 
20% or more of the logic device package count. 
HDPLDs, in this type of application, are not famous for 
improving either the fault coverage or the fault 
isolation of a logic design. ISP HDPLDs. however, 
offer exactly this benefit. Since ISP HDPLDs can be 
serially reprogrammed, it is possible to verify the 
correct operation of a ISP device's internal logic CA 
(control array, or fuse map) via programming interface 
"daisy chain". Verification of any given device's CA 
implies a very high probability that the entire device is 
functional. Once an entire chain bas been verified, this 
string of reprogrammable logic devices, extending into 
a logic design. can be used to improve the visibility 
into a new-board. 

The simplest means of improving visibility is to use the 
ISP HDPLDs as test signal routing switches. Given a 
single A TE accessible input to an ISP device, any or all 
of the device's outputs may be programmed to track 
that input. Likewise, given a single A TE accessible 
output any or all of the device's inputs may be 
programmed to be tracked. If the ISP HDPLDs have 
interconnected inputs and outputs, test signals can be 
routed in and out through any number of discrete ISP 
devices. (Note: This type of testability enhancement 
generally requires that a design be implemented with 
RFr in mind). More complex, is the use of a verified 
ISP chain to generate simple algorithmic test patterns 
for the stimulation of non-ISP devices down-stream. 
Since most HDPLDs perform very well as sequential 
synchronous state-machines, a device or series of 
devices with one or more A TE accessible inputs can be 
programmed to generate a deterministic output pattern 
in response to any combination of A TE generated clock 
or data signals. 
In other words, an ISP HDPLD can be used as pan of 
an ATE/ATP test solution for difficult-to-access non­
ISP portions of a logic design.. (Note: This type of 
testability enhancement always requires that a design 
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be implemented with RFT in mind.) Still more 
complex. is the use of a verified ISP chain to capture 
simple synchronous response signals from non-ISP 
d~ices up-stream. Because registered outputs work 
very well as serial shift registers, a device or series of 
devices llith one or more A TE accessible outputs can 
be programmed to capture several sequential logic 
values sensed by any or all of the device's inputs. In 
other words. an ISP HDPLD can be used to capture the 
results of several successive test patterns and can even 
perform elementary processing to facilitate signature 
analysis. Ultimately, a multi-function (generic) system 
can be designed such that one of the target operations 
for the design is to allow some form of A TE to 
thoroughly exercise a thorough subset of all possible 
logical functions. Such a system would be flexible (due 
to RFT capabilities) enough to allO\\· every device­
e>.1ernal signal conductor to be individually exercised. 

The A TE should be able to apply a combination of 
random and tailored test vectors to any device or 
multiple-device hardware kernel and to sense the 
subsequent responses via any signal conductor. This 
type of testability enhancement would utilize ISP 
HDPLDs as though the ISP devices themselves made 
up a serially accessible distributed test processor, and 
as though the logic CA patterns for a chain of ISP 
devices acted like individual test processor instructions. 

We have seen how ISP HDPLDs can help in the 
testability of complex logic boards, however there arc 
still several others areas in the product life cycle that 
also benefit from ISP. 

In System Reprogrammability at the Prototype Stage 

During any system design cycle, major board building 
blocks such as microprocessor and RAM arc selected 
first. Decisions regarding system logic tend to be 
deferred to the later stages of the design process. 
When using ISP devices, the designer can fully 
populate his prototype board with its major building 
blocks. interconnecting all functions with 
programmable logic. Design changes, whether they 
require added or modified logic, can be made in 
minutes using ISP HDPLDs. 

Manufacturing Advantages 

At present. there arc no auto-handlers capable of 
handling the programming of the higher pin counts 
associated with today's HDPLDs. As a result, all non­
ISP high pin count devices must be programmed by 
hand, using a standard logic programmer. 

It is a non-trivial task to insen a high pin count, small 
lead pitch device into a programming socket adapter. 
program. label (or mark) and re-inventory the device 
without bending the delicate package leads or pins. 
Auto-inserting devices also increases the risk of 
exposing the devices to potential ESD environments. 

Field Upgrades 

ISP HDPLDs provide an ideal way to reconfigure 
boards and/or upgrade product features in the field. 
Using conventional logic technology, once a system is 
installed at a customer location, it becomes very 
expensive and difficult for the supplier to upgrade the 
customer to the latest hardware revision, fix hardware 
bugs or enable hardware options. 

HDPLD Device Security 

Most ISP HDPLD devices, even though programmed 
on board. can still assert the security feature 
eliminating the risk of the JEDEC pattern being read 
out of the device. If the ISP requires a new or updated 
JEDEC pattern, the device is erased (which is done 
automatically before the programming), a new pattern 
is programmed into the device and the security cell is 
reasserted. 

Conclusion 

The challenge for today's design and test engineers is 
to design in a comprehensive board test methodology 
while at the same time reduce the cost of test fixturing. 
As the PC board becomes more and more complex, it 
becomes harder and more expensive to have a bed of 
mails test to test each portion of the logic on the board. 
Therefore the test engineer must now work hand-in­
hand to find solutions to these problems. Fortunately, 
there arc options available like ISP HDPLDs to assist 
in the debug and manufacturing test of complex PCBs. 

Higher product quality and reliability can result from 
the superior test coverage ISP offers. Special test logic 
can be programmed temporarily into the hardware to 
facilitate exhaustive product testing. The elimination 
of defects at an early stage of board check-out reduces 
more expensive system-level failures later in the final 
manufacturing process. 

ISP HDPLDs arc opening doors of opportunity in 
almost every facet of S}'stcms design and test. 
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A Token Ring Network Adapter Card 

Sid Gilbrect, Senior Design Engineer 
3Com Corporation 

Introduction 

3COM developed a new Token Ring 
adapter module to make its series of bridge/ 
routers more capable and competitive. To meet 
tight development schedules, the new module 
borrowed components and designs from a Token 
Ring adapter module in another product line. 
But to meet density and performance require­
ments, much of the logic had to be integrated 
into high-density logic devices. To evaluate the 
devices, the designer developed a model of the 
critical path circuitry and tried implementing it 
on a choice of programmable logic devices. 
Finding a new device that would meet the 
criteria, the designer developed a series of 
prototype boards to meet software and QA 
efforts as well as the shipping date. 

Need for Token Ring adapter module 

3COM is a leading independent global 
network company. It provides multivendor 
connectivity that spans organizations and 
businesses worldwide. The company designs, 
manufactures, markets, and supports networking 
systems based on industry standards and open 
systems architecture. 

3COM's products provide the infrastruc­
ture that connects computer systems in a net­
work configuration, enabling businesses to share 
information within a workgroup, across a 
campus, or around the world. These connec­
tions are possible with end systems-network 
adapters and terminal servers-which provide 
the physical links between users and the larger 
network, and the intermediate systems­
intemetworking systems and wiring hubs­
which connect multiple users or groups within 
the network. In addition, 3COM provides 
software, network management, and service and 
support that bind the products altogether. 

A new lntennediate Systems product­
called NETBuilder II-was recently introduced 

10-38 

based on 3COM's NETBuilder series of bridges 
and routers. NETBuilder II is a high-perfor­
mance, modular-designed bridge/router based on 
an AMO 29K processor tied to a high-speed 
proprietary backplane bus. The bus accepts a 
mix of Local Area Network (LAN) and Wide 
Area Network (WAN) adapter boards or mod­
ules. A NETBuilder II chassis contains either 
four or eight slots in which users specify adapter 
boards to fonn unique configurations for their 
network needs. 

At the time of first shipment, 
NETBuilder II could only take advantage of two 
adapter cards--one for Ethernet, and one for 
FOOi-along with a few WAN boards. For 
competitive reasons, it was critical for 3COM to 
increase the LAN coverage for NETBuilder II. 
Fortunately, 3COM had a Token Ring adapter 
module for its original NETBuilder series of 
bridge routers. That design served as a basis for 
the Token Ring adapter card for NETBuilder II. 

Existing Token Ring card 

The original NETBuilder Token Ring 
adapter module was a lower-performance system 
compared to the specified NETBuilder II design. 
The module contained two Token Ring chan­
nels, as well as two WAN connections, on a 
board roughly four times the size of the 
NETBuilder II boards. An on-board micropro­
cessor conttolled all four network adapter 
circuits, in effect creating a four-way bridge. 

The NETBuilder adapter module used 
Vl.51 chips to implement some of the major 
functions that would also be found on the 
NETBuilder II module. First, the Texas Instru­
ments (Tl) TMS 380 Token Ring LAN chip set 
implemented the Token Ring mechanism 
through its integrated protocol support and 
system interface engines. The same implementa­
tion migrated to the NETBuilder II adapter. 



In another example, lhe NETBuilder 
adapter board implemented a packet filter lo 
prevent local LAN traffic from reaching the 
Am29K processor and crossing the bridge. hs 
design used a TI source route adapter (SRA) chip 
contained in a single Aclel FPGA called the 
Source Roule Transparent Filtering Engine 
(SRT). This circuit filters source-routed (SR) 
Token Ring packets: this type of packet contains 
route information describing the rings and 
bridges that it must travel to reach its destina-
tion. 

Much of the rest of the logic was imple­
mented in a bank of 10 low-density PLO devices 
from Altera and Lattice Semiconductor. This 
logic included another packet filter for transpar­
enl routed (T) packets, which contain only a 
source destination from which their paths must 
be discerned. 

To operate in the NETBuilder II product, 
the existing design had to be modified to meet a 

variety of new constraints: a new processor 
interface; a smaller form factor; increasing cost 
pressures; and a 1 K VO address map limitation 
on the backplane bus. These modifications had 
to occur within an extremely short hardware 
development time-just 3 months. One critical 
decision that allowed us to meet all these goals 
was the choice of high-density programmable 
logic devices (PLDs) to integrate some of the 
control and datapath logic. 

Requirements of new TR card design 

Meeting the physical, electrical, and 
marketing objectives of the NETBuilder 11 
bridge/routers demanded much of the TR 
adapter module design. For example, the 
module size as specified in the NETBuilder II 
backplane was just 8. 75 inches in length by 3.9 
inches wide. This small size necessitated the use 
of surface-mount technology on both sides of the 

NETBuilder II Token-Ring Module Block Diagram 

I 

: Core Bus 
, Connectors 

CMPI 
(ASIC) 

~ 
Son Start 
Circuits 

SRT Filtering Engine 
Actel 1020 

ND!flft 
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Buffers 

TROLl-4/16 
Module 

Figure 1: The NETBuildcr I/ Token Ring adapt.tr module design uses lhc TMS380C16 for the Tohen Ring mechanism, !he 
CMPI ASIC for int.trfadng to !he high-speed system bus, and an existing SRT filtering engine chip. Olhcr major blocks of 
logic are contained in two high-density Pl.Ds. 
1 How many? 
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figure 2: The critical path in the NETBuildtr logic is this Binary 
Starch state machine. It must present an index to memory, 
compare the resulting addressts, and generate a next index based 
on the results within the 80 nscc cycle time. 

board. Even so, high-density Pills were neces­
sary to incorporate all the control logic. 

Despite the high performance require­
ments, the board had low cost-to-build restric­
tions. This forced me to go with a much lower 
cost binary search scheme for packet filtering, 
instead of using Content A ddressable Memory 
(CAM) which was more efficient but more 
expensive means of searching and updating 
entries. The circuit that implements this scheme 
became the critical path in the circuit design. 

Another technical challenge was a lK 
address map limitation on the backplane bus 
with an SK X 4S bit memory array to support as 
well as the TMS 380 and Filter engineer options 
registers. This necessitated a two-level register 
addressing scheme for the packet filtering 
address table. 

The hardware development time was 
also restricting. I had about three months to 
tum around a working prototype and build a 
small quantity of working boards for the soft­
ware and QA groups. This forced me to do an 
incremental design, building on the NETBuilder 
adapter, with no time to simulate any of the 
PLDs. 

Finally, the control logic from the 
NETBuilder design had to be modified substan­
tially for the NETBuilder II system. For ex­
ample, the control logic had to be rewritten to 
interact with an existing ASIC that interconnects 
all NETBuilder II adapter cards with the high­
speed bus and the Am29K. 

Even so, the NETBuilder II adapter 
module design (Figure 1) was able to use many 
of the same VLSI components as the NETBuilder 
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adapter module, such as the TMS3SO and 
the SRT chip to filter out the SR packets. 
The filter for T packets used the custom 
NETBuilder design as a basis. These filters 
preserved backplane bandwidth and Am29K 
processing time for other adapter modules. 

The T Token Ring packet contains only a 
destination address used to determine its 
path. The TR adapter module, therefore, 
had to maintain a table of local I.AN ad­
dresses so when a T packet was received by 

one side of the bridge both the destination and 
source addresses could be looked up in the table: 
if both were found the packet would be dis­
carded. If either address was not found the 
packet would be copied to the 29K so that the 
unknown source address may be learned and 
placed in the table, or the packet with the 
unknown destination address could be sent 
across the bridge. 

On the NETBuilder board, the logic was 
implemented on a bank of relatively high-speed 
PLDs-10 and 12 nsec versions. So while 
density restrictions forced all the logic onto 
high-density PLDs, the speed of the design 
meant that high performance was also required. 

The design process 

The major design effort centered around 
the design of the T packet filtering function. 
This portion of the design required a large table 
of node addresses and the circuitry to peruse the 
table and compare entries with addresses of 
incoming packets. 

Operating at 16 Mbits/sec speed, a Token 
Ring can be used as a high-speed I.AN or back­
bone. The resulting large amount of traffic, 
particularly unwanted traffic, led to a require­
ment for a Transparent Route Table (TRT) that 
was SK in depth and 4S bits wide (because TR 
sources and destinations are normally 4S bits in 
depth). To the TMS380's filter engine the TRT 
appeared as a 48-bit wide entity. But in order for 
the Am29K to read or write to this table, the 
accesses had to be broken up into two 32-bit 
access, with the upper half of the high order 
ignored. On write cycles, the valid 16-bit half of 
the word had to be latched and held until the 
low order 32 bits were latched so that the entire 
4S bits would be written at once into the array. 
On a read, all 4S bits were read at once: the high 
order 16 bits were passed directly to the 
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NETBuilder II TokenrRing Module 
Control pLSI® Block Diagram 
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Figure 3: One high-dtnsily Pill (plSl 1032) holds all of the random logic including UO stltct, buffer c.ontrol for both UO and DMA, the 
TRT page regisUr, and the binary search staU machine address generator. 

backplane while the lower 32 bits were latched 
and held for the next sequential read. Due to the 
1 K VO address space, a page register had to be 
implemented in order for the 29K to access the 
full SK of the TRT. The page register had to be 1 
byte by 5 bits to allow for 512 words of contigu­
ous TRT space by 32 pages to cover all BK (l6K 
at 32 bits) of space. 

The base system clock ran at 12.5 MHz, 
an 80 nsec cycle. While this was not a very short 
cycle it did present a challenge to the perceived 
critical path: the binary search state machine. It 
needed to run through a number of logic levels 
to make a correct decision on the address being 
compared in the TRT, and generate an appropri­
ate next table address. 

Following the diagram in Figure 2, the 
logic critical path was as follows: First the 29K 
had initialized the TRT with a sequentially 
ordered series of local node address, and the 
TMS380 had latched a TR destination or source 

address in the comparator logic in the second 
high-density PLD. The search state machine 
began by presenting to the TRT the highest order 
address: Al2 in a 13-bit address series, AO being 
the lowest order. This address indexed into the 
midpoint of the TRT, essentially cutting the SK 
table in half. The data indexed by the state 
machine appeared at the comparator input port, 
where was compared with the TR address data. 
The comparator reported the address as less than 
or equal to the TRT address, using the assump­
tion that if it's not less than or equal to, it must 
be greater than. If equal to, then the packet was 
local and discarded, and the state machine 
maintained the same address for the next com­
parison. If less than or greater than, the state 
machine then reset the next address bit in 
series-which bisects either the upper or lo'!Ver 
4K memory segment-and presented it to the 
TRT for the next cycle. 
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NETBuilder II Token-Ring Module 
96 Bit Latch &'Comparator Block Diagram 

Figurt 4: The second high-density PLD (plSl 1048) holds the two 48-bil lcUchts and the 48-bit comparator for tht Binary Search statc machine. 

The process repeated until the machine 
ran out of addresses or found a match. If no 
match was found, then the packet was not local 
and became forwarded to the Am29K (and on to 
the bridge). Each address step (13 in all) had to 
take place within the 80 nsec cycle time, includ­
ing the RAM access time and the setup and hold · 
time of the parts forming the comparator and 
search state machine. 

The goal, due to the small amount of real 
estate, was to use one high-density PLO to hold 
all of the random logic including UO select, 
buffer control for both VO and OMA, the TRT 
page register, and the binary search state ma­
chine address generator (see Figure 3). A 
second high-density PLO would hold the two 
48-bit latches and the 48-bit comparator (Figure 
4). 

Simply using databook figures for gate 
delay proved to be too cumbersome and inaccu-

rate for evaluating high-density PLOs. Instead, I 
built models for the binary search address 
generator state machine and the 48-bit address 
latch and comparator. I then modified the 
models to work within the architectures and 
design environments of each logic device. The 
logic would be implemented in the device. The 
resulting structural implementation would then 
be analyzed for timing, with a known number of 
logic levels producing estimated path delays 
through the circuiL The physical implementa­
tions also ensured that the required density 
could be implemented within the devices. 

Initial calculations for the Actel FPGAs 
ruled them out immediately. Then I tuned to 
the newly introduced MACH devices from AMO. 
Working with AMO support personriel, I was 
able to create a version of the algorithm that 
would work within the devices. While appear­
ing to meet density goals, I found that the 
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MACH drviccs couldn't meet the worst-case 80-
nscc timing requirement. In fact, it appeared it 
would take them two clock cycles-160 nsec­
to implemcnL the function. 

At this Lime L..auice Semiconductor was 
also introducing high-density logic devices-the 
pLSI family. Having used L..auice GAL devices 
for some time, I began working with Lattice to 
evaluate the pLSI devices. The difficulty here 
was the initial software suppon for the pLSI 
devices required me to rewrite my equations 
from a high-level ABEL format to lower-level 
Boolean equations. Another trick was learning 
how to map the design into the resources of the 
pLSI devices-circuits called Generic Logic 
Blocks (GLBs). Specifically, I had to partition 
my implementation to match the four-register 
and four-output GLB architecture. Newer 
versions of the pLSI software suppon these 
activities directly. 

With the design rewritten and parti­
tioned, I compiled the design into the pLSI 
architecture. It became clear that the largest 
pLSI device, the pLSI 1048, would be able to 
accommodate all the logic I needed and still 
meet the 80 nsec cycle time as well 

Building prototypes 

At the time of the first prototype board 
the pLSI 1048 was not yet available. The smaller 
pLSI 1032 was available, so I used two of them 
for development purposes. Since the full 48-bit 
latch and compare function wouldn't fit on the 
pLSI 1032, I decided to latch and search only go 
destination addresses in the comparator pLSI 
device. This was sufficient to prove out all the 
control logic and the comparator from a hard­
ware perspective. 

Due to the short design cycle and the 
fact that the logic was not fully complete (meant 
to be designed incrementally, in fact), a problem 
occurred with the locking of signals to specific 
pLSI pins. This problem was overcome with an 
84-pin wire-wrap socket from Emulation Tech­
nology, so changes in pin assignments would not 
affect board layout. The second version of the 
prototype with the wire-wrap socket was pro­
duced in small quantity for software and QA 
teams to start work in parallel with my efforts to 
complete a final version of the board. Due in 
part to the efforts described here, new versions 
of the Lattice Semiconductor software have 

corrected this pin assignment problem. 
With availability of the pLSl1048, a third 

and final prototype board was generated correct­
ing all known logic problems. This board 
supported destination and source address 
checking functions as well as many other re­
quired features. 

This Token Ring adapter module is now 
shipping in the NETBuilder II bridge/routers. It 
has successfully expanded the series to new 
customer applications, and 3COM's competitive­
ness, to the very important Token Ring segment 
of the market for Intermediate Systems. 
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A Decision Process Used for FPGA Selection in 
Digital Signal Processing for Fiber Optic Sensors 

Beck Mason, Vice President of Engineering 

FiberMetrics Corporation 

Introduction 

In 1993, if one wants to incorporate programmable 
logic devices into a design, there is no shortage of 
possibilities-everything from one-time programmable 
bipolar parts to electronically erasable (EE) CMOS 
devices. Yet PLDs, especially when used to consoli­
date existing discrete functions, can provide many 
tangible benefits. Using a PLD can reduce board 
utilization and electromagnetic interference, improve 
design reliability, simplify manufacturing, and 
streamline parts ordering and inventory processes. 

The abundance of devices at varying levels of com­
plexity has created many PLD choices. Yet all these 
possibilities can make selecting the right device 
extremely difficult. In its search for a PLD, 
FiberMetrics gained some useful insight into choosing 
both a device and manufacturer. This paper describes 
the technical, organizational, and economic issues that 
FiberMetrics considered in its search. But the major 
lessons the company learned are simple: success 
depends on how well you understand your applica­
tion, and how well you understand your costs. 

FIGURE 1 
OPTICAL FIBER 

/ 

INTERFERING LIGHT WAVES 

Application description 

FiberMetrics is a small company that develops a 
variety of fiber-optic sensor systems. Used primarily 
in the research and development sectors of the 
aerospace industry, these systems measure strain and 
temperature in composite material structures. 

Each fiber-optic sensor is an interferometric device 
that produces a periodic nonlinear response function. 
A change in temperature or strain causes a shift in the 
sensor's interference pattern. However the sinusoidal 
nature of this pattern makes it difficult to calculate 
strain or temperature exactly. So the sensor system 
uses a tunable semiconductor laser diode to launch 
light into the optical fiber (Figure 1). The system 
then rapidly shifts the diode's wavelength, causing a 
change in the interference pattern. By sweeping over 
a fringe and measuring its phase electronically, the 
system compares the resultant phase shift with the 
previous interference pattern, then generates a strain 
or temperature measurement. 

At the heart of the sensor system, and the target of 
FiberMetrics device consolidation effort, is a phase 
demodulation board (Figure 2). This board receives 

MIRRORED END FACE 

SEMI REFLECTIVE SPLICE 

Figure 1, Fiber-Optic Sensor: A FiberMetrics sensor is an interferomet1ic device whose interference pattern shifts with changes in tempcn1-
ture or strain. Because the sinusoidal nature of these patterns make preLise calculations difficult, the sensor system uses a tunable 
semiconductor laser diode to launch light into an optical fiber, then rapidly shifts the diode's wavelcngt.h, causing a change in the interfa­
ence pattern. By sweeping over a fringe and measuring iL1 phase clectronirnlly, the system compares the resultant phase shift with the 
previous interference pattern and generates a strain or temperature measurement. 
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an analog input signal, digitizes it, then passes the 
signal on to a digital phase tracking system. The 
phase tracker then outputs strain or temperature 
information to a 16-bit analog-to-digital converter and 
a multiplexed 16-bit data bus. There are four phase 
demodulation boards in a FiberMetrics sensor system, 
each with a digital phase tracker. Originally com­
posed of fourteen discrete logic components, 
FiberMetrics reduced each digital phase tracker to one 
complex PLD (CPLO) (Figure 3). 

Comparing CMOS, fuse, and anti-fuse technologies 

When considering programmable versus non­
programmable technologies, some of the more 
important questions to consider are the kinds of 
design changes you anticipate, their frequency, and 
whether you have the design volume to afford any 
production waste or outdated inventory. 

Because of their relatively high cost, FiberMetrics 
produced a small number of sensor systems-30 to 40 
per year. Furthermore, the digital phase tracking 
algorithms in these systems varied slightly, depending 
on the application (i.e. temperature or strain sensing). 
The company's goal was to create a system that it 
could upgrade as it realized system performance 
advances. In fact, the company's plans called for 
customers to eventually be able to customize their 
own sensor systems. Because all these needs placed a 
premium on reusability and reprogrammability, 
FiberMetrics concluded that fuse and anti-fuse 
technologies would not enable the company to meet 
its design goals. 

FiberMetrics chose an electronically erasable CMOS 
(EECOMS) PLO for its fast reprogrammability. For 
further flexibility, the company chose an in-system 
programmable device. In-system programmability let 
the company reprogram PLOs without removing them 
from their digital modulation boards, saving valuable 
design time. This kind of PLO also eliminated a PLCC 
socket, reducing board area and electromagnetic 
interference. And an in-system programmable device 
supported FiberMetrics' effort to let customers 
download new system software via modem. 

In addition to reprogrammability, comparing CMOS 
to fuse and anti-fuse devices raised the issues of power 
consumption and dissipation. CMOS runs cooler and 
consumes less power than other PLO technologies; the 
FiberMetrics design required both these attributes. 
First, many of the company's systems are used in the 

aerospace industry, an industry that considers 
minimizing design size and power consumption 
absolutely essential. Second, because of the sensor 
system's size restrictions, digital phase trackers were 
packed close to temperature-sensitive parts such as 
laser diodes, making low heat dissipation essential. 
Finally, because using programmable logic to replace 
discrete components tends to dramatically increase 
power consumption, it was critical to minimize that 
effect. Using CMOS technology, FiberMetrics con­
structed a PLO-based sensor system whose total power 
draw was only 13% more than its original, discrete 
logic design. 

Evaluating speed 

Unfortunately, the different ways in which PLO 
manufacturers specify maximum device speed make it 
difficult to evaluate potential candidates. One 
consistent, understandable measurement that 
FiberMetrics came to rely upon was gate delay. While 
peak clock frequency was also important, the com­
pany was less certain of the calculations behind this 
specification. Consequently, gate delay became the 
preeminent speed benchmark. 

Speed was critical to the success of the Fiber Metrics 
system, especially when it came to tracking the phase 
shifts of its interferometric sensors. The system's 
tracking speed is directly related to the level of strain 
and temperature it can monitor. Yet high-frequency 
vibrations can generate phase shifts that exceed a 
system's tracking capabilities-even a small amplitude 
vibration of 20-30 kHz can generate phase shifts on 
the order of 105 fringes per second. It was vital that 
the digital phase tracker be able to keep up with these 
kinds of high-frequency vibrations. 

Compounding the problem of tracking faster phase 
shifts was FiberMetrics' desire to take advantage of 
advances in laser technology. Faster laser diodes 
could improve the measurement resolution of the 
sensor system. For example, with improved resolu­
tion, FiberMetrics customers could monitor acoustic 
emissions-the vibrations given off when composite 
materials fracture or delaminate under high stress. 
But using faster diodes also causes faster phase-shift 
variations, thus increasing the need for even more 
system speed. 

To accommodate its multiple speed requirements, 
FiberMetrics specified its PLO-based phase tracker at 
33 MHz. However, the company chose a device with 
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Figure 2, Phase Demodulation Board: The FiberMetrics sensor 
system contains four phase demodulation boards. These boards 
receive analog input signals, digitize them, then pass them on to the 
digital phase trackers that, depending on the application, will 
output strain or temperature information. 

an upper speed boundary of 80 MHz to accommodate 
future technology improvements. 

In addition to actual system speed, propagation delay 
can also be an important criterion when selecting a 
PLD. 

For example, in designs where synchronization plays 
an important role, a consistent propagation delay may 
be absolutely mandatory. The phase tracking circuits 
of the FiberMetrics sensor systems are synchronized 
with the wavelength modulation of their laser diodes. 
The circuits generate synchronized timing signals that 
control the sampling of the sensor signal, and the 
phase demodulation. Consequently, any signal lag or 
timing structure change could affect the system's 
phase measurement accuracy. Additionally, the digital 
tracker's operation is completely asynchronous, 
making it very susceptible to timing delay variations. 

Beyond these concerns, however, it was system 
r~solution that most affected FiberMetrics' propaga­
tion delay deliberations. To illustrate: the system 
detected an optical signal from its interferometric 
sensor with a photodiode, amplified the signal, and 
t~en sampled it using an eight-bit flash analog-to­
d1gital converter. The system's phase resolution 
depended on the speed and accuracy with which 
could sample the optical signal. And in order to 
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achieve a phase resolution target of 1.5°, 
FiberMetrics calculated that its PLO must 
have a total propagation delay of less than 
20 ns. 

Evaluating density 

Because device structures and utilization 
schemes vary from manufacturer to 
manufacturer, FiberMetrics found density 
claims as hard to evaluate as speed 
specifications. The company concluded 
that the key to evaluating device density 
was understanding an application's 
functions. 

. To calculate a prospective design's density, 
consider making a list of its major functions and their 
gate equivalents. Then carefully examine the logic 
structures of your PLO candidates to see how well 
these functions fit. It may also be helpful to consult 
device manufacturers as to a PLO's best use. For 
instance, a device may be better suited as a state­
machine or high-speed counter than as a shift register 
or register file. 

Software and software tool vendors are another useful 
source for density information. A vendor that 
supports a wide range of devices may be able to offer 
valuable insight into the PLO you are considering, 
perhaps even refer you to a customer already using the 
device. You could also purchase development tools 
that support the device under consideration and 
experiment, using the appropriate simulation modules 
to test the applications. Or you could buy Open 
~BLE-compatible tools, generate JEOEC files, port the 
files to a variety of devices, then use the appropriate 
simulation tools to compare performance and utiliza­
tion. Regardless, making a small software investment 
can pay large dividends-especially when manufactur­
ing large numbers of products-because it gets you 
closer to finding the most appropriate PLO. 

lro~ically, FiberMetrics had no specific density goal 
for Its PLO-based circuit. Because the PLO had to 
accommodate future software upgrades, the company 
created a generic logic block equivalent-list of its 
major functions (Figure 4), then calculated the 
minimum number of gates necessary to implement the 
existing logic ( 4000). As it evaluated potential 
candidates, FiberMetrics closely examined the abilities 
of manufacturers to provide a device growth path. 
The company's most important task, however, 
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Figure 3, Digital Phase Tracking Circuit: Using analog input, the FiberMetrics digital phase trackers output strain or temperature 
information. Originally comprised off our teen discrete logic components, the company consolidated each tracker into one complex PLD 
(CPLD)-the isp!SI 1032 PLD from Lattice Semiconductor. 

remained finding the right PLD for its application. 

The design of the digital phase tracker emphasized 
data transfer over manipulation: latching a phase 
signal reference, the tracker compared that reference 
with a digitized photodetector signal, performed a 
phase comparison, then generated a high-resolution 
phase byte plus a control signal, and sent the signal to 
a 16-bit up/down counter and a multiplexed 16-bit 
data bus. Because the latching and data manipulation 
in latches were register-intensive operations, the 
company placed a premium on control logic and 
input/output pins. And because of the small amount 
of manipulation outside the latches, FiberMetrics put 
less emphasis on product terms. The company's final 
choice was a more general-purpose PLD, though one 
well-suited for interfacing with microprocessors. The 
PLD had 192 total registers, 64 1/0 pins, input blocks 
that could latch data, and tri-state outputs that the 
company could convert into 1/0 pins-all necessary 
characteristics for successfully implementing the 
digital phase tracker. 

Software development tools 

Given the potential complexity of a PLD design and 
the shrinking time-to-market windows, easy-to-use 
software development tools are of paramount impor­
tance. 

Development tools, at a minimum, should offer 
Boolean logic entry. Schematic capture is even better, 
as it lets engineers visualize design flow and recognize 
errors quickly. For example, if a designer improperly 
assigns a variable using Boolean Algebra, that error 
may not be readily apparent. However, if a designer 
connects a trace incorrectly using schematic capture, 
the problem much easier to detect. 

Library functions are also helpful for rapid design 
development. Existing functions provide a foundation 
from which you can build, either by editing the 
descriptions or by using them as programmatic 
examples for functions you want to create. Not 
surprisingly, the litmus test for any good library is that 
it should never be harder to enter a function automati­
cally than to create one by hand. 
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When developing its PLD logic, FiberMetrics made 
extensive use of library functions to reduce the 
learning curve of its software development tools and 
PLD. In addition, the tools displayed conceptual 
representations of internal PLD logic, letting designers 
view the specific logic blocks they were using as they 
entered equations and systems. Not only did this 
display help designers visualize available resources, it 
helped them to more easily manage the overall 
utilization of their design. 

While ease of use is essential, affordable software 
development tools are nothing to be overlooked. 
Low-priced tools can help you evaluate potential 
hardware and software without making a major 
investment. A trial period with a particular tool set 
may even influence your purchasing decision-after all, 
if a PLD meets your technical specifications, and your 
designers are already familiar with its software tools, 
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Measurements of success 

By consolidating discrete components into one CPLD, 
FiberMetrics realized several important benefits. 
First, when compared to the original phase demodula­
tion board, the PLO-based digital phase tracker cut 
design development and board rework time by 
seventy-five percent. The company also completed its 
new design using just one board set, instead of two 
sets it previously required. 

Additionally, using an electronically erasable PLD 
streamlined device testing. The rapid 
reprogrammability of EE technology let FiberMetrics 
designers isolate problematic device areas, test them, 
and implement logic changes quickly. With the time 
they saved, the designers were able to execute a more 
robust testing suite, including high-speed tests for 
output filters and the generation of non-realistic 
outputs to check system response. This new battery 
of tests was more expensive than the previous set; but 
it was far more thorough. 

The use of an in-system programmable PLD also 
yielded another, and rather remarkable benefit: once 
the company finalized its phase demodulation board 
design, it was able to proceed with manufacturing that 
design, even though it had not completed the final 
logic for its digital phase tracker. Engineers created 
logic modifications, loaded those modification directly 
onto the phase demodulation boards-without having 
to remove their phase tracking circuits-and tested 
them. Furthermore, the flexibility of the PLD that 
FiberMetrics chose allowed engineers to significantly 
change its internal logic without altering its output 
pins. As a result of this flexibility and in-system 
programmability, FiberMetrics manufactured its phase 
demodulation boards a full month before finalizing its 
phase tracking logic. 

Finally, device consolidation greatly simplified 
manufacturing: there were fewer parts to handle, 
reducing assembly time and cost. 

Epilogue 

Choosing a PLD can raise issues beyond technical 
considerations. For example, why limit yourself to 
PLDs? Why not consider FPGAs? 

While there are similarities between CPLDs and 
FPGAs, FiberMetrics found several significant differ­
ences that went to the heart of its digital phase 

tracking application. First, the tracker's operation­
which emphasized data transfer over manipulation­
placed a premium on control logic. PLDs offered a 
more efficient implementation of control logic than 
did FPGAs. Second, the synchronized nature of the 
sensor system and the need for precise signal sampling 
made predictable propagation delays mandatory. 
Coupled with the fact that the system's software was 
rapidly evolving, FiberMetrics found it could not rely 
on FPGAs to provide consistent propagation delays 
throughout the life of the design. Finally, the com­
pany felt that CPLDs, with their individual logic 
blocks, were simply conceptually easier to program 
than FPGAs. 

When converting a design from discrete devices to a 
PLD, a company may also confront the need for 
organizational changes. It will probably be necessary 
to send design and production engineers to educa­
tional classes to learn about a device and its software 
tools. FiberMetrics found that providing the right 
tools and educational opportunities to its employees 
was critical to making its PLD conversion a success. 

Finally, understanding the costs of converting to a 
PLD-based design is as important as understanding 
the application itself. PLDs are more expensive than 
discrete logic devices and a company should have a 
sound strategy for recouping those costs. 

For instance, FiberMetrics anticipated a fifty to sixty 
percent rise in parts costs. It was able to mitigate 
those costs by streamlining its parts ordering and 
inventory processes. But the also company antici­
pated-and realized-dramatic savings in the product 
design phase. And it was the dramatic reduction in 
engineering hours that made the company's PLD 
consolidation process cost effective, and therefore 
possible. 

Conclusions 

The FiberMetrics experience only illustrates what 
many designers already know: that PLDs can offer 
substantial design benefits. However, evaluating PLDs 
can be difficult-and selecting the wrong device can be 
costly. Consequently, it is paramount that you 
thoroughly understand your application and your 
costs in order to make the consolidation effort 
technically and financially successful. 
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Learn the Fundamentals of 
Digital Filter Design 

This article is reprinted from Electronic Design - July 25, 1991. 
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DESIGN APPLICATIONS 

BASIC TECHNIQUES LET DESIGNERS 
BUILD A FINITE-IMPULSE-RESPONSE 

FILTER IN DEDICATED HARWARE 
USING PROGRAMMABLE LOGIC. 

LEARN THE FUNDAMENTALS OF 
DIGITAL FILTER DESIGN 

istorically, designers often have taken an analog ap­
proach to filtering. Filters were constructed using 
operational amplifiers, resistors, and capacitors. 
One op amp could implement a second-order filter, 
and higher-order filters could be implemented by 
cascading second-order filters. However, passive 

components with tolerances of 1% or better are necessary for the filter to have 
reproducible characteristics. And the filter is typically fine-tuned by trial-and­
error substitution of available component values. In addition, operational amplifi­
ers with a high gain-bandwidth product may be needed to keep undesirable phase 
shift to a minimum or keep a closed-loop system stable. These factors are among 
the many problems in real-world implementations of filters. 

With the advances made in digital-signal processing, however, digital filters are 
becoming a more attractive design alternative to traditional analog techniques. 
Because digital-system information is in digital form, filtering can be accom­
plished relatively easily by passing the data through a filter algorithm. In addition, 
digital filters have the advantages of no filter-characteristic drift over time, tem­
perature, or voltage. And they can easily be designed to filter low-frequency sig­
nals. Moreover, the filter response can be made to closely approximate the ideal re­
sponse, and linear phase characteristics are possible. 

There are many well established methods of determining the filtering algo­
rithm. Basically, the designer establishes the desired filter characteristics, there­
by yielding a filter transfer function. The continuous-time transfer function is then 
transformed to the equivalent linear discrete-time-difference function. This func­
tion in the Z domain has the general form of: 

G(Z)= (A0 + A1z-1 + A2Z-2 + ... Anz-n) I (1 + B1z-1 + B2Z-2 + ... Bmz-m) = Y(Z)/X(Z) 

The equation is referred to as the pulse transfer function. It's actually the Z 
transform of the continuous-time filter's unit impulse response. Conversely, the 
inverse Z transform of the pulse transfer function yields the impulse response of 
the filter. 

The coefficients An and Bm determine the response of the digital filter. Changing 

MIKE TRAPP 
Lattice Semiconductor Corp., Carlsbad Pacific Center One, 701 Palomar Airport Rd., 
Third Floor, Carlsbad, CA 92009; (619) 931-4751. 
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the coefficients changes the re­
sponse of the filter. The terms z-n 
and z-m represent sampling delays or 
taps. The G(Z) equation represents 
the algorithm of sampling the input, 
multiplying it by A0, and adding it to 
the previous sample that's been mul­
tiplied by A1, then adding that value 
to the next previous sample which 
has been multiplied by A2, and so on. 
An output value occurs when all N 
values have been multiplied and ac­
cumulated. 

In parallel, each output value is 
stored, multiplied by B1, then added 
to the previous output value which 
has been multiplied B2, and so on. 
The equation can be rearranged so 
that the result of the output multiply 
accumulate is added to the result of 
the input multiply accumulate to pro­
duce an output. This procedure is re­
ferred to as convolution. An output 
sample is produced for every input 
sample (Fig. 1). 

The key to digital-filter design is to 
determine the filter coefficients that 
will produce the desired frequency 
response. Recursive digital filters, 
or infinite-impulse-responsive (!IR) 
filters, are a type of digital filter in 
which the design methodology close­
ly follows that of an analog filter. 
One method for determining the co­
efficients is to define a realizable 
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DIGITAL FILTERS 

continuous-time domain Chebyshev, 
Butterworth, or equal-ripple filter 
then use Z transforms to transform 
the continuous-time-domain trans­
fer function to the equivalent dis­
crete-time transfer function that 
yields the filter coefficients. 

A second popular method is the bi­
linear transform. In this method, en­
gineers first design an analog filter 
so that after it's transformed to a 
digital filter, the resulting filter 
meets a set of desired digital-filter 
specifications. This analog filter is 
then transformed to a digital filter 
via the bilinear transform from the S 
variable of the Laplace transform to 
the Z variable of the Z transform. 

In a non-recursive digital filter or 
finite-impulse-response (FIR) filter, 
the output is computed using the pre­
sent input Xn and the previous inputs 
Xn _ 1, Xn _ 2 ... Xn-N· This implies that 
the coefficients, Bm, are all 0, and 
there's no feedback from the output. 
Designing non-recursive digital fil­
ters (FIR) involves defining an ideal 
desired frequency response from 
which the ideal impulse response is 
computed. The ideal impulse re­
sponse is truncated to a finite num­
ber of non-zero samples using a win­
dowing function, which is judiciously 
chosen. A common windowing func­
tion is the Kaiser window function. 

An interesting 
property of FIR fil-

1------t ~----.--Y(N) ters is that if an 

11. IN THE FUNCTIONAL structure of a digital filter, 
the A and B coefficients determine the response of the filter 
and the Z terms represent sampling delays called taps. 

FIR system has lin­
ear phase, then its 
frequency re­
sponse is con­
strained to be zero 
at f = l/2T, where 
T equals the sam­
pling frequency if: 

h[M - n]=h[n] and 
M is odd. (M = trun­
cation length of the 
window). 

This implies the M 
should be even 
when designing 
high-pass and band­
stop filters. Or, 

h[M-n]= -h[n] and 
Mis even. 
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A second method is the Parks­
McCle llean method. In this ap­
proach, the filter order and the edges 
of the passbands and stopbands are 
fixed, and the impulse-response coef­
ficients are varied systematically so 
that an equal-ripple behavior is 
achieved in each approximation 
band. With this approach, the filter 
order can't be specified in advance. 
Therefore, a cut and try procedure 
must be used to find the minimum 
filter order. The cut and try can be 
reduced by using a formula that pre­
dicts the filter order required to meet 
a given set of specifications. 

There are advantages and disad­
vantages to each type of digital filter 
(IIR and FIR). An FIR filter is al­
ways stable because there's no feed­
back from the output and the im­
pulse response is finite. In addition, 
the amplitude and phase can be arbi­
trarily specified. On the other hand, 
an FIR filter will generally require 
more taps, and consequently mon· 
math, to compute the output value. 
The design methodology doesn't re· 
semble the familiar analog design 
techniques. 

An IIR will generally have fewer 
coefficients, but the required output 
feedback can make circuit implemen­
tation more complex. A stable IIR fil­
ter can become unstable if the coeffi­
cients aren't chosen properly to ac­
count for digital math errors. 

There are four main type of errors 
that can arise in the design of digital 
filters. These are referred to as 
quantization errors. They are: 

1. Quantization errors of the input 
analog-to-digital conversion 
2. Quantization errors of the coeffi­
cients 
3. Quantization errors due to arith­
metic computations, including over­
flow 
4. Limit cycles 

In most cases, a 12-bit analog-to­
digital converter (ADC) provides 
enough dynamic range and suffi­
ciently small quantization noise. If 
floating-point numbers are used for 
the filter coefficients, the quantiza­
tion error is usually small enough. 
However, floating-point arithmetic 
is more complex and more expensive 
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1 2. AN FIR FILTER IS IMPLEMENTED in a circuit that uses a single-port 16-bit multiplier-accumulator capable of a 85-ns clock 
speed. Because it's based on microcode, the multiplier-accumulator can be controlled with a PLD. 

to implement than integer or fixed­
point arithmetic. If 12- or 16-bit coef­
ficient are used, the quantization er­
ror is generally negligible. 

In the digital domain, math is per­
formed using finite precision binary 
arithmetic. All digital filters need to 
multiply a signal sample by a con­
stant coefficient. Of course, multi­
plying 2 N-bit binary numbers re­
sults in a 2N-bit result, but digital 
systems are usually confined to a 
fixed number of bits with which to 
represent binary numbers. There­
fore, it's necessary to round off the 
2N-bit digital number back to N bits. 
If a 32-bit multiply accumulator is 
used and the final output is rounded 
to 16 bits, the arithmetic quantiza­
tion errors can be minimized. 

If overflow occurs during mathe­
matical operations, the digital filter 
can behave in a nonlinear fashion 
and oscillations can occur. Twos­
compliment arithmetic can help elim­
inate overflow. In addition, a satu-

rating adder can be used. If the coef­
ficients are less than one, then the 
resulting product will also be less 
than one. Scaling is used to force this 
condition. The coefficient can be 
scaled by a multiple of two so that 
the largest coefficient uses all avail­
able bits in the binary representa­
tion. The input is then scaled by the 
same amount. 

The detail with which a digital fil­
ter can be described can seem end­
less. Fortunately, a wide variety of 
computer programs exist that help 
the engineer with the filter's design. 
One such product is the DFDP soft­
ware from Atlanta Signal Process­
ing Inc. (ASPI), Atlanta, Ga. 

Before a signal can be digitally fil­
tered it must be digitized by an ADC. 
If a delta-sigma converter is used, 
the need for antialiasing filters 
(which must be analog and can be 
many orders) is virtually eliminated. 
Delta-sigma converters may have 
sample rates as high as 100 kHz. The 
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filter algorithm can then be imple­
mented in software or hardware. 

A single-chip microprocessor can 
be used to implement a digital filter 
in software. However, "single chip" 
may be misleading, because a micro­
processor system will generally re­
quire system RAM, ROM, 1/0, and 
glue logic. The microprocessor can 
implement low- to medium-perfor­
mance digital filters if the only func­
tion they're performing is the digital 
filtering. As the work load of the mi­
croprocessor increases, its capability 
to digitally filter a signal in real time 
decreases. Once the system is de­
signed, changing the filter's charac­
teristics is as easy as changing vari­
ables in software and downloading 
the code to the system. 

For higher performance and mod­
erate flexibility, the filter can be im­
plemented in dedicated hardware us­
ing programmable logic for design 
flexibility. The limiting parameter 
will be the time to do a multiply-accu-



mutate function and the amount of 
physical space required for the hard­
ware implementation of the taps. 
Consider a circuit that uses a single­
port 16-bit multiplier-accumulator 
capable of an 85-ns clock speed (Fig. 
2). The device can work in twos-com­
pliment numbers and has output sat­
uration capabilities. As stated be­
fore, these two features are desir­
able when implementing digital fil­
ters. In addition, the device can be 
easily controlled with a programma­
ble logic device (PLD) because it's 
microcoded based. 

First, the system must initially 
load the first N (N = 64) samples into 
the FIFO before any convolution 
takes place. Otherwise, the FIFO 
would never fill up. A counter imple­
mented in a 20RA10 works well. The 
6-bit counter is implemented with the 
four least-significant bits imple­
mented as an asynchronous counter. 
SMPL_DN (ADC sample done) acts 
as the clock. The two most-signifi­
cant bits are implemented as a ripple 
counter. This type of counter design 
makes it possible for a long counter 
to be implemented with only four 
product terms per output. The 
SMPL_DN signal is also generated 
in the 20RA10, and is triggered off 
signals from the ADC. 

When the counter reaches the val­
ue 63, indicating that the FIFO is full 
minus the one sample that's held in 
the shift/hold register, GO becomes 
true and the system begins to exe­
cute the filtering algorithm. Because 
the system is linking two asynchro­
nous subsystems (ADC and the mul­
tiplier-accumulator), there must be 
an asynchronous interface between 
the two. The 20RA 10 is utilized by 
generating one interface signal 
SMPL_ .. CONV (sample or convolve 
mode). The system powers up with 
this line held in the sample mode 
(SMPL_CONV = 1). When GO goes 
true, synchronous with the falling 
edge of the clock from the ADC, 
SMPL_CONV goes low asynchro­
nously with MCLK (synchronous 
with SCLK). Because 
SMPL__CONV is an input to the 
state machine, the machine could be 
subject to a metastable input. The 
Lattice CMOS PLDs are very high 

i1!Jiiri:l1IQQllY·llD1:~1 
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l!pllls: ORO~ TC, SIPL_COllV 

Outpull: XOE, YOE_MCON, COllV_DN, 115:01, ST_BIT 

X•don'lcare 

13. AN 8-STATEstatemachine 
implements the operations of loading a 
sample into the multiplier-accumulator, 
then loading the coefficients in and 
i&suing the multiply-accumulate 
command until all N samples are done. 

speed, so the metastable characteris­
tics are excellent. That is, the state 
flip-flop has a very low probability of 
going metastable. Therefore, the 
state machine will have to wait, at 
most, one extra MCLK cycle before 
starting the convolution. 

Once the convolution is started, 
the operations of loading a sample 
into the multiplier-accumulator, 
then loading the coeffic-ient into the 
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multiplier-accumulator and issuing 
the multiply-accumulate command, 
can be repeated until all N samples 
have be done. At this time, the filter 
output is valid and the cycle is re­
started. These steps can be imple­
mented with an 8-state state machine 
(multiplier-accumulator controller) 
(Fig. 3). 

By coding the states properly, the 
state variables out of the state ma­
chine can be used to directly control 
the multiplier-accumulator. Two out­
put enable signals, XOE and 
YOE_MCDN, control the data into 
the multiplier-accumulator. The sig­
nal CONV _DN indicates that all N 
samples have been convolved. A 
dummy state variable (ST_BIT) is 
used so that the state bit (XOE, 
YQE__MCDN, CONV_DN) can be 
employed as outputs. If the dummy 
bit was unused, two states would be 
forced to have the same state assign­
ments, which isn't allowed. The de­
sign takes advantage of the powPr­
up reset of Lattice's programmahlt• 
logic devices (PLD s). After powcr­
up, the registers will be left in the 0 
state, which by careful design is also 
the start state of the state machine. 

Except for the last SMPLDN 
during initial load, every time 
SMPL_DN (sample done by the 
ADC) takes place, SH FT _IN occurs 
to load sampled data from the shift/ 
hold registers into the FIFO. During 
convolution, XOE occurs every time 
a coefficient is loaded to the multipli­
er-accumulator. The first XOE of a 
convolution causes the last data sam­
ple left in the shift/hold registers 
during initial load or sample mode to 
be shifted into the FIFO. Following 
every XOE is a YOE __ MCDN (Y­
output enable, multiply-accumulate 
done). YOE_MCDN causes data 
from the FIFO's output to be parallel 
loaded into the shift/hold registers. 
A single data sample is then shifted 
out of the FIFO. The system is ready 
for the next XOE that shifts in the 
data held in the shift/hold registers 
and so on. This loop continues until 
SMPLCONV (sample or convolve 
mode) goes to sample mode, at which 
time a new sample is loaded into the 
shift register, restarting the cycle. 

Inputs to the state machine, 

I 
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(a) 

(b) 

Lakh FIFO data 

1 4, FIFO CONTROL SIGNALS are generated asynchronously. The system timing diagrams for the convolve (a) and initial load (b) 
operations show the appropriate Shift In and Shift Out signals, and clock signals sent to the shift/hold register. 

E L E C T R 0 N I C D E S I G Nm 
JULY 25, 1991 
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SMPL_CONV, tell the machine 
when it's time to begin the convolu­
tion cycle. This signal comes from 
the mode-control device. TC (Termi­
nal Count) indicates when the convo­
lution is to end. TC comes from a 6-bit 
coefficient counter, and is valid when 
the count equals 63, which indicates 
when all 64 samples have been con­
volved with the respective coeffi­
cients. ORDY comes from the FIFO 
and tells the state machine that the 
sample from the FIFO is valid. The 
state machine will continue to load in 
the coefficient to the multiplier-accu­
mulator until ORDY goes true, at 
which time the state machine will ad­
vance to the next state. If the cycle 
time of the multiplier-accumulator 
never exceeds the access time of the 
FIFO, ORDY should always be true 
when it's an input the state machine 
depends on. 

Microcoded instructions to the 
multiplier-accumulator are generat­
ed by decoding the state variables. 
The first instruction is a NOOP. 
When SMPLCONV goes low, then 
state machine issues a XBUS in­
struction to the multiplier-accumula­
tor. This causes the multiplier-accu­
mulator to load data from the 1/0 
port into an internal register. The 
state machine then issues a YBUS; 

1.2 

1.0 

iii 
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CLKMR TC. This command tells the 
multiplier-accumulator to perform a 
multiply operation in twos-compli­
ment without accumulation because 
it's the first multiply operation of the 
convolution. 

The machine then enters a loop 
and issues another XBUS command 
followed by a YBUS; CLMR; TC; 
MR+. This command is a multiply­
accumulate function in twos-compli­
ment arithmetic. The machine re­
mains in this loop until TC goes true, 
at which time the last multiplier-ac­
cumulator cycle is completed and the 
output command MS (SAT) is issued. 
MS causes the filter's outputs (multi­
plier-accumulator outputs) to be­
come valid and latched into a final 
output register. This command will 
saturate the multiplier-accumulator 
output if the final value has an over­
flow, keeping the digital filter from 
oscillating. The multiplier-accumula­
tor is statically configured to round 
off the final output to the most sig­
nificant 16 bits. 

The instructions to the multiplier­
accumulator can be changed simply 
by decoding the state variables to 
different output values. If E2CMOS 
devices are used, the programmable 
device can simply be reprogrammed 
and put back into the circuit. An E2C-

(II) 
20.111 

0.0 

I I!:: ·20.111 

I 
.!' 

0.Di;:..::co:w:::.:.~CICICICl~L...--,,!..--..b<~xxxx.._,, 
1.0 6.1 13.6 20.4 27.2 34 12.0 15.2 

(1) Fn.-r(lllz) (I) 

MOS 22V10 from Lattice Semicon­
ductor is one such device that can be 
used for this application. 

Two 64-word-by-8-bit FIFOs can 
be used to implement the filter taps. 
The FIFO can be loaded up with the 
initial N samples. A sample is then 
shifted out of the FIFO and into the 
multiplier-accumulator for process­
ing. This sample is also stored in a 
shift/hold register and is shifted 
back into the FIFO prior to the next 
sample being shifted into the multi­
plier-accumulator for processing. 
After all N samples have been pro­
cessed, the oldest sample is shifted 
out and a new ADC sample shifted 
in. The multiplier-accumulator can 
then output a filter value. Program­
mable logic can be used to interface 
the digital filter to the ADC, act as 
temporary storage register, and im­
plement FIFO control. 

These shift/hold registers can be 
implemented with two 20V8 devices. 
In the sample mode (SMPL .CONV 
= 1), the devices act as shift reg-is· 
ters. Data is serially loaded into 
them under control of the ADC. The 
registers are then placed in a hold 
mode so that the data sample isn't 
lost. When the system enters the 
convolve mode, (SMPLCON = 0), 
data is immediately loaded into the 

11.4 21.1 24.1 21.D 

15. A PLOT OF THE MAGNITUDE re&ponse shows that ihe bandpass filter's center frequency is 20 kHz with a passband of 5 kHz 
(a). The transition region occurred in 2 kHz. The log magnitude re&ponse plot reveals a 175118/deeade slope at the edpa of the filter (b). It 
would take a 9th-order analog filter io implement the same specifications. 
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shift/hold registers in parallel. 
Filter coefficients are stored in 

PLDs emulating ROM. A 6001 has a 
programmable AND and a program­
mable OR array so that it easily emu­
lates a 64-by-8 high-speed PROM. 
Again, if E2 devices are used, the fil­
ter coefficients can be changed sim­
ply by reprogramming the devices. 
An address counter is used to access 
the coefficients in the correct order. 
Because there are 64 required coeffi­
cients for the 64 taps, only 6 bits of 
address are required. 

The coefficient-address counter is 
a simple 6-bit counter implemented 
in a 22V10. The counter is a synchro­
nous type with a count enable. The 
clock is synchronous with the multi­
plier-accumulator clock. The count­
enable input pin is connected to XOE 
from the multiplier-accumulator 
controller. Therefore, the counter is 
incremented only after the coeffi­
cient value has been loaded into the 
multiplier-accumulator. When the 
counter reaches 63, TC goes true to 
indicate that all 64 coefficients have 
been convolved. Again, the power-up 
reset is used to ensure that the 
counter starts in a known state. 

The remaining four output-logic 
macro cells can be used to generate 
FIFO control signals. These signals 
are generated asynchronously. De­
pending on the state of the system­
whether it be initially loading, sam­
pling, or convolving-the appropri­
ate Shift In, Shift Out, and clock sig­
nals for the shift/hold register will 
be generated (Fig. 4). 

When the convolution is done, the 
state machine sets the CONV _DN 
signal true synchronous with 
MCLK. Hence, SMPL_CONV will 
also be set synchronous with MCLK. 
This will create glitches on the signal 
CLKIN, which is the clock to the 
shift/hold registers. This is a don't­
care condition, as the registers will 
soon be loaded with a new valid data 
sample under the control of the 
ADC. 

The system requires 133 MCLK 
cycles to complete the convolution. 
With a 11.7-MHz clock, this takes 
11.4 µs. This system used an ADC 
with a serial interface that requires 
3.3 µs to shift the data into the shift/ 

hold registers. Thus, the system can 
sample an input signal at 11.4 + 3.3 = 
14.7 µs or 68 kHz. The Nyquist sam­
pling theorem states that a signal 
must be sampled at twice the highest 
frequency component to accurately 
preserve the information in that sig­
nal. Therefore, this system can accu­
rately filter a signal with the fre­
quency component as high as 34 kHz. 

Using the DFDP software from 
ASPI, a bandpass filter was de­
signed using the Parks-McClellean 
method. The center frequency is at 
20 kHz with a passband of 5 kHz. The 
transition region occurred in 2 kHz 
(Fig. 5). It's interesting to note that 
the edges of the filter have a slope of 
approximately 35 dB/0.2 decade, or 
175 dB/decade. It would take a 9th­
order analog filter to implement the 
same specifications. 

The system presented in this ex­
ample is a straightforward FIR fil­
ter. Because of the extensive use of 
programmable logic, the system can 
be easily adapted to implement an 
IIR filter. The final output value can 
be fed back into the FIFO prior to a 
new sample shifting into the FIFO. 
The coefficients can be staggered in 
the coefficient ROM so that the Bms 
line up with the Y(n - M), and the A.s 
line up with the X(n - N). 

If enhancement of the system's 
performance is desired, a larger 
FIFO memory can be used with a 
faster multiplier-accumulator. Be­
cause 15-ns programmable-logic de­
vices are used, they're not a limiting 
factor. If a parallel ADC, 64-by-8 
FIFO, and a 45-ns multiplier-accu­
mulator are employed, the system 
could be made to run at 167 kHz with 
little modification.D 

The author would like to thank At­
lanta Signal Processing for their 
help in developing this article. 
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State Machine Design for High Speed 
PowerPC TM RISC Microprocessor Systems 

Matt Carlson, Senior Design Engineer 
Motorola 

ABSTRACT 

This presentation demonstrates design 
techniques for large, ultra-high speed 
(75 MHz) state machine designs used in 
RISC type bus architectures. Details of an 
application using CPLDs to implement 
large state machines for the PowerPC 
603 TM and PowerPC 604 TM RISC 
microprocessor bus control will be 
described. 

The Demands of RISC 

RISC microprocessors are demanding 
faster bus speeds than external logic can 

provide. In fact, the PowerPC 603 ™ and 
PowerPC 604 TM processors are capable 
of running the internal clock of the part at 
two, three, and even four times the speed 
of the external bus, so that bus speed 
limitations do not slow down the internal 
speed of the part. 

Bus speeds for this family are initially 
targeted at 66MHz, and should quickly 
evolve to 80MHz. The need for state 
machines to perform bus control functions 
at these speeds provides a challenge for 
systems designers. 

In addition, the 603 & 604 external bus 
is capable of complex modes of operation; 
bus control designs can be built to use the 
most elegant and sophisticated features. 
Examples of some of these features are 
multi-processor arbitration, two- (or 
three-) level address pipeline control, 
split bus control, out-of-order bus 
transfer control, and transfer reply 
generation. 
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To illustrate the techniques which show 
how to optimize a large state machine 
design, I will use the ABEL source file for 
a pipeline controller that has been 
developed for the PowerPC 603 and 604 
microprocessors. 

Pipelining addresses generated by the 603 
or 604 processor greatly increases 
throughput. The costs of pipelining are 
minimal when compared with the relative 
increase in performance. 

In order to pipeline addresses two levels 
deep, all that is required are a few latches 
for the holding the addresses and their 
associated attributes, and a pipeline 
controller. To design this pipeline 
controller to run at 75MHz, the state 
machine must meet a cycle time of 13.3 
nanoseconds. This means that the clock­
to-output delay (tco) plus any setup time 
(tsu) to control registers must meet the 
13.3 nsec requirement. 

tco + tsu = 13.3 nsec 

Finding a device that is complex enough to 
handle a large state machine and that can 
meet this critical speed requirement used 
to be a tough chore; however, there are a 
few devices whose architectures are 
designed specifically for this purpose. 

Designing for speed also requires using a 
device that can produce all output signals 
and state equations in a single level of 
logic. Using combinatorial feedback or 
fanning logic out across several logic gate 
levels is too slow in standard PLDs. 
Another major decision involves deciding 
whether to use a FPGA or a CPLD. 



Large State Machine- FPGA or CPLD? 

FPGA devices typically run faster than 
CPLD devices if they can be used around a 
"one-hot' state bit encoding. However, if 
the state machine is complex (having 
many inputs or many state transitions), 
the FPGA with its "one-hot" encoding 
scheme falls short because the logic cell of 
the FPGA is too small and must resort to 
using multi-level logic delays to handle 
the number of inputs or product terms 
(pterms). 

Because the speed requirement allows only 
one level of logic, a design which has a 
large number of pterms cannot be 
implemented well in an FPGA. This is the 
case with the pipeline controller for the 
603/604. It has 34 states, 93 state 
transitions, 13 inputs, and 12 outputs. 
This is more than twice as large as the 
"Large State Machine' of PREP's 
benchmark #1. 

A CPLD is a better choice for large state 
machines than FPGA architectures for yet 
another reason. Because the CPLD 
provides a higher number of pterms in 
each cell than an FPGA, a maximal· (or 
near-maximal) state bit encoding fits 
more easily. The low number of state bits 
in the CPLD can very likely all be brought 
out on 1/0 pins for external visibility. An 
FPGA with a "one-hot" encoding is 
probably not able to have all its internal 
state bits visible on the 1/0 pins. 

Another very important point in using 
CPLDs for fast machines is that they boast 
a very predictable delay path. You know 
that the design will meet speed 
requirements before you even start to 
implement it in the device. This is a big 
advantage over an FPGA because FPGA 
architectures typically depend on the 
routing delays to provide final results of 
the speed of operation. These FPGA 
routing delays aren't known until the 
design has been completely implemented 
in the device- not a good time to find out 
that there will be much more routing 
work to do! 

Design Definition 

The ABEL source file format for the pipe 
controller is shown in Figure 1 . 

ModU& PIPECNTL 
Title 'PIPECNTL- TC60X Pipeline Controller 
Mall Carlson & Gregg Mack Copyright Motorola 1993' 

"INPUTS 
elk, reset. Its, ts. aack, artry. sdead, srw, sdone, 
anydbr, dbwo, mrw. nrw PIN ; 

"OUTPUTS 
sis, ok2kill, ok2ta. noe, holdn, holds, bpoe. 
do_dbwo. pipeO, pipe1. pipe2. pipefull PIN; 

'STATE BIT REGISTERS 
sbO. sb1. sb2, sb3, sb4. sb5. sb6 NOOE· 

'STATE ASSIGNMENTS 
stO = (!sbO & !sb1 & !sb2 & !sb3 & !sb4 & !sb5 & !sb6); 
st1 = (!sbO & !sb1 & sb2 & !sb3 & !sb4 & !sb5 & sb6); 
st2 = (!sbO & sb1 & !sb3 & sb4 & lsb5); 
st3 = ( sbO & sb1 & !sb3 & sb4 & lsb5); 

st33 = (lsbO & !sb1 & sb2 & sb3 & lsb4 & sb5); 

Equations 
" st1 .- 7 Plerms 

sb2 := 
"st1 := 

stO & ts 
# st1 & !aack & !anydbr 
# st4 & ts & sdone 
# st5 & !aack & !anydbr & sdone 
# st10 & Is & sdead 
# st13 & ts & sdead 
# sl15 & sdead 

7 Plerms 
stO & ts 

# st1 & !aack & !anydbr 
# sl4 & ts & sdone 
# st5 & !aack & !anydbr & sdone 
# st10 & ts & sdead 
# st13 & ts & sdead 
# st15 & sdead 

" st6 := 2 Plerms 
# st5 & !aack & anydbr & sdone 
# st 19 & !aack & anydbr & sdead 

" st7 := 1 Pterms 
# sl6 & !aack 

" st33 := 2 Pterms 
# st32 
# st33 & !sdone 

End PIPECNlL 

Figure 1: ABEL Source file format for 
Pipe Controller 
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The inputs and outputs are defined simply 
as "PINS" and the state bits are openly 
defined as "NODES". A state assignment 
table defines each state (stx) as a function 
of the state bits (sbx); this table serves 
to let state assignments be made and 
rearranged easily. 

The state equations follow the state 
assignment table. These state equations 
are simply input straight from the state 
diagram- one pterm for each arrow on the 
state diagram. The equations are shown in 
Boolean format (no HDL constructs) so 
that simplification of the equations can be 
easily seen. The state equation format is: 

stW := 
# 
# 

stX&A&B& ... 
stV&C&D& .. . 
stZ&E&F& .. . 

where stW is the next state; stX, stV, and 
stZ are previous state; and A-F ... are 
inputs. The state bit equations (sbx) 
follow the state equations and the equations 
for the output signals are listed last. 

Preliminary Simplification 

The first step in reducing the equations is 
the same step as performed by the Quine­
McCluskey method- eliminate literals 
using the reduction theorem: 

XV + XV' = X [2] 

For example, Figure 2 shows how this is 
done with the pipe controller output 
equation HOLDS. Pterms which are a 
function of the same state are compared; 
the two pterms with st4 (state 4) are 
combined, the three pterms with st5 are 
combined, and so forth. Simplifying the 
output equation in this manner reduces the 
number of pterms from 45 to 31. 

State Pairing Technique 

The second step is to look at the pterms in 
each equation and group pterms that have 
identical inputs but have different states. 
This pairing technique aims at setting up 
the state bit assignment so that the second 
part of the Quine-McCluskey method will 
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achieve the most pterm reduction. The 
simplified HOLDS equation has the first 
two pterms with identical inputs yet 
different states: 

HOLDS := st2 & aack 
# st3 & aack 
# 

State 2 and state 3 are "paired" together 
with the intent of assigning their state 
bits such that they only differ in one bit. 

HOLDS:= "45 -> 31 Ptenns 
812 & aack 

# st3 & aack 
# st4 & -!Is& lsdone 
# 914 & te & !edeRe 
# 815 & aaek & laRydbr & lsdone 
# et6 & aaek& aRydbr &-lelleRe 
# et6 & laael1 & ledeRe 
# st7 & aack & !sdead 
# 818 & artry & lsdone 
# sts & !ts & !artry & !sdone 
# sts & ts & !sdone 
# st9 & -!Is 
# st9 & ts 
# st10 & -!Is & !sdead 
# 9119 & ts & !sdead 
# 8111 & -!Is 
# stH & ts 
# st12 & !artry 
# 8113 & -!Is & !sdead 
# 9113 & te & !edead 
# st14 
# st15 & !sdead 
# st16 & aael1 & !&R) dbr 
# et1S & aael• & &R)dbr 
# et1S & laael< 
# 8117 & !sdone & !dbwom 
# st17 & !sdone & mrw 
# 8117 & !sdone & !nrw 
# 8117 & sdeoo & dbwom & !mrw & nrw 
# st17 & !sdeRe & db .. a1R & !1RF11 & FU\": 

# st18 
# 8119 & aael• & &R) dbr & !sdead 
# 9119 & !aael1 & aRydbr & !edead 
# 9119 & !aRydbr & !edead 
# 8120 & -aF1ry 
# et2Q & !aFlicy 
# 8121 & -16 & !sdone 
# 9121 & !ts & !sEIBRB 
# 8123 & !sdone 
# 8124 & !sdone 
# st25 
# st26 & !aack 
# st26 & aack & anydbr & lsdead 
# st28 
# 8129 ; 

Figure 2: Combining Product Terms 
of initial HOLDS using the 
Reduction Theorem. 



This pairing will allow these two pterms 
to be combined after state bit assignment. 
If there are three or more pterms that 
match, they are grouped together and 
assigned an encoding so that as many state 
bits as possible differ in only one bit. 

For example, the four pterms st10, st13, 
st15, and st19 in the simplified HOLDS 
equation (Figure 2) can be grouped 
together since they have identical inputs 
but different previous states. They should 
have a state bit assignment of the form: 

st10 = 
st13 = 
st15 
st19 = 

xxxxxoo 
xxxxx01 
xxxxx11 
xxxxx10 

These four pterms could then be reduced to 
a single pterm which would be: 

xxxxx & !sdead 

This pterm grouping procedure should be 
done for all state equations and output 
equations. 

How Many State Bits to Use? 

After grouping the states as described 
above, the third step is to determine how 
many state bits to use for a maximal (or 
near maximal) encoding. The number of 
state bits in a maximal encoding is: 

N = RND{log2S}, 

where S is the total number of states and 
RND rounds the number up to the nearest 
integer. For the pipe controller, 34 
states could be maximally encoded by 6 
state bits. 

However, a maximal encoding is usually 
not a good choice when the number of 
pterms is limited by the architecture. 
The number of pterms in the state bit 
equations will increase drastically if 
there are many ''1''s in their state bit 
assignments. Keeping the number of ones 
in the state bit assignments to a minimum 
is very important to understand. In fact, 

this idea is carried to the extreme in a 
"one-hot• state bit assignment where 
there is only one active •1• in any state. 

The best choice for the number of state 
bits in the CPLD is "near• maximal­
usually N+ 1 or N+2. This provides a good 
selection of state bit combinations that 
have a low occurrence of • 1 •s. 
Accordingly, a low number of state bits 
also allows all of the state bits to be 
brought out to 1/0 pins for external real­
time visibility (as opposed to having them 
"hidden• in buried registers). We use 
N+ 1 (seven) for the pipe controller 
which allows us to map 34 states into 128 
possible state bit encodings. 

State Bit Assignment Method 

The fourth step is to make the actual state 
bit assignment. This is done in a table; 
each state is listed along the left column 
and the state bits are listed along the top. 
Figure 3 shows a portion of the state 
assignment table for the pipe controller. 
The states (stO through st33) are along 
the left and the state bits (SBO through 
SB6) are along the top. 

Also along the left column is the estimated . 
number of pterms for each state. Each 
estimated number is conservatively 
determined as the original (unreduced) 
number of pterms minus the number of 
state pairs associated with that state. 

For example, in the equation for st1 of 
Figure 1, the original number of pterms 
was seven. The pairing of st10 with st13 
will reduce the equation to six pterms, so 
the estimated number of pterms for st1 in 
the table is six. 

At the bottom of the state assignment table 
is the total number of pterms for each 
state bit. Wherever a "1" occurs in the 
assignment table, the corresponding 
number of estimated pterms for that state 
must be added to the total at the bottom of 
the table. This total is therefore an 
estimated total. Note that "O"s and •x•s do 
not add to the estimated total. 
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As the state bit assignments are made, 
there are three main things to consider: 

1 ) Give higher priority to pterm pairs 
which occur multiple times over 
those that occur only once. 

2) Assign few •1•s in states that have a 
high number of estimated pterms. 

3 ) Keep a running total of the estimated 
number of pterms for each state 
bit column and try to keep that 
number at or below the maximum 
number allowed by the targeted 
CPLD architecture. 

# 
state 

s s s s s s s 
B B B B B B B 
0 1 2 3 4 5 6 

.... stO 

st1 
0 0 0 
0 0 

0 0 
0 0 

0 0 
0 1 

st2 0 1 x 0 1 0 x 
st3 1 1 x 0 1 0 x 
st4 0 1 x 0 0 0 x 
st5 0 1 x 0 0 1 x 
st6 0 0 1 0 1 0 0 
st7 0 0 1 0 0 1 1 
st8 1 0 x 0 0 0 0 
st9 0 0 0 0 0 1 x 
st1 O 0 0 0 1 0 1 x 
st11 0 0 0 1 1 0 x 

st33 O O O x 
Est. Total: 30 28 29 20 21 30 28 
Actual Total: 16 19 17 18 17 19 19 

Figure 3: State Bit Assignment Table 

Product Term Results 

Before the actual number of pterms can be 
determined, the actual state bit equations 
must be entered into the ABEL source file 
directly from the state bit assignment 
table in the form (see Figure 1): 

SBx := 
# 
# 
# 

{stx equation} 
{sty equation} 
{stz equation} 

1().64 

where "SBx" is a state bit, and 
"{stx equation}" is the entire state 
equation wherever a "1 • appears in the 
SBx column of the state assignment table 
in Figure 3. For example, the equation 
for SB2 is: 

SB2 := {st1 
# {st6 
# {st7 

equation} 
equation} 
equation} 

# {st33 equation} ; 

Expanding each state equation {stx 
equation}, this becomes: 

SB2 
{ stO 

# st! 
# st4 
# st5 
# st!O 
# st13 
# st15 
# st5 
# stl9 

I # st6 
I # st5 

# st6 
# st19 

& ts 
& laack & lanydbr 
& ts & sdone 
& laack & lanydbr & sdone 
& ts & sdead 
& ts & sdead 
& sdead 
& laack & anydbr & sdone 
& laack & anydbr & sdead 
&laack 
& aack & anydbr & sdone 
& aack 
& aack & anydbr & sdead 

( # st33 & !sdone 

"(st!) 

"(st6) 
"(st7) 

"(stl2) 

"(st33) 

This expansion is done for each state bit 
equation and entered into the ABEL source 
file. ABEL automatically substitutes the 
state bits (SBO ... SB6) for each state 
(st0 ... st33) from the assignments in the 
state table. 

Below the estimated totals at the bottom of 
the state assignment table is the actual 
number of pterms. The actual number of 
pterms is determined by entering the state 
bit assignments into the state table of the 
ABEL source file and then running ABEL 
Espresso for the result. ABEL has a 
utility called "pla2eqn" that will generate 
a minimized solution in Boolean equation 
form along with a table which shows the 
number of pterms for each equation. · 

Once a first pass reduction of the equations 
is complete, a choice of architectures 
should be made in which to implement the 
state machine design. 

Architecture Selection 



The main goal of design implementation is 
to make it fit into one or more devices and 
run at the required speed. The 
requirements for the pipe controller were 
to find a device with at least 20 pterms 
per register that could run at 75 MHz. 

Two devices available at the time which 
could meet these criteria were AMD's 
MACH 210 and the Lattice pLSI 1016. The 
MACH device provides 16 pterms to each 
macrocell, whereas Lattice's pLSI device 
provides 20 pterms to each GLB (generic 
logic block). The additional 4 pterms per 
logic block offered by the Lattice pLSI 
device is a major advantage over the MACH 
21 O. Routability, number of 1/0 pins, 
reprogrammability, and number of logic 
blocks also favored the pLSI. 

The Final Fit 

Once a device is chosen, the design can be 
fine-tuned to fit its architecture. If the 
number of pterms is too large on one or 
more of the state bit equations, a couple of 
options exist which will allow the design 
to fit: 

1 ) Modify state bit assignments to 
evenly distribute pterms and run 
the modified state assignment back 
through ABEL again. 

2 ) If a few iterations of step 1 prove 
fruitless, add another state bit to 
lower the number of pterms in 
each state bit. 

After a solution to the number of pterms 
per state bit equation has been identified, 
the number of inputs to each equation 
must not exceed the number allowed by the 
architecture. The Lattice pLSI is generous 
with 18 inputs to each logic cell. 

Implementation 

Once the state bit assignment has been 
finalized and the number of pterms and 
inputs to each equation fits the 
architecture, the output from ABEL is 
used for input to the Lattice pDS routing 
software. The ".eqn" output file from 

ABEL is simply "cut and pasted" into 
global logic blocks (GLBs) of the pLSI 
device. Pin I/Os can either be locked into 
place by the user or left to be assigned by 
the routing software. The best routing 
occurs if the pins are assigned by the 
router. 

This particular design routed in 
approximately two hours running on a 
486SX-33MHz PC. As soon as the route 
was complete, it was comforting to know 
at that point that the design was finished. 
There was no question that the pipe 
controller would run at least 75 MHz. 

Summary 

High speed state machines can provide the 
bus control needed for optimal PowerPC 
performance. The Lattice pLSI 1016 is an 
excellent choice for implementing these 
high speed controllers. The state bit 
assignment and logic reduction techniques 
provide an excellent and practical method 
of compacting a large state machine into 
the CPLD architecture. 
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Applying In-System Reprogrammability in a REFLECTIVE MEMOR'fTM Bus Controller 
Steve Schelong 

Hardware Engineer 
Encore Computer Company 

Introduction 

Today's complex system designs are ever 
more demanding of speed, integration levels, 
and testability. The less technical issues of 
time-to-market and development costs are 
equally important. These constraints provide 
the driving force behind the boom in use of 
programmable logic devices. Encore 
Computer's "Infinity 90r"'" is an example of a 
complex computing system which has 
benefited from the incorporation of 
programmable logic devices. 

The Infinity System is a multi-computing 
system developed for use in computational 
intensive applications such as flight simulation 
and real-time data bases. It handles such 
tasks as graphics generation, motion control, 
real-time data acquisition/processing, and 
concurrent search algorithms. This high-

performance parallel computer was designed 
to solve the shortcomings of the mainframe 
computers currently in use for these tasks. 

Encore's computer is comprised of a 
collection of computing elements which 
communicate over a shared REFLECTIVE 
MEMORY (RM) bus (Figure 1). Each 
computing element is an autonomous 
computer with internal busses and local 
memory. Hierarchies of computing regions 
can be established with the use of FRC bridge 
units and fiber-optic or coax links. Although 
each computing element is autonomous in its 
operation, data coherency must be maintained 
amongst the elements. This coherency is 
enforced through the use of the global writes 
over the RM bus. 

Reflective Memory Bus 
(53.3 MBytes/Sec) 

Reflective Memory Bus 

Figure 1. Encore's Infinity 90 System Incorporating REFLECTIVE MEMORY Bus 
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Implementation of this system makes 
effective use of in-system programmable (ISP 
™) logic devices as controlling logic within the 
computing element. The use of high density 
PLDs creates a streamlined system which 
minimizes board space and operates at high 
speed. Time to market issues are addressed 
by short development cycles and easy bug 
fixes. In-system programmability allows 
Encore to provide on-site customer 
enhancements and updates without replacing 
or modifying hardware. A detailed analysis of 
design problems, alternatives and final 
solutions are presented in the following 
sections. 

[What is] REFLECTIVE MEMORY 

The "Infinity 90" parallel computer requires a 
method for transporting and distributing data 
amongst computing elements. Traditional 
methods of providing this communication are 
divided into two categories: shared-memory 
systems and message passing systems. The 
"Infinity 90" falls into the former category. 
Shared-memory systems, however, often 
suffer from memory bandwidth limitations, 
especially if the number of processing 
elements is high. This problem arises 
because each processing element has a 
memory bandwidth requirement, but there is 
only a limited amount of memory bandwidth 
available. Typically, performance does not 
scale well with the number of processing 
elements. Hierarchical memory schemes 
employing caching/snooping or protocols such 
as SCI were developed in an attempt to 
minimize global traffic and hence improve 
performance. The "Infinity 90" resolves this 
and other problems with an innovative bus 
called the REFLECTIVE MEMORY (RM) bus. 

The RM bus is a global bus dedicated to 
distributing memory write information. Each 
computing element (figure 2) contains a local 
VME bus which operates at VME speeds. 
Write information on the VME bus is queued 
within a RM bus interface. This interface bids 
for use of the RM bus through global 
arbitration. When the RM bus is granted, the 
interface broadcasts the write information to 
all other computing elements which then 
updates their local memories. In this manner, 

all writes are reflected to all computing 
elements and memory coherency is 
maintained. It allows the computing elements 
to operate at local bus speeds, unrestricted by 
global bus penalties. 

VMEchlp 

Internal Bus 

Main 
Processor 

Board 

ConOgUltlon Control 

~G 
Buslnlllrfllce 

(Prog,.rnmQle Logic) 

Reflective Memory 
Bus Interface 

Global Reflectlve Memory Bus 

Figure 2. Infinity 90 Compute Element 

Project History 

The "Infinity 90" has evolved over the past 
few years to make it smaller, faster, and more 
cost effective. All of the "Infinity Systems" 
have retained their VME-based main 
processor board. This CPU board contains 
multiple Motorola® 88000 processors and 
associated logic. The remainder of the 
computing element has undergone 
improvements making it smaller and more 
cost effective. 

The original system consolidated 32 Mbytes of 
dual ported memory and the VME/RM 
interface on a VME 9U size board. This 
implementation required ten 22V1 Os, twelve 
20-pin PLDs, and numerous 74xx series 
components. These components alone 
required 10 square inches of board space. 
Power consumption was understandably high. 
Although higher density components were 
available at the time, these components were 
not capable of operating at the required 
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speeds. To reduce physical size, power 
consumption, and improve performance, 
development of a new implementation of the 
compute element was undertaken. This 
implementation, wherever possible, was to 
leverage off components and boards which 
were available as off-the-shelf items. This 
decision reduced development costs and 
improved time-to-market. The entire system 
(not including the main processor board) was 
targeted to fit onto a VME 6U card. Figure 2 
shows the internal architecture of the new 
computing element. 

To take advantage of pre-designed 
subsystems, the Motorola Mezzanine 
daughter card was chosen as the dynamic 
memory subsystem. This card allowed user to 
choose from 4 to 512 Mbytes of memory 
depending on system requirements. Rather 
than develop a customized VME bus 
interface, the Motorola VMEchip2 was chosen. 
This decision has both good points and bad 
points. Although the VMEchip2 provides a full 
VME Rev D implementation in a highly 
integrated package, it also requires a 
dedicated subsystem for initializing and 
configuring the VMEchip at startup. This 
configuration control block is shown in detail 
in figure 3. 

The configuration control block is designed 
using a 68000 processor with local memory, 
an asynchronous 1/0 port, and a custom bus­
interface to adapt the 68000 bus to the 
computing element's internal bus. The bus­
interface logic incorporates Lattice's high 
density PLO components for address decode, 
interrupt, handshake and request logic 
functions (figure 4). 

The remainder of the system is composed of 
a custom implementation of the RM bus 
interface. Its architecture is shown in figure 5. 
This interface primarily consists of FIFOs to 
queue data transactions, RAMs for mapping, 
and control logic for sequencing and 
interfacing. The control logic portion utilizes 
high density PLDs. Although the architecture 
of this RM interface is essentially the same as 
that of the previous generation compute 
elements, the level of integration is much 
higher and overall flexibility is improved by 
reprogrammability. This improvement is 
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derived from the benefits of fast, high density 
logic and in-system reprogrammability. The 
tasks assigned to the programmable logic 
devices are shown in figure 6. The blocks 
within the dashed box of figure 2 are the 
subsystems of the compute element which 
have benefited from use of today's high 
density programmable logic. Experiences and 
examples of their implementation are outlined 
in the following sections. 

Project Constraints 

Redesigning of the compute element involved 
physical and time constraints that forced the 
investigation of new ways to implement logic 
which was previously accomplished using low 
density PLDs and SSl/MSI components. As 
previously mentioned, the first version of the 
compute element used 22 low density PLDs 
and an assortment of 74xx devices. This 
required 1 O square inches of board space. 
Moving the system from a 9U board to a 6U 
board would not allow for 10 square inches of 
board space just for logic. A higher density 
solution was needed. 

Although design solutions using low density 
devices were sufficiently fast, their use had 
been ruled out for area and power reasons. 
This created concern as to whether it would be 
possible to create a system fast enough using 
higher density programmable logic solutions. 
The logic would need to provide substantial 
decode and sequencing functions for bus 
speeds of 33 MHz. Gate-array solutions 
would certainly be fast enough, but the project 
had neither the budget to absorb high NRE 
costs or the time for long development cycles. 
The previous version of the system 
demonstrated that the speed of high density 
programmable logic [available at the time] 
was insufficient. Fortunately, since then, the 
speed of certain types of these devices has 
improved considerably. 

Using Motorola's Mezzanine memory system 
and VMEchip2 from the 187 Processor board 
saved the project significant design resources 
and time. These boards come out of 
Motorola's board division and not out of a chip 
division. Unfortunately, application support 
was not available for these subsystems and 
the documentation was not always clear. This 
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created uncertainty in the subtleties of their 
operation. An initial project goal was to 
simulate the entire system, but without a 
better understanding of component operation, 
simulation was not possible. The only 
reasonable alternative was to design a 
prototype using the assumed operation and fix 
things along the way. This implied that 
significant logic changes were likely along with 
multiple design iterations. 

As is the case with most projects, there is 
never enough time allotted. The redesign of 
the compute element is no exception. The 
project was given seven months to take the 
redesign from specification to final 
implementation which was a very tight 
schedule. 

Technology Choices 

In the beginning of the redesign, Encore 
Computer determined that the technology 
choice for the new implementation would be 
of higher density than the low density PLO 
solution of the first version. In addition to area 
and power considerations was the concern 
that design changes were likely to occur late 
in the design cycle. Using low density parts, 
logic changes would likely result in PC board 
layout changes causing schedule slips. High 
density devices were desirable since they 
could integrate much larger portions of the 
control circuitry. This would reduce the 
chance of having to go outside the device if 
changes were needed. 

The first alternate to be investigated was 
FPGA technology. This technology offered 
some very desirable attributes, the greatest of 
which was the level of integration attainable 
with the device's high gate count. They also 
allowed for changes and bug fixes by simply 
reprogramming (or replacing of a chip). 
Design proceeded using FPGAs but portions 
of the design showed significant signal delays 
when passing through the FPGA. This caused 
immediate concern since operation at 33 MHz 
required very fast signals. As development 
continued, signal delays surfaced as another 
issue. Signal delays, even if logic had been 
optimized to meet timing constraints, changed 
from one routing iteration to another. Portions 
of the circuitry deemed complete couldn't be 

considered finished since timing would change 
as new circuits were added to the FPGA. 
Timing was uncertain until the very final route. 
In addition, routes were taking as long as 24 
hours and the project was under considerable 
time constraints. The combination of these 
difficulties prompted the project team to begin 
looking for alternatives to FPGAs. 

High density PLDs are now much faster and 
denser since those investigated in the first 
version of the compute element. Several 
device vendors had products which seemed 
suitable for this application. After evaluating 
the choices, Encore Computer decided to use 
the 1000 family of high density PLDs from 
Lattice Semiconductor. The deciding factors 
were device speed and use of in-system 
programmability (ISP). The programmability 
and reprogrammability feature would be 
beneficial since several design iterations were 
expected. Since ISP devices can be soldered 
directly onto the PCB, changes could be 
affected without removing the devices. This 
eliminated the need for expensive, unreliable 
sockets and provided confidence that if 
something wasn't working it wasn't due to bad 
socketing. It also reduced the chance of 
disturbing the test setup from the mechanical 
action of removing and replacing chips. 

As the design proceeded it was soon 
discovered that portions of the logic design of 
the previous version could be directly re-used 
in this design. The previous design was 
implemented using PLDs programmed with 
Data I/O's ABEL system. This ABEL software 
could also be used to program the Lattice high 
density devices. Since the structure of these 
devices is a superset of PLDs, much of the 
ABEL code mapped directly into the high 
density devices. This reduced the task of re­
mapping the logic into another structure. 
Control logic operation speed was a constant 
concern and was a driving force which 
motivated the use of high speed PLDs in the 
first version of the system. The current high 
density devices promised speeds approaching 
those of the fastest low density PLDs. Yet 
they provided higher levels of integration. The 
chosen Lattice parts were fast enough to 
implement all the control functions without 
having to implement critical functions in 
specialized external logic. All sections of 
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control logic could be logically partitioned and 
mapped into the devices in a structured 
fashion. These circuits operated to design 
specifications. 

A problem encountered with FPGAs was their 
non-deterministic delays encountered between 
routing iterations. It was frustrating to find that 
after waiting 24 hours for a route to complete, 
delays which had been acceptable had now 
increased to be unacceptable. This problem 
was not experienced with the high density 
PLDs. Not only did the high density PLDs 
route in less than one hour, but once the 
delays were established for a logic section, 
those delays would remain fixed between 
routing iterations. It was possible to rely on 
timing information remaining stable as the 
design proceeded. 

During implementation, the project schedule 
expanded to nine months and the project was 
completed in that time. Design of the system 
and control logic were successfully concluded 
without major incident. Timing, power, and 
area constraints were met and the system was 
ready to ship. 

ISP helped the project during the design and 
implementation stage. Once the project was 
complete, a secondary benefit of ISP was 
realized. Systems had shipped to customers, 
but enhancements and upgrades in the 
hardware are ongoing. The installation of 
these upgrades had previously required that 
PLDs be pulled from the boards and be 
replaced with updated PLDs - a labor 
intensive task involving system disassembly. 
With ISP, it is now possible to provide these 
updates by simply mailing a disk containing 
the updated JEDEC file to the customer site. 
The customer then downloads the JEDEC file 
from a personal computer and the change is 
affected. Thus streamlining the process of 
providing field updates and reducing 
associated costs. 

Conclusion 

Encore Computer's parallel computing 
system, "Infinity 90", is now in its second 
generation. The first generation relied on the 
use of low density PLDs, while the second 
generation machine was streamlined to 
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improve performance and reduce costs. To 
realize these improvements, Encore 
Computer effectively used in-system 
programmable high density PLDs. These 
devices are used as controlling logic in the 
RM bus interface and system configuration 
subsystems. The requirement for high speed 
operation limited the choice of programmable 
logic technologies. Lattice Semiconductor's 
ispLSI 1000 devices provided both the speed 
and density required for these applications. 
Logic design was simplified because of 
uniform and predictable delays through these 
devices. In-system programmability provided 
dual benefits. It resulted in fast debug and 
update cycles as well as providing an easy 
path for field upgrades. The design of the 
system proceeded on schedule and resulted in 
fast time-to-market. 

ISP '9 a trademark of lattice Semiconductor Corporation. 

REFLECTIVE MEMORY and Infinity 90 are a tradomarf< of Encx:>ro Cor11>uter. 

Motorola is a registered trademark of Motorola Incorporated. 
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PLO Usage Generalizes HDTV Frame Buffer Interface 
David L. Harper • Senior Design Engineer 

Convex Computer Corporation 

Background 

High Definition Television (HDTV) is an emerging tech­
nology that is being eagerly pursued by many companies 
around the world. The very name invokes images of 
theater quality video and sound brought into the home. 
However, beyond the consumer electronics arena, there 
is a vast area of opportunity in both business and defense 
applications. For example, NASA is looking at the 
possibility of using HDTV for pictures transmitted back 
from space, and at least one European firm is looking at 
the technology for video phone and videoconferencing 
applications. 

Currently, many of the goals for HDTV have been de­
fined, such as aspect ratio and resolution, however, no 
standards yet exist regarding implementation. Conse­
quently, many companies are willing to gamble millions 
of research dollars now, in hopes of sharing a piece of 
what promises to be a multibillion dollar industry by the 
early 21st century. Although many preliminary systems 
exist in the lab and several have even advanced far 
enough for field trials, none of the competing approaches 
have established a dominating position. Many of the 
systems offer significant advantages, such as compat­
ibility with existing standards or a host of new and exciting 
features. Unfortunately, all of the systems face similar 
problems, such as dealing with a medium that requires 15 
times more pixels than conventional television and band­
widths that are on the order of 200 MBytes per second. 
Therefore, current research focuses on areas such as 
the development of error correction and data compres­
sion algorithms. This research requires a tremendous 
amount of computing power. 

The computers used by HDTV research organizations 
have two primary purposes. First, they are used as 
simulation engines to determine how a given system will 
react to real world problems, such as a noisy transmis­
sion medium or component failure. Second, they are 
used to transmit digital video images to a display device 
that is connected to an 1/0 channel. These transmission 
requirements strain the 1/0 capabilities of today's com­
puters and this has given rise to a peripheral that has 
been instrumental in the development of HDTV. This 
peripheral is called a Frame Buffer and is a very large, 
fast data store with some specialized processing capabil­
ity. Frame buffers which meet the needs of HDTV 
research are currently available from several manufac­
turers. This paper will address the development of an 
interface between a Convex 1/0 channel and two of the 
more popular frame buffers. 

Design Goals 

The Special Systems group at Convex, whose charter is 
to develop custom interfaces to satisfy customer require­
ments, already had some experience with frame buffer 
interface design. Two years ago the group developed an 
interface to the Image Sequence and Storage Processor 
(ISP), manufactured by DVS GmbH. That design re­
quired a 64 bit, single-ended TIL data path that could 
transfer bi-directional data at speeds up to 40 MBytes per 
second. Recently, an order was received for the devel­
opment of an interface to the Digital Video Silicon Recorder 
(DVSR), which is manufactured by VTE GmbH. Although 
both the ISP and DVSR offer similar features to the end 
user, the interface is completely different; the DVSR 
requires a 16 bit differential ECL data and control path. 

From the start of the project two goals were identified as 
being key to the success of the design. The first was to 
produce a single interface that could handle both the DVS 
and VTE frame buffers. The second was to double the 
transfer rate from the 40 MBytes per second on the 
original DVS interface to 80 MBytes per second. This 
would allow Special Systems to offer a single solution to 
a customer who could then select which frame buffer best 
matched his current research thrust. It would also give a 
higher performance upgrade path for existing customers. 

Convex VO Structure 

The Convex 1/0 system is based on a series of Channel 
Control Units, which supply a 64 bit, 80 MByte per second 
synchronous data path to an attached peripheral or 
subsystem. In most cases, custom interface designs use 
a High Speed Parallel (HSP) channel controller and an 
additional chassis remotely attached to this CCU through 
a 1 OOfootcableset (Figure 1). The chassis, known as the 
HSP Interface Adapter (HIA), mounts in a standard 19" 
rack and provides a convenient platform for interface 
boards designed on a triple high Eurocard form factor. 
Four slots of the nine slot card cage are dedicated to a 
standard board set. This board set provides the designer 
a choice of interface options plust 64KBytes of FIFO 
buffering which eases the design task when differing data 
rates are involved. 

Approximately two years ago, the Special Systems group 
undertook a program to shorten custom design cycles 
and reduce costs. This effort resulted in a two board set 
which could be used in a majority of the applications. The 
first board, called the LCA Universal Interface (LUI), is 
based on four Xilinx XC3064-100 PGAs and extends 
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generic, programmable logic to the board level. This 
board, with suitable FPGA programming, is reused in 
multiple interface designs. The second board, the De­
vice Universal Interface (DUI), is custom designed for 
each application. The DUI is usually quite simple since 
it only provides the electrical interface levels required by 
the target peripheral. 

FPGA Strategy 

Early in the design it was realized that goals for the 
project exceeded the capabilities of the LUI. In particular, 
the data transfer between the interface and the VTE 
DVSR occurs at a 40 MHz rate. This data stream needed 
to be multiplexed or demultiplexed between the 16 bit 
data path required by the DVSR and the 64 bit data path 
required by the Convex VO system. Further, state 
machine operation at these speeds using the Xilinx 
devices installed on the LUI was considered too risky. 
This meant that some level of preprocessing would need 
to be performed on the DU I to reduce the demands on the 
LUI. Programmable logic was desired due to density and 
flexibility so a search was undertaken to find a family 
suitable to the task. The following requirements for the 
family were considered necessary: 

Pin to pin delays on the order of 15-20 nS in order to 
generate the control signals necessary by the DVSR. 

A gate count on the order of 2500 gates would allow 
implementation of everything considered necessary and 
still keep the design on a single board. 

A reprogrammable technology that could be reconfigured 
in-circuit, to allow for ease of configuration between the 
two target peripherals. 

Several FPGA families were considered for the design, 
however, at about this time Convex was selected by 
Lattice Semiconductor Corporation to be a beta site for 
their new pLSI family of nonvolatile FPGAs. The Special 
Systems group was already a user of the Lattice GAL 
devices due to their generic architechture and repro­
grammability features, and had been privileged to input 
suggestions during the creation the the pLSI family. The 
emergence of the technology at the beginning of the 
design cycle was a stroke of good fortune; not only did the 
pLSI family satisfy all of the FPGA requirements, but it 
gave the Special Systems group an opportunity to evalu­
ate a technology that offered many advantages. 

DUI Architecture 

The architecture required by the DUI to interface to either 
the VTE or DVS frame buffer is very straightforward 
(Figure 2). The original intent was to use the pLSI FPGAs 
to implement the high speed state machines required by 
the design. However, after some initial exposure to the 
pLSI, it quickly became apparent that the capabilities of 
the device far exceeded the original design require­
ments. As is often the case in situations such as this, the 
device capabilities suggested enhancements and the 
design began to evolve. The initial concept of the project 
was to develop two separate designs based on the same 
architecture. Separate configuration downloads utilizing 
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the in-circuit programmability feature would then config­
ure the board to interface to whichever frame buffer was 
attached. However, it tumed out that the pLSl1032, the 
first member of the pLSI family to be introduced, was 
sufficient to contain all state machines and control lines 
at the same time. A bit in a control register, set by the 
device driver, could be used to identify which frame buffer 
was attached, and thus determine which state machines 
and control lines would be active. 

The realization that the design goals could be exceeded 
changed the focus of the design. Instead of limiting the 
interface to the original two frame buffers, the architec­
ture began to shift to one which, with appropriate 
reprogramming of the FGPAs, might be used to accom­
modate other - as yet undetermined - frame buffers as 
well. This meant that the data path portion of the 
architecture needed to be as flexible as the control 
section. Instead offixing the data path with discrete logic, 
it was decided to use FPGAs here also. This resulted in 
a data path that could handle alternate data byte ordering 
structures and parity schemes as well. 

Design Implementation 

Special Systems typically implements designs using the 
procedure shown in Figure 3. This procedure uses a 

LUl_DATA 

64 LUI 
I face 64 

LUl_PAR 

64 

mixture of purchased CAD tools integrated with tools 
developed in-house. A model of the design is con­
structed using a hardware description language. This 
model is then subjected to rigorous testing which mimics 
the target environment. A mixture of schematic entry and 
logic synthesis translates the completed model into the 
final design. Gate level simulation of the result closes the 
design loop by verifying that the output acts the same as 
the original model. The result of this methodology is a 
design that requires a minimum of debugging in the lab. 

Integration of the Lattice pLSI devices into this design 
cycle was a straightforward task. The pLSI development 
system required a slightly modified form of the Boolean 
equations already produced by the logic synthesis pack­
age. The only missing piece for this design was the ability 
to perform a gate level simulation on the final output. A 
tool to accomplish this in future designs is already in the 
planning stage. 

Conclusions 

The Lattice pLSI FPGA was a very favorable choice for 
the Frame Buffer Interface design. In particular, the 
speed and density of the device produced a design which 
would have been difficult to implement using slower 
FPGAs or discrete logic. Future Special Systems de-
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signs will be able to take advantage of the following References 
features: 

High speed operation which creates opportunities for 
designs previously beyond the reach of the LUI. 

[1) Lindsey, Lonnie, 1989, "High Definition Television: A 
Primer", Signal, August 1989. 

[2) Convex Computer Corporation, 1990, "Supercomput­
Enhanced routability and predictable routing delays that ers and High Definition TV". 
remove concerns of a small change adversely affecting 
the performance of a design. [3) Lattice Semiconductor Corporation, 1991, "pLSI & 

ispLSI Design Guide". 
In-circuit reprogrammability which allows design correc­
tions or enhancements in the field with minimal disruption 
to the customers activities. 

Features such as these will allow Convex to continue to 
produce designs which satisfy the ever increasing cus­
tomer requirements. 

Design 
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Figure 3. Design Methodology 
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Quality Assurance 
Program 

Introduction 

Lattice views quality assurance as a corporate responsi­
bility and an integral part of all operational activities. 
Lattice's Quality Assurance organization is independent 
from Manufacturing and has direct access to top man­
agement, assuring sufficient authority is afforded to quality 
issues. 

Lattice's quality program is in full compliance to the 
quality assurance requirements of MIL-M-38510 Appen­
dix A and all inspection system requirements of 
MIL-1-45208. Lattice is also fully certified to the ISO 9001 
standard. 

Reliability 
All new products, processes and vendors must pass pre­
defined evaluations before receiving initial qualification 
release. Major changes to products, processes or ven­
dors require additional qualificaton before implementation. 
To assure continuing conformance to reliability goals, an 
ongoing monitor program is maintained on all products. 

In-Process Control 

Qualified product must be manufactured under strict 
quality controls that start with regulated procurement and 
documented inspection plans for all incoming materials. 
Sample testing and in-line monitoring as well as statisti­
cal process control charts provide constant feedback at 
each critical step of the manufacturing process. 

Calibration 
All equipment involved in determining product conform­
ance to specifications through inspection, measurement 
or testing must be of the required accuracy. Equipment 
is calibrated and maintained on a defined interval against 
a nationally recognized standard. In addition, equipment 
must exhibit a suitable indicator showing calibration 
status as well as safeguards to disallow unauthorized 
adjustments. 

Training 
Key manufacturing personnel must complete a formal 
training program and obtain certification for each opera­
tion before they are allowed to perform activities affecting 
quality. Methods and records identifying the type and 
extent of training are maintained and recertification re­
quired on a yearly basis. 

Subcontractor Control 
All subcontracted manufacturing operations must be 
performed by sources exhibiting a quality program com­
mensurate to that of Lattice. These suppliers are audited 
at least once a year to monitor their compliance to 
Lattice's quality initiatives and goals. Incoming inspec­
tion is performed to provide feedback and continuous 
improvement of subcontractor performance with the main 
objective being to control quality at the source. Commu­
nications and in-line data are continuously exchanged to 
allow real-time monitoring of subcontractor manufactur­
ing operations. 

Document Control 
Every product and process must have adequate written 
documentation released and available at the point of use 
before production begins. All information related to the 
definition, manufacturing, testing and support of Lattice 
products or services shall be maintained and controlled. 
Initial release as well as subsequent changes must be 
properly reviewed and approved before implemented. 

Nonconforming Material 
Material found to be nonconforming to specified require­
ments is identified, segregated, analyzed and 
dispositioned per documented procedures. Records are 
maintained denoting the nature of the discrepancy as 
well as the final disposition. All dispositions involve the 
applicable engineering section and Quality Assurance. 
Where applicable, the root cause of the discrepancy will 
be identified and a corrective action implemented using 
the CAR (Corrective Action Request) form. 

Failure Analysis 
Failure modes discovered during qualification testing, 
inspections, customer returns or in-process screening 
are processed through Lattice's Failure Analysis group to 
determine the cause or relevancy of the failure. Verified 
failure modes are documented and corrective action 
initiated as required to eliminate the root cause. 

Corrective Action 
All operational functions utilize a documented corrective 
action system coordinated, recorded and monitored by 
Quality Assu ranee. The system is designed to provide for 
proactive problem identification and resolution in a timely 
manner. Inputs include vendor, internal and customer 
related problems. Emphasis is placed on effective elimi­
nation of the root cause to prevent recurrence of the 
problem. 
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Quality Assurance Program 

Management is responsible for ensuring that employees 
have sufficiently well defined responsibilities, authority 
and organizational freedom to identify potential quality 
related problems as well as initiate and implement solu­
tions. 

Self Audit 
Internal self audits of the entire quality and delivery 
system are performed per written procedures and to a 
predefined schedule. The functional audits evaluate 
actual method to written procedure. The results of these 
audits are documented on a checklist and any discrepan­
cies are brought to the attention of personnel responsible 
for the audited area. Deficiencies require corrective 
actions must be initiated and subsequently verified as to 
deployment and effectiveness. A periodic review of 
these functional audit results and corrective actions is 
performed by Quality Assurance. 

Procurement 
All direct materials and services affecting quality or 
reliability of end product must be purchased from quali­
fied sources. Selection of these critical suppliers is 
based upon one of more of the following: quality system 
audits, product qualification testing, correlation studies, 
incoming inspection and demonstrated ability. A quali­
fied supplier list is maintained by Quality Assurance and 
used by Purchasing to control procurement. Each pur­
chase order must specify the applicable controlling 
requirements for all such direct materials or services. 
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Introduction 

Qualification 
Program 

Lattice has an intensive qualification program for exam­
ining and testing new products, processes, and vendors 
in order to insure the highest levels of quality. Lattice's 
Quality and Reliability Group is responsible for defining 
and implementing this qualification program. 

The following table outlines the steps which must be 
performed before a new product, package or process is 
released. The requirements listed below are general 
guidelines. Detailed information on Lattice's qualification 
process is available to customers upon request. 

Qualification Requirements 

#of Duration 

Test Sam_e!es New Product New Wafer Process NewPack~e 

125° C Operating Lifetest 300 1,000 Hours 2,000 Hours 2,000 Hours 1 

(5.25V) 

150° C Biased Retention 450 1,000 Hours 2,000 Hours 2,000 Hours 1 

Bake (5.25V) 

Endurance Cycling 75 10,000 Cycles 10,000 Cycles N/A 

ESD (COM, HBM, MM) 216 End of Test End of Test N/A 

Latch-Up Immunity 27 End of Test End of Test N/A 

Temperature Cycling 150 1,000 Cycles 1,000 Cycles 1 ,000 Cycles 
(-65 to 150° C) 

Biased 85/85 (5V) 225 N/A 1,000 Hours 1,000 Hours 

Autoclave (121° C, 15psig) 150 N/A 336 Hours 336 Hours 

Lead Integrity (DIP only) 9 N/A N/A End of Test 

Solderability 9 N/A N/A End of Test 

Physical Dimensions 6 N/A N/A End of Test 

1. Required for new assembly technologies only. 
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Qualification Program 

Reliability Monitor Program 
The Reliability Monitor Program provides for a periodic 
reliability monitor of Lattice products. The program 
assures that all Lattice products comply on a continuing 
basis with established reliability and quality levels. 

The Reliability Monitor Program is designed to monitor all 
fab and assembly facilities as well as each process 
technology in production. A summary of the program test 
and sampling plan is shown below. 

Short Term Process Monitor (Bi-Weekly) 

Test #of Samples Duration 

125° C Operating Lifetest (6.50V) 70 160 Hours 

150° C Biased Retention Bake (5.25V) 70 160 Hours 

Autoclave (121° C, 15psig) 35 160 Hours 

Long Term Process Monitor (Monthly) 

Test #of Samples Duration 

125° C Operating Lifetest (6.00V) 100 2000 Hours 

150° C Biased Retention Bake (5.25V) 150 2000 Hours 

Ongoing Package Monitor (Monthly) 

Test #of Samples Duration 

Temperature Cycling (-65 to 150° C) 50 1000 Cycles 

85° C/85% RH 75 2000 Hours 
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E2CMOS Testability 
Improves Quality 

Introduction 
The inherent testability of Lattice's E2CMOS PLDs sig­
nificantly improves their quality and reliability. By using 
electrically erasable EEPROM technology to produce 
GAL, pLSI and ispLSI devices, Lattice is able to perform 
100% AC/DC, functional, and parametric testing of every 
single device. In order to achieve the highest quality 
levels, Lattice programs and tests each device repeat­
edly throughout the manufacturing process. 

Actual Test vs. Simulated Test 
Why is "actual test" so significant? PLDs, unlike most 
other semiconductor devices, have a programmable 
element that determines the final device functionality and 
AC/DC performance. These programmable elements 
can be fabricated from metal link fuses, programmable 
diodes or transistors, volatile static RAM cells, UV EPROM 
cells or electrically erasable EEPROM cells. Each of 
these technologies carries a different variability of pro­
gramming success and a variance in the impact of the 
programming success on the performance and reliability 
of the device. 

The most common programmable elements are the 
metal fuse, EPROM cell and EEPROM cell. Of these 
element types, only the EEPROM cell can be thoroughly 
tested by the manufacturer prior to shipment to an end 
user OEM. 

EEPROM Allows Actual Test 
Each of the technologies identified above can be pro­
grammed. In this manner they are all the same. The 
differences become apparent when the erase times are 
analyzed. Metal link and One-Time Programmable (OTP) 
devices cannot be erased. UV EPROM devices can be 
erased, however the time required is 20-30 minutes (in an 
expensive windowed package). EEPROM devices, on 
the other hand, offer instant erasability on the order of 50 
ms (thousandth's of a second). The advantage of this 
instant erase for manufacturing test is significant. Instant 
erase allows instant re-patterning for additional testing. 

EEPROM technology has been used for PLD manufac­
turing by Lattice for more than a decade. Lattice refers to 
their high performance EE PROM technology as E2CMOS 
technology. Extensive reliability studies of the technol­
ogy have been performed with industry-wide acceptance, 
including the military. 

Other Methods Are Imprecise 
All PLD devices must be tested to some degree to 
validate functionality and performance. Technologies 
that are not erasable or require lengthy erase times 
severely constrain the test flexibility. Since the normal 
"user" programmable elements cannot be programmed 
during manufacture (all elements must be available for 
end-user programming) the manufacturers of one-time 
programmable PLDs resort to using simulated and corre­
lated performance oftest rows, test columns and phantom 
or dummy-test arrays. At best, this is a statistical mea­
sure of the actual device performance. One need only 
look atthe "normal" programming yield fallout of 0.5 to 3% 
or the "acceptable" post-programming test vector and 
board yield fallout of 0.5 to 2% to know that this correla­
tion is weak. The quality systems of today are measuring 
defects in parts per million (PPM). A six sigma program 
requires less than 3.4 PPM, four orders of magnitude less 
than that achievable with non-testable PLDs. 

Actual Matrix Patterning 
The unique capability of E2CMOS devices to be instantly 
electrically erased allows these devices to be patterned 
multiple times during Lattice's manufacturing test. Nor­
mal array cells in the programmable matrix are patterned, 
erased and tested again and again. The test rows or 
columns, phantom arrays, etc., that are used with other 
technologies are not necessary with E2CMOS devices. 
Programmability of every cell is checked dozens of times. 

Historically, the checking of a successful programming 
operation consisted of no more than a pass/fail verifica­
tion step. This digital, go/no go check is not adequate to 
assure that the cell is programmed properly with suffi­
cient margin to guarantee long-term reliable performance 
of the device. Lattice E2CMOS devices are processed 
through a proprietary cell verification step that consists of 
an analog measure (to millivolt accuracy) of the actual 
cell threshold. This capability is used for extensive 
reliability and quality measurements and testing. 

Worst Case AC/DC Testing 
A PLD does not have a defined function until the engineer 
patterns the device with his custom pattern. The manu­
facturer, when considering the testing of a PLD, must 
consider the hundreds of different architecture and func­
tional variations that can be created by the end user. 
Each configuration of architecture brings on a different 
set of worst case pattern and stimulus conditions. Quick 
application of a series of worst case patterns that cover 
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E2CMOS Testability Improves Quality 

all of the permutations of input combinations, array load 
and switching, and output configuration is required. 

E2CMOS devices offer instant erasability to address this 
reconfiguration and test problem. Testing each addi­
tional worst case configuration takes fractions of a second, 
allowing multiple patterns to be checked to assure perfor­
mance to rated speeds. The final result is a device with 
defects reduced from PP.t! (parts per hundred) to PPM 
(parts per million). 
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Introduction 
Lattice maintains a comprehensive reliability qualifica­
tion program to assure that each product achieves its 
reliability goals. After initial qualification, data is continu­
ously accumulated through monitor programs so as to 
further drive failure rates down. Each product's qualifica­
tion plan is generated in conformance to Lattice's 
Qualification Policy with failure analysis in conformance 
to Lattice's Failure Analysis Procedures. Both docu­
ments are contained in Lattice's Quality Assurance 
Manual, which can be obtained upon request. Failure 
rates in this reliability summary are expressed in FITS. 
Due to the very low failure rate of integrated circuits, it is 
convenient to refer to failures in a population during a 
period of 109 device hours; one failure in 1 Q9 device 
hours is defined as one FIT. 

Process Overview 
Lattice Semiconductor is using the fourth and fifth gen­
eration of its advanced UltraMOS® process for its current 
manufacturing (Figure 1 ). 

Basic Theory of Operation 
An E2CMOS cell is built around a MOS transistor with a 
floating gate which is externally charged or discharged by 
a small programming current. If the floating gate is 
charged up to a positive potential by removing electrons 
from the floating gate, the cell transistor is turned on, 

Leff (11M) 

1 ~8 UltraMOS•-1 

Technology and 
Reliablity 

storing a binary zero in the cell. If the floating gate is 
charged to a negative potential by placing electrons on 
the floating gate, the transistor is kept in the non-conduct­
ing or off state, which writes a binary one into the cell. In 
addition to the floating gate or sense device, an additional 
select transistor, or pass gate, is added in series with the 
cell to isolate it from the array during read and write 
operations. A schematic representation of this cell is 
shown in Figure 2. In addition to the conventional bit line 
and word line, the E2CMOS cell also has an additional 
line for the matrix control gate (MCG) which controls the 
potential of the floating gate. 

The cell is programmed by applying a programming pulse 
to either the matrix control gate or the bit line of a cell 
which has been selected by an applied high voltage on 
the word line. Programming takes place when electrons 
tunnel through the thin tunneling dielectric shown in the 
schematic by the small notch in the floating gate over the 
drain of the sense device. Before describing the detailed 
operation of the E2CMOS cell, the requirements and 
tradeoffs of the process technology will be reviewed. 

E2CMOS Process Technology 
Lattice's E2CMOS technology is based upon a highly 
successful combination of CMOS and NMOS technolo­
gies. The requirements for both on-chip high voltage and 
high speed devices put severe restrictions on the pro­
cess technology. By incorporating both pumped substrate 
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techniques and depletion devices from NMOS technol­
ogy with low power CMOS devices, Lattice's E2CMOS 
technology maintains high performance while meeting 
the high voltage requirements of programming. 

In addition to combining the techniques of both NMOS 
and CMOS, Lattice's E2CMOS technology incorporates 
an ultra-clean, ultra-thin tunneling oxide approximately 
100 Angstroms thick. The requirements placed on these 
oxides will be much more apparent after the program­
ming characteristics of the cell are examined. 

Single Cell Programming 
The E2CMOS cell is programmed by placing a high 
voltage across the thin tunnel dielectric. The resulting 
tunneling current will tunnel electrons onto the floating 
gate turning off the sense transistor or, with a different 
applied potential, tunnel electrons off of the floating gate, 
turning on the sense transistor. Once the charge has 
been placed on the floating gate, the actual floating gate 
potential can be modulated by the voltage on the control 
gate through capacitive coupling. It is this capacitive 
coupling that is used to generate the high voltage across 
the tunnel dielectric at the beginning of a programming 
pulse. 

During a programming cycle, the cell is first erased into 
the one, or non-conducting state and then selectively 
written to a zero, or conducting state by a write cycle. This 
prevents the sense device from conducting current dur­
ing the write operation when voltage is applied to the 
drain of the device. Therefore, the programming charac­
teristics will be explored by first examining the cell during 
an erase. 

Erase Cycle Programming 
During an erase cycle, a high voltage is applied to the 
control gate of the cell to be programmed, as shown in 
Figure 2. If all current through the tunnel oxide is 

neglected, the floating gate will simply track the applied 
voltage following the relationship of a capacitive 
divider,where Cup is the coupling ratio of the cell, and is 
typically between 0.7 and 0.8. At the end of the erase 
pulse, the floating gate would again couple negatively by 
the same amount, and end up back at the initial floating 
gate voltage V19(0). 

I 2 3 
V fg = cup * v cg + v fg (a) 

1 floating gate voltage; 2 Control gate voltage; 3 Initial 
floating gate voltage 

However, the high voltage applied across the tunnel 
dielectric causes tunneling current to flow, which will 
discharge the floating gate during the erase pulse. At the 
end of the erase pulse, the floating gate will end up at a 
potential that is lower than the initial floating gate voltage 
by the amount that the floating gate has decayed during 
the pulse. This negative voltage is sufficientto turn off the 
sense transistor during a read operation. The magnitude 
of the control gate voltage which is required to couple this 
negative floating gate voltage up to the threshold of the 
sense device and actually turn it on after the erase pulse 
is defined as the programmed high threshold VtHigh· 

Write Cycle Programming 
During the write cycle, a high voltage is applied to the bit 
line of the cell to be programmed. If all current through the 
tunnel oxide is again neglected, the floating gate will track 
the applied drain voltage following the relationship of a 
capacitive divider: 

1 Drain voltage applied during a write 

Cd is the drain coupling ratio of the cell and is typically 
much lower than the coupling ratio to the control gate, 
ranging between 0.1 and 0.2. As in the erase case, the 
floating gate would again couple negatively by this same 
amount, and end up back at the initial floating gate 
voltage V19(0) atthe end of the write pulse. Also note that 
the pass transistor may have a voltage drop across it, 
lowering the voltage on the drain below the applied 
programming voltage Vpp· 

However, instead of no currentflowing through the tunnel 
oxide, the low coupling ratio keeps the floating gate at a 
low potential, which forces a high negative voltage to 
appear across the tunnel oxide. This high voltage causes 
tunneling current to flow which will charge the floating 
gate during the write pulse . At the end of the write pulse, 
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the floating gate will end up at a potential that is higher 
than the initial floating gate voltage by the amountthatthe 
floating gate has charged during the pulse. This positive 
voltage is sufficient to turn on the sense transistor during 
a read operation. The magnitude of the control gate 
voltage which is required to couple this positive floating 
gate voltage down to the threshold of the sense device 
and actually turn it off is defined as the programmed low 
threshold Vtlow· 

Reading the Cell 
After an erase cycle the charge on the floating gate has 
left the sense transistor in the off, or non-conducting "1" 
state. If the erase cycle is followed by a write cycle, then 
the floating gate charge leaves the sense device in the on 
or conducting "O" state. Therefore, the data in the cell can 
be read by simply sensing the cell current when biased 
with the control gate centered between the on and off 
states. This is shown schematically in Figure 3. The bit 
line and control gate voltages are selected to minimize 
the potential across the tunnel dielectric during a read in 
order to maximize the retention of the floating gate 
charge. The actual magnitude of the programmed thresh­
olds, and thus the margins of the cell, are controlled by 
the programming voltage, the physical cell layout, and 
the tunnel oxide electrical characteristics. The key elec­
trical properties of the tunnel oxide will be examined 
since they are critical in determining both the program­
ming properties and the reliability of the E2CMOS cell. 

Tunnel Oxide Electrical Characteristics 
The E2CMOS cell is programmed by placing a high 
voltage across the thin tunnel dielectric. The tunnel oxide 
is sufficiently thin, typically with a thickness between 80 
and 120 Angstroms, that electrons will tunnel through the 
dielectric and program the cell. The exact nature of the 
tunneling mechanism is important because in addition to 
determining the amount of voltage required to get suffi­
cient current through the oxide to program the cell, the 
tunnel characteristic also must be a very strong function 
of voltage to prevent the charge from leaking off of the 
floating gate during the low voltage, normal read, opera­
tion. 

In addition to the electrical current voltage characteris­
tics, thin tunneling dielectrics must also be characterized 
by the amount of charge that can pass through the oxide 
without altering its electrical properties. Electron traps 
located in the oxide will capture some of the electrons 
passing through the dielectric. As this trapped charge 
builds up in the oxide, the electrical properties change, 
and eventually the oxide wears out and ruptures. Thus, 
in addition to controlling the erase and write characteris­
tics of an E2CMOS cell, the tunnel oxide, and oxide 

Technology and Reliability 

quality, play a major role in the reliability of the technol­
ogy. 

1-V Characteristics of Thin Tunnel 
Dielectrics 
A typical 1-V characteristic of a thin tunnel oxide is shown 
in Figure 4. Since the current mustflow through this oxide 
in both directions, the characteristic of the oxide is shown 
for both positive and negative polarities. Note that a 
higher negative voltage is required to get the same 
current as in the positive voltage case because of an 
additional voltage drop that occurs across a depletion 
region formed in the silicon for negative applied voltage. 
For a tunnel oxide of approximately 100 Angstroms in 
thickness, the maximum voltage developed during pro­
gramming is roughly 1 O volts, or a field strength of 10 MV/ 
Cm. This very high applied field stress, needed for the 
tunneling process requires very high quality oxides and 
very clean processing conditions. Optimizing the thick­
ness of the tunneling dielectric and trading off between 
the programming characteristics and the oxide reliability 
is a requirement of the E2CMOS technology. 

The 1-V characteristic is a very strong function of oxide 
thickness and follows the relationship of the Fowler­
Nordheim tunneling equation, where A and B are the 
Fowler-Nordheim coefficients. 

This equation can be rewritten in terms of the field across 
the oxide as below, which is independent of oxide thick­
ness. 

110}.E) =A *Area * E 2 *Exp(-~) 

Jcell 
Bit Line 

Word Line 
+5.0 (if selected) Vbit = 1 Volt 

Control Gate H ~ 
Veg= 2.5 Volts I 

+a-~- Cell Ground 

Figure3 
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Charge-to-Breakdown of Thin Tunnel 
Oxides 
The 1-V characteristic shown in the previous section was 
measured at sufficiently low current densities such that 
no charge trapping occurred during the measurements. 
If, however, a large amount of charge is passed through 
the oxide, the trapped charge in the oxide will alter the 
electrical 1-V characteristic. The increase in voltage 
required to get the same tunneling current after a large 
amount of charge passes through the oxide will reduce 
the amount of charge transferred into the cell during a 
programming cycle and therefore reduce the cell pro­
gramming margins with continued cycling. The magnitude 
of the charge required to shift the 1-V characteristic 
depends on the quality and the number of traps in the 
oxide. 

In addition to this shift in the electrical properties of the 
tunnel dielectric, defects in the oxide, whose properties 
change as the charge passes through the oxide, will 
actually cause the oxide to rupture after a finite amount 
of charge has passed through the dielectric. The maxi­
mum charge that can be passed through the oxide prior 
to oxide breakdown, or the oxide fluence expressed in 
Coulombs/Cm2, can be determined by passing current 
through a tunnel dielectric until it ruptures. This physical 
limitation on the current that can be passed through the 
tunnel oxide places a limit on the number of programming 
cycles that can be performed on any E2 device. This 
cycling limit, or endurance, is dependent on the quality of 
the tunnel dielectric and its associated defect density as 
well as the exact programming stress on the oxide. 
Lattice's technology maximizes the endurance of the 
devices through careful control of the requirements on 
the oxide as well as by optimizing the quality of the 
dielectric. 
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ISO 9000 Program 

Introduction 
Lattice is proud to be the first major PLO manufacturer to 
achieve ISO 9000 certification. Lattice Quality Systems 
have been certified, and the company is registered to the 
ISO 9000 standard. Lattice certification is for ISO 9001, 
the most comprehensive of the various ISO 9000 levels, 
covering the design, manufacturing, sales, and service 
functions. 

ISO 9000 Certification 
Certification to the ISO 9000 standard provides a recog­
nized and standardized basis for the continued 
development of the quality and reliability of Lattice prod­
ucts. This certification assures Lattice's customers that 
its Quality Systems are well organized and embody a 
"Quality First" philosophy. It also reaffirms Lattice's prom­
ise to provide its customers with the highest quality and 
most reliable products in the industry. 

What is ISO 9000? 
The ISO 9000 series is an international version of British 
Standard BS 5750, intended to define the quality man­
agement systems for a wide range of an organization's 

activities. The standard was initiated by the British Stan­
dards Institution, which over the last 80 years has certified 
over 9,000 Quality Systems. Today, both the CEN (Euro­
pean Committee for Standardization), which is 
commissioned to coordinate quality standards in Europe 
and remove potential trade restrictions within and outside 
the European Community, and the USA Standard ANSI/ 
ASQC have adopted the ISO 9000 series. 

Four quality standards make up the ISO 9000 series: ISO 
9004, ISO 9003, ISO 9002, and ISO 9001. ISO 9004 is an 
informational document containing guidelines for Quality 
Management and Quality Systems. ISO 9003 guaran­
tees quality in a product's final testing and inspection. 
ISO 9002 confirms quality in the production and installa­
tion of a product. ISO 9001 assures quality in a product's 
design, development, production, and installation. ISO 
9001 is composed of 20 system sections, including the 
ISO 9002 and ISO 9003 subsets. Lattice is certified to the 
most comprehensive quality standard of the series, ISO 
9001, and registered with the American Society for Qual­
ity Control's Registration Accreditation Board. 

Lattice Semiconductor: First PLO Supplier to Achieve ISO 9000 Certification 
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Lattice Bulletin Board 
Systems 

Introduction 

Lattice maintains two Bulletin Board Systems (BBSs) to 
communicate with customers. One BBS is located in 
Milpitas, California at Lattice's Silicon Valley Design 
Center. This BBS provides primary ispLSI and pLSI 
support. The second BBS is located in Hillsboro, Oregon 
at Lattice's headquarters. This BBS provides primary 
GAL support and secondary ispLSI and pLSI support. 
The following two sections explain in detail how to con­
nectto each of these BBSs and howtotransferinforrnation. 

Using the Lattice Silicon Valley BBS 

The Silicon Valley BBS is for ispLSI and pLSI customers, 
distributors and FAEs who are requesting technical sup­
port on our ispLSI and pLSI families of HDPLDs. You can 
use the Silicon Valley BBS to: 

Transfer designs to and from Lattice Application 
Engineers 

Join conferences to share and exchange information 
with Lattice Application Engineers and other users 

Telephone number and Communication 
Software Setup 

communication parameters of eight data bits, one stop 
bit, and no parity (8-N-1). 

New User 

If you have not used the Silicon Valley BBS before, the 
system will first ask if you want the graphics mode. This 
mode will help a first time user by displaying different 
options by either blinking or displaying a different color 
text, if you have a color display. 

You will then be asked for your first name, your last name 
and password (see figure 1 ). The user name must be 
your name; do not use your company name as a user 
name. The password can be up to 12 alphanumeric 
characters long. You will also be prompted to fill out a 
short script. You should be prepared with information 
about the Lattice software you are using and the 10 digit 
serial number from the Lattice security block(s). 

After you complete the questionnaire, the system will 
display the main menu. As a first time user of the BBS, 
you have no rights to upload or download files. Your 
security level must be upgraded. This is done three times 
a day: Monday through Friday at 8:00 a.rn., 12:00 noon 
and 5:00 p.rn. except on holidays. All times are Pacific 
Standard Time (PST) or Pacific Daylight Savings Time 
(PDT). 

The telephone number for the Silicon Valley BBS is (408) For subsequent access, after you have logged on to the 
428 - 6417. The BBS supports modern speeds from 300-
9600 Baud, and supports the typical default system, you will be asked if you want to scan for mes­

sages. Answer (Y/N) and press the enter key. 

Figure 1. Silicon Valley BBS Initial Screen 
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Main Menu 

From this point, you'll be at the Main menu, with access 
to all other menus. Note that the Join option is not 
available to a new user until your security level has been 
upgraded. 

Listed below is a brief description of the options available 
to a new user 

· G - Hang up 

· H - Help menu - Command options and description 

. C - Leave a message to the System Administrator 
(SYSOP) 

For users who have been upgraded and have previously 
joined a conference, the figure 3 menu will be seen. This 
menu has seven additional commands that are acces­
sible. When you login to the BBS and have previously 
joined a conference, the menu in figure 3 will be the main 
menu. The conference you are in is the location you will 
be placed during your next successful login. Your options 
will be: 

· D - Download a file from the BBS (Instruct the BBS 
computer to go into send mode 

· E - Leave a message for another user 

· J - Join conference - Change to conference 1 or 2 

· R - Read a message left by another user 

· S - Required questionnaire about design, before Up 
load is started 

Figure 2. Silicon Valley BBS Main Menu 

· T - Transfer protocol - user specified type of file transfer 
method 

· U - Upload a file - Instruct the BBS computer to go into 
receive mode 

Upload files to the BBS 

If you need to upload (send) a file to the Lattice BBS, the 
file should be zipped up, and a readme file should be 
added to the zip file. The zip utilities compress the file size 
and help to eliminate file transmission errors. The readme 
file should have a description of the questions, comments 
and/or problem you have . 

To upload a file to the BBS, do the following: 

1. Type J)oin 1 or 2 <enter> - This puts you into confer­
ence 1or2. 

2. Type T)ransfer protocol <enter>. 

3. Select which file transfer method you want - (X , Y, or 
Z protocol). 

4. Type S)cript <enter> and fill out the questionnaire 
about your design and the design tools used. 

5. Type U)pload filename <enter>. Filename is the 
name it will be called on the BBS. 

6. Select the send file utility on your software package. 
If you are using a Procomm like software package, 
you press the "Page Up" key. 

Download files from the BBS 

To download a file to the BBS, do the following: 

System Operations Message Operations File Operations 
G)oodbye (Hang Up) C)omments to SYSOP Join a conference before 
H)elp Functions Uploading or Downloading 
J)oin a Conference a File 

New Users cannot Upload or 
Download Files 

Figure 3. Silicon Valley BBS Menu Selections available in conference 1 and 2 

System Operations Message Operations File Operations 
G)oodbye (Hang Up) C)omments to SYSOP D)ownload a File 
H)elp Functions E)nter a Message 
J)oin a Conference R)ead Message To Upload a File: 
T)rans. Protocol S)cript Question S)cript #1 then U)pload 
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1. Type J)oin 1 or 2 <enter> - This puts you into confer­
ence 1or2. 

2. Type T)ransfer protocol <enter>. 

3. Select which file transfer method you want- (X, Y, or 
Z protocol). 

4. Type D)ownload filename<enter>. Filename is name 
it will be called on the BBS. 

Using the Hillsboro BBS 

The Hillsboro BBS is accessible by any user with a 
modem and communication package. You can use the 
Hillsboro BBS to: 

1. Transfer designs to and from Lattice Applications 
Engineers 

2. Access the latest utilities 

3. Join conferences to share and exchange information 
with Lattice Applications Engineers and other users 

4. Send mail to and from Lattice Applications Engineers 

Telephone Number and Communication 
Software Setup 

The telephone number for the Hillsboro BBS is (503) 693-
0215. The BBS supports modem speeds from 300-9600 
Baud, and supports the typical default communication 
parameters of eight data bits, one stop bit, and no parity 
(8-N-1 ). 

If You Are A New User 

If you have not used the BBS before, the system will ask 
you a short set of questions. These questions are used to 
maintain statistics about our callers, and will not take long 
to answer. 

Figure 4. Hillsboro BBS Main Menu 

MAIN MENU: 

[M] •••.•.....••• Message menu 
[C] ••.. Comments to the sysop 
(!] ... Initial welcome screen 
[G] •..•.•••• Goodbye & Logoff 
[?] •••••••••.••• Command help 

5. Select the receive file utility on your software pack­
age. If you are using a Procomm like software package, 
you press the "Page Down" key. 

Electronic Mail 

Lattice Semiconductor does support the use of "E Mail". 
Communications regarding ispLSI or pLSI products can 
be sent to "applications@lattice.com". Please include 
details as well as a voice telephone number. 

You will be asked for a user name and password. For the 
user name, simply enter your name. You will also be 
prompted to enter a password. It is important to remem­
ber the password you enter. You will need it whenever 
you log on to the system, and if you forget it, you may 
have to have your account information deleted, and you 
will have to log on again as a new user. 

After you complete the questionnaire, the system will 
display the main menu. From this point on, you will see 
the main menu after you log on and give the system your 
name and password. 

The Main Menu 

The Main Menu is the top level menu, meaning that you 
can access all other menus from this point. The options 
you are most likely to use are: 

f- file menu 
j- join conference 
m- message menu 

Use the file menu when you want to upload or download 
files. Use the join conference menu when you want to join 
a conference on a particular topic. Use the message 

[F) •••••.....•••••• File menu 
[P] ••..•...•.• Page the sysop 
[Y] ••..•....••• Your settings 
[HJ ••.•..••••••••• Help level 
[J] •••••••••• Join conference 

Conf: "[OJ - Lattice Technical Support", time on 0, with 60 remaining. 

MAIN MENU: [M F C P I Y G H ? J) ? [ ) 
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menu when you want to leave a message, either as part 
of a conference, or to a specific individual. 

The File Menu 

When you choose the File menu from the Main menu, you 
will be presented with a list of options for uploading, 
listing, or downloading files on the BBS. 

If you need to download a file, and you know the name of 
the file you want to download, choose option D and 
download the file. You don't have to be in a particular 
conference to download the file. 

If you don't know the exact name of the file, then you can 
choose one of the options in figure 6 to locate the file. 

Figure 7 is a an example session where files in a particu­
lar area are listed. In this example, when "L" was entered 
for the file area, a list of all the file areas was displayed. 
From this list of areas, you can choose the specific area 
you are interested in listing. 

Transferring Files 

Once you identify the file that you want to download, 
choose the D option from the Download menu. You will 
be prompted for the file name. Alternatively, you can 
initiate a download after listing the files in an area. Note 
that one of the options in the menu listed above is D for 
download. 

Figure 5. Hillsboro BBS File Menu 

File Protocols 

The BBS supports a number of different file protocols for 
downloading and uploading files. Which one to choose 
depends on your communication software. Xmodem is 
one of the most popular protocols, and your communica­
tion software is likely to support it. 

You can display the file transfer protocol you've chosen 
by selecting the Y option from the main menu (see figure 
8). 

When you choose the Y option, all configuration param­
eters are displayed. Number 14 is the file transfer protocol. 
By entering 14 as the setting to change, you can change 
to a different file transfer protocol. Note that you can 
choose to select the file transfer protocol each time you 
start a download by selecting S as the default protocol 
option. 

Conferences 

The Hillsboro BBS also provides a conference facility for 
you to share information with Lattice Application Engi­
neers, and other users of Lattice Products. Conferences 
are simply a way to organize messages left by users so 
that they are grouped by a common subject. When you 
join a conference, messages that you read or leave will 
then be left in that conference area. 

MAIN MENU: [M F C P I Y G H ? J] ? 
FILE MENU: 

[F] 

[D] ••••••• Download a file(s) 
[L] ••••• List available files 
[N] •..••• New files since [NJ 
[T] •••••••••••••• Text search 
[G] ••••••••• Goodbye & logoff 
[?] ••••••••.•••. command help 
[V] ••• View a compressed file 
[J] •••••••••• Join conference 

[U] ••••••••• U~load a file(s) 
[Q] ••••••.• Quit to main menu 
[!] .... Information on a file 
[F] ••••••• File transfer info 
[H] •••••.••••••••• Help level 
[M] ••••••••••••• Message menu 
[R] ••••••••• Read a text file 
[E] ••••••••• Edit marked list 

Conf: "[0] - Lattice Technical Support", time on 2, with 58 remaining. 

FILE MENU: [D U L Q N I T F G H ? M V R J E] ? [ ] 

Figure 6. Finding a Fiie Without Knowing the Specific Name 

If You Want to List Files Then Choose Option And Enter 

Uploaded after a certain date N The starting date for the search 

Containing a specific word in their name or description T The word to search for 

Within an area category L The area to list 
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You can join a conference from the Main menu by 
entering the J command (see figure 9). After entering this 
command, you can either enter the number of a confer­
ence you want to join, or enter an L to list the available 
conferences. 

Once the conference is joined, you can enter the Mes­
sage menu from the Main menu (see figure 10), and read 
new messages in the conference by entering the R 

command, or you can enter the S command to scan for 
new messages. 

The Scan command can be an easy way to locate topics 
of interest. The Scan menu will list a variety of options to 
search through messages. For example, you can specify 
a word to search for anywhere in the body of a message 
by selecting the B option. Any messages that contain this 
text will be displayed (see figure 11 ). 

Figure 7. Example Session Showing Files Listed in a Particular Area 

FILE MENU: [D U L Q N I T F G H ? M V R J E] ? [L) 
Areas (1..8) [#, #-#], [A]ll, [L]ist, [SIDIFJ, [H]elp)? 1 

Scanning file area - GAL Applications Info 
[ 1) 20VP8.ABL 988 01/13/93 I ABEL example of setting output type 

DwnLds: 26 DL Time 00: 00: 05 I for GAL20VP8 

2) CHKSUM.EXE 4,992 11/13/91 I Simple JEDEC Fuse Checksum Utility 
DwnLds: 73 DL Time 00:00:26 I *Info* 

3) PALTOGAL.EXE 33,012 12/09/92 I Ver. 3.12, util to convert PAL JEDEC 
DwnLds: 277 DL Time 00:02:51 I files to GAL files 

836 01/13/93 I ABEL example of setting output type on 
DL Time 00: 00: 04 I GAL16VP8 

4) PHY 
DwnLds: 27 

5) XSUM.EXE 
DwnLds: 52 

14, 069 01/ 18/89 I Simple JEDEC Transmission Calculation 
DL Time 00:01:13 I Utility *Info* 

End of list 
-Pause- [C)ont, [H]elp, [N)onstop, [M]ark, [D)wnld, [I)nfo, [V)iew, [S)top? [CJ 

Figure 8. Selecting the Y Option from the Main Menu 

MAIN MENU: [M F C P I Y G H ? J) ? [Y) 

Present setting for : NEW USER 

l] Password ******* 
2) Computer type 8088 based syst 
3) Phone number 
4) Birth date I I 
5) Screen length 23 
6) Color menus NO 
7) Erase prompt NO 
8] Hot keys NO 

[ 9] Quote on Reply NO 
[10] Msg Clear Screen : NO 
[ll] Default editor : No default 
[ 12) File display mode: Double line 
[13] Help level Novice 
[14) Default protocol All 
[15) Calling from 
[ 16] Chat status Unavailable 

Setting to change [l..16], [H]elp? [ 

12-5 

Msgs written 
No. of calls 
High message 
User since 
Last call 
Last new files 

Downloads 
Uploads 
Security level 

Acct balance 
Netmail balance: 

0 
3 
0 
04/01/94 
04/05/94 11:12am 
01/01/80 12:00am 

0 Files, OK 
0 Files, OK 
NEWUSER 
0 
0 
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Figure 9. Joining a Conference 

MAIN MENU: 

[MJ ••••••••••••• Message menu 
[ c J •••• Comments to the sysop 
[I J ••• Initial welcome screen 
[GJ ••••••••• Goodbye & Logoff 
[ ? J ••••••••••••• Command help 

(FJ •••••••••••••••• File menu 
[ P J ••••••••••• Page the sysop 
[YJ •••••••••••• Your settings 
[HJ ••••••••••••••• Help level 
(JJ •••••••••• Join conference 

Conf: " [ 0 J - Lattice Technical Support", time on 19, with 40 remaining. 

MAIN MENU: [M F C P I Y G H ? JJ ? [JJ 

Join conference [0-3J, (LJist, (HJelp? (L 
Conferences available: 

0) Lattice Technical Support 1) Private E-Mail 
3) Utilities 

Join conference [0-3J, [L]ist, [H]elp? ( 

Figure 10. Message Menu 

MESSAGE MENU: 

[ Q] •••• Quit to the main menu 
[ R] •••••••••••• Read messages 
[E] •••••• Enter a new message 
[G] ••••••••• Goodbye & logoff 
[ ? ] ••••••••••••• Command help 

[J] •••••••••• Join conference 
[SJ •••••••••••• scan messages 
(K] ••••••••••• Kill a message 
(HJ ••••••••••••••• Help level 
(F] •••••••••••••••• File menu 

Conf: "[OJ - Lattice Technical Support", time on 14, with 44 remaining. 

MESSAGE MENU: [Q J R S E K G H ? F] ? [ 

Figure 11. The Scan Command 

MESSAGE MENU: (Q J R S E K G H ? F] ? [SJ 

[FJrom 
[T]o 
S[uJbject 
Msg (B]ody 
[N]umber 
[DJirection 
[C]onference 

<ALL> 
<ALL> 
<ALL> 
<ALL> 
<ALL> 
Forward 
Current 

Search command (F T U N D B CJ, 
Search text? [paltogal 

[F]rom 
[T]o 
S(u]bject 
Msg [B]ody 
[N]umber 
[D]irection 
[C]onference 

<ALL> 
<ALL> 
<ALL> 
PALTOGAL 
<ALL> 
Forward 
Current 

[HJelp, [S]tart, [ENTER] to Quit? [BJ 
1 

Search command [F T U N D B CJ, (H]elp, [SJ tart, (ENTER] to Quit? ( 
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Cost of Ownership: 

Everybody's talking about it, but what is it really? 

Simply stated, Cost of Ownership is the notion that the 
total cost of a particular system component (in this case 
a PLD), is the summation of all costs incurred throughout 
the "life" of that component which can be directly attrib­
uted to that component. In many cases, the initial 
purchase price of a component, the standard by which 
most engineers and purchasing agents judge component 
costs, is only a small fraction of the total costs that will be 
incurred by the component during its "life". 

In fact, the initial purchase price of a PLD should be 
viewed only as the starting point of the Total Cost of 
Ownership "Life Cycle". As the PLO undergoes early 
stages of processing, it continues to incur costs. Costs 
associated with incoming inspection/rejection, inventory 
management, programming, programming yield loss, 
labeling and device handling are but a few of the costs 
incurred just getting the PLO ready for board assembly. 

The next phase of the PLO's Cost of Ownership Life 
Cycle can be described as the board/system assembly 
and test process steps. At this point, the stakes get 
higher. PLDs which do not smoothly integrate into the 
board/system process flow, or worse yet, fail after board/ 
system assembly are very expensive devices indeed. 

A system shipped to an end customer has now entered 
the final phase of the PLD Life Cycle. The issue here is 
simply reliable system performance. PLDs which consis­
tently meet and exceed system performance standards 

An OvelView 
and do not fail in the Field make no further contributions 
to the Total Cost of Ownership equation. However, field 
failures can be catastrophic and immeasurable, not only 
in terms of actual costs of field repairs but in terms of 
damage to customer "Good Will". 

For Lattice PLOs, fundamental product and process 
characteristics such as the generic (flexible) architec­
ture, EECMOS reprogrammability and in-system 
reprogrammability, 100% tested E2 cells (Zero fall-out) 
and proven industry leading quality and reliability all 
combine to give the lowest Cost of Ownership of any 
PLO. 

Lattice recognizes that the actual cost savings obtained 
by designing with Lattice's GAL, ispLSI and pLSI devices 
will vary from application to application. The total cost 
savings realized is a function of how broadly the ISP 
device capabilities are implemented throughout the prod­
uct development and manufacturing cycles (Design, 
Programming, Test, Field Upgrades, etc.). 

The following three papers examine the "Cost of Owner­
ship" concept from three different perspectives. 

1. Hidden Costs in PLO Usage - "Must reading" for any 
designers who are still using bipolar PAL devices. This 
paper describes the Cost of Ownership benefits of the 
Lattice GAL family vs bipolar PALs. 

2. ISP: Winning at the Bottom Line- Anyone interested 
in enhanced design functionality, rapid time-to-market, 
simplified manufacturing and easy field upgrades will be 
interested in this article. 

3. Gate Array and High-Density PLO Cost Analysis -
Provides a detailed cost model for Gate Arrays as well as 
the various FPGA technologies in the market today 
including SRAM, EPROM, Anti-fuse and EECMOS. 
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While the purchase price of a programmable logic device 
is an important consideration in identifying the most cost­
effective solution for a system design, it is clearly not the 
only criterion. Hidden costs attributable to product test­
ing, yield fallout, inventory management, and other factors 
can dramatically impact the final cost of using a PLO. 

This brief investigates the overhead associated with PLO 
usage and the advantages of testable and 
reprogrammable E2CMOS GAL devices over one-time­
programmable PLDs. 

The GAL family of programmable logic devices is manu­
factured on a state-of-the art E2CMOS process that not 
only provides a better speed-power product than the best 
bipolar devices, but offers an advantage unique among 
PLO manufacturers: guaranteed programming and post­
programming yields of 100%. 

The 100%-yield guarantee is the culmination of years of 
Lattice Semiconductor's circuit-design and manufactur­
ing experience applied to the GAL device. The only way 
to be able to make this 100% yield statement- and to 
supply product that actually meets the 100% criterion­
is to fully test all functions of the device, prior to shipment. 

The electrically erasable (EE) matrix, unlike previous 
PLO matrix technologies (bipolar fuse-link and UV-eras­
able PROM), permits full testing of the programmability 
and reprogrammability of each and every matrix cell. The 
ability to pattern the actual matrix is extremely significant, 
since it also allows Lattice to test the functionality of each 
of the Macrocell logic blocks, under various worst-case 
configurations. This test approach is referred to at Lattice 
as 'Actual Test'. Unlike other PLO manufacturers' ap­
proaches, which include imprecise correlations, 
simulations, test rows, and phantom arrays, Actual Test 
conclusively verifies AC and DC performance of every 
cell in every GAL device. 

Eliminates Incoming QA 

A consequence of Actual Test is that GAL devices do not 
require the typical incoming Quality Assurance testing 
that traditional fuse-link bipolar PLDs require. As such, 
the cost savings of using GAL devices begins the mo­
ment the parts arrive, since the average cost of an 
incoming QA operation-hardware, software develop­
ment and maintenance, and handling-is approximately 
7% of the raw device cost. Moreover, GAL devices 
become the optimal choice for implementation of Just-In­
Time or Dock-To-Stock programs, since they eliminate 
the expense and time required by the incoming inspec­
tion process. 

Hidden Costs 
inPLD Usage 

Still, a number of users require that all devices undergo 
incoming QA. In those cases, the use of GAL devices still 
simplifies the issue. A single generic test program can be 
used to test all configurations of the E2CMOS-based 
GAL device. The expense of generating and maintaining 
a test program for every architecture (16L8, 16R4, 1 OPS, 
and so on) is eliminated with Generic Array Logic. 

Since the QA test for fuse-link PLDs, by its nature, 
requires the destructive patterning of the fuse array, QA 
testing of bipolar PAL devices can only be done through 
a sample plan. At best, a sample plan can provide a crude 
estimate of fuse-link yield loss; moreover, sampled de­
vices cannot be erased and must be subsequently thrown 
away. GAL devices, utilizing the E2CMOS process can 
be patterned and erased at will, allowing 100% QA of all 
specifications and configurations. And, the devices can, 
of course, be erased to allow full reuse of the sample units 
in manufacturing. 

Figure 1. Inventory Reduction with GAL Devices 
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Hidden Costs in PLD Usage 

Simplified Inventory Management 

The generic architecture and high performance of the 
GAL devices allow five basic devices-the GAL 16V8, 
GAL20V8, GAL22V10, GAL20RA 10 and GAL20XV1 O­
to directly replace approximately 98% of bipolar PLD 
device types currently available. The obvious benefit of 
using GAL devices is a substantial reduction in the 
number of part types that need be stocked (Figure 1 ). 

Inventory management of dozens of speed-power op­
tions and device architectures is a painful process. The 
ideal cost of managing a device inventory adds some 2% 
of direct overhead; the real cost can be significantly 
greater, due to the risk that a shortage, 'outage,' or 
obsolete stock condition will exist. Improper planning 
could result in a shut-down of the assembly line. The 
generic architecture allows the GAL device to serve as 
insurance whenever needed to meet an immediate short­
fall. The yields, at 100%, allow full planning confidence 
that the problem is solved. 

Disposition of rejects is another inventory-management 
issue. The raw cost of the rejects themselves (at a 2% to 
5% fallout rate) is compounded by the associated paper­
work of obtaining a replacement or credit for the bad 
devices. Studies show that every time a buyer or pur­
chasing agent picks up the phone or generates a debit 
memo, some $30 to $50 is spent. Follow-up activity -2 
or 3 calls or letters-compounds the expense. Mean­
while, the manufacturing inventory is short of devices. 
What's more, carrying additional 'safety-stock' as insur­
ance against a temporary shortage results in a higher 
inventory-carrying cost. 

100% Yields Reduce System Cost 

Perfect yields, as provided through Actual Test, allow the 
manufacturing environment to run in a fully predictable 
manner. This allows purchasing and production control 
to accurately schedule all activities and product for sys­
tem build. Just-In-Time material-requisition systems 
assume that the material will arrive on time, in the exact 
quantity necessary. With GAL devices, the source prod­
uct inventory can be allocated for programming to various 
patterns with full confidence that the final patterned 
devices will be in the quantity and of the quality desired. 

A rule of thumb, commonly known as the 'Factor of Ten 
Rule' (Table 1 ), details the cost of a failing unitthroughout 
the manufacturing process. The point is that unit cost is 
not nearly as important as its contribution to subsequent 
costs (or savings). The Rule basically states that the cost 
of detecting and replacing a defective device increases 
by an order of magnitude for each subsequent step of the 
manufacturing process. 

COST* MULTIPLIER OPERATION 

$ 5.00 x Raw Cost of Device 
$ 50.00 10X Cost of Detecting and Repairing a 

Board Failure 
$ 500.00 100X Cost of Detecting and Repairing a 

System Failure 
$ 5,000.00+ 1,000X Cost of Repairing a Field Failure 

Each successive operation results in 1 O times the cost to detect 
the failing device. $5.00 device cost assumed - use your actual 
cost and a 10x multiplier to obtain actual numbers. 

Table 1: Factor of Ten Rule 

It is extremely important to recognize that the additional 
difficulty and cost of using traditional PLDs has implica­
tions far beyond what the observed programming yield 
fallout portends. The hidden costs, time and expense 
aggravation of board failures (1 Ox device cost to detect 
and repair), system failures (100x device cost), and the 
potential for field failures far outweigh the simple 2% to 
5% yield losses observed on a programming fixture. 

Figure 2 illustrates the differences between traditional 
PAL device yield loss and the 1 00% yields of the GAL 
devices. Notice that even operator errors and engineer­
ing pattern revisions are recoverable with GAL devices, 
which can be instantly erased and reprogrammed to the 
proper architecture and logic pattern. 

TRADITIONAL PLO APPROACH 

GAL APPROACH 

Figure 2. Yield Loss Comparison 
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In a typical manufacturing environment, device program­
ming hardware patterns the array, and assuming the 
engineer has provided test vectors, the hardware per­
forms a basic (slow) functional test of the device. Yield 
losses at these two operations average 2% to 5% and 1 % 
to 2%, respectively. 

What is not tested adequately at the PAL programming 
operation is the effect of partially programmed fuses that 
result in degraded AC performance or marginal reliability 
of the device. These failures are caught at board test and/ 
or after board burn-in. Typical bipolar functional and AC 
parametric failure rates range between 0.5% and 2% for 
all manufacturers of fuse-link PAL devices. Even if one 
assumes the minimum failure rate of 0.5%, the system 
failure rates are still greatly magnified. 

Two mechanisms are used to detect the failures of PAL 
devices: board test and system test. Using the 'Factor of 
Ten Rule' and assuming that board test fully screens bad 
devices (AC fallout), if a conservative device failure rate 
of 0.5% were observed, the actual parts cost would be: 

Acost = Pcost + (Pcost * 1 O * 0.5%) 
= Pcost + Pcost * 0.05 
= 1.05 * Pcost 

Performing the screening at the system level, under the 
same scenario, makes a dramatic difference in the cost 
of the device: 

Acost = Pcost + (Pcost * 100 * 0.5%) 
= Pcost + Pcost * 0.5 
= 1.5 * Pcost 

These two different cost factors were determined using 
the conservative failure rate of 0.5%. Using the GAL 

Hidden Costs in PLD Usage 

device, with its 0% failure rate, provides instead a cost 
factor of 1; i.e., no additional cost burden is generated. 

The problem caused by PLO failures obviously grows in 
proportion to the number of devices in a system, since the 
probability of a failure among a group of PAL devices is 
higher than that for a single device. Figure 3 plots the 
probability of a board or system not working, as a function 
of the number of devices per system, for a variety of 
device failure rates. 

For example, at a unit failure rate of 1.0%, a system 
incorporating 30 PAL devices will exhibit a 25% failure 
rate. That means that 1 out of every 4 systems will have 
to be reworked, at tremendous cost. The replacement of 
an average 0.5% of the units in a system results in an 
actual 8% adder to the hidden device cost. 

The difficulty in replacing board failures is compounded 
by the removal of soldered units. It is quite easy to destroy 
a board with the removal and replacement of a defective 
device. 

Systems that fail in the field are not only the most costly 
in terms of dollars and cents, but in customer relations, as 
well. They require responding rapidly and performing 
repairs in a less-than-ideal environment, without the 
complete tools and supplies available at the factory. Field 
failures will always occur to some degree. However, the 
use of GAL devices can help reduce field repair costs 
when they do occur-even if the failing device is a 
traditional bipolar PLO-since the generic, erasable na­
ture of GAL devices allows a minimum of field inventory 
to be carried, to debug system failure problems caused 
by other devices. The panel on the next page provides 
guidelines for calculating PLO usage costs. 

1.5% PAL FAILURE RATE 
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Figure 3. Probability of System Failures Using Bipolar PLDs 
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PLO Cost Analysis 

The cost of using a PLO goes well beyond simply the raw 
device cost. Programming and vector-test yields are 
obvious contributors to higher unit cost. The less-obvious 
and hidden costs tend to be much more difficult to identify 
and quantify. 

The purpose of the costing example is to provide the 
basis for your own cost analysis, using your own overhead 
and yield numbers. Estimates for reasonable ranges of 
the cost contributors are shown as a guide to using your 
own numbers. 
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The explanation for each of the contributors to the device 
cost multiplier follow the figure. These cost multipliers 
include the overhead for each operation, and as a result, 
are higher than the observed costs. 

The example shown is based on actual data from a 
100,000-piece-per-year user of traditional bipolar PLOs. 
The environment is a typical, high-volume, quality­
controlled one. The GAL device checks in at 1.09 times 
the normalized cost, while the actual cost of using the 
bipolar PLO is 1.66 times-almost 40% higher (figure 4). 

COST OF USING 
PAL DEVICES 

Figure 4. PLO Cost Summary (PAL vs. GAL) 
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1 Device Cost is normalized to unity so 
that the raw purchase price has no bearing on the other 
cost factors. 

2 Purchasing Multiple Device Types 
instead of the single GAL device adds to overhead in the 
purchasing and receiving departments. This contributes 
approximately 2% as the availability, quality, and quantity 
issues are resolved with each order. The GAL approach 
reduces this number to 1.25% with inventory simplification. 

3 Prototype Lab Inventory and usage 
typically adds 5% to maintain experimentation stock of 
multiple device types for board debug. The GAL device 
multiplier is 1 %, since the device can be reused over and 
over again. 

4 Incoming QA Test and programs cost 
more than may be immediately apparent, with a 7% 
adder. The generation and maintenance of the software 
and hardware for the dozens of bipolar devices is 
considerably more expensive than the single GAL device 
software required. No sample-program waste is induced. 
Only the aspects of handling are required for GAL devices, 
resulting in a reduction to 1%(or0%, if you eliminate the 
incoming QA operation entirely). 

5 Inventory Management includes shelf 
space, safety stock, depreciation, obsolete stock write­
off and personnel to maintain adequate control of the 
units. A typical overhead is 10%. The simplified GAL 
operation involves no safety or obsolete stock and a 
minimum of device types, adding a maximum 2% to 3% 
to overhead. 

6 Programming and Test includes all 
handling and hardware expenses. Inventory issuance, 
counting and returns, handling during the program/test 
operation, labels, and paperwork contribute to a 12% 
multiplier. The 100% yielding, generic GAL approach 
reduces the problem to 4%. 

Hidden Costs in PLD Usage 

7 Programming Yield Fallout is directly 
observed as bad units. A typical bipolar range is 1 % to 
4%. GAL devices have 0% yield fallout-guaranteed. 

8 Functional Yield Fallout is detected by 
the device programmer immediately after programming, 
through the use of test vectors, and can average 1 % to 
3%. GAL devices guarantee 0% functional fallout. It 
should be noted that using test vectors does not screen 
out inadequate for AC performance, which will be 
manifested as a board failure. 

9 Reject Disposition overhead runs 5% 
to obtain replacements and credits for fuse-link devices. 
Zero rejects with GAL devices eliminates costs associated 
with reject disposition. Notice thatthe cumulative multiplier 
for only the program/test/reject of fuse-link devices is 
1.10, compared with GAL devices' 1.00 multiplier. 

1 Q Board-Level Failures are typically 
where AC failures are detected. The 'Factor of Ten Rule' 
exacerbates the impact of the observed 1%to4% fallout 
to an overall cost impact of 7% to 10%. GAL devices 
exhibit no board-level fallout (and therefore no cost 
impact). Board throughput is also a major cost contributor, 
with typical reworks of 20% to 30% a consequence of 
PAL quality levels. 

11 System-Level Failures add 8% to 15% 
to the PLO cost, taking into consideration a 1 OOx 'Factor 
of Ten Rule' multiple. GAL devices again provide 100% 
yields, and therefore exhibit no system-level-failure cost 
impact 
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ISP (In-System Programmability) offers its users the 
opportunity to increase product value and reduce bot­
tom-line cost simultaneously. 

Added Product Value 

ISP allows the system manufacturer to build in added 
product value through the addition of unique product 
capabilities. Taking advantage of in-system 
reconfigurability will differentiate and enhance the mar­
ket positioning of an ISP-based product, ultimately 
resulting in higher sales and expanding market share. 

Lowest Cost 

Total cost of ownership goes far beyond the initial pur­
chase price of components. ISP reduces costs throughout 
the entire life cycle of a product: product development, 
manufacturing, test, field maintenance and upgrades. 
This results in a cost savings of one third or more when 
compared to typical non-ISP devices. 

Product Development Cost 

ISP can reduce design development expense by allow­
ing logic iterations to occur in minutes instead of hours as 
is common with other high-density PLDs. Also, ISP 
eliminates last-minute component changes and printed 
circuit board redesigns encountered during system de­
bug. These features typically result in a greater than 50% 

ISP: Winning at 
the Bottom Line 

Functional Yield Cost 

Higher product quality and reliability achieved through 
the superior test coverage of ISP and E2CMOS elimi­
nates functional yield loss. Special test logic can be 
programmed temporarily into the hardware to facilitate 
exhaustive product and board testing. The elimination of 
defects at an early stage of board check-out reduces 
more expensive system-level failures later in the final 
manufacturing process. 

Board Rework Cost 

The superior test coverage and flexibility of in-system 
reprogrammability eliminates board rework cost. A de­
sign fault found in any component can potentially be 
corrected with a logic change in the ISP devices. No 
physical rework of the PCB would be required. 

System Upgrades and Repair Cost 

Lasting benefits from the use of ISP can be realized even 
after systems are shipped. In-system reprogramming 
can reduce field maintenance costs through enhanced 
field diagnostic capability, less costly product feature 
upgrades and simpler maintenance procedures. Train­
ing, documentation and on-going support can also be 
simplified by using the ISP approach to build in maintain­
ability. 

reduction in design cycle lime, engi- --------------------------, 
neering expense and time to market. 

Programming Cost 

ISP reduces programming costthrough 
guaranteed 100% programming yields 
and the elimination of the need for a 
stand-alone device programmer and 
programming cycle. Devices are 
mounted onto the PCB directly from 
inventory. The reduced handling of 
the components translates into lower 
cost and higher quality with no bent 
leads or incorrectly patterned devices. 

200% 

.ISP 

180% 

160% 

140% 

120% 

100%~--~ 
Device Cost Product Programming Functional Board System Upgrades 

Development Cost Yield Cost Rework & Repair Cost 
Cost Cost 

Figure 1. Cost of Ownership Comparison 
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Gate Array and High Density 
PLD Cost Analysis 

Introduction 

When analyzing the total cost of a component, there are 
different factors which must be considered. This article 
explains these factors from the initial design consider­
ations to the final system manufacturing using a typical 
example. Four different technologies (E2CMOS stan­
dard and in-system programmable (ISP) versions, 
UVCMOS, Anti-Fuse & SRAM) for the high density PLOs 
were used to make the comparison with the custom gate 
array to show the advantages and disadvantages of the 
different technologies. There is more to the cost of a 
component than the actual unit price. The attached table 
was developed to itemize all the "hidden" costs that are 
associated with selecting a component from the begin­
ning of the design to the system manufacturing stage. 
These figures are based on the typical prices that were 
available at the time of the table generation. Although 
absolute values can always be challenged, relative val­
ues really tell the story on device cost. 

Fixed Costs 

In the beginning of the design cycle a project manager 
has to consider the fixed costs that are associated with 
the use of a particular component. Within these fixed 
costs are Non-Recurring Engineering (NRE) costs such 
as masks cost for the gate array, engineering time for the 
design, and software and hardware tools that are needed 
throughout the design cycle. 

It is important to note that the up front fixed costs 
associated with the gate arrays are significantly higher 
than the high density PLO's because of the nature in 
which gate arrays are developed. The most significant 
contributor of this up front fixed cost is the cost of the 
masks. As volumes get higher, amortization of these 
fixed costs over the larger volumes makes the cost of the 
device lower. Also important to the gate arrays during the 
initial stages of the development is the simulation efforts. 
In order to save future costs due to changes made after 
the silicon has been developed, a thorough check of the 
design for accuracy during design stage is necessary. 
The associated cost for simulation is also included in the 
fixed costs for the gate array. For the high density PLO 
these fixed costs are minimal. Software and hardware 
tools needed for the high density PLO design develop­
ment cost less compared to the gate array tools due to the 
fact that the PLO tools only require the translation of logic 
implementation and are isolated from the chip level 
design complications. Since the design turn times are 

longer for the gate arrays, any design change will require 
a longer time which translates into opportunity costs 
associated with not meeting the time-to-market sched­
ules. All these items are summarized under the fixed 
costs and opportunity cost sections of the table. 

Variable Costs 

Once the design is complete, the product development 
cycle shifts from the design stage to the manufacturing 
and testing stages. The costs associated with these later 
product development stages are itemized under the 
variable costs section of the table. When considering the 
cost of a component, most associate the cost with the 
actual purchase price of the unit. As can be seen from the 
table the purchase price is only a small part of the total 
development cost. Inventory management, programming 
yield, functional test yield, board failures/rework costs, 
and system failure/rework costs are all part of the costs 
associated with the variable costs. 

Reusability of a component is driven by the technology 
used in a component which significantly affects most of 
the line items in the variable cost table. Of the technolo­
gies in question, gate arrays and anti-fuse are the only 
two that do not provide this capability. All reusable 
components have some way of being reprogrammed. 
The method of reprogramming defines the testability 
during IC manufacturing. Of the technologies E2CMOS 
and the SRAM based components offer the best testabil­
ity due to the very short reprogramming times. With 
improved testability of the components, manufacturers 
are able to guarantee 100% programming and 100% 
functional yields. These guarantees translate to lower 
variable costs during programming of the devices and 
manufacturing of the systems as reflected in the table. As 
an added feature, ispE2CMOS technology enables the 
user to program the device in-system so that the cost 
associated with any design changes on the component 
are accomplished transparently with no board rework 
costs. This capability is highlighted by not having the 
board and system level repair cost factors. 

Summary 

The attached table is generated with the following as­
sumptions: 

1) Approximately 8,000 gate complexity per component. 
2) 100 boards with 3 sockets each. 
3) 1 l.C. design iteration. 
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4) Programming and reliability consideration of the SAAM units. The in-system programming capability the E2CMOS 
based FPGA does not take into the consideration the technology provides the most straight-forward and flex-
PROM that must be used to store the configuration. ible way of implementing design changes in the shortest 

In summary, there is definitely a cost crossover between 
product development cycle. Among the high density 
PLD's the E2CMOS technology and the SAAM technol-

the high density PLO and the gate array. In this particular ogy are the two technologies that gives the lowest overall 
example, the crossover volume is approximately 15K costs. 

Table 1. High Density Cost Analysis 

Gate Arrays ispE2CMOS E'CMOS SRAM UVCMOS Anti-Fuse 
FIXED COSTS 
NRE Charges (masks) $10,000 $0 $0 $0 $0 $0 
Design 

Hardware Tools $15,000 $5,000 $5,000 $5,000 $5,000 $5,000 
Software & Development Tools $10,000 $1,390 $1,390 $5,000 $9,950 $9,690 
EngineeringTime (Man Weeks) 4 2 2 2 2 2 

Simulation 
Tools NRE $5,000 $0 $0 $0 $0 $0 
Engineering Time (Man Weeks) 4 0 0 0 0 0 

Device Test Program Generation (Man Weeks) 2 0 0 0 0 0 

Design Change Iterations 1 1 1 1 1 1 
NRE Cost I Iteration $5,000 $0 $0 $0 $0 $100 
Cost of Design Iteration $5,000 $0 $0 $0 $0 $100 
Engineering Time (Man Week) 2 0.5 0.5 0.5 0.5 0.5 

Programming Equipment Cost $0 $395 $5,000 $2,000 $5,500 $5,000 
Total Fixed Cost $69,000 $11,785 $16,390 $17,000 $25,450 $24,790 

At $2000/Man Week $2,000 

OPPORTUNITY COST 
TTM Cost/Day $25,000 $25,000 $25,000 $25,000 $25,000 $25,000 
Days for Silicon Tums 20 0.5 1 1 1 1 
Total Opportunity Cost $500,000 $12,500 $25,000 $25,000 $25,000 $25,000 

VARIABLE COSTS 
Unit Price $50 $125 $100 $100 $100 $100 
Support Chip Cost $0 $0 $0 $2 $0 $0 
Number of Units I Board 3 3 3 3 3 3 
Number of Boards 100 100 100 100 100 100 
Total Device Cost $15,000 $37,500 $30,000 $30,600 $30,000 $30,000 

Inventory Cost I Item $1,000 $1,000 $1,000 $1,000 $1,000 $1,000 
Number of Items 3 1 1 1 1 1 
Total Inventory Cost $3,000 $1,000 $1,000 $1,000 $1,000 $1,000 

%Programming Yield n/a 100% 100% 100% 98% 95% 
Adminstrative and Reprogramming Cost Factor n/a 1.20 1.20 1.20 1.50 2.00 
Cost of Programming Yield Lost $0 $0 $0 $0 $918 $3,158 

%Functional Yield 95% 100% 100% 100% 98% 95% 
Adminstrative Cost Factor 1.20 1.20 1.20 1.20 1.50 2.00 
Cost of Functional Yield Lost $947 $0 $0 $0 $918 $3,158 

%Board Failures 1.00% 0.00% 0.00% 0.00% 0.50% 1.00% 
Board Rework Cost Factor 10 0 10 10 10 10 
Cost of Board Failures $1,500 $0 $0 $0 $1,500 $3,000 

%System Failures 0.15% 0.00% 0.00% 0.00% 0.10% 0.15% 
System Repair Cost Factor 100 0 100 100 100 100 
Cost of System Failures $2,250 $0 $0 $0 $3,000 $4,500 
Total Variable Cost $22,697 $38,500 $31,000 $31,600 $37,337 $44,816 

Total Cost $591,697 $62,785 $72,390 $73,600 $87,787 $94,606 
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24048 Sugar Cane Ln. Fishkill, NY 12524 790 Penllyn Pike 13555 Bishops Court 
Gaithersburg, MD 20882 TEL: (914) 897-5611 Suite 201 Brookfield, WI 53005 
TEL: (301) 253-0615 FAX: (914) 897-5611 Blue Bell, PA 19422 TEL: (414) 784-6641 
FAX: (301) 253-9108 TEL: (215) 641-9930 FAX: (414) 784-1436 

Tri-Tech Electronics FAX: (215) 641-9934 
MASSACHUSETTS 6836 E. Genesee St. P!JEBmBICO 
Comp Rep Associates Fayetteville, NY 13066 TENNESSEE Sales Engineering Concepts 
100 Everett Street TEL: (315) 446-2881 CSR Electronics, Inc. Condo. Buena Vista C-1 
Westwood, MA 02090 FAX: (315) 446-3047 Grand Union Bldg. Urb. Mercedita 
TEL: (617) 329-3454 406 Union Ave. Ponce, P.R. 00731 
FAX: (617) 329-6395 ll!OBill CAROLINA Suite 550 TEL: (809) 841-4220 

CSR Electronics, Inc. Knoxville, TN 37902 FAX: (809) 259-7223 
MICHIGAll! 5848 Faringdon Place, Ste. 2 TEL: (615) 637-0293 
Greiner & Associates Raleigh, NC 27609 FAX: (615) 637-0466 
15324 E. Jefferson Ave. TEL: (919) 878-9200 ~ 
Grosse Pointe Park, Ml 48230 FAX: (919) 878-9117 TEXAS 
TEL: (313) 499-0188 West Associates ALBERTA 
FAX: (313) 499-0665 CSR Electronics, Inc. 363 N. Sam Houston Pkwy E Dynasty Components 

6425 Creft Cr. Suite 615 Calgary, Alberta 
MINNESOTA Indian Trail, NC 28079 Houston, TX 77060 TEL: (403) 560-1212 
Stan Clothier Company TEL: (704) 882-3995 TEL: (713) 999-0101 FAX: (403) 686-2364 
9600 W. 76th St., Ste. #A FAX: (704) 882-3999 FAX: {713) 820-2001 
Eden Prairie, MN 55344 SBIIISll COL!JMSIA 
TEL: (612) 944-3456 Ql:llQ West Associates Dynasty Components 
FAX: (612) 944-6904 Makin & Associates 9171 Capital of Texas Hwy. N. Vancouver, British Columbia 

3165 Linwood Rd. Houston Bldg. #120 TEL: (604) 657-4433 
MISSOURI Cincinnati, OH 45208 Austin, TX 77060 FAX: (604) 298-8318 
Stan Clothier Company TEL: (513) 871-2424 TEL: (512) 343-1199 
3910 Old Highway 94 South FAX: (513) 871-2524 FAX: (512) 343-1922 QlllIAB!Q 
Suite 116 Dynasty Components 
St. Charles, MO 63304 Makin & Associates West Associates 1140 Morrison Dr. 
TEL: (314) 928-8078 6631 Commerce Pkwy. Ste. K 801 E. Campbell Rd. #350 Unit 110 
FAX: (314) 447-5214 Dublin, OH 43017 Richardson, TX 75081 Ottawa, Ontario 

TEL: (614) 793-9545 TEL: (214) 680-2800 Canada, K2H 8S9 
ll!EWJEBSEY FAX: (614) 793-0256 FAX: (214) 699-0330 TEL: (613) 596-9800 
Technical Marketing Group FAX: (613) 596-9886 
175-3C Fairfield Ave. Makin & Associates UTAH 
West Caldwell, NJ 07006 6519 Wilson Mills Rd. Waugaman Associates Dynasty Components 
TEL: (201) 226-3300 Mayfield Village, OH 44143 876 East Vine St. Toronto, Ontario 
FAX: (201) 226-9518 TEL: (216) 461-3500 Murray, UT 84107 TEL: (416) 672-5977 

FAX: (216) 461-1335 TEL: (801) 261-0802 FAX: (416) 489-3527 
ll!EWYORK FAX: (801) 261-0830 
Technical Marketing Group OKLAHOMA Q!J.EElEC 
150 Broad Hollow Rd. West Associates WASHINGIQN Dynasty Components 
Suite 310 5555 E. 71st St. #8150 Components West, Inc. Montreal, Quebec 
Melville, NY 11747 Tulsa, OK 74136 4020 148th Ave. NE TEL: (514) 843-1879 
TEL: (516) 351-8833 TEL: (918) 492-4300 SuiteC FAX: (514) 694-6826 
FAX: (516) 351-8667 FAX: (918) 492-4370 Redmond, WA 98052 

TEL: (206) 885-5880 
Tri-Tech Electronics ~ FAX: (206) 882-0642 
300 Main St. Components West, Inc. 
E. Rochester, NY 14445 16300 SW Hart Rd. 
TEL: (716) 385-6500 SuiteG 
FAX: (716) 385-7655 Beaverton, OR 97007 

TEL: (503) 642-9110 
FAX: {503) 642-9592 
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INTERNATIONAL SALES REPRESENTATIVES AND DISTRIBUTORS 
AUSTRALIA Compress ITALY NETHERLANDS 
ZATEK Components, Ltd. 30, Rue du Morvan Comprel S.P.A. Alcorn Electronics B.V. 
1059 Victoria Road Silic 539 Via Po, 37 P.O. Box358 
P.O Box 397, Suite 8 94633 Rungis Cedex 20031 - Cesano Mademo 2900 AJ Capelle AID ljssel 
West Ryde, NSW 2114 TEL: (33) 1 46878020 Milano TEL: (31) 10 4519533 
Sydney, 3153 FAX: (33) 1 46866763 TEL: (39) 3-62553991 FAX: (31) 10 4586482 
TEL: (61) 2 874-0122 FAX: (39) 3-62553967 TLX: 26160 
FAX: (61) 2 874-6171 GERMANY 

Avnet I E2000 GmbH Avnet De Mico ~ 
AUSIBIA Stahlgruberring 12 Divisione della Avnet Adelsy Henaco A/S 
Avnet I E2000 81829 Miinchen s.r.I. Trondheimsveien 436 
Waidhausenstr. 19 TEL: (49) 89 45 11 0 -01 Viale Vittorio Veneto, 8 PO Box 126 
A-1140Wien FAX: (49) 89 45 11 0 -129 20060 Cassina De Pecchi Kaldbakken, Oslo 9 
TEL: (43) 1-9112847 TLX: (49) 522561 Milano TEL: (47)22162110 
FAX: (43) 1-9113853 TEL: (39) 02-95343600 FAX: (47) 22257780 

Eurodis Enatechnik GmbH FAX: (39) 02-9521912 TLX: 76716 
Steiner Electronic GmbH. Schillerstrasse 14 
Egererstrasse 18 25451 Quickbom JAfAN fQLA!l!Q 
A-3013 Tullnerbach TEL: (49) 4106 612-0 Ado Electronic lndust. Co., Ltd. HT-EUREP Electronic sp.z.o.o. 
TEL: (43) 2233 55 366-0 FAX: (49) 4106 612-268 18-tO, Sotokanda 2-Chome WG Electronics 
FAX: (43) 2233 55 360 Chiyoda-ku ul. Nowogrodzka 42/3 

HONG KONG Tokyo 101 00-695 Warszawa 
~ RTI Industries Co. Ltd. TEL: (81) 3-3257-2614 TEL: (48) 22-217704 
Alcorn Electronics nv/sa Rm. 402, Nan Fung Commercial FAX: (81) 3-3257-1579 FAX: (48) 2-6284850 
Singel 3 Centre 
2550 Kontich No. 19, Lam Lok Street Macnica, Inc. SINGAPORE 
TEL: (32) 3 458-3033 Kowloon Bay Hakusan High-Tech Park Technology Distribution 
FAX: (32) 3 458 3126 Kowloon 1-22-2 Hakusan, Midori-ku No. 1 Syed Alwi Rd. #05-02 

TEL: (852) 795 7421 Yokohama, 226 Song Lin Bldg. 
~ZE~lf BEP!.!E!!.I~ FAX: (852) 795 7839 TEL: (81) 45-939-6140 Singapore 0620 
HT-EUREP Electronic s.r.o. FAX: (81) 45-939-6141 TEL: (65) 299-7811 
Comp. Ap spoi s.r.o. HUNGARY FAX: (65) 294-1518 
Rosenberggovych 10 HT-EUREP Electronic Kit. Hakuto Co., Ltd. 
180 00, Praha 8 X-Byte Kit. 1-13, Shinjuku 1-Chome SOUTH AFRICA 
TEL: (42) 2-6833858 Nepliirdo u, 17/E Shinjuku-ku, Tokyo 160 Pace Electronic Components 
FAX: (42) 2-683385 1138 Budapest TEL: (81) 3-3355-7617 Cnr. Vanacht & Gewel St. 

TEL: (36) 1-270167 FAX: (81) 3-3355-7680 lsando 1600, P.O Box 701 
DENMABK FAX: (36) 1-1731530 TEL: (27) 11 974 1525 
Ditz Schweitzer Hoei Denki Co., Ltd. FAX: (27) 11 392 2463 
Vallensbaekvej 41 INDIA 6-60, 2-Chome, Niitaka TLX: 960426905 
Postboks 5, Hindetron Yodogawa-Ku, 
DK-2605 Brendby 23B, Industry House Osaka 532 seAIN 
TEL: (45) 42 45 30 44 Mahal Industry Estate TEL: (81) 6-394-4596 Matrix Electronica 
FAX: (45) 42 45 92 06 Mahakali Caves Rd. FAX: (81) 6-396-5647 C/Belmonte de Tajo, 76-30 B 
TLX: 85533257 Andheri (East), Bombay 400 093 28019 Madrid 

TEL: (91) 812 348 266 KQBEA TEL: (34) 1 560 2737 
.E!N.1.AN.12 FAX: (91) 812 345 022 Ellen & Company FAX: (34) 1 565 2865 
Integrated Electronics OY TLX: (91) 08452741HSPL IN #202 Sungkyung Bldg. 66 
Turkhaudantie #1 66 Yangjae-Dong ~ 
00700 Helsinki .!.B.EJ.AliQ Seocho-ku, Seoul Pelcon Electronics 
TEL: (358) 0 351 3134 Silicon Concepts TEL: (82) 2-579-3330 Box6023 
FAX: (358) 0 351 3133 Norebank House FAX: (82) 2-579-4440 Giroviigen 13 

Greens Hill, Kilkenny 175 06 Jiirfi!.lla 
.EBANC.E TEL: (353) 56 64002 Wooyoung Tech Co., Ltd. TEL: ( 46) 8 795 9870 
Company3D FAX: (353) 56 51438 5th Fl. Koami Bldg. FAX: (46) 8 760 7685 
3-8 Rue Ambroize Croizat 13-31 Yoido-dong 

I 91127 Palaiseau Cedex ISRAEL Youngdeungpo-Ku, Seoul SWITZERLAND 
TEL: (33) 1 64472929 Telsys Ltd. TEL: (82) 2-369-7099 Avnet I E2000 
FAX: (33) 1 64470084 Dvora Hanevia Str. FAX: (82) 2-369-7091 Bohnirainstr. 11 

Neve Share!, Atidim Bldg. 3 CH-8801 Thalwil 
Tel-Aviv 61 431 Israel TEL: (41) 1-7221330 
TEL: 03-492001-11 FAX: (41) 1-7221340 
FAX: 03-497407 
TLX: 032392 
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Eurodis Primotec AG 
T iifernstrasse 37 
CH-5405 Baden-Diittwil 
TEL: (41) 5684-0171 
FAX: (41) 5683-3454 
TLX: 828 221 apri ch 

TAIWAN 
Master Electronics 
16F, No.182, Sec. 2 
Tun-Hwa South Rd. 
Taipei 
TEL: (886) 02-735-0905 
FAX: (886) 02-735-0902 

Score Zap Industry 
1F, No. 26, Lane 60 
Wen Hu Street 
Nei Hu, Taipei 
TEL: (886) 2-627-7045 
FAX: (886) 2-659-0089 

UNITED KINGDOM 
Micro Call 
17 Thame Park Rd. 
Thame, Oxon OX9 3XD 
England 
TEL: (44) 84 426-1939 
FAX: (44) 84 426-1678 

Silicon Concepts, Ltd. 
PEC Lynchborough Rd. 
Passfield, Liphook 
Hampshire GU30 7SB 
England 
TEL: (44) 428 751617 
FAX: (44) 428 751603 

Silicon Concepts, Ltd. 
Meridale, Welsh Street 
Chepston, Gwent, NP6 SLR 
Wales 
TEL: (44) 291-624101 
FAX: (44) 291-629878 

NORTH AMERICAN DISTRIBUTORS 

ALABAMA Hamilton Hallmark 
Arrow Electronics 2105 Lundy Ave. 
1015 Henderson Rd. San Jose, CA 95131 
Huntsville, AL 35816 (408) 435-3500 
(205) 837-6955 

Insight Electronics 
Hamilton Hallmark 1295 Oakmead Pkwy. 
4890 University Square Sunnyvale, CA 94086 
Suite 1 (408)720-9222 
Huntsville, AL 35816 
(205) 837-8700 Marshall Industries 

336 Los Coches St. 
Insight Electronics Milpitas, CA 95035 
4835 University Square (408) 942-4600 
Suite 19 
Huntsville, AL 35818 Marshall Industries 
(205) 830-1222 3039 Kilgore Ave. #140 

Rancho Cordova, CA 95670 
Marshall Industries (916) 635-9700 
3313 Memorial Pkwy S. 
Huntsville, AL 35801 Zeus Electronics 
(205) 881-9235 6276 San Ignacio Ave. Ste. E 

San Jose, CA95119 
ARIZONA (408) 629-4789 
Arrow Electronics 
2415 W. Erie Drive SQ!.!I!:!EBN CA!.!FQRNIA 
Tempe, AZ 85282 Arrow Electronics 
(602) 431-0030 Malibu Canyon Bus. Park 

26677 W. Agoura Road 
Hamilton Hallmark Calabasas, CA 91302 
4637 S. 36th Place (818) 880-9686 
Phoenix, AZ 85040 
(602) 437-1200 Arrow Electronics 

6 Cromwell, Suite 100 
Insight Electronics Irvine, CA 92718 
1515 W. University Dr. (714) 587-0404 
Suite #103 
Tempe, AZ 85281 Arrow Electronics 
(602) 829-1800 9511 Ridgehaven Ct. 

San Diego, CA 92123 
Marshall Industries (619) 565-4800 
9831S. 51st St. #C108 
Phoenix, AZ 85044 Hamilton Hallmark 
(602) 496-0290 4545 Viewridge Ave. 

San Diego, CA 92123 
l'!QBil:IEBI'! CA!.IFQRt!llA (619) 571-7540 
Arrow Electronics 
1180 Murphy Ave. Hamilton Hallmark 
San Jose, CA 95131 3170 Pullman St. 
(408) 441-9700 Costa Mesa, CA 92626 

(714) 641-4100 
Arrow Electronics 
90 East Tasman Dr. Hamilton Hallmark 
San Jose, CA 95134 10950 Washington Blvd. 
(408) 428-6400 Culver City, CA 90230 

(310) 558-2800 
Hamilton Hallmark 
580 Menlo Drive Hamilton Hallmark 
Suite2 21150 Califa St. 
Rocklin, CA 95765 Woodland Hills, CA 91367 
(916) 624-9781 (818) 594-0404 
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Insight Electronics 
4333 Park Terrace Dr. 
Suite 101 
Westlake Village, CA 91361 
(818) 707-2101 

Insight Electronics 
9980 Huennekens St. 
San Diego, CA 92121 
(619) 587-1100 

Insight Electronics 
2 Venture Plaza 
Suite 340 
Irvine, CA 92718 
(714) 727-3291 

Marshall Industries 
26637 Agoura Rd. 
Calabasas, CA 91302 
(818) 878-7000 

Marshall Industries 
9320 Telstar Ave. 
El Monte, CA 91731-3004 
(818) 307-6000 

Marshall Industries 
One Morgan 
Irvine, CA 92718 
(714) 458-5301 

Marshall Industries 
5961 Kearny Villa Rd. 
San Diego, CA 92123 
(619) 627-4140 

Zeus Electronics 
22700 Savi Ranch Pkwy. 
Yorba Linda, CA 92687 
(714) 921-9000 

CQLQRADO 
Arrow Electronics 
61 Inverness Drive East 
Suite 105 
Englewood, CO 80112 
(303) 799-0258 

Hamilton Hallmark 
12503 E. Euclid Drive 
Suite 20 
Englewood, CO 80111 
(303) 790-1662 

Insight Electronics . 
384 Inverness Drive South 
Suite 105 
Englewood, CO 80112 
(303) 649-1800 
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Marshall Industries Zeus Electronics KANSAS Hamilton Hallmark 
12351 N. Grant 37 Skyline Dr. Bldg. D Arrow Electronics 41650 Gardenbrook Rd. 
Thornton, CO 80241 Suite 1301 9801 Legler Road Suite 100 
(303) 451-8383 Lake Mary, FL 327 46 Lenexa, KS 66214 Novi, Ml 48375 

( 407) 333-305S (913) S41-9S42 (313) 347-4271 
CONNECTICUT 
Arrow Electronics GEORGIA Hamilton Hallmark Marshall Industries 
12 Beaumont Rd. Arrow Electronics 10809 Lakeview Drive 31067 Schoolcraft 
Wallingford, CT 06492 4205E River Green Pkwy. Lenexa, KS 6621 S Livonia, Ml 48150 
(203) 265-7741 Duluth, GA 30136 (913) 888-4747 (313) S25-5850 

(404) 497-1300 
Hamilton Hallmark Marshall Industries MINNESOTA 
125 Commerce Ct. Hamilton Hallmark 10413 W. 84th Ter. Arrow Electronics 
Unit6 342S Corporate Way Pine Ridge Business Park 10100 Viking Drive# 100 
Chesire, CT 0641 o Suite A Lenexa, KS 66214 Eden Prairie, MN 55344 
(203) 271-2844 Duluth, GA 30136-2SS2 (913) 492-3121 (612) 941-S280 

(404) 623-4400 
Marshall Industries MARYLAND Hamilton Hallmark 
20 Sterling Dr. Insight Electronics Arrow Electronics 9401 James Ave. South 
PO Box200 2400 Pleasant Hill Rd. 9800J Patuxent Wood Dr. Suite 140 
Wallingford, CT 06492 Suite200 Columbia, MD 21046 Bloomington, MN 55431 
(203) 26S-3822 Duluth, GA 30136 (301) 596-7800 (612) 881-2600 

(404) 717-8S66 
FLORIDA Hamilton Hallmark Insight Electronics 
Arrow Electronics Marshall Industries 10240 Old Columbia Rd. S3S3 Gamble Rd. 
400 Fairway Dr. 5300 Oakbrook Pkwy #140 Columbia, MD 21046 Suite 330 
Deerfield Beach, FL 33441 Norcross, GA 30093 (410) 988-9800 St. Louis Park, MN S5416 
(305) 429-8200 (404) 923-5750 (612) 525-9999 

Marshall Industries 
Arrow Electronics !OY'lA 9130B Guilford Marshall Industries 
37 Skyline Dr. Arrow Electronics Columbia, MD 21046 14800 28th Ave. N. 
Bldg. D, Suite 3101 37S Collins Rd. NE (301) 470-2800 Suite 175 
Lake Mary, FL 32746 Cedar Rapids, IA S2402 Plymouth, MN SS447 
( 407) 333-9300 (319) 395-7230 MASSACHUSETTS (612) SS9-2211 

Arrow Electronics 
Hamilton Hallmark ILLINOIS 2S Upton Dr. MISSOURI 
10491 72nd St. North Arrow Electronics Wilmington, MA 01887 Arrow Electronics 
Largo, FL 34637 1140 W. Thorndale Ave. (508) 658-0900 2380 Schuetz Rd. 
(813) S41-7440 Itasca, IL 60143 St. Louis, MO 63146 

(708) 250-0500 Hamilton Hallmark (314) 567-6888 
Hamilton Hallmark 1 O P Centennial Dr. 
33SO NW 53rd St. Hamilton Hallmark Peabody, MA 01960 Hamilton Hallmark 
Suite 105-107 1130 Thorndale Ave. (SOS) S32-9808 3783 Rider Trail South 
Ft. Lauderdale, FL 33309 Bensonville, IL 60106 Earth City, MO 6304S 
(305) 484-5482 (708) 860-7780 Insight Electronics (314) 291-S350 

SS Cambridge St. 
Hamilton Hallmark Insight Electronics Suite 301 Marshall Industries 
7079 University Blvd. 1365 Wiley Rd., Suite 142 Burlington, MA 01803 3377 Hollenberg Dr. 
Winter Park, FL 32792 Schaumberg, IL 60173 (617) 270-9400 Bridgeton, MO 63044 
(407) 657-3300 (708) 88S-9700 (314) 291-4650 

Marshall Industries 
Marshall Industries Marshall Industries 33 Upton Dr. NEW JERSEY 
380 S. Northlake Rd. #1024 SO E. Commerce Dr. # 1 Wilmington, MA 01887 Arrow Electronics 
Altamonte Springs, FL 32701 Schaumberg, IL 60173 (508) 658-0810 4 East Stow Rd. Unit 11 
(407) 767-858S (708) 490-0155 Marlton,NJ 08053 

Zeus Electronics (609) 596-8000 
Marshall Industries ~ 25 Upton Dr. 
2700 Cypress Ck. Rd. #D114 Arrow Electronics Wilmington, MA 01887 Arrow Electronics 
Ft. Lauderdale, FL 33309 7108 Lakeview Pkwy. W. Dr. (508) 658-4776 43 Route 46 East 

I (305) 977-4880 Indianapolis, IN 46268 Pinebrook, NJ 07058 
(317) 299-2071 MICHIGAN (201) 227-7880 

Marshall Industries Arrow Electronics 
2840 Scherer Dr. #410 Hamilton Hallmark 19880 Haggerty Rd. Hamilton Hallmark 
St. Petersburg, FL 33716 4275 West 96th Street Livonia, Ml 48152 1 Keystone Ave. Bldg. 36 
(813) 573-1399 Indianapolis, IN 46268 (313) 462-2290 Cherry Hill, NJ 08003 

(317) 872-8875 (609) 424-0110 
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Hamilton Hallmark l\IQRTH ~ARQLINA OBEGON Insight Electronics 
10 Lanidex Plaza West Arrow Electronics Almac-Arrow Electronics 15437 McKaskle 
Parsippany, NJ 07054 5240 Greens Dairy Rd. 1885 N.W. 169th Place Sugarland, TX 77478 
(201) 515-1641 Raleigh, NC 27604 Beaverton, OR 97006 (713) 448-0800 

(919) 876-3132 (503) 629-8090 
Marshall Industries Marshall Industries 
101 Fairtield Rd. Hamilton Hallmark Hamilton Hallmark 8504 Cross Park Dr. 
Fairtield, NJ 07006 5234 Green's Dairy Road 9750 SW Nimbus Ave. Austin, TX 78754 
(201) 882-0320 Raleigh, NC 27604 Beaverton, OR 97005 (512) 837-1991 

(919) 872-0712 (503) 526-6200 
Marshall Industries Marshall Industries 
158 Gaither Dr. Marshall Industries Insight Electronics 10681 Haddington 
Mt. Laurel, NJ 08054 5224 Greens Dairy Rd. 8705 SW Nimbus Ave. Ste. 200 Suite 160 
(609) 234-9100 Raleigh, NC 27604 Beaverton, OR 97005 Houston, TX 77043 

(919) 878-9882 (503) 644-3300 (713) 467-1666 
NEWYQRK 
Arrow Electronics Ol::l.IO Marshall Industries Marshall Industries 
25 Hub Drive Arrow Electronics 9705 SW Gemini Dr. 1551 N. Glenville Dr. 
Melville, NY 11747 6573E Cochran Rd. Beaverton, OR 97005 Richardson, TX 75081 
(516) 391-1300 Solon, OH 44139 (503) 644-5050 (214) 705-0600 

(216) 248-3990 
Arrow Electronics IEXAS Zeus Electronics 
200ser Ave. Arrow Electronics Arrow Electronics 3220 Commander Dr. 
Hauppauge, NY 11788 8200 Washington Village Dr. #A 11500 Metric Blvd. Carrollton, TX 75006 
(516) 231- 1000 Centerville, OH 45458 Suite 160 (214) 380-4330 

(513) 435-5563 Austin, TX 78758 
Arrow Electronics (512) 835-4180 !JIA!:! 
3375 Brighton-Henrietta Hamilton Hallmark Arrow Electronics 
Townline Rd. 777 Dearbome Park Lane Arrow Electronics 1946 West Parkway Blvd. 
Rochester, NY 14623 Suite L 3220 Commander Dr. Salt Lake City, UT 84119 
(716) 427-0300 Worthington, OH 43085 Carrollton, TX 75006 (801) 973-6913 

(614) 888-3313 (214) 380-6464 
Hamilton Hallmark Hamilton Hallmark 
1057 E. Henrietta Rd. Hamilton Hallmark Arrow Electronics 1100 E. 6600 South 
Rochester, NY 14623 5821 Harper Road 10899 Kinghurst Dr. #100 Suite 120 
(716)475-9130 Solon, OH 44139 Houston, TX 77099 Salt Lake City, UT 84121 

(216) 498-1100 (713) 530-4700 (801) 266-2022 
Hamilton Hallmark 
390 Rabro Dr. Hamilton Hallmark Hamilton Hallmark Marshall Industries 
Hauppauge, NY 11788 7760 Washington Village Dr. 11420 Pagemill Road 2355 South 1070 West 
(516) 434-7400 Dayton, OH 45459 Dallas, TX 75243 Salt Lake City, UT 84119 

(513) 439-6735 (214) 553-4300 (801) 973-2288 
Hamilton Hallmark 
3075 Veterans Memorial Marshall Industries Hamilton Hallmark WASl:!INGTQN 
Ronkonkoma, NY 11779 3520 Park Center Dr. 12211 Technology Blvd. Almac-Arrow Electronics 
(516) 737-0600 Dayton, OH 45414 Austin, TX 78727 14360 S.E. Eastgate Way 

(513) 898-4480 (512) 258-8848 Bellevue, WA 98007 
Marshall Industries (206) 643-9992 
970serAve. Marshall Industries Hamilton Hallmark 
Hauppauge,NY 11788 30700 Bainbridge Rd. Unit A 8000 Westglen Hamilton Hallmark 
(516) 273-2695 Solon, OH 44139 Houston, TX 77063 8630 154th Ave. 

(216) 248-1788 (713) 781-6100 Redmond, WA 98052 
Marshall Industries (206) 881-6697 
1250 Scottsville Rd. QKLAHQMA Insight Electronics 
Rochester, NY 14624 Arrow Electronics 11500 Metric Blvd. Insight Electronics 
(716) 235-7620 12111East51st St. #101 Suite 215 12002 115th Avenue, NE 

Tulsa, OK 74146 Austin, TX 78758 Kirkland, WA 98034 
Marshall Industries (918) 252-7537 (512) 719-3090 (206) 820-8100 
100 Marshall Drive 
Endicott, NY 13790 Hamilton Hallmark Insight Electronics Marshall Industries 
(607) 785-2345 5411 S. 125th E Ave.,Ste. 305 1778 Plano Rd. #320 11715 N. Creek Pkwy. S. 

Tulsa, OK 74146 Richardson, TX 75081 Suite 112 
Zeus Electronics (918) 254-6110 (214) 783-0800 Bothell, WA 98011 
100 Midland Ave. (206) 486-5747 
Port Chester, NY 10573 
(914) 933-4235 
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WISCONSIN 
Arrow Electronics 
200 North Patrick Blvd. 
Brookfield, WI 53045 
(414) 792-0150 

Hamilton Hallmark 
2440 South 179th St. 
New Berlin, WI 53146 
(414) 797-7844 

Marshall Industries 
20900 Swenson Dr. #150 
Waukesha, WI 53186 
(414) 797-8400 

ALBERTA 
Future Electronics 
3833-29th St. NE 
Calgary, Alberta T1 Y 6B5 
(403) 250-5550 

Future Electronics 
4606-97th Street 
Edmonton, Alberta T6E 5N9 
(403) 438-2858 

BRITISH COLUMBIA 
Arrow Electronics 
8544 Baxter Place 
Burnaby, British Columbia 
V5A4T8 
(604) 421-2333 

Future Electronics 
1695 Boundary Road 
Vancouver, British Columbia 
V5K 4X7 
(604) 294-1166 

Hamilton Hallmark 
8610 Commerce Ct. 
Burnaby, British Columbia 
V5A4N6 
(604) 420-4101 

MANITOBA 
Future Electronics 
106 King Edward 
Winnipeg, Manitoba R3H ON8 
(204) 786-7711 

ONTARIO 
Arrow Electronics 
36 Antares Dr. Unit 100 
Nepean, Ontario K2E 7W5 
(613) 226-6903 

Arrow Electronics 
1093 Meyerside Dr. 
Mississauga, Ontario L5P 1 M4 
(416) 670-7769 

Future Electronics 
1 050 Baxter Road 
Ottawa, Ontario K2C 3P2 
(613) 820-8313 

Future Electronics 
5935 Airport Rd., #200 
Mississauga, Ontario L4V 1W5 
(416) 612-9200 

Hamilton Hallmark 
151 Superior Blvd. 
Unit 1-6 
Mississauga, Ontario L5T 2L 1 
(416) 564-6060 

Hamilton Hallmark 
190 Colonnade Rd. 
Nepean, Ontario K2E 7J5 
(613) 226-1700 

Marshall Industries 
4 Paget Rd. 
Bldg. 1112, Unit 10 
Brampton, Ontario L6T 5G3 
(416) 458-8046 

QUEBEC 
Arrow Electronics 
1100 St. Regis Blvd. 
Dorval, Quebec H9P 2T5 
(514) 421-7411 

Future Electronics 
237 Hymus Blvd. 
Pointe Claire, Quebec H9R 5C7 
(514) 694-7710 

Future Electronics 
1000 St-Jean Babtiste #100 
Quebec City, Quebec G2E 5G5 
(418) 877-6666 

Hamilton Hallmark 
600 Transcanada Hwy 
Suite 600 
Ville St. Laurent, Quebec 
H4T 1V6 
(514) 335-1000 

Marshall Industries 
148 Brunswick Blvd. 
Pointe Claire, Quebec H9R 5B9 
(514) 694-8142 
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