ii tt 11
11

ii tt 11

: tttttt 11

ii nnnnn tt 11 .
i1 nn nnn tt 1 : '

ii nn nn tt eeee 11 : INTERNAL CORRESPONDENCE
iinn nmntt ee ee 11 : '

ii nn nn ttt eeeeee 11
ii nn nn ttt eeeeee 11
ee
es ee
eece

o0 o3 e

“e o8 oo

To: John Bayliss Date: 20 November 1980
Dave Best
Dick Kaiser
Barb Slaughter

From: Jim Weldon

- .cc: Brad Janeway
Paul Tyner
John Wipfli

Subject: Technical Review of iAPX 432 Component User's Guide

The preliminary manual is now scheduled to go to print in early
December, 1980, ieaving very few working days to complete the manual,
which will consist of about 80 pages including a preface, 5 chapters,
and 2 component data sheets covering the GDP and IP. .

Technical Review of this material must be accomplished by increments,
with all input to be received not later than December 2, 1980, if we
are to stay on schedule. If your comments are going to'be of sweeping
portent, we must commence receiving them at once to avoid reworking
typeset material, which could result in slippage of schedule.

Please send your coments to:
Steven Andersen or Jim Weldon
Marketing/Communications
210 California Avenue, Suite L
Palo Alto, CA 94306 - telephone (415) 328-2160

or call: Steve Andersen - (408) 377-6881

Additional copies of this manual or other Intel literature may be obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited
to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation
assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no
commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in
an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,
duplication or disclosure is subject to restrictions stated in Intel’s software license, or as defined in ASPR
7-104.9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel
products:

BXP intel Megachassis
CREDIT Intelevision Micromap
i inteilec Muitibus
ICE iRMX Multimodule
iCS - iSBC PROMPT
im iSBX Promware
Insite Library Manager RMX/80
Intel MCS System 2000
UP1
uScope

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a numerical suffix.

LIST OF ILLUSTRATIONS

Chapter 1. Introduction to the iAPX Component User”s Guide

Figure
1-1 An iAPX 432 System

1-2

432 I/0 Model

Chapter 2. Introduction to iAP¥X GDP Architecture

Figure

2- Operations Defined on a Data Type .
2-2 Some operations Defined on Character and Integer

2-3 Operations Defined .

2-4 Different Access Paths and Rights to the Same Object
2-5 Network of Objects as an Object

2-6 Access Segment Symbology

Chapter 3. Introduction to the iAPX IP Architecture

Figure

3~

W W ww
wmd N

Main System and Peripheral Subsystem
Basic I/O Service Cycle

Peripheral Subsystem Interface
Peripheral Subsystem Hardware Interface
Interface Processor Window

Chapter 4. 1APX Processor Environment Definition

Figure

4-1

bhbh(hdrlh»hlhtl‘h-
i
D 0 ~1O Ul = WD

Basic iAPX Data Lengths

Hardware Error Detection

State Diagram for Processor Packetbus
Nominal Write Cycle Timing

Stretched Write Cycle Timing

Minimum Write Cycle Timing

Minimum Read Cycle (Buffered System)
Minimum Read Cycle (Not Buffered)
Minimum Faulted Access Cycle

Chapter 5. An iAPX 432 Multiprocessor System Implementatiocn

Figure

5~1 Block Diagram (Two Processor 432 System)
Physical Partitioning {(Two Processor 432 system)
Address/Specification Demultiplexing
Local Access Operation

Cancelled Access Detection

Cancelled Access (With Subsequent Access)
Static Memory System

Byte Swapping for 32-bit Operand
Parallel Memory Banks

S 10 Interface to IP

5-11 GDP Schematics

5-12 IP Schematics

anml.'nmmmm
i
W Oo-JOA UL &WN

APPENDIX

iAPX 43201/43202 GDP Data Sheets

Figure

1. 43201 Pin Assignment

2. 43202 Pin Assignment

3. 43201 Block Diagram

4a, 43202 Block Diagram

4b. GDP Logic Symbol

5. Hardware Error Detection

6. QUIP Layout

7. Modes of Selector Generation

8. Modes of Displacement Generation.
9. GDP Packetbus State Diagram

10. 43201 Output Timing Specification
11. 43201 Input Timing Specification
12. Clock Input Specification

13. 43201 Hardware Error Checking Timing
14, 43201 Initialization Timing

15, 43201 Interrogation Timing

16. 43202 OQutput Timing Specification
17. 43202 Input Timing Specification

iAPX 43203 IP Data Sheets

Figure

1. 43203 Pinout

2. 43203 Logic Symbol

3. 43203 Functional Block Diagram

4. 43203 Bus State Diagram

5. Timing Diagram for ACD Parameters
6. Timing Diagram for Local Processor Bus Timing
7. Multibus Interface Timing

8. Two Styles of ALE

9. XACK Interface Programmable Timing
10. Maximum Mode Interface

11. MULTIBUS System Interface

QUIP Specification Figures

LIST CF TABLES

Chapter 4. 432 Processor Environment Definition

Table

4-1 ACD Specification Encoding

ICS Interpretation

PRQ Interpretation

BOUT Interpretation

iAPX 432 Component Signalling Scheme

b b b
Uk W N

Chapter 5.An iAPX 432 Multiprocessor System Implementation

Table

5-1 Miscellaneous Pin Connection

5-2 IPC Register Bit Designation

5-3 Peripheral Subsystem Dedicated Ports

APPENDIX . .

iAPX 43201/43202 GDP Data Sheets

Table

1. GDP Operator Instruction Set
2. 43201 DC Characteristics

3. 43201 AC Characteristics

. 43201 Capacitance Ratings

. 43202 DC Characteristics

. 43202 AC Characteristics
43202 Capacitance Ratings
GDP Absolute Maximum Ratings

00 ~1 O U >

iAPX 43203 IP Data Sheet

Table

43203 Interface Pin Summary
Packetbus signals

IP Absolute Maximum Ratings
DC Characteristics

AC Characteristics

XACK Timing Parameters
8-bit Processor Interface

16-bit Processor Interface ‘;u”
Maximum Mode 8086 System

O 00 ~JON U1 i W o+
L]

.

iAPX 432 COMPONENT USER”S GUIDE
CHAPTER 1

INTRODUCTION

Welcome to Intel”’s new 1iAPX 432 family of components. The
432 product 1line was designed to solve the [existing;
growing?] industrial problem of software development.
Today”s state-of-the-art technology has produce@ large-scale
microproéessors capable of handling tremendous hardware
tasks, but has failed to relieve the ever-growing needs of
software design. Complex devices, conceptually desigred to
control this problem have in the end only added more weight

to the burden.

WHAT IS THE PROBLEM?

Today”s system applications have evolved into highly complex
configurations. Retail business systems, telephone switching
systems, laboratory and industrial control systems, commun-
ication systems, word processors, and many other large-scale

systems have forced the industry to consider alternative

methods of handling the extensive requirements of multiple
programs, multiple users, and multiple processors. The
demands of existing high-level languages, operating system
software, and the increased number of peripheral controllers
and memory éptions have produced overwhelming problems for

the system designer.

To further compound the problem, tommorrow”s applications
will increase system complexity by requiring fault-tolerant
computing, transparent multiprocessing, distributed opera-
tion, networking, and multiple families of programming
languages. These system requirements are beyond the scope of
today’s mini- and mainframe computers. This Component User”’s
Guide presents a hardware discussion of the two components,
the 43201 and 432G2, that combine to form the General Data
Processor (GDP), and the 43203 Interface Processor (IP).
Also included in this book are instructions concerning the
hardware implementation of the 1APX 432 system concepts.
References to aﬁditional source documents are given as

needed.

WHAT IS THE SOLUTION?

As you become familiar with the iAPX 432 family members, you

L<:

will discover an innovative approach to the software
development problem. It is not enough to say the 432 family

processors have an enhanced architecture with the integra-

tion of over 100,000 silicon gates into 64-pin packages,
nor is it enough to promise an increased throughput. What
must be understood 1is that all phases of hardware and
software design will be oriented toward safe and efficient
control of information with favorable results in develop-

ment costs.

The solution to complex and growing software demands is the
development of the object-oriented machine. Such a machine
can provide the important qualities of abstraction and
decomposition. Abstraction is one of the inherent qualities
of the iAPX432 family, which hides the irrelevant detail of
predefined high-level langquages, e.g., different number and
data types. Decomposition is the quality of breaking up
complex problems into manageable units and allows for
modular programming. The iAPX 432 hardware provides an
architectural structure that defines access limitations to
prevent the damage of any established data base. The
software designer need only be concerned with the construc-
tion of individual, easy-to-understand program modules that
are more manageable and capable of working together as a
system unit. Refer to Chapter 2 for a discussion of 432

Architecture and its importance to the hardware designer.

HOW IS IT DONE?

A basic 1iAPX 432 system consists of one or mcre Intel

general data processors (GDP“s), one or more interface
processors (IP"s), several independant I/0 systems, and a
common memory system. Each external I/0 system may consist
of several I/O devices and microprocessors that may be
capable of providing their own complex arbitration schemes,
memory interleaving, and dynamic memory configuration. These
external processors view memory as a single and continuous
byte—addressable sequence, and are not aware of any system
interconnection ({although that capability does exist).

Figure 1-1 illustrates a basic 432 system.

Figure 1-1 432 System Block Diagram

Programs executing in iAPX 432 processors view the memory
and the interconnect address spaces quite differently from
their attached processors. Programs are hardware-defined as
processes, which are controlled by access descriﬁtors; i.e.,
each process is limited to specific objects that may only be
accessed 1if predefined conditions have been met. After
vérifying access rights, the hardware automatically computes
physical addresses as they are required. The external
processors define processes; the interface processor
provides access to general data processors and memory

resources to run those processes.

APK 4z Thix V2l e /o
abh e eHe .
(€81
”” MULTIFPOCE ST TNTIERCONI NLCT ””
AFY (3L OCh iy
I'g ‘
Sul oy S194-
— = _ .
. ——l LoCAL I -
ATIACHED l Are o | mEntoe
Pﬁocessof\' - T - l
. PevicE
Bosd CONVTROL I
— L}
3
WOLTI B g
Corwphehit B> INDSedl (7~ ey oo e /o

'”-ru')k s+ clol L OLess iy g

A

-~

A\

Processor management methodology becomes more important as
more subsystems are added. In the iAPX 432 system, processes
are scheduled to be executed according to policies, imple-
mented in software, that determine how processes are to
share processors. As each process becomes available, i.e.,
reaches the head of its gueue, it is dispatched to the next
available processor that can execute the process. Converse-
ly, an idle processer will wait at a dispatching port for a
process to appear. Therefore, systems may become as complex
as the mind can imagine. Software Engineers are now pleased
to discover that the need to develop or redesign new
software to handle the complexity of increasing system
requirements does not exist! Hardware engineers are pleased
to save valuable design effort iﬁ increasing the hardware
capabilities by simply plugging additional GDP or IP units
into their printed circuit boards. Chapte;s 5 and & provide
a detailed discussion of the GDP and the IP and their

respective roles in implementing these concepts.

Figure 1-2 represents an iAPX 432 system model complete with
three GDP processors (43201 and 43202), three IP processors
(43203, and three I/0 subsystems. If the external
processors were identical, it would be conceivable to use
only one IP and several GDP”s. The figure illustrates the
ease with which information 1is allocated to available
processors. Also shown is the independance of each subsystem

as separate tasks are defined without the need for under-

(75!
¢
b
S
T

N - .
: : ‘ . H

. T T TURY SUEUr- SO
: .

R
1
£

e e e s
i
. o mvars b v
|

i
b

i

SN
;
: : ‘ H
-— e« o -
! ;
H P

; L
[P TP SUUUPURE SIS

—
__
t

1-Da. R

1

’ ‘

-

‘ .

EZ VI
N 3
toon, Boundare,

. []
M T 1

1] 1] .
POR _‘._....'.-- T“-‘:

1]

i 3

- — - - N qu — i om B mne .lon.tt..mlt.lflslwt. ..b.ﬂ ¢ e A e e e e e e e
! | 1 i ' . ,
..n. - - l,m. - - " j lﬂ. —— A e e ..l.ll.llvl R
Q- , ; ! M ! ; . m ! . ! ,
U SO ey ax i e e e it R
’ "
| 1) !
. % ; e e o e e e e — -
= ! ! !

_\.—%@WMSUJJ ,
o g%l
Gex
E
j
o
|
-
T
-
5
}

. i] \ m !] 1 i . | i !
et g bl §oemte e o RPNV SRR SR R).

. ; _ ' ! | « ; ”n ' ¢ M ')

SR NN SUNE SRS BUUUS NN SN SOV SN RO SN NN NORNN NUNUY SN DU RSN DO DO O

I R R P _

H . i

standing tasks for other subsystems. Refer to Chapter 4

for an actual 432 system configuration.

OBJECT-ORIENTED MACHINE

An object is a data structure that contains information in
an organized manner. An object-oriented machine, such as the
iAPX 432, is a device that handles data in terms of objects
rather than the specific elements within the object. Certain
primitive data types (Reals, Integers, Ordinals, etc.) each
have a specific structure that may vary from one type to the
next. A given binary number might represent a different
meaning to each of these data types. In the 1APX 432
architecture, these data structures may be found in a
contiguous set of memory locations or possibly a combination

of several segments.

A 432 object not only contains organized information but
also a basic set of operations defined to directly manipu-
late the data structure. The 432 hardware inherently ensures
manipulation of the data structure by these specific
operations only. In this manner, violations to the data
structure are prevented. Also, each object can be referenced
as one thing; i.e., there is no need to address any of the
parts. Therefore, each object has a label to identify it

from among the various types.

Notice that objects are manipulated not only by the
hardware. Some objects are manipulated by a combination of
hardware and software, and some only by software. Frequéntly
used operations have been placed in the 432 structure
(hardware implemented) while less freguent operations have
been left to the software. Refer to Chapter 2 for a discus-
sion of the following objects: Processor objects, Process
objects, Context objects, Instruction objects, and data
objects. The coordination of these objects represents the

completed picture of the 432 system.

A FINAL NOTE

The Intel 1APX 432 family of components has been designed
specifically to provide a solution to the growing software
needs of the 807s. The 432 system should be viewed as a
time-saving system, a cost-saving system, and a system to
solve design development problems. Welcome to the Object-

Oriented world of Intel”s iAPX 432 family.

CHAPTER 2
INTRODUCTION TO iAPX 432 ARCHITECTURE

The purpcse of this chapter is to familiarize the 1APX 432
hardware designer with the basic object-oriented concepts
providea by the 432 system. A solid understanding of the
following concepts is essential to the construction of 432
systems (Refer to the iAPX 432 General Data Processor
Architectural manual, Order no. 171860, and the iAPX 432
Interface Processor Architectural manual, Order No.171862,

for more detailed information on these concepts).

The iAPX 432 system is an object-oriented, capability-based
. architecture that supports software-transparent multiproces-
sing and adaptive wvirtual memory. By including operating-
system and high-level language functions in hardware, it
provides mainframe functionality and performance in a VLSI
microcomputer form factor. I/0 processing is fully indepen-
dent and decentralized, allowing other iAPX processors
(e.g., 86, 188) to perform I/0 as attached processors. The

IEEE floating point standard is fully supported in hardware.

The iAPX 432 combines VLSI technology with an architectural

and software design methodology to produce a new computer
architecture that will significantly reduce the cost of
large-scale software systems and enhance their reliability

and security.

Several key concepts are fundamental to an understanding of

the iAPX 432 architecture. They are:

Objects -- data structures having known types that can be
either system- or user-defined; moreover, objects are
acted upon by a restricted set of operations, which can
be individual machine instructions, software package,
or hidden hardware functions. 1In the 432, objects are
represented by segments, subsets of segments called
refinements, or arbitrarily complex networks of

segments and/or refinements.

Access descriptors —-- sometimes called "object references"
or "capabilities," these are how objects refer to one
another. Each object confers upon its holder access to
an object, along with certain rights associated with

the object, for instance, read/write or send/receive.

Segments -- segments form the basis for the physical
representation of objects. Each segment igs a contigu-
ous block (that is, no gaps) of address space, up to

64K (65,536) bytes long. Each segment has a hardware-

recognized base type, which must be either data segment

Oor access segment.

Data Segments -- data segments have no inherent structure,
but are hardware-recognized. They are variously used
to hold instructions and scalar data items, but not

object references.

Access Segments -—- each access segment 1is a hardware-
recognized array of object references, protected by the
hardware to ensure that inadvertent or malicious
alteration of access rights or addressing information

does not occur.

System Management Objects ——in addition to a base type (data
segment or access segment), each segment is assigned a
system type so that objects can be built to represent
proccessors, processes, and storage resources. The
hardware-recognized typing of these objects, together
with a restricted set of operations defined on each
type, facilitates efficient system management as
processor management, process management, and storage

management.

Program Environment Objects -- by building "packages" or
modules of arbitrarily complex objects, a protected

Y

program environment is established wherein access to

L LollTw

10

instructions, scalar data items, and objects can not
only be controlled, but also hidden. Programming
abstractions such as "subroutine activation records”
and "static access environment" are realized in the

hardware as contexts and domains, respectively.

User—defined Objects —-— also called "extended-type" objects,
these are objects whose structure and behavior are
defined by the user. This extends the concept of
hardware typing to include arbitrary objects (and
networks of objects) that can only be acted on by a
restricted set of operations, which may also be defined

by the user.

Type Management Objects —-— in order to manage the arbitrary
user-defined types, the objects that are instances of
those types, and the operations that act upon them, the
432 architecture provides a hardware-recognized type
definition object that can be selectively made avail-
able to other users, even though its inner workings are

hidden from them.
Object Locking =—-- objects can be locked by either hardware
or software to ensure object integrity in a multiple

processor environment.

OBJECTS

11

Cperations Defined on Data Types

The concept of an object grows out of the natural concept of
different data types having different operations that act
upon them. Schematically, we depict the sitqation as shown

in Figure 2.1.

FPigure 2-1. Operations Defined on a Data Type

Operations Defined on CHARACTER and INTEGER types

Data types such as CHARACTER and INTEGER are familiar
examples of data types. The data items ‘A" and 65 are
instances of these respective types, which are conceptually
different, even though they have the same internal represen-
tation, assuming “A” 1is represented in ASCII and 65 1is

represented as a pure binary number in a byte.

These data types may have different operations defined on

them by:A

e} Machine instructions (such as an editing instruction

for characters, or an arithmetic instruction for

integers) .,

12

OPERATION 1| ‘ >

- . e — . . N_""'*‘] ’
’ DATA' .
O_PFF_{ATION 2; - TYPE |

OPERATION 3 ' >

FIGURE =1 OPEB_ATIONS DEFINED ON ADATATYPE,

A1

‘o) Hidden hardware functions (such as a table loock-up for
a character, or forming the 2°s complement of an

integer),

o Software-implemented functions (such as character

substring functions, or exponentiation of integers).

Schematically, we can depict this situation as shown in

Figure 2-2.

Figure 2-2. Some Operations Defined on CHARACTER and

INTEGER Types.

Characters and integers are not objects, but looking at them
this way may help to understand the rationale of objects.
Before CHARACTER and INTEGER data types were developed, they
existed as abstractions. Programmers coding in octal or
binary coded the chartacter “A” the same as if they were
coding the integer 65, and the discipline of choosing the
appropriate operations (instructions or subroutines) for the

data types they had in mind were left to them.

Programming languages and their translators (assemblers,

compilers, and interpreters) introduced formalisms of

13

EDIT

TABLE LOOK-UP;

SUBSTRING FUNCTION;

ADD —

FORM 2'S COMPLEMENT!

EXPONENTIATION:

ko) '__2.
~

/(INST)|
'(HARD)'

(SOFT)!

(INST),

(SOFT),

(HARD):

CHARACTER
DATA
~ TYPE

INTEGER
DATA

TYPE

FIGURE 12y SOME OPERATIONS DEFINED ON CHARACTER AND INTEGER TYPES

subroutines, functions, and procedures into the "art" of
programming code: by enforcing declarations of these
formerly abstract concepts in programs, language translators
could at least ensure that, for instance, a function call
was being used as a function call. (An interesting counter-
example of this occurred in FORTRAN, in which the statement:

A = F(X)
could be the assignment to A of either:

the value of the function F evaluated using X as an argu-

ment, or -

the Xth element of the array F (depending on the declaration

of F).
Software Data Types and Associated Operations

As code abstractions (procedures, functions, and subrou-
tines) demonstrated their merit in enforcing discipline in
programming, data abstractions became realized as arrays,
vectors, records, and other formal structures. Each essen-
tially different kind of data structure was realized as a

data type, and sets of operations were introduced to act

14

languages, and the operations DETERMINANT and INVERT,
usually implemented in software, could be performed only on
a data structure of type MATRIX. 1If the type did not match

the operation, the program would not compile properly.

Compile-time checking ensured that execution time need not
be wasted on 1large programs that would not run properly
because a data type did not match the operation applied to

it.

Hardware-Recognized Data Structures and Associated Opera-

tions

The software concepts of typed data structures and the
operations that can be applied to them are realized in the
machine architecture of the iAPX 432. In doing so, the 432
raises the 1level of the instruction interface from the
traditional data computational types of bytes, double bytes,

words, etc., to objects.

Just as languages defined operations on primitive data
types, the architecture of the 432 (and any language capable
of embracing this architecture) defines operations on
objects, which are instances of typed data structures. Thus,
a machine instruction on the 432 typically specifies as its

operands objects that represent:

15

e} Processors in a multiprocessor environment

o Processes (tasks) in a concurrent environment
o Dispatching ports that bind processes to processors
o) Interprocess messages sent from one process to

another, and synchronized using communication ports

o} Domains (also called type managers) as the static

access environments of programs

fe) Contexts (subprograms)

And many more. These objects are all system objects; they
are instances of system types, that is, types built into the

system.

Objects as high level, strongly typed operands

Intuitively, a system object is a high level operand that
raises the level of the instruction interface. "High-level™”
in this sense means that the operand, rather than simply
being a byte or word of data, is an organized data structure
in memory that is recognized by the hardware as being an
instance of a type that can be manipulated only by a select

class of operations.

16

Traditional computer systems implement the abstractions of
access environment control, task management, process status,
interprocess communication, etc. using a 'combination of
software structures defined by operating systems, utilities,

and compilers, and associated supervisor calls.

The 432 implements these concepts as machine-inherent data
structures referenced by instructions as strongly typed

operands that are validity-checked at run time:
o Each has a type (base and system), and

o Each can be used as an operand only as intended, i.e.,
only with a well defined subset of the operator

(instruction) set.

Many 432 system objects are highly organized "control
blocks" reminiscent of operating task control, message
queueing, fault handling, and other mechanisms. These
"control block"™ system object operands do not in and of
themselves enforce operating system policy, but rather
provide the basic mechanisms from which virtually any
operating system can be designed and built. These mechanisms
provide functionality needed to design and build clean, fast
running software. Indeed, for 1large, high availability

systems, the software development cycle can be shortened

17

using the 432,

Extended types

The 432 architecture allows users to define arbitrary data
structures as objeéts, and to define the restricted set of
operations that are allowed to act on these objects. These
user-defined object types are called extended types, since
they extend the set of recognized object types and the

operations allowed by each type.

Example of a 432 object and its associated operations

The processor object represents a unit of processing power
in the system and as such is an abstraction of the physical
processing unit, reflecting its various states (running,
queued, assigned, etc.). Processor objects in a given system
are in one-to-one correspondence with physical processors in

that system.

A processor object thus provides a means of assigning the
processor it represents to a particular process set (work
stream), and also provides a means of communicating with

{sending messages to) a processor.

Operations

18

Figure 2-3 indicates a processor object and the operations

that act apon it.

Figure 2-3 Operations defined on a procesor object.

Access descriptors-- "handles™ for objects

When several users require access to the same object, at

least two problems can arise:

o] Need-to-Know Rights. In a multi-user environment, not
all users need to have the same rights to an object;
for instance, one user may require only "read" rights
to sensitive data, whereas another may require both
"read" and "write" rights to that data structure
(object) ; a mechanism 1s needed whereby different
rights can be conferred on different instances of
procedures. The solution to this problem is discussed

below.

o Exclusive Access. In a multiprocessor environment,
one user of a data structure (object) may require
exclusive access to that object for a particular
operation, to ensure that no other processor alters

the object while the operation proceeds. The solution

19

'SENDTO PROCESSOR , (INSTR)| >

'BROADCAST TO PROCESSORS| (INSTR)! ~
READ PROCESSOR STATUS ' (INSTR)| >
QUALIFY PROCESS| —(HARD) - : = PROSESSOR
SUSPEND PROCESSOR| ~— (HARD) - -
~ START PROCESSOR: ———(HARD)! -
? = . P i S - ; e ‘
CREATE PROCESSOR OBJECT| (SOFT). -

LEGEND: INSTR OPERATION IS AMACHINE INSTRUCTION (OPERATOR)

HARD = OPERATION IS PERFORMED BY HARDWARE AS A RESULT OF i
CONDITIONS DETECTED BY THE PROCESSOR :

OPERATION IS IMPLEMENTED BY SOFTWARE (E.G. AN OPERATING,
SYSTEM)

FIGURE 2% OPERATIONS DEFINED ON APROCESSOR OBJECT |
| Prad s |

 SOFT

to this problem 1is described at the end of this

chapter under "Object Locking."

In the past, problems’ like the first have been solved by
introducing "privileged" and "user" instructions or modes of
operation, which have the disadvantage that each user is
either "universally privileged" or "universally restricted."
Systems that generalize this scheme to three or more
levels typically encounter similar problems in their blanket
or graduated privilege schemes. Such schemes characteris-
tically do not take individual procedure access reguirements

into account.

In the object-oriented, capability-based environment of the
432, several privilege and protection abstractions are
realized using access descriptors, which act as privilege
and protectioﬁ "handles" for system objects. The 432
approach is to grant a procedure read/write rights to
explicit objects on an individual, need-to-know basis. By
possessing an access descriptor to an object, a procedure is
conferred the read/write rights specified by that access
descriptor, and 1is thus capable of reading/writing the
object. An access descriptor is thus sometimes called a

capability.

A running procedure context cannot read from or write to an

object unless that procedure has an access descriptor for

20

that object. Moreover, the procedure cannot read to or
write from the object accessed by the access descriptor
unless that read or write privilege is expressly granted, as
indicated 1in the access descriptor. Furthermore, the
procedure cannot delete the access descriptor unless that
right is explicitly indicated within the access descriptor

itself.

Thus, access descriptors provide:

e} Controlled access to a particular object; if a request
to use an object matches the rights specified in the
access descriptor for that object, the access descrip-
tor maps a virtual address into a physical address,

permitting access.

o 'Read and/or write protection of the object by an
instance of a procedure, independent of other objects,

other procedures, and other instances of the same

procedure.
o Delete protection of the access descriptor itself.
o Other object-specific information, such as system

rights, an access descriptor wvalidity check, and an

indication of object storage allocation.

21

Since an object can be subsetted (using a refiner, as
described later in this chapter) to obtain a smaller object,
access descriptors provide a granularity of protection not

found in "privilege-~level" computer systems.
Access Paths

Many access descriptors can exist for the same object. Each
access descriptor belongs to some (but may be copied and/or
passed to another) procedure (context), and defines the

access rights of the procedure using it to access an object.

For instance, Figure 2-4 shows three different access
descriptors to the same object. Context A can read from
Object A, but cannot write into it; Context B can write into
Object A, but cannot read from it; and Context C can both

read from and write into Object A. ’

Figure 2-4. Different Access Paths and Rights to the Same

Object.

Segments —-- the Representations of Objects

At the machine level, objects are represented by segments. A

segment is characterized as being a contiguous block of

22

CONTEXTA S ACCESS DESCR!PTOR
~_TOOBJECTA I

© 3>

CONTEXT B’S ACCESS DESCRIPTOR!
_TOOBJECTA | S
Y ___» |VIRTUAL-TO-PHYSICAL

ADDRESS MAPPING _

CONTEXT C’S ACCESS DESCRIPTOR]
o TO OBJECTA]

& . -

OBJECT A

FIGUREE DiFFERENT ACCESS PATHS AND RKGHTS 70 THE SAME OBJECT
2-4

AN
~J
?]‘ -

memory and having:

o A base address.
o A length, which can be up to 65536 bytes.
o} A base type and a system type, both of which depend on

the intended use of the segment as an object.

Relationship Between System Objects and Segments

Every segment is an object, but the converse does not hold.

Every object is either:

o] A segment, or
lo) A subset of a segment (called a refinement), or
o} A collection of segments and/or refinements.

Both segments and system objects have these characteristics:

o] Each has a base address. If an object is a single
segment, the base address is that of the segment. If
an object is a group of segments, the base address is
that of the "root" segment, i.e. the first in the

access path.

23

-

o) Each has a base type, which must be either of type data

segment or type access segment.

o Each has a system type, which can be generic (data
segment or access list), or can be specialized as a
transformer, domain, dispatching port, context,

operand stack, storage resource, etc.

o Each is represented by, and accessed through, a segment
descriptor in a segment table residing in memory. A
segment descriptor encodes a segment”s base address,
length, base type, system type, processor class, and

other information.

Object Networks. As an example of an object that is a
collection of segments, consider the access segment (Object
0) together with the objects Al, A2, and A3 referenced by
iﬁs access descriptors. This collection defines a multiseg-
ment object. Extending this concept, each of the objects Aj
(3 = 1, 2, 3) could itself be an access list referencinc
objects Bjk (k =1, 2, 3). The resulting network of object:
B11l, B12, ..., B32, B33, could then be considered an object

Figure 2-5 depicts such an object.

Figure 2-5. A Network of Objects as an Object.

24

“ROOT” SEGMENT (ACCESS LIST);

MORE ACCESS LISTS:| A1 A2

W

DATASEGMENTS: . B11! - ©B12| iB13/ . B2t iB22: 1B23 | B31 | B32. B33

'FIGURE =% A NETWORK OF OBJECTS AS AN OBJECT

<o

Two-Level Object Typing

Objects defined by the 432 architecture have two levels of

typing:

o A base type, which is either data segment or access
segment. Data segments cannot contain access descrip-

tors; access segments contain only access descriptors.

o A system type, of which there are several: processor,
process, domain, context, and dispatching port are but

a few system types.

Data Segments

Data segments can contain anything but access descriptors.
In fact, they can contain dummy copies of access descriptors
for purposes of inspection, but the dummy copies will not
"work™ as access descriptors; 1if so referenced, the 432

hardware will not permit the operation to take place.

Data segments are used to hold instructions {as objects of
system type instruction segment), scalar data types, and any
type of data structure except an access descriptor. In

order to access a data segment, a procedure must have an

25

access descriptor for the data segment.

Access Segments

An access segment (sometimes called an "access list") is a
hardware-recognized array of access descriptors. In order
to access an access segment, a procedure must have an access
descriptor for the access segment itself.

Symbology. In this manual, access segments are symbolized
as shown in Figure 2-6.

Figure 2-6. Access Segment Symbology.

OBJECT LOCKING/EXCLUSION

Object Locking

Either software or hardware can lock (obtain exclusive
access to) an object when required by a sequence of instruc-
tions or microinstructions. Object can be locked in three

ways:

o Long—-term software lock --— used when a software

operation requires that an object be locked for a

26

¥4 7

{C

NULL ACCESS DESCRIPTOR]

VALID ACCESS DESCRIPTOR (AD) €|
R (BREAKTO SHOW VARIABLE LENGTH), &
F-~--—”--I-----‘-----—----—--I-l

VALID ACCESS pES'CﬁTP”Tb R (AD) 0-

ol 1al BN N TR RS AR R YHE VO N NN GRS DU VR Dunl MER DN Back B G WS WS RSN RN W BON MR a

'ADTO OBJECT DISCUSSED. ®-

OBJECT |
UNDER |
| DISCUSSION|

FIGURE T8 ACCESS SEGMENT SYMBOLOGY!

-6

period of time 1longer than the duration of one
instruction. Accomplished using the Lock Object/Un-

lock Object instructions.

Short-term software lock -- used by a processor when
executing an instruction that requires object locking
for a period of time less than the duration of an

instruction.

Short-term hardware lock -—- used by a processor when

performing an operation on its own behalf that

requires an object to be locked.

27

CHAPTER 3
INTRODUCTION TO 43203 INTERFACE PROCESSOR

This introduction to the architecture of the Intel 43203
Interface Processor (IP) includes four topics. The first
introduces a basic I/0O model. The second provides a brief
discussion of the 43201 and 43202 General Data Processor
(GDP) interface. (Refer to section 2 for a more detailed
discussion). The peripheral subsystem/IP interface 1is the
third topic, which provides information concerning the
software interface as well as the hardware interface. The
final topic introduces the supplementary IP facilities,
including the physical reference mode and the interconnect

access mode.

For a more detailed presentaion of the following concepts,
refer to the iAPX Interface Processor Architecture Reference
Manual, Order no. TBS)

A BASIC I/0 MODEL

A typical application based on the iAPX 432 microprocessor

family consists of a main system and one or more peripheral

subsystems. Figure 3-1 illustrates a hypothetical configur-

28

(-

Generol
o
ProcessoL

—an -f‘-h(.. ol i
1fo Iniufowc § vowso My
Sul;:(r,l(:f-" | §renon I

C',I?r\h(\.

) N Dolo.- ',./
.~ - Prow sL— .~
Uy

:l:';‘ Main sq'_,kr.\/pu."ﬂu}mp subsysiem hﬁ)\-ﬂ(\bﬂ

Fie) Foi - Neun Syzaem And %";i Vor ol o s

Fie. 3-1 MAIN SYSTEM AND PERIPIRRAL SOB3YSTEM

ation that employs two peripheral subsystems. The main
system hardware is composed of one or more iAPx’432 general
data processors (GDPs) and a common memory that is shared by
these processors. The main system software is a collection

of one or more processes that execute on the GDP(s).

A fundamental principle of the iAPX 432 architecture is that
the main system environment is self-contained; neither
processors nor processes have any direct contact with the
"outside world." Conceptually, the main system is enclosed
by a wall that protects objects in memory from possible

damage by uncontrolled I/O operations.

Figure 3-1 Main System and Peripheral Subsystems

In an iAPX 432-based system, the bulk of processing required
to support input/output operations is delegated to peripher-
al subsystems; this includes device <control, timing,
interrupt handling and buffering. A peripheral subsystem is
an autonomous computer system with its own local memory, I/O
devices and controllers, at least one processor, and
software. The number of peripheral subsystems employed in
any given application depends on the I/O-intensiveness of
the application, and may be varied with changing needs,

independent of the number of GDPs in the system.

29

A peripheral subsystem resembles a mainframe channel in that
it assumes responsibility for low-level I/O device support,
executing in parallel with main system processor(s). Unlike
a simple channel, however, each peripheral subsystem can be
configured with a complement of hardware and software
resources that precisely fits application cost and perform-
ance requirements. In general, any system that can communi-
cate over a standard 8- or 1l6-bit microcomputer bus such as
Intel”s Multibus design'may serve as an iAPX 432 peripher-

al subsystem.

A peripheral subsystem is attached to the main system by
means of an IP. At the hardware level, the IP presents two
separate bus interfaces. One of these is the standard iAPX
432 Packetbus and the other is a very general interface
that can be adapted to most traditional 8-and 16-bit

microcomputer buses.

To support the transfer of data through the wall that
separates a peripheral subsystem from the main system, the
IP provides a set of software-controlled windows. A window
is used to expose a single object in main system memory so
that its contents may be transferred to or from the periph-

eral subsystem.

The IP also provides a set of functions that are invoked by

30

software. While the operation of these functions varies
considerably, they generally permit objects in main system
memory to be manipulated aé entities, and enable communica-
tion between main system processes and software executing in
a peripheral subsystem.

It is important to note that both the window and function
facilities utilize and strictly enforce the standard iAPX
432 addressing and protection systems. Thus, a window
provides protected access to an object, and a function
provides a protected way to operate in the main system. The
IP permits data to flow across the peripheral subsystem

boundary while preserving the integrity of the main system.

As figure 3-2 illustrates, input/output operations in an
iAPX 432 system are based on the notion of passing messages
between main system processes and device interfaces located
in a peripheral subsystem. A device interface is considered
to be the hardware and software in the peripheral subsystem
that is responsible for managing an I/O device. An I/0
device is considered to be a "data repository," which may be
a real device (e.g., a terminal), a file, or a pseudo-device

(e.g., a spooler).

A message sent from a process that needs an I/O service
contains information that describes the requested operation

{e.g., "read file XYZ%®). The device interface interprets

31

Mein 5L1 e | . Tedipharal Systenv

D o @
I Sevuite
O din—~
/LMJS 5%

)

\ / N

‘ e uiCe- _
T ocess lv\,w_(ac;»/

F‘,G&)R&) v....;)\ %(\ AL VO Sevdi(e ("ltctc_/ ‘

pa> §

the message and carries out the operation. If an operation
requests’ input data, the device interface returns the data
as a message to the originating process. The device
interface may also return a message to positively acknow-

ledge completion of a request.

A very general and very powerful mechanism for passing
messages between processes is inherent in the iAPX 432
architecture. A given peripheral subsystem may, or may not,
have its own message facility, but in any case, such a
facility will not be directly compatible with the iAPX
432°s. By interposing a peripheral subsystem interface at
the subsystem boundary, the standard IP communication system
can be made compatible with any device interface (see figure

3-2).

Figure 3-2 Basic I/0 Service Cycle

Figure 3-3 Peripheral Subsystem Interface

iAPX 432 INTERFACE

The IP exists in both the protected environment of the iAPX

432, and the conventional environment of the external

32

Mon Dxsliec | . I
| '_Pu..'."‘bl woal St "_.-;tj[.mx.-

' 5’\ (e
"k’_c.r&u_, <}

! -
i : Q".’).{‘r}w"

Piocess | Ruinlaal

) e it
I Sub_qsttm =y .
o | lvdu(aoz/ Inticvi or

qe

fle, a-3 Puphud Gl irmfece

subsystem. Because cof this, an IP is able to provide a
pathway over which data may flow between the iAPX 432 system
and the external subsystem. The IP operates at the boﬁndary
between the systems, providing compatibility and p;otection.
In this position, the Interface Processor presents two
different views of itself, one to software and processors in
the iAPX 432 environment and another to its external

processor.

From the iAPX 432 side, an IP looks and behaves very much
like any other processor. It attaches to the processor
packetbus in the same way as a GDP. Within the iAPX 432
memory, the IP supports an execution environment that is
compatible with, and largely identical to, the GDP. Thus,
the IP recognizes and manipulates system objects represent-
ing processors, processes, ports, etc. It supports and
enforces the 1iAPX 432°s access control mechanisms, and
provides full interprocess and interprocessor communication

facilities.

The principle difference between the two processors is that
the GDP manipulates its environment in response to the
instruction it fetches, while the IP operates under the
direction of its external processor. Indeed, the IP may be
said to extend the instruction set of the attached processor
(AP) so that it may function in the environment of the iAPX

432 system

33

PERIPHERAL SUBSYSTEM INTERFACE

A peripheral subsystem interface (PSI) is a collection of
hardware and software that acts as an adapter that enables
message-based communication between a process in the main
system and a device interface in a peripheral subsystem (see
figure 3-3). Viewed from the iAPX 432 side, the peripheral
subsystem interface appears to be a process. The peripheral
subsystem interface may be designed to present any desired
appearance to a device interface. For example, it may look
like a collection of tasks, or like a collection of subrou-

tines.

Hardware

The PSI hardware'consists of an IP, an AP, and local memory
(see figure 3-4). To improve performance, these may be
augmented by a DMA controller. The AP and the IP work
together as a team, each providing complementary facilities.
Considered as a whole, the AP/IP pair may be thought of as a
logical I/O processor that supports software operations in

both the main system and the peripheral subsystem.
Attahed Processor -- Almost any general-purpose CPU, such as

an 8085, an iAPX 86 or an iAPX 88 can be used as an AP. The

AP need not be dedicated exclusively to working with the IP.

34

MAIN PERIPHERA~
SYSTEA SUESYSTER

CPTICAA L
DA
T T
Cenhiotler
- -
i
s
3
z
il
e 4
| 4]
| 8
[+
Mean | Intehace | A g Cn] MoFiu
Ctp 4 e .
} Do ool
/"Zl””t‘}/ <11E%> Procossof \’—L/g <r—*‘x/
~5
I .
| ’ reriupt
!
' L0GIC ifo PROCESSOR
f— | P2 Ey TP
/‘—_\ Local
\J"""V N.’rn'a:/

. . o | ,
?U‘ STTANY S Tl pdelace ”f‘\!"*ﬁ't’

TieoRe 3~4 PeripueRAL SORssTeM INTERFACE

Zei &

It may, for example, also execute device interface soft-
ware. Thus, the AP may be the only CPU in the peripheral

subsystem, or it may be one of several.

As figure 3-4 shows, the AP is "attached" to the interface
processor in a logical sense only. The physical connections
are standard bus signals and one interrupt line (which would

typically be routed to the AP via an interrupt controller).

Continuing the notion of the logical I/O processor, the AP
fetches instructions, and provides the instructions needed
to alter the flow of execution, and to perform arithmetic,
logic and data transfer operations within the peripheral

subsystem.

Figure 3-4 Peripheral Subsystem Interface Hardware

Interface Processor -- The IP completes the logical I/O
processor by providing data paths between the peripheral
subsystem and the main system, and by providing functions
that effectively extend the AP”s instruction set so that
software running on the logical I/O processor can operate in
the main system. Since these facilities are software-

controlled, they are discussed in the next section.

35

As figure 3-4 shows, the IP presents both a peripheral
subsystem bus interface and a standard iAPX 432 Packetbus
interface. By bridging the two buses, the IP provides the
hardware 1link that permits data to flow under software
control between the main system and the peripheral subsys-

tem.

The IP connects to the main system in exactly the same way
as a GDP. Thus, in addition to being able to access main
memory, the IP supports other 1iAPX 432 hardware-based
facilities, including processor communication, the alarm

signal and functional redundancy checking.

On the I/O subsystem side, the IP provides a very general
bus interface that can be adapted to any standard 8- or 16—
bit microprocessor bus, including Intel”s Multibus archi-
tecture, as well as the component buses of the MCS-85 and
iAPX 86 families. The IP is connected to the peripheral
subsystem bus as if it were a memory component; it occupies
a block of memory addresses up to 64K bytes long. Like a
memory, the IP behaves passively within the peripheral
subsystem (except as noted below). It is driven by periph-
eral subsystem memory references that £fall within its

address range,

While the IP generally responds like a memory component, it

also provides an interrupt regquest signal. The interface

36

processor uses this line to notify its AP that an event has

occurred which requires its attention.

To summarize, the AP and the IP interact with each other by
means of address references generated by the AP and inter-
rupt requests generated by the IP. Since the IP responds to
memory references, other active peripheral subsystem agents
(bus masters), such as DMA controllers, may obtain access to

main system memory via the IP.

Software

IP Controller -- The peripheral subsystem interface is
managed by software, referred to as the IP controller. The
IP controller executes on the AP and uses the facilities
provided by the AP and the IP to control the flow of data

between the main system and the peripheral subsystem.

While there are no actual constraints on the structure of
the IP controller, organizing it as a collection of tasks
running under the control of a multitasking operating system
(such as RMX-80 or iRMX-86) can simplify software develop-
ment and modification. This type of organization supports
asynchronous message-based communication within the 1IP
controller, similar to the iAPX 432”s intrinsic interpro-
cessor communication facility. Extending this approach to

the device interface as well results in a consistent,

37

system-wide communication model. However, communication

device interfaces, is completely application-defined. It
may also be implemented via synchronous procedure calls,

with "messages™ being passed in the form of parameters.

However it is structured, the IP controller interacts with
the main system through facilities provided by the interface
processor. There are three of these facilities: execution

environments, windows, and functions.

Execution Environments -- The IP provides an environment
within the main system that supports the operation of the IP
controller in that system. This environment is embodied in
a set of system objects that are used and manipulated by the
IP. At any given time, the IP controller ié represented in
main memory by a process object and a context object. Like
a GDP, the IP itself is represented by a processor object.
Representing the IP and its controlling software like this
creates an execution environment that is analogous to the
environment of a process running on a GDP. This environment
provides a standard framework for addressing, protection and

communication within the main system.
Like a GDP, an IP actually supports multiple process

environments. The IP controller selects the environment in

which a function is to be executed. This permits, for

38

example, the establishment of separate environments corres-
ponding to individual device interface tasks in the periph-
eral subsystem. If an error occurs while the IP controller
is executing a functicn on behalf of one device interface,
that error 1is confined to the associated process, and
processes associated with other device interfaces are not

affected.

Windows -- Every transfer of data between the main system
and a peripheral subsystem is performed with the aid of an
IP window. A window defines a correspondence, or mapping,
between a subrange of peripheral subsystem memory addresses
(within the range of addresses occupied by the IP) and an
object in main system memory (see figure 3-5). When an agent
in the peripheral subsystem (e.g., the IP controller) reads
a local windowed address, it obtains data from the assoc-
.iated object; writing into a windowed address transfers data
from the peripheral subsystem to the windowed object. The
action of the IP, in mapping the peripheral subsystem
address to the main system object, is transparent to the
agent making the reference; as far as it is concerned, it is

simply reading or writing local memory.

Figure 3-5 Interface Processor Window

39

Tieopf 3-5 LNTERFACE Paocsansr WIiNDOW

~ <t
Trarmie L sudSIEn, — e (7RI SYETEm
MErmoR; SPACE ek G Specis

N

Lo niimerf
HEOLESDES

N e =T /77777

19 Wmdny Mot Hubat s

nddreses ondo an ebice?
PNt oy vl

(O-" ekl plsgstent
Indeafec
Proae,on
fid greecs l
Subvor"qb | OL;? Jf
: | —
indow) O A
I%MOH{ ' > / ‘/./ Ny 1y
ALV H

~

Trours 1P MIDOW ~ fetzallice DY nee .
RN,

Since a window is referenced like local memory, any individ-
ual transfer may be between an object and local memory, an
object and a processor register, or an object and an I/O
device. The latter may be appealing from the standpoint of
"efficiency," but it should be considered with caution.
Using a window to directly "connect™ an I/0 device and an
object in main memory has the undesirable effect of propo-
gating the real-time constraints imposed by the device
beyond the subsystem boundary into the main system. It may
seriously complicate error recovery as well. Finally, since
there is a finite number of windows, most applications will
need to manage them as scarce resources that will not always
be instantly available. This means that at least some I/O
device transfers will have to be buffered in local memory
until a window becomes available. It may be simplest to
buffer all I/O0 device transfers and use the windows to

transfer data between local memory and main system memory.

There are four IP windows that may be mapped onto four
different objects. The IP controller may alter the windows
during execution to map different subranges and objects.
References to windowed subranges may be interleaved and may
be driven by different processors in the peripheral subsys-
tem. For example, the AP and a DMA controller may be
driving transfers concurrently, subject to the same bus
arbitration constraints that would apply if they were

accessing local memory.

49

Punctions —— A fifth window provides the IP contro
access to the IP’s function facility. By writing operands
and an opcode into predefined locations in this window’s
subrange, the IP controller requests the IP to execute a
function on its behalf. This procedure is very similar to
writing commands and data to a memory-mapped peripheral
controller (e.g., a floppy disk controller). Upon comple-
tion of the function, the IP provides status information
that the IP controller can read through the window. The IP
can perform transfer requests through the other four windows

while it is executing a function.

Erp L) B U § 4

IR

The IP”s function set permits the IP controller to:

o alter windows;

o exchange messages with GDP processes via the standard

IP communication facility;

o manipulate objects.

These functions may be viewed as instruction set extensions
to the AP, which permit the IP controller to operate in the
main system. The combination of the IP”s function set and
windows, the AP”s instruction set, and possibly additional

facilities provided by a peripheral subsystem operating

41

system, permits the construction of powerful IP controllers
that can relieve the main system of much I/O-related
processing. At the same time, by utilizing only a subset of
the available IP functions, relatively simple IP controllers
can also be built (in cases where this approach is more

appropriate).
SUPPLEMENTARY INTERFACE PROCESSOR FACILITIES

The preceding sections describe the IP as it is used most of
the time. The IP provides two additional capabilities that
are typically used less frequently, and only in exceptional
circumstances. These are physical reference mode and

interconnect access.
Physical Reference Mode

The IP normally operates in logical reference mode; this
mode is characterized by its object-oriented addressing and
protection system. There are times when logical referencing
is impossible because the objects used by the hardware to
perform logical-to-physical address development are absent
(or, less likely, are damaged). 1In these situations the IP

can be used in physical reference mode.

In physical reference mode, the IP provides a reduced set of

functions. Its windows operate as in logical reference

42

mode, except that they are mapped onto memory segments
(rather than objects) that are specified directly with 24-
bit addresses. 1In this respect, physical reference mode is

similar to traditional computer addressing techniques.

Physical reference mode is most often employed during system
initialization to 1load binary images of objects from a
peripheral subsystem into main memory. Once the required
object images are available, processors can begin normal

logical reference mode operations.

Interconnect Access

In addition to memory, the iAPX 432 architecture defines a
second address space called the processor-memory intercon-
nect. One of the IP windows 1is software-switchable to
either space. In logical reference mode, the interconnect
space is addressed in the same object-oriented manner as the
memory space, with the IP automatically performing the
logical-to-physical address development. In physical
reference mode, the interconnect space 1is addressed as an
array of 16-bit registers, with a register selected by a 24-

bit physical address.

43

CHAPTER 4
iAPX 432 PROCESSOR ENVIRONMENT DEFINITION

This chapter describes the requirements placed on the
logical structure of the 1iAPX 432 hardware environment.
These requirements are concerned directly with the
constraints of local memory, the type of data transferred
(address, control, or data), and the structure of the data

types.

The first section presents the information structure for an
iAPX 432 system and includes a discussion of memory system
requirements, physical addressing, data formats, data
representation, and hardware error detection. The second
section presents the elements of the processor packet bus
and includes associated timing diagrams for Read, Write, and

Access cycles.
iAPX 432 INFORMATION STRUCTURE
The iAPX 432 system contains both read/write (RAM) and read-

only (ROM) memory. Any attached processor (8 bit or 16 bit)

in the system can access all the contents of physical

44

memory. This section describes how information is repre-

sented and accessed.
Memory

The 1APX 432 implements a two-level memory structure. The
software system exists in a segmented environment in which a
logical address specifies the location of a data item. The
processor automatically translates this logical address into
a physical address for accessing the wvalue in physical

memory.
Physical Addressing

Logical addresses are translated by— the processor into
physical adéres§ps. Physical addresses are transmitted to
mémory by a processor to select thé beginning byte of a
memory value to be referenced. A physical address is 24
binary bits in length. This results in a physical memory of

over 16.5 Megabytes.

Data Formats

When a processor executes the instructions of an operation
within a context, operands found in the segments of the

context may be manipulated. An individual operand may occupy

cne, two, four, eight, or ten bytes of memory (byvte, double

45

byte, word, double word, or extended word, respectively).
All operands are referenced by a logical address as
described above. The displacgment in such an address is the
displacement in bytes from the base address of the data
segment to the first byte of the operand. For operands
consisting of multiple bytes, the address locates\the low-

order byte while the higher-order bytes are found at the

next higher consecutive addresses.

Data Representation

An iAPX 432 convention has been adopted for representing
data structures stored in memory. The bits in a field are
numbered by increasing numeric significance, with the least-
significant bit shown on the right. Increasing byte address-
es are shown from right to left. Examples of the five basic
data lengths used in the iAPX 432 system are shown in figure

4-1.

Figure 4-1

Data Positioning

The data structures shown in figure 4-1 may be aligned on an
arbitrary byte boundary within a data segment. Note that

more efficient system operation may be obtained when multi-

byte data structures are aligned on double-byte boundaries

BYTE.

DOUBLE BYTE|

'DOUBLE WORD)

'EXTENDED WORD)

'‘ADDRESS

Figere -]

IBIT]

RARIC (AfX B DATA LEBNGTHS

17'“
BIT}
tADDRESSI
15 1 87
IBIT
'ADDRESS
I N+1.
31 1 2423 | 1615 187
IBIT ’
|{ADDRESS
 N+3 IN+2. IN+1
163! i56 31 12423 11645 1 87
‘B_r.r,'———% | S - =
|ADDRESS 7 / "
IN+7 | IN+3 ' IN+2, IN+1.
A7 14039 | 32]31' 124231 | 1615 87
7 I N+5 | | N+4 ! IN+3' = N+2! [N+1

(if the memory system 1is organized in units of double

bytes).
Requirements of an iAPX 432 Memory System

The multiprocessor architecture of the iAPX 432 places
certain requirements on the operation of the memory system
to ensure the integrity of data items that can potentially
be accessed simultaneously. Indivisible read-modify-write
(RMW) operationé to both double-byte and word operands in
memory are necessary for manipulating system objects. When
an RMW-read is processed for.a location in memory, any other
RMW-reads from that location must be held off by the memory
system until an RMW-write to that location is received (or
until an RMW timeout occurs). Note that while the memory
system is writing the RMW-write, any other types of reads
and writes are allowed. Also, for ordinary reads and writes
of double-byte or longer operands, the memory system must
ensure the entire operand has been either read or written
before beginning to process another access to the same
location; e.g., if two simultaneous writes to the same
location occurs, the set of locations used to store the
operand could contain some interleaved combination of the

two written values.

iAPX 432 Hardware Error Detection

47

iAPX 432 processors include a facility to support - the
hardware detection of functional errors. At INIT/ time each
iAPX 432 processor 1is configured to operate as either a
master or checker processor. A master operates in the
normal manner. A checker piaces all output pins that are
being checked into a high-impedance state. Thus a master
and checker processor may be parallel-connected such that
the checker is able to compare a master”s output pin values
to those compﬁtaﬂ in the checker. Any comparison error
causes the checker to assert HERR/, FATAL/, and go idle. No
further activity will occur at the disagreeing master-

checker processor.

Figure 4-2 Hardware Error Detection

PACKET BUS DEFINITION

This section describes and defines the significance of the
19 signal lines that make up the processor packet bus, and
the general scheme by which timing relationships on these
lines are derived. Although this section defines all legal
bus activities, the processors do not necessarily perform
all allowed activities.

The packet bus consists of 3 control lines:

o Packet bus Request (PRQ),

48

MASTER

OUTPUT }——eo—>

| o |CHECKED
> INPUTS | OUTPUTS [<— .
FATAL
HERR

‘CHECKER

FleoRe <~ HARDWARE ERROR DRTECTINY

754

o Enable Buffer OQutputs (BOUT).

e} Interconnect Status (ICS),

This bus also includes sixteen 3-state Address-Control-Data
lines (ACDl5 through ACDO). PRQ has two functions whose use
depends upon the application, i.e., PRQ either indicates the
first cycle of a transaction on the processor component bus
or the cancellation of a transaction initiated in the
previous cycle. Of the three control lines, BOUT has the
simplest function, serving as a direction control for
buffers in large systems requiring more electrical drive
than the processor components can provide. The ICS signal
has significance pertaining to one of three different
system conditions and depends on the state of the processor
component bus transaction. The processor interprets the ICS

input as an indication of one of the following:

o Whether or not an interprocess communication (IPC) is
waiting,
o Whether or not the slave requires more time to service

the processors request,

o] Whether or not a bus ERROR has occurred.

49

The Address/Control/Data lines emit output specification

information to indicate the type of cycle being initiated,

e.qg. .
S5+ 7

tiecn.

addresses, data to be written, or control informa-

They also receive data returned to the processor

during reads. Details of the ACD 1line operation and the

associated control lines are summarized below.

ACD15 - ACDO (Address/Control/Data) -- During the first

cycle (Tl or Tvo (See Figure 4-3) of a processor
component bus transaction (indicated by the rising
edge of PRQ), the high-order 8 ACD bits (ACDl5...ACDS8)
specify the type of the <current transaction.
In this £first cycle, the low-order ACD bits
(*CD7...ACDO) contain the least significant eight bits
of the 24 bit physical address.
.

During the subsequent cycle (T2), the remainder of the
address is present on the ACD pins (aligned such that

the most significant byte of the address is on ACD1S5S

ACDO) . If PRQ is asserted during T2, the access is

cancelled and the ACD line is not defined.

During the third cycle (T3 or Tw) of a processor
packet bus transaction the processor presents a high
impedance to the ACD lines for read transactions and

Tw or T3 asserts write data for write transactions.

50

'%COS"TME DiAGRAM FoR PROCESSOR PrckeT U,
y |

Feors 4~2

Ti Tl

INITIAL STATE

Ti

T1
T2

T3

Tv

Tvo

Tw

Processor Pocket Bus State Diagram

T2

NEXT STATE

Tl
Ti

T2

T3
Tw
T1
Ti

T3
Tw
Tv

Tvo
Ti
T1
T2
T2
Tw
T3

Tvo
T3 Ty

Tw

1

TRIGGER

Bus cycle desired
No bus cycle desired

Unconditional

ICS high

ICS Tow

Cancelled, Access Pending
Cancelled, No Acccess Pending

Additional transfer required

ICS Tow

A11 transfers completed if current cycle
Overlapped write °

If read or if write but no pending write
Current write with pending write

Current write with overlapped write

Overlapped write

ICS Low
ICS High

Figure &55%% - State Diagram for Processor Packet Bus

9~3

(b)

Once the bus has entered T3 or Tv, the sequence of
state transactions depends on the type of cycle
requested during the preceding Tl or Tvo. Accesses
ranging in length from 1 to 32 bytes may be requested
(see Table 4-1). If a transfer of more than one double
byte has been requested, it is necessary to enter T3
for every double-byte that is transferred. After any
transfer the processor may simply re-enter T3 or it
may enter Tw for any number of cycles (as dictated by
ICS) and the number of double bytes remaining to be

transferred.

After all data is transferred, the processor enteés
either Tv or Tvo. Tvo can be entered only when the
internal state of execution is such that the processor
is prepared to accomplish an immediate write transfer
(overlapped write). During Tvo, the ACD lines contain
address and specification information aligned in Ehe
same fashion as in TI. If the processor does not
require an overlapped write, the bus state moves to Tv
(the ACD lines will be floating). After Tv, a new
bus cycle can be started with Tl, or the processor may

enter the idle state(Ti).

ICS (Interconnect Status) -- ICS has three possible inter-

pretations depending on the state of the bus transac-

51

ACD ! ACD ACD ACD ACD ACD ACD ACD
15 | 14 13 12 11 10 9 8
Access . Op RMW Length Modifiers
0 - -0 - 0 - 000 - 1 Byte ACD 15 = 0:
Memory Read Nominal 001 - 2 Bytes 00-Inst Seg
! 010 - 4 Bytes Access
j 011 - 6 Bytes 01-Stack Seg
! 100 - 8 Bytes Access
1- 1 - 1- 101 - 10 Bytes 10-Context Ct1
Other Write RMW 110 - 16 Bytes* Seg Access
111 - 32 Bytes* 11-Other
ACD 15 = 1:
* Not implemented 00-Reserved
I 0l-Reserved
E 10-Reserved
! 11-Interconn
) Register
Table 5888 ACD Specification Encoding

41

TARLE 4~

tion (see ~$dgu5e——§esf? Notice that under most

conditions ICS has IPC significance for more than one
cycle. It is important to note that a valid low
during any cycle with IPC significance will signal the
processor that an IPC has been received. An iAPX 432
processor is required to record and service only one
IPC at a time. Logic in the interconnect system must
record and sequence multiple (possibly simultaneous)
IPC occurences to the processor. Thus the logic that
forms ICS must accomodate global and local IPC
rarrivals and requests for reconfiguration as individ-

ual events:

1. Assert IPC significance on ICS for the arrival
of an IPC.
2. When the iAPX 432 processor reads interconnect

address register 2, it will respond to one of
the status bits for the IPC signalled on ICS
in the following order:

Bit 2 (l=reconfigure, 0=Do not reconfigure)

Bit 1 (l=global IPC arrived, 0= No global IPC)

Bit 0 (l= Local IPC arrived, 0= No local IPC)

additional IPC information has arrived the
interconnect system logic must signal an
additional IPC indication to the iAPX 432

processor.

PRQ (Processor Packet Bus Request) -- PRQ is normally low
and can go high only during Tl, T2 and Tvo. High
levels during Tvo and Tl indicate the first cycle of

an access. A high level during T2 indicates that the

TABLE Q-
~current cycle is to be cancelled. See . Fd ;

BOUT (Enable Buffered Outputs) -- BOUT is provided to
control external buffers when they are gresent. Table
BOUT and the waveforms show its state under various
conditions. Note that high to low transitions of BOUT
will occur during T3 (when required) and low to high

’:’,,ﬂ' "™ ry
Gul g

ms {.
Ly
figure 4-3 State Diagram for Processor Packet Bus

Table 4-1 ACD Specification Encoding

Figure 4-4 Nominal Write Cycle Timing

53

LEVEL
. HIGH LOW STATE
IPC NONE WAITING Ti, T1, T2* See Note.
STRETCH DON'T STRETCH T3, Tw
ERR BUS ERROR NO ERROR Tv, Tvo

*Note: ICS has no significance in a cycle following a T2 where PRQ
is asserted (cancelled access) or in any cycle during which
HERR/ is asserted.

TABLE 4-) EZmEeEN - ICS Interpretation

State PRQ Condition
Ti 0 Always
T1 1 Initiate access
T2 0 Continue access
1 Cancel access
T3 0 Always
Tv 0 Always
Tvo 1 Initiate overlapped access

TABLE 4-3 BEErm—=@®5 - PRQ Interpretation

BOUT High Low
Write Always { Never
Read Ti, T1, T2 T3, Tv, Tw

TRDLE Q-4 828 80UT TNTERPRETATICY

7y
ol
>~

jAPX 432 SIGNALLING SCHEME

PROCESSOR SLAVE
Inputs {ACD: CLKA All: CLKB
Sampled | Others: CLKA
Outputs {AT1 (except BOUT): CLKA ACD: CLKB
Driven Others: CLKB
BOUT: CLKA

jAPX 432 Component Signalling Scheme

Figure 4-5 Stretched Write Cycle Timing
Figure 4-6 Minimum Write Cycle Timing

Figure 4-8 Minimum Read Timing/No External Buffers (BOUT not

used)
Figure 4-7 Minimum Read Cycle (Buffered System)

Figure 4-9 Minimum Faulted Access Cycle Timing (PRQ Cancel-

lation)

Processor Packet Bus Timing Relationships

All timing relationships on the processor packet bus are
derived from a simple scheme and related to Figure 4-3. Each
timing diagram shown in the following pages provides a
separate table illustrating the various system states during
the cycle. This approach to transfer timing was designed to
allow maximum time for the transfer to occur and yet

guarantee hold time.

Any agent connected to the processor packet bus is recogniz-
ed as either a processor or a slave. Examples of processors
are the GDP and the IP. A memory system provides an example

of a slave.

54

Vhe

Fleore 4-4 NominaL Weite Cxers TIMIAG

NOMINAL. WRITE CYCLLE J
[& CLKA CyCLES q
l TL Tl T2 T3 TV TEL T - T2

CLKA I

nop | — — ovefsrec Y ADDR >—<wmﬂé PATAY— e e e — — Apor /specz>—< ADOR. N —

/S A

/N . /N

o eC X \PC)(we Y sreerot X eem X e X we X aec X

BouT __/ ____._/

ACD15 ACD6 ACD? ACDO State
hi 2 hi 2 i
spec Lo-adr T1
Hi-adr , | __Mid-adr T2 -
Hidatal Lpdatal T3 *Undefined if
Hi 2 1 ni 2 Tv inale byt it
Hi 2 Hi 2 S . Single byte write
Spec Lo-adr T1
Hi-adr Mid-adr T2

(xo\\;’\ | |

ACD15 ACDS8 ACD?7

™V

TL

>_____._______

ACDO State
hi-2 hi 2 Ti
spec Lo-adr Tl :
Hi-adr Mid-adr T2 ‘
Hi-datal. Lo-datal Tw
Hi-data?2 Lo~-data?2 T3
ni-z ni-Z Tv
Hi-2 Hi-Z Ti
TX T T T2 ™ T3
GUKA
'J\) ACD — e —_-<AD()RI:PE¢>< APRDR XWRH'E D\MX WRITE DATA
To
15A / \
158 IPC) G X 1PC >/ steerch \ steEqed / StRETCH \< ERR X IPC
BoUT /

<STREACHED wWevé OYct E.°TIMING

N

MINIMUM wRITE cYeLE || .
BCLkA CYCLEs . L

™o T T2 | T3 " Tvo. “Tll,f{ Vg

LKA

ap — — — —aooeforee) { ADDR) (werre mriay (aoo/specy { aboR.) (weire A)

154 /N /N

158 we X P C)< 1PC >/51Ra1ul \< ERR_ X 1PC X szﬂ&fc/TX

("
DHovT /
ACD1S ACDB8 ACD7 ACDO) State
1=z iii-2 Tv (Preceded by read cycle)
Spec Lo-adr Tl
; Hi-adr Mid-adr T2
Hi-datal* Lo-datal : T3
' Spec Lo~-adr Tvo
- Hi-adr Mid-adr T2
lw;\ lHi-datal Lo-datal T3

* Undefined if single byte write

FLGORE 4-6 MININuM OWRiTe Cicre TIMING

L MINIMUM READ CYCLE (BUFFERED SYSTEN)
lr CLKA CYCLES

Vv T T W T3 TV T£.

CLKA

ACD —-——————</\DDL’/SP£C>—< ADDR >——————-——-——-——-——-—<M>DR

1SA /__\ | /———

‘/55 X pC ~x 1PC X 1RPC)\smeml / o\'euc+{\< ERR X IPC >(

\o

. ACD15 ACD8 ACD7 ACDO State

Hi-2 Lni-g g; (Preceded by a read) ﬁF. r{
) spec o-adrx
1 (.l)‘“'/3 Hipadr Mic%-adr T2 IGLRE 9- 7 INIMON R‘EH‘D
Hi-2 Hi-2 ' T
fil-datal® Lo-datal 3 - CycCLe CBOFFERED SWST?M)
Hi-2 Hi-2 Tv
Hi-2 111-2 Ti

* yndefined if single
byte read

CLKA

ACD

D)

L MINIMUM READ CYCLE J
K = CLKA CYCLES 1
T T T2 T3 Tv T

T

Y

2

Zx) D ‘
—— — = ADM/&P&L}—(ADDR >~ — READ fﬂ—@—— — —(ADDR/SJ%

/N

we X we 4)(we Y sreered X ERR 4>< we X pe X

ACD15 ACDB8 ACD7 ACDO

Hi-z 1=z
Spec Lo~Adr
Hi-Adr Mid-Adr
Mi-data¥ Lo~datal
“TL=% =7
Hi-2 Hi-2
5pec Lo-adr

/

NO EXTERNAL BUFFERS (BOUT NOT USED)

State

Tv
T1
T2
T3
Tv
Ti
T1

Ficors 9-8 M iniyom

(Preceded by a read): AD TIMING RE“D C\{CLS—

* Undefined 1f single

byte read

(ot BuFFeReb)

i KA

ACD

ISA

138

LN
R o

)]

Tx Ta T T T T3 Tv TZ

_— —<aoo&1/sﬂw XuND(F//VCD XADDB./SP&CX ADDR. Xwems mrA)— —— e ——— —

/ CAA)?‘,EL ' \ \

1PC X 1PC X I1PC NO SGMIIde PC >< SWLT/.I/X ERROR- X 1PC X,PC

1GaNotE
CompLEr el
ACD15 ACD8 ACD7 ACDO State Cic
VRE 4-9
Hi-2 Hi-2 T4 'F
Spec Lo-adr T1 ‘ O
Undeflned Undefined T2 Access Cancelled R LT%D
Spec Lo-adr T1
IHi-adr Mid-adr T2
li-data* Lo-data T3
Hi-Z Hi-Z Tv
Hi-2 Hi-2 Ti
U/L)'D * Undefined if single

- byte write
§

MiniMom
fCEsS CHCLE

In all tranfers between a processor and a slave, the data to
be driven are clocked three-quarters of a cycle before they
are to be sampled. The BOUT timing is unique because BOUT

is intended as a direction control for external buffers.
Detailed set-up and hold times depend on the processor
implementation and can be found in the A.C. characteristics
section.

Note that in all transfers between a processor and a slave,
data is clocked three quarters of a cycle before it is to be
sampled. This allows adequate time for the transfer and
ensures sufficient hold time after sampling.

Table 4-2 ICS Interpretation

Table 4-3 PRQ Interpretation

Table 4-5 iAPX 432 Component Signaling Scheme

55

CHAPTER 5

AN iAPX 432 MULTIPROCESSOR SYSTEM IMPLEMENTATION

The prototype system described here is a simple but func-
tional multiprocessor system that demonstrates the major

characteristics of iAPX 432 system implementations.

The first section of this Chapter deals with the processor
component interconnection and inspects the associated
Interconnect Status (ICS) leogic, the Processor Request (PRQ)
logic, and the Interconnect Processor (IPC) logic of iAPX

432 systemé.

The second section describes the memory system logic and
includes a discussion of the system clock generator, the
PCLK generator, and a static byte-memory system. This
section also discusses the important concepts of memory
alignment, multibyte sequencing, and peripheral subsystem

connections.
SYSTEM DESCRIPTION

The iAPX 432 demonstration system contains one General Data

56

Processor (GDP, consisting of an Intel iAPYX 43201/43202
device §air), one Interface Processor (43203 IP device), and
a 2147-based static memory system. This system is capable of
supporting a total of four attached processors. The IP
connects wvia cabling to the Multibus interface of a
peripheral subsystem. Figure 5-1 is a block diagram of the
two-processor iAPX 432 system. Figure 5-2 shows the

physical partitioning of the system.

Each processor provides demultiplexing and buffering logic
for the processor packet bus, IPC logic, and bus request
logic. The memory system contains the system c%ock
generator, the bus arbitration unit, the memory array, the

memory sequencer, and bus buffering logic.

Figure 5-1 Prototype System Block Diagram

PROCESSOR COMPONENT INTERCONNECTICON

iAPX 432 processor components share some common regquirements
in the system described. Refer to Figure 5-11 and Figure

5-12 (Appended to this Chapter) for schematics of the two

57

VLS

LusS

tukreh

A
BUS IsA .
bus [34
Guf REQ ; B Mt
] \P 1Ll [3 q /
b Log @ 8 Timwe Ant
Lot 1L LueC
CoNTHG
DATA Al us
[»)
ACD bUS l’:th'-
"%
/4
W
o e
1pc
Lol LoG/iC
b DATA 18
anrQr?: BuFFER '\2’ tf:‘:a DaTA croct DATA Areecss
J Y EuFFER GENLEW Boy e e
I | | wwt? NS g spu1s ol
[I I
£EGIEST 295 s/
1P BYVS gy
Win Bus 'Y
7]]
ADDEESS £95 1y
i
[aans —_ it = wmmma
NI i, T T T T e T STt I T - -
Y T - ;ﬁ"‘— - —— = - I——-—:&x,,m.., T A e mmm T T T e

Fireure 3~1 Burock Dineram 6010 PRocESOR. A3 N sys*rsm)

/“‘"M“-’,‘—‘/‘] . ,Ai‘r‘n._‘ ~
l1 ATIA CHED - ~

ProCESSOR. [/

LMoLl BeS
CNHA SEID oo

S : o . L R ' |)
Jy /<M,M\m_‘_ /TP(;L PHOAL.

’ i - SUBSYSTEM
- <

Fieore 5-2. Phusicar PaRvmonme (wo PRocessor. <32 sysTe)

(

B0

N

Component Pin Connect to
MASTER VCC
43201 CLR/ vVCC
RDROM/ VCC
ALARM/ vcC
43202 MASTER vce
CLR/ vcC
43203 HERR/ GND
CLR/ VCcC
vVCcC

ALARM/

TABLE 5-|

Miscellonsovs v CoNuecTions

multiple Vee
and GND pins. Each power pin must be connected
to the appropriate supply. Each Vge pin should be separate-

ly bypassed through a short, low-inductance path to ground.

Connections for CLEA and CLEB are made to all iAPX 432

components.

Each GDP or IP component requires interface logic to various
circuits within the system. The following paragraphs will

discuss the three specific areas of concern:

o) PRQ - ISC Logic
o Bus Request/Grant Logic
o Processor ID and IPC Logic

Figure 5-3 Address Specification Demultiplexing

Figure 5-4 Local Access Operation

PRQ and ICS Logic

58

oL

PRQ
AN
J) IDLOW
f‘;.(“‘
hathi
Al

. [‘
<SP0 LoA LR X W0 ACCR HIALLA NTE DATA
ACDR, ACD/ :X ' -

16 APrulL Address) Speeil =i 36""»"*'.“’"".'(}

Feoee 5~3 AvDREss /speciricariov DeMOLMpLExing-

g9 &

cLi

P& _______J ‘ . \

41

‘ D
NCDUS N’—D,é >< avEC LOADR >< ':\\: > /\QL&A X WRITE. DT

X

Not€: sPLL FIELD ConTAINS AN AC(ESS T0 (oAl ADPLESS < ACE

Tig bre POBBR — cocAl pccsS ope A 1ON

Tigors 5-4 Lochl ACCess OPeeaTioN

5-5 -
qu. W - Oanuj\.td Nccess Delecdiarn—

PRQ (Packet bus Reguest) and ICS (Interconnect Status) are
the two signals that control data transfers on the processor
packet bus. ICS 1is a processor output examined by a
sequencer in managing the movement of information on the
bus. PRQ is a processor input that may either signal an
IPC, signal a bus error, or acknowledge the transfer of

data.

PRO-Related Logic

A TTL 74S175 register is employed as a state sequencer in
decoding PRQ and generating several control signals. Figure
5-6 demonstrates the generation of LDLOW and LDHIGH strobes
for demultiplexing the processor packet bus address and
specification fields. The rising €dge of LDLOW strobes the
specification field and the 1low 8 bits of the 24-bit
physical address into the ADDRg through ADDRy latch/bus
drivers. The rising edge of LDHIGH strobes the mid-8 bits of
the physical address into the ADDRg through ADDRp latch/bus
drivers. The uppermost 8 bits of the physical address are
discarded in this system. The state sequencer also decodes
an access to the interconnect address space (ACDjg5 = 1 when
PRQ is asserted) and generates LOP (interconnect operation)
as shown in Figure 5-5 Furthermore, cancelled accesses
(denotedAby two successive PRQ assertions) are detected by

the sequencer, which generates the CANCL/ pulse. (See Figure

59

5-5.) Three consecutive assertions of PRQ cause an access
to start, the CANCL/ signal to be asserted, and a new access

to begin. (See Figure 5-6.)

Figure 5-5 Cancelled Access

Figure 5-6 Cancelled Access with Overlapped Access

ICS-Related Logic

ICS (Interconnect Status) 1is a combination of several
signals that indicate either the status of a transfer, the
occurrence of access errors, or the signalling of IPC
(Interprocessor Communication). The processor packet bus
definition in the iAPX 432 component data sheets defines the

time-dependent nature of ICS.

Processor ID and IPC Logic

After INIT/ is pulsed low, each processor reads interconnect

address space (address 0) to obtain an 8-bit processor ID

number. Processor number 0 is not allowed as a processor ID

60

PRG,

foN_/

?S: ‘ o Mol ™

CANCEL]
/7

ADIS. ., NDF >< R ><//////
XK e K omee X

5 6
FIG A cancelid Actes
))
UL Ry w / \56(L':l"_(iu '/

code. The hardware at each processor location returns a

unique 8-bit processor ID code.

IPC signals are transferred to a processor board by the
GLOBAL/ and LOCAL/ signals being held active for one clock
cycle. Each type of IPC 1is 1latched at the respective
processor. Interconnect address space (address 2) may be
read by a processor to disclose whether a local or global
(or both) IPC has been signaled. Once read, the IPC status
bits are cleared one at a time. See Table 5-2 for the IPC

bit encodings.

A processor that signals an IPC will send either a global or
a local IPC b? writing to local address space register 2.
Logic on each processor board decodes the specification
field, interconnect address 2, and the processor ID field of
the data packet double byte. A processor may signal any

processor, all other processors, or itself.

Table 5-2 IPC Register Bit Designation

MEMORY SYSTEM LOGIC

The memory system (Figure 5-7) contains a static memory

system, an access sequencer, a bus arbiter, a PCLK generat-

61

ACD 15

0

X XXX XXXX000000GL

Interconnect Address 2 (READ)

L = Local IPC waiting

G = Global IPC waiting

X = Undefined

ACD 15 0

XX XXxXxXxXxxo0o0o0o0o0ccc Interconnect Address 2 (WRITE)
00O Signal Global IPC
001 Signal Local IPC to Processor 1
010 Signal Local IPC to Processor 2
011 Signal Local IPC to Processor 3
100 Signal Local IPC to Processor 4

X = Undefined

TJABLE 5-% EEIESSmw—wws - IPC Register Bit Designation

Gj\‘

or, and a clock generator for the system.

System Clock Generator

CLRA and CLKB for iAPX 432 components are
generated at four times the component operating frequency by
a crystal oscillator module that drives a Johnson counter.
CLKA and CLKB are symmetrical square waves in gquadrature (90

degrees phase shift).

PCLK Generator

PCLK, the timing signal for the system timer and process

timer in iAPX 432 components, is generated by dividing CLERA
by 1024.

Figure 5-7 Memory system schematic

Static Byte Memory System

The static memory system demonstrates the requirements of an
iAPX 432 system memory: alignment of data transfers,
multibyte sequencing, and Bus Arbitration. Figure 5-7 a

schematic of the memory system described.

62

e m—— - e e -~ = R . i
<
— - N 3
| ! - -
! L e il Y l - - ~ .
] ey s i R HE S ! m——
l?‘: PSS TS P .!"-l ! ‘ ..L T ’ :
1 |1 ’ . y
i‘ .
i
! v_— -
s Glniirol . Yeneeal v oo b o J, TR U ette S i ;
T el ol pocrs el
¥ oooTIiInTLL L A DRSS 2 PR) 11, " .12 i ;e
Rt S PN RS - Pz - ? 1 — :

S T o -
‘ cans ‘lé-aﬂ__l - '
N 12 ’ @ a
L €/ ~—Fs10) ﬂ — @ "i;_“ . b si7s .._".rﬂ.
) 1 < L ;ﬁ)—uu-‘l

Cob ——

) e
___ @t(m 1

B seza 34 -
H B EL A L -

%t | LEfR 9/

P S —

e .) i
o y o B /
-’l" , :{T——’* . CLl - P E ‘. e 1 A
’; OOV e

T et —

« g -4

T3 Ome 7 S £ . $ Bw S
ER R —_—;..;; e e, - U
i

-
Tl PR e v

"
v
-~
o
-~

»

. P [
- . N e AT N
__.__}. hﬂ—d ¥
. PR
H

- = == N
Fl6oRE. 57 'STATIC MEMORY SSTEM
| o <A

6z

-3

/
we r——-m-r/

ol
\
7
B
_/
2
+

; \ 1
=y —— N — ! —fr Tl e 2 X < =
e T ” "o i B A s 1Y N e R 3 D—z
—. —.~ [L o \! ——l - L Bl LY ' —— H PEURRLT PRS-
-) !!t « = » b — s " 3 I .1.“.’..5) 4 L - ~ > ...Nl.n../ /_. x ~ ® [b
—J ¢ P 2 — ~ ” t] - W e} [\ T [x
L - SRR . 2 . b N Cr——t a1) P
-— et A ISy A \nﬂ, ES 2 w B I £ 2l “ o> = 3 e N - Jv:rI)vw.
— N) w T B NTTN] LIS $ 5 @
—:. ety - R b -{n .alll\\\ o k] < - 2 P -7 -
L 7 I + 5y t\\. Y] DS PR S £ N IR &
b] EEE N 3] 5T S CE g & | N pi)R L e S e 3
b ~lo T PO — — : kL T X ’ L. -
j q . T i I e % SN Y S
. ! ﬂl.\\ } ? ' .
! :
: i Y y - * :
5= — * P N _ S R .
| Aw - T N . A = Fn & ¥ » - T

L
«

b
|
i
0
2]
2

¥
LY
Y\
I

:l éis

s
Y —— sy
1 B 2—ges;
ALIEN
Y ~.‘-3
i

Er —| 5

Y
1
1
)
|

L.l
|
i
B
$3714
B
’{V
11 111

- 2 Y - -
« 2 ~ * . =
r o)
Y < L < n
. i N
~ - . - *
. Y W ~ et b ..w- o w/ \.m ——z|* —..a. ~ uJ < N . 5 X]
< ——pe—lr J e 2 n z{r w > .4_ .,_ ' T - -
_.w—~ * o MR - ! L Ifn.u X RN ¢ —tw *q.. N v = '] "H. b - - “
ﬁfa N L i 2 L 7 T oY (1] ™ ~ —..vdd 4 k) -
[B AT A B U ") LR . 3 ——
2, X ~1 - © e (] 2 - ¥ a T YU d N l < I -
Vi e e I I P e M R T ST B i AR el

{
i
,
N
:T(s'
—
LY
.
E.. .
FA
Lis
B
|
|
RewAS

MORY S%ST;_M

’, 7. t . I—L—_. . .
' e T n K r . & [|t~ 7—..— - f [~ e) .
H«'.— b - vyl b e ~..ur l(is ” ” LIJ./ N] ” » |u-|f : W B B o h ey ,..] enh,
— N r s B 1 O N : b’ A e : M. ‘
B — RS IR IS -} H S~ T [- B
L] v RN e “| w3 P P] DN [P el PR r ! ” ol B . ~{
i » = A ~ - >3 I] ™ n ; & “
<3 oo ~ N N 1 . ~
Gils -]« 5 N :_ . D ML Av—le &0 RLHT N IS BN 1Y B R N ~5
T ——e . - ~1a b S - e Iy — 2 Uyl -3 —
—_ e] 0 vl i b - . Ll = Y33 « i fJ] = N
[e7] 7 10— 7™ . o oy Ko e wi— 1 _z]% . . : h] f. 3 - A =
ra ey SR (i} - 3 5 a o sl v 1) s A ™ L] R
LS — = 3 3 ap:y = ol JI.ILII!M bR = N
8 o{ I o S T | L N
e o s ks xr .I.l.f.ﬂ Lt 1, EY b e
.. 1~ + £ [: . 4 .
. P ' ' i PR
! A= R ~ ot £ NN = W
- .l.-llll.m) 1 rW » N x>
(7)o —|—xfc © ila a.lfn., o FY s /wr.llm z ooy | —| <]
j i 3) —{> 4 © = | vy b BN . M_ ..vl.ck |51
w1 - |3 : -2 T e r~
— w « =1 = 1] L DS AT & - " " v [N e u I
: et A = N 2 w i % = N % .
() soms — === = ... s TER w w n /ﬁ...llu &y =g b I \n
S T ¥ J=1 W o w
Mr_\\:.\ - == - H . 4 1< [[
I v [R S 1N W =
4: = % b + i =y L | e t 2 & -] w1 b 2

i
cun
=

£
.
Figo

f
. . " x
[PV N . - e _m.. 3 % i
b [i hd U~
w w ~ MY I '
3 2 by }
. Y]
< -~ i
...— ..n. "~ | ._, —s.
o | : se el e 7
2 ' 3 ieamnr~ AN res : oS- 73
B 1" N ' v = ” ~—
oy LS (I] ~,
L3 A

k3

. ' > o . , o o ! g " . . .ﬂ) o
. KN O L | 3
.. . MR B 2 o R DU = N :
,n._ [. I . . t i .y (.w. i
. B i J' _ "— ' v : o
. . . . o o .) ') 1 -t . : . ® L ptreo [-&.n 3 ...r.. Jkl..w:..-n.swww rsls-

Alignment

Figure 5-8 depicts the transfer of a word operand (four
bytes). A processor may request this operand from memory
without concern for its alignment in physical memory. The
word operand consisting of bytes 0 to 3 is aligned to a
"double word boundary. The word operand consisting of bytes 3
to 6 is not aligned. The processor packet bus specification
field for each of these accesses is the same. (Only the

physical starting addresses differ).

Physical address bit 0 indicates whether an access is
aligned on a double-byte boundary (address bit 0 = 0) or
unaligneé (address bit 0 = 1). When signal ALIGN/ is
asserted, the memory system will perform the appropriate
byte swapping to guarantee that right-justified data is

transferred on the processor packet bus.

In Figure 5-8 the double word operand reference to location
3 demonstrates an unaligned reference to a word operand. In
addition to the byte swapping requirement, references to two
consecutive memory locations are required to transfer each
double byte. Figure 5-9 shows how separately addressed
parallel memory arrays are used to accomplish the transfer

of any double-byte pair (aligned or unaligned).

63

PrOcAMME L
Vi W)

ol 1

N

® =

me oy DA TRANSLEA LD oM

Leys TN ' PROCESSOE: VAT DUS
|
7 6 -
{) 0
ERER |
S

floupe. 5-8 BATE SWAPPMG For 32-8IT
OPs R AND

! !

7 - :
//v/] t [y 3 [ol ol
-rf / J : ' s 071 oL
{1 L 5
P
] O -

Figure 5-8 Operand References with Alignments

Figure 5-9 Parallel Memory Array Organization

MultiByte Sequencing

The specification field of a processor packet bus transac-
tion indicates the number of sequential bytes to be
transferred at one time. The memory system uses the
parallel bank memory structure Jjust described, with

appropriate control, to sequence multibyte accesses.

A TTL 748163 counter is loaded with a recoded value for the
length information in the specification field of a processor
packet bus request. Accesses of encocded length 0 will cause
the BYTE signal to be asserted. The 748163 counts the
number of double-byte accesses required to complete the
transfer. At the end of a transfer the signal ERR is
asserted, which indicates (via signal MERR) the ICS bus

error significance (always errorless in this system).

The access sequencer generates one HOLD assertion for each
unaligned double byte transferred. HOLD generates a wait
state via the requesting processor”s ICS pin. Aligned

accesses and single byte accesses occur with no HOLD

64

v

il { v

/,’
'."'PU*/accul-u"c-im oY
ML
) TC*i oddress ladchh occumvlads
-
Nz FAS
odd n
rux} adsegs it uk
QL3 _ AR KE : rumony ij
1
’ A
—— ; ; Z 5 B \, :/\ . \\//LA-& \\v; A Xp -Lg 5Mf/\:di"‘-ﬂ:’$;
ﬂ J
A P, |
~ A
v
T L\f
i o o
ACD H 5.q

naURL B2 - et RULEL yran oy AA /JK/‘J

e

penalty.

Bus Arbiter

The bus arbiter section of the memory system arbitrates
requests from among the four processors for use of the bus
and system memory. The arbiteruses BREQ4/ as the highest
priority and BREQl/ as the lowest to resolve simultaneous
requests. The resolved bus grant is returned to the
highest-priority requester by asserting the appropriate
BGRTn/ line. BGRTn/ remains asserted for the duration of

processor "n“s" access.

Peripheral Subsystem Connection

The IP board (Figure 5-12) connects via two buffered £flat
cables to the Multibus slave interface (Figure 5-10) in the
peripheral subsystem containing the attached processor. The
buffers and synchronization logic to generate the SYNC

signal to the IP are located on the IP end of the cable

The Multibus interface board employs an Intel
8218 Multibus Arbiter to provide the peripheral subsystem
interlock function. Even though the Multibus interface is a
slave during data transfer operations, the IP uses its
HLD/HDA pins to lock the Multibus (a function of a Multibus

master) at certain key times. The HLD/HDA interlock is used

65

> 7

o

) o Lo oo 1el .
adel
WA
ALA <% 4
s Cigini 0ddars, dov sda ba.‘c,
5
S @ D & b 9 o.__l
‘s 51 s _ TSE
& t 1 1
(1) ? y HO1C
Q3203
CLYB
= [
1
i
RIW |
!
- O I
— KACK.
FACK o
—q
PR o
Hex dotar
Eaile

Fiouee 5-10 \NT€LFcs ™ TP

H._m. Wt Ineatece b 1P

to prevent any peripheral subsystem processor from generat-
ing a new transfer to or from the IP while it is in critical
sections of its internal operations (e.g., altering windows

into iAPX 432 memory) .

Eight output port locations are used by the board. These
ports are located at I/0 addresses 0 through 7 and may be
byte~addressed only. Table 5-3 outlines the assignment of

functions to ports.

Table 5-3 Peripheral Subsystem Dedicated Ports

Chip select for the IP is decoded from ADR;g through ADRij
of the Multibus, allowing the IP to be memory-mapped within

any 64K-byte portion of the Multibus.

66

Multibus Port Designated Function

Deactivate INIT/ -
Activate INIT/
- Pulse ALARM/

Reserved

Reserved

Reserved

Reserved

Reserved

CIEERETEEE - Peripheral Subsystem Dedicated Ports

SO+ O

TABLE S-3

O™

o~
~~,

/f./-

lg;-—- i - - - — = < RN il
i i - G Tamr T e ets s meaiay b aoer e yb———m s L s s L e B U
; -
. fr—
§ —
5 f
i i .
l, ; .
—r s'..:--" i
3f "=
I"\
- : o i
PoT

. Ry T
. \

Ansred
{0

pELXN
THCR
ALaket -

L aes

T X | T T . .-
i}l‘f'?ﬂv‘l!’f’ 7 s s 3 11‘-3; ‘~1gqur2;»,¢-1 7~ bf-i 3-2-5-85. =

’-40';;7‘.

. “I' f’&}q}w*sw«wmy;m : N.J;,qutx‘:s.xen.n;f&lyn'~
' ' RN e TP
el s
35533/ ~wn)
N
F
.
: e
—

. L5374

*a a

I’-i}

et

itz 91 ¢, 5] 3

LI LTI

N

AP 4 oay

o | A
’ : hed v exro = e rm =
- ST T e X . P TR e T = s
i i | §ooim T
<
(EEEE R cEETEE | EEEREE
i PR e 4 T . LANEE e
H L -) 3
_ . - i
' ‘ cmr]
- |-
. GDP scf"ffh Frics
(l 2
FiéoRe 5-ij ﬁ&a%ﬁ el
A S - : N
« 2 -- N L
L T R R . 2

s

i e -~ - ——— e — FR. e
= . —
LS
B * N »
ey R . (
K) s i
e . -
= o P— RN d
*- sLis * RN sirs
o : : ’
w -G Y -
T P) g "
' ‘.Lu 4 _" ’1! ,,-—ea.':.,/.,,.
s e 7t e/ T ;
. :
t o R
B I TR %—* !)
! ——— 3y s e o 5d S RS
: ; : - PR 157 ==

x'hi‘

R . : ‘ ._ -‘ [‘ ». :‘.1/ v-) s
ir . t -
D L o) o o . i : R
S e [A B -
K . . . ‘ . A:

) smse =L
ek i S241
> Al ld s -
- .
2300/ i .
. - GWI-—LT A o
" s & i
."é. i
NN ERE T 7 w ’ oo LTES -
-'::;;tzt'»irn ﬁ_»__»_;-le% o SR 3 g e . o 9§t ke
iy ool i urs g Nar——meis T 2 T
I N 5 .- e —Tv vy . . G s, : t
2 . ; - Y 3 ;:zl-*l £
17 b reas. 2417, .
2 T - - B - ;! L ace T/ 2
Tl - ‘ : g SRS SIS) 3 N S U &5 wacizn;
.t TIIITL LTI ST fa g oL "
S . - - —
SN - o
~ -

b—3 - O dixrus 42
»13‘6'—:'“1?':7 Ypi
b O £32T 2s{ 72

S0 S8eT 14]

g2

3
-k
i)

5 .la"’l’zr

f . .
x C , wi Si7E !f ;
. ! ¢ ALctis iy :

e

$ 2491

i : . cel. B - .- \ , 3
1 B ittt vou T I S B S A [N SUN-r. PP

[

1 ¥
- 31 5Y 7t ey 3 oof sl el
—

—— e e B

Ciew

I L FgME &P k2

: - o - . P et :-1-————4' r v
ZF? conESYITERA TNTEAFACE e — -
2 .

- - - .,

_ R) 3 A{.:J . . e) ; e .__‘ } .
- * < = - - l. - - - et - -
- - - L] N
. . S . - e e - e .__.i!‘ =

¥

I+

[4]=:]

[+

»
v
'

[

SN fale -
w
°

“
B

Ui CADLE L

B

'
i

HEBEREE

i

¥
;

I

LEET

&

lcmw Ja l

=

I8}

i
-

|

v 4
i3

E

™
N

Py

!

F

L]
x
3 . P -J_;: -
- o RN PRLARH e Dt —G- o
- "*r'i DR L josn of s
porom § £ ! Resas (Rt e 23 pleidm dlecres |
1 ale = g 2 G Hresen@ dpgesrs |
. S-S :;Lr" A=rs - 5{' ’5__ . —?— 3
- -~ K - _fr,; . i r- 5 - hd . -
' P 1 I [

Féule ¥

T ez

A

e Jom, L S
o 2=1)
- v -
Rev. Lo | 2% Lo e RET.CONT. el orelo o NOTE

C2F INC. PORTLAND, O8

s amta e S am bl —— . i PRSI St i o> PP MUY Lv '~---'b~=-4-":“f‘*'?‘,if‘.1‘ L et
——
PLg T Ty
me T
S =uiiy] zetss
o et - g
- - ! I
T T b’ ;—-—g;a.gﬂpo e
y e o ls : e e ...;_ B . Mt &3 |DACES - c
£ . s e e R v : e . 2 L2 i0ATD, P
; . N [T e < Soe . ;
e gl o[> — ot L;_ Y B (_JLL@Q;__J, Rt TP 3 - bimgaragd Sp—— gy oy
- o alous 1, — s . 1 : 2 {4 10878
" =2
- r n. - T . W . . . - = i ;—-. 1 10ATAs i ‘
o : e ——= = s Towrer :
4 . + S SRR [Coe= ;———‘osio‘nv -
) [S arrs :
WA - S Rl el et I
T~ A d - L7 | DaTer -
Azl 7t o Y - —= :
A" ', .——;0‘ 12 sarczd Nt 7o |PATS/ -
. ok Yy R i S oac B
N—srts] e fhsanzzy U 7z |omrss -
N ! < — { - » Santereed
=3 26 5 ' 97 |oatas .
L - n “ et -] e :
37 re |TaT2S 3
4 [el) S :
Vg ey a2 12 zarer g josrer of - 2
» ITE ¢ paresd el Il e
o =1 1] marns) 'f -
- n_garA H
L 24ver -4 N
¢ _DATasA <
Yy o
- y
)
2 .
Z
L
]
-i . .
ol
-
3 =t -
-1
-
3 .
Fi- - .
GiADRE/ -
*u} IARAE
46 [ADAD?
5 apRc s
 amuasend 3
g lADRE/ t
- : .f;?l_‘;/ o b LA Lo
" . : - L2 AlkEL ¥——-;--r—_’ro;.=u?/
L2 » X -l . -0 U i : =~
Ty ') s S e _l‘ l_ —- .[_ B R e LN L
rL&b? Ance g ez N F . apz _ vy ~zazerr) L. L—'j 51 \mng2s
h ' (33T : - Ak <i - Lk ADRes A - g—.s, [y LI »
. - . - a e . et
ey S S SN SIS Y N U 3 | .:b.L':_hL;D ——N—— T laDR S,
S N AR NS ey PO
B ke P Tty . S iAa
» % e S rapvvrey RN NG pyy JWEYS
g i T -y YT L_ | ana a2/
- G2} ' e i3
» - S - -t Y1t :
| JONE] - . . =
e - — A i ;Q,AD--!\/ :
q P2 N .
L -y .8 - - .
Tre wre °__..5T N -
] wepe Sl -, -
g E e ST, AT TSR | ARas
iy i & i "” [ALY
el - - ; . : . i
o > -3 T el —— 32 | aoans
] ~ « 2. c pad2. <28 | avA3/
~ » Ot} o b .
~ = of p - R e A) :
w ! a 2 e 54 .
3 9 M L] . J
e - 1 zowe .
¥ s K —
e) WA ! : 1 19 | weses
10 a3 < !) A L AR T/
CR22 T N L2 <z
i e YRETL
13 22 1 733 4 i rowes
e a3y L] Pl - n T
Py 2% ; 7o (2 —1 il F
e - - p - — 27 THEM S
- e fi (P T2 M
122 | 123 | — TE Tl S e [—J,
29 -}ro . S —— s S P T SN
2 33 F-S L £ LY R
= . .'= .
- -".2:-2._ oLk A2 .Ti_} 2Lx/
- v pmer [“:._‘ ~ greas b 15 | GRES/
e N7 ,g.-n“rltg Epans phine 1] €8k~
i H - eva . —q’
- - : . :fff’:\" P44 <8 pusys M 177 Bugv /s
S e govcr L M e |
NDTES T Dl PR, el A H'H:;":‘::;:
.) -

- _Fliute T 20e2. B TR

irtale 3538 S.W. 193TH, AVEPE
T 54 mreccomsonanon ALOWA, OR. 57035
e e e e
F ML CORM™:LTo5m

s T DEVICE NUMBER

- - QRAWNEY | -+ | - | DEVICE FUNCTICN
- CONTY BY I
MO APOR, | | PQOCESS L SMT LOF

iAPX 43201 iAPX 43202

VLSI GENERAL DATA PROCESSOR

o Self-dispatching processors o Hardware implemented inter-
for software-transparent process communication and

multiprocessing. dynamic storage allocation

o Capability-based addressing o High-level language di-
and protection. rected instruction set with

0-3 operand references.

o0 2 to the 40th bytes of o Symmetrical support of all
virtual address space. 8-, 10-, 32-bit scaler data
types and proposed IEEE
standard 32-, 64-, and

80-bit floating point.

o Functional redundancy ’ o Object-based architecture
checking mode for hard- for improved programmer
ware error detection. productivity.

67

The Intel iAPX 432 General Data Processor (GDP) consists of
two VLSI devices, the 43201 and the 43202. These companion
devices (Shown in Figures l. and 2.) provide the general
data processing facility of the 1APX 432 Micromainframe.
The combination of VLSI technology and advanced architecture
in the 1APX 432 results in mainframe functionality with a
microcomputer form factor. The new object-based architec-
ture significantly reduces the cost of large software

systems and enhances their reliability and security.

Software-transparent multiprocessing allows the user to
configure systems matched to the required performance and
provides an easy growth path. Hardware support for operat-
ing systems and high level languages ease their implementa-

tion.

The GDP provides 240 bytes of virtual address space and
supports 8-,16-, and 32-bit machines with capability-based
addressing and protection. In addition, a hardware-imple-
mented functional redundancy checking mode is provided for

the detection of hardware errors.

The iAPX 43201 and iAPX 43202 are fabricated with Intel”s
highly reliable +5-Volt, depletion load, N-channel, silicon
gate HMOS technology and 1is packaged in a 64-pin Quad In-

Line Package (QUIP).

68

HIADNINDIS NOLLONYLISNIOUDIWN/HIA0IIA-NOILONYLSNI

LNIWNDISSY Nid 1%22» * F 3309 4

e i

{3@-
~0

MASTER [
HERR/ [
nc. [
RDROM/ [
N.C. [

vee [

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

28
29
30
31

32

64

63

62

61

60

59

58

57

56

55

54

53

52

50
49
48
47
46

45

43
42
41
40
3¢

38

36
35
34

33

] GND
] CLKA
] vee
1 ciks
.
] NC
] FATAL/
] CLr/
1 it/
1 ALARM/
I NC.
R
J1cs
1 PRQ
1 vee
] AcD15
1 ACD14
] acp13
] AcD12
1 Acp1t
1 aco1o
] AcDs
] AcD8
] GND
] AcD?
] ACDS
] AcDs
: ACDA
7 acp3
] ACD2
] AcD1
] AcDo

"LINN NOILND3XT LNIWNDISSY NId z/olzcv‘ ‘c 3d00 _j

953

cika [
vee [
cks [
MASTER [
pcLk/ [
GnD [
HERR/ d
cLr/ [
N.c. [
ne. [
N.c. [
sout [
ics [
PRQ]
vee [
AcD1s [
AcD14 []
acp13 []
acoi2 [
acott [
aco1o [
" Acos -
acos [
o [
aco7 [
AcDs [
acps [
ACD4 [
acos [
Acp2 [
Acn{ -
acoo [
L

10

11

12

13

15
16
17
18
19
20

21

23
24
25
26
27
28
29
30
31

32

64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
a2
41
40
39
38
37
36
35
34

33

] 1s6
] 1s3
] 1s2
] 181
—Jiso
] 1s5
] 154
] anp
] wits
] w14
] w3
[w2

] w1

] w0
] vee
] s
] u8
] w7
] ue
] s
] w4
] w3
e
] i
] w0
] GND
] vee
] N.C
] N.C.
7 ano
] N.C.
] NcC.

Figure

Figure.

Figure

Figure

Figure

Instruction Decoder/Microinstruction Sequencer

-Execution Unit 43202 Pin Assignment

43201 Block Diagram

43202 Block Diagram

Hardware Error Detection

69

iAPX 432 GDP Functional Description

The generalized data processor is organized internally as a
three-stage microprogram-controlled pipeline. The first
stage is the instruction decoder (ID); the second stage 1is
the microinstruction sequencer (MS); and the third stage is

the execution unit (EU).

The first two stages of the pipeline are physically located
on the 43201 (Figure 3.). Each stage of the pipeline can
be considered an independent subprocessor which operates
until the pipeline is full and then halts and‘waits for more

work to do.

Instruction Decoder

The first subprocessor of the pipeliné is the ID, which

performs the following functions:

1. Receives macroinstructions

2. Processes variable-length fields

3. Extracts logical addresses

4, Generates starting addresses for the microinstruction
procedures

70

Yol

MASTER HERR/

)

MICROINSTRUCTION
SEQUENCER

ROM

A

Y

CONTROL

("

INSTRUCTION
DECODER

PROCESSOR
PACKET BUS®

INTERFACE

ISR |

A

A

r U

Y

BUFFER |
- AND

HARDWARE

CHECKING"
LOGIC |

j'> s
ulg |

<:::> contRoL! K

Lo
o

ACD{s5...ACDg, ISA,

ficore 3,

ISB

INIT/ | CcLR/ FATAL/
ALARM RDROM/

<4320

BocK DIRGRAM

1Sg

5. Generates microinstructions for simple operations

Microinstruction Sequencer

The second subprocessor in the pipeline is the MS, which

performs the following functions:

1. Issues microinstructions to the EU (43202)

2. Executes microcode sequences out of an on-chip 3.5K x

16-bit microcode ROM

3. Responds to the bus control signals
4. Invokes macroinstruction fetches
5. Initiates interprocessor communication and fault

handling sequences

Execution Unit

The 43202 contains the third stage of the GDP pipeline-—~the
EU. (Refer to Figure 4.) This unit receives microinstruc-
tions from the 43201 and routes them to one of the two
independent subprocessors that make up the EU. These two are
the data manipulation unit (DMU) and the reference genera-

tion unit (RGU).

71

KU Ge o iy,

/
R

~— MASTE: -
CL
HE

' CONTROL| | —
DECODER| }—

DATA ’ % REFERENCE |
MANIPULATION " |GENERATION:
CUUNT "UONIT :

T 7

- :»v

)L

; e o PROCESSOR
PCLK/ meeeeior %ﬁg;gg 'PACKET BUS
| CONTROL

oL

iSB' BOUT | [ACD1s...ACDp

4320

i 6LRE A0 REIBLOCK DIAGRAM

gL

PROCESSOR:

'PACKET BUSIY .

IVCCiiVSS

'CLOCK GROUP
i e ~epm— |

| CLKACLKB i

HSA%(———___

SB| —————

‘ACD1x5. .
| 15.4<$__% >
| 'ACDg[,.

([BOUT| —]

| GDP_ |
| LOGIC |
SYMBOL;

CLK

D]

INI

-0
—f

'MASTER

CLR

Fleore 4h. GDP LloaiC SYMBoL

ERR

=
v

VSYSTEM
|GROUP

HARDWARE
CHECKING
GROUP

The EU executes most microinstructions in one clock cycle.
However, each of the subprocessors has an associated
sequencer that may run for many cycles in response to
certain microinstructions. Those sequencers are invoked for
complicated arithmetic operations (in the DMU) and processor

packet bus transactions (in the RGU).

The DMU contains the registers and arithmetic capabilities

to perform the following functions:

1. Hardware recognition o

2. Built-in state machine for 16-, 32-, 64-bit multiply,

divide and modulus

3. Control functions for 32-, 64-, and 80-bit floating

point arithmetic.

—asT &SREC

1. Provides the translation of a 40-bit wvirtual address

into a 24-bit physical address

2. Provides for a hardware-enforced domain protection

system (read, write, alter, accessed)

3. Handles sequencing for 8-, 16-, 32-, 64-, and 80-bit

72

memory accesses

4, Controls on-chip top-of-stack registers

The 43201 and 43202 components, described above, together
form the GDP. Figure 4b is a diagram that shows both units

interfacing to the Packet bus as a single processor.

Hardware EBrror Detection On iAPX 432 Processors

iAPX 432 processors include a facility to support the
hardware detection of functional errors. At INIT time, each
iAPX 432 processor is configured to operate as either a
master or a checker processor. A master operates in the
normal manner. A checker places all output pins that are
being checked in the high-impedance state. Thus, a master
and checker are parallel-connected, pin for pin, so the
checker can compare its master”s output values with its own.
Any comparison error causes the checker to assert HERR, and
go idle (Refer to Figure 5.). No further activity can then

occur at the disagreeing master-checker GDP pair.

iAPX 43201/43202 Physical Interconnect

Figure 6 illustrates the i1APX 432 microcomputer form factor

using a Dual QUIP. This layout promotes the most efficient

73

MASTER

S INPLT ouTPUT 5
.
INF cHedLed
oUTBUTS
P licgr
N TN

CHELRR

utilization of the GDP. Also shown are the accessible GDP

output/input signals.

Figure 6. QUIP Layout

432 Instructions

Intel iAPX 432 instruction codes have been designed to
minimize the space the instructions occupy in memory and
still allow for efficient encoding. 1In order to achieve the
ultimate in efficiency of storage the instructions are
encoded without regard for byte, word or other artificial
boundaries. The instructions may be viewed as 'a linear
sequence of bits in memory, with each instruction occupying
exactly the number of bits required for its complete

specification.

iAPX 432 processors view these instructions as composed of
fields of varying numbers of bits that are organized to
present information to the instruction decoder in the
sequence required for decoding. A unified form for all
instructions allows instruction decoding of all instructions

to proceed in the same fashion.

In general, GDP instructions consist of four main fields.
These fields are called the class field, the format field,

the reference field; and the opcode field. The reference

74

Y/

PIN | ~ PINI .
CLKA iy g7 "‘1\’_}‘"‘6: = Ni—o
CLKB 0 ¢ 20 ‘ \
MASTER - 0 C Qo
PCLK C’/ O 5#\0 o
[?
o g- =<0 O—= FATAL _‘
BOUT = O 2 5.0 —i0 o)
19A 5 5 O o o
o0-2 oO—i0 \ o ACD15
[e 07510 O ACDI4 i3
[e) / o,og =0 RN O—| ACDI2 DIy
o—L""o0 8o ~~——o0 o 2
o OE% o= ACD ©& ?
[®) pflc]
C.o.—-—-—-_-.-\ 0= O\O y. O—= ACD7 ACD 6
150 O 0 / o— ACD5
10-5 Ol 0 / O ACD4
O ~—i~0_ ACD 3
Q 5.0l 105 DT /<pe
I AN 0. ACDO

FleuRs 6. &o\P LAROOLT

field, in turn, may contain several other fields, depending
upon the number and complexity of the operand references in
the instruction. The fields of a GDP instruction are stored

in memory in the following format:

The class field is either 4 or 6 bits long, depending on its
encoding. The class field specifies the number of operands
required by the instruction and the primitive types of the
operands. The class field may indicate 0, 1, 2 or 3

references.

If the class field indicates one or more references, a
format field is required to specify whether the references

are implicit or explicit and their uses.

In the case of explicit references the format £field can
indicate whether or not the reférence is direct or indirect.
Further, the format field may indicate that a single
operand plays more than one role in the execution of the
instruction. As an example, consider an instruction to
increment the value of an integer in memory. This instruc-
tion contains a class field, which specifies that the
operator is of order two and that the two operands both
occupy a word of storage, followed by a format field, whose
value indicates that a single reference specifies a logical
address to be used both for fetching the source operand and
for storing the result, followed by an explicit data

reference to the integer to be incremented, and finally

75

followed by an opcode field for the order-two operator
INCREMENT INTEGER. It is possible for a format field to
indicate that an instruction contains fewer explicit data
references than are indicated by the instruction”s class
field. In such a case the other required data references
are implicit references, and the corresponding source or
result operands are obtained from or returned to the top of
the operand stack. The use of implicit references is
illustrated in the following example, which considers the

high~level language statement

A=A+B*C_C

The instruction stream fragment for this statement consists

of two instructions and has the following form:

opcode reference format class

.

<----< Increasing address

Assume that A, B, and C are integer operands. The first
class field (the rightmost field in the picture above)
specifies that the operator requires three references and

that all three references are to word operands.

76

The first format field contains a code specifying two
explicit data references. These references are to supply
only the two source operands. The destination is referenced
implicitly so that the result of the multiplication is to be
pushed onto the operand stack. The second class field is
identical to the first and specifies three required
references by the operator. In addition, all three refer-
ences are to word operands. The second format field
specifies one explicit data reference to be used for both
the first source operand and the destination. The second
source operand is referenced implicitly and is to be popped

from the operand stack when the instruction is executed.

The reference fields themselves can be of various lengths
and can appear in various numbers, consistent with their
specification in the class and format fields. 1If implicit
references are specified, reference fields for them will not
appear. Direct references will require more bits to specify

than indirect references.

Following the <class, format, and reference £fields, the
opcode £field appears. The opcode field specifies the
operator to be applied to the operands specified in the

preceding fields.

77

Figures 7 and 8 illustrate the two iAPX 432 system modes of

generation, selector generation and displacement generation.

The modes of selector generation are concerned with the
object structure and how they are accessed by the operands.

The four modes of selector generation shown are:

1. Short Direct

2. Long Direct

3. Stack Indirect
4. General Indirect

The modes of displacement generation seek the physical
location and displacement of objects within a given segment

or segment. The four modes of displacement are:

1. Scalar data Reference mode

2. Record Item Refergnce Mode

3. Static Vector Element Reference mode
4, Dynamic Vector Element Reference mode

78

-

MODES OF SELECTOR GENERATION j

; SHORT DIRECT

(4

{

(
]

: OBJECT
¢ REFERENCE

)]

)]) LISTS

CIITIISO ORI IIIIEY,

]

LONG DIRECT («

]

{

N

)

GENERAL INDIRECT

{
)

ey

OBJECT
REFERENCE
LISTS

J IITITI OIS IIIIIY

v

STACK INDIRECT

TOP OF OPERAND
STACK

e

0B CT
REFER: NCE
Lists

P27 Z277277,

L 4

Displacement Length1 [Segment'

«
) DISPLACEMENT | SEGMENT SELECTOR

u 7 or 16 Bits ! L or 8 Bits ’ X
)

L/
/17 or 16

72

Selector Length

e sy

08J ¢
REFER INCE
LTS

LIS IIONTIIIIINS

DATA SEGHENT

2

2L

/‘t/(//l//b!/

1,

~

]

O0BJECT
REFERENCE
LISTS

CIIIIIIITOIIII IS

,§>C3
S~

MODES OF DISPLACEMENT GERNERATION

RO ——.

Record]
Referenced |

i

i

}
o
i

Element of
Vector
Referenced

Vector
Referenced -

Record ltem Reference Mode)
$fbata Item Index Length
{ {
))) ! i)‘
Scalar Data Reference Mode Displacement Length BAS%ngiﬁt?gg“E"T |OATA ITEM OFFSET! -
§ | A KA ALRC N s B
' b})
DISPLACEMENT PR .
] (7 or 16 Bits) :X p DATA SEGMENT //1.-;28 Bits //} or 16 Bits DATA SEGMENT
' -
)) -
) Top of Operand Stack
i or
; Varlable In same
, ; Data Segment
A7 or 16 ; or
KISLIIIIIIIIII7 4 Varfable ln another PE2IZIZZTITZZY
% .ata egment ;{
g }
3 .
; Displacement to Base
J ' ' . . of Record Referenced .
! |{ ‘ |
N SELECTOR SELECTOR
NN
Dynamic Vector Element Reference Mode
3 d
static Vector Element Reference Mode Base Length 3 K
‘F M 3ASE DISPLACEMENT ELEMENT INDEX)
ﬁ ELEMENT INDEX)} ; (fpj?‘f'e? | (Specified)
: ndirect Indi tl
(Specified BASE DISPLACEMENT|X ﬁ— P Y Te—Y ﬁ
0 indirectly) b U : L/
% » 1—28 Bits A 128 Bits
, , Top of Operand Stack Top of Operand Stack DATA SEGMENT
X - . or or
A 128 Blts /[0 or 16 Bits DATA SEGMENT Variable in same Variable in same
Data Segment Data Segment
. or or
Variable in another Varlable In another
:)
Top of Operand Stack Elszztgrof Data Segment Data Segment
or -
Variable In same Referenced e MCLILILITIIIIIIII A
Data Segment TrIzzrz 7Tz 777777, Yector :
or Referenced (§;;j*na§’by
Varlable in another FEE Ty pe
Data Segment . .
| »
| b |
Element “L" ' l b
T '(>‘:) Element i SELECTOR
Scaling by ™= DlsPIacementSELECTo1R

Data Type

Fle 4. Mobes oF D(SPL

t

RE AT CEMERATION

Microarchitecture example

This subsection descfibes the general internal organization
(microarchitecture) of the GDP and describes an example of
its operation. The example is intended to provide a
"feeling"” <for the microarchitecture and is by no means
comprehensive. Subsequent sections will describe specific
hardware elements. No attempt is made to describe the

detailed techniques by which exceptional events are handled.

The GDP pipeline starts when the ID passes starting address-
es (determined Ey interpreting the instruction stream) to
the MIS, which in turn feeds to the EU sequences of microin-
structions that are appropriate to the current macroinstruc-
tion. The EU then executes the microinstructions. Most
micro instructions are executed by the EU in a single cycle
each. However, both the RGU and the DMU contain state
machines that are capable of multiple-cycle responses to
certain microinstructions. In ihe case of those that
require multiple cycles for execution, the MIS waits for
notification of completion from the EU before advancing its
state. The ID, however, can advance to the next macroin-
struction and often goes on decoding without waiting for the

MIS.

With some knowledge of the instruction set code and the

79

hardware pipeline it becomes possible to understand the

tasks facing each of the pipeline stages.
Instruction Operator Set

Refer to Table 1 for the 1iAPX General Data Processor

operator set summary.

Figure 9. GDP Packet Bus State Diagram

80

e e -

- f._ R e e e i i L .o RS T 1w SIS
T ooy 5 INITIAL STATE NEXT STATE TRIGGER l i
4T Tl Bus cycle desired
- LB, Ti No bus cycle desired v
_ T1 12 Unconditional Y
To- T2 T3 ICS high .
2T . -Tw éCS 1?w 4 i
4 ~-Cancelled '
- o T1 qbfeeessa(kncdhj A/a&cesr' Pem(.n
T e T3 T3 Additional transfer required o
B ’ - Tw ICS low
T L o . L ;Tv y All transfers completed if current cyc]e
— ' T\l /ad&rlq‘mﬁqdn‘}em CoTn e
T : Tv Ti is lead or if write but no pending write
i MV ~Cuerept~ypitewith-pend tng writer
- 3 -~ 2 Current write with overlapped write
N —T2—7 |\ Overlapped write 7\ -~ . -

e e

Tes low
pes gl T

43201 PIN DESCRIPTION

Processor Packet bus Group

ACD;5 - ACDgy (Address/Control/Data lines, Inputs)

The processor Packet bus Address/Control/Data lines
are the basic communication path between the GDP and
its environment. These lines are always inputs to the
43201 and are driven by either the 43202 or the
external environment. Note that the 43201 must receive
the specification byte from the 43202 during Tl of a
bus 'transaction (Figure 9). As a result, the ACD
receivers must be capable of slave timing as well as
processor timing (see processor Packet bus timing
relationships for definition of processor and slave

timing).

PRQ (Processor Packet bus Request, Input, high asserted)

The PRQ input is used to initiate a transaction
between the GDP and the bus interface. PRQ is normally
held low by the 43202 whenever there is no transac-
tion. PRQ is asserted high durihg the first cycle of a
bus transaction and returns low during the second
cycle if the transaction is to be completed. The GDP

may cancel a bus transaction by continually asserting

81

"PRO hi
& aNys

h: high 4 of
second cycle of the transaction. The GDP will cancel
a transaction if a bounds or access rights wvioclation
for the transaction has been detected. PRQ is sampled

on the rising edge of CLKB.

ICS (Interconnect Status, Input, high asserted)

The ICS input is continually monitored by the 43201 to
determine the state of bus transactions. The inter-
pretation of ICS depends on the present cycle of a bus

transaction and will indicate one of the following

states:

1. Interprocessor communication (IPC) message
waiting.

2. Input data invalid, a streched access.

3. Cutput data not tzken, a streched access.

4. Bus error in external environment.

During idle periods (GDP not using the bus) the bus
interface may signal the GDP on ICS that an Interpro-
cessor communication message has been received. During
a bus transaction, the bus interface will use ICS to

handle bus protocol. (Refer to Figure S8 and Table 1

82

for the system relationship of the Packet bus group.)
Intra-GDP Bus Group
uljg...ulg (Microinstruction Bus lines, Outputs)

These lines are used to transmit microinstructions
from the 43201 to the 43202. These. pins are high
impedance in the checker state (Refer to Hardware
Error Detection Group). They are monitored by the

hardware error checking logic.
ISg...ISy (Interchip Status lines, Inputs)

The 43201 receives information pertaining to micro

program status from the 43202 over these lines.
System Error Group
FATAL/ (Fatal, Output, low asserted)

FATAL/ 1is asserted by the 43201 under microcode
control and is used by the GDP microcode ﬁo indicate
to the system that the GDP cannot continue due to
grossly incorrect information structures in memory.
FATAL/ is synchronously asserted low and remains low
until the processor is initialized. FATAL/ is not

affected by the hardware checking logic.

83

ALARM/ (Alarm signal,Input, low asserted)

The ALARM/ input signals the occurrence of an unusual
system~wide condition (such as power fail). The 43201
does not respond to ALARM/ until it has completed
execution of the current 432 instruction , i.é., if
any instruction is currently under execution. ALARM/
is active low and is sampled on the rising edge of

CLKA.
System-Wide Group
INIT/ (Initialization, Input, low asserted)
The INIT/ pin is used to establish initialization.
INIT/ must be asserted low for at least 10 CLRA cycles

before the initial state is reached to allow time for

the 43201 to begin execution of a microcode sequence

that initializes all of the 43201 and 43202 internal
registers. Once this initialization sequence has been

completed, normal operation begins.

CLR/ (Clear, Input, low asserted)

Assertion of CLR/ causes the 43201 to immediately trap
to a micrococde flow that halts the 43202, asserts

FATAL/ and waits for a local IPC.

84

Hardware Error Detection Group

MASTER (Master, Input, high asserted)

HERR/

The MASTER pin 1is used to place the processor in
either master or checker mode. MASTER is sampled
during initialization (INIT/ asserted). If MASTER is
asserted throughout initialization, the 43201
functions normally and drives the microinstruction
bus. If MASTER 1is 1low throughout initialization,
microinstruction bus signals ulis-ulg go to their
high-impedance state. A 43201 thus conditioned does
not drive the microinstruction bus; rather, the bus is
monitored and compares the data on the bus to its
internally generated result, signaling disagreement on
its HERR/ line. MASTER should be tied to Ve for
normal operation and pulsed low to enable hardware

error checking and disable the bus (uIjg-ulg) outputs.

(Hardware Error, Output, low asserted)

HERR/ is a signal produced by the 43201 to indicate
disagreement between the data appearing on the micro-
instruction bus (uI;js - uIg) and the internally
generated result of the 43201. HERR/ is asserted low

when disagreement occurs and is valid during CLKA.

85

Clock Group
CLRKA, CLKB (Clock A, Clock B, Inputs)

Clock A provides the basic timing reference for the
43201. Clock B (CLKB) overlaps CLKA by nominally 1/4
cycle (90 degrees phase shift). All external signals
are referenced to CLKA. Refer tc the A. C. Electrical
Characteristics for exact statement of timing rela-

tionships.
Testing Input
RDROM/ (Read ROM, Input, low asserted)

The RDROM input line is used to force a sequential
read of Read-Only-Memory. When the RDROM/ 1line 1is
asserted low throughout initialization (INIT/
asserted), the 43201 goes into a special diagﬁostic
mode. In this mode, the 43201 microinstruction
sequencer steps through the 43201 microprogram ROM,
sequentially displaying (but not executing) the 43201
microprogram on the uIjg-ulp lines. The sequencer
continues to cycle through the microprogram ROM until
INCR udA/ is no longer asserted. The INCR ulA/ feature
is useful for testing, but should not be used during
normal operation since it could lead to unpredictable

results. INCR uA/ should be tied to Vgc for normal

86

operation and only asserted low for testing (Power,

ground, not connected).

Vee (4 pins)

These pins supply +5 V + 10 % referenced to GND pins.

GND (5 pins)

These pins supply ground reference for the 43201.

N.C. (No Connection, 5 pins)

87

43202 PIN DESCRIPTION
Processor Packet Bus Group

ACD;5-ACDg (Address/Control/Data lines, Inputs or Three-

state Outputs, high asserted)

The processor Packet bus Address/Control/Data lines
are the basic communication path between the GDP and

its environment. These pins are used three ways:

1. They may indicate control information for bus

transactions,

2. . they may issue physical addresses generated

within by the GDP for an access, or
3. they may transfer data (either direction).
The ACD pins are monitored by the hardware error
checking logic when the 43202 is in checker mode and

are conditionally in the high impedance mode.

PRQ (Processor Packet bus Reguest, Three-state Output, low

asserted)

PRQ is used to indicate the presence of a transaction

between the GDP and its external environment. Normally

88

low, the PRQ pin is brought high during the same cycle
as the first double-byte of address information is
being driven onto the ACD pins. PRQ remains high for
only one cycle during the access, unless an address
development fault occurs. The 43202 will leave PRQ
high for a second cycle to indicate the GDP has
detected an addressing or segment rights fault in
completing address generation. PRQ is checked by the
hardware error 1logic. PRQ is in a high impedance
state when the 43202 is in checker mode (see MASTER

description).

ICS (Interconnect Status, Input, low asserted)

ICS is an indication to the 43202 from the bus
interface circuitry concerning the status of a bus
transaction. The interpretation of the ICS state is
dependent upon the present cycle of a bus transaction

and may indicate:

1. Interprocessor communication (IPC) message
waiting,
2. Input data invalid,
3. Output data not taken,
4. Bus error in external environment.

89

During idle periods {when the GDP is not using the
bus) the bus interface may signal the GDP on ICS an
Interprocessor communication message has been
received. During a bus transaction, the bus interface
will use ICS to handle bus protocol, i.e., data not
taken, or (for a read) data invalid. When the 43202 is
in checker mode (see MASTER description) ICS is always

asserted.
BOUT (Enable Qutput Buffers,Output, high asserted)
BOUT is used to control bus external transceivers to
buffer the 43201, 43202 from the processor component
bus lcad. Though not required, the use of buffers may
be desired in systems with heavy loading. BOUT is
asserted when information is to leave the 43202 on the
ACD lines.
Intra—-GDP Bus Group

uIjs-uly (Microinstruction lines, Inputs, high asserted)

The uljs-ulg input 1lines provide the 43202 with

microinstruction information sent from the 43201.

ISg-ISg (Microprogram Status lines, Outputs, high asserted)

90

The ISg-ISg lines drive microprogram status informa-

tion from the 43201 to the 43202.
System Group
PCLK/ (Processor Clock, Input, low asserted)

PCLK/ ‘is implemented to change the state of two
processor timers. The affected timers are called the
system timer and the service timer. Assertion of
PCLK/ for one <cycle causes the system timer to
increment and the service timer to decrement. Asser-
tion of PCLK/ for more than one cycle causes the
system timer to be cleared and decrements the service
timer. For proper operation PCLK/ must be unasserted
for at least one cycle before being asserted. PCLK/
is synchronous with respect to CLKA, but is generally

unrelated to other interface timings.
CLR/ (Clear, Input,low asserted)
The Clear (CLR/) input causes the 43202 to cease the

execution of any multiple cycle microinstruction

under way when CLR/ is asserted.

91

Hardware Error Detection Group

MASTER (Master, Input, 'high asserted; 25 k nominal pullup

HERR/

CLKA,

on-chip).

The MASTER input determines whether the 43202 is to
function as a master or a checker. MASTER is continu-
ally sampled by an internal flip-flop. When MASTER is
seen to have changed state, all output lines will be
controlled appropriately (driven or allowed to float)
within 2 cycles (Such a change in state will not
result in a spurious HERR/ assertion). The Checker
mode affects the behavior of ACD;5-ACDg, PRQ, and
BOUT. ACD;5-ACDg and PRQ enter the high impedance

state and BOUT is unconditionally low.

(Hardware Error, Output, low asserted).

The HERR/ output indicates a hardware error has been

detected.
Clock Group
CLKB (Clock A, Cleck B, Inputs)
Clock A (CLKA) provides the basic timing reference for
the 43202. Clock B (CLKB) overlaps CLKA by nominally

1/4 cycle (90 degrees phase shift). Refer to the A. C.

92

Electrical Characteristics for exact statement of
timing relationships. 211 external signals are

referenced to CLRA. Power, grcund not connected.

Vee (Power Supply, 4 pins)

These pins supply +5 V +10%, referenced to GND pins.

GND (Ground, 5 pins)

These pins supply ground reference for the 43202.

N.C. (No Connection, 7 pins)

93

Qs]
Table 8% 4L
General Data Processor Operator Set Summary
Character Operators

Move Character
Zero Character
One Character

Save Character

AND Character
OR Character
XOR Charactér
XNOR Character

Complement Character

Add Character
Subtract Character
Increment Character

Decrement Character

Egqual Character

Not Equal Character
Equal Zero Character
Not Equal Zero Character
Greater Than Character

Greater Than or Egqual Character

94

Convert Character to Short Ordinal

Short-Ordinal Operators

Move Short Ordinal
Zero Short Ordinal
One Short Ordinal

Save Short Ordinal

AND Short Ordinal
OR Short Ordinal

XOR Short Ordinal
XNOR Short Ordinal

Complement Short Ordinal

Extract Short Ordinal
Insert Short Ordinal

Significant Bit Short Ordinal

Add Short Ordinal
Subtract Short Ordinal
Increment Short Ordinal
Decrement Short Ordinal
Multiply Short Ordinal
Divide Short Ordinal

Remainder Short Ordinal

95

Equal Short Ordinal

Not Egual Short Ordinal
Equal Zero Short Ordinal

Not Equal Zero Short Ordinal
Greater Than Short Ordinal

Greater Than or Egual Short Ordinal

Convert Short Ordinal to Character
Convert Short Ordinal to Ordinal

Convert Short Ordinal to Temporary Real

Short-Integer Operators

Move Short Integer
Zero Short Integer
-

One Short Integer

Save Short Integer

Add Short Integer
Subtract Short Integer
Increment Short Integer
Decrement Short Integer
Negate Short Integer
Multiply Short Integer
Divide Short Integer

Remainder Short Integer

Egual Short Integer

96

Not Equal Short Integer
Equal Zero Short Integer

Not Equal Zero Short Integer

Greater Than Short Integer
Greater Than or Equal Short Integer
Positive Short Integer

Negative Short Integer

Convert Short Integer to Integer

Convert Short Integer to Temporary Real

Ordinal Operators

Move Ordinal
Zero Ordinal
One Ordinal

Save Ordinal

AND Ordinal
CR Ordinal

XOR Ordinal
XNOR Ordinal

Complement Ordinal

Extract Ordinal

Insert Ordinal

97

Significant Bit Ordinal

Add Ordinal
Subtract Ordinal
Increment Ordinal
Decrement Ordinal
Multiply Ordinal
Divide Ordinal

Remainder Ordinal

Equal Ordinal

Not Equal Ordinal
Equal Zero Ordinal

Not Equal Zero Ordinal
Greater Than Ordinal

Greater Than or Equal Ordinal

Convert Ordinal to Short Ordinal
Convert Ordinal to Integer

Convert Ordinal to Temporary Real

Integer Operators

Move Integer

Zero Integer

One Integer

Save Integer

98

Add Integer
Subtract Integer
Increment Integer
Decrement Integer
Negate Integer
Multiply Integer
Divide Integer

Remainder Integer

Equal Intéger

Not Equal Integer

Equal Zero Integer

Not Equal Zero Integer
Greater Than Integer

Greater Than or Equal Integer
Positive Integer

Negative Integer

Convert Integer to Short Integer

Convert Integer to Ordinal

Convert Integer to Temporary Real
Short-Real Operators

Move Short Real

Zero Short Real

Save Short Real

99

Add Short Real - Short Real

Add Short Real - Temporary Real

Add Temporary Real - Short Real
Subtract Short Real - Short Real
Subtract Short Real ~ Temporary Real
Subtract Temporary Real - Short Real
Multiply Short Real - Short Real
Multiply Short Real - Temporary Real
Multiply Temporary Real - Short Real
Divide Short Real - Short Real
‘Divide Short Real - Temporary Real
Divide Temporary Real - Short Real
Negate Short Real

Absolute Value Short Real
Short—-Real Operators

Equal Short Real

Equal Zero Short Real

Greater Than Short Real

Greater Than or Egual Short Real

Positive Short Real

Negative Short Real

Convert Short Real to Temporary Real

Real Operators

10N

Move Real
Zero Real

Save Real

Add Real - Real

Add Real - Temporary Real

Add Temporary Real - Real
Subtract Real - Real

Subtract Real - Temporary Real
Subtract Temporary Real - Real
Multiply Real - Real

Multiply Real - Temporary Real
Multiply Temporary Real - Real
Divide Real - Real

Divide Real - Temporary Real
Divide Temporary Real - Real
Negate Real

Absolute Value Real

Equal Real

Equal Zero Real

Greater Than Real

Greater Than or Equal Real
Positive Real

Negative Real

Convert Real to Temporary Real

101

Temporary-Real Operators

Move Temporary Real
Zero Temporary Real

Save Temporary Real

Add Temporary Real
Subtract Temporary Real
Multiply Temporary Real

Divide Temporary Real

Negate Temporary Real
Square Root Temporary Real

Absolute Value Temporary Real

Equal Temporary Real

Equal Zero Temporary Real

Greater Than Temporary Real

Greater Than or Equal Temporary Real
Positive Temporary Real

Negative Temporary Real

Convert Temporary Real to Ordinal
Convert Temporary Real to Integer
Convert Temporary Real to Short Real

Convert Temporary Real to Real
Access Descriptor Movement Operators

102

Copy Access Descriptor

Null Access Descriptor

Rights Manipulation Operators

Amplify Rights

Restrict Rights

Type Definition Manipulation Operators

Create Public Type
Create Private Type
Retrieve Public Type Representation

Retrieve Type Representation

Retrieve Type Definition
Refinement Operators

Create Generic Refinement

Create Typed Refinement

Retrieve Refined Object
Segment Creation Operators

Create Data Segment

Create Access Segment

Create Typed Segment

{63

Create Access Descriptor
Access Path Inspection Operators

Inspect Access Descriptor

Inspect Access
Object Interlock Operators

Lock Object

Unlock Object

Indivisibly Add Short Ordinal
Indivisibly Add Ordinal
Indivisibly Insert Short Ordinal

Indivisibly Insert Ordinal
Branch Operators
Branch

Branch True

Branch False
Branch Indirect

Branch Intersegment

Branch Intersegment without Trace

Branch Intersegment and Link

o4

DA

Context Communication Operators

Enter Access Segment

Enter Global Access Segment
Set Context Mode

Call Context

Call Context with Message

Return from Context

Process Communication Operators

Send

Receive

Conditional Send
Conditional Receive
Surrogate Send
Surrogate Receive
Delay

Read Process Clock
Processor Communication Operators

Send to Processor

Broadcast to Processors

Read Processor Status and Clock

Interconnect Operators

EEVINE

Move to Interconnect

Move from Interccnnect

(Note) Each of these operators is identical to the operator
with the same assigned number and is specified by the same

operator code,

lce

U BV o Wl e Lo-

PRVA)

iAPX 432 Timing/ Characteristics
Figures 10 through 15 contain input/output timing, clock
input specifications, error checking timing, initialization
timing, and microcode interrogation timing for the 43201.
Tables 2, 3, and 4 contain the A. C., D. C., and capacitance
specifications for the 43201.
Figures 16 through 19 contain input/output timing, BOUT
timing, and input clock timing for the 43202. Tables 5, 6,
and 7 include the A. C., D. C., and capacitance specifica-
tions for the 43202.
Table 2. 43201 D. C. Electrical Characteristics
Table 3. A. C. Electrical Characteristics
Table 4. 43201 Capacitance
Figure 10. 43201 Output Timing Specification
Figure 11. 43201 Input Timing Specification
Figure 12. Clock Input Specification

Figure 13. 43201 Hardware Error Check Timing

Figure 14. 43201 Initialization Timing

tO77

1A=

Figure 15. Microcode Interrogate Timing
Table 5. 43202 DC Characteristics

Table 6. 43202 AC Characteristics

Table 7. 43202 Capacitancé

Figure 16. 43202 Output Timing Specification
Figure 17. 43202 Input Timing Specification

Figure 18. 43202 BOUT/ Timing Specification

©
0

w]

.»{,/.251 u(/Z/
Fh 7’?(/ NVALID C\CAQ ;HUOHA

7

teo Lon

20|
Fouge (0, "i"VLOUT'PUT' TIMNG STec) cicarion

QL KK ‘ \—/

) NVALID
AC‘DISQUW DA’IA
(From 43202 INVALD

PRQ

‘/\

7 fl
Tide \
N\ HTA NUM]G{
1Sg,.. 13
f‘.CD !5 f(&g‘ ’{s‘u
_HOH\ Mo) - >1
/ F(f*'\f\/ N dh
4320

eATION
T T INNG SXLi21cH

1 =

Fleore

(055

QLKA /

CLKB

tr—

Y

[

\

&

CLOCK [MPUT SPECIEICATION,

Ficuee L

{2

clocK NPT SPECHFICATION

{3

td

o5

{52/

DisAGRLAW N

R A VA VA WA N A A A

XX X X X

uli1s “ulp
tart/ $
sl - ._h_s‘_i
[LLYHAN ey

L(A_____ |
HERR S e
{ I

e——ted

4 4320
ﬁé\) R& , 3 . e ('/AMMWEE ERROR CHECK. Timine

tdh

2%

Wil K) /

FGUB& !’ﬁ VAPR 4320] ‘ni&LLerL;)a};‘gp N| {,";;wva/

[C% -

Al ourPuT - 3. qiate
?!Ms‘c}r.ﬁ T r%(' Vs VALID
g2 Pt Pov VIO W
exe N ad A AR
@ tus 1 Lon,44¢

\ \/

&ouT
4 j%
<

€ao Eoh

Heoes [A% d2202 ootput dlal el s

(08 F

ACDl5..2C08 -
{when inbound INVALID DATA INVALID
hdata) .. -
- =14
Zi.-Lls -z, . tde tdh
““ACD15..ACDE | a
IsA/. (for INVALID DATA
© hardware ’ X
checking) 4 _
IsB/ U DI
-uIl5..ulf . e CTeeT e - > | >
CLR/ - . : - tde tdh
PCLK/ . L
-MASTER

432/02 INPUT TIMING SPECIFICATION

Pl 17 tNpoT . TIMG

(ZZ\&%/ ﬂ/ Z/’ e /va/‘—’;ﬂ

4@7@ — 5 }rz;/é? /50" C

44/?;?@@« o il g /é%/é/_ﬁ | et 7

c/u../t_/ Z/M«fifw) 23 ztéq /2_3{/4/;5/—

TaeLs . ARSOLOTE MAXI MUM RATINGS

fo(h’

/01 ELECTRICAL CHARACTERISTICS

D.C. Characteristics

(TA = 0 degrees C to 70 degrees C; VCC = 5V + 10%; VSS =

OV; unless otherwise specified)

SYMEQL PARAMETER MIN. MAX. UNIT CONDS

VILI (ISg...ISg)|Input Low Voltage =-0.3 | +0.7 v

(ISGDOOISO)
VIEI (ISg...ISy)| Input High 3.0 |vCC+0.5 | V
Voltage
VILC Clock Input Low -0.3 +0.5 v
Voltage
VIEC Clock Input High WCC-1.0jVCC+0.5 | V
i Voltage
| VIL(Remaining Input Low Voltaged =-0.3 | +0.8 v
Inputs)
"I VIH (Remaining Input High 2.0 JvCC+0.5 | V
Inputs) Voltage

VOL (Micro- Output Low 0 +0.35 Vv |IO0L=
Instruction Voltage (uIx) 0.1lma
Lines) -

VOE (Micro- Output EHigh 3.25 | vCC V | IOE=
Instruction Voltage (ulx) -0.1mA
Lines) .

VoL Output Low 0.45 v |I0L=

Voltage 2.0mA
VOH Output High 2.4 v |IoE=
ICC Power Supply 400 mA
Current
IIL Input Lezakage +10 wA | VIN=VCC
Current
ILO Output Lezkage +10 uA | .45V
Current vouT<
. vCe
TRBLE L <4AO(elLELTRIC

/0§ T

CHARACT € RISTICS

Capacitéhce

SYMRBOL PARAMETER TYP. UNIT CONDITION
Cin Input Capacitance § pF fc = 1MH,

.
Cout Output Capacitance 12 pF VIN=VOUT=0V

| | B | Tﬁi’%i'{, 4{ A_-<‘t3i01 CaPectTROCT

[T

©

/)

Lo
2

5?

,%ﬁ%ﬁ:f/

(74 =

vcce
IcC

ViL
VIH

V1LuI
V1EuIl

VOL (IS
...ISO?

VOE (ISg

InLI
ILIl

//6921- éf:]é1—<;2522—<;4-$7 C::éﬁ;%L<%~ ;/Lkgg_Zi:;;,g
v\

. o . - { ; . L = .
(;»,gz—?-c c;// fcc=5/ 10 /ssS =0V,
’ PARAMETER UNIT
Supply Voltage 4.50 5.50 v
Supply Current 455 mA
Clock Input Low Voltage -0.3 0.5 v
Clock Input Hi Voltage VCC-1.0 VCC+Q.5 v
for CLRA, CLKB inputs
ul Input Low Voltage -0.3 0.7 \'4
ul Input Hi Voltage - 3.0 VCC+0.5 v
for uIO ‘?‘urls
Input Low Voltage -0.3 0.8 v
Input Hi Voltage 2.0 VCC+0.5 v
for remaining pins
Output Low Voltage 0.45 v
@IC0L = 2 mA for ACDx, o :
IsA/, HERR/; 8 mA for
BOUT |
Output HEi Voltage 2.4 vce v
€I0H = 50 uvuA for ACDX; '
200 uA for BOUT
Output Low Voltage 0.35 v
€I0L = .1 mA
OQutput Hi Voltage 3.25 vee v
€I0H = -.1 mA '
Input Leakage +10.0 ud
(Except MASTER)
Input Leakage -400 uA
MASTER input
Qutput Leakage +10.0 ul

@Vout = (0.45 .. Vee)

- s #‘4
2 s
Lo 3
e

L AT

‘_*

TAeLe 5 43or
NC CHPRNCTFRISTICE

Capacitance - . e

SYMEOL PARAMETER ‘TYP, UNIT CONDITION

Cin Input Capacitance 6 pF fc = 1MH,

Cout Qutput Capacitanéeal 12 pF VIN=VOUT=0V

= PRSI
L : .
- - N v
. “‘.‘ k
= . - . ‘
- - PR .
Rty .
W
B
- - -
LT
a7
- o
-

T%L& 7 451@
| cqmcmmcz (&Mmss

‘ - . ZYSEéfZ;

~ iAPX 43203

VLSTI INTERFACE PROCESSOR

o Fully protected I/0 inter-

face to 432 memory

o Buffered data path for
high speed burst mode

transfers
o Initialization/diagnostic

interface to 432 systems

o Multiple 43203°s per system

provide incremental I/O

0 Silicon operating system
instruction set extensions
attached

for iAPX proces-

sors

o Multibus™ gystem com-

patible interface

o Functional redundancy
checking mode for hardware

error detection

capacity
The Intel 43203 Interface Processor (IP) provides 1I/0
facilities in iAPX 432 micromainframe systems employing

109

unprotected peripheral subsystems. An IP maps a portion of
peripheral subsystem address space into iAPX 432 system
memory. As does any iAPX 432 processor, the IP operates in
an object-oriented, descriptor-based, transparent multipro-

cessing environment.

The 43203 is a VLSI device, fabricated with Intel”s highly

reliable +5 Volt, depletion 1load, N-channel, silicon gate

HMOS technology, and is packaged in a 64-pin Quad In-Line

Package (QUIP).

Figure 1. 43203 Pinout

Figure 2. 43203 Logic Symbol

Figure 3. 43203 Block Diagram

110

syne[] 1o
Naks] 11
sout[] 12

ics [13
pra[] 14
vec[]1s
acois[| 16

aco1a[3 17

aco13 [18
aco12[] 19
aco11[] 20

acoto[] 21

Acoe [22
acos [} 23

vss_]24

ACD7 [25
acos [] 28

acos[__]ar

ACD4 : 28

ACD3 d_zs_'
aco2[{30
acoi[_jat

64
8
62
61
60
59
58
57
56

54
53
52
51
50
49
48
a7
46

45

43
42
41
40
39
38
37
36
35
34

33

] AD15
—_]AD14
[_JAD13
C_JAD12
] Ao11
] AD10
] AD9
] ADs |
—Jvee
—JaD7
] AD6

{]aos

—_]AD4

[Jao3

[] AD2
] aD1
1 Apo
] vss

[]PsR
] 8HEN/
] wr/
] cs/
1 ALARM/
] cLrs
] HERR/
] FATAL/
[]rcLk/
L
] vce
] cLka
] CLKB
[Jvss

ﬁGURE. L iAPX 432/03 INTERFACE PROCESSOR PIN CONFIGURATION

o e e
@
!

vul unu

< > [ADT5-0; A

432 PSS T
>ROCESSOR| ¢ PRQ. <] > 'BHEN7, (| _BUS
BUS P <«——cs;, | ‘GROUP
‘BOUT! = ~————u [WRY)
SYSTEM [ATARMY) ~———> € [ALE!
ERROR A P
GROUP' | 'FATAL/! ~— «——[0E TIMING
s [SYNIC'
> SYSTEM: PCLK/| ———— f————>/DEN/. — [BUFFER CONTROL]
o WIDE | INIT/ ———— I 432?/ ‘\ - | GROUP
< GROUP| CLR/| =i -———3HLD PS INTERLOCK
LOGIC ¢—————HDA! - CONTROL GROUP,
CLOCK { CLRA! | SYMBOL | -
GROUP ! e e ([NHT e
B
HAERDR\ACI)IE!RE — FiERR ~—— 3 | NAK /" ’
R ;
DETECTION' I TN e (TSRS
GROUP e [[N T' INTERRUPT:
-~ PSR, — |PSRESET.
IAPX 432 SYSTEM [PERIPHERAL SUBSYSTEM

flouee 2 430> \P LoctC SyMBuL

IAPX 432
SYSTEM: . SUBYSTEM

o ' | DATA | " ' _
ACD15...ACDG < AcaUlsITION < AD15...ADO
o

| EXECUTION|
i UNIT

>
o

i
i

"

A
-
]

. PRQ, ICS, BOUT| <¢———i> <«——>» BHEN, CS, WR
. ALARM, FATAL| < » IALE, OE, DEN
PCLR, INTT, ————> s'*‘m‘pxj PERIPHERAL| [—<—> HLD,HDA
CONTROL SConTROL ! ~——> INH1, XACK, NAK
CLR, HERR = - » INT.
] TIMING] . PSR

A4

||

CLKA CLKEB

Feoes 3. 1PX 43??0/3‘IPFUNCT10NM wBLOCK DIAGRAM:

Functional Description

This data sheet describes the iAPX 432 Interface Processcr
(IP) Component. It is oriented toward hardware designers of
iAPX 432 systems. iAPX 432 architectural information is
provided in the 1Intel iAPX 432 General Data Processor
Architecture Reference Manual (Order No. 171860). Detailed
information about the IP is contained in the Intel iAPX 432
Interface Processor Architecture Reference Manual (Order No.
171863-001). The Intel iAPX 432 Component User”s Guide
(Order WNo. 171861) provides additional hardware support

information.

The IP, operating in conjunction with an Attached Processor
(AP), forms the logical I/O processor of an iAPX 432 system.
The IP acts as a slave to the AP, mapping a portion of the
AP”s peripheral subsystem address space into iAPX 432 system
memory with the same protection mechanisms as any iAPX 432
processor. Five peripheral subsystem (PS) memory subranges
may be mapped into i1APX 432 memory segments. These five
windows (labeled 0 through 4) allow the AP to reference iAPX
432 memory with logical addresses or, in special circum-

stances, with direct 24-bit physical addresses.

The IP does not execute instructions from an iAPX 432 memory
segment, but rather accepts function requests from the AP
and performs the specified operations in the iAPX 432

system. Window 4 is designated for this function.

111

The AP may reference operands in iAPX 432 memory in.random
mode (random addressing order) or buffered mode (sequential
addressing order). Only window 0 can be used in buffered
mode. It contains a 1l6-byte FIFO buffer which postwrites-

/prefetches data.

Window 1 may be used to reference the iAPX 432 interconnect

address space when the IP is in physical mode.

The sections of this data sheet are:

o iAPX 43203 Pin Summary

o 43203 Electrical Characteristics

o} Interfacing Peripheral Subsystems to the IP
o IP/GDP Operator Comparison

Table 1. 43203 Interface Processor Pin Summary

112

T

,/><:- ' jAPX 43203 INTERFACE PROCESSOR PIN SUMMARY
432 SYSTEM SIDE ’

PIN GROUP " PIN NAME DIRECTION HARDWARE ERROR DEJECTLON
PROCESSOR ACDI5...ACD0 I/0 X
PACKET BUS PRQ 0 X
GROUP IcS I

: BOUT 0
SYSTEM ALARM/ I
ERROR GROUP FATAL/ 0 (I at Initialization)
CLR/ 1
SYSTEM-WIDE PCLK/ I
GROUP INIT/ I
SYSTEM CLOCK CLKA i
GROUP CLKB I
HARDWARE ERROR HERR/ 0 (I at Initialization)

DETECTION GROUP

PERIPHERAL SUBSYSTEM SIDE

PIN GROUP PIN NAME DIRECTION HARDWARE ERROR DETECTION
PERIPHERAL ADI5...ADO 1/ X
SUBSYSTEM BHEN/ I
BUS GROUP cs/ I

WR/ I
PS TIMING GROUP ALE I
OE I
SYNC I
PS BUFFER CONTROL DEN/ 0 X
GrOLP
PS INTERLOCK GROUP HLD 0 X
HDA I
PS SYNCHRONIZATION XACK/ 0 X
GROUP NAK/ 0 X
INH1 0 X
PS INTERRUPT GROUP INT 0 X
PS RESET GROUP PSR 0 X

43203 Pin Description

Processor Packet bus Group

The following pins, shown in Table 2, fully conform to
the specification in the iAPX 432 Processor Packet bus

definition of the iAPX 432 Component User”s Guide. The

IP is capable of all defined state transitions. It
uses only a subset of the allowable data transfer
lengths: operands of 1, 2, 4, 6, and 8 bytes are
supported. Figure 4 illustrates the Processor Packet
bus states for thé iAPX 43203 and also conforms to the

Packet bus definition.

Table 2. Processor Packet bus Group

Figure 4. Processor Packet Bus State Diagram for iAPX 43203

System Error Group
ALARM/ (Alarm, Input, low asserted)

The ALARM/ input signals the occurrence cof an unusual

system-wide condition such as power failure. ALARM/ is

113

/;Kf’ jAPX 43203 PIN DESCRIPTION

Processor Packet Bus Group

107

The following pins fully conform to the specification in the 1APX 432
Processor Packet Bus Definition of the iAPX 432 Component User's Guide. The
IP is capable of all defined state transitions. The 43203 uses only a subset
of the allowable data transfer lengths: operands of 1,2,4,6, and 8 bytes are
supported.

T
PIN NAME 1/0 DESCRIPTION
PRQ ~ 0 Packet Request Asserted High
ICS I | Interconnect Status : i
BOUT 0 Enable External Buffers for Quiput Asserted High
ACD15...ACDO I/0 Address, Control, and Data Bus

] | |

Tme = Peka? BRS Bfut=

/174

r-
- hd -
-
-
-
& .
- -
— -
———
-

Processor Packet Bus State Diagram

A

AT ¥

-

;INITIAL STATE

o o ——rp— - — ot i e

NEXT STATE

1 -
Ti

 fRieeeR . & o p
Bus cycle desired R
No bus cycle desired | A

T1

12

Unconditional

T2

T3
- Tw
T1

ICS high
ICS Tow
Cancelled, kaejf

endi g

EﬁAJJZTZﬁ

: | 1 Aeeess-Cancelle "/0 Bccesc Pe"“("S’
B T3 T3 Additional transfer required T
oo Tw ICS low e
Lo e __. T | All transfers comp]eted if current cyc]e
Ti overlassed write T TR R
: Ty Ti is lead or if write but no pending write -
L 11 Current write with pending write
? : T2 Current write with overlapped write
+ Tvo) T Overlapped write e
- /u/ - - e — 7;,. TS loa/" S T i - e
o PRl . S S RO N
T3 I<s Li?L ' |
B _ ‘.-_‘i“”f“—-—;'——l‘* .5._...._.

<I 43305 me&)ﬁ ST

g oi/%&m

P [/7 IR

BIEHE

e

sampled on the rising edge of CLKA.
FATAL/ (Fatal, Output, low asserted)

FATAL/ is asserted by the IP under microcode control
when the processor 1is unable to coniinue due to
various error or fault conditions. Once FATAL/ is
asserted, it can only be reset by assertion of INIT/

(no hardware error checking).

System Wide Group
CLR/ (Clear, Input, Low asserted).

Clear Hardware Error. CLR/ is designed to be used in
a system employing Hardware Error Detection. Assertion
of CLR/ results in a microprogram trap which causes
the IP to immediately terminate any bus transactions
or internal operations which may be in progress at the
time of the error and start a microsubroutine written
to handle that situation. Once the service routine has
been started, it cannot be interrupted by a second
CLR/ assertion. Response to CLR/ can only be reenabled
by assertion of the INIT/ pin. Normally, after a
hardware error fault the microcode will execute its
hardware error routine and then wait for an IPC which

will cause it to reset the IP under microprogram

114

PCLK/

INIT/

control.

After the CLR/ pin is asserted, the IP master and
checkers will try to "sync up" to each other. The
earliest time that the components can bé assumed to be
resynchronized again is at the beginning of the fourth

cycle after CLR/ is asserted.
CLR/ is sampled by the IP on the rising edge of CLRA.
(P Clock, Input, low asserted)

Assertion of PCLK/ for one cycle causes the internal
timers in the IP to "tick™ (process timer decrements
and system timer increments). Assertion of PCLR/ for

two or more cycles causes the system timer to be

reset.
(Initize, Input, low asserted)

Assertion of INIT/ causes the internal state of the IP
to be reset and start execution of the initialization
microcode. INIT/ must be asserted for a minimum of 8
clock cycles. After the INIT/ pin is returned to its
nonasserted state, IP microcode will initialize all of
the internal registers and windows and will wait for a

local IPC.

115

CLEKA,

HERR/

During the first two clock periods that the INIT/ pin
is asserted the HERR/ pin will be sampled to determine
whether this IP is to be a master or a slave proces-—
sor. At this time, if it is a master, the IP will
enable all of its hardware error detected signals so

that they will be valid when INIT/ goes high.

System Clock Group

CLEKB (Clock A, Clock B, Inputs)

CLKA provides the basic timing reference for the IP.
CLKB follows CLKA by one quarter cycle and is used to

assist internal timings.

-

Hardware Detection Group

(Hardware Error Output, 1low asserted) (Open Drain

Output) (Master Input, low asserted)

Asserrtion of the HERR/ pin by the IP indicates that
the IP has encountered a hardware error, either as a
checker checking a master or as a master checking
itself. HERR/ 1is asserted the cycle following the
internal detection of a hardware error except for pins

ADj5-ADg where it may be up to five clocks. Because

116

of the asynchronous nature of hardware error detection
on the AD pins (see AD pin description), HERR/ may
tend to be asynchronous. For this reason when using
HERR/ it is recommended that this pin be synchronized

externally.

After HERR/ has been asserted for a cycle it is
released for the next cycle to allow an external
pullup resistor to bring it high again. After that
cycle, the ©processor may reassert HERR/. Upon
assertion of HERR/ the chip select will become

deselected.

While INIT/ is asserted HERR/ carries information
regarding whether the IP is to perform hardware error
detection oh the peripheral subsystem side. If the pin
is high, the IP will configure as a checker. If the
pin is low, the IP will configure as a master. HERR/
must provide the master/checker information for at

least two cycles preceding the rising edge of INIT/.

Peripheral Subsystem Bus Group

ADy15-ADg (Address/Data, Input/output)

These pins constitute a multiplexed address and data

input/output bus. When the attached processor bus is

117

idle or during the first part of an access, these pins
normally view the bus as an address. The address is
asynchronously checked to see 1if it falls within
(matches) any one of the five window address ranges.
The address is latched on the falling edge of ALE
thereby maintaining the state of a match or no match
for the remainder of the access cycle. The addresses

are then unlatched on the falling edge of OE.

Once SYNC has pulsed high, the ADj5-ADp pins become
data input and output pins. When WR/ is high (read
mode) , data is now accessed in the IP and the output
buffers are enabled onto the AD pins if the OE is
asserted. When WR/ is low (write mode), data is
sampled by the IP after fhe rising edge of SYNC during
the CLKA high time (refer to the discussion of

programmable interface timing).

The address is always a 1l6-bit unsigned number. Data
may be either 8 bits or 16 bits as defined by BHEN/
and ADg. 8-bit data may be transferred on either the
high (AD35-ADg) or the low (AD7-ADg) byte. When 8-bit
data 1is transferred on the high or low byte, the
opposite byte is 3-stated. Twenty-bit addresses are
accommodated by the external decoding of the addition-
al address bits and incorporation in the external CS/

logic.

118

BHEN/

During the clock state in which write data is sampled,
data must be set up before the rising edge of CLKA and
must be held until the falling edge of that CLKA. ﬁead
data is driven out from a CLRA high and should be

sampled on the next rising edge of CLKA.

Hardware error detection sampling is not done syn-
chronously to CLRA. It is sampled by the falling edge
of the OE pin. The internal AD pin hardware error
detection signal is then clocked and output on the
HERR/ pin. At this point it may still not be syn-
chronous with CLKA and should be externally synchron-

ized.
(Byte High Enable, Input, low asserted)

This pin, together with ADg, determines whether 8 or
16 bits of data are to be accessed, and if it is 8
bits, wl';ether it is to be accessed on the upper or
lower byte position. This pin is 1latched by the
falling edge of ALE and unlatched by the falling edge

of OE. BHEN/ and ADy decode as follows:

BHEN/ ADg DESCRIPTION
0 0 16-bit access
0 1 8 bits on upper byte,

119

lower byte tristated

1 0 8 bits on lower byte,

upper byte tristated

1 1 8 bits on lower byte,

upper byte tristated

CS/ (Chip Select, Input, Low Asserted)

Chip Select Specifies that this IP is selected and
that a read or write cycle is requested. This pin is

latched by the falling edge of ALE and unlatched by

the falling edge of OE.

WR/ (Write, Input,low asserted)

This pin specifies whether the access is to be a read
or a write. WR/ 1is asserted high for a read and
asserted low for a write. This pin is latched by the
falling edge of ALE and unlatched by the falling edge

of OE.

PS Timing Group

ALE (Address Latch Enable, Input, rising- and falling-edge-

triggered)

120

The rising edge of ALE sets a flip-flop which enables
Transfer Acknowlege (XACK/) to become active. The
falling edge of ALE latches the address on the ADjs5-ADg

pins and latches WR/, BHEN/ and CS/.
OE (Data Output Enable, Input, high asserted)

During a read cycle the OE pin enables read data on to
the ADj5-ADg pins when it is asserted. Dﬁring a read
or write cycle the falling edge of OE signifies the
end of the access cycle. Specifically, the falling

edge of OE does three things:

1. Resets the XACK/ enable flip-flop, thereby

terminating XACK/.
2. Terminates DEN/ (if read cycle).
3. Opens address latches WR/, BHEN/, and CS/.
SYNC (Synchronized Qualifier Signal, Input, high asserted)
A rising edge on this signal must be synchronized to
the IP CLKA falling edge. This signal qualifies the
address, BHEN/, CA/ and WR/ indicating a valid

condition. SYNC also initiates any internal acticn on

the IP”s part to process an access. It starts the

121

request for data to the IP in a read access. In a
write access, data is expected one or two CLRA®s after
SYNC pulses high. At initialization time, IP micro-
code sets the write sample delay. However, this can

be modified to one clock cycle by making a function

request to the IP to change the write sample delay.

When the hold/hold-acknowledge mechanism of the IP is
used, and once HDA has pulsed high, a SYNC pulse is
required to qualify the hold acknowledge since the HDA

pin can be asynchronous.

PS Buffer Control Group
DEN/ (Data Enable, Output, low asserted)

This pin enables external data buffers which would be
used in systems where the address and data are not
multiplexed as they are in a Multibus system. DEN/
assertion begins no sooner than the CLKA high time of
the first clock of SYNC assertion if a valid, mappable
address range is detected. It is terminated with the
falliﬂg edge of OE. In a write access, it is also

terminated after XACK assertion.

122

PS Interlock Group
HLD (Hold Request, Output, high asserted)

The hold/hold-acknowledge mechanism is an interlocking
mechanism between the peripheral subsystem and the IP.
Hold is used by the IP to gain control of the subsys-
tem bus to ensure that no subsystem processors will

make an access to the IP while it alters internal

registers.

This signal is put out synchronously with the rising
edge of CLKA. Hardware error detection sampling

occurs during CLRA low time.

In special cases it may not be necessary to use the
ELD function interlocking. In this case HDA can be
tied high and no SYNC pulse will be regquired for HDA
qualification. The hardware detects this condition by
noting that the HDA pin was high a half clock before
HLD requests a hold. In this mode the HLD output

still functions and can be monitored if desired.
HDA (Hold Acknowledge, Input, high asserted)

HDA is asserted by the peripheral subsystem when the
IP”s request for a hold has been granted. This pin

need only be a high pulse and can be asynchronous to

123

CLKA. This pin must be followed by a SYNC pulse in

order to synchronously gqualify it.

PS Synchronization Group

XACK/ (Transfer Acknowledge, Output, low asserted)

XACR/ is used to acknowledge that a data transfer has

taken place.

For random or local accesses; XACR/ indicates that a

transfer to or from iAPX 432 memory has completed.

For buffered accesses where the XACR-Delay is not in
the advanced mode, XACK/ signifies that the transfer
from/to the prefetch/postwrite buffer in the IP has

been completed.

For buffered accesses which use advanced acknowledge

mode (XD=0) the formation of an advanced XACK/ signal
is requested. This allows the possibility of inter-
facing to the peripheral subsystem without wait
states. The acknowledge will be advanced if the
access is a read operation and the buffer contains the
required data or the access is a write operation and
the buffer contains sufficient space to accept the

write data. In addition, the access must be wvalid.

124

If XACR/ is preceded by a low pulse on NAK/, then
XACK/ signifies that the access encountered a fault.
If the access was a random access, other than window
#4, the window will be placed in the faulted state and
any further accesses to this window will be ignored by

the IP.

If the IP is programmed to be in advanced acknowledge
"mode (XD=0) and XACK/ 1is not returned before the
peripheral subsystem issued SYNC, then XACK/ will be
postponed until valid data has been established on the

ADj5-ADg bus.
Five conditions affecting XACK/ behavior:

1. XACK-Delay, user programmable through an IP
function request. This parameter establishes
the minimum operating XACK-delay with respect

to the SYNC signal.

2. XACK-enable-flip-flop, set by the rising edge
of the ALE signal and reset by the falling

edge of the OE signal.

3. Internal IP Registers. These are used to
determine validity of the peripheral subsystem

access and establish access modes.

125

4, Type of access behavior: Random, Local or

- e LT T

S. Bus Faults, non existant memory, etc.

Hardware error detection occurs during the first clock

of SYNC assertion.
NAK/ Negative Acknowledge, Output, low asserted)

This signal precedes XACK/ by one half clock cycle in
order to qualify it as a negative acknowledge. This

pin pulses low for only one clock pericd.

When the IP is in physical mode and making a local
access, the use of negative acknowledge may be used to
indicate that the access was made to nonexistant local
address space. This #ill allow determination of the

axres
L5

-] o

nNnroacaceny at
P339 ELV\-’\—UUUA— A=

system initialization time.

This pin could be used to set a status bit and cause a
special interrupt to transmit the information back to

the subsystem.

This signal is synchronously driven from the falling

edge of CLKA. Hardware Error Detection occurs during

126

INHI

CLKA high.
(Inhibit, Output, high asserted)

This pin 1is asynchronously asserted by non-clocked
logic when a valid mappable address range is detected.
It can be used to override other memories 1in the
peripheral subsystem whose address space is overlapped
by an IP window. After initialization, the microcode
sets the INHI mode for each window by loading regis-—
ters in the IP for each window. Once the subsystem is
allowed to make a function request, it can selectively
disable or enable the inhibit mode on each window.

This pin is gated off by CS/.

The selection of the inhibit mode for window 0, when
in buffered mode, causes a corresponding built-in
XACK-delay which delays the acknowledge from going
active until two clock periods after the rising edge
of SYNC. This was done to facilitate most Multibus
systems that use INHI which require that the acknow-
ledge be delayed. When the Advanced XACK/ mode is
programmed, the inhibit mode should not be used on
window 0 when in buffered mode, since the acknowledge

will not be effectively delayed.

Hardware error detection occurs during the first clock

of SYNC assertion.

127

PS Interrupt Group

INT (Interrupt, Output, high asserted)

This output is a pulse 2 CLKA”"s wide, and is synchron-
ously driven from the rising edge of CLKA. Hardware

error detection occurs during CLRA low.

PS Reset Group

PSR (Peripheral Subsystem Reset, Output, high asserted)

PSR is asserted by the IP under microprogram control.
When asserted, the peripheral subsystem should be
reset. In a debug type of control, it may be desir-
able to use this pin to set a status bit in an
external register or possibly cause a special inter-
rupt. This pin is normally asserted by the IP when
the peripheral subsystem is believed to be faulty and

would not respond to other means of control.

This signal is put out synchronously with the rising
edge of CLKA. Hardware error detection sampling

access during CLRA low time.

129

Table 3. 43203 Electrical Characteristics

Table 4. 43203 D. C. Characteristics

Table 5. 43203 A. C. Characteristics

Figure 5. Timing Diagram for ACD Parameters

Figure 6. Timing Diagram for Local Processor Bus Timing

Figure 7. Timing Diagram for Multibus Interface Timing

Software Programmable Interface Timing

To accommodéte a wide variety of PS interfaces, there are
two programmable IP timing parameters: XACK-delay and write
sample delay. These parameters are located in a data
structure in iAPX 432 system memory that is accessible to

the IP via the function request facility.
XACK-delay is a two-bit quantity that specifies the minimum
delay before XACK/ is signalled on a transfer. The minimum

delay can only be attained with buffered accesses. Figure

XT displays the representation of the XACK-delay codes.
Table 6. XACK/ Timing Parameters

129

43203 Electrical Characteristics

Absolute Maximum Ratings

Ambient Temperature Under Bias

Storage Temperature

Voltage on Any Pin with respect to GND

Power Dissipation

TABLE 3. 432073

0o Cto700C
-650 C to +1500 C
-1Vto+7 V

2.5 Watts

ABoLoTE MAXr MUH

29/

SIS

jAPX 43203 D.C. CHARACTERISTICS

2

-
U

VCC=5V+10% Ta=00C to 700C
SPEC DESCRIPTION MIN MAX UNITS
 Vile Clock Input Low Voltage -0.3 +0.5 y
Vihc Clock Input High Voltage 3.5 vcC+0.5 Vv
Vil Input Low Voltage -0.3 0.8 v
Vih Input High Voltage 2 VCC+0.5 V
Icc Power Supply Current - 450 mA
Ii Input Leakage Current - +10 uA
Io Output Leakage Current - 410 uA
Iol @0.45 Vol
HERR/ - 8 mA
FATAL/ - 4 mA
AD15...ADO - 4 mA
OTHER - 2 mA
Ioh @2.4v - -0.1 mA
TagLe <. DO CHARACTERISTICS

iAPX 43203 A.C. CHARACTERISTICS

VCC =5 + 10% Ta = 00C to 700C Loading: AD15...AD0 20 to 100pf
OTHER 20 to 70pf
SYMBOL DESCRIPTION
8 MHz. 5 MHz.
MIN MAX MIN MAX UNIT
GLOBAL TIMING REQUIREMENTS
tey Clock Cycle Time 125 1000 200 1000 nsec.
t;,tf Clock Rise and Fall Time - 10 - 10 nsec.
t1,t2
t3,t4 Clock Pulse Widths 26 250 45 250 nsec.
tis Signal to INIT/ Hold Time 10 - 10 - nsec.
tie INIT/ Enable Time 8 - 8 - tcy
SYSTEM SIDE TIMING REQUIREMENTS
tde Signal to CLOCK Setup Time 5 - 5 - nsec.
tcd Clock to Signal Delay Time - 55 - 75 nsec.
tdh Clock to Signal Hold Time 25 - 3% - nsec.
tsi Signal to INIT/ Setup Time 15 - 25 nsec.
PERIPHERAL SUBSYSTEM SIDE TIMING REQUIREMENTS
tas ADI5...ADO,CS/,WR/,BHEN/ ,
Setup Time to ALE Low 0 - 0o - nsec.
tah AD15...ADO,CS/,WR/,BHEN/
Hold Time to ALE Low 32 - 35 - nsec.
tss SYNC High Setup Time to
CLKA High 50 - 60 - nsec.
tsh SYNC Low Hold Time to
CLKA High 30 - 40 - nsec.
tsw SYNC High Pulse Width 50 2 tcy 60 2 tcy nsec.
tds Write Data Setup to
Sampling CLKA High 10 - 20 - nsec.
tdh Write Data Hold to Sampling
CLKA Low (Advanced XACK/) 10 20 - nsec.
tdhx Write Data Hold to XACK/ 5 5 - nsec.
tasy AD15...AD0,CS/,WR/,BHEN/
Setup to SYNC 120 - 160 - nsec.
tsdh CLKA High to HLD,INT,PSR - 75 - 90 nsec.

TARLSE 5() AC CHARACTERISTICS

}:3

q)
(k

SYMBOL DESCRIPTION

8 MHz. 5 MHz.
MIN MAX MIN MAX UNIT

PERIPHERAL SUBSYSTEM TIMING RESPONSES
tsdh CLKA High to HLD, INT,PSR 75 - 90 nsec.
taih Valid AD15...ADO,CS/

to Chip INHl Va]id Delay , - 80 - 85 nsec.
tede OE to DEN/ Delay - 65 - 70 nsec.
tead 0E to Enable AD15...ADO Buffers

Delay (Read Cycle) - 70 - 75 nsec.
tdad OE to Disable AD15...ADQ Buffers

Delay (Read Cycle) - 52 - 55 nsec.
tdsx AD15...ADO Read Data Valid

Setup to XACK/ Active A : '

(Non-advanced XACK/) 20 - 20 - nsec.
tced CLKA High to Enable AD15...ADO

Buffers Delay - 70 - 75 nsec.
tevd CLKA High to Valid Read Data Delay - 80 - 90 nsec.
tox 0OE Inactive to XACK/

Inactive Delay - 80 - 90 nsec.
tdds AD15...ADQ Disable Setup

to DEN/ High 0 - 0 - nsec.
txde XACK/ Low to DEN/ High

(Write Cycle) - 35 - 40 nsec.
tecde CLKA High to DEN/ Low - 70 - 75 nsec.

XACK/ TIMING CHARACTERISTICS

Buffered Accesses with XD=0
tax ALE High to XACK/ Valid 0 65 0 70 nsec.
tdsx AD15...ADO Read Data Valid ;

Setup to XACK/ valid

(When internal state does not

allow XACK/ before SYNC) 20 - 20 - nsec.
tadx Valid AD15...ADO to XACK/ Valid

(when internal state allows

XACK/ before SYNC) - 120 - 140 nsec.

Buffered Accesses (With
XD=1 or XD=2) or Random Accesses
tdsx AD15...ADQ Read Data Valid

Setup to XACK/ 20 - 20 - nsec.
Faulted Accesses
tsdl CLKA Low to NAK/ - 75 - 90 nsec.
tsnx Setup of NAK/ to XACK/ 50 - 50 - nsec.

Note: A1l timing parameters are measured at the 1.5 Volt level except for CLKA
and CLKB which are measured at the 1.8 Volt Tevel.

TheLe J¢q AC CHARNCTERISTICS
(29D

LA‘C” LATG’-(;;\‘mam

LOW HIGH Lr.rt'(.'\v{ SIRECH Read e ATy 2

DATA Lewd HeooH
Hit,

’

RGICTCEE (5

3

AN

o —1 0\ [\

158

Reeess

Hleed
(m-<ab)

we L 1

CounT

EFL LS

et TE i '
IWACLE

ACD
RKigore 5 St = T/AING 300]

F(Gue& A Locm P%Cfrsscﬁ fus T HWG

808l
CLK, / :K / B N _/ B NS/ A N
%289
K-— Ly
L N
Al —— 7] \
- Lewun —) K¢ cupK
ADS . ADG X VALID WRITE DATA
_\: ~tewvr bepa 1 € CLVD l
& \
“ECUAT 3otaly + f.m.c‘lv((»“y(

W
42205
ALE ,_________.7{ \¥
tss synch oTiger se hep

VAR SN A N2 N

‘A Nn__/
Sy /S em . N e TN

- k— {reug — K—— Loy
ADK....AD/)Q VAL TANK S Ayl)<

At ROARL w i1E,
LATA Anple

— ’——\
/ Ty \ j’ ¥ \‘
~lygs e, 4 ity +trtirripg

J .

Ay vty ripd
TinNl (A kA 0 s .,u,,'/_'/w}a;‘ wens

Hiz |

nmulilos

RLVI XSRS |

Ll

mwIC /

42202 LkA

SINC

witeanelwe) e
Inta sa g pem
(wepgt

vAckf (p<1Y)

L~

A —— s

-

/2 S N e S N s A

=

Flowee. 7

1’—:5""'/66‘{

muttibus e € o minioum occess Y1k
(\J\AMJ 42205 occess wirk S{reien W NP Q%Vu)'l:b:__,c‘(ﬁ,‘;DS

Moctisos T ATeRFAcE. TMING

Inhibit WR/ XDq XDg XACK/ Formation
Mode
0 X 0 0 Advanced Acknowledge

(XACK/ can occur before SYNC)
0 1 0 o1 Rising edge of SYNC
0 0 0 1 Rising edge of SYNC plus 1 Clock
0 1 1 0 Rising edge of SYNC plus 1 Clock
0 0 1 0 Rising edge of SYNC plus 2 Clocks
1 X 1 0 Rising edge of SYNC plus 2 Clocks
1 X 0 1 Rising edge of SYNC plus 2 CLocks
X X 1 1 I1legal condition

Note: X=don't care condition

TASLY 6. RiguredF - XACK/ Timing Parameters

Write sample delay is a one-bit quantity that S§ecifies the
position of the internal write data sampling pulse with
respect to the SYNC pulse. If WSD=0, write data is sampled
one clock period after SYNC is asserted. If WSD=l, write

data is sampled two clock periods after SYNC is asserted.
When initialized, the IP operates with the slowest interface
timing (XD=10B, Write Sample Delay = 1B).

Hardware Prcgrammable Interface Timing

In addiion to the software programmable interface timing,
the design of hardware external to the IP may control the
delay in formation of XACK/.

Noting that the rising edge of ALE sets the XACK/ enable
flip~-flop, ALE (style 2 in Figure 8.) may be used to
postpone the generation of XACK/. The falling edge of ALE

in both styles latches AD;5-ADg, CS/, WR/, and BHEN/.

Figure 8. Two Styles of ALE

Buffered Accesses
Window 0 has the special ability to be used in buffered

130

Y 2¢)

ADI5 .., ADG | wif es/, BHeN

1 T

ALE STYLE | ‘ | : 0

i : \
, .
/ ¥

ALE STYEZ \

Fie HBE - TW0 SINES oF ALE

Q(_{

XACK - ENNLE
FUIP fLop

ME T ' Q|

NA K/

NAY
g

[g

[~9

o€ __JI_'E

0_-5,

VALID ADDRF 4%

wiNDHOW
LYSIT
Lo

(J('..._Jt__.R

READ DA DELIWVERELD
BUFFERED wRhvie DATA

ACCEPIED

)
/

UNBUIFERED WRITE
ACCESS comix.eten

ﬁGDUR @‘ T Frovyasinal .)"ﬁ(V\/lnlc-((-(c."'.lﬁ\vv(.,

ALK
DoAY
THMEA-

WMADPE .
\ 1 rACK.]

XEER ComCLETE..

KACK. 1€

é “ ble

~

access mode. High speed data tansfers to or from sequent'{"
locations in an iAPX 432 data segment are expedited by the
IP through the use of an eight-double-byte (l6-byte) FIFO.
When an attached processor acquires data from an iAPX 432
data segment, the IP prefetches data from iAPX 432 memory.
When an attached processor transfers data to an iAPX 432
system, the IP aggregates data in the FIFO before it
postwrites into iAPX 432 system memory. Transfers into or
out of the 1APX 432 system are performed in the largest size
data packet .as possible. The IP has the capability to form
8-, 6-, 4-, 2- and 1l-byte transfer requests. An IP will
transfer smaller sized packets when necessary to complete a

transfer that is not an even multiple of 8 bytes in length.

Since data transferred on a processor Packet bus must always
be right-justified, an IP performs byte packing or unpacking
when data is moved. Read data from the iAPX 432 memory is

acquired in 8-byte packets. The attached processor may use
an 8- or 1l6-bit bus interface to the ID. Tables 7 and 8
display the FIFO action for transfers of data from an
attached processor to iAPX 432 memory via the IP.

Table 7. 8-bit Processor interface

Table 8. 16-bit Processor Interface

Hardware Error Detection with the 43203

131

BHEN/ AQ AD7..ADO Time
1 0 Byte 6 6
1 1 Byte 5 5
1 0 Byte 4 4
1 1 Byte 3 3 AP Bus
1 0 Byte 2 2 Transfers
1 1 Byte 1 1
1 0 Byte O 0
XXXX XXXX
XXXX XXXX
XXXX XXXX
XXXX XXXX 8 Double Byte FIFO
XXXX Byte 6
Byte 5 Byte 4
Byte 3 Byte 2
Byte 1 Byte O
XXXX Byte 6 Data Fields of
Processor
Bus Packets
Byte 5 Byte 4
Byte 3 Byte 2
Byte 1 Byte O

XXXX~ Undefined
TRBLE 7 =====82 - 8 bit processor interface

| A

AN

[

BHEN/ A0 AD15 AD8 AD7 ADO

Byte 8
Byte 6
Hi-Z
Byte 3
Byte 2
Hi-Z

HOOFOO
OO OOO

XXXX
XXXX
XXXX
XXXX
Byte
Byte
Byte
Byte

WO

XXXX

Byte
Byte
Byte
Byte

W o~

Byte 7
Byte
Byte
Hi-Z
Byte
Byte

O = o

XXXX
XXXX
XXXX
Byte
Byte
Byte
Byte
Byte

oM B OY OO

Byte 8

Byte 6
Byte 4
Byte 2
Byte 0

XXXX - Undefined
TRALE B ISgm==&x - 16 bit processor interface

13165

Time

5

4

3 AP Bus

2 Transfers
1

0

8 Double Byte FIFO

Data Fields of
Processor
Bus Packets

The 43203 presents an additional challenge in the area of
hardware error detection, since two separate processor

interfaceé are supported: the iAPX 432 system and the

peripheral subsystem.

When INIT/ is asserted, the FATAL/ and HERR/ pins of the
43203 are examined to establish the mode that each interface

is to enter.

Representation of MASTER/CHECKER mode at initialization

FATAL/ HERR/ iAPX 432 Side Peripheral Subsystem Side

0 0 MASTER MASTER
0 1 MASTER CHECKER
1 0 CHECKER MASTER
1 1 CHECKER CHECKER

Logic external to the 43203 must provide these signals.

Peripheral Subsystem Interface Timing

iAPX 432 systems are synchronous digital systems. The

peripheral subsystem(s) employed with an 1APX 432 system

132

need not share the common (CLKA, CLKB) time base. Rather,
the PS may operate at an independent frequency, allowing the
system designer to tailor the cost/performance ratio of the

PS to product needs.

The asynchronism of the PS to the iAPX 432 is resolved by
the IP signal SY¥YNC. A synchronizer external to the IP is
used to generate SYNC, allowing many forms of peripheral
subsystem to be attached. Two examples of interfaces to
standard Intel peripheral subsystems are described in this

section (Refer to Figures 10. and 11):

Interfacing 8086 Component Bus to the IP

Interfacing the Multibus to the IP

Timing calculations are included to show interface design

and performance.

Interfacing the 8086 Component Bus to the IP

The following diagrams and calculations illustrate the
design considerations in interfacing the 8086 component bus
to the IP. Timing calculations are shown for both read and
write accesses. The read access example assumes that the IP
is operating in buffered mode and the buffer contains the
required data. The calculations shown allow 8086 operation

without wait states.

133

Table 9.

Maximum Mode 8086 System

8086 Write Data Setup Performance = -~tcclh + tclecl + tcldv

-15 + 250 + 110

345 ns; 4 MHz. 8086

-15 + 200 + 110

295 ns; 5 MHz. 8086

43203 Write Data Setup Requirements = tss + 2tcy + 0.5tcy +

tds

8 + 2(200) + 0.5(200) + 20 528 ns; 5 MHz. 43203

8 + 2(125) + 0.5(125) + 10

331 ns; 8 MHz. 43203

8086 Write Data Hold Performance

= —~tcllh + 3tclel + teclch + tchdx

=15 + 3(250) + 151 + 10

896 ns; 4 MHz. 8086

~-15 + 3(200) + 118 + 10 = 713 ns; 5 MHz. 8086

134

(27 .

Ficeee 10 MAXMOM - MODE - INTRFAcE (POB6)

15

>

)

P

7 S DR

R Y
Y ! + -._.q{‘ oy . — .
v l—_' o L (T >}—l s
: —__.7 L ““
1A 3 | Q‘? i
NUR TR N _ ; I :
N 1 S ey :
| | i ! i
T o o
B R R P 3
_ |- :
. | - '
Afn (d N OASF
vM‘*l" <I : "
. By i
cE l - ‘
:‘2’.,)1/ £ f{] -
| : N |

et
- T~
el
T S—

) ..I - o Al £
B R " —— i
~ B =] [SS— - HeA .
i
: — i

43203 Write Data Hold Requirements = -tss + 4tcy + tdh

-8 + 4(200) + 20 812 ns; 5 MHz. 43203

-8 + 4(125) + 10 502 ns; 8 MHz. 43203

8086 Read Data Setup Requirements = 3tclcl - tcllh - tdvcl

3(250) - 15 - 30

]
~J
o
(¥)]
3
n
~e
e
.
I3
i
]
[¢0]
O
[40]
[4)}

3(200) - 15 - 30 555 ns; 5 MHz 8086

43203 Read Data Setup Performance

tss + 2tcy + tsd + 0.5tcy + tevd

[0]

+ 2(200) + 8 + 0.5(200) + 90

516 ns; 5 MHz. 43203

[os]

+ 2(125) + 8 + 0.5(125) + 80 331 ns; 8 MHz. 43203

Multibus Interfacing

Table 10 demonstrates the interface of an IP to an Intel

135

Multibus peripheral subsystem. Calculations are included

for minimum Multibus access time.
Table 10. Multibus Interface to the IP Calculations

Table 1l1. IP/GDP Operator Comparison Table
, v : | “ehie @
(where 15 Tais Tebled

136

~

3r BRAND 64 LEAD QUIP SYSTEM

3362-0000 QUIP BURN-IN/TEST SOCKET

Leadless Carrier

NZ

Connector Body

Convenient ZIF
Socket

Rapid interconnection to cir-
cuitry is accomplished with a
compact 64 lead zero-inser-
tion-force connector. Gold
tipped wiping leaf contacts
insure a clean, gas tight inter-
face with the ceramic carrier.
The connector insulating ma-
terial is the same durable
glass-filled thermopiastic prov-
en in our “Scotchflex” prod-

uct line and is flammability
rated at 94 V-O. Solder pins
are located on standard .100"
centers making it compatible
with existing printed circuit
board design guidelines and
standard assembly equipment.
A “snap-in” heat dissipating
cover holds the chip carrier
in place. An ordinary screw-
driver permits quick removal.
See figure 1.

TYPICAL PRGPERTIES

Complete.Burn-in
Capability

The 3M QUIP System in- .
cludes burn-in connector.
This connector facilitates high
volume production testing at
a minimum cost. The durable
contacts and body ensure re-
liable testing up to 200°C.
The heat dissipating cover
features a positive locking
quick release latch. See fig-
ure 2.

PHYSICAL

) CERAMIC PACKAGE

3M PART NO. 3534 SOCKET

3M PART NQ. 3362 SOCKET (BURN-IN)

Cover: copper alloy.

interface.

Caramic: 94% Al; O;—~Black
Metallization: Gold (80 in. min.) over nickel and refractery.

Body: glass filled polyester.
Contacts: copper alloy 725 with .000030" goid over nickel

Latch: stainless stesl.
Cover: copper alloy.

Contacts: gold plated (.000010 in.) BeNi.
Bcdy: polyphenylene suliide (Ryton R4)
THERMAL
64 LEAD QUIP SYSTEM 8,,: 50°C/watt maximum thermal resistance
ELECTRICAL

€4 LEAD QUIP SYSTEM

Maximum resistance: .500Q.

Maximum interlead capacitance: 5 pfd.

Dielectric withstanding voitage: 1000 volts at sea level.
Current rating: 1 amp. per lead, limited to 30°C rise per
lead.

ENVIRONMENTAL

64 LEAD QUIP SYSTEM

3M PART NO. 3362 SOCKET (BURN-IN)

Temperature rating: —55°C to 105°C.

“Ryten is & ragistersd trademark of Phiilips Chemicai Co.

EL-QUP{78.2]1R2

* Electronic Products Division/3M

M CENTER <« SAINT PAUL. MINNESQTA 55101

Temperature rating: —55°C to 200°C.

[3bA

LITHO tN US.A.

Naw
- b~ D25 diaks
- Product Buiistin

" -‘\: 3
H"" ..
: \ e

L ' < ~
N b } -y "l L
-3 E A\ s"-ﬁ‘?f‘?“,‘,“ S : P N

f T e T \\\

i i e .‘\\\\\ .

i SRR R “//% //// / ZA \\\\ / SRR s TR

At

'.)] P TN .
ol

A Complete Quip System From

The Source

The 3M Brand Quad-In-Line
package system brings built-
in simplicity and lower total
costs to microprocessor pack-
aging. Its smaller size and
low-profile cut package area
by one-third, allowing for
greater board density than
with conventional 64 lead
dualin-line configurations.
Shorter trace lengths resuit
in lower lead resistance and

capacitance. Faster switching
times and improved system
performance can be achieved.
A carrier to connector polar-
izing feature eliminates costly
assembly errors.

EISE

Reliable Ceramic
Package

The heart of the 3M QUIP
System is a reliable, co-fired
multilayer leadless package.
Its design permits easy re-
placement and field repair.
Costly brazing and metallized
leads are eliminated. The
rugged, optically opague cer-
amic structure is chemically
inert, dimensionally stable
and thermally conductive. A
low thermal resistance makes
possible the use of IC's with
greater power requirementsf{{
increasing overall circuit per-
formance. '

J
I

nvyr
\

(_, NOTES:

wrnyus s BT E Ty

I

[SRS

T

LEADLESS QUAD IN-LINE SCOPE:
CERAMIC PACKAGE
SPECIFICATIONS —
PHYSICAL:
PIN #1
" ENVIRONMENTAL:
2
[1.10
(27.94)

J

1.89

E !&ﬂﬂ poanRanenonNNONRAQERRARANO NN |

(48.01)

E"Luuu § _._UUU'”“"
(.fgﬂ%) (7 62)

CONNECTOR DETAIL

7
)
|

'..J

i-—-#{wv#v————-—-—-
17

T 1{4.32)

| —¢et4t— — — et ¢

31 SPACES @ .050/(1.27) EA.

"\

HOLE PATTERN DETAIL

INSULATOR MATERIAL —

CONTACT BASE METAL -
CONTACT INTERFACE

TEMPERATURE RATING~

g « M ‘

THIS SPECIFICATION DETAILS THE REQUIREMENTS FOR A MULTIPOSITION
LEADLESS CERAMIC PACKAGE SOCKET

GLASS REINFORCED GRAY THERMO
PLASTIC U.L. FLAMMABILITY RATING 94V-0
COPPER—-NICKEL~TIN ALIL.OY 725

~ 0.000030" (.762 um) MIN, GOLD QVER
0.000050" (1.27 um) MIN. NICKEL

-679F to +2219F
{-66°C to +1069C)

.00 .08

R__.._‘Zi fan [

Pt bbb b p— = — + 2 ¢+
L —4eo e — — -+r¢+;' S

(1.64)

PIN#1

R ——
ISSUE DATE AND
IMPORTANT NOTICE TO PURCHASER. All . Aechaici a ISSUE s REV.] CH.
mendalms comaned herens g hasad m“f:sl:;“:cugl‘u:e:‘ mf'nﬂu‘;‘d&ff Tt:‘u S CHANGE RECORD
accaacy of compleleness thecgat o5 nol quaranieed, and the kiHowing is mide = hew ol
all waannies, sapiess of inplied L & g
Seller's and la “ 1 hatl by F iy of
mﬁ::ﬁ«l;:‘ov:%‘:u.:A::;%?rz‘x‘ xlel:?lﬂ.g“:e'l‘:u::ln: u:]v::l;:‘c!:]\:.‘:? s::f“”l{:“l?:::\l:vfglbé::; emid CU("PANY
gy, hoss or damage. duect of consequennal. antng ot of the use of or the natubty
se I el B |) ity of i [ELECTROKIC PRODUCTYS
:.‘.‘s“..f..’!.h’:.’,“?.’sf ' ond s askumes 3 ok nd g .‘.ff":'.fmlz;'f:'.‘ﬁ Z‘.,‘."A‘fé:.?.'. 3534 QUIP SOCKET
dMus MIET h
o1 el nul-lmm mxcm:‘cm signed by nlhv.;?arl‘s"c:ll?c?;‘nm:v:muajuae:“ any huce St- P au' SPECI FIC AT'ON
: Minnesota ‘
TOLERANCE UNLESS NOTED INCH 64 LEADS
» (mm) SCALE
0 .00 .000
INCH | . | £.02]+ .005{ DR A SK. 77.073
mm £ .6 .13 V// /4 APP-

NOTES:

1.) CERAMIC MAT L: AISi Mag 777 (94% Aly03 — BLACK), "=

2) METALLIZATION: REFRACTORY METAL + NICKEL + GOLD (60u” MIN.).
3.) PACKAGE SUPPLIED TO 3M SPEC, NO. $.90-007,

4.) MAXIMUM LEAD RESISTANCE 600N,

5.) MINIMUM WIRE BOND PAD SIZE IS .025 LONG X .010 WIDE.

6.) DIE PAD, SEAL RING, AND NO. 1 LEAD ARE ELECTRICALLY ISOLATED.

.020 X 450 CHAMFER TYP. &

(508}
wnmmm@nwmmmnmmmmumnﬂ\

!)
1 | ! ‘
i i l " :
1654 020 .085+.009
{41.02 .508) (2162.228) 2
' 620 = .520 025 1
| (321 {13.21) (:635)
N
IE 060] %\
P 152)
1.00+.020 .200 N 620+ .006 | N
(25.4 £ 508) (5.08) A ' (16.75 x .152) Ji O
—T 385 455
(675! (11.58)
{2)

400
l..l.' {10.16)°%
aT0
(11.03) S
620 1 .008
' 115.76 £ .20) 5™

045 SQ. MIN. TYP 64
{1.14) -
DIE PAD FLAT WITHIN 203
{076)

USED ON

INCH
{mm)

LANRANAANANARNNRRARRRNNARARANAARRI -

I p—

IMPORTANY NOTICE YO PURCHASER: AN statenients. technical mioimaton and 1ecom
Mmeadations coilaned herew are based 00 1ests we beheve 10 be rchable. but the
ety o complelraess thereahis ol quarsnteed. ad the llowsng 1s made 1 ke ol
WM waranlies. express of wnphed

Sctier's and manulachuer's oidy obligahon Shat be to replace Such quantiy at the
product proved 10 be delective Reher selles nor manutactures shall be bable fos any
injey. WSS 0 damage. doect & cansequential. ansiig oul of Ine ue of o Il natstily

i

COMPANY

1SSUE DATE AND

CHANGE RECORD | REV.

ISSUE CH.

% X ¥ st b ELECTRONIC PRODUCTS
s e e s S I e Surshuty 4 e ot bt 64 LEAD, QUAD INLINE
therewdn No Slatement 07 1eCHMmend.ison nof Contained heoen Shatl Dave any liate St Paul
1 ellect witi n 30 agreement siped by ofhicers ol sete aid manulacter . C H ' P CA R R l E R

Minnesota
TOLERANCE UNLESS NOTED INCH
{mm) SCALE
.0 .00 .000
INCH | £.1 |1 .0galt .005] PR- /& ST-88364-By, ™
mm +5 |+ LZZ’;;Z/ APP, 3 78-8018-487t

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	004a
	005
	005a
	006
	007
	008
	009
	010
	011
	012
	012a
	013
	013a
	014
	015
	016
	017
	018
	019
	019a
	020
	021
	022
	022a
	023
	024
	024a
	025
	026
	026a
	027
	028
	028a
	029
	030
	031
	031a
	032
	032a
	033
	034
	034a
	035
	036
	037
	038
	039
	039a
	040
	041
	042
	043
	044
	045
	046
	046a
	047
	048
	048a
	049
	050
	050a
	050b
	051
	051a
	052
	053
	053a
	053b
	054
	054a
	054b
	054c
	054d
	054e
	054f
	055
	056
	057
	057a
	057b
	057c
	058
	058a
	058b
	058c
	059
	060
	060a
	061
	061a
	062
	062a
	062b
	063
	063a
	064
	064a
	065
	065a
	066
	066a
	066b
	066c
	066d
	066e
	067
	068
	068a
	068b
	069
	070
	070a
	071
	071a
	071b
	072
	073
	073a
	074
	074a
	075
	076
	077
	078
	078a
	078b
	079
	080
	080a
	080b
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	108a
	108b
	108c
	108d
	108e
	108f
	108g
	108h
	108i
	108j
	108k
	108l
	109
	110
	110a
	110b
	110c
	111
	112
	112a
	113
	113a
	113b
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	129a
	129b
	129c
	129d
	129e
	129f
	129g
	129h
	130
	130a
	130b
	131
	131a
	131b
	132
	133
	134
	134a
	135
	136
	136a
	136b
	136c
	136d

