
intJ
Reference Manual for the
Intel 432 Extensions to 'Ada

172283-001

REFERENCE MANUAL
FOR THE INTEL 432

EXTENSIONS TO ADA

Order Number: 172283-001

Copyright e 1981 Intel Corporation
I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

Addi tional copies of this manual or other Intel Ii terature may be
obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind wi th regard to this
material, including, but not limi ted to, the implied warranties of
merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in
this document. Intel Corporation makes no commi tment to update nor' to
keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the
property of Intel Corporation. Use, duplication, or disclosure is
subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9(a)(9).

No part of this document may be copied o~ reproduced in any form or by
any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates
and may be used only to identify Intel products:

BXP
CREDIT
iR
ICE
iCS
iMMX
Insite
IntelR
intelR

Intelevision
IntellecR
iOSP
iRMX
iSBC
iSBX
Library Manager
MCSR
Megachassis

Micromainframe
Micromap
MultibusR
Multimodule
Plug-A-Bubble
PROMPT
RMX/80
System 2000R
UPI

and the combination of ICE, lCS, iRMX, iSBC, iSBX, MCS, or RMX and a
numerical suffix.

Ada is a trademark of the Department of Defense (Ada Joint Program
Office) •

VAX and VMS are trademarks of Digital Equipment Corporation.

ii MB 8112

REV. REVISION HISTORY DATE

-001 Original issue 12/81

iii

Intel 432 Extensions to Ada

PREFACE

About this :Manual

This manual defines Intel Corporation" s extensions to the Ada· programming languag e.
The definitions in this manual are specified as additions and revisions to the official
definition of the Ada language contained in the U. S. Government's Reference Manual
lor the Ada Programming Language, Proposed Standard Document (hereafter referred
to as the DoD Ada Manual). Specific references in the following pages assume access to
the edition published by the United States Department of Defense in July, 1980 and
later reprinted in November, 1980. That edition is available from the Intel Literature
Department.
This manual is presented as part of the reference material for Intel's initial implemen­
tation of the Ada programming language. The initial implementation uses Intel's iAPX
432 Micromainframe™ products as execution vehicles for compiled programs. To fully
accommodate the power of the iAPX 432, Intel Corporation has defined an extended Ada
(hereafter referred to as 432 extended Ada). 432 extended Ada is a proper superset of
Ada. Thus, any correct Ada program will compile and run correctly as a 432 extended
Ada program.

The first compiler release is hosted by the vA)(!M 11/750 or 11/780 system (under con­
trol of the VMS™ operating system) and generates code for the iAPX 432. This exten­
sions manual does not discuss the initial compiler implementation and specifically does
not describe unimplemented features of Ada in its first release. For detaiis on the
compiler and the unimplemented features, see the Intel 432 Cross Development Sys­
tem VAX/VMS Host User's Guide, Order Number 171870.

The Intel 432 Ada compiler is presently an incomplete implementation
of the Ada programming language. It is intended that the Intel 432
Ada compiler will be further developed to enable implementation of the
complete Ada programming language, and then be submitted to the Ada
Joint Program Office for validation.

The descriptions in the following pages assume an understanding of the Ada language.
Some code examples use a package called iMAX 432. This package is presumed to con­
tain some services that might be made available by an iAPX 432 operating system. The
details of the package are not specified herein and should not be considered important
except for exposition purposes.
This manual is intended to introduce and define the extensions rather than to fully
describe their use. Many of the code examples are non-compilable skeletons and are
meant to serve merely as illustrations of correct usage.
The remainder of this manual is divided into two chapters as follows:

• Chapter 1 presents a general rationale for the design of the 432 exten­
sions to Ada.

• Chapter 2 specifies the extensions, explains the motivation for each
extension, gives some short code examples to illustrate usage, and lists
the additions and/ or revisions needed to incorporate each extension
into the DoD Ada Manual.

• Ada is a trademark of the Department of Defense (Ada Joint Program Office).

'llIMicromainframe is a trademark of Intel Corporation.
VAX and VMS are trademarks of Digital Equipment Corporation.

iv

Intel 432 Extensions to Ada

Related Intel Literature
The following list describes related Intel publications that are recommended as supple­
ments to this book. Intel manual order numbers are listed and the address of the Intel
Literature Department is on the back of the title page.

• Re/erence Manual/or the Ada Programming Language. Order Number:
171869-002. This second Intel reprint of the November, 1980, edition of
the authoritative Department of Defense definition of the Ada language
includes Appendix F, a description of the implementation dependent
characteristics of the Intel implementation of Ada.

• Intel 432 Gross Development System VAX/VMS Host User's Guide. Order
Number: 1'71870. This is a User's Guide for the first Intel implementa­
tion of an iAPX 432 extended Ada compiler. Programs are compiled on
the VAX host. The resultant iAPX 432 code is downloaded to an iAPX 432
execution vehicle for execution and testing. This manual describes hcsw
to invoke and control the VAX-hosted compiler. Various other facilities
for compiling and linking programs are also described.

• iAPX 432 General Data Processor Architecture Reference Manual. Order
Number: 171860-002. This manual describes in detail the architectural
design and operation of the iAPX 432 General Data Processor, Release
2.1.

The predecessor to this manual, Engineering Specification for the iAPX 432 Extensions
to Ada, Order Number 171871, is obsolete.

v

Intel 432 Extensions to Ada

TABLE OF CONTENTS

1. DESIGN GOALS OF THE EXTENSIONS ... 1-1

2. THE INTEL 432 EXTENSIONS TO ADA ... 2-1
2. 1 432 Extended Ada, an Overview ... 2-1
2.2 The ANY-ACCESS Type ... 2-1
2.3 Package Types .. 2-2
2.4 Exporting Package Bodies 2-5
2.5 Ada Task Types vs. 432 Extended Ada Package Types 2-6
2.6 Object Refinement and the' at' Operator .. 2-6
2.6.1 Example: Aliasing an Integer Variable ... 2-8
2.6.2 Example: Aliasing an Array Slice .. 2-8
2.6.3 Example: Refinements Used as Procedure Variables 2-8
2.6.4 Example: Refinements to Dynamically Hide Attributes 2-9
2.7 Retyping Declarations. 2-10
2.7.1 Example: Retyping a Variable Identifier .. 2-10
2.7.2 Restrictions on Use of 'retypes' Declarations 2-11

vii

(

Intel 432 Extensions to Ada

1. DESIGN GOALS OF THE EXfENSIONS

A systems implementation language for Intel's iAPX 432 architecture should be a
state-of-the-art, high-level programming language that conveniently exposes the con­
cepts and capabilities of the iAPX 432.
Ada forms an ideal base for an iAPX 432 systems implementation language primarily
because the design goals for Ada so closely match those of the iAPX 432. The main con­
cepts and facilities of Ada are supported by the hardware facilities of the iAPX 432.
However, Ada has been designed primarily to support the development of embedded
systems, whereas the 432 also supports the development of dynamic systems. Embed­
ded systems are characterized as static; new users, programs, and devices do not
arise during user program execution. Thus, embedded systems have no need to deal
with the spontaneous appearance of new entities and their new demands. Dynamic sys­
tems, on the other hand, are characterized by the appearance of new users, new pro­
grams, new devices, and new demands during program execution. Program execution
in dynamic systems requires the ability to describe and manipulate entities defined
and created after system initialization.
The following situations are typical of dynamic systems:

Implementation to be selected at execution time. A user wishes to define several alter­
native implementations of a package, desiring to programmatically select a specific
implementation based on the execution-time needs of the system, e.g., a specific sort­
ing algorithm is chosen based on the number of items to be sorted.

Implementation to be altered at execution time. A user wishes to suspend his program
and replace the implementation of a package with a new one, e.g., terminal output is
replaced with file output to limit information displayed to the console during a particu­
lar execution.

Implementation unknown. A user wishes to write programs that deal with other user
programs or subprograms having unknown implementations, e.g., a program to graph
functions is designed to accept arbitrary functions from other users.

Data structures partially unknown: A user wishes to supply a procedure that depends
only on some aspects of the objects (Le., data structure instances) it manipulates,
allowing other aspects to remain unknown, e.g., a sort requires only that an integer be
the key that it sorts, leaving unspecified any other parts of the objects to be sorted.

Data structures entirely unknown: A user wishes to write procedures that manipulate
objects of arbitrary structure, either performing very general operations or investigat­
ing the object's type at execution time, e.g., garbage collection algorithms are
required to manipulate arbitrary objects.

Ada supports applications such as those described above only if the user recompiles
those parts of his system that were unknown or changing and then restarts his pro­
gram. The iAPX 432 architecture supports these dynamic applications directly. How­
ever, in order to use these features, a systems implementation language must
effectively describe such manipulations without requiring recompilation. The 432
extensions to Ada enable effective description of dynamic manipulations, allowing both
compile-time and execution-time type-checking.

1-1

Intel 432 Extensions to Ada

2. THE INTEL 432 EXTENSIONS TO ADA

2.1. 432 Extended Ada, an Overview

Intel has defined and currently supports four constructs as extensions to Ada:
(1) the predefined type: ANY-ACCESS,

. (2) the package typing phrase: package type,
(3) the refinement operator: at, and
(4) the keyword: retypes.

These extensions are easily grasped by users who know Ada. Furthermore, no
"unlearning" is required since Ada is a proper subset of 432 extended Ada.
All the extensions are aimed at increasing the power of the language in de aling with
dynamically defined entities. They allow users to manipulate entities whose definitions
were compiled after some parts of the user program began execution. They allow
users to manipulate entities whose implementations may change dynamically.
The following sections detail each extension indiVidually.

2.2. The ANY...ACCESS Type
The 432 extensions supply a predefined type called ANY-ACCESS. Variables of type
ANY-ACCESS may be assigned values of any Ada access type (Le., any identifier typed
as access), provided that the access values are explicitly qualified to be of type
ANY-ACCESS. Variables of type ANY-ACCESS cannot be dereferenced directly; instead,
they must be qualified to be of a specific access type via UNCHECKED....cONVERSION.
The ANY-ACCESS type provides a simple way for programs to manipulate entities whose
types are unknown until execution time, as often occurs in operating systems and util­
ity programs. For example, the following procedure writes out a (access) data struc­
ture as a string of N bytes onto an external file:

procedure DUMP(ANY.JJSEILDATA-DBJECT: ANY-ACCESS) is
type MEMORY-IMAGE is array(SHORT-DRDINAL range 0 .. 65535) of BYTE;
- - assures max imum size
type OBJECTJYPE is access MEMORYJMAGE;

any operations such as
ANY.JJSER-DATA-DBJECT.WHATEVER

are always illegal, since no structure is assumed for
objects reached through ANY-ACCESS values. Unsafe
conversions are used to assert structure:

function CONVERT JO-DBJECT is new
UNCHECKED-.LONVERSION(ANY..ACCESS, OBJECT....TYPE);

OBJECT: OBJECTJYPE := CONVERTJO-DBJECT(ANY.JJSEILDATA-DBJECT);
N: SHORT...oRDINAL :=

iMAX432 . LENGTlLDF ...13EGMENT (ANY.JJSEILDATA-DBJECT);
this iMAX432 function returns actual length - 1

begin
for i in 0 .. N loop

iMAX432.WRITE-BYTE(OBJECT(»;
end loop;

end DUMP;

2-1

Intel 432 Extensions to Ada

A user might store a byte image of any data segment by:

DUMP(ANY-ACCESS(SOME-DBJECT));
-- where SOME-DBJECT is a value of same access type.

Changes to DoD Ada Manual for ANY-ACCE~:
• Incorporate Section 2.2.2 above as new Section 3.Bb.
• Add "type ANY...ACCESS is access implementatiDn....deJined;" to package STANDARD

in Appendix C.

2.S. Package Types
Although Ada supports the dynamic creation of non-library level packages, it does not
support the dynamic creation of library level packages. On the iAPX 432, packages are
supported as domain objects, and therefore behave as values. The 432 extensions to
Ada also support dynamic packages by allowing package values and therefore package
types. These package types behave similarly to Ada record types, with package bodies
performing as record aggregates in creating values of package types.
Package types are provided by allowing the keyword type to follow package in package
specification headings. For example:

type ITEM-TYPE is
record

end record;

package type LIST-PACKAGE m
type LISTjypE m private;
function FIRST (L : LIST...1'YPE) return ITEM-TYPE;
EMPTY-LIST : exception;
procedure ADD(ITEM: ITEM-TYPE; LIST: LISTJYPE);

private
type LISTJYPE m new ANY-ACCESS;

end LIST-PACKAGE;

The type LIST.J>ACKAGE describes an abstraction that manipulates lists whose ele­
ments are of type ITEM..1'YPE. No particular implementation is assumed for the pack­
age LIST....PACKAGE; indeed, several implementations may coexist or appear dynami­
cally.
A specific instance of a package type (Le., a package type value) is created by declar­
ing a constant of the package type:

package LIST -AS-ARRAY m constant L I ST-PACKAGE ;

The 432 extended Ada compiler interprets this declaration as an announcement that a
specific package is to be created. The declaration of the constant LIST-AS-ARRAY given
above is equivalent to an Ada package specification repeating the declarations associ­
ated with LIST....PACKAGE. Thus, the declaration above is equivalent to the declarations:

package LIST-AS-ARRAY is

2-2

type LIST -.TYPE is private;
function FIRST (L : LIST-TYPE) return ITEMLTYPE;
EMPTY-LIST : exception;

Intel 432 Extensions to Ada

procedure ADD (I TEM: I TEMLTYPE; LIST: LIST...1'YPE);

private
type LIST-.TYPE is new ANY-ACCESS;

end LIST-AS-ARRAY;

A package body is expected to accompany every package specification. so the compiler
expects a body for LIST-AS-ARRAY. In the following package body. the LISTYACKAGE is
implemented using an array representation for lists:

package body LIST -AS....ARRA Y is
type LIS T ...REPARRAY is

record
NUMBEILIN-LIST : INTEGER range 0 .. 100 .- 0;
VALUE : array { 1 .. 100) of ITEMLTYPE;

end record;
type ARRAY J., I ST is access LIST...REP -ARRAY;
function CONVERT is new UNCHECKED-CONVERSION (LISTJYPE, ARRAY-LIST);
function FIRST (L : LIST-TYPE) return ITEMLTYPE is

LIST: ARRAY-LIST := CONVERT{L); -- unchecked type conversion
begin

H LIST.NUMBEILIN-LIST = 0 then
raise EMPTY -L I ST ;

else
return LIST.VALUE(1);

end if;
end FIRST;

end LIST-AS-ARRAY;

Instances of package types are often defined (again, by declaring a constant of the
package type) in scopes other than the scope of the package type declaration itself.
The lifetime of such instances is determined by the scope of the package type declara­
tion and not the scope of the particular package constant. Such package instances
may not refer to entities defined in scopes with a shorter lifetime than the scope of the
package type declaration (except for initialization code within the package declaration
itself).
Once created. the package constant LIST-AS-ARRAY behaves as a normal Ada package.
Programmers can access its public attributes using the dot notation (e.g.,
"LIST-AS-ARRAY.FIRST(X).,) and can open the package with a use clause.
The full power of dynamic packages is obtained with package variables. Programmers
can declare variables (or record fields, etc.) of package types:

A-LIST : LIST-PACKAGE;

Variables of package types have public attributes that can be accessed either by dot
notation or use. However, no knowledge of the implementation of the package can be
assumed. Indeed. the implementation may change dynamically.

As an example, lists can also be implemented as linked structures:

2-3

Intel 432 Extensions to Ada

package LIST-AS-LINKS is constant LIST-PACKAGE;

package body LIST -AS-L I NKS is
type LIST -REP -L INKS;
type LINKED-LIST is access LIST-REP-LINKS;
type LIST -REP -L INKS is

record
ITEM : I TEMJYPE ;
NEXT : LINRED-LIST;

end record;
function CONVERT is new UNCHECKED.-LONVERS ION (L I ST JYPE, L I NKED-L I ST) ;
~ction FIRST (L : LIST-TYPE) return ITEMJYPE is

LIST: LINKED-LIST := CONVERT(L); -- unchecked type conversion
begin

if LIST = null then
raise EMPTY -L I ST ;

else
return LIST. ITEM;

end if;
end FIRST;

end LIST-AS-LINKS;

Users of the package type LISTYACKAGE can decide at execution time on the imple-
mentation they prefer: /

LISTJlANDLER : LIST-PACKAGE;
MY-LIST LISTJlANDLER.LIST-IYPE;
MY -I TEM : I TEMJYPE ;

if NUMBEILI TEMS-EXPECTED <= 100 then
LISTJlANDLER := LIST-AS-ARRAY;

else
LISTJlANDLER := LIST-AS-LINKS;

end if;

MY-ITEM := LIST-HANDLER.FIRST(MY-LIST);

'WARNING: Use of ANY..ACCESS prevents any type checking on the type of the list. If a
programmer should somehow create a LIST...AS-ARRAY list and inadvertently pass that
list to a LIST...AS...LINKS operation. no exception will be raised.

A common use of dynamic package implementation is input/output. Users will nor­
mally write their programs so as to perform I/O to a file package value. The file can be
implemented as a disk file. a temporary file. a terminal or a line-printer depending on
decisions made during the execution and debugging of the program.

Another important use of package types is in providing subprogram variable .facilities.
The following package type can be employed in a plotting/graphing package to
describe the function being graphed:

package type FUNCTION-10-DISPLAY is
function F (X : REAL) return REAL;

2-4

START, FINISH REAL;
x....AXI S-LABEL ,
Y-AXI S-LABEL,
TITLE : TEXT;

end FUNCTION-TO-DISPLAY;

Intel 432 Extensions to Ada

An operating system for the Intel 432 might use package types to define all its entities,
even at the physical 110 level. Use of package types allows such an operating system to
reconfigure itself as physical devices come and go, and as user programs appear and
disappear.

Changes to the DoD Ada Manual for package types:

• Incorporate Section 2.3 above as new Section 7.3a.
• Mention the existence of package types in Section 3.3.

• Modify the BNF grammar as follows:

declaration: :=
package-±ype-rleclaration;
constant-paekage-rleelaration;

paekage-±ype-rleelaration ::=
package type iden t i fier is

Idee 1 arat i ve-i temf
[private

Idee larat i ve-i temJ
Irepresentation-specificationJ]

end [identifier]

eonstant-±ype-rleelaration . ,-
package ident ifier is constant pac/cage...:type-llame

objeet-rleclaration ::=
i den t i fie r --1 is t : pac/cage....:type....:name;

• Papkage variables can. in general. be used wherever Ada packages can be used,
except in combination with the generic keyword. The semantics of package vari­
ables and Ada packages are the same, except that for package variables, the
specific package implementation, i. e .. the associated package body, may not be
known until (or may change during) program execution.

2.4. Exporting Package Bodies
When a package constant (that is, instance) is assigned to a package variable in an
outer scope, the package body may be exported outside the scope in which it was
defined. This exporting is legal only so long as the package instance is independent of
the intervening scopes. If use of an exported package results in an attempt to access
information from nonexistent scopes, the hardware of the iAPX 432 will raise the excep­
tion INV ALID-DBJECT....ACCESS.

For example:

X: LISTJ>ACKAGE;

2-5

Intel 432 Extensions to Ada

procedure DISAPPEARING ~
I LLEGAL_VAR: INTEGER : = 0;
L: constant L I ST-PACKAGE;
package body L is

LEGAL: INTEGER := ILLEGAL_VAR + 1; - - legal, since
-- ILLEGAL_VAR exists at elaboration.

function FIRST(L: LISTJYPE) return ITEM-TYPE is
begin

ILLEGAL_YAR := ILLEGAL_VAR + 1; - - illegal, since
ILLEGAL_VAR will not exist when return is rrBde frrnn

-- DISAPPEARING, yet X still allows calls to L.FIRST.

end FIRST;

end L;
begin

X := L; -- exports package constant L
end DISAPPEARING;

MY-LIST X.LIST-TYPE;
MY-ITEM ITEMJYPE;

DISAPPEARING;
MY-ITEM := X.FIRST(MY-LIST); -- causes INVALID-DBJECT-ACCESS

exception, since the instantiation of DISAPPEARING and
-- therefore the variable ILLEGAL_VAR no longer exist.

2.5. Ada Task Types vs. 432 Extended Ada Package ,Types

Ada task types have properties ditierent from the 432 extended Ada package types.
The 432 package types behave similar to Ada record types, with package bodies per­
forming as record aggregates in creating instances.

However, Ada task types are limited private. They can be used only in variable and
parameter declarations. Further, declaring a variable or field of a given task type has
the side etiect that (at elaboration) an instance of the task is created. Finally, Ada
task types permit only one implementation to exist for a given compilation, since a sin­
gle task body accompanies each task type.

2.6. Object Refinement and the "at" Operator
The object refinement facility of 432 extended Ada enables programmers to create
aliases to existing objects or components within objects. Object refinement is directly
supported in the hardware of the iAPX 432 and therefore all powers and limitations of
the hardware are visible in the extended language. A refinement can be specified on
arrays, records, packages and single data objects.

2-6

Intel 432 Extensions to Ada

A refinement is created by execution of the refinement operator at. The general
form for the syntax is as follows:

ttJpe...mark at va.riable-Ilame

7lype....mark must be an access type providing access to a type whose structure
matches the structure of the contiguous set of attributes beginning at variable..name.

A refinement of a single data object must specify the object being refined. The
type....mark must be an access to the type of the object being refined.
One-dimensional arrays can be refined by specifying the array element at which the
refinement begins. The type....mark must be an access to an array subtype having the
same base type as the array being refined.
Records and packages can be refined by specifying the name of the first component in
the refinement. When the refinement components are all subprograms, the type of the
refinement must be a package type. When the refinement comprises two or more data
objects, the type of the refinement must be a record type. Refinement is not possible
for a mixture of subprograms and entities of type other than access. Structural
equivalence is used in matching the contiguous elements in record and package
refinements.
Several general rules govern the refinement facility:

(1) For two structures to match, the attributes must pair up position-wise, with both
attributes in the pair having the same type. If any attribute is a constant, its
matching attribute must be a constant with an equal value. If any attribute is a
subprogram or package. its matching attribute must be a subprogram with
matching parameter structure or a package with matching visible part and private
part structure.

(2) Refinement is restricted to contiguous sections of existing objects. When more
than one refinement from a given object is desired, the layouts of the object and
its refinements must be chosen carefully. In some cases, no set of layouts will
enable all of the desired refinements to be made.

(3) No refinement may involve the variant part of a record unless that variant is a
subrecord.

(4) All refinements must begin on a byte boundary.
(5) The addressing structure of each attribute in a refinement must match that

expected by the refinement. The legality of refinements can therefore depend on
the storage layout algorithms of the 432 extended Ada compiler. The compiler
defines six attribute classes:
1. Access values, including user access-type, package, and task variables, and

elaboration-time access constants;
2. User access-type compile-time constants;
3. Other access constants, including subprograms, packages, tasks;
4. Data values, including user data variables and elaboration-time data con­

stants;
5. Data constants, including compile-time data constants;
6. Others, including types (not TYPE...DESCRIPTION variables);

As a rule, the compiler allocates storage such that refinements may never include
attributes of more than one of these classes, and may never include attributes of
class 5.

2-7

Intel 432 Extensions to Ada

(6) An object continues to exist as long as any refinement to it exists.
The value returned by the at operator is an access value of the specified type which
provides access to the specified set of attributes.

2.6.1. Example: Aliasing an Integer Variable

type I NTE GER....AC CESS is access INTEGER;
INT : INTEGER := 432;
INT-ACCESS : INTEGElLACCESS : = INTEGER-ACCESS at INT;

INT and INT-ACCESS.all both refer
-- to the SarrE object. whose value is 432

2.6.2. Example: Aliasing an Array Slice

type DOSSIER is
record

NAME
ADDRESS
PHONE

end record;

STRING(1. .21) ;
STRING(1. .50) ;
STRING(1. . 10) ;

type DAILY-QUOTA-ARRAY is array (1 .. 10) of DOSSIER;
type DAILY-QUOTA is access DAILY-QUOTA-ARRAY;
MAILING-LIST : array (1 .. 500) of DOSSIER := (...);
WORKER....1-ASSIGNMENT : DAILY-QUOTA := DAILY-QUOTA at MAILING-LIST(108);

A refinement that specifies a package type along with a matching set of contiguous
attributes for some existing object returns an access value that provides access to a
refined package having those attributes.
When a refinement specifies a package type which consists entirely of one subprogram
and the single deSignated variable is a matching subprogram, then the returned value
provides access to that designated subprogram. This access value provides a handle
for the subprogram that may be transferred among access variables of the same pack­
age type (eg, passed as a parameter).

2.6.3. Example: Refinements Used as Procedure Variables
Consider the following two packages, INTEGRATION-ROUTINES, a library package, and
FUNCTIONS.-DF-INTEREST, containing user-defined functions:

package INTEGRA T I ON...ROUT INES is
assUIE thi.s package ex is ts ins ide a

-- library package MATHLLIB

package type I NTEGRAND is
function F(X:REAL) return REAL;

end INTEGRAND;

function ROMBERG....RULE(FX: INTEGRAND; START. STOP: REAL)
return REAL is

begin ... end ROMBERG...RULE;

Intel 432 Extensions to Ada

function S IMPSON....RULE (FX: INTEGRAND; START. STOP: REAL)
return REAL is

begin ... end SIMPSON....RULE;

end INTEGRAT ION....ROUT lNES ;

package FUNCTIONS-DF-INTEREST g
function F 1 (X: REAL) return REAL is

begin return X·· 2; end F 1 ;

end FUNCT I ONS-DF -INTEREST;

Use of the at operator to select a refinement of the library routines is achieved by the
following:

procedure MY -CALCS is
VALUE : REAL;

begin

VALUE := ROMBERGJruLE(INTEGRAND at FUNCTIONS-DF-INTEREST. Fl.
START:=O.O, STOP:=l.O);

end MY -CALCS ;

2.6.4. Example: Refinements to Dynamically Hide Attributes

Refinements may also be used to dynamically hide attributes. A user may define a
package and then hand out refinements of that package to various users. hiding vari­
ous attributes from different users:

type I TEM.-'I'YPE is ... ;
type DB g ... ;
type DB....REPRESENT AT I ON is access DB ;
DB : DB....REPRESENTATION := new DB (...);

package type DATA-ENTRY g
procedure ADD (ITEM : I TEM.-'I'YPE) ;

end DATA-ENTRY;

package type READ-DNL Y is
function ASK(QUERY-ITEM ITEM.JYPE) return BOOLEAN;

end READ-DNL Y;

packagetype CORRECTION is
function QUERY (ITEM : I TEM.-'I'YPE) return BOOLEAN;
procedure MOD I FY (BAD-I TEM : I TEMJYPE) ;

end CORRECTION;

2-9

Intel 432 Extensions to Ada

package DB..:MGR is
DATA-BASE : constant DB-REPRESENTATION := DB;
procedure INSERT (NEW -I TEM : I TEMJYPE) ;
function QUERY (ITEM : I TEM-TYPE) return. BOOLEAN;
procedure UPDATE (UPDATED-I TEM : I TEM-TYPE) ;

end DB-MGR;

package body DB-MGR is end DB-MGR;

With the above specifications, the following refinements are possible:

DATA-ENTRY at DB-MGR. INSERT
READ-DNL Y at DB-MGR. QUERY
CORRECT I ON at DB-MGR. QUERY

Changes to the DoD Ada Vanual for Object Refinement:

• Add a sixth production for "expression" in Section 4.4 and in Appendix E: "expres­
sion :: = name at name".

• Incorporate Section 2.6 above as new Section 4.7a.

2.7. Retyping Declarations

Ada allows the conversion of a value from one type to another. The Intel 432 extensions
to Ada allow the conversion of an object to a new type. Specifically, the keyword
retypes is permitted in place of the Ada keyword renames for object declarations.

retyping-lieclaration ::= type.....mark retypes ·name

Use of retypes suspends type-checks so that the new name and the old name may have
different types.

2.7.1. Example: Retyping a Variable Identifier

Z: INTEGER;
type TWOJlALF JORDS is

record
Ht. H2: SHORT-DRDINAL;

-- SHORT-DRDINAL is a 432 predefined type.
end record;

X: TWOJIALF ...:wORDS retypes Z;

Given these declarations, X.H2 now references the high-order 16 bits of Z. That is,
adding one to X.H2 has the effect of adding 65536 to Z except in the case of overflow.
The retypes facility should not be used where use of UNCHECKED....cONVERSION is possi­
ble. The retypes facility is more dangerous since it preserves aliases of different types
lor the same object, while UNCHECKED....cONVERSION returns a copy of a value of one
type as a new value of another type. In general, retypes should be used only when a
specific location in an object must be examined as different types.

2-10

Intel 432 Extensions to Ada

2.7.2. Restrictions on Use of 'retypes' Declarations

Two restrictions exist on the use of retyping declarations:
(1) values of type access may not be converted to values of a type other than access.

and
(2) values of a type other than access may not be converted to values of type access.

Changes to the DoD Ada Manual for Retyping Declarations:

• Incorporate Section 2.7 above as new Section B.5a.
• Add a new production for "declaration" in Section 3.1 and Appendix E: "declaration

::= retyping-.declaration".

• Add a new production in Appendix E: "retyping-.declaration ::= type...r.nark .retypes
name".

• Add the keyword "retypes" to the reserved word list in Section 2.9.

2-11

REQUEST FOR READER'S COMMENTS

Extensions to Ada
172283-001

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all Intel
product users. This form lets you participate directly in the publication process. Your comments will help
us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of
this publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Intel Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating). ________ _

NAME _________________________ __ DATE ____________ __

TITLE ____________ ---
COMPANYNAME/DEPARTMENT ___________________________________ __
ADDRESS __ _

CITY _______________________ _ STATE __________ _ ZIP CODE _________ _
(COUNTRY)

Please check here if you require a written reply. D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible
person. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
SSO Technical Publications, WW1 - 487
3585 SW 198th Ave.
Aloha, OR 97007

IIIIII NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

inter
INTEL CORPORATION, 3585 S.w. 198th Avenue, Aloha, Oregon 97007 • (503) 681-8080

Printed in U.S .A .lY98/ 5K/ 01 / 04/ 821 AP

