intel
Intel 432 CDS |
Workstation User’s Guide




I

INTEL 432
CROSS DEVELOPMENT SYSTEM
WORKSTATION USER’S GUIDE

Order Number: 172097-001

Copyright © 1981 Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

——




Additional copies of this manual or other Intel 1literature may be
obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this
material, including, but not 1limited to, the implied warranties of
merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear in
this document. Intel Corporation makes no commitment to update nor to
keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in an Intel product. No other
circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the
property of Intel Corporation. Use, duplication, or disclosure is
subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104,.9(a)(9).

No part of this document may be copied or reproduced in any form or by
any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates
and may be used only to identify Intel products:

BXP Intelevision Micromainframe
CREDIT IntellecR Micromap

iR i0SP ~ MultibusR

ICE ' iRMX Multimodule
iCs iSBC Plug-A-Bubble
iMMX : iSBX PROMPT

Insite Library Manager RMX/80

IntelR MCSR System 2000R
int 1R Megachassis UPI

and the combination of ICE, iCS, iRMX, iSBC, iSBX, MCS, or RMX and a
numerical suffix.

Ada is a trademark of the Department of Defense (Ada Joint Program
Office).

VAX and VMS are trademarks of Digital Equipment Corporation.

11 | | | MB 8112



REV.

REVISION HISTORY

DATE

-001

Original issue

12/81

iii



PREFACE

This document is the reference manual for DEBUG-432 and UPDATE-432, two
software utilities in the Intel 432 Cross Development System for the
Intel U432 Micromainframe computer system. Both of these utilities
reside on the Intellec Series III Microprocessor Development System.
The other principal utilities required for 432 program development --
the Ada* Compiler System and LINK-432 -- reside on the mainframe host.

This manual is directed to all users and potential users of DEBUG-432
and UPDATE-432, All references to the System 432/670 in this manual
also apply to the System 432/671, a functionally identical unit that
operates from a 230V/50Hz AC line. The System 432/670 operates from a
120V/60Hz AC line.

ORGANIZATION OF THIS MANUAL
DEBUG-432 and UPDATE-432 are relatively independent programs.
Consequently, this document is divided into two parts. Part I
discusses DEBUG-432; Part II discusses UPDATE-432.
The discussion is divided into nine chapters and eight appendixes:
Chapter 1 Ovérview of the Series III System
Gives an overview of debug workstation, whose hardware includes the
Intellec Series III system and the System 432/670, and whose
software includes DEBUG-432 and UPDATE-432.
PART 1: DEBUG-432
Chapter 2 Overview of DEBUG-432
Introduces the DEBUG-432 program.
Chapter 3 Getting Started Using DEBUG-432
Discusses initialization issues, such as invoking the debugger and
initializing the System #32/670, Also introduces the debugger
environment and how to prepare for debugging programs,

Chapter 4 Examining and Modifying Memory: Locations

Discusses using the debugger to examine and modify memory,
including the use of symbolic names and presupplied templates.

*#Ada is a trademark of the Department of Defense (Ada Joint Program
Office).

iv



Preface Workstation User's Guide

Chapter 5 Processes, Contexts, and Breakpoints
Discusses breakpoints and the dynamic features of the debugger:
selecting the current process, setting and removing breakpoints,
and examining the call stack. '

Chapter 6 Defining Templates

Shows how to define debugger templates and use them to examine and
modify objects in memory.

Chapter 7 DEBUG-432 Commands

Gives complete syntax for all DEBUG-432 commands. The commands are
arranged alphabetically for easy reference.

Part II: UPDATE-432

Chapter 8 Overview of UPDATE-432
Introduces the UPDATE-432 program.

Chapter 9 Using UPDATE-432

Shows how to invoke UPDATE-432, and discusses the parameters
supplied to the program.

Appendices A through F contain miscellaneous useful information about
DEBUG-432, including: a formal definition of the DEBUG-432 command
syntax, a short description of all commands, the default template
definitions, a log file of a sample debugging session, a discussion of
how to debug faults, and the error messages. Appendix F gives a
detailed description of possible error messages and their causes.

Appendices G and H contain UPDATE-432 syntax description and error
messages.

RELATED PUBLICATIONS

In addition to this document, two other documents directly describe the
use of the Intel 432 Cross Development System:

Introduction to the Intel 432 Cross Development System, Order
Number: 171954, Introduces the 432 Cross Development System
software and hardware. This manual contains a start-to-finish
example of creating and debugging a 432 program.

Intel 432 Cross Development System VAX/VMS Host User's Guide, Order
Number: 171870. Shows how to create, compile, and link programs at
the VAX host, and describes downloading linked EODs to the debug
workstation.,




Workstation User's Guide Preface

For more information regarding the iAPX U432 architecture, see the
following manuals:

Introduction to the iAPX 432 Architecture, Order Number: 171821.
Provides a comprehensive overview of the 432 architecture.

iAPX 432 Object Primer, Order Number: 1713858. Introduces the major
features of the 432 architecture.

iAPX 432 General Data Processor Architecture Reference Manual,
Order Number: 171860. ' Contains complete, detailed descriptions of
all aspects of the 432 General Data Processor architecture.

iAPX 432 Interface Processor Architecture Reference Manual, Order
Number: 171863. Contains complete, detailed descriptions of all
aspects of the 432 Interface Processor architecture.

The following reference manuals describe the Intellec Series III
Microcomputer Development System, which serves as the intelligent
console interface to the 432 debug workstation:

Intellec Series III Microcomputer Development System Console
Operating Instructions, Order Number: 121609, .Describes the
operation and support utilities of the Intellec Series III system.

Intellec Series III Microcomputer Development System Programmer's
Reference Manual, Order Number: 121618. Provides background and
reference material concerning the use of the Intellec Series III
system,

The System 432/670 and 671 are described in the following manuals:

System 432/600 System Reference Manual, Order Number: 172098.
Defines the physical and functional characteristics of the System
432/600,

System 432/600 Diagnostic Software User's Guide, Order Number:
172099. Describes the capabilities and uses of the diagnostic
software for the System 432/600.

The Ada language, the 432 extensions to Ada, and the iMAX 432 operating
system are described in the documents listed below.

This compiler is presently an incomplete implementation of the Ada
programming language. It is intended that this compiler will be
further developed to enable implementation of the complete Ada
programming language, and then be submitted to the Ada Joint Program
Office for validation.

vi



Preface

Workstation User's Guide

Reference Manual for the Ada Programming Language, Order Number:

171869.

Defines the Ada programming language.

Reference Manual for the Intel 432 Extensions to Ada, Order Number:

172283.

Defines Intel's extensions to the Ada programming language.

iMAX U432 Reference Manual, Order Number: 172103. Describes the

features and functions of the iMAX U432 operating system.

Finally,

communication 1links between the VAX system and the

Intellec Series III Microcomputer Development System are described in
these publications:

Mainframe Link for Distributed Development User's Guide, Order

Number:

121565. Describes the use of the synchronous communication

link on the Intellec Series III system.

Asynchronous Communication Link User's Guide, Order Number:

172174,

Describes the use of the asynchronous communication link.

NOTATIONAL CONVENTIONS

The following conventions are used in displaying command and control
syntax in this manual:

CAPITALS

variables

Ll

{}

<RETURN>

Information in capitals must be entered as shown in the
syntax statements. Although this information is shown in
upper case, it may be entered in upper case or lower case.

Information in underscored lower case represents variable
information that must be supplied when entering commands.

Brackets indicate parameters or controls that are
optional.

Braces indicate a choice, Exactly one of the items
enclosed in braces must be chosen,

The vertical bar indicates a choice. It is usually used
within braces to separate choices.

The ellipsis indicates that multiple items may be entered.

Indicates the RETURN key.

vii






CONTENTS

CHAPTER 1 Page
OVERVIEW OF THE 432 SERIES III SOFTWARE
Introduction ..icceviieeeecnsesnccssonassnsa e £
The Intellec Series III System ...... creeenes N
DEBUG=432 . iveeeenscracooassossosssasossssosnssassasnsassanses . ves 1-3
UPDATE-432 ....... Cecesseesscssessassaacns Cesiecsesreresnesernenene . 1=3
Run-time Environment of Workstation Software .....eececccececces cee 1-4
Hardware Environment ..... cenens cetecestcststerrseressnios ceees 1-4
Software Environment ....... Ceesecsesesstesncsaresanaene Ceeseaee 1-4

PART I -- DEBUG-432

CHAPTER 2
OVERVIEW OF DEBUG-432

Introduction ...... sesessesssesesnanns cesesen cecesacenssessesencses . 2=1

DEBUG-U432 Features .tuiieseeescesossessesssenstosansocssasssnaans ceeeee 2=2
Conventional Features ...ceceeevescccsssresonans vesesaitsesas ees 2-2
Support for ObJects .uiieeeiertoeccesosccsscassssscssassnaasss cees 2=2
Support for Multiple Processes ...... sseresesetsesensases creces 2=2
Concurrent Debugging and Program Execution ..... . feeseee 2=2

CHAPTER 3

GETTING STARTED WITH DEBUG-432

Invoking DEBUG-432 ..veveeeens ceresas cesseranaa Ceeesreecccccsessna -

Debugger Command Syntax .eecececesnacses csessseesaas ceecas cesssssens 3=

Special Characters ...... ceccscscssaceserstosracae cevesscssessreses -
Command Edifing .veieceeeeoceeossceescesacasesansscnansasnssoasns -
Controlling Console Output ...cceeeee cesiessans cecesessassesnna -
CONTROL=D tiviveecnoscnnnasessoncasanacoarosannana .

Changing Debugger I/0 Modes and Interruptlng DEBUG-432 ...veuee

The Debugger I/0 Interface ......... ceesssecane

Debugging Only Mode ..eceessecssocscsneasssee

Debugging + I/0 Mode ..eiiivverencrooccsoscccasncnccsa
I/0 Only Mode ....... cecseaens ceeseesas N

Entering Input Lines ....cevcee cereses cerese
Breakpoint Announcements and Debugger Modes ........

LHLWWwWuwWwwwwwwww
1
NN~NO VU EEEWN

es e e soss s -
o e es o -
es e eevs s s -

ix




Workstation User's Guide Contents

Preparing the Debugging Environment ..... cesescscsnas cesnae cevessss
Global Debugging Parameters .....eoeeesecases csesesranase cesese
Default Input and Output BasSesS ...eeesvsececsercocencenane

The I/0 MOAE cvvieeereenosnernsanocnsasasscacsssnnasanas oo

The Log File .i.iveeenieecceans teseectecsesenctonnns cressenn .

TOP Of MeMOrY 4vveeeeecenoetosaceessosossscscssaccsscnscses

The Debugger Addressing State ...ceeeeeeeeeens ceesanes crceceenne
NO AdAresSSiNg v.eeeeeeecescesscessososcnsssenosssescsoasosss
Physical Addressing Allowed ....c.ceeeencceccocncasnes seeee
Logical Addressing Allowed ........... cerses eseeesersssene
NamesS .uoeeceeeoecncses sessessesscesssanns csenes ceeessceseannene
Declaring Names ......eeceevosessocannos ctesssesesesansnss
Listing Names in the DNT ....cecvevenves teessssescassens vee
Removing Names from the DNT ...........0. Ceeesrescsressans
Symbol Table Space ..eieeceeeccscacses ceesseseseenssennans .

No Predefined Names in the DNT ..... Cevoessasesescassacsena

'UJ(iULA)UUUJLU
_.\_\-\__\_.\\c\c(lnmm
-—

- O

i
-
N

3-12
3 12

INCLUDE .eeeeieeneenennnnnns ceenens cecans seesesssserecsassssenne 3~

Starting a Debugging Session ....ivieiernccane ceeesesanas ceesecsnna

Standard Startup Sequence ....cceeeeescee cseesescasescsesasanna 3=

Exiting and Returning ........cieveeeeeas Ceesesssssceccssascsea

Reloading P4emory © © 00000008000 00000000000000000000800000000000000 3=

Using SAVE and RESTORE ....ceieeeeeenneennncns teeretesarssseans
Recovering From a Crash ......... cecesnane cecsecesarenrans cenns

CHAPTER 4 ;
EXAMINING AND MODIFYING MEMORY

Introduction .eceeeeevenns cescssansnas ceessssesasessasnna seesas e
Representation of 1APX 432 AdAresses ..cieeceaees ceeseceseana ceseene
Physical Addresses ...veseeceas sescasessassancenaa cernne seassee
Logical Addresses ...... e s eseesesesesesesasesesassssesesessens
Interconnect AdAresSSeS .ieeeecsesesesssonsossssoscssscossassessss
Templates ....iiiieciieennnncsossesassnsnns seeeesens ceessscsesennns
References ...eceveves cesesans Seccessercetscsesasessoesassasnse cesene
Dot Notation ................ . cereses Checsesesescacesscnsasesnns
Traver51ng Access Descrlptors cesesseses ceeesessrssensianesense
Access Paths ......iiiieeiiccnnnnns sesensnes seetessseseseanannse
Default Template Selection Algorlthm ceeesescessess et essatsssnanne
Other Default TemplatesS .iveeveseresososssssssscacssssssnnsnnse
EXamining MemMOrY ..eeeeeeescosossoasososnsscsoasssscsseasssessssssssss
MOdifying MemMOry ...veeeeeesesecosseoossensoscossosssscsssnossosssnoses
Data Structure Table ...ceveceeeeccseenecens eessetsensesrenrsesrenne
Invasion ..iieeneecenecess e et eteseteiesteeansesasersssecennses
The Current Access Path .......ccveveuvececeees cecessscesan ceeen
Expressions .......... tteesseseeasscscssssssesesesennne ccecesesnsas
Integers: Naming an Expression ......... e
References in Expressions ........... cereessasensnan cevsonans e
Fields in EXpressions .......cieeeecccees cecssae cececsoana ceaea

i L I T I |
WELCLIJIATWN = = =

#k#t:bf#:kktkt
LL.
& - O

4-16
4-17
4-18
4-18
4-20
420
4-21



Contents Workstation User's Guide

CHAPTER 5 | | Page
PROCESSES, CONTEXTS, AND BREAKPOINTS

Introduction ....v0v... cesesecesescsasesnscsns sesessesesesanes cesens
Processes ...iceeeecnsesnnsaane cesesssensscnas ceessssessssccasesses
Breakpoints ...eeeevee Cecssescssesessnsssanans cesesssessssanssensan
Setting Breakpoints ...... cessesesnenn sessccsstacccassonsasnnss
Naming Breakpoints ...cicieeeveecenns cecsasesecsssessen cesesans
Activating and Deactivating Breakpoints ....ciiveveeveccnccnccns
Reaching a Breakpoint .......... eseseasesersanesescasesscanrnsae
Contexts and the Call Stack ........ seetsssesscsscanrsesnsssanesen .

P
NV EEWS ==

\nm\nm‘nm\nm

CHAPTER 6
TEMPLATES

Introduction ........ cesessseesesaseasnse ssessnesescccns cecassvscins
Template Definition ....cicveeeeeivennnns seessessssancsas teseseasas
How a Template WOrkKS ...cceceeeeeccaconscsooaceseaasascsansononscs
Overview of a Field ...... 000000 ceesesesseann Gecacsssansnssnan
Field Name ......... ceeeeesens ceesesseanases cesesaccses .

Bit Identification .....c.00000. ceesesennsae sesetessesacanae

Display Format ......000.. cessetacensas cecessessescscssaans

Bit Identification and Display Format Specifications .....cceeveese
Text SErings .vieeeeeeseesesscosesaccccncns cecessesasracesssens .
Integer ..cieeevieeenenns ceecscsssesenaanne PN oo

Bit String Descriptors ....ceceee s eecessssersesassasssesnasoses

New Line ...ccvvuess ceeeanen ceeteesssens cteesecssessscssseasessss D=
Repeat Count and Grouping Brackets ........... ceeersesnssssanas 6-9
By P and Bi_P ..... tettescessasseneann ceceseasssssessans eeesses 6-10
Expressions in Templates ..ceevececsnccccscans ceccscnsranses vees 6-11
BlanksS severseecoeseesssssssssonsssssnnonsas cereaeas PN eo 6-11
Enumerations .......ccivineeeecesse cetsesesccesestacttcaseanas ee. 6-11
Template Names in Display Formats ........ ceestssscsnneans ceeees 6-12
Template Names in Bit Identifications .....ceceeieececcccocanns 6-13
Access Descriptor Index ....ccivevevecacsns chesesessesensesasses 6-14
Default Display Formats ....... ceesreseercessssnann cesescsseses 6-15
ASCII ..ivieennesnnoonnss Ceesesesessesenencnsenn tessesscssssnaas 0=10
Dereferencing Access Descriptors .....ceseee. ceeesecsanns creses 6-17
Variant Part of a Template ....... cesiesanns tessssssensssasssesssas 0-19

L R
CO~NOoOOEEFTWWNND =

O\O\O\O\O\C\?\O\O\C\O\@

CHAPTER 7
DEBUG-432 COMMANDS

ACTIVATE " 5 00 0050000000000 ess0000s 0000000000 40000000 ®s s 00 ce0 e e 7—
7

7
BASE ...'..~.. ooooooo TR R R EEEREEREEEEEEEE EEEEEERE) EEEEEEER] 7-
7

BE 000 0000 0seP LGS EOLEORPOEEOEOEOLEOICOEOOEOINOLOIOEOIEOOEEOCETOLGS ®00s 00 e ser0 000000008000

xi



Workstation User's Guide Contents

Bx S0 000 e s 0000000000 L I I I R R A A A R R K] ieceeceaene 7"‘ :
DEBUG ooooooooooooo LR R A A AR B A I A IR I IR I I B IR RO N oc." oooooooooooooo 7—11

DOWN e 000 es 000000 s e s 00000 e e 00 s 0000000000000 ;.o. ------ e 0o s 00000808 7_13
EXAMINE ---------- s s s s 0 s 0css s ‘"e e s 00000 e tes s 00000 s 0000000000 7-114
EXIT ooooooooooooooo ‘ooo‘no..o oooooo ®eccesevecvr e LR N RN IR S R B ) 7—15

INIT tierreneennernencsenacnnas cecsaanan teseencaessanranscssnensan e T-17
IPC tivevnnnns ceetanne teecssseacencnanes Cesesesssesccssssessereress . 7-19
LOAD ..iiveinennans et sannns teeesesccasessncanne cesenccasas ceseses (=20
LOG tiicietoeacnoseseeassescasnsasssessessnssasonsssscasssssssscsssns 7-21
MEMORY EXAMINATION ..iveertvencoasaasavsecsaasnsnsssssanessasanscsns 722
MEMORY MODIFICATION (... ierecesoncnnansanns ctesecacssscas ceees T=24
MODE ..iieveveenannnns ceresens ceeesecsascasssasana ciercerrecenesnsas 7-26
0 ceesseees (=27
N 7-28
REMOVE ....iiieiinennennnaes et eeesseessccecsaaasanas O ]
RESTORE ........ Cteeeaeestescesasseseecteststtansrana ceecesssecesss (=30
RESUME ... iieeiiernenecsnsnnonencssenannas ceeans ceecescssscacaans .. T-31
SAVE ....iiieennn teeseassssenesesrastssasieranan Ceeccscesercancesnns 7-32
'SD Attribute ..eveeveendnnene cresetccsseancns Cecrtecsesecnane seesees =33
SELECT ..evvnnnn cteeesssatsseessetssnesastas et ettt eacttaastanaaasan . T-34
STACK e verenntneacenens N £ 1)
START tiiiinenecnnans creecnenns cesesaaaseene Ceeesecctarsenanssnnann 7-36
SUFFIX .....0 I sedetsecsasteassscsescesncacas eee 137
TOP vevvinennn. tertessettetasanes ceececessenteseaseasssstacnernasnns 7-38

L ceecesscssecsscssssssscsscssssesss (=39

VERSION . .veieneaneoanosesssasnncsssnns caseae Cessecteecctttesnsanns 7-40
PART II -- UPDATE-432

CHAPTER 8
OVERVIEW OF UPDATE-432

Introduction ....... Ceeeestessssecceaasennensssranonnns cecesecanan . 8-1
Review of Compiling, Linking and EODS .......... chesesaesareseenes . 8-1
Principle Functions of UPDATE-U432 ...citeesresonecesancscosoncannans 8-3
Verifying EOD Compatibilify .eveveveceecesns cterecceerreeneas .o 8-3
EOD Module Updating ....... e cesessssasscnassseseansssessarecns 8-3
Segment Address and Object Descrlptor Updating ...eveeeeeeenees 8-3

xii



Contents Workstation User's Guide

CHAPTER 9 Page
USING UPDATE-432
Introduction ..iieeeveeeesoeeoessssosenssocssasnnns ceesssnnsrsasses 9-1
The UPDATE-432 Command Line ......ccceeeee A
UPDATE-U432 Direclives ieeieeceeeessesccesassssseassssosssccsasssasaas 92
The Default Case (No Directives) ....ecevevececccccccanas ceeses 9=2
The REVISION Directive AlONe ...vieveeecocroacasoccesassosnnanas 9-3
The NEW Directive AlONe ....iiievevensacsssccsssncssassesansses I=3
Using Both Directives ...eeeeee cesesesesssaasesannn cesesaseans 9--4
APPENDIX A
FORMAL DEFINITION OF DEBUG-432 COMMAND SYNTAX
Command SyNtaX ...eeeoensocssssceseasossocsnsaccnssnss cecesascans .. A=2
System Control Commands ...eeeeeessecs sesescnnes ceesscnsasans ceeses A2
Environment Control Commands ........eeeeevesscccsssccsscsscscasses A3
Memory Contents Filing .eevivesescocecscnsscasscssccens O
Breakpoint Commands ...... e e csesesesessas et esceessasesasassse s oo A=-3
Broken Process COmMmands ....eeeeevcessoscsoscscsnsscsosa ceeseesnsss A=l
Call Stack Commands .......cceeeevneecsnonconacnsa teeeereneas ceaene A-4
Template Definition Syntax .veeeeeceescrcevasesnsas tececrenessnsnnn A-4
Reference Definition ......c.cveeeecececcacsase ceesnn ceesseseseeses. A-D
Integer Definition ..... ctecesecttsessnees teesecesnsccassssssscssss A=D
Directory Command SyntaxX ......ceececencens testecetasecnccnnn ceeeeess A-D
Memory Examination Syntax ........ ceeeseneans ceeses cecesiscasens ... A-6
Name Scope Commands ......cceeeeves P cesesecsn .. A-T
Memory Modification Syntax ........ ceeeneann cesanas Cesesnsssnes eens A-T
Expression Syntax ......cec0eeeeen ceesee cesesssecsscnaans ceesenenens A-T7
Address SyNtaX ..eeceeeccesoenoes tessenssad Ceteseccssesananns Cecenen A-8
APPENDIX B
DEBUG~U432 RESERVED WORDS AND COMMAND SUMMARY
Reserved Words .....cececeeennennnonnns eeeae e -
Special Names ..eierececsscsconcnosnnns Cessasesesacaesesnresernnns B-1
Command SUMMArY ...eecseesesasosssssssssesasassoss cestsesssasesssss B=2
APPENDIX C
DEBUG--432 TEMPLATES IN DEB432.TEM
Presupplied Templates ....eveeneescccncssncsas N
Template Definitions ........... Ceeenaenan et ereseceencennananes ee. C-2

APPENDIX D
SAMPLE DEBUG-432 SESSIONS

xiii



Workstation User's Guide Contents

APPENDIX E Page
HOW TO DEBUG FAULTS

Introduction ..ieieeieeeseseceescescsscssecossessscsssnsssasaanssess E—1
How to Know When a Fault Has Occurred ....ccececeesecessccssnscesses E=1
How to Find the Faulting Instruction in a Listing .........ccc0e0e. E=1
How to Display the Appropriate Fault Data Area ...ceeececcvecescess E=2
Using FaAult TableS .uveeecerecesscesosescsccsosseasscsscssoscssenasons E-2
How to Know When an Unannounced Fault Has Occurred .....ceeeeeeeees E-4
Unannounced Processor Level FAultsS ..evveeecesocccsosascscosasceasss E=U
Unannounced Process Level FAultsS ..iviieeeeerocscosocccsccsencansses E=5
How to Quickly Recognize Two Common Faults ...cceeceeecececconceses E=5
Fault Data Area ..eececececoceccasssscscssessscscasssssososssssasses E=T
Fault TYPES tteveveeocccsoosososossssesascessocosassssassssssaseseee E=11
Type 0 Fault List .icivevienreeeecnsccescssnsssssssassescsasssccacss E=12
General Fault GroUpPS ceuieeescecsccoscososcscscasssssosasssscsanss eeo E=-17
Data Operator Fault GroupsS ic..eeieeceececsssescsasccassaassssseses E=18
Data Operators ciiieeececesssevscecssescsccscncososscnssscncssssnss E=18
Sub-Operator Fault Groups .....ceceeeeececanas ceeesssee creeccenes es. E=21
Non-Instruction Interface Faults .....cecieueicencecnencncccnnsness E=22
Object Operator Faults ......c... P 2 %

APPENDIX F
DEBUG-432 ERROR MESSAGES AND PROBABLE CAUSES

APPENDIX G
FORMAL DEFINITION OF UPDATE-432 COMMAND SYNTAX

APPENDIX H
UPDATE-432 ERROR MESSAGES

Xiv



Contents

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

| 2 O T R R A |
P Em N mD e N EWN o =

mooc\oxm.::wwwww—‘

Workstation User's Guide

ILLUSTRATIONS

Title

The Intel 432 Cross Development System ....ceeeeeseee
Standard Startup Sequence ........ cecensa cecscasssnss
Exiting and Returning .....cececececcencecccces csssce
Reloading Memory ....... Peenssrsssscsanssacacca cesesns
Using SAVE and RESTORE ..... certesssessessacascasseens
Recovering From a Crash ...ceeeecoeseccoscecann cecsans
A Chain of Context Access Objects ..ceeveveces cesesese
Sample List of Breakpoints in the DNT ......... cesean
Sample Bit Stream .....ccce0e.. csesesas cescacescssone
Dereferencing Access Descriptors s.veeesessscecscea .o
Updating Linked EOD FileS ....iseevcces cecsscsan cecas
Fault Data Area ....veeeeeeeoossessesoossoscnnanne sees

Page

1-2.
3~-15
3-15
3-16
3-16
3-17

5-5
6-5
6-18
8-2
E-7

TABLES

Title

Global Debugging Parameters ....ceeveeececcacccacsees
Templates in DEBU432.TEM ...vcevieeeoncocscccssossnncns
Default Template Names ........ cecscsssessesescsssens
Operator IDs and MNEmoNiCS ....cccceeccccsccsccnsscos

Page

3-10
4-5

4-10
E-19

XV






CHAPTER 1
OVERVIEW OF THE 432 SERIES III SOFTWARE

INTRODUCTION

The Ada program development environment for Intel U432 Micromainframe
computer systems is the Intel 432 Cross Development System (432 CDS).
This development environment consists of three major components:

1] A VAX mainframe host computer on which Ada programs are edited,
compiled, and linked

° An Intellec Series III Microcomputer Development System
e A System H32/670 execution vehicle

The Series III and System U432/670 together compose the debug
workstation described in this manual. Linked Ada programs are
downloaded from the host to the workstation, where they can be debugged

and updated.

The 432 Cross Development System software includes programs that reside
on the mainframe host and programs that reside at the workstation on
the Series III system. The host software includes the Ada Compiler
System, the LINK-432 linker, and the iMAX operating system. The Series
IIT 432 software, described in this manual, includes the DEBUG-432
debugger and the UPDATE-432 1linked program  updater. Users of 432
Series III software may also use all standard ISIS-II utilities.

Figure 1-1 shows a schematic representation of the Intel 432 Cross
Development System environment. The diagram indicates which software
resides on each of the three systems and the overall organization of
the program development process.

After users have compiled their Ada programs and linked the resultant
EODs, they download the EODs to the debug workstation. Either the
synchronous communications link or the asynchronous communications link
is used for downloading; see the communications 1link manuals for
instructions.

1-1




Download
Linked/Revision

- Create/Edit EODs - Debug Program

Source Text Execute Ada

- Update Linked |gup Program

- Compile Program EOD Program

File
- Link Program
HOST COMMUNICATION DEBUG WORKSTATION
SYSTEM LINK _ ,
(VAX/VMS) | , d o
INTELLEC SERIES SYSTEM 432/670
IIT MICROCOMPUTER ' EXECUTION
DEVELOPMENT SYSTEM VEHICLE

r-0043

Figure 1-1. The Intel 432 Cross Development System

 M3TAJSAQ WSS

opIny $,498[] UOTIB]SHJIOM



Workstation User's Guide System Overview

THE INTELLEC SERJES III SYSTEM

The Intellec Series III Microcomputer Development System, one component
of the 432 CDS, contains a minimum of 192K bytes of RAM, a disk storage
system (at 1least one 8M-byte cartridge disk drive), a console
interface, and an iSBC 432/602 Interface Processor board which is part
of the Intellec Series III/432 Interconnect Kit. The Interconnect Kit
provides the logical and electrical interconnection between the Series
IIT system and the System 432/670.

The Series III runs the ISIS-II operating system, which handles file
management, and the RUN 8086 program, which is used to execute 8086
programs.

Both DEBUG-432 and UPDATE-432 are 8086 programs, executed using RUN.
For more information on the Series III system, see the Intellec Series

JII Microcomputer Development System Console Operating Instructions
manual.

DEBUG-432

The 1iAPX 432 system debugger, DEBUG-432, provides an environment in
which users can test their 432 Ada programs and identify errors for
subsequent correction. The debugger lets the user initialize the System
432/670, load a linked EOD into the System 432/670 for execution, and
test the program in a controlled environment. It provides mechanisms
for interactively starting, halting, and monitoring the program being
executed. The user monitors the program by halting execution at preset
program locations called breakpoints, and then examining and modifying
the current state of System 432/670 main memory. Portions of System
432/670 memory can also be saved in ISIS-II files. Finally, using
DEBUG-432 the user can examine the memory state of a crashed System
432/670 execution vehicle.

Part I of this manual describes DEBUG-U432. Also see Introduction to
the Intel 432 Cross Development System for an example of program
development and debugger use.

UPDATE-432

UPDATE-432 lets users avoid some downloading time when sending revised
Ada programs from the host to the workstation. When an Ada module is
modified and the compiled EOD is relinked, it is not necessary to
transmit the entire newly 1linked EOD over the communications 1link;
instead only a file describing the changed modules (a revision EOD)
need be sent. Since the revision EOD contains only differences between
the newly 1linked EOD and the previously 1linked EOD, it can. be
significantly shorter than a 1linked EOD. UPDATE-432 modifies the
current linked EOD file on the Series III based on information in the
revision EOD.

1-3



System Overview Workstation User's Guide

Updating revises the program modules and the segment addresses. It can
add or delete modules to a linked EOD. The names of the modules to be
deleted, and the actual modules to be inserted, are found in the
revision EOD. :

Part JII of this manual describes UPDATE-432,

RUN-TJME ENVIRONMENT OF WORKSTATION SOFTWARE

HARDWARE ENVIRONMENT
The workstation software requires the following hardware configuration:

) Intellec Series III Microcomputer Development System including
At least 192K bytes of memory
At least one hard disk drive
A system console device
. An Intellec Series III/432 Interconnect Kit to connect the Series
IIT and System 432/670 ‘
® A System U432/670 execution vehicle

The Intellec Series III system can be a factory-delivered Series III or
a Series II upgraded to a Series III

SOFTWARE ENVIRONMENT
The user also needs the following Software configuration:

. ISIS-11/86, the Series III operating system, including the RUN
program, V1.1 or later
o DEB432.86, the executable debugger
. DEB432.TEM, an Intel-supplied set of templates
. UPDATE.86, the executable updater

ISIS-I1/86 is part of the Series III software package. The other
software is supplied on the Intel 432 Cross Development System (Intel
432 CDS) software distribution diskette.

This manual assumes installation of the Intel 432 CDS was done
according to the instructions in the Introduction to the Intel 432
CDS. Thus, the Intel-supplied files are assumed to be on diskette
drive :fO0.

A small portion of the debugger resides in the System 432/670 main
memory (Throughout this manual, the term "432 memory" will refer to the
main memory on the System Bus of the System U432/670 execution
vehicle). This part of the debugger 1is included in the iMAX 432
operating system, which is linked in with other Ada object modules by
the Intel 432 CDS linker, LINK-432. See the Introduction to the Intel
432 CDS and the Intel U432 CDS VAX/VMS Host User's Guide for more
details.




PART |
DEBUG-432







CHAPTER 2
OVERVIEW OF DEBUG-432

-INTRODUCTION

Debugging is the process of detecting, locating, and removing mistakes
from a program. To debug an Ada program, a 432 CDS user executes that
program on the System 432/670 under control of the system debugger,
DEBUG-432. The programmer can then interactively monitor the program
to see how it behaves; he can halt execution at preset program
locations (breakpoints), and can examine and modify the state of System
432/6T70 main memory (hereafter U432 memory) at any time,

Debugging consists of several steps:

1. Using DEBUG-432, the user initializes the System 432/670 and
loads 432 memory.

2, Before Starting the System 432/670, the user may examine and
perhaps modify 432 memory. The user can set breakpoints in |
instruction segments. Finally, the user starts the system.

3. The user may examine and modify 432 memory while the processes
being debugged are running, or may wait until one or more
processes reach a breakpoint.

Additional breakpoints can be set, existing ones removed, and
processes at breakpoints can be resumed. By setting
breakpoints and examining 432 memory, the user finds some of
the bugs in his program.

4, When changes are required, the source program is modified and
the program 1is recompiled and relinked. Using the
communication link, a revision EOD is downloaded to the Series
IITI system. UPDATE-432 is used to update the linked EOD. Then
the user returns to step 1.

5. Some changes can be tested before revising the source code.

One way to test changes is by patching (modifying) the 432

- memory image immediately after loading it, before starting the

system. Another way 1is to wait until a process hits a
particular breakpoint and then patch memory.

This document provides instructions on carrying out all these steps.
The debugger also provides special mechanisms to deal with those
special features of the iAPX 432 architecture not mentioned in this
simple procedure, in particular, the organization of data into objects
and the use of multiple processes and processors.

2-1



DEBUG-432 Overview Workstation User's Guide

DEBUG~432 FEATURES

DEBUG-432 provides the conventional features usually associated with
systems-level debuggers, along with support for objects and multiple
- processes, which are features of the unique iAPX 432 environment.
CONVENTIONAL FEATURES

Among the conventional features offered by DEBUG-432 are the following:
° examining and modifying memory locations

° setting and removing breakpoints

) saving and restoring memory images

o logging a debugger session

SUPPORT FOR OBJECTS

The iAPX 432 has an object-oriented architecture, which means that

processors can directly manipulate hardware-protected data structures
called objects. The addressing method supported by DEBUG-432, along
with a template mechanism, lets users examine and modify objects as
well as absolute memory locations. Provided with the debugger are
several standard templates that specify some system objects; users can
change these templates and define additional ones for their own objects.

SUPPORT FOR MULTIPLE PROCESSES

The 1APX U432 architecture directly supports multi-process systems.
DEBUG-432 lets the user interact with multiple processes as well as the
procedures in these processes. The objects associated with a process
can be examined while the process is executing; it is not necessary to
breakpoint the process. Users can set breakpoints for one, several, or
all processes in the system.

The debugger lets the user easily focus on one process while debugging
in a multiprocess environment.

CONCURRENT DEBUGGING AND PROGRAM EXECUTION

DEBUG-432 and the wuser's U432 program run asynchronously, using
completely separate processors. Thus the debugger and user program
execute independently. The user can examine and modify memory while
the processes being debugged are running. Even if the user's 432
program begins to loop, the debugger is not affected and can continue
to debug the program. ' '

2-2



CHAPTER 3
GETTING STARTED WITH DEBUG-432

This chapter shows how to invoke the debugger from an ISIS-II/86
system. It then discusses the format of DEBUG-432 commands, simple
command editing, special control characters, and DEBUG-432 I/0 modes.

INVOKING DEBUG-432

DEBUG-432 executes under control of the RUN 8086 program. To invoke
DEBUG-432, first invoke RUN.

The Series III has two execution modes: the 8080/8085 mode under
control of ISIS-II, and the 8086 mode under control of RUN 8086. When
the Series III system starts running, it is in 8080/8085 mode.

To invoke the debugger from 8080/8085 mode, type:

-RUN [:Fn:]DEB432

where :Fn: refers to the disk drive which contains the debugger in file
DEB432.86.

This 1loads RUN, activates 8086 mode, loads DEB432.86, and starts
execution of the debugger.

RUN maintains a default workfile drive number; if the default drive is
not available, the debugger displays its sign-on message, but then the
RUN program fails and displays:

ISIS ERROR 30 USER PC XXXX

FATAL ISIS ERROR - RUN TERMINATED
The ISIS-II system reboots and returns to 8080/8085 mode. At this
point, make sure that the setting of the default workfile drive is
correct for your hardware configuration. In other words, verify that
the default drive specified for workfiles in your system is available,

has space, and 1is not write protected. To find the current default
drive setting, type:

RUN WORK

To set the drive number, type:



Getting Started Workstation User's Guide

RUN WORK :fn:
where n is the drive number (from 0 to 9).

The debugger's log file uses the current setting of DATE obtained from
the RUN program. To set the date, type:

RUN DATE mm/dd/yy
where mm is the month, dd the day, and yy the year.
For moke information on the RUN program, and the DATE and WORK

commands, see the Intellec Series III Microcomputer Development System
Console Operating Instructions.

After you invoke it, DEBUG-432 signs on with the message:.
SERIES III 432 SYSTEMS LEVEL DEBUGGER, Vx.yz

?

The ? 1is the debugger's prompt, indicating the debugger is ready to
accept commands from the console. The current revision number of the
debugger is indicated by x.yz.

DEBUGGER COMMAND SYNTAX

This section describes the general format of debugger command lines,
comments, and command syntax errors.

The general format of a DEBUG-432 command line is:
commandl ; [commandl]... <RETURN>

You can enter debugger commands on a 1line to a maximum of 127
characters per line. The RETURN key indicates the end of the command
line and instructs the debugger to execute the commands in the order in
which they appear. : :

To continue a command over more than one line, type an ampersand (&)
before the RETURN. DEBUG-432 treats the ampersand-RETURN pair as a
blank.

The debugger permits comments in a command line. Comments are signaled
by the presence of a double hyphen (--), which terminates the command,
or an ampersand (&), which tells the debugger to continue this command
line on the next physical line. The prompt for the second and
following lines of a command is a double question mark (??). DEBUG-432
ignores any characters that follow the double hyphen or ampersand.



Workstation User's Guide Getting Started

For example:

?command --This is an example of a comment

?command 1& This comment is in the middle of a command
??parameter]
?

The debugger is case insensitive; it does not distinguish between
capital and lower case letters. Thus

?COMMAND
and
?command

have the same meaning to the debugger.

Command Syntax Errors:

The debugger parses and executes each command in the line after the
RETURN key has been typed. If a syntax error occurs -- that is, if the
debugger encounters a command that it does not understand -~ it reports
an error on the 1line following the command and ignores subsequent
commands. The debugger also positions a caret under the character in
the command line where it discovered the syntax error. For example:

2(1 +2 -3
(1+2 -3

ERR 232: ILLEGAL SYNTAX
?

.

In the above example, the error cursor is placed at the end of the
command line because the RETURN at the end of the line should not be
present within parentheses.

SPECIAL CHARACTERS

All non-printing characters {(except for a few special cases, discussed
in the next section) are echoed to the console as question marks. For
example, if you type a CONTROL-Y, the debugger displays a question mark
indicating that a non-printing character has been entered. Some
characters (CONTROL-B, CONTROL-0) are significant to the debugger if
they are at the beginning of a command line but are echoed as question
marks if they appear anywhere else in the line.

Several non-printing characters are useful for editing command 1lines,
interrupting the debugger, changing I/0 modes, and controlling the
screen display. The following sections describe these special
characters in detail.



Getting Started , Workstation User's Guide

COMMAND EDITING

Line editing lets the user correct typing errors in the command line,
Each character typed is stored in an editing buffer until the user
presses the RETURN key. While the characters are stored in the editing
buffer, they may be edited through special non-printing editing
characters: '

RUBOUT erases the last character typed from both the screen
: and edit buffer,

CONTROL-X erases the entire line currently belng input; that
is, erases up to the last RETURN.

CONTROL-R retypes the current line being typed. If the
current line is empty, echoes the previous command
line and positions the cursor at the end of the

line. You can edit the 1line by wusing RUBOUT, or
execute it by typing RETURN.

CONTROL-C aborts the entire command line (also changes .the
debugger I/0 mode as described later in this chapter)

CONTROLLING CONSOLE OUTPUT

The ISIS-II operating system lets you suspend and resume console output
(without losing any output in ‘the process) with the following control
characters:

CONTROL-S  suspends console output

CONTROL-Q resumes console output

CONTROL-D

The RUN program, under which DEBUG-432 executes, uses CONTROL-D to
start the 8086 debugger on the currently running program (in this case,
DEBUG-432). If you press CONTROL-D, the following message appears:

PROCESSING ABORTED
*

where "PROCESSING ABORTED" is a message from the 8086 debugger and the
asterisk prompt (*) indicates that the 8086 debugger is ready to accept
commands. Typing GOKRETURN> returns you to the 432 debugger (you may
have to type a RETURN to get a prompt from the 432 debugger at this
point). Typing EXIT would leave the 8086 debugger but would also abort
your DEBUG-432 session, returning you to ISIS-II.



Workstation User's Guide Getting Started

CHANGING DEBUGGER I/0 MODES AND INTERRUPTING DEBUG-432

To interrupt any command and return control to the debugger, enter a
CONTROL-C. The debugger displays the following message and prompts for
a new command:

?DEBUGGING ONLY
?

The message "DEBUGGING ONLY" indicates that the debugger is 1in
debugging only mode. This is one of three debugger I/0 modes discussed
in the next section. The other characters that control I/0 modes are
CONTROL-0O and CONTROL-B:

CONTROL-C place the debugger in Debugging Only mode
CONTROL-O place the debugger in I/0 Only mode
CONTROL-B place the debugger in Debugging + I/0 mode

CONTROL-0 and CONTROL-B perform their functions only if they are the
first character of a 1line, otherwise they echo as question marks.
CONTROL-C, however, works under all circumstances; it ‘interrupts
debugger execution and begins a mode in which the user's U432 program
cannot send output to the console.

Changing to a new mode displays an identifying message on the console.
Also, unless in I/0 Only mode, you can give the debugger's MODE command
at any time to display the current mode of the debugger. For example,
after a CONTROL-B the MODE command would produce the following:

7?MODE

DEBUGGING + I/0
?

THE DEBUGGER I/0 INTERFACE

The debugger provides a certain degree of support for I/0 between Ada
programs and the user. This section describes the I/0 interface and
the three I/0 modes available.

For purposes of I/0, the debugger supports three interactive modes:
1. Debugging + I1/0
2. Debugging Only
3. I/0 Only

Debugging + I/0 mode is the initial mode of the debugger.

The user may switch modes using the control characters desceribed in the
previous section.



Getting Started A Workstation User's Guide

DEBUGGING ONLY MODE

When the debugger is in Debugging Only mode, all debugging commands are
available to the user, but no input to or output from the user's 432
program takes place. If the 432 program requests input or output, the
request is not acknowledged until the user changes to another mode.

CAUTION

Immediately after U432 program execution is started,
iMAX signs on using debugger-supported I/0. If the
debugger is in Debugging Only mode, the operating
system cannot sign on until the user changes modes.

Similarly, no 432 program can perform I/0O if the
debugger is in Debugging Only mode.

DEBUGGING + I/0 MODE

Debugging + I/0 mode supports program I/0 in addition to debugger
commands. In Debugging + I/0 mode, data written from the executing 432
program is displayed on the console, and input data may be sent to the
program by the user.

A write request from the 432 program is satisfied when the user is "at
a prompt." The user arrives at a prompt by executing a command or by
keying in either a CONTROL-X or enough RUBOUTs to get back to the start
of a command 1line. If necessary, write requests from the System
432/670 are held until the user is at a prompt.

In Debugging + I/0 mode, date written to the console from the executing
432 program is preceded by the identifying message

-~ FROM 432:

Although no prompt is issued after the write operation, the user is
free to enter debugger commands. Subsequent output from the U432
program will not have the identifying message preceding it until the
user enters a debugger command.

To direect input to the U432 program, type a percent sign (%) as the
first character of the input line. Ordinary line edit keys, such as
RUBOUT and CONTROL-X, may be used when entering such an input 1line.
When the RETURN key is pressed, the characters to the right of the
percent sign are sent to the 432 program, along with a trailing
<CR><LF> pair (obtained by pressing RETURN).

3-6



Workstation User's Guide Getting Started

I/0 ONLY MODE

In this mode, the user is interacting with the 432 program only and
cannot give debugger commands; all input is assumed to be directed to
the U432 process. No debugger prompts are displayed. Furthermore,
input lines to the 432 program should not be preceded with "%", nor is
output from the program preceded with the "--FROM 432:" message.

Users running complete, correct 432 programs should choose this mode.

ENTERING INPUT LINES

The debugger 1/0 interface defines a 132-character buffer for input to
the 432 program. Each time the user keys in a line as input for the
432 (either in I/0 Only or in Debugger + 1/0 mode), the line is placed
in this buffer. If there were previously characters in the buffer, the
current line is placed after those characters. This permits type-ahead
of up to 132 characters.

Whenever the 432 program makes a read request for n characters, it is
satisfied by the characters remaining in the first line of the buffer.
If the line does not have n characters, whatever characters remain are
used to satisfy the request; the next read request uses the next 1line
in the buffer. If the buffer is empty when a read request is given,
the request is not satisfied until the user keys in a line of input to
the 432 program.

The minimum number of characters that can be placed into the buffer is
two: namely, a <CR><LF> pair obtained by typing a RETURN. The 432
program may issue a read request for a maximum of 132 characters.

When the I/0 buffer is full, no further characters are accepted from
the user. If a character is entered when the buffer is full, the
debugger sounds the console bell (CONTROL-G); in this case, the input
character is not echoed.

When the debugger is in Debugging + I/0 mode and is accepting commands
from an include file (see the INCLUDE command), it does not support
type-ahead of 432 input lines. After each line of 432 program input
(preceded by %) is read, the debugger stops reading from the include
file until the 432 program has read the entire line. Although the
debugger stops reading from the include file, it is still polling for
breakpoints and 432 I/0 requests. - To interrupt an include file and
return control to the console, type CONTROL-C.

BREAKPOINT ANNOUNCEMENTS AND DEBUGGER MODES

Breakpoints are always announced, regardless of the debugger mode. If
the user is at a prompt, the a breakpoint is announced as described in
Chapter 5. On the other hand, if the user is entering a command or
input line when a breakpoint occurs, the console bell is sounded;
subsequently, when the user reaches a prompt, the breakpoint message
appears.

3-7



Getting Started : Workstation User's Guide

PREPARING THE DEBUGGING ENVIRONMENT

The debugger I/0 mode is one of several parameters that determine the
debugging environment -- the context within which a user interacts with
the debugger. This debugging environment affects what commands the
user can give at any time, what the commands will do, and how the
results are displayed. Other parameters in the environment are the:

default numeric input base

default numeric output base

log file (if any)

log state (logging only, console output only, or both console
output and logging)

e top of System 432/670 memory

The level of U432 memory addressing available at any time is also part
of the environment. In various states the debugger supports logical
and physical addressing, physical addressing only, or no addressing at
all.

The user can maintain a set of symbolic names in the debugger name
table; this set of names is also considered part of the debugging
environment.

The rest of this chapter explains the various parts of the debugging
environment and how to control them. Setting up a workable environment
is a prerequisite to debugging a program.

The INCLUDE command can read in a file that contains a set of debugger
commands to establish the debugging environment.

GLOBAL DEBUGGING PARAMETERS
The following sections describe the parameters listed above and are

summarized in Table 3-1 below.

Default Iﬁput and Output Bases

The debugger does 32-bit, twos-complement arithmetic. Integers are
similar in format to integers and based numbers in Ada. The difference
between Ada format and debugger format is that the default base in Ada
'is 10, whereas the default base in the debugger may be changed.

When the debugger signs on, the default input and output bases are base
10. That is, all numbers which the user types in as part of a command,
or which the debugger prints out in response to a command, are in base
10. Base 10 is typically used for defining templates (see Chapter 6).
Actual debugging is usually done in base 16; the file DEBA432.TEM,
which the user INCLUDEs to define the standard templates, contains
commands to set the input and output bases to 16.

At any time, a based number, written in the form: base#number#
overrides the default base. The base will always be a decimal number.
For example, in base 10, typing 16#FE# is the same as typing 254.

3-8



Workstation User's Guide Getting Started

If the input base is changed to 16, typing 10#254# is the same as
typing OFE.

When a number begins with a letter and is not in based number format,
it must be preceded with 0 to distinguish it from an identifier.

‘The default input base is changed using
SUFFIX n

The default output base is changed with
BASE n

where n is the desired base, either in decimal or in the form
baseifnumberi.

Type BASE to find the current default output base, and SUFFIX to find
the current default input base.

The I/0 Mode

The three debugger I/0 modes were discussed above under "The Debugger
I/0 Interface". The I/0 mode determines the way the debugger
interprets user input: as debugger commands or as 432 input. It also
allows the debugger to "disappear from view": in I/0 only mode the
debugger transmits all input to the System 432/670. In Debugging Only
mode, all input goes to the debugger. Debugging Only mode might be
used to suspend the output of other, executing, processes while a
breakpointed process is being debugged.

The Log File

The 1logging facility can record all or part of a debugging session.
The command

LOG filename

opens a log file and turns logging on. Any previous log file is closed
‘and the new one opened. While logging is on, all debugger input and
output that appears at the console is copied into the log file. This
includes I/0 to and from the System 432/670.

After a log file has been opened, the user can give commands to send
output to the console only, the log file only, or both:

>CRT -- direet output to the console only
>LOG —- direct output to the log file only
LOG -- resume suspended logging: direct output to

both log file and console

3-9



Getting Started Workstation User's Guide

Once a log file has been opened in a debugging session, a log file will
be open for the remainder of the session. Type VERSION to find the
current log file name and whether logging is ON or OFF.

Topvof Memory

The top of memory is the address of the last byte in the system. The
debugger needs to know the top of System 432/670 memory to check the
validity of addresses used later in the debugging session. It also
uses the top of memory to locate the 256-byte window that controls the
System U432/670 Interface Processor.

After the System 432/670 is powered on, the INIT command must be used
to reset the System 432/670 and clear memory (see "The Debugger
Addressing State," below). The debugger determines the address of the
last byte of 432 memory and displays it as part of the INIT command:

?INIT
TOP OF MEMORY: TFFFF

If INIT SYSTEM is used, the debugger does not clear nor determine the
top of memory. Instead, the user supplies the top of memory:

INIT SYSTEM !number
where number is the address of the last byte of System 432/670 memory.

The VERSION command displays the current top of memory. '

Table 3-1. Global Debugging Parameters
Command to Command to
Parameter _ Set Parameter Display Current Setting
Default input base SUFFIX n SUFFIX
Default output base BASE n BASE
I/0 mode MODE, VERSION
Debugging Only CONTROL-C
Debugging + I/0 CONTROL-B
I/0 Only CONTROL-0O
Log file LOG filename VERSION
Log state VERSION
CRT and log file LOG [filename]
CRT only >CRT
Log file only >LOG
Top of memory INIT VERSION
INIT SYSTEM !number

3-10



Workstation User's Guide Getting Started
THE DEBUGGER ADDRESSING STATE
The addressing state refers to the kind of addressing the debugger will

currently support: logical and physical, physical only, or none.

No Addressing

If 432 memory has not been initialized with an INIT command since the
last power-up, or if memory is initialized but the debugger does not
have the current top of memory value, the debugger cannot access memory
and hence no addressing is permitted.

Use the INIT command to initialize memory if necessary. If the command
is successful, physical addressing is allowed.

If memory has been initialized since the 1last power-up, but the
debugger needs a top of memory value, use INIT SYS. The command resets
the GDP, tells the debugger the location of the top of memory, and
enables physical addressing without harming the existing image 1in
memory.

Physical Addressing Allowed

Whenever the 432 memory has been initialized and the debugger knows the
top of memory, physical addressing is allowed. That is, the user can
reference memory by byte address. The user can also address the 432
interconnect space (see Chapter 4). Logical addresses may not be
used. Neither the IPC or START commands may be used, nor breakpoints
set, until logical addressing is enabled.

To allow logical addressing, in which memory is referenced by access
descriptor coordinates (see Chapter 4), a load image must be provided
with the LOAD, DEBUG, or RESTORE command.

The LOAD or RESTORE command must be followed by a DEBUG command. If
the DEBUG command finds a consistent 432 object table directory,
logical addressing is allowed.

A bad electrical connection between the Series IIJ and System 432/670

could return the system to the no addressing state; use INIT or INIT
SYSTEM as described above.

Logical Addressing Allowed

In this state, both physical and logical addresses may be used. All
debugger commands are recognized, and the debugger polls for
breakpoints and I/0.

If the INIT or INIT SYSTEM command is used in this state, or if a new

memory image is loaded with the LOAD command, the debugger returns to
physical addressing state.

3-11



Getting Started ' Workstation User's Guide

A bad electrical connection between the Series JIII and the System
432/670 could return the system to the no addressing state; follow the
steps outlined above to enable physical and logical addressing again.

NAMES

DEBUG-432 1lets the user assign symbolic names to integers, memory
references, breakpoints, and templates. These names are stored in a
debugger-maintained structure called the Debugger Name Table (DNT).

Debugger names are of the same form as Ada names: an intial letter
followed by letters, digits, and isolated underscores. The maximum
length of a name is 128 characters.

A name may not have more than one definition in the DNT. If the user
tries to define an existing name, the debugger issues an error.
Reserved words may not be declared as names. A list of reserved words
appears in Appendix B.

Declaring Names

Naming an integer permits use of the name in expressions; the user can
enter the name instead of the integer itself. The syntax for declaring
an integer name is: ’

name: INTEGER [:= expression]
The expression is the value of the integer,
The name may then be used in expressions. For example:

?2index:INTEGER := 4 ‘
?20ffset :INTEGER := index*16

References, breakpoints, and templates are named when they are
defined. Chapter 4 describes references and naming a reference.
Chapter 5 discusses breakpoints, Defining a breakpoint sets the
breakpoint in 432 memory and stores its definition in the name table.
Chapter 6 describes templates, used to display objects in memory.
Having the template name in the name table makes that template
available for use in displaying and modifying memory.

Listing Names in the DNT

The DIR command 1lists the names and definitions in the DNT
alphabetically. The entire DNT can be listed, with a brief definition
of each item, by typing:

DIR
To list all the definitions of a particular'type. use the DIR command

followed by the appropriate type: BREAK, INTEGER, REFERENCE, or
TEMPLATE. For example:

3-12



Workstation User's Guide Getting Started

DIR TEMPLATE

lists, in alphabetical order, all the template names, and a brief form
of the definition of each (as much as will fit on one line).

To print just one item, type DIR followed by item name. This prints
the complete definition of any name in the DNT.

Removing Names From the DNT

Any name in the DNT may be removed using the REMOVE command. Use:
REMOVE ALL
to empty the entire directory.

To remove all names of a type, follow REMOVE by the type keyword. For
example:

REMOVE BREAK

removes all breakpoints from the DNT., Removing a breakpoint from the
DNT also deactivates it in 432 memory.

To remove a single name, follow REMOVE with the name of the item to be
removed. To redefine a name, REMOVE it and then reenter it.

Symbol Table Space

The debugger name table is stored in Series III memory and overflows to
a disk workfile. To speed access to user symbols which have been paged
out to disk, a hard disk drive should be used for the workfile.
Fastest access to user symbols is obtained when all symbols are in
RAM. DEBUG-432 takes advantage of all available Series III memory;
adding more memory boards will greatly increase the probability that
user symbols will all be in RAM.

The name table reuses space as it is freed by the REMOVE command. The
REMOVE ALL command completely reinitializes the name table.

No Predefined Names in the DNT

There are no predefined names in the DNT. There are certain template
names used as defaults when memory is displayed or examined. These
names are listed in Chapter U4, both in Table 4-2, "Default Template
Names" and in the section "Other Default Templates". These names
should always be defined as template names. A set of default template
definitions is listed in Appendix C and can be entered into the DNT by
using the INCLUDE command to include the file DEB432.TEM.

Two reference names, CC and CP, are automatically entered in the DNT
when the first breakpoint is serviced by the debugger and are assigned

3-13



Getting Started : Workstation User's Guide

new values at every breakpoint.

Any of these names can be deleted from the DNT.

INCLUDE

Very often when debugging a program, the same set of commands is used
to set up the environment at the beginning of each session. These
commands can be placed in a Series III file with a text editor and
executed during the debugging session using the command:

INCLUDE filename [LIST]

where filename is any Series III filename, and the LIST option
determines whether the commands in the file will be echoed at the CRT.

As mentioned above, the file DEBU32.TEM contains a set of template
definitions, followed by the commands BASE 16 and SUFFIX 16. Other
commands may be added to this file, or another INCLUDE file may be
created. For example, assume the file START.INC has the following
commands:

LOG test.log
INCLUDE deb432.tem
INIT '
DEBUG test.eod
START

Then the command
INCLUDE start.ine LIST
causes the commands in the file to be executed. The commands in this

file will be echoed, since the LIST option was used; the template
definitions in DEB432.TEM will not be echoed.

STARTING A DEBUGGING SESSION

The commands discussed above are usually used to initialize the System
432/670 and the debugger when you first begin a debugging session.
Depending on the environment when you enter the debugger, you may use
these commands in different combinations.

This section describes five likely sequences for using the environment
commands:

Standard startup

Exiting and returning
Reloading 432 memory

Loading with SAVE and RESTORE
Recovering from a crash

3-14



Workstation User's Guide Getting Started

In general, the INIT command should be given before any command that
loads a System 432/670 memory image. If the user loads a new image on
top of an executing one, it is highly likely that the processors will
fault, requiring an INIT and then another load operation.

STANDARD STARTUP SEQUENCE

The most common sequence for starting a debugger session is shown in
Figure 3-1.

-RUN DEBA432

SERIES III 432 SYSTEMS LEVEL DEBUGGER, V1.00

?include debd32.tem ~- include the Intel-supplied templates
?init -- initialize the System 432/670

TOP OF MEMORY IS: T7FFFF

?debug test.eod ~- load the program to be debugged,

-- start polling, and enable
—— logical addressing

.o -- set breakpoints, patch memory,
-- define templates,

?start -~ start the system
e -~ debug program
?exit

Figure 3-1. Standard Startup Sequence

EXITING AND RETURNING

It is possible to exit the debugger and then reenter it without having
to reload memory. This will not work if the System 432/670 IP board
has faulted or is wuninitialized. Also, the 1last program to have
interfaced to the System 432/670 through the IP board must have been
the debugger.

Given these restrictions, it is possible to sign on to the debugger
with the standard sequence discussed above, start the memory image,
exit from the debugger, use the Series IIL for other purposes, and
finally sign back onto the debugger and connect with the memory image.
Figure 3-2 shows how to sign back on.

-RUN DEB432

SERIES III 432 SYSTEMS LEVEL DEBUGGER, V1.00

?include debl32.tem -- include the templates
?debug -- connect to the memory image

Figure 3-2. Exiting and Returning




Getting Started Workstation User's Guide

The debugger does not remember breakpoint definitions between
invocations; they must be deactivated or removed before you sign off,
and redefined when you sign back on.

RELOADING MEMORY

Figure 3-3 shows how to load a memory image during a debugging
session. It assumes that the file DEB432.TEM, containing the standard
templates, was included during the initial startup.

?init -- reset the System 432/670 and clear memory

?debug test.eod -- load the new image and begin logical
-- addressing

e -~ set breakpoints, patch memory, etc.

?start -- begin debugging.

Figure 3-3. Reloading Memory

USING SAVE AND RESTORE

The SAVE and RESTORE commands can manipulate entire memory images;
RESTORE is faster than DEBUG or LOAD for loading an image.  However, to
take advantage of this the user must first LOAD the image from a linked
EOD and then SAVE the image in a file (the size of the static load
image may be obtained from the link map), as shown in Figure 3-4,

-RUN DEBH432
SERIES III 432 SYSTEMS LEVEL DEBUGGER, V1.00

?include debd32.tem
?init

TOP OF MEMORY IS: (FFFF
?debug test.eod

?save !0 TO !1FFFF to :fl:test.sav ~- 1FFFF from link map
?start

?init

TOP OF MEMORY IS: TFFFF
?restore :fl1:test.sav
?start

?exit

Figure 3-4. Using SAVE and RESTORE




Workstation User's Guide Getting Started

RECOVERING FROM A CRASH

Two kinds of crashes can require the System 432/670 to be reset: a
process in 432 memory may have caused a crash severe enough to place
the System 432/670 in a "fatal" state; or the cable connection between
the Series III and System 432/670 may have come loose, causing the
Interface Processor to fault. The debugger displays the message:

ERR 329: FATAL IP ERROR
Figure 3-5 shows the sequence to recover.
Use INIT SYSTEM instead of INIT to preserve the crashed system's memory
image for examination. The physical address in the command should be

the address of the last byte of memory.

Note that resetting the System 432/670 resets all executing processors.

ERR 329: FATAL IP ERROR

?init system !T7ffff -— reset 432 hardware but not memory
?debug -- restart logical addressing

l?

Figure 3-5. Recovering from a Crash







CHAPTER 4
EXAMINING AND MODIFYING MEMORY

INTRODUCTION

DEBUG-432 1lets users examine U432 memory 1locations and modify the
contents of these locations. The debugger can also reference locations
symbolically. This chapter covers the representation of 1APX 432
addresses, a simple introduction to templates, memory references,
examination and modification of memory, and the Data Structure Table.

REPRESENTATION OF iAPX 432 ADDRESSES

The debugger views memory as either a linear array of 8-bit bytes or a
collection of segments. The first view is called physical memory; the
second is called logical memory. Physical memory is referenced through
physical addresses, and logical memory through logical addresses. Full
syntax for addresses is in Appendix A; a discussion of memory segments
is in the Introduction to the iAPX 432 Architecture.

PHYSICAL ADDRESSES
A physical address is simply an ordinal number that specifies an index
into the array of bytes that makes up physical memory. In the
debugger, a physical address is written as an execlamation point (!)
followed by an ordinal indexed from zero:

112345 —-= the 12,346th byte of memory
The ordinal can also be replaced by an expression (see "Expressions"
below).

LOGICAL ADDRESSES

A logical address has the format:

directory index " segment index [{.} ,frset]
' {1}

where each of the three components is either a non-negative integer or
an expression, enclosed in parentheses, which evaluates ¢to a
non-negative integer.



Examining and Modifying Memory Workstation User's Guide

The directory and segment indices are the coordinates of a segment;
together they are called the object reference or an access descriptor.
‘Users can obtain coordinates of all static segments in the memory image
from the linker load map. (See the Intel 432 Cross Development System
VAX/VMS Host User's Guide.)

If the separator between the object reference and the offset is an
exclamation point (!), the offset is interpreted as a byte offset. If
the separator 1is a period, interpretation of the offset component
depends upon the type of segment identified by the object reference:

® If an access segment is identified, offset n designates the n+i1st
access descriptor of the segment.

) If a data segment is identified, offset n deéignates the n+ist byte
of the segment.

e When setting breakpoints in an instruction segment (see Chapter 5),
n designates the n+1st bit in the segment.

If the offset is omitted altogether, the address identifies the whole
segment.

For example, the following are valid logical addresses:

1473 -- a segment (assume it is a data segment)
—- with directory index 14 and segment index 3.

1473.1234 -- the 1,235th byte in that data segment.

3"27 -- a segment (assume it is an access segment) with
directory index 3 and segment index 27.

3727.12 ~-- the 13th access descriptor in that access
-- segment.
3727112 ~- the 13th byte of access segment 3727

INTERCONNECT ADDRESSES

DEBUG-U432 can address the iAPX 432 interconnect address space
(deseribed in the System 432/600 System Reference Manual). The
interconnect space is examined and modified exactly like memory. If
the object table entry for a logical address is an interconnect
descriptor, the address is said to be a logical interconnect address;
the syntax is the same as for any other logical address. A physical
interconnect address is specified by an ordinal expression preceded by
two exclamation points (!1):

118 -- The address of the ninth byte of interconnect space



Workstation User's Guide Examining and Modifying Memory

This document will use the term "interconnect address" for physical
interconnect addresses. Logical interconnect addresses are treated
along with logical memory addresses.

TEMPLATES

The iAPX 432 architecture is highly structured; it consists of objects:
hardware-recognized data structures. DEBUG-432 provides constructions
called templates to examine and modify the objects in the memory
image. A template describes how the data in an object is organized in
memory and how that information should be displayed when the user
examines the object.

A number of templates are supplied with the debugger. These describe
access and segment descriptors, some standard system objects, and some
8-, 16-, and 32-bit data items. For example, a template called
PROCESS_AS describes part of a Process Access Segment, another template
called AD describes the coordinates of an Access Descriptor, and a
template called B8 describes bytes. The Intel-supplied templates are
in a file called DEB432.TEM., Table 4-1 lists the templates supplied in
DEB432,.TEM and gives a brief description of what each template
displays. A complete list of these templates is in Appendix C.

Users may define templates for system objects or for their own data
structures. System objects are described in the iAPX 432 General Data
Processor Architecture Reference Manual and in the iAPX ald32 Interface
Processor Architecture Reference Manual. Template definition is
covered in detail in Chapter 6.

In this section, we will define two templates, CONTEXT_AS and
CONTEXT_DS, which describe a context access segment and a context data
segment, respectively. The file DEB432.TEM supplies two templates with
these names; the ones defined in this section are similiar to those two
templates.

A template to describe the first 9 slots of a context access segment
might be:

TEMPLATE context_as IS

ctxt_ds: @o0; -— AD to context data segment
const: a1; -- AD to constants data segment
prev: 82; — AD to calling context
msg: 03; -~ AD to message object
eurr_ctxt: a4, -- AD to current context
EAS_1: e5; —- AD to Entered Access Segment 1
EAS 2: @6; -— AD to Entered Access Segment 2
EAS 3: e7; -—- AD to Entered Access Segment 3
domain: 88; -- AD to defining domain

END

Each field is given a name (CTXT_DS, DOMAIN). The notation "@number",
called an access descriptor index, describes the access descriptor
whose index is given by the number. There is an optional clause that

4-3



Examining and Modifying Memory Workstation User's Guide

has been omitted here, called the access attribute. For example the
fields PREV and CURR_CTXT could have been defined as:

prev: @2 ACCESS context_as;
curr_ctxt: ey ACCESS context_as;

The access attribute gives the template name that is to be used to
describe the object pointed to by the access descriptor. The access
attribute may be present only for fields defined as an access
descriptor index. In the case of the PREV and CURR_CTXT fields, access
descriptors 2 and 4 both point to context access segments, so
CONTEXT_AS is appropriate. The CTXT DS field might have an access
attribute of CONTEXT_DS:

etxt_ds: @0  ACCESS context_ds;
This declares that the templaté CONTEXT_DS should be used to interpret
the object pointed to by the first access descriptor in a context
access segment. The use of the ACCESS attribute is discussed below in
"Dot Notation.”

A template to describe the first four fields of a context data segment
would look like:

TEMPLATE context ds IS

status: [0, 161; -~ The context status
sp: [2, 161; -- the operand Stack Pointer
inst_idx: [4, 161; -— index of instruction segment in domain
ip: {6, 16]; —- the Instruction Pointer
END

Again, each field has a name. The notation "[i, Kk]", called a bit
string descriptor, selects a bit field starting at byte i that is k
bits long. For example, INST IDX describes a 16-bit field that starts
at byte 4 and IP describes a 16-bit field that starts at byte 6.

Note that each numberic value displayed by a template field has its
most significant bit on the left, least significant bit on the right;
the debugger displays low address items first, next higher address
items next, etc.

Template definition is covered in detail in Chapter 6.

4y



Workstation User's Guide Examining and Modifying Memory
Table 4-1. Templates in DEB432.TEM

Template Displays

AD - one access descriptor (di"si)

AS - 2 rows of 8 ADs (64 bytes total)

B16 - 16 bits as an unsigned value

B32 - 32 bits as an unsigned value

B8 - 8 bits as an unsigned value

BS - 32 bits as an unsigned value

CONTEXT_AS - The first 8 ADs of a context access segment

CONTEXT_DS - The first part of a context data segment

DESCR - Uses a variant to select the correct template to
display any object table entry

DS - U4 rows of 8 short ordinals (64 bytes total)

EXTRACT - 32 bits as an unsigned value (used in expressions)

FLT - When applied to a process access segment, FLT
displays the context fault area of that process

MEM - 4 rows of 16 bytes followed by ASCII for those 16
bytes (Uses DUMP)

ORD - An ordinal

PFLT - When applied to a process access segment, PFLT
displays the process fault area.

PROCESS_AS - the first 10 ADs of a process access segment

PSORFLT - When applied to a processor access segment,
PSORFLT displays the processor fault area.

RAD - An AD with the rights bits (Raw Access Qgseriptor)

RAS - The first 14 RADs of a segment

SO -~ A short ordinal

The following templates are used in defining those above:

CH
DUMP

FREE
F_AREA
F ORT
HEADER

INTERCONNECT

PROC_STAT
REFINE
STORAGE
SYSTEM_TYPE

TYPE_DES

- an ASCII character (or "." if unprintable)

- 16 bytes followed by the ASCII (using CH). This
template is used to build the MEM template.

- a free entry in an object table (used by DESCR)

- generic fault area (used by FLT, PFLT, PSORFLT)

- "F" or "T" depending on value of first bit

- a header entry in an object table (used by DESCR)

-~ an interconnect descriptor (used by DESCR)

- part of the process status (used by PROCESS_AS

- a refinement descriptor (used by DESCR)

- A storage descriptor (used by DESCR)

- Applied to certain descriptors, SYSTEM TYPE
displays the system type of the object (used by
STORAGE, REFINE)

- a type descriptor (used by DESCR)

4-5




Examining and Modifying Memory Workstation User's Guide

REFERENCES

A reference is a combination of an address and a template name (written
as address:template). When the reference is used, we say "the template
is being applied against memory." The debugger will accept just an
address wherever a reference is required; the debugger will supply a
default template when the address is used.

The address part of a reference determines what memory the template is
applied against. This memory is called the bit stream. If the address
is a physical or interconnect address, the bit stream 1is either the
rest of memory or 64K bytes, whichever is smaller, starting at the
address. If the address is a logical address, the bit stream is the
rest of the segment, starting at the address.

Example References:

9%9:context as - apply the template CONTEXT_AS to segment 979

21°3.12:0rd = apply ORD to the rest of segment 2173,
starting at offset 12

!8:extract - apply EXTRACT to memory starting at byte 8

114:s0 - apply SO to interconnect space, starting at
byte 4

A reference can be given a name and entered .into the DNT. The type of
the name is REFERENCE (i.e., the command DIR REFERENCE will display all
of the references defined in the DNT). Once the name has been defined,
it can be used wherever the reference may be used:

name IS reference
For example

my_process is 4“12:proces§_as
tree is 7" 1B:node
psor is 171

In this last example, the reference PSOR is defined to be an address,
which means that whenever PSOR is used, the debugger will select a
default template to form a complete reference. With two exceptions
(modifying memory and using an address in an arithmetic expression),
the "Default Template Selection Algorithm", described below, is used to
determine the default template. Briefly: the debugger has a table of
template names for each hardware recognized system object (PROCESS_AS.
CONTEXT_AS, etec.). If the address is a 1logical address and is the
address of one of these objects, a template from that table is
selected. If that template is not defined or if the logical address
does not describe a system object, one of the generic template names AS
or DS will be wused. If the address 1is a physical address or
interconnect address, the template DS will be always be used.

A reference expression is either a reference, a reference name, or an
expression of the form:

reference_expression:itemplate_ name

4-6



Workstation User's Guide Examining and Modifying Memory

The rightmost template name in such an expression is the template that
will be used to form the reference. For example:

3716.431 -—- Template part determined when expression used.
tree:flt -- same as 7" 1B:flt, using tree as defined above
2%2:ds:as —- same as (272:ds):as which is same as 2"2:as

psor:b8 -- same as 171:b8, using psor as defined above

DOT NOTATION

A reference has a template part and, as shown in the section on
"Templates", templates may have named fields. The debugger provides a
dot notation, to refer to the individual template fields of a reference
or reference expression. The general syntax is:

reference_expression [. field name]...
where the field name must be a field of the template used in the
reference__expression. Assume that 9%1C is a context access segment
(see Figure 4-1 below), then the expression:

9" 1C:context_as.prev
uses dot notation to reference the PREV field. Using the CONTEXT_AS
template defined in the previous section, we see that this expression
is a reference to the third access descriptor (i.e., the access
descriptor having index 2). Likewise, if we assume that 971D is. a
context data segment, then the expression:

9% 1D:context_ds.ip

references the instruction pointer field of the context data segment.

When using dot notation, we can also use a named reference preceding
the dot:

c is 971C:context_as

c.prev -- same as "9"1C:context_as.prev"
Also, as mentioned above, whenever a reference is required, Jjust an
address may be supplied; the debugger will supply a default template if
one is not provided. Since we are assuming that 971C is a context
access segment, the default template that would be selected is
CONTEXT_AS. Therefore, the following expression is also acceptable and
equivalent to the ones shown above:

9”1C.prev -- same as "9"1C:context_as.prev"

TRAVERSING ACCESS DESCRIPTORS

The syntax for dot notation allows chains of .field name to appear. If
a field of a template designates an access descriptor, then both the

4-7



Examining and Modifying Memory Workstation User's Guide

Qalue of the field and the object that the field points to are
interesting. The dot notation provides a way to traverse the access
descriptor and examine the indicated object. :

When the dot notation is used to traverse a field of a template, a new
reference is formed. The address part of the reference is the access
descriptor, taken from 432 memory, indicated by the template field to
the left of the dot. The template part of the reference is either
taken from the ACCESS clause of the field, or a default will be
selected by the debugger (see "Default Template Selection Algorithm").
For example,

971C:context_as.prev.domain
traverses the PREV field of context access segment 971C. If we assume
that the value of this field is 970F, another context access object,
then the reference formed by "9"1C:context_as.prev" is the same as
"9“0F:context_ps" and the example above is the same as:

9”0f:context_as.domain

since the PREV field points to the calling context access segment of a
context.

9™1C 9°1D
ctxt_ds e i

prev

—> 9"QF 9710
ctxt_ds p——mm> 0
3A
prev 2C
. 9AF
domain —> 9704
ctxt_ds
prev —————> 9"5
. ctxt_ds |
. prev

Figure 4-1. A Chain of Context Access Objects




Workstation User's Guide Examining and Modifying Memory

ACCESS PATHS

When dot notation is used to access a template field of a reference,
the part of the expression that precedes the rightmost dot is called
the access path to the reference. In the expression

9" 1C:context_as.prev

"9%1C:context_as" is the access path to the reference 97 1C:context_as.
Consider the example from above, of traversing an access descriptor:

9" 1C:context_as.prev.domain

in this example, "9“1C:context_gs.prev" is the access path to the
reference 9"0OF:context_as.

As will be seen in the seection on the "Data Structure Table", the
debugger provides a way to make the template field names of one
reference directly accessible, without having to retype the access path
to the reference.

DEFAULT TEMPLATE SELECTION ALGORITHM

Whenever a reference (i.e., address:template) is required by the
debugger, only an address need be used. The debugger will supply a
default template name to make the address into a reference. In all
cases but two, the debugger uses the default template selection
algorithm to select a template name (the exceptions are modifying
memory or using just an address in an expression, see the bottom of the
next page). ‘

For physical and interconnect addresses, the default template is DS.
If the address is a logical address, the following algorithm is used
for choosing a default template name:

1. If the logical address is the address of a segment (i.e., a
logical address with no offset), a name is selected from the
list in Table 4-2, depending on the base and system type of
the segment. The debugger will display the name selected
followed by a <RETURN>., If a template with the selected name
is defined, that template is used as the default. Otherwise,
go to step 2.

2. If the logical address has an offset or if no template is
defined with the name selected in Step 1, the debugger selects
either the name DS or AS as the default, corresponding to the
base type of the segment.

3. If a segment has a system type other than the ones defined in
Table U4-2, the debugger chooses DS or AS as the default,
depending on the base type of the segment.

y, If neither AS nor DS is defined, an error occurs.



Examining and Modifying Memory Workstation User's Guide

Table 4-2. Default Template Names
Base Type
System Data Segment Access Segment
Type
0 Generic_DS Generic_AS
1 Reserved_DS Reserved_AS
2 Object_Table Domain_AS
3 Instruction_Segment Reserved_AS
y Context_DS Context_AS
5 Process_DS- Process_AS
6 Processor_DS Processor_AS
7 Port DS Port_AS
8 Carrier DS Carrier AS
9 SRO_DS ~ SRO_AS ~
10 Communication Segment Type_Def AS
11 Descriptor_Control DS
12 Refinement_Control DS

OTHER DEFAULT TEMPLATES

These seven templates are used by the debugger as default templates in
different situations. A definition for each of these appears in the

file DEB432.TEM.

Template Situation Where Used as a Default

Name
1. AD - in templates: default for "@number" bit identification
2. AS - for displaying an access segment (See algorithm above)
3. B8 - used for modifying memory
4, BS - in templates: default for "[i:j,k]" bit identification
5. DESCR - default for displaying 'SD attribute logical address
6. DS - for displaying a data segment (See algorithm above)
7. EXTRACT - when a reference is used in an expression

The definition of these templates has a considerable impact on the
operation of the debugger. These names, and the names of the default
templates listed in Table 4-2 should be used only as template names,
and care should be taken when redefining them.

4-10



Workstation User's Guide Examining and Modifying Memory

EXAMINING MEMORY

To examine memory, the user enters either a reference expression
followed by a repetition clause or a reference expression with dot
notation indicating that a template field is to be examined.

The DEBUG-U32 command for examining memory has the following syntax:

source [repetition]

or
source [. field namel...

where source is a reference expression, repetition is either
"LEN number" or "ALL", and field name is the name of a template field.

The source reference expression is used to obtain the address:template
pair for examining memory. As described in "References," the address
determines the bit stream -- the memory the template will be applied
against. The debugger applies the template to memory and follows the
specifications in the template definition for displaying that memory.

If the reference expression does not have a template part (i.e., it is
just an address), then a template is selected according to the default
template selection algorithm, described above.

The repetition field specifies how many times the template is to be
applied to memory. If more than one repetition is specified, the
template is applied successively, each time starting where the previous
application left off. This will continue until either the repetition
count is complete or the end of the bit stream is reached.

If a field name is present it must be a field of the template used in
the reference or ".ALL". A field name causes the display of just that
field, ".ALL" causes the entire reference to be displayed indented two
spaces and preceded by the access descriptor for the reference.

Sample Memory Examination Commands:

(Assume 171 is an access segment)

17 1:mem -- display segment 171 using template MEM

171 ~-- display segment 171 using default

1" 1:ds ~- display segment 171 using template DS

1%1.4:ad -- using ad, display starting at 5th AD of 171
1"1.4:0rd -~ using ord, display starting at 5th AD of 171
118:descr ~~ use template DESCR to display, starting at byte 18

1"1:ad len 3 -~ display the first 3 access descriptors in 171
1"1:ad ALL -~ display all the access descriptors in 171

4-11



Examining and Modifying Memory Workstation User's Guide

!28:storage.basq_addr -- display the base_address field using the
-~ template STORAGE applied to memory
-- starting at byte 28.

11Y:s0 -~ display interconnect register 2 (bytes 4 and 5)

Many templates are written to display starting with the first byte,
word, or access descriptor of the bit stream (an exception is the FLT
template in DEB432.TEM). If the template is written to examine more
memory than is defined by the address, the debugger pads the memory by
adding zeros to the end. For example, in the command "1"1:mem" if
segment 171 is 20 bytes long, but the template MEM examines 64 bytes,
"the last 44 bytes examined will be zeros.

Examples of Examining Memory:

All examples of memory examination are assumed to have BASE and SUFFIX
settings of 16.

Example 1:

24~1C

PROCESS_AS

STATUS: 0CO48  [BOUND, NOT_FAULTED]
PROC_DS: 4" 23
CURR_CTXT: ¥~ 20
PGLOB_AS: 4~ IF
LOC_OBJ_TAB: 2"
PROC_CARR: 0~ 0
DISP_PORT: ¥ 1D
SCHED_PORT: 0~ 0
FAULT_PORT: 0~ 0
CUR_MSG: 0" 0
CUR_PORT: 0~ 0
CUR_CARR: 0" 0
SURR_CAR: V)

?

In this example, the debugger recognized the segment with coordinates
471C as a Process Access Segment, then used the template PROCESS_AS
(from DEB432,.TEM) to examine the data in this object and display it in
tabular form.

Example 2:

?5"4.3
GENERIC_DS |
0 345 27 0 0 0 0 0
23 3F 456 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0

0 0 0

412



Workstation User's Guide Examining and Modifying Memory

In this example, the reference used to examine memory is "5~y 3:DS",
The debugger has interpreted the address 574.3 as the address of a data
segment, of system type "GENERIC DS". No template named GENERIC_DS was
found in the debuggers name table, so the template DS was used by
default.

Example 3:

'2372.23:AD

173

?
In this example, the user has told the debugger to interpret the 4
bytes starting at location 372.23 as an access descriptor.
Example 4:

?372.23:0RD

1FOO3F

?
In this example, the user has told the debugger to examine the same
location as in Example 3, but this time to interpret the data as a

32-bit quantity. The template ORD accomplishes this interpretation.

Example 5:

?2171:DS '
L6F 5F 0 0 4sF 5F 33F 5F
2F 2F 3FF 5F 21F 6F B3F 5F
0 0 0 0 0 0 0 0
19F 6F 0 0 0 0 B1F 5F

This example uses the template DS, which displays the contents of a
segment as a sequence of double bytes, to display the segment 171. To
display just the first 32 bits of the segment the template ORD (for
ordinal) may be used: ’

217 1:ord
SFOU6F

The same segment can be displayed using the template AS, which displays
the contents of the segment as a series of access desecriptors:

Example 6:
?21%1:as
57 46 0~ 0 5% 45 5733 2 2 5" 3F 6" 21 5% 43
0" 0 00 0 00 0 0 0 6

To display just the first two access descriptors, the template AD may
be used (and the repetition clause):



Examining and Modifying Memory Workstation User's Guide

?171:AD 1len 2
5% 46
0~ 0
Finally, we can examine the segment using the template MEM, which
displays the contents of the segment as both bytes and ASCII characters:

Example 7:

21%1:mem |

6F 45F 0 0 0 O OS5F 45F O3F 35F 0 'Ou eeuee o o?u .’
2F 0 2F OFF 35F O1F 26F O03F 45F 0 '/.7..._.7.0.7. "
0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 "earureeasnaoanns
9F 16F 0 0 0 0 0 O 0 O O 1F 4 5F 0 '.uOueueosoveao o'

MODIFYING MEMORY

Memory 1is modified by assigning a particular value, given by an
expression, to a reference. The DEBUG-432 command for modifying memory
has the following general format: '

destination [. field namel... := expression

where destination is a reference expression and field name must be a
field of the template used for the destination. The value of the
expression can be either an integer or a reference. If the expression
is a reference, data will be copied from the reference on the
right-hand side of the := to the reference on the left-hand side, from
low address to high address, four bytes at a time.

If the reference_expression for the destination does not have a
template part, the default template is B8. If the expression on the
right-hand side is a reference without a template name, the default
template is the template being used on the left-~hand side.

The memory that will be modified is determined in two different ways,
depending on the presence or absence of the field name. If the field
name is present, only the memory indicated by that field is modified
(more precisely, the memory indicated by the bit identification field,
see Chapter 6).

If the field name is not present, the template is used to determine how
much of the bit stream is to be modified. The debugger applies the
template to memory as if it were examining memory, but the display is
suppressed. The debugger keeps track of the highest bit in the bit
stream that is used (or "touched") by the template. This is called the
high water mark of the template application. The part of the bit
stream that will be modified starts at the given address and goes
through the high water mark.




Workstation User's Guide Examining and Modifying Memory

CAUTION

When the destination of the memory modification
command is just a reference expression (i.e., with
no dot notation), ALL the memory from the address of
the reference to the high water mark will be
modified.

If the right-hand expression is an arithmetic value, it is truncated or
extended with zeros to fit., If it is a memory reference, data is moved
four bytes at a time, from low address to high address, until the
left-hand side is filled. The template on the right-hand side is used
to identify what memory will be copied, exactly as the template on the
left~-hand side is used to identify what memory will be modified. If
the right-hand side memory is not as much as is required by ¢the
left-hand side, the high order bits written into the destination will
all be zero.

Examples

(Assume BASE and SUFFIX are 16)

?21%1:0rd -- first examine the memory
5FOuU6F
?21%1:s0 := OFFFF -- now modify the low double byte
?2171:0rd -— now re-examine to see the change
SFFFFF
?10"3.3:AD -~ First examine the memory
0B" 8
?10"3.3:AD := OAFO0O3F -- replace the 4th access descriptor in

-~ access segment 1073 with the descriptor
-- whose hex value is Q0AFOO3F.

21073.3:B32 -- display the result

OAFOQOO3F

210°3.3:AD -~ now show it as an access descriptor
0A™ 3

?

?6™4:B32 := 77uUB -- replace the first 32 bits of segment

-- 674 with the first 32 bits of segment
-- T"4B (the default template on the
-- right is also B32).

?6"U4:CONTEXT _DS.IP := 9AF-- replace the ip field of the context_ds
-- when applied to segment 674 with 9AF.
-~ this will modify bytes 6 and 7 of 674.

replace the first byte of 572 with 8A
- (the default template is B8)

~
9]
>
n
oo
1]
[¢]
Lo
I
I

4-15



Examining and Modifying Memory Workstation User's Guide

1= OFFFF_FFFF -~ fill the data segment 575 or the part
1= 575 -~ specified by DS with binary ones

In the last example, the template DS determines how much of segment 575
gets filled with ones. DS touches up to 64 bytes. When it is applied
on the left-hand side to 575.4, it specifies bytes U4 through 67,
provided 575 is at least 68 bytes in length. If 575 is shorter than 68
bytes, the entire data segment is filled with ones.

DATA STRUCTURE TABLE

To permit the fields of an object to be conveniently referenced, the
debugger supports the Data Structure Table (DST). Using a variation on
the dot notation described earlier in this chapter, the user can cause
the template field names of a reference to be entered into the DST.
This table of names 1is searched by the debugger if it cannot find a
definition for a name in the DNT.

For the rest of this section, we use the templates CONTEXT AS and
CONTEXT_DS, defined in the section on "Templates" earlier in this
chapter. The chain of context objects is pictured in Figure 4-1.

We begin with an example: Assume that 971C is a context access segment
and we want to change the IP value in the context data segment of
9”1C's caller to 8AB if it is not already:

?971C:context_as.prev.ctxt_ds.ip
QAF '
?971C:context_as.prev.ctxt_ds.ip := 8AB

(Recall PREV is a field name in CONTEXT_AS pointing to the cailer of a
context, CTXT DS points to the context data segment of a context.)

To avoid retyping the access path to the context data segment, we
invade the reference by typing the access path to the object followed
by a dot:

?9%1C:context_as.prev.ctxt_ds.
ctxt_status: 0

sp: 3A
inst_idx: 2C
ip: 9AF

2

4

As a side effect of the invasion, the invaded objeet is displayed
(using the CONTEXT DS template defined in this chapter):

4-16



Workstation User's Guide Examining and Modifying Memory

Now the individual fields of the object can be referenced without
typing the entire access path:

?ip -~ Check the value of IP (is it 8AB?)
9AF
?ip := 8AB -- Change the value to 8AB
?
INVASION

Invasion uses a variation of dot notation to cause the template field
names of the invaded reference to be entered into the DST.

Any access path may be invaded. This has the effect of entering all of
the field names of the reference's template into the DST. These names
can now be used unqualified. There are three different syntaxes for
doing an invasion:

1. With a trailing dot or = (if " is used, the reference being
invaded is not displayed):

?9”1C:context_as.prev.ctxt_ds.
or
?9"1C:context_as.prev.ctxt_ds”

2. A dot on a command line by itself will invade. the expression

most recently used to examine memory and display the invaded
reference:

29" 1C:context_as.prev.ctxt_ds

9" 10
?. —— This is the invading dot
ctxt_status: 0
sp: 3A
inst_idx: 2C
ip: 9AF
?

3. A dot preceding a field name causes the same behavior as in
item 2 above, except that the display is suppressed for the
reference being invaded:

?971C:context_as.prev.ctxt_ds
9" 10
?.ip
9AF -- just the field is displayed

4-17



Examining and Modifying Memory Workstation User's Guide

THE CURRENT ACCESS PATH

When the user invades a reference, the debugger keeps track of the
current access path to the reference (i.e., the access path preceding
the invading dot or caret). In addition to invasion, the debugger
supports three commands that operate on the current access path:

BACK - removes the rightmost element from the access path,
.effectively undoing the most recent invasion

ouT - tells the debugger to "forget" about the current
access path

PATH - displays the current access path onto the CRT.
The following gives an example of the state of the current access path:

Command Access Path after Command

?971C:icontext_as” 9% 1C:context_as
?prev :

9" OF "
?prev” 9" 1C:context_as.prev(9~0F)
prev

9" OA " .
?prev” 9%1C:context_as.prev.prev(9704)
?prev

9" 5 "
?back 9" 1C:context_as.prev(9~0F)
?prev

9" 0A "
?out no access path

EXPRESSIONS

An expression can be an explicitly specified ordinal value such as 4 or
345F, an identifier whose value is a positive or negative integer, a
value referenced from 432 memory, or any arithmetic combination of
these three. The debugger supports the arithmetic operations 1listed
below. These operations are given in order of 1lowest to hightest
priority, with operators of the same priority grouped together. The
order of execution within operators of the same priority is from left
to right; order of execution can be overridden using parentheses.



WOrkstation User's Guide Examining and Modifying Memory

+ ~--addition
- -=-subtraction (two's complement)

- -=unary minus

* —-multiplication
/ --division

REM —-remainder
MOD —~-modulus

¥% __exponentiation

Since unary minus (-) is considered an operator, a negative integer may
be entered wherever an expression is legal.

For example:

i :INTEGER :
param:B32 :
(-2)*%expo

If the result of an expression has the high order bit set to 1, the
debugger displays the value as both a 32-bit ordinal and a 32-bit
integer:

?0FFFF_FFFFE + 1
-1 OFFFFFFFF

?7-1

-1 OFFFFFFFF

REM and MOD behave as they do in Ada. (See the Reference Manual for
the Ada ProgrammiqgﬁLanguage.)

An expression entered at a prompt will be evaluated by the debugger and
the result displayed on the console.

Examples:
1(23+54) ~- the physical address !77
The following three examples show the operations commonly used to

calculate the index and EAS selector of an access selector (for
example, the access selector 2B):

2B/4 -~ index: divide by 4 (i.e., shift right by 2 bits)

2B rem 4 —— EAS selector: the selector REM U4

573.(2B/4) -- Use the index part of an access selector to index
~- into a segment (presumably one of the entry access
-- segments)



Examining and Modifying Memory Workstation User's Guide

INTEGERS: NAMING AN EXPRESSION

The debugger permits a name to be given to an expression and entered
into the DNT. The type of such a name is called INTEGER. The syntax
for declaring an INTEGER is:

name: INTEGER := expression

The value of the expression must be a 32-bit integer and this number is
the value given to name. These names can be used anywhere a number may
be used in an expression. However, names may not be wused without
surrounding parentheses to form a logical address (assume a and b are
INTEGERS):

a”b
is not allowed, although

(a)™(b)
and
la

are acceptabie.

REFERENCES IN EXPRESSIONS‘

A reference without a field name may be used in an expression. The
reference is interpreted just like the reference on the left-hand side
of a memory modification command. That is, the template is applied to
memory to calculate the high water mark. The bits that will be used in
the expression are the bits from the address of the reference through
the high water mark, unless there are more than 32 bits, in which case
only the low order 32 bits are used. If the reference has no template
part, the default template EXTRACT is used, rather than B8. DEB432.TEM
defines EXTRACT as a 16-bit quantity. For example:

17114:08 + 5

forms the sum of 5 and the 8 bits from byte 4 of segment 171. On the ‘
other hand:

17114 + 5

forms the sum of 5 and the 16 bits starting at byte 4 of segment 171.

4-20



Workstation User's Guide Examining and Modifying Memory

FIELDS IN EXPRESSIONS

The template field of a reference may be used in an expression, just as
a reference may be used in an expression. The bits that are identified
by the template field (more precisely, by the bit identification

component of the field. See Chapter 6) are the bits used in the
expression.

As an example, the following expression will find the current
instruction access index of the context object (from the context data
segment) and display it divided by 4 (i.e., display just the index
part):

9" 1C:context_as.ctxt_ds.inst_idx/4

4-21






CHAPTER 5
PROCESSES, CONTEXTS, AND BREAKPOINTS

INTRODUCTION

The iAPX U432 architecture supports the concepts of process and context
(i.e., an activation of a procedure). DEBUG-432 can monitor the dynamic
behavior of particular processes in a multiprocess environment and
particular contexts associated with a procedure. This chapter covers
these features:

° Examining the set of processes at breakpoints; selecting a process
to be the current process; restarting a process (or processes).

¢ Setting, ‘displaying, activating, deactivating, and removing
breakpoints.

e Manipulating the call stack of contexts; selecting the current
context.

PROCESSES

When the first breakpoint of the debugging session occurs, the
reference variables CP and CC are defined. The initial value of CP is
the access descriptor of the process which first reached a breakpoint;
the value of CC is the address of the breakpointed context. Each
process that reaches a breakpoint is added to the set of breakpointed
processes, called the process set. When a process is RESUMEd, it is
removed from the process set.

The debugger supports three basic operations on this set:

° ' EXAMINE the contents of the process_set

° SELECT a process from the process_set to become the current
process

) RESUME a process (i.e., send it to a GDP for execution)

BREAKPOINTS

Breakpoints are key elements in debugging. They 1let the user halt
execution of a process ("break") at pre-selected positions. The
debugger supports three types of breakpoints:




Breakpoints Workstation User's Guide

1. Instruction offset breakpoints. The - process or processes
break when a particular instruction in an instruction segment
is reached.

2. Procedure entry and exit breakpoints. The process or
processes break when a call is made to (or a return is made
from) a particular  instruction segment or any of the
instructions segments in a particular domain.

3. Event breakpoints. The process or processes break when one of
the following events occurs: 1) a new instruction is executed,
2) a call or intersegment branch is executed, 3) a return is
executed, or 4) a fault occurs. Event breakpoints are
classified according to the kind of events they track.

DEBUG-432 implements breakpoints with two different mechanisms.
Instruction offset breakpoints are implemented wusing the fault
mechanism of the iAPX 432 architecture. DEBUG-432 places an illegal
class code in the instruction segment at the requested offset. Each
process that executes this instruction will fault., These illegal class
faults are handled by the portion of DEBUG-432 that resides in 432
memory, and are announced as breakpoints.

All other breakpoints are implemented using the iAPX 432 tracing
facility. A process may be in one of four trace modes: none, full,
flow, or fault. When a trace event occurs, it is handled by the
portion of the DEBUG-432 that resides in 432 memory and is announced as
a breakpoint. Event breakpoints that track faults use fault trace
mode. Event breakpoints that cause a break before each instruction
require full trace mode. Procedure entry and exit breakpoints, and
call or return event breakpoints use flow trace mode. Since the
process may be in only one trace mode at a time, these three sets of
breakpoints are mutually exclusive. Instruction offset breakpoints,
which do not use the tracing mechanism, may be active at the same time
as any other breakpoint type.

The process trace mode can be changed only while the process is not
executing. To ensure that this condition is met, breakpoints that use
the trace facility  can be set only when the process is at a
breakpoint. Instruction offset breakpoints, however, may be set at any
time -- before the process has begun to execute, while it is executing,
or after it has broken. '

Whenever a break event occurs (whether through the fault or trace
mechanism), the process begins executing DEBUG-432 code. Thus the
current context of the breakpointed process (CP.CURR_CTXT) is NOT the
breakpointed context. The debugger, however, sets its own reference
variable CC (current context) to the value of the breakpointed context.



Workstation User's Guide Breakpoints

In summary, the debugger enforces these rules:

® Only instruction offset breakpoints may be set for ALL
processes, without explicitly giving a list of processes.

° Only instruction offset breakpoints may be set while the
process is running.

. Instruction trace, fault trace, and flow trace breakpoints are
mutually exclusive,

DEBUG-432 provides commands to set, display, activate, and deactivate
breakpoints.

SETTING BREAKPOINTS

The general form of a breakpoint definition is:

[name:] break [OF process list]
where break may be:

BA instruction

BE {inst seg | domain}

BX {inst seg | domain}

BO {CALL |} RET | INST | FAULT}

The process list field can contain several process specifications,
separated by commas. For BA breakpoints the process list may be ALL,
indicating all processes.

See the command descriptions for BA, BE, BO, and BX for a further
discussion of each type. The address fields in these commands,
instruction, inst seg, domain, and process list are logical addresses.
The address may be entered as an access descriptor and optional offset,
or a name whose value is a logical address.

For example,

?BA 273.456 OF 4728 -- set breakpoint at offset 456 of
? -- instruection segment 23 for the
-- process whose Process Access
-~ Segment is at 4728

?proc IS 4728:PROCESS_AS -- name the process at 4728 proc
?BA 273.U456 OF proc -- sets same breakpoint as above

?

?BA 14721.171 OF U4~u4, 16™21 -- multiple process breakpoint that
? ; -- sets a breakpoint at 14721.171

-~ for both 4744 and 16721.



Breakpoints v Workstation User's Guide

If, after at least one process is at a breakpoint, the process field
is omitted, the debugger uses the current process (CP), which 1is
described below (see "Processes"). Thus,

?BA 4774.311
is the same as

?BA 4774.311 OF CP

NAMING BREAKPOINTS

Every breakpoint must have a name. The user can specify a name
defining the breakpoint, or can let DEBUG-432 assign a breakpoint name.

To name a breakpoint, simply precede the set-breakpoint command with a
name. For example: .

?mainbreak: BA 273.456 OF ALL
?stackbreak: BE 172 OF 4744

?2coffeebreak: BX 172

If the user does not name a breakpoint, the debugger will name it. The
default name assigned by the debugger will be "B<ddd>", where <ddd> is
one, two, or three decimal digits; for example, B23 or B4, The
debugger will not attempt to use a name already in use. ‘

Every breakpoint will be entered into the DNT. The type of the name
will be BREAK (i.e., the command DIR BREAK will 1list all the
breakpoints currently defined). The breakpoint will have either the
attribute "Active" or the attribute "Inactive" (see below, "Activating
And Deactivating Breakpoints").

Breakpoints may be deleted from the DNT with the REMOVE command. For
example, ,

?REMOVE b0 --removes breakpoint b0

?REMOVE break --removes all breakpoints

ACTIVATING AND DEACTIVATING BREAKPOINTS

When the user sets a breakpoint, it is "active." When a process (for
which the breakpoint is set) reaches the breakpoint, it stops executing
user code and 1is added to the breakpointed process set (see
"Processes"). The user may deactivate a breakpoint: the breakpoint is
lifted (removed from 432 memory) but the definition is still in the
DNT. The form of the deactivate command is:

DEACTIVATE [name | ALL]

5-4



Workstation User's Guide Breakpoints

Deactivated breakpoints can be reactivated, unless the breakpoint has
been removed from the DNT. The syntax for the ACTIVATE command is:

ACTIVATE [name | ALL]

The directory of breakpoints in Figure 5-1 contains both active and
inactive breakpoints. Inactive breakpoints are indicated by a "¥" to
the left of the breakpoint definition. An active breakpoint with a
process at the breakpoint is indicated by a "-" to the left of the
definition; other active breakpoints have nothing preceding the
definition.

?dir break

BO BREAK BA 9747.50 of 9716
B1 -BREAK BA 9749.50 of 972b
B2 -BREAK BA 9"4B.50 OF 9740
B3 *BREAK BO INST OF 9716
B5 BREAK BO CALL OF 9716

]

Figure 5-1. Sample list of breakpoints in the DNT

The LOAD and DEBUG commands deactivate all breakpoints.

REACHING A BREAKPOINT

When a process reaches a breakpoint, it stops executing the user's code
and is added to the process set. If the debugger is waiting for input,
the breakpoint is announced immediately. If the user is typing a
command or entering input to the 432 program, the debugger sounds the
bell (i.e., CONTROL-G) and waits until the command or input line is
completed before announcing the breakpoint.

The breakpoint is announced as follows:

name. break identifier: address OF process

where break identifier is characteristic of the breakpoint type, name
is the name of the breakpoint, address designates the logical address
of the breakpoint, and process identifies the process that reached the
breakpoint. .

The address displayed when a breakpoint is announced is normally the
location of the instruction to be executed when the process is RESUMEd.
For BX breakpoints, however, the address may be greater than the bit
offset of the return instruetion by as much as 32 bits.



Breakpoints Workstation User's Guide

The following break identifiers are used by the debugger for display:

BREAK AT -- instruction offset breakpoints
BO INST -~ event breakpoints

BO CALL

BO RET

BO FAULT

BREAK ENTER -- enter and exit breakpoints
BREAK ENTER (DOM: address)

BREAK EXIT

BREAK EXIT (DOM: address)

FAULT AT -- exceptional event announcements
TRACE AT :

The FAULT break identifier occurs when the debugger detects a user
context level fault. The TRACE break identifier occurs when a trace
event happens and the debugger was not expecting one. For example, if
the "Exiting and Returning" sequence in Chapter 3 1is used, any
breakpoints which were active at the end of the session still remain in
the load image. When the user signs back on, the debugger no longer
has the definitions of those breakpoints., If a process reaches such a
breakpoint, it is announced with FAULT AT or TRACE AT.

If a fault is announced, the user may correct the condition causing the

fault and attempt to reexecute the faulting instruction using the
RESUME command.

Recall that when an instruction offset (BA) breakpoint is set, ANY
process which reaches the specified instruection will break. If the
process which broke was NOT in the process list used to define the
break, and the ALL option was not used, then the breakpoint will be
announced as above, with the message "N.B. NOT THE DEFINING PROCESS".
Some examples:

mainbreak. BREAK AT: 2°3.456 OF 4~4Y4

stackbreak. BREAK ENTER: 172.121 OF 474y

coffeebreak. BREAK EXIT: 172.235 OF 4744

At any time the only processes that the user can be sure are stopped
are the ones in the breakpointed process_set. The rest of the system is
still executing. To stop the entire system, the IPC command may be used:

IPC ALL,2

5-6



Workstation User's Guide Breakpoints

CONTEXTS AND THE CALL STACK

Associated with each process is a chain of one or more context objects
(see the iAPX 432 GDP Architecture Reference Manual for a discussion of
context objects). This chain makes up the call stack associated with
that process. The call stack describes the sequence of activations that
have led to the currently breakpointed procedure. For example, if the
three procedures A, B, and C are declared in an Ada program, and A has
called B, which in turn has called C, then the current call stack is
organized as follows:

C is called the BOTM of the stack, A is the TOP of the stack, B is UP
from C, and B is DOWN from A. The current context is associated with
procedure C.

The commands UP, DOWN, TOP, and BOTM affect only the value of the
variable CC. TOP, for example, sets CC to the initial context of the
process (in our example, the context associated with procedure A). BOTM
moves the current context back to the context where the breakpoint
occurred (in our example, the context associated with C). UP and DOWN
have obvious meanings.

The STACK command displays the chain of contexts, and the return
instruction address associated with each context. For example:

?STACK

CONTEXT INSTRUCTION
8~0C 776D.43F
878 7770.26A
875 7°74.127
8™1 7" TB.1A9

In this example, 870C is the bottom of the stack, the last called
context. 871 is the top of the stack.

Each breakpointed process has a "current context" associated with it.
When the process first reaches a breakpoint, that "current context" is
the breakpointed context. This "current context" value may be changed
by UP, DOWN, TOP, and BOTM whenever the process is the current process
(CP). When the SELECT command is used to change CP, the debugger saves
the value of CC for the old CP before selecting a new CP. The EXAMINE
command displays the process access descriptor and this saved value of
"current context" for each process at a breakpoint. If an old CP is
reSELECTed, CC will be set to this saved value, not the breakpointed
context. The STACK command, however, displays the call stack beginning
with the breakpointed context, regardless of the value of the current
context.

5-T






CHAPTER 6
DEFINING TEMPLATES

INTRODUCTION

DEBUG-#4#32 provides a special mechanism to examine and modify 432
objects. The mechanism is based on templates, structures that define
the parts of interest of the objects. This chapter describes how to
define templates and use them to access objects.

As discussed in Chapter 4, 432 memory examination and memory
modification both use "References," which are defined to be an
address:template pair.

A template is a 1list of one or more field definitions. Each field
describes components of an object. For example, the template
PROCESS AS (from the file DEB432.TEM) consists of a set of field
definitions that describe some of the access descriptors in a Process
Access Segment. (Appendix C shows the definitions of the entire
contents of DEB432.TEM; consult this 1list for the definition of
PROCESS_AS.)

-Templates have two major roles in the debugger: identifying the pieces
of data that make up an object and displaying the data.

e Memory examination uses identification and display.

® Memory modification consists . of identifying the memory to be
modified and then copying new values into this memory.

A template is somewhat like a cookie cutter. It defines a pattern in a
linear stream of bits just as a cookie cutter defines a pattern in the
dough it is applied against. The "dough" for templates is a bit stream
starting at an address. If the address is a logical address, the bit
stream is the rest of the segment, starting at the logical address. If
the address is a physical or interconnect address, the bit stream is
the 64K bytes starting at the address. To avoid confusion with other
bit fields, the bit stream that the template is being applied against
Wwill be called the bit stream throughout the remainder of this chapter,
while other fields will be called "bit strings."



Templates Workstation User's Guide

TEMPLATE DEFINITION

A template is composed of zero or more fields followed by an optional
variant part. The basic template definition syntax is

TEMPLATE name IS
field [;
field] ...

[variant part]

END

with an arbitrary number of fields specified. The. template name is
used to form References, the variant part of a template is discussed at
the end of ‘this section. A template field has three optional
components:

[field name:[:]] [bit identification] [IS display format]

Since all three components are optional, the field itself is optional.
In the template syntax above, this means a semicolon (;) may appear
without a field after it. '

‘The field name identifies the field. It may be displayed as part of
the output generated by the template, or used to traverse an access
discriptor, or to select a field for display.

The bit identification clause specifies which part of the "bit stream"
this field is to use.

The display format clause of a field guides the debugger when a
template is being used by giving a list of editing and conversion
specifications. A conversion specification tells the debugger to take
the bit string, identified by the bit identification clause of this
field, and convert it to characters for display on the CRT. If the
display format clause is omitted, a default format is used.

HOW A TEMPLATE WORKS

When the template part of a reference is used to display memory, each
field is interpretted as follows:

The field name is printed if it is followed by a single colon (:).

The display format is interpreted as a sequence of conversion and/or
editing specifications, from left to right. Editing specifications
cause formatting characters or text to be displayed. Each conversion
specification in a display format causes the bit - identification
specification to be used to identify a bit string for conversion. The
converted string is displayed. Some bit identification forms cause a
bit string with an absolute position in the "bit stream" to be used
(e.g., the eighth byte); other forms identify the bit string relative
to the last identification (e.g., the next byte).




Workstation User's Guide Templates

The variant part allows a value to be identified in memory and used to
select one of many alternatives, Each alternative can contain a
variant part.

For example, consider a very simple template containing one field:

?TEMPLATE bite IS
?? a_byte: [0, 8] IS 16U;
?7?END

The field name is A BYTE. The bit identification clause is [0, 8].
This particular bit identification clause is called a bit string
descriptor. It describes a string of 8 bits starting at byte zero of
the "bit stream" to which the template BITE is applied. The display
format clause contains only the conversion specification "16U", which
tells the debugger to display the identified bit string as a base-16,
unsigned integer. Notice that the semicolon (;) following the 16U
could have been omitted.

As shown, the debugger prompts with a double question mark (??) after
the first line of a template definition, indicating that the template
definition command is not complete. When the END is reached, the
debugger returns to a single question mark (?) prompt. '

Template definitions may be entered in free format, so the entire
definition may be placed on a single line:

?TEMPLATE bite IS a byte: [0,8] IS 16U END

This template may be used to examine 432 memory (using segment 171
shown in Figure 6-1, below):

?2171:bite
a_byte: 6F

OVERVIEW OF A FIELD

Recall that a template field has three optional components:

(field name:] [bit identification] [IS display format]

Field Name

The field name identifies the field. When the template is used to
display data at the terminal, the field name, if one exists, will
appear immediately before the data for that field. The name is left
Jjustified and blank-filled so that all the field names in the output
generated by the template occupy the same number of columns. The name
is followed by a colon (:). The user can suppress the display of the
field name by using a double colon (::) instead of a single colon (:)
after the field name in the template definition (such a fieldname can
be used to traverse if associated with an access descriptor).

6-3



Templates Workstation User's Guide

Bit Identification

The syntax for a bit identification clause is:

{ bit string descriptor
[@number.]... { access descriptor index
{ template name

A bit string descriptor gives the starting address and length of a bit
string. An access descriptor index 1identifies an entire access
descriptor by giving its index. A template name identifies a bit
string by calling on another template to perform the identification.

The optional @number provides for dereferencing access descriptors. It
permits the bit identification clause to identify an access descriptor
and then, in the segment pointed to by the rightmost access descriptor,
to identify a bit string.

Display Format

The display format part of a template field is a list of display
elements:

display element [, display element] ...

The display elements are evaluated from left to right. A display
element has the syntax:

integer

enumeration

ASCII

template name

new line

string

blanks

"["display format"]"

{<repeat count>]

L I N I e B e I s N W

The angle brackets (<>) are required to delimit the repeat count.
Square brackets ([]) indicate that the count is optional. The square
brackets shown in quotes, however, are part of the syntax.

A display element is either a conversion or an editing specification.
A conversion specification tells the debugger to convert a bit string,
identified by the bit identification clause, into characters to be
displayed at the console. There are four kinds of conversion
specifications: integers, enumeration, ASCII, and a template name.

The editing specifications of a display format permit text and special
characters to be output, There are three kinds of editing
specifications: text strings, blanks, and new line.

In addition, a repeat count may prefix any specification. This
provides a method for writing repetitive formats compactly. Square
brackets can be used to enclose a series of specifications so that the
entire group can be repeated.

6-4



Workstation User's Guide v Templates

217 1:ds
Ue6F 5F 0 0 45F 5F 33F 5F
2F 2F 3FF 5F 21F 6F 43F 5F
0 0 0 0 0 0 0 0
19F 6F 0 0 0 0 WiF 5F

This example uses the template DS, which displays the contents of a
segment as a sequence of double bytes, to display the segment 171. To

display just the first 32 bits of the segment the template ORD (for
ordinal) may be used:

?21%1:0rd --displays most significant non-zero digit on left
S5FO46F

The same segment can be displayed using the template AS, which displays
the contents of the segment as a series of access descriptors:

?1%1:as :
5746 07 0 5745 5733 2% 2 57 3F 6721 5" 43
o 0 0 0 08 0 0 0 6719 0" 0 00 0 5" M

To display just the first two access descriptors, the template AD may
be used (and the repetition clause):

?171:AD LENGTH 2
5% 46
0" 0
Using the template MEM the segment can be displayed as corresponding

bytes and ASCII characters, low address to high address is left to
right, top to bottom::

217 1:mem
6F 45F 0 0 0 O OSF 4SB5F O03F 35FO0 'Ou_eeene_o o2 !
2F 02F OFF 35F O1F 26F O03F 4 5FO0 '/./..._...0.?ﬂ_.'
0O 0 0 00O O OOO 0 0 O 0 O0 00O cecscsecncscsscal
0 0 00 0O 0O 0 O O1F 45F O '..0..........._,'

9F 1 6F

Figure 6-1. Sample Bit Stream.

Different templates displaying the same stream of bits. This same bit
stream will be used in examples throughout this chapter.

6-5



Templates Workstation User's Guide

BIT TDENTIFICATION AND DISPLAY FORMAT SPECIFICATIONS

The rest of this section defines and demonstrates the various bit
identification and display format specifications. We omit the debugger
prompts when showing template definitions. Since the display and
identification functions of a template work hand in hand, they will be
desceribed together, in parallel. Most of the examples use the segment
1”1, shown in Figure 6-1. The template BITE, defined earlier, is a
good starting point:

TEMPLATE bite IS

a_byte: [0, 8] IS 16U;
END

Recall that the template displays the first byte of segment 171 as:

217 1:bite
a_byte: 6F

CAUTION

The template definitions in this chapter assume that the
templates are to be entered with the current SUFFIX setting
10. However, the examples of using templates to examine
memory assume that thereafter the current BASE and SUFFIX
settings are 16. This is consistent with typical debugger
use, As a matter of fact, INCLUDing DEBA432.TEM sets BASE 16
and SUFFIX 16 in its last 2 lines.

TEXT STRINGS (DISPLAY FORMAT)

A text string is the simplest editing specification that can be
introduced into a display format. A text string is any string of
characters surrounded by quote marks. Quote marks can be put into the
string by putting two quote marks in a row. For example:

TEMPLATE bite IS
a_byte: [0, 8] IS "before", 16U, "after";
END

"before" and "after" are text strings. This template will now display:

217 1:bite
a_byte: beforebFafter

The debugger does not put any characters into the display unless
explicitly requested by the display format. Therefore, blanks should
be added to clean up the display: :

TEMPLATE bite IS
a_byte: [0, 8] IS "before ", 16U, " after";
END :

?21%1:bite
a_byte: before 6F after



Workstation User's Guide Templates

INTEGER (DISPLAY FORMAT)

An example of an integer display format is "16U". The general form is
either:

baseU [:width]

or
baseS [:width]

Base indicates the desired numeric output base, and is a decimal number
in the range 2..16 or zero (e.g., 0U); zero requests that the current
setting of the BASE command be used.

U and S stand for "unsigned" and "signed", respectively. An unsigned
conversion specification treats the identified bit string as an ordinal
value greater than or equal to zero. A signed conversion treats the
identified bit string as a twos-complement integer. For example, the
sign extended 3-bit bit string 100 would be converted to "4" under 10U
and to -4 under 10S. The bit string 0100 would be converted to "i4" by
both 10U and 108,

The optional width is the minimum decimal number of character positions
the converted bit string should occupy when it is displayed as a number
The maximum width is 64. If the number occupies fewer characters than
the width, it is right justified and blank filled. If it is too wide,
the specified width is ignored. For example:

TEMPLATE bite IS
a_byte: [0, 8] IS 10U:2, 16U:3, 2U:12
END

would display as:

217 1:bite ,
a_byte: 10#111# 6F 2#1101111#

The base 10 number was too large to fit into a field of width 2 so the
width was ignored. The pound signs (#) each occupy one character
position. So do a minus sign in a negative number and the leading zero
in a number whose first digit would otherwise be in the range A..F.
The 6F was right justified and blank filled to occupy three
characters. This accounts for the blank preceeding the ©6F. The
2#1101111# was also right justified and blank filled to occupy twelve
characters, accounting for the two blanks preceeding it.

This example also demonstrates that if the output base specified for
display of an integer differs from the current setting of the BASE
command, the integer is displayed in the form base#numberi. If
displayed in the default output base, the integer is displayed alone.
Minus signs preceed the base: OF displayed via "[O,4] is 158" displays
as -15#104#.

6-7



Templates Workstation User's Guide

'BIT STRING DESCRIPTORS (BIT IDENTIFICATION)

The bit string descriptor is the most direct form of identifing a bit
string. The general format is:

"[pyte start [:bit startl], bit length"]"

where the square brackets ([]) shown in quotes are actually part of the
descriptor (but the quotes are not!). A bit string descriptor
explicitly specifies the starting position and length of a bit string.
The starting position is given with a byte offset (byte start),
optionally followed by a bit offset from the beginning of that byte
(bit start). If the bit start is omitted, it defaults to zero. The
length of the bit string is given in bits (bit length). The starting
position is relative to the beginning of the "bit stream" that the
template is being applied against (for a picture of the "bit stream"
see the discussion of By P and Bi_P, below). The following example
shows the AD template supplied in the file DEB432.TEM (recall template
definitions assume SUFFIX 10):

TEMPLATE ad IS

[2:4, 12] IS 0U:3, "7, -- Directory index and caret
[O:4, 12] IS 0U:3; -- Segment index
END )

This template displays one access descriptor, with the directory index
first, followed by a caret, and then the segment index (the rights bits
are ignored). For example (examples assume BASE 16):

217 1:ad
5% 46
? ~-- next debugger prompt

To verify that the AD template is working, we can define another
template, ORD (also from DEB432.TEM), to display a 32-bit quantity:

TEMPLATE ord IS
{0, 321 IS ou — (32 is assumed decimal)
END

and then display the same 32 bits as the AD template displayed:
?1"1:0rd
SFOY6F
? —- next debugger prompt

A picture of this 32 bit value tells us that the AD template is working:

32 10 ¢— Byte offset
00|5F|04}6F ¢~ Value of byte
[0:4, 12] —— The segment index: 46
[2:4, 12] ~- The directory index: 5

6-8



Workstation User's Guide Templates

NEW LINE (DISPLAY FORMAT)

The AD template demonstrates a multiple field template whose entire
display is on one line.

The new line editing specification, a slash (/), tells the debugger to
output a <CR>XLF> pair to the CRT, positioning the cursor at the
beginning of the next line.

As mentioned earlier, the debugger displays only characters explicitly
requested by the template. However, once the entire template is
finished displaying, the debugger will output a <CR>XLF> if necessary
to position the debugger's prompt at the beginning of a line. The last
two examples, displaying the first 32 bits of 171 as AD and as an ORD,
illustrate this rule. Although neither the AD nor the ORD template
contains a new line character, the debugger inserted a <CR>LF> pair
after the template was finished, so that the next debugger prompt (?)
was at the beginning of a line.

REPEAT COUNT AND GROUPING BRACKETS (DISPLAY FORMAT)

A repeat count may prefix any specification in the display format. The
repeat count is written as an integer expression (value) in angle
brackets, immediately preceding the specification to be repeated.
Square grouping brackets may be used to colleect a series of
specifications together, so that the entire series can be repeated as a
whole. For example:

TEMPLATE dashes IS '
[0, 8] IS <10>"=", 0QU, (5>n¥n; -- (SUFFIX 10 assumed)
END

will display the first byte of 171 as:
2?17 1:dashes
The repeat count may also be wused in front of a conversion
specification, to cause memory to be displayed multiple times:
TEMPLATE bytes IS
[0,8] IS <16>0u
END

this template displays sixteen bytes:

21" 1:bytes
6F6F6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F 6F

However, the same byte is displayed all sixteen times, with no spaces
between the repetitions. Spaces can easily be introduced either by
grouping a blank with the integer conversion or by including a display
width on the integer conversion itself.

6-9



Templates Workstation User's Guide

The variables By__P and Bi__P provide a way for a conversion
specification to be repeated and cause each repetition to convert a
different bit string.

BY P AND BI_P (BIT IDENTIFICATION)

By_f and Bi_P may be used in a bit string descriptor together with a
repeated conversion specification to extract a sequence of values from
memory. The debugger maintains the two pseudo variables, By P and Bi
P, for each template while it is being applied to memory. These .two
variables are similiar to local procedure variables in Ada: every
template application has its own local .copy of By_P and Bi_P. By_P
always points to the most recent byte of the bit stream that the
template has referenced and Bi_P points to the highest order, most
recently referenced bit of that byte. These two values are always
normalized so that Bi_P is less than 8. Since the first byte of the’
bit stream is viewed as byte zero by a template, the following picture
illustrates the initial values of By P and Bi_P.

the bit stream Eormmm

bit 07 07 07 0}7 07 07 07
byte 2 1 0 ’[ -1 =2 -3
' By_P is -1
: Bi__ P 1s» 7

The debugger issues an error if an attempt is made to identify bits
that precede the beginning of the "bit stream".

Using By P and Bi_P the template BYTES, from above, may be rewritten to
display successive bytes of memory with blanks between them:

TEMPLATE gulps IS

[By_P:Bi_P+1, 8] IS <16>0U:3; -~ (16 assumed decimal)
END :
?1%1:gulps ~- (Suffix 16 NOW)

6F 45F 0 0 0 O OS5F 45F O03F 35FO0

The first byte identified was [-1:7+1, 8] which, when normalized, is
the same as [0:0, 8]. After the first byte is identified, By P is
updated from -1 to 0. Bi_P will be 7, the last bit of byte 0 that was
referenced. In the above example, the successive values of the pair By
P and Bi_P, just before each byte was identified were: (-1:7), (0:7),
(1:7), seey (14:7)0

6-10



Workstation User's Guide ) Templates

The template, GULPS, can be modified to display multiple rows of 16
bytes by grouping the display of one row together with a new line.
This group can then be repeated to display successive rows:

TEMPLATE gulps IS

[by p:bi_p+1, 8] IS <4>[<16>0U:3, /] " ~-= (base 10 assumed)
END :
?21%1:gulps -- (base 16 assumed)
6F 45F 0 0O O O OSF 45F O3F 35F O
2F 02F OFF 368F O0O1WF 26F O03F 45F 0
0O 0 00O 0O OO OO O O 0 0 0 0O
9F 1 6F 0 0 0 0 0 O O O O1F Uu45s5F O

This is the technique used for the templates DS, AS, and MEM, shown in
Figure 6-1.

EXPRESSIONS IN TEMPLATES

Four positions in a template definition can be defined as expressions,
instead of just numbers: byte start, bit start, bit length, and repeat
counts, This was demonstrated above with the GULPS template, which had
a bit start of "Bi_P+1". The permissible expressions may have the
arithemetic operators +, -, ¥, and /, where * and / have higher
priority than + and -. An operand used with these operators may be a
number, an integer identifier in the DNT, By P, Bi_P, or a
parenthesized expression.

BLANKS (DISPLAY FORMAT)
Blanks are introduced into a display format with the notation:

countX
where count is the number of blanks that should be displayed when the
template is applied. This notation is just an abbreviation for that
number of blanks inside of quotes or a single blank preceded by a
repeat count. For instance, 10X is the same as <10>" ",
ENUMERATIONS (DISPLAY FORMAT)
Enumerations are wused to map bit strings into identifiers or

characters. The form of an enumeration is quite similiar to an
enumeration type definition in Ada:

( [number'=>] element, [number =>] element, ... )

Here an element is either an identifier or a string in quotes. If any
element in an enumeration is preceded by a number, they all must be
preceded by a number. If numbers are not present, the first element is
displayed if the identified bit string has value 0, the second element
if the string has value 1, and so on.

6-11



Templates v Workstation User's Guide

If numbers are present, they must be ordered, smallest first
(leftmost), largest last (rightmost).

Like all of the conversion specifications, an enumeration specifies how
to convert a bit string from binary to characters to display at the
terminal. For example, the enumeration

(alpha, beta, gamma, theta)

uses the default to specify that a bit string should be evaluated and
different identifiers displayed depending on the value of that bit
string. 'If the string has value 0, the identifier alpha should be
displayed, if 1 then beta, if 2 then gamma, if 3 then theta. If the
bit string has a value greater than 3 the debugger will issue an error
message. A "sparse" conversion can be given by explicitly specifying
which bit string values map into which elements. For example:

(12m0", 2=DM1n, Jzdnn  8odu3In . 1R=DNYN - 32=HNGN  [U=DNEM)

If we assume a 6-bit field contains a number that is an exact power of
two, this enumeration converts that 6-bit string into the character
representing the log (base 2) for the bit string and then displays the
character at the terminal.

Using enumerations, we can construct a template which will display the
letters "T" or "F" instead of the bit values 1 or 0 for a byte:

TEMPLATE bits IS
[by p:bi_p+1, 11 IS <8>(F, T);
END

?21%1:bits
TTTTFTTF

At first glance this is puzzling, since previously we have displayed
the first byte of segment 171 and its value is 6F. The reason for this
apparent discrepancy is that the bits are being displayed low order to
the left and high order to the right by the repetitive enumeration.
Each time the enumeration is repeated, it requests a bit string be
identified and displayed. The values that [bx_p:b;_p+1] will assume
(i.e., the bits that will be identified) are, in order, [0:0], [0:1],
eeey [0:71, displayed left to right.

TEMPLATE NAMES IN DISPLAY FORMATS

A template name in the display format makes it possible to use already
defined templates to display parts (or all) of the bit stream. A very
compelling example is the template, AD. This template is used to
display a single access descriptor. By using AD in a display format,
we can define the template AS, used to display the first 64 bytes of a
segment as access desciptors (recall that template definitions are
shown under the assumption that the current SUFFIX setting is 10):




Workstation User's Guide Templates

TEMPLATE AS IS
[by_p:bi_p+1, 32] IS <2>[<8>[ad, 2x1, /]
END

As already shown in the introduction to this chapter, AS displays
segment 171 as:

?171:as v :
5% 46 0" 0 5% 45 5% 33 2~ 2 5% 3F 6" 21 5% 43
0" 0 0"~ 0 0~ 0 0" 0 6" 19 0~ 0 0" 0 5% 41

A template used in a display format behaves as if it were being used in
a debugger command (e.g., 171:as): the template is applied against a
"pbit stream" and characters are displayed at the terminal. The "bit
stream" of the display format template is the bit string identified by
the bit identification clause of the field (one template's bit string
is another template's "bit stream"). In the above example, the
template AD is successively applied against the bit strings (in
decimal) [0,32], [4,32], (8,32], ..., [60,32].

When a template name appears in the display format of a field, the
debugger does not check to see if the template name is actually defined
until the template that contains the display format is wused. For
example, the template AS could be defined before the template AD, even
though AS uses the template AD. However, if AS is used before AD is
defined, the debugger will issue an error when it tries to use AD.

TEMPLATE NAMES IN BIT IDENTIFICATIONS

A template name may also be used as the bit identification part of a
field. The template name may appear in two ways:

template name

or
"["pbyte start [:bit start], template name"]"

where the square brackets shown in quotes are actually part of the bit
identification (but the quotes are not).

The first alternative is shorthand for "[By P:Bi_P+1, template_name]".

The start of the identified bit string is either By P:Bi_P+1 or
byte_start:ibit_start in the bit stream, depending on which alternative
is used to spec1fy the bit identification.

The length of the identified bit string is determined by applying the
named template to the remainder of the "bit stream", starting at either
By_P:Bi_P+1 or at byte_start:bit_start. The length is given by the
formula:



Templates ‘ Workstation User's Guide

max By P * 8 + max_Bi_P + 1

where max_By_P and max_Bi_P represent the values for By P and Bi _P when
.By_P:Bi_P was at its hlghest point (i.e., the high water mark) “in the
"inner" template. For example:

TEMPLATE bite IS

{o, 8] IS oU
END
TEMPLATE dbyte IS
lo: bite IS Ou; -- same as lo: [By_P:Bi_P+1, bite] is Ou;
hi: bite IS Ou; -- same as hi: [By_P:Bi_P+1, bitel] is Ou;
END

In this example BITE in the LO field identifies the bit string [0, 8]
(which leaves By p:Bi_P at 0:7). In the HI field, BITE identifies the
bit string [1, 8]. The bit length is the same for both fields, since
the high water mark for BITE when it is applied is always By P:Bi P =
0:7, which when entered into the above formula yields:

0*8+7+1 =28

ACCESS DESCRIPTOR INDEX (BIT IDENTIFICATION)

In this method of identifying a bit string, the user specifies the
index of an access descriptor after an at sign (@). The index must be
a non-negative number and may be followed by an ACCESS clause:

@number [ACCESS template name]

(Recall that the @number may be preceded by zero or more occurrences of
@number., as shown in the syntax earlier. This use of @number is
discussed below in the section on "Dereferencing Access Descriptors".

The ACCESS clause gives the name of the template to be used in
displaying the segment that this access descriptor points to. (See
"Data Structure Table™ in Chapter U4.) The access descriptor index,
"@number", identifies the same bits as the bit string descriptor:

[number * 4, 32]

However, only the access descriptor index may have the ACCESS clause,
and the default display format for an access descriptor index 1is
different from the default for a bit string descriptor. A typical
example of the access descriptor index method for identifying bit
strings is at the end of the next section.

6-14



Workstation User's Guide Templates

DEFAULT DISPLAY FORMATS

If only the bit identification field of a template is provided, the
debugger uses a default display format to display the identified bit
string. There is a default for each of the three different bit
identifications (assume foo is a template name and i, j, and k are
numbers):

Bit Jdentification Default Display Format
[i:j, kI IS bs, /;

0i IS ad, /;

foo

[i:j, fool ~ IS foo, /;

Note that the default display format includes a new line.

In the case of the bit string descriptor (shown as [i:j, k1), the

default display is the template BS. The supplied definition of BS in
DEB432.TEM is

TEMPLATE bs IS
[0, 32] IS Ou;
END

which simply displays the low 32 bits of the identified bit string as
an unsigned number in the current output base.

For an access descriptor index, the default is the template AD, which
is discussed above.

When a template name is used as the bit identification, the default
‘display format is also that template name. '

The following example shows the template CONTEXT_AS, which is in the
file DEB432.TEM. This template displays the first eight access
descriptors of a 432 context access segment, giving their names:

TEMPLATE CONTEXT_AS IS
CTXT_DS:  80;
CONST DS: @1;

PREV: €2;
MSG: 03;
CURR_CTXT: @4;
EAS_1: @5;
EAS 2: a6;
EAS_3: a7;
DOMAIN: €8;
END



Templates Workstation User's Guide

This template wuses the default display for access descriptors
"IS AD, /" to get the desired display of one field per 1line on the
terminal screen. The next example shows the template being applied to
the debugger maintained variable, CC, the -current context of the
current process:

?ccicontext_as

CTXT_DS: 8" 9
CONST _DS: 770B8
PREV: 8" 5
MSG: 8" T
CURR_CTXT: 8" 8
EAS 1: 0~ 0
EAS_2: 0~ 0
EAS 3: 0~ 0
DOMAIN: ™ 2

ASCII (DISPLAY FORMAT)

ASCII is another conversion specification. If the keyword, ASCII, is
used in a display format, the low order 7 bits of the identified bit
string are converted as if ASCII were an enumeration with the following
definition:

(nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, 1f, vt, ff, cr, so, si,
dle, de1l, de2, de3, dcl, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,
nn , 1" ! " , nnn "' "#" . "$l| , ll%" ’ "&" , urn .
"("’ ")"' "*ll, l|+ll, ","’ "__"' "."’ ll/ll'
"0"’ "1"’ "2"’ "3"’ "4"’ "5"’ "6", "7"’
"8"’ "9"’ ":ll. ll;ll, ll<", ":ll’ ")!l’ "?ll,
"@" , "A" , llB" , "Cll ’ "D" ’ "E" . "F" ’ "Gll .
"Hll . "Ill ’ "J" ’ "K" ’ "L" . "Mll ’ "Nll , "O" ,
"P", "Q", "R"’ IIS", "T" . "U"’ "V", "wll,
"x" . "Yll ’ "Z 1" ’ 11 [ " ’ ll\!l ’ "] 1" . non . "_" ,
nt ".’ lla"' "b"’ "C". lld"’ "e"’ "f", "gll’
llh"’ "i"’ "J"’ "k", "1"’ llmll, |lnll, "0",
"p", llq" , llrll, "Sll’ l!tll’ "ull . "V", "w" .
"x"’ "y"’ "Z", "{"’ ll: ", ll}ll’ del’ tilda)

The ASCII conversion specification converts a byte of memory into a
character for display. A template that will display ten ASCII
characters surrounded by quotes would be: '

TEMPLATE a10 IS

[by_p:bi_p+1, 8] IS "'", <10>ascii, "'"
END

6-16



Workstation User's Guide Templates

If this template is applied to the segment 171, we see:

?2171:a10
'oEOT_NULNULNULNULNUL_EOT'

The template MEM, used in an example at the beginning of this chapter,
shows the segment 171 being displayed as both binary and ASCII.
However, MEM displays the non-printing characters as periods (.)
whereas ASCII displays the name of the character. The section on "The
Variant Part of a Template” shows how to create a template that
displays the non-printing characters as periods and the rest of the
characters as themselves.

A more pleasing example of the A10 template is when it is applied to
memory containing only printing ASCII characters. For example, assume
that segment 574 contains the following bytes:

offset: 10 9 8 7 6 5 4 3 2 1 0

value: 2El50)52ju4Fju2f20j4Clu5]54 4E149

Then A10 displays:
?5%4:a10
'INTEL CORP!
DEREFERENCING ACCESS DESCRIPTORS (BIT IDENTIFICATION)
The ability to déreference an access descriptor lets the user display

432 objects that are represented by a collection of segments. The
syntax for a bit identification is:

{ bit string descriptor
[@number.]... { access deseriptor index
{ template name

As an example, consider the following templates:

- TEMPLATE so IS

[0, 16] IS Ou; ——~ a short ordinal

END

TEMPLATE object IS

ado0: 80; -- 1st AD

byteA: @1.[0, 81; -- byte 0 of segment pointed to by 2nd AD
byteB: @1.[1, 8]; -- byte 1 of " " " nonon
ad_i0: @2.60; —— 1st AD in AS pointed to by 3rd AD
ad_i1: @2.61; -~ 2nd AD in v " L non
wordl: @2.81.s0; -— 1st 16 bits of segment pointed to by
END - 2nd AD in AS pointed to by 3rd AD

The template OBJECT describes a complex object; the structure of the
object is shown in Figure 6-2.



Templates

Workstation User's Guide

ado
(AS)

(AS)
(DS)

Figure 6-2,

ad_11 o

ad_10

byteB

byteA

(DS)

Access Segment
Data Segment

(AS)

word1l

(DS)

F-0276

Dereferencing Access Descriptors.

Each box with a name in it represents an identified bit string.

A simpler example is the template PROCESS_AS, which displays part of a
Part of the process status is displayed as
well by dereferencing the process data segment access descriptor in the

process access segment.

process access segument:

TEMPLATE proc_stat IS

[0, 16] IS Ou, 3x;

-- display part of status

(o, 1] 1Is "[" (bound, not_bound), 2x;
{0:1,1] 1Is (not_faulted, faulted), "I";
END
TEMPLATE process_as IS
status: @0.[36, 16] IS proc_stat, /;
proc_ds: @0,

curr_ctxt: a1,
pglob_as: @2;
loc_obj tab: €3;
proc_carr: ay;
dispatch_pt: @5;
schedule pt: €6;
fault_pt: ar;

cur_msg: @8,

cur_port: €9;

cur_carr: €10;

surr_carr: e11;
END




Workstation User's Guide Templates

The field STATUS of the PROCESS_AS template dereferences the access
descriptor for the process data segment The field then identifies the
16 bits that are the process status (bytes 36 and 37). This field is
displayed using the template PROC_STAT, which first displays all 16
bits and then uses enumerations to display the two lowest order bits
symbolically.

VARIANT PART OF A TEMPLATE

The variant part of a template provides a method of specifying
conditional display, depending on the values of the memory being
displayed. The definition of the variant part of a template is
patterned after the definition of the variant part of an Ada record.
For ease of specification, we will rewrite the definition of a template:

TEMPLATE id IS
[component list]
END

The component list gives the syntax for an arbitrary number of template
fields optionally followed by a variant:

field [; field]... [variant part]

Although this syntax shoﬁs that the first field is required, recall
that the definition of a field has three parts, all optional.
Therefore, a template may consist of just a variant part.

6-19



Templates , Workstation User's Guide

The variant part of a template is defined as:

CASE bit identification IS
[WHEN choice [} choicel... =>
[component list] ...
END CASE

The bit identification is the same as the bit identification part of a
field (in a variant, it may be referred to as the discriminant). Since
the last field of a component_list may be a variant, the variant part
of a template may contain nested variants. The three possibilities for
the choice are:

number -- a single value
number .. number -- a range of values

-- all values not mentioned elsewhere

If OTHERS is used, it must be in the last WHEN clause of the variant.
When the template is applied to memory, the discriminant is identified
and, if necessary, padded to the left with zeros to make it a 32-bit
number. This number is then compared to the list of choices in each
WHEN clause. If a WHEN clause is found that has a choice matching the
discriminant, the component list associated with that WHEN clause is
applied to memory. The values for By P and Bi_P at the beginning of
this component list will be the last bit of the discriminant.

As an example, variants can provide a template that behaves just 1like
the ASCII conversion specification, except that it displays a period
(.) instead of the names of the non-printing characters:

TEMPLATE ch IS
CASE [0, 8] IS
WHEN 16#20#..16#7D# =>
[0, 8] IS ASCII
WHEN OTHERS =>
IS m vy, -- notice: no bit identification.
END CASE
END

The template CH may be used in a display format where the specification
ASCIT might have been used. When the byte to be displayed is in the
range of printable characters (16#20#..16#7D#), it is converted to
ASCII. Otherwise, a period is displayed. Notice that to display a
period, no bit identification is necessary, so the field has only the
"IS display format" clause.

A WHEN clause can have many choices, strung together using the vertical
bar (which separates the alternatives). For example:

WHEN 5 | 10..20 | 25 =>

This WHEN clause matches the discriminant if the diseriminant is 5 or
the range 10 to 20 (inclusive) or 25.

6-20



CHAPTER 7
DEBUG-432 COMMANDS

This chapter presents the syntax and semantics of all DEBUG-432
commands. The commands are arranged alphabetically for easy
reference. For a 1list of commands grouped by function, see the
debugger reference card at the end of this manual.



DEBUG-432 Commands Workstation User's Guide

ACTIVATE

Activate a breakpoint.

Syntax:
?ACTIVATE {name | ALL}

where name is the name of a previously defined, inactive breakpoint.

Semantics:

When the user sets a breakpoint it is "active". That is, any process
that reaches the breakpoint stops executing user code and is added to
the breakpointed process set. A breakpoint may be deactivated
explicitly wusing the DEACTIVATE command. All breakpoints are
deactivated by the commands INIT, LOAD, DEBUG and RESTORE. The
definition of the deactivated breakpoint remains in the DNT but no
longer causes processes to break. To reactivate a breakpoint type:

ACTIVATE name

where name is the name of a breakpoint. To activate all inactive
breakpoints, type:

ACTIVATE ALL

The debugger will activate breakpoints until the 1limit of 32 active
breakpoints is reached.

Trace breakpoints (i.e., BE, BO, and BX) may only be activated if every
process for which the breakpoint is defined 1is currently at a
breakpoint.

Activating an active breakpoint has no effect.

Also see BA, BE, BO, BX, DEACTIVATE, REMOVE, and Chapter 5.

Example:

?dir stackbreak

STACKBREAK ¥BREAK BE 172 OF 4~44
?ACTIVATE stackbreak

?DIR stackbreak

STACKBREAK BREAK BE 172 OF 4744
?

L4

Notice that the status of the breakpoint was inactive, as indicated a
the "¥" to the left of the definition.

7-2



Workstation User's Guide DEBUG~432 Commands

BA

Set an instruction offset breakpoint. (Break At a 432 instruection.)

Syntax:

[name:]1BA instruction [OF {process list | ALL}]

where instruction is the logical address of an instruction, including
object access descriptor and bit offset within the segment, and
process list is a set of logical addresses of process access segments,
separated by commas. The default value for this field is CP.

Semantics:

This command defines a breakpoint, stores it in the DNT, and sets a
breakpoint by writing an illegal class code in the instruction segment
at the offset indicated. The offset component is a bit offset instead
of the wusual byte offset. If no offset is specified, the initial
instruction displacement from the header of the instruction segment is
used. '

BA breakpoints are compatible with all other breakpoint types. They
may be set at any time, before the process has started, while it is
running, or when it is at a breakpoint. '

Every process reaching the instruction in the BA breakpoint faults and
is announced as a breakpoint. Therefore, if the process will be
dynamically created, but does not yet exist, use "ALL" in the process
list field. ‘

Also see ACTIVATE, BE, BO, BX, DEACTIVATE, REMOVE, and Chapter 5.

Examples:

?line_20: BA 4734,240 --sets a breakpoint in instruction

? --segment 4734 at bit offset 240, for the
-=current process

?BA 4734 OF ALL --sets a breakpoint at the first

? ——instruction in instruction segment 4734,

--and gives it a default name

7-3



DEBUG=432 Commands

BACK

Workstation User's Guide

Go back one element in the access path.

Syntax:

BACK

Semantics:

The BACK command removes the last item from the access path, changing
the current access environment (i.e., the contents of the DST are

changed).

If is only one item is in the path, the BACK command will issue an
error message and the access path will remain unchanged.

Also see, PATH, OUT, and the discussion of the "Data Structure Table",

in Chapter 4.

Example:

?PATH

(97 16:context_as).prev.prev.prev.prev(977)

?BACK
?PATH

(97 16:context_as).prev.prev.prev(9~0B)

?PATH
(97 16:context_as)
BACK

ERR 180: CANNOT GO BACK ANY FURTHER

?PATH
(9%16:context_as)

?PATH
...(9%12:context_as)
BACK

ERR 180: CANNOT GO BACK ANY FURTHER

?PATH
...(9712:context_as)

The three dots (...) shown in the last sequence indicate that the
access path at one time was longer than eight items, the maximum length

remembered by the debugger.

The example shows an attempt to go BACK

past the last remembered item, which is not possible.

7-4



Workstation User's Guide DEBUG~-432 Commands

BASE
Change the debugger output base.
Syntax:

BASE [nn]

where nn is the desired output base in decimal.

Semantics:

The debugger's default base for numeric JI/0 is initially 10. The
SUFFIX and BASE commands let you set or display the default input and
output bases.

The INCLUDE file DEB432.TEM has a BASE command at the end to change the
output base to 16.

BASE controls the numeric output base. To set it, give the BASE
command with the optional value nn. The value may be a decimal number
in the range 2..16, or a number in the form base#number#, where base is
the desired base in base 10 and number is the desired number in that
base. The decimal equivalent of the number must be in the range 2..16.

To display the curbent output base, type BASE without a number. The
debugger always displays the base as a decimal number, regardless of
the current value of the output base.

If, through a template, the debugger is instructed to output a number

in a base other than the current setting of BASE, it writes the number
in the form basei#number#.

Also see SUFFIX, "Integer (Display Format)" in Chapter 6, and Chapter 2.

Example:

?BASE 16 -
?BASE -
16

Change the output base to hexadecimal.
Display the current output base.

?BASE

10

2?INIT

TOP OF MEMORY IS: 524287
?BASE 16

?INIT

TOP OF MEMORY IS: T7FFFF



DEBUG~432 Commands : Workstation User's Guide

BE

Set a procedure entry breakpoint. (Break on Entry to an instruction
segment.) '

Syntax:

[name:]1BE {inst seg | domain} [OF process list]

inst seg and domain are the logical addresses of an instruction segment
and a domain access segment, respectively. process list is a set of
logical addresses of process access segments, separated by commas. The
default value of process list is "CP".

Semantics:

This command defines a breakpoint, stores it in the DNT, and sets a
breakpoint. If the form:

BE inst seg

is wused, the bDbreakpoint 1is triggered by an entry to a single
instruction segment. If the form

BE -domain

is used, the breakpoint occurs on entry to any instruction segment in
the domain.

A BE instuction is implemented by placing the process in "flow trace"
mode. This implies that a BE breakpoint may not be set for a process
that has a BO INST or BO FAULT breakpoint active. A BE breakpoint can
only be set when the processes given in the process 1list are at
breakpoints.

Also see ACTIVATE, BA, BO, BX, DEACTIVATE, REMOVE, and Chapter 5.

Examples:

Assume that 10"0b is the address of a domain. Then

?BE 1070b --sets a breakpoint at entry to any instruction
? ~-=-segment in 1070b, for the current process.

Assume that 4°2b is an instruection segment, 7710 is a process access
segment. Then

?iner is 4°2b --names the instruetion segment
?my_process is 7710 --names the process

?BE iner OF my_process --sets a breakpoint at entry to 472b for
? ——process 7710.

T7-6



Workstation User's Guide - DEBUG~432 Commands

BO

Set an event breakpoint. (Break On event.)

Szntax:
[name: ]BO {INST | CALL | RET | FAULT} [OF process list]

where process list is a set of logical addresses of process access
segments, separated by commas. The default for this field is "CP".

Semantics:

BO INST causes a process to break before every instruction. This
requires that the process be in full trace mode. For any single
process, only BA breakpoints may be active at the same time as a BO
INST breakpoint. The instruection at the offset given when a BO INST
breakpoint is announced is the instruction that will be executed next
(when a RESUME command is given).

BO FAULT causes a process to break after every fault. The process must
be in fault trace mode; as with BO INST, only BA breakpoints may be
active when BO FAULT is set. The instruction at the offset given when
a BO FAULT is announced is the instruction that caused the fault. The
process will begin execution with this instruection if a RESUME command
is given.

BO CALL causes a process to break after every call (or intersegment
branch). This uses flow trace mode, and is incompatible with both BO
INST and BO FAULT. The instruction at the offset when a BO CALL is
announced is the first instruction at the destination of the call (or
intersegment branch).

BO RET causes a process to break before every return instruction. This
also uses flow trace mode, and is incompatible with BO INST and BO
FAULT. The bit offset which is announced when a BO RET breakpoint is
reached may be as much as 32 bits greater than the actual return
instruction offset.

Event breakpoints may only be set for processes at a breakpoint,

Also see ACTIVATE, BA, BE, BX, DEACTIVATE, REMOVE, and Chapter 5.

Example:
?BO INST --set breakpoint after each instruction in
? —--process CP
?BO CALL OF 9”°2b --trace all call instructions for process 9°2b
?BO RET OF 9™2b ~-~trace all returns for process 9°2b
?



DEBUG-432 Commands Workstation User's Guide

BOTM

Set CC to the breakpointed context of CP.

Syntax:

BOTM

Semantics:

Whenever the current process (CP) reaches a breakpoint, the debugger
sets the reference variable CC to the address of the breakpointed
context. This value may be changed by the commands BOTM, DOWN, TOP,
and UP., The value of CC is set to 070 when the current process is
RESUMEd.

?BOTM
resets CC to the value of the breakpointed context.
To find the current value of CC, type:

?DIR CC
To display the object addressed by CC, type:

?CC
If more than one process is at a breakpoint, the user may SELECT a new
current process (CP). Before changing to a new CP, the debugger saves
the current value of CC:. if the current CP is re-selected in the
future, CC will be set to this saved value, not the breakpointed

context.

Also see DOWN, SELECT, STACK, TOP, UP, and Chapter 5.

Example:
?DIR CC --assume there was a previous "UP" command
CC IS 1078
?BOTM; DIR CC --this will display the value of the
? --breakpointed context
CC IS 1070C
?STACK --this prints the entire call stack
CONTEXT INSTRUCTION
10%0C - 7753.50
10°8 9747,26B
1075 9°7.127
10™1 9"0E. 149

?



Workstation User's Guide DEBUG~432 Commands
BX
Set a procedure exit breakpoint. (Set a Break on eXit from an

instruction segment.)

[name:1BX {inst seg | domain} [OF process list]

inst seg and domain are the logical addresses of an instruction segment
and a domain access segment, respectively. process list is a set of
logical addresses of process access segments, separated by commas. The
default value of process list is "CP".

Semantics:

This command defines a breakpoint, stores it in the DNT, and sets it
for each process in the list.

BX inst seg

causes the process(es) to break on return from the instruction segment,
and

BX domain
causes a break on return from every instruction segment in domain.

The breakpoint occurs before the return 1is executed; however, the
address which is displayed when the breakpoint is announced (and by the
STACK command) may be greater than the bit offset of the return
instruction by as much as 32 bits.

BX breakpoints require the process to be in flow trace mode; they are
incompatible with BO INST and BO FAULT breakpoints. A BX breakpoint
may be set whenever the process(es) in process list are waiting at a
breakpoint.

Also see ACTIVATE, BA, BE, BO, DEACTIVATE, REMOVE, and Chapter 5.

- Example:
?DONE: BX 1070B --sets a breakpoint before return
-? --from instruction segment 10"0b.

7-9



DEBUG-432 Commands Workstation User's Guide

DEACTIVATE

Deactivate a breakpoint.

Syntax:
?DEACTIVATE {name | ALL}

where name is the name of an active breakpoint.

Semantics:

‘This command 1lifts a breakpoint from 432 memory but saves its
definition in the DNT. The breakpoint may be reset (activated) using
the ACTIVATE command. To lift a single breakpoint, type:

DEACTIVATE name
To 1ift all active breakpoints, type:
DEACTIVATE ALL

The REMOVE command will 1lift an active breakpoint and delete the
definition of an active or inactive breakpoint from the DNT.

A trace breakpoint (i.e., BO, BE, and BX) may not be deactivated unless
every process for which the breakpoint is set is currently at a
breakpoint.

Also see ACTIVATE, BA, BE, BO, BX, REMOVE, and Chapter 5.

Example:

?dir stackbreak .
STACKBREAK BREAK BE 172 OF 474y
?DEACTIVATE stackbreak

?DIR stackbreak

STACKBREAK *BREAK BE 172 OF u4~uy
?

Notice that the status of the breakpoint is inactive, as indicated by
the "*¥" to the left of the definition.

7-10



Workstation User's Guide DEBUG-432 Commands

DEBUG

Enable 1logical addressing, polling for J/0 and breakpoints, and if
requested, load a file into the System 432/670.

Syntax:
DEBUG [filename]
Semantics:

The debugger can view System 432/670 memory as: (1) an ordered array of
bytes, displayed and modified by physical address; and (2) a logical
grouping of segments, displayed and modified by logical address. The
debugger can always address memory by means of a physical address, but
the DEBUG command must be wused before it can recognize logical
addresses.

The debugger makes a series of consistency checks on the memory image
before logical addressing is enabled. If the contents of memory fail
these checks, an error is displayed and 1logical addressing is not
permitted.

The DEBUG command also causes the debugger to begin polling for
breakpoints (see Chapter 5) and 432 I/0 requests (see Chapter 2, "The
Debugger I/0 Interface").

If the optional filename is present, the specified file is loaded into
432 memory, as by the LOAD command.

Also see INIT, LOAD, and Chapter 3.

Example:
?DEBUG :f2:BUBBLE.EOD

enters the file BUBBLE.EOD, located on drive :F2:, into System 432/670
memory, enables logical addressing, and begins polling for breakpoints
and I/0.



DEBUG-432 Commands : Workstation User's Guide

DIR

List the names in the debugger name table.

Sgntax:

?DIR [type | namel

where the possible types are INTEGER, REFERENCE, BREAK, and TEMPLATE.

Semantics:

Used alone, DIR 1lists all the names in the debugger name table (DNT).
If type is used, it 1lists only names of that type. The debugger
provides only a single 1line of information for each name; for a
detailed definition of a particular name, use the command DIR name.

When the DIR command is used to display a single name, the definition
displayed is suitable for entering into the debugger. The DIR command
can be used together with the LOG command to save definitions of names
to a file. This file can be editted (e.g., to remove the prompts and
DIR commands) and then used as an INCLUDE file.

Also see REMOVE

Examples
DIR break -— display all the breakpoints
BO BREAK BA 9747.50 of 9716
B1 -BREAK BA 9749.50 of 9”2b
B2 -BREAK BA 974B.50 OF 9740
B3 ¥BREAK BO INST OF 9716
B5 BREAK BO CALL OF 9716
The "-" before BREAK means a process is currently broken at this

breakpoint. The "¥" means that the breakpoint has been deactivated.

?DIR context_as -- display the definition of a template
TEMPLATE CONTEXT_AS IS
CTXT_DS: €0;

CONST: @1;
PREV: a2;
MSG: @3;
CURR_CTXT: @4;
EAS 1: es5;
EAS 2: @6;
EAS_3: e7;
DOMAIN: as;
END
?DIR cp ~-display the current process
CP IS 971B

7-12



Workstation User's Guide . DEBUG-432 Commands

DOWN

Set CC to the next called context in the call stack.

Syntax:
DOWN
Semantics:

When the current process (CP) reaches a breakpoint, the debugger sets
CC to the address of the breakpointed context. This is considered the
bottom of the stack of contexts. CC may be moved up the call stack to
its caller using

?2UP
and back down to the context which is called using

2?DOWN
To find the current value of CC, type:

?DIR CC

If more than one process is at a breakpoint, the user may SELECT a new
current process (CP). Before changing to a new CP, the debugger saves
the current value of CC: if the current CP is re-selected in the
future, CC will be set to this saved value, not the breakpointed
context.

Also see TOP, BOTM, SELECT, STACK, and Chapter 5.



DEBUG~-432 Commands Workstation User's Guide

EXAMINE

Display the set of breakpointed processes

Syntax:

EXAMINE

Semantics:

When a process reaches a breakpoint, it is added to the process set;
when it is RESUMEd it is removed from the set. The EXAMINE command
will display the current contents of the process set. The access
descriptor for each process and the value of that process' current
context are both displayed. ’

If the current process is at a breakpoint, then the characters "CP:"
will appear to the left of the current process' row of the display (see
example).

If a process is de-selected (i.e., another process is SELECTed), the
debugger saves the de-selected process' CC value. This is the value
diplayed in the EXAMINE command.

Also see BOTM, DOWN, RESUME, SELECT, TOP, UP, and "Processes" in
Chapter 5.

Example:
?EXAMINE ‘ -- 4748 is the current process
PROCESS CONTEXT
428 3723
CP: 4748 775
471 9713
?DOWN _
PEXAMINE : -- context value for 4748 should change
PROCESS CONTEXT
4~ 28 323
CP: 4~yug 71
4771 9713
?SELECT 4771
~ ?EXAMINE ‘ -- CC for U4"48 should stay at 771
PROCESS CONTEXT .
y~28 3723
y~ug 71
CP: U4°T1 9™13
?DIR CC
CC IS 9713



Workstation User's Guide DEBUG-432 Commands

EXIT

Close the current log file and leave the debugger.

Szntax:
EXIT

Semantics:

At the end of a debugging session, the EXIT command is used to close
the log file (if any) and return to the Series III. The EXIT command
will appear in the LOG file. The Series JII will be in the mode from
which the debugger was entered. For instance, if the debugger was
invoked from 8080/8085 mode, typing EXIT returns the Series III to that
mode. The following message is displayed:

- 2EXIT

where the "-" prompt indicates 8080/8085 mode. Similarly, if the
debugger was invoked from 8086 mode, EXIT returns the Series-III to
8086 mode. From there, the RUN command EXIT may be used to return to
8080/8085 mode.

Also see Chapter 2.

Example:

If you were in 8086 mode before entering the debugger, you will return
to 8086 mode when you leave the debugger. From the debugger, type

?EXIT
>

The ">" prompt indicates 8086 mode. To enter 8085 mode, type:

>EXIT

You are now in 8080/8085 mode on the Series III.

7-15



DEBUG-432 Commands o Workstation User's Guide

I&CLUDE
Causes debugger input to be taken from a specified file.
Syntax: |

INCLUDE [:fn:]filename [LIST]

where‘g is any valid ISIS-JI disk drive number and filename is any
valid ISIS-II filename.

Semantics:

INCLUDE causes debugger input to be taken from a specified file until
an end-of-file is encountered. After the end-of-file, the input is
taken from the previous input source. An INCLUDE file may contain
another INCLUDE command; these may be nested up to a depth of four
levels,

The console device name, :ci:, may be used as the filename, in which
case CONTROL-Z should be used as the end-of-file marker.

If LIST is specified in the command line, the debugger will echo the
commands from the include file at the console. Otherwise, the commands
are not echoed.

An INCLUDE command may not be followed by another command on the same
line. Although the debugger will not indicate an error, it ignores any
commands following an INCLUDE.

Input to a 432 process may be INCLUDEd. To do this, the debugger must
be in Debugging + I/0 mode and each line of input in the INCLUDE file
must be preceded by a percent sign (%). For more details see "Entering
Input Lines" in Chapter 2

The control characters described in Chapter 2 do not have their usual
meanings if they are in an include file.

Example:

A common use of INCLUDE is to enter template definitions for system
objects that are usually encountered during debugging. The file
DEB432.TEM contains such a series of template definitions, along with
commands to set the input and output bases. To make those definitions
available during debugging type:

?INCLUDE :fn:DEBU432.TEM
The result is that the file DEB432.TEM is used as'the debugger input

until an end-of-file is encountered. In this way, a number of useful
templates are defined and the default number bases are set to 16. N



Workstation User's Guide DEBUG-432 Commands

INIT
Initialize the System 432/670.
Syntax:

INIT [SYSTEM addr]

where addr is the physical address of the last memory byte in the
System 432/670 main memory.

Semanties:

INIT places the System U432/670 in an state capable of executing
programs. It resets the 432/670 hardware, clears the 432/670 ECC
memory, disables logical addressing, and clears all breakpoints. INIT
also determines the address of the last available byte in memory and
moves the 256-byte IP control window up to the top of memory. Finally,
INIT will display the address of the last byte of memory:

TOP OF MEMORY IS: addr

The hardware reset includes resetting all the GDPs and IPs in the
System 432/670. This stops all 432 execution.

The INIT SYSTEM command resets the hardware, including the GDPs and IPs
in the system, but does not clear the 432/670 memory. Thus, the memory
image remains intact and ready for examination.

During either initialization sequence, if the debugger finds that the
initialization has failed, it displays the message:

ERR 289: FAILED TO JINITIJALIZE THE 432 SYSTEM

Check that power to the System U432/670 is on and that all connections
between the Series III and the 432/670 are in good order. For further
information on diagnostic procedures, consult the System 432/600
Diagnostic Software User's Guide. For installation procedures, consule
Appendix A of Introduction to the Intel 432 CDS.

Also see DEBUG, LOAD, and Chapter 3.

Examples:

Generally, the INIT and DEBUG commands are used as a pair: INIT to
reset the System #432/670 and DEBUG to 1load memory, enable 1logical
addressing, and start polling for I/0 and breakpoints.

?INIT
TOP OF MEMORY IS: T7FFFF

?DEBUG :f1:bubble.eod
5

.

T-17



DEBUG-432 Commands Workstation User's Guide

If the debugger's IP "goes fatal," the debugger sends the message:
ERR 329: FATAL IP ERROR
The probable causes are:

1. one of the connections between the Series-III and the 432/670
is bad, '

2. the software running on the 432/670 system has crashed, or
3. the 432/670 power was turned off.

In the first two cases, the user may want to look at the contents of
memory to determine what happened. For this use the INIT SYSTEM
command, which preserves the memory image.

When using INIT SYSTEM, you must explicitly specify the address of the
last byte in memory as part of the command line, because the debugger
cannot determine this address without destroying the current memory
image. The debugger uses the last 256 bytes of memory as the control
window of the IP. Thus, the last byte of memory available for program
execution will be the number you enter minus 256.



Workstation User's Guide DEBUG-432 Commands

IPC

Executes the U432 instruections "Send to Processor" and "Broadcast to
Processor"

Syntax:

IPC processor, message

where processor is an ordinal expression specifying the processor ID
number or the string "ALL". The field message is the code number of the
message.

Semantics:

Logical addressing must be enabled for the IPC command to work (see
DEBUG). The specified message is either sent to the processor whose ID
is specified or, if ALL is used, broadecast to all processors.

The following table gives the IPC encodings and their meanings (see the
iAPX 432 GDP Architecture Reference Manual for more information).

0 - Wakeup

1 - Start Processor

2 - Stop Processor

3 -~ Set broadcast acceptance mode

4 - Clear broadcast acceptance mode
5 = Flush object table cache

6 -~ Suspend and fully requalify processor
7 = Suspend and requalify processor
8 -~ Suspend and requalify process

9 - Suspend and requalify context
10 - Flush data segment cache

11 - Enter normal mode

12 - Enter alarm mode

13 - Enter reconfiguration mode

14 -~ Enter diagnostic mode

Example:
. IpPC 1,0 -~ wake up processor 1

IPC ALL,2 ~-- stop all processors
IPC ALL,1 -- start all processors



DEBUG~-432 Commands Workstation User's Guide

LOAD

Load a file into System 432/670 memory.

Syntax:
LOAD [:fn:]1filename

where n is any valid ISIS-II disk drive number and filename is any
valid ISIS-II EOD filename.

Semanties:

LOAD is basically a subset of DEBUG. The LOAD command lets you load a
432 EOD file into System 432/670 memory, but does not enable logical
addressing.

The LOAD command deactivates all breakpoints (and logical addressing,
if it was enabled).

Also see INIT, DEBUG, and Chapter 3.

Example:
To load an object module BUBBLE.EOD, from drive :f2:, type:
?LOAD :f2:BUBBLE.EOD
In general, use the INIT command before a LOAD. Loading a 432 memory
image into a system with executing GDPs causes the GDPs to fault, in

which case they must be reset with INIT (and memory probably reLOADed)
before they can be restarted.

7-20



Workstation User's Guide , DEBUG-432 Commands

LOG

Record a debugging session.

Syntax:
?LOG :fn:filename
where n is any valid ISIS-II disk drive number and filename is any
valid ISIS-II filename.
Semantics:

The LOG command begins a disk file record of all commands entered from
the keyboard, as well as debugger output to the console.

When 1logging is initiated, the first 1line of the log file is the
debugger's sign-on message plus the current date (as most recently set
by the RUN command "DATE"). The next line of the log file is the same
~as the command line that contained the RETURN of the LOG command.

It is possible to direct debugger output to only the log file by typing:

?>L0G
In this case, most debugger output ~- with the exception of debugger
prompts and error messages -- wWill not appear on the console., To

disable the 1logging function, and thus cause 'all debugger input and
output to appear at the console only, type the following:

?>CRT

Finally, to return to a mode which directs output to both the log file
and the console, type:

?L0OG
The log file is closed automatically by the EXIT command.

Do not remove the disk with a log file active until a LOG file has been
opened on another drive.

Also see DIR.

Example

?Log :fl:imyprog.log -- start logging to :fl1:myprog.log
?2171:AD

6" 17
log -- send console output ONLY to log file
?1%1:mem ALL

?L0G — and now to both console and log file
?

T7-21



DEBUG-432 Commands Workstation User's Guide

MEMORY EXAMINATION

Display bits, bytes, or objeects of any form from 432 memory on the CRT.

Syntax:

‘source [repetition]
or '
source [. field namel...

where source is a reference__expression, repetition 1is either
LENGTH number or ALL, and field name is the name of a template field.

Semantics:

The address part of the source reference is used to determine the bit
stream: which bits from 432 memory are going to be examined.

The template part of the source reference tells the debugger how to
display the bit stream at the terminal. If the source reference
expression does not have a template part, then the debugger will use
the algorithm described in "Default Template Selection Algorithm", in
Chapter U4, to select a template.

The field name must be a field of the template used for the source. If
present, only that field of the template will be displayed, without the
field name. For more on the use of fields see "The Dot Notation" and
"The Data Structure Table" in Chapter 4.

Also see "Addresses", "References" and "Examining Memory"™ in Chapter 4,
and Chapter 6 on "Templates".

Examgles

?21™1 --display processor number 1

PROCESSOR_AS

57 46 4" 1B 4" 45 47 33 27 2 4T 3F 6" 21 57 43
0" o 0" 0 0" 0 0" 0 6" 19 0" o0 0" 0 5% U1

?24"1B --display current process carrier of processor 1
CARRIER_AS ‘

4 1A 0" 0 0" 0 0”0 0" o 4~ 20 4~ 1B 0" 0
0" o 4~ 1cC 0~ 0 0" 0 0" 0 0" o0 0~ 0 0

7-22



Workstation User's Guide ’ DEBUG~432 Commands

?cp -~ display the current process access segment
PROCESS_AS

STATUS: ocouA [BOUND, FAULTED]
PROC_DS: 4~ 23

CURR~CTXT: 4~ 20

PGLOB AS: 4 1F

LOC_OBJ TAB: 2~ 3

PROC_CARR: 0~ 0

DISP_PORT: 4 1D

SCHED_PORT: 0" 0

FAULT_PORT: 0" 0

CUR_MSG: 0 0

CUR_PORT: 0~ o

CUR_CARR: 0" 0

SURR_CAR: 0~ 0

?ep:flt : -- display context fault area of the current process.
FAULT_OBJ_IND: 64

PRE IP: 177 POST IP: 1B8
PRE_SP: 1C POST_SP: 1C
FAULT STATUS: 1

PROQ¥§TATUS: 0C028 PSOR_STATUS: 184
OPERATOR_ID: 10#2044# HISTORY: ACTIVE
FAULT CODE: OFAOQE

FAULT_OBJSEL: 8C FAULT_DISPL: 3E0

7-23



DEBUG-~432 Commands Workstation User's Guide

MEMORY MODIFICATION

Changing some of the values in memory

Syntax:

destination [. field namel... := expression

where destination is a reference_expression and field name is the name
of a field. '

Semantics:

The address part of the destination is used to determine the bit
stream: which bits are going to be examined by the template.

The template part of the destination will determine what memory is to
be modified, if a field name is not present. If the template part of
the destination is not present, B8 is the default.

If a field name is not present, then the template of the reference is
applied to memory as if the memory were going to be examined. The
debugger suppresses the display, but keeps track of the high water mark
for the template application. All of the memory from the address part
of the destination to the high water mark is modified.

If a field name is present, then the memory identified by that field's
bit identification component in the template definition (see Chapter 6)
is modified.

If the expression on the right hand side of the := is a reference, the
default template for that reference is the template used by the
right-hand side. The memory is copied from the memory referenced by
the right-hand side to the memory referenced by the left-hand side.
The memory is copied four bytes at a time, from low address to high
address, until the left-hand memory has all been modified. The
template on the right-hand side is used to identify what memory will be
copied exactly as the template on the left-hand side is used to
identify the memory that will be modified. If the amount of memory
identified by the right-hand side is not as much as is identified on
the left-hand side, the high order bits used to modify the destination
will all be zeros.

Also see "Memory Examination", "References", and "Modifying Memory" in
Chapter 4.
Examples:

?cc.eas_l:=ce.domain

copy the access descriptor in the domain slot of the current

context to entry access list 1.

7-24



Workstation User's Guide DEBUG-432 Commands

?2171.2:AD := OAFO1BF -- OAFO1BF is a 32 bit value for O0A"1B

write access descriptor OA™1B, with full rights, into slot 2 of
processor number 1.

?3"4'SD:storage.base_addr := 0C18BO

Change the base address field in the Storage descriptor for segment
3"4. »

7-25



DEBUG-432 Commands Workstation User's Guide

MODE

Display the current debugger I/0 mode.

Syntax:
MODE

Semantics:

The possible I/0 modes are Debugging Only, Debugging + 1/0, and I/0
Only. These modes are described in "The Debugger I/0 Interface",
Chapter 2. The control characters used to switeh between the modes are:

CONTROL-C place the debugger in Debugging Only mode
CONTROL~O place the debugger in I/0 Only mode
CONTROL-B place the debugger in Debugging + I/0 mode

The MODE command is used to display the current mode; it cannot be
issued from I/0 Only mode, since in that mode all input is assumed to
be for the System 432/670 execution vehicle.

The debugger will be in Debugging + I/O mode at the start of a session.

Also see "The Debugger I1/0 Interface" in Chapter 2.

Example:
2?MODE

DEBUGGING ONLY
?

7-26



Workstation User's Guide DEBUG-432 Commands

ouT

Forget the current access path and clear the DST.

Syntax:

ouT

Semantiecs:

The OUT command tells the debugger to forget about the current access
path and to clear out the DST.

Also see BACK, PATH, and the sections on the "Dot Notation" and "Data
Structure Table" in Chapter 4.

Example:

?PATH

(9% 16:context_as).prev.prev.prev(970B)
?0UT

?PATH ;

ERR 177: NO PATH TO PRINT: DST IS EMPTY

T7=-27



DEBUG~432 Commands Workstation User's Guide

PATH

Display the current access path.

antax:
PATH

Semantics:

The path command displays the current access path. If there is no
current access path, then an error is given.

Only the eight most recent elements of the access path are saved by the
debugger. If the current access path is longer than eight elements,
then the most recent eight elements are displayed, preceded by three
dots (...). This indicates that the earlier portion of the access path
has been discarded.

The first element of the access path is always displayed in parentheses
in the form of a reference (i.e., address:template). This represents
the "anchor" of the displayed path. If the path is preceded by three
dots (...) then the anchor is not the first reference keyed-in by the
user, but rather the starting point of the visible part of the path.

If the path contains more than one element, it ends with
.field_name(di”si)

where the field name is the name of the last field traversed in the
access path and the item in parentheses is the value of the access
descriptor for that field.

Also see BACK, OUT, and "The Data Structure Table" in Chapter 4.

Example:

29" 16:context_as”

?PATH

(97 16:context_as)

?prev”

?PATH

(97 16:context_as).prev(9712)

e e

?PATH

(97 16:context_as).prev.prev.prev.prev(9”7)
?prev.curr_ptxt.curr_ptxt.currﬁptxt.ctxt*gs‘

?PATH

«es(9712:context _as).prev.prev.prev. prev curr_ctxt.curr_ctxt.
curr_ctxt.ctxt ds(9 1)

7-28



Workstation User's Guide ' DEBUG-432 Commands

REMOVE

Remove a name from the DNT.

Sytnax:
REMOVE {name | type | ALL}

where name is the symbol to be removed, the possible types are INTEGER,
REFERENCE BREAK, and TEMPLATE.

Semantices:

A name must be in the debugger name table (DNT) to be used in a
debugger session. If the user has no more need for a particular name,
he can remove it. The debugger will re-use the space occupied by this
name for other names. Jt the DNT becomes too full, it will overflow to
disk and accessing names will be slower.

REMOVE name removes a single name from the DNT. REMOVE type removes
all names of that type (e.g., all INTEGERs), and REMOVE ALL clears the
DNT entirely.

It is not always possible to REMOVE a breakpoint from the DNT, since
removing a breakpoint also deactivates the breakpoint; some breakpoints
(those that use the 432 tracing mechanism) require that the process be
at a breakpoint before the breakpoint can be removed.

Also see DIR.

Examples:

?REMOVE stkpt ~-- remove the name stkpt
?REMOVE template -- remove all templates
?REMOVE ALL -~ clear the name table

7-29



DEBUG-432 Commands Workstation User's Guide

RESTORE

Load a previously SAVEd portion of memory into the System 432/670.

Syntax:

RESTORE [:fn:]filename [TO partition]
where n is any valid ISIS-IT disk drive number, partition is the area
of memory to be loaded, and filename is any valid ISIS-II filename.
Semantics:

RESTORE reloads all or part of a 432 memory image that was stored by a
SAVE command.

The partition specification may be entered as:

physical address TO physical address

where the two physical address specifications define the beginning and
ending addresses, respectively, of a valid range of 432/670 memory to
be reloaded.

Alternatively, partition may define a partition of memory by giving a
starting address and length:

physical address LENGTH number

In this case, physical address must be a valid 432/670 memory address,
and number must be a non-negative value specifying a partition length
within the range of 432/670 memory size.

If the partition specification is omitted, the memory image is copied
into the region of memory from which it was previously SAVEd. If the
location specified is smaller than the image in the file, the debugger
restores only the portion that fits.

The RESTORE command ~deactivates all breakpoints if the partition
includes an instruction segment which has a breakpoint or a process
access segment for a process which has an active breakpoint.

Also see SAVE and Chapter 2.

Example:

To reload the image of memory copied to disk by the example SAVE
command in the next section, type:

?RESTORE :fO:TEST.SAV TO !7100 TO !8100

The debugger copies the file to the specified memory locations.

7-30



Workstation User's Guide DEBUG-432 Commands

RESUME

Continue execution of a breakpointed process.

Syntax:
RESUME [process 1list | ALL]

where process list is a set of logical addresses of process access
segments, separated by commas. The default is CP.

Semantics:

RESUME causes a breakpointed process to continue executing user code,
starting at the breakpointed instruction.

When CP is resumed, CC is set to the null access descriptor, 070.

Also see EXAMINE and SELECT.

Examples:
?RESUME 474 -~ resume process U474
?
?RESUME -- resume the current process
I)
?RESUME ALL -- resume all processes in the process set

?

7-31



DEBUG-432 Commands Workstation User's Guide

SAVE
Dump all or part of the 432 memory image to an ISIS file.
Syntax:

SAVE partition TO [:fn:]filename

where n is any valid ISIS-II disk drive number, partition is the area
of memory to be saved, and filename is any wvalid ISIS-II filename.

Semantics:

The SAVE command lets you dump all or part of a 432/670 memory image to
an ISIS-I1 disk file. The image can later be reloaded with the RESTORE
command.

Note that the saved image is NOT in EOD file format.
The partition specification may be specified as:

physical address TO physical address

where the two physical address spécifications define the beginning and
ending addresses, respectively, of a valid range of 432/670 memory to
be reloaded.

Alternatively, partition may define a partition of memory by giving a
starting address and length: :

physical address LENGTH number

In this case, physical address must be a valid 432/670 memory address,
and number must be an integer specifying a partition length within the
range of U432/670 memory size.

Alsc see RESTORE and Chapter 2.

Examples:

Each of these commands copies the first 10001 bytes of 432/670 memory
to a file called TEST.SAV; the first uses starting and ending
addresses, and the second uses a starting address and a length.

?SAVE !0 TO !10000 TO :fO:TEST.SAV

?SAVE 10 LENGTH 10001 TO :f0:TEST.SAV

7-32



Workstation User's Guide DEBUG-432 Commands

'SD ATTRIBUTE

Creates 'a reference to the object descriptor of the segment of a
logical address.

Syntax:

reference_expression'SD

Semantics:

The 'SD attribute for a reference_expression uses only the address part
of a reference. The address must be a logical address.

The attribute is a reference for the object descriptor of the address.
The transformation used to go between a 1logical address and the
reference to its object descriptor looks like:

i®j.k'SD => 271 .(16%*j):DESCR

DESCR is supplied as part of DEB432.TEM. It will determine the type of
any object table entry and print it in the correct format.

Examples:
?ce'SD -- Display the object descriptor for the current context
?171'SD -- display the object descriptor for processor number 1
-~ (i.e., 271.10:descr, assuming base 16)
97 1C'SD:STORAGE .base_addr ~- display base_addr field of

-~ descriptor (279.1C0:descr)

In this last example, the template DESCR is overridden with the
template STORAGE, that is, 279.1C0O:descr becomes 279.1C0O:storage. This
enables the dot notation to be used to refer to just the BASE_ADDR
field of the object descriptor. The DESCR template supplied in
DEB432.TEM has no field names, it uses variants to discover which
template should be used to display the object descriptor and then
displays the descriptor with that template. STORAGE is the template
used to display STORAGE DESCRIPTORS and is required for use of the
field names, in this case.

7-33



DEBUG~432 Commands ‘ Workstation User's Guide

SELECT

Select a process to be the current process;

Syntax:
SELECT process

where process is the logical address of a process access segment.

Semantics:

The SELECT command changes the value of CP to the specified process,
which must be in the set of breakpointed processes, and sets CC to the
context value for that process. The new value of CC will be either the
breakpointed context, if the process has never been selected since it
hit a breakpoint last, or the value of CC when the process was last
de-selected.

When a new process is SELECTed, the debugger saves the current value of
CC. If the current process is ever re-selected before it is RESUMEJ,
then this saved value will become the value of CC again.

When the stack of a breakpointed process is displayed, there are two
active contexts that are not displayed. These are debugger contexts
created to handle the breakpoint.

Also see EXAMINE, RESUME and "Processes", Chapter 5.

Examgle:

?dir ecp -- the current process

?2CP IS 8718 '

?select 4714 -- select process 4714

?dir cp -- new current process

CP IS 4714

?2dir cc

CC IS 6™1C

?2up -~ change cc to 671C's caller
?2dir cc

CC IS 670F

?select 8718 -- de-select 4714, reselect 8718
?2dir cc

CC IS 0A™7

?select 4714 -- reselect 4714

?dir cc

CC IS 6™0F

This example shows that the debugger "remembers" the last setting of CC
for a process. :

7-34



Workstation User's Guide DEBUG~-432 Commands

STACK

Display the call stack of contexts.

Syntax:
STACK [n] [OF process]

where n is the number of contexts to display (default is the entire
stack), and process is the logical address of any process (the default
is CP)

Semantiecs:

The STACK displays the n most recent contexts on the call stack
associated with process. The first 1line of the display after the
column headings is the breakpointed context (i.e., the most recently
called context or the BOTM of the stack). Each line that follows is
the context that called the context of the previous line. The last
line (the TOP of the stack) is the original context in the process, it
has no caller.

If process is executing, the results of a STACK command are usually all
right, but sometimes unpredictable (for example the process could be
executing a return instruection just as the debugger is trying to
determine the stack contents).

The INSTRUCTION column shows the instruction segment associated with
the context and bit offset where execution will resume in that
instruction segment.

If the process is at a breakpoint, then there are two contexts on the
stack that are not displayed. These contexts were created to handle
the breakpoint and are part of the debugger.

Also see BOTM, DOWN, TOP, and UP.

Examples:
?STACK
CONTEXT INSTRUCTION
3710 4767.112
3°5 4766.667
3™ 4716.1873
9
?STACK 1 of 9716 --display just the location of the breakpoint
CONTEXT INSTRUCTION
1070C 7°66.50

?

7-35



DEBUG-432 Commands Workstation User's Guide

START

Send the wakeup IPC to a processor
Syntax:

START [n]

Semantics:

The START command can be used only if logical addressing is enabled
(see DEBUG).

With the optional processor number, START is shorthand for:

IPC n, O.
If n is omitted, the debugger searches the processor object table (in
the order 171, 172, 173 ...) and wakes up the GDP associated with the
first GDP processor object it encounters (i.e., GDP n, where 1°n is the
first GDP). The START command is typically used to start a memory
image that has just been loaded with a DEBUG, LOAD, or RESTORE command.

Also see IPC and Chapter 2.

7-36



Workstation User's Guide DEBUG-432 Commands

SUFFIX
Change the debugger default input base.
Syntax:

SUFFIX [nn]
where nn is the desired input base.
Semantics:

The debugger's default base for numeriec I/0 is 10. The SUFFIX and BASE
commands let you set or display the default input and output base.

SUFFIX controls the numeric input base. To set it, use the optional
value nn., The value must be a decimal number in the range 2..16 or a
number in the form basefnumber# where base is the desired base in base
10 and number is the desired number in the given base. The decimal
equivalent of nn must be in the range 2..16.

All numbers must be entered with a leading digit. If the default input
base is greater than 10, precede numbers which begin with A thru F with
a zero. For example:

OBAD -- is ok, whereas
BAD —— is assumed to be a name
16#BAD# —- is ok, the "1" of 16 is the leading digit

To display the current input base, type SUFFIX without a number.

The user can override the default input base when entering any numeric
constant by typing:

baseinumber#
where base is a decimal number.

For example if the default base were 10 you could enter a digit in hex
by typing: .

16#1FFFF#

The  debugger always displays bases as decimal numbers (between 2 and
16) no matter the current output base.

Also see BASE and Chapter 2.

Examples:
?SUFFIX 16 -~ Change the input base to hexadecimal.
?SUFFIX 10 | —- Change it back to decimal.
?SUFFIX -- Display the current default input base
10 ' .

1-37



DEBUG~U432 Commands Workstation User's Guide

TOP

Set CC to the initial context of CP.

Syntax:

TOP

Semantics:

When the current process reaches a breakpoint, CC is assigned the value
of the breakpointed context, considered the bottom of the call stack.
To set CC to the initial context of CP, type:

?TOP
?

If more than one process is at a breakpoint, the user may SELECT a new

current process (CP). Before changing to a new CP, the debugger saves
the current value of CC: if the current CP is re-selected in the

future, CC will be set to this saved value, not the breakpointed
context. ’

The inverse command is BOTM. Also see UP, DOWN, STACK, and Chapter 5.

7-38



Workstation User's Guide DEBUG-432 Commands
uP

Set CC to the context of the caller of the current context.

Szntax:
UpP

Semantics:

When the current process reaches a breakpoint, CC is assigned the value
of the breakpointed context, considered the bottom of the call stack.
To move the value of CC to its caller (the previous context field in
the context access segment), type:

?2UP
?

If more than one process is at a breakpoint, the user may SELECT a new
current process (CP). Before changing to a new CP, the debugger saves
the current value of CC: if the current CP is re-selected in the
future, CC will be set to this saved value, not the breakpointed
context.

The inverse command is DOWN. Also see SELECT, TOP, BOTM, STACK, and
Chapter 5. :

7-39



DEBUG-432 Commands Workstation User's Guide

VERSTON

Display the version number of the current DEBUG-432 debugger.

Szntax:
VERSTON

Semantics:

It is useful to know which version of the debugger you are running;
different versions may have different features. The VERSION command

provides an easy method of identifying the version of the debugger
without having to exit and subsequently reenter the debugger.

The debugger indicates the current version and also displays the
address of the highest available memory location, the current I/0 mode
of the debugger, and the status of any logging activity (including the
log filename, if any). The format of the reply is:

?VERSION
SERIES III 432 SYSTEMS LEVEL DEBUGGER, Vx.yz
TOM: !yyyyy MODE: mode LOG FILE: :fn:filename {ON|OFF}

where x.yz is the current version number, TOM stands for Top Of Memory,
'yyyy is the address of the last byte in memory, mode is one of the
three I/0 modes of the debugger (Debugging Only, Debugging + I1/0, or
I/0 Only), the log file is specified as an ISIS-III filename, and the
logging facility is either ON or OFF.

Also see INIT, LOG, MODE, and "The Debugger I1/0 interface", Chapter 2.

Examgle:
?VERSION
SERIES III 432 SYSTEMS LEVEL DEBUGGER, V1.00
TOM: TFFFF MODE: DEBUGGING ONLY LOG FILE: :F1:MYLOG (ON)

7-40



PART Il
UPDATE -432







'CHAPTER 8
- : OVERVIEW OF UPDATE-432

INTRODUCTION

The purpose of UPDATE-432 is to let the user quickly revise a linked
External Object Description (EOD) on the Series III system, when the
corresponding Ada source program has been modified on the mainframe
host. UPDATE~432 accomplishes this revision by operating on the linked
EOD using information contained in a revision EOD. The revision EOD is
produced by LINK-432 when the newly compiled Ada program is relinked,
and is sent over the communication link to the Series III.

REVIEW OF COMPILING, LINKING, AND EODs

The Ada Compiler System supports separate compilation, the division of

a program into modules that can be designed, developed, and compiled
separately. The LINK-432 1linker combines these separately compiled
modules into a single file. It also assigns physical addresses to 432
segments, object table indices (segment coordinates), and Dbase
addresses in object descriptors. ’

The linker outputs a linked EOD file that contains the modules linked
together. If the 1linker input included a 1linked EOD, the output
includes a revision EOD file containing the changes made to the input
linked EOD to produce the output linked EOD. Revision EODs contain new
modules, the names of any modules to be deleted, and address changes.
Since the revision EOD records only the differences between the input
and output linked EOD files, it can be significantly smaller than a
linked EOD file. (Consult the Intel 432 CDS VAX/VMS Host User's Guide

for a full description of how to generate a revision EOD.)

Since the bandwidth of the communication link between the mainframe and
the Series III is relatively 1limited, it is desirable to reduce the
amount of redundant information that must be downloaded. Using
UPDATE-432, it is not necessary to download the entire newly linked EOD
every time the program is changed. Instead, only the revision EOD need
be sent to the Series III. UPDATE-432 uses the information in this
revision file to update the linked EOD on the Series III. Figure 8-1
shows how the programs in the 432 CDS interact through EOD files.



c-8

ACS

Compiled EODs
e

LINK-432

LINKED EODs SAVED

; ON INTELLEC
Linked MASS STORAGE
zop || vard DEBUGGER
T T = LOAD
Revisio CoM CATION pisk | - mvremanzze | ®9cer Y
v n INTERFACE = EXECUTE
EOD g - EXAMINE Programs
[ 5]
b
C
L. ]
»3
UPDATER
RECEIVE DOWNLOADED
LINKED EOD OR UPDATE DEBUG EXECUTE
REVISION EOD LINKED EODs LINKED EOD LINKED EOD

VAX HOST SYSTEM

INTELLEC SERIES III SYSTEM

Figure 8-1. Updating Linked EOD Files

SYSTEM 432/670

F-0259

2En—3Lvadn

apINn S,J9S(] UOTIRISHJIOM



Workstation User's Guide UPDATE-432

PRINCIPLE FUNCTIONS OF UPDATE-432

UPDATE-432 peforms three functions:

® EOD compatibility check
[ EOD module updating
° segment address and object descriptor updating

VERIFYING EOD COMPATIBILITY

To update a linked EOD, UPDATE-432 must verify that the revision EOD
sent over the communciation link is matched correctly with the linked
EOD to be updated. All EODs, including revision EODs, contain a unique
identifier. A revision EOD also contains an identifier that specifies
which 1linked EOD it revises. UPDATE-432 checks these unique
identifiers of the revision and 1linked EODs. If they match, the
revision is performed; if they do not matech, UPDATE-432 informs the
user with an error message and returns to ISIS,

EOD MODULE UPDATING

Updating the modules in a 1linked EOD is performed by two basic
functions: module insertion and module deletion.

Module Insertion: New modules generated by the linker and are passed
to UPDATE-432 in the revision EOD, UPDATE-432 adds the object
description representing each new module to the existing linked EOD to
produce a new linked EOD.

Module Deletion: Any modules to be deleted are named in a delete list
created by the linker and passed to UPDATE-432 in the revision EOD.
UPDATE-432 deletes the object description representing each module from
the linked EOD, producing a new linked EOD. -

SEGMENT ADDRESS AND OBJECT DESCRIPTOR UPDATING

One of the essential functions of UPDATE-432 1is reassigning the
physical addresses of U432 segment images contained in the linked EOD.
The base addresses of U432 segments and base addresses contained in 432
object descriptors generally change each time a program is processed by
LINK-432. This change occurs because LINK-432 relocates program
segments as it links them. The o0ld base addresses and base addresses in
object descriptors must be revised each time a linked EOD is updated.

A 1ist of physical base addresses of segments .and addressing
coordinates is contained in the revision EOD. UPDATE-432 uses this
address list to reassign the new physical base addresses of segments
and update the base addresses contained in object descriptors.

8-:






CHAPTER 9
USING UPDATE-432

INTRODUCTION

Like DEBUG-432, UPDATE-432 is an 8086 program that executes under the
control of RUN 8086. The main difference in invoking UPDATE-432 is
that it accepts parameters in the command line that invokes it.

To  use UPDATE-432, the user invokes it through the RUN program,
supplying one required parameter and up to two optional parameters in
the command line. The required parameter is the name of the linked EOD

to be updated. The two optional parameters specify non-default names
for the revision EOD and the newly-updated linked EOD. This section

shows how to invoke UPDATE-432.

The Series III has two execution modes: the 8080/8085 mode under
control of ISIS-II, and the 8086 mode under control of RUN 8086. When
the Series III system starts running, it is in 8080/8085 mode. You can
invoke UPDATE-432 directly from 8080/8085 mode by wusing the RUN
command, which has the format: ’

[:fm:JRUN [:fn:]filename [parameters] [;comments]<RETURN>

where

:fm: refers to the disk drive that contains the RUN program.
The value m is an integer between 0 and 9. If :fm: is not
specified, :f0: is assumed.

filename is the name of the 8086 program (in this case,
UPDATE). Again, :fn: refers to a valid ISIS disk drive, this
time the drive that contains filename.

parameters are one or more data items required by the 8086
program (in this case, the names of the EODs).

comments are one or more ASCII characters, not including
carriage return or line feed. Comments always begin with a
semicolon.

For example,

-RUN MYPROG PARAM1 PARAM2 PARAM3; this is a comment{RETURN>

For more information on the RUN command and RUN 8086 program, see the
Intellec Series III Microcomputer Development System Console Operating
Instructions.




Using UPDATE-432 Workstation User's Guide

Line Continuation:

When a RUN command requires more than one 1line, terminate each
intermediate line with an ampersand (&) followed by a carriage return.
A comment may be inserted between the ampersand and the carriage
return. Up to 120 characters may be entered before the ampersand.

When the RUN command is ready to accept a continued command line, it
prompts with two angle brackets (>>).

For example,
-~RUN MYPROG PARAM1 & this is a comment<RETURN>

>>PARAMZ & this is also a comment<RETURN>
>>PARAM3; this is the last comment<{RETURN>

THE UPDATE-432 COMMAND LINE

When using RUN to execute UPDATE-432, the filename is UPDATE. The
parameters field contains three parameters, the first is required and
the other two are optional. The required parameter is simply the name
of the 1linked EOD to be revised. The two optional parameters are
supplied by including directives in the command 1line. The UPDATE
command line thus has the following format:

[:fm:JRUN [:fn:JUPDATE [:fk:llinked EOD [directives]<RETURN>

where square brackets indicate optional items., If a linked EOD is not
specified, UPDATE-432 signhals a fatal error and returns to ISIS.
Directives are discussed in the following sections.

UPDATE-432 DIRECTIVES

UPDATE-432 recognizes two directives, REVISION and NEW. The REVISION
directive specifies a non-default revision EOD filename; the NEW
directive specifies a non-default 1linked EOD filename. These
directives may be omitted entirely, either may be used by itself, or
they can be used together.

THE DEFAULT CASE (NO DIRECTIVES)

The default case for invoking UPDATE-432 is with no directives. Only
the linked EOD is specified. In this case, the revision EOD is assumed
to have the same filename as the linked EOD, except the extension is
assumed to be ,REV. During execution, the updater creates a temporary
file, :fn:UPDOO1.TMP, to hold the new linked EOD; where n is the drive
containing the old linked EOD. When the operation is complete, the old
linked EOD file is deleted and the temporary file is given the same
name as the old file. (This temporary file is always created if the
NEW directive is not specified.) If the default revision EOD does not
match the specified linked EOD, UPDATE-432 prints an error message and
returns to ISIS. A

9-2



Workstation User's Guide Using UPDATE-432

For example, (we assume that all files are on :f0:):
-RUN UPDATE PROG.LNK<RETURN>

In this example, the linked EOD to be updated is assigned the name
PROG.LNK; the revision EOD is assigned the name PROG.REV; and the newly
revised linked EOD is also assigned the name PROG.LNK. The old linked
EOD is replaced.

THE REVISION DIRECTIVE ALONE

The user may specify a non-default filename for the revision EOD by
using the REVISION directive. The format of this directive is

REVISION(:fn:filename )

where n is the disk drive number and filename is the name of the
revision EOD file. Thus, the complete UPDATE command line format using
this directive is as follows (assuming :f0: in each case):

RUN UPDATE linked EOD REVISION( revision EOD )<RETURN>
or
RUN UPDATE linked EOD RE( revision EOD )<RETURN>

For example
-RUN UPDATE PROG.LNK REVISION( RPROG.REV )<RETURN>

In this example, the linked EOD to be updated is assigned the name
PROG.LNK; the revision EOD is assigned the name RPROG.REV; and the
newly-revised linked EOD is also assigned the name PROG.LNK. The old
linked EOD is replaced. Again, if the revision EOD does not match the
linked EOD, UPDATE-432 prints an error message and returns to ISIS. If
the updater runs out of memory while processing a revision file, it
creates two temporary files, :fn:UPD002 and :fn:UPD003, to hold the
overflow; where n - is the drive containing the revision file. (Such an
occurence is extremely unlikely, since more than 7,000 updated objects
must be specified in the revision file.)

THE NEW DIRECTIVE ALONE

The user may specify a non-default filename for the newly-updated
linked EOD by using the NEW directive. The format of this directive is

NEW(:fn:filename )
where n is the disk drive number and _filename is the name of the
newly-revised linked EOD file. NEW may be abbreviated as NE, if so

desired. Thus, the complete UPDATE command 1line format using this
directive is as follows (assuming :f0:)

RUN UPDATE linked EOD NEW( new linked EOD )<RETURN>

9-3



' Using UPDATE-432 Workstation User's Guide

For example
-RUN UPDATE PROG.LNK NEW( PROG1.LNK )<RETURN>

In this example, the linked EOD to be updated is assigned the name
PROG.LNK; the revision EOD is assigned the default name PROG.REV; and
the newly-revised linked EOD is assigned the name PROG1.LNK. The old
linked EOD is not overwritten. If the revision EOD and linked EOD do
not match, UPDATE-432 sends and error message and returns to ISIS.

USING BOTH DIRECTIVES

The user may specify non-default filenames for both the revision EOD
and the newly-updated linked EOD by using both directives in the same
command line. The complete UPDATE command format using both directives
is as follows (again assuming :f0: in each case and also using multiple
lines):

RUN UPDATE linked EOD REVISION(revision EOD ) &
NEW( new linked EOD ) <RETURN> '

For example

~-RUN UPDATE PROG.LNK REVISION( RNAME.REV )
>>NEW( NEWPROG.LNK )<RETURN>

In this example, the linked EOD to be updated is assigned the name
PROG.LNK; the revision EOD is assigned the name RNAME.REV; and the
newly-revised linked EOD is assigned the name NEWPROG.LNK. The old
linked EOD is not overwritten. If the linked EOD and revision EOD do
not match, UPDATE-432 sends an error message and returns to ISIS.



APPENDIX A
FORMAL DEFINITION OF DEBUG-432 COMMAND SYNTAX

This appendix contains a formal definition of the DEBUG-432 command
syntax. The definition uses a variant of Backus-Naur Form (BNF). The
following conventions are used:

<identifier>

upper_case_ids

lower_case_ids

"abc"

[ ... ]
( LI )

{ ...}

An identifier in angle brackets is expanded in
another line. E.g. <template_definition>

Keywords are in upper case.
E.g. DEBUG, TEMPLATE, ALL

Lower case identifiers denote lexical classes
E.g. identifier, file_name

Character strings in double quotes stand for
literal items. E.g. ")", "=D>"

Square brackets enclose optional items.

Parenthesis enclose several items; one of
these items must be used.

Braces surround an item or set of items which
may be repeated zero or more times.

A double hyphen precedes comments
A vertical line denotes exclusive or.

Concatenate the characters on either side of
the exclamation point.

The lexical classes are:

identifier

ordinal

Identifiers are as in Ada:

identifier i:= letter {["_"] letter_or_digit}
letter or digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter
E.g. process_8 16, CURRENT _CONTEXT

Ordinals are as follows:

digit ti= digit {["_"] extended digit}
extended_digit ::= digit | A {...1 F | a {...1 f
E.g. 2048, 0A12



DEBUG-432 Command Syntax

Workstation User's Guide

based_ordinal Based_ordinals are similar to based numbers in Ada:

string

file name

based_ordinal ::= base "#" based integer "#"
base t:= digit [digit]
based_integer ::= extended digit {["_"]

extended_digit}
E.g. 16#ffff#, 2#10104#

A string is zero or more Ada characters between
double—quotes. A double quote within the string is
represented by two double-quotes. '

E.g. "system rights", "enter ""YES"" or ""NO"" "

A valid ISIS-JI/86 filename.

COMMAND SYNTAX

<{command_list>

<command>

o= [<command_list> ";"] <command>

{system_control_ commands>
<environment_pontrol*pommands>
<memory_contents filing>

<breakpoint_commands>
<broken_process_commands>
<call_stack_ commands>

<{template_definition>
<{reference_definition>
<integer_definition>
<directory_commands>

<memory_examination>
<{name_scope_commands>
<memory_modification>

SYSTEM CONTROL COMMANDS

system_control commands> ::=

INIT [(SYS | SYSTEM) <physical_address>]
LOAD file_name

DEBUG [file_name]

START [<number>]

IPC (<expression> | ALL) "," <expression>



Workstation User's Guide DEBUG-432 Command Syntax

ENVIRONMENT CONTROL COMMANDS

<environment_control_commands> ::=
EXIT

INCLUDE file_name [LIST]
BASE [ <number>]
SUFFIX [<number>]

LOG [file_name]

">" CRT

">" LOG

MODE

VERSION

MEMORY CONTENTS FILING

<memory_ contents filing> ::=
SAVE <{partition> TO file_name
i RESTORE file name [TO <part1t10n>]

{partition> ::=

<{physical_address> TO <physical_address>
i <phys1ca1 address> (LEN | LENGTH) <number>

BREAKPOINT COMMANDS

<{breakpoint_commands> ::=
[<break_id>] <brk> [<break processes>]
H ACTIVATE (identifier | ALL)
i DEACTIVATE (identifier | ALL)

<break_id> ::

identifier ":"

<brk> ::=
<break_at>

i <break_ enter>

i <break_exit>

i <break_on>
<break_at> ::= BA <primary>
<break_enter> ::= BE <primary>
<break_exit> ::= BX <{primary>
<break on> ::= BO (INST | CALL | RET | FAULT)

<break processes> ::= OF (<process_}ist> i ALL)

{process_list> ::= [<process_list> ","] <primary>



DEBUG-432 Command Syntax ‘Workstation User's Guide

BROKEN PROCESS COMMANDS

<{broken_process_commands> ::=
EXAMINE
i RESUME [<process_list> | ALL]
i  SELECT <expression>

CALL STACK COMMANDS

<call_stack_ commands> ::=

TOP

BOTM

UpP

DOWN

STACK [<number>] [OF <primary>]

— - ————

TEMPLATE DEFINITION SYNTAX

{template_definition> ::=
TEMPLATE identifier IS
{component_list>
END

<component_list> ::= <field list> [<variant_part>]
<field list> ::= [<field_}ist> nenj <field>

{field> ::= :
[<field_ident>] [<bit_jdentification>] [IS <display_list>]

<field_ident> ::=
identifier ":"
+ identifier "::"

<bit_identification> ::=
<bit_descriptor>
"@" <number> "." <bit_identification>

<bit_descriptor> ::=
n@" <number> [ACCESS identifier]
| <bit_string> '
| 1identifier

<bit_string> ::=
: nwin <byte_start> <bit_start> "," <bit_length> uln

<byte_start> ::= <{template_expr>
<bit_start> ::= [":" <template_expr>]
<bit_length> ::= {template_expr>



Workstation User's Guide DEBUG-~432 Command Syntax

<{template_expr> ::=
{template_expr> "+" <{template_term>
i <template_expr> "-" <template_ term>
i <template_term>

<{template_term> ::=
<{template_term> "*" <{template_ prim>
i <template_term> "/" <template prim>
i <template_prim>

<{template_prim> ::=
<number>
| identifier
i "(" <template_expr> ")"

<display_list> ::= [<display_list> ","] [<repetition>] <disp_elem>
<repetition> ::= "<" template_expr ">"
{disp_plem) se=

"[" <display_list> "]
i  <integer> [":" <width>]
i "(" <enum_list> )"
i string

{ ordinaltn"xv
i ASCII

= "/"

{ 1identifier

<integer> ::=
ordinal!"uy"”
i ordinaltns"

<width> ::= ordinal

<enum_list> :: [<enum_list> ","] <enum_item>

<enum_jtem> HH

[case_number "=>"] <enum_value>

<enumLyalue> ti=
identifier
{ string

<variant_part> io=
CASE <bit identification> IS

[2basqnlist>]
END CASE
{case_list> ::= [case_list] <single_case>
<{single_case> ::= WHEN <choice list> "=>" <component_list>
<choice_list> ::= [<choice_list> "{"] <choice>



DEBUG-432 Command Syntax Workstation User's Guide

{choice> ::=
' {case_number>
i <case_range>
\  OTHERS

{case_range> ::= - {case_number> ".." <case_number>
{case_number> ::=

""" {number>
{  <number>

REFERENCE DEFINITION

{reference_definition> ::=
identifier IS (<template_appl> | identifier)

INTEGER DEFINITION

{integer_definition> ::=
identifier ":" INTEGER [":=" <expression>]

DIRECTORY COMMAND SYNTAX

<directorx_pommands> H
REMOVE (identifier | <type> | ALL)
i DIR [identifier_{ <type>] '

.o
"

{type> :
INTEGER
TEMPLATE
REFERENCE
BREAK

MEMORY EXAMINATION SYNTAX

<memory_examination> ::=
<expression> [<disp_len>]
: n ."
i <template_application> "." [ALL]
i identifier "." [ALL]

<disp_len> ::=

(LEN | LENGTH) <number>
| ALL

A-6



Workstation User's Guide DEBUG-432 Command Syntax

NAME SCOPE COMMANDS

<{name_scope_commands> ::=

identifier u"n
<{template_application> """
BACK

PATH

OuT

MEMORY MODIFICATION SYNTAX

<{memory modification> ::=
(identifier | <template_application>) ":=" <expression>

EXPRESSION SYNTAX

<expression> ::=
<{expression> "4" <{signed_term>
i <expression> "-" <signed term>
|  <signed_term> -

<{signed_term> ::=

Ny Ltermd
Voo Ctermd
I <term>

<term> ::=

<term> "*" <(factor>
<term> "/" <factor>
<term> "REM" <factor>
<term> "MOD" <factor>
{factor>

{factor> ::=
{factor> "¥%n <primary>
i  <primary> ‘

{primary> ::=
: <{template_application>
i <paren_expr>

{template_application> ::=
{template_application> <{template_options>
| identifier <template_options>
{ <address>
i "." identifier

{template_options> ::=

"." <restricted_expr>
n." jdentifier

":" jdentifier

nen SD

" <Lparen_expr>

—— e —————

A-T7



DEBUG~432 Command Syntax Workstation User's Guide

ADDRESS SYNTAX

<address> ::=
<logical_address>
i <physical_address>
| <interconnect_address>

<logical_ address> ::= <restricted_expr> """ <restricted_expr>
<physical address> ::= """ <{paren_expr>
<{interconnect_address> ::= "I" "I" <lparen_expr>

{paren_expr> :i=
<restricted_pxpr>
{ identifier

{resticted_expr> ::=
<number>
! m(" <expression> ")"
<number> ::= -
' ordinal
i based_ordinal

A-f8



APPENDIX B
DEBUG-432 RESERVED WORDS AND COMMAND SUMMARY

This appendix contains a list of all DEBUG~-U432 reserved words, as well
as a summary of debugger commands.

RESERVED WORDS

The following keywords are reserved by DEBUG-432 and must not be used
for user-defined symbols:

ACCESS ACTIVATE ALL ASCII
BA BACK BASE BE

BO BOTM ’ BREAK BX

CALL CASE CRT DEACTIVATE
DEBUG DIR DOWN END
EXAMINE EXIT FAULT INCLUDE
INIT INST INTEGER IPC

I3 LEN LENGTH LIST
LOAD LOG MOD MODE

OF OTHERS ouT PATH
REFERENCE REM REMOVE RESTORE
RESUME RET SAVE SD
SELECT STACK START SUFFIX
SYS SYSTEM TEMPLATE TO

TOP up VERSION WHEN

SPECTAL NAMES

In addition to the reserved words listed above, the debugger has
special uses for some unreserved standard names. In particular, the
debugger assigns special meanings to the four names:

CcC cp By_P Bi_P
and to the template names listed in Tables 4-2 and 4-3., Although the
user can redefine these special debugger names, it is not advisable to
do so.



DEBUG-432 Command Summary Workstation User's Guide

COMMAND SUMMARY

The following list contains the set of DEBUG-432 commands with a short
description of each.

Command Function

ACTIVATE Return a breakpoint to the set of enabled
breakpoints.

BA Set a breakpoint at an instruetion in an

instruction segment.

BACK Go back one element in the access path.

BASE Display or alter the debugger's output
base. ‘ '

BE 'Breakpoint on entry to a specified

instruction segment.
BO Breakpoint after every specified event.

BOTM Change the value of CC to the address
of the last called context on the stack.

BX Breakpoint before exit from specified
instruction segment.

>CRT Direct all debugger dialog to the console
only.

DEACTIVATE Remove a breakpoint from the set of
_enabled breakpoints.

DEBUG Enable logical addressing and begin
polling for breakpoints and I1/0.

DIR Display all or selected parts of the
debugger name table.

DOWN Set the value of CC to the next called
context in the call stack.

EXAMINE Display the contents of the breakpointed
process set. '

EXIT Leave the debugger and return to the
ISIS-IT mode that invoked the debugger.

INCLUDE Take the debugger command stream from the
specified file until an end-of-file is
encountered.

INIT Reset the U432/670 hardware and memory.

B-2



Workstation User's Guide

INIT SYS

IPC

LOAD
LOG
MODE

ouT
PATH

REMOVE
RESTORE
RESUME
SAVE
SELECT

STACK

START
SUFFIX

TEMPLATE

TOP

UP

VERSION

DEBUG-432 Command Summary
Reset the 432/670 hardware, leaving memory
intact.
Send the specified interprocessor
communication message to the specified

processor.

Copy the contents of the specified 432 EOD
file into the 432/670 memory.

Echo the debugger console dialogue in the
specified file.

Display the current debugger I/0 mode of
operation.

Clear the current access path.
Display the current access path

Delete the specified name or type from the
debugger name table.

Load the contents of a SAVEd file
into the System 432/670 memory.

Send the specified process(es) back to a
GDP for execution.

Copy the specified 432/670 memory
locations to the specified file.

Select the specified process to be the
current process.

Display the context stack for a process.

Send an IPC wakeup message to the lowest-
numbered GDP in the 432/670 system.

Display or alter the debugger's input
base.

Define a debugger template.

Set the value of CC to the top of the call
stack (oldest context).

Change the value of CC to the next higher
position in the call stack (i.e. to its
caller).

Display the debugger version number, I/0
mode, logging status, and top of memory.

B-3






DEBUG~-432 TEMPLATES IN DEBY432.TEM

APPENDIX C

This appendix contains a list of the presupplied templates and their

definitions.

PRESUPPLIED TEMPLATES

ad
b16

context_as

dump
fit
mem
psorflt
so

al

b32
context_ds
extract
free

pflt

rad
storage

as

bs

descr
f_area
header
proc_stat
ras
system_type

b8

ch

ds

f or t
interconnect
process_as
refine
type_des



Default Template Definitions

TEMPLATE DEFINITIONS

TEMPLATE ad IS
[2:4,12] IS Qu:3, """,
[0:4,12] IS Ou:3;

END

TEMPLATEvaS IS
[by_p:bi_p+1,32] IS <2>[<8>[ad, 2x1,/1;
END

TEMPLATE b8 IS -- 8 bits
[0,8] IS Ou;
END

TEMPLATE b16 IS
[0,16] IS Ou;
END

TEMPLATE b32 IS
[0,32] IS Ou;
END

TEMPLATE bs IS
[0,32] IS Ou;
END

TEMPLATE ch IS
CASE [0,8] IS , ,
WHEN 16#204#..16#7d# => [0,8] IS ascii
WHEN others => IS ".";

END CASE

END

TEMPLATE context_as IS
ctxt_ds: @0;
const_ds: e1;
prev: e2;
msg: €3;
curr_ctxt: e4;
eas_1: @s5;
eas_2: @6;
eas_3: er;
domain: €8;

END

Workstation User's Guide



Workstation User's Guide Default Template Definitions

TEMPLATE context_ds IS
ctxt_status: {0,1] Is "[",(not_faulted,faulted);
[0,16] IS %, value: ", Ou, "1",/;

sp: [2,16] IS Ou:5,/;

inst_idx: {4,161 IS Ou:5,3x;

ip: [6,16]1 IS Ou:5,/;

trace_idx: [8,16] IS Ou:5,3x;

trace_ip: [10,16] IS 0Ou:5,/;

trace code: = [12,16] IS Ou:5,/; .
[by p:bi_p+1,16] IS "OE..OF ", Ou:9,/,

"10..1F ",<8>0u:9,/,

"20..2F ",<8>0u:9,/,

"30..3F ",<8>0u:9;
END

TEMPLATE descr IS
CASE [0,2] IS

‘WHEN 0 =>
CASE [0:3,2] IS
WHEN 0 =>
CASE [0:2,1] IS
WHEN O =>
[0, 128] IS header;
WHEN 1 =>
[0, 128] IS free;
END CASE
WHEN 1 => :
o, 128] IS interconnect;
END CASE
WHEN 1 =>
[0, 128] IS type des;
WHEN 2 =>
[0, 128] IS refine;
WHEN 3 =>
[0, 128] IS storage;
END CASE

END

TEMPLATE ds IS
[by _p:bi_p+1,16] IS <4>[<8>0u:9,/];
END

TEMPLATE dump IS
(by p:bi_p+1,8]1 IS <16>0u:3, 3x;
[0,8]1 IS "'m ch;
[by p:bi p+1,8] IS <15>ch, "'";
END

TEMPLATE extract IS
fo, 161 IS Ou
-END



Default Template Definitions

C-4

TEMPLATE f area IS

END

fault_objind:
pre_ip:
post_ip:
pre_sp:
post_sp:
fault_status:
proc_status:
psor_status:
operator_id:
history:
fault_code:
fault_objsel:
fault_displ:

TEMPLATE f or_t IS

END

[0,117IS (f,t);

TEMPLATE f1t IS
€0.[64, 16#0ffff#] IS f_area;

END

TEMPLATE free IS

END

descr_type:
free_index:

TEMPLATE header IS

END

descr_type:
free_index:
end_index:
fault_level:
level_no:
claim:

(o,
L4,
L2,
£s,
Lo,

161 IS
16] IS
161 IS
161 Is
161 IS

16u:5,
16u:5,
16u:5,
16u:5,
16u:5,

*

[10, 161 IS 16u:5, /;

[12, 161 IS 16u:5, 3x;

[14,
(16,
[16,
(18,
[20,
L22,

16] IS 16u:b, /;
16] IS 10u:5, /;
15,1] IS (active,handled),/;
16] IS 16u:5, /;

16] IS 16u:5, 3x;

161 IS 16u:5,

/3

Workstation User's Guide

{0,11 IS‘"free_pescr",/;

[2:4

y1215

{0,1] 1S "header",/;

[2:4
[4:4

,121;5

12135

[6,161;
[10,161;
[12,32] IS Qu;

TEMPLATE interconnect IS
descr_type: IS "interconnect",/;
[0:2,11 IS f or_ t,/
[0:5,1]1 IS f or_t,/
[1,241;
[4,161;

END

valid:
windowed:
base addr:
length_:
copied:
level:

TEMPLATE mem IS
[by_p:bi_p+1,128] IS <4>[dump,/];

END

[9:1

,013
[10,161;



Workstation User's Guide

TEMPLATE ord IS
[0,32] IS Ou;

END

TEMPLATE pflt IS

END

€0.[112, 16#0ffff#] IS f area;

TEMPLATE proc_stat is
[0,16] IS Ou,3x;
(0,11 1Is "[", (bound, not_bound),2x;
(0:1,11 IS (not_faulted, faulted), "1";

END

TEMPLATE process_as IS
@0.[36,16] IS proc_status,/;

END

status:
proc_ds:
curr_ctxt:
pglob_as:
loc_obj_tab:
proc_carr:
disp port:
sched port:
fault_port:
cur_msg:
cur_port:
cur_carr:
surr_carr:

€0;
@1;
02;
as3;
au;
e5;
@o;
ar;
@s;
a9;
@10;
e11;

TEMPLATE psorflt IS
€0.[16, 16#0ffff#] IS f_area;

END

TEMPLATE rad IS

END

[2:4,12] IS
(0:4,12] IS
[2:3,1] 1S
[2:2,1] 1S

(2:1,11 18
(2,11 IS
(0:1,31 1IS
[o,11] I3

TEMPLATE ras IS
[by_p:bi_p+1,32] IS <14>[rad,/],rad;

END

Default Template Definitions

--"rad" stands for Raw Access ﬁéscriptor

Ou, n‘n;

Ou;

" wrhd: ",f or_t;
f or t;

f or_t;

f or_t;

" type: ",2u;

" valid: ",f or_t;

-- Wwrite rights
-- read rights
unchecked copy rights
-- delete rights
-- system rights



Default Template Definitions

TEMPLATE refine IS

END

descr_type:
valid:
base_type:
sys_type:
bypass:
base displ:
length :
psor_class:
copied:
level no:
source_ad:

TEMPLATE so IS

END

[0,16] IS Ou;

TEMPLATE storage IS

END

TEMPLATE system type

type:
valid:
base_type:
sys_type:
allocated:
windowed:
altered:
accessed:
base addr:
length_:
psor:
copied:
level no:
dirty:

CASE [0:3,1] IS

WHEN 0 => [8,5]

WHEN 1 => [8,5]

END CASE

END

TEMPLATE type des IS

END

descr_type:
valid:

kind:
Type_defn AD:
copied:

level no:
Typed_obj_AD:

Workstation

[0,1] IS "refinement",/;

[0:2,1] IS f or_t,/;
[0:3,1] IS (DS,AS),/;

[0,128] IS system_type, /;

(0,32] 1IS ad,/;

[6,16];
[4,161;
[8:5,31;
[9,f or_tl;
[10,161;
[12,radl;

[0,2] IS "storage",/;

[0:2,f or_tl;

[0:3,1] IS (DS,AS),/;

[0,128] IS system_type,/;

[0:4,f or_tI;
[0:5,f or tl;
[0:6,f or_tI;
{0:7,f or_tl;
[1,24];
[4,16];
[8:5,31;
[9,f or tl;
[10,16];
[12,13;

IS

IS (generic, resl, obj_tab, instr,
ctxt_ds, process ds, psor_ds, port_ds,
carr_ds, sro_ds, comm sg, des ctl,

refn_ctl);

User's Guide

IS (generic, resl, domain, res3, ctxt,
process, psor, port, carrier, sro,
type_def, resl2, resi3);

[0,1] IS "Type Descriptor",/;

(0:2,f_or_tI;

[0:3,1] IS (public,private),/;

[4,32] IS rad,/;

[9,f or tl;
[10,161;
[12,32] IS rad;



: APPENDIX D
SAMPLE DEBUG-432 SESSIONS

INTRODUCTION

This appendix contains log files of two sample debugging sessions. The
first demonstrates the use of many commands in a single process
environment; the second uses the RESUME, SELECT and EXAMINE commands in
a multi-process environment.

?-RUN DEBU432
SERIES III 432 SYSTEMS LEVEL DEBUGGER, V1.00

? —— let's first look at some startup sequences:

?

? —- assume that the 432 memory is in an uninitialized state, and that
? —— We wish to load the file prime.eod, and run it

?

?init —— initialize 432 memory

TOP OF MEMORY IS: 524287

?load prime.eod —— load the file

?debug -- enable logical addressing, 432 I/0,

? -- and breakpoints

?start -- send a wake up to the lowest-numbered
? —— GDP ‘

?--FROM 432:
iMAX. 432 V1,00

-~ operating system has signed on
?--FROM 432:
Process 1 started, coordinates: 7783
SRO size = 2504 bytes, OT size = 100 descriptors
Global heap SRO size = 180272 bytes
Processor 2 dispatching
Processor 1 dispatching
PRIME FACTOR
This program determines the prime factors of a user specified integer

between 2 and 100,000. To exit the program merely enter 0 as the user
specified integer.



Sample Debugging Sessions ’ Workstation User's Guide

enter integer :
-- the prime program has signed on and
-— is running

a BV O REIVINES B ]

7-— let's try another standard startup sequence, this time assuming
?-- that the 432 memory has been initialized, and that the top of

D

?-- memory is at !7FFFF. Confirm this by using the VERSION command:

2 . ,

?base 16; suffix 16

?version -- display (among other things) the top-of-memory
SERIES III 432 SYSTEMS LEVEL DEBUGGER, V1.00

TOM: !TFFFF MODE: DEBUGGING + I/0 LOG FILE: :F1:DEM02.LOG (ON)
9 .

?-- notice that the top of memory is displayed in the current output
?-- base (16)

?

?7-- the startup sequence:

l?

?init sys V7ffff —- reset the hardware

? —- this also halts the GDPs

?load prime.eod -- this just loads the object file:

?debug -- enable logical addressing, start polling
? - for 432 I/0 and breakpoints

?ipe 1,0 -- same as "start 1"

?--FROM 432:
iMAX 432 V1.00

Process 1 started, coordinates: 7783
SRO size = 2504 bytes, OT size = 100 descriptors
Global heap SRO size = 180272 bytes
Processor 1 dispatching
Processor 2 dispatching
PRIME FACTOR
This program determines the prime factors of a user specified integer

between 2 and 100,000, To exit the program merely enter 0 as the user
specified integer.

enter integer :

?-- SAVE and RESTORE

?

?init

TOP OF MEMORY IS: T7FFFF

?load prime.eod

?save !0 to !3ffff to prime.sav

D-2



Workstation User's Guide Sample Debugging Sessi

9

?-- another startup sequence, using the memory image file produced by
?~— the SAVE command:

9

?init sys !7ffff

?restore prime.sav

?debug -- enable logical addressing, 1/0, breakpoin
?start _

?7--FROM 432:

iMAX 432 V1.00

Process 1 started, coordinates: 7783
SRO size = 2504 bytes, OT size = 100 descriptors
Global heap SRO size = 180272 bytes
Processor 2 dispatching
Processor 1 dispatching
PRIME FACTOR
This program determines the prime factors of a user specified integer

between 2 and 100,000. To exit the program merely enter 0 as the user
specified integer.

enter integer : %124
?--FROM 432:
124 = 2 ®# 2 % 39

enter integer : %2000
?7--FROM 432:
2000 = 2 ¥ 2 % 2 ¥ 2 % 5 ¥ 5 ¥ 4

enter integer :

-
?-- MODE

?

?-- the debugger is accepting both debugger commands and 432 input,
?-- preceded by "%"

9

?-- display the current mode

?

?mode

DEBUGGING + I/0

?

?-- now change the mode to 432 I/0 only

?—- notice that in I/0 ONLY mode, debugger commands are illegal,
?-- and 432 input is not preceded by "%"

ons

ts



Sample Debugging Sessions ’ Workstation User's Guide

?1/0 ONLY
127
127 is a prime integer

enter integer : 63
63 = 3 ¥ 3 %7

oo

enter integer

?
? ;
?-- EXAMINING MEMORY
? o
?-- examining memory using default templates:
f)
?-- using the link map, find the address of any domain, say 7768
?-—- now display the domain:
. 27768
DOMAIN AS

5% 3 57 1 5% 2 5% 4 5 5 " 67 0" 0 0" 0
0" 0 0"~ 0 0" o 7" S5F 7" 62 77 63 7" 66 7" 60
?7-- notice that the debugger has found the type and used a default
?-- template to display the list of access descriptors in the domain

()
t)
?
?-— again, find the coordinates of a process object in the link map,
?-- and display the process access segment:

) .

27783

PROCESS_AS

STATUS: 9 [(NOT_BOUND NOT_FAULTED] .

PROC DS: 787

CURR_CTXT: "85

PGLOB_AS: 84

LOC_OBJ_TAB:

PROC_CARR:

DISPATCH_PT:

SCHEDULE_PT:

FAULT PORT:

CUR_MSG:

CUR_PORT:

CUR_CARR:

SURR_CARR:

? -

?—- the default can be overridden by including a template name:

o ,

?7783:ad -- display the 1st access descriptor in the object
7" 87

> > >

>

> > D

>

OOOOO)OOOO\}\]
[eNeoNoNoNelNoNololNe

r’ .
?--~ a template may be repeated:
l’

?7783:ad len 3
T 87
7" 85
7" 84

?

D=4



Workstation User's Guide

?-- an offset may be used.
?
?7783.2:ad

7~ 84

?

Sample Debugging Sessions

For example, to display the 3rd AD:

?-- in an access list, the offset "2" is interpreted as the 3rd AD
?-- in a data segment, the offset is interpreted as a byte offset

?27783.1:ad

7" 85
27785
CONTEXT_AS
CTXT DS: 7" 86
CONST DS: 0~ 0
PREV: 0~ 0
MSG: 0~ 0
CURR CTXT: 0" 0
EAS 1: 7" D
EAS 2: 0~ 0
EAS 3: 0~ 0
DOMAIN: 7" TA
?27"°83.0:ad -
7" 87 | |
27787 -
PROCESS DS
0 10 10
0 0 0
OFFFF 3E8 9
0 0 0
?27°87.2:b16 -
10

N
?-- to use a byte offset in
o
- 27783
PROCESS_AS
STATUS: 9  [NOT_BOUND
PROC_DS: T 87
CURR_CTXT: "85
PGLOB_AS: 84
LOC_OBJ_TAB:
PROC_CARR:
DISPATCH_PT:
SCHEDULE PT:
FAULT_PORT:
CUR_MSG:
CUR_PORT:
CUR_CARR:
SURR_CARR:
27783.2:ad
7" 84
?2778318:ad
7" 84
?

>

>

>

> > >

>

COO0O OO OO0COO0O

this is the process data seguent

display the process DS

C oCoC

O O =0

O ooOo
[eNeNeNo)
[eNeNoNe

the offset is interpreted as 2 bytes

an access object, use a "!" instead of "."

NOT_FAULTED]



Sample Debugging Sessions

Workstation User's Guide

?-- examine the I/0 buffer, which is at offset 16#14# in the processor

?-- access object:
?2171.14zad
5% 31

?-- display the I/0 buffer using the template

?-— data in both hex and

?

?5°31:mem
0 0 1

ASCII:

0 0 084 0 65 6E T4 65 72 20 69

T4 65 67 65 72 20 3A 20 20 20 20 20 OD OA T4
72 20 30 20 61 73 62 79 74 65 73 0D OD 0A 30
20 64 65 73 63 72 69 70 T4 6F 72 73 OD 0D OA

]

?-- to display more of the buffer, repeat the

?
?5%31:mem
0 0 1
T4 65 67
72 20 30
20 64 65
20 20 20
20 20 20
20 20 20
20 20 20
?
P
?
?75731.8:mem := 5731,48
?5%31:mem
0 0 1
20 20 20
20 20 20
20 20 20

len 2

0 0 O
65 72 20
20 61 73
73 63 72
20 20 20
20 20 20
20 20 20
20 20 20

84 0
3A 20
62 79
69 70
20 20
20 20
20 20
20 20

fill the buffer with

[eNoNeoN e

0
20 2
20 2
20 2

oE
20
65
oF
20
20
20
20

65
20
T4
T4
20
20
20
20

T4 65
20 20
73 0D
72 73
20 20
20 20
20 20
20 20

72
0D
oD
0D
20
20
20
20

blanks:

20 20 20 20
20 20 20 20
20 20 20 20
20 20 20 20

20
20
20
20

20
0A
0A
0D
20
20
20
20

20
20
20
20

69
T4
30
OA
20
20
20
20

20
20
20
20

"mem", which displays

6E !
65
30
20

...... ..enter in':
'teger : ..te'
'r 0 asbytes...00'
' descriptors... !

template:

'eeeese.enter in'
'teger : ..te!
30 'r 0 asbytes...00'
20 ' descriptors... '
20 !
20 !
20 !
20 !

6E
65

1
!
1
!

20
20
20
20

oooooooo

- - o
- . = .

NAMES -~

names may be defined
they are of 4 types:

are in the directory:

?dir template
AD

AS

B16

B32

B8

BS

CH
CONTEXT_AS
CONTEXT DS

TEMPLATE
TEMPLATE
TEMPLATE
TEMPLATE
TEMPLATE
TEMPLATE
TEMPLATE
TEMPLATE
TEMPLATE

D-6

at debug time.

BREAK, INTEGER, REFERENCE, and TEMPLATE

END
END
END
END
END
END
LJEND

the names are stored in the directory
the include file DEBU32.TEM defined a basic set of templates.

CTXT_DS; CONST D#; PREV; MSG; CURR_CT#;

' CTXT_ST#; SP; INST_ID#; IP; TRACE_I#; TRACE_ I#;

These



Workstation User's Guide

Sample Debugging Sessions

DESCR TEMPLATE  [[[]JJEND

DS TEMPLATE END

DUMP TEMPLATE  END

EXTRACT TEMPLATE  END

FLT TEMPLATE  END

FREE TEMPLATE  DESCR_T#; FREE IN#; END

F_AREA TEMPLATE  FAULT_O#; PRE_IP; POST_IP; PRE SP; POST_SP;
FORT TEMPLATE  END

HEADER TEMPLATE ~ DESCR_T#; FREE_IN#; END_IND#; FAULT L#;
INTERCONNECT TEMPLATE DESCR T#; VALID; WINDOWE#; BASE AD#; LENGTH ;
MEM TEMPLATE END

PFLT TEMPLATE  END

PROCESS_AS TEMPLATE  STATUS; PROC_DS; CURR_CT#; PGLOB A#; LOC_OBJ#;
PROC_STAT TEMPLATE  END

PSORFLT TEMPLATE  END

RAD TEMPLATE  END

RAS TEMPLATE  END ‘

REFINE TEMPLATE  DESCR_T#; VALID; BASE TY#; SYS TYP#; BYPASS;
STORAGE TEMPLATE  TYPE; VALID; BASE_TY#; SYS_TYP#; ALLOCAT#;
SYSTEM TYPE TEMPLATE [JEND

TYPE DES TEMPLATE  DESCR_T#; VALID; KIND; TYPE DE#; COPIED;

?

?-- a detailed description of each can be obtained. E.g.

?
?dir ad

TEMPLATE AD IS
[2:4, 0C] IS 0U:3, " n;

(O:4, 0C] IS 0U:3;

END

?

?-- a REFERENCE variable can be defined to save an address-template
?-- pair. If the template name is omitted, the default will be used.
?

?-- for example, if we are going to look at the I/0 buffer often,

?-- define a reference:

l?

?buff is 5"31:mem

?

?~- display the reference:

?
“?dir buff

BUFF IS 5731:MEM

?

?-- a REFERENCE variable can be save the address of the process object,

?—- which is useful when setting breakpoints
? .

?proc is 7783
9

?-—- let's also name the addresses of 3 instruction segments:

?
?main is 7770
?get_num is 776d

?headr is 7 6c
2



Sample Debugging Sessions Workstation User's Guide

?-- and name the domain "prompt" which contains the instruction

?-- segments "get num" and "header" defined above
9

?prompt is 776f
?

?dir reference

GET NUM REFERENCE [ IS 776Dl
HEADR REFERENCE [ IS 776C]
MAIN REFERENCE [ IS 77701
PROC REFERENCE [ IS 7783]
PROMPT REFERENCE [ IS 776F]

?

?-- integers are useful for naming the offsets of instructions within
?-- an instruction segment

?

?line 57:integer :=03a2

?

?dir integer

LINE 57 INTEGER = 3A2

l)
?
?—~ DEFINE AND HIT A BREAKPOINT
?

?init sys !7ffff

?debug prime.eod

? .
?-- now set a breakpoint at the start of the main procedure,
?—-- using symbols defined above:

9

?ba main of proc

?

?-- notice the default name and bit offset

?dir break

BO BREAK BA 7770.50 OF 7783

?

?start

?--FROM 432:

iMAX 432 V1.00

Process 1 started, coordinates: 7783
SRO size = 2504 bytes, OT size = 100 descriptors
Global heap SRO size = 180272 bytes
Processor 2 dispatching
Processor 1 dispatching
Eo. BREAK AT: 7770.50 OF 7783

?
?-- CC and CP

?-- now that the first break has been reached, CC and CP are defined.
?-~ CP can be used to look at the current process:



Workstation User's Guide Sample Debugging Sessions

?ep

PROCESS_AS

STATUS: 0C009  [NOT_BOUND NOT FAULTED]
PROC DS: 7 87
CURR_CTXT: 8" ocC
PGLOB_AS: 7" 84
LOC OBJ_TAB: 2~ 8
PROC_CARR: 7" 82
DISPATCH PT: 6" 15
SCHEDULE PT: 0" 0
FAULT_PORT: 0" 0
CUR_MSG: ()
CUR_PORT: 6~ 20
CUR_CARR: 7" 82
SURR_CARR: 0" 0

?
?--~ CC is the user's context (which reached a breakpoint)

?-- notice that the value of CC is not the same as CP.CURRENT_CONTEXT
2

?dir cec

cc IS 878

o

?ce

CONTEXT AS
CTXT_DS: 8" 9
CONST DS: 7 7
PREV: 8~ 5
MSG: 8" 7
CURR_CTXT: 8" 8
EAS 1: 0" 0
EAS 2: 0" 0
EAS 3: 0" 0
DOMAIN: 7 72

?
?
?—— USING THE DOT (.) OPERATOR WITH TEMPLATE FIELD NAMES
- :

?-- invade the current process data structure:
l)

?cp.
STATUS: 0C009  [NOT_BOUND NOT_FAULTED]
PROC_DS: 7" 87
CURR_CTXT: 8" 0C
PGLOB_AS: 7" 84
LOC_OBJ_TAB: 2~ 8
PROC_CARR: 7" 82
DISPATCH PT: 6" 15
SCHEDULE PT: 0~ 0
FAULT_PORT: 0" 0
CUR_MSG: 0" 0
CUR_PORT: 6" 20
CUR_CARR: -7 82
0" o0

SURR_CARR:



Sample Debugging Sessions Workstation User's Guide

?
?-— now the field names of “CP" are available:

?.
Zeurr_ctxt.
CTXT_DS: 8" 0D
CONST_DS: 5~ 18
PREV: 8~ 0A
MSG: 0" o
CURR_CTXT: 8" 0C
EAS 1: 7" 83
EAS 2: 57 5
EAS 3: 7" 84
DOMAIN: 5% 5
?

?-~ the "." after curr_ctxt has made the field names of CC available:
?
prev
8" 0A
?
?-- the path we have followed to get the value of "prev" is:
?

path

(7783:PROCESS_AS) .CURR_CTXT(870C)

o

?-- now just use a "." to invade the "prev" field. "prev" is the
?-- access descriptor of the calling context.
5

?.

CTXT DS: 8" OB

CONST DS: T

PREV: 8" 8

MSG: 0" 0

CURR_CTXT: 8~ 0A

EAS 1: 77 72

EAS 2: 0" 0

EAS 3: 0" 0

DOMAIN: 77 T2

°
?-- the path has changed:
?
?path
(7"83:PROCESS_AS).CURR _CTXT.PREV(870A)
°
?-- the context data segment of "prev" (870a) is:
?
?etxt_ds
8" OB
?
?-- nowWw move back one level on the path:
9
?back
870C:CONTEXT_AS
?

D-10



Workstation User's Guide Sample Debugging Sessions

?-- the context data segment of this context (870c) is:
?
?ctxt_ds
8" 0D
?
?path
(7783:PROCESS_AS) .CURR_CTXT(870C)
?
?-- use OUT to return to the original name scope:
?
7out
?path
ERR 177: NO PATH TO PRINT: DST IS EMPTY
?
y
?-- PROCEDURE ENTRY AND EXIT BREAKPOINTS
?

stack

CONTEXT INSTRUCTION
878 \ 7770.50

875 T°74.127

~1 777B.1A9

8
?
?-- we can trace all calls to and returns from a particular
?-- instruction segment or domain:

?

?be prompt -— break on entry to domain "prompt"
?bx headr -- break on exit from procedure "header"
?

?dir break

BO -BREAK BA 7770.50 OF 7783
B1 BREAK BE 776F OF 7783

B2 BREAK BX 776C OF 7783

?

?resume

?
B1. BREAK ENTER (DOM: 7"6F): 776C.50 OF 7783
?
?-~ We are at the entry to the first procedure in domain "prompt",
?-- which is "header"
?
?resume
?--FROM 432:
PRIME FACTOR

This program determines the prime factors of a user specified integer
between 2 and 100,000. To exit the program merely enter 0 as the user
specified integer.

B2. BREAK EXIT: 776C.0A3F OF 7783
?

?7-- now we are at the return from the procedure "header"
? ,

D-11



Sample Debugging Sessions Workstation User's Guide

?-- set another breakpoint in the procedure "get num",
?-- just after the user is prompted for a number:

?

?ba get_num.line 57

?resume

?

B1. BREAK ENTER (DOM: 776F): 776D.50 OF 7783

?resume

?--FROM 432:

enter integer : B3. BREAK AT: 776D.3A2 OF 7783

?

?deactivate b1l
?deactivate b2
?dir break

BO BREAK BA 7770.50 OF 7783

B1 ¥BREAK BE 776F OF 7783

B2 ¥BREAK BX 776C OF 7783

B3 ~-BREAK BA 776D.3A2 OF 7783

f?

?-— BREAK ON CALL AND RETURN

?

?-- We can produce a trace of calls and returns by leaving
?-— the bo call and bo ret breakpoints set, and successively
?-—~ "resuming" the process

?

?bo call

?bo ret

?resume

]

B4. BO CALL: 7766.50 OF 7783
?resume

?

B4, BO CALL: 7763.50 OF 7783
?resume

?

B4, BO CALL: 7753.50 OF 7783
?resume

9

B4. BO CALL: 5"0E3.50 OF 7783

?resume
?

BS. BO RET: 5"O0E3.0F6 OF 7783

?stack

CONTEXT INSTRUCTION
8~ 1cC 5"0E3.0F6
8718 7°53.639
8714 7763.38A
8710 77°66.268
8"0cC 7°6D.43F
8”78 7770.26A
875 7°74.127
8”1 T7~7B.1A9



Workstation User's Guide Sample Debugging Sessions

?-~ BREAK AFTER EACH INSTRUCTION

?7-- the bo inst breakpoint.
?--~ recall that we must first 1lift the bo ret and bo call

t)

17

?

?-~ we can single-step through an instruction segment using
l?

()

07

?-- breakpoints

?deactivate bd
?deactivate b5
?step: bo inst
?resume

()

STEP. BO INST: 7753.

?resume
9

STEP. BO INST: 7753.

?resume
!?

STEP. BO INST: 7753.

?resume
?

STEP. BO INST: 7°53.

?2dir break

BO BREAK
B1 *¥BREAK
B2 *¥BREAK
B3 BREAK
B4 ¥BREAK
B5 ¥BREAK
STEP -BREAK

K

639 OF 7783
670 OF 7783
69E OF 783

6CC OF 7783

BA 7770.50 OF 7783
BE 7"6F OF 7783

BX 7°6C OF 7°83

BA 776D.3A2 OF 7783
BO CALL OF 7783

BO RET OF 7783

BO INST OF 7783

?deactivate step
?resume

?%1234

?--FROM 432:
1234 = 2 * 617

enter integer :
?

?dir break

B4. BREAK AT: 776D.3A2 OF 7783

BO BREAK BA 7770.50 OF 7783
B1 ¥BREAK BE 7"6F OF 7783

B2 *BREAK BX 776C OF 7783

B3 - =BREAK " BA 776D.3A2 OF 7783
BY4 *BREAK BO CALL OF 7783

B5 ¥BREAK BO RET OF 7783

STEP *BREAK BO INST OF 7783

4

?-- ACTIVATE

t)

?-- a breakpoint which was lifted can be reactivated:
(P

?activate bl

D-13



Sample Debugging Sessions

Workstation User's Guide

?resune

?

B4. BO CALL: 7766.50 OF 7783
?resume '

?

B4, BO CALL: 7763.50 OF 7783
2

?2-

?-— THE CALL STACK

?

?-- the call stack can be displayed
?

?stack

CONTEXT INSTRUCTION
8714 7763.50
8710 7766,268
8"0cC 776D .43F
878 7°70.26A
875 774127
871 777B.1A9
?dir cc

CC IS 8714

?
?——= CC now has the value of the bottom of the
?~— Which reached the breakpoint. To move up
?-- context which called 8714, use UP:

o

?up;dir cc

cC IS 8710

? .

?-~- move to the first context in the process:
?

?top;dir cc

cc Is 871

?

?—- move down the call stack:

? v

?down;dir cc

CC Is 875

?

?-- move back to the breakpointed context:

?

?botm;dir cc

CC IS 8714

?

stack, 8714, the context
the call stack, to th

?exit

D-14



Workstation User's Guide Sample Debugging Sess

-RUN DEB432
SERIES III 432 SYSTEMS LEVEL DEBUGGER, V1.0

?-- the following session demonstrates the use of the EXAMINE,
?—~ SELECT, and RESUME commands in a multiple process environment
4>
?include :f1:deb432.tem
?init
"TOP OF MEMORY IS: TFFFF
?
?-- test.eod is a small 3-process program. each process simply
?7-- increments a variable and prints it
?
?debug test.eod
9
?--~ use an include file to set a breakpoint at the first instruction
?-- in the "increment number and print" procedure of each process
?
?include :fl1:breaks.inc list
?
?-- define some now some useful references:
?p1 is 9716; p2 is 972b; p3 is Y"40;
?i1 is 9747; i2 is 9749; i3 is 97Ub
?-- and set the breaks:
?ba i1 of pl;ba i2 of p2;ba i3 of p3;
9
?start
?--FROM 432:
iMAX 432 X0.,00-002
Process 1 started, coordinates: 9716
SRO size = 2504 bytes, OT size = 100 descriptors
Process 2 started, coordinates: 972B
SRO size = 2504 bytes, OT size = 100 descriptors
Process 3 started, coordinates: 9740
SRO size = 2504 bytes, OT size = 100 descriptors
Global heap SRO size = 198032 bytes
Processor 2 dispatching
Processor 1 dispatching
BO. BREAK AT: 9747.50 OF 9716
9

B1. BREAK AT: 9749.50 OF 972B
?

B2. BREAK AT: 974B.50 OF 9740

?-- each process has reached a breakpoint.

?—— use the EXAMINE command to display the set of breakpointed
?-- processes: '

9

examine

PROCESS CONTEXT
CP: 9716 1078

972B 1178

9740 1278

ions



Sample Debugging Sessions Workstation User's Guide

-~ notice that the reference variables CP and CC have been defined
?—— the current process is the first process to reach a breakpoint

D o) D

-~

dir ep;dir cec
CP IS 9716

CC IS 1078
o

?-- now resume the current process, and look at the value
?-- of CP and CC while the process is executing:
"

?remove b0

?resume

?--FROM u432:

Process 1: 00000001

Process 1: 00000002

Process 1: 00000003

Process 1: 00000004

Process 1: 00000005

DEBUGGING ONLY

? .
?-- (432 output was stopped with a CONTROL-C)

? .

?dir cc;dir cp

cC IS 070

CP IS 9716

?

?-~ CC has is 070 whenever CP is executing

?-— CP retains its value until it is changed with a SELECT command
?

?-- now set a breakpoint in the current process
9

ba i1.0f0 of p1

?DEBUGGING + I/0

?--FROM 432:

Process 1: 00000006

B3. BREAK AT: 9747.0F0 OF 9716

?

?-- notice that CC is reassigned the value of the breakpointed context
?

?dir cpi;dir cc

CP IS 9716

CC IS 1078

?

?-- now select a new process
?

?select p2

?

?-- note that cp has changed:
2 ‘

?examine
PROCESS , CONTEXT
9716 ' 1078
CP: 972B 118
9740 1278

D-16



Workstation User's Guide Sample Debugging Sessions

?
?-—~ set breakpoints in the "increment number and print" loop of
?-~ processes 972b and 9740

?

ba i2.0f0 of p2;ba i3.0f0 of p3

?resume all

?--FROM 432:

Process 1: 00000007

B4. BREAK AT: 9"49,0F0 OF 97"2B

o

B3. BREAK AT: 9"47.0F0 OF 9716
?

B5. BREAK AT: 9"4B.OFO OF 9"40
?

?-- CP remains 972b (p2)
9

?examine
PROCESS CONTEXT
CP: 972B 1178
9%16 1078
9740 1278
?exit

D-17






APPENDIX E
HOW TO DEBUG FAULTS

INTRODUCTION

This appendix explains what to do when you think a fault has occurred
when debugging:

How to know when a fault has occurred

How to find the faulting instruction in a listing

How to display the appropriate fault information area

How to use the Fault Decoding tables

How to know when an unannounced fault has occurred
Unannounced processor level faults
Unannounced process level faults

* How to quickly recognize the most common faults

HOW TO KNOW WHEN A FAULT HAS OCCURRED

Usually when a fault occurs, DEBUG-432 catches it and prints a message
similar to the breakpoint announcement message. For example, the
message

FAULT AT: 4774.311 OF 474y

announces that a fault was caused by the instruction at bit offset 311
in instruction segment 4°74 of process 4744,

The debugger does not announce either processor level faults or faults

(such as the Storage Claim Underflow Fault) that occur while it is
processing another fault. Unannounced faults are described below.

HOW TO FIND THE FAULTING INSTRUCTION IN A LISTING

With the instruction segment coordinates (4°74) and the bit offset
(311) of the faulting instruection in that segment, you can find the
text for the faulting instruction in a an object code listing.

E-1



Debugging Faults Workstation User's Guide

Run the 1linker with the "OBJECTMAP" directive, and scan the linker
listing for the faulting instruction segment coordinates. You should
find information about that segment, including its name. Backing up in
the linker 1listing, find the name of the module that contains the
faulting instruction segment. Look in the instruction 1listing
generated by the compiler for this module. Find the instructions
listed for the faulting instruction segment (whose name you found in
the linker listing). The faulting instruction is identified by its bit
offset. : ~

Look at the instruction you've just found and the ones preceding it,
and examine the original source code that was compiled to generate
these instructions. More often than not, the cause of the fault is
clear at this point. If not, you can track down more information about
the fault as described in the next sections.

It is often useful to reinitialize the system, reload memory, set a
breakpoint at or before the faulting instruction, and start again. When
you reach the breakpoint, you can examine the data involved in the
instruction to see if anything looks amiss.

HOW TO DISPLAY THE APPROPRIATE FAULT DATA AREA

Two fault data areas that may be useful are the processor fault data
area in each processor data segment and the context fault data area in
each process data segment. Process level fault information is found in
the context fault data area.

The file DEB432.TEM includes the templates FLT, PFLT, and PSORFLT. FLT
and PFLT can be applied directly to a process access segment to display
the context and process fault data  areas, respectively, in the
associated process data segment. PSORFLT can be applied directly to a
processor access segment to display the fault information area in the
associated processor data segment. Each of these templates
automatically locates the appropriate data segment from the given
access segment and uses the appropriate displacement into that data
segment to display the fault area.

For example, to display the context fault information area associated
with the process 670B2, use the command "6"0B2:FLT". To display the.
processor fault information area for processor 1, use the command
"1%1:PSORFLT". ' '

USING FAULT TABLES

The tables at the end of this chapter will help you interpret the data
in the fault information area you have displayed. The remainder of
this section describes each field in relation to other information you
may be able to gather about the fault.

E-2



Workstation User's Guide Debugging Faults

The faulted instruction object DAI field identifies the instruction
segment in which the fault occurred. The debugger's fault announcement
message gives you the same information in a more intelligible form, but
this field may be useful if the fault is unannounced, or if you want to
verify the debugger's announcement message. Shift it right 2 bits
(divide by 4) to get an index (in access descriptors) into the current
domain. The access descriptor at this 1location in the domain should
identify the instruction segment.

The Pre-Instruction Instruction Pointer and Post-Instruction
Instruction Pointer fields identify the faulting instruction and the
one following it. The post IP may not be correct if the faulting
instruction has not been completely decoded. The debugger's fault
announcement message also gives you the pre IP, but the pre and post IP
fields in the fault information area may be useful if the fault is
unannounced, or if you want to verify the debugger's announcement
message.

The Pre-Instruction Stack Pointer, Post-Instruction Stack Pointer, and
the Fault Status fields are rarely useful.

The Faulted Operator ID# field usually identifies the operator in the
instruction which caused the fault unless the faulting instruction has
not been completely decoded. Operator ID values and the operators they
identify are summarized in the "Data Operator"  table near the end of
this appendix.

The Fault Code field tells what the fault is, and sometimes gives a bit
more information. The Fault Decoding tables given later contain most of
the information needed to decode the fault code. Take the following
steps:

1. Look in the "Fault Types" section, below; use the TTTT in -the
fault code to determine the fault class.

2. For classes 1,2,3, and 9, no more information is available.

3. For class 0, look up the faulting operator in the Type 0 Fault
List and use the LL EEEE bits in the fault code to identify
the particular fault.

y, Fault class 4 enumerates two different faults: the Test System
Type and Object Table Entry type faults. The KKKKK bits in the
fault code give the DESIRED value of either the system type,
or the object table entry type and information. The actual
values (i.e., the values which caused the fault) are not
available.

5. For classes 5 through 8 (memory access faults), the AAA, W,
and SSSS bits give more information, as described in the
section, "Types 5,6,7,8 Faults."



Debugging Faults Workstation User's Guide

The Fault Access Selector and Fault Displacement fields are mainly
useful for fault classes 5, 6, 7, 8, and may or may not be valid at
other times. The section describing these types of faults tells you
when these fields are meaningful. :

HOW TO KNOW WHEN AN UNANNOUNCED FAULT HAS OCCURRED

The difficulty with unannounced faults is you don't know immediately
that one has occurred. Suspect a fault if a processor or a process
seems to be doing nothing for a long while. To confirm your suspicion,
you need to know the coordinates of the processors and processes in
your system. The processor coordinates are always 171 for processor 1,
172 for processor 2, 173 for processor 3, etc. (Processor 1 resides in
slot 1, processor 2 in slot 2, etc.) With this knowledge, make the
following checks to find out what, if anything, has faulted.

When a processor faults, a red light lights up on the GDP board of the
faulted processor. If you can't see the GDP boards, you can also know
whether a processor has faulted by displaying the fault area in its
processor data segment. If the fault area is all zeroes, the processor
has not faulted; otherwise, it probably has. For example, to determine
whether processor 2 has faulted, display the fault area in the
processor data segment with the command "172:PSORFLT".

You can know whether a process has faulted by displaying it. Its
status will be either faulted or not faulted. If it is faulted,
display the fault area in its process data segment. For example, if
process 4744 has faulted, display the context fault area in the process
data segment with the command 4" 44:FLT.

UNANNOUNCED PROCESSOR LEVEL FAULTS

When the debugger annocunces a fault, it tells you the location of the
instruction which caused the fault. When a fault such as a processor
level fault occurs unannounced, you have to find the faulting
instruction yourself. For processor level faults, there may or may not
have been a process executing at the time of the fault. If a process
was executing, the coordinates of its process carrier should be in the
"eurrent process carrier" field in the processor access segment (offset
= 1 access descriptor). For example, if processor 2 has faulted,
display the process carrier coordinates with the command "172.1:AD",
If these coordinates are 070, there was no process executing at the
time of the fault so you can not find a faulting instruction segment.
(You have to rely solely on the information you can find in the fault
data area.)

Once you have the process carrier coordinates, obtain the following
information:



Workstation User's Guide Debugging Faults

1. Find the process access segment coordinates in the "carried
object" field 1in the process carrier (offset=9 access
descriptors).

2. Find the current context access segment coordinates in the
"eurrent context" field in the process access segment
(offset=1 access descriptor). ’

3. Find the current domain coordinates in the domain field in the
current context access segment (offset=8 access descriptors).

Display the processor fault data area if you have not already done so.
The faulted object index field in the fault data area is used to
identify the faulting instruction segment. Shift the faulted object
index right 2 bits (divide by 4) to get an offset (in access
descriptors) into the current domain found in step 3. Find the
coordinates of the faulting instruction segment at this offset in the
current domain. The Pre-Instruction Instruction Pointer field in the
fault data area should be the bit offset into this instruction segment
of the instruction which was executing at the time of the fault (see
above).

UNANNOUNCED PROCESS LEVEL FAULTS

When a process 1level fault goes unannounced, it is almost always
because either the process stack SRO is too small (Storage Claim
Underflow Fault) or the process local object table is too small (Object
Descriptor Exhaustion Fault). Either of these conditions causes the
fault handling code in the 432 to fault when it attempts to handle the
fault, and the debugger cannot be notified. Section 6 explains how to
identify these faults. If some other process 1level fault goes
unannounced, seek help from Intel.

HOW TO QUICKLY RECOGNIZE TWO COMMON FAULTS

This section describes two of the most common faults and their probable
causes. Note that the fault codes given here are not unique since many
bits in the fault code are unpredictable. For example, although 3AQ0E
is given here for the Storage Claim Underflow Fault, the fault code
TAOE, for example, might also indicate the same fault. This 1list is
only a beginning. You may want to add to 1t based on your own
experience.



Debugging Faults A , Workstation User's Guide

Fault Code: 309F (Descriptor Type Fault)

This fault code is almost always caused by an unresolved reference in
your link (i.e., the faulting instruction attempted to access an object
which was not linked in by the linker). To find the unlinked object,
first find the faulting instruction in a listing. Attempt to display
each of the operands to the instruction. When you attempt to display
the unresolve reference, the debugger will print a message such as "ERR
278: SECOND COORD. OF 67131 IS BAD: O.T. ENTRY NOT VALID". Look up the
coordinates of the access descriptor (in this case, 67131) in your
linker listing, and you'll probably find the unresolved reference.

Fault Code: 3A00 (Access Descriptor Validity Fault)

This fault code is almost always caused by attempting to access an
object with a null access descriptor. This is commonly caused by
passing a null access descriptor as an access parameter to a procedure
which expects a valid one, or by attempting to access an object with an
access variable which has not been initialized.



Workstation User's Guide Debugging Faults

FAULT DATA AREA

The generic Fault Data Area is a 48-byte record organized as follows:

Byte
n+46 Displacement
B First Fault Data Item T
B T n+38
n+36
— —
B Second Fault Data Item ]
o b
B B n+28
n+26
n+24
Fault Displacement n+22
Fault Access Selector n+20
Fault Code n+18
Faulted Operator ID# n+16
Processor Status n+14
Process Status n+12
Fault Status n+10
Pre-Inst. Stack Pointer n+8
Post-Inst. Stack Pointer n+6
Pre-Inst. Instruction Pointer n+l
Post-Inst. Instruction Pointer n+2
Faulted Inst. Obj. DAI n

Figure E-1. Fault Data Area



Debugging Faults Workstation User's Guide

The Fault Data Area for context-, process-, and processor-level faults
has the same organization (shown above). Process objects contain Fault
Data Areas for context- and process-level faults. Processor objects
contain Fault Data Areas for processor-level faults. The fields in the
Fault Data Area are interpreted as follows:

Faulted Inst. Obj. DAI (Bytes n thru n+1)
Records the DAI (domain access index) for the instruction object in
which the faulted instruction is located.

Post-Inst. Instruction Pointer (Bytes n+2 thru n+3)
Records the instruction pointer of the instruction physically
following the instruction that caused tne fault., If the fault
occurred during instruction decoding, this field is undefined.

Pre-Inst. Instruction Pointer (Bytes n+4 thru n+5)
Records the instruction pointer of the instruction which caused the
fault.

Post-Inst. Stack Pointer (Bytes n+6 thru n+7) :
Records the operand stack pointer at the time the fault occurred.
The actual stack pointer should be incremented by 2 1if the
Post-Inst. Stack Full bit in the Fault Status is 1.

Pre-Inst. Stack Pointer (Bytes n+8 thru n+9)
Records the operand stack pointer at the beginning of the
instruction that caused the fault. The actual stack pointer should
be incremented by 2 if the Pre-Inst. Stack Full bit in the Fault
Status is 1.

Fault Status (Bytes n+10 thru n+11)
The Fault Status field has the following organlzatlon.

15 43210

XXXX 8 bits xIxix]x

bmeee Result Destination
e Inexact Result
s Pre=Inst. Stack Full
Post-Inst. Stack Full
Execution Phase

These fields are interpreted as follows:

Result Destination (Bit 0)
This bit records where the operand destination should have
been:
0 -~ Destination was the operand stack
1 ~ Destination was in memory

E-8



Workstation User's Guide Debugging Faults

Inexact Result (Bit 1)
This bit records whether the generated result was exact or

inexact:
0 - exact
1 - inexact

Pre-Inst. Stack Full (Bit 2)
This bit records whether the 16~bit on-chip top of stack
register was occupied at the beginning of the faulted

instruction:
0 -~ empty
1 - occupied

Post-Inst. Stack Full (Bit 3)
This bit records whether the on-chip top-of-stack register was
occupied when the instruction faulted:
' 0 - empty
1 - occupied

Execution Phase (Bits 12 - 15)
This U4-bit field records a value that indicates the phase of
execution when the fault occurred. It is used to identify
fault handling strategies in the more complex operators. A
value of zero indicates that the instruction can be
re-executed with no fault handling repair of data necessary.

Process Status (Bytes n+12 thru n+13)
This 16-bit field records the current process status at the time
the fault occurred.

Processor Status (Bytes n+14 thru n+15)
This 16-bit field records the current processor status at the time
the fault occurred.

Faulted Operator ID# (Bytes n+16 thru n+17)
If the fault occurred during instruction decoding, this field is
zero., Otherwise, this field records the operator ID# of the
faulted instruction.

Fault Code (Bytes n+18 thru n+19)
The Fault Code field contains a hardware-written 16-bit encoding
that indicates the specifiec fault that occurred. The detailed
encodings of this field are defined in subsequent sections of this
chapter.

Fault Access Selector (Bytes n+20 thru n+21)
The interpretation of this field varies dependlng on the specific
fault. See the following sections of this chapter for more
details. '

Fault Displacement (Bytes n+22 thru n+23)
The interpretation of this field varies depending on the specific
fault. See the following sections of this chapter for more
details.




Debugging Faults ’ Workstation User's Guide

Second Fault Data Item (Bytes n+28 thru n+37)
The value in this field depends on whether the fault is
pre-operation or post-operation:

° If the fault is pre-operation, this field contains the value
of source operand 2. Unused high-order bits are undefined.
. If the fault is post-operation, this field in not defined.

First Fault Data Item (Bytes n+38 thru n+i7)
The value in this field depends on whether the fault is
pre-operation or post-operation:

* If the fault is pre-operation, this field contains the value
of source operand 1. Unused high-order bits are undefined.

. If the fault is post-operation, this field contains the value
of the exceptional result. Unused high-order bits are
undefined.



Workstation User's Guide Debugging Faults
FAULT TYPES
Faults are categorized into nine general types as determined by bits 5

through 8 of the Fault Code field:

15 8 7 0

X X X xxxx T TTTxx xXx X

In subsequent encoding diagrams in this chapter, the x values designate
bits that are undefined for the particular fault type being described.
The TTTT bits are used to encode the type of the fault that occurred.
The remaining bits (designated above by x's) are used to further encode
the specific fault.

The following list defines the TTTT encodings and gives a two letter
mnemonic for the fault type. These mnemonics are used throughout this
chapter.

TYPE TTTT MNEM Faults

0000 FF All other faults not named here

0001 SC Index overflow (during scaling)

0010 DP Displacement overflow during address development
0011 IP Inst. pointer overflow during relative branch

0100 TS Test system type or descriptor type faults
0101 SO Segment overflow fault

0110 MO Memory overflow fault (physical addr > 2%¥24)
0111 RR Read Rights fault

1000 WR Write Rights fault ,

1001 TW Destination Access Segment access rights fault

WEe~_OU &ISWN = O

All faults of types 1 through 9 are process-level faults. Subsequent
sections of this chapter describe the more detailed fault encodings for
the nine fault types.

E-11



Debugging Faults , Workstation User's Guide

Type 0 Faults
Type 0 faults have the following bits defined in the Fault Code field:

15 8 T 0

xxxxx LLO 000x EEEE

The LL bits encode the fault level as follows:

LL Description
00 Context-Level Faults

01 Process-Level Faults (group 1)
10 Process-Level Faults (group 2)
1 Processor-Level Faults

The EEEE bits encode the specific fault within the level group.

The following Type O Fault List presents the type O faults in the order
of their encoding. The encoding column of this table (and of other
tables in the following sections) contains the LL EEEE bits if the type
is 0 (FF).

TYPE O FAULT LIST

FAULTS | TYPE | ENCODING

LL EEEE-
Domain Error 0 (FF){ 00 0000
Overflow 0 (FF)} 00 0001
Underflow 0 (FF)| 00 0010
Inexact 0 (FF)} 00 0011
Invalid Class Fault 0 (FF)| 00 0100

LL EEEE=~
Access Descriptor Validity Fault 0 (FF)] 01 0000
Object Descriptor Fault 0 (FF)} 01 0001
Instruction Object Index Overflow Fault 0 (FF)] 01 0010
Pre-creation Destination Delete Rights Fault 0 (FF)} 01 0010
Destination Delete Rights Fault 0 (FF)} 01 0011
Race Condition Fault 0 (FF)| 01 0011
Level Fault 0 (FF)| 01 0100
Level Overflow Fault 0 (FF)] 01 0100
Access Path Object Descriptor Type Faults 0 (FF)] 01 0101
Entry Index Range Fault 0 (FF)| 01 0101
Instruction Object Type Rights Fault 0 (FF)] 01 0101
0dd Interconnect Descriptor Base Address Fault 0 (FF)| 01 0101
Source Object Validity Fault 0 (FF)} 01 0101
Surrogate Carrier Validity/Type Rights Fault 0 (FF)| 01 0101
Access Segment Read Rights Fault 0 (FF)| 01 0110
Context Parameters Size Faults 0 (FF)} 01 0110
TCO Type Rights Fault 0 (FF)| 01 0110

E-12



Workstation User's Guide

Debugging Faults

0dd Displacement Fault 0 (FF){ 01
Port Type Rights Fault 0 (FF)] 01
Processor Type Rights Fault 0 (FF)| 01
RCO Type Rights Fault 0 (FF)]| o1
Return Level Fault 0 (FF)} 01
Source Object Access Rights Fault 0 (FF)}| 01
TDO Validity Fault 0 (FF)}] 01
Object Table Type Rights Fault 0 (FF)| 01
SRO Type Rights Fault 0 (FF)] 01
TDO Type Rights Fault 0 (FF)| 01
Clear Memory Size Fault 0 (FF)] 01
Type Fault 0 (FF)] 01
Carrier Lock Fault 0 (FF)] 01
Object Lock ID/Type Fault 0 (FF){ 01
Offset and Length Compatibility Fault 0 (FF)] 01
SRO Lock Fault 0 (FF)] 01
Port Lock Fault 0 (FF)] 01
Refinement Overflow Fault 0 (FF)| 01
Object Descriptor Exhaustion Fault 0 (FF)] 01
Storage Block Index Overflow Fault 0 (FF)| 01
Storage Claim Underflow Fault 0 (FF)| 01
Storage Block Fragmentation Fault 0 (FF)| 01

LL
Instruction Fetch Fault 0 (FF)| 10
Instruction Object Displacement Fault 0 (FF)} 10

LL
Bus Error 0 (FF)] 1
Process Level Objects Lock Fault 0 (FF)] 1
Process Lock Fault 0 (FF)| 11
PCO Lock Fault 0 (FF)| 1
Wakeup IPC Fault 0 (FF)} 11
Carrier Queued Fault 0 (FF)] 11

0110
0110
0110
0110
0110
0110
0110
0111
0111
0111
1000
1000
1001
1001
1001
1001
1010
1010
1011
1101
1110
1111
EEEE-
0000
0000
EEEE~
0000
0001
0001
0011
0100
0101

Types 1,2,3,9 Faults

These types have only the TTTT bits defined in the Fault Code field to
distinguish them. Each fault type is thus a single fault.

E-13



Debugging Faults » Workstation User's Guide

Type 4 Faults

Type 4 faults have the following bits defined in the Fault Code field:

15 ‘ 8 7 0

ZQxxxxx©O 100KKKKK

The Z bit indicates whether the fault resulted with testing the system
type or the object table entry type. The Z bit is defined as follows:

0 - OTE type test
1 = System type test

The Q bit indicates whether the fault is associated with object table
qualification. It thus determines the meaning of the Fault Access
Selector and Fault Displacement fields in the fault data area as
follows:

0 - The fault did not occur during object table qualification and
the Fault Access Selector and Fault Displacement fields
contain the indices in the associated access descriptor.

1 = The fault occurred during object table qualification and the
Fault Displacement field contains the directory index.

The Z bit determines two alternate interpretations of the KKKKK bits as
follows:

=0 (fault because of object table entry type test). The KKKKK
bits encode the expected values of the 1least-significant 5
bits of the object table entry (the actual values are
unavailable). Their meanings are thus determined by the
expected Entry Type of the object table entry. The following
case is for a storage descriptor:

432 10

K KK 11

e Entry Type
00 - Free Entry or Header Entry
01 - Type Descriptor
10 - Refinement Descriptor
11 - Storage Descriptor
e 0D Valid
0 - Not Valid, 1 - Valid
Base Type
0 - Data, 1 - Access
Allocated
0 - No, 1 - Yes

Z=1 (fault because of system type test). The KKKKK bits encode
the expected value of the System Type field in the faulted
object table entry (the actual values are unavailable):

E~-14



Workstation User's Guide Debugging Faults

KKKKK

SYSTEM TYPE

00000
00010
00011
00100
00101
00110
00111
01000

01001

01010
01011
01100

Generic Access or Data Segment

Domain Access Segment or Object Table Data Segment
Instruction Data Segment

Context Access or Data Segment

Process Access or Data Segment
Processor Access or Data Segment

Port Access or Data Segment

Carrier Access or Data Segment

SRO Access or Data Segment

TDO Access Segment or PCO Data Segment
Type Control Data Segment

Refinement Control Data Segment

The encoding column of the tables in the following sections contains
the Z KKKKK bits if the type is 4 (TS).

E-15



Debugging Faults Workstation User's Guide

Types 5,6,7,8 Faults

These faults have the following bits defined in the Fault Code field:

15 8 7 0

X WAAAXxxT TTTxSSSS

These fault types are memory access faults. The W bit indicates
whether the fault occurred on a read or write:

0 - Faulted on Read
1 - Faulted on Write

The AAA bits indicate the type of memory access that faulted:

AAA TYPE OF ACCESS
Oxx Storage Address Space

The storage segment being accessed is indicated by
the SSSS bits. Displacement is given by the Fault
Displacement field in the Fault Data Area.

100 Interconnect Address Space ‘

‘ Displacement is given by the Fault Displacement
field in the Fault Data Area.

101 Access Segment
The access selector of the segment is given by the
Fault Access Selector in the Fault Data Area.

111 Operand Stack
Displacement is given by the Post-Inst. Stack
Pointer field in the Fault Data Area.

The SSSS bits only have meaning if the AAA bits are encoded Oxx (i.e.,
the most-significant A bit is set). When this is the case, the SSS3
bits encode the type of segment being accessed when the fault occurred:

SSSS SEGMENT BEING ACCESSED

0000 Context Access Segment

0100 Object Table Directory

0101 Processor Access Segment

0111 Process Access Segment

1000 Instruction Object

1001 Context Data Segment

1010 Defining Domain

1011 Process Data Segment

1110 Data Segment Cache (The Fault Access Selector field
contains the Access Selector of the segment).

1111 Object Table Cache (The Fault Access Selector field

contains the directory index from the AD).

SSSS values 0001, 0010, 0011, 0110, 1100, and 1101 are undefined.

E-16



Workstation User's Guide Debugging Faults

[GENERAL FAULT GROUPS)

The following faults can occur anywhere during the execution of an
operator or sub-operation (which includes instruction decoding, process
dispatching, binding etc.). These faults are not explicitly referenced
in the later sections. The => symbol indicates that the group name
preceding it stands for any of the possible faults that are 1listed
after it. A group name is used in this table (and others in this
chapter) by enclosing the name in angle brackets <like sod. This
indicates that any of the possible faults of that named group are
included.

FAULT GROUPS | TYPE | ENCODING
Memory Reference Faults =>
Segment Bound Fault 5 (S0)
Memory Overflow Fault 6 (MO)
Read Rights Fault 7 (RR)
Write Rights Fault 8 (WR)

" Bus Error 0 (FF)| 11 0000
Invalid Class Fault 0 (FF)|] 00 0100
Instruction Fetch Fault 0 (FF)]| 10 0000
Data Segment Cache Qualification Faults =>

Access Descriptor Validity Fault 10 (FF)] 01 0000
Object Descriptor Type Fault 4 (TS)} 0 10111
4 (TS)|] 0 00110
4 (TS){ 0 1111
Object Table Cache Qualification Faults =>
Object Descriptor Type Fault 4 (TS)}] 0 10111
Object System Type Fault 4 (TS)} 1 00010
(Access) Segment Altered Faults =>
Access Descriptor Validity Fault 0 (FF)}{ 01 0000
Object Descriptor Fault 0 (FF)| 01 0001
(Data) Segment Altered Faults =>
{Data Segment Cache Qualification Faults>

E-17



Debugging Faults Workstation User's Guide

[DATA OPERATOR FAULT GROUPS]

FAULT GROUP ‘ ' | TYPE | ENCODING

LL EEEE-
Domain Error 0 (FF)| 00 0000
Overflow 0 (FF)] 00 0001
Underflow 0 (FF)| 00 0010
Inexact ' 0 (FF)] 00 0011

| DATA OPERATORS]

Table E-1 1lists the data operator ids and associated mnemonics for the
GDP. In the table, operators marked with ¥* do not have a unique
operator ID; the compiler encodes them as either absolute branches or
relative branches. Absolute branches have an operator ID of 254, while
relative branches have an operator ID of 255, A conditional branch
that is not taken has no operator ID.

E-18



Workstation User's Guide Debugging Faults

Table E-1. Operator IDs and Mnemonics

1 movoe 51 inc_si 101 ptv_i
2 zro_c 52 dec_si 102 ntv_i
3 one_c 53 neg_si 103 cvt_i_si
4 sav_c 54 mul_si 104 evt_i_o
5 and_c 55 div_si 105 cvt_i_tr
6 ior_c 56 rem_si 106 add_sr
7 xor_c 57 1ss_si 107 add_sr_tr
8 eqv_c 58 leq_si 108 add_tr_sr
9 not_c 59 ptv_si 109 sub_sr
10 add_ec 60 ntv_si 110 sub_sr_tr
11 sub_c 61 cevt_si_i 111 sub_tr_sr
12 inc_c 62 cvt_si_tr 112 mul_sr
13 dec_c 63 mov_o 113 mul_sr_tr
14 eql_c 64 zro_o 114 mul_tr_sr
15 neq_c 65 one_o 115 div_sr
16 eqz_c 66 sav_o 116 div_sr_tr
17 nez ¢ 67 and_o 117 div_tr_sr
18 1ss_c 68 ior_o 118 neg_sr
19 leq_c 69 xor_o 119 abs_sr
20 cvt_c_so 70 eqv_o 120 eql_sr
21 mov_so 71 not_o 121 eqz_sr
22 zro_so T2 ext_o 122 leq_sr
23 one_so 73 ins_o 123 lss_sr
24 sav_so T4 sig_o v 124 ptv_sr
25 and_so 75 add_o 125 ntv_sr
26 ior_so 76 sub_o 126 cvt_sr_tr
27 xor_so 77 inc_o 127 mov_r
28 eqv_so 78 dec_o : 128 zro_r
29 not_so 79 mul_o 129 sav_r
30 ext_so 80 div_o 130 add_r
31 ins_so 81 rem_o 131 add_r_tr
32 sig_so 82 eql_o 132 add_tr_r
33 add_so 83 neq_o 133 sub_r
34 sub_so 84 eqz_o 134 sub_r_tr
35 inc_so 85 nez_o 135 sub_tr_r
36 dec_so 86 leq_o 136 mul_r
37 mul_so 87 1lss_o ’ 137 mul_r_tr
38 div_so 88 cvt_o_so 138 mul_tr_r
39 rem_so 89 cvt_o_i 139 div_r
40 eql_so 90 cvt_o_tr 140 div_r_tr
41 neq_so 91 add_i - 141 div_tr_r
42 eqz_so 92 sub_i 142 neg_r
43 nez_so 93 inc_i 143 abs_r
44 1ss_so 94 dec_i 144 eql_r
45 leq_so 95 neg_i 145 eqz_r
46 cvt_so_c 96 mul i 146 leq_r
47 cvt_so_o 97 div_i 147 1ss_r
48 cvt_so_tr 98 rem_i 148 ptv_r
49 add_si 99 leq_i 149 ntv_r
50 sub_si 100 1ss_i 150 cvt_r_tr

E-19



Debugging Faults Workstation User's Guide

151 mov_tr 175 restrict_rights 196 br_ndirect

152 zro_tr 176 create_prl type 197 br_iseg

153 sav_tr 177 create_pub_type 198 br iseg wo_trace
154 add_tr 178 retrieve pub_type_rep 199 br iseg " link

155 sub_tr 179 retrieve_type _rep 200 enter _aseg

156 mul_tr 180 retrieve_type_def 201 enter | global _aseg
157 div_tr 181 create_rfn 202 sep_mode

158 rem_tr 182 create_typed_rfn 203 call

159 neg_tr 183 retrieve_rfn_obj 204 call_msg

160 sqt_tr 184 create_dseg 205 ret

161 abs_tr 185 create_aseg 206 send

162 eql_tr 186 create_typed_seg 207 receive

163 eqz_tr 187 create_ad 208 cond_send

164 leq_tr 188 inspect_ad 209 cond_receive

165 1ss_tr 189 inspect_obj 210 sur_send

166 ptv tr 190 lock ObJ 211 sur_receive

167 ntv tr 191 unlock ._obj 212 wait

168 cvt tr_o 192 indiv_add_so 213 read_pres_clock
169 cvt tr i 193 1nd1v add o) 214 send_psor

170 evt tr sr 194 indiv_ 1ns S0 215 best_psors

171 cvp_tq_r 195 1ndly_}n§_p 216 read_psor_status
172 copy_ad k% br 217 mov_to_ict

173 null . _ad %% br t ' 218 mov_fm ict

174 amplify _rights *% br f

E-20



Workstation User's Guide Debugging Faults

| SUB-OPERATOR FAULT GROUPS]

FAULT GROUPS } TYPE | ENCODING
Store Access Descriptor Faults =>

Level Fault 0 (FF)|] 01 0100

Destination Delete Rights Fault 0 (FF)§ 01 0011

Object Qualification Faults =>
Access Descriptor Validity Fault
Object Descriptor Fault
Ob ject Descriptor Type Fault

(FF)| 01 0000
(FF)}| 01 0001
(TS)} 0 10111
(TS)} 0 11111

&= EO0OO

Descriptor Allocation Faults =>
SRO Type Rights Fault
<Object Qualification Faults (SRO ASEG)>
{Object Qualification Faults (PSO DSEG)>
<Object Qualification Faults (Object Table DSEG)>
Ob ject Descriptor Exhaustion Fault

(FF)] 01 0111
(Ts)} 1 01001

(TS)} 1 01001
(TS)} 1 00010

(FF)] 01 101

O =& r+O0

Segment Allocation Faults =>
SRO Lock Fault
Storage Block Index Overflow Fault
(missing last block bit)

(FF)} 01 1001
(FF)} 01 1101

oo

(FF)} 01 1110

Storage Block Fragmentation Fault 0
Storage Claim Underflow Fault 0 (FF)J 01 1111
Clear Memory Size Fault 0 (FF)} 01 1000

(Fault Access Selector contains
the destination access selector)

Port Operation Faults =>
<Object Qualification Faults (Carrier ASEG)>
<Object Qualification Faults (Carrier DSEG)>
<Object Qualification Faults (Port ASEG)>
<Object Qualification Faults (Port DSEG)>
Carrier Lock Fault
Wakeup IPC Fault
Port Lock Fault
Carrier Queued Fault

(TS)} 1 01000
(Ts)} 1 01000
(TS)| 1 00111
(Ts)} 100111
(FF)] 01 1001
(FF)] 11 0100
(FF)} 01 1010
(FF)] 11 0101

COO0OO & &E&

Context Qualification Faults =>
<Object Qualification Faults (Context ASEG)>
<Object Qualification Faults (Context DSEG)>
<Object Qualification Faults (Domain)>
<Object Qualification Faults (Instruction)>

(Ts)| 1 00100
(TS)} 1 00100
(TS)| 1 00010
(TS){ 1 00011

L g~

Process Binding and Qualification Faults =>
<Object Qualification Faults (Process ASEG)>
<Object Qualification Faults (Process DSEG)>
Process Level Object Lock Fault
<Context Qualification Faults>

(Ts)} 1 00101
(Ts)} 1 00101
(FF)] 11 0001

[

E-21



Debugging Faults Workstation User's Guide

[NON-INSTRUCTION INTERFACE FAULTS]

OPERATOR , | TYPE | ENCODING

Initialization =>

<Object Qualification Faults (Processor ASEG)> 4 (TsS)] 1 00110
<Object Qualification Faults (Obj. Table Directory)> {4 (TS)}|] 1 00010
<Object Qualification Faults (Processor DSEG)> 4 (Ts)} 1 00110
<IPC Faults>

IPC Faults =>
<Object Qualification Faults (PCO)> 4 (Ts)} 1 01010
PCO Lock Fault 10 (FF)| 11 0011
<IPC Faults>

Idle =>
<Delay Port Service Faults>

Process Binding =>
<Object Qualification Faults (Carrier ASEG)> 4 (Ts)] 1 01000
<Object Qualification Faults (Carrier DSEG)> 4 (TS)}] 1 01000

Process Lock Fault 0 (FF)| 11 0001
<Process Qualification Faults>
<Port Operation Faults>

Process Selection =>
<Delay Port Service Faults>
<Object Qualification Faults (Carrier ASEG)>
<Object Qualification Faults (Carrier DSEG)>
<Port Operation Faults>

(TS)} 1 01000
(TS)} 1 01000

B —

E-22



Workstation User's Guide

Debugging Faults

|OBJECT OPERATOR FAULTS|

OPERATOR

| TYPE | ENCODING

Copy Access Descriptor
{Store Access Descriptor Faults>

Null Access Descriptor }
Destination Delete Rights Fault

Amplify Rights
TCO Type Rights Fault
<Object Qualification Faults (TCO)>
Destination Access Segment Rights Fault
Source Object Validity Fault
Type Fault
Race Condition Fault (the access descriptor was
changed before the amplified value is stored back)

Restrict Rights
no explicit fault cases

Create Public Type

Create Private Type
Destination Access Segment Rights Fault
Pre-creation Destination Delete Rights Fault
TDO Validity Fault
TDO Type Rights Fault
<Object Qualification Faults (TDO)>
<Descriptor Allocation Faults>
Level Faults
{Store Access Descriptor Faults>

Retrieve Public Type Representation
Source Object Validity Fault
Object Descriptor Type Fault
{Store Access Descriptor Faults>

Retrieve Type Representation
TDO Validity Fault
Source Object Validity Fault
Object Descriptor Type Fault
TDO Type Rights Fault
Type Fault
{Store Access Descriptor Faults>

Retrieve Type Definition
Source Object Validity Fault
Object Descriptor Type Fault
<{Store Access Descriptor Faults>

O OOCWwW =0

O OOV

o

OO &EOO

(FF)

(FF)
(TS)
(TW)
(FF)
(FF)
(FF)

(TW)
(FF)
(FF)
(FF)
(TS)

(FF)

(FF)
(TS)

(FF)
(FF)
(TS)
(FF)
(FF)

(FF)
(TS)

01 0011
01 0110
1 01011
01 0101

01 1000
01 001

01 0010
01 0110
01 0111
1 01010

01 0100

01 0101

01 0110
01 0101

01 0111
01 1000

01 0101

E-23



Debugging Faults Workstation User's Guide

OPERATOR | TYPE | ENCODING

Create Refinement

Destination Access Segment Rights Fault 9 (TW)
Pre—creation Destination Delete Rights Fault 0 (FF)] 01 0010
Source Object Validity Fault 0 (FF)| 01 0101
Object Descriptor Type Fault 4 (TS)
Offset and Length Compatibility Fault 0 (FF)} 01 1001
Refinement Overflow Fault 0 (FF)| 01 1010

<{Descriptor Allocation Faults>
Level Fault
<Store Access Descriptor Faults>

o

(FF)| 01 0100

Create Typed Refinement
RCO Type Rights Fault
<Object Qualification Faults (RCO)>
Destination Access Segment Rights Fault
Pre-creation Destination Delete Rights Fault
Source Object Validity Fault
Object Descriptor Type Fault
Type Fault
Offset and Length Compatibility Fault
Refinement Overflow Fault
<Descriptor Allocation Faults>
Level Fault
<Store Access Descriptor Faultsd>

(FF)| 01 0110
(Ts)| 1 01100
(TW)
(FF)| 01 0010
(FF)| 01 0101
(TS)
(FF)| 01 1000
(FF)] 01 1001
(FF)] 01 1010

OCOO0OFEFOOWHEO

o

(FF)] 01 0100

Retrieve Refined Object
RCO Type Rights Fault
<Object Qualification Faults (RCO)>
Source Object Validity Fault
Type Fault
{Store Access Descriptor Faults>

(FF)] 01 0110
(TS)] 1 01100
(FF)] 01 0101
(FF)| 01 1000

OO O

Create Data Segment

Create Access Segment
Destination Access Segment Rights Fault 9 (TW)
Pre-creation Destination Delete Rights Fault 0 (FF)] 01 0010
<Descriptor Allocation Faults>
<Segment Allocation Faults>
{Store Access Descriptor Faults>

Create Typed Segment
TCO Type Rights Fault
<Object Qualification Faults (TCO)>
Destination Access Segment Rights Fault
Pre-creation Destination Delete Rights Fault
{Descriptor Allocation Faults>
<{Segment Allocation Faults>
{Store Access Descriptor Faults>

(FF)| 01 0110
(TS)| 1 01100
(TW)
(FF)| 01 0010

O Ww &=O

E-24



Workstation User's Guide

OPERATOR

Debugging Faults

| TYPE | ENCODING

Create Access Descriptor
Object Table Type Rights Fault
<Object Qualification Faults (Object Table)>
Access Path Object Descriptor Type Faults

Inspect Access Descriptor
no explicit fault cases

Inspect Object
Access Path Object Descriptor Type Faults

Lock Object
<Object Qualification Faults (data segment)>
Source Object Access Rights Fault

Unlock Object
<Object Qualification Faults (data segment)>
Source Object Access Rights Fault
Ob ject Lock ID/Type Fault

Indivisibly Add Short Ordinal
Indivisibly Add Ordinal
Indivisibly Insert Short Ordinal
Indivisibly Insert Ordinal

no explicit fault cases

Branch

Branch True

Branch False
Instruction Pointer Overflow Fault
Instruction Object Displacement Fault

Branch Indirect
Instruction Object Displacement Fault

Branch Intersegment

Branch Intersegment without Trace

Branch Intersegment and Link
<Object Qualification Faults (Domain)>
<Object Qualification Faults (Instruction)>
Instruction Object Displacement Fault

Enter Access Segment
Enter Global Access Segment
Entry Index Range Fault
Access Segment Read Rights Fault

<Object Qualification Faults (access segment)>

Set Mode
no explicit fault cases

= =

(FF)
(TS)
(FF)

(FF)

(FF)

(FF)
(FF)

(IP)
(FF)

(FF)

(TS)
(TS)
(FF)

(FF)
(FF)

01 0111
1 00010
01 0101

01 0101

01 0110

01 0110
01 1001

10 0000

10 0000

1 00010
1 00011
10 0000

01 0101
01 0110

E-25



Debugging Faults Workstation User's Guide

OPERATOR | TYPE | ENCODING
Call
Call with Message
<Object Qualification Faults (Domain)> 4 (Ts)} 1 00010
Instruction Object Type Rights Fault 0 (FF)| 01 0101
<Object Qualification Faults (Instruction)> 4 (TS)| 1 00011
Context Parameters Size Fault 0 (FF)| 01 0110
Level Overflow Fault 0 (FF)} 01 0100
Instruction Object Index Overflow Fault 0 (FF)] 01 0010
<{Descriptor Allocation Faults>
<Storage Allocation Faults>
<Context Qualification Faults>
Instruction Object Displacement Fault 0 (FF)] 10 0000
Return
Return Level Fault 0 (FF)| 01 0110
SRO Lock Fault 0 (FF)] 01 1001
Level Overflow Fault 0 (FF)| 01 0100
{Context Qualification Faults>
Instruction Object Displacement Fault 0 (FF)| 10 0000
Send
Receive
Conditional Send
Conditional Receive
Wait :
Port Type Rights Fault 0 (FF)] 01 0110
{Port Operation Faults>
Surrogate Send
Surrogate Receive
Surrogate Carrier Validity/Type Rights Fault 0 (FF)| 01 0101
Port Type Rights Fault 0 (FF)] 01 0110
<Port Operation Faults>
Read Process Clock
no explicit fault cases
Send to Processor
Broadcast to Processors
Processor Type Rights Fault 0 (FF)] 01 0110
<Object Qualification Faults (Processor ASEG)> 4 (TS)| 1 00110
<Object Qualification Faults (PC0O)> 4 (TsS)} 1 01010
Read Processor Status
no explicit fault cases
Move to Interconnect
Move from Interconnect
0dd Displacement Fault 0 (FF)] 01 0110
0dd Interconnect Descriptor Base Address Fault 0 (FF)] 01 0101
<Object Qualification Faults (Interconnect)> 4 (Ts)}) 0 01100

E-26



APPENDIX F
DEBUG-432 ERROR MESSAGES AND POSSIBLE CAUSES

When DEBUG-432 detects an error, it sends a message to the user
identifying the nature of the error. Errors are divided into two
categories: user errors and internal debugger errors.

Internal errors indicate that a consistency check in the debugger has
failed; the user should contact Intel. Internal errors are reported
simply as numbers in the range 5000 through 5999.

User errors are prefixed with the string "ERR nnn: ", where nnn is the
error number. Some user error messages contain text previously typed
in by the user. This text is always surrounded by double quotes when
the error is printed and is shown as an expression in angle brackets in
the following list (e.g., <name>, <number>).

The rest of this appendix explains the possible user errors.



DEBUG-432 Error Messages ‘ Workstation User's Guide

101

102

103

104

105

107

'MAY ONLY ASSIGN TO MEMORY REFERENCE'

The ":=" operator in the debugger means "modify memory". If the
identifier to the left of the ":=" was not defined as a reference
(i.e, using "is") it is illegal to use the value. For example:

?foo: integer := 5
?foo := foo + 1

causes the error, but the following commands do not:

?2foo: integer := 5
?baz is 3"4:b16
?baz := foo

""<name>" (TO LEFT OF ":=") IS NOT DEFINED'

If the user types in a command to modify memory, using a name to
the 1left of the Wiz, err 102 is displayed if that name 1is
undefined.

'MEMORY WILL NOT BE MODIFIED'

The debugger views modifying 432 memory as a very important
operation, and notifies the user when an apparent attempt to modify
memory will not take place. This message is never displayed by
itself, but only after another error message. Other error messages
that can cause this one to be displayed are: 101, 102, 107, 153,
195, and 196. ;

'MUST HAVE EXPRESSION ON RHS OF ":="!

This is really a syntax error. It can happen only when the ":=" is
the last symbol of the command. For example:

?2foo is 374:b16
?2foo :=

causes this error. Memory will not be changed.

'DESTINATION OF ":=" MUST BE A MEMORY REFERENCE'

The ":=" operator of the debugger means "modify memory". Although
different expressions are syntactically legal to the left of the
":=", only those expressions which evaluate to an address
template pair (i.e., a memory reference) may be used.

'RHS OF ":=" MUST BE A NUMBER OR MEMORY REFERENCE'

When modifying memory, the expression on the Right Hand Side (RHS)
of the := must either be a number or another memory reference. The
following example shows legal RHS expressions:



Workstation User's Guide DEBUG-432 Error Messages

109
110
111
112
113

114

115
116
M7

118
119

120

?template b64 is [0, 64] is Ou end
?374:b6l := 0
?374:b64 = 374.8 ~-- same as "374:b64 := 374.8:b6U"

are both legal. The first will zero out the first eight bytes of 374 and
the second example will move the eight bytes starting at offset 8 down to
the eight bytes starting at O.

'ILLEGAL OPERAND TO +'
'ILLEGAL OPERAND TO UNARY -!
'"ILLEGAL OPERAND TO BINARY -!'
'"ILLEGAL OPERAND TO *!
'ILLEGAL OPERAND TO /'

The arithmetic operators supported by the debugger will only operate on
integers or values from memory. To use a value from memory in an
expression a memory reference should be used. For example:

?template extract is [0, 16] is Ou end
?5 + 3"4:extract

will add the integer 5 and the first 16 bits of the segment 3”4, Note
that if an address is used without a template, the default template used
by the debugger is "EXTRACT":

2?5 + 3170f ~- same as "5 + 31"0f:EXTRACT"
'ATTEMPT TO DIVIDE BY ZERO!

'ILLEGAL OPERAND TO REM'
'ILLEGAL OPERAND TO MOD'
'"ILLEGAL OPERAND TO *¥!

See the discussion of error 113.

'ILLEGAL PHYSICAL ADDRESS EXPRESSION'
'ILLEGAL INTERCONNECT ADDRESS EXPRESSION'

When keying in a physical address or an interconnect address, the
expression to the right of the exclamation point(s) must evaluate to a
non-negative number. . ‘

'OBJECT TABLE DIRECTORY ADDRESS IS NOT KNOWN'

The debugger requires that the object table directory be in a known,
consistent state before 1logical addressing is permitted. The "DEBUG"
command will cause the debugger to check the object table directory for
consistency (i.e., the "DEBUG" command will make the object table
directory address known). See also errors 129 - 139,

F-3



DEBUG~432 Error Messages Workstation User's Guide

121

122

123

124
125

126

127

F-li

'BAD VALUE FOR DIRECTORY OR SEGMENT INDEX IN AD'

One (or both) of the two access descriptor coordinates is not a positive
number. For example:

?23°(-1)
would cause this error.
'ACCESS DESCRIPTOR INDEX "<number>" TOO LARGE'

The two coordinates of an access déscriptor must be in the range 0..OFFF
(base 16). 1If either of the coordinates are 1larger than OFFF this
error wWwill be displayed. ’

'CANNOT GET AN AD FROM "<address>", IT IS A DATA SEGMENT!'

This error occurs when specifying the "OF process" clause of a
breakpoint. The rule for evaluating the process address 1is: If the
address is the address of a process as use the address. If it is not the
address of a process _as then use the access descriptor at the given
address. If that access descriptor is not the address of a process_as,
then issue error 123. For example (assume 871 is a process_as and 872 is
not):

?2473.9:ad ~~ AD number 9 in 473 is for process_as
871

?473.8:ad
872"

BA 371.14A43 of 871
BA 371.1A43 of 473.9 -- same as "of 871"
BA 371.1A43 of 473.8 == err 123

~

'BAD LEFT OPERAND TO DOT OPERATOR; EXPECTING AN AD'
'ILLEGAL EXPRESSION USED AS OFFSET'

A legal logical address must be of the form "i"j.k". I, j, and k may be
expressions, however the expressions must evaluate to positive numbers.
I and j are restricted as described above for error 122. Error 124 is
given if the value to the left of the dot, "i"j" in the example, is not
an access descriptor (AD). Error 125 is issued if the expression used
for "k", the value to the right of the dot, does not evaluate to a
positive number or zero.

'"OFFSET EXPRESSION IS TOO LARGE OR NEGATIVE'

A legal address must be of the form "i"j.k". ‘This error is displayed if
(k > OFFFF).

'ADDRESS TO THE LEFT OF THE DOT IS ILLEGAL'

This error occurs when the right operand to the dot is a number. In this
case, the left operand must be a logical address (i.e., it may not be a
physical address or an interconnect address) and the logical address may
not already have an offset.



Workstation User's Guide DEBUG-432 Error Messages

128

129

130

131

132

'OPERAND TO 'SD MUST BE A LOGICAL ADDRESS'

The Segment Descriptor attribute, "'SD", only makes senSe for addresses
which can have segment descriptors. Recall that the definition of 'SD is:

i®j'sb is 2"7i.(16%*j):descr

Since the second entry in the object table directory is the object table
entry for the directory itself, 27i is therefore an object table and
27i.(16*%*j) is the logical address of the object table entry for segment
i"j. The 'SD attribute only makes sense for logical addresses. Error
128 is given if the left operand to "'SD" is not a logical address.

'BAD OBJECT TABLE DIRECTORY: NO I/O, NO BREAKPOINTS'

In response to the "DEBUG" command, the debugger performs a collection of
consistency checks on the object table directory. If these checks fail
then, although logical addressing is supported, breakpoints and I/0 are
not supported.

Experience has shown that the primary cause of this error is giving the
"DEBUG" command after INITing, but before LOADing memory. INITing memory
clears the entire memory array, which does indeed leave the object table
directory in an inconsistent state.

'BAD PROCESSOR OBJECT TABLE: NO I/0, NO BREAKPOINTS'

The "Debug" command causes the debugger to try to find a GDP processor
object which will have the access descriptors for the I/0 and Breakpoint
communication segments. If, while trying to find the processor, it is
discovered that the processor object table (i.e., the segment 271) is not
good, this error is displayed. This error message follows one of messages
276 - 280, which indicates what is wrong with the object table entry for
2"1. Notice that although the processor object table is bad, logical
addressing is supported.

'NO PROCESSORS IN TABLE 271: NO BREAKPOINTS, NO 1/0'

See also error 130. Object table 271 should contain the object table
entries of the processor objects. If the length of table 2”1 is so short
that it cannot contain any processor objects, this message is displayed.
When the debugger searches the processor object table, it is looking for
a GDP processor object (base type = AS, system type = processor access
segment). If the debugger cannot find an object table entry for a GDP
processor object in the processor object table, error 131 is displayed.

'PROCESSOR_AS TOO SMALL: NO BREAKPOINTS, NO I/O'

See also errors 130 and 131. Having found the 1lowest numbered GDP
processor object in the system, the debugger checks to make sure it is
long enough to contain the two access descriptors for the breakpoint and
I/0 communication segments. If not, error 132 is issued.



DEBUG-432 Error Messages Workstation User's Guide

133

135

136

137

139

140

141
142

'BAD I/0 SEGMENT/ACCESS DESCRIPTOR: NO I/O'

Before the debugger begins polling for I/0 (or Breakpoints), it checks
the access descriptor of the communication segment to see that it
references a valid object. If either the access descriptor or the object
table entry is not good, one of the messages 276 - 280 will be displayed
indicating the reason, followed by this message (or message 137) to
indicate the bad segment.

'I/0 SEGMENT HAS BAD BASE/SYSTEM TYPE: NO I/0'

The debugger expects the I/0 (and Breakpoint) communication segment(s) to
have a system type of "GENERIC" and a base type of DATA SEGMENT. Error
message 135 (or 139) will be dispayed if the segment(s) does not have the
correct type. '

'"PROCESSOR_AS TOO SMALL: NO BREAKPOINTS'

It is possible for the processor access segment to be large enough to
contain an I1/0 communication segment access descriptor, but not large
enough to contain a breakpoint communication segment access descriptor.
If this happens, error 136 is displayed. See also error 132.

'BAD BREAKPOINT SEGMENT/ACCESS DESCRIPTOR: NO BREAKPOINTS'
See Error message 133.
'BREAK SEGMENT HAS BAD BASE/SYSTEM TYPE: NO BREAKPOINTS'

See Error message 135.
'ILLEGAL VALUE USED AS ADDRESS'

The SAVE and RESTORE commands require physical addresses to be used as
parameters:

?save 10 to 1100 to :fl:myfile
?save !0.1len 101 to :f1imyfile -- these two are ok

?restore :fl:myfile to !0 to !100
?restore :flimyfile to !0 len 101 -- these two are ok

'NEW VALUE MUST BE A NUMBER'
'ILLEGAL VALUE, MUST BE IN [2 .. 16]'

Both the BASE and SUFFIX commands require that the new BASE (or SUFFIX)
setting be a positive number in the range 2 .. 16. Although it is an
exception, the only place in the debugger where the current SUFFIX
setting does not apply is when the user is inputting a radix. In these
cases the radix used to interpret the number is always 10. For example:

?SUFFIX 16
7BASE 16
?SUFFIX 10



Workstation User's Guide DEBUG-432 Error Messages

143

144

145

146

147

148

149

If ALL numbers were assumed to have the radix given by the most recent
SUFFIX command, the "BASE 16" command given above would be illegal
(16#16# is 10#22#, which would cause error 142) and the "SUFFIX 10"
command would not change the suffix, since 16#10# is 10#16#.

'"TEMPLATE RECURSION (OR NESTING) IS TOO DEEP', <CR><LF>
'WAS JUST ABOUT TO EXPAND TEMPLATE: "<name>"', <CR><LF>
' IN "<name i>"' ...

While evaluating a template application, the template recursion or
nesting became too deep for the debugger to handle. The 1limit is 10.
The debugger announces the error and gives the name of the template it
would have begun to apply to memory if the error had not been caught
(<name>). The debugger then unwinds the stack, giving the name of the
template that was being expanded at that point (<name_i>). The first
<name_i> to be displayed will be the template which used <name>.

'"VALUE "<number>" IS TOO LARGE'
Expressions are permitted in a variety of places in a template. If one
of these expressions evaluates to a number that is larger than 16#FFFFi#,
this error is displayed. The possible places where this can happen is
the byte_start, bit_start, bit_length, and repetition_count.

'MAGNITUDE "<number>" OF NEGATIVE NUMBER IS TOO LARGE'
This is the‘counter part of message 144, if the expression is negative.

'ILLEGAL VALUE IN EXPRESSION'

If during the evaluation of the expression the result is an illegal
value, this error occurs. :

'BIT LENGTH IS NEGATIVE, ONE USED'
In a template application, if the bit string is described with an
expression that evaluates to a negative number, this error is 1issued.
The template application will continue, using a bit length of one.

'REPEAT COUNT IS NEGATIVE, ONE USED'
See error 147.

'BIT STRING FOR U OR S SPEC IS LARGER THAN 32 BITS
If one of the display specifications for a template field is either nU or
nS, the debugger will display the extracted bit string as either an
Unsigned or Signed number. However, the debugger requires that the
extracted bit string be no longer than 32 bits. For example:

TEMPLATE foo is [0,33] is Ou end

would cause the error, when applied to memory.

F=T



DEBUG-432 Error Messages ' Workstation User's Guide

150

151

152
153

F-8

'BAD BINARY ENUMERATION VALUE'

To display an enumeration in a template field, the debugger extracts the

requested bit string from memory and then compares the value extracted
with the value associated with each enumeration constant. If none of the

enumeration values match the value extracted from memory, error 150 is
issued. For example: : '

?TEMPLATE foo is [0,2] is (zero, one, two) END
?10:fo0 :=
?10:foo0

the last line would cause the error to be issued.

'DEFAULT <DISPLAY_LIST> TEMPLATE, "<name>", IS NOT DhFINED'
<DISPLAY LIST> => "DISPLAY LIST" | null string

If the word "DISPLAY LIST" is not part of the message, then the debugger
was trying to find a default for an expression typed into the debugger
directly:

210 := 1 —-- default (for 10) is "B8"

?25 + 10 -~ default (for 10) is "EXTRACT"

210 —-- default is "D3"

2171 —~ default is "AS" (assume 171 is an access

segment)

If the word "“DISPLAY LIST" is part of the message, the debugger was
trying to find a default template to use inside a template, depending on
the bit string descriptor:

TEMPLATE foo is

fo, 81; —-- default display list template is "BS3"

-@1; -- default display list template is "AD"

baz; -- default display list template is "BAZ"
END;

If the debugger tries to use one of these defaults and it is not defined,
error message 151 is displayed.

'NO DEFINITION FOR "<name>", EXPECTING A TEMPLATE'
'"TRYING TO USE DEFAULT, "<name>", BUT IT IS NOT A TEMPLATE'

Just before starting a template application, the debugger looks up the
name being used as the template, If the name is not in the DST the
debugger issues error 152. If the name is in the DST but not defined to
be a template, error 153 is given. For example:

?remove foo
?25"1:fo0 —- This will result in error 152

?remove b8 -— remove default memory modlflcatlon

-- template
?b8:integer := 0 -- redefine "B3" to be an integer

210 := 1 -— This will result in error 153 for "Bg"



Workstation User's Guide DEBUG-432 Error Messages

154

'"VARIANT NESTING IS TOO DEEP'

When the debugger is reading a template definition, it stores the
information relating to variant records in a large internal buffer. At
any one time, the amount of space being used in the buffer is a complex
function of the number of open (nested) variants, the number of when
clauses, and the number and complexity of alternatives in each when
clause. For any but the most extreme cases, the buffer should be ample.

To get rid of this error, break up single when clauses with a long list
of alternatives into multiple when clauses that do the same thing.

If it is suspected that the error is a result of nesting variants too
deep, one solution is to put the inner variants in a different template.

For example:

Template foo is
CASE [0,8] is
when 1 =>
CASE [1,7] is e
END case; D —
END case
END

e Make this a template

The inner part of the nesting can be made into a template, which is then
used by the above template:

Template inner is
CASE [1,71] is
END case;

END

the template foo now becomes:

Template foo is
‘CASE [0,8] is
When 1 =>

[0, inner];
END case;
END

155 'TOO MANY <CHOICES> IN ONE WHEN CLAUSE'

When the debugger is reading in a when clause in the variant part of a
template, it has an internal buffer to store the representation of the
alternatives for the when clause. The maximum number of choices is
approximately 120 if each choice is a single number less than 128. The
minimum number of choices is approximately 20 if each choice is a range,
i..j, where both i and j are too large to represent in 16 bits. If each
alternative is a number too large for 16 bits, about 40 choices would be
permitted.

F-9



DEBUG-432 Error Messages Workstation User's Guide

156

157

159

160

161

162

163

'"OTHERS" MUST BE LAST WHEN CLAUSE IN VARIANT'

'NO TEMPLATE SPECIFIED AND THE DEFAULT, "<name>", IS NOT <def tem>'
<def_ tem> --> "DEFINED" ; "A TEMPLATE"

If an address is input to the debugger and no template is associated with
the address, the debugger selects a default name and tries to use that
name as a template. If that name is either not defined or not a
template, error 157 1is displayed. For 1logical addresses, the name
selection algorithm is actually two level, such that if the first choice
is not defined or not a template a second choice (either AS or DS) is
made. For example (assume 171 is a processor_as):

?remove processor_as -- The first default
?remove as ~- the second default
2171

PROCESSOR_AS
ERR 157: NO TEMPLATE SPECIFIED AND THE DEFAULT, "AS", IS NOT DEFINED

The only templates for which this error is issued is AS and DS.
'OPERAND TO LEFT OF ":" IS NOT AN ADDRESS'
The binary operator ":" is used to say, "apply the template on the right
to the address on the left." If the operand on the left of the colon is
not an address, error 159 is issued.
""<name>" IS NOT DEFINED TO BE A TEMPLATE!
Only templates may be applied to memory. for example:
?remove b16
?b16: integer := 0
?2273:b16
Would cause error 160. Error 160 is issued in response to a template
application typed in directly. This is (slightly) different than the
case presented for error 153.
""{name>" IS NOT DEFINED, EXPECTING A TEMPLATE'
Keying in a template application will cause the debugger to look up the
template name to get its definition from the DST. If no definition is
found for the name, error 161 is issued. See also error 152.
'INTER-PROCESSOR MESSAGE MUST BE AN ORDINAL'
When sending an IPC message, the message must be a non negative number.

'INTER-PROCESSOR MESSAGE TOO LARGE'

The range of values that are acceptable to the debugger for an
inter-process message is 0..16#FFFFi#.

F-10



Workstation User's Guide DEBUG-#432 Error Messages

164

165

166

167

168

169

170

172

'PROCESSOR NUMBER MUST BE AN ORDINAL EXPRESSION'

The only values allowed for processor numbers are non-negative numbers.
'PROCESSOR NUMBER TOO LARGE'

This message is displayed if the processor number is larger than 16#FFi#.
'PROCESSOR NUMBER MUST BE ORDINAL'

The number for a processor in the START command must be a non-negative
number, »

'CANNOT FIND A DEFAULT PROCESSOR'

If the processor number is absent from the start command, then the
debugger will, by default, start the lowest numbered GDP in the system.
If there is no GDP in the system, error 167 will be displayed.

If any of the messages 129-131 were printed during the "DEBUG" command,
an attempt to start the default processor will get error 167.

'"TOP OF MEMORY MUST BE A PHYSICAL ADDRESS'
The value given to the INIT SYSTEM command should be the physical address
of the last byte in memory. The debugger will use the 256 bytes just
below the top of memory for operation of the 43203,

'ADDRESS "<number>"vT00 LARGE; TOP OF MEMORY IS AT MOST OFFFFFF'

The physical address space of the 432 is 24 megabytes, starting at 0.
Therefore the highest address possible is 16#FFFFFF#.

"ADDRESS "<number>" TOO SMALL; MUST LEAVE 256 BYTES FOR DEBUGGER'

The debugger uses the 43203 to interface between the Series III and the
432, The debugger requires 256 bytes of 432 memory in order to make the
43203 work correctly. For example:

?INIT SYSTEM !'255 -- 10#255# is too small, causes error 170
?INIT SYSTEM 1256 —-- 10#256# is ok

The INIT SYSTEM command saves the first 256 bytes of 432 memory,
moves the 43203 control window to the last 256 bytes of memory
and then restores the first 256 bytes of memory. Therefore, the
physical address given on the INIT SYSTEM command should be at
least !512, or some spurious error messages Will be given.,

'THE FIELD "<name>" MAY NOT BE USED BEFORE A DOT

The only template fields which may be invaded via the dot notation are
those fields defined with a bit string descriptor of the form "@<expr>",

F=11



DEBUG-432 Error Messages Workstation User's Guide

173 '"<name>" IS NOT DEFINED, USED IN <where>'
174  '"<pname>" IS NOT A TEMPLATE, USED IN <where>'

<where> => EXPR BEFORE LEFTMOST DOT
i EXPR BEFORE TRAILING """

i 'ACCESS' CLAUSE
1
]

MOST RECENT REFERENCE

These two messages occur as a result of the debugger trying to use <name>
as ‘a template. These two errors are reporting specific instances of
errors 152 and 153, respectively. The following example shows where each
of the errors would occur:

?remove root
?2q is 3" 4:root

?q.lson -— ERR 173: EXPR BEFORE LEFTMOST DOT
?2q” ~- ERR 173: EXPR BEFORE TRAILING """
?rootiinteger = 0

?q.1lson —- ERR 174: EXPR BEFORE LEFTMOST DOT
?2q" -- ERR 174: EXPR BEFORE TRAILING """

?Template root is

?? lson: €0 access node;
?? rson: @1 access node;
??end

?q is 3"U:root

?remove node

?q.1lson. — ERR 173: 'ACCESS' CLAUSE
node: integer := 0 :
?q.1lson. —— ERR 174: 'ACCESS' CLAUSE

?q

lson: 371 —-- applying

rson: 372 -- root to 374

?remove root

?. —— ERR 173: MOST RECENT REFERENCE

If, instead of the "remove root" command (2nd to last in example) there
had been a:

?remove root

?root: integer = 0
?. ~— ERR 174: MOST RECENT REFERENCE

F-12



Workstation User's Guide DEBUG-432 Error Messages

175

176

177

178

179

180

""<{namel1>" IS NOT A FIELD OF TEMPLATE "<name2>"'

Using the dot notation, the user indicates a specific field of a
template. However, when the field names of that template are searched,
the field name is not found. <Name2> is the name of the template that
should contain <namel1>:

?template foo is

?? baz: [0,8] is Ou,/;

?? gorn:[1,8] is Ou;

?%?end

?q is 375:fo0

?q.alpha -- causes error 175

The message displayed for the example would be "ALPHA IS NOT A
FIELD OF TEMPLATE FOO".

'DST IS EMPTY; MAY NOT BEGIN EXPRESSION WITH A DOT'

An expression may begin with a dot if a previous expression either ended
in a dot or could have ended in a dot. However, the OUT command resets
debugger status so that the DST is cleared and all previous expressions
are forgotten. An expression beginning with a dot after an OUT command
and before a reference will get error 176.

'NO PATH TO PRINT: DST IS EMPTY'

This error is given in response to a PATH command when there is no path.
This error will be given right after an OUT command is used.

'INVALID EXPESSION PRECEEDING ", ALL"'

The debugger will only permit a memory reference to precede a ".ALL"
request. Any other expression will result in this error.

'DST IS EMPTY; NO WHERE TO GO BACK FROM!'

This message is displayed in response to a BACK command when the DST is
empty.

'"CANNOT GO BACK ANY FURTHER'

The debugger will not permit the BACK operator to clear the DS3T.
Therefore, when there is only one segment in the "path", then a BACK
command will cause this error:

?path

(6"3:NODE) . RSON(475)

?back

?path

(6"3:NODE)

?back -— will result in error 180

F-13



DEBUG-432 Error Messages Workstation User's Guide

181

182

184

185

186

187

F-14

'EXPRESSION IS TOO COMPLEX'

There are certain places in a templates where expressions are permitted.

These expressions must be buffered and saved away in the debugger's
symbol table, since they are evaluated when the template 1is applied to

memory. If any single expression is too complex (i.e., occupies too much
space to fit in an internal buffer), error 181 is issued.

'WORKING STACK SPACE OVERFLOW'
'WORKING STACK OVERFLOW'

The debugger has a working stack where a most expression evaluation takes
place. If the stack overflows one of these two messages will be
displayed. At this point the current command will be aborted and the
stack will be reset to be empty.

'"THE IDENTIFIER "<name>" IS NOT INITIALIZED; ONE USED'

During the application of a template to memory the debugger has tried to
evaluate an expression involving <name>. Although <name> is defined to
be an integer, it was not given a value. The error can be fixed by
simply removing <name>, redefining it with the desired value, and then
reapplying the template to memory. For example:

?Template ds is

?22?2[by_p:bi_p+1,16] is <row_count>[<8>0u:9,/1];
??end

?row_count:integer

?272:ds -- will cause error 185
?remove row_count

?row_count:integer := 4

?272:ds -- will work ok

'"<name>" MAY NOT BE USED AS A NUMBER'
The only names that are permitted in expressions inside of templates are
names having the type INTEGER. An attempt to use any other type of name
will result in error 186.

'"<name>" IS NOT DEFINED!'
While trying to evaluate an expression, during an application of a

template to memory, the debugger looked up a name and discovered it was
not defined, see also error 185.



Workstation User's Guide DEBUG-U432 Error Messages

188
189
190

191

192

'NORMALIZED BYTE:BIT OFFSET IS NEGATIVE (BYTE)'
'"NORMALIZED BYTE:BIT OFFSET IS NEGATIVE (BIT)'
'BOTH BYTE AND BIT OFFSETS ARE NEGATIVE'

The following model is used when applying templates to memory:

Bit 7 07 07 07 0
Byte 1 0 ~-1 =2
|
"By_p:Bi_p"

The "bit steam" that the template is applied against starts at bit 0 of
byte 0. The picture also shows the where the Byte and Bit pointers are
initially: By p is -1, Bi_p is 7. When the debugger is evaluating a bit
string descriptor, it first evaluates both the byte and bit offset, and
then normalizes them; trying to make both numbers non-negative and the
bit offset less than 8. 1If it cannot make both numbers non-negative, one
of the above errors will be issued, depending on which value, bit offset
or byte offset, was initially negative. For example:

?Template ds is

?? [by _p:bi_p, 16] is <4>[<8>0u:9,/];

?%?end

?2"72:ds
will cause error 188, since "by p:bi p" is "-1:7", and this cannot be
normalized. However by rewriting the bit string descriptor to
"[by p:bi_p+1, 161", the error is fixed:

[by_p:bi_p+1, 161 = [0:0, 16] initially.

""<{name>" IS ALREADY DEFINED'

When defining a memory REFERENCE, if the name to the left of the "IS" is
already defined, error 191 is given. For example:

?foo: integer :=0
?foo is 574

Would result in error 191.

This error also occurs during template definition, if either the template
name has already been defined or if an attempt is made to define two

fields in the same template with the same name,

'ILLEGAL DEFINING EXPRESSION: MUST BE A TEMPLATE APPLICATION'

This error is issued when a memory reference is being defined, but the
expression after the "IS" is not a template application (i.e., a
reference). '



DEBU

194

195

196

G-U432 Error Messages Workstation User's Guide
'""<hame1>" IS NOT <dqﬁ_tem>. THEREFORE "<name2>" IS INVALID'
<def tem> —-> "DEFINED" { "A TEMPLATE" ~

This error occurs during the application of a memory reference. If the
template name used to define the reference is either not defined or not a
template error 194 will be issued. See also errors 152 and 153. For
Example:

?foo is 5" 3:baz
?remove baz

?foo —— "DEFINED" namel: BAZ, name2: FOO
?baz:integer :=
?foo -— "A TEMPLATE" namel: BAZ, name2: FOO

'"ADDRESS "!<number1>" TOO LARGE; !<number2> IS THE TOP OF MEMORY'

This error is issued when a physical address is larger than the last
value given for Top Of Memory. <number2> is the current value for Top Of
Memory being used by the debugger, displayed in the current output radix.

'BAD ADDRESS: "<log_address>". OFFSET IS TOO LARGE.'

. If the offset portion of a logical address is too large, for example if

197

198

F-16

it extends  beyond the end of the segment, this message is given.
Remember that if the segment is an access segment, then the the offset
stands for access descriptor index NOT byte index. For example, assume
that 3”4 is an access segment containing 8 access descriptors (374.0
through 374.7):

?2374.7 —— ok
?2374.8 -— error 196

'"<log address>" IS NOT AN INSTRUCTION OBJECT ACCESS DESCRIPTOR'

The <log_address> 1is not the address for an instruction object.
Instruction objects are required for BA breakpoints. :

'"THE INSTRUCTION OFFSET OF THE ADDRESS "<log address>" IS TOO LARGE'

Before trying to set a BA breakpoint, the debugger verifies that the bit
offset given in the <log address> is actually inside the instruction data
segment. If the bit offset is too large, then error 198 is given.



Workstation User's Guide ' DEBUG-#432 Error Messages

199

200

201

203

204

205

206

'"THE DIGIT "<digit>" IS TOO LARGE FOR INPUT RADIX: <number_10>'

The debugger recognizes any string beginning with a digit and containing
digits and/or the letters "A". "F" as being a number. Once it has
recognized the characters as a number, the debugger attempts to translate
the ascii string into binary, using the current input radix as set by the
most recent SUFFIX command., If one of the characters is not a valid
digit in the current input radix, then that digit (<digit>) and the
current input radix (<number_10>) are displayed. The current input radix
is always displayed in base 10.

?suffix 8 ,
?128 —- error 199, bad digit is 8, input radix is 8.

'RADIX OF NUMBER MUST BE BETWEEN 2 AND 16

The user may override the current default input radix by using the
notation: ‘"r#n#", where r is a decimal number used as the input radix
for the number, n. If r is not in the range 2..16 error 200 is issued.

'"<name>" IS IN SYMBOL TABLE, BUT IS NOT INITIALIZED'

<Name> is an integer, but was not given an initial value. It may not be
used in an expression.

'"TEMPLATES (I.E., "<name>") MAY NOT BE USED AS EXPRESSION PRIMARIES'

This error happens when the <name> of a template is used where a number
should be used.

'""<name>" MAY NOT BE AN IDENTIFIER IN AN EXPRESSION'

The debugger supports a variety of types for names. Integers,
references, and template fields (under certain circumstances) may be used
in expressions. Breakpoints may not.

'"EXPRESSION HAS TOO MANY TERMS'

When the debugger is reading in a template definition it keeps an
internal buffer for expressions. These expressions can occur as the
<{Byte_start>, <Bit_start>, <Bit_length> and <Repetition> parts of a
template field. The "complexity" of each expression is 1limited by the
size of the buffer. An expression does not have too many terms if "“y¥o
+ 2¥n < 240" is true, where o is the number of operands and n is the
number of operators.

'ILLEGAL OPERAND IN TEMPLATE EXPRESSION'

'THE <by_bi> "<number>" MAY NOT BE GREATER THAN OFFFF'
<by_bi> --> "BYTE START" | "BIT START"

This is a sanity check performed by the debugger at template definition

time. The byte start and bit start values must fit into 16 bits, if not,
this error is given.

F-17



DEBU

207

209

210

211

212

213

214

F-18

G-432 Error Messages Workstation User's Guide

'THE AD INDEX "<number>" MAY NOT BE LARGER THAN OFFF'

This is another sanity check performed at template definition time. It is
impossible to have an AD index larger than OFFF, since segments can be at
most OFFFF in length and each access descriptor is four bytes long.

'MAY NOT FOLLOW ACCESS ATTRIBUTE WITH A DOT'
It is not legal to have a template field of the form:
?template foo is
?? €0 access fo0o0.[0,81;
?%end
The access clause must always'come after the bit string descriptor and
may only appear if the bit string descriptor is an AD index or an AD
index preceded by a chain of "@uumber.",

'REPETITION COUNT EXPRESSION IS TOO COMPLEX'

This error is the same as error 204, except that it is explicitly for the
repetition part of a display field.

'NESTING TOO DEEP IN DISPLAY PORTION OF FIELD'

The maximum nesting depth when defining a display specification is 4.
For example: '

?template foo is

??2[By p:bi_p+1, 8] is <3>[<2>[<2>[<2>[0u:9111, /1; - 0k
?2?2[By_p:bi_p+1, 8] is <3>[<2>[<2>[<K2>[<2>[0u:91111, /1; —- err 211
?%?end

'REPEAT COUNT IS TOO BIG'
The 1largest permissable repeat count is 16#FFFF#. Anything larger will
cause error 212 and the repeat count to be ignored (i.e., one will be
used).

"™mnU>" HAS AN ILLEGAL RADIX VALUE'
The <nU> is an integer conversion display specification of the form "nU"
or "nS". If the value of n is not 0 or in the range 2..16 then this
error is glven. For example:

?template foo is

2?2 [0,8] is Ou, 3u, 8s, 13u, 16s; —-- these are fine
?2? [0,8] is 1u, 17u, 212s; -- these cause error 213
??%end

'"<number>" IS TOO LARGE TO BE A DISPLAY WIDTH.'

The largest permissable display width is 64, Attempting to use a larger
value will cause this error, and 16 will be used.



Workstation User's Guide DEBUG-~432 Error Messages

216

217

218

219

221

'VKLUE OF "<name>" IS OUT OF ORDER, <number> WILL BE USED'

For enumerations, the debugger requires that the values of the
enumeration constants be given in order. If they are not, this error is
given, indicating which name is out of order. The debugger will replace
the value specified in the enumeration with the next available value:

?Template foo is
?? [0,8] is (1=>one, 8=D>eight, T=>seven, 64=>sixty four);
??end

This would cause an error when "7=D>seven" is read in. The value for
seven would be 9, the next available value.

'ENUMERATIONS MUST BE EITHER ALL IMPLICIT OR ALL EXPLICIT'

The debugger does not support mixing enumeration constants by giving some
explicit values and some implicit values. for example:

?Template foo is

?? [0,8] is (alpha, beta, gamma, tau, epsilon); ~- ok

?? [1,3]1 is (0=>ha, 1=>ee, 2=>yut, 3=>kah); -= 0K

?? [2,3] is (1=D>uno, 2=>dos, quatro, cinquo); — err 217
?? end

'ENUMERATION VALUE "<number>" IS TOO LARGE; MUST FIT IN 16 BITS'

The debugger restricts enumeration values such that they must fit into 16
bits.

'DISCRIMINANT IS OUT OF RANGE AND NO OTHERWISE CLAUSE'
If, while applying a template to memory, the debugger discovers a variant
discriminant for which there is no WHEN clause, including no WHEN OTHERS

clause, this error is issued:

?template foo is

??case [0,8] is -~ first byte is the discriminant
?? when 0 => '

?? foo: b16;

?? when 1 =>

?? baz: b16;

??end case;

??end

If foo is applied against memory where the first byte has any value
except 0 or 1, error 219 is given.

'INCLUDES NESTED TOO DEEP!'

The maximum nesting of includes is 4,

F-19



DEBU

222

223

224
225
226
227
228

229

G-432 Error Messages Workstation User's Guide

'BAD FILE SPECIFICATION'

For the DEBUG, LOAD, SAVE, RESTORE, INCLUDE, and LOG commands, this error
will be issued if the file specification is not .a valid Series III file
name. -

'NO LOG FILE ACTIVE. LOG COMMAND IGNORED.'

Once a log file has been established via a "LOG file" command, the
debugger permits logging to be directed just to the CRT or Jjust to the
log file via the ">CRT" and ">LOG" commands. If a ">LOG" command is
given and there has been no "LOG file" command, then error 223 is given.
For example:

?2>log -— error 223

?log :flilog
?>crt -—- 0k
?>1log ~- ok

'432 I0 REQUESTED ON ILLEGAL DEVICE'
'ILLEGAL IO FUNCTION REQUESTED BY 432'
'432 REQUESTED INPUT FROM ILLEGAL DEVICE'
'432 REQUESTED OUTPUT ON ILLEGAL DEVICE'
'LENGTH OF 432 IO REQUEST > 132'

After any of these error messages, the values in the first 8 bytes
of the I/0 communication area are printed as follows:

'"FUNCTION_REQUESTED:' <function requested>

'FILE_AFTN: ' <file aftn>
'"FUNCTION_COMPLETED:' <function complete>
'LENGTH: ' <length of io request>

During normal operation, the debugger is polling three different places
to see if any activity is taking place: Breakpoints, I/0, and the
keyboard. If an I/0 request is issued by the 432, then the debugger
checks all of the parameters of that request to insure that they are
valid. If not, one of the above messages is issued, along with the four
16-bit parameters.

'ILLEGAL CHARACTER'

If an illegal character is detected by the debugger, this message is
displayed. The illegal characters to the debugger are (in hex): 0, 1, 5,
6, 7, 8, 9, 0B, 0C, OE, 10, 11, 12, 13, 14, 15, t6, 17, 18, 19, 1A, 1B,
1ip, 1p, 1E, 1F, 60, TE, 7F. The control characters 2("B), 3("C), 4(°D),
OA(LF) OD(CR), OF("0), 18("X), and 7F(RUBOUT) have special meaning at the

‘user interface. Of particular importance is "D, which causes the 8086

230

F-20

debugger to be entered.
'TOKEN TOO LARGE'

The maximum size token permitted by the debugger is 255 characters.



Workstation User's Guide DEBUG-432 Error Messages

231

232

233

'"ILLEGAL END-OF-FILE ENCOUNTERED'

If the debugger encounters an end of file in an INCLUDE file, this error
is issued.

'ILLEGAL SYNTAX'

The debugger has an internally-encoded grammar of the debugger command
language and requires commands to conform to that grammar. The first
input token that caused the error is indicated with an up-arrow
underneath it (*). For example:

23+

would result in a syntax error, with the " pointing just after the "+",
In this case the illegal token is the end-of-line, since the grammar
requires a right operand to "+". Another example:

?template break is

Will cause error 232 with an the * pointing to break; break is a keyword
to the debugger and may only be used as a keyword (e.g., dir break).

<CR><LF>' DEB4#32 I/0 ERROR - ',<CR><LF>

! FILE: ' <filename> '<CR><LF>

'  OPERATION: < 'CLOSING A FILE'

'ATTEMPTING DELETION'

'SETTING CONTROL-C TRAP'

'SETTING SINGLE CHARACTER MODE'
'TRYING TO SEEK'

'TRYING TO SEEK RELATIVE'
'GET_POSITION FOR FILE W/ NO SEEK SUPPORTED'
'"TRYING TO EMPTY' '

'TRYING TO READ IN AN OVERLAY'
'INITIALIZING THE CONSOLE FOR OUTPUT!
'OPENING FOR LOG'

'INITIALIZING THE CONSOLE'
'RE-OPENING OUTER INCLUDE'

'OPENING FOR INCLUDE'

'YOPENING AN LIF'><CR><LF>

! ERROR: ' <UDI error message><CR><LF><CR><LF>

All debugger I/0 errors are reported via this error message. There are
three variable parts. The first is the name of the file/device that is
causing the error. This is preceded by the word "FILE:". The second part

‘of the message is a description of the debugger operation that was being

attempted when the error happened. this 1s preceded by the word
"OPERATION:". The 1last piece of information is the standard UDI
diagnostic for this particular I/O error. This message is preceded by the
word "ERROR:". For more information on the error, see the Series III
user's manual.

F-21



DEBUG;M32 Error Messages , Workstation User's Guide

234

236

- 237

"CURRENT PROCESS IS NOT AT A BREAKPOINT'
This message is issued when a resume command, without a process, is
given, but the default process (i.e., CP, the current process) is not
currently in the process set of broken processes.

'"PROCESS IS NOT AT A BREAKPOINT'
This error is the result of trying to select or resume an explicit
process that is not in the set. The "examine" command will display all
of the processes currently in the process set.

'NO CURRENT CONTEXT'

This error is given in response to any of the current context stack

- operators: UP, DOWN, TOP, or BOTM, when there is no current context

238
239

240

241

242
213
24l
245

(i.e., no call stack to move around on).

'ALREADY AT TOP OF CALL STACK'
'ALREADY AT BOTTOM OF CALL STACK'

Giving either a TOP or BOTM command when the current context is already
located at the top or bottom of the call stack causes these errors.

'REQUESTED STACK DEPTH > 2%##16. ENTIRE STACK WILL BE DISPLAYED'

This error is a result of a "STACK n" command where n > 16#FFFF#. The
entire stack is displayed, even if the current context is not at the top.

'"TRIED TO SET OR ACTIVATE TOO MANY BREAKPOINTS'

The debugger has a limit of 32 active breakpoints at any one time. Error
241 occurs when trying to 'set/activate the 33rd breakpoint. The
corrective action is to get a directory of the breakpoints, "DIR break",
noting the unstarred breakpoints, as these are the ones that are active.
At least one of these breakpoints must either be deactivated or removed.
Then the breakpoint can be set.

Although the debugger has a 1limit of 32 breakpoints, each of these
breakpoints may cause more than one process to break, since processes may
be sharing the same instruction object. Therefore the actual number of
breakpoints that can be set is much larger than 32.

'BAD MEMORY: BREAKPOINT COMMUNICATION SEGMENT IS MISSING'
'BAD MEMORY: ILLEGAL INSTRUCTION OBJECT ADDRESS'

'BAD MEMORY: ILLEGAL INSTRUCTION OBJECT OFFSET'

'BAD MEMORY: ILLEGAL PROCESS ADDRESS' ‘

The debugger is constantly double checking all of the values that it gets
from the 432, since the 432 is still running, even though some of the
processes may have breakpointed. If it finds an inconsistency, while
fielding a breakpoint, one of the four messages above will be given.
Error 242 indicates that the breakpoint communication segment is all of a
sudden missing. Errors 243-245 indicate what value has been discovered
to be bad. :

F-22



Workstation User's Guide DEBUG~432 Error Messages

246

247

248

'"THERE IS ALREADY A BREAK SET AT THIS POINT'

There may be only one occurrence of a particular breakpoint definition
for a particular process.

'"WARNING: PROCESS BROKE DURING ATTEMPT TO RESUME'

To resume from a BA breakpoint that has not been deactivated or removed,
the debugger replaces the 1illegal class code it used to set the
breakpoint with the good class code, single step the process over the
instruction, then sets the illegal class code back into the instruction
object. If, when trying to single step the process over this
instruction, the process "breaks", then this error is issued. This will
"typically" happen if two or more processes are broken at the same
location and are resumed at the same time. For example, assume there are
three process, each in a loop calling a shared instruction object (870C8):

?share: ba 870c8 of all -- assume 3 processes 8°54, 879C, 8766
?start '

?

SHARE: BREAK AT: 870C8.50 OF 8°54
?

SHARE: BREAK AT: 870C8.50 OF 879C

?
SHARE: BREAK AT: 870C8.50 OF 8766
?resume all -- resume all three processes

?

SHARE: BREAK AT: 870C8.50 OF 8754

?

ERR 247: PROCESS BROKE WHILE TRYING TO RESUME
SHARE: BREAK AT: 870C8.50 OF 879C

!;

ERR 247: PROCESS BROKE WHILE TRYING TO RESUME
SHARE: BREAK AT: 870C8.50 OF 8766

The error happens after one process makes it all the way through the
cycle (874F in the example). The final step of that process is to
rewrite the illegal class code. At this point, the other processes that
have not yet single stepped over the instruction will break when they try
to single step, because the instruction now has an illegal class code.

The status of the process is the same as if it had not been RESUMEd. It
is in a consistent state and may be resumed at any time. The error is

really Jjust a warning and a piece of information: "the process did not
get resumed."”

'CANNOT CLEAR TRACE. PROCESS NOT AT A BREAKPOINT'

For any of the tracing breakpoints (BO, BE, BX), the process must be at a
breakpoint or else the trace mode cannot be changed.

F-23



DEBUG-432 Error Messages ' _  Workstation User's Guide

219

250

252

253

255

256

"INSTRUCTION SPECIFICATION MUST BE LOGICAL ADDRESS'

When setting a BA breakpoint, the address of the instruction must be a
logical address, i.e., a segment with an optional bit offset.

'ILLEGAL BIT OFFSET FOR THIS INSTRUCTION DATA SEGMENT'

The debugger checks to see if the bit offset given when setting a BA
breakpoint is possible in the instruction data segment. If not, then
this error is issued.

! NB: NOT THE DEFINING PROCESS'

If a breakpoint is set in an instructionvobject for process, p, and the
breakpoint is actually hit by process q, which shares that instruction
object with process p, this warning is given along with the breakpoint
message when process q hits the breakpoint.

'ILLEGAIL. VALUE USED FOR <BPT>'
<BPT> --> PROCESS OBJECT
i DOMAIN OR INSTRUCTION OBJECT ADDRESS

The process(es) in the "OF <process_list>" clause of a breakpoint must be
a logical address. The same is true for the domain or instruction object
address for "BE" and "BX" breakpoints. An expression which is not a
logical address in one of these places will.result in this error. For
example:

?a: integer := 0 ‘
?ba 8705b of a -— err 252, <BPT> -> PROCESS OBJECT

The error is due to "a" being an integer, not a reference.
'"<address>" MUST BE A LOGICAL ADDRESS'

To define a breakpoint, both the instruction address and the process
access segment address must be logical addresses. For example:

?ba 374b of 1210
is not permitted.
"{ad>" ' MUST BE A PROCESS OBJECT'

When defining a breakpoint, the debugger checks to make sure that the
address given in the "of" clause is a process. If not, then this error
is given.

'"<ad>" MUST BE A DOMAIN OR INSTRUCTION OBJECT ADDRESS!
When defining a BA breakpoint, the location of the breakpoint must be in

an instruction object. When defining a BE or BX breakpoint, the location
of the breakpoint is either an instruction object or a domain.

F-24



Workstation User's Guide DEBUG-432 Error Messages

257

258

259

261

262
263

265
266
267
268
269
270
271
272
273

'NO CURRENT PROCESS TO USE AS DEFAULT'

If a breakpoint is defined and there are no processes currently
breakpointed, the breakpoint definition must contain an "OF <process_ad>"
clause. This should only happen before the first process hits a
breakpoint. For example:.

?dir cp .
ERR 187: "CP" IS NOT DEFINED
?ba 574,122 -- uses the default, cp, as the process

-- and would get error 257
'PROCESS "<ad>" IS NOT AT A BREAKPOINTf

If a RESUME command specifies a particular process to resume, and the
debugger has no record of that process in the set of breakpointed
processes, error 258 is given.

'NO CURRENT PROCESS TO RESUME'

If a RESUME command is given with no specific process and there 1is no
process breakpointed at this time, error 259 will be issued. See also
error 257.

'"<name>" IS NOT A BREAKPOINT NAME'

This error is issued in response to either an ACTIVATE or DEACTIVATE
command where <name> is not a breakpoint name. Activating or
deactivating anything besides a breakpoint does not make sense.

'BREAKPOINT "<name>" IS ALREADY ACTIVE'
'"BREAKPOINT "<name>" IS ALREADY INACTIVE'

Activating an already active breakpoint or deactivating an already
deactivated breakpoint will result in one of these errors.

'FILE SAVE/RESTORE ABORTED: HEAD RECORD MISSING'

'FILE SAVE/RESTORE ABORTED: ILLEGAL LENGTH FOR RESTORE'
'FILE SAVE/RESTORE ABORTED: ILLEGAL LENGTH FOR SAVE'
'FILE SAVE/RESTORE FAILED: ILLEGAL RECORD TYPE'

'FILE SAVE/RESTORE FAILED: ILLEGAL RECORD LENGTH'

'FILE SAVE/RESTORE ABORTED: BAD LLA RECORD'

'FILE SAVE/RESTORE ABORTED: UNEXPECTED EOF IN LIF'

'"FILE SAVE/RESTORE ABORTED: CHECKSUM ERROR IN LIF'

'FILE SAVE/RESTORE ABORTED: BAD DATA RECORD TYPE IN LIF'

These errors occur during a SAVE or RESTORE command. Errors 265, 268,
269, 270, 271, 272, and 273 are RESTORE errors and indicate that the file
that was previously SAVEd has been corrupted.



DEBUG-432 Error Messages Workstation User's Guide

276
277
278

279
280

'<1 2> COORD. OF "<ad>" IS BAD: IT IS BEYOND END OF O.T.'
'<1:?> COORD. OF "<ad>" IS BAD: O.T. ENTRY IS NOT AN 0.D.'
'<1_2> COORD. OF "<ad>" IS BAD: O.T. ENTRY NOT VALID'

'<1_2> COORD. OF "<ad>" IS BAD: NO STORAGE ALLOCATED FOR 0.D.,'
'<1_2> COORD. OF "<ad>" IS BAD: ANCESTOR OF REFINEMENT IS BAD'
<1_2> -=> "FIRST" | "SECOND"

As the debugger interprets addresses, it checks them for validity. If an
error 1is found while decoding an access descriptor or an object
descriptor, one of the above messages is displayed.

The first word of the error message indicates which coordinate of the
access descriptor is bad. For example in the access descriptor "172%, 1
is the first coordinate and 2 is the second. If the error specifies the
first coordinate, errors 277-280 refer to the object descriptor of the
object table which contains the object table entry of the segment. For
example, if the first coordinate of "572" is bad, the 5th object table
entry in the object table directory is bad.

The access descriptor that was being interpretted when the error was
detected 1is displayed, followed by the reason for the error. The
following error abbreviations are used:

0.T. -- object table

0.D., -- object descriptor

Error 276 says that the bad coordinate, when multiplied by 16 (the size
of object table entries), is larger than the length of the object table.

_Error 277 indicates that the object descriptor is not really a valid

281
282
283
284
285
286
287

288

object table entry. The debugger recognizes refinement descriptors,
storage descriptors, and interconnect descriptors. All others (type
descriptors, header entries, and free entries) cause error 277. .

Error 278 says that the "valid" bit of the selected object table entry is
set to "not valid". Error 279 indicates that the "allocated" bit of the
object table entry is set to "no storage allocated". Error 280 says that
while trying to track down the ancestor of a refinement, the debugger ran
into another refinement.

'"RESERVED MEMORY ERROR'

'UNCORRECTABLE ECC ERROR'

'STORAGE ARRAY DATA PARITY ERROR'
'STORAGE ARRAY ADDRESS PARITY ERROR'
'MEMORY NOT PRESENT'

'MEMORY CONTROLLER DATA PARITY ERROR'
'MEMORY CONTROLLER ADDRESS PARITY ERROR'

When the debugger is given the command to LOAD memory, it checks to see
if memory is initialized. This check involves stepping through memory in
16KB steps, reading and writing a byte to see that everything is OK. If
a 432/670 error is encountered, then one of the messages above is issued
and memory is viewed as not being initialized.

'ILLEGAL IPC MESSAGE'

F-26



Workstation User's Guide DEBUG-432 Error Messages

289

290
291
292
293

294
295

'FAILED TO INITIALISE 432 SYSTEM'

In response the the INIT command, the debugger performs the following
steps:

1. read the diaghostic control port (dummy read).

2. output the pattern 16#C2€2# to the diagnostic control
port.

3. idle for 2 milliseconds.

4, read the diagnostic control port, looking for the pattern
16#00FT#.

If step 4 does not find 16#00F7# at the diagnostic control port, the
debugger issues error message 289. For more information see the SYSTEM
432/600 SYSTEM REFERENCE MANUAL.

'IP FAILS TO PERFORM REQUESTED FUNCTION (TIMED OUT)'
'IP PROCESSOR FAULT'

'IP PROCESS FAULT'

'IP CONTEXT FAULT'

These errors are reported when the debugger tries to open a 43203 window
onto memory or interconnect space and the component faults. The only
43203 instruction that the debugger executes is an "ALTER MAP AND SELECT
PHYSICAL SEGMENT". After initiating execution, the debugger waits until
the 43203 asserts "operation complete". If, after 15 milliseconds, the
43203 has not completed the alter map, error 290 is issued and the
operation is aborted.

If the 43203 faulted, the debugger prints . one of the error messages
291-293 to indicate what kind of fault and aborts the operation. Any
further output from a debugger command which gets one of the above errors
is suspect.

The debugger is still operational after one of the above errors. A'
"typical" cause of one of these errors is either a bad connection between
the Series III and the 432 or someone may have turned off the 432.

'PROCESS_DS AD IS BAD'
'BAD PROCESS AS AD DURING ATTEMPT TO CHANGE STATUS'

While trying to resume a process, the debugger must change the status of
a process twice: once to "full" trace and once back to "no" trace. If
the debugger discovers a bad process_as or process_ds during these
operations, these messages are displayed. These are very unusual
messages and indicate something is wrong in the 432 memory image.

F-27



DEBUG-432 Error Messages ‘ ‘ Workstation User's Guide

296

297
298

'BAD EOD FILE, EXCEPTION '<exc>'H : '<outcome>'<CR><LF>
<cause><CR>KLF>
<detail><CR><LF>

<exce> ==> <4 _digit_hex>
<outcome> ==> 'LOAD FAILED'|'LOADER WARNING' |'LOAD ABORTED'
{cause> ==> 'FATAL ERROR'|
'UNEXPECTED EOF ON CONSOLE INPUT'|
'MISSING EOD SPECIFICATION IN PREAMBLE']
'COUNT FIELD FOR ITEM SIZE > 2 IN PREAMBLE'|
'EXPECTED SOG ITEM SPECIFICATION IN PREAMBLE'|
'ITEM SPECIFICATION ALTERED IN PREAMBLE'|
'ITEM SPECIFICATION ADDED IN PREAMBLE'}
'UNEXPECTED EOF IN EOD'|
'"UNKNOWN ITEM ENCOUNTERED IN EOD'|
'"EOG HAS NO CORRESPONDING SOG: EOG EOD ASSUMED'|
'SOG STACK OVERFLOW')
'"EODRESTORE CALLED WITHOUT MATCHING PREVIOUS "EODSAVE"'|
'LOOKING FOR SEGMENT DESCRIPTOR ITEM'|
'LOOKING FOR ADDRESS ITEM';
'LOOKING FOR DATA ITEM')
'REACHED END OF FILE WHILE LOADING DATA'|
{detail> ==> 'ITEM: '<ind>', TYPE:'<type>',<CR><LF>
[<item info>]
<ind> ==> <2_digit_hex>
{type> ==> <2_digit_hex>
<item_info> ==> 'SOURCE: '<source>', '<valid?>', .
'<size mode>', SIZE:'<size>[', TYPE BYTE'I]

<{source> ==> 'DEFAULT'] 'PREAMBLE'} 'UNKNOWN'
<valid?> ==> 'VALID'}'INVALID'
<size mode> ==> 'FIXED'}'VARIABLE'

<size> ==> <2_digit hex>

When the debugger loads a file it must be in a specific format. The
debugger checks the file as it loads it to verify that it is in the
correct format. If the file does not conform this error message is
issued.

If a second attempt to load the same file results in the same error
message, the file is either not an output of LINK-432 or UPDATE-432 or
the file has been corrupted, for example while being downloaded from a
host computer,

'OVERFLOW DURING ¥¥!
'OVERFLOW DURING ¥

The debugger checks for overflow while> doing multiplication and
exponentiation. '

F-28



Workstation User's Guide DEBUG-432 Error Messages

299
300

301

302

31

312

313

'"CANNOT FIND PROCESSOR OBJECT'
'CANNOT FIND PROCESSOR COMMUNICATION OBJECT'

When the user sends a local IPC to a specific processor, the debugger
must find the processor object and find that processor's 1local
communication object. If either of these searches fails, then one of
these messages is given. For example, if the base or system type of the
communication object is incorrect, this message will be displayed.

'PROCESSOR COMMUNICATION OBJECT IS LOCKED'

When sending an IPC, the debugger must write into either the 1local or
global communication object. If the debugger finds the object locked, it
does not write the message into the object, it does not send the IPC
signal, and it reports this error message. There are two possible
reasons for this error message: (1) The debugger IPC command was
executed just when a processor was either reading or writing the
communication object (unlikely) or (2) a processor faulted while trying
to read/write the communication object and never unlocked it.

'AN IPC MESSAGE IS PENDING AT THE PROCESSOR COMMUNICATION OBJECT'

When sending an IPC, the debugger checks to make sure there is not
already a message in the communication object. If a message is already
there, this error is reported. The most likely reason for this error is
that the processor is faulted (not executing) and this is the second IPC
command executed by the debugger (i.e., the message from the first IPC is
pending).

'NUMBER, "<number>", IS TOO BIG, DOES NOT FIT INTO 32 BITS

If a number is input which, when the debugger is convebting from ascii to
binary, does not fit into 32 bits, this error is given.

'"REMOVE ALL ABORTED'

This message 1s the second message, after a specific error message
indicating which symbol could not be removed, and why. This might happen
if a breakpoint cannot be removed because the 0S has made the instruction
data segment temporarily inaccessible. Retrying the "REMOVE ALL" may
work in this latter case.

'TOO MANY TEMPORARY SYMBOLS ACTIVE'

The debugger does not enter symbols into the debugger symbol table until
the definition is complete. This requires that the debugger buffer the
definition until it is finished, If the definition of the symbol is so
large (e.g., a template) that it does not fit into this buffer, this
error is issued.

F-29



DEBUG-432 Error Messages Workstation User's Guide

This is a caution message. The definition can continue, and as long as
no errors happen, everything is OK. However, if an error is made after
this error message, that part of the debugger's symbol table used to
temporarily hold the definition is made inaccessible for the rest of this
debugging session. In the worst case, this will just mean a 1loss of
performance. The buffer is so large that only test cases have caused
this error.

314 'BAD CONTEXT FOUND WHEN MOVING DOWN CALL STACK!

While trying to execute one of the stack commands, TOP, DOWN, BOTM, UP,
or STACK, the debugger found that a context on the call stack is
inconsistent. The value of "ce¢" is not changed if the command is TOP,
DOWN, BOTM, or UP. In the case of a STACK command, the last context to
be displayed is the last good context. The next context that would have
been displayed (the "previous" of the last one displayed) is probably the
bad context.

315 'UNRECOVERABLE IP. FAULT'

This error will be announced after one of errors 290 - 293. It indicates
that the debugger tried twice to get ALTER MAP to work, but failed. At
this point, the user should re-initialize the system. The INIT SYSTEM
command will enable the user to examine the contents of memory.

316 'NO ADDRESSING POSSIBLE, MUST INITIALIZE 432 HARDWARE'

If a physical or interconnect address is keyed in to the debugger, but
the debugger detects that the IP board is not initialized, then the
address is not evaluated. Before 432/670 system memory may be examined
or modified, the user must initialize the system via either INIT or INIT
SYS.

318 'IP NOT WORKING. SYSTEM UNINITIALIZED'
319 'BREAKPOINTS ARE NOT SUPPORTED FOR THIS MEMORY IMAGE'

This error occurs if the user attempts to set a breakpoint after having
received one of the error messages: 129-132, 136-139 in response to the
DEBUG command.

320 'TOP OF MEMORY ADDRESS IS TOO LARGE'
When trying to do an INIT SYSTEM command, the IP board reported back to
the debugger that some part of the last 256 bytes of memory are not

present. This means that the address given in the INIT SYSTEM command is
too large.

F-30



Workstation User's Guide DEBUG-432 Error Messages

321

322

323

324

326

327

'TLLEGAL EXPRESSION PRECEDING DOT, NOT A REFERENCE.

The dot operator is expecting a memory reference preceding it. This may
be in the form of an explicit template application, a REFERENCE variable,
or a field of either of these defined with an "@<expr>" kind of bit
string descriptor. For example:

?template node is
??1son: @0 access node;
??1lson: @1 access node;

?%?end;

?p is 473:node :

?p.1lson -— the "p" before the dot is ok

24" 3:node.lson ~— the "4”3:node" before the dot is ok
?p.lson.rson -~ the "p.lson" before the dot is ok

?foo: integer := 5

?foo. -— the "foo" before the dot causes err 321

'ILLEGAL SYNTAX. ADDRESS MAY NOT FOLLOW "BO"'

The legal event breakpoints are "call", "fault", "inst", and "ret". These
are the only options when setting an event breakpoint:

BO FAULT -- 1s ok
BO 973.7A3 -- is not ok

'"ILLEGAL SYNTAX. ("CALL"™ | "FAULT" | "INST" | "RET") MUST FOLLOW "BO"!'

See also 322. These events only make sense for an event breakpoint
(i.e., Break On <Event>).

'LEFT OPERAND TO 'SD IS ILLEGAL

The 'SD attribute of an address returns a reference to the object table
entry for the underlying segment being addressed. The only kinds of
addresses that use object table entries are logical addresses. All other
kinds of addresses (or any other non-address operands) used as a left
operand to 'SD will give error 324,

'432 IS UNINITIALIZED, ADDRESSING IS NOT SUPPORTED'

If the U432 is not initialized and an address is keyed in, this error may
be issued. The response is to initialized the 432 (e.g., via the INIT or
INIT SYSTEM command).

'ILLEGAL PHYSICAL ADDRESS!'

F-31



DEBUG-432 Error Messages " Workstation User's Guide

328

329

330

332

'BAD IP WINDOW OPERATION ON WINDOW #n. ENTRY FAULT CODE:
<reason>+'

{reason> => 'READ/WRITE' -

{ 'BUS ERROR'

i "ACCESS RIGHTS'
i

i

i

i

'MEMORY OVERFLOW'
'ACCESS DIRECTION'
'POST TERMINATION'
'PARTIAL BLOCK OVERFLOW'

Before every 43203 ALTER_MAP_AND SELECT_PHYSICAL SEGMENT operation that
the debugger performs, it checks the status of all the "windows" (i.e.,
43203 map entries). If a window has faulted, then error 328 is displayed
and the entry fault code bits are decoded and displayed below the error
message. The debugger does not execute the ALTER MAP it was about to
attempt, but instead goes back to prompt the user for a command.

If this error occurs, the most recent debugger operation(s) on memory are
suspect. For more information see the "iAPX 432, INTERFACE PROCESSOR,
ARCHITECTURE REFERENCE MANUALM (Order no. 171863-001).

The user may choose to ignore the error as a temporary glitch or to
attempt to discover the cause (e.g., via the interconnect registers).

'FATAL IP ERROR'

Before every 43203 ALTER PHYSICAL MAP _AND SELECT DATA SEGMENT operation
the debugger performs, a check is made to see if entry map 4 (the 43203
control window) is still accessible, If it is no longer accessible,
error 329 is issued. This error "typically" is the result of a bad
connection between the Series III and the 432/670. Another "typical"
occurrence of this error is when the power is turned off in the 432/670
system while the debugger is reading or modifying system memory.

'"CANNOT SET TRACE , PROCESS NOT AT A BREAKPOINT'

The trace breakpoints, BE, BX, and BO, may only be defined/activated for
processes currently at a breakpoint. Note that BA breakpoints may be
defined/activated any time, regardless of the current breakpoint status
of the process.

'"<ad>" IS NOT A PROCESS ACCESS DESCRIPTOR'

This error is in response to a "STACK OF <ad>" command and the <ad> does
not refer to a process. To find out what kind of object the <ad> does
point to, type either "<ad>", which will display the object and the
default template name selected, or type "<ad>'SD" which will display the
associated object table entry with the AD.

'TAB FORMAT: "nT" NOT SUPPORTED, X FORMAT USED"

This error is in response to an attempt to input "nT" as part of a
display list in a template field. The format is not supported.

F-32



Workstation User's Guide DEBUG-432 Error Messages

333

335

336
337
338
339
340
341
342
343
344
345

346

'X FORMAT NUMBER TOO BIG (255 IS MAX), 1 USED'

The maximum value permitted when using the "X" notation to indicate
blanks is 255. If more is needed (very unlikely) the field may be
repeated (e.g., using the repeat count) as many times as is desirable.

'NO PROCESSES TO RESUME'

'BAD MEMORY. ILLEGAL CONTEXT DATA SEGMENT ADDRESS'
'BAD MEMORY. ILLEGAL DOMAIN ADDRESS'

'BAD MEMORY. ILLEGAL CONTEXT OBJECT ADDRESS'

'BAD MEMORY. ILLEGAL PROCESS AD FOR BREAKPOINT'

'BAD MEMORY., ILLEGAL PROCESS DS FOR BREAKPOINT'

'BAD MEMORY., ILLEGAL CURRENT CONTEXT FOR BREAKPOINT'
'"BAD MEMORY. ILLEGAL PREVIOUS CONTEXT FOR BREAKPOINT'
'BAD MEMORY. ILLEGAL CONTEXT AD FOR BREAKPOINT'

'BAD MEMORY. ILLEGAL CONTEXT DS FOR BREAKPOINT!

'BAD MEMORY. ILLEGAL DOMAIN AD FOR BREAKPOINT'

The error messages 336 - 345 imply that the memory image has been
corrupted. These errors happen between the time that the debugger
discovers a process at a breakpoint and the time when the breakpoint is
announced on the CRT. During this time, the debugger is performing a
variety of internal bookkeeping functions using information from : the
process and has run across inconsistent values in memory.

Unfortunately, these errors occur when the debugger is attempting to get
the necessary information to announce the breakpoint to the user. Since
the debugger discovers bad memory, it will not attempt to announce the
breakpoint.

'ILLEGAL EXPRESSION FOR TOP OF MEMORY!

The INIT SYSTEM command requires the physical address of the top of
memory as a parameter. The debugger will restrict all physical addresses
to be below this value, until another INIT SYSTEM, INIT, or DEBUG command
is given. The debugger uses the 256 bytes just below the top of memory
for operating the 43203 component.



DEBUG-432 Error Messages ’ Workstation User's Guide

347

348

349

'FIELD "<name>" NOT FOUND'

When 'using the field of a reference in an expression or as the
destination of the ":=" operator (i.e., to modify memory), this error
will appear if the field is not part of the reference., This may occur if
the field is part of a variant that is not accessible due to the current
value of the disciminant:

?template foo is

??val: [0,8] is Ou,/; -- displays the discriminant, [0,8]
??case [0,8] is

?? when 1 =>

?? baz: [1,8] is Ou,/;

?? when others =>

?? gorn:[2,8] is Ou,/;

??end case.

?%end

?15:foo -- display the template, show what's there
val: 5

gorn: 7 -- notice the field "baz" did not display
?p is !5:foo0

?p.baz = 0 -- will get error 347

'ILLEGAL MEMORY REFERENCED BY FIELD "<name>"

This error occurs when all of the memory referenced by a field of a
template is beyond the end of the actual memory present., This error
happens when the template field is being used either as the destination
of the ":=" operation or as part of an arithmetic expression.

Whenever a template is used in conjunction with a logical address, the
debugger 1limits the actual memory the template can use to the memory
between the logical address and the end of the segment referenced by the
logical address. If template field references memory outside of that
range (when it is used in an expression or as the destination of the ":z"
operator), this error will be displayed.

'"BREAKPOINT INCOMPATIBLE WITH PREVIOUSLY DEFINED ONE(S)'

The debugger uses the trace mode of 432 processes to accomplish the
setting of certain breakpoints (e.g., BO inst, BE 475), This trace mode

.only supports one setting: full trace, flow trace, fault trace, or no

trace. Therefore, for one process it is not possible to set breakpoints
that require a combination of settings. The combinations not allowed are:

BO INST not permitted with BE/BX
BO FAULT not permitted with BE/BX

and only one "BO" breakpoint may be set for a process at any one time.



Workstation User's Guide DEBUG—432 Error Messages

350

351
352
353
354

356

357

358

359

'TOO MANY TRACE DEFINITIONS SET FOR PROCESS'

The maximum number of breakpoints that the user may set and have active
is 32. If an attempt is made to set a thirty third active breakpoint,
this error may be displayed.

'BAD MEMORY: PROCESS GLOBALS ACCESS LIST WAS NOT FOUND'

'BAD MEMORY: CANNOT FIND DEBUGGER STATUS AD IN PROCESS GLOBALS'
'BAD MEMORY: CANNOT ACCESS DEBUGGER STATUS DS'

'BAD MEMORY: CANNOT CLEAR BREAKPOINT'

These errors (351 - 354) indicate that the 432 memory image has been
corrupted. The Series III resident debugger, while attempting to set or
clear a breakpoint, has come across an apparent inconsistency in the
process/breakpoint structure.

Error 351 indicates that the process does not have a Global access
segment AD., Error 352 indicates that the fifth slot in the global access
segment is null. Error 353 indicates that segment indicated by the fifth
AD in process globals is not a data segment AD.

'ONLY "BA" BREAKPOINTS MAY BE SET FOR ALL PROCESSES'

The "OF <process_list>" clause of a breakpoint may only read "OF ALL" for
Break At (BA) breakpoints. For any of the tracing kinds of breakpoints,
BO, BE, or BX, only breakpointed processes may appear in the "OF
<{process_list>" clause:

?examine
PROCESSES CONTEXT
9716 3™F

CP: 9™1B 571
9721 7728

?bo call of 9721,971b -- ok

?bo call of all -- causes error 356

'BAD MEMORY. ILLEGAL CONTEXT AD "<ad>" ON THE STACK'

This error typically occurs when the STACK command is issued for an
executing process. The reason for the error is that the call stack for
the process is probabaly being updated by a processor at the same time
that the debugger is attempting to display it. :

This error occurs when the "previous" field of a context_AS points to a
segment that is not a context access segment.

'"<{addr>" MAY NOT BE USED AS AN INSTRUCTION ADDRESS'

Because it is not a logical address. |

'INPUT LINE TOO LONG. INCLUDE ABORTED

This error should only happen if the include file is a binary file. The

error occurs when there are too many characters between end of lines.

F-35



DEBUG-432 Error Messages Workstation User's Guide

360

361

362

'"<{file>" IS A REVISION FILE AND CANNOT BE LOADED'

The Linker can produce two outputs, a loadable EOD and a revision EOD.
Error 360 is issued if the file given in a LOAD or DEBUG command was a

revision EOD, not a loadable EOD.
'NO CURRENT PROCESS'

This error occurs in response to one of the stack commands, UP, DOWN,
TOP, BOTM, or STACK, when there is no current process.

'OUT OF MEMORY BOUNDARIES'

This error is announced whenever an attempt is made to address memory
that, according to the debugger's information, is not really present in
the EV system. The "typical" cause of this error is when memory is
corrupt or uninitialized. For example the DEBUG command might result in
this error if memory has not been previously loaded. Another example of
when this error might occur is after pulling a memory board from the EV
and then attempting to load memory via any of DEBUG, LOAD, or RESTORE,
but not having enough memory to hold the desired image.

The VERSION command may be used to get the debugger to print out its
current assumptions about the size of memory. Either the INIT command
(not INIT SYSTEM) or the DEBUG command will cause the. debugger to find
the Top Of Memory.

F-36



APPENDIX G
FORMAL DEFINITION OF UPDATE-432 COMMAND SYNTAX

This appendix contains a formal definition of thé UPDATE-432 command
syntax (including the relevant portions of the RUN command syntax).
The definition uses a variant of Backus-Naur Form (BNF). The following

- conventions are used:

{identifier> An identifier in angle brackets is expanded in
another line. E.g. <template_definition>

upper_case_ids Keywords are in upper case.
E.g. DEBUG, TEMPLATE, ALL

lower_case_ids Lower case identifiers denote lexical classes
E.g. identifier, file name

"abe" Character strings in double quotes stand for
literal items. E.g. ")", "=>"

[ ... 1 - Square brackets enclose optional items.

( eee ) Parenthesis enclose several items; one of
these items must be used.

{ ...} Braces surround an item or set of items which
may be repeated zero or more times.

—-— A double hyphen precedes comments

aib A vertical line denotes exclusive or.

e

Concatenate. the characters on either side of
the exclamation point.

The following is the definition of the UPDATE command line:

<UPDATE Command> ::= [<Dev>]"RUN" [<Dev>]"UPDATE" <Command Tail> cr_1f
<Command Tail> ::= [<Dev>]<Path Name> [<Control List>]

<Control List> ::= {<Control>} [<Continued Line> | <NC Comment>]
<Continued Line> ::= "&" [{ ascii }] er_1f <Control List>

<NC Comment> ::= ";" [{ ascii }]



UPDATE-432 Syntax Workstation User's Guide

<Control> ::= "REVISION" "(" <Path Name> ")"
i "NEW" "(" <Path Name> ")"

<Path Name> ::= <Dev> <Filename>

<Dev> ::= —- a valid ISIS device name of the form :fn:, where
--n is an integer between 0 and 9

<Filename> ::= =~ a valid ISIS filename of the form name.ext
ascii ::= == an ASCII character other than a cr_1f

er 1f :i= =-- a carriage-return line-feed pair



APPENDIX H
UPDATE-432 ERROR MESSAGES

When UPDATE-432 detects an error, it sends a message to the user
identifying the nature of the error. This message contains the
following information: :

A.

The class of the error. There are three classes of errors:

. Warnings
. User Fatal Errors

1
2
3. Updater Internal Errors

Errors belonging to classes 2 and 3 terminate execution; class 1
errors, however, do not abort the Updater.

B.

The type of the error. There are five types of errors:

. EOD Errors

. Object Manipulation Errors

. Syntax Errors

. _UDI Errors

. Generic Errors (i.e. all others)

V=W =

The exception code (a unique number identifying the error) and
the message text (occasionally including supplementary
information unique to each error). The following
exception-code/ message-text combinations may be received
(excluding UDI exceptions). '




UPDATE~432 Errors

Code

“F001
F002
F003
Foou
F005
F006
FoO07
F008
F009
FOOA
FOOB
FooC
FooD
FOOE
FOOF
FO10
FO11
Fo12
FO13
FO14
F015
F016
FO17
F018
FO19
FO1A
FO1B
FO1C
FO1D
FO1E
FO1F
F020
Fo21
Fo22
F023
Fo24
F025
F026
F027
F028
Fo29
Fo2A
F02B

Fo2C
XXXX

_Workstation User's Guide

Message Text

SOG STACK OVERFLOW

MODULE NOT FOUND IN REVISION EOD

OTM ENTRY DOES NOT MATCH ANY SUCH OBJECT IN PMS
NO OBJECTS IN PMS REFERENCED BY SUCH OBJECT TABLE
BAD CONNECTION IN =WHICH STACK_PTR= (UPDEPH)
DUPLICATED STORAGE DESCRIPTOR IN AN OBJECT TABLE
CAN'T FLUSH ALLOCATED MEMORY

DUPLICATED OBJECT IN PMS, ONLY FIRST PROCESSED
TRYING TO INSERT OBJECT IN EMPTY MODULE RING
COUNT ITEM DOES NOT FOLLOW ADDRESS ITEM
UNMATCHED MODULE SOG

CAN'T INSERT MODULE, MEMORY WON'T FLUSH
UNMATCHED SO0G

ILLEGAL INDICATOR BYTE

PREMATURE END OF FILE

TRYING TO POP EMPTY SOG STACK

BAD CONNECTION IN =SELECT FILE= (UPDFIL)

BAD CONNECTION IN =WHICH FILE_PTR= (UPDFIL)
BAD =SEEK_FORWARD= (UPDFIL)

BAD -SHORT SEEK_BACK= (UPDFIL)

NO REFERENCE ITEM AFTER UPDATE MODULE SOG
UNCONTIGUOUS MODULE GROUPS

MODULE SOG EXPECTED BUT NOT FOUND

COORDINATES ITEM MISSING

EMPTY MODULE GROUP

UNMATCHED EOG

OT-MODULE MET BEFORE P-MODULE

MISMATCHED OBJECT COUNT

BAD PREAMBLE

ORIGIN ITEM MISSING

TIMESTAMP ITEM MISSING

PRINTNAME ITEM MISSING

EOD EOG ITEM MISSING

UNIQUE IDS DON'T MATCH

BAD COMMAND LINE SCAN

FILE NAME TOO LONG OR MISSING

OPEN PARENTHESIS MISSING

CLOSED PARENTHESIS MISSING

MISMATCHED PREAMBLES

BAD COMMAND

FAILED TO RENAME INTERNAL FILES

NO FILE NAME WAS EXPECTED

OTM WAS EXPECTED IN =PROCESS OTMS IN REOD=
(UPDREH) - T T
EOD SOG DOES NOT SPECIFY A REVISION EOD
UNRECOGNIZED ERROR CODE ,



LATE DEFINITION (con’t.)
Id: A Field has three optional parts:
veral Form: [Label] [Bit__identification] [IS Display__list]

abel: This is the name of the field. It is displayed when the
template is used to examine memory, unless the ::
notation is used. A field is referenced by using its
name (e.g., cc.domain).

ieneral Form: ld{}

lit__identification: Describes which bits are to be displayed
by the field.

ieneral Form:

[ Texp! [: Texp], Texp |
@ number [ACCESS id]
id

[@ number .]...

lisplay__list. The list of conversion and editing specifica-
tions to be followed for this field. The specifi-
cations are performed from left to right.

ieneral Form: Display__elem [, Display__elem]...

Display__elem: Either gives a method to translate bits into
ascii characters, or describes the actual
ascii characters to be printed on the CRT.
A Display__elem may be prefixed with a
repeai count.

General Form:

Base‘U : Widtht‘
BaseS : Width
Enumeration'?
ASCI
[< Texp'>1 did g
I -- newline i
string
number10X
‘[ Display__list ]

*Base and Width are decimal numbers (i.e., number10).
HEnumeration: Translates values to text

General Form: ( Enum__item [, Enum__item]...)

Enum__item: [number =>] :Isc:ring}

permissable expressions inside of templates.
Form:

[Texp { £ }]... Tterm

—

Tterm {;}} Tprimary

id
number
ary: (Texp)
BY_P
BI_P

[ ] ®

—-N

DEBUG-432
REFERENCE CARD

Order Number: 172097-001




CONVENTIONS

BOLDFACE -- keywords and punctuation to be entered verbatim
(the debugger is case insensitive)

italics -- variable information

[ ] -- indicate an optional field

-- previous field may be repeated

{ } -- one and only one field must be selected

CONTROL CHARACTERS

RUBOUT Delete preceding character

CTRL-D Interrupt 432 debugger execution and enter DEBUG-86
CTRL-Q Resume console display

CTRL-R Redisplay current line or previous command line
CTRL-S Suspend console display

CTRL-X Delete all characters since last carriage return

CTRL-C Return to debugger command mode, 432 /O disabled

CTRL-B Enter mode which allows 432 I/O and debugger com-
mands. (Precede each 432 input line with %)

CTRL-O Enter mode which allows only 432 1/O.

THE COMMAND LINE
General Form: Command [; Command]... <CR>

<CR> Carriage return. Terminates a command or comment.
- Terminates a command line and starts a comment.

SYSTEM ‘CONTROL
INIT [SYSTEM P__addr] -- initialize the 432 hardware

LOAD  s-lll__file -- load a linked 432 program
DEBUG [s-/ll__file] -- [load file and] enable logical
-- addressing
START [number] -- start GDP number
Expri1 } -- broadcast Expr2 to processor Expri1
IPC { ALL J’ Expr2 -- broadcast Expr2 to all processors

ENVIRONMENT CONTROL

EXIT -- exit the 432 debugger
INCLUDE s-//i__file [LIST] -- include a file of debugger
-- commands
BASE [number] -~ display (or set) the default output
-- base :
SUFFIX [number] -- display (or set) the default input
-- base
LOG [s-111_file] -- log all CRT interactions on a file
>LO0G -- direct output to the log file only
>CRT -- redirect output to the CRT only
MODE -- display the mode set by CTRL-C,
-- CTRL-B, CTRL-O
VERSION -- display debugger version number
-- and status

ADDRESSING (i.c., Addr)

There are three kinds of addresses:

NAME KIND GENERAL FORM!

P__adar Physical ! number

I_addr Interconnect 'Y number

L_addr Logical number 1 number {.'number
! number

TAny expression which evaluates to an integer may be
place of a number, however it must be enclosed in parentt

An id which has type REFERENCE may be used anywhere an A
pears, but not where P__addr, I_addr, or L__addr are used.

MEMORY EXAMINATION

L. id2]...
General Form: Addr [: id1] [LENGTH number]
ALL

Addr: Where examination is to begin.
id1: Template name. If absent, a default will be selected.

id2: Template field name(s). If present, the rightmost field
displayed. Otherwise, the entire template is used.

LENGTH number. How many times to re-apply template. If
LENGTH 1 is used.

ALL: Re-apply template until entire segment (or 64K) is dis

Examples:
118:descr ~ -- starting at byte 18 of memory, apply templ.
-- descr .
111 -- use the default to display segment 111
114:b16 -- display bytes 4 and 5 of interconnect spac:
-~ (register 2)
1713:mem all -- using template mem, display all of segmer
ccirad len8 -- show full rights of first 8 ADs of current cc¢
cp.status -- display the status field of the current proc:
BREAKPOINTS
BA Adadr
. .4 .. ) BE Adadr Lt
General Form: [id :] BX Addr [OF Process__list]
BO Event

id: Breakpoint name. |f absent, debugger will select a nar

Addr: BA breakpoints use an instruction address. If the
tion bit offset is absent, the default is taken from
struction segment header.

BE and BX breakpoints use an instruction segr
domain AD.

FAULT
. J INST
Event: CALL

RET

ALL -- only used with BA"
fThe [OF process__list] field defaults to GP (current proce

' Process._list: {Addr [, Addr]... ] ~-- process AD(s)

id L .
ACTIVATE =ALL] -- id is breakpoint name
DEACTIVATE { ’:LL} -- id is breakpoint name
RESUME [Process__list] -- restart the processes (defaults
EXAMINE . —- list the broken processes

SELECT Addr -- select a new default process ((



ADDRESSING (i.e., Addr)

There are three kinds of addresses:

NAME KIND GENERAL FORM!

P__addr Physical Y number

|_addr Interconnect " number

L__addr Logical number 1 number {;number}
! number

TAny expression which evaluates to an integer may be used in
place of a number, however it must be enclosed in parentheses.

An id which has type REFERENCE may be used anywhere an Addr ap-
pears, but not where P__addr, |_addr, or L__addr are used.

MEMORY EXAMINATION

[ id2]...
General Form: Addr [: id1] [LENGTH number]
ALL

Addr: Where examination is to begin.
id1: Template name. If absent, a default will be selected.

id2: Template field name(s). If present, the rightmost field will be
displayed. Otherwise, the entire template is used.

LENGTH number: How many times to re-apply template. If absent,

LENGTH 1 is used.
ALL: Re-apply template until entire segment (or 64K) is displayed.

Examples:
118:descr -~ starting at byte 18 of memory, apply template
-- descr
111 -- use the default to display segment 111
114:b16 -- display bytes 4 and 5 of interconnect space
' -- (register 2)
1713:mem all -- using template mem, display all of segment 1713
ccirad len 8 -- show full rights of first 8 ADs of current context
cp.status -- display the status field of the current process
BREAKPOINTS
BA Addr
. t.,.1 ) BE Addr gt
General Form: [id :] BX Addr [OF Process__list]
BO Event

id: Breakpoint name. If absent, debugger will select a name.

Addr: BA breakpoints use an instruction address. If the instruc-
tion bit offset is absent, the default is taken from the in-

struction segment header.
BE and BX breakpoints use an instruction segment or

domain AD.
FAULT
_JINST
Event: CALL
RET
. .. | Addr [, Addr]...| -- process AD(s)
Process _list: {ALL } - only used with BA
tThe [OF process__list] field defaults to CP (current process).
id . .
ACTIVATE lALL -- id is breakpoint name
DEACTIVATE[fLL} © - id is breakpoint name
RESUME [Process__list] -- restart the processes (defaults to CP)
EXAMINE -- list the broken processes

SELECT Addr -- select a new default process (CP)

CALL STACK OPERATORS (Operate on CC, the curren

STACK [number] [OF Addr] -- display call stack for proc:
-- (defaults to CP)

TOP -- move CC to first caller on {

BOTM -- move CC to last called coi

up -- move CC to its calling con

DOWN -- move CC to the next calle:
-- context.

MEMORY CONTENTS FILING
TO P__addr ,
LENGTH number } TO s-11i_file

TO P__addr ]
LENGTH number

SAVE P__adadr [

RESTORE s-/lI__file [TO P__addr l

DATA STRUCTURE NAME TABLE

There are three forms of invasion:

2) ?Reference 3) ?R

1) ?Reference .
. 2. ?

.

Any valid memory examination command. Af
ing a Reference, its field names are now a
(and may be used to invade further).

Reference:

In forms 2) and 3) the Reference is one debugger commanc
beginning with the dot is a subsequent command.

PATH -- displays the current “invasion” path
BACK -- backs up one element in the “invasion” path
OUT -- clears the path

DIRECTORY OF USER NAMES

Listing names in the directory:

id

DIR {Type

' Type: The debugger name types are BREAK, TEI
REFERENCE, and INTEGER.

] -- displays ALL names by default

Removing names from the directory:
id
REMOVE { ALL
Type

Defining user names (see also BREAKPOINTS and TEMPL/
DEFINITION):
INTEGER definition:
id : INTEGER [:= Expr]

REFERENCE definition:

id1 1S Addr :id2 L id2 is a template name
" 8D
Examples of reference definitions:
line__12 is 910b.425 -- if 910b is an instruction segmer
-- type: BA line__12 OF ALL
pis 16140 -- abbreviate an AD
descrip is cp’sd -- segment descriptor for current
io__buff is 7t10.8:mem -- name an address-template pair



tY MODIFICATION TEMPLATE DEFINITION (con’t.)

orm: Addr [:id1][.id2] ...:= Expr Field: A Field has three optional parts:
Where modification is to begin. General Form: [Label] [Bit__identification] [IS Display__list]
amplate name. If absent, “B8” will be used. Label: This is the name of the field. It is displayed when the

template is used to examine memory, unless the ::
notation is used. A field is referenced by using its
name (e.g., cc.domain).

emplate field name(s). If present, only the bits indicated by
e rightmost name are modified. Otherwise, all memory
touched” by template id7 (i.e., from Addr to high water mark)

 modified. General Form: id{: }

The value to be put into memory. If an Addr, then memory is h

copied (default template is the one used on left of :=). Bit__identification: Describes which bits are to be displayed
by the field.

General Form:

-- write OFF into memory location 20 (B8 is . [ Texp' [ Texp], Texp |

- de‘fault)A . . [@ number .]... ¥ @ number [ACCESS id]
0 -- write 0 into interconnect register 2 id
= 3f002f -- write AD 312 (with all rights) into 4th slot )
— of 111 Display__list: The list of conversion and editing specifica-
Is.sp:= 40 -- change Stack Pointer of current context tions to be followed for this field. The specifi-
-- object cations are performed from left to right.
1:= 41 -~ copy 32 bits from 411.0 (Left Hand General Form: Display__elem [, Display_elem]...

-- Template, ord, is default for 411)
Display__elem: Either gives a method to translate bits into

ascii characters, or describes the actual

ascii characters to be printed on the CRT.

A Display__elem may be prefixed with a

3SION SYNTAX repeai count.
[Expr{x}]..[{£})] Term General Form:
. Baseiu : Widthﬂ
/ BaseS : Width
Term REM ... Factor Enumerationtt
MOD . ASCll
} [< Texpf>] < id ,
Primary *+] ... Primary | -- newline
id string
number number10X
( Expr) ‘[ Display__list]

Addr[: id1'] [. id2] ...
d2 described under MEMORY EXAMINATION

*Base and Width are decimal numbers (i.e., number10).
" Enumeration: Translates values to text

General Form: ( Enum__item [, Enum__item]...)

Enum__item: [number =>] [Isiring‘

ATE DEFINITION
‘'orm: TEMPLATE id IS Component__list END

e name of the template General Form:

TTexp: permissable expressions inside of templates.

nent__list. The fields and variant parts of the template: Texp: [Texp { £ {]... Tterm

| Form: Field [; Field)...[Variant__part]

nt__part: Permits conditional display. Similar to an ADA Tterm: [Tterm {;}]...Tprimary
variant record.

id
rral form: number
\SE Bit__identification IS Tprimary: { ( Texp)
"WHEN Choice [| Choice]... =>] BY_P
[Component__list] BI_P
ID CASE

*__identification: The discriminant. A Bit__identification is
defined in the description of Field

oice: The bits from the discriminant are treated as a num-
ber and compared against the Choices. A match
selects the Component__list of the WHEN.

:neral form:

‘ number -- number may be signed (e.g.,
number .. number } -- —8.. —5). However, negative
OTHERS -- Choices will only match 32-bit

-~ discriminants.



Cross Development Syste

- ®
InU Workstation User's Guid
, 172097-00
REQUEST FOR READER’S COMMENTS

Intel’s Technical Publications Departments attempt to provide publications that meet the needs of all Int:
product users. This form lets you participate directly in the publication process. Your comments will he!
us correct and improve our publications. Please take a few minutes to respond.

" Please restrict your comments to the usability, accuracy, readability, organization, and completeness

this publication. If you have any comments on the product that this publication describes, please conta
your Intel representative. If you wish to order publications, contact the Intel Literature Department (se

page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does the publication cover the information you expected or required? Please make suggestions f
improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME DATE
TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

cITY STATE ZIP CODE

(COUNTRY)

Dianea rharlk hara if vail rannire a written renlv. [—l



J LIKE YOUR COMMENTS . ..

Jocument is one of aseries describing Intel products. Your comments on the back of this form
ielp us produce better manuals. Each reply will be carefully reviewed by the responsible

n. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.78 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

intel Corporation

SSO Technical Publications, WW1-487
3585 SW 198th Ave.

Aloha, OR 97007

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES




intal

INTEL CORPORATION, 3585 S.W. 198th Avenue, Aloha, Oregon 97007 e (503) 681-8080

Printed in U.S.A./Y100/5K/01/04/82/AP



