
inter
iAPX 432
Interface Processor
Architecture Reference Manual

171863-001

INTEL

iAPX 432 INTERFACE P~OR

Manual Orner Number 171863-001

Release 1.1 Oamponents

Cb~right (C) 1981, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional oopies of this manual or other Intel literature may be
obtained from:

Literature Department
Intel Corporation
3065 BCMers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this
material, including, but not limited to, the inplied warranties of
merchantability and fitness for a particular p..1rpose. Intel
Corporation assumes no responsibility for any errors that may appear
in this document. Intel Corporation makes 00 camti trnent to update
oor to keep current the information oontained in this document.

Intel Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are ~lied.

Intel software products are oopyr ighted by and shall remain the
property of Intel Corporation. Use, duplication, or disclosure is
subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or
by any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates
am may be used only to identify Intel products:

BXP
CREDIT
iR
ICE
iCS
~
INSITE
IntelR
intelR

Intelevision
IntellecR
iRMX
iSBC
iSBX
Library Manager
M:SR
Megachassis
Micromainframe

Micrornap
MultibusR
MultiIOOdule
Plug-A-Bubble
PROMPT
Promware
~/80
System 2000R
UPI
uSoope

and the combination of lCE,- iCS, i~, iSBC, iSBX, ~, or RMX and a
numerical suffix.

ii

PREFACE

Understanding any complex comp.lting system, such as the Intel iAPX
432, requires the assimilation of a great deal of technical
information. Before reading this manual on the architecture of the
432 Interface Processor, the reader should have conmand of the
general 432 concepts. Intel offers three documents which provide
these prerequisites.

o The INTEL 432 System Summary, Order Number 171867, provides
the broad picture of the 432. It should be read as a first
introduction to the 432 system.

o The Introduction to the iAPX 432 Architecture, Order Number
171821, restricts discussion to general architecture
features which distinguish the 432.

o The iAPX 432 General Data Processor Archi tecure Reference
Manual, Order Number 171860-001, provides detailed
information on one type of 432 processor, a General Data
Processor (GOP). Its glossary is a concise surrmary of the
rrost important terminology which is required when reading
the Interface Processor manual.

This manual describes another 432 processor, the Interface Processor
(IP), similar in many respects to a GOP and different in others.
Rather than duplicate all of the general 432 information oontained
in the companion documents, this manual relies 00 the above
references for descr iptions of features of 432 archi tecture which
are common among processors. Unique features am functions of the
IP are presented and oontrasted with those of the GOP when
appropriate.

Chapters 1 through 6 of this manual are oomposedof descriptions of
the Interface Processor, allowing the reader to understand the
cx:x>peration between an IP and Peripheral Subsystems in forming a
logical I/O processor for a 432 system. Detailed representations
for the objects, descriptions of windCMs and functions, faults,
interrupts, am initialization may be foum in the apperrlices.

iii

TABLE OF CCNl'ENI'S

TITLE

1. KE'Y' crncEP'l'S ...•.....•.•..•....••.....•••.•••••••••...•..•..
1-1.
1-2.
1-3.

1-4.

1-5.

Peripheral Subsystems ••••••••••••••••••••••••••••••••••••
Basic I/O ~e1 ••
Peripheral Subsystem Interface •••••••••••••••••••••••••••

Peripheral Subsystem Interface Hardware •••••••••••••••
Attached Processor •••••••••••••••••••••••••••••••••
Interface Processor

Peripheral Subsystem Interface Software •••••••••••••••
I/O Controller •••••••••••••••••••••••••••••••••• -•••
Execution Environments •••••••••••••••••••••••••••••
Wind~ ••
Functions ••

I/O lv1OO.el StmmaI"Y ••
Data Flow Summary ••••••••••••••••••••••••••• ~ •••••••••
I/O EKaII1J?le •••

GOP Process Perspective ••••••••••••••••••••••••••••
Printer Server Task Perspective ••••••••••••••••••••
Printer Task (Device Task) Perspective •••••••••••••
Printer Reply Task Perspective •••••••••••••••••••••

Supplementary Interface Processor Facilities •••••••••••••
Physical Reference r.t:>de •••••••••••••••••••••••••••••••
Interconnect Access •••••••••••••••••••••••••••••••••••

2. CB.:JEX::!'IS .ANI) OPERAroRS •••••••••••••••••••••••••••••••••••••••
2-1. S~y Of Interface Processor Facilities ••••••••••••••••

2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

iv

Envi romnent •••
IP C>]?er ators ••

Obj ect Addressing and Global Storage Management ••••••••••
Objects For Program Environments •••••••••••••••••••••••••
Facilities For Asynchronous Communication ••••••••••••••••
Processes and I£x::al Storage Resource Management ••••••••••
Process Scheduling and Dispatching •••••••••••••••••••••••
Facilities For Object Management •••••••••••••••••••••••••
Context Environment Manipulation •••••••••••••••••••••••••

The Four Entry Access Segments ••••••••••••••••••••••••
Direct vs. Indirect Accessibility •••••••••••••••••••••
Oi:>ject Selectors ••••••••••••••••••••••••••••••• II ••••••
Entering an Access Segment ••••••••••••••••••••••••••••
Entering the Global Access Segment ••••••••••••••••••••

PAGE

1-1
1-1
1-4
l-7
1-7
1-7
1-9
1-10
1-10
1-11
1-11
1-13
1-14
1-14
1-16
1-19
1-21
1-21
1-21
1-22
1-22
1-22

2-1
2-1
2-2
2-3
2-7
2-7
2-8
2-8
2-8
2-8
2-9
2-9
2-10
2-12
2-12
2-12

3. ~ •••
3-1. WindCM AttribJtes

3-2.

3-3.
3-4.

3-5.

Wioo~ Status ••••••••••••••.•••••••••••••••••••••••••••
Subrange Base Address arrl Subrange Size
Object Reference
Direction .. .
Transfer Status •••••••••••••••••••••••••••••••••••••••
Transfer Mode ...
O\Terlay •••

WindCM Operation •••
Address Recognition ••••••••••••••••••••••••••••••••••• Consistency Check

Random Mode Data Transfer
Block Mode.Data Transfer

Block Mode Attributes
·

Block Mode Consistency Check ••••••••••••••••••••••••••
Block MOde Operation ••••••••••••••••••••••••••••••••••
Block r.1c>de Termination ••••••••••••••••••••••••••••••••
Block Mode Addressing ·

Interconnect Transfers •••••••••••••••••••••••••••••••••••

4. FtJNCI'IOOS •••
4-1.
4-2.

4-3.
4-4.

Function Facility Interface
Function Requests ••

Process Selection •••••••••••••••••••••••••••••••••••••
Function Opcodes
Function Operands

......................................
Function ~ecu tion •••••••••••••••••••••••••••••••••••••••
Function Completion ••••••••••••••••••••••••••••••••••••••

5 • PIIY'S ICAI.. REF'ERmCE: lvDDE •••••••••••••••••••••••••••••••••••••
5-1.
5-2.
5-3.

Reference Mode Switching ·
Physical Reference MOde Addressing
Physical Reference Mode Functions

6. FAULTS ..
6-1. Fault Reporting

Physical Mode
Wgical Mode

..

6-2.

Categories of Logical Mode Faults •••••••••••••••••••••
Context-level Faults
Process-level Faults
Processor-level Faults •••••••••••••••••••••••••••••

Window-Mapped Data Transfer •••••••••••••••••••••••••••
Fault Haooling

3-1
3-2
3-2
3-4
3-5
3-6
3-6
3-6
3-7
3-9
3-9
3-9
3-12
3-14
3-14
3-15
3-15
3-16
3-17
3-20

4-1
4-1
4-4
4-4
4-4
4-6
4-9
4-9

5-1
5-1
5-2
5-2

6-1
6-1
6-2
6-2
6-2
6-3
6-3
6-4
6-4
6-6

v

APPENDICES

APPENDICES

A. SYS'm1 ~ S~ •••••••••••••••••••••••••••••••••••••••
A-I.
A-2.
A-3.

Context Objects
Process Objects
Processor Objects

.
B. FUNCTICN S~Y ..
c. FA~T S~y ••••••••••••••••••••••••••••••• " ••••••• e._ •••••••

C-l.
C-2.
C-3.
C-4.

Fault Reporting ..
Fault Information Areas
Object Level Operator Faults •••••••••••••••••••••••••••••
Non-Instruction Interface Faults •••••••••••••••••••••••••

Page

A-l
A-I
A-3
A-7

B-1

C-l
C-l
C-l
C-5
C-IO

D. IN'lERRlJP'r lIAN'DLING... D--1

E. SYS'I'm INITIAl.JIZATlOO •••••••••••••••••••••••.••••••••••••••••
E-l.
E-2.
E-3.

System Reset ...
Establishing an Execution Environment ••••••••••••••••••••
System Startup ...

E-l
E-l
E-2
E-5

F. INTERPRX!ESS ~CATICN AND DISPATCHING EXAMPLE •••••••••• F-l

vi

TITLE

1-1.
2-1.
2-2.
2-3.
3-1.
B-1.
B-2.
B-3.
D-l.
E-l.

TABLES

PAGE

Printer Example Legend ••••••••••••••••••••••••••••••••••• 1-18
IP/GDP System Object Comparison •••••••••••••••••••••••••• 2-3
IP/GDP Operator Comparison ••••••••••••••••••••••••••••••• 2-5
Direct/Indirect Accessibility •••••••••••••••••••••••••••• 2-11
Window Attribute Summary ••••••••••••••••••••••••••••••••• 3-3
Alphabetical Index to IP Functions ••••••••••••••••••••••• B-2
IP Function Summary by Function Code ••••••••••••••••••••• B-3
IP Function Summary by Operator ID ••••••••••••••••••••••• B-4
Interrupt Sources •• 0-4
Window Configuration Following INIT •••••••••••••••••••••• E-7

vii

TITLE

1-1.
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
6-1.
0-1.
E-l.
F-l.
F-2.
F-3.
F-4.
F-5.
F-6

viii

FIGURES

432 System and Peripheral Subsystems •••••••••••••••••••••
Basic I/O Service Cycle ••••••••••••••••••••••••••••••••••
Peripheral Subsystem Interface •••••••••••••••••••••••••••
Peripheral Subsystem Interface Hardware ••••••••••••••••••
Interface Processor Window •••••••••••••••••••••••••••••••
I/O Data Flow Summary ••••••••••••••••••••••••••••••••••••
Pr inter E::KaInple ••
~aInple Pr int Object
~ry Over lay •••
Subrange/Window Attributes (Logical Mode) ••••••••••••••••
Valid Window/Object Mapping ••••••••••••••••••••••••••••••
Random Mode Transfers ••••••••••••••••••••••••••••••••••••
Block Mode Writes--Swept Addressing ••••••••••••••••••••••
Block Mode Reads--Source Addressing ••••••••••••••••••••••
Function Request Area ••••••••••••••••••••••••••••••••••••
Function ~arrple •••
Function Performance Phases-AP View ••••••••••••••••••••••
Furl.ction Operand 'I'ypes •••••••••••••••••••••••••••••••••••
Object Selection •••
Basic IP Function Execution Flow •••••••••••••••••••••••••
Fault Reporting State ••••••••••••••••••••••••••••••••••••
Interrupt Handler
Processor Object Location ••••••••••••••••••••••••••••••••
Print ~ample Objects ••••••••••••••••••••••••••••••••••••
IP Performs Blocking RECEIVE •••••••••••••••••••••••••••••
GOP ~ecutes SEND and Unblocks REX:EIVE •••••••••••••••••••
IP Responds to IOC •••••••••••••••••••••••••••••••••••••••
Window Manipulation ••••••••••••••••••••••••••••••••••••••
Print Reply ••

PAGE

1-2
1-5
1-6
1-8
1-12
1-15
1-17
1-20
3-8
3-10
3-11
3-13
3-18
3-19
4-2
4-3
4-5
4-7
4-8
4-10
6-5
D-2
E-3
F-2
F-ll
F-12
F-13
F-14
F-15

CHAPTER 1
KEY CCNCEPTS

This chapter introduces the iAPX 432 Interface Processor (IP). The
first four sections cover the IP as it is used normally in
connection with inIXlt/output operations. Section 1-1 distinguishes
Peripheral Subsystems (PS), which are responsible for the bulk of
I/O operations, fran the 432 data processing system, and shows how
Interface Processors link these together. The second section
reviews the 432' s basic model of inp.lt/outp,lt, pointing out the need
for an interface between a Peripheral Subsystem and the 432 system.
Section 1-3 descr ibes the hardware and software that conpr ise this
Peripheral Subsystem interface, with particular emphasis on the role
of the IP. In the fourth section the I/O roc>del i.s summar ized and a
simple example ~lementation is reviewed. The final section of the
chapter introduces physical reference m::>de and interconnect
addressing, two additional IP facilities that are provid.ed for
special situations.

1-1. PERIPHERAL SUBSYSTEMS

A typical application based on the iAPX 432 microprocessor family
consists of a 432 .system and one or more satellite Peripheral
Subsystems. Figure 1-1 illustrates a hypothetical configuration
which employs two Per ipheral Subsystems. The 432 system hardware is
composed of one or more iAPx 432 General Data Processors (GDPs), one
or more Interface Processors, and a COII1I'OC>n memory which is shared by
these processors. The 432 system software is a collection of one or
more processes which execute on the GDP(s).

A fundamental principle of the 432 architecture is that the 432
system environment is se If-contained.; nei ther processors nor
processes have any direct oontact with the "outside world."
Conceptually, the 432 system is enclosed by a wall that protects
objects in memory from possible damage by uncontrolled I/O
oper.ations.

1-1

iAPX 432 Interface Processor Architecture Reference Manual

432
Memory

432 System/Peripheral Subsystem Boundary

Figure 1-1 432 System and Peripheral SljbSystems

1-2

KEY CCHE?TS

In a 432-based system, the bulk of processing required to support
inplt/out];Xlt operations is delegated to Peripheral Subsystems; this
includes device control, timing, interrupt handling and buffer ing •
A Peripheral Subsystem is an autonomous computer system with its own
memory, I/O devices am controllers, at least one processor, and
software. The number of Peripheral Subsystems employed in any given
application depems on the I/O-intensiveness of the application; the
number may be var ied with changing needs, and is independent of the
number of GDPs in the system.

A Peripheral Subsystem resembles a conventional mainframe channel in
that it assumes responsibility for l~level I/O device su~rt and
executes in parallel with 432 system processor(s). Unlike a simple
channel, however, each Peripheral Subsystem can be configured with a
complement of hardware and software resources that precisely fits
application cost am performance requirements. In general, any
system that can oonmunicate over a standard 8- or l6-bi t
microcooputer bus, such as Intel's Multibus'IM design, may serve as
a 432 Peripheral Subsystem.

A Peripheral Subsystem is attached to the 432 system by means of an
iAPX 432 Interface Processor (IP). At the hardware level, an
Interface Processor presents two separate bus interfaces. One of
these is the standard 432 processor packet bus and the other is a
very general interface that can be adapted to nost traditional 8-
and 16-bit microcomputer buses.

The Interface Processor is driven by Peripheral Subsystem software.
'lb sUQ?Ort the transfer of information through the wall that
separates a Peripheral Subsystem from the 432 system, the IP
provides a set of software-controlled windows. A window is used to
expose a single object (data structure) in 432 system memory so that
its contents may be transferred to or from the Peri.pheral
Subsystem. Tb preserve the integrity of the capability-based
protection mechanisms in the 432 system, the IP only provides the PS
with windowed access to 432 objects which are of system type data
segment.

An Interface Processor additionally provides a set of functions,
which are also invoked by Peripheral Subsystem software. While the
operation of these functions (and the returned results) varies
considerably, they generally permit objects in 432 system memory to
be manipulated as enti ties, and enable conmunication between 432
system processes and software executing in a Peripheral Subsystem.

1-3

iAPX 432 Interface Processor Architecture Reference Manual

It is ~rtant to note that both the window and function facilities
utilize and strictly enforce the standard 432 addressing and
protection systems. Thus, a window provides protected access to an
object, and a function provides a E.rotected way for Peripheral
Subsystem software to interact with the 432 system.

1-2. BASIC I/O MODEL

As figure 1-2 illustrates, input/output operations in a 432 system
are based on the notion of passing messages between 432 system
processes and device tasks located in a Peripheral Subsystem. In
this manual, a device task is consi.dered to be the hardware and
software in the Peripheral Subsystem which is responsible for
managing an I/O device. An I/O device is considered to be either a
consumer or producer of data. Thus an I/O device may be a real
device (e. 9 ., a terminal), a file, or a pseudo-device (e. g., a
spc:x>ler).

A message sent from a GOP process which requests I/O service
contains information that describes the requested operation (e.g.,
"read file XYZ"). The device task interprets the message and
carries out the operation. If an operation generates input data,
the device task returns the data as a message to the originating
process. The device task may also return a message to posi ti vel y
acknowledge completion of a request.

A very general and very powerful mechanism for passing messages
between processes is inherent in the 432 architecture. A given
Peripheral Subsystem may, or may not, have its own message facility,
but in any case, such a facility will not be directly compatible
with the 432's. By inter:PQsing a Peripheral Subsystem interface at
the subsystem boundary, the standard 432 interprocess comnunication
system can be made compatible with any device task (see figure 1-3).

1-4

432 System

o
Procesa

O. Process running on GDP needs I/O
service

1. Process formulates message
describing service, sends it to
device task

2. Device task receives service
order, interprets it

Service
Order

Messaqe

Service
Reply

Message

KEY CONCEP'IS

Peripheral Subayatem -------------------

Device
Task

(:;'\
-V

3. Device task transfers data according to
service order parameters

4. Device task formulates reply message
containing result of transfer operation, sends
it back to originating process.

5. Originating process receives reply, interprets
it, executes accordingly

Figure 1-2 Basic I/O Service Cycle

1-5

1-6

iAPX 432 Interface Processor Architecture Reference Manual

432 System -------Peripheral Subsystem ------------

Figure 1-3 Peripheral Subsystem Interface

Device
Task f

1-3. PERIPHERAL SUBSYS'lm INTERFACE

A Peripheral Subsystem interface is a collection of hardware and
software that acts as an ad.aptor which enables message-based
oammunication between a process in the 432 system and a device task
in a Peripheral Subsystem. Viewed from the 432 side, the Peripheral
Subsystem interface appears to be a set of processes. The
Peripheral Subsystem interface may be designed to present any
desired appearance to a device task. For example, it may look like
a collection of tasks.

PERIPHERAL SUBSYSTEM INTERFACE HARDWARE

The Peripheral Subsystem interface hardware consists of a 432
Interface Processor, an Attached Processor (AP), and tnem:)ry (see
figure 1-4). To improve performance, these may be augmented by a
~ controller. The AP and the IP provide complementary
facili ties. Considered as a whole, the AP /IP pair may be thought of
as a logical I/O processor, which supports software operations in
both the 432 system and the Peripheral Subsystem.

ATrACHED PIU:X'3SOR

Most any general-purpose processor, such as an 8085, an iAPX 86 or
an iAPX 88, can be used as an Attached Processor. The AP need not
be dedicated exclusively to working with the Interface Processor.
It may, for example, also execute device task software or user
applications. Thus, the AP may be the only processor in the
Peripheral Subsystem, or it may be one of several. 'lb insure
synchronization and coordination, in Peripheral Subsystems with
multiple processors, only one of these should be designated to serve
as the AP. Other processors (or active agents, such as IJ.V\.
controllers) may be given access to IP windows, but control of the
Interface Processor should be centralized in the Attached Processor.

As figure 1-4 shows, the AP is "attached" to the Interface Processor
in a logical sense only. The physical connections are standard bus
signals and one interrupt line (which would typically be routed to
the AP via an interrupt controller).

1-7

432

Memory

1-8

iAPX 432 Interface Processor Architecture Reference Manual

432 System

"tt
H
o
(1
en
UI
UI
o
H
I

3:
(1)

:I
o
H
'<
H
::s
rt
en
H
(1

o ::s
::s
(1)
n
rt

--------.~ ~~~--------- Peripheral Subsystem

"tt
co
t1

Optional
DMA

ontrolle

~. ~---- ---.
:J"
(1)

t1
I»
I-'

~ ~Attached
~ ~Iprocessor
rt'
(1)

EJ
'-------01 to I-----~--'

; - -...~-

PS
Memory

-,
J Logical I/O Processor :)

Figure 1-4 Peripheral Subsystem Interface Hardware

KEY COOCEPTS

Continuing the notion of the logical I/O processor, the Attached
Processor fetches instructions, provides the instructions needed to
alter the flow of execution, and performs arithmetic, logic and data
transfer operations within the Peripheral Subsystem.

INTERFACE P~SSOR

The IP completes the logical I/O processor by providing data paths
between the Peripheral Subsystem and the 432 system. The IP also
provides functions which effectively extend the AP's instruction set
so that software running on the logical I/O processor can operate in
the 432 system. Since these facilities are software-controlled,
they are discussed in the next section.

As figure 1-4 shows, the Interface Processor presents both a
Peripheral Subsystem bus interface and a standard 432 processor
packet bus interface. By br idging the two buses, the IP provides
the hardware link that permits data to flOll between the 432 system
and the Peripheral Subsystem.

The Interface Processor connects to the 432 system in exactly the
same way as a GDP. Thus, in addition to being able to access 432
memory, the IP supports other 432 hardware-based facilities,
including interprocessor comnunication, alarm signaling and
functional redundancy checking.

On the I/O subsystem side, the IP provides a very general bus
interface that can be adapted to any standard 8- or 16-bit
microprocessor bus, including Intel's Multibus'lM architecture, as
well as the component buses of the MCS-8S and iAPX 86 families. The
IP is oonnected to the Peripheral Subsystem bus as if it were a
memory component; it occupies a blOCK of memory addresses up to 64k
bytes long. Like a menory, the IP behaves passively within the
Peripheral Subsystem (except as noted below). It is driven by
Peripheral Subsystem memory references that fall within its address
range.

The IP generally responds like a memory canponent. The Interface
Processor also supplies an interrupt signal. The Interface
Processor uses this line to notify its Attached Processor that an
event has occurred which requires fts attention. Interrupt handling
software on the AP may read status information provided by the IP to
identify the nature of the event.

1-9

iAPx 432 Interface Processor Architecture Reference Manual

To sunmar ize, the Attached Processor and the Interface Processor
interact with each other by means of address references generated by
the AP and interrupts generated by the IP. Since the Interface
Processor respoms to memory references, other active Peripheral
Subsystem agents (bus masters), such as ~ controllers, may obtain
access to 432 system memory via the IP's windows.

PERIPHERAL SUBSYSTEM INTERFACE SOFIWARE

I/O CCNrroLIER

The Per ipheral Subsystem interface is managed by software, which
this manual refers to as the I/O controller. The I/O controller
executes on the Attached Processor and uses the facilities provided
by the AP and the IP to control the flay of data between the 432
system and the Peripheral Subsystem.

432 hardware inposes 00 constraints on the structure of the I/O
controller. Tb help simplify software organization and
modification, implementors may wish to consider organizing it as a
collection of tasks running under the control of a multitasking
operating system (such as iRMX-80™, iRMX-88™, or
iRMX-86'lM) • This type of organization supports asynchronous
message-based conmunication within the I/O controller, similar to
the 432' s intr insic interprocess oommunication facility. Extending
this approach to the device task as well results in a consistent,
system-wide conmunication nndel. Havever, corrmunication wi thin the
I/O controller am between the I/O controller am device tasks, is
oqrnpletely application-defined. It may also be ~lemented via
synchronous procedure calis, with "messages" being passed in the
form of parameters.

However it is structured, the I/O controller interacts with the 432
system through facilities provided by the Interface Processor.
There are three of these facilities: execution environments,
windows, am fuoctions.

1-10

KEY CXNCEP'IS

The Interface Processor provides a process addressing environment
within the 432 system which supports the operation of the I/O
controller in the 432 system. This environment is embodied as a set
of system objects that ·"are used and manipulated by the IP. At any
t~e, the I/O controller is represented in 432 memory by IP process
obj ects am associated context obj ects. Like a GOP, the IP itself
is represented by a processor object. Representing the IP and its
controlling software like this creates an execution environment that
is analogous to the environment of a process running on a GOP. This
environment provides a standard framework for addressing, protection
and conmunication within the 432 system.

Like a GOP, an IP suworts multiple process environments. The I/O
controller selects the environment in which a function is to be
executed. This permits, for example, the establishment of separate
environments corresponding to individual device processes in the
Peripheral Subsystem. If an error occurs while the IP controller is
executing a function on behalf of one device task of the I/O
controller, that error is confined to the associated process, and
processes associated with other device tasks are not affected.

Every transfer of data between the 432 system and a Peripheral
Subsystem is performed via an IP window. A window defines a
correspondence, or mapping, between a subrange of consecutive
Peripheral Subsystem memory addresses (within the range of addresses
occupied by the IP) and an object of system type data segment in 432
system memory (see figure 1-5). When an agent in the Peripheral
Subsystem (e. g • , the IP controller) reads a windowed address, it
obtains data from the associated object; writing into a windowed
address transfers data from the Peripheral Subsystem to the windowed
object. The action of the IP, in mapping the Peripheral Subsystem
address to the system object, is transparent to the agent making the
reference. As far as it is concerned, it is simply reading or
writing menory.

1-11

iAPX 432 Interface Processor Architecture Reference Manual

-f-Peripheral Subsystem Memory space---"I ~ 432 System Memory Space --.

Local Memory Addresses

Interface Processor
(

IP window maps a subrange
of peripheral subsystem addresses
onto an object in 432 memory

..... ----... - ---
I

Subrange I 0, Object

windowed Memory Reference"~"~ mm=-"ED"~~
~ ~

..... ----+ - - - - _--_

Figure 1-5 Interface Processor Window

1-12

KEY CCNCEPTS

Since a windCM is referenced like memory, any individual transfer
may be between an obj ect and PS memory, an object and a PS processor
register, or an object and an I/O device. The latter may be
appealing from the standpoint of "efficiency," rut it should be used
with caution. Using a windCM to directly "connect" an I/O device
and an object in 432 memory has the undesirable effect of
propagating the real-time constraints imposed by the device beyond
the subsystem boundary into the 432 system. It may seriously
complicate error recovery as well. Finally, since there is a finite
number of windCMs, JOOst applications will need to manage them as
scarce resources which will not always be instantly available. This
means that at least some I/O device transfers will have to be
buffered in PS memory until a windoo becomes available. It may be
simplest to buffer all I/O device transfers in memory, and use the
windows to transfer. data between PS memory and 432 system memory.

There are four IP windows which may be mapped onto four different
objects. The I/O controller may alter the windCMS during execution
to obtain access to different objects. References to windowed
subranges may be interleaved and may be driven by different agents
in the Peripheral Subsystem. For example, the Attached Processor
and a J:I.1A controller may be driving transfers concurrently, subject
to the same bus arbitration constraints that would apply if they
were accessing memory.

FUNCrICNS

A fifth window, the control windCM, provides the IP controller with
access to the Interface Processor's _function request facility. The
IP oontroller requests the execution of an IP function by wr i ting
operands and an opcode into predefined locations in the control
windCM's subrange. This procedure is very similar to writing
comnands and data to a memory-roapped peripheral controller (e.g.,
floppy disk controller). Up:>n CC>11pletion of the function, the IP
interrupts the AP and provides status information which the IP
controller can read through the control window. The IP can respond
to transfer requests to the other four windows while it is executing
a function. In addition, data transfers through windows 0 through 3
may be interleaved wi.th function request sequences through the
oontrol window.

1-13

iAPX 432 Interface Processor Architecture Reference Manual

The IP's function set permits the I/O controller to:
o alter windows;
o exchange messages with GOP processes via

the standard 432 interprocess communication
facility;

o manitulate objects.

These functions may be viewed as extensions to the Attached
Processor's instruction set, which permit the I/O controller to
operate in the 432 system.

The combination of the IP' s function set and windows, the AP' s
instruction set, am possibly additional facilities provided by a
Peripheral Subsystem operating system, permits great flexibility in
designing I/O models. By using the more sophisticated IP functions,
powerful I/O controllers can be built which are capable of relieving
the 432 system of much I/O-related processing. On the other hand,
by utilizing only a subset of the available IP functions, relatively
simple I/O controllers can also be constructed.

1-4 •. I/O IDDEL Sur-MARY

DATA E'I1m SUMMARY

Figure 1-6 summarizes the relationship of the hardware and software
components that cooperate to I1'Ove data between an I/O device and 432
system menory. Notice how the Peripheral Subsystem interface not
only bridges the 432 system/peripheral Subsystem boundary, rut also
can "hide" the characteristics of the one from the other. As far as
a device task is concerned, its job is to I1'Ove data between memory
and an I/O device; it may be completely unaware that it is connected
to a 432 system. This means that existing device tasks may be
utilized in a 432 system with little or no m:Xiification, and that
progranmers working on device tasks need not be trained in the
operation of the 432. Similarly, a GOP process which needs an I/O
service need have no knowledge of the details and characteristics of
the target I/O device. As far as it is concerned, it "performs" I/O
in the same way it communicates with a co-operating process; by
sending and receiving messages via the standard 432 interprocess
communication facility.

1-14

KEY CONCEPTS

_ Peripheral Sub8Y8tem_l_ Peripheral Subsystem Interface --lI-1 0+- 432 < Port Object> (1)

System -.

Action

Data
Location

Input ---...... ~. I ~.~-----output
I

Message 0 0
~ ____ J~--"··~_B_u_~_~_e_r_~··IIf-----1·"O""4:l------I"·1(M~~~:~!)I""-----I··O

_____ C_o_p.Y __ D_a_ta ____ 1 1 ___ C_O_p_Y_D_a_t_a __ 11 Copy Re f erence II Copy Re fer ence I

&.S.I/0 spac~ (P.S. Memory I ~1 ______________ 4_3_2_S~y_s_t_em_._M_e_rn_D_r_Y ____________ .J

~~~~~!in9 Device Task I ~1 ___________ I_p __ C_o_n_t_ro_l_le_r ______________ ~1 ~1 ____ G_D_p __ p_r_o_c_e_s_s ___ ~ 

::::;n9 'DeViCe Controller/ (2) I I AP + IP (3) I ... I ____ GD_P ____ --' 

Notes: (1) Only object reference is moved to and from port. 
(2) Supporting processor is defined by application; 

may be AP, a separate processor, may include a 
DMA controller. 

(3) May also include a DMA controller. 

Figure 1-6 I/O Data FICM Surnnary 

1-15 



iAPx 432 Interface Processor Architecture Reference Manual 

I/O EXAMPLE 

To illustrate the operation of the 432 I/O model more specifically, 
this section provides a simple example which shows how line printer 
output might be implemented. Of course, the example describes only 
one of many possible awroaches that might be taken. Furthermore, 
the example does not show all the detail of a typical 
implementation, with the Peripheral Subsystem supporting transfers 
to and from a number of devices concurrently. 

In this example, all Peripheral Subsystem software is assumed to be 
implemented as a collection of tasks running under the control of a 
multitasking operating system. This OS is assumed to allow tasks to 
cornnunicate with one another in a fashion that is analogous to the 
432 interprocess corrmunication facility. The mechanisms provided by 
the OS are messages, mailboxes, a TRANSMIT operator and an ACCEPT 
operator. Messages are arbitrary data structures in memory, and 
mailboxes are queue structures that hold tasks waiting for messages 
or messages waiting for tasks. When executed by a task, TRANSMIT 
moves a message from a task to a mailbox and ACCEPT moves a message 
fran a mailbox to the issuing task if a message is available; if 
not, the task is queued at the mailbox until another task TRANSMITs 
a message to the mailbox. In other words, mailboxes are analogous 
to 432 ports and TRANSMIT and ACCEPT are analogous to the 432 SEND 
and RECEIVE operators. 

Figure 1-7 shows the overall structure of the example system and the 
flON of data fran one element to another (see also table 1-1). 
Basically, a GOP process wishing to pr int data on the line pr inter 
sends a message containing the data to the Peripheral Subsystem task 
which controls the printer; when the data has been printed, the 
printer task returns the message as a positive acknowledgement to 
the originating process. The process may then send more data by 
writing it into the message and sending it off again. In practice, 
there might be a pool of these messages, with several cycling 
through the system at one tbne. 

1-16 



CDP 
Proeeaa 

KEY CONCEPTS 

432 Memory Peripheral subayatem Memory 

432 'Syat_---- ---____ .eripheral Subayatelll Intertace-----I_ .eripheral .ubayaUIII ____ _ 

Figure 1-7 Printer EKarnple 

'rinter 
Task 

1-17 

8 



iAPX 432 Interface Processor Architecture Reference Manual 

Item 

SEND,/R:ErnIVE 

.Table 1-1 Pr inter Example Legend 

Description 

Object (message) descr ibing pr int 
operation fram requesting process's 
point of view (see figure 1-8). 

432 communications port assigned by 
convention to queue print objects. 

432 communicat ions port where GOP 
process waits for result of operation. 

432 operators (GOP 
functi.ons) provided 
cxmnunication. 

instructions, IP 
for interprocess 

P:t;int order_mailbaK 03 message queue defined to hold pri.nt 
messages waiting for printer task. 

Print_response_mailbox 03 message queue defined to hold print 
messages already processed by the 
printer task. 

TRANSMIT/ACCEPT Cl3 operators analogous to 432 SEND and 
RECEIVE operators. 

1-18 



KEY <XNCEPTS 

Figure 1-8 shows hOil the message sent by the GOP process might be 
organized. It oonsists of two parts, an object reference part and a 
text part. The object references are for the text part of the object, 
the 432 port at which the process will wait for the message to be 
returned, arrl a reference for the process itself (GOP or IP). This 
last reference is not strictly necessary in the example, but is 
provided to shOil one way in which a message may identify its 
originator. 

The text part of the message oontains a command field which specifies 
what is to be done (e.g., print one page), a status field which 
reflects the disposition of the print request, and the data to be 
printed. 

With the exception of the status information, all data in the message 
is provided by the GOP process i the status field is updated by the 
printer task. 

The next three sections descr ibe the operation of the example system 
as seen by the GOP process, the printer task, and the IP controller. 
These descriptions present an overview of the operations. For nnre 
detail on hOil these acti vi ties· relate to IP facilities, please refer 
to Appendix F, (Interprocess Cbmmunication Example), which refines the 
printer example. 

GOP Process Perspective 

To direct outp.1t to the line printer, a GOP process builds a print 
object and serrls it as a message to the print_request..J?Ort. The port 
is the process's "oonnection" to the line pr inter. After it has sent 
the message, the process is free to continue running. When it cannot 
proceed further without acknowledgement of the print operation, the 
process attempts to receive a message fran the print_replY'-port it 
specified in the print_object. When the operation has been oompleted, 
the process will receive the message. It then inspects the status 
field and takes appropriate action, perhaps writing new data into the 
print_object and serrling it off again. 

1-19 



iAPX 432 Interface Processor Architecture Reference Manual 

Text~ 

Print Data 

CI Object References".,.;; __ 

Print Status 

Text Command 

Figure 1-8 Example Print Object 

1-20 



KEY CONCEPTS 

Printer Server Task Perspective 

The printer server task may be viewed as a "front end" to the 
pr inter task which is responsible for translating the message sent 
by the GOP process into the form expected by the printer task. The 
printer server loops through the following steps: 

1. RECEIVE a message from the print_request-POrt. 
2. When the message (a print object) is received, obtain an 

object selector for the message text. 
3. Using the object selector, open a windoo onto the message 

text. 
4. Copy the message text from 432 memory to PS memory through 

the open windON. 
5. Close the window. 
6. TRANSMIT a message with a reference to the pr int text to 

the printer task. 
7. Repeat from step 1. 

Printer Task (Device Task) Perspective 

The printer task runs in an endless loop repeating the following 
steps: 

1. 
2. 
3. 

4. 

5. 

6. 

ACCEPT a message from the print order mailbox; 
Interpret the message; - - -
Transfer the data from the message to the printer, taking 
care of all device control (e.g., interrupts); 
Update the status field of the print message with the 
result of the operation; --
TRANSMIT the updated pr int _message to the pr int _response 
mailbox; 
Repeat from step 1. 

Printer Reply Task Perspective 

The printer reply task may be viewed as a "back end" to the printer 
task. I t runs in an endless loop as follows: 

1. ACCEPT a message from the print response mailbox. 
1. Open a windON onto the print object in the 432 system. 
2. Formulate a print reply message and deposit it in the print 

object through the open windON. 
3. Close the window. 
4. SEND the print object to the printer reply port in the 432 

system. -
5. Repeat from step 1. 

1-21 



iAPX 432 Interface Processor Architecture Reference Manual 

1-5. SUPPLEMENTARY INTERFACE ProcESSOR FACILITIES 

The preceding sections have described the Interface Processor as it 
is used most of the time. The IP provides two additional 
capabilities which are typically used less frequently, often only in 
exceptional circumstances. These are physical reference nnde and 
interconnect access. 

PHYSICAL REFERENCE r-DDE 

An IP oormally operates in logical reference nnde. This nnde is 
characterized by its object-oriented addressing and protection 
system. When an IP running in logical node opens a window, it 
utilizes an object selector to specify a particular 432 data 
segment. There are times when logical referencing is impossible 
because the objects used by the hardware to perform 
logical-to-physical address development are absent (or, less likely, 
are damaged). In these situations the IP can be used in physical 
reference nnde. 

An IP which is operating in physical reference node circumvents the 
protection mechanisms of the 432 system. No distinction is made 
between data segments and access segments in physical reference 
m<rle. The IP provides a reduced set of functions in this mode. 
Windows map directly onto contiguous segments of 432 physical memory 
(rather than obj ect structures in 432 memory). The IP controller 
selects a segment by specifying a 24-bit physical address when it 
establishes a window. The IP interprets subsequent subrange 
references as l6-bit displacements from the segment's base address. 
This s~le base-plus-displacement addressing is s~ilar to 
traditional computer addressing techniques. 

Physical reference mode is most often employed during system 
initialization to load ~es of objects from a Peripheral Subsystem 
into 432 memory. Once the required objects are available, 
processors can begin normal logical reference node operations. 
lDgical mode cannot be used until the obj ect tables required for 
logical-to-physical address translation have been constructed and 
loaded into 432 memory. 

INTEocx::NNECr ACCESS 

In addition to merrory, the iAPX 432 architecture defines a second, 
independent address space called the processor-memory interconnect 
address space. The interconnect address space allows interconnect 
obj ects to be maintained which may contain one or more interconnect 
registers. Interconnect registers are double l:¥te quantities which 
are aligned on double byte boundaries. With the exception of a few 
reserved addresses, the definition and use of interconnect locations 
is not pre-defined for the IP. A{:pendix E of this manual suggests 
how the interconnect may be utilized during the initialization of 
variable-configuration systems. 

1-22 



The IP (like a GOP) requires two register 
interconnect space to be defined for any system: 

o the processor ID register (interconnect 
o the interprocessor communication 

(interconnect address 2) 

KEY CONCEPTS 

locations 

address 0) 
(IPC) 

in the 

register 

The remainder of the interconnect address space may be used to store 
or acquire other infoonation such as configuration parameters, error 
logging registers, and other application-specific quantities. 

Window 1 is software-switchable between the memory and the 
interconnect spaces. In logical reference node, the interconnect 
space is addressed in the same object-oriented manner as the memory 
space, with the IP automatically performing the logical-to-physical 
address developnent. 'lb access the interconnect space, the I/O 
controller must specify an object selector for an interconnect 
obj ect which exposes a segment of the interconnect space to the IP. 
The normal window addressing scheme is then used to locate 
individual interconnect registers within the object. Switching 
window 1 to interconnect access mode gives the IP access to 
interconnect objects. This operation is equivalent to the MOVE TO 
INTE~ and MJVE FRG1 INTE~ ~rators of the GOP. 

In physical reference mode, the interconnect space is addressed as a 
linear array of even-addressed, double-byte,. interconnect 
registers. As with physical reference mode memory accesses, the 
swi tchable window is set up with a 24-bi t physical base address. 
Peripheral subsystem references to the corresponding subrange are 
likewise interpreted by the IP as l6-bit displacements from the base 
address to individual interconnect registers. 

1-23 





rnAPTER 2 
CBJOCTS AND OPERA'lORS 

This chapter describes the 432 environment as it appears to the I/O 
controller software. It :r;x:>ints out what the I/O controller can, and 
cannot, do in the 432 system. The first section broadly compares 
the facilities provided by the Interface Processor to those 
available on the General Data Processor. The remaining sections 
describe Interface Processor facilities provided for: 

o addressing and protection; 
o objects for program environments; 
o . facil it ies for asynchronous cannunication; 
o processes and storage resource management; 
o facilities for process scheduling and 

dispatching. 

Because a great many facilities are common to both pr.ocessors, this 
chapter aoopts the approach of describing IP facilities that are 
different or unique, and referring the reader to the iAPX 432 
General Data Processor Architecture Reference Manual, (Order Number 
l7l860-00~for descriptions of identical features. 

2-1. SUMMARY OF IP FACILITIES 

This section surveys the Interface Processor by comparing it to the 
General Data Processor. When reading this section, it is useful to 
recall the notion, introduced in chapter 1, of the AP/IP pair 
co-operating as a logical I/O processor. In this arrangement, the 
Attached Processor fetches instructions, provides arithmetic, 
logical, and flCM-of-control operations, and generates Peripheral 
Subsystem address references. The Interface Processor completes the 
logical I/O processor by supplying the faci.li ties for operation 
within the 432 system, plus the window mechanism for transferring 
data between the two systems. Windows are discussed in detail in 
chapter 3. 

2-1 



iAPX 432 Interface Processor Architecture Reference Manual 

To permit the I/O controller to function in the 432 system as well 
as in the Peripheral Subsystem, the IP provides an environment, and 
operators that it executes within this environment.· The environment 
is embodied in the system objects that the Interface Processor 
recognizes and manipulates, while the operators take the form of 
function requests issued by the IP controller and executed by the 
IP. (Like a GOP, the IP performs other operations in response to 
interprocessor oammunications: these are normally transparent to the 
AP, however.) 

The standard 432 object-oriented addressing and protection systems 
underlie all IP facilities. The IP uses the same 
descr iptor-controlled, segment-based address develol;J1\ent mechanism 
as the GOP. It performs type and ri.ghts checking identically. 
Addressing and protection apply to both the transfer of data through 
windows and the execution of functions. 

Table 2-1 lists all 432 system objects and canpares the IP' s 
implementation of them with that of the GOP. For the most part 
these objects are handled identically by both machines; the 
variances noted in the table stem from the different orientation and 
design of the two machines. The IP does not inplement instruction 
segments, for example, because its Attached Processor takes care of 
instruction fetching. 

IP processor, process and context objects are similar in purpose to 
the corresponding GOP structures, but are ~lemented somewhat 
differently. Importantly, the processor and process objects are 
canpatible with the standard 432 processor and interprocess 
oammun icat ion facilities. The IP supports multiple process 
environments; a separate process can be associated, for example, 
with each Peripheral Subsystem device task. Each process has a 
single context object which defines the process's current access 
environment (i.e., the objects that are instantaneously accessible), 
and records status information. 

2-2 



CI3JECrS AND OPERATORS 

Table 2-1 IP/GOP System Object Comparison 

Object 

Processor Object 
Process Obj ect 
Context Object 
Operand Stack 
Instruction Segment 
Object Table 
IkInain 
Port 
Carrier 
Storage Resource 
Type Definition 
Communication Segment 
Descriptor Controller 
Refinement Controller 

Legend: 

IP Implementation-

similar 
similar 
similar 
none 
none 
identical 
identical 
identical 
identical 
none 
identical 
identical 
identical 
identical 

IP and GOP ~lementations are identical identical 
similar While conceptually similar, IP implements object 

differently than GOP 
none IP does not implement object 

IP OPERATORS 

Table 2-2 compares the operators available in the IP's function set 
to those provided in the GOP's instruction set. Since windows are 
unique to Interface Processors, the ALTER MAP AND SELECr DATA 
SEGMENT function has no counterpart in the GOP. Conversely, the IP 
has no functions for performing arithmetic (except for the exclusion 
function INDIVISIBLE ADD SHORI' ORDINAL) or logical operations on 
numeric or character data types, nor any operators to alter the flow 
of execution (e.g., branch or call functions). To the extent that 
these classes of operators are needed in a Peripheral Subsystem 
interface, they can be provined by the cornbinatlon of the Attached 
Processor's instruction set and the IP's window facility. For 
example, by opening a windCM on a message received fran a GOP 
process, the I/O controller can use AP instructions to test and 
branch on the value of a message field read through the window. 

2-3 



iAPX 432 Interface Processor Architecture Refer.ence Manual 

Through its windows, an IP provides the basic ability to read and 
wr i te the contents of objects composed of data segments. However, 
using its function request facility an IP can manipulate an access 
descriptor which references an object. The IP can examine a complex 
(multi-segment) object, gaining access to its (X)fT1pOnent segments. 
It can perfo~ type and rights manipulation on both 
hardware-recognized typed objects as well as software-recognized 
types. When manipulating software-recx:>gnized types, an I/O 
oontroller is acting as a type manager and its actions trust be 
coordinated with the 432 type manager which has created the object. 

The Interface Processor provides the I/O cOntroller with both 
process and processor communication facil i ties. I nterprocess 
conmunication is asynchronous and is performed with the ai.d of 
ports, system objects which provide synchronization and queuing for 
messages. Any object may be sent as a message from a process to a 
port. Interprocessor communication messages are predefined. Some 
of them apply to all classes of 432 processors, and others are 
specific to a parti.cular class (e.g., IP or GOP) of processor. The 
I/O oontroller can send one of these messages to an indi vidual 
processor, or it can broadcast a message to all processors in the 
432 system. 

2-4 



CBJECrS AND OPERATORS 

Table 2-2 IP/GDP Operator Comparison (Part 1 of 2) 

Qe.erator 

WINIXJW DEFINITIOO OPERATOR 
Alter Map and Select Data Segment 

AOCESS DESCRIP'IOR M:NEMENl' OPERATORS 
Copy Access Deser iptor 
Null Access Descriptor 

RIGHTS ~IPUIATICN OPERATORS 
Amplify Rights 
Restr ict Rights 

TYPE DEFINITIOO MANIPUIATIOO OPERATORS 
Create Public Type 
Create Private Type 
Retrieve Public Type Representation 
Retrieve Type Representation 
Retrieve Type Definition 

REF~ OPERATORS 
Create Generic Refinement 
Create Typed Refinement 
Retrieve Refined Object 

SEGMENT CRFATICN OPERATORS 
Create Data Segment 
Create Access Segment 
Create Typed Segment 
Create Access Descriptor 

AOCESS PATH INSPFCI'ICN 
Inspect Access Descriptor 
Inspect Access 

CEJECI' INTERLOCK OPERATORS 
IDck Object 
Unlock Object 
Indivisibly Add Short Ordinal 
Indivisibly Add Ordinal 
Indivisible Insert Short Ordinal 
Indivisible Insert Ordinal 

CCNrEXT <D1MUNICATICN OPERATORS 
Enter Access Segment 
Enter Process Globals Access Segment 
Set Context MOde 
Call Context 
Call Context with Message 
Return 

Implementation 

IP 

GDP+IP 
GOP+IP 

GDP+IP 
GDP+IP 

GOP 
GOP 
GDP+IP 
GOP+IP 
GDP+IP 

GOP 
GOl? 
GDP+IP 

GOP 
GOP 
GOP 
GOP 

GOP+IP 
GDP+IP 

GDP+IP 
GOP+IP 
GOP+IP 
GOP 
similar 
GOP 

GOP+IP 
GOP+IP 
similar 
GOP 
GOP 
GOP 

2-5 



2-6 

iAPX 432 Interface Processor Architecture Reference Manual 

Table 2-2 continued IP/GOP Operator Canparison (Part 2 of 2) 

ProcESS Cl:H1UNICATICN OPERA'IORS 
Send 
Receive 
Conditional Send 
Conditional Receive 
Surrogate Send 
Surrogate Receive 
Delay 
Read Process Clock fII 

PR)CESSOR (X)[\MJNICATIGl OPERATORS 
Send to Processor 
Broadcast to Processors 
Read Processor Status and Clock 
MOve to Interconnect 
MJve fran Interconnect 

BRANCH OPERA'IDRS 
CHARAcrER OPERATORS 
SHORI' ORDINAL OPERATOR) 
SIDRr INT.EX;ER OPERA'IORS 
ORDINAL OPERATORS 
JNTEX;ER OPERATORS 
RFAL OPERATOR) 
'l'ENPORARY RFAL CPERATORS 

Legend: 

GDP+IP 
GDP+IP 
GDP+IP 
GOP+IP 
GDP+IP 
GOP+IP 
GOP 
GOP 

GOP+IP 
GOP+IP 
GOP+IP 
GOP* 
GOP* 
GOP 
GOP 
GOP 
GOP 
GOP 
GOP 
GOP 
GOP 

GOP+IP . 
IP 

IP and GOP Implementations are i.dentical 
IP implements'· operator, GOP does not 

GOP 
similar 

* 

GOP implements operator, IP does not 
While conceptually similar, IP implements operator 
differently than GOP 
Window 1 of IP provides equivalent interconnect access 



CBJECl'S AND OPERATORS 

2-2. CBJECl' ADDRESSING AND GLCBAL SIDRAGE MANAGEMENT 

Object addressing on the IP follows the same three level sequence as 
on a GOP. The steps taken to address an object are: 

1. Given an access descriptor, a processor uses the directory 
index field to index the object table directory and gain a 
storage descr iptor for the o~ect table which contains an 
object reference for the desir # object. 

2. With the storage descriptor for the object table and the 
segment index field of the access descriptor, the processor 
locates a storage descriptor for the requested object. 

3. The storage descriptor for the object contains the base and 
length information required to locate the object in 432 
:mennry. 

An IP can he directed to manipulate objects in 432 memory, just as 
other 432 processors, hut lacks any facility to create objects. All 
original objects used by an IP rust be predefined and loaded into 
432 memory at system initialization time. Additional objects, which 
may be required, must be created by a GOP process (e.g. the storage 
manager) • 

A 432 operating system type manager might maintain a template for a 
prototype IP process. When i t received a request for a new IP 
process from the I/O oontroller the GOP would build one using the 
prototype and then return it via the standard communication port 
mechanism. 

2-3. CBJECl'S FOR PROGRAM ENVIRCNMENTS 

The IP suW'rts the same program environment hierarchy (process, 
context, domain) as a GOP but implements each level differently. 

The IP does not require that a domain object be implemented but the 
oontext object contains a slot for an access descriptor for a domain 
object should one be required. When implemented, IP domains do not 
contain instruction segments (since the IP does not fetch 
instructions) or operand stack segments. The danain may be used to 
store same static information which may be required by a process. 

An IP context is a refinement of an IP process object. Each IP 
process is bound to a single context for the lifet~ of the 
process. An environment is changed by invoking the ENTER ACCE'SS 
SEG1ENT or ENTER GLCBAL AOCESS SEGfENr functions. 

2-7 



iAPX 432 Interface Processor Architecture Reference Manual 

2-4. FACILITIES FUR ASYNCHRCNOUS CDMJNlCATICN 

The IP offers the same set of operators for asynchronous 
interprocess communication as does a GOP, with the excey;>tion that 
the DEIAY operator ls not implemented. The DEIAY operator, used in 
scheduling to delay a process from being dispatched (on a GOP), is 
not required by an IP where process scheduling and dispatching is 
per formed by the I/O oontroller. 

2-5. POOCESSES AND LOCAL STORAGE RESOURCE MANAGEMENT 

The IP performs no process scheduling or local storage resource 
management. Multiple IP process objects may coexist in 432 memory. 
I/O oontroller software nust select a process envi rornnent in which 
an IP function is to be performed. 

Unlike the GOP, where a process may be composed of nultiple 
contexts, an IP process is bound to a sing Ie context dur ing its 
lifetime. In fact, the context is a refinement of an IP process 
object. Further, since no local storage management j.s performed by 
an IP, the size of a process's context is static over the life of 
the process. 

2-6. PRCX:ESS SCHEOOLING AND DISPA'lCHING 

Generally, software in the I/O controller is responsible for all IP 
process scheduling and dispatching. A process is selected and bound 
to an IP processor object when an IP function is invoked. The 
process selection index field in the IP's function request facility 
specifies which process is to be selected. Since the IP is not 
self-dispatching, a strategy routine in the I/O controller has 
responsi.bility for multiplexing the various IP processes over time. 
The IP does not maintain a process clock. Process time management 
is performed by the I/O controller. 

Consistent with 432 philosophy, the IP provides the mechanisms for 
process scheduling and dispatching but the PQlicy for deployment is 
totally under the direction of I/O controller software. 

2-7. F1-\CILITIES FOR 0BJEC1' MANAGEMENT 

The IP provides a spectrum of facilities which may be used for 
securely managing obj ects: communications ports, I/O locks, and 
indivi.sible short ordinal operations. 

The IP offers the same asynchronous communication port mechanisms as 
a GOP. Canmun icat ions ports may be used by processes to 
asynchronously send and receive messages (objects). 

2-8 



0BJECrS AND OPERATORS 

Contained in each obj ect ' s storage descr iptor is an I/O lock which 
is applied by the IP when a window is opened on the object. This 
lock serves 'bNo purposes: first it guarantees that only one IP 
window can be opened on a particular 432 object at a time; second 
it prevents IIDvement of the object (e.g. by a memory compaction 
process) while it is mapped through a window. 

The transfer of data between the PS and the 432 system is a three 
step process. First, the IP controller opens a window onto the 432 
object which is to used in the transfer. In the process of opening 
the window the IP sets the I/O lock in the affected object. Second, 
the data transfer phase is entered and a PS processor transfers data 
between the 432 object and the PS rnenory. Finally, when the 
transfer is completed, the IP controller closes the windCM and the 
IP clears the I/O lock in the 432 object. The storage manager in 
the 432 sy'stem may query the I/O lock field rut this field is not 
hardware-interpreted by a GOP. 

As primitives in the IP hardware function set, two indivisible 
operators are provided which can be used to guarantee mutually 
exclusive access to,short ordinal fields within 432 objects. These 
tw:> operators, INDIVISIBLE ADD SHORI' ORDINAL and INDIVISIBLE INSERl' 
SHORT ORDINAL, apply an indivisible hardware operation to the 
specified short ordinal value. For instance, these operators might 
be employed to provide a counting semaphore. These operators 
provide only the hardware-specific rrutual exclusion mechanisms and 
must be supplemented by a cx:>ordinated software discipline between 
processes which utilize the semaphore. For a discussion of the 
read-rrodify-write menory requirements for these operators, see the 
Intel iAPX 43203 Interface Processor Data Sheet, Order Number 171874. 

2-8. CXNl'EXT ENVIRGJMENT MANIPUIATION 

The I/O controller, by manipulating the context of an IP process, 
can access the objects which are available to the process. Like a 
GDP, the IP allows a context to reference any obj ect for which it 
holds an access descr iptor • Entry access segments contain access 
descriptors for all the objects which may be manipulated fran a 
specific process's context by an I/O controller. 

The Four Entry Access Segments 

Of all the access segments which can be referenced from a context, 
the IP provides direct access to a set of four entry access 
segments. The entry access segments are referenced by access 
descr iptor slots 4, 5, 6 , and 7 in the context access segment. 
Entry access segment 0, slot 4, contains the access descr iptor for 
the context access segment; entry access segment O. 

2-9 



iAPX 432 Interface Processor Architecture Reference Manual 

Direct vs. Indirect Accessibility 

If a copy of an access descriptor for an object is in one of t.he 
four entry access segments, the object it references is dir.ectly 
accessible. To reference such an object, two values must be 
specified: 

o The number (0 to 3) of the entry access segment in which 
the access descr iptor is located, and 

o The index (0 to 16383) of the access descriptor within the 
specified entry access segment 

When viewed from the standpoint of the 432 system and the Peripheral 
Subsystem, there are actually several perspectives on accessibility 
as srown in Table 2-3. A processor (GOP or IP) in the 432 system 
can directly reference any object for which it holds an access 
descriptor in one of its entry access lists. In addition, by 
traversing access paths, the 432 processor can manipulate obj ects 
which are indirectly accessible. 

If a copy of the access descri1;>tor is not currently in one of the 
four entry access segments, the desired object may be indirectly 
accessible. The target object may be part of a complex object 
structure which must be traversed by following the appropr iate 
access path. Once the particular access descriptor for the object 
has been located, the object may be made directly accessible by 
enter ing the access segment into one of the reuseable entry access 
lists (1-3). Entry access segment 0 is always reserved for the 
original context access segment. An access segment of process 
globals may be entered into one of the other three access lists by 
the "enter global access segment" function. Together, these two 
access segments provide access to all the objects which a context 
can reference. 

An AP has a different view of accessibility. The AP can only access 
432 data through IP windows which are opened onto 432 data segments. 
When a window is open, the AP can use its native data manipulation 
operators to modify the information through the winnow. When the AP 
must reference data in a segment which is indirectly accessible, it 
issues a function request to the IP to traverse an access path to 
the segment. When the data segment has been made direct]~ 
accessible for the AP, the IP interrupts the AP. 

2-10 



CEJECrS AND OPERATORS 

Table 2-3 Direct/lndirect Accessibility 

Viewpoint of IP/GDP in 432 System 

. Directly Accessible 432 Infor.mation 

o access descriptors All access descriptors in the four Entry 
Access Segments. 

o data All objects of type data segment referenced 
b¥ access descriptors in the four Entry 
Access Segments. 

Indirectly Accessible 432 InfoLmation 

o Information, data or access, which can be reached via access 
path manipllation (i.e. by following a chain of access 
descriptors using the Enter Access Segment function). 

Viewpoint of AP in Peripheral Subsystem 
(Controlling an IP operating in logical reference mode) 

Directly Accessible 432 Information 

o access descriptors tmE, the AP cannot directly alter access 
infor.mation. 

o data all objects of type data segment for which a 
windCM is currently opened. Note, this 
~lies the object is directly accessible to 
the IP. 

Indirectly Accessible 432 Information 

o Objects of type data segment which are directly accessible to 
the IP rut which have not been mapped. through a window. These 
objects can be made directly accessible by issuing an IP 
function request which opens a windCM to the object. 

o Access· descriptors in the Entry Access Segments. These can 
never be made directly accessible to the AP but can be 
manipulated via the IP function request facility. 

o Information, data or access, which can be reached via access 
path manipulation (i. e. by following a chain of access 
descriptors using the Enter Access Segment function provided by 
the IP function request facili ty) • Note that two levels of 
indirection are involved, traversing the path of access 
descriptors and the use of the IP function request facility. 

2-11 



iAPx 432 Interface Processor Architecture Reference Manual 

Object Selectors 

An object selector identifies an object by specifying an access 
descriptor contained in one of the four entry access segments. The 
object selector oonsists of a double byte quantity composed of two 
fields: 

1. The low order two bits of the object selector specify which 
entry access segment holds the desired access descr iptor 
and are (xiled as follows: 

00 - Entry Access Segment 0 (Context Access Segment) 
01 - Entry Access Segment 1 
10 - Entry Access Segment 2 
11 - Entry Access Segment 3 

2. The high order 14 bits represent a scaled index i.nto the 
specified entry access segment. 

An object selector allows access to any of the 16,384 
access descriptors from each of the 4 entry access segments. 
can potentially reference 65,536 (216) objects directly. 

Enter ing an Access Segment 

The instruction ENTER ACCESS SEGmNT allows the I/O oontroller 
software to enter a given access segment into Entry Access Segment 
1, 2, or 3. ENTER AOCESS SEGmNT requires two operands: 

o An access descr iptor for the access segment to be entered 
into EASl, EAS2, or EAS3, and 

o An unsigned integer value designating the destination entry 
access segment, which must be 1, 2, or 3. 

~ntering the Global Access Segment 

Each IP process maintains a global access segment which is always 
accessible to the I/O controller via the ENTER GLCBAL ACCESS SEGMENT 
function. Imnediate entry of the global access segment allows an 
I/O controller to gain access to the set of process globals. The 
I/O oontroller needs only to specify which of the three available 
entry access segments is tq be used when requesting this function. 

2-12 



The Interface Processor windCM mechanism provides the Per ipheral 
Subsystem with protected access to the contents of objects located 
in the 432 system. There are five windows, labeled 0-4. Each 
windCM can be used to access one (single segment) object. To 
prevent the possible manipulation of access descriptors as ordinary 
data and corruption of the protection mechanisms, the windCMed 
object must be of base type data segment. Access descr.iptors, the 
basis for the 432 protection system, may he manipulated only by IP 
operations supplied by the IP function request facil:i.ty. These 
operations are described in the next chapter. 

All IP windows are sfmilar in that they support the transfer of ~ata 
across the subsystem boundary; this chapter first describes the 
characteristics corrmon to all windows. The first section covers the 
attributes that define windCMs; these are gener.ally specified when 
the windCM :i.s opened with the ALTER MAP AND SELECl' MTA SEG1ENT 
function. The second section descrlbes the operation of a data 
transfer through a windCM that has been defined with a given set of 
attributes. 

Three of the windCMs have special capabili ties; these are covered 
after the basic properties of all windows have been descr ibed II 
WindCM 0 may be used to perform high speed block transfers. WindCM 
1 may be opened onto the processor-memory interconnect address space 
and thus provide access to interconnect objects. Window 4-the 
control window--is dedicated to providing the data path for the 
Interface Processor function facility; this is covered in chapter 4. 

Throughout this chapter conditions for correct use of windCMs are 
described. When any of these conditions are violated, the Interface 
Processor detects a fault. The !pI s fault detection, reporting and 
handling facilities are covered in chapter 6. 

3-1 



iAPX 432 Interface Processor Architecture Reference Manual 

3-1. WINJX)W ATl'RIBUl'ES 

Each window has a set of attributes which define its state at a 
given rnanent; these are sumnarized in table 3-1. The IP sets the 
attributes of all five windows when it performs processor 
qualification. The attributes of the control windcw are obtained 
from values recorded in the processor object. Processor 
qualification closes windows 0-3. 

Processor qualification is performed explicitly when the Interface 
Processor responds to a "suspem am fully requalify processor" 
interprocessor communication (IPC). The IP performs processor 
qualification :implicitly in response to the startup IPC it receives 
during system initialization (see appendix E). Thus, window 4 may 
be made to cane' up with any set of attributes by encoding the 
desired values in the processor object image that is loaded during 
initialization. 

Having entered logical reference mode,· the I/O controller can change 
the attributes of windows 0-3 with the AL'lER MAP AND SELECl' DATA 
SEGiENr function. Unlike the other windows, window 4' s attributes 
may not be altered during normal execution; its attributes are 
fixed once logical node is entered. The IP can be conmanded to 
reenter physical mode by a special IPC fran a 432 processor, 
irx::luding itself. Any processor with an access descriptor for a 
processor object with broadcast rights can sem the "enter physical 
J'l'k:X1e" IPC to all processors in the 432 system. GDPs ignore this 
interprocessor message. 

WINOOW STATUS 

A window must be ~ for it to be used to transfer data. An open 
window establishes an active mapping between a set of addresses in 
the Peripheral Subsystem and an object in the 432 system; other 
attributes provide further mapping information. 

A closed window is inacti ve, and has no other attr ibutes. A window 
may be closed to prevent further access to an obj ect, or to change 
the attributes of a window. Closing a window which overlays PS 
memory (see OVERLAY in this section) enables access to the PS memory. 

When a window detects a fault, the IP records in 432 menory the 
fault information describing the circumstance, changes the state of 
the affected window to the faulted state, and interrupts the AP. In 
the faulted state the IPwill continue to acknowledge transfers 
through the window though no data will actually be nnved to/from the 
432 system (see the description of XACK/ am NAK/ in the Intel iAPX 
43203 Interface Processor Data Sheet, Order Number 171874). This 
state is entered to allow DMA-type controllers to proceed safely in 
the presence of a window fault. . 

1-' 



Table 3-1 Window Attribute Summary 

Attribute Description 

Window Status Window is open/closed/faulted 

Subr ange Base Address Start of windowed subr ange in the PS 

Subrange Size Length of windowed subrange in the PS 

Obj ect Reference Obj ect Selector for windowed 432 obj ect 

Base Displacement Displacement in bytes into windowed 432 
object 

Direction Read/write permission for windowed 
object. When the window is being opened 
this attribute is the perm1ss1on 
requested by the I/O controller. After 
the window has been opened this 
attribute is the permission that has 
been granted. 

Transfer Status Transfer in progress/terminated/faulted 

M:x1e Window 0: random/block node 
Window 1 : memory/interconnect mode 
Window 2-4: always in randan node 

Overlay Windowed subrange does/does not overlay 
metrory 

Block lobde Attribute Description (applies only to window 0) 

Byte Count Count of the number of bytes to be 
transferred minus one. 

Note: In block transfer mode, the base displacement of 
window 0 specifies the initial address within the 
windowed object fran which consecutive information 
transfer will begin. 

3-3 



iAPX 432 Interface Processor. Architecture Reference Manual 

SUBRANGE BASE AIDRESS AND SUBRANGE SIZE 

A windCM's subrange is defined by a subrange base address and a 
subrange size, in bytes. The subra~ is the contiguous set of 
Peripheral SUbsystem memory addresses that are mapped by the 
windCM. A Per ipheral Subsystem bus master that references an 
addr.ess in a subrange accesses the corresponding object in the" 432 
system. 

A PS subrange is defined in terms of powers of 2. The subrange size 
025 a random ~e window may be specified as any power of 2 from 

through 2' (i.e., 1 through 32k bytes). When wlndCM 0 
is used in block mode it may sequentially access an object as large 
as 64K bytes. When the target object is not an i.ntegral power of 2 
i.n length, the subrange will normally be specified. as the next 
higher }?a'1er of 2. The subrange may also be smaller than the target 
object, if access to the full extent of the object is not required. 

Note that the size of the window is the lesser of the size of the 
subrange and the size of theobject. That is, a window never 
provides access to 432 system rnennry beyond the extent of the 
windCMed object, regardless of the relationship of subrange size to 
object size. The IP's protection system restricts a larger suhrange 
to behaving as though it is exactly the same size as the windowed 
object. Any atterrtr.?t to access locations beyond the extent of an 
object will cause the IP to generate a fault. 

A subrange' s base address is specified as an offset in bytes from 
the beginning of the IP's 64K byte range in the PS. The subrange 
base address bears a definite relationship to the subrange's size. 
Given a subrange 2n bytes long, its base address must be on a 
2n byte boundary. For example, the base address of a 4K 
suhrange must be evenly divisible by 4K. This relationship may also 
be expressed as: the base address of a 2n byte subrange, 
expressed in binary, must contain at least n low-order zero bits. 

The following cnnstraints apply to all active subranges: 

3-4 

o no subr anges may overlap, i. e. no two subranges 
may'include the same Pertpheral.Subsystem address 

o all subranges must "fit" within the range 
of addresses (up to 64Kl that the IP 
occupies in the Peripheral Subsystem memory space. 



WINOOWS 

<l3JECI' REFERENCE 

An open window's object reference begins as an object selector and 
is converted by the IP into an access descriptor for the windowed 
432 object. Each open IP window must map a different object in 432 
memory, am each obj ect must be represented as a sing Ie segment of 
base type data segment (functions may be used to manipulate 
multi-segment objects to gain access to their individual segments). 
No more than one window can be opened on an object, regardless of 
whether there are multiple IP' s in the system. Even if one IP 
wirrlow is opened on a refinement of an object no other window will 
be allowed access to the base object or any refinement of the object. 

When a window is opened on an object, the IP makes the object 
inaccessible to other IPs by setting the I/O lock bit in the base 
object's object descriptor; the I/O lock bit in the base object is 
set when a window is opened on a refinement. The obj ect may, 
however, remain accessible to GOP processes holding object 
references for it. If the Peripheral Subsystem requires exclusive 
access to an object, it must do so by means of a convention. For 
example, if the object has been defined with a lock field, the IP 
controller can use the LOCK <l3JECI' function to prevent GOP processes 
(which observe the convention) from accessing the object. An 
alternate convention, might be used for objects which do not contain 
lock fields. For example, a GOP process sending an obj ect to the 
I/O controller could agree not to access the object, or pass a 
reference for it to another process, until the I/O controller sends 
the object as a message back to the GOP process. 

The IP supports the 432 philosophy that software should have access 
to the minimum set of objects needed to perform its function. 
Therefore, the I/O controller can only open a winda-l on an object 
for which an access descriptor exists within a current context's 
access environment. Typically, an I/O service request message from 
a 432 processor will contain access descriptors for the objects that 
need to be transferred or accessed. 

3-5 



iAPX 432 Interface Processor Architecture Reference Manual 

DIRECl'ICN 

The direction attribute specifies whether the windowed object may be 
read, written, both read and written, or neither read nor written. 
When the window is opened the IP checks the requested direction 
attribute with the access rights granted by the object reference. 
The access rights requested in the direction attribute must be equal 
to, or logically less than, the rights granted by the object 
reference. For example, if the object reference indicates t~at the 
object may be read, then the permi.ssable di.rection attributes are 
read, or neither read nor write~ requesting the ability to write, or 
to read and write the object would be illegal. 

Orx::e a window has been successfully opened, the IP checks every 
subsequent subrange address reference to insure that it conforms to 
the direction attribute, otherwise an active window fault occurs. 
(The IP's read/write line identifies the type of access being 
attenpted. ) This perroi ts the IP controller to open a window for 
reading with the assurance that a mis-programmed DMA controller will 
not be able to write into it. 

TRANSFER STATUS 

An open window may take one of four states: 
o transfer in progress~ 
o transfer terminated by fault~ 
o transfer terminated by count runout~ (block mode only) 
o transfer termination forced~ (block mode only) • 

The IP controller will open a winnow with the status attribute set 
for "in progress". If the IP detects a fault asscx::iated with an 
active window, it will change the status attribute to "terminated by 
fault". A randan node window which is closed (set invalid) with a 
transfer status of "in progress" is considered to have terminated 
normally since there is no means for an IP to predict when a randan 
mode transfer is finished. The remaining two states are associated 
with window 0 block IOOde transfers only and are described in section 
3-3. -

TRANSFER MJDE 

Windows 0 and 1 have al ternate transfer nn:1es that may be selected 
by setting the mode attribute when the window is opened. Window 0 
may be opened in block TOC>de, which permi ts buffered high speed 
transfers of contiguous blocks of data~ this is described in section 
3-3. Window 1 may be opened onto the i.nterconnect address space ~ 
this is described in section 3-4. The transfer mode attribute has 

3-6 



00 meaning for windows 2-4, which suWOrt random transfers to 432 
system memory only; the random transfer mode is described in section 
3-2. Attempting to set the transfer mode of windows 2-4 will cause 
a fault. 

OVERIAY 

Sane Peripheral Subsystems (e.g., those based on processors with 
limi ted address spaces) may not be able to dedicate a block of 
memory space for exclusive use as IP window subranges. Such systems 
may elect to co-Iocate all or part of the IP' s range with real PS 
memory. If a window is then opened with the over lay attr ibute, the 
IP will inhibit the co-located memory fran responding to memory 
references in the subrange. Closing a window that overlaid menory 
re-enables the memory to respond to subsequent address references in 
that subrange. Thus, when the IP and PS merrory both occupy the same 
addresses, memory will respond to all references except those that 
fall in the subrange of a window open with the overlay attribute. 

Figure 3-1 illustrates a hypothetical configuration in which a bank 
of memory and an Interface Processor both occupy a 64K byte block of 
addresses in the Peripheral Subsystem memory space. A window with a 
subrange base address of 32K and a subrange size of 4K has been 
opened with the overlay attribute set. Any address reference 
falling in the subrange will cause the IP to respond rather than the 
co-Iocated memory. Any address reference outside the subrange will 
select the memory rather than the IP. 

The overlay facility is ~lemented by an inhibit signal that the IP 
asserts when it recognizes an address reference that falls in an 
overlaid subrange. (See the iAPX 43203 Interface Processor Data 
Sheet, Order No. 171874, for a description of this signal). Use of 
the overlay facility slows IP response time somewhat. 

Note that opening a window with the overlay attribute set when there 
is 00 co-located memory is safe, but it slows IP response 
unnecessarily. On the other hand, opening a window without 
specifying overlay when there is co-Iocated memory will produce an 
undefined result when both components attempt to respond to a 
subsequent address reference that falls in the overlaid subrange. 

3-7 



3-8 

iAPX 432 Interface Processor Architecture Reference Manual 

-64K-:!::: 

I\~\~\! 
,::" -36K- )}js';ilirange of windo,:" opened 
iiiiii!i!! wl.th overlay attrl.bute set 
:-:-:-:.:. 

}} -32K-
I

:::: 

Illlllll\ 

_~_\Illi\\! 
Memory IP 

E:J Enabled addresses 

t;~;~tl Disabled addresses 

Figure 3-1 Memorv Overlay 



WINOOWS 

3-2. W1NIXM OPERATI(l\J 

This section descr ibes the IP' s response to an address reference 
that falls into the windowed subrange of an open windGl. The 
discussion covers random mode transfers to and from ordinary 
memory-based objects; the special cases of block mode, interconnect 
objects and function requests are covered in subsequent sections. 

ADDRESS RECDGNITI(l\J 

The Interface Processor m:mitors all Peripheral Subsystem address 
references that fall into its range. It compares each address 
presented on the Peripheral Subsystem bus to the subranges of all 
open windows. If an address falls into a subrange, the IP 
recognizes the reference and responds as described belOil. If the 
address does not fall into an active subrange, the IP ignores the 
reference and does not respond. 

CCNSISrrENCY CHID< 

Given that it has recognized an address reference, the IP checks it 
for consistency before performing the actual transfer. There is a 
series of these checks which are equivalent to the steps carried out 
by a GOP when an instruction attempts to access data in an obj ect. 
Although they are described here as a sequence, the hardware is able 
to perform same of the checks in parallel. 

The IP insures that the transfer direction (as indicated by its 
read/write line) is consistent with the windOil's direction 
attribute. The IP computes the PS transfer displacement, that is, 
the position of the item (byte or double-byte) relative to the base 
address of the PS subrange. The visible object length is the 
difference between the length of the object am its base 
displacement (see Figure 3-2). The transfer displacement rust be 
less than or equal to the visible obj ect length. The sum of the 
physical base address and the transfer displacement rust be less 
than the largest physical 432 menory address (224_1). (A rremory 
bounds error would indicate erroneous information in the object 
table.) If any of these checks fails, the IP detects a fault and 
does not perform the transfer. Figure 3-2 illustrates the 
constraints which the IP applies when the consistency check is 
performed. Several examples of valid mappings of window onto 
objects are shown in Figure 3-3. 

3-9 



%P 
64K 
Byt 

Rang 
e 
e 

Access 

iAPX 432 Interface Processor Architecture Reference Manual 

PS ADDRESS SPACE 432 ADDRESS SPACE 

-r- --.-.-----, ~ 

SOBRANGE 

LENGTH .. 
p- I Transfer 

1 Displacement 

_ .... _---- 1 

Initial Computations 

o Adjusted Object Length = Object Length - Base Displacement 

o Visible Object Length = Minimum (Adjusted Object Length, Byte 
Count) for block mode operation. 

o Visible Object Length = Minimum (Adjusted Object Length, 
Subrange Size) for randan mode operation. 

o Physical Base Address = Base Address + Base Displacement 

o During block transfers in logical mode (window 0 only), the h¥te 
oount must be less than the Visible Object Length. 

o 

o 

Constraints During Data Transfer 

Transfer Displacement must be less than the Visible Object Length 

Physical Base Address + Transfer Displacement must be less than 
22]1-1 

Figure 3-2 Subrange/Window Attributes (lDgical Mode) 

3-10 

Adjusted 
Object 
Lenqth 



MAPPED 
IP WINDOW 432 OBJECT 

0 ----0 
-----

LJ
/// 

0 ----· 
-------

O----c/// 
----

//// 

LJ", ----0 
........ --

WINDOW - OBJECT 

WINDOW -: OBJECT 

WINDOW a REFINEMENT 

OBJECT oc: WINDOW 

WINOOW> REFINEMENT 

~ PORTION OF OBJECT INACCESSIBLE TO IP 

~ -- PORTION OF WINDOW INACCESSIBLE TO AP 

Figure 3-3 Valid Window/Object Mapping 

3-11 



LAPX 432 Interface Processor Architecture Reference Manual 

3-3. RANOOM mOE DATA TRANSFER 

Given that an IP address reference has passed the consistency 
checks, the IP finishes the Peripheral Subsystem bus cycle just as a 
menory oomponent would, accepting data from the bus in a wr i te 
operation, and placing data on the bus in a read operation. 

It follCMS from the preceding discussion of transfer displacement 
computation that random mode transfers are always between 
corresponding relative locations of the windowed subrange and the 
windowed object. That is, the displacement of a transferred byte or 
double-byte is identical within the windowed object and the windowed 
subr ange. For example, assume a PS subr ange of 128 bytes at base 
address 4096 mapped onto a 432 object 100 bytes long with a base 
displacement of O. If a Peripheral Subsystem bus master initiates a 
bus cycle that decodes as "read one byte from location 4096", the IP 
will return the object byte whose displacement is zero, the first 
byte in the object. If a subsequent bus cycle indicates "write a 
double-byte into location 4100" , then the IP will accept a 
double-byte from the bus and write it into the object at a 
di.splacement of four. If another bus cycle attempts to "read one 
byte from lccation 4197", the IP will fault and will not perform the 
transfer, since the subrange transfer displacement exceeds the 
bounds of the object. 

Random node is so-called because no order ing is implied between 
successive references to a windowed subrange. Any location may be 
read or written (assuming validitv checks are passed) at any time. 
Figure 3-4, Random ~e Transfers, illustrates the effect of 
different address references when a window is opened for reading and 
wr i ting in random mode. 

A window opened in random node may be remapped onto a new 432 data 
segment with a single invocation of the IP function ALTER MAP AND 
SELECr MTA SEXNENl'. When executing this function the IP will first 
close the window and then reopen it on the newly select data segment. 

3-12 



41 03 

... 

.... 

4096 
Windot'-1ed 
Subrange 

Legend 

-.., ...... 

3 

1 

2 

- - - -

Reference Sequence: 

-

-

- - - -
Byte disP1acement~ 

I 

- - -
Windowed 
Object 

G) 

(7) 

(6) 

(5) 

(4 ) 

( 3) 

(2) 

(1) 

(0) 

<Y G) 
Subrange Address Referenced: 4'97 4102 
Reference Operation: 

4'99 
Read Byte 

3 
Write Byte Read Double-byte 

Object Byte Accessed (disp.) 1 6,7 

Figure 3-4 Random Mode Transfers 

3-13 



iAPX 432 Interface Processor Architecture Reference Manual 

3-4. BIOCK MJDE MTA TRANSFER 

Window 0 can be opened in random m::Xie or in block mode. Block mode 
allows the Peripheral Subsystem to take advantage of software 
instructions (e.g. iAPx 86 str:i.ng operations) and devices such as 
~ controllers, which are capable of generating consecutive address 
references at high speed. Block mode also oermits the transfer of a 
large anount of data through a small PS address subrange. For 
example, the full content of any object may be transferred through a 
one-byte or double-byte PS subr ange. This helps to keep ITOre of the 
IP's range available for use with random mode windows. 

While block mode is well-suited for the high speed transfer of large 
blocks of data, it provides less addressing flexibility than random 
mode. When window 0 is opened in block mode, the direction 
attribute can specify reading or writing, but not roth. To change 
access directions requires closing and re-opening the window. Block 
mode also implies serial addressing of the windowed object. The 
block of data to be read or written is defined when the windCM is 
opened, and the whole block is transferred in sequence. 

BLOCK MJlE ATl'RIBUTES 

Window 0 has an additional attribute, ~ count, which is 
applicable only when it is opened in block IOOde. The byte count 
specif ies the size of the block that is to be rroved through the 
window. The value of this attribute may range from 0-65,535: the 
value represents one less than the number of bytes to be transferred 
(a byte count of 0 indicates that a one-byte block is to be 
transferred) • The byte count is independent of the subrange size. 
However, the IP checks to insure that the sum of the base 
displacement plus the byte count does not exceed the length of the 
target object. 

The base displacement attribute locates the first byte of the block 
relative to the beginning of the windowed object. A value of zero 
indicates that the block starts at the lowest address of the 
object. The base displacement and byte count essentially define a 
refinement of the object. 

3-14 



WINOOWS 

BLOCK MODE CCNSIS'lENCY CHEr!K 

Since the byte count and base displacement effectively predefine the 
transfer from the perspective of the 432 object, the IP can perform 
most of the required consistency checks when the window is opened. 
The only checks made during a transfer are direction and byte count. 

BI.D:K moE OPERATICN 

From the p::>int of view of the Per ipheral Subsystem bus, a block 
transfer proceeds much like a randan transfer, except that, like a 
fast menory, the IP provides much better response time in block 
mode. The IP acts as a passive agent on the PS bus, all block 
transfer activity being driven by an active PS processor or u.1A 
controller. When an address reference falls within window D's 
sub range, the IP accepts or supplies a byte or double-byte according 
to the type of PS bus cycle. Note, however, that in block mode, IP 
acknowledgement of a write operation does not neccessarily imply 
that the data has actually been written into the windowed object. 

The IP employs an on-chip first-in-first-out (FIFO) buffer to 
achieve high speed block transfers in buffered moae:--8ince a block 
mode transfer is predefined b¥ window D's attributes, the IP is able 
to optimize the transfer using the FIFO hardware assistance. The 
Interface Processor buffers block mode transfers to improve response 
to Peripheral Subsystem transfer requests and to reduce its 
utilization of the 432 processor packet bus. 

In a block read operation, the Interface Processor pre-fetches an 
eight-~yte block of data from the windowed object in one 432 
processor packet rus transaction. It holds the block in an internal 
buffer and supplies bytes or double-bytes from the buffer as 
requested by Peripheral Subsystem ooscycles. When the buffer has 
enough free space, the IP prefetches another block. 

In a block mode write operation, the IP accepts bytes or 
double-bytes from the Peripheral Subsystem bus and buffers them 
internally. When the buffer accumulates more than eight bytes, the 
IP post-stores an eight-byte block in the windowed object in a 
single processor packet bus operation. 

3-15 



iAPX 432 Interface Processor Architecture Reference Manual 

Canpleting a block node write transfer which is shorter than the 
byte count is a two-step process. First, the AP must issue an ALTER 
MAP AND SELECl' DATA SEGmNI' function with the entry state operand to 
"force termination" on window o. This causes the IP to empty its 
FIFO to 432 menory. Then, the AP must issue an additional ALTER MAP 
AND SELECI' DATA SEG1EN.I' FUNcrICN with an entry state operand to set 
window 0 invalid (close the window). If the AP attempts to close a 
block mode winda-t without first -forcing termination, the IP will 
generate a fault, interrupt the AP, and preserve the block nOOe 
window. When the transfer length is the same as the byte count 
attribute, the IP autanatically takes care of the last block which 
will be short if the transfer size is not a multiple of eight. 

BLOCK moE TERMINATICN 

A block node transfer will terminate oormally when all bytes have 
been transferred, or it may terminate prematurely should a fault 
occur. In both cases, the IP updates the transfer status attribute 
and issues an interrupt request to notify the Attached Processor. 
Following termination, any address reference falling in the subrange 
of window 0 will cause the windCM to fault and enter the error 
state. In the error state, requests for data transfer will be will 
be acknowledged (negatively) by the IP, but 00 data will be 
transferred. This prevents a DMA controller, for example, fran 
continuing to transfer data after a fault has been det;.ected. The 
faul ted wimow cannot be re-used until it is closed and re-opened. 

The IP tracks the progress of a block transfer by means of an 
on-chip byte oounter. The IP sets this counter equal to the byte 
count attribute when the window is opened and decrements it with 
each byte transferred. When the on-chip counter underflows (is 
decremented fran zero) all bytes have been transferred and the 
operation is terminated normally. 

The IP will terminate a block transfer prematurely if it detects a 
fault during the transfer. In addition, the I/O controller may 
itself force termination before the transfer has been completed. 
This is done by executing an ALTER MAP AND SELECr DATA SEGMENT 
function with the transfer status attribute set to "termination 
forced." Finally, termination may be forced by the IP's receipt of 
of any the inter processor conmunication messages "suspend and fully 
requalify processor", "close windows", or "close windows am enter 
physical node". 

3-16 



WINOOWS 

BLOCK MODE ADDRESS ING 

As mentioned earlier, in a block mode transfer the IP determines the 
displacement of a transf€r inbo the windowed object b¥ means of its 
on-chip displacement counter. Unlike random mode, then, the object 
displacement is independent of the subrange displacement. This 
gives rise to two addressing techniques that may be used by the 
Peripheral Subsystem in block mode: swept and source/sink. 

In swept addressing, the Peripheral-Subsystem bus master driving the 
transfer operation "sweeps" serially (fran 100 addresses bo high) 
through a block of addresses in the windowed subrange. That is, the 
address references will be n, n+l, n+2 ••• or n, n+2, n+4 ••• for 8-
and l6-bit Peripheral Subsystem buses respectively. The range of PS 
addresses swept is equal bo the number of bytes transferred, so the 
sub range must be at least as large as the number of bytes 
transferred. Figure 3-5 illustrates swept addressing in a block 
mode write operation. 

In source/sink addressing, the master driving the transfer 
repeatedly addresses a single location in the windowed subrange. 
For a read operation, this single (byte or double-byte) location 
acts as a data source; for a write operation, the location serves as 
a data sink. By permitting the transfer of large blocks (up to 64K 
bytes) of data through a single location, source/sink addressing 
conserves "subrange space." To transfer 32K bytes in randan mode 
requires setting up a 32K byte subrange, leaving only half of the 
IP's range available for concurrent use with other windows. Only a 
byte or Cbuble-~te of the range is needed bo perform the same 
transfer in block mode using source/sink addressing. Figure 3-6 
shows hoo source addressing works in a block mode read operation. 

Note that the IP has no knowledge of the addressing technique used 
in a block mode transfer. It s~ly considers any address reference 
in window 0' s subrange as a signal to transfer the next b¥te or 
double-byte. 

3-17 



iAPx 432 Interface Processor Architecture Reference Manual 

-----------41 03 

Byte diSPlacement~ 

(7) 
(6) 

3-18 

4 096 

Windowed 
Subrange 

3 

2 

1 

- - - - - -
Windowed 
Object 

(5) 
(4) 

(3) 
(2) T 

3 
(1) ! 
(0) -

(Base 
Displacement) 

Legend <D G) G) Reference Sequence: 
Subrange Address Referenced: 
Reference Operation: 
Object Byte Accessed (disp.): 

4,99 4100 4101 
Write Byte write Byte write Byte 
345 

Figure 3-5 Block Mode Writes - Swept Addressing 



4096 

Legend 

..... ----,," 

Windowed 
Subrange 

Reference Sequence: 

" " ,,'-

, , 

Sub range Address Referenced: 
Reference Operation: 
Object Byte Accessed (disp.): 

Byte displacement, 
,,,, (7)~ 

""'-
""'­
,~---~ 

Windowed 
Object 

(6) 

(5) 

(4) 

( 3) 

(2) 

(1) Tf;Base (,) 1 Displacement) 

G) CD 
4'96 

Read Byte 
2 

4'96 
Read Byte 

3 

Figure 3-6 Block Mode writes - Source Addressing 

3-19 



iAPx 432 Interface Processor Architecture Reference Manual 

3-5. INTE~ TRANSFERS 

Window 1 may be opened onto either the 432 memory space or the 432 
processor-memory interconnect space. The address space is selected 
by the transfer JlDde attribute when window 1 is opened; it may be 
changed at any time ~ closing the window and re~pening it with the 
transfer mode set differently. Both address spaces appear identical 
to the Peripheral Subsystem; interconnect objects may be read and 
written in exactly the same fashion as memory objects. 

3-20 



OiAPTER 4 
FONcrIOOS 

This chapter describes the common facility that supports the 
execution of all Interface Processor functions. The first section 
shows hCM windCM 4 is used to provide access to the facility. The 
next section explains how a function is requested by writing 
operands and an o~""Ode through the windCM. The last two sections 
describe how the IP executes a requested function and returns status 
infonmation upon campletion of the operation. 

4-1. FUNCrIOO FACILITY INTERFACE 

Management of the IP function facility centers on the function 
request area of the processor data segment (see figure 4-1). Both 
the I/O controller software and the Interface Processor itself 
update and use the infonmation recorded in this area via the control 
window. Briefly, the IP records the status of the function request 
facility in the function state field; the I/O controller may obtain 
status information by reading this field. The IP controller 
requests execution of a function by writing operands and an 
identifiying opcode into the function request area, and the IP reads 
these fields to obtain the infonmation it needs to execute the 
function. Finally, the execution of same functions produces a value 
which the IP records in the return-value field, where the IP 
controller can inspect it. Upon completion of any function, the IP 
updates the status infonmation am interrupts its Attached 
Processor. If desired, successful function completion interrupts 
can be disabled, thereby allowing only interrupts for unsuccessful 
completion to reach the AP. 

In logical mode, the control window (window 4) is permanently opened 
onto the processor data segment and its mapping cannot be changed by 
an ALTERMAP function request. By reading and wr i ting the 
corresponding PS memory subrange locations, the IP controller 
obtains access to fields in the function request area located in 432 
memory. Notice that this interface mechanism is similar to a 
conventional memory-mapped peripheral device controller; the 
function request area fields are read and written like command, data 
and status registers. 

Figure 4-2 illustrates the effect of executing a function, ALTER MAP 
AND SELECl' DATA SEG1ENT, which in this case al ters the map of window 
o and selects a different 432 data segment. Window 4, the control 
windCM, is the only one through which function requests may be 
issued. Windows 0 through 3 are available for data transfer between 
a PS processor and 432 memory. 

4-1 



4-2 

iAPX 432 Interface Processor Architecture Reference Manual 

Operands 

(reserved) Opcode 

Function State 

Process Selection Index 

Processor Data Segment 

Figure 4-1 Function Request Area 

9 

8 

7 

6 



IP WINDOWS 432 SYSTEM 

0--- --_~ 
IP 

__ ......... PROCESSOR 

DATA SEGMENT 

0 ------0 
---- ----

0 ------0 
-_ .... ----

0 ------0 
...--- ----

0 --- ---0 
fI ___ ____ B 

D 

DATA 
SEGMENTS 

FUNCTICNS 

IP WINDOWS 432 SYSTEM 

ORIGINAL MAPPING ALTERED WINDOW ~ MAP 

Figure 4-2 Function Example 

4-3 



iAPX 432 Interface Processor Architecture Reference Manual 

4-2. FUNCrICN REC.UFSTS 

The performance of a function may be considered fram the AP point of 
view as a sequence of three phases, as shown in figure 4-3. The IP 
controller, running on the AP, performs the first phase, requesting 
the execution of a function. 

The IP executes functions serially; requesting execution of ~ 
second function before ~ prior function has been completed produces 
an undefined result. The function completion state subfield of the 
function state field (see appendix A) indicates the IP' s readiness 
to accept a function request. A typical IP controller 
implementation will assign responsibility for requesting functions 
to a single routine (task) which will serialize the requests. 

Given appropriate Peripheral Subsystem bus arbitration, function 
requests (which are identical to all windowed transfers) may be 
issued concurrently with other window activities. For example, 
consider a IJ.1A controller driving a block rrode transfer through 
window O. If the IJ.1A controller relinquishes the Peripheral 
Subsystem bus . between transfer cycles, the IP controller (running on 
the Attached Processor) can use the rus for a function request (or 
for any other purpose). 

PROCESS SELECI'ICN 

The IP controller must specify that a function be performed in one 
of the IP process environments which exist in the 432 system. To 
select a process, the IP controller must deposit a process selection 
index into a designated slot in the function request facility area 
of the processor data segment. Wi th this index, and the process 
list in the IP's processor object, a process object can be located. 
The IP will attempt to qualify and lock the specified process as 
soon as a function opcode is written. 

FUNCrICN OPCODES 

Each function is uniquely identified by a one-byte opcode (see 
appendix B). The act of writing into the opcode field triggers the 
execution phase of function performance. Therefore, the function's 
operarrls must be in place in the function request area before the 
o~ode is transferred. 

4-4 



• • • 

Read 
function 
state 

Write 
operands 

Write 
opcode 

I \ 

" Perform \ 
\ other \ 
\ processing,' 

---------. \ I I _____ __ ~ 

Interrupt • 
from IP ~ - - ,.-_-_-_~ __ ... 

I Read 
function 
state 

• • • 

Read 
return­
value 

FUNCl'ICNS 

Request 
Phase 

Execution 
Phase 

Completion 
Phase 

Figure 4-3 Function Performance Phases - AP View 

4-5 



iAPX 432 Interface Processor Architecture Reference Manual 

FUNCl'IOO OPERANDS 

An Interface Processor function may require fran zero to seven 
<DubIe-byte operands. The IP controller specifies a function's 
operands by writing values into locations of the operands field in 
the function request area. The first operarrl goes in the 
lcwest-addressed location of the field and the remaining operands 
are written to successively higher-addressed locations (in some 
cases, one or nore operand slots may be reserved and are skipped 
over) • Each opcode implicitly identifies the number of operands 
required, so unused high~rder locations in the operands field need 
not be initialized. See Appendix B for the function surrmary. 

Interface processor functions accept three types of operands as 
illustrated in figure 4-4; all operarrl types are stored as 
<DubIe-bytes. 

A short ordinal is a a 16-bit unsigned binary integer (range 
0-65, 535) • This type of operarrl is typically used to specify a 
length, a displacement, an index, etc. For example, when the ALTER 
MAP AND SELECr DATA SEGmNT function is used to open a windGl, it 
requires a short ordinal operand that specifies the size of the 
subrange. 

A bit field is a str ing of 16 bits that is divided into a number of 
subfields. The length, position am definition of each subfield 
varies according to the function. Subfields in a bit field operand 
to the AL'IER MAP AND SELECI' DATA SEG1ENT function, for example, 
specify transfer node, rnennry overlay, etc. 

An object selector identifies an access descriptor for an object 
that is the function's actual operand. Figure 4-5 illustrates how 
the IP uses an object selector operand to obtain access to an 
object. The lcw-order subfield of the object selector identifies 
one of the four currently entered access segments associated with 
the selected context. The high~rdersubfield indexes one of the 
access descr iptors in the entered access segment. The selected 
access descriptor refers, via the object table, to the object that 
is the actual function oper and. This three-level address 
developnent is identical to GOP addressing. Note that the IP also 
performs the standard 432 type, rights and bounds checking as it 
develops the object's physical address fram the object selector. 

4-6 



FONcrICNS 

I I 
15 , 

Short Ordinal 
~~ ________ ~y _______ -J' 

l~-------------(16-bit unsigned integer) 

15 , 

I : : : i : : : : : : : : ! : :] 
, v,------I Bit Field 

15 

l .., 

l,------(Subfields defined by function) 

21! 

I f 
I~ 

Object Selector 

~Entered Access Segment Identifier 
~, = Context Access Segment 
gl = Entered Access Segment 1 
l' = Entered Access Segment 2 
11 = Entered Access Segment 3 

"'--------Access Descriptor Index 
(14-bit unsigned integer) 

Figure 4-4 Function Operand Types 

4-7 



~ 432 Interface Processor Architecture Reference Manual 

15 , 

p0000000000001Il~ Object Selector Operand 

\ \ d ° fO \ \ Entere Access Segment Identl. l.er 
\ - - - - - - - - - - - - - - - -, 
\ Access Descriptor Index \ 

--------- - - - - - - - - - - \ r---~-----"'" 
L 1 L ~\ L 

o 0 \(2) 
o 0 (1) 

L 

o 0 UI> 0 
~----------~ ~------------

::L 
o 
o 
o 

Context Access Segment Entered Access 
Segment 1 

Entered Access Entered Access 

4-8 

Segment : __ J __ , Segment 3 

'Object Tab1~J 
\ Ma o. J 
'"..:. j>p~::.g-, 

Selected 
Object 

Figure 4-5 Object Selection 



FUNcrIONS 

4-3. FUNcrICN EXOCUTICN 

The IP per forms the actual execution of a function independent of 
the IP controller. Therefore the IP controller (an Attached 
Processor with associated IP control software) is free do other work 
after it has requested execution of a function (except that it must 
refrain from requesting a second function). 

Altr~ugh the IP's execution of any given function necessarily 
varies, figure 4-6 shows the basic sequence of steps that is common 
to most functions. Note that the IP checks for faults throughout 
execution. 

Function execution begi~~ when the IP detects that the opcode field 
of the function request area mawed by window 4 has been written. 
The IP sets the state of window 4 to "in-progress" dur ing the 
function execution process to irrlicate that the function request 
facility is "in use". The IP reads the opcode from the function 
request area arrl decodes it. After decooing the opcode, the IP 
fetches the operands required by the function from the function 
request area. It then performs the operation am updates 
destination operands with the result(s). If the function produces a 
return-value, the IP writes it into the corresponding field of the 
function request area. 

The IP terminates execution by updating the function completion 
state subfield arrl generating an interrupt (see awendix D for 
information on discriminating IP interrupts). The function 
completion state subfield irrlicates successful or faulted 
execution. The IP records additional information in one or more of 
the context, process arrl processor objects when it detects a fault 
during execution of a function. 

4-4. FUNcrICN CDMPLErICN 

Normally the IP controller will use the IP's interrupt to detect 
function completion; it may also poll the function completion state 
subfield. In any case, the function completion state subfield must 
be examined to determine if the function completed successfully or 
faulted. 

4-9 



4-10 

iAPX 432 Interface Processor Architecture Reference Manual 

Qualify 
Selected 
Process 

Decode 
Opcode 

Perform 
operation 

Update 
destinations 

Update 
Return-value 

Update 
function 

completion 
state 

Gener~ 
1nt:~J 

no 

Figure 4-6 Basic IP Function Execution Flow 



FUNCl'IONS 

Successful execution of a function typically causes the alteration 
of a destination operand (that is, an actual operand~ the operands 
field of the function request area is never changed by function 
execution). In addition, or alternatively, same functions produce a 
return-value. For example, the READ PR:CESSOR STATUS AND CLOCK 
function returns the current values of the IP' s system clock and 
status. The IP writes return-values into the results field of the 
function request area, where they may be inspected through window 
4. The low-order byte of any return-value is stored in the 
lowest-addressed location of the field and any additional bytes are 
stored in consecutively higher locations. When the length of the 
return-value is less than the length of the return-value field, the 
content of excess high-order locations is undefined. 

Appendix B provides the format and interpretation of the 
return-values produced by all functions. Several functions produce 
a standard type of return-value called a boolean. This is a 
one-byte value that indicates "true" or "false." The low-order bit 
of the value "true" is 1 and the low-order bit of the value "false" 
is O. In either case the value of the upper seven bits of a boolean 
is undefined. 

If a function faults, the contents of the return-value field is 
undefined. If a function canpletes successfully, but it does not 
produce a return-value, then the IP does rot alter the content of 
the return-value field. 

4-11 





• 'it' n CHAPTER 5 
PHYSICAL REEKRENCE MJOE 

The preceding chapters of this manual have Dmplicitly described the 
Interface Processor's logical reference node, its mrmal nnde of 
oper ation. The IP also provides ptzsical reference mode. Physical 
reference mode is distinguished rom logical reference mode by 
direct 24-bit base-plus-displacement addressing and a l~ited subset 
of functions. It may be characterized as a powerful and rud~entary 
tool to be utilized in exceptional circumstances such as system 
initialization (see appendix E) and post-nnrtem diagnostics. This 
chapter first describes reference mode switching-hCM physical mode 
is entered and exited. The second section covers addressing and 
functions in physical reference mode. 

5-1. REFERENCE lvDDE SWITCHING 

An Interface Processor can switch from physical reference mode to 
logical reference mode (and vice versa) only under carefully 
controlled circumstances. 

An Interface Processor enters physical reference mode in response to 
assertion of its INIT line dur ing system initialization (see iAPX 
43203 VLSI Interface Processor Data Sheet, Order No. 171874) or upon 
receiving an "enter physical reference mode" IPC when in logical 
node. Sioce a "send to processor" IPC requires an access descriptor 
with the proper right for the target processor's processor object, 
the ability of 432 software to place an IP in physical reference 
mode can be l~ited by restricting distributioo of this right in IP 
processor object references. However, any 432 process with an 
access descr iptor for a processor obj ect . with "broadcast to 
processors" rights can place all IPs into physical mode by 
broadcasting the "enter physical reference mode" IPC. Thus, 
processors should only be granted broadcast rights with careful 
precautions. Table E-l shows the attributes of the IP windows after 
entering physical reference mode. 

An Interface Processor exits physical reference nnde and enters 
logical reference mode when it receives a local IPC (it ignores 
global IPCs in physical IlPde). This local IPC is considered a 
startup IPC. The response of IP is to qualify the processor, enter 
logical node, and then respond to the IPC. 

5-1 



iAPX 432 Interface Processor Architecture Reference Manual 

5-2. PHYSICAL REFERENCE mDE ADDRESSING 

In physical reference mode the object reference attribute of a 
window is replaced b¥ a 24-bit segment base address. Upon 
recognition of a subrange address reference the IP determines the 
transfer displacement as in logical reference node. It forms the 
transfer address b¥ adding the displacement to the segment base 
address. The 432 transfer length is always set to 216 bytes so 
that no length of transfer faults can occur. No system objects are 
used in physical reference node addressing. 

Note that in physical reference mode, window 0 may be opened in 
either random or block transfer mode and window 1 may be opened onto 
either 432 memory space or the interconnect address space. An IP 
operating in physical node may also change the characteristics of 
windCM 4, the control windCM. 

5-3. PHYSICAL REFERENCE mDE FUNCI'ICNS 

The IP controller may request execution of four functions in 
physical reference node. These corresJ.X)nd closely, but are not 
always identical, to logical reference functions. The request, 
execution, fault handling, and completion phases of physical 
reference mode operations are similar to the logical reference mode 
counterparts. 
See the function summary in Appendix B for detailed descriptions of 
the operation of these functions. 

The physical reference mode fUnctions are 
o Sm' PERIPHERAL SUBSYSTEM t-DDE ~ 
o READ PRCCESSOR STATUS AND CLOCK 
o SEND TO PROCESSOR 
o ALTER MAP AND SELECl' PHYSICAL SEG1ENI'. 

5-2 



CHAPTER 6 
FAULTS 

. This chapter describes IP faults, exceptional corrlitions which can 
occur as the IP performs functions. In general, the IP fault 
philosophy follows that of the GOP: the processor detects and 
contains faults so they do not affect other processes or processors 
in the 432 system. The response to a fault, i.e. fault handling, 
is not predefined and may be tailored through software to the needs 
of the 432 system user. The IP's dual role in the 432 system and in 
the Peripheral Subsystem requires that the strategy for handling 
faults is somewhat different than for the GOP. 

6-1. FAULT REPORTING 

When a fault occurs, the IP records information about the fault in a 
fault information area. Faults are distinguished by a fault code 
and an operator ID recorded in the fault information area. The 
fault codes are specified in Appendix C. The operator IDs are 
specified in Appendix B. The operator ID designates the IP function 
which was executing when the fault was encountered. A unique 
operator ID corresponds to each IP function code. Note that the 
values for the function codes are not the same as the values for the 
corresponding operator IDs. 

When the IP has deposited the information in the respective fault 
information area am updated the function state, the IP interrupts 
the AP to inform it of the fault. The AP may check the function 
state field of the function request facility to acquire the field of 
bits which contains the fault level. If the IP has faulted, the AP 
examines the corresponding fault information area for more detail. 

For faults which occurred during the execution of a function with a 
sequence of steps, like SEND or RECEIVE, the IP records the 
execution state when the function faulted. This information allows 
the time when the fault occurred to be specified more precisely. 
Then, software which handles the fault can respond in the fOC)st 
appropr iate manner. The execution state information is necessary 
for software completion of a partially executed function. 

6-1 



iAPx 432 Interface Processor Architecture Reference Manual 

The IP records fault information in various areas of IP process and 
processor objects (refer to Appendix A for detailed description of 
these fault information areas). There are three categories of IP 
operation in which faults may be generated: physical reference 
node, logical reference node, and window-mapped data transfer. Each 
of these modes utilizes specific fault information areas to report 
faults. 

PHYSICAL mOE 

Information about faults which occur in physical reference node is 
recorded in the processor fault infoDmatian area of the IP processor 
obj ect. The function state is set to "context-level faul t" when a 
physical reference mode fault is encountered am an AP interrupt is 
generated. 

LOOICAL moE 

Information about faults which occur in logical reference node is 
recorded in awropr iate portions of the IP process and processor 
objects. Each IP process object contains two fault information 
areas: one for context-level fault information and one for 
process-level fault information. The IP processor object contains a 
fault informations area for processor-level fault information. 

Depending on the severity level (context, process, or processor) of 
a fault and the current state of the process and processor, an IP 
selects an area to be used to record the fault information. The 
method an IP uses to decide the appropriate site to record fault 
information is shown in Figure 6-1. Successive faults, encountered 
during fault recording, reflect the fault state to higher levels of 
severity until, finally, an IP can no longer continue and must issue 
the FATAL signal (see iAPX 432 VISI Interface Processor Oata Sheet, 
Order Number 171874). 

CATEX;()RIES OF LOOICAL mOE FAULTS 

There are three categories of logical node faults, listed in 
increasing order of severity: 

o Context-level faults 
o Process-level faults 
o Processor-level faults 

6-2 



FAULTS· 

Context-Level Faults 

Context-level faults are the least severe of the IP logical node 
faults. A context-level fault arises fran exceptions which can be 
confined to the context in which the IP is operating. The IP may 
fault when attempting to execute a function or during the movement 
of data through one of the windows. One example of a context-level 
fault is the condition which occurs when a request to the function 
facility contains an erroneous function code. In this case, the IP 
can detect and report the fault before any execution of a function 
is begun. 

When the IP detects a context-level faul t, it places information 
about the fault in the context-level fault information area of the 
process obj ect, sets the function state to "context-level faul t" , 
and interrupts the Attached Processor. A context-level fault can 
only be generated by an IP which is round to a process. If a second 
fault occurs while handling a context-level fault it is handled like 
a process-level fault. 

Response to context-level faults can usually be performed by IP 
controller software running in the Peripheral Subsystem. The 
conditions which generated these faults are contained in a limited 
portion of the IP's 432 environment. 

Process-Level Faults 

Process-level faults are generated when an exceptional condition is 
detected which prohibits further IP execution in the faulted process 
environment. Same situations when process-level faults are 
generated are: 

o System level consistency failures. 
o Normal requests to the operating system interface. 
o User errors, which may be misuse of the operating system 

interface. 

When an IP encounters a process-level fault, the IP: 
\ 

o Records information about the fault in the IP process' 
process-level fault information area. 

o SENDs the faulted process to a fault ~. 
o Updates the function state to "process-level faul t" • 
o Interrupts the Attached Processor. 

I f a second faul t occurs while the IP is handling a process-level 
fault, this is considered a processor-level fault. If the IP 
encounters a fault of process-level severity when it is not bound to 
a process, the IP treats the situation as a processor-level fault. 

6-3 



iAPX 432 Interface Processor Architecture Reference Manual 

The fault port is serviced by a 432 fault handling process where one 
of four actions may be taken: 

o Correct the reason for the fault and OOmplete any partially 
perfonmed function by completing the unfinished steps. 

o Correct the reason for the fault, rewind any partially performed 
function steps, and then retry the function. 

o Decide to reflect the process-level fault to the context-level. 
o "Crash" the system. 

The first two actions represent the method that an operating system 
can use to extend the 432 architecture. For example, an operating 
system's virtual InP.1IDry implementation considers a "storage not 
associated" fault as a nonmal occurrance and retrieves the missing 
menory segment. With the segment available, the fault handler can 
decide to simulate the canpletion of the function or unwind the 
partially completed function and rerun it. 

Processor-Level Faults 

Processor-level faults, the most severe level of faults, occur when 
an IP detects a condition which jeopardizes further operation by the 
processor. Bus errors and alarms are examples of such occurrences. 
In response to the first processor-level fault encountered, the IP 
reports the fault in the fault information area of the processor 
data segment, updates the processor status to "faulted", and signals 
an interrupt to inform the attached processor. If a second 
processor...;level fault occurs before the AP has recorded the fault 
information, the IP closes all five of its windows into 432 memory, 
including the control window, signals that a fatal error has 
occurred and indicates that the Peripheral Subsystem should be reset 
(see FATAL/ and PSR pin descriptions in the iAPX 43203 Interface 
Processor Data Sheet, Order Number 171874). 

WINOOW-MAPPED DA':m TRANSFER 

Information about faults which occur during data transfer through 
the windows is recorded in the mapping facility faul t infonmation 
area oontained in the IP processor object. This information is 
accessible to the AP through the control window. Each window (0 
through 4) has a separate fault information area. When the fault 
occurs, the IP deposits the fault infonmation, closes the window, 
tuts the window in the error state, and interrupts the Attached 
Processor. Only open windows can generate window mapping faults. 

6-4 



processor 

ipsor.psor 

process 

i prcs. prcs . 

context 

iprcs.ctxt. 

LEGEND: 

FAUL TED 
STATE 

~ ~ 

4~ 

.. 

~~ 

FAULTS 

"FATAL" . , ,~ ~~ 

FLT FLT FLT FLT 

processor processor processor 

ipsor .psor ipsor.psor ipsor.psor 

.4~ ~. ~~ 

FLT FLT FLT PRO 
FAU 

process 

; prcs . prcs . . , 
FLT FLT 

~ . es BO~ND no 

4, PROCESS 
FAULT 

CONTEXT 
FAULT 

FAULT INFORMATION AREAS 

REFLECTED 
FAULT 

YES 

RESU~1E 
NORMAL 
OPERATION 

prcs 
ctxt 

iprcs object 

Figure 6-1 Fault Reporting State 

reserved 
psor 

ipsor object 

6-5 

CESSOR 
LT 



iAPX 432 Interface Processor Architecture Reference Manual 

6-2. FAULT HANDLING 

When an IP process encounters a process-level fault, it is 
autanatically sent to a 432 fault port to await service. A fault 
handling 432 process is designated to service the faulted processes 
waiting at the fault port. By design, IPs and GOPs share a cormnon 
base architecture, so IP faults may often be handled by software 
similar to that used to service GOP faults. In cases where unique 
IP attention is required, a special fault fJOrt must be constructed 
to which faul ted IP processes may be selecti vel y re-sent and then 
serviced by AP and/or GOP software. 

6-6 



APPENDIX A 
SYSTEM OBJECT STRUCTURES 

The object structures of Interface Processors are described belOil. 
The only objects structures described are for those whose form or 
interpretation differ fran GOP object structures. Note that the 
values found in the length fields in the var ious objects descr ibed 
belOil are encoded as "actual length minus 1" in bytes. Also note 
that the object indices refered to below are of the same format as 
object selectors with the entry access segment index subfield 
uninterpreted. The displacement subfield is interpreted as an index 
into the associated domain access segment. 

A-I. CONTEXT CEJECI'S 

In the Trost general terms, contexts for Interface Processors and 
General Data Processors serve the same purpose. They are used to 
represent an access environment in which process execution can take 
place. On closer inspection, hCMever, the differences are 
significant. For example, with Interface Processors there is no 
concept of a sequential instruction stream. Instead the only 
instructions executed by Interface Processors are functions 
requested, one at a t:ime, by software executing on the associated 
Attached Processor. At a mundane level, this means that Interface 
Processor contexts need not provide access to instruction segments 
or operand stacks. More significantly, without a sequential 
instruction stream there are no concepts of intracontext or 
intercontext control flow either. This results in the binding 
between Interface Processor processes and contexts being static. In 
fact, context access and data segments are refinements of the 
corresponding process access and data segments respectively. 

Given these differences, an Interface Processor context represents 
the access environment available within the 432 system to the 
logical process being executed on the logical processor comprised of 
the Interface Processor and the associated Attached Processor. The 
operators provided by the Attached Processor affect the contents of 
data segments in this environment via the address mapping facility 
of the Interface Processor. The operators provided by the Interface 
Processor affect this environment via the function request facility 
of the Interface Processor. 

A-I 



iAPX 432 Interface Processor Architecture Reference Manual 

A context object is represented by a context access segment and an 
associated context data segment. 

Context Access Segments 

Diagranmatically, a context access segment is structured as shown 
belCM. 

context 
access 

= = 
entry 1 

1----------------1 
8 domain AD -1---> domain of definition 

1----------------1 
AS AD -1---> entry access segment 3 

1----------------1 
AS AD -1---> entry access segment 2 

1----------------1 
1 AS AD -1---> entry access segment I 
1----------------1 

context AD -1---> context 
1----------------1 
! AD -1---> nessage 
1----------------1 
! AD -1---> reserved 
1----------------1 

AD -1---> reserved 
1----------------1 

segment ---> 0 1 data seg. AD -1---> context data segment 
1----------------1 

The context access segment, context data segment, and domain access 
descr iptors in the context must be created without delete rights. 
The entry access segment entries never bear delete rights. 

The base rights field of a context access segment access descriptor 
is interpreted in the same manner as for all objects of base type 
access segment. The system rights field of a context access segment 
access descriptor is uninterpreted. 

Context Data Segments 

The only processor interpreted field in the context data segment is 
the process status field which contains a combination of process and 
context status. The form and interpretation of this field are 
described in the process data segment section. 

The base rights field of a context data segment access descriptor is 
interpreted in the same manner as for all objects of base type data 
segment. The system rights field of a context data segment access 
descriptor is uninterpreted. 

A-2 



SYSTEM OBJECI'S STRUCIURES 

A-2. PROCESS <l3JEC'IS 

Logically, a process is the execution by a processor of an 
instruction stream within a specific environment. In a combined 
Attached Processor/Interface Processor system, the IP process object 
extends the execution environment of an AP process to logically 
include a specific domain in the 432 address space. The execution 
p:>int Iroves, of course, as each instruction is executed because a 
new instruction is autanatically specified. Occasionally, as the 
result of instruction execution, a new instruction stream within the 
Attached Processor software is specified. Unless the AP process 
should indicate its termination, the execution point continues to 
Irove in this manner forever. There is thus a close and long-term 
association between the environment provided by an interface 
process and a particular AP process. When a new AP process specifies 
a function request, an Interface Processor makes the associated 
interface process' execution environment available. 

A process obj ect is represented by a process access segment and an 
associated process data segment. 

Process Access Segments 

The hardware-recognized internal structure of a process access 
segment is shown below. 

A-3 



iAPX 432 Interface Processor Architecture Reference Manual 

process 
access 

entry 
= = 

1----------------1 

= 
refined 
context 
access 
segment 

= 

12 1 
1----------------1 

11 1 carrier AD -1---> surrogate carrier 
1----------------1 
1 carrier AD -1---> current carrier 
1----------------1 

port AD -1---> current port 
1----------------1 

AD -1---> current message 
1----------------1 
1 AD -1---> reserved 
1----------------1 

port AD -1---> fault port 
1----------------1 
1 port AD -1---> dispatching port 
1----------------1 
1 carrier AD -1---> process carrier 
1----------------1 

AD -1---> reserved 
1----------------1 
1 AS AD -1~--> global access segment 
1----------------1 

context AD -1---> context 
1----------------1 

segment ---> 0 1 data seg. AD -1---> process data segment 
1----------------1 

The base rights field of a process access segment access descriptor 
is interpreted in the same manner as for all objects of base type 
access segment. The system rights field of a process access segment 
access descriptor is uninterpreted. 

A-4 



SYSTEM 0BJECrS STRUCTURES 

Process Data Segments 

The basic structure of a process data segment is shown below. 

= = double byte 
1 displacement 

1----------------1 

= 
refined 
context 
data 

segment 

= 

1 1 90 
1----------------1 

process 
= fault = 

information 
1 1 77 
1----------------1 

context 
= fault = 

information 
64 

1----------------1 

= reserved = 
9 

1----------------1 
1 process ID 1 
1----------------1 
1 1 
1- -1 
1 
1- reserved -1 
1 
1- -1 

4 
1----------------1 
1 1 
1- q value -1 
1 
1----------------1 

process 1 process status 1 
data 1----------------1 
segment ----> 1 obj ect lock 1 0 

1----------------1 

The format and interpretation of the object lock field is the same 
as for GDPs. 

A-5 



iAPX 432 Interface Processor Architecture Reference Manual 

The organization of the process status field is shown below. 

!x!x! 9 bits !x1x!x1x1xl 

II! 
1 1 1- bound 
1 1---- waiting for message 
1------ process faulted 

1-------- reserved 
1--------- context faulted 

1------------------ reserved 
1------------------------- one vector only 

1--------------------------- first port operation completed 

The bound bit is interpreted as follows: 

o - this process is bound to a processor 
1 - this process is not bound to a processor 

The interpretation of the context and process faul ted subf ields 
are as 
folla-ls: 

o - not faulted 
I - faulted 

The format and interpretation of the waiting for message, one vector 
only, and first port operation cx:::rnpleted subfields are the same for 
IPs as they are for GDPs. 

Fault information for context, process, and processor level faults 
has the same organization. Process objects contain fault 
information for context and process level faults. Processor objects 
contain fault information for processor level faults. Access to the 
context fault information is made available to a context via the 
software convention of providing a refinement for it in a known 
entry of the process global access segment. The process fault 
information area in the process object is used when a process-level 
fault occurs and a process is bound to the processor. The processor 
fault information area in the processor object is used when a 
process level fault occurs and a process is not bound to the 
processor. The organization of the fault information area is 
described in Appendix C, the Fault Summary. 

The base rights field of a process data segment access descriptor is 
interpreted in the same manner as for all objects of base type data 
segment. The system rights field of a process data segment access 
descriptor is uninterpreted. 

A-6 



SYSTEM. 0BJECl'S STRUClURES 

A-3. PROCF.5SOR CBJECTS 

An 432 Interface Processor consists of two cxx:>perating processing 
elements: a mapping facility and a function request facility. The 
mapping facility translates Peripheral Subsystem addresses into 432 
system addresses. The function request facility executes the 
operator set described in Appendix B. The mapping facility and the 
function request facility can run in parallel. 

A processor object is represented by a processor access segment, an 
associated processor data segment. 

Processor Access Segments 

Processor access segments are organized as shown below. 

A-7 



A-a 

iAPX 432 Interface Processor Architecture Reference Manual 

processor 
access 

entry 

21 

20 

segment --> 0 

= = 

1----------------1 1 1 
process 

= selection = 
list 

1----------------1 
1- -1 
1 
1- mapped -1 

data 
1- segments -1 
1 
1- -1 
1----------------1 
1 AD -1---> reserved 
1----------------1 

AD -1---> reserved 
1----------------1 
1 AD -1---> reserved 
1----------------1 

port AD - 1 ---> normal port 
1----------------1 
1 carrier AD -1---> surrogate carrier 
1----------------1 

carrier AD -1---> normal carrier 
1----------------1 

port AD -!---> current port 
1----------------1 

AD -1---> current message 
1----------------1 

AD -1---> reserved 
1----------------1 
1 data seg. AD -1---> control window 
1----------------1 

carrier AD -1---> processor carrier 
1----------------1 
1 objtab dir AD -1---> object table directory 
1-----~----------1 
1 COI'llID seg. AD - 1 ---> global communication segment 
1----------------1 
1 COImO seg. AD -1---> local conrnunication segment 
1----------------1 
1 carrier AD -1---> current process carrier 
1----------------1 
1 data seg. AD - 1 ~-> processor data segment 
1----------------1 



SYSTEM 0BJECrS STRUCTURES 

The base rights field of a processor access segment access 
descriptor is interpreted in the same manner as for all objects of 
base type access segment. The la-l order bi t of the system rights 
field of a processor access descriptor is interpreted as follows: 

o - an interprocessor message may not be broadcast via the 
global communication segment of this processor 

I - an interprocessor message may be broadcast via the global 
oommunication segment of this processor 

The mid order bit of the system rights field of a processor access 
descriptor is interpreted as follows: 

o - an interprocessor message may not be sent to this 
processor 
via the local communication segment of this processor 

1 - an interprocessor message may be sent to this processor 
via the local communication segment of this processor 

The high order bit of the system rights field of a processor access 
descriptor is uninterpreted. 

Processor Data Segments 

The intended use of this data segment is as instance specific 
control information, for recording a copy of the processor-resident 
information contained in the function request facility and the 
mapping facility, for recording fault information, and as randomly 
addressable scalar working storage. The ropy of processor-resident 
info~ation in the processor data segment is updated by the 
processor whenever a signif icant state change to that information 
occurs (i.e., function completion or block transfer canpletion). 
The area above double byte displacement four is made visible to 
Attached Processor software through the control window (window 4). 

The information in the processor data segment is organized as shown 
in the diagram below. 

A-9 



iAPX 432 Interface Processor Architecture Reference Manual 

double byte 
= = displacement 
1----------------1 

= 
control 
window 

area 
= 
1 4 

1----------------1 
reserved 

1----------------1 
! cur. prcs idx. 1 
1----------------1 

processor 1 psor status 1 
data 1----------------1 
segment -->! object lock ! a 

1----------------1 
The processor status field is shown below. 

8 bits !xlxlxlxlxxxxi 

1 1 1--- processor state 
1 1------ faulted 
1-------- reference mode 

1 1---------- stopped 
1------------ broadcast accept. mode 

1------------------- processor ID 

The processor state subfield is interpreted as follows: 

0000 - idle 
0001 - process execution 
0010 - 1111 - reserved 

The interpretation of the faulted subfields is as follows: 

a - not faulted 
1 - faulted 

The reference m:>de subfield specifies whether the references in 
function requests are logical or physical. In logical reference 
mode, function request references are relative to the four-oamponent 
access environment generated by the current context. In physical 
reference mode, function request references are simply 24-bit 
physical addresses. The reference mode subfield is interpreted as 
follCMs: 

A-lO 

a - using physical mode 
1 - using logical mode 



SYSTEM 0BJECl'S STRUCl'URFS 

The stowed bit is interpreted as follows: 

o - running 
I - stopped 

The broadcast acceptance mode bit is interpreted as follows: 

o - broadcast interprocessor messages are not being 
accepted and acknowledged 

I - broadcast interprocessor messages are being accepted 
or acknowledged 

Note that the processor ID fields in the processor data segment and 
the local oorrmunication segment are filled in by the associated 
processor at initialization time from externally read information. 

The base rights field of a processor data segment access descriptor 
is interpreted in the same manner as for all segments of base type 
data segment. The system rights field of a processor data segment 
access descriptor is uninterpreted. 

Control WindCM Area -

The oontrol window area consists of several major subareas and 
several minor ones. The primary purpose of these areas is to 
provide Attached Processor software access to state information 
describing recent state changes in the function request facility and 
the mapping facility and occurances of asynchronous events. 

A-II 



A-l2 

LAPX 432 Interface Processor Architecture Reference Manual 

control 
window 
area 

double byte 
= = displacement 
1----------------1 80 

= reserved = 
77 

1----------------1 
! ! 

processor 
= fault = 

information 
64 

!----------------1 
1 selected state ! 63 
1----------------1 
1 selected idx. 62 
1----------------1 

mapping 
facility 

= fault = 
information 

65 

1 52 
1----------------! 1 

= 
mapping 
facility = 

1----------------1 
28 

1 reserved 1 27 
1----------------! 
1 IPC fun. req. 1 26 
1----------------1 

= 
function 
request 
facility 

= 

1----------------! 
reserved 

1----------------1 
1 reconfig. state 1 
1----------------1 
1 disp. state 1 
1----------------1 
1 alarm state 
1----------------1 

IPC state 
1----------------1 

6 

---> 1 PS state 1 0 
1----------------1 



SYSTEM 0BJECrS STRUCl'URES 

Peripheral Subsystem State Field -

The organization of the Peripheral Subsystem state field is shown 
belCM. 

1 12 bits lxlxxlxl 

1 1 
1 1-- write sample delay 

! 1--- xack delay 
1 1------- interrupt inhibit 
1------------- reserved 

The write sample delay field and the xack delay field program the 
characteristics of the IP conponent interface to the Peripheral 
Subsystem. See the iAPx 43203 VI..SI Interface Processor Data Sheet, 
Order Number 171874-001 for details. 

If the interrupt inhibit field is a 1 then the IP will inhibit 
normal function complete interrupts but will continue pass all other 
interrupts to the AP. If the interrupt inhibit field is 0 then the 
IP will report successful function completions with interrupts. 

IPC State Field -

The IPC state field is used to indicate that the processor has 
responded to an interprocessor conmunication signal and signalled 
the associated Peripheral Subsystem via interrupt. It has the 
following organization. 

14 bits lxlxl 

1 1 
1 1 -- local IPC response 

1 1 --- global IPC response 
1----------- reserved 

With either IPC response flag, a value of zero indicates that 00 
such response has occured and a value of one indicates that such a 
response has occured. 

A-13 

• 



• 

iAPX 432 Interface Processor Architecture Reference Manual 

Alarm, Dispatching, and Reconfiguration State Fields -

The alarm, dispatching ("select process"), and reconfiguration state 
fields are used to indicate that the processor has responded to that 
type of signal and signalled the associated Peripheral Subsystem via 
interrupt. Each has the following organization. 

15 bits Ix! 

!- response 
1--------- reserved 

Wi th the response flag, a value of zero indicates that no such 
response has occured am a value of one indicates that such a 
response has occured. 

Function Request Facility Area -

The function request facility is the part of the Interface Processor 
which accepts function requests and performs the requested function. 
The function request facility area of the processor data segment 
contains a copy of the processor-resident information related to the 
current or nnst recent function requested. As shown below, the area 
consists of five contiguous parts. The first part contains the 
process selection index for the execution environment in which the 
function should be performed. The second part contains the function 
state information. The third part contains the op-aJde of the 
operator requested. The fourth part contains the operands operated 
upon in performing the requested function. The fifth part is used 
to record the result of the requested function. 

A-14 

= = double b¥te 
1----------------1 displacement 

25 
function 
result 

1----------------1 
1 

operands 

1----------------1 

16" 

9 

1 operator 8 
1----------------1 
1 function state 1 7 
1----------------1 

prcs idx. 6 
1----------------1 
= = 



SYSTEM 0BJECl'S STRt.CIURES 

Function State Field -

The function state field is used to describe the current state of 
the function request facility. It has the following organization. 

8 bits lxxlxlxlxxxxl 

1 
1 1 1-- function completion state 
1 1----- SEND completion state 

1 1------- RECEIVE completion state 
1--------- fault level 

1---------------- reserved 

The interpretation of the function completion state subfield is as 
follCMs: 

0000 - function completed 
0001 - function in progress 
0010 - 1111 - reserved 

The interpretation of the SEND or RECEIVE completion state subfields 
is as follows: 

o - completed 
1 - blocked 

The fault level subfield indicates whether a fault which has occured 
is context-level, process-level, or processor-level. The fault 
handler requires this information in order to know where the fault 
information has been stored. The interpretation of the fault level 
subfield is as follCMS: 

00 - none 
01 - context-level fault 
10 - process-level fault 
11 - processor-level fault 

Mapping Facility Area -

The mapping facility consists of five' map entries capable of 
suworting the randan mapping of five non-overlapping address 
sub ranges from the Peripheral Subsystem into corresponding 432 data 
segments. One of these map entries (entry 0) is capable of 
supporting block transfer as well as random mapping. One map entry 
(entry 1) is capable of supporting mapping into the 432 
interconnection address space as well as random mapping. One map 
entry (entry 4) and its associated Peripheral Subsystem address 
subrange always maps onto the processor data segment. The two major 
purposes of this subrange are to capture references to the function 
request facility and to allCM Attached Processor software to read 

A-IS 



iAPX 432 Interface Processor Architecture Reference Manual 

current status information. When operands are read from this 
subr ange or wr i tten into this subr ange, the processor data segment 
is accessed. Data written into the part of the subrange 
representing the function request facility is captured when no 
function is in progress. During function execution, Attached 
Processor software must not make further function requests. 

At the base of the mapping facility area, the extra information for 
supporting block transfer via map entry 0 is recorded in a data 
structure with the following organization. 

= = double byte 
1----------------1 displacement 
1 reserved 1 31 
1----------------1 

P. S. disp. 1 
1----------------1 
1 432 disp. 1 
1----------------1 

block count 28 
1----------------1 
= = 

When the transfer m:x1e subfield of the entry state field for map 
entry 0 indicates that it is in block transfer mode, the 
processor-resident copy of the block count field indicates the 
number of bytes remaining to be transferred for transfer termination 
to occur normally (i. e. , upon count runout). Whenever normal 
transfer termination occurs, both copies of the block count field 
are zero. Whenever normal transfer termination does not occur, such 
as in the case of faults, both copies of the block count field 
indicate the number of remaining, but not transferred, bytes. 

When the transfer mode subfield of the entry state field for map 
entry 0 indicates that it is in block tr ansfer m:x1e, the 
processor-resident copy of the 432 displacement field indicates the 
displacement into the associated data segment of the next byte to be 
transferred. 

When the transfer node subfield of the entry state field for map 
entry 0 indicates that it is in block transfer mode, the 
processor-resident copy of the Peripheral Subsystem displacement 
field indic~tes the displacement into the associated Peripheral 
Subsystem address range of the next byte to be transferred. 

Any difference between the values of the tYfO displacement fields 
accounts for data in the processor-resident buffers which was not 
successfully transfered. 

A-16 



SYSTEM OBJECTS STRUCTURES 

Above the block transfer information, a copy of the information 
contained in each of the processor-resident map entr ies (0 through 
4) is represented by a data structure with the following 
organization. 

= = double byte 
1----------------1 displacement 
1 base disp. 4 
1----------------1 
1 mask 1 
1--------7-------1 

base address 
1----------------1 
1 entry state 1 a 
1----------------1 
= = 

The entry state field is used to describe the current state of the 
given map entry. It has the following organization. 

1 9 bits lx1xx1xx1x1xl 

1 1 
1 1 1-- map valid 
1 1---- transfer mode 

! 1------ transfer direction 
1--------- transfer state 

1 1------------ memory overlay 
1------------------ reserved 

The I-bit map valid subfield indicates whether or not this map entry 
is currently in use. If the bit is zero, this map entry is not used 
in Peripheral Subsystem address inspection. If the bit is one, this 
map entry is used in Peripheral Subsystem address inspection. The 
processor-resident copy of this subfield is checked by the mapping 
facility each time a Peripheral Subsystem address is received for 
inspection. 

For map entry 0, the I-bit transfer mode subfield indicates whether 
this map entry is in randan or block transfer mode. A value of zero 
indicates that this map entry is in random mode. A value of one 
indicates that this map entry is in block transfer mode. For map 
entry 1, the I-bit transfer mode subfield indicates whether this map 
entry maps Peripheral Subsystem addresses into the 432 address space 
or the interconnection address space. A value of zero indicates 
that this map entry is in 432 mapping mode. A value of one 
indicates that this map entry is in interconnection mapping mode. 
For other map entries, the setting of this subfield causes a fault. 

A-17 



iAPX 432 Interface Processor Architecture Reference Manual 

The 2-bit transfer direction subfield indicates the types of 
read/write requests from the associated Peripheral Subsystem which 
are valid with respect to this map entry. The low order bit of the 
transfer direction subfield is interpreted as follows: 

o - reading may not occur 
1 - reading may occur 

The high order bit of the transfer direction subfield is interpreted 
as follows: 

o - wr iting may not occur 
1 - writing may occur 

Note that both bits may not be set when setting block transfer mode. 

The 2-bit transfer state subfield irrlicates the state of the 
transfer. It is encoded as follows: 

00 - transfer in progress 
01 - transfer terminated upon count runout 
10 - transfer termination forced 
11 - transfer termination upon fault 

The I-bit memory overlay subfield irrlicates whether or not the 
Peripheral Subsystem address subrange associated with this map entry 
overlays physical memory in the Peripheral Subsystem. If physical 
memory is overlayed, whenever an address is mapped via this entry a 
Per ipheral Subsystem rus protocol is employed which prevents that 
overlayed memory from responding. A value of zero indicates that no 
memory is overlayed. A value of one irrlicates that memory is 
overlayed. 

The base address field is used to specify the starting address of 
the Peripheral Subsystem address subrange mapped h¥ this map entry. 
Subranges are 2**n bytes in length with n being in the range zero to 
sixteen. A subr ange of a given pcMer of two in size must appear on 
an addressing boundary of the same power of two (e.g., a 16 byte 
subr ange rust begin on a 16 byte boundary). Stated another way, a 
sub range of 2**n bytes in length will thus have a starting address 
containing at least n trailing zeros. Base addresses are always an 
integer multiple of an integer pcMer of two (i.e., m*2**n). The n 
is as described above. The m is any integer such that the above 
conditions hold and the value of the starting address is limited to 
the range 0 to 65,535. 

The mask field contains a mask which is used to specify the size of 
the Peripheral Subsystem address subrange to be mapped by this map 
entry. The mask is composed of two contiguous bit string 
subfields. The higher-order bi t string contains all ones. The 
lower-order bit string contains all zeros. The mapped address 
subrange is 2**(number of zeros in the lower-order bit string) bytes 
in length beginning at the starting address. 

A-18 



SYSTEM OBJECl'S STRUCTURFS 

The base displacement field contains the byte displacement into the 
432 segment used to construct a refinement of a data segment. See 
Figure 3-2 for an illustration of the role of a window's base 
displacement in forming a refinement. 

Mapping Facility Fault Information Area -

The mapping facili ty fault information area consists of an entry 
fault code and fault displacement pair for each map entry. 
Diagranmatically, the fault information for each map entry appears 
as shown beiCM. 

= = 
1----------------1 
1 fault disp 1 
1----------------1 
1 fault code ! 
1----------------1 
= = 

Each entry fault code field is used to record the cause of the last 
fault associated with that map entry. It has the following 
organization. 

Ix! 6 bits lxlxlxlxlxlxlxlxlxl 

1 1 
1 1 1-- read/write 
1 1---- bus error 

1 1------ access rights 
1 1 ------- segment bound 

1 1---------- memory overflCM 
1------------ access direction 

1-------------- post termination 
1--------------- partial block overflCM 

1------------------ block overflow 
1------------------------ reserved 

1----------------------------- block termination 
(internal use) 

The I-bit read/write subfield indicates whether the associated fault 
was caused by a read request or a wr i te request. A value of zero 
irrlicates that the fault was caused by a read request. A value of 
one indicates that the fault was caused by a write request. 

The I-bit bus error subfield indicates whether or not the associated 
faul t was caused by a 432 bus error. A value of zero indicates that 
the fault was not caused by a bus error. A value of one indicates 
that the fault was caused by a bus error. 

A-19 



iAPX 432 Interface Processor Architecture Reference Manual 

The I-bit segment bound subfield indicates whether or not the 
associated fault was caused by a segment bounds violation. A value 
of zero indicates that the fault was not caused by a segment bounds 
violation. A value of one indicates that the fault was caused by a 
segment bounds violation. 

The I-bit menory overflaY subfield indicates whether or not the 
associated fault was caused by a memory overflow. A memory overflow 
occurs when the sum of the physical base address in bytes of a 
segment being accessed plus the byte displacement to the operand 
being accessed exceeds 16,777,215 (i.e. 2**24-1). A value of zero 
irrlicates that the fault was not caused by a memory overflow. A 
value of one indicates that the fault was caused by a mennry 
over flaY. 

The I-bit access direction subfield indicates whether or not the 
associated fault was caused bv an access direction error. An access 
direction error occurs when the transfer direction subfield of the 
corresponding map entry state irrlicates that the requested access 
di+ection (either read or write) is invalid. A value of zero 
irrlicates that the fault was not caused by an access direction 
error. A value of one indicates that the fault was caused by an 
access direction error. 

The I-bit post termination subfield indicates whether or not the 
associated fault was caused by a post termination error. A post 
termination error occurs when an access is attempted after a 
transfer via the associated map entry has terminated. A value of 
zero irrlicates that the fault was not caused by a post termination 
error. A value of one indicates that the fault was caused by a post 
termination error. 

The I-bit partial block overflaY subfield irrlicates whether or not 
the associated fault was caused by a partial block overflCM. A 
partial block overflaY occurs when there is one byte left to be 
transfered in a block arrl a double-byte request is made. A value of 
zero indicates that the fault was not caused by a partial block 
overflow. A value of one indicates that the fault was caused by a 
partial block overflCM. 

The I-bit block overflaY subfield indicates whether or not the 
associated fault was caused by a block overflow. A block overflow 
occurs when the block count is zero, the Peripheral Subsystem 
attempts an access, am the map entry state has not yet been 
updated. A value of zero indicates that the fault was not caused by 
a block overflow. A value of one irrlicates that the fault was 
caused by a block. over flaY • 

A-20 



SYSTEM 0BJECrS srRUCTURES 

Selected Index and Selected State Fields -

The selected index and selected state fields are filled in by the 
processor fram information found in the process carrier data segment 
at process selection time, i. e when a "select process" IPC is 
received. The selected index is a process selection index used to 
conmunicate to Attached Processor software which process from the 
process selection list has just been bound to the processor. The 
selected index is obtained from the double byte quantity located at 
a displacement of eight double bytes into the process carrier data 
segment. The selected state is uninterpreted by processors and is 
obtained from the double byte quantity located at a displacement of 
nine double bytes into the process carrier data segment. 

Processor Fault Information Area 

The organization of the processor fault information area is 
described in Appendix C. 

Local and Global Communication Segments 

Both local and global oonununication segments used by IPs have the 
same format and interpretation as the corresponding objects employed 
by GDPs. 

IPC Message Field 

The IPC message field contains one of the following function request 
encodings. Message codes 0 through 7 represent IPC messages which 
are coll'lIDn between GDPs and IPs. Message codes 15, 16, and 17 are 
messages specific to Interface Processors. Message codes 8 through 
14 are defined for GDPs rut are unused by IPs. 

o - Select Process - Causes the processor to examine its carr ier 
to determine if a process was received. If 
a process was received, the process is 
selected, the dispatching flag is set, and 
the selected state and selected index fields 
are copied from the process carrier data 
segment to the control winda-1. The current 
process index field is invalidated when this 
IPC is received. 

1 - Start Processor 

2 - Stop Processor 

3 - Set broadcast acceptance mode 

A-2l 



iAPX 432 Interface Processor Architecture Reference Manual 

4 - Clear broadcast acceptance mode 

5 - Flush object table 

6 - Suspend and fully requalify processor 

7 - Suspend and requalify processor 

8 - 14 - Unused 

15 - Close (Invalidate) Windows and Unlock I/O Locks 
(on windows 0-3) 

16 - Generate PS Reset 

17 - Close (Invalidate) Windows and Unlock I/O Locks 
(on windows 0-3) and Enter Physical Mode 

The base rights of a corrmunication segment access descriptor are 
interpreted in same manner as for all segments of base type data 
segment. The system rights field of a comnunication segment is 
uninterpreted. 

A-22 



APPENDIX B 
FUNcrIOO SUMMARY 

Ap;>endix B sumnarizes the Interface Processor functions. Three 
lists are provided to assist in locating the page which contains a 
particular functioo description. 

One list, Table B-1, organizes the function set by alphabetical 
order. Table B-2 organizes the function set by increasing function 
code number and is -r;>articularly useful when debugging IP controller 
software. Table B-3 organizes the function set by operator id coOes 
and is especially useful When debugging IP fault handling software. 

The template for function descr iptions is shown on page B-5. All 
function descriptions follow this style of presentation. 

B-1 



iAPx 432 Interface Processor Architecture Reference Manual 

TABLE B-1 

ALPHABEl'ICAL INDEX TO IP FUNcrICNS 

HEX DECIMAL 
FUNCTICN OPERATOR 

FUNcrICN NAME CODE ID PAGE 

(Logical Mode Functions) 
ALTER MAP AND SEI..:OCT DATA SEG1ENT 00 3 B-6 
AMPLIFY RIGHTS 08 11 B-8 
BIDAOCAST TO P~SORS 18 27 B-9 
CCNDITIOOAL ROCEIVE 15 24 B-I0 
roIDITICNAL SEND 13 22 B-11 
COpy ACCESS DESCRIPTOR 04 7 B-12 
ENrER ACO:SS SEG1ENr 07 10 B-13 
ENTER GLCBAL ACCESS SEGmNr 06 9 B-14 
INDIVISmIE AID SIDRT ORDINAL 19 28 B-15 
INDIVISIBLE INSERr SHORr ORDINAL lA 29 B-16 
INSPOCT ACO:SS OF 18 B-17 
INSPECr AOCESS DESCRIPTOR OE 17 B-18 
LOCK OBJECT 10 19 B-19 
NULL AOCESS DESCRIPTOR 05 8 B-20 
READ P~SOR srATUS AND CLCCK 03 6 B-21 
ROCEIVE 14 23 B-22 
RESTRIcr RIGffi'S 09 12 B-23 
REI'RIEVE PUBLIC TYPE REPRESENTATICN OB 14 B-24 
REI'RIRVE TYPE REPRESENI'ATICN OA 13 B-25 
REI'RIEVE REFINED (]3JECr OD 16 B-26 
REI'RIRVE TYPE DEFINITION OC 15 B-27 
SEND 12 21 B-28 
SEND TO P~SOR 01 4 B-29 
SEl' PERIPHERAL SUBSYSTEM MODE 02 5 B-31 
SURROGM'E ROCElVE 17 26 B-32 
SURRJGAm SEND 16 25 B-33 
UNLOCK OBJECT 11 20 B-34 

(Physical Mode Fuoctions) 
ALTER MAP AND SEI..:OCT PHYSICAL SEG1ENT 00 3 B-7 
READ PROCESSOR STATUS AND CLOCK 03 6 B-21 
SEND TO P~SOR 01 4 B-30 
SEI' PERIPHERAL SUBSYSTEM MODE 02 5 B-31 

B-2 



FUNCTIOO SUMMARY 

'mBLE B-2 

IP FUNcrICN SUMMARY BY FUNcrICN CODE 

HEX DECIMAL 
FUNCTICN OPERATOR 
CDDE FUNCrICN NAME ID PAGE 

(Logical Mode Functions) 
00 ALTER MAP AND SELECr DATA SEGiENI' 3 B-6 
01 SEND TO PKOSSOR 4 B-29 
02 SET PERIPHERAL SUBSYSTEM ~DE 5 B-31 
03 READ P~SSOR STATUS AND CLOCK 6 B-21 
04 CDPY ACCESS DESCRIPTOR 7 B-12 
05 NUIL ACCESS DESCRIPTOR 8 B.;..20 
06 ENl'ER GLCBAL ACCESS SEGiENI' 9 B-14 
07 EN'lER ACCESS SEG1ENI' 10 B-13 
08 AMPLIFY RIGHTS 11 B-8 
09 RESrRIcr RIGHTS 12 B-23 
OA RErRIENE TYPE REPRESENI'ATICN 13 B-25 
OB REl'RIEVE PUBLIC TYPE REPRESENTATICN 14 B-24 
OC RErRIENE TYPE DEFINITICN 15 B-27 
OD REl'RIEVE REFINED OBJECT 16 B-26 
OE INSPEel' ACCESS DESCRIPTOR 17 B-18 
OF INSPEel' AOCESS 18 B-17 
10 :LC:CK OBJECT 19 B-19 
11 UNLOCK OBJECT 20 B-34 
12 SEND 21 B-28 
13 CCNDITIONAL SEND 22 B-ll 
14 REr:EIVE 23 B-22 
15 CCNDITICNAL RECEIVE 24 B-I0 
16 ~TESEND 25 B-33 
17 SURR:>GATE ROCEIVE 26 B-32 
18 BIDAOCAST TO PRCCESSORS 27 B-9 
19 INDIVISmLE ADD SHORI' ORDINAL 28 B-15 
lA INDIVISmLE INSERr SIDRT ORDINAL 29 B-16 

(Physical Mode Functions) 
00 ALTER MAP AND SELECr PHYSICAL SEGmNr 3 B-7 
01 SEND TO PRCX:ESSOR 4 B-30 
,02 SET PERIPHERAL SUBSYSTEM MDE 5 B-31 
03 RE2ID P~ESSOR STATUS AND CLOCK 6 B-21 

B-3 



iAPX 432 Interface Processor Architecture Reference Manual 

TABLE B-3 

IP FUNCl'ICN SUMMARY BY OPERATOR ID 

DEX::IMAL HEX 
OPERATOR FUNCl'ICN 
ID FUNcrIOO NAME (DDE PAGE 

(logical Mode Functions) 
3 ALTER MAP AND SELECT DATA SEG1ENI' 00 B-6 
4 SEND TO PROCESSOR 01 B-29 
5 SRI' PERIPHERAL SUBSYSTEM MDE 02 B-31 
6 READ PROCESSOR STATUS AND CLOCK 03 B-21 
7 (Dpy AOCESS DESCRIPTOR 04 B-12-
8 NUIL ACCESS DESCRIPl'OR 05 B-20 
9 ENl'ER GLCBAL ACCESS SEG1ENI' 06 B-14 

10 EN'IER ACCESS SEGviENI' 07 B-13 
11 AMPLIFY RIGHTS 08 B-8 
12 RFSrRICl' RIGHTS 09 B-23 
13 RErRIE.VE TYPE REPRESENl'ATIOO OA B-25 
14 REl'RIEVE PUBLIC TYPE REPRESENTATICN OB B-24 
15 RErRIE.VE TYPE DEFINITIOO OC B-27 
16 REl'RIEVE REFINED CEJECl' OD B-26 
17 INSPOCT ACCESS DESCRIP'Irn OE B-18 
18 INSPOCT ACCESS OF B-17 
19 ~K CBJECl' 10 B-19 
20 UNLOCK Cl3JOCT 11 B-34 
21 SEND 12 B-28 
23 RECEIVE 14 B-22 
22 CONDITIOOAL SEND 13 B-l1 
24 COIDITIOOAL RECEIVE 15 B-I0 
25 ~TESEND 16 B-33 
26 SURroGArm RECEIVE 17 B-32 
27 BROA.1X!AST TO PR)CESSORS 18 B-9 
28 INDIVISIBLE ADD SHORr ORDINAL 19 B-15 
29 INDIVISmrn INSERl' SHORT ORDINAL lA B-16 

(Physical Mode Functions) 
3 ALTER MAP AND SELECl' PHYSICAL SEG1ENI' 00 B-7 
4 SEND TO PROCESSOR 01 B-30 
5 SRI' PERIPHERAL SUBSYSTEM MDE 02 B-31 
6 READ PIO::ESSOR STATUS AND CLOCK 03 B-21 

B-4 



FUNCl'IOO StM1ARy 

FUNCl'ICN 'IEMPIA'IE 
Operator ID: ID 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 1 

1------------------------1 
operand 6 1 reserved 

1------------------------1 
oper and 5 1 reserved . 1 

1------------------------1 
operand 4 1 reserved 

1------------------------1 
oper and 3 1 reserved 

1------------------------1 
oper and 2 1 reserved 1 

1------------------------1 
operarrl I 1 reserved 

1------------------------1 
oper and 0 1 reserved 

1------------------------1 

Hex Byte 
Offset 

20H-33H 

lEH 

ICH 

lAH 

ISH 

16H 

14H 

12H 

IP function code 1 OXXH (FUNCl'ICN NAME) lOH 
1----__ ------------------1 . . 

function state 1 reserved 1 OEH 
1------------------------1 

process selection index 1 PRO:ESS INDEX OCH 
1------------------------1 

Note: 

Required operands and available results are indicated by capital 
letters. Other areas are marked reserved. 

The IP function cxx1e must be written into the function request 
facility last, i.e. only after all operands are provided. The 
function code occupies only location IOH. Byte location IIH is 
reserved. 

The process selection index field is required on all IP function 
requests. This value (an access . descriptor displacement) is 
used as an byte offset into the process selection list of the IP 
processor access segment. For example, the process selection 
index for process number 5 is OOOOOOOOOOOIOIOOB. Since it is 
not modified by function execution, it need not be rewritten if 
a new function is to be executed in the same process environment 
as the previous function. 

The function state field, shown as reserved in all function 
surrmaries, may be examined after the IP receives an interrupt or 
it may be polled. The function state field should be set to 
zero before a function code is deposited. Interrupts for 
successful function completion may be selectively disabled. 



iAPX 432 Interface Processor Architecture Reference Manual 

ALTER MAP AND SELECr DATA SEGmNI' 
Operator ID: 3 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 1 

1------------------------1 
operand 6 1 BLOCK COON!' 

1------------------------1 
operand 5 1 BASE DISPIACEMENI' 

1------------------------1 

Hex Byte 
Offset 

20H-33H 

1.EH 

1CH 

operand 4 1 SOURCE OBJECl' SELECTOR 1 1AH 
!------------------------! 

operand 3 ! MASK ISH 
1------------------------1 

operand 2 1 BASE ADDRESS 1 16H 
1------------------------1 

operand 1 1 ENl'RY STATE 14H 
1------------------------1 

oper and 0 ! WINOOW INDEX 12H 
1------------------------1 

IP function code 1 OOOH (AL'lER MAP AND 
SELECr DATA SEGmNI') 1 IOH 

1------------------------1 
function state 1 reserved OEH 

1------------------------1 
process selection index 1 PR)CESS INDEX OCH 

1------------------------1 

ALTER MAP AND SELECr DATA SEG1ENT allCMs an operation to alter the 
inter-address space mapping provided by one of the address subrange map 
entries and to associate a given 432 or interconnect data segment with 
that address subrange map entry. The first operand is a double byte 
specifying which map entry/data segment, segment descriptor register is 
to be altered. This operator can only be used to affect map entries 0 
through 3. The second operand is a double byte containing new entry 
state information. The third operand is a double byte containing the 
starting address of the new subrange to be mapped. The fourth operand 
is a double byte containing the mask used to specify size of the new 
subrange. The fifth operand specifies an access descriptor for the new 
data segment. This data segment access descriptor is copied into the 
mapped segment entry in the current context associated with the map 
entry being altered. The sixth operand is a double byte specifying the 
initial displacement into the data segment for the block transfer to 
start or pseudo-refinement. If the new entry state information 
specifies that this entry is being set up in block transfer node, the 
seventh operand is a.double byte containing a count of the number bytes 
to be transferred. Note that this operator is unique to 432 Interface 
Processors. If the new entry state information specifies that the 
window is to be closed (set "invalid") then only the first two operands 
are required. 

B-6 



FUNCrlOO SUMMARY 

ArlIER MAP AND SELECI' PHYSICAL SEG1ENI' 
Operator ID: 3 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 0 through 9 1 reserved 20H-33H 

1------------------------1 
oper am 6 1 reserved lEH 

1------------------------1 
operam 5 IPHYSICAL ADDRESS (high 8) 1 lCH 

1------------------------1 
operand 4 IPHYSICAL ADDRESS (low 16) 1 lAH 

1------------------------1 
operarrl 3 1 MASK 18H 

1------------------------1 
operam 2 1 BASE ADDRESS 1 16H 

1------------------------1 
oper am 1 1 ENrRY STATE 14H 

1------------------------1 
oper am 0 1 WINOOW INDEX 12H 

1------------------------1 
IP function code ! OOOH (ArlIER MAP AND 

ISELECl' PHYSICAL SEG1ENI') 1 lOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection imex 1 PHOCESS ]NDEX OCH 
1------------------------1 

ALTER MAP AND SELECT PHYSICAL SEG1ENI' allows an operation to alter 
the inter-address space mapping provided by one of the address 
sub range map entries and to associate a given 432 or interconnect 
physical segment with that address subrange map entry. This 
physical mode operator is the equivalent of the logical mode 
operator AIlIER MAP AND SELECI' DA'm SEG1ENI'. One difference is that 
the mapping facility area is not updated by this operator. Another 
difference is that map entry 4 can be updated by this operator. The 
first operand is a double byte specifying which map entry/data 
segment, segment descriptor register. is to be altered. The second 
operand is a double byte containing new entry state information. 
The third operand is a double byte containing the starting address 
of the new subrange to be mapped. The fourth operand is a double 
byte containing the mask used to spec ify size of the new subr ange. 
The fifth and sixth operands are a word (32 bits) containing the 
right-justified, 24-bit, physical base address of the segment in the 
432 address space. If the new entry state information specifies 
that this entry is bein9 set up in block transfer mode, the sixth 
oper and is also used I as a count of the number bytes to be 
transferred. Note that this operator is unique to 432 interface 
processors. 

B-7 



iAPX 432 Interface Processor Architecture Reference Manual 

AMPLIFY RIGHTS 
Operator 10: 11 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 

1------------------------1 
operarrl 6 1 reserved 

1------------------------1 
oper arrl 5 1 reserved 

1------------------------1 
operand 4 1 reserved 

1------------------------1 
operand 3 1 reserved 

1------------------------1 
operand 2 1 reserved 

1------------------------

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAB 

ISH 

16H 

operand I 1 OESC crRL CBJ SEIECl'OR 14H 
1------------------------

operand 0 1 OEST 0BJECl' SELECl'OR l2H 
1------------------------

IP function code 1 OOSH (AMPLIFY RIGHTS) IOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index 1 P~ESS INDEX OCH 
1------------------------1 

AMPLIFY RIGH'IS allows an operation to alter, under control of an 
protected descriptor oontrol object, the· set of rights and 
descriptor control info~ation in the associated access 
descriptor. The first operand contains the object selector for an 
access descriptor for the given object. The secorrl operarrl contains 
the object selector for a descriptor control object access 
descriptor. The resultant new access descriptor overwrites the 
original access descriptor for the given object. Thus, the 
destination access segment entry is the same as the source access 
segment entry. 

B-S 



FUNCl'ICN Sl:M-1ARY 

BroAOCAST TO POCCESSORS 
Operator ID: 27 

Contents Function Request Facility 

1------------------------1 
results I through 9 1 reserved 1 

1------------------------1 
result 0 1 BOOLEAN 

1------------------------1 
oper arrl 6 1 reserved 

1------------------------1 
operarrl 5 1 reserved 1 

1------------------------1 
oper and 4 1 reserved 

1------------------------1 
oper and 3 1 reserved 1 

1------------------------1 
operand 2 1 reserved 1 

1------------------------1 
operand I 1 DESTINATICN PRO:ESSOR 

Hex Byte 
Offset 

22H-33H 

20H 

lEH 

lCH 

lAH 

ISH 

16H 

1 ClBJECI' SEL:ECI'OR 14H 
1------------------------1 

oper and 0 1 IPC MESSAGE 12H 
1------------------------1 

IP functioo code 1 OISH (BroAOCAST 'ID 
1 P:ro::ESSORS) 1 IOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index 1 P:ro::ESS INDEX OCH 
1------------------------1 

BIDAOCAST TO P:ro::ESSORS allCMs a process to broadcast an 
interprocessor message to all the processors in the system, 
ircluding the processor it is executing on, via the interprocessor 
communication mechanism. The first operarrl contains the 
interprocessor message. The second operand contains the object 
selector for an access descriptor for the desired processor object. 
The bcolean result, which is set to true if the control flags are 
deposited, is stored in the function result area. 

B-9 



iAPX 432 Interface Processor Architecture Reference Manual 

<DNDITIOOAL ROCEIVE 
Operator ID: 24 

Contents Function Request Facility 

1------------------------1 
results I through 9 1 reserved 1 

1------------------------1 . . 
result 0 1 BOOLEAN 1 

1------------------------1 
oper and 6 1 reserved 

1------------------------1 
operand 5 1 reserved 

1------------------------
oper and 4 1 reserved 

1------------------------
operand 3 1 reserved 

1------------------------
oper and 2 1 reserved 

1------------------------
oper and 1 1 reserved 

1------------------------

Hex Byte 
Offset 

22H-33H 

20H 

1.EH 

lCH 

1AH 

ISH 

16H 

14H 

operand 0 1 PORI' 0BJECl' SELECrOR 12H 
!------------------------1 

IP function code 1 OISH (CCNDITICNAL 
RECEIVE) IOH 

1------------------------1 
function state 1 reserved 1 OEH 

1------------------------1 
process selection index 1 PROCESS INDEX OCH 

1------------------------1 

CDNDITICNAL REX:EIVE allCMs a process to check for the availability 
of a message at a port and to indivisibly accept it if one is 
available. The first operand is used. The lxx>lean result, which 
is set to true if a message is received, is stored in the function 
result area. 

B-IO 



FUNCrIOO Sm.f.1ARY 

CCNDITlOOAL SEND 
Operator ID: 22 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 1 through 9 1 reserved 1 22H-33H 

1------------------------
result 0 1 BOOLEAN 20H 

1------------------------
oper am 6 1 reserved lEH 

1------------------------
oper am 5 1 reserved lCH 

1------------------------1 
operand 4 1 reserved 1 lAH 

1-----------------------~1 
operand 3 1 MESSAGE OBJECl' SELECI'ORI I8H 

1------------------------1 
oper and 2 1 reserved 1 l6H 

1------------------------1 
oper and 1 1 reserved 1 l4H 

1------------------------1 
operam 0 1 PORI' OBJECI' SELECI'OR l2H 

1------------------------1 
IP function code 1 013H (CCNDITICNAL SEND) 1 lOH 

1------------------------1 
function state 1 reserved 1 OEH 

1------------------------1 
process selection it:ldex 1 PRCX:!ESS INDEX OCH 

1------------------------1 

CCNDITICNAL SEND allows a process to check for the availability of 
queue space at a port and to indivisibly deliver a message if space 
is available. The first and fourth operands are used. The boolean 
result, which is set to true if a message is deposited, is stored in 
the function result area. 

B-ll 



iAPX 432 Interface Processor Architecture Reference Manual 

COpy ACCESS DESCRIPTOR 
Operator 10: 7 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 ! reserved ! 

1------------------------1 
oper and 6 1 reserved 

1------------------------1 
operand 5 1 reserved 

1------------------------1 
oper and 4 1 reserved 

1------------------------1 
operand 3 1 reserved 
• 1------------------------1 
operand 2 1 reserved 1 

1------------------------1 
oper and 1 1 SOURCE CBJECl' SELECI'OR 1 

1------------------------1 
operand OlDEST OBJECr SELECI'OR 1 

1------------------------1 
IP function code 1 004H (COpy ACCESS 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAB 

18H 

l6H 

l4H 

12H 

DESCRIPTOR) lOH 
1------------------------1 

function state 1 reserved 1 OEH 
1------------------------1 

process selection index 1 P~S INDEX OCH 
1------------------------1 

COpy ACCESS D~PTOR allows an operation to copy an access 
descriptor from a specified entry in any directly accessible access 
segment to a specified entry in any directly accessible access 
segment. The first operand contains the object selector for the 
destination access segment entry. The second ~rand contains the 
object selector for the access descriptor to be copied. 

B-12 



EN'lER ACCESS SEG1ENI' 
Operator ID: 10 

Contents Function~est Facility 
Hex Byte 
Offset 

1------------------------
results 0 through 9 ! reserved 20H-33H 

1------------------------
operand 6 ! reserved lEH 

1------------------------
operand 5 1 reserved lCH 

1------------------------, 
oper and 4 1 reserved lAH 

1------------------------
oper and 3 1 reserved ISH 

1-~----------------------
operand 2 1 reserved l6H 

1------------------------
operand 1 1 SOURCE ClI3J'ECI' SELECrOR l4H 

1------------------------1 
oper and 0 ! EAS INDEX 1 l2H 

1------------------------1 
IP function code 1 007H (EN'lER ACCESS 

SECMENr) 
1------------------------1 

10H 

function state 1 reserved 1 OEH 
1 ---------,---------------1 

process selection index ! PRJCESS INDEX om 
1------------------------1 

ENI'ER ACCESS SEG1ENI' allONs an operation to gain direct access to 
the access descriptors in a specified access segment. The first 
operand contains the index (range 1 - 3) for the destination access 
segment entry. The second operarrl contains the obj ect selector for 
an access descriptor for the access segment to be entered. 

B-13 



iAPX 432 Interface Processor Architecture Reference Manual 

ENrER GLOBAL AOCESS SEG1Em' 
Operator ID: 9 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 1 

1------------------------1 
oper am. 6 1 reserved 1 

1------------------------1 
oper am. 5 1 reserved 1 

1------------------------1 
oper and 4 1 reserved 

1------------------------1 
oper arrl 3 1 reserved 

1------------------------
oper am. 2 1 reserved 

1------------------------
operand 1 1 reserved 

1------------------------
operand 0 1 ,EAS INDEX 

1------------------------1 
IP function code ! 006H (ENTER GL<l3AL 

Hex Byte 
Offset 

20H-33H 

1EH 

lCH 

lAH 

ISH 

16H 

14H 

12H 

ACCESS SEGMENT) IOH 
!------------------------1 

function state 1 reserved 1 OEH 
1------------------------1 

process selection index 1 PROCESS INDEX OCH 
1------------------------1 

ENI'ER GLCBAL AOCESS SEG1Em' allCMs an operation to gain direct 
access to the access descr iptors in the access segment provided 
~licitly via the currently associated process object. The operand 
contains the index (range 1 - 3) for the destination access segment 
entry. 

B-14 



FUNCTICN SUI+1ARY 

INDIVISIBLE ADD SHORI' ORDINAL 
Operator ID: 28 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results I through 9 ! reserved 1 22H-33H 

1------------------------1 
result 0 ! ORIGINAL VALUE 20H 

1------------------------1 
oper and 6 1 reserved lEH 

1------------------------1 
operand 5 ! reserved ICH 

1------------------------1 
oper and 4 1 reserved lAB 

1------------------------1 
oper and 3 1 reserved I8H 

1------------------------1 
oper and 2 1 VALUE I6H 

1------------------------1 
operand I 1 DISPLACEMENT 1 I4H 

1------------------------1 
oper and 0 ! SOURCE OBJ'ECI' SELECroR 1 12H 

1------------------------1 
IP function code 1 Ol9H (INDIVISmLE AID 

1 SIDRT ORDINAL) 1 lOH 
1------------------------1 

function state ! reserved OEH 
1------------------------1 

process selection index ! PROCESS INDEX OCH 
1------------------------1 

The result of adding the soort-ordinal source value located by the 
first two operands (object selector am displacement) to the 
srort-ordinal third operand indivisibly replaces the source value. 
The original source value is stored in the function result area. 

A srort-ordinal overflow fault cannot occur. 

B-15 



iAPx 432 Interface Processor Architecture Reference Manual 

INDIVISmLE INSERr SHORT ORDINAL 
Operator ID: 29 

Contents Function Request Facility 

1------------------------1 
results I through 9 1 reserved 

1------------------------1 
result 0 1 ORIGINAL VALUE 1 

1------------------------1 
oper am 6 ! reserved 

1------------------------1 
operand 5 1 reserved 

1------------------------1 
operand 4 1 reserved 

1------------------------1 

Hex Byte 
Offset 

22H-33H 

20H 

1EH 

ICH 

lAB 

operand 3 1 MASK 18H 
1------------------------1 

operand 2 1 VALUE 1 16H 
1------------------------1 

operand 1 1 DISPIACEMENr l4H 
1------------------------1 

operand 0 1 SOURCE 0BJECr SELECl'OR 1 l2H 
1------------------------1 

IP function code 1 OlAH (INDIVISmrn 
1 INSERr SIDRT ORDINAL) 1 IOH 
1------------------------1 

function state 1 reserved 1 OEH 
1------------------------1 

process selection index 1 PRXFSS INDEX OCH 
1------------------------1 

The short-ordinal fourth operand is used as a mask (as presented on 
the third operand and inverted on the source value). The result of 
GRing the short-ordinal source value located by the first two 
operands (object selector am displacement) to the short-ordinal 
third operand indivisibly replaces the source value. The original 
source value is stored in the function result area. 

B-16 



FUNcrICN St.M1ARy 

INSPECr ACCESS 
Operator ID: 18 

Contents Function Request Facility 

1------------------------1 
results 2 through 9 1 OBJECT DESCRIPTOR IMAGE! 

1------------------------1 
results 0 through 1 1 ACCESS DESCRIPTOR IMAGEI 

1------------------------1 
oper and 6 1 reserved 1 

!------------------------1 
operand 5 1 reserved 

1------------------------1 
oper and 4 1 reserved 1 

1------------------------1 
operand 3 ! reserved 

1------------------------1 
oper and 2 1 reserved 

1------------------------1 
operand 1 1 reserved 1 

1------------------------1 

Hex Byte 
Offset 

24H-33H 

20H-23H 

lEH 

lCH 

lAB 

18H 

l6H 

14H 

operand 0 1 SOURCE OBJECT SELECl'OR 1 12H 
1------------------------1 

IP function code 1 OOFH (INSPECr ACCE'SS) lOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index ! P~ INDEX 1 OCH 
!------------------------! 

INSPECr AOCESS allows an operation to read the access information 
for the first level of any access path to which it holds an access 
descriptor. The first operand contains the object selector for an 
access descr iptor for the level in the access path which is to be 
inspected. The ten double-byte result is stored in the function 
result area. 

B-17 



iAPX 432 Interface Processor Architecture Reference Manual 

INSPECr AOCESS DESCRIPTOR 
Operator ID: 17 

Contents Function Request Facility 

1------------------------1 
results 2 through 9 1 reserved 

1------------------------1 1 SOURCE ACCESS 

Hex Byte 
Offset 

24H-33H 

results 0 through 1 1 DESCRIPTOR IMAGE 20H 
1------------------------1 

operand 6 1 reserved lEH 
1------------------------1 

operand 5 1 reserved 1CH 
1------------------------1 

oper and 4 1 reserved lAH 

1------------------------1 
operand 3 1 reserved 1 18H 

1------------------------1 
operand 2 ! reserved 1 16H 

1------------------------1 
operand I 1 reserved 14H 

1------------------------1 
operand 0 1 SOURCE OBJ SELECrOR 1 12H 

1------------------------1 
IP function code 1 OOEH (INSPEel' ACCESS 

DESCRIPTOR) IOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index 1 PRXESS INDEX OCH 
1------------------------1 

INSPECr AOCESS DESCRIPl'CR allows an operation to inspect an access 
descriptor to which it holds access. The first operand contains the 
object selector for an access descr iptor which is to be inspected. 
The ordinal result is stored in the function result area. 

B-18 



FUNcrION SUMMARY 

~K 0BJECl' 
Operator ID: 19 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 1 through 9 1 reserved 1 22H-33H 

1------------------------1 
result 0 1 BOOLEAN 1 20H 

1------------------------1 
operam 6 1 reserved 1 lEH 

1------------------------1 
oper am 5 ! reserved lCH 

1------------------------1 
oper am 4 1 reserved 1 lAH 

1-----------------~------1 
oper am 3 1 reserved 1 ISH 

1 ------------------------"! 
operam 2 1 reserved 1 16H 

1------------------------1 
operand 1 1 DISPIACEMENl' 1 14H 

1------------------------1 
operand 0 1 0BJECl' SELECI'OR 1 12H 

1------------------------1 
IP function code 1 OIOH (~K 0BJECr) lOH 

1------------------------1 
function state ! reserved OEB 

1------------------------1 
process selection index 1 PROCESS INDEX OCH 

1------------------------1 

~ CBJECT allows an operation to lock an object lock located 
within a data segment. The first operand contains the object 
selector for a data segment access descriptor. The second operand 
contains the displacement wi thin that data segment of the desired 
object lock. The boolean result, which is set to true if the object 
becomes locked, is stored in the function result area. 

B-19 



iAPX 432 Interface Processor Architecture Reference Manual 

NULL AOCESS DESCRIPTOR 
Operator ID: 8 . 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 1 

1------------------------1 
oper and 6 1 reserved 1 

1------------------------1 
operand S 1 reserved 

1------------------------1 
oper and 4 1 reserved 1 

1------------------------1 
operand 3 1 reserved ! 

1------------------------1 
operand 2 ! reserved 

1------------------------1 
operand 1 1 reserved 

1------------------------1 
operand OLDEST ~ SELECTOR 1 

1------------------------1 
IP function code 1 OOSH (NULL ACCESS 1 

1 DFSCRIPTCR) 1 
1------------------------1 

function state 1 reserved 1 
1------------------------1 

process selection index 1 PRC:CESS INDEX 1 
1------------------------1 

Hex Byte 
Offset 

20H-33H 

1EH 

lCH 

1AH 

l8H 

l6H 

14H 

l2H 

lOH 

OEH 

OCH 

NULL AOCESS DESCRIPl'CR allCMs an operation to overwrite and thus 
logically clear a given access descriptor entry. At the same time, 
access to any object previously available via that access descriptor 
entry is given up. The operand contains the object selector for the 
destination access segment entry. 

• 

B-20 



READ P~OR STATUS AND cra:K (IDgical and Physical Mode) 
Operator ID: 6 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 2 through 9 1 reserved 

1------------------------1 
result I 1 SYSTEM cra:K 1 

24H-33H 

22H 
1--____ --------------____ 1 . . 

resul t 0 1 PRDCESSOR STATUS 1 20H 
1------------------------1 

oper am 6 1 reserved lEH 
1------------------------1 

operam 5 1 reserved 1 ICH 
1------------------------1 

oper and 4 1 reserved lAH 
1------------------------1 

oper and 3 1 reserved ISH 
1------------------------1 

oper and 2 1 reserved 16H 
1------------------------

oper and 1 1 reserved 14H 
1------------------------

oper and 0 1 reserved 12H 
1------------------------

IP function code 1 003H (READ PRCX:ESSOR 
1 STATUS AND cra:K) IOH 
1------------------------1 

function state 1 reserved 1 OEH 
1------------------------1 

process selection index 1 PROCESS ]NDEX OCH 
1----------------------1 

The 16-bit processor status field of the current processor is read 
from the processor object, right appended to the current value of 
the processor resident system clock, and stored in the function 
result area. The processor status field includes both processor 
unit number and processor status information. 

READ PRCX:ESSOR STATUS AND cra:K is performed the same in both 
physical and logical nodes. 

B-21 



iAPX 432 Interface Processor Architecture Reference Manual 

~IVE 
Operator ID: 23 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 

1------------------------1 . . 
oper am 6 1 reserved 

1------------------------1 
operam 5 1 reserved 

1------------------------

Hex Byte 
Offset 

20H-33H 

lEH 

ICH 

oper and 4 1 reserved lAH 
1------------------------

operand 3 1 reserved ISH 
1------------------------

operand 2 1 reserved 16H 
1------------------------1 

oper and I 1 reserved 14H 
1------------------------

oper and 0 1 PORI' 013JECI' SELECl'OR l2H 
1------------------------

IP function code 1 Ol4H (RECEIVE) lOH 
1------------------------

function state 1 reserved OEH 
1------------------------1 

process selection index 1 P~ INDEX 1 OCH 
1------------------------1 

RECEIVE allows a process to receive a message at a specified port. 
The first operand is used. 

B-22 



FUNcrION S~ 

RESl'RIcr RIGHTS 
Operator ID: 12 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 0 through 9 1 reserved 20H-33H 

1------------------------
oper and 6 1 reserved lEH 

1------------------------
oper and 5 1 reserved ICH 

1------------------------
oper and 4 1 reserved lAB 

1------------------------1 
oper and 3 1 reserved ! ISH 

1------------------------
oper and 2 1 reserved 16H 

1------------------------
operand 1 1 DESC crRL Cl3J SELECrOR 14H 

1------------------------
operand OLDEST 0BJEC1' SELECl'OR 12H 

1------------------------
IP function code 1 009H (RESl'RIcr RIGHTS) IOH 

1------------------------1 
function state 1 reserved OEH 

1------------------------1 
process selection index ! PROCESS INDEX OCH 

1------------------------1 

RESTRIcr RIGH'IS allows an operation to restrict its access to an 
object by altering, under control of an unprotected descriptor 
control object, the access descriptor for that object to have either 
restricted rights or restricted rights and restricted descriptor 
control. The first operand contains the object selector for an 
access descriptor for the given object. The second operand is an 
unprotected descriptor control object. The resultant new access 
descriptor overwrites the original access descriptor for the given 
object. Thus, the destination access segment entry is the same as 
the source access segment entry. 

B-23 



iAPX 432 Interface Processor Architecture Reference Manual 

REl'RIEVE PUBLIC TYPE REPRFSENI'ATICN 
Operator ID: 14 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 

1------------------------1 
oper and 6 1 reserved 

1------------------------1 
oper am 5 1 reserved 

1------------------------1 

Hex Byte 
Offset 

20H-33H 

lEH 

1CH 

oper am 4 1 reserved lAH 
1------------------------1 

oper am 3 1 reserved ! ISH 
1------------------------

operand 2 1 TYPE DEF OBJ SELECI'OR 16H 
1------------------------

operand 1 1 SOURCE OBJ SELECI'OR 14H 
1------------------------

operand OlDEST 0BJECr SELECI'OR 12H 
1------------------------

IP function code 1 OOBH (RErRIENE PUBLIC 
1 TYPE REPRFSENI'ATICN) lOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index 1 PBOCESS rNDEX orn 
1------------------------1 

REl'RIBVE PUBLIC TYPE REPRESENI'ATICN a1lCMs an operation to retr ieve 
the type representation for a public type. The first operand 
oontains the object selector for the destination access segment 
entry. The secorrl operand contains the object selector for an 
access descriptor for the type whose representation is to be 
retrieved. 

B-24 



FUNcrIOO St.Mo1ARY 

REl'RIEVE TYPE REPRESENTATICN 
Operator ID: 13 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 0 through 9 1 reserved 1 20H-33H 

1------------------------1 
operam 6 1 reserved lEH 

1------------------------1 
operam 5 1 reserved 1 ICH 

1------------------------1 
oper am 4 1 reserved lAB 

1------------------------1 
operand 3 1 reserved 1 ISH 

1------------------------1 
operand 2 1 TYPE DEF OBJ SELECrOR 1 16H 

1------------------------1 
operand 1 1 DESC CI'RL OBJ SELECl'OR 1 14H 

1------------------------1 
operand 0 1 DES!' OBJECl' SELECI'OR 1 12H 

1------------------------1 
IP functioo code 1 OOAH (REl'RIEVE TYPE 

REPRESENl'ATlOO) IOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index 1 P~S INDEX OCH 
1------------------------1 

REl'RIEVE TYPE REPRESENI'ATICN allCMs an operation to retrieve the 
type representation for any type for which it holds appropriate 
access to the associated type definition. The first operand 
contains the obj ect selector for the destination access segment 
entry. The second operand contains the object selector for an 
access descriptor for the type whose representation is to be 
retrieved. The third operand contains the object selector for an 
access descriptor for the associated type definition. 

B-25 



iAPX 432 Interface Processor Architecture Reference Manual 

REI'RI1WE REFINED CBJEcr 
Operator ID: 16 

Contents Function Request Facility 

1------------------------1 
results a through 9 ! reserved ! 

1------------------------
operand 6 1 reserved 

1------------------------
oper and 5 1 reserved 

1------------------------

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

oper and 4 1 reserved lAB 

1------------------------1 
oper and 3 1 reserved ISH 

1------------------------1 
operand 2 1 REFIN crRL CBJ SELECrOR' 16H 

1------------------------
oper and I 1 SOURCE 0BJECl' SELECrOR 14H 

1------------------------
operand OlDEST OBJECI' SELECI'OR 12H 

1------------------------
IP function code 1 OODH (REI'RIEVE REFINED 

OBJECT) lOH 
1------------------------1 

function state 1 reserved 1 OEH 
1------------------------1 

process selection index 1 PROCESS INDEX Orn 
1------------------------1 

REl'RIlWE REFINED 0BJECl' allavs an operation to retrieve access to 
the object to which it ooIds refined access. The first operand 
cnntains the object selector for the destination access segment 
entry. The secorrl operand contains the obj ect selector for an 
access descriptor for the refinement. The third operand contains 
the object selector for an refinement control object access 
descriptor. 

B-26 



RErRIEVE TYPE DEFINITICN 
Operator ID: 15 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 0 through 9 1 reserved 1 20H-33H 

1------------------------
oper am 6 1 reserved lEH 

1------------------------
oper am 5 1 reserved lCH 

1------------------------
oper and 4 1 reserved lAB 

1------------------------1 
oper and 3 ! reserved ISH 

1------------------------! 
oper am 2 1 reserved l6H 

!------------------------I 
oper and 1 ! SOURCE CBJECl' SELECrOR 14H 

1------------------------
oper and OlDEST OBJECI' SELECrOR l2H 

1------------------------
IP function code 1 OOCH (RErRIEVE TYPE 

DEFINITION) lOH 

1------------------------1 
function state 1 reserved 1 OEH 

1------------------------1 
process selection index 1 PmcFSS INDEX 1 OCH 

1------------------------1 

RErRIEVE TYPE DEFINITION allONS an operation to retr ieve an access 
descriptor for the type definition associated with a type. The 
first operand contains the object selector for the destination 
access segment entry. The second operand contains the object 
selector for an access descriptor for the type. 

B-27 



iAPX 432 Interface Processor Architecture Reference Manual 

SEND 
Operator ID: 21 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 

1------------------------1 
oper and 6 1 reserved 1 

1------------------------1 
oper am 5 1 reserved 

1------------------------1 
operand 4 1 reserved 1 

1------------------------1 

Hex Byte 
Offset 

20H-33H 

lEH 

lCH 

lAH 

operand 3 ! MESSAGE 0BJECl' SELECI'OR! l8H 
1------------------------1 

operand 2 1 reserved 16H 
1------------------------1 

operand 1 1 reserved l4H 
1------------------------1 

operand 0 1 PORTOBJECl' SELECTOR 12H 
1------------------------1 

IP function code 1 012H (SEND) 1 lOH 
1------------------------1 

function state 1 reserved 1 OEH 
1------------------------1 

process selection index 1 PRJCESS INDEX OCH 
1------------------------1 

SEND allows a process to serrl a specified message to a specified 
port. The first and fourth operands are used. 

B-28 



FONcrION Sl.Mo1ARY 

SEND TO PROCESSOR (IDgical Mode) 
Operator ID: 4 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results I through 9 1 reserved 1 22H-33H 

1------------------------
result 0 1 BOOLEAN 20H 

1------------------------
oper and 6 1 reserved lEH 

1------------------------
operaoo 5 1 reserved ICH 

1------------------------
operand 4 1 reserved lAB 

1------------------------1 
operand 3 1 reserved 1 ISH 

1------------------------1 
oper and 2 1 reserved 16H 

1------------------------1 
operand I 1 DEST PRCnSSOR ffiJ SEL 1 l4H 

1------------------------1 
oper and 0 1 IPC MESSAGE 12H 

1------------------------1 
IP function code 1 OOlH (SEND TO PRCX:ESSOR) 1 lOH 

1------------------------1 
function state 1 reserved OEll 

1------------------------1 
process selection index 1 PROCESS INDEX OCH 

1------------------------1 

SEND TO PROCESSOR allows a process to send an interprocessor message 
to one specific processor, including the processor it is executing 
on, via the interprocessor communication mechanism. The first 
operand contains the interprocessor message. The second operand 
contains the object selector for an access descriptor for the 
desired processor object. The boolean result, which is set to true 
if the control flags are deposited, is stored in the function result 
area. 

B-29 



iAPX 432 Interface Processor Architecture Reference Manual 

SEND TO PRX:ESSOR (Physical· Mode) 
Operator ID: 4 

Contents Function Request Facility 

1------------------------1 
results 1 through 9 1 reserved 1 

1------------------------1 
result 0 1 BOOLEAN 

1------------------------1 
oper and 6 1 reserved 

1------------------------

Hex Byte 
Offset 

22H-33H 

20H 

1EH 

oper and 5 1 reserved 1CH 
1------------------------

oper and 4 1 reserved lAH 
1------------------------

operand 3 1 reserved I8H 
1------------------------

operand 2 ! PHYSICAL ADDR (high 8) l6H 
1------------------------

operand 1 1 PHYSICAL ADDR (lCM 16) l4H 
1------------------------

operand 0 1 IPC MESSAGE l2H 
1------------------------

IP function code 1 OOlH (SEND TO PRX:ESSOR) 10H 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index 1 PRCCESS INDEX 1 OCH 
1------------------------1 

SEND TO PRX:ESSOR allows external processor software to send an 
interprocessor message to one specific processor, including the 
processor it is executing on, via the interprocessor communication 
mechanism. The first operand, contains the interprocessor message. 
The second operand is a word ( here shown as t\\O consecutive double 
bytes) containing the right-justified, 24-bit, physical base address 
of the 432 memory segment which contains the image of the IP' s 
processor object. The I:xx::>lean result, which is set to true if the 
control flags are deposited, is stored in the function result area. 
This P'lysical rrode operator is the equivalent of the logical node 
operator SEND TO PROCESSOR. 

B-30 



FUNcrIOO SUl+1ARY 

SEI' PERIPHERAL SUBSYSTEM MODE (logical and Physical Mode) 
Operator ID: 5 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------1 
results 0 through 9 1 reserved 1 20H-33H 

1------------------------1 
oper and 6 1 reserved lEH 

1------------------------1 
oper and 5 1 reserved ICH 

1------------------------1 
operand 4 1 reserved 1 lAH 

1------------------------1 
operand 3 1 reserved ISH 

1------------------------1 
operand 2 1 reserved 16H 

1------------------------
operand I 1 reserved l4H 

1------------------------
operand 0 1 PS MODE l2H 

1------------------------
IP function code 1 002H (SEI' PS MODE) lOH 

1------------------------
function state 1 reserved OEH 

1------------------------1 
process selection index 1 PRCCESS INDEX OCH 

1------------------------1 

SEI' PERIPHERAL SUBSYSTEM MODE allows an operation to change the mode 
settings for the connected peripheral subsystem, both on the 
processor and in the peripheral subsystem status field of the 
processor data segment. The operand contains a set of new 
peripheral subsystem mode flags. Note that this operator is unique 
to 432 Interface Processors. 

SET PERIPHERAL SUBSYSTEM IDDE when performed in physical rrode is of 
the same form and provides the same function as SEl' PERIPHERAL 
SUBSYSTEM mDE performed in logical rrode. 

B-3l 



iAPx 432 Interface Processor Architecture Reference Manual 

StJRROGATE ROCEIVE 
Operator ID: 26 

Contents Function Request Facility 

1------------------------1 
results 0 through 9 1 reserved 

1------------------------1 
oper am 6 1 reserved 1 

1------------------------1 
oper am 5 1 reserved 

1------------------------1 
oper am 4 1 reserved 

1------------------------1 
operarrl 3 1 reserved 

1------------------------1 

Hex Byte 
Offset 

20H-33H 

1EH 

lCH 

lAH 

l8H 

operand 2 1 CARRIER 0I3J'ECI' SELECl'ORI l6H 
1--------~---------------1 

operand 1 1 DEST 0I3J'ECI' SELECl'OR l4H 
1------------------------1 

operam 0 1 PORI' 0I3J'ECI' SELECrOR 1 12H 
1------------------------1 

IP function code 1 017H (StJRROGA'IE RECEIVE) 1 lOH 
1------------------------1 

function state ! reserved ! OEH 
1------------------------1 

process selection index 1 PRCX:ESS INDEX 1 OCH 
1------------------------1 

SURADGA'IE RECEIVE allows a process to wait, via a surrogate carrier, 
at a port for a message from some process. The first three operands 
are used. 

B-32 



FUNcrICN S~ 

SURroGA'lE SEND 
Operator 10: 25 

Contents Function Request Facility 
Hex Byte 
Offset 

1------------------------
results 0 through 9 1 reserved 20H-33H 

1------------------------
oper and 6 . 1 reserved lEH 

1------------------------
oper and 5 1 reserved ICH 

1------------------------
oper and 4 1 reserved l.AH 

1------------------------
operand 3 1 MESSAGE CBJECl' SELECl'OR. ISH 

1------------------------1 
operand 2 1 CARRIER CBJECl' SELECrORI 16H 

1------------------------1 
operand 1 1 DES!' CBJECl' SELECl'OR 14H 

1------------------------1 
oper and 0 1 PORI' CBJECl' SEIECrOR 12H 

1------------------------1 
IP function code 1 Ol6H {SURroGA'lE SEND} IOH 

1------------------------1 
function state 1 reserved OEH 

1------------------------1 
process selection index 1 P~ INDEX OCH 

1------------------------1 
SURroGATE SEND allows a process to send, via a surrogate carrier, a 
specified message to a specified port. All four operands are used. 

B-33 



iAPX 432 Interface Processor Architecture Reference Manual 

UNLOCK 0BJECr 
Operator 10: 20 

Contents Function Request Facility 

1------------------------
resul ts 0 through 9 ! reserved 

1------------------------
operand 6 1 reserved 

1------------------------
oper and 5 1 reserved 

1------------------------

Hex Byte 
Offset 

20H-33H 

1EH 

ICH 

operand 4 1 reserved 1AH 
1------------------------

oper and 3 1 reserved ISH 
1------------------------

oper and 2 1 reserved I6H 
1------------------------

operand I 1 OISPIACEMENI' I4H 
1------------------------1 

operand 0 1 0BJECr SELECTOR 1 I2H 
1------------------------1 

IP function code 1 OllH (UNLOCK 0BJECr) IOH 
1------------------------1 

function state 1 reserved OEH 
1------------------------1 

process selection index 1 PRXESS INDEX 1 OCH 
1------------------------1 

UNLOCK 0BJECr allCMS an operation to unlock an object lock located 
within a data segment. The first operand contains the object 
selector for a data segment access descr iptor • The second operand 
contains the displacement wi thin that data segment of the desired 
obj ect lock. 

B-34 



C-l. FAULT REPORTING 

APPENDIX C 
FAULT SUMMARY 

Both logical ana physical mode faults are reported in fault 
information areas as descr ibed belON. The faul t information area 
for oontext, process, and processor level faults has the same 
organization. Process objects contain fault information for context 
and process level faults which occur in logical node. Processor 
objects contain fault information for processor level faults which 
occur in logical node. The process level fault information area in 
the process object is used when a process level fault occurs am a 
process is baJnd to the processor. The processor level fault 
information area in the processor obj ect is used when a process 
level fault occurs and a process is not bound to the processor. 
Physical mode faults, which are all treated as context level faults, 
are reported in the processor fault information area. 

C-2. FAULT INFORMATICN AREAS 

The fault information area is a 13 double-byte record organized as 
follONS. 

C-l 



iAPX 432 Interface Processor Architecture Reference Manual 

fault 
information 
area 

= = double byte 
1 displacement 

1----------------1 1 execution statel n+12 
1----------------1 1 operator id 1 
1----------------1 
1 system tbner 1 
1----------------1 1 psor status 
1----------------1 
1 cxt/prcs statusl 
1----------------1 
1 PS status 1 
1----------------

fault code 
1----------------
1 fault os/disp 
1----------------
1 pelk buffer 
1----------__ ----1 . . 

dir index 
1----------------1 
1 obj index 1 
1----------------1 

tempB 
1----------------1 
1 t~ 1 n 
1----------------1 
= = 

The t~, tempB, and pelk buffer fields contain the values of 
the corresponding on-chip registers at the time of the fault. If 
the fault is associated with object qualification, the directory 
index and object table index specify the object. The 
interpretation of the fault object selector/displacement vary 
depending on the fault. 

The fault code, together with the operator id indicates the nature 
of the fault. The fault code field has the following format: 

C-2 

XRRXXXXX XXXXXXXX 

RR TYPE 

10 
11 
OX 

MA 
TS 
FF 

Faults 

Memory Access Faults. 
Test Segment Type or Descriptor Type Faults. 
All other faults. 



FAULT SUMMARY 

The Peripheral Subsystem status, context/process status, processor 
status, and system timer fields contain the values of the the 
corresponding on-chip registers at the time of the fault. The 
o:perator id, which differs fran the opcode field in an instruction, 
specifies the operator that causes the fault. If a fault occurs 
during instruction decoding, the operator id is zero. The operator 
id value of each operator is the same as the index found in Appendix 
B. 

The execution state indicates the phase of execution when the fault 
occured. It is used to identify fault handling strategies in the 
nnre complex operators. A value of zero indicates the instruction 
can be re-executed with m rewind necessary. Non-zero execution 
state occurs in port and IPC operators only. The semantics of each 
execution state in the port operators is described in the 432 GOP 
Archi tecture Reference Manual. The organization of the execution 
state field is shown below. 

8 bits 8 bits 

!-------- execution state 
!---------------------- reserved 

Memory Access Faults 

The ZZ field specifies the type of menory access attempted The 
encooing 
of the ZZ field is specified below. 

ZZ Access Type 

XIOTITl'I' OXMWBBBB Access Memory 
XIOTITl'I' lOMWBBBB Access Interconnect 
XIOTITl'I' llMWBBBB Access Access Segment 

The TITl'I' field specifies the type of mennry access fault. The 
encoding of the TITl'I' field is specified below. Note that 
combinations of these encodings can occur. 

XXXXI 
XXXlX 
XXIXX 

XIXXX 
lXXXX 

AR 
SB 
M) 

BE 
WR 

_Access Rights Fault 
Segment Bounds Fault 
Memory Overflow Fault 
(physical address >= 2**24) 
Bus Error Fault 
Test Write Rights Fault 

The M field specifies whether the fault was on a read-modify-write 
access. A value of zero indicates a normal access. A value of one 
indicates a read~ify-write access. 

C-3 



iAPX 432 Interface Processor Architecture Reference Manual 

The W field specifies whether the fault was on a read or write 
access. A value of zero indicates a read access. A value of one 
indicates a write access. 

The faulted displacement is recorded in the fault displacement (in 
access memory, or interconnect), and in the object index field of 
the fault object selector (in access access segment). 

The BBBB field, which designates which segment was being accessed 
when the fault occurred, is defined as follows: 

BBBB Segment Name 

0000 Context AS 
0001 Entry AS 1 
0010 Entry AS 2 
0011 Entry AS 3 
0100 Object Table Directory 
0101 Object Table 
0110 Processor AS 
0111 Processor DB 
1000 Context DB 
1001 Process AS 
1010 Process DB 
1011 WorkA (Carrier OS) 
1100 WorkB (Carrier AS) 
1101 WorkC (Port OS) 
1110 WorkD (Port AS) 
1111 Mapping Facility 

System Type Or Descriptor Type Faults 

The faul t code for system type or descr iptor type faults is as 
follows: 

DIIXXXXX KKKKKKKK 

The D field indicates which on-chip register was being tested. A 
value of zero irrlicates that the type information being tested was 
in TempA. A value of one indicates that the type information being 
tested was in TempB. 

The KKKKKKKK field indicates the desired system type, or the desired 
obj ect descr iptor type, descr iptor validity, base type, and storage 
associated bit fields. 

All Other Faults 

The fault code for all other faults is as follows: 

XOXXXXXX XX'I'I'EEEE 

C-4 



FAULT SUMMARY 

The TT and EEEE fields specifY the fault level and the fault type. 
The TT bits are interpreted as follows: 

TT Description 

00 Context Level Faults 
01 Process Level Faults (group 1) 
10 Process Level Faults (group 2) 
11 Processor Level Faults 

There are 16 fault types within each of the 4 groups. The encoding 
column of the tables in the following sections contains the TT and 
EEEE fields if the type is FF (all other faults). 

C-3. <:l3J':OCT LEVEL OPERATOR FAULTS 

Faults Common Tb All Operators Or Sub-operations 

The following faults can occur anywhere during the execution of an 
operator or sub-operation (which includes instruction decoding, 
process dispatching, binding etc.). These faults are not explicitly 
referenced in the later sections. 

FAULT GIDUPS 

Memory Reference Faults => 
Access Rights Fault 
Segment Bound Fault 
Memory Overflow Fault 
Bus Error Fault 
Write Rights Fault 

Invalid Opcode Fault 

Processor Stopped Fault 

Object Table Cache Qualification Faults => 
Object Descriptor Type Fault 
Object System Type Fault 

(Access) Segment Altered Faults => 
=> Object Qualification Faults 

! TYPE! ENmDING 

AR 
SB 
m 
BE 

I WR 

FF 00 1100 

FF 00 1101 

TS 00010111 
TS 00000010 

C-5 



iAPX 432 Interface Processor Architecture Reference Manual 

Sub-operations Faults 

FAULT GroUPS 

Sbore Access Descriptor Faults => 
Level Fault 
Destination Delete Rights Fault 

Object Qualification Faults => 
Access Descripbor Validity Fault 
Obj ect Descr iptor Fault 
Object Descripbor Type Fault 

Memory Overflow Fault 
Read/Write Rights Fault 

Port Operation Faults => 
=> Object Qualification Faults (Carrier AS) 
=> Object Qualification Faults (Carrier OS) 
=> Object Qualification Faults (Port AS) 
=> Object Qualification Faults (Port OS) 
Send Rights Fault 

Carrier Lock Fault 
Wakeup IPC Fault 
Port Lock Fault 
Carrier Queued Fault 

Context Qualification Faults => 
=> Object Qualification Faults (Context AS) 
=> Object Qualification Faults (Context DS) 
=> Entry Access Segment Qualification Faults 

(Entry 1, 2, and 3) 

Process Binding and Qualification Faults => 
=> Object Qualification Faults (Process AS) 
=> Object Qualification Faults (Process DS) 
Process Level Objects Lock Fault 
=> Context Qualification Faults 

C-6 

! TYPE! ENmDING 

FF 01 0100 
FF 01 0011 

FF 01 0000 
FF 01 0001 
TS 00010111 
TS 00011111 
FF 01 1011 
FF 01 0110 

. TS 00001000 
TS 00001000 
TS 00000111 
TS 00000111 
FF 01 1110 

FF 01 1001 
FF 11 0100 
FF 01 1010 
FF 11 0110 

TS 00000100 
TS 00000100 

TS 00000101 
TS 00000101 
FF 11 0010 



Operator Faults 

OPERATOR 

Alter Map and Select Data Segment 
Interconnect Descriptor Fault 
I/O Lock Fault 
Transfer Direction Fault 
Length Validity Fault 
Window Subrange Overlap Fault 
lnoamplete Block Transfer Fault 
Operand Validity Fault 
Forced Termination Fault 

Oopy Access Descriptor 
=> Store Access Descriptor Faults 

Null Access Descriptor 
Destination Delete Rights Fault 

Amplify Rights 
Descriptor Control Object Rights Fault 
=> Object Qualification Faults (Descriptor Ctl Obj) 
Destination Access Segment Rights Fault 
Source Object Validity Fault 
Type Fault 
Race Condition Fault (the access descriptor was 

changed before the amplified value is stored back) 

Restrict Rights 
no explicit fault cases 

Retrieve Public Type Representation 

Source Object Validity Fault 
Object Descriptor Type Fault 
=> Store Access Descriptor Faults 

Retrieve Type Representation 
Type Definition Validity Fault 
Source Object Validity Fault 
Object Descriptor Type Fault 
Type Definition System Rights Fault 
Type Fault 
=> Store Access .Descriptor Faults 

Retrieve Type Definition 
Source Object Validity Fault 
Object Descriptor Type Fault 
=> Store Access Descriptor Faults 

FAULT S{Mt1ARY 

! TYPE! ENOODING 

FF 
FF 
FF 
FF 
FF 
FF 
FF 

I FF 

FF 

FF 
TS 
'IW 
FF 
FF 
FF 

00 0100 
00 0101 
00 0110 
00 0111 
00 1000 
00 1001 
00 1010 
00 1011 

01 0011 

01 0110 
00001011 

01 0101 
01 1000 
01 1000 

I FF 01 0101 
TS 00010111 

FF 01 0110 
FF 01 0101 
TS 00010111 
FF 01 0110 
FF 01 1000 

FF 01 0101 
TS 00010111 

C-7 



iAPX 432 Interface Processor Architecture Reference Manual 

Retrieve Refined Object 
Refinement Control Object System Rights Fault 
=> Object Qualification Faults (Refinement Ctl Obj) 
Source Object Validity Fault 
Type Fault 
=> Store Access Descriptor Faults 

Inspect Access Descriptor 
no explicit fault cases 

Inspect Access 
Access Path Object Descriptor Type Faults 

Lock Object 
=> Object Qualification Faults (data segment) 
Source Object Access Rights Fault 

Unlock Object 
=> Object Qualification Faults (data segment) 
Source Object Access Rights Fault 
Object Lock ID or Type Fault 

Indivisibly Add Short Ordinal 
Indivisibly Insert Short Ordinal 

no explicit fault cases 

Enter Access Segment 
Enter Global Access Segment 

Entry Index Range Fault 
Access Segment Read Rights Fault 
=> Object Qualification Faults (access segment) 

Set PS Mode 
no explicit fault cases 

Send 
Receive 
Condi tional Send 
Conditional Receive 

Port System Rights Fault 
=> Port Operation Faults 

Surrogate Send 
Surrogate Receive 

Surrogate Carrier Validity and System Rights Fault 
Port System Rights Fault 
=> Port Operation Faults 

Send to Processor 

C-8 

FF 01 0110 
TS 00001100 
FF 01 0101 
FF 01 1000 

I FF 01 0101 

FF 01 0110 

FF 01 0110 
FF 01 1001 

FF 01 0101 
FF 01 0110 

FF I 01 0110 

FF 01 0101 
FF 01 0110 



Broadcast be Processors 
Processor System Rights Fault 
=> Object Qualification Faults (Processor AS) 
=> Object Qualification Faults (CAXmDO Segment) 
Communication Segment Lock Fault 

Read Processor Status and Clock 
no explicit fault cases 

FAULT S'f.M.1ARY 

FF 01 0110 
TS I 00000110 
TS 00001010 
FE' 01 1001 

C-9 



iAPX 432 Interface Processor Architecture Reference Manual 

C-4. tOCN-INSTIUCTICN INTERFACE FAULTS 

OPERATOR 

Initialization => 
=> Object Qualification Faults (processor AS) 
=> Object Qualification Faults 

(object table directory) 
=> Object Qualification Faults (processor OS) 
Processor Object Lock Fault 
=> IPC Faults 
Base/Mask Incampatibality Fault 

IPC Faults => 
=> Object Qualification Faults (Cammo Segment) 
Communication Segment Lock Fault 
Response Count Fault . 

Process Binding => 
=> Object Qualification Faults (Carrier AS) 
=> Object Qualification Faults (Carrier OS) 
Process Object Lock Fault 
=> Process Qualification Faults 
=> Port Operation Faults 

Process Selection => 
=> Object Qualification Faults (Carrier AS) 
=> Object Qualification Faults (Carrier OS) 
=> Port Operation Faults 

C-IO 

!TYPE! ENCODING 

TS 00000110 

TS 00000010 
TS 00000110 
FF 11 0001 

FF 11 1000 

TS 00001010 
FF 11 0011 
FF 11 0010 

TS 00001000 
TS 00001000 
FF 11 0001 

TS 00001000 
TS 00001000 



APPENDIX D 
INTERRUPT HANDLING ] 

Whenever the Interface Processor detects an event that may require 
attention from the IP controller, it records the nature of the event 
in the current IP processor data segment and e.mi ts a pulse on 1. ts 
interrupt line. There are several different types of events which 
may be sources of interrupts, and their occurrence and timing is not 
necessar ilv predictable. In this sense IP interrupts are similar to 
several I/O devices that are wire-DRd to a cammqn interrupt line. 

Thus, the IP controller must resoond to an interrupt by "polling" 
the l?Qssible intet'rupt sources to 0etermine which event has actually 
occurred. It may do this by examining fielos of the IP processor 
nata segment through the control windON (window 4). The IP 
controller (and related· hardware, such as latches and Intel 8259A 
intert'upt ~ontrollers) must also accommodate the ?Ossibility that 
the IP may detect a second event at any time, including while the IP 
controller is handling a previous interrupt. The IP responds to a.ll 
such events identically, notinq the event in the IP processor data 
segment and emitting an interrupt pulse. Again, this is analagous 
to tying mUltiple independent I/O devices to one interrupt line. 

The principal requirement of IP interrupt handling hardware and 
software, then, is to field interrupt requests that may be 
closely-spaced, and to respond individually to the different types 
of events that an interrupt may signal. 

Fiqure D-1 shows one awroach to the overall design of an IP 
interrupt handler. This strategy assumes that hardware latches the 
IP's interrupt request pulse. As soon as it is invoked, the 
interrupt handler masks further IP interrupt requests and resets the 
hardware latch. This insures that a secord request is unlikelY to 
be missed, and prevents the inter rupt handler from be inq reentered. 
Then the environment of the interrupted routine is saved and 
higher-priority interrupts are enahled, so that the interrupt 
handler itself can be interrupted if necessary. 

D-1 



0-2 

iAPX 432 Interface Processor Architecture Reference Manual 

yes 

Mask IP 
interrupt 

Reset latch 

Save 
interrupted 
environment 

Enable 
higher­

priority 
. interrupts 

Restore 
interrupted 
environment 

Unmask 
IP 

interrupt 

C Return ) 

Respond to 
event 

Figure 0-1 Interrupt Handler 

Reset 
event 

indicator 



INTERRlJPI' HANDLING 

The central logic of this approach assumes that there is a "list" of 
poosible interrupt sources to be scanned, and that passing through 
this list may uncover one (the usual case), multiple, or zero events 
that require responses. To illustrate the second two cases, assume 
that the possible events are labelled A through K, and that the 
interrupt handler tests for A, then B, and so on. Assume also that 
event B occurs follCMed quickly by event J. The interrupt handler 
is invoked for event B , shortly thereafter the IP updates J' s 
indicator and emits a second interrupt pulse, which is latched. The 
handler scans its list of event indicators, finds that both B and J 
have occurred and responds to them both. Reaching the end of the 
list, the interrupt handler enables the IP interrupt and returns. 
Imnediately, J's latched interrupt request is recognized and the 
handler is invoked again. This time, however, it will find no 
events indicated in the IP processor data segment, since it 
responded to both B and J in the previous invocation. It will 
simply clear the interrupt latch, pass through the list, unmask the 
IP interrupt, and return, effectively making a null response. 

Table 0-1 lists the IP processor data segment subfields that the IP 
interrupt handler must examine to determine the source of an 
interrupt. Note that as soon as the handler recx:>gnizes that an 
event indicator is "on", it should turn it "off" by indivisibly 
zeroing the field using the INDIVISmLE INSERr SHORr ORDINAL 
function. This is necessary to prevent the interrupt handler from 
being misled in its next invocation. 

0-3 



iAPX 432 Interface Processor Architecture Reference Manual 

Processor Data 
Segment Subfield 

Function state field 

Table 0-1 Interrupt Sources 

Value Event 

Function completion state subfield 
OOOOs Function completed normally 

(this interrupt may be masked) 

Fault level subfield 
OIB Context-level fault 
lOs Process-level fault 
lIB Processor-level fault 

Entry state field (One per map entry) 
Transfer state subfield 

OIB Transfer terminated by byte count(l) 
lOs Transfer termination forced(1,3) 
lIB Transfer terminated by fault(2) 

local IPC response IB 

Global IPC response IB 

Alarm response IB 

Reconfiguration lB 
response 

Dispatching response lB 

Notes: 

IP has responded to local IPC 

IP has resp:mded to global IPC 

IP has responded to a alarm request 

IP has responded to a reconfiguration 
request 

IP has rece i ved a "select process II IPC 

(1) Applies to window 0, buffered node only. 

0-4 

(2) Separate indications are provided for each transfer window. 
(3) Only done via the ALTER MAP AND SELECT DATA SEGmNT function. 



APPENDIX E 
SYSTEM INITIALIZATICN 

System initialization may be considered as a sequence of activities 
that brings a 432-based system from an arbitrary state to a known 
state where execution can begin. Although the initialization 
sequence will vary widely among applications, this appendix outlines 
the basic procedure. The first section describes how the system may 
be reset to a krnm state. The second section shows how an 
Interface Processor running in physical reference mode may be used 
to initialize memory and interconnect components thereby 
establishing an environment in which execution can take place. The 
final section discusses system startup, the procedure for commencing 
execution. 

E-I. SYSTEM RESEr 

r.t>st systems include a reset swi tch that is used to initialize the 
system after power-up and to restart the running system if 
necessary. In a 432 system, the !NIT pins of all IPs (see iAPX 
43203 VISI Interface Processor Data Sheet, Order No. 171874, for 
details)and GDPs, and the RESEr (or equivalent) pins of all 
Peripheral Subsystem components must be activated when a full system 
reset is performed. However, system designers may also decide to 
provide the option to selectively initialize elements of a 432 
system. 

Although this is subject to variation, a typical Attached Processor 
responds to a reset pulse by aborting any current operation, 
disabling interrupts and then vectoring execution to the code 
located at same predefined address (typically in non-volatile 
merrory) • The code will normally initialize I/O devices and enable 
interrupts, at which point normal execution begins. The 432 makes 
no special demands of the Peripheral Subsystem except that it should 
be prepared to handle an interrupt request from the IP shortly after 
system reset. 

E-l 



iAPX 432 Interface Processor Architecture Reference Manual 

An Interface Processor responds to an INIT pulse by aborting any 
current operation, entering physical reference mode, configuring its 
windows as shown in table E-l, clear ing broadcast acceptance node, 
and then issuing an interrupt request to its Attached Processor. 
The interrupt request signals the IP controller that the Interface 
Processor has initialized itself and will accept subrange address 
references, including physical reference node function requests 
written through window 4. Any attempt by the IP controller (or any 
active agent in the Peripheral Subsystem) to reference a subrange 
prior to receiving the IP's interrupt request produces an undefined 
result. An IP switches from physical to logical reference mode. upon 
receipt of the startup IPC as defined below. 

A General Data Processor responds to an !NIT pulse by aborting any 
current activity and then waiting in a quiescent state for the 
startup IPC. The startup IPC is defined as the first local IPC 
received following an INIT pulse; a GOP will ignore any intervening 
global IPC. 

To surnnarize, shortly after system reset, Attached Processors (and 
Peripheral Subsystems) will be able to run as desired, IPs will be 
able to run in physical reference mode, and GOPs will be waiting for 
a signal to begin execution. 

E-2. ESTABLISHING AN EXECUTICN ENVRIOOMENT 

Prior to starting any GOP (or switching any IP to logical reference 
node) an environment in which the processor can execute must be 
created in 432 memory. This environment consists of a set of 
interrelated system objects; a minimal environment, sufficient to 
start one process running on a GOP, could be char acter ized as 
follows: 

o the initial object table directory (loaded 
at physical address 8); 

o an object table; 
o a processor object; 
o a dispatching port; 
o a process object (queued at the dispatching port). 

E-2 



SYSTEM INITIALIZATION 

L ~ Processor .... ,... .... ..., 
Object 

(n) Storage Descriptor (Processor Number n) 

Processor 
~ ~ :: ~ Object 

(Processor Number 1) 
(1) Storage Descriptor 

([I) Object Table Header 
..... 
~ 

Object Table 

J; 1 
(1) Storage Descriptor ~ 

([I) Object Table Header 
~Physical Address 8 

Initial Object Table Directory 

Figure E-l Processor Object Location 

E-3 



iAPX 432 Interface Processor Architecture Reference Manual 

Note that the term "processor obj ect" above is meant to include 
ccmnunication segments, am a processor carrier, in addition to 
processor access and data segments. Likewise, "process object" 
includes a domain, instruction segments, context objects, etc. This 
environment may be extended to include nnre processors, processes, 
ports and so on, as is appropriate for a given application. 

The initial execution environment may not pre-exist in 432 
non-volatile memory, since the processors routinely update the 
objects during execution. Therefore, the initial environment must 
be loaded from a Peripheral Subsystem (where it may, in fact, reside 
in non-volatile storage). One Peripheral Subsystem will typically 
be designated to load the initial environment in physical reference 
mode; in this discussion this Peripheral Subsystem is referred to as 
the initializing AP. 

At no time during system initialization should nnre than one 
Peripheral Subsystem be updating 432 system memory. In most 
applications, the remaining Peripheral Subsystems will refrain from 
accessing the 432 system until their IPs have switched to logical 
reference mode. It is possible, however, for a second Peripheral 
Subsystem to read 432 system memory while still in physical 
reference mode; some applications may wish to designate a second 
Peripheral Subsystem to monitor the activity of the initializing AP 
in this way. 

Same systems will need to perform a number of preliminary activities 
before the initial environment can be loaded. These acti vi ties, 
which will be defined by each application, may include: 

o ascertaining the system configuration 
(i.e., the number and type of processors 
present, and the amount of memory 
available); 

o verifying that system components 
are operational; 

o initializing registers located in the 
interconnect space (e.g., address range 
or error count registers in memory 
controllers); 

o initializing error checking and correcting 
(EOC) memory. 

Windows 0 and 1 may be useful in connection with these preliminary . 
activities. Window 1 could be used to read system configuration 
information encoded in predefined registers of the interconnect 
address space, for example. Window 1 may also be used to initialize 
registers in memory controllers, provided these registers are 
located in the first 32K bytes of the interconnect address space. 

E-4 



SYSTEM INITIALIZATION 

Before any function request is made by the IP, enough 432 memory 
must be initialized to allCM Ip· execution. This is necessary 
because the IP will attempt to update the segment maWed by windCM 4 
in response to the function request. Once this path to mennry has 
been established, windCM I can be opened onto another 32K byte 
segment by the ALTER MAP AND SELECr PHYSICAL SEGmNT function if 
addi tional interconnect catpOnents need to be referenced; this 
should normally be necessary only in very large systems. 

If a system employs error checking and correcting memory (EOC) that 
does not initialize itself, the initializing AP can initialize it if 
the memory is organized in units eight or fewer bytes wide. Window 
o comes up in block node set for a 64K byte transfer starting at 
physical address O. Any data written through this window (e.g. all 
zero bits) is written by the IP in eight-byte blocks. The window 
can be moved through the entire mempry space in 64K byte segments. 

Once the system configuration has been established, the interconnect 
path set up and memory initialized, the initializing AP can load the 
initial execution environment. The simplest and fastest way to do 
this is to write all the required binary images through window O. 
An alternative is to load the min~l object set required to support 
one IP in logical reference mode, am possibly one GOP. The rest of 
the environment (other processes, etc. ) can then be loaded in 
logical reference mode by the initializing AP working alone, or 
under the direction of a GOP process. This approach has the 
advantage of getting the system into logical reference mode as soon 
as possible, where operations are inherently more protected than in 
physical reference mode. 

E-3. SYSTEM STARrUP 

Each processor in the system must be started independently by 
sending it a startup IPC (the first local IPC after INIT). At least 
one 432 processor, perhaps its CMn IP, must be started by the 
ini tializing AP using the SEND TO PRCXESSOR function (physical 
node) • The remaining processors must be star ted one at a time, and 
this can be done by the initializing AP, or by a processor already 
started by it. Note that the initializing AP (as well as all IPs) 
remains in physical reference mode until it receives a startup IPC. 

GOPs and IPs respond to the startup IPC identically except that the 
IP additionally switches to logical reference mode. The basic 
response is to first qualify its execution environment and then to 
interpret the IPC and respond to it normally. The processor 
qualifies its execution environment by first reading a unique 
processor IO contained in the ICM order byte of interconnect 
register o. 

E-5 



iAPX 432 Interface Processor Architecture Reference Manual 

Having established its identity, the processor proceeds to locate 
its processor object. It does this by assuming that the initial 
object table directory is located at physical mennry address 8 (see 
figure E-I). A segment header field of eight bytes precedes the 
initial object table directory. It further asstmles that the first 
storage descriptor in the directory locates an object table 
containing storage descriptors for processor objects. Using its 
processor ID as an index, the processor selects the storage 
descriptor from the object table which locates its processor 
object. After qualifying its processor object, the IP is able to 
find its localoomnuncation segment, where it examines the IPC 
message field. Now in logical reference mode, the IP can respond to 
the IPC message and per form all normal operations. 

As usual, an IP will generate an interrupt after it responds to the 
IPC message. This second interrupt following reset indicates to the 
IP controller software that the IP is in logical reference mode and 
that normal execution may begin. Note that window 4 will then be 
configured as defined by the attributes encoded in the IP's 
processor object. Since window 4 provides the data path to the 
function request facility, the other windows may be configured 
inmediately by means of the ALTER MAP AND SELECI' mTA SEGmNr 
function. 

E-6 



SYSTEM INITIALIZATION 

Table E-l Window Configuration Following !NIT 

Attt"ibute WindCM 0 Window 1 WindCM 4 

Window Status Open Open Open 

Transfer Mode Block Interconnect Random 

Subrange Base Address 07EOOH 08000H 07FOOH 

Subrange Size OOIOOH 08000H OOIOOH 

Segment Base 0 0 0 

Segment Length 65,535 65,535 65,535 

Direction Write Read/Write Read/Write 

Transfer State In Progress In Progress In Progress 

Overlay Yes Yes Yes 

E-7 





APPENDIX F 
INTERPROCESS CCMruNICATICN AND DISPA'lCHIt.;x; 

EXAMPLE 

In Chapter 1, a printer example was used to demonstrate the flow of 
data between 432 processes and AP tasks. In this appendix, the 
printer example is again discussed. However, this time the view 
taken is that of a programmer writing an Attached Processor task to 
direct an IP to accomplish printer output. The program contained in 
this appendix is written in a PL,!M-86-like dialect typical of the 
developnent environment which will be at the disposal of the AP 
program developer. This program is included to clarify an earlier 
example and is not suggested as a scheme for actual ~lementation. 

The program exanple which follows assumes that a set of 432 system 
objects preexists in 432 memory. These objects are illustrated in 
Figure F-l. This system contains: 

o IP processor object; 
o a print request port to which a 432 process (GOP or IP) can send 

print requests; 
o a print reply port to which an IP process can return the status 

of the print action; 
o an IP dispatching port where IP processes await service. 
o several IP processes are shown, though only one is required for 

the purposes of the example; 
o one print object, a simple data segment, which carries printer 

data and is reused when returning printer status. 

There are four main sections to this program: 

o Variable declarations; 
o Utility procedures; 
o Initialization; 
o Print driver body. 

In the variable declarations section, notice that the control 
window, window 4, is declared as a structure whose canponents are 
defined from the definition in Appendix A. This program assumes 
that window 4, the control window, is opened onto the function 
request facility in the IP's processor object. It also assumes that 
all initialization has been performed and that the IP is operating 
in logical reference mode. 

F-I 



F-2 

iAPX 432 Interface Processor Architecture Reference Manual 

IP 
PROCESSOR 
OBJECT 

IP 
DISPATCHING 
PORT 

PRINT 
OBJECT 

CONTEXT 

PRINT 
REQUEST 
PORT 

432 OBJECTS 

432 PROCESS 

Figure F-l Print Example Objects 

IP AP 

PHYSICAL PROCESSORS 



INTERPIO::FSS mHlNlCATICN AND DISPA'lCHING EXAMPLE 

Procedures in the utilities section demonstrate how a programmer can 
construct facilities to invoke IP functions. Recall from the 
function sunmary in Aweooix B that an AP requests an IP function by 
writing a process selection index, all required operands, and 
finally depositing a function code into the appropriate slots in the 
function request facility (frf). The IP begins execution of the 
function only after the function code has been written. This is 
demonstrated by the procedures Open_window and Close_window. 

The ini tialization section of the prog ram points out sane 
simplifying assumptions which are made for the ~rpose of this 
example. First, interrupts are disabled. This converts the three 
tasks of the printer example (printer server task, printer task, and 
printer reply task) of Chapter I into sequential tasks rather than 
concurrent tasks. It also makes it easier to demonstrate changes in 
the state of the system and illustrate them with the accompanying 
figures. Second, the calIon the Dispatch procedure asstnnes that 
only one IP process exists in the 432 system. The IP supports 
multiple process environments but only one is required in this 
example. 

The print driver body contains an aggregation of code which 
acoamplishes the three tasks of the Chapter 1 example. Notice that 
the three tasks are performed sequentially. 

Imbedded in the program text are references to Figures 2 through 6 
which depict the state of the 432 system objects and the logical I/O 
processor (the IP/AP pair). 

F-3 



iAPX 432 Interface Processor Architecture Reference Manual 

Printer task: 
Procedure: 

/*****~******************************************/ 
/* */ 
/* Data Structures and Constants * / 
/* */ 
/************************************************/ 

/**************************************************************************************/ 
/* Declare the 256 byte structure for the Control Window and map it beginning at */ 
/* an offset of 07FOOH into the 64K byte segment which is reserved for the IP. * / 
/* For the IUrpcses of this example, the base of the IP' s reserved area is at location* / 
/* 080000H 'Jf the Attached Processor memory space. */ 
/**********lr***************************************************************************/ 
Declare I! base literally '080000H'; 
Declare Window 4 structure ( 

ps state 
i~ state 
alarm state 
disp state 
reserved 1 
frfyrcs =idx 
frf function state 
frf=operabor-(7) 
frf result (10) 
i~=fun_req 
reserved 2 
mf block - oount 
mf-432 dIsp 
mfys_disp 
reserved 3 
mf_windoW_info (5) structure ( 

entry state 
mask-
base disp 

mf fault information (14) 
selected-idx 
se 1ec ted-state. 
psor fault information (13) 
reserved _ 4-(2) 

word, 
"'NOrd, 
word, 
'NOrd, 
word, 
'NOrd, 
word, 
word, 
word, 
word, 
word, 
WOrd, 
word, 
'NOrd, 
word, 

word, 
'NOrd, 
word) , 
byte, 
word, 
'NOrd, 
byte, 
'NOrd) at (IP_base + 07FOOH); 

Declare subrange (1024) byte at (IP base. + 4096); 
- /* byte array COllprising windowed subrange */ 

:Jec1are offset word; /* offset into subrange */ 

Declare true 
Declare false 

F-4 

literally 'OOOlH'; /* Io;Jical value true 
literally 'OOOOH' /* IDgical value false 

*/ 
*/ 



INTERPR:nSS C(l.MJNICATICN AND DISPATCHING EXAMPLE 

/**************************************************************************************/ 
/* Seven object selectors are required. One for the message slot in the COntext */ 
/* Acx:ess Segment, sioce this is where the hardware will put the Access * / 
/* Descriptor (AD) for the Print Request Message following the Receive instruction. */ 
~ ~ 
/* One for the Print Request Port am one for the Print Reply Port. We assume * / 
/* that at system initialization ~ for these ports were stored in slots nine */ 
/* am ten of the Context Access Segment in Process Obj eet 1. * / 
/* */ 
/* One for the IP Dispatching Port, one for the IP Processor Carrier data segment, */ 
/* one for the IP Processor Carrier access segm~t, and for a null access descriptor. */ 
/* These are required so that blocking Receives am blocking sends can be handled. */ 
/* We assume ADs for these objects are stored in slots eleven, twelve, and thirteen, */ 
/* respectively of the Context Access Segment in Process Object 1 at initialization. */ 
/**************************************************************************************/ 

Declare message obj sel 
Declare reques(Jx>r~obj_ sel 
Declare rep1Y.J?Ort_ obj_ sel 
Declare dispa:chirgyort _ obj_sel 
Declare psoi:' carrier as obj sel 
Declare psor-carrier-ds-obj-sel 
Declare null: destination _ obJ_ sel 

literally 'OOllOOB'; 
literally '100l00B'; 
literally'lOlOOOB'; 
literally '10ll00B'; 
literally 'llOOOOB'; 
literally '110100a'; 
literally '11l000B'; 

/**************************************************************************************/ 
/* The process selection index for process number 1. Note that this number is a byte * / 
/* imex into the process selection list in the IP processor access segment. * / 
/**************************************************************************************/ 
Declare process_l literally'OOOOOOOOOOOOOlOOB'; 

/************************************************/ 
/* */ 
/* Utility Procedures */ 
/* */ 
/************************************************/ 

Await function completion: 
Procedure; -

/***********************************************w**********************************/ 
/* This procedure b..l~ waits for the previous function request to canplete. It */ 
/* Spins waiting for the function completion field of the function state to */ 
/* equal zero. */ 
/**********************************************************************************/ 

Ik> While (Wirxlow 4.frf fuoction state am OOOFH) <> 0; EM; 
Em - - -

~lit_function_completion; 

F-5 



iAPX 432 Interface Processor Architecture Reference Manual 

Dispatch: 
Procedure~ 

/**********************************************************************************/ 
/* This procedure hangs the IP's processor carrier on the IP's dispatching */ 
/* port. This allcws blocking sends and receives to be handled.*/ 
1* This example assumes that the IP processor carrier blocks at the dispacthing * / 
/* port. No "select process" IPC is received if the Surrogate Receive does not */ 
/* block. */ 
/**********************************************************************************/ 

Window_4.disp_state = false; 

/* Unlock the IP' s processor carr ier • 
Window_4.frf-prcs.idx = process_Ii 
Window 4.frf operand(O) = psor carrier ds obj se1; 
Window: 4.frf:operator = OllH; - - - -

Call AwaJ.t _ function_completion; 

/* Hang processor carrier on the dispatching port. 
Window_4.frf-prcs_idx = process_l; 
Window_4.frf_operand(O) = dispatching-POrt_obj_se1: 
Window 4.frf operam (2) = null destination obj sel; 
Window -4. frf-operand (3) = poor-carrier as obj sel: 
Window=4.frf=operator = 017H: - - - -

Call Await furction ~letion: 
End - -

Dispatch; 

Open windCM: 
PrOcedure: 

/* Use process object 1. 
/* Data segment 
/* Unlock function code. 

/* Use process object l. 
/* port 
/* destination 
/* carrier 
/* Surrogate receive 
/* function rode. 

*/ 
*/ 
*/ 
*/ 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/************************************************************************************/ 
/* Open a windcw to the message, Figure F-5 * / 
/************************************************************************************/ 

W!ndow_4.frf-prcs_idx 
Wl.ndow 4. frf operand (O) 
Window-4.frf-operand(1) 
Wiooow -4. frroperand'(2} 
Windcw-4.frf-operand(3) 
Wiooow -4. frf-operand (4) 
Window-4. frf-operand (5) 
Window=4.frf=operator 

= process 1; 
= 3; -
= 000010lBi 
= 4096; 
= lllll10000000000B: 
= Iressage obj se1; 
= 0; --
= OOOH; 

Call Await furction canpletion: 
EM - -

<.pen _ windO!l; 

F-6 

/* process obj ect index * / 
/* window index * / 
/* entry state */ 
/* base address */ 
/* mask */ 
~ data segment */ 
/* base displacement */ 
/* Alter Map and Select Data * / 

/* Segment function code */ 



INTERPRXESS exM-UNICATICN AND DISPA'ICHING EXAMPLE 

Get-print_message: 
Procedure: 

/**********************************************************************************/ 
/* Attempt to Receive a message fran the Print Request Port, Figure F-2 */ 
/**********************************************************************************/ 

W~ndow_4.frf-prcs_idx = process_l; 
Wl.rrlow_ 4. frf_operand (0) = requestJ'Ort_obj_sel: 

/* Use process obj ect 1. 
/* port 

*/ 
*/ 
*/ Window_4.frf_operator = Ol4H: /* Receive function code. 

Call Await_function_oampletion; 

If oqinnow 4.frf function state and 0020H) <> 0 Then 
Do - - -

/******************************************************************************/ 
/* Receive instruction blocked, 00 outstaming print requests */ 
/* Busy wait until a GOP process sends a print request to the print */ 
/* request port. See Figure F-3 for the SEND unblocking the blocked RECEIVE */ 
/* Such an event will trigger an interrupt in the AP */ 
/* (which we have disabled) am set windCM 4.disp state true */ 
/* indicating the nature of the interrupt.- - */ 
/* See Figure F-4 for details on the wakeup IPC and subsequent interrupt. */ 
/******************************************************************************/ 

/******************************************************************************/ 
/* At this point WindcM 4.selected index contalns the index of the */ 
/* process object which-was dispatched. Since we are using only process */ 
/* object one selected index will equal one. Window 4.selected state */ 
/* contains software defined info~tion concerning~he action~taken, */ 
/* if any, by software in cx::mpleting this instruction. * / 
/******************************************************************************/ 

Call Dispatch: /* Hang IP processor carrier on dispatching port. */ 
Em: 

Em; 
Em 

Get-print_message: 
Close_windcM: 

F-"1 



iAPX 432 Interface Processor Architecture Reference Manual 

Clooe wirrlow: 
ProCedure~ 

/**********************************************************************************/ 
/* Close windCM, note only ~ operarrls are Ie<;uired. * / 
/**********************************************************************************/ 

Window_4.frf-prcs_idx 
Window 4. frf operand (0) 
Window-4.frf-operand(1} 
Window:4.frf:operator 

= process 1; 
= 3; -
= 0000100B; 
= OOOH~ 

Call Await_functi~oampletion~ 
End 

C1ose_window~ 

F-8 

/* process obj ect inde..'C * / 
/* window index */ 
/* entry state */ 
/* Alter Map and Select Data * / 
/* Segment function code * / 



INTERP:rocESS CGMJNICATICN AND DISPATCHING EXAMPLE 

Return-print_message: 
Procedure; 

/**********************************************************************************/ 
/* Sem message to Print Reply Port. See Figure F-6 */ 
/**********************************************************************************/ 

W~ndow_4.frf-prcs_idx 
Window 4.frf.operand(O) 
Window-4.frf operand(l) 
Window=4.frf=operator 

= process 1; 
= replY-PQrt_obj_sel; 
= message obj sel; 
= 016H; - -

/* process object index 
/* port 
/* message 
/* Send function code 

*/ 
*/ 
*/ 
*/ 

If ~imow_4.frf_function_state and OOlOH) <> 0 Then 
Jk) 

/******************************************************************************/ 
/* Sem instruction blocked, wait for a GOP process to receive a */ 
/* message from the Print Reply Port. Busy wait for a GOP process */ 
/* to receives a message fran the Print Reply Port. Such an event */ 
/* will trigger an AP interrupt and set Window 4.disp state true */ 
/* to indicate the nature of the interrupt. - - */ 
/******************************************************************************/ 
Jk) While not (Window_4.disp_state = 1); End; 

/******************************************************************************/ 
/* At this point WindCM 4.selected index contains the index of the */ 
/* process object which-was dispatChed. Since 'we are using only process * / 
/* object o~ selected index will equal one. Window 4.selected state */ 
/* contains software defined information concerning-the action-taken, if */ 
/* any, by roftware in completing this instruction. * / 
/******************************************************************************/ 

call Dispatdl; 
Em; 

/* Hang IP processor carrier on dispatching port. */ 

Em: 
Em 

Return-print_message: 

F-9 



iAPX 432 Interface Processor Architecture Reference Manual 

/************************************************/ 
P ~ 
/* Initialization */ 
/* */ 
/*****************************************k******/ 

Call Disable_Interrupts: /* Busy waiting will be used, not the interrupt mechanism */ 
/* Also assume that 00 faults will occur */ 

Call Dispatch ~ 

/************************************************/ 
P ~ 
/* Print Driver Body */ 
/* */ 
/************************************************/ 

Call GetJ>rint _message: 

Call Open _ winda-r: 

Do offset = 0 to l023~ 
Call Print (subrange(offset»~ 

Em: 

Call Close_windCMi 

Call ReturnJ>rint_message~ 
End~ 

End 
Printer __ task~ 

F-lO 

/* loop forever */ 

/* Receive a message from the Print Request Port. */ 

/* Open a window onto the message. */ 

/* Read and print the contents of the message */ 
/* using the mapped subrange and the AP's native */ 
/* instruction. Assume Print is a system routine. * / 
/* Close the windOll. * / 
/* Send the message to the Print Reply Port. * / 



IP 
DISPATCHI G 

PORT 

INTERPROCESS a::MruNICATIGl AND DISPAroIING EXAMPLE 

IP 
OCESSOR PR 

o BJECT 

~ 

IPI 
PR~ESS 

~ 

iF c1r" 

PRINT 
REQUEST 

PORT 

(f4 

CARRI~4 

432 
PROCESS 

~. 

P 

P 

RINT 
REPLY 

ORT 

PRINT 
OBJECT 

IP 

Figure F-2 IP Performs Blocking Receive 

--EJ 
"RECEIVE" 
function 

F-ll 



iAPX 432 Interface Processor Architecture Reference Manual 

IP 
DISPATCHING 

PORT IP AP 

C~ 
.:- / 

-.tIo "c, / CARRIER - IP ~/ IP ~~/ 4 

PROCESSOR PROCESS 
~ /~<v OBJECT ~'v«;/'\: 

~Cj/ 

/ 

1 / 
/ 

/ 
/ 

( 
I 

PRINT I PRINT 
REQUEST f REPLY 

PORT I 
PORT 

I , .. 
CARRIER I 

...... ~ 
rJl 

I ~ 
0 

I 

J 

432 
PROCESS 

..... 

PRINT 
OBJECT· 

Figure F-3 GOP Executes SEND and Unblocks RECEIVE 

F-l2 



INTERP~S ~ICATIrn AND DISPATCHING EXAMPLE 

INTERRUPT ,----, 
;' ... 

1/ '-
IP AP IP -- A.~ SELECTED (-

DISPATCHING v -v 

PORT STATE 

SELECTED 
INDEX 

£ARRIEB J IP IP -- PROCESSOR J PROCESS OBJECT 

-
i 

PRINT PRINT 
REQUEST REPLY 

PORT PORT 

CARRIER 

STATE 

INDEX 
432 

PROCESS 

PRINT 
OBJECT 

Figure F-4 IP Resporrls to IPC 

F-13 



F-l4 

iAPX 432 Interface Processor Architecture Reference Manual 

PRINT 
REQUEST 

PORT 

IP 
PROCESS 

-

PRINT 
REPLY 
PORT 

,fA 
CARRIE' 

(~ 

432 
PROCESS 

IP 

r ~ WINDOW 

III' ~ 

PRINT 
OBJECT 

~ EJ 
"ALTER 
SELECT 
SEGMEN 

MAP AND 
DATA 

T" function 

Figure F-S Window Manipulation 



PRINT 
REQUEST 
PORT 

INTERPRXESS <XMvIDNICATIOO AND DISPATCHING EXAMPLE 

.-.--_/ 
IP .J 

PROCES, 

I 
f 

--
432 

PROCESS 

,,­
/ 

PRINT 
REPLY 
PORT 

r 
I 
,~ 

PRINT 
OBJECT 

IP 

·SEND" 
function 

Figure F-6 Print Reply 

AP 

F-15 





infel" 
REQUEST FOR READER'S COMMENTS 

IAt-'X 40~ Interrace t-'rocessor 
Architecture Reference Manual 

171863-001 

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets 
you participate directly in the documentation process. 

Please restrict your comments to the usabi lity, accuracy, readability, organization, and completeness of this 
document. 

1. Please specify by page any errors you found in this manual. 

2. Does the document cover the information you expected or required? Please make suggestions for 
improvement. 

3. Is this the right type of document for you r needs? Is it at the right level? What other types of documents are 
needed? 

4. Did you have any difficulty understanding descriptions or wording? Where? 

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating. _____ _ 

NAME _____________________________________________________ DATE ____________ _ 

TITLE 

COMPANY NAME/DEPARTMENT ______________________________________________ _ 

ADDRESS ______________________________________________________________ _ 

CITY --_______________________________________ STATE ______ ZI P CODE ____ _ 

Please check here if you require a written reply. 0 



E'O LIKE YOUR COMMENTS ... 

lis document is one of a series describing Intel products. Your comments on the back of this form 
II help us produce better manuals. Each reply will be carefully reviewed by the responsible 
rson. All comments and suggestions become the property of Intel Corporation. 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR 

POSTAGE WILL BE PAID BY ADDRESSEE 

Intel Corporation 
SSO Technical Publications Dept. 
3585 SW 198th Ave. 
Aloha, OR 97007 

AL3-2-485 

111111 NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 



inter 
INTEL CORPORATION, 3585 SW 198th Avenue, Aloha, Oregon 97007 • (503) 681-8080 

Printed in U,SA1Y63/ 1 K/ 0781 1 AP 


