intal

IAPX 432

Interface Processor

Architecture Reference Manual

INTEL
iAPX 432 INTERFACE PROCESSOR
ARCHITECTURE REFERENCE MANUAL

Manual Order Number 171863-001

Release 1.1 Components

Copyright (C) 1981, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

Additional copies of this manual or other Intel literature may be
obtained from:

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Intel
Corporation assumes no responsibility for any errors that may appear
in this document. Intel Corporation makes no commitment to update
nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any
circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the
property of Intel Corporation. Use, duplication, or disclosure is
subject to restrictions stated in Intel's software license, or as
defined in ASPR 7-104.9(a) (9).

No part of this document may be copied or reproduced in any form or
by any means without the prior written consent of Intel Corporation.

The following are trademarks of Intel Corporation and its affiliates
and may be used only to identify Intel products:

BXP Intelevision Micromap
CREDIT IntellecR MultibusR
iR iRMX Multimodule
ICE iSBC Plug~-A-Bubble
iCs iSBX PROMPT
inm Library Manager Pronware
INSITE MCSR RMX/80
IntelR Megachassis System 2000R
int,1R Micromainframe UPI

uScope

and the combination of ICE, iCS, 1RMX, 1SBC, 1SBx, MCS, or RMX ard a
numer ical suffix.

ii

PREFACE

Understanding any complex computing system, such as the Intel iAPX
432, requires the assimilation of a great deal of technical
information. Before reading this manual on the architecture of the
432 Interface Processor, the reader should have command of the
general 432 concepts. Intel offers three documents which provide
these prerequisites.

o The INTEL 432 System Summary, Order Number 171867, provides
the broad picture of the 432, It should be read as a first
introduction to the 432 system.

o The Introduction to the iAPX 432 Architecture, Order Number
171821, restricts discussion to general architecture
features which distinguish the 432.

o The iAPX 432 General Data Processor Architecure Reference
Manual, Order Number 171860-001, provides detailed
information on one type of 432 processor, a General Data
Processor (GDP). Its glossary is a concise summary of the
most important terminology which is required when reading
the Interface Processor manual.

This manual describes another 432 processor, the Interface Processor
(IP), similar in many respects to a GDP and different in others.
Rather than duplicate all of the general 432 information contained
in the companion documents, this manual relies on the above
references for descriptions of features of 432 architecture which
are common among processors. Unique features and functions of the
IP are presented and oontrasted with those of the GDP when
appropriate.

Chapters 1 through 6 of this manual are composed of descriptions of
the Interface Processor, allowing the reader to understand the
oooperation between an IP and Peripheral Subsystems in forming a
logical I/0 processor for a 432 system. Detailed representations
for the objects, descriptions of windows and functions, faults,
interrupts, and initialization may be found in the appendices.

iii

!Ei::l::!!!:il-—- T

TITLE

lq I(EY Ca‘]CEP'lS © 900 00000 0000000000000 0000000000000 0000000CLIGLBOIEEOIE

1-1.
1-2 .
1_30

Peripheral SubsSyStemsceeececsces
Basic I/O MOGEL seevecsassccnncscescasssasoscassasscncnnns
Peripheral Subsystem INterface ..eeeeeececscscscsccccsocces
Peripheral Subsystem Interface Hardware ...cceeceececcs
Attached ProceSSOr ceeesecscsssscssscsscssssssscnscs
Interface PrOCESSOr cceeescecscscccscssccsccccccnscns
Peripheral Subsystem Interface SOftware «eeeeeececeeces
I/0 CONtrOller eeecececceccsssacsccsscsscsacsscnncas
Execution Environments c.cecececcssccscsccacscscncss
FUNCLIONS cicvevecrccsesesesccscssacsscscscsssnsnosse

I/0 Model SUMMALY «ececesscsccsccsasssosacossasacsassssnaane
Data FloWw SUMMALY ceeeevceccccccccscccccsscaccssccsanne
I/0 EXaMPle ceceeeeanceseccassssscsssscssssansscsesaoss
GDP Process Perspectiveeeececcecss ceseccsnctnnn
Printer Server Task Perspective ...cecececccsccccncs
Printer Task (Device Task) Perspective .e.ceceeeeees
Printer Reply Task PerspectivVe tceeecececscsscscacses
Supplementary Interface Processor FacilitieS eeeecessecscss
Physical Reference MOAE ..cececescescsccssccsccscssonns
InterconneCt ACCESS .ceveeseeccscccscssscossscscsccsscns

2. me’IS AND OPERAIORS © 0 0000000000000 000000000000000000000s0e

2-1.

iv

Summary Of Interface Processor FacilitieS eeeeececessscess
EnvVironment e.eeeeeeecscsesecscsceccccccscscsoscsascscasne
IP OperatorsS ceeeeceescsssscasasesssccccscccccccccnnses

Object Addressing and Global Storage Management

Objects For Program EnvironmentsS ..eecececcescssccscasnses

Facilities For Asynchronous Communicationccee... cens

Processes and Local Storage Resource Management

Process Scheduling and DispatChing eceeeeescescecccccccscns

Facilities For Object Management ...eceeeceecsscoccscsssans

Context Environment Manipulation seeeeesecccescccccccccccss
The Four Entry AccesSS SegmentsS cceeescecsssccscscsscccas
Direct vs. Indirect Accessibility sececesecccecccccccans
Object SeleCtOrS eceeeeeecsseascscascsascassesscccsccnss
Entering an AccessS Segment secececcescescsccssscessccccs
Entering the Global Access Segment seececescssscsscscas

PAGE

1-1
1-1
1-4
1-7
1-7
1-7
1-9
1-10
1-10
1-11
1-11
1-13
1-14
1-14
1-16
1-19
1-21
1-21
1-21
1-22
1-22
1-22

2-1
2-1
2-2
2-3
2-7
2-7
2-8
2-8

2-8
2-9
2-9
2-10
2-12
2-12
2-12

3. WINDOWS toeececccossasoocsssscosscsascscscosnsasccsnsnscnassssssce 3—L
3-1. Window AttributeS cececeseesccevscssscssescsssscassssessses 3—2
Window StAtUS ceeececscoccceccsoocscsccocccocssscnsasse 3=2
Subrange Base Address and Subrange Sizeciecceees.. 34
Object ReferencCe seeececcessecessossssesssasasasssnsanss 3—D
DireCtion ceeeeeeecccceccsccsscescscssssscsssssssssssss 3—0
Transfer StatUS ceececersscccccssccscsesosscsssssssosnsnsss 30
Transfer MOAE ...ceeeeeecccccccccscsccscsscssssssscsscces 3—0
OVELlay seeeeeccccscccscessscssssssssascecsssossasnscnns 3=/
3-2. Window Operation ...cecececcssccvssssasscsssssssscscscscee 3—9
Address RecOgNition seeeeecececcecccccccccccccccscsecses 379
Consistency CheCK ceeeeesseescsssvsscscsscsscsscscsscase 3—9
3-3. Random Mode Data TranSfer .ccceeceeccecscsossscscessssscsssss 3—L2
3-4. Block Mode.Data TransSfer .ccceecececcescscsscsssscsscnceasss 3—14
Block Mode AttributeS .eeececescccscccccesscssscsscsaes 3—14
Block Mode Consistency CheCK c.cveeeescsccsccssecsasess 3-15
Block Mode Operation ...ceeseescesccecsccsecssssasseasss 3—15
Block Mode Termination cececececcscccsccesccsssccsssecese 3—16
Block Mode AAAreSSing ceoeeesessescscscscscscssssssesess 3—17
3-5. Interconnect TransSferS c.ccecescceccsocecscsssascssesssses 3—20

4, FUNCTIONS tvvvececccoccocccccoccsscssassesssscsccssascssasnses 4—1
4-1. Function Facility Interface .eeececescscscscscsccscscscsss 41
4-2, Function ReqUESES tieeeeeescccacsscscsssesssssssssssscscss 4—4
Process SeleCtion ceeeececccecceccssesescsscassssanccss 4—4
Function OpcOdeS s.eecesccssccocccsososasssssssscnsense 4—4
Function OperandS ceceecesccsccssssssscsssscsscsscasess 4=6
4-3, Function EXeCUtiOn .eeeecesscsscesccosscsssscsssscssscssesss 4=9
4-4, Function Completion c..ceeeeccecccsecsccaceccscsscssossesss 4-9

5. PHYSICAL REFERENCE MODE .ecceceescescosocscasecscoscsssasesses D=L
5-1. Reference Mode SWitChing .eeeeecceccecesccccsscsccccoecees D=1
5-2. Physical Reference Mode AJAresSsSing ccceescescsscssccsoases 5—2
5-3. Physical Reference Mode FUNCtiONnS ...ececececccccccceccsss 52

6. FAULTS tvecevoesvcccssssssssscacsscscssssossassessessescssnsess 0=l
6-1. Fault RepPOrting ceeeeccececccesccsoscccasssacssssosssanass 00—l
Physical MOdE .ceeveereceeecescesseensscescsscsscssanses 0=2

Logical MOAE .eeeeeececccsccscescesscacsacssoscnsannsess 0=2
Categories of Logical Mode FAUltS ececececececrscscesees 0=2
Context—level FAultS cveeeeccecrsccccscsccscsssscacaas 6=3
Process—level FAultS .eceeececssccsescccsscscsssssceas 6-3
Processor—level FAultS ccccececscsscenscsssssccncsass 6—4
Window-Mapped Data Transfer ...eeceececsscecccccccscecsss 6—4

6-2. Fault Handling ceceeeeccececscececsccsssssscscsssscscsnsess 0—6

APPENDICES

APPENDICES ‘ Page

A, SYSTEM OBIECT SUMMARY .ccccccccccccnccnoonacscscosnnsssosassssse A—L
A-l. Context ODJECES ceveceececcccscccocccssossaccscccnna ceeses A-1
A-2. Process ODJECES eecececcocscosccscccssssssscssssssscsscass A=3
A-3. Processor ObJEeCtS ceeeeeesscscescsscsccssssscosssscacsscss A=7

B. FUNCTIQ] SIMRY © 0 0000000000000 0000000060000000000NIIGCOOROIOEOTOES B_l

C. FAULT SUMMARY cecscecccccccocsscsscccsocssssscessssssasscocccsss C—l
C-1. Fault RepOrting cceeececcccscsscescessssosssccsssosssssssense C—1
C-2. Fault Information Areas eccecececcsccccssssscsssssscssssss C-L
C-3. Object Level Operator FAultS scececessscscssssssssscsssaes C=5
C-4. Non-Instruction Interface FaultS ..cccececcccccccesnrsaasss C-10

D. IN’IERMM HANDLING. ® 9 0 0 000G 00O 00 OO OO OO OL OO OO OO0 OOOOOEOEPNOIONOSONSSTPOSDS D-l
E. SYSM INITIA[‘IZM‘Im ® O 5 0 00 00000000000 O EN O OOLNOOLSISEOSSIEOSNSTPCSDS E—l
E_l. System Reset ® 9 © 0 00O OO0 OO0 00O 0P OO OO OO OO OO EOONSENSESNNSNDS E-l
E-2. Establishing an Execution Environment ...cscececeeceecsces E-2
E_3 L] System Start‘.lp ® 0 0 000 OO PG OO PO OO SO E OO OB OO OL OO OV SOO S OO E_5

F. INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE ...cccc.es F-1

- vi

TABLES

TITLE PAGE

1-1. Printer Example Legend .ceeeeeececccsccscccccccasccacaceses 1-18
2-1. IP/GDP System Object COMPAriSON .ceeeeeeescsccccscscscaccss 2—3
2-2. IP/GDP Operator COMPAriSON seeceecesscscssscasccsscscscase 2-5
2-3. Direct/Indirect AccessSibility ..cecceercscccsccssccsassass 2-11
3-1. Window Attribute SUMMArY ..cceeessessccccccsscssssasssanss 3=3
B-1. Alphabetical Index to IP FunctionSecececescccccecesecs B-2
B-2. 1IP Function Summary by Function CO3€ ..ccseeecececscsecsess B=3
B-3. IP Function Summary by Operator IDcececeeeeccccceecse B=4
D-1. Interrupt SOUIrCES .eeseeeccsscccsscccsscsssscssscscsascscss Db
E-1. Window Configuration Following INIT ...ececceccesccccscese E=7

vii

viii

FIGURES

432 System and Peripheral SubSyStemS ..e.eeececescccccsess
Basic T/0 Service CYCle tieeeceescecscscoccsascasscascsnns
Peripheral Subsystem Interface .ceceecesscsccscscesccsnsas
Peripheral Subsystem Interface Hardware ..c.ceeecececeocceces
Interface Processor WindoW c.eeeeececsscccscsscssssssssane
I/0 Data FlOW SUMMALY ceveececsececccscscosossssascccsssse
Printer EXaMPle ..ceeeeeseccescccesccssvscccccsosasscccnas
Example Print ObJECt ceveeeeciecessccaceassccccccancnnnens
Memory OVErlay «ececessececesscsccccccccccssscoscccsnsnsns
Subrange/Window Attributes (Logical Mode) .eeecevcccescsces
Valid Window/Object MappPing cecececsceccscscesssssscssscas
Random Mode TranSfersS cc.eeseeccecsscccsccesscscccssccccces
Block Mode Writes—Swept AJAresSSing ceeeeeeseccccccsconcas
Block Mode Reads—Source AJAreSSing eeeeceecscececsccccneces
Function RequesSt Ar€a .eceeeessccscccsscessscssscassscsssas
Function EXampPle ..eesececcessscoscssssscscocsccsssossacnsses
Function Performance Phases—AP VieW .cceececceccsccccsccss
Function Operand TYPES ceceeeescscsscsscsccssesssccnscssns
Object SeleCtion teeeececcessacescscsscsccsssasescsccsnses
Basic IP Function Execution FlOW .ceccesesccsccsssccsscces
Fault Reporting State ..eeeeescecececececccaceccscasccnnas
Interrupt Handler ..ceeeececcesccscccocccscccossssacscccsns
Processor Object LoCation s.eeececececescsssacssccscccncens
Print Example ODJECES cieeeeeececcesecscacsoscsscasscascns
IP Performs Blocking RECEIVE ..cceeseccsccsnsessccsscnncns
GDP Executes SEND and Unblocks RECEIVE .ceececcocccsssssee
Window Manipulation e.eeeceeesceccecesssccsossoscscsascsnse
Print REPLY cevecescscescccccesccocsecssacsssoscsccnsccscans

PAGE

1-2
1-5

1-6

1-8
1-12
1-15
1-17
1-20
3-8

3-10
3-11
3-13
3-18
3-19

4-10

D-2
E-3
-2
F-11
F-12
F-13
F-14
F-15

CHAPTER 1
KEY CONCEPTS

This chapter introduces the iAPX 432 Interface Processor (IP). The
first four sections cover the IP as it is used normally in
connection with input/output operations. Section 1-1 distinguishes
Peripheral Subsystems (PS), which are responsible for the bulk of
I/0 operations, from the 432 data processing system, and shows how
Interface Processors 1link these together. The second section
reviews the 432's basic model of input/output, pointing out the need
for an interface between a Peripheral Subsystem and the 432 system.
Section 1-3 describes the hardware and software that comprise this
Peripheral Subsystem interface, with particular emphasis on the role
of the IP. 1In the fourth section the I/0 model is summarized and a
simple example implementation is reviewed. The final section of the
chapter introduces physical reference mode and interconnect
addressing, two additional IP facilities that are provided for
special situations.

1-1. PERTPHERAL SUBSYSTEMS

A typical application based on the iAPX 432 microprocessor family
consists of a 432 system and one or more satellite Peripheral
Subsystems. Figure 1-1 illustrates a hypothetical configuration
which employs two Peripheral Subsystems. The 432 system hardware is
composed of one or more iAPX 432 General Data Processors (GDPs), one
or more Interface Processors, and a common memory which is shared by
these processors. The 432 system software is a collection of one or
more processes which execute on the GDP(s).

A fundamental principle of the 432 architecture is that the 432
system environment is self-contained; neither processors nor
processes have any direct oontact with the "outside world."
Conceptually, the 432 system is enclosed by a wall that protects
objects in memory from possible damage by uncontrolled I/O
operations.

iAPX 432 Interface Processor Architecture Reference Manual

General Data
Processor

Interface
Processor

I0SS900xg
soeIIOIUY

Processor

432 System/Peripheral Subsystem Boundary

Figure 1-1 432 System and Peripheral Subsystems

1-2

KEY CONCEPTS

In a 432-based system, the bulk of processing required to support
input/output operations is delegated to Peripheral Subsystems; this
includes device control, timing, interrupt handling and buffering.
A Peripheral Subsystem is an autonomous computer system with its own
memory, I/O devices and controllers, at least one processor, and
software. The number of Peripheral Subsystems employed in any given
application depends on the I/O-intensiveness of the application; the
number may be varied with changing needs, and is independent of the
number of GDPs in the system.

A Peripheral Subsystem resembles a conventional mainframe channel in
that it assumes responsibility for low-level I/O device support and
executes in parallel with 432 system processor(s). Unlike a simple
channel, however, each Peripheral Subsystem can be configured with a
complement of hardware and software resources that precisely fits
application cost and performance requirements. In general, any
system that can commnicate over a standard 8- or 16-bit
microcomputer bus, such as Intel's Multibus™ design, may serve as
a 432 Peripheral Subsystem.

A Peripheral Subsystem is attached to the 432 system by means of an
iAPX 432 Interface Processor (IP). At the hardware level, an
Interface Processor presents two separate bus interfaces. One of
these is the standard 432 processor packet bus and the other is a
very general interface that can be adapted to most traditional 8-
and 16-bit microcomputer buses.

The Interface Processor is driven by Peripheral Subsystem software.
To support the transfer of information through the wall that
separates a Peripheral Subsystem from the 432 system, the IP
provides a set of software-controlled windows. A window is used to
expose a single object (data structure) in 432 system memory so that
its contents may be transferred to or from the Peripheral
Subsystem. To preserve the integrity of the capability-based
protection mechanisms in the 432 system, the IP only provides the PS
with windowed access to 432 objects which are of system type data

segment.

An Interface Processor additionally provides a set of functions,
which are also invoked by Peripheral Subsystem software. While the
operation of these functions (and the returned results) varies
considerably, they generally permit objects in 432 system memory to
be manipulated as entities, and enable communication between 432
system processes and software executing in a Peripheral Subsystem.

iAPX 432 Interface Processor Architecture Refe.rence Manual

It is important to note that both the window and function facilities
utilize and strictly enforce the standard 432 addressing and
protection systems. Thus, a window provides protected access to an
object, and a function provides a protected way for Peripheral
Subsystem software to interact with the 432 system.

1-2. BASIC I/O MODEL

As figure 1-2 illustrates, input/output operations in a 432 system
are based on the notion of passing messages between 432 system
processes and device tasks located in a Peripheral Subsystem. In
this manual, a device task is considered to be the hardware and
software in the Peripheral Subsystem which is responsible for
managing an I/0 device. An I/0 device is considered to be either a
consumer or producer of data. Thus an I/0 device may be a real
device (e.g., a terminal), a file, or a pseudo-device (e.g., a
spooler).

A message sent from a GDP process which requests I/0 service
contains information that describes the requested operation (e.g.,
"read file XYZ"). The device task interprets the message and
carries out the operation. If an operation generates input data,
the device task returns the data as a message to the originating
process. The device task may also return a message to positively
acknowledge completion of a request.

A very general and very powerful mechanism for passing messages
between processes is inherent in the 432 architecture. A given
Peripheral Subsystem may, or may not, have its own message facility,
but in any case, such a facility will not be directly compatible
with the 432's. By interposing a Peripheral Subsystem interface at
the subsystem boundary, the standard 432 interprocess communication
system can be made compatible with any device task (see figure 1-3).

KEY CONCEPTS

e 432 System Peripheral Subsystem
Service
Order
Message
\—/
Device 1/0
Process
¢ rask |4 7| Device
Service
~—— Reply
Message
0. Process running on GDP needs I/O 3. Device task transfers data according to
service service order parameters
1. Process formulates messSage 4. Device task formulates reply message
describing service, sends it to containing result of transfer operation, sends
device task it back to originating process.
2. Device task receives service 5. Originating process receives reply, interprets
order, interprets it it, executes accordingly

Figure 1-2 Basic I/O Service Cycle

1-5

iAPX 432 Interface Processor Architecture Reference Manual

Process

432 System

Service
Request
Message

Service
Reply
Message

Peripheral Subsystem

Service
Request
Message

<

Peripheral
Subsystem
Interface

Device
Task

<

Service
Reply
Message

Figure 1-3 Peripheral Subsystem Interface

I/0
Device

KEY CONCEPTS

1-3. PERIPHERAL SUBSYSTEM INTERFACE

A Peripheral Subsystem interface is a collection of hardware and
software that acts as an adaptor which enables message-based
communication between a process in the 432 system and a device task
in a Peripheral Subsystem. Viewed from the 432 side, the Peripheral
Subsystem interface appears to be a set of processes. The
Peripheral Subsystem interface may be designed to present any
desired appearance to a device task. For example, it may look like
a collection of tasks.

PERIPHERAL: SUBSYSTEM INTERFACE HARDWARE

The Peripheral Subsystem interface hardware consists of a 432
Interface Processor, an Attached Processor (AP), and memory (see
figure 1-4). To improve performance, these may be augmented by a
DMA controller. The AP and the IP provide complementary
facilities. Considered as a whole, the AP/IP pair may be thought of
as a logical I/0 processor, which supports software operations in
both the 432 system and the Peripheral Subsystem.

ATTACHED PROCESSOR

Most any general-purpose processor, such as an 8085, an iAPX 86 or
an iAPX 88, can be used as an Attached Processor. The AP need not
be dedicated exclusively to working with the Interface Processor.
It may, for example, also execute device task software or user
applications. Thus, the AP may be the only processor in the
Peripheral Subsystem, or it may be one of several. To insure
synchronization and coordination, in Peripheral Subsystems with
multiple processors, only one of these should be designated to serve
as the AP. Other processors (or active agents, such as DMA
controllers) may be given access to IP windows, but control of the
Interface Processor should be centralized in the Attached Processor.

As figure 1-4 shows, the AP is "attached" to the Interface Processor
in a logical sense only. The physical connections are standard bus
signals and one interrupt line (which would typically be routed to
the AP via an interrupt controller).

1-7

-

432

Memory

(=

1-8

432 System

PN

Y

308UU0D193UT A IOWSH-I0SS9201d

A

Peripheral Subsysten

VAN

— m— m— -

Interface
Processor

L~ —

iAPX 432 Interface Processor Architecture Reference Manual

Optional
DMA
Controller;

-
-

Attached
Processor

Interrupt 4

sng we3sAsqns [eISYAIISG

- — -

— b o —

-

PS
Memory

Y

Logical I/0 Processor

Figure 1-4 Peripheral Subsystem Interface Hardware

KEY CONCEPTS

Continuing the notion of the logical I/O processor, the Attached
Processor fetches instructions, provides the instructions needed to
alter the flow of execution, and performs arithmetic, logic and data
transfer operations within the Peripheral Subsystem.

INTERFACE PROCESSOR

The IP completes the logical I/O processor by providing data paths
between the Peripheral Subsystem and the 432 system. The IP also
provides functions which effectively extend the AP's instruction set
so that software running on the logical I/O processor can operate in
the 432 system. Since these facilities are software-controlled,
they are discussed in the next section.

As figure 1-4 shows, the Interface Processor presents both a
Peripheral Subsystem bus interface and a standard 432 processor
packet bus interface. By bridging the two buses, the IP provides
the hardware link that permits data to flow between the 432 system
and the Peripheral Subsystem.

The Interface Processor connects to the 432 system in exactly the
same way as a GDP. Thus, in addition to being able to access 432
memory, the IP supports other 432 hardware-based facilities,
including interprocessor communication, alarm signaling and
functional redundancy checking.

On the I/O subsystem side, the IP provides a very general bus
interface that can be adapted to any standard 8- or 16-bit
microprocessor bus, including Intel's Multibus™ architecture, as
well as the component buses of the MCS-85 and iAPX 86 families. The
IP is connected to the Peripheral Subsystem bus as if it were a
memory component; it occupies a block of memory addresses up to 64k
bytes long. Like a memory, the IP behaves passively within the
Peripheral Subsystem (except as noted below). It is driven by
Peripheral Subsystem memory references that fall within its address
range.

The IP generally responds like a memory component. The Interface
Processor also supplies an interrupt signal. The Interface
Processor uses this line to notify its Attached Processor that an
event has occurred which requires its attention. Interrupt handling
software on the AP may read status information provided by the IP to
identify the nature of the event.

1-9

iAPX 432 Interface Processor Architecture Reference Manual

To summarize, the Attached Processor and the Interface Processor
interact with each other by means of address references generated by
the AP and interrupts generated by the IP. Since the Interface
Processor responds to memory references, other active Peripheral
Subsystem agents (bus masters), such as DMA controllers, may obtain
access to 432 system memory via the IP's windows.

PERIPHERAL SUBSYSTEM INTERFACE SOFTWARE

I/0 CONTROLLER

The Peripheral Subsystem interface is managed by software, which
this manual refers to as the I/O controller. The I/O controller
executes on the Attached Processor and uses the facilities provided
by the AP and the IP to control the flow of data between the 432
system and the Peripheral Subsystem.

432 hardware imposes no constraints on the structure of the I/O
controller. To help simplify software organization and
modification, implementors may wish to consider organizing it as a
collection of tasks running under the control of a multitasking
operating system (such as iRMX~-80TM, iRMx-88TM™, or
iRMX-86THM) This type of organization supports asynchronous
message-based communication within the I/O controller, similar to
the 432's intrinsic interprocess communication facility. Extending
this approach to the device task as well results in a consistent,
system-wide communication model. However, communication within the
I/0 controller and between the I/0 controller and device tasks, is
completely application-defined. It may also be implemented via
synchronous procedure calls, with "messages" being passed in the
form of parameters.

However it is structured, the I/0 controller interacts with the 432
system through facilities provided by the Interface Processor.
There are three of these facilities: execution environments,
windows, and functions.

1-10

KEY CONCEPTS

EXECUTION ENVIRONMENTS

The Interface Processor provides a process addressing environment
within the 432 system which supports the operation of the I/O
controller in the 432 system. This environment is embodied as a set
of system objects that are used and manipulated by the IP. At any
time, the I/0O controller is represented in 432 memory by IP process
objects and associated context objects. Like a GDP, the IP itself
1s represented by a processor object. Representing the IP and its
controlling software like this creates an execution environment that
is analogous to the environment of a process running on a GDP. This
enviromment provides a standard framework for addressing, protection
and communication within the 432 system.

Like a GDP, an IP supports multiple process enviromments. The I/O
controller selects the enviromment in which a function is to be
executed. This permits, for example, the establishment of separate
environments corresponding to individual device processes in the
Peripheral Subsystem. If an error occurs while the IP controller is
executing a function on behalf of one device task of the I/0
controller, that error is confined to the associated process, and
processes associated with other device tasks are not affected.

WINDOWS

Every transfer of data between the 432 system and a Peripheral
Subsystem is performed via an IP window. A window defines a
correspondence, oOr mapping, between subrange of consecutive
Peripheral Subsystem memory addresses (within the range of addresses
occupied by the IP) and an object of system type data segment in 432
system memory (see figqure 1-5). When an agent in the Peripheral
Subsystem (e.g., the IP controller) reads a windowed address, it
obtains data from the associated object; writing into a windowed
address transfers data from the Peripheral Subsystem to the windowed
object. The action of the IP, in mapping the Peripheral Subsystem
address to the system object, is transparent to the agent making the
reference. As far as it is concerned, it is simply reading or
writing memory.

1-11

iAPX 432 Interface Processor Architecture Reference Manual

«¢-—Peripheral Subsystem Memory Space~——>» | €«—— 432 System Memory Space e—3P»

A

Normal Memory Reference m :

Local Memory Addresses

) 4 IP window maps a subrange
of peripheral subsystem addresses
onto an object in 432 memory

&

Interface Processor Addresses=——

Subrange ! Object
|

Windowed Memory Reference s

Figure 1-5 Interface Processor Window

1-12

KEY CONCEPTS

Since a window is referenced like memory, any individual transfer
may be between an object and PS memory, an object and a PS processor
register, or an object and an I/O device. The latter may be
appealing from the standpoint of "efficiency," but it should be used
with caution. Using a window to directly "connect" an I/O device
and an object in 432 memory has the undesirable effect of
propogating the real-time constraints imposed by the device beyond
the subsystem boundary into the 432 system. It may seriously
complicate error recovery as well. Finally, since there is a finite
number of windows, most applications will need to manage them as
scarce resources which will not always be instantly available. This
means that at least some I/O device transfers will have to be
buffered in PS memory until a window becomes available. It may be
simplest to buffer all I/0O device transfers in memory, and use the
windows to transfer data between PS memory and 432 system memory.

There are four IP windows which may be mapped onto four different
objects. The I/0 controller may alter the windows during execution
to obtain access to different objects. References to windowed
subranges may be interleaved and may he driven by different agents
in the Peripheral Subsystem. For example, the Attached Processor
and a DMA controller may be driving transfers concurrently, subject
to the same bus arbitration constraints that would apply if they
were accessing memory.

FUNCTIONS

A fifth window, the control window, provides the IP controller with
access to the Interface Processor's function request facility. The
IP controller requests the execution of an IP function by writing
operands and an opcode into predefined locations in the control
window's subrange. This procedure is very similar to writing
commands and data to a memory-mapped peripheral controller (e.q.,
floppy disk controller). Upon completion of the function, the IP
interrupts the AP and provides status information which the IP
controller can read through the control window. The IP can respond
to transfer requests to the other four windows while it is executing
a function. In addition, data transfers through windows 0 through 3
may be interleaved with function request sequences through the
control window.

1-13

iAPX 432 Interface Processor Architecture Reference Manual

The IP's function set permits the I/0 controller to:
o alter windows; ,
o exchange messages with GDP processes via
- the standard 432 interprocess communication
facility;
o manipulate objects.

These functions may be viewed as extensions to the Attached
Processor's instruction set, which permit the I/O controller to
operate in the 432 system.

The oombination of the IP's function set and windows, the AP's
instruction set, and possibly additional facilities provided by a
Peripheral Subsystem operating system, permits great flexibility in
designing I/0 models. By using the more sophisticated IP functions,
powerful I/0 controllers can be built which are capable of relieving
the 432 system of much I/O-related processing. On the other hand,
by utilizing only a subset of the available IP functions, relatively
simple I/0 controllers can also be constructed.

1-4. I/0 MODEL SUMMARY

DATA FLOW SUMMARY

Figure 1-6 summarizes the relationship of the hardware and software
components that cooperate to move data between an I/0 device and 432
system memory. Notice how the Peripheral Subsystem interface not
only bridges the 432 system/Peripheral Subsystem boundary, but also
can "hide" the characteristics of the one from the other. As far as
a device task is concerned, its job is to move data between memory
and an I/O device; it may be completely unaware that it is connected
to a 432 system. This means that existing device tasks may be
utilized in a 432 system with little or no modification, and that
programmers working on device tasks need not be trained in the
operation of the 432. Similarly, a GDP process which needs an I/0
service need have no knowledge of the details and characteristics of
the target I/O device. As far as it is concerned, it "performs" I/0
in the same way it communicates with a co-operating process; by
sending and receiving messages via the standard 432 interprocess
communication facility.

1-14

KEY CONCEPTS

-~ Peripheral Subsystem e l %~ Peripheral Subsystem Interface —— l L 432 System we—pp»

Port Object
}

INPUt e & QUt put
|
Message .
1/0 Object .
Device [4—¥ or < —p-| Object <-——-—>(Mesgage,4———> Object
Buffer
Action [Copy Data JL Copy Data [Copy Reference lr Copy Reference]
Data
Location l;.s.x/o Space] [P.s. Memory j l_ 432 System Memory]
Controlling ;
Software [Device Task J l IP Controller l r GDP Process l
Supporting
Hardware lDevi.ce Controller/(Z)l I_ AP + IP (3)] [GDP]
Notes: (1) Only object reference is moved to and from port.

(2) Supporting processor is defined by application;
may be AP, a separate processor, may include a
DMA controller.

(3) May also include a DMA controller.

Figure 1-6 I/0 Data Flow Summary

1-15

iAPX 432 Interface Processor Architecture Reference Manual

I/0 EXAMPLE

To illustrate the operation of the 432 I/O model more specifically,
this section provides a simple example which shows how line printer
output might be implemented. Of course, the example describes only
one of many possible approaches that might be taken. Furthermore,
the example does not show all the detail of a typical
implementation, with the Peripheral Subsystem supporting transfers
to and from a number of devices concurrently.

In this example, all Peripheral Subsystem software is assumed to be
implemented as a collection of tasks running under the control of a
multitasking operating system. This OS is assumed to allow tasks to
communicate with one another in a fashion that is analogous to the
432 interprocess communication facility. The mechanisms provided by
the OS are messages, mailboxes, a TRANSMIT operator and an ACCEPT
operator. Messages are arbitrary data structures in memory, and
mailboxes are queue structures that hold tasks waiting for messages
or messages waiting for tasks. When executed by a task, TRANSMIT
moves a message from a task to a mailbox and ACCEPT moves a message
from a mailbox to the issuing task if a message is available; if
not, the task is queued at the mailbox until another task TRANSMITs
a message to the mailbox. In other words, mailboxes are analogous
to 432 ports and TRANSMIT and ACCEPT are analogous to the 432 SEND
and RECEIVE operators.

Figure 1-7 shows the overall structure of the example system and the
flow of data from one element to another (see also table 1-1).
Basically, a GDP process wishing to print data on the line printer
sends a message containing the data to the Peripheral Subsystem task
which controls the printer; when the data has been printed, the
printer task returns the message as a positive acknowledgement to
the originating process. The process may then send more data by
writing it into the message and sending it off again. In practice,
there might be a pool of these messages, with several cycling
through the system at one time.

1-16

GDP
Process

432 Memory |

KEY CONCEPTS

Peripheral Subsy Memory

1 Interf Peri

432'8y l Periph

Print Request Port

Print
Order
Mailbox

IP Controlles

Printer
Server
Task

TRANSMEE

Printer
Reply
Task

Print
Message

ACCEPT

Print Reply Port

Figure 1-7 Printer Example

Printer
Task

1-17

iAPX 432 Interface Processor Architecture Reference Manual

Table 1-1 Printer Example Legend

Ttem

Print object

Print request port
Print reply port

SEND/RECEIVE

Print_order mailbox

Print_response mailbox

TRANSMIT/ACCEPT

Description

Object (message) describing print
operation from requesting process's
point of view (see figure 1-8).

432 communications port assigned by
convention to queue print objects.

432 communications port where GDP
process waits for result of operation.

432 operators (GDP instructions, IP
functions) provided for interprocess
communication.

0S message queue defined to hold print
messages waiting for printer task.

0S message queue defined to hold print
messages already processed by the
printer task.

OS operators analogous to 432 SEND and
RECEIVE operators.

1-18

KEY CONCEPTS

Figure 1-8 shows how the message sent by the GDP process might be
organized. It consists of two parts, an object reference part and a
text part. The object references are for the text part of the object,
the 432 port at which the process will wait for the message to be
returned, and a reference for the process itself (GDP or IP). This
last reference is mnot strictly necessary in the example, but is
provided to show one way in which a message may identify its
originator.

The text part of the message contains a command field which specifies
what is to be done (e.g., print one page), a status field which
reflects the disposition of the print request, and the data to be
printed.

With the exception of the status information, all data in the message
is provided by the GDP process; the status field is updated by the
printer task.

The next three sections describe the operation of the example system
as seen by the GDP process, the printer task, and the IP controller.
These descriptions present an overview of the operations. For more
detail on how these activities relate to IP facilities, please refer
to Appendix F, (Interprocess Communication Example), which refines the
printer example.

GDP Process Perspective

To direct output to the line printer, a GDP process builds a print
object and sends it as a message to the print request ._port. The port
is the process's "connection" to the line prlnter. After it has sent
the message, the process is free to continue rumning. When it cannot
proceed further without acknowledgement of the print operation, the
process attempts to receive a message from the print reply port it
specified in the print object. When the operation has been completed,
the process will receive the message. It then inspects the status
field and takes appropriate actlon, perhaps writing new data into the
print object and sending it off again.

1-19

iAPX 432 Interface Processor Architecture Reference Manual

Text 1
Print Data

Object References

Originating ¢
Process

v Y

Print Reply Port (3- Status

Text & Command

Figure 1-8 Example Print Object

1-20

KEY CONCEPTS

Printer Server Task Perspective

The printer server task may be viewed as a "front end" to the
printer task which is responsible for translating the message sent
by the GDP process into the form expected by the printer task. The
printer server loops through the following steps:

2.

3.

RECEIVE a message from the print request port.

When the message (a print object) is received, obtain an
object selector for the message text.

Using the object selector, open a window onto the message
text.

Copy the message text from 432 memory to PS memory through
the open window.

Close the window.

TRANSMIT a message with a reference to the print text to
the printer task.

Repeat from step 1.

Printer Task (Device Task) Perspective

The printer task runs in an endless loop repeating the following

steps:
1.
2,
3.

ACCEPT a message from the print order mailbox;

Interpret the message;

Transfer the data from the message to the printer, taking
care of all device control (e.g., interrupts);

Update the status field of the print message with the
result of the operation;

TRANSMIT the updated print message to the print response
mailbox;

Repeat from step 1.

Printer Reply Task Perspective

The printer reply task may be viewed as a "back end" to the printer

task.
1.
1.
2.

It runs in an endless loop as follows:

ACCEPT a message from the print _response I mailbox.

Open a window onto the print object in the 432 system.
Formulate a print reply message and deposit it in the print
object through the open window.

Close the window.

SEND the print object to the printer reply port in the 432
system.

Repeat from step 1.

1-21

iAPX 432 Interface Processor Architecture Reference Manual

1-5. SUPPLEMENTARY INTERFACE PROCESSOR FACILITIES

The preceding sections have described the Interface Processor as it
is used most of the time. The IP provides two additional
cavabilities which are typically used less frequently, often only in
exceptional circumstances. These are physical reference mode and
interconnect access.

PHYSICAL REFERENCE MODE

An IP normally operates in logical reference mode. This mode is
characterized by its object-oriented addressing and protection
system. When an IP running in logical mode opens a window, it
utilizes an object selector to specify a particular 432 data
segment. There are times when logical referencing is impossible
because the objects wused by the hardware to perform
logical-to-physical address development are absent (or, less likely,
are damaged). In these situations the IP can be used in physical
reference mode.

An IP which is operating in physical reference mode circumvents the
protection mechanisms of the 432 system. No distinction is made
between data segments and access segments in physical reference
mode. The IP provides a reduced set of functions in this mode.
Windows map directly onto contiguous segments of 432 physical memory
(rather than object structures in 432 memory). The IP controller
selects a segment by specifying a 24-bit physical address when it
establishes a window. The IP interprets subsequent subrange
references as 16-bit displacements from the segment's base address.
This simple base-plus-displacement addressing is similar to
traditional computer addressing techniques.

Physical reference mode is most often employed during systém
initialization to load images of objects from a Peripheral Subsystem
into 432 memory. Once the required objects are available,
processors can begin normal logical reference mode operations.
Logical mode cannot be used until the object tables required for
logical-to-physical address translation have been constructed and
loaded into 432 memory.

INTERCONNECT ACCESS

In addition to memory, the iAPX 432 architecture defines a second,
independent address space called the processor-memory interconnect
address space. The interconnect address space allows interconnect
objects to be maintained which may contain one or more interconnect
registers. Interconnect registers are double byte quantities which
are aligned on double byte boundaries. With the exception of a few
reserved addresses, the definition and use of interconnect locations
is not pre-defined for the IP. Appendix E of this manual suggests
how the interconnect may be utilized during the initialization of
variable-configuration systems.

1-22

KEY CONCEPTS

The IP (like a GDP) requires two register locations in the
interconnect space to be defined for any system:
o the processor ID register (interconnect address 0)
o the interprocessor comminication (IPC) register
(interconnect address 2)

The remainder of the interconnect address space may be used to store
or acquire other information such as configuration parameters, error
logging registers, and other application-specific quantities.

Window 1 1is software-switchable between the memory and the
interconnect spaces. In logical reference mode, the interconnect
space is addressed in the same object-oriented manner as the memory
space, with the IP automatically performing the logical-to-physical
address development. To access the interconnect space, the I/O
controller must specify an object selector for an interconnect
object which exposes a segment of the interconnect space to the IP.
The normal window addressing scheme is then used to locate
individual interconnect registers within the object. Switching
window 1 to interconnect access mode gives the IP access to
interconnect objects. This operation is equivalent to the MOVE TO
INTERCONNECT and MOVE FROM INTERCONNECT operators of the GDP.

In physical reference mode, the interconnect space is addressed as a
lincar array of even-addressed, double-byte, . interconnect
registers. As with physical reference mode memory accesses, the
switchable window is set up with a 24-bit physical base address.
Peripheral subsystem references to the corresponding subrange are
likewise interpreted by the IP as 16-bit displacements from the base
address to individual interconnect registers.

1-23

CHAPTER 2
OBJECTS AND OPERATORS

This chapter describes the 432 environment as it appears to the I/0
controller software. It points out what the I/O controller can, and
cannot, do in the 432 system. The first section broadly compares
the facilities provided by the Interface Processor to those
available on the General Data Processor. The remaining sections
describe Interface Processor facilities provided for:
addressing and protection;
~objects for program environments;
facilities for asynchronous communication;
processes and storage resource management;
facilities for process scheduling and

dispatching.

00000

Because a great many facilities are common to both processors, this
chapter adopts the approach of describing IP facilities that are
different or unique, and referring the reader to the iAPX 432
General Data Processor Architecture Reference Manual, (Order Number
171860-001) for descriptions of identical features.

2-1. SUMMARY OF IP FACILITIES

This section surveys the Interface Processor by comparing it to the
General Data Processor. When reading this section, it is useful to
recall the notion, introduced in chapter 1, of the AP/IP pair
co-operating as a logical I/O processor. In this arrangement, the
Attached Processor fetches instructions, provides arithmetic,
logical, and flow-of-control operations, and generates Peripheral
Subsystem address references. The Interface Processor completes the
logical I/O processor by supplying the facilities for operation
within the 432 system, plus the window mechanism for transferring
data between the two systems. Windows are discussed in detail in
chapter 3.

iAPX 432 Interface Processor Architecture Reference Manual

To permit the I/0O controller to function in the 432 system as well
as in the Peripheral Subsystem, the IP provides an environment, and
operators that it executes within this enviromment. The environment
is embodied in the system objects that the Interface Processor
recognizes and manipulates, while the operators take the form of
function requests issued by the IP controller and executed by the
IP. (Like a GDP, the IP performs other operations in response to
interprocessor communications; these are normally transparent to the
AP, however.)

The standard 432 object-oriented addressing and protection systems
underlie all IP facilities. The IP uses the same
descriptor-controlled, segment-based address development mechanism
as the GDP. It performs type and rights checking identically.
Addressing and protection apply to both the transfer of data through
windows and the execution of functions.

ENVIRONMENT

Table 2-1 1lists all 432 system objects and compares the IP's
implementation of them with that of the GDP. For the most part
these objects are handled identically by both machines; the
variances noted in the table stem from the different orientation and
design of the two machines. The IP does not implement instruction
segments, for example, because its Attached Processor takes care of
instruction fetching. :

IP processor, process and context objects are similar in purpose to
the corresponding GDP structures, but are implemented somewhat
differently. Importantly, the processor and process objects are -
compatible with the standard 432 processor and interprocess
communication facilities. The IP supports multiple process
environments; a separate process can be associated, for example,
with each Peripheral Subsystem device task. Each process has a
single context object which defines the process's current access
environment (i.e., the objects that are instantaneously accessible),
and records status information.

2-2

OBJECTS AND OPERATORS

Table 2-1 IP/GDP System Object Comparison

Object IP Implementationr
Processor Object similar
Process Object similar
Context Object similar
Operand Stack none
Instruction Segment none
Object Table identical
Domain identical
Port identical
Carrier identical
Storage Resource none

Type Definition identical

Communication Segment identical
Descriptor Controller identical
Refinement Controller identical

Legend:
~ identical IP and GDP implementations are identical
similar While conceptually similar, IP implements object
differently than GDP
none IP does not implement object
IP OPERATORS

Table 2-2 compares the operators available in the IP's function set
to those provided in the GDP's instruction set. Since windows are
unique to Interface Processors, the ALTER MAP AND SELECT DATA
SEGMENT function has no counterpart in the GDP. Conversely, the IP
has no functions for performing arithmetic (except for the exclusion
function INDIVISIBLE ADD SHORT ORDINAL) or logical operations on
numeric or character data types, nor any operators to alter the flow
of execution (e.g., branch or call functions). To the extent that
these classes of operators are needed in a Peripheral Subsystem
interface, they can be provided by the combination of the Attached
Processor's instruction set and the IP's window facility. For
example, by opening a window on a message received from a GDP
process, the I/O controller can use AP instructions to test and
branch on the value of a message field read through the window.

2-3

iAPX 432 Interface Processor Architecture Reference Manual

Through its windows, an IP provides the basic ability to read and
write the contents of objects composed of data segments. However,
using its function request facility an IP can mampulate an access
descriptor which references an object. The IP can examine a complex
(multi-segment) object, gaining access to its component segments.
It can perform tvpe and rights manipulation on both
hardware-recognized typed objects as well as software-recognized
types. When mampulatlng software—reoogmzed types, an I/0
controller is acting as a type manager and its actions must be
coordinated with the 432 type manager which has created the object.

The Interface Processor provides the I/O controller with both
process and processor communication facilities. Interprocess
communication is asynchronous and is performed with the aid of
ports, system objects which provide synchronization and queuing for
messages. Any object may be sent as a message from a process to a
port. Interprocessor communication messages are predefined. Some
of them apply to all classes of 432 processors, and others are
specific to a particular class (e.g., IP or GDP) of processor. The
I/0 controller can send one of these messages to an individual
processor, or it can broadcast a message to all processors in the
432 systen.

2-4

OBJECTS AND OPERATORS

Table 2-2 IP/GDP Operator Comparison (Part 1 of 2)

Operator Implementation
WINDOW DEFINITION CPERATOR
Alter Map and Select Data Segment IP
ACCESS DESCRIPTOR MOVEMENT OPERATORS
Copy Access Descriptor GDP+IP
Null Access Descriptor GDP+IP
RIGHTS MANIPULATION OPERATORS
Amplify Rights GDP+IP
Restrict Rights GDP+IP
TYPE DEFINITION MANIPULATION OPERATORS
Create Public Type GDP
Create Private Type GDP
Retrieve Public Type Representation GDP+IP
Retrieve Type Representation GDP+IP
Retrieve Type Definition GDP+IP
REFINEMENT OPERATORS
Create Generic Refinement GDP
Create Typed Refinement GDP
Retrieve Refined Object GDP+IP
SEGMENT CREATION OPERATORS
Create Data Segment GbP
Create Access Segment GDP
Create Typed Segment GDP
Create Access Descriptor GDP
ACCESS PATH INSPECTION
Inspect Access Descriptor GDP+IP
Inspect Access GDP+1IP
OBJECT INTERLOCK OPERATORS
Lock Object GDP+IP
Unlock Object GDP+IP
Indivisibly Add Short Ordinal GDP+IP
Indivisibly Add Ordinal GDP
Indivisible Insert Short Ordinal similar
Indivisible Insert Ordinal GDP
CONTEXT COMMUNICATION OPERATORS
Enter Access Segment GDP+IP
Enter Process Globals Access Segment GDP+IP
Set Context Mode similar
Call Context GDP
Call Context with Message GDP
Return GDP

2-5

iAPX 432 Interface Processor Architecture Reference Manual

Table 2-2 continued IP/GDP Operator Comparison (Part 2 of 2)

PROCESS COMMUNICATION OPERATORS

Send GDP+IP
Receive GDP+IP
Conditional Send GDP+IP
Conditional Receive GDP+IP
Surrogate Send GDP+IP
Surrogate Receive GDP+IP
Delay GDP
Read Process Clock ” GDP
PROCESSOR COMMUNICATION OPERATORS
Send to Processor GDP+IP
Broadcast to Processors GDP+IP
Read Processor Status and Clock GDP+IP
Move to Interconnect GDhp*
Move from Interconnect GDP*
BRANCH OPERATORS GDP
CHARACTER OPERATORS GDP
SHORT ORDINAL OPERATORS GDP
SHORT INTEGER OPERATORS GDP
ORDINAL OPERATORS GDP
INTEGER OPERATORS GDP
REAL OPERATORS GDP
TEMPORARY REAL OPERATORS GDP
Legend:
GDP+IP IP and GDP Implementations are identical
IP IP implements operator, GDP does not
GDP GDP implements operator, IP does not

similar While conceptually similar,

differently than GDP

IP implements operator

* Window 1 of IP provides equivalent interconnect access

2-6

OBJECTS AND OPERATORS

2-2. OBJECT ADDRESSING AND GLOBAL STORAGE MANAGEMENT

Object addressing on the IP follows the same three level sequence as
on a GDP. The steps taken to address an object are:

1. Given an access descriptor, a processor uses the directory
index field to index the object table directory and galn a
storage descriptor for the object table which contains an
object reference for the desired object.

2. With the storage descriptor for the object table and the
segment index field of the access descriptor, the processor
locates a storage descriptor for the requested object.

3. The storage descriptor for the object contains the base and
length information required to locate the object in 432
memory.

An IP can be directed to manipulate objects in 432 memory, just as
other 432 processors, but lacks any facility to create objects. All
original objects used by an IP must be predefined and loaded into
432 memory at system initialization time. Additional objects, which
may be required, must be created by a GDP process (e.g. the storage
manager) .

A 432 operating system type manager might maintain a template for a
prototype IP process. When it received a request for a new IP
process from the I/0O controller the GDP would build one using the
prototype and then return it via the standard communication port
mechanism.

2-3. OBJECTS FOR PROGRAM ENVIRONMENTS

The IP supports the same program environment hierarchy (process,
context, domain) as a GDP but implements each level differently.

The IP does not require that a domain object be implemented but the
context object contains a slot for an access descriptor for a domain
object should one be required. When implemented, IP domains do not
contain instruction segments (since the IP does not fetch
instructions) or operand stack segments. The domain may be used to
store some static information which may be required by a process.

An IP context is a refinement of an IP process object. Each IP
process is bound to a single context for the 1lifetime of the
process. An environment is changed by invoking the ENTER ACCESS
SEGMENT or ENTER GLOBAL ACCESS SEQMENT functions.

iAPX 432 Interface Processor Architecture Reference Manual

2-4. FACILITIES FOR ASYNCHRONOUS COMMUNICATION

The IP offers the same set of operators for asynchronous
interprocess communication as does a GDP, with the exception that
the DEIAY operator is not implemented. The DELAY operator, used in
scheduling to delay a process from being dispatched (on a GDP), is
not required hy an IP where process scheduling and dispatching is
per formed by the I/0 controller.

2-5. PROCESSES AND LOCAL STORAGE RESOURCE MANAGEMENT

The IP performs no process scheduling or local storage resource
management. Multiple IP process objects may coexist in 432 memory.
I/0 controller software must select a process enviromment in which
an IP function is to be performed.

Unlike the GDP, where a process may be composed of multiple
contexts, an IP process is bound to a single context during its
lifetime. 1In fact, the context is a refinement of an IP process
object. Further, since no local storage management is performed by
an IP, the size of a process's context is static over the life of
the process.

2-6. PROCESS SCHEDULING AND DISPATCHING

Generally, software in the I/O controller is responsible for all IP
process scheduling and dispatching. A process is selected and bound
to an IP processor object when an IP function is invoked. The
process selection index field in the IP's function request facility
specifies which process is to be selected. Since the IP is not
self-dispatching, a strategy routine in the I/O controller has
responsibility for multiplexing the various IP processes over time.
The IP does not maintain a process clock. Process time management
is performed by the I/0 controller.

Consistent with 432 philosophy, the IP provides the mechanisms for
process scheduling and dispatching but the policy for deployment is
totally under the direction of I/0 controller software.

2-7. FACILITIES FOR OBJECT MANAGEMENT

The IP provides a spectrum of facilities which may be used for
securely managing objects: commnications ports, I/O 1locks, and
indivisible short ordinal operations.

The IP offers the same asynchronous communication port mechanisms as

a GDP. Communications ports may be wused by processes to
asynchronously send and receive messages (objects).

2-8

OBJECTS AND OPERATORS

Contained in each object's storage descriptor is an I/0 lock which
is applied by the IP when a window is opened on the object. This
lock serves two purposes: first it guarantees that only one IP
window can be opened on a particular 432 object at a time; second
it prevents movement of the object (e.g. by a memory compaction
process) while it is mapped through a window.

The transfer of data between the PS and the 432 system is a three
step process. First, the IP controller opens a window onto the 432
object which is to used in the transfer. In the process of opening
the window the IP sets the I/O lock in the affected object. Second,
the data transfer phase is entered and a PS processor transfers data
between the 432 object and the PS memory. Finally, when the
transfer is completed, the IP controller closes the window and the
IP clears the I/O lock in the 432 object. The storage manager in
the 432 system may query the I/O lock field but this field is not
hardware-interpreted by a GDP.

As primitives in the IP hardware function set, two indivisible
operators are provided which can be used to guarantee mutually
exclusive access to short ordinal fields within 432 objects. These
two operators, INDIVISIBLE ADD SHORT ORDINAL and INDIVISIBLE INSERT
SHORT ORDINAL, apply an indivisible hardware operation to the
specified short ordinal value. For instance, these operators might .
be employed to provide a counting semaphore. These operators
provide only the hardware-specific mutual exclusion mechanisms and
must be supplemented by a coordinated software discipline between
processes which utilize the semaphore. For a discussion of the
read-modify-write memory requirements for these operators, see the
Intel iAPX 43203 Interface Processor Data Sheet, Order Number 171874.

2-8. CONTEXT ENVIRONMENT MANIPULATION

The I/0 controller, by manipulating the context of an IP process,
can access the objects which are available to the process. Like a
GDP, the IP allows a context to reference any object for which it
holds an access descriptor. Entry access segments contain access
descriptors for all the objects which may be manipulated from a
specific process's context by an I/O controller.

The Four Entry Access Segments

Of all the access segments which can be referenced from a context,
the IP provides direct access to a set of four entry access
segments. The entry access segments are referenced by access
descriptor slots 4, 5, 6, and 7 in the context access segment.
Entry access segment 0, slot 4, contains the access descriptor for
the context access segment; entry access segment O.

2-9

iAPX 432 Interface Processor Architecture Reference Manual

Direct vs. Indirect Accessibility

If a copy of an access descriptor for an object is in one of the
four entry access segments, the object it references is directly
accessible. To reference such an object, two values must be
specified:
o The number (0 to 3) of the entry access segment in which
the access descriptor is located, and
o The index (0 to 16383) of the access descriptor within the
specified entry access segment

When viewed from the standpoint of the 432 system and the Peripheral
Subsystem, there are actually several perspectives on accessibility
as shown in Table 2-3. A processor (GDP or IP) in the 432 system
can directly reference any object for which it holds an access
descriptor in one of its entry access lists. In addition, by
traversing access paths, the 432 processor can manipulate objects
which are indirectly accessible.

If a copy of the access descriptor is not currently in one of the
four entry access segments, the desired object may be indirectly
accessible. The target object may be part of a complex object
structure which must be traversed by following the appropriate
access path. Once the particular access descriptor for the object
has been located, the object may be made directly accessible by
entering the access segment into one of the reuseable entry access
lists (1-3). Entry access segment 0 is always reserved for the
original context access segment. An access segment of process
globals may be entered into one of the other three access lists by
the "enter global access segment" function. Together, these two
access segments provide access to all the objects which a context
can reference.

An AP has a different view of accessibility. The AP can only access
432 data through IP windows which are opened onto 432 data segments.
When a window is open, the AP can use its native data manipulation
operators to modify the information through the window. When the AP
must reference data in a segment which is indirectly accessible, it
issues a function request to the IP to traverse an access path to
the segment. When the data segment has been made directly
accessible for the AP, the IP interrupts the AP.

2-10

OBJECTS AND OPERATORS

Table 2-3 Direct/Indirect Accessibility

Viewpoint of IP/GDP in 432 System

Directly Accessible 432 Information

o access descriptors All access descriptors in the four Entry
Access Segments.

o data All objects of type data segment referenced
by access descriptors in the four Entry
Access Segments.

Indirectly Accessible 432 Infocrmation
o Information, data or access, which can be reached via access

path manipulation (i.e. by following a chain of access
descriptors using the Enter Access Segment function).

Viewpoint of AP in Peripheral Subsystem
(Controlling an IP operating in logical reference mode)

Directly Accessible 432 Information

o access descriptors NONE, the AP cannot directly alter access
information.

o data all objects of type data segment for which a
window is currently opened. Note, this
implies the object is directly accessible to
the IP.

Indirectly Accessible 432 Information

o Objects of type data segment which are directly accessible to
the IP but which have not been mapped through a window. These
objects can be made directly accessible by issuing an IP
function request which opens a window to the object.

O Access descriptors in the Entry Access Segments. These can
never be made directly accessible to the AP but can be
manipulated via the IP function request facility.

o Information, data or access, which can be reached via access
path manipulation (i.e. by following a chain of access
descriptors using the Enter Access Segment function provided by
the IP function request facility). Note that two 1levels of
indirection are involved, traversing the path of access
descriptors and the use of the IP function request facility.

2-11

iAPX 432 Interface Processor Architecture Reference Mahual

Object Selectors

An object selector identifies an object by specifying an access
descriptor contained in one of the four entry access segments. The
object selector consists of a double hyte quantity composed of two
fields:

1. The low order two bits of the object selector specify which
entry access segment holds the desired access descriptor
and are coded as follows:

00 - Entry Access Segment 0 (Context Access Segment)
01 - Entry Access Segment 1
10 - Entry Access Segment 2
11 - Entry Access Segment 3

2. The high order 14 bits represent a scaled index into the
specified entry access segment.

An object selector allows access to any of the 16,384 (214)

access descriptors from each of th eL 4 entry access segments. An IP
can potentially reference 65,536 (2) objects directly.

Entering an Access Segment

The instruction ENTER ACCESS SEGMENT allows the I/O controller
software to enter a given access segment into Entry Access Segment
1, 2, or 3. ENTER ACCESS SEGMENT requires two operands:
o An access descriptor for the access segment to be entered
into EAS1, EAS2, or EAS3, and
o An unsigned integer value designating the destination entry
access segment, which must be 1, 2, or 3.

Entering the Global Access Segment

Each IP process maintains a global access segment which is always
accessible to the I/0 controller via the ENTER GLOBAL, ACCESS SEGMENT
function. Immediate entry of the global access segment allows an
I/0 controller to gain access to the set of process globals. The
I/0 controller needs only to specify which of the three available
entry access segments is to be used when requesting this function.

2-12

CHAPTER 3

The Interface Processor window mechanism provides the Peripheral
Subsystem with protected access to the contents of objects located
in the 432 system. There are five windows, labeled 0-4. Each
window can be used to access one (single segment) object. To
prevent the possible manipulation of access descriptors as ordinary
data and corruption of the protection mechanisms, the windowed
object must be of base type data segment. Access descriptors, the
basis for the 432 protection system, may he manipulated only by IP
operations supplied by the IP function request facility. These
operations are described in the next chapter.

All TP windows are similar in that they support the transfer of Adata
across the subsystem boundary; this chapter first describes the
characteristics common to all windows. The first section covers the
attributes that define windows; these are generally specified when
the window is opened with the ALTER MAP AND SELECT DATA SEGMENT
function. The second section describes the operation of a data
transfer through a window that has been defined with a given set of
attributes.

Three of the windows have special capabilities; these are covered
after the basic properties of all windows have been described.
Window 0 may be used to perform high speed block transfers. Window
1 may be opened onto the processor-memory interconnect address space
and thus provide access to interconnect objects. Window 4—the
control window--is dedicated to providing the data path for the
Interface Processor function facility; this is cowvered in chapter 4.

Throughout this chapter conditions for correct use of windows are
described. When any of these conditions are violated, the Interface
Processor detects a fault. The IP's fault detection, reporting and
handling facilities are covered in chapter 6.

iAPX 432 Interface Processor Architecture Reference Manual

3-1. WINDOW ATTRIBUTES

Each window has a set of attributes which define its state at a
given moment; these are summarized in table 3-1. The IP sets the
attributes of all five windows when it performs processor
qualification. The attributes of the control window are obtained
from values recorded in the processor object. Processor
qualification closes windows 0-3. ‘

Processor qualification is performed explicitly when the Interface
Processor responds to a "suspend and fully requalify processor"
interprocessor cocommunication (IPC). The IP performs processor
qualification implicitly in response to the startup IPC it receives
during system initialization (see appendix E). Thus, window 4 may
be made to come up with any set of attributes by encoding the
desired values in the processor object image that is loaded during
initialization.

Having entered logical reference mode,. the I/0 controller can change
the attributes of windows 0-3 with the ALTER MAP AND SELECT DATA
SEGMENT function. Unlike the other windows, window 4's attributes
may not be altered during normal execution; its attributes are
fixed once logical mode is entered. The IP can be commanded to
reenter physical mode by a special IPC from a 432 processor,
including itself. Any processor with an access descriptor for a
processor object with broadcast rights can send the "enter physical
mode"” IPC to all processors in the 432 system. GDPs ignore this
interprocessor message.

WINDOW STATUS

A window must be open for it to be used to transfer data. An open
window establishes an active mapping between a set of addresses in
the Peripheral Subsystem and an object in the 432 system; other
attributes provide further mapping information.

A closed window is inactive, and has no other attributes. A window
may be closed to prevent further access to an object, or to change
the attributes of a window. Closing a window which overlays PS
memory (see OVERIAY in this section) enables access to the PS memory.

When a window detects a fault, the IP records in 432 memory the
fault information describing the circumstance, changes the state of
the affected window to the faulted state, and interrupts the AP. In
the faulted state the IP will continue to acknowledge transfers
through the window though no data will actually be moved to/from the
432 system (see the description of XACK/ and NAK/ in the Intel iAPX
43203 Interface Processor Data Sheet, Order Number 171874). This
state is entered to allow DMA-type controllers to proceed safely in
the presence of a window fault.

Table 3-1 Window Attribute Summary

Attribute

Window Status
Subrange Base Address
Subrange Size

Object Reference

Base Displacement

Direction

Transfer Status

Mode

Overlay

Block Mode Attribute

Description

Window is open/closed/faulted

Start of windowed subrange in the PS
Length of windowed subrange in the PS
Object Selector for windowed 432 object

Displacement in bytes into windowed 432
object

Read/write permission for windowed
object. When the window is being opened
this attribute is the permission
requested by the I/O controller. After
the window has been opened this
attribute is the permission that has
been granted.

Transfer in progress/terminated/faulted
Window 0: random/block mode

Window 1: memory/interconnect mode
Window 2-4: always in random mode

Windowed subrange does/does not overlay
memory

Description (applies only to window 0)

Byte Count Count of the number of bytes to be
transferred minus one.
Note: In block transfer mode, the base displacement of

window 0 specifies the initial address within the
windowed object from which consecutive information
transfer will begin.

3-3

iAPX 432 Interface Processor Architecture Reference Manual

SUBRANGE BASE ADDRESS AND SUBRANGE SIZE

A window's subrange is defined by a subrange base address and a
subrange size, in bytes. The subrange is the contiguous set of
Peripheral Subsystem memory addresses that are mapped by the
window. A Peripheral Subsystem bus master that references an
address in a subrange accesses the corresponding object in the 432
system.

A PS subrange is defined in terms of powers of 2. The subrange size
08 a random m(fge window may be specified as any power of 2 from
2Y¥ through 2 (i.e., 1 through 32k bytes). When window O
is used in block mode it may sequentially access an object as large
as 64K bytes. When the target object is not an integral. power of 2
in length, the subrange will normally be specified as the next
higher power of 2. The subrange may also be smaller than the target
object, if access to the full extent of the object is not required.

Note that the size of the window is the lesser of the size of the
subrange and the size of the object. That is, a window never
provides access to 432 system memory beyond the extent of the
windowed object, regardless of the relationship of subrange size to
object size. The IP's protection system restricts a larger subrange
to behaving as though it is exactly the same size as the windowed
object. Any attemot to access locations beyond the extent of an
object will cause the IP to generate a fault.

A subrange's base address is specified as an offset in bytes from
the beginning of the IP's 64K byte range in the PS. The subrange
base address bears a definite relationship to the subrange's size.
Given a subrange 2" pytes long, its base address must be on a
2" pyte boundary. For example, the base address of a 4K
subrange must be evenly divisible by 4K. This relationship may also
be expressed as: the base address of a 2" byte subrange,
expressed in binary, must contain at least n low-order zero bits.

The following onnstraints apply to all active subranges:
0 no subranges may overlap, i.e. no two subranges
mav include the same Peripheral.Subsystem address
o all subranges must "fit" within the range
of addresses (up to 64K) that the IP
occupies in the Peripheral Subsystem memory space.

OBJECT REFERENCE

An open window's object reference begins as an object selector and
is converted by the IP into an access descriptor for the windowed
432 object. Each open IP window must map a different object in 432
memory, and each object must be represented as a single segment of
base type data segment (functions may be used to manipulate
multi-segment objects to gain access to their individual segments).
No more than one window can be opened on an object, regardless of
whether there are multiple IP's in the system. Even if one IP
window is opened on a refinement of an object no other window will
be allowed access to the base object or any refinement of the object.

When a window is opened on an object, the IP makes the object
inaccessible to other IPs by setting the I/O lock bit in the base
object's object descriptor; the I/O lock bit in the base object is
set when a window is opened on a refinement. The object may,
however, remain accessible to GDP processes holding object
references for it. If the Peripheral Subsystem requires exclusive
access to an object, it must do so by means of a convention. For
example, if the object has been defined with a lock field, the IP
controller can use the LOCK OBJECT function to prevent GDP processes
(which observe the convention) from accessing the object. An
alternate convention, might be used for objects which do not contain
lock fields. For example, a GDP process sending an object to the
I/0 controller oould agree not to access the object, or pass a
reference for it to another process, until the I/O controller sends
the object as a message back to the GDP process.

The IP supports the 432 philosophy that software should have access
to the minimum set of objects needed to perform its function.
Therefore, the I/O controller can only open a window on an object
for which an access descriptor exists within a current context's
access enviromment. Typically, an I/O service request message from
a 432 processor will contain access descriptors for the objects that
need to be transferred or accessed.

3-5

iAPX 432 Interface Processor Architecture Reference Manual

DIRECTION

The direction attribute specifies whether the windowed object may be
read, written, both read and written, or neither read nor written.
When the window is opened the IP checks the requested direction
attribute with the access rights granted by the object reference.
The access rights requested in the direction attribute must be equal
to, or logically less than, the rights granted by the object
reference. For example, if the object reference indicates that the
object may be read, then the permissable direction attributes are
read, or neither read nor write; requesting the ability to write, or
to read and write the object would be illegal.

Once a window has heen successfully opened, the IP checks every
subsequent subrange address reference to insure that it conforms to
the direction attribute, otherwise an active window fault occurs.
(The IP's read/write 1line identifies the type of access being
attempted.) This permits the IP controller to open a window for
reading with the assurance that a mis-programmed DMA controller will
not be able to write into it.

TRANSFER STATUS

An open window may take one of four states:

transfer in progress;

transfer terminated by fault;

transfer terminated by count runout; (block mode only)
transfer termination forced; (block mode only).

0000

The IP controller will open a window with the status attribute set
for "in progress". If the IP detects a fault associated with an
active window, it will change the status attribute to "terminated by
fault". A random mode window which is closed (set invalid) with a
transfer status of "in progress" is considered to have terminated
normally since there is no means for an IP to predict when a random
mode transfer is finished. The remaining two states are associated

with window 0 block mode transfers only and are described in section
3—30

TRANSFER MODE

Windows 0 and 1 have alternate transfer modes that may be selected
by setting the mode attribute when the window is opened. Window 0
may be opened in block mode, which permits buffered high speed
transfers of contiguous blocks of data; this is described in section
3-3. Window 1 may be opened onto the interconnect address space;
this is described in section 3-4. The transfer mode attribute has

3-6

no meaning for windows 2-4, which support random transfers to 432
system memory only; the random transfer mode is described in section
3-2. Attempting to set the transfer mode of windows 2-4 will cause
a fault.

OVERLAY

Some Peripheral Subsystems (e.g., those based on processors with
limited address spaces) may not be able to dedicate a block of
memory space for exclusive use as IP window subranges. Such systems
may elect to co-locate all or part of the IP's range with real PS
memory. If a window is then opened with the overlay attribute, the
IP will inhibit the co-located memory from responding to memory
references in the subrange. Closing a window that overlaid memory
re—-enables the memory to respond to subsequent address references in
that subrange. Thus, when the IP and PS memory both occupy the same
addresses, memory will respond to all references except those that
fall in the subrange of a window open with the overlay attribute.

Figure 3-1 illustrates a hypothetical configuration in which a bank
of memory and an Interface Processor both occupy a 64K byte block of
addresses in the Peripheral Subsystem memory space. A window with a
subrange base address of 32K and a subrange size of 4K has been
opened with the overlay attrihbute set. Any address reference
falling in the subrange will cause the IP to respond rather than the
co-located memory. Any address reference outside the subrange will
select the memory rather than the IP.

The overlay facility is implemented by an inhibit signal that the IP
asserts when it recognizes an address reference that falls in an
overlaid subrange. (See the iAPX 43203 Interface Processor Data
Sheet, Order No. 171874, for a description of this signal). Use of
the overlay facility slows IP response time somewhat.

Note that opening a window with the overlay attribute set when there
is no co-located memory is safe, but it slows IP response
unnecessarily. On the other hand, opening a window without
specifying overlay when there is co-located memory will produce an
undefined result when both components attempt to respond to a
subsequent address reference that falls in the overlaid subrange.

3-7

ijAPX 432 Interface Processor Architecture Reference Manual

64K
36K Subrange of window opened
/ with overlay attribute set
32K~}
g

Memory

Enabled addresses

Disabled addresses

Figure 3-1 Memorv Overlay

WINDOWS

3-2. WINDOW OPERATION

This section describes the IP's response to an address reference
that falls into the windowed subrange of an open window. The
discussion oovers random mode transfers to and from ordinary
memory-based objects; the special cases of block mode, interconnect
objects and function requests are covered in subsequent sections.

ADDRESS RECOGNITION

The Interface Processor monitors all Peripheral Subsystem address
references that fall into its range. It compares each address
presented on the Peripheral Subsystem bus to the subranges of all
open windows. If an address falls into a subrange, the IP
recognizes the reference and responds as described below. If the
address does not fall into an active subrange, the IP ignores the
reference and does not respond.

CONSISTENCY CHECK

Given that it has recognized an address reference, the IP checks it
for consistency before performing the actual transfer. There is a
series of these checks which are equivalent to the steps carried out
by a GDP when an instruction attempts to access data in an object.
Although they are described here as a sequence, the hardware is able
to perform some of the checks in parallel.

The IP insures that the transfer direction (as indicated by its
read/write 1line) 1is consistent with the window's direction
attribute. The IP computes the PS transfer displacement, that is,
the position of the item (byte or double-byte) relative to the base
address of the PS subrange. The visible object length is the
difference between the 1length of the object and its base
displacement (see Figure 3-2). The transfer displacement must be
less than or equal to the visible object length. The sum of the
physical base address and the transfer displacement must be less
than the largest physical 432 memory address (224—1) . (A memory
bounds error would indicate erroneous information in the object
table.) If any of these checks fails, the IP detects a fault and
does not perform the transfer. Figure 3-2 illustrates the
constraints which the IP applies when the oonsistency check is
performed. Several examples of valid mappings of window onto
objects are shown in Figure 3-3.

iAPX 432 Interface Processor Architecture Reference Manual

PS ADDRESS SPACE 432 ADDRESS SPACE

}
64K
Byte _- -
Range WINDOW _ _-F - Adjusted
- Object
SUBRANGE | _.~ VISIBIE Ject
OBJECT LENGTH LENGTH
Access > ¥ v
Transfer -
.I-Displacement L
Displacement
1 R G NS P D W e e '

Initial Computations

o Adjusted Object Length = Object Length - Base Displacement

o Visible Object Length = Minimum (Adjusted Object Length, Byte
Count) for block mode operation.

o Visible Object Length = Minimum (Adjusted Object Length,
Subrange Size) for random mode operation.

o Physical Base Address = Base Address + Base Displacement

o During block transfers in logical mode (window 0 only), the byte
count must be less than the Visible Object Length.

Constraints During Data Transfer

o0 Transfer Displacement must be less than the Visible Object Length
o Plélzsical Base Address + Transfer Displacement must be less than
2451

Figure 3-2 Subrange/Window Attributes (Logical Mode)

3-10

MAPPED
IP WINDOW 432 OBJECT

WINDOW = OBJECT

AN

WINDOW =< OBJECT

WINDOW = REFINEMENT

N
ARRRS
AN

OBJECT == WINDOW

ARRAS

WINDOW > REFINEMENT

== PORTION OF OBJECT INACCESSIBLE TC IP

= PORTICN OF WINDOW INACCESSIBLE TO AP

Figure 3-3 Valid Window/Object Mapping

3-11

iAPX 432 Interface Processor Architecture Reference Manual

3-3. RANDOM MODE DATA TRANSFER

Given that an IP address reference has passed the consistency
checks, the IP finishes the Peripheral Subsystem bus cycle Jjust as a
memory component would, accepting data from the bus in a write
operation, and placing data on the bus in a read operation.

It follows from the preceding discussion of transfer displacement
computation that random mode transfers are always between
corresponding relative locations of the windowed subrange and the
windowed object. That is, the displacement of a transferred byte or
double-byte is identical within the windowed object and the windowed
subrange., For example, assume a PS subrange of 128 bytes at hase
address 4096 mapped onto a 432 object 100 bytes long with a base
displacement of 0. If a Peripheral Subsystem bus master initiates a
bus cycle that decodes as "read one byte from location 4096", the IP
will return the object byte whose displacement is zero, the first
byte in the object. If a subsequent bus cycle indicates "write a
double-byte into location 4100", then the IP will accept a
double-byte from the bus and write it into the object at a
displacement of four. If another bus cvcle attempts to "read one
byte from location 4197", the IP will fault and will not perform the
transfer, since the subrange transfer displacement exceeds the
bounds of the object. :

Random mode is so-called because no ordering is implied between
successive references to a windowed subrange. Any location may be
read or written (assuming validitv checks are passed) at any time.
Figure 3-4, Random Mode Transfers, illustrates the effect of
different address references when a window is opened for reading and
writing in random mode.

A window opened in random mode may be remapped onto a new 432 data
segment with a single invocation of the IP function ALTER MAP AND
SELECT DATA SEGMENT. When executing this function the IP will first
close the window and then reopen it on the newly select data segment.

3-12

Byte displacement-\\‘
4103 T s = . (7)
“__ﬁ%——; (6)
(5)
(4)
(3)
(2)
(1)
(0)

4096 - = e = =
Windowed Windowed
Subrange Object
Legend
Reference Sequence: @ @ @
Subrange Address Referenced: 4499 4997 4102
Reference Operation: Read Byte | Write Byte|Read Double-byte
Object Byte Accessed (disp.) 3 1 6,7

Figure 3-4 Random Mode Transfers

3-13

iAPX 432 Interface Processor Architecture Reference Manual

3-4. BLOCK MODE DATA TRANSFER

Window 0 can be opened in random mode or in block mode. Block mode
allows the Peripheral Subsystem to take advantage of software
instructions (e.g. iAPX 86 string operations) and devices such as
DMA controllers, which are capable of generating consecutive address
references at high speed. Block mode also permits the transfer of a
large amount of data through a small PS address subrange. For
example, the full content of any object may be transferred through a
one-byte or double-byte PS subrange. This helps to keep more of the
IP's range available for use with random mode windows.

While block mode is well-suited for the high speed transfer of large
blocks of data, it provides less addressing flexibility than random
mode. When window 0 is opened in block mode, the direction
attribute can specify reading or writing, but not both. To change
access directions requires closing and re-opening the window. Block
mode also implies serial addressing of the windowed object. The
block of data to be read or written is defined when the window is
opened, and the whole block is transferred in sequence.

BLOCK MODE ATTRIBUTES

Window 0 has an additional attribute, byte count, which is
applicable only when it is opened in block mode. The byte count
specifies the size of the block that is to be moved through the
window. The value of this attribute may range from 0-65,535; the
value represents one less than the number of bytes to be transferred
(a byte count of 0 indicates that a one-byte block is to be
transferred). The byte count is independent of the subrange size.
However, the IP checks to insure that the sum of the bhase
displacement plus the byte count does not exceed the length of the
target object.

The base displacement attribute locates the first byte of the block
relative to the beginning of the windowed object. A value of zero
indicates that the block starts at the lowest address of the
object. The base displacement and byte count essentially define a
refinement of the object. ‘

3-14

BLOCK MODE CONSISTENCY CHECK

Since the byte count and base displacement effectively predefine the
transfer from the perspective of the 432 object, the IP can perform
most of the required consistency checks when the window is opened.
The only checks made during a transfer are direction and byte count.

BLOCK MODE OPERATION

From the point of view of the Peripheral Subsystem bus, a block
transfer proceeds much like a random transfer, except that, like a
fast memory, the IP provides much better response time in block
mode. The IP acts as a passive agent on the PS bus, all block
transfer activity being driven by an active PS processor or DMA
controller. When an address reference falls within window O0's
subrange, the IP accepts or supplies a byte or double-byte according
to the type of PS bus cycle. Note, however, that in block mode, IP
acknowledgement of a write operation does not neccessarily imply
that the data has actually been written into the windowed object.

The IP employs an on-chip first-in-first-out (FIFO) buffer to
achieve high speed block transfers in buffered mode. Since a block
mode transfer is predefined by window 0's attributes, the IP is able
to optimize the transfer using the FIFO hardware assistance. The
Interface Processor buffers block mode transfers to improve response
to Peripheral Subsystem transfer requests and to reduce its
utilization of the 432 processor packet bus.

In a block read operation, the Interface Processor pre-fetches an
eight-byte block of data from the windowed object in one 432
processor packet bus transaction. It holds the block in an internal
buffer and supplies bytes or double-bytes from the buffer as
requested by Peripheral Subsystem bus cycles. When the buffer has
enough free space, the IP prefetches another block.

In a block mode write operation, the IP accepts bytes or
double-bytes from the Peripheral Subsystem bus and buffers them
internally. When the buffer accumulates more than eight bytes, the
IP post-stores an eight-byte block in the windowed object in a
single processor packet bus operation.

3-15

1APX 432 Interface Processor Architecture Reference Manual

Completing a block mode write transfer which is shorter than the
byte count is a two-step process. First, the AP must issue an ALTER
MAP AND SELECT DATA SEGMENT function with the entry state operand to
"force termination" on window 0. This causes the IP to empty its
FIFO to 432 memory. Then, the AP must issue an additional ALTER MAP
AND SELECT DATA SEGMENT FUNCTION with an entry state operand to set
window 0 invalid (close the window). If the AP attempts to close a
block mode window without first forcing termination, the IP will
generate a fault, interrupt the AP, and preserve the block mode
window. When the transfer length is the same as the byte count
attribute, the IP automatically takes care of the last block which
will be short if the transfer size is not a multiple of eight.

BLOCK MODE TERMINATION

A block mode transfer will terminate normally when all bytes have
been transferred, or it may terminate prematurely should a fault
occur. In both cases, the IP updates the transfer status attribute
and issues an interrupt request to notify the Attached Processor.
Following termination, any address reference falling in the subrange
of window 0 will cause the window to fault and enter the error
state. In the error state, requests for data transfer will be will
be acknowledged (negatively) by the IP, but no data will be
transferred. This prevents a DMA controller, for example, from
continuing to transfer data after a fault has been detected. The
faulted window cannot be re-used until it is closed and re-opened.

The IP tracks the progress of a block transfer by means of an
on-chip byte counter. The IP sets this counter equal to the byte
count attribute when the window is opened and decrements it with
each byte transferred. When the on-chip counter underflows (is
decremented from zero) all bytes have been transferred and the
operation is terminated normally.

The IP will terminate a block transfer prematurely if it detects a
fault during the transfer. In addition, the I/O controller may
itself force termination before the transfer has been completed.
This is done by executing an ALTER MAP AND SELECT DATA SEGMENT
function with the transfer status attribute set to "termination
forced." Finally, termination may be forced by the IP's receipt of
of any the interprocessor communication messages "suspend and fully
requalify processor", "close windows", or "close windows and enter
physical mode".

3-16

BLOCK MODE ADDRESSING

As mentioned earlier, in a block mode transfer the IP determines the
displacement of a transfer into the windowed object by means of its
on-chip displacement counter. Unlike random mode, then, the object
displacement is independent of the subrange displacement. This
gives rise to two addressing techniques that may be used by the
Peripheral Subsystem in block mode: swept and source/sink.

In swept addressing, the Peripheral Subsystem bus master driving the
transfer operation "sweeps" serially (from low addresses to high)
through a block of addresses in the windowed subrange. That is, the
address references will be n, n+l, n+2... or n, n+2, nt4... for 8-
and 16-bit Peripheral Subsystem buses respectively. The range of PS
addresses swept is equal to the number of bytes transferred, so the
subrange must be at least as large as the number of bytes
transferred. Figure 3-5 illustrates swept addressing in a block
mode write operation.

In source/sink addressing, the master driving the transfer
repeatedly addresses a single location in the windowed subrange.
For a read operation, this single (byte or double-byte) location
acts as a data source; for a write operation, the location serves as
a data sink. By permitting the transfer of large blocks (up to 64K
bytes) of data through a single location, source/sink addressing
conserves "subrange space." To transfer 32K bytes in random mode
requires setting up a 32K byte subrange, leaving only half of the
IP's range available for concurrent use with other windows. Only a
byte or double-byte of the range is needed to perform the same
transfer in block mode using source/sink addressing. Figure 3-6
shows how source addressing works in a block mode read operation.

Note that the IP has no knowledge of the addressing technique used
in a block mode transfer. It simply considers any address reference
in window 0's subrange as a signal to transfer the next byte or
double-byte.

3-17

iAPX 432 Interface Processor Architecture Reference Manual

Byte displacement

4103 (7)

(6)
(5)
(4)

; (Base
(1) 1 Displacement)

4096 (0)

om s wws ews e o

Windowed Windowed
Subrange Object

Reference Sequence:

Legend @ @ @

Subrange Address Referenced: 4999 4100 4101
Reference Operation: Write Byte|Write Byte|Write Byte
Object Byte Accessed (disp.): 3 4 5

Figure 3-5 Block Mode Writes - Swept Addressing

3-18

Byte displacemenﬁ}
rd
o’ (7)
- (6)
- (5)
(4)
(3)

windowed

Subrange S (2)
i T) 34
~ (?ase
S a (2) Displacement)
Windowed
Object
Legend

Reference Sequence:
Subrange Address Referenced: 4996 4696 4996
Reference Operation: Read Byte | Read Byte |Read Byte
Object Byte Accessed (disp.): 2 3 4

Figure 3-6 Block Mode Writes - Source Addressing

3-19

1APX 432 Interface Processor Architecture Reference Manual

3-5. INTERCONNECT TRANSFERS

Window 1 may be opened onto either the 432 memory space or the 432
processor-memory interconnect space. The address space is selected
by the transfer mode attribute when window 1 is opened; it may be
changed at any time by closing the window and re-opening it with the
transfer mode set differently. Both address spaces appear identical
to the Peripheral Subsystem; interconnect objects may be read and
written in exactly the same fashion as memory objects.

3-20

CHAPTER 4
FUNCTIONS

This chapter describes the ocommon facility that supports the
execution of all Interface Processor functions. The first section
shows how window 4 is used to provide access to the facility. The
next section explains how a function is requested by writing
operands and an opcode through the window. The last two sections
describe how the IP executes a requested function and returns status
information upon completion of the operation.

4-1. FUNCTION FACILITY INTERFACE

Management of the IP function facility centers on the function
request area of the processor data segment (see figure 4-1). Both
the I/O controller software and the Interface Processor itself
update and use the information recorded in this area via the control
window. Briefly, the IP records the status of the function request
facility in the function state field; the I/O controller may obtain
status information by reading this field. The IP controller
requests execution of a function by writing operands and an
identifiying opcode into the function request area, and the IP reads
these fields to obtain the information it needs to execute the
function. Finally, the execution of some functions produces a value
which the IP records in the return-value field, where the 1IP
controller can inspect it. Upon completion of any function, the IP
updates the status information and interrupts its Attached
Processor. If desired, successful function completion interrupts
can be disabled, thereby allowing only interrupts for unsuccessful
completion to reach the AP.

In logical mode, the control window (window 4) is permanently opened
onto the processor data segment and its mapping cannot be changed by
an ALTERMAP function request. By reading and writing the
corresponding PS memory subrange locations, the IP controller
obtains access to fields in the function request area located in 432
memory. Notice that this interface mechanism is similar to a
conventional memory-mapped peripheral device controller; the
function request area fields are read and written like command, data
and status registers.

Figure 4-2 illustrates the effect of executing a function, ALTER MAP
AND SELECT DATA SEGMENT, which in this case alters the map of window
0 and selects a different 432 data segment. Window 4, the control
window, is the only one through which function requests may be
issued. Windows 0 through 3 are available for data transfer between
a PS processor and 432 memory.

iAPX 432 Interface Processor Architecture Reference Manual

(Double-byte Displacement)-,

\
15 g
e’
25
o Return~value =
g 16
8 15
He
0
S
% Operands
Q
o
o
o
rf
5
a 9
b
(reserved) Opcode 8
Function State 7
Process Selection Index 6
i

Processor Data Segment

Figure 4-1 Function Request Area

IP WINDOWS 432 SYSTEM

FUNCTION{
REQUEST
4 PACILITY|

DATA SEGMENT

2_—__ - D
1____ - C
¢_____ —_— B

A

hd

ORIGINAL MAPPING

FUNCTIONS

IP WINDOWS 432 SYSTEM

ALTER MAP ;
AND FUNCTION
SELECT > REQUEST
SEGMENT Ay ...__?ACL :
h : P33
JPROCESSOR
DATA SEGMENT
DATA
SEGMEN
2 D
1l C
~
-
~
b -
] ~So B
~ ~ ~
~
~
~ A

ALTERED WINDOW # MAP

Figure 4-2 Function Example

iAPX 432 Interface Processor Architecture Reference Manual

4-2. FUNCTION REQUESTS

The performance of a function may be considered from the AP point of
view as a sequence of three phases, as shown in figure 4-3. The IP
controller, running on the AP, performs the first phase, requesting
the execution of a function.

The IP executes functions serially; requesting execution of a
second function before a prior function has been completed produces
an undefined result. The function completion state subfield of the
function state field (see appendix A) indicates the IP's readiness
to accept a function request. A typical IP controller
implementation will assign responsibility for requesting functions
to a single routine (task) which will serialize the requests.

Given appropriate Peripheral Subsystem bus arbitration, function
requests (which are identical to all windowed transfers) may be
issued concurrently with other window activities. For example,
consider a DMA ocontroller driving a block mode transfer through
window 0. If the DMA controller relinquishes the Peripheral
Subsystem bus between transfer cycles, the IP controller (running on
the Attached Processor) can use the bus for a function request (or
for any other purpose).

PROCESS SELECTION

The IP controller must specify that a function be performed in one
of the IP process environments which exist in the 432 system. To
select a process, the IP controller must deposit a process selection
index into a designated slot in the function request facility area
of the processor data segment. With this index, and the process
list in the IP's processor object, a process object can be located.
The IP will attempt to qualify and lock the specified process as
soon as a function opcode is written.

FUNCTION OPCODES

Each function is uniquely identified by a one-byte opcode (see
appendix B). The act of writing into the opcode field triggers the
execution phase of function performance. Therefore, the function's
operands must be in place in the function request area before the
opcode is transferred.

Interrupt
from IP

r...

-
4

Read
function
state

In
progress

yes

Write
operands

Write
opcode

? A Y
‘ PpPerform ‘|
N other \
' processing,’
4

Invoke
fault
handler

Completion faulted

Result yes rgtzgn—
returned value
?

FUNCTIONS

Request
Phase

Conpletion
Phase

Figure 4-3 Function Performance Phases — AP View

4-5

iAPX 432 Interface Processor Architecture Reference Manual

FUNCTION OPERANDS

An Interface Processor function may require from zero to seven
double-byte operands. The IP controller specifies a function's
operands by writing values into locations of the operands field in
the function request area. The first operand goes in the
lowest—addressed location of the field and the remaining operands
are written to successively higher-addressed locations (in some
cases, one or more operand slots may be reserved and are skipped
over). Each opcode implicitly identifies the number of operands
required, so unused high-order locations in the operands field need
not be initialized. See Appendix B for the function summary.

Interface processor functions accept three types of operands as
illustrated in figure 4-4; all operand types are stored as
double-bytes.

A short ordinal is a a 16-bit unsigned binary integer (range
0-65,535). This type of operand is typically used to specify a
length, a displacement, an index, etc. For example, when the ALTER
MAP AND SELECT DATA SEGQMENT function is used to open a window, it
requires a short ordinal operand that specifies the size of the
subrange.

A bit field is a string of 16 bits that is divided into a number of
subfields. The 1length, position and definition of each subfield
varies according to the function. Subfields in a bit field operand
to the ALTER MAP AND SELECT DATA SEGMENT function, for example,
specify transfer mode, memory overlay, etc.

An object selector identifies an access descriptor for an object
that is the function's actual operand. Figure 4-5 illustrates how
the IP uses an object selector operand to obtain access to an
object. The low-order subfield of the object selector identifies
one of the four currently entered access segments associated with
the selected context. The high-order subfield indexes one of the
access descriptors in the entered access segment. The selected
access descriptor refers, via the object table, to the object that
is the actual function operand. This three-level address
development is identical to GDP addressing. Note that the IP also
performs the standard 432 type, rights and bounds checking as it
develops the object's physical address from the object selector.

4-6

FUNCTIONS

Short Ordinal

(16-bit unsigned integer)

Bit Field

15 g
N v g
\

15 g
ryyiyyrrrryrvirivgypyd
[R B O B I AN A |
¢ g 0 ¢t 1 1 1) 1 2 d
L _J

i4
15 219
_p "~

(Subfields defined by function)

Object Selector

k~--——--Entered Access Segment Identifier

gF@ = Context Access Segment

gl = Entered Access Segment 1
18 = Entered Access Segment 2
1l = Entered Access Segment 3

Access Descriptor Index
(14-bit unsigned integer)

Figure 4-4 Function Operand Types

iAPX 432 Interface Processor Architecture Reference Manual

15 g
p0000000000001[10] Object Selector Operand
\\ \ Entered Access Segment Identifier
\ \
\ Access Descr@gtor_l&ﬁex \
- - - =\ \
L L L L \\ L Az L L
O of \@ o] o)
O O (1) &1 O
O Q] w] ®) O]
Context Access Segment Entered Access Entered Access Entered Access
Segment 1 Segment 2 Segment 3
o e o ~
/Object Table)
\ Mapping _/
o= ==
Selected
Object

Figure 4-5 Object Selection

FUNCTIONS

4-3. FUNCTION EXECUTION

The IP performs the actual execution of a function independent of
the IP controller. Therefore the IP controller (an Attached
Processor with associated IP control software) is free do other work
after it has requested execution of a function (except that it must
refrain from requesting a second function).

Although the IP's execution of any given function necessarily
varies, figure 4-6 shows the basic sequence of steps that is common
to most functions. Note that the IP checks for faults throughout
execution. :

Function execution begins when the IP detects that the opcode field
of the function request area mapped by window 4 has been written.
The IP sets the state of window 4 to "in-progress" during the
function execution process to indicate that the function request
facility is "in use". The IP reads the opcode from the function
request area and decodes it. After decoding the opcode, the IP
fetches the operands required by the function from the function
request area. It then vperforms the operation and updates
destination operands with the result(s). If the function produces a
return-value, the IP writes it into the corresponding field of the
function request area.

The IP terminates execution by updating the function completion
state subfield and generating an interrupt (see appendix D for
information on discriminating IP interrupts). The function
completion state subfield indicates successful or faulted
execution. The IP records additional information in one or more of
the context, process and processor objects when it detects a fault
during execution of a function.

4-4, FUNCTION COMPLETION

Normally the IP controller will use the IP's interrupt to detect
function completion; it may also poll the function completion state
subfield. In any case, the function completion state subfield must
be examined to determine if the function completed successfully or
faulted.

iAPX 432 Interface Processor Architecture Reference Manual

Qualify
Selected
Process

I

Decode
Opcode

Opcode
valid
?

Perform
operation

Perform
Operation fault
OK? ! response

Update
destinations

Update
Return-value

le
[
Update
function
completion
state

Generate

AP
interrupt

Figure 4-6 Basic IP Function Execution Flow

4-10

FUNCTIONS

Successful execution of a function typically causes the alteration
of a destination operand (that is, an actual operand; the operands
field of the function request area is never changed by function
execution). In addition, or alternatively, some functions produce a
return-value. For example, the READ PROCESSOR STATUS AND CLOCK
function returns the current values of the IP's system clock and
status. The IP writes return—-values into the results field of the
function request area, where they may be inspected through window
4. The low-order byte of any return-value is stored in the
lowest-addressed location of the field and any additional bytes are
stored in consecutively higher locations. When the length of the
return-value is less than the length of the return-value field, the
content of excess high-order locations is undefined.

Appendix B provides the format and interpretation of the
return-values produced by all functions. Several functions produce
a standard type of return-value called a boolean. This is a
one~-bvte value that indicates "true" or "false." The low-order bit
of the value "true" is 1 and the low-order bit of the value "false"
is 0. 1In either case the value of the upper seven bits of a boolean
is undefined.

If a function faults, the contents of the return-value field is
undefined. If a function completes successfully, but it does not
produce a return-value, then the IP does mot alter the content of
the return-value field.

4-11

CHAPTER 5
PHYSICAL REFERENCE MODE

The preceding chapters of this manual have implicitly described the
Interface Processor's logical reference mode, its normal mode of
operation. The IP also provides physical reference mode. Physical
reference mode is distinguished from logical reference mode by
direct 24-bit base-plus-displacement addressing and a limited subset
of functions. It may be characterized as a powerful and rudimentary
tool to be utilized in exceptional circumstances such as system
initialization (see appendix E) and post-mortem diagnostics. This
chapter first describes reference mode switching—how physical mode
is entered and exited. The second section covers addressing and
functions in physical reference mode.

5-1. REFERENCE MODE SWITCHING

An Interface Processor can switch from physical reference mode to
logical reference mode (and vice versa) only under carefully
controlled circumstances.

An Interface Processor enters physical reference mode in response to
assertion of its INIT line during system initialization (see iAPX
43203 VISI Interface Processor Data Sheet, Order No. 171874) or upon
receiving an "enter physical reference mode" IPC when in logical
mode. Since a "send to processor" IPC requires an access descriptor
with the proper right for the target processor's processor object,
the ability of 432 software to place an IP in physical reference
mode can be limited by restricting distribution of this right in IP
processor object references. However, any 432 process with an
access descriptor for a processor object with "broadcast to
processors" rights can place all IPs into physical mode by
broadcasting the "enter physical reference mode" IPC. Thus,
processors should only be granted broadcast rights with careful
precautions. Table E-1 shows the attributes of the IP windows after
entering physical reference mode.

An Interface Processor exits physical reference mode and enters
logical reference mode when it receives a local IPC (it ignores
global IPCs in physical mode). This local IPC is considered a
startup IPC. The response of IP is to qualify the processor, enter
logical mode, and then respond to the IPC.

5-1

iAPX 432 Interface Processor Architecture Reference Manual

5-2. PHYSICAL REFERENCE MODE ADDRESSING

In physical reference mode the object reference attribute of a
window is replaced by a 24-bit segment base address. Upon
recognition of a subrange address reference the IP determines the
transfer displacement as in logical reference mode. It forms the
transfer address by adding the displacement to the segment base
address. The 432 transfer length is always set to 210 bytes so
that no length of transfer faults can occur. No system objects are
used in physical reference mode addressing.

Note that in physical reference mode, window 0 may be opened in
either random or block transfer mode and window 1 may be opened onto
either 432 memory space or the interconnect address space. An IP
operating in physical mode may also change the characteristics of
window 4, the control window.

5-3. PHYSICAL REFERENCE MODE FUNCTIONS

The IP controller may request execution of four functions in
physical reference mode. These oorrespond closely, but are not
always identical, to logical reference functions. The request,
execution, fault handling, and completion phases of physical
reference mode operations are similar to the logical reference mode
counterparts.

See the function summary in Appendix B for detailed descriptions of
the operation of these functions.

The physical reference mode functions are
o SET PERIPHERAL SUBSYSTEM MODE;

o READ PROCESSOR STATUS AND CLOCK

o SEND TO PROCESSOR

O ALTER MAP AND SELECT PHYSICAL SEGMENT.

CHAPTER 6
FAULTS

. This chapter describes IP faults, exceptional conditions which can
occur as the IP performs functions. In general, the IP fault
philosophy follows that of the GDP: the processor detects and
contains faults so they do not affect other processes or processors
in the 432 system. The response to a fault, i.e. fault handling,
is not predefined and may be tailored through software to the needs
of the 432 system user. The IP's dual role in the 432 system and in
the Peripheral Subsystem requires that the strategy for handling
faults is somewhat different than for the GDP.

6-1. FAULT REPORTING

When a fault occurs, the IP records information about the fault in a
fault information area. Faults are distinguished by a fault code
and an operator ID recorded in the fault information area. The
fault codes are specified in Appendix C. The operator IDs are
specified in Appendix B. The operator ID designates the IP function
which was executing when the fault was encountered. A unique
operator ID corresponds to each IP function code. Note that the
values for the function codes are not the same as the values for the
corresponding operator IDs.

When the IP has deposited the information in the respective fault
information area and updated the function state, the IP interrupts
the AP to inform it of the fault. The AP may check the function
state field of the function request facility to acquire the field of
bits which contains the fault level. If the IP has faulted, the AP
examines the corresponding fault information area for more detail.

For faults which occurred during the execution of a function with a
sequence of steps, like SEND or RECEIVE, the IP records the
execution state when the function faulted. This information allows
the time when the fault occurred to be specified more precisely.
Then, software which handles the fault can respond in the most
appropriate manner. The execution state information is necessary
for software completion of a partially executed function.

iAPX 432 Interface Processor Architecture Reference Manual

The IP records fault information in various areas of IP process and
processor objects (refer to Appendix A for detailed description of
these fault information areas). There are three categories of IP
operation in which faults may be generated: physical reference
mode, logical reference mode, and window-mapped data transfer. Each
of these modes utilizes specific fault information areas to report
faults.

PHYSICAL MODE

Information about faults which occur in physical reference mode is
recorded in the processor fault information area of the IP processor
object. The function state is set to "context-level fault" when a
physical reference mode fault is encountered and an AP interrupt is
generated.

LOGICAL MODE

Information about faults which occur in logical reference mode is
recorded in appropriate portions of the IP process and processor
objects. Each IP process object contains two fault information
areas: one for context-level fault information and one for
process—-level fault information. The IP processor object contains a
fault informations area for processor-level fault information.

Depending on the severity level (context, process, or processor) of
a fault and the current state of the process and processor, an IP
selects an area to be used to record the fault information. The
method an IP uses to decide the appropriate site to record fault
information is shown in Figure 6-1. Successive faults, encountered
during fault recording, reflect the fault state to higher levels of
severity until, finally, an IP can no longer continue and must issue
the FATAL signal (see iAPX 432 VISI Interface Processor Data Sheet,
Order Number 171874).

CATEGORIES OF LOGICAL MODE FAULTS

There are three categories of logical mode faults, listed in
increasing order of severity:

o0 Context-level faults

o0 Process-level faults
O Processor-level faults

6-2

FAULTS

Context-Level Faults

Context-level faults are the least severe of the IP logical mode
faults. A context-level fault arises from exceptions which can be
confined to the context in which the IP is operating. The IP may
fault when attempting to execute a function or during the movement
of data through one of the windows. One example of a context-level
fault is the condition which occurs when a request to the function
facility contains an erroneous function code. In this case, the IP
can detect and report the fault before any execution of a function

is begun.

When the IP detects a ocontext-level fault, it places information
about the fault in the context-level fault information area of the
process object, sets the function state to "context-level fault",
and interrupts the Attached Processor. A context-level fault can
only be generated by an IP which is bound to a process. If a second
fault occurs while handling a context-level fault it is handled like
a process-level fault.

Response to oontext-level faults can usually be performed by IP
controller software rumning in the Peripheral Subsystem. The
conditions which generated these faults are contained in a limited
portion of the IP's 432 enviromment.

Process-Level Faults

Process-level faults are generated when an exceptional condition is
detected which prohibits further IP execution in the faulted process
environment. Some situations when process-level faults are
generated are:

o System level consistency failures.

o Normal requests to the operating system interface.

0 User errors, which may be misuse of the operating system
interface.

When an IP encounters a process-level fault, the IP:

\

0 Records information about the fault in the IP process'
process-level fault information area.

o SENDs the faulted process to a fault port.

o Updates the function state to "process-level fault".

o Interrupts the Attached Processor.

If a second fault occurs while the IP is handling a process-level
fault, this 1is considered a processor-level fault. If the IP
encounters a fault of process—-level severity when it is not bound to
a process, the IP treats the situation as a processor-level fault.

iAPX 432 Interface Processor Architecture Reference Manual

The fault port is serviced by a 432 fault handling process where one
of four actions may be taken:

o Correct the reason for the fault and ocomplete any partially
performed function by completing the unfinished steps.

0 Correct the reason for the fault, rewind any partially performed
function steps, and then retry the function.

O Decide to reflect the process-level fault to the context-level.

o "Crash" the system. '

The first two actions represent the method that an operating system
can use to extend the 432 architecture. For example, an operating
system's virtual memory implementation considers a "storage not
associated" fault as a normal occurrance and retrieves the missing
memory segment. With the segment available, the fault handler can
decide to simulate the completion of the function or unwind the
partially completed function and rerun it.

Processor-Level Faults

Processor—-level faults, the most severe level of faults, occur when
an IP detects a condition which jeopardizes further operation by the
processor. Bus errors and alarms are examples of such occurrences.
In response to the first processor-level fault encountered, the IP
reports the fault in the fault information area of the processor
data segment, updates the processor status to "faulted", and signals
an interrupt to inform the attached processor. If a second
processor-level fault occurs before the AP has recorded the fault
information, the IP closes all five of its windows into 432 memory,
including the control window, signals that a fatal error has
occurred and indicates that the Peripheral Subsystem should be reset
(see FATAL/ and PSR pin descriptions in the iAPX 43203 Interface
Processor Data Sheet, Order Number 171874).

WINDOW-MAPPED DATA TRANSFER

Information about faults which occur during data transfer through
the windows is recorded in the mapping facility fault information
area ocontained in the IP processor object. This information is
accessible to the AP through the control window. Each window (0
through 4) has a separate fault information area. When the fault
occurs, the IP deposits the fault information, closes the window,
puts the window in the error state, and interrupts the Attached
Processor. Only open windows can generate window mapping faults.

FAULTS

"FATAL"

LT FLT FLT FLT
processor processor processor processor
ipsor.psor ipsor.psor ipsor.psor ipsor.psor

A
FLT FLT FLT PROCESSOR
FAULT
process process
iprcs.prcs. iprcs.prcs.

FLT
context
iprcs.ctxt.

PROCESS
FAULT
CONTEXT
FAULT
FAULT INFORMATION AREAS
E REFLECTED
LEGEND: T FAULT
NO d
FAULTED RESUME pres reserve
STATE RECORDING NORMAL ctxt psor

SUCCESSFUL
YES

OPERATION

iprcs object

Figure 6-1 Fault Reporting State

ipsor object

iAPX 432 Interface Processor Architecture Reference Manual

6-2, FAULT HANDLING

When an IP process encounters a process-level fault, it is
automatically sent to a 432 fault port to await service. A fault
handling 432 process is designated to service the faulted processes
waiting at the fault port. By design, IPs and GDPs share a common
base architecture, so IP faults may often be handled by software
similar to that used to service GDP faults. In cases where unique
IP attention is required, a special fault port must be constructed
to which faulted IP processes may be selectively re-sent and then
serviced by AP and/or GDP software.

APPENDIX A
SYSTEM OBJECT STRUCTURES

The object structures of Interface Processors are described below.
The only objects structures described are for those whose form or
interpretation differ from GDP object structures. Note that the
values found in the length fields in the various objects described
below are encoded as "actual length minus 1" in bytes. Also note
that the object indices refered to below are of the same format as
object selectors with the entry access segment index subfield
uninterpreted. The displacement subfield is interpreted as an index
into the associated domain access segment.

A-1. OCONTEXT OBJECTS

In the most general terms, oontexts for Interface Processors and
General Data Processors serve the same purpose. They are used to
represent an access environment in which process execution can take
place. On closer inspection, however, the differences are
significant. For example, with Interface Processors there is no
concept of a sequential instruction stream. Instead the only
instructions executed by Interface Processors are functions
requested, one at a time, by software executing on the associated
Attached Processor. At a mundane level, this means that Interface
Processor contexts need not provide access to instruction segments
or operand stacks. More significantly, without a sequential
instruction stream there are no concepts of intracontext or
intercontext ocontrol flow either. This results in the binding
between Interface Processor processes and contexts being static. In
fact, context access and data segments are refinements of the
corresponding process access and data segments respectively.

Given these differences, an Interface Processor context represents
the access environmment available within the 432 system to the
logical process being executed on the logical processor comprised of
the Interface Processor and the associated Attached Processor. The
operators provided by the Attached Processor affect the contents of
data segments in this environment via the address mapping facility
of the Interface Processor. The operators provided by the Interface
Processor affect this enviromment via the function request facility
of the Interface Processor.

A-1

iAPX 432 Interface Processor Architecture Reference Manual

A context object is represented by a context access segment and an
associated context data segment.

Context Access Segments

Diagrammatically, a context access segment is structured as shown
below. : -

entry T' :
8 ' damain AD -i———> domain of definition
;; AS AD —;—-——> entry access segment 3
!; AS AD -%———> entry access segment 2
!. AS AD —i-——> entry access segment 1
]
i context AD —%——-> context
; AD —%-—-$ message
!; AD —E—-—> reserved
context ' AD —i———> reserved
access ! !
segment ———> 0 : data seg. AD —f-—-—> context data segment

The context access segment, context data segment, and domain access
descriptors in the context must be created without delete rights.
The entry accéss segment entries never bear delete rights.

The base rights field of a context access segment access descriptor
is interpreted in the same manner as for all objects of base type
access segment. The system rights field of a context access segment
access descriptor is uninterpreted.

Context Data Segments

The only processor interpreted field in the context data segment is
the process status field which contains a combination of process and
context status. The form and interpretation of this field are
described in the process data segment section.

The base rights field of a context data segment access descriptor is
interpreted in the same manner as for all objects of base type data
segment. The system rights field of a context data segment access
descriptor is uninterpreted.

SYSTEM OBJECTS STRUCTURES

A-2. PROCESS OBJECTS

Logically, a process is the execution by a processor of an
instruction stream within a specific environment. In a combined
Attached Processor/Interface Processor system, the IP process object
extends the execution environment of an AP process to logically
include a specific domain in the 432 address space. The execution
point moves, of course, as each instruction is executed because a
new instruction is automatically specified. Occasionally, as the
result of instruction execution, a new instruction stream within the
Attached Processor software is specified. Unless the AP process
should indicate its termination, the execution point continues to
move in this manner forever. There is thus a close and long-term
association between the environment provided by an interface
process and a particular AP process. When a new AP process specifies
a function request, an Interface Processor makes the associated
interface process' execution environment available.

A process object is represented by a process access segment and an
associated process data segment.

Process Access Segments

The hardware-recognized internal structure of a process access
segment is shown below.

A-3

iAPX 432 Interface Processor Architecture Reference Manual

entry !
1
!
refined !
context =
access
segment
12
11 carrier AD -!-—> surrogate carrier

current carrier

I
I
v

carrier AD

G G s S gm0t gemn S fem 9om fum s fum S Gem St o =0 fem St fom Gue 0=t G Gww bme bue dme || 0o 0 o o= ||

!
!
!
!
!
!
!
!
port AD -l--=> current port
!
AD —-l-—=> current message
!
AD =!=——> reserved
!
port AD -!-——> fault port
|
port AD -!-——> dispatching port
|
carrier AD -!--—> process carrier
|
AD ~l—=> reserved
1
AS AD -!-——> global access segment
1
process context AD -!-——> context
access !
segment -—-> 0 data seg. AD -!——> process data segment
|

The base rights field of a process access segment access descriptor
is interpreted in the same manner as for all objects of base type
access segment. The system rights field of a process access segment
access descriptor is uninterpreted.

A-4

SYSTEM OBJECTS STRUCTURES

Process Data Segments

The basic structure of a process data segment is shown below.

process
data
segment ————>

= = double byte
! ! displacement
! !

! !

! refined !

= context =

! data !

! Ssegment !

! 190
! !

! !

! process !

= fault =

! information !

! 177
! !

! !

! context !

= fault =

! information !

! ! 64
! !

! !

= reserved =

! 19
! !

! process ID !

! !

! !

- -1

! !

- reserved -!

! !

- -1

! ! 4
! !

! !

I- g value -1

! !

! !

! process status !

! !

! object lock ! 0
! !

The format and interpretation of the object lock field is the same

as for GDPs.

iAPX 432 Interface Processor Architecture Reference Manual

The organization of the process status field is shown below.

Ixix! 9 bits IxIxixix!ix!

]
! 1— bound :
|=-—— waiting for message
|=———— process faulted
l—————— reserved
——=—m———— context faulted
reserved
one vector only
first port operation completed

!
!
!
!
1
!
!

e Gmm gum gom S gum fem G

Gm fem e G G G Sme fem G

The bound bit is interpreted as follows:

0 - this process is bound to a processor
1 - this process is not bound to a processor

The interpretation of the context and process faulted subfields
are as _
follows:

0 - not faulted
1 - faulted

The format and interpretation of the waiting for message, one vector
only, and first port operation completed subfields are the same for
IPs as they are for GDPs.

Fault information for ocontext, process, and processor level faults
has the same organization. Process objects contain fault
information for context and process level faults. Processor objects
contain fault information for processor level faults. Access to the
context fault information is made available to a context via the
software convention of providing a refinement for it in a known
entry of the process global access segment. The process fault
information area in the process object is used when a process-level
fault occurs and a process is bound to the processor. The processor
fault information area in the processor object is used when a
process level fault occurs and a process is not bound to the
processor. The organization of the fault information area is
described in Appendix C, the Fault Summary.

The base rights field of a process data segment access descriptor is
interpreted in the same manner as for all objects of base type data
segment. The system rights field of a process data segment access
descriptor is uninterpreted.

A-6

SYSTEM OBJECTS STRUCTURES

A-3. PROCESSOR OBJECTS

An 432 Interface Processor consists of two cooperating processing
elements: a mapping facility and a function request facility. The
mapping facility translates Peripheral Subsystem addresses into 432
system addresses. The function request facility executes the
operator set described in Appendix B. The mapping facility and the
function request facility can run in parallel.

A processor object is represented by a processor access segment, an
associated processor data segment.

Processor Access Segments

Processor access segments are organized as shown below.

A-7

A-8

iAPX 432 Interface Processor Architecture Reference Manual

processor
access
segment

entry

21
20

—_—> 0

Ged Gum fume G Gem $° Gum Omm o S fow S Gt Sow gum fom fms Gem fem O Gmm Pum G O G Gm G S gm S fem $ow pem O

process
selection
list

é .

1

— tw g b G G bm e S tmu b || 0 tm gew s ||

dat.
segments

AD

AD

e G g gue G gem fum fmm G fuw S0 G $e 0o fum S

AD

port AD

carrier AD

carrier AD

port AD

AD

AD

data seg. AD

carrier AD

objtab dir AD

commo seg. AD

commo seg. AD

carrier AD

data seg. AD

G Gam G fmn G o Gum few G G Omn fem Gem e Pum fe S P Gum b Guw Gm=m 0= Gem $== Qem $oe S=s 0= o

_—

|

1

U
A\

|

I

|
Vv

I

]

U
\

_—

I

]

U
\

|

i

U
v

|

|

U
A\

—_—

|

|

U
A\

1

|

I
v

[
1
U
\'

|
|
U
\%

—_—

—_—

I
U
v

reserved

reserved

reserved

normal port

surrogate carrier

normal carrier

current port

current message

reserved

control window

processor carrier

object table directory
global communication segment
local communication segment
current process carrier

processor data segment

SYSTEM OBJECTS STRUCTURES

The base rights field of a processor access segment access
descriptor is interpreted in the same manner as for all objects of
base type access segment. The low order bit of the system rights
field of a processor access descriptor is interpreted as follows:

0 - an interprocessor message may not be broadcast via the
global communication segment of this processor

1 - an interprocessor message may be broadcast via the global
communication segment of this processor

The mid order bit of the system rights field of a processor access
descriptor is interpreted as follows:

0 - an interprocessor message may not be sent to this
processor
via the local communication segment of this processor

1 - an interprocessor message may be sent to this processor
via the local communication segment of this processor

The high order bit of the system rights field of a processor access
descriptor is uninterpreted.

Processor Data Segments

The intended use of this data segment is as instance specific
control information, for recording a copy of the processor-resident
information contained in the function request facility and the
mapping facility, for recording fault information, and as randomly
addressable scalar working storage. The copy of processor-resident
information in the processor data segment is updated by the
processor whenever a significant state change to that information
occurs (i.e., function completion or block transfer completion).
The area above double byte displacement four is made visible to
Attached Processor software through the control window (window 4).

The information in the processor data segment is organized as shown
in the diagram below.

A-9

iAPX 432 Interface Processor Architecture Reference Manual

double byte
= = displacement
! !
! !
! control !
= window =
! area !
! 14
! !
! reserved !
! !
! cur. prcs idx. !
! !
processor ! psor status !
data ! !
segment -———> 1 object lock ! 0
! !

The processor status field is shown below.

——————-————— broadcast accept. mode
processor ID

! 8 bits Ix!x!IxIx!Ixxxx!
! LA A A A |
! {111 l-— processor state
! P 1] le——e—— faulted
!] e reference mode
! ! {=———————— stopped
! !
1

The processor state subfield is interpreted as follows:

0000 - idle
0001 - process execution
0010 - 1111 - reserved

The interpretation of the faulted subfields is as follows:

0 - not faulted
1 - faulted

The reference mode subfield specifies whether the references in
function requests are logical or physical. 1In logical reference
mode, function request references are relative to the four-component
access enviromment generated by the current context. In physical
reference mode, function request references are simply 24-bit
physical addresses. The reference mode subfield is interpreted as
follows:

0 - using physical mode
1 - using logical mode

A-10

SYSTEM OBJECTS STRUCTURES

The stopped bit is interpreted as follows:

0 - running
1 - stopped

The broadcast acceptance mode bit is interpreted as follows:

- 0 - broadcast interprocessor messages are not being
accepted and acknowledged
1 - broadcast interprocessor messages are being accepted
or acknowledged

Note that the processor ID fields in the processor data segment and
the local communication segment are filled in by the associated
processor at initialization time from externally read information.

The base rights field of a processor data segment access descriptor
is interpreted in the same manner as for all segments of base type
data segment. The system rights field of a processor data segment
access descriptor is uninterpreted. _

Control Window Area -

The oontrol window area consists of several major subareas and
several minor ones. The primary purpose of these areas is to
provide Attached Processor software access to state information
describing recent state changes in the function request facility and
the mapping facility and occurances of asynchronous events.

A-11

- iAPX 432 Interface Processor Architecture Reference Manual

double byte
= = displacement

! 1 80

! 1

! !

= reserved =

! !

! v 77

! !

! 1

! processor !

= fault =

! information !

! ! 64

! !

! selected state ! 63

! !

! selected idx. ! 62

! !

! 1 65

! mapping !

! facility !

= fault =

! information !

! 1 52

! !

! !

! mapping !

= facility =

! 128

! !

! reserved 1 27

! 1

! IPC fun. req. ! 26

! !

! !

! function !

= request =

! facility !

! 16

! !

! reserved !

! !

! reconfig. state!

! !

! disp. state !

! !

! alarm state !

! !
control ! IPC state !
window ! !
area —_—] PS state 10

! !

A-12

SYSTEM OBJECTS STRUCTURES

Peripheral Subsystem State Field -

The organization of the Peripheral Subsystem state field is shown
below. ‘

! 12 bits !xixx!ix!

|

!-— write sample delay
|———— xack delay
e interrupt inhibit
reserved

s g Sem
— f G

e N T N T T

The write sample delay field and the xack delay field program the
characteristics of the IP component interface to the Peripheral
Subsystem. See the iAPX 43203 VLSI Interface Processor Data Sheet,
Order Number 171874-001 for details.

If the interrupt inhibit field is a 1 then the IP will inhibit
normal function complete interrupts but will continue pass all other
interrupts to the AP. If the interrupt inhibit field is 0 then the
IP will report successful function completions with interrupts.

IPC State Field -

The IPC state field is used to indicate that the processor has
responded to an interprocessor communication signal and signalled
the associated Peripheral Subsystem wvia interrupt. It has the
following organization.

[

! == local IPC response
l——— global IPC response
———————e reserved

With either IPC response flag, a value of zero indicates that no

such response has occured and a value of one indicates that such a
response has occured.

A-13

iAPX 432 Interface Processor Architecture Reference Manual

Alarm, Dispatching, and Reconfiguration State Fields -

The alarm, dispatching ("select process"), and reconfiguration state
fields are used to indicate that the processor has responded to that
type of signal and signalled the associated Peripheral Subsystem via
interrupt. Each has the following organization.

! 15 bits Ix!

!— response
————————— reserved

G gum e

With the response flag, a value of zero indicates that no such
response has occured and a value of one indicates that such a
response has occured.

Function Request Facility Area -

The function request facility is the part of the Interface Processor
which accepts function requests and performs the requested function.
The function request facility area of the processor data segment
contains a copy of the processor-resident information related to the
current or most recent function requested. As shown below, the area
consists of five contiguous parts. The first part contains the
process selection index for the execution environment in which the
function should be performed. The second part contains the function
state information. The third part contains the op-code of the
operator requested. The fourth part contains the operands operated
upon in performing the requested function. The fifth part is used
to record the result of the requested function.

= = double byte
! ! displacement
! 1 25

! function !

! result !

! ! 16

! !

! !

! operands !

! !

! ' 9

! !

! operator ! 8

! !

! function state ! 7

! !

! pres idx. 16

! !

A-14

SYSTEM OBJECTS STRUCTURES

Function State Field -

The function state field is used to describe the current state of
the function request facility. It has the following organization.

! 8 bits !xxIxIx!xoex!

!
! 1— function completion state
{=———— SEND completion state
——————— RECEIVE completion state
——————— — fault level
reserved

Y- G g S
v g g 4w

The interpretation of the function completion state subfield is as
follows:

0000 - function completed
0001 - function in progress
0010 - 1111 - reserved

The interpretation of the SEND or RECEIVE completion state subfields
is as follows:

0 - completed
1 - blocked

The fault level subfield indicates whether a fault which has occured
is context-level, process-level, or processor-level. The fault
handler requires this information in order to know where the fault
information has been stored. The interpretation of the fault level
subfield is as follows:

00 - none

01 - context-level fault
10 - process-level fault
11 - processor-level fault

Mapping Facility Area -

The mapping facility oonsists of five map entries capable of
supporting the random mapping of five non-overlapping address
subranges from the Peripheral Subsystem into corresponding 432 data
segments. One of these map entries (entry 0) 1is capable of
supporting block transfer as well as random mapping. One map entry
(entry 1) is capable of supporting mapping into the 432
interconnection address space as well as random mapping. One map
entry (entry 4) and its associated Peripheral Subsystem address
subrange always maps onto the processor data segment. The two major
purposes of this subrange are to capture references to the function
request facility and to allow Attached Processor software to read

A-15

iAPX 432 Interface Processor Architecture Reference Manual

current status information. When operands are read from this
subrange or written into this subrange, the processor data segment
is accessed. Data written into the part of the subrange
representing the function request facility is captured when no
function is in progress. During function execution, Attached
Processor software must not make further function requests.

At the base of the mapping facility area, the extra information for
supporting block transfer via map entry 0 is recorded in a data
structure with the following organization.

= = double byte
! ! displacement
! reserved ! 31

! !

! P, S. disp. !

! !

1 432 disp. !

! !

! block count ! 28

! !

. When the transfer mode subfield of the entry state field for map
entry 0 indicates that it 1is in block transfer mode, the
processor-resident copy of the block count field indicates the
number of bytes remaining to be transferred for transfer termination
to occur normally (i.e., upon oount runout). Whenever normal
transfer termination occurs, both copies of the block count field
are zero. Whenever normal transfer termination does not occur, such
as in the case of faults, both copies of the block count field
indicate the number of remaining, but not transferred, bytes.

When the transfer mode subfield of the entry state field for map
entry 0 indicates that it is 1in block transfer mode, the
processor-resident copy of the 432 displacement field indicates the
displacement into the associated data segment of the next byte to be
transferred.

When the transfer mode subfield of the entry state field for map
entry 0 indicates that it is in block transfer mode, the
processor-resident copy of the Peripheral Subsystem displacement
field indicates the displacement into the associated Peripheral
Subsystem address range of the next byte to be transferred.

Any difference between the values of the two displacement fields
accounts for data in the processor-resident buffers which was not
successfully transfered.

A-16

SYSTEM OBJECTS STRUCTURES

Above the block transfer information, a copy of the information
contained in each of the processor-resident map entries (0 through
4) is represented by a data structure with the following
organization.

= = double byte
! ! displacement
! base disp. 1 4

! !

! mask !

! . !

! base address !

! !

! entry state ! 0O

! !

The entry state field is used to describe the current state of the
given map entry. It has the following organization.

.
7]
3
%

xIx!ix!

1

1

! 1—-— map valid

l———— transfer mode

~————~ transfer direction
e transfer state

———————————— memory overlay

reserved

G g g e g
S P G G

G G g e Gum e pee
[N

The 1l-bit map valid subfield indicates whether or not this map entry
is currently in use. If the bit is zero, this map entry is not used
in Peripheral Subsystem address inspection. If the bit is one, this
map entry is used in Peripheral Subsystem address inspection. The
processor-resident copy of this subfield is checked by the mapping
facility each time a Peripheral Subsystem address is received for
inspection.

For map entry 0, the l-bit transfer mode subfield indicates whether
this map entry is in random or block transfer mode. A value of zero
indicates that this map entry is in random mode. A value of one
indicates that this map entry is in block transfer mode. For map
entry 1, the 1-bit transfer mode subfield indicates whether this map
entry maps Peripheral Subsystem addresses into the 432 address space
or the interconnection address space. A value of zero indicates
that this map entry is in 432 mapping mode. A value of one
indicates that this map entry is in interconnection mapping mode.
For other map entries, the setting of this subfield causes a fault.

A-17

iAPX 432 Interface Processor Architecture Reference Manual

The 2-bit transfer direction subfield indicates the types of
read/write requests from the associated Peripheral Subsystem which
are valid with respect to this map entry. The low order bit of the
transfer direction subfield is interpreted as follows:

0 - reading may not occur
1 - reading may occur

The high order bit of the transfer direction subfield is interpreted
as follows:

0 - writing may not occur
1 - writing may occur

Note that both bits may not be set when setting block transfer mode.

The 2-bit transfer state subfield indicates the state of the
transfer. It is encoded as follows:

00 - transfer in progress

01 - transfer terminated upon count runout
10 - transfer termination forced

11 - transfer termination upon fault

The 1-bit memory overlay subfield indicates whether or not the
Peripheral Subsystem address subrange associated with this map entry
overlays physical memory in the Peripheral Subsystem. If physical
memory is overlayed, whenever an address is mapped via this entry a
Peripheral Subsystem bus protocol is employed which prevents that
overlayed memory from responding. A value of zero indicates that no
memory is overlayed. A value of one indicates that memory is
over layed.

The base address field is used to specify the starting address of
the Peripheral Subsystem address subrange mapped by this map entry.
Subranges are 2**n bytes in length with n being in the range zero to
sixteen. A subrange of a given power of two in size must appear on
an addressing boundary of the same power of two (e.g., a 16 byte
subrange must begin on a 16 byte boundary). Stated another way, a
subrange of 2**n bytes in length will thus have a starting address
containing at least n trailing zeros. Base addresses are always an
integer multiple of an integer power of two (i.e., m*2**n)., The n
is as described above. The m is any integer such that the above
conditions hold and the value of the starting address is limited to
the range 0 to 65,535.

The mask field contains a mask which is used to specify the size of
the Peripheral Subsystem address subrange to be mapped by this map
entry. The mask is composed of two contiguous bit string
subfields. The higher-order bit string contains all ones. The
lower-order bit string oontains all zeros. The mapped address
subrange is 2**(number of zeros in the lower-order bit string) bytes
in length beginning at the starting address.

A-18

SYSTEM OBJECTS STRUCTURES

The base displacement field contains the byte displacement into the
432 segment used to construct a refinement of a data segment. See
Figure 3-2 for an illustration of the role of a window's base
displacement in forming a refinement.

Mapping Facility Fault Information Area -

The mapping facility fault information area consists of an entry
fault code and fault displacement pair for each map entry.
Diagrammatically, the fault information for each map entry appears
as shown below.

fault disp

fault code

H om0 e v o= ||
H o= 0 0 o o= |}

Each entry fault code field is used to record the cause of the last
fault associated with that map entry. It has the following
organization.

Ix! 6 bits IxIxIxIxIxixIxIxIx!
trr e
!ttt 1l-— read/write
t1 11111 l=——— bus error
tt 111! == access rights
L A A A e — segment bound
L I O e memory over £low

|

!—————e————— access direction

post termination
partial block overflow
block overflow
reserved

block termination
(internal use)

S g

Vs Gum Gew Gem Sum gem Gum fme G Jum bem Gmm
G Qo g s g Smo Gme G fom S G

The 1-bit read/write subfield indicates whether the associated fault
was caused by a read request or a write request. A value of zero
indicates that the fault was caused by a read request. A value of
one indicates that the fault was caused by a write request.

The 1-bit bus error subfield indicates whether or not the associated
fault was caused by a 432 bus error. A value of zero indicates that
the fault was not caused by a bus error. A value of one indicates
that the fault was caused by a bus error.

A-19

iAPX 432 Interface Processor Architecture Reference Manual

The 1-bit segment bound subfield indicates whether or not the
associated fault was caused by a segment bounds violation. A value
of zero indicates that the fault was not caused by a segment bounds
violation. A value of one indicates that the fault was caused by a
segment bounds violation.

The 1-bit memory overflow subfield indicates whether or not the
associated fault was caused by a memory overflow. A memory overflow
occurs when the sum of the physical base address in bytes of a
segment being accessed plus the byte displacement to the operand
being accessed exceeds 16,777,215 (i.e. 2%**24-1). A value of zero
indicates that the fault was not caused by a memory overflow. A
value of one indicates that the fault was caused by a memory
over flow.

The 1-bit access direction subfield indicates whether or not the
associated fault was caused by an access direction error. An access
direction error occurs when the transfer direction subfield of the
corresponding map entry state indicates that the requested access
direction (either read or write) is invalid. A value of zero
indicates that the fault was not caused by an access direction
error. A value of one indicates that the fault was caused by an
access direction error.

The 1l-bit post termination subfield indicates whether or not the
associated fault was caused by a post termination error. A post
termination error occurs when an access 1is attempted after a
transfer via the associated map entry has terminated. A value of
zero indicates that the fault was not caused by a post termination
error. A value of one indicates that the fault was caused by a post
termination error.

The 1-bit partial block overflow subfield indicates whether or not
the associated fault was caused by a partial block overflow. A
partial block overflow occurs when there is one byte left to be
transfered in a block and a double-byte request is made. A value of
zero indicates that the fault was not caused by a partial block
overflow. A value of one indicates that the fault was caused by a
partial block overflow.

The 1-bit block overflow subfield indicates whether or not the
associated fault was caused by a block overflow. A block overflow
occurs when the block count is zero, the Peripheral Subsystem
attempts an access, and the map entry state has not vyet been
updated. A value of zero indicates that the fault was not caused by
a block overflow. A value of one indicates that the fault was
caused by a block . overflow.

A-20

SYSTEM OBJECTS STRUCTURES

Selected Index and Selected State Fields -

The selected index and selected state fields are filled in by the
processor from information found in the process carrier data segment
at process selection time, i.e when a "select process" IPC is
received. The selected index is a process selection index used to
communicate to Attached Processor software which process from the
process selection list has just been bound to the processor. The
selected index is obtained from the double byte quantity located at
a displacement of eight double bytes into the process carrier data
segment. The selected state is uninterpreted by processors and is
obtained from the double byte quantity located at a displacement of
nine double bytes into the process carrier data segment.

Processor Fault Information Area

The organization of theb processor fault information area is
described in Appendix C.

Local and Global Communication Segments

Both local and global communication segments used by IPs have the
same format and interpretation as the corresponding objects employed
by GDPs.

IPC Message Field

The IPC message field contains one of the following function request
encodings. Message codes 0 through 7 represent IPC messages which
are common between GDPs and IPs. Message codes 15, 16, and 17 are
messages specific to Interface Processors. Message codes 8 through
14 are defined for GDPs but are unused by IPs.

0 - Select Process - Causes the processor to examine its carrier
to determine if a process was received. If
a process was received, the process is
selected, the dispatching flag is set, and
the selected state and selected index fields
are copied from the process carrier data
segment to the control window. The current
process index field is invalidated when this
IPC is received.

1 - Start Processor
2 — Stop Processor

3 - Set broadcast acceptance mode

A-21

iAPX 432 Interface Processor Architecture Reference Manual

4 - Clear broadcast acceptance mode

5 - Flush object table

6 - Suspend and fully requalify processor
7 - Suspend and requalify processor

8 - 14 - Unused

15 - Close (Invalidate) Windows and Unlock I/O Locks
(on windows 0-3)

16 ~ Generate PS Reset

17 - Close (Invalidate) Windows and Unlock I/0 Locks
(on windows 0-3) and Enter Physical Mode

The base rights of a communication segment access descriptor are
interpreted in same manner as for all segments of base type data
segment. The system rights field of a communication segment is
uninterpreted.

A-22

APPENDIX B
FUNCTION SUMMARY

Apoendix B summarizes the Interface Processor functions. Three
lists are provided to assist in locating the page which contains a
particular function description.

One list, Table B-1, organizes the function set by alphabetical
order. Table B-2 organizes the function set by increasing function
code number and is particularly useful when debugging IP controller
software. Table B-3 organizes the function set by operator id codes
and is especially useful when debugging IP fault handling software.

The template for function descriptions is shown on page B-5. All
function descriptions follow this style of presentation.

iAPX 432 Interface Processor Architecture Reference Manual

TABLE B-1

ALPHABETICAL INDEX TO IP FUNCTIONS

HEX DECIMAL
FUNCTION OPERATOR

FUNCTION NAME CODE D PAGE
(Logical Mode Functions)

ALTER MAP AND SELECT DATA SEGMENT 00 3 B-6
AMPLIFY RIGHTS ' 08 11 B-8
BROADCAST TO PROCESSORS 18 27 B-9
CONDITIONAL RECEIVE 15 24 - B-=10
CONDITIONAL SEND 13 22 B-11
COPY ACCESS DESCRIPTOR 04 7 B-12
ENTER ACCESS SEGMENT 07 10 B-13
ENTER GLOBAL ACCESS SEGMENT 06 9 B-14
INDIVISIBILE ADD SHORT ORDINAL 19 28 B-15
INDIVISIBLE INSERT SHORT ORDINAL 1A 29 B-16
INSPECT ACCESS oF 18 B-17
INSPECT ACCESS DESCRIPTOR OE 17 B-18
LOCK OBJECT 10 19 B-19
NULL ACCESS DESCRIPTOR 05 8 B-20
READ PROCESSOR STATUS AND CLOCK 03 6 B-21
RECEIVE 14 23 B-22
RESTRICT RIGHTS 09 12 B-23
RETRIEVE PUBLIC TYPE REPRESENTATION 0B 14 ‘B-24
RETRIEVE TYPE REPRESENTATION 0A 13 B-25
RETRIEVE REFINED OBJECT 0D 16 B-26
RETRIEVE TYPE DEFINITION ocC 15 B-27
SEND 12 21 B-28
SEND TO PROCESSOR 01 4 B-29
SET' PERIPHERAL SUBSYSTEM MODE 02 5 B-31
SURROGATE RECEIVE 17 26 B-32
SURROGATE SEND 16 25 B-33
UNLOCK OBJECT 11 20 B-34

(Physical Mode Functions)

ALTER MAP AND SELECT PHYSICAL SEGMENT 00 3 B-7
READ PROCESSOR STATUS AND CLOCK 03 6 B-21
SEND TO PROCESSOR 01 4 B-30
SET PERIPHERAL SUBSYSTEM MODE 02 5

B-31

FUNCTION SUMMARY

TABLE B-2

IP FUNCTION SUMMARY BY FUNCTION CODE

HEX DECIMAL
FUNCTION OPERATOR
CODE FUNCTION NAME ID PAGE
(Logical Mode Functions)
00 ALTER MAP AND SELECT DATA SEGMENT 3 B-6
0l SEND TO PROCESSOR 4 B-29
02 SET PERIPHERAL SUBSYSTEM MODE 5 B-31
03 READ PROCESSOR STATUS AND CLOCK 6 B-21
04 QOPY ACCESS DESCRIPTOR 7 B-12
05 NULL ACCESS DESCRIPTOR 8 B-20
06 ENTER GLOBAL ACCESS SEGMENT 9 B-14
07 ENTER ACCESS SEGMENT 10 B-13
08 AMPLIFY RIGHTS 11 B-8
09 RESTRICT RIGHTS 12 B-23
0A RETRIEVE TYPE REPRESENTATION 13 B-25
0B RETRIEVE PUBLIC TYPE REPRESENTATION 14 B-24
0oC RETRIEVE TYPE DEFINITION 15 B-27
0D RETRIEVE REFINED OBJECT 16 B-26
0E INSPECT ACCESS DESCRIPTOR 17 B-18
OF INSPECT ACCESS 18 B~17
10 LOCK OBJECT 19 B-19
11 UNLOCK OBJECT 20 B-34
12 SEND 21 B-28
13 CONDITIONAL SEND 22 B-11
14 RECEIVE 23 B-22
15 CONDITIONAL RECEIVE 24 B-10
16 SURROGATE SEND 25 B-33
17 SURROGATE RECEIVE 26 B-32
18 BROADCAST TO PROCESSORS 27 B-9
19 INDIVISIBLE ADD SHORT ORDINAL 28 B-15
1A . INDIVISIBLE INSERT SHORT ORDINAL 29 B-16
(Physical Mode Functions)
00 ALTER MAP AND SELECT PHYSICAL SEGMENT 3 B-7
01 SEND TO PROCESSOR 4 B-30
02 SET PERIPHERAL SUBSYSTEM MODE 5 B-31
03 READ PROCESSOR STATUS AND CLOCK 6 B-21

iAPX 432 Interface Processor Architecture Reference Manual

TABLE B-3

IP FUNCTION SUMMARY BY OPERATOR ID

DECIMAL HEX
OPERATOR FUNCTION
ID FUNCTION NAME OODE PAGE
(Logical Mode Functions)
3 ALTER MAP AND SELECT DATA SEGMENT 00 B-6
4 SEND TO PROCESSOR 01 B-29
5 SET PERIPHERAL SUBSYSTEM MODE 02 B-31
6 READ PROCESSOR STATUS AND CLOCK 03 B-21
7 QOPY ACCESS DESCRIPTOR 04 B-12-
8 NULL ACCESS DESCRIPTOR 05 B-20
9 ENTER GLOBAL ACCESS SEGMENT 06 B-14
10 ENTER ACCESS SEGMENT 07 B-13
11 AMPLIFY RIGHTS 08 B-8
12 RESTRICT RIGHTS 09 - B-23
13 RETRIEVE TYPE REPRESENTATION 0A B-25
14 RETRIEVE PUBLIC TYPE REPRESENTATION 0B B-24
15 RETRIEVE TYPE DEFINITION oC B-27
16 RETRIEVE REFINED OBJECT 0D B-26
17 INSPECT ACCESS DESCRIPTOR OE B-18
18 INSPECT ACCESS OF B-17
19 LOCK OBJECT 10 B-19
20 UNLOCK OBJECT 11 B-34
21 SEND 12 B-28
23 RECEIVE 14 B-22
22 CONDITIONAL SEND 13 B-11
24 CONDITIONAL RECEIVE 15 B-10
25 SURROGATE SEND 16 B-33
26 SURROGATE RECEIVE 17 B-32
27 BROADCAST TO PROCESSORS 18 B-9
28 INDIVISIBLE ADD SHORT ORDINAL 19 B-15
29 INDIVISIBLE INSERT SHORT ORDINAL 1A B-16
(Physical Mode Functions)
3 ALTER MAP AND SELECT PHYSICAL SEGMENT 00 B-7
4 SEND TO PROCESSOR 01 B-30
5 SET PERIPHERAL, SUBSYSTEM MODE 02 B-31
6 READ PROCESSOR STATUS AND CLOCK 03 B-21

B-4

FUNCTION SUMMARY

FUNCTION TEMPLATE
Operator ID: 1ID

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved E 20H-33H
operand 6 : reserved : 1EH
operand 5 : reserved : 1CH
operand 4 : reserved : 1AH
operand 3 : reserved ' 18H
operand 2 : reserved E 16H
operand 1 : reserved : 14H
operard 0 : reserved ' 12H
IP function code : OXXH (FUNCTION NAME) : 10H
function state : reserved E OEH
process selection index : PROCESS INDEX : OCH

Note:

Required operands and available results are indicated by capital
letters. Other areas are marked reserved.

The IP function code must be written into the function request
facility last, i.e. only after all operands are provided. The
function code occupies only location 10H. Byte location 11H is
reserved.

The process selection index field is required on all IP function
requests. This value (an access descriptor displacement) is
used as an byte offset into the process selection list of the IP
processor access segment. For example, the process selection
index for process number 5 is 0000000000010100g, sSince it is
not modified by function execution, it need not be rewritten if
a new function is to be executed in the same process environment
as the previous function.

The function state field, shown as reserved in all function
summaries, may be examined after the IP receives an interrupt or
it may be polled. The function state field should be set to
zero before a function code is deposited. Interrupts for
successful function completion may be selectively disabled.

iAPX 432 Interface Processor Architecture Reference Manual

ALTER MAP AND SELECT DATA SEGMENT
Operator ID: 3

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 5 reserved E 20H-33H
operand 6 | BLOCK COUNT : 1EH
operand 5 E BASE DISPLACEMENT : 1CH
operand 4 | SOURCE OBJECT SEIECTOR ! 1AH
operand 3 : MASK E 18H
operand 2 E BASE ADDRESS ' 16H
operand 1 : ENTRY STATE : 14H
operard 0 : WINDOW INDEX E 12H
IP function code ! 000H (ALTER MAP AND !
! SELECT DATA SEGMENT) ! 10H
function state E reserved E OEH
process selection index : PROCESS INDEX : 0cH

ALTER MAP AND SELECT DATA SEGMENT allows an operation to alter the
inter-address space mapping provided by one of the address subrange map
entries and to associate a given 432 or interconnect data segment with
that address subrange map entry. The first operand is a double byte
specifying which map entry/data segment, segment descriptor register is
to be altered. This operator can only be used to affect map entries 0
through 3. The second operand is a double byte containing new entry
state information. The third operand is a double byte containing the
starting address of the new subrange to be mapped. The fourth operand
is a double byte containing the mask used to specify size of the new
subrange. The fifth operand specifies an access descriptor for the new
data segment. This data segment access descriptor is copied into the
mapped segment entry in the current ocontext associated with the map
entry being altered. The sixth operand is a double byte specifying the
initial displacement into the data segment for the block transfer to
start or pseudo-refinement. If the new entry state information
specifies that this entry is being set up in block transfer mode, the
seventh operand is a.double byte containing a count of the number bytes
to be transferred. Note that this operator is unique to 432 Interface
Processors. If the new entry state information specifies that the
window is to be closed (set "invalid") then only the first two operands
are required.

B-6

FUNCTION SUMMARY

ALTER MAP AND SELECT PHYSICAL SEGMENT
Operator ID: 3

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved : 20H-33H
operand 6 : reserved E 1EH
operand 5 %PHYSICAL ADDRESS (high 8)! 1CH
operand 4 %PHYSICAL ADDRESS (1ow 16)i 1AH
-operand 3 : MASK : 18H
operand 2 : BASE ADDRESS : 16H
operand 1 : ENTRY STATE : 14H
operard 0 ' WINDOW INDEX : 12H
IP function code : 000H (ALTER MAP AND :
ISELECT PHYSICAL SEGMENT) ! 10H
function state : reserved E OEH
process selection index ': PROCESS INDEX : 0CH

ALTER MAP AND SELECT PHYSICAL SEQMENT allows an operation to alter
the inter-address space mapping provided by one of the address
subrange map entries and to associate a given 432 or interconnect
physical segment with that address subrange map entry. This
physical mode operator is the equivalent of the 1logical mode
operator ALTER MAP AND SELECT DATA SEGMENT. One difference is that
the mapping facility area is not updated by this operator. Another
difference is that map entry 4 can be updated by this operator. The
first operand is a double byte specifying which map entry/data
segment, segment descriptor register is to be altered. The second
operand is a double byte containing new entry state information.
The third operand is a double byte containing the starting address
of the new subrange to be mapped. The fourth operand is a double
byte containing the mask used to specify size of the new subrange.
The fifth and sixth operands are a word (32 bits) containing the
right-justified, 24-bit, physical base address of the segment in the
432 address space. If the new entry state information specifies
that this entry is being set up in block transfer mode, the sixth
operand is also used fas a ocount of the number bytes to be
transferred. Note that this operator is unique to 432 interface
processors. :

iAPX 432 Interface Processor Architecture Reference Manual

AMPLIFY RIGHTS
Operator ID: 11

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved : 20H-33H
operand 6 : reserved E 1EH
operard 5 : reserved ' 1CH
operand 4 : reserved : 1AH
opefand 3 : reserved : 18H
operand 2 ' reserved : © 16H
operand 1 E DESC CTRL OBJ SELECTOR : 14H
operand 0 : DEST OBJECT SELECTOR E 128
IP function code ! 008H (AMPLIFY RIGHTS) ! 10H
function state 5 reserved E OEH
process selection index : PROCESS INDEX : 0CH

AMPLIFY RIGHTS allows an operation to alter, under control of an
protected descriptor coontrol object, the set of rights and
descriptor control information in the associated access
descriptor. The first operand contains the object selector for an
access descriptor for the given object. The second operand contains
the object selector for a descriptor oontrol object access
descriptor. The resultant new access descriptor overwrites the
original access descriptor for the given object. Thus, the
destination access segment entry is the same as the source access
segment entry.

B-8

FUNCTION SUMMARY

BROADCAST TO PROCESSORS
Operator ID: 27

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 E reserved " 22H-33H
result 0 : BOOLEAN | 2m
operand 6 : reserved E 1EH
operand 5 : reserved ; 1CH
operand 4. : reserved : 1AH
operard 3 ' reserved ' 18H
operand 2 E reserved : 16H
operand 1 ' DESTINATION PROCESSOR :
! OBJECT SELECTOR : 14H
operand 0 E IPC MESSAGE : 12H
IP function code ! OL8H (BROADCAST TO |
! PROCESSORS) : 10H
function state : reserved ' OEH
process selection index ': PROCESS INDEX E OCH

BROADCAST TO PROCESSORS allows a process to broadcast an
interprocessor message to all the processors in the system,
including the processor it is executing on, via the interprocessor
communication mechanism. The first operand contains the
interprocessor message. The second operand contains the object
selector for an access descriptor for the desired processor object.
The boolean result, which is set to true if the control flags are
deposited, is stored in the function result area.

B-9

iAPX 432 Interface Processor Architecture Reference Manual

CONDITIONAL RECEIVE
Operator ID: 24

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 : reserved : 22H-33H
result 0 E BOOLEAN : 20H
operand 6 ' reserved : 1EH
operand 5 E reserved E 1CH
operand 4 : reserved ' 1AH
operand 3 ' reserved : 18H
operand 2 : reserved : 16H
operand 1 E reserved E 14H
operand 0 ! PORT OBJECT SELECIOR | 12H
IP function code : 015H (CONDITIONAL :
! RECEIVE) ! 10H
function state : reserved : OEH
process selection index ': PROCESS INDEX E 0CH

CONDITIONAL RECEIVE allows a process to check for the availability
of a message at a port and to indivisibly accept it if one is
available. The first operand is used. The boolean result, which
is set to true if a message is received, is stored in the function
result area.

B-10

FUNCTION SUMMARY

CONDITIONAL SEND
Operator ID: 22

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 : reserved : 22H-33H
result 0 E BOOLEAN E 20H
operand 6 : reserved : 1EH
operarnd 5 : reserved : 1CH
operand 4 : reserved : 1AH
operand 3 | MESSAGE OBJECT smacro: 18H
operand 2 E reserved ' 16H
operand 1 : reserved E 14H
operand 0 : PORT OBJECT SELECTOR : 128
TP function code : 013H (CONDITIONAL SEND)% 108
function state : reserved : OEH
process selection index : PROCESS INDEX : 0CH

CONDITIONAL SEND allows a process to check for the availability of
queue space at a port and to indivisibly deliver a message if space
is available. The first and fourth operands are used. The boolean
result, which is set to true if a message is deposited, is stored in
the function result area.

B-11

iAPX 432 Interface Processor Architecture Reference Manual

COPY ACCESS DESCRIPTOR
Operator ID: 7

Hex Byte
Contents Function Request Facility Offset
! !
results 0 through 9 ! reserved ! 20H~-33H
operard 6 E reserved E 1EH
operand 5 ' reserved : 1CH
operand 4 E reserved : 1AH
operand 3 : reserved : 18H |
;perand 2 : reserved : 16H
operand 1 : SOURCE OBJECT SELECTOR : 140
operand 0 : DEST OBJECT SELECTOR : 128
IP function code ! 004H (COPY ACCESS !
! DESCRIPTOR) : 10H
function state : reserved : OEH
process selection index ': PROCESS INDEX : 0CH

COPY ACCESS DESCRIPTOR allows an operation to copy an access
descriptor from a specified entry in any directly accessible access
segment to a specified entry in any directly accessible access
segment. The first operand contains the object selector for the
destination access segment entry. The second operand contains the
object selector for the access descriptor to be copied.

B-12

FUNCTION SUMMARY

ENTER ACCESS SEGMENT
Operator ID: 10

Hex Byte
Contents Function Request Facility Offset
! !
results 0 through 9 : reserved : 20H-33H
operand 6 : reserved : 1EH
operand 5 : reserved ' 1CH
operand 4 : reserved E 1AH
operand 3 : reserved : 18H
operand 2 : reserved : 16H
operand 1 : SOURCE OBJECT SELECIOR ! 14H
operand 0 : EAS INDEX : 124
I function code | 007 (ENTER ACCESS I
f SEGMENT) : 10H
function state : reserved : OEH
process selection index : PROCESS INDEX : 0CH

ENTER ACCESS SEGMENT allows an operation to gain direct access to
the access descriptors in a specified access segment. The first
operand contains the index (range 1 - 3) for the destination access
segment entry. The second operand contains the object selector for
an access descriptor for the access segment to be entered.

B-13

iAPX 432 Interface Processor Architecture Reference Manual

ENTER GLOBAL ACCESS SEGMENT
Operator ID: 9

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 : reserved : 20H-33H
operand 6 E reserved : 1EH
operand 5 : reserved : 1CH
operand 4 : reserved : 1AH
operand 3 : reserved E 18H
operand 2 ' reserved ' 16H
operand 1 : reserved : 14H
operand 0 : EAS INDEX f 12H
IP function code 5 006H (ENTER GLOBAL ;
! ACCESS SEGMENT) ! 10H
function state : reserved : OEH
process selection index ': PROCESS INDEX E OCH

ENTER GLOBAL ACCESS SEQMENT allows an operation to gain direct
access to the access descriptors in the access segment provided
implicitly via the currently associated process object. The operand
contains the index (range 1 - 3) for the destination access segment
entry.

B-14

FUNCTION SUMMARY

INDIVISIBLE ADD SHORT ORDINAL
Operator ID: 28

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 E reserved : 22H-33H
result 0 : ORIGINAL VALUE " ZOH
operand 6 : reserved : 1EH
operand 5 ' reserved : 1CH
operand 4 E reserved 3 1AH
operand 3 : reserved ' 18H
operand 2 : VALUE : 16H
operand 1 : DI SPLACEMENT : 144
operand 0 ' SOURCE OBJECT SELECTOR : 12H
IP function code : 019H (INDIVISIBLE ADD :
! SHORT ORDINAL) ! 10H
function state : reserved : OEH
process selection index i PROCESS INDEX E OCH

The result of adding the short-ordinal source value located by the
first two operands (object selector and displacement) to the
short-ordinal third operand indivisibly replaces the source value.
The original source value is stored in the function result area.

A short-ordinal overflow fault cannot occur.

B-15

iAPX 432 Interface Processor Architecture Reference Manual

INDIVISIBLE INSERT SHORT ORDINAL

Operator ID: 29

Hex Byte
Contents Function Request Facility Offset
! !
results 1 through 9 : reserved : 22H-33H
result 0 : ORIGINAL VALUE ; 20H
operand 6 : reserved E 1EH
operard 5 : reserved : 1CH
operand 4 : reserved : 1AH
operand 3 ' MASK : 18H
operand 2 E VALUE ' 16H
operand 1 : DISPLACEMENT :r 14H
operand 0 | SOURCE OBJECT SEIECIOR ! 128
IP function code ; 01AH (INDIVISIBLE %
! INSERT SHORT ORDINAL) : 10H
function state " reserved ' OEH
process selection index ': PROCESS INDEX E 0cCH

The short-ordinal fourth operand is used as a mask (as presented on
The result of

the third operand and inverted on the source value).

ORing the short-ordinal source value located by the first two
operands (object selector and displacement)
third operand indivisibly replaces the source value.

source value is stored in the function result area.

B-16

to the short-ordinal
The original

FUNCTION SUMMARY

INSPECT ACCESS
Operator ID: 18

Hex Byte
Contents Function Request Facility Offset

results 2 through 9 s OBJECT DESCRIPTOR IMAGEi 24H-33H
results 0 through 1 : AOCESS DESCRIPTOR IVAGE! 20H-23H
operand 6 : reserved : 1EH
operand 5 : reserved : icH
operard 4 : reserved E 1AH
operand 3 : reserved ' 18H
operand 2 : reserved : 16H
operand 1 : reserved 3 14H
operand 0 : SOURCE OBJECT SELECTOR ! 12H
TP function code : 00FH (INSPECT ACCESS) | 10
function state : réserved :' OEH
process selection index : PROCESS INDEX : OCH

INSPECT ACCESS allows an operation to read the access information
for the first level of any access path to which it holds an access
descriptor. The first operand contains the object selector for an
access descriptor for the level in the access path which is to be
inspected. The ten double-byte result is stored in the function
result area.

B-17

iAPX 432 Interface Processor Architecture Reference Manual

'INSPECT ACCESS DESCRIPTOR
Operator ID: 17

Hex Byte
Contents Function Request Facility Offset

results 2 through 9 E reserved : 24H-33H

! SOURCE ACCESS :

results 0 through 1 ! DESCRIPTOR IMAGE : 20H

operand 6 " reserved : 1EH

operand 5 : reserved : 1CH

operand 4 : reserved : 1AH

operand 3 " reserved : 18H

operand 2 " reserved : 16H

operand 1 : reserved : 14H

operand 0 ': SOURCE OBJ SELECTOR : 12H
TP function code ! OOEH (INSPECT ACCESS !

! DESCRIPTOR) f 10H

function state : reserved : OEH

process selection index i PROCESS INDEX : 0CH

INSPECT ACCESS DESCRIPTOR allows an operation to inspect an access
descriptor to which it holds access. The first operand contains the
object selector for an access descriptor which is to be inspected.
The ordinal result is stored in the function result area.

B-18

FUNCTION SUMMARY

LOCK OBJECT
Operator ID: 19

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 s reserved : 22H-33H
result 0 : BOOLEAN E 20H
operand 6 : reserved : 1EH
operand 5 : reserved : 1CH
operand 4 : reserved ' 1AH
operand 3 : reserved : 18H
operand 2 : reserved E 16H
operand 1 : DISPLACEMENT : 14H
operand 0 : OBJECT SELECTCR : 128
IP function code : 0L0H (LOCK OBJECT) : 10H
function state : reserved : OEH
process selection index : PROCESS INDEX : 0CH

LOCK OBJECT allows an operation to lock an object lock located
within a data segment. The first operand oontains the object
selector for a data segment access descriptor. The second operand
contains the displacement within that data segment of the desired
object lock. The boolean result, which is set to true if the object
becomes locked, is stored in the function result area.

B-19

iAPX 432 Interface Processor Architecture Reference Manual

NULL ACCESS DESCRIPTOR
Operator ID: 8 .

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 s reserved : 20H-33H
operand 6 : reserved E 1EH
operard 5 : reserved ' 1CH
operand 4 : reserved : 1AH
operand 3 : reserved : 18H
operand 2 : reserved : © 16H
operand 1 : reserved : 14H
operand 0 : DEST OBJECT SELECTOR E 128
IP function code ! 005H (NULL ACCESS !
E DESCRTPTCR) : 10H
function state ' reserved ' OEH
process selection index E PROCESS INDEX E 0CH

NULL ACCESS DESCRIPTCR allows an operation to overwrite and thus
logically clear a given access descriptor entry. At the same time,
~access to any object previously available via that access descriptor
entry is given up. The operand contains the object selector for the
destination access segment entry.

B-20

READ PROCESSOR STATUS AND CLOCK (Logical and Physical Mode)

FUNCTION SUMMARY

Operator ID: 6

Hex Byte
Contents Function Request Facility Offset
! !
results 2 through 9 : reserved : 24H-33H
result 1 : SYSTEM CLOCK 1 2w
result 0 : PROCESSOR STATUS : 20H
operard 6 : reserved : 1EH
operand 5 : reserved E 1CcH
operard 4 : reserved : 1AH
operand 3 : reserved ' 18H
operand 2 : reserved E 16H
operand 1 : reserved ' 14H
operand 0 : reserved : 12H
I function code ! 003 (READ PROCESSOR ! :
! STATUS AND CLOCK) ! 10H
function state ': reserved s OEH
process selection index " PROCESS INDEX : OCH

The 16-bit processor status

the processor resident system clock,

field of the current processor is read
from the processor object, right appended to the current value of

and stored in the function

result area. The processor status field includes both processor
unit number and processor status information.

READ PROCESSOR STATUS AND CLOCK is performed the same in both

physical and logical modes.

B-21

Operator ID: 23

RECEIVE

iAPX 432 Interface Processor Architecture Reference Manual

results 0 through 9

IP function code

process selection index

RECEIVE allows a process to receive a message at a

The first operand is used.

B-22

Hex Byte
Contents Function Request Facility Offset

! !

5 reserved : 20H-33H
operand 6 : reserved : 1EH
operand 5 ' reserved ' 1CH
operand 4 : reserved : 1AH
operand 3 E reserved E 18H
operand 2 ' reserved ' 16H
operand 1 : reserved : 14H
operand 0 : PORT OBJECT SELECTOR " 12H

i 014H (RECEIVE) " 10H

function state E reserved : OEH

é PROCESS INDEX E OCH

specified port.

FUNCTION SUMMARY

RESTRICT RIGHTS
Operator ID: 12

Hex Byte
Contents Function Request Facility Offset
! !

results 0 through 9 ! reserved ! 20H-33H
operand 6 E reserved E 1EH
operand 5 : reserved : 1CH
operard 4 : reserved : 1AH
operard 3 : reserved : 18H
operand 2 : reserved : 16H
operand 1 : DESC CTRL OBJ SELECTOR : 148
operand 0 : DEST OBJECT SELECTOR : 126
IP function code : 009H (RESTRICT RIGHTS) : 108
function state : reserved : OEH
process selection index : PROCESS INDEX : ocH

RESTRICT RIGHTS allows an operation to restrict its access to an
object by altering, under oontrol of an unprotected descriptor
control object, the access descriptor for that object to have either
restricted rights or restricted rights and restricted descriptor
control. The first operand contains the object selector for an
access descriptor for the given object. The second operand is an
unprotected descriptor control object. The resultant new access
descriptor overwrites the original access descriptor for the given
object. Thus, the destination access segment entry is the same as
the source access segment entry.

B-23

iAPX 432 Interface Processor Architecture Reference Manual

RETRIEVE PUBLIC TYPE REPRESENTATION
Operator ID: 14

Hex Byte
Contents Function Request Facility Offset
! !
results 0 through 9 : reserved : 20H-33H
operard 6 : reserved ' 1EH
operard 5 : reserved : 1CH
operand 4 ' reserved : 1AH
operand 3 E reserved E 18H
operand 2 : TYPE DEF OBJ SELECTOR : 16H
operand 1 : SOURCE OBJ SELECTOR : 148
operand 0 : DEST OBJECT SELECTOR : J2H
IP function code i 00BH (RETRIEVE PUBLIC !
‘ : TYPE REPRESENTATION) : 10H
function state : reserved : OEH
process selection index " PROCESS INDEX : 0CH

RETRIEVE PUBLIC TYPE REPRESENTATION allows an operation to retrieve
the type representation for a public type. The first operand
contains the object selector for the destination access segment
entry. The second operand contains the object selector for an
access descriptor for the type whose representation is to be
retrieved. ,

B-24

FUNCTION SUMMARY

RETRIEVE TYPE REPRESENTATION
Operator ID: 13

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved : 20H-33H
operard 6 : reserved E 1EH
operand 5 : reserved : 1CH
operand 4 : reserved : 1aH
operand 3 : reserved ' 18H
operand 2 : TYPE DEF OBJ SELECTCR : 16H
operand 1 : DESC CTRL OBJ SELECTOR : 14H
operard 0 : DEST OBJECT SELECTOR E 12H
IP function code ! 00AH (RETRIEVE TYPE !
!' REPRESENTATION) : 10H
function state ' reserved ' OEH
process selection index ': PROCESS INDEX E 0CH

RETRIEVE TYPE REPRESENTATION allows an operation to retrieve the
type representation for any type for which it holds appropriate
access to the associated type definition. The first operand
contains the object selector for the destination access segment
entry. The second operand oontains the object selector for an
access descriptor for the type whose representation is to be
retrieved. The third operand contains the object selector for an
access descriptor for the associated type definition.

B-25

iAPX 432 Interface Processor Architecture Reference Manual

RETRIEVE REFINED OBJECT
Operator ID: 16

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved : 20H-33H
operand 6 : reserved E 1EH
operard 5 : reserved ' 1cH
operard 4 : reserved : 1AH
operand 3 : reserved : 18H
operand 2 ' REFIN CTRL OBJ SELECI'ORi 16H
operand 1 E SOURCE OBJECT SELECTOR : 14H
operand 0 ' DEST OBJECT SELECTOR : 1210
IP function code : 00DH (RETRIEVE REFINED "
! OBJECT) : 10H
function state : reserved : OEH
process selection index ': PROCESS INDEX : ocH

RETRIEVE REFINED OBJECT allows an operation to retrieve access to
the object to which it holds refined access. The first operand
contains the object selector for the destination access segment
entry. The second operand contains the object selector for an
access descriptor for the refinement. The third operand contains
the object selector for an refinement control object access
descriptor.

B-26

FUNCTION SUMMARY

RETRIEVE TYPE DEFINITION
Operator ID: 15

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved : 20H-33H
operand 6 : reserved : 1EH
operand 5 : reserved : 1CH
operand 4 : reserved : 1AH
operand 3 : reserved : 18H
operand 2 : reserved : 16H
operand 1 : SOURCE OBJRCT SELECTOR | 14
operand 0 : DEST BJECT SELECTOR ! 128
iP function code ' O0CH (RETRIEVE TYPE :
5 DEFINITION) : 10H
function state ' reserved ' OEH
process selection index ': PROCESS INDEX ': 0CH

RETRIEVE TYPE DEFINITION allows an operation to retrieve an access

descriptor for the type definition associated with a type. The
first operand contains the object selector for the destination
access segment entry. The second operand contains the object
selector for an access descriptor for the type.

B-27

- iAPX 432 Interface Processor Architecture Reference Manual

SEND
Operator ID: 21

Hex Byte
Contents Function Request Facility Offset
! !

results 0 through 9 : reserved : 20H-33H
operand 6 : reserved : 1EH
operand 5 : reserved : 1CH
operand 4 : reserved : 1AH
operand 3 " MESSAGE OBJECT SEI.ECI'ORE 18H
operand 2 ' reserved E 16H
operand 1 : reserved ' 14H
operand 0 E PORT OBJECT SELECTOR é 12H
IP function code ! 012H (SEND) ! 108
function state E reserved E OEH
process vselection index : PROCESS INDEX : 0CH

SEND allows a process to send a specified message to a specified
port. The first and fourth operands are used.

B-28

FUNCTION SUMMARY

SEND TO PROCESSOR (Logical Mode)
Operator ID: 4

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 : reserved : 22H-33H
result 0 E BOOLEAN E 20H
operand 6 : reserved : 1EH
operard 5 : reserved : 1CH
operard 4 : reserved : 1aH
operand 3 ' reserved ' 18H
operand 2 E reserved : 16H
operand 1 : DEST PROCESSOR OBJ SEL E 14H
operand 0 : IPC MESSAGE ' 12H
IP function code : 001H (SEND TO PROCESSOR):! 10H
function state : reserved : OEH
process selection index : PROCESS INDEX : OCH

SEND TO PROCESSOR allows a process to send an interprocessor message
to one specific processor, including the processor it is executing
on, via the interprocessor communication mechanism. The first
operand contains the interprocessor message. The second operand
contains the object selector for an access descriptor for the
desired processor object. The boolean result, which is set to true
if the control flags are deposited, is stored in the function result
area.

B-29

iAPX 432 Interface Processor Architecture Reference Manual

SEND TO PROCESSOR (Physical Mode)
Operator ID: 4

Hex Byte
Contents Function Request Facility Offset

results 1 through 9 E reserved : | 22H-33H
result 0 : BOOLEAN :' 20H
operand 6 ' reserved ' 1EH
operand 5 E reserved : 1CH
operand 4 : reserved E 1AH
operand 3 ' reserved ' 18H
operand 2 E PHYSICAL ADDR (high 8) E 16H
operand 1 : PHYSICAL ADDR (low 16) ! 14H
operand 0 ' IPC MESSAGE : 12H
IP function code E 001H(SEND TO PROCESSOR)i 10H
function state : reserved E OEH
process selection index : PROCESS INDEX : 0CH

SEND TO PROCESSOR allows external processor software to send an
interprocessor message to one specific processor, including the
processor it is executing on, via the interprocessor communication
mechanism. The first operand contains the interprocessor message.
The second operand is a word (here shown as two consecutive double
bytes) containing the right-justified, 24-bit, physical base address
of the 432 memory segment which contains the image of the IP's
processor object. The boolean result, which is set to true if the
control flags are deposited, is stored in the function result area.
This physical mode operator is the equivalent of the logical mode
operator SEND TO PROCESSOR.

B-30

FUNCTION SUMMARY

SET PERIPHERAL SUBSYSTEM MODE (Logical and Physical Mode)
Operator ID: 5

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved : 20H-33H
operand 6 : reserved E 1EH
operand 5 : reserved ' 1cH
operand 4 : reserved : 1AH
operand 3 : reserved : 18H
operand 2 : reserved : 16H
operand 1 ' reserved : 14H
opverand 0 : PS MODE : 12H
IP function code E 002H (SET PS MODE) : 10H
function state : reserved : OEH
process selection index : PROCESS INDEX E O0CH

SET PERIPHERAL SUBSYSTEM MODE allows an operation to change the mode
settings for the oonnected peripheral subsystem, both on the
processor and in the peripheral subsystem status field of the
processor data segment. The operand contains a set of new
peripheral subsystem mode flags. Note that this operator is unique
to 432 Interface Processors.

SET PERIPHERAL SUBSYSTEM MODE when performed in physical mode is of

the same form and provides the same function as SET PERIPHERAL
SUBSYSTEM MODE performed in logical mode.

B-31

iAPX 432 Interface Processor Architecture Reference Manual

SURROGATE RECEIVE
Operator ID: 26

Hex Byte
Contents - Function Request Facility Offset
! !

results 0 through 9 : reserved : 20H-33H
operand 6 : reserved : 1EH
operard 5 : reserved : 1CH
operard 4 ' reserved ' 1AH
operand 3 S reserved E "18H
operand 2 : CARRTER OBJECT SELECTOR% 16H
operand 1 | DEST OBJECT SELECTOR ! 14
operand 0 E PORT OBJECT SELECTOR E 128
IP function code ! OL7H(SURROGATE RECE‘.IVE)% 10H
function state E reserved : OEH
process selection index : PROCESS INDEX : OCH

SURROGATE RECEIVE allows a process to wait, via a surrogate carrier,
at a port for a message from some process. The first three operands
are used. ;

B-32

FUNCTION SUMMARY

SURROGATE SEND
Operator ID: 25

Hex Byte
Contents Function Request Facility Offset
! !

results 0 through 9 : reserved : 20H-33H
operand 6 - : reserved ' 1EH
operand 5 : reserved : 1CH
operand 4 ' reserved : 1AH
operand 3 E MESSAGE OBJECT SELECI‘ORi 18H
operand 2 : CARRIER OBJECT SE]'.ECIORi 16H
operand 1 : DEST OBJECT SELECTOR : 14H
operand 0 : PORT OBJECT SELECTOR E 12H
IP function code ! OL6H (SURROGATE SEND) ! 10H
function state 5 reserved E OEH
process selection index : PROCESS INDEX : OCH

SURROGATE SEND allows a process to send, via a surrogate carrier, a
specified message to a specified port. All four operands are used.

B-33

iAPX 432 Interface Processor Architecture Reference Manual

UNLOCK OBJECT
Operator ID: 20

Hex Byte
Contents Function Request Facility Offset

results 0 through 9 E reserved : 20H-33H
operand 6 : reserved " 1EH
operand 5 : reserved E 1CH
operand 4 : reserved : 1AH
operand 3 : reserved : 18H
operand 2 : reserved : 16H
operand 1 : DISPLACEMENT ' 14H
operand 0 : OBJECT SELECTOR :' 12H
IP function code % 0L1H (UNLOCK OBJECT) } 108
function state : reserved : OEH
process selection index : PROCESS INDEX : O0CH

UNLOCK OBJECT allows an operation to unlock an object lock located
within a data segment. The first operand contains the object
selector for a data segment access descriptor. The second operand
contains the displacement within that data segment of the desired
object lock.

B-34

APPENDIX C
FAULT SUMMARY

C-1. FAULT REPORTING

Both logical and physical mode faults are reported in fault
information areas as described below. The fault information area
for oontext, process, and processor level faults has the same
organization. Process objects contain fault information for context
and process level faults which occur in logical mode. Processor
objects contain fault information for processor level faults which
occur in logical mode. The process level fault information area in
the process object is used when a process level fault occurs and a
process is bound to the processor. The processor level fault
information area in the processor object is used when a process
level fault occurs and a process is not bound to the processor.
Physical mode faults, which are all treated as context level faults,
are reported in the processor fault information area.

C-2. FAULT INFORMATION AREAS

The fault information area is a 13 double-byte record organized as
follows.

iAPX 432 Interface Processor Architecture Reference Manual

double byte
displacement

execution state! n+l2

operator id

system timer

psor status

cxt/pres status

PS status

fault
information
area

fault code

fault os/disp

pclk buffer

dir index

obj index
tempB
tempA

3

" G =® e G um Smd G § gum Gmw G e o e g G §ms Oum gus Smm fun 0 fum S0 G Sme S P ”
I om= o 0= tem b tm b sm G 0 e 0w tn G gm G G See e S S Gom S fem S b G Sme

The tempA, tempB, and pclk buffer fields oontain the values of
the corresponding on-chip registers at the time of the fault. If
the fault is associated with object qualification, the directory
index and object table index specify the object. The
interpretation of the fault object selector/displacement vary
depending on the fault.

The fault code, together with the operator id indicates the nature
of the fault. The fault code field has the following format:

XRRXXXXX XXXXKXXXX

RR TYPE Faults

10 MA Memory Access Faults.
11 TS Test Segment Type or Descriptor Type Faults.
(0):4 FF All other faults.

FAULT SUMMARY

The Peripheral Subsystem status, context/process status, processor
status, and system timer fields ocontain the values of the the
corresponding on-chip registers at the time of the fault. The
operator id, which differs from the opcode field in an instruction,
specifies the operator that causes the fault. If a fault occurs
during instruction decoding, the operator id is zero. The operator -

id value of each operator is the same as the index found in Appendix
B.

The execution state indicates the phase of execution when the fault
occured. It is used to identify fault handling strategies in the
more complex operators. A value of zero indicates the instruction
can be re-executed with no rewind necessary. Non-zero execution
state occurs in port and IPC operators only. The semantics of each
execution state in the port operators is described in the 432 GDP
Architecture Reference Manual. The organization of the execution
state field is shown below.

! 8 bits ! 8 bits !

e execution state
reserved

Memory Access Faults

The 727 field specifies the type of memory access attempted Thé
encoding

of the 2Z field is specified below.

27 Access Type

X10TTTTT OXMWBBBB Access Memory
X10TTTTT 10MWBBBB Access Interconnect
X10TTTTT 11MWBBBB Access Access Segment

The TTTTT field specifies the type of memory access fault. The
encoding of the TTTTT field is specified below. Note that
combinations of these encodings can occur. o

XXXX1 AR _Access Rights Fault

XXX1X SB Segment Bounds Fault

XX1XX MO Memory Over flow Fault
(physical address >= 2**24)

X1XXX BE Bus Error Fault

1XXXX WR Test Write Rights Fault

The M field specifies whether the fault was on a read-modify-write
access. A value of zero indicates a normal access. A value of one
indicates a read-modify-write access.

iAPX 432 Interface Processor Architecture Reference Manual

The W field specifies whether the fault was on a read or write
access. A value of zero indicates a read access. A value of one
indicates a write access.

The faulted diSplacement is recorded in the fault displacement (in
access memory, or interconnect), and in the object index field of
the fault object selector (in access access segment).

The BBBB field, which designates which segment was being accessed
when the fault occurred, is defined as follows:

BBBB Segment Name

0000 Context AS

0001 Entry AS 1

0010 Entry AS 2

0011 Entry AS 3

0100 Object Table Directory
0101 Object Table

0110 Processor AS

0111 Processor DS

1000 Context DS

1001 Process AS

1010 Process DS

1011 WorkA (Carrier DS)
1100 WorkB (Carrier AS)
1101 WorkC (Port DS)
1110 WorkD (Port AS)
1111 Mapping Facility

System Type Or Descriptor Type Faults

The fault code for system type or descriptor type faults is as
follows:

D11XXXXX KKKKKKKK

The D field indicates which on-chip register was being tested. A
value of zero indicates that the type information being tested was
in TempA. A value of one indicates that the type information being
tested was in TempB.

The KKKKKKKK field indicates the desired system type, or the desired
object descriptor type, descriptor validity, base type, and storage
associated bit fields.

All Other Faults

The fault code for all other faults is as follows:

XOXXXXXX XXTTEEEE

FAULT SUMMARY

The TT and EEEE fields specify the fault level and the fault type.
The TT bits are interpreted as follows:

TT Description

00 Context Level Faults

01 Process Level Faults (group 1)
10 Process Level Faults (group 2)
11 Processor Level Faults

There are 16 fault types within each of the 4 groups. The encoding

column of the tables in the following sections contains the TT and
EEEE fields if the type is FF (all other faults).

C-3. OBJECT LEVEL OPERATOR FAULTS

Faults Common To All Operators Or Sub-operations

The following faults can occur anywhere during the execution of an
operator or sub-operation (which includes instruction decoding,
process dispatching, binding etc.). These faults are not explicitly
referenced in the later sections.

FAULT GROUPS ITYPE! ENCODING

Memory Reference Faults =>

(Access) Segment Altered Faults =>
=> Object Qualification Faults

! !
Access Rights Fault ! AR !
Segment Bound Fault ! SB !
Memory Over flow Fault ! MO !
Bus Error Fault ! BE !
Write Rights Fault I WR !
! !
Invalid Opcode Fault ! FF | 00 1100
! !
Processor Stopped Fault ! FF ! 00 1101
! !
Object Table Cache Qualification Faults => ! !
Object Descriptor Type Fault { TS ! 00010111
Object System Type Fault { TS ! 00000010
! !
! !
! !
! !

iAPX 432 Interface Processor Architecture Reference Manual

Sub-operations Faults

=> Context Qualification Faults

FAULT GROUPS ITYPE! ENCODING
Store Access Descriptor Faults => ! !
Level Fault ! FF | 01 0100
Destination Delete Rights Fault ! FF | 01 0011
1 1
Object Qualification Faults => ! !
Access Descriptor Validity Fault ! FF ! 01 0000
Object Descriptor Fault ! FF | 01 0001
Object Descriptor Type Fault ! TS ! 00010111
! TS ! 00011111
Memory Overflow Fault ! FF ! 01 1011
Read/MWrite Rights Fault ! FF ! 01 0110
1 |
Port Operation Faults => ! !
=> Object Qualification Faults (Carrier AS) ! TS 1| 00001000
=> Object Qualification Faults (Carrier DS) ! TS ! 00001000
=> Object Qualification Faults (Port AS) 1 TS 1 00000111
=> Object Qualification Faults (Port DS) ! TS ! 00000111
Send Rights Fault ! FF ! 01 1110
Carrier Lock Fault ! FF ! 01 1001
Wakeup IPC Fault ! FF | 11 0100
Port Lock Fault ! FF | 01 1010
Carrier Queued Fault 1T FF ! 11 0110
! !
Context Qualification Faults => ! !
=> Object Qualification Faults (Context AS) ! TS | 00000100
=> Object Qualification Faults (Context DS) ! TS ! 00000100
=> Entry Access Segment Qualification Faults ! !
(Entry 1, 2, and 3) ! !
1 1
Process Binding and Qualification Faults => ! !
=> Object Qualification Faults (Process AS) ! TS ! 00000101
=> Object Qualification Faults (Process DS) 1 TS 1 00000101
Process Level Objects Lock Fault ! FF ! 11 0010
1 1
1 1

FAULT SUMMARY

Operator Faults

OPERATOR ITYPE! ENCODING

Alter Map and Select Data Segment

=> Store Access Descriptor Faults

| 1
Interconnect Descriptor Fault ! FF ! 00 0100
I/0 Lock Fault ! FF ! 00 0101
Transfer Direction Fault ! FF ! 00 0110
Length Validity Fault ! FF ! 00 0111
Window Subrange Overlap Fault ! FF ! 00 1000
Incomplete Block Transfer Fault ! FF ! 00 1001
Operand Validity Fault ! FF ! 00 1010
Forced Termination Fault ! FF ! 00 1011
1 1
Copy Access Descriptor ! !
=> Store Access Descriptor Faults ! !
1 1
Null Access Descriptor ! !
Destination Delete Rights Fault ! FF ! 01 0011
1 1
Amplify Rights ! !
Descriptor Control Object Rights Fault ! FF ! 01 0110
=> Object Qualification Faults (Descriptor Ctl Obj) ! TS !t 00001011
Destination Access Segment Rights Fault ! TW !
Source Object Validity Fault ! FF ! 01 0101
Type Fault ! FF ! 01 1000
Race Condition Fault (the access descriptor was ! FF | 01 1000
changed before the amplified value is stored back) ! !
! 1
Restrict Rights ! !
no explicit fault cases ! !
] |
Retrieve Public Type Representation ! !
Source Object Validity Fault ! FF ! 01 0101
Object Descriptor Type Fault ! TS ! 00010111
=> Store Access Descriptor Faults ! !
| |
Retrieve Type Representation ! !
Type Definition Validity Fault ! FF | 01 0110
Source Object Validity Fault ! FF | 01 0101
Object Descriptor Type Fault ! TS ! 00010111
Type Definition System Rights Fault ! FF | 01 0110
Type Fault ! FF ! 01 1000
=> Store Access Descriptor Faults ! !
! !
Retrieve Type Definition ! !
Source Object Validity Fault ! FF ! 01 0101
Object Descriptor Type Fault ! TS ! 00010111
1 1
1 1

iAPX 432 Interface Processor Architecture Reference Manual

Retrieve Refined Object
Refinement Control Object System Rights Fault
=> Object Qualification Faults (Refinement Ctl Obj)
Source Object Validity Fault

Type Fault
=> Store Access Descriptor Faults

01 0110
00001100
01 0101
01 1000

Rz

Inspect Access Descriptor
no explicit fault cases

Inspect Access

Access Path Object Descriptor Type Faults 01 0101
Lock Object

=> Object Qualification Faults (data segment)

Source Object Access Rights Fault 01 0110
Unlock Object

=> Object Qualification Faults (data segment)

Source Object Access Rights Fault

Object Lock ID or Type Fault

01 0110
01 1001

R

Qe Qe $ms et Gmw G o Sem 00 fum dum (up f=w fem Gom o G G 0t fom Gems O (e s $um fum fum (m fuw fem $mm e fvm e e fum S G fmm S b fem fmm S femm fem fmm Gam o

Indivisibly Add Short Ordinal
Indivisibly Insert Short Ordinal
no explicit fault cases

Enter Access Segment
Enter Global Access Segment
Entry Index Range Fault
Access Segment Read Rights Fault
=> Object Qualification Faults (access segment)

01 0101
01 0110

443

Set PS Mode
no explicit fault cases

Send
Receive
Conditional Send
Conditional Receive
Port System Rights Fault
=> Port Operation Faults

01 0110

Surrogate Send

Surrogate Receive
Surrogate Carrier Validity and System Rights Fault
Port System Rights Fault
=> Port Operation Faults

01 0101
01 0110

Gt Gme G B Gt Ge Gt fum Gum fems Gmo O Gem Qe Qe fum fmm feun Qe fum fumn Gmm (mw e Sme Gmm G Ps Omw fuw fmw 0= Gmw Pt Gemw Guw G e Gmm Gum Gom Sum o e Gov des e Gumo Omm

Send to Processor

FAULT SUMMARY

Broadcast to Processors

Processor System Rights Fault FF ! 01 0110
=> Object Qualification Faults (Processor AS) TS ! 00000110
=> Object Qualification Faults (Commo Segment) TS ! 00001010
Communication Segment Lock Fault FF ! 01 1001

Read Processor Status and Clock
no explicit fault cases

G G g fem Gem Gem e tom G
St G e S gem e fum e S

iAPX 432 Interface Processor Architecture Reference Manual

C—4.’NON-INSTRUCTION INTERFACE FAULTS

OPERATOR

Initialization =>
=> Object Qualification Faults (processor AS)
=> Object Qualification Faults '
(object table directory)
=> Object Qualification Faults (processor DS)
Processor Object Lock Fault
=> IPC Faults
Base/Mask Incompatibality Fault

IPC Faults =>
=> Object Qualification Faults (Commo Segment)
Communication Segment Lock Fault
Response Count Fault ’

Process Binding =
=> Object Qualification Faults (Carrier AS)
=> Object Qualification Faults (Carrier DS)
Process Object Lock Fault
=> Process Qualification Faults
=> Port Operation Faults

Process Selection =>
=> Object Qualification Faults (Carrier AS)
=> Object Qualification Faults (Carrier DS)
=> Port Operation Faults

ITYPE! ENCODING

Cumt G G0 e e guw Sum G Gww (Te (e fem fum mm fem S fws Gem fem (et fuw S

S gom g Ge

Add @ Hdd 4

H @

A &

00000110

00000010
00000110
11 oool

11 1000

00001010
11 0011
11 0010

00001000
00001000
11 o001

00001000
00001000

C-10.

- APPENDIX D
INTERRUPT HANDLING

Whenever the Interface Processor detects an event that may require
attention from the IP controller, it records the nature of the event
in the current IP processor data segment and emits a pulse on its
interrupt line. There are several different types of events which
may be sources of interrupts, and their occurrence and timing is not
necessarily predictable. 1In this sense IP interrupts are similar to
several I/0 devices that are wire-ORd to a common interrupt line.

Thus, the IP controller must respond to an interrupt by "polling"
the possible interrupt sources to determine which event has actually
occurred. It may do this by examining fields of the IP processor
data segment through the control window (window 4). The 1IP
controller (and related hardware, such as latches and Intel 8259A
interrupt controllers) must also accommodate the possibility that
the IP may detect a second event at any time, including while the IP
controller is handling a previous interrupt. The IP responds to all
such events identically, noting the event in the IP processor data
segment and emitting an interrupt pulse. Again, this is analagous
to tving multiple independent I/0 devices to one interrupt line.

The principal requirement of IP interrupt handling hardware and
software, then, is to field interrupt requests that may bhe
closely-spaced, and to respond individually to the different types
of events that an interrupt may signal.

Figure D-1 shows one approach to the overall design of an IP
interrupt handler. This strategy assumes that hardware latches the
IP's interrupt request pulse. As soon as it 1is invoked, the
interrupt handler masks further IP interrupt requests and resets the
hardware latch. This insures that a second request is unlikely to
be missed, and prevents the interrupt handler from being reentered.
Then the enviromnment of the interrupted routine is saved and
higher-priority interrupts are enabled, so that the interrupt
handler itself can be interruoted if necessary.

D-1

iAPX 432 Interface Processor Architecture Reference Manual

Mask IP
interrupt

Reset latch

Save .
interrupted
environment

Enable
higher-
priority
interrupts

Respond to Rese:
event , &ven
indicator

Next
indicator

More

yes s
indicators

Restore
interrupted
environment

Unmask
IP
interrupt

i

(Return ,

Figure D-1 Interrupt Handler

INTERRUPT HANDLING

The central logic of this approach assumes that there is a "list" of
possible interrupt sources to be scanned, and that passing through
this list may uncover one (the usual case), multiple, or zero events
that require responses. To illustrate the second two cases, assume
that the possible events are labelled A through K, and that the
interrupt handler tests for A, then B, and so on. Assume also that
event B occurs followed quickly by event J. The interrupt handler
is invoked for event B, shortly thereafter the IP updates J's
indicator and emits a second interrupt pulse, which is latched. The
handler scans its list of event indicators, finds that both B and J
have occurred and responds to them both. Reaching the end of the
list, the interrupt handler enables the IP interrupt and returns.
Immediately, J's latched interrupt request is recognized and the
handler is invoked again. This time, however, it will find no
events indicated in the IP processor data segment, since 1t
responded to both B and J in the previous invocation. It will
simply clear the interrupt latch, pass through the list, unmask the
IP interrupt, and return, effectively making a null response.

Table D-1 lists the IP processor data segment subfields that the IP
interrupt handler must examine to determine the source of an
interrupt. Note that as soon as the handler recognizes that an
event indicator is "on", it should turn it "off" by indivisibly
zeroing the field using the INDIVISIBLE INSERT SHORT ORDINAL
function. This is necessary to prevent the interrupt handler from
being misled in its next invocation.

D-3

iAPX 432 Interface Processor Architecture Reference Manual

Table D-1 Interrupt Sources

Processor Data
Segment Subfield Value

Event

Function state field

00005

0lg

105

115

Function completion state subfield

Function completed normally
(this interrupt may be masked)

Fault level subfield

Context-level fault
Process-level fault
Processor-level fault

Entry state field (One per map entry)

0lg
10g
11g
Local IPC response 1z

Global IPC response 1p

Alarm response 1p
Reconfiguration 1
response

Dispatching response 1p

Notes:

Transfer state subfield

Transfer terminated by byte count (1)
Transfer termination forced(1,3)
Transfer terminated by fault(2)

'IP has responded to local IPC

IP has responded to global IPC
IP has responded to a alarm request

IP has responded to a reconfiguration
request

IP has received a "select process" IPC

(1) Applies to window 0, buffered mode only.
(2) Separate indications are provided for each transfer window.
(3) Only done via the ALTER MAP AND SELECT DATA SEGMENT function.

D-4

APPENDIX E
SYSTEM INITTALIZATION

System initialization may be considered as a sequence of activities
that brings a 432-based system from an arbitrary state to a known
state where execution can begin. Although the initialization
sequence will vary widely among applications, this appendix outlines
the basic procedure. The first section describes how the system may
be reset to a known state. The second section shows how an
Interface Processor running in physical reference mode may be used
to initialize memory and interconnect components thereby
establishing an environment in which execution can take place. The
final section discusses system startup, the procedure for commencing
execution.

E-1. SYSTEM RESET

Most systems include a reset switch that is used to initialize the
system after power-up and to restart the rumning system if
necessary. In a 432 system, the INIT pins of all IPs (see iAPX
43203 VISI Interface Processor Data Sheet, Order No. 171874, for
details)and GDPs, and the RESET (or equivalent) pins of all
Peripheral Subsystem components must be activated when a full system
reset is performed. However, system designers may also decide to
provide the option to selectively initialize elements of a 432
system,

Although this is subject to variation, a typical Attached Processor
responds to a reset pulse by aborting any current operation,
disabling interrupts and then vectoring execution to the oode
located at some predefined address (typically in non-volatile
memory). The code will normally initialize I/O devices and enable
interrupts, at which point normal execution begins. The 432 makes
no special demands of the Peripheral Subsystem except that it should
be prepared to handle an interrupt request from the IP shortly after
system reset. ’

E-1

iAPX 432 Interface Processor Architecture Reference Manual

An Interface Processor responds to an INIT pulse by aborting any
current operation, entering physical reference mode, configuring its
windows as shown in table E-1, clearing broadcast acceptance mode,
and then issuing an interrupt request to its Attached Processor.
The interrupt request signals the IP controller that the Interface
Processor has initialized itself and will accept subrange address
references, including physical reference mode function requests
written through window 4. Any attempt by the IP controller (or any
active agent in the Peripheral Subsystem) to reference a subrange
prior to receiving the IP's interrupt request produces an undefined
result. An IP switches from physical to logical reference mode upon
receipt of the startup IPC as defined below.

A General Data Processor responds to an INIT pulse by aborting any
current activity and then waiting in a quiescent state for the
startup IPC. The startup IPC is defined as the first local IPC
received following an INIT pulse; a GDP will ignore any intervening
global IPC.

To summarize, shortly after system reset, Attached Processors (and
Peripheral Subsystems) will be able to run as desired, IPs will be
able to run in physical reference mode, and GDPs will be waiting for
a signal to begin execution.

E-2. ESTABLISHING AN EXECUTION ENVRIONMENT

Prior to starting any GDP (or switching any IP to logical reference
mode) an environment in which the processor can execute must be
created in 432 memory. This enviromment consists of a set of
interrelated system objects; a minimal environment, sufficient to
start one process rumning on a GDP, oould be characterized as
follows:
o the initial object table directory (loaded

at physical address 8);
an object table;
a processor object;
a dispatching port;
a process object (queued at the dispatching port).

0000

SYSTEM INITIALIZATION

L 4 Processor
Object

(Processor Number n) ,f

(n) Storage Descriptor

Processor
Object

1))
{
)}
|\

(Processor Number 1) J)”

(1) Storage Descriptor

(7) Object Table Header

Object Table

(1) Storage Descriptor

() Object Table Header

<—Physical Address 8
Initial Object Table Directory

Figure E-1 Processor Object Location

E-3

iAPX 432 Interface Processor Architecture Reference Manual

Note that the term "processor object" above is meant to include
communication segments, and a processor carrier, in addition to
processor access and data segments. Likewise, "process object”
includes a domain, instruction segments, context objects, etc. This
environment may be extended to include more processors, processes,
ports and so on, as is appropriate for a given application.

The initial execution environment may not pre-exist in 432
non-volatile memory, since the processors routinely update the
objects during execution. Therefore, the initial environment must
be loaded from a Peripheral Subsystem (where it may, in fact, reside
in non-volatile storage). One Peripheral Subsystem will typically
be designated to load the initial enviromment in physical reference
mode; in this discussion this Peripheral Subsystem is referred to as
the initializing AP.

At no time during system initialization should more than one
Peripheral Subsystem be updating 432 system memory. In most
applications, the remaining Peripheral Subsystems will refrain from
accessing the 432 system until their IPs have switched to logical
reference mode. It is possible, however, for a second Peripheral
Subsystem to read 432 system memory while still in physical
reference mode; some applications may wish to designate a second
Peripheral Subsystem to monitor the activity of the initializing AP
in this way.

Some systems will need to perform a number of preliminary activities
before the initial environment can be loaded. These activities,
which will be defined by each application, may include:
o ascertaining the system configuration
(i.e., the number and type of processors
present, and the amount of memory
available) ;
o verifying that system components
are operational;
o initializing registers located in the
interconnect space (e.g., address range
or error count registers in memory
controllers);
o initializing error checking and correcting
(ECC) memory.

Windows 0 and 1 may be useful in connection with these preliminary -
activities. Window 1 ocould be used to read system configuration
information encoded in predefined registers of the interconnect
address space, for example. Window 1 may also be used to initialize
registers in memory oontrollers, provided these registers are
located in the first 32K bytes of the interconnect address space.

SYSTEM INITIALIZATION

Before any function request is made by the IP, enough 432 memory
must be initialized to allow IP execution. This is necessary
because the IP will attempt to update the segment mapped by window 4
in response to the function request. Once this path to memory has
been established, window 1 can be opened onto another 32K byte
segment by the ALTER MAP AND SELECT PHYSICAL SEQMENT function if
additional interconnect components need to be referenced; this
should normally be necessary only in very large systems.

If a system employs error checking and correcting memory (ECC) that
does not initialize itself, the initializing AP can initialize it if
the memory is organized in units eight or fewer bytes wide. Window
0 comes up in block mode set for a 64K byte transfer starting at
physical address 0. Any data written through this window (e.g. all
zero bits) is written by the IP in eight-byte blocks. The window
can be moved through the entire memory space in 64K byte segments.

Once the system configuration has been established, the interconnect
path set up and memory initialized, the initializing AP can load the
initial execution environment. The simplest and fastest way to do
this is to write all the required binary images through window O.
An alternative is to load the minimal object set required to support
one IP in logical reference mode, and possibly one GDP. The rest of
the environment (other processes, etc.) can then be loaded in
logical reference mode by the initializing AP working alone, or
under the direction of a GDP process. This approach has the
advantage of getting the system into logical reference mode as soon
as possible, where operations are inherently more protected than in
physical reference mode.

E-3. SYSTEM STARTUP

Each processor in the system must be started independently hy
sending it a startup IPC (the first local IPC after INIT). At least
one 432 processor, perhaps its own IP, must be started by the
initializing AP using the SEND TO PROCESSOR function (physical
mode). The remaining processors must be started one at a time, and
this can be done by the initializing AP, or by a processor already
started by it. Note that the initializing AP (as well as all IPs)
remains in physical reference mode until it receives a startup IPC.

GDPs and IPs respond to the startup IPC identically except that the
IP additionally switches to logical reference mode. The basic
response is to first qualify its execution environment and then to
interpret the IPC and respond to it normally. The processor
qualifies its execution environment by first reading a unique
processor ID contained in the low order byte of interconnect
register O.

E-5

iAPX 432 Interface Processor Architecture Reference Manual

Having established its identity, the processor proceeds to locate
its processor object. It does this by assuming that the initial
object table directory is located at physical memory address 8 (see
figure E-1). A segment header field of eight bytes precedes the
initial object table directory. It further assumes that the first
storage descriptor in the directory locates an object table
containing storage descriptors for processor objects. Using its
processor ID as an index, the processor selects the storage
descriptor from the object table which locates its processor
object. After qualifying its processor object, the IP is able to
find its local communcation segment, where it examines the IPC
message field. Now in logical reference mode, the IP can respond to
the IPC message and perform all normal operations.

As usual, an IP will generate an interrupt after it responds to the
IPC message. This second interrupt following reset indicates to the
IP controller software that the IP is in logical reference mode and
that normal execution may begin. Note that window 4 will then be
configured as defined by the attributes encoded in the IP's
processor object. Since window 4 provides the data path to the
function request facility, the other windows may be configured
immediately by means of the ALTER MAP AND SELECT DATA SEGMENT
function.

E-6

SYSTEM INITIALIZATION

Table E-1 Window Configuration Following INIT

Attribute
Window Status
Transfer Mode
Subrange Base Address
Subrange Size
Segment Base
Segment Length
Direction

Transfer State

Overlay

Window 0
Open

Block
07E00y
00100y

0

65,535
Write

In Progress

Yes

Window 1
Open
Interconnect
08000y

08000y
0

65,535
Read/Mrite
In Progress

Yes

Open
Random
07F00y
00100y

0

65,535
Read/Mrite
In Progress

Yes

E-7

APPENDIX F
INTERPROCESS COMMUNICATION AND DISPATCHING
EXAMPLE

In Chapter 1, a printer example was used to demonstrate the flow of
data between 432 processes and AP tasks. In this appendix, the
printer example is again discussed. However, this time the view
taken is that of a programmer writing an Attached Processor task to
direct an IP to accomplish printer output. The program contained in
this appendix is written in a PL/M-86-like dialect typical of the
development environment which will be at the disposal of the AP
program developer. This program is included to clarify an earlier
example and is not suggested as a scheme for actual implementation.

The program example which follows assumes that a set of 432 system
objects preexists in 432 memory. These objects are illustrated in
Figure F-1. This system contains:

o IP processor object;

o a print request port to which a 432 process (GDP or IP) can send
print requests; ;

O a print reply port to which an IP process can return the status
of the print action;

o an IP dispatching port where IP processes await service.

o several IP processes are shown, though only one is required for
the purposes of the example; ’

o one print object, a simple data segment, which carries printer
data and is reused when returning printer status.

There are four main sections to this program:

Variable declarations;
Utility procedures;
Initialization;

Print driver body.

0000

In the variable declarations section, notice that the ocontrol
window, window 4, is declared as a structure whose components are
defined from the definition in Appendix A. This program assumes
that window 4, the control window, is opened onto the function
request facility in the IP's processor object. It also assumes that
all initialization has been performed and that the IP is operating
in logical reference mode.

iAPX 432 Interface Processor Architecture Reference Manual

u
P A

432 OBJECTS PHYSICAL PROCESSORS

pu CONTEXT
——
P IP Y
PROCESSOR PROCESSES & 2,
OBJECT IS
é’ .
¢
IP PRINT
DISPATCHING REQUEST
PORT PORT
g
PRINT
OBJECT

432 PROCESS

Figure F-1 Print Example Objects

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

Procedures in the utilities section demonstrate how a programmer can
construct facilities to invoke IP functions. Recall from the
function summary in Appendix B that an AP requests an IP function by
writing a process selection index, all required operands, and
finally depositing a function code into the appropriate slots in the
function request facility (frf). The IP begins execution of the
function only after the function code has been written. This is
demonstrated by the procedures Open window and Close window.

The initialization section of the program points out some
simplifying assumptions which are made for the purpose of this
example. First, interrupts are disabled. This converts the three
tasks of the printer example (printer server task, printer task, and
printer reply task) of Chapter 1 into sequential tasks rather than
concurrent tasks. It also makes it easier to demonstrate changes in
the state of the system and illustrate them with the accompanying
figures. Second, the call on the Dispatch procedure assumes that
only one IP process exists in the 432 system. The IP supports
multiple process environments but only one is required in this
example.

The print driver body oontains an aggregation of code which
accomplishes the three tasks of the Chapter 1 example. Notice that
the three tasks are performed sequentially.

Imbedded in the program text are references to Figures 2 through 6
which depict the state of the 432 system objects and the logical I/O
processor (the IP/AP pair).

iAPX 432 Interface Processor Architecture Reference Manual

Printer_task:
Procedure;

/**/
/* ’ */
/* Data Structures and Constants */
¢ 3 %*
/***************t********************************/

/**/
/* Declare the 256 byte structure for the Control Window and map it beginning at */
/* an offset of 07F00H into the 64K byte segment which is reserved for the IP. *

/* For the purposes of this example, the base of the IP's reserved area is at location*/

/* 080000H of the Attached Processor memory space. */
/**********ﬂ***/

Declare I!_base literally '080000H';
Declare Wmdow 4 structure (

ps__state word,
ipc state ‘word,
alarm state word,
disp_state word,
reserved 1 word,
frf pres idx word,
frf function state word,
frf operator (7) word,
frf result (10) word,
ipc fun req word,
reserved 2 word,
mf_block_count word,
mf 432 disp word,
mf_ps disp word,
reserved 3 word,
mf_window_info (5) structure (
entry state word,
mask word,
base disp word),
mf_fault information (14) byte,
selected idx word,
selected_state, word,
psor_ fault information (13) byte,
reserved 4 (2) word) at (IP_base + 07F00H);

Declare subrange (1024) byte at (IP_base + 4096);
/* byte array comprising windowed subrange */
*/

Jeclare offset word; /* offset into subrange
Declare true literally '0001H'; /* Logical value true */
Declare false literally '0000H' /* Logical value false */

F-4

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

/**/

/* Seven object selectors are required. One for the message slot in the Context */
/* BAccess Segment, since this is where the hardware will put the Access */
;* Descriptor (AD) for the Print Request Message following the Receive instruction. *;
* *
/* One for the Print Request Port and one for the Print Reply Port. We assume */
/* that at system initialization ADs for these ports were stored in slots nine */
;* and ten of the Context Access Segment in Process Object 1. :;
*

/* One for the IP Dispatching Port, one for the IP Processor Carrier data segment, */
/* one for the IP Processor Carrier access segment, and for a null access descriptor. */
/* These are required so that blocking Receives and blocking sends can be handled. */
/* We assume ADs for these objects are stored in slots eleven, twelve, and thirteen, */

/* respectively of the Context Access Segment in Process Object 1 at initialization. */
/**k*********/

Declare message obj sel literally '001100B';
Declare request port obj_sel literally '100100B';
Declare reply port obj_sel literally '101000B';
Declare dispa':ching _port_obj_sel literally ‘101100B';
Declare psok_carrier_as obj_sel literally '110000B';
Declare psor_carrier ds ¢ Obj “sel literally '110100B’';
Declare null_destination obj_sel literally '111000B';

/**/

/* The process_selection index for process number 1. Note that this number is a byte */

/* index into the process selection list in the IP processor access segment.
/**/

Declare process 1 ' literally *0000000000000100B';

/**/

/* */
Vi Utility Procedures */
/* *

/**/

Await_function_completion:
Procedure;

/**/
/* This procedure busy waits for the previous function request to complete. It */
/* Spins waiting for the function completion field of the function state to */
/* equal zero. */

/**/

Do While (Window 4.frf function state and 000FH) <> 0; End;
End
Awiit function completion;

iAPX 432 Interface Processor Architecture Reference Manual

Dispatch:
Procedure;
/**/
/* This procedure hangs the IP's processor carrier on the IP's dispatching */
/* port. This allows blocking sends and receives to be handled. */

/* This example assumes that the IP processor carrier blocks at the dispacthing */
/* port. No "select process" IPC is received if the Surrogate Receive does not */
/* block. */

/**/

Window_4.disp_state = false;

/* Unlock the IP's processor carrier. */
Window 4.frf prcs.idx = process 1; /* Use process object 1. */
Window_4.frf operand(0) = psor_carrier_ds obj_sel; /* Data segment */
Window_4.frf operator = 011H; /* Unlock function code. */

Call Await_function completion;

/* Hang processor carrier on the dispatching port. */
Window_4.frf pres idx = process 1; /* Use process object 1. */
Window_4.frf operand(0) = dispatching _port ¢ obj_sel; /* port */
Window_4.frf operand(2) = null_destination obj_sel; /* destination */
Window_4.frf operand(3) = psor_carrier as obj_sel; /* carrier */
Window_4.frf operator = 017H; /* Surrogate receive */

: /* function code. */
Call Await_function completion;
End
Dispatch;
Open_window:
Procedure;

/**/

/* Open a window to the message, Figure F-5 */
/**/

Window_4.frf prcs idx = process_1; /* process object index */
Window_4.frf operand(0) = 3; /* window index */
Window 4.frf operand(l) = 0000101B; /* entry state */
Window 4.frf operand(2) = 4096; /* base address */
Wlndcw 4.frf ¢ . operand(3) = 1111110000000000B; /* mask */
Window 4.frf - operand(4) = message_obj_sel; " /* data segment */
Window 4.frf - operand(5) = 0; /* base displacement */
Window_4.frf operator = Q00H; /* Alter Map and Select Data */

Call Await function completion;
End /* Segment function code */
Cpen_window;

F-6

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

Get_print message:
Procedure;

/**/

/* Attempt to Receive a message from the Print Request Port, Figure F-2 */
/***k/

Window_4.frf prcs idx = process 1; /* Use process object 1. */
Window_4.frf operand(0) = request_port_obj_sel; /* port */
Wlndow 4.frf ¢ - operator = 014H; /* Receive function code. */

Call Await function completion;
If (Window_4.frf function state and 0020H) <> 0 Then

Do
/**/
/* Receive instruction blocked, no outstarding print requests *x/
/* Busy wait until a GDP process sends a print request to the print */
/* request port. See Figure F-3 for the SEND unblocking the blocked RECEIVE */
/* Such an event will trigger an interrupt in the AP */
/* (which we have disabled) and set Window_4.disp state true */
/* indicating the nature of the interrupt. : *
/* See Figure F~-4 for details on the wakeup IPC and subsequent interrupt. */

/**/

Do While not Window_4.disp_state; End;

/**/

/* At this point Window_4.selected index contains the index of the */
/* process object which was dispatched. Since we are using only process */
/* object one selected index will equal one. Window_4.selected_state */
/* contains software defined information concerning the action . taken, */
/* if any, by software in completing this instruction. */
/**/
Call Dispatch; /* Hang IP processor carrier on dispatching port. */
Efﬁ,
i
End
Get_print_message;
Close_window;

F-7

iAPX 432 Interface Processor Architecture Reference Manual

Close_window:
Procedure;

/**/

/* Close window, note only two operands are required. */
/**/

Window_4.frf prcs idx = process 1; /* process object index */
Window_4.frf operand(0) = 3; /* window index */
Window_4.frf operand(l) = 0000100B; /* entry state */
Window_4.frf operator = Q00H; /* Alter Map and Select Data */

/* Segment function code */
Call Await_function_completion;

End
Close_window;

F-8

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

Return print_message:
Procedure;

/**/

/* Send message to Print Reply Port. See Figure F-6 */
/**/

Window 4.frf prcs idx = process 1; /* process object index */
Window_4.frf.operand(0) = reply port obj_sel; /* port */
Wmdow 4.frf operand(l) = message obj sel; /* message */
Window_4.frf operator = 016H; /* Send function code */

Call Await_function completion;

If (Window_4.frf function state and 0010H) <> O Then
Do

/**/
/* Serd instruction blocked, wait for a GDP process to receive a */
/* message from the Print Reply Port. Busy wait for a GDP process */
/* to receives a message from the Print Reply Port. Such an event */
/* will trigger an AP interrupt and set Window 4.disp_state true */
/* to indicate the nature of the interrupt. */

Yt Y
Do While not (Window_4.disp_state = 1); End;

/**/

/* At this point Window 4.selected index contains the index of the */
' /* process object which was dispatched. Since'we are using only process */
/* object one selected index will equal one. Window_4.selected state */
/* contains software defined information concerning the action taken, if */

/* any, by software in completing this instruction.
/**/

Call Dispatch; /* Hang IP processor carrier on dispatching port. */

End;

End
End

Return_print_message;

iAPX 432 Interface Processor Architecture Reference Manual

/**/
/* */
/* Initialization *

¢ 1 . */
/***k******/

Call Disable Interrupts; /* Busy waiting will be used, not the interrupt mechanism

/* Also assume that no faults will occur

Call Dispatch;

/**/

/* */
/* Print Driver Body */
/:**:/
Do While true; /* loop forever
Call Get print message; /* Receive a message from the Print Request Port.
Call Open window; /* Open a window onto the message.
Do offset = 0 to 1023; /* Read and print the contents of the message

Call Print (subrange(offset)); /* using the mapped subrange and the AP's native

End; /* instruction. Assume Print is a system routine.
Call Close_window; /* Close the window.
Call Return print message; /* Send the message to the Print Reply Port.
o
Printer_task;

F-10

*/

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

o o= ow e

Ip

@-

IP
DISPATCHING
PORT -
-7
Lo -
/.A
Py > 7 «
CARRIE Ip Ip)
PROCESSOR PRO?ESS
OBJECT
¥
z:
PRINT PRINT
REQUEST REPLY
PORT PORT
C
S
CARRIEHR
432
PROCESS
PRINT
OBJECT

"RECEIVE"
function

Figure F-2 1IP Performs Blocking Receive

F-11

iAPX 432 Interface Processor Architecture Reference Manual

F-12

Figure F-3 GDP Executes SEND and Unblocks RECEIVE

1P
DISPATCHING
PORT
o
CARRIER | » v ng; /
f PROCESSOR PROCESS ,\Qj’;
OBJECT <>§3,«3
R4
’
/7
/
| /
/
|
PRINT ! PRINT
REQUEST I REPLY
PORT : PORT
|
" |
CARRIER |
SERSEI—— ‘{’“ |
5
|
|
432
PROCESS
PRINT
OBJECT

Ip

AP

1P
DISPATCHING
PORT

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPIE

SELECTED
STATE

L

/

INTERRUPT
g N

N

L

EARRIER
o

SELECTED
INDEX

1P
PROCESSOR
O0BJECT

1P
PROCESS

Ip

=

AP

]

PRINT
REQUEST
PORT

CARRIER

STATE

INDEX

Figure F-4 1IP Responds to IPC

PRINT
REPLY
PORT

432
PROCESS

PRINT
0BJECT

F-13

iAPX 432 Interface Processor Architecture Reference Manual

o (D

' WINDOW
"ALTER MAP AND
Ip SELECT DATA
PROCESS SEGMENT" function
I "™
PRINT PRINT
REQUEST REPLY
PORT PORT
(e
CARRIER
e
432
PROCESS
Yy
PRINT
OBJECT

Figure F-5 Window Manipulation

F-14

INTERPROCESS COMMUNICATION AND DISPATCHING EXAMPLE

PRINT
REQUEST
PORT

PRINT
REPLY
PORT

432
PROCESS

Ip

=
feas it Gtne. g

PRINT
OBJECT

"SEND"
function

Figure F-6 Print Reply

F-15

- @ IAFX 432 Interrace Frocessor
ln Architecture Reference Manual

171863-001
REQUEST FOR READER’'S COMMENTS

Intel Corporation attempts to provide documents that meet the needs of all Intel product users. This form lets
you participate directly in the documentation process.

Please restrict your comments to the usability, accuracy, readability, organization, and completeness of this
document.

1. Please specify by page any errors you found in this manual.

2. Does the document cover the information you expected or required? Please make suggestions for
improvement.

3. Is this the right type of document for your needs? Is it at the right level? What other types of documents are
needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this document on a scale of 1 to 10 with 10 being the best rating.

NAME DATE
TITLE

COMPANY NAME/DEPARTMENT

ADDRESS

CITY STATE_______ ZIP CODE

Please check here if you require a written reply. 0O

E'D LIKE YOUR COMMENTS . ..

lis document is one of aseries describing Intel products. Your comments on the back of this form
Il help us produce better manuals. Each reply will be carefully reviewed by the responsible

rson. All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL

FIRSTCLASS PERMITNO.79 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation

SSO Technical Publications Dept.
3585 SW 198th Ave.

Aloha, OR 97007

AL3-2-485

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

ntel

INTEL CORPORATION, 3585 SW 198th Avenue, Aloha, Oregon 97007 e (503) 681-8080

Printed in U.S.A./Y63/1K/0781/AP

