PROGRAMMER'S
GUIDE

Intel Corporation

Contents

Documentation GUIA@ ... v
1 OVEIVIEW ..ottt 1
1.1 INtrOGUCHON v 3
1.2 Vx960 A Real-Time Partner for UNIXcccccoivnniiniiiininns 5
1.3 Development Cycle ... 6
1.4 Multitasking and Intertask Communicationsc.cccccoeueverieninniinininans 8
1.5 INEtWOIK ..cviiiiiiiniiiiiiic e 9
1.6 Module Loader and System Symbol Tableccc.ccivmnvcccncncnnnnce 11
1.7 SREIL i s 12
1.8 Debugging Facilities ... 12
1.9 Performance Evaluation ... 13
1.10 I/ O SYSEEIM ettt neene 14
111 Local File SysStemsc.cccoovvviiiniiiinicniiniiniicc s 15
1.12 Utility LIDrariesoccuceeieenicinieiinieneecic 16
1.13 Board Support Packagesccccoiiiiniiiicniiineneneeeees 18

intel Vx960 1

Vx960 6.0 — Programmer’s Gulde

2

GetNG SIAMEA ...t se e e s st s e e srsas s sne s 19
2.1 INtrOAUCHION. ...ttt eeeree e e saesaenesaesrasnesanassaserensassunnse 21
2.2 Installing Cross-Development TOOISccccouieriviinriniisisissicncnisescncens 23
2.3 InStalling VX960 ..o eisnaiensssinsse e sss s sssssnene 23
2.4 Configuring the Host System veerernsnnnns ceevenerennes vererennennes S 24
2.5 Configuring the Target Hardwarecoucvivnvmninincncennieinennes 26
2.6 BOOtING VXI00 ..ottt sscsiscssssssensssesesnene 29
2.7 Playing With Vx960 and a Demo Programcccccvvinvcrcccnncrircncnnnns 38
2.8 TroubleshOOtINGcccccivivinieiiiiinnr i 46
BASIC OF ottt sttt st ane st sttt saes e s se s e st enann 51
3.1 INErOAUCHON vttt e st aresae e e e essees s e s ssssssrannnna 55
3.2 TASKS ettt et te e ettt e seaa e e besa s ae st e e st e eeanbesenessnrasss ernnesen 56
3.3 Intertask COMMUNICALIONSveiveereeerierireseieeieseevneeerarrecnaseesesensesasnens 73
3.4 Interrupt Service Code ...t s 89
3.5 WatchdOog TIMETS ...ccoovviveiiierccniieencinct e 95
WA @ TRTVES (= o o TSSOSO OSSP 97
4.1 Introductionccceceernene. eerteeteesbesseearesteeeeeseestesareantassrentaaereesassesnserasres 101
4.2 Files, Devices, and DIIVErSccccoviieieeierececeiiveeceeereresenesseeseseecneeenene 102
4.3 BaASIC I/ O ottt e e et eeaeae e e e a e ae s st e ane e e snaessanasnen 104
4.4 Buffered I/ O: StAIO .uicieiiieecreireceerie et e caee et ete s seestae s ensr e neaanes 109
4.5 Other Formatted I/ O ..ot erne e 111
4.6 Devices iN VXTO0 ...ttt e entesrteseseae s e eserecenesssnaesesnsnase 112
4.7 Initializing the I/ O System ..o, 125
4.8 Differences Between Vx960 and UNIX I/O ..ceeieiiveievriceecrcneenenne 125
4.9 Internal StrUCHUTEcccoieeiiice ettt er e s ae e e e sbaaeeenae 126

Intel Vx960

Contents

LOCAI FII@ SYSTEMS ...ttt s b st e sasnsnssssssnss 149
5.1 18316 geTa 11 Tai s (o) « NP R PR 151
5.2 DOS-Compatible File SYStemccouvesiuvueinisincresismniseisusencnsiesesssessssssenes 152
5.3 RT-11 File Systemccccmuiceniminiriniincssisissisinssisssssiisessesssssssssssssssenss 174
5.4 Raw File SYstemcoiiiniiicicccciectisisreesseseneiennssssssessssssssssesense 179
NEIWOIK ..ottt sssassass s assaas s sasssbssasasaons 187
6.1 INtrOAUCHON ..cueiiiciiiiicicecc ettt et e saessoneseanne 189
6.2 Network COMPONENtSc.ccccceeveninirneiiecesenereisecenerereeiseccsesaessseseesence 190
6.3 Configuring the Network ... 201
6.4 Network Initialization on Startupc..ccccccvemeenencrcneenncreenensecccessscnns 216
6.5 Serial Line Interface Protocolc.ccoucoinecinncnncrniccceneesenencsnene 218
6.6 Backplane NEtWOIKScccveeeueeerenmrereenireeneeseneseesensaeesonessseesensessenns 218
Cross-DeVeIOPMENT ...ttt et ae st 231
7.1 INtrodUCHON ..c.coiiiiiiecieecc ettt cseseaceee s saseneanes 233
7.2 The Vx960 Cross-Development Environmentcccceceevevieicenrncncenennne 234
7.3 The Module Loader and System Symbol Tablecccccceecvccrurueunannn 235
7.4 Building and Loading Application Modulescccccovvueveercrunerenencncac 237
CONFIGUIAHION Lttt ettt s s sase et sse st ne s snssesessnenenas 245
8.1 INErOdUCHON ..ottt et ee e e en e s 247
8.2 Configuring VX960c.cociiverrinriereereceineereerecnsaessenaeseseessnssessssssssssasens 248
8.3 Building a Vx960 System IMageccccceeeerevnerruecnnenrenineeresessassecenenens 259
8.4 Alternative Vx960 CONfigurationscccceeeeceeeeerenrereriessenssessesesesesesens 263
SREIL oot e et seesees 269
9.1 INErOAUCHION .iiiiiciiiiiitc ettt st s e e e e sesnennas 271
9.2 GENETAl USE ...cuceeuiniruceiiiinieitcencnerereentseses e ccreneesa s rstsesssesesssasassssssesasanes 272
9.3 Shell LANZUAGEc.ccceuetrnuerrenteriencreceneeceeneneereneseneceenenrsestsessensnssassensssssnssses 275
9.4 REAITOCHON ...cueueieiceiiiinineieiescrtrtr e ense st et eaeeea et seeass et sansasasssessesnosans 285

Intel Vx960 i

Vx960 5.0 — Programmer’s Guide

9.5 Shell Line EdItingccccivininnnrnennnenicnincneeiiesiisessscessesccsesesessssssseses 288

96 Aborting the Shell ... 290

9.7 The User LIDIary ...t ssssssssesesees 291

9.8 Remote LOGIN ...ttt sssssessssens 292

9.9 The SREll TASK ...ccceeeeruisercrirreceeinrenneterecesneeseesessesssenssssnssancasensssnsassnsssanns 294

1 0 DEBUGGING ..ttt et se e snes e s s et s sasseseare st snsasnessnsasnesane 295

- 10.1 INtrOdUCHON ..ottt sebnans 297

10.2 TRE SREIL ettt e bt er e sttt ene 298

10.3 Task Names and IDs, and the “Current” Task and Address 302

10.4 Task and System Informationcccoeieeiiiciiiiinnnnee. e ereaes 303

10.5 Breakpoints and Single-Steppingccccvveiiiniiivnncicicc e 305

10.6 Disassemblercccccevuerenerrerneencnne. feetereereeaeneete st et ettt st e et s enateaeannes 308

10.7 Exception Faults JE OSSO RO OO TR 309

10.8 Miscellaneous Useful UtIlitiesccocevereinerceniininnicneniniiieieeecennne 309

10.9 TIPS ettt e s R e 313
Appendices

A DIr@CONes ANA FIlES ... recrceemmasssssesssessesesseessmseseessssssssssenssssasssssssassssssssies 317

B MEMOTY LAYOUL ...t e s enee sttt er b et ene e senen 325

C Coding CONVENTIONS ..ottt er e ensiees 329

D BIDIOGIAPNY eeeveeere oo eeeee e e seeere st seee s seesesesseess s oo 339

INAEX et s s b eRR e As bR R R bbb bbb e R s 357

v Intel Vx960

Documentation Guide

Vx960 documentation is divided into the following manuals:

The Vx960 Programmer’s Guide describes the components of the Vx960 system
and how they interrelate.

The Vx960 Reference Manual contains UNIX-style manual page entries for all
Vx960 modules and subroutines.

The Board Support Package Manual describes each board in man page format.

The GNU/960 Manual contains the following documentation:

The GNU/960 Tools Release Notice provides an overview of the highlights of
the GNU/960 release. It covers the differences between the GNU/960
release and previous releases, and it includes information on fixes to known
bugs.

Installing the GNU/960 Tools gives detailed step-by-step installation informa-
tion for the GNU /960 tools (source, binaries, and documentation).

Using the GNU/960 Tools is an entry-point document that describes the his-
tory and usage of the tools, gives a summary overview of each command in
the tool set, and explains the concepts and process of developing an applica-
tion using the GNU/960 tools.

The GNU/960 Tool Development manual describes how to customize the
GNU/960 tools for a variety of purposes, including porting to other hosts.
The GNU/960 Reference Manual contains the man pages which provide
detailed information on each GNU/960 command. Many man pages also
provide feature examples. The intro(1GNU) man page gives an overview of
all the GNU /950 tools.

Intel Vx960 v

Vx960 5.0 — Programmer’s Guide

vl

* Using Intel 960 GNU CC provides in-depth information on gcc960, the
GNU/960 C compiler, including detailed descriptions of all commandline
options. This is the source for complete reference information on gcc960.

« Using GDB/960 provides in-depth information on gdb960, the GNU/960
debugger, including detailed descriptions of all commandline options. This
is the source for complete reference information on gdb960. A gdb960 quick
reference is also included.

Note: For additional information on the gdb-based debugger available for
Vx960, refer to the Vx960 Release Notes.

* Using GAS/960 provides in-depth information on gas960, the GNU/960
assembler, including detailed descriptions of all commandline options. This
is the source for complete reference information on gas960.

* Using GLD/960 provides in-depth information on gld960, the GNU/960
linker including detailed descriptions of all commandline options. This is
the source for complete reference information on gld960.

Vx960 Programmer’s Guide

The Vx960 Programmer’s Guide contains the following chapters:

. Chapter 1. Overview
Outlines all Vx960 facilities and subsystems, and indicates where to find addi-
tional information about each.

. Chapter 2. Getting Started
Provides step-by-step procedures for:

* installing Vx960

+ configuring host software and target hardware and software
* booting Vx960

* loading and running the demo programs.

Intel Vx960

Documentation Gulde

& o o

Chapter 3. Basic OS
Describes the fundamentals of the Vx960 run-time environment including:

* multitasking kernel

« spawning and manipulation of tasks
* intertask communication facilities

* interrupt service code.

Chapter 4. 1/O System

Describes the user view of the Vx960 I/O system in general, the speaﬁcs of
Vx960 supplied device drivers, and the internal details of the I/O system,
including how to write device drivers.

Chapter 5. Local File Systems
Describes available local file systems: a DOS-compatible file system, an RT-11
file system, and a raw file system.

Chapter 6. Network
Describes the Vx960 network and remote file system. Covers TCP/IP, Ethernet,
backplane network, remote procedure calls, and network file systems.

Chapter 7. Cross-Development

Discusses Vx960 cross-development facilities and procedures. Describes the
module loader and system symbol table, how to build and load application
modules, and how to configure and build Vx960 itself.

Chapter 8. Configuration

Discusses the Vx960 standard configuration, plus the various options that can
be exercised to tailor the system to particular hardware and software require-
ments.

Chapter 9. Shell
Describes the Vx960 shell, an interactive C-expression interpreter.

Chapter 10. Debugging
Describes Vx960 debugging facilities and techniques.

Appendix A. Directories and Files
Describes Vx960 directories and files, showing the Vx960 system dlrectory
structure and summarizing the role of each component.

Appendix B. Memory Layout
Provides a map of system memory layout.

Intel Vx960 vil

Vx960 5,0 — Programmer’s Guide

viil

Appendix C. Coding Conventions
Describes coding conventions used by Intel in all source modules.

Appendix D. Bibllography

Provides a collection of resources on internetworking, operating systems in
general, and UNIX in particular. This bibliography is meant as a starting point
for further research.

Index
Provides an extensive topical index.

Vx960 Reference Manual

The Vx960 Reference Manual consists of UNIX-style man page entries, and it is
divided into the sections summarized below.

Master Intex
Contains the table of contents for Vx960 libraries and routines.

Libraries (1)

Contains manual entries for all Vx960 libraries. Each manual entry lists the rou-
tines found in a given library, including a one-line synopsis of each, along with
a general description of their use. Individual manual entries for each subroutine
follow the general description. Entries for libraries that are target-specific (e.g.,
sysLib and sysAlib) are found in the Supplements section.

Drivers (2)
Contains manual entries for all Vx960 supplied drivers. Entries for drivers that
are target-specific (e.g., tyCoDrv) are found in the Supplements section.

Tools (3)
Contains manual entries for all Vx960 tools that run under UNIX.

Intel Vx960

Documentation Gulde

Target Supplements

The following supplements are supplied separately. These supplements provide
information specific to each target supported by Vx960 and contain the manual
entries for the target-specific modules. The following is a list of currently supported
targets for which the supplements are available:

Cyclone CVME960 Intel EVB0960CA
Heurikon HK80/V960E Intel EV80960SX
Tadpole TP-960V Intel TomCAT

Note: The Intel TomCAT board is not commercially available at this time. It is
included in the list above for completeness.

The targets in the first column are commercial Versa Module Eurocards (VMEs). The
Intel targets listed in the second column are Intel processor evaluation boards. For
additional information on each of these, refer to the Solutions 960 catalogue.

To obtain the Solutions 960 catalogue write to:

Intel Literature Sales
P.O. Box 7641
Mt. Prospect, IL 60056-7641

For phone orders in the U.S. and Canada call toll free: (800) 548-4725.

On-Line Documenfcﬂon,

- The Vx960 distribution includes the nroff sources for the entire Vx960 Reference Man-
ual. Formatted entries can be accessed on-line from the host using the tool vxman(3).
For more information, see 2.7.2 On-Line Help and the manual entry for vxman(3).

Intel Vx960 ix

Vx960 6.0 — Programmer’s Guide

Typographical Conventions

Vx960 printed documentation uses the font conventions shown in the table below to
differentiate various elements. In addition, parentheses are always included with
subroutine names, and a caret (*) is used to indicate control characters. Also, when
libraries, drivers, or tools are cross-referenced to a section of the Vx960 Reference
Manual, the section number is shown in parentheses after the name, e.g., taskLib(1).

Font Style for Speclal Terms
Term Example
files, pathnames /etc/hosts
libraries, drivers memLib.c, nfsDrv.c
UNIX shell tools vxman
subroutines semTake()
boot commands P
code display main ();
keyboard input rlogin vx
display output value = 0
user-supplied parameters name
constants : INCLUDE_NFS
C directives/data types #define
keyboard return RETURN
control characters ~C
lower-case acronyms fd

X Intel Vx960

Overview

Contents
1.1 INtrOdUCHON ©aoveeveviecerianieereeseee s esesnnee i ara iRt ae bttt ee 3
1.2 Vx960 A Real-Time Partner for UNIXcccoovmiiniineceniseesesenonenenenes creesrone 5
1.3 Development CYcle ...t s ssenssee 6
1.4 Multitasking and Intertask Communicationsc.ccceiiiicerniicieniiieecdocreee e seseseneeene 8
1.5 INEEWOTK Lottt sttt et st et tes st s sa st s enteutaeene e s s esnonssesenasenarens 9
1.5:1 SOCKELS vttt ettt cetae st ea et eaes st s e sttt e ettt as e sa e s e sneesaaeasaarnaseserann 9
152 Remote File Access: NFS, ftp, rsh ..o 10
1.5.3 Remote Login: rlogin, telnet ... 10
1.54 Remote Procedure Calls (RPC) ...cccoermiemmniucrienioricniniiiriiiniieneresseseaessenseosesssesseons 10
1.6 Module Loader and System Symbol Tablec..ccoceciiminiiniiiinnimiiniccneseneeseeseeens 11
1.7 Shellccoevevencrieninnann et eoete et e sea e R et s bt e e en e s g aat e Saa0sae S0 e e skt e st e b et an 0 e b e s e aee s eneeassennnaens 12
1.8 Debugging FAClities ..o 12
1.9 Performance EvalUationccoccoicniiniiicnicninienencnnnecrsessseescsssesescrseesesenssasassssassssessesans 13
110 T/ O SYSEIM ettt rcstse e ss s s sesaessaesesnscscnste s sassenessaeasins veberenene 14

Intel Vx960 1

VX960 6.0 — Programmer’s Guide

1.11

1.12
1.13

LOCal File SYStEMS ettt sresss st ssises s ssessassassassasssses st sssescsenns 15
1.11.1 DOS File SYStemccccuiriviviniviinnniiinnitiniiniini s it sssssssssssssssssses esssssssscscns 15
1.11.2 RT-11 File SYStemcoceverieineiiiiisininiiscecnsnnsinessstosianssessssssssnssesssonns reresrnsrnnns 15
1.11.3 Raw Disk File Systemcc.ccccecevueuunee Cererse s e et AR R bR bR e e 16
1.11.4 Alternative File SYyStems ...ttt s snnen 16
Utility LIDIaries ...t sss s s s sesss s ssssstes st sssssssss s sssesesenes 16
B0ard SUPPOIt PACKAGES «....uuceurreusrercrmimnnnmscismnesmmanessccssassssissssessesssesssesesianssmmmssssssssessnesssons 18
Intel Vx960

1.1

Overview

Introduction

Vx960 is a high-performance, real-time operating system and a powerful develop-
ment environment for real-time applications. Vx960 includes a fast and flexible run-
time system, powerful testing and debugging facilities, and an unparalleled UNIX
cross-development package, at the heart of which lies Vx960’s extensive UNIX-com-
patible networking facilities.

The networking facilities allow Vx960 and UNIX to combine to form a complete,
integrated development and operational environment. Each is used for what it does
best. The UNIX system is used for software development and the non-real-time
components of applications, while Vx960 is used for testing, debugging, and run-
ning real-time applications.

Once development is complete, the VX960 system can operate either stand-alone or
networked with other systems running Vx960 or UNIX.

Vx960 is available for several iarget intel960™ microprocessor, CPU boards and can
be networked with any BSD 4.2 or 4.3 UNIX host systems, or any other operating
system with TCP/IP networking facilities.

Intel Vx960 k]

Vx960 5.0 — Programmer’s Guide

The Vx960 real-time system includes:

High-Performance Real-Time Kernel Faclilties
Multitasking with preemptive priority scheduling, intertask
synchronization and communications facilities, interrupt han-
dling support, watchdog timers, and memory management.

Network Facllities Transparent access to other Vx960 and UNIX systems via UNIX
source-compatible sockets, remote command execution, remote
login, remote procedure calls (RPC), source-level remote debug-
ging, and remote file access, all using TCP/IP network protocols
both loosely-coupled over standard Ethernet connections and
tightly-coupled over a backplane bus using shared memory.

Module Loader and System Symbol Table
Dynamic loading of object modules over the network or from a
disk, with run-time relocation and linking.

Shell A C-interpreter interface that allows interactive execution of
most C language expressions, Vx960 functions, and any other
loaded functions, and also includes symbolic references to vari-
ables.

Debugging Facilities
Source-level debugging, a symbolic disassembler, symbolic C-
subroutine traceback, task-specific breakpoints and single-step-
ping, system status displays, and exception handling to fault
and report on interrupts and hardware exceptions such as bus or
address errors.

I/0 System A fast and flexible UNIX-source-compatible I/ O system, includ-
ing UNIX standard buffered I/O.

Local File Systems ‘
Fast file systems appropriate for real-time and compatible with
the MS-DOS and RT-11 file systems, as well as a raw disk file sys-
tem.

Remote File System
Network File System (NFS) facilities for accessing files transpar-
ently on any NFS server on the network, and a non-NFS network
facility for accessing the host file systems using rsh or ftp.

4 Intel Vx960

1. Overview

1.2

Performance Evaluation Tools
An execution timer for timing a routine or group of routines, and
utilities to show CPU utilization percentage by task.

Utility Libraries An extensive set of utility functions available to application
developers, including: message logging, string formatting and
scanning, linear and ring buffer manipulations, linked-list
manipulations, and symbol table manipulation.

1/0O Drivers Ty driver for serial I/ O devices
Network driver for remote files
Pipe driver for intertask communication
RAM “disk” driver for memory resident files
SCSI library for SCSI hard disks and floppies.

Board-Support Packages
Routines for hardware initialization, interrupt setup, timers,
memory mapping, etc.

Boot ROMs Allow a target CPU to be booted over the network.

System Configuration Utilities
Allow reconfiguration and extension of Vx960 and building
applications in ROM.

Vx960 A Real-Time Partner for UNIX

The UNIX Operating System is an excellent system for program development and
for many interactive applications. However, it does not support real-time applica-
tions well. On the other hand, traditional real-time operating systems provide poor
environments for program development or for non-real-time components of an
application.

Intel Vx960 5

Vx960 5.0 — Programmer’s Guide

1.3

Rather than create a single operating system that does it all, Intel has networked two
different, but cooperating operating systems, Vx960 and UNIX. Vx960 handles the
critical real-time chores, while UNIX is used for program development and for non-
time-critical applications. Vx960 and UNIX work well together because Vx960 has
been designed to be UNIX-compatible at many levels, in its extensive networking
facilities. :

As a cross-development host, UNIX is used to edit, compile, link, and store real-time
code, which is run and debugged on Vx960. The resulting Vx960 application can be
run stand-alone either in ROM or disk based, with no further need for the network

- or the host system.

However, UNIX and Vx960 can also work together in a hybrid application, with
UNIX systems using Vx960 systems as real-time servers in a networked environ-
ment. For instance, a Vx960 system controlling a robot might itself be controlled by
the UNIX system running an expert system, or a number of Vx960 systems running
factory equipment might be connected to UNIX systems tracking inventory or gen-
erating reports.

Development Cycle

To help you understand the environment provided by Vx960, we have outlined a
typical development cycle. The hardware in a typical development environment
includes one or more multi-user UNIX host systems and one or more single-user
Vx960 target systems connected by an Ethernet network. The UNIX system can be
loaded with large main memory, large disks, backup media, printers, and terminals.

The target systems, on the other hand, have only the resources required by the real-
time system, plus some for testing and debugging. This can be as little as a CPU,
some serial I/O channels, and an Ethernet connection.

Software development for a real-time system begins on the UNIX host development
system. Using the development and management tools on UNIX, the application
team begins to design and implement the application modules. Developers are free
to use the usual UNIX tools such as text editors, compilers, assemblers, make,
source-code control, and so on. The applications themselves can make use of the
many libraries supplied by Vx960.

. Intel Vx960

1. Overview

Application modules in C are compiled in the usual way with a cross-compiler. The
application modules do not need to be linked with the Vx960 system libraries or
even with each other. Instead, Vx960 can load the UNIX-generated object modules,
using the symbol table contained in all object modules to resolve external symbol
references.

Selected modules can be dynamically loaded across the network for testing and
debugging. The Vx960 “shell” program can then be used to invoke and test individ-
ual application subroutines, or complete tasks.

Vx960 remembers the symbol tables from previously-loaded object modules, giving
symbolic access to data and subroutine names. You can examine data variables, call
subroutines, spawn tasks, disassemble code in memory, set breakpoints, obtain sub-
routine call tracebacks, and so on, all using the original symbolic names. Also, pro-
gram errors detected by the hardware, such as illegal memory references or illegal
instructions, are faulted and reported by Vx960, allowing further symbolic debug-

ging.

Source-level debuggers are available that allow the application to be viewed and
debugged in the original source code. Setting breakpoints, single-stepping, examin-
ing variables, and so on, can be done at the source level, using either commands at
an ASCII terminal or a mouse-based menu-driven interface on a windowed work-
station.

The cycle of building, downloading, and testing modules is iterated until the appli-
cation is ready for the production environment. You can remove Vx960 debugging
facilities from the production system, if necessary, to produce a system requiring
minimal resources. At that point, you can link the application with Vx960, and put
it into ROM if desired.

The remainder of this chapter outlines each of the components listed in the overview
above and provides reference to further documentation.

Intel Vx960 7

Vx960 6.0 — Programmer’s Gulde

1.4

Multitasking and Intertask Communications

Modern real-time systems are based on the complementary concepts of multitasking
and intertask communications. A multitasking environment allows real-time appli-
cations to be constructed as set of independent tasks, each with its own thread of
execution and set of system resources. The intertask communication facilities allow
these tasks to synchronize and communicate in order to coordinate their activity.

The Vx960 multitasking kernel uses interrupt-driven, priority-based task schedul-
ing. It features fast, context-switch times and low, interrupt latency.

Under Vx960, any C subroutine can be “spawned” as a separate task, with its own
context and stack. Other basic task-control allows tasks to be suspended, resumed,
deleted, delayed, and moved in priority. See 3.2 Tasks in the Basic CS chapter as well
as the manual entry for taskLib(1).

Vx960 supplies several types of traditional task-blocking semaphores as the basic
task synchronization and mutual-exclusion mechanisin. Vx960 semaphores are fast
and efficient. In addition to being available to application builders, they have been
used in building higher level facilities in Vx960.

For intertask communications, Vx960 supplies a fast and flexible message queue
facility, intertask pipes, sockets, and signals. Sockets are a UNIX-compatible mecha-
nism for exchanging byte streams between tasks regardless of location in a net-
worked application. Signals are a UNIX-compatible mechanism for asynchronous
transfer of control within a task based on hardware or software exceptions. For addi-
tional information see the following:

* semaphores are described in the manual entry for semLib(1) and in Chapter 3.
Basic OS;

* message queues are described in msgQLib(1) and in Chapter 3. Basic OS;

* pipes are described in pipeDrv(2) and in Chapters 3. Basic OS and 4. I/O Sys-
tem;

+ sockets are described in sockLib(1) and in Chapters 3. Basic OS and 6. Network;

* signals are described in sigLib(1) and in Chapter 3. Basic OS.

intel Vx960

1. Overview

1.5

Network

The key to Vx960’s partnership with UNIX is its extensive networking facilities.
Since the network provides a fast, easy-to-use connection between the two systems,
you can use UNIX as a development system, as a debugging host, and as a provider
of non-real-time services in a final system.

Vx960 supports network connections both loosely-coupled over Ethernet networks
(IEEE 802.3), and tightly-coupled over a backplane bus using shared memory. Vx960
uses the TCP/IP network protocols as implemented in BSD 4.3 for all network com-
munications.

Vx960 provides several levels of network access: process-to-process sockets, remote
command execution, remote login, remote procedure calls, remote file access, and
remote source-level debugging.

Sockets

Vx960 provides standard UNIX socket calls, which allow real-time Vx960 processes
and other processes, such as UNIX processes, to communicate in any combination
with each other over the network. Vx960 socket calls are source compatible with
UNIX BSD 4.3.

Any process can open one or more sockets to which other sockets can be connected.
Data written to one socket of a connected pair can be read from the other socket. The
network link is transparent in the communications. In fact, the two processes do not
know whether they are communicating with another process on the same CPU or
another CPU, or with a Vx960 process or a UNIX process.

See the manual entry for sockLib(1).

Intel Vx960 9

VX960 5.0 — Programmer’s Guide

1.5.2

1.5.3

1.5.4

10

Remote Flle Access: NFS, fip, rsh

Remote file access across the network is also available. A program running on Vx960
is able to use a UNIX system as a “virtual file system.” Files on any UNIX system can
be accessed, via the network, as if they were local to the Vx960 system. A program
running under Vx960 does not need to know where that file is or how to access it.
For example, /dk/file might be a file local to the Vx960 system, while host:file might
be a file located on another machine.

Vx960 includes the SUN Microsystems standard Network File System (NES). It runs
as an NFS client with any other system that runs an NFS server. Vx960 can also use
two older protocols to provide transparent remote file access: rsh, or ftp. An ftp
server provides remote access to Vx960 from other Vx960 or UNIX systems using ftp.

See the manual entries for nfsLib(1), remLib(1), ftpLib(1), and ftpdLib(1), and the
sections 4.6.4 Network File System (NFS) Devices and 4.6.5 Non-NFS Network Devices in
the 1/0 System chapter.

Remote Login: rlogin, telnet

The remote login feature allows you to log into Vx960 or UNIX machines from any
other Vx960 or UNIX machine on the network. On a UNIX workstation, you can
open an rlogin window that communicates with the Vx960 shell. By opening such
windows, you can monitor and control real-time Vx960 systems right from their
desks.

Vx960 can also be accessed via telnet, for systems that do not have rlogin.

See the manual entries for rlogLib(1) and telnetLib(1).

Remote Procedure Calls (RPC)

Designed by SUN Microsystems and available in the public domain, Remote Proce-
dure Call (RPC) is a facility that allows a process on one machine to call a procedure
which is executed by another process on another machine. Thus with RPC, a Vx960
task or UNIX process can invoke routines that are executed on other Vx960 or UNIX
machines, in any combination. See the public domain RPC documentation and the
manual entry for rpcLib(1).

Intel Vx960

re

1. Overview

1.6

Module Loader and System Symbol Table

The communication mechanism from application to Vx960 real-time, operating sys-
tem is a subroutine call. Vx960 does not need mechanisms such as system faults to
get to system functions. Instead Vx960 supplies a system symbol table and a loader
with run-time linking to give dynamic and even interactive access to all loaded mod-
ules.

The Vx960 module loader can load object modules over the network or from a disk,
and relocate them anywhere in memory. The loader also uses the symbol table con-
tained in every object module to build a system-wide symbol table of loaded func-
tion and variable names. Names from system and application modules alike are
added to the system symbol table.

This symbol table is the heart of many of Vx960’s most significant development aids.
The loader itself uses the system symbol table to resolve undefined references in
modules being loaded, linking newly loaded modules to previously loaded mod-
ules. Also, Vx960 uses the system symbol table to provide interactive access to all
system and application modules that have been loaded. Finally, all of Vx960's
debugging facilities use the system symbol table to provide symbolic references
wherever possible.

Run-time linking makes it easy to have shared subroutine libraries, in which a single
copy of a set of subroutines can be used by several tasks, rather than requiring each
task to be linked with separate copies of needed subroutines. As a result, there is no
inherent distinction between Vx960 “system” modules and user “application” mod-
ules. This makes the Vx960 real-time system an open system: the system facilities are
easy to access, modify, and extend.

For more information on the module loader and the system symbol table, see
7. Cross-Development. Also see the manual entries for loadLib(1) and symLib(1).

Intel Vx960 11

VX960 5.0 — Programmer’s Guide

1.7

1.8

12

Shell

Vx960 includes an interactive program called the “shell,” which allows developers
to interact with all Vx960 facilities. The Vx960 shell provides one simple but power-
ful capability: it can interpret and execute almost all C-language expressions, includ-
ing calls to functions and references to variables whose names are found in the
system symbol table.

Thus the shell can be used to call Vx960 system functions, call any application func-
tions, examine and set application variables, create new variables, and even as a gen-
eral purpose calculator with all C operators.

In addition, the shell includes a command history facility and vi-like command-line
editing, and can also be used to log into a remote UNIX or Vx960 machine with rlo-

gin.

The Vx960 shell is discussed in detail in 9. Shell. See also the manual entries for
shellLib(1), usrLib(1), and dbgLib(1), which contain routines suited for interactive
access of Vx960 facilities.

Debugging Facilities

- Vx960 supplies a powerful set of debugging facilities. These include:

* routines to display system and task status
* asymbolic disassembler that can disassemble any loaded module

+ asymbolic C-subroutine traceback facility that can be called at any time to list
the current sequence of nested subroutine calls of any task

* complete trapping of hardware exceptions in a non-fatal way that allows sym-
bolic debugging to continue ‘

* a bréakpoint and single-stepping facility that can be applied to specific tasks,
even in shared code.

Intel Vx960

1. Overview

1.9

As noted above, all these facilities use the system symbol table to provide symbolic
references wherever possible.

For more information on Vx960’s debugging facilities, see 10. Debugging. See also
the manual entries for usrLib(1), dbgLib(1), excLib(1), and dsmLib(1).

In addition, the Vx960 distribution includes a port for a gdb-based, source-level
debugger, an extended version of the GNU Source-Level Debugger (GDB). This
allows full source-level debugging of remote Vx960 applications from a variety of

- host UNIX systems.

Using the gdb-based debugger, you can spawn and debug tasks that are running on
networked Vx960 targets. You can also debug already-running tasks spawned from
the Vx960 shell. While using this debugger, you can continue to take advantage of
Vx960’s native development tools. By combining the Vx960 shell, symbolic debug-
ging and disassembly, and performance monitoring facilities with the gdb-based
debugger capabilities, you have a comprehensive high-level debugging solution.

For additional information on the gdb-based debugger, refer to the Vx960 Release
Notes.

Performance Evaluation

To understand and optimize the performance of a real-time system, you must time
various functions that the system performs. Vx960 provides various timing facilities
to help with this task.

The Vx960 execution timer is able to time any C subroutine or group of subroutines.
Because the system clock is too slow to provide the resolution necessary to time fast
functions, the timer is also able to iterate execution of a group of functions until the
time of a single iteration is known to a reasonable tolerance. For more information
on the execution timer, see the manual entry for timexLib(1).

Vx960 provides a utility that shows, for each task, the amount of CPU time utilized,
the amount of time spent at interrupt level, and the amount of idle time. Time is dis-
played in ticks and in percentage. For more information, see the manual entry for

spyLib(1).

Intel Vx960 13

VX960 5.0 — Programmer’s Gulde

1.10

14

1/0 System

The Vx960 I/O system provides uniform device-independent access to many kinds
of devices. The user can call seven basic I/O functions: creat(), delete(), open(),
close(), read(), write(), and ioctl(). Higher-level I/ O functions, such as UNIX-com-
patible printf() and scanf() routines, are provided and built on these basic func-
tions.

Vx960 also provides an stdio buffered I/O package that includes UNIX-compatible
routines such as fopen(), fclose(), fread(), fwrite(), getch(), putch(), etc. These rou-
tines increase I/ O performance in many cases.

Vx960 includes device drivers for serial communications lines, disks, “RAM disks,”
intertask communication devices called pipes, and devices on a network. Applica-
tion developers can write additional drivers. Vx960 allows dynamic installation and
removal of drivers without rebooting the system.

The Vx9601/0 system s fast and flexible, allowing individual drivers complete con-
trol over how the user requests are serviced. Drivers can implement different proto-
cols, unique device-specific functions, and even different file systems, without
interference from the I/ O system itself. Vx960 also supplies several high-level pack-
ages that make it easy for drivers to implement common device protocols and file
systems.

For a detailed discussion of the I/O system, see 4. 1/0 System. Relevant manual
entries include ioLib(1) for basic I/ O routines available to user tasks, fioLib(1) and
stdioLib(1) for various format-driven I/O routines, and iosLib(1) and tyLib(1) for
routines available to driver writers. Also see the manual entries for the supplied
drivers.

Intel Vx960

1. Overview

1.11

1.11.1

1.11.2

Local File Systems

Vx960 includes different local files systems for use with block devices (disks). These
devices all use a standard interface so that file systems can be mixed with device
drivers. Vx960 I/O architecture makes it possible to have several different file sys-
tems, even at the same time, on a single Vx960 system.

DOS File System

Vx960 offers a file system compatible with DOS for personal computers. Vx960 DOS
is compatible with versions of MS-DOS up to and including 4.0. Vx960 DOS capabil-
ities offer flexibility appropriate to the varying demands of real-time applications.
Major features include:

* A hierarchical arrangement of files and directories, allowing efficient organiza-
tion and permitting an indefinite number of files to be created on a volume.

+ A choice of file fragmentation or contiguity on a per-file basis. File fragmenta-
tion results in more efficient use of available disk space while contiguity offers
enhanced performance.

» Compatibility with available storage and retrieval media. Disks created with
Vx960 DOS and on DOS personal computers can be interchanged.

The Vx960 DOS file system is implemented in dosFsLib(1).

RT-11 File System

Vx960 is supplied with a file system compatible with that of the RT-11 operating sys-
tem. This file system is appropriate for many real-time file systems, since all files are
contiguous. File accesses require one disk access, and sequential file accesses involve
minimal disk movement.

The RT-11 file system lacks a hierarchical file organization that is useful on large
disks. Also, the contiguous allocation scheme can result in fragmented disk space.

Intel Vx960 15

Vx960 6.0 — Programmer’s Guide

1.11.3

1.11.4

1.12

16

The Vx960 implementation of the RT-11 file system includes byte-addressable ran-
dom access (seeking) to all files. Each open file has a block buffer for optimized read-
ing and writing. The RT-11 file system is implemented in rt11FsLib(1).

Raw Disk File System

VX960 offers a simple “raw file system” for use with disk devices. The raw file sys-
tem treats the entire disk much like a single large file. Portions of the disk can be read
and written, specified by byte offset, and simple buffering is performed. The raw file
system offers advantages of size and speed when low-level disk I/ O is required.

This functionality was available by using the RT-11 file system and specifying the
device name as a file name for file operations. Services for file-oriented device driv-
ers using the raw file system are implemented in rawFsLib(1).

Alternative File Systems

In Vx960, the file system is not tied to the device or its driver. A device can be asso-
ciated with any file system. Alternative, user-supplied file systems can be written
and used by drivers in the same way, by following the same standard interfaces
between the file system, the driver, and the Vx960 I/O system.

Utility Libraries

Vx960 supplies many subroutines of general utility to application developers. These
routines are organized as a set of subroutine libraries, which are described below.
Application developers are encouraged to use these libraries wherever possible.
Doing so reduces both development time and memory requirements for the appli-
cation.

Intel Vx960

1. Overview

Interrupt Handling Support

Watchdog Timers

Message Logging

Memory Allocation

Vx960 supplies routines for handling hardware interrupts and
faults without having to resort to assembly language coding.
Routines are provided to connect C routines to hardware inter-
rupt vectors, and to manipulate the processor interrupt level.

See the manual entries for intLib(1) and intALib(1) for more
information. Also see 3. Basic OS for information about the con-
text in which interrupt level code runs, and for special restric-
tions that apply.

A watchdog facility allows callers to schedule execution of their
own routines after specified time delays. As soon as the specified
number of ticks has elapsed, the specified timeout routine is
called at the interrupt level of the system clock, unless the watch-
dog is canceled first. Note that this mechanism is different from
the kernel’s task delay facility.

See the chapter 3. Basic OS and the manual entry for wdLib(1)
for more information.

A simple message logging facility allows error or status mes-
sages to be sent to a logging task, which formats and outputs the
messages to a system-wide logging device, such as the system
console, disk, or accessible memory. The message logging facil-
ity can be used from interrupt level or task level.

See 4. 1/0 System and the manual entry for logLib(1) for more
information.

Vx960 supplies a UNIX source-compatible memory manage-
ment facility useful for allocating, freeing, and reallocating
blocks of memory from a “memory pool.” The size of the pool
can be set by the user. Blocks of arbitrary size can be allocated.
This memory scheme is built on a much more general mecha-
nism that allows Vx960 to manage several separate memory
pools.

See the manual entry for memLib(1) for more information.

Intel Vx960 17

Vx960 5.0 — Programmer’s Gulde

1.13

String Formatting and Scanning
Vx960 includes string formatting and scanning subroutines that
implement UNIX-compatible printf/scanf format-driven
encoding and decoding.

See the manual entries for fioLib(1) and stdioLib(1) for more
information.

Linear and Ring Buffer Manipulations

The library bLib(1) contains buffer manipulation functions such
as copying, filling, comparing, and so on, that have been opti-
mized for speed. The library rngLib(1) provides a set of general
ring buffer routines that manage first-in-first-out circular buff-
ers. These ring buffers allow a single writer and a single reader
to access a ring buffer simultaneously without being required to
interlock their accesses.

Linked-List Manlipulations
The library IstLib(1) contains a complete set of routines for cre-
ating and manipulating doubly-linked lists.

Board Support Packages

Two target-specific libraries, sysLib and sysALib, are included with each port of
Vx960. These libraries are the heart of Vx960’s portability because they provide an
identical software interface to the hardware functions of all boards. They include
routines for hardware initialization, interrupt handling and generation, hardware
clock and timer management, mapping of local and bus memory spaces, memory
sizing, and so on.

intel Vx960

Getting Started

Contents
2.1 INErOdUCHION i et 21
2.2 Installing Cross-Development TOOIS ..ottt 23
2.3 INSEAllING VX0 .ottt ctseassb o s st sa s ns 23
2.4 Configuring the Host System ...t 24
2.4.1 Hosts SUPPOrted ...ttt e 24
2.4.2 Initializing the Host Network Software ... 25
2.4.3 Establishing the Vx960 System Name and Address: /etc/hostsccoevevunnnnne. 25
244 Giving Vx960 Access to the Host: .rhosts and /etc/hosts.equivccceevevcucencs 26
2.5 Configuring the Target Hardwareccociniicnoniiieeenesessssenessoessseone 26
2.5.1 Installing the BOOt ROMS ..o scncinsssecnsasansseanes 27
2.5.2 Setting the Board JUMPEerscccocoiiiiiiiiiiicicici st 27
2.5.3 Installing the Boards in the Backplane ..o 28
2.5.4 Connecting the Cablesccccoiviviiiniiicices s snecrcseaneos 29
2.6 BOOtING VXTO0 ..ottt bbb 29
2.6.1 Boot ROM Commandscouureeinmiininimnmiininnicciiiiinses s ssessscsosssssssesens 30

-

Intel Vx960 19

Vx960 5.0 — Programmer’s Gulde

2.7

2.8

20

2.6.2 Entering BoOt Parameterscooirmreereereeneesnissmncsasnssesiosssnessscsssessesssessssssssssnns 30
2.6.3 Description of Boot INfOrmMationccevrinriiinesiircnieenenecseinesesscsesesssene 33
2.6.4 BOOLNG oottt st ere st eas 35
26,5 Alternative Booting Procedurescccveeiviemiiinnecreesinnsensnninncnseseesceseseens 36
2.6.5.1 Command-Line Parameters 36
2.6.52 Non-Volatile RAM 36
2.6.5.3 Reprogramming Boot ROMs 36
2.6.5.4 Using Alternate ROMs 37
2.6.6 REDOOUNE ...coveerceerriiceneiriinircitrnceenisisiit st sae s tsissss it er st b bt s esessns 37
2.6.7 Reconfiguring and Rebuilding VX960c.cccoverimiiiiiniirccccieccinnes 38
Playing With Vx960 and a Demo Programccceeuieemeeccncmcninsice s sissssanns 38
2.7.1 The VX960 Shell ...ttt i besssnaens 38
2.7.1.1 Special Characters 39
2.7.1.2 Examples of Shell Usage 39
2.7.1.3 Shell History and Line Editing 39
2.7.1.4 Remote Access to the Shell 40
272 On-Line Help .t e 40
2.7.2.1 From Vx960 40
2.7.2.2 From the Host: vxman 41
2.7.3 A Demo Program ...ttt sasse s s sssass s s snesssnens 41
TrOUDIESNOOINE ...ceniiiriniceititcirtctcttc s n e 46
2.8.1 TRINGS 10 Check ..ottt s enns 47
2.8.1.1 Hardware Configuration 47
2.8.1.2 Booting Problems 48
Intel Vx960

L SRR

2.1

Gefting Started

Introduction

One of Vx960’s biggest strengths is the ease with which you can get your develop-
ment environment up and running. If you have the necessary hardware and soft-
ware components, you should be able to install, configure, and boot Vx960, and be
downloading and debugging application code in less than a day.

This chapter provides step-by-step procedures for getting started with Vx960.
It covers:

L)

Installing the Vx960 files from the distribution tape.
Configuring the software on the UNIX host! system.

Configuring the target hardware, typically a single board computer plus Ether-
net hardware.

Booting Vx960 via Ethernet using the boot ROMs.

Downloading and running a demo program on Vx960, and exercising Vx960’s
testing and debugging facilities.

Troubleshooting, if anything goes wrong while bringing up Vx960.

1. In network terminology, each node, including a Vx960 target, is a network host. Do not confuse
this host with the cross-development host/target distinction in Vx960 documentation.

Intel Vx960 21

Vx960 — Programmer’s Gulde

22

This chapter discusses bringing up Vx960 in a relatively simple configuration. Other
chapters elaborate more advanced options. In particular, 6. Network discusses gate-
ways, NFS, multiprocessor target systems, and so on. Also, 8. Configuration discusses
the procedures for reconfiguring and rebuilding Vx960.

Vx960 is a flexible system that has been ported to many different hardware configu-
rations. This chapter assumes the typical minimum target system configuration
shown below in Figure 2-1 and consisting of the following: :

Chassis A card cage with backplane, typically VMEbus, and power supply.
(An embedded board design may not have a backplane bus.)

CPU board A single-board computer (target) that Vx960 has been ported to.

Ethernet board An Ethernet controller board (some CPU boards include the
Ethernet controller on-board).

Console An ASCII terminal or a serial port on a workstation; this is
required for initial setup only.

File Server Workstation Chassis
Vx960 Ethernet
target CPU board

|
] O

RS-232

Ethernet

Figure 2-1. Example Minimum Configuration for Vx960

Intel Vx960

2. Getting Started

2.2

2.3

For more detailed information pertaining to your target CPU, you should also con-
sult the target-specific information supplied for each port of Vx960.

Installing Cross-Development Tools

If you want to install the GNU/ 960 tool set, refer to Installing the GNU/960 Tools sec-
tion in your GNU/960 documentation. This section provides step-by-step instruc-
tions on installing the GNU/960 tool set.

Installing Vx960

Vx960 is distributed on a tape in tar format.This tape contains the generic Vx960 files
and all the current Board Support Package for the 1960 microprocessor. To install
Vx960, create a directory on your host system, for example, /usr/vx, change to that
directory, and extract the system from the tape using tar. Typical commands to do
this are:

mkdir /usr/vx

chmod 755 /usr/vx

cd /usr/vx

tar xvf [tape_device_of_choice]

o0 K 0P o

Note: This manual refers to Vx960 directories and files with the pathname starting
at /usr/vx... . However, Vx960 does not assume or require this pathname.

Refer to the Vx960 Release Notes or see your system administrator for the commands
specific to your host. In the /usr/vx directory there is a file called README. Consult
this file for the most current information about the version of Vx960 that you are
installing. Run the shell script /bin/vxInstall.sh to install Vx960.

Intel Vx960 23

Vx960 — Programmer’s Guilde

2.4

2.4.1

24

Your vx directory has a number of subdirectories and files in it. The directory
/usr/vx/config contains a directory for each of the target types you have ordered. In
each of those directories you find the system boot image and its symbol table, i.e.:

/ust/vx/config/target/vxWorks system boot image
/usr/vx/config/target/vxWorks.sym system symbol table
These are the only files you need to get started with Vx960.

For access to Vx960 tools that run on the host, you may also want to put the appro-
priate bin directory in your UNIX shell search path. If you are using a Sun system,
the tool arch is useful for this. For example, you might add the following to your
.cshrc file:

set arch=‘arch’
setenv PATH .:/usr/vx/bin/Sarch:...

The VX960 directory tree and file contents are described in A. Directories and Files.

Configuring the Host System

Before you can boot the Vx960 from the host, you must configure the network soft-
ware on the UNIX host. In configuring the host network software, you must:

* Initialize the host network software.
+ Establish the Vx960 system name and network address on the host.

+ Give the Vx960 system appropriate access permissions on the host.

The following sections describe the procedures in detail. Some of these procedures
may require root permissions. Also, some UNIX systems may require different pro-
cedures. Consult your system administrator.

Hosts Supported

The following is a list of the hosts supported by Vx960. If the operating system for
your host is upwardly compatible, the existing GNU/960 tools may be supported.

Intel Vx960

2. Getting Started

2.4.2

2.4.3

The source for all Vx960 binaries are provided to allow other hosts to be supported.
If the GNU/960 tools are supported, Vx960 supports that host.

Processor Operating System
Sun-4 Sun0s4.0.3c

Sun-3 Sun0s4.0.3c
Sun-386i SunOs4.0.1

VAX 8600 Ultrix-32 V3.1 (Rev.9)
HP9000/300 HP/UX V7.0
Compaq Deskpro 386/33 Intel System V R3.2
DECStation 3100 ULTRIX V2.0 (Rev 7)
IBM RS/6000 - AIX Version 3.1

HP/ Apollo Series 400 Domain/OS SR 10.3
i386 systems System V R3.2

Initializing the Host Network Software

You cannot initialize most UNIX systems without going through a process of execut-
ing multiple startup Scripts. For additional information, consult your UNIX system
administration manuals if network initialization needs to be added to your UNIX
startup procedure.

Establishing the Vx960 System Name and Address: /etc/hosts

The UNIX host system maintains a database of the names and network addresses of
systems accessible from the local system. This database is kept in the ASCII file
/etc/hosts which contains a line for each system. Each line consists of an Internet
address and the name(s) of the system at that address. This file must have entries for
your host UNIX system and the Vx960 target system.

For example, suppose your UNIX host system is called “mars” and has been
assigned Internet address 90.0.0.1, and you want to name your Vx960 target “pho-
bos” and assign it address 90.0.0.50. The file /etc/hosts should then contain the fol-
lowing lines: |

90.0.0.1 mars

90.0.0.50 phobos

Intel Vx960 25

Vx960 — Piogrcmmer’s Gulde

2.4.4

2.5

26

Note: If your system is running the Network Information Service (NIS), formerly
the Yellow Pages service, then the hosts database is maintained by NIS facil-
ities that are beyond the scope of this introduction. Consult your UNIX sys-
tem administration manuals if you are running NIS.

|

Glving Vx960 Access to the Host: .rhosts and /etc/hosts.equiv

The UNIX system restricts network access via remote login, remote command exe-
cution, and remote file access. This is done with the .rhosts file in the user’s home
directory, and more globally with the /etc/hosts.equiv file. The .rhosts file contains
a list of system names that have access to your login. Thus, in our example, to allow
your Vx960 system to log in with your user name and access files with your permis-
sions, you would create a .rhosts file in your home directory containing the line:

phobos

The /etc/hosts.equiv file provides a less selective mechanism. Systems listed in this
file are allowed login access to any user defined on the local system (except the
super-user root). Thus, adding the Vx960 system name to /etc/hosts.equiv allows
the Vx960 system to log in with any user name on the system.

Configuring the Target Hardware

Configuring the target hardware involves the following tasks:
* Installing the Vx960 boot ROMs.
* Jumpering the target CPU and Ethernet boards.
* Installing the boards in the backplane.

+ Connecting the serial and Ethernet cables.

Use the following general procedures, as appropriate to your particular target sys-
tem hardware. Refer to the specific information in the documentation supplement
for your target.

Intel Vx960

2. Getting Started

2.5.1

2.5.2

Installing the Boot ROMs

Intel supplies boot ROMs for your selected targets as part of the Vx960 delivery. Use
these ROMs to boot Vx960 over the network. Install the appropriate set of boot
ROMs on your target board(s).

When installing these devices, observe the following:
+ Install each device only in the socket indicated on the label.
* Note the correct orientation of pin 1 for each device.

= Use anti-static precautions whenever working with integrated circuit devices.

The file bootrom.hex exists or can be made in each target directory. This file contains
the boot ROMs in Intel Hex format, and is suitable for downloading to a PROM pro-
grammer for making your own Vx960 boot ROMs. To make bootrom.hex, change to
the vx/config/target directory for your target, and type:

% make bootrom.hex

Note: On targets with more than one boot ROM, this command produces an equal
number of boot ROM files. See the appropriate target Board Support Pack-
age document for more information.

Setting the Board Jumpers

Many CPU and Ethernet controller boards have configuration options that are
selected by hardware jumpers. These jumpers must be installed correctly to bring up
Vx960. You can determine the correct jumper configuration for your target CPU
from the information provided in the documentation supplement for your target or
use the jump program supplied with the Vx960 system. The jump program runs on
UNIX and uses simple ASCII graphics to display jumpering diagrams for CPU and
Ethernet controller boards.

To run jump, type:

% jump /usr/vx/config/target

Intel Vx960 27

Vx960 — Programmer’s Guide

2.5.3

28

where target is the Vx960 directory name which corresponds to your target system.
The program prompts you with a selection of CPU boards for which jumpering dia-
grams can be displayed. This invocation of jump assumes you have included the
appropriate Vx960 bin directory in your UNIX shell search path as described in 2.2
Installing Vx960.

Installing the Boards in the Backplane

To assemble your target hardware, first install the CPU board in slot 1 of the back-
plane. If you are using a separate Ethernet controller board, install it in slot 2 of the
backplane.

If you are using a VMEbus backplane, consider the following:

P1 and P2 Connectors

The P1 connector must be bussed across all the boards in the system. Many sys-
tems also require the P2 bus. Some boards require power on the P2 connector.
Also some configurations require the extended address and data lines of the B
row of the P2 bus.

System Controller

The VMEDbus requires a “system controller” to be present in slot 1. Many CPU
boards have a system controller on board that can be enabled or disabled by
hardware jumpers. On such boards, the system controller should be enabled in
slot 1 and disabled in all others. The diagrams shown by the jump program
(described above) indicate the location of the system controller enable jumper,
where available. Alternatively, a separate system controller board can be
installed in slot 1, and the CPU and Ethernet boards can be plugged into the
next two slots.

Empty Slots

The VMEDbus has several daisy chained signals that must be propagated to all
the boards on the backplane. If you leave any slot empty between boards on the
backplane, you must jumper the backplane to propagate the BUS GRANT and
INT ACK daisy chains.

Intel Vx960

2. Gettling Started

254

2.6

Connecting the Cables

All Vx960 supported target CPUs include at least one on-board serial port. This
serial port must be connected to an ASCII terminal, at least for the initial configura-
tion of the boot ROMs and getting started with Vx960. Subsequently, Vx960 can be
configured to boot automatically without a terminal. Refer to the CPU board hard-
ware documentation for proper connection of the RS-232 signals.

For the Ethernet connection, a transceiver cable must be connected from the Ether-
net controller to an Ethernet transceiver.

Booting Vx960

If you have correctly configured your host software and target hardware, you are
ready to turn on the target system power and to boot Vx960. When you power-on
and reset the target hardware, the target system terminal or workstation serial port
is talking to the Vx960 boot ROMs. The boot ROMs first display a banner page and
then start a 7-second countdown, visible on the screen as shown in Figure 2-2. Unless
you press any key on the keyboard within that 7 seconds, Vx960 automatically boots
with a default configuration.

Power-on, reset the target, and stop the automatic boot by pressing any key on the
keyboard. The boot ROMs display the Vx960 boot prompt:

[Vx960 Boot]:

Intel Vx960 29

Vx960 — Programmer’s Guide

2.6.1

2.6.2

30

Coparight 1984-1991 Wind River Syetess, Inc,
Lopyright 1990-1991 Iral Corporetion,

P R tiget
Freacion dete: Tus Mey 21 15:31:48 POT 1991 CPU

P;...-uwumw...

RS-232

1
pd /&
Figure 2-2. Boot ROMs Communication and Initial Display

Boot ROM Commands
The Vx960 boot ROMs provide a limited set of commands. To see a list of available
commands, type the help command h or ? followed by a RETURN:

[Vx960 Boot]: ?

Table 2-1 lists the Vx960 boot commands and parameters, with a brief description of
each.

Entering Boot Parameters

Before booting Vx960, set the configuration parameters for the boot, including the
host and target network addresses, the file to be booted, the user name, etc. To dis-
play the current boot parameters, type:

[Vx960 Boot}: p

Intel Vx940

2. Getting Started

Table 2-1. Vx260 Boot Commands

Command Descrlption
h : “Help” command - print a list of available boot commands.
? Same as h.
@ Boét (load and execute the file) using the current boot parameters.
p Print the current boot parameter values.
c Change the boot parameter values.
1 Load the file using current boot parameters, but without executing.
g adrs Go (execute) at hex address adrs.
dadrs[, n) Display n words of memory starting at hex address adrs. If n is

omitted, the default is 64.

madrs Modify memory at location adrs (hex). The system prompts for
modifications to memory, starting at the specified address. It
prints each address, and the current 16-bit value at that address, in
turn. You can respond in one of several ways:

RETURN Do not change that address, but continue prompt-
ing at the next address.
number Set the 16-bit contents to number.
. (dot) Do not change that address and quit.
f adrs, nbytes, value Fill nbytes of memory starting at adrs with value.

t adrsl, adrs2, nbytes Copy nbytes of memory starting at adrs1 to adrs2.

s[0]| 1] Turn the CPU system controller ON (1) or OFF (0) (only on boards
that have software enable of the system controller).

e Display a synopsis of the last occurring Vx960 exception.

n netif Display the ethernet address of the network interface device netif.

Intel Vx960 31

Vx960 — Programmer’s Guide

You see a display similar to the following, which corresponds to the example config-
uration shown in Figure 2-3. (The p command does not display blank fields as in this
illustration.)

boot device : el

processor number : 0

host name : mars

file name : /usr/vx/config/hkv960/vxWorks
inet on ethernet (e) : 90.0.0.50

inet on backplane (b) :

host inet (h) : 90.0.0.1

gateway inet (g) :

user (u) : fred

ftp password (pw)(blank=use rsh) :

flags (f) : 0

target name (tn) : phobos

startup script (s) : /usr/vx/config/hkv960/startup.cmd

other (o) H
/usrt/vx/config/target/vxWorks

host / target

“mars”’ “phobos”
user: “fred”
I |
90.0.0.1 90.0.0.50

Figure 2-3. Boot Configuration Example

The meaning of each of these parameters is described in the next section.
To change the boot parameters type:

[Vx960 Boot]: cC

32 Intel Vx960

2. Getting Started

2.6.3

You are prompted for each parameter. If the contents of a particular field need not
be changed, press RETURN. If a field is to be cleared, type a period (.), followed by
RETURN.

Network information must be entered to match your particular system configura-
tion. The Internet addresses should correspond to those in /etc/hosts on your UNIX
host, as described previously.

If your target board has non-volatile RAM, the boot parameters are stored there and
retained even while the system power is turned off. For subsequent power-ons or
system resets, the boot ROMs use the stored parameters for the automatic boot con-
figuration.

Description of Boot Information

Each of the boot parameters is described below. The letters in parentheses indicate
how the parameters can be specified in the command-line boot procedure described
in 2.6.5 Alternative Booting Procedures.

boot device The type of network device Vx960 boots from. This must
be one of the network drivers included in the boot ROMs
(e.g., “ei” for an Intel 82596 LAN Coprocessor). Due to
limited space in the boot ROMs, only a few drivers can be
included. A list of included drivers is displayed at the bot-
tom of the help screen (type ? or h).

host name The name of the host machine to boot from; “mars” in our
example. This is the name by which the host is known to
Vx960; it need not be the same name used internally by the
host.

boot file The full pathname of the Vx960 object module to be
booted (/usr/vx/config/target/vxWorks in the example).

inet on Ethernet (e) The Internet address of a target system with an Ethernet
interface (90.0.0.50 in the example).

inet on backplane (b) The Internet address of a target system with a backplane
interface (this should be blank in our example).

host inet (h) The Internet address of the UNIX host to boot from
(90.0.0.1 in our example).

Intel Vx960 33

Vx960— Programmer’s Guide

34

gateway inet (g)

user (u)

ftp password (pw)

processor number

flags (f)

target name (tn)

startup script (s)

other (o)

Intel Vx960

The Internet address of a gateway node if the host is not
on the same network as the target (this should be blank in
our example).

The user name with which Vx960 accesses the UNIX host;
the named user should have read access to the Vx960 file
being booted. Vx960 must have access to this user’s
account, either via the files .rhosts or /etc/hosts.equiv dis-
cussed above, or by the ftp password provided below.

The “user” password. This field is optional. If a password
is given, ftpis used instead of rsh. If you do not want to use
ftp, leave this field blank.

A unique identifier for the target in systems with multiple
targets on a backplane (this should be zero in our exam-
ple). For an embedded control system, the number is
always zero.

Configuration options specified as a numeric value that is
the sum of the values of selected option bits defined
below.

0x01 = Do not enable the system controller, even if the
processor number is 0. (This option is board spe-
cific; refer to your target documentation.)

0x02 = Load all Vx960 symbols, instead of just globals.

0x04 = Do not auto-boot.

0x08 = Auto-boot fast (short countdown).

0x20 = Disable login security.

The name of the target system to be added to the host
table; “phobos” in our example.

The complete path name of the startup script to execute
after the system boots. If omitted, no script is executed. To
enable this feature, INCLUDE_STARTUP_SCRIPT must be
defined in configAllLh. For more information on the use of
startup scripts, see 9.4.3 Scripts.

This parameter is unused and available for applications.

2. Getting Started

2.64

Booting

Once you have entered the boot parameters, initiate booting by typing:
[{Vx960 Boot]): @

The VX960 boot ROMs print the boot parameters and the download begins. While
Vx960 is booting, you see the size of each Vx960 segment as it is loaded. Once the
system is loaded, the boot ROMs display the entry address and transfer control to
the loaded Vx960 system. When Vx960 has completed initialization, it displays a
banner page like the one shown in Figure 2-4, followed by the Vx960 shell prompt
“a>",

X] vx960 ENEEERTNETET G
Attaching netuwork interface ei0,,. done
Loading... 354120 + 70088 + 21480
Btarting at 0x1000...

Attaching network interface ei0,.. done,
Rttaching netuork interface lo0,,. done,
 oading symbol table from ishark:/usr/vx/config/tomcat/vxdlorks.syn .. .done

1iifdidid44i44441484444443

i1di44id44444 4ididd 14ii4444 iiiii 144iiif TM
i d444id444 4iidif 4iid ii iiii i1iig ii
ii iiiiiii iididi iiii ii iiii iiii ii
iii iiiii i ii ii iiii ii iiii iiii ii
1iii iii 14 ii 144344 414444444 1444 i1
i1iiii i 1iii ii ‘11 f1iid 1i 1ii4 il
1iiii4 iii4i iii ii iiid 14 1444 ii
1454444 141444 4ii44 il 1144 11 14144 ii
iiiiiiii ididi 1 iiid ii iiiiiii iiiiiii
jijdiiiidiiiiiiii
iiididd4344i4444 Development System
1iifiiiifdid444
1444440 4444434 V%960 version 5.0
iijifiiiidiiii KERNEL ¢ WIND version 2.0.
iijiiiiiiiii Copyright Hind River Systems, Inc., 1984-1991
144444431444 Copyright Intel Corportation. 19380-1991

CPU: Intel Tomcat 960CA board. Processor 0,
Memory Size: Ox100000.

LI

Figure 2-4. Vx960 Booting Display and Banner

Intel Vx960 35

VX960 — Programmer’s Guide

2.6.5

2.6.5.1

2.6.5.2

2.6.5.3

36

Alternative Booting Procedures

Command-Line Parameters

You can supply the boot ROMs with all the parameters on a single command line at
the boot prompt ([vx960 Boot]:). For example:

$ ei(0,0)mars:/usr/vx/config/hkv960/vxWorks e=90.0.0.50 h=90.0.0.1 u=fred

The order of the assigned fields (containing “=" signs) is not important. Assigned
fields that are irrelevant should be omitted. The codes for the assigned fields corre-
spond to the letter codes shown in parentheses when you typed the p command to
display the boot parameters. For a complete description of the format, see the man-
ual entry for bootStringToStruct() in bootLib(1).

This method can be useful if you have programmable function keys. You can pro-
gram a function key with a command line appropriate to your configuration.

Non-Volatile RAM

As noted previously, if your target CPU has non-volatile RAM, all the values you
enter in the booting parameters are retained in the non-volatile RAM. In this case,
you can let the boot ROMs auto-boot without even having a terminal connected to

the target system.

Reprogramming Boot ROMs

You can burn your boot ROMs with the correct boot parameter values. With this
method, you no longer need to alter the boot parameters when Vx960 attempts to
boot. The default boot parameters are specified in the file config.h in the configura-
tion directory for your target CPU (/usr/vx/config/target/config.h). This file contains
a #define of DEFAULT_BOOT_LINE. The value of this constant can be changed to the
appropriate boot parameters for your system. After editing config.h, type the fol-
lowing in the configuration directory for your target:

%t make bootrom.hex

Intel Vx960

= 2. Gefting Started

2.6.5.4

2.6.6

The file bootrom.hex contains the boot ROMs in standard Intel Hex format and is
ready to download to an EPROM programmer. For the sake of thoroughness, type
“make” so that any other files affected by your changes are remade.

Using Alternate ROMs

When the target system is initialized, it starts executing from the boot ROMs. Boot
ROMs can be built three ways: compressed, normal, or ROM resident. A compressed
boot ROM has a smaller image but takes longer to boot because it must uncompress
the data from ROM to RAM. A normal ROM will boot faster, but takes up more
space in the ROM. The normal method was the method supported in the 4.0.2
release of Vx960. When the boot ROMs are built ROM resident, only the data section
is copied from the ROM to RAM at initialization time. The actual code will run from
ROM. This will probably execute slower than the same code executing from RAM.
Using the ROM resident option allows for the fastest boot. The file /usr/vw/confi-
g/all/bootlnit.c can be compiled three different ways. The -DROM_RESIDENT, -
DUNCOMPRESS and flags create ROM_RESIDENT and normal code respectively.
The default is to create compressed code.

See /usr/vw/config/<target>/Makefile or /usr/vw/config/all/bootlnit.c for more
information.

Rebooting

When Vx960 is running, there are several way you can reboot Vx960:
*+ DPress the reset button on the target system.
+ Type a "X at the target console terminal.

* Invoke reboot() from the Vx960 shell. This can be done even when remotely
logged in to Vx960.

When Vx960 is rebooted in any of these ways, the auto-boot sequence begins again
from the countdown.

Intel Vx960 37

Vx960 — Programmer’s Guide

2.6.7

2.7

2.7.1

38

Reconfiguring and Rebullding Vx960

The Vx960 image supplied on the distribution tape works with all standard config-
urations of your supported targets. You may find that you want to reconfigure the
distributed Vx960 to change a parameter or to include or exclude optional modules.

Many Vx960 parameters are specified in the two configuration headers:
« /usr/vx/config/all/configAll.h
* /ust/vxX/config/target/config.h

You can modify these headers to suit your configuration. Then change to the
/usr/vx/config/target directory and type:

% make

This rebuilds the system image vxWorks and the system symbol table
vxWorks.sym. Reconfiguration of Vx960 is discussed in detail in 8. Configuration.

Playing With Vx960 and a Demo Program

This section introduces you to program development and debugging using Vx960.
The instructions in this section describe how to use the shell to load and run a very
simple program on the Vx960 system you just booted.

The Vx960 Shell

When Vx960 comes up, you are interacting with the Vx960 shell. The Vx960 shell is
an interactive C-expression interpreter. The shell reads lines of input from the termi-
nal, parses and evaluates each line, and writes the result of the evaluation to an out-
put stream. The shell accepts the same expression syntax as the C compiler with a
few variations. This simple mechanism can be used in many different ways.

The sections below provide a brief introduction to using the Vx960 shell. For a more
detailed discussion, see 9. Shell.

Intel Vx960

2. Getting Started

2.7.1.1 Speclal Characters

As you type in commands to the shell, you can use the following special characters:

Table 2-2. Vx960 Shell Special Characters
Command Description
“H Delete a character (backspace).
U Delete an entire line.
~C Abort and restart the shell.
~X Reboot (trap to the ROM monitor).
~S Temporarily suspend output.
"Q Resume output.
ESC Toggle between input mode and edit mode.

2.7.1.2 Examples of Shell Usage

The following examples illustrate some typical uses of the shell. The shell prompt
for interactive input is “->”. User input is shown in bold face and shell responses
are shown in regular face.

-> 68
value = 68 = 0x44 = 'D’

-> x = 13
new symbol "x" added to symbol table
x address = ...: value = 13

=> printf ("hello world, x = $d\n", x)
hello world, x = 13
value = ...

2.7.13 Shell History and Line Editing

The Vx960 shell keeps a list of the commands that were typed in previously. To see
this list, type the “history” command:

-> h

Intel Vx960 39

Vx960 — Programmer’s Guide

27.14

2.7.2

2.7.2.1

40

A list of the last 20 shell commands is displayed on the screen.

The Vx960 shell provides a history mechanism similar to the UNIX K-Shell, which
allows you to recall lines from the shell history, edit them, and re-execute them. Typ-
ing the ESC key changes the shell from input mode to editing mode.

In editing mode, you can change previous command lines using UNIX vi-like com-
mands. The k command recalls successive previous commands from the history list,
and the j command moves you forward in the history list. The h and 1 commands
move the cursor left and right; an x deletes a character; etc. A RETURN sends the
entire command to the shell regardless of cursor position or input mode. The Vx960
shell history and editing commands are described in detail in 9. Shell.

Remote Access to the Shell

In addition to accessing the Vx960 shell on the target console terminal, you can also
access the shell from a terminal or workstation on your UNIX host using the remote
login facility rlogin. To log in to our example Vx960 target system, you would type
the following on your UNIX terminal:

% rlogin phobos

The telnet remote login protocol is also available. See 9. shell for more information.

On-line Help

Two sources of on-line help are provided: one from the host UNIX system and the
other from Vx960 directly.

From Vx960

The following help commands are available if the corresponding subsystem has
been included in your Vx960 system configuration:

» help()

* dbgHelp()
» timexHelp()

Intel Vx960

" 2. Getting Started

27.22

2.7.3

* spyHelp()
* netHelp()

* nfsHelp()

These help commands display brief summaries of various Vx960 subsystems. They
are not intended to be tutorial, but rather are convenient memory joggers for some
commonly used Vx960 functions.

From the Host: vxman

All Vx960 reference documentation is distributed for on-line use from the UNIX host
using vxman, which is analogous to the UNIX man command. The vxman facility
lets you to display the manual page for any Vx960 library, subroutine, driver, or tool.
For example, to display the manual entry for taskSpawn(), type:

% vxman taskSpawn

To include vxman in your UNIX shell search path, follow the procedures suggested
in 2.2 Installing Vx960. For more information on the use of this facility, see the manual
entry for vxman, or type:

$ vxman vxman

A Demo Program

To illustrate some basic Vx960 concepts and techniques, this section describes load-
ing and debugging a demonstration program called demo.c. This program prints its
own task ID, task name, and start-up parameter on the console, and then exits. Addi-
tional demo programs are provided in the /ust/vx/demo directory.

In this example, the following assumptions are made:

* The Vx960 tape was loaded into /usr/vx.

* Your home directory is /ust/fred.

* You are playing with the demo program in the directory /usr/fred/vxdemo.
* The host machine’s name is mars.

Intel Vx960 41

Vx960 — Programmer’s Guide -

42

To begin, create a working directory somewhere on your host system
(/usr/fred/vxdemo for this example) and copy /usr/vx/demo/1/demo.c into it:

% od /usr/fred
% mkdir vxdemo

% cd vxdemo
$ cp /usr/vx/demo/l/demo.c demo.c

Compile demo with the following command:

% gcc960 -¢c -ACA -0 -I/usr/vx/h demo.c

- The -c flag suppresses linking with the GNU/960 C libraries and leaves the unde-

fined externals unresolved. These are resolved by the Vx960 linking loader. The -O
flag optimizes the code (this flag is optional). The -I flag tells the compiler where to
find the Vx960 header files that are included in demo.c. You need to include archi-
tecture-specific flags; for example, if you are cross-compiling for a 80960CA proces-
sor, you need to include the -ACA flag.

If you are on a “big-endian” architecture host such as a Sun-4 or HP 9000, you also
need to swap the byte order of the object file. With the GNU/960 tool set, this is
accomplished with a command of the following form:

t objcopy -1 demo.o

The -1 flag specifies that the named files are to be byte-swapped to “little-endian”
format, which is the Vx960 native byte order. On little-endian hosts, such as a Com-
pagq, this step isn’t necessary, but performing this step on such hosts is harmless and
the resulting object loads without problems.

If Vx960 has not yet been booted, now is the time to do so. Then access Vx960 either
by its system console or by remote login using rlogin.

Next check the user name that the Vx960 system uses on the remote host system with
the whoami() command:

-> whoami

The user name is used for access privileges. When Vx960 first comes up, the user
name is set to the user name specified in the boot parameters. If the current user
name is not yours, change it with the iam() command:

=> iam "fred"

Intel Vx960

2. Getting Started

Next set your current working directory with the cd() command:
-> cd "mars:/usr/fred/vxdemo”

(where mars is the name of the host system as specified in the boot parameters). This
sets the default directory to be the directory where you compiled demo.c.

The command to load applications into Vx960 system memory is Id(), which per-
forms three functions:

* Loads the program into memory.
+ Adds the program’s symbols to the system symbol table.

* Resolves the program’s external references.

host target

demo’

Figure 2-5. Downloading a Program

To load the demo program, type:

-> 14 < demo.o
value = 0 ...

When loaded, all the program’s undefined externals are resolved by the Vx960 link-
ing loader. You can see this by disassembling the routine. Type:

-> 1 demo

-> 1
-> 1

Intel Vx940 43

Vx960 — Programmer’s Guide

44

The I() command shows a symbolic disassembly of the code in demo.c. The assem-
bler code shows addresses symbolically. Any code in the system can be disassem-
bled (try I() with printf(), for example). By default, /() disassembles ten
instructions at a time; subsequent calls continue from the previous address.

Try the following commands:

~> demo 1234 (1)
-> gp demo, 1234 (2]
-> taskSpawn "tdemo", 100, 0, 2000, demo, 1234 ©

Each of these runs the demo program, but in a different way. Example © runs demo
as a subroutine in the shell’s context and tells you that its task name is tShell. @
spawns demo as a separate task, and assigns it a default task name and a default pri-
ority. The default task name is a number prefixed with a “t”. © also spawns demo,
but with explicit parameters for the task name (tdemo), priority (10C), and stack size
(2000).

" t”

The convention of using a “t” to prefix default task names and the names of system
tasks avoids name conflicts with symbols in the system symbol table. For more
information, see 9.3.3.6 Task References.

Type:

NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY

- —— - G - ——— - - W - - - - - - - G G - — - - ———— - ——— - -

tExcTask _excTask 3fbe04 0 PEND 15dee 3fbd4s 0 0
tLogTask _logTask 3fa8c8 0 PEND 15dee 3fa804 0 0
tShell _shell 3c60£8 1 READY 2b590 3c5dcc 0 0
tRlogind _rlogind 3d7084 2 PEND 4b374 3d6ead 0 0
tNetTask _netTask 3£5298 50 PEND 4b374 3£5240 0 0

The #() command shows the tasks currently running. The tasks that you see - tShell,
tLogTask, tExcTask, tNetTask, and tRlogind — are system tasks that are present.

Now try:

-> period 5, demo, 5
-> i

Intel Vx960

2. Getting Started

The period() command spawns periodRun() as a new task which calls demo in its
context every 5 seconds. Now demo should be printing its message every five sec-
onds. The next i() command again shows all the tasks currently running. Notice
the new task whose entry point is _periodRun:

t2 _periodRun 3c3894 100 DELAY 433d0 3c3858 0 136
You can insert a breakpoint with the b() command:
-> b printf

This sets a breakpoint at the address of printf(). The _periodRun task should hit it
within 5 seconds. When it does, a message prints out telling you about it:

Break at 0x00b2la: _printf Task: 0x3c3894 (t2)
Now type:

-> i

t2 _periodRun 3c3894 100 SUSPEND b2la 3c3828 0 0

The information that i() prints now shows that _periodRun is suspended (because it
hit a breakpoint).

Then type:
-> tt

547a0 _vxTaskEntry +10 : _periodRun ()
2f4a4 _periodRun +24 : _demo ()
ffee60 _demo +24 : printf (feecO, c4170, c9130, 5, 0,)

The task trace command £#() shows where the task was when it hit the breakpoint.
You can see which routines were called by other routines, and you can see what
parameters were used in the call to the routine at which the breakpoint occurred.

To continue, type:

-> bdall
-> c

The bdall() command deletes all breakpoints, and the ¢() command continues the
task. If the breakpoint had not been deleted, the task would have hit it againin 5 sec-
onds.

Intel Vx960 45

Vx960 — Programmer’s Gulde

2.8

46

Now type:
-> period 7, demo, 7 (1)
-> 4 (2]
-> sp demo, 1111 ©

When you type O, you spawn another task, whose entry point is also _periodRun (in
fact, it is the same code in memory), which calls demo every 7 seconds. The infor-
mation display @ shows another task, with a different ID and task name but the
same entry point. Since demo is called from the context of a different task, the 7-sec-
ond cycle gives you an ID different from the 5-second cycle which is still running. In
fact, when you spawn demo as a task again ©, it tells you another ID, even though
it is the same code in memory. Remember, there is only one copy of the demo code
in memory, but it is being executed in three different task contexts.

To delete the periodic _periodRun tasks, use the task-delete command £d(). The argu-
ment to td() is the task ID, which you can find using i(). Thus, our 5-second exam-
ple, whose task whose name is t2 and whose ID is 3c3894, can be deleted by typing:

-> td 0x3c3894

Most Vx960 routines that take a task parameter require a task ID. However, specify-
ing a task ID can be cumbersome since the ID is an arbitrary and possibly lengthy
number.

To accommodate interactive use, Vx960 shell expressions can reference a task by
either task ID or task name. The Vx960 shell attempts to resolve a task argument to
a task ID; if no match is found in the system symbol table, it searches for the argu-
ment in the list of active tasks. When it finds a match, it substitutes the task name
with its matching task ID.

Thus, a simpler way of deleting the task in the previous example is:

-> td t2

Troubleshooting

If you encountered problems booting or exercising Vx960, there are many possible
causes. This section discusses the most common sources of error and how to narrow

intel Vx960

2. Getting Started

2.8.1

2.8.1.1

the possibilities. Please read 2.8.1 Things to Check below before contacting your tech-
nical support group. Often, by rechecking the installation steps, your hardware con-
figuration, and so forth, you can locate the problem.

Things to Check

Most often, a problem with running Vx960 can be traced to hardware or software
configuration errors. Consult the following checklist to locate a problem.

Hardware Configuration

Limit the number of variables. Start with a minimal configuration of a single
target CPU board and an Ethernet board.

Be sure your backplane is powered and bussed. For the VMEbus backplane,
most configurations require that the P2 B-Row be bussed and that there is
power supplied to both the P1 and P2 connectors.

Be sure boards are in adjacent slots. The only exception to this is if the back-
plane is jumpered to propagate the BUS GRANT and INT ACK daisy chains.

Check that the RS-232 cables are correctly constructed. In most cases, the doc-
umentation accompanying the hardware explains the cabling requirements for
that hardware.

Check the boot ROMs for correct insertion. If the CPU board seems dead
when applying power (some have front panel LEDs), the boot ROMs can not be
correctly inserted. You can also validate the checksum printed on the boot ROM
labels.

Press the RESET button if required. Some system controller boards do not
reset the backplane on power-on, requiring you to reset manually.

Make sure all boards are jumpered properly. Use the jump program
described in this chapter to determine the correct jumpering of your target and
Ethernet boards.

Intel Vx960 47

Vx960 — Programmer’s Guide

2.8.1.2

48

Booting Problems

Check the Ethernet transceiver site. For example, connect a known working
system to the transceiver and check whether the network functions.

Verify Internet addresses. An Internet address consists of a network number
and a host number. There are several different classes of Internet addresses that
assign different parts of the 32-bit Internet address to these two parts, but in all
cases the network number is the most significant bits and the host number is
least significant bits. The simple configuration described in this chapter
assumes that the host and target are on the same network, i.e., have the same
network number. (See 6. Network for a discussion of setting up gateways if the
host and target are not on the same network.) If the target Internet address is
not on the same network as the host, the Vx960 boot ROMs say:

Error loading file: status = 0x33.
0x33 corresponds to host errno 51 (decimal) ENETUNREACH.

If the target Internet address is not in /etc/hosts, then the host does not know
about your target. The Vx960 boot ROMs receive an error message from the
host:

host name for your address unknown
Error loading file: status = 0x320001.

The V%960 module number for hostLib 50 (decimal) is 0x32. The digit “1” cor-
responds to S_hostLib_UNKNOWN_HOST.

Verify host file permissions. The target name must be listed in either
user-home-dir/.rhosts or /etc/hosts.equiv (the target user-name can be any user
on the host). Note that the user name “root” is special: having the target name
in /etc/hosts.equiv is not sufficient for root access; the target name must appear
in /.rhosts for root access.

Make sure that the user name you are using on the target has access to the host
files. To verify that the user name has permission to read the vxWorks file, try
logging in on the host with the target user name and accessing the file (for
instance, with the UNIX size command). This is what the target does when it
boots. '

If you have trouble with access permissions, you might try using ftp (File Trans-
fer Protocol) instead of relying on rsh (remote shell). If no password is specified
in the boot parameters, the Vx960 object module is loaded using the rsh service.

intel Vx960

2. Getfting Started

However, if a password is specified, ftp is used. Sometimes ftp is easier because
you specify the password instead of relying on the configuration files cn the
host. Also some non-UNIX systems do not support rsh, in which case you must

use fip.

Check host account .cshrec file. If NFS has not been included, the Vx960 symbol
table is downloaded using remd, which automatically executes the .cshrc of
your host user account. If the processing of your .cshrcis set up to generate any
standard output, it can interfere with the loading of the symbol table.

To check whether the .cshrec file is causing booting problems, rename it tempo-
rarily and try booting Vx960 again. If this proves to be the source of the prob-
lem, you may want to set up your .cshrc file to execute conditionally any
commands that generate standard output. For example, commands used to set
up interactive C-shells could be grouped at the end of the .cshre file and pre-
ceded with the following line:

skip remaining setup if a non-interactive shell:
if (${?USER} == 0 || ${?prompt} == 0 || S${?TERM} == 0) exit

Helpful Troubleshooting Tools. In tracking down configuration problems, the
following UNIX tools can be helpful (you can also see your system administra-
tor or refer to the UNIX man pages for additional information on these com-
mands):

netstat This command gives various network status reports. A -r
option displays the network routing tables. This is useful when
gateways are used to access the target. The -s option tells you
the names of the interfaces so that you can use ifconfig.

ifconfig This command reports the configuration of the specified net-
work interface (e.g., ie0 or le0 on a SUN system). It should
report that the interface is configured for the appropriate Inter-
net address and that the interface is up.

arp -a This command displays the address resolution protocol tables
that map Internet addresses to Ethernet addresses. Your target
machine is listed if at least one packet was transferred from
your target to your host.

intel Vx960 49

VX960 — Programmer’s Guide

etherfind This command can be used on many UNIX systems to watch
all traffic on a network. You may need root privileges to run
this command.

' ping This command can be used on UNIX systems to determine
whether Vx960 is up and responding up to the IP/ICMP pro-
tocol levels. You can also use ping to send packets and then
determine if any of the packets were lost. Lost packets might
indicate that there is a cable or hardware problem.

50 intel Vx960

Basic OS

Contents

3.1 TRELOAUCHION weiiiiiiieiieeieecieissesreeeesisesreeecessssessssonsasteseereessesssssessssssssssssssssosssesssssssssnssssssssssssssssnsnsnos 55

3.2 TASKS ereeriiiiiiecreiieecteeteeoeeeesreesstceeassseaaseesanasessssstaressasesesassassesasssarsssesessstesnossresssssns sosnnsreanesonssen 56
321 Multitasking ..o s 56
3.2.2 Task State TranSIHON ...c.eeeoeereneereeisneisieeioreeoesssosstssssssssosssressiessssssssssessesssessasosssssssssns 57
323 Task Scheduling ... s 57

3.2.3.1 Preemptive Priority Scheduling 57
3.2.3.2 Round-Robin Scheduling 59
3.2.3.3 Preemption Locks 60

3.2.4 Tasking Control ... e 60

3.2.4.1 Task Creation and Activation 61
3.2.4.2 Task Namesand IDs 61

3.2.4.3 Task Deletion and Deletion Safety 62
3.2.4.4 Task Options 64

3.2.4.5 Task Control 65

3.2.4.6 Task Information 66

3.2.5 Task Error Status: 1710ccccccvmriviviiiniininincicicnnieiniincisccnceneceseessssssassesasene 66
3.2.6 Task Exception Handlingccoconuiiiiiiiiniiiiiccniccvsscrcnsnccnines 68
3.2.7 Tasking EXtENSIONS ...c.ccocoiiueiiiiinieriiiniiiciiieiniinictscceceiicis s cneecneaetesesoescssronssssescaneas 68
3.2.8 Shared Code and Reentrancycccccocvecivinnninnieniccicnaes ettt e 69

Intel Vx960 51

Vx260 5.0 — Programmer’s Gulde

3.3

3.4

52

3.2.8.1 Dynamic Stack Variables 70

3.2.8.2 Guarded Global and Static Variables 70

3.2.8.3 Task Variables 70

3.2.8.4 Multiple Tasks with the Same Main Routine 71

3.2.9 VX960 System Tasksvvieiciiciniiiinnnrire st sessssisss s sasesesasssesesssenens 71

3.2.9.1 The Root Task: tUsrRoot 71

3.29.2 The Shell: tShell 72

3.2.9.3 The Logging Task: tLogTask 72

3.2.9.4 The Exception Task: tExcTask 72

3.29.5 The Network Task: tNetTask 72

3.2.9.6 The Remote Login Daemon: tRlogind 72
3.29.7 The Telnet Daemon: tTelnetd 73

3.29.8 The Portmap Daemon: tPortmapd 73
3.2.9.9 The Remote Debugging Server: tRdbTask 73

INtertask COMMUINICATIONS 1ooueeeeeeeieieeieirieeiteteeeeeeinesrerreeesasssssrestesessssessstessossssrarsessssessesssssesnnsssnns 73
3.3.1 Shared Memory ..o ettt e eee antaraeteesaet it et aeesoaaeeeetoeae et st beaeares 74
3.3.2 MUtUual EXCIUSTON ciiiieiiiiiiiceiccetiite e eesttresre i s seveeseese s s stntesses s sessesaessaeseesasenanns 74

3.3.2.1 Interrupt Locks and Latency 74
3.3.2.2 Preemptive Locks and Latency 75
3.3.3 SeMAPROTES ...oiiiicretitcectctt s asae e 75
3.3.3.1 Semaphore Control 76
3.3.3.2 Binary Semaphores 77
3.3.3.3 Mutual-Exclusion Semaphores 79
3.3.3.4 Counting Semaphores 82
3.3.3.5 Special Semaphore Options 83

334 Message QUEUES ...ttt et ens 83

3.3.4.1 Creating and Using Message Queues 84
3.3.4.2 Servers and Clients with Message Queues 85

3.35 PIPES et b st ae 86
3.3.6 Network Intertask CommUINICAHON ..ueeiivieeiiiireiieeeeeerreeritie et e ereeeors s ssseveresssaeane 86

3.3.6.1 Sockets 86
3.3.6.2 Remote Procedure Calls (RPC) 87

3.3.7 SIGNALS i bbb ae 88

Interrupt Service Code ... s 89

3.41 Connecting Application Code to Interruptsccccovveinicinccininnceaen, 89

3.4.2 Interrupt Stack ..o 90
Intel Vx960

3. Basic OS

3.5

3.43 Special Limitations of Interrupt Coderrvivnminiiniiiincccccnscsenseassanes 90
3.44 Exceptions At Interrupt Level PSPPSRSO |
3.4.5 Interrupt-to-Task Communicationccccceeevneennnns PV /.

Watchdog Timersccc... ... cessrseine s rsasaes cevseeerrssaer s raes veevenenrs e SRR °

Intel Vx960 53

Vx960 5.0 — Programmer’s Guide

54 Intel Vx960

3.1

w

Basic OS

Introduction

Modern real-time systems are based on the complementary concepts of multitasking
and intertask communications. A multitasking environment allows a real-time
application to be constructed as a set of independent tasks, each with its own thread
of execution and set of system resources. The intertask communication facilities
allow these tasks to synchronize and communicate in order to coordinate their activ-
ity. In Vx960, the intertask communication facilities range from fast semaphores to
message queues and UNIX-like pipes to network-transparent sockets.

Another key facility in real-time systems is hardware interrupt handling, since inter-
rupts are the usual mechanism used to inform a system of external events. To get the
fastest possible response to interrupts, interrupt handling code in Vx960 runs in a
special context of its own, outside of the context of any task.

This chapter discusses the multitasking kernel, tasking facilities, intertask commu-
nication, and interrupt handling facilities, which are at the heart of the Vx960 run-
time environment.

Intel Vx960 55

Vx960 6.0 — Programmer’s Guide- — - -

3.2

3.2.1

56

Tasks

Multitasking

Multitasking provides the fundamental mechanism for an application to control and
react to multiple, discrete real-world events. The basic multitasking environment is
provided by the Vx960 real-time kernel. Multitasking creates the appearance of
many programs executing concurrently when, in fact, the kernel interleaves their
execution on the basis of a scheduling algorithm. Each apparently independent pro-
gram is called a task. Each task has its own context, which is the CPU environment
and system resources the task sees each time it is scheduled to run by the kernel. A
task’s context includes:

* athread of execution, i.e., the task’s program counter

+ the CPU registers and (optionally) floating-point registers
 astack for dynamic variables and function calls

+ /0O assignments for standard input, output, and error

* adelay timer

* atimeslice timer

* kernel control structures

 signal handlers

+ debugging and performance monitoring values.

In Vx960, one important resource that is not part of a task’s context is memory
address space. In Vx960, all code executes in a single common address space. Giving
each task its own memory space would require virtual-to-physical memory map-
ping, which runs counter to the Vx960 high-performance, real-time philosophy.

intel Vx960

"3, Basic OS

3.2.2

3.2.3

3.2.3.1

Task State Transition

The kernel maintains the current state of each task in the system. State transitions
take place as the result of kernel function calls made by the application. When cre-
ated, tasks enter the suspended state. Activation is necessary for a created task to
enter the ready state. The activation phase is fast, enabling applications to pre-create
tasks and activate them in a timely manner. A primitive is supplied for both creating
and activating a task, referred to more as spawning. Tasks can be deleted from any
state.

Vx960 kernel states are shown in the state transition diagram in Figure 3-1.

Task Scheduling

Multitasking requires a scheduling algorithm to allocate the CPU to ready tasks. Pri-
ority based preemptive scheduling is the default algorithm in Vx960, but applica-
tions can use round-robin selection as well. The following routines control task
scheduling:

Table 3-1. Task Scheduler Control Routines

Call Description

kernelTimeslice() Control round-robin scheduling.
taskPrioritySet() Change the priority of a task.
taskLock() Disable tasx rescheduling.
taskUnlock() Enable task rescheduling.

Preemptive Priority Scheduling
With a preemptive priority-based scheduler, each task is assigned a priority and the

kernel ensures that the CPU is allocated to the highest priority task that is ready to
run. The scheduling is preemptive in that if a task becomes ready to run that has

Iritel Vx960 57

Vx260 6.0 — Programmer’s Gulde

S8

The highest priority task ready to run is executing.

sus
sus
sus

ready
pended

delayed

suspended

Intel Vx960

taskInit()

ready ——p pended
teady ——p delayed
ready ——»p suspended
pended ———§p ready
pended ——9p suspended
delay ——»p ready
delay ——p suspended
pended ——p ready
pended ——» pendsd
pended ———p delayed

semTake() / msgQReceive()
taskDelay()

taskSusypend()

semGive() / msgQSend()
taskSuspend()

expired delay

taskSuspend()

taskResume() / taskActivate()
taskResumnie()

taskResume()

The state of a task that is not waiting for any resource other than the CPU.

The state of a task that is blocked due to the unavailability of some

resource.

The state of a task that is asleep for some duration.

The suspended state is a secondary state used for debugging. Suspen-
sion does not inhibit state transition, only task execution. Thus sus-
pended-pended tasks can still unblock and suspended-delayed tasks can still
awaken. In either case the resulting state would be suspended-ready. -

Figure 3-1. Task State Transitions

3. Baslc OS

3.2.3.2

higher priority than the current task, the kernel saves the current task’s context and
switches to the context of the higher priority task.

Vx960 has 256 priority levels, numbered 0 through 255. Priority 0 is the highest and
priority 255 is the lowest. Tasks are assigned a priority when created; however, while
executing, a task can change its priority using taskPrioritySet(). Dynamic prioriti-
zation of tasks enables an application to track precedence changes in the real world.

Round-Robin Scheduling

You can augment preemptive priority scheduling with round-robin scheduling. A
round-robin scheduling algorithm attempts to share the CPU among all ready tasks
of the same priority. Without round-robin scheduling, when multiple tasks of equal
priority must share the processor, a single task can usurp the processor by never
blocking, thus never giving other equal-priority tasks a chance to run.

Round-robin scheduling achieves fair allocation of the CPU to tasks of the same pri-
ority by an approach known as time slicing. The time line is cut into slices of equal
duration and each slice is allocated in rotation to one of a group of tasks. The alloca-
tion is fair in that no task of a priority group is allocated a second slice of time before
all tasks of a group have been given a slice. Round-robin scheduling can be enabled
with the routine kernelTimeSlice(), which takes a parameter for the “time slice,” or
interval, that each task is allowed to run before relinquishing the processor to
another equal-priority task.

A run-time counter is kept for each task and incremented on every clock tick. When
the specified time slice interval is completed, the counter is cleared and the task is
placed at the tail of the queue of tasks at its priority. New tasks joining a given pri-
ority group are placed at the tail of the group with a run-time counter initialized to
zero.

If a task is preempted by a higher priority task during its interval, its run-time count
is saved and then restored when the task is again eligible for execution. Figure 3-2
shows round-robin scheduling for three tasks of the same priority: ¢1, t2, and ¢3. Task
t2 is preempted by a higher priority task t4 but resumes at the count where it left off
when #4 is finished.

The kernelTimeSlice() routine affects tasks at all priority levels. After time slicing is
enabled, all tasks at the same priority level use round-robin scheduling.

Intel Vx960 59

Vx960 5.0 — Programmer’s Guide

3.2.3.3

3.2.4

60

HIGH

time slice

——— priority —>

~
>

Key: 7 - preemption ' - task completion

Figure 3-2. Round-Robin Scheduling
Preemption Locks

The Vx960 scheduler can be disabled and enabled on a per-task basis with the rou-
tines taskLock() and taskUnlock(). When a task disables the scheduler by calling
taskLock(), priority-based preemption does not occur while the task is running.
However, if the task blocks or suspends, the scheduler selects the next highest pri-
ority eligible task to execute. When the preemption-locked task unblocks and begins
running again, preemption again is disabled.

Preemption locks prevent task context switching but do not lock out interrupt han-
dling. Preemption locks can be used to achieve mutual exclusion. See 3.3.2 Mutual
Exclusion for a more complete discussion.

Tasking Control

The following sections give an overview of Vx960's basic tasking routines, which are
found in the Vx960 library taskLib. These routines provide the means for task cre-
ation, control, and information. See the manual entry for taskLib(1) for further dis-
cussion. :

There are also many routines in usrLib that provide a more interactive interface to
the tasking functions described here.

Intel Vx960

3. Basic OS

3.24.1

3.24.2

Task Creation and Activation

The following routines are used to create tasks:

Table 3-2. Task Creation Routines
Call Description
taskSpawn() Spawn (create and activate) a new task.
tasklnit() Initialize a new task.
taskActivate() Activate an initialized task.

The arguments to taskSpawn() are the new task’s name (an ASCII string), priority,
an “options” word, stack size, main routine address, and up to 10 arguments to be
passed to the main routine as startup parameters:

id = taskSpawn (name, priority, options, stacksize, main, argl, ..argl0);

If the specified routine takes fewer than 10 arguments, you should pass 0 to
taskSpawn() for those unused arguments.

The taskSpawn() routine creates the new task context, which includes allocating the
stack and setting up the task environment to call the main routine (a normal C rou-
tine) with the specified arguments. When the new task begins execution, it begins at
the entry to the specified routine.

The taskSpawn() routine embodies the lower-level steps of allocation, initialization,
and activation. The initialization and activation functions are provided by the rou-
tines taskInit() and taskActivate(); however, these routines are only used when
special circumstances dictate greater control over allocation or activation.

Task Names and IDs

When a task is spawned, the user specifies a task name, which is an ASCII string of
arbitrary length. The system returns a task ID which is a four-byte handle to the
task’s data structures. Most Vx960 tasking routines take a task ID as the argument
specifying a task. Vx960 uses a convention that a task ID of 0 always implies the call-
ing task.

intel Vx960 61

Vx960 5.0 — Programmer’s Guide

3.2.43

62

A task name should not conflict with any existing task name. Furthermore, to use
the interactive shell fully, task names should not conflict with globally visible rou-
tine and variable names. Vx960 uses a convention of prefixing all task names with
the letter “t” to avoid name conflicts.

You may not want to name some or any of your tasks. If a NULL pointer is supplied
for the name argument of taskSpawn(), then Vx960 assigns a name. The name is of
the form “tN” where N is a decimal value that is incremented once for each
unnamed task that is spawned.

When working interactively with the Vx960 shell, task names are resolved to their
corresponding task ID to simplify interaction with existing tasks. See 9. Shell for a
more complete discussion of this feature.

The following taskLib routines manage task IDs and names:

Table 3-3. Task Name and ID Routines

Call Descirlption

taskNamnie() Get the task name associated with a task ID.
taskNameTold() Look up the task ID associated with a task name.
taskldSelf() Get the calling task’s ID.

taskldVerify() Verify the existence of a specified task.

Task Deletion and Deletlon Safety

Tasks can be deleted from the system. Considerable care should be taken to avoid
deleting tasks at inappropriate times. Tasks should be dormant before an application
deletes them. Vx960 includes the following routines to delete tasks and protect tasks
from unexpected deletion.

Intel Vx960

3. Basic OS

Table 3-4. Task Deletion Routines
Call Descrliption
exit() Terminate and deallocate memory of calling task.
taskDelete() Terminate and deallocate memory of a task.
taskSafe() Make a task safe from deletion.
taskUnsafe() Make a task unsafe for deletion.

Tasks call exit() if the entry routine specified during task creation returns. Alterna-
tively, a task can call exif() at any point to kill itself. A task can kill another task by
calling taskDelete().

The routines taskSafe() and taskUnsafe() address problems that stem from unex-
pected deletion of tasks. The routine taskSafe() protects a task from deletion by
other tasks. This protection is often needed when a task executes in a critical region
or engages a critical resource.

For example, a task could take a semaphore for exclusive access to some data struc-
ture. While executing inside the critical region, the task could be deleted by another
task. Since the task was unable to complete the critical region, the data structure may
have been left in a corrupt or inconsistent state. Furthermore, the semaphore can
never be released by the task. Hence, the critical resource is now unavailable for use
by any other task and is frozen.

Using taskSafe() to protect the task that took the semaphore prevents such an out-
come. Any task that tries to delete a task protected with taskSafe() blocks. When fin-
ished with its critical resource, the protected task can make itself available for
deletion by calling taskUnsafe(), which unblocks any deleting task. To support
nested deletion-safe regions, a count is kept of the number of times taskSafe() and
taskUnsafe() are called. Deletion is allowed only when the count is zero, i.e., there
are as many “unsafes” as “safes.” Protection operates only on the calling task. A task
cannot make another task safe or unsafe from deletion.

Intel Vx960 63

Vx960 5.0 — Programmer’s Guide e e s

The following code fragment shows how a critical region of code can be protected
using taskSafe() and taskUnsafe():

taskSafe ();

semTake (semId, WAIT_ FOREVER);
. (critical region)

semGive (semld);

taskUnsafe ();

As shown in this example, deletion safety is often coupled with mutual exclusion.
Thus, for convenience and efficiency, a special kind of semaphore, the mutual-exclu-
sion semaphore, offers an option for deletion safety. See 3.3.2 Mutual Exclusion for
more information.

3.24.4 Task Options

When a task is spawned, the user specifies an option parameter that selects the
options in the following table. The value of the option parameter is specified by per-
forming a logical OR operation on the desired options.

VX_FP_TASK must be specified if the task performs any hardware floating-point
operations. Similarly, VX_STDIO must be specified if the task uses any stdio functions
other than printf() and sscanf().

Table 3-5. Task Options
Name Description
VX_UNBREAKABLE Disable breakpoints for the task.
VX_FP_TASK Execute with hardware floating-point support, if
available.
VX_STDIO Execute with stdio buffered 1/ O support.
VX_DEALLOC_STACK Deallocate the stack on termination.

Task options can also be examined and altered after a task is spawned by means of
the following routines. Currently only the VX_UNBREAKABLE option can be altered.

64 Intel Vx960

3. Baslc OS

Table 3-6. Task Options Routines

Call Desciription
taskOptionsGet() Examine task options.
taskOptionsSet() Set task options.

3.2.45 Task Control

The following routines provide direct control over a task’s execution:

Table 3-7. Task Control Routines
Call Descrlption
taskSuspend() Suspend a task.
taskResume() Resume a task.
taskRestart() Restart a task.
taskDelay() Delay a task for a number of ticks.

Vx960’s debugging facilities require task suspension and resumption routines. They
are useful to freeze a task’s state for examination. Delay operations provide a simple
mechanism for a task to sleep for a fixed duration. Task delaying is often used for
polling applications.

Tasks may require restarting during execution in response to some catastrophic
error. The restart mechanism recreates a task with the original creation arguments.
The Vx960 shell also uses this mechanism to restart the shell in response to a task-
abort request.

Intel Vx950 '65

Vx960 5.0 — Programmer’s Guide

3.24.6

3.2.5

66

Task Information

The following routines get information about a task by taking a snapshot of a task’s
context when called. The state of a task is dynamic, and the information may not be
current unless the task is known to be dormant (i.e., suspended).

Table 3-8. Task Information Routines
Call Description
taskldListGet() Fill an array with the IDs of all active tasks.
tasklnfoGet() Get information about a task.
taskPriorityGet() Examine the priority of a task.
taskRegsGet() Examine a task’s registers.
taskRegsSet() Set a task’s registers.
taskIsSuspended() Check if a task is suspended.
taskIsReady() Check if a task is ready to run.
taskTcb() Get a pointer to task’s control block.

Task Error Status: errno

By convention, C library functions use a global mechanism for returning status
codes when errors occur. A single global integer variable errno is set to an appropri-
ate error number whenever a library function is to return information about an error.

This convention is specified as part of the ANSI C standard. '

Vx960 has a single pre-defined global variable errno that can be referenced directly
by application code that is linked with Vx960 (either statically on the host or dynam-
ically at load-time). However, to be useful in the multitasking environment of Vx960,
each task must see its own version of errno. Thus errno is saved and restored by the
kernel as part of each task’s context every time a context switch occurs. Similarly,
interrupt service routines must see their own versions of errno. Accomplish this by
saving and restoring errno on the interrupt stack as part of the interrupt enter and

Intel Vx960

3. Basic OS

exit code provided automatically by Vx960 (see 3.4.1 Connecting Application Code to
Interrupts). Thus, regardless of Vx960 context, an error code can be stored or con-
sulted with direct manipulation of the global variable errno.

Almost all Vx960 functions follow a convention that indicates simple success or fail-
ure of their operation by the actual return value of the function. Many functions
return the status values OK (0) or ERROR (-1). Some functions which return a non-
negative number (e.g., open() returns a file descriptor) also return ERROR to indicate
an error. Functions which return a pointer return NULL (0) to indicate an error. In
most cases, a function returning such an error indication also sets errno to the specific
error code.

The global variable errno is never cleared by Vx960 routines. Thus, its value indicates
the last error status set. When a Vx960 subroutine gets an error indication from a call
to another routine, it returns its own error indication without modifying errno. Thus,
the value of errno that was set in the lower-level routine remains available as the
indication of error type.

For example, the Vx960 routine intConnect(), which connects a user routine to a
hardware interrupt, allocates memory by calling malloc() and builds the interrupt
driver in this allocated memory. If malloc() fails because insufficient memory
remains in the pool, it sets errno to a code indicating an insufficient memory error
was encountered in the memory allocation library, memLib(1). The malloc() routine
then returns NULL to indicate the failure. The intConnect() routine, receiving the
NULL from malloc(), then returns its own error indication of ERROR. However, it
does not alter errno, leaving it at the “insufficient memory” code set by malloc().

Application developers are encouraged to employ this mechanism in their own sub-
routines, setting and examining errno as a debugging technique. See the manual
entry errnoLib(1) for details on the composition of status values, and defined status
values available to applications.

Intel Vx960 67

Vx960 6.0 — Programmer’s Gulde

3.2.6

3.2.7

Task Exception Handling

Errors in program code or data can cause hardware exception conditions such as ille-
gal instructions, bus or address errors, divide by zero, and so forth. The Vx960
exception handling package handles all such exceptions. The default exception han-
dler suspends the task that caused the exception, and saves the state of task at the
point of the exception. A description of the exception is displayed on standard out-
put. The Vx960 kernel and other tasks continue uninterrupted. The suspended task
can be examined with the usual Vx960 routines, including ¢i() for task information
and t#() for a stack trace.

Tasks can also attach their cwn handlers for certain hardware exceptions through
the UNIX-compatible signal facility. If a task has supplied a signal handler for an
exception, the default exception handling described above is not performed. Signals
are also used for signaling software exceptions as well as hardware exceptions. They
are described in more detail in 3.3.7 Signals below and in the manual entry for
sigLib(1).

Note: The GNU/960 C runtime library includes signal routines (signal and
raise) that are incompatible with the Vx960. Do not use these routines in
your Vx960 applications.

Tasking Extensions

To allow additional task related facilities to be added to the system without modify-
ing the kernel, Vx960 provides task create, switch, and delete hooks which allow
additional routines to be invoked whenever a task is created, a task context switch
occurs, or a task is deleted. There are spare fields in the task control block available
for application extension of a task’s context.

These hook routines are shown in the table below. For more information, see the
manual entry for taskHookLib(1).

Intel Vx960

3. Baslc OS

3.2.8

Table 3-9. Task Create, Switch, and Delete “Hooks"”

Call Description

taskCreateHookAdd() Add routine to be called at every task create.
taskCreateHookDelete() Delete previously added task create routine.
taskSwitchHookAdd(') Add routine to be called at every task switch.
taskSwitchHookDelete() Delete previously added task switch routine.
taskDeleteHookAdd() Add routine to be called at every task delete.

taskDeleteHookDelete() Delete previously added task delete routine.

Shared Code and Reentrancy

In Vx960, it is very common for a single copy of a subroutine or subroutine library
to be invoked by many different tasks. For example, many tasks can call printf(), but
there is only a single copy of the subroutine in the system. This is called shared code.
Shared code makes the system more efficient and easier to maintain.

However, shared code must be reentrant. A subroutine is reentrant if a single copy of
the routine can be called from several task contexts simultaneously without conflict.
Such conflict would occur when a subroutine modifies global or static variables,
since there is only a single copy of the data and code. A routine’s references to such
variables can overlap and interfere in invocations from different task contexts.

All routines in Vx960 are made reentrant with the following techniques:
* use of dynamic stack variables
 guarding of global and static variables with semaphores

¢ use of task variables

These techniques should be used when writing application code that can be called
from several task contexts simultaneously.

intel Vx960 69

Vx960 5.0 — Programmer’s Guide

3.2.8.1

3.2.8.2

3.2.83

70

Dynamic Stack vVarables

Many subroutines are pure code, having no data of their own except dynamic stack
variables. They work exclusively on data provided by the caller as parameters. The
linked-list library, IstLib, is a good example of this. Its routines operate on lists and
nodes provided by the caller in each subroutine call.

Such subroutines of this kind are reentrant. Multiple tasks can use such routines
without interfering with each other, since each task does indeed have its own stack.

Guarded Global and Static Variables

Some libraries encapsulate access to common data. An obvious example is the
memory allocation library, memLib, which manages pools of memory to be used by
many tasks. This library declares and uses its own static data variables to keep track
of pool allocation.

This kind of library requires some caution since the routines are not reentrant. Mul-
tiple tasks invoking the routines in the library could interfere with access to common
variables. Such libraries must be made reentrant by providing a mutual-exclusion
mechanism to prohibit tasks from executing critical sections of code. The usual
mutual-exclusion mechanism is the semaphore facility provided by semLib(1) and
described in 3.3.3 Semaphores.

Task Varlables

Some routines that can be called by multiple tasks may require global or static vari-
ables that should have a distinct value for each calling task. For example, tasks car
reference a private buffer of memory and yet refer to it with the same global variable

T~ a,-,-nmm,\,-ln&n thic YJLQ4N nvnvytf‘oe - Canv‘-hr ~aNlaA tacl -nnmnh’oc varhich allAawre 4.

byte variables to be added to a task’s context, s that the value of such a variable i
switched every time a task switch occurs to or from its owner task. Several tasks
declare the same variable (4-byte memory location) as a task variable. Each of those
tasks can then treat that single memory location as its own private variable. This
facility is provided by the routines taskVarAdd(), taskVarDelete(), taskVarSet()
and taskVarGet(), which are described in the manual entry for taskVarLib(1).

Intel Vx960

3. Basic OS

3.2.8.4

3.2.9

3.2.9.1

Use this mechanism sparingly. Each task variable adds a few microseconds to the
context switching time for its task since the value of the variable must be saved and
restored as part of the task’s context. It is prudent to collect all of a module’s task
variables into a single dynamically allocated structure, and then make all accesses to
that structure be indirect through a single pointer. This pointer can then be the task
variable for all tasks using that module.

Multiple Tasks with the Same Main Routine

With V960, it is possible to spawn several tasks with the same main routine. Each
spawn creates a new task with its own stack and context. Each spawn can also pass
the main routine different parameters to the new task. In this case, the same rules of
reentrancy described in 3.2.8.3 Task Varlables apply to the entire task.

This is useful when the same function needs to be performed concurrently with dif-
ferent sets of parameters. For example, a routine that monitors a particular kind of
equipment can be spawned several times to monitor several different pieces of that
equipment. The arguments to the main routine could indicate which particular piece
of equipment the task is to monitor.

Vx960 System Tasks

Vx960 includes several system tasks, described in the following sections.

The Root Task: tUsrRoot

The root task, tUsrRoot, is the first task executed by the kernel. In Vx960, the root task
is in the module usrConfig and is used to initialize most Vx960 facilities. It spawns
such tasks as the shell, the logging task, the exception task, the network task, and the
tRlogind daemon. The root task terminates and is deleted when all initialization has
been performed. You are free to add any necessary initialization of your own to the
root task. For more information, see 8. Configuration.

Intel Vx960 71

Vx960 5.0 — Programmer’s Gulde

3.2.9.2

3.29.3

3.2.9.4

3.2.9.5

3.2.9.6

72

The Shell: tShell

The Vx960 shell, tShell, is also spawned as a task. The shell allows application devel-
opers to interact with Vx960 facilities and with their own application modules by
invoking any subroutine that has been entered in the system symbol table. Routines
that are called from the shell, rather than spawned, run in the context of the shell
task.

The Logging Task: tloglask
The log task, tLogtask, is used by Vx960 modules to log system messages without

having to do I/ O inthe current task context. For more information, see 4.5.3 Message
Logging and the manual entry for logLib(1).

The Exception Task: tExclask

- The exception task, tExcTask, supports the Vx960 exception handling package by

performing functions that cannot occur at interrupt level. It must have the highest
priority in the system. Do not suspend, delete, or change the priority of this task. For
more information, see the manual entry for excLib(1).

The Network Task: iNefTask

The tNetTask daemon handles the task-level functions required by the Vx960 net-
work.

The Remote Login Daemon: {Rlogind

The remote login daemon, tRlogind, allows remote users to log in to Vx960. It accepts
remote login requests from other Vx960 or host systems, and causes the shell’s input
and output to be redirected to the remote user. A tty-like interface is provided to the
remote user through the use of the Vx960 pseudo-terminal driver, ptyDrv. For more
information, see 4.6.2 Serial 1/O Devices (Terminal and Pseudo-Terminal Devices) and
the manual entry for ptyDrv(2). '

 Intel Vx960

3. Baslc OS

3.2.9.7

3.2.9.8

3.2.9.9

3.3

The Telnet Daemon: {relnetd

The telnet daemon, tTelnetd, allows remote users to log into Vx960 via telnet. It
accepts remote connection requests from any other system, and causes the shell’s
input and output to be redirected to the remote user. A tty-like interface is provided
to the remote user through the use of the Vx960 pseudo-terminal driver, ptyDrv. See
4.6.2 Serial 1/0O Devices (Terminal and Pseudo-Terminal Devices) and the manual entry
for ptyDrv for further explanation.

The Portmap Daemon: tPorfmapd
The tPortmapd daemon is an RPC server that acts as a central registrar for RPC serv-

ers running on the same machine. RPC clients query the tPortmapd daemon to find
out how to contact the various servers.

The Remote Debugging Server: fRdbTask

The tRdbTask services RPC requests made by remote source-level debuggers.

Intertask Communications

The intertask communication facilities complement the multitasking functions
described previously. These facilities permit independent tasks to coordinate their
actions.

Vx960 supplies a rich set of intertask communication mechanismé, including:
* shared memory, for simple sharing of data
* semaphores, for basic mutual exclusion and synchronization
* message queues and pipes, for intertask message passing within a CPU

* sockets and remote procedure calls, for network-transparent intertask communica-
tion

* signals, for exception handling.

Intel Vx950 73

Vx960 5.0 - Programmer’s Gulde

3.3.1

3.3.2

3.3.21

74

Shared Memory

The most obvious way for tasks to communicate in Vx960 is by accessing shared
data structures. Because all tasks in Vx960 exist in a single linear address space, shar-
ing data structures between tasks is trivial. Global variables, linear buffers, ring buff-
ers, linked lists, and pointers can be referenced by code running in different contexts.

Mutual Exclusion

While a shared address space simplifies exchange of data, interlocking access to
memory is crucial to avoid contention. Many mechanisms exist for obtaining exclu-
sive access to a resource and differ only in the scope for which the exclusion applies.
Methods of mutual exclusion include disabling interrupts, disabling preemption,
and resource locking with semaphores.

Interrupt Locks and Latency

The most powerful method available for mutual exclusion is the disabling of inter-
rupts. Such a lock guarantees exclusive access to the CPU.

funcA ()

{
int lock = intLock();

.

. (critical region that cannot be interrupted)

intUnlock (lock);
}

While this solves problems involving mutual exclusion with interrupt service rou-
tines, it is inappropriate as a general-purpose mutual exclusion method for most
real-time systems because of the inherent inability to respond to external events for
the duration of these locks. High interrupt latency is unacceptable in applications for
which deterministic response is a requirement.

However, interrupt locking can sometimes be necessary where mutual exclusion
involves interrupt service routines. In any situation, the duration of interrupt lock-
outs should be kept short.

Intel Vx960

3. Basic OS

3.3.2.2

3.3.3

Preemptive Locks and Latency

Disabling preemption offers a somewhat less restrictive form of mutual exclusion.
While no other task is allowed to preempt the current executing task, interrupt ser-
vice routines are able to execute.

funcA ()

{
taskLock ();

. (critical region that cannot be preempted)

taskUnlock ();
}

However, this method can also lead to unacceptable real-time response. Tasks of
higher priority are unable to execute until the locking task leaves the critical region,
even though the higher priority task was not itself involved with the critical region.
While this kind of mutual exclusion is simple, the duration should be kept short. A
better mechanism is provided by semaphores, discussed in the following sections.

Semaphores

Vx960 semaphores are optimized and provide the fastest intertask communication
mechanism in Vx960. They are the primary means for addressing the requirements
of both mutual exclusion and task synchronization:

¢ When used for mutual exclusion, Vx960 semaphores interlock access to shared
resources. They provide mutual exclusion with finer granularity than either
interrupt disabling or preemptive locks, discussed above.

* When used for synchronization, Vx960 semaphores coordinate a task’s execution
with an external event.

There are three semaphore types provided in Vx960, each optimized to address a dif-
ferent class of problem:

* The basic binary semaphore is the fastest, most general-purpose semaphore.

* The extended mutual-exclusion semaphore is a specialized form of the binary
semaphore that addresses problems inherent in mutual exclusion.

« The counting semaphore works like the binary semaphore except that it keeps
track of the number of times a semaphore has been given.

Intel Vx960 75

Vx960 5.0 — Programmer’s Guide

Table 3-10. Semaphore Types
Type Uses
binary General; for synchronization or mutual exclusion.
mutual exclusion For priority inheritance, deletion safety, and recursion.
counting For guarding multiple instances of a resource.

3.3.3.1 Semaphore Control

Instead of defining a complete set of semaphore control functions for each type of
semaphore, Vx960 provides a single uniform interface for semaphore control. An
entire set of semaphore calls can be changed from one type of semaphore to another.
Only the creation routines are specific to the semaphore type used. The following
semaphore control functions are provided:

Table 3-11. Semaphore Control Routines
Call Description
semBCreate() Allocate and initialize a binary semaphore.
semMCreate() Allocate and initialize a mutual-exclusion semaphore.
semCCreate() Allocate and initialize a counting semaphore.
semDelete() Terminate and deallocate a semaphore.
semTake() Take a semaphore.
semGive() Give a semaphore.
semFlush() Flush all pended tasks off a semaphore.

The sem[BMC]Create() routines return a semaphore ID that serves as a handle on
the semaphore during subsequent use by the other semaphore-control routines.

76 Intel Vx960

3. Basic OS

3.3.3.2

Binary Semaphores

The general-purpose binary semaphore is capable of addressing the requirements of
both forms of task coordination: mutual exclusion and synchronization. The binary
semaphore has the least overhead associated with it, making it applicable to high
performance requirements. The mutual-exclusion semaphore described below in
3.3.3.3 Mutual-Exclusion Semaphores is also a binary semaphore, but it has been tai-
lored to address problems inherent to mutual exclusion. Alternatively, the binary
semaphore can be used for mutual exclusion if the advanced features of the mutual-
exclusion semaphore are deemed unnecessary.

A binary semaphore can be viewed as a cell in memory that can be full or empty.
When a task takes a binary semaphore, using semTake(), the outcome depends on
whether the semaphore was full or empty at the time of the call. If the semaphore
was full, then the semaphore is made empty and the task continues execution. If the
semaphore was empty, then the task is put on a queue of blocked tasks and enters a
state of pending on the availability of the semaphore.

When a task gives a binary semaphore, using semGive(), the outcome also depends
on whether the semaphore was full or empty at the time of the call. If the semaphore
was already full, giving the semaphore has no effect at all. If the semaphore was
empty and no task was waiting to take it, then the semaphore is made full. If the
semaphore was empty and one or more tasks were pending on its availability, then
the first task in the queue of blocked tasks is unblocked, and the semaphore is left
empty.

Mutual Exclusion

Binary semaphores interlock access to a shared resource. Unlike disabling interrupts
or preemptive locks, binary semaphores limit the scope of the mutual exclusion to
the associated resource. In this technique, a semaphore is created to guard the
resource. Initially the semaphore is full.

SEM_ID semMutex;

/* create a binary semaphore that is initially full */
semMutex = semBCreate (SEM_Q_ PRIORITY, SEM_FULL);

When a task wants to access the resource, it must first take that semaphore. So long
as the task keeps the semaphore, all other tasks seeking access to the resource are
blocked from execution. When the task is finished with the resource, it gives back
the semaphore allowing another task to use the resource.

intel Vx960 77

Vx960 5.0 — Programmer’s Guide

Thus all accesses to a resource requiring mutual exclusion are bracketed with
semTake() and semGive() pairs:

semTake (semMutex, WAIT_ FOREVER);
. (critical region, only accessible by a single task at a time)

semGive (semMutex);

* Synchronization

‘When used for task synchronization, a semaphore can represent a condition or event
that a task is waiting for. Initially the semaphore is empty. A task or interrupt service
routine signals the occurrence of the event by giving the semaphore. Another task
waits for the semaphore by calling semTake(). The waiting task is blocked until the
event occurs and the semaphore is given.

Note the difference in sequence when semaphores are used for mutual exclusion
and when they are used for synchronization. For mutual exclusion, the semaphore
is initially full, and each task first takes and then gives back the semaphore. For syn-
chronization, the semaphore is initially empty, and cne task waits to take the sema-
phore, which is given by another task.

The following is an example of using semaphores for task synchronization:
SEM_ID syncSem; /* 1D of sync semaphore */
init ()
{

intConnect (..., eventInterruptSvcRout, ...);
syncSem = semBCreate (SEM_Q FIFO, SEM_EMPTY);
taskSpawn (..., taskl);

}

taskl ()
{

e s o

semTake (syncSem, WAIT_FOREVER); /* wait for event to occur */
.../* process event */

}

eventInterruptSvcRout ()

{

semGive (syncSem); /* let task 1 process event */

o e

78 Intel Vx960

3. Basic OS

3.3.3.3

In the above example, when the init() routine is called, the binary semaphore is cre-
ated, an interrupt service routine is attached to an event, and a task is spawned to
process the event. The routine taskl() runs until it calls semTake(). It remains
blocked at that point until an event causes the interrupt service routine to call
semGive(). When the interrupt service routine completes, task1() executes to pro-
cess the event. There is an advantage to handling event processing within the con-
text of a dedicated task. Less processing takes place at interrupt level, thereby
reducing interrupt latency. This model of event processing is recommended for real-
time applications.

Mutual-Exclusion Semaphores

The mutual-exclusion semaphore is a specialized binary semaphore designed to
address issues inherent in mutual exclusion, including priority inversion, deletion
safety, and recursive access to resources.

The fundamental behavior of the mutual-exclusion semaphore is identical to the
binary semaphore, with the following exceptions:

+ It can only be used for mutual exclusion.

+ It can only be given by the task that took it.

+ It can not be given from interrupt-level code.
* The semFlush() operation is illegal.

Priority Inversion

Priority inversion arises when a higher-priority task is forced to wait an indefinite
period of time for the completion of a lower-priority task. Consider the following
scenario: t1, t2, and (3 are tasks of high, medium, and low priority, respectively. t3
has acquired some resource by taking its associated binary guard semaphore. When
t1 preempts t3 and contends for the resource by taking the same semaphore, it
becomes blocked. If we could be assured that I would be blocked no longer than
the time it takes t3 to finish with the resource, there would be no problem since the
resource cannot be preempted. However, the low-priority task is vulnerable to pre-
emption by medium-priority tasks (like ¢2), which could inhibit t3 from relinquish-
ing the resource. This condition could persist, blocking t1 for an indefinite period of
time. See the diagram in Figure 3-3.

The mutual-exclusion semaphore has an additional option SEM_INVERSION_SAFE,
which enables a priority inheritance algorithm. The priority inheritance protocol
assures that a task which owns a resource executes at the priority of the highest pri-

Intel Vx960 79

80

Vx960 6.0 — Programmer’s Gulde

HIGH

ty —>

MEDIUM ',

priori

LOW

Figure 3-3. Priority Inversion

HIGH

ty —>

MEDIUM .

priori

t2

- LOW

time

Figure 3-4. Priority Inheritance

Key: Y - take semaphore }‘ - preemption
Vv -give sémaphore Tl - priority inheritance/release

- own semaphore I - block

Intel Vx960

\4

v

3. Basic OS

ority task blocked on that resource. When execution is complete, the task gives up
the resource and returns to its normal or standard priority. Hence, the inheriting task
is protected from preemption by any intermediate-priority tasks. Priority inherit-
ance solves the problem of priority inversion by elevating the priority of £3 to the pri-
ority of ¢1 during the time ¢1 is blocked on 3. This protects {3, and indirectly ¢1, from
preemption by f2. See the diagram in Figure 3-4.

Deletion Safety

Another problem of mutual exclusion involves task deletion. Within a critical region
guarded by semaphores, it is often desirable to protect the executing task from unex-
pected deletion. Deleting a task executing in a critical region can be catastrophic. The
resource could be left in a corrupted state and the semaphore guarding the resource
left unavailable, preventing all access to the resource.

The primitives taskSafe() and taskUnsafe() provide one solution to task deletion.
However, the mutual-exclusion semaphore offers the option SEM_DELETE_SAFE,
which enables an implicit taskSafe() with each semTake(), and a taskUnsafe() with
each semGive(). In this way, a task can be protected from deletion while it has the
-semaphore. This option is more efficient than the primitives taskSafe() and
taskUnsafe(), as the resulting code requires fewer entrances to the kernel.

Recursive Resource Access

Mutual-exclusion semaphores can be taken recursively. This means that the sema-
phore can be taken more than once by the task that owns it before being released.
Recursion is useful for a set of routines that need mutually exclusive access to a
resource, but may need to call each other. This is possible because the system keeps
track of which task currently owns the mutual-exclusion semaphore.

Before being released, a mutual-exclusion semaphore taken recursively must be
given the same number of times it has been taken. This is tracked by a count which
is incremented with each semTake() and decremented with each semnGive().

intel Vx960 81

Vx960 5.0 — Programmer’s Guide

3.3.34

82

The example below illustrates recursive use of a mutual exclusion semaphore. Func-
tion A requires access to a resource which it acquires by taking mySem; function A
may also need to call function B, which also requires mySeim:

SEM_ID mySem;
mySem = semMCreate (...);

funchA ()

{
semTake (mySem, WAIT_FOREVER);

s e o

funecB ();

semGive (mySem);

}

"funcB ()

{
semTake (mySem, WAIT_ FOREVER);

e o e

semGive (mySem);

}

Counting Semaphores

Counting semaphores are another means to implement task synchronization and
mutual exclusion. The counting semaphore works like the binary semaphore except
that it keeps track of the number of times a semaphore has been given. Every time a
semaphore is given, the count is incremented; every time a semaphore is taken, the
count is decremented. When the count reaches zero, a task that tries to take the sema-
phore is blocked. As with the binary semaphore, if a semaphore is given and a task
is blocked, it becomes unblocked. However, if a semaphore is given and no tasks are
blocked, then the count is incremented. This means that a semaphore that has been
given twice can be taken twice without blocking, in contrast to a binary semaphore.

Counting semaphores are useful for guarding resources of which there are multiple
copies. For example, the use of five tape drives could be coordinated using a count-
ing semaphore with an initial count of five, or a ring buffer with 256 entries could be
implemented using a counting semaphore with an initial count of 256. The initial
count is specified as an argument to the semCCreate() routine.

intel Vx960

3. Baslc OS

3.3.3.5

3.3.4

Speclal Semaphore Options

Timeoutls

All semaphore types include the ability to time out from the pended state. This is
controlled by a parameter to semTake() that specifies the amount of time in ticks that
the task is to wait in a blocked state. If the task takes the semaphore within the allot-
ted time, semTake() returns OK; if it times out before taking the semaphore, it
returns ERROR. A timeout value of WAIT_FOREVER means wait indefinitely; a value
of NO_WAIT means do not wait at all.

Queues

All semaphore types include the ability to select the queuing mechanism employed
for tasks blocked on a semaphore. They can be queued based on either of two crite-
ria: first-in-first-out (FIFO) order, or priority order. Priority ordering better preserves
the intended priority structure of the system at the expense of some overhead in
semTake() in sorting the tasks by priority. A FIFO queue requires no priority sorting
overhead and leads to constant-time performance. The selection of queue type is
specified during semaphore creation with sem[BMC]Create(). Semaphores using
priority inheritance (SEM_INVERSION_SAFE option) must select priority-order
queuing.

Message Queues

Modern real-time applications are constructed as a set of independent but cooperat-
ing tasks. While semaphores provide a high-speed mechanism for the synchroniza-
tion and interlocking of tasks, often a higher-level mechanism is necessary to allow
cooperating tasks to communicate with each other. In Vx960, the primary intertask
communication mechanism within a single CPU is message queues. Message queues
allow a variable number of messages, each of variable length, to be queued in first-
in-first-out order. Any task or interrupt service routine can send messages to a mes-
sage queue. Any task can receive messages from a message queue. Multiple tasks
can send to and receive from the same message queue. Full-duplex communication
between two tasks requires two message queues, one for each direction.

Intel Vx960 83

Vx960 5.0 — Programmer’s Gulde

3.3.4.1

84

Creating and Using Message Queues

Message queues are created and deleted with the routines shown in the table below.

A message queue is created with msgQCreate(). Its parameters specify the maxi-
mum number of messages that can be queued to the message queue and the maxi-
mum length in bytes of each message. Enough buffer space is preallocated for the
specified number and length of messages.

Table 3-12. Message Queue Creation/Deletion/Control
Call Descirlption
msgQCreate() Allocate and initialize a message queue.
msgQDelete() Terminate and deallocate a message queue.
msgQSend() Send a message to a message queue.
msgQReceive() Receive a message from a message queue.

A task or interrupt service routine sends a message to a message queue with
msgQSend(). If no tasks are waiting for messages on that queue, the message is
added to the queue’s buffer of messages. If any tasks are already waiting for a mes-
sage from that message queue, the message is delivered to the first waiting task.

A task receives a message from a message queue with msgQReceive(). If messages
are already available in the message queue’s buffer, the first message is dequeued
and returned to the caller. If no messages are available, then the calling task blocks
and be added to a queue of tasks waiting for messages. This queue of waiting tasks
can be ordered either by task priority or FIFO, as specified in an option parameter
when the queue is created.

Timeouts

Both msgQSend() and msgQReceive() take timeout parameters. When sending a
message, if no buffer space is available to queue the message, the timeout specifies
how many ticks to wait for space to become available. When receiving a message, if
no message is available, the timeout specifies how many ticks to wait for a message
to become available. As with semaphores, the value of the timeout parameter can

Intel Vx960

B

3. Basic OS

3.3.4.2

have the special values of NO_WAIT (0) meaning to always return immediately or
WAIT_FOREVER (-1) meaning to never time out the function.

- Urgent Messages

The msgQSend() function allows specification of the priority of the message as
either normal (MSG_PRI_NORMAL) or urgent (MSG_PRI_URGENT). Normal priority
messages are added to the tail of the list of queued messages, while urgent priority

~ messages are added to the head of the list.

Servers and Clients with Message Queues

Real-time systems are often structured using a client-server model of tasks. In this
model, server tasks accept requests from client tasks to perform some service and
return some reply. The requests and replies are made in the form of intertask mes-
sages. In Vx960, message queues, or pipes (see beiow), are a natural way to imple-
ment this.

For example, client-server communications could be implemented as follows. Each
server task would create a message queue to receive request messages from clients.
Each client task would create a message queue to receive reply messages from serv-
ers. Each request message would include a field containing the msgQId of the client’s
reply message queue. A server task’s “main loop” would consist of reading request
messages from its request message queue, performing the request, and sending a
reply to the client’s reply message queue.

The same architecture could be achieved with pipes instead of message queues. Of
course, there can be many variations of this example, tailored to the needs of the par-
ticular application.

Intel Vx960 85

VX960 5.0 — Programmer’s Gulde

3.3.5

3.3.6

3.3.6.1

86

Plpes

Pipes provide an alternative interface to the message queue facility that goes through
the Vx960 I/0O system. Pipes are virtual I/O devices managed by the pipeDrv
driver. The routine pipeDevCreate() creates a pipe device and the underlying mes-
sage queue associated with that pipe. The call specifies the name of the created pipe,
the maximum number of messages that can be queued to the pipe, and the maxi-
mum length of each message:

status = pipeDevCreate ("/pipe/name", max_msgs, max_length);

The created pipe is a named I/O device. Tasks can use the standard I/ O routines to
open, read, and write pipes, and invoke ioct! functions. As they do with other I/O
devices, tasks block when they read from an empty pipe until data is available, and
block when they write to a full pipe until there is space available. Like message
queues, interrupt service routines can write to a pipe, but cannot read from a pipe.

As I/0 devices, one important feature that pipes provide that message queues can-
not, is the ability to be used with select(). This routine allows a task to wait for data
to be available on any set of I/ O devices. The select() routine also works with other
asynchronous I/0 devices including network sockets and serial devices. Thus,
using select(), a task can wait for data on a combination of several pipes, sockets,
and serial devices.

Pipes, like message queues, are a natural way to implement a client-server model of
intertask communications. See the section above, 3.3.4.2 Servers and Clients with Mes-
sage Queues.

Network Intertask Communication

Sockets

In Vx960, the basis of intertask communications across the network is sockets. A
socket is an endpoint for communications between tasks; data is sent from one
socket to another. When you create a socket, you specify an Internet communica-
tions protocol that is used to transmit the data. Vx960 supports the Internet protocols
TCP and UDP. Vx960 socket facilities are source compatible with BSD 4.3 UNIX.

TCP provides reliable, guaranteed, two-way transmission of data via stream sockets.
In a stream-socket communication, two sockets are connected, allowing a reliable

Intel Vx960

3. Basic OS

3.3.6.2

byte-stream to flow between them in each direction like a cirguit. For this reason TCP
is often referred to as a virtual circuit protocol.

uppP provides a simpler but less robust form of communication. In a UDP commu-.
nicafion, data is sent between sockets in .separate, unconnected, individually
addressed packets called datagrams. A process creates a datagram socket and binds
it to a particular port number. There is no notion of a UDP connection. Any UDP
socket, on any host in the network, can send messages to arly other UDP socket by
specifying its Internet address and port number.

One of the biggest advantages of socket communications is that it is homogeneous.
Socket communications among processes are the same regardless of the location of
the processes in the network, or the operating system under which they are running.
Processes can communicate within a single CPU, across a backplane, across an
Ethernet, or across any connected combination of networks. Socket communications
can occur between Vx960 tasks and UNIX processes in any combination. In all cases,
the communications look identical to the application, except, of course, for the speed
of the communications.

For more information, see 6.2.5 Sockets and the manual entry for sockLib(1).

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPC) is a facility which allows a process on one machine
to call a procedure which is executed by another process on either the same machine
or a remote machine. Internally, RPC uses sockets as the underlying communication
mechanism. Thus with RPC, Vx960 tasks and UNIX processes can invoke routines
that are executed on other Vx960 or UNIX machines, in any combination.

As discussed in the sections above on message queues and pipes, many real-time
systems are structured with a client-server model of tasks. In this model, client tasks
request services of server tasks, and then wait for their reply. RPC formalizes this
model and provides a standard protocol for passing requests and returning replies.
Also, RPC includes tools to help generate the client interface routines and the server
skeleton.

For more information on RPC, see 6.2.6 Remote Procedure Calls.

Intel Vx960 87

Vx960 5.0 — Programmer’s Guide - - - --- o oo

3.3.7

88

Signals

Vx960 supports UNIX BSD-style signals. Signals asynchronously alter the control
flow of a task. Any task or interrupt service routine can raise a signal for a particular
task. The task being signaled suspends its current thread of execution and begins
execution of a task-specified signal handler routine, the next time the task is sched-
uled to run. Signals are more appropriate for error and exception handling than as a
general-purpose intertask communication mechanism.

The primary signal routines are shown in the table below. These routines are source
compatible with UNIX BSD 4.3 signal functions, hence the odd name of kill() for the
“raise signal” function. For more information on these and other signal functions,
see the manual entry sigLib(1).

Table 3-13. Signal Functions

Call Description

sigvec() Set signal handler routine for a signal.
kill() Raise a signal.

sigsetnask() Set mask of blocked signals.
sigblock() Block a single signal.

In many ways, signals are analogous to hardware interrupts. The signal facility pro-
vides a set of 31 distinct signals. A signal handler binds to a particular signal with
sigvec(), in much the same way that an interrupt service routine is connected to an
interrupt vector with intConnect(). A signal can be asserted by calling kill(). This is
analogous to the occurrence of an interrupt. The routines sigsetmask() and
sigblock() let signals be selectively inhibited.

Certain signals are associated with hardware exceptions. For example, bus errors,
illegal instructions, and floating-point exceptions raise specific signals.

Intel Vx960

3. Baslc OS§

3.4

3.4.1

Interrupt Service Code

Hardware interrupt handling is of key significance in real-time systems since it is
through interrupts that the system is informed of external events. For the fastest pos-
sible response to interrupts, interrupt service code in Vx960 runs in a special context
outside of the context of other tasks. Thus, handling an interrupt does not involve a
task context switch.

Connecting Application Code to Interrupts

System hardware interrupts other than those used by Vx960 are available for use by
application developers. Vx960 supplies a routine, intConnect(), that allows C func-
tions to be connected to any interrupt. The arguments to intConnect() are the byte
offset of the interrupt vector to connect to, the address of the C function to be con-
nected, and an argument to be passed to the C function. When an interrupt occurs
whose vector has been established in this way, the connected C function is called at
interrupt level with the specified argument. To return from interrupt, the connected
function returns. A routine connected to an interrupt in this way is referred to as
interrupt service routine (ISR) or interrupt handler.

Interrupts cannot vector to C functions. Instead, the intConrnect()) routine builds a
small amount of code which saves the necessary registers, sets up the stack with the
argument to be passed, and calls the connected function. Upon return from the func-
tion, it restores the registers and stack, and exits the interrupt.

The interrupt routines, shown below, are provided in intLib(1).

Intel Vx960 89

Vx260 5.0 — Programmer’s Guide

3.4.2

3.4.3

90

Table 3-14. Interrupt Routines
Call Description
intConnect() Connect C routine to interrupt vector.
intContext() Return TRUE if called from interrupt level.
intCount() Get current interrupt nesting depth.
intLevelSet() Set processor interrupt mask level.
intLock() Disable interrupts.
intUnlock() Enable intLock.
intVecBaseGet() Get the vector base address.
intVecSet() Set an exception vector.
intVecGet() Get an exception vector.

Interrupt Stack

Al ISR code uses the same interrupt stack. This stack is allocated and initialized by
the system at startup according to specified configuration parameters. It must be
large enough to handle the worst possible combination of nested interrupts. The
facility checkStack() shows interrupt stack utilization. See 8. Configuration for
details of setting the interrupt stack size.

Special Limitations of Interrupt Code

Many Vx960 facilities are available to interrupt service code, but there are some
important limitations. These limitations stem from the fact that interrupt service
code does not run in a regular task context: it has no task control block, for example,
and all ISRs share a single stack.

For this reason, the basic restriction on ISRs is that they must not invoke functions
that might cause “blocking” of the caller. For example, they must not try to take a

Intel Vx960

3. Basic OS

3.4.4

semaphore, because if the semaphore is unavailable, the kernel trys to “block” the
caller. However, ISRs may give semaphores that tasks are waiting on.

The memory facilities malloc() and free() take a semaphore and are therefore not
interrupt callable, nor are routines which make calls to malloc() and free(). For
example all creation and deletion routines are restricted from interrupt-level use.

An ISR also must not perform I/O through Vx960 drivers. Although there are no
inherent restrictions in the Vx960 1/O system, most device drivers require a task
context since they might block the caller to wait for the device. An important excep-
tion is the Vx960 pipe driver which has been designed to permit writes by interrupt
service code.

Vx960 supplies a logging facility that allows text messages to be logged to the sys-
tem console via a logging task. This mechanism has been designed to be callable by
ISRs. This is the most common way to print out messages from interrupt service
code. For more information, see the manual entry for logLib(1).

On 1960 microprocessors with on-chip floating-point support (e.g., 80960 KB and
80960 SB), an ISR must not execute code that makes use of this support. In Vx960,
the interrupt driver code created by intConnect(') does not save and restore floating-
point registers; thus, ISRs must not include floating-point instructions. If an ISR
requires floating-point instructions, the floating-point registers must be saved and
restored using routines in fppALib(1).

All VX960 utility libraries, such as the linked-list and ring buffer libraries, are usable
in interrupt service code. As was mentioned in the section on errno above (3.2.5 Task
Error Status: ermo), the global variable errno is saved and restored as a part of the inter-
rupt enter and exit code generated by the Vx960 intConnect() facility. Thus errno can
be referenced and modified by ISRs just as in any other code.

Exceptions At Interrupt Level

When a task causes a hardware exception such as illegal instruction or bus error, the
task is suspended and the rest of the system continues uninterrupted. However,
when an ISR causes such an exception, there is no safe recourse for the system to
handle the exception. The ISR has no context that can be suspended. Instead, Vx960
stores the description of the exception in a special location in low memory and exe-
cutes a system restart. '

Intel Vx960 91

Vx960 5.0 — Programmer’s Gulde

3.4.5

92

The Vx960 boot ROMs test for the presence of the exception description in low mem-
ory and if detected, print it out on the system console. The e command in the boot
ROMs redisplays the exception description.

Interrupt-to-Task Communication

While it is important that Vx960 support direct connection of ISRs that run at inter-
rupt level, interrupt events propagate to task-level code. Many Vx960 facilities are
not available to interrupt-level code, including I/O to any device other than pipes.
The following techniques can be used to communicate from interrupt service code

to task-level code.

Shared Memory and Ring Buffers

Semaphores

Message Queues

Pipes

Slgnals

Interrupt service code can share variables, buffers, and ring buff-
ers with task-level code.

Interrupt service code can give semaphores that tasks take and
wait for.

Interrupt service code can send messages to message queues for
tasks to receive. If the queue is full, the message is discarded.

Interrupt service code can write messages to pipes that tasks
read. Tasks and interrupt service code can write to the same
pipes. However, if the pipe is full, the message written is dis-
carded since the interrupt service code cannot block. Interrupt
service code must not invoke any I/O function on pipes other
than write().

Interrupt service code can signal tasks, causing asynchronous
scheduling of their signal handlers.

Note: Table 3-15 lists the routines callable by the interrupt service routines. The
libc routines follow the arrangement set up in C: A Reference Manual,
Samuel P. Harbison and Guy L. Steele Jr., Second Edition. Prentice Hall,
Inc., Englewood Cliffs, New Jersey. 1987.

Intel Vx940

3.” Basle OS

Table 3-15. Routines Callable by Interrupt Service Routines

Library Routines
bLib All routines.
errnoLib errnoGet(), errnoSet()
fppALib.s frpSave(), fppRestore()
intLib intContext(), intCount(), intVecSet(), intVecGet()
libe Math Functions:
abs(), fabs(), labs()
div(), ldiv()

ceil(), floor(), fmod()

exp(), log(), log10()

frexp(), ldexp(), modf{()
pow(), sqrt()

srand()

cos(), sin(), tan()

acos(), asin(), atan(), atan2()
cosh(), sinh(), tanh()

atanh(), poly(), mod(), rint(), sign(), matherr(), max(), min()
dabs(), acosh()

Search and Sort Functions:
bsearch()

String Functions:

strcat(), strncat()

stremp(), strncmp()

strepy(), strucpy()

strlen()

strchr(), strpos(), strrchr(), strrpos()
strspn(), strespn(), strpbrk(), strrpbrk()
strstr()

strtod(), strtol(), strtoul()

atof(), atoi(), atol()

streoll(), strxfrin()

Intel Vx940 93

Vx960 6.0 — Programmer’s Guide

Table 3-15. Routines Callable by Interrupt Services Routines (continued)

Library Routines

Memory Functions :

memchr()

memcmp()

memcpy(), memccpy(), memmove(), beopy()
memset(), bzero()

Character Functions:
isalnum(), isalpha(), isascii(), iscntrl()

isdigit(), isxdigit()
isprint()
islower(), isupper()
isspace()
toascii()
tolower(), toupper()
logLib logMsg()
IstLib All routines.
msgQLib msgQSend()
pipeDrv write()
mgLib All routines except rugCreate().
semLib semGive(), semFlush()
sigLib kill(), sigRaise()
strLib All routines.
taskLib taskSuspend(), taskResume(), taskPrioritySet(),

taskPriorityGet(), taskldVerify(), taskIdDefault(),
taskIsReady(), taskIsSuspended(), taskTcb()

tickLib tickAnnounce(), tickSet(), tickGet()
vxLib vxTas()
wdLib wdStart(), wdCancel()

94 Intel Vx960

3. Basle OS

3.5

Watchdog Timers

Vx960 includes a watchdog timer mechanism that allows arbitrary C functions to be
connected to a specified time delay. Watchdog timers are maintained as part of the
system clock interrupt service routine. Functions invoked by watchdog timers exe-
cute as interrupt service code at the interrupt level of the system clock. The restric-
tions on interrupt service code apply to routines connected to watchdog timers.

The watchdog timer functions in the following table are provided by the wdLib
library.

Table 3-16. Watchdog Timer Functions

Call Description

wdCreate() Allocate and initialize a watchdog timer.
wdDelete() Terminate and deallocate a watchdog timer.
wdStart() Start a watchdog timer.

wdCancel() Cancel a currently counting watchdog timer.

A watchdog timer is first created by calling the Vx960 routine wdCreate(). Then the
timer can be started by calling wdStart(), which takes as arguments the number of
ticks to delay, the C function to call, and an argument to be passed to that function.
After the specified number of ticks have elapsed, the C function is called with the
specified argument. You can cancel Watchdog timers any time before the specified
delay has elapsed by calling wdCancel().

Intel Vx960 95

Vx960 5.0 — Programmer’s Guide

96 Intel Vx960

/O System

Contents
4.1 INEEOAUCHION ettt te et es et e seesesssasatesssnonorsaeesssnsasssessstesssssensassessssssasssassss 101
4.2 Files, Devices, and DIIVETIS ..c..uiceieeeceeiecreecciveeeestneeeseeeeseseeeseseessersesssessnseesssssesssssssssssseses 102
4.2.1 File Names and the Default DevICecovovreiiiiiiionirieiinerireeisnseconrieseecesesssesessenns 102
4.3 S ES el A ISR 104
4.3.1 File DeSCIIPtOrs ..c.ucvimiciiiiiiiiciiniininii ittt es s esssaosssanssnsaens 104
4.3.2 Standard Input, Standard Output, Standard Errorcccovvniininiivicninninnnn. 105
4.3.2.1 Global Redirection 105
4.3.2.2 Task-Specific Redirection 106
4.3.3 Open and ClOSecc.coieiiiviiiiict ettt 106
434 Create aNA DLEte ..ooco e eeeeeeeeeeeeee et eeeceeereeeeseeeeeeeeseaesseesssesesreesesestantesaaesssessnasanesnen 107
4.3.5 Read and WIILec.cccccciiiriiiiiicec ettt ceserenseneenresetseesesssesesessssnesasesene 108
430 T/ O CONIIOL et e e e e et et e s teeetseeeaas et easeenneeenessasensoaneas 109
4.4 BUFTEIred I/ O: SEAIO wiitieeeieicieeeee et et eeeeeeeeeseseeeseeeeeetaaeeasesaseesasonentesassenseaseessssessssnseneesnnne 109
4.41 USING StAIO wviiieiiiiiiiiiciicic b 110
4.42 Standard Input, Standard Output, Standard Errorc..cccveiiiciiinnnicnnns verenas 111
4.5 Other FOrmatted I/ O ..ottt es s eenteesee st aseane st eesettoncssesesaesasesonensesassas 111

Intel Vx960 Q7

Vx960 5.0 - Programmer’s Guide

4.6

4.7
4.8
4.9

98

4.5.1 Special Cases: printf(), sprintf()), and SSCANf() wevevvevververereerrerenrinrernsrenisnsesenennne
452 Additional Routines: printErr() and fdprintf())mnnincniccninnenierensernenes
4.5.3 Message LOGEING ..ccveiiieieiiit ettt st seens
Devices iN VXI60 ...t s ssssss s sesssssessasssess sasesssassnse
4.6.1 Supplied DIIVErS ..ottt st st et s sstaas sesesesacsses
4.6.2 Serial I/ O Devices (Terminal and Pseudo-Terminal Devices)ccccceccrerununene.
~ 4.6.2.1 Tty Options 114
4.6.2.2 Raw Mode and Line Mode 114
4.6.2.3 Tty Special Characters 115
4.6.2.4 1/0 Control Functions 116
4.6.3 PIPe DeVICES i e
4.6.3.1 Creating Pipes 117
4.6.3.2 Writing to Pipes from Interrupt Service Routines- 118
4.6.3.3 1/0 Control Functions 118 ‘
4.6.4 Network File System (INFS) Devicescccoveunisinninsininiininiiniiesisnnnns s
4.6.4.1 Mounting an NFS File System 119
4.6.4.2 1/0 Control Functions 119 ‘
4.6.5 NOn-NEFS Network Devicescovininicninninneniciireniincncns issssnenes
4.6.5.1 Creating Network Devices 120
4.6.5.2 1/0 Control Functions 121
4.6.6 Block Devices (Disk and RAM Disk Devices)ccoueivvrmrrinenecicininiiniineniseninnnnn,
4.6.6.1 File Systems 122
4.6.6.2 SCSIDevices 122
4.6.6.3 RAM Disk Devices 123
4.6.7 SOCKELS ..oviiiiiiiiciieccenictcce et e et st b s anes
Initializing the I/ O System ... e
Differences Between VX960 and UNIX I/ O ...ccccveiimiriernicininiiniersscsesnenenes
TAEEINIAL SEEUCHUTE wereeeeeeeereeeeeeseeseeeseeeeesssessesesssesesss s e sseessecees s ses s
4.9.1 DIIVEIS oo s as
4.9.1.1 The Driver Table and Installing Drivers 129
4.9.12 Example of Installing a Driver 129
4.9.2 DEVICES iiiviiiiiiiiiiciiictit e bbb en s
4.9.2.1 The Device List and Adding Devices 131
4.9.2.2 Example of Adding Devices 131
Intel Vx960

4. 1/0O System

4.9.3 File DeSCPOrS ..cocoiiirieirirrrnieiieiststsststn sttt cae s s nssassonsens 131

4.93.1 The Fd Table 133

4.9.3.2 Example of Opening a File 133

4.9.3.3 Example of Reading Data from the File 136
4.9.3.4 Example of Closing a File 136

4.9.4 BlOCK DEVICES ..coieeeeeiiereitieierseieteirssessreessssesesssssssossssssssssessssssossssssosesssssnsssssossssnnssansesans 138

494.1 General Implementation 138
49.4.2 Driver Initialization Routine 140
4.9.4.3 Device Creation Routine 140
4.9.4.4 Read-Blocks Routine 142

4.94.5 Write-Blocks Routine 143

49.4.6 I/0 Control Routine 143

4.9.4.7 Device Reset Routine 144

49.4.8 Status-Check Routine 145
4.9.4.9 Write-Protected Media 145
4.9.4.10 Change in Ready Status 146

4.9.5 Driver Support LiDrariescoiereeieiiciene s 146

Intel Vx960 99

Vx960 5.0 — Programmer’s Guide

100 Intel Vx960

4.1

/O System

Introduction

The Vx9601/0 system is designed to present a simple, uniform, device-independent
interface to any kind of device including:

.

character-oriented devices such as terminals or communications lines
random-access block devices such as disks

virtual devices such as intertask pipes and sockets

monitor and control devices such as digital/analog I/ O devices

network devices that give access to remote devices on other computers.

The user view of the Vx960 I/ O system is source-compatible with that of the UNIX
I/0O system. Standard C language libraries for both basic and buffered I/ O functions
are provided. Internally, however, the I/ O system has a design that makes the Vx960
I/0 system faster and more flexible than the UNIX I/ O system and most other I/O
systems. These are important attributes in a real-time system.

This chapter discusses the following:

®

the nature of files and devices

the user view of basic and buffered I/O

Intel Vx940 101

Vx960 6.0 — Programmer’s Gulde

4.2

4.2.1

102

* the details of some specific devices

* the internal structure of the Vx960 I/O system.

Files, Devices, and Drivers

- In' V960, as in UNIX, applications access I/ O devices by opening named files. A file

can refer to one of two things:

* an unstructured “raw” device such as a serial communications channel or an
intertask pipe

* alogical file on a structured, random-access device containing a file system.
Consider the following named files:
/usr/myfile /pipe/mypipe /tyCo/0

The first refers to a file called “myfile”, on a disk device “/usr”. The second is a
named pipe (by convention, pipe names begin with “/pipe”). The third refers to a
physical serial channel. However, I/O can be done to or from any of these in the
same way. Within Vx960, they are called ﬁles, even though they refer to different
physical objects.

Devices are handled by program modules called drivers. In general, using the I/O
system does not require any further understanding of the implementation of devices
and drivers. However, the Vx960 1/ O system gives drivers flexibility in the way they
handle specific devices. Drivers strive to follow the conventional user view pre-
sented here, but can differ in the specifics. See the section below, 4.6 Devices In Vx960.

Although all I/0 is directed at named files, it can be done at two different levels:
basic and buffered. The two differ in the way data is buffered and in the types of calls
that you can make. These two levels are discussed in later sections.

File Names and the Default Device

A file name is specified as a character string. An unstructured device is specified
with the device name. In the case of file system devices, the device name is followed

intel Vx960

4, 1/0 System

by a file name. Thus the name “/ty0” might name a particular serial 1/0 channel,
and the name “DEV1:/filel” would indicate the file “filel” on the device “DEV1:”.

When a file name is specified in an I/0O call, the I/O system searches for a device
whose name matches at least an initial substring of the file name. The I/0O function
is then directed at this device.

If a matching device name cannot be found, then the I/O function is directed at a
default device. You can set this default device to be any device in the system, including
no device at all, in which case failure to match a device name returns an error.

Non-block devices are named when they are added to the I/ O system, at system ini-
tialization time. Block devices are named when they are initialized for use with a
specific file system. The Vx960 I/O system imposes no restrictions on the names
given to devices. The I/O system does not interpret device or file names in any way,
other than during the search for matching device and file names.

It is useful to adopt some naming conventions for device and file names. Conven-
tions used in Vx960 give the names a UNIX look, although the semantics are some-
what different. Most device names begin with a slash (“/”), except non-NFS
network devices and DOS file system devices.

By convention, NFS-based network devices are mounted with names that begin with
a slash; for example:

/usr

Non-NFS network devices are named with the remote machine name followed by a
colon; for example:

host:

The remainder of the name is the file name in the remote directory on the remote sys-
tem.

File system devices using DOS are often named with uppercase letters and/or digits
followed by a colon; for example:

DEV1:

Files in DOS file systems are often separated by backslashes (“\”). These can be used
interchangeably with forward slashes (“/”).

Intel Vx960 103

Vx960.6.0 — Programmer’s Guide

4.3

4.3.1

104

Basic I/O

Basic I/0 is the lowest level of I/ O in Vx960. The basic I/ O interface is source com-
patible with the I/O primitives in the standard C library. There are seven basic 1/O
calls, shown in the following table.

Table 4-1. Basic I/O Routines
Call Description
creat() Create a file.
delete() Delete a file.
open() Open a file. (Optionally, create a file.)
close() Close a file.
read() Read a created or opened file.
write() Write a created or opened file.
ioctl() Perform special control functions on files or devices.

File Desctiptors

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>