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1. ABSTRACT 
The purpose of this study was to find out what 
performance gains an H.263 video encoder can 
achieye using Intel,l\1l\1X technology. This 
study resulted in an overall speedup of over 
65%. 
1.1 Keywords 
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2. INTRODUCTION 
The International Telecommunication Union, 
Telecommunication Standardisation Sector (ITU-T), has 
specified the first version of the H.263 standard for video 
coding for low bit rate communication enabling 
compression of video sequences to bit rates below 64 kbps. 
The standard specifies a hybrid coding method containing 
discrete cosine transformed (DCT) intra frames, and motion 
compensated and DCT transformed inter frames. 
Applications for which the standard is suitable include 
'ideo phone applications in the current Public Switched 
Telephone Network (pS1N), and in future mobile networks 
with data rates similar to the data rates of PSTN. An H.263 
encoder is one component of a video phone application. 

Intel ,MMX technology is designed to accelerate multimedia 
and communications applications. The technology exploits 
the parallelism typical of many of the algorithms in these 
applications by offering new instructions and data types. 
:MMX technology enables parallel operation on small data 
elements. 

Amdahl's Law [1] can be used to analyse the speedup of 
different routines. Amdahl's Law (defined in Equation 2-1) 
states that the performance enhancement possible with a 
gi,'en improvement is limited by the fraction (of the 
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execution time) that the improved feature is used. 

A routine containing MMX code can perform independent 
operations on eight elements in parallel, for example. This 
implies that the performance enhancement of this parallel 
operation (SpeeduP<r:,:,cd in Equation 2-1) is 8. However, the 

overall speedup of the routine depends on the fraction that 
the parallel operation is used (Fract i on",,'=',d in Equation 2-1). 

Speedup=" . 1 
_F._ra_ct_/O-,n~""",~""=4,,,- (1 F.' ) 
SpeeduPaJ-~=' 

+ - ractlOncr.J-..::r.a4 

Equation 2-1. Amdahl's Law. 
Some examples of the performance enhancement of MMX 
technology can be found in [12], [13] and [11]. There are 
different ways to find out the speedup achieved using MMX 
technology. Firstly, one can observe the speedup of time­
consuming routines. Secondly, one can observe the overall 
speedup of the whole application. The speedup of an 
individual routine can be found out by calculating the 
number of instructions in it, and then, by making some 
assumptions about, e.g., cache misses, the total number of 
clock cycles for the routine can also be calculated. Another 
way to find out the speedup of an individual routine is to 
measure its actual execution time. The only reasonable way 
to find out the overall speedup is to measure the actual 
execution time of the whole application. 

In this study, all speedups were found out by measuring the 
actual execution times. The overall speedups of a few 
multimedia applications are presented in [13]. These 
speedups were also found out by measuring the actual 
execution times. 

An optimised routine utilising MMX technology is written 
in assembly language. To find out the speedup achieved 
using MMX technology, one can compare this MMX 
routine to an integer assembly routine, a floating-point 
assembly routine, or to a C routine. Different comparisons 
yield different speedups. Different levels of optimisation 
may also have a considerable influence on the speedup. 

In this study, the performance comparisons were made 
between optimised MMX code and optimised scalar code. 

J The author is also a postgraduate student at Tampere University 
of Technology (Department of Information Technology, 
Software Systems Laboratory), Finland. 
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In this context, scalar code means assembly code that does 
not contain MMX instructions, but can contain either 
integer or floating-point instructions. 

The kind of comparison used in this study gives more 
information about the performance enhancement of MMX 
technology, because when comparing optimised MMX code 
and non-optimised C code, only the fraction of the speedup 
is caused by 11MX technology. The rest of the speedup is 
caused by the assembly implementation of MMX code and 
different optimisation levels between MMX and C code. 

To find out what performance gains an H.263 encoder can 
achieve using MMX technology, two performance 
comparison tests were executed. One resulted in overall 
speedup on the encoder; the other resulted in the speedup of 
each of the most time-consuming routines. Amdahl's Law is 
used to explain why the overall speedup of the routine 
performing a parallel operation is lower than the 
performance enhancement of this parallel operation. 

Chapter 3 presents an overview of the H.263 encoder as 
well as an optimised implementation of the time-consuming 
routines. Chapter 4 contains the results of the performance 
comparisons. It also describes the test environment and 
measuring techniques used. Chapter 5 concludes the work. 

3. H.263 VIDEO ENCODER 
The optimised routines of the encoder were hand-tuned for 
optimal performance on a Pentium processor using MMX 
technology. General optimisation techniques, such as 
instruction scheduling for paired execution [5], correct 
alignment of data [5], and loop unrolling [4], were applied. 
Pentium-specific optimisation techniques, e.g., instruction 
scheduling, were applied carefully in both the MMX and 
scalar routines. Both the MMX and scalar routines are small 
enough to fit in the internal code cache (16 KB). 
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o Block frem the eng.nal frame SAD SLIT:'! cf Absolute Dlfferences 
P Predlct'cnll!ock VLC Vanab!o lenj:lth cocl'lns;J 

Figure 3-1 Data flow diagram of an H.263 video encoder [10]. 
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The basic structure of an H.263 encoder is shown in Figure 
3-1, which follows the Data Flow Diagram (DFD) notation 
of the Object Modeling Technique (OMT) format [14]. 
This paper concentrates on the most time-consuming parts 
of the encoder: motion estimation (prediction), DCT and 
quantisation, and IDCT and dequantisation routines, see 
[10] for further details of the encoder. 

Motion estimation is a process, which is used to reduce 
temporal redundancy in a video stream. In a typical motion 
estimation process, the image is split into blocks of N x N 
pixels and a resembling prediction block in the previously 
reconstructed image (reference image) is searched for each 
block in the current image. This procedure is called block 
matching. The way the prediction block is found is 
determined by the used block matching algorithm, a 
computation-constrained layered search [3]. 

The prediction block is determined by comparing the block 
in the current image with each candidate block inside the 
search area in the reference image. The comparison of the 
two blocks is made by comparing corresponding pixels in 
the two blocks, using some error measure, e.g., the Sum of 
Absolute Differences (SAD) defined in Equation 3-1, 
where: N is the block width, Fo and F.J respectively are the 
current and the previously reconstructed frame, k and I 
define the position of the block in the current frame 
(multiples of N), and x and y define the position of the 
prediction block in the previously reconstructed frame. 

N 

SAIX..x,y,k,I)= LlF..,(i+x,j+ Y)-F.(i+k,j+l~ 
1.)>::0 

Equation 3-1. Definition of the Sum of Absolute Differences. 
The calculation of the SAD is a dominant operation during 
the motion estimation. Another time-consuming operation is 
bilinear interpolation, which is needed because of half-pixel 
precision during the motion estimation. Half-pixel precision 
means that if one or both of the motion vector components 
indicate half-pixel position, the pixel values are found using 
bilinear interpolation ·as described in Figure 3-2. "f' 
indicates division by truncation. 
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Figure 3-2. HaIf-pi..:el prediction by bilinear interpolation [8]. 
The motion estimation process also contains two additional 
routines, which were optimised. They are introduced in the 
next subsection. 

The 8x8 DCT (IDCT) routine used in the encoder is 
described in [2]. At first, the routine calculates the 
horizontal transform, ·processing rows. Secondly, it 
calculates the vertical transform, processing columns. The 
original C versions of the DCT and IDCT routines are taken 
from the H.263 encoder written by Telenor (tmn v2.0). 
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3.2 Optimised l\ThiX Code 
The original C version of the SxS DCT routine calculates 
\\ith 32-bit floating point numbers. The MMX version 
calculates \\ith a poorer resolution: it uses fixed point 
numbers having a precision of three fractional bits. The 
MMX version stores two coefficients in one MMX register. 
It processes two rows at a time, with four passes. 

Quantisation is defined in Equation 3-2 for INTRA blocks 
(except for the first coefficient, called the INTRA DC 
coefficient) and in Equation 3-3 for IN1ER blocks. 

LEYEL=ICOFjJ(2xQUANT) 
Equation 3·2. Quantisation for an INTRA block [9]. 

LEFEL= (jCOFj- QUANT /2)/(2xQUANT) 
Equation 3·3. Quantisation for an INTER block [9]. 

The INTRA DC coefficient is uniformly quantised with a 
quantisation step of S. The quantisation parameter QUANT 
may take integer values from 1 to 31. COF stands for a 
transform coefficient to be quantised. LEVEL stands for the 
absolute value of the quantised version of the transform 
coefficient. 

Both quantisation equations have (2xQUANT) as a divisor. 
This enables the calculation of a table containing values 
1J(2xQUANT) for each possible QUANT value. This table 
makes possible the quantisation with multiplication. 
Because the calculation is done with limited precision, the 
quantisation using multiplication does not always yield 
exactly as accurate results as the quantisation using 
division. Quantisation processes four coefficients in one 
11MX register. 

The abbre\iation for these routines (and also for the 
corresponding scalar routines) to be used later on is 
DCT +Q, covering both the DCT and quantisation routines. 

The original C version of the SxS IDCT calculates with 32-
bit floating point numbers. Again, the MMX version 
calculates with a poorer resolution: it uses fixed point 
numbers having a precision of four to six fractional bits. 
The MMX version of the IDCT utilises parallelism 
basically in the same way as the MMX version of the DCT. 

The dequantisation (for non-INTRA DC coefficients) is 
performed on four pixels in parallel, using the following 
formulae that give the relationship between coefficient 
levels (LEVEL), quantisation parameter (QUANT) and 
reconstructed coefficients (REC): 

ma = 0 => Ja:r = 0 

(JAW = odd => lRErl = (JAW x (2 x !mHj + 1) 

(JJfv = even =>RErl = (JAW x (2 x !mHj + 1)-1 

Ja:r = sign(m'EL) x 1m::! 
Equation 3-4. Dequantisation [8]. 

The abbreviation for these routines is IQ+IDCT. 

There are, altogether, eight SAD calculation functions, four 
for calculating the SAD for 16x16 blocks (abbreviations 
end with 16) and another four for SxS blocks (abbreviations 
end with S). Two of these functions operate on the block 
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having full-pixel coordinates (calcSADFF16/S). The other 
six functions operate on the block having half-pixel 
coordinates (calcSADHF16/S, calcSADFH16/S, and 
calcSADHH1 6/S). 

The calculation of the SAD for the block having full-pixel 
coordinates utilises the parallelism and also the saturating 
arithmetic described in [6]. All pixel differences can be 
calculated in parallel, because they are all independent 
operations. Eight pixels are processed in parallel. 

The calculation of the SAD for the block having half-pixel 
coordinates is a somewhat more complex operation. In this 
study, an optimised solution was developed. Consider a 
pixel, whose x-component is a half-pixel value and y­
component is a full-pixel value. The half-pixel value for this 
pixel is obtained from Equation 3-5: 

b =(A + B + l) /2 
Equation 3·5. Half-pixel prediction, case b [8]. 

A and B are defined in Figure 3-2, and are presented as S­
bit unsigned numbers. Because calculation is done with 
integer numbers and the division is defined to be done by 
truncation, we cannot write Equation 3-5 as b = Al2 + B12 + 
112. It is possible to use Equation 3-5 for only four pixels in 
parallel, because A+B+ 1 can take more than S bits and thus 
need 16 bits of one MMX register. But if A and B could be 
divided separately, without first adding them and constant 
one, it would be possible to calculate eight pixels in 
parallel. In this case, Equation 3-6 turns out to be 
equivalent to Equation 3-5: 

b =A / 2 + B 12 + ((AAl\Dl) aUB Al\Dl)) 
Equation 3·6. Half·ph:el prediction, case b. Optimised version. 
The two other cases of bilinear interpolation (cases c and d 
in Figure 3-2) can also be calculated using the same 
principle. 

The function that makes the INTRAIINTER decision for an 
individual macroblock (CalcIntraDecision) is basically a 
SAD calculation function without bilinear interpolation 
routines. See [8] for the definition of a macroblock and 
coding modes (INTRAlINTER). 

The function that calculates the difference macroblock 
(preCalcDiffMB) calculates the difference on a pixel-by­
pixel basis. Because the pixel difference calculation is an 
independent operation, it can be calculated in parallel. The 
pixel difference can have values ranging from -255 to 255, 
which take 16 bits of one MMX register. Thus, this 
operation can be performed on only four pixels in parallel. 

The MMX versions of the DCT, mCT and quantisation 
routines calculate with a poorer resolution than the original 
C versions. However, the differences in the encoding results 
(e.g., subjective and objective video quality) between the 
MMX and the C versions are almost negligible. On the 
average, the difference in objective quality, in terms of 
PSNR (Peak Signal-to-Noise Ratio), is only 0.02 dB [10]. 
In practice, this means that no loss in subjective quality can 
be observed. 
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3.3 Optimised Scalar Code 
Scalar yersions of the DCT and IDCT use floating-point 
numbers. The reason for using floating-point instructions 
instead of integer instructions is the nonpipelined, II-cycle 
integer mUltiply operation. The floating-point multiply takes 
only three cycles to execute and executes in a pipelined 
unit. Only one row or column is processed simultaneously. 
All coefficients in that row or column are, however, kept in 
the FPU registers during the calculation, thus the precision 
at that stage is very good, 80 bits. The data is stored in a 
temporary buffer between the two passes (horizontal and 
vertical) by using 32-bit floating point numbers. 

Quantisation must be performed in integer numbers. Since 
the integer divide instruction is very slow, multiplication 
quantisation routine is implemented. The multiplication 
quantisation works similarly to that in 1f.MX code. Note 
that the integer multiply instruction is much slower than that 
for 11MX. Both quantisation and dequantisation process 
one value at a time. 

During dequantisation, the (2xILEVELI+ 1) part in Equation 
3-4 is acquired from a look-up table. 

Scalar versions of the SAD calculation functions calculate 
the absolute difference using the same technique as the 
MMX version, but the calculation can only be done pixel 
by pixel [6]. However, the scalar versions of the bilinear 
interpolation routines can operate on four pixels in parallel 
and they also use the same technique as the M11X version. 

Scalar versions of functions CalcIntraDecision and 
preCalcDiffMB operate on one pixel at a time. 

The scalar yersions of the DCT, IDCT and quantisation 
routines calculate with a better resolution than the M11X 
versions of the corresponding routines. Thus, the 
differences in the encoding results between the scalar and 
the C versions are even smaller than those between the 
M11X and the C versions. 

4. PERFORMANCE COMPARISONS 
4.1 Test Emironment 
The test environment for the performance testing was the 
follo\ying: Fujitsu ICL ErgoPro S450 PC, having 32 
megab)tes of random access memory and based on a 133 
MHz Pentium M11X processor. The H.263 encoder used is 
a Win32 console application that was run in Windows 95. 
During the measurements there was a mInImum 
computational load caused by other programs. In addition, 
the priority of the encoder process was set to the maximum 
value. This was done by calling Windows 95 functions 
SetPriorityClass and SetThreadPriority with parameters 
REALTThffi_PRIORITY_CLASS and 
THREAD_PRIORITY_TThffi_CRITICAL, respectively. 

Four original uncompressed QCIF-sized (the luminance 
resolution: 176x144) sequences, Akiyo, Claire, Coastguard 
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and Foreman, were used. These sequences were selected 
from a set of standard test sequences that were used during 
the development of video coding standards ITU-T 
Recommendation H.263 [8] and MPEG4 [7]. Frames 0 to 
299 of all sequences were encoded with a target frame rate 
of 10 fps. Two optional coding modes of the H.263 
recommendation, the Unrestricted Motion Vector mode 
(option D) and the Advanced Prediction mode (option F), 
were used [8]. 

In order to reduce the influence of disk caching on the 
execution time, the same sequence was encoded three times 
in a row. Because the purpose was to measure the 
performance of the encoding process, not any I/O 
operations, only the last execution was taken into account. 
The proportional time usage of I/O operations was very 
small in the last execution, because the disk cache was 
filled during the two former executions. 

Two different performance comparison tests were executed. 
During the first test, all four test sequences were encoded 
with bit rates from 8 to 48 kbps using both the MMX and 
scalar versions. Due to the different nature of test 
sequences, a unique set of target bit rates was selected for 
each sequence. This test resulted in overall speedup 
achieved using MMX technology. During the second test, 
the Foreman sequence was encoded with a target bit rate of 
24 kbps. The execution times of the optimised routines 
were measured. This test resulted in the speedup of each 
individual routine. 

In the first test, the total execution time of the encoder was 
measured using Windows 95 GetTickCount function, which 
returns the time in milliseconds. In the second test, the 
execution time of each optimised routine was measured 
using Pentium's RDTSC (Read from Time Stamp Counter) 
instruction, which returns clock cycles. 

4.2 Overall Speedup 
Table 4-1 shows the encoding speed (in framesls) of the 
MMX version for all sequences, when both the options D & 
F are used. Table 4-2 contains the corresponding 
information about the scalar version. 

On the average, the MMX implementation is approximately 
670ft. f th th al . I . o aster an esc ar ImpJementatlon. 
:fii • - . • .. 1lTIffi'i • . - . - . h1lr:F.li 

8kbos 17.27 17.29 17.28 
10 kbps 17.21 16.96 17.09 
12 kbos I 17.01 16.84 14.12 15.99 
14 kbps 16.94 16.63 14.41 15.99 
16 kbos 16.63 15.14 16.44 14.56 15.69 
24 kbos I 16.23 14.39 15.99 14.12 15.18 
28 kbps 15.81 14.51 15.83 13.85 15.00 
36 kbos 15.70 13.89 15.46 13.43 14.62 
48 kbps 15.35 13.39 14.91 12.94 14.15 
Mean I 16.46 14.26 16.26 13.92 15.23 

Table 4-1. Encoding speed for test sequences (MMX). 
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IS kbps 10.12 10.02 110.07 
10 kbos 10.01 9.86 1 9.94 , 
12 kbps 9.90 9.83 8.43: 9.39 
14 kbos 9.82 9.74 8.531 9.36 
16 kbps 9.78 9.06 9.67 8.681 9.30 

124kbos 9.64 8.93 9.53 8.571 9.17 
'28 kbps 9.62 8.80 9.42 8.471 9.08 
:36 kbos 9.45 8.57 9.20 8.281 8.88 
i48 kbps 9.29 8.35 9.08 8.07i 8.70 
'Mean 9.74 8.74 9.59 8.43! 9.13 

Table 4-2. Encoding speed for test sequences (scalar). 

4.3 Speedup of Each Optimised Routine 
Table 4-3 shows the minimum execution time (in cycles), 
average execution time (in cycles), execution frequency, 
and average speedup (in %) for each optimised routine, 
when encoding the Foreman stream. Two subsequent rows 
contain information on each routine, the upper reporting the 
Ml\IX the lower the scalar version. 

Table 4-3 Min. e..'\:ecution time, average e..'\:ecution time, 
execution frequency and average speedup for each routine. 

The overall average speedup of all routines was calculated 
in two different '\vays: by using arithmetic mean (58.65%) 
and weighted arithmetic mean (60.68%). The latter uses the 
execution frequencies as weighting factors. 

The overall encoding speeds for the MMX and scalar 
versions for these encoder runs are slightly lower than the 
corresponding speeds presented in Table 4-1 and Table 4-2 
(13.79 and 8.49 frames/s, respectively), because of the 
timing instructions around each routine. The overall 
speedup based on these encoding speeds is 62.43%. This is 
quite close to the average speedup of all routines (60.68%). 
However, the share of the total execution time for these 
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routines is 63.21 % for the scalar version and 40.37% for the 
MMX version. 

In general, the speedup of each routine seems to be 
relatively close to the average speedup of all routines. 
There is only one exception; the preCalcDiftMB routine 
(speedup: 5.39%). This routine does only one subtract 
operation, reads both of its input operands from the memory 
and writes the results into the memory in a loop. Although 
the :MMX version does the subtract operation on 4 pixels in 
parallel (the scalar version processes 1 pixel at a time), 
most of the time is spent on memory reads and writes. 

Only fraction of the execution time of the preCalcDiftMB 
routine can utilise parallelism. That fraction can be 
calculated by using Amdahl's Law (defined in Equation 2-
1). The overall speedup of the routine (Speedup""rall in 

Equation 2-1) is 5.39%. The speedup in the enhanced mode 
(Speedup,'-........ .,d in Equation 2-1) is 4. In this section, it is 
assumed that both the MMX and the scalar routines use 
both the pipelines similarly. Substituting into Equation 2-1: 

L0539 = -::-_.:--___ 1 ____ _ 
Fract I onF2cl/d 

4 + (l - Fract i onpadld) 

Simplifying this equation yields: Fract i 011 = 006819 
f2Tdl~1 • 

Thus only 6.82% of the execution time of the 
preCalcDiftMB routine can utilise the parallelism. This is 
the main reason for the very low speedup. Other routines 
have different speedups in their enhanced modes 
(Speedup"~-"d in Equation 2-1), such as 2 and 8 (explained in 

the following paragraphs). Other routines have better 
overall speedups than the preCalcDiftMB routine. This 
indicates that the fractions utilising the parallelism are 
greater than those of the preCalcDiftMB routine. However, 
for all these routines, these fractions are far from 100%. 

The MMX versions of the DCT +Q and IQ+IDCT routines 
process 2 pixel rows (or columns) simultaneously during 
the DCT (!DCT) algorithm, and 4 pixels in parallel during 
quantisation (dequantisation). The corresponding figures for 
the scalar versions are 1 pixel row and 1 pixel. Because the 
DCT (!DCT) consumes more time than quantisation 
(dequantisation), the speedup in the enhanced mode is 
closer to 2 than 4. 

The MMX version of the calcSADFF16 routine processes 8 
pixels in parallel, while the scalar version processes only 1 
pixel at a time (the speedup in the enhanced mode is 8). 
Still, the actual speedup is 65.71 %. We can calculate the 
fraction that utilises the parallelism of the execution time of 
this routine by using Amdahl's Law as before. The result, 
45.02%, explains the relatively low overall speedup of the 
routine compared to the speedup in the enhanced mode. 

Other SAD calculation functions contain bilinear 
interpolation routines that consume more time than the 
calculation of the SAD. The :MMX versions of the bilinear 
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interpolation routines process 8 pi.,,,els in parallel, while the 
scalar versions process 4 pixels in parallel (the speedup in 
the enhanced mode is closer to 2 than 8). 

5. CONCLUSIONS 
An H.263 encoder contains several time-consuming 
routines suitable for MIl/IX optimisation, among them 
routines that perform independent operations on pixel data. 

In this study, twelve time-consuming routines were written 
in both 11MX and scalar code. This resulted an overall 
speedup of over 65% on the H.263 encoder, when 
comparing optimised MMX code and optimised scalar code 
(assembly code that does not contain MMX instructions). 

It is difficult to compare the results of different performance 
comparison tests because of the different test applications, 
test environments and measuring techniques. An earlier 
study by the author [10] presents a speedup of almost 350% 
on the H.263 encoder, when comparing optimised MMX 
code and non-optimised C code (only compiler 
optimisations applied) using the same test environment and 
measuring techniques as in this study. A speedup of 80% on 
an IvIPEG 1 video decoder, and 370% on an image filtering 
application are presented in [13]. Inters goal for the 
Pentium processor with MMX technology was to provide 
an overall performance boost of 50% to 100% on 
multimedia applications [13]. 

When calculating the speedups of individual routines 
instead of measuring the actual speedups, the speedups tend 
to be higher, e.g., between 200% and 400% [12]. The 
reasons for these higher speedups are several simplifying 
assumptions about cache misses, for example. 

Although MMX instructions can utilise the parallelism, the 
execution latencies of instructions accessing memory are 
similar to the latencies of non-MIl/IX instructions. The 
penalties of cache misses, in particular, are similar for both 
the MMX and scalar code. As a typical multimedia 
application, an H.263 encoder suffers severely from the 
cache misses because it handles large amounts of data 
during the encoding process. The time-consuming routines 
contain frequent memory operations, and no complex 
operations occur between them. Additionally, the MMX 
code must arrange the data for its parallel operations. 

The performance gains achieved using MMX technology 
are remarkable, although they depend on the application; 
the application should perform independent operations on 
small data elements in its time-consuming routines. To 
achieve additional performance gains, parallelism between 
instructions can be e:"'."ploited by utilising Pentium's 
superscalar execution, for example. Applications that do not 
contain as frequent memory operations as the H.263 video 
encoder may achieve even higher speedups than those 
reported in this study. 
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