
Performance Analysis of Intel MMX Technology for an
H.263 Video Encoder

Ville Lappalainen
Nokia Research Center, Speech and Audio Systems Laboratory!

P.O. Box 100,
FIN-33721 Tampere, Finland

ville.lappalainen @research.nokia.com

1. ABSTRACT
The purpose of this study was to find out what
performance gains an H.263 video encoder can
achieye using Intel,l\1l\1X technology. This
study resulted in an overall speedup of over
65%.
1.1 Keywords
Performance, Intel Ml\iX, video encoder, H.263

2. INTRODUCTION
The International Telecommunication Union,
Telecommunication Standardisation Sector (ITU-T), has
specified the first version of the H.263 standard for video
coding for low bit rate communication enabling
compression of video sequences to bit rates below 64 kbps.
The standard specifies a hybrid coding method containing
discrete cosine transformed (DCT) intra frames, and motion
compensated and DCT transformed inter frames.
Applications for which the standard is suitable include
'ideo phone applications in the current Public Switched
Telephone Network (pS1N), and in future mobile networks
with data rates similar to the data rates of PSTN. An H.263
encoder is one component of a video phone application.

Intel ,MMX technology is designed to accelerate multimedia
and communications applications. The technology exploits
the parallelism typical of many of the algorithms in these
applications by offering new instructions and data types.
:MMX technology enables parallel operation on small data
elements.

Amdahl's Law [1] can be used to analyse the speedup of
different routines. Amdahl's Law (defined in Equation 2-1)
states that the performance enhancement possible with a
gi,'en improvement is limited by the fraction (of the

Penmssion to make digital or hard copies of all or pan of
thiS work for personal or classroom use is granted
Without fee provided that copies are not made or
distributed for profit or commercial advantage. and that
COpIes bear lhis notice and the full citation on the first
p::ge. To copy otherwise. to republish, to post on se~ers
or to redistribute 10 lists. requires prior speCIfic

pmmssion and 'or a fee..

ACM Mulllmedla'98. Bnstol. UK
.;) 1998 ACM 1-58113-036-8'98/0008 S5.00

309

execution time) that the improved feature is used.

A routine containing MMX code can perform independent
operations on eight elements in parallel, for example. This
implies that the performance enhancement of this parallel
operation (SpeeduP<r:,:,cd in Equation 2-1) is 8. However, the

overall speedup of the routine depends on the fraction that
the parallel operation is used (Fract i on",,'=',d in Equation 2-1).

Speedup=" . 1
_F._ra_ct_/O-,n~""",~""=4,,,- (1 F.')
SpeeduPaJ-~='

+ - ractlOncr.J-..::r.a4

Equation 2-1. Amdahl's Law.
Some examples of the performance enhancement of MMX
technology can be found in [12], [13] and [11]. There are
different ways to find out the speedup achieved using MMX
technology. Firstly, one can observe the speedup of time­
consuming routines. Secondly, one can observe the overall
speedup of the whole application. The speedup of an
individual routine can be found out by calculating the
number of instructions in it, and then, by making some
assumptions about, e.g., cache misses, the total number of
clock cycles for the routine can also be calculated. Another
way to find out the speedup of an individual routine is to
measure its actual execution time. The only reasonable way
to find out the overall speedup is to measure the actual
execution time of the whole application.

In this study, all speedups were found out by measuring the
actual execution times. The overall speedups of a few
multimedia applications are presented in [13]. These
speedups were also found out by measuring the actual
execution times.

An optimised routine utilising MMX technology is written
in assembly language. To find out the speedup achieved
using MMX technology, one can compare this MMX
routine to an integer assembly routine, a floating-point
assembly routine, or to a C routine. Different comparisons
yield different speedups. Different levels of optimisation
may also have a considerable influence on the speedup.

In this study, the performance comparisons were made
between optimised MMX code and optimised scalar code.

J The author is also a postgraduate student at Tampere University
of Technology (Department of Information Technology,
Software Systems Laboratory), Finland.

:-

•

, c

- - - - -------- .-----------~-----~ --------------

In this context, scalar code means assembly code that does
not contain MMX instructions, but can contain either
integer or floating-point instructions.

The kind of comparison used in this study gives more
information about the performance enhancement of MMX
technology, because when comparing optimised MMX code
and non-optimised C code, only the fraction of the speedup
is caused by 11MX technology. The rest of the speedup is
caused by the assembly implementation of MMX code and
different optimisation levels between MMX and C code.

To find out what performance gains an H.263 encoder can
achieve using MMX technology, two performance
comparison tests were executed. One resulted in overall
speedup on the encoder; the other resulted in the speedup of
each of the most time-consuming routines. Amdahl's Law is
used to explain why the overall speedup of the routine
performing a parallel operation is lower than the
performance enhancement of this parallel operation.

Chapter 3 presents an overview of the H.263 encoder as
well as an optimised implementation of the time-consuming
routines. Chapter 4 contains the results of the performance
comparisons. It also describes the test environment and
measuring techniques used. Chapter 5 concludes the work.

3. H.263 VIDEO ENCODER
The optimised routines of the encoder were hand-tuned for
optimal performance on a Pentium processor using MMX
technology. General optimisation techniques, such as
instruction scheduling for paired execution [5], correct
alignment of data [5], and loop unrolling [4], were applied.
Pentium-specific optimisation techniques, e.g., instruction
scheduling, were applied carefully in both the MMX and
scalar routines. Both the MMX and scalar routines are small
enough to fit in the internal code cache (16 KB).

C:C CcdU'l9 Cenlrol Q QU8ntlSat.cn
~CT Ol$crete COSine Tr:::nsform CP CuantlsatIon parameter
DIFF Co!cul=.tc thtrerence blc-ck CRF Current recons.tructed frame
IOCT lrH.'erse Dlccrete COSine Transform PRF Prev.cus recol:lstructed fracto
10 IMOrsO C),l.I.snt'S&Nln REC Calculate reconstructed btock
MV MotIon \.e~'cr reeD Reconst:I.lcted difference b!oct
o Block frem the eng.nal frame SAD SLIT:'! cf Absolute Dlfferences
P Predlct'cnll!ock VLC Vanab!o lenj:lth cocl'lns;J

Figure 3-1 Data flow diagram of an H.263 video encoder [10].

310

The basic structure of an H.263 encoder is shown in Figure
3-1, which follows the Data Flow Diagram (DFD) notation
of the Object Modeling Technique (OMT) format [14].
This paper concentrates on the most time-consuming parts
of the encoder: motion estimation (prediction), DCT and
quantisation, and IDCT and dequantisation routines, see
[10] for further details of the encoder.

Motion estimation is a process, which is used to reduce
temporal redundancy in a video stream. In a typical motion
estimation process, the image is split into blocks of N x N
pixels and a resembling prediction block in the previously
reconstructed image (reference image) is searched for each
block in the current image. This procedure is called block
matching. The way the prediction block is found is
determined by the used block matching algorithm, a
computation-constrained layered search [3].

The prediction block is determined by comparing the block
in the current image with each candidate block inside the
search area in the reference image. The comparison of the
two blocks is made by comparing corresponding pixels in
the two blocks, using some error measure, e.g., the Sum of
Absolute Differences (SAD) defined in Equation 3-1,
where: N is the block width, Fo and F.J respectively are the
current and the previously reconstructed frame, k and I
define the position of the block in the current frame
(multiples of N), and x and y define the position of the
prediction block in the previously reconstructed frame.

N

SAIX..x,y,k,I)= LlF..,(i+x,j+ Y)-F.(i+k,j+l~
1.)>::0

Equation 3-1. Definition of the Sum of Absolute Differences.
The calculation of the SAD is a dominant operation during
the motion estimation. Another time-consuming operation is
bilinear interpolation, which is needed because of half-pixel
precision during the motion estimation. Half-pixel precision
means that if one or both of the motion vector components
indicate half-pixel position, the pixel values are found using
bilinear interpolation ·as described in Figure 3-2. "f'
indicates division by truncation.

A

X °b a

0 0
d

x

B

X

X

X Integer pixel posltioo

0 lWe pixel posiuon

a=A
b=(A+B+ 1)/2
c=(A+C+l)12

C D d=(A+B+C+D+2)/4

Figure 3-2. HaIf-pi..:el prediction by bilinear interpolation [8].
The motion estimation process also contains two additional
routines, which were optimised. They are introduced in the
next subsection.

The 8x8 DCT (IDCT) routine used in the encoder is
described in [2]. At first, the routine calculates the
horizontal transform, ·processing rows. Secondly, it
calculates the vertical transform, processing columns. The
original C versions of the DCT and IDCT routines are taken
from the H.263 encoder written by Telenor (tmn v2.0).

"'_s.

..

-- -_. ~ --------

3.2 Optimised l\ThiX Code
The original C version of the SxS DCT routine calculates
\\ith 32-bit floating point numbers. The MMX version
calculates \\ith a poorer resolution: it uses fixed point
numbers having a precision of three fractional bits. The
MMX version stores two coefficients in one MMX register.
It processes two rows at a time, with four passes.

Quantisation is defined in Equation 3-2 for INTRA blocks
(except for the first coefficient, called the INTRA DC
coefficient) and in Equation 3-3 for IN1ER blocks.

LEYEL=ICOFjJ(2xQUANT)
Equation 3·2. Quantisation for an INTRA block [9].

LEFEL= (jCOFj- QUANT /2)/(2xQUANT)
Equation 3·3. Quantisation for an INTER block [9].

The INTRA DC coefficient is uniformly quantised with a
quantisation step of S. The quantisation parameter QUANT
may take integer values from 1 to 31. COF stands for a
transform coefficient to be quantised. LEVEL stands for the
absolute value of the quantised version of the transform
coefficient.

Both quantisation equations have (2xQUANT) as a divisor.
This enables the calculation of a table containing values
1J(2xQUANT) for each possible QUANT value. This table
makes possible the quantisation with multiplication.
Because the calculation is done with limited precision, the
quantisation using multiplication does not always yield
exactly as accurate results as the quantisation using
division. Quantisation processes four coefficients in one
11MX register.

The abbre\iation for these routines (and also for the
corresponding scalar routines) to be used later on is
DCT +Q, covering both the DCT and quantisation routines.

The original C version of the SxS IDCT calculates with 32-
bit floating point numbers. Again, the MMX version
calculates with a poorer resolution: it uses fixed point
numbers having a precision of four to six fractional bits.
The MMX version of the IDCT utilises parallelism
basically in the same way as the MMX version of the DCT.

The dequantisation (for non-INTRA DC coefficients) is
performed on four pixels in parallel, using the following
formulae that give the relationship between coefficient
levels (LEVEL), quantisation parameter (QUANT) and
reconstructed coefficients (REC):

ma = 0 => Ja:r = 0

(JAW = odd => lRErl = (JAW x (2 x !mHj + 1)

(JJfv = even =>RErl = (JAW x (2 x !mHj + 1)-1

Ja:r = sign(m'EL) x 1m::!
Equation 3-4. Dequantisation [8].

The abbreviation for these routines is IQ+IDCT.

There are, altogether, eight SAD calculation functions, four
for calculating the SAD for 16x16 blocks (abbreviations
end with 16) and another four for SxS blocks (abbreviations
end with S). Two of these functions operate on the block

4--

311

having full-pixel coordinates (calcSADFF16/S). The other
six functions operate on the block having half-pixel
coordinates (calcSADHF16/S, calcSADFH16/S, and
calcSADHH1 6/S).

The calculation of the SAD for the block having full-pixel
coordinates utilises the parallelism and also the saturating
arithmetic described in [6]. All pixel differences can be
calculated in parallel, because they are all independent
operations. Eight pixels are processed in parallel.

The calculation of the SAD for the block having half-pixel
coordinates is a somewhat more complex operation. In this
study, an optimised solution was developed. Consider a
pixel, whose x-component is a half-pixel value and y­
component is a full-pixel value. The half-pixel value for this
pixel is obtained from Equation 3-5:

b =(A + B + l) /2
Equation 3·5. Half-pixel prediction, case b [8].

A and B are defined in Figure 3-2, and are presented as S­
bit unsigned numbers. Because calculation is done with
integer numbers and the division is defined to be done by
truncation, we cannot write Equation 3-5 as b = Al2 + B12 +
112. It is possible to use Equation 3-5 for only four pixels in
parallel, because A+B+ 1 can take more than S bits and thus
need 16 bits of one MMX register. But if A and B could be
divided separately, without first adding them and constant
one, it would be possible to calculate eight pixels in
parallel. In this case, Equation 3-6 turns out to be
equivalent to Equation 3-5:

b =A / 2 + B 12 + ((AAl\Dl) aUB Al\Dl))
Equation 3·6. Half·ph:el prediction, case b. Optimised version.
The two other cases of bilinear interpolation (cases c and d
in Figure 3-2) can also be calculated using the same
principle.

The function that makes the INTRAIINTER decision for an
individual macroblock (CalcIntraDecision) is basically a
SAD calculation function without bilinear interpolation
routines. See [8] for the definition of a macroblock and
coding modes (INTRAlINTER).

The function that calculates the difference macroblock
(preCalcDiffMB) calculates the difference on a pixel-by­
pixel basis. Because the pixel difference calculation is an
independent operation, it can be calculated in parallel. The
pixel difference can have values ranging from -255 to 255,
which take 16 bits of one MMX register. Thus, this
operation can be performed on only four pixels in parallel.

The MMX versions of the DCT, mCT and quantisation
routines calculate with a poorer resolution than the original
C versions. However, the differences in the encoding results
(e.g., subjective and objective video quality) between the
MMX and the C versions are almost negligible. On the
average, the difference in objective quality, in terms of
PSNR (Peak Signal-to-Noise Ratio), is only 0.02 dB [10].
In practice, this means that no loss in subjective quality can
be observed.

- ;-'

I
I·

'.' ,.,-

3.3 Optimised Scalar Code
Scalar yersions of the DCT and IDCT use floating-point
numbers. The reason for using floating-point instructions
instead of integer instructions is the nonpipelined, II-cycle
integer mUltiply operation. The floating-point multiply takes
only three cycles to execute and executes in a pipelined
unit. Only one row or column is processed simultaneously.
All coefficients in that row or column are, however, kept in
the FPU registers during the calculation, thus the precision
at that stage is very good, 80 bits. The data is stored in a
temporary buffer between the two passes (horizontal and
vertical) by using 32-bit floating point numbers.

Quantisation must be performed in integer numbers. Since
the integer divide instruction is very slow, multiplication
quantisation routine is implemented. The multiplication
quantisation works similarly to that in 1f.MX code. Note
that the integer multiply instruction is much slower than that
for 11MX. Both quantisation and dequantisation process
one value at a time.

During dequantisation, the (2xILEVELI+ 1) part in Equation
3-4 is acquired from a look-up table.

Scalar versions of the SAD calculation functions calculate
the absolute difference using the same technique as the
MMX version, but the calculation can only be done pixel
by pixel [6]. However, the scalar versions of the bilinear
interpolation routines can operate on four pixels in parallel
and they also use the same technique as the M11X version.

Scalar versions of functions CalcIntraDecision and
preCalcDiffMB operate on one pixel at a time.

The scalar yersions of the DCT, IDCT and quantisation
routines calculate with a better resolution than the M11X
versions of the corresponding routines. Thus, the
differences in the encoding results between the scalar and
the C versions are even smaller than those between the
M11X and the C versions.

4. PERFORMANCE COMPARISONS
4.1 Test Emironment
The test environment for the performance testing was the
follo\ying: Fujitsu ICL ErgoPro S450 PC, having 32
megab)tes of random access memory and based on a 133
MHz Pentium M11X processor. The H.263 encoder used is
a Win32 console application that was run in Windows 95.
During the measurements there was a mInImum
computational load caused by other programs. In addition,
the priority of the encoder process was set to the maximum
value. This was done by calling Windows 95 functions
SetPriorityClass and SetThreadPriority with parameters
REALTThffi_PRIORITY_CLASS and
THREAD_PRIORITY_TThffi_CRITICAL, respectively.

Four original uncompressed QCIF-sized (the luminance
resolution: 176x144) sequences, Akiyo, Claire, Coastguard

312

and Foreman, were used. These sequences were selected
from a set of standard test sequences that were used during
the development of video coding standards ITU-T
Recommendation H.263 [8] and MPEG4 [7]. Frames 0 to
299 of all sequences were encoded with a target frame rate
of 10 fps. Two optional coding modes of the H.263
recommendation, the Unrestricted Motion Vector mode
(option D) and the Advanced Prediction mode (option F),
were used [8].

In order to reduce the influence of disk caching on the
execution time, the same sequence was encoded three times
in a row. Because the purpose was to measure the
performance of the encoding process, not any I/O
operations, only the last execution was taken into account.
The proportional time usage of I/O operations was very
small in the last execution, because the disk cache was
filled during the two former executions.

Two different performance comparison tests were executed.
During the first test, all four test sequences were encoded
with bit rates from 8 to 48 kbps using both the MMX and
scalar versions. Due to the different nature of test
sequences, a unique set of target bit rates was selected for
each sequence. This test resulted in overall speedup
achieved using MMX technology. During the second test,
the Foreman sequence was encoded with a target bit rate of
24 kbps. The execution times of the optimised routines
were measured. This test resulted in the speedup of each
individual routine.

In the first test, the total execution time of the encoder was
measured using Windows 95 GetTickCount function, which
returns the time in milliseconds. In the second test, the
execution time of each optimised routine was measured
using Pentium's RDTSC (Read from Time Stamp Counter)
instruction, which returns clock cycles.

4.2 Overall Speedup
Table 4-1 shows the encoding speed (in framesls) of the
MMX version for all sequences, when both the options D &
F are used. Table 4-2 contains the corresponding
information about the scalar version.

On the average, the MMX implementation is approximately
670ft. f th th al . I . o aster an esc ar ImpJementatlon.
:fii • - . • .. 1lTIffi'i • . - . - . h1lr:F.li

8kbos 17.27 17.29 17.28
10 kbps 17.21 16.96 17.09
12 kbos I 17.01 16.84 14.12 15.99
14 kbps 16.94 16.63 14.41 15.99
16 kbos 16.63 15.14 16.44 14.56 15.69
24 kbos I 16.23 14.39 15.99 14.12 15.18
28 kbps 15.81 14.51 15.83 13.85 15.00
36 kbos 15.70 13.89 15.46 13.43 14.62
48 kbps 15.35 13.39 14.91 12.94 14.15
Mean I 16.46 14.26 16.26 13.92 15.23

Table 4-1. Encoding speed for test sequences (MMX).

I·

I: I •• '.\' • e :\''1''~i.t:\~'. l"l!ml~ liiel .. >l'" "'.I·j~
IS kbps 10.12 10.02 110.07
10 kbos 10.01 9.86 1 9.94 ,
12 kbps 9.90 9.83 8.43: 9.39
14 kbos 9.82 9.74 8.531 9.36
16 kbps 9.78 9.06 9.67 8.681 9.30

124kbos 9.64 8.93 9.53 8.571 9.17
'28 kbps 9.62 8.80 9.42 8.471 9.08
:36 kbos 9.45 8.57 9.20 8.281 8.88
i48 kbps 9.29 8.35 9.08 8.07i 8.70
'Mean 9.74 8.74 9.59 8.43! 9.13

Table 4-2. Encoding speed for test sequences (scalar).

4.3 Speedup of Each Optimised Routine
Table 4-3 shows the minimum execution time (in cycles),
average execution time (in cycles), execution frequency,
and average speedup (in %) for each optimised routine,
when encoding the Foreman stream. Two subsequent rows
contain information on each routine, the upper reporting the
Ml\IX the lower the scalar version.

Table 4-3 Min. e..'\:ecution time, average e..'\:ecution time,
execution frequency and average speedup for each routine.

The overall average speedup of all routines was calculated
in two different '\vays: by using arithmetic mean (58.65%)
and weighted arithmetic mean (60.68%). The latter uses the
execution frequencies as weighting factors.

The overall encoding speeds for the MMX and scalar
versions for these encoder runs are slightly lower than the
corresponding speeds presented in Table 4-1 and Table 4-2
(13.79 and 8.49 frames/s, respectively), because of the
timing instructions around each routine. The overall
speedup based on these encoding speeds is 62.43%. This is
quite close to the average speedup of all routines (60.68%).
However, the share of the total execution time for these

313

_________ 5"'~ r

routines is 63.21 % for the scalar version and 40.37% for the
MMX version.

In general, the speedup of each routine seems to be
relatively close to the average speedup of all routines.
There is only one exception; the preCalcDiftMB routine
(speedup: 5.39%). This routine does only one subtract
operation, reads both of its input operands from the memory
and writes the results into the memory in a loop. Although
the :MMX version does the subtract operation on 4 pixels in
parallel (the scalar version processes 1 pixel at a time),
most of the time is spent on memory reads and writes.

Only fraction of the execution time of the preCalcDiftMB
routine can utilise parallelism. That fraction can be
calculated by using Amdahl's Law (defined in Equation 2-
1). The overall speedup of the routine (Speedup""rall in

Equation 2-1) is 5.39%. The speedup in the enhanced mode
(Speedup,'-........ .,d in Equation 2-1) is 4. In this section, it is
assumed that both the MMX and the scalar routines use
both the pipelines similarly. Substituting into Equation 2-1:

L0539 = -::-_.:--___ 1 ____ _
Fract I onF2cl/d

4 + (l - Fract i onpadld)

Simplifying this equation yields: Fract i 011 = 006819
f2Tdl~1 •

Thus only 6.82% of the execution time of the
preCalcDiftMB routine can utilise the parallelism. This is
the main reason for the very low speedup. Other routines
have different speedups in their enhanced modes
(Speedup"~-"d in Equation 2-1), such as 2 and 8 (explained in

the following paragraphs). Other routines have better
overall speedups than the preCalcDiftMB routine. This
indicates that the fractions utilising the parallelism are
greater than those of the preCalcDiftMB routine. However,
for all these routines, these fractions are far from 100%.

The MMX versions of the DCT +Q and IQ+IDCT routines
process 2 pixel rows (or columns) simultaneously during
the DCT (!DCT) algorithm, and 4 pixels in parallel during
quantisation (dequantisation). The corresponding figures for
the scalar versions are 1 pixel row and 1 pixel. Because the
DCT (!DCT) consumes more time than quantisation
(dequantisation), the speedup in the enhanced mode is
closer to 2 than 4.

The MMX version of the calcSADFF16 routine processes 8
pixels in parallel, while the scalar version processes only 1
pixel at a time (the speedup in the enhanced mode is 8).
Still, the actual speedup is 65.71 %. We can calculate the
fraction that utilises the parallelism of the execution time of
this routine by using Amdahl's Law as before. The result,
45.02%, explains the relatively low overall speedup of the
routine compared to the speedup in the enhanced mode.

Other SAD calculation functions contain bilinear
interpolation routines that consume more time than the
calculation of the SAD. The :MMX versions of the bilinear

•

-----~ -------------------------- ------- --______ .'l.:_.: ... _~.

interpolation routines process 8 pi.,,,els in parallel, while the
scalar versions process 4 pixels in parallel (the speedup in
the enhanced mode is closer to 2 than 8).

5. CONCLUSIONS
An H.263 encoder contains several time-consuming
routines suitable for MIl/IX optimisation, among them
routines that perform independent operations on pixel data.

In this study, twelve time-consuming routines were written
in both 11MX and scalar code. This resulted an overall
speedup of over 65% on the H.263 encoder, when
comparing optimised MMX code and optimised scalar code
(assembly code that does not contain MMX instructions).

It is difficult to compare the results of different performance
comparison tests because of the different test applications,
test environments and measuring techniques. An earlier
study by the author [10] presents a speedup of almost 350%
on the H.263 encoder, when comparing optimised MMX
code and non-optimised C code (only compiler
optimisations applied) using the same test environment and
measuring techniques as in this study. A speedup of 80% on
an IvIPEG 1 video decoder, and 370% on an image filtering
application are presented in [13]. Inters goal for the
Pentium processor with MMX technology was to provide
an overall performance boost of 50% to 100% on
multimedia applications [13].

When calculating the speedups of individual routines
instead of measuring the actual speedups, the speedups tend
to be higher, e.g., between 200% and 400% [12]. The
reasons for these higher speedups are several simplifying
assumptions about cache misses, for example.

Although MMX instructions can utilise the parallelism, the
execution latencies of instructions accessing memory are
similar to the latencies of non-MIl/IX instructions. The
penalties of cache misses, in particular, are similar for both
the MMX and scalar code. As a typical multimedia
application, an H.263 encoder suffers severely from the
cache misses because it handles large amounts of data
during the encoding process. The time-consuming routines
contain frequent memory operations, and no complex
operations occur between them. Additionally, the MMX
code must arrange the data for its parallel operations.

The performance gains achieved using MMX technology
are remarkable, although they depend on the application;
the application should perform independent operations on
small data elements in its time-consuming routines. To
achieve additional performance gains, parallelism between
instructions can be e:"'."ploited by utilising Pentium's
superscalar execution, for example. Applications that do not
contain as frequent memory operations as the H.263 video
encoder may achieve even higher speedups than those
reported in this study.

314

6. ACKNOWLEDGMENTS
I thank Ilkka Haikala (my supervisor), Marko Luomi and
Janne Juhola for useful discussions and comments. Special
thanks to Jussi Lahdenniemi for his help with assembly
coding.

Intel and Pentium are registered trademarks of Intel
Corporation. MMX is a trademark ofIntel Corporation.

7. REFERENCES
[1] Amdahl, G. A., Validity of the single-processor

approach to achieving large scale computing
capabilities, AFIPS Conf. Proc., vol. 30, Thompson,
Washington, D.C., 1967, pp. 483-485.

[2] Chen, W.-H., Smith, C. H. and Fralick S. C., A Fast
Computational Algorithm for the Discrete Cosine
Transform, IEEE Transactions on Communications,
vol. COM-25, 1977, pp. 1004-1009.

[3] Cote, G., Gallant, M. and Kossentini, F., Efficient
Motion Vector Estimation and Coding for H.263-
Based Very Low Bit Rate Video Compression,
http://www.ece.ubc.ca/spmg!

[4] Hennessy, J., Patterson, D., Computer Architecture: A
Quantitative Approach, San Mateo, CA Morgan
Kaufmann Publ., 1990, pp. 315-318.

[5] Intel Architecture MMXTM Technology Developer's
Manual (Order No. 243006-001), March 1996.

[6] Using MMXTht Instructions to Compute the
AbsoluteDifference in Motion Estimation, AP-53 0,
http://developer.intel.comJdrg!mrnxlAppNotesl

[7] International
ISOIIEC

Organization for Standardization,
JTClISC29IWGllN1902 14496-2

Committee Draft (MPEG-4), November 1997.

[8] Draft ITU-T Recommendation H.263, 2 May, 1996.

[9] ITU-T Study Group 15, Video Co dec Test Model
Near-Term, Version 7 (TMN7), 25 February 1997.

[10] Lappalainen, V., Implementation of H.263 Video
Encoder Using Intel MMX Technology, Master of
Science Thesis, Tampere University of Technology,
1997.

[ll]Levy, M., Multimedia Instructions Boost Host-Based
Processing, EDN Asia, September 1996, pp. 20-36.

[12]Peleg, A. and Weiser, U., MMX Technology Extension
to the Intel Architecture, IEEE Micro, August 1997,
pp.42-50.

[13]Peleg, A., Wilkie, S. and Weiser, U., Intel MMX for
Multimedia PCs, Communications of the ACM Vol.40
No.1, January 1997, pp. 25-38.

[14]Rumbaugh, J. et aI., Object-Oriented Modeling and
Design, Prentice-Hall, 1991.

--~-~ -- -------------------

