

intgl.

8XC196NP, 8OC196NU
Microcontroller
User’s Manual

August 2004 Order Number 272479-003

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1996

intel.

CONTENTS
CHAPTER 1
GUIDE TO THIS MANUAL
1.1 MANUAL CONTENTS .ttt ettt ettt e e et ee e e ettt e e e e sa e e e e e et eneeae e enes 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGYcooiiiiiiei e e e 1-3
1.3 RELATED DOCUMENTS ...ttt ettt e e ettt e e e et e e aeaeenneeeeaeanes 1-5
1.4 ELECTRONIC SUPPORT SYSTEMS ...ttt e e 1-8
1.4.4 World Wide WED ... e 1-11
1.5 TECHNICAL SUPPORT ...ttt ettt ettt ettt et e e e et e e et e e 1-11
1.6 PRODUCT LITERATURE ... oottt et et e 1-11
CHAPTER 2
ARCHITECTURAL OVERVIEW
21 TYPICAL APPLICATIONS ettt ettt ettt et e ee e e 2-1
2.2 DEVICE FEATURES ...ttt ettt e ae e e e 2-2
2.3 BLOCK DIAGRAM ...ttt ettt e b ea e e e e et et e et e e ee e enes 2-2
2.3.1 CPU CONIIOL ... e ettt e et ee e e et aeeeenen 2-3
2.3.2 LYo 115 1= S 2-3
2.3.3 Register Arithmetic-logic Unit (RALU)coooiiiiii e e 2-4
2.3.3.1 Code EXECULIONuiiiiiite ettt et e 2-4
2.3.3.2 INStruction FOrMAtcc.eiiiiii i 2-5
234 [T 0 gTo] YA @7'o] o1 (o] 1= RS 2-5
2.3.5 Multiply-accumulate (80CT196NU ONIY)oooiiiiiiieii e 2-6
2.3.6 INEEITUPE SEIVICE ..ot e et e et e e et re e aeeeaa 2-6
24 INTERNAL TIMING. ...ttt ettt ettt ettt et e ere e et eeenaeeeneeeeens 2-7
25 INTERNAL PERIPHERALSottt et snn e e e s 2-11
2.5.1 1@ 3N o Ty £ TSP 2-11
2.5.2 Serial /O (SIO) POItoeiiii ettt e e et a s 2-11
253 Event Processor Array (EPA) and Timer/Counterscccccoeiiiiiiiiiieee e 2-11
254 Pulse-width Modulator (PWM)cooiiiiie et ee e 2-12
2.6 SPECIAL OPERATING MODESotiiiiiiiiiit ettt ae st e e e e s 2-12
2.6.1 Reducing Power CONSUMPLIONcooiiiiiiie et ae e 2-12
2.6.2 Testing the Printed Circuit Boardcccooiiiiiioi i 2-13

2.7 DESIGN CONSIDERATIONS FOR 80C196NP TO 80C196NU CONVERSIONS. 2-13

8XC196NP, 80C196NU USER’S MANUAL Inu®

CHAPTER 3
ADVANCED MATH FEATURES
3.1 ENHANCED MULTIPLICATION INSTRUCTIONSottt 3-1
3.2 OPERATING MODES. ..ottt et ettt et e e et ae e e st be e e e sanaees 3-2
3.2.1 SAtUFAtION MOGE ettt e e e e e e e e e s e s e et s e ettt etae e e e s 3-2
3.2.2 Fractional MOGOEcuiiiiiiiiiiie e e e e e e e e aeaesaaaaean s 3-3
3.3 ACCUMULATOR REGISTER (ACC_0X) erieiiiiitiieie ettt ee ettt 3-4

3.4 ACCUMULATOR CONTROL AND STATUS REGISTER (ACC_STAT)ccoceevvevveeene. 3-5

CHAPTER 4
PROGRAMMING CONSIDERATIONS

4.1 OVERVIEW OF THE INSTRUCTION SETcciiiiiiiieieeiiiee et e e
411 (2T I IO o1 T = g o PP PRPRPPPSPSR
4.1.2 BYTE OPEIANUS ..uvvviiiiiiieiee e eee et ee e e et sttt et e e e e e e e e e e et st sra st te e e tee e aeeanaesaneneanas
4.1.3 SHORT-INTEGER OPEIaNndSccueuiiiiiiieieie ittt ees it eeestiee e ni st e e enie e e e
4.1 4 WORD OPEIANGAS ..oiiiiieieieii ittt e ee e teee s e e e e e et st s st e e bee e aeeaeaeaesasea e ane s e een
415 INTEGER OPEIANUS ...oceiiiiiiii ittt e et te e s e s e e e sttt sas s e e vee e eeeeeaeaen e ens e s nnnns
4.1.6 DOUBLE-WORD OPEIaNdScccoveieiiiiitiiieieier e ee e tesasas e s e et st tesssesne e eeeeeesaaenean s
4.1.7 LONG-INTEGER OPEIrandScccoeiiiiiiiiiiiiieiie e e e e e e e aeaes s s s srrrre e e eeeaeaeaen s
4.1.8 QUAD-WORD OPEIANAS ...uvuieiiiiiitiiiie e iesesee e ettt e e ee e aeeaeaesaseness e sasnsne e aeneees
4.1.9 (0701 17T T gTo [@] o 1=Tr= T 0 To LSS SPPUPUPRRP
4.1.10 ConditioNal JUMPS ooiiiiiii ittt e ee e e s e s e s e ettt e e bt e bee e eeeaeaeaeseneanssseneneneeee
4.1.11 Floating POINt OPEratiOnNSccccoiiiiiiiiieiirie e ies e ieses e s s st re e re e e e e e s asaesasens e e nnen
4.1.12 EXtended INSIIUCHIONSccvueiieiieiieieies e et e sttt et et et e et e

4.2 ADDRESSING MODESooiiiititit ettt ettt e e eens
421 Direct ADdressingcccceeeeeenn..
4.2.2 Immediate Addressing
4.2.3 Indirect Addressingccccceevevvieviecriiienenenne

4.2.3.1 Extended Indirect ADdressingccccccvveereinireeeneennen.

4.2.3.2 Indirect Addressing with Autoincrement

4.2.3.3 Extended Indirect Addressing with Autoincrement

4.2.3.4 Indirect Addressing with the Stack Pointer
4.2.4 Indexed Addressingc.c.c......

4.2.4.1 Short-indexed Addressing

4.2.4.2 Long-indexed Addressing

4.2.4.3 Extended Indexed AJAreSSiNgc...ccuveiieieiririniiies et

4.2.4.4 Zero-indexed Addressingc.ccceeeveenne

4.2.45 Extended Zero-indexed Addressing ..

4.3 ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONScccccoiviiiiieeciee

4-11

43.1 (D)1 ¢=To QAo [0 (=17 oo PSPPI 4-11
4.3.2 TaTo =3 Yo N [o ({11 1 o USSP 4-11
4.3.3 EXtended AdAreSSINGcvee ittt et e 4-11
4.4 DESIGN CONSIDERATIONS FOR 1-MBYTE DEVICES.......coiviiiiiiiiiii e 4-11
4.5 SOFTWARE STANDARDS AND CONVENTIONS ...t 4-11

InU® CONTENTS

45.1 USING REQISIEIS .vuvitiiiiie et ee et ee s e ettt e e e ae e s e e e e e e et st ra e ae e e seeaeaeeaeaenenenens 4-12
45.2 Addressing 32-bit OPErandscccoiiiiiiiiiiii e e aeaaeaeae e 4-12
45.3 Addressing 64-bit OPErandsScccoviiiiiiiiii e ae e e ae e 4-12
454 LiNKING SUBIOULINES ...uveiiiiiii ittt eeeeeee e 4-13
4.6 SOFTWARE PROTECTION FEATURES AND GUIDELINESccoooiiiiiiiiiiee e 4-14
CHAPTER 5
MEMORY PARTITIONS
5.1 MEMORY MAP OVERVIEW.ouiiiiiii ettt ettt i
5.2 MEMORY PARTITIONS ...ttt ettt ettt e bt e e nre e ee e
5.2.1 External MemOrycccccvveveeienieieien i
5.2.2 Program and Special-purpose Memory
5.2.2.1 Program Memory in Page FFH ... e
5.2.2.2 Special-purpOSe MEIMOIYcccoieiiiiiittiie it tee e ee et e s e s e e e s sttt bee e eeaeaesaaeaean s
5.2.2.3 Reserved Memory LOCAtIONScccoiiiiiiiiiiiiieieiin e e ae s sttt e aeaee e ee e s
5.2.2.4 Interrupt and PTS VECIOISccooieiiii ittt ettt e ettt e ae e e aeee e s
5.2.2.5 Chip Configuration Bytesccceeeeviviviviriiiiirieneneennn
5.2.3 Peripheral Special-function Registers (SFRs) .5-7
5.2.4 REGISLEr FIle ... e PP URURPPRRPI - =i]
5.2.4.1 General-purpose RegiSter RAM ...t ee e 5-11
5.2.4.2 StACK POINTET (SP) oottt e e e 5-11
5.2.4.3 CPU Special-function RegiSters (SFRS)cccvuvieiiiiiieie et 5-12
5.3 WINDOWING ...ttt ettt ettt ettt e ettt e e e e e e e an e ee e s 5-13
53.1 SeleCting @ WINAOW ..ot e e e 5-14
5.3.2 Addressing a Location Through a WindowWcccccieiririiiiiin e 5-16
5.3.2.1 32-byte WIindowing EXAmMPIEcooiii it 5-18
5.3.2.2 64-byte WIindowing EXAmMPIEcoooii i 5-18
5.3.2.3 128-byte WIindowing EXamMPIEcccocuiiiiiiiiiiie e st e 5-18
5.3.2.4 Unsupported Locations Windowing Example (8XC196NP Only)ccccoevrenne 5-19
5.3.2.5 Using the Linker Locator to Set Up @ WiNdOWcccceeviiiniiveniieeniiien e 5-19
5.3.3 Windowing and Addressing MOUESc.uvuvieiiiiiieies e irie e ee s e e siaae e estneeae e e 5-21
54 REMAPPING INTERNAL ROM (83C196NP ONLY) ...uviiiiiiiiieie e siir e e esieiie e e 5-22
5.5 FETCHING CODE AND DATA IN THE 1-MBYTE AND 64-KBYTE MODES.............. 5-23
55.1 FetChing INSITUCLIONSuiiiiiiiiiee ettt e erene e eas 5-23
5.5.2 ACCESSING DAveviiiie et ettt ettt e et ae et ae e e e eees 5-23
5.5.3 Code Fetches in the 1-Mbyte MOAEccceeiiiiiiiiiiiiie e 5-25
5.5.4 Code Fetches in the 64-Kbyte MOOEc.oooiiiiiiiieir e 5-25
5.5.,5 Data Fetches in the 1-Mbyte and 64-Kbyte MOdESccceeiieireiiiiiniiie e 5-26
5.6 MEMORY CONFIGURATION EXAMPLES ..o i 5-27
5.6.1 Example 1: Using the 64-Kbyte MOc.occveiiiieeiiiie e 5-27
5.6.2 Example 2: A 64-Kbyte System with Additional Data Storagecccce e 5-29
5.6.3 Example 3: Using 1-Mbyte MOGEc..ouviiiiiiiiiiei st 5-31

8XC196NP, 80C196NU USER’S MANUAL Inu®

CHAPTER 6
STANDARD AND PTS INTERRUPTS
6.1 OVERVIEW OF INTERRUPTS ...ttt e it e
6.2 INTERRUPT SIGNALS AND REGISTERSot
6.3 INTERRUPT SOURCES AND PRIORITIES......
6.3.1 Special INterruptsccocevceieieiir e,
6.3.1.1 Unimplemented Opcode
6.3.1.2 Software Trapc.cccvvvvvvrenn.
B.3.1.3 NI e e e e et e et e et en e s
6.3.2 EXternal INErrUPt PINSciii it e e ee e e aeee e s
6.3.3 Multiplexed INTErTUPL SOUICEScooiii ittt ettt e et ee e eeaaaeaean s
6.3.4 ENd-0f-PTS INTEITUPLS .evviiiiiiie et sttt e ea e e e s st ae e e aeeeee s
6.4 INTERRUPT LATENCY ...ttt ettt ettt et e ees
6.4.1 Situations that Increase INterrupt LatenCyccoovvvviiiiiiiiiin e e 6-7
6.4.2 (OF= 1[I0 =1 1] o -1 (=] ooy YR PPPUPPPPPP 6-8
6.4.2.1 Standard INterrupt LAtENCYccoooiiiiieieiiiit e e ie e e en e e e e aen e e e 6-8
6.4.2.2 PTS INEITUPL LAENCY .eevviitiiiiee ettt ettt et e e r e s e eenne e 6-9
6.5 PROGRAMMING THE INTERRUPTSottt et e 6-10
6.5.1 Programming Considerations for Multiplexed INterruptscccccoceevieieniriiniiiiiiinnns 6-11
6.5.2 Modifying INtErrUPt PTIOIES ..o.oeiieiieieeie ettt
6.5.3 Determining the Source of an INLErruPtouiviiiiiii i e
6.6 INITIALIZING THE PTS CONTROL BLOCKS
6.6.1 Specifying the PTS Count
6.6.2 Selecting the PTS Mode
6.6.3 Single Transfer Mode
6.6.4 BIOCK TranSfer MOGEuouiieiiiieie ettt e e et bee e e e e e e e e srnne e aan
6.6.5 PWM MOOESeiieie ettt ettt et e et e e e st b aee e e e et b saeae e ersae e e e annne e aen
6.6.5.1 PWM Toggle Mode Example
6.6.5.2 PWM Remap Mode EXamMpPIeccoviiiiiiiiiiie et

CHAPTER 7
/0 PORTS

7.1 1/O PORTS OVERVIEWoittiieie ettt e e ee e e e e e e e et et sananananes
7.2 BIDIRECTIONAL PORTS 14
7.2.1 Bidirectional Port Operation

7.2.2 Bidirectional Port Pin Configurationscccccccvvveeennnee.
7.2.3 Bidirectional Port Pin Configuration Example
7.2.4 Bidirectional Port Considerationsccccccevvineienerinenns
7.25 Design Considerations for External Interrupt Inputs
7.3 E P O R ittt e et ettt et e tete e e e e e e e e et re e
7.3.1 =1 2@ = BT o 1= - 11 o] o USSR
7.3.1.1 RESEet oo

7.3.1.2 Output Enable ...
7.3.1.3 Complementary Output Mode

vi

InU® CONTENTS

7.3.1.4 Open-drain OUIPUL MOGEcociiiiiii et e e e e e ee e e eeee e
7.3.1.5 INPUEIMOUE ..eieieiiiieiie ettt ee e e e e e e e s e s e s e et st et e te e e bee e aaeaeaenenenean
7.3.2 Configuring EPORT PINS ...uiuiiiiiiiis e ie oottt s e e e e aeaes e s s s e et e e e e aas
7.3.2.1 Configuring EPORT Pins for Extended-address Functions
7.3.2.2 Configuring EPORT PIinsS for /Occcoiiiiiiiieeeie e
7.3.3 EPORT CONSIAEIALIONSeiiiiiiiie ettt ettt ettt be e e sre e
7.3.3.1 EPORT Status During Reset, CCB Fetch, Idle, Powerdown, and Hold 7-18
7.3.3.2 EP_REG Settings for Pins Configured as Extended-address Signals7-18
7.3.3.3 EPORT Status During INStruction EXECULIONcuvvieieiiieeiisiseiiscsiiiieieee e e 7-18
7.3.3.4 Design CONSIHEIAtIONSccceiiiiiiiiiiie it ee e e e s e s e e e e e ree e eeeeeaees 7-19
CHAPTER 8

SERIAL 1/O (SIO) PORT

8.1 SERIAL 1/O (SI0) PORT FUNCTIONAL OVERVIEW

8.2 SERIAL 1/0O PORT SIGNALS AND REGISTERS.cccc......

8.3 SERIAL PORT MODES ... cuiiiiieie ittt ettt ettt et e e b e e e enees
8.3.1 SyNchronous Mode (MOUE 0) .eueueueiiiiieieieioi it ee s s e e e et ae e e s
8.3.2 Asynchronous Modes (Modes 1, 2, and 3) ...c.ooooveiiiiiiiiiiiiiiiiii e

8.3.2.1 Mode1l
8.3.2.2 Mode 2
8.3.2.3 Mode 3

8.3.2.4 M0ode 2 and 3 TIMINGS ...eveiiiriiieiii ittt e e ee e s e s e s e e e st r e beaee e eesaeeaean s
8.3.2.5 Multiprocessor COMMUNICALIONScociiiieiiiieieiie e e e e eeees e eeeaeeeaen s
8.4 PROGRAMMING THE SERIAL PORTcoiiiiiiiiiiiiiii e s
8.4.1 Configuring the Serial POrt PiNSouiuiiiiiiiiiiii e
8.4.2 Programming the Control REQISIENccooiii it
8.4.3 Programming the Baud Rate and CIOCK SOUICEcvuiiviiieiiiiiniiiiiei e
8.4.4 Enabling the Serial POrt INterruptSooooiiiiiiioriiieie e e
8.4.5 Determining Serial POrt SLAtUSoooiiiiiiii et
CHAPTER 9
PULSE-WIDTH MODULATOR
9.1 PWM FUNCTIONAL OVERVIEW......ccciiiiiiitie ittt ettt e 9-1
9.2 PWM SIGNALS AND REGISTERSotiiiiiie ittt sttt 9-2
9.3 PWM OPERATION ...ttt ettt ettt e ettt sttt et n e et et ennes 9-3
9.4 PROGRAMMING THE FREQUENCY AND PERIOD........ccccoiiiitiiiiiin et 9-5
9.5 PROGRAMMING THE DUTY CYCLEcoiiiiiiitin ettt e 9-7
9.5.1 Sample CalCUIAtIONS ...t e et e e e e e e e e e 9-9
9.5.2 ENabling the PWM OULPULSvuiiieiiiitieiie et et st st ae et e ae e ene e s 9-9
9.5.3 Generating ANalog OULPULSueuiiiieitiiiie ettt ie e e st te e e st ae e as e st eaeeeseseneeeae s 9-9
CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)
10.1 EPA FUNCTIONAL OVERVIEWcooiiiiiiiiiiie ittt et e 10-1

Vii

8XC196NP, 80C196NU USER’S MANUAL

10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERS
10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW. ..ottt
10.3.1 Cascade Mode (TIMer 2 ONIY) ..oooviiiiiiieier et s e are e aaeaeaeseneneas
10.3.2 Quadrature ClockiNg MOEccoieiiiiiiii et e ae e
10.4 EPA CHANNEL FUNCTIONAL OVERVIEW......
10.4.1 Operating in Capture Modeccceevvnne
10.4.1.1 EPA OVEITUNSccvevvvvvenenennne
10.4.1.2 Preventing EPA Overruns
10.4.2 Operating in Compare Mode
10.4.2.1 Generating a Low-speed PWM OULPULcovviiiiiiiiiiiiiciieer e
10.4.2.2 Generating a Medium-speed PWM Output
10.4.2.3 Generating a High-speed PWM Outputcccevee
10.4.2.4 Generating the Highest-speed PWM Output
10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS.........
10.5.1 Configuring the EPA and Timer/Counter Port Pins
10.5.2 Programming the TIMEerscccccccceviviiiiiiiiiiiiiiice e
10.5.3 Programming the Capture/Compare Channelsccccccviiiiiiiiiiiiiiiiiiiiie e
10.6 ENABLING THE EPA INTERRUPTS ..ot
10.7 DETERMINING EVENT STATUS . ..ottt ettt
10.7.1 Using Software to Service the Multiplexed Overrun Interruptsc.ccceeeeveeennen.
10.8 PROGRAMMING EXAMPLES FOR EPA CHANNELS

10.8.1 EPA Compare Event Programccccccoeevieeeiesineeeennns

10.8.2 EPA Capture Event Programcccccenvveeeinviensneeennne.

10.8.3 EPA PWM OUIPUL PTOGIaMoeiiiiriiieieies et sttt e e et nnne e
CHAPTER 11

MINIMUM HARDWARE CONSIDERATIONS
11.1 MINIMUM CONNECTIONS

11.1.1 Unused INpUtScccoeovvverecieinnee

11.1.2 I/O Port Pin Connections
11.2 APPLYING AND REMOVING POWERccoiiiiiiiiiiie e 11-4
11.3 NOISE PROTECTION TIPS ..ottt ettt s sttt e es 11-4
11.4 THE ON-CHIP OSCILLATOR CIRCUITRY ...ttt et 11-5
11.5 USING AN EXTERNAL CLOCK SOURCE........ccutuiiiiiiiii et e 11-7
11.6 RESETTING THE DEVICE.....ccitiiiiiiiii ettt sttt 11-8

11.6.1 Generating an EXtErnal RESELccvvviiiiir it 11-9

11.6.2 Issuing the Reset (RST) INSrUCLIONooeiiiiiuiiir et es e e e e seee e e 11-11

11.6.3 Issuing an lllegal IDLPD Key OPEerandccccceoiueeereeiiiirieeeeeneieieees e seeieees e seeaeens 11-11
CHAPTER 12

SPECIAL OPERATING MODES
12.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS........cccooevviiiiieieeieen, 12-1
12.2 REDUCING POWER CONSUMPTIONcuiiiiiiiiiiies e 12-3

viii

InU® CONTENTS

12.3 IDLE MODE ...ttt ettt ettt ettt et ettt e et n et e n e en e et e enn 12-5
12.4 STANDBY MODE (80CL196NU ONLY) ..uiiiiiiiiiieieeiie et ee et eeee st e see s snee e ste e enn 12-6
12.4.1 Enabling and Disabling Standby MOAEccccocviiiiiieiiiiiiiiin e 12-6
12.4.2 Entering Standby MOUEoooiiiiiiiii it s et re e aeeaeaesaaeaean 12-6
12.4.3 EXiting Standby MOAEccooiiiiiiiii it et re e e e aeaea e 12-7
12.5 POWERDOWN MODE ..ottt ettt sttt ettt e ee et ee e 12-7
12.5.1 Enabling and Disabling POwerdown MOdEccccccvuiiieieieioiiniis e e 12-7
12.5.2 Entering POWErdown MOUEcoieiiiiiiiiiiie ettt e e ee e e ae e
12.5.3 EXiting POWErdown MOGEcccoiiiiiiiiiiiiiie et et s et eaeae e s ea e
12.5.3.1 Generating a Hardware Reset
12.5.3.2 Asserting an External Interrupt Signalccooviviiiiiiiiiiiiiiie e 12-8
12.5.3.3 SeleCtiNng Cq ..oociiiiiiiiiiiic 12-10
12.6 ONCE MODE......cooiiiiiiiits ettt ettt et eet e e st en st en e e eaee e nae e e eneee s 12-12
12.7 RESERVED TEST MODES (80C196NU ONLY) ...cciuiiiiitieeeiiensiiee e nie e eiie e e 12-12
CHAPTER 13
INTERFACING WITH EXTERNAL MEMORY
13.1 INTERNAL AND EXTERNAL ADDRESSESccoiiitiiiiiiniieies sttt 13-1
13.2 EXTERNAL MEMORY INTERFACE SIGNALS ...ttt s 13-2
13.3 THE CHIP-SELECT UNIT e ittt ittt ettt it snbe e st saee e e e ene e e 13-5
13.3.1 Defining Chip-select AAdress RANQESuiviriiiiiiieieiiiinie e ee e e 13-7
13.3.2 Controlling Wait States, Bus Width, and Bus Multiplexingccccovivviviiiiieeennns 13-10
13.3.3 Chip-select Unit Initial CoONAItIONScuviiiiiiiiiiiriie e 13-11
13.3.4 Initializing the Chip-SeleCt REQISLEISuiuiiiiiieieieiiiies s e s 13-11
13.3.5 Example of a Chip-Select SETUPcoooeiiiiii i 13-12
13.4 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES....... 13-14
13.5 BUS WIDTH AND MULTIPLEXINGctttiititireiiie ettt st e et n
13.5.1 A 16-bit EXamMPIEe SYSEM ..ieiviiiiiiiiiiiii et e e et s ee e
13.5.2 16-Dit BUS TIMINGS .evtviiiiiiiiieiinir s oottt e e ee e s e s e e e e st s sttt e e ee e aeeanaeneneas
13.5.3 8-DIit BUS TIMINGS .vuvitiiiiiiiiitiie e ie e es ettt ee e e s e e e s e e s e s e se s snb b re e baeaeaeeee e
13.5.4 Comparison of Multiplexed and Demultiplexed Buses
13.6 WAIT STATES (READY CONTROL) ..cciiiiiiiiiittie ettt et
13.7 BUS-HOLD PROTOGCOL .uuiiiiit it ettt ettt e ee vt s e e e et e e e tnanaae e e

13.7.1 Enabling the Bus-hold Protocol
13.7.2 Disabling the Bus-hold Protocol
13.7.3 Hold LatenCycccccovvereiieirieie e
13.7.4 Regaining Bus Control
13.8 WRITE-CONTROL MODEScoitiiiiiiieiei ettt s sttt es
13.9 SYSTEM BUS AC TIMING SPECIFICATIONS ...ttt
13.9.1 Deferred Bus-cycle Mode (80CL1I6NU ONIY)oovviiieiiieriiie e
13.9.2 Explanation of AC SYMDOISccoeiiiiiiiiieieiie et
13.9.3 AC Timing DefiNItiONSceiiiiiiiiii ettt e e

8XC196NP, 80C196NU USER’S MANUAL

APPENDIX A

INSTRUCTION SET REFERENCE

APPENDIX B
SIGNAL DESCRIPTIONS

B.1 FUNCTIONAL GROUPINGS OF SIGNALS

B.2 SIGNAL DESCRIPTIONS
B.3 DEFAULT CONDITIONS

APPENDIX C
REGISTERS

GLOSSARY

INDEX

InU® CONTENTS

FIGURES
Figure
2-1 8XC196NP and 80C196NU BIOCK Diagramcoeveeieiiiiiiiiiriieeee e e eeeeees e s
2-2 BIOCK Diagram Of the COrEuuiuiiiiiiieierie ettt e e e e sre e e ne e e aee s
2-3 ClOCK Circuitry (BXCLIOBNP)ttt e e e e st er e e e eeeeaesee e e e ene e e nenes
2-4 Clock Circuitry (80C196NU)
2-5 INternal ClOCK PRASESoiiiiiiieie e e e
2-6 Effect of Clock Mode on CLKOUT Frequency
3-1 Accumulator (ACC_0X) REQISIENcociii ittt e e e e et eeeaeaeaaeaa e s
3-2 Accumulator Control and Status (ACC_STAT) RegiSterccvoviviiiviiiiiieeie e 3-5
5-1 16-Mbyte Address Space
5-2 Pages FFH and OO0H..........uuuiiiiiiie e st ee e s e e e e e et st s e e e ee e e aee s
5-3 Register File MemOrY MaPuuuuiuiiiiie e ie e ee s ee st e e ee e e s e s e e e e e s e s b ne e 5-10
5-4 WINAOWING ..ot e U - S K<
5-5 Window Selection (WSR) Register.................. PP - T .
5-6 Window Selection 1 (WSR1) Register PSPPI - = K3
5-7 The 24-Dit Program COUNTETttt ie e iee e ees s es s seetae e s e eeaeaeaesesaa e snenenenes 5-23
5-8 Formation of Extended and Nonextended AddreSSes........cccuvveviiiiiieeeineiiieiee e 5-24
5-9 A 64-Kbyte System With an 8-bit BuScccccviivivieeiennnn.
5-10 A 64-Kbyte System with Additional Data Storage
5-11 Example System Using the 1-Mbyte Modecccuvneee
6-1 Flow Diagram for PTS and Standard INterruptscccueeeveeierieieninenn i e e e
6-2 Standard Interrupt RESPONSE TIME ..ovvviiiiiieieeeier e e et e ee e e e e e eeaeses e s s seeeneees
6-3 PTS Interrupt Response Time.........c.eeeevvvne
6-4 PTS Select (PTSSEL) REQISIENccoiiiiii ettt et ee e
6-5 Interrupt Mask (INT_MASK) REQISTErccciiiiiiiiie ittt e e
6-6 Interrupt Mask 1 (INT_MASK1) Register.........
6-7 Interrupt Pending (INT_PEND) Register
6-8 Interrupt Pending 1 (INT_PEND1) Registerccccecuvneee
6-9 PTS CONIOl BIOCKS ...ttt ettt e
6-10 PTS Service (PTSSRV) REQISLEN ..c.uiiiiiiiiiii ettt e e e
6-11 PTS Mode Selection Bits (PTSCON Bits 7:5)cocoeevniee
6-12 PTS Control Block — Single Transfer Mode....
6-13 PTS Control Block — Block Transfer Mode
6-14 A Generic PWM WaVETOIMuiiiii ettt
6-15 PTS Control Block — PWM Toggle MOde..........ccocuiiiiiiiiiie e
6-16 EPA and PTS Operations for the PWM Toggle Mode Example...........c.cccovvereeienenen. 6-31
6-17 PTS Control Block — PWM RemMap MOUEcccoiiuiiiiiiiie oo e 6-34
6-18 EPA and PTS Operations for the PWM Remap Mode Examplec.ccceeinennnenn. 6-36
7-1 BidireCtional POIt STIUCTUME.....c.uiiiiiiie it ettt ee e e s
7-2 EPORT BIOCK DIGQIAIMuvitiiiiiiitie e et e e ettt ettt e ee s e e e e e et st e sttt et e aas
7-3 EPORT Structurecocovevevnvnnene
8-1 Y (@2 ool 1q B =T | = Ly PSPPSR
8-2 Typical Shift Register Circuit for Mode 0
8-3 Mode 0 TiMiNg....c.cvereirieriiie e
8-4 Serial Port Frames fOr MOUE 1ouuiiiiii e ettt et ee e e

Xi

8XC196NP, 80C196NU USER’S MANUAL Inu®

Figure

8-5
8-6

8-8
9-1
9-2
9-3

9-5
9-6
9-7
10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
11-10
12-1
12-2
12-3
12-4
12-5
13-1
13-2
13-3
13-4
13-5
13-6

Xil

FIGURES

Serial Port Frames in Mode 2 and 3.t
Serial Port Control (SP_CON) REQISIEI......cccuiiiiiiiii ittt
Serial Port Baud Rate (SP_BAUD) Register
Serial Port Status (SP_STATUS) Register
PWM Block Diagram (8XCLIBNP ONIY).....ccceiiiiiiiriiiiiie et e e
PWM Block Diagram (80CLI6NU ONIY)....c.cieiiiiiiiiiiiiiiiieieieiee e ee e e s e s e s e s s enasnsnsnnnneee
PWM OULPUL WaAVETOIMSiiieiii et et e e e e s e e e e e e et st aee e
Control (CON_REGO) REQISIENuvuieieiiiieiee e ieiee et es e sttt e eee e e e s e e e e e e nn e e nnnes
PWM Control (PWMx_CONTROL) Register ...
D/A BUFfer BIOCK DIGgIam.........ueueieiie e ies e e e ettt e e e e aesae e e e et sn s snnene e ee e eeaas
PWM to Analog Conversion CirCUITIYooo v e e i e e ee e e eses e e s e s ne e e aas
EPA Block Diagramccccccveveeeieieierineen s

EPA Timer/Countersc.c......
Quadrature Mode Interface ..
Quadrature Mode Timing and Count ..
A Single EPA Capture/Compare Channel........c.ccccuvueeieiiieiiies e
EPA Simplified Input-capture Structure...........

Valid EPA Input Eventsccccocvvveviiienencine

Timer 1 Control (TLCONTROL) Register......cccccovvveveverenenne

Timer 2 Control (T2CONTROL) Register

EPA Control (EPAX_CON) REQISIEIScccie ettt et te e e aes e e s snn e e ee e

EPA Interrupt Mask (EPA_MASK) Register

EPA Interrupt Pending (EPA_PEND) REQISIEr......cccoiuviiiiiiiiiie e e e 10-23
Minimum Hardware CONNECLIONScuueuiraiiieie ettt e e 11-3
Power and Return CONNECHIONSoiiiieiirariie ittt 11-4
ON-Chip OSCIlIAtOr CIrCUIL....ei ittt e e ee e e s e e eesesees e e e
External Crystal Connections

External Clock CONNECLIONSuiiiiiiiieiie et
External Clock Drive WavefOormMS.........co.ueuie oottt 11-7
Reset Timing SeqUeNCecccccvvvvvveeieieneeeinne

Internal Reset Circuitry

Minimum Reset CirCuitcccoovvveeeriniieeennn

Example System Reset Circuit

Clock Control During Power-saving Modes (8XCL196NP)c.ccuvvevieriiirieeieieneneiiienns 12-4
Clock Control During Power-saving Modes (80CL196NU)........c.cuuvieieriiiriirieeiisniiiinnne 12-5
Power-up and Powerdown Sequence When Using an External Interrupt.................. 12-9
EXTErNal RC CIFCUIL....ceii ittt ettt ettt ee e 12-9
Typical Voltage on the RPD Pin While Exiting Powerdown...........c.cccceviiiiieieienenn. 12-11
Calculation of a Chip-SeleCt OULIPULiuiuiiiiiriir et 13-6
Address Compare (ADDRCOMYXx) Register 13-7
Address Mask (ADDRMSKX) REGISENuvuiuiiiiiieieiie e ee e ee e e e eeaeeaeae s 13-8
Bus Control (BUSCONX) REQISTErc.cuiiiiiii ettt e e e e e aes e e s s e e e 13-10
Example System for Setting Up Chip-select QULPULSccevvvviviiiiiii i e 13-13
Chip Configuration 0 (CCRO) REQISLENuiuiieieeeeiee e e et ee e e e e e s e s e e 13-15

InU® CONTENTS

Figure
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
B-1
B-2

B-4

FIGURES

Chip Configuration 1 (CCR1) REQISLENuiuiiiiieieieeee et ir e e e e e s e e e e e
Multiplexing and Bus Width OptionS.........ccoio i e
Bus Activity for FOUr TYpes Of BUSES........coovi ittt e
16-bit External Devices in Demultiplexed Mode..........c..ccuvviiiiiieieieriiiisie i
Timings for Multiplexed and Demultiplexed 16-bit Buses (8XC196NP)
Timings for Multiplexed and Demultiplexed 8-bit Buses (8XC196NP)
READY Timing Diagram — MultipleXed MOGEcuuvuiiieieieiiiiiiii e ee e
READY Timing Diagram — Demultiplexed Mode (8XC196NP)ccccceeveveievvnnnen
READY Timing Diagram — Demultiplexed Mode (80C196NU)..............
HOLD#, HLDA# TIMING ..ttt ittt et e st e sn et e sae e e sbe e nnne s
Write-control Signal WavefOrMSoovoi oo
Decoding WRL# and WRH#........ccooviiiiiii e
A System with 8-bit and 16-bit BUSES.............ccccvivvernrinnn.
Multiplexed System Bus Timing (8XC196NP)...........cc........
Multiplexed System Bus Timing (80C196NU)c.cccceviuiiiiiiiieieienee oo s senieinenenes
Demultiplexed System Bus Timing (8XCLOBNP)couiiiriiiriiiiriniiiiiiieieiie e e
Demultiplexed System Bus Timing (80C196NU).................
Deferred Bus-cycle Mode Timing Diagram (80C196NU)
8XC196NP 100-lead SQFP Package........cccccceeveviiiiiiiiiininns
8XC196NP 100-lead QFP PaCKAgeciviviiiiiiiiiiiii ittt e e e
80C196NU 100-lead SQFP PaCKageccovviiiiiiiiii ittt iie e e e e s s s s s s inninine
80C196NU 100-lead QFP PaCKAQEcivvviiiiiiiiiii ittt et s ie e

Xii

8XC196NP, 80C196NU USER’S MANUAL Inu®

Table

5-10
5-11
5-12
5-13
5-14

7-4

7-7
7-8

Xiv

TABLES

Page
Handbooks and Product INfOrmationcooceueiiriiiiieiin e 1-6
Application Notes, Application Briefs, and Article Reprintsccccoeveviviviviveieienieienenn, 1-6
MCS® 96 Microcontroller Datasheets (CommeErCial/EXPress) .u.uuueueeeeieieees e eeeseeiiiinens 1-7
MCS® 96 Microcontroller Datasheets (AULOMOLIVE) ..uveieiieieieiie e e 1-7
MCS® 96 Microcontroller QUICK REFEIENCESoeieiei e 1-8
Features of the 8XC196NP and 80CLI6NU..........ccciiiiiiiiiriiiiiiiir e e 2-2
State Times at Various FreQUENCIESuuuiiiiiiie oo ee e e e e e e e s s enens 2-9
Relationships Between Input Frequency, Clock Multiplier, and State Times.............. 2-10
Multiply/Accumulate EXample COUE.......couii e it e e 3-2
Effect of SME and FME Bit COMbDINAtIONS...........oeiiiiiiiiiin e e 3-6
Operand TYPE DefiNIIONS. ...t e e e e s e s e es s e s e se e eeeee 4-1
Equivalent Operand Types for Assembly and C Programming Languages 4-2
Definition of Temporary Registers........cccccevvivveiiiiicieviiiiiens

8XC196NP and 80C196NU Memory Map..........cccoevevvnvnnens
Program Memory Access for the 83C196NP
8XC196NP and 80C196NU Special-purpose Memory Addresses.........ccccccceveveeere.. 5-6
Special-purpose Memory Access for the 83C196NP
Peripheral SFRScccoooiiiiiie e
Register File Memory Addresses
CPU SFRS ...ttt et et ettt e et
Selecting a Window of Peripheral SFRS...........coooiiiiiiiiiin e
Selecting a Window of the Upper Register File
WWINAOWS ... ettt ettt e ettt et e e ebe e e e an e ee e e snre e e e
WiINdowed Base AQArESSEScuieiiiiieiiier ettt ee sttt sttt e
Memory Map for the System in Figure 5-9......
Memory Map for the System in Figure 5-10....
Memory Map for the System in Figure 5-11
INEEITUPL SIGNAIS ...ttt e e e e e e e e es e e st st e et e te e bee e e aee s
Interrupt and PTS Control and Status RegISLErSiviviiiiiiieiiiiinis e e
Interrupt Sources, Vectors, and Priorities
Execution Times for PTS Cycles..........ccccceeee
Single Transfer Mode PTSCB
Block Transfer Mode PTSCB

ComparisoN Of PWM MOOES........uuuuiiiiiiiiiies e et ee e s e e e e et e e e
PWM Toggle Mode PTSCB...........

PWM Remap Mode PTSCB..........

Device I/O POrtSccccveevveiiieeene

BidireCtional PO PINSuiiiiiiiie e ettt ee e e s
Bidirectional Port Control and Status REGISLENScccvviiiieeeiiiiiniie e
Logic Table for Bidirectional Ports in 1/O MOEcccuiiiieeeiiiiniie e
Logic Table for Bidirectional Ports in Special-function Modeccocoviieiiicininnenn
Control Register Values for Each Configuration..............cccoveiiiiin e
Port Configuration EXAMPIEuvuiiiiiiiiies et te e tae e e s et ae e et ae e s

Port Pin States After Reset and After Example Code Execution

InU® CONTENTS

Table
7-9
7-10
7-11
7-12
7-13
8-1
8-2

8-4
9-1
9-2
9-3

9-5
10-1
10-2
10-3
10-4
10-5
11-1
11-2
12-1
12-2
12-3
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
13-11
13-12
13-13
13-14
13-15
13-16

TABLES

Page
EPORT PiNS ..ttt e ettt ket ettt e e e sbe bt ee e san e e ean 7-11
EPORT Control and Status REQISIEIScciei it e e e 7-12
Logic Table for EPORT iN 1/O MOE..........cccooiiiiiiiiieeie et e e 7-16
Logic Table for EPORT in Address Mode P PUPPPPRY £ 1
Configuration Register Settings for EPORT PiNS.......ccooiiiiiiiiiiiiieiein e 7-17
Serial POt SIQN@ISiiii e e ae s e e e e rae 8-2
Serial Port Control and Status ReQISIErS......uuiuiiiiieiii i e 8-2
SP_BAUD Values When Using the Internal Clock at 25 MHz........cccccccccciiiiiiiiiinns 8-12

SP_BAUD Values When Using the Internal Clock at 50 MHz (80C196NU Only)......8-13
T I T T = 1 PP
PWM Control and Status ReQISIEIS......c.uviii it
PWM Output Frequencies (8XC196NP)..........

PWM Output Frequencies (80C196NU)..........

PWM Output Alternate Functions....................

EPA and Timer/Counter SigNalS..........uuu oo ee e e e e e e e
EPA Control and Status REJISLEISc.ooviviiii ittt
Quadrature Mode Truth Table........ccccccveveennn.

Action Taken when a Valid Edge Occurs
Example Control Register Settings and EPA Operations...
MiIinimum ReqUIred SIgNaIS.uiuiuiiir it e e e
1/0 Port Configuration GUIAEcueeieiiririor et e e
Operating Mode Control Signals
Operating Mode Control and Status ReQISIErS.........coiv i iiiiviniiieie e
BOCL96NU CIOCK MOUES ...ttt ettt e
Example of Internal and External Addressesccc.cu....

External Memory Interface Signals..................
Chip-select Registers .. .
ADDRCOMXx Addresses and Reset Values ..
ADDRMSKXx Addresses and Reset ValUESooiiiiiiriiiii e
Base Addresses for Several Sizes of the Address Range
BUSCONX Addresses and Reset Values...........ccccceveeueen.
BUSCONX Registers for the Example System
Results for the Chip-select EXamPpPleccooo oo
Comparison of AC Timings for Demultiplexed and Multiplexed 16-bit Buses 13-26
READY Signal Timing DefiNitioNS........ccoiviiiiiii ittt s in e e e
HOLD#, HLDA# Timing Definitionscccccccoveveviiiicviiininns

Maximum Hold Latencyccccuvevreiieieiieieienee e

Write Signals for Standard and Write Strobe Modes
AC Timing Symbol Definitions
AC Timing Definitions...................
Opcode Map (Left Half) ... e e e
Opcode Map (RIght Hal) ... e e
Processor Status Word (PSW) FIAgS ...c.covii ittt ettt s s e e e
Effect of PSW Flags or Specified Conditions on Conditional Jump Instructions......... A-5

XV

8XC196NP, 80C196NU USER’S MANUAL Inu®

TABLES
Table Page
A-4 PSW Flag Setting SYMDOISc.oiiiiiiiiii e e A-5
A-5 Operand Variablescoc oo e e e e e e s e
A-6 INSIFUCTION S ..t e ettt et e e e et e e e e e en e
A-7 Instruction Opcodes
A-8 Instruction Lengths and Hexadecimal OpCOdES.........uviiiiiiiiieiiiinii i A-53
A-9 Instruction Execution Times (in State TiMES)uvuviviiieieiie e A-60
B-1 8XC196NP and 80C196NU Signals Arranged by FUNCLION.........cccoeeviiiiiiiiiiiiiiiiiiinins B-1
B-2 Description of Columns of Table B-3
B-3 Signal Descriptions..........cccccvviviviiiieieee e
B-4 Definition of Status SYMDOISouviiiiiiiii e
B-5 8XC196NP and 80CLI6NU Pin SEALUScovvvrerieiisiiie e et
C-1 Modules and Related Registers
C-2 Register Name, Address, and Reset Status....
C-3 ACC_O0Ox Addresses and Reset Values............
C-4 Effect of SME and FME Bit COmbINatioNS.........c.ccoiiiieitiiniiiiie e e
C-5 ADDRCOMXx Addresses and ReSet ValUES..........coovuiieiiiiiiiiee e
C-6 ADDRMSKx Addresses and Reset Values.....
C-7 BUSCONXx Addresses and Reset Values........
C-8 EPAXx_CON Addresses and Reset Values......
C-9 EPAX_TIME Addresses and ReSet ValUES..........cccvuivieiiiiiieiie e evne e
C-10 Px_DIR Addresses and ReSet ValUES..........ccooceiiiiiiiiieieiie e e s
C-11 Px_MODE Addresses and Reset Values
C-12 Special-function Signals for POrs 1—.........coooviiiiiiii i e
C-13 Px_PIN Addresses and ReSet ValUES.........cccooveiiiiiiieieiie e et s
C-14 Px_REG Addresses and ReSet ValueScccciiiviiiiieiee e e
C-15 PWMx_CONTROL Addresses and Reset Valuescoeovvveiieiiiiiieiiiiieieie e e
C-16 SP_BAUD Values When Using the Internal Clock at 25 MHz............
C-17 TIMERX Addresses and Reset ValUEScooiiiiiiiriiiiie e

C-18 WSR Settings and Direct Addresses for Windowable SFRS............cccocevcviiiiviee e
C-19 WSRL1 Settings and Direct Addresses for Windowable SFRs

XVi

intgl.
1

Guide to This Manual

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8XC196NP and 80C196NU embedded microcontrollers. It is intended
for use by both software and hardware designers familiar with the principles of microcontrollers.
This chapter describes what you'll find in this manual, lists other documents that may be useful,
and explains how to access the support services we provide to help you complete your design.

1.1 MANUAL CONTENTS

This manual contains several chapters and appendixes, a glossary, and an index. This chapter,
Chapter 1, provides an overview of the manual. This section summarizes the contents of the re-
maining chapters and appendixes. The remainder of this chapter describes na@tiosations

and terminabgy used throughout the manual, pa®s references to related documentation, de-
scribes customegupport sevices, and explains how to access information and assistance.

Chapter 2 — Architectural Overview — provides an overview of the device hardware. It de-
scribes the core, internal timing, internal peripherals, and special operating modes.

Chapter 3 — Advanced Math Features —describes the advanced mathematical features of the
80C196NU. The 80C196NU is the first member of the @8 microcontroller family to in-
corporate enhanced 16-bit multiplication instructions for performing multiply-accumulate oper-
ations and a dedicated, 32-bit accumulator register for storing the results of these operations. The
accumulator and the enhanced instructions combine to decrease the amount of time required to
perform multiply-accumulate operations. Tinstructions and accumulatsupport signed and
unsigned integers as well as signed fractional data.

Chapter 4 — Programming Considerations —provides an overview of the instruction set, de-
scribes general standards and conventions, and defines the operand types and addressing mode
supported byhe MC® 96 microcontroller family. (For additional information about the instruc-

tion set, see Appendix A.)

Chapter 5 — Memory Partitions — describes the addressable memory space of the device. It
describes the memory patrtitions, explains how to use windows to intheaseount of memory
that can be accessed with direct addressing, and provides examples of memory configurations.

Chapter 6 — Standard and PTS Interrupts —describes the interrupt control circuitry, priority
scheme, and timing for standard and peripheral transaction server (PTS) interrupts. It also ex-
plains interrupt programming and control.

Chapter 7 — 1/0O Ports — describes the input/output ports and explains how to configure the
ports for input, output, or special functions.

I 1-1

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Chapter 8 — Serial I/0 (S10) Port —describes the asynchronous/synchrorsaral I/O(SIO)
port and explains how to program it.

Chapter 9 —Pulse-width Modulator —provides a functional overview of the pulse width mod-
ulator (PWM) modules, describes how to program them paoddes sample iuitry for con-
verting the PWM outputs to analog signals.

Chapter 10 — Event Processor Array (EPA) —describes the event processor array, a tim-
er/counter-based, high-speed input/output unit. It describes the timer/counters and explains how
to program the EPA and how to use the EPA to produce pulse-width modulated (PWM) outputs.

Chapter 11 — Minimum Hardware Considerations —describes options for providing the ba-
sic requirements for device operation within a system, discusses other hardware considerations,
and describes device reset options.

Chapter 12 — Special Operating Modes —provides an overview of the idle, powerdown,
standby, and on-circuit emulation (ONCE) modes and desdrdyesoenter and exit each mode.

Chapter 13 — Interfacing with External Memory — lists the external memory signals and de-
scribes the registers that control the external memory interface. It discusses the chip selects, mul-
tiplexed and demultiplexed bus modes, bus width and memory configurationsydHeld
protocol, write-control modes, and internal wait states and ready control. Finally, it provides tim-
ing information for the system bus.

Appendix A — Instruction Set Reference —provides reference information for the instruction

set. It describes each instruction; defines the processor status word (PSW) flags; shows the rela-
tionships between instructions and PSW flags; and lists hexadecimal opcodes, instruction
lengths, and execution times. (For additional information about the instruction set, see Chapter 4,
“Programming Considerations.”)

Appendix B — Signal Descriptions —provides reference information for the device pins, in-
cluding descriptions of the pin functions, reset status of the I/O and control pins, and package pin
assignments.

Appendix C — Registers —provides a compilation of all device special-function registers
(SFRs) arranged alphabetically by register mnemonic. It also includes tables that list the win-
dowed direct addresses for all SFRs in each possible window.

Glossary —defines terms with special meaning used tigfmut this maual.

Index — lists key topics with page number references.

1-2 I

intel.

GUIDE TO THIS MANUAL

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are usieitghout this manual. The Glossary defines
other terms with special meanings.

#

addresses

assert and deassert

clear and set

instructions

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used in an instruction, the symbol prefixes
an immediate value in immediate addressing mode.

In this manual, both internal and external addresses use the number
of hexadecimal digits that correspond with the number of available
address lines. For example, the highest possible internal address is
shown as FFFFFFH, while the highest gibke external address is
shown as FFHARH. When writing code, use thappropriate address
conventions for the software tool you are using. (In general,
assemblers require a zero preceding an alphabetic hexadecimal
character and an “H” following any hexadecimal value, so FFFFFFH
must be written as OFFFFFFH. ANSI ‘C’ compilers require a zero
plus an “x” preceding a hexadecimal value, so FFFFFFH must be
written as OxFFFFFF.) Consult the manual ymur assembler or
compiler to determine its specific requirements.

The termsassertand deassertrefer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (low or high) is defined by the signal name. Active-low
signals are designated by aumd symbol (#) suffix; active-high
signals have no suffix. To assert RD# is to drive it low; to assert ALE
is to drive it high; to deassert RD# is to drive it high; to deassert ALE
is to drive it low.

The termsclear andsetrefer to the value of a bit or the act of giving
it a value. If a bit is cleaits value is “0”; clearing a bit gives it a “0”
value. If a bit is set, its value is “1”; setting a bit gives it a “1” value.

Lowercase “f’ represents the internal operating frequency. See
“Internal Timing” on page 2-7 for details.

Instruction mnemonics are shown in upper case to avoid confusion.
In general, you may use either upper case or lower case when
programming. Consult the manual for your assembler or compiler to
determine its specific requirements.

1-3

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

italics

numbers

register bits

register names

reserved bits

signal names

1-4

Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdrepresents the
second variable. For example, in regist&r RMODEYy, x represents

the variable that identifies the specific port associated with the
register, andy represents the register bit variable (7:0 or 15:0).
Variables must be replaced with the correct values whengroitfy

or programming registers or identifying signals.

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the charactét. Decimal and binary numbers are
represented by their customary notations. (That is, 255 is a decimal
number and 1111111 is a biary number. In some cases, the leBter

is appended to binary numbers for clarity.)

Bit locations are indexed by 7:0 (or 15:0), where bit 0 is the least-
significant bit and bit 7 (or 15) is the most-significant bit. An

individual bit is represented by the register name, followed by a
period and the bit number. For example, WSR.7 is bit 7 of the
window selection register. In some discussions, bit names are used.

Register mnemonics are shown in upper case. For example, TIMER2
is the timer 2 register; timer 2 is the timer. A register name containing
a lowercase italic character represents more than one register. For
example, thec in Px_REG indicates that the register name refers to
any of the port data registers.

Certain bits are described esservedbits. In illustrations, reserved
bits are indicated with a dash (—). These bits are not used in this
device, but they may be used in future implementations. To help
ensure that a current software design is compatible with future imple-
mentations, reserved bits should be cleared (given a value of “0”) or
left in their default states, unless otherwise noted. Do not rely on the
values of reserved bits; consider them undefined.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. For example, the EPA signals are named
EPAO, EPAL, EPA2, etdort pins are represented by the port abbre-
viation, a period, and the pin number (e.g., P1.0, P1.1); a range of
pins is represented byxR:z (e.g., P1.4:0 represents five port pins:
P1.4, P1.3, P1.2, P1.1, P1.0). A pound symbol (#) appended to a
signal name identifies an active-low signal.

Int€|® GUIDE TO THIS MANUAL

t Lowercase “t” represents the internal operating period. See “Internal
Timing” on page 2-7 for details.

units of measure The following abbreviations are used to represent units of measure:
A amps, amperes

DCV direct current volts
Kbytes kilobytes

kHz kilohertz

kQ kilo-ohms

mA milliamps, milliamperes
Mbytes megabytes

MHz megahertz

ms milliseconds

mwW milliwatts

ns nanoseconds

pF picofarads

W waltts

\% volts

HA microamps, microamperes
pF microfarads

ps microseconds

pW microwatts

X Uppercase X (no italics) represents an nown value or an
irrelevant (“don’t care”) state or condition. The value may be either
binary or hexadecimal, depending on the context. For example,
2XAFH (hex) indicates that bits 11:8 araknown; 10XXB (binary)
indicates that the two least-significant bits an&nown.

1.3 RELATED DOCUMENTS

The tables in this section list additional documentsytbhatmay find useful in designing systems
incorporating MCS 96 microcontrollers. These are not comprehensive lists, but are a representa-
tive sample of relevant documents. For a complete list of available printed documents, please or-
der the literature catalog (ordeumber 210621). To order documents, please tballintel
literature center for your area (telephone numbers are listed on page 1-11).

Intel's ApPBUILDER software, hypertext manuals and datasheets, and electronic versions of ap-
plication notes and code examples are also available from the BBS (see “Bulletin Board System
(BBS)” on page 1-9). New information is available first from FaxBack and the BBS. Refer to
“Electronic SupporSystems” on page 1-8 for details.

I 1-5

8XC196NP, 80C196NU USER’'S MANUAL

Table 1-1. Handbooks and Product Information

intel.

Title and Description

Order Number

Intel Embedded Quick Reference Guide

272439

Solutions for Embedded Applications Guide

240691

Data on Demand fact sheet

240952

Data on Demand annual subscription (6 issues; Windows* version)
Complete set of Intel handbooks on CD-ROM.

240897

Handbook Set — handbooks and product overview
Complete set of Intel's product line handbooks. Contains datasheets, application
notes, article reprints and other design information on microprocessors, periph-
erals, embedded controllers, memory components, single-board computers,
microcommunications, software development tools, and operating systems.

231003

Automotive Products t
Application notes and article reprints on topics including the MCS 51 and MCS 96
microcontrollers. Documents in this handbook discuss hardware and software
implementations and present helpful design techniques.

231792

Embedded Applications handbook (2 volume set) T
Datasheets, architecture descriptions, and application notes on topics including
flash memory devices, networking chips, and MCS 51 and MCS 96 microcon-
trollers. Documents in this handbook discuss hardware and software implementa-
tions and present helpful design techniques.

270648

Embedded Microcontrollers
Datasheets and architecture descriptions for Intel’s three industry-standard micro-
controllers, the MCS 48, MCS 51, and MCS 96 microcontrollers.

270646

Peripheral Components T
Comprehensive information on Intel's peripheral components, including
datasheets, application notes, and technical briefs.

296467

Flash Memory (2 volume set) T
A collection of datasheets and application notes devoted to techniques and
information to help design semiconductor memory into an application or system.

210830

Packaging t
Detailed information on the manufacturing, applications, and attributes of a variety
of semiconductor packages.

240800

Development Tools Handbook
Information on third-party hardware and software tools that support Intel’s
embedded microcontrollers.

272326

T Included in handbook set (order number 231003)

Table 1-2. Application Notes, Application Briefs, and Article Reprints

Title Order Number
AB-71, Using the SIO on the 8XC196MH (application brief) 272594
AP-125, Design Microcontroller Systems for Electrically Noisy Environments 11 210313
AP-155, Oscillators for Microcontrollers 111 230659
AR-375, Motor Controllers Take the Single-Chip Route (article reprint) 270056
AP-406, MCS® 96 Analog Acquisition Primer TT1 270365

T Included in Automotive Products handbook (order number 231792)
TtIncluded in Embedded Applications handbook (order number 270648)
TttIncluded in Automotive Products and Embedded Applications handbooks

1-6

Inu® GUIDE TO THIS MANUAL

Table 1-2. Application Notes, Application Briefs, and Ar ticle Reprints (

Continued)

Title Order Number
AP-445, 8XC196KR Peripherals: A User’s Point of View T 270873
AP-449, A Comparison of the Event Processor Array (EPA) and High Speed 270968
Input/Output (HSIO) Unitt
AP-475, Using the 8XC196NT Tt 272315
AP-477, Low Voltage Embedded Design 1 272324
AP-483, Application Examples Using the 8XC196MC/MD Microcontroller 272282
AP-700, Intel Fuzzy Logic Tool Simplifies ABS Design * 272595
AP-711, EMI Design Techniques for Microcontrollers in Automotive Applications 272324
AP-715, Interfacing an I2C Serial EEPROM to an MCS® 96 Microcontroller 272680

T Included in Automotive Products handbook (order number 231792)
Tt Included in Embedded Applications handbook (order number 270648)
TttIncluded in Automotive Products and Embedded Applications handbooks

Table 1-3. MCS® 96 Microcontroller Datasheets (Commercial/Expre

SS)

Title Order Number
8XC196KR/KQ/JR/JIQ Commercial/lExpress CHMOS Microcontroller t 270912
8XC196KT Commercial CHMOS Microcontroller t 272266
87C196KT/87C196KS 20 MHz Advanced 16-Bit CHMOS Microcontroller t 272513
8XC196MC Industrial Motor Control Microcontroller t 272323
87C196MD Industrial Motor Control CHMOS Microcontroller t 270946
8XC196NP Commercial CHMOS 16-Bit Microcontroller T 272459
8XC196NT CHMOS Microcontroller with 1-Mbyte Linear Address Space t 272267
80C196NU Commercial CHMOS 16-Bit Microcontroller 272644

T Included in Embedded Microcontrollers handbook (order number 270646)

Table 1-4. MCS® 96 Microcontroller Datasheets (Automotive)

Title and Description

Order Number

87C196CA/87C196CB 20 MHz Advanced 16-Bit CHMOS Microcontroller with 272405
Integrated CAN 2.0 T

87C196JT 20 MHz Advanced 16-Bit CHMOS Microcontroller T 272529

87C196JV 20 MHz Advanced 16-Bit CHMOS Microcontroller ¥ 272580

87C196KR/KQ, 87C196JV/JT, 87C196JR/JQ Advanced 16-Bit CHMOS 270827
Microcontroller ¥

87C196KT/87C196KS Advanced 16-Bit CHMOS Microcontroller T 270999

87C196KT/KS 20 MHz Advanced 16-Bit CHMOS Microcontroller 272513

T Included in Automotive Products handbook (order number 231792)

1-7

8XC196NP, 80C196NU USER’S MANUAL Inbl®

Table 1-5. MCS® 96 Microcontroller Quick References

Title and Description Order Number
8XC196KR Quick Reference (includes the JQ, JR, KQ, KR) 272113
8XC196KT Quick Reference 272269
8XC196MC Quick Reference 272114
8XC196NP Quick Reference 272466
8XC196NT Quick Reference 272270

1-8

GUIDE TO THIS MANUAL

Page Intentionally Left Blank

1-9

8XC196NP, 80C196NU USER’S MANUAL

Page Intentionally Left Blank

Int€|® GUIDE TO THIS MANUAL

1.4.4 World Wide Web

We offer a variety of information through the World Wide Web (URL:http://www.intel.com/). Se-
lect “Embedded Design Products” from tiéel home page.

1.5 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your questions
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-3566100 (fax) U.S. and Canada

1.6 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.
1-800-468-818, ext. 283 U.S. and Canada

708-296-9333 U.S. (from overseas)
44(0)1793-431155 Europe (U.K.)
44(0)1793-421333 Germany
44(0)1793-421777 France
81(0)120-47-88-32 Japan (fax only)

I 1-11

intgl.

Architectural
Overview

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 16-bit 8XC196NP and 8a@6NU CHMOS microcontrollers are signed to handle high-

speed calculations and fast input/output (I/O) operations. They share a common architecture and
instruction set with other members of the MCS6 microcontroller family. In addition to their

16-bit address/data buses, both microcontrollers have extended addressing ports consisting of 4
external address pins, for a total of 20 address pins. With 20 address pins, these microcontrollers
can access up to 1 Mbyte of linear address space. Both devices also have chip-select units that
provide a glueless interface to external memory devices. The extended addressing port and chip-
select unit enable these microcontrollers to handle larger, more complex programs and to access
more external memory at a faster rate than could earlier MCS 96 microcontrollers.

The 8XC196NP and 80C196NU are pin-compatible and have identical cores. However, the
80C196NU can operate at twice the frequency of the 8XC196NP. The 80C196NU also employs
an accumulator and enhanced multiplication instructions to support multiply-accumulate opera-
tions. The 80C196NU is the first MCS 96 microcontroller with this capability. This chapter pro-
vides a high-level overview of the architecture.

2.1 TYPICAL APPLICATIONS

MCS 96 microcontrollers are typically used for high-speed event control systems. Commercial
applications include modems, motor-control systems, printers, photocopiers, air conditioner con-
trol systems, disk drives, and medical instruments. Automotive customers use MCS 96 microcon-
trollers in engine-control systems, airbags, suspension systems, and antilock braking systems
(ABS).

I 2-1

8XC196NP, 80C196NU USER’'S MANUAL

2.2

DEVICE FEATURES

Table 2-1 lists the features of the 8XC196NP and 80C196NU.

Table 2-1. Features of the 8XC196NP and 80C196NU

intel.

. . Rom | ReISEr | 5 pins | EPA | SIO pwm | Chip- | Extemal
Device Pins (Note 1) RAM (Note 3) | Pins | Ports | Channels select | Interrupt
(Note 2) Pins Pins
8XC196NP | 100 4K 1024 64 4 1 3 6 4
80C196NU | 100 0 1024 64 1 6 4
NOTES:

1. Nonvolatile memory is optional for the 8XC196NP, but is not available for the 80C196NU. The second
character of the device name indicates the presence and type of nonvolatile memory. 80C196NP =
none; 83C196NP = ROM.

2. Register RAM amounts include the 24 bytes allocated to core special-function registers (SFRs) and
the stack pointer.

3. /O pinsinclude address, data, and bus control pins and 32 I/O port pins.

2.3 BLOCK DIAGRAM

Figure 2-1 shows the major blocks within the device. The core of the device (Figure 2-2) consists
of the central processing unit (CPU) and memory controller. The CPU contains the register file
and the register arithmetic-logic unit (RALU). The CPU connects to both the memory controller

and an interrupt controller via a 16-bit internal bus. An extension of this bus connects the CPU to
the internal peripheral modules. In addition, an 8-bit internal bus transfers instruction bytes from

the memory controller to the instruction register in the RALU.

Optional Interrupt
Core p
ROM Controller
Clock and PTS
Power Mgmt.
110 SIO PWM EPA

A2801-01

2-2

Figure 2-1. 8XC196NP and 80C196NU Block Diagram

Inu® ARCHITECTURAL OVERVIEW

| CPU : Memory Controller
|
- - |
| Register File RALU | Prefetch Queue
: Microcode | | 1
| Engine | Slave PC
|
| .
I Register : Address Register
| RAM \
: Master PC | Data Register
|
|
| [psw |||
| CPU SFRs _ |
| I Bus Controller
|
|

A2797-01

Figure 2-2. Block Diagram of the Core

2.3.1 CPU Control

The CPU is controlled by the microcode engine, which instructs the RALU to perform operations
using bytes, words, or double words from either2b@-byte loweregister file or through win-

dowthat directly accesses the upper register file. (See Chapter gdiMartitions,” for more
information about the register file and windowing.) CPU instructions move from the 4fbyte

the 8XC196NP) or 8-byte (for the 80GIU) prefetch queue in the memory controller into the
RALU'’s instruction register. The microcode engine decodes the instructions and then generates
the sequence of events that cause desired functions to occur.

2.3.2 Register File

The register file is divided into an upper and a lower file. In the lower register file, the lowest 24
bytes are allocated to the CPU'’s special-function registers (SFRs) and the stack pointer, while the
remainder is available as general-purpose register RAM. The upper register file contains only
general-purpose register RAM. Thegigter RAM can be accessed as bytes, words, or double-
words.

The RALU accesses the upper and lower register files differently. The lower register file is always
directly accessible with direct addressing (see “Addressing Modes” on page 4-6). The upper reg-
ister file is accessible with direct addressing only wlvamowingis enabled. Windowing is a
technique that maps blocks of the upper register file intmdowin the lower register file. See
Chapter 5, “Memory Partitionsfor more information about the register file and windowing.

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

2.3.3 Register Arithmetic-logic Unit (RALU)

The RALU contains the microcode engine, the 16-bit arithmetic logic unit (ALU), the master pro-
gram counter (PC), the processor status word (PSW), and sepstdne The registers in the
RALU are the instruction register, a constants register, a bit-select register, a loop counter, and
three temporary registers (the upper-word, lower-word, and second-operand registers).

The 24-bit master program counter (PC) padms a linear, nonsegmented 16-Mbytenmoey

space. Only 20 of the address lines are implemented with external pins, so pbysiaally ad-

dress only 1 Mbyte. (For compatibility with earlier devices, the PC can be configured as 16 bits
wide.) The master PC contains the address of the next instruction and has a built-in incrementer
that automatically loads the next sequential address. However, if a jump, interrupt, call, or return
changes the address sequence, the ALU loads the appropriate address into the master PC.

The PSW contains one bhit (PSW.1) that globally enables or disables servicing of all maskable in-
terrupts, one bit (PSW.2) that enables or disables the peripheral transaction server (PTS), and six
Boolean flags that reflect the state of your program. Appendix Atrticison Set Reference,”
provides a detailed description of the PSW.

All registers, except the 3-bit bit-select register and the 6-bit loop counter, are either 16 or 17 bits
(16 bits plus a sign extension). Some of these registers can reduce the ALU’s workload by per-
forming simple operations.

The RALU uses the upper- and lower-word registers together for the 32-bit instructions and as
temporary registers for many instructions. These registers have their own shift logic and are used
for operations that require logical shifts, iding normalize, multiply, and divide operations.

The six-bit loopcounter counts repetitive shifts. The second-operand register stores the second
operand for two-operand instructions, including the multiplier during multiply operations and the
divisor during divide operations. During subtraction operations, the output of this register is com-
plemented before it is moved into the ALU.

The RALU speeds up calculations by storing constants (e.g., 0, 1, and 2) in the constants register
so that they are readily available when complementing, incrementing, or decrementing bytes or
words. In addition, the constants register generates single-bit masks, based on the bit-select reg-
ister, for bit-test instructions.

2.3.3.1 Code Execution

The RALU performs most calculations for the device, but it does not wssamulator Instead

it operates directly on the lower register file, which essentmalywides 256 accumuiars. Be-

cause data does not flow through a single accumulator, the device’s code executes faster and more
efficiently.

Int€|® ARCHITECTURAL OVERVIEW

2.3.3.2 Instruction Format

MCS 96 microcontrollers combine a large set of general-purpose registers with a three-operand
instruction format. This format allows a single instruction to specify two source registers and a
separate destination register. For example, the following instruction multiplies two 16-bit vari-
ables and stores the 32-bit result in a thirdalald.

MUL RESULT, FACTOR_1, FACTOR_2 ;multiply FACTOR_1 and FACTOR_2
;and store answer in RESULT
;(RESULT) ~(FACTOR_1 x FACTOR_2)

An 80C186 device requires four tngctions to accomplish the same operation. The following ex-
ample shows the equivalent code for an 80C186 device.

MOV AX, FACTOR_1 ;move FACTOR_1 into accumulator (AX)
i(AX) ~FACTOR1

MUL FACTOR_2 ;multiply FACTOR_2 and AX
i(DX:AX) ~(AX)x(FACTOR_2)

MOV RESULT, AX ;move lower byte into RESULT
J(RESULT) —(AX)

MOV RESULT+2, DX ;move upper byte into RESULT+2

{(RESULT+2) < (DX)

2.3.4 Memory Controller

The RALU communicates with all memory, except the register file and peripheral SkRghthr

the memory controller. (It communicates with the upper register file through the memory control-
ler except whemwindowingis used; see Chapter 5, “Memory Partitions,”) The memory controller
contains the prefetch queue, the slpr@gramcounter (slave PC), address and data registers, and
the bus controller.

The bus controller drives the memory bus, which consists of an internal memory bus and the ex-
ternal address/data bus. The bus controller receives memory-access requests from either the
RALU or the prefetch queue; queue requests always have priority. This queue is transparent to
the RALU and your software.

NOTE
When using a logic analyzer to debug code, remember that instructions are

preloaded into the prefetch queue and are not necessarily executed
immediately after they are fetched.

When the bus controller receives a request from the queue, it fetches the code from the address
contained in the slave PC. The slave PC increases execution speed because the next instruction
byte is available immediately and the processor need not wait for the master PC to send the ad-

dress to the memory controller. If a jump, interrupt, call, or return changes the address sequence,

the master PC loads the new address into the slave PC, then the CPU flushes the queue and con
tinues processing.

2-5

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

The extended program counter (EPC) is an extension of the slave PC. The EPC generates the up-
per eight address bits for extended code fetches and outputs them on the extended addressing por
(EPORT). Because only four EPORT pins are implemented, only the lower four address bits are
available. (See Chapter 5, “Memory Partitions,” for additionfdrimaion.)

The memory controller includes a chip-select unit with six chip-select outputs for selecting an ex-
ternal device during an external bus cycle. During an external memory access, a chip-select out-
put is asserted if the address falls within the address range assigned to that chip-select. The bus
width, the number of wait states, and multiplexed or demultiplexed address/data lines are pro-
grammed independently for the six chip-selects. The address range of the chip-selects can be pro-
grammed for various granularities: 256 bytes, 512 bytes, ... 512 Kbytes, or 1 Mbyte. The base
address can be any address that is evenly divisible by the selected address range. See Chapter 1:
“Interfacing with External Mmory,” for more information.

2.3.5 Multiply-accumulate (80C196NU Only)

The 80C196NU is able to process multiply-accumulate operations through the use of a hardware
accumulator and enhanced multiplication instructions. The accumulator includes a 16-bit adder,
a 3-to-1 multiplexer, a 32-bit accumulator register, and a control register. The multiply-accumu-
late function is enabled by any 16-bit multiplication instruction with a destination address that is
in the range 00—0FH. The instructions can operate on signed integers, unsigned integers, and
signed fractional numbers. The control register allows you to esahleation modeandfrac-

tional modefor signed multiplication. Chapter 3, “Advanced Math Features,” describes the accu-
mulator.

2.3.6 Interrupt Service

The device’s flexible interrupt-handling system has two main components: the programmable in-
terrupt controller and the peripheral transaction server (PTS). The programmatoleptrden-

troller has a hardware priority scheme that can be modified by your software. Interrupts that go
throughthe interrupt controller are serviced by interrupt service routineg/thaprovide. The
peripheral transaction server (PTS), a microcoded hardware interrupt processor, provides high-
speed, low-overhead interrupt handling. You can configure most interrupts (except NMI, trap,
and unimplemented opcode) to be serviced by the PTS instead ofettmaphtontroller.

The PTS can transfer bytes or words, either individually or in blocks, between any memory loca-
tions and can generate pulse-width modulated (PWM) signals. PTS interrupts have a higher pri-
ority than standard interrupts and may temporarily suspend interrupt service routines. See
Chapter 6, “Standard and PTS Interrupts,” for more information.

2-6 I

Inu® ARCHITECTURAL OVERVIEW

2.4 INTERNAL TIMING

The clock circuitry of the 8XCI6NP (Figure 2-3) is identical to that of earlier MCS 96 micro-
controllers. It receives an input clock signal on XTAL1 provided by an external crystal or clock
and divides the frequency by two. The clock generators accept the divided input frequency from
the divide-by-two circuit angroduce two nonoverlapping internal timg signals, PH1 and PH2.
These signals are active when high.

Disable Clock Input

(Powerdown)
FxraLL
> PY Divide-by-two
XA D Circuit
Disable Clocks
(Powerdown)
XTAL2 Y 1
———> Peripheral Clocks (PH1, PH2)
Clock
Disable Generators - D CLKOUT

(Oscilljltor) —|_T_|—> CPU Clocks (PHL, PH2)
Powerdown

Disable Clocks
(Idle, Powerdown)

A3161-01

Figure 2-3. Clock Circuitry (8XC196NP)

The 80Q96NU’s clock cicuitry (Figure 2-4) implements phase-locked loop and clock multiplier
circuitry, which can substantially increase the CPU clock rate while using a lower-frequency in-
put clock. The clock circuitry accepts an input clock signal on XTAL1 provided by an external
crystal or oscillator. Depending on the values of the PLLEN1 and PLLEN2 pins, this frequency
is routed either through the phase-locked loop and multiplier or directly to the divide-by-two cir-
cuit. The multiplier circuitry can double or quadruple the input frequengy (P before the fre-
guency (f) reaches the divide-by-twarauitry. The clock generators accept the divided input
frequency (f/2) from the divide-by-two circuit apdoduce two nonoverlapping &mnal timing
signals, PH1 and PH2. These signals are active when high.

NOTE

For brevity, this manual uses lowercase “f” to represent the internal clock
frequency of both the 8XC196NP and the 80C196NU. For the 8XC196NP, fis
equal to Ry, 1. For the 80C196NU, fis equal to eithgikt 1, 2FraL 1, OF

4F, .1, depending on the clock multiplier mode, which is controlled by the
PLLEN21 and PLLENZ2 input pins.

I 2-7

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Disable
PLL
(Powerdown)
) Fxtau1 |J-| Phase ;
XTALL D | Comparator Filter
j
<
=
o
. Phase-
2 locked
XTAL2 v Oscillator
L
Y
3 .
Disable = Disable Clock Input Phase-locked Loop
Oscillator T (Powerdown) Clock Multiplier
(Powerdown) <
f Divide-by-two
Circuit
£ Disable Clocks
pLLENT [2 | (standby, Powerdown)
PLLEN2
D Peripheral Clocks (PH1, PH2)
Clock CLKOUT
Generators
—|_T_|—> CPU Clocks (PHL, PH2)
Disable Clocks
(Idle, Standby, Powerdown)
A3063-02

Figure 2-4. Clock Circuitry (80C196NU)

For both the 8XC196NP and 80C196NU, the rising edges of PH1 and PH2 generate CLKOUT
(Figure 2-5). The clock circuitry routes separate internal clock signals to the CPU and the periph-
erals to provide flexibility in power management. (“Reducing Power Consumption” on page 12-3
describes the power management nsodk also outputs the CLKOUT signal on the CLKOUT

pin. Because of the complex logic in the clock circuitry, the signal on the CLKOUT pin is a de-
layed version of the internal CLKOUT signal. This delay varies with temperature and voltage.

2-8

Inu® ARCHITECTURAL OVERVIEW

XTALL 7\ [\ [\i [\ [_
- -t 5
~—1 State: Time ——»~<€—— 1 State Time —»

PH1

PH2 _ !

CLKOUT | Y

Phase 1 Phase2 | Phasel ' Phase?2

A0805-01

Figure 2-5. Internal Clock Phases

The combined period of phase 1 and phase 2 of the internal CLKOUT signal defines the basic
time unit known as atate timeor state Table 2-2 lists state time durations at various frequencies.

Table 2-2. State Times at Various Fre quencies
f

(Frequency Input to the State Time
Divide-by-two Circuit)
12.5 MHz 160 ns
25 MHz 80 ns
50 MHz 40 ns

The following formulas calculate the frequency of PH1 and PH2, the duration of a state time, and
the duration of a clock period (t).

PH1 (in MHz) = é = PH2 State Time (in us) = % t

— I

Because the device can operate at many frequencies, this manual defines time requirements (such
as instruction execution times) in terms of state times rather than specific measurements.
Datasheets list AC characteristics in terms of clock periods (t).

For the 80C196NU, dble 2-3 details the relationships between the input frequegy (F; the
configuration of PLLEN1 and PLLENZ2, the operating frequency (f), the clock period (t), and
state times. Figure 2-6 illustrates the timing relationships between the input frequgney)(F

the operating frequency (f), and the CLKOUT signal with each of the three valid BPLpIEN
configurations. (Since the maximum operating frequency is 50 MHz, only a 12.5 MHz external
clock frequency allows all three clock modes.)

2-9

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 2-3. Relationships Between Input Frequency, Clock Mul tiplier, and State Times

I:>(TAL1 f t
(Frequency PLLEN2:1 | Multiplier (Input Frequency to (Clock State Time
on XTAL1) the Divide-by-two Circuit) Period)
50 MHz t 00 1 50 MHz 20 ns 40 ns
00 1 25 MHz 40 ns 80 ns
25 MHz
10 2 50 MHz 20 ns 40 ns
00 1 12.5 MHz 80 ns 160 ns
12.5 MHz 10 2 25 MHz 40 ns 80 ns
11 4 50 MHz 20 ns 40 ns

T Assumes an external clock. The maximum frequency for an external crystal oscillator is 25 MHz.

| TxrcH }

XTAL1 ./—\—/—\ /-

(12.5 MHz)

S

PLLEN2:1=00 t=80ns |

i
CLKOUT / \

% N VY VY N W B e |

PLLENZ2:1=10 |e—1=40ns —>|

cLkouTt J \ /———\—/-

A AW A U AU U A WY A W A

PLLEN2:1=11
>| <t =20ns

CLKOUT ./__/__/__/___/-

A3160-01

Figure 2-6. Effect of Clock Mode on CLKOUT Frequency

2-10

Int€|® ARCHITECTURAL OVERVIEW

2.5 INTERNAL PERIPHERALS

The internal peripheral modules provide special functions for a variety of applications. This sec-
tion provides a brief description of the peripherals; subsequent chapters describe them in detail.

25.1 1/O Ports

The 8XC196NP and 80C196NU have five I/O ports, ports 1-4 and the EPORT. Individual port
pins are multiplexed to serve as standard 1/O or to carry special-function signals associated with
an on-chip peripheral or an off-chip component. If a particular special-function signal is not used
in an application, the associated pin can be individually configured to serve as a standard I/O pin.
Port 4 has a higher drive capability than the other ports to support pulse-width modulator (PWM)
high-drive outputs.

Ports 1-4 are eight-bit, bidirectional, standard I/O ports. Only the lower nibble of port 4 is imple-
mented in current package offerings. Port 1 provides I/O pins for the four event processor array
(EPA) modules and the two timers. Port 2 is used for the serial I/O (SIO) port, two external inter-
rupts, and bus hold functions. Port 3 is used for chip-select functions and two external interrupts.
Port 4(functionally only a 4-bit port) provides 1/O pins associated with the three on-chip pulse-
width modulators. The EPORgrovidesaddress lines A19:16 to support extended addressing.
See Chapter 7, “I/O Ports,” for mom&ormation.

2.5.2 Serial /O (SIO) Port

The serial I/0 (SIO) port is an asynchroneysichronous pothat includes a universal asynchro-

nous receiver and transmitter (UART). The UART has one synchronous mode (mode 0) and three
asynchronous modes (modes 1, 2, and 3) for both transmission and reception. The asynchronous
modes are full duplex, meaning that they can transmit and receive data simultaneously. The re-
ceiver is buffered, so the reception of a second byte can begin before the first byte is read. The
transmitter is also buffered, allowing continuous transmissions. See Chapter 8, “Serial I/O (SI0O)
Port,” for details.

2.5.3 Event Processor Array (EPA) and Timer/Counters

The event processor array (EPA) performs high-speed input and output functions associated with
its timer/counters. In the input mode, the EPA monitors an input for signal transitions. When an
event occurs, the EPA records the timer value associated with it. Thisyduseevent. In the

output mode, the EPA monitors a timer until its value matches that of a stored time value. When
a match occurs, the EPA triggers an output event, which can set, clear, or toggle an output pin.
This is acompareevent. Both capture and compare events can initiate interrupts, which can be
serviced by either the imeipt contoller or the PTS.

I 2-11

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Timer 1 and timer 2 are both 16-bit up/down timer/counters that can be clocked internally or ex-
ternally. Each timer/counter is calletimer if it is clocked internally and eounterif it is clocked
externally. See Chapter 10, “Event Processor Array (EPA),” for additional information on the
EPA and timer/counters.

2.5.4 Pulse-width Modulator (PWM)

The output waveform from each PWM channel is a variable duty-cycle pulse with a programma-

ble frequency that occurs every 256 or 512 state times (for the 8XC196NP) or every 256, 512, or
1024 state times (for the 80C196NU), as programmed. Several types of motors require a PWM
waveform for most efficient operation. When filtered, the PWM waveforoduces a DC level

that can change in 256 steps by varying the duty cycle. See Chapter 9, “Pulse-width Modulator,”
for more information.

2.6 SPECIAL OPERATING MODES

In addition to the normal execution mode, the device operates in several special-purpose modes.
Idle and powerdown modes conserve power when the device is inactive. An additional power
conservation mode, standbyaigailable on the 80C196NU. On-circuit emulation (ONCE) mode
electrically isolates the microcontroller from the system. See Chapter 12, “Special Operating
Modes,” for more information about idle, powerdown, standby, and ONCE modes.

2.6.1 Reducing Power Consumption

The power saving modes selectively disable internal clocks to reduce power consumption. Figure
2-3 on page 2-7 and Figure 2-4 on page 2-8 illustrate the clock circuitry of the 8XC196NP and
80C196NU, respeitely.

Inidle mode, the CPU stops executing instructions, but the peripheral clocks remain active. Pow-
er consumption drops to about 40% of normal execution mode consumption. Either a hardware
reset or any enabled interrupt source will bring the device out of idle mode.

The 80C196NU has an additional power saving mode, standbyaridbst mode, all irgrnal

clocks are frozen at logic state zero, but the oscillator and phase-locked loop continue to run.
Power consumption drops to about 10% of normal execution mode consumption. Either a hard-
ware reset or any enabled external interrupt source will bring the device camdifygtimode.

In powerdown mode, all internal clocks are frozen at logic state zero and the oscillator is shut off.

The register file and most peripherals retain their datg ifi¥ maintained. Power consumption
drops into the uW range.

2-12 I

Int€|® ARCHITECTURAL OVERVIEW

2.6.2 Testing the Printed Circuit Board

The on-circuit emulation (ONCE) mode electrically isolates the 8XC196 device from the system.
By invoking ONCE mode, you can test the printed circuit board while the device is soldered onto
the board.

2.7 DESIGN CONSIDERATIONS FOR 80C196NP TO 80C196NU CONVERSIONS

This section summarizes differences to consider when convgdingdesign requirements from
the 80C196NP to the 80C196NU.

* The 80C196NU can achieve an operating frequency of 50 MHz, while the 80C196NP can
achieve only 25 MHz.

* The 80C196NU is pin-compatible with the 80BENP.The functions of four pins differ:
— the 80C196NU has PLLENL in place of a no-connection pin of the 80C196NP
— the 80C196NU has PLLENZ2 in place of g pin of the 80C196NP
— the 80C196NU has a{ pin in place of a no-connection pin of the 3@BNP
— the 80C196NU has a no-connection pin in place of the EA# pin @6496NP

* The 80C196NU requires that you tie the PLLEN1 and PLLEN2 pins either high or low,
depending on the clock multiplier mode you select.

* The 80C196NU requires that you connecteaternal capacitor to the RPD pinyibur
design uses both powerdown mode and a clock multiplier mode.

* The 80C196NU has a new, 32-bhit accumulator register and an accumulator status register to
support its multiply-accumulate functions.

* The 80C196NU, since it has no nonvolatilemuey, has no REMAP bit in the CCB.

* The 80C196NU can window additional memory into the lower register file viz@nde
window selection register (WSR1).

¢ Unlike the 80C196NP, the 80CANU’s EPORT special-function registers are located in
SFR address space, rather than in memory-mapped space, so they can be windowed for
direct access.

* The 80C196NU has an 8-byte prefetch queue, while the 80C196NP has a 4-byte prefetch
queue.

* |nthe 80C196NU, data accesses have a higher priority than instruction queue fetches. In the
80C196NP, the opposite fisie (instruction fetches have the highest priority).

* The 80QA96NU’s serial I/O port has a divide-by-2 prescaler, controlled by the SP_CON
register.

* The 80A96NU’s EPA has andalitional prescaler option (divide-by-128), controlled by the
timer control register (X CONTROL).

I 2-13

8XC

2-14

196NP, 80C196NU USER’S MANUAL Int€|®

The 80C®6NU’s PWM has an additional prescaler option (divide-by-4), controlled by the
PWM control register (CON_REGDO0).

When operating with a demultiplexed bus, the 80C196NU can add an automatic delay in the
first cycle following a chip-select change or in a write cycle that follows a read. This mode,
calleddeferred modeextends the following timing specifications by two clock periods (2t):
T/—\VDV' T/—\VWL' T/—\VRL' TRLDV' TRHDZ' TRHRL' TLHLH' TRHLH' TSLDV’ and -l;VHLH'

The 80C196NU has an additional power-saving mode, standby (IDLPD #3).

The 8XC196NP allows you to change the value of EP_REG to control which memory page
a nonextended instruction accesses. However, software tools require that EP_REG be equal
to OOH. The 80C196NU forces all nonextended data accesses to page 00H. You cannot use
EP_REG to change pages.

After a HOLD request, the 8A®@6NU’s chip-select channels become inactive before the
80C196NU asserts HLDA#.

In demultiplexed mode, the 80C196NU’s RD# and WR# signals are asserted one clock
period (1t) earlier than on the 80C196NP.

intgl.

Advanced Math
Features

intel.

CHAPTER 3
ADVANCED MATH FEATURES

The 80C196NU is the first member of the MES6 microcontroller family to incorporate en-
hanced 16-bit multiplication instructions for performing multiply-accumulate operations and a
dedicated32-bit accumultor register for storing the results of these operations. The accumulator
and the enhanced instructions combine to decrease the amount of time required to perform mul-
tiply-accumulate operations. The instructions and accumgagport signed and unsigned inte-

gers as well as signed fractional data. This chapter describes th®®0Z4 advanced
mathematical features.

3.1 ENHANCED MULTIPLICATION INSTRUCTIONS

The 16-bit multiplication instructions, MULU and MUL, that exist for all MCS 96 microcontrol-
lers have been enhanced for the 80C196NU. The MULU instruction supports unsigned integers,
while the MUL instruction supports signed integers and signed fractionals.

When youexecute a 16-bit multiplication instruction with a destination address that is OFH or
below, the 80C196NU automatically stothe result in the accumulator. If bit 3 of the destination
address is set (address 08H, 09H, ..., OFH), the 80C196NU clears the accumulator before it stores
the result of the current instruction. If bit 3 of the destination address is clear (address O0OH, 01H,
..., 07H), it adds the result of the current instruction to the existing contents of the accumulator.

This simple example illustrates the results of consecutive multiply-accumulate instructions. The
results of the first three instructions are automatically added together in the accumulator, while
the last instruction clears the accumulator before the result is stored.

register_1 = 10 decimal (OAH),register_2 = 20 decimal (14H)
register_3 = 30 decimal (1EH),register_4 = 40 decimal (28H)

mul O0H,register_1,register_2 ;10 x20= 200. Accumulator = 200 decimal.
mul O0H,register_3,register_4 ;30 x40=1200. Accumulator =1400 decimal.
mul O0H,register_2,register_4 ;20 x40= 800. Accumulator =2200 decimal.
mul O08H,register_2,register_3 ;20 x30= 600. Accumulator = 600 decimal.

Table 3-1 compares the instructions required to perform a multiply-accumulate operation for the
8XC196NP and those required for the 80C196NU. The 8XC196NP redaueimdructions,

while the 80C196NU requires only one to accomplish the same operation. The fol@@XE
instructions take a total of 32 state times to execute, while the single @018struction takes

only 16 state times. In addition, the 80C196NU can operate at twice the frequency of the
8XC196NP; therefore, a state time for the 80C196NU is half that of the 8XC196Be Two
factors combine to make the 80C196NU code execute in one-fourth the time required for the
8XC196NP code.

I 3-1

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Table 3-1. Multiply/Accumulate Example Code

Device Instructions Execution Time
8XC196NP mul temp,operand_2,operand_1 16 states 1280 ns
(25 MHz; 1 state time = 80 ns) | ghj| temp,#1 8 states 640 ns

add out_ltemp_| 4 states 320 ns

addc out_h,temp_h 4 states 320 ns
32 states total 2560 ns total

80C196NU mul 08H,0perand_2,operand_1Jr 16 states 640 ns
(50 MHz; 1 state time = 40 ns) 16 states total 640 ns total

T Because bit 3 of the destination address (O8H) is set, the 80C196NU clears the accumulator before

adding the result of the current instruction to it. If bit 3 were clear (destination address 07H-00H), the
80C196NU would add the result of the current instruction to the existing value of the accumulator.

3.2 OPERATING MODES

The accumulator has two operating modes that allow you to control the results of operations on
signed numbers. These modes are caédration modendfractional mode

3.2.1 Saturation Mode

Saturation occurs when the result of two positive numbers generates a negative sign bit or the re-
sult of two negative numbers generates a positive sign bit. Without saturation mode, an underflow
or overflow occurs and the overflow (OVF) flag is set. Saturation mode prevents an underflow or
overflow of the accumulated value. In saturation mode, the accumulator’s value is changed to
7FFFFFFFH for a positive saturation or 80000000H for a negaaturation and the sticky sat-
uration (STSAT) flag is set. The following two examples illustrate the contents of the accumulator
as a result of positive and negative saturation, respectively:

7FFFFFFFH = 0111 1111 1111 1111 1111 1111 1111 1111 = 231 — 1 = +2147483647

80000000H = 1000 0000 0000 0000 0000 0000 0000 0000 = —-2147483648

3-2 [|

Int€|® ADVANCED MATH FEATURES

3.2.2 Fractional Mode

A signed fractionatontains an imaginary decimal point between the sign bit (the MSB) and the
adjacent bit. These examples illustrate the representation of 32-bit signed fractional numbers:

0.111 1117 1111 1111 1117 11171 1111 1111 = 2147283647 _
2147483648

0.000 0000 0000 0000 0000 0000 0000 0000 =0

-1
—_—— -
2147483648

1.111 1111 1117 1111 1111 1111 1121 1111 =
1.000 0000 0000 0000 0000 0000 0000 0000 = -1
Fractional mode shifts the result of a multiplication instruction left by one bit before writing the

result to the accumulator. This left shift eliminates the extra sign bit when both operands are
signed, leaving a correctly signed result and the correct decimal placement.

3-3

8XC196NP, 80C196NU USER’'S MANUAL Inu®

3.3 ACCUMULATOR REGISTER (ACC_0 x)

The 32-bit accumulator register (Figure 3-1) resides at locations 0C-0FH. Read from or write to
the accumulator register as two words at locations OCH and OEH.

ACC_0x Address: OEH, OCH
x =0, 2 (80C196NU) Reset State: O0H
The 32-bit accumulator register (ACC_0x) resides at locations 0C—OFH. You can read from or write to
the accumulator register as two words at locations OCH and OEH.
80C196NU 15 8
‘ Accumulator Value (word 1, high byte) ‘
7 0
ACC_02 ‘ Accumulator Value (word 1, low byte) ‘
15 8
‘ Accumulator Value (word 0, high byte) ‘
7 0
ACC_00 ‘ Accumulator Value (word 0, low byte) ‘
NuBmi:)er Function
15:0 Accumulator Value
You can read this register to determine the current value of the accumulator. You can
write to this register to clear or preload a value into the accumulator.

Figure 3-1. Accum ulator (ACC_O0x) Register

Inu® ADVANCED MATH FEATURES

3.4 ACCUMULATOR CONTROL AND STATUS REGISTER (ACC_STAT)

The ACC_STAT register controls the operating mode and reflects the status of the accumulator.
The mode bits (FME and SME) are effective only for signed multiplication. Table 3-2 describes
the 80C196NU'’s operation with each of the four possible configurations of these bits.

ACC_STAT Address: OBH
(80C196NU) Reset State: O0H

The accumulator control and status (ACC_STAT) register enables and disables fractional and
saturation modes and contains three status flags that indicate the status of the accumulator’s
contents.

7 0
80C196NU ‘ FME ‘ SME ‘ — ‘ — H — ‘STOVF‘ OVF ‘STSAT‘

Bit Bit

. Function
Number Mnemonic

7 FME Fractional Mode Enable

Set this bit to enable fractional mode. (See Table 3-2.) In this mode, the
result of a signed multiplication instruction is shifted left by one bit before it
is added to the contents of the accumulator.

For unsigned multiplication, this bit is ignored.

6 SME Saturation Mode Enable

Set this bit to enable saturation mode. (See Table 3-2.) In this mode, the
result of a signed multiplication operation is not allowed to overflow or
underflow.

For unsigned multiplication, this bit is ignored.

5:3 — Reserved; for compatibility with future devices, write zeros to these bits.

STOVF Sticky Overflow Flag
For unsigned multiplication, this bit is set if a carry out of bit 31 occurs.

Unless saturation mode is enabled, this bit is set for signed multiplication to
indicate that the sign bit of the accumulator and the sign bit of the addend
are equal, but the sign bit of the result is the opposite. (See Table 3-2.)

Software can clear this flag; hardware does not clear it.

1 OVF Overflow Flag

This bit indicates that an overflow occurred during the preceding accumu-
lation. (See Table 3-2.)

This flag is dynamic; it can change after each accumulation.

0 STSAT Sticky Saturation Flag

This bit indicates that a saturation has occurred during accumulation with
saturation mode enabled. (See Table 3-2.)

Software can clear this flag; hardware does not clear it.

Figure 3-2. Accumulator Control and Status (ACC_STAT) Register

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 3-2. Effect of SME and FME Bit Combinations

SME

FME

Description

Sets the OVF and STOVF flags if the sign bits of the accumulator and the addend (the
number to be added to the contents of the accumulator) are equal, but the sign bit of the
result is the opposite.

Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Sets the OVF and STOVF flags if the sign bits of the
accumulator and the addend are equal, but the sign bit of the result is the opposite.

Accumulates a signed integer value up or down to saturation and sets the STSAT flag.
Positive saturation changes the accumulator value to 7FFFFFFFH; negative saturation
changes the accumulator value to 80000000H. Accumulation proceeds normally after
saturation, which means that the accumulator value can increase from a negative saturation
or decrease from a positive saturation.

Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Accumulates a signed integer value up or down to
saturation and sets the STSAT flag. Positive saturation changes the accumulator value to
7FFFFFFFH; negative saturation changes the accumulator value to 80000000H. Accumu-
lation proceeds normally after saturation, which means that the accumulator value can
increase from a negative saturation or decrease from a positive saturation.

3-6

intgl.

Programming
Considerations

CHAPTER 4
PROGRAMMING CONSIDERATIONS

This section provides an overview of the instruction set of the®M@Bmicrocontrollers and of-
fers guidelines for program development. For detailed information about specific instructions,
see Appendix A.

4.1 OVERVIEW OF THE INSTRUCTION SET

The instruction setupports a variety of operand types likely to befulsin control applications
(see Table 4-1).

NOTE

The operand-type variables are shown in all capitals to avoid confusion. For
example, 8YTEis an unsigned 8-bit variable in an instruction, whilg/geis
any 8-bit unit of data (either signed or unsigned).

Table 4-1. Operand Type Definitions

No. of . . Addressing
Operand Type Bits Signed Possible Values Restrictions
BIT 1 No True (1) or False (0) As components of bytes
BYTE 8 No 0 through 28-1 (0 through 255) None
SHORT-INTEGER 8 Yes | —27 through +27-1 None
(=128 through +127)
WORD 16 No 0 through 216-1 Even byte address
(0 through 65,535)
INTEGER 16 Yes | =215 through +215-1 Even byte address
(-32,768 through +32,767)
DOUBLE-WORD 32 No 0 through 232-1 An address in the lower
(Note 1) (0 through 4,294,967,295) register file that is evenly
divisible by four (Note 2)
LONG-INTEGER 32 Yes | —23! through +231-1 An address in the lower
(Note 1) (-2,147,483,648 through register file that is evenly
+2,147,483,647) divisible by four (Note 2)
QUAD-WORD 64 No 0 through 264-1 An address in the lower
(Note 3) register file that is evenly
divisible by eight
NOTES:

1. The 32-bit variables are supported only as the operand in shift operations, as the dividend in 32-by-
16 divide operations, and as the product of 16-by-16 multiply operations.
2. For consistency with third-party software, you should adopt the C programming conventions for

addressing 32-bit operands. For more information, refer to page 4-11.

3. QUAD-WORD variables are supported only as the operand for the EBMOVI instruction.

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Table 4-2 lists the equivalent operand-type names for bgilo@ramning and assembly lan-
guage.

Table 4-2. Equivalent Operand T ypes for Assembly and C Progr amming Lan guages

Operand Types Assembly Language Equivalent C Programming Language Equivalent
BYTE BYTE unsigned char
SHORT-INTEGER | BYTE char
WORD WORD unsigned int
INTEGER WORD int
DOUBLE-WORD | LONG unsigned long
LONG-INTEGER LONG long
QUAD-WORD — —

4.1.1 BIT Operands

A BIT is a single-bit variable that can have the Boolean values, “true” and “false.” The architec-
ture requires that BITs be addressed as components of BYTEs or WORDSs. It does not support the
direct addressing of BITSs.

4.1.2 BYTE Operands

A BYTE is an unsigned, 8-bit variable that can take on values from 0 through883. (&rith-

metic and relational operators can be applied to BYTE operands, but the result must be interpret-
ed in modulo 256 arithmetic. Logical operations on BYTEs are applied bitwise. Bits within
BYTEs are labeled from 0 to 7; bit O is the least-significant bit. There are no alignment restric-
tions for BYTES, so they may be placetyahere in theaddress space.

4.1.3 SHORT-INTEGER Operands

A SHORT-INTEGER is an 8-hit, signed variable that can take on values from —128hte2igh

+127 (+2Z-1). Arithmetic operations that generate results outside the range of a SNDRT

GER set the overflow flags in the processor statoisl (PSW). The numeric result is the same

as the result of the equivalent operation on BYTE variables. There are no alignment restrictions
on SHORT-INTEGERSs, so they may be placed anywhere in the address space.

4-2 I

Int€|® PROGRAMMING CONSIDERATIONS

4.1.4 WORD Operands

A WORD is an unsigned, 16-hit vable that can take on values from 0 through 65,535-(9.
Arithmetic and relational operators can be applied to WORD operands, but the result must be in-
terpreted in modulo 65536 arithmetic. Logioglerations on WORDs are applied bitwise. Bits
within WORDs are labeled from 0 to 15; bit O is the least-significant bit.

WORDs must be aligned at even byte boundaries in the address space. The least-significant byte
of the WORD is in the even byte address, and the most-significant byte is in the nextdddher (
address. The address of a WORD is that of its least-significant byte (the even byte address).
WORD operations to odd addresses are not guaranteed to operate in a consistent manner.

415 INTEGER Operands

An INTEGER is a 16-bit, signed variable that can take on values from —32,768 {x®ugh
+32,767 (+25-1). Arithmetic operations that generate results outside the range of an INTEGER
set the overflow flags in the processor status word (PSW). The numeric result is the same as the
result of the equivalent operation on WORD variables.

INTEGERSs must be aligned at even bgtaindaries in thaddress space. The least-significant

byte of the INTEGER is in the even byte address, and the most-significant byte is in the next high-
er (odd) addres. The address of an INTEGER is that of its least-significant byte (the even byte
address). INTEGER operations to odd addresses are not guaranteed to operate in a consistent
manner.

4.1.6 DOUBLE-WORD Operands

A DOUBLE-WORD is an unsigned, 32-bit variable that can take on values fronoQOgtr
4,294,967,295 32-1). The architecture directiupports DOUBLE-WORD operands only as

the operand in shift operations, as the dividend in 32-by-16 divide operations, and as the product
of 16-by-16 multiply operatins. For these operations, a DOUBLE-WORD variable must reside

in the lower register file and must be aligned at an address that is evenly divisible by four. The
address of a DOUBLE-WORD is that of its least-significant byte (the even byte address). The
least-significant word of the DOUBLE-WORD is always in the lower askjreven when the

data is in the stack. This means that the most-significant word must be pushed into the stack first.

DOUBLE-WORD operations that are not direcilypported can be easily implemented with two
WORD operations. For example, the following sequences of 16-bit operatidosrpa 32-bit
addition and a 32-bit subtraction, respectively.

ADD REG1,REG3 ; (2-operand addition)
ADDC REG2,REG4

SUB REG1,REG3 ; (2-operand subtraction)
SUBC REG2,REG4

I 4-3

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

4.1.7 LONG-INTEGER Operands

A LONG-INTEGER is a 32-bit, signed variable that can take on values from —2,147,483,648
(= 23Y) through +2,147,483,647 (32-1). The architecture directly supports LONG-INTEGER
operands only as the operand in shift operations, as the divid82ebiy+16 divideoperations,

and as the product of 16-by-B8ultiply operations. For these operations, a LONG-INTEGER
variable must reside in the lower register file and must be aligned at an address that is evenly di-
visible by four. The address of a LONG-INTEGER is that of itstleamificant byte (the even

byte address).

LONG-INTEGER operations that are not direlypported can be easiipplemented with two
INTEGER operations. See the example in “DOUBLE-WORD Operands” on page 4-3.

4.1.8 QUAD-WORD Operands

A QUAD-WORD is a 64-bit, unsigned variable that can take on values fronoGginr®4-1.

The architecture directly supports the QUAD-WORD operand only as the operand of the EB-
MOVI instruction. For this operation, the QUAD-WORD variable must reside in the lower reg-
ister file and must be aligned at an address that is evenly divisible by eight.

4.1.9 Converting Operands

The instruction set supports conversions between the operand types. The LDBZE (load byte, zero
extended) instruction converts a BYTE to a WORD. CLR (clear) converts a WORD to a
DOUBLE-WORD by clearing (writing zeros to) the upper WORD of the DOUBLE-WORD.
LDBSE (load byte, sign extended) converts a SHORT-INTEGER into an INTEGER. EXT (sign
extend) converts an INTEGER to a LONG-INTEGER.

4.1.10 Conditional Jumps

The instructions for addition, subtraction, and comparison do not distinguish between unsigned
(BYTE, WORD) and signed (SHORT-INTEGER, INTEGER) operands. However, the condition-

al jump instructions allow you to treat the results of these operations as signed or unsigned quan-
tities. For example, the CMP (compare) instruction is used to compare both signed and unsigned
16-bit quantities. Following a compare operation, you can use the JH (jump if higher) instruction
for unsigned operands or the JGT (jump if greater than) instruction for signed operands.

4-4 I

Int€|® PROGRAMMING CONSIDERATIONS

4.1.11 Floating Point Operations

The hardware does not direcflypport operadns on REAL (floating point) variables. Those op-
erations are supported by floating point libraries from third-party tool vendors. (Seevbl®p-

ment ToolsHandbook) The performance of these operations is significantly improved by the
NORML instruction and by the sticky bit (ST) flag in the processor status word (PSW). The
NORML instruction normalizes a 32-bit variable; the sticky bit (ST) flag can be used in conjunc-
tion with the carry (C) flag to achieve finer resolution in rounding.

4.1.12 Extended Instructions

This section briefly describes the instructions that have been added to enable code execution and
data access anywhere in the 1-Mbyte address space.

NOTE
In 1-Mbyte mode, ECALL, LCALL, and SCALL always push two words onto
the stack; therefore, a RET must always pop two words from the stack.
Because of the extra push and pop operations, interrupt routines and
subroutines take slightly longer to execute in 1-Mbytale than in 64-Kbyte
mode.

EBMOVI Extended interruptable block move Moves a block of word data from one
memory location to another. This instruction alloyesi to move blocks of up to
64K words between any two locations in the address space. It uses two 24-bit
autoincrementing pointers and a 16-bit counter.

EBR Extended branch This instruction is an unconditional indirect jump to
anywhere in the address space. It functions only in extended addressing modes.

ECALL Extended call This instruction is an unconditional relative call toahere in
the address space. It functions only in extended addressing modes.

EJMP Extended jump. This instruction is an unconditional, relative jump to anywhere
in the address space. It functions only in extended addressing modes.

ELD Extended load word Loads the value of the source word operand into the
destination operand. This instruction allows you to move data from anywhere in
the address space into the lower register file. It operates in extended indirect and
extended indexed modes.

ELDB Extended load byte Loads the value of the source byte operand into the
destination operand. This instruction allows you to move data from anywhere in
the address space into the lower register file. It operates in extended indirect and
extended indexed modes.

I 4-5

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

EST Extended store word Stores the value of the sour@eftmost) word operand
into the destinatiorfrightmost) operand. This instruction allows you to move
data from the lower register file tmawhere in the addrespace. It operates in
extended indirect and extended indexed modes.

ESTB Extended store byte Stores the value of the souieftmost) byte operand into
the destinatior{rightmost) operand. This instruction allowsu to move data
from the lower register file torggwhere in the addresspace. It operates in
extended indirect and extended indexed modes.

4.2 ADDRESSING MODES

The instruction set uses four basic addressing modes:
e direct
* immediate
¢ indirect (with or without autoincrement)

* indexed (short-, long-, or zero-indexed)

The stack pointer can be used with indirect addressing to access the top of the stack, and it can
also be used with short-indexed addressing to access data within the stack. The zero register can
be used with long-indexed addressing to access any memory location.

Extended variations of the indirect and indexed modes support the extended load and store in-
structions. An extended load instruction moves a word (ELD) or a byte (ELDB) from any location
in the address space into the lower register file. An extended store instruction meeest a
(EST) or a byte (ESTB) from the lower register file into any location in the address space. An
instruction can contain only one immediate, indirect, or indexed reference; any remaining oper-
ands must be direct references.

This section describes the addressing modes as they are handled by the hardware. An understand:
ing of these details will help programmers to take full advantage of the architecture. The assembly
language hides some of the details of how these addressing modes work. “Assembly Language
Addressing Mode Selections” on page 4-11 describes how the assembly language handles direct
and indexed addressing modes.

The examples in this section assume that temporary registers are defihedasn this segment
of assembly code and described in Table 4-3.

Oseg at 1ch
AX DSW 1
BX DSW 1
CX DSW 1
DX DSW 1
EX DSL 1

Int€|® PROGRAMMING CONSIDERATIONS

Table 4-3. Definition of Temporary Registers

Temporary Register Description
AX word-aligned 16-bit register; AH is the high byte of AX and AL is the low byte
BX word-aligned 16-bit register; BH is the high byte of BX and BL is the low byte
CX word-aligned 16-bit register; CH is the high byte of CX and CL is the low byte
DX word-aligned 16-bit register; DH is the high byte of DX and DL is the low byte
EX double-word-aligned 24-bit register

4.2.1 Direct Addressing

Direct addressing directly accesses a location in the 256-byte lower register file, withwwt i

ing the memory controller. Windowing allowsu to remap other sections of memory into the
lower register file for direct access (see Chapter 5,y Partitions,” for details). Yospecify

the registers as operands within the instruction. The register addresses must conform to the align-
ment rules for the operand type. Depending on the instruction, up to three registers can take part
in a calculation. The following instructions use direct addressing:

ADD AX,BX,CX ;AX <« BX+CX
ADDB AL,BL,CL ;AL - BL+CL
MUL AX,BX AX <« AX xBX
INCB CL ; CL ~CL+1

4.2.2 Immediate Addressing

Immediate addressing mode accepts one immediate value as an operand in the instruction. You
specify an immediate value by preceding it with a number symbol (#). An instruction can contain
only one immediate value; the remaining operands must be direct references. The following in-
structions use immediate addressing:

ADD AX,#340 ;AX < AX +340
PUSH #1234H ;SP -~ SP-2

; MEM_WORD(SP) ~ 1234H
DIVB AX#10 AL~ AX/10

yAH « AXMOD 10

4.2.3 Indirect Addressing

The indirect addressing mode accesses an operand by obtaining its address from a WORD regis-
ter in the lower register file. You specify the register containing the indirect address by enclosing

it in square brackets ([]). The indirect address can refer to any location within the address space,
including the register file. The register that contains the indirect address must be word-aligned,
and the indirect address must conform to the rules for the operand type. An instruction can contain
only one indirect reference; any remaining operands must be direct references. The following in-
structions use indirect addressing:

4-7

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

LD AX,|[BX] T AX — MEM_WORD(BX)

ADDB AL,BL,[CX] ‘AL < BL+ MEM_BYTE(CX)

POP [AX] : MEM_WORD(AX) — MEM_WORD(SP)
'SP _SP+2

4.2.3.1 Extended Indirect Addressing

Extended load and store instructions can use indirect addressing. The only difference is that the
register containing the indirect address must be a word-aligned 24-hit register to allow access to
the entire 1-Mbyte address space. The following instructions use extended indirect addressing:

ELD AX,[EX] iAX < MEM_WORD(EX)
ELDB AL,[EX] :AL < MEM_BYTE(EX)
EST AX,[EX] : MEM_WORD(EX) « AX
ESTB AL,[EX] i MEM_BYTE(EX) ~ AL

4.2.3.2 Indirect Addressing with Autoincrement

You can choose to automatically increment the indirect address after the current access. You spec-
ify autoincrementing by adding a plus sign (+) to the end of the indirect reference. In this case,
the instruction automatically increments the indirect address (by one if the destination is an 8-bit
register or by two if it is a 16-bit register). When your code is assembled, the assembler automat-
ically sets the least-significant bit of the indirect address register. The following instructions use
indirect addressing with autoincrement:

LD AX,[BX]+ :AX < MEM_WORD(BX)
{BX < BX+2
ADDB ALBL[CX]+ ;AL < BL+MEM_BYTE(CX)
: - CX+1
PUSH [AX]+ 'SP _SP-2
: MEM_WORD(SP) — MEM_WORD(AX)
TAX < AX+2

4.2.3.3 Extended Indirect Addressing with Autoincr ement

The extended load and store instructions can also use indirect addressing with autoincrement. The
only difference is that the register containing the indirect address must be a word-aligned 24-bit
register to allow access to the entire 1-Mbyte address space. The following instructions use ex-
tended indirect addressing with autoincrement:

ELD AX,[EX]+ : AX MEM_WORD(EX)

TEX < EX+2
ELDB AL,[EX]+ ‘AL MEM_BYTE(EX)
TEX < EX+2
EST AX,[EX]+ : MEM_WORD(EX) « AX
 MEM_WORD(EX) — MEM_WORD(EX + 2)
ESTB AL,[EX]+ :MEM_BYTE(EX) « AL

:MEM_BYTE(EX) — MEM_BYTE(EX + 2)

Int€|® PROGRAMMING CONSIDERATIONS

4.2.3.4 Indirect Addressing with the Stack Pointer

You can also use indirect addressing to access the top of the stack by using the stack pointer as
the WORD register in an indirect reference. The following instruction uses indirect addressing
with the stack pointer:

PUSH [SP] ; duplicate top of stack
;SP ~ SP+2

4.2.4 Indexed Addressing

Indexed addressing calculates an address by adding an offset to a base address. There are thre
variations of indexed addressirgfiort-indexed, long-indexed, and zero-ixele. Both short- and
long-indexed addressing are used to access a specific element within a st8ratarindexed
addressing can access uRR&b byte locations, long-indexed addressing can access up to 65,535
byte locations, and zero-indexed addressing can access a single location. An instruction can con-
tain only one indexed reference; any remaining operands must be direct references.

4241 Short-indexed Addressing

In a short-indexed instruction, you specify the offset as an 8-bit constant and the base address as
an indirect address register (a WORD). The following instructions use short-indexed addressing.

LD AX,12H[BX] {AX — MEM_WORD(BX+12H)
MULB AX,BL3[CX] :;AX < BL XMEM_BYTE(CX+3)

The instruction LD AX,12H[BX] loads AX with the contents of the memory location that resides

at address BX+12H. That is, the instruction adds the constant 12 (the offset) to the contents of BX
(the base address), then loads AX with the contents of the resulting address. For example, if BX
contains 1000H, then AX is loaded with the contents of location 1012H. Short-indexed address-
ing is typically used to access elements in a structure, where BX contains the base address of the
structure and the constant (12H in this example) is the offset of a specific element in a structure.

You can also use the stack pointer in a short-indexed instruction to access a particular location
within the stack, as shvn in the following instruction.

LD AX,2[SP]

4.2.4.2 Long-indexed Addressing

In a long-indexed instruction, you specify the base address as a 16-bit variable afgkthesof
an indirect address register (a WORD). The following instructions use long-indexed addressing.

LD AX,TABLE[BX] :AX — MEM_WORD(TABLE+BX)
AND AX,BX,TABLE[CX] iAX — BX AND MEM_WORD(TABLE+CX)

4-9

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

ST AX,TABLE[BX] : MEM_WORD(TABLE+BX) < AX
ADDB AL,BL,LOOKUP[CX] ‘AL < BL + MEM_BYTE(LOOKUP+CX)

The instruction LD AX, TABLE[BX] loads AX with the contents of the memory location that re-
sides at address TABLE+BX. That is, the instruction adds the contents of BX (the offset) to the
constant TABLE (the base address), then loads AX with the contents of the resulting address. For
example, if TABLE equals 4000H and BX contains 12H, then AX is loaded with the contents of
location 4012H. Long-indexed addressing is typically used to access elements in a table, where
TABLE is a constant that is the base address of the structure and BX is the scaled sftdet (
ement size, in bytes) into the structure.

4.2.4.3 Extended Indexed Addressing

The extended load and store instructions can use extended indexed addressing. The only differ-
ence from long-indexed addressing is that both the base address and the offset must be 24 bits to
support access to the entire 1-Mbyte address space. Thwifa instructions use extended in-

dexed addressing. (In these instructions, OFFSET is a 24-bit variable containing the offset, and
EX is a double-word aligned 24-bit register containing the base address.)

ELD AX,OFFSET[EX] ; AX « MEM_WORD(EX+OFFSET)
ELDB AL,OFFSETI[EX] AL« MEM_BYTE(EX+OFFSET)
EST AX,OFFSETI[EX] ; MEM_WORD(EX+OFFSET) ~ AX
ESTB AL,OFFSETI[EX] ; MEM_BYTE(EX+OFFSET) ~ AL

4244 Zero-indexed Addressing

In a zero-indexed instruction, you specify the address as a 16-bit variable; the offset is zero, and
you can express it in one of three ways: [0], [ZERO_REG], or nothing. Each of the following load
instructions loads AX with the contents of the variatld SVAR.

LD AX,THISVAR[(]

LD AX,THISVAR[ZERO_REG]
LD AX,THISVAR

The following instructions also use zero-indexed addressing:

ADD AX,1234H[ZERO_REG] i AX < AX + MEM_WORD(1234H)
POP 5678H[ZERO_REG] : MEM_WORD(5678H) — MEM_WORD(SP)
'SP _SP+2

4245 Extended Zero-indexed Addressing

The extended instructions can also use zero-indexed addressing. The only difference is that you
specify the address a24-bit constant ovariable. The following extended instruction uses zero-
indexed addressing. ZERO_REG acts as a 32-bit fixed source of the constant zero for an extended
indexed reference.

ELD AX,23456H[ZERO_REG] ;AX < MEM_WORD(23456H)

4-10 [|

Int€|® PROGRAMMING CONSIDERATIONS

4.3 ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONS

The assembly language simplifies the choice of addressing modes. Use these features wherever
possible.

4.3.1 Direct Addressing

The assembly language chooses between direct and zero-indexed addressing depending on the
memory location of the operand. Simply refer to the operand by its symbolic name. If the operand
is in the lower register file, the assembly language chooses a direct reference. If the operand is
elsewhere in memory, it chooses a zero-indexed reference.

4.3.2 Indexed Addressing

The assembly language chooses between short-indexed and long-indexed addressing depending
on the value of the index expression. If the value can be expressed in eight bits, the assembly lan-
guage chooses a short-indexed reference. If the value is greater than eight bits, it chooses a long-
indexed reference.

4.3.3 Extended Addressing

If the operand is outside page O0H, then you must use the extended load and store instructions,
ELD, ELDB, EST, and ESTB.

4.4 DESIGN CONSIDERATIONS FOR 1-MBYTE DEVICES

In general, you should avoid creating tables or arrays that cross page boundaries. For example, if
you are building a large array, start it at a base address that will accommodate the entire array
within the same page. If you cannot avoid crossing a page boundary, keep in mind that you must
use extended instructions to access data outside the original page.

4.5 SOFTWARE STANDARDS AND CONVENTIONS

For a software project of any size, it is a good idea to develop the program in modules and to es-
tablish standards that control communication between the modules. These standards vary with the
needs of the final application. However, all standards must include some mechanism for passing
parameters to procedures and returning results from procedures. We recommend that you use the
conventions adopted by the C programming language for procedure linkage. These standards are
usable for both the assembly language and C programming environments, and they offer compat-
ibility between these environments.

I 4-11

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

45.1 Using Registers

The 256-byte lower register file contains the CPU special-function registers and the stack pointer.
The remainder of the lower register file and all of the upper register file is available for your use.
Peripheral special-function registers (SFRs) and memory-mapped SFRs reside in higher memory.
The peripheral SFRs can kéndowedinto the lower register file for direct access. Memory-
mapped SFRs cannot be windowed; you must use indirect or indexed addressing to access them.
All SFRs can be operated on as BYTEs or WORDSs, unless otherwise specified. See “Peripheral
Special-function Registers (SFRs)” on page 5-7 and “Register File” on page 5-9 for more infor-
mation.

To use these registers effectivglpu must have some overatrategy for allocating them. The

C programming language adopts a simple, effective strategy. It allocates the sigtaeor bytes
beginning at address 1CH as temporary storage and treats the remaining area in the register file
as a segment of memory that is allocated as required.

NOTE
Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts because external events can change the
contents of SFRs. Also, because some SFRs are cleared when read, consider
the implications of using an SFR as an operand in a reaifyyoite
instruction (e.g., XORB).

4.5.2 Addressing 32-bit Operands

The 32-bit operands (DOUBLE-WORDs and LONG-INTEGERS) are formed by two adjacent
16-bit words in memonyfhe least-significanvord of a DOUBLE-WORD is always ithe lower
address, even when the data is in the stack (which means that the most-significant word must be
pushed into the stack first). The address of a 32-bit operand is that of its least-significant byte.

The hardwaresupports the 32-bit data types as operandsiit operations, as dividends of 32-

by-16 divide operations, and as products ®b¥-16 multiply operations. For these operations,

the 32-hit operand must reside in the lower register file and must be aligned at an address that is
evenly divisible by four.

45.3 Addressing 64-bit Operands
The hardware supports the QUAD-WORD only as the operand of the EBMOVI instruction. For

this operation, the QUAD-WORD variable must reside in the lower register file and must be
aligned at an address that is evenly divisible by eight.

4-12 I

Int€|® PROGRAMMING CONSIDERATIONS

45.4 Linking Subroutines

Parameters are passed to subroutines via the stack. Parameters are pushed into the stack from th
rightmost parameter to the left. The 8-bit parameters are pushed into the stack high-thweler

byte undefined. Th82-bit paramedrs are pushed onto the stack as two 16-bit values; the most-
significant half of the parameter is pushed into the stack first. As an example, consider the fol-
lowing procedure:

void example_procedure (char param1, long param2, int param3);

When this procedure is entereda-time, the stack wikkontain the parameters in the following
order:

param3

low word of param2

high word of param2

undefined;paraml

return address ~ Stack Pointer

If a procedure returns a value to the calling code (as opposed to modifying more global variables)
the result is returned in the temporary storage space (TMPREGOQO, in this example) starting at 1CH.
TMPREGO is viewed as either an 8-, 16-, 32-, or 64-bit variable, depending on the type of the

procedure.

The standard calling convention adopted by the C programming language has several key fea-
tures:

* Procedures can always assume that the eight or sixteen bytes of registerniiteyme
starting at 1CH can be used as temporary storage within the body of the procedure.

* Code that calls a procedure must assume that the procedure modifies the eight or sixteen
bytes of register file memory starting at 1CH.

* Code that calls a procedure must assume that the procedure modifies the processor status
word (PSW) condition flags because procedures do not save and restore the PSW.

¢ Function results from procedures are always returned in the variable TMPREGO.

The Cprogramning language allows the definition of interrupt procedures, which are executed
when a predefined interrupt request occurs. Interrupt procedures do not conform to the rules of
normal procedures. Parameters cannot be passed to these procedures and they cannot return re
sults. Since interrupt procedures can execute essentially at any time, they must save and restore
both the PSW and TMPREGO.

4-13

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

4.6 SOFTWARE PROTECTION FEATURES AND GUIDELINES

The device has several features to assist in recovering from hardware and software errors. The
unimplemented opcode interrupt prdes protection from executing unimplemented opcodes.
The hardware reset instruction (RST) can cause a reset if the program counter goesindof

The RST instruction opcode is FFH, so the processor will reset itself if it tries to fetch an instruc-
tion from unprogrammed locations in nonvolatile memory or from bus lines that have been pulled
high.

We recommend that you fill unused areas of code with NOPs and periodic jumps to an error rou-
tine or RST instruction. This is particularly important in the cauteounding lookup tables, since
accidentally executing from ékup tables will cause undesired results. Wherever space allows,
surround each table with seven NOPs (because the longestidstiigetion has seven bytes) and

a RST or a jump to an error routine. Since RST is a one-byte instruction, the NOPs are unneces-
sary if RSTs are used instead of jumps to an error routine. This will help to ensure a speedy re-
covery from a software error.

4-14 I

intgl.

Memory Partitions

CHAPTER 5
MEMORY PARTITIONS

This chapter describes the organization of the address space, its major partitions, and the 1-Mbyte
and 64-Kbyte operating modeks-Mbyterefers to the address space defined by the 20 external
address lines. In 1-Mbyte mode, code can execute from almost anywhere in the 1-Mbyte space.
In 64-Kbyte mode, code can execute only from@ieKbyte area FFO000—-FFFFFFH. The 64-
Kbyte mode provides compatibility with software written for previous 16-bit @8 micro-
controllers. In either mode, nearly all of the 1-Mbyte address space is available for data storage.

Other topics covered in this chapter include the following:

¢ the relationship between the 1-Mbyte address space defined by the 20 external address lines
and the 16-Mbyte address space defined by the 24 internal address lines

¢ extended and nonextended data accesses

¢ awindowingtechnique for accessing the upper register file and peripheral special-function
registers (SFRs) with direct addressing

e examples of external memory configurations for the 1-Mbyte @hdKbyte operating
modes

* a method for remapping the 4-Kbyte internal ROM (83C196NP only)

5.1 MEMORY MAP OVERVIEW

The instructions can address 16 Mbytes of mentéawever, only 20 of the 24 address lines are
implemented by external pins: A19:0 in demultiplexed mode, or A19:1\Bxi%:0 in multi-

plexed mode. The lower 16 address/data lidX]5:0, are the same as those in all other MCS

96 microcontrollers. The four extended address lines, A19:16, are provided by the EPORT. If, for
example, an internal 24-bit addresg-i52018H, the 20 external-address pins output F2018H.
Further, the address seen by an external device depends on how many of the extended addres:
lines are connected to the device. (See “Internal and Ext&doaésses” on page 13-1.)

The 20 external-address pins can address 1 Mbyte of extermalmné-or purposes of discussion

only, it is convenient to view this 1-Mbyte addregmce as sixteen 64-Kbyte pages, numbered
OO0H-0FH (see Figure 5-1 on page 5-2). The lower 16 address lines enable the device to address
page O0H. Théour extended address linesable the device to address the remaining external
address space, pages 01H—0FH.

I 5-1

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Because the four most-significant bits (MSBs) of the internal address can take any values without
changing the external address, thise bits effectively produce 16 copies of the 1-Mbyte ad-
dress space, for a total of 16 Mbytes in 256 pages, OOH—FFH (Figure 5-1). For example, page 01H
has 15 duplicates: 11H, 21H, ..., F1H. The shaded areas in Figure 5-1 represent the overlaid areas.

16 Mbyte 3 Mbyte 2 Mbyte 1 Mbyte
FFH 2FH 1FH OFH
F1H 21H 11H 01H
FOH 20H 10H 00H
Externally
Addressable
A2541-02

Figure 5-1. 16-Mbyte Address Space

The menory payes of interest at@OH—-OEH and FFH. Rges 01H-0EH are external memory with
unspecified contents; they can store either code or data. Pages 00H and FFH, shown in Figure
5-2, have special significance. Page 00H contains the register file and the special-function regis-
ters (SFRs), while page FFH contains special-purpose memory (chip configuration bytes and in-
terrupt vectors) angrogram memory. The device fetches itsstfiinstruction from location
FF2080H. Addresses in page FFH exist only in the internal 24-bit address space.

The implementation of page FFH in the 83C196NP differs from that in tha 8P and
80C196NU. For the 83C196NP, locations FF2000-FF2FFFH arerimapked by 4 Kbytes of in-
ternal ROM and the remainder of page FFH (FF3000—-FFFFFFH) is implementedehyaext
memory in page OFH. For the 80C196NP #m80CP®6NU, which have no internal ROM, all
of page FFH is implemented by external memory in page OFH.

NOTE

Because the device has 24 bits of address internally, all programs must be
written as though the device uses all 24 bits. The device resets from page FFH,
so all code must originate from this page. (Use the assembler directive, “cseg
at OFBoxx#H.”) This is true even if the code is actually stored in external
memory.

5-2 I

intel.

MEMORY PARTITIONS

FFFFFFH

FF3000H
FF2FFFH

FF2080H
FF207FH

FF2000H
FF1FFFH

FFO100H
FFOOFFH

FFOOOOH

Page FFH

External Memory

Program Memory

80C196NP/NU: External

83C196NP: ROM

Special Purpose Memory
80C196NP/NU: External

83C196NP: ROM

External Memory

Reserved

00FFFFH

003000H

002FFFH

002000H

00TFFFH

001FO0OH
001EFFH

001COOH
001BFFH

000400H
0003FFH

000100H
0000FFH

000000H

Page O0H

External Memory

80C196NP/NU:
External Memory
83C196NP:
External Memory if
CCB1.2=0
A Copy of
Page FFH if
CCBl1.2=1

Peripheral SFRs

External Memory
(Future SFR
Expansion)

External Memory

Upper Register File

Lower Register File

A2462-03

Figure 5-2. Pages FFH and OOH

5.2 MEMORY PARTITIONS

Table 5-1 is a memory map of the 8XC196NP and 80C196NU. The remainder of this section de-

scribes the partitions.

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 5-1. 8XC196NP and 80C196NU Memory Map

Hex

Address Description Addressing Modes

FFFFFF | External device (memory or I/O) connected to address/data
FF3000 | bus

FF2FFF | Program memory (Note 1)
FF2080 | After a device reset, the first instruction fetch is from FF2080H | Indirect, indexed, extended
(or F2080H in external memory).

Indirect, indexed, extended

FF207F

FF2000 Special-purpose memory (Note 1) Indirect, indexed, extended
FF1FFF | External device (memory or 1/0) connected to address/data Indirect, indexed, extended
FF0100 | bus

FFOOFF

FF0000 Reserved (Note 2) —

FEFFFF

0F0000 Overlaid memory; xXFOOO0—xFOOFFH are reserved Indirect, indexed, extended
OEFFFF | External device (memory or 1/0) connected to address/data Indirect, indexed, extended
010000 | bus

OOFFFF | External device (memory or I/O) connected to address/data Indirect, indexed, extended
003000 | bus

002FFF | External device (memory or I/0O) connected to address/data
002000 | bus (Note 3)

001FFF
001FO00

001EFF | External device (memory or I/O) connected to address/data
001CO00 | bus; future SFR expansion (Note 5)

001BFF | External device (memory or I/O) connected to address/data

Indirect, indexed, extended

Indirect, indexed, extended,

Peripheral SFRs (Note 4) windowed direct

Indirect, indexed, extended

Indirect, indexed, extended

000400 | bus

0003FF .) . Indirect, indexed,
000100 Upper register file (register RAM) windowed direct
0000FF))) . . - .
000000 Lower register file (register RAM, stack pointer, CPU SFRs) Direct, indirect, indexed
NOTES:

1. Forthe 80C196NP and 80C196NU, the program and special-purpose memory locations (FF2000—
FF2FFFH) reside in external memory. For the 83C196NP, these locations can reside either in exter-
nal memory or in internal ROM.

2. Do not use these locations except to initialize them. Except as otherwise noted, initialize unused
program memory locations and reserved memory locations to FFH.

3. Forthe 80C196NP and 80C196NU, locations 002000—-002FFFH reside in external memory. For the
83C196NP, locations 002000—-002FFFH can be external memory (CCB1.2=0) or a copy of program
and special-purpose memory stored in the internal ROM (CCB1.2=1).

4. For the 8XC196NP, locations 1FEO-1FFFH contain memory-mapped SFRs. They must be
accessed with indirect, indexed, or extended addressing and they cannot be windowed.

5. WARNING: The contents or functions of these locations may change with future device revisions, in
which case a program that relies on one or more of these locations might not function properly.

5-4

Int€|® MEMORY PARTITIONS

5.2.1 External Memory

Several partitions in pages 0O0H and FFH and all of paQgés-0EH are assigned to extal
memory (see Table 5-1). Data can be stored in any part of this memory. Instructions can be stored
in any part of this memory in 1-Mbyte mode, but can be stored only in page FFH in 64-Kbyte
mode. “Memory Configuration Examples” on page 5-27 contains examples of memory configu-
rations in the two modes. Chapter 13, “Interfacing with External Memory,” describes the external
memory interface and shows additional examples of external memory configurations.

5.2.2 Program and Special-purpose Memory

Program memory andpecial-purpose memory occupy4aKbyte memory partition from
FF2000-FF2FFFH. For the 80C196NP and 80C196NU, this partisatesein external nmory
(external addresses F2000-F2FFFH). For thel88BIP, this partition rédes in on-chip ROM
in page FFH, and it can also be mapped to page 00H (see “Remapping Internal RAME(8BC
Only)” on page 5-22).

5221 Program Memory in Page FFH

Three partitions in page FFH can be usefogram memory:
* FF0100-FF1FFFH in external memory @xtal addresses FO100-F1FFFH)

* FF2080-FF2FFFH

— 80C196NP and 80C196NUThis partition is in external memory (external addresses
F2080—F2FFFH).

— 83C196NP: The REMAP bit (CCB1.2), the EA# input, and the type of instruction
(extended or nonextended) control access to this partition, as shown in Table 5-2.

Table 5-2. Program Memory Access for the 83C196NP

REMAP) . .
(CCBL.2) EA# Pin Instruction Type Memory Location Accessed
X Asserted | Extended or nonextended | External memory, F2080-F2FFFH
0 Deasserted | Extended or nonextended | Internal ROM, FF2080—FF2FFFH
Extended Internal ROM, FF2080-FF2FFFH
1 Deasserted
Nonextended External memory, 02080-02FFFH

* FF3000-FFFFH in external memory (external addresses F3000—FFFFFH)

NOTE

We recommend that you write FFH (the opcode for the RST instruction) to
unused program memory locations. This causes a device reset if a program
unintentionally begins to execute in unused memory.

I 5-5

8XC196NP, 80C196NU USER’'S MANUAL

N

5.2.2.2 Special-purpose Memory

Special-purpose memonmgsides in location§F2000-FF207FH. It contains severaterved
memory locations, the chip configuration bytes (CCBs), and vectors for both peripheral transac-
tion server (PTS) and standard interrupts. Note that the $jpecji@ose memory partition of the
80C196NU differs slightly from that of the 8XC196NRble 5-3 describes the spegmirpose

memory; bold type highlights the differences.

Table 5-3. 8XC196NP and 80C196NU Special-purpose Memory Addresses

8XC196NP 80C196NU

Address Address Description
(Hex) (Hex)

FF207F FF207F .
FE205E FE2060 Reserved (each byte must contain FFH)
FF205D FF205F
FF2040 FF2040 | PTS vectors
FF203F FF203F Upper interrupt vectors
FF2030 FF2030 PP P
FF202F FF202F .
FF201B FF201B Reserved (each byte must contain FFH)
FF201A FF201A CCB1
FF2019 FF2019 Reserved (must contain 20H)
FF2018 FF2018 CCBO
FF2017 FF2017 .
FE2014 FE2010 Reserved (each byte must contain FFH)
FF2013 FF200F Lower interrupt vectors
FF2000 FF2000 P

— 80C196NP and 80C196NUThis partition is in external memory (external addresses

F2000—F207FH).

— 83C196NP: The REMAP bit (CCB1.2), the EA# input, and the type of instruction
ed or nonextended) control access to this partition, as shown in Table 5-4.

(extend

Table 5-4. Special-purpose Memory Access for the 83C196NP

REMAP . Instruction .
(CCB1.2) EA# Pin Type Memory Location Accessed
X Asserted | Extended or nonextended | External memory, F2000-F207FH
0 Deasserted | Extended or nonextended | Internal ROM, FF2000—-FF207FH
Extended Internal ROM, FF2000-FF207FH
1 Deasserted
Nonextended External memory, 02000-0207FH

5-6

Int€|® MEMORY PARTITIONS

5.2.2.3 Reserved Memory Locations

Several memory locations are reserved for testing or for use in future products. Do not read or
write these locations except to initialize them to the vashesvn in Table 5-3. The function or
contents of these locations may change in future revisions; software that uses reserved locations
may not function properly.

5.2.24 Interrupt and PTS Vectors

The peripheral transaction server (PTS) vectors contain the addresses of the PTS control blocks.
The upper and lower interrupt vectors contain the addresses of the interrupt service routines. See
Chapter 6, “Standard and PTS Interrupts,” for more information.

5.2.2.5 Chip Configuration Bytes

The chip configuration bytes (CCB0 and CCB1) specify the operating environment. They specify
the bus width, bus mode (multiplexed or demultiplexed), write-control mode, wait states, power-
down enabling, and the operating mode (1-Mbyte or 64-Kbyte mode). For ti9&Se, CCB1

also controls ROM remapping. For the 80C196NP and 80C196NU, the CCBs are stored in exter-
nal memory (locations F2018—-F201AH). For the 83C196NP, the CCBs can be stored either in ex-
ternal memory (locations F2018-F201AH) or in the bipcROM (locations FF218-
FF201AH).

The chip configuration bytes are the first bytes fetched from memory when the device leaves the
reset state. The post-reset sequence load3CBs into the chip configuration regiss (CCRs).

Once they are loaded, the CCRs cannot be changed until the next device reset. Typically, the
CCBs are ppgrammed once when the user program is compiteldare not redefined during nor-

mal operation. “Chip Configuration Registers and Chip Configuration Bytes” on page 13-14 de-
scribes the CCBs and CCRs.

5.2.3 Peripheral Special-function Registers (SFRs)

Locations 1F00-1FFFH provide access to the peripheral SFRs (see Table 5-5). Locations in this
range that are omitted from the table are reserved. The peripheral SFRs are 1/0O control registers;
they are physically located in the on-chip peripherals. Peripheral SFRs can be windowed and they
can be addressed either as words or bytes, except as noted in the table.

I 5-7

8XC196NP, 80C196NU USER’'S MANUAL

Table 5-5. Peripheral

SFRs

intel.

Reserved Locations

EPORT SFRs

Address High (Odd) Byte Low (Even) Byte Address High (Odd) Byte Low (Even) Byte
1FEEH | Reserved Reserved T11FE6H | EP_PIN Reserved
1FECH | Reserved Reserved T11FE4H | EP_REG Reserved
1FEAH | Reserved Reserved Tt1FE2H | EP_DIR Reserved
1FE8H | Reserved Reserved Tt1FEOH | EP_MODE Reserved
Ports 1-4 SFRs Serial I/O and PWM SFRs

Address High (Odd) Byte Low (Even) Byte Address High (Odd) Byte Low (Even) Byte
1FDEH | P4_PIN P3_PIN 1FBEH | Reserved Reserved
1FDCH | P4_REG P3_REG 1FBCH | SP_BAUD (H) SP_BAUD (L)
1FDAH | P4_DIR P3_DIR 1FBAH | SP_CON SBUF_TX
1FD8H | P4_MODE P3_MODE 1FB8H | SP_STATUS SBUF_RX
1FD6H | P2_PIN P1_PIN 1FB6H | Reserved CON_REGO
1FD4H | P2_REG P1_REG 1FB4H | Reserved PWM2_CONTROL
1FD2H | P2_DIR P1_DIR 1FB2H | Reserved PWM1_CONTROL
1FDOH | P2_MODE P1_MODE 1FBOH | Reserved PWMO_CONTROL
1FCEH | Reserved Reserved 1FAEH | Reserved Reserved
1FCOH | Reserved Reserved 1FAOH | Reserved Reserved

EPA, Timer 1, and Timer 2 SFRs Chip-select SFRs
Address High (Odd) Byte Low (Even) Byte Address High (Odd) Byte Low (Even) Byte
1F9EH | Reserved EPA_PEND ftt TIF6EH | Reserved Reserved
1F9CH | Reserved EPA_MASK T1F6CH | Reserved BUSCONS5
1F9AH | Reserved Reserved T1F6AH | ADDRMSKS5 (H) ADDRMSKS5 (L)
1F98H | Reserved Reserved 1F68H | ADDRCOMS (H) ADDRCOMS5 (L)
T1F96H | TIMER2 (H) TIMER2 (L) T1F66H | Reserved Reserved
1F94H | Reserved T2CONTROL T1F64H | Reserved BUSCON4
T1F92H | TIMER1 (H) TIMER1 (L) T1F62H | ADDRMSK4 (H) ADDRMSK4 (L)
1F90H | Reserved T1CONTROL 1F60H | ADDRCOM4 (H) ADDRCOM4 (L)
T1IF8EH | EPA3_TIME (H) | EPA3_TIME (L) 1F5EH | Reserved Reserved
T1IF8CH | EPA3_CON (H) | EPA3_CON (L) 1F5CH | Reserved BUSCON3
T1F8AH | EPA2_TIME (H) | EPA2_TIME (L) 1F5AH | ADDRMSK3 (H) ADDRMSK3 (L)
1F88H | Reserved EPA2_CON 1F58H | ADDRCOMS3 (H) ADDRCOM3 (L)
T1F86H | EPAL_TIME (H) | EPAL_TIME (L) 1F56H | Reserved Reserved
T1F84H | EPA1_CON (H) | EPA1_CON (L) 1F54H | Reserved BUSCON2
T1F82H | EPAO_TIME (H) | EPAO_TIME (L) 1F52H | ADDRMSK2 (H) ADDRMSK2 (L)
1F80H | Reserved EPAO_CON 1F50H | ADDRCOM?2 (H) ADDRCOM2 (L)

Must be addressed as a word.
T For the 8XC196NP, these are memory-mapped locations. They must be addressed with indirect or
indexed instructions, and they cannot be windowed.
1T The EPA_PEND register was called EPA_STAT in previous documentation for the 8XC196NP.
11 The 8XC196NP can be identified by its signature word, 80EFH, at locations 1F46—-1F47H. The
8XC196NU has no signature word; locations 1F46-1F47H are reserved.

5-8

intel.

MEMORY PARTITIONS

Table 5-5. Peripheral SFRs (Continued)

EPA, Timer 1, and Timer 2 SFRs (Continued)

Chip-select SFRs (Continued)

Address High (Odd) Byte Low (Even) Byte Address High (Odd) Byte Low (Even) Byte
1F7EH | Reserved Reserved 1F4EH | Reserved Reserved
1F7CH | Reserved Reserved 1FACH | Reserved BUSCON1
1F7AH | Reserved Reserved 1F4AH | ADDRMSK1 (H) ADDRMSK1 (L)
1F78H | Reserved Reserved 1F48H | ADDRCOML1 (H) ADDRCOM1 (L)
1F76H | Reserved Reserved 1F46H | Signature (H)TTfT Signature (L)T11f
1F74H | Reserved Reserved 1F44H | Reserved BUSCONO
1F72H | Reserved Reserved 1F42H | ADDRMSKO (H) ADDRMSKO (L)
1F70H | Reserved Reserved 1F40H | ADDRCOMO (H) ADDRCOMO (L)

T Must be addressed as a word.
T For the 8XC196NP, these are memory-mapped locations. They must be addressed with indirect or
indexed instructions, and they cannot be windowed.
1t The EPA_PEND register was called EPA_STAT in previous documentation for the 8XC196NP.
111 The 8XC196NP can be identified by its signature word, 80EFH, at locations 1F46—-1F47H. The
8XC196NU has no signature word; locations 1F46-1F47H are reserved.

524

The register file is divided into an upper register file and a lower register file (Figure 5-3). The
upper register file consists of genlepairpose register RAMT he lower register file contains ad-
ditional general-purpose register RAM along with the stack pointer (SP) and the CPU special-

NOTE

Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts because external events can change the

contents of SFRs. Also, because some SFRs are cleared when read, consider
the implications of using an SFR as an operand in a reaifyyoite
instruction (e.g., XORB).

Register File

function registers (SFRs).

5-9

8XC196NP, 80C196NU USER’'S MANUAL

intel.

Address N
03FFH Upper e
'
H H '

0100H RegisterFile | e’

00FFH

Lower
0000H Register File |

Page OOH

General-purpose
Register RAM

General-purpose
Register RAM

Stack Pointer

CPU SFRs

Address
03FFH

0100H
00FFH

001AH
0019H
0018H
0017H
0000H

A0301-02

Figure 5-3. Register File Memory Map

Table 5-6 on page 5-11 lists the register file memory addresses. The RALU accesses the lower
register file directly, without the use of the memory controller. It also accesgas@avedoca-

tion directly (see “Windowing” on page 5-13). Only the upper register file and the peripheral
SFRs can be windowed. Registers in the lower register file and registers being windowed can be

accessed with direct addressing.

NOTE

The register file must not contain code. An attempt to execute an instruction
from a location in the register file causes themogy controller to fetch the

instruction from external memory.

5-10

Int€|® MEMORY PARTITIONS

Table 5-6. Register File Memory Addresses

Address - .
Range Description Addressing Modes
03FFH . . .)
0100H General-purpose register RAM; upper register file Indirect, indexed, windowed direct
00FFH) . .) . Lo .
001AH General-purpose register RAM; lower register file Direct, indirect, indexed
0019H) . .) . Lo .
0018H Stack pointer (SP); lower register file Direct, indirect, indexed
0017H)) . . .) . Lo .
0000H CPU special-function registers (SFRs); lower register file | Direct, indirect, indexed

5.24.1 General-pur pose Register RAM

The lower register file contains genemlrposeregister RAM. The stack pointer locations can
also be used as general-purpose register RAM when stack operations are not being performed.
The RALU can access this memory directly, using direct addressing.

The upper register file also coirta general-purpose register RAM. The RALU normally uses
indirect or indexed addressing to access the RAM in the upper register file. Windowing enables
the RALU to use direct addressing to access thimong (See Chapter 4, “Programming Con-
siderations,” for a discussion of addressing modes.) Windowing provides fast context switching
of interrupt tasks and faster program execution. (See “Windowing” on page 5-13.) PTS control
blocks and the stack are most efficient when located in the upper register file.

5.2.4.2 Stack Pointer (SP)

Memory locations 0018H and 0019H contain the stack pointer (SP). The SP contains the address
of the stack. The SP must point to a word (even) address that is two bytes (for 64-Kbyte mode)
or fourbytes (for 1-Mbyte mode) greater than the desired starting address. Before the CPU exe-
cutes a subroutine call or interrupt service irjtit decrements the SP (by two in 64-Kbyte
mode; by four in 1-Mbyte mode). Next, it copies (PUSHes) the address of the next instruction
from the program counter onto thectalt then loads the address of the subroutine or interrupt
service routine into the program counter. When it executes the return-from-subroutine (RET) in-
struction at the end of the subroutine or interrupt servicénmuhe CPU loads (POPs) the con-

tents of the top of the stack (that is, the return address) into the program counter. Finally, it
increments the SP (by two in 64-Kbyte mode; by four in 1-Mbyte mode).

[| 5-11

intel.

Subroutines may be nest That is, eacbubroutine may call other subroutines. The CPU PUSH-

es the contents of the program counter onto the stack each time it executes a subroutine call. The
stack grows downward as entries are added. The only limit to the nesting depth is the amount of

available memory. As the CPU returns from each nested subroutine, it POPs the address off the
top of the stack, and the next return address moves to the top of the stack.

8XC196NP, 80C196NU USER’'S MANUAL

Your programmust load a word-aligned (even) address into the stack pointer. Select an address
that is two bytes (for 64-Kbyte mode) or four bytes (for byté mode) greater than the desired
starting address because the CPU automatically decrements the stack pointer before it pushes the
first byte of the return address onto the stack. Remember that the stack grows downward, so allow
sufficient room for the maximum number of stack entries. The stack must be located in page 00H,
in either the internal register file or external RAM. The stack can be used most efficiently when

it is located in the upper register file.

The following example initializes the top of the upper register file as the stack.

LD SP, #400H ;Load stack pointer

5.2.4.3 CPU Special-function Registers (SFRs)

Locations 000-0017H in théower register file are the CPU SFRs. Table 5-7 lists the CPU SFRs
for the 8XC196NP and the 80C196NU and highlights those that are unique to thesBQLC19
Appendix C describes the CPU SFRs.

Table 5-7. CPU SFRs

8XC196NP CPU SFRs 80C196NU CPU SFRs

Address |High (Odd) Byte [ow (Even) Byte Address Hjgh (Odd) Byte Low (Even) Byte
0016H Reserved Reserved 0016H Reserved Reserved
0014H Reserved WSR 0014H | WSR1f WSR
0012H INT_MASK1 INT_PEND1 0012H INT_MASK1 INT_PEND1
0010H Reserved Reserved 0010H Reserved Reserved
000EH | Reserved Reserved 000EHTT | ACC_03f ACC_02f
000CH | Reserved Reserved 000CHTT | ACC 01t ACC_00t
000AH Reserved Reserved 000AH | ACC_STATYt Reserved
0008H INT_PEND INT_MASK 0008H INT_PEND INT_MASK
0006H PTSSRV (H) PTSSRV (L) 0006H | PTSSRV (H) PTSSRV (L)
0004H PTSSEL (H) PTSSEL (L) 0004H | PTSSEL (H) PTSSEL (L)
0002H | ONES_REG (H) | ONES_REG (L) 0002H | ONES_REG (H) | ONES_REG (L)
0000H | ZERO_REG (H) ZERO_REG (L) 0000H | ZERO_REG (H) ZERO_REG (L)

T These SFRs are unique to the 80C196NU.
T Must be addressed as a word.

5-12

Inu® MEMORY PARTITIONS

5.3 WINDOWING

Windowingexpands the amount of memory that is accessible with direct addressing. Direct ad-
dressing can access the lower register file with short, fast-executing instructionsvii'ditiov-
ing, direct addressing can also access the upper register file and peripheral SFRs.

Windowing maps a segment of highermmay (the upper register file or peripheral SFRs) into
the lower register file. The 8XC196NP has a single window selection register, while the
80C196NU has two. Therfit, WSR, is the same in both devices. WSR selects a 32-, 823-or

byte segment of higher memory to be windowed into the top of the lower register file space.

The second, WSR1, is unique to the 806NY. WSR1 selects a 32- or 64-byte segrnof high-

er memory to be windowed into the middle of the lower register file (Figure 5-4). Because the
areas in the lower register file do not overlap, two windows can be in effect at the same time. For
example, you can activatel28-byte window using WSR and a 64-byte window using WSR1
(Figure 5-4). These two windows occupy locatioQd®-00FFH in the lowenegister file, leav-

ing locations 001A-003FH for use as general-purpose register RAM, locations 0018—0019H for
the stack pointer or general-purpose register RAM, and locQ03-0017H for the CPU SFRs.

128-byte Window 03FFH 128-byte Window
(WSR = 17H) 0380H (WSR = 17H)
037FH 64-byte Window
0340H (WSRl = ZDH)
Window in 00FFH WSR Window in
Lower Register File 0080H Lower Register File
007FH WSR1 Window in
0040H Lower Register File
003FH
0000H
8XC196NP 80C196NU
A3053-02

Figure 5-4. Windowing

I 5-13

8XC196NP, 80C196NU USER’'S MANUAL Inu®

5.3.1 Selecting a Window

The window selection ggster (Figure 5-5) has two functions. The HLDEN bit (WSR.7) enables
and disables the bus-hold proto¢setée Chapter 13, “Interfacing with External iery”); it is
unrelated to windowing. The remaining bits select a window to be mapped into the top of the low-
er register file. Window selection register 1 (Figure 5-6) selects a second window to be mapped
into the middle of the 80®6NU'slower register file.

Table 5-8 provides a quick reference of WSR values for windothiegeripheral SFRs. Table
5-9 on page 5-15 lists the WSR values for windowing the upper register file.

WSR Address: 0014H
Reset State: O0H

The window selection register (WSR) has two functions. One bit enables and disables the bus-hold
protocol. The remaining bits select windows. Windows map sections of RAM into the top of the lower
register file, in 32-, 64-, or 128-byte increments. PUSHA saves this register on the stack and POPA
restores it.

7 0
HLDEN w6 w5 wa ‘ ‘ w3 w2 w1 W0
Bit Bit .
Number Mnemonic Function
7 HLDEN HOLD#, HLDA# Protocol Enable

This bit enables and disables the bus-hold protocol (see Chapter 13,
“Interfacing with External Memory”). It has no effect on windowing.

1 =enable
0 = disable
6:0 W6:0 Window Selection

These bits specify the window size and window number. See Table 5-8
on page 5-15 or Table 5-9 on page 5-15.

Figure 5-5. Window Selection (WSR) Register

5-14 [|

intel.

MEMORY PARTITIONS

WSR1 Address: 0015H
(80C196NU) Reset State: 00H
Window selection 1 (WSR1) register selects a 32- or 64-byte segment of the upper register file or
peripheral SFRs to be windowed into the middle of the lower register file, below any window selected
by the WSR.
7 0
goctosNU | — | we | ws | wa |[wa | w2 | w1 | wo |
Bit Bit Function
Number Mnemonic
7 — Reserved; always write as zero.
6:0 W6:0 Window Selection
These bits specify the window size and window number. See Table 5-8 on
page 5-15 or Table 5-9 on page 5-15.
Figure 5-6. Window Selection 1 (WSR1) Register
Table 5-8. Selecting a Window of Peripheral SFRs
WSR or WSR1 Value WSR or WSR1 Value WSR Value for
Peripheral for 32-byte Window for 64-byte Window 128-byte Window
(OOEO-OO0FFH or 0060-007FH) | (00CO—00FFH or 0040—-007FH) (0080-00FFH)
EPORT' 7FHT
Ports 1-4 7EH 3FHT
PWM and SIO 7DH
EPA and Timers 7CH 3EH 1FHT
Chip selects 4-5 7BH
Chip selects 0-3 7AH 3DH 1EH

T For the 8XC196NP, the EPORT SFRs are memory-mapped SFRs. They must be accessed with
indirect, indexed, or extended addressing; they cannot be windowed.

Table 5-9. Selecting a Wind

ow of the Upper Register File

Register RAM WSR or WSR1 Value WSR or WSR1 Value WSR Value
Locations for 32-byte Window for 64-byte Window for 128-byte Window
(Hex) (OOEO-OO0FFH or 0060-007FH) | (00C0—-00FFH or 0040—-007FH) (0080—-00FFH)
03E0-03FF 5FH
03C0-03DF 5EH 2FH
03A0-03BF 5DH
0380-039F 5CH 2EH 17H

5-15

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 5-9. Selecting a Window of the Upper Register File (Continued)

Register RAM WSR or WSR1 Value WSR or WSR1 Value WSR Value
Locations for 32-byte Window for 64-byte Window for 128-byte Window
(Hex) (OOEO-OO0FFH or 0060-007FH) | (00C0—-00FFH or 0040—-007FH) (0080—-00FFH)

0360-037F 5BH

0340-035F 5AH 2DH

0320-033F 59H

0300-031F 58H 2CH 16H
02E0-02FF 57H

02C0-02DF 56H 2BH

02A0-02BF 55H

0280-029F 54H 2AH 15H
0260-027F 53H

0240-025F 52H 29H

0220-023F 51H

0200-021F 50H 28H 14H
01E0-01FF 4FH

01C0-01DF 4EH 27H

01A0-01BF 4DH

0180-019F 4CH 26H 13H
0160-017F 4BH

0140-015F 4AH 25H

0120-013F 49H

0100-011F 48H 24H 12H

5.3.2 Addressing a Location Through a Window

After you have selected the desired window, you need to know the direct address ahttry me
location (the address in the lower register file). For SFRs, refer to the WSR tables in Appendix
C. For register file locations, calculate the direct address as follows:

1. Subtract the base address of the area to be remapped (from Table 5-10 on page 5-17) from
the address of the desired location. This gives you the offset of that particular location.

2. Add the offset to the base address of the windawn(Table 5-11). The result is the direct
address.

5-16

Inu® MEMORY PARTITIONS

Table 5-10. Windows

Base WSR or WSR1 Value WSR or WSR1 Value Wiszg/_ 5;)'“;; for
Address for 32-byte Window for 64-byte Window Windgw
(Hex) (OOEO-OO0FFH or 0060-007FH) | (00C0—-00FFH or 0040—-007FH) (0080-00FFH)
Peripheral SFRs
T1FEO T7FH
1FCO 7EH T3FH
1FAO 7DH
1F80 7CH 3EH T1IFH
1F60 7BH
1F40 7AH 3DH
1F20 79H
1F00 78H 3CH 1EH
Upper Register File
03EOH 5FH
03COH 5EH 2FH
03A0H 5DH
0380H 5CH 2EH 17H
0360H 5BH
0340H 5AH 2DH
0320H 59H
0300H 58H 2CH 16H
02EOH 57H
02COH 56H 2BH
02A0H 55H
0280H 54H 2AH 15H
0260H 53H
0240H 52H 29H
0220H 51H
0200H 50H 28H 14H
01EOH 4FH
01COH 4EH 27H
01A0H 4DH
0180H 4CH 26H 13H
0160H 4BH
0140H 4AH 25H
0120H 49H
0100H 48H 24H 12H

T For the 8XC196NP, locations 1IFEO—1FFFH contain memory-mapped SFRs that cannot be
windowed. Reading these locations through a window returns FFH; writing these locations through
a window has no effect. For the 80C196NU, these locations are not memory-mapped; they can be
windowed.

5-17

8XC196NP, 80C196NU USER’'S MANUAL

intel.

Table 5-11. Windowed Base Addresses

Window Size

WSR Windowed Base Address
(Base Address in Lower Register File)

WSR1 Windowed Base Address
(Base Address in Lower Register File)
80C196NU Only

32-byte OOEOH 0060H
64-byte 00COH 0040H
128-byte 0080H —

Appendix C includes a table of the windowable SFRs with the window selection register values

and direct addresses for each window size. The following examples explain how to determine the
WSR value and direct address for any windowable location. An additional example shows how

to set up a window by using the linker locator.

5.3.2.1 32-byte Windowing Example

Assume that you i8h to access location 014BH (a location in the upper register file used for gen-
eral-purpose register RAM) withraict addressinthrough a 32-byte window. Table 5-10 on page
5-17 shows that you need to write 4AH to the window selection register. It also shows that the
base address of the 32-byte memory area is 0140H. To detehaiofset, subtract that base ad-
dress from the address to be accessed (014BH — 0140H = 000BH). Adid¢heoathe base ad-
dress of the window in the lower register file (from Table 5-11). The direct address is 00EBH
(000BH + 00EQOH) for a WSR window or 006BH (000BH + 0060H) for a WSR1 window.

5.3.2.2 64-byte Windowing Example

Assume that you wish to access the SFR at location 1F8CH with direct addressing through a 64-
byte window. Table 5-10 on page 5-17 shows that you need to write 3EH to the window selection
register. It also shows that the base address of the 64-byte memoryldf8aHs To determine

the offset, subtract that base address from the address to be accessed (1IF8CH — 1F80H = 000CH).
Add the offset to the base address of the window in the lower register file (from Table 5-11). The
direct address is 00CCH (000CH + 00COH) for a WSR window or 004CH (00@DHMOH) for

a WSR1 window.

5.3.2.3 128-byte Windowing Example

Assume that you wish to access the SFR at location 1F82H with direct addressiig 4 128-

byte window. Table 5-11 on page 5-18 shows that you need to write 1FH to the window selection
register. It also shows that the base address of the 128-byte memory area is 1F80H. To determine
the offset, subtract that base address from the address to be a¢tE82¢t— 1F80H = 0002H).

Add the offset to the base address of the window in the lower register file (from Table 5-11). The
direct address is 0082H (0002H +80®).

5-18 I

Int€|® MEMORY PARTITIONS

5.3.2.4 Unsupported Locations Windowing Example (8XC196NP Only)

Assume that you wish to agss location 1IFE7H (the EP_PIN register, a memory-mapped SFR)
with direct addressing through a 128-byte window. This location is in the range of addresses
(1FEO-1FFFH) that cannot be windowed. Although you could stteuwindow by writing 1FH

to the WSR, reading this location through the window would return FFH (all ones) and writing
to it would not change the contents. However, you could directly address the remaining SFRs in
the range of 1F80-1FDFH.

5.3.2.5 Using the Linker Locator to Set Up a Window

In this example, the linker locator is used to set up a window. The linker locator locates the win-
dow in the upper register file and determines the value to load in the WSR for access to that win-
dow. (Please consult the manual provided with the linker locator for details.)

FhkAKAKAK] FRRERRRRRR Rk

modl module main ;Main module for linker
public functionl
extrn ?WSR :Must declare ?WSR as external

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1 ;Allocate variables in an overlayable segment
var2: dsw 1
var3: dsw 1

cseg
functionl:
push wsr ;Prolog code for wsr
ldb wsr, #?WSR ;Prolog code for wsr

add varl, var2, var3 ;Use the variables as registers

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

i T 0T0 Vo Attt bttt

5-19

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

public function2
extrn ?WSR

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1
var2: dsw 1
var3: dsw 1

cseg
function2:
push wsr ;Prolog code for wsr
ldb wsr, #?WSR ;Prolog code for wsr

add varl, var2, var3

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

The following is an example of a linker invocation to link and locatertbdules and to deter-
mine the proper windowing.

RL196 MOD1.0BJ, MOD2.0BJ registers(100h-03ffh) windowsize(32)

The above linker controls tell the linker to use registers 0100-036#Mindowing and to use
a window size of 32 bytes. (These two controls enable windowing.)

The following is the map listing for the resultant output module (MOD1 by default):
SEGMENT MAP FOR mod1(MOD1):

TYPE BASE LENGTH ALIGNMENT MODULE NAME
RESERVED 0000H 001AH

STACK 001AH 0006H WORD
*E GAP *** 0020H OOEOH

OVRLY 0100H 0006H WORD MOD2

OVRLY 0106H 0006H WORD MOD1
*E GAP *** 010CH 1F74H

CODE 2080H 0011H BYTE MOD2

CODE 2091H 0011H BYTE MOD1
*E GAP *** 20A2H DF5EH

5-20

Int€|® MEMORY PARTITIONS

This listing shows the disassembled code:

2080H ;C814 | PUSH WSR

2082H ;B14814 | LDB WSR,#48H
2085H JA44E4E2EQ | ADD EOH,E2H,E4H
2089H ;B21814 | LDB WSR,[SP]
208CH ;65020018 | ADD SP,#02H
2090H ;FO | RET

2091H ;C814 | PUSH WSR

2093H ;B14814 | LDB WSR,#48H
2096H JA4EAESBEG | ADD E6H,E8H,EAH
209AH ;B21814 | LDB WSR,[SP]
209DH ;65020018 | ADD SP,#02H
20A1H ;FO | RET

The C compiler can also take advantage of this feature if the “windows” switch is enabled. For
details, see the MCS 96 microcontroller architecture software productsDetietopment Tools
Handbook

5.3.3 Windowing and Addressing Modes

Once windowing is enabled, the windowed locations can be accessed both through the window
using direct addressing and through its actual address using indirect or indexed addressing. The
lower register file locations that are covered by the window are always accessible by indirect or
indexed operations. To re-enable direct access to the entire lower register file, clear bits 6:0 of the
window selection register. To enable direct access to a particular location in the lower register file,
you may select a smaller window that does not cover that location.

When windowing is enabled:

¢ adirect instruction that uses an address within the lower register file actually accesses the
window in the upper register file;

¢ an indirect or indexed instruction that uses an address within either the lower register file or
the upper register file accesses the actual location in memory.

The following sample code illustrates the difference between direct and indexed addressing when
using windowing.

PUSHA ; Pushes the contents of WSR onto the stack
LDB WSR, #17H ; Selects window 17H, a 128-byte block

; (windows 0380-03FFH into 0080-00FFH)

; The next instruction uses direct addr

ADD 40H, 80H ; mem_word(40H) —mem_word(40H) + mem_word(380H)

; The next two instructions use indirect addr
ADD 40H, 80HI0] ; mem_word(40H) ~mem_word(40H) + mem_word(80H +0)
ADD 40H, 380H[0] ; mem_word(40H) ~mem_word(40H) + mem_word(380H +0)
POPA ; reloads the previous contents into WSR

5-21

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

5.4 REMAPPING INTERNAL ROM (83C196NP ONLY)

The 83C196NP’s 4 Kbytes of ROM are locatedrF2000-FF2FFFH. By using the REMAP bit
(CCBL1.2) and the EA# input, you can also access these locations in external memory (page OFH
or page 00H). The REMAP bit is loaded from CQidon leavingeset and cannot be changed

until the next reset. Tie EA# low to access external memory or tie it high to access the on-chip
ROM. (Refer to the EA# description in Appendix B for additiomddimation on usg the EA#

pin.)

NOTE

The EA# input is effective only for accesses to the 83C196NP’s on-chip ROM
(FF2000-FF2FFFH). For an access to any other location, the value of EA# is
irrelevant.

Without remapping (CCB1.2 = 0), an access to FF2000—-FF2FF#iretted to internal ROM
(FF2000-FF2FFFH) if EA# is high and to external memory (F2000-F2FFFH) if EA# is low. In
either case, data in this area must be accessed with extended instructions.

With remapping enabled (CCB1.2 = 1) and EA# high, you can access the content®@d-+F2
FF2FFFH in two ways:
* ininternal ROM (FF2000-FF2FFFH) using an extended instruction
* in external memory (002000-002FFFH)ngsa nonextended instruction. This makes the
far data in FF2000—FF2FFFH acsitde as near data.

With remapping enabled (CCB1.2 = 1) and EA# low, you can access the content900+F2
FF2FFFH in external memory (F2000-F2FFFH) using an extended instruction.

An advantage of remapping ROM is that it makes the data in ROM accessible as near data in ex-
ternal memory page 0O0H. The data can then be accessed more quickly with nonextended instruc-
tions. An advantage of not remapping ROM is that the corresponding area in external memory
page O0H is available for storing additional near data.

5-22 I

Inu® MEMORY PARTITIONS

5.5 FETCHING CODE AND DATA IN THE 1-MBYTE AND 64-KBYTE MODES

This section describdsw the device fetches instructions and accesses data in the 1-Mbyte and
64-Kbyte modes. When the device leaves reset, the MODEG64 bit (CCB1.1) selects the 1-Mbyte
or 64-Kbyte mode. The mode cannot be changed until the next reset.

NOTE

The 8XC196NP and 80C196NU have two major differences concerning code
and data fetches. The 8XC196NP’s prefetch queue is four bytes, while the
80C196NUr’s is eight bytes. The 8XC196NP gives higher priority to
instruction fetches than to data fetches, while the 80C196NU gives higher
priority to data accesses than to instruction fetches.

5.5.1 Fetching Instructions

The 24-bit program counter (Figure 5-7) consists of the 8-bit extended program counter (EPC)
concatenated with the 16-bit maspeogram counter (PC). It holds the address of the next in-
struction to be fetched. The page number of the instruction is in the EPC. In 1-Mbyte mode, the
EPC can have any 8-bit value. However, onlyfthe LSBs of the EPC are implemented exter-
nally, as EPORT pins A19:16. This means that in the 1-Mbyte mode, the device can fetch code
from any page in the 1-Mbyte address space: 00H—O0FH and FFH (FFH overlays OFH). In 64-
Kbyte mode, the EPC is fixed at FFH, which limits program memory to page FFH (and OFH).

EPC PC

23 16 15 0

A2513-03

Figure 5-7. The 24-bit Program Counter

5.5.2 Accessing Data

Internally, data addresses have 24 bits (Figure 5-8 on page 5-24). The lower 16 bits are supplied
by the 16-bit data address register. The upper 8 bits (the page humber) come from siftecent

es for nonextended and extended instructions. (‘EPORT Operation” on page 7-12 describes how
the page number is output to the EPORT pins.)

I 5-23

8XC196NP, 80C196NU USER’'S MANUAL Inu®

For nonextended instructions, the EP_REG register provides the page number. Data and constants
in this page are calletkar dataandnear constants

NOTE

The 8XC196NP allows you to change the value of EP_REG to control which
memory page a nonextended instruction accesses. However, software tools
require that EP_REG be equal to 00H. The 80C196NU forces all nonextended
data accesses to page 00H. You cannot use EP_REG to change pages.

Data outside the page specified by EP_REG is cédledata To access far data, you must use
extended instructions. For extended instructions, the CPU provides the page number.

From EP_REG 16-bit Data Address Register
Nonextended Address
23 16 15 0
From CPU 16-bit Data Address Register
Extended Address
23 16 15 0
A2514-01

Figure 5-8. Formation of Extended and Nonextended Addresses

The code example below illustrates the use of extended instructions to access data in page 01H.

EP_REG EQU 1FESH
RSEG AT 1CH
TEMP: DSW 1

RESULT: DSW 1
CSEG AT 0FF2080H
. ;some code

1
1

SUBB: PUSHA

;save flags, disable interrupts
LD TEMP,#1234H ;
EST TEMP,010600H ;store temp value in 010600H
ADD RESULT, TEMP,#4000H ;do something with registers
EST RESULT,010602H ;store result in 010602H
. ;more eld/est instructions
POPA ;restore flags and interrupts
RET ;

;more code
DONE: BR DONE

END

5-24 [|

Int€|® MEMORY PARTITIONS

5.5.3 Code Fetches in the 1-Mbyte Mode

CCRL1.1 (the MODEG64 bit) controls whether the device operates in 1-Mbyte or 64-Kbyte mode.
CCRL1 is loaded with the contents@EB1 at reset. When MODEG64 is clear, the devigerates

in 1-Mbyte mode. In this mode, code can execute from any page in the 1-Mbyte address space.
An extended jump, branch, or call instruction across pages changes the EPC value to the destina-
tion page. For example, assume that code is executing from page FFH. The following code seg-
ment branches to an external memory location in page O0OH and continues execution.

OFF2090H: LD TEMP,#12H ; code executing in page FFH

ST TEMP,PORT1 ; code executing in page FFH

EBR 003000H ; jump to location 3000H in page O0OH
003000H: ADD TEMP,#50H ; code executing in page 00H

Code fetches are from external memory or internal memory, dependingaevibte, the instruc-
tion address, and the value of the EA# input.

80C196NU:
Code executes from any page in external memory.
80C196NP:

For devices without internal nonvolatile memory, EA# must be tied low, and code executes from
any page in external memory.

83C196NP:
Code in all locations except FF2000—-FF2FFFH executes from external memory.

Instruction fetches from FERO0—-FF2FFFH are controlled by tBé&# input:
¢ |f EA# is low, code executes from external memory.

¢ |f EA# is high, code executes from internal ROM.

Note that the EA# input functions only for the address range FF2000-FF2FFFH.

5.5.4 Code Fetches in the 64-Kbyte Mode

CCRL1.1 (the MODEG64 bit) controls whether the device operates in 1-Mbyte or 64-Kbyte mode.
CCRL1 is loaded with the contents of CCB1 at reset. When MODEG®64 is set, the device operates in
64-Kbyte mode. In this mode, the EPC (Figure 5-7 on page 5-23) is fixed at FFH, which allows
instructions to execute from page FFH only. Extended jump, branch, and call instructiais do
function in the 64-Kbyte mode.

I 5-25

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Code fetches are from external memory or internahorg, depending on the device, the mem-
ory location, and the value of the EA# input.

80C196NU:
Code executes from page OFH in externahmogy. (The 80C196NU has no EA# input.)
80C196NP:

For devices without internaonvolatile memory, EA# must be tied low, and code executes only
from page OFH in external memory.

83C196NP:
Code in all locations except-2000-FF2FFFH executes from external memory.

Instruction fetches from FF2000—-FF2FFFH are controlled by the EA# input:
* |f EA# is low, code executes from external memory (page OFH).
¢ |f EA# is high, code executes from internal ROM (p&géd).

5.5.5 Data Fetches in the 1-Mbyte and 64-Kbyte Modes

Data fetches are the same in the 1-Mbyte and 64-Kbyte modes. The device can access data in any
page. Data accesses to page 00H are nonextended. Data accesses to any other page are extende

NOTE
This informaton on data fetches applies only for EP_REG = 00H.

80C196NP and 80C196NU:

Data accesses to the register file (O@EF-H) and the SFRs (1FO0-1FFFH) directed to the
internal registers. All other data accesses are directed to external memory.

83C196NP:

Data accesses to the register file (0000-03FFH) and the (3FB8-1FFFH) are directed to the
internal registers. Accesses to other locations are directed to external memory, except as noted
below:
Data accesses to FF2000-FF2FFFH depend on the EA# input:

* If EA# is low, accesses are to external memory (page OFH).

¢ |f EA# is high, accesses are to the internal ROM (page FFH).

5-26 I

MEMORY PARTITIONS

intel.

Data accesses to 002000-002FFFH depend on the REMAP bit and the EA# input:
¢ |f remapping is disabled (CCB1.2 = 0), accesses are external.

* |f remapping is enabledCCB1.2 =1), accesses depend on EA#:
— If EA# is low, accesses are external (REMAP is ignored).
— If EA# is high, accesses are to the internal ROM.

5.6 MEMORY CONFIGURATION EXAMPLES

This section provides examples ofrmery configurations for boté4-Kbyte and 1-Mbyte mode.

Each example consists of a circuit diagram and a memory map that describes how the address
space is implemented. Chapter 13, “Interfacing with Externah®g,” discuses the interface

in detail and provides additional exales.

5.6.1 Example 1: Using the 64-Kbyte Mode

Figure 5-9 shows a system designed for operation in the 64-Kbyte mode. Code executes only
from page FFH, which is implemented by the 64-Kbyte flash memory. The 32-Kbyte RAM in the
upper half of page 00H stores near data. Table 5-12 on page 5-28 lists the memory addresses for
this example. (For memory map details, see Table 5-1 on page 5-4.)

CS1#
CSo# 1
CE# CE#
Page FFH Page 00H
A15:0 AL5:0 A15:0 AL4:0 Al14:0
Flash RAM
64Kx8 32Kx8
Code & Data Data
8XC196NP, NU EF0000— 008000-
FFFFFFH 00FFFFH
AD7:0 AD7:0 D7:0 AD7:0 D7:0
OE# WE# OE# WE#
RD# l
WR#
A2474-02

Figure 5-9. A 64-Kbyte System With an 8-bit Bus

80C196NP and 80C196NUThe flash memory, which implements page FFH, holds the special-

purpose memory (FF2000—-FF207FH), code, and far constants.

5-27

8XC196NP, 80C196NU USER’'S MANUAL Inu®

83C196NP only:LocationsFF2000—-FF2FFFH, whicht@re code and special-purpose memory,
are implemented by internal ROM. Data accesses to locations FF2000-FF2FFFH are directed to

the flash memory if EA# is low and to internal ROM if EA# is high. LocatleR2000—FF2FFFH

can be remapped to page 00H by setting the REMAP bit (CCB1.2). An access to the remapped
area, 002000-002HH, is directed to ROM if EA# is high and to external memory if EA# is low.

With remapping enabled (REMAP = 1) and EA# high, the far constants in the gpetqiake
memory can be accessed as near constants in page O0H.

Table 5-12. Memory Map for the System in Figure 5-9

Address Description

FFFFFFH

FE3000H External flash memory (code or far constants)

FF2FFFH | Program memory: 80C196NP and 80C196NU: External flash memory

FF2080H 83C196NP: Internal ROM (EA# = 1), external memory (EA# = 0)

FF207FH | Special-purpose memory: 80C196NP and 80C196NU: External flash memory

FF2000H (far constants) 83C196NP: Internal ROM (EA# = 1), external memory (EA# = 0)

FF1FFFH

FFO100H External flash memory (code or far constants)

FFOOFFH Reserved

FFOO00H

FEFFFFH .

010000H Unimplemented

O0OFFFFH

008000H 32-Kbyte external RAM (near data)

007FFFH .

003000H Unimplemented

002FFFH | 80C196NP and 80C196NU: Unimplemented

002000H | 83C196NP: Program and special-purpose memory remapped from internal ROM
(REMAP = 1; EA#=1)

001FFFH) . . ;

001FOOH Internal peripheral special-function registers (SFRs)

001EFFH) .

001COOH Unimplemented (future SFR expansion)

001BFFH .

000400H Unimplemented

0003FFH) . .

000100H Upper register file (general-purpose register RAM)

0000FFH .) . .

000018H Lower register file (general-purpose register RAM and stack pointer)

000017H .)

000000H Lower register file (CPU SFRs)

5-28

Inu® MEMORY PARTITIONS

5.6.2 Example 2: A 64-Kbyte System with Additional Data Storage

Figure 5-10 shows another system designed for operation in the 64-Kbyte mode. Code executes
from page FFH only. This system is the same as the example in “Example 1: Using the 64-Kbyte
Mode” on page 5-27, but with additional RAM. The 64-Kbyte RAM stores near data in page 00H.
The 128-Kbyte RAM stores far data in pages 01H and 02H. Table 5-13 lists the memory address-
es. (For memory map details, see Table 5-1 on page 5-4.)

80C196NP and 80C196NUThe flash memory, which implements page FFH, holds the special-
purpose memory (FF2000—-FF207FH), code, and far constants.

83C196NP only:LocationsFF2000—-FF2FFFH, whichtare code and special-purpose memory,

are implemented by internal ROM. Data accesses to locations FF2000—-FF2FFFH are directed to
the flash memory if EA# is low and to internal ROM if EA# is high. LocatlelR2000—FF2FFFH

can be remapped to page 00H by setting the REMAP bit (CCB1.2). An access to the remapped
area, 002000-002HH, is directed to ROM if EA# is high and to external memory if EA# is low.
With remapping enabled (REMAP = 1) and EA# high, the far constants in the gpetqiake
memory can be accessed as near constants in page O0H.

CS2#
CSi#
CSo# ———]
CE# CE# CE#
Page FFH Page O0H Pages 01-02H
A15:1 A15:0 A16:0
A16:0 A15:0 A15:0 A16:0
Flash RAM RAM
64Kx8 64Kx8 128Kx8
SXC}\IQSNP’ Code & Data Data Data
FF0000— 000000- 010000-
AD70 FFFFFFH AD70 O0OFFFFH AD70 02FFFFH
AD7:0 D7:0 D7:0 D7:0
OE# WE# OE# WE# OE# WE#
RD#]‘ l
WR#
A2475-02

Figure 5-10. A 64-Kbyte System with Additional Data Storage

I 5-29

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 5-13. Memory Map for the System in Figure 5-10

Address Description

FFFFFFH

FE3000H External flash memory (code or far constants)

FF2FFFH | Program memory: 80C196NP and 80C196NU: External flash memory
FF2080H 83C196NP: Internal ROM (EA# = 1), external memory (EA# = 0)
FF207FH | Special-purpose memory: 80C196NP and 80C196NU: External flash memory
FF2000H (far constants) 83C196NP: Internal ROM (EA# = 1), external memory (EA# = 0)
FF1FFFH

FFO100H External flash memory (code or far constants)

FFOOFFH Reserved

FFOO00H

FEFFFFH .

030000H Unimplemented

02FFFFH

010000H 128-Kbyte external RAM (far data)

O00OFFFFH

003000H External RAM (near data)

002FFFH | 80C196NP and 80C196NU: External RAM

002000H | 83C196NP: External RAM (CCB1.2 = 0) or remapped internal ROM (CCB1.2 = 1)
001FFFH) . . .

001FOOH Internal peripheral special-function registers (SFRs)

001EFFH)

001CO0H External RAM (future SFR expansion)

001BFFH

000400H External RAM (near data)

0003FFH)) .

000100H Upper register file (general-purpose register RAM)

0000FFH .) . .

000018H Lower register file (general-purpose register RAM and stack pointer)

000017H .)

000000H Lower register file (CPU SFRs)

5-30

Inu® MEMORY PARTITIONS

5.6.3 Example 3: Using 1-Mbyte Mode

Figure 5-11 shows a system designed for operation in the 1-Mbyte mode. In this mode, code can
execute from any page in the 1-Mbyte memory space. The system uses both 8-bit and 16-bit buses
and uses the write-strobe mode. (See Chapter 13, “Interfacing with Extenmalriyfg

The 32Kkx8 RAM stores near data in the upper half of page 00H. ThexB2IRAM stores far

data in page 01H. Using the WRL# and WRH# signals makes this RAM both byteroashd
accessible. The 1286 flash memory stores code and far constants in pages FCH, FDH, FEH,
and FFH. With the write-signals connected as shown, the flash memory is word-accessible only.
Table 5-14 lists the memory addresses. (For memory map details, see Table 5-3 on page 5-6.)

83C196NP only.The code and data in FF2000—-FF2FFFH are implemented dopahtROM.
Remapping this area into page 00H by setting the REMAP bit (CCBL1.2) rtekés constants

in FF2000-FF2FFFH of ROM accessible as near constants. An access to this address range is di-
rected to external memory if EA# is low and to internal ROM if EA# is high.

cs2#
csi#
CSo# f————
CE# CE# CE#
Pages FC-FFH Page O0H Page 01H
: Al14:0 Al15:1
A17:0 AL 160 Al14:0 51 | A14:0
Flash RAM RAM
128Kx16 32Kx8 32Kx16
8XC196N P, Code & Data Data Data
NU FC0000 008000 010000—
D150 FFFFFFH ADT0 OOFFFFH 01FFFFH
AD15:0 —D15:0 —D7:0 AD15:01 1510
OE# WE# OE# WE# OE# WRH# WRLH
RD# l l
WRH#
WRL#
A2476-03

Figure 5-11. Example System Using the 1-Mbyte Mode

Notice that the microcontroller’s Al line connects to a word-wide memory device's A0 line. For
a byte-wide mmory, the microcontroller’s AO line selects the byte to be read. For a word-wide
memory, the microcontroller reads an entire word, then selects the required byte internally.

I 5-31

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 5-14. Memory Map for the System in Figure 5-11

Address Description
FFFFFFH
FF3000H External memory (code or far constants)
FF2FFFH | Program memory: 80C196NP and 80C196NU: External memory
FF2080H 83C196NP: Internal ROM (EA# = 1), external memory (EA# = 0)
FF207FH | Special-purpose memory: 80C196NP and 80C196NU: external memory
FF2000H (far constants) 83C196NP: Internal ROM (EA# = 1), external memory (EA# = 0)
FF1FFFH
FFO100H External flash memory (code or far constants)
FFOOFFH Reserved
FFOO00H
FEFFFFH
FCO000H External flash memory (far code, far constants)
FBFFFFH .
020000H Unimplemented
01FFFFH
010000H 64-Kbyte external RAM (far data)
OOFFFFH
008000H 32-Kbyte external RAM (near data)
007FFFH .
003000H Unimplemented
002FFFH | 80C196NP and 80C196NU: Unimplemented
002080H | 83C196NP: Program memory remapped from internal ROM (CCB1.2 = 1; EA# = 1)
00207FH | 80C196NP and 80C196NU: Unimplemented
83C196NP: Special-purpose memory (near constants) remapped from internal ROM
001FFFH) . . "
001FOOH Internal peripheral special-function registers (SFRs)
001EFFH) .
001COOH Unimplemented (future SFR expansion)
001BFFH .
000400H Unimplemented
0003FFH .) .
000100H Upper register file (general-purpose register RAM)
0000FFH .) . .
000018H Lower register file (general-purpose register RAM and stack pointer)
000017H .)
000000H Lower register file (CPU SFRs)

5-32

intgl.

Standard and PTS
Interrupts

CHAPTER 6
STANDARD AND PTS INTERRUPTS

This chapter describes the interrupt control circuitry, priority scheme, and timing for standard and
peripheral transaction server (PTS) mtgts. Itdiscusses the three special interrupts antbilne

PTS modes, two of which are used with the EPA to produce pulse-width modulated (PWM) out-
puts. It also explains interrupt programming and control.

6.1 OVERVIEW OF INTERRUPTS

The interrupt control circuitry within a microcontroller permits real-time events to control pro-
gram flow. When an event generates an interrupt, the device suspends the execution of current
instructions while iperforms some service in response to the interrupt. When the interrupt is ser-
viced, program execution resumes at the point where the interrupt occurred. An internal periph-
eral, an external signal, or an instruction can generate anuipteequest. In the simplest case,

the device receives the request, performs the service, and returns to the task thatrwpiethte

This microcontroller’s flexible interrugtandling system has two main components: the pro-
grammable interrupt controller and the peripheral transaction server (PTS). The programmable
interrupt controller has a hardware priority scheme that can be modified by your software. Inter-
rupts that gahrough the interrupt controller are serviced by interrupt service routines that you
provide. The upper and lower interrupt vectors in special-purpose memory (see Chapter 5,
“Memory Partitions”) contain the lower 16 bits of the interrupt service routines’ addresses. The
CPU automatically adds FFOOOOH to the 16-bit vector in special-purpose memory to calculate the
address of the interrupt service routine, and then executes the routine. The peripheral transaction
server (PTS), a microcoded hardware interrupt processor, provides high-gpeoverhead in-

terrupt handling; it does not modify the stack or the PSW. You can configure most interrupts (ex-
cept NMI, trap, and unimplemented opcode) to be serviced by the PTS instead of the interrupt
controller.

The PTSsupports fouspecial microcoded routines that enable it to complete specific tasks in
much less time than an equivalent interrupt service routine can. It can transfer bytes or words,
either individually or in blocks, between any memory locations in page OOH and can generate
pulse-width modulated (PWM) signals. PTS interrupts have a higher priority than standard inter-
rupts and may temporarily suspend interrupt service routines.

A block of data called the PTS control block (PTSCB) contains the specific details for each PTS

routine (see “Initializing the PTS Control Blocks” on page 6-17). When a PTS interrupt occurs,
the priority encoder selects the appropriate vector and fetches the PTS control block (PTSCB).

I 6-1

8XC196NP, 80C196NU USER’'S MANUAL

Interrupt Pending or PTSSRV Bit Set

Return

PTS
Enabled?

No
Return

Priority
Encoder
Highest Priority Interrupt

Priority
Encoder

Highest Priority PTS Interrupt
Reset INT_PEND.x

Bit
| Reset PTSSRV.x | | Reset INT_PEND.x
Execute 1 PTS Cycle Bit Bit
(Microcoded) | |
PTSCOUNT on Stack
LIMP to
ISR

Return

Execute Interrupt
Service Routine

Clear PTSSEL.xBit
POP PC
* from Stack
Set PTSSRV.x Bit Return

v

Return

A0320-02

Figure 6-1. Flow Diagram for PTS and Standard Interrupts

6-2

Inu® STANDARD AND PTS INTERRUPTS

Figure 6-1 illustrates the interrupt processing flow. In this flow diagram, “INT_MASK” repre-
sents both the INT_MASK and INT_MASK1 registers, and “INT_PEND” represents both the
INT_PEND and INT_PEND1 registers.

6.2 INTERRUPT SIGNALS AND REGISTERS

Table 6-1 describes the external interrupt signals and Table 6-2 describes the control and status
registers for both the interrupt controller and PTS.

Table 6-1. Interrupt Signals

Port Pin Interrupt Signal Type Description
pP2.2 EXTINTO | External Interrupts
P2.4 EXTINT1

In normal operating mode, a rising edge on EXTINTx sets the
EXTINTx interrupt pending bit. EXTINTXx is sampled during
phase 2 (CLKOUT high). The minimum high time is one state
time.

In standby and powerdown modes, asserting the EXTINTx
signal for at least 50 ns causes the device to resume normal
operation. The interrupt need not be enabled, but the pin
must be configured as a special-function input (see “Bidirec-
tional Port Pin Configurations” on page 7-7). If the EXTINTx
interrupt is enabled, the CPU executes the interrupt service
routine. Otherwise, the CPU executes the instruction that
immediately follows the command that invoked the power-
saving mode.

In idle mode, asserting any enabled interrupt causes the
device to resume normal operation.

— NMI | Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI generates a
nonmaskable interrupt. NMI has the highest priority of all
prioritized interrupts. Assert NMI for greater than one state
time to guarantee that it is recognized.

P3.6 EXTINT2
P3.7 EXTINT3

Table 6-2. Interrupt and PTS Control and Status Registers

Mnemonic Address Description
EPA_MASK 1FAOH, 1FA1H EPA Interrupt Mask Register
This register enables/disables the four capture overrun interrupts
(OVRO-3).
EPA_PEND 1FA2H, 1FA3H EPA Interrupt Pending Register

The bits in this register are set by hardware to indicate that a
capture overrun has occurred.

INT_MASK 0008H Interrupt Mask Registers

INT_MASK1 0013H These registers enable/disable each maskable interrupt (that is,
each interrupt except unimplemented opcode, software trap, and
NMI).

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Table 6-2. Interrupt and PTS Control and Status Registers (Continued)

Mnemonic Address Description
INT_PEND 0009H Interrupt Pending Registers
INT_PEND1 0012H The bits in this register are set by hardware to indicate that an

interrupt is pending.

PSwW No direct access | Processor Status Word

This register contains one bit that globally enables or disables
servicing of all maskable interrupts and another that enables or
disables the PTS. These bits are set or cleared by executing the
enable interrupts (EI), disable interrupts (DI), enable PTS (EPTS),
and disable PTS (DPTS) instructions.

PTSSEL 0004H, 0005H PTS Select Register

This register selects either a PTS routine or a standard interrupt
service routine for each of the maskable interrupt requests.

PTSSRV 0006H, 0007H PTS Service Register

The bits in this register are set by hardware to request an end-of-
PTS interrupt.

6.3 INTERRUPT SOURCES AND PRIORITIES

Table 6-3 lists the interrupts sources, their default priorities (30 is highest and 0 s$),/@me

their vector addresses. The unimplemented opcode and software trap interrupts are not priori-
tized; they go directly to the interrupt controller for servicing. The priority encoder determines
the priority of all other pending interrupt requests. NMI has the highest priority of all prioritized
interrupts, PTS interrupts have the next highest priority, and standard interrupts have the lowest.
The priority encoder selects the highest priority pending request and trrepht®ntroller se-

lects the corresponding vector location in spepiabbose memory. Thigctor contains the start-

ing (base) address of the corresponding PTS control block (PTSCB) or interrupt service routine.
PTSCBs must be located on a quad-word boundary in the internal register file. Interrupt service
routines must begin execution in page FFH, but can jump anywhere after the initial vector is tak-
en.

6.3.1 Special Interrupts

This microcontroller has three special interrupt sources that are always enabled: ueimgdem
opcode, software trap, and NMI. These interrupts are not affected by the El (enable interrupts)
and DI (disable interrupts) instructions, and they cannot be masked. All of these interrupts are
serviced by the interrupt controller; they cannot be assigned to the PTS. Of these three, only NMI
goes through the tnasition detector and priority encoder. The other two special interrupts go di-
rectly to the interrupt controller for servicing. Be aware that these interrupts are often assigned to
special functions in development tools.

Inu® STANDARD AND PTS INTERRUPTS

Table 6-3. Interrupt Sources, Vectors, and Priorities

Interrug;g(i)getroller PTS Service
Interrupt Source Mnemonic g 5 ? g 5 ?
s 3 Q 5 3 Q
=z > 5_ =z > 5_
Nonmaskable Interrupt NMI INT15 FF203EH | 30 — — —
EXTINT3 Pin EXTINT3 INT14 FF203CH 14 PTS14 FF205CH | 29
EXTINT2 Pin EXTINT2 INT13 FF203AH 13 PTS13 FF205AH | 28
CE: aAn ﬁZFg‘:ﬁ gve"“” n OVR2 31 | INT12 | FF2038H | 12 | PTS12 | FF2058H | 27
CEhP aAn ﬁ‘:f’g”?; ive"”” n OVRO_1T | INTI1 | FF2036H | 11 | PTS1L | FF2056H | 26
EPA Capture/Compare 3 EPA3 INT10 FF2034H 10 PTS10 FF2054H | 25
EPA Capture/Compare 2 EPA2 INTO9 FF2032H 09 PTS09 FF2052H | 24
EPA Capture/Compare 1 EPAl1 INTO8 FF2030H 08 PTS08 FF2050H | 23
Unimplemented Opcode — — FF2012H — — — —
Software TRAP Instruction — — OFF2010H | — — — —
EPA Capture/Compare 0 EPAO INTO7 FF200EH 07 PTSO07 FF204EH | 22
SIO Receive RI INTO6 FF200CH 06 PTS06 FF204CH | 21
SIO Transmit TI INTO5 FF200AH 05 PTS05 FF204AH | 20
EXTINT1 Pin EXTINT1 INTO4 FF2008H 04 PTS04 FF2048H | 19
EXTINTO Pin EXTINTO INTO3 FF2006H 03 PTS03 FF2046H | 18
Reserved Reserved INTO2 FF2004H 02 PTS02 FF2044H | 17
Timer 2 Overflow OVRTM2 INTO1 FF2002H 01 PTS01 FF2042H 16
Timer 1 Overflow OVRTM1 INTOO FF2000H 00 PTS00 FF2040H 15

T PTS service is not recommended because the PTS cannot determine the source of shared interrupts.

6.3.1.1 Unimplemented Opcode

If the CPU attempts to execute an unimplemented opcode, an indirect theotaghlocation
FF2012H occurs. This prevents random software execution during hardware and software fail-
ures. The interrupt vector should contain the starting address of an erioe that will not fur-

ther corrupt anleeadyerroneous silation. The unimplemented opcode interrupt prevents other
interrupt requests from being acknowledged until after the next instruction is executed.

6.3.1.2 Software Trap

The TRAP instruction (opcode F7H) causes an interrupt call that is vectooeghhocation
FF2010H. The TRAP instruction provides a single-instruction interrupt that is useful when de-
bugging software or generating software interrupts. The TRAP instruction prevents other inter-
rupt requests from being acknowledged until after the next instruction is executed.

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

6.3.1.3 NMI

The external NMI pin generates a nonmaskable interrupt for implementation of critical interrupt
routines. NMI has the highest priority of all the prioritized interrupts. It is passed directly from
the transition detector to the priority encoder, and it vectors indirdctygh location FF203EH.

The NMI pin is sampled during phase 2 (CLKOUT high) and is latched internally. Because inter-
rupts are edge-triggered, only one interrupt is generated, even if the pin is held high. If your sys-
tem does not use the NMI interrupt, connect the NMI pin 4ot® prevent spurious interrupts.

6.3.2 External Interrupt Pins

The external interrupt pins are multiplexed with port pins as follows: EXTINTO/P2.2,
EXTINT1/P2.4, EXTINT2/P3.6, and EXTINT3/P3.7. Writing to a bit in the MODE register

also sets the corresponding external interrupt bit in the interrupt pending register. To prevent false
interrupts, first configure the port pins and then clear the interrupt pending registers before glo-
bally enabling interrupts. See “Design Considerations for External Interrupt Inputs” on page
7-11.

The interrupt detection logic can generate an interrupt if a momentary negative glitch occurs
while the input pin is held high. For this reason, interrupt inpbtaild normally be held low
when they are inactive.

6.3.3 Multiplexed Interrupt Sources

The overrun errors for the four capture/compare modules are multiplexed irtaemapt pars:
OVRO0_1 (channels 0 and 1) and OVR2_3 (channels 2 and 3). Generally, PTS interrupt service is
not useful for multiplexed inteupts because the PTSannot readily detrmine the interrupt
source. Your interrupt seice routine should read the EPA_PEND register to determine the
source of the interrupt and to ensure thaadditional interrupts are pending before executing the
return instruction. Chapter 10, “Event Processor Array (EPA),” discusses the EPA interrupts in
detail.

6.3.4 End-of-PTS Interrupts

When the PTSCOUNT register decrements to zero at the end of a single transfer or block transfer
routine, hardware clears the corresponding bitin the PTSSEL register, which disables PTS service
for that interrupt. It also sets the corresponding PTSSRYV bit, requesting an end-of-PTS interrupt.
An end-of-PTS interrupt has the same priority as a corresponding standard interrupt. The interrupt
controller processes it with an interrupt service routine that is stored in the memory location
pointed to by the standard interrupt vector. For example, the PTS services the SIO transmit inter-

6-6 I

Int€|® STANDARD AND PTS INTERRUPTS

rupt if PTSSEL.5 is set. The interrupt vectors through FF204AHtheutorresponding eraf-

PTS interrupt vectors through FF200AH, the standard SIO transmit interrupt vector. When the
end-of-PTS interrupt vectors to the interrupt service routine, hardware clears the PTSSRV bit. The
end-of-PTS interrupt service routine should reinitialize the PTSCB, if required, and set the appro-
priate PTSSEL bit to re-enable PTS interrupt service.

6.4 INTERRUPT LATENCY

Interrupt latency is the total delay between the time that the interrupt request is generated (not
acknowledged) and the time that the device begins executing either the standard interrupt service
routine or the PTS interrupt service routine. A delay occurs between the time that the interrupt
request is detected and the time that it is acknowledged. An interrupt request is acknowledged
when the current instruction finishes executing. If the interrupt request occurs during one of the
last four state times of the instruction, it may not be acknowledged until after the next instruction
finishes. This additional delay occurs because instructions are prefetched and prepared a few state
times before they are executed. Thus, the maximum delay between interrupt request and ac-
knowledgment is four state times plus the execution time of the next instruction.

When a standard interrupt request is acknowledged, the hardware clears the interrupt pending bit
and forces a call to the address contained in the corresponding interrupt vector. When a PTS in-
terrupt request is acknowledged, the hardware immediately vectors to the PTSCB and begins ex-
ecuting the PTS routine.

6.4.1 Situations that Increase Interrupt Latency

If an interrupt request occurs while any of the following instructions are executing, the interrupt
will not be acknowledged until after tiext instruction is executed:

¢ the signed prefix opcode (FE) for the two-byte, signed multiply and divide instructions

¢ any of these eighprotectedinstructions DI, El, DPTS, EPTS, POPA, POPF, PUSHA,
PUSHF (see Appendix A for descriptions of these instructions)

¢ any of the read-modify-write instructions: AND, ANDB, OR, ORB, XOR, XORB

Both the unimplemented opcode interrupt and the software trap interrupt prevent other interrupt
requests from being acknowledged until after the next instruction is executed.

Each PTS cycle within a PTS routine cannot be interrupted. A PTS cycle is the entire PTS re-
sponse to aingle interrupt request. In block transfer mode, a PTS cycle consists of the transfer
of an entire block of bytes or words. This means a worst-case latency of 500 states if you assume
a block transfer of 32 words from one external memory location to another. See Table 6-4 on page
6-10 for PTS cycle execution times.

I 6-7

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

6.4.2 Calculating Latency

The maximum latency occurs when the interrupt request occurs too late for acknowledgment fol-
lowing the current instruction. The following worst-case calculation assumes that the current in-
struction is not a protected instruction. To calculate latency, add the following terms:

* Time for the current instruction to finish execution (4 state times).

— If this is a protected instruction, the instruction that follows it must also execute before
the interrupt can be acknowledged. Add theceien time of the instruction that
follows a protected instruction.

* Time for the next instruction to execute. (The longest instruction, NORML, takes 39 state
times. However, the BMOV instruction could actually take longer if it is transferring a large
block of data. If your code contains routines that transfer large blocks of data, you may get a
more accurate worst-case value if you use the BMOV instruction in your calculation instead
of NORML. See Appendix A for instruction execution times.)

* For standard inteupts only, the response time to get the vector and force the call

— in 64-Kbyte mode, 11 state times for an internal stack or 13 for an external stack
(assuming a zero-wait-state bus)

— in 1-Mbyte mode, 15 state times for an internal stack or 18 for an external stack
(assuming a zero-wait-state bus)

6.4.2.1 Standard Interrupt Latency

In 64-Kbyte mode, the worst-case delay for a standard interrupt is 56 state times (4 + 39 + 11 +
2) if the stack is in external memory (Figure 6-2). In 1-Mbyte mode, the worst-case delay increas-
es to 61 state times (4 + 39 + 15 + 3) (Figure 6-2). This delay time does not include the time need-
ed to execute the first instruction in the interrupt serviceimeutr to execute the instruction
following a protected instruction.

Inu® STANDARD AND PTS INTERRUPTS

1-MbyteMode 4 3 2 1 «€«——39— > <« 15— «— 3 > << 12> <« 6 :I
64-KbyteMode 4 3 2 1 €——39 — << 1l><— 2 > < 12-><-6

: Ending "NORML" End Callis If Stack |« " If Stack
Execution /Instruction "NORML" | Forced External PUSHA External

Interrupt Routine
Interrupt _|
Interrupt
Pending Set Cleared
Respongg _,l 1-Mbyte Mode 61 State Times -
Time " 64-Kbyte Mode 56 State Times i

A0261-02

Figure 6-2. Standard Interr upt Response Time

6.4.2.2 PTS Interrupt Latency

In both 64-Kbyte and 1-Mbyte modes, the maximum delay for a PTS interrupt is 43 state times
(4 + 39) as shown in Figure 6-3. This delay time does not include the added delay if a protected
instruction is being executed or if a PTS request is alregutpgress. See Table 6-4 for execution
times for PTS cycles.

64-Kbyte or 1-Mbyte Mode 4 3 2 1|€——39———>|

" Ending "NORML" End Vector to PTS
Execution /Instruction "NORML" Control Block PTS PTS

PTS Interrupt Routine
Interrupt __|
Interrupt Set Cleared
Pending Bit

Latency Time
43 State Times
64-Kbyte or 1-Mbyte Mode

Y

Response Time |-

A0262-02

Figure 6-3. PTS Interrupt Res ponse Time

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Table 6-4. Execution Times for PTS Cycles

PTS Mode Execution Time (in State Times)
Single transfer mode
register/registert 18 per byte or word transfer + 1
memory/register’ 21 per byte or word transfer + 1
memory/memoryt 24 per byte or word transfer + 1
Block transfer mode
register/registert 13 + 7 per byte or word transfer (1 minimum)
memory/register’ 16 + 7 per byte or word transfer (1 minimum)
memory/memory’t 19 + 7 per byte or word transfer (1 minimum)
PWM remap mode 15
PWM toggle mode 15

T Register indicates an access to the register file or peripheral SFR. Memory indicates an access to a
memory-mapped register, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

6.5 PROGRAMMING THE INTERRUPTS

The PTS select register (PTSSEL) selects either PTS service or a standard software interrupt ser-
vice routine for each of the maskable interrupt requests (see Figure 6-4). The interrupt mask reg-
isters, INT_MASK and INT_MASK1, enable or disable (mask) individual interrupts (see
Figures 6-5 and 6-6). With the exception of the nonmaskable interrupt (NMI) bit
(INT_MASKL1.7), setting a bit enables the corresponding interrupt source and clearing a bit dis-
ables the source.

To disable any interrupt, clear its mask bit. To enable amrugefor standard itrrupt service,
set its mask bit and clear its PTS select bit. To enable an interrupt for PTS service, set both the
mask bit and the PTS select bit.

When you assign an interrupt to the PTS, you must set up a PTS control block (PTSCB) for each
interrupt source (see “Initializing the PTS Control Blocks” on page 6-17) and use the EPTS in-
struction to globally enable the PTS. Whexu assign an interrupt to a standard software service
routine, use the El (enable interrupts) instruction to globally enable interrupt servicing.

NOTE

The DI (disable interrupts) instruction does not disable PTS service. However,
it does disable service for the eafiPTS interrupt request. If an interrupt
request occurs while interrupts are disabled, the corresponding pending bit is
set in the INT_PEND or INT_PEND1 register.

6-10 [|

Inu® STANDARD AND PTS INTERRUPTS

PTSSEL Address: 0004H
Reset State: 0000H
The PTS select (PTSSEL) register selects either a PTS microcode routine or a standard interrupt
service routine for each interrupt request. Setting a bit selects a PTS microcode routine; clearing a bit
selects a standard interrupt service routine. When PTSCOUNT reaches zero, hardware clears the
corresponding PTSSEL bit. The PTSSEL bit must be set manually to re-enable the PTS channel.

15 8
| — [Extints | Extnt2 [OVR2.3 || OvRO1 | EPAS | EPA2 | EPAL |
7 0
| EPro | R | T | EXTINTL || EXTINTO | — | OVRTM2 | OVRTMI1 |

Bit .
Number Function
15,2 Reserved; for compatibility with future devices, write zero to this bit.
14:3 Setting a bit causes the corresponding interrupt to be handled by a PTS microcode
1:0 routine.
The PTS interrupt vector locations are as follows:
Bit Mnemonic Interrupt PTS Vector
EXTINT3 EXTINT3 pin FF205CH
EXTINT2 EXTINT2 pin FF205AH
OVR2_3t EPA Capture Channel 2 or 3 Overrun FF2058H
OVRO_1f EPA Capture Channel 0 or 1 Overrun FF2056H
EPA3 EPA Capture/Compare Channel 3 FF2054H
EPA2 EPA Capture/Compare Channel 2 FF2052H
EPA1 EPA Capture/Compare Channel 1 FF2050H
EPAO EPA Capture/Compare Channel O FF204EH
RI SIO Receive FF204CH
TI SIO Transmit FF204AH
EXTINT1 EXTINT1 pin FF2048H
EXTINTO EXTINTO pin FF2046H
OVRTM2 Timer 2 Overflow/ Underflow FF2042H
OVRTM1 Timer 1 Overflow/ Underflow FF2040H
T PTS service is not recommended because the PTS cannot determine the source of
shared interrupts.

Figure 6-4. PTS Select (PTSSEL) Register

6.5.1 Programming Considerations for Multiplexed Interrupts

An overrun on the EPA capture compare channels can generate thgexedt captur@verrun
interrupts (OVRO_1 and OVR2_3). Write to the EPA_MASK (Figure 10-11 on page 10-22) reg-
ister to enable or disable the multiplexed interrupt sources and the INSKM register to en-

able or disable the OVRO_1 and OVR2_3 interrupts.

PTS service is not recommended for multiplexed interrupts because it cannot determine the inter-
rupt source.

[| 6-11

8XC196NP, 80C196NU USER’'S MANUAL Inu®

INT_MASK Address: 0008H
Reset State: 00H
The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK is the
low byte of the processor status word (PSW); therefore, PUSHF or PUSHA saves this register on the
stack and POPF or POPA restores it.
7 0
EPAO RI TI EXTINT1 ‘ ‘ EXTINTO — OVRTM2 | OVRTM1
Bit .
Number Function
7:3 Setting a bit enables the corresponding interrupt.
1.0 The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
EPAO EPA Capture/Compare Channel O FF200EH
RI SIO Receive FF200CH
TI SIO Transmit FF200AH
EXTINT1 EXTINT1 pin FF2008H
EXTINTO EXTINTO pin FF2006H
OVRTM2 Timer 2 Overflow/Underflow FF2002H
OVRTM1 Timer 1 Overflow/Underflow FF2000H
2 Reserved; for compatibility with future devices, write zero to this bit.

Figure 6-5. Interrupt Mask (INT_M ASK) Register

6-12

Inu® STANDARD AND PTS INTERRUPTS

INT_MASK1 Address: 0013H
Reset State: O0H

The interrupt mask 1 (INT_MASK1) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA
restores it.

7 0
NMI EXTINT3 | EXTINT2 | OVR2_3 ‘ ‘ OVRO_1 EPA3 EPA2 EPAL
Bit .

Number Function
7:0 Setting a bit enables the corresponding interrupt.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt FF203EH
EXTINT3 EXTINT3 pin FF203CH
EXTINT2 EXTINT2 pin FF203AH
OVR2_3t EPA Capture Channel 2 or 3 Overrun FF2038H
OVRO_1f EPA Capture Channel 0 or 1 Overrun FF2036H
EPA3 EPA Capture/Compare Channel 3 FF2034H
EPA2 EPA Capture/Compare Channel 2 FF2032H
EPA1 EPA Capture/Compare Channel 1 FF2030H
T An overrun on the EPA capture/compare channels can generate the multiplexed
capture overrun interrupts. The EPA_MASK and EPA_PEND registers decode these
multiplexed interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

Figure 6-6. Interrupt Mask 1 (INT_MASK1) Regi ster

6.5.2 Modifying Interrupt Priorities

Your software can modify the default priorities of maskable interrupts by controlling the interrupt
mask registers (INT_MASK and INT_MASK1). For example, you can specify which interrupts,
if any, can interrupt an interrupt service routine. The following code shows one way to prevent
all interrupts, except EXTINT3 (priority 14), from interrupting an SIO receive interrupt service
routine (priority 06).

[| 6-13

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

SERIAL_RI_ISR:

PUSHA ; Save PSW, INT_MASK, INT_MASK1, & WSR
; (this disables all interrupts)

LDB INT_MASK1, #01000000B ; Enable EXTINT3 only

El ; Enable interrupt servicing

; Service the Rl interrupt

POPA ; Restore PSW, INT_MASK, INT_MASK1, &
; WSR registers
RET
CSEG AT OFF200CH ; fill in interrupt table
DCW LSW SERIAL_RI_ISR ; LSW is a compiler directive that means
; least-significant word of vector address
END

Note that locatio-F200CH in the interrupt véar table must be loaded with the value of the la-
bel SERIAL_RI_ISR before the interrupt request occurs and that the receive interrupt must be
enabled for this routine to execute.

This routine, like all interrupt service routines, is handled in the following manner:

1. After the hardware detects and prioritizes an interrupt request, it generates and executes an
interrupt call. This pushes the program counter ah¢ostack and then loads it with the
contents of the vector corresponding to the highest priority, pending, unmasked interrupt.
The hardware will not allow another interrupt call until after the first instruction of the
interrupt service routine is executed.

2. The PUSHA instruction saves the contents of the PSW, INT_MASK, INT_MASK1, and
window selection register (WSR) onto the stack and then clears the PSW, INT_MASK,
and INT_MASK1 registers. In addition to the arithmetic flatte PSW contains the
global interrupt enable bit (I) and the PTS enable bit (PSE). By clearing the PSW and the
interrupt mask registers, PUSHA effectively masks all maskable interrupts, disables
standard interrupt servicing, and disables the PTS. Because PUSHA is a protected
instruction, it also inhibits interrupt calls urdifter the next instruction executes.

3. The LDB INT_MASK1 instruction enables those interrupts that you choose to allow to
interrupt the service routine. In this example, onTENT3 can interrupt the receive
interrupt service routine. By enabling or disabling interrupts, the software establishes its
own interrupt servicing priorities.

4. The Elinstruction re-enables interrupt processing and inhibits interrupt calls until after the
next instruction executes.

5. The actual interrupt service routine executes within the priority structure established by
the software.

6-14

Int€|® STANDARD AND PTS INTERRUPTS

6. Atthe end of the service routine, the POPA instruction restores the original contents of the
PSW, INT_MASK, INT_MASK1, and WSR registers; any changes made to these
registers during the interrupt service routine are overwritten. Because interrupt calls
cannot occur immediately following a POPA instruction, the last instruction (RET) will
execute before another interrupt call can occur.

Notice that the “preamble” and exit code for this routine does not save or restore register RAM.
The interrupt service roime is assumed to allocate @@n private set of igisters from the lower
register file. The general-purpose register RAM in the lower register file makes this quite practi-
cal. In addition, the RAM in the upper register file is availableniredowing(see “Windowing”

on page 5-13).

6.5.3 Determining the Source of an Interrupt

When the transition detector detects an interrupt, it sets the corresponding bit in the INT_PEND
or INT_PENDLI register (Figures 6-7 and 6-8). This bit is set even if the individual interrupt is
disabled (masked). The pending bit is cleared when the program vectors to the interrupt service
routine. INT_PEND and INT_PEND1 can be read, to determine which interrupts are pending.
They can also be modified (written), either to clear pending interrupts or to generate interrupts
under software control. However, we recommend the use of the read-modify-write instructions,
such as AND and OR, to modify these registers.

ANDB INT_PEND, #11111110B ; Clears the OVRTML1 pending bit
ORB INT_PEND, #00000001B ; Sets the OVRTM1 pending bit

Other methods could result in a partial interrupt cycle. For example, an interrupt could occur dur-
ing an instruction sequence that loads the contents of the interrupt pending register into a tempo-
rary register, modifies the contents of the temporary register, and then writes the contents of the
temporary register back into the interrupt pending register. If the interrupt occurs during one of
the last four states of the second instruction, it will not be acknowledged untthaftmmpletion

of the third instruction. Because the third instruction overwrites the contents ofahraphpend-

ing register, the jump to the @trupt vector will not occur.

An overrun on the EPA capture compare channels can generate thgexedt captur®verrun

interrupts (OVRO_1 and OVR 3). Read the EPA_PENI@gister to determine the source of the
interrupt request (Figure 10-12 on page 10-23).

6-15

8XC196NP, 80C196NU USER’'S MANUAL

intel.

INT_PEND

Address: 0009H
Reset State: O0H

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
EPAO RI TI EXTINT1 ‘ ‘ EXTINTO — OVRTM2 | OVRTM1
Bit .
Number Function
7:3 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is
1:0 cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
EPAO EPA Capture/Compare Channel O FF200EH
RI SIO Receive FF200CH
TI SIO Transmit FF200AH
EXTINT1 EXTINT1 pin FF2008H
EXTINTO EXTINTO pin FF2006H
OVRTM2 Timer 2 Overflow/Underflow FF2002H
OVRTM1 Timer 1 Overflow/Underflow FF2000H
2 Reserved. This bit is undefined.

6-16

Figure 6-7. Interrupt Pending (INT_PEND) Register

Inu® STANDARD AND PTS INTERRUPTS

INT_PEND1 Address: 0012H
Reset State: O0H

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
NMI EXTINT3 | EXTINT2 | OVR2_3 ‘ ‘ OVRO_1 EPA3 EPA2 EPAL
Bit .

Number Function
7:0 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is

cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt FF203EH
EXTINT3 EXTINT3 pin FF203CH
EXTINT2 EXTINT2 pin FF203AH
OVR2_3t EPA Capture Channel 2 or 3 Overrun FF2038H
OVRO_1f EPA Capture Channel 0 or 1 Overrun FF2036H
EPA3 EPA Capture/Compare Channel 3 FF2034H
EPA2 EPA Capture/Compare Channel 2 FF2032H
EPA1 EPA Capture/Compare Channel 1 FF2030H

T An overrun on the EPA capture/compare channels can generate the multiplexed
capture overrun interrupts. The EPA_MASK and EPA_PEND registers decode these
multiplexed interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

Figure 6-8. Interrupt Pending 1 (INT_PEND1) Register

6.6 INITIALIZING THE PTS CONTROL BLOCKS

Each PTS interrupt requires a block of data, in register RAM, called the PTS control block
(PTSCB). The PTSCB identifies which PTS microcode routine will be invoked and sets up the
specific parameters for the routine. You must set up the PTSCB for each interruptsforee
enabling the corregmding PTS interrupts.

[| 6-17

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

The address of the first (lowest) PTSCB byte is stored in the PTS vector table in-ppguiale
memory (see “Special-purpose Memory” on page 5-6). Figure 6-9 shows the PTSCB for each
PTS mode. Unused PTSCB bhytes can be used as extra RAM.

NOTE

The PTSCB must be located in the internal register file. The location of the
first byte of the PTSCB must be aligned on a quad-word boundary (an address
evenly divisible by 8). Because the PTS uses nonextended addressing, it
cannot operate across page boundaries. For exan@8RC cannot point to

a location on page 05 while PTSDST points to page 00. In the 8XC196NP, all
nonextended data accesses will operate from the page defined by EP_REG.
For PTS routines, write 00H to EP_REG to select page 00H (see “Accessing
Data” on page 5-23). The 80C196NU forces all nonextended data accesses to
page 00H. You cannot use EP_REG to change pages.

Single Transfer Block Transfer Pwmgé)ggle PWI\,\/I/I()F:je‘emap

Unused Unused PTSCONST2 (H) Unused

Unused PTSBLOCK PTSCONST2 (L) Unused

PTSDST (H) PTSDST (H) PTSCONST1 (H) PTSCONST1 (H)

PTSDST (L) PTSDST (L) PTSCONST1 (L) PTSCONST1 (L)

PTSSRC (H) PTSSRC (H) PTSPTR1 (H) PTSPTR1 (H)

PTSSRC (L) PTSSRC (L) PTSPTR1 (L) PTSPTR1 (L)

PTSCON PTSCON PTSCON PTSCON
PTSVECT PTSCOUNT PTSCOUNT Unused Unused

Figure 6-9. PTS Cont rol Blocks

6.6.1 Specifying the PTS Count

For single and block transfer routines, the first location of the PTSCB contains an 8-bit value
called PTSCOUNT. This value defines the number of interrupts that will be serviced by the PTS
routine. The PTS decrements PTSCOUNT after each PTS cycle. When PTSCOUNT reaches zero,
hardware clears the corresponding PTSSEL bit and sets the PTSSRV bit (Figure 6-10), which re-
guests an end-of-PTS interrupt. The end-of-PTS interrupt service routine should reinitialize the
PTSCB, if required, and set the appropriate PTSSEL bit to re-enable PTS interrupt service.

6-18 I

Inu® STANDARD AND PTS INTERRUPTS

PTSSRV Address: 0006H

Reset State: 0000H
The PTS service (PTSSRV) register is used by the hardware to indicate that the final PTS interrupt
has been serviced by the PTS routine. When PTSCOUNT reaches zero, hardware clears the corre-
sponding PTSSEL bit and sets the PTSSRYV bit, which requests the end-of-PTS interrupt. When the
end-of-PTS interrupt is called, hardware clears the PTSSRYV bit. The PTSSEL bit must be set
manually to re-enable the PTS channel.

15 8
| — | ExTINT3 | EXTINT2 | OVR2.3 || OVRO_1 | EPA3 | EPA2 | EPAL |
7 0
| EPao | R | T | EXTINTL || EXTINTO | — | OVRTMIL | OVRTMZ |

Bit .
Number Function
15,2 Reserved. These bits are undefined.
14:3 A bit is set by hardware to request an end-of-PTS interrupt for the corresponding interrupt
1:0 through its standard interrupt vector.
The standard interrupt vector locations are as follows.
Bit Mnemonic Interrupt Standard Vector
EXTINT3 EXTINT3 Pin FF203CH
EXTINT2 EXTINT2 Pin FF203AH
OVR2_3f EPA Capture Channel 2 or 3 Overrun FF2038H
OVRO_1t EPA Capture Channel 0 or 1 Overrun FF2036H
EPA3 EPA Capture/Compare Channel 3 FF2034H
EPA2 EPA Capture/Compare Channel 2 FF2032H
EPA1 EPA Capture/Compare Channel 1 FF2030H
EPAO EPA Capture/Compare Channel O FF200EH
RI SIO Receive FF200CH
TI SIO Transmit FF200AH
EXTINT1 EXTINT1 pin FF2008H
EXTINTO EXTINTO pin FF2006H
OVRTM2 Timer 2 Overflow/Underflow FF2002H
OVRTM1 Timer 1 Overflow/Underflow FF2000H
T PTS service is not recommended for multiplexed interrupts. This bit is cleared when
both corresponding interrupt pending bits are cleared in EPA_PEND.

Figure 6-10. PTS Service (PTSSRV) Register

6.6.2 Selecting the PTS Mode

The second byte of each PTSCB is always an 8-bit value called PTSCON. Bits 57 select the PTS
mode (Figure 6-11). The function of bits 0—4 differ for each PTS mode. Refer to the sections that
describe each mode in detail to see the function of these bits. Table 6-4 on page 6-10 lists the cycle

execution times for each PT&ode.

6-19

8XC196NP, 80C196NU USER’'S MANUAL

intel.

PTSCON Address: PTSPCB + 1
The PTS control (PTSCON) register selects the PTS mode and sets up control functions for that
mode.
7 0
M2 M1 MO t ‘ ‘ t t t ‘ t
Bit Bit Function
Number Mnemonic
75 M2:0 PTS Mode

These bits select the PTS mode:

M2 M1 MO
0 block transfer
reserved

PWM toggle or remap
reserved

single transfer
reserved

reserved

reserved

RPRRROOOO
PR OORRO
RPORORORO

T The function of this bit depends upon which mode is selected. See the PTS control block description

in each PTS mode section.

Figure 6-11. PTS Mode Selection Bits (PTSCON Bits 7:5)

6.6.3 Single Transfer Mode

In single transfer mode, an interrupt causes the PTS to transfer a single byte or word (selected by
the BW bit in PTSCON) from one memory location to another. This mode is typically used with
serial /0O or synctonous serial I/O interrupts. It can also be used with the EPA to move captured
time values from the event-time register to internal REWfurther processing. See AP-445,
8XC196KR Peripherals: A User's Point of Vidar application examples with code. Figure 6-12

shows the PTS control block for single transfer mode.

6-20

Inu® STANDARD AND PTS INTERRUPTS

PTS Single Transfer Mode Control Block

In single transfer mode, the PTS control block contains a source and destination address (PTSSRC
and PTSDST), a control register (PTSCON), and a transfer count (PTSCOUNT).

7 0
Unused | o [o] o | o [o | o | o [o |
7 0
Unused | o [o] o | o [[o [o | o | o |
15 8
PTSDST (HI) ‘ PTS Destination Address (high byte) ‘
7 0
PTSDST (LO) ‘ PTS Destination Address (low byte) ‘
15 8
PTSSRC (HI) | PTS Source Address (high byte) |
7 0
PTSSRC (LO) ‘ PTS Source Address (low byte) ‘
7 0
PTSCON | M [wm | mo | Bw |[su | bu | s [oI |
7 0
PTSCOUNT ‘ Consecutive Byte or Word Transfers ‘
Register Location Function
PTSDST PTSCB + 4 | PTS Destination Address

Write the destination memory location to this register. A valid address is
any unreserved memory location within page 00H; however, it must
point to an even address if word transfers are selected.

PTSSRC PTSCB + 2 | PTS Source Address

Write the source memory location to this register. A valid address is any
unreserved memory location within page 00H; however, it must point to
an even address if word transfers are selected.

Figure 6-12. PTS Control Block — Single Transfer Mode

6-21

8XC196NP, 80C196NU USER’'S MANUAL Inu®

PTS Single Transfer Mode Control Block (Continued)

Register Location Function
PTSCON PTSCB +1 | PTS Control Bits
M2:0 | PTS Mode
M2 M1 MO
1 0 0 single transfer mode
BW Byte/Word Transfer
0 = word transfer
1 = byte transfer
sut Update PTSSRC
0 = reload original PTS source address after each byte or word
transfer
1 = retain current PTS source address after each byte or word
transfer
DUt Update PTSDST
0 = reload original PTS destination address after each byte or
word transfer
1 = retain current PTS destination address after each byte or
word transfer
St PTSSRC Autoincrement
0 = do notincrement the contents of PTSSRC after each byte
or word transfer
1 = increment the contents of PTSSRC after each byte or word
transfer
DIt PTSDST Autoincrement
0 = do not increment the contents of PTSDST after each byte
or word transfer
1 = increment the contents of PTSDST after each byte or word
transfer
PTSCOUNT | PTSCB + 0 | Consecutive Word or Byte Transfers
Defines the number of words or bytes that will be transferred during the
single transfer routine. Each word or byte transfer is one PTS cycle.
Maximum value is 255.

T The DU/DI bits and SU/SI bits are paired in single transfer mode. Each pair must be set or cleared
together. However, the two pairs, DU/DI and SU/SI, need not be equal.

Figure 6-12. PTS Control Block — Single Transfer Mode (Continued)

The PTSCB in Table 6-5 defines nine PTS cycles. Each cycle moves a single wolataton

20H to an external memory location. The PTS transfers the first word to location 6000H. Then it
increments and updates the deastion address and decrements the PTSCOUNT register; it does
not increment the source address. When the second cycle begins, the PTS moveswosdcond
from location 20H to location 6002H. When PTSCOUNT equals zero, the PTS will have filled

locations ®00—-600FH, and an end-of-PTS interrupt inegrated.

6-22

Inu® STANDARD AND PTS INTERRUPTS

Table 6-5. Single Transfer Mode PTSCB
Unused

Unused
PTSDST (HI) = 60H
PTSDST (LO) = 00H
PTSSRC (HI) = 00H
PTSSRC (LO) = 20H
PTSCON = 85H (Mode = 100, BW =0, SI/SU =0, DI/DU = 1)
PTSCOUNT = 09H

6.6.4 Block Transfer Mode

In block transfer mode, an interrupt causes the PTS to move a block of bytes or words from one
memory location to another. See AP-488C196KR Peripherals: A User’s Point of Vidar ap-
plication examples with code. Figure 6-13 shows the PTS control block for block transfer modes.

In this mode, each PTS cycle consists of the transfer of an entire block of bytes or words. Because
a PTS cycle cannot be interrupted, the block transfer mode can create long interrupt latency. The
worst-case latency could be as high as 500 states, if you assume a block transfer of 32 words from
one external memory location to another, using an 8-bit bus with no wait states. See Table 6-4 on
page 6-10 for execution times of PTS cycles.

The PTSCB in Table 6-6 sets up three PTS cycles that will transfer five bytes from memory loca-
tions 20—24H to 6000-6004¢dycle 1),6005-6009Hcycle 2), and 600A—-600EH (cycle 3). The
source and destiriah are incremented after each byte transfer, but the original source address is
reloaded into PTSSRC at the end of each block-transfer cycle. In this routine, the PTS always gets
the first byte from location 20H.

Table 6-6. Block Transfer Mode PTSCB
Unused

PTSBLOCK = 05H

PTSDST (HI) = 60H

PTSDST (LO) = 00H

PTSSRC (HI) = 00H

PTSSRC (LO) = 20H

PTSCON = 17H (Mode = 000; DI, SI, DU, BW = 1; SU = 0)

PTSCOUNT =03H

I 6-23

8XC196NP, 80C196NU USER’'S MANUAL Inu®

PTS Block Transfer Mode Control Block

In block transfer mode, the PTS control block contains a block size (PTSBLOCK), a source and
destination address (PTSSRC and PTSDST), a control register (PTSCON), and a transfer count
(PTSCOUNT).

7 0
Unused | o [o] o | o [[o [o | o | o |
7 0
PTSBLOCK | PTS Block Size |
15 8
PTSDST (HI) ‘ PTS Destination Address (high byte) ‘
7 0
PTSDST (LO) ‘ PTS Destination Address (low byte) ‘
15 8
PTSSRC (HI) \ PTS Source Address (high byte) \
7 0
PTSSRC (LO) ‘ PTS Source Address (low byte) ‘
7 0
PTSCON | M2 | ma | m | Bw [[su [bu | s | D |
7 0
PTSCOUNT ‘ Consecutive Block Transfers ‘
Register Location Function

PTSBLOCK | PTSCB +6 | PTS Block Size

Specifies the number of bytes or words in each block. Valid values are
1-32, inclusive.

PTSDST PTSCB + 4 | PTS Destination Address

Write the destination memory location to this register. A valid address is
any unreserved memory location within page 00H; however, it must
point to an even address if word transfers are selected.

PTSSRC PTSCB + 2 | PTS Source Address

Write the source memory location to this register. A valid address is any
unreserved memory location within page 00H; however, it must point to
an even address if word transfers are selected.

Figure 6-13. PTS Control Block — Block Transfer Mode

6-24

Inu® STANDARD AND PTS INTERRUPTS

PTS Block Transfer Mode Control Block (Continued)

Register Location Function

PTSCON PTSCB +1 | PTS Control Bits

M2:0 | PTS Mode
These bits select the PTS mode:

M2 M1 MO
0 0 0 block transfer mode

BW Byte/Word Transfer

0 = word transfer
1 = byte transfer

SuU Update PTSSRC

0 = reload original PTS source address after each block
transfer is complete

1 = retain current PTS source address after each block transfer
is complete

DU Update PTSDST

0 = reload original PTS destination address after each block
transfer is complete

1 = retain current PTS destination address after each block
transfer is complete

Sl PTSSRC Autoincrement

0 = do not increment the contents of PTSSRC after each byte
or word transfer

1 = increment the contents of PTSSRC after each byte or word
transfer

DI PTSDST Autoincrement

0 = do not increment the contents of PTSDST after each byte
or word transfer

1 = increment the contents of PTSDST after each byte or word
transfer

PTSCOUNT | PTSCB + 0 | Consecutive Block Transfers

Defines the number of blocks that will be transferred during the block
transfer routine. Each block transfer is one PTS cycle. Maximum number
is 255.

Figure 6-13. PTS Control Block — Block Transfer = Mode (Continued)

[| 6-25

8XC196NP, 80C196NU USER’'S MANUAL Inu®

6.6.5 PWM Modes

The PWM toggle and PWM remap modes are designed for use with the event processor array
(EPA) to generate pulse-width modulated (PWM) output signals. These modes can also be used
with an interrupt signal from any other source. The PWM toggle mode uses a single EPA channel
to generate a PWM signal. The PWM remap mode uses two EPA channels, but it can generate
signals with duty cycles closer to 0% or 100% than are possible with the PWM toggle mode. Ta-
ble 6-7 compares the two PWM modes. For code examples, see ABX@E6KR Peripherals:

A User’s Point of Viewand “EPA PWM Output Program” on page 10-26.

Table 6-7. Comparison of PWM Modes

PWM Toggle Mode PWM Remap Mode
Uses a single EPA channel. Uses two EPA channels.
Reads the location specified by PTSPTR1 Reads the location specified by PTSPTR1
(usually EPAX_TIME). (usually EPAX_TIME).
Adds one of two values to the location specified by | Adds the value in PTSCONSTL to the location
PTSPTRL. If TBIT is clear, it adds the value in specified by PTSPTR1.
PTSCONSTL. If TBIT is set, it adds the value in
PTSCONST2.
Stores the sum back into the location specified by Stores the sum back into the location specified by
PTSPTR1. PTSPTR1.
Toggles TBIT. Toggles the unused TBIT.

Figure 6-14 illustrates a generic PWM waveform. The length of an entire PWM output pulse is
T2. The time the output is “on” is T1; the time the output is “off’ is T2 — T1. The formulas for
frequency and duty cycle are shown below. In most applications, the frequency is held constant
and the duty cycle is varied to change the average value of the waveform.

1
Frequency, in Hertz = —
a y T2

T1
Duty Cycle = — x100%
T2

6-26

Inu® STANDARD AND PTS INTERRUPTS

Output Value
1 on off on off
0
0 T1 T2 T2+T1 time
On-time =T1 Off—timevz T2-T1

A0263-02

Figure 6-14. A Generic PWM Waveform

The PWM modes do not use a PTSCOUNT register to specify the number of consecutive PTS
cycles. To stop producing the PWM output, first clear the PTS8H it to disable PTS service
for the interrupt and then use the interrupt service routine to reconfigure the EPA channel.

6.6.5.1 PWM Toggle Mode Example

Figure 6-15 shows the PTS control block for PWM toggle mode. To generate a PWM waveform
using PWM toggle mode and EPAO, complete the following procedure. This example uses the
values stored in CSTOREL and CSTORE2 to control the frequency and duty cycle of a PWM.

1. Disable the interrupts and the PTS. The DI instruction disables all standard interrupts; the
DPTS instruction disables the PTS.

2. Store the on-time value (T1) in CSTOREL.
Store the off-time value (T2 — T1) in CSTOREZ2.

4. Set upthe PTSCB as shown in Table 6-8.
— Load PTSCON with 43H (selects PWM toggle mode, initial TBIT value = 1).
— Set up PTSPTR1 to point to EPAO_TIME (the EPAO event-time register).
— Load PTSCONST1 with the on-time value (T1) from CSTORE1.
— Load PTSCONST2 with the off-time value (T2 — T1) from CSTORE2.

I 6-27

8XC196NP, 80C196NU USER’'S MANUAL Inu®

6-28

Table 6-8. PWM Toggle Mode PTSCB
PTSCONST2 (HI) = T2 — T1 (HI)
PTSCONST2 (LO) = T2 — T1 (LO)
PTSCONST1 (HI) = T1 (HI)
PTSCONST1 (LO) = T1 (LO)

PTSPTR1 (HI) = 1FH
PTSPTR1 (LO) = 82H
PTSCON = 43H (Mode = 010, TMOD =1, TBIT = 1)

Unused

Configure P1.0 to serve as the EPAO output.

— Clear P1_DIR.0 (selects output).

— Set P1_MODE.O (selects the EPAO special-function signal).
— Set P1_REG.O0 (initializes the output to “1").

Set up EPAO.

— Load EPAO_CON with 0078H (timer 1, compare, toggle output pin, re-enable).

— Load EPAO_TIME with the value in PTSCONST1 (selects T1 as first event time).

— Load TLICONTROL with C2H (enables timer 1, selects up counting at f/4, and enables
the divide-by-four prescaler).

Enable the EPAO interrupt and select PTS service for it.

— Set INT_MASK.7.

— Set PTSSEL.7.

Enable the interrupts and the PTS. Theifstruction enables interrupts; the EPTS
instruction enables the PTS.

intel.

STANDARD AND PTS INTERRUPTS

PTS PWM Toggle Mode Control Block

In PWM toggle mode, the PTS uses a single EPA channel to generate a pulse-width modulated (PWM)

output signal. The control block contains registers that contain the PWM on-time (PTSCONST1), the
PWM off-time (PTSCONST2),

the address pointer (PTSPTR1), and a control register (PTSCON).

7 0
PTSCONST2 (H) \ PWM Off-time (high byte) |
7 0
PTSCONST2 (L) \ PWM Off-time (low byte) \
15 8
PTSCONSTL (H) ‘ PWM On-time (high byte) ‘
7 0
PTSCONSTL (L) \ PWM On-time (low byte) |
15 8
PTSPTRL (H) \ Pointer 1 Value (high byte) \
7 0
PTSPTRL (L) ‘ Pointer 1 Value (low byte) ‘
7 0
PTSCON | m2 | v [m | — || — [— |[mvop] TBIT |
7 0
Unused | o | o [o o[o]o] o] o]
Register Location Function
PTSCONST2 | PTSCB + 6 | PWM Off-time
Write the desired PWM off-time to these bits.
PTSCONST1 | PTSCB + 4 | PWM On-time
Write the desired PWM on-time to these bits.
PTSPTR1 PTSCB + 2 | Pointer 1 Value
These bits point to a memory location, usually EPAx_TIME. PTSPTR1
can point to any unreserved memory location within page 00H.

Figure 6-15. PTS Control Block — PWM Toggle

Mode

6-29

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

PTS PWM Toggle Mode Control Block (Continued)

Register Location Function

PTSCON PTSCB + 1 | PTS Control Bits

M2:0 PTS Mode

These bits specify the PTS mode:
M2 M1 MO

0 1 0 PWM

TMOD | Toggle Mode Select

1= PWM toggle mode

TBIT Toggle Bit Initial Value
Defines the initial value of TBIT.

0 = selects initial value as zero

1 = selects initial value as one

The TBIT value determines whether PTSCONST1 or
PTSCONST2 is added to the PTSPTR1 value:

0 = PTSCONST1 is added to PTSPTR1

1 =PTSCONST2 is added to PTSPTR1

Reading this bit returns the current value of TBIT, which is
toggled by hardware at the end of each PWM toggle cycle.

Figure 6-15. PTS Control Block — PWM Toggle Mode (Continued)

Figure 6-16 is a flow diagram of the EPA and PTS operations for this example. Operation begins
when the timer is enabled tahe= 0 in Figure 6-14 on page 6-27) by the write to TLCONTROL.
The first timer match occurs tine= T1. The EPA toggles the output pin to zero and generates
an interrupt to initiate the first PTS cycle.
PWM Toggle Cycle 1.Because TBIT is initialized to one, the PTS adds the off-time value
(T2 - T1) to EPAO_TIME and toggles TBIT to zero.

The second timer match occurdiate= T2 (the end of one complete PWM pulse). The EPA tog-
gles the output to one and generates an interrupt to initiate the second PTS cycle.
PWM Toggle Cycle 2.Because TBIT is zero, the PTS adds the on-time value (T1) to
EPAOQO_TIME and toggles the TBIT to one.

The next timer match occurstathe= T2 + T1. The EPA toggles the output to zero and initiates

the third PTS cycle. The PTS actions are the same as in cycle 1, and generation of the PWM output
continues with PTS cycle 1 and cycle 2 alternating.

6-30

Inu® STANDARD AND PTS INTERRUPTS

EPA
PTS Cycle
\ i
EPAQO_TIME = EPAO_TIME + T1 EPAO_TIME = EPAO_TIME + (T2 - T1)
Y
Toggle TBIT

A2552-02

Figure 6-16. EPA and PTS Operations for the PWM Toggle Mode Example

You can modify the duty cycle without interrupting the PWM operation. To change the duty cycle
during a PWM cycle, the PTS service routine should write new T1 and T2 — T1 values to
CSTORE1 and CSTOREZ2 and select normal interrupt service for the next EPAO interrupt. When
the next timer match occurs, the output is toggled, and the device executes a normal interrupt ser-
vice routine, which performs these operations:

1. The routine writes the new value of T1 (in CSTORE1) to PTSCONST1 and the new value
of T1 — T2 (in CSTOREZ2) to PTSCONST2.

2. It selects PTS service for the EPAO interrupt.

I 6-31

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

When the next timer match occurs, the PTS cycle (Figure 6-16) increments EPAO_TIME by T1
(if TBIT is zero (output = 0)) or T2 — T1 (if TBIT is one (output = 1)). (Note that although the
values of the EPAO output and TBIT are the same in this example, these two values are unrelated.
To establish the initial value of the output, set or clear P1_REG.

The PWM toggle mode has the advantage of using only one EPA channel. However, if the wave-
form edges are close together, the PTS may take too long and miss setting up the next edge. The
PWM remap mode uses two EPA channels to eliminate this problem.

6.6.5.2 PWM Remap Mode Example

Figure 6-17 shows the PTS control block for PWM remap mode. The following example uses two
EPA channels and a single timer to generate a PWM waveform in PWM remap mode. EPAO as-
serts the output, and EPAL deasserts it. For each channel, an interrupt is generated every T2 pe-
riod, but the comparison times for the channels are offset by the on-time, T1 (see Figure 6-14 on
page 6-27). Alhough TBIT is toggled at thend of every PWM remap mode cycle (see Table 6-7

on page 6-26), it plays no role in this mode. To generate a PWM waveform, follow this procedure.

1. Disable the interrupts and the PTS. The DI instruction disables all interrupts; the DPTS
instruction disables the PTS.

2. Set up one PTSCB for EPAO and one for EPAL1 as shown in Table 6-9. Note that the two
blocks are identical, except that PTSPTR1 points to EPAO_TIME for EPAO and to
EPA1_TIME for EPAL.

3. Configure P1.1 to serve as the EPAL output. (Because EPAO is not used as an output, port
pin P1.0 can be used for standard 1/0O.)
— Clear P1_DIR.1 (selects output).
— Set P1_MODE.1 (selects the EPAO special-function signal).
— Set P1_REG.1 (initializes the output to “1").

6-32 I

STANDARD AND PTS INTERRUPTS

Table 6-9. PWM Remap Mode PTSCB

PTSCBO for EPAO

PTSCB1 for EPA1

Unused

Unused

Unused

Unused

PTSCONST1 (HI) = T2 (HI)

PTSCONST1 (HI) = T2 (HI)

PTSCONST1 (LO) = T2 (LO)

PTSCONST1 (LO) = T2 (LO)

PTSPTR1 (HI) = 1FH (EPAO_TIME, HI)

PTSPTR1 (HI) = 1FH (EPA1_TIME, HI)

PTSPTR1 (LO) = 82H (EPAO_TIME, LO) PTSPTR1 (LO) = 86H (EPAL_TIME, LO)

PTSCON = 40H (Mode = 010, TMOD = 0) PTSCON = 40H (Mode = 010, TMOD = 0)

Unused Unused

Set up EPAO and EPAL.
— Load EPAO_CON with 68H (timer 1, compare modegé#ssutput pin, re-enable).

— Load EPA1_CON with 158H (timer 1, compare mode, deassert output pin, re-enable,
remap enabled).

— Load EPAO_TIME with O000H (selects time 0 as first event time for EPAO).
— Load EPA1_TIME with the value of T1 (selects time T1 as first event time for EPAL).

— Load timer 1 with FFFFH to ensure that the EPAO event timee & 0) is matched
first.

— Load TLICONTROL with C2H (enables timer 1, selects up-counting at f/4, and enables
the divide-by-four prescaler).

Enable the EPAO and EPAL interrupts and select PTS service for them.
— Set INT_MASK.7 and INT_MASK?1.0.
— Set PTSSEL.7 and PTSSEL.8.

Enable the interrupts and the PTS. Theirstruction enables interrupts; the EPTS
instruction enables the PTS.

6-33

8XC196NP, 80C196NU USER’'S MANUAL Inu®

PTS PWM Remap Mode Control Block

In PWM remap mode, the PTS uses two EPA channels to generate a pulse-width modulated (PWM)
output signal. The control block contains registers that contain the PWM on-time (PTSCONST1), the
address pointer (PTSPTR1), and a control register (PTSCON).

7 0
Unused | o | o | o [o Jlo]| o] o] o |
7 0
Unused ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘
15 8
PTSCONSTL (HI) ‘ PWM Const 1 Value (high byte) ‘
7 0
PTSCONSTL (LO) \ PWM Const 1 Value (low byte) |
15 8
PTSPTRL (HI) \ Pointer 1 Value (high byte) \
7 0
PTSPTRL (LO) ‘ Pointer 1 Value (low byte) ‘
7 0
PTSCON | M | v | mo | — || — | — |Tvop | TBIT |
7 0
Unused ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘
Register Location Function

PTSCONST1 | PTSCB + 4 | PWM Const 1 Value
Write the desired PWM on-time to these bits.
PTSPTR1 PTSCB + 2 | Pointer 1 Value

These bits point to a memory location, usually EPAx_TIME. PTSPTR1
can point to any unreserved memory location within page O0H.

Figure 6-17. PTS Control Block — PWM Remap Mode

6-34 [|

Inu® STANDARD AND PTS INTERRUPTS

PTS PWM Remap Mode Control Block (Continued)

Register Location Function

PTSCON PTSCB + 1 | PTS Control Bits

M2:0 PTS Mode

These bits specify the PTS mode:
M2 M1 MO

0 1 0 PWM

TMOD | Remap Mode Select

0 = PWM remap mode

TBIT Toggle Bit Initial Value
Defines the initial value of TBIT.

1 = selects initial value as one
0 = selects initial value as zero

NOTE: In PWM remap mode, the TBIT value is not used;
PTSCONSTL is always added to the PTSPTR1 value.
However, the unused TBIT still toggles at the end of
each PWM remap cycle. Reading this bit returns the
current value of TBIT.

Figure 6-17. PTS Cont rol Block — PWM Remap Mode (Continued)

Figure 6-18 shows the EPA and PTS operations for this example. The first timer match occurs at
time = 0 for EPAO, which asserts the output and generates an interrupt.

PWM Remap Cycle 1.The PTS adds T2 to EPAO_TIME and toggles the TBIT.

The output remains asserted until the second timer match occurs at T1 for EPAL, which deasserts
the output and generates an interrupt.
PWM Remap Cycle 2.The PTS adds T2 to EPA1_TIME and toggles the TBIT.

Alternating EPAO and EPAL interrupts cimte, with EPAO asserting the output and EPAL deas-
serting it.

[| 6-35

8XC196NP, 80C196NU USER’'S MANUAL Inu®

If EPAO, set the output
If EPA1L, clear the output

Y PTS Cycle

If EPAO: EPAO_TIME = EPAQ_TIME + T2
If EPAL: EPAL1_TIME = EPAL_TIME + T2

\i

Toggle TBIT
(TBIT is not used)

A2553-01

Figure 6-18. EPA and PTS Operations for the PWM Remap Mode Example

You can change the duty cycle by changing the time that the output is high and keeping the period
constant. After a timer match occurs for EPA1 (when the output falls), schedule the next EPA1
match for T2 + DT, where DT is the time to be added to the on-time. Thereafter, s¢cheddgt

EPA1 match for T2. You can do this by replacing one EPA1 PTS interrupt with a normal interrupt
(clear PTSSEL.8). Have the interrupt service routine add T2 + DT to EPA1_TIME and set
PTSSEL.8 to re-enable PTS service for EPAL. This adjustment changes the duty cycle without
affecting the period.

By using two EPA channels in the PWM remap mode, you can generate duty cycles closer to 0%

and 100% than is possible with PWM toggle mode. For further information about generating
PWM waveforms with the EPA, see “Operating in Compare Mode” on page 10-12.

6-36 I

intgl.

/O Ports

CHAPTER 7
/O PORTS

I/0 ports provide a mechanism to transfer information between the device and the surrounding
system circuitry. They can read system status, monitor system operation, output device status,
configure system options, generate control sigraisyide serialcommunication, and so on.

Their usefulness in an application is limited only by the number of 1/O pins available and the
imagination of the engineer.

7.1 1/O PORTS OVERVIEW

Standard I/O port registers are located in the SFR address space and they can be windowed. Mem-
ory-mapped I/O port registers are located in memory-mapped address space. Memory-mapped
registers must be accessed with indirect or indexed addressing; they cannot be windowed. All
ports can provide low-speed input/output pins or serve alternate functions. Table 7-1 provides an
overview of the device I/O ports. The remainder of this chapter describes the ports in more detail
and explains how to configutke pins. The chapters that cover the associated peripherals discuss
using the pins for their special functions.

Table 7-1. Device I/O Ports

Port Bits Type Direction Associated Peripheral(s)
Port 1 8 Standard Bidirectional | EPA and timers
Port 2 8 Standard Bidirectional | SIO, interrupts, bus control, clock gen.
Port 3 8 Standard Bidirectional | Chip-select unit, interrupts
Port 4 4 Standard Bidirectional | PWM
EPORT 4 '\S/Itzwggdn(ﬁ%%ed (NP) Bidirectional | Extended address lines

7.2 BIDIRECTIONAL PORTS 14
The bidirectional ports are very similar in both circuitry and configuration. All ports use Schmitt-

triggered input buffers for improved noise immunity. Table 7-2 lists the bidirectional port pins
with their special-function signals and associated peripherals.

7-1

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 7-2. Bidirectional Port Pins

Port Pin Speci_all—function Spe_cial—function Assc_)ciated
Signal(s) Signal Type Peripheral

P1.0 EPAO 110 EPA
P1.1 EPA1 110 EPA
P1.2 EPA2 110 EPA
P1.3 EPA3 110 EPA
P1.4 T1CLK [Timer 1
P1.5 T1DIR [Timer 1
P1.6 T2CLK [Timer 2
P1.7 T2DIR [Timer 2
P2.0 TXD O SIO
pP2.1 RXD 110 SIO
pP2.2 EXTINTO | Interrupts
pP2.3 BREQ# O Bus controller
P2.4 EXTINT1 | Interrupts
P2.5 HOLD# | Bus controller
P2.6 HLDA# O Bus controller
pP2.7 CLKOUT (0] Clock generator
P3.0 CSo# O Chip-select unit
P3.1 CSi# O Chip-select unit
P3.2 CS2# O Chip-select unit
P3.3 CS3# O Chip-select unit
P3.4 CSa# O Chip-select unit
P3.5 CS5# O Chip-select unit
P3.6 EXTINT2 I Interrupts

P3.7 EXTINT3 I Interrupts

P4.0 PWMO O PWM

P4.1 PWM1 O PWM

P4.2 PWM2 O PWM

P4.3 — 110 —

Table 7-3 lists the registers associated with the bidirectional ports. Each port has three control reg-
isters (K_MODE, B _DIR, and R_REG); they can be both read and written. ThePN regis-

ter is a status register that returns the logic level present on the pins; it can only be read. The
registers are byte-addressable and can be windowed.“Bidirectional Port Considerations” on page
7-9 discusses special considerations for reading P2_REG.7.

I nu ® I/0 PORTS

Table 7-3. Bidirectional Port Control and Status Registers

Mnemonic Address Description
P1 DIR 1FD2H Port x Direction
P2_DIR 1FCBH

Each bit of Px_DIR controls the direction of the corresponding pin.
P3_DIR 1FDAH

P4 DIR 1FDBH 0= _complementary o_utput (output only) o

- 1 = input or open-drain output (input, output, or bidirectional)
Open-drain outputs require external pull-ups.

P1_MODE 1FDOH Port x Mode

P2_MODE 1FCOH Each bit of Px_MODE controls whether the corresponding pin

P3_MODE 1FD8H functions as a standard I/O port pin or as a special-function signal.
P4_MODE 1FD9H .

- 0 = standard 1/O port pin

1 = special-function signal

P1_PIN 1FD6H Port x Input
P2_PIN 1FCFH Each bit of Px_PIN reflects the current state of the corresponding
P3_PIN 1FDEH pin, regardless of the pin configuration.
P4_PIN 1FDFH
P1_REG 1FD4H Port x Data Output
P2_REG 1FCDH For an input, set the corresponding Px_REG bit.
P3_REG 1FDCH

P4 REG 1FDDH For an output, w_rite the data to be driver) out by gach pin to the

- corresponding bit of Px_REG. When a pin is configured as standard
/0 (Px_MODE.y = 0), the result of a CPU write to Px_REG is
immediately visible on the pin. When a pin is configured as a
special-function signal (Px_MODE.y = 1), the associated on-chip
peripheral or off-chip component controls the pin. The CPU can still
write to Px_REG, but the pin is unaffected until it is switched back to
its standard I/O function.

This feature allows software to configure a pin as standard I/O (clear
Px_MODE.y), initialize or overwrite the pin value, then configure the
pin as a special-function signal (set Px_MODE.y). In this way, initial-
ization, fault recovery, exception handling, etc., can be done without
changing the operation of the associated peripheral.

7.2.1 Bidirectional Port Operation

Figure 7-1 shows the logic for driving the output transistors, Q1 and Q2. On ports 1, 2, and 3, Q1
can source at least —3 mA at- 0.7 volts. On port 4, which has a high-current sink capability

for the PWMs, Q1 can source at least —3 mA at 0.45 volts. Q2 can sink at least 10 mA at 0.45
volts. (Consult the datasheet for specifications.)

In I/O mode (selected by clearing MODE), Px_REG and R_DIR are input to the multiplex-
ers. These signals combine to drive the gates of Q1 and Q2 so that the output is high, low, or high
impedance. Table 7-4 is a logic table for I/O operation of these ports.

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

In special-function mode (selected by settingfl®ODE y), SFDIR and SFDATAare input to the
multiplexers. These signals combine to drive the gates of Q1 and Q2 so that the output is high,
low, or high impedance. Special-function output signals clear SFDIR; special-function input sig-
nals set SFDIR. Table 7-5 is a logic table for special-function operation of theseepertsf a

pin is to be used in specifincton mode, you must still initialize the pin as an input or output

by writing to _DIR.

Resistor R1 provides ESD protection for the gimput signals are buffered. The ports use
Schmitt-triggered buffers for improved noise immunity. The signals are latched inta thENP
sample latch and output onto the internal bus whenxhBIR register is read.

The falling edge of RESET# turns on transistor Q3, which remains on for about 300 ns, causing
the pin to change rapidly to its reset state. The active-low level of RESET# turns on transistor Q4,
which weakly holds the pin high. (Q4 can source approximatelytAt@onsult the datasheet

for exact specifications.) Q4 remains on, weakly holding the pin high, until your software writes
to the X_MODE register.

NOTE

P2.7 is an exception. After reset, P2.7 carries the CLKOUT signal rather than
being held high. When CLKOUT is selected, it is always a complementary
output.

7-4 I

N

tel.

1/0 PORTS
Internal Bus
Vee
|I Px_REG II O\I
SFDATA 1J _D)—4 [Q1
A
1/0 Pin
Px DIR } [
Px_DIR
Lo I 0 |
Q2
SFDIR I
1
1
[] Vss
Px_MODE
1
Sample
Latch 150Q to 200Q R1
Px_PIN
g Q D <}
I\I LE
Read Port |
PH1 Clock Vee
Medium
Pullup
300ns Delay
RESET# > 0
Vee
Weak
RESET# ‘ R Pullup
—[-
Any Write to Px_MODE S

A0238-04

Figure 7-1. Bidirectional Port Structure

8XC196NP, 80C196NU USER’'S MANUAL

Table 7-4. Logic Table for Bidirectional Ports in I/O Mode

Configuration Complementary Output O%S{g&?in Input

Px_MODE 0 0 0 0

Px_DIR 0 0 1 1

SFDIR X X X X

SFDATA X X X X

Px REG 0 1 0, 1 (Note 2) 1

Q1 off on off off

Q2 on off on, off (Note 2) off
Px_PIN 0 1 X (Note 3) high-impedance (Note 4)

NOTES:

1 X = Don't care.

2.
3.
4.,

If Px_REG is cleared, Q2 is on; if Px_REG is set, Q2 is off.
Px_PIN contains the current value on the pin.
During reset and until the first write to Px_MODE, Q4 is on.

Table 7-5. Logic Table for Bidirectional Ports in Special-function Mode

7-6

Configuration Complementary Output Opoelr;t—gl;?in Input
Px_MODE 1 1 1 1
Px_DIR 0 0 1 1
SFDIR 0 0 1 1
SFDATA 0 1 0, 1 (Note 2) 1
Px_REG X X X 1
Q1 off on off off
Q2 on off on, off (Note 2) off
Px_PIN 0 1 X (Note 3) high-impedance (Note 4)
NOTES:

AN E

X = Don't care.

If Px_REG is cleared, Q2 is on; if Px_REG is set, Q2 is off.
Px_PIN contains the current value on the pin.

During reset and until the first write to Px_MODE, Q4 is on.

I nt6| ® I/0 PORTS

7.2.2 Bidirectional Port Pin Configurations

Each bidirectional port pin can be individually configured to operate either as an I/O pin or as a
pin for a special-function signal. In the special-function configuration, the signal is controlled by
an on-chip peripheral or an off-chipmponent. In either configuiah, two modes are possible:

* complementary output (output only)

* high-impedance input or open-drain output (input, output, or bidirectional)

To prevent the CMOS inputs from floating, the bidirectional port pins are weakly pulled high dur-
ing and after reset, until your software writes o MMODE. The default values of the control reg-
isters after reset configure the pins as high-impedance inputs with weak pull-ups. To ensure that
the ports are initialized correctly and that the weak pull-ups are turned off, follow this suggested
initialization sequence:

1. Write to _DIR to establish the individual pins as either inputs or outputs. (Outputs will
drive the data that you specify in step 3.)

— For a complementary output, clear its PIR bit.

— For a high-impedance input or an open-drain output, sekitBIR bit. (Open-drain
outputs require external pull-ups.)

2. Write to k_MODE to select either I/O or special-function mode. Writing xoNPFODE
(regardless of the value written) turns off the weak pull-ups. Even if the entire port is to be
used as I/O (its default configuration after resgily must write to Px_MODE to ensure
that the weak pull-ups are turned off

— For a standard I/O pin, clear itsx MODE bit. In this mode, the pin is driven as
defined in steps 1 and 3.

— For a special-function signal, set itx MODE bit. In this mode, the associated
peripheral controls the pin.

3. Write to X_REG.

— For output pins defined in step 1, write the data that is to be driven by the pins to the
corresponding ® REG bits. For special-function outputs, the value is immaterial
because the peripheral controls the pin. However, you must still write RHES to
initialize the pin.

— For input pins defined in step 1, set the correspondin@REG bits.

Table 7-6 lists the control register values for eachiplessonfiguration.For special-function
outputs, the P REG value is irrelevant (don't care) because the associated peripheral controls
the pin in special-function mode. However, you must still writexdREG to initialize the pin.

For a bidirectional pin to function as an input (either special function or port pin), you must set
Px_REG.

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 7-6. Control Register Values for Each Configuration

Desired Pin Configuration Configuration Register Settings
Standard I/O Signal P x DIR | Px MODE' | Px REG
Complementary output, driving O 0 0 0
Complementary output, driving 1 0 0 1
Open-drain output, strongly driving 0 1 0 0
Open-drain output, high impedance 1 0 1
Input 1 0 1
Special-function signal P x DIR | Px MODE' | Px REG
Complementary output, output value controlled by peripheral 0 1 X
Open-drain output, output value controlled by peripheral 1 1 X
Input 1 1 1

T During reset and until the first write to Px_MODE, the pins are weakly held high.

7.2.3 Bidirectional Port Pin Configuration Example

Assume that you wish to configure the pins of a bidirectional port as shown in Table 7-7.

Table 7-7. Port Configuration E xample

Port Pin(s) Configuration Data
Px.0, Px.1 high-impedance input high-impedance
Px.2, Px.3 open-drain output 0
Px.4 open-drain output 1 (assuming external pull-up)
Px.5, Px.6 complementary output 0
Px.7 complementary output 1

To do so, you could use the following example code segment. Table 7-8 shows the state of each
pin after reset and after execution of each line of the example code.
LDB Px_DIR,#00011111B

LDB Px_MODE,#00000000B
LDB Px_REG,#10010011B

intel.

I/0 PORTS

Table 7-8. Port Pin States After Reset and After Example Code Execution

Action or Code

Resulting Pin States T

Px.7 Px.6 Px.5 Px.4 Px.3 Px.2 Px.1 Px.0

Reset

wkl wk1l wk1l wk1l wk1l wkl wk1l wk1l

LDB Px_DIR, #00011111B

1 1 1 wk1l wk1l wkl wk1l wkl

LDB Px_MODE, #00000000B 1 1 1 HZ1 HZ1 HZ1 HZ1 HZ1

LDB Px_REG, #10010011B

1 0 0 HZ1 0 0 HZ1 HZ1

T wk1 = weakly pulled high, HZ1 = high impedance (actually a “1” with an external pull-up).

7.2.4 Bidirectional Port Considerations

This section outlines special considerations for using the pins of these ports.

Port 1

Port 2

P2.2/EXTINTO

P2.4/EXTINT1

P2.5/HOLD#

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P1_MODE. Writing to P1_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 7-1 on page 7-5). For this reason, even if
port 1 is to be used as it is configured at reset, you should still write
data into P1_MODE.

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P2_MODE. Writing to P2_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 7-1 on page 7-5). For this reason, even if
port 2 is to be used as it is configured at reset, you should still write
data into P2_MODE.

Writing to P2_MODE.2 sets the EXTINTO interrupt pending bit
(INT_PEND.3). After configuring the port pins, clear the interrupt
pending registers before globally enabling interrupts. See “Design
Considerations for External Interrupt Inputs” on page 7-11.

Writing to P2_MODE.4 sets the EXTINTL1 interrupt pending bit
(INT_PEND.4). After configuring the port pins, clear the interrupt
pending registers before globally enabling interrupts. See “Design
Considerations for External Interrupt Inputs” on page 7-11.

If P2.5 is configured as a standard 1/O port thia,device does not
recognize signals on this pin as HOLD#. Instead, the bus controller
receives an internal HOLD signal. This enables the device to access
the external bus while it is performing I/O at P2.5.

7-9

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

P2.7/CLKOUT

pP2.7

Port 3

P3.0/CS0#

P3.6/EXTINT2

P3.7/EXTINT3

Port 4

7-10

Following reset, P2.7 carries the strongly driven CLKOUT signal. It
is not held high. When P2.7 is configured as CLKOUT, it is always a
complementary output.

A value written to P2_REG.7 is held in a buffer until P2_MODE.7 is
cleared, at which time the value is loaded into P2_REG.7. A value
read from P2_REG.7 is the value currently in the register, not the
value in the buffer. Therefore, any change to P2_REG.7 can be read
only after P2_MODE.7 is cleared.

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P3_MODE. Writing to P3_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 7-1 on page 7-5). For this reason, even if
port 3 is to be used as it is configured at reset, you should still write
data into P3_MODE.

P3.0/CS0# is weakly pulled high during reset. After reset, it defaults
to the CSO# function. This chip-select signal detects address ranges
that contain the CCBs ang-2080H (program start-up adds@sSee
Chapter 13, “Interfacing with External Memory,” for a detailed
description of chip-select signal functions after reset.

Writing to P3_MODE.6 sets the EXTINT2 interrupt pending bit
(INT_PENDL1.5). After configuring the port pins, clear the interrupt
pending registers before globally enabling interrupts. See “Design
Considerations for External Interrupt Inputs” on page 7-11.

Writing to P3_MODE.7 sets the EXTINT3 interrupt pending bit
(INT_PEND1.6). After configuring the port pins, clear the interrupt
pending registers before globally enabling interrupts. See “Design
Considerations for External Interrupt Inputs” on page 7-11.

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P4 _MODE. Writing to P4_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 7-1 on page 7-5). For this reason, even if
port 4 is to be used as it is configured at reset, you should still write
data into P4_MODE.

I nt6| ® I1/0 PORTS

7.2.5 Design Considerations for External Interrupt Inputs

To configure a port pin that serves as an external interrupt input, you must set the corresponding
bits in the configuration registersXMIR, Px MODE, and R_REG). However, setting the
Px_MODE bit causes the device to set the corresponding interrupt pending bit, indicating an in-
terrupt request. To configure P2.2/EXTINTO, P2.4/EXTINT1, P3.6/EXTINT2, and
P3.7/EXTINT3, we recommend the following sequence to prevent the false interrupt request:

1. Disable interrupts by executing the DI instruction.
Set the R _DIR bit.

Set the R_MODE bit.

Set the R_ REG bit.

Clear the INT_PEND and INT_PENDL1 bits.

2L S o

Enable interrupts (optional) by executing the El instruction.

7.3 EPORT

The EPORT is a fodit, bidirectional, memory-mapped I/O port in the 8XC196NP, but a stan-
dard I/O port in the 80C196NU. For the 8XC196NRiitst be accessed using indirect or indexed
addressing, and it cannot be windowed. For the 80C196NU, it can be windowed. This port pro-
vides the address signals necessary to support extendedsaugirdsone or more extended ad-

dress pins are unnecessary in an application, the unused port pins can be used for I/O. Figure 7-2
shows a block diagram of the EPORT.

Table 7-9 lists the EPORT pins with their extended-address signals. Table 7-10 lists the registers
that affect the function and indicate the status of EPORT pins.

Table 7-9. EPORT Pins

Port Pin Extendse}g;gjldress Signal Type
EPORT.O Al6 110
EPORT.1 Al7 110
EPORT.2 Al8 110
EPORT.3 Al9 110

I 7-11

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 7-10. EPORT Control and Status Registers

Mnemonic Address Description

EP_DIR 1FE3H EPORT Direction

In I/O mode, each bit of EP_DIR controls the direction of the corre-
sponding pin. Clearing a bit configures a pin as a complementary
output; setting a bit configures a pin as either an input or an open-
drain output. (Open-drain outputs require external pull-ups).

Any pin that is configured for its extended-address function is forced
to the complementary output mode except during reset, hold, idle,
powerdown, and standby. (Standby mode is available only on the
80C196NU.)

EP_MODE 1FE1H EPORT Mode

Each bit of EP_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as an extended-address
signal. Setting a bit configures a pin as an extended-address signal;
clearing a bit configures a pin as a standard I/O port pin.

EP_PIN 1FE7H EPORT Pin State

Each bit of EP_PIN reflects the current state of the corresponding
pin, regardless of the pin configuration.

EP_REG 1FE5H EPORT Data Output

Each bit of EP_REG contains data to be driven out by the corre-
sponding pin. When a pin is configured as standard 1/0
(EP_MODE.x = 0), the result of a CPU write to EP_REG is
immediately visible on the pin.

During nonextended data accesses, EP_REG contains the value of
the memory page that is to be accessed. For compatibility with
software tools, clear the EP_REG bit for any EPORT pin that is
configured as an extended-address signal (EP_MODE.x set).

80C196NU Only: For nonextended data accesses, the 80C196NU
forces the page address to O0OH. You cannot change pages by
modifying EP_REG.

7.3.1 EPORT Operation
As Figure 7-2 shows, each EPORT pin serves either as I/0O or as an address line, as selected by

the I/O multiplexer. This multiplexer is controlled by the EP_MODE register. If EP_MQISE.
clear (I/0 mode), the pin serves as I/O until EP_MODO& changed.

7-12

I nu ® I1/0 PORTS

Internal Bus 1/0 MUX

|| EP_REG II

Vee

-

Address MUX

Data

Extended Code Address
(from CPU)

Force Page 00H

Extended Data Address 1/0 Pin

(from CPU)

Combinational
Logic

Data/Address Control
(from Bus Controller)

MODEG64 Control

(from CPU)
IEP MODEI
I’—I

—
EP_DIR Direction -
L—— 1

Mode

Sample
Latch

EP_PIN Buffer

i N

LE

Read Port
PH1 Clock

NOTE: Shaded area is unigue to the 80C196NU.
A3113-01

Figure 7-2. EPORT Block Diagram

If EP_MODEX s set (address mode), the address multiplexer determines the addiress For

an instruction fetch, the address multiplexer is set to the CODE input, which selects the extended
program counter (EPC) #éise address source. For a data fetch, or when there is no external bus
activity, the address multiplexer is set to the DATA input, which selects the extended data address
register (EDAR) as the address source.

The EDAR is loaded from two different sources, depending on whether the data access is extend-
ed or nonextended. For extended data accesses, the data multiplexer is set to the 1-Mbyte mode
input and EDAR is loaded with the extended address. For nonextended data accesses, the data
multiplexer is set to the 64-Kbyte mode input and EDAR is loaded from EP_RieGast value

loaded remains in EDAR until the next data access. (Refer to “Fetching Code and Data in the 1-
Mbyte and 64-Kbyte Modes” on page 5-23 for more information.)

[| 7-13

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

The 8XC196NP allows you to change the value of EP_REG to control which memory page a non-
extended instruction accesses. However, software tools require that EP_REG be equal to O0H.
The 80C196NU forces all nonextended data accesses to page 00OH. You cannot use EP_REG to
change pages.

You can read EP_PIN at any time to determine the value of a pin. When EP_PIN is read, the con-
tents of the sample latch are output onto the internal bus.

Figure 7-3 shows a circuit schematic for a single bit of the EPORT. Q1 and Q2 are the strong com-
plementary drivers for the pin. @&n source at least -3 mA atM- 0.7 volts. Q2 can sink at

least 3 mA at \{s + 0.45 volts. (Consult the datasheet for specifications.) Resistor R1 provides
ESD protection for the pin.

7.3.1.1 Reset

During reset, the falling edge of RESET# generates a short pulse that turns on the medium pull-
up transistor Q3, which remains on for about 300 ns, causing the pin to change rapidly to its reset
state. The active-low level of RESET# turns on transistor Q4, which weakly holds the pin high.
(Q4 can source approximately —i@\; consult the datasheet for exact specifications.) When
RESET# is inactive, both Q3 and Q4 are off; Q1 and Q2 determine output drive.

7.3.1.2 Output Enable

If RESET#, HOLD#, idle, or powerdown @&sserted, the gates that control Q1 and Q2 are dis-
abled and Q1 and Q2 remain off. Otherwise, the gates are enabled and complementary or open-
drain operation is possible.

7.3.1.3 Complementary Output Mode

For complementary output mode, the gates that control Q1 and Q2 must be enabled. The Q2 gate
is always enabled (except when RESET#, HOLD#, idle, or powerdown is asserted). Either clear-
ing EP_DIR (selecting complementary mode) or setting EP_M@BIEcting address mode) en-

ables the logic gate preceding Q1. The value of DATA determines which transistor is turned on.
If DATA is equal to one, QL1 is turned on and the pin is pulled high. If DATA is equal to zero, Q2

is turned on and the pin is pulled low.

7.3.1.4 Open-drain Output Mode

For open-drain output mode, the gate that controls Q1 must be disabled. Setting EP_DIR (select-
ing open-drain modegnd clearing EP_MODE (selecting 1/0O mode) disables the logic gate pre-
ceding Q1. The value of DATA determines whether Q2 is turned on. If DATA is equal to one, both
Q1 and Q2 remain off and the pin is left in high-impedance state (floating). If DATA is equal to
zero, Q2 is turned on and the pin is pulled low.

7-14 I

N

tel.

1/0 PORTS
Internal Bus
RESET# vee
| pp—
EP_REG 0
] \l DATA 1
Address Bit from 1 [[QL
Address MUX p
1/0 Pin
<—>|EP7MODEI
— [«
l«—[EP_DIR > 0
POWERDOWN# L
IDLE# =
HOLD# Vss
Sample
Latch 150Q to 200Q R1
EP_PIN Buffer
! 9 b <]I
l\l LE
Read Port
PH1 Clock Vce
Medium
Pullup
300ns Delay
> -
Vce
Weak
Pullup
[o

A0241-02

Figure 7-3. EPORT Structure

7-15

8XC196NP, 80C196NU USER’'S MANUAL

intel.

7.3.1.5 Input Mode

Input mode is obtained by configuring the pin as an open-drain output (EP_DIR set and
EP_MODE clear) and writing a one to EP_REGn this configuration, Q1 and Q2 are both off,
allowing an external device to drive the pin. To determine the value of the I/O pin, read E€_PIN.

Table 7-11 is a logic table for I/O operation and Table 7-12 is a logic table for address mode op-
eration of EPORT.

Table 7-11. Logic Table for EPORT in I/0O Mode

Configuration Complementary Output o%ﬂ{g&?in Input

EP_MODE 0 0 0 0

EP_DIR 0 0 0, 1 (Note 2) 1

EP_REG 0 1 0 1

Address Bit X X X X

Q1 off on off off

Q2 on off on off
EP_PIN 0 1 0 high-impedance

NOTES:

1. X=Don'tcare.
2. IfEP_REG isclear, Q2 is on; if EP_REG is set, Q2 is off.

Table 7-12. Logic Table for EPORT in Address Mode

Configuration Complementary Output (Note 1)
EP_MODE 1 1
EP_DIR X X
EP_REG X (Note 2) X (Note 2)
Address Bit 0 1
Q1 off on
Q2 on off
EP_PIN 0 1

NOTES:
1. X=Don'tcare.
2. EP_REG is output on EPORT during any nonextended external memory access.

7-16 [|

I nt6| ® I1/0 PORTS

7.3.2 Configuring EPORT Pins
Each EPORT pin can be individually configured to operate either as an extended-address signal
or as an I/O pin in one of these modes:

* complementary output (output only)

* high-impedance input or open-drain output (input, output, or bidirectional)

7.3.2.1 Configuring EPORT Pins for Extended-address Functions

The EPORT pins default to their extended-address functions upon reset (see Table B-5 on page
B-13). During program execution, the pins can be reconfigured at any time from address to 1/0
and back to address. However, this is not recommended unless you understand the implications
of changing memory addressing “on the fly.” To change a pin from I/O to address, clear the
EP_REGx bit and set the EP_MODkDbit. (Clearing EP_REG.is required for compatibility

with software development tools.)

7.3.2.2 Configuring EPORT Pins for I/O

To configure a pin for 1/O, write the appropriate values to the control registers, in this order:
1. EP_DIR
2. EP_MODE
3. EP_REG

Table 7-13 lists the register settings for the EPORT pins.

Table 7-13. Configuration Register Settings for EPORT Pins

Configuration Register Settings EP PIN
Desired Pin Configuration Value
EP_DIR EP_MODE EP_REG
Address xt 1 off address
Complementary output 0 0 data value data value
Open-drain output 1 0 data value data value
Input 1 0 1 1/O pin value

T X =Don't care.
Tt Must be zero for compatibility with software tools.

7-17

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

7.3.3 EPORT Considerations

This section outlines considerations for using the EPORT pins.

7.3.3.1 EPORT Status During Reset, CCB Fetch, Idle, Powerdown, and Hold

During reset, the EPORT pins are forced to their extended-address functions and are weakly
pulled high. During the CCB fetch, FFH igangly driven onto the pins. This value remains
strongly driven until either the pin is configured for I/O or a different extended address is access-
ed. If the pins remain configured as extended-address functions, they are placed in a high-imped-
ance state during idle, powerdown, standby (80C196NU only), and hold. If they are configured
as I/0, they retain their I/O function during those modes. See Figure 11-7 on page 11-8 and Table
B-5 on page B-13 for additional information.

7.3.3.2 EP_REG Settings for Pins Configured as Extended-address Signals

Nonextended data accesses go to the address contained in EP_REG. Therefore, if you configure
EP_REG to point to the desired address, gani use nonextended addressing modes to access
the extended address space. However, we recommend that you clear the EP_REG bits for any
EPORT pins configured as extended-address signals in order to maintain compatibility with soft-
ware development tools.

NOTE
If any pins are configured as extended-address signals and their corresponding
EP_REG bits are set, nonextended operations will still access the register file
and standard SFRs. However, all other nonextended accesses, including those
to internal RAM and internal nonvolatile mery, will be directed off-chip to
the “page” address in EP_REG.

The 8XC196NP allows you to change the value of EP_REG to control which
memory page a nonextended instruction accesses. However, software tools
require that EP_REG be equal to 00H. The 80C196NU forces all nonextended
data accesses to page 00H. You cannot use EP_REG to change pages.

7.3.3.3 EPORT Status During Instruction Execution

When using the EPORT to address memory outside page 00H, keep these points in mind:

1. During extended accesses, the ugpar bits of the address (lower four bits of the EPC)
are sent to the EPORT. EPORT pins configured for the extended-address function
(EP_MODEX set) output this address.

2. During nonextended accesses, EPORT pins configured for the extended-address function
(EP_MODEX set) output the value contained in EP_REG.

7-18 I

I nt6| ® I1/0 PORTS

3. Any nonextended or direct instruction that accesses the register file or the windowable
SFRs is always directed internally to these areas, regardless of the page from which code
is executing. This effectively maps the register file anddeivable SFRs into every page.
Extended instructions can access the “mapped over” areas of each page, as shown in the
following code example.

EST 1CH, 01001CH[0] ;reg 1CH stored at memory location 01001CH

7.3.3.4 Design Considerations

At the end of EPORT bus activity and during periods of internal bus activity, EPORT pins con-
tinue to drive the last data address that was output. If these lines are being used to enable external
memory, that memory will remaienabled until a different page is accessed.

During the CCB fetch, all EPORT lines are strongly driven high. Designers should ensure that
this does not conflict with external systems that are outputting signals to the EPORT.

When EPORT pins are floated during idle, powerdown, or hold, the external system must provide
circuitry to prevent CMOS inputs oexternal devices from floating. Duringowerdown, the
EPORT input buffers on pins configured for their extended-address function are disconnected
from the pins, so a floating pin will not cause increased power consumption.

Open-drain outputs require an external pull-up resistor. Inputs must be driven or pulled high or
low; they musmot be allowed to float.

7-19

intgl.
8

Serial I1/O (SI10) Port

CHAPTER 8
SERIAL I/O (SIO) PORT

A serial input/output (SIO) port provides a means for the system to communicate with external
devices. This device has a serial I/0O (SIO) port that shares pins with port 2. This chapter describes
the SIO port and explains how to configure it. Chapter 7, “I/O Ports,” explains how to configure
the port pins for their special functions. Refer to Appendix B for details about the signals dis-
cussed in this chapter.

8.1 SERIAL I/O (SIO) PORT FUNCTIONAL OVERVIEW

The serial I/O port (Figure 8-1) is an asynchronous/syomadus port that includes a unigel
asynchronous receiver and transmitter (UART). The UART has one synchronous mode (mode 0)
and three asynchronous modes (modes 1, 2, and 3) for both transmission and reception.

Internal
Data
Bus
(—' SBUF_RX I: I Receive Shift Register AI(—[]RXD
—>| SBUF_TX I >| Transmit Shift Register ~ , H3={] TxD
o Baud R
Interrupts Control Logic Internal Prescale Gaelaera?(tﬁ
RI ~— Clock =] (+2)
‘ Signal ‘\
| sp_staTus || sp con | \
SP_BAUD
SP_CON.6 MSB
Note: The prescale circuitry is unigue to the 80C196NU.
A3070-02

Figure 8-1. SIO Block Diagram

The serial port receives data into the receive buffer; it transmits data from the port through the

transmit buffer. The transmit and receive buffers are separate registers, permitting simultaneous
reads and writes to both. The transmitter and receiver are buffered to support continuous trans-
missions and to allow reception of a second byte before the first byte has been read.

I 8-1

8XC196NP, 80C196NU USER’'S MANUAL Inu®

An independent, 15-bit baud-rate generator controls the baud rate of the serial port. Either the in-
ternal peripheral clock or T1CLK caprovide the tock signal. The baud-rate register
(SP_BAUD) selects the clock source and the baud rate.

8.2 SERIAL I/O PORT SIGNALS AND REGISTERS

Table 8-1 describes the SIO signals and Table 8-2 describes the control and status registers.

Table 8-1. Serial Port Signals

Serial
Port Serial Port Port Descrintion
Pin Signal Signal P
Type
P2.0 | TXD O Transmit Serial Data

In modes 1, 2, and 3, TXD transmits serial port output data. In mode 0,
it is the serial clock output.

P2.1 | RXD 110 Receive Serial Data

In modes 1, 2, and 3, RXD receives serial port input data. In mode 0, it
functions as an input or an open-drain output for data.

P1.4 | TICLK | Timer 1 Clock
External clock source for the baud-rate generator input.

Table 8-2. Serial Port Control and Status Registers

Mnemonic Address Description

INT_MASK 0013H Interrupt Mask

Setting the TI bit enables the transmit interrupt; clearing the bit
disables (masks) the interrupt.

Setting the RI bit enables the receive interrupt; clearing the bit
disables (masks) the interrupt.

INT_PEND 0012H Interrupt Pending

When set, the Tl bit indicates a pending transmit interrupt.
When set, the RI bit indicates a pending receive interrupt.

P1 DIR 1FD2H Port 1 Direction

This register selects the direction of each port 1 pin. To use T1CLK
as the input clock to the baud-rate generator, clear P1_DIR.4.

P1_MODE 1FDOH Port 1 Mode

This register selects either the general-purpose input/output function
or the peripheral function for each pin of port 1. To use T1CLK as the
clock source for the baud-rate generator, set P1_MODE.4 to
configure T1CLK (P1.4) for the SIO port.

intel.

SERIAL I/O (SIO) PORT

Table 8-2. Serial Port Control and Status Registers (Continued)

Mnemonic Address Description

P1_PIN 1FD6H Port 1 Pin State
If you are using T1CLK (P1.4) as the clock source for the baud-rate
generator, you can read P1_PIN.4 to determine the current value of
T1CLK.

P1_REG 1FD4H Port 1 Output Data
To use T1CLK as the clock source for the baud-rate generator, set
P1_REG.4.

P2 _DIR 1FCBH Port 2 Direction
This register selects the direction of each port 2 pin. Clear P2_DIR.1
to configure RXD (P2.1) as a high-impedance input/open-drain
output, and set P2_DIR.0 to configure TXD (P2.0) as a comple-
mentary output.

P2_MODE 1FC9H Port 2 Mode
This register selects either the general-purpose input/output function
or the peripheral function for each pin of port 2. Set P2_MODE.1:0
to configure TXD (P2.0) and RXD (P2.1) for the SIO port.

P2_PIN 1FCFH Port 2 Pin State
Two bits of this register contain the values of the TXD (P2.0) and
RXD (P2.1) pins. Read P2_PIN to determine the current value of the
pins.

P2_REG 1FCDH Port 2 Output Data
This register holds data to be driven out on the pins of port 2. Set
P2_REG.1 for the RXD (P2.1) pin. Write the desired output data for
the TXD (P2.0) pin to P2_REG.0.

SBUF_RX 1FB8H Serial Port Receive Buffer
This register contains data received from the serial port.

SBUF_TX 1FBAH Serial Port Transmit Buffer
This register contains data that is ready for transmission. In modes
1, 2, and 3, writing to SBUF_TX starts a transmission. In mode 0,
writing to SBUF_TX starts a transmission only if the receiver is
disabled (SP_CON.3 =0)

SP_BAUD 1FBCH,1FBDH Serial Port Baud Rate
This register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits
represent the BAUD_VALUE, an unsigned integer that determines
the baud rate.

SP_CON 1FBBH Serial Port Control
This register selects the communications mode and enables or
disables the receiver, parity checking, and ninth-bit data transmis-
sions. The TB8 bit is cleared after each transmission.

8-3

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 8-2. Serial Port Control and Status Registers (Continued)

Mnemonic Address Description

SP_STATUS | 1FB9H Serial Port Status

This register contains the serial port status bits. It has status bits for
receive overrun errors (OE), transmit buffer empty (TXE), framing
errors (FE), transmit interrupt (T1), receive interrupt (RI), and
received parity error (RPE) or received bit 8 (RB8). Reading
SP_STATUS clears all bits except TXE; writing a byte to SBUF_TX
clears the TXE bit.

8.3 SERIAL PORT MODES

The serial port has both synchronous and asynchronous operating modes for transmission and re-
ception. This section describes the operation of each mode.

8.3.1 Synchronous Mode (Mode 0)

The most common use of mode 0, the syanbus mode, is to expand the I/@pability of the

device with shift registers (see Figure 8-2). In this mode, the TXD pin outputs a set of eight clock
pulses, while the RXD pin either transmits or receives data. Data is transferred eight bits at a time
with the least-significant bit first. Figure 8-3 shows a diagram of the relative timing of these sig-
nals. Note that only mode 0 uses RXD as an open-drain output.

Clock Inhibit Shift / LOAD# o
Serial In Vee
1 _l 74HCO05
= 15KQ Data
RXD
Shift Register Q# Clock
74HC165 ™D
Inputs 8XC196
Device
!Cﬁ Outputs
seial | | | | [| || .
InB Serial In A
Shift Register
Clear 74HC164 Clock (O—
Enable#
(O—————— Px.x
A0264-02

Figure 8-2. Typical Shift Register Circuit for Mode 0

|nte|® SERIAL 1/0 (SIO) PORT

In mode 0, RXD must be enabled for receptions and disabled for transmissions. (See “Program-
ming the Control Register” on page 8-8.) When RXD is enabled, either a rising edge on the RXD
input or clearing the receive interrupt (RI) flag in SP_STATUS starts a reception. When RXD is
disabled, writing to SBUF_TX starts a transmission.

Disabling RXD stops a receptionpmogressand inhibits further receptions. To avoid a partial or
undesired complete reception, disable RXD before clearing the RI flag in SP_STATUS. This can
be handled in an interrupt environment by using software flags or in straight-line code by using
the interrupt pending register to signal the completion of a reception.

During a reception, the Rl flag in SP_STATUS is set after the stop bit is sampled. ThelRbpe

bit in the interrupt pending register is set immediately before the Rl flag is set. During a transmis-
sion, the Tl flag is set immediately after the end of the last (eighth) data bit is transmitted. The Tl
pending bit in the interrupt pending register is generated when the Tl flag in SP_STATUS is set.

LR TR W A Y A VY A W Ao WV A WY A W A W A

RXD(OUT) pt X b2 X b3 X b4 X o5 X b6 X D7 }—

RXD (IN) {oo—"ot——pz——os——os—os——oe}—orl—
Expanded:
TXD \ / S \ / 5T \ /—
RXD (OUT) —{ DO X D1 X ” D2
RXD (IN) {oo} o {o1} s 1

A0109-02

Figure 8-3. Mode 0 Timing

8.3.2 Asynchronous Modes (Modes 1, 2, and 3)

Modes 1, 2, and 3 are full-duplex serial transmit/receive modes, meaning that they can transmit
and receive data simultaneously. Mode 1 is the standard 8-bit, asynchronous mode used for nor-
mal serial communications. Modes 2 and 3 are 9-bit asynchronous modes typically used for in-
terprocessor communications (see “Multiprocessor Communications” on page 8-8). In mode 2,
the serial port sets an interrupt pending bit only if the ninth data bit is set. In mode 3, the serial
port always sets an interrupt pending bit upon completion of a data transmission or reception.

I 8-5

8XC196NP, 80C196NU USER’'S MANUAL Inu®

When the serial port is configuréat mode 1, 2, or 3, writing to SBUF_TX causes tbegas port

to start transmitting data. New data placed in SBUF_TX is transmitted only after the stop bit of
the previous data has been sent. A falling edge on the RXD input causes the serial port to begin
receiving data if RXD is enabled. Disabling RXD stops a receptignagress and inhibits fur-

ther receptions. (Sed’togramning the Control Register” on page 8-8.)

8.3.21 Mode 1

Mode 1 is the standard asynchronous communications mode. The data frame used in this mode
(Figure 8-4) consists of ten bits: a start bit (0), eight data bits (LSB first), and a stop bit (1). If
parity is enabled, a parity bit is sent instead of the eighth data bit, and parity is checked on recep-
tion.

stop \ Stat / Do X b1 X b2 X b3 X pa X D5 X b6 X b7 / Stop
I(i 8 Bits of Data or 7 Bits of Data 4"

with Parity Bit

H{ 10-Bit Frame }i

A0245-02

Figure 8-4. Serial Port Fr ames for Mode 1

The transmit and receive functions are controlled by separate shift clocks. The transmit shift
clock starts when the baud-rate generator is initialized. The receive shift clock is reset when a start
bit (high-to-low transition) is received. Therefothe transmit clock may not tsynchronized

with the receive clock, although both will be at the same frequency.

The transmit interrupt (T1) and receive interrupt (RI) flags in SP_STATUS are set to indicate com-

pleted operations. During a reception, both the RI flag and the Rl interrupt pending bit are set just
before the end of the stop bit. During a transmission, both the Tl flag and the Tl interrupt pending
bit are set at the beginning of the stop bit. The next byte cannot be sent until the stop bit is sent.

Use caution when connecting more than two devices with the serial port in half-duplex (i.e., with
one wire for transmit and receive). The receiving processor must wait for one bit time after the
RI flag is set before starting to transmit. Otherwise, the transmission could corrupt the stop bit,
causing a problem for other devices listening on the link.

8-6 I

|nte|® SERIAL 1/0 (SIO) PORT

8.3.2.2 Mode 2

Mode 2 is the synchronous, ninth-bit recognition mode. This mode is commonly used with mode

3 for multiprocessor communications. Figure 8-5 shows the data frame used in this mode. It con-
sists of a start bit (0), nine data bits (LSB first), and a stop bit (1). During transmissions, setting
the TB8 bit in the SP_CON register before writing to SBUF_TX sets the ninth transmission bit.
The hardware clears the TB8 bit after every transmission, so it must be set (if desired) before each
write to SBUF_TX. During receptions, the Rl flag and Rl interrupt pending bit are set only if the
TB8 hit is set. This provides an easy way to have selective reception on a data link. (See “Multi-
processor Communications” on page 8-8). Parity cannot be enabled in this mode.

Stop \ Start/DOXDlXDZXD3XD4XD5XD6§ D7 X D8 / Stop
le

I 8 Bits of Data T
Programmable 9th Bit

11-Bit Frame }i

1€

A0111-01

Figure 8-5. Serial Port Frames in Mode 2 and 3

8.3.2.3 Mode 3

Mode 3 is the asynchronous, ninth-bit mode. The data frame for this mode is identical to that of
mode 2. Mode 3 differs from mode 2 during transmissions in that parity can be enabled, in which
case the ninth bit becomes the parity bit. When parity is disabled, data bits 0—7 are written to the
serial port transmit buffer, and the ninth data bit is written to bit 4 (TB8) bit in the SP_CON reg-
ister. In mode 3, a reception always sets the Rl interrupt pending bit, regardless of the state of the
ninth bit. If parity is disabled, the SP_STATUS register bit 7 (RB8) contains the ninth data bit. If
parity is enabled, then bit 7 (RB8) is the received parity error (RPE) flag.

8.3.2.4 Mode 2 and 3 Timings

Operation in modes 2 and 3 is similar to mode 1 operation. The only difference is that the data
consists of 9 bits, so 11-bit packages are transmitted and received. During a reception, the RI flag
and the RI interrupt pending bit are set just after the end of the stop bit. During a transmission,
the Tl flag and the Tl interrupt pending bit are set at the beginning of the stop bit. The ninth bit
can be used for parity or multiprocessor communications.

I 8-7

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

8.3.2.5 Multiprocessor Communications

Modes 2 and 3 angrovided for multiprocessor communications. In mode 2, the serial port sets
the Rl interrupt pending bit only when the ninth data bit is set. In mode 3, the serial port sets the
RI interrupt pending bit regardless of the value of the ninth bit. The ninth bit is always set in ad-
dress frames and always cleared in data frames.

One way to use these modes for multiprocessor communication is to set the master processor to
mode 3 and the slave processors to mode 2. When the master processor wants to transmit a block
of data to one of several slaves, it sends out an address frame that identifies the target slave. Be-
cause the ninth bit is set, an address frame interrupts all slaves. Each slave examines the addres:
byte to check whether it is being addressed. The addressed slave switches to mode 3 to receive
the data frames, while the slaves that are not addressed remain in mode 2 and are not interrupted.

8.4 PROGRAMMING THE SERIAL PORT

To use the SIO port, you must configure the port pins to serve as sfp@aciabn signals and set
up the SIO channel.

8.4.1 Configuring the Serial Port Pins

Before you can use the serial port, you must configure the associated port pins to serve as special-
function signals. Table 8-1 on page 8-2 lists the pins associated with the serial port. Table 8-2 lists
the port configuration registers, and Chapter 7, “I/O Ports,” explains how to configure the pins.

8.4.2 Programming the Control Register

The SP_CON register (Figure 8-6) selects the communication mode and enables or disables the
receiver, parity checking, and nine-bit data transmissions. Selecting a new mode resets the serial
I/0 port and aborts any transmission or reception in progress on the channel.

8.4.3 Programming the Baud Rate and Clock Source

The SP_BAUD register (Figure 8-7 on page 8-11) selects the clock input for the baud-rate gen-
erator and defines the baud rate for all serial I/O modes. This register acts as a control register
during write operations and as a down-counter monitor during read operations.

WARNING

Writing to the SP_BAUD register during a reception or transmission can
corrupt the received or transmitted data. Before writing to SP_BAUD, check
the SP_STATUS register to ensure that the reception or transmission is
complete.

8-8 I

intel.

SERIAL I/O (SIO) PORT

SP_CON

Address: 1FBBH
Reset State: OOH

The serial port control (SP_CON) register selects the communications mode and enables or disables
the receiver, parity checking, and nine-bit data transmission. For the 80C196NU, it also enables or
disables the divide-by-two prescaler.

7 0
8XC196NP | — | — | Par | B8 |[REN | PEN [M1 | Mo |
7 0
80C196NU | — | Prs | PAR | TB8 || REN [PEN | M1 | Mo |
Bit Bit Function
Number Mnemonic
7 — Reserved; for compatibility with future devices, write zero to this bit.
6t PRS Prescale
This bit enables the divide-by-two prescaler.
0 =disable the prescaler
1 =enable the prescaler
5 PAR Parity Selection Bit
Selects even or odd parity.
0 = even parity
1 = odd parity
4 TB8 Transmit Ninth Data Bit
This is the ninth data bit that will be transmitted in mode 2 or 3. This bit
is cleared after each transmission, so it must be set before SBUF_TX is
written. When SP_CON.2 is set, this bit takes on the even parity value.
3 REN Receive Enable
Setting this bit enables the receiver function of the RXD pin. When this
bit is set, a high-to-low transition on the pin starts a reception in mode 1,
2, or 3. In mode 0, this bit must be clear for transmission to begin and
must be set for reception to begin. Clearing this bit stops a reception in
progress and inhibits further receptions.
2 PEN Parity Enable
In modes 1 and 3, setting this bit enables the parity function. This bit
must be cleared if mode 2 is used. When this bit is set, TB8 takes the
parity value on transmissions. With parity enabled, SP_STATUS.7
becomes the receive parity error bit.

T This bit is reserved on the 8XC196NP. For compatibility with future devices, write zero to this bit.

Figure 8-6. Serial Port Control (SP_CON) Register

8-9

8XC196NP, 80C196NU USER’'S MANUAL Inu®

SP_CON (Continued) o A?%r::is: 1F%I(3)E
eset State:

The serial port control (SP_CON) register selects the communications mode and enables or disables
the receiver, parity checking, and nine-bit data transmission. For the 80C196NU, it also enables or
disables the divide-by-two prescaler.

7 0
8XC196NP ‘ — ‘ — ‘ PAR ‘ TBS H REN ‘ PEN ‘ M1 ‘ MO ‘
7 0
80C196NU ‘ — ‘ PRS ‘ PAR ‘ TBS H REN ‘ PEN ‘ M1 ‘ MO ‘
Nulr?’ni:)er Mne?riltonic Function
1:0 M1:0 Mode Selection
These bits select the communications mode.
M1 MO
0 0 mode 0
0 1 mode 1
1 0 mode 2
1 1 mode 3

T This bit is reserved on the 8XC196NP. For compatibility with future devices, write zero to this bit.

Figure 8-6. Serial Port Control (SP_CON) Register (Continued)

8-10

|nte|® SERIAL 1/O (SIO) PORT

SP_BAUD Address: 1FBCH
Reset State: 0000H

The serial port baud rate (SP_BAUD) register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits represent BAUD_VALUE, an unsigned
integer that determines the baud rate.

The maximum BAUD_VALUE is 32,767 (7FFFH). In asynchronous modes 1, 2, and 3, the minimum
BAUD_VALUE is 0000H when using the internal clock source (f) and 0001H when using T1CLK. In
synchronous mode 0, the minimum BAUD_VALUE is 0001H for transmissions and 0002H for
receptions.

15 8

‘ CLKSRC ‘ BV14 ‘ BV13 ‘ BV12 ‘ ‘ BV1l ‘ BV10 ‘ BV ‘ BVS ‘
7 0

‘ BV7 ‘ BV6 ‘ BV5 ‘ BV4 ‘ ‘ BV3 ‘ BV2 ‘ BV1 ‘ BVO ‘
Nuii:)er MnelrgTi\tonic Function

15 CLKSRC Serial Port Clock Source

This bit determines whether the serial port is clocked from an internal or
an external source.

0 = signal on the T1CLK pin (external source)
1 = internal operating frequency (f)

14:0 BV14:0 Baud Rate
These bits constitute the BAUD_VALUE.

Use the following equations to determine the BAUD_VALUE for a given
baud rate.

Synchronous mode 0:f

f T1CLK

BAUD VALUE = —m -1 or
- Baud Rate x 2 Baud Rate

Asynchronous modes 1, 2, and 3:

BAUD_VALUE = S S or — TICLK
Baud Rate x 16 Baud Rate x 8

T For mode 0 receptions, the BAUD_VALUE must be 0002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

Figure 8-7. Serial Port Baud Rate (SP_BAUD) Register

8-11

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

CAUTION

For mode 0 receptions, the BAUD_VALURust beD002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

The reason for this restriction is that the receive shift register is clocked from
an internal signal rather than the signal on TXD. Although these two signals
are normally synchronized, the internal signal generates one clock before the
first pulse transmitted by TXD and this first clock signal is not synchronized
with TXD. This clock signal causes the receive shift register to shift in
whatever data is present on the RXD pin. This data is treated as the least-
significant bit (LSB) of the reception. The reception then continues in the
normal synchronous manner, but the data received is shifted left by one bit
because of the false LSB. The seventh data bit transmitted is received as the
most-significant bit (MSB), and the transmitted MSB is never shifted into the
receive shift register.

Using the internal peripheral clock at 25 MHz, the maximum baud rate is 4.17 Mbaud for mode
0 receptions and 6.25 Mbaud for mode 0 transmissions. The maximum baud rate for modes 1, 2,
and 3 is 1.56 Mbaud for both receptions and transmissions. For the 80C196NU using the internal
peripheral clock at 50 MHz, the maximum baud rates are doubled: 12.5 Mbaud for mode 0 trans-
missions, 8.33 Mbaud for mode 0 receptions, and 3.13 Mbaud for modes 1, 2, and 3.

Table 8-3 shows the SP_BAUD values for common baud rates when using a 25 MHz internal
clock. These values also apply to the 80C196NU at 50 MHz with the prescaler enabled. Table 8-3
shows the SP_BAUD value for 9600 baud when using a 50 MHz clock input with the prescaler
disabled. Because of rounding, th&lBD_VALUE formula is not exact anthe resultingoaud

rate is slightly different than desired. The tables show the percentage of error when using the sam-
ple SP_BAUD values. In most cases, a serial link will work with up to 5.0% difference in the re-
ceiving and transmitting baud rates.

Table 8-3. SP_BAUD Values When Using the Internal Clock at 25 MHz

SP_BAUD Register Value (Note 1) % Error
Baud Rate
Mode 0 Mode 1, 2, 3 Mode 0 Mode 1, 2, 3
9600 8515H 80A2H 0 0.15
4800 8A2BH 8144H 0 0.16
2400 9457H 828AH 0 0
1200 ABAFH 8515H 0 0
300 (Note 2) 9457H (Note 2) 0
NOTES:

1. Bit 15 is always set when the internal peripheral clock is selected as the clock source for the baud-
rate generator.

2. For mode 0 operation at 25 MHz, the minimum baud rate is 381.47 (BAUD_VALUE = 7FFFH).
For mode O operation at 300 baud, the maximum internal clock frequency is 19.6608 MHz
(BAUD_VALUE = 7FFFH).

8-12

|nte|® SERIAL 1/O (SIO) PORT

Table 8-4. SP_BAUD Values When Using the Internal Clock at 50 MHz (80C196NU Only)

SP_BAUD Register Value T % Error
Baud Rate
Mode 0 Mode 1, 2, 3 Mode 0 Mode 1, 2, 3
9600 8A2CH 8145H 0 0.15

TBit 15 is always set when the internal peripheral clock is selected as the clock source for the baud-rate
generator.

8.4.4 Enabling the Serial Port Interrupts

The serial port has both a transmit interrupt (TI) and a receiveuptgRI). To eable an inter-

rupt, set the correspondingask bit in the interrupt mask register (see Table 8-2 on page 8-2) and
execute the El instruction to globally enable servicing of interrupts. See Chapter 6, “Standard and
PTS Interrupts,” for more information about interrupts.

8.4.5 Determining Serial Port Status

You can read the SP_STATUS register (Figure 8-8) to determine the status of the serial port.
Reading SP_STATUSlears all bitsexcept TXE. For this reason, we recommend thatcpgmy

the contents of the SP_STATUS register into a shadow register and then execute bit-test instruc-
tions such as JBC and JBS on the shadow register. Otherwise, executing a bit-test instruction
clears the flags, so any subsequent bit-test instructions will return false values. You can also read
the interrupt pending register (see Table 8-2 on page 8-2) to determine the status of the serial port
interrupts.

8-13

8XC196NP, 80C196NU USER’'S MANUAL Inu®

SP_STATUS Address: 1FB9H
Reset State: OBH

The serial port status (SP_STATUS) register contains bits that indicate the status of the serial port.

! 0
RPE/RB8 RI TI FE || TxE OE _ —
Bit Bit '
Number Mnemonic Function
7 RPE/RB8 Received Parity Error/Received Bit 8

RPE is set if parity is disabled (SP_CON.2 = 0) and the ninth data bit
received is high.

RB8 is set if parity is enabled (SP_CON.2 = 1) and a parity error
occurred.

Reading SP_STATUS clears this bit.

6 RI Receive Interrupt

This bit is set when the last data bit is sampled. Reading SP_STATUS
clears this bit.

This bit need not be clear for the serial port to receive data.

5 TI Transmit Interrupt

This bit is set at the beginning of the stop bit transmission. Reading
SP_STATUS clears this bit.

4 FE Framing Error

This bit is set if a stop bit is not found within the appropriate period of
time. Reading SP_STATUS clears this bit.

3 TXE SBUF_TX Empty

This bit is set if the transmit buffer is empty and ready to accept up to two
bytes. It is cleared when a byte is written to SBUF_TX.

2 OE Overrun Error

This bit is set if data in the receive shift register is loaded into SBUF_RX
before the previous bit is read. Reading SP_STATUS clears this bit.

1.0 — Reserved. These bits are undefined.

Figure 8-8. Serial Port Status (SP_STATUS) Register

The receiver checks for a valid stop bit. Unless a stop lmtiisdf within the appropriate time, the
framing error (FE) bit in the SP_STATUS register is set. When the stop bit is detected, the data
in the receive shift register is loaded into SBUF_RX and the receiveuipt€RI) flag is set. If

this happens before the previous byte in SBUF_RX is read, the overrun error (OE) bit is set.
SBUF_RX always contains the latest byte received,; it is never a combination of the last two bytes.

8-14

|nte|® SERIAL 1/O (SIO) PORT

The receive interrupt (RI) flag indicates whether an incoming data byte has been received. The
transmit interrupt (T1) flag indicates whether a data byte has finished transmitting. These flags
also set the corresponding bitstive interrupt pending register. A reception or transmission sets
the Rl or Tl flag in SP_STATUS and the capending interrupt pending bit. However, a soft-
ware write to the Rl or Tl flag in SP_STATUS has no effect on the interrupt pending bits and does
not cause an interrupt. Similarly, reading SP_STATUS clears the Rl and Tl flags, but does not
clear the corresponding interrupt pending bits. The Rl andagkfln the SP_STATUS and the
corresponding interrupt pending bits can be set even if the Rl and Tl intaareptasked.

The transmitter empty (TXE) bit is set if SBUF_TX and its buffer are empty and ready to accept
up to two bytes. TXE is cleared son as a byte gritten to SBUF_TX. One byte may be written

if Tl alone is set. By definition, if TXE has just been set, a trassion has completed and Tl is

set.

The received parity error (RPE) flag or the received bit 8 (RB8) flag applies for parity enabled or

disabled, respectively. If parity is enabled, RPE is set if a parity error is detected. If parity is dis-
abled, RB8 is the ninth data bit received in modes 2 and 3.

I 8-15

intgl.

Pulse-width
Modulator

CHAPTER 9
PULSE-WIDTH MODULATOR

The pulse-width modulator (PWM) module has three output pins, each of which can output a
PWM signal with a fixed frequency and a variable duty cycle. These outputs can be used to drive
motors that require an unfiltered PWM waveform for optimal efficiency, or they can be filtered
to produce a smooth analog signal.

This chapter provides a functional overview of the pulse-width modulator module, describes how
to program it, and provides sample circuitry for converting the PWM outputs to analog signals.
For detailed descriptions of the signals and registers discussed in this chapter, please refer to Ap-
pendix B, “Signal Descriptions” and Appendix C, “Registers.”

9.1 PWM FUNCTIONAL OVERVIEW

The PWM module has three channels, each of which consists of a control register
(PWMx_CONTROL, wheris 0, 1, or 2), a buffer, a comparator, an RS flip-flop, and an output
pin. Two other components, an eight-bit counter and a clock prescaler, are shared across the PWM
module’s three channels, completing the circuitry (see Figures 9-1 and 9-2).

aY
8
%;)' PWMx_CONTROL <i<— Load
Buffer
A8
Y
| Bufferx |
A8
Y
CON_REGO0.0 | Comparatarx = RS Flip-f
: ip-flopx
(CLKO Bit) A >R Port 4
> Control
4
Prescaler A8 Q >1|P4_MODE —! I
PWMx P4.x/
Internal > Up Counter >1S Output PWMx
Clock Overflow
Signal .
Shared Circuitry
o

A2382-03

Figure 9-1. PWM Block Diagram (8XC196NP Only)

I 9-1

8XC196NP, 80C196NU USER’'S MANUAL

8

Port 4
Control

4%;)' PWMx_CONTROL <i<— Load
7 Buffer
A8
|
| Bufferx
A8
|
CON_REGO0.0 c " -
(CLKO Bit) omparatorx =
CON_REGO.1 A
(CLK1 Bit) .
RS Flip-flopx
o
Prescaler »k ” >R
A8 -
Internal —i 00] Q Ix
Clock 1=2] 01 I o | Up Counter >1S SV\:M)E
Signal 0] [T W Hpe
Overflow
11
Shared Circuitry

P4.x/
PWMx

A3158-01

Figure 9-2. PWM Block Diagram (80C196NU Only)

9.2 PWM SIGNALS AND REGISTERS
Table 9-1 describes the PWM'’s signals and Table 9-2 briefly describes the control and status reg-
isters.
Table 9-1. PWM Signals
. PWM PWM .
Port Pin Signal Signal Type Description

P4.0 PWMO (0] Pulse-width modulator O output with high-drive capability.

P4.1 PWM1 (0] Pulse-width modulator 1 output with high-drive capability.

P4.2 PWM2 (0] Pulse-width modulator 2 output with high-drive capability.

9-2

Inte|® PULSE-WIDTH MODULATOR

Table 9-2. PWM Control and Status Registers

Mnemonic Address Description

CON_REGO 1FB6H PWM Control Register
This register controls the clock prescaler.

Bit 0 (CLKO) controls the output period of the PWM
channels by enabling or disabling the divide-by-two clock
prescaler (8XC196NP only).

Bits 0 and 1 (CLKO, CLK1) control the output period of the
PWM channels by enabling or disabling the divide-by-two
or divide-by-four clock prescaler (80C196NU only).

PWMO_CONTROL | 1FBOH PWM Duty Cycle

PWM1 CONTROL | 1FB2H This register controls the PWM duty cycle. A zero loaded
PWM2_CONTROL | 1FB4H into this register causes the PWM to output a low continu-
ously (0% duty cycle). An FFH in this register causes the
PWM to have its maximum duty cycle (99.6% duty cycle).

P4 _DIR 1FDBH Port 4 Direction

The P4_DIR register determines the I/O mode for each
port 4 pin. The register settings for an open-drain output or
a high-impedance input are identical. An open-drain
output configuration requires an external pull-up. A high-
impedance input configuration requires that the corre-
sponding bitin P4_REG be set. This port has a higher
drive capability than the other ports in order to support
PWM high-drive output requirements.

P4_MODE 1FDSH Port 4 Mode

Each bit in this register determines whether the corre-
sponding pin functions as a standard 1/0 port pin or is
used for a special-function signal.

P4_PIN 1FDFH Port 4 Pin State

P4_PIN contains the current state of each port pin,
regardless of the pin mode setting.

P4_REG 1FDDH Port 4 Output Data

P4_REG contains data to be driven out by the respective
pins. When a port pin is configured as an input, the corre-
sponding bitin P4_REG must be set.

9.3 PWM OPERATION

For the 8XC196NP, CON_REGO0.0 (CLKO) controls the PWM output frequency by enabling or
disabling the divide-by-two clock prescaler. Enabling the prescaler causes the 8-bit counter to in-
crement once every two state times; disabling it causes the counter to increment once every state
time.

9-3

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

For the 80C196NU, two bits control the PWM output frequency, CON_REGO0.0 (CLKO0) and
CON_REGO0.1 (CLK1). The two bits control the PWM output frequency by enabling or disabling
the divide-by-two or dividdsy-four clock prescaler.

Each control register (PWIMCONTROL;x = 0, 1, or 2) controls the duty cycle (the pulsewidth
stated as a percentage of the period) of the corresponding PWM output. Each control register con-
tains an 8-bit value that is loaded into a buffer when the 8-bit counter rolls@velfFH to 00H.

The comparators compare the contents of the buffers to the counter value. Since the value written
to the control register is buffered, you can write a new 8-bit value to RMERINTROL at any

time. However, the comparators do not recognize the new value until the counter has expired the
remainder of the current 8-bit count. The new value is used during the next PWM output period.

The counter continually increments until it rolls over to 00H, at which time the PWM output is
driven high and the contents of the control registers are loaded into the buffers. The PWM output
remains high until the counter value matches the value in the buffer, at which time the output is
pulled low. When the counter resets again (i.e., when an overflow occurs) the output is switched
high. (Loading PWNM_CONTROL with 00H forces the output to remain low.) Figure 9-3 shows
typical PWM output waveforms.

The PWM can generate a duty cycle ranging in length from 0% to 99.6% of the pulse. To deter-
mine the desired duty cycle measurement, you must apphul@plier (2, 4, or 8) to the
PWMx_CONTROL value to compensate for the divided input frequency from the divide-by-two
circuitry. (See Chapter 2, “Architectural Overview,” for additional information.)

Clearing CON_REGUO0.0 (CLKO) disables the prescaler, generating a pulse that is 512 state times
in length. With the prescaler disabled, the correct multiplier is 2.

Setting CON_REGO0.0 (CLKO) enables the PWM'’s divide-by-two clock prescaler, generating a
pulse that is 1,024 state timesémgth. With the divide-by-two clock prescaler enablixa, cor-

rect multiplier is 4. For example, assume that CLKO is set and the value you write to the
PWMx_CONTROL register is 19H (25 decimal). To arrive at the appropriate duty cycle, you
must multiply the value stored in PWKMCONTROL by 4, then divide that result by the total
pulse length (1,024). This calculation results in a duty cycle value of approximatelyQ9es).

For the 80C196NU, setting CON_REGO0.1 (CLK1) enables the divide-by-four clock prescaler,
generating a pulse that is 2,048 state times in length. With the diyittesbprescaler enabled,

the correct multiplier is 8. (When CON_REGUO.1 is set, the divide-by-four clock prescaler is en-
abled and CON_REGO.0 is ignored.)

9-4 I

Inu® PULSE-WIDTH MODULATOR

Duty PWM Control
Cycle Register Value Output Waveform

0% 00H 0

10% 19H 0

1

s son o [1L
i
|

90% E6H 0

99.6% FFH 0

A0119-02

Figure 9-3. PWM Output Waveforms

9.4 PROGRAMMING THE FREQUENCY AND PERIOD

The PWM module provides two selectable, fixed PWM output frequencies for a specified
internal operating frequency (f). Table 9-3 shows the PWM output frequencies for common
operating frequencies on the 8XC196NP. The value of CONE(REdeterminethe output fre-
guency by enabling or disabling the clock prescaler. Use the following formulas to calculate the
output frequency (k) or output period (I,

Clock Prescaler +2 Clock Prescaler +4 Clock Prescaler T
Disabled Enabled Enabled
) f f f
Fown (in MHZ) = - — —
Toww (iNps) = 5 t t

T 80C196NU only.

9-5

8XC196NP, 80C196NU USER’'S MANUAL

intel.

For the 80C196NU, the PWM module provides three selectable, fixed PWM output frequencies
for a specified internal operating frequency (f). Table 9-3 shows the PWM output frequencies for
common operating frequencies. The value of bits 0 and 1 in the CON_REGO register determines
the output frequency by enabling or disabling the divide-by-twowdeliby-four clock prescal-

er.

NOTE

Use the EPA module to produce variable PWM output frequencies (see
“Operating in Compare Mode” on page 10-12).

Table 9-3. PWM Output Frequencies (8XC196NP)

f
CLKO
16 MHz 20 MHz 25 MHz
31.25 kHz 39.06 kHz 48.83 kHz
1 15.63 kHz 19.53 kHz 24.41 kHz
Table 9-4. PWM Output Frequencies (80C196NU)
f
CLK1 CLKO
12.5 MHz 25 MHz 50 MHz

0 0 24.41 kHz 48.83 kHz 97.66 kHz
0 1 12.21 kHz 24.41 kHz 48.83 kHz
1 X 6.10 kHz 12.21 kHz 24.41 kHz

9-6

Inte|® PULSE-WIDTH MODULATOR

CON_REGO Address: 1FB6H
Reset State: FEH

The control (CON_REGO) register controls the clock prescaler for the three pulse-width modulators
(PWMO-PWM2).

7 0
sxcioene | — | — | — | — || = | = | — |cwko |
7 0
sgoctoeNu | — | — | — | — || = | — | cki | ciko |
Nuil:)er Mne?rlltonic Function
71 (NP) |— Reserved; for compatibility with future devices, write zeros to these bits.
7:2 (NU)
0 (NP) CLKO Enable PWM Clock Prescaler

This bit controls the PWM output period by enabling or disabling the clock
prescaler (divide-by-two) on the three pulse width modulators (PWM2:0).

0 = disable; PWM output period is 512 state times
1 = enable; PWM output period is 1024 state times

1.0 (NU) | CLK1L:0 Enable PWM Clock Prescaler

These bits control the PWM output period on the three pulse-width
modulators (PWM2:0).

CLK1 CLKO

0 0 disable clock prescaler

0 1 enable divide-by-two prescaler; PWM output period is
1024 state times

1 X enable divide-by-four prescaler; PWM output period is

2048 state times
T This bit was called SLOW_PWAM in earlier documentation for the 8XC196NP.

Figure 9-4. Control (CON_REGO0) Register

9.5 PROGRAMMING THE DUTY CYCLE

The value written to the PWMCONTROL register controls the width of the high pulse, effec-
tively controlling the duty cycle. The 8-bit value written to the control register is loaded into a
buffer, and this value is used during the next persk the following formula to calculate a de-
sired pulsewidth by extrapolating an appropriate value for RAMMDNTROL from the range
00-FFH, and then write the value to the PWKEONTROL register.

8XC196NP, 80C196NU USER’'S MANUAL

Pulsewidth (in us)

Duty Cycle (in %)

where:

PWMx_CON
Pulsewidth
f

TPWM

T80C196NU only.

Clock Prescaler
Disabled

PWMx_CON x 2

+2 Clock Prescaler
Enabled

PWMx_CON x4

intel.

+4 Clock Prescaler
Enabled

PWMx_CON x8

f

Pulsewidth
T

PWM

x 100

f

8-bit value to load into the PWMx_CONTROL register
width of each high pulse

operating frequency, in MHz

output period on the PWM pin, in ps

f

PWMx_CONTROL

x=0-2

Address:
Reset State: OOH

Table 9-2

The PWM control (PWMx_CONTROL) register determines the duty cycle of the PWM x channel. A
zero loaded into this register causes the PWM to output a low continuously (0% duty cycle). An FFH in

this register causes the PWM to have its maximum duty cycle (99.6% duty cycle).

7

PWM Duty Cycle

Bit
Number

Function

7:0 PWM Duty Cycle

This register controls the PWM duty cycle. A zero loaded into this register causes the
PWM to output a low continuously (0% duty cycle). An FFH in this register causes the
PWM to have its maximum duty cycle (99.6% duty cycle).

9-8

Figure 9-5. PWM Control (PWM x_CONTROL) Register

Int€|® PULSE-WIDTH MODULATOR

9.5.1 Sample Calculations

For example, assuntleat the operating frequency equals 25 MHz, the desired period of the PWM
output waveform is either 20.48 us (512 state times) if the divide-by-two prescaler is disabled or
40.96 ps (1,024 state timesllie prescaler is enabled. If PWKMCONTROL equals 8AH138
decimal), the pulsewidth is held high fdt.Q4 ps (and low for 9.44 us) of the total 20.48 s pe-
riod, resulting in a duty cycle afpproximately 54%. If the prescaler is erhlthe same values
would produce a period of 40.96 us with the pulsewidth being held high for 22.08 ps (and low for
18.88 ps), for the same duty cycle, approximately 54%.

9.5.2 Enabling the PWM Outputs

Each PWM output is multiplexed with a port pin, so you must configure it as a special-function
output signal before using the PWM function. To do so, follow this sequence:

1. Clear the corresponding bit of P4_DIR (see Table 9-5).
2. Set the corresponding bit of P4_MODE (see Table 9-5).
3. Set or clear the corresponding bit of P4_REG (see Table 9-5).

Table 9-5 shows the alternate port function along with the register setting that selects the PWM
output instead of the port function.

Table 9-5. PWM Output Alternate Functions

PWM Output Alternate Port Function PWM Output Enabled When:
PWMO P4.0 P4_DIR.0 =0, P4_MODE.O =1, P4_REG =X
PWM1 P4.1 P4_DIR.1 =0, P4_MODE.1 =1, P4_REG =X
PWM2 P4.2 P4_DIR.2 =0, P4_MODE.2 =1, P4_REG =X

9.5.3 Generating Analog Outputs

The PWM modules can generate a rectangular pulse train that varies in duty cycle and period.
Filtering this output will create a smooth analog signal. To make a signal swing over the desired
analog range, first buffer the signal and then filter it with either a simple R@riebr an active

filter. Figure 9-6 is a block diagram of the type of circuit needed to create the smooth analog sig-
nal.

I 9-9

8XC196NP, 80C196NU USER’'S MANUAL

8XC196 Buffer Filter Power
Device to Make (Passive Amp
_ | Output Swing o or . Analog
PWM Rail o Active) | (Optional) Output
to
Rail (Optional)

A2391-01

Figure 9-6. D/A Buffer Block Diagram

Figure 9-7 shows a sample circuit used for low output currents (less tha\L@onsider tem-
perature and powesupply drift when selecting components for theeexal D/A circuitry. With
proper components, a highly accurate 8-bit D/A converter can be made using the PWM.

PWM
R - Analo

N Outpu?
T

8XC196 74ACXXX c Op Amp

Device Buffer I

Consider both ripple and response time requirements when selecting R and C.
A2390-02

Figure 9-7. PWM to Analog Conversion Circuitry

intgl. 1 O

Event Processor
Array (EPA)

CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)

Control applications often require high-speed event control. For example, the controller may need
to periodically generate pulse-width modulated outputs or an interrupt. In another application, the
controller may monitor an input signal to determine the status of an external device. The event
processor array (EPA) was designed to reduce the CPU overhead associated with these types of
event control. This chapter describes the EPA and its timers and expairt® configure and
program them.

10.1 EPA FUNCTIONAL OVERVIEW

The EPA performs input and output functions associated with two timer/counters, timer 1 and
timer 2 (Figure 10-1). In the input mode, the EPA monitors an input pin for an event: a rising edge,

a falling edge, or an edge in either direction. When the event occurs, the EPA records the value
of the timer/counter, so that the event is tagged with a time. This is caliggudicapture Input

captures are buffered to allow two captures befo@varrun occurs. In the output mode, the EPA
monitors a timer/counter and compares its value with a value stored in a register. When the tim-
er/counter value matches the stored value, the EPA can trigger an event: a timer reset or an output
event (set a pin, clear a pin, toggle a pin, or take no action). This is catatbahcompareEach

input capture or an output compare sets an interrupt pending bit. This bit can optionally cause an
interrupt. The EPA has four capture/compare channels, EPA3:0.

I 10-1

8XC196NP, 80C196NU USER’'S MANUAL

Timer-Counter Unit

TIMER1

TIMER2

Capture/Compare

EPAO G Channel 0 ——> EPAO Interrupt
Capture/Compare

epat (3 Channel 1 —> EPAL Interrupt
Capture/Compare

EPA2 D Channel 2 — EPA2 Interrupt
Capture/Compare

EPA3 D— Channel 3 —> EPAS3 Interrupt

A2352-02

Figure 10-1. EPA Block Diagram

10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERS

Table 10-1 describes the EPA and timer/counter input and output signals. Each signal is multi-
plexed with a port pin as shown in the first column. Table 10-2 briefly describes the registers for
the EPA capture/compare channels and timer/counters.

Table 10-1. EPA and Timer/Counter Signals

Port Pin EPA Signal(s) Signillaﬁype Description
P1.3:0 EPA3:0 /0 High-speed input/output for capture/compare
channels 0-3.
P1.4 T1CLK | External clock source for timer 1.
P1.5 T1DIR | External direction control for timer 1.
P1.6 T2CLK | External clock source for timer 2.
P1.7 T2DIR | External direction control for timer 2.

10-2

intel.

EVENT PROCESSOR ARRAY (EPA)

Table 10-2. EPA Control and Status Registers

Mnemonic

Address

Description

EPA_MASK

1F9CH

EPA Mask

Four bits (OVRO, OVR1, OVR2, and OVR3) in this 8-bit register
enable and disable (mask) the individual capture overrun interrupt
sources associated with capture/compare channels EPA3:0.

EPA_PEND

1F9EH

EPA Pending

Four bits (OVRO, OVR1, OVR2, and OVR3) in this 8-bit register
indicate an overrun status for the associated capture/compare
channels, EPA3:0. OVR0 and OVR1 are multiplexed to share one
interrupt pending bit (OVRO_1) in INT_PEND1; OVR2 and OVR3
are multiplexed to share another interrupt pending bit (OVR2_3)
in INT_PEND1.

EPAO_CON
EPA1_CON
EPA2_CON
EPA3_CON

1F80H
1F84H
1F88H
1F8CH

EPAX Capture/Compare Control

These registers control the functions of the capture/compare
channels. EPA1_CON and EPA3_CON require an extra byte
because they contain an additional bit for PWM remap mode.
These two registers must be addressed as words; the others can
be addressed as bytes.

EPAO_TIME
EPA1_TIME
EPA2_TIME
EPA3_TIME

1F82H
1F86H
1F8AH
1F8EH

EPAX Capture/Compare Time

In capture mode, these registers contain the captured timer value.
In compare mode, these registers contain the time at which an
event is to occur. In capture mode, these registers are buffered to
allow two captures before an overrun occurs. However, they are
not buffered in compare mode.

INT_MASK

0008H

Interrupt Mask

Three bits in this 8-bit register (OVRTM1, OVRTM2, and EPAO)
enable and disable (mask) the three interrupts associated with the
corresponding bits in INT_PEND register.

INT_MASK1

0013H

Interrupt Mask 1

Five bits in this 8-bit register (EPA1, EPA2, EPA3, OVRO_1, and
OVR2_3) enable and disable (mask) the five interrupts associated
with the corresponding bits in INT_PENDL register.

INT_PEND

0009H

Interrupt Pending

Any set bit in this 8-bit register indicates a pending interrupt. The
three bits associated with EPA interrupts are OVRTM1, OVRTM2,
and EPAO.

INT_PEND1

0012H

Interrupt Pending 1

Any set bit in this 8-bit register indicates a pending interrupt. The
five bits associated with EPA interrupts are EPA1, EPA2, EPA3,
OVRO0_1, and OVR2_3.

P1 DIR

1FD2H

Port 1 Direction

Each bit of P1_DIR controls the direction of the corresponding
pin. Clearing a bit configures a pin as a complementary output;
setting a bit configures a pin as an input or open-drain output.

(Open-drain outputs require external pull-ups.)

10-3

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 10-2. EPA Control and Status Registers (Continued)

Mnemonic Address Description

P1_MODE 1FDOH Port 1 Mode

Each bit of P1_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as a special-function
signal. Setting a bit configures a pin as a special-function signal;
clearing a bit configures a pin as a standard I/O port pin.

P1_PIN 1FD6H Port 1 Input

Each bit of P1_PIN reflects the current state of the corresponding
pin, regardless of the pin configuration.

P1_REG 1FD4H Port 1 Data Output
For an input, set the corresponding P1_REG bit.

For an output, write the data to be driven out by each pin to the
corresponding bit of P1_REG. When a pin is configured as
standard 1/0 (P1_MODE.y = 0), the result of a CPU write to
Px_REG is immediately visible on the pin. When a pin is
configured as a special-function signal (P1_MODE.y = 1), the
associated on-chip peripheral or off-chip component controls the
pin. The CPU can still write to P1_REG, but the pin is unaffected
until it is switched back to its standard 1/O function.

This feature allows software to configure a pin as standard /0O
(clear P1_MODE.y), initialize or overwrite the pin value, then
configure the pin as a special-function signal (set P1_MODE.y). In
this way, initialization, fault recovery, exception handling, etc., can
be done without changing the operation of the associated
peripheral.

T1CONTROL 1F90H Timer 1 Control

This register enables/disables timer 1, controls whether it counts
up or down, selects the clock source and direction, and
determines the clock prescaler setting.

T2CONTROL 1F94H Timer 2 Control

This register enables/disables timer 2, controls whether it counts
up or down, selects the clock source and direction, and
determines the clock prescaler setting.

TIMER1 1F92H Timer 1 Value
This register contains the current value of timer 1.
TIMER2 1F96H Timer 2 Value

This register contains the current value of timer 2.

10-4

Inu® EVENT PROCESSOR ARRAY (EPA)

10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW

The EPA has two 16-bit up/down timer/counters, timer 1 and timer 2, which can be clocked in-
ternally or externally. Each is calledimerif it is clocked internally and eounterif it is clocked
externally. Figure 10-2 illustrates the timer/counter structure.

T2CONTROL.2:0"

3
T2CLK D * Timer 2
fr4 Prescaler Clock
ocl
Quadrature Count Module
i ——>
Timer 1 Overflow Overflow
OVRTM
Interrupt
T20R [}— p
T2CONTROL.6
R Direction
Quadrature Direction J

TICONTROL.2:0"
T1CONTROL.6
3
N Timer 1
T1CLK ! I—
Prescaler
fl4 Module Clock
Quadrature Count
|~ Overflow ——@—>
N OVRTM
TIDIR D_ Interrupt
T1CONTROL.6 @ Direction
Quadrature Direction
|~
" Disable prescaler if quadrature clocking is selected.
A0250-02

Figure 10-2. EPA Timer/Counters

10-5

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

The timer/counters can be used as time bases for input captures, output compares, and pro-
grammed interrupts (software timers). When a counter increments from FFFEH to FFFFH or dec-
rements from 0001H to O000H, the counter-overfioterrupt pending bit is set. This bit can
optionally cause an interrupt. The clock source, direction-control source, count direction, and res-
olution of the input capture or output compare arpraljrammablésee Programminghe Tim-

ers” on page 10-15). The maximum count rate is one-half the internal clock rate, or f/4 (see
“Internal Timing” on page 2-7). This provides a minimum resolution for an input capture or out-
put compare of 160 ns (at f = 25 MHz) for 8XC196NP and 80 ns (at f = 50 MHz) for the
80C196NU.

4 x prescaler_divisor

resolution = T
where:
prescaler_divisor is the clock prescaler divisor from the TXCONTROL registers (see

“Timer 1 Control (TLCONTROL) Register” on page 10-16 and
“Timer 2 Control (T2CONTROL) Register” on page 10-17).

f is the internal operating frequency. See “Internal Timing” on page 2-7 for details.

10.3.1 Cascade Mode (Timer 2 Only)

Timer 2 can be used in cascade mode. In this mode, the timer 1 overflow output is used as the
timer 2 clock input. Either the direction control bit of the timer 2 control register or the direction
control assigned to timer 1 controls the count direction. This method, cakedding can pro-

vide a slow clock for idle mode timeout control or for slow pulse-width modulation (PWM) ap-
plications (see “Generating a Low-speed PWM Output” on page 10-12).

10.3.2 Quadrature Clocking Mode

Both timer 1 and timer 2 can be used in quadrature clocking mode. This mode usdslike T

and TXDIR pins as quadrature inputs, as shown in Figure 10-3. External quadrature-encoded sig-
nals (two signals at the same frequency that differ in phase°pwa@0input, and the timer incre-
ments or decrements by one count on each rising edge and each falling edge. Beca@iethe T

and ™XDIR inputs are sampled by the internal phase clocks, transitions must be separated by at
least two state times for proper opérat The count is clocked by PH2, which is PH1 delayed by
one-half period. The sequence of the signal edges and levels controls the count direction. Refer
to Figure 10-4 and Table 10-3 for sequencimfgimation.

A typical source of quadrature-encoded signals is a shaft-angle decoder, shown in Figure 10-3.
Its output signals X and Y are input t«QLK and TxDIR, which in turn output signals
X_internal and Y_internal. These signals are used in Figure 10-4 and Table 10-3 to describe the
direction of the shatft.

10-6 I

EVENT PROCESSOR ARRAY (EPA)

Optical
Reader

8XC196 Device

l Decrement 7
I
I
|
|
I
|
I '_: TXxCLK
I = DQ D Q DQ
I
I
l [[| —
I
\ | TXDIR
II> = DQ D Q D Q
|
I

PH2
PH1

X_internal

Y_internal

A0268-02

Figure 10-3. Quadrature Mode Interface

Table 10-3. Quadrature Mode Truth Table

State of X_internal

State of Y_internal

Count Direction

(TxCLK) (TxDIR)
1 0 Increment
| 1 Increment
0 ! Increment
1 1 Increment
| 0 Decrement
1 1 Decrement
0 1 Decrement
1 ! Decrement

10-7

8XC196NP, 80C196NU USER’'S MANUAL Inu®

L g O

A0269-02

Figure 10-4. Quadrature Mode Timing and Count

10.4 EPA CHANNEL FUNCTIONAL OVERVIEW

The EPA has fouprogramnable capture/compare channels that can perform the following tasks.
¢ capture the current timer value when a specified transition occurs on the EPA pin

¢ clear, set, or toggle the EPA pin when the timer value matches the programmed value in the
event-time register

* generate an interrupt when a capture or compare event occurs

* generate an interrupt when a capture overrun occurs

* reset its own base timer in compare mode

* reset theopposite timer in both compare and capture mode
Each EPA channel has a control register, ER2ON (capture/compare channel); an event-time
register, EPX_TIME (capture/compare channel); and a timer input (Figure 10-5). The control
register selects the timer, the mode, and either the event to be captured or the event that is to occur.
The event-time register holds the captured timer value in capture mode and the event time in com-

pare mode. See “Programming the Capture/Compare Channels” on page 10-18 for configuration
information.

10-8 [|

Inbl® EVENT PROCESSOR ARRAY (EPA)

Timer/Counter Unit
TIMER1L l««— External clocking (TxCLK) with up to 6-bit prescaler
<— Quadrature clocking through TxCLK and TxDIR
Clock on TIMER2 < Internal clocking with up to 6-bit prescaler
TIMERL1 overflow
™ EPA Capture/Compare
L Capture Overrun Channel x
OVRx — ' .
Interrupt : * * * .
- e - — | Capture | | | ! EPA Pin
3 EPAX_TIME | 7 Buffer 4—' AT X : ; 0
A Compare | I . |
i - 1
4 | g I N B Y
a Y !) ! !
1 . * ! 1
1 . ! 1
1 . ! 1
-« : ' . 1
EPA | : N
Interrupt i ' ! !
) | —v—)| Reset Timer | ' i
EPAX CON | ___Qverwrite _ 1 ' ! i
— ! ' I
T ! ' 1
!] Mode Control _ . Mode Selection ! !
! TRemap fTTTTrrrmmommmmmmmes !
~J b ___ | .
tEPAl and 3 only. If enabled for EPAL, EPAO shares the EPAL pin. If enabled for EPA3, EPA2
shares the EPA3 pin.
A0270-02

Figure 10-5. A Single EPA Capture/Compare Channel

10.4.1 Operating in Capture Mode

In capture mode, when a valid event occurs on the pin, the value of the selected timer is captured
into a buffer. The timer value is then transferred from the buffer to thex HPWE register,

which sets the EPA interrupt pending bit as shown in Figure 10-6. If enabled, an interrupt is gen-
erated. If a second event occurs before the CPU reads the first timer valuexinT BPB, the

current timer value is loaded into the buffer and held there. After the CPU reads theTBWA

register, the contents of the capture buffer are automatically transferred intoTHME and the

EPA intarupt pending bit is set.

10-9

8XC196NP, 80C196NU USER’'S MANUAL

TIMERX
| € = = === - -
Capture Buffer
EPA
Interrupt @ e == e eeeana
Pending Bit
Set
EPAx_TIME

Read-out Time Value

Event Occurs
at EPA Pin

A2458-02

Figure 10-6. EPA Simplified Input-capture Structure

If a third event occurs before the CPU reads the event-time register, the overwrite bit
(EPAX_CON.0) determines how the EPA will handle the everthdit is clear, the EPA ignores

the third event. If the bit is set, the third event time overwrites tmnskevent time in the capture
buffer. Both situations set the aven interrupt pending bit, and if the interrupt is enabled, they
generate an overrun interrupt. Table 10-4 summarizes tlsébfmactions when a valid event oc-

curs.

NOTE

In order for an event to be captured, the signal must be stable for at least two

state times both before and after the transition occurs (Figure 10-7).

Event 1 1{

2 State
Times

2 State
Times

| 2 State
Times

Event 2 k

2 State
Times

A3130-01

Figure 10-7. Valid EPA Input Events

10-10

Int€|® EVENT PROCESSOR ARRAY (EPA)

Table 10-4. Action Taken when a Valid Edge Occurs

Overwrite Bit Status of
(EPAX_CON.0) Capture Buffer Action taken when a valid edge occurs
- ’ & EPAX_TIME
0 empty Edge is captured and event time is loaded into the capture buffer and
EPAX_TIME register.
0 full New data is ignored — no capture, EPA interrupt, or transfer occurs;
OVRXx interrupt pending bit is set.
1 empty Edge is captured and event time is loaded into the capture buffer and
EPAX_TIME register.
1 full Old data is overwritten in the capture buffer; OVRx interrupt pending
bit is set.

An input capture event does not set the interrupt pending bit until the capturedltimactaally

moves from the capture buffer into the BPAIME register. If the buffer contains data and the
PTS is used to service the interrupts, then two PTS interrupts occur almost back-to-back (that is,
with one instruction executed between the interrupts).

104.1.1 EPA Overruns

Overruns occur when an EPA input transitions at a rate that cannot be hantiedBA inter-

rupt service routine. If no overrun handling strategy is in place, and if the following three condi-
tions exist, a situation may occur where both the capture buffer and the BN register
contain data, and no EPA interrupt is generated.

¢ an input signal with a frequency high enough to cause overruns is present on an enabled
EPA pin, and

¢ the overwrite bit is set (EBACON.O = 1; old data is overwritten on overrun), and

¢ the EPAX_TIME register is read at the exact instant that the EPA recognizes the captured
edge as valid.

The input frequency at which this occurs depends on the length of the interrupt service routine as
well as other factors. Unless the interrupt service routine includes a check for overruns, this situ-
ation will remain the same until the device is reset or thexEPIME register is read. The act of
reading EPX_TIME allows the buffered time value to be moved into EPAME. This clears

the buffer and allows another event to be captured. Remember that the act of the transferring the
buffer contents to the ERATIME register is what actually sets the BRAterrupt pending bit

and generates the interrupt.

10-11

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

10.4.1.2 Preventing EPA Overruns

Any one of the following methods can be used to prevent or recover from an EPA overrun situa-
tion.

* Clear EPA_CON.O

When the overwrite bit (EPA CON.O) is zero, the EPA does not consider the captured
edge until the EPA TIME register is read and the data in the capture buffer is transferred to
EPAX_TIME. This prevents the situation by ignoring new input capture events when both
the capture buffer and ERATIME contain valid capture times. The O¥IRending bit in
EPA_PEND is set to indicate that an overrun occurred.

* Enable the OVRinterrupt and read the ERATIME register within the ISR

If this situation occurs, the overrun (OXHnterrupt will be generated. The OXkhterrupt
will then be acknowledged and its interrupt service routine will read thet HPME regis-

ter. After the CPU reads the ERATIME register, the buffered data moves from the buffer
to the EPA_TIME register. This sets the EPA interrupt pending bit.

10.4.2 Operating in Compare Mode

When the selected timer value matches the event-time value, the action specified in the control
register occurs (i.e., the pin is set, cleared, or toggled). If the re-enable bkt (EBN.3) is set,

the action reoccurs on every timer match. If the re-enable bit is cleared, the action does not reoc-
cur until a new value is written to the event-time register. See “Programming the Capture/Com-
pare Channels” on page 10-18 for configuration information.

In compare mode, you can use the EPA to produce a pulse-width modulated (PWM) output. The
following sections describe four possible methods.

10.4.2.1 Generating a Low-speed PWM Output

You can generate a low-speed, pulse-width modulated output with a single EPA channel and a
standard interrupt service routine. Configure the EPA channel as follows: compare mode, toggle
output, and the compare function re-enabled. Select standard interrupt service, enable the EPA
interrupt, and globally enable interrupts with the El instruction. When the assigned timer/counter
value matches the value in the event-time register, the EPA toggles the output pin and generates
an interrupt. The interrupt service routine loads a new value intx HPWE.

10-12 I

Int€|® EVENT PROCESSOR ARRAY (EPA)

The maximum output frequency depends upon the total interrupt latency and the interrupt-service
execution times used by your system. As additional EPA channels and the other functions of the
microcontroller are used, the maximum PWM frequency decreases because the total interrupt la-
tency and interrupt-service execution time increases. To determine the maximum, low-speed
PWM frequency in your system, calculate your system's worst-case interrupt latency and worst-
case interrupt-service execution time, and then add them together. The worst-case interrupt la-
tency is the total latency of all the interrupts (both normal and PTS) us@diisystem. The
worst-case interrupt-service exaion time is the total execution time of all interrupt service rou-
tines and PTS routines.

Assume a system with a single EPA channel, a single enabled interrupt, and the following inter-
rupt service routine.

;If EPAO-3 interrupt is generated
EPA0-3_ISR:
PUSHA
LD EPAX_CON, #toggle_command
ADD EPAx_TIME, TIMER x, [next_duty_ptr]; Load next event time
POPA
RET

The worst-case interrupt latency for a single-interrupt system is 56 state times for external stack
usage and 54 state times for internal stack usage (see “Standard Interrupt Latency” on page 6-8).
To determine the execution time for an interrupt service routine, add up the execution time of the
instructions (Table A-9).

The total execution time for the ISR that servicesrimfgs EPA3:0 is 79 state tim&s external

stack usage or 71 state times for internal stack usage. Therefore, a single capture/compare channel
0-3 can be updated every 125 state times assuming internal shgek(G4 + 71). Each PWM

period requires two updates (one setting and one clearing), so the execution time for a PWM pe-
riod equals 250 state times. Whte input frequency on XTAL1 is 25 MHz and the phase-locked

loop is disabled on the 80C196NU, the PWM period is 20 ps and the maximum PWM frequency

is 50 kHz.

10.4.2.2 Generating a Medium-speed PWM Output

You can generate a medium-speed, pulse-width modulated output with a single EPA channel and
the PTS set up in PWM toggle mode. “PWM Toggle Mode Example” on page 6-27 describes how

to configure the EPA and PTS. Once started, this method requires no CPU intervention unless you
need to change the output frequency. The method uses a single timer/counteneficedinter

is not interrupted during this process, so other EPA channels can also use it if they do not reset it.

10-13

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

The maximum output frequency depends upon the total interrupt latency and interrupt-service ex-
ecution time. As additional EPA channels and the other functions of the microcontroller are used,
the maximum PWM frequency decreases because the total interrupt latency and interrupt-service
execution time increases. To determine the maximum, medium-speed PWM frequgaay in
system, calculate your system's worst-casarinpt latency and worst-case interrupt-service ex-
ecution time, and then add them together. The worst-case interrupt latency is the total latency of
all the intarupts (both normal and PTS) used in ysystem. The worst-case interrupt-service
execution time is the total execution time of all interrupt service routines and PTS cycles.

Assume a system with a single EPA channel, a single enabled interrupt, and PTS service. Also
assume that the PTS is initialized and that the duty cycle and frequency are fixed. The worst-case
interrupt latency for a single-interrupt system with PTS service is 43 state times (see “PTS Inter-
rupt Latency” on page 6-9). The PTS cycle execution time in PWM toggle mode is 15 state times
(Table 6-4 on page 6-10). Therefore, a single capture/compare channel can be updated every 58
state times (43 + 15). Each PWM period requires two updates (one setting and one clearing), so
the execution time for a PWM period equals 116 state times. When the input frequency on
XTAL1L is 25 MHz and the phase-locked loop is disabled on the 80C196NU, the PWM period is
9.27 ps and the maximum PWM frequency is 107.8 kHz.

10.4.2.3 Generating a High-speed PWM Output

You can generate a high-speed, pulse-width modulated output with a pair of EPA channels and
the PTS setup in PWM remap mode. “PWM Remap Mode Example” on page 6-32 describes how
to configure the EPA and PTS. The remap bit (bit 8) must be set in EPA1_CON (to pair EPAO and
EPA1) or EPA3_CON (to pair EPA2 and EPA3). One channel must be configured to set the out-
put; the other, to clear it. At the set (or clear) time, the PTS reads the old time value from
EPAX_TIME, adds to it the PWM period constant, and returns the new value to ERAE. Set

and clear times can be programmed to differ by as little as one timer count, resulting in very nar-
row pulses. Once started, this method requires no CPU intervention yoleesed to change

the output frequency. The method uses a single timer/counter. The timer/counter is not interrupted
during this process, so other EPA channels can also use it if they do not reset it.

To determine the maximum, high-speed PWM frequency in your system, calculate your system's
worst-case interrupt latency and thaouble it. Theworst-case interrupt latency is the total la-
tency of all the interrupts (both normal and PTS) used in your system.

Assume a system that uses a pair of remapped EPA channels (i.e., EPAO and 1 or EPA3 and 4),
two enabled interrupts, and PTS service. Also assume that the PTS is initialized and that the duty
cycle and frequency are fixed. The worst-case interrupt latency for a single-interrupt system with
PTS service is 43 state times (see “PTS Interrupt Latency” on page 6-9). In this mode, the maxi-
mum period equals twice the PTS latency. Therefore, the execution time for a PWM period equals
86 state times. When the input frequency on XTAL1 is 25 MHz and the phase-locked loop is dis-
abled on the 80C196NU, the PWM period is 6.88 ps and the maximum PWM frequéAbySis

kHz.

10-14 I

Int€|® EVENT PROCESSOR ARRAY (EPA)

10.4.2.4 Generating the Highest-speed PWM Output

You can generate a highest-speed, pulse-width modulated output with a pair of EPA channels and
a dedicated timer/counter. The first channel toggles the output when the timer value matches
EPAX_TIME, and at some later time, the second channel toggles the outputadaasets the
timer/counter. This restarts the cycle. No interrupts are required, resulting in the highest possible
speed. Software must calculate and load the appropriate ERAE values and load them at the
correct time in the cycle in order to change the frequency or duty cycle.

With this method, the resolution of the EPA (selected by #@ONTROL registers; see Figure

10-8 on page 10-16 and Figure 10-9 on page 10-17) determines the maximum PWM output fre-
guency. (Resolution is the minimum time required between consecutive captures or compares.)
When the input frequency on XTAL1 is 25 MHz and the phase-locked loop is disabled on the
80C196NU, a 160 nsesolution results in a maximum PWM of 6.25 MHz.

10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS

This section discusses configuring the port pins for the EPA and the timer/counters; describes
how to program the timers and the capture/compare channelgxpladns how to enable the
EPA intarupts.

10.5.1 Configuring the EPA and Timer/Counter Port Pins

Before you can use the EPA, yowist configure the pins of port 1 to serve as the special-function
signals for the EPA and, optionally, for the timer/counter clock source and direction control sig-
nals. See “Bidirectional Ports 1-4" on page 7-1 for information about configuring the port pins.

NOTE

If you use T2CLK as the timer 2 input clock, you cannot use EPA
capture/compare channel 0. If you use T2DIR as the timer 2 direction-control
source, you cannot use EPA capture/compare channel 1.

Table 10-1 on page 10-2 lists the pins associated with the EPA and the timer/counters. Pins that
are not being used for an EPA channel or timer/counter can be configured as standard 1/0O.

10.5.2 Programming the Timers

The control registers for the timers are TICONTROL (Figure 10-8) and T2CONTROL (Figure
10-9). Write to these registers to configure the timers. Write to the TIMER1 and TIMER2 regis-
ters (see Table 10-2 on page 10-3 for addresses) to load a specific timer value.

I 10-15

8XC196NP, 80C196NU USER’'S MANUAL Inu®

T1CONTROL

Address: 1F90H
Reset State: O0H

The timer 1 control (TLCONTROL) register determines the clock source, counting direction, and count
rate for timer 1.

7 0
CE uD M2 ML || Mo P2 P1 PO
Bit Bit Function
Number Mnemonic

7 CE Counter Enable
This bit enables or disables the timer. From reset, the timers are
disabled and not free running.
0 = disables timer
1 = enables timer

6 ub Up/Down
This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).
0 = count down
1 = count up

5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction control
source.
M2 M1 MO Clock Source Direction Source
0 0 0 iz UD bit (TLCONTROL.6)
X 0 1 TICLK pin? UD bit (TLCONTROL.6)
0 1 0 fl4 T1DIR pin
0 1 1 TICLK pin? T1DIR pin
1 1 1 quadrature clocking using T1CLK and T1DIR
T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits
These bits determine the clock prescaler value.
P2 P1 PO Prescaler Divisor Resolution T
0 0 0 divide by 1 (disabled) 160 ns
0 0 1 divide by 2 320 ns
0 1 0 divide by 4 640 ns
0 1 1 divide by 8 1.28 ps
1 0 0 divide by 16 2.56 ps
1 0 1 divide by 32 5.12 pys
1 1 0 divide by 64 10.24 ps
1 1 1 divide by 128 (NU only) 20.48 ps
T At f = 25 MHz. Use the formula on page 10-6 to calculate the resolution
at other frequencies.

10-16

Figure 10-8. Timer 1 Control (TLCONTROL) Register

intel.

EVENT PROCESSOR ARRAY (EPA)

T2CONTROL

The timer 2 control (T2CONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

Address: 1F94H
Reset State: O0H

7 0
CE uD M2 ML || Mo P2 P1 PO
Bit Bit Function
Number Mnemonic

7 CE Counter Enable
This bit enables or disables the timer. From reset, the timers are
disabled and not free running.
0 = disables timer
1 = enables timer

6 ub Up/Down
This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).
0 = count down
1 = count up

5:3 M2:0 EPA Clock Direction Mode Bits.
These bits determine the timer clocking source and direction source
M2 M1 MO Clock Source Direction Source
0 0 0 fl4 UD bit (T2CONTROL.6)
X 0 1 T2CLK pin? UD bit (T2CONTROL.6)
0 1 0 fl4 T2DIR pin
0 1 1 T2CLK pin? T2DIR pin
1 0 0 timer 1 overflow UD bit (T2CONTROL.6)
1 1 0 timer 1 same as timer 1
1 1 1 quadrature clocking using T2CLK and T2DIR
T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits
These bits determine the clock prescaler value.
P2 P1 PO Prescaler Resolution '
0 0 0 divide by 1 (disabled) 160 ns
0 0 1 divide by 2 320 ns
0 1 0 divide by 4 640 ns
0 1 1 divide by 8 1.28 ps
1 0 0 divide by 16 2.56 ps
1 0 1 divide by 32 5.12 ps
1 1 0 divide by 64 10.24 ps
1 1 1 divide by 128 (NU only) 20.48 ps
T At f= 25 MHz. Use the formula on page 10-6 to calculate the
resolution at other frequencies.

Figure 10-9. Timer 2 Control (T2CONTROL) Register

10-17

8XC196NP, 80C196NU USER’'S MANUAL Inu®

10.5.3 Programming the Capture/Compare Channels

The EPA_CON register controls the function of its assigned capture/compare channel. The reg-
isters for EPAO and EPA2 are identical. The registers for EPA1 and EPA3 have an additional bit,
the remap bit (RM), which is used to enable and disable remapping for high-speed PWM gener-
ation (see “Generating a High-speed PWM Output” on page 10-14). This added bit (bit 8) re-
guires an additional byte, so EPA1_CON and EPA3_@aist be addressed asrds, while the

others can be addressed as bytes.

To program a compare event, write to EPEON (Figure 10-10) to configure the EPA cap-
ture/compare channel and then load the event time inta HRIME. To program a capture event,
you need only write to EBACON. Table 10-5 shows the effects of various combinations of
EPAX_CON bhit settings.

Table 10-5. Example Control Register Settings and EPA Operations

Capture Mode
TB | CE | MODE | RE | — | ROT | ON/RT .
Operation
7 6 5| 4 3 2 1 0
X 0 0 0 — 0 — 0 None
X 0 0 1 — 0 X X Capture on falling edges
X 0 1|0 — 0 X X Capture on rising edges
X 0 1 1 — 0 X X Capture on both edges
X 0 X |1 — 0 1 X Reset opposite timer
X 0 1| X | — 0 1 X Reset opposite timer
Compare Mode
TB | CE | MODE | RE | — | ROT | ON/RT .
Operation
7 6 5| 4 3 2 1 0
X 1 0| O X 0 — 0 None
X 1 0 1 X 0 X X Clear output pin
X 1 1|0 X 0 X X Set output pin
X 1 1 1 X 0 X X Toggle output pin
X 1 X | X X 0 0 1 Reset same timer
X 1 X | X X 0 1 1 Reset opposite timer
NOTES: — = bitis not used

X = bit may be used, but has no effect on the described operation. These bits cause other oper-
ations to occur.

10-18

Inbl® EVENT PROCESSOR ARRAY (EPA)

EPAx_CON Address: Table 10-2 on page 10-3
x=0-3 Reset State: 00H

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO andEPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
=t | = | =] -] - J[=]—-1]—-1]Rrm|
7 0
| | ce | v | mo |[[rRE | — [RrOT [ONRT |
7 0
x=0,2 | | ce | i | mo |[[RE | — [ROT [ONRT |
Nuii:)er Mne?Ti\tonic Function
15:9" — Reserved; always write as zeros.
8' RM Remap Feature
The remap feature applies to the compare mode of the EPA1 and EPA3
only.

When the remap feature of EPAL is enabled, EPA capture/compare
channel 0 shares output pin EPA1 with EPA capture/compare channel 1.
When the remap feature of EPA3 is enabled, EPA capture/compare
channel 2 shares output pin EPA3 with EPA capture/compare channel 3.

0 = remap feature disabled

1 =remap feature enabled

7 B Time Base Select

Specifies the reference timer.

0 =timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (clearing, setting, or toggling an output pin; and/or
resetting either timer) occurs when the reference timer matches the time
programmed in the event-time register.

When a capture event (falling edge, rising edge, or an edge change on
the EPAX pin) occurs, the reference timer value is saved in the EPA event-
time register (EPAx_TIME).

6 CE Compare Enable

Determines whether the EPA channel operates in capture or compare
mode.

0 = capture mode
1 = compare mode

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers

[| 10-19

8XC196NP, 80C196NU USER’'S MANUAL Inu®

x=0-3

EPAXx_CON (Continued)

Address: Table 10-2 on page 10-3
Reset State: 00H

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO andEPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

I N | N N O

0

‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ROT‘ON/RT‘

0

‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ROT‘ON/RT‘

Bit
Number

Bit

Mnemonic

Function

5:4

M1:0

EPA Mode Select

In capture mode, specifies the type of event that triggers an input capture.
In compare mode, specifies the action that the EPA executes when the
reference timer matches the event time.

M1 MO Capture Mode Event

no capture

capture on falling edge
capture on rising edge
capture on either edge
M1 MO Compare Mode Action
0 no output

0 clear output pin

1 set output pin
1 toggle output pin

0
0
1
1

R ORFrOo

RORFRO

RE

Re-enable

Re-enable applies to the compare mode only. It allows a compare event
to continue to execute each time the event-time register (EPAX_TIME)
matches the reference timer rather than only upon the first time match.

0 = compare function is disabled after a single event
1 = compare function always enabled

2

Reserved; always write as zero.

T These bits apply to the EPA1_CON and EPA3_CON registers only.

10-20

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

Inbl® EVENT PROCESSOR ARRAY (EPA)

EPAx_CON (Continued) Address: Table 10-2 on page 10-3
x=0-3 Reset State: 00H

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO andEPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

O I B B I = BT

7 0

‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ ROT ‘ ON/RT ‘

7 0

x=0,2 ‘ B ‘ CE ‘ M1 ‘ MO ‘ ‘ RE ‘ — ‘ ROT ‘ ON/RT ‘
Bit Bit Function

Number Mnemonic

1 ROT Reset Opposite Timer
Controls different functions for capture and compare modes.
In Capture Mode:

0 = causes no action
1 = resets the opposite timer

In Compare Mode:
Selects the timer that is to be reset if the RT bit is set.

0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset

The TB bit (bit 7) selects which is the reference timer and which is the
opposite timer.
0 ON/RT Overwrite New/Reset Timer

The ON/RT bit functions as overwrite new in capture mode and reset
timer in compare mode.

In Capture Mode (ON):

An overrun error is generated when an input capture occurs while the
event-time register (EPAx_TIME) and its buffer are both full. When an
overrun occurs, the ON bit determines whether old data is overwritten or
new data is ignored:

0 =ignores new data

1 = overwrites old data in the buffer

In Compare Mode (RT):

0 =disables the reset function
1 =resets the ROT-selected timer

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

[| 10-21

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

10.6 ENABLING THE EPA INTERRUPTS

The EPA generatdsur individual eent interrupts, EPA3:0, frothefour capture/compare chan-
nels and two timer interrupts, OVRTM1 and OVRTMZ2, from timer 1 and timer 2. These inter-
rupts are directly mapped into the two 8-bit interrupt pending regi¢teic PEND and
INT_PENDZ1). The four separate capture overrun interrupts from ER#&®:0nultiplexed and
mapped into two bits in INT_PENDZ1. The capture overrun interrupts from EPAO and EPAL are
multiplexed and mapped into OVRO_1 (bit 4) of INT_PEND1,; the capture overrun interrupts
from EPA2 and EPA3 are multiplexed and mapped into OVR2_3 (bit 5) of INT_PEND1. To en-
able the interrupts, set the corresponding bits in the the two 8-bit interrupt ragisters
(INT_MASK and INT_MASKZ1). To enable the individual sources of the capture overrun inter-
rupts OVRO_1 and OVR2_3, set the corresponding bits in the EPA mask register (EPA_MASK).
(Chapter 6, “Standard and PTS Interrupts,” discusses the interrupts in greater detail.)

EPA MASK Address: 1F9CH
- Reset State: AAH
The EPA interrupt mask (EPA_MASK) register enables or disables (masks) the multiplexed EPA3:0
overrun interrupts (OVR3:0).
7 0
— OVR3 — owr2 || — OVR1 — OVRO
Bit Bit Function
Number Mnemonic
7,531 |— Reserved; for compatibility with future devices, write zeros to these bits.
6,4,2,0 |OVRS Setting this bit enables the corresponding source as a shared overrun
OVR2 interrupt source. The shared overrun interrupts (OVRO_1 and OVR2_3)
OVR1 are enabled by setting their interrupt enable bits in the interrupt mask 1
OVRO (INT_MASK1) register.

Figure 10-11. EPA Interrupt Mask (EPA_MASK) Register

10.7 DETERMINING EVENT STATUS

In compare mode, an interrupt pending bit is set each time a match occurs on an enabled event
(even if the interrupt is specifically masked in the mask register). In capture mode, an interrupt
pending bit is set each time a programmed event is captured and the event time moves from the
capture buffer to the EBATIME register. If the capture buffer is full when an event occurs, an
overrun interrupt pending bit is set.

Timer overflows and capture overruns also set interrupt pending bits. You can mask the interrupts
by clearing bits in EPA_MASK (Figure 10-11), INT_MASK, and INT_MASK1. If an interrupt

is masked, software can still poll the imet pendingegisters to determine whether an event

has occurred.

10-22 I

Int€|® EVENT PROCESSOR ARRAY (EPA)

EPA_PENDT Address: 1F9EH
Reset State: AAH

When hardware detects a pending EPA3:0 overrun interrupt (OVR3:0), it sets the corresponding bit in
the EPA interrupt pending (EPA_PEND) register. OVRO and OVR1 are multiplexed to share one bit
(OVRO_1) in the INT_PEND1 register. Similarly, OVR2 and OVRS3 are multiplexed to share another bit
(OVR2_3) in the INT_PENDL1 register.

7 0
— OVR3 — OVR?2 H — OVR1 — OVRO

Bit

Number Function

7,5, 3,1 Reserved. These bits are undefined.

6,4,2,0 | Any setbitindicates that the corresponding overrun interrupt source is pending.

T This register was called EPA_STAT in previous documentation for the 8XC196NP.

Figure 10-12. EPA Interrupt Pending (EPA_PEND) Register

The EPA interrupt pending register, APPEND, has the same bit structure as the EPA_MASK
register. EPA_PEND is similar to an interrupt pending register in that it shows the status of the
individual capture/compare overrun interrupts. The bits in EPA_PEND can be polled to deter-
mine the exact source of an OVRO_1 or OVR2_3 interrupt. However, hardware does not clear
status bits in this register when it vectors to the interrupt service routine for an interrupt pair
(OVRO_1, OVR2_3) so the user’s code must clear the register. Instead it clears the OVRO_1 or
OVR2_3 bitin the INT_MASK register. Also, software cannot generate an interrupt by setting a
bit in EPA_PEND.

10.7.1 Using Software to Service the Multiplexed Overrun Interrupts

The multiplexed overrun interrupts should normally be serviced by interrupt service routines be-
cause the PTS cannot determine the exact source of the interrupt. When an OVRORR0BOV
occurs, the user’s software service routine can poll the bits of the EPA_PEND register, which has
a bit for each overrun source, to determine which ofdhe captire/compare channels caused

the interrupt. The individual sources can be masked by bits in the EPA_MAy@&Here

[| 10-23

8XC196NP, 80C196NU USER’S MANUAL Int9|®

10.8 PROGRAMMING EXAMPLES FOR EPA CHANNELS

The three programming examples provided in this section demonstrate the use of the EPA channel
for a compare event, for a capture event, and for generation of a PWM signal. The programs dem-
onstrate the detection of events by a polling scheme, by interrupts, and by the PTS. All three ex-
amples were created using ApBUILDER, an interactive application program available through
Intel Literature Fulfillment. These sample program were written in the C programming language.
ASM versions are also available from ApBUILDER.

NOTE

The initialization file (80c196np.h) used in these examples is available from
the Intel Applications BBS.

10.8.1 EPA Compare Event Program

This example C program demonstrates an EPA compare event. It sets up EPA channel 0 to toggle
its output pin whenever timer 1 is zero. This program uses no interrupts; a polling scheme detects
the EPA event. The program initializes EPA channel 0 for a compare event.

#pragma model (EX)
#include <80cl96np.h>

#define COMPARE 0x40
#define RE_ENABLE 0x08
#define TOGGLE_PIN 0x30
#define USE_TIMER1 0x00
#define EPAO INT BIT 7

void init_epa0 ()

{

epa0_con = COMPARE |
TOGGLE_PIN
RE_ENABLE |
USE_TIMERI;
epal_time = 0;

setbit (pl_reg, 0)
clrbit (pl_dir, 0)
setbit (pl_mode, 0

}

void init timerl ()
{
tlcontrol = COUNT ENABLE |
COUNT UP |
CLOCK_INTERNAL |
DIVIDE BY 1;

/* int reg */
/* make output pin */
) ;/* select EPA mode */

7
i

10-24

Intel® EVENT PROCESSOR ARRAY (EPA)

void poll_epa0()
{
if(checkbit(int_pend, EPAO_INT_BIT))
{
/* Insert user code for event channel 0 here. */

/* Since this event is absolute and re-enabled, no polling is neccessary.*/
clrbit(int_pend, EPAQ_INT_BIT);
}

}

void main(void)

/* Initialize the timers before using the epa */

init_timer1();

init_epa0();

/* EPA events can be serviced by polling int_pend or epa_pend. */
while(1)

{
poll_epa0();
}

10.8.2 EPA Capture Event Program

This example C program demonstrates an EPA capture event. It sets up EPA channel O to capture
edges (rising and falling) on the EPAO pin. The program also shows how to set up an the EPA
interrupt. You can add your own code for the interrupt service routine.

#pragma model(EX)
#include <80c196np.h>

#define COUNT_ENABLE 0x80
#define COUNT_UP 0x40
#define CLOCK_INTERNAL 0x00
#define DIVIDE_BY_1 0x00
#define CAPTURE 0x00
#define BOTH_EDGE 0x30
#define USE_TIMERL1 0x00
#define EPAO_INT_BIT 7
void init_epa0()
{
epa0_con = CAPTURE |
BOTH_EDGE]
USE_TIMER1,

setbit(pl_reg, 0); /* intreg */

setbit(pl_dir, 0); /* make input pin */

setbit(pl_mode, 0);/* select EPA mode */

setbit(int_mask, EPAO_INT_BIT);/* unmask EPA interrupts */

}

#pragma interrupt(epa0_interrupt=EPAO0_INT_BIT)
void epaO_interrupt()
{

unsigned int time_value;

10-25

8XC196NP, 80C196NU USER’'S MANUAL Inu®

time_value = epa0_time; /* must read to prevent overrun */
void init_timer1()
tlcontrol= COUNT_ENABLE |

COUNT_UP|

CLOCK_INTERNAL |
DIVIDE_BY_1;

}
void main(void)
unsigned int time_value;

/* Initialize the timers and interrupts before using the EPA */

init_timer1();

init_epa0();

enable(); /* Globally enable interrupts */

while(1); /* loop forever, wait for interrupts to occur */
}

10.8.3 EPA PWM Output Program

This example (program demonstrates the generation of a PWjas using the EPA's PWM
toggle mode (see “PWM Modes” on page 6-26) and shows how to service the interrupts with the
PTS. The PWM signal in this example has a 50% duty cycle.

#pragma model(EX)
#include <80c196np.h>
#define PTS_BLOCK_BASE 0x98

[* Create typedef template for the PWM_TOGGLE mode control block.*/
typedef struct PWM_toggle_ptscb_t {

unsigned char unused,;

unsigned char ptscon;

void *pts_ptr;

unsigned int constant1;

unsigned int constant2;

} PWM_toggle_ptsch;

/* This locates the PTS block mode control block in register ram. This */
[* control block may be located at any quad-word boundary. */

register PWM_toggle_ptscb PWM_toggle_CB_3;
#pragma locate(PWM_toggle_CB_3=PTS_BLOCK_BASE)

/* The PTS vector must contain the address of the PTS control block.*/
#pragma pts(PWM_toggle_CB_3=0x3)

/* Sample PTS control block initialization sequence.*/

10-26

Inbl® EVENT PROCESSOR ARRAY (EPA)

void Init_PWM_toggle_PTS3(void)

disable(); /* disable all interrupts */
disable_pts(); /* disable the PTS interrupts */

PWM_toggle_CB_3.constant2 = 127,
PWM_toggle_CB_3.constantl = 127
PWM_toggle_CB_3.pts_ptr = (void *)&EPAO_TIME;
PWM_toggle_CB_3.ptscon = 0x42;

[* Sample code that could be used to generate a PWM with an EPA channel.*/

setbit(pl_reg, Ox1); /* init output */
clrbit(p1_dir, Ox1); /* setto output */
setbit(pl_mode, Ox1); /* set special function*/
setbit(ptssel, 0x8);
setbit(int_mask, 0x0)

}

void main(void)

Init_PWM_toggle_PTS3();

epal_con = 0x78; /* toggle, timerl, compare, re-enable */
epal_timer = 127;

tlcontrol = OxC2; /* enable timer, up 1 microsecond @ 16 MHz */
enable_pts();

while(1);

}

10-27

intgl.

11

Minimum Hardware
Considerations

The 8XC196NP and 80C196NU have several basic requirements for operation within a system.
This chapter describes options for providing the basic requirements and discusses other hardware

CHAPTER 11

MINIMUM HARDWARE CONSIDERATIONS

considerations.

11.1 MINIMUM CONNECTIONS

Table 11-1 lists the signals that are required for the device to function and Figure 11-1 shows the

connections for a minimum configuration.

Table 11-1. Minimum Required Signals

Signal
Name

Type

Description

RESET#

110

Reset

A level-sensitive reset input to and open-drain system reset output from the micro-
controller. Either a falling edge on RESET# or an internal reset turns on a pull-down
transistor connected to the RESET# pin for 16 state times. In the powerdown,
standby, and idle modes, asserting RESET# causes the chip to reset and return to
normal operating mode. After a device reset, the first instruction fetch is from
FF2080H (or F2080H in external memory). For the 80C196NP and 80C196NU, the
program and special-purpose memory locations (FF2000—FF2FFFH) reside in
external memory. For the 83C196NP, these locations can reside either in external
memory or in internal ROM.

RPD

Return from Powerdown
Timing pin for the return-from-powerdown circuit.

If your application uses powerdown mode, connect a capacitort between RPD and
Vg if either of the following conditions is true.

« the internal oscillator is the clock source
« the phase-locked loop (PLL) circuitry (80C196NU only) is enabled (see
PLLENZ2:1 signal description)

The capacitor causes a delay that enables the oscillator and PLL circuitry to
stabilize before the internal CPU and peripheral clocks are enabled.

The capacitor is not required if your application uses powerdown mode and if both
of the following conditions are true.

« an external clock input is the clock source
« the phase-locked loop circuitry (80C196NU only) is disabled

If your application does not use powerdown mode, leave this pin unconnected.
T Calculate the value of the capacitor using the formula found on page 12-11.

PWR

Digital Supply Voltage
Connect each V. pin to the digital supply voltage.

GND

Digital Circuit Ground
Connect each Vgg pin to ground through the lowest possible impedance path.

11-1

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 11-1. Minimum Required Signals (Continued)

Signal

Name Type Description

XTAL1 | Input Crystal/Resonator or External Clock Input

Input to the on-chip oscillator, internal phase-locked loop circuitry (80C196NU), and
the internal clock generators. The internal clock generators provide the peripheral
clocks, CPU clock, and CLKOUT signal. When using an external clock source
instead of the on-chip oscillator, connect the clock input to XTAL1. The external
clock signal must meet the V,, specification for XTAL1 (see datasheet).

XTAL2 (0] Inverted Output for the Crystal/Resonator

Output of the on-chip oscillator inverter. Leave XTALZ2 floating when the design uses
a external clock source instead of the on-chip oscillator.

11.1.1 Unused Inputs
For predictable performance, it is important to tie unused inputg @MW, Otherwise, they

can float to a mid-voltage level and draw excessive culdgntsed interrupt inputs may generate
spurious interrupts if left unconnected.

11.1.2 1/O Port Pin Connections

Chapter 7, “I/O Ports,” contains information about initializing and configuring the ports. Table
11-2 lists the sections, with page numbers, that contain the information for each port.

Table 11-2. 1/O Port Configuration Guide

Port Where to Find Configuration Information
Ports 1-4 “Bidirectional Port Pin Configurations” on page 7-7 and “Bidirectional Port Considerations”
on page 7-9
EPORT “Configuring EPORT Pins” on page 7-17

11-2

MINIMUM HARDWARE CONSIDERATIONS

Notes:

1. See the datasheet for the oscillator frequency range (Fosc) and the crystal manufacturer's

(Note 1)
20 pF 20 pF

Fe | [ais=t

XTAL2 XTAL1
Vee RESET#
(Note 2)
Vss EA#
NMI
RPD
8XC196 Device
READY
BHE#
PLLEN1 (NU Only)
RD#
WR#
ONCE
INST
ALE

PLLEN2 (NU Only)

Vee

-I(NP Only)

L

4.7 yF

.||—| |+—o

Vee

Bus Control
(Note 4)

B

datasheet for recommended load capacitors.

2. The number of V¢ and Vgg pins varies with package type (see datasheet). Be sure to connect
all V¢ pins to the supply voltage and all Vgg pins to ground.
3. Connect the capacitor to RPD when using powerdown mode and the internal oscillator or

phase-locked loop (NU only) circuitry. Otherwise, RPD may float.
4. No connection is required.

A2415-02

Figure 11-1. Minimum Hardware Connections

11-3

8XC196NP, 80C196NU USER’'S MANUAL Inu®

11.2 APPLYING AND REMOVING POWER

When power is first applied to the device, RESET# must remain continuously low for at least one
state time after the power supply is within tolerance and the oscillator/clock has stabilized; oth-
erwise, operation might be unpredictable. Similarly, when powering down a system, RESET#
should be brought low before.¥is removed; otherwise, an inadvertent write to an external lo-
cation might occur. Carefully evaluate the possible effepbefer-up and power-dowsequenc-

es on a system.

11.3 NOISE PROTECTION TIPS

The fast rise and fall times of high-speed CMOS logic giterduce noise spikes on the power
supply linesand outputs. To minimize noise, it is important to follow good design and board lay-
out techniques. We recommend liberal use of decoupling capacitors and transient absorbers. Add
0.01 pF bypass capacitors betweep ®nd each Y5 pin to reduce noise (Figure 11-2). Place the
capacitors as close to the device as possible. Use the shortest possible path to ggfinest V

to ground and each other.

8XC196 Device

Q »
(SIR7
> >

i
0—| |T— JT_ zigitald
| |T P|Z);:

Vss

9]
%
>

+5V 5V
Return

Power Source

T Use 0.01 uF bypass capacitors for maximum decoupling.

A3069-01

Figure 11-2. Power and Return Connections

11-4 I

Inte|® MINIMUM HARDWARE CONSIDERATIONS

Multilayer printed circuit boards with separatg Vandground planeslso help to minimize
noise. For more information on noise protection, refer to AP&Signing Microcontroller Sys-
tems for Noisy Envanmentsand AP-711EMI Design Techniques for Microcontrollers in Auto-
motive Applications

11.4 THE ON-CHIP OSCILLATOR CIRCUITRY

The on-chip oscillator circuit (Figure 11-3) consists of a crystal-controlled, positive reactance os-
cillator. In this application, the crystal operates in a parallel resonance mode. The feedback resis-
tor, Rf, consists of paralleledchannel ang@-channel FETs controlled by the internal powerdown
signal. In powerdown mode, Rf acts as an open and the output driversahtedligvhich disables

the oscillator. Both the XTAL1 and XTALZ2 pins have built-in electrostatic discharge (ESD) pro-
tection.

NOTE

For the 80C196NU, althoughe maximum external clock input frequency is
50 MHz, the maximum oscillator input frequency is limited to 25 MHz.

To internal
circuitry

Vee
A J
—————— O

Rf ’
XTALL XTAL2
(Input) D_ (Output)

Vss

Oscillator Enable#
(from powerdown circuitry)

A0076-03

Figure 11-3. On-chip Oscillator Circuit

I 11-5

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Figure 11-4 shows the connections between the external crystal and the device. When designing
an external oscillator circuit, consider the effects of parasitic board capacitance, extended oper-
ating temperatures, and crystal specifications. Consult the manufacturer’s datasheet for perfor-
mance specifications and required capacitor values. With high-quality components, 20 pF load

capacitors (¢) are usually adequate for frequencies above 1 MHz.

Noise spikes on the XTAL1 or XTAL2 pin can cause a miscount in the internal clock-generating
circuitry. Capacitive coupling between the crystal oscillator and traces carrying fast-rising digital
signals can introduce noise spikes. To reduce this couptiagntthe crystal oscillator and ca-
pacitors near the device and use short, direct traces to connect to XTAL1, XTAL2 @i V
further reduce the effects of noise, use grounded guard rings around the oscillator circuitry and
ground the metallic crystal case.

I XTAL1
_L_h — 8XC196
—|_ Device
= LN
c2 \

Quartz Crystal

Note:

Mount the crystal and capacitors close to the device using
short, direct traces to XTAL1, XTAL2, and Vgg. When
using a crystal, C1=C2=20 pF. When using a ceramic
resonator, consult the manufacturer for recommended
oscillator circuitry.

A0273-02

Figure 11-4. External Crystal Connections

In cost-sensitive applications, you may choose to use a ceramic resonator instead of a crystal os-
cillator. Ceramic resonators may require slightly different load capacitor values and circuit con-
figurations. Consult the manufacturer’s datasheet for the requirements.

11-6

Inu® MINIMUM HARDWARE CONSIDERATIONS

11.5 USING AN EXTERNAL CLOCK SOURCE

To use an external clock source, apply a clock signal to XTAL1 and let XTAL2 float (Figure
11-5). To ensure proper operation, the external clock source must meet the minimum high and
low times (T,xx and T, «x) and the maximum rise and fall transition timeg, (I, and Ty,)

(Figure 11-6). The longer the rise and fall times, the higher the probability that external noise will
affect the clock generator circuitry and cause unreliable operation. See the datasheet for required
XTALL1 voltage drive levels and actual specifications.

Vce

4.7 kQt
External
Clock Input XTAL1

Clock Driver 8XC196 Device

No Connection XTAL2

T Required if TTL driver is used. Not needed if CMOS driver is used.

A0274-02

Figure 11-5. External Clock Connections

Txrxx Tyxixn =] |at—— —_— |t— TxHXL
0.7V +05V 0.7Vec+05V
— Tox —»
XTALL 03Vcc-05V 0.3Vec—-05V
R ————————
Taxe

A2119-02

Figure 11-6. External Clock Drive Waveforms

At power-on, the interaction between the internal amplifier and its feedback capacitance (i.e., the
Miller effect) may cause a load of up100 pF at the XTALJin if the signal at XTAL1 is weak

(such as might be the case during start-up of the external oscillator). This situation will go away
when the XTAL1 input signal meets the \and \{, specifications (listed in the datasheet). If
these specifications are met, the XTAL1 pin capacitance will not exceed 20 pF.

11-7

8XC196NP, 80C196NU USER’'S MANUAL Inu®

11.6 RESETTING THE DEVICE

Reset forces the device into a known state. As soon as RESET# is asiseti€ pins, the con-

trol pins, and the registers are driven to their reset states. (Table B-5 on page B-13 lists the reset
states of the pins. See Table C-2 on page C-2 for the reset values of the SFRs.) The device re-
mains in its reset state until RESET# is deasserted. When RESET# is deasserted, the bus control-
ler fetches the chip configuration bytes (CCBSs), loads them into the chip configuration registers
(CCRs), and then fetches the first instruction. Figure 11-7 shows the reset-sequence timing.

| |
RESET# 4 gs—oN !
pin L i
Internal_| | | I
Reset] |
| |
ALE 1 1
1 1
! | > |=<Notel
RD# | 1 t I :
NP | |
cso# .1 ! I
NU 1 |
| |
CS5:1# 1 1
I t 1
: ! 2018H '201AH -
A15:0 __X . A }
! ! CCB1
AD7:0 _ooH X _18H X CCBO X X _1an XX }-
| |
| | Note 2
AD15:8 _00H X 20H Strongly Driven X X20H Strong. Drv.X)
| |
1 1
A19:16 x | OFH Strongly Driven |)
| |
Bus parameters defined by CCBO (bus width, multiplexed
or demultiplexed mode, number of wait states) take effect
here (at start of second bus cycle). BUSCONO is changed
here by value of CCBO.
Notes:
1. Depends on number of wait states defined in CCBO.
2. If bus is multiplexed, AD15:8 strongly drive 20H.
If bus is demultiplexed, AD15:8 drive the data that is currently on the high byte of the internal bus.
A2417-02

Figure 11-7. Reset Timing Sequence

11-8

Inu® MINIMUM HARDWARE CONSIDERATIONS

The following events will reset the device (see Figure 11-8):
¢ an external device pulls the RESET# pin low
¢ the CPU issues the reset (RST) instruction

* the CPU issues an idle/powerdown (IDLPD) instruction with an illegal key operand

The following paragraphs describe each of these reset methods in more detail.

Internal : External

1

Vcc !

Reset State l€«—— Clock ,

Internal Machine Recrt 1

Reset g) RST ,

Signal Trigger .

1

Stop 1

1

l | RESET#
1
VV\ _
~200Q : s

CLR :

1

1

Q 4| Q1 :

1

1

SET 1

1

1

1

1

RST Instruction :

IDLPD Invalid Key — !
t See the datasheet for minimum and maximum Rggt values.

A2416-01

Figure 11-8. Internal Reset Circuitry

11.6.1 Generating an External Reset

To reset the device, hold the RESET# pin low for at least one state time after the power supply is
within tolerance and the oscillator has stabilized. When RESET# is first asserted, theudtesice t

on a pull-down transistor (Q1) for 16 state times. This enables the RESET# signal to function as
the system reset.

[| 11-9

8XC196NP, 80C196NU USER’'S MANUAL Inu®

The simplest way to reset the device is to insert a capacitor between the RESET# pig asd V
shown in Figure 11-9The device has an internal pull-up resistog{fRshown in Figure 11-8.
RESET# should remain asserted for at least one state time gftan¥ XTAL1 have stabilized

and met the operating conditions specified in the datasheet. A capacitor of 4.7 uF or greater
should provide sufficienteset time, as long as.Vrises quickly.

RESET#
+
4.7 yF

I 8XC196 Device

Figure 11-9. Minimum Reset Circuit

A0276-01

Other devices in the system may not be reset because the capacitor will keep the voltage above
V,. . Since RESET# is asserted for only 16 state times, it may be necessary to lengthen and buffer
the system-reset pulse. Figure 11-10 shows an example of a system-reset circuit. In this example,
D2 creates a wired-OR gate connection to the reset pin. An internal reset, system power-up, or
SW1 closing will generate the system-reset signal.

Vce
Vce
@ 2
ot i b2 4.7 kQ
L1 :
J_ EG EC < RESET#
SW1 C
Schmitt Triggers
i 8XC196
- - Device

System reset signal
to external circuitry
Notes:
1. D1 provides a faster cycle time for repetitive power-on resets.
2. Optional pull-up for faster recovery.

A0277-02

Figure 11-10. Example System Reset Circuit

11-10

Int€|® MINIMUM HARDWARE CONSIDERATIONS

11.6.2 Issuing the Reset (RST) Instruction

The RST instruction (opcode FFH) resets the device by pulling RESET# low for 16 state times.

It also clears the processor status word (PSW), sets the extended and master program counters
(EPC/PC) to FF2080H, and resets the special function registers (SFRs). See Table C-2 on page
C-2 for the reset values of the SFRs.

11.6.3 Issuing an lllegal IDLPD Key Operand

The device resets itself if an illegal key operand is used with the idle/powerdown (IDLPD) com-
mand. The legal keys are “1” for idle mode, “2” fmwerdown mode, and “3” for standby mode
(NU only). If any other value is used, the devisgcutes a reset sequence. (See Appendix A for
a description of the IDLPD command.)

I 11-11

intgl.

12

Special Operating
Modes

CHAPTER 12
SPECIAL OPERATING MODES

The 8XC196NP and 80C196NU provide the following power saving modes: idiegtst
(80C196NU only), and powerdown. They afsmvide an on-ctuit emulation (ONCE) mode

that electrically isolates the device from the other system components. This chapter describes
each mode and explains how to enter and exit each. (Refer to Appendix A for descriptions of the
instructions discussed in this chapter, to AppendigrBlescriptions of signal status during each
mode, and to Appendix C for details about the registers.)

12.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS

Table 12-1 lists the signals and Table 12-2 lists the registers that are mentioned in this chapter.

Table 12-1. Operating Mode Control Signals

. Signal -

Port Pin Name Type Description

pP2.7 CLKOUT O Clock Output
Output of the internal clock generator. The CLKOUT frequency is %
the internal operating frequency (f). CLKOUT has a 50% duty cycle.
CLKOUT is multiplexed with P2.7.

P3.7 EXTINT3 | External Interrupts

P3.6 EXTINT2 In normal operating mode, a rising edge on EXTINTXx sets the

Egg EQEH%L) EXTINTXx interrupt pending bit. EXTINT x is sampled during phase 2

(CLKOUT high). The minimum high time is one state time.

In standby and powerdown modes, asserting the EXTINTx signal for
at least 50 ns causes the device to resume normal operation. The
interrupt need not be enabled, but the pin must be configured as a
special-function input (see “Bidirectional Port Pin Configurations” on
page 7-7). If the EXTINTXx interrupt is enabled, the CPU executes the
interrupt service routine. Otherwise, the CPU executes the instruction
that immediately follows the command that invoked the power-saving
mode.

In idle mode, asserting any enabled interrupt causes the device to
resume normal operation.

— ONCE | On-circuit Emulation

Holding ONCE high during the rising edge of RESET# places the
device into on-circuit emulation (ONCE) mode. This mode puts all
pins into a high-impedance state, thereby isolating the device from
other components in the system. The value of ONCE is latched when
the RESET# pin goes inactive. While the device is in ONCE mode,
you can debug the system using a clip-on emulator. To exit ONCE
mode, reset the device by pulling the RESET# signal low. To prevent
accidental entry into ONCE mode, connect the ONCE pin to V.

12-1

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 12-1. Operating Mode Control Signals (Continued)

Port Pin

Signal
Name Type

Description

— PLLENZ2:1 |

(80C196NU
only)

Phase Lock Loop 1 and 2 Enable

These input pins are used to enable the on-chip clock multiplier
feature and select either the doubled or quadrupled clock speed.

CAUTION: If PLLENL1 is held low while PLLEN2 is held high, the
device will enter into an unsupported test mode.

— RESET# 110

Reset

A level-sensitive reset input to and open-drain system reset output
from the microcontroller. Either a falling edge on RESET# or an
internal reset turns on a pull-down transistor connected to the
RESET# pin for 16 state times. In the powerdown, standby, and idle
modes, asserting RESET# causes the chip to reset and return to
normal operating mode. After a device reset, the first instruction fetch
is from FF2080H (or F2080H in external memory). For the 80C196NP
and 80C196NU, the program and special-purpose memory locations
(FF2000-FF2FFFH) reside in external memory. For the 83C196NP,
these locations can reside either in external memory or in internal
ROM.

— RPD

Return from Powerdown

Timing pin for the return-from-powerdown circuit.

If your application uses powerdown mode, connect a capacitorJr
between RPD and Vg if either of the following conditions is true.

« theinternal oscillator is the clock source
« the phase-locked loop (PLL) circuitry (80C196NU only) is
enabled (see PLLEN2:1 signal description)

The capacitor causes a delay that enables the oscillator and PLL
circuitry to stabilize before the internal CPU and peripheral clocks are
enabled.

The capacitor is not required if your application uses powerdown
mode and if both of the following conditions are true.

« anexternal clock input is the clock source
« the phase-locked loop circuitry (80C196NU only) is disabled

If your application does not use powerdown mode, leave this pin
unconnected.

T Calculate the value of the capacitor using the formula found on page
12-11.

Table 12-2. Operating Mode Control and Status Registers

Mnemonic

Address

Description

CCRO

2018H

Chip Configuration O Register

Bit O of this register enables and disables standby and
powerdown mode.

INT_MASK

0008H

Interrupt Mask

Bits 3 and 4 of this register enable and disable (mask) the
external interrupts, EXTINTO and EXTINT1.

12-2

Inu® SPECIAL OPERATING MODES

Table 12-2. Operating Mode Control and Status Registers (Continued)

Mnemonic Address Description

INT_MASK1 0013H Interrupt Mask 1

Bits 5 and 6 of this register enable and disable (mask) the
external interrupts, EXTINT2 and EXTINT3.

INT_PEND 0009H Interrupt Pending

Bits 3 and 4 of this register are set to indicate a pending external
interrupt, EXTINTO and EXTINT1.

INT_PEND1 0012H Interrupt Pending 1

Bits 5 and 6 of this register are set to indicate a pending external
interrupt, EXTINT2 and EXTINT3.

P2_DIR 1FD3H Port x Direction

P3_DIR 1FDAH Each bit of Px_DIR controls the direction of the corresponding pin.
Clearing a bit configures a pin as a complementary output; setting
a bit configures a pin as an input or open-drain output. (Open-
drain outputs require external pull-ups.)

P2_MODE 1FD1H Port x Mode

P3_MODE 1FD8H Each bit of Px_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as a special-function
signal. Setting a bit configures a pin as a special-function signal;
clearing a bit configures a pin as a standard I/O port pin.

P2_REG 1FDS5H Port x Data Output
P3_REG 1FDCH For an input, set the corresponding Px_REG bit.

For an output, write the data to be driven out by each pin to the
corresponding bit of Px_REG. When a pin is configured as
standard 1/0 (Px_MODE.y = 0), the result of a CPU write to
Px_REG is immediately visible on the pin. When a pin is
configured as a special-function signal (Px_MODE.y = 1), the
associated on-chip peripheral or off-chip component controls the
pin. The CPU can still write to Px_REG, but the pin is unaffected
until it is switched back to its standard 1/O function.

This feature allows software to configure a pin as standard 1/0O
(clear Px_MODE.y), initialize or overwrite the pin value, then
configure the pin as a special-function signal (set Px_MODE.})). In
this way, initialization, fault recovery, exception handling, etc., can
be done without changing the operation of the associated
peripheral.

12.2 REDUCING POWER CONSUMPTION

Each power-saving mode conserves power by disabling portiaihg @fiternal clock circuitry
(Figure 12-1 and Figure 12-2). The following paragraphs describe each mode in detail.

12-3

8XC196NP, 80C196NU USER’'S MANUAL

Disable Clock Input

(Powerdown)
XTALL D FXTAALl Divide-by-two
Circuit
Disable Clocks
(Powerdown)
XTAL2 J.
———> Peripheral Clocks (PH1, PH2)
Clock
Disable Generators — D CLKOUT
Oscillator CPU Clocks (PH1, PH2)
(Powerdown)
Disable Clocks
(Idle, Powerdown)
A3161-01
Figure 12-1. Clock Control During Power -saving Modes (8XC196NP)

12-4

Inu® SPECIAL OPERATING MODES

Disable
PLL
(Powerdown)
) FxtaLt |J-| Phase .
XTALL D L Comparator Filter

3
=
iy

5 Phase-

z locked

XTAL2 »: Oscillator
L
Y
3 .
Disable E DlsaF?Ie Clgck Input Phase-locked Loop
Oscillator e (Powerdown) Clock Multiplier
(Powerdown) <
f Divide-by-two
Circuit
£ Disable Clocks
PLLEN1 D 2 (Standby, Powerdown)
pLLEN2 [} /
Peripheral Clocks (PH1, PH2)
Clock CLKOUT
Generators
—|_T_|—> CPU Clocks (PHL, PH2)
Disable Clocks
(Idle, Standby, Powerdown)
A3063-02

Figure 12-2. Clock Control During Power-saving Modes (8 0C196NU)

12.3 IDLE MODE

In idle mode, the device’'s power consumption decreasapgmximately 40% of normal con-
sumption. Internal logic holds the CPU clocks at logic zero, causing the CPU to stop executing
instructions. Neither the phased-locked loop circuitry (BB&NU only), the peripheral clocks,

nor CLKOUT are affected, so the special-function registers (SFRs) and register RAM retain their
data and the peripherals and interrupt system remain active. Table B-5 on page B-13 lists the val-

ues of the pins during idle mode.

[| 12-5

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

The device enters idle mode after executing the IDLPD #1 instruction. Any enabled interrupt
source, either internal or external, or a hardware reset can cause the device to exit idle mode.
When an interrupt occurs, the CPU clocks restart and the CPU executes thparatieg inter-

rupt service or PTS routine. When the routine is complete, the CPU fetches and then executes the
instruction that follows the IDLPD #1 instruction.

NOTE

To prevent an accidental return to full power, hold the external interrupt pins
(EXTINTX) low while the device is in idle mode.

12.4 STANDBY MODE (80C196NU ONLY)

In standby mode, the device's power consumption decreases to approximately 10% of normal
consumption. Internal logic holds the CPU and peripheral clocks at logic zero, which causes the
CPU to stop executing instructions, the system bus control signals to become inactive, and the
peripherals to turn off. The phase-locked loop (PLL) circuitry and the on-chip oscillator continue
to operate. Table B-5 on page B-13 lists the values of the pins during standby mode.

12.4.1 Enabling and Disabling Standby Mode

Setting the PD bit in the chip-configuration register 0 (CCRO0.0) enables hattbgtand pow-
erdown modes. Clearing it disables both mo@&3R0 is baded from the chip configuration byte
(CCBO0) when the device is reset.

12.4.2 Entering Standby Mode

Before entering standby mode, complete the following tasks:

e Complete all serial port transmissions or receptions. Otherwise, when the device exits
standby, the serial port activity will continue where it left off and incorrect data may be
transmitted or received.

¢ Put all other peripherals into an inactive state.

After completing these tasks, execute the IDLPD #3 instruction to eatetftst mode.
NOTE

To prevent an accidental return to full power, hold the external interrupt pins
(EXTINTX) low while the device is in standby mode.

12-6 I

Int€|® SPECIAL OPERATING MODES

12.4.3 Exiting Standby Mode

The device will exit tndby mode when a transition onexternal interrupt pin (EXTINT3:0)

or a hardware reset occurs. The interrupts need not be enabled for them to bring the device out of
standby, but the pin must be configured as a special-function input (see “Bidirectional Port Pin
Configurations” on page 7-7).

When an external interrupt brings the device out of standby mode, the corresponding pending bit
is set in the interrupt pending register. If the interrupt is enabled, the device executes the interrupt
service routine, then fetches and executes the instruction following the IDLPD #3 instruction. If
the interrupt is disabled (masked), the device fetches and executes the instruction following the
IDLPD #3 instruction and the pending bit remains set until the interrupt is serviced or software
clears it.

12.5 POWERDOWN MODE

Powerdown mode places the device into a very low power state by disabling the internal oscilla-
tor, the phase-locked loop circuitry (80C196NU only), and clock generators. Internal logic holds
the CPU and peripheral clocks at logic zero, which causes the CPU to stop executing instructions,
the system bus-control signals to become inactive, the CLKOUT signal to become high, and the
peripherals to turn off. Power consumption drops into the microwatt range (refer to the datasheet
for exact specifications)¢4 is reduced to device leakage. Table B-5 on page B-13 lists the values
of the pins during powerdown mode. IfVis maintained above the minimum specification, the
special-function registers (SFRs) and register RAM retain their data.

12.5.1 Enabling and Disabling Powerdown Mode

Setting the PD bit in the chip-configuration register 0 (CCRO0.0) enables hotttbgtand pow-
erdown modes. Clearing it disables both mo@&€3R0 is baded from the chip configuration byte
(CCBO0) when the device is reset.

12.5.2 Entering Powerdown Mode

Before entering powerdown, complete the following tasks:

e Complete all serial port transmissions or receptions. Otherwise, when the device exits
powerdown, the serial port activity will continue where it left off and incorrect data may be
transmitted or received.

¢ Put all other peripherals into an inactive state.

* To allow other devices to control the bus while the microcontroller is in powerdosert as
HLDA#. Do this only if the routines for entering and exiting powerdown do not require
access to external memory.

I 12-7

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

After completing these tasks, execute the IDLPD #2 instruction to enter powerdown mode.

NOTE

To prevent an accidental return to full power, hold the external interrupt pins
(EXTINTX) low while the device is in powerdown mode.

12.5.3 Exiting Powerdown Mode

The device will exit powerdown mode when either of the following events occurs:
* a hardware reset is generated, or

* atransition occurs on an external interrupt pin.

NOTE

It was previously documented that the method of exiting powerdown mode by
driving the RPD pin low was acceptable; however, we no longer recommend
this method as an option for exiting powerdown.

12.5.3.1 Generating a Hardware Reset

The device will exit powerdown if RESET# is asserted. If the phase-locked loop circuitry is en-
abled or if the design uses an external clock input signal rather than the on-chip oscillator,
RESET# must remain low for at least 16 state times. If the desigtheses-chip oscillator, then
RESET# must be held low until the oscillator and phase-locked loop circuitry have stabilized.

12.5.3.2 Asserting an External Interrupt Signal

The final way to exit powerdown mode is to assert an external interrupt signal (EXTINT3:0) for
at least one state time. Although EXTINT3:0 are normally sampled inputs, the powerdown cir-
cuitry uses them as level-sensitive inputs. Therimipts need not be enabled to bring the device
out of powerdown, but the pin must be configured as a special-function input (see “Bidirectional
Port Pin Configurations” on page 7-7). Figure 12-3 showspthwer-up and powerdown se-
guence when using an external interrupt to exit powerdown.

When an external interrupt brings the device out of powerdown mode, the corresponding pending
bit is set in the interrupt pending register. If the interrupt is enabled, the device executes the in-
terrupt service routine, then fetches and executes the instruction following the IDLPD #2 instruc-
tion. If the interrupt is disabled (masked), the device fetches and executes the instruction
following the IDLPD #2 instruction and the pending bit remains set until the-uiptes serviced

or software clears the pending bit.

12-8

Inu® SPECIAL OPERATING MODES

CLKOUT

PH1

Internal Powerdown

Signal ! I

EXTINTX . . I |
r T T (, T T

RPD et %—\| 1

Timeout | . . I |

(Internal) - - - £ ; - - - .

A3159-01

Figure 12-3. Power-up and Powerdown Sequence When Using an External Interrupt

When using an external interrupt signal to exit powerdown mode, we recommend that you con-
nect the external component shown in Figure 12-4 to the RPD pin. The discharging of the capac-
itor causes a delay that allows the oscillator and phase-locked loop circuitry to stabilize before
the internal CPU and peripheral clocks are enabled.

MCS® 96
Microcontroller

C1

L

A2389-02

Figure 12-4. External RC Circuit

12-9

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

During normal operation (before entering powerdown mode), an internal pull-up holds the
RPD pin at \... When an external interrupt signal is assertiegl internal oscillator circuitry is
enabled and turns on a weak internal pull-down. The resistance of the internal pultdmnvich

be approximately 10Q. This weak pull-down causes the external capacitey {@begin dis-
charging at a typical rate of 2Q@&. When the RPD pin voltage drops below the threshold voltage
(about 2.5 V for 5 V operation and 1.6 V for 3 V operation), the internal phase clocks are enabled
and the device resumes code execution.

At this time, a Schmitt-triggered detection circuit prompted by the switching voltage levels
strongly drives a logic one, quickly pulling the RPD pin back updo(see recovery time in Fig-

ure 12-5). The time constant (RC) follows an exponential charging curve. However, since there
is no external resistor on the RPD pin, the time constant goes to zero and the recovery time is
instantaneous.

(t/71)

V. =V, [1l-e s (t=RC;=0)
VC = VCC
where:

V. = Charging capacitor voltage

12.5.3.3 Selecting C ;

With the resistance of the discharge path designed into the silicon via the intertidvpn)lthe
selection of an external capacitor;Y€an be critical. Ideally, you want to select a component that
will produce a sufficient discharge timegermit the internal oscillator circuitry to stabilize. Be-
cause many factors can influence the discharge time requirement, you should always fully char-
acterize your design under worst-case conditions to verify proper operation.

12-10

Inu® SPECIAL OPERATING MODES

5 4 A 5V
4 J EXTINTX
3T-=--~_ == === === === mmmmm-==
RPD, Volts S~ 1
1
1
2 + 1
1
. 1
. 200 pA Cq Discharge - : 12V
Code Execution > 8V
Resumes
} } } } } } } } } } }
2 4 6 8 10 12 14 16 18 20 22
Time, ms
Vee =5V
-——— VCC =3V

A2385-02

Figure 12-5. Typical Voltage on the RPD Pin While Exiting Powerdown

When selecting the capacitor, determine the worst-case discharge time fogdtedscillator
to stabilize, then use this formula to calculate an appropriate value.for C

Tpis X!

C, = T
t
where:

C, is the capacitor value, in farads
Tois is the worst-case discharge time, in seconds
| is the discharge current, in amperes
Vi is the threshold voltage

NOTE

If powerdown is re-entered and exited beforeclarges to Y, it will take
less time for the voltage to ramp down to the threshold. Therefore, the device
will take less time to exit powerdown.

12-11

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

For example, assume that the oscillator needs at least 12.5 ms to dischargel @5 ms), Y
is 2.5V, and the discharge current is 200 The minimum G capacitor size is fiF.

c, - (0.0125) (0.0002) _ uF
2.5

When using an external oscillator, the value pE&n be very small, allowing rapid recovery from
powerdown. For example, a 100 pF capacitor discharges inu%.25

C,*Vy (1.0x107" (2.5)
| 0.0002

Tois = =1.25 ps

12.6 ONCE MODE

On-circuit emulation (ONCE) mode isolates the device from other components in the system to
allow printed-circuit-board testing or debugging with a clip-on emulator. During ONCE mode,
all pins except XTALL, XTAL2, \, and V.. are weakly pulled high or low. During ONCE
mode, RESET# must be held high or the device will exit ONCE mode and enter the reset state.

Holding the ONCE signal high during the rising edge of RESET# causes the device to enter
ONCE mode. The ONCE signal is latched when RESET# goes inactive. Internally, the ONCE pin
is tied to a medium-strength pull-down. To prevent accidental entry into ONCE mode, connect
the ONCE pin to Vg

Exit ONCE mode by asserting the RESET# signal. Normal operations resume when RESET#
goes high.

12.7 RESERVED TEST MODES (80C196NU ONLY)
For the 80C196NU only, holding PLLEN1 low while PLLEN2 is held high causes the device to

enter an unsupported test mode. Table 12-3 shows the proper PLLEN1 and PLLENZ2 connections
for valid clock modes.

12-12 I

N

tel.

SPECIAL OPERATING MODES

Table 12-3. 80C196NU Clock Modes

PLLEN2 PLLEN1 Mode

0 0 Clock-multiplier circuitry disabled.

0 1 Reserved.
CAUTION: This combination causes the device to enter an

unsupported test mode.

1 0 Doubled; clock doubling circuitry enabled. Internal clock is twice
the XTAL1 input.

1 1 Quadrupled; clock quadrupling circuitry enabled. Internal clock is

four times the XTAL1 input.

12-13

intgl. 1 3

Interfacing with
External Memory

CHAPTER 13
INTERFACING WITH EXTERNAL MEMORY

The device can interface with a variety of external memory devices. Six chip-selects can be indi-
vidually programmed for bus width, the number of wait states, and a multiplexed or demulti-
plexed address/data bus. Other features of the external memory inteclade ready control

for inserting additional wait states, a bus-hold protocol that enables external devices to take con-
trol of the bus, and two write-control modes writing words and bytes to memory. These fea-
tures provide a great deal of flexibility whanerfacing with external memory devices.

In addition to describing the signals and registers related to extermadnyehis chapter discuss-
es the process of fetching the chip configuration bytes and configuring the external bus. It also
provides examples of external memory configurations and chip-select setup.

13.1 INTERNAL AND EXTERNAL ADDRESSES

The address that external devices see is different from the address that the device generates inter-
nally. Internally, the device has 24 address lines, but only the lower 20 address lines (A19:0)
are implemented with external pins. The absence of the upper four address bits at the external pins
causes different internal addresses to have the same external address. For example, the interna
addresses FF2080H, 7F2080H, and 0F2080ldmdear at the 20 external pins as F2080H. The
upper nibble of the internal address has no effect on the external address.

The address seen by an external device also depends on the number of address lines that the ex
ternal system uses. If the address on the externalAl®s0) is F2080H, and only A17:0 are con-
nected to the external device, the external device se€¥)B20he upper four address lines
(A19:16) are implemented by the EPORT. Table 13-1 showstheexternal address depends

on the number of EPORT lines used to address the external device.

Table 13-1. Example of Internal and External ~ Addresses

EPORT Lines
Connected to the Internal Address Addre_ss on the Address Seen_ by
. Device Pins External Device
External Device
Al6 XF2080H F2080H 12080H
Al7:16 XF2080H F2080H 32080H
A18:16 XF2080H F2080H 72080H
A19:16 XF2080H F2080H F2080H

I 13-1

8XC196NP, 80C196NU USER’'S MANUAL

13.2 EXTERNAL MEMORY INTERFACE SIGNALS

Table 13-2 describes the external memory interface signals. For some signals, the pin has an al-
ternate function (shown in thdultiplexed Withcolumn). In some cases the alternate function is

a port signal (e.g., P2.7). Chapter 7, “I/O Ports,” describes how to configure a pin for its I/O port
function and for its special function. In other cagshs, signal description includes instructions

for selecting the alternate function.

Table 13-2. External Memory Interface Signals

intel.

Name

Type

Description

Multiplexed
With

A15:0

110

System Address Bus

These address lines provide address bits 15-0 during the entire
external memory cycle during both multiplexed and demultiplexed
bus modes.

A19:16

110

Address Lines 16-19

These address lines provide address bits 16-19 during the entire
external memory cycle, supporting extended addressing of the
1 Mbyte address space.

NOTE: Internally, there are 24 address bits; however, only 20
address lines (A19:0) are bonded out. The internal address
space is 16 Mbytes (000000-FFFFFFH) and the external
address space is 1 Mbyte (00000—FFFFFH). The device
resets to FF2080H in internal ROM or F2080H in external
memory.

EPORT.3:0

AD15:0

110

Address/Data Lines

The function of these pins depend on the bus size and mode. When
a bus access is not occurring, these pins revert to their 1/0 port
function.

16-bit Multiplexed Bus Mode :

AD15:0 drive address bits 0-15 during the first half of the bus cycle
and drive or receive data during the second half of the bus cycle.
8-bit Multiplexed Bus Mode :

AD15:8 drive address bits 8—15 during the entire bus cycle. AD7:0
drive address bits 0—7 during the first half of the bus cycle and either
drive or receive data during the second half of the bus cycle.

16-bit Demultiplexed Mode

AD15:0 drive or receive data during the entire bus cycle.

8-bit Demultiplexed Mode :

AD7:0 drive or receive data during the entire bus cycle. AD15:8 drive
the data that is currently on the high byte of the internal bus.

13-2

INTERFACING WITH EXTERNAL MEMORY

Table 13-2. External Memory Interface Signals (Continued)

Name

Type

Description

Multiplexed
With

ALE

o

Address Latch Enable

This active-high output signal is asserted only during external
memory cycles. ALE signals the start of an external bus cycle and
indicates that valid address information is available on the system
address/data bus (A19:16 and AD15:0 for a multiplexed bus; A19:0
for a demultiplexed bus). ALE differs from ADV# in that it does not
remain active during the entire bus cycle.

An external latch can use this signal to demultiplex address bits 0—-15
from the address/data bus in multiplexed mode.

BHE#

Byte High Enablet

During 16-bit bus cycles, this active-low output signal is asserted for
word reads and writes and high-byte reads and writes to external
memory. BHE# indicates that valid data is being transferred over the
upper half of the system data bus. Use BHE#, in conjunction with AO,
to determine which memory byte is being transferred over the
system bus:

BHE# AO Byte(s) Accessed

0 0 both bytes
0 1 high byte only
1 0 low byte only

T The chip configuration register 0 (CCRO) determines whether this
pin functions as BHE# or WRH#. CCRO0.2 = 1 selects BHE#; CCRO0.2
= 0 selects WRH#.

P5.5/WRH#

BREQ#

Bus Request
This active-low output signal is asserted during a hold cycle when
the bus controller has a pending external memory cycle.

The device can assert BREQ# at the same time as or after it asserts
HLDA#. Once it is asserted, BREQ# remains asserted until HOLD#
is removed.

You must enable the bus-hold protocol before using this signal (see
“Enabling the Bus-hold Protocol” on page 13-32).

P2.3

CLKOUT

Clock Output

Output of the internal clock generator. The CLKOUT frequency is ¥2
the internal operating frequency (f). CLKOUT has a 50% duty cycle.

P2.7

CS5:0#

Chip-select Lines 0-5

The active-low output CSx# is asserted during an external memory
cycle when the address to be accessed is in the range programmed
for chip select x. If the external memory address is outside the range
assigned to the six chip selects, no chip-select output is asserted
and the bus configuration defaults to the CS5# values.

Immediately following reset, CSO# is automatically assigned to the
range FF2000—-FF20FFH (F2000—-F20FFH if external).

P3.5:0

13-3

8XC196NP, 80C196NU USER’'S MANUAL

Table 13-2. External Memory Interface Signals (Continued)

intel.

Name

Type Description

Multiplexed
With

EA#

| External Access

irrelevant.

this dynamic switching capability.

10 Vgs.
EA# is not implemented on the 80C196NU.

This input determines whether memory accesses to special-purpose
and program memory partitions (FF2000—-FF2FFFH) are directed to
internal or external memory. These accesses are directed to internal
memory if EA# is held high and to external memory if EA# is held

low. For an access to any other memory location, the value of EA# is

EA# is not latched and can be switched dynamically during normal
operating mode. Be sure to thoroughly consider the issues, such as
different access times for internal and external memory, before using

On devices with no internal nonvolatile memory, always connect EA#

HLDA#

(0] Bus Hold Acknowledge

as the result of an external device asserting HOLD#.

This active-low output indicates that the CPU has released the bus

P2.6

HOLD#

| Bus Hold Request

An external device uses this active-low input signal to request control
of the bus. This pin functions as HOLD# only if the pin is configured
for its special function (see “Bidirectional Port Pin Configurations” on
page 7-7) and the bus-hold protocol is enabled. Setting bit 7 of the
window selection register (WSR) enables the bus-hold protocol.

P2.5

INST

O Instruction Fetch

byte reads. INST is low during internal memory fetches.

This active-high output signal is valid only during external memory
bus cycles. When high, INST indicates that an instruction is being
fetched from external memory. The signal remains high during the
entire bus cycle of an external instruction fetch. INST is low for data
accesses, including interrupt vector fetches and chip configuration

RD#

(0] Read

external memory reads.

Read-signal output to external memory. RD# is asserted only during

READY

| Ready Input

wait states that are generated internally.

accesses.

This active-high input signal is used to lengthen external memory
cycles for slow memory by generating wait states in addition to the

When READY is high, CPU operation continues in a normal manner
with wait states inserted as programmed in CCRO or the chip-select
X bus control register. READY is ignored for all internal memory

13-4

Int€|® INTERFACING WITH EXTERNAL MEMORY

Table 13-2. External Memory Interface Signals (Continued)

- Multiplexed
Name Type Description With
WR# o Writef WRL#

This active-low output indicates that an external write is occurring.
This signal is asserted only during external memory writes.

T The chip configuration register 0 (CCRO) determines whether this
pin functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCR0.2 =
0 selects WRL#.

WRH# (0] Write Hight P5.5/BHE#

During 16-bit bus cycles, this active-low output signal is asserted for
high-byte writes and word writes to external memory. During 8-bit
bus cycles, WRH# is asserted for all write operations.

T The chip configuration register 0 (CCRO) determines whether this
pin functions as BHE# or WRH#. CCRO0.2 = 1 selects BHE#; CCRO0.2
= 0 selects WRH#.

WRL# O | Write Low? WR#

During 16-bit bus cycles, this active-low output signal is asserted for
low-byte writes and word writes. During 8-bit bus cycles, WRL# is
asserted for all write operations.

T The chip configuration register 0 (CCRO) determines whether this
pin functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCR0.2 =
0 selects WRL#.

13.3 THE CHIP-SELECT UNIT

The chip-select unit provides six outputs, CS5:0#, for selecting an external device during an ex-
ternal bus cycle. During an external memory access, a chip-select outgtiisGSserted if the
address falls within the address range assigned to that chip-select. The bus width, the number of
wait states, and multiplexed or demultiplexed address/data linpscy@mmedndependently

for each of the six chip-selects. If the external address is outsidentfeeatthe six chip-selects,

the chip-select 5 bus control register determines the wait states, bus width, and multiplexing, and
no chip-select is asserted. Table 13-3 lists the chip-select registers.

[| 13-5

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 13-3. Chip-select Registers

Register -

Mnemonic Address Description
ADDRCOMO 1F40H Address Compare Register
ADDRCOM1 1F48H This 16-bit register holds the upper 12 bits of the base
ADDRCOM2 1F50H address of the address range assigned to CSx#.
ADDRCOM3 1F58H
ADDRCOM4 1F60H
ADDRCOM5 1F68H
ADDRMSKO 1F42H Address Mask Register
ADDRMSK1 1FAAH This register determines the size of the address range
ADDRMSK2 1F52H (256 bytes—1 Mbyte).
ADDRMSK3 1F5AH
ADDRMSK4 1F62H
ADDRMSK5 1F6AH
BUSCONO 1F44H Bus Control Register
BUSCON1 1F4CH This register determines the bus configuration for external
BUSCON2 1F54H accesses to the address range assigned to CSx#. The
BUSCON3 1F5CH bus parameters are 8- or 16-bit bus width, multiplexed or
BUSCON4 1F64H demultiplexed address/data lines, and the number of wait
BUSCONS 1F6CH states inserted into each bus cycle.

Figure 13-1 illustrates the device’s calculation of a chip-select outpit {08 a given external
memory address. The 12 most-significant bits of the external address are compared (XORed) bit-
wise with the 12 least-significant bits (BASE19:8) of the ADDRCQO®gister. If all of the bits

match, CS# is asserted. Additionally, if some bits do not match#dS still asserted if, for each
non-matching bit in ADDRCOM, the corresponding bit in ADDRMSHs cleared. The 12 least-
significant bits are named MASK19:8 for their function in masking bits BASE19:8.

External Address ADDRCOMXx ADDRMSKXx
19 87 015 1211 015 1211 0
| | |R---R| BASE19:0 | |R---R| MASK19:0 |

bit x bit x bit x

7 .

A2386-02

Figure 13-1. Calculation of a Chip-select Output

13-6

Inte|® INTERFACING WITH EXTERNAL MEMORY

13.3.1 Defining Chip-select Address Ranges

This section describes the ADDRCQMndADDRMSKX registers and how to set them up for

a desired address range. The ADDRCQ®(Yister (Figure 13-2) and ADDRMSKegister (Fig-

ure 13-3) control the assertion of each chip-select outputt.CEhe BASE19:8 bits in the
ADDRCOMKX register determine the base address of the address range. The MASK19:8 bits in
the ADDRMSKX register determine the size of the address range.

ADDRCOMXx Address: Table 13-4
X =0-5 Reset State:

The address compare (ADDRCOMX) register specifies the base (lowest) address of the address
range. The base address of a 2"-byte address range must be on a 2-byte boundary.

15 8
‘ _ ‘ _ ‘ — ‘ — H BASE19 ‘ BASE18 ‘ BASE17 ‘ BASE16 ‘
7 0

‘ BASEL5 ‘ BASE14 ‘ BASE13 ‘ BASE12 H BASE11 ‘ BASEL0 ‘ BASE9 ‘ BASES ‘

Bit Bit

Number Mnemonic Function
15:12 — Reserved; for compatibility with future devices, write zeros to these bits.
11:0 BASE19:8 Base Address Bits

These bits are the 12 most-significant bits of the base address of the
address range assigned to chip-select x.

Figure 13-2. Address Compare (ADDRCOM x) Register

Table 13-4. ADDRCOM x Addresses and Reset Values

Register Address Reset Value
ADDRCOMO 1F40H OF20H
ADDRCOM1 1F48H XO000H
ADDRCOM?2 1F50H XO000H
ADDRCOM3 1F58H XO000H
ADDRCOM4 1F60H XO000H
ADDRCOM5 1F68H X000H

13-7

8XC196NP, 80C196NU USER’'S MANUAL Inu®

ADDRMSK x Address: Table 13-5
X =0-5 Reset State:

The address mask (ADDRMSKX) register, together with the address compare register, defines the
address range that is assigned to the chip-select x output, CSx#. The address mask register
determines the size of the address range, which must be 2" bytes, where n=8, 9, . ., 20. For a 2"-
byte address range, calculate n; = 20 — n, and set the n; most-significant bits of MASK19:8 in the
address mask register.

15 8
‘ _ ‘ _ ‘ — ‘ — H MASK19 ‘ MASK18 ‘ MASK17 ‘ MASK16 ‘
7 0

‘ MASK15 ‘ MASK14 ‘ MASK13 ‘ MASK12 H MASK11 ‘ MASK10 ‘ MASK9 ‘ MASKS ‘

Bit Bit Function
Number Mnemonic
15:12 — Reserved; for compatibility with future devices, write zeros to these bits.
11:0 MASK19:8 Address Mask Bits

For a 2n-byte address range, set the n; most-significant bits of
MASK19:8, where n; =20 - n.

Figure 13-3. Address Mask (ADDRMSK x) Register

Table 13-5. ADDRMSK x Addresses and Reset Values

Register Address Reset Value
ADDRMSKO 1F42H XFFFH
ADDRMSK1 1F4AH XFFFH
ADDRMSK?2 1F52H XFFFH
ADDRMSK3 1F5AH XFFFH
ADDRMSK4 1F62H XFFFH
ADDRMSK5 1F6AH XFFFH

13-8 [|

Int€|® INTERFACING WITH EXTERNAL MEMORY

Observe the following restrictions in choosing an address range for a chip-select output:
* The addresses in the address range must be gountig

* The size of the address range must 'hbyes, wheren = 8, 9, ..., 20. This corsponds to
block sizes of 256 bytes, 512 bytes, ..., 1 Mbyte.

* The base address of B2yte address range must be of'dgte boundary (that is, the base
address must be evenly divisible bY).2For example, the base address of a 256-Kbyte

range must be 00000H, 40000H, 80000H, or COO00H. Table 13-6 shows the base addresses

for some address-range sizes.

* The address ranges for different chip-selects must not overlap, unless their BWSCON
parameters (wait states, bus width, and multiplexing) have the same values. If BMSCON
registers have different parameter values and an address in their overlapping region is
accessed, the results are unpredictable. See “Example of a Chip-select Setup” on page
13-12 for a chip-select initialization procedure that avoids this difficulty.

Table 13-6. Base Addresses for Several Sizes of the Address Range

Rg‘:}gfzsi;e 1Mbyte | 512Kbyte | 256 Kbyte 512 bytes |256 bytes
00000H 00000H 00000H 00000H 00000H
80000H 40000H 00200H 00100H
80000H cee 00400H 00200H
A d(‘frzzzes CO000H 00600H 00300H
FFBOOH FFEOOH
FFDOOH FFFOOH

For an address range satisfying these restrictions, set up the ADDRG@MDDRMSKk reg-
isters as follows:

* Place the 12 most-significant bits of the base address into bits BASE19:8 in the
ADDRCOMXx register (Figure 13-2).

* For an address range of Bytes, set the; most-significant bits of MASK19:8 in the
ADDRMSKX register (Figure 13-3), wherg = 20 —n.

For example, assume that chip-select outpstto be assigned to32-Kbyte address range with
base address EOOOOH. The address range sizexid@24 = 25, andn; = 20 —15 = 5. To set up
the registers, write the 12 most-significant bitE6000H to BASE19:8 in the ADDRCOMeg-
ister, and set the 5 most-significant bits of MASK19:8 in the ADDRM&!ister:

ADDRCOMx = OEOQOH
ADDRMSKXx = OF80H

I 13-9

8XC196NP, 80C196NU USER’'S MANUAL InU®
Note that the 2-Kbyte address range could not have 4000H as basesaddrexample, because
4000H is not on a 32-Kbyte boundary.

“Example of a Chip-select Setup” on page 13-12 shows another example of setting up the chip-
select unit.

13.3.2 Controlling Wait States, Bus Width, and Bus Multiplexing

For each chip-select output address range, the bus control register BUSEI@QINe 13-4 de-
termines the wait states, the bus width, and the address/data multiplexing.

BUSCONXx Address: Table 13-7
x =0-5 Reset State:

For the address range assigned to chip-select x, the bus control (BUSCONYX) register specifies the
number of wait states, the bus width, and the address/data multiplexing for all external bus cycles that
access address range X.

7 0
DEMUX | BW16 — — ‘ ‘ — — Ws1 WSO
Bit Bit Function
Number Mnemonic
7 DEMUX Address/Data Multiplexing

This bit specifies the address/data multiplexing on AD15:0 for all
external accesses to the address range assigned to chip-select x output.

0 = multiplexed
1 = demultiplexed

6 BW16 Bus Width

This bit specifies the bus width for all external accesses to the address
range assigned to chip-select x output.

0 = 8 bits

1 = 16 bits
5:2 — Reserved; for compatibility with future devices, write zeros to these bits.
1:0 WS1:0 Wait States

These bits specify the number of wait states for all external accesses to
the address range assigned to chip-select x output.

WS1 WSO Wait States
0 0 0

0 1 1
1 0 2
1 1 3

Figure 13-4. Bus Control (BUSCON x) Register

13-10 [|

Int€|® INTERFACING WITH EXTERNAL MEMORY

Table 13-7. BUSCON x Addresses and Reset Values

Register Address Reset Value
BUSCONO 1F44H 03H
BUSCON1 1F4CH 00H
BUSCON2 1F54H 00H
BUSCON3 1F5CH 00H
BUSCON4 1F64H 00H
BUSCON5 1F6CH 00H

13.3.3 Chip-select Unit Initial Conditions

A chip reset produces the following initial conditions for the chip-select unit:
* ADDRMSKx = XFFFH.
¢ ADDRCOMO = OF20H. This asserts CS0# for the 256-byte address range F2000—-F20FFH.
* ADDRCOM1-ADDRCOMS5 = X000H.

* For the fetch of chip configuration byte 0 (CCBO0), BUSCONQO is initialized for an 8-bit bus
width, multiplexed mode, and three wait states (DEMUX = 0, BW16 =0, WS0 =1, WS1 =
1).

¢ Before the fetch of chip configuration byte 1 (CCB1), the values of DEMUX, BW16, WSO,
and WS1 in BUSCONO are loaded from CCBO. The external bus is configured according to
the new values.
The first lines of your prograshould perform two tasks:

1. Set the stack pointer.

2. Initialize all of the chip-select registers (ADDRCQMDDRMSKX, and BUSCOIX, by
using the procedure in “Initializing the Chip-select Registers.”

13.3.4 Initializing the Chip-select Registers

When initializingthe chip-select parametdiar modifying them at any time), it is impartt to

avoid a condition in which two chip-selects outputs have overlapping address ranges and different
bus-parameter values (wait states, bus width, and multiplexing). Accessing a location in such an
overlapping address range can cause unpredictable results.

I 13-11

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Use the following sequence to initialize the chip-select registers after reset:

1. Initialize chip-select output O:

1.1.
1.2.
1.3.
1.4.

Clear ADDRMSKO.

Write to ADDRCOMO to establish the desired base address.
Write to ADDRMSKO to establish the desired address range.
Write the desired bus-parameter values to BUSCONO.

2. While executing in the address range defined in step 1 for chip-select output 0, use the
following sequence to initialize chip-select outputs 1-5. Begin witHL.

2.1.
2.2.
2.3.
2.4,
2.5.

Load ADDRMSK with OFFFH.

Write to ADDRCOM to establish the desired base address.
Write to ADDRMSK to establish the desired address range.
Write the desired bus-parameter values to BUSCON
Repeat steps 2.1-2.4 for 2-5.

13.3.5 Example of a Chip-select Setup

This section shows an example of setting up the chip-select unit and provides details of the chip-
select output calculation. This example shows how to set up the chip-select registers for the sys-
tem shown in Figure 13-5. For each address range, the BU$@Qister (see Figure 13-4) spec-

ifies the address/data multiplexing (bit 7), the bus width (bit 6), and the number of wait states (bits

1, 0). Table 13-8 lists the characteristics of the three chip-select outputs and the corresponding
contents of BUSCON

13-12

Inte|® INTERFACING WITH EXTERNAL MEMORY

Flash SRAM
8XC196 256Kx16 8Kx8
CSo# CE#
CS2# CE#
Al18:1 Al12:0
A19:0 Al17:0 p—— A12:0
AD15:0 AD7:0
AD15:0 D15:0 p—— D70
(VA 0WS
80000-FFFFFH 7E000-7FFFFH
OE# WE# OE# WE#
RD# l I
WR#
. 82510
220 A20 UART Rxd
AD7:
0 D7:0 Txd
3 WS
CSi# CE# 01EO00-01EFFH
A2433-03

Figure 13-5. Example System for Setting Up Chip-select Outputs

Table 13-8. BUSCON x Registers for the Example System

Chip- L) . Contents of
Sﬁltf)fjtt Multiplexing Bus Width Wait States BUSCON x
0 Demultiplexed 16 bits 0 COH
1 Demultiplexed 8 bits 3 83H
2 Demultiplexed 8 bits 0 80H

The location and size of an address range are specified by the ADDR@fMter and the
ADDRMSKX register (see Figure 13-2 and Figure 13-3). The 8-Kbyte SRAM is assigned to ad-
dress range 7E000-7FFFFH and uses chip-select output 2. The 12 most-significant bits of the
base address (7EO000H) are written to the BASE19:8 hiteiADDRCOM2 register, which then
contains O7EQH.

The address range for CS2# is 8 Kbytes 8rii¥tes 6 = 13). The number of bits to be set in

MASK19:8 of ADDRMSK2 is 20 -n = 7. After the 7 most-significant bits of MASK19:8 are set,
ADDRMSK2 contains OFEOH. Results for CS0# and CS1# are found similarly (see Table 13-9).

I 13-13

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

Table 13-9. Results for the Chip-select Example

Chip Address Size of B,i\tl:rtrc])bggtoifn Contents of Contents of
Select Range Address Range ADDRMSK x ADDRCOMx | ADDRMSKXx
0 80000-FFFFFH | 512 Kbytes = 219 bytes | n; =20-19=1 0800H 0800H
01EO00-01EFFH | 256 bytes = 28 bytes n;=20-8=12 001EH OFFFH
7E000-7FFFFH | 8 Kbytes = 213 bytes n=20-13=7 07EOH OFEOH

13.4 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES

Two chip configuration registers (CCRs) have bits that set parameters for chip operation and ex-
ternal bus cycles. The CCRs cannot be accessed by code. They are loaded from the chip config-
uration bytesCCBs), which have internal addresse2@E8H (CCBO0) and FF201AH (CCB1).

If the CCBs are stored in external mery, their extrnal addresses depend on the number of
EPORT lines used in the external system (see “Internal and External Addresses” on page 13-1).

When the device returns from reset, the bus controller fetches the CCBs and loads them into the
CCRs. From this point, these CCR bit values define the chip configuration until the device is reset

again. The CCR bits are described in Figures 13-6 and 13-7. The remainder of this section de-
scribes the state of the chip following reset and the process of fetching the CCBs.

13-14 I

Inte|® INTERFACING WITH EXTERNAL MEMORY

CCRO no direct accesst

The chip configuration 0 (CCRO) register enables or disables powerdown and standby (80C196NU
only) modes and selects the write-control mode. It also contains the bus-control parameters for
fetching chip configuration byte 1.

7 0
| 1 | 1 | wsi | wso || DEMUX BHE# | BWi6 | PD
Bit Bit Function
Number Mnemonic
7:6 1 To guarantee device operation, write ones to these bits.
5:4 WS1:0 Wait States

These two bits control the number of wait states that are used for an
external fetch of CCB1.

WS0 Wws1

0 0 zero wait states

0 1 one wait state

1 0 two wait states

1 1 three wait states
3 DEMUX Select Demultiplexed Bus

Selects the demultiplexed bus mode for an external fetch of CCB1:

0 = multiplexed — address and data are multiplexed on AD15:0.

1 = demultiplexed — data only on AD15:0.

2 BHE# Write-control Mode

Selects the write-control mode, which determines the functions of the

BHE#/WRH# and WR#/WRL# pins for external bus cycles:

0 = write strobe mode: the BHE#/WRH# pin operates as WRH#, and the
WR#/WRL# pin operates as WRL#.

1 = standard write-control mode: the BHE#/WRH# pin operates as
BHE#, and the WR#/WRL# pin operates as WR#.

1 BW16 Buswidth Control
Selects the bus width for an external fetch of CCB1:
0 = 8-bit bus
1 = 16-bit bus

0 PD Powerdown Enable

Enables or disables the IDLPD #2 and IDLPD #3 instructions. When
enabled, the IDLPD #2 instruction causes the microcontroller to enter
powerdown mode and for the 80C196NU only, the IDLPD #3 instruction
causes the microcontroller to enter standby mode.

0 = disable powerdown and standby modes
1 = enable powerdown and standby modes

If your design uses powerdown or standby mode, set this bit when you
program the CCBs. If it does not, clearing this bit when you program the
CCBs will prevent accidental entry into powerdown and standby mode.
(Chapter 12, “Special Operating Modes,” discusses powerdown and
standby modes.)

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device reset.
The CCBs reside in nonvolatile memory at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Figure 13-6. Chip Configuration 0 (CCRO0) Register

13-15

8XC196NP, 80C196NU USER’'S MANUAL Inu®

CCR1 no direct accesst

The chip configuration 1 (CCR1) register selects the 16-bit or 24-bit addressing mode and (for the
8XC196NP only) controls whether the internal ROM is mapped into two address ranges, FF2000—
FF2FFFH and 002000-002FFFH, or into FF2000-FF2FFFH only.

7 0

8XC196NP ‘ 1 ‘ 1 ‘ 0 ‘ 1 ‘ ‘ 1 ‘ REMAP ‘ MODE64 ‘ — ‘
7 0

80C196NU ‘ 1 ‘ 1 ‘ DM ‘ 1 ‘ ‘ 1 ‘ _ ‘ MODE64 ‘ _ ‘

NuBmi:)er Mne?riltonic Function

7:6 1 To guarantee device operation, write ones to these bits.

51t DM Deferred Mode

Enables the deferred bus-cycle mode. If the 80C196NU is using a demulti-
plexed bus and deferred mode is enabled, a delay of 2t occurs in the first
bus cycle following a chip-select output change and the first write cycle
following a read cycle. (See “Deferred Bus-cycle Mode (80C196NU Only)”
on page 13-40.)

0 = deferred bus-cycle mode disabled

1 = deferred bus-cycle mode enabled

4:3 1 To guarantee device operation, write ones to these bits.

21t REMAP Internal ROM Mapping
Controls the internal ROM mapping.

0 = ROM maps to FF2000—FF2FFFH only
1= ROM maps to FF2000-FF2FFFH and 002000-002FFFH

1 MODEG64 Addressing Mode
Selects 64-Kbyte or 1-Mbyte addressing.

0 = selects 1-Mbyte addressing
1 = selects 64-Kbyte addressing

0 — Reserved; for compatibility with future devices, write zero to this bit.

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device reset.
The CCBs reside in nonvolatile memory at addresses FF2018H (CCBO0) and FF201AH (CCB1).

Tt Bit 5 is reserved on the 8XC196NP device and bit 2 is reserved on the 80C196NU device. For
compatibility with future devices, write zeros to these bits.

Figure 13-7. Chip Configuration 1 (CCR1) Register

Upon leaving the reset state, the device is configured for normal operation. This section describes
the state of the chip following reset and summarizes the steps in the configuration process.

13-16 [|

Int€|® INTERFACING WITH EXTERNAL MEMORY

Following reset, the chip automatically fetches the two chip configuration bytes.

* 83C196NP only.The CCB fetches are from exhal memory if EA# = 0 and from internal
ROM if EA# = 1.

¢ 80C196NP and 80C196NU onlyThe CCB fetches are from exhal memory. (EA#
should be tied low.)

If the CCBs are stored in external ROM, chip-select output 0 (CS0#) should be connected to that
device. Chip-select output O is initialized for the address r&#kH00—FF20FFH, which in-
cludes the CCB locations. Following the CCB fetches, the device fetches the instruction at
FF2080H.

The device uses the following bus control parameters for the CCBO fetch:
¢ Bus multiplexing (DEMUX): multiplexed
* Bus width (BW16): 8 bits

* Wait states (WSO, WS1): 3 wait states. The READY pin ivaéor the CCB0O and CCBL1
fetches and can be used to insert additional wait states (see “Wait States (Ready Control)”
on page 13-26).

CCBO can be fetched over a 16-bit bus, even though BW16 defaults to 8 bits@@ Bldefetch.

The upper address lines A19:8 and AD15:8 are strongly driven during the CCBO fetch because
an 8-bit bus is assumed. Therefore, if you haté-ait data bus, write the value 20H to FF2019H

to avoid contention on AD15:8. Lines A19:0 are driven in the multiplexed mode. You can access
the memory using A19:0 and use AD15:0 for data only.

CCBO itself contains bits that specify DEMUX, BW16, WSO, and WS1. These values are used to
control the CCB1 fetch, and following the fetch, they are stored in the chip-select output 0 bus
control register, BUSCONO (see “Chip-select Unit Initial Conditions” on page 13-11). The bits
in CCB0Oand CCB1 are described in “Chip Configuration Registers and Caigdiguration
Bytes” on page 13-14.

I 13-17

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

After RESET# is deasserted, the following pins are initialized:

The P2.7/CLKOUT pin operates as CLKOUT (as during reset). Be sure that the CLKOUT
signal does not damage external hardware.

The P3.0/CS0# pin operates as CSO0#, which is asserted for the CCB fetghaslHn to
use the P3.0 pin as an input, it must be reconfigured from its post-reset operation as an
output.

The BHE#/WRH# pin operates as BHE#.
The WR#/WRL# pin operates as WR#.
Bus-hold function is disabled internally (WSR.7 = 0).

The READY/P5.6 pin is active (that is, the chip responds tereat requests for additional
wait states).

The INST pin is low (deasserted).

The AD15:0 pins are active.

The following port pinsare weakly held high: P1.7:0, P2.6, P2.4:0, P3.7:1, and P4.7:0.
The EPORT.3:0 pins are forced high, regardless of the state of the EA# pin.

Following reset, yowshould sethe stack pointer and initialize the chip-select outputs using the
procedure in “Example of a Chip-select Setup” on page 13-12.

13.5 BUS WIDTH AND MULTIPLEXING

The external bus can operate with a 16-bit or 8-bit data bus and with a multiplexed or demulti-
plexed address/data bus. Figure 13-8 shows the external bus signals during operation in the four
combinations of bus width and multiplexing.

13-18 I

Inu® INTERFACING WITH EXTERNAL MEMORY

Bus Control Bus Control
A19:16 Address Bits 16—19 A19:16 Address Bits 16-19
(EPORT) ———— (EPORT)
Address Bits 0-15
Address Bits 0-15 AL50 :>
A150 Driven with the data currently
. on the internal bus.
16-bit Data
AD15:8 <:>
AD15:0
8-bit Data
LrE] e—
8XC196 8XC196
Device Device
16-bit Demultiplexed Bus 8-bit Demultiplexed Bus
Bus Control Bus Control
A19:16 Address Bits 16-19 A19:16 Address Bits 16-19
(EPORT) ———— (EPORT)
Address Bits 0-15
Address Bits 0-15
A15:0
Al15:0
Address Bits 8-15
16-bit Multiplexed AD15:8 >
Address/Data 8-bit Multiplexed
AD15:0 Address/Data
LT —
8XC196 8XC196
Device Device
16-bit Multiplexed Bus 8-bit Multiplexed Bus
A2364-03

Figure 13-8. Multiplexing and Bus Width Options

[| 13-19

8XC196NP, 80C196NU USER’'S MANUAL Inu®

A design can incorporate external devices that operate with diffeusnividths and multiplex-

ing. The bus parameters used during a particular bus cycle are determined by the chip-select out-
put that is assigned to the address being accessed. Figure 13-9 shows the address and data bu
configurations for the four combinations of bus width and multiplexing. For detailed waveforms,
see “16-bit Bus Timings” on page 13-22 and “System Bus AC Timing Specifications” on page
13-36.

ALE __/ \ / \ ALE __/ \ / \

A19:0 | Address | A19:0 | Address |
AD15:0 | Data | AD15:8 | Drivent |
AD7:0 | Data |

16-bit Demultiplexed Bus 8-bit Demultiplexed Bus

ALE __/ \ / \ ALE __/ \ / \

A19:0 | Address | A19:0 | Address |
AD15:0 | Address | Data | AD15:8 | Address |
AD7:0 | Address | Data |

16-bit Multiplexed Bus 8-bit Multiplexed Bus

T AD15:8 drive the data currently on the high byte of the internal bus.

A2463-02

Figure 13-9. Bus Activity for Four Types of Buses

In an 8- or 16-bit demultiplexed mode (top of Figure 13-8 and Figure 13-9), the external device
receives the address from A19:0. In a 16-bit system, the data is on AD15:0. In an 8-hit system,
the data is on AD7:0. AD15:8 drive the data currently on the high byte of the internal bus.

In multiplexed mode (bottom half of Figure 13-8 and Figure 13-9), both A19:0 and AD15:0 drive
the address. A19:0 drive the address uglmut the entire bus cycle. For a 16-bit bus width,
AD15:0 drive theaddress for the first half of the bus cycle and drive oriveagata during the
second half. In the 8-bit case, AD15:8 drive the address during the entire bus cycle.

13-20 I

Int€|® INTERFACING WITH EXTERNAL MEMORY

In multiplexed mode, with the full address on the bus for only half of the cycle, the external de-
vice has less time to receive it and tepend. As a rault, for the same bus-cycle length) (@t
multiplexed system requires a faster external device (unless wait states are added to the bus cy-
cle). Although the multiplexed mode has this disadwgeté is usefufor compatibility with de-

vices designed for multiplexed operation.

In a 16-bit system (left side of Figure 13-8 and Figure 13-9) one data word can be transferred over
AD15:0 in a single bus cycle. In an 8-bitstem, one dataord is transferred as two bytes over
AD7:0 in successive bus cycles, and AD15:8 drive the upper eight address bits for the entire bus
cycle.

The flexibility of the chip-select unit enables you to specify the bus width, the number of wait
states, and a multiplexed or demultiplexed bus for each of the six chip-select outputs. The system
in Figure 13-5 on page 13-13 illustrates a mixture of 8-bit and 16-bit devices with different num-
bers of wait states.

13.5.1 A 16-bit Example System

Figure 13-10 shows a 16-bit system in demultiplexed mode. The flash memory receives the ad-
dress on A18:1; data is transferred on AD15:0. Using the WR# signal as shown, this system
writes words and not single bytes to the memory. (Using WRL# and WRH#, yewritasingle

bytes on a 16-bit bus.

I 13-21

8XC196NP, 80C196NU USER’'S MANUAL

CS1#
CSo# I
CS# CS#
Flash Flash
8xcioe 256Kx16 256Kx16
Al18:1 Al8:1
A19:0 Al7:0 —— A17:0
AD15:0 AD15:0
AD15:0 D15:0 —— D 15:0
OE# WE# OE# WE#
RD# l |
WR#
A2438-03
Figure 13-10. 16-bit External Devices in Demult iplexed Mode

13.5.2 16-bit Bus Timings

Figure 13-11 shows idealized 16-bit external-bus timings for the 8XC196NP. The signals are di-
vided into two groups: signals for a demultiplexed bus (top) and signals for a multiplexed bus
(bottom). Several bus signals are omitted from the figure to focus on a comparison of multiplexed
and demultiplexed buses. The timing parameters are addressed in “Comparison of Multiplexed
and Demultiplexed Buses” on page 13-26. Comprehensive timing specifications for both the
8XC196NP and the 80C196NU are shown in Figures 13-20 through 13-23.

CLKOUT and ALE arghe same in multiplexed and demultiplexed buses. The CLKOU®ge
is twice the internal oscillator period (2t). The bus cycles shown here, which have no wait states,
require two CLKOUT periods (two state times).

The rising edge of the address latch enable (ALE) indicates that the device is driving an address
onto the bus (A19:16 and AD15:0). The device presents a valid address before ALE falls. In a
multiplexed system, the ALE signal is used to strobe a transparent latch (such as3@I¢YAC
which captures the address from AD15:0 and holds it while the bus controller puts data onto
AD15:0.

13-22 I

Inu® INTERFACING WITH EXTERNAL MEMORY

Demultiplexed

ALE / \ / \

A19:0 — Address X
RD# TrLDV
TRHDZ
e—— Tavpy
AD15:0 Data
TwiwH
WR#

’(— Tovwh

AD15:0 X Data X
‘Muliplexed .~~~ T T T T T T
CLKOUT
ALE / \ / \
A19:16 — Address X
*| TrLDV
RD#
Tavov TrHDZ
AD15:0 —(Data){ Address }»—— Data
TWLWH
WR#
Tovwh }(—)

AD15:0 Data X Address r Data X Address

A2461-02

Figure 13-11. Timings for Multiplexed and Demultiplexed 16-bit Buses (BXC196NP)

| 13-23

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

13.5.3 8-bit Bus Timings

Figure 13-12 shows idealized 8-bit timings for the R6NP.One cycle is required for an 8-bit

read or write. A 16-bit access requires two cycles. The first cycle accesses the lower byte, and the

second cycle accesses the upper byte. Except for requiring an extra cycle to write the bytes sep-
arately, the timings are the same as on the 16-bit bus, and the comparison between the multiplexed
and demultiplexed cases is also the same. The demultiplexed bus can accommodate slower mem-
ory devices than the multiplexed bus can.

13-24 I

Inu® INTERFACING WITH EXTERNAL MEMORY

Demultiplexed

cakour _/ N/ /S
AE /[\ /\ /S

A19:0 —{ Address X Address X
AD15:8 X High Address X High Address X
RD# ./ /S
AD7:0 Data) (_ Daa)
WR# /N /S
ADT:0 X Data X Data X
Mumpﬁxgd ________________________________

ccour _ /N /S S
ALE / \ / \ /
A19:16 —(Address X Address)L

rox __/ /T /"
AD7:0 —{ Data PM Low Address »~ Data)W Low Address }— Data))—(
AD15:8

wei __/ _/ /

AD7:0 (Data X LowAddress X Data X LowAddress X Data X

AD15:8 X High Address X High Address X

A2471-02

Figure 13-12. Timings for Multiplexed and Demultiplexed 8-bit Buses (8XC196NP)

[| 13-25

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

13.5.4 Comparison of Multiplexed and Demultiplexed Buses

This section compares the timings for multiplexed and demultiplexed budésbifbus is used
for the comparison. “8-bit Bus Timings” on page 13-24 compares the 8-bit and 16-bit buses.

In a multiplexed system, where AD15:0 carry both address and data, bus activities are time-com-
pressed in comparison with a demultiplexed system, where the address and data have separate
lines (A19:0 and AD15:0). The compression is reflected in differences in specifications for the
demultiplexed and multiplexed bus. Table 13-10 lists several bus specifications and their values
for demultiplexed and multiplexed buses. The data shows that the demultiplexed bus can accom-
modate slower memory devices. (See “System Bus AC Timing Specifications” on page 13-36 for

a complete list of AC timing definitons.)

Table 13-10. Comparison of AC Timings for Demultiplexed and Multiplexed 16- bit Buses

Bus +

Spec Description Demultiplexed Bus (ns) Multiplexed Bus (ns) T

Max. time from RD# asserted to
Triov | valid input data on the bus. 20-25 t-20

Max. time from A19:0 and CSx#
Tavov | valid to valid input data on the bus. 4-50 3t—40

T Max. time from RD# deasserted t t
RHDZ | yntil data bus is at high impedance.

Minimum time that WR# is

Twwn | asserted. 2t-10 t-5
Minimum time from valid data on
Town | the bus to WR# deasserted. 3t-33 t-15

T Consult the device datasheet for the latest specifications.

13.6 WAIT STATES (READY CONTROL)

An external device can use the READY input to request wait states in addition to the wait states
that are generated internally by the 8XC18&Mvice. When an address is placed on the bus for

an external bus cycle, the external device can pull the READY signal low to indicate it is not
ready. In response, the bus controller inserts wait states to lengthen the bus cycle until the external
device raises the READY signal. Each wait state adds one CLKOUT period (i.e., one state time
or 2t) to the bus cycle.

The READY signal is effective for all bus cycles, including@@BO0 fetch(which has three in-

ternal wait states). Bits WS0 and WS1 in CCBO specify the wait states for the CEe ITfatre-

after, the WSO and WSL1 bits in the BUSCOMgisters control the wait states, and the READY
signal can be used to insert additional wait states. (See “Controlling Wait States, Bus Width, and
Bus Multiplexing” on page 13-10.)

13-26 [|

Inte|® INTERFACING WITH EXTERNAL MEMORY

When selecting infinite wait states, be sure to add external hardware to count wait states and re-
lease READY within a specified period of time. Otherwise, a defective external device could tie
up the address/data bus indefinitely.

NOTE

Ready control is valid only for external memory; you cannot add wait states
when accessing internal ROM.

Setup and hold timings must be met when using the READY signal to insert wait states into a bus
cycle (see Table 13-11 and Figures 13-13 through 13-15auBeca decoded, valid address is
used to generate the READY signal, the setup time is specified relative to the address being valid.
This specification, J,yy, indicates how much time the external device has to decode the address
and assert READY after the address is valid. The READY signal must be held valid until the
ToLyx timing specification is met. Typically, this is a minimum of 0 ns from the time CLKOUT
goes low. Do not exceed the maximugg L specification or additional (unwanted) wait states
might be added. In all cases, refer to the datasheets for the current specificatiqps, femd

Teivx:
Table 13-11. READY Signal Timing Definitions
Symbol Definition
Tavov Address Valid to Input Data Valid
Maximum time the memory device has to output valid data after the device outputs a valid
address.
Tavyy Address Valid to READY Setup
Maximum time the memory system has to assert READY after the device outputs the address
to guarantee that at least one wait state will occur.
Tenvx READY Hold after CLKOUT High
If maximum specification is exceeded, additional wait states will occur.
Teiyx READY Hold after CLKOUT Low
Minimum hold time is always 0 ns. If maximum specification is exceeded, additional wait
states will occur.
T ALE Cycle Time
Minimum time between ALE pulses.
Triov RD# Low to Input Data Valid
Maximum time the memory system has to output valid data after the device asserts RD#.
TRirH RD# Low to RD# High
RD# pulse width.
Tovwh Data Valid to WR# High
Time between data being valid on the bus and WR# going inactive. Memory devices must
meet this specification.
Twiwn WR# Low to WR# High
WR# pulse width.

[| 13-27

8XC196NP, 80C196NU USER’'S MANUAL

l——] TcLyx (max)
clkout ———\ —\ |
TeLyx (min)
—] Tavyv - |«
READY \ [T
I Tipn + 2t |
ALE —\ /‘
f———— Trirn*+2t ——
RD# \ /—
Tripy +2t ——
[——— TAVDV + 2t —_—
A(Drig(:j(; X Address Out } { Data In &
b Twwn+t2t ———
WR# \ /—
f—— Towwn + 2t 44
AD15:0 X Address Out X Data Out
(write)
BHE#, INST X C
A19:16) X
csxt X X

T0013-02

13-28

Figure 13-13. READY Timing Diagram — Multiplexed Mode

Int€|® INTERFACING WITH EXTERNAL MEMORY

}‘—* TeLyx (max)
CLKOUT l \ ' ~ ' ~ ’

e—— T .
AVYYV _’(TeLyx (Min) -+

READY | \ 7////

I‘ TLHLn + 2t

ALE 4/—\

}*— TrirH + 2t —*{
RD# \ [

N Tripv * 2t q

\ Tavoy * 2t q
AD15:0 T 1 [
(read) / \ Data

}‘— Twiwn * 2t —’{
WR# \ [

4

. Tovwh + 2t
A(Iil)vlrﬁe(; X Data Valid
BHE#, INST |
A19:0 x:
cSxi X x:

T0007-02

Figure 13-14. READY Timing Diagram — Demultiplexed = Mode (8XC196NP)

13-29

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

[———{Tcrvx (Max)
CLKOUT [/ \ ,
Tehyx (min)
[Tavwv — -«
READY
| |
| Timn + 2t |
AE | T\ I~
| |
] | TrLRH *+ 2t |
RD# \ /
— Trpv*2t ————
]) Tavpy *+ 2t ’
AD15:0] } { Data Valid —
(read)
| | Twiwh *+ 2t I
WR# \ [
| Tovwn +2t !
AD15:0 X Data Valid | &
(write)
BHE#, INST [X
A19:16) X
csxt X X
T0014-02

Figure 13-15. READY Timing Diagram — Demultiplexed = Mode (80C196NU)

13.7 BUS-HOLD PROTOCOL

The 8XC196M supports a bus-hold protocol that allows external devices to gain control of the
address/data bus. The protocol uses three signals, all of watécport 2 special functions:
HOLD#/P2.5 (bus-hold request), HLDA#/P2.6 (bus-hold acknowledge), and BREQ#/P2.3 (bus
request). When an external device wants to use the 8XCGA9@3)\ it asserts the HOLD# signal.
HOLD# is sampled while CLKOUT is low. The 8XC198NKesponds by releasing the bus and
asserting HLDA#. During this hold time, the address/data bus floats, and signésALE,

RD#, WR#/WRL#, BHE#/WRH#, and INST are weakly held in their inactive states. Figure
13-16 shows the timing for bus-hold protocol, and Table 13-12 on page 13-31 lists the timing pa-
rameters and their definitions. Refer to the datasheet for timing parameter values.

13-30 I

Inu® INTERFACING WITH EXTERNAL MEMORY

cawoer \ S\ P\ /[./ L
Thven > I“ Thven '>|
Hold Latenc:

y
HOLD# \
[4 l]l] l

b

TeLHaL > =

TCLHAH >||l-

HLDA# 35

NS
v

TelerL > |

Tegre >||=<

£e
37

BREQ# e
ERd
T
HALAZ > = Thanax >
A19:0, AD15:0 — o) —
223
T
CSx#, BHE#, '@LBZ < Tharsy >
INST, RD#, WR# VoL Weakly held inactive \ /
WRL#, WRH# 59 . —
TelH >):
ALE / \
2 3§
I+
Start of strongly driven ALE
A2460-03
Figure 13-16. HOLD#, HLDA# Timing
Table 13-12. HOLD#, HLDA# Timing Definitions
Symbol Parameter
Thven HOLD# Setup Time
TerhaL CLKOUT Low to HLDA# Low
Tethan CLKOUT Low to HLDA# High
Terere CLKOUT Low to BREQ# Low
Teieru CLKOUT Low to BREQ# High
ToaLaz HLDA# Low to Address Float
Thanax HLDA# High to Address No Longer Float
Thaez HLDA# Low to BHE#, INST, RD#, WR#, WRL#, WRH#
Weakly Driven
Thansy HLDA# High to BHE#, INST, RD#, WR#, WRL#, WRH# valid
Teun Clock Falling to ALE Rising; Use to derive other timings.

When the external device is finished with the bus, it relinquishes control by driving HOLD# high.
In response, the 8XC196&MNleasserts HLDA# and resumes control of the bus.

13-31

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

If the 8XC196M\ has a pending external bus cycle while it is in hold (another device has control
of the bus), it asserts BREQ# to request control of the bus. After the external device responds by
releasing HOLD#, the 8XC1964exits hold and then deasserts BREQ# and HLDA#.

13.7.1 Enabling the Bus-hold Protocol

To use the bus-hold protocol, you must configure P2.3/BREQ#, P2.5/HOLD#, and P2.6/HLDA#
to operate as special-function signals. BREQ# anDA#t are active-low outputs; HOLD# is an
active-low input.

You must also set the hold enable bit (HLDEN) in the window selection register (WSR.7) to en-
able thebus-hold protoal. Once the bus-hold protocol has been selected, the port functions of
P2.3, P2.5, and P2.6 cannot be selected without resetting the device. (During the time that the pins
are configured to operate as special-functigmals, their specidunction valuescan be read

from the P2_PIN bits.) However, the hold function can be dynamically enabled and disabled as
described in “Disabling the Bus-hold Protocol.”

13.7.2 Disabling the Bus-hold Protocol

To disable hold requests, clear WSR.7. The 8XC10éd¢s not take control of the bus immedi-
ately after HLDEN is cleared. Instead, it waits for the current hold request to finish and then dis-
ables the bus-hold feature and ignores any new requests until the bit is set again.

Sometimes it is important to prevent another defrimm taking control of the bus while a block

of code is executing. One way to protect a code segment is to clear WSR.7 and then execute a
JBC instruction to check the status of theDM## signal. The JB@hstruction prevents the RALU

from executing the protected block until current hold requests are serviced and the hold feature
is disabled. This is illustrated in the following code:

DI ;Disable interrupts to prevent
;code interruption

PUSH WSR ;Disable hold requests and

LDB WSR,#1FH ;window Port 2

WAIT: JBC P2_PIN,6, WAIT ;Check the HLDA# signal. If set,

;add protected instruction here

POP WSR ;Enable hold requests

El ;Enable interrupts

13.7.3 Hold Latency

When an external device asserts HOLD#, the 8XC kdghkhes the current bus cycle and then
asserts HLDA#. The time it takes the device to assert HLDA# after the external device asserts
HOLD# is calledhold latency(see Figure 13-16 on page 13-31). Table 13-13 lists the maximum
hold latency for each type of bus cycle.

13-32 I

Int€|® INTERFACING WITH EXTERNAL MEMORY

Table 13-13. Maximum Hold Latency

Maximum Hold Latency

Bus Cycle Type (state times)

Internal execution or idle mode | 1.5

16-bit external execution 2.5 + 1 per wait state

8-bit external execution 2.5 + 2 per wait state

13.7.4 Regaining Bus Control

While HOLD# is asserted, the 8XC198Montinues executing code until it needs to access the
external bus. If executing from internal memory, it continues until it needs to perform an external
memory cycle. If executing from external memory, it continues executing until the queue is emp-
ty or until it needs to perform an external data cycle. As soon as it needs to access the external
bus, the 8XC196Nasserts BREQ# and waits for the external device to deassert HOLD#. After
asserting BREQ#, the 8XC19&Nannot respond to any interrupt requests, including NMI, until

the external device deasserts HOLD#. One state time after HOLD# goes high, the 8XC196N
deasserts HLDA# and, with no delay, resumes control of the bus.

If the 8XC196N is reset while in hold, bus contention can occur. For examplBad@ly de-

vice would try to fetch the chip configuration byte from external memory after RESET# was
brought high. Bus coettion would occur because both the external device and the 8X@196N
would attempt to access mery. One solution is tase the RESET# signal as the system reset;
then all bus masters (including the 8XC19%/dre reset at once. Chapter 11, “Minimum Hard-
ware Considerations,” shows system reset circuit examples.

13.8 WRITE-CONTROL MODES

The device has two write-control modes: the standard mode, which uses the WR# and BHE# sig-
nals, and the write strobe mode, which uses the WRL# and WRH# signals. Otherwise, the two

modes are identical. The modes are selected by chip configuration register 0 (Figure 13-6 on page
13-15.)

Figure 13-17 shows the waveforms of the asserted write-control signals in the two modes. Note
that only BHE# is valid throughout thmis cycle.

I 13-33

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Standard Mode Write Strobe Mode

Active for low- or high-byte write. Active for low-byte write.
BHE# \ / WRH# \ /
Active for high-byte write. Active for high-byte write.

A2472-02

Figure 13-17. Write-control Signal Waveforms

Table 13-14 compares the values of the write-control signals for write operations imtterdta
mode and the write strobe mode. The table lists values of WR# and BHE# and values of WRL#
and WRH# for 8-bit and 16-bit writes on an 8-bit and 16-bit bus.

Table 13-14. Write Signals for Standard and Write Strobe Modes

Standard Write Strobe
Bus Word/Byte AO (CCR0.2=1) (CCR0.2=0)
Width Written
WR# BHE# WRL# WRH#
Low Byte 0 0
8 High Byte 1 0
0 0
Word
1 lllegal llegal
Low Byte 0 0
High Byte 1
16 gh Byt
0 0 0 0 0
Word
1 llegal llegal

To select the standard write-control mode,GERO0.2. In standard mode, the WR#WRL# pin
operates as WR#, and the BHE#/WRH# pin operates as BHE#. WR# is asserted for every external
memory write. BHE# is asserted for word accesses (read and write) and for byte accesses to odd
addresses. BHE# can be used to select the bank of memory that stores the high (odd) byte. Figure
13-10 on page 13-22 illtrates use of the standard mode in a 16-bit system. In this example, WR#
writes words to the 16-bit flash mery. To write individual bytes, you can use the decoding logic

in Figure 13-18 or use the write strobe mode.

13-34 [|

Inte|® INTERFACING WITH EXTERNAL MEMORY

To write single bytes on &6-bit busrequires separate low-byte and high-byte write signals
(WRL# and WRH#). Figure 13-18 shows a sample circuit that combines WR#, BHE#, and ad-
dress hit 0 (AO) to produce these signals. This additilmggt is unnecessary, however. In the
write strobe mode, WRL# and WRH# are available at the device’s external pins.

:>O—> WRH#
s wrs

]

WR# ————

L

A0104-01

Figure 13-18. Decoding WRL# and WRH#

The write strobe mode eliminates the need to externally decode high-bytenabgté write sig-

nals to external 16-bit memory on a 16-bit bus. When the write strobe mode is selected, the
WR#/WRL# pin operates as WRL#, and the BHE#/WRH# pin operates as WRH#. In the 16-bit
bus mode, WRL# is asserted for all low-byte writes (even addresses) avatdNvrites, and
WRH# is asserted for all high-byte writémdd addresses) and all word writes. In the 8-bit bus
mode, WRH# and WRL# are asserted for both even and odd addresses (see Table 13-14).

I 13-35

8XC196NP, 80C196NU USER’'S MANUAL

intel.

Figure 13-19 illustrates the use of the write strobe mode in a mixed 8-bit and 16-bit system with
two flash memories and one SRAM. The WRL# signal, which is generated for all 8-bit writes
(Table 13-14), is used to write bytes to the SRAM. Note that the RD# signal is sufficient for sin-
gle-byte reads on a 16-bit bus. Both bytes are put onto the data bus andritwy mentroller
discards the unwanted byte.

CS1#
CSo# T I
Al8:1 i Al8:1 CE# A12:0 CE#
A19:0 —— 170 A17:0 p—— A12:0
AD15:8 28 D7:0
Flash Flash SRAM
8XC196 256Kx8 256Kx8 8Kx8
High Low
AD7:0 AD7:0
AD7:0 —— s D7:0 e D7:0
WE# OE# WE# OE# WE# OE#
RD# : ! |
WRH#
WRL#
A2439-03

Figure 13-19. A System with 8-bit and 16-bit Buses

13.9 SYSTEM BUS AC TIMING SPECIFICATIONS

Refer to the latest datasheet for the AC timings to make sure your system meets specifications.
The major external bus timing specifications are shown in Figure 13-20 through 13-23.

13-36

INTERFACING WITH EXTERNAL MEMORY

, TeLel TcHeL
.
.

. TLHLL TurL | . TRLRH TRHLH

'
'
'

'
' N
! _ Tavie | Tuax | TrRiov | ' TRHDZ
: - - '
! TRLAZ =] |— !
- 7

aress o o DI

TAvDV

'
' | '
' — - '
' '
'
'

|
TLwe TWLWH, . TwHLH

AD15:0 —(Address Out) X(

(write)

AD15:8 —(Address Out

BHE#, (, : :
INST Valid : : X

\
I - TsLov -
H

Address Out

A2367-05

Figure 13-20. Multiplexed System Bus Timing (8XC196NP)

13-37

8XC196NP, 80C196NU USER’'S MANUAL

’.7

CLKOUT /

ALE [

—— TCLCL — |

—TiHLL—|

SR

RD#

AD15:0

/ | W

— Tenov T
" TeLLH + TriCL k— Tenel —
TiicH ’L * T TRHLH —
TLHLH >
> TLLRL
= TRLRH >
>+ Triaz <+ TRHDZ —*|
TrLDV
TLiax
"_TAVLL
| Tavbv —|

X Address Out

(read)

WR#

AD15:0

TovwH

| TLLWL':
TwiwH—]

|

<> TcHwH
= TWHLH —|

= TwHox —

(write)

X Address Out

X

Data Out)X(Address Out

«| Twhex: TRHBX

BHE#, INST __X

X

TwHAX: TRHAX
X

AD15:8 X
| TwhisH: TRHSH
A19:16 X X
csxit X X

T0011-02

Figure 13-21. Multiplexed System Bus Timing (80C1 96NU)

13-38

intel.

INTERFACING WITH EXTERNAL MEMORY

B TeLel o TcHeL
CLKOUT / I /
— -— —p— ~——]
T
TCLLH TLicH cLov
TLHLH
ALE \
TLHLL - TRLRH TRHLH
— | — Tp cy
RD#
A TRLDV | TRHDZ
AD15:0 < Valid EEE)—
(read)
A Tavov |
- | TCHWH
B TwWLWH | TwHiH
h T gl
WR# — *4— TwLcH
TQVWH _ | Twhox_ |
- - >
AD15:0 Valid >
(write) @
TRHBX
TWHBX
BHE#, — Valid
INST
TRHAX _>| |<_TWHAx
Al9:0 — Address Out Address
e A
A2368-05

Figure 13-22. Demultiplexed System Bus Timing (8XC196NP)

13-39

8XC196NP, 80C196NU USER’'S MANUAL

CLKOUT

ALE

RD#

AD15:0
(read)

WR#

AD15:0
(write)

BHE#, INST
A19:0

CSx#

k—TereL Terew o >
* [+ TeLn ’|‘TLLCH "‘TCHWH
) S S I A W
TLHLH >
— TwHLH —|
~—TRHLH —1 TLHLL —’|
«— TRHRL —|
>« TRLCL le— TRHDZ —
= TavRL TRLRH TRHAX
+— TcHpv —
«—— TriDv —
Tavoy ———*
TsLpbv
(v)
** TwicL ‘_—TWHQX —
T Tavwe > TwiwH > TwHAx
|‘— ToywH ————¥
X valid X
i TwHBX: TRHBX

T0012-02

13.9.1 Deferred Bus-cycle Mode (80C196NU Only)

The 80C196NU offers a deferred bus cycle mode. This bus mode (enabled by CCR1.5; see Figure
13-7 on page 13-16) reduces bus contention when using the 80C196NU in demultiplexed mode
with slow memories. As shown in Figure 13-24, a delay of 2t occurs in the first bus cycle follow-

Figure 13-23. Demultiplexed System Bus Timing (80C1

96NU)

ing a chip-select output change and the first write cycle following a read cycle.

13-40

te|® INTERFACING WITH EXTERNAL MEMORY

CLKOUT
TwhiH + 2t
|<— TiHw + 2t —’|
AL [\ /\ / o\ [
TrHLH * 2t
TavrL * 2t
RD# \ / \ / \
«— Tavoy *+ 2t —
AD15:0 - -
D150) e
Tavwi +2t
—
WR#
AD15:0 -
(write) X valid X X:
BHE#, INST | |
A19:16 X)) X
CSxi X X X

T0010-02

Figure 13-24. Deferred Bus-cycle Mode Timing Diagram (80C196NU)

13-41

8XC196NP, 80C196NU USER’'S MANUAL Inu®

13.9.2 Explanation of AC Symbols

Each symbol consists of two pairs of letters prefixed by (fof time). The characters in a pair
indicate a signal and its condition, respectively. Symbols represent the time between the two sig-
nal/condition points. For example,,, is the time between signal L (ALE) condition L (Low)
and signal R (RD#) condition L (Low). Table 13-15 defines the signal and condition codes.

Table 13-15. AC Timing Symbol Definitions

Signals Conditions
At Address H HOLD# S CSw H High
B BHE# HA HLDA# W WR#, WRH#, WRL# | | L Low
C CLKOUT L ALE X XTAL1 \% Valid
D Data Q Data Out Y READY X No Longer Valid
G Buswidth R RD# 4 Floating

T Address bus (demultiplexed mode) or address/data bus (multiplexed mode)

13.9.3 AC Timing Definitions

Table 13-16 defines the AC timing specifications that thenarg system must meet and those
that the device will provide.

Table 13-16. AC Timing Definit ions
Symbol Definition

The External Memory System Must Meet These Specifications

Tavov Address Valid to Input Data Valid
Maximum time the memory device has to output valid data after the device outputs a valid
address.

Terov CLKOUT High to Input Data Valid
Maximum time the memory system has to output valid data after CLKOUT rises.

Teiov CLKOUT Low to Input Data Valid

Maximum time the memory system has to output valid data after CLKOUT falls.
Tovwh Data Valid to WR# High

Time between data being valid on the bus and WR# going inactive.

Trupz RD# High to Input Data Float

Time after RD# is inactive until the memory system must float the bus. If this timing is not met,
bus contention will occur.

Triov RD# Low to Input Data Valid
Maximum time the memory system has to output valid data after the device asserts RD#.
Tsiov CSx# Valid to Input Data Valid

Maximum time the memory device has to output valid data after the device outputs a valid chip-
select output.

13-42

INTERFACING WITH EXTERNAL MEMORY

Table 13-16. AC Timing Def initions (Continued)

Definition

The 8XC196Nx Meets These Specifications

Operating frequency

Frequency of the signal input on the XTAL1 pin times the clock multiplier (x). For the
8XC196NP, xis always 1; for the 80C196NU, xis 1, 2, or 4, depending on the clock mode. The
internal bus speed of the device is %2 f.

Operating period (1/f)
All AC Timings are referenced to t.

TAVLL

Address Setup to ALE Low

Length of time ADDRESS is valid before ALE falls. Use this specification when designing the
external latch.

TAVRL

Address Setup to RD# Low
Length of time ADDRESS is valid before RD# falls.

TAVWL

Address Setup to WR# Low
Length of time ADDRESS is valid before WR# falls.

TCHCL

CLKOUT High Period
Needed in systems that use CLKOUT as clock for external devices.

TC HWL

CLKOUT High to WR# Low
Time between CLKOUT going high and WR# going active.

TCLCL

CLKOUT Cycle Time
Normally 2t.

TCLLH

CLKOUT Falling to ALE Rising
Use to derive other timings.

TLHLH

ALE Cycle Time
Minimum time between ALE pulses.

TLHLL

ALE High Period
Use this specification when designing the external latch.

TLLAX

Address Hold after ALE Low

Length of time ADDRESS is valid after ALE falls. Use this specification when designing the
external latch.

TLLCH

ALE Falling to CLKOUT Rising
Use to derive other timings.

TLLRL

ALE Low to RD# Low

Length of time after ALE falls before RD# is asserted. Could be needed to ensure proper
memory decoding takes place before a device is enabled.

TLLWL

ALE Low to WR# Low

Length of time after ALE falls before WR# is asserted. Could be needed to ensure proper
memory decoding takes place before a device is enabled.

13-43

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table 13-16. AC Timing Def initions (Continued)

Symbol Definition
The 8XC196Nx Meets These Specifications (Continued)
Truax (Multiplexed Mode) AD15:8/CSx# Hold after RD# High
Minimum time the high byte of the address in 8-bit mode will be valid after RD# inactive.
(Demultiplexed Mode) A19:0/CSx# Hold after RD# High
Minimum time the address will be valid after RD# inactive.
Trusx BHE#, INST Hold after RD# High
Minimum time these signals will be valid after RD# inactive.
Truwn RD# High to ALE Rising
Time between RD# going inactive and the next ALE. Useful in calculating time between RD#
inactive and next address valid.
TrurL RD# High to RD# Low
Minimum RD# inactive time.
Trush A19:0/CSx# Hold after RD# High
Minimum time the address and chip-select output are held after RD# inactive.
Triaz RD# Low to Address Float
Used to calculate when the device stops driving address on the bus.
Trich RD# Low to CLKOUT High
Maximum time between RD# being asserted and CLKOUT going high.
TricL RD# Low to CLKOUT Low
Length of time from RD# asserted to CLKOUT falling edge.
Triru RD# Low to RD# High
RD# pulse width.
Twhax (Multiplexed Mode) AD15:8/CSx# Hold after WR# High
Minimum time the high byte of the address in 8-bit mode will be valid after WR# inactive.
(Demultiplexed Mode) A19:0/CSx# Hold after WR# High
Minimum time the address will be valid after WR# inactive.
Twhex BHE#, INST Hold after WR# High
Minimum time these signals will be valid after WR# inactive.
Twhin WR# High to ALE High
Time between WR# going inactive and next ALE. Also used to calculate WR# inactive and next
Address valid.
Twhox Data Hold after WR# High
Length of time after WR# rises that the data stays valid on the bus.

13-44

Inbl® INTERFACING WITH EXTERNAL MEMORY

Table 13-16. AC Timing Def initions (Continued)

Symbol ‘ Definition
The 8XC196N x Meets These Specifications (Continued)

Twhsh A19:0/CSx# Hold after WR# High

Minimum time the address and chip-select output are held after WR# inactive.
Twich WR# Low to CLKOUT High

Minimum and maximum time between WR# being asserted and CLKOUT going high.
Twicl WR# Low to CLKOUT Low

Minimum and maximum time between WR# being asserted and CLKOUT going low.
Twiwn WR# Low to WR# High

WR# pulse width.

[| 13-45

intgl.

Instruction Set
Reference

APPENDIX A
INSTRUCTION SET REFERENCE

This appendix provides referenegdrmaton for the instruction set of the family of MED6
microcontrollers. It defines the processor status word (PSW) flags, describes each instruction,
shows the relationships between instructions and PSW flags, and shows hexadecimal opcodes,
instruction lengths, and execution times. It includes the following tables.

* Table A-1 on page A-2 is a map of the opcodes.
* Table A-2 on page A-4 defines the processor status word (PSW) flags.

* Table A-3 on page A-5 shows the effect of the PSW flags or a specified register bit on
conditional jump instructions.

* Table A-4 on page A-5 defines the symbols used in Table A-6.

* Table A-5 on page A-6 defines the variables used in Table A-6 to represent instruction
operands.

* Table A-6 beginning on page A-7 lists the instructions alphabetically, describes each of
them, and shows the effect of each instruction on the PSW flags.

* Table A-7 beginning on page A-47 lists the instruction opcodes, in hexademidea)
along with the corresponding tngction mnemonics.

* Table A-8 on page A-53 lists instruction lengths and opcodes for each applicable addressing
mode.

* Table A-9 on page A-60 lists instruction execution times, expressed in state times.

NOTE

The # symbol prefixes an immediate value in immediate addressing mode.
Chapter 4, “Programming Considerations,” describes the operand types and
addressing modes.

I A-1

8XC196NP, 80C196NU USER’'S MANUAL

Table A-1. Opcode Map (Left Half)

Opcode X0 x1 X2 X3 X4 x5 X6 X7
Ox SKIP CLR NOT NEG XCH DEC EXT INC
di
1x CLRB NOTB NEGB XCHB DECB EXTB INCB
di
SIMP
2x
JBC
3x
bit 0 | bit 1 | bit 2 | bit 3 bit 4 | bit 5 | bit 6 | bit 7
AND 3op ADD 3op
4x
di | im | in | ix di | im | in | ix
ANDB 3op ADDB 3op
5x
di | im | in | ix di | im | in | ix
AND 20p ADD 20p
6x
di | im | in | ix di | im | in | ix
ANDB 20p ADDB 20p
X
di | im | in | ix di | im | in | ix
OR XOR
8x
di | im | in | ix di | im | in | ix
ORB XORB
9x
di | im | in | ix di | im | in | ix
LD ADDC
Ax
di | im | in | ix di | im | in | ix
LDB ADDCB
Bx
di im in | ix di im in | ix
Cx ST BMOV ST STB CMPL STB
di in ix di in ix
Dx INST JNH JGT JNC INVT INV JGE INE
Ex DJINZ DJINZW TIIMP BR/EBR | EBMOVI EJMP LIMP
in
Fx RET ECALL PUSHF POPF PUSHA POPA IDLPD TRAP
NOTE: The first digit of the opcode is listed vertically, and the second digit is listed horizontally. The

A-2

related instruction mnemonic is shown at the intersection of the two digits. Shading indicates
reserved opcodes. If the CPU attempts to execute an unimplemented opcode, an interrupt
occurs. For more information, see “Unimplemented Opcode” on page 6-5.

INSTRUCTION SET REFERENCE

Table A-1. Opcode Map (Right Half)

Opcode X8 X9 XA XxB xC xD XE XF
Ox SHR SHL SHRA XCH SHRL SHLL SHRAL NORML
iX
1x SHRB SHLB SHRAB XCHB EST EST ESTB ESTB
iX in ix in iX
ox SCALL
3x) . . . IBS .) . .
bit 0 bit 1 | bit 2 bit 3 bit 4 | bit 5 | bit 6 bit 7
ax SUB 3op MULU 3op (Note 2)
di im | i ix di | im in ix
5x SUBB 3op MULUB 3op (Note 2)
di im in ix di im in ix
6x SUB 20p MULU 2o0p (Note 2)
di im | i ix di | im | i ix
7% SUBB 20p MULUB 20p (Note 2)
di im | i ix di | im in ix
8x CMP DIVU (Note 2)
di im | i ix di | im in ix
ox CMPB DIVUB (Note 2)
di im | i ix di | im | i ix
SUBC LDBZE
Ax ' . . .
di im | in ix di | im | in ix
SUBCB LDBSE
Bx . ' . . ' . . .
di im | in ix di im in ix
Cx PUSH POP BMOVI POP
di im in ix di in ix
Dx JST JH JLE JC JVT Y JLT JE
Ex ELD ELD ELDB ELDB DPTS EPTS (Note 1) LCALL
in ix in iX
CLRC SETC DI El CLRVT NOP signed RST
Fx MUL/DIV
(Note 2)
NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.
2. Signed multiplication and division are two-byte instructions. The first byte is “FE” and the second is the
opcode of the corresponding unsigned instruction.

A-3

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table A-2. Processor Status Word (PSW) Flags

Mnemonic Description

C The carry flag is set to indicate an arithmetic carry from the MSB of the ALU or the state of
the last bit shifted out of an operand. If a subtraction operation generates a borrow, the carry
flag is cleared.

C Value of Bits Shifted Off
0 <% LSB
1 > LSB

Normally, the result is rounded up if the carry flag is set. The sticky bit flag allows a finer
resolution in the rounding decision.

C ST Value of Bits Shifted Off

00 =0
01 >0and <% LSB
10 =% LSB
11 > LSBand <1LSB
N The negative flag is set to indicate that the result of an operation is negative. The flag is

correct even if an overflow occurs. For all shift operations and the NORML instruction, the
flag is set to equal the most-significant bit of the result, even if the shift count is zero.

ST The sticky bit flag is set to indicate that, during a right shift, a “1” has been shifted into the
carry flag and then shifted out. This bit is undefined after a multiply operation. The sticky bit
flag can be used with the carry flag to allow finer resolution in rounding decisions. See the
description of the carry (C) flag for details.

\% The overflow flag is set to indicate that the result of an operation is too large to be
represented correctly in the available space.

For shift operations, the flag is set if the most-significant bit of the operand changes during
the shift. For divide operations, the quotient is stored in the low-order half of the destination
operand and the remainder is stored in the high-order half. The overflow flag is set if the
quotient is outside the range for the low-order half of the destination operand. (Chapter 4,
“Programming Considerations,” defines the operands and possible values for each.)

Instruction Quotient Stored in: V Flag Set if Quotient is:

DIVB Short-Integer <-128 or > +127 (< 81H or > 7FH)
DIV Integer <-32768 or > +32767 (< 8001H or > 7FFFH)
DIVUB Byte > 255 (FFH)
DIVU Word > 65535 (FFFFH)
VT The overflow-trap flag is set when the overflow flag is set, but it is cleared only by the CLRVT,

JVT, and JNVT instructions. This allows testing for a possible overflow at the end of a
sequence of related arithmetic operations, which is generally more efficient than testing the
overflow flag after each operation.

4 The zero flag is set to indicate that the result of an operation was zero. For multiple-precision
calculations, the zero flag cannot be set by the instructions that use the carry bit from the
previous calculation (e.g., ADDC, SUBC). However, these instructions can clear the zero
flag. This ensures that the zero flag will reflect the result of the entire operation, not just the
last calculation. For example, if the result of adding together the lower words of two double
words is zero, the zero flag would be set. When the upper words are added together using
the ADDC instruction, the flag remains set if the result is zero and is cleared if the result is not
zero.

A-4

intel.

Table A-3 shows the effect of the PSW flags or a specified condition on conditional jump instruc-
tions. Table A-4 defines the symbols used in Table A-6 to show the effect of each instruction on

the PSW flags.

INSTRUCTION SET REFERENCE

Table A-3. Effect of PSW Flags or Specified Conditions on Conditional Jump Instructions

Instruction Jumps to Destination if Continues if
DJNZ decremented byte # 0 decremented byte =0
DINZW decremented word # 0 decremented word = 0
JBC specified register bit = 0 specified register bit = 1
JBS specified register bit = 1 specified register bit = 0
JNC C=0 C=1
JNH C=00RZ=1 C=1ANDZ=0
JC C=1 C=0
JH C=1ANDZ=0 C=00RZ=1
JGE N=0 N=1
JGT N=0ANDZ=0 N=10RZ=1
JLT N=1 N=0
JLE N=10RZ=1 N=0ANDZ =0
JNST ST=0 ST=1
JST ST=1 ST=0
JINV V=0 V=1
JV V=1 V=0
INVT VT =0 VT =1 (clears VT)
JVT VT =1 (clears VT) VT =0
JNE Z=0 Z=1
JE Z=1 Z=0

Table A-4. PSW Flag Setting Symbols
Symbol Description

0 The instruction sets or clears the flag, as appropriate.

— The instruction does not modify the flag.

1 The instruction may clear the flag, if it is appropriate, but cannot set it.

1 The instruction may set the flag, if it is appropriate, but cannot clear it.

1 The instruction sets the flag.

0 The instruction clears the flag.

? The instruction leaves the flag in an indeterminate state.

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table A-5 defines the variables that are used in Table A-6 to represent the instruction operands.

Table A-5. Operand Variables

Variable Description

aa A 2-bit field within an opcode that selects the basic addressing mode used. This field is present
only in those opcodes that allow addressing mode options. The field is encoded as follows:

00 register-direct 01 immediate 10 indirect 11 indexed

baop A byte operand that is addressed by any addressing mode.

bbb A 3-bit field within an opcode that selects a specific bit within a register.

bitno A 3-bit field within an opcode that selects one of the eight bits in a byte.

breg A byte register in the internal register file. When it could be unclear whether this variable refers

to a source or a destination register, it is prefixed with an Sor a D. The value must be in the
range of 00—FFH.

cadd An address in the program code.

Dbregt A byte register in the lower register file that serves as the destination of the instruction
operation.

disp Displacement. The distance between the end of an instruction and the target label.

Diregt A 32-bit register in the lower register file that serves as the destination of the instruction

operation. Must be aligned on an address that is evenly divisible by 4. The value must be in the
range of 00—FCH.

Dwregt A word register in the lower register file that serves as the destination of the instruction
operation. Must be aligned on an address that is evenly divisible by 2. The value must be in the
range of 00—FEH.

Ireg A 32-bit register in the lower register file. Must be aligned on an address that is evenly divisible
by 4. The value must be in the range of 00—FCH.

ptr2_reg | A double-pointer register, used with the EBMOVI instruction. Must be aligned on an address
that is evenly divisible by 8. The value must be in the range of 00—F8H.

preg A pointer register. Must be aligned on an address that is evenly divisible by 4. The value must
be in the range of 00—FCH.

Sbreg’ A byte register in the lower register file that serves as the source of the instruction operation.

Slreg’ A 32-bit register in the lower register file that serves as the source of the instruction operation.
Must be aligned on an address that is evenly divisible by 4. The value must be in the range of
00—FCH.

Swregt A word register in the lower register file that serves as the source of the instruction operation.
Must be aligned on an address that is evenly divisible by 2. The value must be in the range of

00—FEH.

treg A 24-bit register in the lower register file. Must be aligned on an address that is evenly divisible
by 4. The value must be in the range of 00—FCH.

waop A word operand that is addressed by any addressing mode.

w2_reg A double-word register in the lower register file. Must be aligned on an address that is evenly
divisible by 4. The value must be in the range of 00—FCH. Although w2_reg is similar to Ireg,
there is a distinction: w2_reg consists of two halves, each containing a 16-bit address; Ireg is
indivisible and contains a 32-bit number.

wreg A word register in the lower register file. When it could be unclear whether this variable refers
to a source or a destination register, it is prefixed with an Sor a D. Must be aligned on an
address that is evenly divisible by 2. The value must be in the range of 00—FEH.

XXX The three high-order bits of displacement.

TThe D or S prefix is used only when it could be unclear whether a variable refers to a destination or a
source register.

A-6

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set
Mnemonic Operation Instruction Format
ADD ADD WORDS. Adds the source and DEST, SRC
(2 operands) | destination word operands and stores the ADD wreg, waop

sum into the destination operand.
(DEST) « (DEST) + (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 T =

(011001aa) (waop) (wreg)

ADD
(3 operands)

ADD WORDS. Adds the two source word
operands and stores the sum into the
destination operand.

(DEST) « (SRC1) + (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0| 0|0 e

DEST, SRC1, SRC2
ADD Dwreg, Swreg, waop
(010001aa) (waop) (Swreg) (Dwreg)

ADDB
(2 operands)

ADD BYTES. Adds the source and
destination byte operands and stores the sum
into the destination operand.

(DEST) « (DEST) + (SRC)

PSW Flag Settings
Z | N| C |V |VT|ST
Oo|o0|0|0 T —

DEST, SRC
ADDB breg, baop
(011101aa) (baop) (breg)

ADDB
(3 operands)

ADD BYTES. Adds the two source byte
operands and stores the sum into the
destination operand.

(DEST) « (SRC1) + (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0|0|0 T —

DEST, SRC1, SRC2
ADDB Dbreg, Sbreg, baop
(010101aa) (baop) (Sbreg) (Dbreg)

ADDC

ADD WORDS WITH CARRY. Adds the
source and destination word operands and
the carry flag (0 or 1) and stores the sum into
the destination operand.

(DEST) « (DEST) + (SRC) +C

PSW Flag Settings
Z | N|C |V |VT|ST
! Oo|0|0 T —

DEST, SRC
ADDC wreg, waop
(101001aa) (waop) (wreg)

A-7

8XC196NP, 80C196NU USER’'S MANUAL In

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format

ADDCB ADD BYTES WITH CARRY. Adds the source DEST, SRC
and destination byte operands and the carry | AppcB breg, baop

flag (O or 1) and stores the sum into the
destination operand. (101101aa) (baop) (breg)

(DEST) « (DEST) + (SRC) +C

PSW Flag Settings
Z | N| C |V |VT|ST
! Oo|0|0 T —

AND LOGICAL AND WORDS. ANDs the source DEST, SRC
(2 operands) | and destiqation word qper_ands and stores AND wreg, waop
the result into the destination operand. The
result has ones in only the bit positions in (011000aa) (waop) (wreg)

which both operands had a “1” and zeros in
all other bit positions.

(DEST) « (DEST) AND (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

AND LOGICAL AND WORDS. ANDs the two DEST, SRC1, SRC2
(3 operands) source Word_opt_erands and stores the result | AND Dwreg, Swreg, waop

into the destination operand. The result has
ones in only the hit positions in which both (010000aa) (waop) (Swreg) (Dwreg)
operands had a “1” and zeros in all other bit
positions.

(DEST) « (SRC1) AND (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

ANDB LOGICAL AND BYTES. ANDs the source DEST, SRC

(2 operands) | and d(-;stination byFe operands and storesthe | ANDB breg, baop
result into the destination operand. The result

has ones in only the bit positions in which (011100aa) (baop) (breg)

both operands had a “1” and zeros in all other

bit positions.

(DEST) « (DEST) AND (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

A-8

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

ANDB
(3 operands)

LOGICAL AND BYTES. ANDs the two source
byte operands and stores the result into the
destination operand. The result has ones in
only the bit positions in which both operands
had a “1” and zeros in all other bit positions.

(DEST) « (SRC1) AND (SRC2)

PSW Flag Settings
Z | N| C |V |VT|ST
O |0 0 0| — | —

DEST, SRC1, SRC2
ANDB Dbreg, Sbreg, baop
(010100aa) (baop) (Sbreg) (Dbreg)

BMOV

BLOCK MOVE. Moves a block of word data
from one location in memory to another. The
source and destination addresses are
calculated using the indirect with autoin-
crement addressing mode. A long register
(PTRS) addresses the source and destination
pointers, which are stored in adjacent word
registers. The source pointer (SRCPTR) is
the low word and the destination pointer
(DSTPTR) is the high word of PTRS. A word
register (CNTREG) specifies the number of
transfers. The blocks of data can be located
anywhere in page O0H of register RAM, but
should not overlap. Because the source
(SRCPTR) and destination (DSTPTR)
pointers are 16 bits wide, this instruction uses
nonextended data moves. It cannot operate
across page boundaries. For example,
SRCPTR cannot point to a location on page
05 while DSTPTR points to page 00.
SRCPTR and DSTPTR will operate from the
page defined by EP_REG. EP_REG should
be set to 00H to select page O0H (see
“Accessing Data” on page 5-23). (The
80C196NU forces EP_REG to 00H.)
COUNT < (CNTREG)

LOOP: SRCPTR « (PTRS)

DSTPTR « (PTRS +2)

(DSTPTR) « (SRCPTR)

(PTRS) « SRCPTR +2

(PTRS +2) « DSTPTR + 2

COUNT « COUNT -1

if COUNT # 0 then

goto LOOP

PSW Flag Settings
Z | N|C |V |VT|ST

PTRS, CNTREG
BMOV Ireg, wreg
(11000001) (wreg) (Ireg)

NOTE: The pointers are autoincre-
mented during this instruction.
However, CNTREG is not decre-
mented. Therefore, it is easy to
unintentionally create a long,
uninterruptible operation with the
BMOV instruction. Use the
BMOVI instruction for an interrupt-
ible operation.

A-9

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

BMOVI

INTERRUPTIBLE BLOCK MOVE. Moves a
block of word data from one location in
memory to another. The instruction is
identical to BMQV, except that BMOVI is
interruptible. The source and destination
addresses are calculated using the indirect
with autoincrement addressing mode. A long
register (PTRS) addresses the source and
destination pointers, which are stored in
adjacent word registers. The source pointer
(SRCPTR) is the low word and the
destination pointer (DSTPTR) is the high
word of PTRS. A word register (CNTREG)
specifies the number of transfers. The blocks
of data can be located anywhere in page 00H
of register RAM, but should not overlap.
Because the source (SRCPTR) and
destination (DSTPTR) pointers are 16 bits
wide, this instruction uses nonexteneded
data moves. It cannot operate across page
boundaries. (If you need to cross page
boundaries, use the EBMOVI instruction.)
PTSSRC and PTSDST will operate from the
page defined by EP_REG. EP_REG should
be set to 00H to select page O0H (see
“Accessing Data” on page 5-23). (The
80C196NU forces EP_REG to 00H.)

COUNT « (CNTREG)
LOOP: SRCPTR « (PTRS)
DSTPTR « (PTRS +2)
(DSTPTR) « (SRCPTR)
(PTRS) « SRCPTR +2
(PTRS +2) « DSTPTR + 2
COUNT « COUNT -1

if COUNT # 0 then

goto LOOP

PSW Flag Settings
Z | N|C |V |VT|ST

PTRS, CNTREG
BMOVI Ireg, wreg
(11001101) (wreg) (Ireg)

NOTE: The pointers are autoincre-
mented during this instruction.
However, CNTREG is decre-
mented only when the instruction
is interrupted. When BMOVI is
interrupted, CNTREG is updated
to store the interim word count at
the time of the interrupt. For this
reason, you should always reload
CNTREG before starting a
BMOVI.

BR

BRANCH INDIRECT. Continues execution at
the address specified in the operand word
register.

PC « (DEST)

PSW Flag Settings
Z | N| C |V |VT|ST

DEST
BR [wreg]
(11100011) (wreg)

NOTE: In 1-Mbyte mode, the BR instruc-
tion always branches to page
FFH. Use the EBR instruction to
branch to an address on any other

page.

A-10

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
CLR CLEAR WORD. Clears the value of the DEST
operand. CLR wreg
(DEST) < 0 (00000001) (wreg)
PSW Flag Settings
N | C |V |VT|ST
1 0 0 0| — | —
CLRB CLEAR BYTE. Clears the value of the DEST
operand. CLRB breg
(DEST) < 0 (00010001) (breg)
PSW Flag Settings
N | C |V |VT|ST
1 0 0 0| — | —
CLRC CLEAR CARRY FLAG. Clears the carry flag.
C~0 CLRC
(11111000)
PSW Flag Settings
z N | C |V |VT|ST
J— J— 0 J— J— J—
CLRVT CLEAR OVERFLOW-TRAP FLAG. Clears
the overflow-trap flag. CLRVT
VT <0 (11111100)
PSW Flag Settings
z N | C |V |VT|ST
— | — | = | — 0 —
CMP COMPARE WORDS. Subtracts the source DEST, SRC
word operand from the destination word CMP wreg, waop

operand. The flags are altered, but the
operands remain unaffected. If a borrow
occurs, the carry flag is cleared; otherwise, it
is set.

(DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|0| 0|0 I

(100010aa) (waop) (wreg)

A-11

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

(DEST) « (DEST) -1

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0|0|0 T —

Mnemonic Operation Instruction Format

CMPB COMPARE BYTES. Subtracts the source DEST, SRC
byte operand from the destination byte CMPB breg, baop
operand. The flags are altered, but the '
operands remain unaffected. If a borrow (100110aa) (baop) (breg)
occurs, the carry flag is cleared; otherwise, it
is set.

(DEST) - (SRC)
PSW Flag Settings
z N | C |V |VT|ST
0o |0 Ol 0 T —

CMPL COMPARE LONG. Compares the DEST, SRC
magnitudes of two double-word (long) CMPL Dlreg, Slreg
operands. The operands are specified using '
the direct addressing mode. The flags are (11000101) (Slreg) (Dlreg)
altered, but the operands remain unaffected.

If a borrow occurs, the carry flag is cleared,;
otherwise, it is set.
(DEST) - (SRC)
PSW Flag Settings
z N | C |V |VT|ST
O |0 O |0 0o | —

DEC DECREMENT WORD. Decrements the value DEST
of the operand by one. DEC wreg
(DEST) « (DEST) -1 (00000101) (wreg)

PSW Flag Settings
Z N | C |V |VT|ST
Oo| 0 Ol 0O T —

DECB DECREMENT BYTE. Decrements the value DEST

of the operand by one. DECB breg

(00010101) (breg)

A-12

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DI

DISABLE INTERRUPTS. Disables
interrupts. Interrupt calls cannot occur after
this instruction.

Interrupt Enable (PSW.1) « 0

PSW Flag Settings
Z | N|C |V |VT|ST

DI
(11111010)

DIV

DIVIDE INTEGERS. Divides the contents of
the destination long-integer operand by the
contents of the source integer word operand,
using signed arithmetic. It stores the quotient
into the low-order word of the destination
(i.e., the word with the lower address) and the
remainder into the high-order word. The
following two statements are performed
concurrently.

(low word DEST) « (DEST) /(SRC)
(high word DEST) — (DEST) MOD (SRC)

PSW Flag Settings
z N | C |V |VT]|ST
J— J— J— O 1 J—

DEST, SRC
DIV Ireg, waop
(11111110) (100011aa) (waop) (Ireg)

DIVB

DIVIDE SHORT-INTEGERS. Divides the
contents of the destination integer operand
by the contents of the source short-integer
operand, using signed arithmetic. It stores the
quotient into the low-order byte of the
destination (i.e., the word with the lower
address) and the remainder into the high-
order byte. The following two statements are
performed concurrently.

(low byte DEST) « (DEST)/ (SRC)
(high byte DEST) « (DEST) MOD (SRC)

PSW Flag Settings
z N | C | V |VT]|ST
J— J— J— O 1 J—

DEST, SRC
DIVB wreg, baop
(11111110) (100111aa) (baop) (wreg)

A-13

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DIVU

DIVIDE WORDS, UNSIGNED. Divides the
contents of the destination double-word
operand by the contents of the source word
operand, using unsigned arithmetic. It stores
the quotient into the low-order word (i.e., the
word with the lower address) of the
destination operand and the remainder into
the high-order word. The following two
statements are performed concurrently.

(low word DEST) « (DEST) / (SRC)
(high word DEST) — (DEST) MOD (SRC)

PSW Flag Settings
z N | C | V |VT|ST
J— J— J— O 1 J—

DEST, SRC
DIVU Ireg, waop
(100011aa) (waop) (Ireg)

DIVUB

DIVIDE BYTES, UNSIGNED. This instruction
divides the contents of the destination word
operand by the contents of the source byte
operand, using unsigned arithmetic. It stores
the quotient into the low-order byte (i.e., the
byte with the lower address) of the
destination operand and the remainder into
the high-order byte. The following two
statements are performed concurrently.

(low byte DEST) « (DEST)/ (SRC)
(high byte DEST) « (DEST) MOD (SRC)

PSW Flag Settings
z N | C |V |VT]|ST
J— J— J— O 1 J—

DEST, SRC
DIVUB wreg, baop
(100111aa) (baop) (wreg)

DJNZ

DECREMENT AND JUMP IF NOT ZERO.
Decrements the value of the byte operand by
1. If the result is 0, control passes to the next
sequential instruction. If the result is not 0,
the instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.
(COUNT) « (COUNT) -1
if (COUNT) # 0 then

PC — PC + 8-bitdisp
end_if

PSW Flag Settings
Z | N| C |V |VT|ST

DJNZ breg,cadd
(11200000) (breg) (disp)

NOTE: The displacement (disp) is sign-

extended to 24 bits.

A-14

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

DINZW

DECREMENT AND JUMP IF NOT ZERO
WORD. Decrements the value of the word
operand by 1. If the result is 0, control passes
to the next sequential instruction. If the result
is not O, the instruction adds to the program
counter the offset between the end of this
instruction and the target label, effecting the
jump. The offset must be in the range of —-128
to +127
(COUNT) « (COUNT) -1
if (COUNT) # 0 then

PC — PC + 8-bitdisp
end_if

PSW Flag Settings
Z | N|C |V |VT|ST

DIJNZW wreg,cadd
(11100001) (wreg) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits

DPTS

DISABLE PERIPHERAL TRANSACTION
SERVER (PTS). Disables the peripheral
transaction server (PTS).

PTS Disable (PSW.2) « 0

PSW Flag Settings
Z | N|C |V |VT|ST

DPTS
(11101100)

A-15

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

EBR shares its opcode (E3) with the BR
instruction. To differentiate between the two,
the compiler sets the least-significant bit of
the EBR instruction. For example: EBR [50]
becomes E351 when compiled.

PC « (DEST)

PSW Flag Settings
Z | N|C |V |VT|ST

Mnemonic Operation Instruction Format

EBMOVI EXTENDED INTERRUPTABLE BLOCK PTRS, CNTREG
MOVE. Moves a block of word data from one | egpmovi pri2_reg, wreg
memory location to another. This instruction -
allows you to move blocks of up to 64K words | (11100100) (wreg) (prt2_reg)
between any two locations in the 16-Mbyte
address space. This instruction is inter- NOTES: The pointers are autoincre-
ruptable. mented during this instruction.
The source and destination addresses are However, CNTREG is decre-
calculated using the extended indirect with mented only when the instruc-
autoincrement addressing mode. A quad- tion is interrupted. When
word register (PTRS) addresses the 24-bit EBMOVI is interrupted,
source and destination pointers, which are CNTREG is updated to store
stored in adjacent double-word registers. The the interim word count at the
source pointer (SRCPTR) is the low double- time of the interrupt. For this
word and the destination pointer is the high reason, you should always
double-word of PTRS. A word register reload CNTREG before starting
(CNTREG) specifies the number of transfers. an EBMOVI.
The blocks of data can reside anywhere in
memory, but should not overlap. For 20-bit addresses, the offset
COUNT < (CNTREG) must be in the range of
LOOP: SRCPTR « (PTRS) 524287 10 ~524288.
DSTPTR « (PTRS +2)
(DSTPTR) « (SRCPTR)
(PTRS) « SRCPTR +2
(PTRS +2) « DSTPTR + 2
COUNT « COUNT 1
if COUNT # 0 then
goto LOOP

PSW Flag Settings
Z | N|C |V |VT|ST

EBR EXTENDED BRANCH INDIRECT. Continues DEST
execution at the address specified in the EBR cadd
operand word register. This instruction is an
unconditional indirect jump to anywhere in or
the 16-Mbyte address space. EBR [treq]

(11100011) (treg)

NOTE:

For 20-bit addresses, the offset
must be in the range of +524287
to —524288.

A-16

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

ECALL

EXTENDED CALL. Pushes the contents of
the program counter (the return address)
onto the stack, then adds to the program
counter the offset between the end of this
instruction and the target label, effecting the
call. The operand may be any address in the
address space.

This instruction is an unconditional relative
call to anywhere in the 16-Mbyte address
space. It functions only in extended
addressing mode.

SP ~ SP-4
(SP) « PC
PC — PC + 24-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

ECALL cadd
(1111 0001) (disp-low) (disp-high) (disp-ext)

NOTE: For 20-bit addresses, the offset

must be in the range of +524287
to —524288.

El

ENABLE INTERRUPTS. Enables interrupts

following the execution of the next statement.

Interrupt calls cannot occur immediately
following this instruction.

Interrupt Enable (PSW.1) « 1

PSW Flag Settings
Z | N|C |V |VT|ST

El
(11111011)

EJMP

EXTENDED JUMP. Adds to the program
counter the offset between the end of this
instruction and the target label, effecting the
jump. The operand may be any address in
the entire address space. The offset must be
in the range of +8,388,607 to —8,388,608 for
24-bit addresses.

This instruction is an unconditional, relative
jump to anywhere in the 16-Mbyte address
space. It functions only in extended
addressing mode.

PC —PC + 24-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

— =] =]=]=1n>

EJMP cadd
(11100110) (disp-low) (disp-high) (disp-ext)

NOTE: For 20-bit addresses, the offset
must be in the range of +524287

to —524288.

A-17

8XC196NP, 80C196NU USER’'S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
ELD EXTENDED LOAD WORD. Loads the value DEST, SRC
of the source word operand into the ELD wreg, [treg]
destination operand. -
. . ext. indirect: (11101000) (treg) (wreg)
This instruction allows you to move data from .)
anywhere in the 16-Mbyte address space into | Xt indexed: (11101001) (treg) (disp-low)
the lower register file. (disp-high) (disp-ext) (wreg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20—b|_t addresses, the offset
must be in the range of +524287
PSW Flag Settings o ~524288.
Z | N|C |V |VT|ST
ELDB EXTENDED LOAD BYTE. Loads the value of DEST, SRC
}Jheefaor?(gce byte operand into the destination | g| pg breg, [treg]
p. o ext. indirect: (11101010) (treg) (breg)
This instruction allows you to move data from .)
anywhere in the 16-Mbyte address space into | &Xt: indexed: (11101011) (treg) (disp-low)
the lower register file. (disp-high) (disp-ext) (breg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20-bit addresses, the offset
must be in the range of +524287
PSW Flag Settings to ~524288.
Z | N|C |V |VT|ST
EPTS ENABLE PERIPHERAL TRANSACTION
SERVER (PTS). Enables the peripheral EPTS
transaction server (PTS).
(11101101)
PTS Enable (PSW.2) « 1
PSW Flag Settings
Z | N|C |V |VT|ST

A-18

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
EST EXTENDED STORE WORD. Stores the SRC, DEST
yalue of the source (Igftmost) word operand | g7 wreg, [treg]
into the destination (rightmost) operand. -
. . ext. indirect: (00011100) (treg) (wreg)
This instruction allows you to move data from .))
the lower register file to anywhere in the 16- | €xt- indexed: (00011101) (treg) (disp-low)
Mbyte address space. (disp-high) (disp-ext) (wreg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20—b|_t addresses, the offset
must be in the range of +524287
PSW Flag Settings t0 ~524288.
Z | N|C |V |VT|ST
ESTB EXTENDED STORE BYTE. Stores the value SRC, DEST
of the source (Ief_tmost) byte operand into ESTB breg, [treg]
the destination (rightmost) operand. L
. . ext. indirect: (00011110) (treg) (breg)
This instruction allows you to move data from .) .
the lower register file to anywhere in the 16- | Xt indexed: (00011111) (treg) (disp-low)
Mbyte address space. (disp-high) (disp-ext) (breg)
ext. indirect: (DEST) « (SRC)
ext indexed: (DEST) — (SRC) + 24-bit disp NOTE: For 20-bit addresses, the offset
must be in the range of +524287
PSW Flag Settings to ~524288.
Z | N|C |V |VT|ST
EXT SIGN-EXTEND INTEGER INTO LONG-
INTEGER. Sign-extends the low-order word | gy Ireg

of the operand throughout the high-order
word of the operand.

if DEST.15 = 1 then

(high word DEST) « OFFFFH
else

(high word DEST) « 0O
end_if

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

(00000110) (Ireg)

A-19

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

value of the KEY operand, this instruction
causes the device

to enter idle mode, KEY=1,

to enter powerdown mode, KEY=2,

to enter standby mode, KEY=3, (NU only)
to execute a reset sequence,

KEY = any value other than 1 or 2 (NP)
or1, 2, or 3 (NU).

The bus controller completes any prefetch
cycle in progress before the CPU stops or
resets.

if KEY = 1 then
enter idle
else if KEY = 2 then
enter powerdown
else if KEY = 3 then
enter standby (NU only)
else
execute reset

PSW Flag Settings
z[N|c|v][vr]sT
KEY =1 or 2 (NP)
orl, 2, or3(NU)

KEY = any value other than
1or2(NP)or1,2,or3(NU)

Mnemonic Operation Instruction Format
EXTB SIGN-EXTEND SHORT-INTEGER INTO
INTEGER. Sign-extends the low-order byte EXTB wreg
of the operand throughout the high-order byte
of the operand. (00010110) (wreg)
if DEST.7 =1then
(high byte DEST) « OFFH
else
(high byte DEST) « 0
end_if
PSW Flag Settings
Z N | C |V |VT|ST
Oo| 0 0 0| — | —
IDLPD IDLE/POWERDOWN. Depending on the 8-bit

IDLPD #key
(11110110) (key)

A-20

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

INC

INCREMENT WORD. Increments the value
of the word operand by 1.

(DEST) « (DEST)+1

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0|0|0 1 0

INC wreg
(00000111) (wreg)

INCB

INCREMENT BYTE. Increments the value of
the byte operand by 1.

(DEST) « (DEST)+1

PSW Flag Settings
Z | N| C |V |VT|ST
Oo|o0| 0|0 T =

INCB breg
(00010111) (breg)

JBC

JUMP IF BIT IS CLEAR. Tests the specified
bit. If the bit is set, control passes to the next
sequential instruction. If the bit is clear, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in the range of —128 to +127.
if (specified bit) = 0 then

PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |[VT|ST

JBC breg,bitno,cadd
(00110bbb) (breg) (disp)

NOTE: The displacement (disp) is sign-

extended to 24 bits.

JBS

JUMP IF BIT IS SET. Tests the specified bit. If
the bit is clear, control passes to the next
sequential instruction. If the bit is set, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in the range of —-128 to +127.
if (specified bit) = 1 then

PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JBS breg,bitno,cadd
(00111bbb) (breg) (disp)

NOTE: The displacement (disp) is sign-

extended to 24 bits.

A-21

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
JC JUMP IF CARRY FLAG IS SET. Tests the
carry flag. If the carry flag is clear, control ic cadd
passes to the next sequential instruction. If)
the carry flag is set, this instruction adds to (11011011) (disp)
the program counter the offset between the
end of this instruction and the target label, NOTE: The displacement (disp) is sign-
effecting the jump. The offset must be in the extended to 24 bits.
range of —128 to +127.
if C=1then
PC — PC + 8-bitdisp
PSW Flag Settings
Z N | C |V |VT|ST
JE JUMP IF EQUAL. Tests the zero flag. If the
flag is clear, control passes to the next JE cadd
sequential instruction. If the zero flag is set,)
this instruction adds to the program counter | (11011111) (disp)
the offset between the end of this instruction
and the target label, effecting the jump. The NOTE: The displacement (disp) is sign-
offset must be in the range of —128 to +127. extended to 24 bits.
if Z=1 then
PC — PC + 8-bitdisp
PSW Flag Settings
z N | C |V |VT|ST
JGE JUMP IF SIGNED GREATER THAN OR
EQUAL. Tests the negative flag. If the JGE cadd
negative flag is set, control passes to the next)
sequential instruction. If the negative flag is | (11010110) (disp)
clear, this instruction adds to the program
counter the offset between the end of this NOTE: The displacement (disp) is sign-
instruction and the target label, effecting the extended to 24 bits.
jump. The offset must be in the range of —-128
to +127.
if N =0 then
PC — PC + 8-bitdisp
PSW Flag Settings
z N | C |V |VT|ST

A-22

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JGT

JUMP IF SIGNED GREATER THAN. Tests
both the zero flag and the negative flag. If
either flag is set, control passes to the next
sequential instruction. If both flags are clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if N=0AND Z = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JGT cadd
(11010010) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JH

JUMP IF HIGHER (UNSIGNED). Tests both
the zero flag and the carry flag. If either the
carry flag is clear or the zero flag is set,
control passes to the next sequential
instruction. If the carry flag is set and the zero
flag is clear, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if C=1AND Z = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JH cadd
(11011001) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JLE

JUMP IF SIGNED LESS THAN OR EQUAL.
Tests both the negative flag and the zero flag.
If both flags are clear, control passes to the
next sequential instruction. If either flag is set,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if N=10RZ=1then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |VT|ST

JLE cadd
(11011010) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-23

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JLT

JUMP IF SIGNED LESS THAN. Tests the
negative flag. If the flag is clear, control
passes to the next sequential instruction. If
the negative flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in the
range of —-128 to +127.

if N=1then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JLT cadd
(11011110) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNC

JUMP IF CARRY FLAG IS CLEAR. Tests the
carry flag. If the flag is set, control passes to
the next sequential instruction. If the carry
flag is clear, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in the
range of =128 to +127.

if C=0then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JNC cadd
(11010011) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JNE

JUMP IF NOT EQUAL. Tests the zero flag. If
the flag is set, control passes to the next
sequential instruction. If the zero flag is clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —128 to +127.

if Z=0then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

INE cadd
(11010111) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-24

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JNH

JUMP IF NOT HIGHER (UNSIGNED). Tests
both the zero flag and the carry flag. If the
carry flag is set and the zero flag is clear,
control passes to the next sequential
instruction. If either the carry flag is clear or
the zero flag is set, this instruction adds to the
program counter the offset between the end
of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if C=00ORZ =1 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

JNH cadd
(11010001) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JINST

JUMP IF STICKY BIT FLAG IS CLEAR. Tests
the sticky bit flag. If the flag is set, control
passes to the next sequential instruction. If
the sticky bit flag is clear, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if ST = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

INST cadd
(11010000) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

INV

JUMP IF OVERFLOW FLAG IS CLEAR.
Tests the overflow flag. If the flag is set,
control passes to the next sequential
instruction. If the overflow flag is clear, this
instruction adds to the program counter the
offset between the end of this instruction and
the target label, effecting the jump. The offset
must be in range of —-128 to +127.

if V.= 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |VT|ST

INV cadd
(11010101) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-25

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

JINVT

JUMP IF OVERFLOW-TRAP FLAG IS
CLEAR. Tests the overflow-trap flag. If the
flag is set, this instruction clears the flag and
passes control to the next sequential
instruction. If the overflow-trap flag is clear,
this instruction adds to the program counter
the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in range of —-128 to +127.

if VT = 0 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST
— | — | = | — 0 —

INVT cadd
(11010100) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

JST

JUMP IF STICKY BIT FLAG IS SET. Tests
the sticky bit flag. If the flag is clear, control
passes to the next sequential instruction. If
the sticky bit flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if ST = 1 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N| C |V |VT|ST

JST cadd
(11011000) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

N

JUMP IF OVERFLOW FLAG IS SET. Tests
the overflow flag. If the flag is clear, control
passes to the next sequential instruction. If
the overflow flag is set, this instruction adds
to the program counter the offset between the
end of this instruction and the target label,
effecting the jump. The offset must be in
range of —-128 to +127.

if V=1 then
PC — PC + 8-bitdisp

PSW Flag Settings
Z | N|C |V |VT|ST

Vv cadd
(11011101) (disp)

NOTE: The displacement (disp) is sign-
extended to 24 bits.

A-26

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
VT JUMP IF OVERFLOW-TRAP FLAG IS SET.
Tests the overflow-trap flag. If the flag is clear, | jyT cadd
control passes to the next sequential)
instruction. If the overflow-trap flag is set, this | (11011100) (disp)
instruction clears the flag and adds to the
program counter the offset betweenthe end | NOTE: The displacement (disp) is sign-
of this instruction and the target label, extended to 24 bits.
effecting the jump. The offset must be in
range of —-128 to +127.
if VT = 1 then
PC — PC + 8-bitdisp
PSW Flag Settings
Z N | C |V |VT|ST
— | — | = | — 0 —
LCALL LONG CALL. Pushes the contents of the
program counter (the return address) onto LCALL cadd
the stack, then adds to the program counter)))
the offset between the end of this instruction | (11101111) (disp-low) (disp-high)
and the target label, effecting the call. The
offset must be in the range of —-32,768 to NOTE: The displacement (disp) is sign-
+32,767. extended to 24 bits in the 1-Mbyte
64-Kbyte mode: addressing mode. This displace-
SP « SP-2 ment may cause the program
(SP) « PC counter to cross a page boundary.
PC — PC + 16-bit disp
1-Mbyte mode:
SP —~ SP-4
(SP) —~ PC
PC — PC + 24-bit disp
PSW Flag Settings
z N | C |V |VT|ST
LD LOAD WORD. Loads the value of the source DEST, SRC
word operand into the destination operand. LD wreg, waop

(DEST) « (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

(101000aa) (waop) (wreg)

A-27

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

the offset between the end of this instruction
and the target label, effecting the jump. The
offset must be in the range of —32,768 to
+32,767.

64-Kbyte mode:
PC — PC + 16-bit disp

1-Mbyte mode:
PC — PC + 24-bit disp

PSW Flag Settings
Z | N|C |V |VT|ST

— — — — — ?

Mnemonic Operation Instruction Format
LDB LOAD BYTE. Loads the value of the source DEST, SRC
byte operand into the destination operand. LDB breg, baop
(DEST) ~ (SRC) (101100aa) (baop) (breg)
PSW Flag Settings
z N | C |V |VT|ST
LDBSE LOAD BYTE SIGN-EXTENDED. Sign- DEST, SRC
extends the value of the source short- LDBSE wreg, baop
integer operand and loads it into the '
destination integer operand. (101111aa) (baop) (wreg)
(low byte DEST) « (SRC)
if DEST.15 = 1 then
(high word DEST) « OFFH
else
(high word DEST) « 0O
end_if
PSW Flag Settings
z N | C |V |VT|ST
LDBZE LOAD BYTE ZERO-EXTENDED. Zero- DEST, SRC
extends the value of the source byte operand | | pgzE wreg, baop
and loads it into the destination word '
operand. (101011aa) (baop) (wreg)
(low byte DEST) « (SRC)
(high byte DEST) « 0
PSW Flag Settings
z N | C |V |VT|ST
LIMP LONG JUMP. Adds to the program counter

LIMP cadd
(11100111) (disp-low) (disp-high)

NOTE: The displacement (disp) is sign-
extended to 24 bits in the 1-Mbyte
addressing mode. This displace-
ment may cause the program

counter to cross a page boundary.

A-28

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
MUL MULTIPLY INTEGERS. Multiplies the source DEST, SRC
(2 operands) | and destination integer operands, using MUL Ireg, waop

signed arithmetic, and stores the 32-bit result
into the destination long-integer operand.
The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— — — — — ?

(11111110) (011011aa) (waop) (Ireg)

MUL
(3 operands)

MULTIPLY INTEGERS. Multiplies the two
source integer operands, using signed
arithmetic, and stores the 32-bit result into
the destination long-integer operand. The
sticky bit flag is undefined after the instruction
is executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST

— =] =]=|=10>

DEST, SRC1, SRC2
MUL Ireg, wreg, waop
(11111110) (010011aa) (waop) (wreg) (Ireg)

NOTE: (8XC196NU only.) A destination
address in the range 00H-0FH
enables the multiply-accumulate
function. When set, bit 3 of the
destination address causes the
accumulator to be cleared before
the results of the multiply are
added to the contents of the accu-
mulator. For example, if the desti-
nation address is 08H, the
accumulator is cleared and then
the results of the multiply are
added. However, if the destination
address is 00H, the results of the
multiply are added to the current
contents of the accumulator.

MULB
(2 operands)

MULTIPLY SHORT-INTEGERS. Multiplies
the source and destination short-integer
operands, using signed arithmetic, and stores
the 16-bit result into the destination integer
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |[VT|ST

— | =] =]=|=1>

DEST, SRC
MULB wreg, baop
(11111110) (011111aa) (baop) (wreg)

A-29

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
MULB MULTIPLY SHORT-INTEGERS. Multiplies DEST, SRC1, SRC2
(3 operands) | the two source short-integer operands, MULB wreg, breg, baop

using signed arithmetic, and stores the 16-bit
result into the destination integer operand.
The sticky bit flag is undefined after the
instruction is executed.

(DEST) « (SRC1) x (SRC2)

(11111110) (010111aa) (baop) (breg) (wreg)

PSW Flag Settings
Z | N|C |V |VT|ST

— = =]l =]=12
MULU MULTIPLY WORDS, UNSIGNED. Multiplies DEST, SRC
(2 operands) | the source and destination word operands, MULU lIreg, waop

using unsigned arithmetic, and stores the 32-
bit result into the destination double-word
operand. The sticky bit flag is undefined after
the instruction is executed.

(DEST) « (DEST) x (SRC)

(011011aa) (waop) (Ireg)

PSW Flag Settings
Z | N|C |V |VT|ST

— | — =] —]—172?
MULU MULTIPLY WORDS, UNSIGNED. Multiplies DEST, SRC1, SRC2
(3 operands) | the two source word operands, using MULU lIreg, wreg, waop

unsigned arithmetic, and stores the 32-bit
result into the destination double-word
operand. The sticky bit flag is undefined after

(010011aa) (waop) (wreg) (Ireg)

the instruction is executed. NOTE: (8XC196NU only.) A destination
(DEST) « (SRC1) x (SRC2) address in the range 00H—-0FH
enables the multiply-accumulate
PSW Flag Settings function. When set, bit 3 of the

destination address causes the

Z N Cc V | VT | ST accumulator to be cleared before
— | === —=172 the results of the multiply are
added to the contents of the accu-
mulator. For example, if the desti-
nation address is 08H, the
accumulator is cleared and then
the results of the multiply are
added. However, if the destination
address is 00H, the results of the
multiply are added to the current
contents of the accumulator.

A-30

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

MULUB
(2 operands)

MULTIPLY BYTES, UNSIGNED. Multiplies
the source and destination operands, using
unsigned arithmetic, and stores the word
result into the destination operand. The sticky
bit flag is undefined after the instruction is
executed.

(DEST) « (DEST) x (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

— — — — — ?

DEST, SRC
MULUB wreg, baop
(011111aa) (baop) (wreg)

MULUB
(3 operands)

MULTIPLY BYTES, UNSIGNED. Multiplies
the two source byte operands, using
unsigned arithmetic, and stores the word
result into the destination operand. The sticky
bit flag is undefined after the instruction is
executed.

(DEST) « (SRC1) x (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST

DEST, SRC1, SRC2
MULUB wreg, breg, baop
(010111aa) (baop) (breg) (wreg)

passes to the next sequential instruction.

PSW Flag Settings
Z | N| C |V |VT|ST

— = =]l =]=1-2
NEG NEGATE INTEGER. Negates the value of the
integer operand. NEG wreg
(DEST) « —(DEST) (00000011) (wreg)
PSW Flag Settings
Z | N|C |V |VT|ST
O|0 |00 T —
NEGB NEGATE SHORT-INTEGER. Negates the
value of the short-integer operand. NEGB breg
(DEST) ~ - (DEST) (00010011) (breg)
PSW Flag Settings
Z | N| C |V |VT|ST
O|0 |00 e
NOP NO OPERATION. Does nothing. Control

NOP
(11111101)

A-31

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

NORML

NORMALIZE LONG-INTEGER. Normalizes
the source (leftmost) long-integer operand.
(That is, it shifts the operand to the left until
its most significant bit is “1” or until it has
performed 31 shifts). If the most significant
bit is still “0” after 31 shifts, the instruction
stops the process and sets the zero flag. The
instruction stores the actual number of shifts
performed in the destination (rightmost)
operand.

(COUNT) «~ 0
do while
(MSB (DEST) = 0) AND (COUNT) < 31)
(DEST) ~ (DEST) x 2
(COUNT) « (COUNT) +1
end_while

PSW Flag Settings
Z | N|C |V |VT|ST
0 ? 0| —|—|—

NORML

SRC, DEST
Ireg, breg

(00001111) (breg) (Ireg)

NOT

COMPLEMENT WORD. Complements the
value of the word operand (replaces each “1”
with a “0” and each “0” with a “1”).

(DEST) « NOT (DEST)

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

NOT

wreg

(00000010) (wreg)

NOTB

COMPLEMENT BYTE. Complements the
value of the byte operand (replaces each “1”
with a “0” and each “0” with a “1").

(DEST) « NOT (DEST)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo| 0 0 0| — | —

NOTB

breg

(00010010) (breg)

A-32

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

OR

LOGICAL OR WORDS. ORs the source word
operand with the destination word operand
and replaces the original destination operand
with the result. The result has a “1” in each bit
position in which either the source or
destination operand had a “1”.

(DEST) « (DEST) OR (SRC)

PSW Flag Settings
Z | N| C |V |VT|ST
Oo| 0 0 0| — | —

DEST, SRC
OR wreg, waop
(100000aa) (waop) (wreg)

ORB

LOGICAL OR BYTES. ORs the source byte
operand with the destination byte operand
and replaces the original destination operand
with the result. The result has a “1” in each bit
position in which either the source or
destination operand had a “1”.

(DEST) « (DEST) OR (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

DEST, SRC
ORB breg, baop
(100100aa) (baop) (breg)

POP

POP WORD. Pops the word on top of the
stack and places it at the destination
operand.

(DEST) ~ (SP)

SP «~ SP+2

PSW Flag Settings
Z | N | C |V |VT|ST

POP waop
(110011aa) (waop)

A-33

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

POPA

POP ALL. This instruction is used instead of
POPF, to support the eight additional
interrupts. It pops two words off the stack and
places the first word into the
INT_MASK1/WSR register pair and the
second word into the PSW/INT_MASK
register-pair. This instruction increments the
SP by 4. Interrupt calls cannot occur
immediately following this instruction.

INT_MASKL/WSR < (SP)
SP — SP+2
PSW/INT_MASK « (SP)
SP — SP+2

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0 (00|00

POPA
(11110101)

POPF

POP FLAGS. Pops the word on top of the
stack and places it into the PSW. Interrupt
calls cannot occur immediately following this
instruction.

(PSW) — (SP)

SP «~ SP+2

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0 (00|00

POPF
(11110011)

PUSH

PUSH WORD. Pushes the word operand
onto the stack.

SP « SP-2

(SP) — (DEST)

PSW Flag Settings
Z | N|C |V |VT|ST

PUSH waop
(110010aa) (waop)

A-34

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
PUSHA PUSH ALL. This instruction is used instead of
PUSHEF, to support the eight additional PUSHA
interrupts. It pushes two words —
PSW/INT_MASK and INT_MASK1/WSR — | (11110100)
onto the stack.
This instruction clears the PSW, INT_MASK,
and INT_MASK1 registers and decrements
the SP by 4. Interrupt calls cannot occur
immediately following this instruction.
SP «~ SP-2
(SP) « PSW/INT_MASK
PSW/INT_MASK « 0
SP « SP-2
(SP) « INT_MASK1/WSR
INT_MASK1 « 0
PSW Flag Settings
N | C |V |VT|ST
0 0 0 0 0 0
PUSHF PUSH FLAGS. Pushes the PSW onto the top
of the stack, then clears it. Clearing the PSW | pysyE
disables interrupt servicing. Interrupt calls
cannot occur immediately following this (11110010)
instruction.
SP «~ SP-2
(SP) « PSW/INT_MASK
PSW/INT_MASK « 0
PSW Flag Settings
z N | C |V |VT|ST
0 0 0 0 0 0
RET RETURN FROM SUBROUTINE. Pops the
PC off the top of the stack. RET
64-Kbyte mode: 1-Mbyte mode: (11110000)
PC — (SP) PC — (SP)
SP «~ SP+2 SP ~ SP+4

PSW Flag Settings
Z | N|C |V |VT|ST

A-35

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

RST

RESET SYSTEM. Initializes the PSW to zero,
the EPC/PC to FF2080H, and the pins and
SFRs to their reset values. Executing this
instruction causes the RESET# pin to be
pulled low for 16 state times.

SFR « Reset Status
Pin — Reset Status
PSW ~ 0

EPC/PC — FF2080H

PSW Flag Settings
Z | N|C |V |VT|ST
0 0 0 0 0 0

RST
(11111111)

SCALL

SHORT CALL. Pushes the contents of the
program counter (the return address) onto
the stack, then adds to the program counter
the offset between the end of this instruction
and the target label, effecting the call. The
offset must be in the range of —1024 to
+1023.

64-Kbyte mode:

SP «~ SP-2

(SP) « PC

PC — PC+11-bit disp
1-Mbyte mode:

SP ~ SP-4

(SP) « PC

PC — PC+11-bit disp

PSW Flag Settings
Z | N|C |V |[VT|ST

SCALL cadd
(00101xxx) (disp-low)

NOTE: The displacement (disp) is sign-
extended to 16-bits in the 64-
Kbyte addressing mode and to 24
bits in the 1-Mbyte addressing
mode. This displacement may
cause the program counter to
cross a page boundary in 1-Mbyte
mode.

SETC

SET CARRY FLAG. Sets the carry flag.
C«1

PSW Flag Settings
Z | N|C |V |VT|ST
— | — 1 — | — | =

SETC
(11111001)

A-36

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHL

SHIFT WORD LEFT. Shifts the destination
word operand to the left as many times as
specified by the count operand. The count
may be specified either as an immediate
value in the range of 0 to 15 (OFH), inclusive,
or as the content of any register (10H —
OFFH) with a value in the range of O to 31
(1FH), inclusive. The right bits of the result
are filled with zeros. The last bit shifted out is
saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « High order bit of (DEST)
(DEST) «~ (DEST) x 2
Temp « Temp -1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 e

SHL wreg,#count
(00001001) (count) (wreg)
or

SHL wreg,breg
(00001001) (breg) (wreg)

SHLB

SHIFT BYTE LEFT. Shifts the destination
byte operand to the left as many times as
specified by the count operand. The count
may be specified either as an immediate
value in the range of 0 to 15 (OFH), inclusive,
or as the content of any register (10H —
OFFH) with a value in the range of O to 31
(1FH), inclusive. The right bits of the result
are filled with zeros. The last bit shifted out is
saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « High order bit of (DEST)
(DEST) ~ (DEST) x 2
Temp « Temp -1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 e

SHLB breg,#count
(00011001) (count) (breg)
or

SHLB breg,breg

(00011001) (breg) (breg)

A-37

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

SHLL

SHIFT DOUBLE-WORD LEFT. Shifts the
destination double-word operand to the left
as many times as specified by the count
operand. The count may be specified either
as an immediate value in the range of 0 to 15
(OFH), inclusive, or as the content of any
register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The right
bits of the result are filled with zeros. The last
bit shifted out is saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « High order bit of (DEST)
(DEST) «~ (DEST) x 2
Temp « Temp -1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o0 | 0|0 e

SHLL Ireg,#count
(00001101) (count) (breg)
or

SHLL Ireg,breg
(00001101) (breg) (Ireg)

SHR

LOGICAL RIGHT SHIFT WORD. Shifts the
destination word operand to the right as
many times as specified by the count
operand. The count may be specified either
as an immediate value in the range of 0 to 15
(OFH), inclusive, or as the content of any
register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The left bits
of the result are filled with zeros. The last bit
shifted out is saved in the carry flag.

Temp «— (COUNT)
do while Temp # 0
C « Low order bit of (DEST)
(DEST) ~ (DEST)/2
Temp « Temp -1
end_while

PSW Flag Settings
Z | N|C |V |VT|ST
O o |o0j|o0|—|DO

SHR wreg,#count
(00001000) (count) (wreg)
or

SHR wreg,breg

(00001000) (breg) (wreg)

NOTES: This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-
tion sets the sticky bit flag.

In this operation, DEST/2 rep-
resents unsigned division.

A-38

intel.

Table A-6. Instruction Set (Continued)

INSTRUCTION SET REFERENCE

Mnemonic Operation Instruction Format
SHRA ARITHMETIC RIGHT SHIFT WORD. Shifts
the destination word operand to the right as SHRA wreg,#count
many times as specified by the count '
operand. The count may be specified either | (00001010) (count) (wreg)
as an immediate value in the range of 0 to 15 | or
(OFH), inclusive, or as the content of any SHRA wreg,breg
register (10H — OFFH) with a value in the '
range of 0 to 31 (LFH), inclusive. If the (00001010) (breg) (wreg)
original high order bit value was “0,” zeros are
shifted in. If the value was “1,” ones are NOTES: This instruction clears the
shifted in. The last bit shifted out is saved in sticky bit flag at the beginning
the carry flag. of the instruction. If at any time
Temp « (COUNT) during the shift a “1” is shifted
do while Temp # 0 into the carry flag and another
C « Low order bit of (DEST) shift cycle occurs, the instruc-
(DEST) — (DEST)/2 tion sets the sticky bit flag.
Temp « Temp -1
end_while In this operation, DEST/2 rep-
resents signed division.
PSW Flag Settings
Z | N|C |V |VT|ST
o|lo|o0jo0|—|0O
SHRAB ARITHMETIC RIGHT SHIFT BYTE. Shifts the

destination byte operand to the right as many
times as specified by the count operand. The
count may be specified either as an
immediate value in the range of O to 15
(OFH), inclusive, or as the content of any
register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. If the
original high order bit value was “0,” zeros are
shifted in. If the value was “1,” ones are
shifted in. The last bit shifted out is saved in
the carry flag.

Temp «— (COUNT)
do while Temp # 0
C = Low order bit of (DEST)
(DEST) ~ (DEST)/2
Temp « Temp -1
end_while

PSW Flag Settings
Z | N|C |V |VT|ST
o|lo|o0jo0|—|0O

SHRAB breg,#count
(00011010) (count) (breg)

or

SHRAB breg,breg
(00011010) (breg) (breg)

NOTES:

This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-
tion sets the sticky bit flag.

In this operation, DEST/2 rep-
resents signed division.

A-39

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

register (10H — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The left bits
of the result are filled with zeros. The last bit
shifted out is saved in the carry flag.

Temp «— (COUNT)

do while Temp # 0
C « Low order bit of (DEST)
(DEST) — (DEST)/2
Temp « Temp-1

end_while

PSW Flag Settings
Z | N|C |V |VT|ST
0 o | 0|0 |—|DO

Mnemonic Operation Instruction Format
SHRAL ARITHMETIC RIGHT SHIFT DOUBLE-
WORD. Shifts the destination double-word SHRAL Ireg,#count
operand to the right as many times as
specified by the count operand. The count (00001110) (count) (Ireg)
may be specified either as an immediate or
value in the range of 0 to 15 (OFH), inclusive, | gyRAL Ireg,breg
or as the content of any register (10H —
OFFH) with a value in the range of 0 to 31 (00001110) (breg) (Ireg)
(1FH), inclusive. If the original high order bit
value was “0,” zeros are shifted in. If the NOTES: This instruction clears the
value was “1,” ones are shifted in. sticky bit flag at the beginning
Temp « (COUNT) of the instruction. If at any time
do while Temp # 0 during the shift a “1” is shifted
C « Low order bit of (DEST) into the carry flag and another
(DEST) — (DEST)/2 shift cycle occurs, the instruc-
Temp « Temp -1 tion sets the sticky bit flag.
end_while
In this operation, DEST/2 rep-
PSW Flag Settings resents signed division.
Z | N|C |V |VT|ST
o|lo|lojo|—|0O
SHRB LOGICAL RIGHT SHIFT BYTE. Shifts the
destination byte operand to the right as many | grp breg,#count
times as specified by the count operand. The
count may be specified either as an (00011000) (count) (breg)
immediate value in the range of O to 15 or
(OFH), inclusive, or as the content of any SHRB breg,breg

(00011000) (breg) (breg)

NOTES: This instruction clears the
sticky bit flag at the beginning
of the instruction. If at any time
during the shift a “1” is shifted
into the carry flag and another
shift cycle occurs, the instruc-

tion sets the sticky bit flag.

In this operation, DEST/2 rep-
resents unsigned division.

A-40

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SHRL LOGICAL RIGHT SHIFT DOUBLE-WORD.
Shifts the destination double-word operand to | gyrL Ireg #count
the right as many times as specified by the
count operand. The count may be specified | (00001100) (count) (Ireg)
either as an immediate value in the range of 0 | or
to 15 (OFH), inclusive, or as the content of SHRL Ireg,breg
any register (LOH — OFFH) with a value in the
range of 0 to 31 (1FH), inclusive. The left bits | (00001100) (breg) (Ireg)
of the result are filled with zeros. The last bit
shifted out is saved in the carry flag. NOTES: This instruction clears the
Temp « (COUNT) sticky bit flag at the beginning
do while Temp # 0 of the instruction. If at any time
C « Low order bit of (DEST) during the shift a “1” is shifted
(DEST) — (DEST)/2) into the carry flag and another
Temp « Temp -1 shift cycle occurs, the instruc-
end_while tion sets the sticky bit flag.
PSW Flag Settings In this operation, DEST/2 rep-
7 N c v IvrisT resents unsigned division.
0 0 0 0| — | O
SIJMP SHORT JUMP. Adds to the program counter
the offset between the end of this instruction | g j\p cadd
and the target label, effecting the jump. The)
offset must be in the range of 1024 to (00100xxx) (disp-low)
+1023, inclusive.
PC « PC + 11-bit disp NOTE: The displacement (disp) is sign-
extended to 16 bits in the 64-
PSW Flag Settings Ebyte ar?dressti)ng m%cée and to 24
its in the 1-Mbyte addressing
Z N ClV |VT|ST mode. This displacement may
— =l === 1= cause the program counter to
cross a page boundary in 1-Mbyte
mode.
SKIP TWO BYTE NO-OPERATION. Does nothing.
Control passes to the next sequential SKIP breg

instruction. This is actually a two-byte NOP in
which the second byte can be any value and
is simply ignored.

PSW Flag Settings
Z | N|C |V |VT|ST

(00000000) (breg)

A-41

8XC196NP, 80C196NU USER’'S MANUAL

Table A-6. Instruction Set (Continued)

operand, stores the result in the destination
operand, and sets the carry flag as the
complement of borrow.

(DEST) « (DEST) - (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
o000 T —

Mnemonic Operation Instruction Format
ST STORE WORD. Stores the value of the SRC, DEST
source (leftmost) word operand into the ST wreg, waop
destination (rightmost) operand. '
(110000aa) (waop) (wreg)
(DEST) « (SRC)
PSW Flag Settings
z N| C |V |VT|ST
STB STORE BYTE. Stores the value of the source SRC, DEST
(leftmost) byte operand into the destination | g1g breg, baop
(rightmost) operand. '
(110001aa) (baop) (breg)
(DEST) « (SRC)
PSW Flag Settings
z N | C |V |VT|ST
SuUB SUBTRACT WORDS. Subtracts the source DEST, SRC
(2 operands) | word operand from the destination word SUB wreg, waop

(011010aa) (waop) (wreg)

SUB
(3 operands)

SUBTRACT WORDS. Subtracts the first
source word operand from the second, stores
the result in the destination operand, and sets
the carry flag as the complement of borrow.

(DEST) « (SRC1) - (SRC2)

PSW Flag Settings
Z | N|C |V |VT
Oo|o0|0|0 1

ST

DEST, SRC1, SRC2

SUB Dwreg, Swreg, waop

(010010aa) (waop) (Swreg) (Dwreg)

A-42

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format
SUBB SUBTRACT BYTES. Subtracts the source DEST, SRC
(2 operands) | byte operand from the destination byte SUBB breg, baop

operand, stores the result in the destination
operand, and sets the carry flag as the
complement of borrow.

(DEST) « (DEST) - (SRC)

PSW Flag Settings
Z | N| C |V |VT|ST
Oo|0| 0|0 1| =

(011110aa) (baop) (breg)

SUBB
(3 operands)

SUBTRACT BYTES. Subtracts the first
source byte operand from the second, stores
the result in the destination operand, and sets
the carry flag as the complement of borrow.

(DEST) « (SRC1) - (SRC2)

PSW Flag Settings
Z | N|C |V |VT|ST
Oo|o0| 0|0 T =

DEST, SRC1, SRC2
SUBB Dbreg, Shreg, baop
(010110aa) (baop) (Sbreg) (Dbreg)

SUBC

SUBTRACT WORDS WITH BORROW.
Subtracts the source word operand from the
destination word operand. If the carry flag
was clear, SUBC subtracts 1 from the result.
It stores the result in the destination operand
and sets the carry flag as the complement of
borrow.

(DEST) « (DEST) - (SRC) — (1-C)

PSW Flag Settings
Z | N|C |V |VT|ST
! Oo|0 |0 e

DEST, SRC
SUBC wreg, waop
(101010aa) (waop) (wreg)

SUBCB

SUBTRACT BYTES WITH BORROW.
Subtracts the source byte operand from the
destination byte operand. If the carry flag was
clear, SUBCB subtracts 1 from the result. It
stores the result in the destination operand
and sets the carry flag as the complement of
borrow.

(DEST) « (DEST) - (SRC) — (1-C)

PSW Flag Settings
Z | N|C |V |VT|ST
! Oo|0 |0 e

DEST, SRC
SUBCB breg, baop
(101110aa) (baop) (breg)

A-43

8XC196NP, 80C196NU USER’'S MANUAL

intel.

Table A-6. Instruction Set (Continued)

Mnemonic

Operation

Instruction Format

TIIMP

TABLE INDIRECT JUMP. Causes execution
to continue at an address selected from a
table of addresses.

The first word register, TBASE, contains the
16-bit address of the beginning of the jump
table. TBASE can be located in RAM up to
FEH without windowing or above FFH with
windowing. The jump table itself can be
placed at any nonreserved memory location
on a word boundary in page FFH.

The second word register, INDEX, contains
the 16-bit address that points to a register
containing a 7-bit value. This value is used to
calculate the offset into the jump table. Like
TBASE, INDEX can be located in RAM up to
FEH without windowing or above FFH with
windowing. Note that the 16-bit address
contained in INDEX is absolute; it disregards
any windowing that may be in effect when the
TIJMP instruction is executed.

The byte operand, #MASK, is 7-bitimmediate
data to mask INDEX. #MASK is ANDed with
INDEX to determine the offset (OFFSET).
OFFSET is multiplied by two, then added to
the base address (TBASE) to determine the
destination address (DEST X) in page FFH.

[INDEX] AND #MASK = OFFSET
(2 x OFFSET) + TBASE = DEST X
PC — (DEST X)

PSW Flag Settings
Z | N|C |V |VT|ST

TIIMP TBASE, [INDEX], #MASK
(11100010) [INDEX] (#MASK) (TBASE)

NOTE: TIJMP multiplies OFFSET by two
to provide for word alignment of
the jump table.

A-44

intel.

INSTRUCTION SET REFERENCE

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format

TRAP SOFTWARE TRAP. This instruction causes
an interrupt call that is vectored through TRAP
location FF2010H. The operation of this
instruction is not affected by the state of the (11110111)
interrupt enable flag (I) in the PSW. Interrupt
calls cannot occur immediately following this | NOTE: This instruction is not supported
instruction. by assemblers. The TRAP
64-Kbyte mode: instruction is intended for use by
SP « SP-2 development tools. These tools
(SP) « PC may not support user-application
PC « (2010H) of this instruction.
1-Mbyte mode:
SP —~ SP-4
(SP) —~ PC
PC « (OFF2010H)

PSW Flag Settings
z N | C |V |VT|ST

XCH EXCHANGE WORD. Exchanges the value of DEST, SRC
the source word operand with that of the XCH wreg, waop
destination word operand. '

P (00000100) (waop) (wreg) direct
(DEST) < (SRC) (00001011) (waop) (wreg) indexed
PSW Flag Settings
z N | C |V |VT|ST

XCHB EXCHANGE BYTE. Exchanges the value of DEST, SRC

the source byte operand with that of the XCHB breg, baop

destination byte operand.
(DEST) < (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST

(00010100) (baop) (breg) direct
(00011011) (baop) (breg) indexed

A-45

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table A-6. Instruction Set (Continued)

Mnemonic Operation Instruction Format

XOR LOGICAL EXCLUSIVE-OR WORDS. XORs DEST, SRC
the source word operand with the destination | yoRr
word operand and stores the result in the
destination operand. The result has ones in | (100001aa) (waop) (wreg)
the bit positions in which either operand (but
not both) had a “1” and zeros in all other bit
positions.

(DEST) « (DEST) XOR (SRC)

wreg, waop

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

XORB LOGICAL EXCLUSIVE-OR BYTES. XORs DEST, SRC
the source byte operand with the d(_astination XORB breg, baop
byte operand and stores the result in the
destination operand. The result has ones in | (100101aa) (baop) (breg)
the bit positions in which either operand (but
not both) had a “1” and zeros in all other bit
positions.

(DEST) « (DEST) XOR (SRC)

PSW Flag Settings
Z | N|C |V |VT|ST
O| 0 0 0| — | —

Table A-7 lists the instruction opcodes, in hexadecimal order, along with the corresponding in-
struction mnemonics.

A-46 [|

N

tel.

INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes

Hex Code Instruction Mnemonic
00 SKIP
01 CLR
02 NOT
03 NEG
04 XCH Direct
05 DEC
06 EXT
07 INC
08 SHR
09 SHL
0A SHRA
0B XCH Indexed
0C SHRL
0D SHLL
OE SHRAL
OF NORML
10 Reserved
11 CLRB
12 NOTB
13 NEGB
14 XCHB Direct
15 DECB
16 EXTB
17 INCB
18 SHRB
19 SHLB
1A SHRAB
1B XCHB Indexed
1C EST Indirect
1D EST Indexed
1E ESTB Indirect
1F ESTB Indexed
20-27 SIMP
28-2F SCALL
30-37 JBC
38-3F JBS
40 AND Direct (3 ops)
41 AND Immediate (3 ops)
42 AND Indirect (3 ops)
43 AND Indexed (3 ops)

A-47

8XC196NP, 80C196NU USER’'S MANUAL

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
44 ADD Direct (3 ops)
45 ADD Immediate (3 ops)
46 ADD Indirect (3 ops)
47 ADD Indexed (3 ops)
48 SUB Direct (3 ops)
49 SUB Immediate (3 ops)
4A SUB Indirect (3 ops)
4B SUB Indexed (3 ops)
4C MULU Direct (3 ops)
4D MULU Immediate (3 ops)
4E MULU Indirect (3 ops)
4F MULU Indexed (3 ops)
50 ANDB Direct (3 ops)
51 ANDB Immediate (3 ops)
52 ANDB Indirect (3 ops)
53 ANDB Indexed (3 ops)
54 ADDB Direct (3 ops)
55 ADDB Immediate (3 ops)
56 ADDB Indirect (3 ops)
57 ADDB Indexed (3 ops)
58 SUBB Direct (3 ops)
59 SUBB Immediate (3 ops)
5A SUBB Indirect (3 ops)
5B SUBB Indexed (3 ops)
5C MULUB Direct (3 ops)
5D MULUB Immediate (3 ops)
5E MULUB Indirect (3 ops)
5F MULUB Indexed (3 ops)
60 AND Direct (2 ops)
61 AND Immediate (2 ops)
62 AND Indirect (2 ops)
63 AND Indexed (2 ops)
64 ADD Direct (2 ops)
65 ADD Immediate (2 ops)
66 ADD Indirect (2 ops)
67 ADD Indexed (2 ops)
68 SUB Direct (2 ops)
69 SUB Immediate (2 ops)
6A SUB Indirect (2 ops)
6B SUB Indexed (2 ops)
6C MULU Direct (2 ops)

A-48

N

tel.

Table A-7. Instruction Opcodes (Continued)

INSTRUCTION SET REFERENCE

Hex Code Instruction Mnemonic
6D MULU Immediate (2 ops)
6E MULU Indirect (2 ops)
6F MULU Indexed (2 ops)
70 ANDB Direct (2 ops)

71 ANDB Immediate (2 ops)
72 ANDB Indirect (2 ops)
73 ANDB Indexed (2 ops)
74 ADDB Direct (2 ops)

75 ADDB Immediate (2 ops)
76 ADDB Indirect (2 ops)
77 ADDB Indexed (2 ops)
78 SUBB Direct (2 ops)

79 SUBB Immediate (2 ops)
7A SUBB Indirect (2 ops)
7B SUBB Indexed (2 ops)
7C MULUB Direct (2 ops)
7D MULUB Immediate (2 ops)
7E MULUB Indirect (2 ops)
7F MULUB Indexed (2 ops)
80 OR Direct

81 OR Immediate

82 OR Indirect

83 OR Indexed

84 XOR Direct

85 XOR Immediate

86 XOR Indirect

87 XOR Indexed

88 CMP Direct

89 CMP Immediate

8A CMP Indirect

8B CMP Indexed

8C DIVU Direct

8E DIVU Indirect

8F DIVU Indexed

90 ORB Direct

91 ORB Immediate

92 ORB Indirect

93 ORB Indexed

94 XORB Direct

95 XORB Immediate

96 XORB Indirect

A-49

8XC196NP, 80C196NU USER’'S MANUAL

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
97 XORB Indexed
98 CMPB Direct
99 CMPB Immediate
9A CMPB Indirect
9B CMPB Indexed
9C DIVUB Direct
9D DIVUB Immediate
9E DIVUB Indirect
9F DIVUB Indexed
A0 LD Direct
Al LD Immediate
A2 LD Indirect
A3 LD Indexed
Ad ADDC Direct
A5 ADDC Immediate
A6 ADDC Indirect
A7 ADDC Indexed
A8 SUBC Direct
A9 SUBC Immediate
AA SUBC Indirect
AB SUBC Indexed
AC LDBZE Direct
AD LDBZE Immediate
AE LDBZE Indirect
AF LDBZE Indexed
BO LDB Direct
B1 LDB Immediate
B2 LDB Indirect
B3 LDB Indexed
B4 ADDCB Direct
B5 ADDCB Immediate
B6 ADDCB Indirect
B7 ADDCB Indexed
B8 SUBCB Direct
B9 SUBCB Immediate
BA SUBCB Indirect
BB SUBCB Indexed
BC LDBSE Direct
BD LDBSE Immediate
BE LDBSE Indirect
BF LDBSE Indexed

A-50

N

tel.

INSTRUCTION SET REFERENCE

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic
(0] ST Direct
C1l BMOV
Cc2 ST Indirect
C3 ST Indexed
C4 STB Direct
C5 CMPL
C6 STB Indirect
C7 STB Indexed
C8 PUSH Direct
C9 PUSH Immediate
CA PUSH Indirect
CB PUSH Indexed
CcC POP Direct
CD BMOVI
CE POP Indirect
CF POP Indexed
DO JNST
D1 JNH
D2 JGT
D3 JNC
D4 JNVT
D5 JNV
D4 JINVT
D5 JNV
D6 JGE
D7 JNE
D8 JST
D9 JH
DA JLE
DB JC
DC JVT
DD JV
DE JLT
DF JE
EO DJINZ
E1l DINZW
E2 TIIMP
E3 BR Indirect, 64-Kbyte mode
EBR Indirect, 1-Mbyte mode
E4 EBMOVI
E5 Reserved

A-51

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table A-7. Instruction Opcodes (Continued)

Hex Code Instruction Mnemonic

E6 EJMP
E7 LIMP
E8 ELD Indirect
E9 ELD Indexed
EA ELDB Indirect
EB ELDB Indexed
EC DPTS
ED EPTS
EE Reserved (Note 1)
EF LCALL
FO RET
F1 ECALL
F2 PUSHF
F3 POPF
F4 PUSHA
F5 POPA
F6 IDLPD
F7 TRAP
F8 CLRC
F9 SETC
FA DI
FB El
FC CLRVT
FD NOP
FE DIV/DIVB/MUL/MULB (Note 2)
FF RST

NOTES:

1. This opcode is reserved, but it does not generate an unimplemented opcode interrupt.

2. Signed multiplication and division are two-byte instructions. For each signed instruction, the
first byte is “FE” and the second is the opcode of the corresponding unsigned instruction. For
example, the opcode for MULU (3 operands) direct is “4C,” so the opcode for MUL (3 oper-
ands) direct is “FE 4C.”

Table A-8 lists instructions along witheir lengths and opcodés each applicable addressing
mode. A dash (—) in any column indicates “not applicable.”

A-52

intel.

Table A-8. Instruction Lengths and Hexadecimal Opcodes

INSTRUCTION SET REFERENCE

Arithmetic (Group 1)

Direct Immediate Indirect Indexed
(Note 1) (Notes 1, 2)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode LeSn/thh Opcode

ADD (2 ops) 3 64 4 65 3 66 4/5 67
ADD (3 ops) 4 44 5 45 4 46 5/6 47
ADDB (2 ops) 3 74 3 75 3 76 4/5 77
ADDB (3 ops) 4 54 4 55 4 56 5/6 57
ADDC 3 A4 4 A5 3 AB 4/5 A7
ADDCB 3 B4 3 B5 3 B6 4/5 B7
CLR 2 01 — — — — — —
CLRB 2 11 — — — — — —
CMP 3 88 4 89 3 8A 4/5 8B
CMPB 3 98 3 99 3 9A 4/5 9B
CMPL 3 C5 — — — — — —
DEC 2 05 — — — — — —
DECB 2 15 — — — — — —
EXT 2 06 — — — — — —
EXTB 2 16 — — — — — —
INC 2 07 — — — — — —
INCB 2 17 — — — — — —
SUB (2 ops) 3 68 4 69 3 6A 4/5 6B
SUB (3 ops) 4 48 5 49 4 4A 5/6 4B
SUBB (2 ops) 3 78 3 79 3 7A 4/5 7B
SUBB (3 ops) 4 58 4 59 4 5A 5/6 5B
SUBC 3 A8 4 A9 3 AA 4/5 AB
SUBCB 3 B8 3 B9 3 BA 4/5 BB
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-53

8XC196NP, 80C196NU USER’'S MANUAL

Table A-8. Instruction Lengths and Hexadecimal

Opcodes (Continued)

intel.

Arithmetic (Group II)

Direct Immediate Indirect Indexed
(Note 1) (Notes 1, 2)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode Lesn/thh Opcode
DIV 4 FE 8C 5 FE 8D 4 FE 8E 5/6 FE 8F
DIVB 4 FE 9C 4 FE 9D 4 FE 9E 5/6 FE 9F
DIVU 3 8C 4 8D 3 8E 4/5 8F
DIVUB 3 9C 3 9D 3 9E 4/5 9F
MUL (2 ops) 4 FE 6C 5 FE 6D 4 FE 6E 5/6 FE 6F
MUL (3 ops) 5 FE 4C 6 FE 4D 5 FE 4E 6/7 FE 4F
MULB (2 ops) 4 FE 7C 4 FE 7D 4 FE 7E 5/6 FE 7F
MULB (3 ops) 5 FE 5C 5 FE 5D 5 FE 5E 6/7 FE 5F
MULU (2 ops) 3 6C 4 6D 3 6E 4/5 6F
MULU (3 ops) 4 4C 5 4D 4 4E 5/6 aF
MULUB (2 ops) 3 7C 3 7D 3 7E 4/5 7F
MULUB (3 ops) 4 5C 4 5D 4 5E 5/6 5F
Logical
Direct Immediate Er,\ll((j;trgcf) (,\:Q?eixidz)
Mnemonic
Length |Opcode [Length pcode LUength Qpcode LeSn/thh Opcode
AND (2 ops) 3 60 4 61 3 62 4/5 63
AND (3 ops) 4 40 5 41 4 42 5/6 43
ANDB (2 ops) 3 70 3 71 3 72 4/5 73
ANDB (3 ops) 4 50 4 51 4 52 5/6 53
NEG 2 03 — — — — — —
NEGB 2 13 — — — — — —
NOT 2 02 — — — — — —
NOTB 2 12 — — — — — —
OR 3 80 4 81 3 82 4/5 83
ORB 3 90 3 91 3 92 4/5 93
XOR 3 84 4 85 3 86 4/5 87
XORB 3 94 3 95 3 96 4/5 97
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-54

intel.

Table A-8. Instruction Lengths and Hexadecimal

INSTRUCTION SET REFERENCE

Opcodes (Continued)

Stack
. . Indirect Indexed
Direct Immediate (Note 1) (Notes 1, 2)
Mnemonic
Length
Length |Opcode |Length pcode LUength Qpcode S/L Opcode

POP 2 CcC — — 2 CE 3/4 CF
POPA 1 F5 — — — — — —
POPF 1 F3 — — — — — —
PUSH 2 C8 3 C9 2 CA 3/4 CB
PUSHA 1 F4 — — — — — —
PUSHF 1 F2 — — — — — —
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-55

8XC196NP, 80C196NU USER’'S MANUAL

Table A-8. Instruction Lengths and Hexadecimal

Opcodes (Continued)

intel.

Data
) . — Extended-
Miemonic Direct Immediate Extended-indirect indexed
Length |Opcode |Length Opcode Uength Qpcode Le¢ngth Opcode
EBMOVI — — — — 3 E4 — —
ELD — — — — 3 E8 6 E9
ELDB — — — — 3 EA 6 EB
EST — — — — 3 1C 6 1D
ESTB — — — — 3 1E 6 1F
Direct Immediate ér,\]l((j)'{sclt) (,\:Q?eixisz)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode LeSn/thh Opcode

BMOV — — — — 3 C1l — —
BMOVI — — — — 3 CD — —
LD 3 A0 4 Al 3 A2 4/5 A3
LDB 3 BO 3 B1 3 B2 4/5 B3
LDBSE 3 BC 3 BD 3 BE 4/5 BF
LDBZE 3 AC 3 AD 3 AE 4/5 AF
ST 3 CO0 — — 3 C2 4/5 C3
STB 3 C4 — — 3 C6 4/5 C7
XCH 3 04 — — — — 4/5 0B
XCHB 3 14 — — — — 4/5 1B
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-56

intel.

Table A-8. Instruction Lengths and Hexadecimal

INSTRUCTION SET REFERENCE

Opcodes (Continued)

Jump
Direct Immediate Extended-indirect E_xtended—
Mnemonic indexed
Length |Opcode |Length Opcode Uength Qpcode Length Opcode
EBR — — — — 2 E3 — —
EJMP — — — — — — 4 E6
Direct Immediate ér,\ll((j;tr:clt) (,\:Q?eixidz)
Mnemonic
Length |Opcode |Length pcode LUength Qpcode LeSn/thh Opcode
BR — — — — 2 E3 — —
LIMP — — — — — — —i/3 E7
SJIMP (Note 3) — — — — — — 2/— 20-27
TIIMP 4 E2 4 E2 — — —/4 E2
Call
Direct Immediate Extended-indirect E_xtended-
Mnemonic indexed
Length |Opcode |[Length pcode LUength Qpcode Length Opcode
ECALL — — — — — — 4 F1
. B Indirect Indexed
Mnemonic Direct Immediate (Note 1) (Note 1)
Length |Opcode |Length Opcode Uength Qpcode Le¢ngth Opcode
LCALL — — — — — — 3 EF
RET — — — — 1 FO — —
SCALL (Note 3) — — — — — — 2 28-2F
TRAP 1 F7 — — — — — —

NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do short- and long-indexed
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-57

8XC196NP, 80C196NU USER’'S MANUAL

Table A-8. Instruction Lengths and Hexadecimal

Opcodes (Continued)

intel.

Conditional Jump

Direct Immediate Indirect (l\llggeixidZ)
Mnemonic

Length |Opcode |Length pcode LUength Qpcode Lesn/thh Opcode
DJINZ — — — — — — 3/— EO
DINZW — — — — — — 3/— E1l
JBC — — — — — — 3/— 30-37
JBS — — — — — — 3/— 38-3F
JC — — — — — — 2/— DB
JE — — — — — — 2/— DF
JGE — — — — — — 2/— D6
JGT — — — — — — 2/— D2
JH — — — — — — 2/— D9
JLE — — — — — — 2/— DA
JLT — — — — — — 2/— DE
JNC — — — — — — 2/— D3
JNE — — — — — — 2/— D7
JNH — — — — — — 2/— D1
JNST — — — — — — 2/— DO
JINV — — — — — — 2/— D5
JINVT — — — — — — 2/— D4
JST — — — — — — 2/— D8
JV — — — — — — 2/— DD
JVT — — — — — — 2/— DC
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

short- and long-indexed

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-58

intel.

Table A-8. Instruction Lengths and Hexadecimal

INSTRUCTION SET REFERENCE

Opcodes (Continued)

Shift
Direct Immediate Indirect Indexed
Mnemonic
Length |Opcode |Length DOpcode Uength Qpcode Le¢ngth Opcode
NORML 3 OF — — — — — —
SHL 3 09 — — — — — —
SHLB 3 19 — — — — — —
SHLL 3 0D — — — — — —
SHR 3 08 — — — — — —
SHRA 3 0A — — — — — —
SHRAB 3 1A — — — — — —
SHRAL 3 OE — — — — — —
SHRB 3 18 — — — — — —
SHRL 3 0C — — — — — —
Special
Direct Immediate Indirect Indexed
Mnemonic
Length |Opcode |Length DOpcode Uength Qpcode Le¢ngth Opcode
CLRC 1 F8 — — — — — —
CLRVT 1 FC — — — — — —
DI 1 FA — — — — — —
El 1 FB — — — — — —
IDLPD — — 1 F6 — — — —
NOP 1 FD — — — — — —
RST 1 FF — — — — — —
SETC 1 F9 — — — — — —
SKIP 2 00 — — — — — —
PTS
Direct Immediate Indirect Indexed
Mnemonic
Length |Opcode |[Length Opcode LUength Qpcode Length Opcode
DPTS 1 EC — — — — — —
EPTS 1 ED — — — — — —
NOTES:

1. Indirect normal and indirect autoincrement share the same opcodes, as do
modes. Because word registers always have even addresses, the address can be expressed in the
upper seven bits; the least-significant bit determines the addressing mode. Indirect normal and short-
indexed modes make the second byte of the instruction even (LSB = 0). Indirect autoincrement and

long-indexed modes make the second byte odd (LSB = 1).

short- and long-indexed

2. Forindexed instructions, the first column lists instruction lengths as S/L, where S is the short-indexed
instruction length and L is the long-indexed instruction length.
3. For the SCALL and SJMP instructions, the three least-significant bits of the opcode are concatenated

with the eight bits to form an 11-bit, 2's complement offset.

A-59

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table A-9 lists instructions alphabetically within groups, along with their execution times, ex-
pressed in state times.

Table A-9. Instruction Execution Times (in State Times)

Arithmetic (Group 1)
Indirect Indexed
Mnemonic Direct (Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. |[Reg. [Mem. [Reg. (Mem.
ADD (2 ops) 4 5 6 8 7 9 6 8 7 9
ADD (3 ops) 5 6 7 10 8 11 7 10 8 11
ADDB (2 ops) 4 4 6 8 7 9 6 8 7 9
ADDB (3 ops) 5 5 7 10 8 11 7 10 8 11
ADDC 4 5 6 8 7 9 6 8 7 9
ADDCB 4 4 6 8 7 9 6 8 7 9
CLR 3 — — — — — — — — —
CLRB 3 — — — — — — — — —
CMP 4 5 6 8 7 9 6 8 7 9
CMPB 4 4 6 8 7 9 6 8 7 9
CMPL 7 — — — — — — — — —
DEC 3 — — — — — — — — —
DECB 3 — — — — — — — — —
EXT 4 — — — — — — — — —
EXTB 4 — — — — — — — — —
INC 3 — — — — — — — — —
INCB 3 — — — — — — — — —
SUB (2 ops) 4 5 6 8 7 9 6 8 7 9
SUB (3 ops) 5 6 7 10 8 11 7 10 8 11
SUBB (2 ops) 4 4 6 8 7 9 6 8 7 9
SUBB (3 ops) 5 5 7 10 8 11 7 10 8 11
SUBC 4 5 6 8 7 9 6 8 7 9
SUBCB 4 4 6 8 7 9 6 8 7 9

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-60 [|

intel.

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

INSTRUCTION SET REFERENCE

Arithmetic (Group II)

Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. [Mem. |Reg. |Mem. |Reg. |Mem.
DIV 26 27 28 31 29 32 29 32 30 33
DIVB 18 18 20 23 21 24 21 24 22 25
DIVU 24 25 26 29 27 30 27 30 28 31
DIVUB 16 16 18 21 19 22 19 22 20 23
MUL (2 ops) 16 17 18 21 19 22 19 22 20 23
MUL (3 ops) 16 17 18 21 19 22 19 22 20 23
MULB (2 ops) 12 12 14 17 15 18 15 18 16 19
MULB (3 ops) 12 12 14 17 15 18 15 18 16 19
MULU (2 ops) 14 15 16 19 17 19 17 20 18 21
MULU (3 ops) 14 15 16 19 17 19 17 20 18 21
MULUB (2 ops) 10 10 12 15 13 15 12 16 14 17
MULUB (3 ops) 10 10 12 15 13 15 12 16 14 17

Logical
Indirect Indexed
Mnemonic Direct (Immed. Normal Autoinc. Short Long

Reg. | Mem. | Reg. |Mem. [Reg. [Mem. [Reg. (Mem.
AND (2 ops) 4 5 6 8 7 9 6 8 7 9
AND (3 ops) 5 6 7 10 8 11 7 10 8 11
ANDB (2 ops) 4 4 6 8 7 9 6 8 7 9
ANDB (3 ops) 5 5 7 10 8 11 7 10 8 11
NEG 3 — — — — — — — — —
NEGB 3 — — — — — — — — —
NOT 3 — — — — — — — — —
NOTB 3 — — — — — — — — —
OR 4 5 6 8 7 9 6 8 7 9
ORB 4 4 6 8 7 9 6 8 7 9
XOR 4 5 6 8 7 9 6 8 7 9
XORB 4 4 6 8 7 9 6 8 7 9
NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or

peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-61

8XC196NP, 80C196NU USER’'S MANUAL

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

N

tel.

Stack (Register)

Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long
Reg. | Mem. | Reg. |Mem. [Reg. [Mem. [Reg. (Mem.
POP 8 — 10 12 11 13 11 13 12 14
POPA 12 — — — — — — — — —
POPF 7 — — — — — — — — —
PUSH 6 7 9 12 10 13 10 13 11 14
PUSHA 12 — — — — — — — — —
PUSHF 6 — — — — — — — — —
Stack (Memory)
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long
Reg. | Mem. | Reg. |Mem. |Reg. [Mem. [Reg. (Mem.
POP 11 — 13 15 14 16 14 16 15 17
POPA 18 — — — — — — — — —
POPF 10 — — — — — — — — —
PUSH 8 9 11 14 12 15 12 15 13 16
PUSHA 18 — — — — — — — — —
PUSHF 8 — — — — — — — — —

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-62

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Data
Mnemonic Extended-indirect (Normal)
EBMOVI register/register 8 + 14 per word + 16 per interrupt
memory/register 8 + 17 per word + 16 per interrupt
memory/memory 8 + 20 per word + 16 per interrupt
Mnemonic Indirect
BMOV register/register 6 + 8 per word
memory/register 6 + 11 per word
memory/memory 6 + 14 per word
BMOVI register/register 7 + 8 per word + 14 per interrupt
memory/register 7 + 11 per word + 14 per interrupt
memory/memory 7 + 14 per word + 14 per interrupt
Extended-indirect
Mnemonic Direct (Immed. Extended-indexed
Normal Autoinc.
ELD — — 6 9 8 11 8 11
ELDB — — 6 9 8 11 8 11
EST — — 6 9 8 11 8 11
ESTB — — 6 9 8 11 8 11
Indirect Indexed
Mnemonic Direct |Immed. Normal Autoinc. Short Long
Reg. | Mem. | Reg. |Mem. [Reg. [Mem. [Reg. (Mem.
LD 4 5 5 8 6 8 6 9 7 10
LDB 4 4 5 8 6 8 6 9 7 10
LDBSE 4 4 5 8 6 8 6 9 7 10
LDBZE 4 4 5 8 6 8 6 9 7 10
ST 4 — 5 8 6 9 6 9 7 10
STB 4 — 5 8 6 8 6 9 7 10
XCH 5 — — — — — 8 13 9 14
XCHB 5 — — — — — 8 13 9 14

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-63

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Jump
Mnemonic Direct |{Immed. Extended-indirect
Extended-indexed
Normal Autoinc.
EBR — — 9 — —
EJMP — — — — 8
Indirect Indexed
Mnemonic Direct |Immed.
Normal Autoinc. Short Long
BR — — 7 7 — —
LIMP — — — — — 7
SIJMP — — — — 7 —
TIIMP
register/register . o 15 . . -
memory/register 18
memory/memory 21
Call (Register)
Extended-indirect
Mnemonic Direct |Immed. Extended-indexed
Normal Autoinc.
ECALL
1-Mbyte mode — — — — 16
Indirect Indexed
Mnemonic Direct |Immed.
Normal Autoinc. Short Long
LCALL 15
1-Mbyte mode — — — — — 11
64-Kbyte mode
RET
1-Mbyte mode — — 16 — — —
64-Kbyte mode 11
SCALL 15
1-Mbyte mode — — — — — 11
64-Kbyte mode
TRAP
1-Mbyte mode 19 — — — — —
64-Kbyte mode 16

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-64 [|

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Call (Memory)

Mnemonic

Direct

Immed.

Extended-indirect

Normal Autoinc.

Extended-indexed

ECALL
1-Mbyte mode

22

Mnemonic

Direct

Immed.

Indirect

Indexed

Normal Autoinc.

Short Long

LCALL
1-Mbyte mode
64-Kbyte mode

13

RET
1-Mbyte mode
64-Kbyte mode

SCALL
1-Mbyte mode
64-Kbyte mode

18
13

TRAP
1-Mbyte mode
64-Kbyte mode

25
18

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-65

8XC196NP, 80C196NU USER’'S MANUAL

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

N

tel.

Conditional Jump

Mnemonic Short-Indexed
DJNZ 5 (jump not taken), 9 (jump taken)
DINZW 6 (jump not taken), 10 (jump taken)
JBC 5 (jump not taken), 9 (jump taken)
JBS 5 (jump not taken), 9 (jump taken)
JC 4 (jump not taken), 8 (jump taken)
JE 4 (jump not taken), 8 (jump taken)
JGE 4 (jump not taken), 8 (jump taken)
JGT 4 (jump not taken), 8 (jump taken)
JH 4 (jump not taken), 8 (jump taken)
JLE 4 (jump not taken), 8 (jump taken)
JLT 4 (jump not taken), 8 (jump taken)
JNC 4 (jump not taken), 8 (jump taken)
JINE 4 (jump not taken), 8 (jump taken)
JNH 4 (jump not taken), 8 (jump taken)
JINST 4 (jump not taken), 8 (jump taken)
INV 4 (jump not taken), 8 (jump taken)
INVT 4 (jump not taken), 8 (jump taken)
JST 4 (jump not taken), 8 (jump taken)
JV 4 (jump not taken), 8 (jump taken)
JVT 4 (jump not taken), 8 (jump taken)

Shift

Mnemonic Direct
NORML 8 + 1 per shift (9 for O shift)

SHL 6 + 1 per shift (7 for O shift)
SHLB 6 + 1 per shift (7 for O shift)
SHLL 7 + 1 per shift (8 for 0 shift)
SHR 6 + 1 per shift (7 for O shift)
SHRA 6 + 1 per shift (7 for O shift)
SHRAB 6 + 1 per shift (7 for O shift)
SHRAL 7 + 1 per shift (8 for 0 shift)
SHRB 6 + 1 per shift (7 for O shift)
SHRL 7 + 1 per shift (8 for 0 shift)

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-66

intel.

INSTRUCTION SET REFERENCE

Table A-9. Instruct ion Execution Times (in State Times) (Continued)

Special
Indirect Indexed
Mnemonic Direct |Immed.

Normal Autoinc. Short Long
CLRC 2 — — — — —
CLRVT 2 — — — — —
DI 2 — — — — —
El 2 — — — — —
IDLPD

Valid key — 12 — — — —
Invalid key — 28 — — — —
NOP 2 — — — — —
RST 4 — — — — —
SETC 2 — — — — —
SKIP 3 — — — — —
PTS
Indirect Indexed
Mnemonic Direct |Immed.

Normal Autoinc. Short Long
DPTS 2 — — — — —
EPTS 2 — — — — —

NOTE: The column entitled “Reg.” lists the instruction execution times for accesses to the register file or
peripheral SFRs. The column entitled “Mem.” lists the instruction execution times for accesses to
all memory-mapped registers, 1/0, or memory. See Table 5-1 on page 5-4 for address information.

A-67

intgl.

B

Signal Descriptions

This appendix provides reference information for the pin functions of the 8XC196NP and

80C196NU.

B.1 FUNCTIONAL GROUPINGS OF SIGNALS

Table B-1 lists the signals for the 8XC196NP and 80C196NU, grouped by function. A diagram

APPENDIX B
SIGNAL DESCRIPTIONS

of each package that is currently available shows the pin location of each signal.

NOTE

As new packages aszippored, they will be added to the datasheets first. If
your package type is not shown in this appendix, refer to the latest datasheet to
find the pin locations.

Table B-1. 8XC196NP and 80C196NU Signals Arranged by Function

Address & Data Processor Control Input/Output Bus Control & Status
A19:0 EA# (NP only) EPORT3:0 ALE
AD15:0 EXTINT3:0 P1.3:0/EPA3:0 BHE#/WRH#
NMI P1.4/T1CLK BREQ#
Power & Ground ONCE P1.5/T1DIR CLKOUT
Ve PLLEN1 (NU only) P1.6/T2CLK CS5:0#
Vs PLLEN2 (NU only) P1.7/T2DIR HOLD#
RESET# P2.0/TXD HLDA#
RPD P2.1/RXD INST
XTAL1 pP2.7:2 RD#
XTAL2 P3.7:0 READY
P4.2:0/PWM2:0 WR#/WRL#

P4.3

B-1

8XC196NP, 80C196NU USER’'S MANUAL

RESET#
NMI

EA#

A0

Al

Vee

Vss

A2

A3

A4

A5

A6

A7

Vee

Vss

NC

NC

P3.0 / CSO#
P3.1/CS1#
P3.2/ CS2#
P3.3/CS3#
Vss

P3.4/ CSa#
P3.5/ CS5#
P3.6 / EXTINT2

©CONOOUBAWNERE

100 | ADO

P3.7 / EXTINT3 . 26

99 | AD1
98 | AD2
97 B AD3
96 B AD4
95 |1 AD5
94 |1 AD6
93 | AD7
92 A Vee
91 B3 AD8
90 A Vss
89 B3 AD9
88 | AD10
87 B AD11
86 | AD12
85 B AD13
84 1 AD14
83 | AD15

P1.0/EPAO § 27

Vee] 28
P1.1/EPA1] 29

P1.2/EPA2 I 30

P1.3/EPA3 4 31
P1.4/T1CLK 4 32

X8XC196NP

View of component as
mounted on PC board

Vss] 43
P2.0/TXD & 44
P2.1/RXD 45

Vee H 42
P2.2 / EXTINTO

P43 41

P1.5/T1DIR 4 33
P1.6/T2CLK 4 35
P1.7/T2DIR .4 37
P4.0/ PWMO 38
P4.1/PWM1 f 39
P4.2/PWM2 . 40

82 11 A16/ EPORT.O
81 A A17 / EPORT.1

80 A Vee
79 [Vss

] 46

78 | A18/ EPORT.2
77 | A19/ EPORT.3
WR# | WRL#

P2.3/BREQ#] 47
[48
P2.6 / HLDA# =} 50

P2.4] EXTINT1
P2.5/HOLD# 5 49

76 |3

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

) RD#

[BHE# /| WRH#
1 ALE

E1 INST
1 READY
1 RPD

1 ONCE
0 Vss

1 Vee

3 Vss

1 A8

1 A9

1 A10
A1l

4 A12

1 A13

1 Al14

1 ALS

O NC

[Vss

(1 XTALL
1 XTAL2
[Vss

O NC

1 P2.7 / CLKOUT

A2348-03

B-2

Figure B-1. 8XC196NP 1 00-lead SQFP Package

SIGNAL DESCRIPTIONS

Q
EE
xo
[eXe)
(o
wow
O-HdNMS N~ ~
NSO OB PO A ddd o ©or~ O
[ayayaNaNaNaNalslaly/lafalalalalalai=IE YIS}
CACICCLCLS > A ICCC>
qnnoonooonooononononnnnn
OOV~ OUTNANHODOMNOL T MAN
ammmmmmmoamovwwwwwwoomw
ADO 1 80 A Vss
NC 2 79 1 A18/EPORT.2
RESET#] 3 78 | A19/ EPORT.3
NMI] 4 77 |3 WR# / WRL#
EA#] 5 76 | RD#
A6 75 |2 BHE# / WRH#
ALE7 74 B ALE
Vec 8 73 A INST
Ves 9 72 | READY
A2 10 71 @RPD
A3 11 70 @ ONCE
A4 412 X8XC196NP 69 A Vss
A5 13 68 B Vee
A6 14 67 A Vss
A7TE]15 66 |1 A8
Vec 6 16 65 [A9
Vss] 17 64 B A10
NC] 18 ; 63 B ALl
p3.0/csor o 19 View of component as 0 B a2
P3.1/CS1# £ 20 mounted on PC board 61 FAL3
P3.2/CS2# 21 60 1 A14
P3.3/CS3# 22 59 [AL5
Vss] 23 58 [Vss
P3.4/CSa# 24 57 | XTALL
P3.5/CS5# 25 56 [XTAL2
P3.6 / EXTINT2] 26 55 [Vss
NC . 27 54 |1 P2.7 / CLKOUT
P3.7 / EXTINT3 . 28 53 FANC
P1.0/EPA0] 29 52 3 P2.6 / HLDA#
Vee 630 51 [P2.5/ HOLD#
HANMNMITODONODOANMSET D ONODO
OMOMMOHOMOHOMHMMOISTITITITTITITT I TN
guduuguoogoguguguooooogogooy
HNOY X O OrodaNm QAN OH-
EERTRCERI S PRAEFI S
wwweagE N FEaa SSREE
AHNOSS S TS N RN
doadY? © ~odo ooy
gaagg § Fyss &mgg
[a o

A2349-03

Figure B-2. 8XC196NP 100-lead QFP Package

B-3

8XC196NP, 80C196NU USER’'S MANUAL

RESET#
NMI

NC

A0

Al

Vee

Vss

A2

A3

A4

A5

A6

A7

Vee

Vss

NC
PLLEN1
P3.0 / CSO#
P3.1/CS1#
P3.2/ CS2#
P3.3/CS3#
Vss

P3.4/ CSa#
P3.5/ CS5#
P3.6 / EXTINT2

©CONOOUBAWNERE

100 | ADO

P3.7 / EXTINT3 . 26

99 | AD1
98 | AD2
97 B AD3
96 B AD4
95 |1 AD5
94 |1 AD6
93 | AD7
92 A Vee
91 B3 AD8
90 A Vss
89 B3 AD9
88 | AD10
87 B AD11
86 | AD12
85 B AD13
84 1 AD14
83 | AD15

P1.0/EPAO § 27

Vee] 28
P1.1/EPA1] 29

P1.2/EPA2 I 30

P1.3/EPA3 4 31
P1.4/T1CLK 4 32

X8XC196NU

View of component as
mounted on PC board

Vss] 43
P2.0/TXD & 44
P2.1/RXD 45

Vee H 42
P2.2 / EXTINTO

P43 41

P1.5/T1DIR 4 33
P1.6/T2CLK 4 35
P1.7/T2DIR .4 37
P4.0/ PWMO 38
P4.1/PWM1 f 39
P4.2/PWM2 . 40

82 11 A16/ EPORT.O
81 A A17 / EPORT.1

80 A Vee
79 [Vss

] 46

78 | A18/ EPORT.2
77 | A19/ EPORT.3
WR# | WRL#

P2.3/BREQ#] 47
[48
P2.6 / HLDA# =} 50

P2.4] EXTINT1
P2.5/HOLD# 5 49

76 |3

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

) RD#

[BHE# /| WRH#
1 ALE

E1 INST
1 READY
1 RPD

1 ONCE
[PLLEN2
3 Vee

3 Vss

1 A8

1 A9

1 A10
A1l

4 A12

1 A13

1 Al14

1 ALS

O NC

[Vss

(1 XTALL
1 XTAL2

[P2.7 / CLKOUT

A2823-02

B-4

Figure B-3. 80C196NU 100-lead SQFP Package

SIGNAL DESCRIPTIONS

o
==
xo
o0
oo
wow
O-HdNMS N~ ~
ANOITWONS 00 PO Adddd Ao~ O
[ayayaNaNaNaNalslaly/lafalalalalalai=IE YIS}
CACICCLCLS > A ICCC>
noooaonooononnonnnnonm
OOV~ OUTNANHODOMNOL T MAN
aoammosmoammosovoocoocooooooococoo
ADO 1 80 A Vss
NC 2 79 A A18 / EPORT.2
RESET#] 3 78 A A19/ EPORT.3
NMI] 4 77 A WR# | WRL#
NC 5 76 A RD#
A6 75 [A BHE# | WRH#
ALH7 74 A ALE
Vec 8 73 A INST
Vss]9 72 A READY
A2 10 71 A RPD
A3 11 70 A ONCE
A 12 X8XC196NU 69 A PLLEN2
A5 13 68 A Vce
A6 O 14 67 A Vss
A7 15 66 [A8
Vee] 16 65 [A9
Vs 17 64 A A10
PLLEN1 18 ; 63 A ALL
P30/ Cs0% o 10 View of component as o B AL
P3.1/CS1# 20 mounted on PC board 61 FAL3
P3.2/CS2#] 21 60 [A14
P3.3/CS3# . 22 59 A A15
Vss] 23 58 [Vss
P3.4/CS4#] 24 57 A XTALL
P3.5/CS5# 25 56 [XTAL2
P3.6 / EXTINT2] 26 55 A Vss
NC ¢ 27 54 [P2.7 / CLKOUT
P3.7 / EXTINT3 & 28 53 A Vee
P1.0/EPAO] 29 52 A P2.6 / HLDA#
Vee 630 51 [P2.5/ HOLD#
HANMNMITODONODOANMSET D ONODO
OMOMMOHOMOHOMHMMOISTITITITTITITT I TN
guduuguoogoguguguooooogogooy
HNOXY X O OrodaNm ounQo -
S35d093Y523 3 00RZEQE
wwweagE N FEaa SSREE
AHNOSS S TS i W~
doadY? © ~odo ooy
BeigE g ddd R
[N [a

A2824-02

Figure B-4. 80C196NU 100-lead QFP Package

B-5

8XC196NP, 80C196NU USER’'S MANUAL Inu®

B.2 SIGNAL DESCRIPTIONS

Table B-2 defines the columns used in Table B-3, which describes the signals.

Table B-2. Description of Columns of Table B-3

Column Heading Description

Name Lists the signals, arranged alphabetically. Many pins have two functions, so
there are more entries in this column than there are pins. Every signal is
listed in this column.

Type Identifies the pin function listed in the Name column as an input (l), output
(O), bidirectional (I/O), power (PWR), or ground (GND).

Note that all inputs except RESET# are sampled inputs. RESET# is a level-
sensitive input. During powerdown mode, the powerdown circuitry uses
EXTINTXx as a level-sensitive input.

Description Briefly describes the function of the pin for the specific signal listed in the
Name column. Also lists the alternate fuction that are multiplexed with the
signal (if applicable).

Table B-3. Signal Descriptions

Name Type Description

A15:0 /1O System Address Bus

These address lines provide address bits 0—15 during the entire external
memory cycle during both multiplexed and demultiplexed bus modes.

A19:16 110 Address Lines 16-19

These address lines provide address bits 16—19 during the entire external
memory cycle, supporting extended addressing of the 1 Mbyte address space.

NOTE: Internally, there are 24 address bits; however, only 20 address lines
(A19:0) are bonded out. The internal address space is 16 Mbytes
(000000-FFFFFFH) and the external address space is 1 Mbyte
(00000—FFFFFH). The device resets to FF2080H in internal ROM or
F2080H in external memory.

A19:16 are multiplexed with EPORT.3:0.

AD15:0 110 Address/Data Lines

The function of these pins depend on the bus size and mode. When a bus
access is not occurring, these pins revert to their 1/0 port function.

16-bit Multiplexed Bus Mode :

AD15:0 drive address bits 0-15 during the first half of the bus cycle and drives
or receives data during the second half of the bus cycle.

8-bit Multiplexed Bus Mode :

AD15:8 drive address bits 8-15 during the entire bus cycle. AD7:0 drive
address bits 0-7 during the first half of the bus cycle and either drive or receive
data during the second half of the bus cycle.

16-bit Demultiplexed Mode

AD15:0 drive or receive data during the entire bus cycle.

8-bit Demultiplexed Mode

AD7:0 drive or receive data during the entire bus cycle. AD15:8 drive the data
that is currently on the high byte of the internal bus.

B-6 [|

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Name Type Description

ALE O Address Latch Enable
This active-high output signal is asserted only during external memory cycles.
ALE signals the start of an external bus cycle and indicates that valid address
information is available on the system address/data bus (A19:16 and AD15:0
for a multiplexed bus; A19:0 for a demultiplexed bus). ALE differs from ADV# in
that it does not remain active during the entire bus cycle.
An external latch can use this signal to demultiplex address bits 0-15 from the
address/data bus in multiplexed mode.

BHE# 0 Byte High Enablef
During 16-bit bus cycles, this active-low output signal is asserted for word reads
and writes and high-byte reads and writes to external memory. BHE# indicates
that valid data is being transferred over the upper half of the system data bus.
Use BHE#, in conjunction with AO, to determine which memory byte is being
transferred over the system bus:
BHE# A0 Byte(s) Accessed
0 0 both bytes
0 1 high byte only
1 0 low byte only
BHE# is multiplexed with WRH#.
T The chip configuration register 0 (CCRO) determines whether this pin
functions as BHE# or WRH#. CCRO0.2 = 1 selects BHE#; CCRO0.2 = 0 selects
WRH#.

BREQ# O Bus Request
This active-low output signal is asserted during a hold cycle when the bus
controller has a pending external memory cycle.
The device can assert BREQ# at the same time as or after it asserts HLDA#.
Once it is asserted, BREQ# remains asserted until HOLD# is removed.
You must enable the bus-hold protocol before using this signal (see “Enabling
the Bus-hold Protocol” on page 13-32).
BREQ# is multiplexed with P2.3.

CLKOUT O Clock Output
Output of the internal clock generator. The CLKOUT frequency is % the internal
operating frequency (f). CLKOUT has a 50% duty cycle.
CLKOUT is multiplexed with P2.7.

CS5:.0# (0] Chip-select Lines 0-5

The active-low output CSx# is asserted during an external memory cycle when
the address to be accessed is in the range programmed for chip select x. If the
external memory address is outside the range assigned to the six chip selects,
no chip-select output is asserted and the bus configuration defaults to the CS5#
values.

Immediately following reset, CS0# is automatically assigned to the range
FF2000—FF20FFH (F2000-F20FFH if external).

CS5:0# is multiplexed with P3.5:0

B-7

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table B-3. Signal Descriptions (Continued)

Name Type Description

EA# (NP only) | External Access

This input determines whether memory accesses to special-purpose and
program memory partitions (FF2000—FF2FFFH) are directed to internal or
external memory. These accesses are directed to internal memory if EA# is
held high and to external memory if EA# is held low. For an access to any other
memory location, the value of EA# is irrelevant.

EA# is not latched and can be switched dynamically during normal operating
mode. Be sure to thoroughly consider the issues, such as different access times
for internal and external memory, before using this dynamic switching capability.

On devices with no internal nonvolatile memory, always connect EA# to V.
EA# is not implemented on the 80C196NU.

EPA3:0 /0 Event Processor Array (EPA) Input/Output pins

These are the high-speed input/output pins for the EPA capture/compare
channels. For high-speed PWM applications, the outputs of two EPA channels
(either EPAO and EPA1 or EPA2 and EPA3) can be remapped to produce a
PWM waveform on a shared output pin (see “Generating a High-speed PWM
Output” on page 10-14).

EPA3:0 are multiplexed with P1.3:0.

EPORT.3:0 /1O Extended Addressing Port

On the 8XC196NP, this is a 4-bit, bidirectional, memory-mapped 1/O port.
On the 8XC196NU, this is a 4-bit, bidirectional, standard I/O port.
EPORT.3:0 are multiplexed with A19:16.

EXTINT3:0 | External Interrupts

In normal operating mode, a rising edge on EXTINT x sets the EXTINTXx
interrupt pending bit. EXTINTXx is sampled during phase 2 (CLKOUT high). The
minimum high time is one state time.

In standby and powerdown modes, asserting the EXTINTx signal for at least 50
ns causes the device to resume normal operation. The interrupt need not be
enabled, but the pin must be configured as a special-function input (see
“Bidirectional Port Pin Configurations” on page 7-7). If the EXTINT x interrupt is
enabled, the CPU executes the interrupt service routine. Otherwise, the CPU
executes the instruction that immediately follows the command that invoked the
power-saving mode.

In idle mode, asserting any enabled interrupt causes the device to resume
normal operation.

EXTINTO is multiplexed with P2.2, EXTINT1 is multiplexed with P2.4, EXTINT2
is multiplexed with P3.6, and EXTINT3 is multiplexed with P3.7.

HLDA# O Bus Hold Acknowledge

This active-low output indicates that the CPU has released the bus as the result
of an external device asserting HOLD#.

HLDA# is multiplexed with P2.6.

B-8

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Name

Type

Description

HOLD#

Bus Hold Request

An external device uses this active-low input signal to request control of the
bus. This pin functions as HOLD# only if the pin is configured for its special
function (see “Bidirectional Port Pin Configurations” on page 7-7) and the bus-
hold protocol is enabled. Setting bit 7 of the window selection register (WSR)
enables the bus-hold protocol.

HOLD# is multiplexed with P2.5.

INST

Instruction Fetch

This active-high output signal is valid only during external memory bus cycles.
When high, INST indicates that an instruction is being fetched from external
memory. The signal remains high during the entire bus cycle of an external
instruction fetch. INST is low for data accesses, including interrupt vector
fetches and chip configuration byte reads. INST is low during internal memory
fetches.

NMI

Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI generates a nonmaskable
interrupt. NMI has the highest priority of all prioritized interrupts. Assert NMI for
greater than one state time to guarantee that it is recognized.

ONCE

On-circuit Emulation

Holding ONCE high during the rising edge of RESET# places the device into
on-circuit emulation (ONCE) mode. This mode puts all pins into a high-
impedance state, thereby isolating the device from other components in the
system. The value of ONCE is latched when the RESET# pin goes inactive.
While the device is in ONCE mode, you can debug the system using a clip-on
emulator. To exit ONCE mode, reset the device by pulling the RESET# signal
low. To prevent accidental entry into ONCE mode, connect the ONCE pin to
Vss.

P1.7:0

110

Port 1

This is a standard, bidirectional port that is multiplexed with individually
selectable special-function signals.

Port 1 is multiplexed as follows: P1.0/EPAO, P1.1/EPAL, P1.2/EPA2,
P1.3/EPA3, P1.4/T1CLK, P15/T1DIR, P1.6/T2CLK, and P1.7/T2DIR.

P2.7:0

110

Port 2

This is a standard bidirectional port that is multiplexed with individually
selectable special-function signals.

Port 2 is multiplexed as follows: P2.0/TXD, P2.1/RXD, P2.2/EXTINTO,
P2.3/BREQ#, P2.4/EXTINT1, P2.5/HOLD#, P2.6/HLDA#, and P2.7/CLKOUT.

P3.7:0

110

Port 3
This is an 8-bit, bidirectional, standard I/O port.

Port 3 is multiplexed as follows: P3.0/CS0#, P3.1/CS1#, P3.2/CS2#,
P3.3/CS3#, P3.4/CS4#, P3.5/CS5#, P3.6/EXTINT2, and P3.7/EXTINT3.

P4.3:0

110

Port 4
This is a 4-bit, bidirectional, standard 1/0 port with high-current drive capability.

Port 4 is multiplexed as follows: P4.0/PWMO, P4.1/PWM1, and P4.2/PWM2.
P4.3 is not multiplexed.

B-9

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table B-3. Signal Descriptions (Continued)

Name

Type

Description

PLLEN2:1
(NU only)

Phase-locked Loop 1 and 2 Enable

These input pins are used to enable the on-chip clock multiplier feature and
select either the doubled or quadrupled clock speed as follows:

PLLEN1 PLLENZ2 Mode

0 0 standard mode; clock multiplier circuitry disabled.
Internal clock equals the XTAL1 input frequency.

0 1 Reservedt

1 0 doubled mode; clock multiplier circuitry enabled.
Internal clock is twice the XTAL1 input frequency.

1 1 quadrupled mode; clock multiplier circuitry enabled.
Internal clock is four times the XTAL1 input
frequency.

T This reserved combination causes the device to enter an unsupported test
mode.

PWM2:0

Pulse Width Modulator Outputs

These are PWM output pins with high-current drive capability. The duty cycle
and frequency-pulse-widths are programmable.

PWM2:0 are multiplexed with P4.2:0.

RD#

Read

Read-signal output to external memory. RD# is asserted only during external
memory reads.

READY

Ready Input

This active-high input signal is used to lengthen external memory cycles for
slow memory by generating wait states in addition to the wait states that are
generated internally.

When READY is high, CPU operation continues in a normal manner with wait
states inserted as programmed in CCRO or the chip-select x bus control
register. READY is ignored for all internal memory accesses.

RESET#

110

Reset

A level-sensitive reset input to and open-drain system reset output from the
microcontroller. Either a falling edge on RESET# or an internal reset turns on a
pull-down transistor connected to the RESET# pin for 16 state times. In the
powerdown, standby, and idle modes, asserting RESET# causes the chip to
reset and return to normal operating mode. After a device reset, the first
instruction fetch is from FF2080H (or F2080H in external memory). For the
80C196NP and 80C196NU, the program and special-purpose memory
locations (FF2000-FF2FFFH) reside in external memory. For the 83C196NP,
these locations can reside either in external memory or in internal ROM.

B-10

SIGNAL DESCRIPTIONS

Table B-3. Signal Descriptions (Continued)

Name Type Description

RPD | Return from Powerdown
Timing pin for the return-from-powerdown circuit.
If your application uses powerdown mode, connect a capacitort between RPD
and Vg if either of the following conditions are true.
« theinternal oscillator is the clock source
« the phase-locked loop (PLL) circuitry (B0C196NU only) is enabled (see

PLLENZ2:1 signal description)

The capacitor causes a delay that enables the oscillator and PLL circuitry to
stabilize before the internal CPU and peripheral clocks are enabled.
The capacitor is not required if your application uses powerdown mode and if
both of the following conditions are true.
« an external clock input is the clock source
« the phase-locked loop circuitry (80C196NU only) is disabled
If your application does not use powerdown mode, leave this pin unconnected.
T Calculate the value of the capacitor using the formula found on page 12-11.

RXD 110 Receive Serial Data
In modes 1, 2, and 3, RXD receives serial port input data. In mode O, it
functions as either an input or an open-drain output for data.
RXD is multiplexed with P2.1.

T1CLK | Timer 1 External Clock
External clock for timer 1. Timer 1 increments (or decrements) on both rising
and falling edges of T1CLK. Also used in conjunction with T1DIR for quadrature
counting mode.
and
External clock for the serial I/O baud-rate generator input (program selectable).
T1CLK is multiplexed with P1.4.

T2CLK | Timer 2 External Clock
External clock for timer 2. Timer 2 increments (or decrements) on both rising
and falling edges of T2CLK. Also used in conjunction with T2DIR for quadrature
counting mode.
T2CLK is multiplexed with P1.6.

T1DIR | Timer 1 External Direction
External direction (up/down) for timer 1. Timer 1 increments when T1DIR is high
and decrements when it is low. Also used in conjunction with T1CLK for
quadrature counting mode.
T1DIR is multiplexed with P1.5.

T2DIR | Timer 2 External Direction
External direction (up/down) for timer 2. Timer 2 increments when T2DIR is high
and decrements when it is low. Also used in conjunction with T2CLK for
quadrature counting mode.
T2DIR is multiplexed with P1.7.

TXD o Transmit Serial Data

In serial I/O modes 1, 2, and 3, TXD transmits serial port output data. In mode
0, it is the serial clock output.

TXD is multiplexed with P2.0.

B-11

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Table B-3. Signal Descriptions (Continued)

Name Type Description

Ve PWR | Digital Supply Voltage
Connect each V. pin to the digital supply voltage.

Vgs GND | Digital Circuit Ground
Connect each Vgg pin to ground through the lowest possible impedance path.

WR# o] Write
This active-low output indicates that an external write is occurring. This signal is
asserted only during external memory writes.
WR# is multiplexed with WRL#.
T The chip configuration register 0 (CCRO) determines whether this pin
functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCR0.2 = 0 selects
WRL#.

WRH#) Write Hight
During 16-bit bus cycles, this active-low output signal is asserted for high-byte
writes and word writes to external memory. During 8-bit bus cycles, WRH# is
asserted for all write operations.
WRH# is multiplexed with BHE#.
T The chip configuration register 0 (CCRO) determines whether this pin
functions as BHE# or WRH#. CCRO0.2 = 1 selects BHE#; CCRO0.2 = 0 selects
WRH#.

WRL# o) Write LowT
During 16-bit bus cycles, this active-low output signal is asserted for low-byte
writes and word writes. During 8-bit bus cycles, WRL# is asserted for all write
operations.
WRL# is multiplexed with WR#.
T The chip configuration register 0 (CCRO) determines whether this pin
functions as WR# or WRL#. CCRO0.2 = 1 selects WR#; CCR0.2 = 0 selects
WRL#.

XTAL1 | Input Crystal/Resonator or External Clock Input
Input to the on-chip oscillator, internal phase-locked loop circuitry (80C196NU),
and the internal clock generators. The internal clock generators provide the
peripheral clocks, CPU clock, and CLKOUT signal. When using an external
clock source instead of the on-chip oscillator, connect the clock input to XTAL1.
The external clock signal must meet the V, specification for XTAL1 (see
datasheet).

XTAL2 O Inverted Output for the Crystal/Resonator

Output of the on-chip oscillator inverter. Leave XTAL2 floating when the design
uses a external clock source instead of the on-chip oscillator.

B-12

intel.

B.3 DE

FAULT CONDITIONS

SIGNAL DESCRIPTIONS

Table B-5 lists the default functions of the I/0O and control pins of the 8XC196NP ad8®Q0

with their values during various operating conditions. Table B-4 defines the symbols used to rep-
resent the pin status. Refer to the DC Characteristics table in the datasheet for actual specifica-

tions for \, V|, Vo, and \f,.

Table B-4. Definition of Status Symbols
Symbol Definition Symbol Definition
0 Voltage less than or equal to Vg, V. MDO Medium pull-down
1 Voltage greater than or equal to Vo, Vi, MD1 Medium pull-up
Hiz High impedance WKO Weak pull-down
Loz0 Low impedance; strongly driven low WK1 Weak pull-up
Lozl Low impedance; strongly driven high ODIO Open-drain I/O
Table B-5. 8XC196NP and 80C196NU Pin Status
Power-
. Upon down
| Multiplexed | Puring RESET# (NP/NU) Bus
Port Pins With RAEc?iE(-er# Inactive Idle and Hold Idle
(Note 11) Standby
(NU only)
P1.3:0 EPA3:0 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.4 T1CLK WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.5 T1DIR WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.6 T2CLK WK1 WK1 (Note 1) (Note 1) (Note 1) —
P1.7 T2DIR WK1 WK1 (Note 1) (Note 1) (Note 1) —
P2.0 TXD WK1 WK1 (Note 1) (Note 1) (Note 1) —
P2.1 RXD WK1 WK1 (Note 1) (Note 1) (Note 1) —
pP2.2 EXTINTO WK1 WK1 (Note 1) (Note 1) (Note 1) —
P2.3 BREQ# WK1 WK1 (Note 1) (Note 1) (Note 1) —
P2.4 EXTINT1 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P2.5 HOLD# WK1 WK1 (Note 1) (Note 1) Force O —
P2.6 HLDA# WK1 WK1 (Note 1) (Note 1) 0 —
P2.7 CLKOUT CLKOUT CLKOUT (Note 1) (Note 2) (Note 1) —
active; active;
LoZ0/1 Loz0/1
P3.0 CSo# WK1 1 (NP only) (Note 3) (Note 3) (Note 4) —
0 (NU only)
P3.5:1 CS5:1# WK1 WK1 (Note 3) (Note 3) (Note 4) —
P3.6 EXTINT2 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P3.7 EXTINT3 WK1 WK1 (Note 1) (Note 1) (Note 1) —
P4.2:0 PWM2:0 WK1 WK1 (Note 1) (Note 1) (Note 1) —

B-13

8XC196NP, 80C196NU USER’'S MANUAL

Table B-5. 8XC196NP and 80C196NU Pin Status (Continued)

Power-
. Upon down
Multiplexed | During RESET# (NP/NU) Bus
Port Pins) RESET# - Idle Hold
With Active Inactive and Idle
(Note 11) Standby
(NU only)
P4.3 — WK1 WK1 (Note 1) (Note 1) (Note 1) —
EPORT.3:0 | A19:16 WK1 1 (Note 5) (Note 5) (Note 6) (Note 8)
— A15:0 WK1 LoZ0 (Note 7) (Note 7) Hiz LoZ0
— AD15:0 WK1 LoZ0 (Note 7) (Note 7) Hiz LoZ0
— ALE WKO 0 (Note 9) (Note 9) WKO LoZ0
— BHE# WK1 1 (Note 10) | (Note 10) WK1 LoZ1
— EA# Hiz Hiz Hiz Hiz Hiz —
(NP only)
— INST WKO 0 (Note 9) (Note 9) WKO LoZ0
— NMI WKO WKO WKO WKO WKO —
— ONCE MDO MDO MDO MDO MDO —
— PLLEN1 Hiz Hiz Hiz Hiz Hiz —
(NU only)
— PLLEN2 MDO MDO MDO MDO MDO —
(NU only)
— RD# WK1 1 (Note 10) | (Note 10) WK1 LoZ1
— READY WK1 WK1 WK1 WK1 WK1 —
— RESET# 0 WK1 WK1 WK1 WK1 —
— RPD LoZ1 LoZ1 LoZ1l LoZ1l Lozl —
— WR## WK1 1 (Note 10) | (Note 10) WK1 LoZ1
XTALL - Oscinput, | Oscinput, | Oscinput, | Oscinput, |r?suct -
HiZ HiZ HiZ HiZ put,
Hiz
XTAL2 — Osc output, | Osc output, Osc Hiz Osc —
Loz0/1 Loz0/1 output, output,
Loz0/1 Loz0/1
NOTE:
1. If PXx_MODE.y = 0, then port is as programmed. If Px_MODE.y = 1, then as specified by the associ-

S

RRoOoo~NO

=o

B-14

ated peripheral.

If P2_MODE.7 = 0, then port is as programmed. If P2_MODE.7 = 1, then 1.

Used as chip select: If HLDA# = 0, then WK1. If HLDA# = 1, then LoZ1. Used as port: then port is as
programmed.

Used as chip select: WK1. Used as port: then port is as programmed.

When used as extended address: If HLDA# = 1, then 0. If HLDA# = 0, then HiZ

When used as EPORT, then port value.

When used as extended address, then HiZ. When used as EPORT, then port value.

If HLDA# = 1, then LoZO. If HLDA# = 0, then HiZ.

When used as extended address: then previous address. When used as EPORT: then port value.

If HLDA# = 1, then LoZO0. If HLDA# = 0, then WKO.

If HLDA# = 1, then LoZ1. If HLDA# = 0, then WK1.

The values in this column are valid until user code configures the specific signal (i.e., until Px_MODE
is written).

intgl.

Registers

APPENDIX C
REGISTERS

This appendiprovides réerence information about the device registers. Table C-1 lists the mod-
ules and major components of the device with their related configuration and status registers. Ta-
ble C-2 lists the registers, arranged alphabetically by mnemonic, along with their names,
addresses, and reset values. Following the tables, individual descriptions of the registers are ar-
ranged alphabetically by mnemonic.

Table C-1. Modules and Related Registers

Chip Configuration Chipaelegi g)nits (XEPOL’JZ) « EPOA_ 3
CCRO ADDRCOMx ACC_0x (80C196NU) EPA_MASK
CCR1 ADDRMSKXx ACC_STAT (80C196NU) | EPA_PEND
BUSCONXx ONES_REG EPAX_CON
PSW EPAX_TIME
SP
ZERO_REG
Extended Port I(/XO:Pf_rZs) Interrupts Memory Control
EP_DIR Px_DIR INT_MASK WSR
EP_MODE Px_MODE INT_MASK1 WSR1 (80C196NU)
EP_PIN Px_PIN INT_PEND
EP_REG Px_REG INT_PEND1
(XP:V\(I)'YIZ) PTS Serial Port (Iiiniisz)
CON_REGO PTSSEL SBUF_RX TIMERX
PWMx_CONTROL PTSSRV SBUF_TX TXCONTROL
SP_BAUD
SP_CON
SP_STATUS

C-1

8XC196NP, 80C196NU USER’'S MANUAL

Table C-2. Register Name, Address, and Reset Status

N

tel.

Binary Reset Value

MRegister Register Name Hex
nemonic Address High Low
ACC_00 (NU) Accumulator 0 000CH 0000 0000 0000 0000
ACC_02 (NU) Accumulator 2 000EH 0000 0000 0000 0000
ACC_STAT (NU) Accumulator Control and Status 000BH 0000 0000
ADDRCOMO Address Compare 0 1F40H 0000 1111 0010 0000
ADDRCOM1 Address Compare 1 1F48H XXXX 0000 0000 0000
ADDRCOM?2 Address Compare 2 1F50H XXXX 0000 0000 0000
ADDRCOM3 Address Compare 3 1F58H XXXX 0000 0000 0000
ADDRCOM4 Address Compare 4 1F60H XXXX 0000 0000 0000
ADDRCOM5 Address Compare 5 1F68H XXXX 0000 0000 0000
ADDRMSKO Address Mask 0 1F42H XXXX 1111 1111 1111
ADDRMSK1 Address Mask 1 1F4AH XXXX 1111 1111 1111
ADDRMSK2 Address Mask 2 1F52H XXXX 1111 1111 1111
ADDRMSK3 Address Mask 3 1F5AH XXXX 1111 1111 1111
ADDRMSK4 Address Mask 4 1F62H XXXX 1111 1111 1111
ADDRMSK5 Address Mask 5 1F6AH XXXX 1111 1111 1111
BUSCONO Bus Control 0 1F44H 0000 0011
BUSCON1 Bus Control 1 1F4CH 0000 0000
BUSCON2 Bus Control 2 1F54H 0000 0000
BUSCON3 Bus Control 3 1F5CH 0000 0000
BUSCON4 Bus Control 4 1F64H 0000 0000
BUSCON5 Bus Control 5 1F6CH 0000 0000
CCRO Chip Configuration 0 FF2018H XXXX XXXX
CCR1 Chip Configuration 1 FF201AH XXXX XXXX
CON_REGO PWM Clock Prescaler Control O 1FB6H 1111 1110
EP_DIR Extended Port I/O Direction 1FE3H 11nm 11n
EP_MODE Extended Port Mode 1FE1H 1111 1111
EP_PIN Extended Port Pin Input 1FE7H XXXX XXXX
EP_REG Extended Port Data Output 1FES5H XXXX 0000
EPA_MASK EPA Mask 1F9CH 1010 1010
EPA_PEND EPA Pending 1F9EH 1010 1010
EPAO_CON EPA Capture/Comp 0 Control 1F80H 0000 0000
EPA1_CON EPA Capture/Comp 1 Control 1F84H 0000 0000 0000 0000

C-2

intel.

Table C-2. Register Name, Address, and Reset Status (Continued)

REGISTERS

Binary Reset Value

Register Register Name Hex
Mnemonic Address High Low

EPA2_CON EPA Capture/Comp 2 Control 1F88H 0000 0000
EPA3_CON EPA Capture/Comp 3 Control 1F8CH 0000 0000 0000 0000
EPAO_TIME EPA Capture/Comp O Time 1F82H 0000 0000 0000 0000
EPA1_TIME EPA Capture/Comp 1 Time 1F86H 0000 0000 0000 0000
EPA2_TIME EPA Capture/Comp 2 Time 1F8AH 0000 0000 0000 0000
EPA3_TIME EPA Capture/Comp 3 Time 1F8EH 0000 0000 0000 0000
INT_MASK Interrupt Mask 0008H 0000 0000
INT_MASK1 Interrupt Mask 1 0013H 0000 0000
INT_PEND Interrupt Pending 0009H 0000 0000
INT_PEND1 Interrupt Pending 1 0012H 0000 0000
ONES_REG Ones Register 0002H 1111 1111 1111 1111
P1 DIR Port 1 1/0 Direction 1FD2H 1111 1111
P1_MODE Port 1 Mode 1FDOH 0000 0000
P1_PIN Port 1 Pin Input 1FD6H XXXX XXXX
P1_REG Port 1 Data Output 1FD4H 1111 1111
P2_DIR Port 2 1/0 Direction 1FD3H 1111 1111
P2_MODE Port 2 Mode 1FD1H 1000 0000
P2_PIN Port 2 Pin Input 1FD7H XXXX XXXX
P2_REG Port 2 Data Output 1FD5H 1111 1111
P3_DIR Port 3 1/0 Direction 1FDAH 1111 1111
P3_MODE Port 3 Mode 1FD8H 0000 0001
P3_PIN Port 3 Pin Input 1FDEH XXXX XXXX
P3_REG Port 3 Data Output 1FDCH 1111 1111
P4_DIR Port 4 1/0 Direction 1FDBH 1111 1111
P4_MODE Port 4 Mode 1FD9H 0000 0000
P4_PIN Port 4 Pin Input 1FDFH XXXX XXXX
P4_REG Port 4 Data Output 1FDDH 1111 1111
PSW Program Status Word

PTSSEL PTS Select 0004H 0000 0000 0000 0000
PTSSRV PTS Service 0006H 0000 0000 0000 0000
PWMO_CONTROL | PWM 0 Control 1FBOH 0000 0000
PWM1_CONTROL | PWM 1 Control 1FB2H 0000 0000
PWM2_CONTROL | PWM 2 Control 1FB4H 0000 0000
SBUF_RX Serial Port Receive Buffer 1FB8H 0000 0000

C-3

8XC196NP, 80C196NU USER’'S MANUAL

intel.

Table C-2. Register Name, Address, and Reset Status (Continued)

Binary Reset Value

Register Register Name Hex
Mnemonic Address High Low
SBUF_TX Serial Port Transmit Buffer 1FBAH 0000 0000
SP Stack Pointer 0018H XXXX XXXX XXXX XXXX
SP_BAUD Serial Port Baud Rate 1FBCH 0000 0000 0000 0000
SP_CON Serial Port Control 1FBBH 0000 0000
SP_STATUS Serial Port Status 1FB9H 0000 1011
T1CONTROL Timer 1 Control 1F90H 0000 0000
T2CONTROL Timer 2 Control 1F94H 0000 0000
TIMER1 Timer 1 Value 1F92H 0000 0000 0000 0000
TIMER2 Timer 2 Value 1F96H 0000 0000 0000 0000
WSR Window Selection 0014H 0000 0000
WSR1 (NU) Window Selection 1 0015H 0000 0000
ZERO_REG Zero Register 0000H 0000 0000 0000 0000

C-4

intel.

REGISTERS
ACC_0x
ACC_0x Address: Table C-3
) Reset State:

x=0, 2 (80C196NU)

The 32-bit accumulator register (ACC_0x) resides at locations 0C-0FH. You can read from or write to
the accumulator register as two words at locations OCH and OEH.

80C196NU 15 8
Accumulator Value (word 1, high byte) ‘
7 0
ACC_02 Accumulator Value (word 1, low byte) ‘
15 8
Accumulator Value (word 0, high byte) ‘
7 0
ACC_00 Accumulator Value (word 0, low byte) ‘
NuBmi:)er Function
15:0 Accumulator Value

You can read this register to determine the current value of the accumulator. You can

write to this register to clear or preload a value into the accumulator.

Table C-3. ACC_0Ox Addresses and Reset Values

Register Address Reset Value
ACC_00 000CH 00H
ACC_02 000EH 00H

C-5

8XC196NP, 80C196NU USER’'S MANUAL Inu®

ACC_STAT
ACC_STAT Address: 0BH
(80C196NU) Reset State: OOH

The accumulator control and status (ACC_STAT) register enables and disables fractional and
saturation modes and contains three status flags that indicate the status of the accumulator’s

contents.
7 0
8oci9eNU | FME | sMe | — | — || — |sTovF| OvF | STsAT |
Bit Bit)

Number | Mnemonic Function

7 FME Fractional Mode Enable
Set this bit to enable fractional mode. (See Table C-4.) In this mode, the
result of a signed multiplication instruction is shifted left by one bit before it
is added to the contents of the accumulator.
For unsigned multiplication, this bit is ignored.

6 SME Saturation Mode Enable
Set this bit to enable saturation mode. (See Table C-4.) In this mode, the
result of a signed multiplication operation is not allowed to overflow or
underflow.
For unsigned multiplication, this bit is ignored.

5:3 — Reserved; for compatibility with future devices, write zeros to these bits.

STOVF Sticky Overflow Flag

For unsigned multiplication, this bit is set if a carry out of bit 31 occurs.
Unless saturation mode is enabled, this bit is set for signed multiplication to
indicate that the sign bit of the accumulator and the sign bit of the addend
are equal, but the sign bit of the result is the opposite. (See Table C-4.)
Software can clear this flag; hardware does not clear it.

1 OVF Overflow Flag
This bit indicates that an overflow occurred during the preceding accumu-
lation. (See Table C-4.)
This flag is dynamic; it can change after each accumulation.

0 STSAT Sticky Saturation Flag
This bit indicates that a saturation has occurred during accumulation with
saturation mode enabled. (See Table C-4.)
Software can clear this flag; hardware does not clear it.

C-6

Inbl® REGISTERS

ACC_STAT
Table C-4. Effect of SME and FME Bit Combinations

SME | FME Description

0 0 Sets the OVF and STOVF flags if the sign bits of the accumulator and the addend (the
number to be added to the contents of the accumulator) are equal, but the sign bit of the
result is the opposite.

0 1 Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Sets the OVF and STOVF flags if the sign bits of the
accumulator and the addend are equal, but the sign bit of the result is the opposite.

1 0 | Accumulates a signed integer value up or down to saturation and sets the STSAT flag.
Positive saturation changes the accumulator value to 7FFFFFFFH; negative saturation
changes the accumulator value to 80000000H. Accumulation proceeds normally after
saturation, which means that the accumulator value can increase from a negative saturation
or decrease from a positive saturation.

1 1 Shifts the addend (the number to be added to the contents of the accumulator) left by one
bit before adding it to the accumulator. Accumulates a signed integer value up or down to
saturation and sets the STSAT flag. Positive saturation changes the accumulator value to
7FFFFFFFH; negative saturation changes the accumulator value to 80000000H. Accumu-
lation proceeds normally after saturation, which means that the accumulator value can
increase from a negative saturation or decrease from a positive saturation.

C-7

8XC196NP, 80C196NU USER’'S MANUAL Inu®

ADDRCOMx
ADDRCOMXx Address: Table C-5
X =0-5 Reset State:

The address compare (ADDRCOMX) register specifies the base (lowest) address of the address
range. The base address of a 2"-byte address range must be on a 2-byte boundary.

15 8
‘ _ ‘ _ ‘ — ‘ — H BASE19 ‘ BASE18 ‘ BASE17 ‘ BASE16 ‘
7 0

‘ BASE15 ‘ BASE14 ‘ BASE13 ‘ BASE12 H BASE1L ‘ BASE10 ‘ BASE9 ‘ BASES ‘

Bit Bit Function
Number Mnemonic
15:12 — Reserved; for compatibility with future devices, write zeros to these bits.
11:0 BASE19:8 Base Address Bits

These bits are the 12 most-significant bits of the base address of the
address range assigned to chip-select x.

Table C-5. ADDRCOM x Addresses and Reset Values

Register Address Reset Value
ADDRCOMO 1F40H OF20H
ADDRCOM1 1F48H X000H
ADDRCOM2 1F50H X000H
ADDRCOM3 1F58H X000H
ADDRCOM4 1F60H X000H
ADDRCOMS5 1F68H X000H

C-8 [|

Inbl® REGISTERS

ADDRMSKXx

ADDRMSK x Address: Table C-6
X =0-5 Reset State:

The address mask (ADDRMSKX) register, together with the address compare register, defines the
address range that is assigned to the chip-select x output, CSx#. The address mask register
determines the size of the address range, which must be 27 bytes, where n=8, 9, . ., 20. For a 2"-
byte address range, calculate n; = 20 — n, and set the n; most-significant bits of MASK19:8 in the
address mask register.

15 8

‘ — ‘ — ‘ — ‘ — H MASK19 ‘ MASK18 ‘ MASK17 ‘ MASK16 ‘
7 0
‘ MASK15 ‘ MASK14 ‘ MASK13 ‘ MASK12 H MASK11 ‘ MASK10 ‘ MASK9 ‘ MASKS ‘

Bit Bit Function
Number Mnemonic
15:12 — Reserved; for compatibility with future devices, write zeros to these bits.
11:0 MASK19:8 Address Mask Bits

For a 2"-byte address range, set the n; most-significant bits of
MASK19:8, where n; =20 — n.

Table C-6. ADDRMSK x Addresses and Reset Values

Register Address Reset Value
ADDRMSKO 1F42H XFFFH
ADDRMSK1 1F4AH XFFFH
ADDRMSK?2 1F52H XFFFH
ADDRMSK3 1F5AH XFFFH
ADDRMSK4 1F62H XFFFH
ADDRMSK5 1F6AH XFFFH

C-9

8XC196NP, 80C196NU USER’'S MANUAL Inu®

BUSCONXx
BUSCONXx Address: Table C-7
X =0-5 Reset State:

For the address range assigned to chip-select x, the bus control (BUSCONYX) register specifies the
number of wait states, the bus width, and the address/data multiplexing for all external bus cycles that
access address range X.

7 0
DEMUX | BW16 — - || = — ws1 WSO
Bit Bit .
Number Mnemonic Function
7 DEMUX Address/Data Multiplexing
This bit specifies the address/data multiplexing on AD15:0 for all
external accesses to the address range assigned to chip-select output x.
0 = multiplexed
1 = demultiplexed
6 BW16 Bus Width
This bit specifies the bus width for all external accesses to the address
range assigned to chip-select output x.
0 = 8 bits
1 = 16 bits
5:2 — Reserved; for compatibility with future devices, write zeros to these bits.
1:0 WS1:0 Wait States
These bits specify the number of wait states for all external accesses to
the address range assigned to chip-select output x.
WS1 WSO Wait States
0 0 0
0 1 1
1 0 2
1 1 3

C-10

Table C-7. BUSCON x Addresses and Reset Values

Register Address Reset Value
BUSCONO 1F44H 03H
BUSCON1 1F4CH OOH
BUSCON2 1F54H OOH
BUSCON3 1F5CH OOH
BUSCON4 1F64H OOH
BUSCON5 1F6CH OOH

Inbl® REGISTERS

CCRO

CCRO no direct access’

The chip configuration 0 (CCRO) register enables or disables powerdown and standby (80C196NU
only) modes and selects the write-control mode. It also contains the bus-control parameters for
fetching chip configuration byte 1.

7 0
| 1 | 1 | wsi | wso || DEMUX BHE# | BW16 | PD
Bit Bit Function
Number Mnemonic
7:6 1 To guarantee device operation, write ones to these bits.
5:4 WS1:0 Wait States

These two bits control the number of wait states that are used for an
external fetch of CCB1.

WS0 Ws1

0 0 zero wait states

0 1 one wait state

1 0 two wait states

1 1 three wait states
3 DEMUX Select Demultiplexed Bus

Selects the demultiplexed bus mode for an external fetch of CCB1:

0 = multiplexed — address and data are multiplexed on AD15:0.

1 = demultiplexed — data only on AD15:0.

2 BHE# Write-control Mode

Selects the write-control mode, which determines the functions of the

BHE#/WRH# and WR#/WRL# pins for external bus cycles:

0 = write strobe mode: the BHE#/WRH# pin operates as WRH#, and the
WR#/WRL# pin operates as WRL#.

1 = standard write-control mode: the BHE#/WRH# pin operates as
BHE#, and the WR#/WRL# pin operates as WR#.

1 BW16 Buswidth Control
Selects the bus width for an external fetch of CCB1:
0 = 8-bit bus
1 = 16-bit bus

0 PD Powerdown Enable

Enables or disables the IDLPD #2 and IDLPD #3 instructions. When
enabled, the IDLPD #2 instruction causes the microcontroller to enter
powerdown mode and for the 80C196NU only, the IDLPD #3 instruction
causes the microcontroller to enter standby mode.

0 = disable powerdown and standby modes
1 = enable powerdown and standby modes

If your design uses powerdown or standby mode, set this bit when you
program the CCBs. If it does not, clearing this bit when you program the
CCBs will prevent accidental entry into powerdown and standby modeT.
(Chapter 12, “Special Operating Modes,” discusses powerdown and
standby modes.)

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device reset.
The CCBs reside in nonvolatile memory at addresses FF2018H (CCBO0) and FF201AH (CCB1).

C-11

8XC196NP, 80C196NU USER’'S MANUAL Inu®

CCR1

CCR1 no direct access’

The chip configuration 1 (CCR1) register selects the 16-bit or 24-bit addressing mode and (for the
8XC196NP only) controls whether the internal ROM is mapped into two address ranges, FF2000—
FF2FFFH and 002000-002FFFH, or into FF2000-FF2FFFH only.

7 0

8XC196NP ‘ 1 ‘ 1 ‘ 0 ‘ 1 ‘ ‘ 1 ‘ REMAP ‘ MODE64 ‘ — ‘
7 0

80C196NU ‘ 1 ‘ 1 ‘ DM ‘ 1 ‘ ‘ 1 ‘ — ‘ MODE64 ‘ — ‘

NuBmi:)er Mne?riltonic Function

7:6 1 To guarantee device operation, write ones to these bits.

5tf DM Deferred Mode

Enables the deferred bus-cycle mode. If the 80C196NU is using a demulti-
plexed bus and deferred mode is enabled, a delay of 2t occurs in the first
bus cycle following a chip-select output change and the first write cycle
following a read cycle. (See “Deferred Bus-cycle Mode (80C196NU Only)”
on page 13-40.)

0 = deferred bus-cycle mode disabled

1 = deferred bus-cycle mode enabled

4:3 1 To guarantee device operation, write ones to these bits.

21t REMAP Internal ROM Mapping
Controls the internal ROM mapping.

0 = ROM maps to FF2000—FF2FFFH only
1= ROM maps to FF2000-FF2FFFH and 002000-002FFFH

1 MODEG64 Addressing Mode
Selects 64-Kbyte or 1-Mbyte addressing.

0 = selects 1-Mbyte addressing
1 = selects 64-Kbyte addressing

0 — Reserved; for compatibility with future devices, write zero to this bit.

T The CCRs are loaded with the contents of the chip configuration bytes (CCBs) after a device reset.
The CCBs reside in nonvolatile memory at addresses FF2018H (CCBO0) and FF201AH (CCB1).

T Bit 5 is reserved on the 8XC196NP device and bit 2 is reserved on the 80C196NU device. For
compatibility with future devices, write zeros to these bits.

C-12 [|

Inbl® REGISTERS

CON_REGO
CON_REGO Address: 1FB6H
- Reset State: FEH

The control (CON_REGO) register controls the clock prescaler for the three pulse-width modulators
(PWMO-PWM2).

7 0
sxcioene | — | — | — | — || = | — | — | cukot |
7 0
gocteny | — | — | — | — || = | — [ok | cko |
Nuili)er Mne?rlltonic Function
71 (NP) |— Reserved; for compatibility with future devices, write zeros to these bits.
7:2 (NU)
0 (NP) CLKO Enable PWM Clock Prescaler

This bit controls the PWM output period by enabling or disabling the clock
prescaler (divide-by-two) on the three pulse-width modulators (PWMO—
PWM2).

0 = disable; PWM output period is 512 state times
1 = enable; PWM output period is 1024 state times

1.0 (NU) | CLK1:0 Enable PWM Clock Prescaler

These bits control the PWM output period on the three pulse-width
modulators (PWM0-PWM2).

CLK1 CLKO

0 0 disable clock prescaler

0 1 enable divide-by-two prescaler; PWM output period is
1024 state times

1 X enable divide-by-four prescaler; PWM output period is

2048 state times
T This bit was called SLOW_PWM in earlier documentation for the 8XC196NP.

[| C-13

8XC196NP, 80C196NU USER’'S MANUAL

EP_DIR

intel.

EP_

DIR

Address:
Reset State:

1FE3H
FFH

In 1/0 mode, each bit of the extended port I/O direction (EP_DIR) register controls the direction of the
corresponding pin. Clearing a bit configures a pin as a complementary output; setting a bit configures
a pin as either an input or an open-drain output. (Open-drain outputs require external pull-ups).

Any pin that is configured for its extended-address function is forced to the complementary output
mode except during reset, hold, idle, powerdown, and standby. (Standby mode is available only on the

This bit configures EPORT.x as a complementary output or an
input/open-drain output.

0 = complementary output
1 = input or an open-drain output

80C196NU.)
7 0
— — — — |[Pms PIN2 PIN1 PINO
Bit Bit : Function
Number Mnemonic
7:4 — Reserved; always write as ones.
3:0 PIN3:0 Extended Address Port Pin x Direction

C-14

|nte|® REGISTERS
EP_MODE

EP_MODE Address: 1FE1H

- Reset State: FFH

Each bit of the extended port mode (EP_MODE) register controls whether the corresponding pin
functions as a standard I/O port pin or as an extended-address signal. Setting a bit configures a pin as
an extended-address signal; clearing a bit configures a pin as a standard 1/O port pin.

This bit determines the mode of EPORT.x:

0 = standard 1/O port pin
1 = extended-address signal

7 0
— — — — |[Pms PIN2 PIN1 PINO
Bit Bit : Function

Number Mnemonic
7:4 — Reserved; always write as zeros.
3:0 PIN3:0 Extended Address Port Pin x Mode

C-15

8XC196NP, 80C196NU USER’'S MANUAL

EP_PIN

intel.

EP_PIN

Address:
Reset State:

1FE7H
XXH

Each bit of the extended port input (EP_PIN) register reflects the current state of the corresponding
pin, regardless of the pin configuration.

7 0
— — — — || Pns PIN2 PIN1 PINO
Bit Bit Function

Number Mnemonic
7:4 — Reserved; always write as zeros.
3.0 PIN3:0 Extended Address Port Pin x Input
This bit contains the current state of EPORT. x.

C-16

Inbl® REGISTERS

EP_REG
EP REG Address: 1FE5H
- Reset State: XOH

Each bit of the extended port data output (EP_REG) register contains data to be driven out by the
corresponding pin. When a pin is configured as standard I/O (EP_MODE.x = 0), the result of a CPU
write to EP_REG is immediately visible on the pin.

During nonextended data accesses, EP_REG contains the value of the memory page that is to be
accessed. For compatibility with software tools, clear the EP_REG bit for any EPORT pin that is
configured as an extended-address signal (EP_MODE.x set).

80C196NU Only: For nonextended data accesses, the 80C196NU forces the page address to 00H.
You cannot change pages by modifying EP_REG.

7 0
— — — — || Pns PIN2 PIN1 PINO
Bit Bit Function

Number Mnemonic
7:4 — Reserved; always write as zeros.
3.0 PIN3:0 Extended Address Port Pin x Output
If EPORT.x is to be used as an output, write the data that it is to drive
out.

If EPORT.x is to be used as an input, set this bit.

For the 8XC196NP, if EPORT.x is to be used as an address line, write
the correct value for the memory page to be accessed by nonextended
instructions.

The 80C196NU forces the page address to O0OH. You cannot change
pages by modifying EP_REG

[| C-17

8XC196NP, 80C196NU USER’'S MANUAL Inu®

EPA_MASK

EPA_MASK Address: 1F9CH
- Reset State: AAH

The EPA interrupt mask (EPA_MASK) register enables or disables (masks) the multiplexed EPA3:0
overrun interrupts (OVR3:0).

7 0
— OVR3 — owrz || — OVR1 — OVRO
Bit Bit Function
Number Mnemonic
7,531 |— Reserved; for compatibility with future devices, write zeros to these bits.
6,4,2,0 |OVRS Setting this bit enables the corresponding source as a shared overrun
OVR2 interrupt source. The shared overrun interrupts (OVRO_1 and OVR2_3)
OVR1 are enabled by setting their interrupt enable bits in the interrupt mask 1
OVRO (INT_MASKA1) register.

C-18

Inbl® REGISTERS

EPA_PEND
EPA_PEND Address: 1F9EH
- Reset State: AAH

When hardware detects a pending EPA3:0 overrun interrupt (OVR3:0), it sets the corresponding bit in
the EPA interrupt pending (EPA_PEND) register. OVRO and OVR1 are multiplexed to share one bit
(OVRO_1) in the INT_PEND1 register. Similarly, OVR2 and OVRS3 are multiplexed to share another bit

(OVR2_3) in the INT_PENDL1 register.
7

_ OVR3 _ OVR2 H _ OVR1 _ OVRO

Bit .
Number Function

7,5,3,1 | Reserved. These bits are undefined.
6,4,2,0 | Any setbitindicates that the corresponding overrun interrupt source is pending.
NOTE: This register was called EPA_STAT in previous documentation for the 8XC196NP.

[| C-19

8XC196NP, 80C196NU USER’'S MANUAL Inu®

EPAX_CON
EPAXx_CON Address: Table C-8
Xx=0-3 Reset State:

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO andEPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
s [[= [=[] == =1 =[]
7 0
| | ce | i | mo |[[RE | — [ROT [ONRT |
7 0
x=0,2 | ® [ce | v« | mo || RE | — | ROT | ONRT |
Nuii:)er Mne?Ti\tonic Function
15:91 — Reserved; always write as zeros.
8t RM Remap Feature
The remap feature applies to the compare mode of the EPA1 and EPA3
only.

When the remap feature of EPAL is enabled, EPA capture/compare
channel 0 shares output pin EPA1 with EPA capture/compare channel 1.
When the remap feature of EPA3 is enabled, EPA capture/compare
channel 2 shares output pin EPA3 with EPA capture/compare channel 3.

0 = remap feature disabled

1 =remap feature enabled

7 B Time Base Select

Specifies the reference timer.

0 =timer 1 is the reference timer and timer 2 is the opposite timer
1 =timer 2 is the reference timer and timer 1 is the opposite timer

A compare event (clearing, setting, or toggling an output pin; and/or
resetting either timer) occurs when the reference timer matches the time
programmed in the event-time register.

When a capture event (falling edge, rising edge, or an edge change on
the EPAX pin) occurs, the reference timer value is saved in the EPA event-
time register (EPAx_TIME).

6 CE Compare Enable

Determines whether the EPA channel operates in capture or compare
mode.

0 = capture mode
1 = compare mode

T These bits apply to the EPA1_CON and EPA3_CON registers only.

C-20

intel.

REGISTERS

EPAX_CON

x=0-3

EPAXx_CON (Continued)

15

Address: Table C-8

Reset State:

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO andEPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

I N | I B Y

‘ CE ‘ M1 ‘ MO H RE ‘ — ‘ROT‘ON/RT‘

0

‘ CE ‘ M1 ‘ MO H RE ‘ _ ‘ROT‘ON/RT‘

Bit
Number

Bit

Mnemonic

Function

5:4

M1:0

EPA Mode Select

In compare mode, specifies the action that the EPA executes when the
reference timer matches the event time.

M1 MO Capture Mode Event

no capture

capture on falling edge
capture on rising edge
capture on either edge

M1 MO Compare Mode Action

0 no output

0 clear output pin
1 set output pin

1 toggle output pin

0
0
1
1

RORFRO

R ORFrOo

In capture mode, specifies the type of event that triggers an input capture.

RE

Re-enable

Re-enable applies to the compare mode only. It allows a compare event
to continue to execute each time the event-time register (EPAX_TIME)
matches the reference timer rather than only upon the first time match.

0 = compare function is disabled after a single event
1 = compare function always enabled

2

Reserved; always write as zero.

T These bits apply to the EPA1_CON and EPA3_CON registers only.

C-21

8XC196NP, 80C196NU USER’'S MANUAL Inu®

EPAX_CON

EPAXx_CON (Continued)

x=0-3

Address: Table C-8
Reset State:

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO andEPA2 are identical. The registers for EPA1 and EPA3 have an
additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON and
EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
=t [= | =] -] =l =]=1] =]Frw|
7 0
| ® [ce | v« | mo || RE | — | ROT | ONRT |
7 0
x=0,2 | | ce | i | mo |[[rRE | — [RrOT [ONRT |
Nuilt)er Mne?TI\tonic Function
1 ROT Reset Opposite Timer
Controls different functions for capture and compare modes.
In Capture Mode:
0 = causes no action
1 = resets the opposite timer
In Compare Mode:
Selects the timer that is to be reset if the RT bit is set.
0 = selects the reference timer for possible reset
1 = selects the opposite timer for possible reset
The TB bit (bit 7) selects which is the reference timer and which is the
opposite timer.
0 ON/RT Overwrite New/Reset Timer

The ON/RT bit functions as overwrite new in capture mode and reset
timer in compare mode.

In Capture Mode (ON):

An overrun error is generated when an input capture occurs while the
event-time register (EPAx_TIME) and its buffer are both full. When an
overrun occurs, the ON bit determines whether old data is overwritten or
new data is ignored:

0 =ignores new data
1 = overwrites old data in the buffer

In Compare Mode (RT):

0 =disables the reset function
1 =resets the ROT-selected timer

T These bits apply to the EPA1_CON and EPA3_CON registers only.

C-22

Table C-8. EPA x_CON Addresses and Reset Values

Register Address Reset Value
EPAO_CON 1F80H 00H
EPA1_CON 1F84H 0000H
EPA2_CON 1F88H 00H
EPA3_CON 1F8CH 0000H

REGISTERS

EPAX_CON

C-23

8XC196NP, 80C196NU USER’'S MANUAL

intel.

EPAx_TIME
EPAXx_TIME Address: Table C-9
X =0-3 Reset State:

The EPA time (EPAX_TIME) registers are the event-time registers for the EPA channels. In capture
mode, the value of the reference timer is captured in EPAX_TIME when an input transition occurs.
Each event-time register is buffered, allowing the storage of two capture events at once. In compare
mode, the EPA triggers a compare event when the reference timer matches the value in EPAX_TIME.
EPAX_TIME is not buffered for compare mode.

15 8
‘ EPA Timer Value (high byte) ‘
7 0
‘ EPA Timer Value (low byte) ‘
Nuii:)er Function
15:0 EPA Time Value

When an EPA channel is configured for capture mode, this register contains the value of
the reference timer when the specified event occurred.

When an EPA channel is configured for compare mode, write the compare event time to

this register.

C-24

Table C-9. EPA x_TIME Addresses and Reset Values

Register Address Reset Value
EPAO_TIME 1F82H 0000H
EPA1_TIME 1F86H 0000H
EPA2_TIME 1F8AH 0000H
EPA3_TIME 1F8EH 0000H

Inbl® REGISTERS

INT_MASK
INT MASK Address: 0008H
- Reset State: 00H
The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK is the
low byte of the processor status word (PSW); therefore, PUSHF or PUSHA saves this register on the
stack and POPF or POPA restores it.
7 0
EPAO RI TI EXTINT1 ‘ ‘ EXTINTO — OVRTM2 | OVRTM1
Bit .
Number Function

7:3 Setting a bit enables the corresponding interrupt.
1.0 The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector

EPAO EPA Capture/Compare Channel O FF200EH

RI SIO Receive FF200CH

TI SIO Transmit FF200AH

EXTINT1 EXTINT1 pin FF2008H

EXTINTO EXTINTO pin FF2006H

OVRTM2 Timer 2 Overflow/Underflow FF2002H

OVRTM1 Timer 1 Overflow/Underflow FF2000H
2 Reserved; for compatibility with future devices, write zero to this bit.

[| C-25

8XC196NP, 80C196NU USER’'S MANUAL Inu®

INT_MASK1

INT_MASK1 Address: 0013H
- Reset State: 00H

The interrupt mask 1 (INT_MASK1) register enables or disables (masks) individual interrupt requests.
(The El and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can
be read from or written to as a byte register. PUSHA saves this register on the stack and POPA
restores it.

7 0
NMI EXTINT3 | EXTINT2 | OVR2_3 ‘ ‘ OVRO_1 EPA3 EPA2 EPAL
Bit .
Number Function
7:0 Setting a bit enables the corresponding interrupt.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt FF203EH
EXTINT3 EXTINT3 pin FF203CH
EXTINT2 EXTINT2 pin FF203AH
OVR2_3f EPA Capture Channel 2 or 3 Overrun FF2038H
OVRO_1t EPA Capture Channel 0 or 1 Overrun FF2036H
EPA3 EPA Capture/Compare Channel 3 FF2034H
EPA2 EPA Capture/Compare Channel 2 FF2032H
EPA1 EPA Capture/Compare Channel 1 FF2030H
T An overrun on the EPA capture/compare channels can generate the multiplexed
capture overrun interrupts. The EPA_MASK and EPA_PEND registers decode these
multiplexed interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

C-26

L]
Inte|® REGISTERS
INT_PEND
INT PEND Address: 0009H
- Reset State: 00H
When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.
7 0
EPAO RI TI EXTINT1 ‘ ‘ EXTINTO OVRTM2 | OVRTM1
Bit .
Number Function
7:3 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is
1:0 cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
EPAO EPA Capture/Compare Channel O FF200EH
RI SIO Receive FF200CH
TI SIO Transmit FF200AH
EXTINT1 EXTINT1 pin FF2008H
EXTINTO EXTINTO pin FF2006H
OVRTM2 Timer 2 Overflow/Underflow FF2002H
OVRTM1 Timer 1 Overflow/Underflow FF2000H
2 Reserved. This bit is undefined.

C-27

8XC196NP, 80C196NU USER’'S MANUAL Inu®

INT_PEND1

INT_PEND1 Address: 0012H
- Reset State: 00H

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PENDZ1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
NMI EXTINT3 | EXTINT2 | OVR2_3 ‘ ‘ OVRO_1 EPA3 EPA2 EPAL
Bit .
Number Function
7:0 Any set bit indicates that the corresponding interrupt is pending. The interrupt bit is

cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt FF203EH
EXTINT3 EXTINT3 pin FF203CH
EXTINT2 EXTINT2 pin FF203AH
OVR2_3f EPA Capture Channel 2 or 3 Overrun FF2038H
OVRO_1t EPA Capture Channel 0 or 1 Overrun FF2036H
EPA3 EPA Capture/Compare Channel 3 FF2034H
EPA2 EPA Capture/Compare Channel 2 FF2032H
EPA1 EPA Capture/Compare Channel 1 FF2030H

T An overrun on the EPA capture/compare channels can generate the multiplexed
capture overrun interrupts. The EPA_MASK and EPA_PEND registers decode these
multiplexed interrupts. Write to EPA_MASK to enable the interrupt sources; read
EPA_PEND to determine which source caused the interrupt.

C-28

intel.

REGISTERS

ONES_REG

ONES_REG

The two-byte ones register (ONES_REGQG) is always equal to FFFFH.

ones for comparison operations.

Address: 02H
Reset State: FFFFH

Itis useful as a fixed source of all

15 8
‘ One (high byte) ‘
! 0
‘ One (low byte) ‘
Nuii:)er Function
15:0 One
These bits are always equal to FFFFH.

C-29

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Px_DIR
Px_DIR Address: Table C-10
x=1-4 Reset State:

Each pin of port x can operate in any of the standard 1/0 modes of operation: complementary output,
open-drain output, or high-impedance input. The port x I/0 direction (Px_DIR) register determines the
1/O direction for each port x pin. The register settings for an open-drain output or a high-impedance
input are identical. An open-drain output configuration requires an external pull-up. A high-impedance
input configuration requires that the corresponding bit in Px_REG be set.

7 0
x=1-3 ‘ PIN7 ‘ PING ‘ PINS ‘ PIN4 H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
7 0
x=4 ‘ _ ‘ _ ‘ _ ‘ _ H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Nuii:)er Mne?riltonic Function
7:0 PIN7:0 Port x Pin y Direction

This bit selects the Px.y direction:

0 = complementary output (output only)

1 = input or open-drain output (input, output, or bidirectional Open-
drain outputs require external pull-ups.

Table C-10. Px_DIR Addresses and Reset Values

Register Address Reset Value
P1_DIR 1FD2H FFH
P2_DIR 1FD3H FFH
P3_DIR 1FDAH FFH
P4_DIR 1FDBH FFH

C-30

intel.

REGISTERS
Px_MODE
Px_MODE Address: Table C-11
X :_1—4 Reset State:

Each bit of the port x mode (Px_MODE) register controls whether the corresponding pin functions as a
standard 1/O port pin or as a special-function signal.

7 0
x=1-3 | PIN7 | PiNe | PINs | PIN4 || PIN3 | PIN2 | PINL | PINO |
7 0
x=4 | — | — | — | — |[pns| PN2 [PNt [PINO |
Bit Bit : Function
Number Mnemonic
7:0 PIN7:0 Port x Pin y Mode
This bit determines the mode of the corresponding port pin:
0 = standard I/O port pin
1 = special-function signal
Table C-12 lists the special-function signals for each pin.
Table C-11. Px_MODE Addresses and Reset Values
Register Address Reset Value
P1_MODE 1FDOH 00H
P2_MODE 1FD1H 80H
P3_MODE 1FD8H 01H
P4_MODE 1FD9H 00H
Table C-12. Special-function Signals for Ports 1-4
Port 1 Port 2 Port 3 Port 4
Special- Special- Special- Special-
Pin function Pin function Pin function Pin function
Signal Signal Signal Signal
P10 | EPAO P20 | TXD P3.0 | CSO# P40 | PWMO
P11 |EPAl P2.1 | RXD P3.1 | CS1# P41 | PWM1
P12 | EPA2 P2.2 | EXTINTO P32 | CS2# P42 | PWM2
P13 | EPA3 P2.3 | BREQ# P3.3 | CS3# P43 | —
P1.4 T1CLK P2.4 EXTINT1 P3.4 CS4#
P1.5 T1DIR P2.5 HOLD# P3.5 CS5#
P1.6 T2CLK P2.6 HLDA# P3.6 EXTINT2
P1.7 T2DIR P2.7 CLKOUT P3.7 EXTINT3

C-31

8XC196NP, 80C196NU USER’'S MANUAL Inu®

Px_PIN
Px_PIN Address: Table C-13
x=1-4 Reset State:

Each bit of the port x pin input (Px_PIN) register reflects the current state of the corresponding pin,
regardless of the pin configuration.

7 0
x=1-3 ‘ PIN7 ‘ PING ‘ PIN5 ‘ PIN4 H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
7 0
x=4 ‘ — ‘ — ‘ — ‘ — H PIN3 ‘ PIN2 ‘ PIN1 ‘ PINO ‘
Bit Number Mne?riltonic Function
7:0 PIN7:0 Port x Pin y Input Value
This bit contains the current state of Px.y.

Table C-13. P x_PIN Addresses and Reset Values

Register Address Reset Value
P1_PIN 1FD6H XXH
P2_PIN 1FD7H XXH
P3_PIN 1FDEH XXH
P4_PIN 1FDFH XXH

C-32 [|

Inbl® REGISTERS

Px_REG

Px_REG Address: Table C-14
x=1-4 Reset State:

For an input, set the corresponding port x data ouput (Px_REG) register bit.

For an output, write the data to be driven out by each pin to the corresponding bit of Px_REG. When a
pin is configured as standard 1/0 (Px_MODE.y = 0), the result of a CPU write to Px_REG is
immediately visible on the pin. When a pin is configured as a special-function signal (Px_MODE.y = 1),
the associated on-chip peripheral or off-chip component controls the pin. The CPU can still write to
Px_REG, but the pin is unaffected until it is switched back to its standard 1/O function.

This feature allows software to configure a pin as standard 1/O (clear Px_MODE.}), initialize or
overwrite the pin value, then configure the pin as a special-function signal (set Px_MODE.y). In this
way, initialization, fault recovery, exception handling, etc., can be done without changing the operation
of the associated peripheral.

7 0
x=1-3 | PIN7 ‘ PING ‘ PIN5S ‘ PIN4 || PIN3 ‘ PIN2 ‘ PINL ‘ PINO |
7 0
x=4 | — | — | — | — || Pp~na | Pn2 | PINT | PiNO |
. Bit .
Bit Number Mnemonic Function
7:0 PIN7:0 Port x Pin y Output
To use Px.y for output, write the desired output data to this bit. To use
Px.y for input, set this bit.

Table C-14. Px_REG Addresses and Reset Values

Register Address Reset Value
P1_REG 1FD4H FFH
P2_REG 1FDSH FFH
P3_REG 1FDCH FFH
P4_REG 1FDDH FFH

C-33

8XC196NP, 80C196NU USER’'S MANUAL Inu®

PSW

PSW no direct access

The processor status word (PSW) actually consists of two bytes. The high byte is the status word,
which is described here; the low byte is the INT_MASK register. The status word contains one bit
(PSW.1) that globally enables or disables servicing of all maskable interrupts, one bit (PSW.2) that
enables or disables the peripheral transaction server (PTS), and six Boolean flags that reflect the
state of a user’s program.

The status word portion of the PSW cannot be accessed directly. To access the status word, push the
value onto the stack (PUSHF), then pop the value to a register (POP test_reg). The PUSHF and
PUSHA instructions save the PSW in the system stack and then clear it; POPF and POPA restore it.

15 8
‘ z N v VT H © PSE | ST ‘

‘ See INT_MASK on page C-25 ‘

Bit Bit

. Function
Number Mnemonic

7 z Zero Flag

This flag is set to indicate that the result of an operation was zero. For
multiple-precision calculations, the zero flag cannot be set by the instruc-
tions that use the carry bit from the previous calculation (e.g., ADDC,
SUBC). However, these instructions can clear the zero flag. This
ensures that the zero flag will reflect the result of the entire operation, not
just the last calculation. For example, if the result of adding together the
lower words of two double words is zero, the zero flag would be set.
When the upper words are added together using the ADDC instruction,
the flag remains set if the result is zero and is cleared if the result is not
zero.

6 N Negative Flag

This flag is set to indicate that the result of an operation is negative. The
flag is correct even if an overflow occurs. For all shift operations and the
NORML instruction, the flag is set to equal the most-significant bit of the
result, even if the shift count is zero.

5 \% Overflow Flag

This flag is set to indicate that the result of an operation is too large to be
represented correctly in the available space. For shift operations (SHL,
SHLB, and SHLL), the flag is set if the most-significant bit of the operand
changes during the shift. For divide operations, the quotient is stored in
the low-order half of the destination operand and the remainder is stored
in the high-order half. The overflow flag is set if the quotient is outside
the range for the low-order half of the destination operand. (Chapter 4,
“Programming Considerations,” defines the operands and possible
values for each. See the PSW flag descriptions in Appendix A for
details.)

C-34

intel.

REGISTERS

PSW

PSW (Continued)

no direct access

The processor status word (PSW) actually consists of two bytes. The high byte is the status word,
which is described here; the low byte is the INT_MASK register. The status word contains one bit
(PSW.1) that globally enables or disables servicing of all maskable interrupts, one bit (PSW.2) that
enables or disables the peripheral transaction server (PTS), and six Boolean flags that reflect the
state of a user’s program.

The status word portion of the PSW cannot be accessed directly. To access the status word, push the
value onto the stack (PUSHF), then pop the value to a register (POP test_reg). The PUSHF and
PUSHA instructions save the PSW in the system stack and then clear it; POPF and POPA restore it.

15 8
I N v vi || ¢ PSE | ST
7 0
‘ See INT_MASK on page C-25
Bit Bit .
Number Mnemonic Function

4 VT Overflow-trap Flag
This flag is set when the overflow flag is set, but it is cleared only by the
CLRVT, JVT, and JNVT instructions. This allows testing for a possible
overflow at the end of a sequence of related arithmetic operations, which
is generally more efficient than testing the overflow flag after each
operation.

3 C Carry Flag
This flag is set to indicate an arithmetic carry or the last bit shifted out of
an operand. Itis cleared if a subtraction operation generates a borrow.
Normally, the result is rounded up if the carry flag is set. The sticky bit
flag allows a finer resolution in the rounding decision. (See the PSW flag
descriptions in Appendix A for details.)

2 PSE PTS Enable
This bit globally enables or disables the peripheral transaction server
(PTS). The EPTS instruction sets this bit; DPTS clears it.
1 =enable PTS
0 = disable PTS

1 | Interrupt Disable (Global)
This bit globally enables or disables the servicing of all maskable
interrupts. The bits in INT_MASK and INT_MASKT1 individually enable or
disable the interrupts. The El instruction sets this bit; DI clears it.
1 = enable interrupt servicing
0 = disable interrupt servicing

0 ST Sticky Bit Flag
This flag is set to indicate that, during a right shift, a “1” was shifted into
the carry flag and then shifted out. It can be used with the carry flag to
allow finer resolution in rounding decisions.

C-35

8XC196NP, 80C196NU USER’'S MANUAL Inu®

PTSSEL

PTSSEL Address: 0004H
Reset State: 0000H

The PTS select (PTSSEL) register selects either a PTS microcode routine or a standard interrupt
service routine for each interrupt request. Setting a bit selects a PTS microcode routine; clearing a bit
selects a standard interrupt service routine. When PTSCOUNT reaches zero, hardware clears the
corresponding PTSSEL bit. The PTSSEL bit must be set manually to re-enable the PTS channel.

15 8
| — | ExTINT3 | EXTINT2 | OVR2.3 || OVRO_.1 | EPA3 | EPA2 | EPAL |
7 0
| Epao | R | T [ExTINTL || EXTNTO | — | OVRTM2 | OVRTMI |

Bit .
Number Function
15,2 Reserved; for compatibility with future devices, write zero to this bit.
14:3 Setting a bit causes the corresponding interrupt to be handled by a PTS microcode
1:0 routine.
The PTS interrupt vector locations are as follows:
Bit Mnemonic Interrupt PTS Vector
EXTINT3 EXTINT3 pin FF205CH
EXTINT2 EXTINT2 pin FF205AH
OVR2_3f EPA Capture Channel 2 or 3 Overrun FF2058H
OVRO_1t EPA Capture Channel 0 or 1 Overrun FF2056H
EPA3 EPA Capture/Compare Channel 3 FF2054H
EPA2 EPA Capture/Compare Channel 2 FF2052H
EPA1 EPA Capture/Compare Channel 1 FF2050H
EPAO EPA Capture/Compare Channel O FF204EH
RI SIO Receive FF204CH
TI SIO Transmit FF204AH
EXTINT1 EXTINT1 pin FF2048H
EXTINTO EXTINTO pin FF2046H
OVRTM2 Timer 2 Overflow/ Underflow FF2042H
OVRTM1 Timer 1 Overflow/ Underflow FF2040H
T PTS service is not recommended because the PTS cannot determine the source of
shared interrupts.

C-36

Inbl® REGISTERS

PTSSRV

PTSSRV Address: 0006H

Reset State: 0000H
The PTS service (PTSSRV) register is used by the hardware to indicate that the final PTS interrupt
has been serviced by the PTS routine. When PTSCOUNT reaches zero, hardware clears the corre-
sponding PTSSEL bit and sets the PTSSRYV bit, which requests the end-of-PTS interrupt. When the
end-of-PTS interrupt is called, hardware clears the PTSSRYV bit. The PTSSEL bit must be set
manually to re-enable the PTS channel.

15 8
| — [Extints | Extnt2 [OVR2.3 || OvRo1 | EPAS | EPA2 | EPAL |
7 0
| EPao | R | T | EXTINTL || EXTINTO | — | OVRTMI | OVRTMZ |

Bit .
Number Function
15,2 Reserved. These bits are undefined.
14:3 A bit is set by hardware to request an end-of-PTS interrupt for the corresponding interrupt
1:0 through its standard interrupt vector.
The standard interrupt vector locations are as follows.
Bit Mnemonic Interrupt Standard Vector
EXTINT3 EXTINT3 Pin FF203CH
EXTINT2 EXTINT2 Pin FF203AH
OVR2_3t EPA Capture Channel 2 or 3 Overrun FF2038H
OVRO_1f EPA Capture Channel 0 or 1 Overrun FF2036H
EPA3 EPA Capture/Compare Channel 3 FF2034H
EPA2 EPA Capture/Compare Channel 2 FF2032H
EPA1 EPA Capture/Compare Channel 1 FF2030H
EPAO EPA Capture/Compare Channel O FF200EH
RI SIO Receive FF200CH
TI SIO Transmit FF200AH
EXTINT1 EXTINT1 pin FF2008H
EXTINTO EXTINTO pin FF2006H
OVRTM2 Timer 2 Overflow/Underflow FF2002H
OVRTM1 Timer 1 Overflow/Underflow FF2000H
T PTS service is not recommended for multiplexed interrupts. This bit is cleared when
both corresponding interrupt pending bits are cleared in EPA_PEND.

C-37

8XC196NP, 80C196NU USER’'S MANUAL

PWMx_CONTROL

intel.

PWMx_CONTROL
x=0-2

Address:
Reset State:

Table C-15

The PWM control (PWMx_CONTROL) register determines the duty cycle of the PWM x channel. A
zero loaded into this register causes the PWM to output a low continuously (0% duty cycle). An FFH in
this register causes the PWM to have its maximum duty cycle (99.6% duty cycle).

7

PWM Duty Cycle

Bit
Number

Function

7:0 PWM Duty Cycle

This register controls the PWM duty cycle. A zero loaded into this register causes the
PWM to output a low continuously (0% duty cycle). An FFH in this register causes the
PWM to have its maximum duty cycle (99.6% duty cycle).

Table C-15. PWMx_CONTROL Addresses and Reset Values

Register Address Reset Value
PWMO_CONTROL 1FBOH 00H
PWM1_CONTROL 1FB2H 00H
PWM2_CONTROL 1FB4H 00H

C-38

Inbl® REGISTERS

SBUF_RX
SBUF_RX Address: 1FB8H
- Reset State: 00H

The serial port receive buffer (SBUF_RX) register contains data received from the serial port. The
serial port receiver is buffered and can begin receiving a second data byte before the first byte is
read. Data is held in the receive shift register until the last data bit is received, then the data byte is
loaded into SBUF_RX. If data in the shift register is loaded into SBUF_RX before the previous byte is
read, the overflow error bitis set (SP_STATUS.2). The data in SBUF_RX will always be the last byte
received, never a combination of the last two bytes.

7 0

Data Received

Bit

Number Function

7:0 Data Received
This register contains the last byte of data received from the serial port.

C-39

8XC196NP, 80C196NU USER’'S MANUAL Inu®

SBUF_TX

SBUE TX Address: 1FBAH
- Reset State: O0H

The serial port transmit buffer (SBUF_TX) register contains data that is ready for transmission. In
modes 1, 2, and 3, writing to SBUF_TX starts a transmission. In mode 0, writing to SBUF_TX starts a
transmission only if the receiver is disabled (SP_CON.3=0).

7 0
Data to Transmit

Bit

Number Function

7:0 Data to Transmit
This register contains a byte of data to be transmitted by the serial port.

C-40 [|

InU® REGISTE

RS

SP

sSp Address: 18H
Reset State: XXXXH

The system’s stack pointer (SP) can point anywhere in an internal or external memory page; it must
be word aligned and must always be initialized before use. The stack pointer is decremented before a
PUSH and incremented after a POP, so the stack pointer should be initialized to two bytes (in 64-
Kbyte mode) or four bytes (in 1-Mbyte mode) above the highest stack location. If stack operations are
not being performed, locations 18H and 19H may be used as standard registers.

15 8
‘ Stack Pointer (high byte) ‘
7 0
‘ Stack Pointer (low byte) ‘
Nuii:)er Function
15:0 Stack Pointer
This register makes up the system’s stack pointer.

C-41

8XC196NP, 80C196NU USER’'S MANUAL Inu®

SP_BAUD

SP_BAUD

Address: 1FBCH
Reset State: 0000H

The serial port baud rate (SP_BAUD) register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits represent BAUD_VALUE, an unsigned
integer that determines the baud rate.

The maximum BAUD_VALUE is 32,767 (7FFFH). In asynchronous modes 1, 2, and 3, the minimum
BAUD_VALUE is 0000H when using the internal clock source (f) and 0001H when using T1CLK. In
synchronous mode 0, the minimum BAUD_VALUE is 0001H for transmissions and 0002H for

receptions.

15 8
|ciksrc | Bva4 | Bvi3 | BVI2 || BV1 | BVIO | BV | BV8 |
7 0
| BV? Bve | B | Bv4a || B3 | B2 | BV1 | BVO |

Bit Bit . Function
Number Mnemonic

15 CLKSRC Serial Port Clock Source
This bit determines whether the serial port is clocked from an internal or
an external source.
0 = signal on the T1CLK pin (external source)
1 = internal operating frequency (f)

14:0 BV14:0 Baud Rate

These bits constitute the BAUD_VALUE.

Use the following equations to determine the BAUD_VALUE for a given
baud rate.

Synchronous mode 0:f

f T1CLK

BAUD VALUE = — -1 or
- Baud Rate x 2 Baud Rate

Asynchronous modes 1, 2, and 3:

BAUD_VALUE = S S— or _ TICLK
Baud Rate x 16 Baud Rate x 8

T For mode 0 receptions, the BAUD_VALUE must be 0002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

C-42

intel.

REGISTERS
SP_BAUD
Table C-16. SP_BAUD Values When Using the Internal Clock at 25 MHz
SP_BAUD Register Value (Note 1) % Error
Baud Rate
Mode 0 Mode 1, 2, 3 Mode 0 Mode 1, 2, 3
9600 8515H 80A2H 0 0.15
4800 8A2BH 8144H 0 0.16
2400 9457H 828AH 0 0
1200 A8BAFH 8515H 0 0
300 (Note 2) 9457H (Note 2) 0
NOTES:

1. Bit 15 is always set when the internal peripheral clock is selected as the clock source for the baud-

rate generator.

2. For mode 0 operation at 25 MHz, the minimum baud rate is 381.47 (BAUD_VALUE = 7FFFH).
For mode O operation at 300 baud, the maximum internal clock frequency is 19.6608 MHz
(BAUD_VALUE = 7FFFH).

C-43

8XC196NP, 80C196NU USER’'S MANUAL Inu®

SP_CON

SP CON Address: 1FBBH
- Reset State: 00H

The serial port control (SP_CON) register selects the communications mode and enables or disables
the receiver, parity checking, and nine-bit data transmission. For the 80C196NU, it also enables or
disables the divide-by-two prescaler.

7 0
8XC196NP ‘ — ‘ — ‘ PAR ‘ B8 ‘ ‘ REN ‘ PEN ‘ M1 ‘ MO ‘
7 0
80C196NU | — | Pprs | PaR | B8 || REN | PEN [M1 | Mo |
Nulr?’ni:)er Mne?riltonic Function
7 — Reserved; for compatibility with future devices, write zero to this bit.
U PRS Prescale

This bit enables the divide-by-two prescaler.

0 = disable the prescaler
1 = enable the prescaler

5 PAR Parity Selection Bit
Selects even or odd parity.

0 = even parity
1 = odd parity

4 TB8 Transmit Ninth Data Bit

This is the ninth data bit that will be transmitted in mode 2 or 3. This bit
is cleared after each transmission, so it must be set before SBUF_TX is
written. When SP_CON.2 is set, this bit takes on the even parity value.

3 REN Receive Enable

Setting this bit enables the receiver function of the RXD pin. When this
bit is set, a high-to-low transition on the pin starts a reception in mode 1,
2, or 3. In mode 0, this bit must be clear for transmission to begin and
must be set for reception to begin. Clearing this bit stops a reception in
progress and inhibits further receptions.

2 PEN Parity Enable

In modes 1 and 3, setting this bit enables the parity function. This bit
must be cleared if mode 2 is used. When this bit is set, TB8 takes the
parity value on transmissions. With parity enabled, SP_STATUS.7
becomes the receive parity error bit.

1.0 M1:0 Mode Selection
These bits select the communications mode.
M1 MO
0 0 mode 0
0 1 mode 1
1 0 mode 2
1 1 mode 3

T This bit is reserved on the 8XC196NP. For compatibility with future devices, write zero to this bit.

C-44

Inbl® REGISTERS

SP_STATUS
SP_STATUS Address: 1FB9H
- Reset State: 0BH

The serial port status (SP_STATUS) register contains bits that indicate the status of the serial port.

7 0
RPE/RBS RI TI FE ‘ ‘ TXE OE — —
Bit Bit Function
Number Mnemonic
7 RPE/RB8 Received Parity Error/Received Bit 8

RPE is set if parity is disabled (SP_CON.2 = 0) and the ninth data bit
received is high.

RB8 is set if parity is enabled (SP_CON.2 = 1) and a parity error
occurred.

Reading SP_STATUS clears this bit.

6 RI Receive Interrupt

This bit is set when the last data bit is sampled. Reading SP_STATUS
clears this bit.

This bit need not be clear for the serial port to receive data.

5 TI Transmit Interrupt

This bit is set at the beginning of the stop bit transmission. Reading
SP_STATUS clears this bit.

4 FE Framing Error

This bit is set if a stop bit is not found within the appropriate period of
time. Reading SP_STATUS clears this bit.

3 TXE SBUF_TX Empty

This bit is set if the transmit buffer is empty and ready to accept up to two
bytes. It is cleared when a byte is written to SBUF_TX.

2 OE Overrun Error

This bit is set if data in the receive shift register is loaded into SBUF_RX
before the previous bit is read. Reading SP_STATUS clears this bit.

1.0 — Reserved. These bits are undefined.

[| C-45

8XC196NP, 80C196NU USER’'S MANUAL Inu®

T1CONTROL

T1CONTROL Address: 1F90H
Reset State: O0H

The timer 1 control (TLCONTROL) register determines the clock source, counting direction, and count
rate for timer 1.

7 0
CE uD M2 M1 ‘ ‘ MO P2 P1 PO
Bit Bit Function
Number Mnemonic
7 CE Counter Enable

This bit enables or disables the timer. From reset, the timers are
disabled and not free running.

0 = disables timer
1 = enables timer
6 ub Up/Down

This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).

0 = count down

1 = count up
5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction control
source.
M2 M1 MO Clock Source Direction Source
0 0 0 fl4 UD bit (TLCONTROL.6)
X 0 1 T1CLK pint UD bit (TLCONTROL.6)
0 1 0 fl4 T1DIR pin
0 1 1 T1CLK pint T1DIR pin
1 1 1 quadrature clocking using T1CLK and T1DIR

T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits
These bits determine the clock prescaler value.
P2 P1 PO Prescaler Divisor Resolution T
0 0 0 divide by 1 (disabled) 160 ns
0 0 1 divide by 2 320 ns
0 1 0 divide by 4 640 ns
0 1 1 divide by 8 1.28 ps
1 0 0 divide by 16 2.56 ps
1 0 1 divide by 32 5.12 pys
1 1 0 divide by 64 10.24 ps
1 1 1 divide by 128 (NU only) 20.48 ps

T At f= 25 MHz. Use the formula on page 10-6 to calculate the resolution
at other frequencies.

C-46

Inbl® REGISTERS

T2CONTROL
T2CONTROL Address: 1F94H
Reset State: O0H

The timer 2 control (T2CONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

7 0
CE uD M2 M1 ‘ ‘ MO P2 P1 PO
Bit Bit Function
Number Mnemonic
7 CE Counter Enable

This bit enables or disables the timer. From reset, the timers are
disabled and not free running.

0 = disables timer
1 = enables timer
6 ub Up/Down

This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).

0 = count down
1 = count up

5:3 M2:0 EPA Clock Direction Mode Bits.
These bits determine the timer clocking source and direction source
M2 M1 MO Clock Source Direction Source

0 0 0 fl4 UD bit (T2CONTROL.6)
X 0 1 T2CLK pin' UD bit (T2CONTROL.6)
0 1 0 iz T2DIR pin

0 1 1 T2CLK pin' T2DIR pin

1 0 0 timer 1 overflow UD bit (T2CONTROL.6)
1 0 timer 1 same as timer 1

1 1 1 quadrature clocking using T2CLK and T2DIR

TIf an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits
These bits determine the clock prescaler value.
P2 P1 PO Prescaler Resolution T
0 0 0 divide by 1 (disabled) 160 ns
0 0 1 divide by 2 320 ns
0 1 0 divide by 4 640 ns
0 1 1 divide by 8 1.28 ps
1 0 0 divide by 16 2.56 ps
1 0 1 divide by 32 5.12 pys
1 1 0 divide by 64 10.24 ps
1 1 1 divide by 128 (NU only) 20.48 ps

T At f= 25 MHz. Use the formula on page 10-6 to calculate the resolution
at other frequencies.

- C-47

8XC196NP, 80C196NU USER’'S MANUAL Inu®

TIMERX
TIMERX Address: Table C-17
x=1-2 Reset State:

This register contains the value of timer x. This register can be written, allowing timer x to be
initialized to a value other than zero.

15 8
‘ Timer Value (high byte) ‘

‘ Timer Value (low byte) ‘

Bit .
Number Function
15:0 Timer
Read the current timer x value from this register or write a new timer x value to this
register.

Table C-17. TIMER x Addresses and Reset Values

Register Address Reset Value
TIMER1 1F92H 0000H
TIMER2 1F96H 0000H

C-48 [|

Inbl® REGISTERS

WSR
WSR Address: 0014H
Reset State: O0H

The window selection register (WSR) has two functions. One bit enables and disables the bus-hold
protocol. The remaining bits select windows. Windows map sections of RAM into the top of the lower
register file, in 32-, 64-, or 128-byte increments. PUSHA saves this register on the stack and POPA
restores it.

7 0
HLDEN W6 W5 wa ‘ ‘ w3 w2 w1 W0
Bit Bit Function
Number Mnemonic
7 HLDEN HOLD#, HLDA# Protocol Enable

This bit enables and disables the bus-hold protocol (see Chapter 13,
“Interfacing with External Memory”). It has no effect on windowing.

1 = enable
0 = disable

6:0 W6:0 Window Selection

These bits specify the window size and window number. See Table 5-8
on page 5-15 or Table 5-9 on page 5-15.

Table C-18. WSR Settings and Direct Addresses for Windowable SFRs

32-byte Windows | 64-byte Windows | 128-byte Windows
Register Memory (0OEO—OOFFH) (00CO—00FFH) (0080—00FFH)
Mnemonic Location . . .
WSR | pddress | WSR | addross | WSR | address
ADDRCOMO' 1F40H 7AH O0EOH 3DH 00COH 1EH 00COH
ADDRCOM1" 1F48H 7AH O0OE8H 3DH 00C8H 1EH 00C8H
ADDRCOM2" 1F50H 7AH 00FOH 3DH 00DOH 1EH 00DOH
ADDRCOM3' 1F58H 7AH 00F8H 3DH 00D8H 1EH 00D8H
ADDRCOM4" 1F60H 7BH O0OEOH 3DH OOEOH 1EH O0EOH
ADDRCOM5" 1F68H 7BH O0OE8H 3DH OOE8H 1EH O0E8H
ADDRMSKOT 1F42H 7AH 00E2H 3DH 00C2H 1EH 00C2H
ADDRMSK1T 1F4AH 7AH 00EAH 3DH 00CAH 1EH 00CAH
ADDRMSK2T 1F52H 7AH 00F2H 3DH 00D2H 1EH 00D2H
ADDRMSK3' 1F5AH 7AH O0FAH 3DH 00DAH 1EH 00DAH
ADDRMSK4T 1F62H 7BH 00E2H 3DH 00E2H 1EH 00E2H
ADDRMSK5 " 1F6AH 7BH O0EAH 3DH OOEAH 1EH O0EAH
BUSCONO 1F44H 7AH 00E4H 3DH 00C4H 1EH 00C4H

T Must be addressed as a word.

C-49

8XC196NP, 80C196NU USER’'S MANUAL Inu®

WSR
Table C-18. WSR Settings and Direct Addresses for Windowable SFRs (Continued)
32-byte Windows | 64-byte Windows | 128-byte Windows
Register Memory (OOEO—OOFFH) (00CO-00FFH) (0080—00FFH)
Mnemonic Location . . .

WSR | agdress | WSR | address | "SR | address
BUSCON1 1F4CH 7AH 00ECH 3DH 00CCH 1EH 00CCH
BUSCON2 1F54H 7AH 00F4H 3DH 00D4H 1EH 00D4H
BUSCON3 1F5CH 7AH 00FCH 3DH 00DCH 1EH 00DCH
BUSCON4 1F64H 7BH 00E4H 3DH 0OE4H 1EH 00E4H
BUSCONS 1F6CH 7BH 00ECH 3DH 00ECH 1EH 00ECH
CON_REGO 1FB6H 7DH 00F6H 3EH 00F6H 1FH 00B6H
EP_DIR 1FE3H 7FH 00E3H 3FH 00E3H 1FH 00E3H
EP_MODE 1FE1H 7FH 00E1H 3FH 0OE1H 1FH 00E1H
EP_PIN 1FE7H 7FH 00E7H 3FH 00E7H 1FH 00E7H
EP_REG 1FE5H 7FH 00ES5H 3FH OOES5H 1FH 00ES5H
EPA_MASKJr 1F9CH 7CH 00FCH 3EH 00DCH 1FH 009CH
EPA_PEND 1F9EH 7CH OOFEH 3EH OODEH 1FH 009EH
EPAO_CON 1F80H 7CH O0EOH 3EH 00COH 1FH 0080H
EPAl_CONJr 1F84H 7CH 00E4H 3EH 00C4H 1FH 0084H
EPA2_CON 1F88H 7CH 00E8H 3EH 00C8H 1FH 0088H
EPA3_CONJr 1F8CH 7CH 00ECH 3EH 00CCH 1FH 008CH
EPAO_TIMEJr 1F82H 7CH 00E2H 3EH 00C2H 1FH 0082H
EPAl_TIMEJr 1F86H 7CH O0OEGH 3EH 00C6H 1FH 0086H
EPA2_TIM E 1F8AH 7CH O0EAH 3EH 00CAH 1FH 008AH
EPA3_TIMEJr 1F8EH 7CH OOEEH 3EH 00CEH 1FH 008EH
P1_DIR 1FD2H 7EH 00F2H 3FH 00D2H 1FH 00D2H
P1_MODE 1FDOH 7EH 00FOH 3FH 00DOH 1FH 00DOH
P1_PIN 1FD6H 7EH 00F6H 3FH 00D6H 1FH 00D6H
P1_REG 1FD4H 7EH 00F4H 3FH 00D4H 1FH 00D4H
P2_DIR 1FD3H 7EH 00F3H 3FH 00D3H 1FH 00D3H
P2_MODE 1FD1H 7EH 00F1H 3FH 00D1H 1FH 00D1H
P2_PIN 1FD7H 7EH 00F7H 3FH 00D7H 1FH 00D7H
P2_REG 1FD5H 7EH 00F5H 3FH 00D5H 1FH 00D5H
P3_DIR 1FDAH 7EH O0FAH 3FH 00DAH 1FH 00DAH
P3_MODE 1FD8H 7EH 00F8H 3FH 00D8H 1FH 00D8H
P3_PIN 1FDEH 7EH OOFEH 3FH O0DEH 1FH OODEH
P3_REG 1FDCH 7EH 00FCH 3FH 00DCH 1FH 00DCH

T Must be addressed as a word.
C-50

N

tel.

REGISTERS

Table C-18. WSR Settings and Direct Addresses for Windowable SFRs (Continued)

WSR

32-byte Windows
(OOEO-00FFH)

64-byte Windows
(00CO-00FFH)

128-byte Windows
(0080—-00FFH)

MRegister IT/Iempry
nemonic ocation .) .
WSR | pddress | WSR | addross | WSR | address
P4_DIR 1FDBH 7EH O0OFBH 3FH 00DBH 1FH 00DBH
P4_MODE 1FD9H 7EH 00F9H 3FH 00D9H 1FH 00D9H
P4_PIN 1FDFH 7EH O0FFH 3FH OODFH 1FH O0DFH
P4_REG 1FDDH 7EH OOFDH 3FH 00DDH 1FH O0DDH
PWMO_CONTROL | 1FBOH 7DH 00FOH 3EH 0O0FOH 1FH 00BOH
PWM1_CONTROL | 1FB2H 7DH 00F2H 3EH 00F2H 1FH 00B2H
PWM2_CONTROL | 1FB4H 7DH 00F4H 3EH 00F4H 1FH 00B4H
SBUF_RX 1FB8H 7DH 00F8H 3EH 00F8H 1FH 00B8H
SBUF_TX 1FBAH 7DH 00FAH 3EH OOFAH 1FH 00BAH
SP_BAUD 1FBCH 7DH 00FCH 3EH O0O0FCH 1FH 00BCH
SP_CON 1FBBH 7DH O0FBH 3EH OOFBH 1FH 00BBH
SP_STATUS 1FB9H 7DH 00F9H 3EH 00F9H 1FH 00B9H
T1CONTROL 1F90H 7CH 00FOH 3EH 00DOH 1FH 0090H
T2CONTROL 1F94H 7CH 00F4H 3EH 00D4H 1FH 0094H
TIMER1T 1F92H 7CH 00F2H 3EH 00D2H 1FH 0092H
TIMER2T 1F96H 7CH 00F6H 3EH 00D6H 1FH 0096H

T Must be addressed as a word.

C-51

8XC196NP, 80C196NU USER’'S MANUAL Inu®

WSR1
WSR1 Address: 0015H
(80C196NU) Reset State: O0H

Window selection 1 (WSR1) register selects a 32- or 64-byte segment of the upper register file or
peripheral SFRs to be windowed into the middle of the lower register file, below any window selected
by the WSR.

7 0
800196NU‘—‘WG‘WS‘W4HW3‘W2‘W1‘WO‘

Bit Bit

. Function
Number Mnemonic

— Reserved; always write as zero.

6:0 W6:0 Window Selection

These bits specify the window size and window number. See Table 5-8 on
page 5-15 or Table 5-9 on page 5-15.

Table C-19. WSR1 Settings and Direct Addresses for Windowable SFRs

32-byte Windows | 64-byte Windows
Register Memory (0060-007FH) (0040-007FH)

Mnemonic Location WSRL Direct WSRL Direct
Address Address

ADDRCOMO" 1F40H 7AH 0060H 3DH 0040H
ADDRCOM1" 1F48H 7AH 0068H 3DH 0048H
ADDRCOM2" 1F50H 7AH 0070H 3DH 0050H
ADDRCOM3' 1F58H 7AH 0078H 3DH 0058H
ADDRCOM4" 1F60H 7BH 0060H 3DH 0060H
ADDRCOM5" 1F68H 7BH 0068H 3DH 0068H
ADDRMSKOT 1F42H 7AH 0062H 3DH 0042H
ADDRMSK1T 1F4AH 7AH 006AH 3DH 004AH
ADDRMSK2T 1F52H 7AH 0072H 3DH 0052H
ADDRMSK3T 1F5AH 7AH 007AH 3DH 005AH
ADDRMSK4T 1F62H 7BH 0062H 3DH 0062H
ADDRMSKS5 1F6AH 7BH 006AH 3DH 006AH
BUSCONO 1F44H 7AH 0064H 3DH 0044H
BUSCON1 1F4CH 7AH 006CH 3DH 004CH
BUSCON2 1F54H 7AH 0074H 3DH 0054H
BUSCON3 1F5CH 7AH 007CH 3DH 005CH
BUSCON4 1F64H 7BH 0064H 3DH 0064H

T Must be addressed as a word.

C-52

intel.

Table C-19. WSR1 Settings and Direct Addresses for Windowable

REGISTERS

WSR1

SFRs (Continued)

32-byte Windows | 64-byte Windows
Register Memory (0060-007FH) (0040-007FH)
Mnemonic Location Direct Direct

WSR1 Address WSR1 Address
BUSCONS5 1F6CH 7BH 006CH 3DH 006CH
CON_REGO 1FB6H 7DH 0076H 3EH 0076H
EP_DIR 1FE3H 7FH 0063H 3FH 0063H
EP_MODE 1FE1H 7FH 0061H 3FH 0061H
EP_PIN 1FE7H 7FH 0067H 3FH 0067H
EP_REG 1FE5H 7FH 0065H 3FH 0065H
EPA_MASKJr 1F9CH 7CH 007CH 3EH 005CH
EPA_PEND 1F9EH 7CH 007EH 3EH 005EH
EPAO_CON 1F80H 7CH 0060H 3EH 0040H
EPAO_TIM E 1F82H 7CH 0062H 3EH 0042H
EPAl_CONJr 1F84H 7CH 0064H 3EH 0044H
EPA1_TIM E 1F86H 7CH 0066H 3EH 0046H
EPA2_CON 1F88H 7CH 0068H 3EH 0048H
EPA2_TIM = 1F8AH 7CH 006AH 3EH 004AH
EPA3_CONJr 1F8CH 7CH 006CH 3EH 004CH
EPA3_TIM E 1F8EH 7CH 006EH 3EH 004EH
P1 DIR 1FD2H 7EH 0072H 3FH 0052H
P1_MODE 1FDOH 7EH 0070H 3FH 0050H
P1_PIN 1FD6H 7EH 0076H 3FH 0056H
P1_REG 1FD4H 7EH 0074H 3FH 0054H
P2_DIR 1FD3H 7EH 0073H 3FH 0053H
P2_MODE 1FD1H 7EH 0071H 3FH 0051H
P2_PIN 1FD7H 7EH 0077H 3FH 0057H
P2_REG 1FD5H 7EH 0075H 3FH 0055H
P3_DIR 1FDAH 7EH 007AH 3FH 005AH
P3_MODE 1FD8H 7EH 0078H 3FH 0058H
P3_PIN 1FDEH 7EH 007EH 3FH 005EH
P3_REG 1FDCH 7EH 007CH 3FH 005CH
P4_DIR 1FDBH 7EH 007BH 3FH 005BH
P4_MODE 1FD9H 7EH 0079H 3FH 0059H
P4_PIN 1FDFH 7EH 007FH 3FH 005FH
P4_REG 1FDDH 7EH 007DH 3FH 005DH

T Must be addressed as a word.

C-53

8XC196NP, 80C196NU USER’'S MANUAL

WSR1

Table C-19. WSR1 Settings and Direct Addresses for Windowable

C-54

32-byte Windows
(0060-007FH)

64-byte Windows
(0040-007FH)

Register Memory
Mnemonic Location Direct Direct

WSR1 Address WSR1 Address
PWMO_CONTROL 1FBOH 7DH 0070H 3EH 0070H
PWM1_CONTROL 1FB2H 7DH 0072H 3EH 0072H
PWM2_CONTROL 1FB4H 7DH 0074H 3EH 0074H
SBUF_RX 1FB8H 7DH 0078H 3EH 0078H
SBUF_TX 1FBAH 7DH 007AH 3EH 007AH
SP_BAUD 1FBCH 7DH 007CH 3EH 007CH
SP_CON 1FBBH 7DH 007BH 3EH 007BH
SP_STATUS 1FB9H 7DH 0079H 3EH 0079H
T1CONTROL 1F90H 7CH 0070H 3EH 0050H
T2CONTROL 1F94H 7CH 0074H 3EH 0054H
TIMER1' 1F92H 7CH 0072H 3EH 0052H
TIMER2" 1F96H 7CH 0076H 3EH 0056H

T Must be addressed as a word.

N

tel.

SFRs (Continued)

Inbl® REGISTERS

ZERO_REG
ZERO_REG Address: 00H
- Reset State: 0000H

The two-byte zero register (ZERO_REG) is always equal to zero. It is useful as a fixed source of the
constant zero for comparisons and calculations.

15 8
\ Zero (high byte) \

‘ Zero (low byte) ‘

Bit

Number Function

15:0 Zero
This register is always equal to zero.

C-55

intgl.

Glossary

intel.

GLOSSARY

This glossary defines acronyms, abbreviations, and terms that have special meaning in this man-
ual. (Chapter 1 discusses notational conventions and general terminology.)

1-Mbyte mode

64-Kbyte mode

accumulator

ALU

assert

bit
BIT

byte
BYTE

CCBs

CCRs

The addressing mode that allows code to reside
anywhere in the 1-Mbyte addressing space.

The addressing mode that allows code to reside only
in page FFH.

A register or storage location that forms the result of
an arithmetic or logical operation.

The 80C196NU has enhanced multiplicatiostruc-
tions that use a new 32-bit accumulator for multiply-
accumulate operations.

Arithmetic-logic unit. The part of thRALU that
processes arithmetic and logical operations.

The act of making a signal active (enabled). The
polarity (high or low) is defined by the signal name.
Active-low signals are designated by a pound symbol
(#) suffix; active-high signals have no suffix. To assert
RD# is to drive it low; to assert ALE is to drive it
high.

A binary digit.

A single-bit operand that can take on the Boolean
values, “true” and “false.”

Any 8-hit unit of data.

An unsigned, 8-bit variable with values from 0
through 21,

Chip configuration bytes. The chip configuration
registers CCR3 are loaded with the contents of the
CCBs after a device reset.

Chip configuration registers. Registers that define the
environment in which the device will be operating.
The chip configuration registers are loaded with the
contents of th&€CBsafter a device reset.

Glossary-1

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

chip-select unit

clear

deassert

demultiplexed bus

doping

double-word

DOUBLE-WORD

EDAR
EPA

EPC
EPORT

ESD

external address

far constants

Glossary-2

The integrated module that selects an external
memory device during an external bus cycle.

The “0” value of a bit or the act of giving it a “0”
value. See alsset

The act of making a signal inactive (disabled). The
polarity (high or low) is defined by the signal name.
Active-low signals are designated by a pound symbol
(#) suffix; active-high signals have no suffix. To
deassert RD# is to drive it high; to deassert ALE is to
drive it low.

The configuration in which the device uses separate
lines for address and data (address on A19:0; data on
AD15:0 for a 16-bit bus or AD7:0 for an 8-bit bus).
See alsonultiplexed bus

The process of introducing a periodic table Group Il
or Group V eleent into a Group IV element .(g,
silicon). A Group Il impurity (e.g., indium or
gallium) results in ap-type material. A Group V
impurity (e.g., arsenic or antimony) results in ran
typematerial.

Any 32-bit unit of data.

An unsigned, 32-bit variable with values from 0
through 2°-1.

Extended data address register used bPORT

Event processor array. An integrated peripheral that
provides high-speed input/output capability.

Extended program counter used by HRORT
Extended addressing port. The port that provides the

additional address lines tosupport extended
addressing.

Electrostatic discharge.

A 20-bit address is presented on the device pins. The
address decoded by an external device depends on
how many of these address lines the external system
uses. See aldnternal address

Constants that can be accessed only with extended
instructions. See alstear constants

far data

FET

fractional mode

hold latency

input leakage

integer

INTEGER

internal address

interrupt controller

interrupt latency

interrupt service routine

interrupt vector

GLOSSARY

Data that can be accessed only with extended instruc-
tions. See alsoear data

Field-effect transistor.

Lowercase “f’ represents the frequency of the internal
clock. For the 8X@96NP, f is always equal ta f;, 1
(the input frequency on XTAL1). For the 80C196NU,
which employs a phase-locked loop with clock
multiplier circuitry, f is equal to either 5, 1,
2Fy1p 1, OF 4Fq1a 1. The multiplier depends on the
clock mode, which is controlled by the PLLEN1 and
PLLENZ2 input pins. (Figure 2-4 on page 2-8
illustrates the clock circuitry of th@0C196NU.)

A mode of thenultiply-accumulatdunction in which

the multiplier result is shifted left one bit before being
written to theaccumulator This left shift eliminates
the extra sign bit when both operands are signed,
leaving a correctly signed result.

The time it takes the microcontroller to assert HLDA#
after an external device asserts HOLD#.

Current leakage from an input pin to power or ground.

Any member of the set consisting of the positive and
negative whole numbers and zero.

A 16-bit, signed variable with values from 122

through +2°-1.

The 24-bit address that the microcontroller generates.
See als@xternal address

The module responsible for handling interrupts that
are to be serviced binterrupt service routineshat
you provide.Also called thegprogrammable interrupt
controller (PIC)

The total delay between the time that an interrupt is
generated (not acknowledged) and the time that the
device begins executing theterrupt service routine

or PTS routine

A software routine thatyou provide to service a
standard interrupt. See alBd@'S routine

A location inspecial-purpose memoiat holds the
starting address of anterrupt service routine

Glossary-3

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

ISR
LONG-INTEGER

LSB

MAC

maskable interrupts

MSB

multiplexed bus

multiply-accumulate

n-channel FET

n-type material

near constants

near data

nonmaskable interrupts

Glossary-4

Seeinterrupt service routine.

A 32-bit, signed variable with values from L2

through +311.

Least-significant bit of a byte or least-significant byte
of a word.

Seemultiply-accumulate

All interrupts except unimplemented opcode,
software trap, and NMI. Maskable interrupts can be
disabled (masked) by the individual mask bits in the
interrupt mask registers, and their servicing can be
disabled by the global interrupt enable bit. Each
maskable interrupttan be assigned to tHeTS for
processing.

Most-significant bit of abyte or most-significant byte
of aword.

The configuration in which the device uses both
A19:0 and AD15:0 for address and also uaBd4.5:0
for data. See alstemultiplexed bus

An operation performed by the 8XC196NU’s
enhanced multiplication instructions. The result of the
operation is stored in a dedicated, 32-bit accumulator.

A field-effect transistor with am-type conducting
path (channel).

Semiconductor material with introduced impurities
(doping causing it to have an excess of negatively
charged carriers.

Constants that can be accessed with nonextended
instructions. Constants in page 00H are near constants
(EP_REG = 00H is assumed). See #dsaconstants

Data that can be accessed with nonextended instruc-
tions. Data in page O0H is near data (EP_REG = 00H
is assumed). See alfr data

Interrupts that cannot be masked (disabled) and
cannot be assigned to the PTS for processing. The
nonmaskable inteupts are unimplemented opcode,
software trap, and NMI.

intel.

nonvolatile memory

npn transistor
p-channel FET

p-type material

PC

phase-locked loop

PIC

PLL

prioritized interrupt

program memory

protected instruction

GLOSSARY

Read-only memory that retains its contents when
power is removed. Many ME596 microcontrollers
are available with either masked ROEPROM or
OTPROM Consult the Automotive Productsor
Embedded Microcontrollerglatabook to determine
which type of memory is available for a specific
device.

A transistor consisting of one partype material and
two partsn-type material.

A field-effect transistor with ap-type conducting
path.

Semiconductor material with introduced impurities
(doping causing it to have an excess of positively
charged carriers.

Program counter.

A component of the clock generation circuitry. The
phase-locked loop (PLL) and the two input pins
(PLLEN1 and PLLENZ2) combine to enable the device
to attain its maximum operating frequency with an
external clock whose frequency is either equal to,
one-half, or one-fourth that maximum frequency or
with an external oscillator whose frequency is either
one-half or one-fourth that maximum frequency.

Programnable interrupt controller. The module
responsible for handling interrupts that are to be
serviced by interrupt service routinesthat you
provide. Also called simply thiaterrupt controller

Seephase-locked loap

Any maskable interrupbr nonmaskable NMI. Two of
the nonmaskable interruptgunimplemented opcode
and software trap) are not prioritized; they vector
directly to the interrupt service routine when
executed.

A partition of memory where instructions can be
stored for fetching and execution.

An instruction that prevents an intept from being
acknowledged until after the next instruction
executes. The protected instructions are DI, El, DPTS,
EPTS, POPA, POPF, PUSHA, and PUSHF.

Glossary-5

8XC196NP, 80C196NU USER’'S MANUAL

PSW

PTS

PTSCB
PTS control block

PTS cycle

PTS interrupt

PTS mode

PTS routine

PTS transfer

PTS vector

QUAD-WORD

RALU

Glossary-6

intel.

Processor status word. The high byte of the PSW is
the status byte, which contains one bit that globally
enables or disables servicing of all maskable
interrupts, one bit that enables or disables RA&

and six Boolean flags that reflect the state of the
current program. The low byte of the PSW is the
INT_MASK register. A push or pomstruction saves

or restores both bytes (PSW + INT A8K).

Peripheral transaction server. The microcoded
hardware interrupt processor.

SeePTS control block

A block of data required for eadhTS interupt. The
microcode executes thoperPTS routinebased on
the contents of the PTS control block.

The microcoded response tosmgle PTS interrupt
request.

Any maskable interrupthat is assigned to tH&rl Sfor
interrupt processing.

A microcoded responsghat enables theéPTS to
complete a specific task quickly. These tasks include
transferring a single byte or word, transferring a block
of bytes or words, and generatiBgVM outputs.

The entire microcoded response to multiple PTS
interrupt requests. The PTS routine is controlled by
the contents of the PTS control block.

The movement of a single byte or word from the
source memory location to the destination memory
location.

A location inspecial-purpose memotat holds the
starting address of RTS control block

An unsigned, 64-bit variable with values from 0
through #4-1. The QUAD-WORD variable is

supported only as the operand for the EBMOVI
instruction.

Register arithmetic-logic unit. A part of the CPU that
consists of theALU, the PSW the mastePC, the
microcode engine, a loop counter, and six registers.

intel.

reserved memaory

sampled inputs

saturation mode

set

SFR
SHORT-INTEGER

sign extension

sink current
source current

SP

special interrupt

GLOSSARY

A memory location that is reserved for factory use or
for future expansion. Do not use a reservednomy
location except to initialize it with FFH.

All input pins, with the exception of RESET#, are
sampled inputs. The input pin is sampled one state
time before the read buffer is enabled. Sampling
occurs during PH1 (while CLKOUT isow) and
resolves the value (high or low) of the pin before it is
presented to the internal bus. If the pin value changes
during the sample time, the new value may or may not
be recorded during the read.

RESET# is a level-sensitive input. XEINTX is
normally a sampled input; however, the powerdown
circuitry uses EXTINX as a level-sensitive input
during powerdown mode.

Saturation occurs when the result of two positive

numbers generates a negative sign bit or the result of
two negative numbers generates a positive sign bit.
Saturation mode prevents an underflow or overflow

of the accumulated value.

The “1” value of a bit or the act of giving it a “1”
value. See alsdear.

Special-function register.

An 8-bit, signed variable with values from -2
through +Z—1.

A method for converting data to a larger format by
filling the upper bit positions with the value of the

sign. This conversion preserves the positive or
negative value of signed integers.

Current flowinginto a device to ground. Always a
positive value.

Current flowingout of a device from .. Always a
negative value.

Stack pointer.

Any of the threenonmaskablénterrupts (unimple-
mented opcode, software trap, or NMI).

Glossary-7

8XC196NP, 80C196NU USER’'S MANUAL Int€|®

special-purpose memory

standard interrupt

state time (or state)

UART

WDT
word
WORD

Zero extension

Glossary-8

A partition of memory used for storing tlrterrupt
vectors PTS vectors chip configuration bytes, and
several reserved locations.

Any maskable interruptthat is assigned to the
interrupt controller for processing by arinterrupt
service routine

The basic time unit of the device; the combined
period of the two internal timing signals, PH1 and
PH2. (The internal clock generatmroduces PH1 and
PH2 by halving the frequency of the signal on
XTALL. The rising edges of the active-high PH1 and
PH2 signals generate CLKOUT, the output of the
internal clock generator.) Because the device can
operate at many frequencies, this manual defines time
requirements in terms oftate timesrather than in
specific units of time.

Lowercase “t” represents the period of the internal
clock. For the NP, t is theeciprocal of K, 1
(1/Fy7aL 1, Where Ko, 1 is the input frequency on
XTAL1). For the 80C196NU, which employs a
phased-lock loop with clock multiplier circuitry, t is
the reciprocal of either &, 1, 2Fqa 1, OF 4Fral 1
The multiplier depends on the clock mode, which is
controlled by the PLLEN1 and PLLEN2 input pins.
(Figure 2-4 on page 2-8 illustrates the clock circuitry
of the 80C196NU.)

Universal asynchronous receiver and transmitter. A
part of the serial I/O port.

Seewatchdog timer
Any 16-bit unit of data.

An unsigned, 16-bit variable with values from 0
through 2°-1.

A method for converting data to a larger format by
filling the upper bit positions with zeros.

intgl.

Index

intel.

#, defined, 1-3, A-1
1-Mbyte mode, 5-1

fetching code, 5-23, 5-25

fetching data, 5-26

incrementing SP, 5-11

memory configuration example, 5-31
64-Kbyte mode, 5-1, 5-5

fetching code, 5-23, 5-25

fetching data, 5-26

incrementing SP, 5-11

memory configuration example, 5-27, 5-29

A
A15:0, B-6
A19:0, 5-1, 13-2, 13-20
for CCBO fetch, 13-17
A19:16, 7-11, B-6
See als&EPORT
Accumulator
ACC_Wxregister, 3-4
ACC_STAT register, 3-5
operating modes
fractional mode, 3-3
saturation mode, 3-2
setting mode bits (SME and), 3-6,
C-7
Accumulator, RALU, 2-4
AD15:0, 5-1,13-2, 13-20, B-6
after reset, 13-18
ADD instruction, A-2, A-7, A-48, A-53, A-60
ADDB instruction, A-2, A-7, A-48, A-49, A-53,
A-60
ADDC instruction, A-2, A-7, A-50, A-53, A-60
ADDCSB instruction, A-2, A-8, A-50, A-53, A-60
ADDRCOM2, C-49, C-52
ADDRCOM3, C-49, C-52
ADDRCOM4, C-49, C-52
ADDRCOMS5, C-49, C-52
ADDRCOMx, 13-6, 13-9, 13-11
example, 13-13
initializing, 13-12
Address lines, extende8eeA19:16, EPORT
Address space, 2-6, 5-1
16-Mbyte address space, 5-1

INDEX

1-Mbyte address space, 5-1, 5-25
accessing pages 01H-0FH, 7-18
external, 5-1
internal, 5-2
partitions, 5-3-5-12
register RAM, 5-11
SFRs,SeeSFRs
special-purpose memorgeespecial-purpose
memory
Address/data bus, 2-5, 13-30
AC timing specifications, 13-36-13-45
bus width, Seebus width
contention, 13-17
for CCBO fetch, 13-17
for CCBL1 fetch, 13-17
multiplexing, 13-1, 13-5, 13-123-18-13-25
Addresses
internal and external, 1-3, 5-1, 13-1
notation, 1-3
Addressing modes, 4-6-4-7, A-6
ADDRMSKO, C-49, C-52
ADDRMSK1, C-49, C-52
ADDRMSK2, C-49, C-52
ADDRMSK3, C-49, C-52
ADDRMSK4, C-49, C-52
ADDRMSKS5, C-49, C-52
ADDRMSKX, 13-6, 13-9, 13-11, 13-13
example, 13-13
initializing, 13-12
ALE, 13-3, 13-22, B-7
during bus hold, 13-30
Analog outputs, generating, 9-9
AND instruction, A-2, A-8, A-47, A-48, A-54,
A-61
ANDB instruction, A-2, A-8, A-9, A-48, A-49,
A-54, A-61
ApBUILDER software, downloading, 1-10
Application notes, ordering, 1-6
Arithmetic instructions, A-53, A-54, A-60, A-61
Assert, defined, 1-3

B

Baud rate
SIO port, 8-8-8-13

Index-1

8XC196NP, 80C196NU USER’'S MANUAL

Baud-rate generator
SIO port, 8-8
BAUD_VALUE, 8-11, C-42
BHE#, 13-3, B-7
during bus hold, 13-30
See alsavrite-control signals
BIT, defined, 4-2
Bit-test instructions, A-21
Block diagram
address/data bus, 7-11
clock circuitry, 2-7
core, 2-3
core and peripherals, 2-2
EPA, 10-2
EPORT, 7-13
I/O ports, 7-1, 7-5, 7-11, 7-13, 7-15
SIO port, 8-1, 10-2
Block transfer modeSeePTS
BMOV instruction, A-2, A-9, A-51, A-56
BMOVI instruction, A-3, A-9, A-10, A-51, A-56
BR (indirect) instruction, A-2, A-10, A-51, A-57,
A-64
BREQ#, 13-3, 13-30, B-7
Bulletin board system (BBS), 1-9
Bus contentionSeeaddress/data bus, contention
Bus controller, 2-5
Bus width, 13-5
8- and 16-bit comparison, 13-183-22
and write-control signals, 13-34
CCBO fetch, 13-17
control bit, 13-11, 13-17
selecting, 13-1
BUSCONO, C-49, C-52
BUSCON1, C-50, C-52
BUSCON2, C-50, C-52
BUSCON3, C-50, C-52
BUSCON4, C-50, C-52
BUSCONS5, C-50, C-53
BUSCON, 13-10, 13-11, 13-26
example, 13-12
Bus-hold protocol, 13-1, 13-30-13-33
and code execution, 13-33
and interrupts, 13-33
and resetSeeeset
disabling, 13-32
enabling, 13-32
hold latency, 13-32
regaining bus control, 13-33

Index-2

intel.
signals, 13-30

See als@ort 2, BREQ#, HLDA#,
HOLD#
software protection, 13-32
timing parameters, 13-30
Byte accesses
and write-control signals, 13-34
BYTE, defined, 4-2

C
Call instructions, A-57, A-64, A-65
Carry (C) flag, 4-5, A-4, A-5, A-11, A-22, A-23,
A-24, A-25, A-36
Cascading timers, 10-6
CCBs, 5-6, 5-7, 11-8, 13-11, 13-14
fetching, 13-14, 13-17, 13-26
CCRO, 12-2
CCRs, 5-7,11-8, 12-6, 12-7, 13-14
Chip configurationSeeCCBs, CCRs
Chip select, 13-1
address-range size, 13-9
base address, 13-9
conditions after reset, 13-11
example, 13-9, 13-12
initializing, 13-11, 13-17
overlapping ranges, 13-9, 13-11
overview, 2-6
registers,13-11-13-12
Clear, defined, 1-3
CLKOUT, 12-1, 13-3, 13-18, 13-22, B-7
and HOLD#, 13-30
and internal timing, 2-8
and interrupts, 6-6
and READY, 13-27
considerations, 7-10
reset status, 7-4
Clock
external, 11-7
generator, 11-7
internal, and idle mode, 12-5, 12-6, 12-7
modes (8C196NU), 12-13
phases, internal, 2-9
slow, 10-6
CLR instruction, A-2, A-11, A-47, A-53, A-60
CLRB instruction, A-2, A-11, A-47, A-53, A-60
CLRC instruction, A-3, A-11, A-52, A-59, A-67
CLRVT instruction, A-3, A-11, A-52, A-59, A-67

intel.

CMP instruction, A-3, A-11, A-49, A-53, A-60
CMPB instruction, A-3, A-12, A-50, A-53, A-60
CMPL instruction, A-2, A-12, A-51, A-53, A-60
Code execution, 2-4, 2-5
Code fetches, 5-25
CompuServe forums, 1-10
Conditional jump instructions, A-5
CON_REGO, C-50, C-53
Constants, near, 5-24
CPU, 2-3
CS5:0#, B-7

during bus hold, 13-30
Customer service, 1-8

D
D/A converter, 9-10
Data
far, 5-24
fetches, 5-26
near, 5-24
types, 4-1-4-5
addressing restrictions, 4-1
converting between, 4-4
defined, 4-1
iC-96, 4-1
PLM-96, 4-1
signed and unsigned, 4-1, 4-4
values permitted, 4-1
Data instructions, A-56, A-63
Datasheets
online, 1-10
ordering, 1-7
Deassert, defined, 1-3
DEC instruction, A-2, A-12, A-47, A-53, A-60
DECB instruction, A-2, A-12, A-47, A-53, A-60
DEMUX bit, 13-11, 13-17
Device
minimum hardware configuration, 11-1
reset, 11-8, 11-9, 11-10, 11-11, 13-33
signal descriptions, B-6
DI instruction, A-3, A-13A-52, A-59, A-67
Digital-to-analog converter, 9-10
Direct addressing, 4-7, 4-11, 5-11
and register RAM, 5-11
and windows, 5-13, 5-21
DIV instruction, A-13, A-52, A-54, A-61
DIVB instruction, A-13, A-52, A-54, A-61

INDEX

DIVU instruction, A-3, A-14, A-49, A-54, A-61

DIVUB instruction, A-3, A-14, A-50, A-54, A-61

DJNZ instruction, A-2, A-5, A-14, A-51, A-58,
A-66

DJNZW instruction, A-2, A-5, A-15, A-51, A-58,
A-66

Documents, related, 1-5-1-8

DOUBLE-WORD, defined, 4-3

DPTS instruction, A-3, A-15, A-52, A-59, A-67

E
EA#, 5-5, 5-6, 5-22, 5-25, 5-26, 13-4, B-8
after reset, 13-18
EBMOVI instruction, 4-5, A-2, A-16, A-51, A-56
EBR (indirect) instruction, 4-5, A-2, A-16, A-51,
A-57, A-64
ECALL instruction, 4-5, A-2, A-17, A-52, A-57,
A-64, A-65
EDAR, 7-13
EE opcode, and unimplented opcode interrupt,
A-3, A-52
El instruction, 6-10, A-3, A-17, A-52, A-59, A-67
EJMP instruction, 4-5, A-2, A-17, A-52, A-57,
A-64
ELD instruction, 4-5, A-3, A-18, A-52, A-56, A-63
ELDB instruction, 4-5, A-3, A-18, A-52, A-56,
A-63
EPA, 2-11, 10-1-10-27
and PTS, 10-11
block diagram, 10-2
capture data overruns, 10-21, C-22
capture/compare modules, 10-8
programming, 10-18
choosing capture or compare mode, 10-19,
C-20
compare modules
programming, 10-18
configuring pins, 10-2
controlling the clock source and direction,
10-16, 10-17, C-46, C-47
determining event status, 10-22
enabling a timer/counter, 10-16, 10-17, C-46,
C-47
enabling remapping for PWM, 10-19, C-20
re-enabling the compare event, 10-20, C-21
resetting the timer in compare mode, 10-21,
C-22

Index-3

8XC196NP, 80C196NU USER’'S MANUAL

resetting the timers, 10-21, C-22

selecting the capture/compare event, 10-20,

Cc-21
selecting the time base, 10-19, C-20
selecting up odown caunting, 10-16, 10-17,
C-46, C-47
signals, 10-2
using for PWM, 6-26, 6-32

See alsoport 1, port 6, PWM, timer/counters

EPAO_CON, C-50, C-53
EPAO_TIME, C-50, C-53
EPA1_CON, 10-19, C-20, C-50, C-53
EPA1_TIME, C-50, C-53
EPA2_CON, C-50, C-53
EPA2_TIME, C-50, C-53
EPA3:0, B-8
EPA3_CON, 10-19, C-20, C-50, C-53
EPA3_TIME, C-50, C-53
EPA_MASK, C-50, C-53
EPA_PEND, C-50, C-53
EPAx_CON, 10-3
settings and operations, 10-18
EPAx_TIME, 10-3
EPC, 2-6, 5-23, 5-25, 7-13
EPORT, 2-6, 2-11, 5-1, 5-23, 7-11
and external address, 13-1
block diagram, 7-13
complementary output mode, 7-14
configuration register settings, 7-17
configuring pins, 7-17
for extended address, 7-17
for /0O, 7-17
considerations, 7-18, 7-19
input buffers, 7-19
input mode, 7-16
logic tables, 7-16
open-drain output mode, 7-14
operation, 7-12
output enable, 7-14
overview, 7-1
pins, 7-11
reset, 7-14
SFRs, 7-12
structure, 7-15
EPORT.3:0, B-8
EPTS instruction,6-10, A-3, A-18, A-52, A-59,
A-67
ESD protection, 7-4, 7-14, 11-5

Index-4

intel.

ESTinstruction, 4-6, A-3, A-19, A-47, A-56, A-63
ESTB instruction, 4-6, A-3, A-19, A-47, A-56,
A-63
Event, 10-1
Event processor arrageeEPA
EXT instruction, A-2, A-19, A-47, A-53, A-60
EXTB instruction, A-2, A-20, A-47, A-53, A-60
Extended address lines, 5-1
Extended addressing, 2-4, 2-11, 4-11, 5-1, 5-23
code execution, 4-5
instructions, 4-5, 4-6, 5-24
port, SeeEPORT
program counter, 2-6
External memory, 5-2
fetching code, 5-25
flash, example in 1-Mbyte mode, 5-31
RAM, example in 1-Mbyte mode, 5-31

RAM, example in 64-Kbyte mode, 5-27, 5-29

EXTINT, 6-3
and idle mode, 12-6
and powerdown mode, 12-6, 12-8
hardware considerations, 12-9
EXTINT3:0, B-8
EXTINTX, 12-1

E
f, defined, 1-3
FaxBack service, 1-8
FE opcode
and inhibiting interrupts, 6-7
Flash memorySeeexternal memory, flash
Floating point library, 4-5
Formulas
capacitor size (powerdown circuit), 12-11
clock period (t), 2-9
PH1 and PH2 frequency, 2-9
PWM duty cycle, 6-26
PWM frequency, 6-26
state time, 2-9
FPAL-96, 4-5
Frequency (f), 2-9
Fxrac1 29

H
Handbooks, ordering, 1-6
Hardware

addressing modes, 4-6

intel.

device considerations, 11-1-11-11
device reset, 11-8, 11-9, 11-10, 11-11
interrupt processor, 2-6, 6-1
minimum configuration, 11-1
NMI considerations, 6-6
noise protection, 11-4
reset instruction, 4-14
SIO port considerations, 8-6
HLDA#, 13-4, 13-30, B-8
HLDEN bit, 5-14, 13-32
Hold latency,Seebus-hold protocol
HOLD#, 13-4, 13-30, B-9
considerations, 7-9
Hypertext manuals and datashedtsynloading,
1-10

1/0 ports
after reset, 13-18
Idle mode, 2-12, 12-5-12-6, 12-7
entering, 12-6
exiting, 12-6, 12-7
timeout control, 10-6
IDLPD instruction, A-2, A-20, A-52, A-59, A-67
IDLPD #1, 12-6
IDLPD #2, 12-8
IDLPD #3, 12-6
illegal operand, 11-9, 11-11
Immediate addressing, 4-7
INC instruction, A-2, A-21A-47, A-53, A-60
INCB instruction, A-2, A-21, A-47, A-53, A-60
Indexed addressing, 4-11
and register RAM, 5-11
and windows, 5-21
Indirect addressing, 4-7
and register RAM, 5-11
with autoincrement, 4-8
Input pins
level-sensitive, B-6
sampled, B-6
INST, 13-4, B-9
after reset, 13-18
Instruction fetch
reset location, 5-2
See alsd-Mbyte mode, 64-Kbyte mode
Instruction set, 4-1
additions, 4-5-4-6

INDEX

and PSW flags, A-5
code execution, 2-4, 2-5
conventions, 1-3
differences, 4-5
execution times, A-60-A-61
lengths, A-53-A-60
opcode map, A-2-A-3
opcodes, A-47-A-52
overview, 4-1-4-5
protected instructions, 6-7
reference, A-1-A-3
See als&RISM
INTEGER, defined, 4-3
Interrupts, 6-1-6-36
and bus-holdSeebus-hold protocol
controller, 2-6, 6-1
end-of-PTS, 6-18
inhibiting, 6-7
latency, 6-7-6-9, 6-23
calculating, 6-8
pending registersseeEPA_PEND,
EPA_PEND1, INT_PEND,
INT_PEND1
priorities, 6-4, 6-5
modifying, 6-13-6-15
procedures, PLM-96, 4-13
processing, 6-2
programming, 6-10-6-15
selecting PTS or standard service, 6-10
service routine
processing, 6-14
sources, 6-5
unused inputs, 11-2
vectors, 5-7, 6-1, 6-5
memory locations, 5-6, 5-7
Italics, defined, 1-4

J

JBC instruction, A-2, A-5, A-21, A-47, A-58, A-66
JBS instruction, A-3, A-5, A-21, A-47, A-58, A-66
JC instruction, A-3, A-5, A-22, A-51, A-58, A-66
JE instruction, A-3, A-5, A-22, A-51, A-58, A-66
JGE instruction, A-2, A-5, A-22, A-51, A-58, A-66
JGT instruction, A-2, A-5, A-23, A-51, A-58, A-66
JH instruction, A-3, A-5, A-23, A-51, A-58, A-66
JLE instruction, A-3, A-5, A-23, A-51, A-58, A-66
JLT instruction, A-3, A-5, A-24, A-51, A-58, A-66

Index-5

8XC196NP, 80C196NU USER’'S MANUAL

JNC instruction, A-2, A-5, A-24, A-51, A-58,
A-66

JNE instruction, A-2, A-5, A-24, A-51, A-58, A-66

JNH instruction, A-2, A-5, A-25, A-51, A-58,
A-66

JNST instruction, A-2, A-5, A-25, A-51, A-58,
A-66

JNV instruction, A-2, A-5, A-25, A-51, A-58,
A-66

JNVT instruction, A-2, A-5, A-26, A-51, A-58,
A-66

JST instruction, A-3, A-5, A-26, A-51, A-58, A-66
Jump instructions, A-64

conditional, A-5, A-58, A-66

unconditional, A-57
JV instruction, A-3, A-5, A-26, A-51, A-58, A-66
JVT instruction, A-3, A-5, A-27, A-51, A-58, A-66

L

Latency, Seebus-hold protocol, interrupts
LCALL instruction, A-3, A-27, A-52, A-57, A-65
LD instruction, A-2, A-27, A-50, A-56, A-63
LDB instruction, A-2, A-28, A-50, A-56, A-63
LDBSE instruction, A-3, A-28, A-50, A-56, A-63
LDBZE instruction, A-3, A-28, A-50, A-56, A-63
Level-sensitive input, B-6

Literature, 1-11

LIMP instruction, A-2, A-28, A-52, A-57, A-64
Logical instructions, A-54, A-61
LONG-INTEGER, defined, 4-4

Lookup tables, software protection, 4-14

M

Manual contents, summary, 1-1
Manuals, online, 1-10
Math features, 3-1-3-6
Measurements, defined, 1-5
Memory bus, 2-5
Memory configuration, examples, 5-27-5-32
Memory controller, 2-3, 2-5
Memory map, 5-3
Example of 1-Mbyte mode, 5-32
Example of 64-Kbyte mode, 5-28, 5-30
Memory, external, 13-1-13-45
interface signals, 13-2
Memory, reserved, 5-6, 5-7
Microcode engine, 2-3

Index-6

Miller effect, 11-7
Mode 0, SIO, 8-4, 8-5
Mode 1, SIO, 8-5, 8-6
Mode 2, SIO, 8-5, 8-7, 8-8
Mode 3, SIO, 8-5, 8-7, 8-8
MODE®64 bit, 5-23
MUL instruction, 3-1, A-29, A-52, A-54, A-61
MULB instruction, A-29, A-30, A-52, A-54, A-61
Multiplication instructions
multiply/accumulate example code, 3-2
See alsaMUL instruction, MULU instruction
Multiprocessor communications
SIO port, 8-7, 8-8
MULU instruction, 3-1, A-3, A-30, A-48, A-49,
A-52, A-54, A-61
MULUB instruction, A-3, A-31, A-48, A-49,
A-54, A-61

N
Naming conventions, 1-3-1-4
NEG instruction, A-2, A-31A-47, A-54, A-61
Negative (N) flag, A-4, A-5, A-22, A-23, A-24
NEGB instruction, A-2, A-31, A-47, A-54, A-61
NMI, 6-3, 6-4, 6-6, B-9
and bus-hold protocol, 13-33
hardware considerations, 6-6
Noise, reducing, 7-1, 7-4, 11-4, 11-5, 11-6
Nonextended addressing, 5-23
NOPinstruction, 4-14, A-3, A-31, A-52, A-59,
A-67
two-byte, SeeSKIP instruction
NORML instruction, 4-5, A-3, A-32, A-47, A-59,
A-66
NOT instruction, A-2, A-32A-47, A-54, A-61
Notational conventions, 1-3-1-4
NOTB instruction, A-2, A-32, A-47, A-54, A-61
Numbers, conventions, 1-4

@)
ONCE, 12-1, B-9
ONCE mode, 2-12,12-12
entering, 12-12
exiting, 12-12
Opcodes, A-47
EE, and unimplemented opcode interrupt,
A-3, A-52
FE, and signed multiply and divide, A-3

intel.

map, A-2

reserved, A-3, A-52
Operand typesSeedata types
Operands, addressing, 4-12
Operating modes, 2-12

See alsd-Mbyte mode, 64-Kbyte mode
OR instruction, A-2, A-33, A-49, A-54, A-61
ORB instruction, A-2, A-33, A-49, A-54, A-61
Oscillator

and powerdown mode, 12-7

external crystal, 11-6

on-chip, 11-5
Overflow (V) flag, A-4, A-5, A-25, A-26
Overflow-trap (VT) flag, A-4, A-5, A-11, A-26,

A-27

P
P1.7:0, B-9

See alsgort 1
P1 DIR, C-50, C-53
P1_MODE, C-50, C-53
P1_PIN, C-50, C-53
P1 REG, C-50, C-53
P2.2 considerations, 12-9
P2.7:0, B-9

See alsgort 2
P2_DIR, C-50, C-53
P2_MODE, C-50, C-53
P2_PIN, C-50, C-53
P2_REG, C-50, C-53
P3.7:0, B-9

See alsoport 3
P3_DIR, C-50, C-53
P3_MODE, C-50, C-53
P3_PIN, C-50, C-53
P3_REG, C-50, C-53
P4.3:0, B-9

See alsgort 4
P4_DIR, C-51, C-53
P4_MODE, C-51, C-53
P4_PIN, C-51, C-53
P4_REG, C-51, C-53
Pages (memory), 5-1, 5-2

page OOH, 5-3, 5-22

page OFH, 5-2

page FFH, 5-2, 5-25

accessing, 5-22

INDEX

page number and EPORT, 5-23
Parameters, passing to subroutines, 4-13
Parity, 8-6, 8-7
PC (program counter), 2-4, 5-23

extended, 2-6, 5-23, 5-25, 7-13

master, 2-4, 2-5

slave, 2-5, 2-6
Period (t), 2-9
Peripherals, internal, 2-11
Pin diagrams, B-1
PLLEN2:1, 2-912-2, B-10
PLM-96

conventions, 4-11, 4-12, 4-13

interrupt procedures, 4-13
POP instruction, A-3, A-33, A-51, A-55, A-62
POPA instruction, A-2, A-34, A-52, A-55, A-62
POPF instruction, A-2, A-34, A-52, A-55, A-62
Port 1, 2-11, B-9

considerations, 7-9

input buffer, 7-4

logic tables, 7-6

operation, 7-1, 7-3

overview, 7-1

SFRs, 7-3

See also EPA
Port 2, 2-11, B-9

considerations, 7-9

operation, 7-1, 7-3

overview, 7-1

P2.2 considerations, 7-9

P2.4 considerations, 7-9

P2.5 considerations, 7-9

P2.7 considerations, 7-10

P2.7 reset status, 7-4, 7-10

SFRs, 7-3

See als®10 port
Port 3

considerations, 7-10

operation, 7-1, 7-3

overview, 7-1

SFRs, 7-3
Port 4

considerations, 7-10

operation, 7-1, 7-3, 7-10

overview, 7-1

SFRs, 7-3
Port, serial, SeeSIO port
Ports, general-purpose 1/0, 2-11

Index-7

8XC196NP, 80C196NU USER’'S MANUAL

Power consumption, reducing, 2-12, 12-7
Powerdown mode, 2-12, 12-7-12-12
circuitry, external, 12-11
controlling, 13-15
disabling, 12-6, 12-7
enabling, 12-7
entering, 12-6, 12-7
exiting, 12-8,12-11
with EXTINT, 12-8-12-12
with RESET#, 12-8
Prefetch queue, 2-5, 5-23
Priority encoder, 6-4
Priority, instruction fetch versus data fetch, 5-23
Processor status wor8eePSW
Product information, ordering, 1-6
Program counteiSeePC
Program memory, 5-2, 5-5, 5-25
PSW, 2-4, 4-13, 6-12, C-25
flags, and instructions, A-5
PTS, 2-4, 2-6, 6-1
and EPA, 6-26-6-36
block transfer mode, 6-23
control block,SeePTSCB
cycle execution time, 6-10
cycle, defined, 6-23
instructions, A-59, A-67
interrupt latency, 6-9
interrupt processing flow, 6-2
PWM modes, 6-26—6-36
PWM remap mode, 6-32

PWM toggle mode, 6-27,10-13, 10-14, 10-15

routine, defined, 6-1

single transfer mode, 6-20

vectors, memory locations, 5-6, 5-7

See als®®WM
PTSCB, 6-1, 6-4, 6-7, 6-18, 6-23

memory locations, 5-7
PTSSEL, 6-7, 6-10, 6-18
PTSSRV, 6-7, 6-18
Pulse-width modulatoiSeePWM
PUSH instruction, A-3, A-34, A-51, A-55, A-62
PUSHA instruction, A-2, A-35, A-52, A-55, A-62
PUSHF instruction, A-2, A-35, A-52, A-55, A-62
PWM, 6-26, 9-1

and cascading timemunters, 10-6

block diagram, 9-1

calculating duty cycle, 6-26

calculating frequency, 6-26

Index-8

clock prescaler, 9-4

D/A converter, 9-10

duty cycle, 9-5

enabling outputs, 9-9
generating, 10-15

generating analog outputs, 9-9
modes, 6-26-6-36

output period, 9-3

overview, 9-1

programming duty cycle, 9-5
remap mode, 6-32

toggle mode, 6-27

typical waveforms, 9-5
waveform, 6-27

with dedicated timer/counter, 10-15
See als&PA, PTS

PWMO, 9-9
PWMO_CONTROL, C-51, C-54
PWM1, 9-9
PWM1_CONTROL, C-51, C-54
PWM2, 9-9

PWM2:0, 9-9, B-10
PWM2_CONTROL, C-51, C-54

QUAD-WORD, defined, 4-4
Quick reference guides, ordering, 1-8

RALU, 2-4-2-5,5-11
RAM, internal

register RAM, 5-11

RD#, 13-4, 13-36, B-10

during bus hold, 13-30

READY, 13-4, 13-8-13-30, B-10

after reset, 13-18
for CCB fetches, 13-17
timing requirements, 13-27

Ready control, 13-26-13-30
REAL variables, 4-5
Register bits

naming conventions, 1-4
reserved, 1-4

Register file, 2-3, 5-9

and windows, 5-10, 5-13
lower, 5-10, 5-11, 5-13
upper, 5-10, 5-11

N

Reg

Reg

tel.

See alsavindows

ister RAM

and idle mode, 12-5

and powerdown mode, 12-7

isters

ACC_x, 3-4

ACC_STAT, 3-5

allocating, 4-12

EPA_MASK, 10-3

EPA_PEND, 10-3

EP_DIR, 7-12, 7-14, 7-16, 7-17

EP_MODE, 7-12, 7-14, 7-16, 7-17, 7-18

EP_PIN, 7-12, 7-14, 7-16, 7-17

EP_REG, 7-12, 7-16, 7-17, 7-18
considerations, 7-18

INT_MASK, 6-3, 6-10, 6-14, 8-2, 10-3, 12-2

INT_MASK1, 6-3, 6-10, 6-14, 10-3, 12-3

INT_PEND, 6-3, 6-4, 6-15, 8-2, 10-3, 12-3

INT_PEND1, 6-4, 6-15, 10-3, 12-3

naming conventions, 1-4

P1 DIR, 10-3

P1 MODE, 10-4
considerations, 7-9

P1 PIN, 10-4

P1 REG, 104

P2 DIR, 8-3,12-3

P2_MODE, 8-3, 12-3
considerations, 7-9, 7-10

P2_PIN, 8-2,8-3

P2_REG, 8-3, 12-3
considerations, 7-10

P3 DIR, 12-3

P3_MODE, 12-3

P3_REG, 12-3

PSW, 6-4, 6-14

PTSCON, 6-19

PTSCOUNT, 6-18

PTSSEL, 6-4

PTSSRV, 6-4

Px DIR, 7-2,7-6, 7-7, 7-8

Px_MODE, 7-2,7-6, 7-7, 7-8

Px_PIN, 7-2,7-4, 7-6

Px_REG, 7-2,7-6, 7-7,7-8

RALU, 2-4

SBUF_RX, 8-3

SBUF_TX, 8-3

SP_BAUD, 8-3, 8-11, 8-12, 8-13

SP_CON, 8-3, 8-9

INDEX

SP_STATUS,8-4, 8-14
T1CONTROL, 10-4
T2CONTROL, 10-4
TIMER1, 10-4
TIMER2, 10-4
using, 4-12
WSR, 6-14
WSR1, 5-15
REMAP bit
SeeROM, internal (83C26NP)
Reserved bits, defined, 1-4
Reserved memonBeememory, reserved
Reset, 11-9, 13-14, 13-16
and bus-hold protocol, 13-33
and CCB fetches, 5-7
and chip select, 13-11
and operating mode selection, 5-23
circuit diagram, 11-10
status
CLKOUT/P2.7, 7-4, 7-10
with illegal IDLPD operand, 11-11
with RESET# pin, 11-9
with RST instruction, 11-9, 11-11
RESET#, 11-1, 12-2, B-10
and CCB fetch, 11-8
and device reset, 11-8, 11-9, 11-10, 13-33
and ONCE mode, 12-12
and powerdown mode, 12-8
pins after deassertion, 13-18
Resonator, ceramic, 11-6
RET instruction, A-2, A-35, A-52, A-57, A-64,
A-65
ROM, internal (83C18NP), 5-2, 5-55-22, 5-25
REMAP bit, 5-22
RPD, 12-2, B-11
RST instruction, 4-14, 11-9, 11-11, A-3, A-36,
A-52, A-59, A-67
RXD, 8-2,B-11
and SIO port mode 0, 8-4, 8-5
and SIO port modes 1, 2, and 3, 8-6

S

Samplednput, B-6

SBUF_RX, C-51, C-54

SBUF_TX, C-51, C-54

SCALL instruction, A-3, A-36, A-47, A-53, A-57,
A-64, A-65

Index-9

8XC196NP, 80C196NU USER’'S MANUAL

Serial 1/0 port,SeeSIO port
Set, defined, 1-3
SETC instruction, A-3, A-36, A-52, A-59, A-67
SFRs
and idle mode, 12-5
and powerdown mode, 12-7
CPU, 5-12
table of, 5-12
peripheral, 5-7
and windows, 5-13
table of, 5-8
reserved, 4-12, 5-9

with indirect or indexed operations, 4-12, 5-9

with read-modify-write instructions, 5-7
Shift instructions, A-59, A-66
SHL instruction, A-3, A-37, A-47, A-59, A-66
SHLB instruction, A-3, A-37, A-47, A-59, A-66
SHLL instruction, A-3, A-38, A-47, A-59
SHORT-INTEGER, dehed, 4-2
SHR instruction, A-3, A-38, A-47, A-59, A-66
SHRA instruction, A-3, A-39, A-47, A-59, A-66
SHRAB instruction, A-3, A-39, A-47, A-59, A-66
SHRAL indruction, A-3, A-40, A-47, A-59, A-66
SHRB instruction, A-3, A-40, A-47A-59, A-66
SHRL indruction, A-3, A-41, A-47, A-59, A-66
Signals

descriptions, B-6—-B-12

naming conventions, 1-4
Single transfer mode5eePTS
SIO port, 2-11, 8-1

9-bit data,Seemode 2, mode 3

block diagram, 8-1, 10-2

calculating baud rate, 8-12

enabling interrupts, 8-13

enabling parity, 8-8

framing error, 8-14

half-duplex considerations, 8-6

interrupts, 8-5, 8-8, 8-15

mode 0, 8-4-8-5

mode 1, 8-5, 8-6

mode 2, 8-5, 8-6, 8-7

mode 3, 8-5, 8-6, 8-7

multiprocessor communications, 8-7, 8-8

overrun error, 8-14

programming, 8-8

receive interrupt (RI) flag, 8-15

receiver, 8-1

selecting baud rate, 8-8-8-12

Index-10

intel.

SFRs, 8-2

signals, 8-2

status, 8-13-8-15

transmit interrupt (TI) flag, 8-15

transmitter, 8-1

See alsanode 0, mode 1, mode 2, mode 3,

port 2
SJMP instruction, A-2, A-41, A-47, A-53, A-57,
A-64

SKIP instruction, A-2, A-41, A-47, A-59, A-67
Software

addressing modes, 4-11

conventions, 4-11-4-13

device reset, 11-11

interrupt service routines, 6-14

linking subroutines, 4-13

protection, 4-14, 13-32

trap interrupt, 6-4, 6-5, 6-7
SP_BAUD, C-51, C-54
SP_CON, 8-9, C-51, C-54
Special instructions, A-59, A-67
Special operating modes

SFRs, 12-2
Special-purpose memory, 5-2, 5-5, 5-6
SP_STATUS,8-14, C-51, C-54
ST instruction, A-2, A-42, A-51, A-56, A-63
Stack instructions, A-55, A-62
Stack pointer, 5-11, 13-11

and subroutine call, 5-11

initializing, 5-12
Standby mode, 12-6
State time, defined, 2-9
STB instruction, A-2, A-42, A-51, A-56, A-63
Sticky bit (ST) flag, 4-5, A-4, A-5, A-25, A-26
SUB instruction, A-3, A-42, A-48, A-53, A-60
SUBB instruction, A-3, A-43, A-48, A-49, A-53,

A-60

SUBC instruction, A-3, A-43, A-50, A-53, A-60
SUBCB instruction, A-3, A-43, A-50, A-53, A-60
Subroutines

linking, 4-13
nested, 5-12
T
t, defined, 1-5

T1CLK, 8-2,10-2, B-11
T1CONTROL, C-51, C-54

intel.

T1DIR, 10-2, B-11
T2CLK, 10-2, B-11
T2CONTROL, C-51, C-54
T2DIR, 10-2, B-11
Technical support, 1-11
Terminology, 1-3

TIIMP instruction, A-2, A-44, A-51, A-57, A-64

Timer/counters, 2-11, 10-5, 10-6

and PWM, 10-12, 10-13, 10-14, 10-15

cascading, 10-6
configuring pins, 10-2
count rate, 10-6
resolution, 10-6
SFRs, 10-3

See als®&PA

TIMER1, C-51, C-54
TIMER2, C-51, C-54
Timing

TRAP indruction, 6-5, A-2, A-45, A-52, A-57,

HLDA#, 13-30

HOLD#, 13-30

instruction execution, A-60-A-61
internal, 2-7, 2-9

interrupt latency, 6-7-6-10, 6-23
PTS cycles, 6-10

READY, 13-27

SIO port mode 0, 8-5

SIO port mode 1, 8-6

SIO port mode 2, 8-7

SIO port mode 3, 8-7

A-64, A-65

TRAP interrupt, 6-4
TXD, 8-2,B-11

U

and SIO port mode 0, 8-4

UART, 2-11, 8-1

Unimplemented opcode interrupt, 4-14, 6-4, 6-5,

6-7

Units of measure, defined, 1-5

Universal asynchronous receiver andhsmitter,

Vv

SeeUART

Veo 11-1, B-12
Vgo 11-1, B-12

INDEX

W

Wait states, 13-5, 13-26-13-30
for CCBO fetch, 13-17

Window selection registe6eeWSR, WSR1

Windows, 5-1, 5-3-5-21
addressing, 5-18
and addressing modes, 5-21
base address, 5-16, 5-18
examples, 5-18-5-21
nonwindowable locations, 5-19
selecting, 5-14
setting up with linker loader, 5-19
table of, 5-15, 5-17

Word accesses, and write-control signals, 13-34

WORD, defined, 4-3

World Wide Web, 1-11

WR#, 13-5, B-12
after reset, 13-18
during bus hold, 13-30
See alsavrite-control signals

WRH#, 13-3, 13-5, 13-33, 13-35, B-12
See alsavrite-control signals

Write strobe mode
example, 13-36

Write-control modes, 13-1, 13313-36
byte writes and word writes, 13-35
standard, 13-33

Write-control signals, 13-33, 13-34
decoding logic, 13-34

WRL#, 13-5, 13-33, 13-35, B-12
See alsavrite-control signals

WSO0 and WS1, 13-11, 13-26

WSR, 5-14, 13-32

WSR1, 5-12, 5-13, 5-15, 5-18

X

X, defined, 1-5

X, defined, 1-4

XCH instruction, A-2, A-3, A-45, A-47, A-56,
A-63

XCHB instruction, A-2, A-3, A-45A-47, A-56,
A-63

XOR instruction, A-2, A-46, A-49, A-54, A-61

XORB instruction, A-2, A-46, A-49, A-50, A-54,
A-61

XTAL1, 11-2,B-12

and Miller effect, 11-7

Index-11

8XC196NP, 80C196NU USER’'S MANUAL

and SIO baud rate, 8-12, 8-13

hardware connections, 11-6, 11-7
XTAL2, 11-2, B-12

hardware connections, 11-6, 11-7

Y
y, defined, 1-4

Z

Zero (2) flag, A-4, A-5, A-22, A-23, A-24, A-25,
C-34

Index-12

	8XC196NP, 80C196NU Microcontroller User’s Manual
	CONTENTS
	CHAPTER 1 GUIDE TO THIS MANUAL
	1.1 MANUAL CONTENTS
	1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY
	1.3 RELATED DOCUMENTS
	1.4 ELECTRONIC SUPPORT SYSTEMS
	1.4.4 World Wide Web

	1.5 TECHNICAL SUPPORT
	1.6 PRODUCT LITERATURE

	CHAPTER 2 ARCHITECTURAL OVERVIEW
	2.1 TYPICAL APPLICATIONS
	2.2 DEVICE FEATURES
	2.3 BLOCK DIAGRAM
	2.3.1 CPU Control
	2.3.2 Register File
	2.3.3 Register Arithmetic-logic Unit (RALU)
	2.3.3.1 Code Execution
	2.3.3.2 Instruction Format

	2.3.4 Memory Controller
	2.3.5 Multiply-accumulate (80C196NU Only)
	2.3.6 Interrupt Service

	2.4 INTERNAL TIMING
	2.5 INTERNAL PERIPHERALS
	2.5.1 I/O Ports
	2.5.2 Serial I/O (SIO) Port
	2.5.3 Event Processor Array (EPA) and Timer/Counters
	2.5.4 Pulse-width Modulator (PWM)

	2.6 SPECIAL OPERATING MODES
	2.6.1 Reducing Power Consumption
	2.6.2 Testing the Printed Circuit Board

	2.7 DESIGN CONSIDERATIONS FOR 80C196NP TO 80C196NU CONVERSIONS

	CHAPTER 3 ADVANCED MATH FEATURES
	3.1 ENHANCED MULTIPLICATION INSTRUCTIONS3.1 ENHANCED MULTIPLICATION INSTRUCTIONS
	3.2 OPERATING MODES
	3.2.1 Saturation Mode
	3.2.2 Fractional Mode

	3.3 ACCUMULATOR REGISTER (ACC_0 x)
	3.4 ACCUMULATOR CONTROL AND STATUS REGISTER (ACC_STAT)

	CHAPTER 4 PROGRAMMING CONSIDERATIONS
	4.1 OVERVIEW OF THE INSTRUCTION SET
	4.1.1 BIT Operands
	4.1.2 BYTE Operands
	4.1.3 SHORT-INTEGER Operands
	4.1.4 WORD Operands
	4.1.5 INTEGER Operands
	4.1.6 DOUBLE-WORD Operands
	4.1.7 LONG-INTEGER Operands
	4.1.8 QUAD-WORD Operands
	4.1.9 Converting Operands
	4.1.10 Conditional Jumps
	4.1.11 Floating Point Operations
	4.1.12 Extended Instructions

	4.2 ADDRESSING MODES
	4.2.1 Direct Addressing
	4.2.2 Immediate Addressing
	4.2.3 Indirect Addressing
	4.2.3.1 Extended Indirect Addressing
	4.2.3.2 Indirect Addressing with Autoincrement
	4.2.3.3 Extended Indirect Addressing with Autoincrement
	4.2.3.4 Indirect Addressing with the Stack Pointer

	4.2.4 Indexed Addressing
	4.2.4.1 Short-indexed Addressing
	4.2.4.2 Long-indexed Addressing
	4.2.4.3 Extended Indexed Addressing
	4.2.4.4 Zero-indexed Addressing
	4.2.4.5 Extended Zero-indexed Addressing

	4.3 ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONS
	4.3.1 Direct Addressing
	4.3.2 Indexed Addressing
	4.3.3 Extended Addressing

	4.4 DESIGN CONSIDERATIONS FOR 1-MBYTE DEVICES
	4.5 SOFTWARE STANDARDS AND CONVENTIONS
	4.5.1 Using Registers
	4.5.2 Addressing 32-bit Operands
	4.5.3 Addressing 64-bit Operands
	4.5.4 Linking Subroutines

	4.6 SOFTWARE PROTECTION FEATURES AND GUIDELINES

	CHAPTER 5 MEMORY PARTITIONS
	5.1 MEMORY MAP OVERVIEW
	5.2 MEMORY PARTITIONS
	5.2.1 External Memory
	5.2.2 Program and Special-purpose Memory
	5.2.2.1 Program Memory in Page FFH
	5.2.2.2 Special-purpose Memory
	5.2.2.3 Reserved Memory Locations
	5.2.2.4 Interrupt and PTS Vectors
	5.2.2.5 Chip Configuration Bytes

	5.2.3 Peripheral Special-function Registers (SFRs)
	5.2.4 Register File
	5.2.4.1 General-purpose Register RAM
	5.2.4.2 Stack Pointer (SP)
	5.2.4.3 CPU Special-function Registers (SFRs)

	5.3 WINDOWING
	5.3.1 Selecting a Window
	5.3.2 Addressing a Location Through a Window
	5.3.2.1 32-byte Windowing Example
	5.3.2.2 64-byte Windowing Example
	5.3.2.3 128-byte Windowing Example
	5.3.2.4 Unsupported Locations Windowing Example (8XC196NP Only)
	5.3.2.5 Using the Linker Locator to Set Up a Window

	5.3.3 Windowing and Addressing Modes

	5.4 REMAPPING INTERNAL ROM (83C196NP ONLY)
	5.5 FETCHING CODE AND DATA IN THE 1-MBYTE AND 64-KBYTE MODES
	5.5.1 Fetching Instructions
	5.5.2 Accessing Data
	5.5.3 Code Fetches in the 1-Mbyte Mode
	5.5.4 Code Fetches in the 64-Kbyte Mode
	5.5.5 Data Fetches in the 1-Mbyte and 64-Kbyte Modes

	5.6 MEMORY CONFIGURATION EXAMPLES
	5.6.1 Example 1: Using the 64-Kbyte Mode
	5.6.2 Example 2: A 64-Kbyte System with Additional Data Storage
	5.6.3 Example 3: Using 1-Mbyte Mode

	CHAPTER 6 STANDARD AND PTS INTERRUPTS
	6.1 OVERVIEW OF INTERRUPTS
	6.2 INTERRUPT SIGNALS AND REGISTERS
	6.3 INTERRUPT SOURCES AND PRIORITIES
	6.3.1 Special Interrupts
	6.3.1.1 Unimplemented Opcode
	6.3.1.2 Software Trap
	6.3.1.3 NMI

	6.3.2 External Interrupt Pins
	6.3.3 Multiplexed Interrupt Sources
	6.3.4 End-of-PTS Interrupts

	6.4 INTERRUPT LATENCY
	6.4.1 Situations that Increase Interrupt Latency
	6.4.2 Calculating Latency
	6.4.2.1 Standard Interrupt Latency
	6.4.2.2 PTS Interrupt Latency

	6.5 PROGRAMMING THE INTERRUPTS
	6.5.1 Programming Considerations for Multiplexed Interrupts
	6.5.2 Modifying Interrupt Priorities
	6.5.3 Determining the Source of an Interrupt

	6.6 INITIALIZING THE PTS CONTROL BLOCKS
	6.6.1 Specifying the PTS Count
	6.6.2 Selecting the PTS Mode
	6.6.3 Single Transfer Mode
	6.6.4 Block Transfer Mode
	6.6.5 PWM Modes
	6.6.5.1 PWM Toggle Mode Example
	6.6.5.2 PWM Remap Mode Example

	CHAPTER 7 I/O PORTS
	7.1 I/O PORTS OVERVIEW
	7.2 BIDIRECTIONAL PORTS 1–4
	7.2.1 Bidirectional Port Operation
	7.2.2 Bidirectional Port Pin Configurations
	7.2.3 Bidirectional Port Pin Configuration Example
	7.2.4 Bidirectional Port Considerations
	7.2.5 Design Considerations for External Interrupt Inputs

	7.3 EPORT
	7.3.1 EPORT Operation
	7.3.1.1 Reset
	7.3.1.2 Output Enable
	7.3.1.3 Complementary Output Mode
	7.3.1.4 Open-drain Output Mode
	7.3.1.5 Input Mode

	7.3.2 Configuring EPORT Pins
	7.3.2.1 Configuring EPORT Pins for Extended-address Functions
	7.3.2.2 Configuring EPORT Pins for I/O

	7.3.3 EPORT Considerations
	7.3.3.1 EPORT Status During Reset, CCB Fetch, Idle, Powerdown, and Hold.
	7.3.3.2 EP_REG Settings for Pins Configured as Extended-address Signals
	7.3.3.3 EPORT Status During Instruction Execution
	7.3.3.4 Design Considerations

	CHAPTER 8 SERIAL I/O (SIO) PORT
	8.1 SERIAL I/O (SIO) PORT FUNCTIONAL OVERVIEW
	8.2 SERIAL I/O PORT SIGNALS AND REGISTERS
	8.3 SERIAL PORT MODES
	8.3.1 Synchronous Mode (Mode 0)
	8.3.2 Asynchronous Modes (Modes 1, 2, and 3)
	8.3.2.1 Mode 1
	8.3.2.2 Mode 2
	8.3.2.3 Mode 3
	8.3.2.4 Mode 2 and 3 Timings
	8.3.2.5 Multiprocessor Communications

	8.4 PROGRAMMING THE SERIAL PORT
	8.4.1 Configuring the Serial Port Pins
	8.4.2 Programming the Control Register
	8.4.2 Programming the Control Register
	8.4.3 Programming the Baud Rate and Clock Source
	8.4.4 Enabling the Serial Port Interrupts
	8.4.5 Determining Serial Port Status

	CHAPTER 9 PULSE-WIDTH MODULATOR
	9.1 PWM FUNCTIONAL OVERVIEW
	9.2 PWM SIGNALS AND REGISTERS
	9.3 PWM OPERATION
	9.4 PROGRAMMING THE FREQUENCY AND PERIOD
	9.5 PROGRAMMING THE DUTY CYCLE
	9.5.1 Sample Calculations
	9.5.2 Enabling the PWM Outputs
	9.5.3 Generating Analog Outputs

	CHAPTER 10 EVENT PROCESSOR ARRAY (EPA)
	10.1 EPA FUNCTIONAL OVERVIEW
	10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERS
	10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW
	10.3.1 Cascade Mode (Timer 2 Only)
	10.3.2 Quadrature Clocking Mode

	10.4 EPA CHANNEL FUNCTIONAL OVERVIEW
	10.4.1 Operating in Capture Mode
	10.4.1.1 EPA Overruns
	10.4.1.2 Preventing EPA Overruns

	10.4.2 Operating in Compare Mode
	10.4.2.1 Generating a Low-speed PWM Output
	10.4.2.2 Generating a Medium-speed PWM Output
	10.4.2.3 Generating a High-speed PWM Output
	10.4.2.4 Generating the Highest-speed PWM Output

	10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS
	10.5.1 Configuring the EPA and Timer/Counter Port Pins
	10.5.2 Programming the Timers
	10.5.3 Programming the Capture/Compare Channels

	10.6 ENABLING THE EPA INTERRUPTS
	10.7 DETERMINING EVENT STATUS
	10.7.1 Using Software to Service the Multiplexed Overrun Interrupts

	10.8 PROGRAMMING EXAMPLES FOR EPA CHANNELS
	10.8.1 EPA Compare Event Program
	10.8.2 EPA Capture Event Program
	10.8.3 EPA PWM Output Program

	CHAPTER 11 MINIMUM HARDWARE CONSIDERATIONS
	11.1 MINIMUM CONNECTIONS
	11.1.1 Unused Inputs
	11.1.2 I/O Port Pin Connections

	11.2 APPLYING AND REMOVING POWER
	11.3 NOISE PROTECTION TIPS
	11.4 THE ON-CHIP OSCILLATOR CIRCUITRY
	11.5 USING AN EXTERNAL CLOCK SOURCE
	11.6 RESETTING THE DEVICE
	11.6.1 Generating an External Reset
	11.6.2 Issuing the Reset (RST) Instruction
	11.6.3 Issuing an Illegal IDLPD Key Operand

	CHAPTER 12 SPECIAL OPERATING MODES
	12.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS
	12.2 REDUCING POWER CONSUMPTION
	12.3 IDLE MODE
	12.4 STANDBY MODE (80C196NU ONLY)
	12.4.1 Enabling and Disabling Standby Mode
	12.4.2 Entering Standby Mode
	12.4.3 Exiting Standby Mode

	12.5 POWERDOWN MODE
	12.5.1 Enabling and Disabling Powerdown Mode
	12.5.2 Entering Powerdown Mode
	12.5.3 Exiting Powerdown Mode
	12.5.3.1 Generating a Hardware Reset
	12.5.3.2 Asserting an External Interrupt Signal
	12.5.3.3 Selecting C1

	12.6 ONCE MODE
	12.7 RESERVED TEST MODES (80C196NU ONLY)

	CHAPTER 13 INTERFACING WITH EXTERNAL MEMORY
	13.1 INTERNAL AND EXTERNAL ADDRESSES
	13.2 EXTERNAL MEMORY INTERFACE SIGNALS
	13.3 THE CHIP-SELECT UNIT
	13.3.1 Defining Chip-select Address Ranges
	13.3.2 Controlling Wait States, Bus Width, and Bus Multiplexing
	13.3.3 Chip-select Unit Initial Conditions
	13.3.4 Initializing the Chip-select Registers
	13.3.5 Example of a Chip-select Setup

	13.4 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES
	13.5 BUS WIDTH AND MULTIPLEXING
	13.5.1 A 16-bit Example System
	13.5.2 16-bit Bus Timings
	13.5.3 8-bit Bus Timings
	13.5.4 Comparison of Multiplexed and Demultiplexed Buses

	13.6 WAIT STATES (READY CONTROL)
	13.7 BUS-HOLD PROTOCOL
	13.7.1 Enabling the Bus-hold Protocol
	13.7.2 Disabling the Bus-hold Protocol
	13.7.3 Hold Latency
	13.7.4 Regaining Bus Control

	13.8 WRITE-CONTROL MODES
	13.9 SYSTEM BUS AC TIMING SPECIFICATIONS
	13.9.1 Deferred Bus-cycle Mode (80C196NU Only)
	13.9.2 Explanation of AC Symbols
	13.9.3 AC Timing Definitions

	APPENDIX A INSTRUCTION SET REFERENCE
	APPENDIX B SIGNAL DESCRIPTIONS
	B.1 FUNCTIONAL GROUPINGS OF SIGNALS
	B.2 SIGNAL DESCRIPTIONS
	B.3 DEFAULT CONDITIONS

	APPENDIX C REGISTERS
	GLOSSARY
	INDEX

	FIGURES
	Figure 2-1. 8XC196NP and 80C196NU Block Diagram
	Figure 2-2. Block Diagram of the Core
	Figure 2-3. Clock Circuitry (8XC196NP)
	Figure 2-4. Clock Circuitry (80C196NU)
	Figure 2-5. Internal Clock Phases
	Figure 2-6. Effect of Clock Mode on CLKOUT Frequency
	Figure 3-1. Accumulator (ACC_0 x) Register
	Figure 3-2. Accumulator Control and Status (ACC_STAT) Register
	Figure 5-1. 16-Mbyte Address Space
	Figure 5-2. Pages FFH and 00H
	Figure 5-3. Register File Memory Map
	Figure 5-4. Windowing
	Figure 5-5. Window Selection (WSR) Register
	Figure 5-6. Window Selection 1 (WSR1) Register
	Figure 5-7. The 24-bit Program Counter
	Figure 5-8. Formation of Extended and Nonextended Addresses
	Figure 5-9. A 64-Kbyte System With an 8-bit Bus
	Figure 5-10. A 64-Kbyte System with Additional Data Storage
	Figure 5-11. Example System Using the 1-Mbyte Mode
	Figure 6-1. Flow Diagram for PTS and Standard Interrupts
	Figure 6-2. Standard Interrupt Response Time
	Figure 6-3. PTS Interrupt Response Time
	Figure 6-4. PTS Select (PTSSEL) Register
	Figure 6-5. Interrupt Mask (INT_MASK) Register
	Figure 6-6. Interrupt Mask 1 (INT_MASK1) Register
	Figure 6-7. Interrupt Pending (INT_PEND) Register
	Figure 6-8. Interrupt Pending 1 (INT_PEND1) Register
	Figure 6-9. PTS Control Blocks
	Figure 6-10. PTS Service (PTSSRV) Register
	Figure 6-11. PTS Mode Selection Bits (PTSCON Bits 7:5)
	Figure 6-12. PTS Control Block — Single Transfer Mode
	Figure 6-13. PTS Control Block — Block Transfer Mode
	Figure 6-14. A Generic PWM Waveform
	Figure 6-15. PTS Control Block — PWM Toggle Mode
	Figure 6-16. EPA and PTS Operations for the PWM Toggle Mode Example
	Figure 6-17. PTS Control Block — PWM Remap Mode
	Figure 6-18. EPA and PTS Operations for the PWM Remap Mode Example
	Figure 7-1. Bidirectional Port Structure
	Figure 7-2. EPORT Block Diagram
	Figure 7-3. EPORT Structure
	Figure 8-1. SIO Block Diagram
	Figure 8-2. Typical Shift Register Circuit for Mode 0
	Figure 8-3. Mode 0 Timing
	Figure 8-4. Serial Port Frames for Mode 1
	Figure 8-5. Serial Port Frames in Mode 2 and 3
	Figure 8-6. Serial Port Control (SP_CON) Register
	Figure 8-7. Serial Port Baud Rate (SP_BAUD) Register
	Figure 8-8. Serial Port Status (SP_STATUS) Register
	Figure 9-1. PWM Block Diagram (8XC196NP Only)
	Figure 9-2. PWM Block Diagram (80C196NU Only)
	Figure 9-3. PWM Output Waveforms
	Figure 9-4. Control (CON_REG0) Register
	Figure 9-5. PWM Control (PWM x_CONTROL) Register
	Figure 9-6. D/A Buffer Block Diagram
	Figure 9-7. PWM to Analog Conversion Circuitry
	Figure 10-1. EPA Block Diagram
	Figure 10-2. EPA Timer/Counters
	Figure 10-3. Quadrature Mode Interface
	Figure 10-4. Quadrature Mode Timing and Count
	Figure 10-5. A Single EPA Capture/Compare Channel
	Figure 10-6. EPA Simplified Input-capture Structure
	Figure 10-7. Valid EPA Input Events
	Figure 10-8. Timer 1 Control (T1CONTROL) Register
	Figure 10-9. Timer 2 Control (T2CONTROL) Register
	Figure 10-10. EPA Control (EPA x_CON) Registers
	Figure 10-11. EPA Interrupt Mask (EPA_MASK) Register
	Figure 10-12. EPA Interrupt Pending (EPA_PEND) Register
	Figure 11-1. Minimum Hardware Connections
	Figure 11-2. Power and Return Connections
	Figure 11-3. On-chip Oscillator Circuit
	Figure 11-4. External Crystal Connections
	Figure 11-5. External Clock Connections
	Figure 11-6. External Clock Drive Waveforms
	Figure 11-7. Reset Timing Sequence
	Figure 11-8. Internal Reset Circuitry
	Figure 11-9. Minimum Reset Circuit
	Figure 11-10. Example System Reset Circuit
	Figure 12-1. Clock Control During Power-saving Modes (8XC196NP)
	Figure 12-2. Clock Control During Power-saving Modes (80C196NU)
	Figure 12-3. Power-up and Powerdown Sequence When Using an External Interrupt
	Figure 12-4. External RC Circuit
	Figure 12-5. Typical Voltage on the RPD Pin While Exiting Powerdown
	Figure 13-1. Calculation of a Chip-select Output
	Figure 13-2. Address Compare (ADDRCOMx) Register
	Figure 13-3. Address Mask (ADDRMSK x) Register
	Figure 13-4. Bus Control (BUSCON x) Register
	Figure 13-5. Example System for Setting Up Chip-select Outputs
	Figure 13-6. Chip Configuration 0 (CCR0) Register
	Figure 13-7. Chip Configuration 1 (CCR1) Register
	Figure 13-8. Multiplexing and Bus Width Options
	Figure 13-9. Bus Activity for Four Types of Buses
	Figure 13-10. 16-bit External Devices in Demultiplexed Mode
	Figure 13-11. Timings for Multiplexed and Demultiplexed 16-bit Buses (8XC196NP)
	Figure 13-12. Timings for Multiplexed and Demultiplexed 8-bit Buses (8XC196NP)
	Figure 13-13. READY Timing Diagram — Multiplexed Mode
	Figure 13-14. READY Timing Diagram — Demultiplexed Mode (8XC196NP)
	Figure 13-15. READY Timing Diagram — Demultiplexed Mode (80C196NU)
	Figure 13-16. HOLD#, HLDA# Timing
	Figure 13-17. Write-control Signal Waveforms
	Figure 13-18. Decoding WRL# and WRH#
	Figure 13-19. A System with 8-bit and 16-bit Buses
	Figure 13-20. Multiplexed System Bus Timing (8XC196NP)
	Figure 13-21. Multiplexed System Bus Timing (80C196NU)
	Figure 13-22. Demultiplexed System Bus Timing (8XC196NP)
	Figure 13-23. Demultiplexed System Bus Timing (80C196NU)
	Figure 13-24. Deferred Bus-cycle Mode Timing Diagram (80C196NU)
	Figure B-1. 8XC196NP 100-lead SQFP Package
	Figure B-2. 8XC196NP 100-lead QFP Package
	Figure B-3. 80C196NU 100-lead SQFP Package
	Figure B-4. 80C196NU 100-lead QFP Package

	TABLES
	Table 1-1. Handbooks and Product Information
	Table 1-2. Application Notes, Application Briefs, and Article Reprints
	Table 1-3. MCS ® 96 Microcontroller Datasheets (Commercial/Express)
	Table 1-4. MCS ® 96 Microcontroller Datasheets (Automotive)
	Table 1-5. MCS ® 96 Microcontroller Quick References
	Table 2-1. Features of the 8XC196NP and 80C196NU
	Table 2-2. State Times at Various Frequencies
	Table 2-3. Relationships Between Input Frequency, Clock Multiplier, and State Times
	Table 3-1. Multiply/Accumulate Example Code
	Table 3-2. Effect of SME and FME Bit Combinations
	Table 4-1. Operand Type Definitions
	Table 4-2. Equivalent Operand Types for Assembly and C Programming Languages
	Table 4-3. Definition of Temporary Registers
	Table 5-1. 8XC196NP and 80C196NU Memory Map
	Table 5-2. Program Memory Access for the 83C196NP
	Table 5-3. 8XC196NP and 80C196NU Special-purpose Memory Addresses
	Table 5-4. Special-purpose Memory Access for the 83C196NP
	Table 5-5. Peripheral SFRs
	Table 5-6. Register File Memory Addresses
	Table 5-7. CPU SFRs
	Table 5-8. Selecting a Window of Peripheral SFRs
	Table 5-9. Selecting a Window of the Upper Register File
	Table 5-10. Windows
	Table 5-11. Windowed Base Addresses
	Table 5-12. Memory Map for the System in Figure 5-9
	Table 5-13. Memory Map for the System in Figure 5-10
	Table 5-14. Memory Map for the System in Figure 5-11
	Table 6-1. Interrupt Signals
	Table 6-2. Interrupt and PTS Control and Status Registers
	Table 6-3. Interrupt Sources, Vectors, and Priorities
	Table 6-4. Execution Times for PTS Cycles
	Table 6-5. Single Transfer Mode PTSCB
	Table 6-6. Block Transfer Mode PTSCB
	Table 6-7. Comparison of PWM Modes
	Table 6-8. PWM Toggle Mode PTSCB
	Table 6-9. PWM Remap Mode PTSCB
	Table 7-1. Device I/O Ports
	Table 7-2. Bidirectional Port Pins
	Table 7-3. Bidirectional Port Control and Status Registers
	Table 7-4. Logic Table for Bidirectional Ports in I/O Mode
	Table 7-5. Logic Table for Bidirectional Ports in Special-function Mode
	Table 7-6. Control Register Values for Each Configuration
	Table 7-7. Port Configuration Example
	Table 7-8. Port Pin States After Reset and After Example Code Execution
	Table 7-9. EPORT Pins
	Table 7-10. EPORT Control and Status Registers
	Table 7-11. Logic Table for EPORT in I/O Mode
	Table 7-12. Logic Table for EPORT in Address Mode
	Table 7-13. Configuration Register Settings for EPORT Pins
	Table 8-1. Serial Port Signals
	Table 8-2. Serial Port Control and Status Registers
	Table 8-3. SP_BAUD Values When Using the Internal Clock at 25 MHz
	Table 8-4. SP_BAUD Values When Using the Internal Clock at 50 MHz (80C196NU Only)
	Table 9-1. PWM Signals
	Table 9-2. PWM Control and Status Registers
	Table 9-3. PWM Output Frequencies (8XC196NP)
	Table 9-4. PWM Output Frequencies (80C196NU)
	Table 9-5. PWM Output Alternate Functions
	Table 10-1. EPA and Timer/Counter Signals
	Table 10-2. EPA Control and Status Registers
	Table 10-3. Quadrature Mode Truth Table
	Table 10-4. Action Taken when a Valid Edge Occurs
	Table 10-5. Example Control Register Settings and EPA Operations
	Table 11-1. Minimum Required Signals
	Table 11-2. I/O Port Configuration Guide
	Table 12-1. Operating Mode Control Signals
	Table 12-2. Operating Mode Control and Status Registers
	Table 12-3. 80C196NU Clock Modes
	Table 13-1. Example of Internal and External Addresses
	Table 13-2. External Memory Interface Signals
	Table 13-3. Chip-select Registers
	Table 13-4. ADDRCOM x Addresses and Reset Values
	Table 13-5. ADDRMSK x Addresses and Reset Values
	Table 13-6. Base Addresses for Several Sizes of the Address Range
	Table 13-7. BUSCON x Addresses and Reset Values
	Table 13-8. BUSCON x Registers for the Example System
	Table 13-9. Results for the Chip-select Example
	Table 13-10. Comparison of AC Timings for Demultiplexed and Multiplexed 16-bit Buses
	Table 13-11. READY Signal Timing Definitions
	Table 13-12. HOLD#, HLDA# Timing Definitions
	Table 13-13. Maximum Hold Latency
	Table 13-14. Write Signals for Standard and Write Strobe Modes
	Table 13-15. AC Timing Symbol Definitions
	Table 13-16. AC Timing Definitions
	Table A-1. Opcode Map (Left Half)
	Table A-2. Processor Status Word (PSW) Flags
	Table A-3. Effect of PSW Flags or Specified Conditions on Conditional Jump Instructions
	Table A-4. PSW Flag Setting Symbols
	Table A-5. Operand Variables
	Table A-6. Instruction Set
	Table A-7. Instruction Opcodes
	Table A-8. Instruction Lengths and Hexadecimal Opcodes
	Table A-9. Instruction Execution Times (in State Times)
	Table B-1. 8XC196NP and 80C196NU Signals Arranged by Function
	Table B-2. Description of Columns of Table B-3
	Table B-3. Signal Descriptions
	Table B-4. Definition of Status Symbols
	Table B-5. 8XC196NP and 80C196NU Pin Status
	Table C-1. Modules and Related Registers
	Table C-2. Register Name, Address, and Reset Status
	Table C-3. ACC_0 x Addresses and Reset Values
	Table C-4. Effect of SME and FME Bit Combinations
	Table C-5. ADDRCOMx Addresses and Reset Values
	Table C-6. ADDRMSK x Addresses and Reset Values
	Table C-7. BUSCON x Addresses and Reset Values
	Table C-8. EPA x_CON Addresses and Reset Values
	Table C- 9. EPA x_TIME Addresses and Reset Values
	Table C-10. P x_DIR Addresses and Reset Values
	Table C-11. P x_MODE Addresses and Reset Values
	Table C-12. Special-function Signals for Ports 1–4
	Table C-13. P x_PIN Addresses and Reset Values
	Table C-14. P x_REG Addresses and Reset Values
	Table C-15. PWMx_CONTROL Addresses and Reset Values
	Table C-16. SP_BAUD Values When Using the Internal Clock at 25 MHz
	Table C-17. TIMER x Addresses and Reset Values
	Table C-18. WSR Settings and Direct Addresses for Windowable SFRs
	Table C-19. WSR1 Settings and Direct Addresses for Windowable SFRs

