Includes
8XC196KQ,
8XC196KR,
8XC196KS,
8XC196KT,
8XC196JQ,
8XC196JR,
8XC196JT,

8XC1964V,
87C196CA

8XC196KX,

8XC196X, 87C196CA
Microcontroller Family
User’'s Manual

Includes
8XC196KQ, 8XC196KR, 8XC196KS, 8XC196KT,
8XC196JQ, 8XC196JR, 8XC196JT, 8XC196JV,
87C196CA

June 1995 Order Number 272258-002

Information in this document is provided solely to enable use of Intel products. Intel assumes no liability whatsoever, including
infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions
of Sale for such products.

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may appear
in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your product order.
MDS is an ordering code only and is not used as a product name or trademark of Intel Corporation.

Intel Corporation and Intel's FASTPATH are not affiliated with Kinetics, a division of Excelan, Inc. or its FASTPATH trademark
or products.

*Other brands and names are the property of their respective owners.
Additional copies of this document or other Intel literature may be obtained from:

Intel Corporation

Literature Sales

P.O. Box 7641

Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

© INTEL CORPORATION, 1996

intel.
CONTENTS

CHAPTER 1
GUIDE TO THIS MANUAL

1.1 MANUAL CONTENT S ..ttt ettt e te s e e e e e s st s bee e aeeaeaesasesean e et st sansennnnes 1-1
1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGYcovtiiiieieiiiiiiiieieeeisieieieveveiens 1-3
1.3 RELATED DOCUMENTS ... ettt e e e e aeaes s s s st b e ae e eeeeeesasaeaes e ens sn sannnnnnnes
1.4 ELECTRONIC SUPPORT SYSTEMS
1.4.1 FaxBack Servicecccccevveennn.
1.4.2 Bulletin Board System (BBS)
1.4.2.1 How to Find MCS® 96 Microcontroller Files on the BBScocevveeeoreeeeerreenns 1-9
1.4.2.2 How to Find ApBUILDER Software and Hypertext Documents on the BBS 1-10
1.4.3 COMPUSEIVE FOTUMIS ..eiitiitiieis ettt s e s e e s eee ettt s e r e e s eeeee e aee et sn e e eneeeeeeesenee
1.4.4 WO WidE WED .ot sttt re e e e aeaesan e
15 TECHNICAL SUPPORTcccvvvveenn.
1.6 PRODUCT LITERATURE
1.7 TRAINING CLASSES ...ttt sttt e e e e bbb ae e e aeaenen e s

CHAPTER 2
ARCHITECTURAL OVERVIEW
2.1 TYPICAL APPLICATIONS ...ttt ettt ettt ettt et e nbbe e e et sae e e eees
2.2 DEVICE FEATURESottt sttt et ettt ettt ettt ee st sa et e en e enees
2.3 BLOCK DIAGRAM ..ottt ettt ettt bttt sttt st en e e et nee e en e
231 CPU Control
2.3.2 Register File

2.3.3 Register Arithmetic-logic Unit (RALU)
2.3.3.1 Code EXECULiONccccevveereriieeeieniienee

2.3.3.2 INSIIUCLION FOIMALoviiiiiiitieie ettt ettt et een s
234 Y [T g aTo] A o] o1 (o] | [= SO PP PPRPRTRPN
2.3.5 INEEITUPL SEIVICE ..uviiiiiiieieiee ettt e e e e s e s e s e st s st e be e e bee e e e aeaesaneneanan

2.4 INTERNAL TIMING . ..ottt e et et e et e ee e

2.5 INTERNAL PERIPHERALSt e et et e e e e e et an e e e e
25.1 7L @ N =] o £ PSP PPPRPPNt
25.2 Serial /O (SIO) POIT ..ot et ee e e aeeeaes e s e s s eteeeeee
253 Synchronous Serial I/O (SSIO) POITvuiiiiiiiiie e e
254 Slave Port (BXCLIBKX ONIY) .ouviiiiiieiie e e e e s ve e e
255 Event Processor Array (EPA) and Timer/COUNErScccevveeieeieeeecicsseeieieee e e 2-10
2.5.6 ANalog-to-digital CONVEITETcciiiii it e e eeaeaeeeeaaen 2-11
257 AVAY = (g T oo TN I 4 1= PP PRPRPPRPRTRPIN 2-11
2.5.8 CAN Serial Communications Controller (87C196CA ONlY)ovvvvvieiiiiiiiiiiiiiiciiiiinns 2-11

2.6 SPECIAL OPERATING MODES ..ottt ettt 2-11
2.6.1 Reducing Power CONSUMPLIONoiiiiii it a e ae e e eeae e 2-12

CONTENTS Intel®

2.6.2 Testing the Printed Circuit BOArdccvuiiieieieiieies e e 2-12
2.6.3 Programming the Nonvolatile MEMOIYcocoiiiiiiiiiir e 2-12
2.7 DESIGN CONSIDERATIONS FOR 87C196CA DEVICES........cccccoiiiieeiiiin e 2-13

2.8 DESIGN CONSIDERATIONS FOR 8XC196JQ, JR, JT, AND JV DEVICES............... 2-14

CHAPTER 3
PROGRAMMING CONSIDERATIONS
3.1 OVERVIEW OF THE INSTRUCTION SET
3.1.1 BIT Operandsccccuvvvviiieeeeienieieien e eeisninns
3.1.2 BYTE Operandsccccccvueeeeenn.
3.1.3 SHORT-INTEGER Operands

3.1.4 WORD Operandscccoeuuvunee

3.15 INTEGER Operands

3.1.6 DOUBLE-WORD Operands

3.1.7 LONG-INTEGER Operands

3.1.8 Converting Operands

3.1.9 (0fe]aTe 11 1o] T= AN U011 o 1< TSR PP TR

3.1.10 Floating POINt OPErationNSccccceiureiiiieiiriririie e ies s e s s st sttre e e ee e e eesasaesesens e e nanns

3.2 ADDRESSING MODES.ooooiiiiiiiiii e e

3.21 (D)1 g=Tox Ao [0 [=T3S o o PP PPRPPPPPPPPRN

3.2.2 IMMeEdiate AJAIESSING ...ieeieiiiiiiieie et e e e ettt e e e e eeeaeaesaneneaaas

3.2.3 INAIFECT AQAIESSING ...iietiee ettt et e et et s
3.2.3.1 Indirect Addressing with Autoincrement
3.2.3.2 Indirect Addressing with the Stack Pointer

3.24 Indexed AdAreSSINGc..ceereiiiieeieenieee e e
3.2.4.1 Short-indexed AAreSSINGcceeeiiiiiie e
3.2.4.2 Long-indeXed AJAreSSINGcooeieiiii ittt ettt e e e e e e
3.2.4.3 Zero-indexed AdOreSSINGeecoruiriiieeritiir ettt ee et ettt een e nte e sn e e e

3.3 ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONSccoovvieeiieee e
3.3.1 (D)1 ¢=To QAo [[=7 oo PSPPSRI
3.3.2 TaTo =3 Yo AN (o [T 3 o TSP TRRUPUPRP

3.4 SOFTWARE STANDARDS AND CONVENTIONS

3.4.1 USING REGISIEIS ...ueiieiiiiiiiee ettt

3.4.2 Addressing 32-bit Operands

3.4.3 LinKING SUDIOULINESceiiiiiie ittt et e

3.5 SOFTWARE PROTECTION FEATURES AND GUIDELINESccceeiiiiiniiieciiieene

CHAPTER 4

MEMORY PARTITIONS

4.1 MEMORY PARTITIONS ...ttt ittt ettt ettt e et e 4-1

41.1 External Devices (MemOry OF 1/O)uvuiiiiiiieien ettt 4-1

41.2 Program and Special-purpoSe MEMOIYcccuveiieiiiiiiie e eie e e e e eee e ee e s 4-1

4.1.3 Program MEMOIYeuieieiee oottt e e e e st e e et be et e e e e aeeesenenennas 4-3

4.1.4 SPeCial-PUrPOSE MEMOIYouiiii i itieie ettt ee et ete e aeteeeeeeasete e e e anie e ees e saeaeae e nneeen 4-3

Intel® CONTENTS

4.1.4.1 Reserved Memory LOCALIONSciuiiiiiiiiiisisecisseiieeieee e aee e aesesas e s s sanre e e e e
4.1.4.2 Interrupt and PTS Vectorsccccceveveennn..
4.1.4.3 Security Key
4.1.4.4 Chip Configuration Bytes (CCBS)

4.1.5 Special-function RegiSters (SFRS) ...ccoiiiiiiiii it ae e
4.1.5.1 Memory-mappPed SFRS ...ttt
4.1.5.2 PeriPheral SFRS ...ttt ettt a1

4.1.6 Internal RAM (Code RAM) ..ooiiiiiiiii ettt e e e e e ee e e e e e ea s

4.1.7 REGISLEN FIlE ...ttt et e e e s e s e e et e e e aeaan e e
4.1.7.1 General-purpose Register RAM ...t e s
4.1.7.2 Stack Pointer (SP)
4.1.7.3 CPU Special-function Registers (SFRS)cooeiiiiiiiiiiiiiiiiie et

4.2 WINDOWING ... ettt ettt sttt e st e et et e sttt ettt e bt e ettt en e e et e een s e enneee

421 Selecting a Window
4.2.2 Addressing a Location Through a Window ..

4.2.2.1 32-byte Windowing EXamPIEcooviiiiiiiiiiii et et
4.2.2.2 64-byte Windowing EXamPIEcovviiiiiiiiiiii et e
4.2.2.3 128-byte Windowing EXamMPIEoooviiriiiiiiii e s e e

4.2.2.4 Unsupported Locations Windowing Example
4.2.2.5 Using the Linker Locator to Set Up a Window
4.2.3 Windowing and Addressing MOUEScvuvuriiiiiiiiiieieienen s e iniens

CHAPTER 5
STANDARD AND PTS INTERRUPTS
5.1 OVERVIEW .ot et e et 5-1
5.2 INTERRUPT SIGNALS AND REGISTERS ..ottt 5-3
5.3 INTERRUPT SOURCES AND PRIORITIES.....outiiii et 5-4
5.3.1 SPECIAL INTEITUPLS ..ttt et e e e ee e eeee s e s e e e e et e be et e ae e s 5-6
5.3.1.1 Unimplemented OPCOUEoieiiiiiiiieaieitie ettt e 5-6
5.3.1.2 Software Trap
5.3.1.3 N1 PP P PP PPTPPPRPRRPIN
5.3.2 EXternal INtErrUPt PiNSooiiiiiii ettt
5.3.3 Multiplexed INTEITUPE SOUICESuiiiiiiiiiie it iee e ettt e e stae e e e et n e s e e neane e s
5.3.4 EN-Of-PTS INTEITUPLSviviieie ettt ee ettt e et e e e e st e e e sae e e s e snae e e en snnnee s
54 INTERRUPT LATENCY
5.4.1 Situations that Increase Interrupt Latency
5.4.2 (O 1[0 F-Y i g Lo 1= (=10 oy YOS URS
5.4.2.1 Standard Interrupt Latency ...
5422 PTS INEIrUPt LAIENCY ..ooieiiiiiiiiie ittt ettt e e e
5.5 PROGRAMMING THE INTERRUPTS ..ottt
551 Programming the Multiplexed Interrupts
55.2 Modifying Interrupt Prioritiesc.ccceeennee.
5.5.3 Determining the Source of an Interrupt
5.5.3.1 Determining the Source of Multiplexed INterruptscccovvvvveriieeeiiin e 5-16
5.6 INITIALIZING THE PTS CONTROL BLOCKS. ..ottt 5-18

CONTENTS

5.6.1 SPECITYING the PTS COUNL ..uvuiiiiiiiie et et e s e e e e e e et e e e s
5.6.2 Selecting the PTS MOUE ...iviiie ettt e e et s e e e e e aeaeeeeeeeas
5.6.3 SINGle TranSEr MOUEuuieiiieie e e e e e e e e s e e ae e e e eas
5.6.4 BIOCK Transfer MOGEcooiiiiiiiiii ettt
5.6.5 A/D SCAN MOAE ..ottt et e e ettt e nan e e sen e ean

5.6.5.1 A/D Scan Mode Cycles

5.6.5.2 A/D Scan Mode Example 1cccceveiiiiiiiiiiinininne e

5.6.5.3 A/D Scan Mode Example 2ccccceeviiiiiiiiiinininn e
5.6.6 PWM MOESoiiiieiiiiiiie et

5.6.6.1 PWM Toggle Mode Example
5.6.6.2 PWM Remap Mode Example

CHAPTER 6
/0 PORTS
6.1 /O PORTS OVERVIEW ...ttt ettt e it
6.2 INPUT-ONLY PORT O ..ottt ittt ettt et sn e an e e n e e e ne e
6.2.1 Standard Input-only POrt OPErationoooiiiiiiiieiiiie e v s
6.2.2 Standard Input-only Port ConSiderationscocvuviviiiiirieien e es s seeie e e e s
6.3 BIDIRECTIONAL PORTS 1, 2,5, AND 6
6.3.1 Bidirectional Port Operationcccceeeunee
6.3.2 Bidirectional Port Pin Configurationscccccecvvvienenennn.
6.3.3 Bidirectional Port Pin Configuration Example
6.3.4 Bidirectional Port Considerationscccoovvvvvieieieeeeennn.
6.3.5 Design Considerations for External Interrupt Inputs
6.4 BIDIRECTIONAL PORTS 3 AND 4 (ADDRESS/DATA BUS)...ccccovviiiiiiieieniiiieieiene 6-15
6.4.1 Bidirectional Ports 3 and 4 (Address/Data Bus) Operationcccccccvvcvveeirennenenn. 6-16
6.4.2 USING POrtS 3 @nd 4 @S /O .uoueiiiiiiee ettt 6-18
6.4.3 Design Considerations for POrts 3 @nd 4cccooceeeiiiiniie e 6-19
CHAPTER 7

SERIAL 1/O (SIO) PORT
7.1 SERIAL 1/0O (SIO) PORT FUNCTIONAL OVERVIEW
7.2 SERIAL 1/0O PORT SIGNALS AND REGISTERScoiiiiiiiiie et
7.3 SERIAL PORT MODES ... oottt sttt e e e e e e e s e e s s st b ae e e e
7.3.1 Synchronous Mode (MOAE 0)oeiiiiuiiirieeiiieiee ettt e e seae e e e e st e e e e e neeee e s
7.3.2 Asynchronous Modes (Modes 1, 2, and 3)ccocceeenneee.
7.321 Mode 1 ..o
T.3.2.2 MOOE 2 .ottt e e ettt et
T.3.2.3 MOOE 3 oottt e ettt an et en e en e
7.3.2.4 Mode 2 and 3 Timings
7.3.25 Multiprocessor COMMUNICAIONSceeiiiiireiiieirieie et ee e e e
7.4 PROGRAMMING THE SERIAL PORT ...oiiiiiiii ittt st
7.4.1 Configuring the Serial Port Pins
7.4.2 Programming the Control REQISTENouieiiiiiiie et e

vi

Intel® CONTENTS

7.4.3 Programming the Baud Rate and CIOCK SOUICEccccvuvivieeiieirieieiei e e e 7-10

7.4.4 Enabling the Serial POrt INtErTUPLSc.cocieieie et e ee e e 7-12

7.4.5 Determining Serial POrt STAtUSooooiiiiiiiie ettt e e aeaes e 7-13
7.5 PROGRAMMING EXAMPLE USING AN INTERRUPT-DRIVEN ROUTINE............... 7-14
CHAPTER 8

SYNCHRONOUS SERIAL I/O (SSIO) PORT

8.1 SYNCHRONOUS SERIAL I/O (SSIO) PORT FUNCTIONAL OVERVIEW.........c.c........ 8-1
8.2 SSIO PORT SIGNALS AND REGISTERScoiiiiiiiit ettt et st e 8-2
8.3 SSIO OPERATION ...ttt ittt et ettt st st ettt st e et en e 8-3
8.4 SSIO HANDSHAKING ..ottt ettt ettt st et et et st en e 8-6

8.4.1 SSIO Handshaking Configurationcooooiiiiiiiiiiiie e e 8-6

8.4.2 SSIO Handshaking OPErationeeieieioiiiiii i ee e s s e e e et e e e e s 8-7
8.5 PROGRAMMING THE SSIO PORT ...ttt ettt ettt ettt n e s 8-9

8.5.1 Configuring the SSIO POIt PINS ...uuuiviiiiiir ettt e e aes s s s seeeee e 8-9

8.5.2 Programming the Baud Rate and Enabling the Baud-rate Generator8-9
8.5.3 Controlling the Communications Mode and Handshakingc.c.cccceeee i 8-10
8.5.4 Enabling the SSIO INLEITUPLS ..ooviieiii it e
8.5.5 Determining SSIO Port Status
8.6 PROGRAMMING CONSIDERATIONS
8.7 PROGRAMMING EXAMPLEot ettt et e e e a e e s

CHAPTER 9
SLAVE PORT
9.1 SLAVE PORT FUNCTIONAL OVERVIEW ...c.outiiiiiiii e e
9.2 SLAVE PORT SIGNALS AND REGISTERS
9.3 HARDWARE CONNECTIONSoititiititiie it ae e sttt eee e e s e s e s e e e et e sinininines
9.4 SLAVE PORT MODES ...ttt sttt et eeaeae s e s e s e e e et e be e bneees
9.4.1 Standard Slave Mode Example
9.4.1.1 Master Device Program
9.4.1.2 Slave Device Program
9.4.1.3 Demultiplexed Bus Timings
9.4.2 Shared Memory Mode Example (8XC196KS and KT only)ccccecvevivveinnnennn. 9-11

9.4.2.1 Master DEVICE PrOgramcc.ueiieiiiiie e e et ee et iee e e e e e e st ae e aen st ae e aen e eees 9-11
9.4.2.2 Slave DeVICe PrOgramccccceeeiiiiiiee e eiiiee et iee e e e e e ae e st ae e een e eees 9-12
9.4.2.3 Multiplexed BUS TiMINGSccouiiriiiiieie ettt e e st ae e e e eees 9-13
9.5 CONFIGURING THE SLAVE PORTuttititiit ettt ettt e sininee 9-14
951 Programming the Slave Port Control Register (SLP_CON)cccccevveviviniieneniniens 9-14
9.5.2 Enabling the Slave POrt INTEITUPLSouviiiiiiie oot 9-16
9.6 DETERMINING SLAVE PORT STATUS ..ottt et e 9-16

9.7 USING STATUS BITS TO SYNCHRONIZE MASTER AND SLAVE..........cccccceeveeee.. 9-16

Vii

CONTENTS Intel®

CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)
10.1 EPA FUNCTIONAL OVERVIEWooiiiiiiitiii et ettt
10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERS
10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW. ..ottt
10.3.1 Cascade Mode (Timer 2 0nly)ceeeevvnne
10.3.2 Quadrature Clocking MOEccooiiiiiiiiiii et e ae e ee s
10.4 EPA CHANNEL FUNCTIONAL OVERVIEWociiiiiiiiiiiiie et
10.4.1 Operating in Capture MOUEcouiiiiiiii ittt te e e e e e e eee e
10.4.1.1 Handling EPA OVEITUNS ...ccoiiiii ittt et te e e e e e e e et sve et e e ee e eeeanaen e ens
10.4.2 Operating in Compare Modec.ccceeeveviiiiiviiivieiieieen
10.4.2.1 Generating a Low-speed PWM Output
10.4.2.2 Generating a Medium-speed PWM Output
10.4.2.3 Generating a High-speed PWM OULPULccooviviiiiiiiiiiiiiiiiirie e
10.4.2.4 Generating the Highest-speed PWM OULPULccovcieeireiiiieeine e
10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS.........ccccceiiiiiieeen e
10.5.1 Configuring the EPA and Timer/Counter Port PiNScccccoviiiiiiiiiiiiiiiiiieieiee e
10.5.2 Programming the TIMEISuiuiiiiiiiiiiiiiii it e e s s s e en e ae e e
10.5.3 Programming the Capture/Compare Channelscccoocveeiriniiiein e
10.5.4 Programming the Compare-only Channelsccccciiiiiiiiiiie e
10.6 ENABLING THE EPA INTERRUPTS ...t e
10.7 DETERMINING EVENT STATUS . ..ottt et e e eeaee e
10.8 SERVICING THE MULTIPLEXED EPA INTERRUPT WITH SOFTWARE................ 10-29
10.8.1 Using the TIIMP Instruction to Reduce Interrupt Service Overhead10-31
10.9 PROGRAMMING EXAMPLES FOR EPA CHANNELS ..o, 10-33
10.9.1 EPA Compare EVENt PrOgramcocoiiiiiuiiiiiiieiieie e e ees s et eeeee e 10-33
10.9.2 EPA Capture Event Programcccccceeeeeveiiiiiiivineienee e
10.9.3 EPA PWM OUIPUL PTOGIaMoeiiiiiciieieies ettt st 10-35

CHAPTER 11
ANALOG-TO-DIGITAL CONVERTER

11.1 A/D CONVERTER FUNCTIONAL OVERVIEWcociiiiiiiieiiie e 11-1
11.2 A/D CONVERTER SIGNALS AND REGISTERScc....... PP It 24
11.3 A/D CONVERTER OPERATIONuttiiiiiiitiie ettt et st ae e nee e e e e 11-3
11.4 PROGRAMMING THE A/D CONVERTERcccciitiii et s 11-4
11.4.1 Programming the A/D TesSt REQISIErccciiiiiiiiiiiiiie et e 11-5
11.4.2 Programming the A/D Result Register (for Threshold Detection Only)11-6
11.4.3 Programming the A/D TimMe REQGISIENceveiiiiiieeeiirin et 11-6
11.4.4 Programming the A/D Command REJISIENcceriiiiiriiiien e 11-8
11.4.5 Enabling the A/D INTEITUPLcveeie ittt ettt e e e e e e eneae e eas 11-9
11.5 DETERMINING A/D STATUS AND CONVERSION RESULTScccceiiiiiiiieeeeiee 11-9
11.6 DESIGN CONSIDERATIONS.. .. .ottt ettt e e e e e s e s e s e s e se e eeeeee 11-10
11.6.1 Designing External Interface CirCUItrYcccocoiiiiiiiiieine e e 11-11

viii

Intel® CONTENTS

11.6.1.1 Minimizing the Effect of High Input Source Resistance
11.6.1.2 Suggested A/D INPUL CIFCUILccoviiriiiiiir e e e ees s e eeeieieee
11.6.1.3 Analog Ground and Reference Voltages
11.6.1.4 Using Mixed Analog and Digital Inputs
11.6.2 Understanding A/D CONVEISION EITOIS ...cccciiiiiiiiiiieiieieiie e ieiesesess s sssisnsvssnneeee e e

CHAPTER 12
CAN SERIAL COMMUNICATIONS CONTROLLER
12.1 CAN FUNCTIONAL OVERVIEWooiiiiiiitiie ittt et et 12-1
12.2 CAN CONTROLLER SIGNALS AND REGISTERS.........cooiiiiiieiieiie e 12-3
12.3 CAN CONTROLLER OPERATION. ...ciii ittt ettt ettt et
2 R o [0 =TI Y/ = o PR
12.3.2 MESSAQE ODJECLS .oiviiiiiiiiiiiiiies e e ettt e e e s s e e e e ettt teeaeaen e e e e
12.3.2.1 Receive and Transmit Priorities
12.3.2.2 Message Acceptance Filtering
12.3.3 MESSAQE FIAmMES ...oiiiiiiiiieiiiit e ettt e ettt s e e e e ae e e aas
12.3.4 Error Detection and Management Logic
12.3.5 Bit TIMING oo e
12.3.5.1 Bit TIMING EQUALIONScieiiieie ittt e
12.4 CONFIGURING THE CAN CONTROLLER ..ottt
12.4.1 Programming the CAN Control (CAN_CON) RegiStercccovvmirrrirriiiirieinienenn
12.4.2 Programming the Bit Timing 0 (CAN_BTIMEOQ) RegiSterccccovvviviiiiiiinieienennn.
12.4.3 Programming the Bit Timing 1 (CAN_BTIMEL) RegiSterccccccveviiniriieninenenn.
12.4.4 Programming a Message Acceptance Filtercccccooviiiiiiiiiiiiiiiiice e,
125 CONFIGURING MESSAGE OBJECTS ... oottt ittt
12.5.1 Specifying a Message Object’s Configurationcccccceeeririinininiieni e e
12.5.2 Programming the Message Object Identifiercccccooviviiiiiiiiiiiiiiii e,
12.5.3 Programming the Message Object Control RegISterscccovcvvvevivirieieeninieen.
12.5.3.1 Message Object Control REGISEr Occuvveeieiiiiieieie et e e
12.5.3.2 Message Object Control Register 1
12.5.4 Programming the Message Object Data
12.6 ENABLING THE CAN INTERRUPTScoiiiiii ettt
12.7 DETERMINING THE CAN CONTROLLER’S INTERRUPT STATUScccocvvveveeeen 12-32
12.8 FLOW DIAGRAMS ...ttt ettt et ee e e e e e e e e ettt e bee e aee e s 12-35
129 DESIGN CONSIDERATIONS ottt ettt et ee e e e e e e s es s s s seeneeeee 12-41
12.9.1 HArdware RESELcoiiiiiiieii ettt et e e et e e st te e e et eeee e e enbneaee e e enneaes 12-41
12.9.2 Software INtAlIZAtioNcooceiiii e e e e 12-41
12.9.3 BUS-Off STALE ..oeiiiiiiii e e et 12-41

CHAPTER 13
MINIMUM HARDWARE CONSIDERATIONS
13.1 MINIMUM CONNECTIONS
13,11 UNUSEA INPULS .eieiieiei ittt ettt et st e e et st ee e et sttt e e et e e e e e sre e eee e snnneeeean
13.1.2 1/O Port Pin CONNECHIONS ..cccoeiiiiieiie ettt ettt e e e et st e a e e e aae e aaeaeaenan e 13-2

CONTENTS Intel®

13.2 APPLYING AND REMOVING POWERccoiiiiiiiiii ittt e 13-4
13.3 NOISE PROTECTION TIPS ..ttt ettt sttt ettt sttt e et en e
13.4 PROVIDING THE CLOCK ..ottt ettt sttt ettt sttt st ae e ee e e s e
13.4.1 Using the On-chip Oscillator
13.4.2 Using a Ceramic Resonator Instead of a Crystal Oscillatorcccccvvviviieieierennnnn. 13-7
13.4.3 Providing an External Clock Source
13.5 RESETTING THE DEVICE......co ittt ettt ettt
13.5.1 Generating an EXternal RESELccoo i ittt
13.5.2 Issuing the Reset (RST) Instruction
13.5.3 Issuing an lllegal IDLPD Key OPErandccccceeeeieriiiereresiaisiniieieieineiesieaeaenenens 13-12
13.5.4 Enabling the Watchdog TimMerccooiiiiiiiic e e 13-12
13.5.5 Detecting OSCIllator FAIlUIeccoouiiiiiiiiiiiee e e e e 13-12
CHAPTER 14
SPECIAL OPERATING MODES
14.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS.......ccccociiiiiiiie e 14-1
14.2 REDUCING POWER CONSUMPTIONcuiiiiiiiiitiin ettt et 14-3
14,3 IDLE MODEooiiiiitiiie et et ettt e e s 14-3
144 POWERDOWN MODEooiiiiitiiiiis ettt et n e 14-4
14.4.1 Enabling and Disabling Powerdown MOdEccccuiiiieiiiiinien e 14-4
14.4.2 Entering Powerdown Mode
14.4.3 Exiting Powerdown Mode
14.4.3.1 Driving the Vp, Pin Low
14.4.3.2 Generating a Hardware Reset
14.4.3.3 Asserting the External Interrupt Signaloooviiiiiiiiiiiiiieeee e
14.4.3.4 Selecting Ry @N0 €1 ..ooveiiiiiiii e
145 ONCE MODE......o ittt e e et et ekttt e e e ean e e e san e es
14.5.1 Entering and EXiting ONCE MOUEcccoviiiiiiiiiiiiiirr e ie e s ee e
14.6 RESERVED TEST MODES.......co ittt ettt et et e
CHAPTER 15
INTERFACING WITH EXTERNAL MEMORY
15.1 EXTERNAL MEMORY INTERFACE SIGNALS.......coiii ittt 15-1
15.2 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES......... 15-4
15.3 BUS WIDTH AND MULTIPLEXINGottt ettt e 15-8
15.3.1 Timing Requirements for BUSWIDTHcccooiiiiiiiiririie e ee e 15-10
15.3.2 16-Dit BUS TIMINGS .ueviiiiiiiieieiorir sttt e e ee e s ee e e e e st e sttt e e ee e aeeaeaeneaens 15-11
15.3.3 8-Dit BUS TIMINGS eeutitiiiiiiitieiie e ie s sttt e e e e e e e aeaesesesn s snbbbe e saeaeaeeee e 15-13
15.4 WAIT STATES (READY CONTROL).....utttiiiiiiie ittt e e 15-14
15,5 BUS-HOLD PROTOCOL (8XC196KQ, KR, KS, KT ONLY)eceveririeeirerniiieienennennen. 15-17
15.5.1 Enabling the Bus-hold Protocol (8XC196KX ONIY)c.ceveieieieiiiriiciissiieieieine e 15-18
15.5.2 Disabling the Bus-hold Protocol (BXCL96KX ONly)cccoevveveiiiiiiiiiiiiiiie e ee e 15-19
15.5.3 Hold Latency (BXCLOBKX ONIY) oeeieiiieer i ciieie e e e ee e ae e e e s e e e s e e e e aeeee e 15-19

Intel® CONTENTS

15.5.4 Regaining Bus Control (8XCL196KX ONIY)ccviiiieiiiiiiieieieiee e ees e essssvveeiene e 15-20
156 BUS-CONTROL MODES.......ccciiitiiiit it ie ettt ettt st eaee e e eneee s 15-20
15.6.1 Standard Bus-CONLrol MOOEcooiiiiiiiiiiiiit e e ae e 15-20
15.6.2 WIItE SIrODE MOOE ..ovvviiiiiiiieieiii e e sttt aeaeeaeaenea s 15-24
15.6.3 Address Valid Strobe MOGEccooeiiiiiiiiiiiiie e e 15-26
15.6.4 Address Valid with Write Strobe MOdecucviiiiiiiiiiiiiici e 15-29
15.7 BUS TIMING MODES (8XC196KS, KT ONLY) ...cutiiiiiiiitiireiiesstiee e 15-30
15.7.1 Mode 3, Standard MOAEccooiiiiiiiiiiiii et ae e e e e 15-32
15.7.2 Mode 0, Standard Timing with One Automatic Wait Statec.ccovcvivieinnnnnns 15-32
15.7.3 Mode 1, Long Read/Writ€ MOUEccouuiiuiiiiiiiiiie ettt e e e aeae e 15-32
15.7.4 Mode 2, Long Read/Write with Early AddreSsccccceveieiiioiiiiiiii i e 15-33
15.7.5 DesSign CONSIAEIALIONS ...vuviiiiieiiieieriseie it ree e e e e e e s e e s e s e s st bbb e be e e aeeee e 15-34
15.8 SYSTEM BUS AC TIMING SPECIFICATIONScooiiiiiiin ittt 15-36
CHAPTER 16
PROGRAMMING THE NONVOLATILE MEMORY
16.1 PROGRAMMING METHODScoiiiiiiitie ittt ettt ettt et e

16.2 OTPROM MEMORY MAPooiiiiiiiii i s e
16.3 SECURITY FEATURES...................
16.3.1 Controlling Access to Internal Memory
16.3.1.1 Controlling Access to the OTPROM During Normal Operation16-4
16.3.1.2 Controlling Access to the OTPROM During Programming Modes
16.3.2 Controlling Fetches from External MEMOIYccoeiiiiiiiiiiiie i
16.3.3 Enabling the Oscillator Failure Detection CirCUitryccccceiriieeeeireniiiee e
16.4 PROGRAMMING PULSE WIDTH ..ccoiiiiii ittt e ae e e
16.5 MODIFIED QUICK-PULSE ALGORITHM....cociiiiiiiiii ittt
16.6 PROGRAMMING MODE PINS ..ottt
16.7 ENTERING PROGRAMMING MODES.ccoiiititiiiiiiie et e e
16.7.1 Selecting the Programming MOAEcocoiuiiiiiiiiiieie ittt e e e e ee e
16.7.2 Power-up and POWEr-down SEQUENCEScceiiiurrieeiariiiriee e aeieaesensee e aesaneeaeens
16.7.2.1 POWEI-UDP SEOUENCE ...ceieitttititite ettt ee e teeeeeeses e st st sttt be e bee e taeaeaeaesesean s annenen
16.7.2.2 POWEr-dOWN SEQUENCEoviiiieiiiieieeeeitiieeeesieieeaeeeteteaee e ste e aee e snte e aesneeeeeas
16.8 SLAVE PROGRAMMING MODE.......cccoiiiiiiiiiiiiie ettt e i
16.8.1 Reading the Signature Word and Programming Voltagesccccveerieeniiviennines
16.8.2 Slave Programming Circuit and Memory Mapccoccoeeeriiereinieinieie e
16.8.3 Operating ENVIFONMENTocvuiiiiiie ittt
16.8.4 Slave Programming ROULINESccooiiuiririiiiiiiiie e eiieiee s e e e see e e e e seae e aennenes
16.8.5 TimiNG MNEMONICSuveiiiiiiieeie ittt ettt sr e e sr e e sre e nnne s
16.9 AUTO PROGRAMMING MODEcoiiiiiiiiiia ettt
16.9.1 Auto Programming Circuit and Memory Map
16.9.2 Operating ENVIroNmMENtccccoevviiiiiiiiiieie e
16.9.3 Auto Programming ROULINEcccoeveiiiiieiniiiiii e
16.9.4 Auto Programming ProCeaUreccceooieiiiiiiiiiin et

Xi

CONTENTS Intel®

16.9.5 ROM-AUMP MOGE ...ouiiiiiiiieieiie e e e e e s e e e e e e et s re e e e eeeeeeas 16-31

16.10 SERIAL PORT PROGRAMMING MODEocoiiiiiiiiieniiiee e 16-32
16.10.1 Serial Port Programming Circuit and Memory Mapccccceveveveveiiiiiiiinieniiieeee e 16-32
16.10.2 Changing Serial Port Programming Defaultscccccciiiiiiiiiiiiiiiiiiiccie e, 16-34
16.10.3 Executing Programs from Internal RAM ... e e 16-35
16.10.4 Reduced Instruction Set Monitor (RISM) ..o i 16-35
16.10.5 RISM Command Descriptions

16.10.6 RISM Command Examples
16.10.6.1 Example 1 — Programming the PPWc.cccceeeinnne
16.10.6.2 Example 2 — Reading OTPROM CONteNntsccoovevivininiiiiiieieieiee e e e
16.10.6.3 Example 3 — Loading a Program into Internal RAM
16.10.6.4 Example 4 — Setting the PC and Executing the Program
16.10.6.5 Writing to OTPROM with Examples 3 and 4

16.11 RUN-TIME PROGRAMMING

APPENDIX A
INSTRUCTION SET REFERENCE

APPENDIX B
SIGNAL DESCRIPTIONS

B.1 SIGNAL NAME CHANGES. ..o
B.2 FUNCTIONAL GROUPINGS OF SIGNALS
B.3 SIGNAL DESCRIPTIONS
B.4 DEFAULT CONDITIONS

APPENDIX C
REGISTERS

GLOSSARY

INDEX

Xil [|

Intel® CONTENTS

FIGURES

Figure

2-1 8XC196Kx Block Diagram
2-2 Block Diagram of the Core

2-3 Clock CirCUItry ..oueeeveeeeeieieierciciins

2-4 Internal Clock Phases

4-1 Register File Memory Map

4-2 R VAY AT e (01T o o PP RPRPRRPRPRPN

4-3 Window Selection Register (WSR)ooo oot e ee e e 4-15
5-1 Flow Diagram for PTS and Standard INterruptsScccveeveeeieeieionineis s siiieeine e e e 5-2
5-2 Standard Interrupt Response TiMec.vvveeveeeeririiiiiiiiicinns

5-3 PTS Interrupt Response Time...........cceeevvivnns

5-4 PTS Select (PTSSEL) REGISIENccciiiiiei e vttt ettt st s in e e e ee e e

5-5 Interrupt Mask (INT_MASK) REQISIErccciiiiiiii ettt v e

5-6 Interrupt Mask 1 (INT_MASK1) Register
5-7 Interrupt Pending (INT_PEND) Register

5-8 Interrupt Pending 1 (INT_PENDZI) REQISLErcccoeiiiiieiieieieiir e
5-9 PTS CONrol BIOCKSiiitiieieiie et et e e e es e s e e s s sttt e e aas
5-10 PTS Service (PTSSRV) REQISLET ..c.ciuiiiiiiiii oottt e e et e
5-11 PTS Mode Selection Bits (PTSCON Bits 7:5)

5-12 PTS Control Block — Single Transfer Mode.........cccccvuviiiiiiieiin e e
5-13 PTS Control Block — Block Transfer MOde...........cccocuviiiiiriiiiiee e e
5-14 PTS Control Block — A/D Scan Mode...............

5-15 A Generic PWM Waveformccccevvcvveennene
5-16 PTS Control Block — PWM Toggle Mode
5-17 EPA and PTS Operations for the PWM Toggle Mode Example..............ccccecvvvvveeee... 5-36

5-18 PTS Control Block — PWM RemMap MOUE.........cccciiiuiiiiiiiir it e e e s 5-39
5-19 EPA and PTS Operations for the PWM Remap Mode Examplecccoccvvivvnenene 5-41
6-1 Standard INPUt-0ONlY POIt STIUCLUIEuuiiiiie ettt es e s seeeeees

6-2 Bidirectional Port Structure.............ccccovvvvvnnnnn.

6-3 Address/Data Bus (Ports 3 and 4) SIrUCLUIEcovieeieiiiiee e
7-1 SIO BIOCK DIAGIAIM ... iiii ettt et e s e s e e et e et e et bee e eeeeeaeaesanean s et e eneeee
7-2 Typical Shift Register Circuit for Mode 0

7-3 oY L= 0 T 11 Lo PO PSP OPPUPUPPRP
7-4 Serial Port Frames for MOAE 1ccooiiiiiiiii e e e e e e e eee e
7-5 Serial Port FramesinMode 2 and 3..........cccoeeeevvviieeieennnnnn.

7-6 Serial Port Control (SP_CON) RegiSter...........ccccveernvinennn

7-7 Serial Port Baud Rate (SP_BAUD) Register ... 7-10
7-8 Serial Port Status (SP_STATUS) REQISIENcccvuiiieiiiiie ettt 7-13
8-1 SIS (@ 2 [oTe: g] =T | = 1o RSP RRS 8-1
8-2 SSIO Operating Modes 8-4
8-3 SSIO Transmit/Receive Timingsc.cc.c..... 8-6

8-4 SSIO Handshaking Flow Diagram

8-5 Synchronous Serial Port Baud (SSIO_BAUD) Register 8-10
8-6 Synchronous Serial Control x (SSIOX_CON) REQISIErS........cccvveeereiiiieiee e iiie e 8-11
8-7 Variable-width MSB in SSIO TranSMiSSIONSuuuuruiiieeeiererereis e sieieneieireeree e aeseneeeas 8-14

Xiii

CONTENTS Intel®

FIGURES
Figure
9-1 DPRAM VS SIave-Port SOIULIONccciiiiiiie ittt e
9-2 Slave Port BIOCK DIagram...........ueuruiiiiiir e iee e e ees s es s st sinne s e es e aesasasaasasess s snsnsnnnsee
9-3 Master/Slave Hardware Connections..........c.ccccevveerieneneeenne
9-4 Standard Slave Mode Timings (Demultiplexed Bus)
9-5 Standard or Shared Memory Mode Timings (Multiplexed BUS).........ccccccceveviiiieiicinens 9-13
9-6 Slave Port Control (SLP_CON) ReEQISIEriuiiiiieieiie ittt e
9-7 Slave Port Status (SLP_STAT) ReQISIEI ...cceiiiiiiie ettt e es s s
10-1 EPA Block Diagramcccccevevreeieieienineeneneiennne
10-2 EPA Timer/Countersc.c......
10-3 Quadrature Mode Interface ..
10-4 Quadrature Mode Timing and Count ..

10-5 A Single EPA Capture/Compare Channel
10-6 EPA Simplified Input-Capture Structure
10-7 Valid EPA INPUE EVENTSuviiiiiie et s st veeee e
10-8 Timer 1 Control (TLCONTROL) REQISIENuvuviiiiiiieie et e e

10-9 Timer 2 Control (T2CONTROL) REQISLENuuuviiiiiiieie et ee e
10-10 EPA Control (EPAX_CON) REQISIEIS ...cccieiii ettt ettt ee e te e e e e e e e eeeee e
10-11 EPA Compare Control (COMPx_CON) Registers

10-12 EPA Interrupt Mask (EPA_MASK) REQISIENcccovciieiiiie e
10-13 EPA Interrupt Mask 1 (EPA_MASKL) REQISIENcuvuuiiiiirieieieeieies e siiieeee e

10-14 EPA Interrupt Pending (EPA_PEND) Register..........ccc.cu...
10-15 EPA Interrupt Pending 1 (EPA_PEND1) Registers

10-16 EPA Interrupt Priority Vector Register (EPAIPV).................

11-1 A/D Converter BIOCK DIagramcoooiiiiiiiii e et eeees s e s ettt eveeaeaesaaaaean
11-2 A/D Test (AD_TEST) REGISIEI..c.ciiiiii ettt et et re e aeeaeaeneeeneas
11-3 A/D Result (AD_RESULT) Register — Write Format

11-4 A/D Time (AD_TIME) RegIStercccoevvieiiviviriiiiiiieieiee e

11-5 A/D Command (AD_COMMAND) Register
11-6 A/D Result (AD_RESULT) Register — Read Format
11-7 Idealized A/D Sampling CiFCUILIYcioiiiii i s e e e e e
11-8 Suggested A/D Input Circuit
11-9 Ideal A/D Conversion CharaCteriStiC............oueiieuieer ittt

11-10 Actual and Ideal A/D Conversion CharacteriStiCS...........uuvireriiieeirei e
11-11 Terminal-based A/D Conversion Characteristic

12-1 A System Using CAN Controllers.......cccccoeeeveieviinivivincienenn

12-2 CAN Controller Block Diagramccccceeeeeen.

12-3 CAN MESSAQE FIaIMES ...ttt it e e e ettt s s e e s eeeee e bneaee s
12-4 A Bit Time as Specified by the CAN Protocol..........ccccuvviiiiiiiiiiiienisic e
12-5 A Bit Time as Implemented in the CAN Controller

12-6 CAN Control (CAN_CON) RegiSter......cccccccvvviriininiiciniiiiiens

12-7 CAN Bit Timing 0 (CAN_BTIMEO) Register
12-8 CAN Bit Timing 1 (CAN_BTIME1) Register
12-9 CAN Standard Global Mask (CAN_SGMSK) ReQIStEr........cccceeriiiriieieirieie e 12-18
12-10 CAN Extended Global Mask (CAN_EGMSK) RegiStercccccovvveriieieinnieincieneennne.. 12-19

Xiv

Intel® CONTENTS

Figure
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
12-25
12-26
13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8
13-9
13-10
14-1
14-2
14-3
14-4
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14

FIGURES

CAN Message 15 Mask (CAN_MSK15) RegIStEr.........ccoviiiiiiiiriiiiiiie e 12-20
CAN Message Object x Configuration (CAN_MSGXCFG) Register.........................12-21
CAN Message Object x Identifier (CAN_MSGXxID0-3) Registercccceveveeeieecnnnnen

CAN Message Object x Control 0 (CAN_MSGXCONO) Register.........cceeeevvevnvvnnnes

CAN Message Object x Control 1 (CAN_MSGxCON1) Register
CAN Message Object Data (CAN_MSGXDATAO-7) Registers.......cccccceveveveiiieccnnnen
CAN Control (CAN_CON) REQISIEN ...uuuiiiiiieieieiee e et ee e e e e s e e e e e
CAN Message Object x Control 0 (CAN_MSGXCONO) Register.........cceevevevnvnnnnes
CAN Interrupt Pending (CAN_INT) Register........ccceeveiiviiiniviniinieiee e
CAN Status (CAN_STAT) REQISLENcuuieiiieieieiei e
CAN Message Object x Control 0 (CAN_MSGXCONO) Registerceveveeeeeeennnnen
Receiving a Message for Message Objects 1-14 — CPU FIOWccccovivivieennns
Receiving a Message for Message Object 15 — CPU Flow
Receiving a Message — CAN Controller FIOW.........cccuvuiiiiiiiieeies i evsinineee s
Transmitting a Message — CPU FIOWcuiiiiiiiiiieion e
Transmitting a Message — CAN Controller FIOW............ccoooo i,
Minimum Hardware Connections
Power and Return Connectionscce.....

ON-Chip OSCIlIAtOr CIrCUIL....ci ittt e e e e e ee e s eeees e ens e e e
External Crystal CONNECLIONSiuiiie ittt s ae e s
External Clock Connections
External Clock Drive Waveforms...........cccoceeveiveniieriineneeene

Reset TIMiNG SEQUENCEcvuviviieeeieieeieiee e

INternal RESEL CIrCUIIIY . ..uvieeieiii et et e e e e e e e e e s e s s s st e e e eeee e
MiINIMUM RESEL CIICUILvuveieii ettt et et sr e e
Example System Reset CirCuit..............ceeen.

Clock Control During Power-saving Modes .
Power-up and Powerdown Sequence When Using an External Interrupt 14-6
EXTEINaAl RC CIFCUIL....eii ittt ettt ee e e 14-7
Typical Voltage on the V,, Pin While Exiting Powerdown.............cccoovveniinicininne. 14-8
Chip Configuration 0 (CCRO) REQISLENiuviiiieiieieiee et ee e ee e e e e 15-5
Chip Configuration 1 (CCR1) REQISLENcuviiiieiiiieiee e c et e ee e ee e e e 15-7
Multiplexing and Bus Width OptioNS........cccoeiii i e e 15-9
BUSWIDTH Timing DIAQIamuiuiuieieiesiseie i sitstsie e e e e e aeaesasae e snn s s snssnsne e eeeees 15-10
TiMINGS fOr 16-Dit BUSES.....ciiiiiiiii it ee s e e e e e 15-12
Timings for 8-bit Buses
READY Timing DIagramMucuuiiiiiiieieiesiseis e asssieeee e ee e aeaesasaes e ssssssnssssnsne e seeeeees
HOLD#, HLDA# TIMING ..ttt ittt ettt ettt st e sn e et e b e et e naae s
Standard Bus Controlccccceerineneienioniennn
Decoding WRL# and WRH#............c.cccoeeveinne
8-bit System with Flash and RAMccccccvivieiiiiiiiiiiiiiene

16-bit System with Dynamic Bus Width............coooiiiiiiiiin e
W SErODE MO ...ttt ettt
16-bit System with Single-byte Wrtes t0 RAMuviviiiiiiieiieieee e

XV

CONTENTS Intel®

Figure
15-15
15-16
15-17
15-18
15-19
15-20
15-21
15-22
15-23
15-24
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15
B-1

B-3

XVi

FIGURES

Address Valid Strobe MOOE..........cuiii e
Comparison of ALE and ADV# BUS CYCIEScovuiiiiiiiiviiiiiieirier e e ae e es e
8-bit System with Flashcccooiiiii e

16-bit System with EPROM
Timings of Address Valid with Write Strobe Mode

16-bit SYStemM WIth RAMuuiiiiiiiiie e e e e e e s e s s s s e rn e ae e e
Modes 0, 1, 2, aNd 3 TIMINGS .euuvuiiiiieieier s ee e e s e s e e s et rr e e e eeee e
Mode 1 System BUS TiMiNg......ccccuevriuiiieieieniniesisenenissninneens

Mode 2 System BUS TiMiNg......cccuveriuiiieieieieeeesin s esissieneees

System BUS TIMING ..oooeevereriiiciiiie e ees s s seeeeee

Unerasable PROM (USFR) REQISIEI.......cccioiiiii ittt s
Programming Pulse Width Register (PPW or SP_PPW)
Modified Quick-pulse Algorithm.........cccccceveviiiiiiniieici e

Pin Functions in Programming MOUES...........coiuiii it et ee e e e sieieae e
Slave Programming CilrCUIL...........ueuueurieeirieree e e ee st e et eeeeeeeeeses e e st st sreneneeaenes
Chip Configuration Registers (CCRS)......ccccvvvveiiiieeeeennennn.

Address/Command Decoding Routinecccoocvvevniinnnn.

Program Word ROULINE.........cuviiiiiiiiieein e

Program Word WavefOrmMui oot e s a e s s s e ee e
DUMP WOId ROULINE ...ttt st ae e te s e s e e e ena s s e e e eeee e
Dump Word Waveformccoovcveviviiiiiiie s

Auto Programming Circuit for 8XC196Kx Devices
Auto Programming ROULINEc.cevvveeeiiiiiiiiiii e

Serial Port Programming Mode CirCUIL.........iuvueeieieririis i e e e e e s e e
Run-time Programming Code EXampPle.......cccooiiiiiiiiiiiiiiie e sveve e ne e
8XC196Kx 68-lead PLCC Package.................
8XC196Jx 52-lead PLCC Package
87C196CA 68-lead PLCC PACKAQE .. .uvvviiieieieiee e e ee ettt e e e e e e s e e e e nes

Intel® CONTENTS

TABLES
Table
1-1 Handbooks and Product INfOrmationcooeueeiriiiiieiin e
1-2 Application Notes, Application Briefs, and Article Reprintscccoeveviviviiiieieieeieee e,
1-3 MCS® 96 Microcontroller Datasheets (Commercial/Express)
1-4 MCS® 96 Microcontroller Datasheets (Automotive)
1-5 MCS® 96 Microcontroller Quick References........ccccceeee
2-1 Features of the 8XC196Kx, Jx, CA Product Family.........cccccueeieieiiniiiii e
2-2 State Times at Various FrEQUENCIESuuvuuiiiiriieieiee ettt e e ee e e e ae e e s e s nnens
2-3 Unsupported Functions in 87C196CA Devices...........c.c.....
2-4 Unsupported Functions in 8XC196Jx Devices
3-1 Operand TYPE DEfiNIIONS. e e e e e e e e es e s e s s e eenes
3-2 Equivalent Operand Types for Assembly and C Programming Languages 3-2
3-3 Definition of Temporary Registers
4-1 MemMOry Mapcooveviei e
4-2 Special-purpose MemMOrY AQUrESSES. ...uiuiuiiiiieiieie e ei et ee s e s e e et enes
4-3 MemOry-mMapPed SFRSuiiiiiiit it ee s e e e e e
4-4 PeriPREral SFRSttt e e e e e e ae e s
4-5 CAN Peripheral SFRS — 8XCLI96CA ONIY....cccciiviiiiiiiiiriiiiir e e e e ee e aes s s seeeenes
4-6 Register File Memory Addressescc.....
4-7 CPU SFRS ...ttt e et ettt bttt e s
4-8 Selecting a Window of Peripheral SFRS...........ccciiiiiiiii e
4-9 Selecting a Window of the Upper Register File
4-10 Selecting a Window of Upper Register RAM — 8XC196JV Only.........cccceevviiiiiiinnns 4-17
4-11 WWINAOWS ... e et ettt ettt e et et e e bt e e sa e et e sane e e e 4-18
4-12 Windowed Base AQArESSEScutiiiiiieiiiir ettt sttt ettt e en e 4-20
5-1 INEEITUPE SIGNAIS ...ttt e e ae e e e ee e e es e st st e srt et teteeaeaeaee s 5-3
5-2 Interrupt and PTS Control and Status Registers 5-3
5-3 Interrupt Sources, Vectors, and Priorities
5-4 Execution Times for PTS Cycles............ccocvu.
5-5 Single Transfer MOAE PTSCBuuuuiiiiiiiiiie s e st ee e aeasaeses e s s seeenes
5-6 Block Transfer Mode PTSCBouiiiiiiiiir ettt
5-7 A/D Scan Mode Command/Data Table
5-8 Command/Data Table (EXaMPIE 1)cuuiiiiiiiiiriirie oot ae e es s s seeenes
5-9 A/D Scan Mode PTSCB (EXamMPIE 1)cccociiiiiieiieieiin e e s
5-10 Command/Data Table (Example 2)................
5-11 A/D Scan Mode PTSCB (Example 2)..............
5-12 Comparison of PWM Modes..........cccceevennnnenn.
5-13 PWM T0Oggle MOAE PTSCB....cuuiiiiiiie it ittt e e e e s s s e sttt e
5-14 PWM RemMap MOAE PTSCBcooiiiiiiiiii ettt ettt ee e e e
6-1 Device I/O Portsccooevcvivnvenennnn
6-2 Standard Input-only Port Pins
6-3 Input-only Port Registers..............
6-4 BidireCtional PO PINSuiiiiiiiie ettt et ee e aee s
6-5 Bidirectional Port Control and Status REGISLENScccvviiiieeeiiiiniie e 6-5
6-6 Logic Table for Bidirectional Ports in 1/O MOEccccueriieeiiiiinie e 6-9

XVii

CONTENTS Intel®

Table
6-7
6-8
6-9
6-10
6-11
6-12
6-13
7-1

7-3
8-1

8-3
9-1
9-2
9-3
10-1
10-2
10-3
10-4
10-5
10-6
10-7
11-1
11-2
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
13-1
13-2
14-1
14-2
14-3

xviil

TABLES

Logic Table for Bidirectional Ports in Special-function Modeccooeevevviiiiiicienn.
Control Register Values for Each Configuration..............cccoviviiiiiiieine e
Port Configuration EXamPpPIe ... e

Port Pin States After Reset and After Example Code Execution
POIS 3 AN 4 PINS ...ttt e ettt et e e et
Ports 3 and 4 Control and Status RegIStErSccccviviiiiriiieiee e
Logic Table for Ports 3 and 4 as 1/O.......coooiiiii it e
Serial Port Signals..........cccooveviviiiiiiieiree e

Serial Port Control and Status Registers
SP_BAUD Values When Using XTAL1 at 16 MHz
SSIO POt SIQNAIS .oeeiiieie ettt s e e e e ee e eeeeeeaesas e e e et e e ree
SSIO Port Control and Status REQISLEIScvvviiii ettt
Common SSIO_BAUD Values at 16 MHz....... PSPPI
SIAVE PO SIQNAIS ..o it e e e e e e e e e e e es e e e e re e
Slave Port Control and Status REQISIEIScuoviiiiiii it
Master and Slave Interconnections.................
EPA Channels........cccccceiieeeenne

EPA and Timer/Counter Signals
EPA Control and Status REJISLEISc.ouviviiie ittt e e e e
Quadrature Mode Truth TabIeuuiiiiiiiiiie e e
Action Taken when a Valid Edge OCCUrS.........ccccvvvvieeennnn.
Example Control Register Settings and EPA Operations...
EPAIPV Interrupt Priority ValuesS........cccccccvviiiiiiisiiciiiiiene
A/D CONVEITEE PiNS ..ttt ettt et e et sbe e eeean
A/D Control and Status ReEGISEIS........cc i v et es e st e e aeaesen e
CAN Controller Signals..........ccccoeeeevireierienennn
Control and StatuS REQISIEISuvuiiiiiiiie ettt e
CAN CoNtroller AQAreSS IMAPuvururiiiiieieiee e e ees s e e ettt e e eeeaeaeaeses e s s aeeenee
Message ODJECE SITUCTUIEccuuriiiie et ettt
Effect of Masking on Message Identifiers.........cccvor i
Standard Message Frame...........ccccceevveinnneenn.
Extended MeSSAQge FramEccuviiiiiii ittt e e
CAN Protocol Bit TiIMe SEGMENTSuiuiiiiiiirie et e et e e et e e st e e e sre e aes e en
CAN Controller Bit Time Segments.................
Bit Timing Relationships..........cccoveiiiiiiiieiiiee e
Bit Timing Requirements for Synchronization
Control Register Bit-pair INterpretationooiviee e iiieiee e e e e
Cross-reference for Register Bits Shown in Flowcharts...........ccccooeviieeniiiiieienenns
Register Values Following Reset...........cccvvieiviiieiineniinennn

Minimum Required Signals.........c.ccccvvveeeennnee.

1/0 Port Configuration Guide.........
Operating Mode Control Signals
Operating Mode Control and Status REQISIEIS.........cccciiiieie e e e
ONCE# Pin Alternate FUNCHONSc.oiiiiieie et e e e e e

Intel® CONTENTS

Table
14-4
15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14
16-15

B-10

TABLES

Page
TESt-MOUE-ENIIY PINS ..uiiiiiiiie e ies s et ae e e e e e e e et e e ee e e e aeaen e ens 14-10
External Memory Interface SignalS.........coooo v viiiiieiiiie e e 15-1
READY Signal Timing Definitions PSPPI 15-16
HOLD#, HLDA# Timing DefiNitioNScooeiii it ne e 15-18
Maximum Hold Latency 15-19
BUS-CONIOI IMOTE ..ottt ettt e st ee e e 15-20
Modes 0, 1, 2, and 3 Timing COMPAISONS.......ccciviurririieiieieieieearaesesess s srnrerereeeeeees 15-32
AC Timing Symbol Definitions
AC Timing Definitions.. .
OTPROM Sizes for 87C196Kx Jx CA DeV|ces .. 16-1
87C196KX OTPROM MEMOIY MaPo eiieeie ittt e ettt s e e eeeee s e aae e e e 16-3
Memory Protection for Normal Operating MoOde.........cccovcvvviiiiiiiiieieiee e 16-4
Memory Protection Options for Programming MOUESc.cuvveeeeiivieiiiireiciviiie e 16-5
UPROM Programming Values and Locations for Slave Mode...............ccoeevvvvvvennnnn. 16-8
LTI B LoE Yol] o] 1 o] RSP 16-11
PMODE VAIUES ...ttt ettt ettt e bt e st ee e e 16-14
Device Signature Word and Programming VOItagesS..........c.vueeivieiiiiiiii e iiisininininniens 16-16
Slave Programming Mode Memory Map . 16-18
BT aTe TR\ 1= 00T Yo RSP 16-25
Auto Programming MemOry Map.......ceeeiieiir oo oi s seisie s e e esasaeseses s s seeee e ne e aes 16-28
Serial Port Programming Mode Memory Map..........cccccvueeee e 16-34
Serial Port Programming Default Values and Locations 16-35
User Program Register Values and Test ROM LOCAtiONS..........cooeveiiiiieiinninininennnns

RISM CommMand DESCIIPLIONS ...vuiutieeieieiieees ettt ee e e eeaeeeses e s e e et st eeseneeeaes
Opcode Map (Left Half) ...
Opcode Map (Right Half)........cccoooviiiiieninnnnnn.

Processor Status Word (PSW) Flags..............

Effect of PSW Flags or Specified Bits on Conditional Jump Instructions............c.c...... A-5
PSW Flag Setting SYMDOISc.oiiiiiiiiiii s e A-5
OpErand Variablescoo ottt e e e e e
Instruction Set

Instruction Opcodes

Instruction Lengths and Hexadecimal OpCOdES.........uvuviiieiiiiiiiniiniiiiiii e e A-48
Instruction Execution Times (in State Times) A-54
Signal Name Changesccooovviiiviiiiiieiie e B-1
8XC196Kx Signals Arranged by Functional Categories B-2
8XC196Jx Signals Arranged by Functional Categories..........cccuveeveirieieierer i iiviinnnnnns B-4
87C196CA Signals Arranged by Functional Categories B-6
Description of Columns of Table B-6 B-8
Signal Descriptions.............ccceeeuee PSP UPUPURPRRPN = =t -
Definition of Status Symbols B-19
BXCLIBKX PN STATUS ... e ettt sttt sttt ettt et e b e een e B-20
BXCLIBIX PN SEALUS ...eei ittt sttt ettt e ettt ee et ee e e B-21
B7CLIBCA PN SEALUS ..cvveieeieie sttt ie sttt ee et ee et ee ettt ee e e et een e ees e e seneeen e B-22

Xix

CONTENTS Intel®

TABLES
Table
C-1 Modules and Related REQISIEISccuiiiiiiii e e
C-2 Register Name, Address, and ReSet StatUS........ccccvviviviieieieionen e ie e ae e
C-3 CAN_EGMSK Addresses and Reset Values...............cc...
C-4 CAN_MSGXCFG Addresses and Reset Values..................

C-5 CAN_MSGXCONO Addresses and Reset Values
C-6 CAN_MSGXCON1 Addresses and Reset Values
C-7 CAN_MSGXDATAO—7 AGUIESSESceeiiiitiieieei ettt ettt e s
C-8 CAN_MSGxID0-3 Addresses .. .
C-9 CAN_MSK15 Addresses and Reset Values
C-10 COMPx_CON Addresses and Reset Values...
C-11 COMPx_TIME Addresses and Reset Values
C-12 EPAXx_CON Addresses and Reset Values
C-13 EPAXx_TIME Addresses and Reset Values......

C-14 EPA INterrupt Priority VECIOIS.....coviiiiiiiir ettt e et aeaeae e s
C-15 Px_DIR Addresses and ReSet ValUES..........ccooceiiiiiiiieieiie e et s
C-16 Px_MODE Addresses and ReSEt ValUESccccciueiiieieiieie e
C-17 Special-function Signals for Ports 1, 2, 5, B......coooeiiiiiiiiiiiiiiiir e inniene
C-18 Px_PIN Addresses and Reset Values.............

C-19 Px_REG Addresses and ReSet ValueScocvuiiiiiiiieiie e e
C-20 Common SSIO_BAUD Values at 16 MHZ...........coooiiiiiiiiiiiiiie e siiee e
C-21 SSIOx_BUF Addresses and Reset Values......

C-22 SSIOx_CON Addresses and Reset Values

C-23 TIMERX Addresses and Reset ValUescooiiiiiiiriiiiie e

C-24 WSR Settings and Direct Addresses for Windowable SFRs............ccccccccvvvvvvieeeen... C-80

XX

intgl.
1

Guide to This Manual

CHAPTER 1
GUIDE TO THIS MANUAL

This manual describes the 8XC196KKx, CA family of embedded microcontrollers. It is intend-

ed for use by both software and hardware designers familiar with the principles of microcontrol-
lers. This chapter describes what you'll find in this manual, lists other documents that may be
useful, and explains how to access the support services we provide to help you complete your de-
sign.

1.1 MANUAL CONTENTS

This manual contains several chapters and appendixes, a glossary, and an index. This chaptel
Chapter 1, provides an overview of the manual. This section summarizes the contents of the re-
maining chapters and appendixes. The remainder of this chapter describes na@tiosmations

and terminabgy used throughout the manual, pa®s references to related documentation, de-
scribes customesupport sevices, and explains how to access information and assistance.

Chapter 2 — Architectural Overview — provides an overview of the device hardware. It de-
scribes the core, internal timing, internal peripherals, and special operating modes.

Chapter 3 — Programming ConsiderAtions —provides an overview of the instruction set, de-
scribes general standards and conventions, and defines the operand types and addressing mod
supported byhe MC® 96 microcontroller family. (For additional information about the instruc-

tion set, see Appendix A.)

Chapter 4 — Memory Partitions — describes the addressable memory space of the device. It
describes the memory partitions, explains how to use windows to intheaseount of memory

that can be accessed with register-di(8ebit) instructions, and progtes examples of meory
configurations.

Chapter 5 — Standard and PTS Interrupts —describes the interrupt control circuitry, priority
scheme, and timing for standard and peripheral transaction server (PTS) interrupts. It also ex-
plains interrupt programming and control.

Chapter 6 — 1/0O Ports — describes the input/output ports and explains how to configure the
ports for input, output, or special functions.

Chapter 7 — Serial /0 (S10) Port —describes the asynchronous/synchrorsaral I/O(SIO)
port and explains how to program it.

Chapter 8 — Synchronous Serial /0O (SSIO) Port— describes the synabmous serial I/O
(SSI0) port and explains how to program it.

1-1

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Chapter 9 — Slave Port —describes the slave port of the 8XC1%6i0d explains how to pro-

gram it. Chapter 6, “I/O Ports,” explains how to configure port 3 to serve as the slave port. This
chapter discusses additional configurations specific to the slave port function and describes how
to use the slave port for interprocessor communication.

Chapter 10 — Event Processor Array (EPA) —describes the event processor array, a tim-
er/counter-based, high-speed input/output unit. It describes the timer/counters and explains how
to program the EPA and how to use the EPA to produce pulse-width modulated (PWM) outputs.

Chapter 11 — Analog-to-digital Converter — provides an overview of the analog-to-digital
(A/D) converter and describes how to program the converter, read the conversion results, and in-
terface with external circuitry.

Chapter 12 — CAN Serial Communications Controller — describes the 8XC196CA'’s inte-
grated CAN controller and explains how to configure it. This integrated peripheral is similar to
Intel's standalone 82527 CAN serial communications contralgoporting both the standard
and extended message frames specified by the CAN 2.0 protocol parts A and B.

Chapter 13 — Minimum Hardware Considerations —describes options faroviding the ba-
sic requirements for device operation within a system, discusses other hardware considerations,
and describes device reset options.

Chapter 14 — Special Operating Modes —provides an overview of the idle, powerdown,
and on-circuit emulation (ONCE) modes and describes how to enter and exit each mode.

Chapter 15 — Interfacing with External Memory — lists the external memory signals and de-
scribes the registers that control the external memory interface. It discusses the bus width and
memory configurations, the bus-hold protocol, write-control modesirg@ahal wait states and

ready control. Finally, it provides timing information for the system bus.

Chapter 16— Programming the Nonvolatile Memory— provides recommended circuits, the
corresponding memory maps, and flow diagrams. It also provides procedures for auto program-
ming, and describes the commands used for serial port programming.

Appendix A — Instruction Set Reference —provides reference information for the instruction

set. It describes each instruction; defines the program stanas(PSW) flags; shows the rela-
tionships between instructions and PSW flags; and lists hexadecimal opcodes, instruction
lengths, and execution times. (For additional information about the instruction set, see Chapter 3,
“Programming ConsiderAtions.”)

Appendix B — Signal Descriptions —provides reference information for the device pins, in-
cluding descriptions of the pin functions, reset status of the I/O and control pins, and package pin
assignments.

Int€|® GUIDE TO THIS MANUAL

Appendix C — Registers —provides a compilation of all device registers arranged alphabeti-
cally by register mnemonic. It also includes tables that list the windowed direct addresses for all
SFRs in each possible window.

Glossary —defines terms with special meaning used tigfmut this maual.

Index — lists key topics with page number references.

1.2 NOTATIONAL CONVENTIONS AND TERMINOLOGY

The following notations and terminology are useitghout this manual. The Glossary defines
other terms with special meanings.

The pound symbol (#) has either of two meanings, depending on the
context. When used with a signal name, the symbol means that the
signal is active low. When used in an instruction, the symbol prefixes
an immediate value in immediate addressing mode.

Assert and Deassert The termsassertand deassertrefer to the act of making a signal
active (enabled) and inactive (disabled), respectively. The active
polarity (high/low) is defined by the signal name. Active-low signals
are designated bymoundsymbol (#) suffix; active-high signals have
no suffix. To assert RD# is to drive it low; to assert ALE is to drive it
high; to deassert RD# is to drive it high; to deassert ALE is to drive it
low.

Clear and Set The termsclear andsetrefer to the value of a bit or the act of giving
it a value. If a bit is cleaits value is “0”; clearing a bit gives it a “0”
value. If a bit is set, its value is “1”; setting a bit gives it a “1” value.

Instructions Instruction mnemonics are shown in upper case to avoid confusion.
You may use either upper case or lower case.

italics Italics identify variables and introduce new terminology. The context
in which italics are used distinguishes between the two possible
meanings.

Variables in registers and signal names are commonly represented by
x andy, wherex represents the first variable agdepresents the
second variable. For example, in registgr MODEY, x represents

the variable that identifies the specific port, andepresents the
register bit variable [7:0]. Variables must be replaced with the correct
values when configuring or programming registers or ifnt
signals.

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Numbers

Register Bits

Register Names

Reserved Bits

Signal Names

Hexadecimal numbers are represented by a string of hexadecimal
digits followed by the charactét. Decimal and binary numbers are
represented by their customary notations. (That is, 255 is a decimal
number and 1111111 is a biary number. In some cases, the leter

is appended to binary nhumbers for clarity.)

Bit locations are indexed by 7:0 (or 15:0), where bit 0 is the least-
significant bit and bit 7 (or 15) is the most-significant bit. An

individual bit is represented by the register name, followed by a
period and the bit number. For example, WSR.7 is bit 7 of the
window selection register. In some discussions, bit names are used.

Register mnemonics are shown in upper case. For example, TIMER2
is the timer 2 register; timer 2 is the timer. A register name containing
a lowercase italic character represents more than one register. For
example, thex in Px_REG indicates that the register name refers to
any of the port data registers.

Certain bits are described eesservedbits. In illustrations, reserved
bits are indicated with a dash (—). These bits are not used in this
device, but they may be used in future implementations. To help
ensure that a current software design is compatible with future imple-
mentations, reserved bits should be cleared (given a value of “0”) or
left in their default states, unless otherwise noted.

Signal names are shown in upper case. When several signals share a
common name, an individual signal is represented by the signal name
followed by a number. For example, the EPA signals are named
EPAO, EPA1, EPA2, etdort pins are represented by the port abbre-
viation, a period, and the pin number (e.g., P1.0, P1.1)oéng
symbol (#) appended to a signal name identifies an active-low signal.

Int€|® GUIDE TO THIS MANUAL

Units of Measure The following abbreviations are used to represent units of measure:

A amps, amperes

DCV direct current volts
Kbytes kilobytes

KQ kilo-ohms

mA milliamps, milliamperes
Mbytes megabytes

MHz megahertz

ms milliseconds

mwW milliwatts

ns nanoseconds

pF picofarads

W waltts

\% volts

MA microamps, microamperes
pF microfarads

ps microseconds

pW microwatts

X Uppercase X (no italics) represents an nown value or an
immaterial (“don’t care”) state or condition. The value may be either
binary or hexadecimal, depending on the context. For example,
2XAFH (hex) indicates that bits 11:8 are unknown; 10XX in binary
context indicates that the two LSBs arkoown.

1.3 RELATED DOCUMENTS

The tables in this section list additional documentsytbatmay find useful in designing systems
incorporating MCS 96 microcontrollers. These are not comprehensive lists, but are a representa-
tive sample of relevant documents. For a complete list of available printed documents, please or-
der the literature catalog (ordeumber 210621). To order documents, please tballlntel
literature center for your area (telephone numbers are listed on page 1-11).

Intel's ApPBUILDER software, hypertext manuals and datasheets, and electronic versions of ap-
plication notes and code examples are also available from the BBS (see “Bulletin Board System
(BBS)” on page 1-9). New information is available first from FaxBack and the BBS. Refer to
“Electronic SupporSystems” on page 1-8 for details.

8XC196Kx, Jx, CA USER'S MANUAL

Table 1-1. Handbooks and Product Information

intel.

Title and Description

Order Number

Intel Embedded Quick Reference Guide

272439

Solutions for Embedded Applications Guide

240691

Data on Demand fact sheet

240952

Data on Demand annual subscription (6 issues; Windows* version)
Complete set of Intel handbooks on CD-ROM.

240897

Handbook Set — handbooks and product overview
Complete set of Intel's product line handbooks. Contains datasheets, application
notes, article reprints and other design information on microprocessors, periph-
erals, embedded controllers, memory components, single-board computers,
microcommunications, software development tools, and operating systems.

231003

Automotive Products t
Application notes and article reprints on topics including the MCS 51 and MCS 96
microcontrollers. Documents in this handbook discuss hardware and software
implementations and present helpful design techniques.

231792

Embedded Applications handbook (2 volume set) T
Data sheets, architecture descriptions, and application ntoes on topics including
flash memory devices, networking chips, and MCS 51 and MCS 96 microcon-
trollers. Documents in this handbook discuss hardware and software implementa-
tions and present helpful design techniques.

270648

Embedded Microcontrollers
Data sheets and architecture descriptions for Intel’s three industry-standard
microcontrollers, the MCS® 48, MCS 51, and MCS 96 microcontrollers.

270646

Peripheral Components T
Comprehensive information on Intel's peripheral components, including
datasheets, application notes, and technical briefs.

296467

Flash Memory (2 volume set) T
A collection of data sheets and application notes devoted to techniques and
information to help design semiconductor memory into an application or system.

210830

Packaging t
Detailed information on the manufacturing, applications, and attributes of a variety
of semiconductor packages.

240800

Development Tools Handbook
Information on third-party hardware and software tools that support Intel’s
embedded microcontrollers.

272326

T Included in handbook set (order number 231003)

Table 1-2. Application Notes, Application Briefs, and Article Reprints

Title Order Number
AB-71, Using the SIO on the 8XC196MH (application brief) 272594
AP-125, Design Microcontroller Systems for Electrically Noisy Environments T11 210313
AP-155, Oscillators for Microcontrollers 111 230659
AR-375, Motor Controllers Take the Single-Chip Route (article reprint) 270056
AP-406, MCS® 96 Analog Acquisition Primer TT1 270365
AP-445, 8XC196KR Peripherals: A User’s Point of View T 270873

T Included in Automotive Products handbook (order number 231792)
Tt Included in Embedded Applications handbook (order number 270648)
TttIncluded in Automotive Products and Embedded Applications handbooks

1-6

Inu® GUIDE TO THIS MANUAL

Table 1-2. Application Notes, Application Briefs, and Ar ticle Reprints (Continued)

Title Order Number
AP-449, A Comparison of the Event Processor Array (EPA) and High Speed 270968
Input/Output (HSIO) Unitt
AP-475, Using the 8XC196NT T1 272315
AP-477, Low Voltage Embedded Design Tt 272324
AP-483, Application Examples Using the 8XC196MC/MD Microcontroller 272282
AP-700, Intel Fuzzy Logic Tool Simplifies ABS Design * 272595
AP-711, EMI Design Techniques for Microcontrollers in Automotive Applications 272324
AP-715, Interfacing an I2C Serial EEPROM to an MCS® 96 Microcontroller 272680

T Included in Automotive Products handbook (order number 231792)
Tt Included in Embedded Applications handbook (order number 270648)
TttIncluded in Automotive Products and Embedded Applications handbooks

Table 1-3. MCS® 96 Microcontroller Datasheets (Commercial/Express)

Title Order Number
8XC196KR/KQ/IR/JIQ Commercial/lExpress CHMOS Microcontroller t 270912
8XC196KT Commercial CHMOS Microcontroller t 272266
87C196KT/87C196KS 20 MHz Advanced 16-Bit CHMOS Microcontroller t 272513
8XC196MC Industrial Motor Control Microcontroller t 272323
87C196MD Industrial Motor Control CHMOS Microcontroller t 270946
8XC196NP Commercial CHMOS 16-Bit Microcontroller T 272459
8XC196NT CHMOS Microcontroller with 1-Mbyte Linear Address Space t 272267

T Included in Embedded Microcontrollers handbook (order number 270646)

Table 1-4. MCS® 96 Microcontroller Datasheets (Automotive)

Title and Description Order Number
87C196CA/87C196CB 20 MHz Advanced 16-Bit CHMOS Microcontroller with 272405
Integrated CAN 2.0 T
87C196JT 20 MHz Advanced 16-Bit CHMOS Microcontroller T 272529
87C196JV 20 MHz Advanced 16-Bit CHMOS Microcontroller ¥ 272580
87C196KR/KQ, 87C196JV/JT, 87C196JR/JQ Advanced 16-Bit CHMOS 270827
Microcontroller
87C196KT/87C196KS Advanced 16-Bit CHMOS Microcontroller T 270999
87C196KT/KS 20 MHz Advanced 16-Bit CHMOS Microcontroller 272513

T Included in Automotive Products handbook (order number 231792)

Table 1-5. MCS® 96 Microcontroller Quick References

Title and Description Order Number
8XC196KR Quick Reference (includes the JQ, JR, KQ, KR) 272113
8XC196KT Quick Reference 272269
8XC196MC Quick Reference 272114
8XC196NP Quick Reference 272466
8XC196NT Quick Reference 272270

1-7

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

1.4 ELECTRONIC SUPPORT SYSTEMS

Intel's FaxBack* service and application BBS provide up-to-date technical information. We also
maintain several forums on CompuServe and offer a variety of information on the World Wide
Web. These systems are available 24 hours a day, 7 days a week, providing technical information
whenever you need it.

1.4.1 FaxBack Service

FaxBack is an on-demand publishing system that sends documgats fax machine. You can

get product announcements, change notificatiprsduct literature, device charadstics, de-

sign recommendations, and quality and reliability information from FaxBack 24 hours a day, 7
days a week.

1-800-628-2283 U.S. and Canada
916-356-3105 U.S., Canada, Japan, APac
44(0)1793-496646 Europe

Think of the FaxBack service as a library of technical documents that you can accessuwith
phone. Just dial the telephone number and respond to the system prompts. After you select a doc
ument, the system sends a copy to your fax machine.

Each document is assigned an order number and is listed in a subject catalog. The first time you
use FaxBack, you should order the appropriate subject catalogs to get a complete listing of doc-
ument order numbers. Catalogs are updated twice monthly, so call for thenflaiestion. The
following catalogs and informaticare available at the time of publication:

1. Solutions OEMsubscription form

Microcontroller and flash catalog

Development tools catalog

Systems catalog

Multimedia catalog

Multibus and iRMX® software catalog and BBS file listings
Microprocessor, PCI, and peripheral catalog

Quality and reliability and change notification catalog

© © N o gk~ w DN

iAL (Intel Architecture Labs) technology catalog

1-8

Int€|® GUIDE TO THIS MANUAL

1.4.2 Bulletin Board System (BBS)

The bulletin board system (BBS) lets you download files to your computer. The application BBS
has the latesApBUILDER software, hypertext manuals and datasheets, software drivers, firm-
ware upgrades, application notes and utilities, and quality and reliability data.

916-356-3600 U.S., Canada, Japan, APac (up to 19.2 Kbaud)
916-356-7209 U.S., Canada, Japan, APac (2400 baud only)
44(0)1793-496340 Europe

The toll-free BBS (available in the U.S. and Canada) offers lists of documents available from Fax-
Back, a master list of files available from the application BBS, and a BBS user’s guide. The BBS
file listing is also available from FaxBack (catalog number 6; see page 1-8 for phone numbers
and a description of the FaxBack service).

1-800-897-2536 U.S. and Canada only

Any customer with a modem and computer can access the BBS. The system provides automatic
configuration support fat200- through 19200-baud modems. Typical modem settings are 14400
baud, no parity, 8 data bits, and 1 stop bit (14400, N, 8, 1).

To access the BBS, just dial the telephone number andrmegp the system prompts. During

your first session, the system asks you to register with the system operator by entering your name
and location. The system operator will set up your access account withgugst At that time,

you can access the files on the BBS.

NOTE

If you encounter any difficulty accessing the high-speed modem, try the
dedicated 2400-baud modem. Use these modem settings: 2400, N, 8, 1.

1421 How to Find MCS ® 96 Microcontroller Files on the BBS
Application notes, utilities, and product literature are available from the BBS. To access the files,
complete these steps:

1. EnterF from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. TypelL and press <Enter>. The BBS displays the list of areas and prompts for the area
number.

3. Typel2and press <Enter> to select MCS 96 Family. The BBS displays a list of subject
areas including general and product-specific subjects.

4. Type the number that corresponds to the subject of interest and press <4&fitdrthe
latest files.

1-9

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

5. Type the file numbers to select the files you wish to download (for exaim@fer files 1
and 6 or3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the approx-
imate time required to download the files you have selected and gives you the option to
download them.

1.4.2.2 How to Find ApBUILDER Software and Hypertext Documents on the BBS

The latestApBUILDER files and hypertext manuals and data sheets are available first from the
BBS. To access the files, complete these steps:

1. TypeF from the BBS Main menu. The BBS displays the Intel Apps Files menu.

2. TypelL and press <Enter>. The BBS displays the list of areas and prompts for the area
number.

3. Type25 and press <Enter> to selegpBUILDER/Hypertext. The BBS displays several
options: one forApBUILDER software and the others for hypertext documents for
specific product families.

4. Typel and press <Enterto list the latesApBUILDER files or type2 and press <Enter>
to list the hypertext manuals and datasheets for MCS 96 microcontrollers.

5. Type the file numbers to select the files you wish to download (for exaim@fer files 1
and 6 or3-7 for files 3, 4, 5, 6, and 7) and press <Enter>. The BBS displays the approx-
imate time required to download the selected files and gives you the option to download
them.

1.4.3 CompuServe Forums

The CompuServe forums provide a means for you to gather information, share discoveries, and
debate issues. Type “go intel” for access. For information about CompuServe access and service
fees, call CompuServe at 1-800-848-81995)or 614529-1340 (outsle the U.S.).

1.4.4 World Wide Web

We offer a variety of information through the World Wide Web (URL:http://www.intel.com/). Se-
lect “Embedded Design Products” from tinéel home page.

1-10

Int€|® GUIDE TO THIS MANUAL

1.5 TECHNICAL SUPPORT

In the U.S. and Canada, technical support representatives are available to answer your question:
between 5 a.m. and 5 p.m. PST. You can also fax your questions to us. (Please include your voice
telephone number and indicate whether you prefer a response by phone or by fax). Outside the
U.S. and Canada, please contact your local distributor.

1-800-628-8686 U.S. and Canada
916-356-7599 U.S. and Canada
916-3566100 (fax) U.S. and Canada

1.6 PRODUCT LITERATURE

You can order product literature from the following Intel literature centers.
1-800-468-818, ext. 283 U.S. and Canada

708-296-9333 U.S. (from overseas)
44(0)1793-431155 Europe (U.K.)
44(0)1793-421333 Germany
44(0)1793-421777 France
81(0)120-47-88-32 Japan (fax only)

1.7 TRAINING CLASSES

In the U.S. and Canadggu can register for trainingasses tlaugh the Intel customer training
center. Classes are held in the U.S.

1-800-234-8806 U.S. and Canada

1-11

intgl.

Architectural
Overview

CHAPTER 2
ARCHITECTURAL OVERVIEW

The 16-bit 8XC196IK, 8XC196%, and 87C196CA CHMOS microcontrollers are designed to
handle high-speed calculations and fast input/output (I/O) operations. They share a common ar-
chitecture and instruction set with other members of the M@®microcontroller family. This
chapter provides a high-level overview of the architecture.

NOTE
This manual describes a family of devices. For brevity, the name 8XG196K

is used when the discussion applies to all family members. When information
applies to specific devices, individual product names are used.

2.1 TYPICAL APPLICATIONS

MCS 96 microcontrollers are typically used for high-speed event control systems. Commercial
applications include modems, motor-control systems, printers, photocopiers, air conditioner con-
trol systems, disk drives, and medical instruments. Automotive customers use MCS 96 microcon-
trollers in engine-control systems, airbags, suspension systems, and antilock braking systems
(ABS).

2-1

8XC196Kx, Jx, CA USER'S MANUAL InU®

2.2 DEVICE FEATURES

Table 2-1 lists the features of each member of the 8XC4 8&iKily.

Table 2-1. Features of the 8XC196K x, Jx, CA Product Family

Devce |pis | Eprows (RS | Cotel | 10| EPA | SSio | A0 | i
ROM (1) Ports Pins
8XC196JV ®) 52 48 K 1536 512 56 6 3 6 1
8XC196KT 68 32K 1024 512 56 10 3 8 2
8XC196JT (3 52 32K 1024 512 41 3 6 1
87C196CA 4 68 32K 1024 256 51 3 6 2
8XC196KS () 68 24 K 1024 256 56 10 3 8 2
8XC196KR 68 16 K 512 256 56 10 3 8 2
8XC196JR 52 16 K 512 256 41 6 3 6 1
8XC196KQ 68 12 K 384 128 56 10 3 8 2
8XC196JQ 52 12 K 384 128 41 6 3 6 1

NOTES:

1. Optional. The second character of the device name indicates the presence and type of nonvolatile
memory. 80C196xx = none; 83C196xx = ROM; 87C196xx = OTPROM or EPROM.

2. Register RAM amounts include the 24 bytes allocated to core SFRs and the stack pointer.

3. The 8XC196JT, JV, and KS are offered in automotive temperature ranges only. The 87C196CA,
8XC196JQ, JR, KQ, KR, and KT are offered in both automotive and commercial temperature ranges.

4. The 87C196CA also has an on-chip networking peripheral that supports CAN specification 2.0.

2.3 BLOCK DIAGRAM

Figure 2-1 shows the major blocks within the device. The core of the device (Figure 2-2) consists
of the central processing unit (CPU) and memory controller. The CPU contains the register file
and the register arithmetic-logic unit (RALU). The CPU connects to both the memory controller
and an interrupt controller via a 16-bit internal bus. An extension of this bus connects the CPU to
the internal peripheral modules. In addition, an 8-bit internal bus transfers instruction bytes from
the memory controller to the instruction register in the RALU.

2-2

ARCHITECTURAL OVERVIEW

Optional Interrupt
Core p
ROM Controller
Clock and Code/Data PTS
Power Mgmt. RAM
1o sio | |sso||eral] ap || wor SP"';‘:te CAN
Note:

The slave port is unique to 8XC196Kx devices.
The CAN peripheral is unique to the 8XC196CA.

A2799-02
Figure 2-1. 8XC196K x Block Diagram

r-—-—-—- - - - - - - - - - - - - == == |
| CPU \ Memory Controller
I . .
| Register File RALU : Prefetch Queue
: Microcode | | 1
| Engine | Slave PC

|
| .
I Register ALU : Address Register
| RAM |
| .

|
|
| [psw |||
| CPU SFRs - !
| | Bus Controller

|
- e]

A2797-01

Figure 2-2. Block Diagram of the Core

2-3

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

2.3.1 CPU Control

The CPU is controlled by the microcode engine, which instructs the RALU to perform operations
using bytes, words, or double words from either2b@-byte loweregister file or through win-
dowthat directly accesses the upper register file. (See Chapter 4, “Memory Partitions,” for more
information about the register file and windowing.) CPU instructions move frollyte queue

in the memory controller into the RALUiBstruction register. The microcodegine decodes the
instructions and then generates the sequence of events that cause desired functions to occur.

2.3.2 Register File

The register file is divided into an upper and a lower file. In the lower register file, the lowest 24
bytes are allocated to the CPU’s special-function registers (SFRs) and the stack pointer, while the
remainder is available as general-purpose register RAM. The upper register file contains only
general-purpose register RAM. Thegigter RAM can be accessed as bytes, words, or double-
words.

The RALU accesses the upper and lower register files differently. The lower register file is always
directly accessible with register-direct addressing (see “Addressing Modes” on page 3-5). The
upper register file is accessible with register-direct addressing onlywihdowingis enabled.
Windowing is a technique that maps blocks of the upper register file imtadawin the lower
register file. See Chapter 4, “Memory Partitions,” for more information about the register file and
windowing.

2.3.3 Register Arithmetic-logic Unit (RALU)

The RALU contains the microcode engine, the 16-bit arithmetic logic unit (ALU), the master pro-
gram counter (PC), the programtagmword (PSW), and several registers. The registers in the
RALU are the instruction register, a constants register, a bit-select register, a loop counter, and
three temporary registers (the upper-word, lower-word, and second-operand registers).

The PSW contains one bit (PSW.1) that globally enables or disables servicing of all maskable in-
terrupts, one bit (PSW.2) that enables or disables the peripheral transaction server (PTS), and six
Boolean flags that reflect the state of your program. Appendix A, “Instruction Set Reference”
provides a detailed description of the PSW.

All registers, except the 3-bit bit-select register and the 6-bit loop counter, are either 16 or 17 bits
(16 bits plus a sign extension). Some of these registers can reduce the ALU’s workload by per-
forming simple operations.

Int€|® ARCHITECTURAL OVERVIEW

The RALU uses the upper- and lower-word registers together for the 32-bit instructions and as
temporary registers for many instructions. These registers have their own shift logic and are used
for operations that require logical shifts, iding normalize, multiply, and divide operations.

The six-bit loopcounter counts repetitive shifts. The second-operand register stores the second
operand for two-operand instructions, including the multiplier during multiply operations and the
divisor during divide operations. During subtraction operations, the output of this register is com-
plemented before it is moved into the ALU.

The RALU speeds up calculations by storing constants (e.g., 0, 1, and 2) in the constants register
so that they are readily available when complementing, incrementing, or decrementing bytes or
words. In addition, the constants register generates single-bit masks, based on the bit-select reg
ister, for bit-test instructions.

2.3.3.1 Code Execution

The RALU performs most calculations for the device, but it does not wssamulator Instead

it operates directly on the lower register file, which essentpaiywides 256 accumuars. Be-

cause data does not flow through a single accumulator, the device’s code executes faster and mor
efficiently.

2.3.3.2 Instruction Format

MCS 96 microcontrollers combine a large set of general-purpose registers with a three-operand
instruction format. This format allows a single instruction to specify two source registers and a
separate destination register. For example, the following instruction multiplies two 16-bit vari-
ables and stores the 32-bit result in a thirdalald.

MUL RESULT, FACTOR_1, FACTOR_2 ;multiply FACTOR_1 and FACTOR_2
;and store answer in RESULT
;(RESULT) ~(FACTOR_1 x FACTOR_2)

An 80C186 device requires four tngctions to accomplish the same operation. The following ex-
ample shows the equivalent code for an 80C186 device.

MOV AX, FACTOR_1 ;move FACTOR_1 into accumulator (AX)
i(AX) ~FACTOR1

MUL FACTOR_2 ;multiply FACTOR_2 and AX
i(DX:AX) ~(AX)x(FACTOR_2)

MOV RESULT, AX ;move lower byte into RESULT
J(RESULT) —(AX)

MOV RESULT+2, DX ;move upper byte into RESULT+2

{(RESULT+2) < (DX)

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

2.3.4 Memory Controller

The RALU communicates with all memory, except the register file and peripheral SkRghthr

the memory controller. (It communicates with the upper register file through the memory control-
ler except whemwindowingis used; see Chapter 4, “Memory Partitions.”) The memory controller
contains the prefetch queue, the slpr@gramcounter (slave PC), address and data registers, and
the bus controller.

The bus controller drives the memory bus, which consists of an internal memory bus and the ex-
ternal address/data bus. The bus controller receives memory-access requests from either the
RALU or the prefetch queue; queue requests always have priority. This queue is transparent to
the RALU and your software.

NOTE
When using a logic analyzer to debug code, remember that instructions are

preloaded into the prefetch queue and are not necessarily executed
immediately after they are fetched.

When the bus controller receives a request from the queue, it fetches the code from the addres:
contained in the slave PC. The slave PC increases execution speed because the next instructio
byte is available immediately and the processor need not wait for the master PC to send the ad-
dress to the memory controller. If a jump, interrupt, call, or return changes the address sequence,
the master PC loads the new address into the slave PC, then the CPU flushes the queue and coil
tinues processing.

2.3.5 Interrupt Service

The device’s flexible interrupt-handling system has two main components: the programmable in-
terrupt controller and the peripheral transaction server (PTS). The programmaileotriten-

troller has a hardware priority scheme that can be modified by your software. Interrupts that go
throughthe interrupt controller are serviced by interrupt service routineg/thaprovide. The
peripheral transaction server (PTS), a microcoded hardware interrupt processor, provides high-
speed, low-overhead interrupt handling. You can configure most interrupts (except NMI, trap,
and unimplemented opcode) to be serviced by the PTS instead ofetraphtontroller.

The PTS can transfer bytes or words, either individually or in blocks, between any memory loca-
tions, manage multiple analog-to-digital (A/D) conversions, and generate pulse-width modulated
(PWM) signals. PTS interrupts have a higher priority than standard interrupts and may temporari-
ly suspend interrupt service routines. See Chapter 5, “Standard and PTS Interrupts,” for more in-
formation.

Inu® ARCHITECTURAL OVERVIEW

2.4 INTERNAL TIMING

The clock circuitry (Figure 2-3) receives an input clock signal on XTpidvided by an external

crystal or oscillator and divides the frequency by two. The clock generators accept the divided
input frequency from the divide-by-two circuit aptbduce two nonoverlapping internal timing
signals, PH1 and PH2. These signals are active when high. The rising edges of PH1 and PH2 gen
erate CLKOUT, the output of the internal clock generator (Figure 2-4). The clock circuitry routes
separate internal clock signals to the CPU and the periphematsvide flexibility in power man-
agement. (“Reducing Power Consumption” on page 14-3 describes the power management
modes.) It also outputs the CLKOUT signal on the CLKOUT pin. Because of the complex logic

in the clock circuitry, the signal on the CLKOUT pin is a delayed version of the internal CLKOUT
signal. This delay varies with temperature and voltage.

Disable Clock Input
(Powerdown)

IEN @, . Divide-by-two
Disable Clocks
(Powerdown)
e J-_) Peripheral Clocks (PH1, PH2)
Disable Geﬁ-la(:gt(ors - D CLKOUT

Oscillator CPU Clocks (PH1, PH2)
(Powerdown)

Disable Clocks
(Idle, Powerdown)

A3064-02

Figure 2-3. Clock Circuitry

8XC196Kx, Jx, CA USER'S MANUAL Inu®

XTAL1 _| | | | | | | | I_

~#—— 1 State Time ——mr<a—— 1 State Time —

s] — ~

CLKOUT | l | _I |—

Phase1 Phase2 ! Phasel Phase 2

A0114-02

Figure 2-4. Internal Clock Phases

The combined period of phase 1 and phase 2 of the internal CLKOUT signal defines the basic
time unit known as atate timeor state Table 2-2 lists state time durations at various frequencies.
The following formulas calculate the frequency of PH1 and PH2 and the duration of a state time
(Foscis the input frequency to the divide-by-two circuit).

Fosc 2

5 = PH2 (in MHz) State Time (in seconds) =

PH1 (in MHz) =

osc
Because the device can operate at many frequencies, this manual defines time requirements ir

terms of state times rather than specific times. Consult the latest datasheet for AC timing specifi-
cations.

Table 2-2. State Times at Various Fre quencies

Fosc .
(Frequency Input to the State Time
Divide-by-two Circuit)
8 MHz 250 ns
12 MHz 167 ns
16 MHz 125 ns

2.5 INTERNAL PERIPHERALS

The internal peripheral modules provide special functions for a variety of applications. This sec-
tion provides a brief description of each peripheral and other chapters describe each one in detail.

Int€|® ARCHITECTURAL OVERVIEW

25.1 1/O Ports

The 8XC196k, 8XC196%, and 87C196CA have seven I/O ports, ports 0-6. Individual port pins
are multiplexed to serve as standard I/O or to carry special-function signals associated with an
on-chip peripheral or an off-chip component. If a particular special-function signal is not used in
an application, the associated pin can be individually configured to serve as a standard 1/O pin.
Ports 3 and 4 are exceptions. Their pins must be configured either as all I/O or as all address/data.

Port 0 is an input-only port that is also the analog input for the A/D converter. Ports 1, 2, and 6
are standard, bidirectional I/O ports. Port 1 provides pins for the EPA and timers. Port 2 provides
pins for the serial I/O (SIO) port, interrupts, bus control signals, and clock generator. Port 6 pro-
vides pins for the event processor array (EPA) and synchraeoias I/O (SSIO) port.

Ports 3, 4, and 5 are memory-mapgadirectional I/0O ports. Ports 3 and 4 serve as the external
address/data bus. Port 5 provides bus control signals; for the 8X&,iB6&n also provide pins
for the slave port. Chapter 6, “I/O Ports,” describes the I/O ports in more detail.

NOTE
The 87C196CA device does not implement the following port pins: P0.1:0,

P1.7:4, P2.5 and P2.3, P5.7 and P5.1, and P6.3:2. See “Design Considerations
for 87C196CA Devices” on page 2-13 for details.

The 8XC1964 devices do not implement the following port pins: P0.1:0,
P1.7:4, P2.5 and P2.3, P5.7:4, and P6.3:2. See “Design Considerations for
8XC196JQ, JR, JT, and JV Devices” on page 2-14 for details.

2.5.2 Serial /O (SIO) Port

The serial I/0 (SIO) port is an asynchronaeysichronous pothat includes a universal asynchro-

nous receiver and transmitter (UART). The UART has one synchronous mode (mode 0) and three
asynchronous modes (modes 1, 2, and 3) for both transmission and reception. The asynchronou:
modes are full duplex, meaning that they can transmit and receive data simultaneously. The re-
ceiver is buffered, so the reception of a second byte may begin before the first byte is read. The
transmitter is also buffered, allowing continuous transmissions. See Chapter 7, “Serial /0O (SIO)
Port,” for details.

2.5.3 Synchronous Serial I/O (SSIO) Port

The synchronous serial I/0 (SSIO) port provides for simultaneous, bidirectional communications
between two 8XC196 family devices or between an 8XC196 device and another synchronous se-
rial 1/0O device. The SSIO port consists of two identical transceiver channels with a dedicated
baud-rate generator. The channels can be programmed to operate in several modes. See Chapt
8, “Synchronous Serial I/O (SSIO) Port,” for more information.

2-9

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

2.5.4 Slave Port (8XC196K x Only)

The slave port offers an alternative for communication between two CPU devices. Traditionally,
system designers have had three alternatives for achieving this communication — a serial link, a
parallel bus without a dual-port RAM (DPRAM), or a parallel bus with a DPRAM to hold shared
data.

NOTE

The 87C196CA and 8XC19%dlevices do not implement the slave port chip-
select and interrupt signals, so you cannot use the slave port on an 87C196CA
or 8XC196% device.

A serial link, the most common method, has several advantages: it uses only two pins from each
device, it needs no hardware protocol, and it allows for error detection before data is stored. How-
ever, it is relatively slow and involves software overhead to differentiate data, addresses, and
commands. A parallel bus increases communication speed, but requires more pins and a rathel
involved hardware and software protocol. Using a DPRAM offers software flexibility between
master and slave devices, but the hardware interconnect uses a demultiplexed bus, which require:
even more pins than a simple parallel connection does. The DPRAM is also costly, and error de-
tection can be difficult. The SSIO offers a simple means for implementing a serial link. The mul-
tiplexed address/data bus can be used to implement a parallel link, with or without a DPRAM.
The slave port offers a fourth alternative.

The slave port offers the advantages of the traditional methods, without their drawbacks. It brings
the DPRAM on-chip. With this configuration, an external processor (master) can simply read
from and write to the on-chip memory of the 8XC196 (slave) device. The slave port requires more
pins than a serial link does, but fewer than the number used for a parallel bus. It requires no hard-
ware protocol, and it can interface with either a multiplexed or a demultiplexed bus. The master
simply reads or writes as if there were a DPRAM device on the bus. Data error detection can be
handled through the software. See Chapter 9, “Slave Port,” for details.

2.5.5 Event Processor Array (EPA) and Timer/Counters

The event processor array (EPA) performs high-speed input and output functions associated with
its timer/counters. In the input mode, the EPA monitors an input for signal transitions. When an
event occurs, the EPA records the timer value associated with it. Thigguaeevent. In the

output mode, the EPA monitors a timer until its value matches that of a stored time value. When
a match occurs, the EPA triggers an output event, which can set, clear, or toggle an output pin.
This is acompareevent. Both capture and compare events can initiate interrupts, which can be
serviced by either the imeipt contoller or the PTS.

2-10

Int€|® ARCHITECTURAL OVERVIEW

Timer 1 and timer 2 are both 16-bit up/down timer/counters that can be clocked internally or ex-
ternally. Each timer/counter is calletimer if it is clocked internally and eounterif it is clocked
externally. (See Chapter 10, “Event Processor Array (EPA),” for additional information on the
EPA and timer/counters.)

2.5.6 Analog-to-digital Converter

The analog-to-digital (A/D) converter converts an analog input voltage to a digital equivalent.
Resolution is either 8 or 10 bits; sample and convert times are programmable. Conversions can
be performed on the analggound and ref@nce voltage, and the results can be used to calculate
gain and zero-ddet errors. The internal zepffset compensation circuibhables automatic zero-

offset adjustment. The A/D also has a threshold-detection mode, which can be used to generate
an interrupt when a programmable threshold voltage is crossed in either direction. The A/D scan
mode of the PTS facilitates automated A/D conversions and result storage.

The main omponets of the A/D converter are a samyaled-hold circuit and an 8-bit or 10-bit
successive approximatiaanalog-to-digital converter. See Chapter 11, “Analog-to-digital Con-
verter,” for more information.

2.5.7 Watchdog Timer

The watchdog timer is B6-bit internal timer that resets the device if the software fails to operate
properly. See Chapter 13, “Minimum Hardware Considerations,” for more information.

2.5.8 CAN Serial Communications Controller (87C196CA Only)

The 87C196CA device has a peripheral not found on 8XGI@6IXC196kk devices, the CAN
(controller area network) peripheral. The CAN serial communications controller manages com-
munications between multiple network nodes. This integrated peripheral is similar to Intel's
standalone 82527 CAN seria@dmmunications controller, supporting both the standard and ex-
tended message frames specified by the CAN 2.0 protocol parts A and B. See Chapter 12, “CAN
Serial Communications Controller,” for more information.

2.6 SPECIAL OPERATING MODES

In addition to the normal execution mode, the device operates in several special-purpose modes.
Idle and powerdown modes conserve power when the device is inactive. On-circuit emulation
(ONCE) mode electrically isolates the microcontroller from the system, and several other modes
provide programming options for nonvolatile memory. See Chapter 14, “Special Operating
Modes,” for more information about idle, powerdown, and ONCE modes and Chapter 16, “Pro-
gramming the Nonvolatile Memory,” for detadbout programming options.

2-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

2.6.1 Reducing Power Consumption

In idle mode, the CPU stops executing instructions, but the peripheral clocks remain active. Pow-
er consumption drops to about 40% of normal execution mode consumption. Either a hardware
reset or any enabled interrupt source will bring the device out of idle mode.

In powerdown mode, all internal clocks are frozen at logic state zero and the oscillator is shut off.
The register file, internal code and data RAM, and most peripherals retain their dataisf V
maintained. Power consumption drops into the pW range.

2.6.2 Testing the Printed Circuit Board

The on-circuit emulation (ONCE) mode electrically isolates the 8XC196 device from the system.
By invoking ONCE mode, you can test the printed circuit board while the device is soldered onto
the board.

2.6.3 Programming the Nonvolatile Memory

MCS 96 microcontrollers that have internal OTPROM or EPR®DMideseverabrogramming
options:

¢ Slave programimg allows a master EPROM programmer to program and verify one or
more slave MCS 96 microcontrollers. Programming vendors and Intel distributors typically
use this mode tprogram a large number of microcontrollers witbustomer’s code and
data.

¢ Auto programming allows an MCS 96 microcontroller to program itself with code and data
located in an external memory device. Customers typically use this low-cost method to
program a small number of microcontrollers after development and testing are complete.

¢ Serial portprogramming allows you tdownload code and data (usually from a personal
computer or workstation) to an MCS 96 microcontroller asynchronasiygh theserial
I/0 port's RXD and TXD pins. Customers typically use this modaldwnload large
sections of code to the microcontroller during software development and testing.

* Run-time programming allows you fmrogram indvidual nonvolatile memory locations
during normal code execution, under complete software control. Customers typically use
this mode to download a small amountrdbrmaion to the microcontroller after the rest of
the array has been programmed. For example, you might use run-time programming to
download a unique identification number to a security device.

* ROM dump mode allows you to dump the contents of the device’s nonvolatile memory to a
tester or to a memory device (such as flash memory or RAM).

2-12

Int€|® ARCHITECTURAL OVERVIEW

Chapter 16, “Programming the Nonvolatile Memory,” provides recommendgdtsj the corre-
sponding memory aps, and flow diagrams. It also provides procedures for@ogramming
and describes the commands used for serial port programming.

2.7 DESIGN CONSIDERATIONS FOR 87C196CA DEVICES

Some functions that were implemented on 8XC196Kvices are omitted from the 87C196CA.
Table 2-3 lists the pins and signals that are omitted.

Table 2-3. Unsupported Functions in 87C196CA Devices

Removed Pins or Signals Unsupported Functions
P0.0 and PO.1 Analog channels 0 and 1
P1.4/EPA4, P1.5/EPA5, P1.6/EPA6, P1.7/[EPA7 | EPA channels 4 through 7
P2.3/BREQ, P2.5/HOLD# Bus hold request and hold acknowledge
P5.1/INST/SLPCS# Instruction fetch indication and slave port
SLPINT (multiplexed with P5.4 in Kx devices) Slave port (P5.4 is implemented as a low-speed /O pin)
P5.7/BUSWIDTH Dynamic buswidth selection
P6.2/T1CLK, P6.3/T1DIR External clocking and direction control of timer 1

Follow these recommendations to help maintain hardware and software compatibility between
the 87C196CA and future devices.

* Bus width. Since the 87C196CA has no BUSWIDTH pin, the device cannot dynamically
switch between 8- and 16-bit bus widths. Configure the CCBs to select either 8- or 16-bit
bus width.

* EPA4-EPA7.The 87C196CA has neither the EPA7:4 pins nor the associated functions.

¢ Slave port. The 87C196CA has no P5.1/SLPCS# pin and no SLPINT signal, so you cannot
use the slave port.

¢ |/O ports. The following port pins do not exist in the 87C196CA: P0.1:0; P1.7:4; P2.3 and
P2.5; P5.1 and P5.7; P6.2 and P6.3. Software can still read the associdd&,P
Px_ MODE, and R_REG registers. The registers for the removed pins are permanently
configured as follows:

— Px_DIR bits are set.
— Px_MODE bits are clear, except P5_MODE.7 is set.
— Px_REG bits are set.

Do not use the bits associated with the removed port pins for conditional branch instruc-
tions. Treat these bits as reserved.

¢ Auto programming. During autoprogrammig, the 87C196CA supports only a 16-bit,
zero-wait-state bus configuration.

2-13

8XC196Kx, Jx, CA USER'S MANUAL Inu®

2.8 DESIGN CONSIDERATIONS FOR 8XC196JQ, JR, JT, AND JV DEVICES

The 8XC1964 devices are 52-lead versions of 8XC136#evices. Some functions were re-
moved to reduce the pin count (Table 2-4).

Table 2-4. Unsupported Functions in 8XC196Jx Devices

Removed Pins Unsupported Functions
P0.0 and PO.1 Analog channels 0 and 1
P1.4/EPA4, P1.5/EPA5, P1.6/EPAG, P1.7/EPAY | Pins for EPA channels 4 through 7
P2.3/BREQ, P2.5/HOLD# Bus hold request and hold acknowledge
P5.1/INST/SLPCS# Instruction fetch indication and slave port
P5.4/SLPINT Slave port
P5.5/BHE#/WRH# 16-bit external bus
P5.6/READY Dynamic wait-state control
P5.7/BUSWIDTH Dynamic buswidth selection
P6.2/T1CLK, P6.3/T1DIR External clocking and direction control of timer 1
NMI Nonmaskable interrupt

2-14 [|

Int€|® ARCHITECTURAL OVERVIEW

Follow these recommendations to help maintain hardware and software compatibility between
52-lead, 68-lead, and future devices.

¢ Bus width. Since the 8XC196&Jhas neither a WRH# nor a BUSWIDTH pin, the device
cannot dynamically switch between 8- and 16-bit bus widths. Progra@QBs to select 8-
bit bus mode.

* Wait states. Since the 8XC19&Jhas no READY pin, the device cannot rely on a READY
signal to control wait states. Program the CCBs to limit the number of wait states (0, 1, 2, or
3).

* EPA4-EPA7.These functions exist in the 8XC196but the associated pins are omitted.

You can use these functions as software timers, to start A/D conversions, or to reset the
timers.

¢ Slave port. Since the 8XC19&Jhas no P5.1/SLPCS and P5.4/SLPINT pins, you cannot
use the slave port.

* ONCE mode.On the 8XC196JQ and JR, the ONCE mode entry function is multiplexed
with P2.6 (P2.6/HLDA#/ ONCE) rather than with P5.4 as it is on the 8XC196KQ and KR
(P5.4/SLPINT/ONCE).

* NMI. Since the 8XC19&Jhas no NMI pin, the nonmaskable interrupt is sapported.

Initialize the NMI vector (at location 203EH) to point to a RET instruction. This method
provides glitch protection only.

* |/O ports. The following port pins do not exist in the 8XC12680.0-P0.1, P1.4-P1.7,
P2.3 and P2.5, P5.1 and P5.4-P5.7, P6.2 and P6.3. Software can still read and write the
associated ® REG, k_MODE, and R _DIR registers. Configure the registers for the
removed pins as follows:

— Clear the correspondingPDIR bits. (Configures pins as complementary outputs.)
— Clear the correspondingkPMODE bits. (Selects 1/O port function.)

— Write either “0” or “1” to the correspondingkPREG bits. (Effectively ties signals low

or high.)
Do not use the bits associated with the removed port pins for conditional branch instruc-
tions. Treat these bits as reserved.

e Auto programming. During auto programming, the 8XC1%6dupports only a 16-bit,
zero-wait-state bus configuration.

[| 2-15

intgl.

Programming
Considerations

CHAPTER 3
PROGRAMMING CONSIDERATIONS

This section provides an overview of the instruction set of the®M@Bmicrocontrollers and of-
fers guidelines for program development. For detailed information about specific instructions,
see Appendix A.

3.1 OVERVIEW OF THE INSTRUCTION SET

The instruction setupports a variety of operand types likely to befulsin control applications
(see Table 3-1).

NOTE

The operand-type variables are shown in all capitals to avoid confusion. For
example, 8YTEis an unsigned 8-bit variable in an instruction, whilg/geis
any 8-bit unit of data (either signed or unsigned).

Table 3-1. Operand Type Definitions

No. of . . Addressing
Operand Type Bits Signed Possible Values Restrictions
BIT 1 No True or False As components of bytes
BYTE 8 No 0 through 255 (28-1) None
SHORT- 8 Yes | -128 (=27) through +127 (+27-1) None
INTEGER
WORD 16 No 0 through 65,535 (216-1) Even byte address
INTEGER 16 Yes |-32,768 (-215) through Even byte address
+32,767 (+215-1)
DOUBLE-WORD 32 No 0 through 4,294,967,295 (232-1) An address in the lower
(Note 1) register file that is evenly
divisible by four (Note 2)
LONG-INTEGER 32 Yes —2,147,483,648 (—231) through An address in the lower
(Note 1) +2,147,483,647 (+231-1) register file that is evenly
divisible by four (Note 2)
NOTES:

1. The 32-bit variables are supported only as the operand in shift operations, as the dividend in 32-by-
16 divide operations, and as the product of 16-by-16 multiply operations.

2. For consistency with third-party software, you should adopt the C programming conventions for
addressing 32-bit operands. For more information, refer to “Software Standards and Conventions” on
page 3-9.

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 3-2 lists the equivalent operand-type names for bgilo@ramning and assembly lan-
guage.

Table 3-2. Equivalent Operand T ypes for Assembly and C Progr amming Lan guages

Operand Types Assembly Language Equivalent C Programming Language Equivalent
BYTE BYTE unsigned char
SHORT-INTEGER | BYTE char
WORD WORD unsigned int
INTEGER WORD int
DOUBLE-WORD | LONG unsigned long
LONG-INTEGER LONG long

3.1.1 BIT Operands

A BIT is a single-bit variable that can have the Boolean values, “true” and “false.” The architec-
ture requires that BITs be addressed as components of BYTEs or WORDSs. It does not support the
direct addressing of BITs.

3.1.2 BYTE Operands

A BYTE is an unsigned, 8-bit variable that can take on values from 0 through885. (&rith-

metic and relational operators can be applied to BYTE operands, but the result must be interpret-
ed in modulo 256 arithmetic. Logical operations on BYTEs are applied bitwise. Bits within
BYTEs are labeled from 0 to 7; bit O is the least-significant bit. There are no alignment restric-
tions for BYTES, so they may be placetyahere in theaddress space.

3.1.3 SHORT-INTEGER Operands

A SHORT-INTEGER is an 8-hbit, signed variable that can take on values from —12&hre2igh

+127 (+2-1). Arithmetic operations that generate results outside the range of a SHORT-INTE-
GER set the overflow flags in the PSW. The numeric result is the same as the result of the equiv-
alent operation on BYTE variables. There are no alignment restrictions on SHORT-INTEGERS,
so they may be placed anywhere in the address space.

3.1.4 WORD Operands

A WORD is an unsigned, 16-bit vable that can take on values from 0 through 65,535-(9.
Arithmetic and relational operators can be applied to WORD operands, but the result must be in-
terpreted in modulo 65536 arithmetic. Logioglerations on WORDs are applied bitwise. Bits
within WORDs are labeled from 0 to 15; bit O is the least-significant bit.

3-2

Int€|® PROGRAMMING CONSIDERATIONS

WORDs must be aligned at even byte boundaries in the address space. The least-significant byte
of the WORD is in the even byte address, and the most-significant byte is in the nextdddher (
address. The address of a WORD is that of its least-significant byte (the even byte address).
WORD operations to odd addresses are not guaranteed to operate in a consistent manner.

3.1.5 INTEGER Operands

An INTEGER is a 16-hit, signed variable that can take on values from —32, 768 tw®ugh
+32,767 (+25-1) . Arithmetic operations that generate results outside the range of an INTEGER
set the overflow flags in the processor status word (PSW). The numeric result is the same as the
result of the equivalent operation on WORD variables.

INTEGERSs must be aligned at even bgtmindaries in thaddress space. The least-significant

byte of the INTEGER is in the even byte address, and the most-significant byte is in the next high-
er (odd) addres. The address of an INTEGER is that of its least-significant byte (the even byte
address). INTEGER operations to odd addresses are not guaranteed to operate in a consister
manner.

3.1.6 DOUBLE-WORD Operands

A DOUBLE-WORD is an unsigned, 32-bit variable that can take on values fromoQOgthr
4,294,967,295 1) . The architecture directly supports DOUBLE-WORD operands only as
the operand in shift operations, as the dividend in 32-by-16 divide operations, and as the product
of 16-by-16 multiply operatins. For these operations, a DOUBLE-WORD variable must reside

in the lower register file and must be aligned at an address that is evenly divisible by four. The
address of a DOUBLE-WORD is that of its least-significant byte (the even byte address). The
least-significant word of the DOUBLE-WORD is always in the lower agkjreven when the

data is in the stack. This means that the most-significant word must be pushed into the stack first.

DOUBLE-WORD operations that are not direcilypported can be easily implemented with two
WORD operations. For example, the following sequences of 16-bit operatidosipa 32-bit
addition and a 32-bit subtraction, respectively.

ADD REG1,REG3 ; (2-operand addition)
ADDC REG2,REG4

SUB REG1,REG3 ; (2-operand subtraction)
SUBC REG2,REG4

3-3

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

3.1.7 LONG-INTEGER Operands

A LONG-INTEGER is a 32-bit, signed variable that can take on values from —2,147,483,648
(= 230 through +2,147,483,647 (32-1) . The architecture directupports LONG-INTEGER
operands only as the operand in shift operations, as the divid82ebiy+16 divideoperations,

and as the product of 16-by-b8ultiply operations. For these operations, a LONG-INTEGER
variable must reside in the lower register file and must be aligned at an address that is evenly di-
visible by four. The address of a LONG-INTEGER is that of itstleamificant byte (the even

byte address).

LONG-INTEGER operations that are not direclypported can be easiipplemented with two
INTEGER operations. See the example in “DOUBLE-WORD Operands” on page 3-3.

3.1.8 Converting Operands

The instruction set supports conversions between the operand types. The LDBZE (load byte, zero
extended) instruction converts a BYTE to a WORD. CLR (clear) converts a WORD to a
DOUBLE-WORD by clearing (writing zeros to) the upper WORD of the DOUBLE-WORD.
LDBSE (load byte, sign extended) converts a SHORT-INTEGER into an INTEGER. EXT (sign
extend) converts an INTEGER to a LONG-INTEGER.

3.1.9 Conditional Jumps

The instructions for addition, subtraction, and comparison do not distinguish between unsigned

WORDs and signed INTEGERs. However, the conditional jimspructions allowyou to treat

the results of these operations as signed or unsigned quantities. For example, the CMPB (compare
byte) instruction is used to compare both signed and unsigned 8-bit quantities. Following a com-

pare operation, you can use the JH (jump if higher) instruction for unsigned operands or the JGT

(jump if greater than) instruction for signed operands.

3.1.10 Floating Point Operations

The hardware does not directlypport operans on REAL (floating point) variables. Those op-
erations are supported by floating point libraries from third-party tool vendors. (Seevélkp-

ment ToolsHandbook) The performance of these operations is significantly improved by the
NORML instruction and by the sticky bit (ST) flag in the processor status word (PSW). The
NORML instruction normalizes a 32-bit variable; the sticky bit (ST) flag can be used in conjunc-
tion with the carry (C) flag to achieve finer resolution in rounding.

Int€|® PROGRAMMING CONSIDERATIONS

3.2 ADDRESSING MODES

The instruction set uses four basic addressing modes:
e direct
* immediate
¢ indirect (with or without autoincrement)

* indexed (short-, long-, or zero-indexed)

The stack pointer can be used with indirect addressing to access the top of the stack, and it car
also be used with short-indexed addressing to access data within the stack. The zero register cal
be used with long-indexed addressing to access any memory location.

An instruction can contain only one immediate, indirect, or indexed reference; any remaining op-
erands must be direct references.

This section describes the addressing modes as they are handled by the hardware. An understanc
ing of these details will help programmers to take full advantage of the architecture. The assembly
language hides some of the details of how these addressing modes work. “Assembly Language
Addressing Mode Selections” on page 3-9 desctiloes the assembly language handles direct

and indexed addressing modes.

The examples in this section assume that temporary registers are defihedasn this segment
of assembly code and described in Table 3-3.

Oseg at 1ch
AX DSW 1
BX DSW 1
CX DSW 1
DX DSW 1

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 3-3. Definition of Temporary Registers

Temporary Register Description
AX word-aligned 16-bit register; AH is the high byte of AX and AL is the low byte
BX word-aligned 16-bit register; BH is the high byte of BX and BL is the low byte
CX word-aligned 16-bit register; CH is the high byte of CX and CL is the low byte
DX word-aligned 16-bit register; DH is the high byte of DX and DL is the low byte

3.2.1 Direct Addressing

Direct addressing directly accesses a location in the 256-byte lower register file, withwwt i

ing the memory controller. Windowing allowsu to remap other sections of memory into the
lower register file for register-direct access (see Chapter 4, “Memory Partitions,” for details). You
specify the registers as operands within the instruction. The register addressesnfosst to

the alignment rules for the operand type. Depending on the instruction, up to three registers can
take part in a calculation. The following instructions use register-direct addressing:

ADD AX,BX,CX ;AX <« BX+CX
ADDB AL,BL,CL ;AL - BL+CL
MUL AX,BX AX « AX*BX
INCB CL ; CL ~CL+1

3.2.2 Immediate Addressing

Immediate addressing mode accepts one immediate value as an operand in the instruction. You
specify an immediate value by preceding it with a number symbol (#). An instruction can contain
only one immediate value; the remaining operands must be register-direct references. The follow-
ing instructions use immediate addressing:

ADD AX,#340 ;AX < AX +340
PUSH #1234H ;SP - SP-2

; MEM_WORD(SP) ~ 1234H
DIVB AX#10 AL~ AX/10

yAH — AXMOD 10

3.2.3 Indirect Addressing

The indirect addressing mode accesses an operand by obtaining its address from a WORD regis
ter in the lower register file. You specify the register containing the indirect address by enclosing
it in square brackets ([]). The indirect address can refer to any location within the address space,
including the register file. The register that contains the indirect address must be word-aligned,
and the indirect address must conform to the rules for the operand type. An instruction can contain
only one indirect reference; any remaining operands must be register-direct references. The fol-
lowing instructions use indirect addressing:

LD AX,|[BX] T AX — MEM_WORD(BX)

3-6 [|

Int€|® PROGRAMMING CONSIDERATIONS

ADDB AL,BL,[CX] ;AL — BL +MEM_BYTE(CX)
POP [AX] ; MEM_WORD(AX) — MEM_WORD(SP)
i SP -~ SP+2
3.23.1 Indirect Addressing with Autoincrement

You can choose to automatically increment the indirect address after the current access. You spec:
ify autoincrementing by adding a plus sign (+) to the end of the indirect reference. In this case,
the instruction automatically increments the indirect address (by one if the destination is an 8-bit
register or by two if it is a 16-bit register). When your code is assembled, the assembler automat-
ically sets the least-significant bit of the indirect address register. The following instructions use
indirect addressing with autoincrement:

LD AX,[BX]+ iAX <« MEM_WORD(BX)
BX ~ BX+2

ADDB AL,BL,[CX]+ ;AL — BL + MEM_BYTE(CX)
;CX <~ CX+1

PUSH [AX]+ iSP ~SP-2
: MEM_WORD(SP) — MEM_WORD(AX)
AX <« AX+2

3.2.3.2 Indirect Addressing with the Stack Pointer

You can also use indirect addressing to access the top of the stack by using the stack pointer a:
the WORD register in an indirect reference. The following instruction uses indirect addressing
with the stack pointer:

PUSH [SP] ; duplicate top of stack
;SP ~ SP+2

3.2.4 Indexed Addressing

Indexed addressing calculates an address by adding an offset to a base address. There are thr
variations of indexed addressirgfiort-indexed, long-indexed, and zero-ixelé. Both short- and
long-indexed addressing are used to access a specific element within a st8latarindexed
addressing can access uR&b byte locations, long-indexed addressing can access up to 65,535
byte locations, and zero-indexed addressing can access a single location. An instruction can con-
tain only one indexed reference; any remaining operands must be register-direct references.

3.24.1 Short-indexed Addressing
In a short-indexed instruction, you specify the offset as an 8-bit constant and the base address a:
an indirect address register (a WORD). The following instructions use short-indexed addressing.

LD AX,12[BX] {AX < MEM_WORD(BX+12)
MULB AX,BL,3[CX] :AX < BL XMEM_BYTE(CX+3)

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

The instruction LD AX,12[BX] loads AX with the contents of the memory location that resides

at address BX+12. That is, the instruction adds the constant 12 (the offset) to the contents of BX
(the base address), then loads AX with the contents of the resulting address. For example, if BX
contains 1000H, then AX is loaded with the contents of location 1012H. Short-indexed address-
ing is typically used to access elements in a structure, where BX contains the base address of the
structure and the constant (12 in this example) is the offset of a specific element in a structure.

You can also use the stack pointer in a short-indexed instruction to access a particular location
within the stack, as shvn in the following instruction.

LD AX,2[SP]

3.24.2 Long-indexed Addressing

In a long-indexed instruction, you specify the base address as a 16-bit variable afgkthesof
an indirect address register (a WORD). The following instructions use long-indexed addressing.

LD AX,TABLE[BX] :AX — MEM_WORD(TABLE+BX)

AND AX,BX,TABLE[CX] :AX — BX AND MEM_WORD(TABLE+CX)
ST AX,TABLE[BX] : MEM_WORD(TABLE+BX) « AX

ADDB AL,BL,LOOKUP[CX] ‘AL < BL + MEM_BYTE(LOOKUP+CX)

The instruction LD AX, TABLE[BX] loads AX with the contents of the memory location that re-
sides at address TABLE+BX. That is, the instruction adds the contents of BX (the offset) to the
constant TABLE (the base address), then loads AX with the contents of the resulting address. For
example, if TABLE equals 4000H and BX contains 12H, then AX is loaded with the contents of
location 4012H. Long-indexed addressing is typically used to access elements in a table, where
TABLE is a constant that is the base address of the structure and BX is the scaled sftdet (
ement size, in bytes) into the structure.

3.24.3 Zero-indexed Addressing

In a zero-indexed instruction, you specify the address as a 16-bit variable; the offset is zero, and
you can express it in one of three ways: [0], [ZERO_REG], or nothing. Each of the following load
instructions loads AX with the contents of the variatld SVAR.

LD AX,THISVAR[(]

LD AX,THISVAR[ZERO_REG]
LD AX,THISVAR

The following instructions also use zero-indexed addressing:

ADD AX,1234[ZERO_REG] {AX < AX + MEM_WORD(1234)
POP 5678[ZERO_REG] : MEM_WORD(5678) — MEM_WORD(SP)
'SP _SP+2

Int€|® PROGRAMMING CONSIDERATIONS

3.3 ASSEMBLY LANGUAGE ADDRESSING MODE SELECTIONS

The assembly language simplifies the choice of addressing modes. Use these features whereve
possible.

3.3.1 Direct Addressing

The assembly language chooses between direct and zero-indexed addressing depending on th
memory location of the operand. Simply refer to the operand by its symbolic name. If the operand

is in the lower register file, the assembly language chooses a direct reference. If the operand is
elsewhere in memory, it chooses a zero-indexed reference.

3.3.2 Indexed Addressing

The assembly language chooses between short-indexed and long-indexed addressing dependin
on the value of the index expression. If the value can be expressed in eight bits, the assembly lan-
guage chooses a short-indexed reference. If the value is greater than eight bits, it chooses a long
indexed reference.

3.4 SOFTWARE STANDARDS AND CONVENTIONS

For a software project of any size, it is a good idea to develop the program in modules and to es-
tablish standards that control communication between the modules. These standards vary with the
needs of the final application. However, all standards must include some mechanism for passing
parameters to procedures and returning results from procedures. We recommend that you use the
conventions adopted by the C programming language for procedure linkage. These standards are
usable for both the assembly language and C programming environments, and they offer compat-
ibility between these environments.

3.4.1 Using Registers

The 256-byte lower register file contains the CPU special-function registers and the stack pointer.
The remainder of the lower register file and all of the upper register file is available for your use.
Peripheral special-function registers (SFRs) and memory-mapped SFRs reside in higher memory.
The peripheral SFRs can béndowedinto the lower register file for direct access. Memory-
mapped SFRs cannot be windowed; you must use indirect or indexed addressing to access them
All SFRs can be operated on as BYTEs or WORDs, unless otherwise specified. See “Special-
function Registers (SFRs)” on page 4-5 and “Register File” on page 4-10 for more information.

3-9

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

To use these registers effectivglgu must have some overatrategy for allocating them. The

C programming language adopts a simple, gffedtrategy. It allocates the eight bytes begig

at address 1CH as temporary storage and treats the remaining area in the register file as a segme
of memory that is allocated as required.

NOTE
Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts. External events can change the contents of
SFRs, and some SFRs are cleared when read. For this reason, consider the
implications of using an SFR as an operand in a read-modify-write instruction
(e.g., XORB).

3.4.2 Addressing 32-bit Operands

The 32-bit operands (DOUBLE-WORDs and LONG-INTEGERS) are formed by two adjacent
16-bit words in memonyfhe least-significanvord of a DOUBLE-WORD is always ithe lower
address, even when the data is in the stack (which means that the most-significant word must be
pushed into the stack first). The address of a 32-bit operand is that of its least-significant byte.

The hardwaresupports the 32-bit data types as operandsiit operations, as dividends of 32-

by-16 divide operations, and as products ®b¥-16 multiply operations. For these operations,

the 32-hit operand must reside in the lower register file and must be aligned at an address that is
evenly divisible by four.

3.4.3 Linking Subroutines

Parameters are passed to subroutines via the stack. Parameters are pushed into the stack from tl
rightmost parameter to the left. The 8-bit parameters are pushed into the stack high-thwler

byte undefined. Th82-hit paramedrs are pushed onto the stack as two 16-bit values; the most-
significant half of the parameter is pushed into the stack first. As an example, consider the fol-
lowing procedure:

void example_procedure (char param1, long param2, int param3);

When this procedure is enteredah-time, the stack wikkontain the parameters in the following
order:

param3

low word of param2

high word of param2

undefined;paraml

return address ~ Stack Pointer

3-10

Int€|® PROGRAMMING CONSIDERATIONS

If a procedure returns a value to the calling code (as opposed to modifying more global variables)
the result is returned in the temporary storage space (TMPREGOQO, in this example) starting at 1CH.
TMPREGO is viewed as either an 8-, 16-, or 32-bit variable, depending on the type of the proce-
dure.

The standard calling convention adopted by the C programming language has several key fea-
tures:

* Procedures can always assume that the eight bytes of register file memory starting at 1CH
can be used as temporary storage within the body of the procedure.

* Code that calls a procedure must assume that the procedure modifies the eight bytes of
register file memory starting at 1CH.

* Code that calls a procedure must assume that the procedure modifies the processor statu:
word (PSW) condition flags because procedures do not save and restore the PSW.

¢ Function results from procedures are always returned in the variable TMPREGO.

The Cprogramning language allows the definition of interrupt procedures, which are executed
when a predefined interrupt request occurs. Interrupt procedures do not conform to the rules of
normal procedures. Parameters cannot be passed to these procedures and they cannot return r
sults. Since interrupt procedures can execute essentially at any time, they must save and restor:
both the PSW and TMPREGO.

3.5 SOFTWARE PROTECTION FEATURES AND GUIDELINES

The device has several features to assist in recovering from hardware and software errors. The
unimplemented opcode interrupt prdes protection from executing unimplemented opcodes.
The hardware reset instruction (RST) can cause a reset if the program counter goesundof

The RST instruction opcode is OFFH, so the processor will reset itself if it tries to fetch an instruc-
tion from unprogrammed locations in nonvolatile memory or from bus lines that have been pulled
high. The watchdog timer (WDT) can also reset the device in the event of a hardware or software
error.

We recommend that you fill unused areas of code with NOPs and periodic jumps to an error rou-
tine or RST instruction. This is particularly important in the cauteounding lookup tables, since
accidentally executing from ékup tables will cause undesired results. Wherever space allows,
surround each table with seven NOPs (because the longestidstiigetion has seven bytes) and

a RST or a jump to an error routine. Since RST is a one-byte instruction, the NOPs are unneces-
sary if RSTs are used instead of jumps to an error routine. This will help to ensure a speedy re-
covery from a software error.

3-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

When using the watchdog timer (WDT) for software protection, we recommend that you reset the
WDT from only one place in code, reducing the chance of an undesired WDT reset. The section
of code that resets the WDT should monitor the other code sections for proper operation. This can
be done by checking variables to make sure they are within reasonable values. Simply using a
software timer to reset the WDT every 10 milliseconds will provide protection only for cata-
strophic failures.

3-12

intgl.

A

Memory Partitions

CHAPTER 4
MEMORY PARTITIONS

This chapter describes the address space, its major partitionswardbavingtechnique for ac-
cessing the upper register file and peripheral SFRs with register-direct instructions.

4.1 MEMORY PARTITIONS

Table 4-1 is a memory map of the 8XC196CA, 8XCk0ahd 8XC196Ik devices. The remain-
der of this section describes the partitions.

4.1.1 External Devices (Memory or I/O)

Several partitions are assigned to external devices (see Table 4-1). Data can be stored in any pat
of this memory. Chapter 15, “Interfacing with External Memorygatibes the external mery
interface and shows examples of external memory configurations. These partitions can also be
used to interface with external peripherals connected to the address/data bus.

4.1.2 Program and Special-purpose Memory

Internal nonvolatile memory is an optional component of the 8XC196CA, 8X& 1964
8XC196Kx devices. Various devices are available with masked ROM, EPROM, QROM, or
OTPROM. Please consult the datasheets irtitemotive Productesr Embedded Microcontrol-

lers databook for details.

If present, the nonvolatile memory occupies the special-purpose memopyogrdm memory
partitions (locations 2000H and above; see Table 4-1 on page 4-2). The EA# signal controls ac-
cess to these memory partitions. Accesses to these partitions are directed to internal memory if
EA# is held high and to external mery if EA# is held low. Fodevices without internal non-
volatile memory, the EA# signal must be tied low. EA# is latched at reset.

4-1

8XC196Kx, Jx, CA USER'S MANUAL

Table 4-1. Memory Map

intel.

Device (Note 1) and Hex Address Range

Description Addressing
JQ, JR, JT, Modes
CA KQ KR KS KT Vv
FFFF | FFFF | FFFF | FFFF | FFFF | FFFF | External device (memory or 1/O) Indirect or
A000 | 6000 | 6000 | 8000 | AOOO | EOOO | connected to address/data bus indexed
- 5FFF . . - - These locations are not available in |
5000 the 8XC196JQ and 8XC196KQ.
OFFF | 4FFF | SFFF | 7FFF | 9FFF | DFFF Eg‘r’]%ﬁ?ugi?“gge?g;mznor . Indirect or
2080 | 2080 | 2080 | 2080 | 2080 | 2080 v indexed
see Note 2
207F | 207F | 207F | 207F | 207F | 207F | Special-purpose memory (internal Indirect or
2000 | 2000 | 2000 | 2000 | 2000 | 2000 | nonvolatile or external memory) indexed
1FFF | 1FFF | 1FFF | 1FFF | 1FFF | 1FFF Memorv-manped SERs Indirect or
1FEO | 1FEO | 1FEO | 1FEO | 1FEO | 1FEO ry-mapp indexed
1FDF | 1FDF | 1FDF | 1FDF | 1FDF | 1FDF | o oo oo L”rdv'\:;cdt(')wggxed'
1FO0 | 1F00 | 1FO0 | 1F00 | 1FOO | 1F0O p direct
Indirect, indexed,
]]'Egg — — — — — CAN SFRs or windowed
direct
1DFF | 1EFF | 1EFF | 1EFF | 1EFF | 1EFF Eg‘;f}rgg'e‘éet‘g? dijees';‘/‘(’jr;’t:L'l’J (s),) Indirect or
1C00 | 1C00 | 1C00 | 1C00 | 1C00 | 1EO00 (future SFR expansion: see Note 3) indexed
Indirect, indexed,
— — — — — }_[égg Register RAM or windowed
direct
1BFF | 1BFF | 1BFF | 1BFF | 1BFF | 1BFF | External device (memory or I/O) Indirect or
0500 | 0500 | 0500 | 0500 | 0600 | 0600 | connected to address/data bus indexed
o 04FF - - - - These locations are not available in |
0480 the 8XC196JQ and 8XC196KQ.
04FF | 047F | 04FF | O4FF | O5FF | O5FF Internal code or data RAM Indirect or
0400 | 0400 | 0400 | 0400 | 0400 | 0400 indexed
. 03FF | O3FF . . . External device (memory or 1/O) Indirect or
0200 | 0200 connected to address/data bus indexed
. 01FF - - - - These locations are not available in |
0180 the 8XC196JQ and 8XC196KQ.
03FF | 017F | O1FF | 03FF | O3FF | 03FF | Upper register file (general-purpose g‘rdv'ﬁﬁémgxed'
0100 | 0100 | 0100 | 0100 | 0100 | 0100 | register RAM) direct
OOFF | OOFF | OOFF | OOFF | OOFF | OOFF | Lower register file (register RAM, Direct, indirect,
0000 | 0000 | 0000 | 0000 | 0000 | 0000 | stack pointer, and CPU SFRs) or indexed
NOTES:

1. The 8XC196JT, JV, and KS are offered in automotive temperature ranges only. The 8XC196CA, JQ,
JR, KQ, KR, and KT are offered in both automotive and commercial temperature ranges.

2. After a reset, the device fetches its first instruction from 2080H.

3. The content or function of these locations may change in future device revisions, in which case a pro-
gram that relies on a location in this range might not function properly.

4-2

Inu® MEMORY PARTITIONS

4.1.3 Program Memory

Program memory occupies a memory partition beginning at 2080H. (See Table 4-1 for the ending
address for each device.) This entire partition is available for storing executable code and data.
The EA# signal controls accesspimgram memory. Accesses to this address range are directed
to internal memory if EA# is held high and to externahmoey if EA# is held low. For devices
without internal nonvolatile memory, the EA#gsal must be tied low. EA# is latched at reset.

NOTE

We recommend that you write FFH (the opcode for the RST instruction) to
unused program memory locations. This causes a device reset if a program
unintentionally begins to execute in unused memory.

4.1.4 Special-purpose Memory

Special-purpose memory resides in locatiaf®0-207FH (Table 4-2). ktontains several re-
served memory locations, the chip configuration bytes (CCBs), and vectors for both peripheral
transaction server (PTS) and standard interruptsegsms to this address range are directed to
internal memory if EA# is held high and to external memory if EA# is held low. For devices with-
out internal nonvolatile memory, the EAigsal must be tied low. EA# is latched at reset.

Table 4-2. Special-purpose Memory Addresses

Hex Address Description
207F .
205E Reserved (each byte must contain FFH)
205D
2040 PTS vectors
203F .
2030 Upper interrupt vectors
202F .
2020 Security key
201F Reserved (must contain 20H)
201E Reserved (must contain FFH)
201D Reserved (must contain 20H)
201C Reserved (must contain FFH)
201B Reserved (must contain 20H)
201A CCB1
2019 Reserved (must contain 20H)
2018 CCBO
2017 OFD flag (see page 13-12 and page 16-8)
2016
2015 Reserved (each byte must contain FFH)
2014
2013 .
2000 Lower interrupt vectors

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

4.1.4.1 Reserved Memory Locations

Several memory locations are reserved for testing or for use in future products. Do not read or
write these locations except to initialize them. The function or contents of these locations may
change in future revisions; software that uses reserved locations may not fpnaperly. Al-

ways initialize reserved locations to the values listed in Table 4-2 on page 4-3.

4.1.4.2 Interrupt and PTS Vectors

The upper and lower interrupt vectors contain the addresses of the interrupt service routines. The
peripheral transaction server (PTS) vectors contain the addresses of the PTS control blocks. See
Chapter 5, “Standard and PTS Interrupts,” for more information on interrupt and PTS vectors.

4.1.4.3 Security Key

The security key prevents unauthorized programming accetbe tmnvolatile memory. See
Chapter 16, “Programimg the Nonvolatile Memory,” for details.

4.1.4.4 Chip Configuration Bytes (CCBSs)

The chip configuration bytes (CCBs) specify the operating environment. They specify the bus
width, bus-control mode, and wait states. They also control powerdown mode, the watchdog tim-
er, and nonvolatile memory protection.

The CCBs are the first bytes fetched from memory when the device leaves the reset state. The
post-reset sequence loads the CCBs into the chip configuration registers (CCRs). Once they are
loaded, the CCRs cannot be changed until the next device reset. Typical)\;Bseare pro-
grammed once when the user program is compiled and are not redefined during normal operation.
“Chip Configuration Registers and Chip Configuration Bytes” on page 15-4 describes the CCBs
and CCRs.

For devices with user-programmable nonvolatile memory, the CCBs are loaded for normal oper-
ation, but the PCCBs are loaded into @@Rs if thedevice is entering programming modes. See
Chapter 16, “Programimg the Nonvolatile Memory,” for details.

Int€|® MEMORY PARTITIONS

4.1.5 Special-function Registers (SFRs)

These devices have both memory-mapped SFRs and peripheral SFRs. The memory-mappec
SFRs must be accessed using indirect or indexed addressing modes, agahtiutye win-

dowed. The peripheral SFRs are physically located in the on-chip peripherals, and they can be
windowed (see “Windowing” on page 4-13). Do not use reserved SFRs; write zeros to them or
leave them in their default state. When read, reserved bits and reserved SFRaréefined

values.

NOTE

Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts. External events can change the contents of
SFRs, and some SFRs are cleared when read. For this reason, consider the
implications of using an SFR as an operand in a read-modify-write instruction
(e.g., XORB).

4151 Memory-mapped SFRs

Locations 1FEO—1FFFH contain memory-mapped SFRs (see Table 4-3). Locations in this range
that are omitted from the table are reserved. The memory-mapped SFRs must be accessed witl
indirect or indexed addressing modes, and they cannot be wéaldtiwou read a location in this

range through a window, the SERpearsto contain FFH (all ones). If you write a location in

this range through a window, the write operationtagffecton the SFR.

The memory-mapped SFRs are accesisemligh the memory controller, gostructions that op-
erate on these SFRs execute as they would from external memory with zero wait states.

Table 4-3. Memor y-mapped SFRs

Ports 3, 4, 5, Slave Port, UPROM SFRs
Hex Address |High (Odd) Byte lLow (Even) Byte

1FFE P4_PIN P3_PIN
1FFC P4_REG P3_REG
1FFA SLP_CON SLP_CMD
1FF8 Reserved SLP_STAT
1FF6 P5_PIN USFR
1FF4 P5_REG P34 _DRV
1FF2 P5_DIR Reserved
1FFO P5_MODE Reserved

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

4.15.2 Peripheral SFRs

Locations 1FO0-1FDFH provide access to the peripheral SFRs (Table 4-4). Locations in this

range that are omitted from the table are reserved. The peripheral SFRs are 1/0O control registers;
they are physically located in the on-chip peripherals. These peripheral SFRs can be windowed
and they can be addressed either as words or bytes, except as noted in Table 4-4.

The peripheral SFRs are accessed directly, without using the memory controller, so instructions
that operate on these SFRs execute as they would if they were operating on the register file.

NOTE

Some peripheral SFRs are implemented differently in the 87C196CA,
8XC196%, and 8XC196Ik devices. The individual SFR descriptions
throughout his manual note the differences.

intel.

MEMORY PARTITIONS

Table 4-4. Peripheral SFRs

Ports 0, 1, 2, and 6 SFRs

Timer 1, Timer 2, and EPA SFRs

Address High (Odd) Byte Low (Even) Byte Address High (Odd) Byte Low (E ven) Byte
1FDEH | Reserved Reserved T1IF9EH | TIMER2 (H) TIMER2 (L)
1FDCH | Reserved Reserved 1F9CH | Reserved T2CONTROL
1FDAH | Reserved PO_PIN T1F9AH | TIMER1 (H) TIMERL1 (L)
1FD8H | Reserved Reserved 1F98H | Reserved T1CONTROL
1FD6H | P6_PIN P1_PIN 1F96H | Reserved Reserved
1FD4H | P6_REG P1_REG 1F94H | Reserved Reserved
1FD2H | P6_DIR P1_DIR 1F92H | Reserved Reserved
1FDOH | P6_MODE P1_MODE 1F90H | Reserved Reserved
1FCEH | P2_PIN Reserved EPA SFRs
1FCCH | P2_REG Reserved Address High (Odd) Byte Low (E ven) Byte
1FCAH | P2_DIR Reserved f1IF8EH | COMP1_TIME (H) | COMP1_TIME (L)
1FC8H | P2_MODE Reserved 1F8CH | Reserved COMP1_CON
1FC6H | Reserved Reserved f1F8AH | COMPO_TIME (H) | COMPO_TIME (L)
1FC4H | Reserved Reserved 1F88H | Reserved COMPO_CON
1FC2H | Reserved Reserved T1F86H | EPA9_TIME (H) EPA9_TIME (L)
1FCOH | Reserved Reserved 1F84H | Reserved EPA9_CON

SIO and SSIO SFRs T1F82H | EPA8_TIME (H) EPA8_TIME (L)
Address High (Odd) Byte Low (Even) Byte 1F80H | Reserved EPA8_CON
1FBEH | Reserved Reserved T1IF7EH | EPA7_TIME (H) EPA7_TIME (L)
1FBCH | SP_BAUD (H) SP_BAUD (L) 1F7CH | Reserved EPA7_CON
1FBAH | SP_CON SBUF_TX T1IF7AH | EPA6_TIME (H) EPA6_TIME (L)
1FB8H | SP_STATUS SBUF_RX 1F78H | Reserved EPA6_CON
1FB6H | Reserved Reserved T1F76H | EPA5_TIME (H) EPA5_TIME (L)
1FB4H | Reserved SSIO_BAUD 1F74H | Reserved EPA5_CON
1FB2H | SSIO1_CON SSIO1_BUF T1F72H | EPA4_TIME (H) EPA4_TIME (L)
1FBOH | SSIO0_CON SSIO0_BUF 1F70H | Reserved EPA4_CON

A/D SFRs T1IF6EH | EPA3_TIME (H) EPA3_TIME (L)

Address High (Odd) Byte Low (Even) Byte T1F6CH | EPA3_CON (H) EPA3_CON (L)
1FAEH | AD_TIME AD_TEST T1IF6AH | EPA2_TIME (H) EPA2_TIME (L)
1FACH | Reserved AD_COMMAND 1F68H | Reserved EPA2_CON
1FAAH | AD_RESULT (H) | AD_RESULT (L) T1F66H | EPAL_TIME (H) EPA1_TIME (L)

EPA Interrupt SFRs T1F64H | EPA1_CON (H) EPA1_CON (L)
Address High (Odd) Byte Low (Even) Byte T1F62H | EPAO_TIME (H) EPAO_TIME (L)
1FA8H | Reserved EPAIPV 1F60H | Reserved EPAO_CON
1FA6H | Reserved EPA_PEND1
1FA4H | Reserved EPA_MASK1
T1FA2H | EPA_PEND (H) EPA_PEND (L)
T1IFAOH | EPA_MASK (H) EPA_MASK (L)

T Must be addressed as a word.

4-7

8XC196Kx, Jx, CA USER'S MANUAL

Table 4-5. CAN Peripheral SFRs — 8XC196CA Only

intel.

Message 15 Message 11
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1EFEH | Reserved CAN_MSG15DATA7 1EBEH | Reserved CAN_MSG11DATA7
1EFCH | CAN_MSG15DATA6 | CAN_MSG15DATAS 1EBCH | CAN_MSG11DATA6 CAN_MSG11DATAS
1EFAH | CAN_MSG15DATA4 | CAN_MSG15DATA3 1EBAH | CAN_MSG11DATA4 CAN_MSG11DATA3
1EF8H | CAN_MSG15DATA2 | CAN_MSG15DATA1 1EB8H | CAN_MSG11DATA2 CAN_MSG11DATA1
1EF6H | CAN_MSG15DATAO0 | CAN_MSG15CFG 1EB6H | CAN_MSG11DATAO CAN_MSG11CFG
1EF4H | CAN_MSG15ID3 CAN_MSG15ID2 1EB4H | CAN_MSG11ID3 CAN_MSG11ID2
1EF2H | CAN_MSG15ID1 CAN_MSG15ID0 1EB2H | CAN_MSG11ID1 CAN_MSG111D0
1EFOH | CAN_MSG15CON1 CAN_MSG15CONO 1EBOH | CAN_MSG11CON1 CAN_MSG11CONO
Message 14 Message 10
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1EEEH | Reserved CAN_MSG14DATA7 1EAEH | Reserved CAN_MSG10DATA7
1EECH | CAN_MSG14DATA6 | CAN_MSG14DATA5 1EACH [CAN_MSG10DATA6 | CAN_MSG10DATAS
1EEAH | CAN_MSG14DATA4 | CAN_MSG14DATA3 1EAAH | CAN_MSG10DATA4 | CAN_MSGI10DATA3
1EE8H | CAN_MSG14DATA2 CAN_MSG14DATAL 1EA8H | CAN_MSG10DATA2 CAN_MSG10DATAL
1EE6H | CAN_MSG14DATAO0 | CAN_MSG14CFG 1EA6H | CAN_MSG10DATAQ CAN_MSG10CFG
1EE4H | CAN_MSG14ID3 CAN_MSG14ID2 1EA4H | CAN_MSG10ID3 CAN_MSG10ID2
1EE2H | CAN_MSG14ID1 CAN_MSG14ID0 1EA2H | CAN_MSG10ID1 CAN_MSG10ID0
1EEOH | CAN_MSG14CON1 CAN_MSG14CONO 1EAOH | CAN_MSG10CON1 CAN_MSG10CONO
Message 13 Message 9
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1EDEH | Reserved CAN_MSG13DATA7 1E9EH | Reserved CAN_MSG9DATA7
1EDCH | CAN_MSG13DATA6 | CAN_MSG13DATA5S 1E9CH | CAN_MSG9DATA6 CAN_MSG9DATAS
1EDAH | CAN_MSG13DATA4 | CAN_MSG13DATA3 1E9AH | CAN_MSG9DATA4 CAN_MSG9DATA3
1ED8H | CAN_MSG13DATA2 CAN_MSG13DATAL 1E98H | CAN_MSG9DATA2 CAN_MSG9DATAL
1ED6H | CAN_MSG13DATAO | CAN_MSG13CFG 1E96H | CAN_MSG9DATAO CAN_MSG9CFG
1ED4H | CAN_MSG13ID3 CAN_MSG13ID2 1E94H | CAN_MSG9ID3 CAN_MSG9ID2
1ED2H | CAN_MSG13ID1 CAN_MSG13ID0 1E92H | CAN_MSG9ID1 CAN_MSG9IDO
1EDOH | CAN_MSG13CON1 CAN_MSG13CONO 1E90H | CAN_MSG9CON1 CAN_MSG9CONO
Message 12 Message 8
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1ECEH | Reserved CAN_MSG12DATA7 1E8EH | Reserved CAN_MSGS8DATA7
1ECCH | CAN_MSG12DATA6 | CAN_MSG12DATA5S 1E8CH | CAN_MSGB8DATA6 CAN_MSGB8DATAS
1ECAH | CAN_MSG12DATA4 | CAN_MSG12DATA3 1E8AH | CAN_MSGB8DATA4 CAN_MSGB8DATA3
1EC8H | CAN_MSG12DATA2 CAN_MSG12DATAL 1E88H | CAN_MSG8DATA2 CAN_MSGB8DATAL
1EC6H | CAN_MSG12DATAO | CAN_MSG12CFG 1E86H | CAN_MSG8DATAO CAN_MSG8CFG
1EC4H | CAN_MSG12ID3 CAN_MSG12ID2 1E84H | CAN_MSG8ID3 CAN_MSG8ID2
1EC2H | CAN_MSG12ID1 CAN_MSG12ID0 1E82H | CAN_MSG8ID1 CAN_MSGB8IDO
1ECOH | CAN_MSG12CON1 CAN_MSG12CONO 1E80H | CAN_MSG8CON1 CAN_MSG8CONO

4-8

intel.

MEM

ORY PARTITIONS

Table 4-5. CAN Peripheral SFRs — 8XC196CA Only (Continued)

Message 7 Message 3 and Bit Timing O
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1E7EH | Reserved CAN_MSG7DATA7 1E3EH | CAN_BTIMEO? CAN_MSG3DATA7
1E7CH | CAN_MSG7DATA6 CAN_MSG7DATAS 1E3CH | CAN_MSG3DATA6 CAN_MSG3DATAS
1E7AH | CAN_MSG7DATA4 CAN_MSG7DATA3 1E3AH | CAN_MSG3DATA4 CAN_MSG3DATA3
1E78H | CAN_MSG7DATA2 CAN_MSG7DATAL 1E38H | CAN_MSG3DATA2 CAN_MSG3DATA1
1E76H | CAN_MSG7DATAO CAN_MSG7CFG 1E36H | CAN_MSG3DATAO CAN_MSG3CFG
1E74H | CAN_MSG7ID3 CAN_MSG7ID2 1E34H | CAN_MSG3ID3 CAN_MSG3ID2
1E72H | CAN_MSG7ID1 CAN_MSG7ID0 1E32H | CAN_MSG3ID1 CAN_MSG3ID0
1E70H | CAN_MSG7CON1 CAN_MSG7CONO 1E30H | CAN_MSG3CON1 CAN_MSG3CONO
Message 6 Message 2
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1E6EH | Reserved CAN_MSG6DATA7 1E2EH | Reserved CAN_MSG2DATA7
1E6CH | CAN_MSG6DATA6 CAN_MSG6DATAS 1E2CH | CAN_MSG2DATA6 CAN_MSG2DATAS
1E6AH | CAN_MSG6DATA4 CAN_MSG6DATA3 1E2AH | CAN_MSG2DATA4 CAN_MSG2DATA3
1E68H | CAN_MSG6DATA2 CAN_MSG6DATAL 1E28H | CAN_MSG2DATA2 CAN_MSG2DATA1
1E66H | CAN_MSG6DATAO CAN_MSG6CFG 1E26H | CAN_MSG2DATAO CAN_MSG2CFG
1E64H | CAN_MSG6ID3 CAN_MSG6ID2 1E24H | CAN_MSG2ID3 CAN_MSG2ID2
1E62H | CAN_MSG6ID1 CAN_MSG6ID0 1E22H | CAN_MSG2ID1 CAN_MSG2ID0
1E60H | CAN_MSG6CON1 CAN_MSG6CONO 1E20H | CAN_MSG2CON1 CAN_MSG2CONO
Message 5 and Interrupts Message 1
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1E5EH | CAN_INT CAN_MSG5DATA7 1E1EH | Reserved CAN_MSG1DATA7
1E5CH | CAN_MSG5DATA6 CAN_MSG5DATAS 1E1CH | CAN_MSG1DATA6 CAN_MSG1DATAS
1E5AH | CAN_MSG5DATA4 CAN_MSG5DATA3 1E1AH | CAN_MSG1DATA4 CAN_MSG1DATA3
1E58H | CAN_MSG5DATA2 CAN_MSG5DATAL 1E18H | CAN_MSG1DATA2 CAN_MSG1DATA1
1E56H | CAN_MSG5DATAO CAN_MSG5CFG 1E16H | CAN_MSG1DATAO CAN_MSG1CFG
1E54H | CAN_MSGS5ID3 CAN_MSG5ID2 1E14H | CAN_MSGL1ID3 CAN_MSG1ID2
1E52H | CAN_MSGS5ID1 CAN_MSG5ID0 1E12H | CAN_MSGL1ID1 CAN_MSG1IDO
1E50H | CAN_MSG5CON1 CAN_MSG5CONO 1E10H | CAN_MSG1CON1 CAN_MSG1CONO
Message 4 and Bit Timing 1 Mask, Control, and Status
Addr High (Odd) Byte Low (Even) Byte Addr High (Odd) Byte Low (Even) Byte
1E4EH | CAN_BTIME1t CAN_MSGADATA7 1EOEH | CAN_MSK15 CAN_MSK15
1E4CH | CAN_MSGADATA6 CAN_MSGA4DATAS 1EOCH | CAN_MSK15 CAN_MSK15
1E4AH | CAN_MSG4DATA4 CAN_MSG4DATA3 1EOAH | CAN_EGMSK CAN_EGMSK
1E48H | CAN_MSGA4DATA2 CAN_MSGA4DATAL 1E08H | CAN_EGMSK CAN_EGMSK
1E46H | CAN_MSGA4DATAO CAN_MSGACFG 1E06H | CAN_SGMSK CAN_SGMSK
1E44H | CAN_MSG4ID3 CAN_MSG4ID2 1E04H | Reserved Reserved
1E42H | CAN_MSG4ID1 CAN_MSG4ID0 1EO02H | Reserved Reserved
1E40H | CAN_MSG4CON1 CAN_MSG4CONO 1EO0O0H | CAN_STAT CAN_CONT

T The CCE bit in the control register (CAN_CON) must be set to enable write access to the bit timing registers

(CAN_BTIMEO and CAN_BTIME1).

4-9

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

4.1.6 Internal RAM (Code RAM)

These devices have up to 512 bytes of internal RAM (see Table 4-1 on page 4-2 for details) be-
ginning at location 0400H. Although it is sometimes catlede RAMo distinguish ifrom reg-
isterRAM, this internal RAM can store either executable code or data. The code RAM is accessed
through the memory controller, so code executes as it would from external memory with zero wait
states. Data stored in this area must be accessed with indirect or indexed addressing, so data ac
cesses to this area take longer than data accesses to the register RAM. The code RAM cannot b
windowed.

4.1.7 Register File

The register file (Figure 4-1) is divided into an upper register file and a lower register file. The
upper register file consists of general-purpose register RAM. The lower register file contains gen-
eral-purpose register RAM along with the stack pointer (SP) and the CPU special-function regis-
ters (SFRs).

Table 4-1 on page 4-2 lists the register file memory addie The RALU accesses the lower reg-
ister file directly, without the use of the memory controller. It also accessaslawedocation
directly (see “Windowing” on page 4-13). The upper register file and the peripheral SFRs can be
windowed. The 8XC196JV has additional register RAM in locations 1C00-1DFFH. Like the
general-purpose gister RAM in the upper register file, this register RAM can be windowed and

is accessed directly, without the use of the memory controller. Registers in the lower register file
and registers being windowed can be accessed with register-direct addressing.

NOTE

The register file must not contain code. An attempt to execute an instruction
from a location in the register file causes themoey controller to fetch the
instruction from external memory.

4-10 [|

MEMORY PARTITIONS

Address
03FFH Upper
0100H Register File
O0FFH
Lower
0000H Register File

Address
, 03FFH
[(CA, JT, 3V,
N KS, KT)
1
N General-purpose
! Register RAM
1
1
1
1
1
1
1
N 01FFH (JR, KR)
1
1
1
N 017FH (JQ, KQ)
1
1
N 0100H
""" P 00FFH
IRs General-purpose
Lol Register RAM
______ .7 001AH
i 0019H
Stack Pointer 0018H
0017H
_____________ CPU SFRs 0000H
A3073-02

Figure 4-1. Register File Memory Map

Table 4-6. Register File Memory Addresses

Device and Hex Address Range

W CA, JT. IRKR | 19, KO Description Addressing Modes
KS, KT ' ’
]]_-ggg o . . Register RAM :jr;?;rcetct, indexed, or windowed
gigg gigg g}gg 8%5 Upper register file (register RAM) :jr;?;rgct, indexed, or windowed
885; 885§ 885; 885; Lower register file (register RAM) | Direct, indirect, or indexed
8812 8812 8812 8812 Lower register file (stack pointer) | Direct, indirect, or indexed
883(7) 8838 883(7) 883(7) Lower register file (CPU SFRs) Direct, indirect, or indexed

4-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

4.1.7.1 General-pur pose Register RAM

The lower register file contains genemlrposeregister RAM. The stack pointer locations can
also be used as general-purpose register RAM when stack operations are not being performed
The RALU can access this memory directly, using register-direct addressing.

The upper register file also contains general-purpose register RAM. The RALU normally uses
indirect or indexed addressing to access the RAM in the upper register file. Windowing enables
the RALU to use register-direct addressing to access thiwmnye(See Chapter 3, “Programming
ConsiderAtions,” for a discussion of addressing modes.) Windowing can provide for fast context
switching of interrupt tasks and faster programceti®n. (See “Windowing” on page 4-13.) PTS
control blocks and the stack are most efficient when located in the upper register file.

The 8XC196JV has additional register RAM in locations 1C00-1DFFH. Like the general-pur-
pose register RAM in the upper register file, this register RAM can be windowed and is accessed
directly, without the use of the memory controller.

4.1.7.2 Stack Pointer (SP)

Memory locations 0018H and 0019H contain the stack pointer (SP). The SP contains the address
of the stack. The SP must point tward (even) address that is two bytes greater than the desired
starting address. Before the CPU executes eostibe call or interrupt service routine, it decre-
ments the SP by two and copies (PUSHes) the address of the next instruction frong e pr
counter onto the stack. It then loads the address of the subroutine or interrupt servieentaut

the program counter. When it executes the return-from-subroutine {REmjction at the end of

the subroutine or interrupt service routine, the CPU loads (POPs) the conttsay of the

stack (that is, the return address) into the program counter and increments the SP by two.

Subroutines may be nestetihat is, eaclsubroutine may call other subroutines. The CPU
PUSHes the contents of the program counter onto the stack each time it executestaschll.

The stack grows downward as entries are added. The only limit to the nesting depth is the amount
of available memory. As the CPU returns from each nested subroutine, it POPs the address off
the top of the stack, and the next return address moves to the top of the stack.

Your programmust load a word-aligned (even) address into the stack pointer. Select an address
that is two bytes greater than the desired starting address because the CPU automatically decre
ments the stack pointer before it pushes the first byte of the return address onto the stack. Remem
ber that the stack grows downward, so allow sufficient room for the maximum number of stack
entries. The stack must be located in either the internal register file or external RAM. The stack
can be used most efficiently when it is located in the register file.

4-12

intel.

The following example initializes the top of the upper register file (8BXC196CA, JT, JV, KS, KT)
as the stackFor the 8XC196JR or KR, the inediate value would be #200H; for the 8X¥5JQ

or KQ, it would be #180H.)

LD SP, #400H

The following example shows how to allow the linker locator to determine where the stack fits

;Load stack pointer

in the memory map that you specify.

LD SP, #STACK

41.7.3

Locations 0000—-0017H in the lower register file are the CPU SFRs (Table 4-7). Appendix C de-

scribes the CPU SFRs.

CPU Special-function Registers (SFRs)

Table 4-7. CPU SFRs

Address | High (Odd) Byte Low (Even) Byte
0016H Reserved Reserved
0014H Reserved WSR
0012H | INT_MASK1 INT_PEND1
0010H Reserved Reserved
000EH Reserved Reserved
000CH | Reserved Reserved
000AH | Reserved WATCHDOG
0008H | INT_PEND INT_MASK
0006H | PTSSRV (H) PTSSRV (L)
0004H | PTSSEL (H) PTSSEL (L)
0002H | ONES_REG (H) | ONES_REG (L)
0000H | ZERO_REG (H) ZERO_REG (L)

NOTE

MEMORY PARTITIONS

Using any SFR as a base or index register for indirect or indexed operations
can cause unpredictablestdts. External events can change the contents of
SFRs, and some SFRs are cleared when read. For this reason, consider the
implications of using an SFR as an operand in a read-modify-write instruction
(e.g., XORB).

4.2 WINDOWING

Windowingexpands the amount of memory that is accessible with register-direct addressing.

Register-direct addressing can access the lower register file with short, fast-executing instruc-
tions. With windowing, register-direct addressing can also access the upper register file and pe-
ripheral SFRs.

[| 4-13

8XC196Kx, Jx, CA USER'S MANUAL InU®

Windowing maps a segment of highermmaay (the upper register file or peripheral SFRs) into

the lower register file. The window selection register (WSR) selects a 32-, 64-, or 128-byte seg-
ment of higher memory to be windowed into the top of the lower register file space. Figure 4-2

shows the upper register file of the 8XC196CA, JT, JV, KS, and KT devices. Please refer to Table
4-1 on page 4-2 for the upper register file addresses for other devices.

The 8XC196JV has additional register RAM in locations 1C00-1DFFH. Like the general-pur-
pose register RAM in the upper register file, this register RAM can be windowed and is accessed
directly, without the use of the memory controller.

128-byte Window 03FFH
(WSR = 17H) 0380H
Window in 00FFH
Lower Register File 0080H

A3060-01

Figure 4-2. Windowing

NOTE

Memory-mapped SFRuiust be accessed using indirect or indexed addressing
modes; they cannot be windowed. Reading a memory-mapped SFR through a
window returns FFH (all ones). Writing to a memory-mapped SFR through a
window has no effect.

4.2.1 Selecting a Window

The window selection gaster (Figure 4-3) has two functions. The HLDEN bit (WSR.7) enables
and disables the bus-hold proto¢st¢e Chapter 15, “Interfacing with External iery”); it is
unrelated to windowing. The remaining bits select a window to be mapped into the top of the low-
er register file.

4-14

Inu® MEMORY PARTITIONS

Table 4-8 on page 4-16 provides a quick reference of WSR values for windowing the peripheral
SFRs. Table 4-9 on page 4-16 lists the WSR values for windowing the upper register file. Table
4-9 on page 4-16 lists the WSR values for windowing the additional register RAM of the
8XC196JV.

WSR Address: 14H
Reset State: O0H

The window selection register (WSR) has two functions. One bit enables and disables the bus-hold
protocol. The remaining bits select windows. Windows map sections of RAM into the upper section of
the lower register file, in 32-, 64-, or 128-byte increments. PUSHA saves this register on the stack and
POPA restores it.

7 0
CA, Jx ‘ — ‘ w6 ‘ w5 ‘ wa ‘ ‘ w3 ‘ w2 ‘ w1 ‘ W0 ‘
7 0
Kx ‘ HLDEN ‘ w6 ‘ w5 ‘ wa H w3 ‘ w2 ‘ w1 ‘ W0 ‘
Nuii:)er Mne?ritonic Function
7t HLDEN Hold Enable

This bit enables and disables the bus-hold protocol (see Chapter 15,
“Interfacing with External Memory”). It has no effect on windowing.

1 = bus-hold protocol enabled
0 = bus-hold protocol disabled

6:0 W6:0 Window Selection
These bits specify the window size and window number:
6 5 4 210

1 x x X X
01 x X X
001 x x x

32-byte window; W5:0 = window number
64-byte window; W4:0 = window number
128-byte window; W3:0 = window number

X X W

x X X

T On the 8XC196CA, Jx devices this bit is reserved; always write as zero.

Figure 4-3. Window Selection Register (WSR)

4-15

8XC196Kx, Jx, CA USER'S MANUAL

Table 4-8. Selecting a Window of Peripheral SFRs

intel.

WSR Value for WSR Value for WSR Value for
Peripheral 32-byte Window | 64-byte Window | 128-byte Window
(OOEO-00FFH) (00CO-00FFH) (0080-00FFH)
Ports 0, 1, 2, 6 7EH 3FH
A/D converter, EPA interrupts 7DH 3EH 1FH
EPA compare 0-1, capture/compare 8-9, timers 7CH
EPA capture/compare 0—7 7BH 3DH 1EH
CAN messages 14-15 (CA) 77H 38H
CAN messages 12-13 (CA) 76H 1DH
CAN messages 10-11 (CA) 75H 3AH
CAN messages 8-9 (CA) 74H
CAN messages 6—7 (CA) 73H 39H
CAN messages 4-5, bit timing 1, interrupts (CA) 72H 1CH
CAN messages 2-3, bit timing 0 (CA) 71H 38H
CAN message 1, control, status, mask (CA) 70H
Table 4-9. Selecting a Window of the Upper Register File
Register RAM WSR Value WSR Value WSR Value
Lgocations for 32-byte Window for 64-byte Window for 128-byte Window
(OOEO-O0FFH) (00CO-00FFH) (0080—-00FFH)
03E0—-03FFH 5FH
2FH
03C0-03DFH 5EH 17H
03A0-03BFH 5DH
2EH
0380-039FH 5CH
0360-037FH 5BH
2DH
0340-035FH 5AH
16H
0320-033FH 59H
2CH
0300-031FH 58H
02E0—-02FFH 57H
2BH
02C0-02DFH 56H
15H
02A0-02BFH 55H
2AH
0280-029FH 54H
0260-027FH 53H
29H
0240-025FH 52H
14H
0220-023FH 51H
28H
0200-021FH 50H
01E0-01FFH 4FH
27H
01C0-01DFH 4EH
13H
01A0-01BFH 4DH
26H
0180-019FH 4CH

4-16

Inu® MEMORY PARTITIONS

Table 4-9. Selecting a Window of the Upper Register File (Continued)

Register RAM WSR Value WSR Value WSR Value
Lgocations for 32-byte Window for 64-byte Window for 128-byte Window
(OOEO-O0FFH) (00CO-00FFH) (0080—-00FFH)
0160-017FH 4BH
25H
0140-015FH 4AH
12H
0120-013FH 49H
24H
0100-011FH 48H
Table 4-10. Selecting a Window of Upper Register RAM — 8XC196JV Only
Register RAM WSR Value WSR Value WSR Value
Lgocations for 32-byte Window for 64-byte Window for 128-byte Window
(OOEO-O0FFH) (00CO-00FFH) (0080—-00FFH)
O0DEO-ODFFH 6FH
37H
0DCO-0DDFH 6EH 1BH
0DAO-0DBFH 6DH 36H
0D80—-0D9FH 6CH
0D60-0D7FH 6BH
35H
0D40-0D5FH 6AH
1AH
0D20-0D3FH 69H
34H
0D00-0D1FH 68H
0CEO0-O0CFFH 67H
33H
0CCO-0CDFH 66H 19H
0CA0-0CBFH 65H
32H
0C80-0C9FH 64H
0C60-0C7FH 63H
31H
0C40-0C5FH 62H
18H
0C20-0C3FH 61H
30H
0C00-0C1FH 60H

4.2.2 Addressing a Location Through a Window

After you have selected the desired window, you need to know the windowed direct address of
the memory location (the address in the lower register file). Calculate the windowed direct ad-
dress as follows:

1. Subtract the base address of the area to be reméppedrable 4-11 on page 4-18) from
the address of the desired location. This gives you the offset of that particular location.

2. Add the offset to the base address of the window (frableT412 on page 4-20). The
result is the windowed direct address.

[| 4-17

8XC196Kx, Jx, CA USER'S MANUAL

Appendix C includes a table of the windowable SFRs with the WSR values and windowed direct
addresses for each window size. Examples beginning on page 4-20 explain how to determine the
WSR value and windowed direct address for any windowable location. An additional example

shows how to set up a window by using the linker locator.

Table 4-11. Windows

intel.

WSR Value

WSR Value

WSR Value for

AdB darzess for 32-byte Window for 64-byte Window]\-/\351_(?())/\5\?
(OOEO-O00FFH) (00CO-00FFH) (0080-00FFH)
Peripheral SFRs
1FEOH 7FH (Note)
1FCOH 7EH 3FH (Note)
1FAOH 7DH
1F80H 7CH 3EH 1FH (Note)
1F60H 7BH
1F40H 7AH 3DH
1F20H 79H
1FO0H 78H 3CH 1EH
CAN Peripheral SFRs (8XC196CA Only)
1EEQH 77H
1ECOH 76H 3BH
1EAQH 75H
1E80H 74H 3AH 1DH
1E60H 73H
1E40H 72H 39H
1E20H 71H
1EOQH 70H 38H 1CH
Register RAM (8XC196JV Only)
1DEOH 6FH
1DCOH 6EH 37H
1DAOH 6DH
1D80H 6CH 36H 1BH
1D60H 6BH
1D40H 6AH 35H
1D20H 69H
1DO0H 68H 34H 1AH
1CEOH 67H
1CCOH 66H 33H
1CAQH 65H
1C80H 64H 32H 19H

NOTE: Locations 1FEO-1FFFH cannot be windowed. Reading these locations
returns FFH; writing these locations through a window has no effect.

4-18

through a window

Inu® MEMORY PARTITIONS

Table 4-11. Windows (Continued)

Base WSR Value WSR Value Wiszg/_ ﬂ;‘t‘z for
Address for 32-byte Window for 64-byte Window Window
(OOEO-O0FFH) (00CO-00FFH) (0080-00FFH)

Register RAM (8XC196JV Only; Continued)

1C60H 63H

1C40H 62H 31H

1C20H 61H

1CO0H 60H 30H 18H
Upper Register File (8XC196CA, JT, JV, KS, KT Only)

03EOH 5FH

03COH 5EH 2FH

03A0H 5DH

0380H 5CH 2EH 17H

0360H 5BH

0340H 5AH 2DH

0320H 59H

0300H 58H 2CH 16H

02EOH 57H

02COH 56H 2BH

02A0H 55H

0280H 54H 2AH 15H

0260H 53H

0240H 52H 29H

0220H 51H

0200H 50H 28H 14H
Upper Register File (8XC196CA, JR, JT, JV, KR, KS, KT Only)

01EOH 4FH

01COH 4EH 27H

01A0H 4DH

0180H 4CH 26H 13H
Upper Register File (8XC196CA, JQ, JR, JT, JV, KQ, KR, KS, KT)

0160H 4BH

0140H 4AH 25H

0120H 49H

0100H 48H 24H 12H

NOTE: Locations 1FEO-1FFFH cannot be windowed. Reading these locations through a window
returns FFH; writing these locations through a window has no effect.

4-19

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 4-12. Windowed Base Addresses

Window Size WSR Windqwed Base Address_
(Base Address in Lower Register File)
32-byte O0EOH
64-byte 00COH
128-byte 0080H

Appendix C includes a table of the windowable SFRs with the WSR values and direct addresses
for each window size. The following examples explain how to determine the WSR value and di-
rect address for any windowable location. An additional example shows how to set up a window
by using the linker locator.

4221 32-byte Windowing Example

Assume that you i8h to access location 014BH (a location in the upper register file used for gen-
eral-purpose register RAM) withgister-direct addressingrough a 32-byte windowable 4-11

on page 4-18 shows that you need to write 4AH to the window selection register. It also shows
that the base address of the 32-byte memory area is 0140H. To determine the offset, subtract tha
base address from the address to be accessed (014BH — 0140H = 000BH). Atiethe thfe

base address of the window in the lower register file (OOEOH, from Table ZHdirect ad-

dress is OOEBH (000BH + O0EOH)

4.2.2.2 64-byte Windowing Example

Assume that you wish to access the COMP1_CON register (location 1F8CH) with register-direct
addressing through@#-byte window. Table 4-11 on page 4-18 shows that you need to write 3EH

to the window selection register. It also shows that the base address of the 64-byte memory area
is 1F80H. To determine the offset, subtract thet¢e address from the address to be accessed
(1F8CH — 1F80H = 0008). Add the offset to the base address of the window in the lower reg-
ister file (O0OCOH, from Table 4-12). The direct address is 00CCH (000CH + 0O0COH).

4.2.2.3 128-byte Windowing Example

Assume that you wish to access location 1F82H (the EPA8_TIME register) with register-direct
addressing through B28-byte window. Table 4-11 gmage 4-18 shows that you need to write

1FH to the window selection register. It also shows that the base address of the 128aytg me
area is 1F80H. To determine the offset, subtract that base address from the address to be accesst
(1F82H — 1F80H = 0002H). Add the offset® base address of the dwaw in the lower register

file (0O080H, from Table 4-12). Therdict address is 0082HJ02H + 0080H).

4-20 [|

Int€|® MEMORY PARTITIONS

4224 Unsupported Locations Windowing Example

Assume that you wish to access locatidgf-1H (the P5_MODE register, a memory-mapped
SFR) with register-direct addressing through a 128-byte window. This location is in the range of
addresses (1FEO-1FFFH) that cannot be windowed. Although you could set up the window by
writing 1FH to the WSR, reading this location through the window would return FFH (all ones)
and writing to it would not change the contents. However, you could access the peripheral SFRs
in the range 01 F80-1FDFH with their windowedirect addresses.

4.2.2.5 Using the Linker Locator to Set Up a Window

In this example, the linker locator is used to set up a window. The linker locator locates the win-
dow in the upper register file and determines the value to load in the WSR for access to that win-
dow. (Please consult the manual provided with the linker locator for details.)

FhkAKAIAK] FERRERRRRR Rk

modl module main ;Main module for linker
public functionl
extrn ?WSR :Must declare ?WSR as external

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1 ;Allocate variables in an
var2: dsw 1 ;overlayable segment
var3: dsw 1

cseg
functionl:
push wsr ;Prolog code for wsr
ldb wsr, #?WSR ;Prolog code for wsr

add varl, var2, var3 ;Use the variables as registers

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

it S 0T0 Yo Attt ittt

4-21

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

public function2
extrn ?WSR

wsr equ 14h:byte
sp equ 18h:word

oseg
varl: dsw 1
var2: dsw 1
var3: dsw 1

cseg
function2:
push wsr ;Prolog code for wsr
ldb wsr, #?WSR ;Prolog code for wsr

add varl, var2, var3

Idb wsr, [sp] ;Epilog code for wsr
add sp, #2 ;Epilog code for wsr
ret

end

The following is an example of a linker invocation to link and locatertbdules and to deter-
mine the proper windowing. (This example assumes an 8XC196CA, JT, JV, KS, or KT.)

RL196 MOD1.0BJ, MOD2.0BJ registers(100h-03ffh) windowsize(32)

The above linker controls tell the linker to use registers 0100-036#RMindowing and to use
a window size of 32 bytes. (These two controls enable windowing.)

The following is the map listing for the resultant output module (MOD1 by default):
SEGMENT MAP FOR mod1(MOD1):

TYPE BASE LENGTH ALIGNMENT MODULE NAME
RESERVED 0000H 001AH

STACK 001AH 0006H WORD
*E GAP *** 0020H OOEOH

OVRLY 0100H 0006H WORD MOD2

OVRLY 0106H 0006H WORD MOD1
*E GAP *** 010CH 1F74H

CODE 2080H 0011H BYTE MOD2

CODE 2091H 0011H BYTE MOD1
*E GAP *** 20A2H DF5EH

4-22

Int€|® MEMORY PARTITIONS

This listing shows the disassembled code:

2080H ;C814 | PUSH WSR

2082H ;B14814 | LDB WSR,#48H
2085H JA44E4E2EQ | ADD EOH,E2H,E4H
2089H ;B21814 | LDB WSR,[SP]
208CH ;65020018 | ADD SP,#02H
2090H ;FO | RET

2091H ;C814 | PUSH WSR

2093H ;B14814 | LDB WSR,#48H
2096H JA4EAESBEG | ADD E6H,E8H,EAH
209AH ;B21814 | LDB WSR,[SP]
209DH ;65020018 | ADD SP,#02H
20A1H ;FO | RET

The C compiler can also take advantage of this feature if the “windows” switch is enabled. For
details, see the MCS 96 microcontroller architecture software productsDetietopment Tools
Handbook

4.2.3 Windowing and Addressing Modes

Once windowing is enabled, the windowed locations can be accessed both through the window
using direct (8-bit) addressing and by the usual 16-bit addressing. The lower register file locations
that are covered by the window are always accessible by indirect or indexed operations. To re-
enable direct access to the entire lower register file, clear the WSR. To enable direct access to &
particular location in the lower register file, you can select a smaller window that does not cover
that location.

When windowing is enabled:

* a register-direct instruction that uses an address within the lower register file actually
accesses the window in the upper register file;

¢ an indirect, indexed, or zero-register instruction that uses an address within either the lower
register file or the upper register file accesses the actual locatiormonye

The following sample code illustrates the difference between register-direct and indexed address-
ing when using windowing.

PUSHA ; pushes the contents of WSR onto the stack
LDB WSR, #12H ; select window 12H, a 128-byte block

; The next instruction uses register-direct addr
ADD 40H, 80H ; mem_word(40H) —mem_word(40H) + mem_word(380H)

; The next two instructions use indirect addr
ADD 40H, 80HI0] ; mem_word(40H) ~mem_word(40H) + mem_word(80H +0)
ADD 40H, 380H[0] ; mem_word(40H) ~mem_word(40H) + mem_word(380H +0)
POPA ; reloads the previous contents into WSR

4-23

intgl.

Standard and PTS
Interrupts

CHAPTER 5
STANDARD AND PTS INTERRUPTS

This chapter describes the interrupt control circuitry, priority scheme, and timing for standard and
peripheral transaction server (PTS) interrupts. It discusses the three special interrupts and the five
PTS modes, two of which are used with the EPA to produce pulse-width modulated (PWM) out-
puts. It also explains interrupt programming and control.

5.1 OVERVIEW

The interrupt control circuitry within a microcontroller permits real-time events to control pro-
gram flow. When an event generates an interrupt, the device suspends the execution of current
instructions while iperforms some service in response to the interrupt. When the interrupt is ser-
viced, program execution resumes at the point where the interrupt occurred. An internal periph-
eral, an external signal, or an instruction can request an interrupt. In the simplest case, the device
receives the request, performs the service, and returns to the task that was interrupted.

This microcontroller’s flexible interrugtandling system has two main components: the pro-
grammable interrupt controller and the peripheral transaction server (PTS). The programmable
interrupt controller has a hardware priority scheme that can be modified by your software. Inter-
rupts that gahrough the interrupt controller are serviced by interrupt service routines that you
provide. The upper and lower interrupt vectors in special-purpose memory (see Chapter 4,
“Memory Partitions”) contain the interrupt service routines’ addresses. The peripheral transac-
tion server (PTS), a microcoded hardware interrupt processor, provides high-speed, low-over-
head interrupt handling; it does not modify the stack or the PSW. You can configure most
interrupts (except NMI, trap, and unimplemented opcode) to be serviced by the PTS instead of
the interrupt controller.

The PTS supports five special microcoded routines that enable it to complete specific tasks in
much less time than an equivalent interrupt service routine can. It can transfer bytes or words,
either individually or in blocks, between any memory locations; manage multiple analog-to-dig-
ital (A/D) conversions; and generate pulse-width modulated (PWM) signals. PTS interrupts have
a higher priority than standard interrupts and maypterarily suspend interrupt service routines.

A block of data called the PTS control block (PTSCB) contains the specific details for each PTS
routine (see “Initializing the PTS Control Blocks” on page 5-18). When a PTS interrupt occurs,
the priority encoder selects the appropriate vector and fetches the PTS control block (PTSCB).

Figure 5-1 illustrates the interrupt processing flow. In this flow diagram, “INT_MASK” repre-
sents both the INT_MASK and INT_MASK1 registers, and “INT_PEND” represents both the
INT_PEND and INT_PEND1 registers.

8XC196Kx, Jx, CA USER'S MANUAL

Interrupt Pending or PTSSRV Bit Set

Return

PTS
Enabled?

No

Return

Priority
Encoder
Highest Priority Interrupt

Priority
Encoder

Highest Priority PTS Interrupt

Reset INT_PEND.x
Bit

| Reset PTSSRV.x | | Reset INT_PEND.x
Execute 1 PTS Cycle Bit Bit
Microcoded | |
PTSCOUNT on Stack
LIMP to
ISR

Return

Execute Interrupt
Service Routine

Clear PTSSEL.xBit
POP PC
* from Stack
Set PTSSRV.x Bit Return

'

Return

A0320-02

Figure 5-1. Flow Diagram for PTS and Standard Interrupts

5-2

intel.

STANDARD AND PTS INTERRUPTS

5.2 INTERRUPT SIGNALS AND REGISTERS

Table 5-1 describes the external interrupt signals and Table 5-2 describes the control and status

registers for both the interrupt controller and PTS.

Table 5-1. Interrupt Signals

PWM Signal

Port Pin

Type

Description

EXTINT

P2.2

External Interrupt

In normal operating mode, a rising edge on EXTINT sets the
EXTINT interrupt pending flag. EXTINT is sampled during
phase 2 (CLKOUT high). The minimum high time is one state
time.

If the chip is in idle mode and if EXTINT is enabled, a rising
edge on EXTINT brings the chip back to normal operation,
where the first action is to execute the EXTINT service
routine. After completion of the service routine, execution
resumes at the the IDLPD instruction following the one that
put the device into idle mode.

In powerdown mode, asserting EXTINT causes the chip to
return to normal operating mode. If EXTINT is enabled, the
EXTINT service routine is executed. Otherwise, execution

continues at the instruction following the IDLPD instruction
that put the device into powerdown mode.

NMmIT

Nonmaskable Interrupt

In normal operating mode, a rising edge on NMI causes a
vector through the NMI interrupt at location 203EH. NMI must
be asserted for greater than one state time to guarantee that
itis recognized.

In idle mode, a rising edge on the NMI pin causes the device
to return to normal operation, where the first action is to
execute the NMI service routine. After completion of the
service routine, execution resumes at the instruction following
the IDLPD instruction that put the device into idle mode.

In powerdown mode, a rising edge on the NMI pin does not
cause the device to exit powerdown.

T This signal is not implemented on the 8XC196Jx (see “Design Considerations for 8XC196JQ, JR, JT, and
JV Devices” on page 2-14).

Table 5-2. Interrupt and PTS Control and Status Registers

Register Register e
Mnemonic Name Description
CAN_INT 1E5FH CAN Interrupt Pending
(CA only) This read-only register indicates the source of the highest-priority
pending CAN interrupt.

5-3

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 5-2. Interrupt and PTS Control and Status Registers (Continued)

Register Register -
Mnemonic Name Description
EPA_MASK EPA These registers enable/disable the 20 multiplexed EPA interrupts
EPA_MASK1 Interrupt
- Mask
Registers
EPA_PEND EPA The bits in these registers are set by hardware to indicate that a
EPA_PEND1 Interrypt multiplexed EPA interrupt is pending.
Pending
Registers
EPAIPV EPA This register contains a number from O0H to 14H corresponding to the
Interrupt highest-priority pending EPAX interrupt source. This value allows
Priority software to branch via the TIIMP instruction to the correct interrupt
Vector service routine when the EPAX interrupt is activated. Reading this
register clears the pending bit of the associated interrupt source. The
EPAX pending bit (INT_PEND.7) is cleared when all the pending bits
for its sources (in EPA_PEND and EPA_PEND1) have been cleared.
INT_MASK Interrupt These registers enable/disable each maskable interrupt (that is, each
INT MASK1 Mask interrupt except unimplemented opcode, software trap, and NMI.)
- Registers
INT_PEND Interrupt The bits in this register are set by hardware to indicate that an interrupt
INT PEND1 Pending is pending.
- Registers
PSW Program This register contains one bit that globally enables or disables servicing
Status Word | of all maskable interrupts and another that enables or disables the
PTS. These bits are set or cleared by executing the enable interrupts
(El), disable interrupts (DI), enable PTS (EPTS), and disable PTS
(DPTS) instructions.
PTSSEL PTS Select | This register selects either a PTS routine or a standard interrupt
Register service routine for each of the maskable interrupt requests.
PTSSRV PTS The bits in this register are set by hardware to request an end-of-PTS
Service interrupt.
Register

5.3 INTERRUPT SOURCES AND PRIORITIES

Table 5-3 lists the interrupts sources, their default priorities (30 is highest and 0 s$),/@me

their vector addresses. The unimplemented opcode and software trap interrupts are not priori-
tized; they go directly to the interrupt controller for servicing. The priority encoder determines
the priority of all other pending interrupt requests. NMI has the highest priority of all prioritized
interrupts, PTS interrupts have the next highest priority, and standard interrupts have the lowest.

The priority encoder selects the highest priority pending request and trrepht®antroller se-

lects the corresponding vector location in spepiabhose memory. Thigctor contains the start-
ing (base) address of the corresponding PTS control block (PTSCB) or interrupt service routine.

PTSCBs must be located in register RAM auad-word boundary.

5-4

intel.

STANDARD AND PTS INTERRUPTS

Table 5-3. Interrupt Sources, Vectors, and Priorities

Interrug;g(i)életroller PTS Service
Interrupt Source Mnemonic o . - o . -
= S |5| 5 § |
=z > E =z > E
Nonmaskable Interrupt NMIT INT15 203EH 30 — — —
EXTINT Pin EXTINT INT14 203CH 14 | PTS14 205CH 29
CAN (CA)Ttt CAN
INT13 203AH 13 | PTS13ff 205AH 28
Reserved (Kx, Jx) —
SIO Receive RI INT12 2038H 12 PTS12 2058H 27
SI0O Transmit Tl INT11 2036H 11 PTS11 2056H 26
SSIO Channel 1 Transfer SSI01 INT10 2034H 10 PTS10 2054H 25
SSIO Channel 0 Transfer SSI00 INTO9 2032H 09 PTS09 2052H 24
Slave Port Command Buff Full | CBF INTO8 2030H 08 PTS08 2050H 23
Unimplemented Opcode — — 2012H — — — —
Software TRAP Instruction — — 2010H — — — —
Slave Port Input Buff Full IBF INTO7 200EH 07 PTS07 204EH 22
Slave Port Output Buff Empty | OBE INTO6 200CH 06 PTS06 204CH 21
A/D Conversion Complete AD_DONE INTO5 200AH 05 PTS05 204AH 20
EPA Capture/Compare 0 EPAO INTO4 2008H 04 | PTS04 2048H 19
EPA Capture/Compare 1 EPA1 INTO3 2006H 03 | PTSO03 2046H 18
EPA Capture/Compare 2 EPA2 INTO2 2004H 02 PTS02 2044H 17
EPA Capture/Compare 3 EPA3 INTO1 2002H 01 | PTSO1 2042H 16
EPA Capture/Compare 4-9, EPAX INTOO 2000H 00 | PTS00TT 2040H 15
EPA 0-9 Overrun,
EPA Compare 0-1,
Timer 1 Overflow,
Timer 2 Overflow
Tttt

NOTES:

T The NMI pin is not bonded out on the 8XC196Jx. To protect against glitches, create a dummy interrupt

service routine that contains a RET instruction.

Tt The PTS cannot determine the source of multiplexed interrupts, so do not use it to service these
interrupts when more than one multiplexed interrupt is unmasked.

11 All CAN-controller interrupts are multiplexed into the single CAN interrupt input (INT13). The interrupt
service routine associated with INT13 must read the CAN interrupt pending register (CAN_INT) to

determine the source of the interrupt request

Tttt These interrupts are individually prioritized in the EPAIPV register (see Table 10-16 on page 10-30).

Read the EPA pending registers (EPA_PEND and EPA_PENDZ1) to determine which source caused the

interrupt.

5-5

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

5.3.1 Special Interrupts

This microcontroller has three special interrupt sources that are always enabled: ueimgiem
opcode, software trap, and NMI. These interrupts are not affected by the El (enable interrupts)
and DI (disable interrupts) instructions, and they cannot be masked. All of these interrupts are
serviced by the interrupt controller; they cannot be assigned to the PTS. Of these three, only NMI
goes through the tnasition detector and priority encoder. The other two special interrupts go di-
rectly to the interrupt controller for servicing. Be aware that these interrupts are often assigned to
special functions in development tools.

5.3.1.1 Unimplemented Opcode

If the CPU attempts to execute an unimplemented opcode, an indirect theotaghlocation

2012H occurs. This prevents random software execution during hardware and software failures.
The interrupt vector should contain the starting address of an error routine that will not further
corrupt an already erroneoutusition. The unimplemented opcode interrupt prevents other inter-
rupts from being acknowledged until after the next instruction is executed.

5.3.1.2 Software Trap

The TRAP instruction (opcode F7H) causes an interrupt call that is vectooeghhocation
2010H. The TRAP instruction provides a single-instruction interrupt that is useful delbeig-

ging software or generating software interrupts. The TRAP instruction prevents other interrupts
from being acknowledged until after the nexttinstion is executed.

5.3.1.3 NMI

The external NMI pin generates a nonmaskable interrupt for implementation of critical interrupt
routines. NMI has the highest priority of all the prioritized interrupts. It is passed directly from
the transition detector to the priority encoder, and it vectors indirectly through location 203EH.
(The NMI pin is not implemented on the 8XC196Jx. To protect against glitches, create a dummy
interrupt service routine that contains a RET instruction.) The NMI pin is sampled during phase
2 (CLKOUT high) and is latched internally. Because interrupts are edge-triggered, only one in-
terrupt is generated, even if the pin is held high. If your system does not use the NMI interrupt,
connect the NMI pin to Y to prevent spurious interrupts.

5.3.2 External Interrupt Pins

The interrupt detection logic can generate an interrupt if a momentary negative glitch occurs
while the input pin is held high. For this reason, interrupt inpbtaild normally be held low
when they are inactive.

Int€|® STANDARD AND PTS INTERRUPTS

5.3.3 Multiplexed Interrupt Sources

Both the EPA and CAN (CA only) interrupts are generated by a group of multiplexed interrupt
sourcesThe EPA4-9 and COMPO-1 event interrupts, the EPA0-9 overrun interrupts, and the
timer 1 and timer 2 overflow/underflow interrupts are multiplexed intoXe R CAN-controller
interrupts are multiplexed into the single CAN interrupt. Generally, PTS interrupt service is not
useful for multiplexed interrupts because the PTS cannot readily determine the irdeunget

Your interrupt service routine should read the EPA_PEND or EPA_PEND1 register) (&@RAe
CAN_INT (CAN) regsiter to determine the source of the interrupt and to ensure that no additional
interrupts are pending before executing the return instruction. Chapter 10, “Event Processor Ar-
ray (EPA)” and Chapter 12, “CAN Serial Communications Controller” discuss the EPA and CAN
interrupts in detail.

5.3.4 End-of-PTS Interrupts

When the PTSCOUNT register decrements to zero at the end of a single transfer, block transfer,
or A/D scan routine, hardware clears the corresponding bit in the PTSSEL register, which disables
PTS service for that interrupt. It also sets the corresponding PTSSRYV bit, requestingodn end
PTS interrupt. An end-of-PTS interrupt has the samaiprias a corresponding standard inter-

rupt. The interrupt controller processes it with an interrupt service routine that is stored in the
memory location pointed to by the standard interrupt vector. For example, the PTS services the
SIO transmit interrupt if PTSSEL.11 is set. The interrupt vectomutih 2056H, but the corre-
sponding end-of-PTS interrupt vectors thro2fB6H, the standard S10 tremit interrupt vector.

When the end-of-PTS interrupt vectors to the interrupt service routine, hardware clears the PTSS-
RV bit. The end-of-PTS interrupt service routine should reinitialize the PTSCB, if required, and
set the appropriate PTSSEL bit to re-enable PTS interrupt service.

5.4 INTERRUPT LATENCY

Interrupt latency is the total delay between the time that the interrupt request is generated (not
acknowledged) and the time that the device begins executing either the standard interrupt service
routine or the PTS interrupt service routine. A delay occurs between the time that the interrupt
request is detected and the time that it is acknowledged. An interrupt request is acknowledged
when the current instruction finishes executing. If the interrupt request occurs during one of the
last four state times of the instruction, it may not be acknowledged until after the next instruction
finishes. This additional delay occurs because instructions are prefetched and prepared a few stat
times before they are executed. Thus, the maximum delay between interrupt request and ac-
knowledgment is four state times plus the execution time of the next instruction.

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

When a standard interrupt request is acknowledged, the hardware clears the interrupt pending bit
and forces a call to the address contained in the corresponding interrupt vector after completing
the current instruction. The procedure that gets the vector and forces the call requires 11 state
times. If the stack is in external RAM, the call requires an additional two state times assuming a
zero-wait-state bus.

When a PTS interrupt request is acknowledged, it immediately vectors to the PTSCB and begins
executing the PTS routine.

5.4.1 Situations that Increase Interrupt Latency

If an interrupt request occurs while any of the following instructions are executing, the interrupt
will not be acknowledged until after tiext instruction is executed:

¢ the signed prefix opcode (FE) for the two-byte, signed multiply and divide instructions

¢ any of these eighprotectedinstructions DI, El, DPTS, EPTS, POPA, POPF, PUSHA,
PUSHF (see Appendix A for descriptions of these instructions)

¢ any of the read-modify-write instructions: AND, ANDB, OR, ORB, XOR, XORB

Both the unimplemented opcode interrupt and the software trap interrupt prevent other interrupt
requests from being acknowledged until after the next instruction is executed.

Each PTS cycle within a PTS routine cannot be interrupted. A PTS cycle is the entire PTS re-
sponse to aingle interrupt request. In block transfer mode, a PTS cycle consists of the transfer
of an entire block of bytes or words. This means a worst-case latency of 500 states if you assume
a block transfer of 32 words from one external memory location to another. See Table 5-4 on page
5-10 for PTS cycle execution times.

Inu® STANDARD AND PTS INTERRUPTS

5.4.2 Calculating Latency

The maximum latency occurs when the interrupt request occurs too late for acknowledgment fol-
lowing the current instruction. The following worst-case calculation assumes that the current in-
struction is not a protected instruction. To calculate latency, add the following terms:

* Time for the current instruction to finish execution (4 state times).

— if this is a protected instruction, the instruction that follows it must also execute before
the interrupt can be acknowledged. Add thecetien time of the instruction that
follows a protected instruction.

* Time for the next instruction to execute. (The longest instruction, NORML, takes 39 state
times. However, the BMOV instruction could actually take longer if it is transferring a large
block of data. If your code contains routines that transfer large blocks of data, you may want
to use the BMOV instruction igour catulation instead of NORML. See Appendix A for
instruction execution times.)

* For standard inteupts only, the response time to get the vector and force the call
— 11 state times for an internal stack or 13 for an external stack

54.2.1 Standard Interrupt Latency

The worst-case delay for a standard interrupt is 56 state times (4 + 39 + 11 + 2) if the stack is in
external memory. This delay time does not include the time needed to execute the first instruction
in the interrupt service routine or to execute the instruction following a protected instruction. Fig-
ure 5-2 illustrates the worst-case scenario.

4 3 2 1jl€e—39— >l 11-—>|€— 2 —>| 12>}« 6 >
: Ending “NORML" End Callis If Stack |, " If Stack
Execution / Instruction "NORML" | Forced External PUSHA External
jfe—————>

Interrupt Routine

EXTINT

Pending

Set Cleared
Interrupt

Response |<€ 56 State Times
Time

¥

A0136-02

Figure 5-2. Standard Interr upt Response Time

8XC196Kx, Jx, CA USER'S MANUAL

5.4.2.2 PTS Interrupt Latency

The maximum delay for a PTS interrupt is 43 state times (4 + 39). This delay time does not in-
clude the added delay if a protected instruction is being executed or if a PTS request is already in

N

progress. See Table 5-4 for execution times for PTS routines.

tel.

4 3 2 1|l€«——39—>]

Execution Endln_g
Instruction

"NORML" End
"NORML"

Vector to PTS
Control Block | PTS / / PTS

EXTINT

Pending
Interrupt

Latency Time

PTS Interrupt Routine

Cleared

Response Time |=&

43 State Times

Y

A0142-01

Figure 5-3. PTS Interrupt Res ponse Time

Table 5-4. Execution Times for PTS Cycles

PTS Mode

Execution Time (in State Times)

Single transfer mode
register/registert
memory/register’
memory/memoryt

18 per byte or word transfer + 1
21 per byte or word transfer + 1
24 per byte or word transfer + 1

Block transfer mode
register/registert
memory/register’

13 + 7 per byte or word transfer (1 minimum)
16 + 7 per byte or word transfer (1 minimum)

memory/memoryt 19 + 7 per byte or word transfer (1 minimum)
A/D scan mode

register/registert 21

register/memory™ 25
PWM remap mode 15
PWM toggle mode 15

T Register indicates an access to the register file or peripheral SFR. Memory indicates

an access to a memory-mapped register, 1/0, or memory. See Table 4-1 on page 4-2 for

address information.

5-10

Int€|® STANDARD AND PTS INTERRUPTS

5.5 PROGRAMMING THE INTERRUPTS

The PTS select register (PTSSEL) selects either PTS service or a standard software interrupt ser
vice routine for each of the maskable interrupt requests (see Figure 5-4). The interrupt mask reg-
isters, INT_MASK and INT_MASK1, enable or disable (mask) individuatimigs (see Figures

5-5 and 5-6). With the exception of the nonmaskable interrupt (NMI) bit (INT_MASK1.7), set-
ting a bit enables the corresponding intigt source and céing a bit disables theource.

To disable any interrupt, clear its mask bit. To enable amrugefor standard itrrupt service,
set its mask bit and clear its PTS select bit. To enable an interrupt for PTS service, set both the
mask bit and the PTS select bit.

Additionally, when you assign an interrupt to the PTS, you must set up a PTS control block
(PTSCB) for each interrupt source (see “Initializthg PTS Control Blocks” on page 5-18) and
use the EPTS instruction to globally enable the PTS. When you assign an interruphtiaedsta
software service roirte, use the El (enable interrupts) instruction to globally enable interrupt ser-
vicing.

NOTE

PTS routines will execute after a DI (disable interrupts) instruction, if the
appropriate INT_MASK and PTSSEL bits are set. However, the end-of-PTS
interrupt request will not occur. If an interrupt request occurs while interrupts
are disabled, the cosponding pending bit is setihe INT_PEND or
INT_PEND1 register.

5.5.1 Programming the Multiplexed Interrupts

On the 87C196CA, the CAN-controller interrupts are multiplexed into the single CAN interrupt
input (INT13). Write to the CAN control gister (Figure 12-6 on page 12-13) to enable or disable
global CAN interrupt sources (error, status change, and individual message object) and
INT_MASKL1.5 to enable or disable the multiplexed CAN interrupt.

The EPA4-9 and COMPO-Yent interrupts, the EPA0-9 overrun interrupts, and the timer 1 and
timer 2 overflow/underflow interrupts are multiplexed into KP#rite to the EPA_MASK (Fig-

ure 10-12 on page 10-27) or EPA_MASK1 (Figure 10-13 on page 10-27) registers to enable or
disable the multiplexed EPA interrupt sources and INT_MASK.0 to enable or disable the EPA
interrupt.

The PTS cannot determine the source of multiplexed interrupts, so do not use it to service these
interrupts when more than one multiplexed interrupt is unmasked.

[| 5-11

8XC196Kx, Jx, CA USER'S MANUAL InU®

PTSSEL Address: 04H
Reset State: 0000H

The PTS select (PTSSEL) register selects either a PTS microcode routine or a standard interrupt
service routine for each interrupt requests. Setting a bit selects a PTS microcode routine; clearing a bit
selects a standard interrupt service routine. When PTSCOUNT reaches zero, hardware clears the
corresponding PTSSEL bit. The PTSSEL bit must be set manually to re-enable the PTS channel.

15 8
87C196CA | — |EXTNT| cAN | R || T | ssio1 | ssioo | — |
7 0
| — | — | Ao | Epao || EPa1 | EPA2 | EPA3 | EPAX |
15 8
gxc196dx | — |ExinT| — | Rl || T [ssio1|ssio0 | — |
7 0
| — | — | Ao | Epao || EPa1 | EPA2 | EPA3 | EPAX |
15 8
sxci9ekx | — |ExTNT| — | R || T | ssio1 | ssioo | cBF |
7 0
| BF | oBE | AD | EPA0 || EPAL | EPA2 | EPA3 | EPAX |
Bit)
Number Function
14:.0 Setting this bit causes the corresponding interrupt to be handled by a PTS microcode
(Note 1) routine.
The PTS interrupt vector locations are as follows:
Bit Mnemonic Interrupt PTS Vector
EXTINT EXTINT pin 205CH
CAN (CA)f CAN Peripheral 205AH
RI SIO Receive 2058H
Tl SIO Transmit 2056H
SSI01 SSIO 1 Transfer 2054H
SSI00 SSIO 0 Transfer 2052H
CBF (Kx) Slave Port Command Buffer Full 2050H
IBF (KX) Slave Port Input Buffer Full 204EH
OBE (Kx) Slave Port Output Buffer Empty 204CH
AD A/D Conversion Complete 204AH
EPAO EPA Capture/Compare Channel 0 2048H
EPA1 EPA Capture/Compare Channel 1 2046H
EPA2 EPA Capture/Compare Channel 2 2044H
EPA3 EPA Capture/Compare Channel 3 2042H
EPAXT Multiplexed EPA 2040H
T PTS service is not recommended because the PTS cannot determine the source of
multiplexed interrupts.

1. Bit 13 is reserved on the 8XC196Jx, Kx devices and bits 6—8 are reserved on the 87C196CA,
8XC196Jx devices. For compatibility with future devices, write zeros to these bits.

Figure 5-4. PTS Select (PTSSEL) Register

5-12

Inu® STANDARD AND PTS INTERRUPTS

INT_MASK Address: 08H
Reset State: OOH

The interrupt mask (INT_MASK) register enables or disables (masks) individual interrupts. (The EI
and DI instructions enable and disable servicing of all maskable interrupts.). INT_MASK is the low
byte of the program status word (PSW). PUSHF or PUSHA saves the contents of this register onto the
stack and then clears this register. Interrupt calls cannot occur immediately following this instruction.
POPF or POPA restores it.

7 0
CA, Jx | — | — | Ao | Epao || EPa1 | EPA2 | EPA3 | EPAX |
7 0
8xC196Kx | 1BF | OBE | AD | EPAO || EPAL | EPA2 | EPA3 | EPAX |
Bit)
Number Function
7.0t Setting this bit enables the corresponding interrupt.
The standard interrupt vector locations are as follows:
Bit Mnemonic Interrupt Standard Vector
IBF (KX) Slave Port Input Buffer Full 200EH
OBE (Kx) Slave Port Output Buffer Empty 200CH
AD A/D Conversion Complete 200AH
EPAO EPA Capture/Compare Channel 0 2008H
EPA1 EPA Capture/Compare Channel 1 2006H
EPA2 EPA Capture/Compare Channel 2 2004H
EPA3 EPA Capture/Compare Channel 3 2002H
EPAXTT Multiplexed EPA 2000H
T EPA 4-9 capture/compare channel events, EPA 0-1 compare channel events, EPA 0—
9 capture/compare overruns, and timer overflows can generate this multiplexed interrupt.
The EPA mask and pending registers decode the EPAXx interrupt. Write the EPA mask
registers (EPA_MASK and EPA_MASK1) to enable the interrupt sources; read the EPA
pending registers (EPA_PEND and EPA_PENDZ1) to determine which source caused the
interrupt.

T Bits 6-7 are reserved on the 87C196CA and 8XC196Jx devices. For compatibility with future
devices, write zeros to these bits.

Figure 5-5. Interrupt Mask (INT_MASK) Register

[| 5-13

8XC196Kx, Jx, CA USER'S MANUAL

intel.

INT_MASK1

Address: 13H
Reset State: OOH

The interrupt mask 1 (INT_MASK1) register enables or disables (masks) individual interrupts. (The EI
and DI instructions enable and disable servicing of all maskable interrupts.) INT_MASK1 can be read
from or written to as a byte register. PUSHA saves this register on the stack and POPA restores it.

The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt

NMmITT Nonmaskable Interrupt

EXTINT EXTINT Pin

CAN (CA) CAN Peripheral

RI SIO Receive

Tl SIO Transmit

SSIo1 SSIO 1 Transfer

SSIO0 SSIO 0 Transfer

CBF (Kx) Slave Port Command Buffer Full

7 0
87C196CA ‘ NMI ‘EXTINT‘ CAN ‘ RI H TI ‘ ssIo1 ‘ SSI00 ‘ — ‘
7 0
8XC196Jx ‘ _ ‘EXTINT‘ _ ‘ RI H TI ‘ SsIo1 ‘ SSI00 ‘ _ ‘
7 0
8XC196K x ‘ NMI ‘EXTINT‘ — ‘ RI H TI ‘ ssIo1 ‘ SSI00 ‘ CBF ‘
Nuii:)er Function
7:0f Setting this bit enables the corresponding interrupt.

Standard Vector
203EH
203CH
203AH
2038H
2036H
2034H
2032H
2030H

T Bit 5 is reserved on the 8XC196Jx, Kx devices and bit 0 is reserved on the 87C196CA, 8XC196Jx
devices. For compatibility with future devices, always write zeros to these bits.

T NMl is always enabled. This nonfunctional mask bit exists for design symmetry with the
INT_PENDL1 register. Always write zero to this bit.

Figure 5-6. Interrupt Mask 1 (INT_MASK1) Regi ster

5.5.2 Maodifying Interrupt Priorities

The software can modify the default priorities of maskablernpts by conblling the interrupt

mask registers (INT_MASK and INT_MASK1). For example, you can specify which interrupts,
if any, can interrupt an interrupt service routine. The following code shows one way to prevent
all interrupts, except EXTINT (priority 14), from interrupting an SIO receive interrupt service

routine (priority12).

5-14

Int€|® STANDARD AND PTS INTERRUPTS

SERIAL_RI_ISR:

PUSHA ; Save PSW, INT_MASK, INT_MASK1, & WSR
; (this disables all interrupts)

LDB INT_MASK1, #01000000B ; Enable EXTINT only

El ; Enable interrupt servicing

; Service the Rl interrupt

POPA ; Restore PSW, INT_MASK, INT_MASK1, &
; WSR registers
RET
CSEG AT 2038H ; fill in interrupt table
DCW SERIAL_RI_ISR END

Note that location 2038H in the interrupt vector table must be loaded with the value of the label
SERIAL_RI_ISR before the interrupt request occurs and that the receive interrupt must be en-
abled for this routine to execute.

This routine, like all interrupt service routines, is handled in the following manner:

1. After the hardware detects and prioritizes an interrupt request, it generates and executes ar
interrupt call. This pushes the program counter ah¢ostack and then loads it with the
contents of the vector corresponding to the highest priority, pending, unmasked interrupt.
The hardware will not allow another interrupt call until after the first instruction of the
interrupt service routine is executed.

2. The PUSHA instruction, which is now guaranteed to execute, saves the contents of the
PSW, INT_MASK, INT_MASK1, and window select register (WSR) onto the stack and
then clears the PSW, INT_MASK, and INT_MASKZ1. In addition to the arithmetic flags,
the PSW contains the global interrupt enable bit (I) and the PTS enable bit (PSE). By
clearing the PSW and the interrupt mask registers, PUSHA effectively masks all maskable
interrupts, disables standard interrupt servicing, and disables the PTS. Because PUSHA is
a protected instruction, it also inhibits interrupt calls until after the next instruction
executes.

3. The LDB INT_MASK1 instruction enables those interrupts that you choose to allow to
interrupt the service routine. In this example, only EXTINT can interrupt the receive
interrupt service routine. By enabling or disabling interrupts, the software establishes its
own interrupt servicing priorities.

4. The El instruction re-enables interrupt processing and inhibits interrupt calls until after the
next instruction executes.

5. The actual interrupt service routine executes within the priority structure established by
the software.

5-15

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

6. Atthe end of the service routine, the POPA instruction restores the original contents of the
PSW, INT_MASK, INT_MASK1, and WSR registers; any changes made to these
registers during the interrupt service routine are overwritten. Because interrupt calls
cannot occur immediately following a POPA instruction, the last instruction (RET) will
execute before another interrupt call can occur.

Notice that the “preamble” and exit code for this routine does not save or restore register RAM.
The interrupt service roime is assumed to allocate @@n private set of igisters from the lower
register file. The general-purpose register RAM in the lower register file makes this quite practi-
cal. In addition, the RAM in the upper register file is availableniredowing(see “Windowing”

on page 4-13).

5.5.3 Determining the Source of an Interrupt

When the transition detector detects an interrupt, it sets the corresponding bit in the INT_PEND
or INT_PENDLI register (Figures 5-7 and 5-8). This bit is set even if the individual interrupt is
disabled (masked). The pending bit is cleared when the program vectors to the interrupt service
routine. INT_PEND and INT_PEND1 can be read, to determine which interrupts are pending.
They can also be modified (written), either to clear pending interrupts or to generate interrupts
under software control. However, we recommend the use of the read-modify-write instructions,
such as AND and OR, to modify these registers.

ANDB INT_PEND, #11111110B ; Clears the EPA X interrupt
ORB INT_PEND, #00000001B ; Sets the EPA X interrupt

Other methods could result in a partial interrupt cycle. For example, an interrupt could occur dur-
ing an instruction sequence that loads the contents of the interrupt pending register into a tempo-
rary register, modifies the contents of the temporary register, and then writes the contents of the
temporary register back into the interrupt pending register. If the interrupt occurs during one of
the last four states of the second instruction, it will not be acknowledged unttheftemmpletion

of the third instruction. The third instruction overwrites the contents of teeruipt pending reg-

ister, so the jump to the interrupt vector will not occur.

5.5.3.1 Determining the Source of Multiplexed Interrupts

On the 87C196CA, the CAN-controller interrupts are multiplexed into the single CAN interrupt
input (INT13). The interrupt service routine associated with INT13 must read the CAN interrupt
pending register (CAN_INT, Figure 12-19 on page 12-32) terdéhe the source of the interrupt
request.

5-16

Inu® STANDARD AND PTS INTERRUPTS

The EPA4-9 and COMPO-Yent interrupts, the EPA0-9 overrun interrupts, and the timer 1 and
timer 2 overflow/underflow interrupts are multiplexed into EPAhe interrupt service routine
associated with EPA must read the EPA interrupt pendinggisters (ER_PEND and
EPA_PEND1) to determine the source of the interrupt request (see Figure 10-14 on page
10-28 and Figure 10-15 on page 10-29).

INT_PEND Address: 09H
Reset State: 00H

When hardware detects an interrupt request, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PEND1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 0
CA, Jx ‘ — ‘ — ‘ AD ‘ EPAO H EPAL ‘ EPA2 ‘ EPA3 ‘ EPAX ‘
7 0
8XC196Kx ‘ IBF ‘ OBE ‘ AD ‘ EPAO H EPAL ‘ EPA2 ‘ EPA3 ‘ EPAX ‘
Nuii:)er Function
7.0t When set, this bit indicates that the corresponding interrupt is pending. The interrupt bit is

cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector
IBF (KX) Slave Port Input Buffer Full 200EH
OBE (Kx) Slave Port Output Buffer Empty 200CH
AD A/D Conversion Complete 200AH
EPAO EPA Capture/Compare Channel 0 2008H
EPA1 EPA Capture/Compare Channel 1 2006H
EPA2 EPA Capture/Compare Channel 2 2004H
EPA3 EPA Capture/Compare Channel 3 2002H
EPAXTT Multiplexed EPA 2000H

T EPA 4-9 capture/compare channel events, EPA 0-1 compare channel events, EPA 0—
9 capture/compare overruns, and timer overflows can generate this multiplexed interrupt.
The EPA mask and pending registers decode the EPAXx interrupt. Write the EPA mask
registers to enable the interrupt sources; read the EPA pending registers (EPA_PEND
and EPA_PEND1) to determine which source caused the interrupt.

T Bits 67 are reserved on the 87C196CA, 8XC196Jx devices. For compatibility with future devices,
write zeros to these bits.

Figure 5-7. Interrupt Pending (INT_PEND) Register

[| 5-17

8XC196Kx, Jx, CA USER'S MANUAL InU®

INT_PEND1 Address: 12H
Reset State: OOH

When hardware detects a pending interrupt, it sets the corresponding bit in the interrupt pending
(INT_PEND or INT_PEND1) registers. When the vector is taken, the hardware clears the pending bit.
Software can generate an interrupt by setting the corresponding interrupt pending bit.

7 8
87C196CA ‘ NMI ‘EXTINT‘ CAN ‘ RI H TI ‘ ssIo1 ‘ SSI00 ‘ — ‘
7 0
8XC196Jx ‘ _ ‘EXTINT‘ _ ‘ RI H TI ‘ SsIo1 ‘ SSI00 ‘ _ ‘
7 0
8XC196K x ‘ NMI ‘EXTINT‘ — ‘ RI H TI ‘ ssIo1 ‘ SSI00 ‘ CBF ‘
Nuii:)er Function
7:0f When set, this bit indicates that the corresponding interrupt is pending. The interrupt bit is

cleared when processing transfers to the corresponding interrupt vector.
The standard interrupt vector locations are as follows:

Bit Mnemonic Interrupt Standard Vector
NMI Nonmaskable Interrupt 203EH
EXTINT EXTINT Pin 203CH
CAN (CA)TT CAN Peripheral 203AH
RI SIO Receive 2038H
Tl SIO Transmit 2036H
SSI01 SSIO 1 Transfer 2034H
SSI00 SSIO 0 Transfer 2032H
CBF (Kx) Slave Port Command Buffer Full 2030H

T All CAN-controller interrupts are multiplexed into the single CAN interrupt input
(INT13). The interrupt service routine associated with INT13 must read the CAN interrupt
pending register (CAN_INT) to determine the source of the interrupt request.

T Bit 7 is reserved on the 8XC196Jx devices, bit 5 is reserved on the 8XC196Jx, Kx devices, and bit 0
is reserved on the 87C196CA, 8XC196Jx devices. For compatibility with future devices, always write
zeros to these bits.

Figure 5-8. Interrupt Pending 1 (INT_PEND1) Register

5.6 INITIALIZING THE PTS CONTROL BLOCKS

Each PTS interrupt requires a block of data called the PTS control block (PTSCB). The PTSCB
identifies which PTS microcode routine will be invoked and sets up the specific parameters for
the routine. You must set up the PTSCB for each interrupt sbafoee enabling the correspond-

ing PTS interrupts.

5-18

intel.

Each PTS control block (PTSCB) requires eight data bytes in register RAM. The address of the
first (lowest) byte is stored in the PTS vector table in spgcigpose memory (see “Special-pur-
pose Memory” on page 4-3). Figure 5-9 shows the PTSCB for each PTS mode. Unused PTSCB

STANDARD AND PTS INTERRUPTS

bytes can be used as extra RAM.

NOTE

The PTSCB must be located in register RAM. The location of the first byte of
the PTSCB must be aligned on a quad-word boundary (an address evenly

divisible by 8).
Single Block A/D Scan PWM Toggle PWM Remap
Transfer Transfer Mode Mode Mode

Unused Unused Unused PTSCONST2 (H) Unused

Unused PTSBLOCK Unused PTSCONST2 (L) Unused

PTSDST(H) PTSDST (H) PTSPTR2 (H) PTSCONST1 (H) PTSCONST1 (H)

PTSDST (L) PTSDST (L) PTSPTR2 (L) PTSCONST1 (L) PTSCONST1 (L)

PTSSRC (H) PTSSRC (H) PTSPTRL (H) PTSPTR1 (H) PTSPTR1 (H)

PTSSRC (L) PTSSRC (L) PTSPTR1 (L) PTSPTR1 (L) PTSPTR1 (L)

PTSCON PTSCON PTSCON PTSCON PTSCON
PTSVECT PTSCOUNT PTSCOUNT PTSCOUNT Unused Unused

Figure 5-9. PTS Cont rol Blocks

5.6.1 Specifying the PTS Count

For single transfer, block transfer, and A/D scan routines, the first location of the PTSCB contains
an 8-bit value called PTSCOUNT. This value defines the number of interrupts that will be ser-
viced by the PTS routine. The PTS decrements PTSCOUNT after eaclktyeleS When
PTSCOUNT reaches zero, hardware clears the sporeding PBESEL bit and sets the PTSSRV

bit (Figure 5-10), which requests an end-of-PTS interrupt. The end-of-PTS interrupt service rou-
tine should reinitialize the PTSCB, if required, and set the appropriate PTSSEL bit to re-enable
PTS interrupt service.

5-19

8XC196Kx, Jx, CA USER'S MANUAL InU®

PTSSRV

Address: 06H
Reset State: 0000H

The PTS service (PTSSRYV) register is used by the hardware to indicate that the final PTS interrupt
has been serviced by the PTS routine. When PTSCOUNT reaches zero, hardware clears the corre-
sponding PTSSEL bit and sets the PTSSRV bit, which requests the end-of-PTS interrupt. When the
end-of-PTS interrupt is called, hardware clears the PTSSRYV bit. The PTSSEL bit must be set
manually to re-enable the PTS channel.

15 8
87C196CA | — |[EXTNT| caN | R || T | ssio1 | ssioo | — |
7 0
| — | — | Ap | EPao || EPAL | EPA2 | EPA3 | EPAx |
15 8
8xc196dx | — |Extint| — | R || T [ssio1 |ssio0 | — |
7 0
| — | — | Ap | EPao || EPAL | EPA2 | EPA3 | EPAx |
15 8
8xCc196kx | — |Extnt| — | R || T | ssio1 | ssioo | CBF |
7 0
| BF | OBE | AD | EPA0 || EPAL | EPA2 | EPA3 | EPAx |
Bit)
Number Function
14:.0 This bit is set by hardware to request an end-of-PTS interrupt for the corresponding
(Note 1) interrupt through its standard interrupt vector.
The standard interrupt vector locations are as follows.
Bit Mnemonic Interrupt Standard Vector
EXTINT External 203CH
CAN (CA) CAN Peripheral 203AH
RI SIO Receive 2038H
Tl SIO Transmit 2036H
SSI01 SSI01 Transfer 2034H
SSI00 SSIO0 Transfer 2032H
CBF (Kx) Slave Port Command Buffer Full 2030H
IBF (Kx Slave Port Input Buffer Full 200EH
OBE (Kx) Slave Port Output Buffer Empty 200CH
AD A/D Conversion Complete 200AH
EPAO EPA Capture/Compare Channel 0 2008H
EPA1 EPA Capture/Compare Channel 1~ 2006H
EPA2 EPA Capture/Compare Channel 2 2004H
EPA3 EPA Capture/Compare Channel 3 2002H
EPAXT Multiplexed EPA 2000H
T This bit is cleared when all EPA interrupt pending bits (EPA_PEND and EPA_PEND1)
are cleared.

1. Bit 13 is reserved on the 8XC196Jx, Kx devices and bits 6—8 are reserved on the 87C196CA,
8XC196Jx devices. For compatibility with future devices, write zeros to these bits.

5-20

Figure 5-10. PTS Service (PTSSRV) Register

Int€|® STANDARD AND PTS INTERRUPTS

5.6.2 Selecting the PTS Mode

The second byte of each PTSCB is always an 8-bit value called PTSCON. Bits 57 select the PTS
mode (Figure 5-11). The function of bits 0—4 differ for each PTS mode. Refer to the sections that
describe each routine in detail to see the function of these bits. Table 5-4 on page 5-10 lists the
execution times for each PTSode.

PTSCON Address: PTSPCB + 1

The PTS control (PTSCON) register selects the PTS mode and sets up control functions for that
mode.

! 0
M2 M1 MO T ‘ ‘ T T T "
Bit Bit)
Number Mnemonic Function
75 M2:0 PTS Mode

These bits select the PTS mode:

M2 M1 MO
0 block transfer
reserved

PWM toggle or remap
reserved

single transfer
reserved

A/D scan

reserved

RPRrRrRROOOO
RPRrOORRO
RPORORORO

T The function of this bit depends upon which mode is selected. See the PTS control block description
in each PTS mode section.

Figure 5-11. PTS Mode Selection Bits (PTSCON Bits 7:5)

5.6.3 Single Transfer Mode

In single transfer mode, an interrupt causes the PTS to transfer a single byte or word (selected by
the BW bit in PTSCON) from one memory location to another. This mode is typically used with
serial 1/0, orsynchronouserial I/O, or slave port interrupts. It can also be used with the EPA to
move captured time values from the event-time register to internal RAM for further processing.
See AP-4453XC196KR Peripherals: A User’s Point of Vidar application examples with code.
Figure 5-12 shows the PTS control block for single transfer mode.

5-21

8XC196Kx, Jx, CA USER'S MANUAL InU®

PTS Single Transfer Mode Control Block

In single transfer mode, the PTS control block contains a source and destination address (PTSSRC
and PTSDST), a control register (PTSCON), and a transfer count (PTSCOUNT).

7 0
Unused | o [o| o | o [o | o | o [o |
7 0
Unused | o [o] o | o [[o [o | o | o |
15 8
PTSDST (HI) ‘ PTS Destination Address (high byte) ‘
7 0
PTSDST (LO) ‘ PTS Destination Address (low byte) ‘
15 8
PTSSRC (HI) | PTS Source Address (high byte) |
7 0
PTSSRC (LO) ‘ PTS Source Address (low byte) ‘
7 0
PTSCON | M [wm | mo | Bw |[su | bu | s [oI |
7 0
PTSCOUNT ‘ Consecutive Byte or Word Transfers ‘
Register Location Function
PTSDST PTSCB + 4 | PTS Destination Address

Write the destination memory location to this register. A valid address is
any unreserved memory location; however, it must point to an even
address if word transfers are selected.

PTSSRC PTSCB + 2 | PTS Source Address

Write the source memory location to this register. A valid address is any
unreserved memory location; however, it must point to an even address
if word transfers are selected.

Figure 5-12. PTS Control Block — Single Transfer Mode

5-22

Inu® STANDARD AND PTS INTERRUPTS

PTS Single Transfer Mode Control Block (Continued)

Register Location Function

PTSCON PTSCB +1 | PTS Control Bits

M2:0 | PTS Mode

M2 M1 MO

1 0 0 single transfer mode
BW Byte/Word Transfer

0 = word transfer

1 = byte transfer

sut Update PTSSRC

0 = reload original PTS source address after each byte or word
transfer

1 = retain current PTS source address after each byte or word
transfer

DUf Update PTSDST

0 = reload original PTS destination address after each byte or
word transfer

1 = retain current PTS destination address after each byte or
word transfer

SIf PTSSRC Autoincrement

0 = do not increment the contents of PTSSRC
1 = increment the contents of PTSSRC after each byte or word
transfer

DIt PTSDST Autoincrement

0 = do notincrement the contents of PTSDST
1 = increment the contents of PTSDST after each byte or word
transfer

PTSCOUNT | PTSCB + 0 | Consecutive Word or Byte Transfers

Defines the number of words or bytes that will be transferred during the
single transfer routine. Each word or byte transfer is one PTS cycle.
Maximum value is 255.

T In single transfer mode, the DU and SU bits and DI and Sl bits are paired. Each pair must be set or
cleared together. However, the two pairs, DU/SU and DI/SI, need not be equal.

Figure 5-12. PTS Control Block — Single Transfer Mode (Continued)

The PTSCB in Table 5-5 defines nine PTS cycles. Each cycle moves a single wolat&ton

20H to an external memory location. The PTS transfers the first word to location 6000H. Then it
increments and updates the destion address and decrements the PTSCOUNT register; it does
not increment the source address. When the second cycle begins, the PTS moveswosdcond
from location 20H to location 6002H. When PTSCOUNT equals zero, the PTS will have filled
locations ®00H-600FH, and an end-of-PTS interrupt ineyated.

[| 5-23

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 5-5. Single Transfer Mode PTSCB
Unused

Unused
PTSDST (HI) = 60H
PTSDST (LO) = 00H
PTSSRC (HI) = 00H
PTSSRC (LO) = 20H
PTSCON = 85H (Mode = 100, DI & DU = 1, BW = 0)
PTSCOUNT = 09H

5.6.4 Block Transfer Mode

In block transfer mode, an interrupt causes the PTS to move a block of bytes or words from one
memory location to another. See AP-488C196KR Peripherals: A User’s Point of Vidar ap-
plication examples with code. Figure 5-12 shows the PTS control block for block transfer modes.

In this mode, each PTS cycle consists of the transfer of an entire block of bytes or words. Because
a PTS cycle cannot be interrupted, the block transfer mode can create long interrupt latency. The
worst-case latency could be as high as 500 states, if you assume a block transfer of 32 words from
one external memory location to another, using an 8-bit bus with no wait states. See Table 5-4 on
page 5-10 for execution times of PTS routines.

The PTSCB in Table 5-6 sets up three PTS cycles that will transfer five bytes from memory loca-
tions 20H-24H to 6000H—-6004H (cycle 1), 6005H-6009H (c2kleand 60AH-600EH (cycle

3). The source and destination are incremented after each byte transfer, but the original source
address is reloaded into PTSSRC at the end of each block-transfer cycle. In this routine, the PTS
always gets the first byte from location 20H.

Table 5-6. Block Transfer Mode PTSCB
Unused
PTSCOUNT =05H
PTSDST (HI) = 60H
PTSDST (LO) = 00H
PTSSRC (HI) = 00H
PTSSRC (LO) = 20H
PTSCON = 17H (Mode = 000; DI, SI, DU, BW = 1; SU = 0)
PTSCOUNT =03H

5-24

Inu® STANDARD AND PTS INTERRUPTS

PTS Block Transfer Mode Control Block

In block transfer mode, the PTS control block contains a block size (PTSBLOCK), a source and
destination address (PTSSRC and PTSDST), a control register (PTSCON), and a transfer count
(PTSCOUNT).

7 0
Unused | o [o] o | o [[o [o | o | o |
7 0
PTSBLOCK | PTS Block Size |
15 8
PTSDST (HI) ‘ PTS Destination Address (high byte) ‘
7 0
PTSDST (LO) ‘ PTS Destination Address (low byte) ‘
15 8
PTSSRC (HI) \ PTS Source Address (high byte) \
7 0
PTSSRC (LO) ‘ PTS Source Address (low byte) ‘
7 0
PTSCON | M2 | m1i | m | Bw [[su [bu | s | D |
7 0
PTSCOUNT ‘ Consecutive Block Transfers ‘
Register Location Function

PTSBLOCK | PTSCB +6 | PTS Block Size

Specifies the number of bytes or words in each block. Valid values are
1-32, inclusive.

PTSDST PTSCB + 4 | PTS Destination Address

Write the destination memory location to this register. A valid address is
any unreserved memory location; however, it must point to an even
address if word transfers are selected.

PTSSRC PTSCB + 2 | PTS Source Address

Write the source memory location to this register. A valid address is any
unreserved memory location; however, it must point to an even address
if word transfers are selected.

Figure 5-13. PTS Control Block — Block Transfer Mode

5-25

8XC196Kx, Jx, CA USER'S MANUAL InU®

PTS Block Transfer Mode Control Block (Continued)

Register Location Function
PTSCON PTSCB +1 | PTS Control Bits
M2:0 | PTS Mode
These bits select the PTS mode:
M2 M1 MO
0 0 0 block transfer mode
BW Byte/Word Transfer
0 = word transfer
1 = byte transfer
SuU Update PTSSRC
0 = reload original PTS source address after each block
transfer is complete
1 = retain current PTS source address after each block transfer
is complete
DU Update PTSDST
0 = reload original PTS destination address after each block
transfer is complete
1 = retain current PTS destination address after each block
transfer is complete
SI PTSSRC Autoincrement
0 = do not increment the contents of PTSSRC
1 = increment the contents of PTSSRC after each byte or word
transfer
DI PTSDST Autoincrement
0 = do notincrement the contents of PTSDST
1 = increment the contents of PTSDST after each byte or word
transfer
PTSCOUNT | PTSCB + 0 | Consecutive Block Transfers
Defines the number of blocks that will be transferred during the block
transfer routine. Each block transfer is one PTS cycle. Maximum number
is 255.

Figure 5-13. PTS Control Block — Block Transfer Mode (Continued)

5.6.5 A/D Scan Mode

In the A/D scan mode, the PTS causes the A/D converter to perform multiple conversions on one
or more channels and then stores the results in a table in memory. Figure 5-14 shows the PTS con

trol block for A/D scan mode.

5-26

intel.

STANDARD AND PTS INTERRUPTS

PTS A/D Scan Mode Control Block

In A/D scan mode, the PTS causes the A/D converter to perform multiple conversions on one or more
channels and then stores the results. The control block contains pointers to both the AD_RESULT
register and a table of A/D conversion commands and results (PTSPTR1 and PTSPTR2), a control
register (PTSCON), and a A/D conversion count (PTSCOUNT).

7 0
Unused | o [o] o | o[o o] o |
7 0
Unused | o | o | o [o [o o] o |
15 8
PTSPTR2 (H) \ Pointer 2 Value (high byte) \
7 0
PTSPTR2 (L) \ Pointer 2 Value (low byte) \
15 8
PTSPTRL (H) \ Pointer 1 Value (high byte) |
7 0
PTSPTRI (L) \ Pointer 1 Value (low byte) \
7 0
PTSCON | M [m | mo | o [fupoT| o | 1 |
7 0
PTSCOUNT ‘ Consecutive A/D Conversions ‘
Register Location Function
PTSPTR2 PTSCB + 4 | Pointer 2 Value
This register contains the address of the A/D result register
(AD_RESULT).
PTSPTR1 PTSCB + 2 | Pointer 1 Value
This register contains the address of the table of A/D conversion
commands and results.
PTSCON PTSCB + 1 | PTS Control Bits
M2:0 | PTS Mode
These bits specify the PTS mode:
M2 M1 MO
1 1 0 A/D Scan Mode
UPDT | Update
0 = reload original PTSPTR1 value after each A/D scan
1 = retain current PTSPTRL1 value after each A/D scan
Figure 5-14. PTS Control Block — A/D Scan Mode

5-27

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

PTS A/D Scan Mode Control Block (Continued)

PTSCOUNT | PTSCB + 0 | Consecutive A/D Conversions

Defines the number of A/D conversions that will be completed during the
A/D scan routine. Each cycle consists of the PTS transferring the A/D
conversion results into the command/data table, and then loading a new
command into the AD_COMMAND register. Maximum number is 255.

Figure 5-14. PTS Control Block — A/D Scan Mode (Continued)

To use the A/D scan mode, you must first set up a command/data table in memory (Table 5-7).
The command/data table contains A/D commands that are interleaved with blank memory loca-
tions. The PTS stores the conversion results in these blank locations. Only the amount of available
memory limits the table size; it can reside in internal or external RAM.

Table 5-7. A/D Scan Mode Command/Data Table

XXX + OAH A/D Result 2
XXX + 8H Unused ‘ A/D Command 3t
XXX + 6H A/D Result 1
XXX+ 4H Unused ‘ A/D Command 2
XXX + 2H A/D Result 0Tt
XXX Unused ‘ A/D Command 1

T Write 0000H to prevent a new conversion at the end of the routine.
T Result of the A/D conversion that initiated the PTS routine.

To initiate A/D scan mode, enable the A/D conversion complete interrupt and assign it to the PTS.
Software must initiate the first conversion. When the A/D finishes the first conversion and gen-
erates an A/D conversion complete interrupt, the interrupt vectors to the PTSCB and initiates the
A/D scan routine. The PTS stores the conversion results, loads a new command into
AD_COMMAND, and then decrements the number in PTSCOUNT. As each additional conver-
sion complete interrupt occurs, the PTS repeats the A/D scan cycle; it stores the conversion re-
sults, loads the next conversion command into the AD_COMMAND register, and decrements
PTSCOUNT. The routine continues until PTSCOUNT decrements to zero. When this occurs,
hardware clears the enable bit in the PTSSEL register, which disables PTS service, and sets the
PTSSRYV bit, which requests an end-of-PTS interrupt. The interrupt service routine could process
the conversion results and then re-enable PTS service for the A/D conversion complete interrupt.
Because the lower six bits of thd RESULT register contain status information, the-efd

PTS interrupt service routine could shift the results data to the right six times to leave only the
conversion results in the memory locations. See AP-8XE196KR Peripherals: A User's Point

of View for application examples with code.

5-28

Int€|® STANDARD AND PTS INTERRUPTS

5.6.5.1 A/D Scan Mode Cycles

Software must start the first A/D conversion. After the A/D conversion completelpt ini-
tiates the PTS routine, the following actions occur.

1. The PTS reads the first command, stores it in a temporary location, and increments the
PTSPTR1 register twice. PTSPTR1 now points to the first blank location in the
command/data table (address XXXX + 2).

2. The PTS reads the AD_RESULT register, stores the results of the first conversion into
location XXXX + 2 in the command/data table, and increments the PTSPTRL1 register
twice. PTSPTR1 now points to XXXX + 4.

3. The PTS loads the command from the temporary location intdAEheCOMMAND
register. This completes the first A/D scan cycle and initiates the next A/D conversion.

4. 1f UPDT (PTSCON.3) is clear, the original address is reloaded into the PTSPTR1 register.
The next cycle will use the same command and overwrite previous data. If UPDT is set,
the updated address remains in PTSPTR1 and the next cycle will use a new command and
store the conversion results at the new address.

5. PTSCOUNT is decremented and the CPU returns to reguagrgon execution. When the
next A/D conversion complete interrupt occurs, the cycle repeats. When PTSCOUNT
reaches zero, hardware clears the corresponding PTSSEL bit and sets the PTSSRV hit,
which requests the end-of-PTS interrupt.

5.6.5.2 A/D Scan Mode Example 1

The command/data table shown in Table 5-8 sets up a series of A/D conversions, beginning with
channel 7 and ending with channel 4. Each table entry is a word (two bytes). Table 5-9 shows the
corresponding PTSCB.

Software starts a conversion on channel 7. Upon completion of the conversion, the A/D conver-

sion complete interrupt initiates the A/D scan mode routine. Step 1 stores the channel 6 command
in a temporary location and increments PTSPTRID@R2H. Step 2 stes the result of the channel

7 conversion in location 3002H and increments PTSPTR1 to 3004H. Step 3 loads the channel 6
command from the temporary location into the AD_COMMAND register to start the next con-

[| 5-29

8XC196Kx, Jx, CA USER'S MANUAL InU®

version. Step 4 updates PTSPTR1 (PTSPTR1 now points to 3004H) and step 5 decrements
PTSCOUNT to 3. The next cycle begins by storing the channel 5 command in the temporary lo-
cation. During the last cycle (PTSCOUNT = 1), the dummy command is loaded into the
AD_COMMAND register and no conversion is performed. PTSCOUNT is decremented to zero
and the end-of-PT®iterrupt is requested.

Table 5-8. Command/Data Table (Example 1)

Address Contents
300EH AD_RESULT for ACH4
300CH 0000H (Dummy command)
300AH AD_RESULT for ACH5
3008H AD_COMMAND for ACH4
3006H AD_RESULT for ACH6
3004H AD_COMMAND for ACH5
3002H AD_RESULT for ACH7
3000H AD_COMMAND for ACH6

Table 5-9. A/D Scan Mode PTSCB (Example 1)
Unused

Unused
PTSPTR2 (HI) = 1FH
PTSPTR2 (LO) = AAH
PTSPTR1 (HI) = 30H
PTSPTR1 (LO) = 00H
PTSCON = CBH (Mode = 110, UPDT =1)
PTSCOUNT = 04H

5.6.5.3 A/D Scan Mode Example 2

Table 5-11 sets up a series of ten PTS cycles, each of which reads a single A/D channel and store
the result in a single location (3002H). The UPDT bit (PTSCON.3) is cleared so that original con-
tents of PTSPTR1 are restored after the cycle. The command/data table is shown in Table 5-10.

Table 5-10. Command/Data Table (Example 2)

Address Contents
3002H AD_RESULT for ACHx
3000H AD_COMMAND for ACHx

5-30 [|

Int€|® STANDARD AND PTS INTERRUPTS

Table 5-11. A/D Scan Mode PTSCB (Example 2)
Unused

Unused
PTSPTR2 (HI) = 1FH
PTSPTR2 (LO) = AAH
PTSPTR1 (HI) = 30H
PTSPTR1 (LO) = 00H
PTSCON = C3H (Mode = 110, UPDT = 0)
PTSCOUNT = OAH

Software starts a conversion on chanon&hen the conversion is finished and the A/D conver-

sion complete interrupt is genegdt the A/D scan mode routine begins. The PTS reads the com-
mand in location 3000H and stores it in a temporary location. Then it increments PTSPTR1 twice
and stores the value of the AD_RESULT register in location 3002H. The final step is to copy the
conversion command from the temporary location to the AD_COMMAND register. The CPU
could process or move the conversion results data from the table before the next conversion com-
pletes and a new PTS cycle begins. When the next cycle begins, PTSPTR1 again o0asito

and the repeats the events of the first cycle. The value of the AD_RESULT register is written to
location 3002H and the command at location 3000H is re-executed.

5.6.6 PWM Modes

The PWM toggle and PWM remap modes are designed for use with the event processor array
(EPA) to generate pulse-width modulated (PWM) output signals. These modes can also be used
with an interrupt signal from any other source. The PWM toggle mode uses a single EPA channel
to generate a PWM signal. The PWM remap mode uses two EPA channels, but it can generate
signals with duty cycles closer to 0% or 100% than are possible with the PWM toggle mode. Ta-
ble 5-12 compares the two PWM modes. For code examples, see ARXEAIRN6KR Peripher-

als: A User’s Point of Viewnd “EPA PWM Output Program” on page 10-35.

Table 5-12. Comparison of PWM Modes

PWM Toggle Mode PWM Remap Mode
Reads the location specified by PTSPTR1 Reads the location specified by PTSPTR1
(usually EPAX_TIME). (usually EPAX_TIME).
Adds one of two values to the location specified by | Adds the value in PTSCONSTL1 to the location
PTSPTRL. If TBIT is clear, it adds the value in specified by PTSPTR1.
PTSCONSTL. If TBIT is set, it adds the value in
PTSCONST2.
Stores the sum back into the location specified by Stores the sum back into the location specified by
PTSPTR1. PTSPTR1.
Toggles TBIT. Toggles the unused TBIT.

5-31

8XC196Kx, Jx, CA USER'S MANUAL InU®

Figure 5-15 illustrates a generic PWM waveform. The time the output is “on” is T1; the time the
output is “off” is T2 — T1. The formulas for frequency and duty cyclesamvn below. In most
applications, the frequency is held constant and the duty cycle is varied to change the average val-
ue of the waveform.

1
Frequency, in Hertz = —
a y T2

T1
Duty Cycle = — x100%
T2

Output Value
1 on off on off
0
0 1;1 'I;2 T2+T1 Time, t
On-time =T1 Off—timeY: T2-T1

A0263-02

Figure 5-15. A Generic PWM Waveform

The PWM modes do not use a PTSCOUNT register to specify the number of consecutive PTS
cycles. To stop produng the PWM output, clear the PTSSKkbit to disable PTS service for the
interrupt and reconfigure the EPA channel in the interrupt service routine.

5.6.6.1 PWM Toggle Mode Example

Figure 5-16 shows the PTS control block for PWM toggle mode. To generate a PWM waveform
using PWM toggle mode and EPAO, complete the following procedure. This example uses the
values stored in CSTOREL and CSTORE2 to control the frequency and duty cycle of a PWM.

1. Disable the interrupts and the PTS. The DI instruction disables all standard interrupts; the
DPTS instruction disables the PTS.

2. Store the on-time (T1) in CSTOREL.
3. Store the off-time (T2 - T1) in CSTORE2.

5-32 [|

Inu® STANDARD AND PTS INTERRUPTS

4. Set up the PTSCB as shown in Table 5-13:
— Load PTSCON with 43H (selects PWM toggle mode, initial TBIT value = 1)
— Set up PTSPTR1 to point to EPAO_TIME (the EPAO event-time register)
— Load PTSCONST1 with the on-time (T1) from CSTOREL.
— Load PTSCONST2 with the off-time (T2 — T1) from CSTORE2.

5. Configure P1.0 to serve as the EPAO output:
— Clear P1_DIR.0 (selects output)
— Set P1_MODE.O (selects the EPAO special-function signal)
— Set P1_REG.O0 (initializes the output to “1")

6. Setup EPAO:
— Load EPAO_CON with 0078H (timer 1, compare, toggle output pin, re-enable)
— Load EPAO_TIME with the value in PTSCONSTL1 (selects T1 as first event time)

— Load TICONTROL with C2H (enables timer 1, selects up counting,gf4 and
enables the divide-by-four prescaler)

7. Enable the EPAO interrupt and select PTS service for it:
— Set INT_MASK.4
— Set PTSSEL.4

8. Enable the interrupts and the PTS. Their&truction enables interrupts; the EPTS
instruction enables the PTS.

Table 5-13. PWM Toggle Mode PTSCB
PTSCONST2 (HI) = T2 — T1 (HI)
PTSCONST2 (LO) = T2 — T1 (LO)
PTSCONST1 (HI) = T1 (HI)
PTSCONST1 (LO) = T1 (LO)

PTSPTR1 (HI) = 1FH
PTSPTR1 (LO) = 62H
PTSCON = 43H (Mode = 010, TMOD =1, TBIT = 1)

Unused

[| 5-33

8XC196Kx, Jx, CA USER'S MANUAL InU®

PTS PWM Toggle Mode Control Block

In PWM toggle mode, the PTS uses a single EPA channel to generate a pulse-width modulated (PWM)
output signal. The control block contains registers that contain the PWM on-time (PTSCONST1), the
PWM off-time (PTSCONST2), the address pointer (PTSPTR1), and a control register (PTSCON).

7 0
PTSCONST2 (H) \ PWM Off-time (high byte) |
7 0
PTSCONST2 (L) \ PWM Off-time (low byte) \
15 8
PTSCONST1 (H) ‘ PWM On-time (high byte) ‘
7 0
PTSCONSTL (L) \ PWM On-time (low byte) |
15 8
PTSPTRL (H) \ Pointer 1 Value (high byte) \
7 0
PTSPTRL (L) ‘ Pointer 1 Value (low byte) ‘
7 0
PTSCON | m2 | v [m | — || — [— |[mvop] TBIT |
7 0
Unused ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘
Register Location Function

PTSCONST2 | PTSCB + 6 | PWM Off-time
Write the desired PWM off-time to these bits.

PTSCONST1 | PTSCB + 4 | PWM On-time
Write the desired PWM on-time to these bits.

PTSPTR1 PTSCB + 2 | Pointer 1 Value
These bits point to a memory location, usually EPAx_TIME.

Figure 5-16. PTS Control Block — PWM Toggle Mode

5-34

Inu® STANDARD AND PTS INTERRUPTS

PTS PWM Toggle Mode Control Block (Continued)

Register Location Function

PTSCON PTSCB + 1 | PTS Control Bits

M2:0 PTS Mode

These bits specify the PTS mode:
M2 M1 MO

0 1 0 PWM

TMOD | Toggle Mode Select

1= PWM toggle mode

TBIT Toggle Bit Initial Value
Determines the initial value of TBIT.

0 = selects initial value as zero

1 = selects initial value as one

The TBIT value determines whether PTSCONST1 or
PTSCONST2 is added to the PTSPTR1 value:

0 = PTSCONST1 is added to PTSPTR1

1 =PTSCONST2 is added to PTSPTR1

Reading this bit returns the current value of TBIT, which is
toggled by hardware at the end of each PWM toggle cycle.

Figure 5-16. PTS Control Block — PWM Toggle Mode (Continued)

Figure 5-17 is a flow diagram of the EPA and PTS operations for this example. Operation begins
when the timer is enabled (at t = 0 in Figure 5-15 on page 5-3@®)ehbyrite to TLCONTROL.
The first timer match occurs at t = T1. The EPA toggles the output pin to zero and generates an
interrupt to initiate the first PTS cycle.
PWM Toggle Cycle 1.Because TBIT is initialized to one, the PTS adds the off-time (T2 —
T1) to EPAO_TIME and toggles TBIT to zero.

The second timer match occurs at t = T2 (the end of one complete PWM pulse). The EPA toggles
the output to one and generates an interrupt to initiate the second PTS cycle.
PWM Toggle Cycle 2.Because TBIT is zero, the PTS adds the on-time (T1) to
EPAOQO_TIME and toggles the TBIT to one.

The next timer match occurs att = T2 + T1. The EPA toggles the output to zero and initiates the

third PTS cycle. The PTS actions are the same as in cycle 1, and generation of the PWM output
continues with PTS cycle 1 and cycle 2 alternating.

[| 5-35

8XC196Kx, Jx, CA USER'S MANUAL Inu®

EPA

Y

Toggle Output

PTS Cycle
\ i
EPAQO_TIME = EPAO_TIME + T1 EPAO_TIME = EPAO_TIME + (T2 - T1)

\i

Toggle TBIT

A2552-02

Figure 5-17. EPA and PTS Operations for the PWM Toggle Mode Example

Software can change the duty cycle during the PWM operation. When a duty cycle change is re-
quired, theprogram writes new values of T1 and T2 - T1to CSTORE1 and CSTOREZ2 and selects
normal interrupt service for the next EPAOQ interrupt. When the next timer match occurs, the out-
put is toggled, and the device executes a normal interrupt service routine, wiiocshmpehese
operations:

1. The routine writes the new value of T1 (in CSTORE1) to PTSCONST1 and the new value
of T1 — T2 (in CSTOREZ2) to PTSCONST2.

2. It selects PTS service for the EPAO interrupt.

5-36

Int€|® STANDARD AND PTS INTERRUPTS

When the next timer match occurs, the PTS cycle (Figure 5-17) increments EPAO_TIME by T1
(if TBIT is zero (output = 0)) or T2 — T1 (if TBIT is one (output = 1)). (Note that although the
values of the EPAO output and TBIT are the same in this example, these two values are unrelated.
To establish the initial value of the output, set or clear P1_REG.

The PWM toggle mode has the advantage of using only one EPA channel. However, if the wave-
form edges are close together, the PTS may take too long and miss setting up the next edge. Th
PWM remap mode uses two EPA channels to eliminate this problem.

5.6.6.2 PWM Remap Mode Example

Figure 5-18 shows the PTS control block for PWM remap mode. This example uses two EPA
channels and a single timer to generate a PWM waveform in PWM remap mode. EPAO sets the
output, and EPAL clears it. For each channel, an interrupt is generated every T2 period, but the
comparison times for the channels are offset by the on-time, T1 (see Figure 5-15 on page 5-32).
Although TBIT is toggled at the end of every PWM remap mode cycle (see Table 5-12 on page
5-31), it plays no role in this mode. To generate a PWM waveform, follow this procedure.

1. Disable the interrupts and the PTS. The DI instruction disables all interrupts; the DPTS
instruction disables the PTS.

2. Set up one PTSCB for EPAO and one for EPA1 as shown in Table 5-14hkiotke two
blocks are identical, except that PTSPTR1 points to EPAO_TIME for EPAO and to
EPA1_TIME for EPAL.

3. Configure P1.1 to serve as the EPAL output. (Because EPAO is not used as an output, port
pin P1.0 can be used for standard 1/0.)
— Clear P1_DIR.1 (selects output)
— Set P1_MODE.1 (selects the EPAO special-function signal)
— Set P1_REG.1 (initializes the output to “1")

5-37

8XC196Kx, Jx, CA USER'S MANUAL

Table 5-14. PWM Remap Mode PTSCB

PTSCBO for EPAO

PTSCB1 for EPA1

Unused

Unused

Unused

Unused

PTSCONST1 (HI) = T2 (HI)

PTSCONST1 (HI) = T2 (HI)

PTSCONST1 (LO) = T2 (LO)

PTSCONST1 (LO) = T2 (LO)

PTSPTR1 (HI) = 1FH (EPAO_TIME, HI)

PTSPTR1 (HI) = 1FH (EPA1_TIME, HI)

PTSPTR1 (LO) = 62H (EPAO_TIME, LO)

PTSPTR1 (LO) = 66H (EPAL_TIME, LO)

PTSCON = 40H (Mode = 010, TMOD = 0)

PTSCON = 40H (Mode = 010, TMOD = 0)

Unused

Unused

5-38

Set up EPAO and EPAL:

— Load EPAO_CON with 68H (timer 1, compare mode, set output pin, re-enable).
— Load EPA1_CON with 158H (timer 1, compare mode, clear output pin, re-enable,

remap enabled).

— Load EPAO_TIME with O000H (selects time 0 as first event time for EPAO).

— Load EPA1_TIME with the value of T1 (selects time T1 as first event time for EPAL).
— Load timer 1 with FFFFH to ensure that the EPAO event time (t = 0) is matched first.
—Load TICONTROL with C2H (enables timer 1, selects up-counting,at4 and

enables the divide-by-four prescaler).

Enable the EPAO and EPAL interrupts and select PTS service for them:

— Set INT_MASK.4 and INT_MASK.3.

— Set PTSSEL.4 and PTSSEL.3

Enable the interrupts and the PTS. Theif&truction enables interrupts; the EPTS

instruction enables the PTS.

intel.

STANDARD AND PTS INTERRUPTS

PTS PWM Remap Mode C

ontrol Block

In PWM remap mode, the PTS uses two EPA channels to generate a pulse-width modulated (PWM)
output signal. The control block contains registers that contain the PWM on-time (PTSCONST1), the

address pointer (PTSPTR1

), and a control register (PTSCON).

7 0
Unused | o | o | o | o[o] o | o |
7 0
Unused ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 0 ‘
15 8
PTSCONSTL (HI) ‘ PWM Const 1 Value (high byte) ‘
7 0
PTSCONSTL (LO) \ PWM Const 1 Value (low byte) |
15 8
PTSPTRL (HI) \ Pointer 1 Value (high byte) \
7 0
PTSPTRL (LO) ‘ Pointer 1 Value (low byte) ‘
7 0
PTSCON | M | v | mo | — || — | — |[Tvop | TBIT |
7 0
Unused ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ ‘ 0 ‘ 0 ‘ 0 ‘
Register Location Function

PTSCONST1 | PTSCB + 4

PWM Const 1 Value
Write the desired PWM on-time to these bits.

PTSPTR1 PTSCB + 2

Pointer 1 Value
These bits point to a memory location, usually EPAx_TIME.

Figure 5-18. PTS Control Block - PWM Remap Mode

5-39

8XC196Kx, Jx, CA USER'S MANUAL InU®

PTS PWM Remap Mode Control Block (Continued)

Register

Location

Function

PTSCON

PTSCB + 1

PTS Control Bits

M2:0

PTS Mode
These bits specify the PTS mode:

M2 M1 MO
0 1 0 PWM

TMOD

Remap Mode Select
0 = PWM remap mode

TBIT

Toggle Bit Initial Value

Determines the initial value of TBIT.

1 = selects initial value as one

0 = selects initial value as zero

The TBIT value determines whether PTSCONST1 or
PTSCONST2 is added to the PTSPTR1 value:

1 =PTSCONST2 is added to PTSPTR1

0 =PTSCONST1 is added to PTSPTR1

Reading this bit returns the current value of TBIT, which is
toggled by hardware at the end of each PWM remap cycle.

In PWM remap mode, the TBIT value is not used; PTSCONST1
is always added to the PTSPTR1 value. However, the unused
TBIT still toggles at the end of each PWM remap cycle.

Figure 5-19 shows the EPA and PTS operations for this example. The first timer match occurs at

Figure 5-18. PTS Control Block — PWM Remap Mode (Continued)

t = 0 for EPAO, which sets the output and generates an interrupt.
PWM Remap Cycle 1.The PTS adds T2 to EPAO_TIME and toggles the TBIT.

The output remains set until the second timer match occurs at T1 for EPA1, which clears the out-

put and generates an interrupt.
PWM Remap Cycle 2.The PTS adds T2 to EPA1_TIME and toggles the TBIT.

Alternating EPAO and EPAL1 interrupts continue, with EPAO setting the output and EPAL clearing

It.

5-40

Inu® STANDARD AND PTS INTERRUPTS

EPA
If EPAO, set the output
If EPA1L, clear the output
Y PTS Cycle

If EPAO: EPAO_TIME = EPAO_TIME + T2
If EPAL1: EPAL_TIME = EPA1_TIME + T2

Y

Toggle TBIT
(TBIT is not used)

A2553-01

Figure 5-19. EPA and PTS Operations for the PWM Remap Mode Example

You can change the duty cycle by changing the time that the output is high and keeping the period
constant. After a timer match occurs for EPA1 (when the output falls), schedule the next EPA1
match for T2 + DT, where DT is the time to be added to the on-time. Thereafter, setheddst

EPA1 match for T2. You can do this by replacing one EPA1 PTS interrupt with a normal interrupt
(clear PTSSEL.3). Have the interrupt service routine add T2 + DT to EPA1_TIME and set
PTSSEL.3 to re-enable PTS service for EPAL. This adjustment changes the duty cycle without
affecting the period.

By using two EPA channels in the PWM remap mode, you can generate duty cycles closer to 0%

and 100% than is possible with PWM toggle mode. For further information about generating
PWM waveforms with the EPA, consult “Operating in Compare Mode” on page 10-13.

5-41

intgl.

/O Ports

CHAPTER 6
/O PORTS

I/0 ports provide a mechanism to transfer information between the device and the surrounding
system circuitry. They can read system status, monitor system operation, output device status,
configure system options, generate control sigraisyide serialcommunication, and so on.

Their usefulness in an application is limited only by the number of 1/O pins available and the
imagination of the engineer.

6.1 1/O0 PORTS OVERVIEW

Standard I/O port registers are located in the SFR address space and they can be windowed. Mem
ory-mapped I/O port registers are located in memory-mapped address space. They are indirectly
addressable only, and they cannot be windowed. All ports can provide low-speed input/output
pins or serve alternate functions. Table 6-1 provides an overview of the device I/O ports. The re-
mainder of this chapter describes the ports in more detail and explains how to configure the pins.
The chapters that cover the associated peripherals discuss using the pins for their special func-
tions.

Table 6-1. Device I/O Ports

Port Bits Type Direction Associated Peripheral(s)

8 (Kx)

Port 0 6 (CA, Jx) Standard Input-only A/D converter
8 (Kx) S .

Port 1 4 (CA, J%) Standard Bidirectional | EPA and timers

Port 2 8 (Kx) Standard Bidirectional | SIO, interrupts, bus control, clock gen
6 (CA, Jx) ,) , .

Port 3 8 Memory-mapped Bidirectional | Address/data bus

Port 4 8 Memory-mapped Bidirectional | Address/data bus

Port 5 8 Memory-mapped Bidirectional | Bus control, slave port

Port 6 8 Standard Bidirectional | EPA, SSIO

6.2 INPUT-ONLY PORT O

Port 0 is an eight-bit, high-impedance, input-only port. Its pins can be read as digital inputs; they
are also inputs to the A/D converter. Port O differs from the other ports in that its pins can be used
only as inputs to the digital or analog circuitry.

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Because port 0 is permanently configured as an input-only port, it has no configuration registers.
Its single registe?0_PIN,can be read to determine the current state of the pin. The register is
byte-addressable and can be windowed. (See Chapter 4, “Memory Partitions.”)

Table 6-2 lists the standard input-only port pins and Table 6-3 describes the PO_PIN status regis-
ter.

Table 6-2. Standard Input-only Port Pins

Port Pin Special-function Special-function Associated
Signal(s) Signal Type Peripheral
P0.7:0 (Kx), ACH7:0 (Kx), Input A/D converter
P0.7:2 (CA, Jx) ACH7:2 (CA, Jx)
Table 6-3. Input-only Port Registers
Mnemonic Address Description
PO_PIN 1FDAH Port O Input
Each bit of PO_PIN reflects the current state of the corresponding
port O pin.

6.2.1 Standard Input-only Port Operation

Figure 6-1 is a schematic of an input-only port pin. Transistors Q1 and Q2 serve as electrostatic
discharge (ESD) protection devices; they are referencedgoavid ANGND. Tansistor Q3 is

an additional ESD protection device; it is referenced ¢g(tfigital ground). Resistor R1 limits
current flow through Q3 to acceptable levels. At this point, the input signal is sent to the analog
multiplexer and to the digital level-translation buffer. The level-translation buffer converts the in-
put signals to work with the M4 and V¢ digital voltage levels used by the CPU core. This buffer

is Schmitt-triggered for improved noise immunity. The signals are latched in the PO_PIN register
and are output onto the internal bus when PO_PIN is read.

I nu ® I/0 PORTS

Internal Bus Vee VREeF VREer
To Analog MUX
PORTO Level I: Q1
Data Register Translation
Buffer PO_PIN Buffer 150 to 200 Ohms Input Pin
o of—<gl VWAN—— T
R1
LE
Q3 |: Q2
Read Port PH1 Clock
= = = <
Vss Vss Vss ANGND ANGND
A0236-01

Figure 6-1. Standard Input-only Port Structure

6.2.2 Standard Input-only Port Considerations

Port 0 pins are unique in that they may individually be used as digital inputs and analog inputs at
the same time. However, reading the port induces noise into the A/D converter, decreasing the
accuracy of any conversion in progress. We strongly recommend thabtmad the port while

an A/D conversion is in progress. To reduce noisePthePIN register is clocked only when the

port is read.

These port pins are powered by the analog reference voltag$ €d analoground (ANGND)

pins. If the port pins are to function as either analog or digital inputs,gh@wd ANGND pins

must provide power. If the voltage applied to the analog input excegdsMANGND by more

than 0.5 volts, current will be driven through Q1 or Q2 into the reference circuitry, decreasing the
accuracy of all analog conversions.

The port pin is sampled one state time before the read buffer is enabled. Sampling occurs during
phase 1 (while CLKOUT is low) and resolves the value of the pin before it is presented to the
internal bus. Tomsure that the value is recognized, itshbe valid 45 ns before the rising edge

of CLKOUT and must remain valid until CLKOUT falls. If the pin value changes during the sam-
ple time, the new value may or may not be recorded.

As a digital input, a pin acts as a high-impedance input. However, as an analog input, a pin must
provide current for a short time to charge the internal sample capacitor when a conversion begins.
This means that if a conversion is taking place on a port pin, its input characteristics change mo-
mentarily.

8XC196Kx, Jx, CA USER'S MANUAL

intgl.
6.3 BIDIRECTIONAL PORTS 1, 2,5, AND 6

Although the bidirectional ports are very similar in both circuitry and configuration, port 5 differs
from the others in some ways. Port 5, a memory-mapped port, uses a standard CMOS input buffer
because of the high speeds required for system control functions. The remaining bidirectional
ports use Schmitt-triggered input buffers fioproved noise immunity.

NOTE

Ports 3 and 4 are significantly different from the other bidirectional ports. See
“Bidirectional Ports 3 and 4 (Address/Data Bus)” on page 6-15 for details on
the structure and operation of these ports.

Table 6-4 lists the bidirectional port pins with their special-function signals and associated periph-
erals.

Table 6-4. Bidirectional Port Pins
Port Pin Speci_al—function Spe_cial—function Assc_)ciated
Signal(s) Signal Type Peripheral
EPAO 110 EPA
P1.0 -
T2CLK [Timer 2
P1.1 EPA1 110 EPA
EPA2 110 EPA
P1.2 -
T2DIR [Timer 2
P1.3 EPA3 110 EPA
P1.4f EPA4 110 EPA
P1.5" EPAS5 110 EPA
P1.6' EPAG6 110 EPA
P1.7f EPA7 110 EPA
P2.0 TXD O SIO
pP2.1 RXD 110 SIO
pP2.2 EXTINT | Interrupts
p2.3t BREQ# (o] Bus controller
P2.4 INTOUT# O Interrupts
p2.5f HOLD# I Bus controller
P2.6 HLDA# O Bus controller
pP2.7 CLKOUT (0] Clock generator
P50 ALE/ADV# O Bus controller
SLPALE [Slave port

TThis pin is not implemented on 8XC196Jx and 87C196CA devices.

T1This pin is not implemented on 8XC196Jx devices.

T11P5.4/SLPINT is not implemented on 8XC196Jx devices. P5.4 is
implemented on the 87C196CA as a low-speed input/output pin (but it is not
multiplexed with SLPINT).

6-4

Table 6-4. Bidirectional Port Pins (Continued)

I/0 PORTS

Port Pin Speci_al—function Spe_cial—function Assc_)ciated
Signal(s) Signal Type Peripheral
INST O Bus controller
P5.1t
SLPCS# [Slave port
P52 WR#/WRL# (0] Bus controller
SLPWR# [Slave port
P53 RD# (0] Bus controller
SLPRD# | Slave port
P5.411T SLPINTTT) Slave port
P5.5tf BHE#/WRH# 0 Bus controller
P5.61t READY I Bus controller
P5.71t BUSWIDTH I Bus controller
P6.0 EPA8 110 EPA
P6.1 EPA9 110 EPA
P6.2t T1CLK [Timer 1
P6.3t T1DIR [Timer 1
P6.4 SCO 110 SSIO0
P6.5 SDO 110 SSIO0
P6.6 SC1 110 SSI01
P6.7 SD1 110 SSI01

TThis pin is not implemented on 8XC196Jx and 87C196CA devices.
T1This pin is not implemented on 8XC196Jx devices.

T11P5.4/SLPINT is not implemented on 8XC196Jx devices. P5.4 is
implemented on the 87C196CA as a low-speed input/output pin (but it is not
multiplexed with SLPINT).

Table 6-5 lists the registers associated with the bidirectional ports. Each port has three control reg-
isters (K_MODE, B _DIR, and R_REG); they can be both read and written. ThePN regis-

ter is a status register that returns the logic level present on the pins; it can only be read. The
registers for the standard ports are byte-addressable and wamdogved. The port 5 registers

must be accessed using 16-bit addressingcandot be windowed. “Bidirectional Port Consid-
erations” on page 6-12 discusses special considerations for reading P2_REG.7 and P6_REG.7:4

Table 6-5. Bidirectional Port Control and Status Registers

Mnemonic Address Description
P1 DIR 1FD2H Port x Direction
P2_DIR 1FCBH Each bit of Px_DIR controls the direction of the corresponding pin.
P5_DIR 1FF3H _
P6 DIR 1FD3H 0 —_complementary o_utput (output only) o
- 1 =input or open-drain output (input, output, or bidirectional)
Open-drain outputs require external pull-ups.

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 6-5. Bidirectional Port Control and Status Registers (Continued)

Mnemonic Address Description
P1_MODE 1FDOH Port x Mode
P2_MODE 1FCOH Each bit of Px_MODE controls whether the corresponding pin
P5_MODE 1FF1H functions as a standard I/O port pin or as a special-function signal.
P6_MODE 1FD1H

0 = standard I/O port pin
1 = special-function signal

P1_PIN 1FD6H Port x Input

P2_PIN 1FCFH Each bit of Px_PIN reflects the current state of the corresponding
P5_PIN 1FF7H pin, regardless of the pin configuration.

P6_PIN 1FD7H

P1_REG 1FD4H Port x Data Output

P2_REG 1FCDH For an input, set the corresponding Px_REG bit.

P5_REG 1FF5H

P6 REG 1FD5H For an output, w_rite the data to be driver] out by gach pin to the

- corresponding bit of Px_REG. When a pin is configured as standard
1/0 (Px_MODE.x=0), the result of a CPU write to Px_REG is
immediately visible on the pin. When a pin is configured as a
special-function signal (Px_MODE.x=1), the associated on-chip
peripheral or off-chip component controls the pin. The CPU can still
write to Px_REG, but the pin is unaffected until it is switched back to
its standard I/O function.

This feature allows software to configure a pin as standard I/O (clear
Px_MODE.x), initialize or overwrite the pin value, then configure the
pin as a special-function signal (set Px_MODE.x). In this way, initial-
ization, fault recovery, exception handling, etc., can be done without
changing the operation of the associated peripheral.

6.3.1 Bidirectional Port Operation

Figure 6-2 shows the logic for drivirte output transistors, Q1 and Q2. €ah source at least
-3 mA at .. — 0.7 volts. Q2 can sink at least 3 mA at 0.45 volts. (Consult the datasheet for spec-
ifications.)

In I/O mode (selected by clearing MODEYy), Px_REG and R_DIR are input to the multiplex-
ers. These signals combine to drive the gates of Q1 and Q2 so that the output is high, low, or high
impedance. Table 6-6 is a logic table for I/O operation of these ports.

In special-function mode (selected by settixgfl®ODE y), SFDIR and SFDATAare input to the
multiplexers. These signals combine to drive the gates of Q1 and Q2 so that the output is high,
low, or high impedance. Special-function output signals clear SFDIR; special-function input sig-
nals set SFDIR. Table 6-7 is a logic table for special-function operation of theseepertsf a

pin is to be used in specifincton mode, you must still initialize the pin as an input or output

by writing to _DIR.

6-6

I nt6| ® I/0 PORTS

Resistor R1 provides ESD protection for the pin. Input sigaaduffered. The standapdrts

use Schmitt-triggered buffers fanproved noise immunity. Portudses a standard input buffer
because of the high speeds required for system control functions. The signals are latched into the
Px_PIN sample latch and output onto the internal bus whenxhelR register is read.

The falling edge of RESET# turns on transistor Q3, which remains on for about 300 ns, causing
the pin to change rapidly to its reset state. The active-low level of RESET# turns on transistor Q4,
which weakly holds the pin high. (Q4 can source approximatelytAt@onsult the datasheet

for exact specifications.) Q4 remains on, weakly holding the pin high, until your software writes
to the X_MODE register.

NOTE (8XC196CA, JQ, JR, JT, JV, KQ, KR)

P2.7 is an exception. After reset, P2.7 carries the CLKOUT signal (half the
crystal input frequency) rather than being held high. When CLKOUT is
selected, it is always a complementary output.

8XC196Kx, Jx, CA USER'S MANUAL

Internal Bus

[Px_REG }

| R

SFDATA

["Px DIR }

SFDIR

[

IP MODEI

| MEaS il

Sample
Latch

Px_PIN

T

Read Port

{ — =

1/0 Pin

150Q to 200Q

LE

PH1 Clock

300ns Delay . |:
| No—— © TIL @
RESET# > O

RESET# ‘

Any Write to Px_MODE

<

Vce

Medium
Pullup

Py

Weak
Pullup

e

o)

(]

R1

A0238-04

Figure 6-2. Bidirectional Port Structure

I nu ® I/0 PORTS

Table 6-6. Logic Table for Bidirectional Ports in I/O Mode

Configuration Complementary Output O%S{g&?in Input

Px_MODE 0 0 0 0

Px_DIR 0 0 1 1

SFDIR X X X X

SFDATA X X X X

Px REG 0 1 0, 1 (Note 2) 1

Q1 off on off off

Q2 on off on, off (Note 2) off
Px_PIN 0 1 X (Note 3) high-impedance (Note 4)

NOTES:

1. X=Don'tcare.

2. If Px_REG is cleared, Q2 is on;if Px_REG is set, Q2 is off.
3. Px_PIN contains the current value on the pin.

4. During reset and until the first write to Px_MODE, Q3 is on.

Table 6-7. Logic Table for Bidirectional Ports in Special-function Mode

Configuration Complementary Output Opoelr;t—gl;?in Input

Px_MODE 1 1 1 1

Px_DIR 0 0 1 1

SFDIR 0 0 1 1

SFDATA 0 1 0, 1 (Note 2) 1

Px_REG X X X 1

Q1 off on off off

Q2 on off on, off (Note 2) off
Px_PIN 0 1 X (Note 3) high-impedance (Note 4)

NOTES:

1. X=Don'tcare.

2. If Px_REG s cleared, Q2 is on; if Px_REG is set, Q2 is off.
3. Px_PIN contains the current value on the pin.

4 During reset and until the first write to Px_MODE, Q3 is on.

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

6.3.2 Bidirectional Port Pin Configurations

Each bidirectional port pin can be individually configured to operate either as an I/O pin or as a
pin for a special-function signal. In the special-function configuration, the signal is controlled by
an on-chip peripheral or an off-chipmponent. In either configuiah, two modes are possible:

¢ complementary output (output only)

* high-impedance input or open-drain output (input, output, or bidirectional)

To prevent the CMOS inputs from floating, the bidirectional port pins are weakly pulled high dur-
ing and after reset, until your software writes o MMODE. The default values of the control reg-
isters after reset configure the pins as high-impedance inputs with weak pull-ups. To ensure that
the ports are initialized correctly and that the weak pull-ups are turned off, follow this suggested
initialization sequence:

1. Write to _DIR to establish the individual pins as either inputs or outputs. (Outputs will
drive the data that you specify in step 3.)

— For a complementary output, clear its PIR bit.

— For a high-impedance input or an open-drain output, sekitBIR bit. (Open-drain
outputs require external pull-ups.)

2. Write to k_MODE to select either I/O or special-function mode. Writing xoNPFODE
(regardless of the value written) turns off the weak pull-ups. Even if the entire port is to be
used as I/O (its default configuration after resgily must write to Px_MODE to ensure
that the weak pull-ups are turned off

— For a standard I/O pin, clear itsx MODE bit. In this mode, the pin is driven as
defined in steps 1 and 3.

— For a special-function signal, set itx MODE bit. In this mode, the associated
peripheral controls the pin.

3. Write to X_REG.

— For output pins defined in step 1, write the data that is to be driven by the pins to the
corresponding ® REG bits. For special-function outputs, the value is immaterial
because the peripheral controls the pin. However, you must still write RHES to
initialize the pin.

— For input pins defined in step 1, set the correspondin@REG bits.

Table 6-8 lists the control register values for eachiplessonfiguration.For special-function
outputs, the R_REG value is immaterial (don't care) because the assogatggheral controls

the pin in special-function mode. However, you must still writexdREG to initialize the pin.

For a bidirectional pin to function as an input (either special function or port pin), you must set
Px_REG.

6-10

I nu ® 1/0 PORTS

Table 6-8. Control Register Values for Each Configuration

Desired Pin Configuration Configuration Register Settings
Standard I/O Signal P x DIR | Px MODE T | Px REG
Complementary output, driving O 0 0 0
Complementary output, driving 1 0 0 1
Open-drain output, strongly driving 0 1 0 0
Open-drain output, high-impedance 1 0 1
Input 1 0 1
Special-function signal P x DIR | Px MODE T | Px REG
Complementary output, output value controlled by peripheral 0 1 X
Open-drain output, output value controlled by peripheral 1 1 X
Input 1 1 1

T During reset and until the first write to Px_MODE, the pins are weakly held high.

6.3.3 Bidirectional Port Pin Configuration Example

Assume that you wish to configure the pins of a bidirectional port as shown in Table 6-9.

Table 6-9. Port Configuration E xample

Port Pin(s) Configuration Data
Px.0, Px.1 high-impedance input high-impedance
Px.2, Px.3 open-drain output 0
Px.4 open-drain output 1 (assuming external pull-up)
Px.5, Px.6 complementary output 0
Px.7 complementary output 1

To do so, you could use the following example code segment. Table 6-10 shows the state of each
pin after reset and after execution of each line of the example code.
LDB Px_DIR,#00011111B

LDB Px_MODE,#00000000B
LDB Px_REG,#10010011B

[| 6-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 6-10. Port Pin States After Reset and After Example Code Execution

Action or Code

Resulting Pin States T

Px.7 Px.6 Px.5 Px.4 Px.3 Px.2 Px.1 Px.0

Reset

wkl wk1l wk1l wk1l wk1l wkl wk1l wk1l

LDB Px_DIR, #00011111B

1 1 1 wk1l wk1l wkl wk1l wkl

LDB Px_MODE, #00000000B 1 1 1 HZ1 HZ1 HZ1 HZ1 HZ1

LDB Px_REG, #10010011B

1 0 0 HZ1 0 0 HZ1 HZ1

T wk1 = weakly pulled high, HZ1 = high impedance (actually a “1” with an external pull-up).

6.3.4 Bidirectional Port Considerations

This section outlines special considerations for using the pins of these ports.

Port 1

Port 2

P2.2/EXTINT

P2.5/HOLD#

6-12

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P1_MODE. Writing to P1_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 6-2 on page 6-8). For this reason, even if
port 1 is to be used as it is configured at reset, you should still write
data into P1_MODE.

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P2_MODE. Writing to P2_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 6-2 on page 6-8). For this reason, even if
port 2 is to be used as it is configured at reset, you should still write
data into P2_MODE.

Writing to P2_MODE.2 sets the EXTINT interrupt pending bit. After
configuring the port pins, clear the interrupt pending register before
enabling interrupts. See “Design Considerations for External
Interrupt Inputs” on page 6-15.

8XC196Kx Only: If P2.5 is configured as a standard I/O port pin,
the device does not recognize signals on this pin as HOLD#. Instead,
the bus controller receives an internal HOLD signal. This enables the
device to access the external bus while it is performing I/O at P2.5.

intel.

P2.6/HLDA#

P2.7/CLKOUT

pP2.7

Port 5

P5.0/ALE

P5.1/INST

P5.2/WR#/WRL#

1/0 PORTS

The HLDA# pin is used in systems with more than one processor
using the system bus. This device asserts HLDA# to indicate that it
has freed the bus in response to HOLD# and another processor can
take control. (This signal is active low to avoid misinterpretation by
external hardware immediately after reset.)

P2.6/HLDA# is the enable pin for ONCE mode in certain 8XC206K
devices (see Chapter 14, “Special Operating Modes”) and one of the
enable pins for Intel-reserved test modes. Because a low input during
reset could cause the device to enter ONCE mode or a reserved test
mode,exercise cautionif you use this pin for input. Be certain that
your system meets the,Vspecification (listed in the datasheet)
during reset to prevent inadvertent entry into ONCE mode or a test
mode.

8XC196CA, JQ,JR, JT, JV, KQ, KR: Following reset, P2.7 carries
the strongly driven CLKOUT signal. It isot held high. When P2.7
is configured as CLKOUT, it is always a complementary output.

8XC196KS, KT: Following reset, P2.7 is weakly held high.

A value written to the upper bit of P2_REG (bit 7) is held in a buffer
until the corresponding P2_MODE bhit is cleared, at which time the

value is loaded into the P2_REG bit. A value read from P2_REG.7 is
the value currently in the register, not the value in the buffer.

Therefore, any change to P2_REG.7 can be read only after
P2 _MODE.7 is cleared.

After reset, the device configures port 5 to match the external system.
The following paragraphs describe the states of the port 5 pins after
reset and until your software writes to the P5_MODE register.
Writing to P5_MODE not only configures the pins but also turns off
the transistor that weakly holds the pins hi@# in Figure 6-2 on
page 6-8). For this reason, even if port 5 is to be used as it is
configured at reset, you should still write data into P5_MODE.

If EA# is high on reset (internal access), the pin is weaklyHighd
until your software writes to P5_MODE. If EA# is low on reset
(external access), either ALE or ADV# is activated as a system
control pin, depending on the ALE bit GfCRO. In either case, the
pin becomes a true complementary output.

8XC196Kx Only: This pin remains weakly held high untibur
software writes configuration data into P5_MODE.

This pin remains weakly held high until your software writes config-
uration data into P5_MODE.

6-13

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

P5.3/RD#

P5.4/SLPINT

P5.5/BHE#/WRH#

P5.6/READY

P5.7/BUSWIDTH

P6.0-P6.7

6-14

If EA# is high on reset (internal access), the pin is weaklyhimghd

until your software writes to P5_MODE. If EA# is low on reset
(external access), RD# is activated as a system control pin and the
pin becomes a true complementary output.

8XC196Kx Only: This pin is weakly held high until your software
writes to P5_MODE. P5.4/SLPINT is the enable pin for ONCE mode
in certain 8XC196KK devices (see Chapter 14, “Special Operating
Modes”) and one of the enable pins for Intel-reserved test modes.
Because a low input during reset could cause the device to enter
ONCE mode or a reserved test mogbesrcise cautionif you use this

pin for input. Be certain that your system meets tfjes@ecification
(listed in the datasheet) during reset to prevent inadvertent entry into
ONCE mode or a test mode.

This pin is weakly held high until t8&€B fetch is completed. At

that time, the state of this pin depends on the value of the BWO bit of
the CCRs. If BWO is clear, the pin remains weakly held high until
your software writes to P5_MODE. If BWO is set, BHE# is activated
as a system control pin and the pin becomes a true complementary
output.

8XC196CA, Kx Only: This pin remains weakly held high until the
CCB fetch is completed. At that time, the state of thisd@pends on
the value of the IRCO-IRC2 bits of the CCRs. If IRCO-IRC2 are all
set (111B), READY is activated as a system control pin. This
prevents the insertion of infinite wait statgson the first acess to
external menory. For any other values of IRCO-IRCRe pin is
configured as 1/O upon reset.

NOTE
If IRCO—-IRC2 of the CCB are all set (activating READY as a
system control pin) and P5_MODE.6 is cleared (configuring
the pin as I/0O), an external memory access may cause the
processor to lock up.

8XC196Kx Only: This pin remains weakly held high untibur
software writes configuration data into P5_MODE.

After reset, your software must configure the device to match the
external system. This is accomplished by writing appropriate config-
uration data into P6_MODE. Writing to P6_MODE not only
configures the pins but also turns off the transistor that weakly holds
the pins high (Q4 in Figure 6-2 on page 6-8). For this reason, even if
port 6 is to be used as it is configured at reset, you should still write
data into P6_MODE.

I nt6| ® 1/0 PORTS

P6.4-P6.7 A value written to any of the upper four bits of P6_ REG4bitsis
held in a buffer until the corresponding P6_MODE bhit is cleared, at
which time the value is loaded into the P6_REG bit. A value read
from a P6_REG bit is the value currently in the register, not the value
in the buffer. Therefore, any change to a P6_REG bit can be read
only after the corresponding P6_MODE bit is cleared.

6.3.5 Design Considerations for External Interrupt Inputs

To configure a port pin that serves as an external interrupt input, you must set the corresponding
bits in the configuration registers XADIR, Px MODE, and R REG). To configure
P2.2/EXTINT as an external interrupt input, we recommend the following sequence to prevent a
false interrupt request:

1. Disable interrupts by executing the DI instruction.
Set the R _DIR bit.

Set the R MODE bit.

Set the R_ REG bit.

Clear the INT_PEND and INT_PENDL1 bits.

o o M 0N

Enable interrupts (optional) by executing the El instruction.

6.4 BIDIRECTIONAL PORTS 3 AND 4 (ADDRESS/DATA BUS)

Ports 3 and 4 are eight-bit, bidirectional,m@y-mapped I/O ports. They can be addressed only
with indirect or indexed addressing and cannot be windowed. Ports 3 and 4 provide the multi-
plexed address/data bus. In programming modes, ports 3 and 4 serve as the programming bus
(PBUS). Port 3 can also serve as the slave port (8XCA86K). Port 5 supplies the bus-control
signals.

During external memory bus cycles, the processor takes control of ports 3 and 4 and automatical-
ly configures them as complementary output ports for driving address/data or as inputs for read-
ing data. For this reason, these ports have no mode registers.

Systems with EA# tied inactive do not use the address/data bus, and systems that do use the ac
dress/data bus have idle time between external bus cycles. When the address/data bus is not i
use, you can use the ports for I/O. Like port 5, these ports use standard CMOS input buffers. How-
ever, ports 3 and 4 must be configured entirely as complementary or open-drain ports; their pins
cannot be configured individually. Systems with EA# tied active cannot use ports 3 and 4 as stan-
dard I/O; when EA# is active, these ports will function only as the address/data bus.

[| 6-15

8XC196Kx, Jx, CA USER'S MANUAL

Table 6-11 lists the port 3 and 4 pins with their speftiattion sgnals and associated peripher-
als. Table 6-12 lists the registers that affect the function and indicate the status of ports 3 and 4.

intel.

Table 6-11. Ports 3 and 4 Pins

. Special-function Special-function . .
Port Pins Signal(s) Signal Type Associated Peripheral
AD7:0 I{e] Address/data bus, low byte
P3.7:0 PBUS7:0 I{e] Programming bus, low byte
SLP7:0 (Kx only) I{e] Slave port
P4.7:0 AD15:8 I{e] Address/data bus, high byte
o PBUS15:8 I{e] Programming bus, high byte
Table 6-12. Ports 3 and 4 Control and Status Registers
Mnemonic Address Description
P3_PIN 1FFEH Port x Input
P4_PIN 1FFFH Each bit of Px_PIN reflects the current state of the corresponding pin,
regardless of the pin configuration.
P3_REG 1FFCH Port x Data Output
P4_REG 1FFDH Each bit of Px_REG contains data to be driven out by the corresponding
pin.
When the device requires access to external memory, it takes control of
the port and drives the address/data bit onto the pin. The address/data
bit replaces your output during this time. When the external access is
completed, the device restores your data onto the pin.
P34_DRV 1FF4H Ports 3/4 Driver Enable Register

Bits 7 and 6 of the P34_DRYV register control whether ports 3 and 4,
respectively, are configured as complementary or open-drain. Setting a
bit configures a port as complementary; clearing a bit configures a port
as open-drain. These bits affect port operation only in I/0O mode.

6.4.1 Bidirectional Ports 3 and 4 (Address/Data Bus) Operation

Figure 6-3 shows the ports 3 and 4 logic. During reset, the active-low level of RESET# turns off
Q1 and Q2 and turns on transistor Q4, which weakly holds the pin high. (Q4 can source approx-
imately —1QuA at V.. — 1.0 volts; consult the datasheet for exact specifications.) Resistor R1 pro-

vides ESD protection for the pin.

During normal operation, the device controls the goagh BUS CONTROL SELECT, an in-
ternal control signal. When the device needs to access external memory, it clears BUS CONTROL
SELECT, selecting ADDRESS/DATA as the input to the multipleARDRESS/DATA then

drives Q1 and Q2 as complementary outputs. (Q1 can source at least —3 mA-at.v volts;
Q2 can sink at least 3 mA at 0.45 volts. Consult the datasheet for exact specifications.)

6-16

I ntel ® 1/0 PORTS

Internal Bus

Vce

Il Px_REG II l\l
ADDRESS/DATA J 'i o :“: Q1

1/0 Pin

Ki (]

BUS CONTROL SELECT
0=Address/Data
1=I/0

I -y :D_| o
RESET# L
Vss
Sample
Latch 150Q to 200Q § R1
Px_PIN Buffer
] o 5 <]I
rl LE
Read Port
PH1 Clock
Vce
Medium
Pullup
300ns Delay . [
o o 3
RESET#—4 Q

Vce

Weak
Pullup

4L«

A0240-03

Figure 6-3. Address/Data Bus (Ports 3 and 4) Structure

When external memory accessic required, the device sets BUS CONTROL SELECT, select-
ing Px_REG as the input to the multiplexek IREG then drives Q1 and Q2. If P34_DRYV is set,
Q1 and Q2 are driven as complementary outpu34 DRV is cleeed, Q1 is disabled and Q2
is driven as an open-drain output requiring an external pull-up resistor.

6-17

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

With the open-drain configuration (BUS CONTROL SELECT set BB4_ DRV clared) and
Px_REG set, the pin can be used as an input. The signal on the pin is latchedxirPine rég-

ister. The pins can be read, making it easy to see which pins are driven low by the device and
which are driven high by external drivers while in open-drain mode. Table 6-13 is a logic table
for ports 3 and 4 as 1/0.

Table 6-13. Logic Table for Ports 3 and 4 as I/0

Configuration Complementary Open-drain
P34 _DRV 1 1 0 0
Px_REG 0 1
Q1 off on off off
Q2 on off on off
Px_PIN 0 1 0 high-impedance

6.4.2 Using Ports 3 and 4 as I/O

Ports 3 and 4 must be configured entirely as complementary or open-drain ports; their pins cannot
be configured individually. To configure a port, first select complementary or open-drain mode
by writing to P34_DRV. Set a bit to configure the port as complementary; clear a hit to configure
the port as open-drain.

To use a port pin as an output, write the output data to thesporrding R_REG bit. In comple-
mentary mode, a pin is driven high when the correspondin® PG bit is set. In open-drain

mode, you need to connect an extemal-up resistor. When the device requires access to exter-

nal memory, it takes control of the port and drives the address/data bit onto the pin. The ad-
dress/data bit replaces your output during this time. When the external access is completed, the
device restores your data onto the pin.

To use a port pin as an input, first clear the @poading P34 _DRV bit to configure the port as
open-drain. Next, set the corresponding REG bit to drive the pin to a high-impedance state.
You may then read the pin’s input value in the PIN register. When the device requires access

to external memory, it takes control of the port. You must configure the input source to avoid con-
tention on the bus.

6-18

I nt6| ® 1/0 PORTS

6.4.3 Design Considerations for Ports 3 and 4

When EA# is active, ports 3 and 4 will functionly as the address/data bus. In these circum-
stances, an instruction that operates on P3_REG or P4_REG causes a bus cycle that reads fror
or writes to the external memory location corresponding to the SFR’s address. (For example, writ-
ing to P4_REG causes a bus cycle that writes to external memory location 1FFDH.) Because
P3_REG and P4_REG have no effect when EA# is active, the bus will float during long periods
of inactivity (such as during a BMOV or TIJMP instruction).

When EA# is inactive, ports 3 and 4 output the contents of the P3_REG and P4_REG registers.
Because these registers reset to FFH and the P34_DRYV register resets to 00H (open-drain mode)
ports 3 and 4 will float unless you either connect external resistors to the pins, write zeros to the

P3_REG and P4_REG registers, or write ones to the P34_DRYV register.

6-19

intgl.
7

Serial I1/O (SI10) Port

CHAPTER 7
SERIAL I/O (SIO) PORT

A serial input/output (SIO) port provides a means for the system to communicate with external
devices. This device has a serial I/0 (SIO) port that shares pins with port 2. This chapter describes
the SIO port and explains how to configure it. Chapter 6, “I/O Ports,” explains how to configure
the port pins for their special functions. Refer to Appendix B for details about the signals dis-
cussed in this chapter.

7.1 SERIAL I/O (SIO) PORT FUNCTIONAL OVERVIEW

The serial I/O port (Figure 7-1) is an asynchronous/syomadus port that includes a unigel
asynchronous receiver and transmitter (UART). The UART has one synchronous mode (mode 0)
and three asynchronous modes (modes 1, 2, and 3) for both transmission and reception.

Internal
Data
Bus

«— SBUF RX [=—{ Receive shift Register , |*— JRXD
L

_>| SBUF_TX |—>| Transmit Shift Register A |—'>D TXD
U L
Th=— Baud Rat
. aud Rate
Interrupts Control Logic Generator
R| ~—i
| sp_staTus || sp con |
SP_BAUD
MSB
Note:

The T1CLK clock source is unique to the 8XC196Kx.
For the 8XC196CA and Jx, XTAL1 must provide the clock signal.

A3137-01

Figure 7-1. SIO Block Diagram

The serial port receives data into the receive buffer; it transmits data from the port through the
transmit buffer. The transmit and receive buffers are separate registers, permitting simultaneous
reads and writes to both. The transmitter and receiver are buffered to support continuous trans-
missions and to allow reception of a second byte before the first byte has been read.

8XC196Kx, Jx, CA USER'S MANUAL InU®

An independent, 15-bit baud-rate generator controls the baud rate of the serial port. Either XTAL1
or TICLK can provide the clock signal. The baud-ratgister (SP_BAUD) selects the clock
source and the baud rate.

7.2 SERIAL I/O PORT SIGNALS AND REGISTERS

Table 7-1 describes the SIO signals and Table 7-2 describes the control and status registers.

Table 7-1. Serial Port Signals

Serial
Port Serial Port Port Descrintion
Pin Signal Signal P
Type
P2.0 | TXD O Transmit Serial Data
In modes 1, 2, and 3, TXD transmits serial port output data. In mode 0,
it is the serial clock output.
P2.1 | RXD 110 Receive Serial Data
In modes 1, 2, and 3, RXD receives serial port input data. In mode 0, it
functions as an input or an open-drain output for data.
P6.2 | TICLK T I Timer 1 Clock
External clock source for the baud-rate generator input.

T The T1CLK pin is notimplemented on the 8XC196CA, JQ, JR, JT, JV devices. XTAL1 must provide
the serial port clock.

Table 7-2. Serial Port Control and Status Registers

Mnemonic Address Description T

INT_MASK1 0013H | Interrupt Mask 1

Setting the Tl bit enables the transmit interrupt; clearing the bit
disables (masks) the interrupt.

Setting the RI bit enables the receive interrupt; clearing the bit
disables (masks) the interrupt.

INT_PEND1 0012H | Interrupt Pending 1
When set, the Tl bit indicates a pending transmit interrupt.
When set, the RI bit indicates a pending receive interrupt.

T Except as otherwise noted, write zeros to the reserved bits in these registers.
T The T1CLK pin is notimplemented on the 8XC196CA, JQ, JR, JT, JV devices. XTAL1 must provide the
serial port clock.

7-2

intel.

SERIAL I/O (SIO) PORT

Table 7-2. Serial Port Control and Status Registers (Continued)

Mnemonic Address Description T

P2 _DIR 1FCBH | Port 2 Direction
This register selects the direction of each port 2 pin. Clear P2_DIR.1
to configure RXD (P2.1) as a high-impedance input/open-drain
output, and set P2_DIR.0 to configure TXD (P2.0) as a comple-
mentary output.

P6_DIR 1FD2H | Port 6 Direction
This register selects the direction of each port 6 pin. To use TLICLKTt
as the input clock to the baud-rate generator, clear P6_DIR.2.

P2_MODE 1FC9H | Port 2 Mode
This register selects either the general-purpose input/output function
or the peripheral function for each pin of port 2. Set P2_MODE.1:0
to configure TXD (P2.0) and RXD (P2.1) for the SIO port.

P6_MODE 1FD1H | Port 6 Mode
This register selects either the general-purpose input/output function
or the peripheral function for each pin of port 6. Set P6_MODE.2 to
configure TLCLKTT for the SIO port.

P2_PIN 1FCFH | Port 2 Pin State
Two bits of this register contain the values of the TXD (P2.0) and
RXD (P2.1) pins. Read P2_PIN to determine the current value of the
pins.

P6_PIN 1FD7H | Port 6 Pin State
If you are using T1CLK (P6.2) as the clock source for the baud-rate
generator, you can read P6_PIN.2 to determine the current value of
T1CLKTT,

P2_REG 1FCDH | Port 2 Output Data
This register holds data to be driven out on the pins of port 2. Set
P2_REG.1 for the RXD (P2.1) pin. Write the desired output data for
the TXD (P2.0) pin to P2_REG.0.

P6_REG 1FD5H | Port 6 Output Data
This register holds data to be driven out on the pins of port 6. To use
T1CLK as the clock source for the baud-rate generator, set
P6_REG.2.

SBUF_RX 1FB8H | Serial Port Receive Buffer
This register contains data received from the serial port.

SBUF_TX 1FBAH | Serial Port Transmit Buffer
This register contains data that is ready for transmission. In modes
1, 2, and 3, writing to SBUF_TX starts a transmission. In mode 0,
writing to SBUF_TX starts a transmission only if the receiver is
disabled (SP_CON.3=0)

T Except as otherwise noted, write zeros to the reserved bits in these registers.
T The T1CLK pin is notimplemented on the 8XC196CA, JQ, JR, JT, JV devices. XTAL1 must provide the
serial port clock.

7-3

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 7-2. Serial Port Control and Status Registers (Continued)

Mnemonic Address Description T

SP_BAUD 1FBCH,1FBDH | Serial Port Baud Rate

This register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits
represent the BAUD_VALUE, an unsigned integer that determines
the baud rate.

SP_CON 1FBBH | Serial Port Control

This register selects the communications mode and enables or
disables the receiver, parity checking, and ninth-bit data transmis-
sions. The TB8 bit is cleared after each transmission.

SP_STATUS 1FB9H | Serial Port Status

This register contains the serial port status bits. It has status bits for
receive overrun errors (OE), transmit buffer empty (TXE), framing
errors (FE), transmit interrupt (T1), receive interrupt (RI), and
received parity error (RPE) or received bit 8 (RB8). Reading
SP_STATUS clears all bits except TXE; writing a byte to SBUF_TX
clears the TXE bit.

T Except as otherwise noted, write zeros to the reserved bits in these registers.
T The T1CLK pin is notimplemented on the 8XC196CA, JQ, JR, JT, JV devices. XTAL1 must provide the
serial port clock.

7.3 SERIAL PORT MODES

The serial port has both synchronous and asynchronous operating modes for transmission and re
ception. This section describes the operation of each mode.

7.3.1 Synchronous Mode (Mode 0)

The most common use of mode 0, the syanbus mode, is to expand the I/@pability of the

device with shift registers (see Figure 7-2). In this mode, the TXD pin outputs a set of eight clock
pulses, while the RXD pin either transmits or receives data. Data is transferred eight bits at a time
with the least-significant bit first. Figure 7-3 shows a diagram of the relative timing of these sig-
nals. Note that only mode 0 uses RXD as an open-drain output.

In mode 0, RXD must be enabled for receptions and disabled for transmissions. (See “Program-
ming the Control Register” on page 7-8.) When RXD is enabled, either a rising edge on the RXD
input or clearing the receive interrupt (RI) flag in SP_STATUS starts a reception. When RXD is
disabled, writing to SBUF_TX starts a transmission.

Disabling RXD stops a receptionpmogressand inhibits further receptions. To avoid a partial or
undesired complete reception, disable RXD before clearing the Rl flag in SP_STATUS. This can
be handled in an interrupt environment by using software flags or in straight-line code by using
the interrupt pending register to signal the completion of a reception.

7-4

|nte|® SERIAL 1/O (SIO) PORT

During a reception, the Rl flag in SP_STATUS is set after the stop bit is sampled. ThlRpbpe

bit in the interrupt pending register is set immediately before the Rl flag is set. During a transmis-
sion, the Tl flag is set immediately after the end of the last (eighth) data bit is transmitted. TheT]
pending bit in the interrupt pending register is generated when the Tl flag in SP_STATUS is set.

Clock Inhibit Shift / LOAD# o
Serial In Vee
* _| 74HCO05
= 15KQ Data
RXD
Shift Register Q# Clock
74HC165 D
Inputs 8XC196
Device
!Cﬁ Outputs
seial | | | | | | | | .
InB Serial In A
Shift Register
Clear 74HC164 Clock (O—
Enable#
(O————— Px.x
A0264-02

Figure 7-2. Typical Shift Register Circuit for Mode 0

TXD WAEAY Y EEAY Y EAY EAY AW
RXD (OUT) pt X b2 X b3 X b4 X b5 X b6 X D7 }—
RXD (IN) {oo—pi}——pz——ps}——psh——os}——osb——or}—
Expanded:
TXD -\ / S \ / 5T \ /—
RXD (OUT) —{ ™) ':': o1 Y - 2
RXD (IN) {oo} o {o1} s 1
A0109-02

Figure 7-3. Mode 0 Timing

8XC196Kx, Jx, CA USER'S MANUAL InU®

7.3.2 Asynchronous Modes (Modes 1, 2, and 3)

Modes 1, 2, and 3 are full-duplex serial transmit/receive modes, meaning that they can transmit
and receive data simultaneously. Mode 1 is the standard 8-bit, asynchronous mode used for nor-
mal serial communications. Modes 2 and 3 are 9-bit asynchronous modes typically used for in-
terprocessor communications (see “Multiprocessor Communications” on page 7-8). In mode 2,
the serial port sets an interrupt pending bit only if the ninth data bit is set. In mode 3, the serial
port always sets an interrupt pending bit upon completion of a data transmission or reception.

When the serial port is configuréat mode 1, 2, or 3, writing to SBUF_TX causes tbegas port

to start transmitting data. New data placed in SBUF_TX is transmitted only after the stop bit of
the previous data has been sent. A falling edge on the RXD input causes the serial port to begin
receiving data if RXD is enabled. Disabling RXD stops a receptignagress and inhibits fur-

ther receptions. (Sed’togramning the Control Register” on page 7-8.)

7321 Mode 1

Mode 1 is the standard asynchronous communications mode. The data frame used in this mode
(Figure 7-4) consists of ten bits: a start bit (0), eight data bits (LSB first), and a stop bit (1). If
parity is enabled, a parity bit is sent instead of the eighth data bit, and parity is checked on recep-
tion.

8 Bits of Data or 7 Bits of Data
with Parity Bit

Top\ stat / Do X b1 X D2 X b3 X b4 X D5 X D6 X b7 / Stop
— —

H{ 10-Bit Frame }i

A0245-02

Figure 7-4. Serial Port Fr ames for Mode 1

The transmit and receive functions are controlled by separate shift clocks. The transmit shift
clock starts when the baud rate generator is initialized. The receive shift clock is reset when a start
bit (high-to-low transition) is received. Therefotbe transmit clock may not tsynchronized

with the receive clock, although both will be at the same frequency.

The transmit interrupt (T1) and receive interrupt (RI) flags in SP_STATUS are set to indicate com-

pleted operations. During a reception, both the RI flag and the Rl interrupt pending bit are set just
before the end of the stop bit. During a transmission, both the Tl flag and the Tl interrupt pending
bit are set at the beginning of the stop bit. The next byte cannot be sent until the stop bit is sent.

|nte|® SERIAL 1/O (SIO) PORT

Use caution when connecting more than two devices with the serial port in half-duplex (i.e., with
one wire for transmit and receive). The receiving processor must wait for one bit time after the
RI flag is set before starting to transmit. Otherwise, the transmission could corrupt the stop bit,
causing a problem for other devices listening on the link.

7.3.2.2 Mode 2

Mode 2 is the synchronous, ninth-bit recognition mode. This mode is commonly used with mode

3 for multiprocessor communications. Figure 7-5 shows the data frame used in this mode. It con-
sists of a start bit (0), nine data bits (LSB first), and a stop bit (1). During transmissions, setting
the TB8 bit in the SP_CON register before writing to SBUF_TX sets the ninth transmission bit.
The hardware clears the TB8 bit after every transmission, so it must be set (if desired) before each
write to SBUF_TX. During receptions, the Rl flag and Rl interrupt pending bit are set only if the
TB8 hit is set. This provides an easy way to have selective reception on a data link. (See “Multi-
processor Communications” on page 7-8). Parity cannot be enabled in this mode.

Stop \ Stat / D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7 X D8 / Stop
I< 8 Bits of Data T

Programmable 9th Bit
l¢ 11-Bit Frame }i

A0111-01

Figure 7-5. Serial Port Frames in Mode 2 and 3

7.3.2.3 Mode 3

Mode 3 is the asynchronous, ninth-bit mode. The data frame for this mode is identical to that of
mode 2. Mode 3 differs from mode 2 during transmissions in that parity can be enabled, in which
case the ninth bit becomes the parity bit. When parity is disabled, data bits 0—7 are written to the
serial port transmit buffer, and the ninth data bit is written to bit 4 (TB8) bit in the SP_CON reg-
ister. In mode 3, a reception always sets the Rl interrupt pending bit, regardless of the state of the
ninth bit. If parity is disabled, the SP_STATUS register bit 7 (RB8) contains the ninth data bit. If
parity is enabled, then bit 7 (RB8) is the received parity error (RPE) flag.

7.3.2.4 Mode 2 and 3 Timings

Operation in modes 2 and 3 is similar to mode 1 operation. The only difference is that the data
consists of 9 bits, so 11-bit packages are transmitted and received. During a reception, the Rl flag
and the RI interrupt pending bit are set just after the end of the stop bit. During a transmission,
the Tl flag and the Tl interrupt pending bit are set at the beginning of the stop bit. The ninth bit
can be used for parity or multiprocessor communications.

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

7.3.2.5 Multiprocessor Communications

Modes 2 and 3 angrovided for multiprocessor communications. In mode 2, the serial port sets
the Rl interrupt pending bit only when the ninth data bit is set. In mode 3, the serial port sets the
RI interrupt pending bit regardless of the value of the ninth bit. The ninth bit is always set in ad-
dress frames and always cleared in data frames.

One way to use these modes for multiprocessor communication is to set the master processor tc
mode 3 and the slave processors to mode 2. When the master processor wants to transmit a bloc
of data to one of several slaves, it sends out an address frame that identifies the target slave. Be
cause the ninth bit is set, an address frame interrupts all slaves. Each slave examines the addres
byte to check whether it is being addressed. The addressed slave switches to mode 3 to receive
the data frames, while the slaves that are not addressed remain in mode 2 and are not interruptec

7.4 PROGRAMMING THE SERIAL PORT

To use the SIO port, you must configure the port pins to serve as sfp@aci@abn signals and set
up the SIO channel.

7.4.1 Configuring the Serial Port Pins

Before you can use the serial port, you must configure the associated port pins to serve as special
function signals. Table 7-1 on page 7-2 lists the pins associated with the serial port. Table 7-2 lists
the port configuration registers, and Chapter 6, “I/O Ports,” explains how to configure the pins.

7.4.2 Programming the Control Register

The SP_CON register (Figure 7-6) selects the communication mode and enables or disables the
receiver, parity checking, and nine-bit data transmissions. Selecting a new mode resets the serial
I/0 port and aborts any transmission or reception in progress on the channel.

intel.

SERIAL I/O (SIO) PORT

SP_CON

The serial port control (SP_CON) register selects the communications mode and enables or disables
the receiver, parity checking, and nine-bit data transmission.

Address:
Reset State:

1FBBH
00H

7 0
CA,JX,KQ,KR‘ — — ‘ — ‘ TBS H REN ‘ PEN ‘ M1 ‘ MO ‘
7 0
KS, KT | = — [Par | B8 || REN [PEN | M1 | Mo |
Bit Bit Function
Number Mnemonic
7:6 — Reserved; always write as zeros.
5t PAR Parity Selection Bit
Selects even or odd parity.
1 = odd parity
0 = even parity
4 TB8 Transmit Ninth Data Bit
This is the ninth data bit that will be transmitted in mode 2 or 3. This bit
is cleared after each transmission, so it must be set before SBUF_TX is
written. When SP_CON.2 is set, this bit takes on the even parity value.
3 REN Receive Enable
Setting this bit enables the receiver function of the RXD pin. When this
bit is set, a high-to-low transition on the pin starts a reception in mode 1,
2, or 3. In mode 0, this bit must be clear for transmission to begin and
must be set for reception to begin. Clearing this bit stops a reception in
progress and inhibits further receptions.
2 PEN Parity Enable
In modes 1 and 3, setting this bit enables the parity function. This bit
must be cleared if mode 2 is used. When this bit is set, TB8 takes the
parity value on transmissions. With parity enabled, SP_STATUS.7
becomes the receive parity error bit.
1:0 M1:0 Mode Selection
These bits select the communications mode.
M1 MO
0 0 mode 0
0 1 mode 1
1 0 mode 2
1 1 mode 3

T This bit is reserved on the 87C196CA, 8XC196Jx, KQ, KR devices. For compatibility with future

devices, write zero to this bit.

Figure 7-6. Serial Port Control (SP_CON) Register

7-9

8XC196Kx, Jx, CA USER'S MANUAL InU®

7.4.3 Programming the Baud Rate and Clock Source

The SP_BAUD register (Figure 7-7) selects the clock input for the baud-rate generator and de-
fines the baud rate for all serial I/O modes. This register acts as a control register during write

operations and as a down-counter monitor during read operations.

WARNING

Writing to the SP_BAUD register during a reception or transmission can
corrupt the received or transmitted data. Before writing to SP_BAUD, check
the SP_STATUS register to ensure that the reception or transmission is
complete.

SP_BAUD Address: 1FBCH
Reset State: 0000H

The serial port baud rate (SP_BAUD) register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits represent BAUD_VALUE, an unsigned
integer that determines the baud rate.

The maximum BAUD_VALUE is 32,767 (7FFFH). In asynchronous modes 1, 2, and 3, the minimum

BAUD_VALUE is 0000H when using XTAL1 and 0001H when using T1CLK. In synchronous mode 0, the
minimum BAUD_VALUE is 0001H for transmissions and 0002H for receptions.

15 8

CA, Ix | — | BV14 | BV13 | BV12 || BV11 | BV10 | BV9 | BVS |
7 0
| BV7 | BV6 | BV5 | BV4 | | BV3 | BV2 | BV1 | BVO |
15 8

Kx |CLKSRC| BV14 | BV13 | BV12 || BV11 | BV10 | BV9 | BV8 |
7 0
| BV7 | BV6 | BV5 | BV4 | | BV3 | BV2 | BV1 | BVO |

Nuii:)er Mne?riltonic Function

151 CLKSRC Serial Port Clock Source

This bit determines whether the serial port is clocked from an internal or
an external source.

1 = XTAL1 (internal source)
0 = T1CLK (external source)

T On the 87C196CA, 8XC196Jx devices the TLCLK pin is not implemented; therefore, on these devices
this bit is reserved and should be written as one.

Figure 7-7. Serial Port Baud Rate (SP_BAUD) Regi ster

7-10

|nte|® SERIAL 1/O (SIO) PORT

SP_BAUD (Co ntinued) o A(tidsrte?s: 10FOB6((:)E
eset State:

The serial port baud rate (SP_BAUD) register selects the serial port baud rate and clock source. The
most-significant bit selects the clock source. The lower 15 bits represent BAUD_VALUE, an unsigned
integer that determines the baud rate.

The maximum BAUD_VALUE is 32,767 (7FFFH). In asynchronous modes 1, 2, and 3, the minimum

BAUD_VALUE is 0000H when using XTAL1 and 0001H when using T1CLK. In synchronous mode 0, the
minimum BAUD_VALUE is 0001H for transmissions and 0002H for receptions.

15 8
CA, Jx | — | BV14 | BV13 | BV12 || BV11 | BV10 | BV9 | BV8 |
7 0
| BV7 | BV6 | BV5 | BV4 | | BV3 | BV2 | BV1 | BVO |
15 8
Kx | CLKSRC | BV14 | BV13 | BV12 || BV11 | BV10 | BV9 | BV8 |
7 0
| BV7 | BV6 | BV5 | BV4 | | BV3 | BV2 | BV1 | BVO |
Nuili)er Mne?rlltonic Function
14:0 BV14:0 These bits constitute the BAUD_VALUE.
Use the following equations to determine the BAUD_VALUE for a given
baud rate.

Synchronous mode 0:11

F
BAUD VALUE = —23¢ 1 o _TICLK
Baud Rate x 2 Baud Rate

Asynchronous modes 1, 2, and 3:

Fosc T1CLK
BAUD VALUE = ———— -1 or SEEE—
- Baud Rate x 16 Baud Rate x 8

T For mode 0 receptions, the BAUD_VALUE must be 0002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

T On the 87C196CA, 8XC196Jx devices the T1CLK pin is not implemented; therefore, on these devices
this bit is reserved and should be written as one.

Figure 7-7. Serial Port Baud Rate (SP_BAUD) Register (Continued)

7-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

CAUTION

For mode 0 receptions, the BAUD_VALURust beD002H or greater.
Otherwise, the resulting data in the receive shift register will be incorrect.

The reason for this restriction is that the receive shift register is clocked from
an internal signal rather than the signal on TXD. Although these two signals
are normally synchronized, the internal signal generates one clock before the
first pulse transmitted by TXD and this first clock signal is not synchronized
with TXD. This clock signal causes the receive shift register to shift in
whatever data is present on the RXD pin. This data is treated as the least-
significant bit (LSB) of the reception. The reception then continues in the
normal synchronous manner, but the data received is shifted left by one bit
because of the false LSB. The seventh data bit transmitted is received as the
most-significant bit (MSB), and the transmitted MSB is never shifted into the
receive shift register.

Using XTAL1 at 16 MHz, the maximum baud rates are 2.76 Mbaud (SP_BAUD = 8002H or
0002H) for mode 0 and 1.0 Mbaud for modes 1, 2, and 3. Table 7-3 shows the SP_BAUD values
for common baud rates when using a 16 MHz XTAL1 clock input. Because of rounding, the
BAUD_VALUE formula is not exact and thegwelting baud rate is slightly different than desired.
Table 7-3 shows the percentage of error when using the sample SP_BAUD values. In most cases
a serial link will work with up to 5.0% difference in the receiving and transmitting baud rates.

Table 7-3. SP_BAUD Values When Using XTAL1 at 16 MHz

SP_BAUD Register Value (Note 1) % Error
Baud Rate
Mode 0 Mode 1, 2, 3 Mode 0 Mode 1, 2, 3
9600 8340H 8067H 0.04 0.16
4800 8682H 80CFH 0.02 0.16
2400 8D04H 81A0H 0.01 0.08
1200 9A0AH 8340H 0 0.04
300 E82BH 8D04H 0 0.01
NOTE:

1. Bit15is always set when XTAL1 is selected as the clock source for the baud-rate generator.

7.4.4 Enabling the Serial Port Interrupts

The serial port has both a transmit interrupt (TI) and a receiveuptgRI). To @able an inter-

rupt, set the correspondingask bit in the interrupt mask register (see Table 7-2 on page 7-2) and
execute the El instruction to globally enable servicing of interrupts. See Chapter 5, “Standard and
PTS Interrupts,” for more information about interrupts.

7-12 [|

|nte|® SERIAL 1/O (SIO) PORT

7.4.5 Determining Serial Port Status

You can read the SP_STATUS register (Figure 7-8) to determine the status of the serial port.
Reading SP_STATUSlears all bitsexcept TXE. For this reason, we recommend thatcpgmy

the contents of the SP_STATUS register into a shadow register and then execute bit-test instruc-
tions such as JBC and JBS on the shadow register. Otherwise, executing a bit-test instruction
clears the flags, so any subsequent bit-test instructions will return false values. You can also read
the interrupt pending register (see Table 7-2 on page 7-2) to determine the status of the serial port
interrupts.

SP_STATUS Address: 1FB9H
Reset State: OBH

The serial port status (SP_STATUS) register contains bits that indicate the status of the serial port.

7 0
RPE/RB8 RI TI FE ‘ ‘ TXE OE — —
Bit Bit Function
Number Mnemonic
7 RPE/RB8 Received Parity Error/Received Bit 8

RPE is set if parity is disabled (SP_CON.2=0) and the ninth data bit
received is high.

RB8 is set if parity is enabled (SP_CON.2=1) and a parity error occurred.
Reading SP_STATUS clears this bit.

6 RI Receive Interrupt

This bit is set when the last data bit is sampled. Reading SP_STATUS
clears this bit.

This bit need not be clear for the serial port to receive data.

5 TI Transmit Interrupt

This bit is set at the beginning of the stop bit transmission. Reading
SP_STATUS clears this bit.

4 FE Framing Error

This bit is set if a stop bit is not found within the appropriate period of
time. Reading SP_STATUS clears this bit.

3 TXE SBUF_TX Empty

This bit is set if the transmit buffer is empty and ready to accept up to two
bytes. It is cleared when a byte is written to SBUF_TX.

2 OE Overrun Error

This bit is set if data in the receive shift register is loaded into SBUF_RX
before the previous bit is read. Reading SP_STATUS clears this bit.

1.0 — Reserved. These bits are undefined.

Figure 7-8. Serial Port Status (SP_STATUS) Register

7-13

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

The receiver checks for a valid stop bit. Unless a stop lmtiisdf within the appropriate time, the
framing error (FE) bit in the SP_STATUS register is set. When the stop bit is detected, the data
in the receive shift register is loaded into SBUF_RX and the receiveuipt€RlI) flag is set. If

this happens before the previous byte in SBUF_RX is read, the overrun error (OE) bit is set.
SBUF_RX always contains the latest byte received; it is never a combination of the two bytes.

The receive interrupt (RI) flag indicates whether an incoming data byte has been received. The
transmit interrupt (T1) flag indicates whether a data byte has finished transmitting. These flags
also set the corresponding bitstive interrupt pending register. A reception or transmission sets
the Rl or Tl flag in SP_STATUS and the capending interrupt pending bit. However, a soft-
ware write to the Rl or Tl flag in SP_STATUS has no effect on the interrupt pending bits and does
not cause an interrupt. Similarly, reading SP_STATUS clears the Rl and Tl flags, but does not
clear the corresponding interrupt pending bits. The Rl andagkfln the SP_STATUS and the
corresponding interrupt pending bits can be set even if the Rl and Tl intaareptasked.

The transmitter empty (TXE) bit is set if SBUF_TX and its buffer are empty and ready to accept
up to two bytes. TXE is cleared smon as a byte gritten to SBUF_TX. One byte may be written

if Tl alone is set. By definition, if TXE has just been set, a trassion has completed and Tl is

set.

The received parity error (RPE) flag or the received bit 8 (RB8) flag applies for parity enabled or
disabled, respectively. If parity is enabled, RPE is set if a parity error is detected. If parity is dis-
abled, RB8 is the ninth data bit received in modes 2 and 3.

7.5 PROGRAMMING EXAMPLE USING AN INTERRUPT-DRIVEN ROUTINE
This programming example is an interrupt-driven “putchar” and “getchar” routine that allows you
to set the size of the transmit and receive buffers, the baud rate, and the operating frequency.

#pragma model(kr)
#pragma interrupt(receive=28,transmit=27)

#ifdef EVAL_BOARD
I* Reserve the 9 bytes required by eval board */

char reserve[9];
#pragma locate(reserve=0x30)

#else

/* Initialize the chip configuration bytes */
const unsigned int ccr[2] = {0x20FF,0x20DE};
#pragma locate (ccr = 0x2018)

#endif

7-14

|nte|® SERIAL 1/O (SIO) PORT

#define TRANSMIT_BUF_SIZE 20
#define RECEIVE_BUF_SIZE 20
#define WINDOW_SELECT Ox1F

#define FREQUENCY (long)16000000 /* 16 MHz */
#define BAUD_RATE_VALUE 9600
#define BAUD_REG ((unsigned int)(FREQUENCY/((long)BAUD_RATE_VALUE*16)-1)+0x8000)

#define RI_BIT 0x40
#define TI_BIT 0x20

unsigned char status_temp;

/* image of SP_STATUS to preserve the Rl and Tl bits on a read. */
[* receive and transmit buffers and their indexes */

unsigned char trans_buff[TRANSMIT_BUF_SIZE];
unsigned char receive_bufffRECEIVE_BUF_SIZE];

char begin_trans_buff,end_trans_buff;
char end_rec_buff,begin_rec_buff;

/* declares and locates the special function registers */

volatile register unsigned char port2_reg, port2_dir, port2_mode;
volatile register unsigned char wsr;

volatile unsigned char sbuf_tx, sbuf_rx, SP_STATUS, sp_con;
volatile unsigned char int_mask1, int_pend1;
volatile unsigned int sp_baud,;

#pragma locate(sbuf_tx=0xba,sbuf_rx=0xb8,SP_STATUS=0xb9h)
#pragma locate(sp_con=0xbb,sp_baud=0xbc)

#pragma locate(int_mask1=0x13,int_pend1=0x12)

#pragma locate(wsr=0x14)

#pragma locate(port2_reg = Oxcd)

#pragma locate(port2_dir = 0xch)

#pragma locate(port2_mode = 0xc9)

void transmit(void) [* serial interrupt routine */

{
wsr = WINDOW_SELECT;
status_temp |= SP_STATUS; /* image SP_STATUS into status_temp */

[* transmit a character if there is a character in the buffer */
if(begin_trans_buffl=end_trans_buff)

sbuf_tx=trans_buff[begin_trans_buff]; /* transmit character */

I* The next statement makes the buffer circular by starting over when the
index reaches the end of the buffer. */

if(++begin_trans_buff>STRANSMIT_BUF_SIZE - 1)begin_trans_buff=0;
status_temp &= (~TI_BIT); /* clear Tl bit in status_temp. */

7-15

8XC196Kx, Jx, CA USER'S MANUAL

void receive(void) [* serial interrupt routine */

wsr = WINDOW_SELECT;
status_temp |= SP_STATUS; /* image SP_STATUS into status_temp */

[* If the input buffer is full, the last character will be ignored,
and the BEL character is output to the terminal. */

if(end_rec_buff+1==begin_rec_buff || (end_rec_buff==RECEIVE_BUF_SIZE-1 &&
Ibegin_rec_buff))

; I* input overrun code */
else

/* The next statement makes the buffer circular by starting over when the
index reaches the end of the buffer. */

if(++end_rec_buff > RECEIVE_BUF_SIZE - 1) end_rec_buff=0;
receive_bufflend_rec_buffl=sbuf_rx; /* place character in buffer */

status_temp &= (~RI_BIT); /* clear RI bit in status_temp. */
int putchar(int c)

/* remain in loop while the buffer is full. This is done by checking
the end of buffer index to make sure it does not overrun the
beginning of buffer index. The while instruction checks the case
when the end index is one less than the beginning index and at the
end of the buffer when the beginning index may be equal to 0 and
the end buffer index may be at the buffer end. */

while((end_trans_buff+1==begin_trans_buff)||
(end_trans_buff==TRANSMIT_BUF_SIZE -1 && !begin_trans_buff));

trans_bufflend_trans_buff]=c; /* put character in buffer */
if(++end_trans_buff>TRANSMIT_BUF_SIZE - 1) /* make buffer appear circular */
end_trans_buff=0;
if(status_temp & TI_BIT) int_pendl |= 0x08; /* If transmit buffer was empty,
then cause an interrupt to
start transmitting. */

}

unsigned char getchar()

while(begin_rec_buff==end_rec_buff); /* remain in loop while there is
not a character available. */
if(++begin_rec_buff>RECEIVE_BUF_SIZE - 1) /* make buffer appear circular */
begin_rec_buff=0;
return(receive_buff[begin_rec_buff]); /* return the character in buffer */

main()

char c;

wsr=WINDOW_SELECT,;

sp_baud = BAUD_REG; /* setbaud rate as described in Figure 7-7 on page 7-10*/
sp_con = 0x09; /* mode 1, no parity, receive enabled, no 9th bit */
status_temp=SP_STATUS;

7-16

intel.

port2_reg |= OXFF; /* Init port2 reg */
port2_dir &= OxFE; /* TXD output */
port2_mode |= 0x03; /* p2.4-6 Isio */

wsr=0;

end_rec_buff=0; [* initialize buffer pointers */
begin_rec_buff=0;

end_trans_buff=0;

begin_trans_buff=0;

status_temp = TI_BIT; /* allow for initial transmission */
int_mask1=0x18; [* enable the serial port interrupt */

enable(); [* global enable of interrupts */

while((c=getchar()) != Ox1b) /* stay in loop until escape key pressed */
printf("key pressed = %02X\n\r",c);

SERIAL I/O (SI0) PORT

7-17

intgl.
8

Synchronous Serial
/0O (SSIO) Port

CHAPTER 8
SYNCHRONOUS SERIAL 1/O (SSIO) PORT

This device has a synchronoserial 1/0 (SSIO) port that shares pins with port 6. This chapter
describes the SSIO port and explains how to program it. Chapter 6, “I/O Ports,” explains how to
configure the port pins for their special functions. Refer to Appendix B for details about the sig-
nals discussed in this chapter.

8.1 SYNCHRONOUS SERIAL I/O (SS10) PORT FUNCTIONAL OVERVIEW

The synchronous serial I/0 (SSIO) port provides for simultaneous, bidirectional communications
between this device and another synchronous serial /0 device. The SSIO port consists of two
identical transceiver channels. A single dedicated baud-rate generator controls the baud rate of
the SSIO port (15.625 kHz to 2.0 MHz at 16 MHZz). Figure 8-1 is a block diagram of the SSIO
port showing a master and slave configuration.

SDx SDx
[ssioxBUoF] —{O—{3 [ssioxBUF]
SCx SCx
[ssiox BauD] 0 [ssiox BAUD]
Control Logic SSIOx Interrupt Control Logic SSIOx Interrupt
to Interrupt Controller to Interrupt Controller
or PTS or PTS
| SSI0Ox_CON I | SSI0x_CON I
Master 8XC196 SSIO Slave 8XC196 SSIO
A2840-02

Figure 8-1. SSIO Block Diagram

8-1

8XC196Kx, Jx, CA USER'S MANUAL InU®

8.2 SSIO PORT SIGNALS AND REGISTERS

Table 8-1 describes the SSIO signals and Table 8-2 describes the control and status registers.

Table 8-1. SSIO Port Signals

port | SSIO SSIO Port -

Pin I_Dort Signal Type Description
Signal

P6.4 SCo 110 SSIO0 Clock Pin

This pin transmits a clock signal when SSIOO is configured as a
master and receives a clock signal when it is configured as a
slave.

SCO carries a clock signal only during receptions and transmis-
sions. The SCO pin clocks once for each bit transmitted or
received (eight clocks per transmission or reception). When the
SSIO port is idle, the pin remains either high (with handshaking)
or low (without handshaking).

Handshaking mode requires an external pull-up resistor.

P6.5 SDO 110 SSIO0 Data Pin

SDO transmits data when SSIOO is configured as a transmitter
and receives data when it is configured as a receiver.

P6.6 SC1 I} SSIO1 Clock Pin

This pin transmits a clock signal when SSIO1 is configured as a
master and receives a clock signal when it is configured as a
slave.

SC1 carries a clock signal only during receptions and transmis-
sions. This pin carries a clock signal only during receptions and
transmissions. The SC1 pin clocks once for each bit transmitted
or received (eight clocks per transmission or reception). When
the SSIO port is idle, the pin remains either high (with
handshaking) or low (without handshaking).

P6.7 SD1 I} SSIO1 Data Pin

SD1 transmits data when SSIOL1 is configured as a transmitter
and receives data when it is configured as a receiver.

Table 8-2. SSIO Port Control and Status Registers

Mnemonic Address Description

INT_MASK1 0013H | Interrupt Mask 1

Setting the SSIOO bit of this register enables the SSIO channel 0
transfer interrupt; clearing the bit disables (masks) the interrupt.
Setting the SSIO1 bit of this register enables the SSIO channel 1
transfer interrupt; clearing the bit disables (masks) the interrupt.

NOTE: Always write zeros to the reserved bits in these registers.

8-2

InU® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

Table 8-2. SSIO Port Control and Status Registers (Continued)

Mnemonic Address Description

INT_PEND1 0012H | Interrupt Pending 1
When set, SSIO0 indicates a pending channel O transfer interrupt.
When set, SSIO1 indicates a pending channel 1 transfer interrupt.

P6_DIR 1FD2H | Port 6 Direction

This register selects the direction of each port 6 pin. Clear P6_DIR.7:4
to configure SD1 (P6.7), SC1 (P6.6), SDO (P6.5), and SCO (P6.4) as
high-impedance inputs/open-drain outputs.

P6_MODE 1FD1H | Port 6 Mode

This register selects either the general-purpose input/output function or
the peripheral function for each pin of port 6. Set P6_MODE.7:4 to
configure SD1 (P6.7), SC1 (P6.6), SDO (P6.5), and SCO (P6.4) for the
SSIO.

P6_PIN 1FD7H | Port 6 Pin State

Read P6_PIN to determine the current values of SD1 (P6.7), SC1
(P6.6), SDO (P6.5), and SCO (P6.4).

P6_REG 1FD5H | Port 6 Output Data

This register holds data to be driven out on the pins of port 6. For pins
serving as inputs, set the corresponding P6_REG bits; for pins serving
as outputs, write the data to be driven out on the pins to the corre-
sponding P6_REG bits.

SSIO_BAUD 1FB4H | SSIO Baud Rate

This register enables and disables the baud-rate generator and selects
the SSIO baud rate.

SSIO0_BUF 1FBOH | SSIO Receive and Transmit Buffers

SSI01_BUF 1FB2H | Thege registers contain either received data or data for transmission,
depending on the communications mode. Data is shifted into this
register from the SDx pin or from this register to the SDx pin, with the
most-significant bit first.

SSIO0_CON 1FB1H | These registers control the communications mode and handshaking

SSIO1_CON 1FB3H | and reflect the status of the SSIO channels.

NOTE: Always write zeros to the reserved bits in these registers.

8.3 SSIO OPERATION

Each SSIO channel can be configured as either master or slave and as either transmitter or receiv
er, allowing the channels to communicate in several bidirectional, single-byte transfer modes
(Figure 8-2). A master devideansmits a clock signal; a slave deviceceivesa clock signal.

8XC196Kx, Jx, CA USER'S MANUAL Int9I®

N2N
™
|

SDO |-

SDO

Master Slave

SCO

SCO

g~
~

Single-channel Half-duplex Master/Slave Configuration

SDO $$ 1 SDO

Master Slave
SCO S 1 SC0
SD1 [$§ SD1

Slave Slave
SC1 |- »1SC1

Double-channel Full-duplex Lockstep
Common Clock Configuration

SDO | SDO
Master Slave
SCo | SCO

(N 2N
~

N 2N
~“

SD1 |-——% $————————15D1

Slave Master

sCl |-——— $————sC1

Double-channel Full-duplex Master/Slave
Separate Clock Configuration

A0233-03

Figure 8-2. SSIO Operating Modes

* One channel can act as master transceiver to communicate with compatible protocols in
half-duplex mode. This mode requires one data input/output pin and one clock output pin.

* One channel can act as slave transceiver to communicate with compatible protocols in half-
duplex mode. This mode requires one data input/output pin and one clock input pin.

8-4

Int€|® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

* The two channels can operate together, from the same clock, as master transceivers to
communicate in lockstep (mutually synchronous), full-duplex mode. This mode requires
one data input pin, one data output pin, and two clock pins (the clock output pin from one
channel connected to the clock input pin of the other).

* The two channels can operate together, from the same clock, as slave transceivers to
communicate in lockstep (mutually synchronous), full-duplex mode. This mode requires
one data input pin, one data output pin, and two clock input pins.

* The two channels can operate independently, with different clocks, to communicate in non-
lockstep, full-duplex mode. In this mode, one channel acts as slave (receives a clock) and
the other acts as master (transmits a clock). This mode requires a data input pin, a data
output pin, a clock input pin, and a clock output pin.

The SSIO channels can also operate in handshaking modes for unidirectional, multi-byte trans-

fers. These modes enable a master device to perform SSIO transfers using the PTS. Handshakin
prevents a data underflow or overflow from occurring at the slave. It takes place in hardware, us-

ing the clock pins, with no CPU overhead.

* The two channels can operate with handshaking enabled, in full-duplex mode. One channel
acts as slave and the other acts as master. This mode requires four pins.

* The two channels can operate with handshaking enabled, in half-duplex mode. One channel
acts as slave and the other acts as master. This mode requires two pins.

Each channel contains an 8-bit buffer register, SSBWF, and logic to clock the data into and
out of the transceiver. In receive mode, data is shifted (MSB first) from thep8Dinto
SSIOx_BUF. In transmit mode, data is shifted from SSIBUF onto the SR pin. The receiver
latches data from the transmitter on the rising edge afe®@ the transmitter changes (or floats)
output data on the falling edge of €C

In the handshaking modes, the clock polarities are reversed, so the corresponding clock edges ar
also reversed. The clock pin, §@nust be configured as an open-drain output in both master and
slave modes. (This configuration requires an external pull-up.) The master leaves the[®/E€

high at the end of each byte transfer. The slave pulls its clock input low when it is busy. (In receive
mode, the slave is busy when the buffer is full; in transmit mode, the slave is busy when the buffer
is empty.) The slave releases)X3fhen it is ready to receive or transmit. The master waits for
SCx to return high before attempting the next transfer. Figure 8-3 illustrates transmit and receive
timings with and without handshaking.

8XC196Kx, Jx, CA USER'S MANUAL Inu®

e LU L e
se [_
ooy —{ oo Y m Y w Y o Y o Y = Y o Y o
sort e YOO OO0
— i1 0 0 S 3 7

Slave Receiver Pulls SCx low

A0266-01

Figure 8-3. SSIO Transmit/Receive Timings

8.4 SSIO HANDSHAKING

Handshaking (Figure 8-4) prevents a data underflow or overflow from occurring at the slave,
which enables a master device to perform SSIO data transfers using the PTS. Without handshak-
ing, data overflows and underflows would make it nearly impossible to use the PTS for transfer-
ring blocks of data. Handshaking takes place in hardware, using the clock pins, with no CPU
overhead. When the master is the transmitter and the slave is the receiver, the slave pulls the cloc}
line low until it is ready to receive a byte. This prevents a data overflow at the slave. In the oppo-
site configuration, the slave pulls the clock line low until its buffer is loaded with data. This pre-
vents a data underflow at the slave.

8.4.1 SSIO Handshaking Configuration
To use the PTS with the SSIO in handshaking mode, the SSIO channels must be configured as
follows:

¢ Channels must be auto-enabled (both the ATR and STE bits ikSSTIN must be set).

¢ Handshaking mode must be selected (the THS bit in $&ON must be set).

* The clock pin, S& must be configured as a special-function, open-drain output in both
master and slave. (This requires an external pull-up resistor.)

8-6

Inu® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

l l

Load SSIOx_BUF Receive Byte

Pull SC Pin Low

SCx Pin High
?

SSIOx_BUF
Read
2

Transmit Byte

|

Set SSIOx Interrupt]
Pending Bit Float SCx Pin
SSIO Transmit Handshaking SSIO Receive Handshaking

A0232-03

Figure 8-4. SSIO Handshaking Flow Diagram

8.4.2 SSIO Handshaking Operation

When handshaking is enabled, the slave pulls its clock inpw) (6@ whenever it is busy. (In
receive mode, the slave is busy when the buffer is full; in transmit mode, the slave is busy when
the buffer is empty.) This happens automatically one to two state diiteeshe rising clock edge
corresponding to the last data bit of the transmitted 8-bit packet. The slave releasediite SC
only after the CPU reads from or writes to SSIBUF, which clears the transmit buffer status
(TBS) bit in SSIG_CON and indicates that SS{CBUF is available for another packet to be re-
ceived or transmitted.

When handshaking is enabled, the master leaves its clock outpQtHigt at the end of each

byte transfer. This allows the slave to pull the clock line low if its SSBOF register is unavail-

able for the next transfer. The master waits for the clock line to return high before it attempts the
next transfer. (If handshaking is not enabled for the master, the master drives the clock line low
between transfers.)

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

The following example describes how the master can transmit 16 bytes of data to the slave
through the PTS, using this optional handshaking capability.

1. These four steps can occur in any order:
— You initialize the master as a transmitter and the slave as a receiver.
— The master prepares 16 bytes for traission and places them in RAM.
— The master initializes a PTS channel to move data from RAM to)>SSBIQF.
— The slave initializes a PTS channel to move data from $BOF to RAM.

2. You set the master's SSthterrupt pending bit in the INT_PENDZ1 register.
The PTS transfers a byte to SSIBUF.

4. The slave pulls the clock line low until it is ready to receive a byte, then allows the clock
line to float (allowing the external resistor to pull it up).

5. The master detects the high clock line and transmits the byte.

6. When the master finishes transmitting the byte, it sets its XS8t&rupt pending bit in
INT_PEND1 and allows the clock line to float.

7. When the slave finishes receiving the byte, it sets its $8i@rrupt pending bit in
INT_PEND1.

8. Steps 3 through 7 are repeated until the PTS byte count reaches 0.

9. The next interrupt requests PTS service.

8-8

Int€|® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

8.5 PROGRAMMING THE SSIO PORT

To use the SSIO port, you must configure the port pins to serve as special-function signals, then
set up the SSIO channels.

8.5.1 Configuring the SSIO Port Pins

Before you can use the SSIO port, you must configure the necessary port 6 pins to serve as their
special-function signals. Handshaking mode requires that both the master and sipies3@
configured as open-drain outputs. (This configuration requires external pull-up resistors.) Table
8-1 on page 8-2 lists the pins associated with the SSIO port, and Table 8-2 lists the port configu-
ration registers. See Chapter 6 for configuration details.

8.5.2 Programming the Baud Rate and Enabling the Baud-rate Generator

The SSIO_BAUD register (Figure 8-5 on page 8-10) defines the baud rate and enables the baud-
rate generator. This register acts as a control register during write operations adovas a
counter monitor during read operations. The baud-rate generator provides an internal clock to the
transceiver channels. The frequency ranges frgg/&to /1024, With a 16-MHz oscillator
frequency, this corresponds to a range from a maximum of 2.0 MHz to a minimum of 15.625 kHz.
Table 8-3 lists SSIO_BAUD values for common baud rates.

Table 8-3. Common SSIO_BAUD Values at 16 MHz

Baud Rate SSIO_BAUD Value f
(Maximum) 2.0 MHz 80H

100.0 kHz 93H

64.52 kHz 9DH

50.0 kHz ATH

25.0 kHz CFH
(Minimum) 15.625 kHz FFH

Bit 7 must be set to enable the baud-rate generator.

8-9

8XC196Kx, Jx, CA USER'S MANUAL InU®

7

SSIO_BAUD

Address: 1FB4H
Reset State: XXH

The synchronous serial port baud (SSIO_BAUD) register enables and disables the baud-rate
generator and selects the SSIO baud rate. During read operations, SSIO_BAUD serves as the down-
counter monitor. The down-counter is decremented once every four state times when the baud-rate
generator is enabled.

BE

BV6

BV5 BV4 H BV3 BV2 BV1 BVO

Bit
Number

Bit
Mnemonic

Function

7

BE

Baud-rate Generator Enable
This bit enables and disables the baud-rate generator.
For write operations:

0 = disable the baud-rate generator and clear BV6:0
1 = enable the baud-rate generator and start the down-counter

For read operations:

0 = baud-rate generator is disabled
1 = baud-rate generator is enabled and down-counter is running

6:0

BV6:0

Baud Value
For write operations:

These bits represent BAUD_VALUE, an unsigned integer that
determines the baud rate. The maximum value of BAUD_VALUE is 7FH,;
the minimum value is 0. Use the following equation to determine
BAUD_VALUE for a given baud rate.

I:OSC

BAUD_VALUE = ———— -1
Baud Rate x 8

For read operations:
These bits contain the current value of the down-counter.

Figure 8-5. Synchronous Serial Port Baud (SSIO_BAUD) Register

8.5.3 Controlling the Communications Mode and Handshaking

The SSIG_CON register (Figure 8-6) controls the communications mode and handshaking. The
two least-significant bits indicate whether an underflow or overflow has occurred and whether

the channel is ready to transmit or receive.

8-10

InU® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

SSIOx_CON Address: 1FB1H, 1FB3H
x=0-1 Reset State: 00H

The synchronous serial control x (SSIOx_CON) registers control the communications mode and
handshaking. The two least-significant bits indicate whether an overflow or underflow has occurred
and whether the channel is ready to transmit or receive.

7 0
M/S# TIR# TRT THS ‘ ‘ STE ATR OUF TBS
Bit Bit Function
Number Mnemonic
7t M/S# Master/Slave Select

Configures the channel as either master or slave.

0 = slave; SCx is an external clock input to SSIOx_BUF
1 = master; SCx is an output driven by the SSIO baud-rate generator

67 T/IR# Transmit/Receive Select
Configures the channel as either transmitter or receiver.

0 = receiver; SDx is an input to SSIOx_BUF
1 = transmitter; SDx is an output driven by the output of SSIOx_BUF

5 TRT Transmitter/Receiver Toggle

Controls whether receiver and transmitter switch roles at the end of each
transfer.

0 = do not switch
1 = switch; toggle T/R# and clear TRT at the end of the current transfer

Setting TRT allows the channel configuration to change immediately on
transfer completions, thus avoiding possible contention on the data line.

4 THS Transceiver Handshake Select

Enables and disables handshaking. The THS, STE, and ATR bits must
be set for handshaking modes.

0 = disables handshaking
1 = enables handshaking

3 STE Single Transfer Enable

Enables and disables transfer of a single byte. Unless ATR is set, STE is
automatically cleared at the end of a transfer. The THS, STE, and ATR
bits must be set for handshaking modes.

0 = disable transfers
1 = allow transmission or reception of a single byte

TThe M/S# and T/R# bits specify four possible configurations: master transmitter, master receiver,
slave transmitter, or slave receiver.

Figure 8-6. Synchronous Serial Control x (SSIOx_CON) Registers

[| 8-11

8XC196Kx, Jx, CA USER'S MANUAL InU®

SSIOx_CON (Continued)

x=0-1

Address: 1FB1H, 1FB3H
Reset State: O0H

The synchronous serial control x (SSIOx_CON) registers control the communications mode and
handshaking. The two least-significant bits indicate whether an overflow or underflow has occurred
and whether the channel is ready to transmit or receive.

7

M/S#

T/R#

TRT THS H STE ATR OUF TBS

Bit
Number

Bit
Mnemonic

Function

2

ATR

Automatic Transfer Re-enable

Enables and disables subsequent transfers. The THS, STE, and ATR bits
must be set for handshaking modes.

0 = allow automatic clearing of STE; disable subsequent transfers
1 = prevent automatic clearing of STE; allow transfer of next byte

OUF

Overflow/Underflow Flag

Indicates whether an overflow or underflow has occurred. An attempt to
access SSIOx_BUF during a byte transfer sets this bit.

For the master (M/S# = 1)

0 = no overflow or underflow has occurred
1 = the core attempted to access SSIOx_BUF during the current transfer

For the slave (M/S# = 0)

0 = no overflow or underflow has occurred

1 = the core attempted to access SSIOx_BUF during the current transfer
or the master attempted to clock data into or out of the slave’s
SSIOx_BUF before the buffer was available

TBS

Transceiver Buffer Status
Indicates the status of the channel’s SSIOx_BUF.
For the transmitter (T/R# =1)

0 = SSIOx_BUF is full; waiting to transmit
1= SSIOx_BUF is empty; buffer available

For the receiver (T/R# = 0)

0 = SSIOx_BUF is empty; waiting to receive
1= SSIOx_BUF is full; data available

TThe M/S# and T/R# bits specify four possible configurations: master transmitter, master receiver,
slave transmitter, or slave receiver.

Figure 8-6. Synchronous Serial Control x (SSIOx_CON) Registers (Continued)

8-12

Int€|® SYNCHRONOUS SERIAL 1/O (SSIO) PORT

8.5.4 Enabling the SSIO Interrupts

Each SSIO channel can generate arrint request if you enable the individual interrupt as well

as globally enabling servicing of all maskable interrupts. The INT_MASK1 register enables and
disables individual inteupts. To e@able an SSIO inteupt, set the corresponding bit in
INT_MASKZ1 (see Table 8-2 on page 8-2) and execute the El instruction to globally enable inter-
rupt servicing. See Chapter 5, “Standard and PTS Interrupts,” for more information about inter-
rupts.

8.5.5 Determining SSIO Port Status

The SSIO_BAUD register (Figure 8-5 on page 8-10) indicates the current status and value of the
down-counter. The SSKDCON register (Figure 8-6) indicates whether an underflow or over-
flow has occurred and whether the channel is ready to transmit or receive. Read the INT_PEND1
register (see Table 8-2 on page 8-2) to determine the status of SSIO interrupts. See Chapter 5
“Standard and PTS Interrupts,” for details about interrupts.

8.6 PROGRAMMING CONSIDERATIONS

For transmissions, the time that you write to SGIBUF determines the data setup time (the
length of time between data being placed on the data pin and the first clock edge on the clock pin).
The reason for this anomaly is that the baud-rate down-counter startsyahewrite to
SSIO_BAUD, but the transmissiadoesn't start until you write to SSKOBUF. The write to
SSIOXx_BUF can occur at any point during the count. Since the most-significant bit (MSB)
doesn’t change until the falling edge of x§@hich is triggered by a counter overflow), the width

of the MSB appears to vary (Figure 8-7). If you write to SSEBMF early in the count, the MSB
seems relatively long. If you write to SS{BUF late in the count, the MSB seems relatively
short.

For example, assume that you write 93H to SSIO_BAUD (the MSB enables the baud-rate gener-
ator, and the lower seven bits define the initial count value). As soon as this register is written,
the down-counter starts decrementing from 13H. If the counter is at 11H when you write to
SSIOx_BUF, the MSB will remain on the data pin for approximately 8.5 ps. If the counter is at
03H when you write to SSKOBUF, the MSB will remain on the data pin for only approximately

1.5 ps.

8-13

8XC196Kx, Jx, CA USER'S MANUAL InU®

Clock (SCx pin) 1 2 3 4

. MSB B6 B5 B4 B3
Data (SDx pin)

A2066-01

Figure 8-7. Variable-width MSB in SSIO Transmissions

NOTE

This condition exists only for the MSB. Once the MSB is clocked out, the
remaining bits are clocked out consistently at the programmed frequency.

One way to achieve a consistent MSB bit length is to start the down-count at a fixed time, using
these steps:

1. Clear SSIO_BAUD bit 7. This disables the baud-rate generator and clears the remaining
bits (BV6:0).

2. Write the byte to be transmitted to SSIBUF.

3. Set the STE bit in SSMOCON. This enables transfers and drives the MSB onto the data
pin.

4. Disable interrupts.

5. Set the MSB of SSIO_BAUD and writke desired BUD_VAL to the remaining bits.
This enables the baud-rate generator and starts the down count.

6. Rewrite the byte to be transmitted to SSIBUF. This starts the transmission.
7. Enable interrupts.
Using this procedure starts the clock at a known point before each saismestablishing a

predictable MSB bit time. Interrupts are disabled in step 4 and reenabled in step 7; otherwise, an
interrupt could cause a similar problem between steps 5 and 6.

8-14 [|

intel.

8.7 PROGRAMMING EXAMPLE

SYNCHRONOUS SERIAL 1/O (SSIO) PORT

This code example configures SSIOO0 as a master transmitter to send one byte of data to SSIO1
the slave receiver. First it sets up a window to allow register-direct access to the necessary regis-
ters. Next, it configures the clock and data pins. Sil1©8 is sending data, SCO (P6.4) and SDO
(P6.5) are configured as special-function complementary outputs. Since SSIO1 is receiving data,
SC1 (P6.6) and SD1 (P6.7) are configured as special-function inputs. The example also sets up &
register (result) to store the received data byte.

wsr equ 014h:byte
p6_dir equ 0d3h:byte
p6_mode equ 0dlh:byte
p6_reg equ 0d5h:byte
ssio_baud equ Ob4h:byte
ssio0_con equ Oblh:byte
ssiol_con equ 0b3h:byte
ssio0_buf equ ObOh:byte
ssiol_buf equ Ob2h:byte
result equ 122h:byte

;window to 1fd3h
;window to 1fd1lh

;window to 1fd5h

;window to 1fb4dh

;window to 1fblh

;window to 1fb3h
;window to 1fbOh
;window to 1fb2h
;register to store the received data byte

cseg at 2080h

ldb wsr#1fh ;select window 1fh
ldb p6_dir,#0c0Oh ;set up SD1/SC1 as inputs and
;set up SDO/SCO as complementary outputs
ldb p6_mode,#0fOh ;set up SD1/SC1, SDO/SCO as special-function
ldb p6_reg,#0cOh ;set up SD1/SC1 inputs (1), SDO/SCO outputs (0)
ldb ssio_baud,#80h ;enable baud-rate generator at 2 MHz
ldb ssio0_con,#0c9h ;set up channel 0 as master transmitter
ldb ssiol_con,#08h ;set up channel 1 as slave receiver
Idb ssio0_buf,#55h ;stransmit data 55h
d_wait:
jbc ssiol_con,0,d_wait ;wait for data to be received
stb ssiol_buf,result ;store received data in “result”
sjimp $

end

8-15

intgl.

Slave Port

CHAPTER 9
SLAVE PORT

The slave port offers an alternative for communication between two microcontrollers. Tradition-
ally, design engineers have had three options for achieving this communicatigeral #ink, a
parallel bus without a dual-port RAM (DPRAM), or a parallel bus with a DPRAM to hold shared
data.

A serial link, the most common method, has several advantages: it uses only two pins from each
device, it needs no hardware protocol, and it allows for error detection before data is stored. How-
ever, it is relatively slow and involves software overhead to differentiate data, addresses, and
commands. A parallel bus increases communication speed, but requires more pins and a rathel
involved hardware and software protocol. Using a DPRAM offers software flexibility between
master and slave devices, but the hardware interconnect uses a demultiplexed bus, which require:
even more pins than a simple parallel connection does. The DPRAM is also costly, and error de-
tection can be difficult. The SSIO offers a simple means for implementing a serial link. The mul-
tiplexed address/data bus can be used to implement a parallel link, with or without a DPRAM.
The slave port offers a fourth alternative.

The slave port offers the advantages of the traditional methods, without their drawbacks. It brings
the DPRAM on-chip, inside the microcontroller (Figure 9-1). With this configuration, the exter-
nal processor (master) can simply read from and write to the on-chip memory of the 8%C196K
(slave) processor. The slave port requires more pins than a serial link does, but fewer than the
number used for a parallel bus. It requires no hardware protocol, and it can interface with either
a multiplexed or a demultiplexed bus. The master CPU simply writes to or reads from the device
as it would write or read any parallel interface device (such as a memory or an I/O port). Data
error detection can be handled through the software.

NOTE

The slave port functions are not available on the BX&CA and ¥. The slave
port shared memory mode is available only on the 8XC196KS and KT.

8XC196Kx, Jx, CA USER'S MANUAL InU®

Processor A Dual-port Processor B
(Master) RAM (Slave)

<<—>| (DPRAM) |[=—>
Processor A Slave
Master) | [77"
(Master) <. | On-chip

— 7| RAM

8XC196 Device
A3065-01

Figure 9-1. DPRAM vs Slave-Port Solution

9.1 SLAVE PORT FUNCTIONAL OVERVIEW

Figure 9-2 is a block diagram of the slave port. The slave port is a simple bus configuration that
can interface to an external processor through an 8-bit address/data bus (SLP7:0). The slave
8XC196Kx processor communicates with the master (the external device) through the slave port
registers. From the slave viewpoint, the status register and data output register are output-only
registers that are latched onto the slave port address/data bus when SLPCS# and SLPRD# ar
both low. The command register and data input register are input-only registers that are written
when SLPCS# and SLPWR# are both low.

9.2 SLAVE PORT SIGNALS AND REGISTERS

Table 9-1 lists the signals used for slave port operation. The bus-control output signals provided
by P5.3:0 in normal operation become inputs for slave port operation, and P5.4 functions as
SLPINT, the slave port interrupt signal. The P3.7:0 pins function as SLP7:0 to transfer byte-wide
information between the slave device and the master CPU. If external memory is to be used while
the slave port is enabled, external bus arbitration logic is required. Table 9-2 lists the registers that
affect the function and indicate the status of the slave port.

intel.

SLAVE PORT
—— SLP_STAT.0
SLPINT/
P5.4 ©®,
—— SLP_STAT.1
[%2) [%2)
- -
I-U I-U
o |0
o |o
pd 4
3 il
SLPALE 0
/P5.0 .
|V SLP_CON.2 SLP_CON
V SLP_ADDR
stpupsl [3 I/I L D Q
SLPRD# Ii
P5.3 C |
SLPWR#
/P5.2 OE#
« SLP_STAT <::>
SLPCS#
P5.1 @) >' OE# p3_REG <::>
(Data Out)
) > W P3PING Ly
:> (Data In)
SLP7:0/ WE#
P3.7:0 D |:> SLP_CMD <:>
< Internal
Bus
8XC196 Device
A0267-03

Figure 9-2. Slave Port Block Diagram

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 9-1. Slave Port Signals

Slave Slave Port

Port Pin Port Sianal Type Description
Signal 9 yp

P3.7:0 SLP7:0 110 Slave Port Address/Data bus

Slave port address/data bus in multiplexed mode and slave port
data bus in demultiplexed mode. In multiplexed mode, SLP1 is
the source of the internal control signal, SLP_ADDR.

P5.0 SLPALE | Slave Port Address Latch Enable

Functions as either a latch enable input to latch the value on
SLP1 (with a multiplexed address/data bus) or as the source of
the internal control signal, SLP_ADDR (with a demultiplexed
address/data bus).

P5.1 SLPCS# | Slave Port Chip Select
SLPCS# must be held low to enable slave port operation.
P5.2 SLPWR# | Slave Port Write Control Input

This active-low signal is an input to the slave. The rising edge of
SLPWR{# latches data on port 3 into the P3_PIN or SLP_CMD
register.

SLPWRf# is multiplexed with P5.2, WR#, and WRL#.

P5.3 SLPRD# | Slave Port Read Control Input

This active-low signal is an input to the slave. Data from the
P3_REG or SLP_STAT register is valid after the falling edge of
SLPRD#.

P5.4 SLPINT (0] Slave Port Interrupt

This active-high slave port output signal can be used to interrupt
the master processor.

NOTE: SLPINT is multiplexed with P5.4 and the ONCE# func-
tion (KR, KQ) or a special test-mode-entry pin (KS, KT).
Because driving this pin low on the rising edge of
RESET# could cause the device to enter a reserved
test mode, this pin should not be used as an input.

Table 9-2. Slave Port Control and Status Registers

Mnemonic Address Description

INT_MASK 08H Interrupt Mask

Setting bit 6 enables the output buffer empty (OBE) interrupt; clearing
the bit disables it.

Setting bit 7 enables the input buffer full (IBF) interrupt; clearing the bit
disables it.

INT_MASK1 13H Interrupt Mask 1

Setting bit 0 enables the command buffer full (CBF) interrupt; clearing
the bit disables it.

INT_PEND 09H Interrupt Pending

Bit 6, when set, indicates a pending output buffer empty (OBE) interrupt.
This bit is set after the master writes to the data input register, P3_PIN.

Bit 7, when set, indicates a pending input buffer full (IBF). This bit is set
after the master reads from the data output register, P3_REG.

9-4

InU® SLAVE PORT

Table 9-2. Slave Port Control and Status Registers (Continued)

Mnemonic Address Description

INT_PEND1 12H Interrupt Pending 1

Bit 0, when set, indicates a pending command buffer full (CBF) interrupt.
This bit is set after the master writes to the command register,
SLP_CMD.

P3_PIN 1FFEH Slave Port Data Input Register
This register is also used for standard port 3 operation.

In slave port operation, this register accepts data written by the master
to be read by the slave. The slave can only read from this register and
the master can only write to it. If the master attempts to read from
P3_PIN, it will actually read P3_REG.

To write to this register in standard slave mode, the master must first
write “0” to the pin selected by SLP_CON.2. To write to this register in
shared memory mode (8XC196KS and KT only), the master must first
write “0” to the SLP1 pin.

P3_REG 1FFCH Slave Port Data Output Register
This register is also used for standard port 3 operation.

In slave port operation, this register accepts data written by the slave to
be read by the master. The slave can write to and read from this register.
The master can only read it. If the master attempts to write to this
register, it will actually write to P3_PIN.

To read from this register in standard slave mode, the master must first
write “0” to the pin selected by SLP_CON.2. To read from this register in
shared memory mode (8XC196KS and KT only), the master must first
write “0” to the SLP1 pin.

SLP_CMD 1FFAH Slave Port Command Register

This register accepts commands from the master to the slave. The
commands are defined by the device software. The slave can read from
and write to this register. The master can only write to it.

To write to this register in standard slave mode, the master must first
write “1” to the pin selected by SLP_CON.2. To write to this register in
shared memory mode (8XC196KS and KT only), the master must first
write “1” to the SLP1 pin.

SLP_CON 1FFBH Slave Port Control Register

This register is used to configure the slave port. It selects the operating
mode (8XC196KS and KT only), enables and disables slave port
operation, controls whether the master accesses the data registers or
the control and status registers, and controls whether the SLPINT signal
is asserted when the input buffer empty (IBE) and output buffer full
(OBF) flags are set in the SLP_STAT register. Only the slave can access
this register.

SLP_STAT 1FF8H Slave Port Status Register
The master can read this register to determine the status of the slave.

The slave can read all bits. If the master attempts to write to SLP_STAT,
it actually writes to SLP_CMD. To read from this register in standard
slave mode, the master must first write “1” to the pin selected by
SLP_CON.2. To read from this register in shared memory mode
(8XC196KS and KT only), the master must first write “1” to the SLP1

pin.

9-5

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

9.3 HARDWARE CONNECTIONS

Figure 9-3 shows the basic hardware connections for both multiplexed and demultiplexed bus
modes. Table 9-3 lists the interconnections. Note that the sharedrgnmode (8XC196KS and

KT only) supports only a mufilexed bus, while the standard slave medpports ¢her a mul-
tiplexed or a demultiplexed bus.

Table 9-3. Master and Slave Interconnections

Multiplexed Bus Demultiplexed Bus
Master Slave Master Slave
AD7:0 SLP7:0 D7:0 SLP7:0
ALE SLPALE Al SLPALE
RD# SLPRD# RD# SLPRD#
WR# SLPWR# WR# SLPWR#
Latched addr. or port pin SLPCS# Latched addr. pin SLPCS#
Interrupt input or port pin SLPINT Interrupt input or port pin SLPINT

When using a multiplexed bus, connect the masédd’s pin to the slave’s SLP1 pin and the mas-
ter’'s ALE pin to the slave’s P5.0 pin. When using a demultiplexed bus, connect the master’s ad-
dress output (Al) to the slave’s SLPALE (P5.0) pin. The master's AD1 (with a multiplexed bus)
or Al (with a demultiplexed bus) signal must be held high to either write to the slave’'s command
register (SLP_CMD) or read the slave’s status register (SLP_STAT). It must be held low to either
write to the slave’s P3_PIN register or read the slave’s P3_REG register.

The configurations shown in Figure 9-3 alltkie master to select the slave device by forcing
SLPCS# low. The master can then request that the slave perform a read or a write operation by
forcing SLPRD# or SLPWR# low, respectively. Data is latched on the rising edge of either
SLPRD# or SLPWR#. When the slave completes a read or a write, it notifies the master via the
SLPINT signal.

When the master writes to the P3_PIN register, the input buffer empty (IBE) flag is cleared and
SLPINT is pulled low. When the slave reads P3_PIN, the IBE flag is set and SLPINT is forced
high. This notifies the master that the write operation is completed and another write can be per-
formed.

When the slave writes to P3_REG, the output buffer full (OBF) flag is set and SLPINT is forced
high. This notifies the master that P3_REG contains valid data from the previous read cycle. Note
that this is a pipelined read. The address specified in the previous read cycle is fetched and placec
into the P3_REG register to be read by the master ingkeread cycle. When the master reads

from P3_REG, the OBF flag is cleared and SLPINT is pulled low.

Inte|® SLAVE PORT
SLPINT Slave Interrupt Output >
SLPRD# |<€ Data Read (RD#)
Data Write (WR#)
SLPWR# |-
Address Latch Enable (ALE)
SLPALE [«
Latched
LE Address
Chip Select (CS#) Decoder
SLPCS# |-
Master
Processor
SLP7:0 < Address/Data Bus > or System Bus

8XC196
Slave Processor

Slave Port Connections for Multiplexed Bus Interface

SLPINT
SLPRD#
SLPWR#
SLPALE

Slave Interrupt Output

\

Data Read (RD#)

Data Write (WR#)

System Address Line Al

Address

Chip Select (CS#)

SLPCS# =

SLP7:0

8XC196
Slave Processor

Decoder

Address Bus

Data Bus

)

Master
Processor
or System Bus

Slave Port Connections for Demultiplexed Bus Interface
A0309-02

Figure 9-3. Master/Slave Hardware Connections

9-7

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

9.4 SLAVE PORT MODES

The slave port can operate in either standard slave mode or shared memory mddsEXC

and KT only). In both modes, the master and slave sHZ56-ayte block of memonpcated any-

where within the slave’s memory space. Data written is stored in the slave’s P3_PIN register; data
to be read is stored in the slave’'s P3_REG register. The standard slave mode supports either a de
multiplexed or a multiplexed bus and uses the command buffer full (CBF) interrupt. The shared
memory mode supports only a multiplexed bus and uses the input buffer empty (IBE) and output
buffer full (OBF) interrupts. In both modes, the interrupts must be processed by a software inter-
rupt service routine.

9.4.1 Standard Slave Mode Example

In standard slave mode, the master and slave siz&@ byte block of memory. The hidpyte of

the address (the base address) selects the location within the slave’s memory space. The maste
writes the low byte of the address to the slave’s command register (SLP_CMD). This mode can
be used with either a multiplexed or a demultiplexed bus.

In this example, the master and slave sha&®&6abyte block of memory from 0400—-C3iH. The
master device has arbitrary external memory locations that are dedicated to slave port accesses.

94.1.1 Master Device Program

The following code segment illustrates the simple method for writing to the slave.

EXT_P3_PIN EQU OFFFDH ; (A1=0)
EXT_SLP_CMD EQU OFFFEH ; (A1=1)
STB DATA, EXT_P3_PIN ; write the data into the slave’s P3_PIN

STB ADDR, EXT_SLP_CMD ; write address LSB into slave’s SLP_CMD
; wait for SLPINT to go high

The master first writes data to the P3_PIN register, which clears the IBE flag in the slave’s
SLP_STAT register and pulls SLPINT low. This notifies the slave to perform a data write at the
address BASE + SLP_CMD.

The following code segment illustrates the equally simple method for reading from the slave.

EXT_P3_REG EQU OFFFCH ; (A1=0)
EXT_SLP_CMD EQU OFFFEH ; (A1=1)
LDB TEMP, EXT_P3_REG ; clear slave’s P3_REG

STB ADDR, EXT_SLP_CMD ; write address LSB into slave’s SLP_CMD
; ... wait for SLPINT to go high
LDB DATA, EXT_P3_REG ; read the data from P3_REG

Int6I® SLAVE PORT

The master first reads the P3_REG register. This ensures that the slave’s P3_REG is indeed emp
ty, clears the OBF flag, and pulls SLPINT low. Next, it loads the address it wants to read into the
SLP_CMD register. This causes a CBF interrupt in the slave processor. The slave reads that lo-
cation and stores the data in P3_REG, which sets the OBF flag and forces SLPINT high. This
notifies the master to read the P3_REG register.

9.4.1.2 Slave Device Program

Once the slave port and ports 3 and 5 are initialized, the slave gevgram is strictly interrupt

driven. When the slave device receives a byte in the SLP_CMD register, the command buffer full
(CBF) interrupt is generated. The CBF interrupt service routine reads the OBF and IBE flags in
the SLP_STAT register to determine whether the master device is sending data or requesting a
data read. For a data-read request, the master device clears P3_REG, which clears the OBF flag
before it loads SLP_CMD. For a data write, the master writes P3_PIN, which clears the IBE flag,
before it loads SLP_CMD. Therefore, only one of the two flags is clear when the CBF interrupt
service routine is entered.

If the IBE flag is clear (the input buffer, P3_PIN, is full), the slave moves the data from the
P3_PIN register tthe specified address. If the OBF flag is clear (the output buffer, P3_REG, is
empty), the slave moves the data from the specified address to the P3_REG register so that the
master can read it.

The following code segment shows the CBF interrupt serviceneouthe CBF intaupt must be
enabled and interrupts must be globally enabled for this routine to function.

CBF_ISR:
PUSHA
LDBZE MAILBOX, SLP_CMDI0] ; read SLP_CMD value (mailbox=address)
ADDB MAILBOX+1, BASE ; window address is 400-4FFH
LDB TEMPW, SLP_STATI[O] ; get SLP_STAT register
BBC TEMPW, 1, WRITE_DATA ; if IBE=0, master wants to write
BBC TEMPW, 0, READ_DATA ; if OBF=0, master wants to read
; if neither IBE=0 nor OBF=0, RETURN
; if both are set, an error has occurred
; no read or write can be performed
; (BBC is an assembler command that is
; translated to either a JBC, SIMP, or LIMP,
; depending upon the distance to the
; referenced address.)
DONE_ISR:
POPA
RET
WRITE_DATA:
LDB TEMPW, P3_PIN[O] ; get data to write
STB TEMPW, [MAILBOX] ; write P3_PIN at SLP_CMD+400H
POPA
RET

8XC196Kx, Jx, CA USER'S MANUAL Inu®

READ_DATA:
LDB TEMPW, [MAILBOX] ; get data to write to P3_REG
STB TEMPW, P3_REG|0] ; write SLP_CMD+400H data to P3_REG
POPA
RET
END

9.4.1.3 Demultiplexed Bus Timings

The master processor performs two bus cycles for each byte written and three bus cycles for eact
byte read. For the slave device, only five bytes are used (two bytes for the pointer to the open
memory window, two bytes for the temporary storage register, and one byte for the base address).
A read requires 91 state times (11.375 us at 16 MHz) and a write requires 86 stat&Cis (

ps at 16 MHz). These times dot include interrupt latency (see “Interrupt Latency” on page
5-7). Figure 9-4 shows relative timing relationships. Consult the datasheet for actual timing spec-
ifications.

SLPCS# \ /
SLPALE >< X

(Note 1)
SLPRD# \ /
SLP7:0/ < Data >—
P3.7:0
SLPWR# \ /

SLPINT \—5 / /

Notes: (Note 2)
1. Connect to master's Al signal.

2. Rising edge associated with either
— Read ready (write to P3_REG)
— Write complete (read of P3_PIN)

A0307-02

Figure 9-4. Standard Slave Mode Timings (Dem ulti plexed Bus)

9-10

Int6I® SLAVE PORT

9.4.2 Shared Memory Mode Example (8XC196KS and KT only)

In shared memory mode, the master and slave st256-ayte block of memory. The high byte

of the address (the base address) controls the location within the slave device memory space. The
low byte of the address is always in the SLP_CMD register. The P3_REG register contains data

to be read; the P3_PIN register contains the data written. This mode requires a multiplexed bus.

The primary difference between this mode and the standard slave mode is in the way that the ad-
dress is loaded into the SLP_CMD register. The low byte of the address is automatically loaded
into SLP_CMD on the falling edge of SLPALE. The data is latched on the rising edge of SLPRD#
or SLPWR#. For this reason, a write or read operation requires only one master bus cycle rather
than two and three bus cycles, respectively, in standard slave mode.

The time between the falling edge of SLPALE and the rising edge of SLPRD#ssatdo allow

the slave processor to perform the read. Therefore, reads are pipelined in this mode, as they are
in standard slave mode. When the master requests a read operation, the data present during th
current bus cycle is either “dummy” data or the data from the previous read operationghlth

read operations are pipelined, write operations are not. Therefore, write operations can be per-
formed between reads without corrupting data that is waiting to be read. This allows the master
to assign higher priority to write cycles. The master must wait for SLPINT to go high between
reads or writes.

In this example, the master and slave share a 256-byte block of memory from 0400—-04FFH.

9.4.2.1 Master Device Program

In this mode, the master simply requests a read and receives data one bus cycle following the pre-
vious read. The following code segment illustrates how this is done.
OFFSET EQU OFFOOH

ADD ADDR#OFFSET ; point to the external address
LDB DATA,[ADDR] ; read the slave device data

The data that is read is actually the data from the previous read cycle. The address driven cause
the slave to perform an interrupt service routine to fetch the data at that address. The data at the
address is valid on the rising edge of SLPINT. Writing to the slave is equally simple, as the fol-
lowing code segment illustrates.

OFFSET EQU OFFOOH

ADD ADDR#OFFSET ; point to the slave address
STB DATA,[ADDR] ; store data at the address

9-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

9.4.2.2 Slave Device Program

This example shows how the slave device reacts to reads and writes requested by the master. Re
gardless of the operation to be performed, the address is latched into the SLP_CMD register. The
interrupt determines whether a read or write operation is to be performed.

An IBF interrupt requires a write operation. The slave branches to the IBF interrupt service rou-
tine, reads the data in the P3_PIN register, and writes that data to the address specified by addin
a base address to the value in SLP_CMD. When the slave reads P3_PIN, it forces SLPINT high,
which notifies the master that another operation can be performed.

An OBE interrupt requires a read operation. The slave branches to the OBE interrupt service rou-
tine, reads the data at the address specified by adding a base address to the value in SLP_CMLC
and writes that data into tlR8_REG register. When the slave writes the P3_REG register, it forc-

es SLPINT high, which notifies the master that another operation can be performed. (Remember
that read operations are pipelined.)

The following code segment shows the IBF and OBE interrupt service routines. The interrupt ser-

vice routines are very much alike. One reads from the SFR space to the memory block; the other
reads from the memory block to the SFR space. The slave need only know which routine to exe-
cute. The IBF and OBE interrupts must be enabled and interrupts must be globally enabled for
these routines to function.

IBF_ISR:
PUSHA ; save flags
LDBZE ADDR, SLP_CMD[0] ; load SLP_CMD value into Addr register
ADDB ADDR+1, BASE ; add a base to address (16-bit address)
LDB TEMP, P3_PIN[O] ; read P3_PIN (read forces SLPINT high)
STB TEMP, [ADDR] ; write data to address
POPA
RET

OBE_ISR:
PUSHA ; save flags
LDBZE ADDR, SLP_CMD[0] ; load SLP_CMD value into Addr register
ADDB ADDR+1, BASE ; add a base to address (16-bit address)
LDB TEMP, [ADDR] ; load data from address to temp register
STB TEMP, P3_REG|0] ; write data to P3_REG

; (write forces SLPINT high)

POPA
RET

9-12 [|

InU® SLAVE PORT

9.4.2.3 Multiplexed Bus Timings

The memory space required for the sample code is four bytes (two bytes for the address register,
one for the temp register, and one for the base address). Reads and writes each require 58 sta
times (7.25 us at 16 MHz). These timeswb include interupt latency (see “Inteupt Latency”

on page 5-7). They also awt include the master device bus cycle time. Each read or write op-
eration requires only one master bus cycle. Figure 9-5 shows relative timing relationships. Con-
sult the datasheet for actual timing specifications.

SLPCS# \ /
SLPALE , \

(Note 1)

SLPRD# \ ,
SLP7:0/ —< Address >—< Data)7

P3.7.0

SLPWR# \ /
SLPINT \

(<
(Note 2) 27

=

(Note 3)

Notes:

1. Connect to master's ALE signal.

2. The falling edge of SLPINT is the same for both standard and PTS interrupts. It follows the falling
edge of SLPALE when SLPCS# is low. However, the rising edge of SLPINT occurs earlier for PTS
interrupts than for standard.

. Rising edge associated with either
— Read ready (write to P3_REG)

— Write complete (read of P3_PIN)

w

A0306-03

Figure 9-5. Sta ndard or Shared Memory Mode Timings (Multiplexed Bus)

[| 9-13

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

9.5 CONFIGURING THE SLAVE PORT
Before youcan use the slave port, you must configure the associated port 3 and port 5 pins to
serve as special-function signals. (See Chapter 6, “I/O Ports,” for configuration details.)

¢ Configure P5.3:0 as special-function inputs.

* Configure P5.4 as a special-function open-drain or complementary output.

¢ Configure P3.7:0 as special-function open-drain input/outputs.

The following code example shows the port 5 configuration code.

LDB TEMP, #EFH

STB TEMP, P5_DIR[0] ; make P5.4/SLPINT a complementary output
; set up all other port 5 pins as inputs

LDB TEMP, #1FH

STB TEMP, P5_MODE[0] ; select special function for P5.4:0
LDB TEMP, #FFH
STB TEMP, P5_REG|0] ; write all ones to P5_REG

The following code example shows the port 3 configuration code.

LDB TEMP, P34_DRV[0] ; read the current state of P34_DRV
ANDB TEMP, #7FH ; clear the MSB of P34_DRV
STB TEMP, P34_DRVI[0] ; make Port 3 open-drain

Once you have configured the pins, you must initialize the registhis example shows the ini-
tialization code. The remaining sections of this chapter describe the registers and explain the con-
figuration options.

LDB TEMP, #slave_mode ; OFH for standard, 1BH for shared mem mode
STB TEMP, SLP_CONJO0] ; initialize the slave port

STB ONES_REG, P3_REGJ[0] ; write all ones to port 3 (write sets OBF)
STB ZERO_REG, SLP_CMD[0] ; clear the command register

STB ZERO_REG, P3_PIN[O] ; clear the data input register

LDB TEMP, SLP_STAT[O] ; read the status reg (CBE, IBE, OBF=111)

9.5.1 Programming the Slave Port Control Register (SLP_CON)

The SLP_CON register (Figure 9-6) selects the operating mode, enables and disables slave por
operation, controls whether the master accesses the data registers or the control and status regi:
ters, and controls whether the SLPINT signal is asserted when the input buffer empty (IBE) and
output buffer full (OBF) flags are set in the SLP_STAT register. Only the slave can access this
register.

9-14

InU® SLAVE PORT

SLP_CON Address: 1FFBH
(8XC196Kx) Reset State: 00H

The slave port control (SLP_CON) register is used to configure the slave port. Only the slave can
access the register.

7 0
KQ, KR ‘ — ‘ — ‘ — ‘ — ‘ ‘ SLP ‘ SLPL ‘IBEMSK‘OBFMSK‘
7 0
KS, KT ‘ — ‘ — ‘ — ‘ SME ‘ ‘ SLP ‘ SLPL ‘IBEMSK‘OBFMSK‘
Nuii:)er Mne?ri\tonic Function
75 — Reserved; always write as zeros.
41 SME Shared Memory Enable

Enables slave port shared memory mode.
1 = shared memory mode

0 = standard slave mode

3 SLP Slave Port Enable

This bit enables or disables the slave port.

1 = enables the slave port

0 = disables the slave port and clears the command buffer empty (CBE),
input buffer empty (IBE), and output buffer full (OBF) flags in the
SLP_STAT register.

2 SLPL Slave Port Latch

In standard slave mode only, this bit determines the source of the internal
control signal, SLP_ADDR. When SLP_ADDR is held high, the master can
write to the SLP_CMD register and read from the SLP_STAT register. When
SLP_ADDR is held low, the master can write to the P3_PIN register and read
from the P3_REG register.

1 =SLP1 (P3.1) via master’s AD1 signal. Use with multiplexed bus.
0 = SLPALE (P5.0) via master’s Al signal. Use with demultiplexed bus.

In shared memory mode, this bit has no function.

1 IBEMSK Input Buffer Empty Mask

Controls whether the IBE flag (in SLP_STAT) asserts the SLPINT signal.
In shared memory mode, this bit has no effect on the SLPINT signal.

0 OBFMSK | Output Buffer Full Mask

Controls whether the OBF flag (in SLP_STAT) asserts the SLPINT signal.
In shared memory mode, this bit has no effect on the SLPINT signal.

TOn the 8XC196KQ, KR devices this bit is reserved; always write as zero.

Figure 9-6. Slave Port Control (SLP_CON) Register

[| 9-15

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

9.5.2 Enabling the Slave Port Interrupts

The master can generate three interrupt requests: command buffer full (CBF), output buffer emp-
ty (OBE), and input buffer full (IBF). The CBF interrupt is used in standard slave mode; the OBE
and IBF interrupts are used in shared memory mode. To enableranphtset the corresponding

bit in the interrupt mask register (Table 9-2 on page 9-4).

9.6 DETERMINING SLAVE PORT STATUS

The master can determine the status of the slave port by reading the SLP_STAT register (Figure
9-7). It can also read the interrupt pendiegisters (Table 9-2 on page 9-4) to determine the status
of the interrupts.

9.7 USING STATUS BITS TO SYNCHRONIZE MASTER AND SLAVE

The status bits in the SLP_STAT register can be used to synchronize the master with the slave.
Because synchronization of the status bits is not monitored by the status flags, it is more difficult
for the master to monitor. Software musitsare data integrity throughout the operation. Two
technigues are recommended — a double read or a software flag.

If the master processor is fastoeigh to read SLP_STAT twice before the contents change, the
master can compare the readings from before and after the data fetch. If the readings are identical
the data is guaranteed correct.

In standard slave mode, the slave can use hit 7 of SLP_STAT to indicate valid data. To update the
status, the slave performs the following sequence:

¢ Clear the flag bit (bit 7) without changing the other four status bits.

¢ Update the status bits (SLP_STAT.6:3).

¢ Set the flag bit (bit 7) without changing the other four status bits.

9-16 [|

InU® SLAVE PORT

SLP_STAT Address: 1FF8H
(8XC196Kx) Reset State: O0H

The master can read the slave port status (SLP_STAT) register to determine the status of the slave.
The slave can read all bits and can write bits 3—7 for general-purpose status information. (The bits are
user-defined flags.) If the master attempts to write to SLP_STAT, it actually writes to SLP_CMD. To read
from this register (rather than P3_REG), the master must first write “1” to the pin selected by
SLP_CON.2.

7 0
KQ, KR ‘ SF4 ‘ SF3 ‘ SF2 ‘ SF1 ‘ ‘ SFO ‘ CBE ‘ IBE ‘ OBF ‘
7 0
KS, KT ‘ SMOJ/SF4 ‘ SF3 ‘ SF2 ‘ SF1 ‘ ‘ SFO ‘ CBE ‘ IBE ‘ OBF ‘
Nu‘rgni:)er Mne?riltonic Function
7T (KS, KT) | SMO/SF4 Shared Memory Operation/Status Field Bit 4

In shared memory mode bit 7 (SMO) indicates whether the bus
interface logic received a read (1) or a write (0). SMO can be read but

not written.
In standard slave mode bit 7 (SF4) is the high bit of the status field.
7:3 (KQ, KR) | SF4:0 Status Field
6:3 (KS, KT) | SF3:0 The slave can write to these bits for general-purpose status infor-
mation. (The bits are user-defined flags).
2 CBE Command Buffer Empty

This flag is set after the slave reads SLP_CMD. The flag is cleared and
the command buffer full (CBF) interrupt pending bit (INT_PEND1.0) is
set after the master writes to SLP_CMD.

1 IBE Input Buffer Empty

This flag is set after the slave reads P3_PIN. The flag is cleared and
the IBF interrupt pending bit (INT_PEND.7) is set after the master
writes to P3_PIN.

0 OBF Output Buffer Full

This flag is set after the slave writes to P3_REG. The flag is cleared
and the OBE interrupt pending bit INT_PEND.6) is set after the master
reads P3_REG.

T On the 8XC196KQ, KR devices this bit functions only as SF4.

Figure 9-7. Slave Port Status (SLP_STAT) Register

9-17

intgl. 1 O

Event Processor
Array (EPA)

CHAPTER 10
EVENT PROCESSOR ARRAY (EPA)

Control applications often require high-speed event control. For example, the controller may need
to periodically generate pulse-width modulated outputs, an analog-to-digital conversion, or an in-
terrupt. In another application, the controller may monitor an input signal to determine the status
of an external device. The event processor array (EPA) was designed to reduce the CPU overheac
associated with these types of event control. This chapter describes the EPA and its timers and
explains how to configure and program them.

10.1 EPA FUNCTIONAL OVERVIEW

The EPA performs input and output functions associated with two timer/counters, timer 1 and
timer 2 (Figure 10-1). In the input mode, the EPA monitors an input pin for an event: a rising edge,
a falling edge, or an edge in either direction. When the event occurs, the EPA records the value
of the timer/counter, so that the event is tagged with a time. This is caliggudicapture Input
captures are buffered to allow two captures befovarrun occurs. In the output mode, the EPA
monitors a timer/counter and compares its value with a value stored in a register. When the tim-
er/counter value matches the stored value, the EPA can trigger an event: a timer reset or an outpu
event (set a pin, clear a pin, toggle a pin, or take no action). This is cabathahcompareThe

EPA sets an interrupt pending bit in response to an input capture or an output compare. This bit
can optionally cause an interrupt. Table 10-1 lists the capture/compare and compare-only chan-
nels for each device in the 8XC19%6Kamily.

Table 10-1. EPA Channels

Device Capture/Compare Channels Compare-only Channels
87C196CA, 8XC196Jx EPA3:0 & EPA9:8 COMP1:0
8XC196Kx EPA9:0 COMP1:0

10-1

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Timer-Counter Unit

TIMER1

TIMER2

Capture/Compare

EPA 3:0 D Channel 0-3 [EPA3:0 Interrupts

8XC196Kx Only

Capture/Compare
epA7:4 [] Channel 4-7

Y

Capture/Compare
erAs / compo [} Channel 8

Y

EPAX
Indirect Interrupt
Compare-only Interrupt
Channel 0 Processor
Logic

Y

Capture/Compare
EPA9 / comp1 [} Channel 9

Y

Compare-only
Channel 1

Y

A3114-01

Figure 10-1. EPA Block Diagram

10.2 EPA AND TIMER/COUNTER SIGNALS AND REGISTERS
Table 10-2 describes the EPA and timer/counter input and output signals. Each signal is multi-

plexed with a port pin as shown in the first column. Table 10-3 briefly describes the registers for
the EPA capture/compare channels, EPA compare-only channels, and timer/counters.

10-2

intel.

EVENT PROCESSOR ARRAY (EPA)

Table 10-2. EPA and Timer/Counter Signals

Port Pin EPA Signal(s) Signillaﬁype Description
P1.0 EPAO 110 High-speed input/output for capture/compare
channel 0.
T2CLK | External clock source for timer 2. If you use
T2CLK, you cannot use capture/compare channel
0.
P11 EPA1 /10 High-speed input/output for capture/compare
channel 1.
P12 EPA2 110 High-speed input/output for capture/compare
channel 2.
T2DIR | External direction control for timer 2. If you use
T2DIR, you cannot use capture/compare channel
2.
P13 EPA3 /10 High-speed input/output for capture/compare
channel 3.
P1.7:4 EPAT7:4" I{e] High-speed input/output for capture/compare
channels 4-7.
P6.0 EPA8 110 High-speed input/output for capture/compare
channel 8.
COMPO (0] Output of the compare-only channel 0.
P6.1 EPA9 /10 High-speed input/output for capture/compare
channel 9.
COMP1 (0] Output of the compare-only channel 1.
P6.2 TicLk! [External clock source for timer 1.
P6.3 T1DIR' [External direction control for timer 1.

T This pin is not implemented on the 8XC196Jx and 87C196CA devices.

Table 10-3. EPA Control and Status Registers

Mnemonic Address Description

COMPO_CON 1F88H EPAXx Compare Control

COMP1_CON 1F8CH These registers control the functions of the compare-only
channels.

COMPO_TIME | 1F8AH EPAXx Compare Time

COMP1_TIME | 1F8EH These registers contain the time at which an event is to occur on
the compare-only channels.

EPA_MASK 1FAOH EPA Interrupt Mask
The bits in this 16-bit register enable and disable (mask) 16 of the
interrupts associated with the EPAx interrupt, EPA4-9 and
OVRO-9.

EPA_MASK1 1FA4H EPA Interrupt Mask 1
The bits in this 8-bit register enable and disable (mask) four
interrupts associated with the EPAx interrupt, OVRTM1,
OVRTM2, COMPO, and COMP1

EPA_PEND 1FA2H EPA Interrupt Pending
Any set bit in this register indicates a pending interrupt.

10-3

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 10-3. EPA Control and Status Registers (Continued)

Mnemonic Address Description

EPA_PEND1 1FAG6H EPA Interrupt Pending 1
Any set bit in this register indicates a pending interrupt.

EPAO_CON 1F60H EPAX Capture/Compare Control

EPAL_CON 1F64H These registers control the functions of the capture/compare

EPA2_CON 1F68H channels. EPA1_CON and EPA3_CON require an extra byte

EPA3_CON 1F6CH because they contain an additional bit for PWM remap mode.

EPA4_CON 1F70H These two registers must be addressed as words; the others can

EPA5_CON 1F74H be addressed as bytes.

EPAG6_CON 1F78H

EPA7_CON 1F7CH

EPA8_CON 1F80H

EPA9_CON 1F84H

EPAO_TIME 1F62H EPAX Capture/Compare Time

EPAL_TIME 1F66H In capture mode, these registers contain the captured timer value.

EPA2_TIME 1F6AH In compare mode, these registers contain the time at which an

EPA3_TIME 1F6EH event is to occur. In capture mode, these registers are buffered to

EPA4_TIME 1F72H allow two captures before an overrun occurs. However, they are

EPAS_TIME 1F76H not buffered in compare mode.

EPA6_TIME 1F7AH

EPA7_TIME 1F7EH

EPA8_TIME 1F82H

EPA9_TIME 1F86H

EPAIPV 1FA8H EPA Interrupt Priority Vector Register
The lower four bits of this register contain a number from 01H to
14H corresponding to the highest priority active EPAX interrupt
source. This value, when used with the TIIMP instruction,
enables software to branch to the correct interrupt service routine
for the active interrupt.

INT_MASK 0008H Interrupt Mask
Five bits in this register enable and disable (mask) the individual
EPAO, EPAL, EPA2, and EPA3 interrupts and the multiplexed
EPAX interrupt. The EPA_MASK and EPA_MASK]1 register bits
enable and disable the individual sources of the EPAX interrupt.

INT_PEND 0009H Interrupt Pending
Five bits in this register are set to indicate pending individual
interrupts EPAO, EPA1, EPA2, and EPA3, and the multiplexed
EPAX interrupt. The EPA_PEND and EPA_PENDL1 register bits
indicate which source(s) of the EPAXx interrupt are pending.

P1_DIR 1FD2H Port x Direction

P6_DIR 1FD3H Each bit of Px_DIR controls the direction of the corresponding pin.
Clearing a bit configures a pin as a complementary output; setting
a bit configures a pin as an input or open-drain output. (Open-
drain outputs require external pull-ups.)

P1_MODE 1FDOH Port x Mode

P6_MODE 1FD1H

Each bit of Px_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as a special-function
signal. Setting a bit configures a pin as a special-function signal;
clearing a bit configures a pin as a standard I/O port pin.

10-4

intel.

EVENT PROCESSOR ARRAY (EPA)

Table 10-3. EPA Control and Status Registers (Continued)

Mnemonic

Address Description

P1_PIN
P6_PIN

1FD6H Port x Input

1FD7H Each bit of Px_PIN reflects the current state of the corresponding
pin, regardless of the pin configuration.

P1_REG
P6_REG

1FD4H Port x Data Output
1FD5H For an input, set the corresponding Px_REG bit.

For an output, write the data to be driven out by each pin to the
corresponding bit of Px_REG. When a pin is configured as
standard 1/0 (Px_MODE.x=0), the result of a CPU write to
Px_REG is immediately visible on the pin. When a pin is
configured as a special-function signal (Px_MODE.x=1), the
associated on-chip peripheral or off-chip component controls the
pin. The CPU can still write to Px_REG, but the pin is unaffected
until it is switched back to its standard 1/O function.

This feature allows software to configure a pin as standard /0O
(clear Px_MODE.x), initialize or overwrite the pin value, then
configure the pin as a special-function signal (set Px_MODE.X). In
this way, initialization, fault recovery, exception handling, etc., can
be done without changing the operation of the associated
peripheral.

T1CONTROL

1F98H Timer 1 Control

This register enables/disables timer 1, controls whether it counts
up or down, selects the clock source and direction, and
determines the clock prescaler setting.

T2CONTROL

1F9CH Timer 2 Control

This register enables/disables timer 2, controls whether it counts
up or down, selects the clock source and direction, and
determines the clock prescaler setting.

TIMER1

1F9AH Timer 1 Value
This register contains the current value of timer 1.

TIMER2

1F9EH Timer 2 Value
This register contains the current value of timer 2.

10-5

8XC196Kx, Jx, CA USER'S MANUAL Inu®

10.3 TIMER/COUNTER FUNCTIONAL OVERVIEW

The EPA has two 16-bit up/down timer/counters, timer 1 and timer 2, which can be clocked in-
ternally or externally. Each is calledimerif it is clocked internally and eounterif it is clocked
externally. Figure 10-2 illustrates the timer/counter structure.

T2CONTROL.2:0

3
T2CLK D_ \t Timer 2
Fosc/4 Prescaler Clock
oc
Quadrature Count Module

- .
Timer 1 Overflow Overflow

OVR2
Interrupt

T2DR [}—

T2CONTROL.6
Quadrature Direction

Direction

_/

T1CONTROL.2:0

3 .
Timer 1

T1CLK I I—
\l Prescaler Clock
Fosc/4 Module oc
Quadrature Count
Overflow f——@——m
OVR1
Interrupt
TIDIR D—\l
T1CONTROL.6 @ Direction
Quadrature Direction J
= 8XC196Kx only
A3129-01

Figure 10-2. EPA Timer/Counters

10-6

Int€|® EVENT PROCESSOR ARRAY (EPA)

The timer/counters can be used as time bases for input captures, output compares, and pro
grammed interrupts (software timers). When a counter increments from FFFEH to FFFFH or dec-
rements from 0001H to O000H, the counter-overfioterrupt pending bit is set. This bit can
optionally cause an interrupt. The clock source, direction-control source, count direction, and res-
olution of the input capture or output compare arpragjrammablésee Programminghe Tim-

ers” on page 10-17). The maximum count rate is one-half the internal clock ratg,/dr(fvhere

Foscis the XTAL1 frequency, in Hz). This provides a 250 ns resolution (at 16 MHz) for an input
capture or output compare.

10.3.1 Cascade Mode (Timer 2 Only)

Timer 2 can be used in cascade mode. In this mode, the timer 1 overflow output is used as the
timer 2 clock input. Either the direction control bit of the timer 2 control register or the direction
control assigned to timer 1 controls the count direction. This method, cakedding can pro-

vide a slow clock for idle mode timeout control or for slow pulse-width modulation (PWM) ap-
plications (see “Generating a Low-speed PWM Output” on page 10-14).

10.3.2 Quadrature Clocking Mode

On the 8XC196KXx, both timer 1 and timer 2 can be used in quadrature clocking mode. (On the
8XC196 Xand CA, only timer 2 supports quadrature clocking mode.) This mode use<thié T

and TXDIR pins as quadrature inputs, as shown in Figure 10-3. External quadrature-encoded sig-
nals (two signals at the same frequency that differ in phase°pwa@0input, and the timer incre-
ments or decrements by one count on each rising edge and each falling edge. Beca@iekthe T

and ™XDIR inputs are sampled by the internal phase clocks, transitions must be separated by at
least two state times for proper opérat The count is clocked by PH2, which is PH1 delayed by
one-half period. The sequence of the signal edges and levels controls the count direction. Refer
to Figure 10-4 and Table 10-4 for sequencimfgimation.

A typical source of quadrature-encoded signals is a shaft-angle decoder, shown in Figure 10-3.
Its output signals X and Y are input tQLK and TxDIR, which in turn output signals
X_internal and Y_internal. These signals are used in Figure 10-4 and Table 10-4 to describe the
direction of the shatft.

10-7

8XC196Kx, Jx, CA USER'S MANUAL

8XC196 Device

Optical

Reader \

l Decrement 7
I
|
|
|
I
|
I '_: TXCLK
I = DQ D Q DQ
I
I
l [[| —
I
| TxDIR
II> = DQ D Q D Q
|
I

PH2
PH1

X_internal

Y_internal

A0268-02

Figure 10-3. Quadrature Mode Interface

Table 10-4. Quadrature Mode Truth Table

State of X_internal
(TXCLK)

State of Y_internal
(TxDIR)

Count Direction

0

Increment

Increment

Increment

Increment

Decrement

Decrement

Decrement

Rlo|- |- |k lo]- |-

1
l
1
0
1
1
1

Decrement

10-8

Inu® EVENT PROCESSOR ARRAY (EPA)

ennnnnnnnnnnn

A0269-02

Figure 10-4. Quadrature Mode Timing and Count

10.4 EPA CHANNEL FUNCTIONAL OVERVIEW

The EPA has temprogrammable capture/cqrare channels that can perform the following tasks.
¢ capture the current timer value when a specified transition occurs on the EPA pin

e start an A/D conversion when an event is captured or the timer value matches the
programmed value in the event-time register

¢ clear, set, or toggle the EPA pin when the timer value matches the programmed value in the
event-time register

* generate an interrupt when a capture or compare event occurs
* generate an interrupt when a capture overrun occurs

* reset its own base timer in compare mode

* reset theopposite timer in both compare and capture mode

In addition to the capture/compare channels, the EPA also has two compare-only channels. They
support all the comparfenctions of the capture/compare channels.

10-9

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Each EPA channel has a control register, £RPON (capture/compare channels) or
COMPx_CON (compare-only channels); an event-time registerXePMME (capture/compare
channels) or COMP_TIME (compare-only channels); and a timer input (Figure 10-5). The con-

trol register selects the timer, the mode, and either the event to be captured or the event that is tc
occur. The event-time register holds the captured timer value in capture mode and the event time
in compare mode. See “Prograimg the Capture/Compare Channels” on page 10-20 and “Pro-

gramming the Compare-only Channels” on page 10-25 for configuration information.

The two compare-only channels share output pins with capture/compare channels 8 and 9. This
means that both capture/compare channel 8 and compare-only channel 0 can set, clear, or toggl
the EPA8/COMPO pin. They can operate at the same time, and neither has priority in its access to
the output pin. Capture/compare channel 9 and compare-only channel 1 share the EPA9/COMP1

pin in this same way.

Timer/Counter Unit

«— External clocking (TxCLK) with up to 6-bit prescaler

TIMER1 X
— Quadrature clocking through TxCLK and TxDIR
Clock on |« Internal clocking with up to 6-bit prescaler
TIMER1 overflow ~ TIMER2
aY
EPA Capture/Compare
L Capture Overrun Channel x
OVRx — ! !
Interrupt . * * * .
B Y . 1 Capture . ! EPA Pin
-« EPAx_TIME > Buffer A | X ' 0
Y ! 1A
A Compare ! [' |
1 - 1
” L 'l—/_lxl TGL| A !
] Y | ! ' |
o 1 ! * ! 1
1 X ! 1
-« ! \ ! 1
=< : ' : 1
EPA <Z: [: o
Interrupt , ' Reset Timer | I
. | — . |
EPAX CON | ___Overwrite _ 1 ' Start AID ! !
T T ' - . I
! IR Mode Control_, | Mode Selection 1 |
! TRemap !
I~ b REmep o _____ | .
T EPA1 and 3 only. If enabled for EPA1, EPAO shares the EPA1 pin. If enabled for EPA3, EPA2
shares the EPA3 pin.
A0270-02

Figure 10-5. A Single EPA Capture/Compare Channel

10-10

Inbl® EVENT PROCESSOR ARRAY (EPA)

10.4.1 Operating in Capture Mode

In capture mode, when a valid event occurs on the pin, the value of the selected timer is captured
into a buffer. The timer value is then transferred from the buffer to thex HPWE register,

which sets the EPA interrupt pending bit as shown in Figure 10-6. If enabled, an interrupt is gen-
erated. If a second event occurs before the CPU reads the first timer valuexinT BNPB, the

current timer value is loaded into the buffer and held there. After the CPU reads theTBWA

register, the contents of the capture buffer are automatically transferred intoTHME and the

EPA intarupt pending bit is set.

TIMERX
Event Occurs
<€ - at EPA Pin
Capture Buffer
EPA
Interrupt g = = == acaa--
Pending Bit
Set
EPAX_TIME

Read-out Time Value

A2458-02

Figure 10-6. EPA Simplified Input-Capture Structure

If a third event occurs before the CPU reads the event-time register, the overwrite bit
(EPAX_CON.0) determines how the EPA will handle the everthdbit is clear, the EPA ignores

the third event. If the bit is set, the third event time overwrites tanskevent time in the capture
buffer. Both situations set tlowerrun interrupt pending bit and, if enabled, generatevarrun
interrupt. Table 10-5 summarizes the possible actions when a valid event occurs.

NOTE

In order for an event to be captured, the signal must be stable for at least two
state times both before and after the transition occurs (Figure 10-7).

10-11

8XC196Kx, Jx, CA USER'S MANUAL InU®

Event 1 1(

2 State 2 State
Times Times

Event 2 ‘ \

| 2 State 2 State |
Times Times

A3130-01

Figure 10-7. Valid EPA Input Events

Table 10-5. Action Taken when a Valid Edge Occurs

Overwrite Bit Status of
(EPAX_CON.0) Capture Buffer Action taken when a valid edge occurs
- : & EPAX_TIME
0 empty Edge is captured and event time is loaded into the capture buffer and
EPAX_TIME register.
0 full New data is ignored — no capture, EPA interrupt, or transfer occurs;
OVRXx interrupt pending bit is set.
1 empty Edge is captured and event time is loaded into the capture buffer and
EPAX_TIME register.
1 full Old data is overwritten in the capture buffer; OVRx interrupt pending
bit is set.

An input capture event does not set the interrupt pending bit until the capturedltimactaally

moves from the capture buffer into the BPAIME register. If the buffer contains data and the
PTS is used to service the interrupts, then two PTS interrupts occur almost back-to-back (that is,
with one instruction executed between the interrupts).

10.4.1.1 Handling EPA Overruns

Overruns occur when an EPA input transitions at a rate that cannot be hantiedBA inter-

rupt service routine. If no overrun handling strategy is in place, and if the following three condi-
tions exist, a situation may occur where both the capture buffer and the BN register
contain data, and no EPA interrupt is generated.

¢ an input signal with a frequency high enough to cause overruns is present on an enabled
EPA pin, and

¢ the overwrite bit is set (EBACON.O0 = 1; old data is overwritten on overrun), and

¢ the EPAX_TIME register is read at the exact instant that the EPA recognizes the captured
edge as valid.

10-12 [|

Int€|® EVENT PROCESSOR ARRAY (EPA)

The input frequency at which this occurs depends on the length of the interrupt service routine as
well as other factors. Unless the interrupt service routine includes a check for overruns, this situ-
ation will remain the same until the device is reset or thexEPIME register is read. The act of
reading EPX_TIME allows the buffered time value to be moved into EPAME. This clears

the buffer and allows another event to be captured. Remember that the act of the transferring the
buffer contents to the ERATIME register is what actually sets the BRAterrupt pending bit

and generates the interrupt.

Any one of the following methods can be used to prevent or recover from this situation.
* Clear EPA_CON.O

When the overwrite bit (EPA CON.O) is zero, the EPA does not consider the captured
edge until the EPA TIME register is read and the data in the capture buffer is transferred to
EPAX_TIME. This prevents the situation by ignoring new input capture events when both
the capture buffer and ERATIME contain valid capture times. The O¥IRending bit in
EPA_PEND is set to indicate that an overrun occurred.

* Enable the OVRinterrupt and read the ERATIME register within the ISR

If this situation occurs, the overrun (OXHnterrupt will be generated. The OXkhterrupt
will then be acknowledged and its interrupt service routine will read thet HPME regis-

ter. After the CPU reads the ERATIME register, the buffered data moves from the buffer
to the EPAX_TIME register. This sets the EPA interrupt pending bit.

* Check for pending EPAinterrupts before exiting an ERASR

Another method for avoiding this situation is to check for pending EPA interrupts before
exiting the EPA interrupt service routine. This is an easy way to detect overruns and addi-
tional interrupts. It can also save loop time by eliminating the latency necessary to service
the pending interrupt. However, this method cannot be used with the peripheral transaction
server (PTS). If your system uses the PTS, you should choose one of the other methods.

10.4.2 Operating in Compare Mode

When the selected timer value matches the event-time value, the action specified in the control
register occurs (i.e., the pin is set, cleared, toggled, or an A/D conversion is initiated). If the re-
enable bit (EPA_ CON.3 or COMR_CON.3) is set, the action reoccurs on every timer match. If
the re-enable bit is cleared, the action does not reoccur until a new value is written to the event-
time register. See “Programming the Capture/Compare Channels” on page 10-20 and “Program-
ming the Compare-only Channels” on page 10-25 for configuration information.

In compare mode, you can use the EPA to produce a pulse-width modulated (PWM) output. The
following sections describe four possible methods.

[| 10-13

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

10.4.2.1 Generating a Low-speed PWM Output

You can generate a low-speed, pulse-width modulated output with a single EPA channel and a
standard interrupt service routine. Configure the EPA channel as follows: compare mode, toggle
output, and the compare function re-enabled. Select standard interrupt service, enable the EPA
interrupt, and globally enable interrupts with the El instruction. When the assigned timer/counter
value matches the value in the event-time register, the EPA toggles the output pin and generates
an interrupt. The interrupt service routine loads a new value intx HPWE.

The maximum output frequency depends upon the total interrupt latency and the interrupt-service
execution times used by your system. As additional EPA channels and the other functions of the
microcontroller are used, the maximum PWM frequency decreases because the total interrupt la-
tency and interrupt-service execution time increases. To determine the maximum, low-speed
PWM frequency in your system, calculate your system's worst-case interrupt latency and worst-
case interrupt-service execution time, and then add them together. The worst-case interrupt la-
tency is the total latency of all the interrupts (both normal and PTS) us@diisystem. The
worst-case interrupt-service exaion time is the total execution time of all interrupt service rou-
tines and PTS routines.

The following example shows the calculations for a systerhuses a single EPA channel, a sin-
gle enabled interrupt, and the following interrupt service routine.

;If EPAO-3 interrupt is generated
EPA0-3_ISR:
PUSHA
LD EPAX_CON, #toggle_command
ADD EPAx_TIME, TIMER x, [next_duty_ptr]; Load next event time
POPA
RET

;If EPA X interrupt is generated from EPA4-9 interrupts
EPAX_ISR:
PUSHA
LD jtbase_ptr, #LSW jtbasel
LD epaipv_ptr, EPAIPV ; Load contents of EPAIPV reg into ptr
TIIMP jthase_ptr,[epaipv_ptr],7FH ; Jump to appropriate EPA ISR

;EPA4-9 service routines
EPA4-9_ISR:
PUSHA
LD EPAX_CON, #toggle_command
ADD EPAx_TIME,TIMER x,[next_duty_ptr]
LIMP EPAX_DONE

EPAx_DONE:

POPA
RET

10-14

Int€|® EVENT PROCESSOR ARRAY (EPA)

The worst-case interrupt latency for a single-interrupt system is 56 state times for external stack

usage and 54 state times for internal stack usage (see “Standard Interrupt Latency” on page 5-9)
To determine the execution time for an interrupt service routine, add up the execution time of the

instructions in the ISR (Table A-9).

The total execution time for the ISR that servicesrimfgs EPA3:0 is 79 state tim&s external

stack usage or 71 state times for internal stack usage. Therefore, a single capture/compare channe
0-3 can be updated every 125 state times assuming internal shgek(Gd4 + 71). Each PWM

period requires two updates (one setting and one clearing), so the execution time for a PWM pe-
riod equals 250 state times. At 16 MHz, the PWM period is 31.25 ps and the maximum PWM
frequency is 32 kHz.

The total execution time fahe ISR that services the ER£capture/compare channels 4-9) in-
terrupt is 175 state times for external stack usage or 159 for internal stgek Tkerefore, a sin-

gle capture/compare channel 4-7 can be updated every 213 state times assuming internal stac
usage (54 + 159). Each PWM period requires two updates (one setting and one clearing), so the
execution time for a PWM period equalg6 state times. At 16 MHz, the PWM period is
53.25 us and the maximum PWM frequency is 18.8 kHz.

10.4.2.2 Generating a Medium-speed PWM Output

You can generate a medium-speed, pulse-width modulated output with a single EPA channel and
the PTS set up in PWM toggle mode. “PWM Toggle Mode Example” on page 5-32 describes how

to configure the EPA and PTS. Once started, this method requires no CPU intervention unless you
need to change the output frequency. The method uses a single timer/counteneficedinter

is not interrupted during this process, so other EPA channels can also use it if they do not reset it.

The maximum output frequency depends upon the total interrupt latency and interrupt-service ex-
ecution time. As additional EPA channels and the other functions of the microcontroller are used,
the maximum PWM frequency decreases because the total interrupt latency and interrupt-service
execution time increases. To determine the maximum, medium-speed PWM frequgaay in
system, calculate your system's worst-casarinpt latency and worst-case interrupt-service ex-
ecution time, and then add them together. The worst-case interrupt latency is the total latency of
all the intarupts (both normal and PTS) used in ysystem. The worst-case interrupt-service
execution time is the total execution time of all interrupt service routines and PTS cycles.

The following example shows the calculations for a systerhuses a single EPA channel, a sin-

gle enabled interrupt, and PTS service. This example assumes that the PTS has been initialized
the duty cycle and frequency are fixed, and that the interrupt from the capture/compare channel
is not multiplexed (i.e., EPA3:0).

10-15

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

The worst-case interrupt latency for a single-interrupt system with PTS service is 43 state times
(see “PTS Interrupt Latency” on page 5-10). The PTS cycle execution time in PWM toggle mode
is 15 state times (Table 5-4 on page 5-10). Therefore, a single capture/compare channel 0-3 car
be updated every 58 state times (43 + 15). Each PWM period requires two updates (one setting
and one clearing), so the execution time for a PWM period equals 116 state times. At 16 MHz,
the PWM period is 14.49 ps and the maximum PWM frequency is 68.97 kHz.

10.4.2.3 Generating a High-speed PWM Output

You can generate a high-speed, pulse-width modulated output with a pair of EPA channels and
the PTS setup in PWM remap mode. “PWM Remap Mode Example” on page 5-37 describes how
to configure the EPA and PTS. The remap bit (bit 8) must be set in EPA1_CON (to pair EPAO and
EPA1) or EPA3_CON (to pair EPA2 and EPA3). One channel must be configured to set the out-
put; the other, to clear it. At the set (or clear) time, the PTS reads the old time value from
EPAX_TIME, adds to it the PWM period constant, and returns the new value to ERAE. Set

and clear times can be programmed to differ by as little as one timer count, resulting in very nar-
row pulses. Once started, this method requires no CPU intervention yolessed to change

the output frequency. The method uses a single timer/counter. The timer/counter is not interrupted
during this process, so other EPA channels can also use it if they do not reset it.

To determine the maximum, high-speed PWM frequency in your system, calculate your system's
worst-case interrupt latency and thdouble it. Theworst-case interrupt latency is the total la-
tency of all the interrupts (both normal and PTS) used in your system. The following example
shows the calculations for a system that uses a pair of remapped EPA channels (i.e., EPAO and
or EPA 3 and 4), two enabled interrupts, and PTS service. This example assumes that the PTS ha
been initialized and that the duty cycle and frequency are fixed.

The worst-case interrupt latency for a single-interrupt system with PTS service is 43 state times
(see “PTS Interrupt Latency” on page 5-10). In this mode, the maximum period equals twice the
PTS latency. Therefore, the execution time for a PWM period equals 86 state times. At 16 MHz,
the PWM period is 10.75 ps and the maximum PWM frequency is 93 kHz.

10.4.2.4 Generating the Highest-speed PWM Output

You can generate a highest-speed, pulse-width modulated output with a pair of EPA channels and
a dedicated timer/counter. The first channel toggles the output when the timer value matches
EPAX_TIME, and at some later time, the second channel toggles the outputadaasets the
timer/counter. This restarts the cycle. No interrupts are required, resulting in the highest possible
speed. Software must calculate and load the appropriate ERAE values and load them at the
correct time in the cycle in order to change the frequency or duty cycle.

10-16

Int€|® EVENT PROCESSOR ARRAY (EPA)

With this method, the resolution of the EPA (Figure 10-8 on page 10-18 and Figure 10-9 on page
10-19) determines the maximum PWM output frequency. (Resolution is the minimum time re-
guired between a capture or compare.) At 16 MHz, a 250 ns resolution results in a maximum
PWM of 4 MHz.

10.5 PROGRAMMING THE EPA AND TIMER/COUNTERS

This section discusses configuring the port pins for the EPA and the timer/counters; describes
how to program the timers, the capture/companaoels, and the compare-only channels; and
explains how to enable the EPA interrupts.

10.5.1 Configuring the EPA and Timer/Counter Port Pins

Before you can use the EPA, you must configure the pins of port 1 and port 6 to serve as the spe-
cial-function signals for the EPA and, optionally, for the timer/counter clock source and direction
control signals. See “Bidirectional Ports 1, 2, 5, and 6” on page 6-4 for information about config-
uring the port pins.

NOTE

If you use T2CLK as the timer 2 input clock, you cannot use EPA
capture/compare channel 0. If you use T2DIR as the timer 2 direction-control
source, you cannot use EPA capture/compare channel 1.

Table 10-2 on page 10-3 lists the pins associated with the EPA and the timer/counters. Pins that
are not being used for an EPA channel or timer/counter can be configured as standard 1/0O.

10.5.2 Programming the Timers

The control registers for the timers are TICONTROL (Figure 10-8) and T2CONTROL (Figure
10-9). Write to these registers to configure the timers. Write to the TIMER1 and TIMER2 regis-
ters to load a specific timer value.

10-17

8XC196Kx, Jx, CA USER'S MANUAL InU®

T1CONTROL

Address: 1F98H
Reset State: O0H

The timer 1 control (TLCONTROL) register determines the clock source, counting direction, and count
rate for timer 1.

7 0
CE uD M2 M. || Mo P2 P1 PO
Bit Bit Function
Number Mnemonic

7 CE Counter Enable
This bit enables or disables the timer. From reset, the timers are
disabled and not free running.
0 = disables timer
1 = enables timer

6 ub Up/Down
This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0)
0 = count down
1 = count up

5:3 M2:0 EPA Clock Direction Mode Bits
These bits determine the timer clocking source and direction control
source.
M2 M1 MO Clock Source Direction Source
0 0 0 Foscl4 UD bit (TLCONTROL.6)
X 0 1 TICLK Pin" UD bit (TLCONTROL.6)'"
0 1 0 Foscld T1DIR PinT
0 1 1 TICLKPinT T1DIRPin'®
1 1 1 quadrature clocking using TICLK and T1DIR pins'®
T If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.
™ These modes are reserved on the 8XC196CA, Jx devices.

2:0 P2:0 EPA Clock Prescaler Bits
These bits determine the clock prescaler value.
P2 P1 PO Prescaler Resolution (at 16 MHz)
0 0 0 divide by 1 (disabled) 250 ns
0 0 1 divide by 2 500 ns
0 1 0 divide by 4 1lus
0 1 1 divide by 8 2 s
1 0 0 divide by 16 4 s
1 0 1 divide by 32 8 us
1 1 0 divide by 64 16 ps
1 1 1 reserved —

10-18

Figure 10-8. Timer 1 Control (TLCONTROL) Register

intel.

EVENT PROCESSOR ARRAY (EPA)

T2CONTROL

The timer 2 control (T2CONTROL) register determines the clock source, counting direction, and count
rate for timer 2.

Address: 1F9CH
Reset State: O0H

7 0
CE uD M2 M. || Mo P2 P1 PO
Bit Bit Function
Number Mnemonic

7 CE Counter Enable
This bit enables or disables the timer. From reset, the timers are
disabled and not free running.
0 = disables timer
1 = enables timer

6 ub Up/Down
This bit determines the timer counting direction, in selected modes (see
mode bits, M2:0).
0 = count down
1 = count up

5:3 M2:0 EPA Clock Direction Mode Bits.
These bits determine the timer clocking source and direction source
M2 M1 MO Clock Source Direction Source
0 0 0 Foscl4 UD bit (T2CONTROL.6)
X 0 1 T2CLK Pint UD bit (T2CONTROL.6)
0 1 0 Foscl4 T2DIR Pin
0 1 1 T2CLK Pint T2DIR Pin
1 0 0 timer 1 overflow UD bit (T2CONTROL.6)
1 0 timer 1 same as timer 1
1 1 1 quadrature clocking using T2CLK and T2DIR pinsJr
If an external clock is selected, the timer counts on both the rising and
falling edges of the clock.

2:0 P2:0 EPA Clock Prescaler Bits
These bits determine the clock prescaler value.
P2 P1 PO Prescaler Resolution (at 16 MHz)
0 0 0 divide by 1 (disabled) 250 ns
0 0 1 divide by 2 500 ns
0 1 0 divide by 4 1lus
0 1 1 divide by 8 2 s
1 0 0 divide by 16 4 s
1 0 1 divide by 32 8 us
1 1 0 divide by 64 16 ps
1 1 1 reserved —

Figure 10-9. Timer 2 Control (T2CONTROL) Register

10-19

8XC196Kx, Jx, CA USER'S MANUAL InU®

10.5.3 Programming the Capture/Compare Channels

The EPA_CON register controls the function of its assigned capture/compare channel. The reg-
isters for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3 have an ad-
ditional bit, the remap bit (RM), which is used to enable and disable remapping for high-speed
PWM generation (see “Generating a High-speed PWM Output” on page 10-16). This added bit
(bit 8) requires an additional byte, so EPA1_CON and EPA3_@1st be addressed asords,

while the others can be addressed as bytes.

To program a compare event, write to EPEON (Figure 10-10) to configure the EPA cap-
ture/compare channel and then load the event time inta ERME. To program a capture event,
you need only write to EBACON. Table 10-6 shows the effects of various combinations of
EPAX_CON bhit settings.

Table 10-6. Example Control Register Settings and EPA Operations

Capture Mode
TB | CE | MODE | RE | AD | ROT | ON/RT .
Operation
7 6 5| 4 3 2 1 0
X 0 0 0 — - — 0 None
X 0 0 1 — X X X Capture on falling edges
X 0 1|0 — X X X Capture on rising edges
X 0 1 1 — X X X Capture on both edges
X 0 X |1 — X 1 X Capture on falling edge and reset opposite timer
X 0 1| X | — X 1 X Capture on rising edge and reset opposite timer
X 0 0 1 — 1 X X Start A/D conversion on falling edge
X 0 1|10 — 1 X X Start A/D conversion on rising edge
Compare Mode
TB | CE | MODE | RE | AD | ROT | ON/RT .
Operation
7 6 5| 4 3 2 1 0
X 1 0 0 X — — 0 None
X 1 0 1 X X X X Clear output pin
X 1 1|0 X X X X Set output pin
X 1 1 1 X X X X Toggle output pin
X 1 X | X X X 0 1 Reset same timer
X 1 X | X X X 1 1 Reset opposite timer
X 1 X | X X 1 X X Start A/D conversion
NOTES: — = bitis not used

X = bit may be used, but has no effect on the described operation. These bits cause other oper-
ations to occur.

10-20

Inbl® EVENT PROCESSOR ARRAY (EPA)

EPAXx_CON Address: 1F60H + (x * 4)
X = 0-9 (8XC196Kx) Reset State: F700H (x=1 & 3)
X =0-3, 8,9 (8XC196CA, Jx) 00H(x =0, 2, 4-9)

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
s [= [= [= [== =1 - []
7 0
| T8 ‘ CE ‘ M1 ‘ mo || RE ‘ AD ‘ ROT ‘ ONRT |
7 0
x=0,2 4-9 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
Nuii:)er Mne?Ti\tonic Function
15:97 — Reserved; always write as zeros.
8’ RM Remap Feature
The Remap feature applies to the compare mode of the EPA1 and EPA3
only.

When the remap feature of EPAL is enabled, EPA capture/compare
channel 0 shares output pin EPA1 with EPA capture/compare channel 1.
When the remap feature of EPA3 is enabled, EPA capture/compare
channel 2 shares output pin EPA3 with EPA capture/compare channel 3.

0 = remap feature disabled
1 =remap feature enabled

7 B Time Base Select
Specifies the reference timer.

0 = Timer 1 is the reference timer and Timer 2 is the opposite timer
1 =Timer 2 is the reference timer and Timer 1 is the opposite timer

A compare event (start of an A/D conversion; clearing, setting, or toggling
an output pin; and/or resetting either timer) occurs when the reference
timer matches the time programmed in the event-time register.

When a capture event (falling edge, rising edge, or an edge change on
the EPAX pin) occurs, the reference timer value is saved in the EPA event-
time register (EPAx_TIME).

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers

[| 10-21

8XC196Kx, Jx, CA USER'S MANUAL InU®

EPAX_CON (Continued) Address: 1F60H + (x* 4)
X = 0-9 (8XC196Kx) Reset State: F700H (x=1 & 3)
x =0-3, 8,9 (8XC196CA, Jx) 00H(x =0, 2, 4-9)

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8
x=1.3 I N T
7 0
‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
7 0
x=0249 | 18 | ceE | Mt | mo || RE | Aap | ROT [ONRT |
Nuii:)er Mne?Ti\tonic Function
6 CE Compare Enable
Determines whether the EPA channel operates in capture or compare
mode.

0 = capture mode
1 = compare mode

5:4 M1:0 EPA Mode Select

In capture mode, specifies the type of event that triggers an input capture.
In compare mode, specifies the action that the EPA executes when the
reference timer matches the event time.

M1 MO Capture Mode Event

no capture

capture on falling edge
capture on rising edge
capture on either edge

M1 MO Compare Mode Action

0
0
1
1

R ORFrOo

0 0 no output

0 1 clear output pin

1 0 set output pin

1 1 toggle output pin
3 RE Re-enable

Re-enable applies to the compare mode only. It allows a compare event
to continue to execute each time the event-time register (EPAX_TIME)
matches the reference timer rather than only upon the first time match.

0 = compare function is disabled after a single event
1 = compare function always enabled

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

10-22

Inbl® EVENT PROCESSOR ARRAY (EPA)

EPAX_CON (Continued) Address: 1F60H + (x* 4)
X = 0-9 (8XC196Kx) Reset State: F700H (x=1 & 3)
x =0-3, 8,9 (8XC196CA, Jx) 00H(x =0, 2, 4-9)

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

x=1,3 - -1 -1 -l -1 -1 =1 rw|

7 0

‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘

7 0

X=0,2 4-9 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
Bit Bit Function

Number Mnemonic

2 AD A/D Conversion

Allows the EPA to start an A/D conversion that has been previously set up
in the A/D control registers. To use this feature, you must select the EPA
as the conversion source in the AD_CONTROL register.

0 = causes no A/D action

1 = EPA capture or compare event triggers an A/D conversion
1 ROT Reset Opposite Timer

Controls different functions for capture and compare modes.
In Capture Mode:

0 = causes no action
1 = resets the opposite timer

In Compare Mode:
ROT selects the timer that is to be reset if the RT bit is set:

0 = selects base timer
1 = selects opposite timer

The TB bit (bit 7) selects which timer is the reference timer and which
timer is the opposite timer.

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

10-23

8XC196Kx, Jx, CA USER'S MANUAL InU®

EPAX_CON (Continued) Address: 1F60H + (x* 4)
X = 0-9 (8XC196Kx) Reset State: F700H (x=1 & 3)
x =0-3, 8,9 (8XC196CA, Jx) 00H(x =0, 2, 4-9)

The EPA control (EPAx_CON) registers control the functions of their assigned capture/compare
channels. The registers for EPAO, EPA2, and EPA4-9 are identical. The registers for EPA1 and EPA3
have an additional bit, the remap bit. This added bit (bit 8) requires an additional byte, so EPA1_CON
and EPA3_CON must be addressed as words, while the others can be addressed as bytes.

15 8

x=1,3 - -1 -1 -l -1 -1 =1 rw|

7 0

‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘

7 0

X=0,2 4-9 ‘ B ‘ CE ‘ M1 ‘ MO H RE ‘ AD ‘ ROT ‘ ON/RT ‘
Bit Bit Function

Number Mnemonic

0 ON/RT Overwrite New/Reset Timer

The ON/RT bit functions as overwrite new in capture mode and reset
timer in compare mode.

In Capture Mode (ON):

An overrun error is generated when an input capture occurs while the
event-time register (EPAx_TIME) and its buffer are both full. When an
overrun occurs, the ON bit determines whether old data is overwritten or
new data is ignored:

0 =ignores new data

1 = overwrites old data in the buffer

In Compare Mode (RT):

0 =disables the reset function
1 =resets the ROT-selected timer

T These bits apply to the EPA1_CON and EPA3_CON registers only.

Figure 10-10. EPA Control (EPA x_CON) Registers (Continued)

10-24

intel.

EVENT PROCESSOR ARRAY (EPA)

10.5.4 Programming the Compare-only Channels

To program a compare event, youist first write to the COMP_CON (Figure 10-11) register to
configure the compare-only channel and then load the event time into COMFE.
COMPx_CON has the same bits and settings asEEON. COMR_TIME is functionally iden-

tical to EPA_TIME.

x=0-1

channels.
7

COMPx_CON

Address: x=0, 1F88H
x=1, 1F8CH
Reset State: OOH

The EPA compare control (COMPx_CON) registers determine the function of the EPA compare

B

CE

M1 MO H RE AD ROT RT

Bit
Number

Bit
Mnemonic

Function

7

B

Time Base Select
Specifies the reference timer.

1 =timer 2 is the reference timer and timer 1 is the opposite timer
0 =timer 1 is the reference timer and timer 2 is the opposite timer

A compare event (start of an A/D conversion; clearing, setting, or
toggling an output pin; and/or resetting either timer) occurs when the
reference timer matches the time programmed in the event-time register.

CE

Compare Enable
This bit enables the compare function.

1 = compare function enabled
0 = compare function disabled

5:4

M1:0

EPA Mode Select
Specifies the type of compare event.
M1 MO

0
0
1
1

no output

clear output pin
set output pin
toggle output pin

R ORFrOo

RE

Re-enable

Allows a compare event to continue to execute each time the event-time
register (COMPx_TIME) matches the reference timer rather than only
upon the first time match.

1 = compare function always enabled
0 = compare function will drive the output only once.

Figure 10-11. EPA Compare Control (COMP x_CON) Registers

10-25

8XC196Kx, Jx, CA USER'S MANUAL InU®

7

0-1

COMPx_CON
(Continued)
X=
The EPA compare control (COMPx_CON) registers determine the function of the EPA compare
channels.

Address: x=0, 1F88H
x=1, 1F8CH
Reset State: OOH

B

CE

M1 MO H RE AD ROT RT

Bit

Number

Mnemonic

Bit

Function

2

AD

A/D Conversion

Allows the EPA to start an A/D conversion that has been previously set
up in the A/D control registers. To use this feature, you must select the
EPA as the conversion source in the AD_CONTROL register.

1 = EPA compare event triggers an A/D conversion
0 = causes no A/D action

ROT

Reset Opposite Timer and Reset Timer

These bits control whether an EPA compare event resets the reference
timer or the opposite timer.

ROT RT

X 0 reset function disabled

0 1 resets reference timer

1 1 resets opposite timer

The state of the TB bit (COMPx_CON.7) determines which timer is the
reference timer and which timer is the opposite timer.

RT

Reset Timer
This bit controls whether the timer selected by the ROT bit will be reset

1 = resets the timer selected by the ROT bit
0 = disables the reset function

Figure 10-11. EPA Compare Cont rol (COMP x_CON) Registers (Continued)

10.6 ENABLING THE EPA INTERRUPTS

The EPA generates four individual event interrupts, EPAO-EPA3, and the multiplexed event in-

terrupt, EPA. To enable the inteupts, set the corresponding bits in the INT_MABHKister
(Figure 5-5 on page 5-13). To enable the individual sources of the multiplexediriE&¥upt,

set the corresponding bits in the EPA_MASK (Figure 10-12) and EPA_MASK1(Figure 10-13)
registers. (Chapter 5, “Standard and PTS Interrupts,” discusses the interrupts in greater detail.)

10-26

intel.

EVENT PROCESSOR ARRAY (EPA)

EPA_MASK

Address:
Reset State:

The EPA interrupt mask (EPA_MASK) register enables or disables (masks) interrupts associated with
the multiplexed EPAX interrupt.

1FAOH
0000H

15 8
CA, Jx | - ‘ — ‘ — ‘ — || EPas ‘ EPA9 ‘ OVRO ‘ OVR1L |
7 0
|owe [owrs | — | — || — | — | ovrs | OVRo |
15 8
Kx | EPA4 ‘ EPAS ‘ EPAG ‘ EPA7 || EPAs ‘ EPA9 ‘ OVRO ‘ OVR1L |
7 0
| OvR2 | OVR3 | OVR4 | OVRs || OVR6 | OVR7 | OVR8 | OVR9 |
Nuii:)er Function
15:0" Setting a bit enables the corresponding interrupt as a multiplexed EPAX interrupt source.
The multiplexed EPAX interrupt is enabled by setting its interrupt enable bit in the interrupt
mask register (INT_MASK.O = 1).

T Bits 2-5 and 12-15 are reserved on the 8XC196CA, Jx devices. For compatibility with future
devices, write zeros to these bits.

Figure 10-12. EPA Interrupt Mask (EPA_MASK) Register

EPA_MASK1 Address:

Reset State:

The EPA interrupt mask 1 (EPA_MASKZ1) register enables or disables (masks) interrupts associated
with the EPAX interrupt.

1FA4H
00H

7 0
— — — — || compo | compi | OVRTMI | OVRTM2
Bit .
Number Function
7:4 Reserved; for compatibility with future devices, write zeros to these bits.
3.0 Setting a bit enables the corresponding interrupt as a multiplexed EPAXx interrupt source.
The multiplexed EPAX interrupt is enabled by setting its interrupt enable bit in the
interrupt mask register (INT_MASK.0 = 1).

Figure 10-13. EPA Interrupt Mask 1 (EPA_MASK1) Register

10-27

8XC196Kx, Jx, CA USER'S MANUAL InU®

10.7 DETERMINING EVENT STATUS

In compare mode, an interrupt pending bit is set each time a match occurs on an enabled even
(even if the interrupt is specifically masked in the mask register). In capture mode, an interrupt
pending bit is set each time a programmed event is captured and the event time moves from the
capture buffer to the EBATIME register. If the capture buffer is full when an event occurs, an
overrun interrupt pending bit is set.

The EPAO-EPA3 pending bits are located in INT_PEND (Figure 5-5 on page 5-13). The pending
bits for the multiplexed interrupts (those that share X R&ke located in EPA_PEND (Figure
10-14) and EPA_PEND1 (Figure 10-15). If an interrupt is masked, software can still poll the in-
terrupt pending registers to determine whether an event has occurred.

EPA_PEND Address: 1FA2H
Reset State: 0000H

When hardware detects a pending EPAXx interrupt, it sets the corresponding bit in EPA interrupt
pending (EPA_PEND or EPA_PEND1) registers. The EPAIPV register contains a number that
identifies the highest priority, active, multiplexed interrupt source. When EPAIPV is read, the EPA
interrupt pending bit associated with the EPAIPV priority value is cleared.

15 8
CA, Jx ‘ — ‘ — ‘ — ‘ — H EPA8 ‘ EPA9 ‘ OVRO ‘ OVR1 ‘
7 0
‘ OVR2 ‘ OVR3 ‘ _ ‘ _ H _ ‘ _ ‘ OVRS ‘ OVR9 ‘
15 8
Kx ‘ EPA4 ‘ EPAS ‘ EPA6 ‘ EPA7 H EPA8 ‘ EPA9 ‘ OVRO ‘ OVR1 ‘
7 0

‘ OVR2 ‘ OVR3 ‘ OVR4 ‘ OVRS5 H OVR6 ‘ OVR7 ‘ OVRS ‘ OVR9 ‘

Bit .
Number Function
15:0" Any set bit indicates that the corresponding EPAx interrupt source is pending. The bit is
cleared when the EPA interrupt priority vector register (EPAIPV) is read.

T Bits 2-5 and 12-15 are reserved on the 8XC196CA, Jx devices. For compatibility with future
devices, write zeros to these bits.

Figure 10-14. EPA Interrupt Pending (EPA_PEND) Register

10-28

Int€|® EVENT PROCESSOR ARRAY (EPA)

EPA_PEND1 Address: 1FAGH
Reset State: O0H

When hardware detects a pending EPAx interrupt, it sets the corresponding bit in EPA interrupt
pending (EPA_PEND or EPA_PEND1) registers. The EPAIPV register contains a number that
identifies the highest priority, active, multiplexed interrupt source. When EPAIPV is read, the EPA
interrupt pending bit associated with the EPAIPV priority value is cleared.

7 0
— — — — H COMPO | COMP1 | OVRTML | OVRTM2

Bit .
Number Function
7:4 Reserved; always write as zeros.
3.0 Any set bit indicates that the corresponding EPAX interrupt source is pending. The bit is
cleared when the EPA interrupt priority vector register (EPAIPV) is read.

Figure 10-15. EPA Interrupt Pending 1 (EPA_PEND1) Registers

10.8 SERVICING THE MULTIPLEXED EPA INTERRUPT WITH SOFTWARE

The multiplexed interrupts (those represented byx¥rBAould be serviced with a standard inter-

rupt service routine rather than the PTS (Chapter 5, “Standard and PTS Interrupts”). The PTS can
take only a limited number of actions, while interrupt service routines can be tailored to the needs
of each interrupt.

The EPA_PEND (Figure 10-14) and EPA_PEND1 (Figure 10-15) registers contain the bits that
identify the interrupt source(s). Traditionally, software would sort these bits to determine which
interrupt service routine to execute. This sorting increases the overall integpphse time by

a significant number of states. However, the EPA interrupt priority vector register (EPAIPV, Fig-
ure 10-16) contains a number that corresponds to the highest-priority active interrupt source (Ta-
ble 10-7).

For example, assume that an overrun occurs on capture/compare channel 9 and no other multi-
plexed interrupt is pending and unmasked. This sets the OVR9 pending bit in the EPA_PEND
register. If the corgponding mask bit is set in the EPA_MASK register, thexaR#errupt pend-

ing bit is set. If enabled, the ERMterrupt is generated. The encoder placesitmber for the

OVRY9 interrupt (05H) into EPAIPV. Reading EPAIPV identifies capture/compare channel 9 as
the source, clears the OVR9 pending bit, and clears EPAIPV. When the device vectors toxthe EPA
interrupt service routine, the ERfending bit is cleared. If other multiplexed interrupts have oc-
curred, the encoder loads the number that spoeds to thaighest-priority, active, multiplexed
interrupt into EPAIPV. When the EPAIPYV register contains Oidre are no more pending in-
terrupts associated with the ElPilaterrupt.Thus, it is recommended that the EPAIPV register be
read until it equals O0H to ensure that all pending, enabled interrupts are serviced.

[| 10-29

8XC196Kx, Jx, CA USER'S MANUAL InU®

EPAIPV Address: 1FA8H
Reset State: O00H

When an EPAXx interrupt occurs, the EPA interrupt priority vector register (EPAIPV) contains a number
that identifies the highest priority, active, multiplexed interrupt source (see Table 10-7).

EPAIPV allows software to branch via the TIIMP instruction to the correct interrupt service routine
when EPAX is activated. Reading EPAIPV clears the EPA pending bit for the interrupt associated with
the value in EPAIPV. When all the EPA pending bits are cleared, the EPAX pending bit is also cleared.

7 0
— — — Pv4a || Pv3 PV2 PV1 PVO
Bit Bit . Function
Number Mnemonic
5:7 — Reserved; always write as zeros.
4.0 PV4:0 Priority Vector

These bits contain a number from 01H to 14H corresponding to the
highest-priority active interrupt source. This value, when used with the
TIIMP instruction, allows software to branch to the correct interrupt
service routine.

Figure 10-16. EPA Interrupt Priority Vector Register (EPAIPV)

Table 10-7. EPAIPV Interrupt Priority Values

Value Interrupt Value Interrupt alue Interrupt
highest 14H EPA4 ODH OVR1 06H OVR8
13H EPAS5 OCH OVR2 O5H OVR9
12H EPAG6 OBH OVR3 04H COMPO
11H EPA7 OAH OVR4 03H COMP1
10H EPA8 09H OVR5 02H OVRTM1
OFH EPA9 08H OVR6 01H OVRTM2 lowest
OEH OVRO 07H OVR7 OOH None Pending

10-30

Int€|® EVENT PROCESSOR ARRAY (EPA)

10.8.1 Using the TIJMP Instruction to Reduce Interrupt Service Overhead

The EPAIPV register and the TIJMP instruction can be used together to reduce the interrupt ser-
vice overhead. The primary purpose of the TIJidRruction is to reduce the interrupt response
time associated with servicing multiplexed interrupts. With TIJMP, the additional time required
to service interrupts is only the instruction time, 15 states. (See Appendix A for additional infor-
mation about TIJMP.)

The format for the TIJMP instruction is TIJMPase,[index],#indexmask

where:

tbase is a word register containing the 16-bit starting address of the jump
table.

[index] is a word register containing a 16-bildress that points to a register
that contains a 7-bit value used to calculate the offset into the jump
table.

#index_mask is 7-bit immediate data to mask the index. This value is ANDed with

the 7-bit value pointed to Hindex] and multiplies the result by two
to determine the offset into the jump table.

TIIMP calculates the destination address as follows:

([index] AND #index_mask) x 2 + thase

To use the TIIMP instruction in this applicatigou would create a jump table with 21 destina-
tion addresses; one for each of the 20 EPA interrupt sources and one for the return.

The following code is a simplified example of an interrupt service routine that usesAH&VEP
register with the TIJMP instruction to service an ER#&errupt. This routine services all active
interrupts in the EPA in order of their priority. The TIJMP instruction calculates an offset to fetch
a word from a jump table (JTBASE in this example) which contains the start addresses of the in-
terrupt service routines.

[| 10-31

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

INIT_INTERRUPTS:

LD JTBASE_PTR,#LSW JTBASE ;store jump table base address
EPAX_ISR:

LD EPAIPV_PTR#EPAIPV ;read EPAIPV offset

PUSHA ;save INT_MASK/INT_MASK1/WSR/PSW

TIIMP JTBASE_PTR,[EPAIPV_PTR],#1FH ;initiate jump to correct ISR

OVR_EPAO_ISR: ;EPAO overrun routine

TIIMP JTBASE_PTR,[EPAIPV_PTR],#1FH
;check for pending
;interrupts, exit

EPAx_DONE:
POPA
RET ;exit, all EPAX
;interrupts serviced
JTBASE:
DCW LSW EPAx_done ;0 (no interrupt pending)
DCW LSW OVR_TMZ2_ISR ;1 (Timer2 overflow)
DCW LSW OVR_TM1_ISR ;2 (Timerl overflow)
DCW .
DCW
DCW .
DCW LSW OVR_EPAO_ISR ;0EH (EPAO overflow)

This example assumes that EA& enabled, OVRO is enabled, interrupts are globally enabled,
and the capture/compare channel 0 has generated an OVRO interrupt. Thiptioturs when

an edge is detected on the EPA channel and both the input buffer and EPAO_TIME are full. This
causes software to enter the EPFSR interrupt service routine.

Note thatindex_masks set to 1FH . This sets the pointer to the end of the jump table to prevent
software from jumping to an invalid address. Changnagx_maslkcan dictate software control,
thus superseding interrupt priorities.

Note that instead of a RET instruction at the end of OVR_EPAO_ISR, another TIJMP instruction
is used. This is done to check for any other pending multiplexed interrupts. If EPAIPV contains
a zero value (no pending interrupts) a vector toXEPYONE occurs and a RET is executed. This

is to ensure that EPAIPV is cleared before the routine returns from the EEFA

10-32 [|

Int€|® EVENT PROCESSOR ARRAY (EPA)

10.9 PROGRAMMING EXAMPLES FOR EPA CHANNELS

The three programming examples provided in this section demonstrate the use of the EPA channel
for a compare event, for a capture event, and for generation of a PWM signal. The programs dem-
onstrate the detection of events by a polling scheme, by interrupts, and by the PTS. All three ex-
amples were created usidgBUILDER, an interactive application prograavailable though

Intel Literature Fulfillment or the Intel Applications Bulletin Board system (BBS). See Chapter

1, “Guide to This Manual,” for information about ordering information from Intel Literature and
downloading files from the BBS. These sammlegramwere written in the @rogramning lan-

guage. ASM versions are also available frapBUILDER.

NOTE

The initialization file (80c196kr.h) used in these examples is available from
the Intel Applications BBS.

10.9.1 EPA Compare Event Program

This example C program demonstrates an EPA compare event. It sets up EPA channel 0 to toggle
its output pin whenever timer 1 is zero. Thisgram uses no interruptspalling scheme detects
the EPA event. The prograimitializes EPA channel 0 for a compare event.

#pragma model(KR)
#include <80c196kr.h>

#define COMPARE 0x40
#define RE_ENABLE 0x08
#define TOGGLE_PIN 0x30
#define USE_TIMER1 0x00
#define EPAO_INT_BIT 47

void init_epa0()

epa0_con = COMPARE |
TOGGLE_PIN|
RE_ENABLE |
USE_TIMERY,
epa0_time = 0;
setbit(pl_reg, 0); /* intreg */
clrbit(p1_dir, 0); /* make output pin */
setbit(p1_mode, 0);/* select EPA mode */
}

void init_timer1()
tlcontrol = COUNT_ENABLE |
COUNT_UP |

CLOCK_INTERNAL |
DIVIDE_BY_1;

10-33

8XC196Kx, Jx, CA USER'S MANUAL InU®

void poll_epa0()
if(checkbit(int_pend, EPAO_INT_BIT))

[* User code for event channel 0 would go here. */
[* Since this event is absolute and re-enabled, no polling is neccessary.*/
clrbit(int_pend, EPAO_INT_BIT);

}
void main(void)

[* Initialize the timers before using the epa */

init_timer1();

init_epa0();

/* EPA events can be serviced by polling int_pend
or epa_pend. */

while(1)

{
poll_epa0();
}

10.9.2 EPA Capture Event Program

This example C program demonstrates an EPA capture event. It sets up EPA channel 0 to capture
edges (rising and falling) on the EPAOQ pin. The program also shows how to set up the EPA inter-
rupts. You can add your own code for the interrupt servicénmut

#pragma model(KR)

#include <80c196kr.h>

#define COUNT_ENABLE 0x80
#define COUNT_UP 0x40
#define CLOCK_INTERNAL 0x00
#define DIVIDE_BY_1 0x00
#define CAPTURE 0x00

#define BOTH_EDGE 0x30
#define USE_TIMER1 0x00
#define EPAO_INT_BIT 4

void init_epa0()

epa0_con = CAPTURE |

BOTH_EDGE |
USE_TIMERY,
setbit(pl_reg, 0); /* intreg */
setbit(p1_dir, 0); /* make input pin */
setbit(p1_mode, 0); /* select EPA mode */
setbit(int_mask, EPAO_INT_BIT); /* unmask EPA interrupts */

}

#pragma interrupt(epaO_interrupt=EPAO_INT_BIT)
void epaO_interrupt()

{

unsigned int time_value;

10-34

Inbl® EVENT PROCESSOR ARRAY (EPA)

time_value = epa0_time; /* must read to prevent overrun */

}

/* To generate have code for the epax interrupt,select the ICU design screen.*/
void init_timer1()
tlcontrol = COUNT_ENABLE |

COUNT_UP |

CLOCK_INTERNAL |
DIVIDE_BY_1;

}
void main(void)
unsigned int time_value;

/* Initialize the timers and interrupts before using the EPA */

init_timer1();

init_epa0();

enable(); /* Globally enable interrupts */

while(1); /* loop forever, wait for interrupts to occur */
}

10.9.3 EPA PWM Output Program

This example Gprogram demonstrates the generation of a PWjas using the EPA's PWM

toggle mode (see “PWM Modes” on page 5-31) and shows how to service the interrupts with the

PTS. The PWM signal in this example has a 50% duty cycle.

#pragma model(KR)
#include <80c196kr.h>
#define PTS_BLOCK_BASE 0x98

[* Create typedef template for the PWM_TOGGLE mode control block.*/
typedef struct PWM_toggle_ptschb_t {

unsigned char unused,;

unsigned char ptscon;

void *pts_ptr;

unsigned int constantl;

unsigned int constant2;

} PWM_toggle_ptsch;

/* This locates the PTS block mode control block in register ram. This */
[* control block may be located at any quad-word boundary. */

register PWM_toggle_ptscb PWM_toggle_CB_3;
#pragma locate(PWM_toggle_CB_3=PTS_BLOCK_BASE)

/* The PTS vector must contain the address of the PTS control block.*/
#pragma pts(PWM_toggle_CB_3=0x3)

[| 10-35

8XC196Kx, Jx, CA USER'S MANUAL

/* Sample PTS control block initialization sequence.*/
void Init_PWM_toggle_PTS3(void)

disable(); [* disable all interrupts */
disable_pts(); /* disable the PTS interrupts */

PWM_toggle_CB_3.constant2 = 127,
PWM_toggle_CB_3.constantl = 127,
PWM_toggle_CB_3.pts_ptr = (void *)&EPAO_TIME;
PWM_toggle_CB_3.ptscon = 0x42;

[* Sample code that could be used to generate a PWM with an EPA channel.*/

setbit(pl_reg, Ox1); /* init output */
clrbit(p1_dir, Ox1); /* setto output */
setbit(p1_mode, Ox1); /* set special function*/
setbit(ptssel, 0x3);
setbit(int_mask, 0x3)

}

void main(void)

Init_PWM_toggle_PTS3();

epal_con = 0x78; /* toggle, timerl, compare, re-enable */
epal_timer = 127;

tlcontrol = OxC2; /* enable timer, up 1 micrsecond @ 16 MHz */
enable_pts();

while(1);

}

10-36

intgl.

11

Analog-to-digital
Converter

CHAPTER 11
ANALOG-TO-DIGITAL CONVERTER

The analog-to-digital (A/D) converter can convert an analog input voltage to a digital value and
set the A/D interrupt pending bit when it stothe result. It can also monitor a pin and set the
A/D interrupt pending bit when the input voltage crosses over or under a programmed threshold
voltage. This chapter describes the A/D converter and explains how to program it.

11.1 A/D CONVERTER FUNCTIONAL OVERVIEW

The A/D converter (Figure 11-1) can convert an analog input voltage to an 8- or 10-bit digital
result and set the A/D interrupt pending bit when it stores the result. It can also monitor an input
and set the A/D interrupt pending bit when the input voltage crosses over or under the pro-
grammed threshold voltage.

Analog Inputs *

R EPA or PTS
Command

VRer ANGND
Analog Mux ¢ ¢
* Control
Succession Logic
Sample Approximation A A A
and Hold AID
A Converter
Status
Y
AD_RESULT | AD_COMMAND | | AD_TIME | | AD_TEST |

* Multiplexed with port inputs

A2652-01

Figure 11-1. A/D Converter Block Diagram

11-1

8XC196Kx, Jx, CA USER'S MANUAL InU®

11.2 A/D CONVERTER SIGNALS AND REGISTERS

Table 11-1 lists the A/D signals and Table 11-2 describes the control and status registers. Al-
though the analog inputs are multiplexed with I/O port pins, no configuration is necessary.

Table 11-1. A/D Converter Pins
A/D Signal
Type
P0.7:0 ACH7:0 (Kx) | Analog Inputs

PO.7:2 ACHT:2 (CA, Jx) Input channels to the A/D converter. See the “Voltage on
Analog Input Pin” specification in the datasheet for
acceptable voltage ranges.

— ANGND GND Reference Ground
Must be connected for A/D converter and port operation.

Port Pin A/D Signal Description

— Vier PWR Reference Voltage
Must be connected for A/D converter and port operation.

Table 11-2. A/D Control and Status Registers

Mnemonic Address Description

AD_COMMAND 1FACH | A/D Command

This register selects the A/D channel, controls whether the A/D
conversion starts immediately or is triggered by the EPA, and
selects the operating mode.

AD_RESULT 1FAAH, 1FABH | A/D Result

For an A/D conversion, the high byte contains the eight MSBs from
the conversion, while the low byte contains the two LSBs from a 10-
bit conversion (undefined for an 8-bit conversion), indicates which
A/D channel was used, and indicates whether the channel is idle.

For a threshold-detection, calculate the value for the successive
approximation register and write that value to the high byte of
AD_RESULT. Clear the low byte or leave it in its default state.

AD_TEST 1FAEH | A/D Conversion Test

This register enables conversions on ANGND and Vgg and
specifies adjustments for zero-offset errors.

AD_TIME 1FAFH | A/D Conversion Time

This register defines the sample window time and the conversion
time for each bit.

INT_MASK 0008H | Interrupt Mask

The AD bit in this register enables or disables the A/D interrupt. Set
the AD bit to enable the interrupt request.

INT_PEND 0009H | Interrupt Pending

The AD bit in this register, when set, indicates that an A/D interrupt
request is pending.

11-2 [|

Int6|® ANALOG-TO-DIGITAL CONVERTER

Table 11-2. A/D Control and Status Registers (Cont inued)

Mnemonic Address Description

PO_PIN 1FDAH | Port 0 Pin State

Read PO_PIN to determine the current values of the port 0 pins.
Reading the port induces noise into the A/D converter, decreasing
the accuracy of any conversion in progress. We strongly
recommend that you not read the port while an A/D conversion is in
progress. To reduce noise, the PO_PIN register is clocked only
when the port is read.

11.3 A/D CONVERTER OPERATION

An A/D conversion converts an analog input voltage to a digital value, stores the result in the
AD_RESULT register, and sets the A/D interrupt pending bit. An 8-bit conversion provides
20 mV resolution, while a 10-bit conversiprovides 5 mV reolution. An 8-bit conversion takes

less time than a 10-bit conversion because it has two fewer bits to resolve and the comparator re-
guires less settling time for 20 mV resolution than for 5 mV resolution.

You can convert the either the voltage on an analog input channel or a test voltage. Converting
the test inputs allows you to calculate the zefeetferror, and theezo-ofset adjustment allows

you to compensate for it. This feature can reduce otirgdi® off-chip compensation hardware.
Typically, you would convert the test voltages and adjust for the zésetefror beforperform-

ing conversions on an input channel. The AD_TESJister allowsyou to select a test voltage

and program a zero-offset adjustment.

A threshold-detection compares an input voltagegmgrammedeference voltage and sets the
A/D interrupt pending bit when the input voltage crosses over or under the reference voltage.

A conversion can be started by a write to the AD_COMMAND register or it camtlated by

the EPA, which can provide equally spaced samples or synchronization with external events.
(See“Programming the EPA and Timer/Counters” on page 10-17.) The A/D scan mode of the pe-
ripheral transaction server (PTS) allows you to perform multiple conversions and store their re-
sults. (See “A/D Scan Mode” on page 5-26.)

Once the A/D converter receives the command to start a conversion, a delay time elapses before
sampling begins. (EPA-initiated conversions begin after the capture/compare event. Immediate
conversions, those initiated directly by a write to AD_COMMAND, begin within three state
times after the instruction is completed.) During sasple delaythe hardware clears the suc-
cessive approximation register and selects the designated multiplexer channel. After the sample
delay, the device connects the multiplexer output to the sample capacite $pecified sample

time. After thissample windoveloses, it disconnects the multiplexer output from the sample ca-
pacitor so that changes on the input pin will not alter the stored charge while the conversion is in
progress. The device then zeros the comparator and begins the conversion.

[| 11-3

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

The A/D converter uses a successive approximation algorithm to petHferamalog-to-digital
conversion. The converter hardware consists of a 256-residtter]aa comparator, coupling ca-
pacitors, and a 10-bit successive approximation register (SAR) with logic that guides the process.
The resistive ladder provides 20 mV stepg\+= 5.12 volts), while capacitive coupling creates

5 mV steps within the 20 mV ladder voltages. Therefv@24 inernal reference voltage levels

are available for comparison against the analog input to generate a 10-bit conversion result. In 8-
bit conversion mode, only the resistive ladder is used, providing 256 internal reference voltage
levels.

The successive approximation conversion compares a sequence of reference voltages to the anc
log input, performing a binary search for the reference voltage that most closely matches the in-

put. The ¥z full scale reference voltage is the first tested. Thisspmmds to a 10-bresult where

the most-significant bit is zero and all other bits are onekl(1.111B). Ithe analog input was

less than the test voltage, bit 10 of the SAR is left at zero, and a new test voltage of ¥ full scale

(0011111111B) is tried. If the analog input vgaeater than the test voltage, bit 9 of SAR is set.

Bit 8 is then cleared for the next test (0101111B). Thisinary search continues until 10 (or 8)

tests have occurred, at which time the valid conversion result resides in the AD_RESULT register

where it can be read by software. The result is equal to the ratio of the input voltage divided by

the analog supply voltage. If the ratio is 1.00, the result will be all ones.

11.4 PROGRAMMING THE A/D CONVERTER

The following A/D converter parameters are programmable:
* conversion input — input channel or test voltage (ANGND g1V
¢ zero-offset adjustment — no adjustment, plus 2.5 mV, minus 2.5 mV, or minus 5.0 mV
* conversion times — sample window time and conversion time for each bit
¢ operating mode — 8- or 10-bit conversion or 8-bit high or low threshold detection

* conversion trigger — immediate or EPA starts

This section describes the A/D converters’s registers and explains how to program them.

11-4

Intet@ ANALOG-TO-DIGITAL CONVERTER

11.4.1 Programming the A/D Test Register

The AD_TEST register (Figure 11-2) selects either an analog input or a test ARG D or

Vrep for conversion and specifies an offset voltage to be applied to the resistor ladder. To use the
zero-offset adjustment, first perform two conversions, one on ANGND and ongomith the

results of these conversions, use a software routine to calculatedhaffget error. Specify the
zero-offset adjustment by writing the appropriate value to AD_TEST. This offset voltage is added
to the resistor ladder and applies to all input channels. “Understanding A/D Conversion Errors”
on page 11-14 describes zerdsef and other errors inherent in A/D conversions.

AD TEST Address: 1FAEH
- Reset State: COH
The A/D test (AD_TEST) register enables conversions on ANGND and Vge and specifies
adjustments for DC offset errors. Its functions allow you to perform two conversions, one on ANGND
and one on Vgee. With these results, a software routine can calculate the offset and gain errors.
7 0
— — — — || oFm OFF0 v TE
Bit Bit Function
Number Mnemonic
7:4 — Reserved; for compatibility with future devices, write zeros to these bits.
3:2 OFF1:0 Offset
These bits allows you to set the zero-offset point.
OFF1 OFFO
0 0 no adjustment
0 1 add 2.5 mV
1 0 subtract 2.5 mV
1 1 subtract 5.0 mV
1 TV Test Voltage
This bit selects the test voltage for a test mode conversion.
1= Viee
0 = ANGND
0 TE Test Enable
This bit determines whether normal or test mode conversions will be
performed. A normal conversion converts the analog signal input on one
of the analog input channels. A test conversion allows you to perform a
conversion on ANGND or Vgeg.
1=test
0 = normal

Figure 11-2. A/D Test (AD_TEST) Register

[| 11-5

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

11.4.2 Programming the A/D Result Register (for Threshold Detection Only)

To use the threshold-detection modes, you must first write a value to the high byte of
AD_RESULT to set the desired reference (threshold) voltage.

AD_RESULT (Write) . A?ctjsrf:?s: 1;;/;3:
eset State:

The high byte of the A/D result (AD_RESULT) register can be written to set the reference voltage for
the A/D threshold-detection modes.

15 8
‘ REFV7 ‘ REFV6 ‘ REFV5 ‘ REFV4 ‘ ‘ REFV3 ‘ REFV2 ‘ REFV1 ‘ REFVO ‘
7 0
. r 1 ®& [- [— [— |
Nuii:)er Mnelrgrimtonic Function
15:8 REFV7:0 Reference Voltage

These bits specify the threshold value. This selects a reference voltage
that is compared with an analog input pin. When the voltage on the
analog input pin crosses over (detect high) or under (detect low) the
threshold value, the A/D interrupt flag is set.

Use the following formula to determine the value to write this register for
a given threshold voltage.

desired threshold voltage x 256
Vioer—ANGND

reference voltage =
REF

7:0 — Reserved; for compatibility with future devices, write zeros to these bits.

Figure 11-3. A/D Result (AD_RESULT) Register — Write Format

11.4.3 Programming the A/D Time Register

Two parameters, sample time and conversion time, control the time required for an A/D conver-
sion. The sample time is the length of time that the analog input voltage is actually connected to
the sample capacitor. If this time is too short, the sample capacitor will not charge completely. If
the sample time is too long, the input voltage may change and @auarsion errors. The con-
version time is the length of time required to convert the analog input voltage stored on the sample
capacitor to a digital value. The conversion time must be long enough for the comparator and cir-
cuitry to settle and resolve the voltage. Excessively long conversion times allow the sample ca-
pacitor to discharge, degrading accuracy.

11-6

Intet@ ANALOG-TO-DIGITAL CONVERTER

The AD_TIME ragister (Figure 11-4) specifies the A/D sample and conversion times. To avoid
erroneous conversion results, use thg, ind T, Specifications on the datasheet to determine
appropriate values.

AD_TIME Address: 1FAFH
Reset State: FFH

The A/D time (AD_TIME) register programs the sample window time and the conversion time for each
bit.

7 0
SAM2 SAM1 SAMO CONV4 ‘ ‘ CONV3 CONV2 CONV1 CONVO
Bit Bit Function
Number Mnemonic
75 SAM2:0 A/D Sample Time

These bits specify the sample time. Use the following formula to
compute the sample time.

T xF -2
SAM = —SAM” Tosc
where:
SAM = 1to7
Tsaw = the sample time, in psec, from the data sheet

Fosc the XTAL1 frequency, in MHz

4.0 CONV4:0 A/D Convert Time

These bits specify the conversion time for each bit. Use the following
formula to compute the conversion time.

T xF -3
CONV = [conv *Fosc } ~
2xB
where:
CONV= 2to31
Teonv the conversion time, in psec, from the data sheet

the XTAL1 frequency, in MHz
the number of bits to be converted (8 or 10)

osC

NOTES:

1. This register programs the speed at which the A/D can run — not the speed at which it can con-
vert correctly. Consult the data sheet for recommended values.

2. Initialize the AD_TIME register before initializing the AD_COMMAND register.

3. Do not write to this register while a conversion is in progress; the results are unpredictable.

Figure 11-4. A/D Time (AD_TIME) Register

11-7

8XC196Kx, Jx, CA USER'S MANUAL InU®

11.4.4 Programming the A/D Command Register

The A/D command register controls the operating mode, the analog input channel, and the con-
version trigger.

AD_COMMAND Address: 1FACH
Reset State: COH

The A/D command (AD_COMMAND) register selects the A/D channel number to be converted,
controls whether the A/D converter starts immediately or with an EPA command, and selects the
conversion mode.

7 0
— — M1 Mo || @O ACH2 ACH1 ACHO
Bit Bit Function
Number Mnemonic
7:6 — Reserved; for compatibility with future devices, write zeros to these bits.
5:4 M1:0 A/D Mode (Note 1)

These bits determine the A/D mode.
M1 MO Mode

0 0 10-bit conversion

0 1 8-bit conversion

1 0 threshold detect high
1 1 threshold detect low

3 GO A/D Conversion Trigger (Note 2)
Writing this bit arms the A/D converter. The value that you write to it
determines at what point a conversion is to start.

1 = start immediately
0 = EPA initiates conversion

2:0 ACH2:0 A/D Channel Selection

Write the A/D conversion channel number to these bits. The 87C196CA,
8XC196Jx devices have six A/D channels, numbered 2—-7. The
8XC196Kx devices have eight channels, numbered 0-7.

NOTES:

1. While a threshold-detection mode is selected for an analog input pin, no other conversion can be
started. If another value is loaded into AD_COMMAND, the threshold-detection mode is disabled
and the new command is executed.

2. ltis the act of writing to the GO bit, rather than its value, that starts a conversion. Even if the GO
bit has the desired value, you must set it again to start a conversion immediately or clear it again
to arm it for an EPA-initiated conversion.

Figure 11-5. A/D Command (AD_COMMAND) Register

11-8

Int6|® ANALOG-TO-DIGITAL CONVERTER

11.4.5 Enabling the A/D Interrupt

The A/D converter can set the A/Déntupt pending bit when it completes a conversion or when

the input voltage crosses the threshold value in the selected direction. To enable the interrupt, set
the corresponding mask bit in the interrupt mask register (see Table 11-2 on page 11-2) and exe-
cute the El instruction to globally enable servicing of interrupts. The A/D interrupt can cause the
PTS to begin a new conversion. See Chapter 5, “Standard and PTS Interrupts,” for details about
interrupts and a description of using the PTS in A/D scan mode.

11.5 DETERMINING A/D STATUS AND CONVERSION RESULTS

You can read the AD_RESULT register (Figure 11-6) to determine the status of thenAuidteo

er. The AD_RESULT register is cleared when a new conversion is started; therefore, to prevent
losing data, you must read both bytes before a new conversion starts. If you read AD_RESULT
before the conversion is complete, the result is not guaranteed to be accurate.

The conversion result is the ratio of the input voltage to the reference voltage:

V,y—ANGND V,y—ANGND
RESULT (8-bit) = 255 x —————— RESULT (10-bit) = 1023 x ————————
Vrer ~ANGND Vrer ~ANGND

You can also read the interrupt pending register (see Table 11-2 on page 11-2) to determine the
status of the A/D interrupt.

11-9

8XC196Kx, Jx, CA USER'S MANUAL InU®

AD_RESULT (Read)

Address: 1FAAH
Reset State: 7F80H

The A/D result (AD_RESULT) register consists of two bytes. The high byte contains the eight most-
significant bits from the A/D converter. The low byte contains the two least-significant bits from a ten-
bit A/D conversion, indicates the A/D channel number that was used for the conversion, and indicates
whether a conversion is currently in progress.

15 8
| ADRLT9 ‘ ADRLTS ‘ ADRLT7 ‘ ADRLT6 | | ADRLTS ‘ ADRLT4 ‘ ADRLT3 ‘ ADRLT2 |
7 0
| ADRLTL | ADRLTO | — | — || sTATUS | ACH2 | AcH1 | AcHo |
Bit Bit Function
Number Mnemonic

15:6 ADRLT9:0 A/D Result
These bits contain the A/D conversion result.

5:4 — Reserved. These bits are undefined.

3 STATUS A/D Status
Indicates the status of the A/D converter. Up to 8 state times are required
to set this bit following a start command. When testing this bit, wait at
least the 8 state times.
1 = A/D conversion is in progress
0=A/Disidle

2:0 ACH2:0 A/D Channel Number
These bits indicate the A/D channel number that was used for the
conversion. The 87C196CA, 8XC196Jx devices have six channel inputs.
These channels are numbered 2—7. The 8XC196Kx devices have eight
channels, numbered 0-7.

Figure 11-6. A/D Result (AD_ RESULT) Register — Read Format

11.6 DESIGN CONSIDERATIONS

This section describes considerations for the external interface circuitry and describes the errors

that can occur in any A/D converter. The datasheet listalibelute errorspecification, which

includes all deviations between the actual conversion process and an ideal converter. However,
because the various components of error are important in many applications, the datasheet alsc
lists the specific error components. This section describes those components. For additional in-

formation and design techniques, consult AP-406S® 96 Analog Acquisition Primejorder
number 20365). Applicaibbn note AP-406 is also included Automotive ProductandEmbed-
ded Microcontrollershandbooks.

11-10

Intet@ ANALOG-TO-DIGITAL CONVERTER

11.6.1 Designing External Interface Circuitry

The external interface circuitry to an analog input is highly dependent upon the application and
can affect the converter characteristics. Factors such as input pin leakage, sample capacitor size
and multiplexer series resistance from the input pin to the sample capacitor must be considered
in the external circuit’s design. These factors are idealized in Figure 11-7.

! 1
! 1
External 1 Internal : Re

1

' : _’W_/ *>—
! 1

1

1

Rsource

I
Leakage

A0243-02

Figure 11-7. ldealized A/D Sampling Circuitry

During the sample window, the external input circuit must be able to charge the sample capacitor
(Cy) throughthe series combination of the input source resistangg (R, the input series re-
sistance (R, and the comparator feedback resistangg. (Rhe total effective series resistance

(Ry) is calculated using the following formula, whergif the gain of the comparator circuit.

RF
+
A, +1

Rr = Rsource * R

Typically, the (R/ A, + 1) term is the major contributor to the total resistance and the factor that
determines the minimum sample time specified in the datasheet.

[| 11-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

11.6.1.1 Minimizing the Effect of High Input Source Resistance

Under some conditions, the input source resistangg (R can be great enough to affect the
measurement. You can minimize this effect by increasing the sample time or by connecting an
external capacitor (&) from the input pin to ANGND. The external signal will chargg,Go

the source voltage level. When the channel is samplgg,acts as a low-impedance source to
charge the sample capacitorgJCA small portion of the charge in .(is transferred to £ re-

sulting in adrop of the sapled voltage. The voltagirop is calculated using the following for-
mula.

C
s
Sampled Voltage Drop, % = ——— _ x 100%
ext +Cs

If Ccy7is 0.005 pF or greater, the error will be ldsst—0.4 LSB in 10-bit conversion mode. The
use of G, in conjunction with B, zce forms a low-pass filter that reduces noise input to the
A/D converter.

High Ry, rceresistance can also cause errors due to the input leakagk lis typically much
lower than its specified maximum (consult the datasheet for specifications). The combined effect
of I ,, leakage and high R rceresistance is calculated using the following formula.

error (LSBs) = Rsource * ILip X 1024
VRer
where:
Rsource is the input source resistance, in ohms
I is the input leakage, in amperes
Vier is the reference voltage, in volts

External circuits with B, rceresistance of 1 R or lower and Y equal to 5.0 volts will have
a resultant error due to source impedance of 0.6 LSB or less.

11-12

Intet@ ANALOG-TO-DIGITAL CONVERTER

11.6.1.2 Suggested A/D Input Circuit

The suggested A/D input circuit shown in Figure 11-8 provides limited prioteagainst over-
voltageconditions on the analog input. Should the input voltage be driven sartlficoelow
ANGND or above {, diode D2 or D1 will forward bias at about 0.8 volts. The device’s input
protection begins to turn on at approximately 0.5 volts beyond ANGNDygr Vhe 27@ re-
sistor limits the current input to the analog input pin to a safe value, less than 1 mA.

NOTE
Driving any analog input more than 0.5 volts beyond ANGND gi-¥egins
to activate the input protection devices. This drives current into the internal
reference circuitry and substantially degrades the accuracy of A/D conversions
on all channels.

Thoroughly anajlze the applicability of the circuit shown in Figure 11-8 before
using it in an actual application.

Vrer

:] D VRrer
From 1 100Q 2700
o Analo

Application : AW WN D Input gin

System | (Optional)

! D2 0.005pF

|

{7 AnenD

=

ANGND
A0082-02

Figure 11-8. Suggested A/D Input Circuit

11.6.1.3 Analog Ground and Reference Voltages

Reference supply levelsrengly influence the absolute accuracy of the conversion. For this rea-
son, we recommend that you tie the ANGND pin to thgpih as close to the device as possible,
using a minimum trace length. In a noisy environment, we highly recommend the use of a sepa-
rate analog ground plane that connects {gaf a single point as close to the device as possible.
|rer May vary between 2 mA and 5 mA during a conversion. To minimize the effect of this fluc-
tuation, mount a 1.0 pF ceramic or tantalum bypass capacitor betwgeard ANGND, as

close to the device as possible.

[| 11-13

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

ANGND should be within about 50 mV of Vgo Vg Should be well regulated and used only

for the A/D converter. The M- supply can be between 4.5 and 5.5 V and must be able to source
approximately 5 mA (see the datasheet for actual specificatiogg)should be approximately

the same voltage as.M Vg and V. should power up at the same time, to avoid potential latch-
up conditions on ¥ Large negative current spikes on the ANGND pin relative forivay

cause the analog circuitry to latch up. This is an additional reason to follow careful grounding
practice.

The analog voltage referencesf)) is the positive supply to which all A/D conversions are com-
pared. It is also the supply to port O if the A/D converter is not being used. If high accuracy is not
required, e can be tied to V. If accuracy is important,) must be very stable. One way to
accomplish this is through the use of a precision power supply or a separate voltage regulator
(usually an IC). These devices must be referenced to ANGNDIo Vgg to ensure that Me

tracks ANGND and not ¥,

11.6.1.4 Using Mixed Analog and Digital Inputs

Port 0 may be used for both analog and digital input signals at the same time. Howeiry, rea

the port may inject some noise into the analog circuitry. For this reason, make certain that an an-
alog conversion isot in progress when the port is read. Refer to Chapter 6, “I/O Ports,” for in-
formation about using the port as digital inputs.

11.6.2 Understanding A/D Conversion Errors
The conversion result is the ratio of the input voltage to the reference voltage.

V,y~ANGND V,y~ANGND
RESULT (8-bit) = 255 x —————— RESULT (10-bit) = 1023 x ——————
—ANGND

Vrer ~ANGND Veer

This ratio produces a stair-stepgeghsfer functionwhen the output code is plotted versus input
voltage. The resulting digital codes can be taken as simple ratiometric information, or they pro-
vide information about absolute voltages or relative voltage changes on the inputs.

The more demanding the application, the more important it is to fully understand the converter’s
operation. For simple applications, knowing til@solute errorof the converter is sufficient.
However, closing a servo-loop with analog inputs requires a detailed understanding of an A/D
converter’s operation and errors.

11-14 [|

Int6|® ANALOG-TO-DIGITAL CONVERTER

In many applications, it is less critical to record the absolute accuracy of an input than it is to de-
tect that a change has occurred. This approach is acceptable as long as the comarodmis

and hasno missing codesThat is, increasing input voltagesoduce adjacent, unique output
codes that are also increasing. Decreasing input volfagesiceadjacent, unique output codes

that are also decreasing. In other words, there exists a unique input voltage range for each 10-hit
output code that produces that code only, with a repeatability of typic@l®5 LSBs (1.5 mV).

The inherent errors in an analog-to-digital conversion process are quantizingezo-afset er-

ror, full-scale error, differential noimlearity, and nonlinearity. All of these amnsfer function
errors related to the A/D converter. In addition, temperature coefficiegtgejéction, sample-

hold feedthrough, multiplexer off-isolation, channel-to-channel matching, and random noise
should be consided. Fortunately, onabsolute errorspecification (listed in datasheets) de-
scribes the total of all deviations between the actuav@sion process and an ideal converter.
However, the various components of error are important in many applications.

An unavoidable error results from the conversion of a nootiis voltage to an irger digital rep-
resentation. This error is callgdiantizing errorand is always 0.5 LSB. Quantizing error is the

only error seen in a perfect A/D converter, and is obviously present in actual converters. Figure
11-9 shows the transfer function for an ideal 3-bit A/D converter.

11-15

8XC196Kx, Jx, CA USER'S MANUAL Inu®

FINAL CODE TRANSITION OCCURS
WHEN THE APPLIED VOLTAGE IS
EQUAL TO (Vref — 1.5 (LSB)).

\4

ACTUAL CHARACTERISTIC OF
AN IDEAL A/D CONVERTER

THE VOLTAGE CHANGE
BETWEEN THE ADJACENT CODE
TRANSITIONS (THE “CODE
WIDTH") IS =1 LSB.

0 ‘3002 1Nd1NO @

FIRST CODE TRANSITION OCCURS
< WHEN THE APPLIED VOLTAGE IS
EQUAL TO 1/2 LSB.

T T T T T T T T 1
12 1 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)

A0083-01

Figure 11-9. Ideal A/D Conversion Characteristic

Note that the ideal characteristic possesses unique qualities:
¢ its first code transition occurs when the input voltage is 0.5 LSB;

¢ its full-scale code transition occurs when the input voltage equals the full-scale reference
voltage minus 1.5 LSB (}-— 1.5LSB); and

¢ jts code widths are all exactly one LSB.

These qualities result in a digitization withoetra-offset, full-scale, or linearity errors; in other
words, a perfect conversion.

11-16

Intet@ ANALOG-TO-DIGITAL CONVERTER

7
FULL SCALE ERROR <«
6 -
IDEAL
CHARACTERISTIC [———n
5 ABSOLUTE ERROR — ACTUAL
CHARACTERISTIC
™,

s 47
o
C
5
)
C
3
o
S 3
m
o

2 —

1 -

—> ZERO OFFSET
0 T T T T T T T T]
12 1 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)

A0084-01

Figure 11-10. Actual and Ideal A/D Conversion Char acteristics

The actual characteristic of a hypothetical 3-bit converter is not perfect. When the ideal charac-
teristic is overlaid with the actual characteristic, the actual converter is seen to exhibit errors in
the locations of the first and final code transitions and in code widtlssoam in Figure 11-10.

The deviation of the first code transition from ideal is cafle-offseerror, and the deviation

of the final code transition from idealfigl-scaleerror. The deviation of a code width from ideal
causes two types of errors: differential nonlinearity and nonlineiiffgrential nonlinearityis

a measure of local code-width error, whenmeaslinearityis a measure of overall code-transition
error.

11-17

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Differential nonlinearity is the degree to which actoadle widthgliffer from the ideal one-LSB

width. It provides a measure of how much the input voltage may have changed in order to produce
a one-count change in the conversion result. In the 10-bit converter, the code widths are ideally
5mV (Vgee/ 1024). If such a converter is specified to have a maximum differential nonlinearity
of 2 LSBs (10 mV), then the maximum code width will be no greater than 10 mV larger than ide-
al, or 15 mV.

Because the A/D converter hag missing codeshe minimum code width will always be greater

than —1 (negative one). The differential nonlinearity error on a particular code width is compen-
sated for by other code widths in the transfer function, such that 1024 unique steps occur. The
actual code widths in this converter typically vary from 2.5 mV to 7.5 mV.

Nonlinearity is the worst-case deviationaafde transitiongrom the corresponding code transi-
tions of the ideal characteristic. Nonlinearity describes the extent to which differential nonlinear-
ities can add up to produce an overall maximum departure from a linear characteristic. If the
differential nonlinearity errors are too large, it is possible for an A/D converter to miss codes or
to exhibit non-monotonic behavior. Neither behaviatdsirable in a closed-loop system. A con-
verter hasho missing codei$ there exists for each output code a unigue input voltage range that
produces that code only. A convertenmienotonidf every subsequent code change represents an
input voltage change in the same direction.

Differential nonlinearity and nonlinearity are quantified by measuring the terminal-based linear-
ity errors. A terminal-based characteristic results when an actual characteristic is translated and
scaled to eliminateero-offset and full-scale error, as shown in Figure 11-11. The terminal-based
characteristic is similar to the actual characteristic that would resultafafeset andull-scale

error were externally trimmed away. In practice, this is done by using input circuits that include
gain and offset trimming. In additiong¥- could also be closely regulated and trimmed within

the specified range to affect full-scale error.

Other factors that affect a real A/D converter system include temperature drift, failure to com-
pletely reject unwanted signals, multiplexer channel dissimilarities, and random noise. Fortunate-
ly, these effects are smalemperature drifis the rate at which typical specifications change with

a change in temperature. These changes are reflectedtemtherature coefficientéJnwanted

signals come from three main sources: noise gn Mput signal changes on the channel being
converted (after the sample window has closed), and signals applied to channels not selected by
the multiplexer. The effects of these unwanted signals are specifitet asjectionoff-isolation
andfeedthroughrespectively. Finally, multiplexer on-channel resistances differ slightly from one
channel to the next, which causdgsgmnnel-to-channel matchirgrrors andepeatabilityerrors.
Differences in DC leakage current from one channel to another and random noise in general con-
tribute to repeatability errors.

11-18

ANALOG-TO-DIGITAL CONVERTER

0 ‘3000 1NdLNO @

IDEAL FULL-SCALE CODE
TRANSITION

\4

IDEAL STRAIGHT LINE

TRANSFER FUNCTION ACTUAL
FULL-SCALE CODE
TRANSITION
DIFFERENTIAL
NON-LINEARITY <« TERMINAL BASED
(POSITIVE) ————— | CHARACTERISTIC
| (corrected for zero-offset
IDEAL < d and full-scale error)
CODE WIDTH
< > ACTUAL
CHARACTERISTIC
— NON-LINEARITY
]
. R DIFFERENTIAL
< > NON-LINEARITY (NEGATIVE)

IDEAL CODE WIDTH

4—' ACTUAL FIRST TRANSITION |

\I IDEAL FIRST TRANSITION |

T T T T T T T T 1
12 1 2 3 4 5 6 61/2 7 8

INPUT VOLTAGE (LSBs)

A0085-01

Figure 11-11. Terminal-based A/D Conversion Characteristic

11-19

intgl.

CAN Serial
Communications
Controller

12

<PageNum>-22

intel.

CHAPTER 12
CAN SERIAL COMMUNICATIONS CONTROLLER

The 87C196CA has a peripheral fiotind inthe 8XC196Kx and 8XC1964 controllers — the

CAN (controller area network) peripheral. The CAN serial communications controller manages
communications between multiple network nodes. This integrated peripheral is similar to Intel's
standalone 82527 CAMNerial communications controller.dtipports both the standard and the
extended message frames specified by CAN 2.0 protocol parts A and B developed by Robert
Bosch, GmbH. This chapter describes the integrated CAN controller and exm@ains config-

ure it. Consult Appendix B, “Signal Descriptions,” for detailed descriptions of the signals dis-
cussed in this chapter.

12.1 CAN FUNCTIONAL OVERVIEW

The integrated CAN controller transfers messages between network nodes according to the CAN
protocol. The CAN protocol uses a multiple-master, contention-based bus configuration, which
is also called CSMA/CR (carrier sense, multiple access, with collision resolution). Each CAN
controller’s input and output pins are connected to a two-line CANHsagghwhich all com-
munication takes place (Figure 12-1).

ABS 2\
Losc < RXCAN CAN_L Dashboard
X Bus CAN_L Rx0
device |TXCAN | piver| CAN_H — . > Bus
> us
. 82527 CPU
CAN_H| priver| < _TX0 <:>
Engine
- RXCAN CAN_L Security System
196Cx = Bus
i CAN_L Rx0
device TXCAN | priver CAN_H |_| : X > Bus
- us
82527 CPU
Transmission "
RXCAN CAN_L @
196Cx - Bus <Z(
device TXCAN) briver| CAN_H[| S

A2588-02

Figure 12-1. A System Using CAN Controllers

12-1

8XC196Kx, Jx, CA USER'S MANUAL Inu®

This bus configuration reduces point-to-point wiring requirements, making the CAN controller
well suited to automotive and factory automation applications. In addition, it relieves the CPU of
much of the communications burden while providing a high level of data integrity through error
management logic.

The CAN controller (Figure 12-2) has one input pin, one output pin, control and status registers,
and error detection and management logic.

| Bit Timing Registers |

| Control Register |

| Status Register |

| Interrupt Register |

Global Message
Mask Objects 1-14 TXCAN
Registers
RXCAN
Message
Mask 15 Object 15
Register
RAM
Bus b 4 Bus
Driver Driver
Error
Management
Logic
N\
CAN Bus AN
N\ 2
A2590-02

Figure 12-2. CAN Controller Block Diagram

12-2

intel.

CAN SERIAL COMMUNICATIONS CONTROLLER

12.2 CAN CONTROLLER SIGNALS AND REGISTERS

Table 12-1 describes the CAN controller’s pins, and Table 12-2 describes the control and status

registers.
Table 12-1. CAN Controller Signals
Signal |Type Description
RXCAN | Receive
This signal carries messages from other nodes on the CAN bus to the CAN controller.
TXCAN O | Transmit
This signal carries messages from the CAN controller to other nodes on the CAN bus.
Table 12-2. Control and Status Registers

CAN_BTIMEO" 1E3FH | Bit Timing O
Program this register to define the length of one time quantum
and the maximum number of time quanta by which a bit time can
be modified for resynchronization.

CAN_BTIME1" 1E4FH | Bit Timing 1
Program this register to define the sample time and mode.

CAN_CONT 1EOOH | Control
Program this register to prevent transfers to and from the CAN
bus, to enable and disable CAN interrupts, and to control write
access to the bit timing registers.

CAN_EGMSK 1E08H, 1E09H, | Extended Global Mask

1EOAH, 1E0BH Program this register to mask (“don’t care”) specific message

identifier bits for extended message objects.

CAN_INT 1E5FH | CAN Interrupt Pending
This read-only register indicates the source of the highest-priority
pending interrupt.

CAN_MSGXCFG 1Ey6H | Message Object x Configuration
Program this register to specify a message object’s data length,
transfer direction, and identifier type.

CAN_MSGxCONO 1Ey0H | Message Object x Control O

Program this register to enable or disable the message object’s
successful transmission (TX) and reception (RX) interrupts. Read
this register to determine whether a message object is ready to
transmit and whether an interrupt is pending.

TThe CCE bitin CAN_CON must be set to enable write access to the bit timing registers.
™n register names, x = 1-15; in addresses, y = 1-F.

12-3

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 12-2. Control and Status Registers (Continued)

Register Register -
Mnemonic ' Address 7 Description

CAN_MSGxCON1 1Ey1H | Message Object x Control 1
Program this register to indicate that a message is ready to
transmit or to initiate a transmission. Read this register to
determine whether the message object contains new data,
whether a message has been overwritten, whether software is
updating the message, and whether a transfer is pending.

CAN_MSGXxDATAO 1Ey7H | Message Object x Data 0—7

CAN_MSGXDATAL 1Ey8H | The data registers contain data to be transmitted or data received.

CAN_MSGxXDATA2 1Ey9H

CAN MSGxDATA3 1EyAH Do not use unused data bytes as scratch-pad memory; the CAN

CAN MSGxDATA4 1EyBH controller writes random values to these registers during

CAN_MSGxDATAS 1EyCH | operation.

CAN_MSGXDATA6 1EyDH

CAN_MSGXDATA7 1EyEH

CAN_MSGxIDO 1Ey2H | Message Object x Identification 0—3

CAN_MSGxID1 1EY3H | \write the message object’s ID to this register. (This register is the

CAN_MSGxXID2 1Ey4H | same as the arbitration register of the 82527.)

CAN_MSGxID3 1Ey5H

CAN_MSK15 1EOCH, 1EODH, | Message 15 Mask

1EOEH, 1EOFH Program this register to mask (“don’t care”) specific message
identifier bits for message 15 in addition to those bits masked by a
global mask. The message 15 mask is ANDed with the standard
or extended global mask, so any “don’t care” bits defined in a
global mask are also “don’t care” bits for message 15.

CAN_SGMSK 1E06H, 1E07H | Standard Global Mask

Program this register to mask (“don’t care”) specific message
identifier bits for standard message objects.

CAN_STAT 1EO01H | Status
This register reflects the current status of the CAN controller.
INT_MASK1 0013H | Interrupt Mask 1

The CAN bit in this register enables and disables the CAN
interrupt request.

INT_PEND1 0012H | Interrupt Pending 1

The CAN bit in this register, when set, indicates a pending CAN
interrupt request.

TThe CCE bit in CAN_CON must be set to enable write access to the bit timing registers.
™in register names, x = 1-15; in addresses, y = 1-F.

12.3 CAN CONTROLLER OPERATION
This section describes the address map, message objects, message frames (which contain me

sage objects), error detection and management logic, and bit timing for CAN transmissions and
receptions.

12-4

Int€|® CAN SERIAL COMMUNICATIONS CONTROLLER

12.3.1 Address Map

The CAN controller has 256 bytes of RAM, containing 15 ragebjects and control and status
registers at fixed addresses. Each message object occupies 15 consecutive bytes beginning at
base address that is a multiple of 16 bytes. The byte above each message object is reserved (ind
cated by a dash (—)) or occupied by a control register. The lowest 16 bytes of RAM contain the
remaining control and status registers (Table 12-3). This 256-byte section of memorywian be
dowedfor register-direct access (see “Windowing” on page 4-13).

Table 12-3. CAN Controller Address Map

Hex Address Description Hex Address Description

1EFF — 1E6F —

1EFO-1EFE | Message Object 15 1E60-1E6E Message Object 6

1EEF — 1E5F Interrupt Register

1EEO-1EEE | Message Object 14 1E50-1E5E Message Object 5

1EDF — 1E4F Bit Timing Register 17
1EDO-1EDE | Message Object 13 1E40-1E4E Message Object 4

1ECF — 1E3F Bit Timing Register 07
1ECO0-1ECE | Message Object 12 1E30-1E3E Message Object 3

1EBF — 1E2F —

1EBO-1EBE | Message Object 11 1E20-1E2E Message Object 2

1EAF — 1E1F —

1EAO-1EAE | Message Object 10 1E10-1E1E Message Object 1

1E9F — 1EOC-1EOF | Message 15 Mask Register
1E90-1E9E Message Object 9 1E08-1E0B Extended Global Mask Register
1E8F — 1E06-1E07 Standard Global Mask Register
1E80-1E8E Message Object 8 1E02-1E05 —

1E7F — 1E01 Status Register

1E70-1E7E Message Object 7 1E00 Control RegisterJr

™The control register’s CCE bit must be set to enable write access to the bit timing registers.

12.3.2 Message Objects

The CAN controller includes 15 message objects, each of which occupies 15 bytes of RAM (Ta-
ble 12-4). Message objects 1-14 can be configured to either transmit or receive messages, while
message object 15 can only receive messages. Message bbjettisaveonly a single buffer,

so if a second message is received before the CPU reads the first, the first message is overwritten
Message object 15 has two alternating buffers, so it can receive a second message while the firs
is being processed. However, if a third message is received while the CPU is reading the first, the
second message is overwritten.

[| 12-5

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 12-4. Message Object Structure

Hex Address T Contents
1EX7-1EXE Data Bytes 0—7
1EX6 Message Configuration
1Ex2-1Ex5 Message Identifier 0-3
1EXO-1Ex1 Message Control 0-1

Tx= message object number, in hexadecimal

12.3.2.1 Receive and Transmit Priorities

The lowest-numbered message object always has the highest priority, regardless of the messag
identifier. When multiple messages are ready to transmit, the CAN controller transmits the mes-
sage from the lowest-numbered message object first. When multiple message objects are capabls
of receiving the same message, the lowest-numbered message object receives it. For example, i
all identifier bits are masked, message object 1 receives all messages.

12.3.2.2 Message Acceptance Fil tering

The mask registers provide a method for developing an acceptance filtering strategy for a specific
system. Software can program the mask registers to require an exact match on specific identifier
bits while masking (“don’t care”) the remaining bits. Without a masking strategy, a message ob-
ject could accept only those messages with an identical message identifier. With a masking strat-
egy in place, a message object can accept messages whose identifiers are not identical.

The CAN controller filters messages by comparing an incoming message’s identifier with that of
an enabled internal message object. The standard global mask register applies to messages wit
standard (11-bit) identifiers, while the extended global mask register applies to those with extend-
ed (29-bit) identifiers. The CAN controller applies the appropriate global mask to each incoming
message identifier and checks for an acceptance match in message objects 1-14. If no match ex
ists, it then applies the message 15 mask and checks for a match on message object 15. The me
sage 15 mask is ANDed with the global mask, so any bit that is masked by the global mask is
automatically masked for message 15.

The CAN controller accepts an incoming data message if the message’s identifier matches that of
any enabled receive message object. It accepts an incoming remote message (request for dat
transmission) if the message’s identifier matches that of any enabled transmit message object.
The remote message’s identifier is stored in the transmit message object, overwriting any masked
bits. Table 12-5 shows an example.

12-6

Inbl® CAN SERIAL COMMUNICATIONS CONTROLLER

Table 12-5. Effect of Masking on Message Identifiers
Transmit message object ID 11000000000
Mask (0 = don’t care; 1 =must match) | 00000000011
Received remote message object ID |00111111100
Resulting message object ID 00111111100

12.3.3 Message Frames

A message object is contained withimassage framthat adds control and error-detection bits

to the content of the message object. The frame for an extended message differs slightly from that
for a standard message, but they contain similar informatiataté framecontains a message
object with data to be transmittedreamote framas a request for another node to transmit a data
frame, so it contains no data.

Figure 12-3illustrates standard and extended message frames. Table 12-6 and Table 12-7 describ
their contents and summarize the minimum message lengths. Actual message lengths may differ
because the CAN controller adds bits during traasion (see Error Detection and Management
Logic” on page 12-9). After each message frame, an intermission field consisting of three reces-
sive (1) bits separates messages. This intermission may be followed by a bus idle time.

Standard Frame End of
Frame
Arbitration Control) CRC ack>l I
l Field | Field | DxaFed Field IF.
I | . 1 |
27
(S) 11-bit $ [') oe 15-bit
E Identifier =lelo 0-8 Bytes CRC
(<
27
Extended Frame End of
Frame
Arbitration Control . CRC Ack™ [~
| Field | Field | Data Field | Field IF.
! | PV |
S|I 7
f . R
11 bit 18-bit 15-bit
o R [D " T|r|r|poLC I
E Identifier r e Identifier rl1]o 0-8 Bytes CRC
(<
277
A2599-01

Figure 12-3. CAN Message Frames

[| 12-7

8XC196Kx, Jx, CA USER'S MANUAL

Table 12-6. Standard Message Frame

intel.

Field Description Bit Count

SOF Start-of-frame. A dominant (0) bit marks the beginning of a message frame. 1
11-bit message identifier.

Arbitration RTR. Remote transmission request. Dominant (0) for data frames; recessive (1) 12
for remote frames.
IDE. Identifier extension bit; always dominant (0).

Control r0. Reserved bit; always dominant (0). 6
DLC. Data length code. A 4-bit code that indicates the number of data bytes
(0-8).

Data Data. 1 to 8 bytes for data frames; 0 bytes for remote frames. 0-64

CRC CRC code. A 15-bit CRC code plus a recessive (1) delimiter bit. 16

Ack Acknoyvledgmen_t. A dominant (0) bit sent by nodes receiving the frame plus a 2
recessive (1) delimiter bit.

End of frame | 7 recessive (1) bits mark the end of a frame. 7
Minimum standard message frame length (bits) 44-108

Table 12-7. Extended Message Frame
Field Description Bit Count

SOF Start-of-frame. A dominant (0) bit marks the beginning of a message frame. 1
11 bits of the 29-bit message identifier
SRR. Substitute remote transmission request; always recessive (1)

Arbitration IDE. Identifier extension bit; always recessive (1) 32
18 bits of the 29-bit message identifier
RTR. Remote transmission request; always recessive (1)
r0. Reserved bit; always dominant (0)

Control rl. Reserved bit; always dominant (0) 6
8D)LC. Data length code. A 4-bit code that indicates the number of data bytes (0—

Data Data. 1 to 8 bytes for data frames; 0 bytes for remote frames 0-64

CRC CRC code. A 15-bit CRC code plus a recessive (1) delimiter bit 16

Ack Acknowledgmen_t. A dominant (0) bit sent by nodes receiving the frame plus a 2
recessive (1) delimiter bit.

End of frame | 7 recessive (1) bits mark the end of a frame. 7
Minimum extended message frame length (bits) 64-128

12-8

Int€|® CAN SERIAL COMMUNICATIONS CONTROLLER

12.3.4 Error Detection and Management Logic

The CAN controller has several error detection mechanisms, including cyclical redundancy
checking (CRC) and bit coding rules (stuffing and destuffing). The CAN controller generates a
CRC code for transmitted messages and checks the CRC code of incoming messages. The CR(
polynomial has been optimized for control applications with short messages.

After five consecutive bits of equal value are transmitted, a bit with the opposite polarity is added
to the bit stream. This bit is calledstuff bit by adding a transition, a stuff bit aids in synchroni-
zation. All message fields are stuffed except the CRC delimiter, the acknowledgment field, and
the end-of-frame field.

Receiving nodes reject data from any message that is corrupted during transmission and send ar
error message via the CAN bus. Transmitting nodes monitor the CAN bus for error messages and
automatically repeat a transmission if aroe occurs. The fdbwing error types are detected:

¢ stuff error — more than 5 equal bits in a sequence have occurred in a part of a received
message where this is not allowed

¢ form error — the fixed-format part of a received frame hasutuag format (for example,
a reserved bit has the wrong value)

¢ acknowledgment error — this device transmitted a message, but it was not acknowledged
by another node on the CAN bus. (The transmit error counter stops incrementing after 128
acknowledgment errors, so this error type does not cause a bus-off state.)

* hit 1 error — the CAN controller tried to send a recessive (logic 1) bit as part of a
transmitted message (with the exception of the arbitration field), but the monitored CAN
bus value was dominant (logic 0)

* hit 0 error — the CAN controller tried to send a dominant (logic 0) bit as part of a
transmitted message (with the exception of the arbitration field), but the monitored CAN
bus value was recessive (logic 1)

* CRC error — theCRC checksum recetd for an incoming message does not match the
CRC value that the CAN controller calculated for the received data

The CAN status register indicates the type of the first transmission error that occurred on the
CAN bus and whether an abnormal number of errors have occurred. Two counters (a receive error
counter and a transmit error counter) track the number of errors. The status register’s warning bit
is set when the receive or transmit error counter reaches 96; the bus-off bit is set when either
counter reaches 256. If this occurs, the CAN controller isolates itself from the CAN bus (floats
the TX pin). Software must clear the INIT bit in the control register (Figure 12-6 on page 12-13)
to begin a bus-off recovery sequence.

12-9

8XC196Kx, Jx,

CA USER’S MANUAL InU®

12.3.5 Bit Timing

A message object consists of a series of bits transmitted in consecutive bit times. The CAN pro-
a bit time composed of four separate, nonoverlapping time segments: a synchro-
nization delay segmentpaopagaibn delay segment, and two phase delay segments (Figure 12-4
8). The CAN controller implements a bit time as three segmentsnicgmbi
PROP_SEG and PHASE_SEG1 intg-t; (Figure 12-5 and Table 12-9). This implementation is

tocol specifies

and Table 12-

identical to that of the 82527 CAN peripheral.

A

\

Nominal Bit Time

SYNC_SEG PROP_SEG PHASE_SEG1 PHASE_SEG2

Pt

Sample Transmit
A2603-01

Figure 12-4. A Bit Time as Specified by the CAN Protocol

Table 12-8. CAN Protocol Bit Time Segments

Symbol Definition

SYNC_SEG The synchronization delay segment allows for synchronization of the various nodes on
the bus. An edge is expected to lie within this segment.

PROP_SEG The propagation delay segment compensates for the physical delay times within the
network. It is twice the sum of the signal’s propagation time on the bus line, the input
comparator delay, and the output driver delay. The factor of two accounts for the
requirement that all nodes monitor all bus transmissions for errors.

PHASE_SEGL1 | This segment compensates for edge phase errors. It can be lengthened or shortened by
resynchronization.

PHASE_SEG2 | This segment compensates for edge phase errors. It can be lengthened or shortened by
resynchronization.

12-10

CAN SERIAL COMMUNICATIONS CONTROLLER

< Bit Time >

tsyne | trsect . trsec2
SEG |

= | [1 ° ° | |
1tq

(TSEG1 + tq T (TSEG2 + 1)tq T
Sample Transmit
A2602-01
Figure 12-5. A Bit Time as Implemented in the CAN Controller
Table 12-9. CAN Controller Bit Time Segments
Symbol Definition
tsyne_ses | This time segment is equivalent to SYNC_SEG in the CAN protocol. Its length is one time

quantum.

tTSEGl

This time segment is equivalent to the sum of PROP_SEG and PHASE_SEG1 in the CAN
protocol. Its length is specified by the TSEGL1 field in bit timing register 1. To allow for resyn-
chronization, the sample point can be moved (trsgg1 OF trsege €aN be shortened and the other
lengthened) by 1 to 4 time quanta, depending on the programmed value of the SIJW field in bit
timing register 0.

The CAN controller samples the bus once or three times, depending on the value of the
sampling mode (SPL) bit in bit timing register 0. In three-sample mode, the hardware
lengthens t;sgq1 by 2 time quanta to allow time for the additional two bus samples. In this
case, the “sample point” shown in Figure 12-5 is the time of the third sample; the first and
second samples occur 2 and 1 time quanta earlier, respectively.

tTSEGZ

This time segment is equivalent to PHASE_SEG2 in the CAN protocol. Its length is specified
by the TSEG2 field in bit timing register 1. To allow for resynchronization, the sample point
can be moved (t;ggg; OF trgege Can be shortened and the other lengthened) by 1 to 4 time

quanta, depending on the programmed value of the SJW field in bit timing register 0.

12-11

8XC196Kx, Jx, CA USER'S MANUAL InU®

12.35.1 Bit Timing Equations

The bit timing equations of the integrated CAN controller are equivalent to those f&5ké 8
CAN peripheral with the DSC bit in the CPU interface register set (system clock divitded)by
The following equations show the timing calculationstfar integrated CAN controller and the
82527 CAN peripheral, respectively.

FOSC

CAN Controller CAN bus frequency =
2x (BRP+1) x (3+TSEG1 +TSEG2)

FOSC

(DSC+1) x (BRP +1) x (3+TSEG1+TSEG2)

82527 CAN bus frequency =

where:
Fosc = the input clock frequency on the XTAL1 pin, in MHz
BRP = the value of the BRP bit in bit timing register 0

TSEG1 =the value of the TSEGL field in bit timing register O
TSEG2 =the value of the TSEGL field in bit timing register 1

Table 12-10 defines the bit timing relationships of the CAN controller.

Table 12-10. Bit Timing Relationships

P ;-:;nr:]negter Definition

tarrmive tsync_ses t trsect T brsec2

tyraLt input clock period on XTAL1 (50 ns at 20 MHz operation)

tq 2tyrar X (BRP + 1), where BRP is a field in bit timing register 0 (valid values are 0-63)

tsyne_ses 1tq

trsect (TSEG1 + 1) x tq, where TSEGL1 is a field in bit timing register 1 (valid values are 2-15)

trsea2 (TSEG2 + 1) x tq, where TSEG2 is a field in bit timing register 1 (valid values are 1-7)

toow (SJIW + 1) x tq, where SJW is a field in bit timing register O (valid values are 0-3)

torop The portion of t;cq, that is equivalent to PROP_SEG as defined by the CAN protocol. Twice
the maximum sum of the physical bus delay, input comparator delay, and output driver delay,
rounded up to the nearest multiple of tq.

12-12

InU® CAN SERIAL COMMUNICATIONS CONTROLLER

12.4 CONFIGURING THE CAN CONTROLLER

This section explains how to configure the CAN controller. Several registers combine to control
the configuration: the CAN control register, the two bit timing registers, and the three mask reg-
isters.

12.4.1 Programming the CAN Control (CAN_CON) Register

The CAN control register (Figure 12-6) controls write access to the bit timing registers, enables
and disables global interrupburces (error, status change, and individual message object), and
controls access to the CAN bus.

CAN_CON Address: 1EO00H
(87C196CA) Reset State: 01H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0
grciogecA | — | cce | — | — || BE | sE | E | INT |

Bit Bit

. Function
Number Mnemonic

— Reserved; for compatibility with future devices, write zero to this bit.

CCE Change Configuration Enable
This bit controls whether software can write to the bit timing registers.

1 = allow write access
0 = prohibit write access

5:4 — Reserved; for compatibility with future devices, write zeros to these bits.

3 EIE Error Interrupt Enable
This bit enables and disables the bus-off and warn interrupts.

1 = enable bus-off and warn interrupts
0 = disable bus-off and warn interrupts

2 SIE Status-change Interrupt Enable

This bit enables and disables the successful reception (RXOK), successful
transmission (TXOK), and error code change (LEC2:0) interrupts.

1 = enable status-change interrupt
0 = disable status-change interrupt

When the SIE bit is set, the CAN controller generates a successful
reception (RXOK) interrupt request each time it receives a valid message,
even if no message object accepts it.

Figure 12-6. CAN Control (CAN_CON) Register

12-13

8XC196Kx, Jx, CA USER'S MANUAL InU®

CAN_CON (Continued) Address: 1EOOH
(87C196CA) Reset State: 01H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0
87C196CA ‘ — ‘CCE‘ — ‘ — H EIE ‘ SIE ‘ IE ‘ INIT ‘

Bit Bit

. Function
Number Mnemonic

1 IE Interrupt Enable

This bit globally enables and disables interrupts (error, status-change, and
message object transmit and receive interrupts).

1 = enable interrupts
0 = disable interrupts

When the |E bit is set, an interrupt is generated only if the corresponding
interrupt source’s enable bit (EIE or SIE in CAN_CON; TXIE or RXIE in
CAN_MSGx_CONO) is also set. If the IE bit is clear, an interrupt request
updates the CAN interrupt pending register, but does not generate an
interrupt.

0 INIT Software Initialization Enable

Setting this bit isolates the CAN bus from the system. (If a transfer is in
progress, it completes, but no additional transfers are allowed.)

1 = software initialization enabled
0 = software initialization disabled

A hardware reset sets this bit, enabling you to configure the RAM without
allowing any CAN bus activity. After a hardware reset or software initial-
ization, clearing this bit completes the initialization. The CAN peripheral
waits for a bus idle state (11 consecutive recessive bits) before partici-
pating in bus activities.

Software can set this bit to stop all receptions and transmissions on the
CAN bus. (To prevent transmission of a specific message object while its
contents are being updated, set the CPUUPD bit in the individual message
object’s control register 1. See “Configuring Message Objects” on page
12-20.)

Entering powerdown mode stops an in-progress CAN transmission
immediately. To avoid stopping a CAN transmission while it is sending a
dominant bit on the CAN bus, set the INIT bit before executing the IDLPD
instruction.

The CAN peripheral also sets this bit to isolate the CAN bus when an error
counter reaches 256. This isolation is called a bus-off condition. After a
bus-off condition, clearing this bit initiates a bus-off recovery sequence,
which clears the error counters. The CAN peripheral waits for 128 bus idle
states (128 packets of 11 consecutive recessive bits), then resumes
normal operation. (See “Bus-off State” on page 12-41.)

Figure 12-6. CAN Control (CAN_CON) Register (Cont inued)

12-14

InU® CAN SERIAL COMMUNICATIONS CONTROLLER

12.4.2 Programming the Bit Timing 0 (CAN_BTIMEOQ) Register

Bit timing register 0 (Figure 12-7) defines the length of one time quantum and the maximum
amount by which the sample point can be movgg i or t.sc can be shortened and the other
lengthened) to compensate for resynchronization.

CAN_BTIMEO Address: 1E3FH
(87C196CA) Reset State: Unchanged

Program the CAN bit timing 0 (CAN_BTIMEDO) register to define the length of one time quantum and
the maximum number of time quanta by which a bit time can be modified for resynchronization.
7 0

87C196CA ‘ SIw1 ‘ SJW0 ‘ BRP5 ‘ BRP4 H BRP3 ‘ BRP2 ‘ BRP1 ‘ BRPO ‘

Bit Bit

. Function
Number Mnemonic

7:6 SJW1:0 Synchronization Jump Width

This field defines the maximum number of time quanta by which a resyn-
chronization can modify t;gzgq and trgcgp. Valid programmed values are 0—
3. The hardware adds 1 to the programmed value, so a “1” value causes
the CAN peripheral to add or subtract 2 time quanta, for example. This
adjustment has no effect on the total bit time; if t;seg; iS increased by 2 tq,
trsego IS decreased by 2 tg, and vice versa.

5:0 BRP5:0 Baud-rate Prescaler

This field defines the length of one time quantum (tq), using the following
formula, where ty, 1 is the input clock period on XTALL. Valid programmed
values are 0-63.

tq = 2ty 1 X (BRP +1)

For example, at 20 MHz operation, the system clock period is 50 ns.
Writing 3 to BRP achieves a time quanta of 400 ns; writing 1 to BRP
achieves a time quanta of 200 ns.

tqg = (2x50) x (3+1) = 400 ns
tqg = (2%x50) x (1+1) = 200 ns
NOTE: The CCE bit (CAN_CON.6) must be set to enable write access to this register.

Figure 12-7. CAN Bit Timing 0 (CAN_BTIMEOQ) Register

12-15

8XC196Kx, Jx, CA USER'S MANUAL InU®

12.4.3 Programming the Bit Timing 1 (CAN_BTIME1) Register

Bit timing register 1 (Figure 12-8) controls the time at which the bus is sampled and the number

of samples taken. In single-sample mode, the bus is sampled once and the value of that sample i
considered valid. In three-sample mode, the bus is sampled three times and the value of the ma.
jority of those samples is considered valid. Single-sample mode may achieve a faster transmis-
sion rate, but it is more susceptible to errors caused by noise on the CAN bus. Three-sample mode
is less susceptible to noise-related errors, but it may be slower. If you specify three-sample mode,
the hardware adds two time quanta to the TSEG1 value to allow time for two additional samples

during tgeq-

CAN_BTIME1 Address: 1E4FH
(87C196CA) Reset State: Unchanged

Program the CAN bit timing 1 (CAN_BTIMEL) register to define the sample time and the sample
mode. The CAN controller samples the bus during the last one (in single-sample mode) or three (in
three-sample mode) time quanta of t;sg5¢, and initiates a transmission at the end of t;gego.
Therefore, specifying the lengths of t;szg51 and t;seq, defines both the sample point and the trans-
mission point.

7 0
87C196CA ‘ SPL ‘ TSEG2.2 ‘ TSEG2.1 ‘ TSEG2.0 ‘ ‘ TSEGL1.3 ‘ TSEGL.2 ‘ TSEGL.1 ‘ TSEGL.0 ‘

Bit Bit Function

Number | Mnemonic

7 SPL Sampling Mode
This bit determines how many samples are taken to determine a valid bit
value.
1 = 3 samples, using majority logic
0 =1 sample

6:4 TSEG2 Time Segment 2
This field determines the length of time that follows the sample point within
a bit time. Valid programmed values are 1-7; the hardware adds 1 to this
value. (Note 2)

Figure 12-8. CAN Bit Timing 1 (CAN_BTIME1) Register

12-16

Inbl® CAN SERIAL COMMUNICATIONS CONTROLLER

CAN_BTIME1 Address: 1E4FH
(87C196CA) Reset State: Unchanged

Program the CAN bit timing 1 (CAN_BTIMEL) register to define the sample time and the sample
mode. The CAN controller samples the bus during the last one (in single-sample mode) or three (in
three-sample mode) time quanta of t;sg5¢, and initiates a transmission at the end of t;gego.
Therefore, specifying the lengths of t;qc5; and tgego defines both the sample point and the trans-
mission point.

7 0
87C196CA ‘ SPL ‘ TSEG2.2 ‘ TSEG2.1 ‘ TSEG2.0 ‘ ‘ TSEGL1.3 ‘ TSEGL.2 ‘ TSEGL.1 ‘ TSEGL.0

Bit Bit

. Function
Number | Mnemonic

3.0 TSEG1 Time Segment 1

This field defines the length of time that precedes the sample point within a
bit time. Valid programmed values are 2-15; the hardware adds 1 to this
value. In three-sample mode, the hardware adds 2 time quanta to allow
time for the two additional samples. (Note 2)

NOTES:

1. The CCE bhit (CAN_CON.6) must be set to enable write access to this register.

2. For correct operation according to the CAN protocol, the total bit time must be at least 8 time
quanta, so the sum of the programmed values of TSEG1 and TSEG2 must be at least 5. (The
total bit time is the sum of tsyne seg + trseg1 * trsege- The length of tgyc seg iS 1 time quanta,
and the hardware adds 1 to both TSEG1 and TSEG2. Therefore, if TSEG1 + TSEG2 = 5, the
total bit length will be equal to 8 (1+5+1+1)). Table 12-11 lists additional conditions that must be
met to maintain synchronization.

Figure 12-8. CAN Bit Timing 1 (CAN_BTIME1) Register (Continued)

Table 12-11. Bit Timing Requirements for Synchronization

Bit Time .
Segment Requirement Comments
= 3tq minimum tolerance with 1tq propagation delay allowance
trsecl 2 tgw + torop for single-sample mode
2 tgyy + terop + 2tq | for three-sample mode
= 2tq minimum tolerance
trsec2
TeEe 2 tgw if tgyw > trseg2 » SamMpling may occur after the bit time

[| 12-17

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

12.4.4 Programming a Message Acceptance Filter

The mask registers provide a method for developing an acceptance filtering strategy. Without a
filtering strategy, a message object could accept an incoming message only if their identifiers
were identical. The mask registers allow a message object to ignore one or more bits of incoming
message identifiers, so it can accept a range of message identifiers.

The standard global mask register (Figure 12-9) applies to messages with standard (11-bit) mes-
sage identifiers, while the extended global mask register (Figure 12-10) applies to messages with
extended (29-bit) identifiers. The message 15 mask register (Figure 12-11) provides an additional
filter for message object 15, to allow it to accept a greater range of message identifiers than mes-
sage objects 1-14 can. Clear a mask bit to accept either a zero or a one in that position.

The CAN controller applies the appropriate global mask to each incoming message identifier and
checks for an acceptance match on message objects 1-14. If no match exists, it then applies the
message 15 mask and checks for a match on message object 15.

CAN_SGMSK Address: 1EO07H, 1E06H
(87C196CA) Reset State: Unchanged

Program the CAN standard global mask (CAN_SGMSK) register to mask (“don’t care”) specific
message identifier bits for standard message objects.

15 8
87C196CA ‘ MSK20 ‘ MSK19 ‘ MSK18 ‘ — H — ‘ — ‘ _ ‘ _ ‘
7 0

‘ MSK28 ‘ MSK27 ‘ MSK26 ‘ MSK25 H MSK24 ‘ MSK23 ‘ MSK22 ‘ MSK21 ‘

Bit Bit

. Function
Number Mnemonic

15:13 MSK20:18 | ID Mask
These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

12:8 — Reserved; for compatibility with future devices, write zeros to these bits.
7:0 MSK28:21 | ID Mask
These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

Figure 12-9. CAN Standard Global Mask (CAN_SGMSK) Register

12-18

InU® CAN SERIAL COMMUNICATIONS CONTROLLER

CAN_EGMSK Address: 1EOBH, 1EOAH,
(87C196CA) 1EO09H, 1E08H
Reset State: Unchanged

Program the CAN extended global mask (CAN_EGMSK) register to mask (“don’t care”) specific
message identifier bits for extended message objects.

31 24
87C196CA ‘ MSK4 ‘ MSK3 ‘ MSK2 ‘ MSK1 H MSKO ‘ — ‘ — ‘ — ‘
23 16
‘MSKlZ ‘ MSK11 ‘ MSKlO‘ MSK9 H MSK8 ‘ MSK7 ‘ MSK6 ‘ MSK5 ‘
15 8
‘ MSK20 ‘ MSK19 ‘ MSK18 ‘ MSK17 H MSK16 ‘ MSK15 ‘ MSK14 ‘ MSK13 ‘
7 0

‘ MSK28 ‘ MSK27 ‘ MSK26 ‘ MSK25 H MSK24 ‘ MSK23 ‘ MSK22 ‘ MSK21 ‘

Bit Bit

. Function
Number Mnemonic

31:27 MSK4:0 ID Mask
These bits individually mask incoming message identifier (ID) bits.

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

26:24 — Reserved; for compatibility with future devices, write zeros to these bits.
23:16 MSK12:5 ID Mask

158 MSK20:13 | These hits individually mask incoming message identifier (ID) bits.

7:0 MSK28:21

0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

Figure 12-10. CAN Extended Global Mask (CAN_EGMSK) Register

[| 12-19

8XC196Kx, Jx, CA USER'S MANUAL InU®

CAN_MSK15 Address: 1EOFH, 1EQOEH,
(87C196CA) 1EODH, 1EOCH
Reset State: Unchanged

Program the CAN message 15 mask (CAN_MSK15) register to mask (“don’t care”) specific message
identifier bits for message 15 in addition to those bits masked by a global mask (CAN_EGMSK or
CAN_SGMSK).

31 24
87C196CA ‘ MSK4 ‘ MSK3 ‘ MSK2 ‘ MSK1 H MSKO ‘ _ ‘ _ ‘ _ ‘
23 16
‘MSKlZ ‘ MSK11 ‘ MSKlO‘ MSK9 H MSK8 ‘ MSK7 ‘ MSK6 ‘ MSK5 ‘
15 8
‘ MSK20 ‘ MSK19 ‘ MSK18 ‘ MSK17 H MSK16 ‘ MSK15 ‘ MSK14 ‘ MSK13 ‘
7 0

‘ MSK28 ‘ MSK27 ‘ MSK26 ‘ MSK25 H MSK24 ‘ MSK23 ‘ MSK22 ‘ MSK21 ‘

Bit .

Number Function

31:27 MSK4:0 ID Mask
These bits individually mask incoming message identifier (ID) bits.
0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

26:24 — Reserved. These bits are undefined; for compatibility with future devices,
do not modify these bits.

23:16 MSK12:5 ID Mask

158 MSK20:13 | These bits individually mask incoming message identifier (ID) bits.

7:0 MSK28:21 . .
0 = mask the ID bit (accept either “0” or “1”)
1 = accept only an exact match

NOTE: Setting a CAN_MSK15 bit in any position that is cleared in the global mask register has no
effect. The message 15 mask is ANDed with the global mask, so any “don’t care” bits
defined in a global mask are also “don’t care” bits for message 15.

Figure 12-11. CAN Message 15 Mask (CAN_MSK15) Register

12.5 CONFIGURING MESSAGE OBJECTS
Each message object consists of a configuration register, a message identifier, control registers,

and data registers (from zero to eight bytes of data). This section explains how to configure mes-
sage objects and determine their status.

12-20

Int€|® CAN SERIAL COMMUNICATIONS CONTROLLER

12.5.1 Specifying a Message Object’'s Configuration

Each message object configuration register (Figure 12-12) specifies a message identifier type
(standard or extended), transfer direction (transmit or receive), and data length (in bytes).

CAN_MSGXCFG Address: 1EX6H (x = 1-F)
x =1-15 (87C196CA) Reset State: Unchanged

Program the CAN message object x configuration (CAN_MSGXCFG) register to specify a message
object’s data length, transfer direction, and identifier type.

7 0
87C196CA ‘ DLC3 ‘ DLC2 ‘ DLC1 ‘ DLCO H DIR ‘ XTD ‘ _ ‘ _ ‘

Bit Bit

. Function
Number Mnemonic

7:4 DLC3:0 Data Length Code

Specify the number of data bytes this message object contains. Valid
values are 0-8. The CAN controller updates a receive message object’s
data length code after each reception to reflect the number of data bytes in
the current message.

3 DIR Direction

Specify whether this message object is to be transmitted or is to receive a
message object from a remote node.

0 =receive
1 = transmit
2 XTD Extended Identifier Used

Specify whether this message object’s identification registers contain an
extended (29-bit) or a standard (11-bit) identifier.

0 = standard identifier
1 = extended identifier

1.0 — Reserved; for compatibility with future devices, write zeros to these bits.

Figure 12-12. CAN Message Object x Configuration (CAN_MSGXCFG) Register

Set the XTD bit for a message object with an extended identifesr itifor a message with a
standard identifier. If you accidentally clear the XTD bit for a rageghat has an extended iden-
tifier, the CAN controller will clear the extended bits in the identification register. If you set the
XTD bit for a message object, that message object cannot receive message objectsdaitth sta
identifiers.

For a transmit message, set the DIR bit and write the numbesgrjpnmed data bytes (0-8) to
the DLC field. For a receive message, clear the DIR bit. The CAN controller stores the data length
from the received message in the DLC field.

[| 12-21

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

12.5.2 Programming the Message Object Identifier

For messages with extended identifiers, write the identifier to bits ID28:0. For messages with
standard identifiers, write the identifier to bits ID28:18. Software can change the idehiifiey

normal operation without requiring a subsequent device reset. Clear the MSGVAL bit in the cor-
responding message control register 0 to prevent the CAN controller from accessing the message

object while the modification takes place, then set the bit to allow access.

CAN_MSGxID0-3 Address: 1Ex5H, 1Ex4H,
Xx =1-15 (87C196CA) 1EX3H, 1EX2H
(x=1-F)
Reset State: Unchanged

Write the message object’s identifier to the CAN message object x identifier (CAN_MSGxID0-3)
register. Software can change the identifier during normal operation. Clear the MSGVAL bit in the
corresponding CAN_MSGXxCONO register to prevent the CPU from accessing the message object,
change the identifier in CAN_MSGxID0-3, then set the MSGVAL bit to allow access.

87C196CA 31 24

CAN_MSGxID3 ‘ ID4 ‘ ID3 ‘ ID2 ‘ ID1 ‘ ‘ IDO ‘ — ‘ — ‘ — ‘
23 16

CAN_MSGXIDZ‘ ID12 ‘ D11 ‘ ID10 ‘ ID9 H D8 ‘ ID7 ‘ ID6 ‘ ID5 ‘
15 8

CAN_MSGXIDl‘ ID20 ‘ ID19 ‘ ID18 ‘ D17 H ID16 ‘ ID15 ‘ ID14 ‘ ID13 ‘
7 0

CAN_MSGxIDO \ ID28 ‘ D27 ‘ ID26 ‘ ID25 \ \ ID24 ‘ ID23 ‘ ID22 ‘ ID21 \

Nulr?’ni:)er Mne?riltonic Function

31:27 ID4:0 Message ldentifier 17:0

23516 |D1255 These bits hold the 18 least-significant bits of an extended identifier. If

12:8 ID17:13

you write an extended identifier to these bits, but specify a standard
identifier (XTD = 0) in the corresponding message object’s configuration
register (CAN_MSGXCFG), the CPU clears these bits (ID17:0).

26:24 — Reserved; for compatibility with future devices, write zeros to these bits.
15:13 1D20:18 Message Identifier 28:18
70 ID28:21 These bits hold either an entire standard identifier or the 11 most-

significant bits of an extended identifier.

NOTE: This register is the same as the arbitration register in the standalone 82527 CAN peripheral.

Figure 12-13. CAN Message Object x Identifier (CAN_MSG xID0-3) Register

12-22

Int€|® CAN SERIAL COMMUNICATIONS CONTROLLER

12.5.3 Programming the Message Object Control Registers

Each message object control register consists of four in pa one bit of each pair is in true
form and one is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits. Table 12-12 shows how to interpret
the bit-pair values.

Table 12-12. Control Register Bit-pair Interpretation

Access Type |MSB |LSB Definition
0 0 | Not allowed (indeterminate)
. 0 1 | Clear (0)

Write
1 0 | Set(1)
1 1 | Nochange
0 1 | Clear (0)

Read
1 0 | Set(1)

12.5.3.1 Message Object Cont rol Register 0

Message object control register 0 (Figure 12-14) indicates whether an interrupt is pending, con-
trols whether a successful transmission or reception generates an interrupt, and indicates whethe
a message object is ready to transmit.

12.5.3.2 Message Object Cont rol Register 1

Message object control register 1 (Figure 12-15) indicates whether the message object contains
new data, whether a message has been overwritten, whether the message is being updated, ar
whether a transmission or reception is pending. Message objects 1-14 have only a single buffer,
so if a second message is received before the CPU reads the first, the first message is overwritten
Message object 15 has two alternating buffers, so it can receive a second message while the firs
is being processed. However, if a third message is received while the CPU is reading the first, the
second message is overwritten.

12.5.4 Programming the Message Object Data

Each message object can have from zero to eight bytes of data. For transmit message objects
write the message data to the data registers (Figure 12-16). For receive message objects, the CAl
controller stores the received data in these registers. The CAN controller writes random values to
any unused data bytes during operation, so you simmtldse unused data bytes as scratch-pad
memory.

[| 12-23

8XC196Kx, Jx, CA USER'S MANUAL InU®

CAN_MSG xCONO Address: 1EXOH (x = 1-F)
Xx =1-15 (87C196CA) Reset State: Unchanged

Program the CAN message object x control 0 (CAN_MSGXCONO) register to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The least-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0
87C196CA ‘ MSGVAL ‘ MSGVAL ‘ TXIE ‘ TXIE ‘ ‘ RXIE ‘ RXIE ‘ INT_PND ‘ INT_PND ‘
Bit Bit Function

Number Mnemonic

7:6 MSGVAL Message Object Valid

Set this bit-pair to indicate that a message object is valid (configured and
ready for transmission or reception).

bit7 bit6
0 1 not ready
1 0 message object is valid

The CAN peripheral will access a message object only if this bit-pair
indicates that the message is valid. If multiple message objects have the
same identifier, only one can be valid at any given time.

During initialization, software should clear this bit for any unused message
objects. Software can clear this bit if a message is no longer needed or if
you need to change a message object’s contents or identifier.

5:4 TXIE Transmit Interrupt Enable

Receive message objects do not use this bit-pair.

For transmit message objects, set this bit-pair to enable the CAN
peripheral to initiate a transmit (TX) interrupt after a successful trans-
mission. You must also set the interrupt enable bit (CAN_CON.1) to enable
the interrupt.

bit5 bit4
0 1 no interrupt
1 0 generate an interrupt

Figure 12-14. CAN Message Object x Control 0 (CAN_MSGxCONO) Register

12-24

InU® CAN SERIAL COMMUNICATIONS CONTROLLER

CAN_MSG xCONO (Continued) Address: 1EXOH (x = 1-F)
Xx =1-15 (87C196CA) Reset State: Unchanged

Program the CAN message object x control 0 (CAN_MSGXCONO) register to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The least-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0
87C196CA ‘ MSGVAL ‘ MSGVAL ‘ TXIE ‘ TXIE ‘ ‘ RXIE ‘ RXIE ‘ INT_PND ‘ INT_PND ‘
Bit Bit Function

Number Mnemonic

3:2 RXIE Receive Interrupt Enable
Transmit message objects do not use this bit-pair.

For a receive message object, set this bit-pair to enable this message
object to initiate a receive (RX) interrupt after a successful reception. You
must also set the interrupt enable bit (CAN_CON.1) to enable the interrupt.

bit 3 bit 2

0 1 no interrupt

1 0 generate an interrupt
1.0 INT_PND Interrupt Pending

This bit-pair indicates that this message object has initiated a transmit (TX)
or receive (RX) interrupt. Software must clear this bit when it services the

interrupt.

bit1 bit0

0 1 no interrupt

1 0 an interrupt was generated

Figure 12-14. CAN Message Object x Control 0 (CAN_MSGxCONO) Register (Continued)

[| 12-25

8XC196Kx, Jx, CA USER'S MANUAL InU®

CAN_MSGXxCON1 Address: 1EX1H (x = 1-F)
Xx =1-15 (87C196CA) Reset State: Unchanged

The CAN message object x control 1 (CAN_MSGXCON1) register indicates whether a message
object has been updated, whether a message has been overwritten, whether the CPU is updating the
message, and whether a transmission or reception is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0
87C196CA MSGLST | MSGLST
RMTPND | RMTPND | TX_REQ | TX_REQ CPUUPD | CPUUPD NEWDAT | NEWDAT
Bit Bit

. Function
Number Mnemonic

7:6 RMTPND Remote Request Pending
Receive message objects do not use this bit-pair.

The CAN controller sets this bit-pair to indicate that a remote frame has
requested the transmission of a transmit message object. If the CPUUPD
bit-pair is clear, the CAN controller transmits the message object, then
clears RMTPND. Setting RMTPND does not cause a transmission; it only
indicates that a transmission is pending.

bit7 bit6

0 1 no pending request

1 0 a remote request is pending
5:4 TX_REQ Transmission Request

Set this bit-pair to cause a receive message object to transmit a remote
frame (a request for transmission) or to cause a transmit object to transmit
a data frame. Read this bit-pair to determine whether a transmission is in

progress.
bit5 bit4

0 1 no pending request; no transmission in progress
1 0 transmission request; transmission in progress

Figure 12-15. CAN Message Object x Control 1 (CAN_MSG xCON1) Register

12-26

InU® CAN SERIAL COMMUNICATIONS CONTROLLER

CAN_MSG XCONL1 (Continued) Address: 1EX1H (x = 1-F)
Xx =1-15 (87C196CA) Reset State: Unchanged

The CAN message object x control 1 (CAN_MSGXCON1) register indicates whether a message
object has been updated, whether a message has been overwritten, whether the CPU is updating the
message, and whether a transmission or reception is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0

87C196CA RMTPND | RMTPND | TX_REQ | TX_REQ gggﬁgg gllfSLIJ_Sg

NEWDAT | NEWDAT

Bit Bit

Number | Mnemonic Function
3:2 MSGLST or | Message Lost (receive)
CPUUPD

For a receive message object, the CAN controller sets this bit-pair to
indicate that it stored a new message while the NEWDAT bit-pair was still
set, overwriting the previous message.

bit3 bit2
0 1 no overwrite occurred
1 0 a message was lost (overwritten)

CPU Updating (transmit)

For a transmit message object, software should set this bit-pair to indicate
thatitis in the process of updating the message contents. This prevents a
remote frame from triggering a transmission that would contain invalid

data.

bit 3 bit 2

0 1 the message is valid

1 0 software is updating data
1:0 NEWDAT New Data

This bit-pair indicates whether a message object is valid (configured and
ready for transmission).

bitl bit2
0 1 not ready
1 0 message object is valid

For receive message objects, the CAN peripheral sets this bit-pair when it
stores new data into the message object.

For transmit message objects, set this bit-pair and clear the CPUUPD bit-
pair to indicate that the message contents have been updated. Clearing
CPUUPD prevents a remote frame from triggering a transmission that
would contain invalid data.

During initialization, clear this bit for any unused message objects.

Figure 12-15. CAN Message Object x Control 1 (CAN_MSG xCON1) Register (Continued)

[| 12-27

8XC196Kx, Jx, CA USER'S MANUAL InU®

CAN_MSGxDATA0-7 Address: 1EXEH, 1EXDH,
x =1-15 (87C196CA) 1EXCH, 1ExBH,
1EXAH, 1EX9H,
1Ex8H, 1EX7H
(x=1-F)
Reset State: Unchanged

The CAN message object data (CAN_MSGxDATAO-7) registers contain data to be transmitted or data
received. Any unused data bytes have random values that change during operation.

87C196CA 7 0
CAN_MSGXDATA7 ‘ Data 7 ‘
7 0
CAN_MSGXDATAG ‘ Data 6 ‘
7 0
CAN_MSGXDATA5 ‘ Data 5 ‘
7 0
CAN_MSGXDATA4 ‘ Data 4 ‘
7 0
CAN_MSGXDATA3 ‘ Data 3 ‘
7 0
CAN_MSGXDATA2 ‘ Data 2 ‘
7 0
CAN_MSGXDATAL ‘ Data 1 ‘
7 0
CAN_MSGXDATAO | Data 0 |
Bit .
Number Function
7:0 Data

Each message object can use from zero to eight data registers to hold data to
be transmitted or data received.

For receive message objects, these registers accept data during a reception.

For transmit message objects, write the data that is to be transmitted to these
registers. The number of data bytes must match the DLC field in the
CAN_MSGXCFG register. (For example, if CAN_MSG1DATAO,
CAN_MSGI1DATAL, CAN_MSG1DATA2, and CAN_MSG1DATAS3 contain data,
the DLC field in CAN_MSG1CFG must contain 04H.)

Figure 12-16. CAN Message Object Data (CAN_MSG xDATAO0-7) Registers

12-28

Int€|® CAN SERIAL COMMUNICATIONS CONTROLLER

12.6 ENABLING THE CAN INTERRUPTS

The CAN controller has a single interrupt input TINB) to the interrupt cortller. (Generally,

PTS interrupservice is not useful for the CAN controller because the PTS cannot readily deter-
mine the source of the CAN controller’s multiplexed interrupts.) To enable the CAN controller’s

interrupts, you must enable the interrupt source by setting the CAN bit in INT_MASK1 (see Ta-
ble 12-2 on page 12-3) and globally enable interrupt servicing (by executing the El instruction).
In addition, you must set bits in the CAN control register (Figure 12-17) and the individual mes-
sage objects’ control register 0 (Figure 12-18) to enable the individual interrupt sources within
the CAN controller.

CAN_CON Address: 1EOOH
(87C196CA) Reset State: O1H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0
grciogecA | — | cce | — | — || BE | sE | E | INT |

Bit Bit

. Function
Number Mnemonic

— Reserved; for compatibility with future devices, write zero to this bit.

CCE Change Configuration Enable
5:4 — Reserved; for compatibility with future devices, write zeros to these bits.
EIE Error Interrupt Enable

This bit enables and disables the bus-off and warn interrupts.

1 = enable bus-off and warn interrupts
0 = disable bus-off and warn interrupts

2 SIE Status-change Interrupt Enable

This bit enables and disables the successful reception (RXOK), successful
transmission (TXOK), and error code change (LEC2:0) interrupts.

1 = enable status-change interrupt
0 = disable status-change interrupt

When the SIE bit is set, the CAN controller generates a successful
reception (RXOK) interrupt request each time it receives a valid message,
even if no message object accepts it.

Figure 12-17. CAN Control (CAN_CON) Regi ster

12-29

8XC196Kx, Jx, CA USER'S MANUAL InU®

CAN_CON (Continued)

(87C196CA)

Address: 1EOOH
Reset State: 01H

Program the CAN control (CAN_CON) register to control write access to the bit timing registers, to
enable and disable CAN interrupts, and to control access to the CAN bus.

7 0
grciecA | — | cce | — | — || EE | s | E | INT |
Bit Bit Function
Number Mnemonic
1 IE Interrupt Enable
This bit globally enables and disables interrupts (error, status-change, and
message object transmit and receive interrupts).
1 = enable interrupts
0 = disable interrupts
When the |E bit is set, an interrupt is generated only if the corresponding
interrupt source’s enable bit (EIE or SIE in CAN_CON; TXIE or RXIE in
CAN_MSGx_CONO) is also set. If the IE bit is clear, an interrupt request
updates the CAN interrupt pending register, but does not generate an
interrupt.
0 INIT Software Initialization Enable

12-30

Figure 12-17. CAN Control (CAN_CON) Register (Continued)

Int€|® CAN SERIAL COMMUNICATIONS CONTROLLER

CAN_MSG XxCONO Address: 1EXOH (x = 1-F)
Xx =1-15 (87C196CA) Reset State: Unchanged

Program the CAN message object x control 0 (CAN_MSGXCONO) register to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The least-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0
87C196CA ‘ MSGVAL ‘ MSGVAL ‘ TXIE ‘ TXIE ‘ ‘ RXIE ‘ RXIE ‘ INT_PND ‘ INT_PND ‘
Bit Bit)
Number Mnemonic Function
7:6 MSGVAL Message Object Valid
5:4 TXIE Transmit Interrupt Enable

Receive message objects do not use this bit-pair.

For transmit message objects, set this bit-pair to enable the CAN
peripheral to initiate a transmit (TX) interrupt after a successful trans-
mission. You must also set the interrupt enable bit (CAN_CON.1) to enable
the interrupt.

bit5 bit4

0 1 no interrupt

1 0 generate an interrupt
3:2 RXIE Receive Interrupt Enable

Transmit message objects do not use this bit-pair.

For receive message objects, set this bit-pair to enable the CAN peripheral
to initiate a receive (RX) interrupt after a successful reception. You must
also set the interrupt enable bit (CAN_CON.1) to enable the interrupt.

bit 3 bit 2

0 1 no interrupt

1 0 generate an interrupt
1:0 INT_PND Interrupt Pending

Figure 12-18. CAN Message Object x Control 0 (CAN_MSGxCONO) Register

When the SIE bit in the CAN control register is set, the CAN controller generates a successful
reception (KOK) interrupt request each time it receives a valid message, even if no message ob-
ject accepts it. If you set both the SIE bit (Figure 12-17) and an individual message object’s RXIE
bit (Figure 12-18), the CAN controller generates two interrupt requests each time a message ob-
ject receives a message. The status change interrupt is useful during development to detect bu:
errors caused by noise or other hardware problems. However, you should disable this interrupt
during normal operation in most applications. If the status change interrupt is enabled, each status
change generates an interrupt request, placing an unnecessary burden on the CPU. To prevent re
dundant interrupt requests, enable the error interrupt sources (with the EIE bit) and enable the re-
ceive and transmit inteupts in theindividual message objects.

12-31

8XC196Kx, Jx, CA USER'S MANUAL InU®

12.7 DETERMINING THE CAN CONTROLLER'S INTERRUPT STATUS

A successful reception or transmission or a change in the status register can cause the CAN con
troller to generate an interrupt request. The INT_PENDL register (see Table 12-2 on page 12-3)
indicates whether a CAN interrupt request is pending. The CAN interrupt pending register (Fig-
ure 12-19) indicates the source of the request (either the status register or a specific message ob
ject). Your interrupt service routine should read the CAN_INT register to ensure that no
additional interruptare pending before executing the return instruction. Chapter S d&ta

and PTS Interrupts,” discusses interrupt service, relative priorities, and timing.

CAN_INT Address: 1E5FH
read-only (87C196CA) Reset State: 00H

The CAN interrupt pending (CAN_INT) register indicates the source of the highest priority pending
interrupt. If a status change generated the interrupt request, software can read the status register
(CAN_STAT) to determine whether the interrupt request was caused by an abnormal error rate, a
successful reception, a successful transmission, or a new error. If an individual message object
generated the interrupt request, software can read the associated message object control O register
(CAN_MSGXCONO). The INT_PND bit-pair will be set, indicating that a receive or transmit interrupt
request is pending.

7 0
87C196CA Pending Interrupt
Bit .
Number Function
7:0 Pending Interrupt

This field indicates the source of the highest priority pending interrupt.
Value Pending Interrupt Priority (15 is highest; 0 is lowest)

00H none —
01H status register 15
02H message object 15 14
03H message object 1 13
04H message object 2 12
05H message object 3 11
06H message object 4 10
07H message object 5 9
08H message object 6 8
09H message object 7 7
OAH message object 8 6
OBH message object 9 5
OCH message object 10 4
ODH message object 11 3
OEH message object 12 2
OFH message object 13 1
10H message object 14 0

Figure 12-19. CAN Interrupt Pending (CAN_INT) Register

12-32

InU® CAN SERIAL COMMUNICATIONS CONTROLLER

If a status change generated the interrupt (CAN_INT = 01H), software can read the CAN status
register (Figure 12-20) to determine the source of the interrupt request.

CAN_STAT Address: 1EO01H
(87C196CA) Reset State: XXH
The CAN status (CAN_STAT) register reflects the current status of the CAN peripheral.

7 0
87C196CA ‘ BUSOFF ‘ WARN ‘ — ‘ RXOK ‘ ‘ TXOK ‘ LEC2 ‘ LEC1 ‘ LECO ‘

Bit Bit

. Function
Number Mnemonic

7 BUSOFF Bus-off Status

The CAN peripheral sets this read-only bit to indicate that it has isolated
itself from the CAN bus (floated the TX pin) because an error counter has
reached 256. A bus-off recovery sequence clears this bit and clears the
error counters. (See “Bus-off State” on page 12-41.)

6 WARN Warning Status

The CAN peripheral sets this read-only bit to indicate that an error counter
has reached 96, indicating an abnormal rate of errors on the CAN bus.

— Reserved. This bit is undefined.

RXOK Reception Successful

The CAN peripheral sets this bit to indicate that a message has been
successfully received (error free, regardless of acknowledgment) since the
bit was last cleared. Software must clear this bit when it services the
interrupt.

3 TXOK Transmission Successful

The CAN peripheral sets this bit to indicate that a message has been
successfully transmitted (error free and acknowledged by at least one
other node) since the bit was last cleared. Software must clear this bit
when it services the interrupt.

2:0 LEC2:0 Last Error Code

This field indicates the error type of the first error that occurs in a message
frame on the CAN bus. (“Error Detection and Management Logic” on page
12-9 describes the error types.)

LEC2 LEC1 LECO Error Type

no error

stuff error

form error
acknowledgment error
bit 1 error

bit O error

CRC error

unused

PRPRFPPOOOO
PPRPOORFROO
POFRPORFRPORO

Figure 12-20. CAN Status (CAN_STAT) Register

12-33

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

If an individual message object caused the interrupt request (CAN_INT = 02—-10H), software can
read the associated message object control O register (Figure 12-21). The INT_PND bit-pair will
be set, indicating that a receive or transmit interrupt requeshiding

CAN_MSGxCONO Address: 1EXOH (x=1-F)
(n =1-15) Reset State: Unchanged

Program the CAN message object x control O register (CAN_MSGxCONO) to indicate whether the
message object is ready to transmit and to control whether a successful transmission or reception
generates an interrupt. The most-significant bit-pair indicates whether an interrupt is pending.

This register consists of four bit-pairs — the most-significant bit of each pair is in true form and the
least-significant bit is in complement form. This format allows software to set or clear any bit with a
single write operation, without affecting the remaining bits.

7 0
MSGVAL MSGVAL TXIE TXIE ‘ ‘ RXIE RXIE INT_PND | INT_PND
Bit Bit . Function
Number | Mnemonic
7:6 MSGVAL Message Object Valid
5:4 TXIE Transmit Interrupt Enable
3:2 RXIE Receive Interrupt Enable
1:0 INT_PND | Interrupt Pending

This bit-pair indicates that the CAN peripheral has initiated a transmit (TX)
or receive (RX) interrupt. Software must clear this bit when it services the
interrupt.

01 = no interrupt
10 = an interrupt was generated

Figure 12-21. CAN Message Object x Control 0 (CAN_MSG xCONO) Register

12-34 [|

intel.

12.8 FLOW DIAGRAMS

CAN SERIAL COMMUNICATIONS CONTROLLER

The flow diagrams in this section describe the stepsythatsoftware (shown as CPU) and the
CAN controller execute to receive and transmit messages. Table 12-13 lists the register bits
shown in the diagrams along with thesisaciated registers and a cross-reference to the figure that
describes them.

Table 12-13. Cross-reference for Register Bits Shown in Flowcharts

Bit Mnemonic |Register Mnemonic Figure and Page

CPUUPD CAN_MSGXCON1 Figure 12-15 on page 12-26
DIR CAN_MSGXCFG Figure 12-12 on page 12-21
DLC CAN_MSGXCFG Figure 12-12 on page 12-21
1D CAN_MSGxID Figure 12-13 on page 12-22
INT_PND CAN_MSGxCONO Figure 12-14 on page 12-24
MSGLST CAN_MSGxCON1 Figure 12-15 on page 12-26
MSGVAL CAN_MSGxCONO Figure 12-14 on page 12-24
NEWDAT CAN_MSGxCON1 Figure 12-15 on page 12-26
RMTPND CAN_MSGxCON1 Figure 12-15 on page 12-26
RXIE CAN_MSGxCONO Figure 12-14 on page 12-24
TXIE CAN_MSGxCONO Figure 12-14 on page 12-24
TX_REG CAN_MSGxCON1 Figure 12-15 on page 12-26
XTD CAN_MSGXCFG Figure 12-12 on page 12-21

12-35

8XC196Kx, Jx, CA USER'S MANUAL

Power Up

Initialization

Process

(All bits undefined)

\

MSGVAL
INT_PND
TXIE
RXIE

NEWDAT
RMTPND
TX_REQ
MSGLST

DLC
DIR
XTD
ID

1
0

=0
=0
=0
=0

(Application specific)
:= (Application specific)

(don't care)
0 (receive)
(Application specific)
:= (Application specific)

NEWDAT := 0

/

Process message contents.

A

.
>

Y

Yes

NEWDAT =17

Restart Process

Request update?

TX_REQ =1

\

A2594-01

12-36

Figure 12-22. Receiving a Message for Message Objects 1-14 — CPU Flow

intel.

CAN SERIAL COMMUNICATIONS CONTROLLER

Power Up

Initialization

Process

(All bits undefined)
\

MSGVAL =1

INT_PND :=0

RXIE = (Application specific)
NEWDAT :=0

RMTPND =0

MSGLST :=0

DIR := 0 (receive)

XTD = (Application specific)
ID = (Application specific)
MASK := (Application specific)

Process message contents.

INT_PND :=0

NEWDAT := 0 and RMTPND := 0

Yes

NEWDAT = 1?

Restart Process

A2597-02

Figure 12-23. Receiving a Message for Message Object 15 — CPU Flow

12-37

8XC196Kx, Jx, CA USER'S MANUAL

TX_REQ=1?
MSGLST=0?

NEWDAT :=0
Load identifer and
control into buffer

\

Send remote frame

Y
A

Bus idle?

Y

Transmission
successful?

MSGLST =1

TX_REQ:=0
RMTPND:= 0

INT_PND :=1

Received frame with
same identifer as this
message object?

NEWDAT = 1?

-
-

Y
Store message
NEWDAT := 1
TX_REQ :=0
RMTPND :=0
Yes
INT_PND :=1
Y

No

A2598-01

12-38

Figure 12-24. Receiving a Message — CAN Controller Flow

CAN SERIAL COMMUNICATIONS CONTROLLER

Power Up (All bits undefined)
Y
MSGVAL =1
INT_PND :=0
TXIE := (Application specific)
- . RXIE = (Application specific)
Initialization
NEWDAT =0
RMTPND :=0
TX_REQ :=0
MSGLST :=0
DLC := (Application specific)
DIR =1 (transmit)
XTD := (Application specific)
ID := (Application specific)
-«
Y
CPUUPD :=1
NEWDAT =1
\
Update Write/calculate message contents.
Y
| CPUUPD :=0
Y
Want to send?
J Yes
/
TX_REQ =1

Yes

Y

No

A2596-01

Figure 12-25. Transmitting a Message — CPU Flow

12-39

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Y
A

Bus free?

TX_REQ=1?
CPUUPD= 0?

Received remote frame
with same identifer as
this message object?

NEWDAT :=0
Load message
into buffer
TX_REQ:=1
\ RMTPND := 1
Send message
No
Transmission
successful? Yes
INT_PND =1
TX_REQ:=0 Y

RMTPND :=0

INT_PND :=1

A2595-02

Figure 12-26. Transmitting a Message — CAN Cont roller Flow

12-40

Int€|® CAN SERIAL COMMUNICATIONS CONTROLLER

12.9 DESIGN CONSIDERATIONS

This section outlines design considerations for the CAN controller.

12.9.1 Hardware Reset

A hardware reset clears the error management counters analstlodf state and leaves the reg-
isters with the values listed in Table 12-14.

Table 12-14. Register Values Following Reset

Register Hex Address Reset Value
Control 1E00 01H
Status 1E01 undefined

Standard Global Mask | 1E06-1E07 unchanged (undefined at power-up)
Extended Global Mask | 1E08—-1E0B unchanged (undefined at power-up)

Message 15 Mask 1EOC-1EOF | unchanged (undefined at power-up)
Bit Timing O 1E3F unchanged (undefined at power-up)
Bit Timing 1 1E4F unchanged (undefined at power-up)
Interrupt 1E5F OOH

Message Object x 1EXO-1EXE unchanged (undefined at power-up)

12.9.2 Software Initialization

The software initialization state allows software to configure the CAN controller’s RAM without
risk of messages being received or transmitted during this time. Setting the INIT bit in the control
register causes the CAN controller to enter the software initialization state. Either a hardware re-
set or a software write can set (N8BT bit. While INIT is set, all message transfers to and from

the CAN controller are stopped and the ewounters and bit timing registease unchanged.

Your software should clear the INIT bit to cause the CAN controller to exit the software initial-
ization state. At this time, the CAN controller synchronizes itself to the CAN bus by waiting for
a bus idle state (11 consecutive recessive bits) before participating in bus activities.

12.9.3 Bus-off State

If an error counter reaches 256, the CAN controller isolates itself from the CAN bus, sets the
BUSOFF bit in the status register, and sets the INIT bit in the control register. While INIT is set,
all message transfers to and from the CAN controller are stopped; the error counters and bit tim-
ing registers are unchanged. Software must clear the INIT bit to initiateishefforecovery se-
guence.

12-41

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

The CAN controller synchronizes itself to the CAN bus by waiting for 128 bus idle &2igs
occurrences of 11 consecutive recessive hits) before participating in bus activities. During this se-
guence, the CAN controller writes a bit O error code to the LEC2:0 bits of the status register each
time it receives a recessive bit. Software can check the status register to determine whether the
CAN bus is stuck in a dominant state. Once the CAN controller is resynchronized with the CAN
bus, it clears the BUSOFF bit and starts transferring messages again.

12-42 [|

intgl. 1 3

Minimum Hardware
Considerations

The 8XC196kK, X, and CA have several basic requirements for operation within a system. This
chapter describes options for providithg basic requirements and discusses other hardware con-
siderations.

CHAPTER 13

MINIMUM HARDWARE CONSIDERATIONS

13.1 MINIMUM CONNECTIONS

Table 13-1 lists the signals that are required for the device to function and Figure 13-1 shows the

connections for a minimum configuration.

Table 13-1. Minimum Required Signals

Signal -
Name Type Description

ANGND GND Analog Ground
ANGND must be connected for A/D converter and port O operation. ANGND and
Vgg should be nominally at the same potential.

RESET# 110 Reset
A level-sensitive reset input to and open-drain system reset output from the micro-
controller. Either a falling edge on RESET# or an internal reset turns on a pull-down
transistor connected to the RESET# pin for 16 state times. In the powerdown and
idle modes, asserting RESET# causes the chip to reset and return to normal
operating mode. The microcontroller resets to 2080H.

Ve PWR Digital Supply Voltage
Connect each V. pin to the digital supply voltage.

Vep PWR Programming Voltage
During programming, the V, pin is typically at +12.5 V (V;, voltage). Exceeding the
maximum V, voltage specification can damage the device.
V,p also causes the device to exit powerdown mode when itis driven low for at least
50 ns. Use this method to exit powerdown only when using an external clock source
because it enables the internal phase clocks, but not the internal oscillator.
On devices with no internal nonvolatile memory, connect V, t0 V.

Vier PWR Reference Voltage for the A/D Converter
This pin also supplies operating voltage to both the analog portion of the A/D
converter and the logic used to read port 0.

Vgs GND Digital Circuit Ground

Connect each Vgg pin to ground through the lowest possible impedance path.

13-1

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 13-1. Minimum Required Signals(Continued)

Signal

Name Type Description

XTAL1 | Input Crystal/Resonator or External Clock Input
Input to the on-chip oscillator and the internal clock generators. The internal clock
generators provide the peripheral clocks, CPU clock, and CLKOUT signal. When
using an external clock source instead of the on-chip oscillator, connect the clock
input to XTAL1. The external clock signal must meet the V,, specification for XTAL1
(see datasheet).

XTAL2 O Inverted Output for the Crystal/Resonator

Output of the on-chip oscillator inverter. Leave XTAL2 floating when the design uses
a external clock source instead of the on-chip oscillator.

13.1.1 Unused Inputs

For predictable performance, it is important to tie unused inputg i@, Otherwise, they
can float to a mid-voltage level and draw excessive culdgntsed interrupt inputs may generate
spurious interrupts if left unconnected.

13.1.2

I/O Port Pin Connections

Tie unused input-only port inputs tqyas shown in Figure 13-1. Chapter 6, “I/O Ports,” contains
information about initializing and configuring the ports. Table 13-2 lists the sections, with page
numbers, that contain the information for each port.

Table 13-2. /0O Port Configuration Guide

Port Where to Find Configuration Information
Port 0 “Standard Input-only Port Considerations” on page 6-3
Ports 1 and 2 | “Bidirectional Port Pin Configurations” on page 6-10 and “Bidirectional Port Considerations”
on page 6-12
Ports 3 and 4 | “Bidirectional Ports 3 and 4 (Address/Data Bus) Operation” on page 6-16
Ports 5 and 6 | “Bidirectional Port Pin Configurations” on page 6-10 and “Bidirectional Port Considerations”
on page 6-12

13-2

MINIMUM HARDWARE CONSIDERATIONS

4.7 uF

.||_| —e

(Note 1)
20 pF ~—| I] |_‘ 20 pF
Vee XTAL2 XTAL1
I— Vee RESET#
0.01 uF (Note 2) Vee
JN W Y T
Vee L EA#
NMI
im BUSWIDTH
(Note 3) Vep
Vee
Vee I
s READY
1pF VRer
+
]_ 1pF
* ANGND BHE#
—T—T RD# }—
WR# |—
Input-only
[) _—
— Port Pins INST
(Note 5) ALE |
8XC196 Device
Notes:

1. See the datasheet for the oscillator frequency range (Fosc) and the crystal manufacturer's

datasheet for recommended load capacitors.

2. The number of V¢ and Vgg pins varies with package type (see datasheet). Be sure to connect

each V¢ pin to the supply voltage and each Vgg pin to ground.

3. Connect the RC network to Vpp only if powerdown mode will be used. Otherwise, connect Vpp
to Vec.

4. No connection is required.
5. Tie all input-only port pins to Vg

Port 5/ Bus Control

(Note 4)

A2643-02

Figure 13-1. Minimum Hardware Connections

13-3

8XC196Kx, Jx, CA USER'S MANUAL Inu®

13.2 APPLYING AND REMOVING POWER

When power is first applied to the device, RESET# must remain continuously low for at least one
state time after the power supply is within tolerance and the oscillator/clock has stabilized; oth-
erwise, operation might be unpredictable. Similarly, when powering down a system, RESET#
should be brought low before.¥is removed; otherwise, an inadvertent write to an external lo-
cation might occur. Carefully evaluate the possible effepbefer-up and power-dowsequenc-

es on a system.

13.3 NOISE PROTECTION TIPS

The fast rise and fall times of high-speed CMOS logic giterduce noise spikes on the power
supply linesand outputs. To minimize noise, it is important to follow good design and board lay-
out techniques. We recommend liberal use of decoupling capacitors and transient absorbers. Add
0.01 pF bypass capacitors betwegg &nd each Y5 pin and a 1.0 pF capacitor betwegpMand

ANGND to reduce noise (Figure 13-2). Place the capacitorsoas tb the device as possible.

Use the shortest possible path to connegtiiies to ground and each other.

VREF +
+
—4 VREF
8XC196 Device T
1.0 yF -
O 0 0 ANGND
O n
> > > >

s

Analog

. ~ Ground
Digital
Plane

| t ~ Ground
Plane

-

1Ll

+5V 5V
Return

Power Source

T Use 0.01 pF bypass capacitors for maximum decoupling.

A0272-02

Figure 13-2. Power and Return Connections

13-4

Int€|® MINIMUM HARDWARE CONSIDERATIONS

If the A/D converter will be used, connectf/to a separate reference supply to minimize noise
during A/D conversions. Even if the A/D converter will not be usegd.¥nd ANGND must be
connected to provide power to port 0. Refer to “Andagund and Reference Voltages” on page
11-13 for a detailed discussion of A/D power and ground recommendations.

Multilayer printed circuit boards with separatg Mandground planesiso help to minimize
noise. For more information on noise protection, refer to AP&Signing Microcontroller Sys-
tems for Noisy Envanmentsand AP-711EMI Design Techinques for Microcontrollers in Auto-
motive Applications

13.4 PROVIDING THE CLOCK

The device can either use the on-chip oscillator to generate the clocks or use an external clock
input signal. The following paragraphs describe the considerations for both methods.

13.4.1 Using the On-chip Oscillator

The on-chip oscillator circuit (Figure 13-3) consists of a crystal-controlled, positive reactance os-
cillator. In this application, the crystal operates in a parallel resonance mode. The feedback resis-
tor, Rf, consists of paralleledchannel ang@-channel FETs controlled by the internal powerdown
signal. In powerdown mode, Rf acts as an open and the output driversahtediigvhich disables

the oscillator. Both the XTAL1 and XTALZ2 pins have built-in electrostatic discharge (ESD) pro-
tection.

[| 13-5

8XC196Kx, Jx, CA USER'S MANUAL InU®

To internal
circuitry

\ T
——— 9

Rf
XTALL XTAL2
(Input) D_ ’ D (Output)
Vss

Oscillator Enable#
(from powerdown circuitry)

A0076-03

Figure 13-3. On-chip Oscillator Circuit

Figure 13-4 shows the connections between the external crystal and the device. When designing
an external oscillator circuit, consider the effects of parasitic board capacitance, extended oper-
ating temperatures, and crystal specifications. Consult the manufacturer’s datasheet for perfor-
mance specifications and required capacitor values. With high-quality components, 20 pF load

capacitors (¢ are usually adequate for frequencies above 1 MHz.

Noise spikes on the XTAL1 or XTAL2 pin can cause a miscount in the internal clock-generating
circuitry. Capacitive coupling between the crystal oscillator and traces carrying fast-rising digital
signals can introduce noise spikes. To reduce this couptiagntthe crystal oscillator and ca-
pacitors near the device and use short, direct traces to connect to XTAL1, XTAL2gaifo V
further reduce the effects of noise, use grounded guard rings around the oscillator circuitry and
ground the metallic crystal case.

13-6

Inte|® MINIMUM HARDWARE CONSIDERATIONS

XTAL1

é 8XC196
Device
Iy

11 XTAL2
Cc2

Quartz Crystal

H

Note:

Mount oscillator components close to the device and use
short, direct traces to XTAL1, XTAL2, and Vgg. When
using crystals, C1=C2=20 pF. When using ceramic
resonators, consult the manufacturer for recommended
oscillator circuitry.

A0273-02

Figure 13-4. External Crystal Connections

13.4.2 Using a Ceramic Resonator Instead of a Crystal Oscillator

In cost-sensitive applications, you may choose to use a ceramic resonator instead of a crystal os:
cillator. Ceramic resonators may require slightly different load capacitor values and circuit con-
figurations. Consult the manufacturer’s datasheet for the required oscillator circuitry.

13.4.3 Providing an External Clock Source

To use an external clock source, apply a clock signal to XTAL1 and let XTAL2 float (Figure
13-5). To ensure proper operation, the external clock source must meet the minimum high and
low times (T,xx and T, «x) and the maximum rise and fall transition timeg, (§ and Ty,)

(Figure 13-6). The longer the rise and fall times, the highgsribieabilitythat external noise will

affect the clock generator circuitry and cause unreliable operation. See the datasheet for required
XTALL1 voltage drive levels and actual specifications.

[| 13-7

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Vce

4.7 kQt
External
Clock Input XTAL1

Clock Driver 8XC196 Device

No Connection XTAL2

T Required if TTL driver is used. Not needed if CMOS driver is used.

A0274-02

Figure 13-5. External Clock Connections

Torixx Tyixn == |— —_— a— TxHxL
0.7 Ve +05V T 0.7V +05V
~—— XLXX =i
0.3Vgc =05V 0.3Vge—05V
R ————————
Tax

A2119-02

Figure 13-6. External Clock Drive Waveforms

At power-on, the interaction between the internal amplifier and its feedback capacitance (i.e., the
Miller effect) may cause a load of up100 pF at the XTALJin if the signal at XTAL1 is weak

(such as might be the case during start-up of the external oscillator). This situation will go away
when the XTAL1 input signal meets the \and \{, specifications (listed in the datasheet). If
these specifications are met, the XTAL1 pin capacitance will not exceed 20 pF.

13.5 RESETTING THE DEVICE

Reset forces the device into a known state. As soon as RESET# is asise i€ pins, the con-

trol pins, and the registers are driven to their reset states. (Tables in Appendix B list the reset states
of the pins (see Table B-8 on page B-20 for the 8XCX9aKble B-9 on page B-21 for the
8XC196X, or Table B-10 opage B-22 for the 87C196CA). See Table C-2 on page C-2 for the
reset values of the SFRs.) The device remains in its reset state until RESET# is deasserted. Whel
RESET# is deasserted, the bus controller fetches the chip configuration bytes (CCBs), loads them
into the chip configuration registers (CCRs), and then fetches the first instruction.

13-8 [|

Inu® MINIMUM HARDWARE CONSIDERATIONS

Figure 13-7 shows the reset-sequence timing. Depengliog when RESET# is brought high,
the CLKOUT signal may become out of phase with the PH1 internal clock. When this occurs, the
clock generator immediately resynchronizes CLKOUT as shown in Case 2.

Internal
Reset
RESET#
Pin —[[/ :
Case1 MMM
CLKOUT E
Case2 9 MMM LU LU
CLKOUT :
- Phases Resynchronized .- = ADV# Selected
e T L Oose [Tron | OTese CETGET]
RD# 7 Tosc 9 Tosc 7 Tosc M Tose L.
AD7:0 ———(18H)—~_CCBO (1AH)—_CCB1 DA
AD15:8 —————(20H___ Tweak)—< 20H__TWeak)———20H)-+---

Bus parameters defined by CCBO (ready _).

control, bus width, and bus-timing
modes) take effect here.

tDefaults to an 8-bit bus until the CCBs are loaded. AD15:8 weakly drive address during the CCB fetches.
For 16-bit systems, write 20H to the high byte of CCBO and CCB1 (2019H and 201BH) in order to prevent
bus contention.

A3084-01

Figure 13-7. Reset Timing Sequence

The following events will reset the device (see Figure 13-8):
¢ an external device pulls the RESET# pin low
¢ the CPU issues the reset (RST) instruction
* the CPU issues an idle/powerdown (IDLPD) instruction with an illegal key operand
¢ the watchdog timer (WDT) overflows

¢ the oscillator fail detect (OFD) circuitry is enabled and an oscillator failure occurs

The following paragraphs describe each of these reset methods in more detail.

[| 13-9

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Internal External

Vce
Reset State -~--—— Clock

Internal Machine

Resel 4— @ RRSTT
Signal Trigger <

Count Complete

l WA/ {JReSET#

CLR ~200 Q
e

SET

RST Instruction
WDT Overflow
IDLPD Invalid Key

[CseRol—

OFD
(FOSC <100 kHZ)

T See the datasheet for minimum and maximum Rggy values.

A0034-02

Figure 13-8. Internal Reset Circuitry

13.5.1 Generating an External Reset

To reset the device, hold the RESET# pin low for at least one state time after the power supply is
within tolerance and the oscillator has stabilized. When RESET# is first asserted, theutdtesice t

on a pull-down transistor (Q1) for 16 state times. This enables the RESET# signal to function as
the system reset.

The simplest way to reset the device is to insert a capacitor between the RESET# pig asd V
shown in Figure 13-9. The devitas an internal pull-up (R,) (Figure 13-8). RESET#hould

remain asserted for at least one state time aftgravid XTAL1 have stabilized and met the op-
erating conditions specified in the datasheet. A capacitor of 4.7 uF or greater should provide suf-
ficient reset time, as long ag.Vrises quickly.

13-10 [|

Inu® MINIMUM HARDWARE CONSIDERATIONS

RESET#
+
4.7 yF
_i I 8XC196 Device

Figure 13-9. Minimum Reset Circuit

A0276-01

The other devices may not be reset because the capacitor will keep the voltage alfsined/
RESET# is asserted for only 16 state times, it may be necessary to lengthen and buffer the system
reset pulse. Figure 13-10 shows an example of a system-reset circuit. In this example, D2 creates
a wired-OR gate connection to the reset pin. An internal reset, system power-up, or SW1 closing
will generate the system-reset signal.

Vce
Vce
@ 2
ot i b2 4.7 kQ
L1 :
J_ EG EC < RESET#
SW1 c
Schmitt Triggers
i 8XC196
- - Device

System reset signal
to external circuitry
Notes:
1. D1 provides a faster cycle time for repetitive power-on resets.
2. Optional pull-up for faster recovery.

A0277-02

Figure 13-10. Example System Reset Circuit

13-11

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

13.5.2 Issuing the Reset (RST) Instruction

The RST instruction (opcode FFH) resets the device by pulling RESET# low for 16 state times.
It also clears the processor statumd (PSW), sets the master progreounter (PC) to 2080H,

and resets the special function registers (SFRs). See Table C-2 on page C-2 for the reset value
of the SFRs.

Putting pull-ups on the address/data bus causes unimplemented areas of memory to be read a
FFH. If unused internal OTPROM memory is set to FFH, then execution from any unused mem-
ory locations will reset the device.

13.5.3 Issuing an lllegal IDLPD Key Operand

The device resets itself if an illegal key operand is used with the idle/powerdown (IDLPD) com-
mand. The legal keys are “1” for idle mode and “2” fowerdown mode. If any other value is

used, the device executes a reset sequence. (See Appendix A for a description of the IDLPD com-
mand.)

13.5.4 Enabling the Watchdog Timer

The watchdog timer (WDT) is a 16-bit counter tregtets the device when the counter overflows
(every 64K state times). The WDE bit (bit 3) of CCR1 controls whether the watchdog is enabled
immediately or is disabled until the first time it is cleared. Clearing WDE activates tbledegt
Setting WDE makes the watdog timer inactive, but you can activate it by clearing the watchdog
register. Once the watchdog isiaated, only a reset can disable it.

You must write two consecutive bytes to the ehakog rgister (location 0AH) to clear it. The

first byte must be 1EH and the second must be E1H. We recommend that you disable interrupts
before writing to the watchdog register. If an interrupt occurs between the two writes, the watch-
dog register will not be cleared.

If enabled, the watchdog continues to run in idle mode. The device must be awakened within 64K
state times to clear the watchdog; otherwise, the watchdog willthesdevice, which causes it
to exit idle mode.

13.5.5 Detecting Oscillator Failure

The ability to sense an oscillator failure is important in safety-sensitive applications. This device
provides a feature that can detect a failed oscillator and reset itself. Low-frequency oscillation,
typically 100 KHz or below, is sensed as a failure. If enabled, the oscillator fail detect (OFD) cir-
cuitry resets the device in the event of an oscillator failure. This feature is enabled by program-
ming the OFD bit (bit 0) in the USFR. (See “Enabling the Oscillator Failure Detection Circuitry”
on page 16-8 for details.)

13-12

intgl.

14

Special Operating
Modes

CHAPTER 14
SPECIAL OPERATING MODES

The 8XC196KXx, Jx, and CA have two power saving modes: idle and powerdown. They also pro-
vide an on-circuit emulation (ONCE) mode that electrically isolates the device from the other sys-
tem components. This chapter describes each mode and expiain® enter and exit each.
(Refer to Appendix A for descriptions of the instructions discussed in this chapter, to Appendix
B for descriptions of signal status during each mode, and to Appendix C for details about the reg-
isters.)

14.1 SPECIAL OPERATING MODE SIGNALS AND REGISTERS

Table 14-1 lists the signals and Table 14-2 lists the registers that are mentioned in this chapter.

Table 14-1. Operating Mode Control Signals

. Signal -
Port Pin Name Type Description
pP2.7 CLKOUT O Clock Output

NOTE: Output of the internal clock generator. The CLKOUT fre-
quency is Y2 the oscillator input frequency (XTAL1). CLKOUT
has a 50% duty cycle.

pP2.2 EXTINT | External Interrupt

In normal operating mode, a rising edge on EXTINT sets the EXTINT
interrupt pending bit. EXTINT is sampled during phase 2 (CLKOUT
high). The minimum high time is one state time.

If the chip is in idle mode and if EXTINT is enabled, a rising edge on
EXTINT brings the chip back to normal operation, where the first
action is to execute the EXTINT service routine. After completion of
the service routine, execution resumes at the the IDLPD instruction
following the one that put the device into idle mode.

In powerdown mode, asserting EXTINT causes the chip to return to
normal operating mode. If EXTINT is enabled, the EXTINT service
routine is executed. Otherwise, execution continues at the instruction
following the IDLPD instruction that put the device into powerdown

mode.
P5.4 ONCE# | On-circuit Emulation
(KR, KQ) Holding ONCE# low during the rising edge of RESET# places the
P2.6 device into on-circuit emulation (ONCE) mode. This mode puts all pins
(Ix, CA, into a high-impedance state, thereby isolating the device from other
KT, KS) components in the system. The value of ONCE# is latched when the

RESET# pin goes inactive. While the device is in ONCE mode, you
can debug the system using a clip-on emulator. To exit ONCE mode,
reset the device by pulling the RESET# signal low. To prevent
inadvertent entry into ONCE mode, configure this pin as an output.

14-1

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 14-1. Operating Mode Control Signals (Continued)

Port Pin

Signal

Name Type Description

P5.4
(CA, KT,
KS)
P2.6
(KR, KQ)

Test- /1O Test-mode entry

mode If this pin is held low during reset, the device will enter a reserved test
entry mode, so exercise caution if you use this pin for input. If you choose
to configure this pin as an input, always hold it high during reset and
ensure that your system meets the V,, specification (see datasheet) to
prevent inadvertent entry into a test mode.

RESET# 110 Reset

A level-sensitive reset input to and open-drain system reset output
from the microcontroller. Either a falling edge on RESET# or an
internal reset turns on a pull-down transistor connected to the RESET
pin for 16 state times. In the powerdown and idle modes, asserting
RESET# causes the chip to reset and return to normal operating
mode. The microcontroller resets to 2080H.

Vpp PWR | Programming Voltage

During programming, the V, pin is typically at +12.5 V (V;, voltage).
Exceeding the maximum V, voltage specification can damage the
device.

Vpp also causes the device to exit powerdown mode when it is driven
low for at least 50 ns. Use this method to exit powerdown only when
using an external clock source because it enables the internal phase
clocks, but not the internal oscillator.

On devices with no internal nonvolatile memory, connect Vg, to V.

Table 14-2. Operating Mode Control and Status Registers

Mnemonic

Address Description

CCRO

2018H Chip Configuration O Register
Bit O of this register enables and disables powerdown mode.

INT_MASK1

0013H Interrupt Mask 1

Bit 6 of this 8-bit register enables and disables (masks) the
external interrupt (EXTINT).

INT_PEND1

0012H Interrupt Pending 1

When set, bit 6 of this register indicates a pending external
interrupt.

P2 DIR
P5_DIR

1FCBH Port x Direction

1FF3H Each bit of Px_DIR controls the direction of the corresponding pin.
Clearing a bit configures a pin as a complementary output; setting
a bit configures a pin as an input or open-drain output. (Open-
drain outputs require external pull-ups.)

P2_MODE
P5_MODE

1FC9H Port x Mode

1FF1H Each bit of Px_MODE controls whether the corresponding pin
functions as a standard I/O port pin or as a special-function
signal. Setting a bit configures a pin as a special-function signal;
clearing a bit configures a pin as a standard I/O port pin.

14-2

Inu® SPECIAL OPERATING MODES

14.2 REDUCING POWER CONSUMPTION

Both power-saving modes conserve power by disabling portions of the internal clock circuitry
(Figure 14-1). The following paragraphs describe both modes in detail.

Disable Clock Input

(Powerdown)
|
IEN @, . Divide-by-two
Disable Clocks
(Powerdown)
e J-_) Peripheral Clocks (PH1, PH2)
Disable Geﬁ-la(:gt(ors - D CLKOUT

Oscillator CPU Clocks (PH1, PH2)
(Powerdown)

Disable Clocks
(Idle, Powerdown)

A3064-02

Figure 14-1. Clock Control During Power-saving Modes

14.3 IDLE MODE

In idle mode, the device’'s power consumption decreasapgmximately 40% of normal con-
sumption. Internal logic holds the CPU clocks at logic zero, causing the CPU to stop executing
instructions. Neither the peripheral clociex CLKOUT are affe@d, so the special-function reg-
isters (SFRs) and register RAM retain their data and the peripherals emdphsystem remain
active. Tables in Appendix B list the valuegtoé pins during idle mode (see Table B-8 on page
B-20 for the 8XC196, Table B-9 on page B-21 for the 8496, or Table B-10 on page B-22

for the 87C196CA).

14-3

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

The device enters idle mode after executing the IDLPD #1 instruction. Either emiphter a
hardware reset will cause the device to exit idle mode. Any enabled interrupt source, either inter-
nal or external, can cause the device to exit idle mode. When an interrupt occurs, the CPU clocks
restart and the CPU executes the corresponding interrupt service or PTS routine. When the routine
is complete, the CPU fetches and then executes the instruction that follows the IDLPD #1 instruc-
tion.

NOTE
If enabled, the watchdog timer continues to run in idle mode. The device must
be awakened within every 64K state times to clear the WATCHDOG register;
otherwise, the timer will reset the device.

To prevent an accidental return to full power, hold the external interrupt pin
(EXTINT) low while the device is in idle mode.

14.4 POWERDOWN MODE

Powerdown mode places the device into a very low power state by disabling the internal oscillator
and clock generators. Internal logic holds the CPU and peripheral clocks at logic zero, which
causes the CPU to stop executing instructions, the system bus-control signals to become inactive,
the CLKOUT signal to become high, and the peripherals to turn off. Power consuhaipsn

into the microwatt range (refer to the datasheet for exact specificatignis)réduced to device
leakage. Tables in Appendix B list the values of the pins during powerdown mode (see Table B-8
on page B-20 for the 8XC196iKTable B-9 on page B-21 for the 8XC196dr Table B-10 on

page B-22 for the 87C196CA). If¢ is maintained above the minimum specification, the spe-
cial-function registers (SFRs) and register RAM retain their data.

14.4.1 Enabling and Disabling Powerdown Mode
Setting the PD bit in the chip-configuration register 0 (CCRO0.0) enables powerdown mode. Clear-

ing it disablegpowerdown. CCRO is loaded frothe chip configuration byte (CCBO0) when the
device is reset.

14-4

Int€|® SPECIAL OPERATING MODES

14.4.2 Entering Powerdown Mode

Before entering powerdown, complete the following tasks:

e Complete all serial port transmissions or receptions. Otherwise, when the device exits
powerdown, the serial port activity will continue where it left off and incorrect data may be
transmitted or received.

¢ Complete all analog conversions. If powamh occurs during the conversion, thesuk
will be incorrect.

¢ |f the watchdog timer (WDT) is enabled, clear the WAIBOG register just before issuing
the powerdowninstruction. This ensures that the device can priverdown cleanly.
Otherwise, the WDT could reset the device before the oscillator stabilizes. (The WDT
cannot reset the device during powerdown because the clock is stopped.)

¢ Put all other peripherals into an inactive state.

* 8XC196Kx: To allow other devices to control the bus while the microcontroller is in
powerdown, assert HLDA#. Do this only if the routines for entering and exiting powerdown
do not require access to external memory.

After completing these tasks, execute the IDLPD #2 instruction to enter powerdown mode.

NOTE

To prevent an accidental return to full power, hold the external interrupt pin
(EXTINT) low while the device is in powerdown mode.

14.4.3 Exiting Powerdown Mode

The device will exit powerdown mode when one of the following events occurs:
* an external device drives thg)pin low for at least 50 ns,
* a hardware reset is generated,

* oratransition occurs on the external intgt pin.
14.4.3.1 Driving the V 5 Pin Low
If the design uses an external clock input signal rather than the on-chip oscillator, the fastest way
to exit powerdown mode is to drive thg\pin low for at least 50 ns. Use this metloody when

using an external clock input because the internal CPU and peripheral clocks will be enabled, but
not the internal oscillator.

14-5

8XC196Kx, Jx, CA USER'S MANUAL Inu®

14.4.3.2 Generating a Hardware Reset

The device will exit powerdown if RESET# is ag®d. If the design uses an external clock input
signal rather than the on-chip oscillator, RESET# must remain low for at least 16 state times. If
the design uses the on-chip oscillator, then RESET# must be held low until the oscillator has sta-
bilized.

14.4.3.3 Asserting the External Interrupt Signal

The final way to exit powerdown mode is to assert the external interrupt signal (EXTINT) for at
least 50 ns. Although EXTINT is normally a sampled input, the powerdown circuitry uses it as a
level-sensitive input. The interrupt need not be enabled to bring the device out of powerdown, but
the pin must be configured as a special-function input (see “Bidirectional Port Pin Configura-
tions” on page 6-10). Figure 14-2 shows the power-up and powerdowmsegueen using an
external interrupt to exit powerdown.

When an external interrupt brings the device out of powerdown mode, the corresponding pending
bit is set in the interrupt pending register. If the interrupt is enabled, the device executes the in-
terrupt service routine, then fetches and executes the instruction following the IDLPD #2 instruc-
tion. If the interrupt is disabled (masked), the device fetches and executes the instruction
following the IDLPD #2 instruction and the pending bit remains set until the-uiptes serviced

or software clears the pending bit.

CLKOUT i

AL
N

L
PHli i_i

Internal Powerdown ,
Signal !

L
I

EXTINT

Vep

Timeout | I |
(Internal) - . . . —

A0078-01

Figure 14-2. Power-up and Powerdown Sequence When Using an External Interrupt

14-6

Inu® SPECIAL OPERATING MODES

When using an external interrupt signal to exit powerdown mode, we recommend that you con-
nect the external RC circuit shown in Figure 14-3 to thepih. The discharging of the capacitor
causes a delay that allows the oscillator to stabilize before the internal CPU and peripheral clocks
are enabled.

8XC196 Vce
Device

R1 1 MQ Typical

Vpp
I Cq 1uF Typical

Figure 14-3. External RC Circuit

A0279-01

During normal operation (before entering powerdown mode), an internal pull-up holds the
Ve pin at V.. When an external interrupt signal is asserted, the internal oscillator circuitry is
enabled and turns on a weak internal pull-down. This weak pull-down causes the external capac-
itor (C,) to begin discharging at a typical rate of 200. When the \{, pin voltage drops below

the threshold voltage (about 2.5 V), the internal phase clocks are enabled and the device resume:
code execution.

At this time, the internal pull-up transistor turns on and quickly pulls the pin back up to about
3.5 V. The pull-up becomes ineffective and the external resistbtalkes over and pulls the volt-

age up to Y. (see recovery time in Figure 14-4). The time constant follovexpanential charg-

ing curve. If G = 1uF and R = 1 MQ, the recovery time will be one second.

14.4.3.4 SelectingR ;and C;

The values of Rand G are not critical. Select components that produce a sftidischarge

time to permit the internal oscillator circuitry to stabilize. Because many factors can influence the
discharge time requirement, you should always fully characterize your design under worst-case
conditions to verify proper operation.

[| 14-7

8XC196Kx, Jx, CA USER'S MANUAL Inu®

1

4 4L
EXTINT /
S+ i /
200 pA Cq Discharge
Vpp, Volts Rq x C1 Recovery
f Time Constant
2 ——

Pullup On
Code Execution Resumes

2 4 6 8 10 12 14 16 18 20 22
Time, ms

A0151-01

Figure 14-4. Typical Voltage on the V , Pin While Exiting Powerdown

Select a resistor that will not interfere with the discharge current. In most cases, values between
200 kQ and 1 M2 should perform satisfactorily. When selecting the capacitor, determine the
worst-case discharge time needed for the oscillatoatilite, then use this formula to calculate

an appropriate value for,C

c. = Toig X!
1 vV,
where:
C, is the capacitor value, in farads
Tois is the worst-case discharge time, in seconds
| is the discharge current, in amperes
Vi is the threshold voltage

NOTE

If powerdown is re-entered and exited befogeclarges to Y, it will take
less time for the voltage to ramp down to the threshold. Therefore, the device
will take less time to exit powerdown.

14-8

Int€|® SPECIAL OPERATING MODES

For example, assume that the oscillator needs at least 12.5 ms to dischargel @5 ms), Y
is 2.5V, and the discharge current is 2000 The minimum G capacitor size is fiF.

_0.0125 x0.0002 _

C
! 2.5

1uF

When using an external oscillator, the value p€&n be very small, allowing rapid recovery from
powerdown. For example, a 100 pF capacitor discharges inu%.25

CixVy 10x10x25
LA S “22 - 105 s
| 0.0002

Tois =

14.5 ONCE MODE

On-circuit emulation (ONCE) mode isolates the device from other components in the system to
allow printed-circuit-board testing or debugging with a clip-on emulator. During ONCE mode,
all pins except XTALL1, XTAL2, \; and V.. are weakly pulled high or low. During ONCE
mode, RESET# must be held high or the device will exit ONCE mode and enter the reset state.
Tables in Appendix B list the reset states of the pins (see Table B-8 on page B-20 for the
8XC196Kx, Table B-9 on page B-21 for the 8XC1964dr TableB-10 on page B-22 for the
87C196CA).

14.5.1 Entering and Exiting ONCE Mode

Holding the ONCE# signal low during the rising edge of RESET# causes the device to enter
ONCE mode. To prevent accidental entry into ONCE mode, we highly recommend configuring
this pin as an output. If you choose to configure this pin as an input, always hold it high during
reset and ensure that your system meets thepécification (see datasheet) to prevent inadvert-
ent entry into ONCE mode. Table 14-3 shows the ONCE# pin multiplésireggch device in the
8XC196Kx, X, and CA product families.

Table 14-3. ONCE# Pin Alternate Functions

Device ONCE# Alternate Functions
8XC196CA P2.6/HLDA#
8XC196Jx P2.6/HLDA#

8XC196KQ, KR | P5.4/SLPINT
8XC196KS, KT | P2.6/HLDA#

Exit ONCE mode by asserting the RESET# signal and allowing the ONCE# pin to float or be
pulled high. Normal operations resume when RESET# goes high.

14-9

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

14.6 RESERVED TEST MODES

A special test-mode-entry pin (Table 14-4) is provided for Intel's in-house testing only. These test
modes can be entered accidentally if you configure the test-mode-entry pin as an input and hold
it low during the rising edge of RESET#. To prevent accidental entry into an unsupported test
mode, we highly recommend configuring the test-mode-entry pin as an output. If you choose to
configure this pin as an input, always hold it high during reset asute that your system meets
theVj,, specification (see datasheet) to prevent inadvertent entry into an unsupported test mode.

Table 14-4. Test-mode-entry Pins

Device Test-Mode-Entry Pin
8XC196CA P5.4
8XC196Jx Not implemented
8XC196KQ, KR P2.6
8XC196KS, KT P5.4

14-10

intgl. 1 5

Interfacing with
External Memory

CHAPTER 15
INTERFACING WITH EXTERNAL MEMORY

The device can interface with a variety of external memory devicespitorts either a fixed 8-

bit bus width, a fixedL6-bit bus width, or a dynamic 8-bit/16-bit bwidth; internal control of

wait states for slow external memory devices; a bus-hold protocol that enables external devices
to take over the bus; and several bus-control modes. These features provide a great deal of flexi-
bility when interfacing with external memory devices.

In addition to describing the signals and registers related to extermadnyehis chapter discuss-
es the process of fetching the chip configuration bytes and configuring the external bus. It also
provides examples of external memory configurations.

15.1 EXTERNAL MEMORY INTERFACE SIGNALS

Table 15-1 describes the external memory interface signals. For some signals, the pin has an al-
ternate function (shown in thdultiplexed Withcolumn). In some cases the alternate function is

a port signal (e.g., P2.7). Chapter 6, “I/O Ports,” describes how to configure a pin for its I/O port
function and for its special function. In other cagshs, signal description includes instructions

for selecting the alternate function.

Table 15-1. External Memory Interface Signals

Function - Multiplexed
Name Type Description With
AD15:0 /O | Address/Data Lines P4.7:0

These pins provide a multiplexed address and data bus. During the | P3.7:0
address phase of the bus cycle, address bits 0-15 are presented on
the bus and can be latched using ALE or ADV#. During the data
phase, 8- or 16-bit data is transferred. When a bus access is not
occurring, these pins revert to their I/O port function.

ADV# (0] Address Valid ALE/P5.0

This active-low output signal is asserted only during external
memory accesses. ADV# indicates that valid address information is
available on the system address/data bus. The signal remains low
while a valid bus cycle is in progress and is returned high as soon as
the bus cycle completes.

An external latch can use this signal to demultiplex the address from
the address/data bus. A decoder can also use this signal to generate
chip selects for external memory.

15-1

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 15-1. External Memory Interface Signals (Continued)

Function - Multiplexed
Name Type Description With
ALE o Address Latch Enable ADV#/P5.0

This active-high output signal is asserted only during external
memory cycles. ALE signals the start of an external bus cycle and
indicates that valid address information is available on the system
address/data bus. ALE differs from ADV# in that it does not remain
active during the entire bus cycle.

An external latch can use this signal to demultiplex the address from
the address/data bus.

BHE#T (0] Byte High Enable P5.5/WRH#

The chip configuration register 0 (CCRO) determines whether this pin
functions as BHE# or WRH#. CCR0.2=1 selects BHE#; CCR0.2=0
selects WRH#.

During 16-bit bus cycles, this active-low output signal is asserted for
word reads and writes and high-byte reads and writes to external
memory. BHE# indicates that valid data is being transferred over the
upper half of the system data bus. BHE#, in conjunction with ADO,
indicates the memory byte that is being transferred over the system

bus:
BHE# ADO Byte(s) Accessed
0 0 both bytes
0 1 high byte only
1 0 low byte only
T This pin is not implemented on the 8XC196Jx device.
BREQ#T O | Bus Request P2.3

This active-low output signal is asserted during a hold cycle when
the bus controller has a pending external memory cycle.

The device can assert BREQ# at the same time as or after it asserts
HLDA#. Once it is asserted, BREQ# remains asserted until HOLD#
is removed.

You must enable the bus-hold protocol before using this signal (see
“Enabling the Bus-hold Protocol (8XC196Kx Only)” on page 15-18).

T This pin is not implemented on the 87C196CA, 8XC196Jx devices.

BUSWIDTHT | Bus Width P5.7

The chip configuration register bits, CCR0.1 and CCR1.2, along with
the BUSWIDTH pin, control the data bus width. When both CCR bits
are set, the BUSWIDTH signal selects the external data bus width.
When only one CCR bit is set, the bus width is fixed at either 16 or 8
bits, and the BUSWIDTH signal has no effect.

CCR0O.1 CCR1.2 BUSWIDTH

0 1 N/A fixed 8-bit data bus
1 0 N/A fixed 16-bit data bus
1 1 high 16-bit data bus

1 1 low 8-bit data bus

T This pin is not implemented on the 87C196CA, 8XC196Jx devices.

15-2 [|

intel.

INTERFACING WITH EXTERNAL MEMORY

Table 15-1. External Memory Interface Signals (Continued)

Function
Name

Type

Description

Multiplexed
With

CLKOUT

(0]

Clock Output

Output of the internal clock generator. The CLKOUT frequency is ¥2
the oscillator frequency input (XTAL1). CLKOUT has a 50% duty
cycle.

P2.7

EA#

External Access

EA# is sampled and latched only on the rising edge of RESET#.
Changing the level of EA# after reset has no effect. Accesses to
special-purpose and program memory partitions are directed to
internal memory if EA# is held high and to external memory if EA# is
held low. (See Table 4-1 on page 4-2 for address ranges of special-
purpose and program memory partitions.)

EA# also controls program mode entry. If EA# is at V,,, voltage
(typically +12.5 V) on the rising edge of RESET#, the device enters
programming mode.

NOTE: When EA# is active, ports 3 and 4 will function only as the
address/data bus. They cannot be used for standard 1/O.

On devices with no internal nonvolatile memory, always connect EA#
to Vgs.

HLDA#T

Bus Hold Acknowledge

This active-low output indicates that the CPU has released the bus
as the result of an external device asserting HOLD#.

T The P2.6 pin does not function as HLDA# on the 87C196CA,
8XC196Jx devices.

P2.6

HOLD#T

Bus Hold Request

An external device uses this active-low input signal to request control
of the bus. This pin functions as HOLD# only if the pin is configured
for its special function (see “Bidirectional Port Pin Configurations” on
page 6-10) and the bus-hold protocol is enabled. Setting bit 7 of the
window selection register enables the bus-hold protocol.

T This pin is not implemented on the 87C196CA, 8XC196Jx devices.

P2.5

INTOUT#?

Interrupt Output

This active-low output indicates that a pending interrupt requires use
of the external bus.

T This pin is not implemented on the 87C196CA, 8XC196Jx devices.

AINC#/P2.4

INSTT

Instruction Fetch

This active-high output signal is valid only during external memory
bus cycles. When high, INST indicates that an instruction is being
fetched from external memory. The signal remains high during the
entire bus cycle of an external instruction fetch. INST is low for data
accesses, including interrupt vector fetches and chip configuration
byte reads. INST is low during internal memory fetches.

T This pin is not implemented on the 87C196CA, 8XC196Jx devices.

P5.1

RD#

Read

Read-signal output to external memory. RD# is asserted only during
external memory reads.

P5.3

15-3

8XC196Kx, Jx, CA USER'S MANUAL

Table 15-1. External Memory Interface Signals (Continued)

intel.

Function
Name

Type Description

Multiplexed
With

READYT

| Ready Input

wait states that are generated internally.

registers. READY is ignored for all internal memory accesses.
T This pin is not implemented on the 8XC196Jx device.

This active-high input signal is used to lengthen external memory
cycles for slow memory by generating wait states in addition to the

When READY is high, CPU operation continues in a normal manner
with wait states inserted as programmed in the chip configuration

P5.6

WR#

(0] Write

selects WRL#.

This signal is asserted only during external memory writes.

The chip configuration register 0 (CCRO) determines whether this pin
functions as WR# or WRL#. CCRO0.2=1 selects WR#; CCR0.2=0

This active-low output indicates that an external write is occurring.

P5.2/WRL#

WRH#t

(0] Write High

selects WRH#.

bus cycles, WRH# is asserted for all write operations.

The chip configuration register 0 (CCRO) determines whether this pin
functions as BHE# or WRH#. CCR0.2=1 selects BHE; CCR0.2=0

During 16-bit bus cycles, this active-low output signal is asserted for
high-byte writes and word writes to external memory. During 8-bit

T This pin is not implemented on the 87C196CA, 8XC196Jx devices.

P5.5/BHE#

WRL#

(0] Write Low

selects WRL#.

asserted for all write operations.

The chip configuration register 0 (CCRO) determines whether this pin
functions as WR# or WRL#. CCRO0.2=1 selects WR#; CCR0.2=0

During 16-bit bus cycles, this active-low output signal is asserted for
low-byte writes and word writes. During 8-bit bus cycles, WRL# is

P5.2/WR#

15.2 CHIP CONFIGURATION REGISTERS AND CHIP CONFIGURATION BYTES

Two chip configuration registers (CCRs) have bits that set parameters for chip operation and ex-
ternal bus cycles. The CCRs cannot be accessed by code. They are loaded from the chip config-
uration bytesCCBs), which have addresses 2018€B0) and 201AH (CCB1).

When the device returns from reset, the bus controller fetches the CCBs and loads them into the
CCRs. From this point, these CCR bit values define the chip configuration until the device is reset

again. The CCR bits are described in Figures 15-1 and 15-2.

15-4

Inte|® INTERFACING WITH EXTERNAL MEMORY

CCRO Address: 2018H
Reset State: XXH

The chip configuration 0 (CCRO) register controls powerdown mode, bus-control signals, and internal
memory protection. Three of its bits combine with two bits of CCR1 to control wait states and bus
width.

7 0
LOC1 LOCO IRC1 IRCO ‘ ‘ ALE WR BWO PD
Bit Bit .
Number Mnemonic Function

7:6 LOC1:0 Lock Bits
Determine the programming protection scheme for internal memory.
LOC1 LOCO
0 0 read and write protect
0 1 read protect only
1 0 write protect only
1 1 no protection

5:4 IRC1:0 Internal Ready Control

These two bits, along with IRC2 (CCR1.1), limit the number of wait states
that can be inserted while the READY pin is held low. Wait states are
inserted into the bus cycle either until the READY pin is pulled high or
until this internal number is reached.

IRC2 IRC1 IRCO

zero wait states

illegal

illegal

one wait state

two wait states

three wait states

infinitet

T This mode is unavailable on the 8XC196Jx device. On this device, the
READY pin is not implemented. Therefore, the number of wait states
inserted into the bus cycle is determined only by the IRC2:0 bit settings.

RRRROOO
PR OORXO
RPOROXREO

Figure 15-1. Chip Configuration 0 (CCRO0) Register

[| 15-5

8XC196Kx, Jx, CA USER'S MANUAL InU®

CCRO (Continued) o A(t'.it‘iSYtE?S: 20)3.33
eset State:

The chip configuration 0 (CCRO) register controls powerdown mode, bus-control signals, and internal
memory protection. Three of its bits combine with two bits of CCR1 to control wait states and bus
width.

7 0
LOC1 LOCO IRC1 IRCO ‘ ‘ ALE WR BWO PD
Bit Bit Function
Number Mnemonic
3 ALE Address Valid Strobe and Write Strobe
WR These bits define which bus-control signals will be generated during
external read and write cycles.
ALE WR
0 0 address valid with write strobe mode
(ADV#, RD#, WRL#, WRH#)t
0 1 address valid strobe mode
(ADV#, RD#, WR#, BHE#)T
1 0 write strobe mode
(ALE, RD#, WRL#, WRH#)t
1 1 standard bus-control mode

(ALE, RD#, WR#, BHE#)'
T On the 8XC196Jx device, the BHE#/WRH# pin is not implemented.
1 BWO Buswidth Control
This bit, along with the BW1 bit (CCR1.2), selects the bus width.
BW1 BWO

0 0 illegal

0 1 16-bit only

1 0 8-bit only

1 1 BUSWIDTH pin controlledt

T This mode is unavailable on the 87C196CA, 8XC196Jx devices. The
BUSWIDTH pin is not implemented.

0 PD Powerdown Enable

Controls whether the IDLPD #2 instruction causes the device to enter
powerdown mode. Clearing this bit at reset can prevent accidental entry
into powerdown mode.

1 = enable powerdown mode
0 = disable powerdown mode

Figure 15-1. Chip Configuration 0 (CCRO) Register (Continued)

15-6 [|

intel.

INTERFACING WITH EXTERNAL MEMORY

CCR1

Address: 201AH
Reset State: XXH

The chip configuration 1 (CCR1) register enables the watchdog timer and selects the bus timing mode.
Two of its bits combine with three bits of CCRO to control wait states and bus width.

7

CA,JX,KQ,KR‘ 1 ‘

KS, KT

1 ‘ 0 ‘ 1 HWDE‘BWl‘IRCZ‘ o‘

7

‘ MSEL1 ‘

MSELO‘ 0 ‘ 1 HWDE‘BWl‘IRCZ‘ 0 ‘

Bit
Number

Bit
Mnemonic

Function

76

1
(CA, Jx, KQ,
KR)

To guarantee device operation, write ones to these bits.

MSEL1:0
(KS, KT)

External Access Timing Mode Select
These bits control the bus-timing modes.

MSEL1 MSELO

0 0 standard mode plus one wait state
0 1 long read/write

1 0 long read/write with early address
1 1 standard mode

To guarantee device operation, write zero to this bit.

To guarantee device operation, write one to this bit.

WDE

Watchdog Timer Enable

Selects whether the watchdog timer is always enabled or enabled the first
time it is cleared.

1 = enabled first time it is cleared
0 = always enabled

BwW1

Buswidth Control
This bit, along with the BWO bit (CCRO0.1), selects the bus width.

BW1 BWO

0 0 illegal

0 1 16-bit only

1 0 8-bit only

1 1 BUSWIDTH pin controlled’

T This mode is unavailable on the 87C196CA, 8XC196Jx devices. The
BUSWIDTH pin is not implemented.

Figure

15-2. Chip Configuration 1 (CCR1) Register

15-7

8XC196Kx, Jx, CA USER'S MANUAL InU®

CCR1 (Continued) o A?dsrtest:s: 20):2?3
eset State:

The chip configuration 1 (CCR1) register enables the watchdog timer and selects the bus timing mode.
Two of its bits combine with three bits of CCRO to control wait states and bus width.

7 0

CA, Jx, KQ, KR ‘ 1 ‘ 1 ‘ 0 ‘ 1 H WDE ‘ BW1 ‘ IRC2 ‘ 0 ‘

7 0

KS, KT ‘ MSEL1 ‘ MSELO ‘ 0 ‘ 1 ‘ ‘ WDE ‘ BW1 ‘ IRC2 ‘ 0 ‘
Bit Bit Function

Number Mnemonic

1 IRC2 Ready Control

This bit, along with IRCO (CCRO0.4) and IRC1 (CCRO0.5), limits the number
of wait states that can be inserted while the READY pin is held low. Wait
states are inserted into the bus cycle either until the READY pin is pulled
high or until this internal number is reached.

IRC2 IRC1 IRCO

zero wait states

illegal

illegal

one wait state

two wait states

three wait states

infinitet

T This mode is unavailable on the 8XC196Jx device. On this device, the
READY pin is notimplemented. Therefore, the number of wait states
inserted into the bus cycle is determined only by the IRC2:0 bit settings.

RPRRROOO
PR OORXO
RPOROXEO

0 — Reserved; always write as zero.

Figure 15-2. Chip Configuration 1 (CCR1) Register (Continued)

15.3 BUS WIDTH AND MULTIPLEXING

The external bus can operate as either a 16-bit multiplexed address/data bus or as a multiplexec
16-bit address/8-bit data bus (Figure 15-3).

15-8 [|

Inte|® INTERFACING WITH EXTERNAL MEMORY

Bus Control Bus Control

8-bit Address
16-bit Multiplexed High

Address/Data

AD15:8
AD15:0 <:> (Port 4)
(Ports 4 and 3)

8-bit Multiplexed

Address/Data
ol —
(Port 3)
8XC196 8XC196
16-bit Bus 8-bit Bus

A3068-01

Figure 15-3. Multiplexing and Bus Width Options

After reset, but before theCB fetch, thedevice is configured for 8-bit bus mode, regardless of
the BUSWIDTH input. The upper address lines (AD15:8) are weakly driven throughout the
CCBO0 and CCB1 bus cycles. To prevent bus contention, neither pull-ups nor pull-stovuhd

be used on AD15:8. Also, the upp®ytes of the CCB words (locatior2d19H and 201BH)
should be loded with 20H. If the external memory outputs 20H on its high byte, there will be no
bus contention.

After theCCBs aredaded into th€CRs, the values of BWO0 and BW1 define the data bus width
as either a fixed 8-bit, a fixed 16-bit, or a dynamic 16-bit/8-bit bus width controlled by the
BUSWIDTH signal (The BWO and BW1 bits are defined in Figures 15-1 and 15-2).

If BWO is clear and BWL1 is set, the bus controller is locked into an 8-bit bus mode. In comparing
an 8-bit bus system to a 16-bit bus system, expect some performance degradafiérbitrbas
system, a word fetch is done with a single word fetch. However, in an 8-bit bus systend, a
fetch takes an additional bus cycle because it must be done with two byte fetches.

If BWO is set and BW1 is clear, the bus controller is locked into a 16-bit bus mode. If both BWO
and BW1 are set, thelUBBWIDTH signal controls the bus width. The bus is 16 bits wide when
BUSWIDTH is high and 8 bits wide when BUSWIDTH is low. The BUSWIDTH signal is sam-
pled after the address is on the bus, asvshin Figure 15-4.

15-9

8XC196Kx, Jx, CA USER'S MANUAL InU®

wor ___/ N/ __/ \

ALE / /_\—
Tiev <——| — |<— TeLex (MIN)
)

BUSWIDTH X Valid

Tavey

Bus Address)—(Data

~—

A0164-02

Figure 15-4. BUSWI DTH Timing Diagram

The BUSWIDTH signal can be used in numerous applications. For example, a system could store
code in a 16-bit memory device and data in an 8-bit memory device. The BUSWIDTH signal
could be tied to the chip-select input of the 8-bit memory device (shown in Figure 15-12 on page
15-23). When BUSWIDTH is low, it enables 8-bit bus mode and selects the 8-bit memory device.
When BUSWIDTH is high, it enables 16-bit bus mode and deselects the 8-bit memory device.

15.3.1 Timing Requirements for BUSWIDTH

When using BUSWIDTH to dynamically change between 8-bit and 16-bit bus widths, setup and
hold timings must be met for proper operation (see Figure 15-4). Because a decoded, valid ad-
dress is used to generate the BUSWIDTH signal, the setup time is specified relative to the address
being valid. This specification,], indicates how much time one has to decode the valid ad-
dress and generate a valid BUSWIDTH signal.

BUSWIDTH must be held valid until the minimum hold specificatiof ¢}, has been met. Typ-
ically this hold time is 0 ns minimum after CLKOUT goes low. In all cases, refer to the data sheet
for current specifications for,Js, and & gx-

NOTE

Earlier HMOS devices used a BUSWIDTH setup timing that was referenced to
the falling edge of ALE (. g,). This specification is not meaningful for

CMOS devices, which use an internal two-phase clock; it is included for
comparison only.

15-10 [|

Int€|® INTERFACING WITH EXTERNAL MEMORY

15.3.2 16-bit Bus Timings

When the device is configured to operate in the 16-bit bus-width mode, lines AD15:0 form a 16-
bit multiplexed address/data bus. Figure 15-5 shows an idealized timing diagram for the external
read and write cycles. (Comprehensive timing specifications are shown in Figure 15-24).

The rising edge of the address latch enable (ALE) indicates that the device is driving an address
onto the bus (AD15:0). The device presents a valid address before ALE falls. The ALE signal is
used to strobe a transparent latch (such as a 74AC373), which captures the address from AD15:(
and holds it while the bus controller puts data onto AD15:0.

For 16-bit read cycles, the bus controller floats the bus and then drives RD# low so that it can

receive data. The external memory must put data (Data In) onto the bus before thelgsiof e

RD#. The data sheet specifies the maximum time the memory device has to output valid data after
RD# is asserted. When INST is asserted, it indicates that the read operation is an instruction fetch.

For 16-bit write cycles, the bus controller drives WR# low, then puts data onto the bus. The rising
edge of WR# signifies that data is valid. At this time, the external system must latch the data.

15-11

8XC196Kx, Jx, CA USER'S MANUAL

ALE / \

Valid ~.

BUSWIDTH f \
AD15:0 Address Out >—< Data In >7
(Read)

Bus
AD15:0 —< Address Out >—< Data Out >—

(Write)

WR# \ /

A3074-01

Figure 15-5. Timings for 16-bit Buses

15-12

Int€|® INTERFACING WITH EXTERNAL MEMORY

15.3.3 8-bit Bus Timings

When the device is configured to operate in the 8-bit bus mode, lines AD7:0 form a multiplexed
lower address and data bus. Likd315:8 are not multiplexed; the upper address iskdcand
remains valid throughout the bus cycle. Figure 1&6ws an idealized timing diagram for the
external read and write cycles. One cycle is required for an 8-bit read or write. A 16-bit access
requires two cycles. The first cycle accesses the lower byte, and the second cycle accesses thi
upper byte. Excedbr requiring an extra cycle to write the bytes separately, the timings are the
same as on the 16-bit bus.

The ALE signal is used to demultiplex the lower address by strobing a transparent latch (such as
a 74AC373).

For 8-bit bus read cycles, after ALE falls, the bus controller floats the bus and drives the RD#
signal low. The external memory then must put its data on the bus. That data must be valid at the
rising edge of the RD# signal. To read a data word, the bus contraflempetwo consecutive

reads, reading the low byte first, followed by the high byte.

For 8-bit bus write cycles, after ALE falls, the bus controller outputs data on AD7:0 and then
drives WR# low. The external memory must latch the data by the time WR# goes high. That data
will be valid on the bus until slightly after WR# goes high. To write a data word, the bus controller
performs two consecutive writegriting the low byte first, followed by the high byte.

15-13

8XC196Kx, Jx, CA USER'S MANUAL

XTAL1

CLKOUT

ALE

BUSWIDTH

Bus
AD15:8

Bus
AD7:0
(Read)

RD#

INST
Bus
AD7:0
(Write)

WR#

N\ SN
A VA N NV

I

_/

Address Out

—< Address Out
—< Adg[ﬁss >—<Low data in

Address

X
— e

>—<High data in

-
S
/0

S R

< Address >_<
Out

X Address >_<
+1 Out

A
-

N/

~/

A3075-01

15.4 WAIT STATES (READY CONTROL)

An external device can use the READY input to request wait states in addition to the wait states
that are generated internally by the 87C196CA, 8XC%,36ddevice. When an address is placed

on the bus for an external bus cycle, the external device can pull the READY signal low to indi-
cate it is not ready. In response, the bus controller inserts wait states to lengthen the bus cycle until
the external device raises the READY signal. Each wait state adds one CLKOUT period (i.e., one
state time or 2JJ) to the bus cycle.

15-14

Figure 15-6. Timings for 8-bit Buses

Int€|® INTERFACING WITH EXTERNAL MEMORY

After reset and untiCCBL is readthe bus controller always inserts three wait states into bus cy-
cles. Then, until P5.6 has been configured to operate as the READY signal, the internal ready
control bits (IRC2:0) control the wait states. If IRC2:0 are all set during CCBO0 and CCBL fetch,
READY (P5.6) is configured as a special-function inpiuport 5 is initialized after reset, you

must ensure that P5.6 remains configured as the READY inputf P5.6 is configured as a port

pin, the READY input to the device is equal to zero. This will cause an infinite number of wait
states to be inserted into bus cycles and the chip to lock up.

After the CCBL1 fetch, the internal reaayntrol circuitry allows slow external memory devices

to increase the length of the read and write bus cycles. If the external naewime is not ready

for access, it pulls the READY signal low and holds it low until it is ready to complete the oper-
ation, at which time it releases READY. While READY is low, the bus controllerttseit
states into the bus cycle.

The internal ready control bits (IRC2:0) define the maximum number of wait states that will be
inserted. (The IRC2:0 bits are defined in Figures 15-1 and 15-2.) When all three bits are set, the
bus controller inserts wait states until the external memory device releases the READY signal.
Otherwise, the bus controller inserts wait states until either the external memory device releases
the READY signal or the number of wait states equals the number (0, 1, 2, or 3) specified by the
CCB bhit settings.

When selecting infinite wait states, be sure to add external hardware to count wait states and re-
lease READY within a specified period of time. Otherwise, a defective external device could tie
up the address/data bus indefinitely.

NOTE

Ready control is valid only for external memory; you cannot add wait states
when accessing internal ROM.

Setup and hold timings must be met when using the READY signal to insert wait states into a bus
cycle (see Table 15-2 and Figure 15-7). Because a decoded, valid address is used to generate tr
READY signal, the setup time is specified relative to the address being valid. This specification,
Tavyy, indicates how much time one has to decode the address andRESSDY after the ad-

dress is valid. The READY signal must be held valid until the,Ttiming specification is met.
Typically, this is a minimum of 0 ns from the time CLKOUT goes low. Do not exceed the maxi-
mum T vx Specification or additional (unwanted) wait states might be added. In all cases, refer
to the data sheets for the current specifications gy, Tand E .

15-15

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Table 15-2. READY Signal Timing Defi nitions

Symbol Definition
Teivx READY Hold after CLKOUT Low
Minimum hold time is typically 0 ns. If maximum specification is exceeded, additional wait
states will occur.
Tavyy Address Valid to READY Setup

Maximum time the memory system has to assert READY after the device outputs the address
to guarantee that at least one wait state will occur.

CLKOUT \ / / \ / \ /
T
ALE / \ = G / \

TCLYX
- - (MAX

READY / / /
TAVYV
RD# \ /
AD15:0 Address Out) Em—
WR# \ /
AD15:0 —(Address Out)X(Data Out X Address

A3076-01

15-16

Figure 15-7. READY Timing Diagram

Inu® INTERFACING WITH EXTERNAL MEMORY

15.5 BUS-HOLD PROTOCOL (8XC196KQ, KR, KS, KT ONLY)

The 8XC196K device supports a bus-hold protocol that allows external devices to gain control
of the address/data bus. The protocol uses three signals, all of which are port 2 special functions:
HOLD#/P2.5 (hold request), HLDA#/P2.6 (hold acknowledge), and BREQ#/P2.3 (bus request).
When an external device wants to use the device bus, it asserts the HOLD# signal. HOLD# is
sampled while CLKOUT is low. The device responds by releasing the bussantiragiLDA#.

During this hold time, the address/data bus floats, and signals ALE, RD#, WR#/WRL#,
BHE#/WRH#, and INST are weakly held in their inactive states. Figure 15-8 shows the timing
for bus-hold protocol, and Table 15-3 on page 15-18 lists the timing parameters and their defini-
tions. Refer to the data sheet for timing parameter values.

CLKOUT__/_\ r’ i /_s s_\ }’_ /_\ /_

THVCH =] |<— THVCH =] ‘A—
Hold
Latenc
HOLD# s y., g /
T
CLHAL == == TCLHAH —=||=—
S
HLDA# ‘<
27
TCLBRL =] | TCLBRH —={|=—
45
BREQ# < |
27
ThaLAZ
LAZ = == THAHAX ==
27
Bus —(X e } '}
27
THALBZ —— f— THAHBV]
BHE#, INST 3
' \ / Weakly Driven Inactive,
RD#, WR# 12 —
WRL#, WRH# TellH = lwe

—/—\ Weakly Driven Inactive \
ALE $9

Apv# —/ \ 35 /
iy N

ADV# weakly driven Start of strongly driven ADV# and ALE

A0165-02

Figure 15-8. HOLD#, HLDA# Timing

15-17

8XC196Kx, Jx, CA USER'S MANUAL InU®

Table 15-3. HOLD#, HLDA# Timing Def initions

Symbol Parameter
Thven HOLD# Setup Time
TeLnal CLKOUT Low to HLDA# Low
TeLnan CLKOUT Low to HLDA# High
Terere CLKOUT Low to BREQ# Low
Teleru CLKOUT Low to BREQ# High
Thaiaz HLDA# Low to Address Float
Tanax HLDA# High to Address No Longer Float
ThaLez HLDA# Low to BHE#, INST, RD#, WR#, WRL#, WRH#
Weakly Driven
Thanay HLDA# High to BHE#, INST, RD#, WR#, WRL#, WRH# valid
Tern Clock Falling to ALE Rising; Use to derive other timings.

When the external device is finished with the bus, it relinquishes control by driving HOLD# high.
In response, the 8XC196&rives HLDA# high and assumes control of the bus.

If the 8XC196Kk has a pending external bus cycle while itis in hold, it asserts BREQ# to request
control of the bus. After the external device responds by driving HOLD# high, the 8X@196K
exits hold and then deasserts BREQ# and HLDA#.

NOTE
If the 8XC196Kk receives an interrupt request while it is in hold, the
8XC196Kx asserts INTOUT# only if it is executing from internal memory. If
the 8XC196k needs to access externalmmy, it aserts BREQ# and waits
until the external device deasserts HOLD# to assert INTOUT#. If the
8XC196Kx receives an interrupt request as it is going into hold (between the
time that an external device asserts HOLD# and the time that the 8X€196K
responds with HLDA#), the 8XC196&asserts INTOUT# and keeps it
asserted until the external device deasserts HOLD#.

15.5.1 Enabling the Bus-hold Protocol (8XC196K x Only)
To use the bus-hold protocol, you must configure P2.3/BREQ#, P2.5/HOLD#, and P2.6/HLDA#

to operate as special-function signals. BREQ# anDA# are active-low outputs; HOLD# is an
active-low input.

15-18 [|

Int€|® INTERFACING WITH EXTERNAL MEMORY

You must also set the hold enable bit (HLDEN) in the window selection register (WSR.7) to en-
able thebus-hold protoal. Once the bus-hold protocol has been selected, the port functions of
P2.3, P2.5, and P2.6 cannot be selected without resetting the device. (During the time that the pins
are configured to operate as special-functigmals, their specidunction valuescan be read

from the P2_PIN bits.) However, the hold function can be dynamically enabled and disabled as
described in “Disabling the Bus-hold Protocol (8XC196Kx Only).”

15.5.2 Disabling the Bus-hold Protocol (8XC196K x Only)

To disable hold requests, clear WSR.7. The device does not take over the bus immediately after
HLDEN is cleared. Instead, it waits for the current HOLD# request to finish and then disables the
bus-hold feature an@mnores any new requests until the bit is set again.

Sometimes it is important to prevent another defriom taking control of the bus while a block

of code is executing. One way to protect a code segment is to clear WSR.7 and then execute &
JBC instruction to check the status of thelM# signal. The JB@hstruction prevents the RALU

from executing the protected block until current HOLD# requests are serviced and the hold fea-
ture is disabled. This is illustrated in the following code:

DI ;Disable interrupts to prevent
;code interruption

PUSH WSR ;Disable hold requests and

LDB WSR,#1FH ;window Port 2

WAIT: JBC P2_PIN,6, WAIT ;Check the HLDA# signal. If set,

;add protected instruction here

POP WSR ;Enable hold requests

El ;Enable interrupts

15.5.3 Hold Latency (8XC196K x Only)

When an external device asserts HOLD#, the device finishes the current bus cycle and then as-
serts HLDA#. The time it takes the device to asserDH# after the external device asserts
HOLD# is calledhold latency(see Figure 15-8). Table 15-4 lists the maximum hold latency for
each type of bus cycle.

Table 15-4. Maximum Hold Latency

Maximum Hold Latency

Bus Cycle Type (state times)

Internal execution or idle mode | 1.5

16-bit external execution 2.5 + 1 per wait state

8-bit external execution 2.5 + 2 per wait state

15-19

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

15.5.4 Regaining Bus Control (8XC196K x Only)

While HOLD# is asserted, the device continues executing code until it needs to access the exter-
nal bus. If executing from internal m®ry, it continues until it neds to perform an external
memory cycle. If executing from external memory, it continues executing until the queue is emp-
ty or until it needs to perform an external data cycle. As soon as it needs to access the external
bus, the device asserts BREQ# and waits for the external device to deassert HOLD#. After assert-
ing BREQ#, the device cannot respond to any interrupt requests, including NMI, until the exter-
nal device deasserts HOLD#. One state time after HOgBés high, the device deasserts
HLDA# and, with no delay, resumes control of the bus.

If the device is reset while in hold, bus contention can occur. For example, a CPU-only device
would try to fetch the chip configuration byte from external memory after RESE T#nvaght

high. Bus contention would occur because both the external device and the device would attempt
to access memory. One solution is to use the RESET# signal as the system reset; then all bus ma:
ters (including the device) are reset at once. Chapter 13, “Minimum Hardware Considerations,”
shows system reset circuit examples.

15.6 BUS-CONTROL MODES
The ALE and WR bits (CCR0.3 and CCRO0.2) define which bus-control signals will be generated

during external read and write cycles. Table 15-5 lists the four bus-control modes and shows the
CCRO0.3 and CCRO0.2 settings for each.

Table 15-5. Bus-control Mode

Bus-control Mode Bus-control Signals (:(2!52)3 C(C\Z/\F/Qé)).Z
Standard Bus-control Mode ALE, RD#, WR#, BHE#T 1 1
Write Strobe Mode ALE, RD#, WRL#, WRH#' 1 0
Address Valid Strobe Mode ADV#, RD#, WR#, BHE#T 0 1
Address Valid with Write Strobe Mode ADV#, RD#, WRL#, WRH#T 0 0

T The BHE# and WRH# pins are not implemented on the 87C196CA, 8XC196Jx devices.

15.6.1 Standard Bus-control Mode

In the standard bus-control mode, the device generates the standard bus-control signals: ALE,
RD#, WR#, and BHE# (see Figure 15-9). ALE is asserted while the address is driven, and it can

be used to latch the address externally. RD# is asserted for every external memory read, and WR#
is asserted for every external memory write. When asserted, BHE# selects the bamoof me

that is addressed by the high byte of the data bus.

15-20

Inu® INTERFACING WITH EXTERNAL MEMORY

ALE | | | | ALE | | | |
WR# or RD# | | WR¥# or RD# | |
BHE# T Valid | AD7:0 .I Addr Low | Data Out |—

AD15:O-| Addr | Data Out I— AD15:8-| Address High I—

16-bit Bus Cycle 8-bit Bus Cycle

A3077-01

Figure 15-9. Standard Bus Control

When the device is configured to use a 16-bit bus, separate low- and high-byte write signals must
be generated for single-byte writes. Figure 15-10 shows a sample circuit that combines BHE# and
ADO to produce these signals (WRL# and WRH#). A similar pair of signals for read is unneces-

sary. For a single-byte read with the 16-bit bus, both bytes are placed on the data bus and the pro

cessor discards the unwanted byte.

BHE# ——— 8 ——(
O:>0—> WRH#

WR# ——————J

I—O

ADO

WRL#

A3109-01

Figure 15-10. Decoding WRL# and WRH#

15-21

8XC196Kx, Jx, CA USER'S MANUAL

Figure 15-11 shows an 8-bit system with both flash and RAM. The flash is the lower half of mem-
ory, and the RAM is the upper half. This system configuration uses the most-significant address
bit (AD15) as the chip-select signal and ALE as the address-latch signal.

intel.

AD15

AD14:8

ALE

8XC196

AD7:0

RD#

WR#

Y

LE

T4AC

A7:0

373

Al14:8

D70
32Kx8
Flash
(28F256)

A7:0

OE#

CS#

CS#

Al12:8

D7:0

A7:0

OE#

8Kx8
RAM

WE#

[

i1 Applies to the 8XC196KS, KT devices in bus timing modes 1 and 2 only.

A3078-01

15-22

Figure 15-11. 8-bit System with Flash and RAM

intel.

Figure 15-12 shows a system that uses the dynamic bus-width feature. (The CCR bits, BWO0 and
BW1, are set.) Code is executed from the two EPROMs and data is stored in the byte-wide RAM.
The RAM is in high memory. It is selected by driving AD15 high, which also selects the 8-bit bus

INTERFACING WITH EXTERNAL MEMORY

width mode by driving the BUSWIDTH signal low.

: @ L 2
BUSWIDTH con o con
A15
A14:8 A14:8 A12:8
AD15:8 =l 74AC A13:7 A13:7 A12:8
373
LE
D15:8
ALE ——¢
D7:0 D7:0
16Kx8 16Kx8 8Kx8
8XC196 EPROM EPROM RAM
LE (High) (Low)
A7:1 : .
AD7:0 = 74AC A6:0 AT | p60 A0 1 a70
373
OE# OE# OE# WE#
RD# : .
WRH#
A3087-01

Figure 15-12. 16-bit System with Dynamic Bus Width

15-23

8XC196Kx, Jx, CA USER'S MANUAL Inu®

15.6.2 Write Strobe Mode

The write strobe mode eliminates the need to externally decode higlovaihgte writes to ex-

ternal 16-bit RAM in 16-bit bus mode. When the write strobe mode is selected, the device gen-
erates WRL# and WRH# instead of WR# and BHE#. WRL# is asserted for all low byte writes
(even addresses) and all word writes. WRH# is asserted for all high byte writes (odd addresses)
and all word writes. In the 8-bit bus mode, WRH# and WRL# are asserted for both even and odd
addresses. Figure 15-13 shows write strobe mode timing.

ALE | | | | ALE | | | |
WRL# | Valid | WRL# and WRH# | |

WRH# | Valid | ADT7:0 Address Low Data Out —

AD15:8 Address High —

AD15:0 Address Data Out

16-bit Bus Cycle 8-bit Bus Cycle

A3089-01

Figure 15-13. Write Strobe Mode

15-24

intel.

Figure 15-14 shows a 16-bit system with two EPROMs and two RAMs. It is configured to use
the write strobe mode. ALE latches the address; AD15 is the chip-select signal for the EPROMs
and RAMs. WRL# is asserted during low byte writes and word writes. WRH# is asserted during
high byte writes and word writes. Note that RAM devices do not use ADO. WRL# and WRH#

determine whether the low byte (AD0=0) or high byte (AD0=1) is selected.

INTERFACING WITH EXTERNAL MEMORY

Vee

e

BUSWIDTH

AD15:8

ALE
8XC196

AD7:0

RD#

WRH#
WRL#

!

74AC
373

LE

A15

A14:8

|

LE

T4AC
373

A7:1

CS#

Al13:7

D15:8

16Kx8
EPROM

(High)

A6:0

OE#

A13:7

16Kx8
EPROM
(Low)

D7:0

A6:0

OE#

CS# Cs#

Al12:7

D15:8
8Kx8
RAM

(High)

A6:0

OE# WE#

CS#

A12:7

8Kx8

RAM

(Low)
D7:0

A6:0

OE# WE#

l

l

l

A3090-01

Figure 15-14. 16-bit System with Single-byte Writes to RAM

15-25

8XC196Kx, Jx, CA USER'S MANUAL Inu®

15.6.3 Address Valid Strobe Mode

When the address valid strobe mode is selected, the device generates the address valid signe
(ADV#) instead of the address latch enable signal (ALE). ADV#seded after an external ad-

dress is valid (see Figure 15-15). This signal can be used to latch the valid address and simulta-
neously enable an external memory device.

WR# or RD# | | WR# or RD# | |
""""""" Addr
BHE# I Valid | AD7:0 _l Low | Data Out

AD15:0 —l Address | Data Out I— AD15:0 —l Address High

16-bit Bus Cycle 8-bit Bus Cycle

|_
|_

A3092-01

Figure 15-15. Address Valid Strobe Mode

The difference between ALE and ADV# is that ADV# is assertethfoentire bus cycle, not just

to latch the address. Figure 15-16 shows the difference between ALE and ADV# for a single read
or write cycle. Note that for back-to-back bus asceheADV# function will look identical to

the ALE function. The difference becomes apparent only when the bus is idle. Because ADV# is
high during these periods, external memory will be disabled, thus saving power.

AD15:0 —< Addrless >—<Data>>> : :\

ADV#

ALE I |

RD#/WR#

| I 1 Busldle 1 Next Bus Cycle

A3093-01

Figure 15-16. Comparison of ALE and ADV# Bus Cycles

15-26 [|

Inu® INTERFACING WITH EXTERNAL MEMORY

Figure 15-17 and Figure 15-18 show sample circhi$ use address valid strobe mode. Figure
15-17 shows a simple 8-bit system with a single flash. It is configured for the address valid strobe
mode. This system configuration uses the ADV# signal asthetfiash chip-select signal and

the address-latch signal.

RO# OE#
| |
| |
| |
| 74AC A48
AD14:8 [m 375 A14:8
| I
32Kx8
| |
8XC196 L LE_ N Flash
1 (28F256)
ADV# CS#
D7:0
LE
T4AC AT7:0
AD7:0 373 A7:0

"1 Applies to the 8XC196KS, KT devices in bus timing modes 1 and 2 only.

A3132-01

Figure 15-17. 8-bit System with Flash

15-27

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Figure 15-18 shows a 16-bit system with two EPROMSs. This system configuration uses the
ADV# signal as both the EPROM chip-select signal and the address-latch signal.

Vee
BUSWIDTH cs# Cs#
Al4:8 Al15:8
74AC
AD15:8 373 A13:7 A13:7
LE
D15:8
ADV# 4
D7:0
16K %8 16Kx8
8XC196 LE EPROM EPROM
(High) (Low)
A7:1 A7:1
) 74AC
ADT:0 373 A6:0 A6:0
OE# OE#
RD# l
A3095-01

Figure 15-18. 16-bit System with EPROM

15-28 [|

Inu® INTERFACING WITH EXTERNAL MEMORY

15.6.4 Address Valid with Write Strobe Mode

When the address valid with write strobe mode is selected, the device generates the ADV#,
WRL#, and WRH# bus-control signals. This mode is used for a simple system using external 16-
bit RAM. Figure 15-19 shows the timing. The RD# signal (not shown) is similar to WRL#,
WRH#, and WR#. The example system of Figure 15-20 uses address valid with write strobe.

ADV# ADV#
WRL# Valid WRL#
""" Addr
WRH# Valid AD7:0 — | Low Data Out —
AD15:0 —] Address Data Out —— AD15:0 —] Address High —
16-bit Bus Cycle 8-bit Bus Cycle
A3096-01

Figure 15-19. Timings of Address Valid with Write Strobe Mode

[| 15-29

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Vcce
BUSWIDTH CS# CS#
) 74AC | A13:8])
AD15:8 373 Al2:7 Al12:7
LE
D15:8
ADV# \ ¢
= D7:0
8Kx8 8Kx8
8XC196 LE RAM RAM
(High) (Low)
74pc | ATL
AD7:0 373 A6:0 = A6:0
WE# WE#
WRH# I
WRL#
A3097-01

Figure 15-20. 16-bit System with RAM

15.7 BUS TIMING MODES (8XC196KS, KT ONLY)

The 8XC196KS, KT devices have selectable bus timing modes controlled by the MSELO and
MSELL1 bits (bits 6 and 7) of CCR1. Figure 15-2 on page 15-7 defines these hit settings. The re-
mainder of this section describes each mode. Figure 15-21 illustrates the modes together and Ta:
ble 15-6 summarizes the differences in their timings.

15-30 [|

InU® INTERFACING WITH EXTERNAL MEMORY

Tosc

ckour | L) L L1 LI |

ALE [[[
rRo# | L L]

«<—>|TrLDV = 1 Tosc |[¢—>|TRHDZ = 1 Tosc
BUS —< DATA

|
ADDR X DATA ADDR X DATA ADDR >
|

|<—:—:—>|TAVDV =3Tosc

o | — | L

TrLDV =3 Tosc
«———————>—»|«—>|TrHpz = 1 Tosc

BUS DATA ADDR X DATA ADDR X DATA

.

Tavpv =5 Tosc

MODE 1

s .]

TrLDV =2 Tosc
«———>|«—>|TrHDz = 1 Tosc

BUS < DATA >—< ADDR X DATA ><ADDR X DATA >< ADDR ><
' ¢ |
€ d
|

Tavpv =3 Tosc

—
<« 112 Tosc

: i TriDbv =2Tosc MODE 2
1

. I(—)I(—blTRHDz =1/2 Tosc
BUS < DATA >< ADDR X DATA >< ADDR X DATA >< ADDR X
l¢ N|

1€

dl

Tavbv = 3.5 Tosc

A0311-02

Figure 15-21. Modes 0, 1, 2, and 3 Timings

15-31

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

Table 15-6. Modes 0, 1, 2, and 3 Timing Comparisons

Timing Specifications (in T o5c) Note 1
Mode
TCLLH TCHLH TAVLL TAVDV TRLRH TRHDZ TRLDV

Mode 3 0 N/A 1 3 1 1 1
Mode 0 0 N/A 1 5 3 1 3
Mode 1 N/A 0.5 0.5 3 2 1 2
Mode 2 N/A 0.5 1 3.5 2 0.5 2
NOTES:

1. These are ideal timing values for purposes of comparison only. They do not
include internal device delays. Consult the data sheet for current device
specifications.

2. N/A = This timing specification is not applicable in this mode.

15.7.1 Mode 3, Standard Mode

Mode 3 is the standard timing mode. Use this mode for systems that need to emulate the
8XC196KR.

15.7.2 Mode 0, Standard Timing with One Automatic Wait State

Mode 0 is the standard timing mode with a minimum of one wait state added to each bus cycle.
The READY signal can be used to insert additional wait states, if necessary, fhaid Tpy

timings are each 2L longer in mode 0 than in mode 3. Thg,J; timing in mode O is the same

as in mode 3.

15.7.3 Mode 1, Long Read/Write Mode

Mode 1 is the long read/write mode (Figure 15-22). In this mode, RD#, WR#, and ALE begin %2
Tosc €arlier in thebus cycle and the width of RD# and WR# aregl.Tonger than in mode 3.

The Tz py timing is 1 Bsclonger in mode 1 than in mode 3, allowing the memory more time to
get its data on the bus without the wait-state penalty of mode 0., Jhg dnd T,pz timing in

mode 1 is the same as in mode 3.

15-32

Inu® INTERFACING WITH EXTERNAL MEMORY

Tosc
| ———
XTAL 1 \ N \ y \ / \ __/
T
~—TcHcL Telel XHCH
CLKOUT _/ \—/—\ A \
TCHLH TeuL
TLHLH
ALE/ADV# / \ /
| —T| 1| | —]
LHLL TLRL TRHLH
TRLRH
RD# f -«—TRLDV —>|.
= RLAZ
Tavie | TLiax
I<—><—>| <_TRHDZ
Bus Read
AD15:0 »(Address >—« Data In D15:0
8- and16-bit | T |
Bus Mode ¥ AVDV |
Tiiwe
TwLwH
WR¥# N /
] I TouwH iLTWHQX
Bus Write
AD15:0 _>—(Address out X Data Out >—C
8- and 16-bit t Twnex: TRHBX
Bus Mode I._.I
BHE# X BHE Valid ><
—’I I‘— TwHax: TRHAX
1
AD15:8 _>—(AD15:8 Valid 8-bit Bus Mode)—C
1
I<—>| Twhix: TRHIX
INST X INST Valid X
A3098-01

Figure 15-22. Mode 1 System Bus Timing

15.7.4 Mode 2, Long Read/Write with Early Address

Mode 2 (Figure 15-23) is similar to mode 1 in that RD#, WR#, and ALE begigiearlier in
the bus cycle and the widths of RD# and WR# arggl. [bnger than in mode 3. It differs from
mode 1 in that the address is also placed onto the bygedrlier in the bus cycle. The,E,
timing is 1 Togclonger, the T, timing is ¥2 fgclonger, and F,p, is ¥2 Tosc Shorter in mode 2
than in mode 3. This mode trades a longgk,J for a shorter ;.

[| 15-33

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

15.7.5 Design Considerations

In all bus timing modes, for 16-bit bus-width operation, latch the upper and lower address/data
lines. In modes 1 and 2, for 8-bit bus-width operation, also latch the upper and lower address/data
lines; the upper address lines are not drivenuiinoutthe entire bus cycle (see Figures 15-22

and 15-23). In modes 0 and 3, for 8-bit bus-width operation, latch only the lower address/data
lines. In these modes, it is not necessary to latch the upper address lines because these lines al
driven throughout the entire bagcle.

15-34 [|

intel.

INTERFACING WITH EXTERNAL MEMORY

Tosc

XTAL 1 __/r_\—j_\

/N

~— TxHCH

L t—T cHcl —ft——— T o ——————»]
CLKOUT _/ N /N / \
TeHLH = ToL ;
LHLH
ALE/ADV# /| \ /
TLHLL TLLRL
TRLRH
L
RD# P \~—"riov—-1 {
- TrLAZ T
Tavie | Tiiax RHDZ
Bus Read
AD15:0 »(Address Data In D15:0
8- and 16-bit | T |
Bus Mode ¥ AVDV |
| Triwe
[TwiwH
WR# A\
i TovwH i_TWHQX
Bus Write
AD15:0 X Address Out X Data Out ><
8- and 16-bit T T
Bus Mode I<_>| WHBX: TRHBX
BHE# X BHE Valid X
—>| I“TWHAXv TRHAX
1
AD15:0 X AD15:8 Valid 8-bit Bus Mode >—<:
1
I<—>| TwHix: TRHIX
INST X INST Valid X

A3099-01

Figure 15-23. Mode 2 System Bus Timing

15-35

8XC196Kx, Jx, CA USER'S MANUAL Inu®

15.8 SYSTEM BUS AC TIMING SPECIFICATIONS

Refer to the latest data sheet for the AC timings to make sure your system meets specifications.
The major external bus timing specifications are shown in Figure 15-24.

oscC >

s\ — N anan N

TeLeL—> < Ty ¢ TcHeL—>
CLKOUT

—>| [«TcLn —>| [« TLicH
< TLHLH

ALE/ADV# _/ \

< T p —>

y
>

<« T Ed
«— T rL —> <“«—TRLRH —>| RHLH

RD#
T
T RLAZ —>||«—
«— TavLL —> < TRHDz ->|

— TuAX — >)
——(Dman 3000

1
—— TLLwL — > |«— Ty wn —>|¢ TWHLH >

BUS Address Out
Read Cycle
(yele) <—Tavbv

WR#
‘m‘_ —> TwHox
(Write cscheS) Address Out Data Out Address Out
—>| «— Twhex: TRHBX
BHE#, INST —(Valid
—>| <«— TwHax: TRHAX
(8-bi?l\3cl>csi£ Address Out

A3100-01

Figure 15-24. System Bus Timing

15-36

Inte|® INTERFACING WITH EXTERNAL MEMORY

Each symbol consists of two pairs of letters prefixed by (fof time). The characters in a pair
indicate a signal and its condition, respectively. Symbols represent the time between the two sig-
nal/condition points. For examplg, ,, is the time between signal C (CLKOUT) condition L
(Low) and signal D (Input Data) condition V (Valid). Table 15-7 defines the signal and condition
codes.

Table 15-7. AC Timing Symbol Definitions

Signals Conditions
Address G BUSWIDTH R RD# H High
B BHE# H HOLD# W WR#, WRH#, WRL# L Low
BR BREQ# HA HLDA# X XTALL \% Valid
C CLKOUT L ALE/ADV# Y READY X No Longer Valid
D DATA Q Data Out z Floating

Table 15-8 defines the AC timing specifications that the memory system must meet and those that
the device will provide.

Table 15-8. AC Timing Definit ions
Symbol Definition

The External Memory System Must Meet These Specifications

Tavov Address Valid to Input Data Valid

Maximum time the memory device has to output valid data after the 87C196CA, 8XC196Jx, Kx
outputs a valid address.

Tavey Address Valid to BUSWIDTHT Valid

Maximum time after address is valid until BUSWIDTH must be valid. If this specification is
exceeded, the 8XC196Kx may not respond with the specified bus cycle.

Tavyy Address Valid to READY T Setup

Maximum time the memory system has to assert READY after the 87C196CA, 8XC196Kx
outputs the address to guarantee that at least one wait state will occur.

Telov CLKOUT Low to Input Data Valid
Maximum time the memory system has to output valid data after CLKOUT falls.
Terox BUSWIDTHT Hold after CLKOUT Low

Minimum time BUSWIDTH must be held valid after CLKOUT falls. Always 0 ns on the
8XC196Kx.

TeLvx READYTT Hold after CLKOUT Low

Minimum hold time is always 0 ns. If maximum specification is exceeded, additional wait states
will occur.

T 8XC196Kx only; the BUSWIDTH and BHE# pins are not implemented on the 87C196CA, 8XC196Jx.
TT8XC196Kx, 87C196CA only; the READY and INST pins are not implemented on the 8XC196Jx.

15-37

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Table 15-8. AC Timing Definitions (Continued)

Symbol

Definition

The External Memory System Must Meet These Specifications (Continued)

TLLGV

ALE Low to BUSWIDTHT Vvalid

Maximum time after ALE/ADV# falls until BUSWIDTH must be valid. If this specification is
exceeded, the 8XC196Kx may not respond with the specified bus cycle.

TLLYH

ALE Low to READYTT Setup

Maximum time the memory system has to assert READY after ALE falls to guarantee that at
least one wait state will occur. (This specification is included only for comparison with HMOS
device timings.)

TLLYX

READY 't Hold after ALE Low

Minimum time the level of the READY signal must be valid after ALE falls. If the maximum
value is exceeded, additional wait states will occur.

TRHDX

Data Hold after RD# High
Time after RD# is inactive that the memory system must hold data on the bus. Always 0 ns.

TRHDZ

RD# High to Input Data Float

Time after RD# is inactive until the memory system must float the bus. If this timing is not met,
bus contention will occur.

TRLDV

RD# Low to Input Data Valid

Maximum time the memory system has to output valid data after the 87C196CA, 8XC196Jx,
Kx asserts RD#.

The 87C196CA, 8XC196J x, Kx Meets These Specifications

I:>(TAL

Frequency on XTAL

Frequency of the signal input on the XTAL1 input. The internal bus speed of the 87C196CA,
8XC196Jx, Kx device is %2 Fyra, -

TOSC

1/F>(TAL
All AC Timings are referenced to Togc.

TAVLL

Address Setup to ALE/ADV# Low: Length of time address is valid before ALE/ADV# falls. Use
this specification when designing the external latch.

TCHCL

CLKOUT High Period
Needed in systems that use CLKOUT as clock for external devices.

TCHLH

CLKOUT High to ALE/ADV# High (8XC196KS, KT, modes 1 and 2 only)
Time between CLKOUT going high and ALE/ADV# going high. Use to derive other timings.

TC HWH

CLKOUT High to WR# High
Time between CLKOUT going high and WR# going inactive.

TCLCL

CLKOUT Cycle Time
Normally 2 Togc.

TCLLH

CLKOUT Falling to ALE/ADV# Rising
Use to derive other timings.

T 8XC196Kx only; the BUSWIDTH and BHE# pins are not implemented on the 87C196CA, 8XC196Jx.
T18XC196Kx, 87C196CA only; the READY and INST pins are not implemented on the 8XC196Jx.

15-38

intel.

INTERFACING WITH EXTERNAL MEMORY

Table 15-8. AC Timing Definitions (Continued)

Symbol Definition
The 87C196CA, 8XC196J x, Kx Meets These Specifications (Continued)
T CLKOUT Low to ALE/ADV# Low (8XC196KS, KT, modes 1 and 2 only)
Time between CLKOUT going low and ALE/ADV# going low. Use to derive other timings.
Teowt CLKOUT Low to WR# Low
Time between CLKOUT going low and WR# being asserted.
T ALE Cycle Time
Minimum time between ALE pulses.
Ton ALE/ADV# High Period
Use this specification when designing the external latch.
Tiiax Address Hold after ALE/ADV# Low
Length of time address is valid after ALE/ADV# falls. Use this specification when designing the
external latch.
Ticn ALE/ADV# Falling to CLKOUT Rising
Use to derive other timings.
Ture ALE/ADV# Low to RD# Low
Length of time after ALE/ADV# falls before RD# is asserted. Could be needed to ensure proper
memory decoding takes place before a device is enabled.
Tow ALE/ADV# Low to WR# Low
Length of time after ALE/ADV# falls before WR# is asserted. Could be needed to ensure
proper memory decoding takes place before a device is enabled.
Tovw Data Valid to WR# High
Time between data being valid on the bus and WR# going inactive. Memory devices must meet
this specification.
Truax AD15:8 Hold after RD# High
Minimum time the high byte of the address in 8-bit mode will be valid after RD# inactive.
Trusx BHE#T, INSTTT Hold after RD# High
Minimum time these signals will be valid after RD# inactive.
Truwn RD# High to ALE/ADV# Asserted
Time between RD# going inactive and the next ALE/ADV#. Useful in calculating time between
inactive and next address valid.
Truaz RD# Low to Address Float
Used to calculate when the 87C196CA, 8XC196Jx, Kx stops driving address on the bus.
TricL RD# Low to CLKOUT Low
Length of time from RD# asserted to CLKOUT falling edge.
Trirn RD# Low to RD# High
RD# pulse width.

T 8XC196Kx only; the BUSWIDTH and BHE# pins are not implemented on the 87C196CA, 8XC196Jx.
T18XC196Kx, 87C196CA only; the READY and INST pins are not implemented on the 8XC196Jx.

15-39

8XC196Kx, Jx, CA USER'S MANUAL Inu®

Table 15-8. AC Timing Definitions (Continued)

Symbol Definition
The 87C196CA, 8XC196J x, Kx Meets These Specifications (Continued)
Twhax AD15:8 Hold after WR# High
Minimum time the high byte of the address in 8-bit mode will be valid after WR# inactive.
Twhex BHE#T, INSTTT Hold after WR# High
Minimum time these signals will be valid after WR# inactive. (8XC196Kx only)
Twhin WR# High to ALE/ADV# High
Time between WR# going inactive and next ALE/ADV#. Also used to calculate WR# inactive
and next address valid.
Twhox Data Hold after WR# High
Length of time after WR# rises that the data stays valid on the bus. Memory devices must meet
this specification.
Twiwn WR# Low to WR# High
WR# pulse width.
Tynch XTAL1 High to CLKOUT High or Low

T 8XC196Kx only; the BUSWIDTH and BHE# pins are not implemented on the 87C196CA, 8XC196Jx.
T18XC196Kx, 87C196CA only; the READY and INST pins are not implemented on the 8XC196Jx.

15-40

intgl. 1 6

Programming the
Nonvolatile Memory

intel.

CHAPTER 16
PROGRAMMING THE NONVOLATILE MEMORY

The 87C196kk devices contain from 12 Kbytes to 48 Kbytes of one-time-programmable read-
only memory (OTPROM). Table 16-1 lists the devices and OTPROM sizes. OTPROM is similar
to EPROM, but it comes in an unwindowed package and cannot be erased. You can either pro-
gram the OTPROM yourself or have the factorggram it as a quick-turn ROMroduct(this

option may not be available for all devices). This chaptevides proedures and guidelines to

help you program the device. The information is organized as follows.

¢ overview of programming methods (page 16-2)
¢ OTPROM memory map (page 16-2)

* security features (page 16-3)

* programming pulse width (page 16-8)

* modified quick-pulse algorithm (page 16-10)

* programming mode pins (page 16-11)

* entering programming modes (page 16-14)

¢ slave programming (page 16-15)

* auto programming (page 16-26)

¢ serial port programming (page 16-32)

* run-time programming (page 16-44)

NOTE

Some devices may also be available in windowed EPROM packages. In this
manual OTPROMrefers to the device’s internal read-onlymay, whether it
is EPROM or OTPROM, andPROMrefers specifically to EPROM devices.

Table 16-1. OTPROM Sizes for 87C196K x, Jx, CA Devices

87C196JQ, KQ 87C196JR, KR 87C196KS 1 87C196CA, JTT, KT 87C196JVvt
12 Kbytes 16 Kbytes 24 Kbytes 32 Kbytes 48 Kbytes
(2000-4FFFH) (2000-5FFFH) (2000—7FFFH) (2000—-9FFFH) (2000-DFFFH)

TThe 8XC196JT, JV, and KS are offered in automotive temperature ranges only. The 8XC196CA, JQ, JR,
KQ, KR, and KT are offered in both automotive and commercial temperature ranges.

16-1

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

16.1 PROGRAMMING METHODS

You can program the OTPROM by configuring a circuit that allows the device to enter a program-
ming mode. In programming modes, the device executes an algorithm that resides in the internal
test ROM.

¢ Slave programming mode allows you to use an EPROM programmer as a master to
program 8XC196 devices (the slaves). The code and data pyogeammed into the
nonvolatile memory typically resides on a diskette. The EPR®®ddrammer transfers the
code and data from the diskette to its memory, then manipulates the slave’s pins to define
the addresses to be programmed and the contents to be written to those addresses. Using thi
mode, you can program anerify single or multiple words in the OTPROM. This is the
only mode that allows you to read the signatumed andprogrammingvoltages and to
program the PCCBs and unerasable PROM (UPROM) bits. Programming vendors and Intel
distributors typically use this mode to program a large number of microcontrollers with a
customer’s code and data.

¢ Auto programming mode enables the 8XC196 device to act as a master to program itself
with code and data that reside in an external memory device. Using this mode, you can
program the entire OTPROM array ept the UPROM bits and PCCBs. After
programming, you can use the ROM-dump mode to write the entire OTPROM array to an
external memory device to verify its contents. Customers typically use this low-dbsidme
to program a small number of microcontrollers after development and testing are complete.

¢ Serial portprogramming modenables you to download code and data (usually from a
personal computer or workstation) to an 8XC196 device (the dlarm)gh the serial 1/0
port. You can write data to the OTPROM asynchronously via the TXD (P2.0) pin and read
the data via the RXD (P2.1) pin. Customers typically use this mode to download large
sections of code to the microcontroller during software development and testing.

You can also program individual OTPROM locations without entering a programming mode.
With this method, called run-tinfrogramming, your software cants the number and duration

of programming pulses. Customers typically use this mode to download small sections of code to
the microcontroller during software development and testing.

16.2 OTPROM MEMORY MAP

The OTPROM contains customer-specified special-purpose and program memory (Table 16-2).
The 128-byte special-purpose mery partition is used for interrupt vectors, the chip configura-
tion bytes (CCBs)and the security key. Several locations are resefivmetisting or for use in

future products. Write the value (20H or FFH) indicated in Table 16-2 to each reserved location.
The remainder of the OTPROM is available for code storage.

16-2

InU® PROGRAMMING THE NONVOLATILE MEMORY

Table 16-2. 87C196K x OTPROM Memory Map

Address Range (Hex) Description

DFFF (JV) Program memory

2080

9FFF (KT, JT, CA) Program memory

2080

7FFF (KS) Program memory

2080

5FFF (KR, JR) Program memory

2080

4FFF (KQ, JQ) Program memory

2080

207F Reserved (each location must contain FFH)
205E

205D PTS vectors

2040

203F Upper interrupt vectors

2030

202F Security key

2020

201F Reserved (each location must contain FFH)
201C

201B Reserved (must contain 20H)

201A CCB1

2019 Reserved (must contain 20H)

2018 CCBO

2017 OFD flag for QROM or MROM codesT
2016

2015 Reserved (each location must contain FFH)
2014

2013 Lower interrupt vectors

2000

fIntel manufacturing uses this location to determine whether to
program the OFD bit. Customers with QROM or MROM codes who
desire oscillator failure detection should equate this location to the
value OCDEH.

16.3 SECURITY FEATURES

Several security features enable you to control access to both internal and external memory. Reac
and write protection bits in the chip configuration regiSB2R0),combined with a security key,

allow various levels of internal memory protection. Two UPROM bits disable fetches of instruc-
tions and data from external mery. An additional bienables circuitry that can detect an oscil-

lator failure and cause a device reset. (See Figure 16-1 on page 16-7 for more information.)

[| 16-3

8XC196Kx, Jx, CA USER'S MANUAL

intgl.
16.3.1 Controlling Access to Internal Memory

The lock bits in the chip configuration register (CCRO) control access to the OTPROM. The reset
sequence loads the CCRs from the CCBs for normal operation and from the PCCBs when enter-
ing programming modes. You can program®@&Bs usingny of the programming methods, but

only slave programming mode allows you to progtamPCCBs.

NOTE

The developers have made a substantial effort to provide an adequate program
protection scheme. However, Intel cannot and does not guarantee that these
protection methods will always prevent unauthorized access.

16.3.1.1 Controlling Access to the OTPROM Dur ing Normal Operation

During normal operation, the lock bits in CCBO control read and write accesses to the OTPROM.
Table 16-3 describes the options. You gaogram the CCBs using any of the programming
methods.

Table 16-3. Memory Protection for Normal Operating Mode

Read Protect Write Protect Protection Status
LOC1 (CCR0.7) | LOCO (CCRO0.6)

1 1 No protection. Run-time programming is permitted, and the entire
OTPROM array can be read.

1 0 Write protection only. Run-time programming is disabled, but the
entire OTPROM array can be read.

0 1 Read protection. Run-time programming is disabled. If program
execution is external, only the interrupt vectors and CCBs can be
read. The security key is write protected.

0 0 Read and write protection. Run-time programming is disabled. If
program execution is external, only the interrupt vectors and CCBs
can be read.

Clearing CCBO0.6 enables write protection. With write protection enabled, a write attempt causes
the bus controller to cycliéarough the write sequence, but it does not enapj@lwrite data to

the OTPROM. This protects the entire OTPROM array from inadvertent or unauthorized pro-
gramming.

Clearing CCBO0.7 enables read protection and aiste protects the security key to protect it

from being overwritten. With read protection enabled, the bus controller will not read from pro-
tected areas of OTPROM. An attempt to load the gbawgramcounter with an external address
causes the device to reset itself. Because the slave program counter can be as much as four byte
ahead of the CPU program counter, the bus controller might prevent code execution from the last
four bytes of internal memory. The interrupt vectors and CCBs@treead protected because
interrupts can occur even when executing from externaiang

16-4

Int€|® PROGRAMMING THE NONVOLATILE MEMORY

16.3.1.2 Controlling Access to the OTPROM Dur ing Programming Modes

For programming modes, three levels of protectiorasaélable:
¢ prohibit all programming
¢ prohibit all programming, but permit authorized ROM dumps

¢ prohibit serial port programming, but permit authorized ROM dumps, auto programming,
and slave programming

These protection levels are provided by the PCCBO lock bits, the CCBO lock bits, and the internal
security key (Table 16-4). When entering programming modes, the reset sequence loads the
PCCBs into the chip configuration registers. It also [@2@80 into intenal RAM to provide an
additional level of security.

You can progranthe CCBs using any of theqggramming methods, but only slave programming

mode permits access to the PCCBs, and only slave and auto programming allow you to program
the internal security key.

Table 16-4. Memory Protection Options for Programming Modes

(CL(?RCO17) (CL(?RCOO6) Security Key
)) Programmed Protection Status
?
PCCB | CCB | PCCB |CCB ’
1 1 1 No No protection. All programming modes allowed.
X 0 X Yes All programming disabled. ROM-dump permitted with
matching security key.
X X X X Yes Serial programming disabled.
1 0 1 0 Yes Serial programming disabled. Auto and slave
programming permitted with matching security key.
0 X 0 X X All programming unconditionally disabled.

If you want to prohibit albrogramning, clear both PCCBO lock bits. If these bits are cleared,
they prevent the device from entering any programming mode.

If you want to prevent programming, but allow ROM dumps, leave the PCCBO read-protection
bit (PCCBO0.7) unprogrammed and clear the PC@Bte-protection lock bit (PCCBO0.6). To pro-

tect against unauthorized reagspgram an internal security key. The ROM-dump mode com-
pares the internal security key location with an externally supplied security key regardless of the
CCBO lock hits. If the security keys match, the routine continues; otherwise, the device enters an
endless internal loop.

[| 16-5

8XC196Kx, Jx, CA USER'S MANUAL Int€I®

If you want to allow slave and auto programming as well as ROM dumps, leave both PCCBO lock
bits unprogramrad. To protect against unauthorized programming, clear the CCBO lock bits and
program an internal security key. After the device enters either slave or auto programming mode,
the corresponding test ROM routine reads the CCBO lock bits. If either CCBO lock bit is enabled,
the routine compares the internal security key location with an exteswgiptied seurity key.

If the security keys match, the routine continues; otherwise, the device enters an endless internal
loop.

You can program the iatnal security key in either auto or slgu®gramning mode. Once the
security key iprogramned, you must provide a matching key to gain access tpragyamming

mode. For auto programming and ROM-dump modes, a matching security key must reside in ex-
ternal memory. For slave programming mode, you must “program” a matching security key into
the appropriate OTPROM locations with the program word command. The locations are not ac-
tually programmed, but the data is compared to the interoatisekey.

The serial programming mode checks the internal security key regardless of the CCBO lock bits.
This mode has no provision for security key verification. If the security key is blank (FFFFH),
serialprogramming continues. If any word cointga value other than FFFFH, the device enters

an endless internal loop.

WARNING

If you leave the internal security key locations unprogrammed (filled with
FFFFH), an unauthorized person could gain access to the OTPROM by using
an external EPROM with an unprogrammed external securityokayion or

by using slave or serial port programming mode.

16.3.2 Controlling Fetches from External Memory

Two UPROM bits disable external instruction fetches and external data fetches. If you program
the UPROM bits, an attempt to fetch data or instructions from extermabrgeauses a device

reset. Another bit enables circuitry that can detect an oscillator failure and cause a device reset.
You can program the UPROM bits using slave programming mode.

Programming the DEI bit preverttse bus controller from executing external instruction fetches.

An attempt to load the slave program counter with an external address causes the device to rese
itself. Because the slaveggram counter can be as much as four bytes ahead of the CPU program
counter, the bus controller might prevent code execution from the last four bytes of internal mem-
ory. The automatic reset also gives extra protection against runaway code.

Programming the DED bit prevents the bus oahdr from executing external data reads and

writes. An attempt to access data through the bus controller causes the device tolfeSetitse
ting this bit disables ROM-dump mode.

16-6

InU® PROGRAMMING THE NONVOLATILE MEMORY

To program these bitsyrite the correct value to the loca