186/188 User’s Ma

Programmer’s Reference

V0N

2
3
>
S
e

11001

Order Number: 21

intel

IAPX 86, 88, 186 and 188 User’s Manual

Programmer’s Reference

May 1983

Intel Corporation makes no warranty for the use of its products and assumes no responsibility for any errors which may
appear in this document nor does it make a commitment to update the information contained herein.

Intel retains the right to make changes to these specifications at any time, without notice.
Contact your local sales office to obtain the latest specifications before placing your order.
The following are trademarks of Intel Corporation and may only be used to identify Intel Products:

BXP, CREDIT, i, ICE, IICE, ICS, iDBP, iDIS, iLBX, im, iMMX,
Insite, INTEL, intgl, Intelevision, Intellec, intgligent Identifier™,
intglBOS, inteligent Programming™, Intellink, iOSP, iPDS,
iRMS, iSBC, iSBX, iSDM, iSXM, Library Manager, MCS,
Megachassis, Micromainframe, MULTIBUS, Multichannel™
Plug-A-Bubble, MULTIMODULE, PROMPT, Ripplemode,
RMX/80, RUPI, System 2000, and UPI, and the combination of
ICE, iCS, iRMX, iSBC, MCS, or UPI and a numerical suffix.

MDS is an ordering code only and is not used as a product name or trademark. MDS® is a registered trademark of
Mohawk Data Sciences Corporation.

* MULTIBUS is a patented Intel bus.

Additional copies of this manual or other Intel literature may be obtained from:
Intel Corporation
Literature Department

3065 Bowers Avenue
Santa Clara, CA 95051

© INTEL CORPORATION, 1983

PREFACE

This manual describes the iAPX 86,88, and iAPX 186,188 family of microprocessor systems. It is divided into
two volumes.

Volume 1 is a general introduction and contains an overview of the CPUs along with some design information.
In addition, Volume 1 includes a general description of the 8087 numeric processor extension (NPX), the 8089
1/0 processor (IOP), and the 80130 operating system firmware (OSF).

Volume 2 is a reference source, containing detailed hardware information on the major components making up
the systems, the various configurations available and implementation data. Volume 2 also includes the Device
Specifications and several Application Notes.

Volume 1 is divided as follows:
Chapter 1 introduces microcomputer concepts and associated terminology.

Chapter 2 is amoverview of the iAPX 86,88 and the iAPX 186,188 CPU family with its key features. It covers
the CPU Architecture, Memory, Interrupts, the 80186,188 extensions, and a short overview of the 8087, 8089,
and 80130 processors.

Chapter 3 provides a detailed discussion of the programmer’s architecture including the EU and BIU, Register
Structure, Memory structure, I/O Port Organization, Addressing Modes, the Instruction Set and Programming
Examples.

Chapter 4 contains general information, on the block diagram level, needed by the hardware designer to in-
corporate the basic 8086 and 8088 microprocessors into microcomputer systems. Included is a discussion of the
Bus Structures, Multiprocessing and Processor Control.

Chapter 5 contains general information needed by the hardware designer to incorporate the 80186 and 80188
microprocessors into microcomputer systems. Included is a discussion of 8086,88 and 80186,188 Bus
Differences, Multiprocessing, Processor Control and the integrated peripherals of the 80186 and 80188
processors, such as Clock Generator, Chip Select/Ready Logic, DMA Channels, Timers and the Interrupt
Controller.

Chapter 6 describes the 8087 Numeric Processor Extension (NPX). Included is an overview of the processor,
the Architecture, Computational Fundamentals, the Instruction Set, and Programming Examples.

Chapter 7 describes the 8089 Input/Output Processor (IOP). It covers the Processor Overview, Architecture,
1/0, the Instruction Set, Addressing Modes, and Programming Examples.

Chapter 8 describes the 80130 Operating System Firmware (OSF) component. The chapter covers the
Architecture, Multitasking, Multiprogramming, Intertask Coordination, Dynamic Memory Relocation,
Extendability, the Primitives, and Programming Examples.

RELATED DOCUMENTATION

® TheiAPX 88 Book
Describes the Intel iAPX 88 (8088) microprocessor in detail.

® The Peripheral Design Handbook
Contains data sheets and application notes featuring Intel peripheral devices.

® The Intel Component Data Catalog
Contains data sheets for all Intel semiconductor components, including memories and peripherals.

® ASMB86 Language Reference Manual
Describes the assembly language for the 8086/8088 and the 8087.

PREFACE

® ASMS86 Language Reference Manual
Describes the assembly language for the 8086, 88/80186, 188 and the 8087.

® jOSP 86 Support Package Reference Manual

These books, and other documentation, are available from
Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, California 95051

THE INTEL MICROSYSTEM 80 NOMENCLATURE

for all the possible VLSI computer solutions offered. While the components retain their names, Intel has
moved to a new system-based naming scheme to accommodate these new VLSI systems.

The following prefixes have been adopted for Intel’s product lines, all of them under the general heading of Mi-
crosystem 80:

iAPX — Processor Series

iRMX — Operating Systems

iSBC — Single Board Computers
iSBX — MULTIMODULE Boards

In the iAPX Series, the following processor lines are currently defined:

iAPX 86 — 8086 CPU-based system
iAPX 88 — 8088 CPU-based system
iAPX 186 — 80186 CPU-based system
iAPX 188 — 80188 CPU-based system
iAPX 286 — 80286 CPU-based system

Configuration options within each iAPX system are identified by adding a numerical suffix, for example:

iAPX 186/10 — CPU alone (80186)
iAPX 186/11 — CPU + IOP (80186 + 8089)
iAPX 186/20 — CPU with Math Extension (80186 + 8087)
iAPX 186/21 — CPU with Math Extension + IOP
(80186, 8087 + 8089)
iAPX 186/30 — CPU with Operating System Processor
(80186 + 80130)
iAPX 186/40 — CPU with Math Extension + OSP
(80186, 8087 + 80130)

This improved numbering system provides a more meaningful view of the capabilities of Intel’s evolving Mi-
crosystem 80.

As Intel’s product line has evolved, its component-based product numbering system-has become inappropriate

Table of Contents

CHAPTER 1

INTRODUCTION TO MICROCOMPUTERS
1.1 WhatisaMicrocomputer?....... i 1-1
1.2 The CPU ... e e e e e 1-1
1.8 MEMOTY . o e e e 1-1
1.4 Input/Outputorl/ODevices. i, 1-2
1.5 Data, AddressandControlBusses.................. ..., 1-2
1.6 BUSCYCIES . ..o e 1-2
1.7 Interrupts.o 1-3
1.8 DirectMemory ACCeSSottt e e e e 1-3
1.9 AddressingModes. e 1-3
1.10 Intel MicrocomputerComponents 1-3

CHAPTER 2

THE iAPX 86,88,186,188 FAMILY OVERVIEW
21 Introduction e 2-1
2.2 The CPU Architecture. i 2-2
2.3 Memory Addressingv ittt e 2-7
2.4 Interrupts. e e 2-8
2.5 Minimum and Maximum Modes (8086,88 ONLY)................. 2-10
2.6 The80186,188Extensions........... it iiiiinnn.. 2-10
2.7 ThEe 8087 .. .t e 2-12
2.8 The 8089 1/0Processor(IOP)t 2-13
2.9 The 80130 Operating System Firmware (OSF)................... 2-13

CHAPTER 3

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS
3.1 Introduction 3-1
3.2 CPU Architecture. 3-1
3.3 Register Structure 3-3
3.4 Memory Structure e 3-6
3.5 I/0PortOrganization i 3-14
3.6 AddressingModes. e 3-15
3.7 Thelnstruction Set i 3-19
3.8 8086,88 ProgrammingExamples 3-171
3.9 80186,188 ProgrammingExamples........................... 3-191

CHAPTER 4

iAPX 86,88 HARDWARE DESIGN OVERVIEW
4.1 IntrodUucCtion e 4-1
4.2 MultiprocessingFeatures i i 4-1

4.3 Interrupt Structure. e 4-6

gadcame L T

TABLE OF CONTENTS

CHAPTER S

iAPX 186,188 HARDWARE DESIGN OVERVIEW
5.1 Introduction e e 5-1
5.2 80186and 80188 CPUENnhancements 5-1
5.3 BusStructure e e 5-3
B4 Interrupts. e e 5-5
55 ClockGenerator. e e 5-6
5.6 Internal Peripherallinterface i ... 5-7
5.7 ChipSelectUnit. i i 5-8
58 DMA Controller. e e e e 5-12

59 TimerUni* o ..., b-16

5.10 Interrup. sontroller e e 5-18

CHAPTER 6

THE 8087 NUMERIC PROCESSOR EXTENSION
6.1 Introduction e 6-1
6.2 Processor OVerVIeWottt et et e 6-1
6.3 Processor Architecture. i 6-7
6.4 Computation Fundamentals.................. 6-12
6.5 InstructionSet 6-20
6.6 Programming Facilities. 6-48
6.7 Special TOPICS ...ttt e e e e 6-57
6.8 Programming Examples i 6-69

CHAPTER 7

THE 8089 INPUT/OUTPUT PROCESSOR
7.1 Introduction 7-1
7.2 Processor OVEIVIEWttt e e e 7-1
7.3 Processor Architecture. 7-12
7.4 Input/Output. 7-20
7.5 InstructionSet 7-28
7.6 AddressingModes. e 7-35
7.7 Programming Facilities............... - 7-46
7.8 Programming Considerationscouuiiiiriinnnnn.. 7-58

CHAPTER 8

THE 80130 OPERATING SYSTEM FIRMWARE COMPONENT
8.1 IntrodUCHiON . ..ot e e 8-1
8.2 B0130 0OSF OVerIVIEW ..ottt et et ettt e 8-2

8.3 Architecture e e e e e 8-2

TABLE OF CONTENTS

8.4 Multitasking ...t i e et e 8-3
8.5 Multiprogrammingttt ittt e e 8-8
8.6 Intertask Coordination i 8-9
8.7 Dynamic Memory Allocation i, 8-13
8.8 ManagementofObjects i 8-15
8.9 Extendability. e e 8-22
8.10 OSP Primitivesot e e e e 8-23

8.11 AddingiRMX 86 Featurestothe OSP......................... 8-109

Introduction to
Microcomputers

CHAPTER 1
INTRODUCTION TO MICROCOMPUTERS

1.1 WHAT IS A MICROCOMPUTER?

A microcomputer is a system of one or more in-
tegrated circuit devices, using semiconductor
technology and digital logic to implement large
computer functions on a smaller scale.

The Intel iAPX 86,88 and iAPX 186,188 family of
microprocessors, along with other closely related
Intel processors described in this manual, are essen-
tial functional blocks of such microcomputers.

There are three main elements in a microcomputer.
These elements and their functions parallel those
found in all computers. Each has a special role to
play in the overall operation of the computer system.
The block diagram in Figure 1-1 shows these three
elements. They are the central processing unit (CPU),
the memory, and the input/output (1/0) devices or
ports.

1.2 THECPU

The heart of the microcomputer system is the CPU.
It performs the numerical processing (additions,
subtractions, etc.), logical operations, and timing
functions.

CPU operations are controlled by a set of
instructions, called a program. Programs are stored in
the memory. Data is also kept in the memory and
processed according to programmed instructions.
The CPU reads in data and control signals
(instructions) through the input ports, executes one
instruction at a time, and sends data and control sig-
nals to the outside world through the output ports.

A typical CPU consists of the following three func-
tional units: the registers, the arithmetic/logic unit
(ALU), and the control circuitry. Each is briefly de-
scribed below.

Registers provide temporary storage within the CPU
for memory addresses, status codes, and other infor-
mation useful during program execution. Different
microprocessors have different numbers and sizes
of registers. The Intel iAPX 86,88 and the iAPX
186,188 family of microprocessors have 16-bit
registers.

All CPUs contain an arithmetic/logic unit or ALU. The
ALU contains an adder to perform binary arithmetic
operations on the data obtained from memory, the
registers or other inputs. Some ALUs perform more
complex operations such as multiplication and
division. ALUs provide other functions as well,
including Boolean logic and data shifting.

< ADDRESS BUS

Iy,

MEMORY

@ﬁ@

DATA BUS

< CONTROL BUS

Figure 1-1 Microcomputer Block Diagram

1-1

210911

INTRODUCTION TO MICROCOMPUTERS

The ALU also contains flag bits that signal the results
of arithmetic and logical manipulations such as sign,
zero, carry, and parity information.

The control circuitry coordinates all microprocessor
activity. Using clock inputs, the control circuitry
maintains the proper sequence of events required
for any processing task: The control circuitry
decodes the instruction bits and issues control signals
to units both internal and external to the CPU to per-
form the proper processing action.

1.3 MEMORY

Microcomputers generally use semiconductor
devices to store programs and data. Two examples
of these are the RAM - Random Access Memory,
and the ROM - Read Only Memory. To expand
memory space, microcomputer systems often use
some kind of mass storage device such as floppy-
disks or magnetic tape.

1.4 INPUT/OUTPUT OR I/0 DEVICES

1/0 devices, also called peripherals, are the means by
which the the CPU communicates with the outside
world. In a typical microcomputer system with a
CRT terminal, the input ports (or channels) are con-
nected to the keyboard, while the output ports are
connected to hardware that generates the characters
displayed on the screen.

The Intel 8089 Input/Output Processor (IOP) is a
special I/0 device. This device handles the burden of
1/0 processing, thus permitting greater CPU efficien-
cy. Allowing the CPU to perform its tasks in parallel
with the I/O processor is a concept typical of large
mainframes that is here applied to microcomputers.

1.5 DATA, ADDRESS AND CONTROL
BUSSES

The CPU is connected to memory and I/0 by a set
of parallel wires or lines called a bus. As seen in
Figure 1-1, there are three different busses that in-
terface the CPU to other system components: the
data bus, the address bus and the control bus.

Data travels between the CPU, memory, and I/0
over the data bus. This data can either be instructions
for the CPU, or information the CPU is passing to or
from 1/0 ports. In the case of the 8088 and 188, the
data bus is 8-bits wide; in the 8086 and 186, the data
bus is 16-bits wide. :

The CPU uses the address bus to select the desired
memory or I/O device by providing a unique address
that corresponds to one of the memory or I/0 ele-
ments of the system.

The control bus carries control signals to the memory
and I/0 devices, specifying whether data is to go into
or out of the CPU, and exactly when the data is
being transferred.

1.6 BUS CYCLES

As the microcomputer program executes, data is
transferred to and from memory and I/0 devices.
Each instance of data transfer from one part of the
system to another is called a bus cycle (or machine
cycle). The timing of these cycles is done by the CPU
clock signal. Operations like instruction fetch,
memory read, memory write, read from an input
port, or write to an output port are operations taking
place in one or more bus cycles.

The length of bus cycles is determined relative to the
frequency of a clock signal. Typical clock rates at
which microcomputers operate are 5, 8 and 10 MHz.
The 8 MHz versions of the Intel iAPX 86 and 186
have clock cycles of 125 nanoseconds (or .125
microseconds).

At the beginning of a bus cycle, the CPU issues a
code to the address bus to identify the memory loca-
tion or I/O device to be accessed. Next, the CPU
issues an activity command on the control bus.
Third, the CPU either receives or transmits data
over the data bus.

The CPU then performs the logical, arithmetic, or
1/0 operations as required by the instructions.

The CPU keeps track of the instruction sequence
with the program counter register, which contains the
address of the next instruction in memory. In more
recent Intel CPUs, the term ‘program counter’ has
been is replaced by the term ‘instruction pointer’.

Normally, the instruction pointer is incremented
after a given instruction is executed. The CPU auto-
matically fetches instructions from memory,
decodes them, and executes them in sequence until
the program ends, or until special instructions tell it
to execute instructions in other parts of program
memory.

Certain situations can interrupt the normal sequen-
tial flow of instruction execution. For example, a
wait state may be imposed in a given bus cycle to pro-
vide more time for memory or an I/0 device to com-
municate with the CPU. Wait states are needed

210911

INTRODUCTION TO MICROCOMPUTERS

when the rate of data transfer from memory is
slower than the rate at which the CPU requests it. In
such cases, the memory must request a wait state
when it receives the CPU signal that a memory read
or write operation has commenced. After the
memory responds, it signals the CPU to leave the
wait state and continue processing.

1.7 INTERRUPTS

Another situation that alters sequential instruction
execution is an interrupt. For example, consider a
computer which is processing a large volume of
data, portions of which are to be output to a printer.
The CPU can send to the printer a given amount of
data in a single bus cycle, but the printer may take
several bus cycles to print the characters specified by
that data. Thus, the CPU must remain idle until the
printer can accept the next data. The interrupt capa-
bility permits the CPU to output to the printer and
then return to other data processing.

When the printer is ready to accept the next data
byte, it signals the CPU via a special interrupt control
line. When the CPU receives the interrupt signal, it
suspends the main program execution and automati-
cally switches to the instructions that output to the
printer, after which the CPU continues with the
main program execution where processing was
suspended.

Often several interrupting devices share the same
CPU. In order to service all of them, interrupts can
be prioritized. When two or more interrupts occur
simultaneously, the one with the higher priority will
be serviced first.

1.8 DIRECT MEMORY ACCESS

Another feature that improves microprocessor effi-
ciency is direct memory access, also called DMA.

In ordinary input/output operations, the CPU super-
vises the entire data transfer as it executes I/0 in-
structions to transfer data from the input device to
the CPU, and then from the CPU to a specified
memory location. Similarly, data going from
memory to an output device goes by way of the CPU.

1-3

Some peripheral devices transfer information to and
from memory faster than the CPU can accomplish
the transfer under program control. By using DMA,
the CPU allows the peripheral device to hold and
control the bus, transferring the data directly to and
from memory without involving the CPU itself.
When the DMA transfer is done, the peripheral
releases the hold request signal. The CPU then
resumes processing instructions where it left off.

1.9 ADDRESSING MODES

The address that the CPU provides on the address
bus selects one specific memory or I/0 device from
all those available. This address can be generated in
different ways depending on the operation being
performed. The ways of generating these addresses
are called addressing modes.

In the simplest addressing mode, the desired data
item is contained within the instruction being
executed. In a more complex addressing mode, the
instruction contains the memory address of the data.
Or, the instruction may reference a CPU register
that contains the memory address of the data.

Finally, within some microprocessors, the instruc-
tion may tell the control circuitry to generate a com-
plex address that is the sum of several address
components, such as multiple registers plus data con-
tained in the instruction itself.

Generally, the most powerful microprocessors are
the ones with the widest variety of addressing modes
available.

1.10 INTEL MICROCOMPUTER
COMPONENTS

Intel manufactures a complete line of microcomputer
components. These components constitute building
blocks, which can be tailored to fit the performance
needs of a particular application precisely. This
manual describes the following components: the
iAPX 86 (8086) CPU, the iAPX 88 (8088) CPU, the
iAPX 186 (80186) CPU, the iAPX 188 (80188)
CPU, the 8087 Numeric Processor Extension
(NPX), the 8089 1/0 Processor (IOP), and the
80130 Operating System Firmware (OSF).

210911

P,

The IAPX 86.68,186,188
Family Overwew

Ty,
T

S N

CHAPTER 2
THE iAPX 86,88, 186,188 FAMILY OVERVIEW

2.1 INTRODUCTION

The iAPX 86,88 and iAPX 186,188 family consists
of advanced, high-performance microprocessors.
The family includes general data processors (8086,
8088, 80186 and 80188), specialized coprocessors
such as the 8087 numeric processor extension
(NPX) and the 8089 1/0 processor (IOP), as well as
the 80130 operating system firmware (OSF).

Four key architectural concepts shaped the micro-
processor designs. All four reflect the family’s role
as vehicles for modular, high-level language pro-
gramming (in addition to assembly language
programming).

The concepts are:

Memory segmentation,
Operand addressing structure,
Operation register set, and
Instruction encoding scheme.

The iAPX 86,88/186,188 memory segmentation
scheme is optimized for the reference needs of
computer programs, and is separate from the oper-
and addressing structure.

The structure for addressing operands within seg-
ments directly supports the various data types found
in high level programming languages.

An operation register set is provided to support
general computation requirements. It also provides
for optimized operation register sets to do specialized
data processing functions with its inherent multi-
and coprocessor support. ‘

The family uses optimized instruction encoding for
high performance and memory efficiency.

High-level languages using modular programming
have become the norm on large software develop-
ment projects in the last decade. The iAPX
86,88/186,188 microprocessor family with its
memory segmentation scheme is designed for modu-
lar programs. It supports the static and dynamic
memory requirements of program modules, as well
as their communication needs. The register scheme
employs specialized registers and implicit register
usage.

These CPUs are substantially more powerful than
microprocessors previously offered by Intel. High

2-1

performance is realized by combining a 16-bit inter-
nal data path with a pipelined architecture that
allows instructions to be prefetched during spare bus
cycles. A compact instruction format that enables
more instructions to be fetched in a given amount of
time also contributes to the performance.

Software need not be written in assembly language.
These CPUs are designed to provide direct hardware
support for programs written in high-level languages
such as Pascal-86 and Intel’s PL/M-86. However,
routines with critical performance requirements that
cannot be met with a high-level language may be
written in ASM-86 (the 8086/80186 assembly
language) and linked with Pascal-86 or PL/M-86
code.

While these CPUs are totally new designs, they
make the most of the user’s existing investments in
systems designed around the 8080/8085 micropro-
cessors. Many of the standard Intel memory,
peripheral control, and communication chips are
compatible with the 8086,88 and the 80186,188.

Other important features of the family are, in the
case of the 8086 and 8088 CPUs, dual operating
modes (minimum and maximum) and built-in mul-
tiprocessing capability. The 80186 and 80188 CPUs,
on the other hand, integrate many key functions
including a programmable interrupt controller, chip
select logic, two high speed DMA channels, timers,
and a clock generator.

These characteristics, as well as others to be de-
scribed in following chapters, make the iAPX 86,88,
186,188 family suitable for a wide spectrum of micro-
computer applications. Systems can range from the
uniprocessor, minimal-memory designs implement-
ed with a handful of chips (Figure 2-1) to multipro-
cessor systems with up to a megabyte of memory
(Figure 2-2).

2.2 THE CPU ARCHITECTURE

The following sections of this chapter describe the
mainstays of the microprocessor family: the central
processing units. The internal operation of the CPU
and the interaction of the processors with other
devices are discussed in functional terms. Electrical
characteristics, timing, and other hardware related
information may be found in Volume 2 of this set.

210911

THEiAPX 86,88,186,188 FAMILY OVERVIEW

“ r < V'S
l PORT A '
'\
PORT B
8155 M
é M - Rram -
A | 1 4 n'n/a%n l PORT C '
I\
y ‘_}cwc-(
— o TIMER
ADDRESS N
L4
Iy
14 PORT A
a088 'Anonsssunu ' ‘_’
CPU 8755A
h ﬁ EPROM
170
PORT B
conthoL N it
| 4 14
-
A
L4
8185
\h ﬁ 1KX8
8284 AM
cLocK
GEN N
14
A 4 A 4 A 4
Figure 2-1 Small 8088-Based System
I 1/0 MAPPED l | LOCAL |
1/0 DEVICES ROM. RAM RESOURCES
P - j h
4 h_d 1/0 BUS h N 4 LOCAL BUS - N
Al PN L4 A O S L4
8284 8284 8288
CLOCK GENERATOR CLOCK GENERATOR BUS CONTROLLER
h 5 l S
i — i e—

TRANSCEIVERS
AND LATCHES
8089
10P -

A

d

TRANSCEIVERS
AND LATCHES

TL

+

& h_d

s 1 =
[8288 l l 8289 ‘I [TRANSCEIVERS [TRANSCEIVERS [8289 l 8288
BUS CONTROLLER BUS ARBITER AND LATCHES AND LATCHES BUS ARBITER BUS CONTROLLER
‘1 . S | | .
(ﬁj} D
e ~5 MULTIBUS™ SYSTEM BUS 5 % - I\
i
¢ ‘1‘ »
-
MULTIBUS™ CONTROLS MULTIBUS™ CONTROLS
SYSTEM ROM, RAM
Figure 2-2 8086/8088/8089 Multiprocessing System
2-2 210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

Functional Units

Standard microprocessors execute a program by
repeatedly cycling through the steps shown in Figure
2-3. First, the microprocessor must fetch the instruc-
tion to be performed, then it executes the
instruction. Only after the execution is complete is
the CPU ready to fetch the next instruction, execute
that instruction, etc.

The CPU hardware that executes instructions must
obviously wait until the instruction is fetched and
decoded before execution begins. Therefore, in stan-
dard microprocessors, the execution hardware
(primarily the control circuitry and the arithmetic
and logic unit) spends a lot of time waiting for in-
structions to be fetched. The 8086,88 and 80186,188
microprocessors eliminate this wasted time by divid-
ing the internal CPU into two independent functional
units (see Figure 2-4).

The BIU and EU
— Pipelined Architecture

The CPUs have a separate bus interface unit (BIU),
whose only job is to fetch instructions from memory
and pass data to and from the execution hardware
and the outside world. Since the execution unit and
the bus interface unit are independent, the bus inter-
face unit fetches additional instructions while the ex-
ecution unit (sometimes called the EU) executes a
previously fetched instruction. This is made possible
by the instruction pipeline (or queue) between the
bus interface unit and the execution unit. The BIU
fills this pipeline with instructions awaiting
execution. Thus, whenever the execution unit
finishes executing a given instruction, the next in-
struction is usually ready for immediate execution
without delays caused by instruction fetching. Figure
2-5 shows parallel fetching and executing in these
CPUs.

FETCH EXECUTE

FETCH

EXECUTE FETCHe oo

TIME —>

Figure 2-3 Program Execution in Standard Microprocessor

EXECUTION
UNIT

BUS
INTERFACE
UNIT

SYSTEM BUS

PIPELINED ARCHITECTURE PROVIDES PER-
FORMANCE WITH REDUCED BUS “DEAD TIME”

Figure 2-4 Pipelined Internal Architecture

2-3 210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

GET
BIU | FETCH FETCH FETCH FETCH FETCH DATA
EU WAIT EXECUTE EXECUTE EXECUTE

Figure 2-5 Parallel Operation in CPU

Because the BIU is usually busy fetching instructions
for the pipeline, the bus is more fully utilized.
Another benefit of this parallel operation is that
since the execution unit seldom needs to wait for the
BIU to fetch the next instruction, there is less need
for the BIU to fetch data quickly. Maximum perfor-
mance and processing power is thus achieved with-
out high speed memory devices in the system.

This parallel operation of the BIU and EU is trans-
parent to the user, except when program execution
transfers to a new, non-sequential address. When
this happens, the bus interface unit is given the new
address by the execution unit; it then begins fetching
instructions sequentially from the new address. The
execution unit must wait for the next instruction to
be fetched the way most CPUs wait for every instruc-
tion to be fetched. After the first instruction is
fetched from the new location, the bus interface unit
continues to fill the pipeline with instructions, and
fetch-time becomes transparent.

Bus Structure

A summary of the iAPX 86,88 and iAPX 186,188
bus structure is shown in Figure 2-6. There are two
types of buses: system and local. Both buses may be
shared by multiple processors, i.e., both are mul-
timaster buses. Microprocessors are always connect-
ed to a local bus, and memory and I/O components
usually reside on a system bus. The 8086,88 and
80186,188 bus interface components link a local bus
to a system bus.

Register Resources

Figure 2-7 gives an overview of the registers availa-
ble in the 8086,88 and 80186,188 CPUs. These
CPUs have fourteen 16-bit registers. The registers
are grouped into general, control and segment
registers.

General registers are analogous to the accumulators
of first and second generation microprocessors.
They are, in turn, grouped into data, index and
pointer registers. The function of all registers is de-
scribed in more detail in the following paragraphs.

Data Registers

The data registers are unique in that their upper and
lower halves are separately addressable. This means
that each data register can be used interchangeably
as a 16-bit register, or as two 8-bit registers. In their
16-bit form, the data registers are the AX, BX, CX
and DX registers (Figure 2-8). For 8-bit operations,
they are divided into high byte and low byte. AH is
the high byte of the AX register, AL is the low byte
of the AX register, and so on. As mentioned, these
registers have general usage for arithmetic and logi-
cal operations.

Some registers have additional special functions,
which are performed in the execution of certain
instructions. For example, the CX register is fre-
quently used to contain a count value during repeti-
tive instructions, and the BX register is used as a
base register in some of the more powerful address-
ing modes. This implicit use of registers allows a
very compact instruction encoding.

210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

PROCESSING
MODULE
T |
I -_.i PUBLIC
E : MEMORY
] 1
i :
& & y N
S L K 3 3 s
[
LOCAL BUS E
- 4 b 4 &
| 2
| Q
i 3
PROCESSING | PROCESSOR PROCESSOR H
- | U
i
Figure 2-6 Generalized iAPX 86/186 Bus Structure
N
DATA h
> GENERAL
nDEx] [REGISTERS
AH AL AX
POINTER)
BH BL BX
CONTROL
CONTROL } REGISTERS
CH CL CX
i 1 \ segment
| SEGMENT | REGISTERS DH DL DX

Figure 2-7 CPU Register Set Figure 2-8 Data Group Registers

210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

Pointer and Index Registers

Figure 2-9 shows the pointer and index registers.
The BP and SP registers both point to the stack, a
linear array in the memory used for subroutine
parameters, subroutine return addresses, or other
data temporarily saved .during execution of a
program.

Most microprocessors have a single stack pointer
register called the SP. The 8086,88 and 80186,188
have an additional pointer into the stack called the
BP (base pointer) register. While the SP is used
similarly to the stack pointer in other machines (for
pointing to subroutine and interrupt return
addresses), the BP register can contain an old stack
pointer value, or it can mark a place in the subrou-
tine stack independent of the SP register. Using the
BP register to mark the stack saves the juggling of a
single stack pointer to reference subroutine parame-
ters and addresses.

& SP FOR BP

STACK PARAMETER
PASSING SpP

1& DI FOR S|
STRING MANIP. &
DATA STRUCTURES DI
THESE CAN ALSO BE USED AS GENERAL
REGISTERS

Figure 2-9 Base and Index Registers’

The two index registers are the SI (source index)
register and the DI (destination index) register
(Figure 2-9). These are both 16-bits wide and are
used by string manipulation instructions and in
building some of the -more powerful 8086,88 and
80186,188 data structures and addressing modes.
Both the SI and the DI registers have auto-
incrementing and auto-decrementing capabilities.

All base and index registers have general arithmetic
and logical capabilities in addmon to their special
functions.

Control Registers

The control registers consist of two special purpose
registers, the IP or instruction pointer and the Status
Word or Flags register (see Figure 2-105. The IP is
similar to a Program Counter used in some
microprocessors, except that the IP points to the
next instruction to be fetched (by the BIU), whereas
the traditional program counter points to the next in-
struction to be executed. For 8086/186 instructions
that manipulate the IP, however, its contents are ad-
justed to point to the next instruction to be executed.

The Status Word or Flags register contains the flags
or condition codes that reflect the results of arith-
metic or logical operations as they are performed by
the execution unit. (On the 8086,88 this register is
referred to as the Flags register; on the 186,88 it is
referred to as the Status Word register. The contents
of the register is the same in both cases.) The condi-
tion codes are described in detail in Chapter 3 of this
volume.

STATUS WORD

OR FLAGS OF

DF

TF [SF | zF AF PF CF

Figure 2-10 Control Registers

2-6

210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

Segment Registers

Four 16-bit special purpose registers, called segment
registers, are provided in a segment register file.
They are the code segment (CS), stack segment
(SS), data segment (DS) and extra segment (ES).
Segment registers are used by the 8086,88 and
80186,188 in the formulation of memory addresses.
Their usage is described in the following section on
memory addressing.

2.3 MEMORY ADDRESSING

Memory is organized in sets of segments. Each seg-
ment consists of a linear sequence of up to 64K
bytes. These bytes are stored sequentially from byte
00000 to byte FFFFF hex. The memory is addressed
using a two-component address (a pointer) that con-
sists of a 16-bit segment base (specifying the begin-
ning address of the segment in memory) and a
16-bit offset (specifying the address relative to the
beginning of the segment). The base values are con-
tained in one of the four internal segment registers
(CS, DS, SS, ES). A 20-bit physical memory address
is calculated by shifting the base value in the ap-
propriate segment register left by four bits and
adding the 16-bit offset value to it (Figure 2-11).
This form of addressing allows access to one million
bytes of memory.

15
| LOGICAL ADDRESS

~ J

N[

0
OFFSET
ADDRESS

15 0

[SEGMENTREGISTER| | [0 0 0 0]3EGMENT

v

J
ADDER

19 0
20-BIT
PHYSICAL MEMORY ADDRESS

Every 20-bit memory address points either to pro-
gram code, data, or stack area in memory (Figure
2-12). Each of the four different memory spaces is
pointed to by one of segment base registers (Figure
2-13). The code segment register points to the base
of the program currently executing, the stack seg-
ment register points to the base of the stack, the data
segment register points to the base of one data area,
and the extra segment register points to the base of
another area where data may be stored.

MEMORY
0
STACK
CODE - 2222%222222222
DATA 2
ALk])
| Dpatai
EXTRA 3> 7////////////
eSS | PROGRAM
YA
CONTENTS OF SEGMENT REGISTERS
POINT TO THE BASE ADDRESS OF THE
CORRESPONDING AREAS IN MEMORY.

Figure 2-12 Segment Registers

IMPLICIT
SELECTION
CODE ‘ SEGMENT
TACK
STAC & | LoaicaL
DATA ADDRESS
—]
EXTRA
SEGMENT, 20 BIT
REGISTERS PHYSICAL
ADDRES

Figure 2-11 Memory Addressing

2-7

Figure 2-13 How an Address Is Built

210911

THEiAPX 86,88,186,188 FAMILY OVERVIEW

Generating Addresses

Each time the CPU needs to generate a memory
address, one of the segment registers is automatical-
ly chosen and its contents added to a logical address.

For an instruction fetch, the code segment register is
automatically added to the logical address (in this
case, the contents of the instruction pointer) to com-
pute the value of the instruction address.

For an instruction referencing the stack, the stack
segment register is automatically added to the logical
address (the SP or BP register contents) to compute
the value of the stack address.

For a data reference operation, where either the data
or extra segment register are chosen as the base, the
logical address can be made up of many different
types of values: it can be simply the immediate data
value contained in the instruction, or it can be the
sum of an immediate data value, plus a base
register, plus an index register. Generally, the selec-
tion of the DS or ES register is made automatically,
though provisions do exist to override this selection.

Since logical addresses are 16-bits wide, up to 64K
(65,536) bytes in a given segment may be addressed
without changing the value of the segment base
register. In systems that use 64K or fewer bytes of
memory for each memory area (code, stack, data
and extra), the segment registers can be initialized
to zero at the beginning of the program and then
ignored, since zero plus a 16-bit offset yields a 16-bit
address. In a system where the total amount of
memory is 64K bytes or less, it is possible to set all
segment registers equal and have fully overlapping
segments.

Segment registers are also very useful for large pro-
gramming tasks, which require isolation of program
code from the data area, or isolation of module data
from the stack information, etc.

- Segmentation makes it easy to build relocatable and
reentrant programs. In many cases, the task of
relocating a program (relocation means having the
ability to run the same program in several different
areas of memory without changing addresses in the
program itself) simply requires moving the program
code and then adjusting the code segment register to
point to the base of the new code area. Since pro-
grams can be written for the 8086,88 or 80186,188 in
which all branches and jumps are relative to the in-
struction pointer, it does not matter what value is
kept in the code segment register.

2-8

Figure 2-14 shows how an entire process, consisting
of code, stack and data areas, can be relocated.
Likewise, in a reentrant program, a single program
uses multiple data areas. Before the reentrant code is
entered the second time, the data segment register
value is changed so that a different data area is made
available to the program.

Addressing Modes

The 8086,88 and 80186,188 provide 24 different
addressing modes. Various logical address combina-
tions are shown in Figure 2-15, from the simplest im-
mediate data mode to the register addressing mode,
where a selected register contains the data being
used by the instruction. In the direct addressing
mode, the instruction itself contains the address of
the data. In the register indirect mode, the instruc-
tion points to a register containing the memory ad-
dress of the desired data. There are both indexed
and based addressing modes where the contents of
an index or base register is added to an immediate
data value contained in the instruction to form the
memory address.

Exactly how the 8086,88 and 80186,188 select an ad-
dressing mode for a given instruction is encoded
within the bits of the instruction code. This is de-
scribed in more detail in Chapter 3.

2.4 INTERRUPTS

The interrupt system of the 8086,88 and 80186,188
is simple but versatile. Interrupts may be triggered
by devices external to the CPU or by software inter-
rupt instructions or, under certain conditions, by the
CPU itself.

Every interrupt is assigned a type code that identifies
it to the CPU. The type code is used by the CPU to
point to a location in the memory based interrupt
vector table containing the address of the interrupt
routine. This interrupt vector table can contain up to
256 vectors for different interrupt types.

Interrupts 0-31 are reserved by Intel

The following sections provide a general introduc-
tion to interrupt processing for the 8086,88 and
80186,188 CPUs. For more detailed information,
see Chapter 4, Section 4.3 (8086,88) and Chapter 5,
Section 5.4 (80186 188).

210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

MEMORY
BEFORE RELOCATION

MEMORY
AFTER RELOCATION

- 7/
Wi : '////////

TO RELOCATE AN ENTIRE PROCESS MOVE THE CODE,
STACK, AND DATA, AND UPDATE THE SEGMENT REGISTER
CONTENTS TO POINT TO THE NEW AREAS.

Figure 2-14 Process Relocation

MODE LOCATION OF DATA
IMMEDIATE WITHIN INSTRUCTION
REGISTER IN REGISTER
DIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN

INSTRUCTION.

REGISTER INDIRECT

AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN
REGISTER.

INDEXED OR BASED

AT MEMORY LOCATION POINTED TO BY SUM OF INDEX REGISTER
OR BASE REGISTER CONTENTS AND IMMEDIATE DATA CONTAINED
IN INSTRUCTION.

BASED AND INDEXED
WITH DISPLACEMENT

MEMORY ADDRESS IS SUM OF BASE REGISTER CONTENTS AND
INDEX REGISTER CONTENTS AND IMMEDIATE DATA.

THE LOCATION OF DATA IS REALLY THE LOGICAL ADDRESS, WHICH IS ADDED TO THE SEGMENT
REGISTER VALUE TO FORM THE PHYSICAL MEMORY ADDRESS.

Figure 2-15 iAPX 88 Addressing Modes

2-9 210911

THEiAPX 86,88,186,188 FAMILY OVERVIEW

External interrupts

The 8086,88 have two inputs that may be used by ex-
ternal devices to signal interrupts, the INTR
(Interrupt Request) line, and the NMI (Non-
Maskable Interrupt) line. The INTR line is usually
driven by a PIC, such as Intel’s 8259A Programma-
ble Interrupt Controller, which in turn is connected
to the devices that need interrupt service.

The 80186,188 have five inputs for use by external
devices to signal interrupt requests: the four INT
lines (INTO-INT3) and the NMI line. Two of the
INT lines may function as dedicated interrupt ac-
knowledge outputs. This capability is included to
allow external expansion of the PIC using multiple
8259As (see Chapter 5, Section 5.10, for a detailed
discussion of this facility).

On both the 8086,88 and 80186,188 CPUs, the NMI
input line is generally used to signal the CPU of a
“catastrophic” event, such as imminent loss of
power, memory error, or bus parity error. Interrupt
requests arriving on the NMI cannot be disabled.
They are latched by the CPU, and have higher priori-
ty than an interrupt request on INTR or INTO0-3.

Internal Interrupts

Internal interrupts are generated by two instructions
(INT and INTO), by conditions resulting from the
execution of two instructions (DIV, IDIV), and by
most instructions when the Single Step flag in the
Flags or Status Word register is set. In addition to all
these, the 80186,188 provide interrupts generated
by the integrated peripherals (see Section 2.6), by
two instructions (ESC and BOUND) and by the oc-
currence of undefined opcodes.

A detailed discussion of interrupts is included in
Chapters 4 and 5, which deal with the 8086,88 and
the 80186,188 respectively, as well as in Volume 2 of
this set, which covers the hardware details of inter-
rupts for both CPUs.

2.5 MINIMUM AND MAXIMUM MODES
(8086,88 ONLY)

A unique feature of the 8086,88 CPUs is the ability
of a user to define a subset of the CPU’s control
signal outputs to tailor it to its intended system
environment.

In the minimum mode, the CPU supports small,
single-processor systems (usually single board) that
consist of a few devices, and that use a local bus
rather than support the Multibus architecture. In

this mode, the CPU itself generates all bus control
signals and the command output signal. It also pro-
vides a mechanism for requesting bus access that is
compatible with bus master type controllers.

In the maximum mode (typically used for multiple
board systems), an Intel 8288 Bus Controller is
added to provide a sophisticated bus control function
and compatibility with the Multibus architecture. In
this mode, the bus controller, rather than the CPU,
provides all bus control and command outputs, and
allows pins previously delegated to these functions
to be redefined to support multiprocessing
functions. This mode is also required to support pro-
cessor extensions, i.e., the 8087 Numerical Processor
Extension, the 8089 Input/Output Processor, and
the 80130 Operating System Firmware.

2.6 THE80186,188 EXTENSIONS

The 80186 and 80188 CPUs integrate, in addition to
the features of the 8086 and 8088 CPUs, a chip-select
logic unit, two independent high-speed DMA
channels, three programmable timers, a programma-
ble interrupt controller and a clock generator (see
Figure 2-16). These extensions are discussed in
Chapter 5.

The register set of the 80186,188 is identical to that
of the 8086,88 with the minor exception that the
8086,88 Flags register is referred to as the Status
Word register in the 80186,188; the contents of the
two registers is the same. The 80186,188 is object
code compatible with the 8086,88 and adds ten addi-
tional instruction types to the existing 8086,88 in-
struction set.

Integrated Peripherals

All the 80186,188 CPU integrated peripherals are
controlled by 16-bit registers contained in a 256-byte
control block, which may be mapped into either the
memory or I/O space. A 16-bit relocation register
within this control block contains the base
addresses. The integrated peripherals operate semi-
autonomously from the CPU.

The 80186,188 Chip-Select Logic

The chip-select logic provides programmable chip-
select generation for both memories and peripherals.

Six memory chip-select outputs are provided for 3
address areas: upper memory, lower memory, and
midrange memory. The range of each chip-select is

2-10 210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

ety

uslhy

ENHANCED

8086-2 or
CLOCK =1 'g088-2

CPU

INTERRUPTS TIMERS

¥

Lo 3

¢ INTERNAL BUS
‘
A J\;
vy
c LOGIC
[N Z
Y oY hvd

Figure 2-16 iAPX 186,188 Block Diagram

user programmable. The 80186,188 can also gener-
ate chip-selects for up to seven peripheral devices.

In addition, the chip-select logic can be programmed
to provide READY (or WAIT state) generation.

DMA Channels

The 80186,188 DMA controller provides two inde-
pendent high-speed DMA channels. This controller
can transfer data between memory and 1/0, between
memory and memory, or between I/0 and /0. Data
can be transferred in bytes or in words (bytes only in
the case of the 188) and may be transferred to or
from even or odd addresses. The channels maintain
both a 20-bit source and destination pointer which
can be optionally incremented or decremented after
each data transfer.

Each DMA channel has six registers in the control
block defining the channels specific operation. The
channels may be programmed to always give priority
to one channel over the other, or they may be pro-
grammed to alternate cycles when both have DMA
requests pending.

Timers

The 80186,188 include three internal 16-bit pro-
grammable timers. Two of these are highly flexible
and are connected to external pins. They can be used
to count external events, time external events,
generate nonrepetitive waveforms, etc. The third
timer is not connected to external pins, and is useful
for real-time coding and time delays.

The timers are controlled by eleven 16-bit registers
in the internal peripheral control block. A timer
mode/control register within this block allows the
user to program the specific mode of operation or
check the current programmed status for any of the
timers.

Each timer has a 16-bit count register, the current
contents of which may be read or written to by the
CPU at any time.

Interrupt Controller

The 80186,188 can receive interrupts from a
number of sources, both internal and external. The

210911

THEiIAPX 86,88,186,188 FAMILY OVERVIEW

internal interrupt controller serves to merge these
requests on a priority basis, for individual service by
the CPU.

The interrupt controller has its. own control
registers, used to set the mode of operation for the
controller. Internal interrupt sources can be disabled
by their own control registers or by mask bits from
the interrupt controller.

The interrupt controller resolves priority among
simultaneously pending requests. Nesting is
permitted, i.e., interrupt service routines may be in-
terrupted by those of equal or higher priority.

If interrupts are undesirable, the controller may be
used in a polled mode. When polling, the processor
disables interrupts and then simply polls the inter-
rupt controller (rather than the individual interrupt
sources) whenever it is convenient.

Clock Generator

The on-chip clock generator provides both internal
and external clock generation. It includes a crystal
oscillator, a divide-by-two counter, synchronous
and asynchronous ready inputs, and reset circuitry.

The oscillator circuit is designed to operate with a
parallel resonant fundamental mode crystal. The
crystal frequency is double the CPU clock frequency.
An external oscillator may be used instead of the
crystal, which may be connected directly to the X1
input in lieu of a crystal, with X2 left open.

2.7 THE 8087

The 8087 Numeric Processor Extension (NPX) per-
forms arithmetic and comparison operations (using
80-bit internal registers) on a variety of numeric
data types. It also executes numerous built-in tran-
scendental functions such as log, tangent, etc. In con-
junction with the maximum mode 8086,88 CPUs, or
the 80186,188 CPUs, the NPX effectively extends
the register and instruction sets of the host CPU and
adds several new data types as well. The 8087 block
diagram is shown in Figure 2-17.

The 8087 uses the standard iAPX 86/186 family in-
struction set plus over fifty numeric instructions.
Programs can be written in ASM-86 assembly
language, or in the Intel high-level languages
PL/M-86, Fortran-86 and Pascal-86. From the stand-
point of the programmer the NPX is not perceived
as a separate device; instead, the computational abili-
ties of the CPU appear greatly expanded.

The 8087 adds extensive high-speed numeric pro-
cessing capabilities to the CPU. It conforms to the
IEEE format for single- and double-precision floating
point numbers. Even for programmers who are not
expert in the problems of numerical analysis (for
instance, the accumulation of rounding errors which
may result from a long chain of floating point
calculations), the 8087 will provide correct results,
and is straightforward and easy to program. Chapter
6 of this volume describes the software aspects of
the 8087, Chapter 3 of Volume 2 covers the
hardware.

HOST CPU (8086 or 8088)

NUMERIC DATA PROCESSOR (8087)

EXECUTION ! BUS
UNIT INTERFACE
UNIT

<' DATA

BUS INTERFACE UNIT | FLOATING POINT EXECUTION UNIT

|

L A CONTROL

INSTRUCTIONS) N
DATA]
BLOCK
OPERAND l
QUEUE

ALU

ADDRESS/STATUS

ADD

|
|
|
AND
BUS TRACKING !
|
|
.

Figure 2-17 Numeric Data Processor Block Diagram

2-12 210911

THE iAPX 86,88,186,188 FAMILY OVERVIEW

2.8 THE 8089 1/0 PROCESSOR (I0P)

The 8089 Input/Output Processor is a high-
performance, general purpose I/0 system on a chip
(see Figure 2-18). It is an independent microproces-
sor that optimizes input/output operations. It is de-
signed to remove all I/0 details from applications
software. Responding to the CPU direction, but ex-
ecuting its own instruction stream in parallel with
other processors, it can transfer 16-bit data at rates
up to 1.25 megabytes per second.

In conjunction with the 8086,88, the 8089 combines
the attributes of both a CPU and a DMA controller
to provide a powerful I/0 subsystem. I/O subsystem
changes or upgrades can be made without impact to
application software.

The CPU communicates with the IOP in two modes:
initialization and command. The IOP has two inde-
pendent channels, each with its own register set,
channel attention, interrupt request and DMA con-
trol signals.

Programs are written in ASM-89, the 8089 assembly
language. About 50 basic instructions are available,
including general purpose instructions similar to
those found in CPUs as well as instructions specifi-
cally tailored for I/O operations.

In the case of the 80186,188 and 8089 combination,
the 8089 is used in the remote mode only. This is de-
scribed in Chapter 7 of this manual; hardware con-
siderations are in Volume 2, Chapter 4.

2.9 THE 80130 OPERATING SYSTEM
FIRMWARE (OSF)

The 80130 firmware (software in silicon) is, in con-
junction with the 8086,88 or 80186,188 CPUs, the
nucleus of a real-time, high-performance multitask-
ing operating system. The 80130 adds task
management, interrupt management, message
passing, synchronization and memory allocation
capabilities to the CPU. A block diagram of the OSF
is shown in Figure 2-19.

The 80130 OSF has five operating system data types:
jobs, tasks, segments, mailboxes and regions. To
create, manipulate and delete these data types, the
80130 uses 35 operating-system instructions or
primitives. Programs using the 80130 primitives may
be written in ASM-86, PL/M-86, Fortran-86 or
Pascal-86.

The OSF contains a 16-bit operating-system, a pro-
grammable interrupt controller, delay timers, and a
variable baud-rate generator, thus replacing about
10 LSI ICs in a system. It is connected directly to the
multiplexed address/data bus of the 8086,88 or
80186,188 CPUs.

Scheduling of tasks is based on priority. Each task is
given a priority and interrupt level relative to other
tasks when created, but priorities may be altered
dynamically. The design approach used in the 80130
OSF is one common to mini and mainframe
computers.

The 80130 OSF is described in detail in Chapter 8;
hardware considerations are found in Chapter §,
Volume 2.

HOST CPU (8086 or 8088)
N ™ PERIPHERALS
execution | BASE
UNIT | INTERFACE 1/0 PROCESSOR (8089) CRT'S
\ UNIT
! 10 DISKETTES
1 CHANNEL 1
l 1%}
2
' g ! 3
\ a i
H g
= DMA 1
14
%
t PRIVATE MEMORY
PUBLIC MEMORY CHANNEL 1 PROGRAM
10
PROGRAM CHANNEL 2
CHANNEL 2 PROGRAM
DATA ~J
~J

Figure 2-18 1/0 Processor Block Diagram

2-13 210911

THEIAPX 86,88,186,188 FAMILY OVERVIEW

HOST CPU (8086,88,186,188)

T
]
[} mrznagpr 7
EXECUTION UNIT BUS LOGI
| INTERFACE UNIT conTRoL
]
I
H ADDR/DATA BUS «
'
I
]
SYSTEM
| TIMER SYSTEM
: STATUS/CONTROL BUS
]
1
[}
H
DELAY
TIMER > DELAY
BAUD RATE
GENERATOR [[> BAUDRATE
KERNAL CONTROL STORE

Figure 2-19 80130 (OSP) Block Diagram

2-14 210911

':2:%

The /APX 86 88 and
IAPX 186,188
Architecture and
Instructions

o

CHAPTER 3
THE iAPX 86,88 and iAPX 186,188
ARCHITECTURE AND INSTRUCTIONS

3.1 INTRODUCTION

This chapter describes the programmer’s architec-
ture of the iAPX 86,88 and iAPX 186,188 CPUs. It
is divided into the following sections:

CPU Architecture
Register Structure
Memory Structure

1/0 Port Organization
Addressing Modes
Instruction Set
Programming Examples

3.2 CPU ARCHITECTURE

The two independently operating functional units of
the CPU, the BIU and EU, are able, under most
circumstances, to extensively overlap instruction
fetch with execution. The result is that, in most
cases, the time normally required to fetch instruc-
tions “disappears” because the EU executes instruc-
tions that have already been fetched by the BIU.
Figure 3-1 illustrates this overlap and compares it
with traditional microprocessor operation. In the
example, overlapping reduces the elapsed time re-
quired to execute three instructions, and allows two
additional instructions to be prefetched as well.

|

ELASPED TIME

GENERATION

|
sECOND cpu: Eaxécunﬂ IFETCH] lREADI lexscun-:]
MICROPROCESSOR

N N Ol
EU: EXECUTE EXECUTE
8086/8088 Frex r'——'l SHEN
MICROPROCESSOR BIU: ! FETFﬂ,] | FETCH | EW\RITEg

I READ I

BUS:EUSYJ I BUSY l [BUSY I I BUSY I l BUSV] [BUSY]

INSTRUCTION STREAM

N

E

1st INSTRUCTION (ALREADY FETCHED):
EXECUTE AND WRITE RESULT

2nd INSTRUCTION:
EXECUTE ONLY

3rd INSTRUCTION:
READ OPERAND AND EXECUTE

4th INSTRUCTION:
(UNDEFINED)

5th INSTRUCTION:
(UNDEFINED)

Figure 3-1 Overlapped Instruction Fetch and Execution

3-1 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCfIONS

Execution Unit

In the execution unit, a 16-bit ALU maintains the
CPU status and control flags, and manipulates the
general registers and instruction operands. All regis-
ters and data paths within the EU are 16 bits wide
(Figure 3-2).

The EU has no connection to the system bus, the
““outside world.” It obtains instructions from a
queue maintained by the BIU. Likewise, when an in-
struction requires access to memory or to a peripher-
al device, the EU requests the BIU to fetch or store
the data. All addresses manipulated by the EU are
16 bits wide. However, the address relocation facility
provided by the BIU provides the EU with access to
a full megabyte of memory space.

Bus Interface Unit

The BIUs of the 8088/80188 and the 8086/80186 are
functionally identical, but are implemented different-
ly to match the data path size of their buses, which
are 8 bits and 16 bits respectively.

The BIU performs all bus operations for the EU.
Data is transferred between the CPU and memory
or I/0 devices upon demand from the EU.

In addition, during periods when the EU is busy ex-
ecuting instructions, the BIU “looks ahead” and
fetches more instructions from memory. The in-
structions are stored in an internal RAM array called
the instruction stream queue. The 8088/80188 in-
struction queue holds up to four bytes of the instruc-
tion stream, while the 8086/80186 queue can store
up to six instruction bytes. These queue sizes keep
the EU supplied with prefetched instructions under
most conditions without monopolizing the system
bus.

EXECUTION UNIT (EV)

GENERAL
REGISTERS

BUS INTERFACE UNIT (BIU)

SEGMENT
REGISTERS

INSTRUCTION
POINTER

1

ADDRESS
GENERATION

MULTIPLEXED BUS
———————————

AND BUS
CONTROL

1]

INSTRUCTION
QUEUE

____.__....’________'__.._____._.__.__._._

Figure 3-2 Execution and Bus Interface Units (EU and BIU)

3-2

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

The 8088/80188 BIU fetches another instruction
byte whenever there is one empty byte in its queue,
and there is no active request for bus access from
the EU. The 8086/80186 BIU operates similarly
except that it does not normally initiate a fetch until
there are two empty bytes in its queue.

The 8086/80186 BIU will generally obtain two in-
struction bytes per fetch; if a program transfer forces
fetching from an odd address, the BIU automatically
reads one byte from the odd address and then
resumes fetching two-byte words from the subse-
quent even address.

Under most circumstances, the queue contains at
least one byte of the instruction stream, and the EU
does not have to wait for instructions to be fetched.
The instructions in the queue are those stored in the
memory locations immediately adjacent to and
higher than the instruction currently being
executed. That is, they are the next logical instruc-
tions so long as execution proceeds serially. If the
EU executes an instruction that transfers control to
another location, the BIU fetches the instruction
from the new address, passes it immediately to the
EU, and then begins refilling the queue from the
new location (no flushing of the previous contents is
necessary). In addition, the BIU suspends instruction
fetching whenever the EU requests a memory or 1/0
read or write (except that a fetch already in progress
is completed before executing the EU’s bus request).

3.3 REGISTER STRUCTURE

The 8086,88 and 80186,188 contain the same basic
set of fourteen registers as shown in Figure 3-3.
These registers are grouped into the following
categories: general registers, segment registers, and
status and control registers.

General Registers

The CPUs have eight 16-bit general registers. They
are divided into two files of four registers each: the
data register file and the pointer and index register
file.

The upper and lower halves of the data registers are
separately addressable. This means that each data
register can be used interchangeably as a 16-bit
register, or as two 8-bit registers.

The 16-bit data registers are named AX, BX, CX,
and DX; the 8-bit registers are named AL, AH, BL,
BH, CL, CH, DL, and DH (the H or L suffix desig-
nates high-order or low-order byte of the 16-bit
register). The other registers are always accessed as
16-bit units only.

The data registers can be used in most arithmetic
and logic operations. Some instructions (e.g. string
instructions), however, require certain general regis-
ters for specific uses (see Table 3-1). This implicit
register use allows a more compact instruction
encoding.

Table 3-1 Implicit Use of General Register

REGISTER OPERATIONS

AX Word Multiply, Word Divide,
Word I/0

AL Byte Multiply, Byte Divide,
Byte I/0, Translate, Decimal
Arithmetic

AH Byte Multiply, Byte Divide

BP Enter, Leave (186, 188 only)

BX Translate

CX String Operations

CL Variable Shift and Rotate

DX Word Multiply, Word Divide,
Indirect 170

SP Stack Operations

Sl String Operations

DI String Operations

The pointer and index registers consist of the 16-bit
registers SP, BP, SI, and DI as shown in Figure 3-3.
They can also be used in most arithmetic and logic
operations. These registers usually contain offset ad-
dresses for addressing within a segment. They
reduce program size by eliminating the need for
each instruction to specify frequently used
addresses. These registers serve another function;
they provide for dynamic logical address computa-
tion as described in the section on operand
addressing. The pointer and index registers are also
used implicitly in some instructions (Table 3-1).

As shown in Figure 3-3, this register file is divided
into the pointer subfile (SP and BP) and the index
subfile (SI and DI). The pointer registers provide
convenient access to the current stack segment (as
opposed to the data segment). Unless otherwise
specified in the instruction, pointer registers refer to
the current stack segment while index registers refer
to the current data segment. In certain instances,
specific uses of these four registers are indicated by
the mnemonic phrases ‘‘stack pointer,” ‘“base
pointer,” “source index,” and “destination index.”

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DATA REGISTERS

7 07 0
AX AH AL
BX BH BL
CX CH CL
DX DH DL

POINTER AND INDEX REGISTERS

15 0
SP STACK POINTER
BP BASE POINTER
S| SOURCE INDEX
DI DESTINATION INDEX

SEGMENT REGISTERS

15 0
CS CODE
DS DATA
SS) STACK
ES EXTRA

INSTRUCTION POINTER AND FLAGS

" 15 T INSTRUCTION
STATUS WORD [olo]i]r]s]z] [a] [r]| |c o
) ORFLAGS 5 11109 8 7 6 5 4 3 2 1 0

Figure 3-3 Register Structure

3-4

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Segment Registers

The segment registers are also 16-bit registers.
These registers specify the four currently addressable
memory segments: CS (code segment), DS (data
segment), SS (stack segment), and ES (extra
segment). All instructions are fetched from the cur-
rent code segment, offset by the instruction pointer
(IP) register. Operand fetches are usually made from
the current data segment (DS) or the current stack
segment (SS), depending on whether the offset ad-
dress was calculated from the contents of a pointer
register. For the exceptional cases where operand
references are required outside the default segment,
a segment override prefix may be added to the in-
struction to designate the required segment.

Status and Control Registers

The status and control registers consist of the in-
struction pointer and the status word or flags.

The 16-bit instruction pointer (IP) is analogous to
the program counter (PC) in earlier CPUs and
points to the next instruction. The instruction point-
er is updated by the BIU so that it contains the offset
(distance in bytes) of the next instruction from the
beginning of the current code segment. During
normal execution, the IP contains the offset of the
next instruction to be fetched by the BIU. However,
for all instructions that manipulate the IP, the con-
tents of IP are adjusted to point to the next instruc-
tion to be executed, for example, when the IP is
pushed on the stack or is used to calculate the ad-
dress of a relative jump.

The status word or flags is a 16-bit register consisting
of three control flags and six status flags (see Figure
3-4). The status flags record specific characteristics
of the result of logical and arithmetic instructions
(bits 8, 9, and 10); the six status flags control the op-
eration of the CPU within a given operating mode
(bits 0, 2,4, 6,7, and 11).

The status flags provide status information that the
EU posts to reflect certain properties of the result of
an arithmetic or logic operation. A group of instruc-
tions is available that allows a program to alter its ex-
ecution depending on the contents of the status
flags, that is, on the result of a prior operation. Table
3-2 summarizes the status word or flag bit functions.

Different instructions affect the status flags
differently; in general, however, the flags reflect the
following conditions:

1) If AF (the auxiliary flag) is set, there has been a
carry out of the low nibble (the low order 4-bits of a
byte) into the high nibble or a borrow from the high
nibble into the low nibble of an 8-bit quantity
(low-order byte of a 16-bit quantity). This flag is
used by decimal arithmetic instructions.

2) If CF (carry flag) is set, there has been a carry

out of, or a borrow into, the high-order bit of the

result (8- or 16-bit). The flag is used by instructions
that add and subtract multibyte numbers. Rotate in-
structions can also isolate a bit in memory or a regis-
ter by placing it in the carry flag.

STATUS FLAGS:
CARRY

PARITY

AUXILIARY CARRY

ZERO

SIGN

OVERFLOW
15 14 13 12 11

srarus wono: [T & [or [o T T e T e T+ T e]

CONTROL FLAGS:
TRAP FLAG
INTERRUPT ENABLE
DIRECTION FLAG

k\‘\\‘ INTEL RESERVED

Figure 3-4 Status Word or Flags Format

210911

e

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Table 3-2 Status Word or Flags
Bit Functions

Bit

Position Function

Name

0 CF Carry Flag—Set on high-order bit-

carry or borrow; cleared otherwise

2 PF Parity Flag—Set if low-order 8 bits
of result contain an even number of

1-bits; cleared otherwise

Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

Zero Flag-Set if result is zero;
cleared otherwise

Sign Flag—Set equal to high-order
bitof result (0if positive, 1 if negative)

Single Step Flag—Once set, a sin-
gle step interrupt occurs after the
next instruction executes. TF is
cleared by the single step interrupt.

Interrupt-enable Flag—When set,
maskable interrupts will cause the
CPU to transfer control to an inter-
rupt vector specified location.

Direction Flag—Causes string
instructions to auto decrement
the appropriate index register
when set. Clearing DF causes
auto increment.

11 OF Overflow Flag—Set if the signed
result cannot be expressed
within the number of bits in the
destination operand; cleared

otherwise

3) If OF (the overflow flag) is set, an arithmetic
overflow has occurred; that is, a significant digit has
been lost because the size of the computation ex-
ceeded the capacity of its destination location. An op-
tional Interrupt On Overflow instruction is available
that generates an interrupt in this situation.

4) If SF (the sign flag) is set, the high-order bit of
the result is a 1. Since negative binary numbers are
represented by standard two’s complement
notation, SF indicates the sign of the result
(0=positive, 1 =negative).

5) If PF (the parity flag) is set, the result has even
parity. This flag can be used to check for data trans-
mission errors. (Only the low-order 8 bits are
tested.)

6) If ZF (zero flag) is set, the result of the operation
is 0.

The three control flags are used by programs to alter
processor operations in specified ways. The direction

flag controls the direction of the string manipula-
tions, the interrupt flag enables or disables external
interrupts, and the trap flag puts the processor into a:
single-step mode for debugging.

The control flags are set and cleared as follows:

1) Setting DF (the direction flag) causes string in-
structions to auto-decrement, that'is, to process
strings from high addresses to low addresses, or
from right to left. Clearing DF causes string instruc-
tions to auto-increment, or to process strings from
left to right.

2) Setting IF (the interrupt-enable flag) allows the
CPU to recognize maskable, external interrupt
requests (including interrupts from 80186,188 in-
tegrated peripherals). Clearing IF disables these in-
terrupts. IF has no effect on either nonmaskable
external or internally generated interrupts.

3) Setting TF (the trap flag) puts the processor into
single-step mode for debugging. In this mode, the
CPU automatically generates an internal interrupt
after each instruction, allowing a program to be in-
spected as it executes, instruction by instruction.

3.4 MEMORY STRUCTURE

The memory and input/output space of the 8086,88
and 80186,188 are treated in parallel and are collec-
tively referred to as the memory structure. Code
and data reside in the memory space, while
(non-memory-mapped) peripheral devices reside in
the I/0 space. This section describes how memory is
functionally organized and used.

Memory Space

The memory in an 8086,88 and 80186,188 system is
a sequence of up to one million (1,048,576) bytes. A
word is any two consecutive bytes in memory (word
alignment is not required). Words are stored in
memory with the most significant byte at the higher
memory address.

- The memory can be conceived of as an arbitrary

number of segments, each containing a maximum
of 64K bytes. The starting address of each segment
is evenly divisible by 16 (the four least significant ad-
dress bits are 0). At any moment, the program can
immediately access the contents of four such
segments: .

1) the current code segment
2) the current data segment

3) the current stack segment
4) the current extra segment

3-6 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Each of these segments can be identified by placing
the 16 most significant bits of the segment’s starting
address into one of the four 16-bit segment
registers. Instructions can refer to bytes or words
within a segment by using a 16-bit offset address.
The processor constructs the 20-bit byte or word ad-
dress automatically by adding the 16-bit offset ad-
dress (also called the logical address) to the contents
of a 16-bit segment register, with four low-order
zeros appended (see Figure 3-5).

15 0
LOGICALADDRESS | SEFSELS
~ J
N (
15 0
[sEGMENTREGISTER [To 0 0 0 SEGMENT
J

ADDER

19 0
20-BIT
PHYSICAL MEMORY ADDRESS

Figure 3-5 How to Address One Million Bytes

Storage Organization

From the storage point point of view, memory
spaces are organized as arrays of 8-bit bytes (Figure
3-6). Instructions, byte data and word data may be
freely stored at any byte address without regard for
alignment, thereby saving memory space by allowing
code to be densely packed in memory (Figure 3-7).

LOW MEMORY HIGH MEMORY
FFFFEH_FFFFFH

00000H 00001H 00002H 'Y f
07 07 0

7 07
} 1MEGABYTE }

Figure 3-6 Storage Organization

~ ~r
I
1

- —
.

I | L — Il
19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H

Figure 3-7 Instruction and Variable Storage

Word data is always stored with the most-significant
byte in the higher memory location (Figure 3-8).
Most of the time this storage convention is transpar-
ent to the programmer, except when monitoring the
system bus or reading memory dumps.

724H 725H
o | 2 5 | 5 [HEX

— — ——-——+——i—-———
0000 , 0010 [0101 , 0101 |BINARY

VALUE OF WORD STORED AT 724H: 5502H

Figure 3-8 Storage of Word Variables

Pointers addressing data and code that are outside
the currently-addressable segments are stored as
doublewords. The lower-addressed word of a pointer
contains an offset value; the higher-addressed word
contains a segment base address. By convention,
each word is stored with the higher-addressed byte
holding the most-significant eight bits of the word
(Figure 3-9).

3-7 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

S5H

6H

S
0000

0000

[0110 | o101

4

0100

JHEX __
BINARY

1100

0011 1011

OFFSET: 65H

VALUE OF POINTER STORED AT 4H:
SEGMENT BASE ADDRESS: 3B4CH

Figure 3-9 Storage of Pointer Variables

Segmentation

Programs view memory space as a group of segments
defined by the application. A segment is a logical
unit of memory that may be up to 64K bytes long.
Each segment is made up of contiguous memory lo-
cations and is an independent, separately addressable
unit. Every segment is assigned (by software) a base
address, which is its starting location in the memory
space. All segments start on 16-byte memory
boundaries. There are no other restrictions on seg-
ment locations. Segments may be adjacent, disjoint,
partially overlapped, or fully overlapped (Figure
3-10). A physical memory location may be mapped
into (contained in) one or more logical segments.

The segment registers point to (contain the base ad-
dress values of) the four immediately addressable
segments (Figure 3-11). Programs obtain access to
code and data in other segments by changing the seg-
ment registers to point to the desired segments.

Every application will define and use segments
differently. The currently addressable segments pro-
vide a generous work space: 64K bytes for code, a
64K byte stack and 128K bytes of data storage. Many
applications can be written to simply initialize the
segment registers and then forget them. Larger appli-
cations should. be designed with careful considera-
tion given to segment definition. This segmented
structure of the memory space supports modular
software design by discouraging very large, mono-
lithic programs. Segments can also be used to advan-
tage in many programming situations. An example
is the case of'an. editor for several on-line terminals.
A 64K byte text buffer (say, an extra segment)
could be assigned to each terminal. A single program
could maintain all the buffers by simply changing
register ES to point to the buffer of the terminal
requiring service.

3-8

Physical Address Generation

It is useful to think of every memory location as
having two kinds of addresses — physical and
logical. A physical address is the 20-bit value that
uniquely identifies each byte location in the memory
space. Physical addresses may range from OH
through FFFFFH. All exchanges between the CPU
and memory components use this physical address.

Programs, however, deal with logical rather than
physical addresses. The use of logical addresses
allows code to be developed without prior knowledge
of where the code is to be located in memory, and
facilitates dynamic management of memory
resources.

A logical address consists of a segment base value
and an offset value. For any given memory location,
the segment base value locates the first byte of the
containing segment and the offset value is the
distance, in bytes, of the target location from the
beginning of the segment. Segment base and offset
values are unsigned 16-bit quantities; the lowest-
addressed byte in a segment has an offset of 0. Many
different logical addresses can map to the same
physical location as shown in Figure 3-12.

Whenever the BIU accesses memory—to fetch an in-
struction or to obtain or store a variable—it gener-
ates a physical address from a logical address. This is
done by shifting the segment base value four bit po-
sitions and adding the offset as illustrated in Figure
3-13. This addition process provides for modulo 64K
addressing (addresses wrap around from the end of
a segment to the beginning of the same segment).

The BIU obtains the logical address of a memory lo-
cation from different sources depending on the type
of reference that is being made (see Table 3-3).

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

FULLY
OVERLAPPED SEGMENTD

PARTLY

OVERLAPPED DISJOINT
SEGMENTS
SEGMENTE
| / PHYSICAL
MEMORY

rSEGMENTA LSEGMENTB]
I I [}

OH 10000H 20000H 0000H

Figure 3-10 Segment Locations in Physical Memory

FFFFFH —

DATA: DS: _ _——
CODE: CS:E— —
EXTRA: Es: | |

| '

T
\
=]

1o]

u]‘[ﬂ’

=]
x
| =

Figure 3-11 Currently Addressable Segments

3-9

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

2C4H

PHYSICAL
ADDRESS > 2C3H

OFFSET
(3H) 2C1H

SEGMENT > 2C0H
BASE

2BFH
2BEH
2BDH
2BCH
2BBH

2C2H

LOGICAL OFFSET 2BAH
ADDRESSES (13H) 2B9H

2B8H
2B7H
2B6H
2B5H
2B4H
2B3H
2B2H
2B1H
SBigEWENT-—————-—-—» 2BOH

.

Figure 3-12 Logical and Physical Addresses

SHIFT LEFT 4 BITS SEGMENT
12 3 4 BASE
LOGICAL

[71 2 3 210 | 15 0 ADDRESS
1
0

15 0
S O

15 0

= [1 2 3 6 2] PHYSICAL ADDRESS

19 + 0

TO MEMORY

Figure 3-13 Physical Address Generation

3-10 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Table 3-3 Logical Address Sources

DEFAULT ALTERNATE
TYPE OF MEMORY REFERENCE SEGMENT SEGMENT OFFSET
BASE BASE

Instruction Fetch CS NONE 1P

Stack Operation SS NONE SP

Variable (exectp following) DS CS,ES, SS Effective Address
String Souce DS CS,ES, SS Sl

String Destination ES NONE [o]]

BP Used AS Base Register SS CS, DS, ES Effective Address
BX Used As Base Register DS CS,ES, SS Effective Address

Instructions are always fetched from the current
code segment. The instruction pointer (IP) contains
the offset of the target instruction from the begin-
ning of the segment.

Stack instructions always operate on the current
stack segment. The stack pointer (SP) contains the
offset of the top of the stack. Most variables
(memory operands) are assumed to reside in the
current data segment, although a program can in-
struct the BIU to access a variable in one of the other
currently addressable segments. The offset of a
memory variable is calculated by the EU. This calcu-
lation is based on the addressing mode specified in
the instruction; the result of the calculation is called
the operand’s effective address (EA). Section 3.6
covers addressing modes and effective address calcu-
lation in detail.

Strings are addressed differently from other
variables. The source operand of a string instruction
is assumed to lie in the current data segment, but
another currently addressable segment may be
specified. Its offset is taken from register SI, the
source index register. The destination operand of a
string instruction always resides in the current extra
segment (ES). Its offset is taken from the DI, the
destination index register. The string instructions au-
tomatically adjust SI and DI as they process the
strings one byte or word at a time.

When register BP, the base pointer register, is
designated as a base register in an instruction, the
variable is assumed to reside in the current stack
segment. Register BP thus provides a convenient
way to address data on the stack. BP can be used,
however, to access data in any of the other currently
addressable segments.

In most cases, the BIU’s segment assumptions are a
convenience to the programmer, since they are

based on the most frequent typical usage. It is
possible, however, to explicitly direct the BIU to
access a variable in any of the currently addressable
segments (the only exception is the destination oper-
and of a string instruction which must be in the extra
segment). This is done by preceding an instruction
with a segment override prefix. This one-byte
machine instruction tells the BIU which segment
register to use to access a variable referenced in the
following instruction.

Dynamically Relocatable Code

The segmented memory structure of the 8086,88
and 80186,188 makes it possible to write programs
that are position-independent, or dynamically
relocatable. Dynamic relocation allows a multi-
programming or multitasking system to make partic-
ularly effective use of the available memory. Inactive
programs can be written to disk, and the space they
occupied allocated to other programs. If a disk-
resident program is needed later, it can be read back
into any available memory location and restarted.
Similarly, if a program needs a large contiguous
block of storage, and the total amount is available
only in nonadjacent fragments, other program seg-
ments can be compacted to free up a continuous
space. This process is shown graphically in Figure
3-14.

In order to be dynamically relocatable, a program
must not load or alter its segment registers and must
not transfer directly to a location outside the current
code segment. In other words, all offsets in the pro-
gram must be relative to fixed values contained in
the segment registers. This allows the program to be
moved anywhere in memory as long as the segment
registers are updated to point to the new base
addresses.

3-11 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

BEFORE RELOCATION

AFTER RELOCATION

CODE
SEGMENT |
L———————— cs
ss
STACK
SEGMENT ps
- ES
DATA
SEGMENT
EXTRA
SEGEMENT |

l
l
l
|
|
|
l
l
l
:
|
|
|
|
I

DFREE SPACE

cs
SS
DS
ES '—7
CODE
SEGMENT
A STACK
SEGMENT
e DATA
- |__SEGMENT
EXTRA
SEGMENT

Figure 3-14 Dynamic Code Relocation

Stack Implementation

Stacks are located in memory and are accessed by
the stack segment register (SS) and the stack pointer
register (SP). A system may have an unlimited
number of stacks, and a stack may be up to 64K
bytes long, the maximum length of a segment. (An
attempt to expand a stack beyond 64K bytes over-
writes the beginning of the stack.) One stack is
directly addressable at a time, the current stack,
generally referred to simply as the stack. SS contains
the base address of this stack and SP points to the
top of the stack (TOS). In other words, SP contains
the offset of the top of the stack from the stack seg-
ment’s base address. The stack’s base address
(contained in SS), however, is not the bottom of the
stack.

Stacks are 16-bits wide; thus, instructions that oper-
ate on stacks add and remove stack items one word
at a time. A word is pushed onto the stack by decre-
menting SP by 2 and writing the item at the new TOS
(see Figure 3-15). A word is popped off the stack by
copying it from TOS and then incrementing SP by 2.

3-12

In other words, the stack grows down in memory to-
wards its base address. Stack operations never move
items on the stack, nor do they erase them. The top
of the stack changes only as a result of updating the
stack pointer.

Dedicated and Reserved Memory
Locations

Two areas in extreme low and high memory are
dedicated to specific processor functions or are re-
served by Intel Corporation for use by Intel hard-
ware and software products. As shown in Figure
3-16, the locations are: OH through 7FH (128 bytes)
and FFFFOH through FFFFFH (16 bytes). These
areas are used for interrupt and system reset
processing. Application systems should not use
these areas for any other purpose. Doing so may:
make these systems incompatible with future Intel
products.

As Figure 3-16 indicates, the 8086,88 and the
80186,188 processors differ in the proportion of
dedicated to reserved locations.

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

POP AX
POP BX
ax]12] 34 J—
PUSH AX]
EXISTING ax]12 [34] BX<— | |
STACK -l '| | «]
P T P < || ‘f
1062 | 00 | 11 T 1062] oo | 11 l 1062f 00 | 11 | ‘
1060 | 22 33 M 1060 | 22 | 33 | 1060] 22 | 33 | | {
105E044 |55 | =3 105E| 44 | 55 | 105Ef 44 | 55 | |
[E
105Bfe6 |77] Eo 1058 66 | 77 105C| 66 | 77 |
ou 108 |
105A] 88| 99 | ®O 105A] 88 | 99 —— 105A] 88 | 99 __I |
TOS
—> 1058 | AA | BB S 1058 | AA | BB J 1058 [AA | BB | B
T0S
10564 01 | 23 55 — 1056] 34 | 12 |- 1056 34 | 12 f —
1054] 45 | 67 w 1054 45 | 67 1054 45 | 67
(2]
1052 89 | AB E% 1052] 89 | AB 1052) 89 | AB
1050] CD | EF 52 1050] cD| EF 1050] CD| EF
=Z0
10 [50]ss 1050 ss [10]50] ss |

Figure 3-15 Stack Operation

FFFFFH FFFFFH
RESERVED RESERVED
FFFFCH FFFF
FFFFBH ~ FFEFS::
DEDICATED DEDICATED ‘
FF FFFFH FFFFDH FFFFH :
FFFEFH RESERVED FFFEFH DEDICATED ;
FFFEH }
o OPEN o ~ OPEN d n I
r - al ™ J
I 7 - OPEN " W o OPEN & J\
v N r w v }
80H 80H |
TFH 7FH
100H 100H J
RESERVED FFH RESERVED FFH !
14H RESERVED F8H S50H RESERVED F8H |
13H F7TH 4FH FTH f
DEDICATED OPEN DEDICATED OPEN i
OH OH OH OH |
MEMORY ; /0 MEMORY Vo “
iAPX 86,88 iAPX 186,188 J

Figure 3-16 Reserved and Dedicated Memory and I/0O Locations

3-13 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Integrated Peripheral Control Block

The 80186,188 integrated peripherals are controlled
by an array of 16-bit registers located in an internal
256-byte control block. Control and status registers
are provided for the chip select unit, the DMA
controller, the timers, and the interrupt controller.
The control block may be mapped into memory or
I/0 space. The control block base address is pro-
grammed by the 16-bit relocation register, which is
contained in the control block itself. Each of the con-
trol and status registers are located at a fixed offset
from the base address.

8086/80186 and 8088/80188
Memory Access Differences

The 8086 and 80186 can access either 8 or 16 bits of
memory at a time. If an instruction refers to a word
variable, and that variable is located at an even-
numbered address, the 8086/80186 accesses the
complete word in one bus cycle. If the word is located
at an odd-numbered address, it is accessed one byte
at a time in two consecutive bus cycles.

Thus, to maximize throughput in 8086- and
80186-based systems, 16-bit data should be stored at
even addresses (i.e., it should be word aligned). This
is particularly true of stacks. Unaligned stacks can
slow a system’s response to interrupts. Neverthe-
less, except for the performance penalty, word align-
ment is totally transparent to software, allowing
maximum data packing where memory space is
constrained.

‘The 8086/80186 always fetch the instruction stream
in words from even addresses, except that the first
fetch after a program transfer to an odd address ob-
tains a byte. The instruction stream is disassembled
inside the processor, and instruction alignment will
not materially affect the performance of most
systems.

The 8088 and 80188 always access memory: in bytes.
Word operands are accessed in two bus cycles
regardless of their alignment. Instructions are also
fetched one byte at a time. Although alignment of
word operands does not affect the performance of
the 8088/188, locating 16-bit data on even addresses

will insure maximum throughput if the system lS

ever transferred to an 8086 or 80186.

3-14

3.5 1/0 PORT ORGANIZATION

The 8086,88 and 80186,188 have a versatile set of
input/output facilities. The processors provide a
large 1/0 space that is separate from the memory
space. I/0 devices may also be placed in the memory
space to bring the power of the full instruction set
and addressing modes to input/output processing.
For high speed transfers, the 8086,88 may be used
with traditional direct memory access controllers or
the 8089 I/0 Processor. The 80186,188 has an in-
tegrated DMA controller with two high-speed DMA
channels.

1/0 Space

The 1/0 space can accommodate up to 64K 8-bit
ports or up to 32K 16-bit ports. Ports are addressed
the same way as memory except that there are no
port segment registers. All ports are considered to
be in one segment.

A 16-bit device should be located at an even address
so that words will be transferred in a single bus cycle.
An 8-bit device may be located at either an even or
odd address. Thus, internal registers in a given 8-bit
device will have all even or all odd addresses.

To access a port, the BIU places the port address
(0-FFFFH) on the lower 16 lines of the address bus.
Different forms of the I/0 instructions allow the ad-
dress to be specified as a fixed value in the instruc-
tion or as a variable taken from register DX. The IN
and OUT (input and output) instructions transfer
data between the accumulator (AL for byte
transfers, AX for word transfers) and ports located
in the 1/0 space.

The first 256 ports are directly addressable (address
in the instruction) by some input/output instruc-
tions; other instructions let the programmer address
the total of 64K ports indirectly (address in a
register).

Restricted I/0 Locations

As shown in Figure 3-16, on both the 8086,88 and
80186,188 processors, locations F8H through: FFH
(eight of the 64K locations) in the I/O space are re-
served by Intel Corporation for use by future Intel
hardware and software products. Using these loca-
tions for any other purpose may inhibit compatibility
with future Intel products. Locations FFFE and
FFFF are dedicated, on the 80186,188 processors, to
the relocation register’s reset location. On the
8086,88 these locations are reserved.

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Memory-Mapped I/0

1/0 devices may also be placed in the memory space.
This memory-mapped I/0 provides additional pro-
gramming flexibility. Any instruction that references
memory may be used to access an I/O port located in
the memory space. A group of terminals, for
example, could be treated as an array in memory,
with an index register selecting one of the terminals
in the array.

Memory reference instructions take longer to
execute, however, and are less compact than the
simpler IN and OUT instructions.

3.6 ADDRESSING MODES

The 8086,88 and 80186,188 provide many different
ways of addressing operands. Operands may be con-
tained in registers, within the instruction itself, in
memory or in I/0 ports. In addition, the addresses
of memory and 1/0 port operands can be calculated
in several different ways. These addressing modes
greatly extend the flexibility and convenience of the
instruction set.

Register and Immediate Operands

Instructions that specify only register operands are
generally the most compact and fastest executing.
This is because the register addresses are encoded in
instructions in just a few bits, and because these op-
erations are performed entirely within the CPU (no
bus cycles are run). Registers may serve as source
operands, destination operands, or both.

Immediate operands are constant data contained in
an instruction. The data may be either 8 or 16 bits
long. Immediate operands can be accessed quickly
because they are available directly from the instruc-
tion queue; (as in the case of register operands, no
bus cycles need to be run to obtain an immediate
operand). The limitations of immediate operands
are that they may only serve as source operands and
that they are constant values.

Memory Addressing Modes

Unlike register and immediate operands, which are
directly accessible to the EU, memory operands
must be transferred to and from the CPU over the
bus. When the EU needs to read or write a memory

operand, it must pass an offset value to the BIU. The
BIU adds the offset to the (shifted) contents of a seg-
ment register, producing a 20-bit physical address,
and then executes the bus cycle(s) needed to access
the operand.

The Effective Address

The offset that the EU calculates for a memory oper-
and is called the operand’s effective address or EA.
It is an unsigned 16-bit number that expresses the
operand’s distance in bytes from the beginning of
the segment in which it resides. The EU can calculate
the effective address in several different ways. Infor-
mation encoded in the second byte of the instruction
tells the EU how to calculate the effective address of
each memory operand. A compiler or assembler
derives this information from the statement or in-
struction written by the programmer. Assembly lan-
guage programmers have access to all addressing
modes.

As shown in Figure 3-17, the EU calculates the EA
by summing a displacement, the contents of a base
register, and the contents of an index register. The
fact that any combination of these three components
may be present in a given instruction results in the
great variety of memory addressing modes provided
by the 8086,88 and 80186,188.

The displacement element is an 8- or 16-bit number
that is contained in the instruction. The displacement
generally is derived from the position of the operand
name (a variable or label) in the program. The pro-
grammer can also modify this value or specify the
displacement explicitly.

A programmer may specify that either BX or BP is to
serve as a base register whose contents are to be
used in the EA computation. Similarly, either SI or
DI may be specified as an index register. Whereas
the displacement value is a constant, the contents of
the base and index registers may change during the
execution. This makes it possible for one instruction
to access different memory locations as determined
by the current value in the base and/or index
registers.

Effective address calculations with the BP are made,
by default, using the SS register, though either the
DS or the ES registers may be specified instead.

3-15 210911

g
y
|
|

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SINGLE INDEX DOUBLE INDEX
-

OR OR OR
ENCODED
IN THE OR
INSTRUCTION .

OR

i

EFFECTIVE

.~ ADDRESS
+)<—-4 DISPLACEMENT I-»?

—
]

OR

= oo
ASSUMED
UN S

LES. < OR
OVERRIDDEN

BY PREFIX “ 0000 BIU

OR

\ R P Ty R
rvson oo —

(D) <« |

EXPLICIT
IN THE
INSTRUCTION

A

Figure 3-17 Memory Address Computation

[OPCODE | MODR/M [DISPLA CEI\ENT_j
Direct Addressing y
Direct addressing (see Figure 3-18) is the simplest :E
memory addressing mode. No registers are
involved; the EA is taken directly from the displace-
ment field of the instruction. Direct addressing typi-
cally is used to access simple variables (scalars). Figure 3-18 Direct Addressing

3-16 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Register Indirect Addressing

The EA of a memory operand may be taken directly
from the BP, BX, SI or DI register (see Figure 3-19).
One instruction can operate on many different
memory locations if the value in the pointer or index
register is updated appropriately. The load effective
address (LEA) and arithmetic instructions might be
used to change the register value.

Note that with the JMP and CALL instructions, any
16-bit general register may be used for register indi-
rect addressing.

l OPCODE MOD R/M I

BX
OR

BP
e
S|

DI

Figure 3-19 Register Indirect Addressing

Base Addressing

In base addressing (Figure 3-20), the effective ad-
dress is the sum of a displacement value and the con-
tents of register BX or register BP. Specifying BP as a
base register directs the BIU to obtain the operand
from the current stack segment (unless a segment
override prefix is present). This makes base address-
ing with BP a very convenient way to access stack
data.

LOPCODE I MOD R/M DISPLAC|EMENT 1

BX |
OR +
BP

When BX is used as the base register, the operand
by default resides in the current Data Segment, and
the DS register is used to compute the operand’s EA.

Base addressing provides a straightforward way to
address structures which may be located at different
places in memory (see Figure 3-21). A base register
can be set to point to the base of the structure, and
elements of the structure can then be addressed by
their displacement from the base. Different copies of
the same structure can be accessed by simply chang-
ing the base register.

HIGH ADDRESS

DISPLACEMENT DISPLACEMENT
[ware)] AGE _[STATUS [watey]
RATE
vac [sick
DEPT | DIV
EMPLOYEE [BASE REGISTER |
Y |
[=]
|
AGE_|STATUS |
RATE |
VAC Fsmx |
DEPT | DIV
-

EMPLOYEE |e— — — — — —

LOW ADDRESS

Figure 3-21 Accessing a Structure
with Based Addressing

Indexed Addressing

In indexed addressing, the EA is calculated from the
sum of a displacement and the contents of an index
register, SI or DI, as shown in Figure 3-22. Indexed
addressing is often used to access elements in an
array (Figure 3-23). The displacement locates the
beginning of the array, and the value of the index
register selects one element (the first element is
selected if the index register contains 0). Since all
array elements are the same length, simple arithme-
tic on the index register will select any element.

[OPCODE] MOD R/M [DISPLAC|EMENT

—

— OR +

DI

v |
-

Figure 3-20 Based Addressing

3-17

Figure 3-22 Indexed Addressing

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

HIGH ADDRESS .

o N
ARRAY (8)

r - DISPLACEMENT | ARRAY (7) LoispLacement } 1
ARRAY (6) \

! ARRAY (5) |

: INDEX REGISTER ARRAY (4) INDEX REGISTER :

| 1 ARRAY (3) |

I [] ARRAY (2) 1] !

I 1 EA ARRAY (1) |*—— Ea 1 !

L. ——————— =] ARRAY(0) | — — — — — — — -]

N -
<1 WORD~—»
LOW ADDRESS

Figure 3-23 Accessing an Array
with Indexed Addressing

Based Indexed Addressing

Based indexed addressing generates an effective ad-
dress that is the sum of a base register (BX or BP),
an index register (SI or DI) and a displacement
(Figure 3-24). Based indexed addressing is a very
flexible mode because two address components can
be varied at execution time.

i |

EMENT

I OPCODE MOD R/M DISPLAC

Figure 3-24 Based Indexed Addressing

Based indexed addressing provides a convenient
way for a procedure to address an array allocated on
a stack (Figure 3-25). Register BP can contain the
offset of a reference point on the stack, typically the
top of the stack after the procedure has saved regis-
ters and allocated local storage. The offset of the
beginning of the array from the reference point can
be expressed by a displacement value, and an index
register can be used to access individual array
elements.

HIGH ADDRESS

iy
DISPLACEMENT DISPLACEMENT
—L e o
[PARM 1 |
| © D 9 |
OLD BP
| BASE REGISTER] (BP) oo ox @p [BASEREGISTER]} 4 |
: | OLD AX | :
| ARRAY (6) |
| INDEX REGISTER T8 INDEX REGISTER |
| ARRAY (5) |
	ARRAY (4)	
	ARRAY (3)	
[EA ARRAY @)	—ro EA 1!	
	ARRAY (1)	
— ARRAY (0) 'y		
Iy | COUNT !
v TEMP.
IR — & s e b o -

<—1WORD—»
LOWER ADDRESS

Figure 3-25 Accessing a Stack Array
with Based Indexed Addressing

Arrays contained in structures and matrices
(two-dimensional arrays) can also be accessed with
based indexed addressing.

String Addressing

String instructions do not use the normal memory
addressing modes to access their operands. Instead,
the index registers are used implicitly as shown in
Figure 3-26. When a string instruction is executed,
SI is assumed to point to the first byte or word of the
source string, and DI is assumed to point to the first
byte or word of the destination string. In a repeated
string operation, the CPU automatically adjusts SI
and DI to obtain subsequent bytes or words.

| s ——{ sourceea |
| DI J—>|DESTINATIONEA]
Figure 3-26 String Operand Addressing

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

1/0 Port Addressing

If an I/O port is memory mapped, any of the
memory operand addressing modes may be used to
access the port (for example, a group of terminals
can be accessed as an array). String instructions can
also be used to transfer data to memory-mapped
ports with an appropriate hardware interface.

To access ports located in the I/0 space, the two dif-
ferent addressing modes illustrated in Figure 3-27
can be used. In direct port addressing, the port
number is an 8-bit immediate operand. This allows
fixed access to ports numbered 0 to 255. Indirect
port addressing is similar to register indirect address-
ing of memory operands. The port number is taken
from register DX and can range from 0 to 65,535
(providing access to any port in the I/0 space). A
group of adjacent ports can be accessed using a
simple software loop that adjusts the value in DX.

OPCODE | DATA

/
| PORT ADDRESSI

DIRECT PORT ADDRESSING

IOPCODEI

/

1 DX }—{ PORT ADDRESS]

INDIRECT PORT ADDRESSING

Figure 3-27 1/0 Port Addressing

3.7 THEINSTRUCTION SET

The 8086,88 and 80186,188 instructions include
equivalents to the instructions typically found in
such CPUs as the 8080 and 8085. Significant new in-
structions added by the 8086 are:

® multiplication and division of signed and un-
signed binary numbers as well as unpacked
decimal numbers,

® move, scan and compare operations for
strings up to 64K bytes in length,

® non-destructive bit testing,
® byte translation from one code to another,
® additional software-generated interrupts, and

® a group of instructions that can help coordi-
nate the activities of multiprocessor systems.

In addition to these instructions, the 80186,188 pro-
vides ten new instruction types that serve to stream-
line existing code or produce optimum iAPX 186
code.

All instructions treat different types of operands
uniformly. Nearly every instruction can operate on
either byte or word data. Register, memory and im-
mediate operands may be specified interchangeably
in most instructions. The exception is that immedi-
ate values may only serve as source and not destina-
tion operands. In particular, memory variables can
be added to, subtracted from, shifted, compared,
and so on, in place, without moving them in and out
of registers. This saves instructions, registers, and
execution time in assembly language programs. In
high-level languages, where most variables are
memory-based, compilers, such as PL/M-86, can
produce faster and shorter object programs.

The instruction set can be viewed as existing at two
levels: the assembly level and the machine level. To
the assembly language programmer the 8086 and
80186 appear to have about 100 instructions. One
MOV (move) instruction, for example, transfers a
byte or a word from a register or a memory location
or an immediate value to either a register or a
memory location. The CPUs, however, recognize 28
different MOV machine instructions (move byte
register to memory, move word immediate to
register, etc.). The ASM-86 assembler translates the
assembly-level instructions written by a programmer
into the machine-level instructions that are actually
executed by the CPU. Compilers such as the
PL/M-86 translate high-level language statements
directly into machine-level instructions.

The two levels of the instruction set address two dif-
ferent requirements: efficiency and simplicity. The
numerous—about 300 in all—forms of machine-
level instructions allow these instructions to make
very efficient use of storage. For example, the ma-
chine instruction that increments a memory operand
is three or four bytes long because the address of the
operand must be encoded in the instruction. To

3-19 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

increment a register, however, does not require as
much information, so the instruction can be shorter.
In fact, the 8086,88 and 80186,188 have eight dif-
ferent machine-level instructions that increment a
different 16-bit register; these instructions are only
one byte long.

This section presents the instruction set from two
perspectives. First, the assembly-level instructions
are described in functional terms. They are then pre-
sented in a reference table format that specifies all
permissible operand combinations, provides execu-
tion times and machine instruction length, and
shows the effect that the instruction has on the CPU
flags. :

The details of the syntax of the instruction set are de-
scribed fully in Intel’s “ASM86 Language Reference
Manual,” #121703. A shorter treatment of the as-

sembly language can be found in Intel’s “An Intro-
duction to ASM 86” manual, #121689.

Instruction Set Organization
The instructions are divided into the following func-
tional groups:

® Data transfer

® Arithmetic

@ Bit manipulation

® String manipulation

® Control transfer

® High-level (186,188 only)

® Processor control

Data Transfer Instructions

The data transfer instructions (Table 3-4) move
single bytes, words, and doublewords between
memory and registers, as well as between register
AL or AX and I/0 ports. The stack manipulation in-
structions are included in this group, as are instruc-
tions for transferring flag contents and for loading
segment registers.

Sub-groups of the data transfer instructions are the
general purpose data transfer, I/0, address object,
and flag transfer instructions.

3-20

Table 3-4 Data Transfer Instructions.

GENERAL PURPOSE

MOV Move byte or word
PUSH Push word onto stack
POP Pop word off stack
PUSHA Push all registers on stack
POPA Pop all registers from stack
XCHG Exchange byte or word
XLAT Translate byte

INPUT/OUTPUT
IN Input byte or word
ouT Output byte or word

ADDRESS OBJECT

LEA Load effective address
LDS Load pointer using DS
LES Load pointer using ES

FLAG TRANSFER
LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

GENERAL PURPOSE DATA TRANSFERS:

MOV destination, source

MOV transfers a byte or a word from the source
operand to the destination operand.

PUSH source

PUSH decrements SP (the stack pointer) by two and
then transfers a word from the source operand to
the top of the stack now pointed to by SP. PUSH is
often used to place parameters on the stack before
calling- a procedure; more generally, it is the basic
means of storing temporary data on the stack.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

PUSH immediate (186,188 only)

The PUSH (push immediate) instruction allows im-
mediate data to be pushed onto the stack. The data
can be either immediate byte or immediate word.
Byte data will be sign extended to word size before it
is pushed onto the stack (since all stack operations
are done on word data).

POP destination

POP transfers the word at the current top of stack
(pointed to by SP) to the destination operand, and
then increments SP by two to point to the new top of
the stack. POP can be used to move temporary varia-
bles from the stack to registers or memory.

PUSHA/POPA (186,188 only)

These instructions (push all, pop all) allow all CPU
general purpose registers to be stored and restored.
The PUSHA instruction pushes all CPU registers
onto the stack, and the POPA instruction pops all
CPU registers from the stack. The order in which
the registers are saved is: AX, CX, DX, BX, SP, BP,
SI and DI. The SP value pushed is the SP value
before the first register (AX) is pushed. When the
POPA instruction is executed, the SP value is
popped, but the value is discarded.

Note that this instruction does not save any of the
segment registers (CS, DS, SS, ES), the instruction
pointer (IP), the flag register, or any of the integrat-
ed peripheral registers.

XCHG destination, source

XCHG (exchange) switches the contents of the
source and destination (byte or word) operands.
When used in conjunction with the LOCK prefix,
XCHG can test and set a semaphore that controls
access to a resource shared by multiple processors.

XLAT translate-table

XLAT (translate) replaces a byte in the AL register
with a byte from a 256-byte, user-coded translation
table. Register BX is assumed to point to the begin-
ning of the table. The byte in AL is used as an index
into the table and is replaced by the byte at the offset
in the table corresponding to AL’s binary value. The

3-21

first byte in the table has an offset of 0. For example,
if AL contains SH, and the sixth element of the
translation table contains 33H, then AL will contain
33H following the instruction. XLAT is useful for
translating characters from one code to another,
such as ASCII to EBCDIC or the reverse.

INPUT/OUTPUT:

IN accumulator, port

IN transfers a byte or a word from an input port to
the AL register or the AX register respectively. The
port number may be specified either with an immedi-
ate byte constant, allowing access to ports numbered
0 through 255, or with a number previously placed
in the DX register, allowing variable access (by
changing the value in DX) to ports numbered from
0 through 65,535.

OUT port, accumulator

OUT transfers a byte or a word from the AL register
or the AX register, respectively, to an output port.
The port number may be specified either with an im-
mediate byte constant, allowing access to ports num-
bered O through 255, or with a number previously
placed in register DX, allowing variable access (by
changing the value in DX) to ports numbered from
0 through 65,535.

ADDRESS OBJECT TRANSFERS:

These instructions manipulate the addresses of varia-
bles rather than the contents or values of variables.
They are most useful for list processing, based
variables, and string operations.

LEA destination, source

LEA (load effective address) transfers the offset of
the source operand (rather than its value) to the
destination operand. The source operand must be a
memory operand, and the destination operand must
be a 16-bit general register. LEA does not affect any
flags. The XLAT and string instructions assume that
certain registers point to operands. LEA can be used
to load these registers (e.g., loading BX with the ad-
dress of the translate table used by the XLAT
instruction).

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LDS destination, source

LDS (load pointer using DS) transfers a 32-bit point-
er variable from the source operand, which must be
a memory operand, to the destination operand and
register DS. The offset word of the pointer is trans-
ferred to the destination operand, which may be any
16-bit general register. The segment word of the
pointer is transferred to register DS. Specifying SI as
the destination operand is a convenient way to pre-
pare to process a source string that is not in the cur-
rent data segment (string instructions assume.that
the source string is located in the current data seg-
ment and that SI contains the offset of the string).

LES destination, source

LES (load pointer using ES) transfers a 32-bit point-
er variable from the source operand, which must be
a memory operand, to the destination operand and
register ES. The offset word of the pointer is trans-
ferred to the destination operand, which may be any
16-bit register. The segment word of the pointer is
transferred to register ES. Specifying DI as the desti-
nation operand is a convenient way to prepare to pro-
cess a destination string that is not in the current

extra segment. (The destination string must be locat-

ed in the extra segment, and DI must contain the
offset of the string.)

FLAG TRANSFERS:
LAFH

LAHF (load register AH from flags) copies SF, ZF,
AF, PF and CF (the 8080/8085 flags) into bits 7, 6,
4, 2 and 0 respectively, of register AH (see Figure
3-28). The contents of bits 5, 3 and 1 is undefined;
the flags themselves are not affected. LAHF is
provided primarily for converting 8080/8085 assem-
bly language programs to run on 8086 and 80186
CPUs.

SAHF

SAHF (store register AH into flags) transfers bits 7,
6, 4, 2 and 0 from register AH into SF, ZF, AF, PF
and CF respectively, replacing whatever values
these flags previously had. OF, DF, IF and TF are
not affected. This instruction is provided for
8080/8085 compatibility.

PUSHF

PUSHF decrements SP (the stack pointer) by two
and then transfers all flags to the word at the top of
stack pointed to by SP (see Figure 3-28). The flags
themselves are not affected.

3-22

LAHF,
SAHF rS|Z|U1A|U|P|U|CI
|7 6 5 4 3 2 1 OI
|-«——8080/8085 FLAGS—»|
| : 1
| |

PUSHF,

roonFfu uu,U,0,D,1,T,S,Z2,U,AU,P,UC
15 1413 12 1110 9 8 7 6 5 4 3 2 1 0

U = UNDEFINED; VALUE IS INDETERMINATE
O = OVERFLOW FLAG

D = DIRECTION FLAG

| = INTERRUPT ENABLE FLAG

T = TRAPFLAG

S = SIGN FLAG

Z = ZEROFLAG

A = AUXILIARY CARRY FLAG

P = PARITY FLAG
«C = CARRY FLAG

Figure 3-28 Flag Storage Formats

POPF

POPF transfers specific bits from the word at the cur-
rent top of stack (pointed to by register SP) into
flags, replacing whatever values the flags previously
contained (see Figure 3-28). SP is then incremented
by two to point to the new top of stack. PUSHF and
POPF allow a procedure to save and restore a calling
program’s flags.

Arithmetic Instructions

Arithmetic operations (Table 3-5) may be performed
on four types of numbers: unsigned binary, signed
binary (integers), unsigned packed decimal and un-
signed unpacked decimal (see Table 3-6). Binary
numbers may be 8 or 16 bits long. Decimal numbers
are stored in bytes, two digits per byte for packed
decimal and one digit per byte for unpacked decimal.
The processor always assumes that the operands
specified in arithmetic instructions contain data that
represents valid numbers for the type of instruction
being performed. Invalid data may produce unpre-
dictable results.

Unsigned binary numbers may be either 8 or 16 bits
long; all bits are considered in determining a num-
ber’s magnitude. The value range of an 8-bit un-
signed binary number is 0-255. Values from 0 to
65,535 can be.represented by 16 bits. Addition,
subtraction, multiplication and division operations
are available for unsigned binary numbers.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Table 3-5 Arithmetic Instructions

ADDITION
ADD Add byte or word
ADC Add byte or word with carry
INC Increment byte or word by 1
AAA ASCIl adjust for addition
DAA Decimal adjust for addition
SUBTRACTION
SuB Subtract byte or word
SBB Subtract byte or word with
borrow
DEC Decrement byte or word by 1
NEG Negate byte or word
CMP Compare byte or word
AAS ASCIl adjust for subtraction
DAS Decimal adjust for subtraction
MULTIPLICATION
MuUL Multiply byte or word unsigned
IMUL Integer multiply byte or word
AAM ASCI! adjust for multiply
DIVISION
DIv Divide byte or word unsigned
IDIV Integer divide byte or word
AAD ASCII adjust for division
cBw Convert byte to word
CwD Convert word to doubleword

Signed binary numbers (integers) may be 8 or 16
bits long. The high-order (leftmost) bit is interpreted
as the number’s sign: 0 = positive and 1 = negative.
Negative numbers are represented in standard two’s
complement notation. Since the high-order bit is
used as a sign, the range of an 8-bit integer is — 128
through +127; 16-bit integers may range from
—32,768 through +32,767. The value of zero has a

positive sign. Multiplication and division operations
are provided for signed binary numbers. Addition
and subtraction are performed with the unsigned
binary instructions. Conditional jump instructions,
as well as an “interrupt on overflow” instruction,
can be used following an unsigned operation on an
integer to detect overflow into the sign bit.

Packed decimal numbers are stored as unsigned
byte quantities. The byte is treated as having one
decimal digit in each half-byte (nibble); the digit in
the high-order half-byte is the most significant.
Hexadecimal values 0-9 are valid in each half-byte,
and the range of a packed decimal number is 0-99.
Addition and subtraction are performed in two
steps. First an unsigned binary instruction is used to
produce an intermediate result in register AL. Then
an adjustment operation is performed which
changes the intermediate value in AL to a final cor-
rect packed decimal result. Multiplication and divi-
sion adjustment are not available for packed decimal
numbers.

Unpacked decimal numbers are stored as unsigned
byte quantities. The magnitude of the number is
determined from the low-order half-byte. Hexadeci-
mal values 0-9 are valid and are interpreted as deci-
mal numbers. The high-order half-byte must be
zero for multiplication and division; it may contain
any value for addition and subtraction. Arithmetic
operations on unpacked decimal numbers are per-
formed in two steps. The unsigned binary addition,
subtraction and multiplication operations are used to
produce an intermediate result in register AL. An
adjustment instruction then changes the value in AL
to a final correct unpacked decimal number. Division
is performed similarly, except that the adjustment is
carried out on the numerator operand in register AL
first, and then a following unsigned binary division
instruction produces a correct result.

Table 3-6 Arithmetic Interpretation of 8-Bit Numbers

e | smoaremy | Usones [sioven Toumsores | proxen
07 00000111 7 +7 7 7

89 10001001 137 -119 invalid 89

Cc5 11000101 197 -59 invalid invalid

3-23 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Unpacked decimal numbers are similar to the ASCII
character representations of the digits 0-9. Note,
however, that the high-order half-byte of an ASCII
numeral is always 3H. Unpacked decimal arithmetic
may be performed on ASCII numeric characters
under the following conditions:

® the high-order half-byte of an ASCII numeral
must be set to OH prior to multiplication or
division.

® unpacked decimal arithmetic leaves the high-
order half-byte set to OH; it must be set to 3H
to produce a valid ASCII numeral.

ARITHMETIC INSTRUCTIONS AND FLAGS

Arithmetic instructions post certain characteristics
of the result of the operation to six flags. Most of
these flags can be tested by following the arithmetic
instruction with a conditional jump instruction, and
the INTO (interrupt on overflow) instruction may
also be used. The various instructions affect the flags
differently, as explained in the instruction
descriptions. However, they follow these general
rules:

. CF (carry flag): If an addition results in a
carry out of the high-order bit of the result,
then CF is set; otherwise CF is cleared. If a
subtraction results in a borrow into the high-
order bit of the result, then CF is set; other-
wise CF is cleared. Note that a signed carry is
indicated by CF = OF (overflow flag). CF
can be used to detect an unsigned overflow.
Two instructions, ADC (add with carry) and
SBB (subtract with borrow), incorporate the
carry flag in their operations and can be used
to perform multibyte (e.g., 32-bit, 64-bit) ad-
dition and subtraction.

® AF (auxiliary carry flag): If an addition re-
sults in a carry out of the low-order half-byte
‘of the result, then AF is set; otherwise AF is
cleared. If a subtraction results in a borrow
_into the low-order half-byte of the result,
then AF is set; otherwise AF is cleared. The
auxiliary carry flag is provided for the decimal
adjust instructions and ordinarily is not used

for any other purpose.

® SF (sign flag): Arithmetic and logical in-
structions set the sign flag equal to the high-
order bit (bit 7 or 15) of the result. For signed

/

binary numbers, the sign flag will be 0 for
positive results and 1 for negative results (so
long as overflow does not occur). A condi-
tional jump instruction can be used following
addition or subtraction to alter the flow of the
program depending on the sign of the result.
Programs performing unsigned operations
typically ignore SF since the high-order bit of
the result is interpreted as a digit rather than a
sign.

® ZF (zero flag): If the result of an arithmetic
or logical operation is zero, then ZF is set;
otherwise ZF is cleared. A conditional jump
instruction can be used to alter the flow of the
program if the result is or is not zero.

® PF (parity flag): If the low-order eight bits
of an arithmetic or logical result contain an
even number of 1- bits, then the parity flag is
set; otherwise it is cleared. PF is provided for
8080/8085 compatibility. It can also be used
to check ASQII characters for correct parity.

|

® OF (overflow flag): If the result of an opera-
tion is too large a positive number, or too
small a negative number to fit in the destina-
tion operand (excluding the sign bit), then
OF is set; otherwise OF is cleared. OF thus in-
dicates signed arithmetic overflow. It can be
tested with a conditional jump or the INTO
(interrupt on overflow) instruction. OF may
be ignored when performing unsigned
arithmetic. OF is set if the operation results in
a carry into the high-order bit of the result
but not a carry out of the high-order bit, or
vice versa; otherwise OF is cleared.

ADDITION

ADD destination, source

The sum of two operands, which may be bytes or
words, replaces the destination operand. Both oper-
ands may be signed or unsigned binary numbers
(see AAA and DAA). ADD updates AF, CF, OF,
PF, SF and ZF.

ADC destination, source

ADC (add with carry) sums the operands, which
may be bytes or words, adds one if CF is set and re-
places the destination operand with the result. Both
operands may be signed or unsigned binary numbers
(see AAA and DAA). ADC updates AF, CF, OF,

- PF, SF and ZF. Since ADC incorporates a carry

from a previous operation, it can be used to write
routines to add numbers longer than 16 bits.

3-24 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INC destination

INC (increment) adds one to the destination
operand. The operand may be a byte or a word and
is treated as an unsigned binary number (see AAA
and DAA). INC updates AF, OF, PF, SF and ZF; it
does not effect CF.

AAA

AAA (ASCII adjust for addition) changes the con-
tents of register AL to a valid unpacked decimal
number; the high-order half-byte is zeroed. AAA
updates AF and CF; the contents of OF, PF, SF and
ZF is undefined following execution of AAA.

DAA

DAA (decimal adjust for addition) corrects the
result of previously adding two valid packed decimal
operands (the destination operand must have been
register AL). DAA changes the contents of AL to a
pair of valid packed decimal digits. It updates AF,
CF, PF, SF and ZF; the contents of OF is undefined
following execution of DAA.

SUBTRACTION

SUB destination, source

The source operand is subtracted from the destina-
tion operand, and the result replaces the destination
operand. The operands may be signed or unsigned
binary numbers (see AAS and DAS). SUB updates
AF, CF, OF, PF, SF and ZF.

SBB destination, source

SBB (subtract with borrow) subtracts the source
from the destination, subtracts one if CF is set, and
returns the result to the destination operand. Both
operands may be bytes or words. Both operands may
be signed or unsigned binary numbers (see AAS
and DAS). SBB updates AF, CF, OF, PF, SF and
ZF. Since it incorporates a borrow from a previous
operation, SBB may be used to write routines that
subtract numbers longer than 16 bits.

DEC destination
DEC (decrement) subtracts one from the

destination, which may be a byte or a word. DEC up-
dates AF, OF, PF, SF and ZF; it does not affect CF.

NEG destination

NEG (negate) subtracts the destination operand,
which may be a byte or a word, from 0 and returns
the result to the destination. This forms the two’s
complement of the number, effectively reversing
the sign of an integer. If the operand is zero, its sign
is not changed. Attempting to negate a byte contain-
ing —128 or a word containing —32,768 causes no
change to the operand and sets OF. NEG updates
AF, CF, OF, PF, SF and ZF. CF is aiways set except
when the operand is zero, in which case it is cleared.

CMP destination, source

CMP (compare) subtracts the source from the
destination, which may be bytes or words, but does
not return the result. The operands are unchanged,
but the flags are updated and can be tested by a sub-
sequent conditional jump instruction. CMP updates
AF, CF, OF, PF, SF and ZF. The comparison re-
flected in the flags is that of the destination to the
source. If a CMP instruction is followed by a JG
(jump if greater) instruction, for example, the jump
is taken if the destination operand is greater than the
source operand.

AAS

AAS (ASCII adjust for subtraction) corrects the
result of a previous subtraction of two valid un-
packed decimal operands (the destination operand
must have been specified as register AL). AAS
changes the contents of AL to a valid unpacked deci-
mal number; the high-order half-byte is zeroed.
AAS updates AF and CF; the contents of OF, PF,
SF and ZF is undefined following execution of AAS.

DAS

DAS (decimal adjust for subtraction) corrects the re-
sults of a previous subtraction of two valid packed
decimal operands (the destination operand must
have been specified as register AL). DAS changes
the contents of AL to a pair of valid packed decimal
digits. DAS updates AF, CF, PF, SF and ZF; the
contents of OF is undefined following execution of
DAS.

MULTIPLICATION
MUL source
MUL (multiply) performs an unsigned multiplica-

tion of the source operand and the accumulator. If
the source is a byte, then it is multiplied by register

3-25 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

AL, and the double-length result is returned in AH
and AL. If the source operand is a word, then it is
multiplied by register AX, and the double-length
result is returned in registers DX and AX. The oper-
ands are treated as unsigned binary numbers (see
AAM). If the upper half of the results (AH for byte
source, DX for word source) is nonzero, CF and OF
are set; otherwise they are cleared. When CF and
OF are set, they indicate that AH or DX contains sig-
nificant digits of the result. The contents of AF, PF,
SF and ZF is undefined following execution of MUL.

IMUL source

IMUL (integer multiply) performs a signed multipli-
cation of the source operand and the accumulator. If
the source is a byte, then it is multiplied by register
AL, and the double-length result is returned in regis-
ter AH and AL. If the source is a word, then it is
multiplied by register AX, and the double-length
result is returned in registers DX and AX. If the
upper half of the result (AH for byte source, DX for
word source) is not the sign extension of the lower
half of the result, CF and OF are set; otherwise they
are cleared. When CF and OF are set, they indicate
that AH or DX contains significant digits of the
result. The content of AF, PF, SF and ZF is unde-
fined following execution of IMUL.

IMUL destination-register, source, immediate
(186,188 only)

The IMUL (integer immediate multiply, signed) in-
struction allows a value to be multiplied by an im-
mediate value. This value may be a byte or word; if
it is a byte, it will be sign extended to 16 bits. When
this instruction is used, only the lower 16 bits of the
result will be saved. The result must always be
placed in one of the general purpose registers. The
two operands are the immediate value, and the data
at an effective address (which may be the same regis-
ter in which the result will be placed, another
register, or a memory location). This instruction re-
quires three arguments: the immediate value, the
effective address of the second operand, and the
register in which the result is to be placed.

AAM

AAM (ASCII adjust for multiply) corrects the result
of a previous multiplication of two valid unpacked
decimal operands. A valid 2-digit unpacked decimal
number is derived from the content of AH and AL
and is returned to AH and AL. The high-order half-
bytes of the multiplied operands must have been OH
for AAM to produce a correct result. AAM updates
PF, SF and ZF, the content of AF, CF and OF is un-
defined following execution of AAM.

3-26

DIVISION

DIV source

DIV (divide) performs an unsigned division of the
accumulator (and its extension) by the source
operand. If the source operand is a byte, it is divided
into the double-length dividend assumed to be in
register AH and AL. The single-length quotient is re-
turned in AL, and the single-length remainder in
AH. If the source operand is a word, it is divided
into the double-length dividend in registers DX and
AX. The single-length quotient is returned in AX,
and the single-length remainder is returned in DX.
If the quotient exceeds the capacity of its destination
register (FFH for byte source, OFFFFH for word
source), as when division by zero is attempted, a
type O interrupt is generated, and the quotient and
the remainder are undefined. Nonintegral quotients
are truncated to integers. The content of AF, CF,
OF, PF, SF and ZF is undefined following execution
of DIV.

IDIV source

IDIV (integer divide) performs a signed division of
the accumulator (and its extension) by the source
operand. If the source operand is a byte, it is divided
into the double-length dividend assumed to be in
registers AH and AL. The single-length quotient is
returned in AL, and the single-length remainder is
returned in AH. For byte integer division,the maxi-
mum positive quotient is +127 (7FH) and the mini-
mum negative quotient is —127 (81H). If the source
operand is a word, it is divided into the double-
length dividend in registers DX and AX (the high-
order 16 bits are in DX and the low-order 16 bits in
AX). The single-length quotient is returned in AX,
and the the single-length remainder is returned in
DX. For word integer division, the maximum posi-
tive quotient is +32,767 (7FFFH) and the minimum
negative quotient is —32,767 (8001H). If the quo-
tient is positive and exceeds the maximum, or is
negative and is less then the minimum, the quotient
and the remainder are undefined, and a type 0 inter-
rupt is generated. In particular, this occurs if division
by 0 is attempted. Nonintegral quotients are truncat-
ed (toward 0) to integers, and the remainder has the
same sign as the dividend. The content of AF, CF,
OF, PF, SF and ZF is undefined following execution
of IDIV.

AAD

AAD (ASCII adjust for division) modifies the
numerator in AL before dividing two valid unpacked
decimal operands so that the quotient produced by
the division will be a valid unpacked decimal
number. AH must be zero for the subsequent DIV

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

to produce the correct result. The quotient is re-
turned in AL, and the remainder is returned in AH;
both high-order half-bytes are zeroed. AAD updates
PF, SF and ZF; the content of AF, CF and OF is un-
defined following execution of AAD.

cBwW

CBW (convert byte to word) extends the sign of the
byte in register AL throughout register AH. CBW
does not affect any flags. CBW can be used to pro-
duce a double-length (word) dividend from a byte
prior to performing byte division.

CwD

CWD (convert word to doubleword) extends the
sign of the word in register AX throughout register
DX. CWD does not affect any flags. CWD can be
used to produce a double-length (doubleword) divi-
dend from a word prior to performing word division.

Bit Manipulation Instructions
Three groups of instructions (Table 3-7) are availa-

ble for manipulating bits within both bytes and
words: logical, shift and rotates.

Table 3-7 Bit Manipulation Instructions

LOGICALS
NOT “Not’’ byte or word
AND ‘“And”’ byte or word
OR “Inclusive or’’ byte or word
XOR ‘‘Exclusive or’’ byte or word
TEST “Test”’ byte or word
SHIFTS
SHL/SAL | Shiftlogical/arithmetic left
byte or word
SHR Shift logical right byts or word
SAR Shift arithmetic right byte or
word
ROTATES
ROL Rotate left byte or word
ROR Rotate right byte or word
RCL Rotate through carry left byte
or word
RCR Rotate through carry right byte
or word

LOGICAL

The logical instructions include the boolean opera-
tors “not,” ‘“and,” “inclusive or,” and “exclusive
or,” plus a TEST instruction that sets the flags, but
does not alter either of its operands.

AND, OR, XOR and TEST affect the flags as
follows:

The overflow (OF) and carry (CF) flags are always
cleared by logical instructions, and the contents of
the auxiliary carry (AF) flag is always undefined fol-
lowing execution of a logical instruction.

The sign (SF), zero (ZF) and parity (PF) flags are
always posted to reflect the result of the operation
and can be tested by conditional jump instructions.
The interpretation of these flags is the same as for
arithmetic instructions. SF is set if the result is nega-
tive (high-order bit is 1), and is cleared if the result
is positive (high-order bit is 0). ZF is set if the result
is zero, cleared otherwise. PF is set if the lower
8-bits of the result contains an even number of
1-bits (has even parity) and is cleared if the number
of 1-bits is odd (the result has odd parity).

Note that NOT has no effect on the flags.

NOT destination

NOT inverts the bits (forms the one’s complement)
of the byte or word operand.

AND destination, source

AND performs the logical “and” of the two oper-
ands (byte or word) and returns the result to the
destination operand. A bit in the result is set if both
corresponding bits of the original operands are set;
otherwise the bit is cleared.

OR destination, source

OR performs the logical “inclusive or” of the two
operands (byte or word) and returns the result to
the destination operand. A bit in the result is set if
either or both corresponding bits in the original oper-
ands are set; otherwise the result bit is cleared.

XOR destination, source

XOR (exclusive or) performs the logical “exclusive
or” of the two operands and returns the result to the
destination operand. A bit in the result is set if the
corresponding bits of the original operands contain
opposite values (one is set, the other is cleared);
otherwise the result bit is cleared.

3-27 210911

!
3

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

TEST destination, source

TEST performs the logical “and” of the two oper-
ands (byte or word), updates the flags, but does not
return the result, i.e., neither operand is changed. If
a TEST instruction is followed by a JNZ (jump if not
zero) instruction, the jump will be taken if there are
any corresponding 1-bits in both operands.

SHIFTS

The bits in bytes and words may be shifted arithmeti-
cally or logically. On the 8086,88 up to 255 shifts
may be performed, according to the value of the
count operand coded in the instruction. The count
may be specified as the constant 1, or as register CL,
allowing the shift count to be a variable supplied at
execution time. In addition, the 80186,188 allow the
number of shifts to be specified as an immediate
value in the instruction. This eliminates the need for
a MOV immediate to the CL register if the number
of shifts required is known at assembly time. Before
the 80186,188 perform a shift (or rotate) they AND
the value to be shifted with 1FH, thus limiting the
number of shifts occurring to 32 bits.

Arithmetic shifts may be used to multiply and divide
binary numbers by powers of two (see note in de-
scription of SAR). Logical shifts can be used to iso-
late bits in bytes or words.

Shift instructions affect the flags as follows:

AF is always undefined following a shift operation.
PF, SF and ZF are updated normally, as in the logical
instructions. CF always contains the value of the last
bit shifted out of the destination operand. The con-
tents of OF is always undefined following a multibit
shift. In a single-bit shift, OF is set if the value of the
high-order (sign) bit was changed by the operation;
if the sign bit retains its original value, OF is cleared.

SHL/SAL destination, count

SHL and SAL (shift logical left and shift arithmetic
left) perform the same operation and are physically
the same instruction. The destination byte or word is
shifted left by the number of bits specified in the
count operand. Zeroes are shifted in on the right. If
the sign bit retains its original value, then OF is
cleared.

SHR destination, source

SHR (shift logical right) shifts the bits in the destina-
tion operand (byte or word) to the right by the
number of bits specified in the count operand. Zeros
are shifted in on the left. If the sign bit retains its
original value, then OF is cleared.

3-28

SAR destination, count

SAR (shift arithmetic right) shifts the bits in the
destination operand (byte or word) to the right.by
the number of bits specified in the count operand.
Bits equal to the original high-order (sign) bit are
shifted in on the left, preserving the sign of the origi-
nal value. Note that SAR does not produce the same
result as the dividend of an “equivalent” IDIV in-
struction if the destination operand is negative and
1-bits are shifted out. For example, shifting —5 right
by one bit yields — 3, while integer division of —5 by
2 yields —2. The difference in the instructions is that
IDIV truncates all numbers toward zero,while SAR
truncates positive numbers toward zero and negative
numbers toward negative infinity.

ROTATES

Bits in bytes and words may also be rotated. Bits
rotated out of an operand are not lost as in a shift,
but are “circled” back into the other “end” of the
operand. As in the shift instructions, the number of
bits to be rotated is taken from the count operand,
which may specify either a constant 1, or the CL
register. The carry flag may act as an extension of
the operand in two of the rotate instructions, allow-
ing a bit to be isolated in CF and then tested by a JC
(Gump if carry) or JNC (ump if not carry)
instruction.

Rotates affect only the carry and overflow flags. CF
always contains the value of the last bit rotated out.
On multibit rotates, the value of OF is Always
undefined. In single-bit rotates, OF is set if the oper-
ation changes the high-order (sign) bit of the desti-
nation operand. If the sign bit retains its original
value, OF is cleared.

“"ROL destination, count

ROL (rotate left) rotates the destihation byte or
word by the number of bits specified in the count
operand.

ROR destination, count
ROR (rotate right) operates similar to ROL except

that the bits in the destination byte or word are rotat-
ed right instead of left.

RCL destination, count
RCL (rotate through carry left) rotates the bits in

the byte or word destination operand to the left by
the number of bits specified in the count operand.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

The carry flag (CF) is treated as “part of” the desti-
nation operand; that is, its value is rotated into the
low-order bit of the destination, and itself is replaced
by the high-order bit of the destination.

RCR destination, count

RCR (rotate through carry right) operates exactly
like RCL except that the bits are rotated right instead
of left.

Immediate Shifts/Rotates

All the shift/rotate instructions of the 80186,188
allow the number of bits shifted to be specified by an
immediate value. These instructions require two
operands: the operand to be shifted (which may be a
register or a memory location specified by any of the
addressing modes) and the number of bits to be
shifted.

String Instructions

The basic string instructions, also called primitives,
operate on strings of bytes or words, one element
(byte or word) at a time. Strings of up to 128K bytes
may be manipulated with these instructions. Instruc-
tions are available to move, compare and scan for a
value, as well as for moving string elements to and
from the accumulator, and, in the case of the
80186,188, to and from I/O ports (see Table 3-8).
These basic operations may be preceded by a special
one-byte prefix that causes the instruction to be
repeated by the hardware, processing long strings
much faster than would be possible with a software
loop. The repetitions can be terminated by a variety
of conditions, and a repeated operation may be inter-
rupted and resumed.

The string instructions operate similarly in many
respects; the common characteristics are covered
here and in Table 3-9 and in Figure 3-29, rather than
in the descriptions of the individual instructions. A
string instruction may have a source operand, a
destination operand, or both. The hardware assumes
that a source string resides in the current data
segment; a segment prefix byte may be used to over-
ride this assumption. A destination string must be in
the current extra segment. The assembler checks
the attributes of the operands to determine if the ele-
ments of the strings are bytes or words. The assem-
bler does not, however, use the operand names to
address the strings. Rather, the contents of register

Table 3-8 String Instructions

REP Repeat

REPE/REPZ Repeat while equal/zero

REPNE/REPNZ Repeat while not
equal/not zero

MOVS Move byte or word string

MOVSB/MOVSW Move byte or word string

CMPS Compare byte or word
string

INS Move byte or word
string from 1/0 port

OuTS Move byte or word
string to 170 port

SCAS Scan byte or word string

LODS Load byte or word string

STOS Store byte or word string

S1 (source index) is used as an offset to address the
current element of the source string, and the con-
tents of register DI (destination index) is taken as
the offset of the current destination string element.
These registers must be initialized to point to the
source/destination strings before executing the
string instruction; the LDS, LES and LEA instruc-
tions are useful in this regard.

Table 3-9 String Instruction
" Register and Flag Use

Si Index (offset) for source string
DI Index (offset) for destination
: string
DX Port Address
CX Repetition counter

AL/AX Scan value
Destination for LODS
Source for STOS

DF 0 = auto-increment S|, DI
1 = auto-decrement Si, DI

ZF Scan/compare terminator

3-29 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

r 1 SI/DI, CX
PREVIO }_ — —— {ANbBFwouLp
INSTRUCTIONS TYPICALLY BE
L INTIALIZED HERE

REPEAT ABSENT

PREFIX

NORMAL
SYSTEM
INTERRUPT
SERVICE

PENDING

NOT PENDING

DECREMENT
CXBY 1

STRING DF | DELTA
2 BYTE 0 1
BYTE 1 -1
/| WORD 0 2
WORD 1 -2
/
ADJUST PREFIX | Z
Si/DI REPE | 1
BY DELTA Repz | 1
REPNE | 0
REPNZ 0
7
/

. PRESENT REPEAT

PREFIX

Figure 3-29 String Operation Flow

3-30 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

The string instructions automatically update SI
and/or DI in anticipation of processing the next
string element. The setting of DF (direction flag)
determines whether the index registers are auto-
incremented (DF=0) or auto-decremented
(DF=1). If byte strings are being processed, SI
and/or DI is adjusted by 1. The adjustment is 2 for
word strings.

If a repeat prefix has been coded, then register CX
(count register) is decremented by 1 after each repe-
tition of the string instruction. CX must be initialized
to the number of repetitions desired before the
string instruction is executed. If CX is 0, the string
instruction is not executed, and control goes to the
following instruction.

Section 3.8 contains examples illustrating the use of
string instructions.

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While Zero,
Repeat While Not Equal, and Repeat While Not
Zero are five mnemonics for three forms of the
prefix byte that controls repetition of a subsequent
string instruction. The different mnemonics are
provided to improve program clarity. The repeat pre-
fixes do not affect the flags.

REP is used in conjunction with the MOVS (move
string), the STOS (store string), the INS (in string)
and OUTS (out string) instructions and is interpret-
ed as “repeat while not end-of-string” (CX not 0).
REPE and REPZ operate identically and are physical-
ly the same prefix byte as REP. These instructions
are used with the CMPS (compare string) and SCAS
(scan string) instructions and require ZF (posted by
these instructions) to be set before initiating the
next repetition. REPNE and REPNZ are two
mnemonics for the same prefix byte. These instruc-
tions function the same as REPE and REPZ except
that the zero flag must be cleared or the repetition is
terminated. Note that ZF does not need to be initial-
ized before executing the repeated string instruction.

Repeated string sequences are interruptable; the pro-
cessor recognizes the interrupt before processing the
next string element. System interrupt processing is
not affected in any way. Upon return from the
interrupt, the repeated operation is resumed from
the point of interruption. Note, however, that on the
8086,88 execution does not resume properly if a
second or third prefix (i.e., segment override or
LOCK) has been specified in addition to any of the
repeat prefixes. The processor “remembers” only
one prefix in effect at the time of the interrupt, i.e.,
the prefix that immediately precedes the string

instruction; after returning from the interrupt, pro-
cessing resumes at this point, but any additional pre-
fixes specified are not in effect. On the 80186,188,
however, interrupt string instructions resume ex-
ecuting from the first prefix of the repeated
instruction; thus, interrupted string move instruc-
tions with multiple prefixes will resume execution
properly.

If more than one prefix must be used with a string in-
struction executing on the 8086,88, interrupts may
be disabled for the duration of the repeated
execution. However, this will not prevent a non-
maskable interrupt from being recognized. Also, the
time that the system is unable to respond to inter-
rupts may be unacceptable if long strings are being
processed.

Repeated string instructions (MOVS, INS, OUTS)
operate at full bus bandwidth on the 80186,188, al-
lowing very high speed memory-to-memory and
memory-to-I/0 transfers by the CPU.

MOVS destination-string, source-string

MOVS (move string) transfers a byte or a word
from the source string (addressed by SI) to the desti-
nation string (addressed by DI) and updates SI and
DI to point to the next string element. When used in
conjunction with REP, MOVS performs a memory-
to-memory block transfer.

MOVSB/MOVSW

These are alternate mnemonics for the move string
instruction. These mnemonics are coded without
operands. They tell the assembler explicitly that a
byte string (MOVSB) or a word string MOVWS) is
to be moved (when MOVS is coded, the assembler
determines the string type from the attribute of the
operands). These mnemonics are useful when the
assembler cannot determine the attributes of a
string, e.g., when a section of code is being moved.

CMPS destination-string, source-string

CMPS (compare string) subtracts the destination
byte or word (addressed by DI) from the source
byte or word (addressed by SI). CMPS affects the
flags but does not alter either operand, updates SI
and DI to point to the next string element and up-
dates AF, CF, OF, PF, SF and ZF to reflect the rela-
tionship of the destination element to the source
element. For example, if a JG (jump if greater) in-
struction follows CMPS, the jump is taken if the
destination element is greater than the source

3-31 210911

3
é

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

element. If the CMPS is prefixed with REPE or
REPZ, the operation is interpreted as “compare
while not end-of-string (CX not zero) and strings
are equal (ZF=1).” If CMPS is preceded by REPNE
or REPNZ, the operation is interpreted as “compare
while not end-of-string (CX not zero) and strings
are not equal (ZF=0).” Thus, CMPS can be used to
find matching or differing string elements.

SCAS destination-string

SCAS (scan string) subtracts the destination string
element (byte or word) addressed by DI from the
contents of AL (byte string) or AX (word string)
and updates the flags, but does not alter the destina-
tion string or the accumulator. SCAS also updates
DI to point to the next string element and AF, CF,
OF, PF, SF and ZF to reflect the relationship of the
scan value in AL/AX to the string element. If SCAS
is prefixed with REPE or REPZ, the operation is in-
terpreted as “scan while not end-of string (CX not
0) and string-element = scan-value (ZF=1).” This
form may be used to scan for departure from a given
value. If SCAS is prefixed with REPNE or REPNZ,
the operation is interpreted as “scan while not end-
of-string (CX not 0) and string-element is not equal
to scan-value (ZF=0).” This may be used to locate
a value in a string.

LODS source-string

LODS (load string) transfers the byte or word string
element addressed by SI to register AL or AX, and
updates SI to point to the next element in the string.
This instruction is not ordinarily repeated since the
accumulator would be overwritten by each
repetition, and only the last element would be
retained. However, LODS is very useful in software
loops as part of a more complex string function built
up from string primitives and other instructions.

STOS destination-string

STOS (store string) transfers a byte or word from
register AL or AX to the string element addressed
by DI and updates DI to point to the next location in
the string. As a repeated operation, STOS provides a
convenient way to initialize a string to a constant
value (e.g., to blank out a print line).

INS source-string, port (186,88 only)
QUTS port, destination-string

INS and OUTS (in string, out string) instructions
perform block input/output. Their operation is simi-
lar to the string move instructions. In both the INS

3-32

and OUTS instructions, the port address is placed in
the DX register. For INS, the memory address is
placed in the DI register; for OUTS, the memory ad-
dress is placed in the SI register. In the case of INS,
the segment register used is the ES register, and this
may not be overridden. In the case of OUTS, the
segment register used is the DS register; this may be
overridden with a segment override instruction. In
both cases, after the transfer has taken place (in two
subsequent bus cycles), the pointer register is incre-
mented or decremented (depending on the state of
the DF flag) by an appropriate amount (1 for byte, 2
for word transfers).

Control Transfer Instructions

The sequence of instructions executing in an
8086,88 or 80186,188 program is determined by the
contents of the code segment register (CS) and the
instruction pointer (IP). The CS register contains
the base address of the current code segment, the
64K portion of memory from which instructions are
presently being fetched. The IP is used as an offset
from the beginning of the code segment; the combi-
nation of CS and IP points to the memory location
from which. the next instruction is to be fetched.
(Under most operating conditions, the next instruc-
tion to be executed has already been fetched from
memory and is waiting in the CPU instruction
queue.) The program transfer instructions operate
on the instruction pointer and on the CS register;
changing the contents of these causes normal
sequential execution to be altered. When a program
transfer occurs, the queue no longer contains the
correct instruction, and the BIU obtains the next in-
struction from memory using the new IP and CS
values, passes the instruction directly to the EU, and
then begins refilling the queue from the new
location.

Four groups of program transfers are available (see
Table 3-10): unconditional transfers, conditional
transfers, iteration control instructions and
interrupt-related instructions. Only the interrupt-
related instructions affect any CPU flags. However,
the execution of many of the program transfer in-
structions is affected by the states of the flags.

UNCONDITIONAL TRANSFERS

The unconditional transfer instructions may transfer
control to a target instruction within the current
code segment (intrasegment transfer) or to a dif-
ferent code segment (intersegment transfer). (The
ASM-86 assembler terms an intrasegment target
NEAR and an intersegment target FAR.) The trans-
fer is made unconditionally any time the instruction
is executed.

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Table 3-10 Program Transfer Instructions

UNCONDITIONAL TRANSFERS

CALL Call procedure
RET Return from procedure
JMP Jump
CONDITIONAL TRANSFERS
JA/JNBE Jump if above/not below
nor equal
JAE/JNB Jump if above or
equal/not below
JB/INAE Jump if below/not above
nor equal
JBE/JUNA Jump if below or
equal/not above
JC Jump if carry
JE/JZ Jump if equal/zero
JG/JNLE Jump if greater/not less
nor equal
JGE/JNL Jump if greater or
equal/notless
JL/INGE Jump if less/not greater
nor equal
JLE/ING Jump if less or equal/not
greater
JNC Jump if not carry
JNE/JINZ Jump if not equal/not
zero
JNO Jump if not overfiow
JNP/JPO Jump if not parity/parity
odd
JNS Jump if not sign
JO Jump if overflow
JP/JPE Jump if parity/parity
even
JS Jump if sign
ITERATION CONTROLS
LOOP Loop
LOOPE/LOOPZ Loop if equal/zero
LOOPNE/LOOPNZ | Loop if not equal/not
zero
JCXZ Jump if register CX =10
INTERRUPTS
INT Interrupt
INTO Interrupt if overflow
IRET Interrupt return

CALL procedure-name

CALL activates an out-of-line procedure, saving in-
formation on the stack to permit a RET (return) in-
struction in the procedure to transfer control back to
the instruction following the CALL. The assembler
generates a different type of CALL instruction
depending on whether the programmer has defined
the procedure name as NEAR or FAR. For control
to return properly, the type of CALL instruction
must match the type of RET instruction that exits
from the procedure. (The potential for mismatch
exists if the procedure and the CALL are contained
in separately assembled programs.) Different forms
of the CALL instruction allow the address of the
target procedure to be obtained from the instruction
itself (direct CALL) or from a memory location or
register referenced by the instruction (indirect
CALL).

In the following descriptions, bear in mind that the
processor automatically adjusts IP to point to the
next instruction to be executed before saving it on
the stack.

For an intrasegment direct CALL, SP is decremented
by two and IP is pushed onto the stack. The relative
displacement (up to plus or minus 32K) of the target
procedure from the CALL instruction is then added
to the instruction pointer. This form of the CALL in-
struction is “self-relative” and is appropriate for
position-independent (dynamically relocatable) rou-
tines in which the CALL and its target are in the
same segment and are moved together.

An intrasegment indirect CALL may be made
through memory or through a register. SP is decre-
mented by two and IP is pushed onto the stack. The
offset of the target procedure is obtained from the
memory word or 16-bit general register referenced
in the instruction and replaces IP.

For an intersegment direct CALL, SP is decremented
by two, and CS is pushed onto the stack. CS is re-
placed by the segment word contained in the
instruction. SP again is decremented by two. IP is
pushed onto the stack and is replaced by the offset
word contained in the instruction.

For an intersegment indirect CALL (which may only
be made through memory), SP is decremented by
two, and CS is pushed onto the stack. CS is then re-
placed by the contents of the second word of the
doubleword memory pointer referenced by the
instruction. SP again is decremented by two, and IP
is pushed onto the stack and is replaced by the con-
tents of the first word of the doubleword pointer
referenced by the instruction.

3-33 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

RET optional-pop-value

RET (return) transfers control from a procedure
back to the instruction following the CALL that ac-
tivated the procedure. The assembler generates an
intrasegment' RET 'if the programmer has defined
the procedure NEAR, or an intersegment RET if the
procedure has been defined as FAR. RET pops the
word at the top of the stack (pointed to by register
SP) into the instruction pointer and increments SP
by two. If RET is intersegment, the word at the new
top of stack is popped into the CS register, and SP is
again incremented by two. If an optional pop value
has been specified, RET adds that value to SP. This
feature may be used to discard parameters pushed
onto the stack before the execution of the CALL
instruction.

JMP target

JMP unconditionally transfers control to the target
location. Unlike a CALL instruction, JMP does not
save any information on the stack, and no return to
the instruction following the JMP is expected. Like
CALL, the address of the target operand may be ob-
tained from the instruction itself (direct JMP) or
from memory or a register referenced by the instruc-
tion (indirect JMP).

An intrasegment direct JMP changes the instruction
pointer by adding the relative displacement of the
target from the JMP instruction. If the assembler
can determine that the target is within 127 bytes of
the JMP, it automatically generates a two-byte form
of this instruction called a SHORT JMP; otherwise,
it generates a NEAR JMP that can address a target
within plus or minus 32K. Intrasegment direct
JUMPs are self-relative and are appropriate in
position-independent (dynamically relocatable) rou-
tines in which the JMP and its target are in the same
segment and are moved together.

An intrasegment indirect JMP may be made either
through memory or through a 16-bit general
register. In the first case, the contents of the word
referenced by the instruction replaces the instruction
pointer. In the second case, the new IP value is
taken from the register named in the instruction.

An intersegment direct JMP replaces IP and CS with
values contained in the instruction.

An intersegment indirect JMP may be made only
through memory. The first word of the doubleword
pointer referenced by the instruction replaces 1P,
and the second word replaces CS. .

3:34

CONDITIONAL TRANSFERS

The conditional transfer instructions are jumps that
may or may not transfer control depending on the
state of the CPU flags at the time the instruction is
executed. These instructions (see Table 3-11) each
test a different combination of flags for a condition.
If the condition is “true,” then control is transferred
to the target specified in the instruction. If the condi-
tion is “false,” then control passes to the instruction
that follows the conditional jump. All conditional
jumps are SHORT, that is, the target must be in the
current code segment and within —128 to +127
bytes of the first byte of the next instruction (JMP
00H jumps to the first byte of the next instruction).
Since the jump is made by adding the relative dis-
placement of the target to the instruction pointer, all
conditional jumps are self-relative and are appropri-
ate for position-independent routines.

ITERATION CONTROL

The iteration control instructions can be used to
regulate the repetition of software loops. These in-
structions use the CX register as a counter. Like the
conditional transfers, the iteration control instruc-
tions are self-relative and may only transfer to tar-
gets that are within —128 to +127 bytes of
themselves, i.e., they are SHORT transfers.

LOOP short-label

LOOP decrements CX by 1 and transfers control to
the target operand if CX is not 0; otherwise the in-
struction following LOOP is executed.

LOOP/LOOPNZ short-label

LOOPE and LOOPZ (loop while equal and loop
while zero) are different mnemonics for the same in-
struction (similar to the REPE and REPZ repeat
prefixes). CX is decremented by 1, and control is
transferred to the target operand if CX is not 0 and if
ZF is set; otherwise the instruction following
LOOPE/LOOPZ is executed.

LOOPNE/LOOPNZ short-label

LOOPNE/LOOPNZ (loop while not equal and loop

- while not zero) are also synonyms for the same

instruction. CX is decremented by 1, and control is

~ transferred to the target operand if CX is not 0 and if

ZF is clear; otherwise the next sequential instruction

- is executed.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Table 3-11 Interpretation of Conditional Transfers

MNEMONIC CONDITION TESTED “JUMPIF...”

JA/JNBE (CF or ZF)=0 above/not below nor equal
JAE/JUNB CF=0 above or equal/not below
JB/JINAE CF=1 below/not above nor equal
JBE/JNA (CF oR ZF)=1 below or equal/not above
JC CF=1 carry

JE/JZ ZF=1 equal/zero

JG/JNLE ((SF xor OF) or ZF)=0 greater/not less nor equal
JGE/JNL (SF xor OF)=0 greater or equal/not less
JL/INGE (SF xor OF)=1 less/not greater nor equal
JLE/JNG ((SF xor OF) or ZF)=1 less-or equal/not greater
JNC CF=0 not carry

JNE/JNZ ZF=0 not equal/not zero

JNO OF=0 not overflow

JNP/JPO PF=0 not parity/parity odd

JNS ' ‘ SF=0 not sign

JO OF=1 overflow

JP/JPE PF=1 parity/ parity equal

JS 1 SF=1 sign

Note: ‘‘above’’ and ‘‘below’’ refer to the relationship of two unsigned values;
‘‘greater’’ and ‘‘less’’ refer to the relationship of two signed values.

JCXZ short-label

JCXZ (jump if CX zero) transfers control to the
target operand if CX is 0. This instruction is useful at
the beginning of a loop to bypass the loop if CX has a
zero value, i.e., to execute the loop zero times.

INTERRUPT INSTRUCTIONS

The interrupt instructions allow interrupt service
routines to be activated by programs as well as by ex-
ternal hardware devices. The effect of software inter-
rupts is similar to hardware-initiated interrupts.
However, the processor does not execute an inter-
rupt acknowledge bus cycle if the interrupt originates
in software or with an NMI (non-maskable
interrupt).The effect of the interrupt instructions on
the flags is covered in the description of each
instruction.

INT interrupt-type

INT (interrupt) activates the interrupt procedure
specified by the interrupt-type operand. INT decre-
ments the stack pointer by two, pushes the flags
onto the stack, and clears the trap (TF) and
interrupt-enable (IF) flags to disable single-step and
maskable interrupts. The flags are stored in the
same format used by the PUSHF instruction. SP is
decremented again by two, and the CS register is

pushed onto the stack. The address of the interrupt
pointer is calculated by multiplying interrupt-type by
four; the second word of the interrupt pointer re-
places CS. SP again is decremented by two, and IP is
pushed onto the stack and is replaced by the first
word of the interrupt pointer. If interrupt-type = 3,
the assembler generates a short (1 byte) form of the
instruction, known as the breakpoint interrupt.

Software interrupts can be used as “supervisor
calls,” i.e., requests for service that the operating
system could supply for an application program. A
different interrupt-type can be used for each type of
service that the operating system could supply for an
application program. Software interrupts also may be
used to check out interrupt service procedures writ-
ten for hardware-initiated interrupts.

INTO

INTO (interrupt on overflow) generates a software
interrupt if the overflow flag (OF) is set; otherwise
control proceeds to the following instruction without
activating an interrupt procedure. INTO addresses
the target interrupt procedure (its type is 4) through
the interrupt pointer at location 10H; it clears the TF
and IF flags and otherwise operates like INT. INTO
may be written following an arithmetic or logical op-
eration to activate an interrupt procedure if overflow
oceurs.

+ 3-35 210911

THE IAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

IRET

IRET (interrupt return) transfers control back to the
point of interruption by popping IP, CS and the flags
from the stack. IRET thus affects all flags by restor-
ing them to previously saved values. IRET is used to
exit .any interrupt procedure, whether activated by
hardware or software.

High-level Instructions

ENTER

The ENTER (enter procedure) instruction executes
the calling sequence for a high-level language. It pro-
vides for saving the current stack frame pointer
(which is in the BP register), copying down stack
frame pointers from procedures below the current
call (to allow access to local variables in these
procedures), and allocating space on the stack for
the local variables of the current procedure
invocation. This instruction requires two arguments:
the size of the local variables (the displacement),
and the level of the procedure (which may be as
great as 255).

The algorithm for this instruction is:

PUSH BP /* save the previous frame pointer */
iflevel = 0 then

BP:=SP;
else templ := SP; /* save current frame pointer*/

temp2 := level — 1;

do while temp2 > 0 /* copy down previous level

frame */
BP:=BP — 2; /* pointers */
PUSH [BPI;
BP := templ,
PUSH BP; /* put current level frame pointer */

/* in the save area */
/*create space on the stack for */
/* local variables */

SP := SP — disp;

Figure 3-30 shows the layout of the stack after this
operation.

LEAVE

The LEAVE (leave procedure) instruction is the
opposite of the ENTER instruction. This instruction
“cleans up” the procedure’s stack to prepare for re-
turning from the procedure. It deallocates all local or
automatic variables, and. returns the stack registers
(SP and BP) to the same values they were immedi-
ately after the procedure invocation. As can be seen
from the layout of the stack left by the ENTER in-
struction (see Figure 3-30), this involves moving
the contents of the. BP register to the SP register,
and popping the old BP value off of the stack.

3-36

BP —>»

OLD BP

OLD FRAME

PTRS.

CURRENT FRAME
PTR

LOCAL
VARIABLE
AREA

Figure 3-30 Stack Layout
After ENTER Instruction

Note that neither the ENTER nor the LEAVE in-
structions save any of the 80186,188 general purpose
registers. If they must be saved, this must be done in
addition to the ENTER and LEAVE. Also, the
LEAVE instruction does not perform a return from
subroutine. If this is desired, the LEAVE instruction
must be explicitly followed by the RET instruction.

BOUND

The BOUND (detect value out of range) instruction
allows for array bounds checking in hardware. The
calculated.array index is placed in one of the general
purpose registers, and the upper and lower bounds
of the array are placed in two consecutive memory
locations. The instruction compares the contents of
the specified register against the memory location
values, and if the register value is less than the first
memory location or greater than the second
memory location, a trap type 5 is generated. The
comparisons performed are signed comparisons. A
register value equal.to either the upper or lower
bound will not cause a trap. Following a trap, the IP
(which has been pushed on the stack) will point to
the instruction following the BOUND instruction.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

The instruction requires two arguments: the register
in which the calculated array index is placed, and the
effective address of the memory location containing
the lower bound of the array (which can be specified
by any of the 80186,188 memory addressing
modes). The memory location containing the upper
bound of the array must follow immediately the
memory location containing the lower bound of the
array, i.e., the address of the memory location con-
taining the upper bound of the array is the address of
the lower bound location plus 2.

Processor Control Instructions

These instructions (see Table 3-12) allow programs
to control various CPU functions. One group of in-
structions updates flags, and another group is used
primarily for synchronizing the processor with exter-
nal events. A final instruction causes the CPU to do
nothing. Except for the flag operations, none of the
processor instructions affect the flags.

Table 3-12 Processor Control Instructions

FLAG OPERATIONS

STC Set carry flag

CLC Clear carry flag

CMC Complement carry flag
STD Setdirection flag

CLD Clear direction flag

STI Setinterrupt enable flag
CLl Clear interrupt enable flag

EXTERNAL SYNCHRONIZATION

HLT Halt until interrupt or reset
CWAIT Wait for TEST pin active
ESC Escape to external processor
LOCK Lock bus during next
instruction

NO OPERATION

NOP No operation
FLAG OPERATIONS
CLC

CLC (clear carry flag) zeroes the carry flag (CF) and
affects no other flags. It (and CMC and STC) is
useful in conjunction with the RCL and RCR
instructions.

CMC

CMC (complement carry flag) “toggles” CF to its
opposite state and affects no other flags.

STC

STC (set carry flag) sets CF to 1 and affects no other
flags.

CLD

CLD (clear direction flag) zeroes DF causing the
string instructions to auto-increment the SI and /or
DI index registers. CLD does not affect any other
flags.

STD

STD (set direction flag) sets DF to 1 causing the
string instructions to auto-decrement the SI and/or
DI index registers. STD does not affect any other
flags.

CLI

CLI (clear interrupt-enable flag) zeroes IF. When
the interrupt-enable flag is cleared, the processor
does not recognize an external interrupt request that
appears on the INTR line; in other words maskable
interrupts are disabled. A non-maskable interrupt
appearing on the NMI line; however, is honored, as
is a software interrupt. CLI does not affect any other
flags.

STI

STI (set interrupt-enable flag) sets IF to 1, enabling
processor recognition of maskable interrupt requests
appearing on the INTR line. Note, however, that a
pending interrupt will not actually be recognized
until the instruction following STI has executed. STI
does not affect any other flags.

EXTERNAL SYNCHRONIZATION
HLT

HLT (halt) causes the processor to enter the halt
state. The processor leaves the halt state upon activa-
tion of the RESET line, upon receipt of a non-
maskable interrupt request on NMI, or, if interrupts

3-37 210911

THE:iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND.INSTRUCTIONS

are enabled, upon receipt of a maskable interrupt.re-
quest on INTR. HLT does not affect any flags. It
may be used as an alternative to an endless software
loop in situations where a program must wait for an
interrupt.

WAIT

WAIT causes the CPU to enter the wait state while
its TEST line is not active. WAIT does not affect any
flags.

ESC external-opcode, source

ESC (escape) provides a means for an external pro-
cessor to obtain an opcode and possibly a memory
operand from the 8086 or 80186. The external
opcode is a 6-bit immediate constant that the assem-
bler encodes in the machine instruction it builds. An
external processor may monitor the system bus and
capture this opcode when the ESC is fetched. Then,
using the second byte of the opcode, the CPU per-
forms an operand access. If the source opetand is.a
register, the processor does nothing. If the source
operand is a memory variable, the processor obtains
the operand from memory and discards it. An exter-
nal processor may capture the memory operand and
the memory operand’s 20-bit address when the pro-
cessor reads it from memory.

LOCK

LOCK isa one-byte prefix that causes the processors
to assert their bus LOCK signals while the following
instructions execute. LOCK does not affect any flags.

NO OPERATION
NOP

NOP (no operation) causes the CPU to do nothmg
NOP does not affect any flags.

Instruction Operation Differences,
8086,88 —80186,188

There are a few instruction operation differences be-
tween the 8086,88 and 80186,188, most of which
have been previously discussed in this chapter and
in Chapter 2. The followmg lS a summary of these
differences:

3-38

UNDEFINED OPCODES

When the opcodes 63H, 64H, 65H,.66H, 67H, F1H,
FEH XXI111XXXB and FFH XX111XXXB are
executed, the 80186,188 will execute an illegal in-
struction exception (mterrupt type 6). The 8086 88
will ignore these opcodes. :

OFH OPCODE

When the opcode OFH is encountered, the 8086,88
will execute a POP CS; the 80186,188 will execute an
illegal instruction exception.

WORD WRITE AT OFFSET FFFFH

When a word write is.performed at offset FFFFH in
a segment, the 8086,88 will write one byte at offset
FFFFH, and the other at offset 0; the 80186,188 will
write one byte at offset FPFFH and the other at
offset 10000H (one byte beyond the end of the
segment). One byte segment underflow will also
occur on the 80186,188 if a stack PUSH is executed
and the Stack Pointer contains the:value 1.

SHIFT/ROTATE BY VALUE GREATER THAN 31

Before the 80186,188 performs a shift or rotate-by a
value (either in the CL register, or:by an immediate
value) it ANDs.the value with 1FH, limiting the
number of bits rotated to less than 32.°The 8086,88

“ does not do this.

‘LOCK PREFIX

The 8086,88 4ctivates its LOCK: signal immediately

“after executing the LOCK prefix. The 80186,188:

does not activate the LOCK signal until the proces-:
sor is ready to begin the data cycles assocnated with
the LOCKed instruction. .

INTERRUPTED STRING MOVE .
INSTRUCTIONS

If an 8086,88 is interrupted during the execution of a
repeated string move instruction, the return value
pushed on the stack will point to the last prefix in-
struction before the string move instruction. If the
instruction had more than one prefix (e.g., a seg-
ment override prefix in addition to the repeat
prefix), the prefix will not be re-executed upon re-
turning from the interrupt. The 80186,188, on the
other hand, pushes the value of the firsrprefix to the
repeated instruction: Thus, so long as prefixes are
not themselves repeated, string instructions will
properly resume execution.

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CONDITIONS CAUSING DIVIDE ERROR
WITH AN INTEGER DIVIDE

The 8086,88 will cause a divide error whenever the
absolute value of the quotient is greater then 7TFFFH
(for word operations) or if the absolute value of the
quotient is greater than 7FH (for byte operations).
The 80186,188 has expanded the range of negative
numbers allowed as a quotient by 1 to include 8000H
and 80H. These numbers represent the most nega-
tive numbers representable using two’s complement
arithmetic (equal to —32768 and —128 in decimal,
respectively).

ESC OPCODE

The 80186,188 may be programmed to cause an in-
terrupt type 7 whenever an ESCape instruction
(used for co-processors like the the 8087) is
executed. The 8086,88 has no such provision.

Instruction Set Reference

The instruction set summary which follows provides
detailed operational information for the iAPX
86/186 (8086, 8088, 80186, and 80186) instruction
set. The information is presented from the point of
view of utility to the assembly language programmer.

Instruction timings are represented as the number
of clock periods required to execute a particular
form (register-to-register, immediate-to-memory,
etc.) of instruction. At SMHz clock, the clock period
is 200 ns; at 8MHz, the clock period is 125 ns. For
8086,88 instruction timings which use memory
operands, “+EA” denotes the number of additional
clock periods needed to calculate the operand’s effec-
tive address. (On the 80186,188 this computation is
performed in hardware.)

For control transfer instructions, the timings given
include any additional clocks required to reinitialize
the instruction queue as well as the time required to
fetch the target instruction. For the 8086, four clocks
should be added for each instruction reference to a
word operand located at an odd memory address to
reflect any additional operand bus cycles required.
The required number of data references is listed in
the instruction set summary for each instruction to
aid in this calculation.

All of the instruction times given are of the form
“n(m),” where n is the number of clocks required
for the 8086 to execute the given instruction, and m
is the time required by the 80186 for the same
instruction. The number of clocks required for the
8088 will be n for 8-bit operations and n + (4 *
transfers) for 16-bit operations. For the 80188, the
number of clocks will be m for 8-bit operations and
m + (4 * transfers) for 16-bit operations.

For instructions which repeat a specified number of
times, the values m and n each consist of two parts
in the relation “x + y/rep,” where x is the initial
number of clocks required to start the instruction,
and y is the number of clocks corresponding to the
number of iterations specified. For 16-bit repeated
instructions on the 8088 and 80188, when the ex-
pression “(4 * transfers)” has to be added to m or n,
it should be added to the y part of the expression
before it is multiplied by the number of repetitions.

Several additional factors can increase actual execu-
tion time over the figures shown in Table 3-13. The
time provided assumes that the instruction has al-
ready been prefetched and that it is waiting in the in-
struction queue, an assumption that is valid under
most, but not all, operating conditions. A series of
fast executing (fewer than two clocks per opcode
byte) instructions can drain the queue and increase
execution time. Execution time also is slightly im-
pacted by interaction of the EU and BIU when
memory operands must be read or written. If the EU
needs access to memory, it may have to wait for up
to one clock if the BIU has already started an instruc-
tion fetch bus cycle. (The EU can detect the need for
a memory operand and post a bus request far
enough in advance of its need for this operand to
avoid waiting a full 4-clock bus cycle.) Of course the
EU does not have to wait when the queue is full, be-
cause the BIU is idle. (This assumes that the BIU
can dbtain the bus on demand, i.e., no other proces-
sors are competing for the bus.)

With typical instruction mixes, the time actually re-
quired to execute a sequence of instructions will typi-
cally be within 5-10% of the sum of the individual
timings given in the instruction set summary. Cases
can be constructed, however, in which execution
time may be much higher than the sum of the figures
provided in the table. The execution time for a given
sequence of instructions, however, is always
repeatable, assuming comparable external conditions
(interrupts, coprocessor activity, etc.). If the execu-
tion time for a given series of instructions must be
determined exactly, the instructions should be run
on an execution vehicle such as the iSBC 88/25™ or
the 86/30 board.

3-39 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

REF

REFERENCES |
FOR INSTRUCTION SET

REF

Key to following Instruction Set Reference Pages

IDENTIFIER USED IN EXPLANATION
destination data transfer, A register or memory location that may contain data
bit manipulation operated on by the instruction, and which receives (is
replaced by) the result of the operation.
source data transfer, A register, memory location or immediate value that is
arithmetic, used in the operation, but is not altered by the
bit manipulation instruction.
source-table XLAT Name of memory translation table addressed by
register BX.
target JMP, CALL A label to which control is to be transferred directly, or
a register or memory location whose content is the
address of the location to which control is to be
transferred indirectly.
short-label cond. transfer, A label to which control is to be conditionally

iteration control transferred; must lie within —128 to +127 bytes of the

first byte of the next instruction.
accumuiator IN, OUT

port IN, OUT

Register AX for word transfers, AL for bytes.

An I/0 port number; specified as an immediate value of
0-255, or register DX (which contains port number in
range 0-64k).

source-string string ops. Name of a string in memory that is addressed by
register Sl; used only to identify string as byte or word
and specify segment override, if any. This string is
used in the operation, but is not altered.

dest-string string ops. Name of string in memory that is addressed by register
DI; used only to identify string as byte or word. This
string receives (is replaced by) the result of the
operation.

count shifts, rotates Specifies number of bits to shift or rotate; written as
immediate value 1 or register CL (which contains the
countin the range 0-255).

interrupt-type INT Immediate value of 0-255 identifying interrupt pointer
. number.
Number of bytes (0-64k, ordinarily an even number) to

optional-pop-value RET
} discard from stack.

external-opcode ESC Immediate value (0-63) that is encoded in the instruction
for use by an external processor.
above-below conditional jumps Above and below refer to the relationship of two unsigned

values.

Greater and less refer to the relationship of two signed

conditional jumps
values.

greater-less

3-40 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

REF

REFERENCES
FOR INSTRUCTION SET

REF

Key to Operand Types
IDENTIFIER EXPLANATION
(no operands) [No operands are written [T T T B o T T T
register An 8- or 16-bit general register CARRY
reg 16 An 16-bit general register :::::m“m
seg-reg A segmentregister zeR0
accumulator Register AX or AL SIGN
TRAP
immediate A constant in the range INTERRUPT
0-FFFFH DIRECTION
immed8 A constantin the range 0-FFH OVERFLOW
memory An 8- or 16-bit memory
location™ Effective Address Calculation Time (8086,88 ONLY)
mem38 An 8-bit memory location'”
mem16 A 16-bit memory location® EA COMPONENTS CLOCKS*
source-table tI\élat\)rl’f:ae of 256-byte translate Displacement Only 6
source-string Nam? ofs|string addressed by Base or Index Only (BX,BP,SI,DI) 5
register -
dest-string Name of string, addressed by Dlsplaiement 9
register DI Base or Index (BX,BP,SI,DI)
DX Register DX
short-label A label within 128 to +127 Base BP +DI, BX+SI 7
bytes of the end of the Index BP +SI, BX+ DI 8
near-label éeg:r?gr?tl in current code Displacement g;+o|+o|§p 1
+ + SI+DISP
far-label A label in another code Base
segment + BP +Sl+DISP 12
near-proc A procedure in current code Index BX+DI+DISP
segment *Add 2 clocks for segment override
far-proc A procedure in another code
segment .
. Notation Key
memptri6 A word containing the offset of + Addition
the location in the current code s .
segment to which control is to — Subtraction
be transferred™ * Multiplication
memptr32 A doubleword containing the / Division
offset and the segment base % Modulo
address of the location in : Concatenation
another code segment to & And
which control is to be trans- .
ferred™ <« Assignment
regptri6 A 16-bit general register
containing the offset of the
location in the current code
segment to which control is to
be transferred
repeat A string instruction repeat
prefix
™ Any addressing mode — direct, register indirect,
based, indexed, or based indexed — may be used
(see Section 3.6).
3-41 210911

e em T e 3

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

REF

REFERENCES
FOR INSTRUCTION SET

‘““reg’’ Field Bit Assignments:

16-Bit (w = 1) 8-Bit (w = 0) Segment
000 AX 000 AL 00 ES
001 CX 001 CL 01 CS
010 DX 010 DL 10 SS
011 BX 011 BL 11 DS
100 SP 100 AH
101 BP 101 CH
110 S| 110 DH
111 DI 111 BH

“mod’’ Field Bit Assignments:

Imod xxx r/m|

REF

mod | Displacement

00 |DISP=0*, disp-low and disp-high are absent

01 |[DISP =disp-low sign-extended to 16-bits, disp-high is absent
10 | DISP = disp-high: disp-low

11 |r/mistreatedasa‘‘reg’’ field

“r/m’’ Field Bit Assignments:

r/m Operand Address
000 (BX) + (Sl) + DISP
001 (BX) + (DI) + DISP
010 (BP) + (SI) + DISP
011 (BP) + (DI) + DISP
100 (SI) + DISP
101 (D) + DISP
110 (BP) + DISP
111 (BX) + DISP

DISP follows 2nd byte of instruction (before data if required).

*exceptif mod =00and r/m =110 then EA = disp-high: disp-low.

3-42

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

AN ASCII ADJUST |
AAA FOR ADDITION AAA

Operation: o Flags Affected:
if ((AL) & OFH) >9 or (AF) = 1 then AF, CF. o
(AL) < (AL) + 6 OF, PF, XF, ZF undefined
(AH) < (AH) + 1
(AF) <1
(CF) < (AF) ;

(AL) < (AL) & OFH

Description:

AAA (ASCII Adjust for Addition) changes
the contents of register AL to a valid unpacked
decimal number; the high-order half-byte is
zeroed. AAA updates AF and CF; the content
of OF, PF, SF and ZF is undefined following ;
execution of AAA. i

|
|
1
Encoding: : |
[00110111 |
AAA Operands Clocks Transfers|Bytes AAA Coding Example
(no operands) ' 8(8) - 1 | AAA

3-43 210911

]

‘THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

| - ASCII ADJUST
AAD FOR DIVISION

Flags Affected:

Operation:

(AL) < (AH) * 0AH + (AL)
(AH) < 0

Description:

AAD (ASCII Adjust for Division) modifies
the numerator in AL before dividing two valid
unpacked decimal operands so that the quo-
tient produced by the division will be a valid
unpacked decimal number. AH must be zero

Encoding:

111010101 [00001010 |

PF, SF, ZF.

AAD

AF CF OF undeflned

for the subsequent DIV to produce the correct
result. The quotient isreturned in AL; and the
remainder is returned in AH; both high-order
half-bytes are zeroed. AAD updates PF, SF
and ZF; the content of*AF, CF and OF is
undefined following execution of AAD.

AAD Operands Clocks

Transfers

Bytes

AAD Coding Example

(no operands) 60(15)

AAD

3-44

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

AAM ASCII ADJUST AAM

FOR MULTIPLY

Operation:

(AH) <« (AL) / OAH
(AL) « (AL) % OAH

Description:

AAM (ASCII Adjust for Multiply) corrects
the result of a previous multiplication of two
valid unpacked decimal operands. A valid 2-
digit unpacked decimal number is derived
from the content of AH and AL and is

Encoding:

111010100 [00001010 |

Flags Affected:

PF, SF, ZF.
AF, CF, OF undefined

returned to AH and AL. The high-order half-
bytes of the multiplied operands must have
been OH for AAM to produce a correct result.
AAM updates PF, SF and ZF; the content of
AF, CF and OF is undefined following execu-
tion of AAM.

AAM Operands Clocks

Transfers |Bytes AAM Coding Example

(no operands) 83(19)

- 2 | AAM

3-45 210911

e e el

. THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

AQ ASCIIADJUST "
AAS FOR SUBTRACTION AAS

Operation: =~ .. -~ Flags Affected:
if ((AL) & OFH) >9 or (AF) = 1 then AF, CF.
(AL) < (AL)-6 V OF, PF, SF, ZF undefined
(AH) < (AH) -1
(AF) < 1
(CF) < (AF)

(AL) < (AL) & OFH

Description:

AAS (ASCII Adjust for Subtraction) corrects register AL). AAS changes the content of AL
the result of a previous subtraction’ of two to a valid unpacked decimal number; the high-
valid unpacked decimal operands (the destina- order half-byte is zeroed. AAS updates ‘AF

tion operand must have been specified as and CF; the content of OF, PF, SF and ZF is
' v undefined following execution of AAS.

Encoding:
[00111111 |
" AAS Operands » C,oncks«-ﬂ, Transfers Bytes ~ AAS Coding Example
| (no operands) 4 8(7) - | 1 |AAs

3-46 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ADC ADD WITH CARRY ADC

Operation: Flags Affected:
if (CF) =1 then (DEST) < (LSRC) AF, CF, OF, PF, SF, ZF .
+ (RSRC) + 1

else (DEST) < (LSRC) + (RSRCQC)

Description:

ADC destination,source

ADC (Add with Carry) sums the operands,
which may be bytes or words, adds one if CF is
set and replaces the destination operand with)
the result. Both operands may be signed or
unsigned binary numbers (see AAA and
DAA). ADC updates AF, CF, OF, PF, SF and
ZF. Since ADC incorporates a carry from a I
previous operation, it can be used to write }1
routines to add numbers longer than 16 bits. ‘

3-47 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ADC ADDWITHCARRY ADC

Encoding:

Memory or Register Operand with Register Operand:

[000100dw [modregr/m]|

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod010r/m| data [dataif s:w=01|

LSRC = EA, RSRC = data, DEST =EA

Immediate Operand to Accumulator:

[0001010w]| data [dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

accumulator,
immediate 4(3-4) -

ADC Operands Clocks Transfers (Bytes ADC Coding Example
register, register 3(3) - 2 | ADCAX, SI
register, memory 9(10) +EA 1 2-4 | ADD DX, BETA [SI]
memory, register 16(10)+EA 2 2-4 | ADC ALPHA [BX][SI],DI
register, immediate 4(4) - 3-4 | ADC BX, 256
memory, immediate 17(16) +EA 2 3-6 | ADC GAMMA, 30H
2-3

ADCAL,5

3-48 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ADD ADDITION ADD

Operation: Flags Affected:
(DEST) < (LSRC) + (RSRC) AF, CF, OF, PF, SF, ZF
Description:

ADD destination,source

The sum of the two operands, which may be
bytes or words, replaces the destination
operand. Both operands may be signed or :
unsigned binary numbers (see AAA and i
DAA). ADD updates AF, CF, OF, PF, SF and
ZF.

3-49 210911 |

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ADD ADDITION ADD

Encoding:

Memory or Register Operand with Register Operand:
[000000dw [modregrim]| |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC =REG, DEST=EA

Immediate Operand to Memory or Register Operand:

[100000sw [mod000r/m| data |dataif s:w=01]
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

10000010w| data | dataifw=1 |

ifw=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

ADD Operands Clocks Tfénsfers Bytes ADD Coding Example

register, register 3(3) 2 | ADDCX, DX

register, memory 9(10) +EA 1 2-4 | ADD DI, [BX].ALPHA
memory, register 16(10)+EA 2 2-4 | ADD TEMP, CL
register, immediate 4(4) - 3-4 | ADDCL, 2
memory, immediate 17(16)+EA 2 3-6 | ADD ALPHA, 2
accumulator,

immediate 4(3-4) - 2-3 | ADD AX, 200

3-50 : 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

AND AND LOGICAL AND

Operation: Flags Affected: V‘é
(DEST) < (LSRC) & (RSRC) CF, OF, PF, SF, ZF. ‘
(CF)<0 AF undefined |
(OF) <0

Description:

AND destination,source

AND performs the logical ““and’ of the two
operands (byte or word) and returns the result
to the destination operand. A bit in the result
is set if both corresponding bits of the original
operands are set; otherwise the bit is cleared.

4
;
J
d
it
!

3-51 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

AND AND L‘OGICA'L AN

Encoding:

Memory or Register Operand with Register Operand:

[001000dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod100r/m| data | dataifw=1 |

LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[0010010w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

accumulator,
immediate 4(3-4) -

AND Operands Clocks Transfers |Bytes AND Coding Example
register, register 3(3) - 2 | ANDAL,;BL
register, memory 9(10)+EA 1 2-4 | AND CX,FLAG_WORD
memory, register 16(10)+EA 2 2-4 | AND ASCII [DI],AL
register, immediate 4(4) - 3-4 | AND CX, OFOH
memory, immediate 17(16) +EA 2 3-6 | AND BETA,O1H
2-3

AND AX, 01010000B

3-52 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

BOUND DETECT VALUE BOUND

OUT OF RANGE

Operation: Flags Affected:

None

If ((LSRC) < (RSRC) OR (LSRC) > ((RSRC) + 2) then
(SP) —(SP) -2
((SP) + 1: (SP)) —FLAGS
(IF)—o0
(TF)—o0
(SP) —(SP)-2
((SP) + 1: (SP)) — (CS)
(CS) — (1EH)
(SP) —(SP) -2
((SP) + 1: (SP)) — (IP)
(IP) — (1CH)

Description:

BOUND destination, source

BOUND provides array bounds checking in hardware. The
calculated array index is placed in one of the general purpose
registers, and the upper and lower bounds of the array are
placed in two consecutive memory locations. The contents of
the register are compared with the memory location values,
and if the register value is less than the first location or great-
er than the second memory location, a trap type 5 is
generated.

3-53 210911

"“THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE ANDINSTRUCTIONS

n BOUND DE'I;ECT VALUE BOUND

Encoding:
01100010 modreqr/m
BOUND Operands Clocks Transfers [Bytes| BOUND Coding Example
register, memory (35) 2 2 BOUND AX, ALPHA

3-54 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CALL

Operation:

if Inter-Segment then
(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < SEG

(SP) < (SP)-2

((SP)+1:(SP)) < (IP)

(IP) < DEST

Description:

CALL procedure-name

CALL activates an out-of-line procedure, sav-
ing information on the stack to permit a RET
(return) instruction in the procedure to
transfer control back to the instruction follow-
ing the CALL. The assembler generates a dif-
ferent type of CALL instruction depending on
whether the programmer has defined the pro-
cedure name as NEAR or FAR. For control to
return properly, the type of CALL instruction
must match the type of RET instruction that
exits from the procedure. (The potential for a
mismatch exists if the procedure and the
CALL are contained in separately assembled
programs.) Different forms of the CALL
instruction allow the address of the target pro-
cedure to be obtained from the instruction
itself (direct CALL) or from a memory loca-
tion or register referenced by the instruction
(indirect CALL). In the following descrip-
tions, bear in mind that the processor auto-
matically adjusts IP to point to the next
instruction to be executed before saving it on
the stack.

For an intrasegment direct CALL, SP (the
stack pointer) is decremented by two and IP is
pushed onto the stack. The target procedure’s
relative displacement (up to =32k) from
the CALL instruction is then added to the
instruction pointer. This CALL instruction

CALL PROCEDURE

CALL

Flags Affected:

None

form is ‘‘self-relative’” and appropriate for
position-independent (dynamically relocat-
able) routines in which the CALL and its
target are moved together in the same segment.

An intrasegment indirect CALL may be made
through memory or a register. SP is decre-
mented by two; IP is pushed onto the stack.
The target procedure offset is obtained from
the memory word or 16-bit general register
referenced in the instruction and replaces IP.

For an intersegment direct CALL, SP is decre-
mented by two, and CS is pushed onto the
stack. CS is replaced by the segment word con-
tained in the instruction. SP again is
decremented by two. IP is pushed onto the
stack and replaced by the offset word in the
instruction.

For an intersegment indirect CALL (which
only may be made through memory), SP is
decremented by two, and CS is pushed onto
the stack. CS is then replaced by the content of
the second word of the doubleword memory
pointer referenced by the instruction. SP again
is decremented by two, and IP is pushed onto
the stack and replaced by the content of the
first word of the doubleword pointer refer-
enced by the instruction.

3-55 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CALL CALLPROCEDURE CALL

Encoding:

Intra-segment direct:

[11101000 | disp-low | disp-high |
DEST - (EA)

Intra-Segment Indirect:

11111111 mod010r/m

DEST = (IP) + disp

Inter-Segment Direct:

[10011010 | offset-low [offset-high |

| seg-low | seg-high |

DEST = offset, SEG = seg

Inter-Segment Indirect:

[11111111 [mod011r/m]
DEST = (EA), SEG = (EA + 2)

CALL Operands Clocks Transfers |Bytes| CALL Coding Examples
near-proc 19(14) 1 3 | CALLNEAR_PROC
far-proc 28(23) 2 5 | CALLFAR_PROC
memptr16 21(19)+EA 2 2-4 | CALL PROC_TABLE [SI]
regptr16 16(13) 1 2 | CALL AX
memptr32 37(38)+EA 4 2-4 | CALL [BX].TASK [SI]

3-56 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CBW

TO WORD

CONVERT BYTE

CBW

Operation: Flags Affected:
if (AL) < 80H then (AH) « 0 else (AH) « FFH None
Description:
CBW (Convert Byte to Word) extends the sign
of the byte in register AL throughout register
AH. CBW does not affect any flags. CBW can
be used to produce a double-length (word)
dividend from a byte prior to performing byte
division.
Encoding:
110011000 |
CBW Operands Clocks Transfers |Bytes) CBW Coding Example
(no operands) 2(2) - 1 | CBW

3-57

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CLC CLEAR CARRY CLC

Operation: Flags Affected:
(CF)«0 CF
Description:

CLC (Clear Carry flag) zeroes the carry flag
(CF) and affects no other flags. It (and CMC
and STC) is useful in conjunction with the
RCL and RCR instructions.

Encoding:
11111000 |
CLC Operands Clocks Transfers Bytes CLC Coding Example
(no operands) 2(2) - 1 | CLC

3-58 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CLD

CLEAR DIRECTION
| FLAG

CLD

Operation: Flags Affected:
(DF)<0 DF
Description:
CLD (Clear Direction flag) zeroes DF causing
the string instructions to auto-increment the SI
and/or DI index registers. CLD does not
affect any other flags.
Encoding:
[11111100]
CLD Operands Clocks Transfers |Bytes CLD Coding Example
(no operands) 2(2) - 1 |CLD

© 3-59

210911

. THE'IAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

Operation:
(IF)<0

Description:

CLEARINTERRUPT- CL]|
ENABLE FLAG 4

Flags Affected:

IF

CLI (Clear Interrupt-enable flag) zeroes IF.
When the interrupt-enable flag is cleared, the
8086 and 8088 do not recognize an external
interrupt request that appears on the INTR
line; in other words maskable interrupts are
disabled. A non-maskable interrupt appearing
on the NMI line, however, is honored, as is a
software interrupt. CLI does not affect any

other flags.

Encoding:

[11111010 |

-~ CLI Operands

CIOcks

Transfers

Bytes|

CLI Coding Example

(no operands)

22

CLI

-3-60

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CMC COMPLEMENT CMC
CARRY FLAG

Operation: Flags Affected:

if (CF) =0then (CF) < 1 else (CF) <0 CF
Description:
CMC (Complement Carry flag) ‘‘toggles’’ CF
to its opposite state and affects no other flags.

Encoding:

[11110101 |
CMC Operands Clocks Transfers |Bytes CMC Coding Example
(no operands) 2(2) - 1 | CMC

3-61

210911

A U S S

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CMP COMPARE CMP

Operation: Flags Affected:
(LSRC) - (RSRC) AF, CF, OF, PF, SF, ZF
Description:

CMP destination,source

CMP (Compare) subtracts the source from the SF and ZF. The comparison reflected in the

destination, which may be bytes or words, but flags is that of the destination to the source. If
does not return the result. The operands are a CMP instruction is followed by a JG (jump
unchanged, but the flags are updated and can if greater) instruction, for example, the jump
be tested by a subsequent conditional jump is taken if the destination operand is greater

instruction. CMP updates AF, CF, OF, PF, than the source operand.

3-62 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CMP COMPARE CMP

Encoding:

Memory or Register Operand with Register Operand:

[001110dw]|modregr/m |

ifd=1then LSRC = REG, RSRC = EA
else LSRC =EA, RSRC = REG

Immediate Operand with Memory or Register Operand:

[100000sw [mod111r/m| data [dataifs:w=01]
LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

[0011110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data
else LSRC = AX, RSRC = data

CMP Operands Clocks Transfers |Bytes CMP Coding Examples

register, register 3(3) - 2 | CMPBX,CX

register, memory 9(10)+EA 1 2-4 | CMP DH, ALPHA

memory, register 9(10)+EA 1 2-4 | CMP [BP+2],8I

register, immediate 4(3) - 3-4 | CMPBL, 02H

memory, immediate | 10(10)+EA 1 3-6 | CMP [BX].RADAR
[DI],3420H

accumulator,

immediate 4(3-4) - 2-3 | CMP AL, 00010000B

3-63 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CMPS

COMPARE STRING

CMPS

(BYTE OR WORD)

Operation:

(LSRC) - (RSRCQC)
if (DF) =0 then
(Sl) < (Sl) + DELTA
(Dl) < (DI) + DELTA
else
(S1) < (SI)-DELTA
(D) < (DI) - DELTA

Description:

CMPS destination-string,source-string

CMPS (Compare String) subtracts the destina-
tion byte or word (addressed by DI) from the
source byte or word (addressed by SI). CMPS
affects the flags but does not alter either
operand, updates SI and DI to point to the
next string element and updates, AF, CF, OF,
PF, SF and ZF to reflect the relationship of the
destination element to the source element. For
example, if a JG (Jump if Greater) instruction
follows CMPS, the jump is taken if the des-

Encoding:

[1010011w |

Flags Affected:

AF, CF, OF, PF, SF, ZF

tination element is greater than the source
element. If CMPS is prefixed with REPE or
REPZ, the operation is interrupted as ‘‘com-
pare while not end-of-string (CX not zero) and
strings are equal (ZF = 1).” If CMPS is
preceded by REPNE or REPNZ, the operation
is interrupted as ‘‘compare while not end-of-
string (CX not zero) and strings are not equal
(ZF = 0).”” Thus, CMPS can be used to find
matching or differing string elements.

if w=0then LSRC = (Sl), RSRC = (Dl), DELTA =1
else LSRC = (S1) +1:(Sl), RSRC = (DI) + 1:(Dl), DELTA =2

CMPS Operands Clocks Transfers ([Bytes| CMPS Coding Examples
dest-string,
source-string 22(22) 2 1 | CMPS BUFF1, BUFF2
(repeat)dest-string, 9+22
source-string (5+22/rep) 2/rep 1 REP COMPS ID, KEY

3-64

210911

- THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

‘ CONVERT WORD
CWD TO DOUBLEWORD CwD

Operation: Flags Affected:

if (AX) <8000H then (DX) < 0 None

else (DX) < FFFFH

Description:

CWD (Convert Word to Doubleword) extends
the sign of the word in register AX throughout
register DX. CWD does not affect any flags.
CWD can be used to produce a double-length
(doubleword) dividend from a word prior to
performing word division.

Encoding:
10011001 |
CWD Operands Clocks Transfers |Bytes CWD Coding Example
(no operands) 5(4) - 1 | CWD

3-65

210911

g A

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DAA DECIMAL ADJUST DA
DAA " FOR ADDITION DAA

Operation: HENRRE Flags Affected:
if ((AL) & OFH) > 9 or (AF) = 1 then AF, CF, PF, SF, ZF
(ﬁ'l-:-; C SlAL) +6 OF undefined

if (AL) > 9FH or (CF) =1 then
(AL) < (AL) + 60H
{CF) «1

Description:

DAA (Decimal Adjust for Addition) corrects
the result of previously adding two valid
packed decimal operands (the destination
operand must have been register AL). DAA
changes the content of AL to a pair of valid
packed decimal digits. It updates AF, CF, PF,
SF and ZF; the content of OF is undefined
following execution of DAA.

Encoding:

00100111 |

DAA Operands Clocks Transfers|Bytes| DAA CodinglExample |
(no operands) - 4(4) - 1 | DAA :

- 3-66 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

, DECIMAL ADJUST |
DAS FOR SUBTRACTION DAS

Operation: ' f Flags Affected:
if ((AL) & OFH) >9 or (AF) = 1 then AF, CF, PF, SF, ZF.
2,&:‘3; - g‘AL) -6 OF undefined

if (AL) > 9FH or (CF) =1 then
(AL) < (AL) - 60H
(CF) <1

Description:

DAS (Decimal Adjust for Subtraction) cor-
rects the result of a previous subtraction of
two valid packed decimal operands (the desti-
nation operand must have been specified as
register AL). DAS changes the content of AL
to a pair of valid packed decimal digits. DAS
updates AF, CF, PF, SF and ZF; the content
of OF is undefined following execution of

DAS.
Encoding:
[00101111 |
DAS Operands Clocks Transfers|Bytes DAS Coding Example
(no operands) 4(4) - 1 | DAS

3-67 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DEC DECREMENT DEC

Cperation: . Flags Affected:
(DEST) « (DEST)-1 AF, OF, PF, SF, ZF
Description:

DEC (Decrement) subtracts one from the
destination operand. The operand may be a
byte or a word and is treated as an unsigned
binary number (see AAA and DAA). DEC
updates AF, OF, PF, SF and ZF; it does not
affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod001r/m]

DEST =EA

16-Bit Register Operand:

| 01001 reg |
DEST =REG
DEC Operands Clocks Transfers |[Bytes DEC Coding Example
reg16 3(3) - 1 DEC AX
reg8 3(3) - 2 |DECAL
memory 15(15)+EA 2 2-4 | DEC ARRAY [Sl]

3-68 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DIV

Operation:

(temp) < (NUMR)
if (temp) I (DIVR) > MAX then the
following, in sequence
(QUO), (EM) undefined
(SP) < (SP) -2
((SP)+1:(SP)) < FLAGS
(IF)«<0
(TF) <0
(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < (2) i.e., the contents of
memory locations 2 and 3
(SP) < (SP)-2
((SP)+1 (SP)) < (IP)
(IP) < (0)i.e., the contents of
locations 0 and 1
else
(QUO) « (temp) / (DIVR), where
/ is unsigned division
(REM) < (temp) % (DIVR) where
% is unsigned modulo

Description:

DIV source

DIV (divide) performs an unsigned division of
the accumulator (and its extension) by the
source operand. If the source operand is a
byte, it is divided into the two-byte dividend
assumed to be in registers AL and AH. The
byte quotient is returned in AL, and the byte
remainder is returned in AH. If the source
operand is a word, it is divided into the two-
word dividend in registers AX and DX. The
word quotient is returned in AX, and the word

DIVIDE

3-69

DIV

Flags Affected:
AF, CF, OF, PF, SF, ZF undefined

remainder is returned in DX. If the quotient
exceeds the capacity of its destination register
(FFH for byte source, FFFFH for word
source), as when division by zero is attempted,
a type O interrupt is generated, and the
quotient and remainder are undefined. Nonin-
tegral quotients are truncated to integers. The
content of AF, CF, OF, PF, SF and ZF is un-
defined following execution of DIV.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DIV

Encoding:

DIVIDE

[1111011w [mod110r/m|

DIV

if w=0then NUMR = AX, DIVR=EA, QUO = AL, REM = AH, MAX = FFH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = FFFFH

DIV Operands

; Clocks

- DIV Coding Example

" | Transfers |Bytes
reg8 80-90(29) - 2 DIV CL
reg16 144-1 62(38‘) - 2 DIV BX
mem8 86-96 '
+EA(35) 1 2-4 | DIV ALPHA
mem16 154-172
+EA(44) 1 2-4 | DIVTABLE [SI]

3-70

210911

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ENTER

Operation:

(SP) —(SP) - 2
((SP+1: (SP)) — (BP)
(FP) — (SP)
IF LEVEL > Othen
Repeat (Level - 1) times
(BP) — (BP) - 2
(SP) — (SP) - 2
((SP) +1: (SP)) — ((BP))
End Repeat
(SP) ~—(SP) -2
((SP) +1: (SP)) — (FP)
End if
(BP) — (FP)
(SP) — (SP) - (LSRC)

Description:

Flags Affected:

None

ENTER executes the calling sequence for a high-level
language. It saves the current frame pointer (in BP), copies
frame pointers from procedures below the current call (to
allow access to local variables in these procedures) and allo-
cates space on the stack for the local variables of the current

procedure invocation.

3-71

PROCEDUREENTRY ENTER

210911

THEIAPX 86,88 ANDiAPX 186,188 ARCHITECTURE AND INSThUCTIONS

ENTER PROCEDUREENTRY ENTER

Encoding:

11001000 | datalow | data high

ENTER Operands Clocks Transfers |Bytes| ENTER Coding Example
Locals, level L=0(15) - 4 | ENTER 28,3
L=1(25)
L>1(22+16)
(n-1))

3-72 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ESC ESCAPE ESC

Operation: Flags Affected:
if mod # 11 then data bus < (EA) None
Description:

The ESC (Escape) instruction provides a
mechanism by which other processors
(coprocessors) may receive their instructions
from the 8086 or 8088 instruction stream and
make use of the 8086 or 8088 addressing
modes. The CPU (8086 or 8088) does a no
operation (NOP) for the ESC instruction other
than to access a memory operand and place it
on the bus. On the 80186,188, if bit 15 in the
relocation register is set, a trap type 7 will be
generated; if this bit is set to 0, the 80186,188
will respond to the ESC opcode in the same
way as the 8086,88.

Encoding:

| 11011x | modxrim |

ESC Operands Clocks Transfers |Bytes ESC Coding Example
immediate, memory 8(6) +EA 1 2-4 | ESC 6, ARRAY [SI]
immediate, register 2(2) - 2 |ESC20,AL"

3-73 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

HLT HALT HLT

Operation:

None

Description:

HLT (Halt) causes the CPU to enter the halt
state. The processor leaves the halt stdate upon
activation of the RESET line, upon receipt of a
non-maskable interrupt request on NMI, or, if
interrupts are enabled, upon receipt of a mask-

Flags Affected:

None

able interrupt request on INTR. HLT does not
affect any flags. It may be used as an alterna-
tive to an endless software loop in situations
where a program must wait for an interrupt.

Encoding:
[11110100 |
HLTOperands | Clocks Transfers|Bytes| HLT Cod[ing Example
“(no operands) 2(2) - | 1 |HLT

3-74

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

IDIV

Operation:

(temp) < (NUMR)

if (temp) / (DIVR) >0 and (temp)
! (DIVR) > MAX

or (temp) / (DIVR) <0 and (temp)
/ (DIVR) <0-MAX-1then
(QUO), (REM) undefined
(SP) < (SP)-2
(SP)+1 (SP)) <« FLAGS

(
(IF) <
(TF)*—O
(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < (2)
(SP) < (SP)-2
((SP)+1:(SP)) < (IP)
(IP) < (0)

else

(QUO) < (temp) / (DIVR), where
| is signed division

(REM) < (temp) % (DIVR) where
% is signed modulo

Description:

IDIV source

IDIV (Integer Divide) performs a signed divi-
sion of the accumulator (and its extension) by
the source operand. If the source operand-is a
byte, it is divided into the double-length divi-
dend assumed to be in registers AL and AH;
the single-length quotient is returned in AL,
and the single-length remainder is returned in
AH. For byte integer division, the maximum
positive quotient is +127 (7FH) .and the
minimum negative quotient is —127 (81H). If
the source operand is a word, it is divided into
the double-length dividend in registers AX and
DX; the single-length quotient is returned in

INTEGER DIVIDE

IDIV

Flags Affected:
AF, CF, OF, PF, SF, ZF undefined

AX, and the single-length remiainder is
returned in DX. For word integer division, the
maximum positive quotient is +32,767
“(7FFFH) and the minimum negative quotient
is —32,767 (8001H). If the quotient is positive
and exceeds the maximum, or is negative and
is less. than the minimum, the quotient and
remainder are undefined, and a type O inter-
rupt is generated. In particular, this occurs if
division by 0 is attempted. Nonintegral quo-
tients are truncated (toward 0) to integers, and
the remainder has the same sign as the divi-
dend. The content of AF, CF, OF, PF, SF and
ZF is undefined following IDIV.

3-75 210911

- S

“ THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

IDIV

Encoding:

INTEGER DIVIDE

[1111011w [mod111r/m]

IDIV

if w=0then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = 7FH
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = 7FFFH

IDIV Operands Clocks Transfers |Bytes IDIV Coding Example
reg8 101-112 :
(44-52) - 2 | IDIVBL
reg16 165-184
(53-61) - 2 | IDIVCX
mem8 107-118 .
+EA(50-58) 1 2-4 | IDIVDIVISOR_BYTEISI]
mem16 171-190 :
+EA(59-67) 1 2-4 | IDIV [BX].DIVISOR_WORD

3-76

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

IMUL

Operation:

(DEST) < (LSRC) * (RSRC) where
* is signed multiply

if (ext) = sign-extension of (LOW)
then (CF) < 0

else (CF) < 1;

(OF) < (CF)

Description:

IMUL source

IMUL (Integer Multiply) performs a signed
multiplication of the source operand and the
accumulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source is a word, then it is multiplied by
register AX, and the double-length result is
returned in registers DX and AX. If the upper

Encoding:

[1111011w [mod101r/m]

INTEGER MULTIPLY

IMUL

Flags Affected:

CF, OF
AF, PF, SF, ZF undefined

half of the result (AH for byte source, DX for
word source) is not the sign extension of the
lower half of the result, CF and OF are set;
otherwise they are cleared. When CF and OF
are set, they indicate that AH or DX contains
significant digits of the result. The content of
AF, PF, SF and ZF is undefined following exe-
cution of IMUL.

if w=0then LSRC = AL, RSRC = EA, DEST = AH, EXT = AH, LOW = AL
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX, LOW = AX

IMUL Operands Clocks Transfers |Bytes IMUL Coding Example
immed8 (22-25) 3 |IMUL6
immed16 (29-32) 4 |IMUL 20
reg8 80-98(25-28) 2 |IMULCL
reg16 128-154
(34-37) 2 | IMUL BX

mem8 86-104

+EA(31-34) 2-4 | IMUL RATE_BYTE
mem16 134-160

+EA(40-43) 2-4 | IMUL RATE_WORDI[BPIIDI]

3-77 210911

i e el st

. THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

IN

Operation:
(DEST) < (SRC)

Description:

IN accumulator,port

IN transfers a byte or a word from an input
port to the AL register or the AX register,
respectively. The port number may be speci-

fied either with an immediate byte constant,
allowing access to ports numbered 0 through

EnAcoding:,_

Fixed-Pori:

[1110010w |

port |

if w=0then SRC = port, DEST = AL
else SRC = port+1:port, DEST = AX

Varia.ble Pdi’t:

[1110110w]

if w=0then SRC = (DX), DEST = AL
else SRC = (DX) +1:(DX), DEST = AX

INPUT BYTE OR WORD

IN

Flags Affected:

None

255, or with a number previously placed in the
DX register, allowing variable access (by
changing the value in DX) to ports numbered
from 0 through 65,535,

IN Operands ‘Clocks Transfers [Bytes| IN Coding Example
accumulator, B e
‘immed8. - 10(10) 1 2 | INAL, OEAH
accumulator,DX 8(8) 1 1 IN AX, DX

3-78 o 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INC INCREMENT INC

Operation: Flags Affected:
(DEST) < (DEST) + 1 AF, OF, PF, SF, ZF
Description:

INC destination

INC (Increment) adds one to the destination
operand. The operand may be a byte or a word
and is treated as an unsigned binary number
(see AAA and DAA). INC updates AF, OF,
PF, SF and ZF; it does not affect CF.

Encoding:

Memory or Register Operand:

[1111111w [mod000r/m]
DEST = EA

16-Bit Register Operand:

| 01000reg |
DEST = REG
INC Operands Clocks Transfers |Bytes INC Coding Example
regi16 3(3) - 1 INC CX
reg8 . : 3(3) - 2 | INCBL
memory ‘ 15(15)+EA 2 2-4 | INC ALPHA [DI][BX]

3-79 210911

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INS INPUT STRING INS

Operation: Flags Affected:
(DEST) — (SRC) None o
Description:

INS source-string, port

INS (Input String) transfers a byte or a word from an I/0
port (addressed by DX) to a memory address (pointed to by
DI) and updates DX to point to the next string element.
When used in conjunction with REP, INS performs block
transfers at full bus bandwidth.

Encoding:
0110110W
INS Operands Clqcks ‘ Transfers |Bytes INS Coding Example
dest-string,port - (14) 2 1 - | INS BUFF1, USARTD
(repeat)dest-string,
port (8+8/rep) 2/rep 1 REP INS BUFF1, USARTD

3-80 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INT

Operation:

(SP) < (SP) -2
((SP)+1:(SP)) < FLAGS
(IF) <0

(TF)<0

(SP) < (SP)-2
((SP)+1:(SP)) < (CS)
(CS) < (TYPE*4 + 2)
(SP) < (SP)-2
((SP)+1:(SP)) < (IP)
(IP) < (TYPE * 4)

Description:

INT interrupt-type

INT (Interrupt) activates the interrupt pro-
cedure specified by the interupt-type operand.
INT decrements the stack pointer by two,
pushes the flags onto the stack, and clears the
trap (TF) and interrupt-enable (IF) flags to
disable single-step and maskable interrupts.
The flags are stored in the format used by the
PUSHEF instruction. SP is decremented again
by two, and the CS register is pushed onto the
stack. The address of the interrupt pointer is
calculated by multiplying interrupt-type by
four; the second word of the interrupt pointer
replaces CS. SP again is decremented by two,
and IP is pushed onto the stack and is replaced

INTERRUPT

INT

Flags Affected:

3-81

IF, TF

by the first word of the interrupt pointer. If
interrupt-type = 3, the assembler generates a
short (1 byte) form of the instruction, known
as the breakpoint interrupt.

Software interrupts can be used as ‘‘supervisor
calls,”” i.e., requests for service from an
operating system. A different interrupt-type
can be used for each type of service that the
operating system could supply for an applica-
tion program. Software interrupts also may be
used to check out interrupt service procedures
written for hardware-initiated interrupts.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INT INTERRUPT INT

Encoding:

[1100110v | typeifv=1 |

ifv=0then TYPE =3
else TYPE = type

INT Operands Clocks Transfers|Bytes INT Coding Example
immed8(type=23) 52(45) 5 1 |INT3
immed8(type=3) 51(47) 5 2 |INT67

3-82 ' 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INTO

Operation:

if (OF) =1 then
(SP) < (SP)-2
((SP)+1:(SP)) <« FLAGS
(IF)<0
TF) <0

Description:

INTO (Interrupt on Overflow) generates a
software interrupt if the overflow flag (OF) is
set; otherwise control proceeds to the follow-
ing instruction without activating an interrupt
procedure. INTO addresses the target inter-
rupt procedure (its type is 4) through the inter-

INTERRUPT ON
OVERFLOW

INTO

Flags Affected:

None

rupt pointer at location 10H; it clears the TF
and IF flags and otherwise operates like INT.
INTO may be written following an arithmetic
or logical operation to activate an interrupt
procedure if overflow occurs.

Encoding:
[11001110 |
INTO Operands - Clocks Transfers |Bytes INTO Coding Example
(no operands) 53 or4
(48 or4) 5 1 INTO

3-83 210911

= s = ==

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

IRET INTERRUPTRETURN IRET

Operation: - Flags Affected:

(IP)*‘((SP))+1 :(SP)) All

P) < (SP

S) < ((SP)+1:(SP))
P) < (SP) + 2

LA; S(((SP) + 1:(SP))

(S
(C
(S
F
(SP) < (SP) +

Description:

IRET (Interrupt Return) transfers control
back to the point of interruption by popping
IP, CS and the flags from the stack. IRET thus
affects all flags by restoring them to previously
saved values. IRET is used to exit any inter-
rupt procedure, whether activated by hard-
ware or software.

Encoding:

11001111 |

IRET Operands Clocks Transfers |Bytes IRET Coding Example
(no operands) 32(28) 3 1 | IRET

3-84 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JA

JNBE JUMP

JUMP ON ABOVE JA

ON NOT BELOW
OR EQUAL JNBE

Operation: Flags Affected:
if (CF) & (ZF) =0 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
Jump on Above (JA)/Jump on Not Below or
Equal (JNBE) transfers control to the target
operand (IP + displacement) if CF and ZF = 0.
Encoding:
[01110111 [disp
JA/JNBE Operands Clocks Transfers [Bytes JA Coding Example
short-label 160r4(13or4) - 2 | JAABOVE
JNBE Coding Example
JNBE ABOVE

3-85

210911

A

e e S

e

==k I

' THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

| JUMP ON ABOVE
JAE OR EQUAL

JNB JUMPONNOT BELOW

Operation: Flags Affected:
if (CF) = 0 then | None |
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JAE (Jump on Above or Equal)/JNB (Jump
on Not Below) transfers control to the target
operand (IP + displacement) if CF =-0.

Encoding:

01110011] disp |

JAE
“JNB

JAE/JNB Operands Clocks Transfers |Bytes JAE Coding Example

short-label 160r4(130r4) - 2 | JAE ABOVE_EQUAL

3-86

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JB JUMP ON BELOW JB

JNAE goveonequar INAE

Operation: Flags Affected:
if (CF)=1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JB (Jump on Below)/JNAE (Jump on Not
Above or Equal) transfers control to the target
operand (IP + displacement) if CF = 1.

Encoding:

[01110010] disp |

JB/JNAE Operands Clocks Transfers |[Bytes JB Coding Example

short-label 16or4
(13 0r 4) - 2 | JBBELOW

3-87 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JBE JUMP ON BELOW

OR EQUAL
JNA JUMP ON
NOT ABOVE
Operation: Flags Affected:
IF (CF) or (ZF) =1 then None
(IP)<(IP) + disp (sign-extended
to 16-bits)
Description:

JBE (Jump on Below or Equal)/JNA (Jump
on Not Above) transfers control to the target
operand (IP + displacement) if CF or ZF = 1.

Encoding:

01110110] disp

JBE
JNA

JBE/JNA Operands Clocks Transfers Bytes JNA Coding Example

short-label 16or4

(130r4) - 2 | JNANOT_ABOVE

3-88

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JC

JUMP ON CARRY

JC

Operation: Flags Affected:
if (CF) = 1 then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JC (Jump on Carry) transfers control to the
target operand (IP + displacement) on the con-
dition CF = 1.
Encoding:
[01110010] disp
JC Operands Clocks Transfers |Bytes JC Coding Example
short-label 16or4
(13 0r4) - 2 | JC CARRY_SET

3-89

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ICXZ JMElEcK | ICXZ

Operation: Flags Affected:

if (CX) =0then None
(IP) < (IP) + disp (sign-extended

Description:

JCXZ short-label

JCXZ (Jump if CX Zero) transfers control to
the target operand if CX is 0. This instruction
is useful at the beginning of a loop to bypass
the loop if CX has a zero value, i.e., to execute
the loop zero times.

Encoding:

[11100011 | disp

JCXZ Operands Clocks Transfers |Bytes| JCXZ Coding Example
short-label :18o0r6 ,
1 (160r5) - 2 . | JCXZ COUNT_DONE

3-90 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JE JUMP ON EQUAL
JZ JUMP ON ZERO

Operation: ‘ Flags Affected:
if (ZF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JE (Jump on Equal)/JZ (Jump on Zero)
transfers control to the target operand (IP +
displacement) if ZF = 1.

JE
JZ

Encoding:

[01110100] disp

JE/JZ Operands Clocks Transfers |Bytes JZ Coding Example
short-label 160r4(130r4) - 2 | JZZERO

3-91

210911

~ THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JG JUMP ON GREATER JG

INLE juweounor UNLE

Operation: Flags Affected:
if ((SF) = (OF)) or (ZF) = 0 then None |
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JG (Jump on Greater Than)/JNLE (Jump on
Not Less Than or Equal) transfers control to
the target operand (IP + displacement) if the
conditions ((SF XOR OF) or ZF = 0) are
greater than/not less than or equal to the
tested value.

Encoding:

[01111111] disp

JG/JNLE Operands | Clocks |Transfers|Bytes JG Coding Example
short-label 160r4(130r4) - 2 JG GREATER

3-92 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JGE
JNL

JUMP ON GREATER
OR EQUAL

JUMP ON NOT LESS

JGE
JNL

Operation: Flags Affected: |
if (SF) = (OF) then None f
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JGE (Jump on Greater Than or Equal)/JNL *
(Jump on Not Less Than) transfers control to .
the target operand (IP + displacement) if the
condition (SF XOR OF = 0) is greater than or :
equal/not less than the tested value. §?
Encoding:
[01111101] disp |
JGE/JNL Operands Clocks Transfers |[Bytes JGE Coding Example ,
short-label 160r4 ’
(13 0r4) - 2 JGE GREATER_EQUAL

3-93 210911

{

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JL
JNGE

Operation:

if (SF) # (OF) then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JL (Jump on Less Than)/JNGE (Jump on Not
Greater Than or Equal), transfers control to
the target operand if the condition (SF XOR
OF = 1) is less than/not greater than or equal
to the tested value.

JUMP ON LESS

JUMP ON NOT
GREATER OR EQUAL

i
JNGE

Flags Affected:

None

Encoding:
[01111100 | disp |
JL/JNGE Operands Clocks = |Transfers |Bytes| JL Coding Example
short-label 160r4 '
. (13 0r4) 2 | JLLESS

3-94 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JLE

Operation:

if (SF) # (OF)) or ((ZF) = 1) then

JUMP ON LESS

OR EQUAL
JNG JUMPONNOTGREATER JNG

JLE

Flags Affected:

None

(IP) < (IP) + disp (sign-extended

to 16-bits)

Description:

JLE (Jump on Less Than or Equal to)/JING
(Jump on Not Greater Than) transfers ¢ontrol
to the target operand (IP + displacement) if
the conditions tested ((SF XOR OF)or ZF = 1)
are less than or equal to/not greater than the

tested value.

Encoding:

(01111110 |

disp |

JLE/JNG Operands

Clocks

Transfers

Bytes

JNG Coding Example

short-label

16or4
(13 0r 4)

JNG NOT_GREATER

3-95

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JMP JUMP UNCONDITIONALLY JMP

Operation:

if Inter-Segment then (CS) < SEG
(IP) < DEST

Description:

JMP target

JMP unconditionally transfers control to the
target location. Unlike a CALL instruction,
JMP does not save any information on the
stack; no return to the instruction following
the JMP is expected. Like CALL, the address
of the target operand may be obtained from
the instruction itself (direct JMP), or from
memory or a register referenced by the instruc-
tion (indirect JMP),

An intrasegment direct JMP changes the
instruction pointer by adding the relative
displacement of the target from the JMP
instruction. If the assembler can determine
that the target is within 127 bytes of the JMP,
it automatically generates a two-byte instruc-
tion form called a SHORT JMP; otherwise, it
generates a NEAR JMP that can address a
target within +32k. Intrasegment direct JMPS
are self-relative and appropriate in position-

" _Flags Affected:

None

inde'penvdent (dynamically " relocatable)
routines in which the JMP and its target are
moved together in the same segment. i

An intrasegment indirect JMP may be made
either through memory or a 16-bit general
register. In the first case, the word content
referenced by the instruction replaces the
instruction pointer. In the second case, the
new IP value is taken from the register named
in the instruction.

An intersegment direct JMP replaces IP and
CS with values contained in the instruction.

An intersegment indirect JMP may be made
only through memory. The first word of the
doubleword pointer referenced by the instruc-
tion replaces IP and the second word replaces
CS.

3-96 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JMP JUMP UNCONDITIONALLY JMP

Encoding:

Intra-Segment Direct:

[11101001 | disp-low [disp-high]
DEST = (IP) + disp

Intra-Segment Direct Short:

11101011 [disp |
DEST = (IP) + disp sign extended to 16-bits

Intra-Segment Indirect:

[11111111 [mod100r/m]
DEST = (EA)

Inter-Segment Direct:

11101010 | offset-low [offset-high |

| seg-low | seg-high]
DEST = offset, SEG = seg

Inter-Segment Indirect:

[11111111 [mod101r/m]|
DEST = (EA), SEG = (EA + 2)

JMP Operands Clocks Transfers |Bytes JMP Coding Example
2 | JMP SHORT

short-label 15(13)

near-label ‘ 15(13) - 3 | JMP WITHIN_SEGMENT
far-label 15(13) - 5 | JMPFAR_LABEL

| memptr16 18(17)+EA - 2-4 | JMP[BX].TARGET
regptri6 11(11) - 2 | JMPCX
memptr32 | 24(26)+EA - 2-4 | JMP OTHER.SEGISI]

3-97 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JNC JUMPONNOTCARRY JNC

Operation: Flags Affected:
if (CF) =0 THEN None
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

JNC (Jump on Not Carry) transfers control to
the target operand (IP + displacement) on the

condition CF =0.
Encoding:
(01110011 | disp
JNC Operands Clocks Transfers |Bytes JNC Coding Example
short-label 160r4 ‘ ‘
(130r4) . - 2 | JNCNO_CARRY

3-98 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JNE JUMP ON NOT EQUAL JNE
JNZ JUMP ON NOT ZERO JNZ

Operation: Flags Affected:
if (ZF)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNE (Jump on Not Equal to)/ JNZ (Jump on
Not Zero) transfers control to the target
operand (IP + displacement) if the condition
tested (ZF = 0) is true.

Encoding:

[01110101 | disp

JNE/JNZ Operands Clocks Transfers |Bytes JNE Coding Example

short-label 16o0r4
(130r 4) - 2 | JNENOT EQUAL

3-99 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INO igmeanneT UNO

Operation: Flags Affected:
if (OF) =0 then None
(IP) < (IP) + disp (sign-extended
to 16-bits) ’
Description:

JNO (Jump on Not Overflow) transfers con-
trol to the target operand (IP + displacement)
if the condition tested (OF = 0) is true.

Encoding:

[01110001] disp

JNO Operands Clocks Transfers|Bytes JNO Coding Example
short-label 16or4
(130r4) - 2 | JNONO_OVERFLOW

3-100 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JNS

JUMPONNOTSIGN JNS

Operation: Flags Affected:
if (SF)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JNS (Jump on Not Sign) transfers comrbl to
the target operand (IP + displacement) when
the tested condition (SF = 0) is true.
Encoding:
01111001] disp]
JNS Operands Clocks Transfers |Bytes JNS Coding Example
short-label 16or4
(130r4) - 2 | JNS POSITIVE

3-101

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JNP JUMPONNOTPARITY JNP
JPO JUMPONPARITYODD JPO

Operation: Flags Affected:
if (PF)=0then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JNP (Jump on Not Parity)/JPO (Jump on
Parity Odd) transfers control to the target
operand if the condition tested (PF = 0) is true.

Encoding:

(01111011 | disp |

JNP/JPO Operands Clocks Transfers|Bytes JPO Coding Example

short-label 16o0or4 ’
(130r4) - 2 | JPOODD_PARITY

3-102 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JO

JUMP ON OVERFLOW JO

Operation: Flags Affected:
if (OF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JO (Jump on Overflow) transfers control to
the target operand (IP + displacement) if the
tested condition (OF = 1) is true.
Encoding:
01110000 | disp
JO Operands Clocks Transfers |Bytes JO Coding Example
short-label 16o0r4
(13 0r4) - 2 | JO SIGNED_OVERFLOW

3-103

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JP

JPE JUMPON PARITY EQUAL

JUMP ON PARITY

JP
JPE

Operation: Flags Affected:
if (PF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:
JP (Jump on Parity)/JPE (Jump on Parity
Equal) transfers control to the target operand
(IP + displacement) if the condition tested (PF
=1)is true.
Encoding:
[01111010] disp |
JP/JPE Operands Clocks Transfers |Bytes JPE Coding Example
short-label 16or4
(13 0r 4) - 2 | JPEEVEN_PARITY

3-104

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JS JUMP ON SIGN JS

Operation: Flags Affected:
if (SF)=1then None
(IP) < (IP) + disp (sign-extended
to 16-bits)
Description:

JS (Jump on Sign) transfers control to the
target operand (IP + displacement) if the
tested condition (SF = 1) is true.

Encoding:
[01111000 | disp |
JS Operands Clocks Transfers|Bytes JS Coding Example
short-label 16or4
(130r4) - 2 JS NEGATIVE

3-105 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LAHF LoApREcISTER A LAHF

Operation: Flags Affected:
(AH) < (SF):(ZF):X:(AF):X:(PF):X:(CF) None
Description:

LAHF (load register AH from flags) copies
SF, ZF, AF, PF and CF (the 8080/8085 flags)
into bits 7, 6, 4, 2 and 0, respectively, of
register AH. The content of bits S, 3 and 1 is
undefined; the flags themselves are not
affected. LAHF is provided primarily for con-
verting 8080/8085 assembly language pro-
grams to run on an 8086 or 8088.

Encoding:
[10011111 |
LAHF Operands Clocks Transfers|Bytes LAHF Coding Example
(no operands) 4(2) - 1 | LAHF

3-106 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LDS LOADPOINTERUSINGDS LDS

Operation:

(REG) < (EA)
(DS) < (EA + 2)

Description:

LDS destination,source

LDS (load pointer using DS) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des-
tination operand and register DS. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

111000101 [modregr/m |

if mod =11 then undefined operation

Flags Affected:

None

pointer is transferred to register DS. Specify-
ing SI as the destination operand is a conve-
nient way to prepare to process a source string
that is not in the current data segment (string
instructions assume that the source string is
located in the current data segment and that SI
contains the offset of the string).

LDS Operands Clocks

Transfers|Bytes

LDS Coding Example

reg16, mem32 16(18)+EA

2-4 | LDS S|, DATA.SEGIDI]

3-107 210911

f
4
4
E
it
&
.
i

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LEA

Operation:
(REG) < EA

Description:

LEA destination,source

LOAD EFFECTIVE LEA

ADDRESS
Flags Affected:

LEA (load effective address) transfers the oft-
set of the source operand (rather than its
value) to the destination operand. The source
operand must be a memory operand, and the
destination operand must be a 16-bit general

Encoding:

None

register. LEA does not affect any flags. The
XLAT and string instructions assume that cer-
tain registers point to operands; LEA can be
used to load these registers (e.g., loading BX
with the address of the translate table used by
the XLAT instruction).

10001101

modreqr/m

if mod = 11 then undefined operation

LEA Operands

Clocks Transfers|Bytes LEA Coding Example

reg16, mem16

2(6)+EA

- 2-4 | LEA BX,[BPIIDI]

3-108 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LEAVE RESTORE STACK LEAVE
FOR PROCEDURE EXIT

Operation: Flags Affected:

None

(SP) — (BP)
(BP) — ((SP) + 1: (SP))
(SP) — (SP) + 2

Description:

LEAVE executes a procedure return for a high level
language. It deallocates all local variables and restores the SP
and BP registers to their values immediately after the proce-
dure’s invocation.

Encoding:
11001001
LEAVE Operands Clocks Transfers|Bytes| LEAVE Coding Example
(no operands) 8 1 1 | LEAVE

3-109 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND:INSTRUCTIONS

LES LOADPOINTERUSINGES | ES

Operation:

(REG) < (EA)
(ES) < (EA + 2)

Description:

LES destination,source

LES (load pointer using ES) transfers a 32-bit
pointer variable from the source operand,
which must be a memory operand, to the des-
tination operand and register ES. The offset
word of the pointer is transferred to the des-
tination operand, which may be any 16-bit
general register. The segment word of the

Encoding:

11000100 [modregr/m |

if mod = 11 then undefined operation

Flags Affected:

None

pointer is transferred to register ES. Specifying
DI as the destination operand is a convenient
way to prepare to process a destination string
that is not in the current extra segment. (The
destination string must be located in the extra
segment, and DI must contain the offset of the
string.)

LES Operands Clocks

Transfers|Bytes

LES Coding Example

reg16, mem32 16(18) +EA

2

2-4 | LES DI,[BXI.TEXT_BUFF

3-110

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LOCK

Operation:

None

Description:

LOCK is a one-byte prefix that causes the 8088
(configured in maximum mode) to assert its
bus LOCK signal while the following instruc-
tion executes. LOCK does not affect any flags.

The instruction most useful in this context is
an exchange register with memory. A simple
software lock may be implemented with the
following code sequence:

LOCK THE BUS

LOCK

Flags Affected:

None

;set AL to 1 (implies locked)
;testand set lock

;setflags based on AL
retry if lock already set

Check: MOV AL
LOCK XCHG Sema,AL
TEST AL, AL
JINZ Check

MOV Sema,0 ;clear the lock when done

The LOCK prefix may be combined with the
segment override and/or REP prefixes.

Encoding:
[11110000 |
LOCK Operands Clocks Transfers|Bytes| LOCK Coding Example
(no operands) 2(2) - 1 | LOCK XCHG FLAG, AL

3-111

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LODS

LOAD STRING

LODS

(BYTE OR WORD)

Operation:

(DEST) < (SRC)
if (DF) =0then (Sl) < (Sl) + DELTA
else (Sl) < (SI)-DELTA

Description:

LODS source-string

LODS (Load String) transfers the byte or word
string element addressed by SI to register AL
or AX, and updates SI to point to the next ele-
ment in the string. This instruction is not ordi-
narily repeated since the accumulator would be

Encoding:

[1010110w]

Flags Affected:

None

overwritten by each repetition, and only the
last element would be retained. However,
LODS is very useful in software loops as part
of a more complex string function built up
from string primitives and other instructions.

if w=0then SRC = (Sl), DEST = AL, DELTA =1
else SRC = (Sl)+1:(Sl), DEST = AX, DELTA =2

LODS Operands Clocks Transfers|Bytes| LODS Coding Example ‘
source-string 12(10) 1 LODS CUSTOMER_NAME
(repeat) 9+13

source-string (6+11/rep) 1/rep 1 | REP LODS NAME

3-112

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LOOP LOOP LOOP

Operation: Flags Affected:

(CX) < (CX) -1 None
if (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOP short-label

LOOP decrements CX by 1 and transfers con-
trol to the target operand if CX is not 0;
otherwise the instruction following LOOP is

executed.
Encoding:
11100010 | disp
LOOP Operands Ciocks Transfers |Bytes LOOP Coding Example
short-label 17o0r5
(150r5) - 2 | LOOP AGAIN

3-113 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LOOPE

LOOP WHILE

LOOPE

EQUAL

LOOPZ

Operation:

(CX) < (CX)-1
if (ZF)=1and (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPE/LOOPZ short-label

LOOPE and LOOPZ (Loop While Equal and
Loop While Zero) are different mnemonics for
the same instruction (similar to the REPE and
REPZ repeat prefixes). CX is decremented by
1, and control is transferred to the target
operand if CX is not 0 and if ZF is set;
otherwise the instruction following LOOPE/
LOOPZ is executed.

LOOP WHILE
ZERO

LOOPZ

Flags Affected:

None

Encoding:
[11100001 [disp
LOOPE/LOOPZ
Operands Clocks Transfers |Bytes| LOOPE Coding Example
short-label 180r6
(16 0r6) - 2 LOOPE AGAIN

210911

3-114

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

LOOPNZ Ggr 1itss

LOOPNE {395 WS

Operation:

(CX) < (CX) -1
if (ZF) =0and (CX) # 0 then
(IP) < (IP) + disp (sign-extended
to 16-bits)

Description:

LOOPNE/LOOPNZ short-label

LOOPNE and LOOPNZ (Loop While Not
Equal and Loop While Not Zero) are also
synonyms for the same instruction. CX is
decremented by 1, and control is transferred to
the target operand if CX is not 0 and if ZF is
clear; otherwise the next sequential instruction
is executed.

LOOPNZ
LOOPNE

Flags Affected:

None

Encoding:
[11100000] disp
LOOPNE/LOOPNZ
Operands Clocks Transfers |Bytes| LOOPNE Coding Example
short-label 19o0r5
(16 or 5) - 2 | LOOPNE AGAIN

3-115 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

MOV MOVE(BYTEORWORD) MOV

Operation: Flag's Affected:
(DEST) « (SRC) None
Description:

MOV destindtion, source

MOVE transfers a byte or a word from the
source operand to the destination operand.

Encoding:

Memory or Register Operand to/from Register Operand:

.

[100010dw |modregr/m |

ifd=1then SRC =EA, DEST = REG
else SRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1100011w [mod000r/m| data | dataifw=1 |

SRC = data, DEST = EA
Immediate Operand to Register:

|1011wreg | data | dataifw=1 |

SRC = data, DEST = REG

3-116 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

MOV MOVE(BYTE OR WORD)

Encoding:

Memory Operand to Accumulator:

[1010000w | addr-low

| addr-high |

if w=0then SRC = addr, DEST = AL

else SRC = addr + 1:addr, DEST = AX
Accumulator to Memory Operand:

[1010001w | addr-low

| addr-high |

if w=0then SRC = AL, DEST = addr

else SRC = AX, DEST = addr + 1:addr
Memory or Register Operand to Segment Register:

10001110 |mod0regr/m|

ifreg # 01 then SRC = EA, DEST = REG
else undefined operation

Segment Register to Memory or Register Operand:

[10001100 [mod0regr/m|

SRC = REG,DEST = EA

MOV

MOV Operands Clocks Transfers [Bytes MOV Coding Example
memory, accumulator 10(9) 1 3 MOV ARRAY AL
accumulator,memory 10(8) 1 3 | MOV AX,TEMP_RESULT
register, register 2(2) - 2 | MOV AX, CX
register, memory 8(12)+EA 1 2-4 | MOV BP, STACK TOP
memory, register 9(9) +EA 1 2-4 | MOV COUNT [DI],CX
register, immediate 4(3-4) - 2-3 | MOV CL,2
memory, immediate 10(12-13)

+ EA 1 3-6 | MOV MASKI[BXI[SI],2CH
seg-reg, reg16 2(2) - 2 | MOVES, CX
seg-reg, mem16 8(9)+EA 1 2-4 | MOV DS,SEGMENT_BASE
reg16, seg-reg 2(2) - 2 | MOVBP,SS
memory, seg-reg 9(11)+EA 1 2-4 | MOVIBX],SEG_SAVE,CS

3-117

210911

S

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

MOVS MOVESTRING MOVS

Operation: Flags Affected:
(DEST) < (SRC) None
Description:

MOVS destination-string, source-string

MOVS (Move String) transfers a byte or a
word from the source string (addressed by SI)
to the destination string (addressed by DI) and
updates SI and DI to point to the next string
element. When used in conjunction with REP,
MOVS performs a memory-to-memory block
transfer.

Encoding:

[1010010w |

if w=0then SRC = (Sl), DEST = AL, DELTA =1
else SRC =(Sl) + 1:(Sl), DEST'= AX, DELTA =2

MOVS Operands Clocks Transfers |Bytes| MOVS Coding Example
dest-string, ‘
source-string 18(9) 2 1 | MOVSLINE EDIT DATA
(repeat) dest-string, | 9+17/rep ,
source-string (8+8/rep) 2/rep 1 REP MOVS SCREEN,
BUFFER

3-118 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

MUL

Operation:

(DES) < (LSRC) * (RSRC), where *
is unsigned multiply

if (EXT)=0then (CF) <0

else (CF) < 1;

(OF) < (CF)

Description:

MUL source

MUL (Multiply) performs an unsigned multi-
plication of the source operand and the accum-
ulator. If the source is a byte, then it is
multiplied by register AL, and the double-
length result is returned in AH and AL. If the
source operand is a word, then it is multiplied
by register AX, and the double-length result is
returned in registers DX and AX. The oper-

Encoding:

[1111011w [mod100r/m|

MULTIPLY

MUL

Flags Affected:

CF, OF.
AF, PF, SF, ZF undefined

ands are treated as unsigned binary numbers
(see AAM). If the upper half of the result (AH
for byte source, DX for word source) is non-
zero, CF and OF are set; otherwise they are
cleared. When CF and OF are set, they indi-
cate that AH or DX contains significant digits
of the result. The content of AF, PF, SF and
ZF is undefined following execution of MUL.

if w=0then LSRC = AL, RSRC = EA, DEST = AX, EXT = AH
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX

MUL Operands Clocks: Transfers |Bytes MUL Coding Example
reg8 70-77 , b
| (26-28)(3P 2 | MULBL
reg16 118-1-
(35-37) 2 | MULCX
mem8 76-83 +
EA(32-34) 2-4 | MUL MONTH [SI]
mem16 124-139 2-4 | MUL BAUD_RATE
+EA(41-43)

3-119 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

NEG

Operation:

(EA) < SRC - (EA)
(EA) < (EA) + 1 (affecting flags)

Description:

NEG destination

NEG (Negate) subtracts the destination
operand, which may be a byte or a word, from
0 and returns the result to the destination. This
forms the two’s complement of the number,
effectively reversing the sign of an integer. If
the operand is zero, its sign is not changed.

Encoding:

[1111011w [mod011r/m

if w=0then SRC = FFH
else SRC = FFFFH

NEGATE

NEG

Flags Affected:

AF, CF, OF, PF, SF, ZF

Attempting to negate a byte containing —128
or a word containing —32,768 causes no
change to the operand and sets OF. NEG
updates AF, CF, OF, PF, SF and ZF. CF is
always set except when the operand is zero, in
which case it is cleared.

NEG Operands Clocks Transfers |Bytes NEG Coding Example
register 3(3) - 2 | NEGAL
memory ‘ 16(3)+EA 2 2-4 | NEG MULTIPLIER

3-120

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

NOP NO OPERATION NOP

Operation: Flags Affected:
None None

Description:

NOP

NOP (No Operation) causes the CPU to do
nothing. NOP does not affect any flags.

Encoding:
[10010000 |
NOP Operands Clocks Transfers |Bytes NOP Coding Example
(no operands) 3(3) - 1 | NOP

3-121 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

NOT LOGICAL NOT NOT

Operation: Flags Affected:

(EA) < SRC- (EA) None

Description:
NOT destination

NOT inverts the bits (forms the one’s comple-
ment) of the byte or word operand.

Encoding:

[1111011w [mod010r/m

if w=0then SRC =FFH
else SRC = FFFFH

NOT Operands Clocks Transfers Bytes NOT Coding Example
register 3(3) - - | NOT AX
memory 16(3)+EA 2 - NOT CHARACTER

3-122 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

OR LOGICAL OR OR

Operation: Flags Affected:
(DEST) < (LSRC) OR (RSRC) CF, OF, PF, SF, ZF.
(CF) <0 AF undefined
(OF) <0

Description:

OR destination,source

OR performs the logical ‘‘inclusive or’’ of the
two operands (byte or word) and returns the
result to the destination operand. A bit in the
result is set if either or both corresponding bits
in the original operands are set; otherwise the
result bit is cleared.

3-123 210911

e g o o

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

OR LOGICAL OR " OR

Encoding:

Memory or Register Operand with Register Operand:

[000010dw [modregr/m]|

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST =EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod001r/m] data [dataifw=1 |

LSRC = EA, RSRC =data, DEST = EA

Immediate Operand to Accumulator:

|0000110w]| data [dataifw=1]

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

OR Operands Clocks Transfers [Bytes OR Coding Example

register,register 3(3) - 2 | ORAL,BL
register, memory 9(10)+EA 1 2-4 | OR DX,PORT _IDI[DI]
memory,register 16(10)+EA 2 2-4 | ORFLAG BYTE,CL
accumulator,

immediate 4(3-4) - 2-3 | ORAL,01101100B
register, immediate 4(4) - 3-4 | ORCX,01H
memory, immediate | 17(16)+EA 2 3-6 | OR[BX].CMD_WORD,0CFH

3-124 210911

OouT

Operation:
(DEST) « (SRC)

Description:

OUT port,accumulator

OUT transfers a byte or a word from the AL
register or the AX register, respectively, to an
output port. The port number may be speci-
fied either with an immediate byte constant,

OUTPUT

Flags Affected:

None

allowing access to ports numbered 0 through

Encoding:

Fixed Port:

[1110011w |

port

if w=0then SRC = AL, DEST = port
else SRC = AX, DEST = port+1:port

Variable Port:

[1110111w|

if w=0then SRC = AL, DEST = (DX)
else SRC = AX, DEST = (DX) +1:(DX)

OuT

255, or with a number previously placed in
register DX, allowing variable access (by
changing the value in DX) to ports numbered
from O through 65,535.

OUT Operands Clocks* Transfers [Bytes OUT Coding Example
immed8,accumulator 10(9) 1 2 | OUT 44, AX
DX, accumulator 8(7) 1 1 | OUT DX, AL

3-125

210911

e - e B iy s e - = d e e e e

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

OUTS

Ope;ation:

(DST) — (SRC)

Description:

OUTPUT STRING

OUTS port, destination string

OUTS
Flags Affected;
None

OUTS transfers a byte or word from a destination
string (addressed by SI) to an output port
(addressed by DX). After the transfer, SI is
updated to point to the next string element.
When used with REP, the block transfer takes
place at full bus bandwidth.

Encoding:
0110111 W
OUTS Operands Clocks Transfers |Bytes| OUTS Coding Example
port,source-string (14) 2 1 OUTS PORTZ2, BUFF2
(repeat) port,
source-string (8+8/rep) 2/rep 1 REP OUTS PORT4, BUFF2

3-126

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

POP POP POP

Operation: Flags Affected:
(DEST) < ((SP) +1:(SP)) None
(SP) < (SP) +2

Description:

POP destination

POP transfers the word at the current top of
stack (pointed to by SP) to the destination
operand, and then increments SP by two to
point to the new top of stack. POP can be used
to move temporary variables from the stack to
registers or memory.

3-127 210911

i

B AN - 5

ke e e,

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

POP POP POP

Encoding:

Memory or Register Operand:

10001111 [mod000r/m]
DEST =EA

Register Operand:

[01011reg |
DEST = REG

Segment Register:

[000reg111]

if reg # 01 then DEST = REG
else undefined operation

POP Operands Clocks Transfers |Bytes POP Coding Example
register 8(10) 1 1 | POP DX
seg-reg(CS illegal) 8(8) 1 1 | POPDS
memory 17(20)+EA 2 2-4 | POP PARAMETER

3-128 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

POPA POP ALLREGISTERS POPA

Operation: Flags Affected:

None

(D1) — ((SP) + 1: (SP))
(SP) —(SP) + 2

(S1) —

(SP) — (SP) + 2

(BP) — ((SP) + 1: (SP))
(SP) — (SP) + 2

(BX) — ((SP) + 1: (SP))
(SP) — (SP) + 2

(DX) — ((SP) + 1: (SP))
(SP) — (SP) + 2

(CX) — ((SP) + 1: (SP))
(SP) —(SP) + 2

(AX) — ((SP + 1: (SP))
(SP) — (SP) + 2

3-129 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

POPA POP ALL REGISTERS POPA

Description:

POPA pops all data, pointer and index registers
off of the stack. The SP value popped is discarded.

Encoding:
01100001
POPA Operands Clocks Transfers|Bytes| POPA Coding Example
(no operands) (51) 8 1 | POPA

3-130 210911

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

POPF

Operation:

Flags < ((SP) +1:(SP))
(SP) < (SP) + 2

Description:

POPF

POPF transfers specific bits from the word at
the current top of stack (pointed to by register
SP) into the 8086/8088 flags, replacing
whatever values the flags previously contained
(see figure 2-32). SP is then incremented by
two to point to the new top of stack. PUSHF

POP FLAGS

POPF

Flags Affected:

All

and POPF allow a procedure to save and
restore a calling program’s flags. They also
allow a program to change the setting of TF
(there is no instruction for updating this flag
directly). The change is accomplished by
pushing the flags, altering bit 8 of the memory-
image and then popping the flags.

Encoding:
10011101
POPF Operands Clocks Transfers |Bytes POPF Coding Example
(no operands) 8(8) 1 1 | POPF

3-131 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

PUSH PUSH PUSH

Operation: Flags Affected:

(SP) < (SP)-2 None
((SP)+1:(SP)) < (SRC)

Description:

PUSH source

PUSH decrements SP (the stack pointer) by
two and then tranfers a word from the source
operand to the top of stack now pointed to by
SP. PUSH often is used to place parameters
on the stack before calling a procedure; more
generally, it is the basic means of storing tem-
porary data on the stack.

3-132 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

PUSH

Encoding:

PUSH

Memory or Register Operand:

[11111111 [mod110r/m]|

SRC=EA

Register Operand:

[01010reg |
SRC = REG

Segment Register:

[000reg110]|

PUSH

SRC =REG

PUSH Operands Clocks Transfers [Bytes| PUSH Coding Example
register 11(10) 1 1 | PUSHSI
seg-reg(CS legal) 10(9) 1 1 |PUSHES
memory 16(16)+EA 2 2-4 | PUSHRETURN_CODEISI]

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

PUSHA PUSHALLREGISTERS PUSHA

Operation:

temp — (SP)

(SP) —(SP) -2

((SP) + 1: (SP)) — (AX)
(SP) —(SP) -2

((SP) + 1: (SP)) — (CX)
(SP) —(SP) -2

((SP) + 1: (SP)) — (DX)
(SP) —(SP) -2

((SP) + 1: (SP)) — (BX)
(SP) — (SP) -2

((SP) + 1: (SP)) — (SP)
(SP) — (SP) -2

((SP) + 1: (SP)) — (SP)
(SP) —(SP) -2

((SP) + 1: (SP)) — (BP)
(SP) —(SP) -2

((SP) + 1: (SP)) — (SI)
(SP) —(SP)-2

((SP) + 1: (SP)) — (DI)

Flags Affected:

None

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

PUSHA PUSHALLREGISTERS pUSH A

Description:

PUSHA pushes all data, pointer and index registers
onto the stack. The order in which the registers are
saved is: AX, CX, DX, BX, SP, BP, SI and DI. The SP
value pushed is the SP value before the first register

(AX) is pushed.
Encoding:
01100000
PUSHA Operands Clocks Transfers|Bytes| PUSHA Coding Example
(no operands) (36) 8 1 | PUSHA
3-135 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

PUSHF PUSHFLAGS PUSHF

Operation: Flags Affected:

(SP) < (SP)-2 None
((SP)+1:(SP)) < Flags

Description:

PUSHF

PUSHF decrements SP (the stack pointer) by
two and then transfers all flags to the word at
the top of stack pointed to by SP. The flags
themselves are not affected.

Encoding:
loo11100|
PUSHF Operands Clocks Transfers|Bytes| PUSHF Coding Example
(no operands) 10(9) S 1 | PUSHF

3-136 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ROTATE THROUGH
RCL CARRY LEFT RCL

Operation: Flags Affected:
(temp) < COUNT CF, OF
do while (temp) #0
(tmpcf) < (CF)

(CF) < high-order bit of (EA)
(EA) < (EA) * 2 + (tmpcf)
(temp) < (temp) -1

if COUNT =1 then
if high-order bit of (EA) # (CF)

then (OF) <1

else (OF) <0

else (OF) undefined

Description:

RCL destination,count

RCL (Rotate through Carry Left) rotates the
bits in the byte or word destination operand to
the left by the number of bits specified in the
count operand. The carry flag (CF) is treated
as ‘“‘part of’’ the destination operand; that is,
its value is rotated into the low-order bit of the
destination, and itself is replaced by the high-
order bit of the destination.

3-137 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ROTATE THROUGH
RCL CARRY LEFT RCL

Encoding:

[110100vw [mod010r/m]|

if v=0then COUNT =1
else COUNT = (CL)

RCL Operands Clocks Transfers |Bytes RCL Coding Example
register, n (5+1/bit) - 3 |RCLCX,5
memory, n (17+1/bit) 3-5 | RCL ALPHA, 5
register 1, 2(2) - 2 | RCLCX,1
register, CL 8+4/bit

(5+1/bit) - 2 RCL AL,CL

memory, 1 15(15)+EA 2 2-4 | RCL ALPHA, 1
memory, CL 20+4/bit .
(17+1/bi) +EA 2 2-4 | RCL[BP].PARAM, CL

3-138

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ROTATE THROUGH
RCR CARRY RIGHT RCR

Flags Affected:

Operation:

(temp) < COUNT
do while (temp) # 0
(tmpcf) < (CF)

(CF) < low-order bit of (EA)

(EA) < (EA) [2

high-order bit of (EA) < (tmpcf)

(temp) < (temp) -1

if COUNT =1 then

if high-order bit of (EA) # next-
to-high-order bit of (EA)

then (OF) <1
else (OF) <0

else (OF) undefined

Description:

RCR destination,count

CF

RCR (Rotate through Carry Right) operates
exactly like RCL ‘except that the bits are

rotated right instead of left.

Encoding:

[110100vw [mod011r/m]

ifv=0then COUNT =1

else COUNT = (CL)

, OF

RCR Operands Clocks Transfers |[Bytes RCR Coding Example

register, n (5+1/bit) - 3 |RCRBX,5

memory, n (17+1/bit) 3-5 | RCR[BX].STATUS, 5
register, 1 2(2) - 2 | RCRBX,1

register, CL 8+4/bit

(5+1/bit) - 2 RCRBL, CL
memory, 1 15(15)+EA 2 2-4 | RCR[BX].STATUS, 1
memory, CL 20+4/bit
(17+1/bit) +EA 2 2-4 | RCR ARRAYIDI], CL

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

REP REPEAT REP

REPE/REPZ REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ
REPEAT WHILE NOT EQUAL/

REPEAT WHILE NOT ZERO

Operation: Flags Affected:

do while (CX) # 0 None
service pending interrupt (if
any) execute primitive string
operation in succeeding byte
(CX) < (CX) -1
if primitive operation is CMPB,
CMPW, SCAB, or SCAW and
(ZF) # z then exit from
while loop

3-140 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

REP
REPE/REPZ

REPEAT

REP
REPE/REPZ

REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ
REPEAT WHILE NOT EQUAL/
REPEAT WHILE NOT ZERO

Description:

REP/REPE/REPZ/REPNE/REPNZ

Repeat, Repeat While Equal, Repeat While
Zero, Repeat While Not Equal and Repeat
While Not Zero are mnemonics for two forms
of the prefix byte that controls subsequent
string instruction repetition. The different
mnemonics are provided to improve program
clarity. The repeat prefixes do not affect the
flags.

REP is used in conjunction with the MOVS
(Move String) and STOS (Store String)
instructions and is interpreted as ‘‘repeat while
not end-of-string”” (CX not 0). REPE and
REPZ operate identically and are physically
the same prefix byte as REP. These instruc-
tions are used with the CMPS (Compare
String) and SCAS (Scan String) instructions
and require ZF (posted by these instructions)
to be set before initiating the next repetition.
REPNE and REPNZ are mnemonics for the
same prefix byte. These instructions function
the same as REPE and REPZ except that the
zero flag must be cleared or the repetition is
terminated. ZF does not need to be initial-
ized before executing the repeated string
instruction.

Repeated string sequences are interruptable;
the processor will recognize the interrupt
before processing the next string element.
System interrupt processing is not affected in
any way. Upon return from the interrupt, the
repeated operation is resumed from the point
of interruption. However, execution does not
resume properly if a second or third prefix
(i.e., segment override or LOCK) has been
specified in addition to any of the repeat
prefixes. At interrupt time, the processor
“‘remembers’’ only the prefix that immediately
precedes the string instruction. After returning
from the interrupt, processing resumes, but
any additional prefixes specified are not in
effect. If more than one prefix must be used
with a string instruction, interrupts may be
disabled for the duration of the repeated exe-
cution. However, this will not prevent a non-
maskable interrupt from being recognized.
Also, the time that the system is unable to
respond to interrupts may be unacceptable if
long strings are being processed.

3-141 210911

e s e e o el T

|
l‘
|

{
THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

"REP * REPEAT REP

REPE/REPZ REPE/REPZ
REPEAT WHILE EQUAL/
REPEAT WHILE ZERO

REPNE/REPNZ REPNE/REPNZ

REPEAT WHILE NOT EQUAL/
REPEAT WHILE NOT ZERO

Encoding:
1111001z |
REP Operands Clocks| Transfers | Bytes | REP Coding Example
(no operands) 2 | - | 1 REP MOVS DEST, SRCE

REPE/REPZ Operands |Clocks | Transfers | Bytes | REPE Coding Example

(no operands) 2(2) — 1 REPE CMPS DATA, KEY

REPNE/REPNZ Operands | Clocks | Transfers | Bytes | REPNE Coding Example

(no operands) 2(2) — 1 REPNE SCAS INPUT__LINE

3-142 / 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

RET

Operation:

(IP) < ((SP)=1:(SP))

(SP) < (SP) + 2

if Inter-Segment then
(CS) < ((SP)+1:(SP))
(SP) < (SP) + 2

if Add Immediate to Stack Pointer
then (SP) < (SP) + data

Description:

RET optional-pop-value

RET (Return transfers control from a pro-
cedure back to the instruction following the
CALL that activated the procedure. The
assembler generates an intrasegment RET if
the programmer has defined the procedure
NEAR, or an intersegment RET if the pro-
cedure has been defined as FAR. RET pops
the word at the top of the stack (pointed to by
register SP) into the instruction pointer and

RETURN

RET

Flags Affected:

None

increments SP by two. If RET is intersegment,
the word at the new top of stack is popped into
the CS register, and SP is again incremented
by two. If an optional pop value has been
specified, RET adds that value to SP. This
feature may be used to discard parameters
pushed onto the stack before the execution of
the CALL instruction.

3-143 210911

omare

A R i S8t

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

RET

Encoding:

Intra-Segment:

[11000011]

RETURN

RET

Intra-Segment and Add Immediate to Stack Pointer:

[11000010 | data-low | data-high |

Inter-Segment:

11001011 |

Inter-Segment and Add Immediate to Stack Pointer:

[11001010 | data-low | data-high |
RET Operands Clocks Transfers [Bytes RET Coding Example

(intra-segment,

no pop) 16(16) 1 1 | RET
(intra-segment,pop) 20(18) 1 3 |RET4
(inter-segment,

no pop) 26(22) 2 1 | RET
(inter-segment,pop) 25(25) 2 3 [RET2

3-144

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ROL

Operation:

(temp) < COUNT
do while (temp) # 0

ROTATE LEFT ROL

Flags Affected:

CF,

(CF) < high-order bit of (EA)
(EA) < (EA) * 2 + (CF)

(temp) < (temp) -1
if COUNT =1 then

if high-order bit of (EA) # (CF)

then (OF) < 1

else (OF) <0

else (OF) undefined

Description:

ROL destination,count

ROL (Rotate Left) rotates the destination byte
or word left by the number of bits specified in

the count operand.

Encoding:

[110100vw [mod000r/m

ifv=0then COUNT =1

else COUNT =(CL)

OF

ROL Operands Clocks Transfers |Bytes ROL Coding Example

register, n (5+1/bit) - 3 | ROLBX,5

memory, n (17+1/bit) 2 3-5 | ROLFLAG BYTEIDI],5
register, 1 2(2) - 2 | ROLBX, 1

register, CL 8+4/bit

(54 1/bit) - 2 ROL DI, CL
memory, 1 15(15)+EA 2 2-4 | ROL FLAG_BYTEI[DI],1
memory, CL 20+4/bit
(174-1/bitt +EA 2 2-4 | ROL ALPHA, CL

3-145

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ROR ROTATE RIGHT ROR

Operation: Flags Affected:

(temp) < COUNT CF, OF
do while (temp) #0
(CF) < low-order bit of (EA)
(EA) < (EA) /2
high-order bit of (EA) < (CF)
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) undefined

Description:

ROR destination,count

ROR (Rotate Right) operates similar to ROL
except that the bits in the destination byte or
word are rotated right instead of left.

Encoding:

[110100vw [mod001r/m|

if v=0then COUNT =1
else COUNT = (CL)

ROR Operands Clocks Transfers Bytes ROR Coding Example
register, n (5+1/bit) - 3 | RORAL,5
memory, n (174 1/bit) 2 3-5 | ROR PORT_STATUS, 5
register, 1 2(2) - 2 | RORAL,1
register, CL 8+4/bit
(5+1/bit) - 2 | RORBX,CL
memory, 1 15(15)+EA 2 2-4 | ROR PORT_STATUS, 1
memory, CL 20+4/bit .
(17+1/bit) +EA 2 2-4 | RORCMD_WORD, CL

3-146) 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SAHF STORERECISTER AH SAHF

Operation: Flags Affected:
(SF):(ZF):X:(AF):X:(PF):X:(CF) < (AH) AF, CF, PF, SF, ZF

Description:

SAHF

SAHF (store register AH into flags) transfers
bits 7, 6, 4, 2 and 0 from register AH into SF,
ZF, AF, PF and CF, respectively, replacing
whatever values these flags previously had.
OF, DF, IF and TF are not affected. This
instruction is provided for 8080/8085
compatibility.

Encoding:

110011110 |

SAHF Operands Clocks Transfers |Bytes| SAHF Coding Example

(no operands) 4(3) - 1 | SAHF

3-147 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SAL SHIFTARITHMETICLEFT SAL
SHL SHIFTLOGICALLEFT SHL

Operation: Flags Affected:
(temp) < COUNT CF, OF, PF, SF, ZF.
do while (temp) #0 AF undefined

(CF) < high-order bit of (EA)
(EA) < (EA) * 2
(temp) < (temp) -1
it COUNT =1 then
if high-order bit of (EA) # (CE)
then (OF) < 1
else (OF) <0
else (OF) undefined

Description:

SHL/SAL destination,count

SHL and SAL (Shift Logical Left and Shift
Arithmetic Left) perform the same operation
and are physically the same instruction. The
destination byte or word is shifted left by the
number of bits specified in the count operand.
Zeros are shifted in on the right. If the sign bit
retains its original value, then OF is cleared.

3-148 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SAL SHIFTARITHMETICLEFT SAL
SHL SHIFTLOGICALLEFT SHL

Encoding:

[110100vw [mcd100r/m]

ifv=0then COUNT =1
else COUNT = (CL)

SAL/SHL SAL/SHL

Operands Clocks Transfers |Bytes Coding Example
register, n (5+1/bit) - 3 |SALAH,5
memory, n (17+1/bit) 2 3-5 | SALIBX].OVERDRAW, 5
register, 1 2(2) - 2 | SALAH,1
register, CL 8-+4/bit

(54 1/bit) - 2 | SHLDI,CL
memory, 1 15(15)+EA 2 2-4 | SHL[BX].OVERDRAW, 1
memory, CL 20-+4/bit
(17+1/bi) +EA 2 2-4 | SAL STORE_COUNT, CL

3-149 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

. SHIFT ARITHMETIC
SAR RIGHT

Operation:

(temp) < COUNT
do while (temp) #0
(CF) < IowcnderbnoHEA)
(EA) < (EA) / 2, where | is
equivalent to signed division,
rounding down
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) <0

Description:

SAR destination,count

SAR (Shift Arithmetic Right) shifts the bits in
the destination operand (byte or word) to the
right by the number of bits specified in the
count operand. Bits equal to the original high-
order (sign) bit are shifted in on the left,
preserving the sign of the original value. Note
that SAR does not produce the same result as
the dividend of an ‘‘equivalent’” IDIV instruc-

Flags Affected:
CF, OF, PF, SF, ZF.

AF undefined

SAR

tion if the destination operand is negative and
1-bits are shifted out. For example, shifting —5
right by one bit yields —3, while integer divi-
sion =5 by 2 yields —2. The difference in the
instructions is that IDIV truncates all numbers
toward zero, while SAR truncates positive
numbers toward zero and negative numbers

toward negative infinity.

3-150

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SAR SHIFT éIRC;-II:i"-I"METIC SAR

Encoding:

[110100vw [mod111r/m]

if v=0then COUNT =1
else COUNT =(CL)

SAR Operands Clocks Transfers |Bytes SAR Coding Example

register, n (5+1/bit) - 3 |SARDX,5

memory, n (17+1/bit) 2 3-5 | SARN_BLOCKS, 5
register, 1 2(2) - 2 | SARDX, 1

register, CL 8+4/bit

(5+1/bit) - 2 | SARDI,CL
memory, 1 15(15)+EA 2 2-4 | SARN_BLOCKS, 1
memory, CL 20+4/bit
(17+1/bit) +EA 2 2-4 | SARN _BLOCKS, CL

3-151 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SBB
Operation:

if (CF) =1 then (DEST) = (LSRC) -
(RSRC) -1
else (DEST) < (LSRC) - (RSRC)

Description:

SBB destination,source

SBB (Subtract with Borrow) subtracts the
source from the destination, subtracts one if
CF is set, and returns the result to the destina-
tion operand. Both operands may be bytes or
words. Both operands may be signed or

SUBTRACT WITH
BORROW

SBB

Flags Affected:
AF, CF, OF, PF, SF, ZF

unsigned binary numbers (see AAS and DAS).
SBB updates AF, CF, OF, PF, SF, and ZF.
Since it incorporates a borrow from a
previous operation, SBB may be used to write
routines that subtract numbers longer than 16
bits. :

3-152 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

) SUBTRACT WITH
SBB oW SBB

Encoding:

Memory or Register Operand and Register Operand:

[000110dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC = REG, DEST = EA

Immediate Operand from Memory or Register Operand:

[100000sw [mod011r/im| data [dataif s:w=01]
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand from Accumulator:

[0001110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SBB Operands Clocks Transfers |Bytes SBB Coding Example

register, register 3(3) - 2 | SBBBX,CX
register, memory 9(10)+EA 1 2-4 | SBB DI,[BX].PAYMENT
memory, register 16(10)+EA 2 2-4 | SBBBALANCE, AX
accumulator,

immediate 4(3-4) - 2-3 | SBBAX, 2
register, immediate 4(4) - 3-4 | SBBCL, 1
memory, inmediate | 17(16)+EA 2 3-6 | SBBCOUNT[SI], 10 .

3-153 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SCAS

Operation:

(LSRC) - RSRC)
if (DF) =0then (DI) < (DI) + DELTA
else (DI) < (DI) - DELTA

Description:

SCAS destination-string

SCAS (Scan String) subtracts the destination
string element (byte or word) addressed by DI
from the content of AL (byte string) or AX
(word string) and updates the flags, but does
not alter the destination string or the accum-
ulator. SCAS also updates DI to point to the
next string element and AF, CF, OF, PF, SF
and ZF to reflect the relationship of the scan
value in AL/AX to the string element. If

Encoding:

[1010111w |

SCAN (BYTE OR
WORD) STRING

SCAS

Flags Affected:
AF, CF, OF, PF, SF, ZF

SCAS is prefixed with REPE or REPZ, the
operation is interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element =
scan-value (ZF = 1).”’ This form may be used
to scan for departure from a given value. If
SCAS is prefixed with REPNE or REPNZ, the
operation is interpreted as ‘‘scan while not
end-of-string (CX not 0) and string-element is
not equal to scan-value (ZF = 0).”” This form
may be used to locate a value in a string.

if w=0then LSRC = AL, RSRC = (DI), DELTA =1
else LSRC = AX, RSRC = (DI)+1:(DI), DELTA=2

SCAS Operands Clocks Transfers |[Bytes| SCAS Coding Example
dest-string 15(15) 1 1 SCAS INPUT_LINE
(repeat)dest-string 9+15

(5+15/rep) 1/rep 1 REPNE SCAS BUFFER

3-164

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SHR SHIFTLOGICALRIGHT SHR

Operation: Flags Affected:
(temp) < COUNT CF, OF, PF, SF, ZF.
do while (temp) # 0 AF undefined

CF) < low-order bit of (EA
(EA) < (EA) | 2, where | is
equivalent to unsigned
division
(temp) < (temp) -1
if COUNT =1 then
if high-order bit of (EA) # next-
to-high-order bit of (EA)
then (OF) <1
else (OF) <0
else (OF) undefined

Description:

SHR destination,source

SHR (Shift Logical Right) shifts the bits in the
destination operand (byte or word) to the right
by the number of bits specified in the count
operand. Zeros are shifted in on the left. If the
sign bit retains its original value, then OF is
cleared.

3-1565 210911

e e e A B RN

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SHR

Encoding:

[110100vw [mod101r/m

if v=0then COUNT =1

else COUNT =(CL)

SHIFT LOGICALRIGHT SHR

SHR Operands Clocks Transfers |Bytes SHR Coding Example
register, n (5+1/bit) - 3 | SHRSI, 5
memory, n (174 1/bit) 2 3-5 | SHRID _BYTE[SIIIBX], 5
register, 1 2(2) - 2 | SHRSI, 1
register, CL 8+4/bit

. (5+1/bit) - 2 | SHRSI, CL
memory, 1 15(15)+EA 2 2-4 | SHRID_BYTE[SII[BX], 1
memory, CL 20+4/bit
(17+1/bi) +EA 2 2-4 | SHRINPUT_WORD, CL

3-1566

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

STC SET CARRY STC

Operation: Flags Affected:
(CF) <1 CF

Description:

sTC

STC (Set Carry flag) sets CF to 1 and affects
no other flags.

Encoding:

[11111001 |

STC Operands Clocks Transfers |Bytes STC Coding Example

(no operands) 2(2) - 1 | STC

3-157 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

STD SETDIRECTIONFLAG STD

Operation:
(DF) < 1

Description:

STD

STD (Set Direction flag) sets DF to 1 causing
the string instructions to auto-decrement the
SI and/or DI index registers. STD does not

affect any other flags.

Encoding:

11111101 |

Timing: 2 clocks

Flags Affected:

DF

STD Operands

Clocks

Transfers

Bytes|.

STD Coding Example

(no operands)

2(2)

STD

3-158

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SET INTERRUPT-
STI ENABLE FLAG

STI

Operation: Flags Affected:
(IF) <1 IF
Description:

STI (Set Interrupt-enable flag) sets IF to 1,
enabling processor recognition of maskable
interrupt requests appearing on the INTR line.
Note however, that a pending interrupt will
not actually be recognized until the instruction
following STI has executed. STI does not
affect any other flags.

Encoding:
[11111011]
STI Operands Clocks Transfers |Bytes STI Coding Example
(no operands) 2(2) - 1 | STI

3-159

210911

e e MRS St

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

STOS SIEERYIEer STOS

Operation: Flags Affected:

(DEST) < (SRC) None
if (DF) =0then (DI) < (DI) + DELTA
else (DI) < (DI) - DELTA

Description:

STOS destination-string

STOS (Store String) transfers a byte or word
from register AL or AX to the string element
addressed by DI and updates DI to point to the
next location in the string. As a repeated
operation, STOS provides a convenient way
to initialize a string to a constant value (e.g., to
blank out a print line).

Encoding:

[1010101w|

if w=0then SRC = AL, DEST = (DI), DELTA =1
else SRC = AX, DEST = (DI) +1:(DIl), DELTA =2

STOS Operands Clocks Transfers|Bytes| STOS Coding Example

dest-string 11(10) 1 1 STOP PRINT_LINE
(repeat)dest-string 9+10/rep
(6+9y/rep) 1/rep 1 REP STOS DISPLAY

3-160 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SUB SUBTRACT

Operation: Flags Affected:
(DEST) < (LSRC) - (RSRC) AF, CF, OF, PF, SF, ZF
Description:

SUB destination,source

The source operand is subtracted from the
destination operand, and the result replaces
the destination operand. The operands may be
bytes or words. Both operands may be signed
or unsigned binary numbers (see AAS and
DAS). SUB updates AF, CF, OF, PF, SF and
ZF.

3-161

SUB

o M semmemel o T

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

SUB SUBTRACT SUB

Encoding:

Memory or Register Operand and Register Operand:

[001010dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC = EA, RSRC =REG, DEST=EA

Immediate Operand from Memory or Register Operand:

[100000sw [mod101r/m| data |dataif s:w=01]

LSRC = EA, RSRC = data, DEST =EA

Immediate Operand from Accumulator:

l0010110w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

SUB Operands Clocks Transfers |Bytes SUB Coding Example

register, register 3(3) - 2 | SUBCX, BX
register, memory 9(10)+EA 1 2-4 | SUB DX,MATH_TOTALISI]
memory, register 16(10)+EA 2 2-4 | SuBIBP + 2],CL
accumulator,

immediate 4(3-4) - 2-3 | SUBAL, 10
register, immediate 4(4) - 3-4 | SUB SI, 5280
memory, immediate 17(16) +EA 2 3-6 | SUB[BP].BALANCE, 1000

3-162 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

TEST TEST TEST

Operation: Flags Affected:
(LSRC) & (RSRC) CF, OF, PF, SF, ZF.
(CF) <0 AF undefined
(OF) <0

Description:

TEST destination,source

TEST performs the logical ‘“‘and’’ of the two
operands (byte or word), updates the flags, but
does not return the result, i.e., neither operand
is changed. If a TEST instruction is followed
by a JNZ (jump if not zero) instruction, the
jump will be taken if there are any correspond-
ing 1-bits in both operands.

3-163 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

TEST TEST TEST

Encoding:

Memory or Register Operand with Register Operand:

|1oooo10w]modregr/m|

LSRC = REG, RSRC = EA

Immediate Operand with Memory or Register Operand:

[1111011w [mod000r/m] data [dataifw=1 |
LSRC = EA, RSRC = data

Immediate Operand with Accumulator:

[1010100w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC =data
else LSRC = AX, RSRC =data

TEST Operands Clocks Transfers |Bytes TEST Coding Example
register, register 3(3) - 2 | TESTSI, DI
register, memory 9(10)+EA 1 2-4 | TEST SI,END_COUNT
accumulator,
immediate 4(3-4) - 2-3 | TEST AL, 00100000B
register, immediate 5(4) - 3-4 | TEST BX,0CC4H
memory, immediate 11(10)+EA - 3-6 | TESTRETURN_CODE,01H

3-164 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

WAIT WAIT WAIT

Operation: Flags Affected:
None None
Description:

WAIT causes the CPU to enter the wait state
while its TEST line is not active. WAIT does
not affect any flags.

Encoding:
[10011011]
WAIT Operands Clocks Transfers|Bytes WAIT Coding Example
(no operands) 4+5n(6) - 1 | WAIT

3-165 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

XCHG EXCHANGE XCHG

Operation: | Flags Affected:
(temp) < (DEST) None
(DEST) < (SRC) ,
(SRC) < (temp)

Description:

XCHG destination,source

XCHG (exchange) switches the contents of the
source and destination (byte or word)
operands. When used in conjunction with the
LOCK prefix, XCHG can test and set a sema-
phore that controls access to a resource shared
by multiple processors (see section 2.5).

3-166 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

XCHG EXCHANGE XCHG

Encoding:

Memory or Register Operand with Register Operand:

[1000011w [modregr/m]|

SRC = EA, DEST = REG
Register Operand with Accumulator:

| 10010reg |
SRC =REG, DEST = AX

XCHG Operands Clocks Transfers|Bytes| XCHG Coding Example
accumulator,reg16 3(3) - 1 | XCHG AX, BX
memory, register 17(17)+EA 2 2-4 | XCHG SEMAPHORE, AX
register, register 4(4) - 2 | XCHG AL, BL

3-167 210011

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

XLAT

Operation:
AL < ((BX) + (AL))

Description:

XLAT translate-table

XLAT (translate) replaces a byte in the AL
register with a byte from a 256-byte, user-
coded translation table. Register BX is
assumed to point to the beginning of the table.
The byte in AL is used as an index into the
table and is replaced by the byte at the offset in
the table corresponding to AL’s binary value.

Encoding:

TRANSLATE

XLAT

Flags Affected:

None

The first byte in the table has an offset of 0.
For example, if AL contains SH, and the sixth
element of the translation table contains 33H,
then AL will contain 33H following the
instruction. XLAT is useful for translating
characters from one code to another, the
classic example being ASCII to EBCDIC or
the reverse.

[11010111 |
XLAT Operands Clocks Transfers|Bytes XLAT Coding Example
source-table 11(11) 1 XLAT ASCII_TAB

3-168

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

XOR EXCLUSIVE OR XOR ‘

Operation: Flags Affected:

(DEST) < (LSRC) XOR (RSRC) CF, OF, PF, SF, ZF.

(CF)<0 AF undefined

(OF) <0 |
Description:

XOR destination,source

XOR (Exclusive Or) performs the logical
‘“‘exclusive or’” of the two operands and
returns the result to the destination operand. A |
bit in the result is set if the corresponding bits
of the original operands contain opposite
values (one is set, the other is cleared); other-
wise the result bit is cleared.

3-169 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

XOR EXCLUSIVE OR XOR

Encoding:

Memory or Register Operand with Register Operand:

[001100dw [modregr/m |

ifd=1then LSRC = REG, RSRC = EA, DEST = REG
else LSRC =EA, RSRC = REG, DEST=EA

Immediate Operand to Memory or Register Operand:

[1000000w [mod110r/m| data | dataifw=1 |
LSRC = EA, RSRC = data, DEST = EA

Immediate Operand to Accumulator:

[0011010w | data | dataifw=1 |

if w=0then LSRC = AL, RSRC = data, DEST = AL
else LSRC = AX, RSRC = data, DEST = AX

XOR Operands Clocks Transfers|Bytes XOR Coding Example
register, register 3(3) - 2 | XOR CX, BX
register, memory 9(10) +EA 1 2-4 | XORCL,MMASK BYTE
‘memory, register 16(10)+EA 2 2-4 | XOR ALPHA[SI],DX
accumulator,
- immediate 4(3-4) - 2-3 | XORAL,01000010B
register, immediate 4(4) - 3-4 | XOR S1,00C2H
memory, immediate | 17(16)+EA 2 3-6 | XOR RETURN_CODE,0D2H

3-170 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

3.8 8086,88 PROGRAMMING EXAMPLES

In this section and the section following, specific pro-
gramming examples are provided which illustrate
how the instruction set and addressing modes may
be used in various, commonly encountered pro-
gramming situations.

The programs are primarily written in ASM-86.
ASM-86 is the 8086/80186 assembly language. It
provides the programmer who is familiar with the
CPU architecture, access to all processor features.
For critical code segments within programs that
make sophisticated use of the hardware, have ex-
tremely demanding performance or memory
constraints, ASM-86 is the best choice. For detailed
information about Intel’s 8086/80186 assembly lan-
guage see: ASM86 Language Reference Manual,
121703.

Programs can also be written in high-level languages
such as PL/M-86. PL/M-86 is a high-level language
suitable for most microprocessor applications. It is
easy to use, even by programmers who have little ex-
perience with microprocessors. Because it reduces
software development time, PL/M-86 is ideal for
most of the programming in any application, espe-
cially applications that must get to market quickly.

The languages are completely compatible, and a judi-
cious combination of the two often makes good
sense. Prototype software can be developed rapidly
with a high-level language. When the system is
operating correctly, it can then be analyzed to see
which sections can best profit from being written in
ASM-86. Since the logic of these sections has already
been debugged, selective rewriting can be done
quickly and with low risk.

The programming examples in this section address
the following topics:

e Procedures

® JMP and CALL (jump, call)
® Bit manipulation

® Dynamic code relocation

® Memory mapped I/0

® Breakpoints

® Interrupt handling

® String operations

The examples are intended to show one way to use
the instruction set and addressing modes. They do
not demonstrate the “best” way to solve a particular
problem. The flexibility of the 8086 and 80186 appli-
cation differences plus variations in programming
style usually add up to a number of ways to imple-
ment a programming solution.

Procedures (parameters, reentrancy)

The code in Figure 3-31 illustrates several techniques
that are typically used in writing ASM-86 proce-
dures. In this example a calling program invokes a
procedure (called EXAMPLE) twice, passing it a dif-
ferent byte array each time. Two parameters are
passed on the stack; the first contains the number of
elements in the array, and the second contains the
address (offset in DATA2SEG) of the first array
element. This same technique can be used to pass a
variable-length parameter list to a procedure (the
“array” could be any series of parameters or parame-
ter addresses). Thus, although the procedure always
receives two parameters, these can be used to indi-
rectly access any number of variables in memory.

Any results returned by a procedure should be
placed in registers or in memory, but not on the
stack. AX or AL is often used to hold a single word
or byte result. Alternatively, the calling program can
pass the address (or addresses) of a result area to the
procedure as a parameter. It is good practice for
ASM-86 programs to follow the calling conventions
used by PL/M-86.

EXAMPLE is defined as a FAR procedure, meaning
it is in a different segment than the calling program.
The calling program must use an intersegment
CALL to activate the procedure. Note that this type
of CALL saves CS and IP on the stack. f EXAMPLE
were defined as NEAR (in the same segment as the
caller) then an intrasegment CALL would be used,
and only IP would be saved on the stack. It is the re-
sponsibility of the calling program to know how the
procedure is defined and to issue the correct type of
CALL.

Figure 3-32 shows the stack before the caller pushes
the parameters onto it. Figure 3-33 shows the stack

as the procedure receives it after the CALL has been -

executed.

3-171 210911

e

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

EXAMPLE is divided into four sections. The
“prolog” sets up register BP so it can be used to ad-
dress data on the stack (specifying BP as a base regis-
ter in an instruction automatically refers to the stack
segment unless a segment override prefix is coded).
The next step in the prolog is to save the “state of
the machine” as it existed when the procedure was
activated. This is done by pushing any registers used
by the procedure (only CX and BP in this case) onto

the stack. If the procedure changes the flags, and the
caller expects the flags to be unchanged following ex-
ecution of the procedure, they also may be saved on
the stack. The last instruction in the prolog allocates
three words on the stack for the procedure to use as
local temporary storage. Figure 3-34 shows the stack
at the end of the prolog. Note that PL/M procedures
assume that all registers except SP and BP can be
used without saving and restoring.

STACK__SEG SEGMENT

DW 20 DUP (?) ; ALLOCATE 20-WORD STACK
STACK__TOP LABEL WORD ; LABEL INITIAL TOS
STACK__SEG ENDS
DATA_SEG SEGMENT
ARRAY__1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY
ARRAY__2 DB 5DUP (?) ; S-ELEMENT BYTE ARRAY
DATA_SEG ENDS
PROC__SEG SEGMENT
ASSUME CS:PROC__SEG,DS:DATA__SEG,SS:STACK__SEG,ES:NOTHING
EXAMPLE PROC FAR ; MUST BE ACTIVATED BY

; INTERSEGMENT CALL

; PROCEDURE PROLOG

PUSH BP ; SAVE BP

MoV BP, SP ; ESTABLISH BASE POINTER

PUSH CX ; SAVE CALLER’S

PUSH BX ; REGISTERS

PUSHF ; AND FLAGS

SuB SP, 6 ; ALLOCATE 3 WORDS LOCAL STORAGE

; END OF PROLOG
; PROCEDURE BODY

MOV CX,[BP+8] ;GETELEMENT COUNT

MOV BX, [BP+6] ;GETOFFSET OF 1ST ELEMENT

: PROCEDURE CODE GOES HERE

: FIRST PARAMETER CAN BE ADDRESSED:
; [BX]

: LOCAL STORAGE CAN BE ADDRESSED:

: [BP-8], [BP-10], [BP-12]

: END OF PROCEDURE BODY

Figure 3-31 Procedure Example 1

3-172 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

; PROCEDURE EPILOG

ADD SP, 6 ; DE-ALLOCATE LOCAL STORAGE

POPF ; RESTORE CALLER’S

POP BX ; REGISTERS

POP CX ; AND

POP BP ; FLAGS

; END OF EPILOG
; PROCEDURE RETURN

RET 4 ; DISCARD 2 PARAMETERS
EXAMPLE ENDP ; END OF PROCEDURE ““EXAMPLE”’
PROC__SEG ENDS

CALLER_SEG SEGMENT
; GIVE ASSEMBLER SEGMENT/REGISTER CORRESPONDENCE

ASSUME CS:CALLER__SEG,
& DS:DATA__SEG,
& SS:STACK__SEG,
& ES:NOTHING ; NO EXTRA SEGMENT IN THIS PROGRAM
; INITIALIZE SEGMENT REGISTERS
START: MoV AX,DATA_SEG
MOV DS,AX
MoV AX,STACK__SEG
MOV SS,AX
Mov SP,OFFSET STACK__TOP ; POINTSPTOTOS

; ASSUME ARRAY__11S INITIALIZED

; CALL ““EXAMPLE"’, PASSING ARRAY__1, THAT IS, THE NUMBER OF ELEMENTS
; INTHE ARRAY, AND THE LOCATION OF THE FIRST ELEMENT.

Mov AX,SIZE ARRAY__1
PUSH AX

MoV AX,OFFSET ARRAY__1
PUSH AX

CALL EXAMPLE

; ASSUME ARRAY__2 IS INITIALIZED
; CALL “EXAMPLE” AGAIN WITH DIFFERENT SIZE ARRAY.

Mov AX,SIZE ARRAY__2

PUSH AX

Mov AX,OFFSET ARRAY__2

PUSH AX

CALL EXAMPLE
CALLER_SEG ENDS

END START

Figure 3-31 Procedure Example 1 (continued)

3-173 210911

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

~———— SP (TOS)

HIGH ADDRESSES

PARAMETER 1

PARAMETER 2

oLbCs

oLDIP

<—— SP (TOS)

LOW ADDRESSES

Figure 3-32 Stack Before Pushing Parameters

The procedure “body” does the actual processing
(none in the example). The parameters on the stack
are addressed relative to BP. Note that if EXAMPLE
were a NEAR procedure, CS would not be on the
stack and the parameters would be two bytes
“closer” to BP. BP also is used to address the local
variables on the stack. Local constants are best
stored in a data or extra segment.

The procedure “epilog” reverses the activities of the
prolog, leaving the stack as it was when the proce-
dure was entered (see Figure 3-35).

The procedure “return” restores CS and IP from the
stack and discards the parameters. As Figure 3-36
shows, when the calling program is resumed, the
stack is in the same state as it was before any parame-
ters were pushed onto it.

Figure 3-33 Stack at Procedure Entry

HIGH ADDRESSES

BP+8— PARAMETER 1
BP+6—| PARAMETER 2
oLpCs
oLDIP
OLD BP
OLD CX
OLD BX
; OLD FLAGS
BP—8—p LOCAL 1
BP-10 —- LOCAL 2
BP-12— LOCAL 3

~«—— SP(TOS)

LOW ADDRESSES

3-174

Figure 3-34 Stack Following Procedure Prolog

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

HIGHER ADDRESSES
&1'\

PARAMETER 1
PARAMETER 2
RETURN ADDRESS

OLD BP -«—BP &SP (TOS)

LOWER ADDRESSES

Figure 3-35 Stack Following Procedure Epilog

Figure 3-37 shows a simple procedure that uses an
ASM-86 structure to address the stack. Register BP
points to the base of the structure, which is the top
of the stack since the stack grows toward lower ad-
dresses (see Figure 3-38). Any structure element
can then be addressed by specifying BP as a base
register:

[BP].structure_element

Figure 3-39 shows a different approach to using as
ASM-86 structure to define the stack layout. As
shown in Figure 3-40, register BP is pointed at the
middle of the structure (at OLD_BP) rather than at
the base of the structure. Parameters and the return
address are thus located at positive displacements
(high addresses) from BP, while local variables are
at negative displacements (lower addresses) from
BP. This means that the local variables will be
“closer” to the beginning of the stack segment and
increase the likelihood that the assembler will be
able to produce shorter instructions to access these
variables, i.e., their offset from SS may be 255 bytes
or less and can be expressed as a 1-byte value rather
than a 2-byte value. Exit from the subroutine also is
slightly faster because a MOV instruction can be
used to deallocate the local storage instead of an
ADD (compare Figure 3-31).

It is possible for a procedure to be activated a second
time before it has returned from its first activation.
For example, procedure A may call procedure B,
and an interrupt may occur while procedure B is
executing. If the interrupt service procedure calls B,
then procedure B is reentered and must be written
to handle this situation correctly, i.e., the procedure
must be made reentrant.

HIGH ADDRESSES

<¢—— SP (TOS)

LOW ADDRESSES

Figure 3-36 Stack Following Procedure Return

In PL/M-86 this can be done by simply writing:
B:PROCEDURE(PARM1, PARM2)REENTRANT;

An ASM-86 procedure will be reentrant if it uses the
stack for storing all local variables. When the proce-
dure is reentered, a new “generation” of variables
will be located on the stack. The stack will grow, but
the sets of variables (and the parameters and return
addresses as well) will automatically be kept straight.
The stack must be large enough to accommodate the
maximum “depth” of procedure activation that can
occur under actual running conditions. In addition,
any procedure called by a reentrant procedure must
itself be reentrant.

A related situation that also requires reentrant proce-
dures is recursion:

® A calls A (direct recursion),
® A calls B, B calls A (indirect recursion),

® A calls B, B calls C, C calls A (indirect recursion).

3-175 210911

THE iA‘PX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CODE SEGMENT
, ASSUME CS:CODE
MAX PROC

; THIS PROCEDURE IS CALLED BY THE FOLLOWING

; SEQUENCE:

; PUSH PARM1
; PUSH PARM2
; CALL MAX

; ITRETURNS THE MAXIMUM OF THE TWO WORD

; PARAMETERS IN AX.

; DEFINE THE STACK LAYOUT AS A STRUCTURE.

STACK_LAYOUT STRUC

OLD_BP DwW ? ; SAVED BP VALUE—BASE OF STRUCTURE
RETURN_ADDR DW? ; RETURN ADDRESS
PARM__2 DW? ; SECOND PARAMETER
PARM__1 DW ? ; FIRST PARAMETER
STACK_LAYOUT ENDS
; PROLOG
PUSH BP ; SAVEIN OLD__BP
MOV BP, SP ; POINTTOOLD__BP
; BODY
MOV AX, [BP].PARM_1 ;IFFIRST
CMP AX, [BP].PARM_2 ;>SECOND
JG FIRST__IS_MAX ; THEN RETURN FIRST
MOV AX,[BP].PARM__2 ;ELSERETURNSECOND
; EPILOG
FIRST__IS_MAX: POP BP ; RESTORE BP (& SP)
; RETURN
RET 4 ; DISCARD PARAMETERS
MAX ENDP
CODE ENDS
END

Figure 3-37 Procedure Example 2 The Stack as a Structure

Figure 3-38 Procedure Example 2 Stack Layout

HIGHER ADDRESSES
N P
1 Jumps and Calls
The instruction set contains many different types of
PARAMETER 1 JMP and C/}LL instructions (e.g., direct, indirect,
PARAMETER 2 through register, indirect through memory, etc.).
These varying types of transfer provide efficient use
RETURN ADDRESS of space and execution time in different program-
OLD BP ~——BP &SP (TOS) ming situations. Figure 3-41 illustrates typical use of
the different forms of these instructions. Note that
the ASM-86 assembler uses the terms “NEAR” and
4 L e “FAR” to denote intrasegment and intersegment
LOWER ADDRESSES transfers, respectively.

3-176 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

EXTRA SEGMENT
; CONTAINS STRUCTURE TEMPLATE THAT “NEARPROC”’
USES TO ADDRESS AN ARRAY PASSED BY ADDRESS.

)

DUMMY STRUC
PARM__ARRAY DB 256 DUP ?
DUMMY ENDS
EXTRA ENDS
CODE SEGMENT
ASSUME CS:CODE,ES:EXTRA
NEARPROC PROC
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA).
DSASTRUC STRUC
l DW ? ; LOCAL VARIABLES FIRST
LOC__ARRAY DW 10 DUP (?) ;
OLD_BP DW ? ; ORIGINAL BP VALUE
RETADDR DW ? ; RETURN ADDRESS
POINTER DD ? ; 2ND PARM—POINTER TO ““PARM_ARRAY"".
COUNT DB ? ; 1ST PARM—A BYTE OCCUPIES
DB ? ; AWORD ON THE STACK
DSASTRUC ENDS

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE
DSA. CANNOT SIMPLY USE BP BECAUSE ITWILL
BE POINTING TO ““OLD_BP’’ IN THE MIDDLE OF

’

’

. THEDSA.
DSA EQU [BP - OFFSET OLD__BP]
: PROCEDURE ENTRY

PUSH BP ; SAVE BP

MOV BP, SP : POINT BP ATOLD__BP

suB SP, OFFSET OLD__BP ; ALLOCATE LOC__ARRAY & |
: PROCEDURE BODY .

: ACCESS LOCAL VARIABLE |

MOV AX,DSA.|

: ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT

MOV SI6 : WORD ARRAY-INDEX IS 3*2

MOV AX,DSA.LOC__ARRAY [SI]

; LOAD POINTER TO ARRAY PASSED BY ADDRESS
LES BX,DSA.POINTER

: ES:BX NOW POINTS TO PARM__ARRAY (0)
: ACCESS SI'TH ELEMENT OF PARM__ARRAY
MOV AL,ES:[BX].PARM__ARRAY [SI]

; ACCESS THE BYTE PARAMETER
MoV AL,DSA.COUNT

Figure 3-39 Procedure Example 3

3-177

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

; PROCEDURE EXIT
MOV
POP

SP,BP
BP

RET 6

NEARPROC
CODE

ENDP
ENDS
END

; DE-ALLOCATE LOCALS
; RESTORE BP

; STACK NOW AS RECEIVED FROM CALLER

; DISCARD PARAMETERS

Figure 3-39 Procedure Example 3 (continued)

¢ HIGHER ADDRESSES |

| count

POINTER

RETADDR

OLD_BP
LOC__ARRAY (9)
LOC__ARRAY (8)
LOC__ARRAY (7)
LOC__ARRAY (6)
LOC__ARRAY (5)
LOC__ARRAY (4)
LOC__ARRAY (3)
LOC__ARRAY (2)
LOC_ARRAY (1)
LOC__ARRAY (0)
| «——SP

<«—BP

LOWER ADDRESSES

an indirect CALL through memory to a
procedure located in another segment,

a direct JMP to a label in another segment,

an indirect JMP through memory to a label in
the same segment,

an indirect JMP through a register to a label
in the same segment,

a direct CALL to a procedure in another
segment,

a direct CALL to a procedure in the same
segment,

direct JMPs to labels in the same segment,
within —128 to +127 bytes (“SHORT”) and
farther than — 128 to + 127 bytes (“NEAR”).

Bit Manipulation w/RECORD

Figure 3-42 shows the ASM-86 RECORD facility
may be used to manipulate bit data. The example

shows how to:

Figure 3-40 Procedure Example 3
Stack Layout

The procedure in Figure 3-41 illustrates how a
PL/M-86 DO CASE construction may be imple-
mented in ASM-86. It also shows:

3-178

right-justify a bit field,

test for a value,

assign a constant known at assembly time,
assign a variable,

set or clear a bit field.

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DATA SEGMENT

; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE
; “DO__CASE.” THE OFFSET OF EACH LABEL WILL

; BE PLACED IN THE TABLE BY THE ASSEMBLER.
CASE__TABLE DW ACTIONO, ACTION1, ACTION2,

& ACTIONS3, ACTION4, ACTIONS
DATA ENDS

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS
; ASSEMBLY BUT SUPPLIED BY R& L FACILITY)
; PROCEDURES. ONE IS IN THIS CODE SEGMENT
; (NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR).
EXTRN NEAR__PROC: NEAR, FAR__PROC: FAR

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT
; IS IN ANOTHER SEGMENT.
EXTRN ERR__EXIT: FAR

CODE SEGMENT
ASSUME CS:CODE, DS: DATA
; ASSUME DS HAS BEEN SET UP

; BY CALLER TO POINT TO ““‘DATA’ SEGMENT.
DO__CASE PROC NEAR ,

; THIS EXAMPLE PROCEDURE RECEIVES TWO
; PARAMETERS ON THE STACK. THE FIRST
; PARAMETERIS THE ““CASE NUMBER’’ OF
; AROUTINE TO BE EXECUTED (0-5). THE SECOND
; PARAMETERIS APOINTER TO AN ERROR
; PROCEDURE THAT IS EXECUTED IF AN INVALID
; CASE NUMBER (>5) IS RECEIVED.

; LAY OUT THE STACK.
STACK__LAYOUT STRUC
OLD_BP Dw ?
RETADDR DW ?
ERR_PROC_ADDR DD ?
CASE_NO DB ?

DB ?

STACK__LAYOUT ENDS

; SET UP PARAMETER ADDRESSING
PUSH BP
MOV BP, SP

; CODE TO SAVE CALLER’S REGISTERS COULD GO HERE.

: CHECK THE CASE NUMBER
MOV BH, 0
MOV BL, [BP].CASE__NO
CMP BX, LENGTH CASE_ TABLE
JLE oK : ALL CONDITIONAL JUMPS

; ARE SHORT DIRECT

Figure 3-41 JMP and Call Examples

3-179 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

; CALL THE ERROR ROUTINE WITH A FAR
i INDIRECTCALL. AFARINDIRECT CALL
i ISINDICATED SINCE THE OPERAND HAS
; TYPE "DOUBLEWORD."”
CALL [BP].ERR_PROC__ADDR

; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT.
; AFARDIRECT JUMP IS INDICATED SINCE
; THEOPERAND HAS TYPE "'FAR.”

JMP ERR_EXIT

OK:
; MULTIPLY CASE NUMBER BY 2 TO GET OFFSET
; INTO CASE__TABLE (EACHENTRY IS2BYTES).
. SHL BX, 1
; NEAR INDIRECT JUMP THROUGH SELECTED
;- ELEMENT OF CASE__TABLE. ANEAR
; INDIRECT JUMP IS INDICATED SINCE THE
; OPERANDHAS TYPE “WORD.”
JMP CASE__TABLE [BX]

ACTIONO: ; EXECUTED IF CASE_NO =0

; CODETO PROCESS THE ZERO CASE GOES HERE.
; FORILLUSTRATION PURPOSES, USE A

; NEARINDIRECT JUMP THROUGH A

; REGISTER TO BRANCH TO THE POINT

; WHERE ALL CASES CONVERGE.

; ADIRECT JUMP (JMP ENDCASE) IS

; ACTUALLY MORE APPROPRIATE HERE.

MOV AX, OFFSET ENDCASE
JMP AX
ACTIONT: ; EXECUTED IF CASE_NO =1

; CALL A FAR EXTERNAL PROCEDURE. A FAR
; DIRECT CALL IS INDICATED SINCE OPERAND
; HASTYPE “FAR.”

CALL FAR_PROC
; CALL ANEAR EXTERNAL PROCEDURE.
CALL -~ NEAR_PROC

; BRANCH TO CONVERGENCE POINT USING NEAR
; DIRECT JUMP. NOTE THAT “‘ENDCASE"

; ISMORE THAN 127 BYTES AWAY

i SOANEARDIRECT JUMP WILL BE USED.

JMP ENDCASE
ACTION2: EXECUTED IF CASE_NO =2
; CODE GOES HERE
JMP " ENDCASE ; NEARDIRECT JUMP

Figure 3-41 JMP and CALL Examples (continued)

3-180

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ACTIONS: ; EXECUTED IFCASE_NO =3
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JMP

; ARTIFICIALLY FORCE ““ENDCASE’ FURTHER AWAY
; SOTHAT ABOVE JUMPS CANNOT BE ‘‘SHORT.”

ORG 500
ACTION4: ; EXECUTED IF CASE_NO =4
; CODE GOES HERE
JMP ENDCASE ; NEAR DIRECT JUMP
ACTIONS: ; EXECUTED IF CASE_NO =5

; CODE GOES HERE.

; BRANCH TO CONVERGENCE POINT USING
; SHORT DIRECT JUMP SINCE TARGET IS
; WITHIN 127 BYTES. MACHINE INSTRUCTION
; HAS1-BYTE DISPLACEMENT RATHER THAN
; 2-BYTE DISPLACEMENT REQUIRED FOR
; NEARDIRECT JUMPS. ““SHORT"’ IS
; WRITTEN BECAUSE ““ENDCASE’’ IS AFORWARD
; REFERENCE, WHICH ASSEMBLER ASSUMES IS
;. ““NEAR.” IF “ENDCASE" APPEARED PRIOR
; TOTHE JUMP, THE ASSEMBLER WOULD
; AUTOMATICALLY DETERMINE IF IT WERE REACHABLE
; WITH ASHORT JUMP.

JMP SHORT ENDCASE

ENDCASE: ; ALL CASES CONVERGE HERE.

; POP CALLER’S REGISTERS HERE.
; RESTORE BP & SP, DISCARD PARAMETERS

; ANDRETURN TO CALLER.
MOV SP, BP
POP BP
RET 6
DO__CASE ENDP
CODE ENDS
END ; OF ASSEMBLY

Figured 3-41 JMP and CALL Examples (continued)

3-181 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DATA SEGMENT
; DEFINE AWORD ARRAY
XREF DW 3000 DUP (?)

; EACH ELEMENT OF XREF CONSISTS OF 3 FIELDS:

; A 2-BIT TYPE CODE,

; A1-BIT FLAG,

; A 13-BIT NUMBER.

; DEFINE A RECORD TO LAY OUT THIS ORGANIZATION.

LINE__REC RECORD LINE_TYPE:2,
& VISIBLE: 1,

& LINE_NUM: 13
DATA ENDS

CODE SEGMENT

ASSUME CS: CODE, DS:DATA
; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY
; AND THAT SI INDEXES AN ELEMENT OF XREF.

; ARECORD FIELD-NAME USED BY ITSELF RETURNS
; THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY
; THEFIELD. ISOLATE “LINE_TYPE" IN THIS

; MANNER.
MOV AL, XREF [Sl]
MOV CL,LINE_TYPE
SHR AX,CL

; THE “MASK’’ OPERATOR APPLIED TO A RECORD
FIELD-NAME RETURNS THE BIT MASK
REQUIRED TO ISOLATE THE FIELD WITHIN
THE RECORD. CLEAR ALL BITS EXCEPT

“LINE_NUM.”
MOV DX, XREF[S]
AND DX, MASK LINE_NUM

: DETERMINE THE VALUE OF THE “VISIBLE” FIELD
TEST XREF[SI], MASK VISIBLE
Jz NOT_VISIBLE

; NOJUMP IF VISIBLE =1
NOT__VISIBLE: ;JUMPHEREIF VISIBLE =0

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME

; TO AFIELD, BY FIRST CLEARING THE BITS

; AND THEN OR’ING IN THE VALUE. IN

; THIS CASE ““LINE__TYPE” ISSET TO 2(10B).
AND XREF[SI], NOT MASK LINE__TYPE
OR XREF[SI],2SHL LINE__TYPE

; THE ASSEMBLER DOES THE MASKING AND SHIFTING.

; THE RESULT IS THE SAME AS:

AND XREF[SI], 3FFFH
OR XREF[SI], 8000H

: BUT IS MORE READABLE AND LESS SUBJECT

: TOCLERICAL ERROR.

Figure 3-42 RECORD Example

3-182

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

; ASSIGN AX TO “LINE_NUM.”

; FLAG AND THEN SET IT.

; ASSIGN A VARIABLE (THE CONTENT OF AX)

; TOLINE_TYPE.
MOV CL,LINE_TYPE ;SHIFT COUNT
SHL AX,CL ;SHIFTTO “LINEUP” BITS
AND XREF[SI], NOT MASK LINE__TYPE ;CLEARBITS
OR XREF(SI], AX ;ORIN NEW VALUE

; NO SHIFT IS REQUIRED TO ASSIGN TO THE
; RIGHT-MOST FIELD. ASSUMING AX CONTAINS
; AVALID NUMBER (HIGH 3 BITS ARE 0),

AND XREF[SI], NOT MASK LINE_NUM
OR XREF[SI], AX

; AFIELD MAY BE SET OR CLEARED WITH
; ONEINSTRUCTION. CLEAR THE “‘VISIBLE"”

AND XREF[SI], NOT MASK VISIBLE

OR XREF([SI], MASK VISIBLE
CODE ENDS

END ; OF ASSEMBLY

Figure 3-42 RECORD Example (continued)

Position-Independent Code

The following considerations apply to position-
independent code sequences:

® A label that is referenced by a direct FAR (in-
tersegment) transfer is not moveable.

® A label that is referenced by an indirect trans-
fer (either NEAR or FAR) is moveable so
long as the register or memory pointer to the
label contains the label’s current address.

® A label that is referenced by a SHORT (e.g.,
conditional jump) or a direct NEAR (intra-
segment) transfer is moveable so long as the
referencing instruction is moved with the
label as a unit. These transfers are self-
relative; that is, they require only that the
label maintain the same distance from the
referencing instruction, and actual addresses
are immaterial.

® Data is segment-independent, but not offset-
independent. That is, a data item may be
moved to a different segment, but it must
maintain the same offset from the beginning
of the segment. Placing constants in a unit of

code also effectively makes the code off-
set-dependent, and therefore is not
recommended.

® A procedure should not be moved while it is
active or while any procedure it has called is
active.

® A section of code that has been interrupted
should not be moved.

The segment that is receiving a section of code must
have “room” for the code. If the MOVS (or
MOVSB or MOVSW) instruction attempts to auto-
increment DI past 64K, it wraps around to 0 and
causes the beginning of the segment to be
overwritten. If a segment override is needed for the
source operand, code similar to the following can be
used to properly resume the instruction if it is
interrupted:

RESUME: REP MOVS DESTINATION,ES:SOURCE
JIF CX NOT=0 THEN INTERRUPT HAS OCCURRED

AND CX,CX CX=0?

JNZ RESUME ;NO,FINISH EXECUTION

;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED.

On the 8086,88, if the MOVS is interrupted, the
CPU “remembers” the segment override but

3-183 210911

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

“forgets” the presence of the REP prefix when exe-
cution resumes. Testing CX indicates whether the in-
struction is completed or not. Jumping back to the
instruction resumes it where it left off. Note that a
segment override cannot be specified with MOVSB
or MOVSW.

Dynamic Code Relocation

Figure 3-43 illustrates one approach to moving pro-
grams in memory at execution time. A “supervisor”

program (which is not moved) keeps a pointer varia-
ble that contains the current location (offset and seg-
ment base) of a position-independent procedure.
The supervisor always calls the procedure through
this pointer. The supervisor also has access to the
procedure’s length in bytes. The procedure is moved
with the MOVSB instruction. After the procedure is
moved, its pointer is updated with the new location.
The ASM-86 WORD PTR operator is written to
inform the assembler that one word of the double-
word pointer is being updated at a time.

MAIN_DATA SEGMENT
; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE
; AND FREE SPACE.
PIP_PTR DD EXAMPLE
FREE__PTR DD TARGET__SEG
; SET UP SIZE OF PROCEDURE IN BYTES
PIP_SIZE DW EXAMPLE__LEN
MAIN__DATA ENDS
STACK SEGMENT
DW 20 DUP (?) ; 20 WORDS FOR STACK
STACK__TOP LABEL WORD ; TOS BEGINS HERE
STACK ENDS
SOURCE_SEG SEGMENT

; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT.
; OTHER CODE MAY PRECEDEIT, I.E., ITS OFFSET NEED NOT BE ZERO.
ASSUME CS:SOURCE__SEG
EXAMPLE PROC FAR

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL

; BIT3OF THE VALUE READ IS FOUND SET. IT

; THEN READS ANOTHER PORT. IF THE VALUE READ

; IS GREATER THAN 10H IT WRITES THE VALUE TO

; ATHIRD PORT AND RETURNS; OTHERWISE IT STARTS

; OVER. ‘
STATUS_PORT EQU 0DOH
PORT_READY EQU 008H
INPUT_PORT EQU 0D2H
THRESHOLD EQU 010H
OUTPUT_PORT EQU 0D4H

Figure 3-43 Dynamic Code Relocation Example

3-184 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

CHECK_AGAIN: IN AL,STATUS__PORT ;GETSTATUS
TEST AL,PORT_READY ; DATA READY?
JNE CHECK_AGAIN ; NO, TRY AGAIN
IN AL,INPUT_PORT ; YES, GET DATA
CMP AL, THRESHOLD ; > 10H7?
JLE CHECK__AGAIN ; NO, TRY AGAIN
ouT OUTPUT_PORT,AL ;YES,WRITEIT
RET ; RETURN TO CALLER

; GET PROCEDURE LENGTH

EXAMPLE_LEN EQU (OFFSET THIS BYTE)—(OFFSET CHECK__AGAIN)
ENDP EXAMPLE ENDP

SOURCE__SEG ENDS

TARGET_SEG SEGMENT
; THE POSITION-INDEPENDENT PROCEDURE
; ISMOVED TO THIS SEGMENT, WHICH IS
; INITIALLY “EMPTY.”
; INTYPICAL SYSTEMS, A “‘FREE SPACE MANAGER’ WOULD
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE
; FORILLUSTRATION PURPOSES, ALLOCATE ENOUGH
; SPACETOHOLDIT
DB EXAMPLE__LEN DUP (?)

TARGET_SEG ENDS

MAIN__CODE SEGMENT

; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE
; ATITS INITIAL LOCATION, MOVES IT, AND

; CALLS IT AGAIN AT THE NEW LOCATION.

ASSUME CS:MAIN__CODE,SS:STACK,
& DS:MAIN__DATA,ES:NOTHING
; INITIALIZE SEGMENT REGISTERS & STACK POINTER.
START: MOV AX,MAIN__DATA
MOV DS,AX
Mov AX,STACK
MoV SS,AX
MoV SP,OFFSET STACK__TOP

; CALL EXAMPLE AT INITIAL LOCATION.
CALL PIP_PTR

; SET UP CX WITH COUNT OF BYTES TO MOV
MOV CX,PIP_SIZE

Figure 3-43 Dynamic Code Relocation Example (continued)

3-185

210911

B

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

MOV
SUB
MOV

; UPDATE POINTER TO FREE SPACE
MOV
sSuB
MoV

; NEWLOCATION AND STOP

; SAVE DS, SET UP DS/SIAND ES/DITO
; POINT TO THE SOURCE AND DESTINATION

; ADDRESSES.
PUSH DS
LES DI,FREE__PTR
LDS SI,PIP_PTR
; MOVE THE PROCEDURE.
CLD ; AUTO INCREMENT
REP MOVSB
; RESTORE OLD ADDRESSABILITY.
MoV AX,DS ; HOLD TEMPORARILY
POP DS

; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE
WORD PTR PIP_PTR+2,ES

DI,PIP_SIZE
WORD PTR PIP_PTR,DI

WORD PTR FREE__PTR+2,AX
SI,PIP__SIZE
WORD PTR FREE__PTR,SI

; CALL POSITION-INDEPENDENT PROCEDURE AT

CALL PIP_PTR
MAIN_CODE ENDS
END START

; PRODUCES OFFSET

; PRODUCES OFFSET

Figure 3-43 Dynamic Code Relocation Example (continued)

Memory Mapped I/0

Figure 3-44 shows how memory-mapped I/O can be
used to address a group of communication lines as
an “array.” In the example, indexed addressing is
used to poll the array of status ports, one port at a
time. Any of the other memory addressing modes
may be used in conjunction with memory-mapped
1/0 devices as well.

In Figure 3-45 a MOVS instruction is used to per-
form a high-speed transfer to a memory-mapped
line printer. Using this technique requires the hard-
ware to be set up as follows. Since the MOVS instruc-
tion transfers characters to successive memory
addresses, the decoding logic must select the line
printer if any of these locations is written. One way
of accomplishing this is to have the chip select logic
decode only the upper 12 lines of the address bus
(A19-A8), ignoring the contents of the lower eight
lines (A7-A0). When data is written to any address
in this 256-byte block, the upper 12 lines will not
change, so the printer will be selected.

3-186

Breakpoints

Figure 3-46 illustrates how a program may set a
breakpoint. In the example, the breakpoint routine
puts the processor into single-step mode, but the
same general approach could be used for other pur-
poses as well. A program passes the address where
the break is to occur to a procedure that saves the
byte located at that address and replaces it with an
INT 3 (breakpoint) instruction. When the CPU en-
counters the breakpoint instruction, it calls the type
3 interrupt procedure. In the example, this procedure
places the processor into single-step mode starting
with the instruction where the breakpoint was
placed.

Interrupt Handling

Figure 3-47 is a block diagram of a hypothetical
8086,88 system that is used to illustrate three dif-
ferent examples of interrupt handling: an external
(maskable) interrupt, an external non-maskable in-
terrupt and a software interrupt.

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

COM__LINES SEGMENT AT 800H

; THE FOLLOWING IS AMEMORY MAPPED ‘“ARRAY "’

OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS
(E.G., 8251 USARTS). PORTS HAVE ALL-ODD

’
’
)
’

COM__DATA DB ?
DB ?
COM__STATUS DB ?
DB ?

COM__LINES ENDS

CODE SEGMENT

END

OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE
IS SKIPPED) FOR 8086-COMPATIBILITY.

DB 28 DUP(?)

; ASSUME STACK IS SET UP, AS ARE SEGMENT
; REGISTERS (DS POINTING TO COM__LINES).
; FOLLOWING CODE POLLS THE LINES.

CHAR_RDY EQU 000000108 ; CHARACTER PRESENT
START_POLL: MOV CX, 8 ; POLLBLINES ZERO
SuUB S, Sl ; ARRAY INDEX
POLL__NEXT: TEST COM__STATUS [SI], CHAR_RDY
JE READ__CHAR; READ IF PRESENT
ADD Si, 4 . ; ELSEBUMP TO NEXT LINE
LOOP POLL__NEXT ; CONTINUE POLLING UNTIL
; ALL8HAVE BEEN CHECKED
JMP START_POLL,; START OVER
READ__CHAR: MOV AL,COM__DATA[SI] ;GET THE DATA
; ETC.
CODE ENDS

; SKIP THIS ADDRESS

; SKIP THIS ADDRESS
; REST OF ““ARRAY”’

Figure 3-44 Memory Mapped I/0 “Array”

In this hypothetical system, an 8253 Programmable
Interval Timer is used to generate a time base. One
of the three timers on the 8253 is programmed to
repeatedly generate interrupt requests at 50 millisec-
ond intervals. The output from this timer is tied to
one of the eight interrupt request lines of an 8259A
Programmable Interrupt Controller. The 8259A, in
turn, is connected to the INTR line of an 8086.

A power-down circuit is used in the system to illus-
trate one application of the NMI (non-maskable
interrupt) line. If the ac line voltage drops below a
certain threshold, the power supply activates ACLO.

The power-down circuit then sends a power-fail in-
terrupt (PFI) pulse to the CPU’s NMI input. After 5
milliseconds, the power-down circuit activates
MPRO (memory protect) to disable reading from
and writing to the system’s battery-powered RAM.
This protects the RAM from fluctuations that may
occur when power is actually lost 7.5 milliseconds
after the power failure is detected. The system soft-
ware must save all vital information in the battery-
powered RAM segment within 5 milliseconds of the
activation of NMI.

When power returns, the power-down circuit acti-
vates the system RESET line. Pressing the “cold
start” switch also produces a system RESET. The

3-187 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

PRINTER SEGMENT
THlS SEGMENT CONTAINS A ““‘STRING” THAT
; ISACTUALLY A MEMORY-MAPPED LINE PRINTER.
; THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED)
; TOABLOCK OF THE ADDRESS SPACE SUCH
; THAT WRITING TO ANY ADDRESS IN THE
; BLOCK SELECTS THE PRINTER.

PRINT_SELECT DB 133 DUP (?) ; “STRING” REPRESENTING PRINTER
DB 123 DUP (?) ; REST OF 256-BYTE BLOCK

PRINTER ENDS

DATA SEGMENT

PRINT_BUF DB 133 DUP (?) ; LINE TO BE PRINTED

PRINT_COUNT DB1 ? ; LINE LENGTH

; OTHER PROGRAM DATA

DATA ENDS

CODE SEGMENT

; ASSUME STACK AND SEGMENT REGISTERS HAVE

)

)

BEEN SET UP (DS POINTS TO DATA SEGMENT).
FOLLOWING CODE TRANSFERS A LINETO

; THE PRINTER.
ASSUME ES:PRINTER
MOV AX, PRINTER ; PREVENT SEGMENT OVERRIDE
MOV ES, AX
SuB DI, DI ; CLEAR SOURCE AND
SUB S, Sl ; DESTINATION POINTERS
MOV CX, PRINT_COUNT
CLD ; AUTO-INCREMENT

REP MOVS PRINT__SELECT, PRINT_BUF

; ETC.

CODE ENDS
END

Figure 3-45 Memory Mapped Block Transfer Example

PFS (power fail status) line, which is connected to
the low-order bit of port EQ, identifies the source of
the RESET. If the bit is set, the software executes a
“warm start” to restore the information saved by
the power-fail routine. If the PFS bit is cleared, the
software executes a “cold start” from the beginning
of the program. In either case, the software writes a
“one” to the low-order bit of port E2. This line is
connected to the power-down circuit’s PFSR (power
failure status reset) signal and is used to enable the
battery-powered RAM segment.

A software interrupt is used to update a simple real-
time clock. This procedure is written in PL/M-86,
while the rest of the system is written in ASM-86 to

3-188

demonstrate the interrupt handling capability of
both languages. The system’s main program simply
initializes the system following receipt of a RESET
and then waits for an interrupt. An example of this
interrupt procedure is given in Figure 3-48.

In the case of the 80186,188, the equivalent function
of the two blocks designated as the 8259A Interrupt
Controller and the 8253 Counter Timer chip are in-
tegrated on the chip. Thus, the example in Figure
3-48 remains essentially the same except for the ini-
tialization code (INIT) which will need to be
changed to reflect the presence of the integrated In-
terrupt Controller and Counter Timer.

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

INT_PTR_TAB SEGMENT
; INTERRUPT POINTER TABLE-LOCATE AT OH

TYPE__O DD ? ; NOT DEFINED IN EXAMPLE

TYPE__1 DD SINGLE_STEP

TYPE_2 DD ? ; NOT DEFINED IN EXAMPLE

TYPE__3 DD BREAKPOINT /

INT_PTR_TAB ENDS

SAVE_SEG SEGMENT

SAVE__INSTR DB 1 DUP (?) ; INSTRUCTION REPLACED
; BY BREAKPOINT

SAVE__SEG ENDS

MAIN_CODE . SEGMENT
; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP.

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT
; LABEL ““NEXT’’ BY PASSING SEGMENT AND
; OFFSET OF ““NEXT"' TO ““SET__BREAK’ PROCEDURE

PUSH CS
LEA AX, CS: NEXT
PUSH AX
CALL FAR SET_BREAK
; ETC.
NEXT: IN AL, OFFFH ; BREAKPOINT SET HERE
, ETC.

MAIN__CODE ENDS

BREAK SEGMENT

SET_BREAK PROC FAR

; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE
; ADDRESS IS PASSED BY THE CALLER) AND WRITES

; AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION

AT THE TARGET ADDRESS.
TARGET EQU DWORD PTR [BP + 6]
; SET UP BP FOR PARM ADDRESSING & SAVE REGISTERS
PUSH BP
MOV BP, SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
; POINT DS/BX TO THE TARGET INSTRUCTION
LDS BX, TARGET

Figure 3-46 Breakpoint Example

3-189 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

; POINT ES TO THE SAVE AREA

MOV AX, SAVE__SEG
MOV ES, AX
 SWAP THE TARGET INSTRUCTION FOR INT 3 (0CCH)
MOV AL, 0CCH
XCHG AL, DS: [BX]
: SAVE THE TARGET INSTRUCTION
MOV ES: SAVE_INSTR, AL
: RESTORE AND RETURN
POP BX
POP AX
POP ES
POP DS
POP BP
RET 4

SET_BREAK ENDP

BREAKPOINT PROC FAR

THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT
EXECUTES THE INT 3INSTRUCTION SET BY THE
SET_BREAK PROCEDURE. THIS PROCEDURE
RESTORES THE SAVED INSTRUCTION BYTE TO ITS
ORIGINAL LOCATION AND BACKS UP THE
INSTRUCTION POINTER IMAGE ON THE STACK
SO THAT EXECUTION WILL RESUME WITH
THE RESTORED INSTRUCTION. IT THEN SETS
TF (THE TRAP FLAG) IN THE FLAG-IMAGE

; ONTHE STACK. THIS PUTS THE PROCESSOR

IN SINGLE-STEP MODE WHEN EXECUTION

[l
ll
1
1
[

RESUMES.
FLAG _IMAGE EQU WORD PTR |BP + 6]
IP__IMAGE EQU WORD PTR [BP + 2]
NEXT INSTR EQU DWORD PTR [BP +2]
; SET UP BP TO ADDRESS STACK AND SAVE REGISTERS
PUSH BP
MOV BP, SP
PUSH DS
PUSH ES
PUSH AX
PUSH BX
; POINT ES AT THE SAVE AREA
MoV AX,SAVE SEG
MoV ES. AX
 GETTHE SAVED BYTE
MOV AL, ES: SAVE INSTR

; GET THE ADDRESS OF THE TARGET + 1
; (INSTRUCTION FOLLOWING THE BREAKPOINT)
LDS BX, NEXT_INSTR

Figure 3-46 Breakpoint Example (continued)

3-190 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

DEC
MOV

MOV
; SET TF ON STACK
AND

POP
POP
POP
POP
POP
. IRET
BREAKPOINT ~ ENDP

SINGLE STEP PROC

TF ON THE STACK.
; SINGLE_STEP ENDP
BREAK ENDS
END

; BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK
; RESTORE THE SAVED INSTRUCTION

; RESTORE EVERYTHING AND EXIT

; ONCE SINGLE-STEP MODE HAS BEEN ENTERED,
; THECPU “TRAPS" TO THIS PROCEDURE
; AFTEREVERY INSTRUCTION THAT IS NOT IN
;AN INTERRUPT PROCEDURE. IN THE CASE
; OF THIS EXAMPLE, THIS PROCEDURE WILL
; BEEXECUTED IMMEDIATELY FOLLOWING THE
;o “INAL,OFFFH" INSTRUCTION (WHERE THE
; BREAKPOINT WAS SET) AND AFTER EVERY
; SUBSEQUENTINSTRUCTION. THE PROCEDURE
; COULD “TURN ITSELF OFF'' BY CLEARING

; SINGLE-STEP CODE GOES HERE.

BX
IP_IMAGE, BX

DS: [BX], AL
FLAG_IMAGE, 0100H
BX

AX

ES

DS
BP

FAR

Figure 3-46 Breakpoint Example (continued)

String Operations

Figure 3-49 illustrates typical use of string instruc-
tions and repeat prefixes. The XLAT instruction
also is demonstrated. The first example simply
moves 80 words of a string, as might be done in a
sort. Next a string is scanned from right to left (the
index register is auto-decremented) to find the last
period (“’) in the string. Finally a byte string of
EBCDIC characters is translated to ASCIL. The
translation is stopped at the end of the string or

when a carriage return character is encountered,
whichever occurs first. This is an example of using
the string primitives in combination with other in-
structions to build up more complex string process-
ing operations.

3.9 80186,188 Programming Examples
Figures 3-50 through 3-53 provide code examples

for DMA, timer, interrupt controller and system
initialization.

3-191 210911

e e e e e o

i
1
|
:
g
]

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

' 5V
K610 gty © =] R
coLp START—| l — RAM
- POWER DOWN
T CIRCUITS £
RESET MPRO DECODER
PF1
? PFSR
(PULSE) PFS
v 1
NMI E0 E2
INTR IR3 CTR1
8086/8085 8259A 8253 PORTS
ADDRESS BUS [L Ll L <
[[[[1
DATA BU — ™ — I »
CONTROL BUS . | l 3
cs cs
DECODER »>| EPROM DECODER > RAM
' Figure 3-47 Interrupt Example Block Diagram
INT__POINTERS) SEGMENT
; INTERRUPT POINTER TABLE, LOCATE AT 0H, ROM-BASED |
TYPE_O0 DD ? ; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE.
TYPE_1 DD ? ; SINGLE-STEP NOT SUPPLIED IN EXAMPLE.
TYPE_.2 DD POWER__FAIL ; NON-MASKABLE INTERRUPT
TYPE_3 DD ? ; BREAKPOINT NOT SUPPLIED IN EXAMPLE. ,
TYPE_ 4 DD ? ; OVERFLOW NOT SUPPLIED IN EXAMPLE.
; SKIP RESERVED PART OF EXAMPLE
ORG 32*4
TYPE__32 DD ? ; 8259A IR0 - AVAILABLE
TYPE_33 DD ? ; 8259A IR1 - AVAILABLE
TYPE__34 DD ? ; 8259A IR2 - AVAILABLE
TYPE__35 DD TIMER__PULSE ; 8259A IR3
TYPE__36 DD ? ; 8259A IR4 - AVAILABLE
TYPE_37 DD ? ; 8259A IR5 - AVAILABLE
TYPE__38 DD ? ; 8259A IR6 - AVAILABLE
DD ? ; 8259A IR7 - AVAILABLE

TYPE__39

; POINTER FOR TYPE 40 SUPPLIED BY PL/M-86 COMPILER

INT_POINTERS

ENDS

Figure 3-48 8086,88 Interrupt Procedures Example

3-192

210911

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

BATTERY SEGMENT
; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA
; THAT MUST BE MAINTAINED DURING POWER OUTAGES.

STACK__PTR DW ? ; SP SAVE AREA
STACK__SEG DW ? ; SS SAVE AREA
; SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE.
BATTERY ENDS
DATA SEGMENT
; RAM SEGMENT THAT IS NOT BACKED UP BY BATTERY
N_PULSES DB 1 DUP (0) ; # TIMER PULSES
, ETC.
DATA ENDS
STACK SEGMENT
; LOCATED IN BATTERY-POWERED RAM
DW 100 DUP (?) ; THISIS AN ARBITRARY STACKSIZE
STACK__TOP LABEL WORD ; LABEL THE INITIAL TOS
STACK ENDS
INTERRUPT__HANDLERS SEGMENT

; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PL/M-86)
ASSUME: CS:INTERRUPT_HANDLERS,DS:DATA,SS:STACK,ES:BATTERY

POWER__FAIL PROC ; TYPE 2INTERRUPT
, POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS

; ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN
; RAM(ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SO THAT IT

; CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS

;IP,CS, AND FLAGS ARE ALREADY ON THE STACK.
; SAVETHE OTHER REGISTERS.

PUSH AX
PUSH BX
PUSH CX
PUSH DX
PUSH Sl
PUSH Di
PUSH BP
PUSH DS
PUSH ES

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK AT THIS

; POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE “BATTERY"”

; SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER
; ISLOST.

; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE.

MOV AX,BATTERY
MOV ES,AX
MOV ES:STACK__PTR,SP
MOV ES:STACK_SEG,SS
; STOP GRACEFULLY
HLT
POWER__FAIL ENDP

Figure 3-48 8086,88 Interrupt Procedures Example (continued)

3-193 210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

TIMER_PULSE PROC) ; TYPE 35 INTERRUPT

; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253.
ITCOUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT

; PROCEDURE ONCE PER SECOND.

; DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT

;THE 8253 1S RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT
REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE.

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI).

INC N_PULSES

; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING
STI
CMP N_PULSES,200 ;1 SECOND PASSED?
JBE DONE ;NO,GOON.
Mov N_PULSES,0 ; YES, RESET COUNT.
INT 40 ; UPDATE CLOCK

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL
; ORLOWERPRIORITY INTERRUPTS.

DONE: MOV AL,020H ; EOl COMMAND
ouT 0COH,AL ; 8259A PORT
IRET

TIMER_PULSE ENDP

INTERRUPT_HANDLERS ENDS

CODE SEGMENT

; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM.

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING

INIT PROC NEAR i

; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE

; THE 8253 AND THE 8259A. THIS ROUTINE DOES NOT USE STACK, DATA, OR

; EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START.
; INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET.

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED.
; CLKINPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ.

LO50MS EQU 000H ; COUNTVALUEIS
HI50MS EQU OFOH ;61440 DECIMAL.
CONTROL EQU 0D6H ; CONTROL PORT ADDRESS
COUNT_1 EQU 0D2H ; COUNTER 1 ADDRESS
MODE2 EQU 011101008 ; MODE 2, BINARY

MOV DX,CONTROL ; LOAD CONTROL BYTE

MoV AL,MODE2

ouT DX,AL

MOV DX,COUNT__1 ; LOAD 50MS DOWNCOUNT

MOV AL,LO50MS

ouT DX,AL

MoV AL,HI50MS

ouT DX,AL

; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED.

Figure 3-48 8086,88 Interrupt Procedures Example (continued)

3-194 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

; INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED,

; INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT
REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT.

; MASK OFF UNUSED INTERRUPT REQUEST LINES.

ICWA EQU 000100118 ; EDGE-TRIGGERED, SINGLE 8259A, ICW4 REQUIRED.
IcW2 EQU 001000008 ; TYPE 20H, 32 - 40D
ICW4 EQU 00000001B 18086 MODE, NORMAL EOI
ocw1 EQU 11110118 i MASK ALL BUT IR3
PORT_A EQU 0COH ;ICW1 WRITTEN HERE
PORT_B EQU 0C2H ; OTHER ICW’S WRITTEN HERE
MOV DX,PORT_A ; WRITE 18T ICW
MoV AL,ICW1
ouT DX, AL
MOV DX,PORT_B ; WRITE 2ND ICW
MOV AL ICW2
ouT DX,AL
MOV AL,ICW4 ; WRITE 4TH ICW
out DX,AL
MOV AL,0CWA i MASK UNUSED IR'S
ouTt DX, AL
 INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED
RET
INIT ENDP
USER_PGM:

; “REAL” CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP
UNTIL AN INTERRUPT OCCURS.
JMP USER_PGM

; EXECUTION STARTS HERE WHEN CPU IS RESET.

POWER__FAIL__STATUS EQU OEOH ; PORT ADDRESS
ENABLE_RAM EQU O0E2H ; PORT ADDRESS
; ENABLE BATTERY-POWERED RAM SEGMENT
START: MOV AL,001H
ouT ENABLE__RAM, AL
; DETERMINE WARM OR COLD START
IN AL,POWER__FAIL__STATUS
RCR AL ; ISOLATE LOW BIT
JC WARM__START

COLD_START:

; INITIALIZE SEGMENT REGISTERS AND STACK POINTER.
ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING
; RESET TAKES CARE OF CS AND IP.

MOV AX,DATA
MOV DS,AX
MOV AX,STACK
MOV SS,AX

MOV SP,OFFSET STACK__TOP

; INITIALIZE 8253 AND 8259A.
CALL INIT

; ENABLE INTERRUPTS
STI

Figure 3-48 8086,88 Interrupt Procedures Example (continued)

3-195 210911

1

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS.

; START MAIN PROCESSING

JMP USER_PGM
WARM__START: i
; INITIALIZE 8253 AND 8259A.

CALL INIT

; RESTORE SYSTEM TO STATE AT THE TIME POWER FAILED
; MAKE BATTERY SEGMENT ADDRESSABLE
. MOV AX,BATTERY
MOV DX,AX
; VARIABLES SAVED IN THE “'BATTERY" SEGMENT WOULD BE MOVED
; BACKTO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND
“*ASSUME" DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN
ADDRESSABILITY.

; RESTORE THE OLD STACK
MOV SS,DS:STACK__SEG
MOV SP,DS:STACK_PTR

; RESTORE THE OTHER REGISTERS

POP ES
POP DS
POP BP
POP D
POP Sl
POP DX
POP CX
POP BX
POP AX

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED.
; LE.,POPCS,IP,&FLAGS, EFFECTIVELY “RETURNING"' FROM THE
; NMIPROCEDURE.
IRET
CODE ENDS

; TERMINATE ASSEMBLY AND MARK BEGINNING OF THE PROGRAM.
END START

TYPE$40: DO;
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC;
UPDATES$TOD: PROCEDURE INTERRUPT 40;

/*THE PROCESSOR ACTIVATES THIS PROCEDURE
*TO HANDLE THE SOFTWARE INTERRUPT
*GENERATED EVERY SECOND BY THE TYPE 35
*EXTERNAL INTERRUPT PROCEDURE. THIS
*PROCEDURE UPDATES A REAL-TIME CLOCK.
*IT DOES NOT PRETEND TO BE “‘REALISTIC”

AS THERE IS NO WAY TO SET THE CLOCK./

SEC=SEC + 1;
IF SEC = 60 THEN DO;
SEC=0;
MIN = MIN + 1;
IF MIN =60 THEN DO;
MIN = 0;
HOUR = HOUR + 1;
IF HOUR = 24 THEN DO;
HOUR =0;
END;
END;
END;
END UPDATES$TOD;
END;

Figure 3-48 8086,88 Interrupt Procedures Example (continued)

3-196 210911

THEIAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ALPHA SEGMENT
; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE
OUTPUT DW 100 DUP (?)
INPUT DW 100 DUP (?)
NAME__1 DB ‘JONES, JONA’
NAME__2 DB ‘JONES, JOHN’
SENTENCE DB 80 DUP (?)
EBCDIC_CHARS DB 80 DUP (?)
ASCII_CHARS DB80 DUP (?)
CONV_TAB DB 64 DUP(0H) ; EBCDIC TO ASCII
; ASCIINULLS ARE SUBSTITUTED FOR “UNPRINTABLE’’ CHARS
DB1 20H
DB9 DUP (0H)
DB7 ‘e, 4, <L, 4, O, &
DB9 DUP (0H)
DB8 T e L T A
DB8 DUP (0H)
DB6 %, > Y
DB9 DUP (0H)
DB17 ‘ ,9 ‘:’1 ‘#'7 ‘@’Y“”) ‘=,I"’ ,Y
OH, ‘a’, ‘b’, ‘¢c’, ‘d’, ‘e’, ‘f’, ‘g@’, ‘h’, ¥’
DB7 DUP (0H)
DB9 9k, P, 'mY e’ o, e, g, T
DB7 DUP (0H)
DB9 - G T R A T A 4
DB 22 DUP (OH)
DB 10 COUAN, B C, D B R G CHYL P
DB6 DUP (0H)
DB 10 C0NdN KLY, MY NS O, (P, Q7 (RS
DB6 DUP (0H)
DB 10 ¢ U0H, S, T U, VY WX Y 2
DB6 DUP (0H)
DB 10 ‘0,17, 2', ‘3, ‘4", ‘5’, ‘6", ‘7", ‘8, ‘9’
DB6 DUP (0H)
ALPHA ENDS
STACK SEGMENT
DW 100 DUP (?) ; THIS IS AN ARBITRARY STACK SIZE
; FORILLUSTRATION ONLY.
STACK_BASE ILABEL WORD ; INITIALTOS
STACK ENDS
CODE SEGMENT
BEGIN: ; SET UP SEGMENT REGISTERS. NOTICE THAT

; ES& DS POINT TO THE SAME SEGMENT, MEANING
; THAT THE CURRENT EXTRA & DATA

; SEGMENTS FULLY OVERLAP. THIS ALLOWS

; ANY STRING IN “ALPHA” TO BE USED

; AS ASOURCE OR A DESTINATION.

Figure 3-49 String Examples

3-197 210911

s 2 S B

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

ASSUME CS: CODE, SS: STACK,

& DS: ALPHA, ES: ALPHA
MOV AX, STACK
MOV S§, AX
MOV SP, OFFSET STACK__BASE; INITIAL TOS
MOV AX, ALPHA
MOV DS, AX
MOV ES, AX

; MOVE THE FIRST 80 WORDS OF ““INPUT”’ TO
; THE LAST 80 WORDS OF “‘OUTPUT”.

LEA SI, INPUT ; INITIALIZE

LEA DI, OUTPUT +20 ; INDEX REGISTERS

MOV CX, 80 ; REPETITION COUN |
CLD ; AUTO-INCREMENT

REP MOVS OUTPUT, INPUT
; FIND THE ALPHABETICALLY LOWER OF 2 NAMES.

MOV SI, OFFSET NAME__1 ; ALTERNATIVE
MOV DI, OFFSETNAME__2 ; TOLEA
MOV CX, SIZENAME__2 ; CHAR. COUNT
CLD ; AUTO-INCREMENT
REPE CMPS NAME__2, NAME_1 ““WHILE EQUAL”
JB NAME_2_ LOW
NAME_1__LOW: ; NOT IN THIS EXAMPLE
NAME__2_ LOW: ; CONTROL COMES HERE IN THIS EXAMPLE.

; DIPOINTS TO BYTE (‘H’) THAT
; COMPARED UNEQUAL.

; FIND THE LAST PERIOD (“.”) IN A TEXT STRING.

MOV DI, OFFSET SENTENCE +
& LENGTH SENTENCE ; START ATEND

MOV CX, SIZE SENTENCE

STD ; AUTO-DECREMENT

MOV AL, ‘. ; SEARCH ARGUMENT

REPNE SCAS SENTENCE ; “WHILE NOT ="

JCXZ NO__PERIOD ; IFCX=0, NO PERIOD FOUND
PERIOD: ; IF CONTROL COMES HERE THEN

; DIPOINTS TO LAST PERIOD IN SENTENCE.
NO__PERIOD: ; ETC.

; TRANSLATE A STRING OF EBCDIC CHARACTERS
; TO ASCIl, STOPPING IF A CARRIAGE RETURN
; (ODH ASCII) IS ENCOUNTERED.

MOV BX, OFFSET CONV__TAB ; POINT TO TRANSLATE TABLE
MOV S|, OFFSET EBCDIC_CHARS ; INITIALIZE
MOV DI, OFFSET ASCII_CHARS ; INDEX REGISTERS
MOV CX, SIZE ASCII_CHARS ; AND COUNTER
CLD , ; AUTO-INCREMENT

NEXT: LODS EBCDIC_CHARS y NEXT EBCDIC CHARIN AL
XLAT CONV__TAB ; TRANSLATE TO ASCII
STOS ASCII_CHARS ; STORE FROM AL
TEST AL, 0DH ; IS IT CARRIAGE RETURN?
LOOPNE NEXT ; NO, CONTINUE WHILE CX NOT 0

Figure 3-49 String Examples (continued)

3-198

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

JE

3

CR_FOUND
; CONTROL COMES HERE IF ALL CHARACTERS
HAVE BEEN TRANSLATED BUT NO
CARRIAGE RETURN IS PRESENT.

; YES, JUMP

; ETC.
CR__FOUND:
: DI-1 POINTS TO THE CARRIAGE RETURN
;. INASCII_CHARS.
CODE ENDS
END
Figure 3-49 String Examples (continued)
$mod186
name assembly_example_80186_DMA_support

’

; Thisfile contains an example procedure which initializes the 80186 DMA controller to perform the DMA
; transfers between the 80186 system and the 8272 Floppy Disk Controller (FDC). It assumes that
; the 80186 peripheral control block has not been moved from its reset location.

arg1

arg2

arg3

DMA_FROM_LOWER
DMA_FROM_UPPER
DMA_TO_LOWER
DMA_TO_UPPER
DMA_COUNT
DMA_CONTROL
DMA_TO_DISK_CONTROL

DMA_FROM_DISK_CONTROL

FDC_DMA
FDC_DATA
FDC_STATUS

cgroup
code

equ word ptr [BP + 4]
equ word ptr [BP + 6]
equ word ptr [BP + 8]
equ OFFCOh

equ OFFC2h

equ OFFC4h

equ OFFC6h

equ OFFC8h

equ OFFCAh

equ 01486h

equ 0A046h

equ 6B8h

equ 688h

equ 680h

group code

segment

public set_dma_
assume cs:cgroup

DMA register locations

destination synchronization
; source to memory, incremented
destination to 1/0

no terminal count

byte transfers

source synchronization
source to I/0

destination to memory, incr
no terminal count

byte transfers

FDC DMA address

FDC data register

FDC status register

public ‘code’

Figure 3-50 80186 DMA Initialization Example

3-199

210911

THE iAPX 86,88.AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

set_dma (offset, to) programs the DMA channel to point one side to the disk DMA address, and the other
to memory pointed to by ds:offset. If ‘to’ = O then will be a transfer from disk to memory; if ‘to’ = 1

then will be a transfer from me

;
set_dma_ proc
enter

push
push
push

test

jz

; performing a transfer from memory to t
mov
rol

mov
mov
out

and

add
mov
out
jnc
inc
mov
mov
out

no_carry_from:
mev
mov
out
xor
mov
out
mov
mov
out
pop
pop
pop
leave

' ret
from_disk:

mory to disk. The parameters to the routine are passed on the stack.

near

0,0 ; set stack addressability

AX ; saveregisters used

BX

DX

arg2,1 ; check to see direction of
; transfer

from_disk

he disk controller

AX,DS ; getthe segment value
AX,4 ; gen the upper 4 bits of the

; physical address in the lower 4

; bits of the register
BX, AX ; savetheresult. ..
DX,DMA_FROM_UPPER ; prgm the upper 4 bits of the
DX,AX ; DMA source register
AX,0FFFOh ; form the lower 16 bits of the

; physical address
AX,argl ; add the offset
DX,DMA_FROM_LOWER ; prgm the lower 16 bits of the
DX,AX ; DMA source register
no_carry_from ; check for carry out of addition
BX ; if carry out, then need to adj
AX,BX ; the upper 4 bits of the pointer
DX,DMA_FROM_UPPER
DX,AX
AX,FDC_DMA ; prgm the lower 16 bits of the DMA
DX,DMA_TO_LOWER ; destination register
DX,AX
AX,AX , zero the upper 4 bits of the DMA
DX,DMA_TO_UPPER ; destination register
DX,AX .
AX,DMA_TO_DISK_CONTROL ; prgm the DMA cti reg
DX,DMA_CONTROL ; note: DMA may begin immediately
DX,AX ; after this word is output
DX
BX
AX

; performing a transfer from the disk to memory

H
mov
rol
mov
out
mov
and
add
mov

AX,DS

AX,4
DX,DMA_TO_UPPER
DX,AX

BX,AX

AX,0FFFOh

AX,argl
DX,DMA_TO_LOWER

Figure 3-50 80186 DMA Initialization Example (continued)

3-200 210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

out DX,AX
jnc no_carry_to
inc BX
mov AX,BX
mov DX,DMA_TO_UPPER
out DX,AX
no_carry_to:
mov AX,FDC_DMA
mov DX,DMA_FROM_LOWER
out DX,AX
xor AX,AX
mov DX,DMA_FROM_UPPER
out DX,AX
mov AX,DMA_FROM_DISK_CONTROL
mov DX,DMA_CONTROL
out DX,AX
pop DX
pop BX
pop AX
leave
ret
set_dma_ endp
code ends
end
Figure 3-50 80186 DMA Initialization Example (continued)
$mod186
example_80186_timer_code

name

This file contains example 80186 timer routines. The first routine sets up the timer and interrupt

interrupt to implement a real time clock. Timer 2 is used in this example because no inputor
output signals are required. The code example assumes that the peripheral control block has not

; controller to cause the timer to generate an interrupt every 10 milliseconds, and to service the

been moved from its reset location (FFOO-FFFF in I/0O space).

argi

arg2

arg3

timer2_int
timer 2_control
timer 2_max_ctl
timer_int_ctl
eoi_register
interrupt_stat

data

msec_
hour_
minute_
second_
data

cgroup
dgroup

equ word ptr [BP + 4]

equ word ptr [BP + 6]

equ word ptr [BP + 8]

equ 19 ; timer 2 has vector type 19
equ OFF66h

equ OFF62h

equ OFF32h ; interrupt controller regs
equ OFF22h

equ OFF30h

segment public ‘data’
public hour_,minute_,second_,msec_

db ?

db ?

db ?

db ?

ends

group code

group data

Figure 3-51 80186 Timer Interface Code Example

3-201

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

code

segment
public set_time_
assume cs:code,ds:dgroup

public ‘code’

every 10 milliseconds, and programs the interrupt vector for timer2

; set_time (hour, minute, second) sets the time variables, initializes the 80186 timer2 to provide interrupts

set_time_

controller

set_time_

timer2_interrupt_routine

proc near
.enter 0,0
push AX
push DX
push SI
push DS
xor AX,AX
mov DS,AX

mov Sl,4*timer2_int

set stack addressability
save registers used

set the interrupt vector

the timers have unique
interrupt

vectors even though they share
the same control register

mov DS:[Sl],offset timer2_interrupt_routine

inc Sl

inc Sl

mov DS:[SI],CS
pop DS

mov AX,arg1
mov hour_,AL
mov AX,arg2
mov minute_,AL
mov AX,arg3
mov second_,AL

"mov msec_0

mov DX,timer2_max_ctl
mov AX,20000

out DX,AX

mov DX,timer2_control

mov . AX,1110000000000001b
out DX,AX

mov DX,timer_int_ctl

mov AX,0000b

out DX,AX
sti
pop SI
pop DX
pop AX
leave
ret
endp

proc
push AX
push DX

set the time values

set the max count value
10 ms/ 500 ns (timer 2 counts
at s the CPU clock rate)

set the control word
enable counting
generate interruptson TC
continuous counting

setup the interrupt

unmask interrupts
highest priority interrupt

enable processor interrupts

far

lfigure 3-51 Timer Interface Code Example (continued)

3-202

210911

THEiAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

bump_second:

bump_minute:

set_baud_

bump_hour:

reset_hour:

reset_int_ctl:

timer2_interrupt_routine
code

$mod186
name

cmp
jae
inc
imp

mov
cmp
jae
inc
imp

mov
cmp

proc
push
push

mov
mov
out

mov
mov

jae
inc
jmp

mov
cmp
jae
inc
jmp

mov

mov
mov
out

pop
pop
iret

ends
end

msec_,99
bump_second
msec_
reset_int_ctl
msec_,0
second_,59
bump_minute
second_
reset_int_ctl
second_,0
minute_,59
near

AX

DX

DX,timer1_max_cnt
AX,13

DX,AX

DX,timer1_control
AX,1100000000000001b

bump_hour
minute
reset_int_ctl

minute_,0
hour_,12
reset_hour
hour_
reset_int_ctl

hour_,1
DX,eoi_register
AX,8000h
DX,AX

DX
AX

endp

example_80186_baud_code

see if one second has passed
ifabove orequal. ..

reset millisecond
see if one minute has passed

see if one hour has passed
single max count register

save registers used

set the max count value
500ns * 13 = 6.5 usec

set the control word
enable counting

nointerrupton TC
continuous counting

see if 12 hours have passed

non-specific end of interrupt

This file contains example 80186 timer routines. The second routine sets up the timer as a baud rate
generator. In this mode, Timer 1 is used to continually output pulses with a period of 6.5 usec for

required for 9600 baud is 6.51 usec). This assumes that the 80186 is running at 8MHz. The code
example also assumes that the peripheral control block has not been moved from its reset location

; use with a serial controller at 9600 baud programmed in divide by 16 mode (the actual period

(FFOO-FFFF in 1/0 space).

timer1_control
timer1_max_cnt

code

equ OFF5Eh
equ OFF5Ah
segment

assume cs:code

’

public ‘code’

Figure 3-51 80186 Timer Interface Code Example (continued)

3-203

210911

k
b
1
A

THE iAPX 86,88 AND iAPX 1 86,188 ARCHITECTURE AND INSTRUCTIONS

set_baud () initializes the 80186 timert as a baud rate generator for a serial port running at 9600 baud.

’

set_baud_
code

$mod186
name

This file contains example 80186 timer routines. The third routine sets up the timer as an external event

out DX,AX

pop DX
pop AX
ret

endp
ends

end

example_80186_count_code

counter. In this mode, Timer1 is used to count transitions on its input pin. After the timer has been

register at location FF58H in I/0 space. The timer will count a maximum of 65535 timer events

before wrapping around to zero. This code example also assumes that the peripheral control block
has not been moved from its reset location (FFOO-FFFF in 1/0 space).

; set up by the routine, the number of events counted can be directly read from the timer count

timer1_control
timer1_max_cnt
timer1_cnt_reg

code

equ OFF5Eh
equ OFF5Ah
equ OFF58H

segment
assume cs:code

; set_count () initializes the 80186 timer1 as an event counter

)
set_count_

timer

set_count_
code

proc near
push AX
push DX

mov DX,timer1_max_cnt
mov AX,0

out DX,AX
mov DX,timer1_control
mov AX,1100000000000101b

out DX,AX

xor AX,AX

mov DX.,timer1_cnt_reg
out DX,AX

pop DX

pop AX

ret

endp

ends

end

public ‘code’

save registers used

set the max count value
allows the timer to count
all the way to FFFFH

set the control word
enable counting

no interrupton TC
continuous counting
single max count register
external clocking

zero AX
and zero the count in the

count register

3-204

Figure 3-51 Timer Interface Code Example (continued)

210911

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

$mod186
name example_80186_interrupt_code

; This routine configures the 80186 interrupt controller to provide two cascaded interrupt inputs (through an

H external 8259A interrupt controller on pins INTO/INT2) and two direct interrupt inputs (on pins INT1

; and INT3). The default priority levels are used. Because of this, the priority level programmed into the
; control register is set the 111, the level all interrupts are programmed to at reset.

into_control equ OFF38H

int_mask equ OFF28H
code segment public ‘code’
assume CS:code
set_int_ proc near
push DX
push AX
mov AX,0100111B ; cascade mode
; interrupt unmasked
mov DX,int0_control
out DX,AX
mov AX,01001101B ; now unmask the other external
; interrupts
mov DX,int_mask
out DX,AX
pop AX
pop DX
ret
set_int_ endp
code ends
end
$mod186
name example_80186_interrupt_code

any of the 80186 integrated peripheral control registers, nor does it initialize the exterrial 8269A

;. This routine configures the 80186 interrupt controller into iRMX 86 mode. This code does not initialize
: or 80130 interrupt controller.

relocation_reg equ OFFFEH
code segment public ‘code’
assume CS:code
set_rmx_ proc near
push DX
push AX
mov DX,relocation_reg
in AX,DX ; read old contents of register
or AX,01000000000000008B ; set the RMX mode bit
pop AX
pop DX
ret
set_rmx_ endp
code ends
end

Figure 3-52 80186 Interrupt Controller Interface Code Example

3-205 210911

’x
«
i

i
i
1
|
'1

THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS

name / example_80186_system_init

This file contains a system initialization routine for the 8086 or the 80186. The code determines whether
itisrunningon an 80186 or an 8086, and if itis running on an 801886, it initializes the integrated

chip select registers.
estart segment . at OFFFFh

3
,
’
h
’
r

; This is the processor reset address at OFFFFOH

org 0
jmp far ptrinitialize

restart ends
extrn monitor:far

init_hw segment at OFFFOh
assume CS:init_hw

; This segment initializes the chip selects. It must be located in the top 1K to insure that the ROM remains
H selected in the 80186 system until the proper size of the select area can be programmed.

UMCS _reg equ OFFAOH ; chip select register locations
LMCS_reg equ OFFA2H
PACS_reg equ OFFA4H
MPCS_reg equ OFFA8H
UMCS_value equ OF800H ; 64K, no wait states
LMCS_value equ 07F8H ; 32K, no wait states
PACS_value equ 72H ; peripheral base at 400H, 2 ws
MPCS_value equ OBAH ; PCS5 and 6 supplies,
; peripheralsin I/0 space

initialize proc far

mov AX,2 ; determine if thisis an

mov CL,33 ; 8086 or an 80186 (checks

shr AX,CL ; to see if the multiple bit

test AX,1 ; shift value was ANDed)

jz not_80186 .

mov DX,UMCS_reg
mov AX,UMCS_value
out DX,AX

program the UMCS register

mov DX,LMCS_reg
mov AX,LMCS_value
out DX,AX

mov DX,PACS_reg

program the LMCS register

set up the peripheral chip
selects (note the mid-range
memory chip selects are not
needed in this system, and
are thus not initialized

mov AX,PACS_value
out DX,AX

mov DX,MPCS_reg
mov AX,MPCS_value
out DX,AX

; Now that the chip selects are all set up, the main program of the combmer may be executed.

not_80186:

jmp far ptr monitor
initialize endp
init_hw ends

end

Fighre 3-53 80186/8086 System Initialiiation Code Example
3-206 210911

IAPX 86,88 Hardware
Design Overview

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

CHAPTER 4
iAPX 86,88 HARDWARE DESIGN OVERVIEW

4.1 INTRODUCTION

This chapter is a discussion of the hardware design
of the iAPX 86,88 (8086, 8088) on the functional
level. Electrical characteristics and other hardware
references are discussed in Volume 2 of this set. Ap-
plication Notes AP-67, “8086 System Design,” and
AP-51, “Designing 8086, 8088, 8089 Multiprocess-
ing Systems with the 8289 Bus Arbiter,” also in
Volume 2, contain additional design information.

This chapter includes the following topics:
® Multiprocessing Features
® Bus Organization
® Processor Control

® Interfacing with Processor Extensions

4.2 MULTIPROCESSING FEATURES

The 8086 and 8088 are designed for the multipro-
cessing environment. Multiprocessing means using
two or more coordinated processors in a system.
These CPUs have built-in features that help solve
the coordination problems that have made the devel-
opment of multiprocessing systems difficult in the
past.

Multiprocessing has become increasingly attractive
as microprocessor prices have declined. Performance
can be substantially improved by distributing system
tasks among separate, concurrently executing
processors. In addition, multiprocessing encourages
a modular approach to design, usually resulting in
systems that are more easily maintained and
enhanced.

The example in Figure 4-1 shows a multiprocessor
system in which I/O activities have been delegated
to an 8089 IOP. (The 8089 IOP is described in Chap-
ter 7 of this volume.) Should an I/O device in the
system be changed (e.g., a hard disk substituted for
a floppy), the impact of the modification is confined
to the I/0 subsystem and is transparent to the CPU
and to the application software.

In general, using multiple processors offers several
significant advantages over the centralized approach
that relies on a single CPU and extremely fast
memory:

1) System tasks may be allocated to special-purpose
processors whose designs are optimized to perform
specific (or classes of) tasks simply and efficiently;

2) Very high levels of performance can be attained
when processors can execute simultaneously
(parallel/distributed processing);

MEMORY

APPLICATION
PROGRAMS

DATA

A

CPU

|
l |
| |
| l
| |
8086 l
l sooga h
I SYSTEM BUS I
| I
| |
| l

8089
0P

L __ __ _Mansystem |

MEMORY

1/0 PROGRAMS

1/0 BUFFERS

LOCAL *

1/0 BUS

1/0
DEVICES

1/0 SUBSYSTEM

Figure 4-1 Multiprocessing System

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

3) Partitioning of the system promotes parallel de-
velopment of subsystems, breaks the application
into smaller, more manageable tasks, and helps iso-
late the effects of system modifications.

The 8086,88 architecture supports two types of
processors: independent processors and processor
extensions. An independent processor executes its
own instruction stream. The 8086, the 8088 and the
8089 IOP are examples of independent processors.
The 8086,88 typically execute a program in response
to an interrupt. The IOP starts its channels in re-
sponse to an interrupt-like signal called a channel
attention; this signal is usually issued by a CPU.

The CPUs also support a second type of processor,
called a processor extension, such as the 8087 NPX.
(The 8087 NPX is described in Chapter 6 of this
volume.) Processor extension “hooks” have been
designed into the 8086,88 to allow this type of
processor to be accommodated. The processor
extension adds additional register, data type, and in-
struction resources directly to the system. A proces-
sor extension, in effect, extends the instruction set
(and architecture) of its host processor.

This solves two classic multiprocessing coordination
problems: bus arbitration and mutual exclusion. Bus
arbitration may be performed by the bus
request/grant logic contained in each of the proces-
sors (local bus arbitration), by 8289 bus arbiters
(system bus arbitration), or by a combination of the
two when processors have access to multiple shared
buses. In all cases, the arbitration mechanism oper-
ates invisibly to software.

For mutual exclusion, each processor has a LOCK
signal (bus lock) which a program may activate to
prevent other processors from obtaining a shared
system bus. The IOP may lock the bus during a
DMA transfer to ensure both that the transfer com-
pletes in the shortest possible time and that another
processor does not access the target of the transfer
(e.g., a buffer) while it is being updated. Each of the
processors has an instruction that examines and up-
dates a memory byte with the bus locked. This in-
struction can be used to implement a semaphore
mechanism for controlling the access of multiple pro-
cessors to shared resources.

Bus Organization

The 8086,88 bus structure can be divided into a local
or Resident Bus, and a system bus. The major dis-
tinction between the two is that the local or Resident
Bus has one master, while the system bus can have
several masters (multi-master system bus). The
8289 bus arbiter (described later in this chapter), in-
terfaces the processors to the Resident Bus and the
multi-master system bus.

4-2

LOCAL OR RESIDENT BUS

" The local bus is optimized:for use by the 8086,88

CPUs. Since standard memory and 1/0 components
are not attached to the local bus, information can be
multiplexed and encoded to make efficient use of
processor pins. This allows several pins to be dedicat-
ed to coordinating the activity of multiple processors
sharing the local bus. Both independent processors
and processor extensions may share a local bus; on-
chip arbitration logic determines which processor
drives the bus. Because the processors on the local
bus share the same bus interface components, the
local configuration of multiple processors provides a
compact and inexpensive multiprocessing system.

SYSTEM BUS

A system bus carries several signals designed to
meet the needs of memory and I/0 devices:

® Address bus

® Data bus

® Control lines

® Interrupt lines

® Arbitration lines

The system bus design is modular and subsets may
be implemented according to the needs of the
application. For example, the arbitration lines are
not needed in single-processor systems or in
multiple-processor systems that perform arbitration
at the local-bus level.

A group of bus interface components transforms the
signals of a local bus into a system bus. The number
of bus interface components required to generate a
system bus depends on the size and complexity of
the system. Three main variables determine the con-
figuration of a bus interface group: address space
size, data bus width and arbitration needs.

The 8086,88 system bus can easily be made compati-
ble with the Multibus™ system. Multibus is a
general-purpose multiprocessing bus designed by
Intel. The Multibus has been proposed for adoption
by IEEE as the IEEE 796 standard bus. It is the stan-
dard design used in Intel’s iSBCT™ single-board mi-
crocomputer products. This compatibility gives
system designers access to a wide variety of
computer, memory, communication and other
modules that may be incorporated into products.
Many other manufacturers offer products that are
compatible with the Multibus architecture as well.
The Multibus is described in more detail later in this
chapter.

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

Bus Lock

When configured in maximum mode, the 8086 and
8088 provide the LOCK (bus lock) signal. The BIU
activates LOCK when the EU executes the one-byte
LOCK prefix instruction. The LOCK signal remains
active throughout execution of the instruction that
follows the LOCK prefix. Interrupts are not affected
by the LOCK prefix. If another processor requests
use of the bus (via the request/grant lines, which are
discussed later in this chapter), the CPU records the
request, but does not honor it until execution of the
locked instruction has been completed.

Note that the LOCK signal remains active for the du-
ration of a single instruction. If two consecutive in-
structions are each preceded by a LOCK prefix,
there will still be an unlocked period between these
instructions. In the case of a locked repeated string
instruction, LOCK does remain active for the dura-
tion of the block operation.

When the 8086 or 8088 is configured in minimum
mode, the LOCK signal is not available. The LOCK
prefix can be used, however, to delay the generation
of an HOLDA response to a HOLD request until ex-
ecution of the locked instruction is completed.

The LOCK signal provides information only. It is
the responsibility of the other processors on the
shared bus not to attempt to obtain the bus while

LOCK is active. If the system uses 8289 Bus Arbiters
to control access to the shared bus, the 8289s accept
LOCK as an input and do not relinquish the bus
while this signal is active.

LOCK may be used in multiprocessing systems to
coordinate access to a common resource, such as a
buffer or a pointer. If access to the resources is not
controlled, one processor can read an erroneous
value from the resource when another processor is
updating it (see Figure 4-2).

SHARED POINTER
BUSCYCLE IN MEMORY PROCESSOR ACTIVITIES

4C 1B

C2,59{4C 1B} ‘“A‘“UPDATES1WORD
“B’ READS PARTIALLY

C2,59]4C,18 UPDATED VALUE

3 c2,59)31,05] A" COMPLETES UPDATE

0

N -

Figure 4-2 Uncontrolled Access
to Shared Resource

Access can be controlled (see Figure 4-3) by using
the LOCK prefix in conjunction with the XCHG
(exchange register with memory) instruction. The
basis for controlling access to a given resource is a
semaphore, a software-settable flag or switch that in-
dicates whether the resource is ‘“available”
(semaphore=0) or “busy” (semaphore=1). Proce-
sors that share the bus agree by convention not to

SHARED POINTER
IN MEMORY PROCESSOR ACTIVITIES

BUSCYCLE SEMAPHORE

0 0

1 1

2 1 C2,59
3 1 C2,59
4 1

o
-

(2] (2] (9]

N N N

o o o

© © ©

7 1 C2, 59

C2, 59

©
o

&
[g]
-]

&
(o]
-
w

(2]
N
o
©

“A’’ OBTAINS EXCLUSIVE
USE

4C 1B “A” UPDATES 1 WORD

“‘B” TESTS SEMAPHORE
AND WAITS

4C,1B
‘A" COMPLETES UPDATE

*‘B” TESTS SEMAPHORE
AND WAITS

““A”” RELEASES RESOURCE

B OBTAINS
31,08 EXCLUSIVE USE

“B’’ READS
UPDATED VALUE

“B”’ RELEASES RESOURCE

Figure 4-3 Controlied Access to Shared Resource

4-3

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

use the resource unless the semaphore indicates that
it is available. They likewise agree to set the sema-
phore when they are using the resource and to clear
it when they are finished.

The XCHG instruction can obtain the current value
of the semaphore and set it to “busy” in a single
instruction. The instruction, however, requires two
bus cycles to swap 8-bit values. It is possible for
another processor to obtain thé bus between these
two cycles and to gain access to the partially-updated
semaphore. This can be prevented by preceding the
XCHG instruction with a LOCK prefix, as illustrated
in Figure 4-4. The bus lock establishes control over
access to the semaphore and thus to the shared
resource.

‘ MOV AL,1
GET SEMA-
PHORE & | WAIT: LOCK XCHG AL,
SET “BUSY SEMAPHORE
BUSY(1) ‘
SEMAPHORE
TEST AL.AL
INZ WAIT
AVAILABLE(0)

MOV SEMAPHORE,0

SET
SEMAPHORE
“AVAILABLE"”

/
‘ EXIT ,

Figure 4-4 Using XCHG and LOCK

WAIT and TEST

The 8086 and 8088 (in either maximum or minimum
mode) can be synchronized to an external event
with the WAIT (wait for TEST) instruction and the
TEST input signal. When the EU executes a WAIT
instruction, the result depends on the state of the
TEST input line. If TEST is inactive, the processor
enters an idle state and repeatedly retests the TEST
line at five-clock intervals. If TEST is active, execu-
tion continues with the instruction following the
WAIT.

Escape

The ESC (escape) instruction provides a way for
another processor to obtain an instruction and/or a
memory operand from an 8086,88 program. When
used in conjunction with WAIT and TEST, ESC can
initiate a “subroutine” that executes concurrently in
another processor (see Figure 4-5). An example of
the use of the WAIT, TEST and ESC instructions is
the application of an 8087 NPX processor extension.

Six bits in the ESC instruction may be specified by
the programmer when the instruction is written. By
monitoring the bus and control lines, another pro-
cessor (e.g., an 8087 NPX) can capture the ESC in-
struction when it is fetched by the BIU. The six bits
may then direct the external processor to perform
some predefined activity.

If an 8086 or 8088 is configured in maximum mode,
the external processor, having determined that an
ESC has been fetched, can monitor QSO and QS1
(the queue status lines) and determine when the
ESC instruction is executed. If the instruction refer-
ences memory the external processor can then moni-
tor the bus and capture the operand’s physical
address and/or operand itself.

Note that fetching an ESC instruction is not tanta-
mount to executing it. The ESC may be preceded by
a jump that causes the queue to be reinitialized. This
event also can be determined from the queue status
lines.

Request/Grant Lines

When the 8086 or 8088 is configured in maximum
mode, the HOLD and HLDA lines evolve into two
more sophisticated signals called RQ(/)GTO and
RQ(/)GTI. These are bidirectional lines that can be
used to share a local bus between an 8086 or 8088
and two other processors via a handshake sequence.

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

The request/grant sequence is a three-phase cycle:
request, grant and release. First, the processor desir-
ing the bus pulses a request/grant line. The CPU re-
turns a pulse on the same line indicating that it is
entering the “hold acknowledge” state and is relin-
quishing the bus. The BIU is logically disconnected
from the bus during this period. The EU, however,
will continue to execute instructions until an instruc-
tion requires bus access or the queue is emptied,
whichever occurs first. When the other processor
has finished with the bus, it sends a final pulse to the
8086,88 indicating that the request has ended and
that the CPU may reclaim the bus.

RQ(/)GTO has higher priority than RQ(/)GTL. If re-
quests arrive simultaneously on both lines, the grant

goes to the processor on RQ(/)GTO and RQ(/)GT1

is acknowledged after the bus has been returned to
the CPU. If, however, a request arrives on
RQ(/)GTO_while the CPU is processing a prior re-
quest on RQ(/)GTI, the second request is not

honored until the processor on RQ(/)GT1 releases
the bus.

Multibus Architecture

When the 8086 or 8088 is configured in maximum
mode, the 8288 Bus Controller outputs signals that
are electrically compatible with the Multibus
protocol. Designers of multiprocessing systems may
want to consider using the Multibus architecture in
the design of their products to reduce development
cost and time, and to obtain compatibility with the
wide variety of boards available in the iSBC product
line.

Multibus architecture provides a versatile communi-
cations channel that can be used to coordinate a
wide variety of computing modules (see Figure 4-6).
Modules in a Multibus system are designated as mas-
ters or slaves. Masters may obtain use of the bus and
initiate data transfers on it. Slaves are the objects of
data transfers only.

PROCESSOR *
TEST
CONTINUE
PROCESSOR UNTIL “B”’s
RESULT
IS NEEDED
Figure 4-5 Using ESC with WAIT and TEST
MASTER
MASTER BUS-AGCRSSIBLE MEMORY SLAVE 1/0 SLAVE
MEMORY
> > >~ > > -~ :
wl
3 2 § £ 2 | E 2 & | * o o o = 3
< 5 3 ozl 2 al « = | 2 2 of =} 3 2 a0 < 2§ 2 2
o < = o = = « S = o « = w > 3 3 w B 2 H £
ol 3} 3 z| 5 af of 2 =51 ¢l 3 of of = 3 of of =§ ¥} 9
S of 2§ © < of af zZ} © 2 3} o© g sl 2z °
© @
~ L h 4 ~ L 7 & 5 ~ ~
MULTIBUS™ INTERFACE

Figure 4-6 Muliti

bus™-Based System

4-5 210911

[
3
i
|

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

Both 8- and 16-bit masters can be intermixed in such
a system. In addition to 16 data lines, the bus design
has 20 address lines, eight multilevel interrupt lines,
and control and arbitration lines. An auxiliary power
bus also is provided to route standby power to
memories if the normal supply fails.

The Multibus architecture maintains its own clock,
independent of the clocks of the modules it links
together. This allows different speed masters to
share the bus and. allows masters to operate asyn-
chronously with respect to each other. The arbitra-
tion logic of the bus permits slow-speed masters to
compete equitably for use of the bus. Once a module
has obtained the bus, however, transfer speeds are
dependent only on the capabilities of the transmitting
and receiving modules. Finally, the Multibus stan-
dard defines the form factors and physical require-
ments of modules that communicate on this bus.
For a complete description of the Multibus architec-
ture refer to Application Note 28A, “Intel Multibus
Interfacing,” in Volume 2 of this set, and Intel Mul-
tibus Specification (Document Number 9800603).

The 8289 Bus Arbiter

Multiprocessing systems require a means of coor-
dinating the processor’s use of the shared bus. The

8289 Bus Arbiter works in conjunction with the 8288
Bus Controller to provide this control. It is compati-
ble with the Multibus architecture and can be used
in other shared-bus designs as well.

The 8289 eliminates race conditions, resolves bus
contention and matches processors operating asyn-
chronously with respect to each other. Each proces-
sor on the bus is assigned a different priority. When
simultaneous requests for the bus arrive, the 8289
resolves the contention and grants the bus to the
processor with the highest priority; three different
prioritizing techniques may be used. The 8289 Bus
Arbiter is discussed in more detail in Volume 2 of
this set.

4.3 INTERRUPT STRUCTURE

Interrupts play an important role in the control of
the CPU. In 8086,88 based systems, each interrupt is
assigned a type code that identifies it. Interrupts may
be initiated by devices external to the CPU; in
addition, they also may be triggered by software in-
terrupt instructions and, under certain conditions,
by the CPU itself (see Figure 4-7). Figure 4-8 illus-
trates the basic response of the 8086,88 to an
interrupt. The next sections elaborate on the infor-
mation presented in this drawing.

Interrupts 0-31 are reserved by Intel

J

INTR] 2504

NON-MASKABLE
INTERRUPT
REQUEST
M
{_]
| INTERRUPT
! LOGIC -
| I__+ t +___1
I
| -
R INTO pwvipe | [SINGLE-
| | mse | | wstR | | Ermor | | TS,
|
|
| S0ss/aosa ceu

—— MASKABLE
& INTERRUPT

REQUESTS

|

Figure 4-7 Interrupt Sources

4-6

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

1

COMPLETE
CURRENT
INSTRUCTION

INTERNAL'

ACKNOWLEDGE
INTERRUPT

|

READ TYPE
CODE

v

EXECUTE
NEXT
INSTRUCTION

L

PUSH FLAGS

LETTEMP=TF

CLEARIF&TF

PUSHCS & IP

CALL INTERRUPT
SERVICE ROUTINE

EXECUTE
USER INTERRUPT
PROCEDURE

POPIP&CS

1

POP FLAGS

RESUME
INTERRUPTED
PROCEDURE

Figure 4-8 Interrupt Processing Sequence

4-7

210911

THE IAPX 86,88 HARDWARE DESIGN OVERVIEW

External Interrupts

The 8086,88 CPUs have two lines that external
devices may use to signal interrupts (INTR and
NMI). The INTR (Interrupt Request) line is usually
driven by an Intel 8259A Programmable Interrupt
Controller (PIC), which in turn is connected to the
devices that need interrupt services. The 8259A is a
very flexible circuit that is controlled by software
commands from the 8086,88 (the PIC appears as a
set of I/0 ports to the software). Its main job is to
accept interrupt requests from the devices attached
to it, determine which requesting device has the
highest priority, and then activate the 8086,88 INTR
line if the selected device has higher priority than the
device currently being serviced (if there is one).

When INTR is active, the CPU takes different action
depending on the state of the interrupt-enable flag
(IF). No action takes place, however, until the
currently-executing instruction has been completed.
Then, if IF is clear (meaning that interrupts signaled
on INTR are masked or disabled), the CPU ignores
the interrupt request and processes the-next
instruction. The INTR signal is not latched by the
CPU, so it must be held active until response is re-
ceived or the request is withdrawn. If interrupts on
INTR are enabled (if IF is set), then the CPU recog-
nizes the interrupt request and processes it. Interrupt
requests arriving on INTR can be enabled by execut-
ing an STI (set interrupt-enable flag) instruction.
They also may be selectively masked (some types
enabled, some disabled) by writing commands to
the 8259A. It should be noted that in order to reduce
the likelihood of excessive stack buildup, the STI
and IRET instructions will, reenable interrupts only
after the end of the following instruction. (The IRET
instruction reenables interrupts only if they were
enabled prior to the execution.of the interrupt
procedure.)

There are a few cases in which an interrupt request is
not recognized until after the following instruction.
Repeat, LOCK and segment override prefixes are
considered “part of” the instructions they prefix; no
interrupt is recognized between execution of a prefix
and an instruction. A MOV (move) to segment
register instruction and a POP segment register in-
struction are treated similarly: no interrupt is recog-
nized until after the following instruction. This
mechanism protects a program that is changing to a
new stack (by updating SS and SP). If an interrupt
were recognized after SS had been changed, but
before SP had been altered, the processor would
push the flags, CS and IP into the wrong area of
memory. It follows from this that whenever a seg-
ment register and another value must be updated

4-8

together, the segment register should be changed
first, followed immediately by the instruction that
changes the other value.

In two cases, WAIT and repeated string instructions,
an interrupt request is recognized in the middle of
an instruction. In these cases, interrupts are accepted
after any completed primitive operation or wait test
cycle.

The CPU acknowledges the interrupt request by ex-
ecuting two consecutive interrupt acknowledge
(INTA) bus cycles. If a bus hold request arrives (via
the HOLD or request/grant lines) during the INTA
cycles, it is not honored until the cycles have been
completed. In addition, if the CPU is configured in
maximum mode, it activates the LOCK signal
during these cycles to indicate to other processors
that they should not attempt to obtain the bus. The
first cycle signals the 8259A that the request has
been honored. During the second INTA cycle, the
8259A responds by placing a byte on the data bus
that contains the interrupt type (0-255) associated
with the device requesting service. (The type assign-
ment is made when the 8259A is initialized by soft-
ware in the 8086,88.) The CPU reads this type code
and uses it to call the corresponding interrupt
procedure.

An external interrupt request also may arrive on
another CPU line, NMI (non-maskable interrupt).
This line is edge-triggered (INTR is level triggered)
and is generally used to signal the CPU of a
“catastrophic” event, such as the imminent loss of
power, memory error detection or bus parity error.
Interrupt requests arriving on NMI cannot be
disabled; they are latched by the CPU and have
higher priority than an interrupt request on INTR. If
an interrupt request arrives on both lines during the
execution of an instruction, NMI will be recognized
first. Non-maskable interrupts are predefined as
type 2; the processor does not need to be supplied
with a type code to call the NMI procedure, and it
does not run the INTA bus cycles in response to a re-
quest on NMI.

The time required for the CPU to recognize an exter-
nal interrupt request (interrupt latency) depends on
how many clock periods remain in the execution of
the current instruction.On the average, the longest
latency occurs when a multiplication, division or
variable-bit shift or rotate instruction is executing
when the interrupt request arrives. (See Section 3.7
for detailed instruction timing data.) As mentioned
previously, in a few cases, worst-case latency will
span two instructions rather than one.

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

Software Generated Interrupts

An INT (interrupt) instruction generates an inter-
rupt immediately upon completion of its execution.
The Interrupt type coded into the instruction sup-
plies the CPU with the type code needed to call the
procedure to process the interrupt. Since any type
code may be specified, software interrupts may be
used to test interrupt procedures written to service
external devices.

The CPU generates a type 0 interrupt immediately
following execution of a DIV or IDIV (divide, inte-
ger divide) instruction if the calculated quotient is
larger than the specified destination.

If the trap flag (TF) is set, the CPU generates a type
1 interrupt following most instructions. This is called
single-step execution and is a powerful debugging
tool that is discussed in more detail later in this
chapter.

If the overflow flag (OF) is set, an INTO (interrupt -

on overflow) instruction generates a type 4 interrupt
upon completion of its execution.

All internal interrupts (INT, INTO, divide error,and
single step) share these characteristics:

1) The interrupt type code is either contained in the
instruction or is predefined.

2) No INTA bus cycles are run.

3) Internal interrupts cannot be disabled, except for
single-step.

4) Any internal interrupt (except single-step) has
higher priority than any external interrupt (see
Table 4-1). If interrupt requests arrive on NMI
and/or INTR during execution of an instruction that
causes an internal interrupt (e.g., divide error), the
internal interrupt is processed first.

Table 4-1 Interrupt Priorities

INTERRUPT PRIORITY
Divide error, INT n, INTO highest
NMI
INTR
Single-step lowest

4.3.3 Interrupt Pointer Table

The interrupt pointer (or interrupt vector) table
(Figure 4-9) is the link between an interrupt type

4-9

code and the procedure that has been designated to
service interrupts associated with that code. The in-
terrupt pointer table occupies up to the first 1K bytes
of low memory. There may be up to 256 entries in
the table, one for each interrupt type that can occur
in the system. Each entry in the table is a doubleword
pointer containing the address of the procedure that
is to service interrupts of that type. The higher-
addressed word of the pointer contains the base ad-
dress of the segment containing the procedure. The
lower-addressed word contains the procedure’s
offset from the beginning of the segment. Since each
entry is four bytes long, the CPU can calculate the lo-
cation of the correct entry for a given interrupt type
by simply multiplying (type*4).

Space at the high end of the table that would be occu-
pied by entries for interrupt types that cannot occur
in a given application may be used for other
purposes. The dedicated and reserved portions of
the interrupt pointer table (locations OH through
7FH), however, should not be used for any other
purpose to insure proper system operation and to
preserve compatibility with future Intel hardware
and software products.

After pushing the flags onto the stack, the 8086,88
CPUs activate an interrupt procedure by executing
the equivalent of an intersegment indirect CALL
instruction. The target of the “CALL” is the address
contained in the interrupt pointer table element
located at (type*4). The CPU saves the address of
the next instruction by pushing CS and IP onto the
stack. These are then replaced by the second and
first words of the table element, thus transferring
control to the procedure.

If multiple interrupt requests arrive simultaneously,
the processor activates the interrupt procedures in
priority order. Figure 4-10 shows how procedures
would be activated in an extreme case. The processor
is running in single-step mode with external inter-
rupts enabled. During execution of a divide
instruction, INTR is activated. Furthermore the in-
struction generates a divide error interrupt. Figure
4-10 shows that the interrupts are recognized in
turn, in the order of their priorities except for INTR.
INTR is not recognized until after the following in-
struction because recognition of the earlier interrupts
cleared IF. Of course interrupts could be reenabled
in any of the interrupt response routines if earlier re-
sponse to INTR is desired.

As Figure 4-10 shows, all main-line code is executed
in single-step mode. Also, because of the order of in-
terrupt processing, the opportunity exists in each oc-
currence of the single-step routine to select whether
pending interrupt routines (divide error and INTR
routines in this example) are executed at full speed
or in single-step mode.

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

AVAILABLE
INTERRUPT
POINTERS
(224)

RESERVED
INTERRUPT
POINTERS
(27)

DEDICATED
INTERRUPT
POINTERS
(S)

4

 IFFH

3FCH

084H

_ 080H
¢ O7FH

\ 014H
>

010H
00CH
008H

004H

\. 000H

TYPE 255 POINTER:
(AVAILABLE)

' d

T |

TYPE 33 POINTER:
(AVAILABLE)

TYPE 32 POINTER:
(AVAILABLE)

TYPE 31 POINTER:
(RESERVED)

TYPESPOINTER:
(RESERVED)

TYPE 4 POINTER:
OVERFLOW

TYPE 3 POINTER:
1.BYTE INT INSTRUCTION]

| TYPE2POINTER: _|
NON-MASKABLE

| TYPE1POINTER: _|
SINGLE-STEP
TYPEQPOINTER: _|
DIVIDE ERROR

CS BASE ADDRESS

IP OFFSET

|<-——-16 BITS ————p

Figure 4-9 Interrupt Pointer Table

4-10

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

DIVIDE
INSTRUCTION ————————— INTR

‘ DIVIDE ERROR RECOGNIZED

r

EXECUTE NEXT
INSTRUCTION

PUSHFLAGS
PUSH CS & IP
CLEARIF & TF

I SINGLE STEP RECOGNIZED

‘

PUSH FLAGS
PUSHCS & IP
CLEARIF & TF
DIVIDE ERROR
PROCEDURE J
I SINGLE STEP
PROCEDURE *
POPCS & IP
POP FLAGS l

TF=1,IF

INTR RECOGNIZED

!

POPCS & IP
POPFLAGS

TF=0,IF=0 J

EXECUTE NEXT
INSTRUCTION

* TF CAN BE SET IN THE
SINGLE STEP PROCEDURE
IF SINGLE STEPPING OF
THE DIVIDE ERROR OR INTR
PROCEDURE IS DESIRED.

PUSH FLAGS
PUSHCS & IP
CLEARIF & TF

l SINGLE STEP RECOGNIZED

1 PUSH FLAGS
PUSH CS & IP
CLEARIF & TF
INTR
PROCEDURE I
[SINGLE STEP
PROCEDURE*
POP CS & IP
POP FLAGS |’
TE=1,IF l POP CS & IP
POP FLAGS

Figure 4-10 Processing Simuitaneous Interrupts

4-11

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

Interrupt Procedures

When an interrupt service procedure is entered, the
flags, CS and IP are pushed onto the stack and TF
and IF cleared. The procedure may reenable external
interrupts with the STI (set interrupt-enable flag)
instruction, thus allowing itself to be interrupted by
a request on INTR. (Note, however, that interrupts
are not actually enabled until the instruction following
STI has executed.) An interrupt procedure may
always be interrupted by a request arriving on NMI.
Software- or procedure-initiated interrupts occurring
within the procedure also will interrupt the
procedure. Care must be taken in interrupt proce-
dures that the type of interrupt being serviced by the
procedure does not itself inadvertently occur within
the procedure. For example, an attempt to divide by
0 in the divide error (type 0) interrupt procedure
may result in the procedure being reentered
endlessly. Enough stack space must be available to
accommodate the maximum depth of interrupt nest-
ing that can occur in the system.

Like all procedures, interrupt procedures should
save any registers they use before updating them,
and restore them before terminating. It is good prac-
tice for an interrupt procedure to enable external in-
terrupts for all but “critical sections” of code (those
sections that cannot be interrupted without risking
-erroneous results). If external interrupts are disabled
for too long in a procedure, interrupt requests on
INTR can potentially be lost.

All interrupt procedures should be terminated with
an IRET (interrupt return) instruction. The IRET in-
struction assumes that the stack is in the same condi-
tion as it was when the procedure was entered. It
pops the top three stack words into IP, CS and the
flags, thus returning to the instruction that was
about to be executed when the interrupt procedure
was activated. The actual processing done by the
procedure is dependent upon the application. If the
procedure is servicing an external device, it should
output a command to the device instructing it to
remove its interrupt request. It might then read
status information from the device, determine the
cause of the interrupt and then take action
accordingly. See Chapter 3, Section 3.8 for examples
of interrupt procedures.

Software-initiated interrupt procedures may be used
as service routines (“supervisor calls”) for other
programs in the system. In this case. the interrupt
procedure is activated when a program, rather than
an external device, needs attention. (The “atten-
tion” might be to search a file for a record, send a
message to another program, request an allocation
of free memory, etc.) Software interrupt procedures
can be advantageous in systems that dynamically
relocate programs during execution.

4-12

Since the interrupt pointer table is at a fixed storage
location, procedures may “call” each other through
the table by issuing software interrupt instructions.
This provides a stable communication “exchange”
that is independent of procedure addresses. The in-
terrupt procedures may themselves be moved so
long as the interrupt pointer table always is updated
to provide the linkage from the “calling” program
via the interrupt type code.

Single-Step (Trap) Interrupt

When TF (the trap flag) is set, the 8086,88 are said
to be in single-step mode. In this mode, the proces-
sor automatically generates a type 1 interrupt after
most instructions. Interrupts will not be generated
after prefix instructions (e.g., REP), instructions
which modify segment registers (e.g., POP DS), or
the WAIT instructions.

Recall that as part of its interrupt processing, the
CPU automatically pushes the flags onto the stack
and then clears TF and IF. Thus the processor is not
in single-step mode when the single-step interrupt
procedure is entered; it runs normally. When the
single-step procedure terminates, the old flag image
is restored from the stack, placing the CPU back into
single-step mode.

Single-stepping is a valuable debugging tool. It
allows the single-step procedure to act as a
“window” into the system through which operation
can be observed instruction-by-instruction. A single-
step interrupt procedure, for example, can print or
display register contents, the value of the instruction
pointer (it is on the stack), key memory variables,
etc., as they change after each instruction. In this
way the exact flow of a program can be traced in
detail, and the point at which discrepancies occur can
be determined. Other possible services that could be
provided by a single-step routine include:

® Writing a message when a specified memory
location or I/O port changes value (or equals
a specified value).

® Providing diagnostics selectively (only for cer-
tain instruction addresses for instance).

® [etting a routine execute a number of times
before providing diagnostics.

The 8086,88 CPUs do not have instructions for set-
ting or clearing the TF directly. Rather, TF can be
changed by modifying the flag-image on the stack.
(TF can be set by ORing the flag-image with 0100H
and cleared by ANDing it with FEFFH). After TF is
set in this manner, the first single-step interrupt
occurs after the first instruction following the IRET
from the single-step procedure.

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

If the processor is single-stepping, it processes an in-
terrupt (either internal or external) as follows. Con-
trol is passed normally (flags, CS an IP are pushed)
to the procedure designated to handle the type of in-
terrupt that has occurred. However, before the first
instruction of that procedure is executed, the single-
step interrupt is “recognized” and control is passed
normally (flags, CS and IP are pushed) to the type 1
interrupt procedure. When single-step procedure
terminates, control returns to the previous interrupt
procedure. Figure 4-10 illustrates this process in a
case where two interrupts occur when the processor
is in single-step mode.

Breakpoint Interrupt

A type 3 interrupt is dedicated to the breakpoint
interrupt. A breakpoint is generally any place in a
program where normal execution is arrested so that
some sort of special processing may be performed.
Breakpoints typically are inserted into programs
during debugging as a way of displaying registers,
memory locations, etc., at crucial points in the
program.

The INT 3 (breakpoint) instruction is one byte long.
This makes it easy to “plant” a breakpoint anywhere
in a program. Chapter 3, Section 3.8, contains an
example that shows how a breakpoint may be set,
and how a breakpoint procedure may be used to
place the processor into single-step mode.

The breakpoint instruction also may be used to
“patch” a program (insert new instructions) without
recompiling or reassembling it. This may be done by
saving an instruction byte, and replacing it with an
INT 3 (CCH) machine instruction. The breakpoint
procedure would contain the new machine
instructions, plus code to restore the saved instruc-
tion byte and decrement IP on the stack before
returning, so that the displaced instruction would be
executed after the patch instructions. The breakpoint
example in Chapter 3, Section 3.8 illustrates these
pring:iples.

Note that patching a program requires machine-
instruction programming and should be undertaken
with considerable caution; it is easy to add new bugs
to a program in an attempt to correct existing ones.
Note also that a patch is only a temporary measure
to be used in exceptional conditions. The affected
code should be updated and retranslated as soon as
possible.

System Reset
The 8086,88 RESET lines provide an orderly way to

start or restart an executing system. When the pro-
cessor detects the positive-going edge of a pulse on

4-13

RESET, it terminates all activities until the signal
goes low, at which time it initializes the system as
shown in Table 4-2.

Table 4-2 CPU State Following RESET

CPU COMPONENT CONTENT
Flags Clear
Instruction Pointer 0000H

CS Register FFFFH

DS Register 0000H

SS Register 0000H

ES Register 0000H
Queue Empty

Since the code segment register contains FFFFH
and the instruction pointer contains OH, the proces-
sor executes its first instruction following system
reset from absolute memory location FFFFOH. This
location normally contains an intersegment direct
JMP instruction from information in the program
that identifies its first instruction. As external
(maskable) interrupts are disabled by system reset,
the system software should reenable interrupts as
soon as the system is initialized to the point where
they can be processed.

Instruction Queue Status

When configured in maximum mode, the 8086,88
provide information about instruction queue opera-
tions on QSO and QS1. Table 4-3 interprets the four
states that these lines can represent.

Table 4-3 Queue Status Signals

(Maximum Mode Only)
QUEUE OPERATION IN LAST

0Sg| AS4 CLK CYCLE

0 0 |No operation; default value

0 1 |First byte of an instruction was

taken from the queue
1 0 |Queue was reinitialized
1 1 |Subsequent byte of an instruction

was taken from the queue

210911

THE iAPX 86,88 HARDWARE DESIGN OVERVIEW

The queue status lines are provided for external pro-
cessors that receive instructions and/or operands via
the ESC (escape) instruction (see Section 4.2). Such
a processor may monitor the bus to see when an
ESC instruction is fetched and then track the instruc-
tion through the queue to determine when (and if)
the instruction is executed.

Processor Halt

When the HALT (halt) instruction is executed, the
processor enters the halt state. This condition may
be interpreted as “stop all operations until an exter-
nal interrupt occurs or the system is reset.” No sig-
nals are floated during the halt state, and the content
of the address and data buses is undefined. A bus
hold request arriving on the HOLD line (minimum
mode) or either request/grant line (maximum
mode) is acknowledged normally while the processor
is halted.

The halt state can be used when an event prevents
the system from functioning correctly. An example
might be a power-fail interrupt. After recognizing
that loss of power is imminent, the CPU could use
the remaining time to move registers, flags and vital
variables to (for example) a battery-powered CMOS
RAM area - or EEPROM area and then halt until the
return of power was signaled by an interrupt or
system reset.

Status Lines

When configured in maximum mode, the 8086,88
CPUs emit eight status signals that can be used by
external devices. Lines SO, S1 and S2 identify the
type of bus cycle that the CPU is starting to execute
(Table 4-4). These lines are typically decoded by the

by the 8288 Bus Controller. S3 and S4 indicate which
segment register was used to construct the physical
address used in this bus cycle (see Table 4-5). Line
SS reflects the state of the interrupt-enable flag. S6 is
always 0. S7 is a spare line whose content is
undefined.

Table 4-4 Bus Cycle Status Signals

&l
N

$51So TYPES OF BUS CYCLE

Interrupt Acknowledge
Read I/O

Write 1/0

HALT

Instruction Fetch

Read Memory

Write Memory
Passive; no bus cycle

—_- A ma o000
P e N = I SO)
- O -0 - 0O =0

Table 4-5 Segment Register Status Lines

S4|S3 SEGMENT REGISTER
0]0/|ES

0]1]}SS

1 0 | CSornone(l/0Oorinterrupt Vector)
1 1| DS

4-14 210911

iAPX 186,188 Ha
Design Overview

I

CHAPTER 5
iAPX 186,188 HARDWARE DESIGN OVERVIEW

5.1 INTRODUCTION
This chapter is a discussion of the hardware design
of the iAPX 186 (80186) and the iAPX 188 (80188)
on a functional level. Electrical characteristics and
other hardware references are found in Volume 2 of
this set. Volume 2 also contains the Device Specifica-
tions for both processors.
This chapter will include the following topics:

e Enhancements to the 8086 CPU

® BusOrganization

® Interrupt Structure

® Clock Generator

e Internal Peripheral Interface

® Chip-Select/Ready Generation Logic

e DMA Controller
® Timers

® Interrupt Controller

5.2 80186 and 80188 CPU
ENHANCEMENTS

The iAPX 186 and iAPX 188 are highly integrated
microprocessors, effectively combining 15 to 20 of
the most common iAPX 86 system components on a
single chip. Block diagrams for both processors are
shown in Figures 5-1 and 5-2. The iAPX 186,188 are
designed to provide both higher performance and
more highly integrated solutions to the total system
problem of the microprocessor user. Higher perfor-
mance results from enhancements to both general
and specific areas of CPU operation, including faster
effective address calculation, improvement in the

INT3/INTAT
INT2/INTAD
CLKOUT Vcc GND T TMROUT1 TMROUT 0
TMRIN 4 TMRIN
r0h 1 l NMi INTO 1 1 0
|]
EXECUTION UNIT! PROGRAMMABLE
X % : TIMERS
o 12
16-8IT | :
MAX COUNT
AW | PROGRAMMABLE REGISTER B k
cLock | INTERRUPT MAX COURY
|GENERATOR o X CONTROLLER REGISTER A
GENERAL | CONTROL REGISTERS
PURPOSE \
REGISTERS AECISTERS 16-BIT
{} 1 COUNT REGISTER
N
TERNAL BUS | orao
U l ot
Pl E
.5 DMA UNIT
< v QA UNIT
SRDY —| CHIP-SELECT 20-BIT
ARDY o] UNIT POINTERS
TesT] BUS INTERFACE e 20-BIT
HOLD SEGMENT DESTINATION
w17 REGISTERS POINTERS
oA T SBYTE PROGRAMMABLE PPy e
RESET <] PREFETCH oNTROL TRANSFER COUNT
QUEUE : CONTROL
REGISTERS
DEN ALE A v
v oA ucs PCSEIA2
tock ADO- A16/S3- ics | | pess
o - ADo- Alsies V ics V. PCSB/A1
MCS0-3 PCS6-4

Figure 5-1 iAPX 186 Block Diagram

5-1

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

INTY/INTAT)
INT2/INTAD
CLKOUT Vcc GND INTY TMROUT1 TMROUT 0
TMRIN 4 TMRIN
O- NMI INTO 1 0 T
| |
[ExecuTion unrT! PROGRAMMABLE
\ TIMERS
2l 2
16-8IT : e
MAX COUNT
ALY h PROGRAMMABLE REGISTER B ‘,x
cLock 1 MAX COUNT
| CONTROLLER REGISTER A
16-8IT
GENERAL | | CONTROL REGISTERS
| CONTROL
REGISTERS 16-BIT
_ REGISTERS COUNT REGISTER
DRG0
U l —1onet
E
Sed DA UNIT
SROY CHIP-SELECT 2081
o UNIT SOURCE POINTERS
BUS INTERFACE 20817
TEST UNIT SEGENT DESTINATION
HOLD SEGMENT, POINTERS
HLDA e PROGRAMMABLE P
RES . PREFETCH ConTRoL, TRANSFER COUNT
RESET
QUEUE CONTROL
I REGISTERS
BEN ALE X y_
| Ve Ucs PCSBIA2
#b ADO- 55 ics | | pessas
DTR BHE/ST AD15 pqs5 4 \/
i MCS0-3 PCSO-4

Figure 5-2 iAPX 188 Block Diagram

execution speed of many instructions, and the inclu-
sion of new instructions which are designed to im-
.prove the existing code, or to produce optimum
80186,188 code. Increased integration simplifies
system construction, which results in lower system
part count and thus a substantial reduction in system
cost for the user. In this section, the 80186,188 CPU
enhancements will be discussed; increased integra-
tion will be considered in subsequent sections.

As described in Chapter 3, the 80186 and 80188
CPUs have the same basic register set, memory
organization, and addressing modes as the 8086,88.
The differences between the 80186 and 80188 are
the same as the differences between the 8086 and
8088: the 80186 has a 16-bit architecture and 16-bit
bus interface; the 80188 has a 16-bit internal
architecture, but a 8-bit data bus interface. The in-
struction execution times of the two. processors
differ accordingly: for each non-immediate 16-bit
data read/write instruction, 4 additional clock cycles
are required by the 80188.

CPU Execution Speed

Because of 80186,80188 hardware enhancements in
both the bus interface unit and the execution unit,
most instructions require fewer clock cycles to exe-
cute than on the 8086,88. :

Execution speed is gained by performing the effec-
tive address calculations (base + displacement +
index) ‘with a dedicated hardware adder in the
80186,188 bus-interface unit, rather than with a mi-
crocode routine (used by the 8086,88). This results

_ in an execution speed which is three to six times

faster than the 8MHz 8086,88.

In addition, the execution speed of specific instruc-
tions has been enhanced: all multiple-bit shift and
rotate instructions execute 1.5 to 2.5 times faster
than on the 8MHz 8086,88; multiply and divide in-
structions execute 3 times faster than on the 8MHz
8086,88; and string move instructions run at bus
bandwidth (i.e., data is transferred onto the bus in
each consecutive CPU clock cycle), allowing trans-
fers in 2 Megabytes per second (80186), and 1
Megabyte per second (80188), which is about twice
the speed of the 8MHz 8086 or 8088 respectively.

Overall, the 80186,188 CPUs are 30% faster than the
8MHz 8086,88 CPUs and 50% faster than the SMHz
8086,88 CPUs. The details of timing for individual

-~ instructions is contained in the Instruction Set sum-

mary in Chapter 3.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

New Instructions

Ten new instructions have been added to the basic
8086,88 instruction set. These instructions are de-
signed to simplify assembly language programming,
enhance the performance of high-level language
implementations, and the reduce the size of object
code for the 80186,88. The new instructions are sum-
marized below; for more detailed information, refer
to the Instruction Set summary in Chapter 3.

INS/OUTS (Block 1/0)

The INS (Input String), and OUTS (Output String)
instructions move a string of bytes or words at bus
bandwidth speed between memory and an 1/0 port.
This is essentially a DMA transfer in one in-line
instruction.

PUSHI (Push Immediate)

This instruction pushes an immediate 16-bit value or
a sign extended 8-bit value onto the stack.

IMUL (Integer Immediate Multiply, signed)

This instruction performs a signed integer immediate
multiplication with a 16-bit result.

PUSHA/POPA (Push All/Pop All)

These instructions push or pop all 8 general purpose
registers onto or off the stack.

SHIFT/ROTATE IMMEDIATE

These logic instructions shift or rotate by an immedi-
ate value.

BOUND (Array Bounds)

This instruction detects a value out of range by
checking an array index (contained in a register)
against the array bounds in memory.

ENTER (Enter Procedure)

This instruction facilitates high-level language proce-
dure calls. It copies the stack frame pointer from a
calling procedure to the current stack frame.

LEAVE (Leave Procedure)

This instruction is also specifically designed for high-
level languages. It deallocates the memory space of
the the stack frame on procedure exit.

Additional Traps

The 80186,188 include two additional traps:

Unused Opcode. A trap type 6 is generated when
opcodes OFH, 63H-67H, F1H and FFFFH are
executed. This trap is useful in detecting program
errors (e.g., the execution of data), and provides a
set of opcodes which the user may define for specific
purposes, emulating the action of the instruction in
software.

Escape Opcode. The 80186,188 CPUs may be pro-
grammed to cause a trap type 7 when an escape
opcode (D8H-DFH) is encountered. This provides a
straightforward method of giving instructions to co-
processors, e.g., the 8087. The programming is done
by a bit in the relocation register. It is programmed
not to cause a trap on reset.

5.3 BUS STRUCTURE

The 80186,188 bus structure is similar to that of the
8086,88. The 80186 has a multiplexed address/data
bus, with 16-bit data and 20-bit address capability, as
does the 8086. The 80188 differs by transferring
8-bits of data per bus cycle (taking two bus cycles to
transfer a word).

For both processors, each bus cycle requires a mini-
mum of 4 CPU clock cycles, in addition to any
number of wait states which may be required to ac-
commodate the speed access limitations of particular
external memory or peripheral devices. The bus
cycles initiated by the 80186,188 CPU are identical
to those which are initiated by the 80186,188 in-
tegrated DM A controller.

The 80186,188 multiplexed address/data bus sup-
ports simultaneously the 8086,88 minimum mode
local bus and the maximum mode system bus. It pro-
vides both local bus controller outputs (RD, WK,
ALE, DEN and DT/R), as well as system status out-
puts (SO, ST, S2) for use with the 8288 bus
controller. This differs from the 8086,88, where the
local bus controller outputs (generated only in mini-
mum mode) are unavailable if status outputs
(generated only in maximum mode) are required.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

Because the 80186,188 can simultaneously provide
local bus control signals and status outputs, many
systems supporting both a system bus (e.g., a
Multibus) and a local bus will not require two separ-
ate external bus controllers. The bus control signals
may be used to control the local bus, while the status
signals are concurrently connected to the 8288 bus
controller to drive the control signals of the system
bus. To interface with the Multibus, the 80186,188
CPUs require an 8288 and 8289.

Local Bus Cont[oller

The local bus signals are generated by the iAPX
186,88 integrated local bus controller. Control lines
are also available that can be used to enable external
buffers and to direct the flow of data on and off the
local bus. These address/data, enable, and control
signals eliminate the need for an external local bus
controller in most systems.

Local Bus Arbitration

The 80186,188 employ a HOLD/HLDA system of
local bus exchange (instead of a REQUEST/-
GRANT protocol) in order to provide an
asynchronous bus exchange mechanism. The
HOLD/HOLDA protocol allows multiple local bus
masters, operating at separate clock frequencies, to
gain control of the local bus. This protocol also
allows compatibility with Intel’s new generation of
highly integrated bus master peripheral devices, for
example, the 82586 Etheérnet controller and the
82730 CRT controller/text co-processor.

In the HOLD/HLDA protocol, a device requiring
bus control (for example, an external DMA device)
raises the HOLD line. In response to this HOLD
request, the 80186,188 raises its HLDA line after it
has finished its current bus activity. When the exter-
nal device is finished with the bus, it drops its bus
HOLD request; the 80186 responds by dropping its
HLDA line and resuming bus operation.

When there is more than one alternate local bus
master, external circuitry is required to arbitrate
which bus master will gain control of the bus.

Memory/Peripheral Control

Bus control signals are used to strobe data from
memory. to the CPU, or from the CPU to memory.
The local bus controller does not ot _provide a
memory/T/0 signal. If a memory/I/O signal is
needed, the designer must use the S2 signal (which
requires external latching), make the memory and
1/0 space nonoverlapping, or use only the integrated
chip-select circuitry.

5-4

Transceiver Control

The 80186,188 generates two control signals (DT/R
and DEN) to be connected to 8286/8287 transceiver
chips. This allows the addition of transceivers for
extra buffering without adding external logic. These
control lines are generated to control the flow of
data through the transceivers. The operation of
these signals is shown in Table 5-1.

Table 5-1 Transceiver Control
Signals Description

Pin Name
DEN (Data Enable)

Function

Enables the output drivers of
the transceivers. It is active
LOW during memory, I/O, or
INTA cycles.

Determines the direction of
travel through the transceivers.
A HIGH level directs data away
from the processor during write
operations, while a LOW level
directs data toward the proces-
sor during a read operation.

DT/R (Data Transmit/
Receive)

8086,88 and 80186,188 Bus
Differences

The 80186,188 bus was designed to be upward com-
patible with the 8086,88 bus. As a result, the
8086,88 bus interface components (the 8288 bus
controller and the 8289 bus arbiter) may be used
directly with the 80186,188. However, there are a
few significant differences which should be
considered.

In the case of the 186,188:

® RESET OUT is synchronized with the proces-
sor clock, and indicates that the processor is
being reset.

The lines QSO and QS1 come out one phase
earlier (with QSMD option) than in the
8086,88.

ALE comes active one phase earlier than in
the 8086,88 but remains active throughout
the 8288 ALE (the 80186,188 generate a
longer pulse).

On RESET the RD/QSMD pin is sampled. If
it is low, queue status mode is entered, and
ALE and WR becomes QS lines. If this mode
is used, an 8288 is requlred (RD, WR, ALE
pins are redefined).

HOLD/HOLDA lines take the place of
RQ/GT.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

® S3-S6 are defined differently: S3-S6 are
always low, except during DMA, when S6 is
high.

® There are no advanced write commands.
® There are no separate [/O-Memory RD/WR
lines.

For more detail on the hardware aspects of the
80186,188 bus see Chapter 2, Volume 2, and the
iAPX 186 and iAPX 188 Device Specifications, Ap-
pendix B, Volume 2.

5.4 INTERRUPTS

The 80186,188 can service interrupts generated by
software or hardware. Software interrupts are
generated by specific instructions or the results of
conditions specified by instructions. Hardware inter-
rupts occur when any of the external interrupt lines
(INTO-INT1) are activated. The vector types for all
interrupts are given in Table 5-2.

Table 5-2 80186,188 Interrupt Vectors

Vector |Default Related
Interrupt Name | Type |Priority| Instructions

Divide Error 0 “1 DIV, IDIV
Exception

Single Step 1 12**2 All
Interrupt

NMI 2 1 All

Breakpoint 3 “1 INT
Interrupt

INTO Detected 4 “1 INTO
Overflow
Exception

Array Bounds 5 “1 BOUND
Exception

Unused-Opcode 6 "1 Undefined
Exception Opcodes

ESC Opcode 7 i ESC Opcodes
Exception

Timer 0 interrupt 8 2AM

Timer 1 Interrupt 18 2B
Timer 2 Interrupt 19 2C

Reserved 9 3
DMA 0 Interrupt 10 4
DMA 1 Interrupt 1 5
INTO Interrupt 12 6
INT1 Interrupt 13 7
INT2 Interrupt 14 8
INT3 Interrupt 15 9
NOTES:
*1. These are generated as the result of an instruction
execution.

“*2. This is handled as in the 8086.
****3. All three timers constitute one source of request to the
interrupt controlier. The Timer interrupts all have the same
default priority level with respect to all other interrupt

5-5

NOTES: (continued)

sources. However, they nave a defined priority ordering
amongst themselves. (Priority 2A is higher priority than
2B.) Each Timer interrupt has a separate vector type
number.

4. Default priorities for the interrupt sources are used only if
the user does not program each source into a unique
priority level.

***5. An escape opcode will cause a trap only if the proper bit is
set In the peripheral control block relocation register.

Software-generated Interrupts

The 80186,188 software generated interrupts include
those found on the 8086,88, namely:

® Divide error exception (type 0)

® Single-step interrupt (type 1)

o Brea_kpoint interrupt (type 3)

® INTO Detected overflow exception (type 4)

The divide error interrupt is generated by the CPU
following execution of a DIV or IDIV instruction if
the calculated quotient is larger than the specified
destination.

The single-step interrupt is controlled by the trap
flag (TF). If TF is set, the CPU generates a type 1 in-
terrupt after every instruction.

The breakpoint interrupt is generated if the overflow
flag (OF) is set.

The new interrupts available on the 80186,188 are:
® Array bounds exception (type 5)
® Unused opcode exception (type 6)
® Escape opcode exception (type 7)

The array bounds interrupt occurs during a BOUND
instruction if the array index is outside the array
bounds. The array bounds are located in memory at
a location indicated by one of the instruction
operands. The other operand indicates the value of
the index to be checked. (Refer to the BOUND in-
struction in the Instruction Set Summary, Chapter 3
of this volume, for more details.)

The unused opcode interrupt is generated by the

CPU if it is directed to execute any of the following
unused opcodes: 0OFH, 63H-67H, F1H and FFFFH.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

An ESCape opcode interrupt is generated by the at-
tempted execution of opcodes D8H-DFH. This in-
terrupt is programmed by setting the ET bit in the
relocation register. The return address of this inter-
rupt will point to the ESC instruction causing the
exception. If a segment override prefix preceded the
ESC instruction, the return address will point to the
segment override prefix.

Hardware-generated Interrupts

Hardware-generated interrupts are of two types:
maskable and non-maskable types. For external
maskable interrupts, the 80186,188 provide the
INTO-INT3 interrupt request pins. Maskable inter-
rupts may also be generated by the 80186,188 in-
tegrated DMA controller and the integrated timer
unit. Software enables these inputs by setting the in-
terrupt flag bit (IF) in the Status Word.

A non-maskable interrupt (NMI) is also provided.
This interrupt is serviced regardless of the state of
the IF bit, and is typically used to activate a power
failure routine. The activation of this input causes an
interrupt with an internally supplied vector value of
2. No external interrupt acknowledge sequence is
performed. The IF bit is cleared at the beginning of
an NMI interrupt to prevent maskable interrupts
from being serviced.

5.5 CLOCK GENERATOR

The 80186,188 provides an integrated clock genera-
tor which generates the main clock signal for all
80186,188 integrated components, as well as all CPU
synchronous devices in the system. The clock gener-
ator consists of a crystal-controlled oscillator, a
divide-by-two counter, synchronous and asynchro-
nous ready inputs, and reset circuitry.

The Oscillator

The oscillator circuit is designed to be used with a
parallel resonant fundamental mode crystal at 2X
the desired CPU clock speed (i.e., 16 MHz for an 8
MHz 80186,188), or with an external oscillator also
at 2X the CPU clock. The crystal determines the
CPU clock speed and is used for all instruction time
calculations described in Chapter 3. The use of an
LC or RC circuit with this oscillator is not advised.
The recommended crystal configuration is shown in
Figure 5-3.

5-6

X

[16 MHz CRYSTAL
—

Xz
80186

Figure 5-3 Recommended iAPX 186
Crystal Configuration

If an external oscillator is used, it can be connected
directly to input pin X1 in lieu of a crystal (X2
should be left open). This oscillator input is used to
drive an internal divide-by-two counter (see below)
to generate the CPU clock signal; thus the external
frequency input can be practically any duty cycle, so
long as the minimum high and low times for the
signal (as specified in the Device Specification) are
met. The output of the oscillator is not directly
available outside the iAPX 186,188.

Divide-by-two Counter

The clock generator provides the 50% duty cycle pro-
cessor clock for the CPU. This is done by dividing
the oscillator output by two, forming the symmetri-
cal clock. If an external oscillator is used, the state of
the clock generator will change on the falling edge of
the oscillator signal. The CLKOUT pin provides the
processor clock signal for use outside the 80186,188.
This signal may be used to drive other system
components. All timings are referenced to the
output clock.

READY Synchronization

The clock generator also provides both synchronous
and asynchronous ready inputs. Asynchronous
ready synchronization is generated by circuitry
which samples ARDY in the middle of T, and again
in the middle of each Ty until ARDY is sampled
HIGH. One-half CLKOUT cycle of resolution time
is used.

A second ready input (SRDY) is provided to inter-
face with externally synchronized ready signals. This
input is sampled at the end of T, and again at the end
of each Ty until it is sampled HIGH.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

RESET Logic

The 80186,188 have both a RES input pin and a
synchronized RESET pin for use with other system
components. The RES input pin is provided with
hysteresis in order to facilitate power-on Reset gen-
eration via an RC network. RESET is guaranteed to
remain active for at least five clock cycles given a
RES input of at least six clock cycles. RESET may be
delayed up to two and one-half clock cycles behind
RES.

Multiple 80186,188 processors may be synchronized
through the RES input pin, since this input resets
both the processor and the divide-by-two internal
counter in the clock generator. To insure that the
divide-by-two counters all begin counting at the
same time, the active going edge of RES must satisfy
a 25 ns setup time before the falling edge of the
80186,188 clock input. In addition, in order to insure
that all CPUs begin executing in the same clock
cycle, the reset must satisfy a 25 ns setup time
before the rising edge of the CLKOUT signal of all
the processors.

5.6 INTERNAL PERIPHERAL INTERFACE

The iAPX 186 and iAPX 188 include six integrated
peripheral devices along with the BIU and EU.
These six are the chip select unit, the DMA
controller, the timer unit, the interrupt controller,
the local bus controller and the clock generator. The
first four of these are programmable, and will bé& dis-
cussed in the remaining sections of this chapter. The
clock generator and local bus controller, which have
been discussed in previous sections, operate transpa-
rently to the programmer.

Peripheral Control Block

The four 80186,188 programmable integrated
peripherals are controlled by 16-bit registers located
in an internal 256-byte control block (see Figure
5-4). Control and status registers are provided for
each of the programmable peripherals. The function
of these registers will be discussed in subsequent sec-
tions under the appropriate peripheral device.

The control block may be mapped into memory or
1/0 space. Each of the integrated peripherals’ control
and status registers are located at a fixed location
above the programmed base location of the peripher-
al control block. The base address must be on an
even 256-byte boundary (i.e, the lower 8 bits of the
base address are all zeros).

OFFSET
Relocation Register FEH
DAH
DMA Descriptors Channel 1
DOH
CAH
DMA Descriptors Channel 0
COH
A8H
Chip-Select Control Registers
AOH
66H
Timer 2 Control Registers
60H
SEH
Timer 1 Control Registers
58H
56H
Timer 0 Control Registers
S0H
3EH
Interrupt Controller Registers
20H

Figure 5-4 Internal Register Map

The integrated peripherals operate semi-auto-
nomously from the CPU. Access to them is for the
most part through read and write instructions to the
control and data locations in the control block. Be-
cause the integrated peripherals are accessed exactly
as if they were external devices, no new instruction
types are required to access and control them.

Relocation Register

The control block base address is programmed via a
16-bit relocation register contained within the con-
trol block at offset FEH from the base address (see
Figure 5-5). The relocation register provides the
upper 12 bits of the base address of the control
block. In addition, bit 12 of this register determines
whether the control block will be mapped into I/O or
memory space. If this bit is 1, the control block will
be located in memory space; if the bit is 0, the con-
trol block will be located in I/0 space. When the con-
trol register block is mapped into I/O space, the
upper 4 bits of the base address must be pro-
grammed as 0, since I/O addresses are only 16 bits
wide. The offset map of the 256-byte control register
block is shown in Figure 5-4.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

15 14 13 12 1110

8 7 6 5 4 3 2 1 0

oFrseT: FEH| ET [RMx] [mio]

Relocation Address Bits R19-R8 |

ET = ESC Trap/ No ESC Trap (1/0)

M/IO = Register block located in Memory / /O Space (1/0)

RMX = Normal interrupt Controller mode / IRMX compatible
Interrupt Controller mode (0/1)

Figure 5-5 Relocation Register

In addition to the peripheral control block relocation
information, the relocation register contains two
additional bits. One is used to set the interrupt con-
troller into iRMX_86 compatibility mode (see Sec-
tion 5.10). The other is used to force the processor
to trap whenever an ESCape (to a coprocessor) in-
struction is encountered.

Because the relocation register is contained within
the control block, upon reset it is automatically pro-
grammed with the value 20FFH. This means that
the peripheral control block will be located at the
very top (FFOOH to FFFFH) of 1/0 space. Thus,
after reset the relocation register will be located at
word location FFFEH in I/0 space.

If the user wished to locate the peripheral control
block starting at memory location 10000H, he would
program the peripheral control register with the
value 1100H. In doing so, all registers within the in-
tegrated peripheral control block would be moved to
memory locations 10000H to 100FFH. Note that
since the relocation register is contained within the
peripheral control block, it would also be moved to
word location 100FEH in memory space.

5.7 CHIP SELECT UNIT

The iAPX 186,188 include an integrated chip select
unit which provides programmable chip-select gener-
ation for both memory banks and peripherals. In
addition, it can be programmed to provide READY
(or WAIT state) generation, and can also provide
latched address bits A1 and A2. -

Six output lines are used for memory addressing and
seven output lines are ‘used for peripheral
addressing. The chip-select lines are active for all
memory ‘and I/O cycles (in their programmed areas)
generated 'by both the CPU and by the integrated
DMA unit.

The chip select unit is programmable such that it can
be used to fulfill the chip s€lect requirements (in
terms of memory device or bank size and speed) of
most small and medium sized 80186,188 systems.

Memory Chip Selects

The memory chip select lines are divided into 3
groups which separately address the major areas of
memory in a typical 8086/80186 system: upper
memory for reset ROM, lower memory for interrupt
vectors, and mid-range memory for program
memory. One output each is provided for upper and
lower memory; four outputs are provide for mid-
range memory. -

The size of each memory area is user programmable
and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 128K,
plus 1K and 256K for upper and lower chip selects.
In addition, the beginning or base address of the
midrange memory chip select may be programmed
to be active for any memory location at a time. Note
that all chip select sizes are bytes, whereas the 80186
memory is arranged in words. This means that if, for
example, 16 64K x 1 memories are used, the
memory block size will be 128K bytes, not 64K
bytes.

The starting location and ending location of both
upper and lower memory areas are fixed at 00000H
and FFFFH respectively; the starting location of the
mid-range memory is user programmable.

The memory chip selects are controlled by four regis-
ters located in the peripheral control block (see
Figure 5-6). These include one register each for
upper and lower memory, the values of which deter-
mine the size of the two memory blocks; the other
two registers are used to set the size and base address
of the mid-range block. These registers, and the
areas of memory they select, are discussed in the fol-
lowing sections.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

15

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
offFseT: AoH[1 [1 Jufu[u]Jufulufulu[1]1]1][Rr]r]re]

A19

MPCS Register

A1l

2 1 0

5 14 13 12 11109 8 7 6 5 4 3
orrsem: AH[0 Jo Ju T uvJuJuJuJuJuJul1]1 |1 [R][R [ro]
A9 an

MMCS Register '

15 14 13 12 1 10

6 5 4 3 2 1 0

OFFSET: AgH[1 |M6[M5IWIM3IM21:1II:0]E7X[Msl HEREREIRIEE

UMCS Register

15 9 3 0
orrser: asv[U JUJU JU U u u 111 [1[1]1[rR[Am]R]
A9 A13
LMCS Register

Figure 5-6 Memory Chip Select Registers

UPPER MEMORY

The UCS chip select line is used for the top of
memory. This area is usually used as the system
memory, because after reset the 80186,188 begin ex-
ecuting at memory location FFFFOH.

The upper limit of memory defined by this chip
select is always FFFFFH; the lower limit (and thus
the size of the memory block) is defined in the
UMCS register. The UMCS register is located at
offset AOH in the internal control block. The legal
values for bits 6-13 and the resulting starting address
and memory block sizes are given in Table 5-3. Any
combination of bits 6-13 not shown in Table 5-3 will
result in undefined operation. After reset, the
UMCS register is programmed for a 1K area. It must
be reprogrammed if a larger upper memory area is
desired.

Any internally generated 20-bit address whose upper
16 bits are greater than or equal to the UMCS regis-
ter (with register bits 0-5 equal to 0) will cause UCS

5-9

to be activated. UMCS bits R2-R0 are used to specify
READY mode for the area of memory defined by
the register (see below).

Table 5-3 UMCS Programming Values i

Starting

Address Memory UMCS Value
(Base Block (Assuming

Address) Size RO0=R1=R2=0)
FFC00 1K FFF8H
FF800 2K FFB8H
FF000 4K FF38H
FE000 8K FE38H
FCO000 16K FC38H
F8000 32K F838H
F0000 64K FO38H
E0000 128K EO38H
C0000 256K CO038H

210911 ¢

iAPX 186,188 HARDWARE DESIGN OVERVIEW

LOWER MEMORY

The LCS line selects lower memory. The bottom of
memory contains the interrupt vector table, begin-
ning at location 00000H. The lower limit of memory
defined by this chip select is always OH; the upper
limit (and thus the size of the memory block) is
defined in the LMCS register. The LMCS register is
located at offset A2H in the internal control block.
The legal values for bits 6-15 and the resulting upper
address and memory block sizes are given in Table
5-4. Any combination of bits 6-15 not shown in
Table 5-4 will result in undefined operation. After
reset, the LMCS register value is undefined.
However, the LCS chip select line will not become
active until the LMCS register is accessed.

Any internally generated 20-bit address whose upper
16 bits are less than or equal to LMCS (with register
bits 0-5 equal to 1) will cause LCS to be active.
LMCS register bits R2-R0 are used to specify the
READY mode for the area of memory defined by
the register.)

Table 5-4 LMCS Programming Values

Memory LMCS Value
Upper Block (Assuming
Address Size RO=R1=R2=0)
003FFH 1K 0038H
007FFH 2K 0078H
00FFFH 4K 00F8H
01FFFH 8K 01F8H
03FFFH 16K 03F8H
O07FFFH 32K 07F8H
OFFFFH 64K OFF8H
1FFFFH 128K 1FF8H
3FFFFH 256K 3FF8H
MID-RANGE MEMORY

The four MCS lines select locations within a user-
locatable memory block, which can be located any-
where within the 1M byte memory address space
exclusive of the areas defined by UCS and LCS.
Both the base address and size of this memory block
are programmable.

The size of the memory block defined by the mid-
range select lines, as shown in Table 5-5, is de-
termined by bits 8-14 of the MPCS register. This
register is located at offset ASH in the internal con-
trol block: Note that one, and only one, of bits 8-14
must be set at a time; unpredictable operation of the
MCS lines will otherwise occur. The EX and MS bits
in the MPCS register relate to peripheral
functionality, and are described in Section 5.7.

5-10

Table 5-5 MPCS Programming Values

Total Block Individual MMCS Bits

Size Select Size 14-8

8K 2K 0000001B
16K 4K 0000010B
32K 8K 0000100B
64K 16K 00010008
128K 32K 00100008
256K 64K 0100000B
512K 128K 10000008

Each of the four MCS chip-select lines is active for
one of the four equal contiguous divisions of the
mid-range memory block. Thus, if the total block
size is 32K, each chip select is active for 8K of
memory, with MCSO being active for the first range
and MCS3 being active for the last range.

The base address of the mid-range memory block is
defined by bits 15-9 of the MMCS register, located
at offset A6H in the internal control block. Bits 15-9
correspond to bits A19-A13 of the 20-bit memory
address. (Bits A12-A0 of the base address are always
0.) The base address may be set to any integer multi-
ple of the size of the total memory block selected.
For example, if the mid-range block size is 32K (or
the size of the block for which each MCS line is
active is 8K), the block could be located at 10000H
or 18000H, but not at 14000H, since the first few
integer multiples of a 32K memory block are OH,
8000H, 10000H, 18000H, etc.

The 512K block size for the mid-range memory chip
selects is a special case. When using 512K, the base
address would have to be either 0000H or 80000H; if
it were to be programmed at 00000H when the LCS
line was programmed, there would be an internal
conflict between the LCS ready generation logic and
the MCS ready generation logic. Since the LCS chip-
select line does not become active until
programmed, while the UCS line is active at reset,
the memory base can be set only at 00000H. If this
base address is selected, however, the LCS range
must not be programmed.

MMCS bits R2-R0 specify the READY mode of op-
eration for all mid-range chip selects. All devices in

mid-range memory must use the same number of
WALIT states.

After reset, the contents of the MPCS and MMCS
registers are undefined. However, none of the MCS
lines will be active until both registers are accessed.

N 210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

Peripheral Chip Select

The iAPX 186,188 can generate chip selects for up to
seven peripheral devices. The chip select lines PCS0-
6 are active for seven contiguous blocks of 128
bytes. The base address of the memory block is user-
programmable, and may be located in either I/O or
memory space. Thus, peripheral devices may be
1/0- or memory-mapped.

PCSS and PCS6 can also be programmed to provide
latched address bits Al, A2. (When so
programmed, these lines cannot be used as peripher-
al selects.) The outputs can be connected directly to
the AO, Al pins used for selecting internal registers
or 8-bit peripherals. This scheme simplifies the hard-
ware interface because the 8-bit registers of peripher-
als are simply treated as 16-bit registers located on
even boundaries in I/O space or memory space
(only the lower 8-bits of the register are significant;
the upper 8-bits are “don’t cares”).

The peripheral chip selects are controlled by the
PACS and MPCS registers located in the internal
peripheral control block (see Figure 5-7). These
registers allow the base address of the peripherals to
be set, and specify whether the peripherals are
mapped into memory or I/O space. (The MPCS
register is also used to set the size of the mid-range
memory chip-select block, as described below.)
Both registers must be accessed before any of lhe
peripheral chip selects will become active.

The starting address of the peripheral chip-select
block is defined by the PACS register, located at
offset A4H in the internal control block. Bits 15-6 of
this register correspond to bits 9-10 of the 20-bit pro-
grammable base address (PBA) of the peripheral
chip-select block. Bits 9-0 of the PBA are all zeros. If
the chip-select block is located in I/0 space, bits

12-15 must be programmed zero, since the I/0 ad-
dress is only 16 bits wide. This address must be a
multiple of 1K bytes, i.e., the least significant 10 bits
of the starting address are always 0. Table 5-6 shows
the address range of each peripheral chip select with
respect to the PBA contained in the PACS register.
PACS bits 0-2 are used to specify READY mode for

PCS0-PCS3.

The mode of operation of the peripheral chip selects
is defined by the MPCS register. Bit 7 (EX) of this
register is used to select the function of PCSS and
PCS6; bit 6 (MS) is used to select whether the
peripheral chip selects are mapped into memory or
1/0 space. The programming of these bits is de-
scribed in Table 5-7. MPCS bits 0-2 are used to speci-
fy READY mode for PCS4-PCS6.

Table 5-6 PCS Address Ranges

PCS Line Active between Locations
PCS0 PBA —PBA+127
PCS1 PBA+128 —PBA+255
PCS2 PBA+256 —PBA+383
PCS3 PBA+384 —PBA+511
PCS4 PBA+512 —PBA+639
PCS5 PBA+640 —PBA+767
PCS6 PBA+768 — PBA+895

Table 5-7 MS, EX Programming Values

Bit Description

MS 1 = Peripherals mapped into memory space.
0 = Peripherals mapped into I/O space.

EX 0 =5 PCS lines. A1, A2 provided.
1 =7 PCS lines. A1, A2 are not provided.

15 6 5 3 0
ofrseT: Al uJuJ uJuJuluvlulu]uJu]l 1T 1] 1 Tr]r{ro]

A19

15 14 13 12

PACé Register

A10

10 9 8 7 6 5 4 3 2 1 0
oFrseT: ABH|[1 [Me[ms [ma[ma[m2]mi[mo[ex[ms] 1 [1] 1 Jre]ri]ro]

MPCS Register

Figure 5-7 Peripheral Chip Select Registers

5-11

210911

- ha roiiek

e

iAPX 186,188 HARDWARE DESIGN OVERVIEW

READY/WAIT Generation Logic

The 80186,188 can generate an internal READY
signal for each of the memory or peripheral CS lines.
In addition, 0-3 wait states may be inserted for all ac-
cesses to the area for which the chip select is active.
Finally, each chip-select range may be individually
programmed to either ignore external READY or to
factor external READY with the integrated ready
generator.

READY control consists of 3 bits for each CS line or
group of lines generated by the 80186,188. The inter-
pretation of the ready bits is shown in Table 5-8.
This allows independent ready generation for each
of upper memory, lower memory, mid-range
memory, peripheral devices 0-3 and peripheral
devices 4-6. The ready bits control an integrated wait
state generator which allows a programmable
number of wait states to be automatically inserted
whenever an access is made to the area of memory
associated with the chip select area. Each set of ready
bits includes a bit which determines whether the ex-
ternal ready signals (ARDY and SRDY) will be
used, or whether they will be ignored (i.e., the bus
cycle will terminate even though a ready has not
been returned on the external pins).

If the external READY is used (R2=0), the internal
ready generator operates in parallel with it, rather
than in series. For example, if the internal generator
is set to insert two wait states, but activity on the
external READY lines inserts four wait states, the
processor will insert four wait states, not six. This is
because the two wait states generated by the internal
generator overlapped the first two wait states
generated by the external ready signal. Note that the
external ARDY and SRDY lines are always ignored
during cycles accessing internal peripherals.

Table 5-8 READY Bits Programming

R2 | R1 | RO|Number of WAIT States Generated
0 0 0 |0 wait states, external RDY also used.
0 0 1 |1 wait state inserted, external RDY also
used.

0 1 0 |2 wait states inserted, external RDY also
used.

0 1 1 |3 wait states inserted, external RDY also

: used.

1 0 0 |0 wait states, external RDY ignored.

1 0 1 |1 wait state inserted, external RDY]
ignored.

1 1 0 |2 wait states inserted, external RDY]
ignored.

1 1 1 |3 wait states inserted, external RDY]
ignored.

5-12

R2-RO of each control word specifies the READY
mode for the corresponding block, with the excep-
tion of the peripheral chip selects: R2-R0 of PACS
set the PCS0-3 READY mode; R2-R0 of MPCS set
the PCS4-6 READY mode.

Chip Select/Ready Logic and Reset

Upon reset, the Chip-Select/Ready Logic will per-
form the following actions:

® All chip-select outputs will be driven HIGH

® Upon leaving RESET, the UCS line will be
programmed to provide chip selects to a 1K
block. The accompanying READY control
bits will be set at 011 to allow the maximum
number of internal wait states in conjunction
with external Ready consideration (i.e.,
UMCS resets to FFFBH).

® No other chip select or READY control regis-
ters have any predefined values after RESET.
They will not become active until the CPU ac-
cesses their control registers. Both the PACS
and MPCS registers must be accessed before
the PCS lines will become active.

5.8 DMA CONTROLLER

The iAPX 186,188 include two independent, high-
speed DMA channels which operate independently
of the CPU and drive all integrated bus interface
components (bus controller, chip selects, etc.).

Data can be transferred over these channels at the
rate of 2 MBytes/sec. The transfers can occur be-
tween memory and I/0, I/0 and I/0, or memory
and memory. Data may be transferred either in
bytes or words, to or from even or odd addresses.
Figure 5-8 shows the block diagram representation
of the DMA unit.

Every DMA cycle requires two to four bus cycles —
one or two to fetch the data to an internal register,
and one or two to deposit the data. This allows word
data to be located on odd boundaries, or byte data to
be moved from odd locations to even locations.
(This is normally difficult, since odd data bytes are
transferred on the upper 8 data bits of the 16-bit data
bus, while even data bytes are transferred on the
lower 8 data bits of the data bus.)

Each channel has four registers in the peripheral con-
trol block which define its specific operation. These
registers include a 20-bit source pointer (2 words), a
20-bit destination pointer (2 words), a 16-bit transfer
counter, and a 16-bit control word. All registers may
be modified or altered by the CPU during any DMA

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

ADDER CONTROL
20 BIT ADDER/SUBTRACTOR A IMER REQUEST
‘
I DRQ1
REQUEST [* D
SELECTION | /o
| TRANSFER COUNTER CH. 1 LOGIC
DEST. ADRS. POINTER CH. 1 D
SRC. ADRS. POINTER CH. 1 DMA l
CONTROL
1TRANSFER COUNTER CH. 0 DOIC
DEST. ADRS. POINTER CH. 0
SRC. ADRS. POINTER CH. 0
CHANNEL CONTROL WORD 1
CHANNEL CONTROL WORD 0
< INTERNAL ADDRESS/DATA BUS >

Figure 5-8 DMA Unit Block Diagram

activity. Changes made to these registers will be re-
flected immediately in DMA operation. Table 5-9
shows the format of these registers; the specific func-
tion of each register is discussed in the following
sections.

Table 5-9 DMA Control Block Format

Register Address

Register Name Ch.0 Ch. 1
Control Word CAH DAH
Transfer Count C8H D8H
Destination Pointer (upper 4 C6H D6H

bits)

Destination Pointer C4H D4H
Source Pointer (upper 4 bits! C2H D2H
Source Pointer COH DOH

Channel Control Word Register

The DMA control word register (see Figure 5-9)
contains bits which determine the precise mode of
operation for each channel, including for both data
source and destination whether the pointer points to
memory or I/0 space, and whether the pointer will
be incremented, decremented or left alone after
each DMA transfer. It also contains the (B/W) bit
which selects between byte or word transfers. Two
synchronization bits are used to determine the
source of the DMA requests: the TC bit determines
whether DMA activity will cease after a programmed
number of DMA transfers, and the INT bit is used
to enable interrupts to the processor when this has
occurred.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

15 13 12 1 10 9 8 7 6 5 4 3 2 1 0
T
DESTINATION M/ SOURCE
16 Dec IN({ 0 DEC INc | TC | INT | SYN P IR x| "otk | S0 w
Q
X = DON'T CARE.
B/W Byte/Word (0/1) Transfers. SYN: 00 No synchronization.
ST/STOP: Start/stop (1/0) Channel. (2 bits) NOTE: the ST bit will be cleared au-
tomatically when the contents of
CHG/NOCHG: Change/Do not change (1/0) the TC register reach zero regard-
ST/STOP bit. If this bit is set when less of the state of the TC bit.
writing to the control word, the
ST/STOP bit will be programmed by 01 Source synchronization.
the write to the control word. If this
bit is cleared when writing the con- 10 Source synchronization.
trol word, the ST/STOP bit will not
be altered. This bit is not stored; it 11 Unused.
will always be a O on read.
SOURCE:INC Increment source pointer by 1 or 2
INT: Enable interrupts to CPU on Trans- (depends on B/W) after each transfer.
fer Count termination. o
M/IO Source pointer by 1 or 2 (depends on
TC: If set, DMA will terminate when the B/W) after each transfer.
contents of the Transfer Count
register reach zero. The ST/STOP DEC Decrement source pointer by 1 or 2
bit will also be reset at this point if (depends on B/W) after each transfer.
TC is set. If this bit is cleared, the
DMA unit will decrement the trans- DEST: INC Increment destination pointer by 1 or 2
fer count register for each DMA (B/W) after each transfer.
cycle, but the DMA transfer will not .
stop when the contents of the TC M/10 Destination pointer is in M/IO space
register reach zero. (1/0).
P Channel priority - relative to other
channel.
0 low priority.
1 high priority.
Channels will alternate cycles if both
set at same priority level.
TDRQ 0: Disable DMA requests from timer 2.
1: Enable DMA requests from timer 2.
Bit3 Bit 3 is not used.

If both INC and DEC are specified for the same pointer,
the pointer will remain constant after each cycle.

Figure 5-9 DMA Qontrol Word Register and Bit Descriptions

5-14

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

The control word register also contains a start/stop
bit which is used to enable DMA transfers. When
this bit is set, a DMA transfer will occur whenever a
DMA request is made to the channel; if this bit is
cleared, no DMA transfers will be performed by the
channel. A companion bit, the CHG/NOCHG bit,
allows the contents of the DMA control register to
be changed without modifying the state of the
start/stop bit. The P bit is used to assign a priority to
each channel. See Figure 5-9 for more information
on each bit in the control word.

DMA Destination and Source
Pointer Registers

Each DMA channel has a 20-bit source and a 20-bit
destination pointer (see Figure 5-10). These pointers
are used to access the I/0 or memory location from
which data will be fetched or to which data will be
written. Each occupies two 16-bit registers in the
peripheral control block, with the lower four bits of
the upper register specifying the four high-order bits
of the 20-bit physical address. Thus, these registers
allow access to the entire 1 Mbyte address space of
the 80186,188.

The source and destination pointers may be indi-
vidually incremented or decremented after each
transfer. If word transfers are performed, the pointer
is incremented or decremented by two.

Since the DM A channels can perform transfers to or
from odd addresses, there is no restriction on values
for the pointer registers. However, higher transfer
rates can be obtained if all word transfers are per-
formed to even addresses, since this allows data to
be accessed in a single memory access.

DMA Transfer Count Register

The transfer count register specifies the number of
DMA transfers to be performed, up to a maximum
of 64K bytes or words. This register is decremented
after every DMA cycle (for both byte and word
transfers), regardless of the state of the TC bit in the

DMA control word register. If the TC bit in the
DMA control word is set, however, DMA activity
will terminate when the transfer count register
reaches zero. A transfer count of zero allows 216
transfers to be made.

DMA Requests

DMA transfers may be initiated by internally or ex-
ternally generated requests. Internally generated re-
quests are issued by timer 2 or by the DMA channel
itself. Externally generated transfers are those
requested by an external device. Each DMA channel
has a single DMA request line by which an external
device may request a DMA transfer. The synchroni-
zation bits in the DMA control register determine
whether this line is interpreted to be connected to
the source of the DM A data or the destination of the
DMA data.

For internal interrupt requests, the DMA channel
can be programmed such that whenever timer 2
reaches it maximum count, a DMA request is
generated. This is accomplished by setting the
TDRQ bit in the DMA channel control word
register. The DM A channel can also be programmed
to provide its own DMA requests. DMA transfer
cycles will then run continuously at the maximum
bus bandwidth until the programmed number of
DMA transfers (specified in the transfer count
register) have occurred. This is accomplished by pro-
gramming the synchronization bits in the DMA con-
trol register for unsynchronized transfers. During
unsynchronized transfers, the DMA controller
monopolizes the bus, i.e., no cycle stealing by the
CPU will occur.

Synchronized transfers are DMA transfers requested
by an external device and are of two types: source
synchronized or destination synchronized, that is, either
the source of the data or the destination of the data
may request the transfer. The only difference be-
tween the two is the time at which the DMA request
pin‘is sampled to determine if another DMA transfer
is required immediately after the currently executing
transfer.

HIGHER
ADDRESS

REGISTER XXX XXX

XXX A19-A16

LOWER

ADDRESS

REGISTER A15-A12 A11-A8

A7-A4 A3-A0

15

XXX = DON'T CARE

Figure 5-10 DMA Memory Pointer Register Format

5-15

210911

i
b
|
;i
?

iAPX 186,188 HARDWARE DESIGN OVERVIEW

When source synchronized (or unscynchronized)
transfers are performed, the DMA channel may
begin another transfer immediately after the end of
a previous transfer. This allows a complete transfer
to take place every two bus cycles or eight clock
cycles, assuming there are no wait states (see Table
5-10).

When destination synchronization transfers are
requested, the DMA controller relinquishes control
of the bus after every transfer. If no other bus activi-
ty is initiated, another DMA cycle will begin after
two processor clock cycles. This is done to allow the
destination device time to remove its request if
another transfer is not desired. Since the DMA con-
troller relinquishes the bus, the CPU can initiate a
bus cycle. As a result, a complete bus cycle will often
be inserted between destination synchronized
transfers. This results in the maximum DMA trans-
fer rates shown in Table 5-10. Note that no DMA
prefetching occurs when destination synchronization
is performed. Data is not fetched from the source ad-
dress until the destination device signals that it is
ready to receive it.

Table 5-10 Maximum DMA Transfer Rates

Type of
Synchronization

Selected CPU Running | CPU Halted
Unsynchronized 2MBytes/sec 2MBytes/sec
Source Synch 2MBytes/sec 2MBytes/sec. -
Destination Synch 1.3MBytes/sec | 1.5MBytes/sec

DMA Acknowledge

The 80186,188 generates no explicit DMA acknowl-
edge signal. Instead, the 80186,188 perform a read
or write directly -to the :.DMA requesting device.
However, if required, a DMA signal can be generat-
ed by a decode of an address. Also, since the chip-
select lines can be programmed. to be active for a
given block of memory or I/0 space, and the DMA
pointers can be programmed to point to the same
given block, a chip-select line could be used to indi-
cate a DMA acknowledge.

DMA Priority

The channels may be programmed such that one
channel is always given priority over the other, or
they may be programmed to alternate cycles when
both channels have DMA requests pending. DMA
cycles always have priority over internal CPU cycles
‘except between locked memory accesses or word ac-
cesses to-odd memory locations. An external bus

hold, however, takes priority over an internal DMA °

cycle. Because an intefrupt request cannot suspend a
DMA operation and the CPU cannot access
memory during a DMA cycle, interrupt latency time
will suffer during sequences of continuous DMA
cycles. An' NMI request, however, will cause all in-
ternal DMA activity to halt. This allows the CPU to
qunckly respond to the NMI request

DMA Programming

DMA cycles start whenever the ST/STOP bit of the
Control Register is set. If synchronized transfers are
programmed, a DRQ must also be generated..
Therefore, the source and destination transfer
pointers, and the transfer count register (if used)
must be programmed before this bit is set.

Each DMA channel control register may be changed
while the channel is operating. If the CHG/NOCHG
bit is cleared when the control word register is
written, the ST/STOP bit will not be modified by the
write. If multiple channel registers are modified, it is
recommended that a LOCKED string transfer be
used to prevent a DMA transfer from occurring be-
tween updates to the channel registers.

DMA Channels and Reset

Upon RESET, the DMA channels will perform the
following actions:

® The ST/STOP bit for each channel will be
reset to STOP.

e Any transfer in progress will be aborted.

TIMER UNIT

The 80186,188 include an integrated timer unit
which provides three 16-bit timer/counters (see
Figure 5-11). These timers operate independently of
the CPU. Two of the timers have input and output
pins allowing counting of external events and gener-
ation of arbitrary waveforms. The third timer is not
connected to any external pins and is useful for real-
time coding and time delay applications. In addition,

it can be used as a/prescaler for the other two, or as a
DMA request source.

The timers are controlled by eleven 16-bit registers
located in the internal peripheral control block.
Timers 0 and 1 are controlled by four registers each;
timer 3 makes use of three registers. The configura-

- tion of these registers in the peripheral control block

‘is shown in Table S-11.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

oE . OF o
NNA VY N houY ‘ REQ.
T T T2
INT. > INT. INT.
REQ. REQ. REQ.
T20UT
TIMER 0 Dl TIMER 1
MAX COUNT VALUE MAX COUNT VALUE | TIMER 2
A s A ﬂ
MAX COUNT VALUE| SLOCK [WaXCOUNT VALUE MAX COUNT VALUE
B B
MODE/CONTROL MODE/CONTROL MODE/CONTROL
WORD WORD WORD
S INTERNAL ADDRESS/DATA BUS T

ALL 16 BIT REGISTERS

Figure 5-11 Timer

Table 5-11 Timer Control Block Format

Register Offset
Register Name Tmr. 0| Tmr. 1 Tmr. 2
Mode/Control Word 56H SEH 66H .
Max Count B 54H 5CH | not present.
Max Count A 52H 5AH 62H
Count Register 50H 58H 60H

The count register contains the current value of the
timer and can be read or written whether the timer
is running or not. The value of this register will be in-
cremented for each timer event. The MAX COUNT
register defines the maximum count the timer will
reach. Timers 0 and 1 are equipped with a second
MAX COUNT register, which enables them to alter-
nate their count between two different MAX
COUNT values programmed by the user. The
mode/control register is used for programming the
timer’s specific mode of operation. These registers
are discussed in detail in the following three sections.

(

Count Registers

Each of the three timers has a 16-bit count register.
The current contents of this register may be read or
written by the processor at any time. If the register is

Block Diagram

written into while the timer is counting, the new
value will take effect in the current count cycle.

Because the count register is 16 bits wide, up to 26
timer events can be counted by a single
timer/counter. Every fourth CPU clock transition
can act as a timer event. In addition, transitions on
the external lines of timers 0 and 1 can act as timer
events for these timers, and timer 2 can be set to
produce interrupts that serve as timer events for
timers 0 and 1.

Max Count Registers

Timers 0 and 1 have two MAX COUNT registers,
while timer 2 has a single MAX COUNT register.
These contain the number of events the timer will
count.

After reaching the MAX COUNT register value, the
timer count value will reset to zero during the same
clock cycle, i.e., the maximum count value is never
stored in the count register itself. Each timer can
generate an interrupt whenever the timer count
value reaches a maximum count value, that is, an in-
terrupt can be generated whenever the value in
maximum count register A is reached, and when-
ever the value in maximum count register B is

5-17 210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

reached. If a timer generates a second interrupt re-
quest before the first interrupt request has been
serviced, the first interrupt request to the CPU will
be lost.

In timers 0 and 1, the MAX COUNT register used
can alternate between the two max count values
whenever the current maximum count is reached.
The timer is reset when the current count value
equals the max count being used. This means that if
the count is changed to be above the max count
value, or if the max count value is changed to be
below the current value, the timer will not reset to
zero, but rather will count to its maximum value,
“wrap around” to zero, then count until the max
count is reached.

Timer Mode/Control Register

The mode/control register allows the user to pro-
gram the specific mode of operation or check the
current programmed status of any of the three in-
tegrated timers. Figure 5-12 shows the bits in this
register and describes the function of each bit.

The ALT bit selects one of the two MAX COUNT
registers for comparisons. The CONT bit causes the

associated timer to run continuously. The EXT bit
selects between internal and external clocking for
the timer. The P bit is used to let timer 2 serve as a
clock for another timer. The RTG bit determines
the control function provided by an external input
pin. The EN bit provides control over the
RUN/HALT status. The INH bit allows for selective
updating of the EN bit. The INT bit enables inter-
rupts from the timer. The MC bit is set whenever
the timer reaches its final maximum count value.
The RIU bit indicates which MAX COUNT bit is
currently being used. Not all mode bits are provided
for timer 2; the following bits are hardwired: ALT,
EXT, P, RTG and IRU are all set to 0.

5.10 INTERRUPT CONTROLLER

The iAPX 186,188 integrated interrupt controllers
perform tasks of the interrupt controller in a typical
system. These include synchronization of interrupt
requests, prioritization of interrupt requests, and re-
quest type vectoring in response to a CPU interrupt
acknowledge. Nesting is provided so interrupt ser-
vice routines for lower priority interrupts may them-
selves be interrupt by higher priority interrupts. The
integrated interrupt controller block diagram is
shown in Figure 5-13.

15 14 13 12 1

5

4

IEN |Wlmrlmu[0 I.,.~|MC[RTGI P lEXTlALTICONT

ALT: - ’ :

The ALT bit determines which of two MAX COUNT regis-
ters is used for count comparison. If ALT = 0, register A
for that timer is always used, while if ALT = 1, the com-
parison will alternate between register A and register B
when each maximum count is reached. This alternation
allows the user to change one MAX COUNT register
v‘ghile the other is being used, and thus provides a
method of generating non-repetitive waveforms. Square

waves and pulse outputs of any duty cycle are a subset
of available signals obtained by not changing the final
count registers. The ALT bit also determines the func-
tion of the timer output pin. If ALT is zero, the output pin
will go LOW for one clock, the clock after the maximum
count is reached. If ALT is one, the output pin will reflect
the current MAX COUNT register being used (0/1 for
B/A).

Figure 5-12 Timer Mode/Control Register

5-18

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

CONT:

Setting the CONT bit causes the associated timer to run
continuously, while resetting it causes the timer to halt
upon maximum count. If CONT = 0 and ALT = 1, the
timer will count to the MAX COUNT register A value,
reset, count to the register B value, reset, and halt.

EXT:

The external bit selects between internal and external
clocking for the timer. The external signal may be
asynchronous with respect to the 80186 clock. If this
bit is set the timer will count LOW-to-HIGH transitions
for the input pin. If cleared, it will count an internal clock
while using the input pin for control. In this mode, the
function of the external pin is defined by the RTF bit.
The maximum input to output transition latency time
may be as much as 6 clocks. However, clock inputs may
be pipelined as closely together as every 4 clocks with-
out losing clock pulses.

P:

The prescaler bit is ignored unless internal clocking
has been selected (EXT = 0). If the P bit is a zero, the
timer will count at one-fourth the internal CPU clock
rate. If the P bit is a one, the output of timer 2 will be
used as a clock for the timer. Note that the user must ini-
tialize and start timer 2 to obtain the prescaled clock.

RTG:

Retrigger bit is only active for internal clocking (EXT =
0). In this case it determines the control function provid-
ed by the input pin.

If RTG = 0O, the input level gates the internal clock on
and off. If the input pin is HIGH, the timer will count; if
the input pin is LOW, the timer will hold its value. As in-
dicated previously, the input signal may be asynchro-
nous with respect to the 80186 clock.

When RTG = 1, the input pin detects LOW-to-HIGH
transitions. The first such transition starts the timer
running, clearing the timer value to zero on the first
clock and then incrementing thereafter. Further transi-
tions on the input pin will again reset the timer to zero,
from which it will start counting up again. If CONT = 0
when the timer has reached maximum count, the EN bit
will be cleared, inhibiting further timer activity.

EN:

The enable bit provides programmer control over the
timer’'s RUN/HALT status. When set, the timer is
enabled to increment subject to the input pin con-
straints in the internal clock mode (discussed
previously). When cleared, the timer will be inhibited
from counting. All input pin transitions during the time
EN is zero will be ignored. If CONT as zero, the EN bit is
automatically cleared upon maximum count.

INH:

The inhibit bit allows for selective updating of the
enable (EN) bit. If INH is a one during the write to the
mode/control word, then the state of the EN bit will be
modified by the write. If INH is a zero diring the write, the
EN bit will be unaffected by the operation. This bit is not
stored; it will always be aOon aread.

INT:

When set, the INT bit enables interrupts from the timer,
which will be generated on every terminal count. If the
timer is configured in dual MAX COUNT register mode,
an interrupt will be generated each time the value in
MAX COUNT register A is reached, and each time the
value in MAX COUNT register B is reached. If this
enable bit is cleared after the interrupt request has
been generated, but before a pending interrupt is
serviced, the interrupt request will still be in force. (The
request is latched in the interrupt Controller.)

MC:

The Maximum Count is set whenever the timer reaches
its final maximum count value. If the timer is configured
in dual MAX COUNT register mode, this bit will be set
each time the value in MAX COUNT register A is
reached, and each time the value in MAX COUNT regis-
ter B is reached. This bit is set regardless of the timer’s
interrupt-enable bit. The MC bit gives the user the ability
to monitor timer status through software instead of
through interrupts. Programmer intervention is required
to clear this bit.

RIU:

The Register in Use bit indicates which MAX COUNT
register is currently being used for comparison to the
timer count value. A zero value indicates register A. The
RIU bit cannot be written, i.e., its value is not affected
when the control register is written. It is always cleared
when the ALT bit is zero.

Not all model bits are provided for timer 2. Certain bits
are hardwired as indicated below:

ALT =0,EXT =0,P=0,RTG =0,RIU=0

Figure 5-12 Timer Mode/Control Register (continued)

5-19

210911

ié
|
!

iAPX 186,188 HARDWARE DESIGN OVERVIEW

— TIMER TlMER TIMER DMA DMA
1 INTO INT1 INT2 IN“ NMI
TIMER [INTERRUPT]
CONTROL REG. REQUEST REG.
DMA 0 INTERRUPT.
CONTROL REG. MASK REG.
DMAT IN-SERVICE
CONTROL REG. " or REG.
EXLINPUTO | v PRIOR. LEV.
CONTROL REG. v MASK REG.
EXT. INPUT 1 INTERRUPT
CONTROL REG. STATUS REG.
EXT. INPUT 2 VECTOR
CONTROL REG. GENERA-
EXT. INPUT 3 TION
CONTROL REG. LOGIC
INTERRUPT
REQUEST TO
PROCESSOR
INTERNAL ADDRESS/DATA BUS

Figure 5-13 Interrupt Controller Block Diagram

The 80186,188 can receive interrupts from a
number of sources, both internal and external. Inter-
nal interrupt sources (timers and DMA channels)
can be disabled by their own control registers or by
mask bits within the interrupt controller. The
80186,188 interrupt controller has its own control
registers that set the mode of operation for the
controller.

The interrupt controller operates in two major
modes: non-iRMX 86 mode (also called master
mode) and iRMX 86 mode. In master mode, the
integrated controller acts as the master interrupt con-
troller for the system; in iRMX 86 mode, the con-
troller operates as a slave to an external interrupt
controller which functions as the master interrupt
controller for the system. Some of the interrupt con-
troller registers and interrupt controller pins change
definition between these two modes, but the basic
function of the interrupt controller remains funda-
mentally the same.

Non-iRMX Mode

In non-iRMX (master) mode, the interrupt control-
ler presents its interrupt input directly to the
80186,188 CPU. Five pins are provided for external
interrupt sources. One of these pins is dedicated to
NMI. The other four (INTO-INT3) may be confi-
gured in three ways: as four interrupt input lines
with internally generated interrupt vectors; as an in-
terrupt line and an interrupt acknowledge line
(called the “cascade mode”) along with two other
input lines with internally generated interrupt

5-20

vectors; or as two interrupt input lines and two
dedicated interrupt acknowledge output lines. These
four interrupt inputs can be programmed in either
edge- or level-trigger mode, as specified by the LTM
bit in the source’s control register.

The interrupt controller will generate interrupt vec-
tors for the integrated DMA channels and the in-
tegrated timers. In addition, interrupt vectors for the
external interrupt lines will be generated if they are
not configured in cascade or special fully nested
mode (see below).

Each interrupt source has a pre-assigned vector type
(see Table 5-2). Vector types point to address infor-
mation for interrupt service routines. The vectors
generated are fixed and cannot be changed.

The user can program the interrupt sources into any
of eight different priority levels. Programming is
done by placing a 3-bit priority level (0-7) in the con-
trol register of each interrupt source. (A source with
a priority level of 4 has higher priority over all priori-
ty levels from 5 to 7. Priority registers containing
values lower than 4 have greater priority.) All inter-
rupt sources have preprogrammed default priority
levels.

If two requests with the same programmed priority
level are pending at once, the priority ordering
scheme shown in Table 5-2 is used. If the serviced in-
terrupt routine reenables interrupts, it allows other
requests to be serviced.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

The interrupt controller has three basic modes of op-
eration when it is configured in the non-iRMX
mode: fully nested mode, cascade mode and special
fully nested mode. The response to internal inter-
rupts is identical in all three modes; the function of
the four external interrupt pins differs in each mode.
The interrupt controller is set into one of these
modes by programming the correct bits in the INTO
and INT1 control registers (see below).

FULLY NESTED MODE

In the fully nested mode, INTO-INT3 are used as
direct interrupt requests. The vectors for these four
inputs are generated internally. An in-service (IS)
bit is provided for every interrupt source. Setting
this bit prevents the interrupt controller from
generating interrupt requests from lower-priority
devices, as well as from the interrupt source cur-
rently being serviced. This allows interrupt service
routines to operate with interrupts enabled (thus
insuring that higher-priority interrupts will be
serviced) without being interrupted by lower-priority
interrupts.

When a service routine has completed, the proper IS
bit must be reset by writing the proper pattern to the
EOI register. This is required to allow subsequent in-
terrupts from this interrupt source, and to allow ser-
vicing of lower-priority interrupts. An EOI command

is issued at the end of the service routine just before
the execution of the return from interrupt
instruction. If the fully nested structure has been
upheld, the next highest-priority source with its IS
bit set is then serviced.

CASCADE MODE

In the cascade mode, INTO-INT3 are configured
into interrupt input-dedicated acknowledge signal
pairs. The interconnection is shown in Figure 5-14.
INTO is an interrupt input interfaced to an 8259A;
INT2/INTAO serves as the dedicated interrupt ac-
knowledge signal to that peripheral. The same is true
for INT1 and INT3/INTA1. Each pair can selectively
be placed in the cascade or non-cascade mode by pro-
gramming the proper value in the INTO and INT1
control registers. The use of the dedicated acknowl-
edge signal eliminates the need for external logic to
generate INTA and device select signals.

The primary cascade mode allows the capability to
serve up to 128 external interrupt sources through
the use of external master and slave 8259As. Three
levels of priority are created, requiring priority reso-
lution in the 80186,188 interrupt controller, the
master 8259A, and the slave 8259As. If an external
interrupt is serviced, one IS bit is set at each of these
levels. When the interrupt service routine is
completed, up to three end-of-interrupt commands
must be issued by the programmer.

INTAO

INT

8259A
PIC

Figure 5-14 Cascade Mode Interrupt Connection

5-21 210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

SPECIAL FULLY NESTED MODE

The special fully nested mode is entered by setting
the SFNM bit in the INTO or INT1 control register.
This mode enables complete nestability with external
8259A masters. Normally, an interrupt request from
an interrupt source will not be recognized unless the
in-service bit for that source is reset. If more than
one interrupt source is connected to an external in-
terrupt controller, all of the interrupts will be chan-
nelled through the same 80186,188 interrupt request
pin. As a result, if the external interrupt controller
receives a higher-priority interrupt, its interrupt will
not be recognized by the 80186,188 controller until
the 80186,188 in-service bit is reset. In special fully
nested mode, the 80186,188 interrupt controller will
allow interrupts from an external pin regardless of
the state of the in-service bit for an interrupt source
in order to allow multiple interrupts from a single
pin. An in-service bit will continue to be set,
however, to inhibit interrupts from other lower-
priority 80186,188 interrupt sources.

Special procedures should be followed when reset-
ting IS bits at the end of interrupt service routines.
Software polling of the external master’s IS register
is required to determine if there is more than one bit
set. If so, the IS bit in the 80186,188 remains active
and the next interrupt service routine is entered.

OPERATION IN A POLLED ENVIRONMENT

All three modes may be used in a polled
environment. When polling, the processor disables
interrupts and then polls the interrupt controller
whenever it is convenient. Polling the interrupt con-
troller is accomplished by reading the poll register
(see Figure 5-16). Bit 15 in the poll register indicates
to the processor that an interrupt of higher priority is
requesting service. Bits 0-4 indicate the type vector
of the highest-priority source to be set.

It is often useful to be able to read the poll register
information without guaranteeing service of any
pending interrupts, i.e., without setting the indicated
in-service bit. The poll status word is provided for
this purpose. Poll register information is duplicated
in the poll status word, but reading the poll status
word does not set the associated in-service bit.
These words are located in two adjacent memory lo-
cations in the interrupt controller register file.

END-OF-INTERRUPT COMMAND

The end-of-interrupt (EOI) command is used by the
programmer to reset the In-Service (IS) bit when an

5-22

interrupt service routine is completed. The EOI com-
mand is issued by writing the proper pattern to the
EOI register. There are two types of EOI commands:
specific and nonspecific. The nonspecific command
does not specify which IS bit is reset. When issued,
the interrupt controller automatically resets the IS
bit of the highest priority source with an active ser-
vice routine. A specific EOI command requires that
the programmer send the interrupt vector type to
the interrupt controller indicating which source’s IS
bit is to be reset. This command is used when the
fully nested structure has been disturbed or the high-
est priority IS bit that was set does not belong to the
service routine in progress.

iRMX 86 Compatability Mode

The iAPX 186,88 integrated interrupt controllers
have a special iRMX 86 compatability mode that
allows the use of the 80186,188 within the iRMX 86
operating system interrupt structure. The controller
is set in this mode by setting bit 14 in the peripheral
control block relocation register and providing spe-
cial initialization software.

When iRMX mode is used, the internal 80186,188
interrupt controller will be used as a slave controller
to an external master interrupt controller. The inter-
nal 80186,188 resources will be monitored through
the internal interrupt controller, while the external
controller functions.as the system master interrupt
controller.

Because of pin limitations caused by the need to in-
terface to an external 8259A master, the internal in-
terrupt controller will no longer accept external
inputs. There are, however, enough 80186,188 inter-
rupt controller inputs (internally) to dedicate one to
each timer. In this mode, each timer interrupt
source has its own mask bit, IS bit, and control word.

The iRMX 86 operating system requires peripherals
to be assigned fixed priority levels. This is incompati-
ble with the normal operation of the 80186,188 inter-

. rupt controller. Thus, the initialization software

must program the proper priority levels for each
source. The required priority levels for the internal
interrupt sources in iRMX mode are shown in Table
5-12. These priority level assignments must remain
fixed in the iRM X mode of operation.

Table 5-12 Internal Source Priority Level

Priority Level Interrupt Source

- Timer 0

’ (reserved)
DMA 0
DMA 1
Timer 1
Timer 2

AHhWN—=-O

L

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

The iRMX 86 mode of operation allows nesting of
interrupt requests. When an interrupt is acknow-
ledged, the priority logic masks off all priority levels
except those with equal or higher priority.

The configuration of the 80186,188 with respect to
an external 8259A master is shown in Figure 5-15.
The INTO input is used as the 80186 CPU interrupt
input. INT3 functions as an output to send the 80186
slave-interrupt-requests to one of the 8 master-
PIC-inputs.

For information on external interfacing in iRMX 86
mode, see Volume 2.

VECTOR GENERATION IN THE iRMX 86 MODE

Vector generation in iRMX 86 mode is exactly like
that of an 8259A slave: the interrupt controller
generates an 8-bit vector which the CPU multiplies
by four and uses as an address into a vector table.
The five most significant bits of the vector are pro-
grammed by writing to the Interrupt Vector register
at offset 20H. The lower-order three bits are generat-
ed by the priority logic and represent the encoding of
the priority level requesting service.

SPECIFIC END-OF-INTERRUPT

In iRMX 86 mode, the specific EOI command oper-
ates to reset an in-service bit of a specific priority.
The user supplies a 3-bit priority level value that
points to an in-service bit to be reset. The command
is executed by writing the correct value in the specific
EOIl register at offset 22H.

Interrupt Controller Registers

The interrupt controller has a number of registers
which are used to control its operation. These regis-
ters have been referred to in the preceding discus-
sion of the interrupt controller’s various operations;
in the following sections they are individually
discussed.

The interrupt controller register model is shown in
Figure 5-16. It contains 15 registers, all of which can
be read or written unless otherwise specified. Some
of these registers have a different function depending
on the processor’s operating mode (master or iRMX
86). The interrupt controller registers for both
modes will be discussed together; differences in
function and implementation in the two modes will
be indicated where appropriate.

8259A
MASTER
T REQUESTS FROM
INTA 1RO OTHER SLAVES
INT
IR7
CA60-2

1=

80186 INT. IN
80186
INTO
INT1 SLAVE SELECT
INT2
INT3

CASCADE
ADDRESS DECODER

80186 SLAVE INTERRUPT OUTPUT

Figure 5-15 iRMX 86 Interrupt Controller Interconnection

5-23

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

OFFSET
INT3 CONTROL REGISTER 3EH
INT2 CONTROL REGISTER 3CH
INT1 CONTROL REGISTER 3AH
INTO CONTROL REGISTER 38H
DMA 1 CONTROL REGISTER 36H
DMA 0 CONTROL REGISTER 34H
TIMER CONTROL REGISTER 32H

INTERRUPT CONTROLLER STATUS REGISTER | 30H

INTERRUPT REQUEST REGISTER 2EH
IN-SERVICE REGISTER 2CH
PRIORITY MASK REGISTER 2AH
MASK REGISTER 28H
POLL STATUS REGISTER 26H
POLL REGISTER 240
EO! REGISTER 22H

iRMX 86 Mode

OFFSET
LEVEL 5 CONTROL REGISTER 3AH
(TIMER 2)
LEVEL 4 CONTROL REGISTER 384
(TIMER 1)
LEVEL 3 CONTROL REGISTER a6M
(DMA 1)
LEVEL 2 CONTROL REGISTER 3aH
(DMA 0)
LEVEL 0 CONTROL REGISTER a2H
(TIMER 0)
INTERRUPT-REQUEST REGISTER 2EH
IN-SERVICE REGISTER 2CH
PRIORITY-LEVEL MASK REGISTER 2AH
MASK REGISTER 28H
SPECIFIC EOI REGISTER 22H
INTERRUPT VECTOR REGISTER 20H

Non-iRMX 86 Mode

Figure 5-16 Interrupt Controller Registers

CONTROL REGISTERS

The interrupt controller includes seven control
registers, one for each interrupt source (see Figure
5-17). In master mode, four of these (INTO-INT3)
serve the external interrupt inputs, one is provided
for each of the two DMA channels, and one register
is used for the collective timer interrupts. In non-
iRMX 86 mode, the control registers for INT2 and
INT3 are not used, registers INTO and INT1 are
used for timer 1 and timer 2 respectively, and the
DMA 0 and DMA 1 registers are used for internal
interrupt sources.

These registers contain three bits (PRO, PR1 and
PR2), which select one of eight different priority
‘levels for the interrupt device (0 is highest priority, 7
is lowest p_riority), and a mask (MSK) bit to enable

the interrupt. When the mask bit is zero, the inter-
rupt is enabled; when it is set, the interrupt is
masked. The MSK bits in the individual control
registers are exactly the same bits as those in the
mask register, so that modifying these bits in the in-
dividual control register will also modify them in the
mask register, and vice versa.

INTERRUPT REQUEST REGISTER

The interrupt request register contains bits which
are automatically set when internal or external
(master mode only) interrupt requests are pending.
The format of this register is shown in Figure 5-18.
Whenever an interrupt request is made by the inter-
rupt source associated with a specific control
register, the bit in the interrupt request register is
set, whether or not the interrupt is enabled or is of
sufficient priority to cause an interrupt.

5-24) 210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

15 14 4 3 2 1 0
[oT o] - v o o« o "o T o [msk]rr2] pri] rro]
Timer/DMA Control Registers (Non-iRMX Mode)
1514 7 6 5 4 3 2 1 0
Lofo | « o o o« o T o [sn c |irm]msk] pr2] pPri] pro |
INTO/INT1 Control Registers (Non-iRMX Mode)
15 14 5 4 3 2 1 0
[o] o] o e . . D .] o |utm]| msk| PRz | PR1] Pro |

INT2/INT3 Control Registers (Non-iRMX Mode)

8 7 6 5 4 3 2 1 0

[I:I‘:J?l e e e e [olo[olololusxlmzlpmlwnol

PRO-2:

LTM:

Control Word (iRMX 86 Mode)

Priority programming information. Highest MSK: Mask bit, 1 = mask; 0 = nonmask.
Priority = 000, Lowest Priority = 111
C: Cascade mode bit, 1= cascade; 0 = direct
Level-trigger mode bit. 1 = level triggered;
0 = edge-triggered. Interrupt input levels SFNM: Special fully nested mode bit, 1 = SFNM
are active high. In level-triggered mode, an
interrupt is generated whenever the external
line is high. In edge-triggered mode, an in-
terrupt will be generated only when this
level is preceded by an inactive-to-active
transition on the line. In both cases, the
level must remain active until the interrupt
is acknowledged.

Figure 5-17 Control Register Format

5-25 210911

i
o
K

i
!
A
)
)

iAPX 186,188 HARDWARE DESIGN OVERVIEW

10 9

5 4 3 2 0

T T

IoIOI:II;IIZTI*)]IOIIM]DO];ITMRI

15 14 13

Non-iRMX 86 Mode

lololol . e e e e

7 6 5 4 3 2 1 0
l ol [) 1 0 Imaz[mml D1 1 o | o [TMRo]

iRMX 86 Mode

Figure 5-18 In-Service, Interrupt Request and Mask Register Format

DO and D1 are the interrupt request bits for the
DMA channels; the TMR bit is the logical OR of all
timer interrupt requests. These bits can be both read
and written, while the bits associated with the exter-
nal interrupt pins (master mode only) can be read
but not written (since values written to them are not
stored).

The external interrupt request bits show exactly
when an interrupt request is given to the interrupt
controller, so that if edge-triggered mode is selected,
the bit in the register will be HIGH only after an
inactive-to-active transition. For internal interrupt
sources, the register bits are set when a request ar-
rives and are reset when the processor acknowledges
the requests.

MASK REGISTER

The mask register contains a mask bit for each in-
terrupt source. When the bit in this register cor-
responding to a particular interrupt source is set, all
interrupts from that source will be masked. These
mask bits are exactly the same bits which are used in
the individual control registers; thus, changing the
state of a mask bit in this register will also change the
state of the mask bit in the individual interrupt con-
trol register corresponding to the bit, and vice versa.
The format for this register is shown in Figure 5-18.

PRIORITY MASK REGISTER

This register allows masking of all interrupts below a
particular interrupt priority level. The format of this
register is shown in Figure 5-19. The code in the
lower three bits indicate the priority of the current
interrupt being serviced. When an interrupt is

5-26

acknowledged, either by the processor running the
interrupt acknowledge or by the processor reading
the interrupt poll register (see below), these bits are
automatically set to the priority of the device whose
interrupt is being acknowledged. This prevents any
interrupts of lower priority (as set by the priority bits
in the interrupt control registers for interrupt
sources) from interrupting the processor. Thus, the
contents of this register indicates the lowest priority-
level interrupt which will be serviced. For example,
100 written into this register masks interrupts of
level five (101), six (110), and seven (111). The
register is reset to seven (111) upon RESET, i.e., in-
terrupts of all priority levels are enabled.

IN-SERVICE REGISTER

This register contains In-Service (IS) bits for each in-
terrupt source, indicating that its service routine is in
progress (see Figure 5-18). When an IS bit is set, no
interrupts will be generated from devices with a
lower priority level.

In iRMX 86 mode, bit positions 0, 4, and 5 corre-
spond to the integral timers. In master mode, a
single TMR bit is the IS bit for all three timers, and
I0-I3 are the IS bits for the external interrupt pins.
DO and D1 are the IS bits for the two DMA channels
in both modes.

The IS bit is set when the processor acknowledges an
interrupt request (either by an interrupt acknowl-
edge or by reading the poll register). The IS bit is
reset at the end of the interrupt service routine by an
EIO command issued by the CPU. This register may
be both read and written, i.e., the CPU may set in-
service bits without an interrupt ever occurring, or
may reset them without using the EOI function of
the interrupt controller.

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

POLL AND POLL STATUS REGISTERS
(MASTER MODE ONLY)

The interrupt controller contains a poll register and a
poll status register, both of which contain the same
polling information. The format of this register is
shown in Figure 5-20.

The INTREQ bit indicates an interrupt is pending
and is set when an interrupt of sufficient priority has
been received. It is automatically cleared when the
interrupt is acknowledged. When an interrupt is
pending, bits S0-S4 indicates the vector type of the
highest priority interrupt pending.

Reading the poll register will acknowledge the pend-
ing interrupt to the interrupt controller, just as if the
processor had acknowledged the interrupt through
interrupt acknowledge cycles. The processor will not
actually run any interrupt acknowledge cycles, and
will not vector through a location in the interrupt
vector table. Only the interrupt request, in-service
and priority mask registers in the interrupt controller
will be set appropriately.

Reading the poll status register, on the other hand,
will merely transmit the status of the polling bits
without modifying any of the other interrupt control-
ler registers. Both registers are read only; data writ-
ten to them is not stored.

Though these registers are not supported in iRMX
86 mode, accessing the poll register location when in
iRMX 86 mode will cause the interrupt controller to

“acknowledge” the interrupt (i.e., the in-service bit
and priority level mask register bits will be set).

EOI REGISTER

The end of interrupt register is used by the program-
mer to issue an End Of Interrupt command to the
controller. After receiving this command, the inter-
rupt controller automatically resets the in-service bit
for the interrupt (indicating its service routine has
completed) and the oriority mask register bits. Only
the specific form of the EOI command is supported
in iRMX 86 mode.

This register is write only; data written is not stored
and cannot be read back. The format of this register
is shown in Figure 5-21.

INTERRUPT STATUS REGISTER

This register contains general interrupt controller
status information. All the significant bits in this
register are read/write. The format of this register is
shown in Figure 5-22.

Three bits (IRT0-IRT2) are used to differentiate
among the three timer interrupts. This is required in
master mode because the timers share a single inter-
rupt control register. The bit associated with a timer
is automatically cleared after the interrupt request
for the timer is acknowledged. More than one of
these bits may be set at a time.

2 1

8
T T T T i
o oo | Jo

7 6 3
T 1 T
010 0lm2|m1lm0|

Non-iRMX Mode

3 2 1 0

| _o_[prm2[PrM1]PRMO]

I

iRMX 86 Mode

Figure 5-19 Priority Level Mask Register Format

INT
REQ

S2 S$1 SO

Figure 5-20 Poll Register Format

5-27

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

15 14 13

, SPEC/
nspec| O | ©

Non-iRMX Mode

15 14 13 8 7 6 5 4 3 2 1 0
I N R K K KN R E RN A EN
iRMX 86 Mode
Figure 5-21 EOI Register Format
15 14 7 6 5 4 3 2 4)
[orr] o] « J o o] o] o o[mr2]mr]irr]

Figure 5-22 Interrupt Status Register Format

The DHLT (DMA Halt Transfer) bit insures
prompt servicing of non-maskable interrupts by halt-
ing all DMA transfers. It is automatically set when-
ever a non-maskable interrupt occurs, and is reset
when an IRET instruction is executed. This bit may
also be set explicitly by the programmer. It is never
automatically cleared (except by RESET), so that if
DMA activity is desired, the programmer must clear
this bit after each NMI is received.

INTERRUPT VECTOR REGISTER
(iRMX 86 MODE ONLY)

The interrupt vector register is is used to specify the
5 most significant bits of the interrupt type vector
placed on the CPU bus in response to an interrupt
acknowledgement. The interrupt controller itself
provides the lower three bits of the interrupt vector
as determined by the priority level of the interrupt
request. The lower 3 significant bits of the interrupt
type are determined by the priority level of the
device causing the interrupt. The format of this regis-
ter is shown in Figure 5-23.

Figures 5-24 and 5-25 summarize the methods of in-
teraction among the various interrupt controller
registers.

Interrupt Controller and Reset

Upon RESET, the interrupt controller will perform
the following actions:

® All SFNM bits reset to 0, implying fully
nested mode.

® All PR bits in the various control registers set
to 1. This places all sources at lowest priority
(level111).

® AllLTM bits reset to 0, resulting in edge-sense
mode.

® Alllnterrupt Service bitsresetto 0.
® Alllnterrupt Request bitsreset to 0.3
® ANIMSK (Interrupt Mask) bitssetto1 (mask).

® AlIC (Cascade) bitsreset to 0 (non-cascade).

® AllPRM (Priority Mask) bits set to 1, implying
" nolevelsmasked.

® Initialized to non-iRMX 86 mode.

15

8 7 6 5 4 3 2

14 13
Io[o].....]
il

[[)

o!ulmJalnIm]oJl]:]

Figure 5-23 Interrupt Vector Register Format

5-28

210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

INTERRUPT
RECEIVED

\

SET INTERRUPT
REQUEST BIT

MASK
BIT CLEARED

HIGHEST
PRIORITY
INTERRUPT

REGISTER

SPECIAL NO
IN-S_IE_I;V!'?E FULLY NESTED
BIT SE MODE

|
|
i

INTERRUPT
TER ‘
iRMX86
REQUEST TO
MODE EXTERNAL
CONTROLLER

PRESENT <
INTERNAL ‘
REQUEST TO CPU |

Figure 5-24 80186 Interrupt Request Sequencing

5-29 210911

iAPX 186,188 HARDWARE DESIGN OVERVIEW

INTERRUPT ®
ACKNOWLEDGE

80186 WAIT FOR NEXT
INTERRUPT INTERRUPT
' SELECTED ACKNOWLEDGE
PLACE ®
GENERATE INTERRUPT TYPE
INTERRUPT TYPE ON BuS puRING
GENERATE INTA ® SECO
CYCLES YES CASCADE OR CYCLE
FOR EXTERNAL SPECIAL FULLY
INTERRUPT NESTED MODE
CONTROLLER
SET IN-SERVICE
\ & PRIORITY
MASK REGISTER
SET IN-SERVICE BITS
& PRIORITY -
MASK REGISTER PROVIDE
BITS HIGHEST
PRIORITY
INTERRUPT
VECTOR ON
INTERNAL BUS
A
SET IN-SERVICE
& PRIORITY
MASK REGISTER
BITS
(@ Before actual interrupt acknowledge is run by CPU.
{
(@ Two interrupt acknowledge cycles will be run; the interrupt type is read by the CPU on the second cycle.
@ Interrupt acknowledge cycles will not be run. The interrupt vector address is placed on an internal bus
and is not available outside the processor.
@ Interrupt type is not driven on bus iRMX86 mode.
Figure 5-25 80186 Interrupt Acknowledge Sequencing
5-30 210911

Processor Extension

—

CHAPTER 6
THE 8087 NUMERIC PROCESSOR EXTENSION

6.1 INTRODUCTION

This chapter describes the 8087 Numeric Processor
Extension (NPX). It is divided into the following
sections:

® Processor Overview

® Processor Architecture

® Computation Fundamentals
® Instruction Set

® Programming Facilities

® Special Features

® Programming Examples

The processor overview section covers both hard-
ware and software topics at a general level. Special
Features describes those features of the NPX that
will be of interest to specialized groups of users; it is
not necessary to understand this section to success-
fully use the 8087 in most applications. Hardware
coverage in this chapter is limited to discussing pro-
cessor facilities in functional terms. Timing, electrical
characteristics, and other physical interface data may
be found in Volume 2 of this set.

Note that throughout this chapter the term “CPU”
refers to either an 8086,88 configured in maximum
mode, or an 80186,188. To make best use of the
material in this chapter readers should have a good
understanding of the operation of the 8086,88 and
80186,188 CPUs.

6.2 PROCESSOR OVERVIEW

The 8087 Numeric Processor Extension (NPX) per-
forms arithmetic and comparison operations on a
variety of numeric data types; it also executes
numerous built-in transcendental functions (e.g.,
tangent and log functions). As a processor extension
to a maximum mode 8086,88, or an 80186,188, the
NPX effectively extends the register and instruction
sets of the host CPU and adds several new data types
as well. The programmer generally does not perceive
the 8087 as a separate device; instead, the computa-
tional capabilities of the CPU appear greatly
expanded.

The 8087 adds extensive high-speed numeric proces-
sing capabilities to an 8086,88- or 80186,188-based
system. It is specifically designed to deliver stable,
correct results when used in a straightforward fash-
ion by programmers who are not expert in numerical
analysis. Its applicability to accounting and financial
environments, in addition to scientific and engineer-
ing settings, further distinguishes the 8087 from the
“floating point accelerators” employed in- many
computer systems, including minicomputers and
mainframes. The NPX is housed in a standard
40-pin dual in-line package (Figure 6-1) and requires
a single + 5V power source.

vss[]1 N4 w0 Jvce
ataora]2 39[Jars/01s
a3)3 38| Jatess3
a12/012[4 37[Jar7/sa
anon[]s 36 [] atesss
at0/010 [} e 354] A19/56
asne[]7 34 [] 8HE/S7
aso8[|8 33 (] RG/GTH
a7/07]9 32[JiNT
a6/06] 10 8087 31[JRo/6To
as/Ds [11 NDP 30 [JNe
aa/pa [12 29[Inc
a3p3[)13 28 gs?
a2/02[| 14 7[5
ao1 [15 26 [150
ao/o0 [16 “25[Jaso
ne [2a[Jost
Nc[] 23]]BUSY
cuk e 22 []ReADY
vss[] 20 21 ;]asssr

NC = NO CONNECT

Figure 6-1 8087 Numeric Data

Processor Pin Diagram

The description of the 8087 in this section deliberate-
ly omits some operating details in order to provide a
coherent overall view of the processor’s capabilities.
Subsequent sections of the chapter will describe
these capabilities, and others, in more detail.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Evolution

The performance of first- and second-generation

microprocessor-based systems was limited in three
principal areas: storage capacity, input/output speed,
and numeric computation. The 8086,88 CPU broke
the 64K memory barrier, allowing larger and more
time-critical applications to be undertaken. The 8089
Input/Output Processor eliminated many of. the I/0
bottlenecks and permitted microprocessors to be
employed effectively in I/O-intensive designs. The
8087 Numeric Processor Extension clears the third
roadblock by enabling applications with. significant
computational requirements to be implemented
with microprocessor technology.

Figure 6-2 illustrates the progression of Intel nu-
meric products and events that have led to the devel-
opment of the 8087. In the mid-1970’s, Intel made
the commitment to expand the computational capa-
bilities of microprocessors from addition and
subtraction of integers to an array of widely useful
operations on real numbers. (Real numbers encom-
pass integers, fractions, and irrational numbers such
as m and +/2.) In 1977, the corporation adopted a
standard for representing real numbers in a
“floating point” format. Intel’s Floating Point Arith-
metic Library (FPAL) was the first product to utilize

100 -
IEEE STANDARD |
| FORBINARY FLOATING
w POINT ARITHMETIC PROPOSED
S [bbb i bl 4
z
<
=
o
o
w
[4
w
a
w
2
% 10+
-
w
-4
14
o — =
INTEL FLOATING POINT
. FORMATS ADOPTED |
L] L L}
1977 1978 1979 1980

YEAR INTRODUCED

Figure 6-2 8087 Evolution and
Relative Performance

“this standard format. FPAL is a set of subroutines

for the 8080/8085 microprocessors. These routines
perform arithmetic and limited standard functions
on single precision (32-bit) real numbers; an FPAL
multiply executes in about 1.5 ms (1.6.MHz 8080A
CPU). The next product, the iSBC™ 310 High
Speed Math Unit, essentially implements FPAL in a
single iSBC card, reducing a single-precision multiply
to about 100us. The Intel 8232 is a single-chip arith-
metic processor for the 8080/8085 family. The 8232
accepts double precision (64-bit) operands as well as
single precision numbers. It performs a single preci-
sion multiply in about 100us and multiplies double
precision numbers in about 875us (2 MHz version).

In 1979, a working committee of the Institute for
Electrical and Electronic Engineers (IEEE) proposed
an industry standard for minicomputer and: micro-
computer floating point arithmetic (J. Coonen, W.
Kahan, J. Palmer, T. Pittman, D. Stevenson, “A
Proposed Standard for Binary Floating Point
Arithmetic,” ACM SIGNUM Newsletter, October
1979). The intent of the standard is to promote
portability of numeric programs between computers
and to provide a uniform programming environment
that encourages the development of accurate, relia-
ble software. The proposed standard 'specifies re-
quirements and options for number formats as well
as the results of computations on these numbers.
The floating point number formats are identical to
those previously adopted by Intel and used in the
products described in this section.

The 8087 Numeric Processor Extension is the most
advanced development in Intel’s continuing effort
to provide improved tools for numerically-oriented
microprocessor applications. It is a single-chip hard-
ware implementation - of - the proposed IEEE
standard,. including all its:options for single and
double precision numbers. As such, it is compatible
with previous Intel numerics products; programs
written for the 8087 will be transportable to future
products that conform to the proposed IEEE
standard. The NPX also provides many additional
functions that are extensions to the proposed
standard.

Performance

As Figure 6-2 indicates, the 8087 provides about 10
times the instruction speed of the 8232 and a
100-fold improvement over FPAL. The 8087 ‘multi-
ples 32-bit and 64-bit real numbers in about 19us
and 27us respectively. Of course, the actual perfor-
mance of the NPX in a given system depends on
numerous application-specific factors.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-1 compares the execution times of several
8087 instructions with the equivalent operations ex-
ecuted in software on a 5 MHz 8086. The software
equivalents are highly optimized assembly language
procedures from the 8087 emulator, an NPX devel-
opment tool discussed later in this section.

The performance figures quoted in this section are
for operations on real (floating point) numbers. The
8087 also has instructions that enable it to utilize
fixed point binary and decimal integers of up to 64
bits and 18 digits, respectively. Using an 8087, rather
than multiple precision software algorithms for inte-
ger operations, can provide speed improvements of
10-100 times.

The 8087’s unique processor extension interface to
the CPU can yield an additional performance incre-
ment beyond that of simple instruction speed. No
overhead is incurred in setting up the device for a
computation; the 8087 decodes its own instructions
automatically in parallel with the CPU. Moreover,
built-in coordination facilities allow the CPU to pro-
ceed with other instructions while the 8087 is
simultaneously executing its numeric instruction.
Programs can exploit this processor parallelism to in-
crease total system throughput.

Usability

Viewed strictly from the standpoint of raw speed,
the 8087 enables serious computation-intensive
tasks to be performed by microprocessors for the
first time. The 8087 offers more than just high
performance, however. By synthesizing advances
made by numerical analysts in the past several years,
the NPX provides a level of usability that surpasses
existing minicomputer and mainframe arithmetic
units. In fact, the charter of the 8087 design team
was first to achieve exceptional functionality and
then to obtain high performance.

The 8087 is explicitly designed to deliver stable,
accurate results when programmed using straightfor-
ward “pencil and paper” algorithms. While this state-
ment may seem trivial, experienced users of
“floating point processors” will recognize its funda-
mental importance. For example, most computers
can overflow when two single precision floating
point numbers are multiplied together and then

Table 6-1 8087 Emulator Speed Comparison

Approximate Execution Time (us)

(5 MHz Clock)
Instruction
8087 Emauolgfion
Multiply (single precision) 19 1,600
Multiply (double precision) 27 2,100
Add 17 1,600
Divide (single precision) 39 3,200
Compare 9 1,300
Load (single precision) 9 1,700
Store (single precision) 18 1,200
Square root 36 19,600
Tangent 90 13,000
Exponentiation 100 17,100

6-3

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

divided by a third, even if the final result is a per-
fectly valid 32-bit number. The 8087 delivers the cor-
rectly rounded result. Other typical examples of
undesirable machine behavior in straightforward cal-
culations occur when solving for roots of a quadratic
equation:

—bx Vb2 — 4ac
2a

or computing financial rate of return, which involves
the expression: (1+i)™. Straightforward algorithms
will not deliver consistently correct results (and will
not indicate when they are incorrect) cn most
machines. To obtain correct results on traditional
machines under all conditions usually requires so-
phisticated numerical techniques that are foreign to
most programmers. General application program-
mers using straightforward algorithms will produce
much more reliable programs on the 8087. This
simple fact greatly reduces the software investment
required to develop safe, accurate computation-
based products.

Beyond traditional numerics support for “scientific”
applications, the 8087 has built-in facilities for
“‘commercial” computing. It can process decimal
numbers of up to 18 digits without rounding off
errors, and it performs exact arithmetic on integers as
large as 264, Exact arithmetic is vital in accounting ap-
plications where rounding errors may introduce
money losses that cannot be reconciled.

The NPX contains a number of facilities that can op-
tionally be invoked by sophisticated users. Examiples
of these advanced features include two models of
infinity, directed rounding, gradual underflow, and
traps to user-written exception handling software.

Applications

The NPX’s versatility and performance make it ap-
propriate for a broad array of numerically-oriented
applications. In general, applications that exhibit any
of the following characteristics can benefit by imple-
menting numeric processing on the 8087:

Numeric data vary over a wide range of

°
values, or include non-integral values;

® Algorithms produce very large or very small
intermediate results;

® Computations must be very precise, i.e., a

large number of significant digits must' be
maintained;

6-4

® Performance requirements exceed the capaci-
ty of traditional microprocessors;
® Consistently safe, reliable results must be

delivered using a programming staff that is
not expert in numerical techniques.

Note also that the 8087 can reduce software develop-
ment costs and improve the performance of systems
that do not utilize real numbers but operate on
multi-precision binary or decimal integer values.

A few examples, which show how the 8087 might be
utilized in specific numerics applications, are de-
scribed below. In many cases, these types of systems
have been implemented in the past with
minicomputers. The advent of the 8087 brings the
size and cost savings of microprocessor technology
to these applications for the first time.

Business data processing — The NPX’s ability
to accept decimal operands and produce exact
decimal results of up to 18 digits greatly sim-
plifies accounting programming. Financial cal-
culations which use power functions can take
advantage of the 8087’s exponentiation and
logarithmic instructions.

Process control — The 8087 solves dynamic
range problems automatically, and its extend-
ed precision allows control functions to be
fine-tuned for more accurate and efficient
performance. Control algorithms implement-
ed with the NPX also contribute to improved
reliability and safety, while the 8087’s speed
can be exploited in real-time operations.

Numerical control — The 8087 can move and
position machine tool heads with extreme
accuracy. Axis positioning also benefits from
the hardware trigonometric support provided
by the 8087.

Robotics — Coupling small size and modest
power requirements with powerful computa-
tional abilities, the NPX is ideal for on-board
six-axis positioning.

Navigation — Very small, light weight, and
accurate inertial guidance systems can be im-
plemented with the 8087. Its built-in trigo-
nometric functions can speed and simplify the
calculation of position from bearing data.

Graphics terminals — The 8087 can be used
in graphics terminals to locally perform many
functions which normally demand the atten-
tion of a main computer; these include
rotation, scaling, and. interpolation. By also

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

including an 8089 Input/Output Processor to
perform high speed data transfers, very
powerful and highly self-sufficient terminals
can be built from a relatively small number of
8086,88 family parts.

® Data acquisition — The 8087 can be used to
scan, scale, and reduce large quantities of
data as it is collected, thereby lowering storage
requirements as well as the time required to
process the data for analysis.

The preceding examples are oriented toward
“traditional” numerics applications. There are, in
addition, many other types of systems that do not
appear to the end user as “computational”, but can
employ the 8087 to advantage. Indeed, the 8087 pre-
sents the imaginative system designer with an oppor-
tunity similar to that created by the introduction of
the microprocessor itself. Many applications can be
viewed as numerically-based if sufficient computa-
tional power is available to support this view. This is
analogous to the thousands of successful products
that have been built around “buried” microproces-
sors, even though the products themselves bear
little resemblance to computers.

Programming Interface

The combination of an 8086,88 or 80186,188 CPU
and an 8087 generally appears to the programmer as
a single machine. The 8087, in effect, adds new data
types, registers, and instructions to the CPU. The
programming languages and the coprocessor archi-
tecture take care of most interprocessor coordination
automatically.

Table 6-2 lists the seven 8087 data types. Internally,
the 8087 holds all numbers in the temporary real
format; the extended range and precision of this
format are key contributors to the NPX’s ability to
consistently deliver stable, expected results. The
8087’s load and store instructions convert operands
between the other formats and temporary real. The
fact that these conversions are made, and that calcu-
lations may be performed on converted numbers, is
transparent to the programmer. Integer operands,
whether binary or decimal, yield correct integer
results, just as real operands yield correct real
results. Moreover, a rounding error does not occur
when a number in an external format is converted to
temporary real.

Computations in the 8087 center on the processor’s
register stack. These eight 80-bit registers provide
the equivalent capacity of 40 of the 16-bit registers
found in typical CPUs. This generous register space
allows more constants and intermediate results to be
held in registers during calculations, reducing
memory access and consequently improving execu-
tion speed as well as bus availability. The 8087 regis-
ter set is unique in that it can be accessed both as a
stack, with instructions operating implicitly on the
top one or two stack elements, and as a fixed register
set, with instructions operating on explicitly
designated registers.

Table 6-3 lists the 8087’s major instructions by class.
Assembly language programs are written in
ASM-86, the 8086,88/80186,188/8087 common as-
sembly language. ASM-86 provides directives for
defining all 8087 data types and mnemonics for all

Table 6-2 Data Types

Data Type Bits Di ;;g;}g‘:::::‘ al) Approximate Range (Decimal)
Word integer 16 4 —-32,768 < X < +32,767
Short integer 32 9 -2x109 < X < +2x10°
Long integer 64 18 —-9x1018 < X < +9x10'8
Packed decimal 80 18 -99...99 < X < +99...99 (18 digits)
Shortreal* 32 6-7 8.43x10°%7 < |X| < 3.37x10%8
Long real* 64 15-16 4.19x107397 < |X| < 1.67x10%08
Temporary real 80 19 3.4x1074932 < x| < 1.2x10%932

*The short and long real data types correspond to the single and double precision data types

defined in other Intel numerics products.

6-5

210911

p

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-3 Principal Instructions

Class Instructions

Data Transfer Load (all data types), Store (all data types), Exchange

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed,
Divide Reversed, Square Root, Scale, Remainder,
Integer Part, Change Sign, Absolute Value, Extract

Comparison Compare, Examine, Test

Transcendental Tangent, Arctangent, 2X 1 » YeLogy(X +1), YeLog,(X)

Constants 0,1, 1, Logqg2, LOge2, Log,10, Log,e

Processor Control Load Control Word, Store Control Word, Store Status
Word, Load Environment, Store Environment, Save,
Restore, Enable Interrupts, Disable Interrupts, Clear
Exceptions, Initialize

instructions. The fact that some instructions in a pro-
gram are executed by the 8087 and others by the
CPU is usually of no concern to the programmer. All
8086,88 addressing modes may be used to access
memory-based 8087 operands, enabling convenient
processing of numeric arrays, structures, based
variables, etc.

NPX routines may also be written in PL/M-86,
Intel’s high-level language for the 8086,88 and
80186,188 CPUs. PL/M-86 provides the program-
mer with access to many 8087 facilities while re-
ducing the programmer’s need to understand the
architecture of the chip.

Two features of the 8087 hardware further simplify
numeric application programming. First, the 8087 is
invoked directly by the programmer’s instructions.
There is no need to write instructions that “address”
the NPX as an “I/O device”, or to incur the over-
head of setting up a DMA operation to perform data
transfers. Second, the NPX automatically detects ex-
ception conditions that can potentially damage a cal-
culation at run-time. On-chip exception handlers are
automatically invoked by default to field these
exceptions, so that a reasonable result is produced
and execution may proceed without program
intervention. Alternatively, the 8087 can interrupt
the CPU and thus trap to a user procedure when an
exception is detected.

Besides the assembler and compiler, Intel provides a
software emulator for the 8087. The 8087 emulator
(E8087) is a software package that provides the func-
tional equivalent of an 8087; it executes entirely on
an 8086,88 or 80186,188 CPU. The emulator allows

8087 routines to be developed and checked out on
an 8086,88 or 80186,188 execution vehicle before
prototype 8087 hardware is operational.

At the source code level, there is no difference be-
tween a routine that will ultimately run on an 8087
or on a CPU emulation of an 8087. At link time, the
decision is made whether to use the NPX or the soft-
ware emulator; no recompilation or re-assembly is
necessary. Source programs are independent of the
numeric execution vehicle: except for timing, the op-
eration of the emulated NPX is the same as for “real
hardware”. The emulator also makes it simple for a
product to offer the NPX as a “plug-in” performance
option without the necessity of maintaining two sets
of source code. The 80186,188 provides a trap when
an escape (to the 8087) opcode is encountered.

Hardware Interface

As a processor extension to an 8086,88 or
80186,188, the 8087 is wired directly to the CPU as
shown in Figure 6-3. The CPU’s queue status lines
(QS0 and QS1) enable the NPX to obtain and
decode instructions in synchronization with the
CPU. The NPX’s BUSY signal informs the CPU that
the NPX is executing; the CPU WAIT instruction
tests this signal to ensure that the NPX is ready to
execute a subsequent instruction. The NPX can in-
terrupt the CPU when- it detects an exception. The
NPX’s interrupt request line is typically routed to
the CPU through an 8259A Programmable Interrupt
Controller.or the 80186,18888 integrated controller.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

r— —=-1

INT '—-———'P INTR

8259A

I PIC l

L | RQ/GT1
QS0 St

8086/8088
CLK "cpy

TEST

(R

)

QS0 Qs1
8284 75/570
GENERATOR
CLK T ok 3087

t INT
RQ/GT1

BUSY

8086
FAMILY MULTIMASTER
BUS SYSTEM
INTERFACE BUS
COMPONENTS

! Y
| M =&

| |
— - o 8089

e — —

! i

q
I

M=
|

MULTIMASTER LOCAL BUS

Y---_-

Figure 6-3 NDP Interconnect

The NPX uses one of its host CPU’s request/grant
lines to obtain control of the local bus for data trans-
fers (loads and stores). The other CPU request/-
grant line is available for general system use, for
example, by a local 8089 Input/Output Processor. A
local 8089 may also be connected to the 8087’s
RQ/GT1 line. In this configuration, the 8087 passes
the request/grant handshake signals between the
CPU and the IOP when the 8087 is not in control of
the bus, the 8087 relinquishes the bus (at the end of
the current bus cycle) upon a request from the con-
nected IOP, giving the IOP higher priority than
itself. In this way, two local 8089’s can be configured
in a module that also includes a CPU and an 8087.

The 8086, 8088 and 8087 all utilize the same clock
generator and system bus interface components
(bus controller, latches, transceivers, and bus
arbiter). Thus, no additional hardware beyond the

6-7

8087 is required to add powerful computational capa-
bilities to 8086, 88- based systems. For 80186,
188-based systems, some additional hardware is re-
quired to interface to the 8087. Refer to Volume 2
for more information.

6.3 PROCESSOR ARCHITECTURE

As shown in Figure 6-4, the NPX is internally divid-
ed into two processing elements, the control unit
(CU) and the numeric execution unit (NEU). In
essence, the NEU executes all numeric instructions,
while the CU fetches instructions, reads and. writes
memory operands, and executes the processor con-
trol class of instructions. The two elements are able
to operate independently of one another, allowing
the CU to maintain synchronization with the CPU
while the NEU executes numeric instructions.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

STATUS WORD

[|
| I
I CONTROL WORD I
| |
| .
I NEU INSTRUCTION

EXPONENT
MODULE

MICROCODE

EXPONENT FRACTION
BUS BUS

PROGRAMMABLE
SHIFTER

ARITHMETIC
MODULE

INTERFACE

TEMPORARY

16 REGISTERS

CONTROL
UNIT
DATA
I OPERANDS .
QUEUE
I |
1
I
| I
| |
| 4 -4 I
sraros e RRTERERRE |
ADDRESS H Eg&ﬁ';g%« |
L ——_—_ _L

7
6)
(5)
(4)
3)
(2)
m
)

— REGISTER STACK

OXOE OP-

80 BITS

Figure 6-4 8087 Block Diagram

Control Unit

The CU keeps the 8087 operating in synchronization
with its host CPU. 8087 instructions are intermixed
with CPU instructions in a single instruction stream
fetched by the CPU. By monitoring the status signals
emitted by the CPU, the NPX control unit can deter-
mine when an instruction is being fetched. When the
instruction byte or word becomes available on the
local bus, the CU taps the bus in parallel with the
CPU and obtains that portion of the instruction.

The CU maintains an instruction queue that is identi-
cal to the queue in the host CPU. By monitoring the
CPU’s queue status lines, the CU is able to obtain
and decode instructions from ‘the queue in syn-
chronization with the CPU. In effect, both proces-
sors fetch and decode the instruction stream in
parallel.

The two processors execute the instruction stream
differently, however. The first five bits of all 8087
machine instructions- are identical; these bits desig-
nate the coprocessor escape (ESC) class of
- instructions. The control unit ignores all instructions
that do not match these bits, since these instructions
are directed to the CPU only. When the CU decodes

6-8

an instruction containing the escape code, it either
executes the instruction itself, or passes it to the
NEU, depending on the type of instruction.

The CPU distinguishes between ESC instructions
that reference memory and those that do not. If the
instruction refers to a memory operand, the CPU
calculates the operand’s address and then performs
a “dummy read” of the word at that location. This is
anormal read cycle, except that the CPU ignores the
data it receives. If the ESC instruction does not con-
tain a memory reference, the CPU simply proceeds
to the next instruction.

A given 8087 instruction (an ESC to the CPU) will
either require loading an operand from memory into
the 8087, or will require storing an operand from the
8087 into memory, or will not reference memory at
all. In the first two cases, the CU makes use of the
“dummy read” cycle initiated by the CPU. The CU
captures and saves the operand address that the
CPU places on the bus early in the “dummy read”.
If the instruction is an 8087 load, the CU additionally
captures the first (and possibly ‘only) word of the
operand when it becomes available on the bus. If the
operand to be loaded is longer than one word, the
CU immediately obtains the bus from the CPU and

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

reads the rest of the operand in consecutive bus
cycles. In a store operation, the CU captures and
saves the operand address as in a load, and ignores
the data word that follows in the “dummy read”
cycle. When the 8087 is ready to perform the store,
the CU obtains the bus from the CPU and writes the
operand at the saved address using as many consecu-
tive bus cycles as are necessary to store the operand.

Numeric Execution Unit

The NEU executes all instructions that involve the
register stack; these include arithmetic, comparison,
transcendental, constant, and data transfer instruc-
tions. The data path in the NEU is 68 bits wide and
allows internal operand transfers to be performed at
very high speeds.

Register Stack

Each of the eight registers in the 8087’s register
stack is 80 bits wide, and each ‘is divided into the
“fields” shown in Figure 6-5. This format corre-
sponds to the NPX’s temporary real data type that is
used for all calculations. Section 6.6 describes in
detail how numbers are represented in the tempo-
rary real format.

7 64 63 0

q\jxpouzm | SIGNIFICAND 1
SIGN

Figure 6-5 Register Structure

At a given point in time, the ST field in the status
word (described shortly) identifies the current top-
of-stack register. A load (“push”) operation decre-
ments ST by 1 and loads a value into the new top
register. A store-and-pop operation stores the value
from the current top register and then increments
ST by 1. Thus, like 8086/80186 stacks in memory,
the 8087 register stack grows “down” toward lower-
addressed registers.

Instructions may address registers either implicitly
or explicitly. Many instructions operate on the regis-
ter at the top of the stack. These instructions implicit-
ly address the register pointed to by ST. For
example, the ASM-86 instruction FSQRT replaces
the number at the top of the stack with its square
root; this instruction takes no operands because the
top-of-stack register is implied as the operand. Other
instructions allow the programmer to explicitly speci-
fy the register that is to be used. Explicit register
addressing is “top-relative” where the ASM-86 ex-
pression ST denotes the current stack top and ST (i)

refers to the ith register from ST in the stack (0 i 7).
For example, if ST contains 011B (register 3 is the
top of the stack), the following instruction would
add registers 3 and 5:

FADD ST,ST(2)

In typical use, the programmer may conceptually
“divide” the registers into a fixed group and an ad-
justable group. The fixed registers are used like the
conventional registers in a CPU, to hold constants,
accumulations, etc. The adjustable group is used like
a stack, with operands pushed on and results popped
off. After loading, the registers in the fixed group
are addressed explicitly, while those in the adjustable
group are addressed implicitly. Of course, all regis-
ters may be addressed using either mode, and the
“definition” of the fixed versus the adjustable areas
may be altered at any time. Section 6.8 contains a
programming example that illustrates typical register
stack use.

The stack organization and top-relative addressing
of the registers simplify subroutine programming.
Passing subroutine parameters on the register stack
eliminates the need for the subroutine to “know”
which registers actually contain the parameters and
allows different routines to call the same subroutine
without having to observe a convention for passing
parameters in dedicated registers. So long as the
stack is not full, each routine simply loads the
parameters on the stack and calls the subroutine.
The subroutine addresses the parameters as ST,
ST(1), etc., even though ST may, for example, refer
to register 3 in one invocation and register S in
another.

Status Word

The status word reflects the overall condition of the
8087; it may be examined by storing it into memory
with an NPX instruction and then inspecting it with
CPU code. The status word is divided into the fields
shown in Figure 6-6. The busy field (bit 15) indicates
whether the NPX is executing an instruction (B=1)
orisidle (B=0).

Several 8087 instructions (for example, the compari-
son instructions) post their results to the condition
code (bits 14 and 10-8 of the status word). The
principal use of the condition code is for conditional
branching. This may be accomplished by executing
an instruction that sets the condition code, storing
the status word in memory and then examining the
condition code with CPU instructions.

210911

b
'a
i
:
i

THE 8087 NUMERIC PROCESSOR EXTENSION

15
Lo fes]

(ST, lC?lC‘I[COlI;[| lueLoleoslts

L EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)
INVALID OPERATION

DENORMALIZED OPERAND
ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT REQUEST

CONDITION CODE(M

STACK TOP POINTER()

condition code interpretation.
(2 ST values:
000 = register 0 is stack top
001 = register 1is stack top

.
111 = register 7 is stack top

(1) See descriptions of compare, test, examine and r inder instructions in

BUSY

S.7 for

Figure 6-6 Status Word Format

Bits 13-11 of the status word point to the 8087 regis-
ter that is the current stack top (ST). Note that if
ST=000B, a “push” operation, which decrements
ST, produces ST=111B; similarly, popping the stack
with ST=111B yields ST=000B.

Bit 7 is the interrupt request field. The NPX sets this
field to record a pending interrupt to the CPU.

Bits 5-0 are set to indicate that the NEU has detected
an exception while executing an instruction. Section
6.4 explains these exceptions.

6-10

Control Word

To satisfy a broad range of application requirements,
the NPX provides several processing options which
are selected by loading a word from memory into
the control word. Figure 6-7 shows the format and
encoding of the fields in the control word; it is
provided here for reference. Section 6.4 explains the
use of each of these 8087 facilities except the
interrupt-enable control field, which is covered in
Volume 2 of this set.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Tag Word tag word is to optimize the NPX’S performance
The tag word marks the content of each register as under certa’ - circumstances, and programmers ordi-
shown in Figure 6-8. The principal function of the narily need not be concerned with it.
15 7 0
I, . [e] re | pc [em| [em[um|om|zm]om] m]
|_ EXCEPTION MASKS (1 = EXCEPTION IS MASKED)
INVALID OPERATION
DENORMALIZED OPERAND
ZERODIVIDE
OVERFLOW
UNDERFLOW
PRECISION
(RESERVED)

INTERRUPT-ENABLE MASK()
PRECISION CONTROL(2)
ROUNDING CONTROL®)
INFINITY CONTROL(®)
(RESERVED)

(1 Interrupt-Enable Mask:
0 = Interrupts Enabled
1 = Interrupts Disabled (Masked)
(2 Precision Control:
= 24 bits
01 = (reserved)
10 = 53 bits
11 = 64 bits
(3 Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (toward —«)
10 = Round Up (toward +x)
11 = Chop (Truncate Toward Zero)
(4 Infinity Control:
0 = Projective
1 = Affine

Figure 6-7 Control Word Format

15 7 0
lmfm l TAG(®) | TAG(S) I TAG() I TAGR) l TA?(z)lTA?U)] TAG() I

Tag values:
0 = Valid (Normal or Unnormal)
01 = Zero (True)
10 = Special (Not-A-Number, «, or Denormal)
11 = Empty

Figure 6-8 Tag Word Format

6-11

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Exception Pointers

The exception pointers (see Figure 6-9) are provided
for user-written exception handlers. Whenever the
8087 executes an instruction, the CU saves the in-
struction address and the instruction opcode in the
exception pointers. In addition, if the instruction
references a memory operand, the address of the
operand is retained also. An exception handler can
store these pointers in memory and thus obtain in-
formation concerning the instruction that caused the
exception.

[OPERAND ADDRESS()
| wstrucTion opcoDE®@
| INSTRUCTION ADDRESS(")
10 0

(1) 20-bit physical address
(2) 11 least significant bits of opcode; 5 most sig-
nificant bits are always 8087 hook (11011B)

Figure 6-9 Exception Pointers Format

6.4 COMPUTATION FUNDAMENTALS

This section covers 8087 programming concepts that
are common to all applications. It describes the
8087’s internal number system and the various types
of numbers that can be employed in NPX programs.
The most commonly used options for rounding, pre-
cision and infinity (selected by fields in the control
word) are described, with exhaustive coverage of
less frequently used facilities deferred to the Section
6.7, Special Topics. Exception conditions which may
arise during execution of NPX instructions are also
described, along with the options that are available
for responding to these exceptions.

Number System

The system of real numbers that people use for
pencil and paper calculations is conceptually infinite
and continuous. There is no upper or lower limit to
the magnitude of the numbers one can employ in a
calculation, or to the precision (number of significant
digits) that the numbers can represent. When consid-
ering any real number, there are always an infinity
of numbers both larger and smaller. There is also an
infinity of numbers between (i.e., with more signifi-
cant digits than) any two real numbers. For
example, between 2.5 and 2.6 are 2.51, 2.5897,
2.500001, etc.

Ideally, it would be desirable for a computer to be
able to operate on the entire real number system. In
practice this is not possible. Computers, no matter
how large, ultimately have fixed size registers and
memories that limit the system of numbers that can
be accommodated. These limitations proscribe both
the range and the precision of numbers. The result is
a set of numbers that is finite and discrete, rather
than infinite and continuous. This sequence is a
subset of the real numbers, which is designed to
form a useful approximation of the real number
system.

Figure 6-10 superimposes the basic 8087 real
number system on a real number line (decimal num-
bers are shown for clarity, although the 8087 actually
represents numbers in binary). The dots indicate the
subset of real numbers the 8087 can represent as the
data and final results of calculations. The 8087’s
range is approximately +4.19x1073%7 to
+1.67x103%8. Applications that are required to deal
with data and final results outside this range are rare.
By comparison, the range of the IBM 370 is about
+0.54x10~ 78 to £0.72x1076.

The finite spacing in Figure 6-10 illustrates that the
NPX can represent a great many, but not all, of the
real numbers in its range. There is always a “gap” be-
tween two “adjacent” 8087 numbers, and it is possi-
ble for the result of a calculation to fall in this space.
When this occurs, the NPX rounds the true result to
a number that it can represent. Thus, a real number
that requires more digits than the 8087 can accom-
modate (e.g., a 20 digit number) is represented with
some loss of accuracy. Notice also that the 8087’s
representable numbers are not distributed evenly
along the real number line. There are, in fact, an
equal number of representable numbers between
successive powers of 2 (i.e., there are as many repre-
sentable numbers between 2 and 4 as between
65,536 and 131,072). Therefore, the “gaps” between
representable numbers are “larger” as the numbers
increase in magnitude. All integers in the range
+264 however, are exactly representable.

In its internal operations, the 8087 actually employs
a number system that is a substantial superset of
that shown in Figure 6-10. The internal format
(called temporary real) extends the 8087’s range to
about +3.4x1074932 {0 +1.2x10%32, and its preci-
sion to about 19 (equivalent decimal) digits. This
format is designed to provide extra range and preci-
sion for constants and intermediate results, and is
not normally intended for data or final results.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

From a practical standpoint, the 8087’s set of real
numbers is sufficiently “large” and “dense” so as
not to limit the vast majority of microprocessor
applications. Compared to most computers, includ-
ing mainframes, the NPX provides a very good
approximation of the real number system. It is im-
portant to remember, however, that it is not an
exact representation, and that arithmetic on real
numbers is inherently approximate.

Conversely, and equally important, the 8087 does
perform exact arithmetic on its integer subset of the
reals. That is, an operation on two integers returns
an exact integral result, provided that the true result
is an integer and is in range. For example, 4+2

yields an exact integer, 1+ 3 does not, and 240 x 230
+1 does not, because the result requires greater
than 64 bits of precision.

Data Types and Formats

The 8087 recognizes seven numeric data types,
divided into three classes: binary integers, packed
decimal integers, and binary reals. Figure 6-11 sum-
marizes the format of each data type. In the figure,
the most significant digits of all numbers (and fields
within numbers) are the leftmost digits. Table 6-2
provides the range and number of significant
(decimal) digits that each format can accommodate.

NEGATIVE RANGE \ POSITIVE RANGE ,
———— (NORMALIZED) ! l (NORMALIZED) R
1

.
! s 4 3 2 1 ! ' 1m3 a s :
] . . e é é é 4 °
o # ; # : : | i L4 T T T

1.67x10308 4.19x10-307 4.19x10°307 1.67x10308

L— 2.00000000000000000
(NOT REPRESENTABLE)
1
PRECISION: |«—18 DIGITS =]

Figure 6-10 8087 Number System

6-13

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

<———— INCREASING SIGNIFICANCE

WORD INTEGER |S| MAGNITUDE ggn?ﬁismsnn

15 0
(TWO'S

SHORT INTEGER |s MAGNITUDE S e MENT)
31 0

LONG INTEGER |S MAGNITUDE H oML EMENT)
63 0

MAGNITUDE
PACKEDDECIMAL IS X di7, dyg;d15, d1a,d13,d12,d11, d1oy dg , dg y d7 4 ds) ds, dg 3, dp, dy, do
79 72 0
BIASED
SHORTREAL |s| o BIASER | SIGNIFICAND
31 23 0
o
BIASED
LoNGREAL |s| g SIASED S SIGNIFICAND
63 52 0
1
TEMPORARY REAL |S EXPONENT n SIGNIFICAND
79 64 63 % 0
NOTES:

S = Sign bit (0 =positive, 1=negative)
dn = Decimal digit (two per byte)
X = Bits have no significance; 8087 ignores when loading, zeros when storing.
A = Position of implicit binary point
| = Integer bit of significand; stored in temporary real, implicit in short and long real
Exponent Bias (normalized values):
Short Real: 127 (7FH)
Long Real: 1023 (3FFH)
Temporary Real: 16383 (3FFFH)

Figure 6-11 Data Formats

6-14 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

BINARY INTEGERS

The three binary integer formats are identical except
for length, which governs the range that can be ac-
commodated in each format. The leftmost bit is in-
terpreted as the number’s sign: 0=positive and
1=negative. Negative numbers are represented in
standard two’s complement notation (the binary
integers are the only 8087 format to use two’s
complement). The quantity zero is represented with
a positive sign (all bits are 0). The 8087 word integer
format is identical to the 16-bit signed integer data
type of the 8086,88 and 80186,188.

DECIMAL INTEGERS

Decimal integers are stored in packed decimal
notation, with two decimal digits “packed” into each
byte, except the leftmost byte, which carries the sign
bit (0 = positive, 1 = negative). Negative numbers
are not stored in two’s complement form and are dis-
tinguished from positive numbers only by the sign
bit. The most significant digit of the number is the
leftmost digit. All digits must be in the range OH-9H.

REAL NUMBERS

The 8087 stores real numbers in a three-field binary
format that resembles scientific, or exponential,
notation. The number’s significant digits are held in
the significand field, the exponent field locates the
binary point within the significant digits (and there-
fore determines the number’s magnitude), and the
sign field indicates whether the number is positive or

negative. (The exponent and significand are analo-
gous to the terms “characteristic” and “mantissa”
used to describe floating point numbers on some
computers.) Negative numbers differ from positive
numbers only in their sign bits.

Table 6-4 shows how the real number 178.125
(decimal) is stored in the 8087 short real format.
The table lists a progression of equivalent notations
that express the same value to show how a number
can be converted from one form to another. The
ASM-86 and PL/M-86 language ‘translators perform
a similar process when they encounter programmer-
defined real number constants. Note that not every
decimal fraction has an exact binary equivalent. The
decimal number 1/10, for example, cannot be ex-
pressed exactly in binary (just as the number 1/3
cannot be expressed in decimal). When a translator
encounters such a value, it produces a rounded
binary approximation of the decimal value.

The NPX usually carries the digits of the significand
in normalized form. This means that, except for the
value zero, the significand is an integer and a fraction
as follows:

1 A

where A indicates an assumed binary point. The
number of fraction bits varies according to the real
format: 23 for short, 52 for long and 63 for tempo-
rary real. By normalizing real numbers so that their
integer bit is always a 1, the 8087 eliminates leading
zeros in small values (x| < 1). This technique
maximizes the number of significant digits that can
be accommodated in a significand of a given width.

Table 6-4 Real Number Notation

Notation Value
Ordinary Decimal 178.125
Scientific Decimal 1,78125E2
Scientific Binary 1A0110010001 E111

Scientific Binary
(Biased Exporent)

1, 0110010001E10000110

Sign
8087 Short Real

Biased

Exponent Significand

(Normalized) 0

10000110 01100100010000000000000

1, (implicit)

6-15

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Note that in the short and.long real formats the
integer bit is implicit and is not actually stored; the
integer bit is physically present in the temporary real
format only.

If one were to examine only the significand with its
assumed binary point, all normalized, real numbers
would have values between 1 and 2. The exponent
field locates the actual binary point in the significant
digits. Just as in decimal scientific notation, a positive
exponent has the effect of moving the binary point
to the right, and a negative exponent effectively
moves the binary point to the. left, inserting leading
zeros as necessary. An unbiased exponent of zero in-
dicates that the position of the assumed binary point
is also the position of the actual binary point. The
exponent field, then, determines a real number’s
magnitude.

In order to simplify comparing real numbers (e.g.,
for sorting), the 8087 stores exponents in a biased
form. This means that a constant is added to the true
exponent described above. The value of this bias is
different for each real format (see Figure 6-11). It
has been chosen so as to force the biased exponent to
be a positive value. This allows two real numbers (of
the same format and sign) to be compared as if they
are unsigned binary integers. that is, when compar-
ing them bitwise from left to right (beginning with
the left-most exponent bit), the first bit position that
differs orders the numbers; there is no need to pro-
ceed further with the comparison. A number’s true
exponent can be determined simply by subtracting
the bias value of its format.

The short and long real formats exist in memory
only. If a number in one of these formats is loaded
into a register, it is automatically converted to
temporary real, the format used for all internal
operations. Likewise, data in registers can be con-
verted to short or long real for storage in memory.
The temporary real format may be used in memory
also, typically to store intermediate results that
cannot be held in registers.

Most applications should use the long real form to
store real number data and results; it provides suffi-
cient range and precision to return correct results
with a minimum of programmer attention. The
short real format is appropriate for applications that
are constrained by memory, but it should be recog-
nized that this format provides a smaller margin of
safety. It is also useful for debugging algorithms be-
cause roundoff problems will manifest themselves
more quickly in this format. The temporary real

format should normally be reserved for holding in--

termediate results, loop accumulations, and
constants. Its extra length is designed to shield final
results from the effects of rounding and overflow/-
underflow in intermediate calculations. When the

6-16

When the temporary real format is used to hold data
or to deliver final results, the safety features built
into the 8087 are compromised. Furthermore, the
range and precision of the long real form are ade-
quate for most microcomputer applications.

SPECIAL VALUES

Besides being able to represent positive and negative
numbers, the 8087 data formats may be used to de-
scribe other entities. These special values provide
extra flexibility but most users do not need to under-
stand them in detail to use the 8087 successfully.
Accordingly, they are discussed here only briefly; ex-
panded coverage, including the bit encoding of each
value, is provided in the Special Topics section.

The value zero may be signed positive or negative in
the real and decimal integer formats; the sign of a
binary integer zero is always positive. The fact that
zero may be signed, however, is transparent to the
programmer.

The real number formats allow for the representa-
tion of the special values + o and — oo. The 8087
may generate these values as its built-in response to
exceptions such as division by zero, or the attempt
to store a result that exceeds the upper range limit of
the destination format. Infinities may participate in
arithmetic and comparison operations, and in fact
the processor provides two different conceptual
models for handling these special values.

If a programmer attempts an operation for which the
8087 cannot deliver a reasonable result, it will, at the
programmer’s discretion, either request an inter-
rupt, or return the special value indefinite. Taking the
square root of a negative number is an example of
this type of invalid operation. The recommended
action in this situation is to stop the computation by
trapping to a user-written exception handler. If,
however, the programmer elects to continue the
computation, the specially coded indefinite value will
propagate through the calculation and thus flag the
erroneous computation when it is eventually deliv-
ered as the result. Each format has an encoding that
represents the special value indefinite.

In the real formats, a whole range of special values,
both positive and negative, is designated to represent
a class of values called NAN (Not-A-Number). The
special value indefinite is a reserved NAN encoding,
but all other encodings are made available to be
defined in any way by application software. Using a
NAN as an operand raises the invalid operation
exception, and can trap to a user-written routine to
process the NAN. Alternatively, the 8087 s built-in
exception handler will simply return the NAN itself

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

as the result of the operation; in this way NANs,
including indefinite, may be propagated through a cal-
culation and delivered as a final, special-valued,
result. One use for NANSs is to detect uninitialized
variables.

As mentioned earlier, the 8087 stores non-zero real
numbers in “normalized floating point” form. It
also provides for storing and operating on reals that
are not normalized, i.e., whose significands contain
one or more leading zeros. Nonnormals arise when
the result of a calculation yields a value that is too
small to be represented in normal form. The leading
zeros of nonnormals permit smaller numbers to be
represented, at the cost of some lost precision (the
number of significant digits is reduced by the leading
zeros). In typical algorithms, extremely small values
are most likely to be generated as intermediate,
rather than final results. By using the NPX’s tempo-
rary real format for holding intermediates, values as
small as =3.4x107%%32 can be represented; this
makes the occurrence of nonnormal numbers a rare
phenomenon in 8087 applications. Nevertheless, the
NPX can load, store and operate on nonnormalized
real numbers.

Rounding Control

Internally, the 8087 employs three extra bits (guard,
round and sticky bits) which enable it to represent
the infinitely precise true result of a computation;
these bits are not accessible to programmers. When-
ever the destination can represent the infinitely pre-
cise true result, the 8087 delivers it. Rounding
occurs in arithmetic and store operations when the
format of the destination cannot exactly represent
the infinitely precise true result. For example, a real

number may be rounded if it is stored in a shorter
real format, or in an integer format. Or, the infinitely
precise true result may be rounded when it is re-
turned to a register.

The NPX has four rounding modes, selectable by
the RC field in the control word (see Figure 6-7).
Given a true result b that cannot be represented by
the target data type, the 8087 determines the two
representable numbers a and ¢ that most closely
bracket b in value (a < b < ¢). The processor then
rounds (changes b to a or to ¢ according to the mode
selected by the RC field as shown in Table 6-5.
Rounding introduces an error in a result that is less
than one unit in the last place to which the result is
rounded.

“Round to nearest or even” is the default mode and
is suitable for most applications; it provides the most
accurate and statistically unbiased estimate of the
true result. The “chop” mode is provided for integer
arithmetic applications.

“Round up” and “round down” are termed directed
rounding and can be used to implement interval
arithmetic. Interval arithmetic generates a certifiable
result independent of the occurrence of rounding
and other errors. The upper and lower bounds of an
interval may be computed by executing an algorithm
twice, rounding up in one pass and down in the
other.

Precision Control
The 8087 allows results to be calculated with 64, 53,

or 24 bits of precision as selected by the PC field of
the control word. The default setting, and the one

Table 6-5 Rounding Modes

RC Field Rounding Mode Round'ing Action

00 Round to nearest Closertob ofa orc;if
equally close, select even
number (the one whose
least significant bit is zero).

01 Round down (toward —) a

10 Round up (toward + o) c

1 Chop (toward 0) Smaller in magnitude of
aorc

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

that is best-suited for most applications, is the full 64
bits. The other settings are required by the proposed
IEEE standard, and are provided to obtain compati-
bility with the specifications of certain existing
programming languages. Specifying less precision
nullifies the advantages of the temporary real for-
mat’s extended fraction length, and does not im-
prove execution speed. When reduced precision is
specified, the rounding of the fraction zeros the
unused bits on the right.

infinity Control

The 8087’s system of real numbers may be closed by
either of two models of infinity. These two means of
closing the number system, projective and affine
closure, are illustrated schematically in Figure 6-12.
The setting of the IC field in the control word selects
one model or the other. The default means of clo-
sure is projective, and this is recommended for most
computations. When projective closure is selected,
the NPX treats the special values +oo and —oo as a
single unsigned infinity (similar to its treatment of
signed zeros). In the affine mode the NPX respects
the signs of +o0 and —oo. ‘

PROJECTIVE CLOSURE

—00 - + +00

0
AFFINE CLOSURE

Figure 6-12 Projective Versus Affine Closure

While affine mode may provide more information
than projective, there are occasions when the sign
may in fact represent misinformation. For example,
consider an algorithm that yields an intermediate
result x of +0 and —0 the (the same numeric value)
in different executions. If 1/x were then computed
in affine 'mode, two entirely different values (+oo
and —oo) would result from numerically identical
values of x. Projective mode on the other hand, pro-
vides. less information but never .returns
misinformation. In general, then, projective mode
should be used globally, with affine mode reserved
for local computations where the programmer can
take advantage of the sign and knows for certain that
the nature of the computation will not produce mis-
leading results.

6-18

-

Exceptions

During the execution of most instructions, the 8087
checks for six classes of exception conditions.

The 8087 reports invalid operation if any of the follow-
ing occurs:

® An attempt to load a register that is not
empty, (e.g., Stack overflow),

® An'attempt to pop an operand from an empty
register (e.g., stack underflow),

[An operand is a NAN,

® The operands cause the operation to be inde-
terminate (0/0, square root of a negative
number, etc.).

An invalid operation generally indicates a program
error. i

If the exponent of the true result is too large for the
destination real format, the 8087 signals overflow.
Conversely, a true exponent that is too small to be
represented results in the underflow exception. If
either of these occur, the result of the operation is
outside the range of the destination real format.

Typical algorithms are most likely to produce ex-
tremely large and small numbers in: the calculation
of intermediate, rather than final, results. Because
of the great range of the temporary real format
(recommended as the destination format for
intermediates), overflow and underflow are relative-
ly rare events in'most 8087 applications.

If division of a finite non-zero operand by zero is
attempted, the 8087 reports the zerodivide exception.

If an instruction attempts to operate on a denormal,
the NPX reports the denormalized exception. This ex-
ception is provided for users who wish to
implement, in software, an option of the proposed
IEEE standard which specifies that operands must

" be prenormalized before they are used.

If the result of an operation is not exactly representa-
ble in the destination format, the 8087 rounds the
number and reports the precision exception. This ex-
ception occurs frequently and indicates that some
(generally acceptable) accuracy has been lost; it is
provided for applications that need to perform exact
arithmetic only.

Invalid operation, zerodivide, and denormalized ex-
ceptions are detected before an operation begins,
while overflow, underflow, and precision exceptions
are not raised until a true result'has been computed.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

When a “before” exception is detected, the register
stack and memory have not yet been updated, and
appear as if the offending instruction has not been
executed. When an “after” exception is detected,
the register stack and memory appear as if the in-
struction has run to completion, i.e., they may be
updated. (However, in a store or store and pop
operation, unmasked over/underflow is handled
like a “before” exception; memory is not updated
and the stack is not popped.) In cases where multiple
exceptions arise simultaneously, one exception is
signaled according to the following precedence
sequence:

® Denormalized (if unmasked),
® Invalid operation,

® Zerodivide

® Denormalized (if masked),

® Over/underflow,

® Precision

(The terms “masked” and “unmasked” are ex-
plained shortly.) This means, for example, that zero
divided by zero will result in an invalid operation
and not a zerodivide exception.

The 8087 reports an exception by setting the corre-
sponding flag in the status word to 1. It then checks
the corresponding exception mask in the control
word to determine if it should “field” the exception
(mask=1), or if it should issue an interrupt request
to invoke a user-written exception handler
(mask=0). In the first case, the exception is said to
be masked (from user software) and the NPX exe-
cutes its on-chip masked response for that exception.
In the second case, the exception is unmasked, and
the processor performs its unmasked response. The
masked response always produces a standard result
and then proceeds with the instruction. The un-
masked response always traps to user software by in-
terrupting the CPU (assuming the interrupt path is
clear). These responses are summarized in Table
6-6. Section 6.7 contains a complete description of all
exception conditions and the NPX’s masked
responses. Note that when exceptions are masked,
the NPX may detect multiple exceptions in a single

Table 6-6 Exception and Response Summary

Exception Masked Response Unmasked Response
Invalid If one operand is NAN, return it; if Request interrupt.
Operation both are NANs, return NAN with

larger absolute value; if neither is
NAN, return indefinite .
Zerodivide Return « signed with ‘“‘exclusive Request interrupt.

Denormalized

or’’ of operand signs.

Memory operand: proceed as
usual. Register operand: convert
to valid unnormal, then re-evaluate
for exceptions.

Overflow Return properly signed .
Underflow Denormalize result.
Precision Return rounded result.

Request interrupt.

Register destination: adjust
exponent”, store result, request

interrupt. Memory destination:
request interrupt.
Register destination: adjust

exponent”, store result, request
interrupt. Memory destination:
request interrupt.

Return rounded result, request
interrupt.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

instruction, since it continues executing the instruc-
tion after performing its masked response. For
example, the 8087 could detect a denormalized
operand, perform its masked response to this
exception, and then detect an underflow.

By writing different values into the exception masks
of the control word, the user can accept responsibili-
ty for handling exceptions, or delegate this to the
NPX. Exception handling software is often difficult
to write, and the 8087’s masked responses have
been tailored to deliver the most ‘“reasonable”
result for each condition. The majority of applica-
tions will find that masking all exceptions other than
invalid operation will yield satisfactory results with
the least programming investment. An invalid opera-
tion exception normally indicates a fatal error in a
program that must be corrected; this exception
should not normally be masked.

The exception flags are “sticky” and can be cleared
only by executing the FCLEX (clear exceptions)
instruction, by reinitializing the processor, or by
overwriting the flags with an FRSTOR or FLDENV
instruction. This means that the flags can provide a
cumulative record of the exceptions encountered in
a long calculation. A program can therefore mask all
exceptions (except, typically, invalid operation), run
the calculation and then inspect the status word to
see is any exceptions were detected at any point in
the calculation.

Note that the 8087 has another set of internal excep-
tion flags that it clears before each instruction. It is
these flags and not those in the status word that actu-
ally trigger the 8087 s exception response. The flags
in the status word provide a cumulative record of ex-
ceptions for the programmer only.

If the NPX executes an unmasked response to an
exception, it is assumed that a user exception han-
dler will be invoked via an interrupt from the 8087.
The 8087 sets the IR (interrupt request) bit in the
status word, but this, in itself, does not guarantee an
immediate CPU interrupt. The interrupt request
may be blocked by the IEM (interrupt-enable mask)
in the 8087 control word, by the 8259A Programma-
ble Interrupt Controller, or by the CPU itself. If any
exception flag is unmasked, it is imperative that the inter-
rupt path to the CPU is eventually cleared so that the
user’s software can field the exception and the offending
task can resume execution. Note that the 8087 remains
“busy” pending CPU intervention. Interrupts are
covered in detail in Volume 2.

A user-written exception handler takes the form of
an 8086,88/186,188 interrupt procedure. Although
exception handlers will vary widely from one applica-
tion to the next, most will include these basic steps:

6-20

® Store the 8087 environment (control, status
and tag words, operand and instruction
pointers) as it existed at the time of the
exception;

® (lear the exception bits in the status word,
® FEnable interrupts on the CPU;

® Identify the exception by examining the
status and control words in the saved
environment;

® Take application-dependent action,;

® Return to the point of interruption, resuming
normal execution.

Possible “application-dependent actions” include:

® Incrementing an exception counter for later
display or printing;

® Printing or displaying diagnostic information
(e.g., the 8087 environment and registers);

® Aborting further execution of the calculation
causing the exception;

) Aborting all further execution;

® Using the exception pointers to build an in-
struction that will run without exception and
executing it;

® Storing a diagnostic value (a NAN) in the
result and continuing with the computation.

Notice that an exception may or may not constitute
an error, depending on the application. For
example, an invalid operation caused by a stack
overflow could signal an ambitious exception han-
dler to extend the register stack to memory and con-
tinue running.

6.5 INSTRUCTION SET

This section describes the operation of each of the
8087’s 69 instructions. The first part of the section
describes the function of each instruction in detail.
For this discussion, the instructions are divided into
six functional groups: data transfer, arithmetic,
comparisons, transcendental, constant, and proces-
sor control. The second part provides instruction at-
tributes such as execution speed, bus transfers, and
exceptions, as well as coding example for each com-
bination of operands accepted by the instruction.
This information is concentrated in a table, orga-
nized alphabetically by instruction mnemonic, for
easy reference.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Throughout this section, the instruction set is de-
scribed as it appears to the ASM-86 programmer
who is coding a program. Appendix A, in Volume 2
of this set, covers the actual machine instruction
encodings, which are principally of use to those read-
ing unformatted memory dumps, monitoring in-
struction fetches on the bus, or writing exception
handlers.

The instruction descriptions in this section concen-
trate on describing the normal function of each
operation. Table 6-17 lists the exceptions that can
occur for each instruction and Table 6-30 details the
causes of exceptions as well as the 8087’s masked
responses.

The typical NPX instruction accepts one or two oper-
ands as “inputs”, operates on these, and produces a
result as an “output”. Operands are most often (the
contents of) register of memory locations. The oper-
ands of some instructions are predefined; for
example, FSQRT always takes the square root of the
number in the top stack element. Others allow, or
require, the programmer to explicitly code the
operand(s) along with the instruction mnemonic.
Still others accept one explicit operand and one
implicit operand, which is usually the top stack
element.

Whether supplied by the programmer or utilized
automatically, there are two basic types of operands,
sources and destinations. A source operand simply
supplies one of the “inputs” to an instruction; it is
not altered by the instruction. Even when an instruc-
tion converts the source operand from one format to
another (e.g., real to integer), the conversion is actu-
ally performed in an internal work area to avoid al-
tering the source operand. A destination operand
may also provide an “input” to an instruction. It is
distinguished from a source operand, however, be-
cause its contents may be altered when it receives
the result produced by the operation; that is, the
destination is replaced by the resulit.

Many instructions allow their operands to be coded
in more than one way. For example, FADD (add
real) may be written without operands, with only a
source or with a destination and a source. The in-
struction descriptions in this section employ the
simple convention of separating alternative operand
forms with slashes; the slashes, however, are not
coded. Consecutive slashes indicate an option of no
explicit operands. The operands for FADD are thus
described as:

//source/destination, source

This means that FADD may be written in any of
three ways.

6-21

FADD
FADD source
FADD destination, source

When reading this section, it is important to bear in
mind that memory operands may be coded with any
of the CPU’s memory addressing modes. Table 6-20
in this chapter also provides several addressing
mode examples.

Data Transfer Instructions

These instructions (summarized in Table 6-7) move
operands among elements of the register stack, and
between the stack top and memory. Any of the
seven data types can be converted to temporary real
and loaded (pushed) onto the stack in a single
operation; they can be stored to memory in the
same manner. The data transfer instructions auto-
matically update the 8087 tag word to reflect the
register contents following the instruction.

.Table 6-7 Data Transfer Instructions

Real Transfers

FLD Load real

FST Store real

FSTP Store real and pop

FXCH Exchange registers
Integer Transfers

FILD Integer load

FIST Integer store

FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD) load
FBSTP Packed decimal (BCD) store and pop

FLD source

FLD (load real) loads (pushes) the source operand
onto the top of the register stack. This is done by de-
crementing the stack pointer by one and then copy-
ing the contents of the source to the new stack top.
The source may be a register on the stack (ST(i)) or
any of the real data types in memory. Short and long
real source operands are converted to temporary
real automatically. Coding FLD ST(0) duplicates the
stack top.

210911

;
|
|

THE 8087 NUMERIC PROCESSOR EXTENSION

FST destination

FST (store real) transfers the stack top to the
destination, which may be another register on the
stack, or a short or long real memory operand. If the
destination is short or long real, the significand is
rounded to the width of the destination according to
the RC field of the control word, and the exponent
is converted to the width and bias of the destination
format.

If, however, the stack top is tagged special (it
contains, a NAN, or a denormal) then the stack
top’s significand is not rounded but is chopped (on
the right) to fit the destination. Neither is the expo-
nent converted, but it also is chopped on the right
and transferred “as is”. This preserves the value’s
identification as or a NAN (exponent all ones) or a
denormal (exponent all zeros) so that it can be prop-
erly loaded and tagged later in the program if desired.

FSTP destination

FSTP (store real and pop) operates identically to
FST except that the stack is popped following the
transfer. This is done by tagging the top stack ele-
ment empty and then incrementing ST. FSTP per-
mits storing to a temporary real memory variable
while FST does not. Coding FSTP ST(0) is equiva-
lent to popping the stack with no data transfer.

FXCH//destination

FXCH (exchange registers) swaps the contents of
the destination and the stack top registers. If the
destination is not coded explicitly, ST(1) is used.
Many 8087 instructions operate only on the stack
top; FXCH provides a simple means of effectively
using these instructions on lower stack elements.
For example, the following sequence takes the
square root of the third register from the top:

FXCH ST(3)
FSQRT
FXCH ST(3)

FILD source

FILD (integer load) converts the source memory
operand from its binary integer format (word, short,
or long,) to temporary real and loads (pushes) the
result onto the stack. The (new) stack top is tagged
zero of all bits in the source were zero, and is tagged
valid otherwise.

6-22

FIST destination

FIST (integer store) rounds the contents of the
stack top to an integer according to the RC field of
the control word and transfers the result to the
destination. The destination may define a word or
short integer variable. Negative zero is stored in the
same encoding as positive zero: 0000...00.

FISTP destination

FISTP (integer store and pop) operates like FIST
and also pops the stack following the transfer. The
destination may be any of the binary integer data
types.

FBLD source

FBLD (packed decimal (BCD) load) converts the
contents of the source operand from packed decimal
to temporary real and loads (pushes) the result onto
the stack. The sign of the source is preserved, includ-
ing the case where the value is negative zero. FBLD
is-an exact operation; the source is loaded with no
rounding error.

The packed decimal digits of the source are assumed
to be in the range 0-9H. The instruction does not
check for invalid digits (A-FH) and the result of at-
tempting to load an invalid encoding is undefined.

FBSTP destination

FBSTP (packed decimal (BCD) store and pop) con-
verts the contents of the stack top to a packed deci-
mal integer, stores the result at the destination in
memory, and pops the stack. FBSTP produces a
rounded integer from a non-integral value by adding
a value close to 0.5 to the value and chopping. Users
who are concerned about rounding may precede
FBSTP with FRNDINT.

Arithmetic Instructions

The 8087’s arithmetic instruction set (Table 6-8)
provides a wealth of variations on the basic add,
subtract, multiply, and divide operations, and a
number of other useful functions. These range from
a simple absolute value to a square root instruction
that executes faster than ordinary division; 8087 pro-
grammers no longer need to spend valuable time
eliminating square roots from algorithms because

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

they run too slowly. Other arithmetic instructions
perform exact modulo division, round real numbers
to integers, and scale values by powers of two.

The 8087’s basic arithmetic instructions (addition,
subtraction, multiplication, and division) are
designed to encourage the development of very effi-
cient algorithms. In particular, they allow the pro-
grammer to minimize memory references and to
make optimum use of the NPX register stack.

Table 6-8 Arithmetic Instructions

Addition
FADD Add real
FADDP Add real and pop
FIADD Integer add

Subtraction

FSUB Subtract real
FSUBP Subtract real and pop
FISUB Integer subtract

FSUBR Subtract real reversed
FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real

FMULP Multiply real and pop

FIMUL Integer multiply

Division

FDIV Divide real

FDIVP Divide real and pop

FIDIV Integer divide

FDIVR Divide real reversed

FDIVRP Divide real reversed and pop

FIDIVR Integer divide reversed
Other Operations

FSQRT Square root

FSCALE Scale

FPREM Partial remainder

FRNDINT Round tointeger

FXTRACT Extract exponent and significand
FABS Absolute value

FCHS Change sign

6-23

Table 6-9 summarizes the available operation/oper-
and forms that are provided for basic arithmetic. In
addition to the four normal operations, two
“reversed” instructions make subtraction and divi-
sion “symmetrical” like addition and multiplication.
The variety of instruction and operand forms give
the programmer unusual flexibility:

® operands may be located in registers or
memory;

® results may be deposited in a choice of
registers;

® operands may be a variety of NPX data types:
temporary real, long real, short real, short
integer or word integer, with automatic con-
version to temporary real performed by the
8087.

Five basic instruction forms may be used across all
six operations, as shown in Table 6-9. The classical
stack form may be used to make the 8087 operate
like a classical stack machine. No operands are
coded in this form, only the instruction mnemonic.
The NDP picks the source operand from the stack
top and the destination from the next stack element.
It then pops the stack, performs the operation, and
returns the result to the new stack top, effectively
replacing the operands by the result. (Note that
FADD, FSUB, FMUL and FDIV also pop if no oper-
ands are specified, in spite of the fact that the
mnemonics do not have P as a last character.)

The register form is a generalization of the classical
stack form; the programmer specifies the stack top
as one operand and any register on the stack as the
other operand. Coding the stack top as the destina-
tion provides a convenient way to access a constant,
held elsewhere in the stack, from the stack top. The
converse coding (ST is the source operand) allows,
for example, adding the top into a register used as an
accumulator.

Often the operand in the stack top is needed for one
operation but then is of no further use in the
computation. The register pop form can be used to
pick up the stack top as the source operand, and then
discard it by popping the stack. Coding operands of
ST(1),ST with a register pop mnemonic is equivalent
to a classical stack operation: the top is popped and
the result is left at the new top.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-9 Basic Arithmetic Instructions and Operands

Instruction Form Mn::::‘nlc d egrl?\r:t?:nf:;?:ce ASM-86 Example
Classical stack Fop {ST(1),ST} FADD
Register Fop ST(i),ST or ST,ST(i) FSUB ST,ST(3)
Register pop FopP ST(i),ST FMULP - ST(2),ST
Real memory Fop {ST,} short-real/long-real FDIV AZIMUTH
Integer memory Flop {ST,} word-integer/short-integer FIDIV N_PULSES

NOTES: Braces { } surround implicit operands; these are not coded, and are shown

here for information only.

op = ADD = destination « destination + source
SUB destination « destination — source
SUBR destination « source — destination
MUL destination « destination ® source
DIV destination « destination + source
DIVR destination ¢« source + destination

The two memory forms increase the flexibility of the
8087’s arithmetic instructions. They permit a real
number or a binary integer in memory to be used
directly as a source operand. This is a very useful
facility in situations where operands are not used fre-
quently enough to justify holding them in registers.
Note that any memory addressing mode may be
used to define these operands, so they may be ele-
ments in arrays, structures or other* data
organizations, as well as simple scalars.

The six basic operations are discussed further in the
next paragraphs, and descriptions of the remaining
seven arithmetic operations follow.

Addition
FADD //source/destination,source
FADDP destination,source
FIADD source

The addition instructions (add real, add real and
pop, integer add) add the source and destination
operands and return the sum to the destination. The
operand at the stack top may be doubled by coding:

FADD ST,ST(0)

6-24

Normal Subtraction

FSUB
FSUBP
FISUB

//source/destination, source
destination, source
source

The normal subtraction instructions (subtract real,
subtract real and pop, integer subtract) subtract the
source operand from the destination and return the
difference to the destination.

Reversed Subtraction

FSUBR
FSUBRP
FISUBR

//source/destination, source
//destination, source
source

The reversed subtraction instruction (subtract real
reversed, subtract real reversed and pop, integer
subtract reversed) subtract the destination from the
source and return the difference to the destination.

Multiplication

FMUL //source/destination, source
FMULP destination,source
FIMUL source

The mulitplication instructions (multiply real, mul-
tiply real and pop, integer multiply) multiply the
source and destination operands and return the pro-
duct to the destination. Coding FMUL ST,ST(0)
squares the contents of the stack top.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Normal Division

FDIV //source/destination, source
FDIVP destination, source
FIDIV source

The normal division instructions (divide real, divide
real and pop, integer divide) divide the destination
by the source and return the quotient to the
destination.

Reversed Division

FDIVR //source/destination,source
FDIVRP destination,source
FIDIVR source

The reversed division instructions (divide real
reversed, divide real reversed and pop, integer
divide reversed) divide the source operand by the
destination and return the quotient to the
destination.

FSQRT

FSQRT (square root) replaces the contents of the
top stack element with its square root. (Note: the
square root of —0 is defined to be —0.)

FSCALE

FSCALE (scale) interprets the value contained in
ST(1) as an integer, and adds this value to the expo-
nent of the number in ST.

This is equivalent to:
ST <— s7-25T(M

thus, FSCALE provides rapid multiplication or divi-
sion by integral powers of 2. It is particularly useful
for scaling the elements of a vector.

Note that FSCALE assumes the scale factor in
ST(1) is an integral value in the range
—215<x< 215 If the value is not integral, but is in-
range and is greater in magnitude than 1, FSCALE
uses the nearest integer smaller in magnitude, i.e., it
chops the value toward 0. If the value is out of
range, or 0< |X|<1, the instruction will produce
an undefined result and will not signal an exception.
The recommended practice is to load the scale factor
from a word integer to ensure correct operation.

FPREM

FPREM (partial remainder) performs modulo divi-
sion of the top stack element by the next stack
element, i.e., ST(1) is the modulus. FPREM pro-
duces an exact result; the precision exception does
not occur. The sign of the remainder is the same as
the sign of the original dividend.

6-25

FPREM operates by performing successive scaled
subtractions; obtaining the exact remainder when
the operands differ greatly in magnitude can con-
sume large amounts of execution time. Since the
8087 can only be preempted between instructions,
the remainder function could seriously increase in-
terrupt latency in these cases. Accordingly, the in-
struction is designed to be executed iteratively in a
software-controlled loop.

FPREM can reduce a magnitude difference of up to
2%4 in one execution. If FPREM produces a remain-
der that is less than the modulus, the function is
complete and bit C2 of the status word condition
code is cleared. If the function is incomplete, C2 is
set to 1; the result in ST is then called the partial
remainder. Software can inspect C2 by storing the
status word following execution of FPREM and re-
execute the instruction (using the partial remainder
in ST as the dividend), until “C” is cleared.
Alternatively, a program can determine when the
function is complete by comparing ST to ST(1). If
ST>ST(1) then FPREM must be executed again; if
ST=ST(1) then the remainder is 0; if ST<ST(1)
then the remainder is ST. A higher priority interrupt-
ing routine which needs the 8087 can force a context
switch between the instructions in the remainder
loop.

An important use for FPREM is to reduce argu-
ments (operands) of periodic transcendental func-
tions to the range permitted by these instructions.
For example, the FPTAN (tangent) instruction re-
quires its argument to be less than /4. Using 7 /4 as
a modulus, FPREM will reduce an argument so that
it is in range of FPT. Because FPREM produces an
exact result, the argument reduction does not intro-
duce roundoff error into the calculation, even if
several iterations are required to bring the argument
into range. (The rounding of pi does not create the
effect of a rounded argument, but of a rounded
period.)

FPREM also provides the least-significant three bits
of the quotient generated by FPREM (in C,, C,,
Cl). This is also important for transcendental argu-
ment reduction since it locates the original angle in
the correct one of eight w4 segments of the unit
circle.

The FPREM instruction also functions as a
“universal normalizer”. If the top stack element is
unnormal and the modulus is greater than the top
stack element, the top stack element will be
normalized. In addition, if the number is normalized
and the precision mode of the 8087 is set to less than
64 bits, the extra precision bits of the normalized ele-
ment will be cleared.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

FRNDINT

FRNDINT (round to integer) rounds the top stack
element to an integer. For example, assume that ST
contains the 8087 real number encoding of the deci-
mal value 155.625. FRNDINT will change the value
to 155 if the RC field of the control word is set to
down or chop, or to 156 if it is set up or nearest.

FXTRACT

FXTRACT (extract exponent and significand)
“decomposes” the number in the stack top into two
numbers that represent the actual value of the oper-
and’s exponent and significand fields. The
“exponent” replaces the original operand on the
stack and the significand is pushed onto' the stack.
Following execution of FXTRACT, ST (the new
stack top) contains the value of the original signifi-
cand expressed as a real number: its sign is the same
as the operand’s, its exponent is 0 true (16,383 or
3FFFH biased), and its significand is identical to the
original operand’s. ST(1) contains the value of the
original operand’s true (unbiased) exponent ex-
pressed as a real number. If the original operand is
zero, FXTRACT produces zeros in ST and ST(1)
and both are signed as the original operand.

To clarify the operation of FXTRACT, assume ST
contains a number whose true exponent is +4 (i.e.,
its exponent field contains 4003H). After executing
FXTRACT, ST(1) will contain the real number
+4.0; its sign will be positive, its exponent field will
contain 4001H (+2 true) and its significand field will
contain 1 A 00...00B. In other words, the value in
ST(1) will be 1.0x22=4. If ST contains an operand
whose true exponent is —7 (i.e., its exponent field
contains 3FF8H), then FXTRACT will return an
“exponent” of —7.0; after the instruction executes,
ST(1)’s sign and exponent fields will contain CO01H
(negative sign, true exponent of 2) and its signifi-
cand will be 1 A 1100...00B. In other words, the
value in ST(1) will be —1.11x22=—7.0. In both
cases, following FXTRACT, ST’s sign and signifi-
cand fields will be the same as the original
operand’s, and its exponent field will contain
3FFFH, (0 true).

FXTRACT is useful in conjunction with FBSTP for
converting numbers in 8087 temporary real format
to decimal representations (e.g., for printing or
displaying). It can also be useful for debugging, since
it allows the exponent and significand parts of a real
number to be examined separately.

FABS

FABS (absolute value) changes the top stack ele-
ment to its absolute value by making its sign positive.

FCHS

FCHS (change sign) complements (reverses)the
sign of the top stack element.

Comparison Instructions

Each of these instructions (Table 6-10) analyses the
top stack element, often in relationship to another
operand, and reports the result in the status word
condition code. The basic operations are compare,
test (compare with zero), and examine (report tag,
sign, and normalization). Special forms of the com-
pare operation are provided to optimize algorithms
by allowing direct comparisons with binary integers
and real numbers in memory, as well as_popping the
stack after a comparison.)

Table 6-10 Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop
FCOMPP Compare real and pop twice
FICOM Integer compare

FICOMP Integer compare and pop
FTST Test

FXAM Examine

The FSTSW (store status word) instruction may be.
used following a comparison to transfer the condi-
tion code to memory for inspection.

Note. that instructions other than those in the com-
parison group may update the condition code. To
insure that the status word is not altered
inadvertently, store it immediately following a com-
parison operation.

FCOM//source

FCOM (compare real) compares the stack top to the
source operand. The source operand may be a regis-
ter on the stack, or-a short or long real memory
operand. If an operand is not coded, ST is compared
to ST(1). Positive and negative forms of zero com-
pare identically as if they were unsigned. Following

6-26 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

the instruction, the condition codes reflect the order
of the operands as follows:

C3 C2 CO Order

0 0 O ST>source
0 0 1 ST<source
1 0 O ST=source
1 1 1 ST?source

NANSs and oo (projective) cannot be compared and
return C3=C0=1 as shown above.

FCOMP//source

FCOMP (compare real and pop) operates like
FCOM, and in addition pops the stack.

FCOMPP

FCOMPP (compare real and pop twice) operates
like FCOM and additionally pops the stack twice, dis-
carding both operands. The comparison is of the
stack top to ST(1); no operands may be explicitly
coded.

FICOMsource

FICOM (integer compare) converts the source
operand, which may reference a word or short
binary integer variable, to temporary real and com-
pares the stack top to.it.

FICOMPsource

FICOMP (integer compare and pop) operates identi-
cally to FICOM and additionally discards the value
in ST by popping the stack.

FTST

FTST (test) tests the top stack element by comparing
it to zero. The result is posted to the condition codes
as follows:

C3 C2 CO0 Result

0 0 O STispositive and nonzero

0 0 1 STisnegative and nonzero

1 0 0 STiszero(+ or—)

1 1 1 STisnotcomparable (i.e., itisa NAN or pro-
jective oo)

6-27

FXAM

FXAM (examine) reports the contents of the top
stack element as positive/negative and NAN/unnor-
mal/denormal/normal/zero, or empty. Table 6-11
lists and interprets all the condition code values that
FXAM generates. Although four different encodings
may be returned for an empty register, bits C3 and
CO of the condition code are both 1 in all encodings.
Bits C2 and C1 should be ignored.

Table 6-11 FXAM Condition Code Settings

Condition Code

cslczlcil co Interpretation
0 0 0 0 + Unnormal
0 0 0 1 + NAN

0 0 1 0 - Unnormal
0 0 1 1 - NAN

0 1 0 0 + Normal

0 1 0 1 4+

0 1 1 0 — Normal

0 1 1 1 -

1 0 0 0 +0

1 0 0 1 Empty

1 0 1 0 -0

1 0 1 1 Empty

1 1 0 0 + Denormal
1 1 0 1 Empty

1 1 1 0 - Denormal
1 1 1 1 Empty

Transcendental Instructions

The instructions in this group (Table 6-12) perform
the time-consuming core calculations for all common
trigonometric, hyperbolic, inverse hyperbolic, loga-
rithmic and exponential functions. Prologue and epi-
logue software may be used to reduce arguments to
the range accepted by the instructions and to adjust
the result to correspond to the original arguments if
necessary. The transcendentals operate on the top
one or two stack elements and they return their re-
sults to the stack also.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-12 Transcendental Instructions

FPTAN Partial tangent
FPATAN Partial arctangent
F2XM1 2X—1

FYL2X Y ¢ log,X
FYL2XP1 Y elogy(X+1)

The transcendental instructions assume that their
operands are valid and in-range. The instruction de-
scriptions in this section provide the range of each
operation. To be considered valid, an operand to a
transcendental must be normalized; denormals,
unnormals, infinities and NANs are considered
invalid. (Zero operands are accepted by some func-
tions and are considered out-of-range by others.) If
a transcendental operand is invalid or out of range,
the instruction will produce an undefined result with-
out signalling an exception. It is the programmer’s
responsibility to ensure that operands are valid and
in-range before executing a transcendental. For
periodic functions, FPREM may be used to bring a
valid operand into range.

FPTAN

FPTAN (partial tangent) computes the function
Y/X = TAN (©). O is taken from the top of the
stack element; it must lie in the range
0=o0r<O©=or<w4. The result of the operation is a
ratio; Y replaces © in the stack and X is pushed,
becoming the new stack top.

The ratio result of FPTAN and the ratio argument
of FPATAN are designed to optimize the calculation
of the other trigonometric functions, including SIN,
COS, ARCSIN and ARCCOS. These can be derived
from TAN and ARCTAN via standard trigonometric
identities.

FPATAN

FPATAN (partial arctangent) computes the function
© = ARCTAN (Y/X). X is taken from the top stack
element and Y from ST(1). Y and X must observe
the inequality O<Y<X<oo. The instruction pops
the stack and returns © to the (new) stack top, over-
writing the Y operand; both original operands are
destroyed.

F2XM1

F2XM1 (2 to the X minus 1) calculates the function
Y = 2*¥—1. X is taken from the stack top and must
be in the range 0=X=0.5. The result Y replaces X
at the stack top.

This instruction is designed to produce a very accu-
rate result even when X is close to zero. To obtain
Y=2%, add 1 to the result delivered by F2XM1.

The following formulas show how values other than
2 may be raised to a power of X:

10X = px"LOG 10
eX = 2x‘DOGe

yX = 2x-LOGy

As shown in the next section, the 8087 has built-in
instructions for loading the constants LOG,10 and
LOG,e, and the FYL2X instruction may be used to
calculate X - LOG,Y.

FYL2X

FYL2X (Y log base 2 of X) calculates the function Z
= Y'LOG,X. X is taken from the stack top and y
from ST(1). The operands must be in the ranges
0<x<oo and — oo <Y< + oo. The instruction
pops the stack and returns Z at the (new) stack top,
replacing the Y operand; both original operands are
destroyed.

This function optimizes the calculation of log to any
base other than two since a multiplication is always
required:

L0G,X=L0G,2 - LOG,X

FYL2XP1

FYL2XP1 (Y log base 2 of (X + 1)) calculates the
function Z = Y - LOG, (X=1). X is taken from the
stack top and must be in the range 0< |X|<(1—(
/2/2)). Y is taken from ST(1) and must be in the
range — oo < Y < oo, FYL2XP1 pops the stack and
returns Z at the (new) stack top, replacing Y.

This instruction provides improved accuracy over
FYL2X when computing the log of a number very
close to 1, for example 1 + € where € <<1. Provid-
ing € rather than 1 + € as the input to the function
allows more significant digits to be retained.

For example, this instruction is useful for any calcu-
lation (i.e., compounded interest rates) requiring a
logarithm of 1.0+ N where 0</N<0.29. If only the

6-28 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

FYL2X instruction were available, the value 1.0
would have to be added to N, potentially losing
many significant bits in the result. By avoiding the
addition of 1.0 to N, the result of the FYL2XPI will
be as accurate (to within 3 units of temporary real
precision) as N.

Constant Instructions

Each of these instructions (Table 6-13) loads
(pushes) a commonly-used constant onto the stack.
The values have full temporary real precision (80
bits) and are accurate to approximately 19 decimal
digits. Since a temporary real constant occupies 10
memory bytes, the constant instructions, which are
only two bytes long, save storage and improve
execution speed, in addition to simplifying
programming.

Table 6-13 Constant Instructions

FLDZ Load +0.0
FLD1 Load +1.0
FLDP! Load n
FLDL2T Load log,10
FLDL2E Load log,e
FLDLG2 Load log, 2
FLDLN2 Load log,2

FLDZ

FLDZ (load zero) loads (pushes) +0.0 onto the
stack.

FLD1

FLD1 (load one) loads (pushes) +1.0 onto the
stack.

FLDPI

FLDPI (load pi) loads (pushes) pi onto the stack.

FLDL2T

FLDL2T (load log base 2 of 10) loads (pushes)
value LOG,10 onto the stack.

6-29

FLDL2E

FLDL2E (load log base 2 of e) loads (pushes) the
value LOG,, onto the stack.

FLDLG2

FLDLG2 (load log base 10 of 2) loads (pushes) the
value LOG ;2 onto the stack.

FLDLN2

FLDLN2 (load log base e of 2) loads (pushes) the
value LOG,, onto the stack.

Processor Control Instructions

Most of these instructions (Table 6-14) are not used
in computations; they are provided principally for
system-level activities. These include initialization,

exception handling and task switching.

As shown in Table 6-14, an alternate mnemonic is
available for many of the processor control

Table 6-14 Processor Control instructions

FINIT/FNINIT Initialize processor
FDISI/FNDISI Disable interrupts
FENI/FNENI Enable interrupts
FLDCW Load control word
FSTCW/FNSTCW Store control word
FSTSW/FNSTSW Store status word
FCLEX/FNCLEX Clear exceptions
FSTENV/FNSTENV | Store environment
FLDENV Load environment
FSAVE/FNSAVE Save state

FRSTOR Restore state

FINCSTP Increment stack pointer
FDECSTP Decrement stack pointer
FFREE Free register

FNOP No operation

FWAIT CPU wait

210911

S e

THE 8087 NUMERIC PROCESSOR EXTENSION

instructions. This mnemonic, distinguished by a
second character of “N”, instructs the assembler not
to prefix the instruction with a CPU WAIT instruc-
tion (instead, a CPU NOP precedes the instruction).
This “no-wait” form is intended for use in critical
code regions where a WAIT instruction is not
desired. When CPU interrupts are enabled, as will
normally be the case when an application task is
running, the “wait” forms of these instructions
should be used.

Except for FNSTENV and FNSAVE, all instructions
which provide a no-wait mnemonic are self-
synchronizing and can be executed back-to-back in
any combination without intervening FWAITs.
These instructions can be executed by the 8087 CU
while the NEU is busy with a previously decoded
instruction. To insure that the processor control in-
struction executes after completion of any operation
in progress in the NEU, the “wait” form of that in-
struction should be used.

FINIT/FNINIT

FINIT/FNINIT (initialize processor) performs the
functional equivalent of a hardware RESET (see
Volume 2, Processor Control and Monitoring),
except that it does not affect the instruction fetch
synchronization of the 8087 and its CPU.

For compatibility with the 8087 emulator, a system
should call the INIT87 procedure in lieu of executing
FINIT/FNINIT when the processor is first initialized
(see Section 6.6 for details). Note that if FNINIT is
executed while a previous 8087 memory referencing
instruction is running, 8087 bus cycles in progress
will be aborted.

FDISI/FNDISI

FDISI/FNDISI (disable interrupts) sets the interrupt
enable mask in the control word and prevents the
NPX from issuing an interrrupt request.

FENI/FNENI

FENI/FNENI (enable interrupts) clears the inter-
rupt enable mask in the control word, allowing the
8087 to generate interrupt requests.

FLDCW source

FLDCW (load control word) replaces the current
processor control word with the word defined by the
source operand. This instruction is typically used to
establish, or change, the 8087’s mode of operation.

6-30

Note that if an exception bit in the status word is set,
loading a new control word that unmasks that excep-
tion and clears the interrupt enable mask will gener-
ate an immediate interrupt request before the next
instruction is executed. When changing modes, the
recommended procedure is to first clear any excep-
tions and then load the new control word.

FSTCW/FNSTCW destination

FSTCW/FNSTCW (store control word) writes the
current processor control word to the memory loca-
tion defined by the destination.

FSTSW/FNSTSW destination

FSTSW/FNSTSW destination (store status word)
writes the current value of the 8087 status word to
the destination operand in memory. The instruction
has many uses:

® to implement conditional branching following
a comparison of FPREM instruction
(FSTSW);

® to poll the 8087 to determine if it is busy
(FNSTSW);

® to invoke exception handlers in environments
that do not use interrupts (FSTSW).

If busy is set, the status bits are not valid.

FCLEX/FNCLEX

FCLEX/FNCLEX (clear exceptions) clears all ex-
ception flags, the interrupt request flag and the busy
flag in the status word. As a consequence, the 8087’s
INT and BUSY lines go inactive. An exception han-
dler must issue this instruction before returning to
the interrupted computation, or another interrupt re-
quest will be generated immediately, and an endless
loop may result.

FSAVE/FNSAVE destination

FSAVE/FNSAVE (save state) writes the full 8087
state — environment plus register stack — to the
memory location defined by the destination
operand. Figure 6-13 shows the layout of the 94-byte
save area; typically the instruction will be coded to
save this image on the CPU stack. If an instruction is
executing in the 8087 NEU when FNSAVE is
decoded, the CPU queues the FNSAVE and delays
its execution until the running instruction completes

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

normally encounters an unmasked exception. Thus,
the save image reflects the state of the NPX FOL-
LOWING THE COMPLETION OF ANY running
instruction. After writing the state image to
memory, FSAVE/FNSAVE initializes the 8087 as if
FINIT/FNINIT has been executed.

INCREASING ADDRESSES

15 0
CONTROL WORD +0
STATUS WORD +2
TAG WORD +4
INSTRUCTION 1P150 +6
NTER 3 | ip19-16 lol OPCODE +8
OPERAND OP15-0 +10
POINTER 0919-1sl o 2
r SIGNIFICAND 15-0 +14
SIGNIFICAND 31-16 +16
I ALILRy SIGNIFICAND 47-32 +18
SIGNIFICAND 63-48 +20
L S EXPONENT 14-0 +22
SIGNIFICAND 15-0 +24
SIGNIFICAND 31-16 +26
ELES’&?’&?S < SIGNIFICAND 47-32 +28
N SIGNIFICAND 63-48 +30
S] EXPONENT 14-0 +32
o -
< M
(SIGNIFICAND 15-0 +84
SIGNIFICAND 31-16 +86
LAST STACK
ELEMENT:ST(7) J SIGNIFICAND 47-32 +88
N SIGNIFICAND 63-48 +90
S| EXPONENT 14-0 +92
NOTES:
S = Sign
Bit 0 of each field is ri least signi bit of cor d
register fieid.
Bit 63 of significand is integer bit (assumed binary point is immediately
to the right).

Figure 6-13 FSAVE/FRSTOR Memory Layout

FSAVE/FNSAVE is useful whenever a program
wants to save the current state of the NPX and ini-
tialize it for a new routine. Three examples are:

® an operating system needs to perform a con-
text switch (suspend the task that had been
running and give control to a new task);

® aninterrupt handler needs to use the 8087,

® an application task wants to pass a “‘clean”
8087 to a subroutine.

FNSAVE must be “protected” by executing it in a
critical region, i.e., with CPU interrupts disabled.
This prevents an interrupt handler from executing a
second FNSAVE (or other “no-wait” processor con-
trol instruction that reference memory) which could
destroy the first FNSAVE if is queued in the 8087.
An FWAIT should be executed before CPU inter-
rupts are enabled or any subsequent 8087 instruction
is executed.

FRSTOR source

FRSTOR (restore state) reloads the 8087 from the
94-byte memory area defined by the source
operand. This information should have been written
by a previous FSAVE/FNSAVE instruction and not
altered by any other instruction. CPU instructions
(that do not reference the save image) may immedi-
ately follow FRSTOR, but no NPX instruction
should be without an intervening FWAIT or an
assembler-generated WAIT.

Note that the 8087 “reacts” to its new state at the
conclusion of the FRSTOR; it will for example
generate an immediate interrupt request if the excep-
tion and mask bits in the memory image so indicate.

FSTENV/FNSTENV destination

FSTENV/FNSTENV (store environment) writes
the 8087’s basic status — control, status and tag
words, and exception pointers — to the memory lo-
cation defined by the destination operand. Typically
ie environment is saved on the CPU stack.
FSTENV/FNSTENYV is often used by exception han-
dlers because it provides access to the exception
pointers which identify the offending instruction and
operand. After saving the environment, FSTENV/-
FNSTENV sets all exception masks (masking all
exceptions) in the processor; it does not affect the
interrupt-enable mask. Figure 6-14 shows the
format of the environment data in memory. If
FNSTENYV is decoded while another instruction is
executing concurrently in the NEU, the 8087 queues
the FNSTENYV and does not store the environment
until the other instruction has completed. Thus, the
data saved by the instruction reflects the 8087 after
any previously decoded instruction has been
executed.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION-

INCREASING ADDRESSES
15 . 0
CONTROL WORD +0
~ STATUSWORD +2
TAG WORD +a
INSTRUCTION 1P15-0 i
POINTER Y [p1s-16 o] OPCODE +8
+10
OPERAND OP150
POINTER 3 [rrere] 5 2

Figure 6-14 FSTENV/FLDENV Memory Layout

FSTENV/FNSTENV must be allowed to complete
before any other 8087 instruction is decoded. When
FSTENV is coded, an explicit FWAIT, or assembler-
generated WAIT, should precede any subsequent
8087. instruction. An FNSTENV must be executed
in a critical region that is protected from
interruption, in the same manner as FNSAVE.

FLDENYV source

FLDENV (load environment) reloads the 8087 envi-
ronment from the memory area defined by the
source operand. This data should have been written
by a previous FSTENV/FNSTENV instruction.
CPU instructions (that do not reference the environ-
ment image) may immediately follow FLDENYV,
but no subsequent NPX instruction should be ex-

_ecuted without an intervening FWAIT or assembler-
generated WAIT.

Note that loading an environment image that con-
tains an unmasked exception will cause an immedi-
ate interrupt request from the 8087 (assuming
IEM-0 in the environment image).

FINCSTP

FINCSTP (increment stack pointer) adds 1 to the
stack top pointer (ST) in the status word. It does not
alter tags or register contents, nor does it transfer
data. It is not equivalent to popping the transfer data
since it does not set the tag of the previous stack top
to empty. Incrementing the stack pointer when
ST=7 produces ST=0.

FDECSTP

FDECSTP (decrement stack pointer) subtracts 1
from'ST, the stack top pointer in-the status word. No
tags or registers are altered, nor 'is any data
transferred. Executing FDECSTP when ST=0 pro-
duces ST=17.

FFREE destination

FFREE (free register) changes the destination regis-
ter’s tag to empty; the contents of the register is
unaffected.

FNOP
FNOP (no operation) stores the stack top to the

stack top (FST ST,ST(0)) and thus effectively per-
forms no operation.

FWAIT (CPU instruction)

FWAIT is not actually an 8087 instruction, but an al-
ternate mnemonic for the CPU WAIT instruction
described in Section 3.8, Addressing Modes. The
FWAIT mnemonic should be coded whenever the
programmer wants to synchronize the CPU to the
NPX, that is, to suspend further instruction decoding
until the NPX has completed the current instruction.
A CPU instruction should not attempt to access a
memory operand that has been read or written by a previ-
ous 8087 instruction until the 8087 instruction has
completed. The following coding shows how FWAIT
can be used to force the CPU instruction to wait for
the 8087:

FNSAVE STATUS
FWAIT ;Wait for FNSAVE
MOV AX,SAVE AREA STATUS

Programmers should not code WAIT to synchronize
the CPU and the NPX. The routines that alter an
object program for 8087 emulation eliminate
FWAITs (and assembler-generated WAITs) but do
not change any explicitly coded WAITs. The pro-
gram will wait forever if a WAIT is encountered in
emulated execution, since there is no 8087 to drive
the CPU’s TEST pin active.

Instruction Set Reference
Information

Table 6-17 lists the operating characteristics-of all the
8087 instructions. There is one table entry for each
instruction mnemonic; the entries are in alphabetical
order for quick lookup. Each entry provides the
general operand forms accepted by the instruction as
well as a list of all exceptions that may be detected
during the operation.

There is one entry for each combination of operand
types that can be coded with the mnemonic. Table
6-15 explains ‘the operand identifiers allowed in
Table 6-17. Following this entry are columns that
provide execution time in clocks, the number of bus
transfers run during the operation, the length of the
instruction in bytes, and an ASM-86 coding sample.

6-32

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-15 Key to Operand Types

Identifier Explanation
ST Stack top; the register currently at
the top of the stack.
ST(1) Aregister in the stack i (0<<i<7)

stack elements from the top. ST(1) is
the next-on-stack register, ST(2) is
below ST(1), etc.

Short-real A short real (32 bits) number in
memory.

Long-real A long real (64 bits) number in
memory.

Temp-real A temporary real (80 bits) number in
memory.

Packed-decimal A packed decimal integer (18 digits,
10 bytes) in memory.

Word-integer A word binary integer (16 bits) in
memory.

Short-integer A short binary integer (32 bits) in
memory.

Long-integer A long binary integer (64 bits) in
memory.

nn-bytes A memory area nn bytes long.

EXECUTION TIME

The execution of an 8087 instruction involves three
principal activities, each of which may contribute to
the total duration (execution time) of the operation:

® Instruction fetch
® Instruction execution

® Operand transfer

The CPU and NPX simutaneously prefetch and
queue their common instruction stream from
memory. This activity is performed during spare bus
cycles and proceeds in parallel with the execution of
instructions from the queue. Because of their
complexity, 8087 instructions typically take much
longer to execute than to fetch. This means that in a
typical sequence of 8087 instructions the processors
have a relatively large amount of time available to
maintain full instruction queues. Instruction fetching
is therefore fully overlapped with execution and
does not contribute to the overall duration of a
series of instructions.

6-33

Fetch time does become apparent when a CPU jump
or call instruction alters the normal sequential
execution. This empties the queues and delays exe-
cution of the target instruction until it is fetched
from memory. The time required to fetch the in-
struction depends on its length, the type of CPU
(8086/186 or 8088/188), and, if the CPU is an 8086,
whether the instruction is located at an even or odd
address. (Slow memories, which force the insertion
of wait states in bus cycles, and the bus activities of
other processors in the system, may also lengthen
fetch time.) Section 4.4 covers this topic in more
detail.

Table 6-17 quotes a typical execution time and a
range for each instruction. Dividing the figures in
the table by 5 (assuming a 5 MHz clock) produces
execution time in microseconds. The typical case is
an estimate for operand values that normally char-
acterize most applications. The range encompasses
best- and worst-case operand values that may be
found in extreme circumstances. Where applicable,
the figures include all overhead incurred by the
CPU’s execution of the ESC instruction, local bus
arbitration (request/grant time), and the average
overhead imposed by a preceding WAIT instruction
(half of the 5-clock cycle that it uses to examine the
)TEST(pin).

The execution times assume that no exceptions are
detected. Invalid operation, denormalized (un-
masked), and zerodivide exceptions usually decrease
execution time from the typical figure, but it will still
fall within the quoted range. The precision exception
has no effect on execution time. Unmasked overflow
and underflow, and masked denormalized
exceptions, impose the penalties shown in Table
6-16. Absolute worst-case execution time is there-
fore the high range figure plus the largest penalty
that may be encountered.

For instructions that transfer operands to or from
memory, the execution times in Table 6-17 show
that the time required for the CPU to calculate the
operand’s effective address (EA) should be added.
Effective address calculation time varies according
to addressing mode. and to the CPU processor
(8086,88 or 80186,188) used; Table 2-18 supplies
the figures.

Table 6-16 Execution Penalties

Exception Additional Clocks
Overflow (unmasked) 14
Underflow (unmasked) 16
Denormalized (masked) 33

210911

st Bl R e e

3
3
¥

e it

THE 8087 NUMERIC PROCESSOR EXTENSION

BUS TRANSFERS

Instructions that reference memory execute bus
cycles to transfer operands. Each transfer requires
one bus cycle. The number of transfers depends on
the length of the operand, the type of CPU, and the
alignment of the operand if the CPU is an 8086. The
figures in Table 6-17 include the “dummy read”
transfer (s) performed by the CPU in its execution of
the escape instruction. The first 8086 figure is for
even-addressed operands, and the second is for odd-
addressed operands.

A bus cycle (transfer) consumes four clocks if the
bus is immediately available and if the memory is
running at processor speed, without wait states.
Additional time is required if slow memories are
employed, because these insert wait states into the
bus cycle. In multiprocessor environments, the bus

may not be available immediately if a higher priority
processor is using it; this also can increase effective
transfer time.

INSTRUCTION LENGTH

Instructions that do not reference memory are two
bytes long. Memory reference instructions vary be-
tween two and four bytes. The third and fourth
bytes are used for 8- or 16-bit displacement values;
the assembler generates the short displacement
whenever possible. No displacements are required
in memory references that use only CPU register
contents to calculate an operand’s effective address.
Note that the lengths quoted in Table 6-17 do not in-
clude the one byte CPU WAIT instruction that the
assembler automatically inserts in front of all NPX
instructions (except those coded with a “no-wait”
mnemonic).

Table 6-17 Instruction Set Reference Data

FABS

FABS (no operandsj

Absolute value Exceptions: |
Execution Clocks Transfers
i |
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 14 10-17 0 0 2 FABS
FAD D FADD //source/destination,source L
Add real Exceptions: |,D,0,U, P
Execution Clocks Transfers
t ingE |
Operands Typical Range 3086 | 8088 Bytes Coding Example
11ST,ST(i)/ST(i),ST 85 70-100 0 0 2 FADD ST,ST(4)
short-real 105+EA 90-120+EA | 2/4 4 2-4 | FADD AIR_TEMP (SI]
long-real 110+EA 95-125+EA | 4/6 8 2-4 | FADD [BX].MEAN

FADDP

Add real and pop

FADDP destination,source

Exceptions: 1,D,0,U, P

Execution Clocks Transfers
i |
Operands Typical Range 8086 | 8088 Bytes Coding Example
ST(i),ST 90 75-105 0 0 2 FADDP ST(2),ST
6-34 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FBLD FBLD source Excentions: |
Packed decimal (BCD) load ptions:
Execution Clocks Transters
t Coding E \
Operands Typical Range 3086 | 8088 Bytes oding Example
packed-decimal 300+EA 290-310+EA| 5/7 10 2-4 | FBLD YTD__SALES

FBSTP FBSTP destination Excontions: |
Packed decimal (BCD) store and pop xceptions:
Execution Clocks Transfers
Operands ding Example
p Typical Range 8086 | 8088 Bytes Coding P
packed-decimal 530+EA 520-540+EA| 6/8 12 2-4 | FBSTP [BX].FORECAST
FCHS FCHS (no operands) ions: |
Change sign Exceptions:
Execution Clocks Transfers
Operands i
P Typical Range 8086 | 8088 Bytes Coding Example
(no operands) 15 10-17 0 0 2 FCHS

FCLEX/FNCLEX FCLEX (no operands) L
Clear exceptions Exceptions: None
Execution Clocks Transfers
Operands i
P Typical Range 8086 | 8088 Bytes Coding Example
(no operands) 5 2-8 0 0 2 FNCLEX
FCOM FCOM //source .
Conipare real Exceptions: |, D
Execution Clocks Transfers
B Codi
Operands Typical Range 3086 | 8088 ytes oding Example
118T(i) 45 40-50 0 0 2 FCOM ST(1)
short-real 65+EA 60-70+EA 2/4 4 2-4 | FCOM |BP|.UPPER LIMIT
long-real 70+EA 65-75+EA 4/6 8 2-4 FCOM WAVELENGTH
6-35

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FCOMP FCOMP //source Exceptions: |.D
Compare real and pop P U
Execution Clocks Transfers
Byt i
Operands Typical Range 3086 | 8088 ytes Coding Example
118T(i) 47 42-52 0 0 2 FCOMP ST(2)
short-real 68+EA 63-73+EA 2/4 4 2-4 FCOMP iBP +2: N READINGS
long-real 72+EA 67-77+EA 4/6 8 2-4 FCOMP DENSITY
FCOMPP FCOMPP (no operands) E . .
Compare real and pop twice xceptions: |, D
Execution Clocks Transfers
Operands i
P Typical Range | 8086 | s0ss |°¥'eS Coding Example
(no operands) 50 45-55 0 0 2 FCOMPP
FDECSTP FDECSTP (no operands) £ tions: N
Decrement stack pointer xceplions: None
Execution Clocks Transfers
ing E
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 9 6-12 0 0 2 FDECSTP
FD'S'/FND'SI FDISI (no operands) .
Disable interrupts Exceptions: None
Execution Clocks Transfers
Operands i
P Typical Range | 8086 | 8088 |C)'°° Coding Example
(no operands) 5 2-8 0 0 2 FDIS!

FD'V FDIV //source/destination,source .
Divide real Exceptions: 1,D,2,0,U,P
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
118T(i),ST 198 193-203 0 0 2 FDIV
short-real 220+EA 215-225+EA | 2/4 4 2-4 | FDIV DISTANCE
long-real 225+EA 220-230+EA | 4/6 8 | 24 FDIV ARC (D]

6-36

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FD'VP FDIVP destination,source L
Divide real and pop Exceptions: 1,D0,2,0, U, P
Execution Clocks Transfers
Bytes Coding Example
Operands Typical Range | 8086] s0ss | V'€ ing Examp
ST(i),ST 202 197-207 0 0 2 FDIVP ST(4),ST
FDlVR FDIVR //source/destination,source .
Divide real reversed Exceptions: 1,D,2,0.U.P
Execution Clocks Transfers
Operands Coding E |
per Typical Range | 8086 | soss |°V'eS oding Example
/1ST,ST(i)/ST(i),ST 199 194-204 0 0 2 FDIVR ST(2),ST
short-real 221+EA | 216-226+EA | 2/4 6 2-4 | FDIVR [BX].PULSE__RATE
long-real 226+EA | 221-231+EA | 4/6 8 2-4 | FDIVR RECORDER.FREQUENCY
FD'VRP FDIVRP destination,source .
Divide real reversed and pop Exceptions: 1,D,Z,0,U,P
Execution Clocks Transfers
o .
perands Typical Range 8086 | 8088 Bytes Coding Example
ST(i),ST 203 198-208 0 0 2 FDIVRP ST(1),ST
FEN |/FNEN| FENI (no operands) R .
Enable interrupts Exceptions: None
Execution Clocks Transfers
Operands Typical Range 3086 | 8068 Bytes Coding Example
(no operands) 5 2-8 0 0 2 FNENI
FFREE FFREE destination .
Free register Exceptions: None
Execution Clocks Transfers
Operands Typical Range 2088 | 8068 Bytes Coding Example
ST(i) 1 9-16 0 9 2 FFREE ST(1)

6-37

210911

oo G

;
$
i

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FIADD FIADD source .
:1.D.O.P
Integer add Exceptions: 1.D. O
Execution Clocks Transfers
' .

Operands Typical Range 3086 | 8088 Bytes Coding Example
word-integer 120+EA | 102-137+EA | 1/2 2 2.4 |FIADD DISTANCE TRAVELLED
short-integer 125+EA [108-143+EA | 2/4 4 2-4 | FIADD PULSE COUNTsI
FICOM FICOM source E tions: 1. D

Integer compare xceptions: |,
Execution Clocks Transfers :
(o} - . i
perands Typical Range 3086 | 8088 Bytes Coding Example
word-integer 80+EA 72-86+EA | 1/2 2 2-4 | FICOM TOOL.N__PASSES
short-integer 85+EA 78-91+EA | 2/4 4 2-4 | FICOM [BP +4].PARM__COUNT
FlCOMP FICOMP source £ tions: 1. D
Integer compare and pop xceptions: 1,
Execution Clocks Transfers

Operands Typical Range 8086 | 8088 Bytes Coding Example
word-integer 82+EA 74-88+EA | 1/2 2 2-4 | FICOMP [BP].LIMIT [SI]
short-integer 87+EA 80-93+EA 2/4 4 2-4 | FICOMP N__SAMPLES
FIDIV FIDIV source

Integer divide Exceptions: |,D,Z,0,U, P
Execution Clocks Transfers
(o} s i
perand Typical Range 8086 | 8083 Byte? Coding Example
word-integer 230+EA | 224-238+EA | 1/2 2 2-4 | FIDIV SURVEY.OBSERVAT!ONS
‘short-integer 236+EA | 230-243+EA | 2/4 4 2-4 | FIDIV RELATIVE__ANGLE [DI]
FIDIVR FIDIVR source . '
Integer divide reversed Exceptions: 1.D,Z,0,U,P
Execution Clocks Transfers - -

Operands Typical “Range 3086 | 8088 Bytes Coding Example
word-integer 230+EA | 225-239+EA | 1/2 2 2-4 | FIDIVR [BP].X_COORD
short-integer 237+EA 231-245+EA | 2/4 4 2-4 | FIDIVR FREQUENCY

6-38 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FILD FILD source Exception: |
Integer load ption:
Execution Clocks Transfers
Bytes Coding Example
Operands Typical | Range | 80868088 | ° 9 Examp
word-integer 50+EA 46-54+EA | 1/2 2 2-4 | FILD [BX].SEQUENCE
short-integer 56+EA 52-60+EA | 2/4 4 2-4 | FILD STANDOFF [DI]
long-integer 64+EA 60-68+EA | 4/6 8 2-4 | FILD RESPONSE.COUNT
FlMUL FIMUL source .
Integer multiply Exceptions: |,D,O, P
Execution Clocks Transfers
(o) ing E |
perands Typical Range 3086 | 8088 Bytes Coding Example
word-integer 130+EA | 124-138+EA | 1/2 2 2-4 | FIMUL BEARING
short-integer 136+EA | 130-144+EA | 2/4 4 2-4 | FIMUL POSITION.Z__AXIS
FlNCSTP FINCSTP (no operands) .
Increment stack pointer Exceptions: None
o Execution Clocks Transfers
erands .
P Typical Range | 80ss | s0sa | oY'eS Coding Example
(no operands) 9 6-12 0 0 2 FINCSTP
FlNlT/FNINlT FINIT (no operands) £ i N
Initialize processor xceptions: None
Execution Clocks Transfers
B i |
Operands Typical Range 8086 | 8088 ytes Coding Example
(no operands) 5 2-8 0 0 2 FINIT
FIST FIST destination .
Integer store Exceptions: |, P
Execution Clocks Transfers
o .
perands Typical Range 3086 | 8088 Bytes Coding Example
word-integer 86+EA 80-90+EA 2/4 4 2-4 FIST OBS.COUNT (3!
short-integer 88+EA 82-92+EA | 3/5 6 2-4 | FIST [BP|.FACTORED PULSES

6-39 210911

YA SR

e SRS . Sl

e < b e

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FISTP

FISTP destination
Integer store and pop

Exceptions: . P

Execution Clocks Transfers 8 c
t ding E |
Operands Typical | Range | 8086 | 8088 | > -° oding Example
word-integer 88+EA 82-92+EA | 2/4 4 2-4 | FISTP iBX: ALPHA COUNT SI
short-integer 90+EA 84-94+EA | 3/5 6 2-4 | FISTP CORRECTED TIME
long-integer 100+EA 94-105+EA | 5/7 10 2-4 | FISTP PANEL.N READINGS
F'SUB FISUB source)
Integer subtract Exceptions: |,D,0,P
Execution Clocks Transfers
Operands Typical Range 8086 | 8088 Bytes Coding Example
word-integer 120+EA | 102-137+EA | 1/2 2, 2-4 | FISUB BASE _FREQUENCY.
short-integer 125+EA . | 108-143+EA | 2/4 4 2-4 | FISUB TRAIN__SIZE [DI]
- FISUBR FISUBR source Excentions: 1.b.0. P
Integer subtract reversed xceptions: 1, D, ©,
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Cogmg Example
word-integer 120+EA | 103-139+EA | 172 2 2-4 | FISUBR FLOOR [BX][SI]
short-integer 125+EA |*109-144+EA | 2/4 4 2-4 | FISUBR BALANCE
F
FLD ngd f:;rce Exceptions: |,D
Execution Clocks Transfers .
Operands Typical Range 3086 | 8088 ‘Bytes Coding Example
ST(i) 20 17-22 0 0 2 FLD -ST(0)
short-real 43+EA 38-56+EA | 2/4 4 2-4 | FLD READING [SI|.PRESSURE
long-real 46+EA 40-60+EA | 4/6 8 2-4 | FLD [BP).TEMPERATURE
temp-real 57+EA 53-65+EA | 5/7 10 2-4 | FLD SAVEREADING
FLDCW FLDCW source E tions: N
Load control word xceptions: None
Execution Clocks Transfers
o] d i
perands Typical Range 8086 | 8088 Bytes Coding Example
2-bytes 10+EA 7-14+EA 112 2 2-4 | FLDCW CONTROL_WORD
6-40 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FLDENV FLDENV source Excantions: None
Load environment cep .
Execution Clocks Transfers
Coding Example
Operands Typical Range | 8086 | 8088 | V'S oding Examp
14-bytes 40+EA 35-45+EA | 7/9 14 2-4 |FLDENV [BP+6]
FLDLG2 FLDLG2 (no operands) E tions: |
Load log, 2 xceptions:
Execution Clocks Transfers
Operands i [
per Typical Range | 8086 | soss | CV'eS Coding Example
(no operands) pal 18-24 0 0 2 FLDLG2
FLDLN2 FLDLN2 (no operands)
Load logg 2 Exceptions: |
Execution Clocks Transfers
Operands i
peran Typical Range | 8086 | soss | °Y'* Coding Example
(no operands) 20 17-23 0 0 2 FLDLN2
FLDL2E FLDL2E (no operands) E tions: |
Load log, e xceptions:
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 18 15-21 0 0 2 FLDL2E
FLDL2T FLDL2T (no operands) E tions: |
] Load log,10 xceptions:
Execution Clocks Transfers
0 .
perands Typical Range 2086 | 2038 Bytes Coding Example
(no operands) 19 16-22 0 0 2 FLDL2T

6-41

210911

o Fandie o i e

.

;
b
|

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FLDP' FLDPI (no operands) Lo
Load n Exceptions: |
Execution Clocks Transfers .
t ing E |
Operands Typical Range 3036 | 8088 Bytes oding Example
(no operands) 19 16-22 0 0 2 FLDPI
FLDZ FLDZ (no operands) X
Load +0.0) Exceptions: |
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 14 11-17 0 0 2 FLDZ
FLD1 FLD1 (nooperands) .
Load +1.0 Exceptions: |
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 18 15-21 0 0 2 FLD1
FMUL FMUL //source/destination,source .
Multiply real Exceptions: |,D,0,U, P
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
11ST(i),ST/ST,ST(i)' 97 90-105 0 0 2 FMUL ST,ST(3)
/1ST(i),ST/ST,ST(i) 138 130-145 0 0 2 FMUL ST,ST(3)
short-real 118+EA | 110-125+EA | 2/4 4 2-4 | FMUL SPEED__FACTOR
long-real 120+EA | 112-126+EA | 4/6 8 2-4 | FMUL [BP].HEIGHT
long-real 161+EA | 154-168+EA | 4/6 8 2-4 | FMUL [BPL.HEIGHT

" occurs when one or both operands is ‘‘short’'—it has 40 trailing zeros in its fraction (e.g., it was loaded from a short-real
memory operand).

FMULP FMULP destination,source .
Multiply real and pop Exceptions: |,D,0,U, P
Execution Clocks Transfers
|
Operands Typical Range 3086 | 8088 Bytes Coding Example
ST(i),ST' 100 94-108 0 0 | 2 |FMULP sT().ST
ST(i),ST 142 134-148 » 0 0 2 FMULP ST(1),ST

" occurs when one or both operands is ‘‘short’’—it has 40 trailing zeros in its fraction (e.g., it was loaded from a short-real
memory operand).

6-42 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FNOP FNOP (no operands) £ ions: N
No operation xceptions: None
o Execution Clocks Transfers
erands . |
e Typical Range | 8086 | soss | 0VteS Coding Example
(no operands) 13 10-16 0 0 2 FNOP
FPATAN FPATAN (no operands) .
Partial arctangent Exceptions: U, P (operands not checked)
Execution Clocks Transfers
Operands Byt Coding Example
P Typical Range | 8086 8088 | ' ° ing Examp
(no operands) 650 250-800 0 0 2 FPATAN
FPREM FPREM (no operands) Lo
Partial remainder Exceptions: 1.D. U
Execution Clocks Transfers
Operan Byt Coding E !
perands Typical Range | 8086] 8088 | ' °° oding Example
(no operands) 125 15-190 0 0 2 FPREM
FPTAN FPTAN (no operands) L
Partial tangent Exceptions: |, P (operands not checked)
Execution Clocks Transfers
Bytes Coding Exampl
Operands Typical Range | 8086]8088 | ' oding Example
(no operands) 450 30-540 0 0 2 FPTAN
FRND'NT FRNDINT (no operands) Lo
Round to integer Exceptions: |. P
Execution Clocks Transfers
Bytes Coding E |
Operands Typical Range | 8086 | 8088 | ' oding Example
(no operands) 45 16-50 0 0 2 FRNDINT

6-43

210911

]
u
'

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FRSTOR FRSTOR source

Restore saved state Exceptions: None

Execution Clocks Transfers
Operands Typical Range 3086 | 8083 Bytes Coding Example
94-bytes 208+EA | 197-207+EA |47/49 | 96 2-4 | FRSTOR [BP]

v FSAVE/FNSAVE Fsave destination

Exceptions: None

Save state
Execution Clocks Transfers
Operands Typical Range 8086 | 8088 Bytes Coding Example
94-bytes 208+EA | 197-207+EA|48/50 | 94 2-4 | FSAVE [BP]
FSCALE FSCALE (no operands)
Scale P Exceptions: |,0, U
Execution Clocks Transfers
Operands Typical Range 2086 | 8088 Bytes Coding Example
(no operands) 35 32-38 0 0 2 FSCALE
FSQ RT gSQRT (no operands) Exceptions: |, D, P
quare root
Execution Clocks Transfers
i |
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 183 180-186 0 0 2 FSQRT
FST FST destination -
Store real Exceptions: 1,0, U, P
Execution Clocks Transiers
Byt Coding Example
Operands Typical Range | 8086 8088 | ' °° ‘ng Examp
ST(i) 18 15-22 0 0 2 FST ST(3)
short-real - 87+EA 84-90+EA | 3/5 6 2-4 | FST CORRELATION [DI]
long-real 100+EA 96-104+EA | 5/7 10 2-4 | FST MEAN__READING

6-44 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FSTCW/FNSTCW Estcw destination

Store control word Exceptions: None

o 4 Execution Clocks Transfers

erands R

P Typical Range | 8086 | soss |o)'eS Coding Example
2-bytes 15+EA 12-18+EA 2/4 4 2-4 FSTCW SAVE__CONTROL

FSTENV/FNSTENV Frstenv destination

Store environment Exceptions: None

o Execution Clocks Transfers
erands i |
P Typical Range | 8086 | soss | oY'eS Coding Example
14-bytes 45+EA 40-50+EA | 8/10 16 2-4 | FSTENV [BP]
FSTP FSTP destination ,
Store real and pop Exceptions: |,0, U, P
Execution Clocks Transfers
(o} d Byt i |
perands Typical Range 8086 | 8088 yies Coding Example
ST(i) 20 17-24 0 0 2 FSTP ST(2)
short-real 89+EA 86-92+EA 3/5 6 2-4 | FSTP [BX]|.ADJUSTED RPM
long-real 102+EA 98-106+EA| 5/7 10 2-4 | FSTP TOTAL DOSAGE
temp-real 55+EA 52-58+EA 6/8 12 2-4 | FSTP REG SAVE [SI|

FSTSW/FNSTSW Fstsw destination

Store status word Exceptions: None

Execution Clocks Transfers
Byt i |
Operands Typical Range 3086 | 8088 ytes Coding Example
2-bytes 15+EA 12-18+EA 2/4 4 2-4 | FSTSW SAVE STATUS
FSUB FSUB //source/destination,source £ L \
Subtract real xceptions: |.D.0.U.P
Execution Clocks Transfers
Operan i
perands Typical Range 3086 | 2086 Bytes Coding Example
[1ST,ST(i)/ST(i),ST 85 70-100 0 0 2 FSUB ST.ST2)
short-real 105+EA 90-120+EA| 2/4 4 2-4 | FSUB BASE VALUE
long-real 110+EA 95-125+EA| 4/6 8 2-4 | FSUB COORDINATE X

6-45

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FSU BP FSUBP destination,source .
Subtract real and pop Exceptions: 1,0,0,U,P
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
ST(i),ST 90 75-105 0 0 2 FSUBP ST(2),ST
FSUBR FSUBR //source/destination,source .
Subtract real reversed Exceptions: 1,0,0,U,P
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
[1ST,ST(i)/ST(i),ST 87 70-100 0 0 2 FSUBR ST,ST(1)
short-real 105+EA 90-120+EA| 2/4 4 2-4 | FSUBR VECTOR(SI]
long-real 110+EA 95-125+EA| 4/6 8 2-4 | FSUBR [BX].INDEX
FSU BRP FSUBRP destination,source
Subtract real reversed and pop Exceptions: 1,D.0,U,P
Executon Clocks Transfers
Operands Typical Range 2086 | 8088 Bytes Coding Example
ST(i),ST 90 75-105 0 0 2 FSUBRP ST(1),ST
FTST FTST (no operands) . .
Test stack top against +0.0 Exceptions: 1,0
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytesk Coding Example
(no operands) 42 38-48 0 0 2 FTST

FWAIT FWAIT (no operands) L :)
(CPU) Wait while 8087 is busy Exceptions: None (CPU instruction)
Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 3+5n* 3+5n* 0 0 1 FWAIT

*n = number of times CPU examines TEST line before 8087 lowers BUSY.

6-46

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

FXAM

FXAM (no operands)
Examine stack top

Exceptions : None

Execution Clocks Transfers
Operands Coding Example
P Typical | Range | 8086] 8oss | >V'eS oding Examp
(no operands) 17 12-23 0 0 2 FXAM
FXCH FXCH //destination E tions: |
Exchange registers xceptions:
Execution Clocks Transfers
(o) ing E |
perands Typical Range 3086 | 8088 Bytes Coding Example
11ST(i) 12 10-15 0 0 2 FXCH ST(2)
FXTRACT FXTRACT (no operands) £ tions: |
Extract exponent and significand xceptions:
Execution Clocks Transfers
o .
perands Typical | Range 3086 | 8088 Bytes Coding Example
(no operands) 50 27-55 0 0 2 FXTRACT
FYL2X FYL2X (no operands) £ i . p "
Ye Logz X xceptions: P (operands notchecked)
Execution Clocks Transfers v
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 950 900-1100 0 0 2 FYL2X
FYL2XP1 FYL2XP1 (no operands) Exceptions: P (operands not checked
Y ¢log, (x +1) p : perands not checked)
Execution Clocks Transfers
' .
Operands Typical Range 3036 | 8088 Bytes Coding Example
(no operands) 850 700-1000 0 0 2 FYL2XP1

6-47

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-17 Instruction Set Reference Data (continued)

: F2XM1 ;3_):M1 (no operands) Exceptions: U, P (operands not checked)
. Execution Clocks Transfers
Operands Typical Range 3086 | 8088 Bytes Coding Example
(no operands) 500 310-630 0 0 2 F2XM1
6.6 PROGRAMMING FACILITIES PL/M-86

- Writing programs for the 8087 is a natural extension
of the process described in Section 2.9, just as the
NPX itself is an extension to the CPU. This section
describes how PL/M-86 and ASM-86 programmers
work with the 8087 in these languages. It also covers
the 8087 software emulators provided for, both
translators.

The level of detail in this section is intended to give

programmers a basic understanding of the software

tools that can be used with the 8087, but this infor-

mation is not sufficient to document the full capabili-

ties of these facilities. The definitive description of
ASM-86 and the full 8087 emulator is provided in

MCS™_86 Assembly Language Reference Manual,

Order No. 9800640, and MCS™.-86 Assembler

Operating Instructions for ISIS-II Users, Order No.

9800641. PL/M-86 and the partial emulator are

documented in PL/M-86 Programming Manual,

Order No. 9800466 and ISIS-II PL/M-86 Compiler .
Operator’s Manual, Order No. 9800478. These publi-

cations may be ordered from Intel’s Literature

Department.

Readers should be familiar with Section 2.9 of the
8086 Family User’s Manual in order to benefit from
the material in this section.

6-48

High level language programmers can access a
useful subset of the 8087’s (real or emulated)
capabilities. The PL/M-86 REAL data type corre-
sponds to the NPX’s short real (32-bit) format. This
data type provides a range of about 8.43*10737<
I X< 3.38*10%%, with about seven significant deci-
mal digits. This representation is adequate for the
data manipulated by many microcomputer
applications.

The utility of the REAL data type is extended by the
PL/M-86 compiler’s practice of holding intermediate
results in the 8087’s temporary real format. This
means that the full range and precision of the proces-
sor may be utilized for intermediate results.
Underflow, overflow, and rounding errors are most
likely to occur during intermediate computations
rather than during calculation of an expression’s
final result. Holding intermediate results in tempo-
rary real format greatly reduces the likelihood of
overflow and underflow and eliminates roundoff as
a serious source of error until the final assignment of
the result is performed.

The compiler generates 8087 code to evaluate ex-
pressions that contain REAL data types, whether
variables or constants or both. This means that
addition, subtraction, multiplication, division,
comparison, and assignment of REALs will be per-
formed by the NPX. INTEGER expressions, on the
other hand, are evaluated on the CPU.

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Five built-in procedures (Table 6-18) give the
PL/M-86 programmer access to 8087 functions
manipulated by the processor control instructions.
Prior to any arithmetic operations, a typical
PL/M-86 program will setup the NPX after power up
using the INITSREALSMATHSUNIT procedure
and then issue SETSREALSMODE to configure the
NPX. SETSREALSMODE loads the 8087 control
word, and its 16-bit parameter has the format shown
in Figure 6-7. The recommended value of this
parameter is 033EH (projective closure, round to
nearest, 64-bit precision, interrupts enabled, all ex-
ceptions masked except invalid operation). Other
settings may be used at the programmer’s discretion.

If any exceptions are unmasked, an exception han-
dler must be provided in the form of an interrupt
procedure that is designated to be invoked by CPU
interrupt pointer (vector) number 16. The exception
handler can use the GETSREALSERROR procedure
to obtain the low-order byte of the 8087 status word
and to then clear the exception flags. The byte re-
turned by GETSREALSERROR contains the excep-
tion flags; these can be examined to determine the
source of the exception.

The SAVESREALSSTATUS and RESTORES$-
REALSSTATUS procedures are provided for multi-
tasking environments where a running task that
uses the 8087 may be preempted by another task
that also uses the 8087. It is the responsibility of the
preempting task to issue SAVESREALS$STATUS
before it executes any statements that affect the
8087; these include the INITSREALSMATH$UNIT
and SETSREALSMODE procedures as well as arith-
metic expressions. SAVESREALSSTATUS saves
the 8087 state (registers, status, and control words,

etc.) on the CPU’s stack. RESTORESREALSSTA-
TUS reloads the state information; the preempting
task must invoke this procedure before terminating
in order to restore the 8087 to its state at the time
the running task was preempted. This enables the
preempted task to resume execution from the point
of its preemption.

Note that the PL/M-86 compiler prefixes every 8087
instruction with a CPU WAIT. Therefore, program-
mers should not code PL/M-86 statements that
generate 8087 instructions if the NPX can request an
interrupt and that interrupt is blocked (this may
result in the endless wait condition described in
Volume 2).

ASM-86

The ASM-86 assembly language provides a single
uniform set of facilities for all combinations of the
8086,88/80186,188/8087 processors. Assembly lan-
guage programs can be written to be completely in-
dependent of the processor set on which they are
destined to execute.

This means that a program written originally for an
8088 alone will execute on an 8086/8087 or
80186,88/8087 combination without re-assembling.
The programmer’s view of the hardware is a single
machine with these resources:

® 160 instructions

® 12 data types

® 8 general registers

Table 6-18 PL/M-86 Built-in Procedures

Procedure 8087 Instruction Description
INITSREALSMATHSUNIT®M FINIT Initialize processor.
SET$SREAL$SMODE FLDCW Set exception masks, rounding

precision, and infinity controls.
GET$REALSERROR® FNSTSW & FNCLEX Store, then clear, exception
flags.
SAVESREALSSTATUS FNSAVE Save processor state.
RESTORES$REALS$STATUS FRSTOR Restore processor state.

(MAlso initializes interrupt pointers for emulation.

@Returns low-order byte of status word.

6-49

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

® 4 segment registers
o 8 floating-point registers, organized as a stack

The combination of the assembly language and the
8087 emulator decouples the source code from the
execution vehicle. For example, the assembler auto-
matically inserts CPU WAIT instructions in front of
those 8087 instructions that require them. If the pro-
gram actually runs with the emulator rather than the
8087, the WAITSs are automatically removed at link
time (since there is no NPX for which to wait).

DEFINING DATA

The ASM-86 directives shown in Table 6-19 allocate
storage for 8087 variables and constants. As with
other storage allocation directives, the assembler as-
sociates a type with any variable defined with these
directives. The type value is equal to the length of
the storage unit in bytes (10 for DT, 8 for DQ, etc.).
The assembler checks the type of any variable coded
in an instruction to be certain that it is compatible
with the instruction. For example, the coding
FIADD ALPHA will be flagged as an error if
ALPHA’s type is not 2 or 4, because integer addition
is only available for word and short integer data
types. The operand’s type also tells the assembler
which machine instruction to produce; although to
the programmer there is only an FIADD
instruction, a different machine instruction is re-
quired for each operand type.

On occasion it is desirable to use an instruction with
an operand that has no declared type. For example,
if register BX points to a short integer variable, a pro-
grammer may want to code FIADD [BX]. This can
be done by informing the assembler of the operand’s
type in the instruction, coding FIADD DWORD

PTR [BX]. The corresponding overrides for the
other storage allocations are WORD PTR, QWORD
PTR, and TBYTE PTR.

The assembler does not, however, check the types
of operands used in processor control instructions.
Coding FRSTOR [BP] implies that the programmer
has set up register BP to point to the stack location
where the processor’s 94-byte state record has been
previously saved.

The initial values for 8087 constants may be coded
in several different ways. Binary integer constants
may be specified as bit strings, decimal integers,
octal integers, or hexadecimal strings. Packed deci-
mal values are normally written as decimal integers,
although the assembler will accept and convert other
representations of integers. Real values may be writ-
ten as ordinary decimal real numbers (decimal point
required), as decimal numbers in scientific notation,
or as hexadecimal strings. Using hexadecimal strings
is primarily intended for defining special values such
as infinities, NANs, and nonnormalized numbers.
Most programmers will find that ordinary decimal
and scientific decimal provide the simplest way to ini-
tialize 8087 constants. Figure 6-15 compares several
ways of setting the various 8087 data types to the
same initial value.

Note that preceding 8087 variables and constants
with the ASM-86 EVEN directive ensures that the
operands will be word-aligned in memory. This will
produce the best performance in 8086/80186-based
systems, and is good practice even for 8088/80188
software, in the event that the programs are trans-
ferred to an 8086/80186. All 8087 data types occupy
integral numbers of words so that no storage is
“wasted” if blocks of variables are defined together
and preceded by a single EVEN declarative.

; IN THE FOLLOWING,

;
TEMP_REAL 0T

THE FOLLOWING ALL ALLOCATE THE CONSTANT:
NOTE TWO'S COMPLEMENT STORAGE OF NEGATIVE BINARY INTEGERS.

; EVEN

WORD_INTEGER OW 1111111110000108
SHORT_INTEGER DD OFFFFFF82H
LONG_INTEGER DQ -126

SHORT_REAL 00 -126.0

LONG_REAL D0 -1.26E2
PACKED_DECIMAL DT =126

SIGN AND EXPONEN%
; SIGNIFICAND IS '7E00...00',
; THE STRING REPRESENTS A REAL DATA TYPE.

0€0057€00000000000000R

=126

; FORCE WORD ALIGNMENT

; BIT STRING

; HEX STRING MUST START WITH DIGIT
; ORDINARY DECIMAL

; NOTE PRESENCE OF '.'

; ''SCIENTIFIC'®

; ORDINARY DECIMAL INTEGER

Is 'c005',

'R' INFORMS ASSEMBLER THAT

; HEX STRING

Figure 6-15 Sample 8087 Constants

6-50

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-19 8087 Storage Allocation Directives

Directive Interpretation 8087 Data Types
DW Define Word Word integer
DD Define Doubleword Short integer, short real
DQ Define Quadword Long integer, long real
DT Define Tenbyte Packed decimal, temporary real
RECORDS AND STRUCTURES

The ASM-86 RECORD and STRUC (structure de-
claratives can be very useful in NPX programming.
The record facility can be used to define the bit fields
of the control, status, and tag words.

Figure 6-16 shows one definition of the status words
and how it might be used in a routine that polls the
8087 until it has completed an instruction.

; RESERVE SPACE FOR STATUS WORD
STATUS_WORD oW ?
; LAY OUT STATUS WORD FIELDS
STATUS RECORD
BUSY:
COND_CODE3:
STACK_TOP:
COND_CODE2:
COND_CODE1:
COND_CODEO:
INT_REQ:
RESERVED:
P_FLAG:
U_FLAG:
O_FLAG:
Z_FLAG:
D_FLAG:
1_FLAG:
POLL STATUS WORD UNTIL 8087 IS NOT BUSY
oLL: FNSTSW STATUS_WORD
TEST STATUS_WORD, MASK BUSY
JINZ POLL

J I TN

T~ @0 Q0 20 Q0 20 Q0 20 QO Q0 Q0 QO QO QO QO

Figure 6-16 Status Word RECORD Definition

Because structures allow different but related data
types to be grouped together, they often provide a
natural way to represent ‘“‘real world” data
organizations. The fact that the structure template
may be “moved” about in memory adds to its
flexibility. Figure 6-17 shows a simple structure that
might be used to represent data consisting of a series
of test score samples. A structure could also be used
to define the organization of the information stored
and loaded by the FSTENV and FLDENV
instructions.

SAMPLE STRUC
N_08S 00 ? iSHORT INTEGER
MEAN 0Q ? ;LONG REAL
MODE oW ? iWORD INTEGER
STD_DEV oaQ ? iLONG REAL

;ARRAY OF OBSERVATIONS -- WORD INTEGER
TEST_SCORES oW 1000 oupP (?)
SAMPLE ENDS

Figure 6-17 Structure Definition

ADDRESSING MODES

8087 memory data can be accessed with any of the
CPU’s twenty-two memory addressing modes. This
means that 8087 data types can be incorporated in
data aggregates ranging from simple to complex ac-
cording to the needs of the application. The address-
ing modes, and the ASM-86 notation used to specify
them in instructions, make the accessing of
structures, arrays, arrays of structures, and other or-
ganizations direct and straightforward.

Table 6-20 gives several examples of 8087 instruc-
tions coded with operands that illustrate different ad-
dressing modes.

8087 EMULATORS

Intel offers two software products that provide the
functional equivalent of an 8087, implemented in
8086,88/80186,88 software. The full emulator
(E8087) emulates all 8087 instructions. The partial
emulator (PE8087) is a smaller version that imple-
ments only the instructions needed to support
PL/M-86 programs. The full emulator adds about
16K bytes to a program, while the partial emulator
executes in about 8K. Any emulated program will
deliver the same results (except for timing) if it is ex-
ecuted on 8087 hardware. (The partial emulator
does not support transcendental functions.)

6-51 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

Table 6-20 Addressing Mode Examples

Coding

Interpretation

FIADD ALPHA

FDIVR ALPHA.BETA

FMUL QWORD PTR [BX]

FSUB ALPHA [S1]

FILD [BP].BETA

FBLD TBYTE PTR [BX] [DI]

ALPHA is a simple scalar (mode is
direct).

BETA is a field in a structure that is
‘‘overlaid’”’ on ALPHA (mode is
direct).

BX contains the address of a long real
variable (mode is register indirect).

ALPHA is an array and S| contains the
offset of an array element from the
start of the array (mode is indexed).

BP contains the address of a
structure on the CPU stack and BETA
is a field in the structure (mode is
based).

BX contains the address of a packed
decimal array and DI contains the off-
set of an array element (mode is
based indexed).

The emulators may be viewed as consisting of
emulated hardware and emulated instructions. The
emulators establish in CPU memory the equivalent
of the 8087 register stack, control, and status words
and all other programmer-accessible elements of the
NPX architecture. The emulator instructions utilize
the same algorithms as their hardware counterparts.
Emulator instructions are actually implemented as
CPU interrupt procedures. During relocation and
linkage, the 8087 machine instructions generated by
the ASM-86 and PL/M-86 translators are changed
to software interrupt (INT) instructions which
invoke these procedures as the CPU processes its in-
struction stream.

Since the decision to produce real or emulated 8087
instructions is made at link time, a program may be
switched from one mode to the other without re-
translating the source code. When the PL/M-86
compiler or ASM-86 assembler places an 8087 ma-
chine instruction into an object module, it also in-
serts a special external reference. This reference is
satisfied by linking the object module to one of two
Intel-supplied libraries: the real library, or the emula-

tor library. If the real library is specified, LINK-86
simply deletes the external references, leaving the
original 8087 machine instructions.

To run on an emulated 8087, the object program is
linked to the emulator library and to a file containing
the code of either the full or the partial emulator.
LINK-86 then adds the emulator code to the pro-
gram and changes the 8087 machine instructions
(and their preceding WAITs) to CPU software inter-
rupt instructions. Any FWAIT instructions are also
changed to CPU NOPs.

Note that an explicitly-coded CPU WAIT instruction
will not be changed; if it is executed under
emulation, the CPU will wait forever. This is why
the FWAIT mnemonic should always be used when
the external processor that the CPU is to wait for is
an 8087.

In order to be compatible with E8087, ASM-86 pro-
grams should observe the following conventions:

® Their stack segment and class should be
named STACK.

6-52 210911

THE 8087 NUMERIC PROCESSOR EXTENSION

® Interrupt pointer (vector) 16 should be
designated for the user’s exception handler
interrupt procedure. Interrupt pointer 16 only
needs designating if any exceptions are
unmasked.

® The external procedure INIT87 should be
called in the program’s initialization
(power-up) sequence. If the emulator is being
used, this procedure will initialize CPU inter-
rupt pointers 20-31 to the addresses of emula-
tor procedures and will execute an
(emulated) FINIT instruction. If the program
is not being emulated, INIT87 simply exe-
cutes the FINIT instruction.

PL/M-86 automatically observes corresponding
conventions.

Programming Example .

Figures 6-18 and 6-19 show the PL/M-86 and
ASM-86 code for a simple 8087 program, called
ARRSUM. The program references an array
(X$ARRAY), which contains 0-100 short real
values; the integer variable NSOF$X indicates the
number of array elements the program is to
consider. ARRSUM steps through X$ARRAY accu-
mulating three sums:
® SUMSX, the sum of the array values;

e SUMSINDEXES, the sum of each array
value times its index, where the index of the
first element is 1, the second is 2, etc.;

® SUMSSQUARES, the sum of each array ele-
ment squared.

PL/M-86 COMPILER DICE

1SIS-II PL/M-86 V1.2 COMPILATION OF MODULE DICE
OBJECT MODULE PLACED IN :F1:DICE.OBJ
COMPILER INVOKED BY: PLM86 :F1:DICE.P86 XREF

1 DICE: DO:

/% THIS PROGRAM SIMULATES THE KOLL OF A PAIR OF LICE */

/% GIVE NAMES TO CONSTANTS */

DECLARE CLEAR$CRT1
DECLARE CLEAR$CRT2
DECLARE HOME$CURSOR1
DECLARE HOME$CURSOK2
DECLARE SPACE

O =W N

/* PROGKAM VARIABLES */

LITERALLY 'O1BH'; /¥ INTELLEC */
LITERALLY 'O45H'; /* CKT */
LITERALLY 'O1BH'; /¥ CONTROL */
LITERALLY 'O48H'; /* CODES */
LITERALLY '020H'; /*ASCII BLANK*/

7001 DECLARE (RANDOM$NUMBER,SAVE) WORD; i
/* CONSOLE OUTPUT PROCEDURE ¥/ ‘
8 CO: PROCEDURE(X) EXTERNAL;
9 2 DECLARE X BYTE;
10 2 END CO;
/% RANDOM NUMBER GENERATOR PROCEDURE *x/
/* ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: */
/% wA GUIDE TO PL/M PROGRAMMING FOR */
¥ MICROCOMPUTER APPLICATIONS," */
/% DANIEL D. MCCRACKEN, */
/% ADDISON-WESLEY, 1978 */ :
1m0 RANDOM: PRGCEDURE WORD;
122 RANDOMSNUMBER = SAVE; /*START WITH OLD NUMBER*/)
132 RANDOM$NUMBER = 2053 * RANDOM$NUMBER + 13849; i
w2 SAVE = RANDOM$NUMBER; /*SAVE FOR NEXT TIME*/ i
/*FORCE 16-BIT NUMBERK INTO RANGE 1-6%/ !
152 RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1; i
16 2 RETURN RANDOM$NUMBER; i
172 END RANDOM; i
/% MAIN ROUTINE */ il
/* CLEAR THE SCREEN*/ !
18 1 CALL CO(CLEAR$CRT1); J
19 1 CALL CO(CLEAR$CRT2); |
/* ROLL THE DICE UNTIL INTERRUPTED ¥/ !
20 1 DO WHILE 1; /*¥"DO FOREVER"*/ :
/*NOTE THAT ADDING 30 TO THE DIE VALUE */ y
/% CONVERTS IT TO ASCII. */ .]
21 2 CALL CO(RANDOM + 030H); /*1ST DIE*/ i B
22 2 CALL CO(SPACE); /*BLANK¥/ !
23 2 CALL CO(RANDOM + 030H); /*2ND DIE*/ :

/% HOME THE CURSOR ¥/

Figure 6-18 Sample PL/M-86 Program

6-53

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

24 2 CALL CO(HOME$CURSOR1);
25 2 CALL CO(HOME$CURSOR2)
26 2 END;

27 1 END DICE;

CROSS—REFERENCE LISTING

DEFN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES

2 . CLEARCRT1 v LITERALLY

18
3 CLEARCRT2 LITERALLY
19
8 0000H co PROCEDURE EXTERNAL(O) STACK=0000H
18 19 21 22 23 24 25
1 0002H 71 DICE PROCEDURE STACK=0004H
4 HOMECURSOR1 LITERALLY
. 24
"5 HOMECURSOR2 LITERALLY
25
11 0049H 44 RANDOM PROCEDURE WORD STACK=0002H
21 23
7 0000H 2 RANDOMNUMBER) WORD
12 13 14 15 16
7 0002H 2 SAVE h WORD
12 14
6 SPACE LITERALLY
22
8 0000H 1T X BYTE PARAMETER
9

MODULE INFORMATION:

CODE AREA SIZE 0075H 117D

CONSTANT AREA SIZE ; 0000H 0D
VARIABLE AREA SIZE = 0004H 4D
MAXIMUM STACK SIZE = 00O4H 4D

51 LINES READ
0 PROGRAM ERROK(S)

END OF PL/M-86 COMPILATION

Figure 6-18 Sample PL/M-86 Program (continued)

MCS-86 MACRO ASSEMBLER DICE

ISIS-II MCS-86 MACKO ASSEMBLER V2.0 ASSEMBLY OF MODULE DICE
OBJECT MODULE PLACED IN ::F1:DICE.OBJ
ASSEMBLER INVOKED BY: ASM86 :F1:DICE.A86 XREF

LOC 0OBJ LINE SOURCE
1 ; THIS PROGRAM-SIMULATES THE ROLL OF A PAIR OF DICE
2
3 ; CONSOLE OUTPUT PRCCEDURE
4 EXTRN CO:NEAR
5
6 ; SEGMENT GROUP LEFINITIONS NEEDED FOK PL/M-86 COMPATIBILITY
7 CGROUP GkOuUP CODE
8 DGROUP GROUP DATA,STACK
9 -
10 ; INFORM ASSEMBLER OF SEGMENT KEGISTER CONTENTS.
M ASSUME CS:CGROUP,DS:DGROUP,SS:DGROUP,ES:NOTHING
12 .
13 ;- ALLOCATE DATA
-——-- 14 DATA SEGMENT PUBLIC 'DATA’
15 ; NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86
16 ; PROCEDURE 'CO'. bY CONVENTION, A BYTE PARAMETER IS PASSED IN
17 ; THE LOW-ORDER 8-BITS OF A WORD ON THE STACK. HENCE, THESE ARE
18 ; DEFINED AS WORD VALUES, THOUGH THEY OCCUPY 1 BYTE ONLY:- .

Figure 6-19 Sample ASM-86 Program

6-54

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

0000
0002
0004
0006
0008
000A

0000

0028

0000
0000

MCS-86 MACRO ASSEMBLER

LoC O0BJ

1B0OO
4500
1B0OO
4800
2000
2772

(20
2272

A10A00

0003 B90508
0006 FTE1

0008 051936
000B A30A00

000E 2BD2
0010 B90600
0013 FT7F1
0015 8BC2

0017 40
0018 C3

0019 BB==-=
001C 8ED8
001E 8EDO

0020 BC2800

0023 FF360000
0027 E80000
002A FF360200
002E E80000

0031 E8CCFF
0034 0430

0036 50

0037 E80000
003A FF360800
003E E80000
0041 EBBCFF
0044 0430

50
0047 E80000

m oo

i m

19 CLEAR_CRT1 DW 01BH ; INTELLEC
20 CLEAR_ CKT2 DW 0USH i CRT
21 HOME_CURSOR1 DW 01BH ; CONTROL
22 HOME” CURSOR2 Dw 048H ; CODES
23 SPACE DW 020H ; ASCII BLANK
24 SAVE DW 2 ; HOLDS LAST 16-BIT RANDOM NUMBER
25 DATA ENLS
26
27
28 ; ALLOCATE STACK SPACE
29 STACK SEGMENT STACK 'STACK'
30 DW 20 DUP (?)
31 ; LABEL INITIAL TOS: FOK LATER USE.
32 STACK_TOP LABEL WORD
33 STACK™ ENDS
34
35
36 ; PROGRAM CODE
3; CODE SEGMENT PUBLIC 'CODE'
3
39
40 ; RANDOM NUMBER GENERATOR PROCEDURE
41 ; ALGORITHM FOR 16-BIT RANDOM NUMBER FROM:
42 i A GUIDE TO PL/M PROGRAMMING FOR
43 ; MICROCOMPUTER APPLICATIONS,"
uk ; DANIEL D. MCCRACKEN
us ; ADDISON-WESLEY, 1978
46 RANDOM PROC
R 47 MOV AX,SAVE ; NEW NUMBER =
DICE
LINE SOUKCE
u8 MOV CX,2053 ; OLD NUMBER * 2053
49 MUL cX i+ 13849
50 ADD AX, 13849 ;
51 MOV SAVE, AX ; SAVE FOR NEXT TIME
52 ; FORCE 16-BIT NUMBER INTO RANGE 1 - 6
53 ; BY MODULO 6 DIVISION + 1
5k SUB DX, DX ; CLEAR UPPER DIVIDEND
55 MOV CcX,6 ; SET DIVISOR
56 LIv cX ; DIVIDE BY 6
57 MoV AX, DX ; REMAINDER TO AX
58 INC AX ; ADD 1
59 RET ; RESULT IN AX
60 - RANDOM ENDP
61
62
63 ; MAIN PROGRAM
64
65 ; LOAD SEGMENT REGISTERS
66 ; NOTE PROGKAM DOES NOT USE ES; CS IS IKITIALIZED BY HARDWARE RESET;
67 : DATA & STACK ARE MEMBEKS OF SAME GROUP, SO ARE TREATED AS A SINGLE
68 . ; MEMORY SEGMENT POINTED TO BY BOTH DS & SS.
69 START: MOV AX, DGROUP
70 MOV DS, AX
71 MOV SS, AX
72
73 ; INITIALIZE STACK POINTER
74 . MOV SP,OFFSET DGROUP:STACK_TOP
75
76 - ; CLEAR THE SCREEN
77 PUSH CLEAR_CRT1
78 CALL €O)
79 PUSH CLEAR_CRT2
80 CALL co
81 ‘
82 ; ROLL THE DICE UNTIL INTERRUPTED
83 ROLL: CALL RANDOM ; GET 1ST DIE IN AL
84 ADD ' AL,O030H ; CONVERT TO ASCII
85 PUSH AX ; PASS IT T0
86 CALL co i CONSOLE OUTPUT
87 PUSH SPACE ; OUTPUT
88 CALL co i A BLANK
89 CALL RANDOM ; GET 2ND DIE IN AL
90 ADD AL,030H ; CONVERT TO ASCII
91 . PUSH AX ; PASS IT TO
92 CALL co i CONSOLE OUTPUT

Figure 6-19 Sample ASM-86 Program (continued)

6-55

210911

THE 8087 NUMERIC PROCESSOR EXTENSION

5 HOME THE

93 CURSOR
004A FF360400 R 94 PUSH HOME CURSOR1
0O04E EB80000 E 95 CALL co]
0051 FF360600 R 96 PUSH HOME_CURSOR2
0055 E80000 E 97 CALL co
98 ;- CONTINUE FOREVER
0058 EBDT 99 - JMP ROLL
- 100 CODE ENDS
: 101
: XKEF SYMBOL TABLE LISTING
i .
NAME TYPE VALUE ATTRIBUTES, XREFS
29SEG SEGMENT SIZE=0000H PARA PUBLIC
CGROUP. . . . GROUP CODE 7# 11
CLEAK CRT1. . V WORD 000OH DATA 19# 77
CLEAR CRT2. . V WORD 0002H DATA 204 79
¢G. 7. . . . L NEAR OUOOH EXTRN 4# 78 80 86 88 92 95 97
CODE . SEGMENT SIZE=005AH PARA PUBLIC 'CODE' 7# 37 100
DATA . . SEGMENT SIZE=000CH PARA PUBLIC 'DATA' 8# 14 25
DGKOUP . GROUP DATA STACK 8% 11 11 69 74
HOME CURSOK1. V WORD ~ OOO4H DATA 214 94
HOME "CUKSOR2. V WORD ~ 0006H DATA 22# 96
RANLOM. . . . L NEAR OOOOH CODE 46# 60 83 89
ROLL. L NEAR 0037H CODE 83# 99
SAVE. V WOKD OOOAH DATA 24# 47 51
SPACE .V WOKD 000&H DATA 23# 87
STACK SEGMENT SIZE=0028H PARA STACK 'STACK'
STACK TOP . . V WOKD 0028H STACK 32# 74
START L NEARK 0019H CODE 69# 104
ASSEMBLY COMPLETE, NO ERRORS FOUND

Figure 6-19 Sample ASM-86 Program (continued)

(A true program, of course, would go beyond these
steps to store and use the results of these
calculations.) The control word is set with the recom-
mended values: projective closure, round to nearest,
64-bit precision, interrupts enabled, and all excep-
tions masked except invalid operation. It is assumed
that an exception handler has been:written to field
the invalid operation, if it occurs, and that it is in-
voked by interrupt pointer 16. Either version of the
program will run on an actual or an emulated 8087
without altering the code shown.

The PL/M-86 version of ARRSUM (Figuré 6-18) is -

very straight forward and illustrates how easily the
8087 can be used in this language. After declaring
variables, the program calls built-in procedures to
initialize the processor (or its emulator) and to load
the control word. The program clears the sum varia-
bles and then steps through X$ARRAY with a DO-
loop. The loop control takes into account PL/M-86’s
practice of considering the index of the first element
of an array to be 0. In the computation of
SUMSINDEXES, the built-in procedure FLOAT
converts I1+1 from integer to real because the lan-
guage does not support “mixed mode” arithmetic.
One of the strengths of the NPX, of course, is that it

does support arithmetic on mixed data types, and-as-

sembly language programmers can take advantage
of this facility.

The ASM-86 version (Figure 6-19) defines the ex-
ternal procedure INIT87, which makes the different

'6-56

initialization requirements of the processor and its
emulator transparent to the source code. After defin-
ing the data, and setting up the segment registers
and stack pointer, the program calls INIT87 and
loads the control word. The computation begins
with the next three instructions, which clear three
registers by loading (pushing) zeros onto the stack.
As shown in Figure 6-20, these registers remain at
the bottom of the stack throughout the computation
while temporary values are pushed on and popped
off the stack above them.

The program uses the CPU LOOP instruction to con-
trol its iteration through X__ARRAY; register CX,
which LOOP automatically decrements, .is loaded
with N_OF__X, the number of array elements to
be summed. Register S1 is used to select (index) the
array elements. The program steps through
X__ARRAY from “back to front”, so Sl is initialized
to point at the element just beyond the first element
to be processed. The ASM-86 TYPE operator is
used to determine the number of bytes in each array
‘element. This permits changing X__ARRAY to a
long real array by simply changing its definition (DD
to'DQ) and re-assembling.

Figure 6-20 shows the effect of the instructions in
the program loop on the NPX register stack. The
figure assumes that the program is in its first
iteration, that N_OF__X is 20, and that
X_ARRAY(19) (the 20th element) contains the
value 2.5. When the loop terminates, the three sums
are left as the top stack elements so that the program
end