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PREFACE 

This manual describes the iAPX 86,88, and iAPX 186,188 family of microprocessor systems. It is divided into 
two volumes. 

Volume 1 is a general introduction and contains an overview of the CPUs along with some design information. 
In addition, Volume 1 includes a general description of the 8087 numeric processor extension (NPX), the 8089 
I/O processor (lOP), and the 80130 operating system firmware (OSF). 

Volume 2 is a reference source, containing detailed hardware information on the major components making up 
the systems, the various configurations available and implementation data. Volume 2 also includes the Device 
Specifications and several Application Notes. 

Volume 1 is divided as follows: 

Chapter 1 introduces microcomputer concepts and associated terminology. 

Chapter 2 is an-overview of the iAPX 86,88 and the iAPX 186,188 CPU family with its key features. It covers 
the CPU Architecture, Memory, Interrupts, the 80186,188 extensions, and a short overview of the 8087, 8089, 
and 80130 processors. 

Chapter 3 provides a detailed discussion of the programmer's architecture including the EU and BIU, Register 
Structure, Memory structure, I/O Port Organization, Addressing Modes, the Instruction Set and Programming 
Examples. 

Chapter 4 contains general information, on the block diagram level, needed by the hardware designer to in­
corporate the basic 8086 and 8088 microprocessors into microcomputer systems. Included is a discussion of the 
Bus Structures, Multiprocessing and Processor Control. 

Chapter 5 contains general information needed by the hardware designer to incorporate the 80186 and 80188 
microprocessors into microcomputer systems. Included is a discussion of 8086,88 and 80186,188 Bus 
Differences, Multiprocessing, Processor Control and the integrated peripherals of the 80186 and 80188 
processors, such as Clock Generator, Chip Select/Ready Logic, DMA Channels, Timers and the Interrupt 
Controller. 

Chapter 6 describes the 8087 Numeric Processor Extension (NPX). Included is an overview of the processor, 
the Architecture, Computational Fundamentals, the Instruction Set, and Programming Examples. 

Chapter 7 describes the 8089 Input/Output Processor (lOP). It covers the Processor Overview, Architecture, 
I/O, the Instruction Set, Addressing Modes, and Programming Examples. 

Chapter 8 describes the 80130 Operating System Firmware (OSF) component. The chapter covers the 
Architecture, Multitasking, Multiprogramming, Intertask Coordination, Dynamic Memory Relocation, 
Extendability, the Primitives, and Programming Examples. 

RELATED DOCUMENTATION 

• The iAPX 88 Book 
Describes the Intel iAPX 88 (8088) microprocessor in detail. 

• The Peripheral Design Handbook 
Contains data sheets and application notes featuring Intel peripheral devices. 

• The Intel Component Data Catalog 
Contains data sheets for all Intel semiconductor components, including memories and peripherals. 

• ASM86 Language Reference Manual 
Describes the assembly language for the 8086/8088 and the 8087. 
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• ASM86 Language Reference Manual 
Describes the assembly language for the 8086, 88/80186, 188 and the 8087. 

• iOSP 86 Support Package Reference Manual 

These books, and other documentation, are available from 
Literature Department 
Intel Corporation 
3065 Bowers A venue 
Santa Clara, California 95051 

THE INTEL MICROSYSTEM 80 NOMENCLATURE 

AsInte]'sproduiCtline.h.JlseYoh'ed,.itscom.ponent~seQ-produtt-ffilffiBefiftg system has become inappropriate 
for- all the-Possible VLSI computer solutions offered. While the components retain their names, Intel has 
moved to a new system-based naming scheme to accommodate these new VLSI systems. 

The following prefixes have been adopted for Intel's product lines, all of them under the general heading of Mi­
crosystem 80: 

iAPX 
iRMX 
iSBC 
iSBX 

- Processor Series 
- Operating Systems 
- Single Board Computers 
- MULTIMODULE Boards 

In the iAPX Series, the following processor lines are currently defined: 

iAPX 86 
iAPX 88 
iAPX 186 
iAPX 188 
iAPX 286 

- 8086 CPU -based system 
- 8088 CPU -based system 
- 80186 CPU -based system 
- 80188 CPU-based system 
- 80286 CPU-based system 

Configuration options within each iAPX system are identified by adding a numerical suffix, for example: 

iAPX 186110 - CPU alone (80186) 
iAPX 186/11 - CPU + lOP (80186 + 8089) 
iAPX 186120 - CPU with Math Extension (80186 + 8087) 
iAPX 186121 - CPU with Math Extension + lOP 

(80186,8087 + 8089) 
iAPX 186/30 - CPU with Operating System Processor 

(80186 + 80130) 
iAPX 186/40 - CPU with Math Extension + OSP 

(80186,8087 + 80130) 

This improved numbering system provides a more meaningful view of the capabilities of Intel's evolving Mi­
crosystem 80. 
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CHAPTER 1 
INTRODUCTION TO MICROCOMPUTERS 

1.1 WHAT IS A MICROCOMPUTER? 

A microcomputer is a system of one or more in­
tegrated circuit devices, using semiconductor 
technology and digital logic to implement large 
computer functions on a smaller scale. 

The Intel iAPX 86,88 and iAPX 186,188 family of 
microprocessors, along with other closely related 
Intel processors described in this manual, are essen­
tial functional blocks of such microcomputers. 

There are three main elements in a microcomputer. 
These elements and their functions parallel those 
found in all computers. Each has a special role to 
play in the overall operation of the computer system. 
The block diagram in Figure 1-1 shows these three 
elements. They are the central processing unit (CPU), 
the memory, and the input/output (I/O) devices or 
ports. 

1.2 THE CPU 

The heart of the microcomputer system is the CPU. 
It performs the numerical processing (additions, 
subtractions, etc.), logical operations, and timing 
functions. 

CPU 
MODULE 

CPU operations are controlled by a set of 
instructions, called a program. Programs are stored in 
the memory. Data is also kept in the memory and 
processed according to programmed instructions. 
The CPU reads in data and control signals 
(instructions) through the input ports, executes one 
instruction at a time, and sends data and control sig­
nals to the outside world through the output ports. 

A typical CPU consists of the following three func­
tional units: the registers, the arithmetic/logic unit 
(ALU), and the control circuitry. Each is briefly de­
scribed below. 

Registers provide temporary storage within the CPU 
for memory addresses, status codes, and other infor­
mation useful during program execution. Different 
microprocessors have different numbers and sizes 
of registers. The Intel iAPX 86,88 and the iAPX 
186,188 family of microprocessors have 16-bit 
registers. 

All CPUs contain an arithmetic/logic unit or ALU. The 
ALU contains an adder to perform binary arithmetic 
operations on the data obtained from memory, the 
registers or other inputs. Some ALUs perform more 
complex operations such as multiplication and 
division. ALUs provide other functions as well, 
including Boolean logic and data shifting. 

CONTROL BUS 

Figure 1-1 Microcomputer Block Diagram 
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The ALU also contains flag bits that signal the results 
of arithmetic and logical manipulations such as sign, 
zero, carry, and parity information. 

The control circuitry coordinates all microprocessor 
activity. Using clock inputs, the control circuitry 
maintains the proper sequence of events required 
for any processing task. The control circuitry 
decodes the instruction bits and issues control signals 
to units both internal and external to the CPU to per­
form the proper processing action. 

1.3 MEMORY 

Microcomputers generally use semiconductor 
devices to store programs and data. Two examples 
of these are the RAM - Random Access Memory, 
and the ROM - Read Only Memory. To expand 
memory space, microcomputer systems often use 
some kind of mass storage device such as floppy­
disks or magnetic tape. 

1.4 INPUT/OUTPUT OR I/O DEVICES 

I/O devices, also called peripherals, are the means by 
which the the CPU communicates with the outside 
world. In a typical microcomputer system with a 
CRT terminal, the input ports (or channels) are con­
nected to the keyboard, while the output ports are 
connected to hardware that generates the characters 
displayed on the screen. 

The Intel 8089 Input/Output Processor (lOP) is a 
special I/O device. This device handles the burden of 
I/O processing, thus permitting greater CPU efficien­
cy. Allowing the CPU to perform its tasks in parallel 
with the I/O processor is a concept typical of large 
mainframes that is here applied to microcomputers. 

1.5 DATA, ADDRESS AND CONTROL 
BUSSES 

The CPU is connected to memory and I/O by a set 
of parallel wires or lines called a bus. As seen in 
Figure I-I, there are three different busses that in­
terface the CPU to other system components: the 
data bus, the address bus and the control bus. 

Data travels between the CPU, memory, and I/O 
over the data bus. This data can either be instructions 
for the CPU, or information the CPU is passing to or 
from I/O ports. In the case of the 8088 and 188, the 
data bus is 8-bits wide; in the 8086 and 186, the data 
bus is 16-bits wide. 

The CPU uses the address bus to select the desired 
memory or 110 device by providing a unique address 
that corresponds to one of the memory or I/O ele­
ments of the system. 

The control bus carries control signals to the memory 
and I/O devices, specifying whether data is to go into 
or out of the CPU, and exactly when the data is 
being transferred. 

1-2 

1.6 BUS CYCLES 

As the microcomputer program executes, data is 
transferred to and from memory and 1/0 devices. 
Each instance of data transfer from one part of the 
system to another is called a bus cycle (or machine 
eye/e). The timing of these cycles is done by the CPU 
clock signal. Operations like instruction fetch, 
memory read, memory write, read from an input 
port, or write to an output port are operations taking 
place in one or more bus cycles. 

The length of bus cycles is determined relative to the 
frequency of a clock signal. Typical clock rates at 
which microcomputers operate are 5, 8 and 10 MHz. 
The 8 MHz versions of the Intel iAPX 86 and 186 
have clock cycles of 125 nanoseconds (or .125 
microseconds) . 

At the beginning of a bus cycle, the CPU issues a 
code to the address bus to identify the memory lOCa­
tion or I/O device to be accessed. Next, the CPU 
issues an activity command on the control bus. 
Third, the CPU either receives or transmits data 
over the data bus. 

The CPU then performs the logical, arithmetic, or 
I/O operations as required by the instructions. 

The CPU keeps track of the instruction sequence 
with the program counter register, which contains the 
address of the next instruction in memory. In more 
recent Intel CPUs, the term 'program counter' has 
been is replaced by the term 'instruction pointer'. 

Normally, the instruction pointer is incremented 
after a given instruction is executed. The CPU auto­
matically fetches .instructions from memory, 
decodes them, and executes them in sequence until 
the program ends, or until special instructions tell it 
to execute instructions in other parts of program 
memory. 

Certain situations can interrupt the normal sequen­
tial flow of instruction execution. For example, a 
wait state may be imposed in a given bus cycle to pro­
vide more time for memory or an I/O device to com' 
municate with the CPU. Wait states are needed 
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when the rate of data transfer from memory is 
slower than the rate at which the CPU requests it. In 
such cases, the memory must request a wait state 
when it receives the CPU signal that a memory read 
or write operation has commenced. After the 
memory responds, it signals the CPU to leave the 
wait state and continue processing. 

1.7 INTERRUPTS 

Another situation that alters sequential instruction 
execution is an interrupt. For example, consider a 
computer which is processing a large volume of 
data, portions of which are to be output to a printer. 
The CPU can send to the printer a given amount of 
data in a single bus cycle, but the printer may take 
several bus cycles to print the characters specified by 
that data. Thus, the CPU must remain idle until the 
printer can accept the next data. The interrupt capa­
bility permits the CPU to output to the printer and 
then return to other data processing. 

When the printer is ready to accept the next data 
byte, it signals the CPU via a special interrupt control 
line. When the CPU receives the interrupt signal, it 
suspends the main program execution and automati­
cally switches to the instructions that output to the 
printer, after which the CPU continues with the 
main program execution where processing was 
suspended. 

Often several interrupting devices share the same 
CPU. In order to service all of them, interrupts can 
be prioritized. When two or more interrupts occur 
sim ultaneously, the one with the higher priority will 
be serviced first. 

1.8 DIRECT MEMORY ACCESS 

Another feature that improves microprocessor effi­
ciency is direct memory access, also called DMA. 

In ordinary input/output operations, the CPU super­
vises the entire data transfer as it executes I/O in­
structions to transfer data from the input device to 
the CPU, and then from the CPU to a specified 
memory location. Similarly, data going from 
memory to an output device goes by way of the CPU. 

1-3 

Some peripheral devices transfer information to and 
from memory faster than the CPU can accomplish 
the transfer under program control. By using DMA, 
the CPU allows the peripheral device to hold and 
control the bus, transferring the data directly to and 
from memory without involving the CPU itself. 
When the DMA transfer is done, the peripheral 
releases the hold request signal. The CPU then 
resumes processing instructions where it left off. 

1.9 ADDRESSING MODES 

The address that the CPU provides on the address 
bus selects one specific memory or 1/0 device from 
all those available. This address can be generated in 
different ways depending on the operation being 
performed. The ways of generating these addresses 
are called addressing modes. 

In the simplest addressing mode, the desired data 
item is contained within the instruction being 
executed. In a more complex addressing mode, the 
instruction contains the memory address of the data. 
Or, the instruction may reference a CPU register 
that contains the memory address of the data. 

Finally, within some microprocessors, the instruc­
tion may tell the control circuitry to generate a com­
plex address that is the sum of several address 
components, such as multiple registers plus data con­
tained in the instruction itself. 

Generally, the most powerful microprocessors are 
the ones with the widest variety of addressing modes 
available. 

1.10 INTEL MICROCOMPUTER 
COMPONENTS 

Intel manufactures a complete line of microcomputer 
components. These components constitute building 
blocks, which can be tailored to fit the performance 
needs of a particular application precisely. This 
manual describes the following components: the 
iAPX 86 (8086) CPU, the iAPX 88 (8088) CPU, the 
iAPX 186 (80186) CPU, the iAPX 188 (80188) 
CPU, the 8087 Numeric Processor Extension 
(NPX), the 8089 1/0 Processor (lOP), and the 
80130 Operating System Firmware (OSF). 
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CHAPTER 2 
THE iAPX 86,88, 186,188 FAMILY OVERVIEW 

2.1 INTRODUCTION 

The iAPX 86,88 and iAPX 186,188 family consists 
of advanced, high-performance microprocessors. 
The family includes general data processors (8086, 
8088, 80186 and 80188), specialized coprocessors 
such as the 8087 numeric processor extension 
(NPX) and the 8089 I/O processor (lOP), as well as 
the 80130 operating system firmware (OSF). 

Four key architectural concepts shaped the micro­
processor designs. All four reflect the family's role 
as vehicles for modular, high-level language pro­
gramming (in addition to assembly language 
programming) . 

The concepts are: 

• Memory segmentation, 
• Operand addressing structure, 
• Operation register set, and 
• Instruction encoding scheme. 

The iAPX 86,881186,188 memory segmentation 
scheme is optimized for the reference needs of 
computer programs, and is separate from the oper­
and addressing structure. 

The structure for addressing operands within seg­
ments directly supports the various data types found 
in high level programming languages. 

An operation register set is provided to support 
general computation requirements. It also provides 
for optimized operation register sets to do specialized 
data processing functions with its inherent multi-
and coprocessor support. ' 

The family uses optimized instruction encoding for 
high performance and memory efficiency. 

High-level languages using modular programming 
have become the norm on large software develop­
ment projects in the last decade. The iAPX 
86,881186,188 microprocessor family with its 
memory segmentation scheme is designed for modu­
lar programs. It supports the static and dynamic 
memory requirements of program modules, as well 
as their communication needs, The register scheme 
employs specialized registers and implicit register 
usage. 

These CPUs are substantially more powerful than 
microprocessors previously offered by Intel. High 
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performance is realized by combining a 16-bit inter­
nal data path with a pipe lined architecture that 
allows instructions to be prefetched during spare bus 
cycles. A compact instruction format that enables 
more instructions to be fetched in a given amount of 
time also contributes to the performance. 

Software need not be written in assembly language. 
These CPUs are designed to provide direct hardware 
support for programs written in high-level languages 
such as Pascal-86 and Intel's, PLlM-86. However, 
routines with critical performance requirements that 
cannot be met with a high-level language may be 
written in ASM-86 (the 8086/80186 assembly 
language) and linked with Pascal-86 or PLlM-86 
code. 

While these CPUs are totally new designs, they 
make the most of the user's existing investments in 
systems designed around the 8080/8085 micropro­
cessors. Many of the standard Intel memory, 
peripheral control, and communication chips are 
compatible with the 8086,88 and the 80186,188. 

Other important features of the family are, in the 
case of the 8086 and 8088 CPUs, dual operating 
modes (minimum and maximum) and built-in mul­
tiprocessing capability. The 80186 and 80188 CPUs, 
on the other hand, integrate many key functions 
including a programmable interrupt controller, chip 
select logic, two high speed DMA channels, timers, 
and a clock generator. 

These characteristics, as well as others to be de­
scribed in following chapters, make the iAPX 86,88, 
186,188 family suitable for a wide spectrum of micro­
computer applications. Systems can range from the 
uniprocessor, minimal-memory designs implement­
ed with a handful of chips (Figure 2-0 to multipro­
cessor systems with up to a megabyte of memory 
(Figure 2-2). 

2.2 THE CPU ARCHITECTURE 

The following sections of this chapter describe the 
mainstays of the microprocessor family: the central 
processing units. The internal operation of the CPU 
and the interaction of the processors with other 
devices are discussed in functional terms. Electrical 
characteristics, timing, and other hardware related 
information may be found in Volume 2 of this set. 
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Functional Units 

Standard microprocessors execute a program by 
repeatedly cycling through the steps shown in Figure 
2-3. First, the microprocessor must fetch the instruc­
tion to be performed, then it executes the 
instruction. Only after the execution is complete is 
the CPU ready to fetch the next instruction, execute 
that instruction, etc. 

The CPU hardware that executes instructions must 
obviously wait until the instruction is fetched and 
decoded before execution begins. Therefore, in stan­
dard microprocessors, the execution hardware 
(primarily the control circuitry and the arithmetic 
and logic unit) spends a lot of time waiting for in­
structions to be fetched. The 8086,88 and 80186,188 
microprocessors eliminate this wasted time by divid­
ing the internal CPU into two independent functional 
units (see Figure 2-4). 

The BIU and EU 
- Pipelined Architecture 

The CPUs have a separate bus interface unit (BIU), 
whose only job is to fetch instructions from memory 
and pass data to and from the execution hardware 
and the outside world. Since the execution unit and 
the bus interface unit are independent, the bus inter­
face unit fetches additional instructions while the ex­
ecution unit (sometimes called the EU) executes a 
previously fetched instruction. This is made possible 
by the instruction pipeline (or queue) between the 
bus interface unit and the execution unit. The BIU 
fills this pipeline with instructions awaiting 
execution. Thus, whenever the execution unit 
finishes executing a given instruction, the next in­
struction is usually ready for immediate execution 
without delays caused by instruction fetching. Figure 
2-5 shows parallel fetching and executing in these 
CPUs. 

FETCH EXECUTE FETCH EXECUTE FETCH· •• 

TIME -

Figure 2-3 Program Execution in Standard Microprocessor 

~STRUCTION EXECUTION BUS 
INTERFACE UNIT PIPELINE UNIT 

V 
SYSTEM BUS 

PIPELINED ARCHITECTURE PROVIDES PER­
FORMANCE WITH REDUCED BUS "DEAD TIME" 

Figure 2-4 Pipelined Internal Architecture 
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BIU 

EU WAIT EXECUTE EXECUTE EXECUTE 

Figure 2-5 Parallel Operation In CPU 

Because the BIU is usually busy fetching instructions 
for the pipeline, the bus is more fully utilized. 
Another benefit of this parallel operation is that 
since the execution unit seldom needs to wait for the 
BIU to fetch the next instruction, there is less need 
for the BIU to fetch data quickly. Maximum perfor­
mance and processing power is thus achieved with­
out high speed memory devices in the system. 

This parallel operation of the BIU and EU is trans­
parent to the user, except when program execution 
transfers to a new, non-sequential address. When 
this happens, the bus interface unit is given the new 
address by the execution unit; it then begins fetching 
instructions sequentially from the new address. The 
execution unit must wait for the next instruction to 
be fetched the way most CPUs wait for every instruc­
tion to be fetched. After the first instruction is 
fetched from the new location, the bus interface unit 
continues to fill the pipeline with instructions, and 
fetch-time becomes transparent. 

Bus Structure 

A summary of the iAPX 86,88 and iAPX 186,188 
bus structure is shown in Figure 2-6. There are two 
types of buses: system and local. Both buses may be 
shared by multiple processors, i.e., both are mul­
timaster buses. Microprocessors are always connect­
ed to a local bus, and memory and I/O components 
usually reside on a system bus. The 8086,88 and 
80186,188 bus interface components link a local bus 
to a system bus. 

2-4 

Register Resources 

Figure 2-7 gives an overview of the registers availa­
ble in the 8086,88 and 80186,188 CPUs. These 
CPUs have fourteen 16-bit registers. The registers 
are grouped into general, control and segment 
registers. 

General registers are analogous to the accumulators 
of first and second generation microprocessors. 
They are, in turn, grouped into data, index and 
pointer registers. The function of all registers is de­
scribed in more detail in the following paragraphs. 

Data Registers 

The data registers are unique in that their upper and 
lower halves are separately addressable. This means 
that each data register can be used interchangeably 
as a 16-bit register, or as two 8-bit registers. In their 
16-bit form, the data registers are the AX, BX, CX 
and DX registers (Figure 2-8). For 8-bit operations, 
they are divided into high byte and low byte. AH is 
the high byte of the AX register, AL is the low byte 
of the AX register, and so on. As mentioned, these 
registers have general usage for arithmetic and logi­
cal operations. 

Some registers have additional special functions, 
which are performed in the execution of certain 
instructions. For example, the CX register is fre­
quently used to contain a count value during repeti­
tive instructions, and the BX register is used as a 
base register in some of the more powerful address­
ing modes. This implicit use of registers allows a 
very compact instruction encoding. 
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Figure 2-6 Generalized iAPX 86/186 Bus Structure 
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Pointer and Index Registers 

Figure 2-9 shows the pointer and index registers. 
The BP and SP registers both point to the stack, a 
linear array in the memory used for subroutine 
parameters, subroutine return addresses, or other 
data temporarily saved during execution of a 
program. 

Most microprocessors have a single stack pointer 
register called the SP. The 8086,88 and 80186,188 
have an additional pointer into the stack called the 
BP (base pointer) register. While the SP is used 
similarly to the stack pointer in other machines (for 
pointing to subroutine and interrupt return 
addresses), the BP register can contain an old stack 
pointer value, or it can mark a place in the subrou­
tine stack independent of the SP register. Using the 
BP register to mark the stack saves the juggling of a 
single stack pointer to reference subroutine parame­
ters and addresses. 

BP & SP FOR 
STACK PARAMETER 
PASSING 

SI & 01 FOR 
STRING MANIP. & 
DATA STRUCTURES 

~ 
~ 
~ 
~ 

THESE CAN ALSO BE USED AS GENERAL 
REGISTERS 

Figure 2-9 Base and Index Registers 

INSTRUCTION 
POINTER 

STATUS WORD I 
OR FLAGS 

The two index registers are the SI (source index) 
register and the DI (destination index) register 
(Figure 2-9). These are both 16-bits wide and are 
used by string manipulation instructions and in 
building some of the ·more powerful 8086,88 and 
80186,188 data structures and addressing modes. 
Both the S.I and the DI registers have auto­
incrementing and auto-decrementing capabilities. 

All base and index registers have general arithmetic 
and logical capabilities in addition to their special 
functions. 

Control Registers 

The control registers consist of two special purpose 
registers, the IP or instruction pointer and the Status 
Word or Flags register (see Figure 2-10). The IP is 
similar to a Program Counter used in some 
microprocessors, except that the IP points to the 
next instruction to be fetched (by the BIU), whereas 
the traditional program counter points to the next in­
struction to be executed. For 8086/186 instructions 
that manipulate the IP, however, its contents are ad­
justed to point to the next instruction to be executed. 

The Status Word or Flags register contains the flags 
or condition codes that reflect the results of arith­
metic or logical operations as they are performed by 
the execution unit. (On the 8086,88 this register is 
referred to as the Flags register; on the 186,88 it is 
referred to as the Status Word register. The contents 
of the register is the same in both cases.) The condi­
tion codes are described in detail in Chapter 3 of this 
volume. 

IP I 

Figure 2-10 Control Registers 
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Segment Registers 

Four 16-bit special purpose registers, called segment 
registers, are provided in a segment register file. 
They are the code segment (CS), stack segment 
(SS), data segment (DS) and extra segment (ES). 
Segment registers are used by the 8086,88 and 
80186,188 in the formulation of memory addresses. 
Their usage is described in the following section on 
memory addressing. 

2.3 MEMORY ADDRESSING 

Memory is organized in sets of segments. Each seg­
ment consists of a linear sequence of up to 64K 
bytes. These bytes are stored sequentially from byte 
00000 to byte FFFFF hex. The memory is addressed 
using a two-compomint address (a pointer) that con­
sists of a 16-bit segment base (specifying the begin­
ning address of the segment in memory) and a 
16-bit offset (specifying the address relative to the 
beginning of the segment). The base values are con­
tained in one of the four internal segment registers 
(CS, DS, SS, ES). A 20-bit physical memory address 
is calculated by shifting the base value in the ap­
propriate segment register left by four bits and 
adding the 16-bit offset value to it (Figure 2-11). 
This form of addressing allows access to one million 
bytes of memory. 

15 0 

I LOGICAL ADDRESS l~bb~i1s 

15 

EGMENT REGISTER SEGMENT 
j-..l-__ ...JADDRESS 

19 o 
20-BIT 

PHYSICAL MEMORY ADDRESS 

Figure 2·11 Memory Addressing 
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Every 20-bit memory address points either to pro­
gram code, data, or stack area in memory (Figure 
2-12). Each of the four different memory spaces is 
pointed to by one of segment base registers (Figure 
2-13). The code segment register points to the base 
of the program currently executing, the stack seg­
ment register points to the base of the stack, the data 
segment register points to the base of one data area, 
and the extra segment register points to the base of 
another area where data may be stored. 

CONTENTS OF SEGMENT REGISTERS 
POINT TO THE BASE ADDRESS OF THE 
CORRESPONDING AREAS IN MEMORY. 

Figure 2·12 Segment Registers 

CODE 

STACK 

DATA 

EXTRA 

SEGMENT 
REGISTERS 

IMPLICIT 
SELECTION 

I ~""S-E-G-M-EN-T""'I 

+ 

20 BIT 
PHYSICAL 
ADDRESS 

Figure 2·13 How an Address Is Built 
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Generating Addresses 

Each time the CPU needs to generate a memory 
address, one of the s'egment registers is automatical­
ly chosen and its contents added to a logical address. 

For an instruction fetch, the code segment register is 
automatically added to the logical address (in this 
case, the contents of the instruction pointer) to com­
pute the value of the instruction address. 

For an instruction referencing the stack, the stack 
segment register is automatically added to the logical 
address (the SP or BP register contents) to compute 
the value of the stack address. 

For a data reference operation, where either the data 
or extra segment register are chosen as the base, the 
logical address can be made up of many different 
types of values: it can be simply the immediate data 
value contained in the instruction, or it can be the 
sum of an immediate data value, plus a base 
register, plus an index register. Generally, the selec­
tion of the DS or ES register is made automatically, 
though provisions do exist to override this selection. 

Since logical addresses are 16-bits wide, up to 64K 
(65,536) bytes in a given segment may be addressed 
without changing the value of the segment base 
register. In systems that use 64K or fewer bytes of 
memory for each memory area (code, stack, data 
and extra), the segment registers can be initialized 
to zero at the beginning of the program and then 
ignored, since zero plus a 16-bit offset yields a 16-bit 
address. In a system where the total amount of 
memory is 64K bytes or less, it is possible to set all 
segment registers equal and have fully overlapping 
segments. 

Segment registers are also very useful for large pro­
gramming tasks, which require isolation of program 
code from the data area, or isolation of module data 
from the stack information, etc. 

Segmentation makes it easy to build relocatable and 
reentrant programs. In many cases, the task of 
relocating a program (relocation means having the 
ability to run lne same program in several different 
areas of memory without changing addresses in the 
program itselO simply requires moving the program 
code and then adjusting the code segment register to 
point to the base of the new code area. Since pro­
grams can be written for the 8086,88 or 80186,188 in 
which all branches and jumps are relative to the in­
struction pointer, it does not matter what value is 
kept in the code segment register. 

2-8 

Figure 2-14 shows how an entire process, consisting 
of code, stack and data areas, can be reloc~ted. 
Likewise, in a reentrant program, a single program 
uses multiple data areas. Before the reentrant code is 
entered the second time, the data segment register 
value is changed so that a different data area is made 
available to the program. 

Addressing Modes 

The 8086,88 and 80186,188 provide 24 different 
addressing modes. Various logical address combina­
tions are shown in Figure 2-15, from the simplest im­
mediate data mode to the register addressing mode, 
where a selected register contains the data being 
used by the instruction. In the direct addressing 
mode, the instruction itself contains the address of 
the data. In the register indirect mode., the instruc­
tion points to a register containing the memory ad­
dress of 'the desired data. There are both indexed 
and based addressing modes where the contents of 
an index or base register is added to an immediate 
data value contained in the instruction to form the 
memory address. 

Exactly how the 8086,88 and 80186,188 select an ad­
dressing mode for a given instruction is encoded 
within the bits of the instruction code. This is' de­
scribed in more detail in Chapter 3. 

2.4 INTERRUPTS 

The interrupt system of the 8086,88 and 80186,188 
is simple but versatile. Interrupts may be triggered 
by devices external to the CPU or by software inter­
rupt instructions or, under certain conditions, by the 
CPU itself. 

Every interrupt is assigned a type code that identifies 
it to the CPU. The type code is used by the CPU to 
point to a location in the memory based interrupt 
vector table containing the address of the interrupt 
routine. This interrupt vector table can contain up to 
256 vectors for different interrupt types. 
Interrupts 0-31 are reserved by Intel 

The following sections provide a general introduc­
tion to interrupt processing for the 8086,88 and 
80186,188 CPUs. For more detailed information, 
see Chapter 4, Section 4.3 (8086,88) and Chapter 5, 
Section 5.4 (80186,188). 
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CODE CODE 

STACK STACK 

DATA DATA 

EXTRA EXTRA 

TO RELOCATE AN ENTIRE PROCESS MOVE THE CODE, 
STACK, AND DATA, AND UPDATE THE SEGMENT REGISTER 
CONTENTS TO POINT TO THE NEW AREAS. 

Figure 2-14 Process Relocation 

LOCATION OF OATA 

WITHIN INSTRUCTION 

IN REGISTER 

AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN 
INSTRUCTION. 

REGISTER INDIRECT AT MEMORY LOCATION POINTED TO BY ADDRESS CONTAINED IN 
REGISTER. 

INDEXED OR BASED AT MEMORY LOCATION POINTED TO BY SUM OF INDEX REGISTER 
OR BASE REGISTER CONTENTS AND IMMEDIATE DATA CONTAINED 
IN INSTRUCTION. 

BASED AND INDEXED MEMORY ADDRESS IS SUM OF BASE REGISTER CONTENTS AND 
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Figure 2-15 iAPX 88 Addressing Modes 

2-9 210911 



THE iAPX 86,88,186, 188 FAMILY OVERVIEW 

External Interrupts 

The 8086,88 have two inputs that may be used by ex­
ternal devices to signal interrupts, the INTR 
(Interrupt Request) line, and the NMI (Non­
Maskable Interrupt) line. The INTR line is usually 
driven by a PIC, such as Intel's 8259A Programma­
ble Interrupt. Controller, which in turn is connected 
to the devices that need interrupt service. 

The 80186,188 have five inputs for use by external 
devices to signal interrupt requests: the four INT 
lines (INTO-INT3) and the NMI line. Two of the 
INT lines may function as dedicated interrupt ac­
knowledge outputs. This capability is included to 
allow external expansion of the PIC using multiple 
8259As (see Chapter 5, Section 5.10, for a detailed 
discussion of this facility). 

On both the 8086,88 and 80186,188 CPUs, the NMI 
input line is generally used to signal the CPU of a 
"catastrophic" event, such as imminent loss of 
power, memory error, or bus parity error. Interrupt 
requests arriving on the NMI caimot be disabled. 
They are latched by the CPU, and have higher priori­
ty than an interrupt request on INTR or INTO-3. 

Internal Interrupts 

Internal interrupts are generated by two instructions 
(INT and INTO), by conditions resulting from the 
execution of two instructions (DIV, IDIV), and by 
most instructions when the Single Step flag in the 
Flags or Status Word register is set. In addition to all 
these, the 80186,188 provide interrupts generated 
by the integrated peripherals (see Section 2.6), by 
two instructions (ESC and BOUND) and by the oc­
currence of undefined opcodes. 

A detailed discussion of interrupts is included in 
Chapters 4 and 5, which deal with the 8086,88 and 
the 80186,188 respectively, as well as in Volume 2 of 
this set, which covers the hardware details of inter­
rupts for both CPUs. 

2.5 MINIMUM AND MAXIMUM MODES 
(8086,88 ONLY) 

A unique feature of the 8086,88 CPUs is the ability 
of a user to define a subset of the CPU's control 
signal outputs to tailor it to its intended system 
environment. 

In the minimum mode, the CPU supports small, 
single-processor systems (usually single board) that 
consist of a few devices, and that use a local bus 
rather than support the M ultibus architecture. In 

this mode, the CPU itself generates all bus control 
signals and the command output signal. It also pro­
vides a mechanism for requesting bus access that is 
compatible with bus master type controllers. 

In the maximum mode (typically used for multiple 
board systems), an Intel 8288 Bus Controller is 
added to provide a sophisticated bus control function 
and compatibility with the Multibus architecture. In 
this mode, the bus controller, rather than the CPU, 
provides all bus control and command outputs, and 
allows pins previously delegated to these functions 
to be redefined to support multiprocessing 
functions. This mode is also required to support pro­
cessor extensions, i.e., the 8087 Numerical Processor 
Extension, the 8089 Input/Output Processor, and 
the 80130 Operating System Firmware. 

2.6 THE 80186,188 EXTENSIONS 

The 80186 and 80188 CPUs integrate, in addition to 
the features of the 8086 and 8088 CPU s, a chip-select 
logic unit, two independent high-speed DMA 
channels, three programmable timers, a programma­
ble interrupt controller and a clock generator (see 
Figure 2-16). These extensions are discussed in 
Chapter 5. 

The register set of the 80186,188 is identical to that 
of the 8086,88 with the minor exception that the 
8086,88 Flags register is referred to as the Status 
Word register in the 80186,188; the contents of the 
two registers is the same. The 80186,188 is object 
code compatible with the 8086,88 and adds ten addi­
tional instruction types to the existing 8086,88 in­
struction set. 

Integrated Peripherals 

All the 80186,188 CPU integrated peripherals are 
controlled by 16-bit registers contained in a 256-byte 
control block, which may be mapped into either the 
memory or I/O space. A 16-bit relocation register 
within this control block contains the base 
addresses. The integrated peripherals operate semi­
autonomously from the CPU. 

The 80186,188 Chip-Select LogiC 

The chip-select logic provides programmable chip­
select generation for both memories and peripherals. 

Six memory chip-select outputs are provided for 3 
address areas: upper memory, lower memory, and 
midrange memory. The range of each chip-select is 
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Figure 2-16 iAPX 186,188 Block Diagram 

user programmable. The 80186,188 can also gener­
ate chip-selects for up to seven peripheral devices. 

In addition, the chip-select logic can be programmed 
to provide READY (or WAIT state) generation. 

DMA Channels 

The 80186,188 DMA controller provides two inde­
pendent high-speed DMA channels. This controller 
can transfer data between memory and I/O, between 
memory and memory, or between I/O and I/O. Data 
can be transferred in bytes or in words (bytes only in 
the case of the 188) and may be transferred to or 
from even or odd addresses. The channels maintain 
both a 20-bit source and destination pointer which 
can be optionally incremented or decremented after 
each data transfer. 

Each DMA channel has six registers in the control 
block defining the channels specific operation. The 
channels may be programmed to always give priority 
to one channel over the other, or they may be pro­
grammed to alternate cycles when both have DMA 
requests pending. 

2-11 

Timers 

The 80186,188 include three internal 16-bit pro­
grammable timers. Two of these are highly flexible 
and are connected to external pins. They can be used 
to count external events, time external events, 
generate nonrepetitive waveforms, etc. The third 
timer is not connected to external pins, and is useful 
for real-time coding and time delays. 

The timers are controlled by eleven 16-bit registers 
in the internal peripheral control block. A timer 
mode/control register within this block allows the 
user to program the specific mode of operation or 
check the current programmed status for any of the 
timers. 

Each timer has a 16-bit count register, the current 
contents of which may be read or written to by the 
CPU at any time. 

Interrupt Controller 

The 80186,188 can receive interrupts from a 
number of sources, both internal and external. The 
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internal interrupt controller serves to merge these 
requests on a priority basis, for individual service by 
the CPU. 

The interrupt controller has its own control 
registers,used to set the mode of operation for the 
controller. Internal interrupt sources can be disabled 
by their own control registers or by mask bits from 
the interrupt controller. 

The interrupt controller resolves priority among 
simultaneously pending requests. Nesting is 
permitted, i.e., interrupt service routines may be in­
terrupted by those of equal or higher priority. 

If interrupts are undesirable, the controller may be 
used in a polled mode. When polling, the processor 
disables interrupts and then simply polls the inter­
rupt controller (rather than the individual interrupt 
sources) whenever it is convenient. 

Clock Generator 

The on-chip clock generator provides both internal 
and external clock generation. It includes a crystal 
oscillator, a divide-by-two counter, synchronous 
and asynchronous ready inputs, and reset circuitry. 

The oscillator circuit is designed to operate with a 
parallel resonant fundamental mode crystal. The 
crystal frequency is double the CPU clock frequency. 
An external oscillator may be used instead of the 
crystal, which may be connected directly to the XI 
input in lieu of a crystal, with X2 left open. 

HOST CPU (8086 or 8088) 
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2.7 THE 8087 

The 8087 Numeric Processor Extension (NPX) per­
forms arithmetic and comparison operations (using 
80-bit internal registers) on a variety of numeric 
data types. It also executes numerous built-in tran­
scendental functions such as log, tangent, etc. In con­
junction with the maximum mode 8086,88 CPUs, or 
the 80186,188 CPUs, the NPX effectively extends 
the register and instruction sets of the host CPU and 
adds several new data types as well. The 8087 block 
diagram is shown in Figure 2-17. 

The 8087 uses the standard iAPX 86/186 family in­
struction set plus over fifty numeric instructions. 
Programs can be written in ASM-86 assembly 
language, or in the Intel high-level languages 
PLlM-86, Fortran-86 and Pascal-86. From the stand­
point of the programmer the NPX is not perceived 
as a separate device; instead, the computational abili­
ties of the CPU appear greatly expanded. 

The 8087 adds extensive high-speed numeric pro­
cessing capabilities to the CPU. It conforms to the 
IEEE format for single- and double-precisiOri floating 
point numbers. Even for programmers who are not 
expert in the problems of numerical analysis (for 
instance, the accumulation of rounding errors which 
may result from a long chain of floating point 
calculations), the 8087 will provide correct results, 
and is straightforward and easy to program. Chapter 
6 of this volume describes the software aspects of 
the 8087; Chapter 3 of Volume 2 covers the 
hardware. 
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Figure 2-17 Numeric Data Processor Block Diagram 
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2.8 THE 8089 1/0 PROCESSOR (lOP) 

The 8089 Input/Output Processor is a high­
performance, general purpose I/O system on a chip 
(see Figure 2-18). It is an independent microproces­
sor that optimizes input/output operations. It is de­
signed to remove all I/O details from applications 
software. Responding to the CPU direction, but ex­
ecu ting its own instruction stream in parallel with 
other processors, it can transfer 16-bit data at rates 
up to 1.25 megabytes per second. 

In conjunction with the 8086,88, the 8089 combines 
the attributes of both a CPU and a DMA controller 
to provide a powerful I/O subsystem. I/O subsystem 
changes or upgrades can be made without impact to 
application software. 

The CPU communicates with the lOP in two modes: 
initialization and command. The lOP has two inde­
pendent channels, each with its own register set, 
channel attention, interrupt request and DMA con­
trol signals. 

Programs are written in ASM-89, the 8089 assembly 
language. About 50 basic instructions are available, 
including general purpose instructions similar to 
those found in CPU s as well as instructions specifi­
cally tailored for I/O operations. 

In the case of the 80186,188 and 8089 combination, 
the 8089 is used in the remote mode only. This is de­
scribed in Chapter 7 of this manual; hardware con­
siderations are in Volume 2, Chapter 4. 

HOST CPU (8086 or 8088) 

EXECUTION I BASE 

2.9 THE 80130 OPERATING SYSTEM 
FIRMWARE (OSF) 

The 80130 firmware (software in silicon) is, in con­
junction with the 8086,88 or 80186,188 CPUs, the 
nucleus of a real-time, high-performance multitask­
ing operating system. The 80130 adds task 
management, interrupt management, message 
passing, synchronization and memory allocation 
capabilities to the CPU. A block diagram of the OSF 
is shown in Figure 2-19. 

The 80130 OSF has five operating system data types: 
jobs, tasks, segments, mailboxes and regions. To 
create, manipulate and delete these data types, the 
80130 uses 35 operating-system instructions or 
primitives. Programs using the 80130 primitives may 
be written in ASM-86, PLlM-86, Fortran-86 or 
Pascal-86. 

The OSF contains a 16-bit operating-system, a pro­
grammable interrupt controller, delay timers, and a 
variable baud-rate generator, thus replacing about 
10 LSI ICs in a system. It is connected directly to the 
multiplexed address/data bus of the 8086,88 or 
80186,188 CPUs. 

Scheduling of tasks is based on priority. Each task is 
given a priority and interrupt level relative to other 
tasks when created, but priorities may be altered 
dynamically. The design approach used in the 80130 
OSF is one common to mini and mainframe 
computers. 

The 80130 OSF is described in detail in Chapter 8; 
hardware considerations are found in Chapter 5, 
Volume 2. 

PERIPHERALS 

UNIT I INTERFACE 
UNIT 

1/0 PROCESSOR (8089) CRT'S 

PRINTERS 

DISKETTES 

PRIVATE MEMORY 

PUBLIC MEMORY CHANNEL 1 PROGRAM 

PROGRAM 
CHANNEL 2 PROGRAM 

DATA 

Figure 2-18 1/0 Processor Block Diagram 
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HOST CPU (8086,88,186,188) 
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Figure 2-19 80130 (OSP) Block Diagram 
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CHAPTER 3 
TH E iAPX 86,88 and iAPX 1 86,1 88 

ARCHITECTURE AND INSTRUCTIONS 

3.1 INTRODUCTION 3.2 CPU ARCHITECTURE 

This chapter describes the programmer's architec­
ture of the iAPX 86,88 and iAPX 186,188 CPUs. It 
is divided into the following sections: 

The two independently operating functional units of 
the CPU, the BIU and EU, are able, under most 
circumstances, to extensively overlap instruction 
fetch with execution. The result is that, in most 
cases, the time normally required to fetch instruc­
tions "disappears" because the EU executes instruc­
tions that have already been fetched by the BIU. 
Figure 3-1 illustrates this overlap and compares it 
with traditional microprocessor operation. In the 
example, overlapping reduces the elapsed time re­
quired to execute three instructions, and allows two 
additional instructions to be pre fetched as well. 

• 
• 
• 
• 
• 
• 
• 

CPU Architecture 
Register Structure 
Memory Structure 
I/O Port Organization 
Addressing Modes 
Instructio n Set 
Programming Examples 

f--~~~~~~~~~-ELASPEDTIME~~~~-------__ .. 

SECOND{ CPU [~~)1~J~J 
GENERATION 

MICROPROCESSOR 
BUS: 

BOBS/BOBB 
MICROPROCESSOR BIU: (FE~QH J 

BUS:~ 

[*~Tt~ Wc'tff»J t~XECUTE 1 I FETCH I ~ I EXECUTE I 

I: FETCH 1 ~ ,,\,IHTE hEICH) ~ ltlli:] 
~ ~ ~ ~ ~ 

INSTRUCTION STREAM 

~ 
I 1i.J 

c:i] 

1st INSTRUCTION (ALREADY FETCHED): 

iii 
Ia 

EXECUTE AND WRITE RESULT 

2nd INSTRUCTION: 
EXECUTE ONLY 

3rd INSTRUCTION: 
READ OPERAND AND EXECUTE 

4th INSTRUCTION: 
(UNDEFINED) 

5th INSTRUCTION: 
(UNDEFINED) 

Figure 3-1 Overlapped Instruction Fetch and Execution 
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Execution Unit 

In the execution unit, a 16-bit ALD maintains the 
CPD status and control flags, and manipulates the 
general registers and instruction operands. All regis­
ters and data paths within the ED are 16 bits wide 
(Figure 3-2). 

The ED has no connection to the system bus, the 
"outside world." It obtains instructions from a 
queue maintained by the BID. Likewise, when an in­
struction requires access to memory or to a peripher­
al device, the ED requests the BID to fetch or store 
the data. All addresses manipulated by the ED are 
16 bits wide. However, the address relocation facility 
provided by the BID provides the ED with access to 
a full megabyte of memory space. 

A ,... 

I 

EXECUTION UNIT (EU) 

GENERAL 
REGISTERS 

I I 
t t 

OPERANDS 

t t 
I 

D ALU 

t 
FLAGS 

I 

I 
I 

I 

I 
I 

Bus Interface Unit 

The BIDs of the 8088/80188 and the 8086/80186 are 
functionally identical, but are implemented different­
ly to match the data path size of their buses, which 
are 8 bits and 16 bits respectively. 

The BID performs all bus operations for the ED. 
Data is transferred between the CPD and memory 
or I/O devices upon demand from the ED. 

In addition, during periods when the ED is busy ex­
ecuting instructions, the BID "looks ahead" and 
fetches more instructions from memory. The in­
structions are stored in an internal RAM array called 
the instruction stream queue. The 8088/80188 in­
struction queue holds up to four bytes of the instruc­
tion stream, while the 8086/80186 queue can store 
up to six instruction bytes. These queue sizes keep 
the ED supplied with prefetched instructions under 
most conditions without monopolizing the system 
bus. 

BUS INTERFACE UNIT (BIU) 

SEGMENT 
REGISTERS 

INSTRUCTION 
POINTER 

t 
ADDRESS 

GENERATION 
AND BUS 
CONTROL 

.... ,... 

INSTRUCTION 
QUEUE 

I 

MULTIPLEXED BUS 

Figure 3-2 Execution and Bus Interface Units (EU and BIU) 
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The 8088/80188 BIU fetches another instruction 
byte whenever there is one empty byte in its queue, 
and there is no active request for bus access from 
the EU. The 8086/80186 BIU operates similarly 
except that it does not normally initiate a fetch until 
there are two empty bytes in its queue. 

The 8086/80186 BIU will generally obtain two in­
struction bytes per fetch; if a program transfer forces 
fetching from an odd address, the BIU automatically 
reads one byte from the odd address and then 
resumes fetching two-byte words from the subse­
quent even address. 

Under most circumstances, the queue contains at 
least one byte of the instruction stream, and the EU 
does not have to wait for instructions to be fetched. 
The instructions in the queue are those stored in the 
memory locations immediately adjacent to and 
higher than the instruction currently being 
executed. That is, they are the next logical instruc­
tions so long as execution proceeds serially. If the 
EU executes an instruction that transfers control to 
another location, the BIU fetches the instruction 
from the new address, passes it immediately to the 
EU, and then begins refilling the queue from the 
new location (no flushing of the previous contents is 
necessary). In addition, the BIU suspends instruction 
fetching whenever the EU requests a memory or I/O 
read or write (except that a fetch already in progress 
is completed before executing the EU's bus request). 

3_3 REGISTER STRUCTURE 

The 8086,88 and 80186,188 contain the same basic 
set of fourteen registers as shown in Figure 3-3. 
These registers are grouped into the following 
categories: general registers, segment registers, and 
status and control registers. 

General Registers 

The CPUs have eight 16-bit general registers. They 
are divided into two files of four registers each: the 
data register file and the pointer and index register 
file. 

The upper and lower halves of the data registers are 
separately addressable. This means that each data 
register can be used interchangeably as a 16-bit 
register, or as two 8-bit registers. 

The 16-bit data registers are named AX, BX, CX, 
and DX; the 8-bit registers are named AL, AH, BL, 
BH, CL, CH, DL, and DH (the H or L suffix desig­
nates high-order or low-order byte of the 16-bit 
register). The other registers are always accessed as 
16-bit units only. 

3-3 

The data registers can be used in most arithmetic 
and logic operations. Some instructions (e.g. string 
instructions), however, require certain general regis­
ters for specific uses (see Table 3-1). This implicit 
register use allows a more compact instruction 
encoding. 

Table 3-1 Implicit Use of General Register 

REGISTER OPERATIONS 

AX Word Multiply, Word Divide, 
Word I/O 

AL Byte Multiply, Byte Divide, 
Byte I/O, Translate, Decimal 
Arithmetic 

AH Byte Multiply, Byte Divide 
BP Enter, Leave (186, 188 only) 
BX Translate 
CX String Operations 
CL Variable Shift and Rotate 
DX Word Multiply, Word Divide, 

Indirect I/O 
SP Stack Operations 
SI String Operations 
DI String Operations 

The pointer and index registers consist of the 16-bit 
registers SP, BP, SI, and DI as shown in Figure 3-3. 
They can also be used in most arithmetic and logic 
operations. These registers usually contain offset ad­
dresses for addressing within a segment. They 
reduce program size by eliminating the need for 
each instruction to specify frequently used 
addresses. These registers serve another function; 
they provide for dynamic logical address computa­
tion as described in the section on operand 
addressing. The pointer and index registers are also 
used implicitly in some instructions (Table 3-1). 

As shown in Figure 3-3, this register file is divided 
into the pointer subfile (SP and BP) and the index 
subfile (SI and DO. The pointer registers provide 
convenient access to the current stack segment (as 
opposed to the data segment). Unless otherwise 
specified in the instruction, pointer registers refer to 
the current stack segment while index registers refer 
to the current data segment. In certain instances, 
specific uses of these four registers are indicated by 
the mnemonic phrases "stack pointer," "base 
pointer," "source index," and "destination index." 
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Figure 3-3 Register Structure 
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Segment Registers 

The segment registers are also 16-bit registers. 
These registers specify the four currently addressable 
memory segments: CS (code segment), DS (data 
segment), SS (stack segment), and ES (extra 
segment). All instructions are fetched from the cur­
rent code segment, offset by the instruction pointer 
OP) register. Operand fetches are usually made from 
the current data segment (DS) or the current stack 
segment (SS), depending on whether the offset ad­
dress was calculated from the contents of a pointer 
register. For the exceptional cases where operand 
references are required outside the default segment, 
a segment override prefix may be added to the in­
struction to designate the required segment. 

Status and Control Registers 

The status and control registers consist of the in­
struction pointer and the status word or flags. 

The 16-bit instruction pointer OP) is analogous to 
the program counter (PC) in earlier CPU sand 
points to the next instruction. The instruction point­
er is updated by the BIU so that it contains the offset 
(distance in bytes) of the next instruction from the 
beginning of the current code segment. During 
normal execution, the IP contains the offset of the 
next instruction to be fetched by the BIU. However, 
for all instructions that manipulate the IP, the con­
tents of IP are adjusted to point to the next instruc­
tion to be executed, for example, when the IP is 
pushed on the stack or is used to calculate the ad­
dress of a relative jump. 

STATUS FLAGS 

The status word or flags is a 16-bit register consisting 
of three control flags and six status flags (see Figure 
3-4). The status flags record specific characteristics 
of the result of logical and arithmetic instructions 
(bits 8,9, and 10); the six status flags control the op­
eration of the CPU within a given operating mode 
(bits 0, 2, 4, 6, 7, and 11). 

The status flags provide status information that the 
EU posts to reflect certain properties of the result of 
an arithmetic or logic operation. A group of instruc­
tions is available that allows a program to alter its ex­
ecution depending on the contents of the status 
flags, that is, on the result of a prior operation. Table 
3-2 summarizes the status word or flag bit functions. 

Different instructions affect the status flags 
differently; in general, however, the flags reflect the 
following conditions: 

1) If AF (the auxiliary flag) is set, there has been a 
carry out of the low nibble (the low order 4-bits of a 
byte) into the high nibble or a borrow from the high 
nibble into the low nibble of an 8-bit quantity 
(low-order byte of a 16-bit quantity). This flag is 
used by decimal arithmetic instructions. 

2) If CF (carry flag) is set, there has been a carry 
out of, or a borrow into, the high-order bit of the 
result (8- or 16-bit). The flag is used by instructions 
that add and subtract multibyte numbers. Rotate in­
structions can also isolate a bit in memory or a regis­
ter by placing it in the carry flag. 

CARRY -----------------------, 

PARITY --------------------, 

AUXILIARY CARAY -------------'-----, 

L-_________ DIRECTION FLAG 

~ INTEL RESERVED 

Figure 3-4 Status Word or Flags Format 
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Bit 

Table 3-2 Status Word or Flags 
Bit Functions 

Position Name Function 

0 CF Carry Flag-Set on high-order bit 
carry or borrow; cleared otherwise 

2 PF Parity Flag-Set if low-order 8 bits 
of result contain an even number bf 
1-bits; cleared otherwise 

4 AF Set on carry from or borrow to the 
low order four bits of AL; cleared 
otherwise 

6 ZF Zero Flag-Set if result is zero; 
cleared otherwise 

7 SF Sign Flag-Set equal to high-order 
bitofresult(Oifpositive, 1 if negative) 

8 TF Single Step Flag-Once set, a sin-
gle step interrupt occurs after the 
next instruction executes. TF is 
cleared by the single step interrupt. 

9 IF Interrupt-enable Flag-When set, 
maskable interrupts will cause the 
CPU to transfer control to an inter-
rupt vector specified location. 

10 DF Di rection Flag-Causes string 
instructions to auto decrement 
the appropriate index register 
when set. Clearing DF causes 
auto increment. 

11 OF Overflow Flag-Set if the signed 
result cannot be expressed 
within the number of bits in the 
destination operand; cleared 
otherwise 

3) If OF (the overflow flag) is set, an arithmetic 
overflow has occurred; that is, a significant digit has 
been lost because the size of the computation ex­
ceeded the capacity of its destination location. An op­
tional Interrupt On Overflow instruction is available 
that generates an interrupt in this situation. 

4) If SF (the sign flag) is set, the high-order bit of 
th~ result is a 1. Since negative binary numbers are 
represented by standard two's complement 
notation, SF indicates the sign of the result 
(O=positive, I = negative). 

5) If PF (the parity flag) is set, the result has even 
parity. This flag can be used to check for data trans­
mission errors. (Only the low-order 8 bits are 
tested.) 

6) If ZF (zero flag) is set, the result of the operation 
is O. 

The three control flags are used by programs to alter 
processor operations in specified ways. The direction 

flag controls the direction of the string manIpula­
tions, the interrupt flag enables or disables external 
interrupts, and the trap flag puts the processor into a 
single-step mode for debugging. 

The control flags are set and cleared as follows: 

]) Setting DF (the direction flag) causes string in­
structions to auto-decrement, that is, to process 
strings from high addresses to low addresses, or 
from right to left. Clearing DF causes string instruc­
tions to auto-increment, or to process strings from 
left to right. 

2) Setting IF (the interrupt-enable flag) allows the 
CPU to recognize maskable, external interrupt 
requests (including interrupts from 80186,188 in­
tegrated peripherals). Clearing IF disables these in­
terrupts. IF has no effect on either nonmaskable 
external or internally generated interrupts. 

3) Setting TF (the trap flag) puts the processor into 
single-step mode for debugging. In this mode, the 
CPU automatically generates an internal interrupt 
after each instruction, allowing a program to be in­
spected as it executes, instruction by instruction. 

3.4 MEMORY STRUCTURE 

The memory and input/output space of the 8086,88 
and 80186,188 are treated in parallel and are collec­
tively referred to as the memory structure. Code 
and data reside in the memory space, while 
(non-memory-mapped) peripheral devices reside in 
the I/O space. This section describes how memory is 
functionally organized and used. 

Memory Space 

The memory in an 8086,88 and 80186,188 system is 
a sequence of up to one million (I,048,576) bytes. A 
word is any two consecutive bytes in memory (word 
alignment is not required). Words are stored in 
memory with the most significant byte at the higher 
memory address. 

3-6 

The memory can be conceived of as an arbitrary 
number of segments, each containing a maximum 
of 64K bytes. The starting address of each segment 
is evenly divisible by 16 (the four least significant ad­
dress bits are 0). At any moment, the program can 
immediately access the contents of four such 
segments: 

1) the current code segment 
2) the current data segment 
3) the current stack segment 
4) the current extra segment 
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Each of these segments can be identified by placing 
the 16 most significant bits of the segment's starting 
address into one of the four 16-bit segment 
registers. Instructions can refer to bytes or words 
within a segment by using a 16-bit offset address. 
The processor constructs the 20-bit byte or word ad­
dress automatically by adding the 16-bit offset ad­
dress (also called the logical address) to the contents 
of a 16-bit segment register, with four low-order 
zeros appended (see Figure 3-5). 

15 

I LOGICAL ADDRESS 

15 

o 
IOFFSET 
ADDRESS 

SEGMENT EGMENT REGISTER ~~ ____ ~ADDRESS 

19 o 
20-BIT 

PHYSICAL MEMORY ADDRESS 

Figure 3-5 How to Address One Million Bytes 

Storage Organization 

From the storage point point of view, memory 
spaces are organized as arrays of 8-bit bytes (Figure 
3-6). Instructions, byte data and word data may be 
freely stored at any byte address without regard for 
alignment, thereby saving memory space by allowing 
code to b~ densely packed in memory (Figure 3-7). 

3-7 

lOW MEMORY HIGH MEMORY 

OOOOOH 00001H 00002H 5 yFFFFEH FFFFFH 

I! ! ! I ! I ! II ! I II ! II ! II I 115 51) IIII1 ! ! ! III! I 
7 07 07 07 0 

I.. 1 MEGABYTE .. I 

Figure 3-6 Storage Organization 

Figure 3-7 Instruction and Variable Storage 

Word data is always stored with the most-significant 
byte in the higher memory location (Figure 3-8). 
Most of the time this storage convention is transpar­
ent to the programmer, except when monitoring the 
system bus or reading memory dumps. 

VALUE OF WORD STORED AT 724H: 5502H 

Figure 3-8 Storage of Word Variables 

Pointers addressing data and code that are outside 
the currently-addressable segments are stored as 
doublewords. The lower-addressed word of a pointer 
contains an offset value; the higher-addressed word 
contains a segment base address. By convention, 
each word is stored with the higher-addressed byte 
holding the most-significant eight bits of the word 
(Figure 3-9). 
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VALUE OF POINTER STORED.AT 4H: 
SEGMENT BASE ADDRESS: 3B4CH 
OFFSET: 65H 

Figure 3-9 Storage of Pointer Variables 

Segmentation 

Programs view memory space as a group of segments 
defined by the application. A segment is a logical 
unit of memory that may be up to 64K bytes long. 
Each segment is made up of contiguous memory lo­
cations and is an independent, separately addressable 
unit. Every segment is assigned (by software) a base 
address, which is its starting location in the memory 
space. All segments start on 16-byte memory 
boundaries. There are no other restrictions on seg­
ment locations. Segments may be adjacent, disjoint, 
partially overlapped, or fully overlapped (Figure 

.3-10). A physical memory location may be mapped 
into (contained in) one or more logical segments. 

The segment registers point to (contain the base ad­
dress values of) the four immediately addressable 
segments (Figure 3-11). Programs obtain access to 
code and data in other segments by changing the seg­
ment registers to point to the desired segments. 

Every application will define and use segments 
differently. The currently addressable segments pro­
vide a generous work space: 64K bytes for code, a 
64K byte stack and 128K bytes of data storage. Many 
applications can be written to simply initialize the 
segment registers and then forget them. Larger appli­
cations should be designed with careful considera­
tion given to segment definition. This segmented 
structure of the memory space supports modular 
software design by discouraging very large, mono­
lithic programs. Segments can also be used to advan­
tage in many programming situations. An example 
is the case of an editor for several on-line terminals. 
A 64K byte text buffer (say, an extra segment) 
could be assigned to each terminal. A single program 
could maintain all the buffers by simply changing 
register ES to point to the buffer of the terminal 
requiring service. 

3-8 

Physical Address Generation 

It is useful to think of every memory location as 
having two kinds of addresses - physical and 
logical. A physical address is the 20-bit value that 
uniquely identifies each byte location in the memory 
space. Physical addresses may range from OH 
through FFFFFH. All exchanges between the CPU 
and memory components use this physical address. 

Programs, however, deal with logical rather than 
physical addresses. The use of logical addresses 
allows code to be developed without prior knowledge 
of where the code is to be located in memory, and 
facilitates dynamic management of memory 
resources. 

A logical address consists of a segment base value 
and an offset value. For any given memory location, 
the segment base value locates the first byte of the 
containing segment aod the offset value is the 
distance, in bytes, of the target location from the 
beginning of the segment. Segment base and offset 
values are unsigned 16-bit quantities; the lowest­
addressed by~ in a segment has an offset of O. Many 
different logical addresses can map to the same 
physical location as shown in Figure 3-12. 

Whenever the BIU accesses memory-to fetch an in­
struction or to obtain or store a variable-it gener­
ates a physical address from a logical address. This is 
done by shifting the segment base value four bit po­
sitions and adding the offset as illustrated in Figure 
3-13. This addition process provides for modulo 64K 
addressing (addresses wrap around from the end of 
a segment to the beginning of the same segment). 

The BIU obtains the logical address of a memory lo­
cation from different sources depending on the type 
of reference that is being made (see Table 3-3). 
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Figure 3-10 Segment Locations in Physical Memory 
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Figure 3-11 Currently Addressable Segments 
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Table 3-3 Logical Address Sources 

DEFAULT 
TYPE OF MEMORY REFERENCE SEGMENT 

BASE 

Instruction Fetch CS 
Stack Operation SS 
Variable (exectp following) OS 
String Souce OS 
String Destination ES 
BP Used AS Base Register SS 
BX Used As Base Register OS 

Instructions are always fetched from the current 
code segment. The instruction pointer OP) contains 
the offset of the target instruction from the begin­
ning of the segment. 

Stack instructions always operate on the current 
stack segment. The stack pointer (SP) contains the 
offset of the top of the stack. Most variables 
(memory operands) are assumed to reside in the 
current data segment, although a program can in­
struct the BIU to access a variable in one of the other 
currently addressable segments. The offset of a 
memory variable is calculated by the EU. This calcu­
lation is based on the addressing mode specified in 
the instruction; the result of the calculation is called 
the operand's effective address (EA). Section 3.6 
covers addressing modes and effective address calcu­
lation in detail. 

Strings are addressed differently from other 
variables. The source operand of a string instruction 
is assumed to lie in the current data segment, but 
another currently addressable segment may be 
specified. Its offset is taken from register SI, the 
source index register. The destination operand of a 
string instruction always resides in the current extra 
segment (ES). Its offset is taken from the DI, the 
destination index register. The string instructions au­
tomatically adjust SI and DI as they process the 
strings one byte or word at a time. 

When register BP, the base pointer register, is 
designated as a base register in an instruction, the 
variable is assumed to reside in the current stack 
segment. Register BP thus provides a convenient 
way to address data on the stack. BP can be used, 
however, to access data in any of the other currently 
addressable segments. 

In most cases, the BIU's segment assumptions are a 
convenience to the programmer, since they are 

3-11 

ALTERNATE 
SEGMENT OFFSET 

BASE 

NONE IP 
NONE SP 

CS, ES, SS Effective Address 
CS, ES,SS SI 

NONE 01 
CS, OS, ES Effective Address 
CS, ES, SS Effective Address 

based on the most frequent typical usage. It is 
possible, however, to explicitly direct the BIU to 
access a variable in any of the currently addressable 
segments (the only exception is the destination oper­
and of a string instruction which must pe in the extra 
segment). This is done by preceding an instruction 
with a segment override prefix. This one-byte 
machine instruction tells the BIU which segment 
register to use to access a variable referenced in the 
following instruction. 

Dynamically Relocatable Code 

The segmented memory structure of the 8086,88 
and 80186,188 makes it possible to write programs 
that are position-independent, or dynamically 
relocatable. Dynamic relocation allows a multi­
programming or multitasking system to make partic­
ularly effective use of the available memory. Inactive 
programs can be written to disk, and the space they 
occupied allocated to other programs. If a disk­
resident program is needed lat<:r, it can be read back 
into any available memory location and restarted. 
Similarly, if a program needs a large contiguous 
block of storage, and the total amount is available 
only in nonadjacent fragments, other program seg­
ments can be compacted to free up a continuous 
space. This process is shown graphically in Figure 
3-14. 

In order to be dynamically relocatable, a program 
must not load or alter its segment registers and must 
not transfer directly to a location ou tside the current 
code segment. In other words, all offsets in the pro­
gram must be relative to fixed values contained in 
the segment registers. This allows the program to be 
moved anywhere in memory as long as the segment 
registers are updated to point to the new base 
addresses. 

210911 

I 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

BEFORE RELOCATION AFTER RELOCATION 

CODE 
SEGMENT 

I 
CS CS 

I 
SS 

STACK - OS 
SEGMENT 

SS 

OS f--

r- ES ES f-

DATA CODE 
SEGMENT SEGMENT 

STACK 
SEGMENT 

DATA 
SEGMENT 

EXTRA EXTRA 
SEGEMENT SEGMENT 

c::J FREE SPACE 

Figure 3-14 Dynamic Code Relocation 

Stack Implementation 

Stacks are located in memory and are accessed by 
the stack segment register (SS) and the stack pointer 
register (SP). A system may have an unlimited 
number of stacks, and a stack may be up to 64K 
bytes long, the maximum length of a segment. (An 
attempt to expand a stack beyond 64K bytes over­
writes the beginning of the stack.) One stack is 
directly addressable at a time, the current stack, 
generally referred to simply as the stack. SS contains 
the base address of this stack and SP points to the 
top of the stack (TOS). In other words, SP contains 
the offset of the top of the stack from the stack seg­
ment's base address. The stack's base address 
(contained in SS), however, is not the bottom of the 
stack. 

Stacks are 16-bits wide; thus, instructions that oper­
ate on stacks add and remove stack items one word 
at a time. A word is pushed onto the stack by decre­
menting SP by 2 and writing the item at the new TOS 
(see Figure 3-15). A word is popped off the stack by 
copying it from TOS and then incrementing SP by 2. 

In other words, the stack grows down in memory to­
wards its base address. Stack operations never move 
items on the stack, nor do they erase them. The top 
of the stack changes only as a result of updating the 
stack pointer. 

Dedicated and Reserved Memory 
Locations . 

Two areas in extreme low and high memory are 
dedicated to specific processor functions or are reo 
served by Intel Corporation for use by Intel hard­
ware and software products. As shown in Figure 
3-16, the locations are: OH through 7FH (128 bytes) 
and FFFFOH through FFFFFH (16 bytes). These 
areas are used for interrupt and system reset 
processing. Application systems should not use 
these areas for any other purpose. Doing so may 
make these systems incompatible with future Intel 
products. 

As Figure 3-16 indicates, the 8086,88 and the 
80186,188 processors differ in the proportion of 
dedicated to reserved locations. 
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Integrated Peripheral Control Block 

The 80186,188 integrated peripherals are controlled 
by an array of l6-bit registers located in an internal 
256-byte control block. Control and status registers 
are provided for the chip select unit, the DMA 
controller, the timers, and the interrupt controller. 
The control block may be mapped into memory or 
I/O space. The control block base address is pro­
grammed by the 16-bit relocation register, which is 
contained in the control block itself. Each of the con­
trol and status registers are located at a fixed offset 
from the base address. 

8086/80186 and 8088/801 88 
Memory Access Differences 

The 8086 and 80186 can access either 8 or 16 bits of 
memory at a time. If an instruction refers to a word 
variable, and that variable is located at an even­
numbered address, the 8086/80186 accesses the 
complete word in one bus cycle. If the word is located 
at an odd-numbered address, it is accessed one byte 
at a time in two consecutive bus cycles. 

Thus, to maXImIze throughput in 8086- and 
80186-based systems, 16-bit data should be stored at 
even addresses (i.e., it should be word aligned). This 
is parttcularly true of stacks. Unaligned stacks can 
slow a system's response to interrupts. Neverthe­
less, except for the performance penalty, word align­
ment is totally transparent to software, allowing 
maximum data packing where memory space is 
constrained. 

The 8086/80186 always fetch the instruction stream 
in words from even addresses, except that the first 
fetch after a program transfer to an odd address 0 b­
tains a byte. The instruction stream is disassembled 
inside the processor, and instruction alignment will 
not materially affect the performance of most 
systems. 

The 8088 and 80188 always access memory in bytes. 
Word operands are accessed in two bus cycles 
regardless of their alignment. Instructions are also 
fetched one byte at a time. Although alignment of 
word operands does not affect the performance of 
the 8088/188, locating 16-bit data on even addresses 
will insure maximum throughput if the system is 
ever transferred to an 8086 or 80186. 

3.5 I/O PORT ORGANIZATION 

The 8086,88 and 80186,188 have a versatile set of 
input/output facilities. The processors provide a 
large I/O space that is separate from the memory 
space. I/O devices may also be placed in the memory 
space to bring the power of the full instruction set 
and addressing modes to input/output processing. 
For high speed transfers, the 8086,88 may be used 
with traditional direct memory access controllers or 
the 8089 I/O Processor. The 80186,188 has an in­
tegrated DMA controller with two high-speed DMA 
channels. 

I/O Space 

The I/O space can accommodate up to 64K 8-bit 
ports or up to 32K 16-bit ports. Ports are addressed 
the same way as memory except that there are no 
port segment registers. All ports are considered to 
be in one segment. 

A 16-bit device should be located at an even address 
so that words will be transferred in a single bus cycle. 
An 8-bit device may be located at either an even or 
odd address. Thus, internal registers in a given 8-bit 
device will have all even or all odd addresses. 

To access a port, the BIU places the port address 
(O-FFFFH) on the lower 16 lines of the address bus. 
Different forms of the I/O instructions allow the ad­
dress to be specified as a fixed value in the instruc­
tion or as a variable taken from register DX. The IN 
and OUT (input and output) instructions transfer 
data between the accumulator (AL for byte 
transfers, AX for word transfers) and ports located 
in the I/O space. 

The first 256 ports are directly addressable (address 
in the instruction) by some input/output instruc­
tions; other instructions let the programmer address 
the total of 64K ports indirectly (address in a 
register) . 

Restricted I/O Locations 

As shown in Figure 3-16, on both the 8086,88 and 
80186,188 processors, locations F8H throughFFH 
(eight of the 64K locations) in the I/O space are re­
served by Intel Corporation for use by future Intel 
hardware and software products. Using these loca­
tions for any other purpose may inhibit compatibility 
with future Intel products. Locations FFFE and 
FFFF are dedicated, on the 80186,188 processors, to 
the relocation register's reset location. On the 
8086,88 these locations are reserved. 
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Memory-Mapped 1/0 

I/O devices may also be placed in the memory space. 
This memory-mapped I/O provides additional pro­
gramming flexibility. Any instruction that references 
memory may be used to access an 110 port located in 
the memory space. A group of terminals, for 
example, could be treated as an array in memory, 
with an index register selecting one of the terminals 
in the array. 

Memory reference instructions take longer to 
execute, however, and are less compact than the 
simpler IN and OUT instructions. 

3.6 ADDRESSING MODES 

The 8086,88 and 80186,188 provide many different 
ways of addressing operands. Operands may be con­
tained in registers, within the instruction itself, in 
memory or in I/O ports. In addition, the addresses 
of memory and 110 port operands can be calculated 
in several different ways. These addressing modes 
greatly extend the flexibility and convenience of the 
instruction set. 

Register and Immediate Operands 

Instructions that specify only register operands are 
generally the most compact and fastest executing. 
This is because the register addresses are encoded in 
instructions in just a few bits, and because these op­
erations are performed entirely within the CPU (no 
bus cycles are run). Registers may serve as source 
operands, destination operands, or both. 

Immediate operands are constant data contained in 
an instruction. The data may be either 8 or 16 bits 
long. Immediate operands can be accessed quickly 
because they are available directly from the instruc­
tion queue; (as in the case of register operands, no 
bus cycles need to be run to obtain an immediate 
operand). The limitations of immediate operands 
are that they may only serve as source operands and 
that they are constant values. 

Memory Addressing Modes 

Unlike register and immediate operands, which are 
directly accessible to the EU, memory operands 
must be transferred to and from the CPU over the 
bus. When the EU needs to read or write a memory 

operand, it must pass an offset value to the BIU. The 
BIU adds the offset to the (shifted) contents of a seg­
ment register, producing a 20-bit physical address, 
and then executes the bus cycle(s) needed to access 
the operand. 

The Effective Address 

The offset that the EU calculates for a memory oper­
and is called the operand's effective address or EA. 
It is an unsigned 16-bit number that expresses the 
operand's distance in bytes from the beginning of 
the segment in which it resides. The EU can calculate 
the effective address in several different ways. Infor­
mation encoded in the second byte of the instruction 
tells the EU how to calculate the effective address of 
each memory operand. A compiler or assembler 
derives this information from the statement or in­
struction written by the programmer. Assembly lan­
guage programmers have access to all addressing 
modes. 

As shown in Figure 3-17, the EU calculates the EA 
by summing a displacement, the contents of a base 
register, and the contents of an index register. The 
fact that any combination of these three components 
may be present in a given instruction results in the 
great variety of memory addressing modes provided 
by the 8086,88 and 80186,188. 

The displacement element is an 8- or 16-bit number 
that is contained in the instruction. The displacement 
generally is derived from the position of the operand 
name (a variable or label) in the program. The pro­
grammer can also modify this value or specify the 
displacement explicitly. 

A programmer may specify that either BX or BP is to 
serve as a base register whose contents are to be 
used in the EA computation. Similarly, either SI or 
DI may be specified as an index register. Whereas 
the displacement value is a constant, the contents of 
the base and index registers may change during the 
execution. This makes it possible for one instruction 
to access different memory locations as determined 
by the current value in the base and/or ind·ex 
registers. 

Effective address calculations with the BP are made, 
by default, using the SS register, though either the 
DS or the ES registers may be specified instead. 
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Figure 3-17 Memory Address Computation 
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Direct Addressing 

Direct addressing (see Figure 3-18) is the simplest 
memory addressing mode. No registers are 
involved; the EA is taken directly from the displace­
ment field of the instruction. Direct addressing typi­
cally is used to access simple variables (scalars). 

3-16 

EA 

Figure 3-18 Direct Addressing 
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Register Indirect Addressing 

The EA of a memory operand may be taken directly 
from the BP, BX, SI or DI register (see Figure 3-19). 
One instruction can operate on many different 
memory locations if the value in the pointer or index 
register is updated appropriately. The load effective 
address (LEA) and arithmetic instructions might be 
used to change the register value. 

Note that with the JMP and CALL instructions, any 
16-bit general register may be used for register indi­
rect addressing. 

OPCOOE MOD RIM 

L BX 
OR 
BP 
OR EA 
SI 
OR 
01 

Figure 3-19 Register Indirect Addressing 

Base Addressing 

In base addressing (Figure 3-20), the effective ad­
dress is the sum of a displacement value and the con­
tents of register BX or register BP. Specifying BP as a 
base register directs the BIU to obtain the operand 
from the current stack segment (unless a segment 
override prefix is present). This makes base address­
ing with BP a very convenient way to access stack 
data. 

Figure 3-20 Based Addressing 

3-17 

When BX is used as the base register, the operand 
by default resides in the current Data Segment, and 
the DS register is used to compute the operand's EA. 

Base addressing provides a straightforward way to 
address structures which may be located at different 
places in memory (see Figure 3-20. A base register 
can be set to point to the base of the structure, and 
elements of the structure can then be addressed by 
their displacement from the base. Different copies of 
the same structure can be accessed by simply chang­
ing the base register. 
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Figure 3- 21 Accessing a Structure 
with Based Addressing 

Indexed AddreSSing 

In indexed addressing, the EA is calculated from the 
sum of a displacement and the contents of an index 
register, SI or DI, as shown in Figure 3-22. Indexed 
addressing is often used to access elements in an 
array (Figure 3-23). The displacement locates the 
beginning of the array, and the value of the index 
register selects one element (the first element is 
selected if the index register contains 0). Since all 
array elements are the same length, simple arithme­
tic on the index register will select any element. 

Figure 3-22 Indexed Addressing 
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Figure 3-23 Accessing an Array 
with Indexed Addressing 

Based Indexed Addressing 

Based indexed addressing generates an effective ad­
dress that is the sum of a base register (BX or BP), 
an index register (SI or DI) and a displacement 
(Figure 3-24). Based indexed addressing is a very 
flexible mode because two address components can 
be varied at execution time. 
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Figure 3-24 Based Indexed Addressing 

Based indexed addressing provides a convenient 
way for a procedure to address an array allocated on 
a stack (Figure 3-25). Register BP can contain the 
offset of a reference point on the stack, typically the 
top of the stack after the procedure has saved regis­
ters and allocated local storage. The offset of the 
beginning of the array from the reference point can 
be expressed by a displacement value, and an index 
register can be used to access individual array 
elements. 
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Figure 3-25 AcceSSing a Stack Array 
with Based Indexed Addressing 

Arrays contained in structures and matrices 
(two-dimensional arrays) can also be accessed with 
based indexed addressing. 

String Addressing 

String instructions do not use the normal memory 
addressing modes to access their operands. Instead, 
the index registers are used implicitly as shown in 
Figure 3-26. When a string instruction is executed, 
SI is assumed to point to the first byte or word of the 
source string, and DI is assumed to point to the first 
byte or word of the destination string. Tn a repeated 
string operation, the CPU automatically adjusts SI 
and DI to obtain subsequent bytes or words. 

IOPCODEI 

SI J----..I SOURCE EA 

DI J----..I DESTINATION EA I 

Figure 3-26 String Operand Addressing 

3-18 210911 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

I/O Port Addressing 

If an I/O port is memory mapped, any of the 
memory operand addressing modes may be used to 
access the port (for example, a group of terminals 
can be accessed as an array). String instructions can 
also be used to transfer data to memory-mapped 
ports with an appropriate hardware interface. 

To access ports located in the I/O space, the two dif­
ferent addressing modes illustrated in Figure 3-27 
can be used. In direct port addressing, the port 
number is an 8-bit immediate operand. This allows 
fixed access to ports numbered 0 to 255. Indirect 
port addressing is similar to register indirect address­
ing of memory operands. The port number is taken 
from register DX and can range from 0 to 65,535 
(providing access to any port in the I/O space). A 
group of adjacent ports can be accessed using a 
simple software loop that adjusts the value in DX. 

DIRECT PORT ADDRESSING 

.. I __ D_X __ ... J----..I PORT ADDRESS I 
INDIRECT PORT ADDRESSING 

Figure 3-27 1/0 Port Addressing 

3.7 THE INSTRUCTION SET 

The 8086,88 and 80186,188 instructions include 
equivalents to the instructions typically found in 
such CPUs as the 8080 and 8085. Significant new in­
structions added by the 8086 are: 

• multiplication and division of signed and un­
signed binary numbers as well as unpacked 
decimal numbers, 

• move, scan and compare operations for 
strings up to 64K bytes in length, 

• non-destructive bit testing, 

• byte translation from one code to another, 

• additional software-generated interrupts, and 

• a group of instructions that can help coordi­
nate the activities of multiprocessor systems. 

In addition to these instructions, the 80186,188 pro­
vides ten new instruction types that serve to stream­
line existing code or produce optimum iAPX 186 
code. 

All instructions treat different types of operands 
uniformly. Nearly every instruction can operate on 
either byte or word data. Register, memory and im­
mediate operands may be specified interchangeably 
in most instructions. The exception is that immedi­
ate values may only serve as source and not destina­
tion operands. In particular, memory variables can 
be added to, subtracted from, shifted, compared, 
and so on, in place, without moving them in and out 
of registers. This saves instructions, registers, and 
execution time in assembly language programs. In 
high-level languages, where most variables are 
memory-based, compilers, such as PLlM-86, can 
produce faster and shorter object programs. 

The instruction set can be viewed as existing at two 
levels: the assembly level and the machine level. To 
the assembly language programmer the 8086 and 
80186 appear to have about 100 instructions. One 
MOY (move) instruction, for example, transfers a 
byte or a word from a register or a memory location 
or an immediate value to either a register or a 
memory location. The CPUs, however, recognize 28 
different MOY machine instructions (move byte 
register to memory, move word immediate to 
register, etc.). The ASM-86 assembler translates the 
assembly-level instructions written by a programmer 
into the machine-level instructions that are actually 
executed by the CPU. Compilers such as the 
PL/M-86 translate high-level language statements 
directly into machine-level instructions. 

The two levels of the instruction set address two dif­
ferent requirements: efficiency and simplicity. The 
numerous-about 300 in all-forms of machine­
level instructions allow these instructions to make 
very efficient use of storage. For example, the ma­
chine instruction that increments a memory operand 
is three or four bytes long because the address of the 
operand must be encoded in the instruction. To 
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increment a register, however, does not require as 
much information, so the instruction can be shorter. 
In fact, the 8086,88 and 80186,188 have eight dif­
ferent machine-level instructions that increment a 
different 16-bit register; these instructions are only 
one byte long. 

This section presents the instruction set from two 
perspectives. First, the assembly-level instructions 
are described in functional terms. They are then pre­
sented in a reference table format that specifies all 
permissible operand combinations, provides execu­
tion times and machine instruction length, and 
shows the effect that the instruction has on the CPU 
flags. 

The details of the syntax of the instruction set are de­
scribed fully in Intel's "ASM86 Language Reference 
Manual," # 121703. A shorter treatment of the as­
sembly language can be found in Intel's "An Intro­
duction to ASM 86" manual, # 121689. 

Instruction Set Organization 

The instructions are divided into the' following func­
tional groups: 

• Data transfer 

• Arithmetic 

• Bit manipulation 

• String manipulation 

• Control transfer 

• High-level (186,188 only) 

• Processor control 

Data Transfer Instructions 

The data transfer instructions (Table 3-4) move 
single bytes, words, and doublewords between 
memory and registers, as well as between register 
AL or AX and I/O ports. The stack manipulation in­
structions are included in this group, as are instruc­
tions for transferring flag contents and for loading 
segment registers. 

Sub-groups of the data transfer instructions are the 
general purpose data transfer, 110, address object, 
and flag transfer instructions. 

Table 3-4 Data Transfer Instructions, 

GENERAL PURPOSE 

MOV Move byte or word 
PUSH Push word onto stack 
POP Pop word off stack 
PUSHA Push all registers on stack 
paPA Pop all registers from stack 
XCHG Exchange byte or word 
XLAT Translate byte 

INPUT/OUTPUT 

IN Input byte or word 
OUT Output byte or word 

ADDRESS OBJECT 

LEA Load effective address 
LOS Load pointer using OS 
LES Load pointer using ES 

FLAG TRANSFER 

LAHF Load AH register from flags 
SAHF Store AH register in flags 
PUSHF Push flags onto stack 
POPF Pop flags off stack 

GENERAL PURPOSE DATA TRANSFERS: 

MOV destination, source 

MOV transfers a byte or a word from the source 
operand to the destination operand. 

PUSH source 

PUSH decrements SP (the stack pointer) by two and 
then transfers a word from the source operand to 
the top of the stack now pointed to by SP. PUSH is 
often used to place parameters on the stack before 
calling a procedure; more generally, it is the basic 
means of storing temporary data on the stack. 
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PUSH immediate (186,188 only) 

The PUSH (push immediate) instruction allows im­
mediate data to be pushed onto the stack. The data 
can be either immediate byte or immediate word. 
Byte data will be sign extended to word size before it 
is pushed onto the stack (since all stack operations 
are done on word data). 

POP destination 

POP transfers the word at the current top of stack 
(pointed to by SP) to the destination operand, and 
then increments SP by two to point to the new top of 
the stack. POP can be used to move temporary varia­
bles from the stack to registers or memory. 

PUSHAIPOPA (186,188 only) 

These instructions (push all, pop all) allow all CPU 
general purpose registers to be stored and restored. 
The PUSHA instruction pushes all CPU registers 
onto the stack, and the POPA instruction pops all 
CPU registers from the stack. The order in which 
the registers are saved is: AX, CX, DX, BX, SP, BP, 
SI and DI. The SP value pushed is the SP value 
before the first register (AX) is pushed. When the 
POPA instruction is executed, the SP value is 
popped, but the value is discarded. 

Note that this instruction does not save any of the 
segment registers (CS, DS, SS, ES), the instruction 
pointer (IP), the flag register, or any of the integrat­
ed peripheral registers. 

XCHG destination, source 

XCHG (exchange) switches the contents of the 
source and destination (byte or word) operands. 
When used in conjunction with the LOCK prefix, 
XCHG can test and set a semaphore that controls 
access to a resource shared by multiple processors. 

XLAT translate-table 

XLAT (translate) replaces a byte in the AL register 
with a byte from a 256-byte, user-coded translation 
table. Register BX is assumed to point to the begin­
ning of the table. The byte in AL is used as an index 
into the table and is replaced by the byte at the offset 
in the table corresponding to AL's binary value. The 
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first byte in the table has an offset of O. For example, 
if AL contains 5H, and the sixth element of the 
translation table contains 33H, then AL will contain 
33H following the instruction. XLAT is useful for 
translating characters from one code to another, 
such as ASCII to EBCDIC or the reverse. 

INPUT/OUTPUT: 

IN accumulator, port 

IN transfers a byte or a word from an input port to 
the AL register or the AX register respectively. The 
port number may be specified either with an immedi­
ate byte constant, allowing access to ports numbered 
o through 255, or with a number previously placed 
in the DX register, allowing variable access (by 
changing the value in DX) to ports numbered from 
o through 65,535. 

OUT port, accumulator 

OUT transfers a byte or a word from the AL register 
or the AX register, respectively, to an output port. 
The port number may be specified either with an im­
mediate byte constant, allowing access to ports num­
bered 0 through 255, or with a number previously 
placed in register DX, allowing variable access (by 
changing the value in DX) to ports numbered from 
o through 65,535. 

ADDRESS OBJECT TRANSFERS: 

These instructions manipulate the addresses of varia­
bles rather than the contents or values of variables. 
They are most useful for list processing, based 
variables, and string operations. 

LEA destination, source 

LEA (load effective address) transfers the offset of 
the source operand (rather than its value) to the 
destination operand. The source operand must be a 
memory operand, and the destination operand must 
be a 16-bit general register. LEA does not affect any 
flags. The XLAT and string instructions assume that 
certain registers point to operands. LEA can be used 
to load these registers (e.g., loading BX with the ad­
dress of the translate table used by the XLAT 
instruction) . 
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LOS destination. source 

LDS (load pointer using DS) transfers a 32-bjt point­
er variable from the source operand, which must be 
a memory operand, to the destination operand and 
register DS. The offset word of the pointer is trans­
ferred to the destination operand, which may be any 
16-bit general register. The segment word of the 
pointer is transferred to register DS. Specifying SI as 
the destination operand is a convenient way to pre­
pare to process a source string that is not in the cur­
rent data segment (string instructions assume. that 
the source string is located in the current data seg­
ment an~ that SI contains the offset of the string). 

LES destination. source 

LES (load pointer using ES) transfers a 32-bit point­
er variable from the source operand, which must be 
a memory operand, to the destination operand and 
register ES. The offset word of the pointer is trans­
ferred to the destination operand, which may be any 
16-bit register. The segment word of the pointer is 
transferred to register ES. Specifying DI as the desti­
nation operand is a convenient way to prepare to pro­
cess a destination string that is not in the current 
extra segment. (The destination string must be locat- . 
ed in the extra segment, and DI must contain the 
offset of the string.) 

FLAG TRANSFERS: 

LAFH 

LAHF (load register AH froni flags) copies SF, ZF, 
AF, PF and CF (the 8080/8085 flags) into bits 7, 6, 
4, 2 and 0 respectively, of register AH (see Figure 
3-28). The contents of bits 5, 3 and 1 is undefined; 
the flags themselves are not affected. LAHF is 
provided primarily for converting 8080/8085 assem­
bly language programs to run on 8086 and 80186 
CPUs. 

SAHF 

SAHF (stOle register AH into flags) transfers bits 7, 
6,4,2 and 0 from register AH into SF, ZF, AF, PF 
and CF respectively, replacing whatever values 
these flags previously had. OF, DF, IF and TF are 
not affected. This instruction is provided for 
8080/8085 compatibility. 

PUSHF 

PUSHF decrements SP (the stack pointer) by two 
and then transfers all flags to the word at the top of 
stack pointed to by SP (see Figure 3-28). The flags 
themselves are not affected. 

LAHF, 
SAHF IS,Z,U,A,U,P,u,cl 

17 6 5 4 32 1 01 
1_8080/8085 FLAGS_I 
I I 

I I 
~g~~F'1 U I U , U I U , 0 10 I I , T, S I Z I U I A I U I P, U I C I 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

POPF 

U = UNDEFINED; VALUE IS INDETERMINATE 
o = OVERFLOW FLAG 
D = PIRECTION FLAG 
I = I.NTERRUPT ENABLE FLAG 
T "TRAP FLAG 
s= SIGN FLAG 
z= ZERO FlAG 
A = AUXILIARY CARRY FLAG 
P = PARITY FLAG 

,.c; = CARRY FLAG 

Figure 3-28 Flag Storage Formats 

POPF transfers specific bits from the word at the cur­
rent top of stack (pointed to by register SP) into 
flags, replacing whatever values the flags previously 
contained (see Figure 3-28). SP is then incremented 
by two to point to the new top of stack. PUSHF and 
POPF allow a procedure to save and restore a calling 
program's flags. 

Arithmetic Instructions 

Arithmetic operations (Table 3-5) may be performed 
on four types of numbers: unsigned binary, signed 
binary (integers), unsigned packed decimal and un­
signed unpacked decimal (see Table 3-6). Binary 
numbers may be 8 or 16 bits long. Decimal numbers 
are stored in bytes, two digits per byte for packed 
decimal and one digit per byte for unpacked decimal. 
The processor always assumes that the operands 
specified in arithmetic instructions contain data that 
represents valid numbers for the type of instruction 
being performed. Invalid data may produce unpre­
dictable results. 

Unsigned binary numbers may be either 8 or 16 bits 
long; all bits are considered in determining a num­
ber's magnitude. The value range of an 8-bit un­
signed binary number is 0-255. Values from 0 to 
65,535 can be. represented by 16 bits. Addition, 
subtraction, multiplication and division operations 
are available for unsigned binary numbers. 
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Table 3·5 Arithmetic Instructions 

ADDITION 
ADD Add byte or word 
ADC Add byte or word with carry 
INC Increment byte or word by 1 
AAA ASCII adjust for addition 
DAA Decimal adjust for addition 

SUBTRACTION 

SUB Subtract byte or word 
SBB Subtract byte or word with 

borrow 
DEC Decrement byte or word by 1 
NEG Negate byte or word 
CMP Compare byte or word 
AAS ASCII adjust for subtraction 
DAS Decimal adjust for subtraction 

MULTIPLICATION 
MUL Multiply byte or word unsigned 
IMUL Integer multiply byte or word 
AAM ASCII adjust for multiply 

DIVISION 

DIV Divide byte or word unsigned 
IDIV Integer divide byte or word 
AAD ASCII adjust for division 
CBW Convert byte to word 
CWD Convert word to doubleword 

Signed binary numbers (integers) may be 8 or 16 
bits long. The high-order (leftmost) bit is interpreted 
as the number's sign: 0 = positive and 1 = negative. 
Negative numbers are represented in standard two's 
complement notation. Since the high-order bit is 
used as a sign, the range of an 8-bit integer is -128 
through + 127; 16-bit integers may range from 
- 32,768 through +32,767. The value of zero has a 

positive sign. Multiplication and division operations 
are provided for signed binary numbers. Addition 
and subtraction are performed with the unsigned 
binary instructions. Conditional jump instructions, 
as well as .an "interr\lpt on overflow" instruction, 
can be used following an unsigned operation on an 
integer to detect overflow into the sign bit. 

Packed decimal numbers are stored as unsigned 
byte quantities. The byte is treated as having one 
decimal digit in each half-byte (nibble); the digit in 
the high-order half-byte is the most significant. 
Hexadecimal values 0-9 are valid in each half-byte, 
and the range of a packed decimal number is 0-99. 
Addition and subtraction are performed in two 
steps. First an unsigned binary instruction is used to 
produce an intermediate result in register AL. Then 
an adjustment operation is performed which 
changes the intermediate value in AL to a final cor­
rect packed decimal result. Multiplication and divi­
sion adjustment are not available for packed decimal 
numbers. 

Unpacked decimal numbers are stored as unsigned 
byte quantities. The magnitude of the number is 
determined from the low-order half-byte. Hexadeci­
mal values 0-9 are valid and are interpreted as deci­
mal numbers. The high-order half-byte must be 
zero for multiplication and division; it may contain 
any value for addition and subtraction. Arithmetic 
operations on unpacked decimal numbers are per­
formed in two steps. The unsigned binary addition, 
subtraction and multiplication operations are used to 
produce an intermediate result in register AL. An 
adjustment instruction then changes the value in AL 
to a final correct unpacked decimal number. Division 
is performed similarly, except that the adjustment is 
carried out on the numerator operand in register AL 
first, and then a following unsigned binary division 
instruction produces a correct result. 

Table 3·6 Arithmetic Interpretation of a·Bit Numbers 

HEX BIT PATTERN 
UNSIGNED SIGNED UNPACKED PACKED 

BINARY BINARY DECIMAL DECIMAL 

07 o 0 0 0 0 1 1 1 7 +7 7 7 

89 10001001 137 -119 Invalid 89 

C5 11000101 197 -59 Invalid Invalid 
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Unpacked decimal numbers are similar to the ASCII 
character representations of the digits 0-9. Note, 
however, that the high-order half-byte of an ASCII 
numeral is always 3H. Unpacked decimal arithmetic 
may be performed on ASCII numeric characters 
under the following conditions: 

• the high-order half-byte of an ASCII numeral 
must be set to OH prior to multiplication or 
division. 

• unpacked decimal arithmetic leaves the high­
order half-byte set to OH; it must be set to 3H 
to produce a valid ASCII numeral. 

ARITHMETIC INSTRUCTIONS AND FLAGS 

Arithmetic instructions post certain characteristics 
of the result of the operation to six flags. Most of 
these flags can be tested by following the arithmetic 
instruc~ion with a conditional jump instruction, and 
the INTO (interrupt on overflow) instruction may 
also be used. The various instructions affect the flags 
differently, as explained in the instruction 
descriptions. However, they follow these general 
rules: 

• CF (carry flag): If an addition results in a 
carry out of the high-order bit of the result, 
then CF is set; otherwise CF is cleared. If a 
subtraction results in a borrow into the high­
order bit of the result, then CF is set; other­
wise CF is cleared. Note that a signed carry is 
indicated by CF = OF (overflow flag). CF 
can be used to detect an unsigned overflow. 
Two instructions, ADC (add with carry) and 
SBB (subtract with borrow), incorporate the 
carry flag in their operations and can be used 
to perform multibyte (e.g., 32-bit, 64-bit) ad­
dition and subtraction. 

• AF (auxiliary carry flag): If an addition re­
sults in a carry out of the low-order half-byte 
of the result, then AF is set; otherwise AF is 
cleared. If a subtraction results in a borrow 
into the low-order half-byte of the result, 
then AF is set; otherwise AF is cleared. The 
auxiliary carry flag is provided for the decimal 
adjust instructions and ordinarily is not used 
for any other purpose. 

• SF (sign flag): Arithmetic and logical in­
structions set the sign flag equal to the high­
order bit (bit 7 or 15) of the result. For signed 

binary numbers, the sign flag will be 0 for 
positive results and 1 for negative results (so 
long as overflow does not occur). A condi­
tional jump instruction can be used following 
addition or subtraction to alter the flow of the 
program depending on the sign of the result. 
Programs performing unsigned operations 
typically ignore SF since the high-order bit of 
the result is interpreted as a digit rather than a 
sign. 

• ZF (zero flag): If the result of an arithmetic 
or logical operation is zero, then ZF is set; 
otherwise ZF is cleared. A conditional jump 
instruction can be used to alter the flow of the 
program if the result is or is not zero. 

• PF (parity flag): If the low-order eight bits 
of an arithmetic or logical result contain an 
even number of 1- bits, then the parity flag is 
set; otherwise it is cleared. PF is provided for 
8080/8085 compatibility. It can also be used 
to check ASCII characters for correct parity. 

• OF (overflow flag): If the result of an opera­
tion is too large a positiye number, or too 
small a negative number (0 fit in the destina­
tion operand (excluding the sign bit), then 
OF is set; otherwise OF is cleared. OF thus in­
dicates signed arithmetic overflow. It can be 
tested with a conditional jump or the INTO 
(interrupt on overflow) instruction. OF may 
be ignored when performing unsigned 
arithmetic. OF is set if the operation results in 
a carry into the high-order bit of the result 
but not a carry out of the high-order bit, or 
vice versa; otherwise OF is cleared. 

ADDITION 

ADD destination, source 

The sum of two operands, which may be bytes or 
words, replaces the destination operand. Both oper­
ands may be signed or unsigned binary numbers 
(see AAA and DAA). ADD updates AF, CF, OF, 
PF, SF and ZF. 

ADC destination, source 

ADC (add with carry) sums the operands, which 
may be bytes or words, adds one if CF is set and re­
places the destination operand with the result. Both 
operands may be signed or unsigned binary numbers 
(see AAA and DAA). ADC updates AF, CF, OF, 
PF, SF and ZF. Since ADC incorporates a carry 
from a previous operation, it can be used to write 
routines to add numbers longer than 16 bits. 
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INC destination 

INC (increment) adds one to the destination 
operand. The operand may be a byte or a word and 
is treated as an unsigned binary number (see AAA 
and DAA). INC updates AF, OF, PF, SF and ZF; it 
does not effect CF. 

AAA 

AAA (ASCII adjust for addition) changes the con­
tents of register AL to a valid unpacked decimal 
number; the high-order half-byte is zeroed. AAA 
updates AF and CF; the contents of OF, PF, SF and 
ZF is undefined following execution of AAA. 

DAA 

DAA (decimal adjust for addition) corrects the 
result of previously adding two valid packed decimal 
operands (the destination operand must have been 
register AL). DAA changes the contents of AL to a 
pair of valid packed decimal digits. It updates AF, 
CF, PF, SF and ZF; the contents of OF is undefined 
following execution ofDAA. 

SUBTRACTION 

SUB destination, source 

The source operand is subtracted from the destina­
tion operand, and the result replaces the destination 
operand. The operands may be signed or unsigned 
binary numbers (see AAS and DAS). SUB updates 
AF, CF, OF, PF, SF and ZF. 

SBB destination, source 

SBB (subtract with borrow) subtracts the source 
from the destination, subtracts one if CF is set, and 
returns the result to the destination operand. Both 
operands may be bytes or words. Both operands may 
be signed or unsigned binary numbers (see AAS 
and DAS). SBB updates AF, CF, OF, PF, SF and 
ZF. Since it incorporates a borrow from a previous 
operation, SBB may be used to write routines that 
subtract numbers longer than 16 bits. 

DEC destination 

DEC (decrement) subtracts one from the 
destination, which may be a byte or a word. DEC up­
dates AF, OF, PF, SF and ZF; it does not affect CF. 

NEG destination 

NEG (negate) subtracts the destination operand, 
which may be a byte or a word, from 0 and returns 
the result to the destination. This forms the two's 
complement of the number, effectively reversing 
the sign of an integer. If the operand is zero, its sign 
is not changed. Attempting to negate a byte contain­
ing -128 or a word containing - 32,768 causes no 
change to the operand and sets OF. NEG updates 
AF, CF, OF, PF, SF and ZF. CF is always set except 
when the operand is zero, in which case it is cleared. 

CMP destination, source 

3-25 

CMP (compare) subtracts the source from the 
destination, which may be bytes or words, but does 
not return the result. The operands are unchanged, 
but the flags are updated and can be tested by a sub­
sequent conditional jump instruction. CMP updates 
AF, CF, OF, PF, SF and ZF. The comparison re­
flected in the flags is that of the destination to the 
source. If a CMP instruction is followed by a JG 
(jump if greater) instruction, for example, the jump 
is taken if the destination operand is greater than the 
source operand. 

AAS 

AAS (ASCII adjust for subtraction) corrects the 
result of a previous subtraction of two valid un­
packed decimal operands (the destination operand 
must have been specified as register AL). AAS 
changes the contents of AL to a valid unpacked deci­
mal number; the high-order half-byte is zeroed. 
AAS updates AF and CF; the contents of OF, PF, 
SF and ZF is undefined following execution of AAS. 

DAS 

DAS (decimal adjust for subtraction) corrects the re­
sults of a previous subtraction of two valid packed 
decimal operands (the destination operand must 
have been specified as register AL). DAS changes 
the contents of AL to a pair of valid packed decimal 
digits. DAS updates AF, CF, PF, SF and ZF; the 
contents of OF is undefined following execution of 
DAS. 

MULTIPLICATION 

MUL source 

MUL (multiply) performs an unsigned multiplica­
tion of the source operand and the accumulator. If 
the source is a byte, then it is multiplied by register 
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AL, and the double-length result is returned in AH 
and AL. If the source operand is a word, then it is 
multiplied by register AX, and the double-length 
result is returned in registers DX and AX. The oper­
ands are treated as unsigned binary numbers (see 
AAM). If the upper half of the results (AH for byte 
source, DX for word source) is nonzero, CF and OF 
are set; otherwise they are cleared. When CF and 
OF are set, they indicate that AH or DX contains sig­
nificant digits of the result. The contents of AF, PF, 
SF and ZF is undefined following execution ofMUL. 

IMUL source 

IMUL (integer multiply) performs a signed multipli­
cation of the source operand and the accumulator. If 
the source is a byte, then it is multiplied by register 
AL, and the double-length result is returned in regis­
ter AH and AL. If the source is a word, then it is 
multiplied by register AX, and the double-length 
result is returned in registers DX and AX. If the 
upper half of the result (AH for byte source, DX for 
word source) is not the sign extension of the lower 
half of the result, CF and OF are set; otherwise they 
are cleared. When CF and OF are set, they indicate 
that AH or DX contains significant digits of the 
result. The content of AF, PF, SF and ZF is unde­
fined following execution ofiMUL. 

IMUL destination-register, source, immediate 
(186,188 only) 

The IMUL (integer immediate multiply, signed) in­
struction allows a value to be multiplied by an im­
mediate value. This value may be a byte or word; if 
iUs a byte, it will be sign extended to 16 bits. When 
this instruction is used, only the lower 16 bits of the 
result will be saved. The result must always be 
placed in one of the general purpose registers. The 
two operands are the immediate value, and the data 
at an effective address (which may be the same regis­
ter in which the result will be placed, another 
register, or a memory location). This instruction re­
quires three arguments: the immediate value, the 
effective address of the second operand, and the 
register in which the result is to be placed. 

AAM 

AAM (ASCII adjust for multiply) corrects the result 
of a previous multiplication of two valid unpacked 
decimal operands. A valid 2-digit unpacked decimal 
number is derived from the content of AH and AL 
and is returned to AH and AL. The high-order half­
bytes of the multiplied operands must have been OH 
for AAM to produce a correct result. AAM updates 
PF, SF and ZF; the content of AF, CF and OF is un­
defined following execution of AAM. 

DIVISION 

DIVsource 

DIV (divide) performs an unsigned division of the 
accumulator (and its extension) by the source 
operand. If the source operand is a byte, it is divided 
into the double-length dividend assumed to be in 
register AH and AL. The single-length quotient is re­
turned in AL, and the single-length remainder in 
AH. If the source operand is a word, it is divided 
into the double-length dividend in registers DX and 
AX. The single-length quotient is returned in AX, 
and the single-length remainder is returned in DX. 
If the quotient exceeds the capacity of its destination 
register (FFH for byte source, OFFFFH for word 
source), as when division by zero is attempted, a 
type 0 interrupt is generated, and the quotient and 
the remainder are undefined. Nonintegral quotients 
are truncated to integers. The content of AF, CF, 
OF, PF, SF and ZF is undefined following execution 
ofDIV. 

IDIV source 

IDIV (integer divide) performs a signed division of 
the accumulator (and its extension) by the source 
operand. If the source operand is a byte, it is divided 
into the double-length dividend assumed to be in 
registers AH and AL. The single-length quotient is 
returned in AL, and the single-length remainder is 
returned in AH. For byte integer division,the maxi­
mum positive quotient is + 127 (7FH) and the mini­
mum negative quotient is -127 (81 H). If the source 
operand is a word, it is divided into the double­
length dividend in registers DX and AX (the high­
order 16 bits are in DX and the low-order 16 bits in 
AX). The single-length quotient is returned in AX, 
and the the single-length remainder is returned in 
DX. For word integer division, the maximum posi­
tive quotient is + 32,767 (7FFFH) and the minimum 
negative quotient is -32,767 (8001H). If the quo­
tient is positive and exceeds the maximum, or is 
negative and is less then the minimum, the quotient 
and the remainder are undefined, and a type 0 inter­
rupt is generated. In particular, this occurs if division 
by 0 is attempted. N onintegral quotients are truncat­
ed (toward 0) to integers, and the remainder has the 
same sign as the dividend. The content of AF, CF, 
OF, PF, SF and ZF is undefined following execution 
ofIDIV. 

AAD 

AAD (ASCII adjust for division) modifies the 
numerator in AL before dividing two valid unpacked 
decimal operands so that the quotient produced by 
the division will be a valid unpacked decimal 
number. AH must be zero for the subsequent DIV 
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to produce the correct result. The quotient is re­
turned in AL, and the remainder is returned in AH; 
both high-order half-bytes are zeroed. AAD updates 
PF, SF and ZF; the content of AF, CF and OF is un­
defined following execution of AAD. 

CBW 

CBW (convert byte to word) extends the sign of the 
byte in register AL throughout register AH. CBW 
does not affect any flags. CBW can be used to pro­
duce a double-length (word) dividend from a byte 
prior to performing byte division. 

CWD 

CWD (convert word to doubleword) extends the 
sign of the word in register AX throughout register 
DX. CWD does not affect any flags. CWD can be 
used to produce a double-length (doubleword) divi­
dend from a word prior to performing word division. 

Bit Manipulation Instructions 

Three groups of instructions (Table 3-7) are availa­
ble for manipulating bits within both bytes and 
words: logical, shift and rotates. 

Table 3-7 Bit Manipulation Instructions 

LOGICALS 

NOT "Not" byte or word 
AND "And" byte or word 
OR "Inclusive or" byte or word 
XOR "Exclusive or" byte or word 
TEST "Test" byte or word 

SHIFTS 

SHLISAL Shift logical I arithmetic left 
byte or word 

SHR Shift logical right byta or word 
SAR Shift arithmetic right byte or 

word 

ROTATES 

ROL Rotate left byte or word 
ROR Rotate right byte or word 
RCL Rotate through carry left byte 

or word 
RCR Rotate through carry right byte 

or word 

LOGICAL 

The logical instructions include the boolean opera­
tors "not," "and," "inclusive Of," and "exclusive 
or," plus a TEST instruction that sets the flags, but 
does not alter either of its operands. 

AND, OR, XOR and TEST affect the flags as 
follows: 

The overflow (OF) and carry (CF) flags are always 
cleared by logical instructions, and the contents of 
the auxiliary carry (AF) flag is always undefined fol­
lowing execution of a logical instruction. 

The sign (SF), zero (ZF) and parity (PF) flags are 
always posted to reflect the result of the operation 
and can be tested by conditional jump instructions. 
The interpretation of these flags is the same as for 
arithmetic instructions. SF is set if the result is nega­
tive (high-order bit is 1), and is cleared if the result 
is positive (high-order bit is 0). ZF is set if the result 
is zero, cleared otherwise. PF is set if the lower 
8-bits of the result contains an even number of 
I-bits (has even parity) and is cleared if the number 
ofl-bits is odd (the result has odd parity). 

Note that NOT has no effect on the flags. 

NOT destination 

NOT inverts the bits (forms the one's complement) 
of the byte or word operand. 

AND destination, source 

AND performs the logical "and" of the two oper­
ands (byte or word) and returns the result to the 
destination operand. A bit in the result is set if both 
corresponding bits of the original operands are set; 
otherwise the bit is cleared. 

OR destination, source 

OR performs the logical "inclusive or" of the two 
operands (byte or word) and returns the result to 
the destination operand. A bit in the result is set if 
either or both corresponding bits in the original oper­
ands are set; otherwise the result bit is cleared. 

XOR destination, source 

XOR (exclusive or) performs the logical "exclusive 
or" of the two operands and returns the result to the 
destination operand. A bit in the result is set if the 
corresponding bits of the original operands contain 
opposite values (one is set, the other is cleared); 
otherwise the result bit is cleared. 
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TEST destination, source 

TEST performs the logical "and" of the two oper­
ands (byte or word), updates the flags, but does not 
return the result, i.e., neither operand is changed. If 
a TEST instruction is followed by a JNZ (jump if not 
zero) instruction, the jump will be taken if there are 
any corresponding I-bits in both operands. 

SHIFTS 

The bits in bytes and words may be shifted arithmeti­
cally or logically. On the 8086,88 up to 255 shifts 
may be performed, according to the value of the 
count operand coded in the instruction. The count 
may be specified as the constant 1, or as register CL, 
allowing the shift count to be a variable supplied at 
execution time. In addition, the 80186,188 allow the 
number of shifts to be specified as an immediate 
value in the instruction. This eliminates the need for 
a MOV immediate to the CL register if the number 
of shifts required is known at assembly time. Before 
the 80186,188 perform a shift (or rotate) they AND 
the value to be shifted with IFH, thus limiting the 
number of shifts occurring to 32 bits. 

Arithmetic shifts may be used to multiply and divide 
binary numbers by powers of two (see note in de­
scription of SAR). Logical shifts can be used to iso­
late bits in bytes or words. 

Shift instructions affect the flags as follows: 

AF is always undefined following a shift operation. 
PF, SF and ZF are updated normally, as in the logical 
instructions. CF always contains the value of the last 
bit shifted out of the destination operand. The con­
tents of OF is always undefined following a multibit 
shift. In a single-bit shift,OF is set if the value of the 
high-order (sign) bit was changed by the operation; 
if the sign bit retains its original value, OF is cleared. 

SHLISAL destination, count 

SHL and SAL. (shift logical left and shift arithmetic 
left) perform the same operation and are physically 
the same instruction. The destination byte or word is 
shifted left by the number of bits specified in the 
count operand. Zeroes are shifted in on the right. If 
the sign bit retains its original value, then OF is 
cleared. 

SHR destination, source 

SHR (shift logical right) shifts the bits in the destina­
tion operand (byte or word) to the right by. the 
number of bits specified in the count operand. Zeros 
are shifted in on the left. If the sign bit retains its 
original value, then OF is cleared. 

SAR destination, count 

SAR (shift arithmetic right) shifts the bits in the 
destination operand (byte or word) to the right by 
the number of bits specified in the count operand. 
Bits equal to the original high-order (sign) bit are 
shifted in on the left, preserving the sign of the origi­
nal value. Note that SAR does not produce the same 
result as the dividend of an "equivalent" IDIV in­
struction if the destination operand is negative and 
I-bits are shifted out. For example, shifting - 5 right 
by one bit yields - 3, while integer division of - 5 by 
2 yields - 2. The difference in the instructions is that 
IDIV truncates all numbers toward zero, while SAR 
truncates positive numbers toward zero and negative 
num bers toward negative infinity. 

ROTATES 

Bits in bytes and words may also be rotated. Bits 
rotated out of an operand are not lost as in a shift, 
but are "circled" back into the other "end" of the 
operand. As in the shift instructions, the number of 
bits to be rotated is taken from the count operand, 
which may specify either a constant 1, or the CL 
register. The carry flag may act as an extension of 
the operand in two of the rotate instructions, allow­
ing a bit to be isolated in CF and then tested by a JC 
(jump if carry) or JNC (jump if not carry) 
instruction. 

Rotates affect only the carry and overflow flags. CF 
always contains the value of the last bit rotated out. 
On multibit rotates, the value of OF is Always 
undefined. In single-bit rotates, OF is set if the oper­
ation changes the high-order (sign) bit of the desti­
nation operand. If the sign bit retains its original 
value, OF is cleared. 

. ROL destination, count 

ROL (rotate left) rotates the destination byte or 
word by the number of bits specified in the count 
operand. 

ROR destination, count 

ROR (rotate right) operates similar to ROL except 
that the bits.in the destination byte or word are rotat­
ed right instead ofleft. 

RCL destination, count 

RCL (rotate through carry left) rotates the bits in 
the byte or word destination operand to the left by 
the number of bits specified in the count operand. 
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The carry flag (CF) is treated as "part of' the desti­
nation operand; that is, its value is rotated into the 
low-order bit of the destination, and itself is replaced 
by the high-order bit of the destination. 

RCR destination, count 

RCR (rotate through carry right) operates exactly 
like RCL except that the bits are rotated right instead 
of left. 

Immediate Shifts/Rotates 

All the shift/rotate instructions of the 80186,188 
allow the number of bits shifted to be specified by an 
immediate value. These instructions require two 
operands: the operand to be shifted (which may be a 
register or a memory location specified by any of the 
addressing modes) and the number of bits to be 
shifted. 

String Instructions 

The basic string instructions, also called primitives, 
operate on strings of bytes or words, one element 
(byte or word) at a time. Strings of up to 128K bytes 
may be manipulated with these instructions. Instruc­
tions are available to move, compare and scan for a 
value, as well as for moving string elements to and 
from the accumulator, and, in the case of the 
80186,188, to and from I/O ports (see Table 3-8). 
These basic operations may be preceded by a special 
one-byte prefix that causes the instruction to be 
repeated by the hardware, processing long strings 
much faster than would be possible with a software 
loop. The repetitions can be terminated by a variety 
of conditions, and a repeated operation may be inter­
rupted and resumed. 

The string instructions operate similarly in many 
respects; the common characteristics are covered 
here and in Table 3-9 and in Figure 3-29, rather than 
in the descriptions of the individual instructions. A 
string instruction may have a source operand, a 
destination operand, or both. The hardware assumes 
that a source string resides in the current data 
segment; a segment prefix byte may. be used to over­
ride this assumption. A destination string must be in 
the current extra segment. The assembler checks 
the attributes of the operands to determine if the ele­
ments of the strings are bytes or words. The assem­
bler does not, however, use the operand names to 
address the strings. Rather, the contents of register 

Table 3-8 String Instructions 

REP Repeat 

REPE/REPZ Repeat while equal/zero 

REPNE/REPNZ Repeat while not 
equal/not zero 

MOVS Move byte or word string 

MOVSB/MOVSW Move byte or word string 

CMPS Compare byte or word 
string 

INS Move byte or word 
string from I/O port 

OUTS Move byte or word 
string to I/O port 

SCAS Scan byte or word string 

LODS Load byte or word string 

STOS Store byte or word string 

SI (source index) is used as an offset to address the 
current element of the source string, and the con­
tents of register D I (destination index) is taken as 
the offset of the current destination string element. 
These registers must be initialized to point to the 
source/destination strings before executing the 
string instruction; the LDS, LES and LEA instruc­
tions are useful in this regard. 

3-29 

SI 

DI 

DX 

CX 

Tl;lble 3-9 String Instruction 
Register and Flag Use 

Index (offset) for source string 

Index (offset) for destination 
string 

Port Address 

Repetition counter 

ALiAX Scan value 
Destination for LODS 
Source for STOS 

DF 

ZF 

0= auto-increment SI, DI 
1 = auto-decrement SI, DI 

Scan/compare terminator 
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PRESENT 

r-----l 
I INST~~~TTION I 
L _____ J 

! 
/ 

{
SI/DI,CX 
AND DFWOULD 
TYPICALLY BE 
INITIALIZED HERE 

STRING OF DELTA 

.' BYTE 0 1 
BYTE 1 -1 

WORD 0 2 
WORD 1 -2 

PREFIX Z 

REPE 1 
REPZ 1 

REPNE 0 
REPNZ 0 

Figure 3-29 String Operation Flow 
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The string instructions automatically update SI 
and/or DI in anticipation of processing the next 
string element. The setting of DF (direction flag) 
determines whether the index registers are auto­
incremented (DF = 0) or auto-decremented 
(DF = 1). If byte strings are being processed, SI 
and/or DI is adjusted by 1. The adjustment is 2 for 
word strings. 

If a repeat prefix has been coded, then register CX 
(count register) is decremented by I after each repe­
tition of the string instruction. CX must be initialized 
to the n urn ber of repetitions desired before the 
string instruction is executed. If CX is 0, the string 
instruction is not executed, and control goes to the 
following instruction. 

Section 3.8 contains examples illustrating the use of 
string instructions. 

REP/REPE/REPZ/REPNE/REPNZ 

Repeat, Repeat While Equal, Repeat While Zero, 
Repeat While Not Equal, and Repeat While Not 
Zero are five mnemonics for three forms of the 
prefix byte that controls repetition of a subsequent 
string instruction. The different mnemonics are 
provided to improve program clarity. The repeat pre­
fixes do not affect the flags. 

REP is used in conjunction with the MOVS (move 
string), the STOS (store string), the INS (in string) 
and OUTS (out string) instructions and is interpret­
ed as "repeat while not end-of-string" (CX not 0). 
REPE and REPZ operate identically and are physical­
ly the same prefix byte as REP. These instructions 
are used with the CMPS (compare string) and SCAS 
(scan string) instructions and require ZF (posted by 
these instructions) to be set before initiating the 
next repetition. REPNE and REPNZ are two 
mnemonics for the same prefix byte. These instruc­
tions function the same as REPE and REPZ except 
that the zero flag must be cleared or the repetition is 
terminated. Note that ZF does not need to be initial­
ized before executing the repeated string instruction. 

Repeated string sequences are interruptable; the pro­
cessor recognizes the interrupt before processing the 
next string element. System interrupt processing is 
not affected in any way. Upon return from the 
interrupt, the repeated operation is resumed from 
the point of interruption. Note, however, that on the 
8086,88 execution does not resume properly if a 
second or third prefix (i.e., segment override or 
LOCK) has been specified in addition to any of the 
repeat prefixes. The processor "remembers" only 
one prefix in effect at the time of the interrupt, i.e., 
the prefix that immediately precedes the string 

instruction; after returning from the interrupt, pro­
cessing resumes at this point, but any additional pre­
fixes specified are not in effect. On the 80186,188, 
however, interrupt string instructions resume ex­
ecuting from the first prefix of the repeated 
instruction; thus, interrupted string move instruc­
tions with multiple prefixes will resume execution 
properly. 

If more than one prefix must be used with a string in­
struction executing on the 8086,88, interrupts may 
be disabled for the duration of the repeated 
execution. However, this will not prevent a non­
maskable interrupt from being recognized. Also, the 
time that the system is unable to respond to inter­
rupts may be unacceptable if long strings are being 
processed. 

Repeated string instructions (MOVS, INS, OUTS) 
operate at full bus bandwidth on the 80186,188, al­
lowing very high speed memory-to-memory and 
memory-to-I/O transfers by the CPU. 

MOVS destination-string, source-string 

MOVS (move string) transfers a byte or a word 
from the source string (addressed by SI) to the desti­
nation string (addressed by DI) and updates SI and 
DI to point to the next string element. When used in 
conjunction with REP, MOVS performs a memory­
to-memory block transfer. 

MOVSB/MOVSW 

These are alternate mnemonics for the move string 
instruction. These mnemonics are coded without 
operands. They tell the assembler explicitly that a 
byte string (MOVSB) or a word string MOVWS) is 
to be moved (when MOVS is coded, the assembler 
determines the string type from the attribute of the 
operands). These mnemonics are useful when the 
assembler cannot determine the attributes of a 
string, e.g., when a section of code is being moved. 

CMPS destination-string, source-string 

CMPS (compare string) subtracts the destination 
byte or word (addressed by DO from the source 
byte or word (addressed by SO. CMPS affects the 
flags but does not alter either operand, updates SI 
and DI to point to the next string element and up­
dates AF, CF, OF, PF, SF and ZF to reflect the rela­
tionship of the destination element to the source 
element. For example, if a JG (jump if greater) in­
struction fonows CMPS, the jump is taken if the 
destination element is greater than the source 
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element. If the CMPS is prefixed with REPE or 
REPZ, the operation is interpreted as "compare 
while not end-of-string (CX not zero) and strings 
are equal (ZF = 1)." If CMPS is preceded by REPNE 
or REPNZ, the operation is interpreted as "compare 
while not end-of-string (CX not zero) and strings 
are not equal (ZF=O)." Thus, CMPS can be used to 
find matching or differing string elements. 

seAS destination-string 

SCAS (scan string) subtracts the destination string 
element (byte or word) addressed by DI from the 
contents of AL (byte string) or AX (word string) 
and updates the flags, but does not alter the destina­
tion string or the accumulator. SCAS also updates 
DI to point to the next string element and AF, CF, 
OF, PF, SF and ZF to reflect the relationship of the 
scan value in ALI AX to the string element. If SCAS 
is prefixed with REPE or REPZ, the operation is in­
terpreted as "scan while not end-of string (CX not 
0) and string-element = scan-value (ZF=1)." This 
form may be used to scan for departure from a given 
value. If SCAS is prefixed with REPNE or REPNZ, 
the operation is interpreted as "scan while not end­
of-string (CX not 0) and string-element is not equal 
to scan-value (ZF=O)." This may be used to locate 
a value in a string. 

LODS source-string 

LODS (load string) transfers the byte or word string 
element addressed by SI to register AL or AX, and 
updates SI to point to the next element in the string. 
This instruction is not ordinarily repeated since the 
accumulator would be overwritten by each 
repetition, and only the last element would be 
retained. However, LaDS is very useful in software 
loops as part of a more complex string function built 
up from string primitives and other instructions. 

STOS destination-string 

STOS (store string) transfers a byte or word from 
register AL or AX to the string element addressed 
by DI and updates DI to point to the next location in 
the string. As a repeated operation, STOS provides a 
convenient way to initialize a string to a constant 
value (e.g., to blank out a print line). 

INS source-string, port (186,88 only) 
OUTS port, destination-string 

INS and OUTS (in string, out string) instructions 
perform block input/output. Their operation is simi­
lar to the string move instructions. In both the INS 

and OUTS instructions, the port address is placed in 
the DX register. For INS, the memory address is 
placed in the DI register; for OUTS, the memory ad­
dress is placed in the SI register. In the case of INS, 
the segment register used is the ES register, and this 
may not be overridden. In the case of OUTS, the 
segment register used is the DS register; this may be 
overridden with a segment override instruction. In 
both cases, after the transfer has taken place (in two 
subsequent bus cycles), the pointer register is incre­
mented or decremented (depending on the state of 
the DF flag) by an appropriate amount (1 for byte, 2 
for word transfers). 

Control Transfer Instructions 

The sequence of instructions executing in an 
8086,88 or 80186,188 program is determined by the 
contents of the code segment register (CS) and the 
instruction pointer OP). The CS register contains 
the base address of the current code segment, the 
64K portion of memory from which instructions are 
presently being fetched. The IP is used as an offset 
from the beginning of the code segment; the combi­
nation of CS and IP points to the memory location 
from which the next instruction is to be fetched. 
(Under most operating conditions, the next instruc­
tion to be executed has already been fetched from 
memory and is waiting in the CPU instruction 
queue.) The program transfer instructions operate 
on the instruction pointer and on the CS register; 
changing the contents of these causes normal 
sequential execution to be altered. When a program 
transfer occurs, the queue no longer contains the 
correct instruction, and the BIU obtains the next in­
struction from memory using the new IP and CS 
values, passes the instruction directly to the EU, and 
then begins refilling the queue from the new 
location. 

Four groups of program transfers are available (see 
Table 3-10): unconditional transfers, conditional 
transfers, iteration control instructions and 
interrupt-related instructions. Only the interrupt­
related instructions affect any CPU flags. However, 
the execution of many of the program transfer in­
structions is affected by the states of the flags. 

UNCONDITIONAL TRANSFERS 

The unconditional transfer instructions may transfer 
control to a target instruction within the current 
code segment (intrasegment transfer) or to a dif­
ferent code segment (intersegment transfer). (The 
ASM-86 assembler terms an intr;lsegment target 
NEAR and an intersegment target FAR.) The trans­
fer is made unconditionally any time the instruction 
is executed. 
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Table 3-1 0 Program Transfer Instructions 

UNCONDITIONAL TRANSFERS 

CALL Call procedure 
RET Return from procedure 
JMP Jump 

CONDITIONAL TRANSFERS 

JA/JNBE Jump if above/not below 
nor equal 

JAE/JNB Jump if above or 
equal/not below 

JB/JNAE Jump if below / not above 
nor equal 

JBE/JNA Jump if below or 
equal/not above 

JC Jump if carry 
JE/JZ Jump if equal/zero 
JG/JNLE Jump if greater/ not less 

nor equal 
JGE/JNL Jump if greater or 

equal/not less 
JLlJNGE Jump if less/ not greater 

nor equal 
JLE/JNG Jump if less or equal/ not 

greater 
JNC Jump if not carry 
JNE/JNZ Jump if not equal/not 

zero 
JNO Jump if not overflow 
JNP/JPO Jump if not parity / parity 

odd 
JNS Jump if not sign 
JO Jump if overflow 
JP/JPE Jump if parity /parity 

even 
JS Jump if sign 

ITERATION CONTROLS 

LOOP Loop 
LOOPE/LOOPZ Loop if equal/zero 
LOOPNE/ LOOPNZ Loop if not equal/not 

zero 
JCXZ Jump if register CX = 0 

INTERRUPTS 

INT Interrupt 
INTO Interrupt if overflow 
IRET Interrupt return 

CALL procedure-name 

CALL activates an out-of-line procedure, saving in­
formation on the stack to permit a RET (return) in­
struction in the procedure to transfer control back to 
the instruction following the CALL. The assembler 
generates a different type of CALL instruction 
depending on whether the programmer has defined 
the procedure name as NEAR or FAR. For control 
to return properly, the type of CALL instruction 
must match the type of RET instruction that exits 
from the procedure. (The potential for mismatch 
exists if the procedure and the CALL are contained 
in separately assembled programs.) Different forms 
of the CALL instruction allow the address of the 
target procedure to be obtained from the instruction 
itself (direct CALL) or from a memory location or 
register referenced by the instruction (indirect 
CALL). 

In the following descriptions, bear in mind that the 
processor automatically adjusts IP to point to the 
next instruction to be executed before saving it on 
the stack. 

For an intrasegment direct CALL, SP is decremented 
by two and IP is pushed onto the stack. The relative 
displacement (up to plus or minus 32K) of the target 
procedure from the CALL instruction is then added 
to the instruction pointer. This form of the CALL in­
struction is "self-relative" and is appropriate for 
position-independent (dynamically relocatable) rou­
tines in which the CALL and its target are in the 
same segment and are moved together. 

An intrasegment indirect CALL may be made 
through memory or through a register. SP is decre­
mented by two and IP is pushed onto the stack. The 
offset of the target procedure is obtained from the 
memory word or 16-bit general register referenced 
in the instruction and replaces IP. 

For an inter segment direct CALL, SP is decremented 
by two, and CS is pushed onto the stack. CS is re­
placed by the segment word contained in the 
instruction. SP again is decremented by two. IP is 
pushed onto the stack and is replaced by the offset 
word contained in the instruction. 

, 

For an inter segment indirect CALL (which may only 
be made through memory), SP is decremented by 
two, and CS is pushed onto the stack. CS is then re­
placed by the contents of the second word of the 
doubleword memory pointer referenced by the 
instruction. SP again is decremented by two, and IP 
is pushed onto the stack and is replaced by the con­
tents of the first word of the doubleword pointer 
referenced by the instruction. 
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RET optional-pop-value 

RET (return) transfers control from a procedure 
back to the instruction following the CALL that ac­
tivated the procedure. The assembler generates an 
intrasegment RET if the programmer has defined 
the procedure NEAR, or an inter segment RET if the 
procedure has been defined as FAR. RET pops the 
word at the top of the stack (pointed to by register 
SP) into the instruction pointer and increments SP 
by two. If RET is inter segment, the word at the new 
top of stack is popped into the CS register, and SP is 
again incremented by two. If an optional pop value 
has been specified, RET adds that value to SP. This 
feature may be used to discard parameters pushed 
onto the stack before the execution of the CALL 
instruction. 

JMP target 

JMP unconditionally transfers control to the target 
location. Unlike a CALL instruction, JMP does not 
save any information on the stack, and no return to 
the instruction following the JMP is expected. Like 
CALL, the address of the target operand may be ob­
tained from the instruction itself (direct JMP) or 
from memory or a register referenced by the instruc­
tion (indirect JMP). 

An intrasegment direct JMP changes the instruction 
pointer by adding the relative displacement of the 
target from the JMP instruction. If the assembler 
can determine that the target is within 127 bytes of 
the JMP, it automatically generates a two-byte form 
of this instruction called a SHORT JMP; otherwise, 
it generates a NEAR JMP that can address a target 
within plus or minus 32K. Intrasegment direct 
JUMPs are self-relative and are appropriate in 
position-independent (dynamically relocatable) rou­
tines in which the JMP and its target are in the same 
segment and are moved together. 

An intrasegment indirect JMP may be made either 
through memory or through a 16-bit general 
register. In the first case, the contents of the word 
referenced by the instruction replaces the instruction 
pointer. In the second case, the new IP value is 
taken from the register named in the instruction. 

An intersegment direct JMP replaces IP and CS with 
values contained in the instruction. 

An inter segment indirect JMP may be made only 
through memory. The first word of the doubleword 
pointer referenced by the instruction replaces IP, 
and the second word replaces CS. 

CONDITIONAL TRANSFERS 

The conditional transfer instructions are jumps that 
mayor may not transfer control depending on the 
state of the CPU flags at the time the instruction is 
executed. These instructions (see Table 3-11) each 
test a different combination of flags for a condition. 
If the condition is "true," then control is transferred 
to the target specified in the instruction. If the condi­
tion is "false," then control passes to the instruction 
that follows the conditional jump. All conditional 
jumps are SHORT, that is, the target must be in the 
current code segment and within -128 to + 127 
bytes of the first byte of the next instruction (JMP 
OOH jumps to the first byte of the next instruction). 
Since the jump is made by adding the relative dis­
placement of the target to the instruction pointer, all 
conditional jumps are self-relative and are appropri­
ate for position-independent routines. 

ITERATION CONTROL 

The iteration control instructions can be used to 
regulate the repetition of software loops. These in­
structions use the CX register as a counter. Like the 
conditional transfers, the iteration control instruc­
tions are self-relative and may only transfer to tar­
gets that are within -128 to + 127 bytes of 
themselves, i.e., they are SHORT transfers. 

LOOP short-label 

LOOP decrements CX by 1 and transfers control to 
the target operand if CX is not 0; otherwise the in­
struction following LOOP is executed. 

LOOP/LOOPNZ short-label 

LOOPE and LOOPZ (loop while equal and loop 
while zero) are different mnemonics for the same in­
struction (similar to the REPE and REPZ repeat 
prefixes). CX is decremented by 1, and control is 
transferred to the target operand if CX is not 0 and if 
ZF is set; otherwise the instruction following 
LOOPE/LOOPZ is executed. 

LOOPNE/LOOPNZ short-/abel 

LOOPNE/LOOPNZ (loop while not equal and loop 
while not zero) are also synonyms for the same 
instruction. CX is decremented by 1, and control is 
transferred to the target operand if CX is not 0 and if 
ZF is clear; otherwise the next sequential instruction 
is executed. 
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Table 3-11 Interpretation of Conditional Transfers 

MNEMONIC CONDITION TESTED "JUMP IF ,,' " 

JA/JNBE (CF OR ZF)=O above I not below nor equal 
JAE/JNB CF=O above or equall not below 
JB/JNAE CF=1 below I not above nor equal 
JBE/JNA (CF OR ZF)=1 below or equal I not above 
JC CF=1 carry 
JE/JZ ZF=1 equal/zero 
JG/JNLE ((SF XOR OF) OR ZF)=O greater/not less nor equal 
JGE/JNL (SF XOR OF)=O greater or equal/not less 
JLlJNGE (SF XOR OF)=1 lessl not.greater nor equal 
JLE/JNG ((SF XOR OF) OR ZF)=1 lessor equal I not greater 
JNC CF=O not carry 
JNE/JNZ ZF=O not equal I not zero 
JNO OF=O not overflow 
JNP/JPO PF=O not parity I parity odd 
JNS SF=O not sign 
JO OF=1 overflow 
JP/JPE PF=1 parity I parity equal 
JS SF=1 sign 

Note: "above" and "below" refer to the relationship of two unsigned values; 
"greater" and "less" refer to the relationship of two signed values. 

JCXZ short-label 

Jexz (jump if ex zero) transfers control to the 
target operand if ex is O. This instruction is usefuI"at 
the beginning of a loop to bypass the loop if ex has a 
zero value, i.e., to execute the loop zero times. 

INTERRUPT INSTRUCTIONS 

The interrupt instructions allow interrupt service 
routines to be activated by programs as well as by ex­
ternal hardware devices. The effect of software inter­
rupts is similar to hardware-initiated interrupts. 
However, the processor does not execute an inter. 
rupt acknowledge bus cycle if the interrupt originates 
in software or with an NMI (non-maskable 
interrupt) .The effect of the interrupt instructions on 
the flags is covered in the description of each 
instruction. 

INT interrupt-type 

INT (interrupt) activates the interrupt procedure 
specified by the interrupt-type operand. INT decre­
ments the stack pointer by two, pushes the flags 
onto the stack, and clears the trap (TF) and 
interrupt-enable (IF) flags to disable single-step and 
maskable interrupts. The flags are stored in the 
same format used by the PUSHF instruction. SP is 
decremented again by two, and the es register is 

pushed onto the stack. The address of the interrupt 
pointer is calculated by multiplying interrupt-type by 
four; the second word of the interrupt pointer re­
places es. SP again is decremented by two, and IP is 
pushed onto the stack and is replaced by the first 
word of the interrupt pointer. If interrupt-type = 3, 
the assembler generates a short (J byte) form of the 
instruction, known as the breakpoint interrupt. 

Software interrupts can be used as "supervisor 
calls," i.e., requests for service that the operating 
system could supply for an application program. A 
different interrupt-type can be used for each type of 
service that the operating system could supply for an 
application program. Software interrupts also may be 
used to check out interrupt service procedures writ­
ten for hardware-initiated interrupts. 

INTO 

INTO (interrupt on overflow) generates a software 
interrupt if the overflow flag (OF) is set; otherwise 
control proceeds to the following instruction without 
activating an interrupt procedure. INTO addresses 
the target interrupt procedure (its type is 4) through 
the interrupt pointer at location lOH; it dears the TF 
and IF flags and otherwise operates like INT. INTO 
may be written following an arithmetic or logical op­
eration to activate an interrupt procedure if overflow 
occurs. 
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IRET 

IRET (interrupt return) transfers control back to the 
point of interruption by popping IP, CS and the flags 
from the stack. IRET thus affects all flags by restor- BP 
ing them to previously saved values. IRET is used to 
exit .any interrupt procedure, whether activated by 
hardware or software. 

High-level Instructions 

ENTER 

The ENTER (enter procedure) instruction executes 
the calling sequence for a high-level language. It pro. 
vides for saving the current stack frame pointer 
(which is in the BP register), copying down stack 
frame pointers from procedures below the current 
call (to allow access to local variables in these 
procedures), and allocating space on the stack for 
the local variables of the. current procedure 
invocation. This instruction reqJlires two arguments: 
the size of the local variables (the displacement), 

OLDBP 

• 
OLD FRAME 

PTRS. 

CURRENT FRAME / 
PTR 

LOCAL 
VARIABLE 

AREA 
and the level of the procedure (which may be as SP 
great as 255). 

The algorithm for this instruction is: 

PUSHBP 
iflevel = 0 then 

BP:= SP; 

1* save the previous frame pointer *' 
else templ:= SP; 1* savecurrentframepointer*' 

temp2 : = level - 1; 
do while temp2 > 0 !* copy down previous level 

fraine *' 
BP ·=·BP - 2' 
puim [BPI; , 

!* pointers *' 
BP:,:" tempI; 
PUSHBP; 

SP:= SP - disp; 

!* put current level frame pointer "' 
!* in the save area *' 

'"create space on the stack for *' '* local variables *' 
Figure 3-30 shows the layout of the stack after this 
operation. 

LEAVE 

The LEAVE (leave procedure) instruction is the 
opposite of the ENTER instruction. This in~truction 
"cleans up" the procedure's stack .to prepare for re­
turning from the procedure. It deallocates all local or 
automatic variables, and. returns the stack registers 
(SP and BP) to. the same values they were immedi­
ately after the procedure invo.cation. As cal). be seen 
from the layout of the stack. left by the ENTER in­
struction (see Figure 3-~0), this involves moving 
the contents of theBP nigisier to'the SP register, 
and popping the old BP value off of the stack. 

Figure 3-30 Stack Layout 
After ENTER Instruction 

Note that neither the ENTER nor the LEAVE in­
structions save any of the 80186,188 general purpose 
registers. If they must be saved, this must be done in 
addition to the ENTER and LEAVE. Also, the 
LEAVE instruction does not perform a return from 
subroutine. If this is desired, the LEAVE instruction 
must be explicitly followed by the RET instruction; 

BOUND 

The BOUND (detect value out of range) instruction 
allows for array bounds checking in hardware. The 
calculated. array index is placed in one of the general 
purpose registers, and the upper and lower bounds 
of the array are placed in two consecutive memory 
locations. The instruction compare.s. the contents of 
the specified register against the memory location 
values, and if the register value is less. than the first 
memory location or greater than. the second 
memory location, a trap tYPe 5 is generated. The 
comparisons performed are signed comparisons. A 
register value equal. to either the UPPer or lower 
bound will not cause a trap'. Following a trap, the IP 
(which has been pushed on the stack) will point to 
the instruction following the BOUND instruction. 
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The instruction requires two arguments: the register 
in which the calculated array index is placed, and the 
effective address of the memory location containing 
the lower bound of the array (which can be specified 
by any of the 80186,188 memory addressing 
modes). The memory location containing the upper 
bound of the array must follow immediately the 
memory location containing the lower bound of the 
array, i.e., the address of the memory location con­
taining the upper bound of the array is the address of 
the lower bound location plus 2. 

Processor Control Instructions 

These instructions (see Table 3-12) allow programs 
to control various CPU functions. One group of in­
structions updates flags, and another group is used 
primarily for synchronizing the processor with exter­
nal events. A final instruction causes the CPU to do 
nothing. Except for the flag operations, none of the 
processor instructions affect the flags. 

Table 3·12 Processor Control Instructions 

FLAG OPERATIONS 

STC Set carry flag 
CLC Clear carry flag 
CMC Complement carry flag 
STO Set direction flag 
CLO Clear direction flag 
STI Set interrupt enable flag 
CLI Clear interrupt enable flag 

EXTERNAL SYNCHRONIZATION 

HLT Halt until interruptor reset 
WAIT Wait for TEST pin active 
ESC Escape to external processor 
LOCK Lock bus during next 

instruction 

NO OPERATION 

Nap No operation 

FLAG OPERATIONS 

CLC 

CLC (clear carry flag) zeroes the carry flag (CF) and 
affects no other flags. It (and CMC and STC) is 
useful in conjunction with the RCL and RCR 
instructions. 

CMC 

CMC (complement carry flag) "toggles" CF to its 
opposite state and affects no other flags. 

STC 

STC (set carry flag) sets CF to I and affects no other 
flags. 

CLO 

CLO (clear direction flag) zeroes OF causing the 
string instructions to auto-increment the SI and lor 
01 index registers. CLO does not affect any other 
flags. 

STO 

STO (set direction flag) sets OF to I causing the 
string instructions to auto-decrement the SI andlor 
01 index registers. STO does not affect any other 
flags. 

CLI 

CLI (clear interrupt-enable flag) zeroes IF. When 
the interrupt-enable flag is cleared, the processor 
does not recognize an external interrupt request that 
appears on the INTR line; in other words maskable 
interrupts are disabled. A non-maskable interrupt 
appearing on the NMI line; however, is honored, as 
is a software interrupt. CLI does not affect any other 
flags. 

STI 

STI (set interrupt-enable flag) sets IF to 1, enabling 
processor recognition of maskable interrupt requests 
appearing on the INTR line. Note, however, that a 
pending interrupt will not actually be recognized 
until the instruction following STI has executed. STI 
does not affect any other flags. 

EXTERNAL SYNCHRONIZATION 

HLT 

HLT (halt) causes the processor to enter the halt 
state. The processor leaves the halt state upon activa­
tion of the RESET line, upon receipt of a non­
maskable interrupt request on NMI, or, if interrupts 
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are enabled, upon receipt of a maskable interrupt re­
quest on INTR. HLT does not affect any flags. It 
may be used as an alternative to an endless software 
loop in situations where a prograrn must wait for an 
interrupt. 

WAIT 

WAIT causes the CPU to enter the wait state while 
its TEST line is not active. WAIT does not affect any 
flags. 

ESC external-opcode. source 

ESC (escape) provides a means for an external pro­
cessor to obtain an opcode and possibly a memory 
operand from the 8086 or 80186. The external 
opcode is a 6-bit immediate constant that the assem­
bler encodes in the machine instruction it builds. An 
external processor may monitor the system bus and 
capture this opcode when the ESC is fetched. Then, 
using the second byte of the opcode, the CPU per­
forms an operand access. If the source operand is a 
register, the processor does nothing. If the source 
operand is a memory variable, the processor obtains 
the operand from memory and discards it. An exter­
nal processor may capture the memory operand and 
the memory operand's 20-bit address when the pro­
cessor reads it from memory. 

LOCK 

LOCK isa one-byte prefix that causes the processors 
to assert their bus LOCK signals while the following 
instructions execute. LOCK does not affect any flags. 

NO OPERATION 

Nap 

Nap (no operation) causes the CPU to do nothing. 
Nap does not affect any flags, 

Instruction Operation Differences, 
8086,88 - 801 86,1 88 

There are a few instruction operation differences be­
tween the 8086,88 and 80186,188, most of which 
have been previously discussed in this' chapter and 
in Chapter 2. The following is a summary of these 
differences: 

UI\jDEFINED OPCODES 

When the opcodes 63H, 64H, 65H, 66H,67H, FlH, 
FEH XXUIXXXB and FFH XX111XXXB are 
executed, the 80186,188 .will execute an illegal in­
struction exception (interrupt type 6). The 8086,88 
wit! ignore theseopco.des. 

OFH OPCODE 

When the opcode OFH is encountered, the 8086;88 
will execute a POP CS; the 86186,188 will execute an 
illegal instruction exception. 

WORD WRITE AT OFFSET FFFFH 

When a word write is. performed at offset FFFFH in 
a segment, the 8086,88 will write one byte at offset 
FFFFH, and the other at offset 0; the 80186,188 will 
write one byte at offset FF'FFH,' and the other at 
offset 10000H (one byte byyond the enq of the 
segment). One byte segment underflow will also 
occur on the 80186,188 if a stack PUSH is executed 
and the Stack Poihter containstht:'Value 1. 

SHIFT/ROTATE BY VALUE GREATER THAN 31 

Before the 80186,188 performs a shift or rotate by a 
value (either in theCL registe~, or by an immediate 
value) it ANDs. the value with IFH, limiting the 
number of bits rotated to less than 32.·The 8086,88 
does not do this. 

. LOCK PREFIX 

The 8086,88 activates its' LOCK sighal immediately 
after executing the LOCK jJrefix. The 80186,188 
does not activate the LOCK signal until the proces­
sor is ready to begin the data cycles associated with 
the LOCKed instruction. 

INTERRUPTED STRING MOVE 
INSTRUCTIONS 

If an 8086,88 is interrupted during the execution of a 
repeated string move' instruction, the return value 
pushed on the stack will point to the last prefix in­
struction before the string move instructipn. If the 
instruction had more than one prefix (e.g., a seg­
ment override prefix in addition to the repeat 
prefix), the prefix will not be re-executed upon re­
turning from the interrupt. The 80186,188, on the 
other hand, pushes the value of the first prefix to the 
repeated instruction: Thus, so long as prefixes are 
not themselves repeated, string instructions will 
properly resume execution. 
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CONDITIONS CAUSING DIVIDE ERROR 
WITH AN INTEGER DIVIDE 

The 8086,88 will cause a divide error whenever the 
absolute value of the quotient is greater then 7FFFH 
(for word operations) or if the absolute value of the 
quotient is greater than 7FH (for byte operations). 
The 80186,188 has expanded the range of negative 
numbers allowed as a quotient by 1 to include 8000H 
and 80H. These numbers represent the most nega­
tive numbers representable using two's complement 
arithmetic (equal to - 32768 and -128 in decimal, 
respectively) . 

ESC OPCODE 

The 80186,188 may be programmed to cause an in­
terrupt type 7 whenever an ESCape instruction 
(used for co-processors like the the 8087) is 
executed. The 8086,88 has no such provision. 

Instruction Set Reference 

The instruction set summary which follows provides 
detailed operational information for the iAPX 
861186 (8086, 8088, 80186, and 80186) instruction 
set. The information is presented from the point of 
view of utility to the assembly language programmer. 

Instruction timings are represented as the number 
of clock periods required to execute a particular 
form (register-to-register, immediate-to-memory, 
etc.) of instruction. At 5MHz clock, the clock period 
is 200 ns; at 8MHz, the clock period is 125 ns. For 
8086,88 instruction timings which use memory 
operands, "+ EA" denotes the number of additional 
clock periods needed to calculate the operand's effec­
tive address. (On the 80186,188 this computation is 
performed in hardware.) 

For control transfer instructions, the timings given 
include any additional clocks required to reinitialize 
the instruction queue as well as the time required to 
fetch the target instruction. For the 8086, four clocks 
should be added for each instruction reference to a 
word operand located at an odd memory address t.o 
reflect any additional operand bus cycles required. 
The required number of data references is listed in 
the instruction set summary for each instruction to 
aid in this calculation. 

All of the instruction times given are of the form 
"n(m) ," where n is the number of clocks required 
for the 8086 to execute the given instruction, and m 
is the time required by the 80186 for the same 
instruction. The number of clocks required for the 
8088 will be n for 8-hit operations and n + (4 • 
transfers) for 16-bit operations. For the 80188, the 
number of clocks will be m for 8-bit operations and 
m + (4' transfers) for 16-bit operations. 

For instructions which repeat a specified number of 
times, the values m and n each consist of two parts 
in the relation "x + y/rep," where x is the initial 
number of clocks required to start the instruction, 
and y is the number of clocks corresponding to the 
number of iterations specified. For 16-bit repeated 
instructions on the 8088 and 80188, when the ex­
pression" (4 * transfers)" has to be added to m or n, 
it should be added to the y part of the expression 
before it is multiplied by the number of repetitions. 

Several additional factors can increase actual execu­
tion time over the figures shown in Table 3-13. The 
time provided assumes that the instruction has al­
ready been prefetched and that it is waiting in the in­
struction queue, an assumption that is valid under 
most, but not all, operating conditions. A series of 
fast executing (fewer than two clocks per opcode 
byte) instructions can drain the queue and increase 
execution time. Execution time also is slightly im­
pacted by interaction of the EU and BIU when 
memory operands must be read or written. If the EU 
needs access to memory, it may have to wait for up 
to one clock if the BIU has already started an instruc­
tion fetch bus cycle. (The EU can detect the need for 
a memory operand and post a bus request far 
enough in advance of its need for this operand to 
avoid waiting a full 4-clock bus cycle.) Of course the 
EU does not have to wait when the queue is full, be­
cause the BIU is idle. (This assumes that the BIU 
can bbtain the bus on demand, i.e., no other proces­
sors are competing for the bus.) 

With typical instruction mixes, the time actually re­
quired to execute a sequence of instructions will typi­
cally be within 5-10% of the sum of the individual 
timings given in the instruction set summary. Cases 
can be constructed, however, in which execution 
time may be much higher than the sum of the figures 
provided in the table. The execution time for a given 
sequence of instructions, however, is always 
repeatable, assuming comparable external conditions 
(interrupts, coprocessor activity, etc.). If the execu­
tion time for a given series of instructions must be 
determined exactly, the instructions should be run 
on an execution vehicle such as the iSBC 88!25™ or 
the 86/30 board. 
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REF 

IDENTIFIER 
.. 

destination 

source 

source-table 

target 

short-label 

accumuiator 

port 

source-string 

dest-string 

count 

interru pt-type 

optional-pop-val ue 

external-opcode 

above-below 

greater-less 

REFERENCES REF 
FOR INSTRUCTION SET 

Key to following Instruction Set Reference Pages 

USEDIN 

data transfer, 
bit manipulation 

data transfer, 
arithmetic, 
bit manipulation 

XLAT 

JMP, CALL 

condo transfer, 
iteration control 

IN,OUT 

IN,OUT 

string ops. 

string ops. 

shifts, rotates 

INT 

RET 

ESC 

conditional jumps 

conditional jumps 

EXPLANATION 

A register or memory location that may contain data 
operated on by the instruction, and which receives (is 
replaced by) the result of the operation. 

A register, memory location or immediate value that is 
used in the operation, but is not altered by the 
instruction. 

Name of memory translation table addressed by 
register BX. 

A label to which control is to be transferred directly, or 
a register or memory location whose content is the 
address of the location to which control is to be 
transferred indirectly. 

A label to which control is to be conditionally 
transferred; must lie within -128 to +127 bytes of the 
first byte of the next instruction. 

Register AX for word transfers, AL for bytes. 

An I/O port number; specified as an immediate value of 
0-255, or register DX (which contains port number in 
range 0-64k). 

Name of a string in memory that is addressed by 
register SI; used only to identify string as byte or word 
and specify segment override, if any. This string is 
used in the operation, but is not altered. 

Name of string in memory that is addressed by register 
DI; used only to identify string as byte or word. This 
string receives (is replaced by) the result of the 
operation. 

Specifies number of bits to shift or rotate; written as 
immediate value 1 or register CL (which contains the 
count in the range 0-255). 

Immediate value of 0-255 identifying interrupt pointer 
number. 

Number of bytes (0-64k, ordinarily an even number) to 
discard from stack. 

Immediate value (0-63) that is encoded in the instruction 
for use by an external processor. 

Above and below refer to the relationship of two unsigned 
values. 

Greater and less refer to the relationship of two signed 
values. 
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REF REFERENCES REF 
FOR INSTRUCTION SET 

Key to Operand Types 

IDENTIFIER 

(no operands) 

register 

reg 16 
seg-reg 

accumulator 

immediate 

immed8 

memory 

mem8 
mem16 

source-table 

source-string 

dest-string 

DX 
short-label 

near-label 

far-label 

near-proc 

far-proc 

memptr16 

memptr32 

regptr16 

repeat 

EXPLANATION 

No operands are written 
An 8- or 16-bit general register 

An 16-bit general register 

A segment register 

Register AX or AL 

A constant in the range 
O-FFFFH 
A constant in the range O-FFH 
An 8- or 16-bit memory 
10cation"1 
An 8-bit memory 10cation"1 

A 16-bit memory 10cation '1i 
Name of 256-byte translate 
table 
Name of string addressed by 
register SI 

Name of string, addressed by 
register DI 
Register DX 

A label within -128 to +127 
bytes of the end of the 
instruction 
A label in current code 
segment 
A label in another code 
segment 
A procedure in current code 
segment 

A procedure in another code 
segment 
A word containing the offset of 
the location in the current code 
segment to which control is to 
be transferred '1i 
A doubleword containing the 
offset and the segment base 
address of the location in 
another code segment to 
which control is to be trans­
ferred '1' 
A 16-bit general register 
containing the offset of the 
location In the current code 
segment to which control is to 
be transferred 

A string instruction repeat 
prefix 

111 Any addressing mode - direct, register indirect, 
based, indexed" or based indexed - may be used 
(see Section 3,6). 

1514111211 to 981654 321 0 
OF OF IF TF SF ZF AF PF CF 

I 
L_L= CARRY 

AIJXILIARYCARRY 

ZERO 

SIGN 

INTERRUPT 

DIRECTION 

OVERFLOW 

Effective Address Calculation Time (8086,88 ONLY) 

EA COMPONENTS 

Displacement Only 

Base or Index Only (BX,BP,SI,OI) 

Displacement 
+ 

Base or Index (BX,BP,SI,OI) 

Base BP+ 01, BX+SI 
+ 

Index BP+SI, BX+DI 

Displacement BP+ DI+ OISP 
+ BX+SI+DISP 

Base 
+ BP+SI+OISP 

Index BX+OI+OISP 

• Add 2 clocks for segment override 

Notation Key 
+ Addition 

Subtraction 
Multiplication 
Division 

% Modulo 
Concatenation 

& And 
<- Assignment 
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REF REFERENCES 
FOR INSTRUCTION SET 

REF 

"reg" Field Bit Assignments: 

16-Bit (w = 1) 8-Bit (w = 0) Segment 

000 AX 000 AL 00 ES 
001 CX 001 CL 01 CS 
010 OX 010 OL 10 SS 
011 BX 011 BL 11 OS 
100 SP 100 AH 
101 BP 101 CH 
110 SI 110 OH 
111 01 111 BH 

"mod" Field Bit Assignments: 

Imod xxx r/ml 

mod Displacement 

00 OISP = 0*, disp-Iow and disp-high are absent 

01 OISP = 9isP-low sign-extended to 16-bits, disp-high is absent 

10 OISP = disp-high: disp-Iow 

11 rIm is treated as a "reg" field 

"rim" Field Bit Assignments: 

rim Operand Address 

000 (BX) + (SI) + OISP 
001 (BX) + (01) + OISP 
010 (BP) + (SI) + OISP 
011 (BP) + (01) + OISP 
100 (SI) + QISP 
101 (01) + OISP 
110 (BP) + OISP 
111 (BX) + OISP 

OISP follows 2nd byte of instruction (before data if required). 
*except if mod = 00 and rIm = 110 then EA = disp-high: disp-Iow. 
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ASCII ADJUST 
FOR ADDITION 

AAA 
Operation: 

if ((AL) & OFH) >9 or (AF) = 1 then 
(AL) +- (AL) + 6 
(AH) +- (AH) + 1 
(AF) +- 1 

(CF) +- (AF) 
(AL) ~ (AL) & OFH 

Description: 

AAA (ASCII Adjust for Addition) changes 
the contents of register ALto a valid unpacked 
decimal number; the high-order half-byte is 
zeroed. AAA updates AF and CF; the content 
of OF, PF, SF and ZF is undefined following 
execution of AAA. 

Encoding: 

1001101111 

Flags Affected: 

AF, CF. 
OF, PF, XF, ZF undefined 

AAA Operands . Clocks Transfers Bytes AAA Coding Example 

(no operands) 8(8) - 1 AAA 
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AAD ASCII ADJUST 
FOR DIVISION 

AAD 
Operation: 

(AL) +- (AH) • OAH + (AL) 
(AH)- 0 

Description: 

AAD (ASCII Adjust for Division) modifies 
the numerator in AL before dividing two valid 
unpacked decimal operands so that the quo­
tient produced by the division will be a valid 
unpacked decimal number. AH must be zero 

Encoding: 

1101010100001010 

Flags A ffeeted: 

PF, SF, ZF. 
AF, CF, OF undefined 

for the subsequent DIY to produce the correct 
result. The quotient is returned in AL, and the 
remainder is returned in AH; both high-order 
half-bytes are zeroed. AAD updates PF, SF 
and ZF; the content of AF, CF and OF is 
undefined following execution of AAD. 

AAD Operands Clocks Transfers Bytes AAD Coding Example 

(no operands) 60(15) - 2 AAD 
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AAM ASCII ADJUST 
FOR MULTIPLY 

AAM 
Operation: 

(AH) ~ (AL) / OAH 
(AL) ~ (AL) % OAH 

Description: 

AAM (ASCII Adjust for Multiply) corrects 
the result of a previous multiplication of two 
valid unpacked decimal operands. A valid 2-
digit unpacked decimal number is derived 
from the content of AH and AL and is 

Encoding: 

1101010000001010 

AAM Operands Clocks 

(no operands) 83(19) 

Flags Affected: 

PF, SF, ZF. 
AF, CF, OF undefined 

returned to AH and AL. The high-order half­
bytes of the multiplied operands must have 
been OH for AAM to produce a correct result. 
AAM updates PF, SF and ZF; the content of 
AF, CF and OF is undefined following execu­
tion of AAM. 

Transfers Bytes AAM Coding Example 

- 2 AAM 
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A'AS' ASCII ADJUST 
FOR SUBTRACTION AAS 

Operation: 

if «AL) & OFH) >9 or (AF) = 1 then 
(AL) +- (AL)- 6 
(AH) +- (AH) -1 
(AF) +- 1 

(CF) +- (AF) 
(AL) ~ (AL) & OFH 

Description: 

AAS (ASCII Adjust for Subtraction) corrects 
the result of a previous subtraction' of two 
valid unpacked decimal operands (the destina­
tion operand must have been specified as 

Encoding: 

001 1 1 111 

Flags Affected: 

AF, CF. 
OF, PF, SF, ZF undefined 

register AL). AAS changes the content of AL 
to a valid unpacked decimal number; the high­
order half-byte is zeroed. AAS updates AF 
and CF; the content of OF, PF, SF and ZF is 
undefined following execution of AAS, 

AAS Operands Clocks Transfers Bytes AAS Coding Example 

(no operands) 8(7) - 1 AAS 
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ADC ADD WITH CARRY ADC 
Operation: 

if (CF) = 1 then (DEST) +- (LSRC) 
+ (RSRC) + 1 

else (DEST) +- (LSRC) + (RSRC) 

Description: 

ADC destination, source 

ADC (Add with Carry) sums the operands, 
which may be bytes or words, adds one if CF is 
set and replaces the destination operand with 
the result. Both operands may be signed or 
unsigned binary numbers (see AAA and 
DAA). ADC updates AF, CF, OF, PF, SF and 
ZF. Since ADC incorporates a carry from a 
previous operation, it can be used to write 
routines to add numbers longer than 16 bits. 

Flags Affecoted: 

AF, CF, OF, PF, SF, ZF 
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ADC ADD WITH CARRY ADC 

Encoding: 

Memory or Register Operand with Register Operand: 

1 0001 00 d w I mod reg rIm 1 

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST ,= EA 

Immediate Operand to Memory or Register Operand: 

1100000 sw 1 mod 0 1 0 rIm 1 data Idata if s:w=011 

LSRC = EA, RSRC = data, DEST = EA 

Immediate Operand to Accumulator: 

1 0001 01 0 w 1 data 1 data if w=1 1 

if w = 0 then LSRC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

ADC Operands Clocks Transfers Bytes ADC Coding Example 

register, register 3(3) - 2 ADCAX,SI 
register, memory 9(10)+EA 1 2-4 ADD DX, BETA [SI] 
memory, register 16(10) +EA 2 2-4 ADC ALPHA [BX][Sll,DI 
register, immediate 4(4) - 3-4 ADC BX, 256 
memory, immediate 17(16) +EA 2 3-6 ADC GAMMA, 30H 
accumulator, 

immediate 4(3-4) - 2-3 ADC AL, 5 
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ADD ADDITION ADD 
Operation: 

(DEST) +- (LSRC) + (RSRC) 

Description: 

ADD destination,source 

The sum of the two operands, which may be 
bytes or words, replaces the destination 
operand. Both operands may be signed or 
unsigned binary numbers (see AAA and 
DAA). ADD updates AF, CF, OF, PF, SF and 
ZF. 

Flags Affected: 

AF, CF, OF, PF, SF, ZF 
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ADD ADDITION ADD 

Encoding: 

Memory or Register Operand with Register Operand: 

\ 000 0 0 0 d w \ mod reg rIm \ 

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST = EA 

Immediate Operand to Memory or Register Operand: 

\1 00000 s w \ mod 000 rIm \ data \data if s:w=01\ 

LSRC = EA, RSRC = data, DEST = EA 

Immediate Operand to Accumulator: 

\ 000001 0 w \ data \ data if w=1 \ 

if w = 0 then LSRC = AL, RSRC = dpta, DEST = AL 
else LSRC = AX, RSRC = data, DE'ST = AX 

ADD Operands Clocks Transfers Bytes ADD Coding Example 

register, register 3(3) - 2 AOOCX, OX 
register, memory 9(10) +EA 1 2-4 ADD 01, [BX).ALPHA 
memory, register 16(10)+EA 2 2-4 AOOTEMP,CL 
register, immediate 4(4) - 3-4 AOOCL,2 
memory, immediate 17(16)+EA 2 3-6 ADD ALPHA, 2 
accumulator, 

immediate 4(3-4) - 2-3 ADD AX, 200 
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AND AND LOGICAL 

Operation: 

(DEST) +- (LSRC) & (RSRC) 
(CF) +- 0 
(OF) +- 0 

Description: 

AND destination,source 

AND performs the logical "and" of the two 
operands (byte or word) and returns the result 
to the destination operand. A bit in the result 
is set if both corresponding bits of the original 
operands are set; otherwise the bit is cleared. 

Flags Affected: 

3-51 

CF, OF, PF, SF, ZF. 
AF undefined 

AND 

210911 

I:; 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

AND AND LOGICAL AND 

Encoding: 

Memory or Register Operand with Register Operand: 

I 001 000 d w I mod reg rim 1 

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST = EA 

Immediate Operand to Memory or Register Operand: 

11 00 0 0 0 0 w 1 mod 1 00 rim 1 data data if w::::'1 

LSRC = EA, RSRC = data, DEST = EA 

Immediate Operand to Accumulator: 

1 001 00 1 0 w I data I data if w=1 1 

if w = 0 then LSRC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

AND Operands Clocks Transfers Bytes AND Coding Example 

register, register 3(3) - 2 AND.AL; BL 
register, memory 9(10)+EA 1 2-4 AND CX, FLAG WORD 
memory, register 16(10) +EA 2 2-4 AND ASCII [DU:-AL 
register, immediate 4(4) - 3-4 ANDCX,OFOH 
memory, immediate 17(16)+EA 2 3-6 AND BETA, 01 H 
accumulator, 
immediate 4(3-4) - 2-3 AND AX, 0101 OOOOB 
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BOUND DETECT VALUE 
OUT OF RANGE 

BOUND 

Operation: 

If ((LSRC) < (RSRC) OR (LSRC) > ((RSRC) + 2) then 
(SP) -- (SP) - 2 
((SP) + 1 : (SP» --FLAGS 
(IF) -- 0 
(TF) --0 
(SP) -- (SP) - 2 
((SP) + 1: (SP» -- (CS) 
(CS) -- (1 EH) 
(SP) -- (SP) - 2 
((SP) + 1 : (SP)) -- (I P) 
UP) -- (1CH) 

Description: 

BOUND destination, source 

BOUND provides array bounds checking in hardware. The 
calculated array index is placed in one of the general purpose 
registers, and the upper and lower bounds of the array are 
placed in two consecutive memory locations. The contents of 
the register are compared with the memory location values, 
and if the register value is less than the first location or great­
er than the second memory location, a trap type 5 is 
generated. 
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Flags Affected: 

None 
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,BOUND 

Encoding: 

01100010 

BOUND Operands 

register, memory 

·E>ETECTVALUE 

OUTOFRANGE 
BOUND 

mod req rim 

Clocks Transfers Bytes BOUND Coding Example 

(35) 2 2 BOUND AX, ALPHA 
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CALL CALL PROCEDURE CALL 
Operation: 

if Inter-Segment then 
(SP) ~ (SP) - 2 
((SP) + 1 :(SP)) ~ (CS) 
(CS) ~ SEG 

(SP) ~ (SP) - 2 
((SP) + 1 :(SP)) ~ (lP) 
(IP) ~ DEST 

Description: 

CALL procedure-name 

CALL activates an out-of-line procedure, sav­
ing information on the stack to permit a RET 
(return) instruction in the procedure to 
transfer control back to the instruction follow­
ing the CALL. The assembler generates a dif­
ferent type of CALL instruction depending on 
whether the programmer has defined the pro­
cedure name as NEAR or FAR. For control to 
return properly, the type of CALL instruction 
must match the type of RET instruction that 
exits from the procedure. (The potential for a 
mismatch exists if the procedure and the 
CALL are contained in separately assembled 
programs.) Different forms of the CALL 
instruction allow the address of the target pro­
cedure to be obtained from the instruction 
itself (direct CALL) or from a memory loca­
tion or register referenced by the instruction 
(indirect CALL). In the following descrip­
tions, bear in mind that the processor auto­
matically adjusts IP to point to the next 
instruction to be executed before saving it on 
the stack. 

For an intrasegment direct CALL, SP (the 
stack pointer) is decremented by two and IP is 
pushed onto the stack. The target procedure's 
relative displacement (up to ±32k) from 
the CALL instruction is then added to the 
instruction pointer. This CALL instruction 

Flags Affected: 

None 

form is "self-relative" and appropriate for 
position-independent (dynamically relocat­
able) routines in which the CALL and its 
target are moved together in the same segment. 

An intrasegment indirect CALL may be made 
through memory or a register. SP is decre­
mented by two; IP is pushed onto the stack. 
The target procedure offset is obtained from 
the memory word or 16-bit general register 
referenced in the instruction and replaces IP. 

For an intersegment direct CALL, SP is decre­
mented by two, and CS is pushed onto the 
stack. CS is replaced by the segment word con­
tained in the instruction. SP again is 
decremented by two. IP is pushed onto the 
stack and replaced by the offset word in the 
instruction. 

For an inter segment indirect CALL (which 
only may be made through memory), SP is 
decremented by two, and CS is pushed onto 
the stack. CS is then replaced by the content of 
the second word of the doubleword memory 
pointer referenced by the instruction. SP again 
is decremented by two, and IP is pushed onto 
the stack and replaced by the content of the 
first word of the doubleword pointer refer­
enced by the instruction. 
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CALL CALL PROCEDURE CALL 
Encoding: 

I ntra-segment direct: 

111101000 disp-Iow disp-high 

DEST,- (EA) 

Intra-Segment Indirect: 

11111111 mod010rim 

DEST = (IP) + disp 

Inter-Segment Direct: 

11 0011 010 1 offset-low offset-high 

I seg-Iow seg-high 

DEST = offset, SEG = seg 

Inter-Segment Indirect: 

111 11 1111 1 mod 0 11 rIm 1 

DEST = (EA), SEG = (EA + 2) 

CALL Operands Clocks 

near-proc 19(14) 
far-proc 28(23) 
memptr16 21(19)+EA 
regptr16 16(13) 
memptr32 37(38) +EA 

Transfers 

1 
2 
2 
1 
4 
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Bytes CALL Coding Examples 

3 CALL NEAR PROC 
5 CALL FAR PROC 

2-4 CALL PROC_TABLE [SI] 
2 CALLAX 

2-4 CALL [BX].TASK [SI] 
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CBW CONVERT BYTE 
TOWORD 

Operation: 

if (AL) < SOH then (AH) ~ 0 else (AH) ~ FFH 

Description: 

CBW (Convert Byte to Word) extends the sign 
of the byte in register AL throughout register 
AH. CBW does not affect any flags. CBW can 
be used to produce a double-length (word) 
dividend from a byte prior to performing byte 
division. 

Encoding: 

10011000 

Flags Affected: 

None 

CBW 

CBW Operands Clocks Transfers Bytes CBW Coding Example 

(no operands) 2(2) - 1 CBW 
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CLC CLEAR CARRY ClC 
Operation: 

(CF)'-' 0 

Flags Affected: 

Description: 

CLC (Clear Carry flag) zeroes the carry flag 
(CF) and affects no other flags. It (and CMC 
and STC) is useful in conjunction with the 
RCL and RCR instructions. 

Encoding: 

11111000 

CF 

CLC Operands Clocks Transfers 

(no operands) 2(2) -

3-58 

Bytes CLC Coding Example 

1 CLC 
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CLD CLEAR DIRECTION 
FLAG 

Operation: 

(DF)- 0 

Description: 

CLD (Clear Direction flag) zeroes DF causing 
the string instructions to auto-increment the SI 
and! or DI index registers. CLD does not 
affect any other flags. 

Encoding: 

11111100 

Flags Affected: 

DF 

CLD 

CLDOperands Clocks Transfers Bytes CLD Coding Example 

(no operands) 2(2) - 1 CLD 
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ell CLEA.RINTERRUPT­
ENABLE FLAG ell 

Operation: 

(IF)- 0 

Description: 

CLI (Clear Interrupt-enable flag) zeroes IF. 
When the interrupt-enable flag is cleared, the 
8086 and 8088 do not recognize an external 
interrupt request that appears on the INTR 
line; in other words maskable interrupts are 
disabled. A non-maskable interrupt appearing 
on the NMI line, however, is honored, as is a 
software interrupt. CLI does not affect any 
other flags. 

Encoding: 

11111010 

Flags Affected: 

IF 

CLiOperands Clocks Transfers Bytes CLI Coding Example 

(no operands) 2(2) - 1 eLi 

.3-60 210911 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

CMC COMPLEMENT 
CARRY FLAG 

CMC 
Operation: Flags Affected: 

if (CF) = 0 then (CF) -1 else (CF) - 0 

Description: 

CMC (Complement Carry flag) "toggles" CF 
to its opposite state and affects no other flags. 

Encoding: 

1111101011 

CF 

CMC Operands Clocks Transfers 

(no operands) 2(2) -
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Bytes CMC Coding Example 

1 CMC 
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CMP COMPARE GMP 
Operation: 

(LSRC) - (RSRC) 

Description: 

CMP destination, source 

CMP (Compare) subtracts the source from the 
destination, which may be bytes or words, but 
does not return the result. The operands are 
unchanged, but the flags are updated and can 
be tested by a subsequent conditional jump 
instruction. CMP updates AF, CF, OF, PF, 

3-62 

Flags A ffeeted: 

AF, CF, OF, PF, SF, ZF 

SF and ZF. The comparison reflected in the 
flags is that of the destination to the source. If 
a CMP instruction is followed by a JG (jump 
if greater) instruction, for example, the jump 
is taken if the destination operand is greater 
than the source operand. 
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CMP COMPARE CMP 

Encoding: 

Memory or Register Operand with Register Operand: 

1 0 0 1 1 1 0 d w 1 mod reg r / m I 

if d = 1 then LSRC = REG, RSRC = EA 
else LSRC = EA, RSRC = REG 

Immediate Operand with Memory or Register Operand: 

11 OOOOOsw Imod111 rIm I data Idata if s:w=o11 

LSRC = EA, RSRC = data 

Immediate Operand with Accumulator: 

1 0 a 1 1 1 1 0 w I data I data if w=1 

if w = 0 then LSRC = AL, RSRC = data 
else LSRC = AX, RSRC = data 

CMP Operands Clocks Transfers 

register, register 3(3) -
register, memory 9(10)+EA 1 
memory, register 9(10)+EA 1 
register, immediate 4(3) -
memory, immediate 10(10)+EA 1 

accumulator, 
immediate 4(3-4) -

3-63 

Bytes CMP Coding Examples 

2 CMP BX,CX 
2-4 CMP DH, ALPHA 
2-4 CMP [BP+21,SI 
3-4 CMP BL,02H 
3-6 CMP [BX].RADAR 

[DI),3420H 

2-3 CMP AL, 0001 OOOOB 
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CMPS COMPARE STRING 
(BYTE OR WORD) CMPS 

Operation: 

(LSRC) - (RSRC) 
if (OF) = 0 then 

(SI) - (SI) + OEL TA 
(01) - (01) + OEL TA 

else 
(SI) - (SI) - OEL TA 
(01) - (01) - OEL TA 

Description: 

CMPS destination-string, source-string 

CMPS (Compare String) subtracts the destina­
tion byte or word (addressed by 01) from the 
source byte or word (addressed by SI). CMPS 
affects the flags but does not alter either 
operand, updates Sl and 01 to point to the 
next string element and updates, AF, CF, OF, 
PF, SF and ZF to reflect the relationship of the 
destination element to the source element. For 
example, if a JG (J1J.mp if Greater) instruction 
follows CMPS, the jump is taken if the des-

Encoding: 

11010011wl 

Flags Affected: 

AF, CF, OF, PF, SF, ZF 

tination element is greater than the source 
element. If CMPS is prefixed with REPE or 
REPZ, the operation is interrupted as "com­
pare while not end-of-string (CX not zero) and 
strings are equal (ZF = \)." If CMPS is 
preceded by REPNE or REPNZ, the operation 
is interrupted as "compare while not end-of­
string (CX not zero) and strings are not equal 
(ZF = 0)." Thus, CMPS can be used to find 
matching or differing string elements. 

if w = 0 then LSRC = (SI), RSRC = (01), OEL TA = 1 
else LSRC = (SI) + 1 :(SI), RSRC = (01) + 1 :(01), OEL TA = 2 

CMPS Operands Clocks Transfers Bytes CMPS Coding Examples 

dest-string, 
source-string 22(22) 2 1 CMPS BUFF1, BUFF2 

(repeat)dest-string, 9+22 
source-string (5+22/rep) 2/rep 1 REP COMPSID, KEY 
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cwo CONVERT WORD 
TO DOUBLEWORD 

Operation: 

if (AX) < 8000H then (DX) +- 0 
else (DX) +- FFFFH 

Description: 

CWD (Convert Word to Doubleword) extends 
the sign of the word in register AX throughout 
register DX. CWD does not affect any flags. 
CWD can be used to produce a double-length 
(doubleword) dividend from a word prior to 
performing word division. 

Encoding: 

10011001 

Flags Affected: 

None 

cwo 

CWO Operands Clocks Transfers Bytes CWO Coding t:xample 

(no operands) 5(4) - 1 CWD 
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DECIMAL ADJUST 
FOR ADDITION 

Operation: 

if ((AL) & OFH) > 9 or (AF) = 1 then 
(AL) - (AL) + 6 
(AF) -1 

if (AL) > 9FH or (CF) = 1 then 
(AL) - (AL) + 60H 
-(CF) -1 

Description: 

DAA (Decimal Adjust for Addition) corrects 
the result of previously adding two valid 
packed decimal operands (the destination 
operand must have been register AL). DAA 
changes the content of AL to a pair of valid 
packed decimal digits. It updates AF, CF, PF, 
SF and ZF; the content of OF is undefined 
following execution of DAA. 

Encoding: 

1001001111 

. 

Flags Affected: 

AF, CF, PF,SF, ZF 
OF undefined 

DAA 

DAA Operands Clocks Transfers Bytes DAA Coding Example 

(no operands) 4(4) - 1 DAA 
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DAS DECIMAL ADJUST 
FOR SUBTRACTION 

Operation: 

if «AL) & OFH) >9 or (AF) = 1 then 
(AL) - (AL) - 6 
(AF) -1 

if (AL) > 9FH or (CF) = 1 then 
(AL) - (AL) - 60H 
(CF) -1 

Description: 

DAS (Decimal Adjust for Subtraction) cor­
rects the result of a previous subtraction of 
two valid packed decimal operands (the desti­
nation operand must have been specified as 
register AL). DAS changes the content of AL 
to a pair of valid packed decimal digits. DAS 
updates AF, CF, PF, SF and ZF; the content 
of OF is undefined following execution of 
DAS. 

Encoding: 

00101111 

Flags Affected: 

AF, CF, PF, SF, ZF. 
OF undefined 

DAS 

DAS Operands Clocks Transfers Bytes DAS Coding Example 

(no operands) 4(4) - 1 DAS 
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DEC DECREMENT DEC 
Operation: 

(DEST) - (DEST) -1 

Flags Affected: 

Description: 

DEC (Decrement) subtracts one from the 
destination operand. The operand may be a 
byte or a word and is treated as an unsigned 
binary number (see AAA and DAA). DEC 
updates AF, OF, PF, SF and ZF; it does not 
affect CF. 

Encoding: 

Memory or Register Operand: 

11111111 w Imod001 r/ml 

DEST= EA 

16-Bit Register Operand: 

1 01 001 reg 

DEST= REG 

AF, OF, PF, SF, ZF 

DEC Operands Clocks Transfers Bytes DEC Coding Example 

reg16 3(3) - 1 DECAX 
reg8 3(3) - 2 DECAL 
memory 15(15)+EA 2 2-4 DEC ARRAY [SI] 
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DIV DIVIDE DIV 
Operation: 

(temp) - (NUMR) 
if (temp) I (DIVR) > MAX then the 

following, in sequence 
(QUO), (REM) undefined 
(SP) - (SP) - 2 
((SP) + 1 :(SP)) - FLAGS 
(IF) +- 0 
(TF) +- 0 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (CS) 
(CS) +- (2) Le., the contents of 

memory locations 2 and 3 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (IP) 
(IP) +- (0) Le., the contents of 

locations 0 and 1 
else 

(QUO) +- (temp) I (DIVR), where 
I is unsigned division 

(REM) +- (temp) % (DIVR) where 
% is unsigned modulo 

Description: 

DIV source 

DIV (divide) performs an unsigned division of 
the accumulator (and its extension) by the 
source operand. If the source operand is a 
byte, it is divided into the two-byte dividend 
assumed to be in registers AL and AH. The 
byte quotient is returned in AL, and the byte 
remainder is returned in AH. If the source 
operand is a word, it is divided into the two­
word dividend in registers AX and DX. The 
word quotient is returned in AX, and the word 
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Flags Affected: 

AF, CF, OF, PF, SF, ZF undefined 

remainder is returned in DX. If the quotient 
exceeds the capacity of its destination register 
(FFH for byte source, FFFFH for word 
source), as when division by zero is attempted, 
a type 0 interrupt is generated, and the 
quotient and remainder are undefined. Nonin­
tegral quotients are truncated to integers. The 
content of AF, CF, OF, PF, SF and ZF is un­
defined following execution of DIY. 
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DIV DIVI[)E 

Encoding: 

11111 011 w I mod 11 0 r / m I 
if w == 0 then NUMR == AX, DIVR == EA, QUO == AL, REM == AH,MAX == FFH 
else,NUMR == DX:AX, DIVR == EA,QUO == AX, REM::: DX, MAX == FFFFH 

DIV Operands CI()cks Transfers Bytes DIV Coding Example 
< t" .,,: lu 

reg8 80-,90(29) - 2 ' DIVCL 
reg16 144-162(38) - 2 DIVBX 
mem8 86-96' ' 

+EA(35) 1 2-4 DIV ALPHA 
mem16 154-172 

+EA(44) 1 2-4 DIV TABLE [SI] 
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ENTER PROCEDURE ENTRY ENTER 

Operation: 

(SP) +- (SP) - 2 
((SP+1: (SP» +- (BP) 
(FP) +- (SP) 
IF LEVEL> 0 then 

Repeat (Level - 1) times 
(BP) +- (BP) - 2 
(SP) +- (SP) - 2 
((SP) + 1 : (SP» +- ((BP» 

End Repeat 
(SP) +- (SP) - 2 
((SP) + 1 : (SP» +- (FP) 

End if 
(BP) +- (FP) 
(SP) +- (SP) - (LSRC) 

Description: 

Flags Affected: 

None 

ENTER executes the calling sequence for a high-level 
language. It saves the current frame pointer (in BP), copies 
frame pointers from procedures below the current call (to 
allow access to local variables in these procedures) and allo," 
cates space on the stack for the local variables of the current 
procedure invocation. 
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ENTER PROCEDURE ENTRY ENTER 

Encoding: 

11 1 0 0 1 0 ~ 0 1 data low 1 data high 1 

ENTER Operands Clocks Transfers Bytes ENTER Cooing Example 

Locals, level L=O(15) - 4 ENTER 28,3 
L= 1 (25) 

L>1(22+16) 
(n-1) ) 
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ESC ESCAPE ESC 
Operation: Flags Affected: 

if mod f 11 then data bus +- (EA) 

Description: 

The ESC (Escape) instruction provides a 
mechanism by which other processors 
(coprocessors) may receive their instructions 
from the 8086 or 8088 instruction stream and 
make use of the 8086 or 8088 addressing 
modes. The CPU (8086 or 8088) does a no 
operation (NOP) for the ESC instruction other 
than to access a memory operand and place it 
on the bus. On the 80186,188, if bit 15 in the 
relocation register is set, a trap type 7 will be 
generated; if this bit is set to 0, the 80186,188 
will respond to the ESC opcode in the same 
way as the 8086,88. 

Encoding: 

11011x modxr/m 

None 

ESC Operands Clocks Transfers Bytes 

immediate, memory 8(6) +EA 1 2-4 
immediate, register 2(2) - 2 

3-73 

ESC Coding Example 

ESC 6, ARRAY [SI] 
ESC 20, AL·· 
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HLT 
Operation: 

None 

Description: 

HLT (HaIt) causes the CPU to enter the halt 
state. The processor leaves the halt state upon 
activation of the RESET line, upon receipt of a 
non-maskable interrupt request on NMI, or, if 
interrupts are enabled, upon receipt of a mask-

Encoding: 

11110100 

HLT 
Flags Affected: 

None 

able interrupt request on INTR. HLT does not 
affect any flags. It may be used as an alterna­
tive to an endless software loop in situations 
where a program must wait for an interrupt. 

HLT Operands Clocks Transfers Bytes HLT Coding Example 

(no operands) 2(2) - 1 HLT 
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IDIV INTEGER DIVIDE IDIV 
Operation: 

(temp) +- (NUMR) 
if (temp) I (DIVR) > 0 and (temp) 

I (DIVR) > MAX 
or (temp) I (DIVR) < 0 and (temp) 

I (DIVR) < 0 - MAX -1 then 
(QUO), (REM) undefined 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- FLAGS 
(IF) +- 0 
(TF) +- 0 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (CS) 
(CS) +- (2) 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (lP) 
(I P) +- (0) 

else 
(QUO) +- (temp) I (DIVR), where 

I is signed division 
(REM) +- (temp) % (DIVR) where 

% is signed modulo 

Description: 

IDIV source 

IDlY (Integer Divide) performs a signed divi­
sion of the accumulator (and its extension) by 
the source operand. If the source operand is a 
byte, it is divided into the double-length divi­
dend assumed to be in registers AL and AH; 
the single-length quotient is returned in AL, 
and the single-length remainder is returned in 
AH. For byte integer division, the maximum 
positive quotient is + 127 (7FH) and the 
minimum negative quotient is -127 (81 H). If 
the source operand is a word, it is divided into 
the double-length dividend in registers AX and 
DX;~ the single-length quotient is returned in 

Flags Affected: 

3-75 

AF, CF, OF, PF, SF, ZF undefined 

AX, and the single-length rentainder is 
returned in OX. For word integer division, the 
maximum positive quotient is +32,767 
(7FFFH) and the minimum negative quotient 
is -32,767 (8001H). If the quotient is positive 
and exceeds the maximum, or is negative and 
is less than the minimum, the quotient and 
remainder are undefined, and a type 0 inter­
rupt is generated. In particular, this occurs if 
division by 0 is attempted. Nonintegral quo­
tients are truncated (toward 0) to integers, and 
the remainder has the same sign as the divi­
dend. The content of AF, CF, OF, PF, SF and 
ZF is undefined following IDlY. 
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IDIV INTEGER DIVIDE IDIV 

Encoding: 

11111 011 w 1 mod 111 rIm 1 

if w = 0 then NUMR = AX, DIVR = EA, QUO = AL, REM = AH, MAX = 7FH 
else NUMR = DX:AX, DIVR = EA, QUO = AX, REM = DX, MAX = 7FFFH 

IDlY Operands Clocks Transfers Bytes IDlY Coding Example 

reg8 101-112 
(44-52) - 2 IDIVBL 

reg16 165-184 
(53-61 ) - 2 IDIVCX 

mem8 107-118 
+EA(50-58) 1 2-4 IDIV DIVISOR..'-BYTE[SI] 

mem16 171-190 
+EA(59-67) 1 2-4 IDIV [BX].DIVISOR_WORD 
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IMUL INTEGER MULTIPLY IMUL 
Operation: 

(DEST) +- (LSRC) * (RSRC) where 
* is signed multiply 

if (ext) = sign-extension of (LOW) 
then (CF) +- 0 

else (CF) +-1; 
(OF) +- (CF) 

Description: 

IMULsource 

IMUL (Integer Multiply) performs a signed 
multiplication of the source operand and the 
accumulator. If the source is a byte, then it is 
multiplied by register AL, and the double­
length result is returned in AH and AL. If the 
source is a word, then it is multiplied by 
register AX, and the double-length result is 
returned in registers DX and AX. If the upper 

Encoding: 

11111 011 w 1 mod 1 01 rim 1 

Flags Affected: 

CF,OF 
AF, PF, SF, ZF undefined 

half of the result (AH for byte source, DX for 
word source) is not the sign extension of the 
lower half of the result, CF and OF are set; 
otherwise they are cleared. When CF and OF 
are set, they indicate that AH or DX contains 
significant digits of the result. The content of 
AF, PF, SF and ZF is undefined following exe­
cution of IMUL. 

if w = 0 then LSRC = AL, RSRC = EA, DEST = AH, EXT = AH, LOW = AL 
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX, LOW = AX 

IMUL Operands Clocks Transfers Bytes IMUL Coding Example 

immed8 (22-25) - 3 IMUL6 
immed16 (29-32) - 4 IMUL20 
reg8 80-98(25-28) - 2 IMULCL 
reg16 128-154 

(34-37) - 2 IMUL BX 
mem8 86-104 

+EA(31-34) 1 2-4 IMUL RATE_BYTE 
mem16 134-160 

+EA(40-43) 1 2-4 IMUL RATE_WORD [BP][DI1 
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.. THE iAPX 86,88 AND iAPX 186,1;88 ARCHITECTURE AND INSTRUCTIONS 

IN INPUT·BYT:E ORWORD ·IN 
Operation: 

(DEST) +- (SRC) 

Description: 

IN accumulator, port 

:', ,~. .. 

IN transfers a byte or a word from an input 
port to the AL register or the AX register, 
respectively. The port number may be speci­
fied either with an immediate byte constant, 
allowing access to ports numbered 0 through 

Encoding: 

Fixed Port: 

111 1 00 1 Ow 1 port 

if w = 0 then SRC = port, DEST = A\L 
else SRC = port + 1 :port, DEST = AX 

Variable Port: 

11110t10wl 

if w = 0 then SRC= (DX), DEST = AL 
else SRC = (DX) + 1 :(DX), DEST = AX 

Flags Affected: 

None 

255, or with a number previously placed in the 
DX register, allowing variable access ,(by 
changing the value in DX) to ports numbered 
from 0 through 65,535. 

IN Operands Clocks Transfers Bytes IN Coding Example 

accumulator, ... 
·immed8· . 10(10) 1 2 .. IN AL, OEAH 
accumulator,DX 8(8) .. 1 1 IN AX, DX 
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INC INCREMENT INC 
Operation: Flags Affected: 

(DEST) - (DEST) + 1 

Description: 

INC destination 

INC (Increment) adds one to the destination 
operand. The operand may be a byte or a word 
and is treated as an unsigned binary number 
(see AAA and DAA). INC updates AF, OF, 
PF, SF and ZF; it does not affect CF. 

Encoding: 

Memory or Register Operand: 

11 1 1 1 1 1 1 w 1 m cd 0 0 0 rim 1 

DEST= EA 

16-Bit Register Operand: 

1 01000 reg 

DEST= REG 

AF, OF, PF, SF, ZF 

INC Operands Clocks Transfers Bytes INC Coding Example 

reg16 3(3) - 1 INCCX 
reg8 3(3) - 2 INCBL 
memory 15(15)+EA 2 2-4 INC ALPHA [DI][BX] 
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INS INPUT STRING INS 

Operation: Flags Affected: 

(OEST) - (SRC) None 

Description: 

INS source-string, port 

INS (Input String) transfers a byte or a word from an I/O 
port (addressed by DX) to a memory address (pointed to by 
DI) and updates DX to point to the next string element. 
When used in conjunction with REP, INS performs block 
transfers at full bus bandwidth. 

Encoding: 

I0110110wl 

INS Operands Clocks Transfers Bytes 

dest-string,port (14) 2 1 
(repeaUdest-string, 

INS Coding Example 

INS BUFF1 , USART 0 

port (8+8/rep) 2/rep 1 REP INS BUFF1 , USART 0 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

INT INTERRUPT INT 
Operation: 

(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- FLAGS 
(IF)+-O 
(TF) +- 0 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (CS) 
(CS) +- (TYPE * 4 + 2) 
(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (IP) 
(lP) +- (TYPE * 4) 

Description: 

INT interrupt-type 

INT (Interrupt) activates the interrupt pro­
cedure specified by the interupt-type operand. 
INT decrements the stack pointer by two, 
pushes the flags onto the stack, and clears the 
trap (TF) and interrupt-enable (IF) flags to 
disable single-step and maskable interrupts. 
The flags are stored in the format used by the 
PUSHF instruction. SP is decremented again 
by two, and the CS register is pushed onto the 
stack. The address of the interrupt pointer is 
calculated by multiplying interrupt-type by 
four; the second word of the interrupt pointer 
replaces CS. SP again is decremented by two, 
and IP is pushed onto the stack and is replaced 

Flags Affected: 

IF, TF 

by the first word of the interrupt pointer. If 
interrupt-type = 3, the assembler generates a 
short (l byte) form of the instruction, known 
as the breakpoint interrupt. 

Software interrupts can be used as "supervisor 
calls," i.e., requests for service from an 
operating system. A different interrupt-type 
can be used for each type of service that the 
operating system could supply for an applica­
tion program. Software interrupts also may be 
used to check out interrupt service procedures 
written for hardware-initiated interrupts. 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

INT INTERRUPT 

Encoding: 

I 11 0011 0 v I type if v= 1 

if v = 0 then TYPE = 3 
else TYPE = type 

INT Operands Clocks 

immed8(type=3) 52(45) 
immed8(type~3) 51 (47) 

Transfers Bytes 

5 1 
5 2 

3-82 

INT 

INT Coding Example 

INT3 
INT67 
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INTO INTERRUPT ON 
OVERFLOW INTO 

Operation: 

if (OF) = 1 then 
(SP) - (SP) - 2 
((SP) + 1 :(SP)) - FLAGS 
(IF) - 0 
(TF) - 0 
(SP) - (SP) - 2 
((SP) + 1 :(SP)) -- (CS) 
(CS) - (12H) 
(SP) -- (SP) - 2 
((SP) + 1 :(SP)) - (lP) 
(lP) - (10H) 

Description: 

INTO (Interrupt on Overflow) generates a 
software interrupt if the overflow flag (OF) is 
set; otherwise control proceeds to the follow­
ing instruction without activating an interrupt 
procedure. INTO addresses the target inter­
rupt procedure (its type is 4) through the inter-

Encoding: 

1110011101 

Flags Affected: 

None 

rupt pointer at location lOH; it clears the TF 
and IF flags and otherwise operates like INT. 
INTO may be written following an arithmetic 
or logical operation to activate an interrupt 
procedure if overflow occurs. 

INTO Operands Clocks Transfers Bytes INTO Coding Example 

(no operands) 530r4 
(48 or 4) 5 1 INTO 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

IRET INTERRUPT RETURN 

Operation: 

(IP) - ((SP) + 1 :(SP)) 
(SP) - (SP) + 2 
(CS) +- ((SP) + 1 :(SP)) 
(SP) +- (SP) + 2 
FLAGS +- ((SP) + 1 :(SP)) 
(SP) +- (SP) + 2 

Description: 

IRET (Interrupt Return) transfers control 
back to the point of interruption by popping 
IP, CS and the flags from the stack. IRET thus 
affects all flags by restoring them to previously 
saved values. IRET is used .to exit any inter­
rupt procedure, whether activated by hard­
ware or software. 

Encoding: 

1110011111 

Flags Affected: 

All 

IRET 

IRET Operands Clocks Transfers Bytes IRET Coding Example 

(no operands) 32(28) 3 1 IRET 
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JA 
JNBE 

JUMP ON ABOVE JA 
JUMPONNOTBELOW JNBE 

OR EQUAL 

Operation: Flags Affected: 

if (CF) & (ZF) = 0 then None 
(IP) - (lP) + disp (sign-extended 

to 16-bits) 

Description: 

Jump on Above (JA)/ Jump on Not Below or 
Equal (JNBE) transfers control to the target 
operand (IP + displacement) if CF and ZF = O. 

Encoding: 

I 0111 0111 disp 

JAI JNBE Operands Clocks Transfers 

short-label 16or4(130r4) -

3-85 

Bytes 

2 

JA Coding Example 

JAABOVE 

JNBE Coding Example 

JNBEABOVE 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND 'INSTRUCTIONS 

JAE JUMP ON ABOVE 
OR EQUAL 

JUMP ON,NOT BELOW 

Operation: Flags Affected: 

if (CF) = 0 then None 
(IP) .- (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JAE (Jump on Above or Equal)! JNB (Jump 
on Not Below) transfers control to the target 
operand (IP + displacement) if CF = '0. 

Encoding: 

I 0111 0011 disp 

JAE 

JNB 

JAE/JNB Operands Clocks Transfers Bytes JAE Coding Example 

short-label 16or4(130r4) - 2 JAE ABOVE_EQUAL 
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JB 
JNAE 

JUMPON BELOW 

JUMP ON NOT 
ABOVE OR EQUAL 

Operation: Flags Affected: 

if (CF) = 1 then None 
(lP) +- (IP) + disp (sign-extended 

to 16-bits) 

Description: 

JB (Jump on Below)/ JNAE (Jump on Not 
Above or Equal) transfers control to the target 
operand (IP + displacement) if CF = I, 

Encoding: 

101110010 1 disp 

JB 
JNAE 

JB/JNAE Operands Clocks Transfers Bytes JB Coding Example 

short-label 16or4 
(130r4) - 2 JB BELOW 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

JBE 

JNA 

JUMP ON··BELOW 
OR EQUAL 

JUMP ON 
NOT ABOVE 

JBE 

JNA 
Operation: Flags Affected: 

IF (CF) or (ZF) = 1 then None 
(IP) ~ (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JBE (Jump on Below or Equal)/ JNA (Jump 
on Not Above) transfers control to the target 
operand (IP + displacement) if CF or ZF = 1. 

Encoding: 

I 0111 011 0 I disp 

JBE/JNA Operands Clocks Transfers 

short-label 16 or4 
(130r4) -

3-88 

Bytes 

2 

JNA Coding Example 

JNA NOT_ABOVE 
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JC JUMP ON CARRY JC 

Operation: 

if (CF) = 1 then 
(IP) ~ (IP) + disp (sign-extended 

to 16-bits) 

Description: 

JC (Jump on Carry) transfers control to the 
target operand (lP + displacement) on the con­
dition CF = 1. 

Encoding: 

I 0111 001 0 I disp 

Flags Affected: 

None 

JCOperands Clocks Transfers Bytes JC Coding Example 

short-label 16 or 4 
(130r4) - 2 JCCARRY SET 
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JCXZ JUMP IF ex 
REGISTER ZERO 

JCXZ 
Operation: 

if (ex) = 0 then 
(lP) .- (IP) + disp (sign-extended 

to 16-bits) 

Description: 

JCXZ short-label 

JeXZ (Jump if ex Zero) transfers control to 
the target operand if ex is O. This instruction 
is useful at the beginning of a loop to bypass 
the loop if ex has a zero value, i.e., to execute 
the loop zero times. 

Encoding: 

11100011 disp 

JCXZ Operands Clocks 

short-label 18or6 
(16or5) 

Flags Affected: 

None 

Transfers Bytes JCXZ Coding Example 

- 2 JCXZ COUNT DONE 
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JE 
JZ 

JUMP ON EQUAL 

JUMP ONZERO 

Operation: Flags Affected: 

if (ZF) = 1 then None 
(lP) ~ (IP) + disp (sign-extended 

to 16-bits) 

Description: 

JE (Jump on Equal)/ JZ (Jump on Zero) 
transfers control to the target operand (lP + 
displacement) if ZF = 1. 

Encoding: 

I 0111 01 00 I disp 

JE 
JZ 

JElJZ Operands Clocks Transfers Bytes JZ Coding Example 

short-label 16or4(130r4) - 2 JZZERO 
Cc 
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JG 
JNLE 

JUMP ON GREATER 

JUMPON NOT 
LESS OR EQUAL 

JG 
JNLE 

Operation: 

if ({SF) = (OF)) or (ZF) = 0 then 
(IP) +- (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JG (Jump on Greater Than)/ JNLE (Jump on 
Not Less Than or Equal) transfers control to 
the target operand (IP + displacement) if the 
conditions «SF XOR OF) or ZF = 0) are 
greater than/not less than or equal to the 
tested value. 

Encoding: 

101111111 disp 

Flags Affected: 

None 

JG/JNLE Operands Clocks Transfers Bytes JG Coding Example 

short-label 16or4(130r4) - 2 JG GREATER 
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JGE JUMP ON GREATER 
OR EQUAL 

JNL JUMP ON NOT LESS 

Operation: Flags Affected: 

if (SF) = (OF) then None 
(IP)..- (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JGE (Jump on Greater Than or Equal)! JNL 
(Jump on Not Less Than) transfers control to 
the target operand (lP + displacement) if the 
condition (SF XOR OF = 0) is greater than or 
equal/not less than the tested value. 

Encoding: 

I 011111 01 disp 

JGE 

JNL 

JGEI JNL Operands Clocks Transfers Bytes JGE Coding Example 

short-label 16or4 
(130r4) - 2 JGE GREATER_EQUAL 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

JUMP ON LESS 

JUMP ON NOT 
GREATER OR EQUAL 

Operation: Flags Affected: 

if (SF) i= (OF) then None 
(lP) ~ (IP) + disp (sign-extended 

to 16-bits) 

Description: 

JL (Jump on Less Than)/ JNGE (Jump on Not 
Greater Than or Equal), transfers control to 
the target operand if the condition (SF XOR 
OF = \) is less than/not greater than or equal 
to the tested value. 

Encoding: 

I 011111 00 I disp 

JL 

JNGE 

JLlJNGE Operands Clocks Transfers Bytes JL Coding Example 

short-label 16or4 
(130r4) - 2 JL LESS 
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JLE JUMPON LESS 
OR EQUAL 

JNG JUMP ON NOT GREATER 

Operation: 

if «SF) :#= (OF)) or «ZF) = 1) then 
(lP) +- (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JLE (Jump on Less Than or Equal to)IJNG 
(Jump on Not Greater Than) transfers control 
to the target operand (lP + displacement) if 
the conditions tested «SF XOR OF) or ZF = I) 
are less than or equal to/not greater than the 
tested value. 

Encoding: 

I 0111111 0 I disp 

Flags Affected: 

None 

JLE 

JNG 

JLE/JNG Operands Clocks Transfers Bytes JNG Coding Example 

short-label 160r 4 
(130r4) - 2 JNG NOT_GREATER 
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JMP JUMPUNCONDITIONALLY JMP 

Operation: 

if Inter-Segment then (CS) - SEG 
(IP) - DEST 

Description: 

JMP target 

JMP unconditionally transfers control to the 
target location. Unlike a CALL instruction, 
JMP does not save any information on the 
stack; no return to the instruction following 
the JMP is expected. Like CALL, the address 
of the target operand may be obtained from 
the instruction itself (direct JMP), or from 
memory or a register referenced by the instruc­
tion (indirect JMP). 

An intrasegment direct JMP changes the 
instruction pointer by adding the relative 
displacement of the target from the JMP 
instruction. If the assembler can determine 
that the target is within 127 bytes of the JMP, 
it automatically generates a two-byte instruc­
tion form called a SHORT JMP; otherwise, it 
generates a NEAR JMP that can address a 
target within ±32k. Intrasegment direct JMPS 
are self-relative and appropriate in position-

Flag's Affected: 

None 

independent (dynamically relocatable) 
routines in which the JMP and its target are 
moved together in the same segment. 

An intrasegment indirect JMP may be made 
either through memory or a 16-bit general 
register. In the first case, the word content 
referenced by the instruction replaces the 
instruction pointer. In the second case, the 
new IP value is taken from the register named 
in the instruction. 

An intersegment direct JMP replaces IP and 
CS with values contained in the instruction. 

An intersegment indirect JMP may be made 
only through memory. The first word of the 
doubleword pointer referenced by the instruc­
tion replaces IP and the second word replaces 
CS. 
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JMP JUMPUNCONDITIONALLY JMP 

Encoding: 

Intra-Segment Direct: 

1111 01 001 1 disp-Iow disp-high 

DEST = (lP) + disp 

Intra-Segment Direct Short: 

1111 01 011 1 disp 

DEST = (lP) + disp sign extended to 16-bits 

Intra-Segment Indirect: 

1111111111mod100r/ml 

DEST = (EA) 

Inter-Segment Direct: 

111101 01 0 1 offset-low offset-high 

seg-Iow seg-high 

DEST = offset, SEG = seg 

Inter-Segment Indirect: 

1111111111mod101r/ml 

DEST = (EA), SEG = (EA + 2) 

JMP Operands Clocks 

short-label 15(13) 
near-label 15(13) 
far-label 15(13) 
memptr16 18(17)+EA 
regptr16 11(11 ) 
memptr32 24(26)+EA 

Transfers 

-
-
-
-
-
-

3-97 

Bytes 

2 
3 
5 

2-4 
2 

2-4 

JMP Coding Example 

JMPSHORT 
JMP WITHIN SEGMENT 
JMP FAR LABEL 
JMP[BX]:tARGET 
JMPCX 
JMP OTHER.SEG[SI] 
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JNC JUMP ON NOT CARRY JNC 
Operation: 

if (CF) = 0 THEN 
(lP) +- (IP) + disp (sign-extended 

to 16-bits) 

Description: 

JNC (Jump on Not Carry) transfers control to 
the target operand (lP + displacement) on the 
condition CF = o. 

Encoding: 

101110011 disp 

Flags Affected: 

None 

JNC Operands Clocks Transfers Bytes JNC Coding Example 

short-label 16or4 
(130r4) - 2 JNC NO_CARRY 
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JNE JUMP ON NOT EQUAL 

JNZ JUMP ON NOT ZERO 

Operation: 

if (ZF) = 0 then 
(IP) +- (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JNE (Jump on Not Equal toll JNZ (Jump on 
Not Zero) transfers control to th'e target 
operand (IP + displacement) if the condition 
tested (ZF = 0) is true. 

Encoding: 

I 0111 01 01 disp 

Flags Affected: 

None 

JNE 
JNZ 

JNE/JNZ Operands Clocks Transfers Bytes JNE Coding Example 

short-label 16 or4 
(130r4) - 2 JNE NOT_EQUAL 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

JNO JUMP ON NOT 
OVERFLOW 

JNO 
Operation: Flags Affected: 

if (OF) = 0 then None 
(lP) - (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JNO (Jump on Not Overflow} transfers con­
trol to the target operand (lP + displacement) 
if the condition tested (OF = 0) is true. 

Encoding: 

101110001 disp 

JNO Operands Clocks Transfers 

short-label 16or4 
(130r 4) -

3-100 

Bytes 

2 

JNO Coding Example 

JNO NO OVERFLOW 
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JNS JUMP ON NOT SIGN 

Operation: 

if (SF) = 0 then 
(lP) ~ (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JNS (Jump on Not Sign) transfers control to 
the target operand (lP + displacement) when 
the tested condition (SF = 0) is true. 

Encoding: 

I 01111 001 disp 

Flags Affected: 

None 

JNS 

JNS Operands Clocks Transfers Bytes JNS Coding Example 

short-label 16or4 
(130r4) - 2 JNS POSITIVE 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

JNP 
JPO 

JUMP ON NOT PARITY 

JUMP ON PARITY ODD 

Operation: Flags Affected: 

if (PF) = 0 then None 
(IP) ..- (IP) + disp (sign-extended 

to 16-bits) 

Description: 

JNP (Jump on Not Parity)/ JPO (Jump on 
Parity Odd) transfers control to the target 
operand if the condition tested (PF = 0) is true. 

Encoding: 

101111011 disp 

JNP 
JPO 

JNP/JPO Operands Clocks Transfers Bytes JPO Coding Example 

short-label 16or4 
(130r4) - 2 JPO ODD _PARITY 
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JO JUMP ON OVERFLOW JO 
Operation: 

if (OF) = 1 then 
(IP) +- (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JO (Jump on Overflow) transfers control to 
the target operand (lP + displacement) if the 
tested condition (OF = 1) is true. 

Encoding: 

I 0111 0000 I disp 

Flags Affected: 

None 

JOOperands Clocks Transfers Bytes JO Coding Example 

short-label 16 or 4 
(130r4) - 2 JO SIGNED_OVERFLOW 
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JP 
JPE 

JUMPON PARITY 

JUMP ON PARITY EQUAL 

JP 
JPE 

Operation: Flags Affected: 

if (PF) = 1 then None 
(IP) +- (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JP (Jump on Parity)/ JPE (Jump on Parity 
Equal) transfers control to the target operand 
(lP + displacement) if the condition tested (PF 
= 1) is true. 

Encoding: 

I 01111 01 0 I disp 

JP/JPE Operands Clocks Transfers 

short-label 16 or4 
(130r4) -

3-104 

Bytes 

2 

JPE Coding Example 

JPE EVEN PARITY 
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JS JUMP ON SIGN 

Operation: 

if (SF) = 1 then 
(IP) ~ (lP) + disp (sign-extended 

to 16-bits) 

Description: 

JS (Jump on Sign) transfers control to the 
target operand OP + displacement) if the 
tested condition (SF = 1) is true. 

Encoding: 

I 01111 000 I disp 

Flags Affected: 

None 

JS 

JSOperands Clocks Transfers Bytes JS Coding Example 

short-label 16 or 4 
(130r4) - 2 JS NEGATIVE 
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LAHF LOAD REGISTER AH 
FROM FLAGS 

Operation: 

(AH) ~ (SF):(ZF):X:(AF):X:(PF):X:(CF) 

Description: 

LAHF (load register AH from flags) copies 
SF, ZF, AF, PF and CF (the 8080/8085 flags) 
into bits 7, 6, 4, 2 and 0, respectively, of 
register AH. The content of bits 5, 3 and 1 is 
undefined; the flags themselves are not 
affected. LAHF is provided primarily for con­
verting 8080/8085 assembly language pro­
grams to run on an 8086 or 8088. 

Encoding: 

1100111111 

Flags Affected: 

None 

LAHF 

LAHF Operands Clocks Transfers Bytes LAHF Coding Example 

(no operands) 4(2) - 1 LAHF 
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LOS LOAD POINTER USING OS LOS 
Operation: 

(REG) +- (EA) 
(OS) +- (EA + 2) 

Description: 

LDS destination, source 

LOS (load pointer using OS) transfers a 32-bit 
pointer variable from the source operand, 
which must be a memory operand, to the des­
tination operand and register OS. The offset 
word of the pointer is transferred to the des­
tination operand, which may be any 16-bit 
general register. The segment word of the 

Encoding: 

111 0001 01 1 mod reg rIm I 
if mod = 11 then undefined operation 

Flags Affected: 

None 

pointer is transferred to register OS. Specify­
ing Sl as the destination operand is a conve­
nient way to prepare to process a source string 
that is not in the current data segment (string 
instructions assume that the source string is 
located in the current data segment and that Sl 
contains the offset of the string). 

LOS Operands Clocks Transfers Bytes LOS Coding Example 

reg16, mem32 16(18)+EA 2 2-4 LOS SI, OATA.SEG[OI] 
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LEA LOAD EFFECTIVE 
ADDRESS 

LEA 
Operation: 

(REG) +-- EA 

Description: 

LEA destination, source 

LEA (load effective address) transfers the off­
set of the source operand (rather than its 
value) to the destination operand. The source 
operand must be a memory operand, and the 
destination operand must be a 16-bit general 

Encoding: 

10001101 mod req rim 

if mod = 11 then undefined operation 

Flags Affected: 

None 

register. LEA does not affect any flags. The 
XLA T and string instructions assume that cer­
tain registers point to operands; LEA can be 
used to load these registers (e.g., loading BX 
with the address of the translate table used by 
the XLAT instruction). 

LEA Operands Clocks Transfers Bytes LEA Coding Example 

reg16, mem16 2(6)+EA - 2-4 LEA BX,[BP)[DI] 
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LEAVE RESTORE STACK 
FOR PROCEDURE EXIT 

LEAVE 

Operation: 

(SP) -- (BP) 
(BP) -- ((SP) + 1 : (SP)) 
(SP) -- (SP) + 2 

Description: 

LEAVE executes a procedure return for a high level 
language. It deallocates all local variables and restores the SP 
and BP registers to their values immediately after the proce­
dure's invocation. 

Encoding: 

111001001 

LEAVE Operands Clocks Transfers Bytes 

(no operands) 8 1 1 

3-109 

Flags Affected: 

None 

LEAVE Coding Example 

LEAVE 

210911 

:f: , 
:1 , 
I ~ 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

LES LOAD POINTER USING ES LES 
Operation: 

(REG) +- (EA) 
(ES) +- (EA + 2) 

Description: 

LES destination, source 

LES (load pointer using ES) transfers a 32-bit 
pointer variable from the source operand, 
which must be a memory operand, to the des­
tination operand and register ES. The offset 
word of the pointer is transferred to the des­
tination operand, which may be any 16-bit 
general register. The segment word of the 

Encoding: 

111000100 I mod reg rIm I 

Flags Affected: 

None 

pointer is transferred to register ES. Specifying 
OI as the destination operand is a convenient 
way to prepare to process a destination string 
that is not in the current extra: segment. (The 
destination string must be located in the extra 
segment, and OI must contain the offset of the 
string. ) 

if mod = 11 then undefined operation 

LES Operands Clocks Transfers Bytes LES Coding Example 
~ ... 

reg16, mem32 16(18)+EA 2 2-4 LES OI,[BXl.Tf£XT _BUFF 
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LOCK LOCK THE BUS LOCK 
Operation: 

None 

Description: 

LOCK is a one-byte prefix that causes the 8088 
(configured in maximum mode) to assert its 
bus LOCK signal while the following instruc­
tion executes. LOCK does not affect any flags. 

The instruction most useful in this context is 
an exchange register with memory. A simple 
software lock may be implemented with the 
following code sequence: 

Encoding: 

1 1 1 1 0 0 0 0 

Flags Affected: 

None 

Check: MOV 
LOCK XCHG 

TEST 
JNZ 

AL,1 
Sema,AL 
AL,AL 
Check 

MOV Sema,O 

;set AL to 1 (implies locked) 
;test and set lock 
;set flags based on AL 
;retry if lock already set 

;clear the lock when done 

The LOCK prefix may be combined with the 
segment override and/ or REP prefixes. 

LOCK Operands Clocks Transfers Bytes LOCK Coding Example 

(no operands) 2(2) - 1 LOCK XCHG FLAG, AL 
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LODS LOAD STRING 
(BYTE OR WORD) 

LODS 
Operation: 

(DEST) +- (SRC) 
if (OF) = 0 then (81) +- (81) + DELTA 
else (SI) +- (SI) - DELTA 

Description: 

LODS source-string 

LODS (Load String) transfers the byte or word 
string element addressed by SI to register AL 
or AX, and updates SI to point to the next ele­
ment in the string. This instruction is not ordi­
narily repeated since the accumulator would be 

Encoding: 

11010110wl 

Flags Affected: 

None 

overwritten by each repetition, and only the 
last element would be retained. However, 
LODS is very useful in software loops as part 
of a more complex string function built up 
from string primitives and other instructions. 

if w = 0 then SRC = (SI), DEST = AL, DELTA = 1 
else SRC = (SI) + 1 :(SI), DEST = AX, DELTA = 2 

LODS Operands Clocks Transfers Bytes LODS Coding Example 

sou rce-stri ng 12(10) 1 1 LaDS CUSTOMER_NAME 
(repeat) 9+13 
sou rce-stri ng (6+ 11 Irep) 1/rep 1 REP LaDS NAME 
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LOOP LOOP LOOP 
Operation: 

(ex) ~ (ex) -1 
if (ex) -j 0 then 

Flags Affected: 

(IP) ~ (lP) + disp (sign-extended 
to 16-bits) 

Description: 

LOOP short-label 

LOOP decrements ex by 1 and transfers con­
trol to the target operand if ex is not 0; 
otherwise the instruction following LOOP is 
executed. 

Encoding: 

11100010 disp 

None 

LOOP Operands Clocks Transfers Bytes 

short-label 17 or S 
(1SorS) - 2 
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LOOP Coding Example 

LOOP AGAIN 
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LOOPE 

LOOPZ 

LOOPWHILE 
EQUAL 

LOOPWHILE 
ZERO 

LOOPE 

LOOPZ 

Operation: 

(ex) - (ex) -1 

Flags Affected: 

if (ZF) = 1 and (eX) =1= 0 then 
(IP) - (lP) + disp (sign-extended 

to 16-bits) 

Description: 

LOOPE/LOOPZ short-label 

LOOPE and LOOPZ (Loop While Equal and 
Loop While Zero) are different mnemonics for 
the same instruction (similar to the REPE and 
REPZ repeat prefixes). ex is decremented by 
I, and control is transferred to the target 
operand if ex is not a and if ZF is set; 
otherwise the instruction following LOOPEI 
LOOPZ is executed. 

Encoding: 

1111 00001 disp 

LOOPEILOOPZ 

None 

Operands Clocks Transfers Bytes 

short-label 18or6 
(16 or 6) - 2 
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LOOPE Coding Example 

LOOPEAGAIN 
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LOOPNZ 

LOOPNE 

LOOP WHILE 
NOT ZERO 

LOOP WHILE 
NOTEQUAL 

LOOPNZ 

LOOPNE 

Operation: 

(ex) ..- (ex) -1 

Flags Affected: 

if (ZF) = 0 and (eX) * 0 then 
(lP) ..- (IP) + disp (sign-extended 

to 16-bits) 

Description: 

LOOPNE/LOOPNZ short-label 

LOOPNE and LOOPNZ (Loop While Not 
Equal and Loop While Not Zero) are also 
synonyms for the same instruction, ex is 
decremented by 1, and control is transferred to 
the target operand if ex is not 0 and if ZF is 
clear; otherwise the next sequential instruction 
is executed. 

Encoding: 

111100000 1 

LOOPNEILOOPNZ 

disp 

None 

Operands Clocks Transfers Bytes 

short-label 19 or5 
(16or5) - 2 
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LOOPNE Coding Example 

LOOPNE AGAIN 
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MOV MOVE (BYTE OR WORD)MOV 

Operation: 

(DEST) +- (SRC) 

Description: 

MOV destina'tion, source 

MOVE transfers a byte or a word from the 
source operand to the destination operand. 

Encoding: 

Flags Affected: 

None 

Memory or Register Operand to/from Register Operand: 

11 0001 0 d w I mod reg rIm I 
if d = 1 then SRC = EA, DEST = REG 
else SRC = REG, DEST = EA 

Immediate Operand to Memory or Register Operand: 

111 00011 w I mod 000 rIm I data data if w=l 

SRC = data, DEST = EA 

Immediate Operand to Register: 

110 11w reg I data data if w=l 
! 

SRC = data, DEST = REG , 
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M OV MOVE (BYTE OR WORD) MOV 

Encoding: 

Memory Operand to Accumulator: 

1101 0000 w 1 addr-Iow 1 addr-high 
if w = 0 then SRC = addr, DEST = AL 
else SRC = addr+ 1 :addr, DEST = AX 

Accumulator to Memory Operand: 

1101 0001 w 1 addr-Iow 1 addr-high 
if w = 0 then SRC = AL, DEST = addr 
else SRC = AX, DEST = addr+ 1 :addr 

Memory or Register Operand to Segment Register: 

11 000111 0 Imod 0 reg r I ml 
if reg "* 01 then SRC = EA, DEST = REG 
else undefined operation 

Segment Register to Memory or Register Operand: 

11 00 0 1 1 0 0 Imod 0 reg r I ml 
SRC = REG,DEST = EA 

MOV Operands Clocks Transfers Bytes MOV Coding Example 

memory, accumulator 10(9) 1 3 MOV ARRAY AL 
accu m u lator, memory 10(8) 1 3 MOV AX,TEMP _RESULT 
register, register 2(2) - 2 MOVAX,CX 
register, memory 8(12)+EA 1 2-4 MOV BP, STACK TOP 
memory, register 9(9)+EA 1 2-4 MOV COUNT [DIf.CX 
register, immediate 4(3-4) - 2-3 MOVCL,2 
memory, immediate 10(12-13) 

+ EA 1 3-6 MOV MASK[BX][SI],2CH 
seg-reg, reg16 

. 
2(2) 2 MOVES, CX -

seg-reg, mem16 8(9)+EA 1 2-4 MOV DS,SEGMENT _BASE 
reg16, seg-reg 2(2) - 2 MOVBP, SS 
memory, seg-reg 9(11)+EA 1 2-4 MOV[BX],SEG_ SAVE,CS 
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MOVS MOVE STRING MOVS 
Operation: 

) 
Flags Affected: 

(DEST) +-- (SRC) 

Description: 

MOVS destination-string, source-string 

MOVS (Move String) transfers a byte or a 
word from the source string (addressed by SI) 
to the destination string (addressed by DI) and 
updates SI and DI to point to the next string 
element. When used in conjunction with REP, 
MOVS performs a memory-to-memory block 
transfer. 

Encoding: 

11010010wl 

None 

if w = 0 then SRC = (SI), DEST = AL, DELTA = 1 
else SRC = (SI) + 1 :(SI), DESr= AX, DELTA =2 

MOVS Operands Clocks Transfers Bytes 

dest-string, 
18(9) source-string 2 1 

(repeat) dest-string, 9+ 17/rep 
source-string (8+8/rep) 2/rep 1 

( 
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MOVS Coding Example 

MOVS LINE EDIT DATA 

REP MOVS SCREEN, 
BUFFER 
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MUL MULTIPLY MUL 
Operation: 

(DES) +- (LSRC) * (RSRC), where * 
is unsigned multiply 

if (EXT) = 0 then (CF) +- 0 
else (CF) +-1; 
(OF) +- (CF) 

Description: 

MUL source 

MUL (Multiply) performs an unsigned multi­
plication of the source operand and the accum­
ulator. If the source is a byte, then it is 
multiplied by register AL, and the double­
length result is returned in AH and AL. If the 
source operand is a word, then it is multiplied 
by register AX, and the double-length result is 
returned in registers OX and AX. The oper-

Encoding: 

11111 011 w 1 mod 1 00 rIm 1 

Flags Affected: 

CF,OF. 
AF, PF, SF, ZF undefined 

ands are treated as unsigned binary numbers 
(see AAM). If the upper half of the result (AH 
for byte ~ource, OX for word source) is non­
zero, CF and OF are set; otherwise they are 
cleared. When CF and OF are set, they indi­
cate that AH or OX contains significant digits 
of the result. The content of AF, PF, SF and 
ZF is undefined following execution of MUL. 

if w = 0 then LSRC = AL, RSRC = EA, DEST = AX, EXT = AH 
else LSRC = AX, RSRC = EA, DEST = DX:AX, EXT = DX 

MUL Operands Clocks Transfers Bytes MUL Coding Example 

regS 70-77 .:3: (26-2S)(,. D - 2 MUL BL 
reg16 11S-1n 

(35-37) - 2 MULCX 
memS 76-S3 + 

EA(32-34) 1 2-4 MUL MONTH [sl) 
mem16 124-139 2-4 MUL BAUD RATE 

+EA(41-43) 1 
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NEG NEGATE NEG 
Operation: 

(EA) - SRC - (EA) 
(EA) - (EA) + 1 (affecting flags) 

Description: 

NEG destination 

NEG (Negate) subtracts the destination 
operand, which may be a byte or a word, from 
o and returns the result to the destination. This 
forms the two's complement of the number, 
effectively reversing the sign of an integer. If 
the operand is zero, its sign is not changed. 

Encoding: 

11111 011 w 1 mod 0 11 r / m 1 

if w = 0 then SRC = FFH 
else SRC = FFFFH 

Flags Affected: 

AF, CF, OF, PF, SF, ZF 

Attempting to negate a byte containing -128 
or a word containing -32,768 causes no 
change to the operand and sets OF. NEG 
updates AF, CF, OF, PF, SF and ZF. CF is 
always set except when the operand is zero, in 
which case it is cleared. 

NEG Operands Clocks Transfers Bytes NEG Coding Example 

register 3(3) - 2 NEGAL 
memory 16(3) +EA 2 2-4 NEG MULTIPLIER 
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NOP NO OPERATION 

Operation: 

None 

Description: 

NOP 

NOP (No Operation) causes the CPU to do 
nothing. NOP does not affect any flags. 

Encoding: 

1100100001 

Flags Affected: 

None 

NOP 

NOP Operands Clocks Transfers Bytes NOP Coding Example 

(no operands) 3(3) - 1 NOP 
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NOT LOGICAL NOT NOT 
Operation: Flags Affected: 

(EA) +- SRC - (EA) 

Description: 

NOT destination 

NOT inverts the bits (forms the one's comple­
ment) of the byte or word operand. 

Encoding: 

11111 011 w 1 mod 01 0 r / m 1 

if w = 0 then SRC = FFH 
else SRC = FFFFH 

None 

NOT Operands Clocks Transfers Bytes 

register 3(3) - -
memory 16(3) +EA 2 -

NOT Coding Example 

NOTAX 
NOT CHARACTER 
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OR LOGICAL OR 

Operation: 

(DEST) +- (LSRC) OR (RSRC) 
(CF) +- 0 
(OF) +- 0 

Description: 

OR destination,source 

OR performs the logical "inclusive or" of the 
two operands (byte or word) and returns the 
result to the destination operand. A bit in the 
result is set if either or both corresponding bits 
in the original operands are set; otherwise the 
result bit is cleared. 

Flags Affected: 

3-123 

CF, OF, PF, SF, ZF. 
AF undefined 

OR 
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OR LOGICAL OR OR 

Encoding: 

Memory or Register Operand with Register Operand: 

100001 0 d w 1 mod reg rIm 1 

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRe = REG, DEST = EA 

Immediate Operand to Memory or Register Operand: 

11000000 w I mod 001 rim I data data if w=1 

LSRC = EA, RSRC = data, DEST = EA 

Immediate Operand to Accumulator: 

I 000011 0 w I data I data if w=1 I 
if w = 0 then LSHC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

OR Operands Clocks Transfers Bytes OR Coding Example 

reg ister, reg ister 3(3) - 2 ORAL, BL 
register, memory 9(10)+EA 1 2-4 OR OX,PORT 10[01] 
memorY,register 16(10)+EA 2 2-4 OR FLAG_BYTE, CL 
accumulator, 
immediate 4(3-4) - 2-3 OR AL, 011011 OOB 

register, immediate 4(4) - 3-4 ORCX,01H 
memory, immediate 17(16)+EA 2 3-6 OR[BX] .CMO _ WORO,OCFH 
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OUT OUTPUT OUT 
Operation: 

(DEST) - (SRC) 

Description: 

OUT port,accumulator 

OUT transfers a byte or a word from the AL 
register or the AX register, respectively, to an 
output port. The port number may be speci­
fied either with an immediate byte constant, 
allowing access to ports numbered 0 through 

Encoding: 

Fixed Port: 

111 1 00 11 w 1 port 

if w = 0 then SRC = AL, DEST = port 
else SRC = AX, DEST = port + 1 :port 

Variable Port: 

11110111wl 

if w = 0 then SRC = AL, DEST = (DX) 
else SRC = AX, DEST = (DX) + 1 :(DX) 

Flags Affected: 

None 

255, or with a number previously placed in 
register DX, allowing variable access (by 
changing the value in DX) to ports numbered 
from 0 through 65,535. 

OUT Operands Clocks· Transfers Bytes OUT Coding Example 

im med8,accu m u lator 10(9) 1 2 OUT 44, AX 
OX, accumulator 8(7) 1 1 OUTOX,AL 

3-125 210911 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

OUTS OUTPUT STRING OUTS 

Operation: 

(DST) -- (SRC) 

Description: 

OUTS port, destination string 

OUTS transfers a byte or word from a destination 
string (addressed by SO to an output port 
(addressed by DX). After the transfer, SI is 
updated to point to the next string element. 
When used with REP, the block transfer takes 
place at full bus bandwidth. 

Encoding: 

I0110111Wl 

Flags Affected: 

None 

OUTS Operands Clocks Transfers Bytes OUTS Coding Example 

port,source-string (14) 2 1 OUTS PORT2, BUFF2 
(repeat) port, 
sou rce-stri ng (8+8/rep) 2/rep 1 REP OUTS PORT4, BUFF2 
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POP POP 

Operation: 

(DEST) +- ((SP) + 1 :(SP)) 
(SP) +- (SP) + 2 

Description: 

POP destination 

POP transfers the word at the current top of 
stack (pointed to by SP) to the destination 
operand, and then increments SP by two to 
point to the new top of stack. POP can be used 
to move temporary variables from the stack to 
registers or memory. 

Flags Affected: 

None 
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POP POP 

Encoding: 

Memory or Register Operand: 

110001111 1 mod 000 rim I 
DEST = EA 

Register Operand: 

1 01 011 reg 

DEST= REG 

Segment Register: 

I 0 0 0 reg 1 1 1 I 
if reg =f. 01 then DEST = REG 
else undefined operation 

POP Operands Clocks 

register 8(10) 
seg-reg(CS illegal) 8(8) 
memory 17(20) +EA 

Transfers 

1 
1 
2 

3-128 

POP 

Bytes POP Coding Example 

1 POPDX 
1 POPDS 

2-4 POP PARAMETER 
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POPA 

Operation: 

(DI) +- «SP) + 1 : (SP)) 
(SP) +- (SP) + 2 
(SI) +-
(SP) +- (SP) + 2 
(BP) +- «SP) + 1 : (SP» 
(SP) +- (SP) + 2 
(BX) +- «SP) + 1: (SP» 
(SP) +- (SP) + 2 
(DX) +- «SP) + 1: (SP» 
(SP) +- (SP) + 2 
(eX) +- «SP) + 1 : (SP» 
(SP) +- (SP) + 2 
(AX) +-,«SP + 1 : (SP» 
(SP) +- (SP) + 2 

POP ALL REGISTERS POPA 

Flags Affected: 

None 
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POPA POP ALL REGISTERS POPA 

Description: 

POPA pops all data, pointer and index registers 
off of the stack. The SP value popped is discarded. 

Encoding: 

101100001 

POPA Operands Clocks Transfers Bytes 

(no operands) (51 ) 8 1 
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POPA Coding Example 

POPA 
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POPF POP FLAGS POPF 
Operation: 

Flags .- ((SP) + 1 :(SP)) 
(SP) .- (SP) + 2 

Description: 

POPF 

POPF transfers specific bits from the word at 
the current top of stack (pointed to by register 
SP) into the 8086/8088 flags, replacing 
whatever values the flags previously contained 
(see figure 2-32). SP is then incremented by 
two to point to the new top of stack. PUSHF 

Encoding: 

1100111011 

Flags Affected: 

All 

and POPF allow a procedure to save and 
restore a calling program's flags. They also 
allow a program to change the setting of TF 
(there is no instruction for updating this flag 
directly). The change is accomplished by 
pushing the flags, altering bit 8 of the memory­
image and then popping the flags. 

POPF Operands Clocks Transfers Bytes POPF Coding Example 

(no operands) 8(8) 1 1 POPF 
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PUSH PUSH 

Operation: 

(SP) +- (SP) - 2 
((SP) + 1 :(SP)) +- (SRC) 

Description: 

PUSH source 

PUSH decrements SP (the stack pointer) by 
two and then tranfers a word from the source 
operand to the top of stack now pointed to by 
SP. PUSH often is used to place parameters 
on the stack before calling a procedure; more 
generally, it is the basic means of storing tem­
porary data on the stack. 

Flags Affected: 

None 

3-132 

PUSH 
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PUSH PUSH 

Encoding: 

Memory or Register Operand: 

111111111 1 mod 11 0 rIm 1 

SRC= EA 

Register Operand: 

1 01 01 0 reg 

SRC= REG 

Segment Register: 

1 0 0 0 reg 1 1 0 1 

SRC= REG 

PUSH Operands Clocks 

register 11(10) 
seg-reg(CS legal) 10(9) 
memory 16(16)+EA 

Transfers 

1 
1 
2 

3-133 

PUSH 

Bytes PUSH Coding Example 

1 PUSH SI 
1 PUSH ES 

2-4 PUSH RETURN_CODE[SI] 
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PUSHA PUSH ALL REGISTERS PUSHA 

Operation: 

temp +-- (SP) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (AX) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (eX) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (DX) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (BX) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (SP) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (SP) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (BP) 
(SP) +- (SP) - 2 
((SP) + 1 : (SP)) +-- (SI) 
(SP) +-- (SP) - 2 
((SP) + 1 : (SP)) +-- (DI) 

Flags Affected: 

None 
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PUSHA PUSH ALL REGISTERS PUSHA 

Description: 

PUSHA pushes all data, pointer and index registers 
onto the stack. The order in which the registers are 
saved is: AX, ex, DX, BX, SP, BP, SI and DI. The SP 
value pushed is the SP value before the first register 
(AX) is pushed. 

Encoding: 

1011000001 

PUSHA Operands Clocks Transfers Bytes 

(no operands) (36) 8 1 
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PUSHA Coding Example 

PUSHA 
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PUSHF PUSH FLAGS PUSHF 
Operation: 

(SP)- (SP) - 2 

Flags Affected: 

((SP) + 1 :(SP)) - Flags 

Description: 

PUSHF 

PUSHF decrements SP (the stack pointer) by 
two and then transfers all flags to the word at 
the top of stack pointed to by SP. The flags 
themselves are not affected. 

Encoding: 

11 001 1 1 001 

None 

PUSHF Operands Clocks Transfers Bytes 

(no operands) 10(9) 1 1 

PUSHF Coding Example 

PUSHF 
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RCL ROTATE THROUGH 
CARRY LEFT 

Operation: 

(temp) - COUNT 
do while (temp) i= 0 

(tmpcf) - (CF) 
(CF) - high-order bit of (EA) 
(EA) - (EA) * 2 + (tmpcf) 
(temp) - (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) i= (CF) 

then (OF) -1 
else (OF) - 0 

else (OF) undefined 

Description: 

RCL destination, count 

RCL (Rotate through Carry Left) rotates the 
bits in the byte or word destination operand to 
the left by the number of bits specified in the 
count operand. The carry flag (CF) is treated 
as "part of" the destination operand; that is, 
its value is rotated into the low-order bit of the 
destination, and itself is replaced by the high­
order bit of the destination. 

Flags Affected: 

CF,OF 
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RCL ROTATE THROUGH 
CARRY LEFT 

RCL 

Encoding: 

1110100vw Imod010r/mi 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

RCL Operands Clocks 

register, n (5+ 1 fbit) 
memory, n (17+ 1 fbit) 
register 1, 2(2) 
register, CL 8+4fbit 

(5+ 1 fbit) 
memory, 1 15(15)+EA 
memory, CL 20 + 4fbit 

(17+1/bID+EA 

Transfers Bytes RCL Coding Example 

- 3 RCLCX,5 
2 3-5 RCLALPHA,5 
- 2 RCL CX, 1 

- 2 RCLAL, CL 
2 2-4 RCLALPHA,1 

2 2-4 RCLlBP].PARAM, CL 
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RCR ROTATE THROUGH 
CARRY RIGHT RCR 

Operation: 

(temp) - COUNT 
do while (temp) "* 0 

(tmpcf) - (CF) 
(CF) - low-order bit of (EA) 
(EA) - (EA) I 2 
high-order bit of (EA) - (tmpcf) 
(temp) - (temp)-1 

if COU NT = 1 then 
if high-order bit of (EA)"* next­

to-high-order bit of (EA) 
then (OF) -1 

else (OF) - 0 
else (OF) undefined 

Description: 

RCR destination, count 

RCR (Rotate through Carry Right) operates 
exactly like RCLexcept that the bits are 
rotated right instead of left. 

Encoding: 

111 01 00 v w 1 mod 011 rIm 1 

if v = 0 then COUNT = 1 
else COU NT = (CL) 

Flags Affected: 

CF,OF 

RCR Operands Clocks Transfers Bytes RCR Coding Example 

register, n (5+ 1 fbit) - 3 RCR BX, 5 
memory, n (17+1fbit) 2 3-5 RCR [BXl.STATUS, 5 
register, 1 2(2) - 2 RCR BX, 1 
register, CL 8+4fbit 

(5+ 1 fbit) - 2 RCR BL, CL 
memory, 1 15(15)+EA 2 2-4 RCR [BXl.STATUS, 1 
memory, CL 2O+4fbit 

(17+1fbit)+EA 2 2-4 RCR ARRAY[OI], CL 
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REP REPEAT REP 
REPE/REPZ REPE/REPZ 

REPEAT WHILE EQUAL/ 
REPEAT WHILE ZERO 

REPNE/REPNZREPNE/REPNZ 
REPEAT WHILE NOT EQUAL/ 

REPEAT WHILE NOT ZERO 

Operation: 

do while (CX) =1= 0 
service pending interrupt (if 
any) execute primitive string 

operation in succeeding byte 
(CX) - (CX) -1 
if primitive operation is CMPB, 

CMPW, SCAB, or SCAW and 
(ZF) =1= z then exit from 
while loop 

Flags Affected: 

None 
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REP REPEAT REP 
REPE/REPZ REPE/REPZ 

REPEAT WHILE EQUAL/ 
REPEAT WHILE ZERO 

REPNE/REPNZREPNE/REPNZ 
REPEAT WHILE NOT EQUAL/ 

REPEAT WHILE NOT ZERO 

Description: 

REP/REPE/REPZ/REPNE/REPNZ 

Repeat, Repeat While Equal, Repeat While 
Zero, Repeat While Not Equal and Repeat 
While Not Zero are mnemonics for two forms 
of the prefix byte that controls subsequent 
string instruction repetition. The different 
mnemonics are provided to improve program 
clarity. The repeat prefixes do not affect the 
flags, 

REP is used in conjunction with the MOVS 
(Move String) and STOS (Store String) 
instructions and is interpreted as "repeat while 
not end-of-string" (CX not 0). REPE and 
REPZ operate identically and are physically 
the same prefix byte as REP. These instruc­
tions are used with the CMPS (Compare 
String) and SCAS (Scan String) instructions 
and require ZF (posted by these instructions) 
to be set before initiating the next repetition. 
REPNE and REPNZ are mnemonics for the 
same prefix byte. These instructions function 
the same as REPE and REPZ except that the 
zero flag must be cleared or the repetition is 
terminated. ZF does not need to be initial­
ized before executing the repeated string 
instruction. 

Repeated string sequences are interruptable; 
the processor will recognize the interrupt 
before processing the next string element. 
System interrupt processing is not affected in 
any way. Upon return from the interrupt, the 
repeated operation is resumed from the point 
of interruption. However, execution does not 
resume properly if a second or third prefix 
(i.e., segment override or LOCK) has been 
specified in addition to any of the repeat 
prefixes, At interrupt time, the processor 
"remembers" only the prefix that immediately 
precedes the string instruction. After returning 
from the interrupt, processing resumes, but 
any additional prefixes specified are not in 
effect. If more than one prefix must be used 
with a string instruction, interrupts may be 
disabled for the duration of the repeated exe­
cution. However, this will not prevent a non­
mask able interrupt from being recognized. 
Also, the time that the system is unable to 
respond to interrupts may be unacceptable if 
long strings are being processed. 
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REP REPEAT REP 
REPE/REPZ REPE/REPZ 

REPEAT WHILE EaUALl 
REPEAT WHILE ZERO 

REPN E/REPNZREPN E/REPNZ 
REPEAT WHILE NOr EaUALl 

REPEAT WHILE NOT ZERO 

Encoding: 

11111001z1 

REP Operands 

(no operands) 

REPE/REPZ Operands 

(no operands) 

REPNE/REPNZ Operands 

(no operands) 

Clocks 

2(2) 

Clocks 

2(2) 

Clocks 

2(2) 

Transfers Bytes REP Coding Example . 

- 1 REP MOVS DEST, SRCE 

Transfers Bytes REPE Coding Example 

- 1 REPE CMPS DATA, KEY 

Transfers Bytes REPNE Coding Example 

- 1 REPNE SCAS INPUT_LINE 
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RET RETURN RET 
Operation: 

(lP) - ((SP)=1 :(SP)) 
(SP) - (SP) + 2 
if Inter-Segment then 

(CS) - ((SP) + 1 :(SP)) 
(SP) - (SP) + 2 

if Add Immediate to Stack Pointer 
then (SP) - (SP) + data 

Description: 

RET optional-pop-value 

RET (Return transfers control from a pro­
cedure back to the instruction following the 
CALL that activated the procedure. The 
assembler generates an intrasegment RET if 
the programmer has defined the procedure 
NEAR, or an intersegment RET if the pro­
cedure has been defined as FAR. RET pops 
the word at the top of the stack (pointed to by 
register SP) into the instruction pointer and 

Flags Affected: 

None 

increments SP by two. If RET is intersegment, 
the word at the new top of stack is popped into 
the CS register, and SP is again incremented 
by two. If an optional pop value has been 
specified, RET adds that value to SP. This 
feature may be used to discard parameters 
pushed onto the stack before the execution of 
the CALL instruction. 
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RET RETURN RET 

Encoding: 

Intra-Segment: 

1110000111 

Intra-Segment and Add Immediate to Stack Pointer: 

111 00001 0 1 data-low 

Inter-Segment: 

1110010111 

data-high 

Inter-Segment and Add Immediate to Stack Pointer: 

111 001 010 1 data-low data-high 

RET Operands Clocks Transfers Bytes RET Coding Example 

(intra-segment, 
16(16) no pop) 1 1 RET 

(intra-segment, pop) 20(18) 1 3 RET4 
(inter-segment, 
no pop) 26(22) 2 1 RET 

(inter-segment, pop) 25(25) 2 3 RET2 
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ROL ROTATE LEFT ROL 
Operation: 

(temp) - COUNT 
do while (temp);/= 0 

Flags Affected: 

(CF) - high-order bit of (EA) 
(EA) - (EA) * 2 + (CF) 
(temp) - (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA);/= (CF) 

then (OF)-1 
else (OF) - 0 

else (OF) undefined 

Description: 

ROl destination, count 

ROL (Rotate Left) rotates the destination byte 
or word left by the number of bits specified in 
the count operand. 

Encoding: 

11101 OOvw Imod 000 r/ml 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

CF, OF 

ROL Operands Clocks Transfers Bytes 

register, n (5+ 1 fbit) - 3 
memory, n (17 + 1 fbit) 2 3-5 
register, 1 2(2) - 2 
register, CL 8+4fbit 

(5+ 1 fbit) - 2 
memory, 1 15(15) +EA 2 2-4 
memory, CL 20+4fbit 

(17-f-1fbit)+EA 2 2-4 

3-145 

ROL Coding Example 

ROL BX,5 
ROL FLAG_BYTE[011,5 
ROL BX, 1 

ROL 01, CL 
ROL FLAG_BYTE[Oll, 1 

ROL ALPHA, CL 
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ROR ROTATE RIGHT ROR 
Operation: 

(temp) - COUNT 
do while (temp) =1= 0 

Flags Affected: 

(CF) - low-order bit of (EA) 
(EA) - (EA) I 2 
high-order bit of (EA) - (CF) 
(temp) - (temp)-1 

if COUNT = 1 then 
if high-order bit of (EA) =1= next­

to-high-order bit of (EA) 
then (OF)-1 

else (OF) - 0 
else (OF) undefined 

Description: 

ROR destination, count 

ROR (Rotate Right) operates similar to ROL 
except that the bits in the destination byte or 
word are rotated right instead of left. 

Encoding: 

11101 OOvw Imod001 rlml 

if v = 0 then COUNT = 1 
else COUNT = (CL) 

CF, OF 

ROR Operands Clocks Transfers Bytes 

register, n (5+ 1/bit) - 3 
memory, n (17 + 1/bit) 2 3-5 
register, 1 2(2) - 2 
register, CL 8+4/bit 

(5+ 1/bit) - 2 
memory, 1 15(15) +EA 2 2-4 
memory, CL 2O+4/bit 

(17+1/bit}+EA 2 2-4 
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ROR Coding Example 

RORAL,5 
ROR PORT_STATUS, 5 
ROR AL, 1 

ROR BX, CL 
ROR PORT _STATUS, 1 

ROR CMD_WORD, CL 
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SAHF STORE REGISTER AH 
INTO FLAGS 

Operation: 

(SF):(ZF):X:(AF):X:(PF):X:(CF) +- (AH) 

Description: 

SAHF 

SAHF (store register AH into flags) transfers 
bits 7, 6, 4, 2 and 0 from register AH into SF, 
ZF, AF, PF and CF, respectively, replacing 
whatever values these flags previously had. 
OF, OF, IF and TF are not affected. This 
instruction is provided for 8080/8085 
compatibility. 

Encoding: 

10011110 

Flags Affected: 

AF, CF, PF, SF, ZF 

SAHF 

SAHF Operands Clocks Transfers Bytes SAHF Coding Example 

(no operands) 4(3) - 1 SAHF 
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SAL SHIFT ARITHMETIC LEFT 

SH L SHIFT LOGICAL LEFT 

Operation: 

(temp) - COUNT 
do while (temp) i= 0 

(CF) +- high-order bit of (EA) 
(EA) - (EA) * 2 
(temp) - (temp)-1 

if COU NT = 1 then 
if high-order bit of (EA) i= (CE) 

then (OF) -1 
else (OF) +- 0 

else (OF) undefined 

Description: 

SHL/SAL destination, count 

SHL and SAL (Shift Logical Left and Shift 
Arithmetic Left) perform the same operation 
and are physically the same instruction. The 
destination byte or word is shifted left by the 
number of bits specified in the count operand. 
Zeros are shifted in on the right. If the sign bit 
retains its original value, then OF is cleared. 

Flags Affected: 

3-148 

CF, OF, PF, SF, ZF. 
AF undefined 

SAL 
SHL 
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SHIFT ARITHMETIC LEFT SAL 
SHL SHIFT LOGICAL LEFT 

SAL 
SHL 

Encoding: 

11101 OOvw Imcd1 OOr/m] 

if v = 0 then COU NT = 1 
else COUNT = (CL) 

SALISHL 
Operands Clocks 

register, n (5+ 1 Ibit) 
memory, n (17 + 1 Ibit) 
register, 1 2(2) 
register, CL 8+4/bit 

(5+ 1 Ibit) 
memory, 1 15(15) +EA 
memory, CL 20 + 4/bit 

(17+ 1 Ibit} +EA 

SAL/SHL 
Transfers Bytes Coding Example 

- 3 SALAH,5 
2 3-5 SAL[BX].OVERDRAW,5 
- 2 SAL AH, 1 

- 2 SHLDI, CL 
2 2-4 SHL[BX].OVERDRAW,1 

2 2-4 SAL STORE_COUNT, CL 

3-149 210911 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

SAR SHIFT'ARITHMETIC 
RIGHT 

SAR 
Operation: 

(temp) - COUNT 
do while (temp) i= 0 

(CF) - low-order bit of (EA) 
(EA) - (EA) I 2, where I is 

equivalent to signed division, 
rounding down 

(temp) - (temp)-1 
if COUNT = 1 then 

if high-order bit of (EA) i= next­
to-high-order bit of (EA) 
then (OF)-1 

else (OF) - 0 
else (OF) - 0 

Description: 

SAR destination, count 

SAR (Shift Arithmetic Right) shifts the bits in 
the destination operand (byte or word) to the 
right by the number of bits specified in the 
count operand. Bits equal to the original high­
order (sign) bit are shifted in on the left, 
preserving the sign of the original value. Note 
that SAR does not produce the same result as 
the dividend of an "equivalent" IDlY instruc-

Flags Affected: 

CF, OF, PF, SF, ZF. 
AF undefined 

tion if the destination operand is negative and 
I-bits are shifted out. For example, shifting -5 
right by one bit yields -3, while integer divi­
sion -5 by 2 yields -2. The difference in the 
instructions is that IDlY truncates all numbers 
toward zero, while SAR truncates positive 
numbers toward zero and negative numbers 
toward negative infinity. 
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SAR SHIFT ARITHMETIC 
RIGHT 

SAR 

Encoding: 

111 01 00 v w 1 mod 111 r / m I 
if v = 0 then COU NT = 1 
else COUNT = (CL) 

SAR Operands Clocks 

register, n (5+ 1 fbit) 
memory, n (17 + 1 fbi!) 
register, 1 2(2) 
register, CL 8+4fbit 

(5+ 1 fbit) 
memory, 1 15(15)+EA 
memory, CL 20 + 4fbit 

(17+1fbit)+EA 

Transfers Bytes SAR Coding Example 

- 3 SAR OX, 5 
2 3-5 SAR N_BLOCKS, 5 
- 2 SAR OX, 1 

- 2 SAR 01, CL 
2 2-4 SAR N_BLOCKS, 1 

2 2-4 SAR N_BLOCKS, CL 
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SBB SUBTRACT WITH 
BORROW 

SBB 
Operation: 

if (CF) = 1 then (DEST) = (LSRC)­
(RSRC) -1 

else (DEST) - (LSRC) - (RSRC) 

Description: 

SBB destination, source 

SBB (Subtract with Borrow) subtracts the 
source from the destination, subtracts one if 
CF is set, and returns the result to the destina­
tion operand. Both operands may be bytes or 
words. Both operands may be signed or 

Flags Affected: 

AF, CF, OF, PF, SF, ZF 

unsigned binary numbers (see AAS and DAS). 
SBB updates AF, CF, OF, PF, SF, and ZF. 
Since it incorporates a borrow from a 
previous operation, SBB may be used to write 
routines that subtract numbers longer than 16 
bits. 
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SBB SUBTRACT WITH 
BORROW 

seB 

Encoding: 

Memory or Register Operand and Register Operand: 

I 00011 0 d w 1 mod reg r / m 1 

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST = EA 

Immediate Operand from Memory or Register Operand: 

11 00000 s w I mod 0 11 r / m I data Idata if s:w=o11 

LSRC = EA, RSRC = data, DEST = EA 

Immediate Operand from Accumulator: 

I 0 0 0 1 1 1 0 w 1 data I data if w=1 I 

if w = 0 then LSRC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

SBB Operands Clocks Transfers Bytes SBB Coding Example 

register, register 3(3) - 2 SBB BX, CX 
register, memory 9(10)+EA 1 2-4 SBB DI,[BXl.PAYMENT 
memory, register 16(10)+EA 2 2-4 SBB BALANCE, AX 
accumulator, 
immediate 4(3-4) - 2-3 SBB AX, 2 

register, immediate 4(4) - 3-4 SBB Cl, 1 
memory, immediate 17(16)+EA 2 3-6 SBB COUNT [Sll, 10 . 
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SCAS SCAN (BYTE OR 
WORD) STRING 

SCAS 
Operation: 

(LSRC) - RSRC) 
if (OF) = 0 then (01) -- (01) + OELTA 
else (01) -- (01) - OELTA 

Description: 

seAS destination-string 

SCAS (Scan String) subtracts the destination 
string element (byte or word) addressed by 01 
from the content of AL (byte string) or AX 
(word string) and updates the flags, but does 
not alter the destination string or the accum­
ulator. SCAS also updates 01 to point to the 
next string element and AF, CF, OF, PF, SF 
and ZF to reflect the relationship of the scan 
value in ALI AX to the string element. If 

Encoding: 

1 1 0 1 0111W] 

Flags Affected: 

AF, CF, OF, PF, SF, ZF 

SCAS is prefixed with REPE or REPZ, the 
operatio!1 is interpreted as "scan while not 
end-of-string (CX not 0) and string-element = 
scan-value (ZF = 1)." This form may be used 
to scan for departure from a given value. If 
SCAS is prefixed with REPNE or REPNZ, the 
operation is interpreted as "scan while not 
end-of-string (CX not 0) and string-element is 
not equal to scan-value (ZF = 0)." This form 
may be used to locate a value in a string. 

if w = 0 then LSRC = AL, RSRC = (01), OEL TA = 1 
else LSRC = AX, RSRC = (01) + 1 :(01), OEL TA = 2 

SCAS Operands Clocks Transfers Bytes SCAS Coding Example 

dest-string 15(15) 1 1 SCAS INPUT_LINE 
(repeat)dest-string 9+15 

(5+ 15/rep) 1/rep 1 REPNE SCAS BUFFER 
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SHR SHIFT LOGICAL RIGHT 

Operation: 

(temp) - COUNT 
do while (temp) "* 0 

CF) - low-order bit of (EA 
(EA) - (EA) / 2, where I is 

equivalent to unsigned 
division 

(temp) - (temp)-1 
if COUNT = 1 then 

if high-order bit of (EA) "* next­
to-high-order bit of (EA) 
then (OF) -1 

else (OF) - 0 
else (OF) undefined 

Description: 

SHR destination, source 

SHR (Shift Logical Right) shifts the bits in the 
destination operand (byte or word) to the right 
by the number of bits specified in the count 
operand. Zeros are shifted in on the left. If the 
sign bit retains its original value, then OF is 
cleared. 

Flags Affected: 

3-155 

CF, OF, PF, SF, ZF. 
AF undefined 

SHR 
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SHR SHIFT LOGICAL RIGHT SHR 

Encoding: 

111 01 00 v w 1 mod 1 01 rIm I 
if v = 0 then COU NT = 1 
else COUNT = (CL) 

SHR Operands Clocks 

register, n i (5+ 1 fbit) 
memory, n (17+1fbit) 
register, 1 2(2) 
register, CL 8+4fbit 

, (5+ 1 fbit) 
memory, 1 15(15) +EA 
memory, CL 2O+4fbit 

(17+1fbit)+EA 

Transfers Bytes SHR Coding Example 

- 3 SHRSI,5 
2 3-5 SHR ID_BYTE[SI][BXl, 5 
- 2 SHR SI, 1 

- 2 SHR SI, CL 
2 2-4 SHR ID_BYTE[SIJ[BXl, 1 

2 2-4 SHR INPUT_WORD, CL 
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STC SET CARRY STC 
Operation: 

(CF) -1 

Flags Affected: 

Description: 

STC 

STC (Set Carry flag) sets CF to 1 and affects 
no other flags. 

Encoding: 

1111110011 

CF 

STC Operands Clocks Transfers 

(no operands) 2(2) -

3-157 

Bytes STC Coding Example 

1 STC 
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STD SET DIRECTION FLAG 

Operation: 

(DF) +-1 

Description: 

STD 

STD (Set Direction flag) sets OF to I causing 
the string instructions to auto-decrement the 
SI and/or DI index registers. STD does not 
affect any other flags. 

Encoding: 

111111101 

Timing: 2 clocks 

Flags Affected: 

DF 

STD 

STD Operands Clocks Transfers Bytes STD Coding Example 

(no operands) 2(2) - 1 sro 
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STI SET INTERRUPT· 
ENABLE FLAG 

STI 
Operation: 

(IF) -1 

Flags Affected: 

Description: 

STI (Set Interrupt-enable flag) sets IF to I, 
enabling processor recognition of mask able 
interrupt requests appearing on the INTR line. 
Note however, that a pending interrupt will 
not actually be recognized until the instruction 
following STi has executed. STI does not 
a ffect any other flags. 

Encoding: 

11111011 

IF 

STI Operands Clocks Transfers 

(no operands) 2(2) -

3-159 

Bytes STI Coding Example 

1 STI 
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STOS STORE (BYTE/ORI 
WORD) STRING 

STOS 
Operation: 

(OEST) ~ (SRC) 

Flags Affect~d: 

if (OF) = 0 then (01) ~ (01) + DELTA 
else (01) ~ (01) - OEL TA 

Description: 

STOS destination-string 

STOS (Store String) transfers a byte or word 
from register AL or AX to the string element 
addressed by DI and updates DI to point to the 
next location in the string. As a repeated 
operation, STOS provides a convenient way 
to initialize a string to a constant value (e.g., to 
blank out a print line). 

Encoding: 

11010101wl 

None 

if w = 0 then SRC = AL, OEST = (01), OELTA = 1 
else SRC = AX, OEST = (01) + 1 :(01), OELTA = 2 

STOS Operands Clocks Transfers Bytes 

dest-string 11(10) 1 1 
(repeat)dest-stri ng 9+10/rep 

(6+9/rep) 1/rep 1 

3-160 

STOS Coding Example 

STOP PRINT LINE 

REP STOS DISPLAY 
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SUB SUBTRACT 

Operation: 

(DEST) +- (LSRC) - (RSRC) 

Description: 

SU B destination, source 

The source operand is subtracted from the 
destination operand, and the result replaces 
the destination operand. The operands may be 
bytes or words. Both operands may be signed 
or unsigned binary numbers (see AAS and 
DAS). SUB updates AF, CF, OF, PF, SF and 
ZF. 

Flags Affected: 

AF, CF, OF, PF, SF, ZF 
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THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

SUB SUBTRACT SUB 

Encoding: 

Memory or Register Operand and Register Operand: 

1 a a 1 a 1 ad w 1 mod reg rIm 1 

if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST = EA 

Immediate Operand from Memory or Register Operand: 

1100 a a a s w 1 mod 10 1 rIm I data Idata if s:w=01! 

LSRC = EA, RSRC = data, DEST = EA 

Immediate Operand from Accumulator: 

1 a a 1 a 11 ow! data I data if w=1 ! 

if w = a then LSRC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

SUB Operands Clocks Transfers Bytes 

register, register 3(3) - 2 
register, memory 9(10) +EA 1 2-4 
memory, register 16(10)+EA 2 2-4 
accu m u lator, 
immediate 4(3-4) - 2-3 

register, immediate 4(4) - 3-4 
memory, immediate 17(16)+EA 2 3-6 
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SUB Coding Example 

SUBCX, BX 
SUB DX,MATH TOTAL[SI] 
SUB[BP + 21, CL 

SUBAL,10 
SUB SI, 5280 
SUB[BP].BALANCE, 1000 
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TEST TEST 

Operation: 

(LSRC) & (RSRC) 
(CF) - 0 
(OF) - 0 

Description: 

TEST destination, source 

TEST performs the logical "and" of the two 
operands (byte or word), updates the flags, but 
does not return the result, i.e., neither operand 
is changed. If a TEST instruction is followed 
by a JNZ (jump if not zero) instruction, the 
jump will be taken if there are any correspond­
ing I-bits in both operands. 

Flags Affected: 
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CF, OF, PF, SF, ZF. 
AF undefined 

TEST 
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TEST TEST TEST 

Encoding: 

Memory or Register Operand with Register Operand: 

11 00001 0 w 1 mod reg rIm 1 

LSRC = REG, RSRC = EA 

Immediate Operand with Memory or Register Operand: 

11111 011 w 1 mod 000 rIm 1 data data if w=1 

LSRC = EA, RSRC = data 

Immediate Operand with Accumulator: 

11 0 1 0 1 0 0 w 1 data 1 data if w=1 

if w = 0 then LSRC = AL, RSRC = data 
else LSRC = AX, RSRC = data 

TEST Operands Clocks Transfers 

register, register 3(3) -
register, memory 9(10)+EA 1 
accumulator, 
immediate 4(3-4) -

register, immediate 5(4) -
memory, immediate 11(10)+EA -

3-164 

Bytes TEST Coding Example 

2 TEST SI, 01 
2-4 TEST SI, END_COUNT 

2-3 TEST AL, 001 OOOOOB 
3-4 TEST BX, OCC4H 
3-6 TEST RETURN_CODE,01 H 
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WAIT WAIT WAIT 
Operation: Flags Affected: 

None 

Description: 

WAIT causes the CPU to enter the wait state 
while its TEST line is not active. WAIT does 
not affect any flags. 

Encoding: 

10011011 

None 

WAIT Operands Clocks Transfers Bytes 

(no operands) 4+5n(6) - 1 
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WAIT Coding Example 

WAIT 
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XCHG EXCHANGE XCHG 
Operation: 

(temp) +- (DEST) 
(DEST) +- (SRC) 
(SRC) +- (temp) 

Description: 

XCHG destination, source 

XCHG (exchange) switches the contents of the 
source and destination (byte or word) 
operands. When used in conjunction with the 
LOCK prefix, XCHG can test and set a sema­
phore that controls access to a resource shared 
by multiple processors (see section 2.5). 

Flags Affected: 

None 
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XCHG EXCHANGE XCHG 

Encoding: 

Memory or Register Operand with Register Operand: 

11 000011 w 1 mod reg rIm 1 

SRC = EA, DEST = REG 

Register Operand with Accumulator: 

1 1 001 0 reg 1 

SRC = REG, DEST = AX 

XCHG Operands Clocks Transfers Bytes 

accumulator,reg16 3(3) - 1 
memory, register 17(17)+EA 2 2-4 
register, register 4(4) - 2 
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XCHG Coding Example 

XCHG AX, BX 
XCHG SEMAPHORE, AX 
XCHG AL, BL 
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XLAT TRANSLATE XLAT 
Operation: 

AL +- ((BX) + (AL)) 

Description: 

XLAT translate-table 

XLAT (translate) replaces a byte in the AL 
register with a byte from a 256-byte, user­
coded translation table. Register BX is 
assumed to point to the beginning of the table. 
The byte in AL is used as an index into the 
table and is replaced by the byte at the offset in 
the table corresponding to AL's binary value. 

Encoding: 

11010111 

Flags Affected: 

None 

The first byte in the table has an offset of O. 
For example, if AL contains 5H, and the sixth 
element of the translation table contains 33H, 
then AL will contain 33H following the 
instruction. XLAT is useful for translating 
characters from one code to another, the 
classic example being ASCII to EBCDIC or 
the reverse. 

XLAT Operands Clocks Transfers Bytes XLAT Coding Example 

source-table 11(11 ) 1 1 XLAT ASCII_TAB 
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XOR EXCLUSIVE OR 

Operation: 

(DEST) +- (LSRC) XOR (RSRC) 
(CF) +- 0 
(OF) +- 0 

Description: 

XOR destination, source 

XOR (Exclusive Or) performs the logical 
"exclusive or" of the two operands and 
returns the result to the destination operand. A 
bit in the result is set if the corresponding bits 
of the original operands contain opposite 
values (one is set, the other is cleared); other­
wise the result bit is cleared. 

Flags Affected: 
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CF, OF, PF, SF, ZF. 
AF undefined 

XOR 
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XOR EXCLUSIVE OR XOR 

Encoding: 

Memory or Register Operand with Register Operand: 

1 0011 00 d w 1 mod reg rim I 
if d = 1 then LSRC = REG, RSRC = EA, DEST = REG 
else LSRC = EA, RSRC = REG, DEST = EA 

Immediate Operand to Memory or Register Operand: 

11000000 w I mod 110 rim I data data if w=1 

LSRC = EA, RSRC = data, DEST = EA 

Immediate Operand to Accumulator: 

1 0011 01 0 w 1 data I data if w=1 I 
if w = 0 then LSRC = AL, RSRC = data, DEST = AL 
else LSRC = AX, RSRC = data, DEST = AX 

XOR Operands Clocks Transfers Bytes XOR Coding Example 

register, register 3(3) - 2 XOR CX, BX 
register, memory 9(10)+EA 1 2-4 XOR Cl, MASK BYTE 
memory, register 16(10)+EA 2 2-4 XOR AlPHA[SIf,DX 
accumulator, 
immediate 4(3-4) - 2-3 XOR Al, 0100001 OB 

register, immediate 4(4) - 3-4 XOR SI, 00C2H 
memory, immediate 17(16)+EA 2 3-6 XOR RETURN_CODE,OD2H 
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3.8 8086,88 PROGRAMMING EXAMPLES 

In this section and the section following, specific pro­
gramming examples are provided which illustrate 
how the instruction set and addressing modes may 
be used in various, commonly encountered pro­
gramming situations. 

The programs are primarily written in ASM-86. 
ASM-86 is the 8086/80186 assembly language. It 
provides the programmer who is familiar with the 
CPU architecture, access to all processor features. 
For critical code segments within programs that 
make sophisticated use of the· hardware, have ex­
tremely demanding performance or memory 
constraints, ASM-86 is the best choice. For detailed 
information about Intel's 8086/80186 assembly lan­
guage see: ASM86 Language Reference Manual, 
121703. 

Programs can also be written in high-level languages 
such as PLlM-86. PLlM-86 is a high-level language 
suitable for most microprocessor applications. It is 
easy to use, even by programmers who have little ex­
perience with microprocessors. Because it reduces 
software development time, PLlM-86 is ideal for 
most of the programming in any application, espe­
cially applications that must get to market quickly. 

The languages are completely compatible, and ajudi­
cious combination of the two often makes good 
sense. Prototype software can be developed rapidly 
with a high-level language. When the system is. 
operating correctly, it can then be analyzed to see 
which sections can best profit from being written in 
ASM-86. Since the logic of these sections has already 
been debugged, selective rewriting can be done 
quickly and with low risk. 

The programming examples in this section address 
the following topics: 

• Procedures 

• JMP and CALL (jump, call) 

• Bit manipulation 

• Dynamic code relocation 

• Memory mapped I/O 

• Breakpoints 

• Interrupt handling 

• String operations 

The examples are intended to show one way to use 
the instruction set and addressing modes. They do 
not demonstrate the "best" way to solve a particular 
problem. The flexibility of the 8086 and 80186 appli­
cation differences plus variations in programming 
style usually add up to a number of ways to imple­
ment a programming solution. 

Procedures (parameters, reentrancy) 

The code in Figure 3-31 illustrates several techniques 
that are typically used in writing ASM-86 proce­
dures. In this example a calling program invokes a 
procedure (called EXAMPLE) twice, passing it a dif­
ferent byte array each time. Two parameters are 
passed on the stack; the first contains the number of 
elements in the array, and the second contains the 
address (offset in D ATA2SEG) of the first array 
element. This same technique can be used to pass a 
variable-length parameter list to a procedure (the 
"array" could be any series of parameters or parame­
ter addresses). Thus, although the procedure always 
receives two parameters, these can be used to indi­
rectly access any number of variables in memory. 

Any results returned by a procedure should be 
placed in registers or in memory, but not on the 
stack. AX or AL is often used to hold a single word 
or byte result. Alternatively, the calling program can 
pass the address (or addresses) of a result area to the 
procedure as a parameter. It is good practice for 
ASM-86 programs to follow the calling conventions 
used by PLlM-86. 

EXAMPLE is defined as a FAR procedure, meaning 
it is in a different segment than the calling program. 
The calling program must use an intersegment 
CALL to activate the procedure. Note that this type 
of CALL saves CS and IP on the stack. If EXAMPLE 
were defined as NEAR (in the same segment as the 
caller) then an intrasegment CALL would be used, 
and only IP would be saved on the stack. It is the re­
sponsibility of the calling program to know how the 
procedure is defined and to issue the correct type of 
CALL. 

Figure 3-32 shows the stack before the caller pushes 
the parameters onto it. Figure 3-33 shows the stack 
as the procedure receives it after the CALL has been 
executed. 
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EXAMPLE is divided into four sections. The 
"prolog" sets up register BP so it can be used to ad­
dress data on the stack (specifying BP as a base regis­
ter in an instruction automatically refers to the stack 
segment unless a segment override prefix is coded). 
The next step in the prolog is to save the "state of 
the machine" as it existed when the procedure was 
activated. This is done by pushing any registers used 
by the procedure (only ex and BP in this case) onto 

the stack. If the procedure changes the flags, and the 
caller expects the flags to be unchanged following ex­
ecution of the procedure, they also may be saved on 
the stack. The last instruction in the prolog allocates 
three words on the stack for the procedure to use as 
local temporary storage'. Figure 3-34 shows the stack 
at the end of the prolog. Note that PLIM procedures 
assume that all registers except SP and BP can be 
used without saving and restoring. 

STACK~SEG SEGMENT 
DW 20 DUP (?) ; ALLOCATE 20-WORD ST ACK 

STACK~TOP LABEL WORD ; LABEL INITIAL TOS 
STACK~SEG ENDS 

DATA~SEG SEGMENT 
ARRAY~1 DB 10 DUP (?) ; 10-ELEMENT BYTE ARRAY 

ARRAY~2 DB 5 DUP (?) ; 5-ELEMENT BYTE ARRAY 

DATA~SEG ENDS 

PROC~SEG SEGMENT 
ASSU ME CS:PROC~SEG ,DS:DATA~SEG ,SS:STACK~SEG,ES:NOTHING 

EXAMPLE PROC 

; PROCEDURE PROLOG 
PUSH 
MOV 
PUSH 
PUSH 
PUSHF 

FAR 

BP 
BP, SP 
CX 
BX 

; MUST BE ACTIVATED BY 
INTERSEGMENT CALL 

; SAVE BP 
; ESTABLISH BASE POINTER 
; SAVE CALLER'S 

REGISTERS 
, AND FLAGS 

SUB SP,6 ; ALLOCATE3WORDS LOCAL STORAGE 
; END OF PROLOG 

; PROCEDURE BODY 
MOV CX, [BP + 8] ; GET ELEMENT COUNT 
MOV BX, [BP+6] ; GET OFFSET OF 1ST ELEMENT 
; PROCEDURE CODE GOES HERE 
; FIRST PARAMETER CAN BE ADDRESSED: 

[BX] 
; LOCAL STORAGE CAN BE ADDRESSED: 

[BP-8], [BP-10], [BP-12] 
; END OF PROCEDURE BODY 

Figure 3-31 Procedure Example 1 
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; PROCEDURE EPILOG 
ADD SP,6 
POPF 
POP BX 
POP CX 
POP BP 
; END OF EPILOG 

; PROCEDURE RETURN 
RET 

EXAMPLE ENDP 

PROC_SEG ENDS 

CALLER_SEG SEGMENT 

4 

; DE-ALLOCATE LOCAL STORAGE 
; RESTORE CALLER'S 

REGISTERS 
AND 
FLAGS 

; DISCARD 2 PARAMETERS 

; END OF PROCEDURE "EXAMPLE" 

; GIVE ASSEMBLER SEGMENT/REGISTER CORRESPONDENCE 
ASSUME CS:CALLER_SEG, 
& DS:DATA_SEG, 
& SS:STACK_SEG, 
& ES:NOTHING ; NO EXTRA SEGMENT IN THIS PROGRAM 

; INITIALIZE SEGMENT REGISTERS 
START: MOV AX,DATA_SEG 

MOV DS,AX 
MOV AX,ST ACK_SEG 
MOV SS,AX 
MOV SP,OFFSETSTACK_TOP ; POINTSPTOTOS 

; ASSUME ARRAY_1IS INITIALIZED 
, 
; CALL "EXAMPLE", PASSING ARRAY_1, THAT IS, THE NUMBER OF ELEMENTS 

IN THE ARRAY, AND THE LOCATION OFTHE FIRST ELEMENT. 
MOV AX,SIZE ARRAY _1 
PUSH AX 
MOV AX,OFFSET ARRAY_1 
PUSH AX 
CALL EXAMPLE 

; ASSUME ARRAY_2IS INITIALIZED 
, 
; CALL "EXAMPLE" AGAIN WITH DIFFERENT SIZE ARRAY. 

MOV 
PUSH 
MOV 
PUSH 
CALL 

AX,SIZE ARRAY _2 
AX 
AX,OFFSET ARRAY_2 
AX 
EXAMPLE 
ENDS 

END START 

Figure 3-31 Procedure Example 1 (continued) 
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_SP(TOS) 
I---------i 

Figure 3-32 Stack Before Pushing Parameters 

The procedure "body" does the actual processing 
(none in the example). The parameters on the stack 
are addressed relative to BP. Note that if EXAMPLE 
were a NEAR procedure, CS would not be on the 
stack and the parameters would be two bytes 
"closer" to BP. BP also is used to address the local 
variables on the stack. Local constants are best 
stored in a data or extra segment. 

The procedure "epilog" reverses the activities of the 
prolog, leaving the stack as it was when the proce­
dure was entered (see Figure 3-35). 

The procedure "return" restores CS and IP from the 
stack and discards the parameters. As Figure 3-36 
shows, when the calling program is resumed, the 
stack is in the same state as it was before any parame­
ters were pushed onto it. 

HIGH ADDRESSES 

PARAMETER 1 

PARAMETER 2 

OLDCS 

OLD IP ~SP(TOS) 

LOW ADDRESSES 

Figure 3-33 Stack at Procedure Entry 

BP+S ..... 

BP+6 ..... 

BP-S ..... 

BP-10 ..... 

BP-12 ..... 

PARAMETER 1 

PARAMETER 2 

OLD CS 

OLD IP 

OLD BP 

OLDCX 

OLD BX 

OLD FLAGS 

LOCAL 1 

LOCAL2 

LOCAL3 

HIGH ADDRESSES 

_BP 

_SP(TOS) 

LOW ADDRESSES 

Figure 3-34 Stack Following Procedure Prolog 
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HIGHER ADDRESSES 
r 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLD BP ___ BP & SP (TOS) 

h h 
LOWER ADDRESSES 

Figure 3-35 Stack Following Procedure Epilog 

Figure 3-37 shows a simple procedure that uses an 
ASM -86 structure to address the stack. Register BP 
points to the base of the structure, which is the top 
of the stack since the stack grows toward lower ad­
dresses (see Figure 3-38). Any structure element 
can then be addressed by specifying BP as a base 
register: 

[BP].structure_element 

Figure 3-39 shows a different approach to using as 
ASM-86 structure to define the stack layout. As 
shown in Figure 3-40, register BP is pointed at the 
middle of the structure (at OLD...BP) rather than at 
the base of the structure. Parameters and the return 
address are thus located at positive displacements 
(high addresses) from BP, while local variables are 
at negative displacements (lower addresses) from 
BP. This means that the local variables will be 
"closer" to the beginning of the stack segment and 
increase the likelihood that the assembler will be 
able to produce shorter instructions to access these 
variables, i.e., their offset from SS may be 255 bytes 
or less and can be expressed as a I-byte value rather 
than a 2-byte value. Exit from the subroutine also is 
slightly faster because a MOV instruction can be 
used to deallocate the local storage instead of an 
ADD (compare Figure 3-31). 

It is possible for a procedure to be activated a second 
time before it has returned from its first activation. 
For example, procedure A may caB procedure B, 
and an interrupt may occur while procedure B is 
executing. If the interrupt service procedure calls B, 
then procedure B is reentered and must be written 
to handle this situation correctly, i.e., the procedure 
must be made reentrant. 

HIGH ADDRESSES 

1-----------1- SP (TOS) 

LOW ADDRESSES 

Figure 3-36 Stack Following Procedure Return 

In PLlM-86 this can be done by simply writing: 

B:PROCEDURE(PARM 1, PARM2) REENTRANT; 

An ASM-86 procedure will be reentrant if it uses the 
stack for storing aBlocal variables. When the proce­
dure is reentered, a new "generation" of variables 
will be located on the stack. The stack will grow, but 
the sets of variables (and the parameters and return 
addresses as well) will automatically be kept straight. 
The stack must be large enough to accommodate the 
maximum "depth" of procedure activation that can 
occur under actual running conditions. In addition, 
any procedure called by a reentrant procedure must 
itself be reentrant. 

A related situation that also requires reentrant proce­
dures is recursion: 

• A calls A (direct recursion), 

• A caBs B, B caBs A (indirect recursion), 

• A caBs B, B calls C, C caBs A (indirect recursion). 
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CODE SEGMENT 
ASSUME CS:CODE 

MAX PROC 
; THIS PROCEDURE IS CALLED BY THE FOLLOWING 

SEQUENCE: 
PUSH PARM1 
PUSH PARM2 

, CALL MAX 
; IT RETURNS THE MAXIMUM OF THE TWO WORD 

PARAMETERS IN AX. 

; DEFINE THE STACK LAYOUT AS A STRUCTURE. 
STACK_LAYOUTSTRUC 
OLD_BP DW? 
RETURN_ADDR DW? 
PARM_2 DW? 
PARM_1 DW? 
STACK_LAYOUT ENDS 

; PROLOG 

; BODY 

PUSH 
MOV 

MOV 
CMP 
JG 
MOV 

; EPILOG 
FIRST_IS_MAX: POP 
; RETURN 

MAX 

CODE 

RET 
ENDP 

ENDS 
END 

; SAVED BP VALUE-BASE OF STRUCTURE 
; RETURN ADDRESS 
; SECOND PARAMETER 
; FIRST PARAMETER 

BP 
BP,SP 

AX, [BPJ.PARM_1 
AX, [BPJ.PARM_2 
FIRST _IS_MAX 
AX, [BPJ.PARM_2 

BP 

4 

; SAVE IN OLD_BP 
; POINT TO OLD_BP 

; IF FIRST 
; >SECOND 
; THEN RETURN FIRST 
;ELSERETURNSECOND 

; RESTORE BP (& SP) 

; DISCARD PARAMETERS 

Figure 3-37 Procedure Example 2 The Stack as a Structure 

HIGHER ADDRESSES 

PARAMETER 1 

PARAMETER 2 

RETURN ADDRESS 

OLDBP 

LOWER ADDRESSES 

, 

.......- BP & SP (TOS) 

" 

Jumps and Calls 

The instruction set contains many different types of 
JMP and CALL instructions (e.g., direct, indirect, 
through register, indirect through memory, etc.). 
These varying types of transfer provide efficient use 
of space and execution time in different program­
ming situations. Figure 3-41 illustrates typical use of 
the different forms of these instructions. Note that 
the ASM-86 assembler uses the terms "NEAR" and 
"FAR" to denote intrasegment and inter segment 
transfers, respectively. 

Figure 3-38 Procedure Example 2 Stack Layout 
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EXTRA SEGMENT 
; CONTAINS STRUCTURE TEMPLATE THAT "NEARPROC" 
; USES TO ADDRESS AN ARRAY PASSED BY ADDRESS. 
DUMMY STRUC 
PARM_ARRAY DB 256 DUP? 
DUMMY ENDS 
EXTRA ENDS 

CODE SEGMENT 
ASSUME CS:CODE,ES:EXTRA 

NEARPROC PROC 
; LAY OUT THE STACK (THE DYNAMIC STORAGE AREA OR DSA). 
DSASTRUC STRUC 
I OW 
LOC_ARRA Y OW 
OLD_BP OW 
RETADDR OW 

? 
10 DUP (?) 
? 
? 

; LOCAL VARIABLES FIRST 

; ORIGINAL BP VALUE 
; RETURN ADDRESS 

POINTER DO 
COUNT DB 

? 
? 
? 

; 2ND PARM-POINTER TO "PARM_ARRAY". 
; 1ST PARM-A BYTE OCCUPIES 

DSASTRUC 
DB 
ENDS 

A WORD ON THE STACK 

; USE AN EQU TO DEFINE THE BASE ADDRESS OF THE 
DSA. CANNOT SIMPLY USE BP BECAUSE IT WILL 
BE POINTING TO "OLD_BP" IN THE MIDDLE OF 

; THE DSA. 
DSA EQU [BP - OFFSET OLD_BP] 

; PROCEDURE ENTRY 
PUSH 
MOV 
SUB 

; PROCEDURE BODY 

BP ; SAVE BP 
BP, SP ; POINT BP AT OLD __ BP 
SP, OFFSET OLD_BP ; ALLOCATE LOC_ARRA Y & I 

; ACCESS LOCAL VARIABLE I 
MOV AX,DSA.I 

; ACCESS LOCAL ARRAY (3) I.E., 4TH ELEMENT 
MOV SI,6 ; WORD ARRAY-INDEX IS 3*2 
MOV AX,DSA.LOC_ARRAY [SI] 

; LOAD POINTER TO ARRAY PASSED BY ADDRESS 
LES BX,DSA.POINTER 

; ES:BX NOW POINTS TO PARM __ ARRAY (0) 
; ACCESS SI'TH ELEMENT OF PARM __ ARRAY 
MOV AL,ES:[BX].PARM_ARRAY [SI] 

; ACCESSTHEBYTEPARAMETER 
MOV AL,DSA.COUNT 

Figure 3-39 Procedure Example 3 
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; PROCEDURE EXIT 
MOV SP,BP ; DE-ALLOCATE LOCALS 
POP BP ; RESTORE BP 
; STACK NOW AS RECEIVED FROM CA~LER 
RET 6 ; DISCARD PARAMETERS 

NEARPROC 
CODE 

ENDP 
ENDS 
END 

Figure 3-39 Procedure Example 3 (continued) 

, HIGHER ADDRESSES r 

I COUNT 

-POINTER 

RETADDR 

OLD_BP -BP 

LOC_ARRAY (9) 

LOC_ARRAY (8) 

LOC_ARRAY (n 
LOC_ARRAY (8) 

LaC_ARRAY (5) 

LOC_ARRAY (4) 

LOC_ARRAY (3) 

LOC ARRAY (2) 

LOC_ARRAY(I) 

LOC __ ARRAY (0) 

I _SP 

"- " LOWER ADDRESSES 

Figure 3-40 Procedure Example 3 
Stack Layout 

The procedure in Figure 3-41 illustrates how a 
PLlM-86 DO CASE construction may be imple­
mented in ASM-86. It also shows: 

• aI)! indirect CALL through memory to a 
procedure located in another segment, 

• a direct JMP to a label in another segment, 

• an indirect JMP through memory to a label in 
the same segment, 

• an indirect JMP through a register to a label 
in the same segment, 

• a direct CALL to a procedure in another 
segment, 

• a direct CALL to a procedure in the same 
segment, 

• direct JMPs to labels in the same segment, 
within -128 to + 127 bytes ("SHORT") and 
farther than -128 to + 127 bytes ("NEAR"). 

Bit Manipulation w/RECORD 

Figure 3-42 shows the ASM-86 RECORD facility 
may be used to manipulate bit data. The example 
shows how to: 

• right-justify a bit field, 

• test for a value, 

• assign a constant known at assembly time, 

• assign a variable, 

• set or clear a bit field. 
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DATA SEGMENT 
; DEFINE THE CASE TABLE (JUMP TABLE) USED BY PROCEDURE 

"DO_CASE." THE OFFSET OF EACH LABEL WILL 
; BE PLACED IN THE TABLE BY THE ASSEMBLER. 
CASE_TABLE OW ACTIONO, ACTION1, ACTION2, 
& ACTION3, ACTION4, ACTIONS 
DATA ENDS 

; DEFINE TWO EXTERNAL (NOT PRESENT IN THIS 
ASSEMBLY BUT SUPPLIED BY R & L FACILITY) 
PROCEDURES. ONE IS IN THIS CODE SEGMENT 
(NEAR) AND ONE IS IN ANOTHER SEGMENT (FAR). 

EXTRN NEAR_PROC: NEAR, FAR_PROC: FAR 

; DEFINE AN EXTERNAL LABEL (JUMP TARGET) THAT 
IS IN ANOTHER SEGMENT. 

EXTRN ERR_EXIT: FAR 

CODE SEGMENT 
ASSUME CS: CODE, OS: DATA 

;ASSUMEDSHASBEENSETUP 
BY CALLER TO POINT TO "DATA" SEGMENT. 

DO_CASE PROC NEAR 
; THIS EXAMPLE PROCEDURE RECEIVES TWO 

PARAMETERS ON THE STACK. THE FIRST 
PARAMETER IS THE "CASE N.UMBER" OF 
A ROUTINE TO BE EXECUTED (0-5). THE SECOND 
PARAMETER IS A POINTER TO AN ERROR 
PROCEDURE THAT IS EXECUTED IF AN INVALID 
CASE NUMBER (>5) IS RECEIVED. 

; LAYOUTTHESTACK. 
ST ACK_LA YOUT STRUC 
OLD_BP OW? 
RETADDR OW? 
ERR_PROC_ADDR DO ? 
CASE_NO DB? 

DB ? 
STACK_LAYOUT ENDS 

; SET UP PARAMETER ADDRESSING 
PUSH BP 
MOV BP, SP 

; CODE TO SAVE CALLER'S REGISTERS COULD GO HERE. 

; CHECK THE CASE NUMBER 
MOV 
MOV 
CMP 
JLE 

BH,O 
BL, [BPj.CASE_NO 
BX, LENGTH CASE_TABLE 
OK ; ALL CONDITIONAL JUMPS 

; ARE SHORT DIRECT 

Figure 3·41 JMP and Call Examples 
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; CALL THE ERR.OR ROUTINE WITH A FAR 
INDIRECT CALL. A FAR INDIRECT CALL 
IS INDICATED SINCE THE OPERAND HAS 
TYPE "DOUBLEWORD." 

CALL [BP).ERR_PROC_ADDR 

.... ; JUMP DIRECTLY TO A LABEL IN ANOTHER SEGMENT. 

OK: 

AFAR DIRECT JUMP IS INDICATED SINCE 
THE OPERAND HAS TYPE "FAR." 

JMP ERR_EXIT 

; MULTIPLY CASE NUMBER BY 2 TO GET OFFSET 
INTO CASE_TABLE (EACH ENTRY IS 2 BYTES). 

SHL BX,l 
; NEAR INDIRECT JUMP THROUGH SELECTED 

ELEMENT OF CASE_TABLE. A NEAR 
INDIRECT JUMP IS INDICATED SINCE THE 
OPE RAN D HAS TYPE "WORD." 

JMP CASE_TABLE [BX) 

ACTIONO: ; EXECUTED IF CASE_NO = 0 
\' ; CODE TO PROCESS THE ZERO CASE GOES HERE. 

; FOR ILLUSTRATION PURPOSES, USE A 
NEAR INDIRECT JUMP THROUGH A 
REGISTER TO BRANCH TO THE POINT 
WHERE ALL CASES CONVERGE. 
A DIRECT JUMP (JMP ENDCASE) IS 
ACTUALLY MORE APPROPRIATE HERE. 

MOV AX, OFFSET ENDCASE 
JMP AX 

ACTION1: ; EXECUTED IF CASE_NO = 1 
;CALLAFAREXTERNALPROCEDURE.AFAR 

DIRECT CALL IS INDICATED SINCE OPERAND 
HAS TYPE "FAR." 

CALL FAR_PROC 
; CALL A NEAR EXTERNAL PROCEDURE. 

CALL NEAR_PROC 
; BRANCH TO CONVERGENCE POINT USING NEAR 

DIRECT JUMP. NOTE THAT "ENDCASE" 
IS MORE THAN 127 BYTES AWAY 
SO A NEAR DIRECT JUMP WILL BE USED. 

JMP ENDCASE 

ACTION2: ; EXECUTED IF CASE_NO =< 2 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JUMP 

Figure 3-41JMP and CALL Examples (continued) 
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ACTION3: ; EXECUTED IF CASE_NO = 3 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JMP 

; ARTIFICIALLY FORCE "ENDCASE" FURTHER AWAY 
SOTHAT ABOVE JUMPS CANNOT BE "SHORT." 

ORG 500 

ACTION4: ; EXECUTED IF CASE_NO = 4 
; CODE GOES HERE 

JMP ENDCASE; NEAR DIRECT JUMP 

ACTION5: ; EXECUTED IF CASE_NO = 5 
; CODE GOES HERE. 
; BRANCH TO CONVERGENCE POINT USING 

SHORT DIRECT JUMP SINCE TARGET IS 
WITHIN 127 BYTES. MACHINE INSTRUCTION 
HAS 1-BYTE DISPLACEMENT RATHER THAN 
2-BYTE DISPLACEMENT REQUIRED FOR 
NEAR DIRECT JUMPS. "SHORT" IS 
WRITTEN BECAUSE "ENDCASE" IS A FORWARD 
REFERENCE, WHICH ASSEMBLER ASSUMES IS 
"NEAR." IF "ENDCASE" APPEARED PRIOR 
TO THE JUMP, THE ASSEMBLER WOULD 
AUTOMATICALLY DETERMINE IF IT WERE REACHABLE 
WITH A SHORT JUMP. 

JMP SHORTENDCASE 

ENDCASE: ; ALL CASES CONVERGE HERE. 

; POP CALLER'S REGISTERS HERE. 
; RESTORE BP & SP, DISCARD PARAMETERS 

AND RETURN TO CALLER. 
MOV SP, BP 
POP BP 
RET 6 

ENDP 
ENDS 
END ; OF ASSEMBLY 

. Figured 3-41 JMP and CALL Examples (continued) 
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DATA SEGMENT 
; DEFINE A WORD ARRAY 
XREF DW 3000 DUP (?) 
; EACH ELEMENT OF XREF CONSISTS OF 3.FIELDS: 

A 2-BIT TYPE CODE, 
A 1-BIT FLAG, 

; A 13-BIT NUMBER. 
; DEFINE A RECORD TO LAY OUT THIS ORGANIZATION. 
LINE REC RECORD LINE_TYPE: 2, 
& VISIBLE: 1, 
& LlNE_NUM: 13 
DATA ENDS 

CODE SEGMENT 
ASSUME CS: CODE, DS: DATA 

; ASSUME SEGMENT REGISTERS ARE SET UP PROPERLY 
AND THAT SIINDEXES AN ELEMENT OF XREF. 

; A RECORD FIELD-NAME USED BY ITSELF RETURNS 
THE SHIFT COUNT REQUIRED TO RIGHT-JUSTIFY 

; THE FIELD. ISOLATE "LINE_TYPE" IN THIS 
; MANNER. 

MOV AL, XREF [SI) 
MOV CL, LINE_TYPE 
SHR AX, CL 

; THE "MASK" OPERATOR APPLIED TO A RECORD 
FIELD-NAME RETURNS THE BIT MASK 
REQUIRED TO ISOLATE THE FIELD WITHIN 
THE RECORD. CLEAR ALL BITS EXCEPT 
"LlNE_NUM." 

MOV DX, XREF[SI) 
AND DX, MASK LlNE_NUM 

; DETERMINE THE VALUE OF THE "VISIBLE" FIELD 
TEST XREF[SIJ, MASK VISIBLE 
JZ NOT_VISIBLE 

; NO JUMP IF VISIBLE = 1 
NOT_VISIBLE: ; JUMP HERE IF VISIBLE = 0 

; ASSIGN A CONSTANT KNOWN AT ASSEMBLY-TIME 
TO A FIELD, BY FIRST CLEARING THE BITS 
AND THEN OR'ING IN THE VALUE. IN 
THIS CASE "LINE_TYPE" IS SET TO 2 (10B). 

AND XREF[SIJ, NOT MASK LINE_TYPE 
OR XREF[SIJ,2 SHL LINE_TYPE 

; THE ASSEMBLER DOES THE MASKING AND SHIFTING. 
; THE RESULT IS THE SAME AS: 

AND XREF[SIJ, 3FFFH 
OR XREF[SIJ, 8000H 

BUT IS MORE READABLE AND LESS SUBJECT 
TO CLERICAL ERROR. 

Figure 3-42 RECORD Example 
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; ASSIGN A VARIABLE (THE CONTENT OF AX) 
TO LINE_TYPE. 

MOV 
SHL 
AND 
OR 

CL, LINE_TYPE ; SHIFTCOUNT 
AX, CL ; SHIFTTO "LINE UP" BITS 
XREF[SI], NOT MASK LINE_TYPE ; CLEAR BITS 
XREF[SI], AX ; OR IN NEWVALUE 

; NO SHIFT IS REQUIRED TO ASSIGN TO THE 
RIGHT-MOST FIELD. ASSUMING AX CONTAINS 
A VALID NUMBER (HIGH 3 BITS ARE 0), 
ASSIGN AX TO "LlNE_NUM." 

AND XREF[SI], NOT MASK LlNE_NUM 
OR XREF[SI], AX 

; A FIELD MAY BE SET OR CLEARED WITH 
ONE INSTRUCTION. CLEAR THE "VISIBLE" 
FLAG AND THEN SET IT. 

AND 
OR 

XREF[SI], NOT MASK VISIBLE 
XREF[SI], MASK VISIBLE 

CODE ENDS 
END ; OF ASSEMBLY 

Figure 3-42 RECORD Example (continued) 

Position-I ndependent Code 

The following considerations apply to position­
independent code sequences: 

• A label that is referenced by a direct FAR (in­
tersegment) transfer is not moveable. 

• A label that is referenced by an indirect trans­
fer (either NEAR or FAR) is moveable so 
long as the register or memory pointer to the 
label contains the label's current address. 

• A label that is referenced by a SHORT (e.g., 
conditional jump) or a direct NEAR (intra­
segment) transfer is moveable so long as the 
referencing instruction is moved with the 
label as a unit. These transfers are self­
relative; that is, they require only that the 
label maintain the same distance from the 
referencing instruction, and actual addresses 
are immaterial. 

• Data is segment-independent, but not offset­
independent. That is, a data item may be 
moved to a different segment, but it must 
maintain the same offset from the beginning 
of the segment. Placing constants in a unit of 

code also effectively makes the code off­
set-dependent, and therefore is not 
recommended. 

• A procedure should not be moved while it is 
active or while any procedure it has called is 
active. 

• A section of code that has been interrupted 
should not be moved. 

The segment that is receiving a section of code must 
have "room" for the code. If the MOVS (or 
MOVSB or MOVSW) instruction attempts to auto­
increment 01 past 64K, it wraps around to 0 and 
causes the beginning of the segment to be 
overwritten. If a segment override is needed for the 
source operand, code similar to the following can be 
used to properly resume the instruction if it is 
interrupted: 

RESUME: REP MOVS DESTINATION.ES:SOURCE 
;IF CX NOT~O THEN INTERRUPT HAS OCCURRED 

AND CX,CX ;CX~O? 

lNZ RESUME ;NO,FINISH EXECUTION 
;CONTROL COMES HERE WHEN STRING HAS BEEN MOVED. 

On the 8086,88, if the MOVS is interrupted, the 
CPU "remembers" the segment override but 
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"forgets" the presence of the REP prefix when exe­
cution resumes. Testing ex indicates whether the in­
struction is completed or not. Jumping back to the 
instruction resumes it where it left off. Note that a 
segment override cannot be specified with MOVSB 
or MOVSW. 

DynamiC Code Relocation 

Figure 3-43 illustrates one approach to moving pro­
grams in memory at execution time. A "supervisor" 

program (which is not moved) keeps a pointer varia­
ble that contains the current location (offset and seg­
ment base) of a position-independent procedure. 
The supervisor always calls the procedure through 
this pointer. The supervisor also has access to the 
procedure's length in bytes. The procedure is moved 
with the MOVSB instruction. After the procedure is 
moved, its pointer is updated with the new location. 
The ASM-86 WORD PTR operator is written to 
inform the assembler that one word of the double­
word pointer is being updated at a time. 

MAIN_DATA SEGMENT 
; SET UP POINTERS TO POSITION-INDEPENDENT PROCEDURE 

AND FREE SPACE. 
PIP_PTA DD EXAMPLE 
FREE_PTA DD TARGET_SEG 
; SET UP SIZE OF PROCEDURE IN BYTES 
PIP_SIZE DW EXAMPLE_LEN 
MAIN_DATA ENDS 

STACK 

STACK_TOP 
STACK 

SEGMENT 
DW 20 DUP(?) 

LABEL WORD 
ENDS 

SOURCE_SEG SEGMENT 

; 20 WORDS FOR STACK 

; TOS BEGINS HERE 

; THE POSITION-INDEPENDENT PROCEDURE IS INITIALLY IN THIS SEGMENT. 
; OTHER CODE MAY PRECEDE IT, I.E., ITS OFFSET NEED NOT BE ZERO. 
ASSUME CS:SOURCE_SEG 
EXAMPLE PROC FAR 

; THIS PROCEDURE READS AN 8-BIT PORT UNTIL 
; BIT 3 OF THE VALUE READ IS FOUND SET. IT 
; THEN READS ANOTHER PORT. IF THE VALUE READ 
; IS GREATER THAN 10H IT WRITES THE VALUE TO 
; A THIRD PORT AND RETURNS; OTHERWISE IT STARTS 
; OVER. 

STATUS_PORT EQU 
PORT_READY EQU 
INPUT_PORT EQU 
THRESHOLD EQU 
OUTPUT_PORT EQU 

ODOH 
008H 
OD2H 
010H 
OD4H 

Figure 3-43 Dynamic Code Relocation Example 
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CHECK_AGAIN: IN 
TEST 
JNE 
IN 
CMP 
JLE 
OUT 

RET 

AL,STATUS_PORT 
AL, PORT_READY 
CHECK_AGAIN 
AL,INPUT_PORT 
AL,THRESHOLD 
CHECK_AGAIN 
OUTPUT _PORT,AL 

; RETURN TO CALLER 

; GET STATUS 
; DATA READY? 
; NO, TRY AGAIN 
; YES, GET DATA 
; > 10H? 
; NO, TRY AGAIN 
; YES, WRITE IT 

; GET PROCEDURE LENGTH 
EXAMPLE_LEN EQU 

ENDP 
(OFFSET THIS BYTE)-(OFFSET CHECK_AGAIN) 
EXAMPLE ENDP 

SOURCE_SEG ENDS 

TARGET_SEG SEGMENT 
; THE POSITION-INDEPENDENT PROCEDURE 

IS MOVED TO THIS SEGMENT, WHICH IS 
; INITIALLY "EMPTY." 
; IN TYPICAL SYSTEMS, A "FREE SPACE MANAGER" WOU LD 
; MAINTAIN A POOL OF AVAILABLE MEMORY SPACE 
; FOR ILLUSTRATION PURPOSES, ALLOCATE ENOUGH 

SPACE TO HOLD IT 
DB EXAMPLE_LEN DUP (?) 

TARGET_SEG ENDS 

MAIN_CODE SEGMENT 
; THIS ROUTINE CALLS THE EXAMPLE PROCEDURE 
; AT ITS INITIAL LOCATION, MOVES IT, AND 
; CALLS IT AGAIN AT THE NEW LOCATION. 

ASSUME 
& 

CS:MAIN_CODE,SS:STACK, 
DS:MAIN_DATA,ES:NOTHING 

; INITIALIZE SEGMENT REGISTERS & ST ACK POINTER. 
START: MOV AX,MAIN_DATA 

MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP ,OFFSET ST ACK __ TOP 

; CALL EXAMPLE AT INITIAL LOCATION. 
CALL PIP PTR 

; SET UP CX WITH COUNT OF BYTES TO MOV 
MOV CX,PIP _SIZE 

Figure 3-43 Dynamic Code Relocation Example (continued) 
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; SAVE OS, SET UP DS/SI AND ES/DI TO 
POINT TO THE SOURCE AND DESTINATION 
ADDRESSES. 

PUSH 
LES 
LOS 

OS 
DI,FREE_PTR 
SI,PIP_PTR 

; MOVETHEPROCEDURE. 
CLD ; AUTO INCREMENT 
REP MOVSB 

; RESTORE OLD ADDRESSABILITY. 
MOV AX,DS ; HOLD TEMPORARILY 
POP OS 

; UPDATE POINTER TO POSITION-INDEPENDENT PROCEDURE 
MOV WORD PTR PIP _PTR+2,ES 
SUB DI,PIP _SIZE ; PRODUCES OFFSET 
MOV WORD PTR PIP _PTR,DI 

; UPDATE POINTER TO FREE SPACE 
MOV WORD PTR FREE_PTR+2,AX 
SUB SI,PIP _SIZE ; PRODUCES OFFSET 
MOV WORD PTR FREE_PTR,SI 

; CALL POSITION-INDEPENDENT PROCEDURE AT 
NEW LOCATION AND STOP 

CALL PIP _PT~ 
MAIN_CODE ENDS 

END START 

Figure 3-43 Dynamic Code Relocation Example (continued) 

Memory Mapped 1/0 

Figure 3-44 shows how memory-mapped I/O can be 
used to address a group of communication lines as 
an "array." In the example, indexed addressing is 
used to poll the array of status ports, one port at a 
time. Any of the other memory addressing modes 
may be used in conjunction with memory-mapped 
I/O devices as well. 

In Figure 3-45 a MOYS instruction is used to per­
form a high-speed transfer to a memory-mapped 
line printer. Using this technique requires the hard­
ware to be set up as follows. Since the MOYS instruc­
tion transfers characters to successive memory 
addresses, the decoding logic must select the line 
printer if any of these locations is written. One way 
of accomplishing this is to have the chip select logic 
decode only the upper 12 lines of the address bus 
(AI9-A8), ignoring the contents of the lower eight 
lines (A7-AO). When data is written to any address 
in this 256-byte block, the upper 12 lines will not 
change, so the printer will be selected. 

Breakpoints 

Figure 3-46 illustrates how a program may set a 
breakpoint. In the example, the breakpoint routine 
puts the processor into single-step mode, but the 
same general approach could be used for other pur­
poses as well. A program passes the address where 
the break is to occur to a procedure that saves the 
byte located at that address and replaces it with an 
INT 3 (breakpoint) instruction. When the CPU en­
counters the breakpoint instruction, it calls the type 
3 interrupt procedure. In the example, this procedure 
places the processor into single-step mode starting 
with the instruction where the breakpoint was 
placed. 

Interrupt Handling 

Figure 3-47 is a block diagram of a hypothetical 
8086,88 system that is used to illustrate three dif­
ferent examples of interrupt handling: an external 
(maskable) interrupt, an external non-maskable in­
terrupt and a software interrupt. 
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COM_LINES SEGMENT AT 800H 
; THE FOLLOWING IS A MEMORY MAPPED "ARRAY" 

OF EIGHT 8-BIT COMMUNICATIONS CONTROLLERS 
(E.G.,8251 USARTS). PORTS HAVE ALL-ODD 
OR ALL-EVEN ADDRESSES (EVERY OTHER BYTE 
IS SKIPPED) FOR 8086-COMPATIBILITY. 

COM_DATA DB ? 
DB ? ; SKIP THIS ADDRESS 

COM STATUS DB ? 
DB ? ; SKIP THIS ADDRESS 
DB 28 DUP (?) ; REST OF "ARRAY" 

COM_LINES ENDS 

CODE SEGMENT 
; ASSUME STACK IS SET UP, AS ARE SEGMENT 

REGISTERS (DS POINTING TO COM_LINES). 
FOLLOWING CODE POLLS THE LINES. 

CHAR_RDY 
ST ART __ POLL: 

READ_CHAR: 
; ETC. 
CODE 

EQU 
MOV 
SUB 

TEST 
JE 
ADD 
LOOP 

JMP 

MOV 

ENDS 
END 

00000010B 
CX,8 
SI, SI 

; CHARACTER PRESENT 
; POLL 8 LINES ZERO 
; ARRAY INDEX 

COM_STATUS [SI), CHAR_RDY 
READ_CHAR; READ IF PRESENT 
SI,4 ; ELSE BUMP TO NEXT LINE 
POLL_NEXT; CONTINUE POLLING UNTIL 

, ALL 8 HAVE BEEN CHECKED 
START_POLL; START OVER 

AL,COM_DATA [SI] ;GETTHE DATA 

Figure 3-44 Memory Mapped 1/0 "Array" 

In this hypothetical system, an 8253 Programmable 
Interval Timer is used to generate a time base. One 
of the three timers on the 8253 is programmed to 
repeatedly generate interrupt requests at 50 millisec­
ond intervals. The output from this timer is tied to 
one of the eight interrupt request lines of an 8259A 
Programmable Interrupt Controller. The 8259A, in 
turn, is connected to the INTR line of an 8086. 

The power-down circuit then sends a power-fail in­
terrupt (PFI) pulse to the CPU's NMI input. After 5 
milliseconds, the power-down circuit activates 
MPRO (memory protect) to disable reading from 
and writing to the system's battery-powered RAM. 
This protects the RAM from fluctuations that may 
occur when power is actually lost 7.5 milliseconds 
after the power failure is detected. The system soft­
ware must save all vital information in the battery­
powered RAM segment within 5 milliseconds of the 
activation ofNMI. 

A power-down circuit is used in the system to illus­
trate one application of the NMI (non-maskable 
interrupt) line. If the ac line voltage drops below a 
certain threshold, the power supply activates ACLO. 

When power returns, the power-down circuit acti­
vates the system RESET line. Pressing the "cold 
start" switch also produces a system RESET. The 

3-187 210911 

il 

I 
I~ 



THE iAPX 86,88 AND iAPX 186,188 ARCHITECTURE AND INSTRUCTIONS 

PRINTER SEGMENT 
; THIS SEGMENT CONTAINS A "STRING" THAT 

IS ACTUALLY A MEMORY-MAPPED LINE PRINTER. 
THE SEGMENT (PRINTER) MUST BE ASSIGNED (LOCATED) 
TO A BLOCK OF THE ADDRESS SPACE SUCH 
THAT WRITING TO ANY ADDRESS IN THE 
BLOCK SELECTS THE PRINTER. 

PRINT SELECT DB 133 
DB 123 

PRINTER ENDS 

DATA SEGMENT 
PRINT_BUF DB 133 
PRINT_COUNT DB 1 
; OTHER PROGRAM DATA 
DATA ENDS 

CODE SEGMENT 

DUP (?) 
DUP(?) 

DUP(?) 
? 

; "STRING" REPRESENTING PRINTER 
; REST OF 256-BYTE BLOCK 

; LINE TO BE PRINTED 
; LINE LENGTH 

; ASSUME STACK AND SEGMENT REGISTERS HAVE 
BEEN SET UP (OS POINTS TO DATA SEGMENT). 
FOLLOWING CODE TRANSFERS A LINE TO 
THE PRINTER. 

ES: PRINTER 
AX, PRINTER 
ES,AX 
01,01 
SI,SI 

; PREVENT SEGMENT OVERRIDE 

; CLEAR SOURCE AND 
DESTINATION POINTERS 

ASSUME 
MOV 
MOV 
SUB 
SUB 
MOV 
CLD 
MOVS 

CX, PRINT_COUNT 

REP 
; AUTO-INCREMENT 
PRINT_SELECT, PRINT _BU F 

CODE 
; ETC. 
ENDS 
END 

Figure 3-45 Memory Mapped Block Transfer Example 

PFS (power fail status) line, which is connected to 
the low-order bit of port EO, identifies the source of 
the RESET. If the bit is set, the software executes a 
"warm start" to restore the information saved by 
the power-fail routine. If the PFS bit is cleared, the 
software executes a "cold start" from the beginning 
of the program. In either case, the software writes a 
"one" to the low-order bit of port E2. This line is 
connected to the power-down circuit's PFSR (power 
failure status reset) signal and is used to enable the 
battery-powered RAM segment. 

A software interrupt is used to update a simple real­
time clock. This procedure is written in PLlM-86, 
while the rest of the system is written in ASM-86 to 

demonstrate the interrupt handling capability of 
both languages. The system's main program simply 
initializes the system following receipt of a RESET 
and then waits for an interrupt. An example of this 
interrupt procedure is given in Figure 3-48. 

In the case of the 80186,188, the equivalent function 
of the two blocks designated as the 8259A Interrupt 
Controller and the 8253 Counter Timer chip are in­
tegrated on the chip. Thus, the example in Figure 
3-48 remains essentially the same except for the ini­
tialization code (INIT) which will need to be 
changed to reflect the presence of the integrated In­
terrupt Controller and Counter Timer. 
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INT_PTR_TAB SEGMENT 
; INTERRUPT POINTER TABLE-LOCATE AT OH 
TYPE_O DD ? 
TYPE_1 DD SINGLE_STEP 
TYPE_2 DD ? 
TYPE_3 DD BREAKPOINT 
INT_PTR_TAB ENDS 

SAVE_SEG 
SAVE_INSTR 

SEGMENT 
DB 1 DUP (?) 

SAVE_SEG ENDS 

MAIN_CODE . SEGMENT 

; NOT DEFINED IN EXAMPLE 

; NOT DEFINED IN EXAMPLE 

; INSTRUCTION REPLACED 
; BY BREAKPOINT 

; ASSUME STACK AND SEGMENT REGISTERS ARE SET UP. 

; ENABLE SINGLE-STEPPING WITH INSTRUCTION AT 
LABEL "NEXT" BY PASSING SEGMENT AND 
OFFSET OF "NEXT" TO "SET_BREAK" PROCEDURE 

; ETC. 

NEXT: 

PUSH CS 
LEA AX,CS:NEXT 
PUSH AX 
CALL FAR SET_BREAK 

IN AL,OFFFH 
; ETC. 

; BREAKPOINT SET HERE 

MAIN_CODE ENDS 

BREAK SEGMENT 
SET_BREAK PROC FAR 
; THIS PROCEDURE SAVES AN INSTRUCTION BYTE (WHOSE 

ADDRESS IS PASSED BY THE CALLER) AND WRITES 
AN INT 3 (BREAKPOINT) MACHINE INSTRUCTION 
AT THE TARGET ADDRESS. 

TARGET EQU DWORD PTR [BP + 6] 

; SET UP BP FOR PARM ADDRESSING & SAVE REGISTERS 
PUSH BP 
MOV BP, SP 
PUSH DS 
PUSH ES 
PUSH AX 
PUSH BX 

; POINT DSI BX TO THE TARGET INSTRUCTION 
LDS BX,TARGET 

Figure 3-46 Breakpoint Example 
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; POINT ES TO THE SAVE AREA 
MOV AX, SAVE_SEG 
MOV ES, AX 

; SWAP THE TARGET INSTRUCTION FOR INT 3 (OCCH) 
MOV AL,OCCH 
XCHG AL, DS: [SXJ 

; SAVE THE TARGET INSTRUCTION 
MOV ES: SAVE_INSTR, AL 

; RESTORE AND RETURN 
POP SX 
POP AX 
POP ES 
POP DS 
POP BP 
RET 4 

SET_BREAK EN DP 

BREAKPOINT PROC FAR 
; THE CPU WILL ACTIVATE THIS PROCEDURE WHEN IT 

EXECUTES THE INT 3 INSTRUCTION SET BY THE 
SET_BREAK PROCEDURE. THIS PROCEDURE 
RESTORES THE SAVED INSTRUCTION BYTE TO ITS 
ORIGINAL LOCATION AND BACKS UP THE 
INSTRUCTION POINTER IMAGE ON THE STACK 
SO THAT EXECUTION WILL RESUME WITH 
THE RESTORED INSTRUCTION. IT THEN SETS 
TF (tHE TRAP FLAG) IN THE FLAG-IMAGE 
ON THE STACK. THIS PUTS THE PROCESSOR 
IN SINGLE-STEP MODE WHEN EXECUTION 
RESUMES. 

FLAG_IMAGE EQU WORD PTR lBP+6J 
IP _ .. IMAGE EQU WORD PTR [BP + 2J 

NEXT INSTR EQU DWORD PTR IBP+21 
; SET UP BP TO ADDRESS STACK AND SAVE REGISTERS 

PUSH SP 
MOV BP, SP 
PUSH DS 
PUSH ES 
PUSH AX 
PUSH BX 

; POINT ES AT THE SAVE AREA 
MOV AX, SAVE SEG 
MOV ES, AX 

; GET THE SAVED BYTE 
MOV Al, ES: SAVE INSTR 

; GET THE ADDRESS OF THE TARGET + 1 
(INSTRUCTION FOLLOWING THE BREAKPOINT) 

LDS BX, NEXT_INSTR 

Figure 3-46 Breakpoint Example (continued) 
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; BACK UP IP-IMAGE (IN BX) AND REPLACE ON STACK 
DEC BX 
MOV IP _IMAGE, BX 

; RESTORE THE SAVED INSTRUCTION 
MOV DS: [BX], AL 

; SET TF ON STACK 
AND FLAG_IMAGE,0100H 

; RESTORE EVERYTHING AND EXIT 
POP BX 
POP AX 
POP ES 
POP DS 
POP BP 
IRET 

BREAKPOINT ENDP 

SINGLE STEP PROC FAR 
; ONCE SINGLE-STEP MODE HAS BEEN ENTERED, 

THE CPU "TRAPS" TO THIS PROCEDURE 
AFTER EVERY INSTRUCTION THAT IS NOT IN 
AN INTERRUPT PROCEDURE. IN THE CASE 
OF THIS EXAMPLE, THIS PROCEDURE WILL 
BE EXECUTED IMMEDIATELY FOLLOWING THE 
"IN AL, OFFFH" INSTRUCTION (WHERE THE 
BREAKPOINT WAS SET) AND AFTER EVERY 
SUBSEQUENT INSTRUCTION. THE PROCEDURE 
COULD "TURN ITSELF OFF" BY CLEARING 
TF ON THE STACK. 

; SINGLE-STEP CODE GOES HERE. 
; SINGLE_STEP ENDP 

BREAK ENDS 

END 

Figure 3-46 Breakpoint Example (continued) 

String Operations 

Figure 3-49 illustrates typical use of string instruc­
tions and repeat prefixes. The XLAT instruction 
also is demonstrated. The first example simply 
moves 80 words of a string, as might be done in a 
sort. Next a string is scanned from right to left (the 
index register is auto-decremented) to find the last 
period (" .") in the string. Finally a byte string of 
EBCDIC characters is translated to ASCII. The 
translation is stopped at the end of the string or 

when a carriage return character is encountered, 
whichever occurs first. This is an example of using 
the string primitives in combination with other in­
structions to build up more complex string process­
ing operations. 

3.9 80186,188 Programming Examples 

Figures 3-50 through 3-53 provide code examples 
for DMA, timer, interrupt controller and system 
initialization. 
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Figure 3-47 Interrupt Example Block Diagram 

INT ~POINTERS SEGMENT 
; INTERRUPT POINTER TABLE, LOCATE ATOH, ROM-BASED 
TYPE~O DD ? 
TYPE~1 DD ? 
TYPE~2 DD POWER~FAIL 
TYPE~3 DD 
TYPE~4 DD 
; SKIP RESERVED PART OF EXAMPLE 

TYPE~32 
TYPE~33 
TYPE~34 

TYPE._35 
TYPE~36 
TYPE~37 

TYPE~38 
TYPE~39 

ORG 32'4 
DD ? 
DD ? 
DD ? 
DD TIMER __ PULSE 
DD ? 
DD ? 
DD ? 
DD ? 

; POINTER FOR TYPE 40 SUPPLIED BY PUM-86 COMPILER 

INT ~POINTERS ENDS 

; DIVIDE-ERROR NOT SUPPLIED IN EXAMPLE. 
; SINGLE-STEP NOT SUPPLIED IN EXAMPLE. 
; NON-MASKABLE INTERRUPT 
; BREAKPOINT NOT SUPPLIED IN EXAMPLE. 
; OVERFLOW NOT SUPPLIED IN EXAMPLE. 

; 8259A IRO - AVAILABLE 
; 8259A IR1 - AVAILABLE 
; 8259A IR2 - AVAILABLE 
; 8259A IR3 
; 8259A IR4 - AVAILABLE 
; 8259A IR5 - AVAILABLE 
; 8259A IR6 - AVAILABLE 
; 8259A IR7 - AVAILABLE 

Figure 3-48 8086,88 Interrupt Procedures Example 
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BATTERY SEGMENT 
; THIS RAM SEGMENT IS BATTERY-POWERED. IT CONTAINS VITAL DATA 
; THAT MUST BE MAINTAINED DURING POWER OUTAGES. 
STACK_PTR DW? ; SP SAVE AREA 
STACK_SEG DW? ; SS SAVE AREA 
; SPACE FOR OTHER VARIABLES COULD BE DEFINED HERE. 
BATTERY ENDS 

DATA SEGMENT 
; RAM SEGMENT THAT IS NOT BACKED UP BY BATTERY 
N_PULSES DB 1 DUP (0) ; # TIMER PULSES 

; ETC. 
DATA ENDS 

STACK SEGMENT 
; LOCATED IN BATTERY-POWERED RAM 

STACK_TOP 
STACK 

DW 100DUP(?) 

LABEL WORD 
ENDS 

INTERRUPT_HANDLERS SEGMENT 
; INTERRUPT PROCEDURES EXCEPT TYPE 40 (PLfM-86) 

; THIS IS AN ARBITRARY STACKSIZE 

; LABEL THE INITIAL TOS 

ASSUME: CS:INTERRUPT _HANDLERS,DS:DA T A,SS:ST ACK ,ES: BATTERY 

POWER_FAIL PROC ; TYPE 2 INTERRUPT 
; POWER FAIL DETECT CIRCUIT ACTIVATES NMI LINE ON CPU IF POWER IS 

ABOUT TO BE LOST. THIS PROCEDURE SAVES THE PROCESSOR STATE IN 
RAM (ASSUMED TO BE POWERED BY AN AUXILIARY SOURCE) SOTHAT IT 
CAN BE RESTORED BY A WARM START ROUTINE IF POWER RETURNS 

; IP, CS, AND FLAGS ARE ALREADY ON THE STACK. 
SAVE THE OTHER REGISTERS. 

PUSH AX 
PUSH BX 
PUSH CX 
PUSH DX 
PUSH SI 
PUSH DI 
PUSH BP 
PUSH DS 
PUSH ES 

; CRITICAL MEMORY VARIABLES COULD ALSO BE SAVED ON THE STACK.ATTHIS 
POINT. ALTERNATIVELY, THEY COULD BE DEFINED IN THE "BATTERY" 
SEGMENT, WHERE THEY WILL AUTOMATICALLY BE PROTECTED IF MAIN POWER 
IS LOST. 

; SAVE SP AND SS IN FIXED LOCATIONS THAT ARE KNOWN BY WARM START ROUTINE. 
MOV AX,BATTERY 
MOV ES,AX 
MOV ES:STACK_PTR,SP 
MOV ES:STACK_SEG,SS 

; STOP GRACEFULLY 
HLT 

ENDP 

Figure 3-48 8086,88 Interrupt Procedures Example (continued) 
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TIMER_PULSE PROC ; TYPE 35 INTERRUPT 
; THIS PROCEDURE HANDLES THE 50MS INTERRUPTS GENERATED BY THE 8253. 

IT COUNTS THE INTERRUPTS AND ACTIVATES THE TYPE 40 INTERRUPT 
PROCEDURE ONCE PER SECOND. 

; DS IS ASSUMED TO BE POINTING TO THE DATA SEGMENT 
, 
; THE 8253 IS RUNNING FREE, AND AUTOMATICALLY LOWERS ITS INTERRUPT 

REQUEST. IF A DEVICE REQUIRED ACKNOWLEDGEMENT, THE CODE MIGHT GO HERE. 

; NOW PERFORM PROCESSING THAT MUST NOT BE INTERRUPTED (EXCEPT FOR NMI). 
INC N_PULSES 

; ENABLE HIGHER-PRIORITY INTERRUPTS AND DO LESS CRITICAL PROCESSING 
STI 
CMP N_PULSES,200; 1 SECOND PASSED? 
JBE DONE ; NO, GO ON. 
MOV N_PULSES,O ; YES, RESET COUNT. 
INT 40 ; UPDATE CLOCK 

; SEND NON-SPECIFIC END-OF-INTERRUPT COMMAND TO 8259A, ENABLING EQUAL 
; OR LOWER PRIORITY INTERRUPTS. 
DONE: MOV AL,020H ; EOI COMMAND 

OUT OCOH,AL ; 8259A PORT 
IRET 

TIMER_PULSE ENDP 

INTERRUPT_HANDLERS ENDS 

CODE SEGMENT 
; THIS SEGMENT WOULD NORMALLY RESIDE IN ROM. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 

INIT PROC NEAR 
; THIS PROCEDURE IS CALLED FOR BOTH WARM AND COLD STARTS TO INITIALIZE 

THE 8253 AND THE 8259A. THIS ROUTIN E DOES NOT USE STACK, DATA, OR 
EXTRA SEGMENTS, AS THEY ARE NOT SET PREDICTABLY DURING A WARM START. 
INTERRUPTS ARE DISABLED BY VIRTUE OF THE SYSTEM RESET. 

; INITIALIZE 8253 COUNTER 1 - OTHER COUNTERS NOT USED. 
; CLK INPUT TO COUNTER IS ASSUMED TO BE 1.23 MHZ. 

L050MS 
HI50MS 
CONTROL 
COUNT_1 
MODE2 

EQU 
EQU 
EQU 
EQU 
EQU 

OOOH 
OFOH 
OD6H 
OD2H 
01110100B 

; COUNT VALUE IS 
; 61440 DECIMAL. 
; CONTROL PORT ADDRESS 
; COUNTER 1 ADDRESS 
; MODE 2, BINARY 

MOV DX,CONTROL ; LOAD CONTROL BYTE 
MOV AL,MODE2 
OUT DX,AL 
MOV DX,COUNT _1 ; LOAD 50MS DOWNCOUNT 
MOV AL,L050MS 
OUT DX,AL 
MOV AL,HI50MS 
OUT DX,AL 
; COUNTER NOW RUNNING, INTERRUPTS STILL DISABLED. 

Figure 3-48 8086,88 Interrupt Procedures Example (continued) 
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INITIALIZE 8259A TO: SINGLE INTERRUPT CONTROLLER, EDGE-TRIGGERED, 
INTERRUPT TYPES 32-40 (DECIMAL) TO BE SENT TO CPU FOR INTERRUPT 
REQUESTS 0-7 RESPECTIVELY, 8086 MODE, NON-AUTOMATIC END-OF-INTERRUPT. 
MASK OFF UNUSED INTERRUPT REQUEST LINES. 

ICWl 
ICW2 
ICW4 
OCWl 
PORT_A 
PORT_B 

EQU 
EQU 
EQU 
EQU 
EQU 
EQU 

00010011 B 
00100000B 
00000001 B 
11110111B 
OCOH 
OC2H 

; EDGE-TRIGGERED, SINGLE 8259A, ICW4 REQUIRED 
; TYPE 20H, 32 - 40D 
; 8086 MODE, NORMAL EOI 
; MASK ALL BUT IR3 
; ICWl WRITTEN HERE 
; OTHER ICW'S WRITTEN HERE 

MOV DX,PORT_A ; WRITE 1ST ICW 
MOV AL,ICWl 
OUT DX,AL 
MOV DX,PORT _B ; WRITE 2ND ICW 
MOV AL,ICW2 
OUT DX,AL 
MOV AL,ICW4 ; WRITE 4TH ICW 
OUT DX,AL 
MOV AL,OCWl ; MASK UNUSED IR'S 
OUT DX,AL 

; INITIALIZATION COMPLETE, INTERRUPTS STILL DISABLED 
RET 

INIT ENDP 

USER_PGM: 
; "REAL" CODE WOULD GO HERE. THE EXAMPLE EXECUTES AN ENDLESS LOOP 

UNTIL AN INTERRUPT OCCURS. 
JMP USER_PGM 

; EXECUTION STARTS HERE WHEN CPU IS RESET. 
POWER_FAlL_STATUS EQU OEOH 
ENABLE_RAM EQU OE2H 

; ENABLE BATTERY-POWERED RAM SEGMENT 
START: MOV AL,OOl H 

OUT ENABLE_RAM,AL 

; DETERMINE WARM OR COLD START 

; PORT ADDRESS 
; PORT ADDRESS 

IN AL,POWER_FAIL~STATUS 
RCR AL,l ; ISOLATE LOW BIT 
JC WARM START 

COLD __ START: 
; INITIALIZE SEGMENT REGISTERS AND STACK POINTER. 

ASSUME CS:CODE,DS:DATA,SS:STACK,ES:NOTHING 
; RESET TAKES CARE OF CS AND IP. 
MOV AX,DATA 
MOV DS,AX 
MOV AX,STACK 
MOV SS,AX 
MOV SP,OFFSET STACK_TOP 

; INITIALIZE 8253 AND 8259A. 
CALL INIT 

; ENABLE INTERRUPTS 
STI 

Figure 3-488086,88 Interrupt Procedures Example (continued) 
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; START MAIN PROCESSING 
JMP 

WARM_START: 
; INITIALIZE 8253 AND 8259A. 

CALL INIT 

; RESTORE SYSTEM TO STATE ATTHE TIME POWER FAILED 

CODE 

; MAKE BATTERY SEGMENT ADDRESSABLE 
MOV AX, BATTERY 
MOV DX,AX 

; VARIABLES SAVED IN THE "BATTERY" SEGMENT WOULD BE MOVED 
BACK TO UNPROTECTED RAM NOW. SEGMENT REGISTERS AND 
"ASSUME" DIRECTIVES WOULD HAVE TO BE WRITTEN TO GAIN 
ADDRESSABILITY. 

; RESTORE THE OLD STACK 
MOV SS,DS:STACK_SEG 
MOV SP,DS:STACK_PTR 

; RESTORE THE OTHER REGISTERS 
POP ES 
POP DS 
POP BP 
POP DI 
POP SI 
POP DX 
POP CX 
POP BX 
POP AX 

; RESUME THE ROUTINE THAT WAS EXECUTING WHEN NMI WAS ACTIVATED. 
I.E., POP CS, IP, & FLAGS, EFFECTIVELY "RETURNING" FROM THE 
NMI PROCEDURE. 

IRET 
ENDS 

; TERMINATE ASSEMBLY AND MARK BEGINNING OFTHE PROGRAM. 
END START 

TYPE$40: DO; 
DECLARE (HOUR, MIN, SEC) BYTE PUBLIC; 
UPDATE$TOD: PROCEDURE INTERRUPT 40; 

"THE PROCESSOR ACTIVATES THIS PROCEDURE 
'TO HANDLE THE SOFTWARE INTERRUPT 
'GENERATED EVERY SECOND BY THE TYPE 35 
'EXTERNAL INTERRUPT PROCEDURE. THIS 
'PROCEDURE UPDATES A REAL-TIME CLOCK. 
'IT DOES NOT PRETEND TO BE "REALISTIC" 
'AS THERE IS NO WAY TO SET THE CLOCK." 

SEC= SEC + 1; 
IF SEC = 60 THEN DO; 

SEC =0; 
MIN=MIN+1; 
IF MIN = 60 THEN DO; 

MIN =0; 
HOUR = HOUR + 1; 
IF HOUR = 24 THEN DO; 

HOUR = 0; 
END; 

END; 
END; 

END UPDATE$TOD; 
END; 

Figure 3-48 8086,88 Interrupt Procedures Example (continued) 
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ALPHA SEGMENT 
; THIS IS THE DATA THE STRING INSTRUCTIONS WILL USE 
OUTPUT DW 100 DUP (?) 
INPUT DW 100 DUP (?) 
NAME_1 DB 'JONES, JONA' 
NAME_2 DB 'JONES, JOHN' 
SENTENCE DB 80 DUP (?) 
EBCDIC_CHARS DB 80 DUP (?) 
ASCII_CHARS DB 80 DUP (?) 
CONV_TAB DB64 DUP(OH) ;EBCDICTOASCII 

; ASCII NULLS ARE SUBSTITUTED FOR "UNPRINTABLE" CHARS 
DB 1 20H 
DB 9 DUP (OH) 
PB? '¢',',','<','(','+',OH,'&' 
DB 9 DUP (OH) 
DBB '!','$','*',')',';',' ','-','/' 
DB 8 DUP (OH) 
DB6 I 't ',', '%', '_', '>', '?' 
DB 9 DUP (OH) 
0817 ' ',':', '#', '@','II', '=','" 't 

DB7 
DB9 
DB7 
DB9 
DB 22 
DB 10 
DB6 
DB 10 
DB6 
DB10 
DB6 
DB 10 
DB6 

ALPHA ENDS 

STACK SEGMENT 

OH, 'a', 'bt, Ie', 'd', Ie', If', 'g', 'h', Ii' 
DUP (OH) 
Ij', 'k't 'I', 'm', In', '0', 'p', 'q', 'r' 
DUP (OH) 
'~', '5', It', "u', 'v', 'w', 'x', 'y', 'z' 
DUP (OH) 
, 't 'A', 'B', 'C', '0', 'E', 'F', 'G', 'H', 'I' 
DUP (OH) 
, ','J', 'K't 'L', 'M', 'N', '0', 'P', 'Q', 'R' 
DUP (OH) 
, ',OH, IS', 'T', lU', 'V', 'W', 'X', IV', 'Z' 
DUP (OH) 
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9' 
DUP (OH) 

DW 100 DUP (?) ; THIS IS AN ARBITRARY STACK SIZE 
; FOR ILLUSTRATION ONLY. 

STACK_BASE LABEL WORD ; INITIAL TOS 
STACK ENDS 

CODE 
BEGIN: 

SEGMENT 
; SET UP SEGMENT REGISTERS. NOTICE THAT 
; ES & DS POINT TO THE SAME SEGMENT, MEANING 
; THAT THE CURRENT EXTRA & DATA 
; SEGMENTS FULLY OVERLAP. THIS ALLOWS 
; ANY STRING IN "ALPHA" TO BE USED 
; AS A SOURCE OR A DESTINATION. 

Figure 3-49 String Examples 
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ASSUME CS: CODE, SS: STACK, 
& OS: ALPHA, ES:ALPHA 

MOV AX, STACK 
MOV SS, AX 
MOV SP, OFFSET STACK_BASE; INITIAL TOS 
MOV AX, ALPHA 
MOV OS, AX 
MOV ES, AX 

; MOVE THE FIRST 80 WORDS OF "INPUT" TO 
THE LAST 80 WORDS OF "OUTPUT". 

LEA SI, INPUT 
LEA 01, OUTPUT + 20 
MOV CX,80 
CLD 

REP MOVS OUTPUT, INPUT 

; FIND THE ALPHABETICALLY LOWER OF 2 NAMES. 
MOV SI, OFFSET NAME_1 
MOV 01, OFFSET NAME __ 2 
MOV CX, SIZE NAME_2 
CLD 

REPE CMPS 
JB 

NAME_2, NAME_1 
NAME_2_LOW 

; INITIALIZE 
; INDEX REGISTERS 
; REPETITION COUN I 
; AUTO-INCREMENT 

; ALTERNATIVE 
; TO LEA 
; CHAR. COUNT 
; AUTO-INCREMENT 
"WHILE EQUAL" 

NAME 1 LOW: ; NOT IN THIS EXAMPLE 
NAME_2_LOW: ; CONTROL COMES HERE IN THIS EXAMPLE. 

; 01 POINTS TO BYTE ('H') THAT 
; COMPARED UNEQUAL. 

; FIND THE LAST PERIOD (' .') IN A TEXT STRING. 
MOV 01, OFFSET SENTENCE + 

& LENGTH SENTENCE ; START AT END 
MOV CX, SIZE SENTENCE 
STD ; AUTO-DECREMENT 
MOV AL, '.' ; SEARCH ARGUMENT 

REPNE SCAS SENTENCE ; "WHILE NOT =" 
JCXZ NO_PERIOD ; IFCX=O, NO PERIOD FOUND 

PERIOD: ; IF CONTROL COMES HERE THEN 
; 01 POINTS TO LAST PERIOD IN SENTENCE. 

NO_PERIOD: ; ETC. 

; TRANSLATE A STRING OF EBCDIC CHARACTERS 
TO ASCII, STOPPING IF A CARRIAGE RETURN 
(ODH ASCII) IS ENCOUNTERED. 

MOV BX, OFFSET CONV __ TAB ; POINT TO TRANSLATE TABLE 
MOV SI, OFFSET EBCDIC_CHARS ; INITIALIZE 
MOV 01, OFFSET ASCILCHARS INDEX REGISTERS 
MOV CX, SIZE ASCILCHARS ; AND COUNTER 
CLD ; AUTO-INCREMENT 

NEXT: LODS EBCDIC_CHARS ; NEXT EBCDIC CHAR IN AL 
XLAT CONV_ TAB ; TRANSLATE TO ASCII 
STOS ASCII_CHARS ; STORE FROM AL 
TEST AL,ODH ; IS ITCARRIAGE RETURN? 
LOOPNE NEXT ; NO, CONTINUE WHILE CX NOT 0 

Figure 3-49 String Exarnples (continued) 
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CODE 

$mod186 
name 

JE CR_FOUND ; YES, JUMP 
; CONTROL COMES HERE IF ALL CHARACTERS 

HAVE BEEN TRANSLATED BUT NO 
, CARRIAGE RETURN IS PRESENT. 
; ETC. 

; DI-1 POINTS TO THE CARRIAGE RETURN 
IN ASCII_CHARS. 

ENDS 
END 

Figure 3-49 String Examples (continued) 

assembly _example_80186_DMA_support 

This file contains an example procedure which initializes the 80186 DMA controller to perform the DMA 
transfers between the 80186 system and the 8272 Floppy Disk Controller (FDC). It assumes that 
the 80186 peripheral control block has not been moved from its reset location. 

; 
argl equ word ptr [BP + 4] 
arg2 equ word ptr [BP + 6] 
arg3 equ word ptr [BP + 8] 
DMA FROM LOWER equ OFFCOh 
DMA-FROM-UPPER equ OFFC2h 
DMA -TO LO-WER equ OFFC4h 
DMA - TO-UPPER equ OFFC6h 
DMA-COUNT equ OFFC8h 
DMA-CONTROL equ OFFCAh 
DMA= TO _DISK_CONTROL equ 01486h 

OA046h 

FDC DMA equ 
FDC-DATA equ 

6B8h 
688h 
680h FDC=STATUS equ 

cgroup 
code 

group code 
segment 
public set_dma_ 
assume cs:cgroup 

DMA register locations 

; destination synchronization 
; source to memory, incremented 
; destination to I/O 
; no terminal count 
; byte transfers 
; source synchronization 
; source to I/O 
; destination to memory, incr 

no terminal count 
byte transfers 
FDC DMA address 
FDC data register 
FDC status register 

public 'code' 

Figure 3-50 80186 DMA Initialization Example 
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set_dma (offset, to) programs the DMA channel to pOint one side to the disk DMA address, and the other 
to memory pOinted to by ds:offset. If 'to' = 0 then will be a transfer from disk to memory; if 'to' = 1 
then will be a transfer from memory to disk. The parameters to the routine are passed on the stack. 

proc near 
enter 0,0 

push AX 
push BX 
push DX 

test arg2,1 

jz from_disk 

performing a transfer from memory to the disk controller 

mov 
rol 

mov 
mov 
out 
and 

add 
mov 
out 
jnc 
inc 
mov 
mov 
out 

mcv 
mov 
out 
xor 
mov 
out 
mov 
mov 
out 
pop 
pop 
pop 
leave 
ret 

AX,DS 
AX,4 

BX,AX 
DX,DMA JROM _UPPER 
DX,AX 
AX,OFFFOh 

AX,argl 
DX,DMAJROM_LOWER 
DX,AX 
no_carry _from 
BX 
AX,BX 
DX,DMAJROM_UPPER 
DX,AX 

AX,FDC DMA 
DX,DMA- TO LOWER 
DX,AX - -
AX,AX 
DX,DMA TO UPPER 
DX,AX -
AX,DMA TO DISK CONTROL 
DX,DMA=CONTROL. 
DX,AX 
DX 
BX 
AX 

performing a transfer from the disk to memory 

mov AX,DS 
rol AX,4 
mov DX,DMA TO UPPER 
out DX,AX - -
mov BX,AX 
and AX,OFFFOh 
add AX,argl 
mov DX,DMA_TO_LOWER 

set stack addressability 

save registers used 

check to see direction of 
transfer 

; get the segment value 
; gen the upper 4 bits of the 

physical address in the lower 4 
bits of the register 
save the result ... 
prgm the upper.4 bits of the 
DMA source register 

; form the lower 1 6 bits of the 
; physical address 
; add the offset 

prgm the lower 16 bits of the 
DMA source register 
check for carry out of addition 
if carry out, then need to adj 
the upper 4 bits of the pOinter 

; prgm the lower 16 bits of the DMA 
; destination register 

; zero the upper 4 bits of the DMA 
destination register 

prgm the DMA ctl reg 
note: DMA may begin immediately 
after this word is output 

Figure 3-50 80186 DMA Initialization Example (continued) 
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code 

$modl86 
name 

out DX,AX 
jnc no_carrLto 
inc BX 
mov AX,BX 
mov DX,DMA TO UPPER 
out DX,AX - -

mov 
mov 
out 
xor 
mov 
out 
mov 
mov 
out 
pop 
pop 
pop 
leave 
ret 
endp 

ends 
end 

AX,FDC DMA 
DX,DMA- FROM LOWER 
DX,AX - -
AX,AX 
DX,DMAfROM_UPPER 
DX,AX 
AX,DMA FROM DISK CONTROL 
DX,DMA=CONTROL -
DX,AX 
DX 
BX 
AX 

Figure 3-50 80186 DMA Initialization Example (continued) 

This file contains example 80186 timer routines. The first routine sets up the timer and interrupt 
controller to cause the timer to generate an interrupt every 10 milliseconds, and to service the 
interrupt to implement a real time clock. Timer 2 is used in this example because no input or 
output signals are required. The code example assumes that the peripheral control block has not 
been moved from its reset location (FFOO-FFFF in 1/0 space). 

argl 
arg2 
arg3 
timer2_int 
ti mer 2_ control 
timer 2_max_ctl 
timeUnt_ctl 
eoi_register 
interrupt_stat 

data 

msec_ 
hour_ 
minute_ 
second 
data -

cgroup 
dgroup 

equ word ptr [BP + 4] 
equ word ptr [BP + 6] 
equ word ptr [BP + 8] 
equ 19 timer 2 has vector type 19 
equ OFF66h 
equ OFF62h 
equ OFF32h interrupt controller regs 
equ OFF22h 
equ OFF30h 

segment public 'data' 
public hour ,minute ,second ,msec 
db ? - - - -

db ? 
db ? 
db ? 
ends 

group code 
group data 

Figure 3-51 80186 Timer Interface Code Example 
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code segment public 'code' 
public seUime_ 
assume cs:code,ds:dgroup 

seUime (hour, minute, second) sets the time variables, initializes the 80186 timer2" to provide interrupts 
every 10 milliseconds, and programs the interrupt vector for timer2 

seUime - proc near 
~,enter 0,0 set stack addressability 
push AX save registers used 
push OX 
push SI 
push OS 

xor AX,AX set the i nterru pt vector 
the timers have unique 
interrupt 
vectors even though they share 
the same control register 

mov OS,AX 
mov SI,4 • timer2 int 
mov OS: [Sll,offset timer2_interruptJoutine 
inc SI 
inc SI 
mov OS:[SI1,CS 
pop OS 
mov AX,argl set the time values 
mov hour_,AL 
mov AX,arg2 
mov minute_,AL 
mov AX,arg3 
mov second_,AL 
mov msec_,O 

mov OX,timer2_max cll set the max count value 
mov AX,20000 10 ms / 500 ns (timer 2 counts 

at '/4 the CPU clock rate) 
out OX,AX 
mov OX,timer2_control set the control word 
mov AX,1110000000000001b enable counting 

generate interrupts on TC 
continuous counting 

out OX,AX 

mov OX,timer_int_ctl set up the interrupt 
controller 

mov AX,OOOOb unmask interrupts 
highest priority interrupt 

out OX,AX 
sti enable processor interrupts 

pop SI 
pop OX 
pop AX 
leave 
ret 

set_time - endp 

limer2_interruptJoutine proc far 
push AX 
push OX 

Figure 3-51 Timer Interface Code Example (continued) 
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timer2 interrupt routine 
code - -

$mod186 
name 

cmp 
jae 
inc 
jmp 

mov 
cmp 
jae 
inc 
jmp 

mov 
cmp 

proc 
push 
push 

mov 
mov 
out 
mov 
mov 

jae 
inc 
jmp 

mov 
cmp 
jae 
inc 
jmp 

mov 

mov 
mov 
out 

msec_,99 
bump_second 
msec 
reseUnt_ctl 

msec_,O 
second ,59 
bump_minute 
second 
reseUnt_ctl 

second_,O 
minute_,59 

near 
AX 
OX 

OX,timer1 max_cnt 
AX,13 
OX,AX 
OX,timer1_control 
AX,1100000000000001b 

bump_hour 
minute 
reseUnt_ctl 

minute_,O 
hour_,12 
reset_hour 
hour 
reseUnt_ctl 

hour_,1 

OX,eoi register 
AX,8000h 
OX,AX 

pop OX 
pop AX 
iret 

ends 
end 

endp 

see if one second has passed 
if above or equal. .. 

reset millisecond 
see if one minute has passed 

see if one hour has passed 
single max count register 

save registers used 

set the max count value 
500ns • 13 = 6.5 usec 

set the control word 
enable counting 
no interrupt on TC 
continuous counting 

see if 12 hours have passed 

non-specific end of interrupt 

This file contains example 80186 timer routines. The second routine sets up the timer as a baud rate 
generator. In this mode, Timer 1 is used to continually output pulses with a period of 6.5 usec for 
use with a serial controller at 9600 baud programmed in divide by 16 mode (the actual period 
required for 9600 baud is 6.51 usec). This assumes that the 80186 is running at 8MHz. The code 
example also assumes that the peripheral control block has not been moved from its reset location 
(FFOO-FFFF in 1/0 space). 

timer1_control 
timer1_max_cnt 

code 

equ 
equ 

OFF5Eh 
OFF5Ah 

segment 
assume cs:code 

public 'code' 

Figure 3-51 80186 Timer Interface Code Example (continued) 
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set_baud () initializes the 80186 timer1 as a baud rate generator for a serial port running at 9600 baud. 

$mod186 
name 

out OX,AX 

pop OX 
pop AX 
ret 
endp 
ends 
end 

This file contains example 80186 timer routines. The third routine sets up the timer as an external event 
counter. In this mode, Timer1 is used to count transitions on its input pin. After the timer has been 
set up by the routine, the number of events counted can be directly read from the timer count 
register at location FF58H in 1/0 space. The timer will count a maximum of 65535 timer events 
before wrapping around to zero. This code example also assumes that the peripheral control block 
has not been moved from its reset location (FFOO-FFFF in 1/0 space). 

timer1_control 
timer1_max_cnt 
timer1_cntJeg 

code 

equ 
equ 
equ 

OFF5Eh 
OFF5Ah 
OFF58H 

segment 
assume cs:code 

public 'code' 

set_count () initializes the 80186 timer1 as an event counter 

set_count -

timer 

proc near 
push AX 
push OX 

mov OX,timer1 max_cnt 
mov AX,O 

out OX,AX 
mov OX,timer1_control 
mov AX, 1100000000000101 b 

out OX,AX 

xor 
mov 

out 

AX,AX 
OX,timer1_cnt_reg 

OX,AX 

pop OX 
pop AX 
ret 

endp 
ends 
end 

save registers used 

set the max count value 
allows the ti mer to cou nt 
all the way to FFFFH 

set the control word 
enable counting 
no interrupt on Te 
continuous counting 
single max count register 
external clocking 

zero AX 
and zero the count in the 

count register 

Figure 3-51 Timer Interface Code Example (continued) 
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$mod186 
name 

This routine configures the 80186 interrupt controller to provide two cascaded interrupt inputs (through an 
external 8259A interrupt controller on pins INTO/INT2) and two direct interrupt inputs (on pins INT1 
and INT3). The default priority levels are used. 8ecause of this, the priority level programmed into the 
control register is set the 111, the level all interrupts are programmed to at reset. 

intO_control 
int_mask 

code 

seUnt_ 
code 

$mod186 
name 

equ 
equ 

OFF38H 
OFF28H 

segment 
assume CS:code 
proc 
push 
push 

mov 

near 
OX 
AX 

AX,01 001118 

mov OX,intO_control 
out OX,AX 

mov 

mov 
out 
pop 
pop 
ret 
endp 
ends 
end 

AX,01 0011 01 8 

OX,int mask 
OX,AX-
AX 
OX 

public 'code' 

cascade mode 
interrupt unmasked 

now unmask the other external 
interrupts 

This routine configures the 80186 interrupt controller into iRMX 86 mode. This code does not initialize 
any of the 80186 integrated peripheral control registers, nor does it initialize the external 8259A 
or 80130 interrupt controller. 

relocation_reg 

code 

set rmx 
code -

equ OFFFEH 

segment 
assumeCS:code 
proc 
push 
push 

mov 
in 
or 

near 
OX 
AX 

OX,relocation reg 
AX,OX -
AX,01000000000000008 

pop AX 
pop OX 
ret 
endp 
ends 
end 

public 'code' 

read old contents of register 
set the RMX mode bit 

Figure 3-52 80186 Interrupt Controller Interface Code Example 
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name 

This file contains a system initialization routine for the 8086 or the 80186. The code determines whether 
it is running on an 80186 or an 8086, and if it is running on an 80186, it initializes the integrated 
chip select registers. 

restart segment atOFFFFh 

This is the processor reset address at OFFFFOH 

org 0 
jmp far ptr initialize 

restart ends 

extrn monitor:far 
segment atOFFFOh 
assume CS:init_hw 

This segment initializes the chip selects. It must be located in the top 1 K to insure that the ROM remains 
selected in the 80186 system until the proper size of the select area can be programmed. 

UMCSJeg equ OFFAOH ; chip select register locations 
LMCSJeg equ OFFA2H 
PACS_reg equ OFFA4H 
MPCSJeg equ OFFA8H 
UMCS_value equ OF800H 64K, no wait states 
LMCS value equ 07F8H 32K, no wait states 
PACS -value equ 72H peripheral base at 400H, 2 ws 
MPCS_value equ OBAH PCS5 and 6 supplies, 

peripherals in 1/0 space 
initialize proc far 

mov AX,2 determine if this is an 
mov CL,33 8086 or an 80186 (checks 
shr AX,CL to see if the multiple bit 
test AX,1 shift value was ANOed) 
jz not_80186 

mov OX,UMCSJell ; program the UMCS register 
moY AX,UMCS_value 
out OX,AX 

mov OX,LMCSJeg program the LMCS register 
mov AX,LMCS_value 
out OX,AX 

mov OX,PACSJeg set up the peripheral chip 
selects (note the mid-range 
memory chip selects are not 
needed in this system, and 

; are thus not initialized 
mov AX,PACS_value 
out OX,AX 

mov OX,MPCSJeg 
mov AX,MPCS_value 
out OX,AX 

Now that the chip selects are all set up, the main program of the computer may be executed. 

initialize 
init_hw 

jmp far ptr monitor 
endp 
ends 
end 

Figure 3-53 80186/8086 SystemlnitializationCode Example 
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CHAPTER 4 
iAPX 86,88 HARDWARE DESIGN OVERVIEW 

4.1 INTRODUCTION 

This chapter is a discussion of the hardware design 
of the iAPX 86,88 (8086, 8088) on the functional 
level. Electrical characteristics and other hardware 
references are discussed in Volume 2 of this set. Ap­
plication Notes AP-67, "8086 System Design," and 
AP-51, "Designing 8086, 8088, 8089 Multiprocess­
ing Systems with the 8289 Bus Arbiter," also in 
Volume 2, contain additional design information. 

This chapter includes the following topics: 

• Multiprocessing Features 

• Bus Organization 

• Processor Control 

• Interfacing with Processor Extensions 

4.2 MULTIPROCESSING FEATURES 

The 8086 and 8088 are designed for the multipro­
cessing environment. Multiprocessing means using 
two or more coordinated processors in a system. 
These CPUs have built-in features that help solve 
the coordination problems that have made the devel­
opment of multiprocessing systems difficult in the 
past. 

Multiprocessing has become increasingly attractive 
as microprocessor prices have declined. Performance 
can be substantially improved by distributing system 
tasks among separate, concurrently executing 
processors. In addition, multiprocessing encourages 
a modular approach to design, usually resulting in 
systems that are more easily maintained and 
enhanced. 

The example in Figure 4-1 shows a multiprocessor 
system in which I/O activities have been delegated 
to an 8089 lOP. (The 8089 lOP is described in Chap­
ter 7 of this volume.) Should an I/O device in the 
system be changed (e.g., a hard disk substituted for 
a floppy), the impact of the modification is confined 
to the I/O subsystem and is transparent to the CPU 
and to the application software. 

In general, using multiple processors offers several 
significant advantages over the centralized approach 
that relies on a single CPU and extremely fast 
memory: 

1) System tasks may be allocated to special-purpose 
processors whose designs are optimized to perform 
specific (or classes of) tasks simply and efficiently; 

2) Very high levels of performance can be attained 
when processors can execute simultaneously 
(parallel/ distributed processing); 

1-- - - ~~W:-; -1- - - - - ~OM~Y- - - ~ 

I A::6~:1~Ot: I/O PROGRAMS , 

, DATA, I/O BUFFERS I 

I l' 1 I 
',8086 '8 ' , 8C~p:U8~ I .~g8:~ ~., 

SYSTEM BUS ... ,... 17g~t~ ... 
, , : 
, I, l I/O .J l I/O , I ! 
, DEVICES DEVICES I 
L __ ~A~SYSTE~ __ ~ ___ ~O SUBSYSTEM ___ ..J 

Figure 4-1 Multiprocessing System 
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3) Partitioning of the system promotes parallel de­
velopment of subsystems, breaks the application 
into smaller, more manageable tasks, and helps iso­
late the effects of system modifications. 

The 8086,88 architecture supports two types of 
processors: independent processors and processor 
extensions. An independent processor executes its 
own instruction stream. The 8086, the 8088 and the 
8089 lOP are examples of independent processors. 
The 8086,88 typically execute a program in response 
to an interrupt. The lOP starts its channels in re­
sponse to an interrupt-like signal called a channel 
attention; this signal is usually issued by a CPU. 

The CPUs also support a second type of processor, 
called a processor extension, such as the 8087 NPX. 
(The 8087 NPX is described in Chapter 6 of this 
volume.) Processor extension "hooks" have been 
designed into the 8086,88 to allow this type of 
processor to be accommodated. The processor 
extension adds additional register, data type, and in­
struction resources directly to the system. A proces­
sor extension, in effect, extends the instruction set 
(and architecture) of its host processor. 

This solves two classic multiprocessing coordination 
problems: bus arbitration and mutual exclusion. Bus 
arbitration may be performed by the bus 
request/grant logic contained in each of the proces­
sors (local bus arbitration), by 8289 bus arbiters 
(system bus arbitration), or by a combination of the 
two when processors have access to multiple shared 
buses. In all cases, the arbitration mechanism oper­
ates invisibly to software. 

For mutual exclusion, each processor has a LOCK 
signal (bus lock) which a program may activate to 
prevent other processors from obtaining a shared 
system bus. The lOP may lock the bus during a 
DMA transfer to ensure both that the transfer com­
pletes in the shortest possible time and that another 
processor does not access the target of the transfer 
(e.g., a buffer) while it is being updated. Each of the 
processors has an instruction that examines and up­
dates a memory byte with the bus locked. This in­
struction can be used to implement a semaphore 
mechanism for controlling the access of multiple pro­
cessors to shared reso urces. 

Bus Organization 

The 8086,88 bus structure can be divided into a local 
or Resident Bus, and a system bus. The major dis­
tinction between the two is that the local or Resident 
Bus has one master, while the system bus can have 
several masters (multi-master system bUs). The 
8289 bus arbiter (described later in this chapter), in­
terfaces the processors to the Resident Bus and the 
multi-master system bus. 

4-2 

LOCAL OR RESIDENT BUS 

The local bus is optimized for use by the 8086,88 
CPUs. Since standard memory and 110 components 
are not attached to the local bus, information can be 
multiplexed and encoded to make efficient use of 
processor pins. This allows several pins to be dedicat­
ed to coordinating the activity of multiple processors 
sharing the local bus. Both independent processors 
and processor extensions may share a local bus; on­
chip arbitration logic determines which processor 
drives the. bus. Because the processors on the local 
bus share the same bus· interface components, the 
local configuration of multiple processors provides a 
compact and inexpensive multiprocessing system. 

SYSTEM BUS 

A system bus carries several signals designed to 
meet the needs of memory and 110 devices: 

• Address bus 

• Data bus 

• Control lines 

• Interrupt lines 

• Arbitration lines 

The system bus design is modular and subsets may 
be implemented according to the needs of the 
application. For example, the arbitration lines are 
not needed in single-processor systems or in 
multiple-processor systems that perform arbitration 
at the local-bus level. 

A group of bus interface components transforms the 
signals of a local bus into a system bus. The number 
of bus interface components required to generate a 
system bus depends on the size and complexity of 
the system. Three main variables determine the con­
figuration of a bus interface group: address space 
size, data bus width and arbitration needs. 

The 8086,88 system bus can easily be made compati­
ble with the Multibus™ system. Multibus is a 
general-purpose multiprocessing bus designed by 
Intel. The Multibus has been proposed for adoption 
by IEEE as the IEEE 796 standard bus. It is the stan­
dard design used in Intel's iSBCTM single-board mi­
crocomputer products. This compatibility gives 
system designers access to a wide variety of 
computer, memory, communication and other 
modules that may be incorporated into products. 
Many other manufacturers offer products that are 
compatible with the Multibus architecture as well. 
The Multibusis described in more detail later in this 
chapter. 
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Bus Lock 

When configured in maximum mode, the 8086 and 
8088 provide the LOCK (bus lock) signal. The BIU 
activates LOCK when the EU executes the one-byte 
LOCK prefix instruction. The LOCK signal remains 
active throughout execution of the instruction that 
follows the LOCK prefix. Interrupts are not affected 
by the LOCK prefix. If another processor requests 
use of the bus (via the request/grant lines, which are 
discussed later in this chapter), the CPU records the 
request, but does not honor it until execution of the 
locked instruction has been completed. 

Note that the LOCK signal remains active for the du­
ration of a single instruction. If two consecutive in­
structions are each preceded by a LOCK prefix, 
there will still be an unlocked period between these 
instructions. In the case of a locked repeated string 
instruction, LOCK does remain active for the dura­
tion of the block operation. 

When the 8086 or 8088 is configured in minimum 
mode, the LOCK signal is not available. The LOCK 
prefix can be used, however, to delay the generation 
of an HOLDA response to a HOLD request until ex­
ecution of the locked instruction is completed. 

The LOCK signal provides information only. It is 
the responsibility of the other processors on the 
shared bus not to attempt to obtain the bus while 

LOCK is active. If the system uses 8289 Bus Arbiters 
to control access to the shared bus, the 8289s accept 
LOCK as an input and do not relinquish the bus 
while this signal is active. 

LOCK may be used in multiprocessing systems to 
coordinate access to a common resource, such as a 
buffer or a pointer. If access to the resources is not 
controlled, one processor can read an erroneous 
value from the resource when another processor is 
updating it (see Figure 4-2). 

SHARED POINTER 
8US CYCLE IN MEMORY PROCESSOR ACTIVITIES 

I 05 I 2214C I 18 1 

IC2, 5914C, 181 "A" UPDATES 1 WORD 

I C2, 5914C ,18 1 "8" READS PARTIALLY 
_ . • • _ UPDATED VALUE 

IC2159131 , 051 "A" COMPLETES UPDATE 

Figure 4-2 Uncontrolled Access 
to Shared Resource 

Access can be controlled (see Figure 4-3) by using 
the LOCK prefix in conjunction with the XCHG 
(exchange register with memory) instruction. The 
basis for controlling access to a given resource is a 
semaphore, a software-settable flag or switch that in­
dicates whether the resource is "available" 
(semaphore=O) or "busy" (semaphore = 0. Proce­
sors that share the bus agree by convention not to 

SHARED POINTER 
8US CYCLE SEMAPHORE IN MEMORY PROCESSOR ACTIVITIES 

0 0 105 12214C 11 B I 

I 05 I 2214C I 1 B I "A" 08TAINS EXCLUSIVE 
USE 

I C2 I 5914C 11 B I "A" UPDATES 1 WORD 

I C2 I 591 4C 11 B "B" TESTS SEMAPHORE 
AND WAITS 

4 IC2 159 31 105 "A" COMPLETES UPDATE 

IC2 159 31 105 "B" TESTS SEMAPHORE 
AND WAITS 

0 I C2 1 59 31 105 "A" RELEASES RESOURCE 

IC2 I 59 31 105 
"8" OBTAINS 
EXCLUSIVE USE 

I C2 1 59 31 105 "B" READS 
UPDATED VALUE 

9 0 IC2 , 59 31 105 "B" RELEASES RESOURCE 

Figure 4-3 Controlled Access to Shared Resource 
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use the resource unless the semaphore indicates that 
it is available. They likewise agree to set the sema­
phore when they are using the resource and to clear 
it when they are finished. 

The XCHG instruction can obtain the current value 
of the semaphore and set it to "busy" in a single 
instruction. The instruction, however, requires two 
bus cycles to swap 8-bit values. It is possible for 
another processor to obtain the bus between these 
two cycles and to gain access to the partially-updated 
semaphore. This can be prevented by preceding the 
XCHG instruction with a LOCK prefix, as illustrated 
in Figure 4-4. The bus lock establishes control over 
access to the semaphore and thus to the shared 
resource. 

BUSY(1) 

GET SEMA· 
PHORE & 

SET "BUSY" 

EXIT ) 

MOV AL,1 

WAIT: LOCK XCHG AL, 
SEMAPHORE 

AL,AL 
WAIT 

MOV SEMAPHORE,O 

WAIT and TEST 

The 8086 and 8088 (in either maximum or minimum 
mode) can be synchronized to an external event 
with the WAIT (wait for TEST) instruction and the 
TEST input signal. When the EU executes a WAIT 
instruction, the result depends on the state of the 
TEST input line. If TEST is inactive, the processor 
enters an idle state and repeatedly retests the TEST 
line at five-clock intervals. If TEST is active, execu­
tion continues with the instruction following the 
WAIT. 

Escape 

The ESC (escape) instruction provides a way for 
another processor to obtain an instruction and/or a 
memory operand from an 8086,88 program. When 
used in conjunction with WAIT and TEST, ESC can 
initiate a "subroutine" that executes concurrently in 
another processor (see Figure 4-5). An example of 
the use of the WAIT, TEST and ESC instructions is 
the application of an 8087 NPX processor extension. 

Six bits in the ESC instruction may be specified by 
the programmer when the instruction is written. By 
monitoring the bus and control lines, another pro­
cessor (e.g., an 8087 NPX) can capture the ESC in­
struction when it is fetched by the BIU. The six bits 
may then direct the external processor to perform 
some predefined activity. 

If an 8086 or 8088 is configured in maximum mode, 
the external processor, having determined that an 
ESC has been fetched, can monitor QSO and QSl 
(the queue status lines) and determine when the 
ESC instruction is executed. If the instruction refer­
ences memory the external processor can then moni­
tor the bus and capture the operand's physical 
address and/or operand itself. 

Note that fetching an ESC instruction is not tanta­
mount to executing it. The ESC may be preceded by 
a jump that causes the queue to be reinitialized. This 
event also can be determined from the queue status 
lines. 

Request/Grant Lines 

When the 8086 or 8088 is configured in maximum 
mode, the HOLD and HLDA lines evolve into two 
more sophisticated signals called RQV)GTO and 
RQ(f)GTl. These are bidirectional lines that can be 
used to share a local bus between an 8086 or 8088 

Figure 4·4 Using XCHG and LOCK and two other processors via a handshake sequence. 

4-4 210911 



THE iAPX 86,88 HARDWARE DESIGN OVERVIEW 

The request/grant sequence is a three-phase cycle: 
request, grant and release. First, the processor desir­
ing the bus pulses a request/grant line. The CPU re­
turns a pulse on the same line indicating that it is 
entering the "hold acknowledge" state and is relin­
quishing the bus. The BIU is logically disconnected 
from the bus during this period. The EU, however, 
will continue to execute instructions until an instruc­
tion requires bus access or the queue is emptied, 
whichever occurs first. When the other processor 
has finished with the bus, it sends a final pulse to the 
8086,88 indicating that the request has ended and 
that the CPU may reclaim the bus. 

RQ(!)GTO has higher priority than RQ(!)GTI. If re­
quests arrive simultaneously on both lines, the grant 
goes to the processor on RQ(!)GTO and RQ(!)GTl 
is acknowledged after the bus has been returned to 
the CPU. If, however, a request arrives on 
RQ(!)GTO while the CPU is processing a prior re­
quest on RQU)GTl, the second request is not 

PROCESSOR 
"6" 

PROCESSOR 
"A" 

honored until the processor on RQ(!)GTI releases 
the bus. 

Multibus Architecture 
When the 8086 or 8088 is configured in maximum 
mode, the 8288 Bus Controller outputs signals that 
are electrically compatible with the Multibus 
protocol. Designers of multiprocessing systems may 
want to consider using the Multibus architecture in 
the design of their products to reduce development 
cost and time, and to obtain compatibility with the 
wide variety of boards available in the iSBC product 
line. 

Multibus architecture provides a versatile communi­
cations channel that can be used to coordinate a 
wide variety of computing modules (see Figure 4-6). 
Modules in a Multibus system are designated as mas­
ters or slaves. Masters may obtain use of the bus and 
initiate data transfers on it. Slaves are the objects of 
data transfers only. 

Figure 4-5 Using ESC with WAIT and TEST 

MASTER 

MASTER 
WITH 

MEMORY SLAVE lID SLAVE BUS·ACCESSIBlE 
MEMORy 

I 
A 

][ ][ 'r [ ... r' J w iit '" I ~ '" .. z 
'" * ~ ~ ~ 
w ~ .. 

0 '" .. '" 
i:i o 0 0 W 0 o '" 0 2 '" <t U ~ .. 
" '" ,.. 

'" MULTISUS INTERFACE 

Figure 4-6 Multibus™-Based System 
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Both 8- and 16-bit masters can be intermixed in such 
a system. In addition to 16 data lines, the bus design 
has 20 address lines, eight multilevel interrupt lines, 
and control and arbitration lines. An auxiliary power 
bus also is provided to route standby power to 
memories if the normal supply fails. 

The Multibus architecture maintains its own clock, 
independen t of the clocks of the mod ules it links 
together. This allows different speed masters to 
share the bus and allows masters to operate asyn­
chronously with respect to each other. The arbitra­
tion logic of the bus permits slow-speed masters to 
compete equitably for use of the bus. Once a module 
has obtained the bus, however, transfer speeds are 
dependent only on the capabilities of the transmitting 
and receiving modules. Finally, the Multibus stan­
dard defines the form factors and physical require­
ments of modules that communicate on this bus. 
For a complete description of the Multibus architec­
ture refer to Application Note 28A, "Intel Multibus 
Interfacing," in Volume 2 of this set, and Intel Mul­
tibus Specification (Document Number 9800603). 

The 8289 Bus Arbiter 

Multiprocessing systems require a means of coor­
dinating the processor's use of the shared bus. The 

I NON-MASKABLE 
INTERRUPT 
REQUEST 

NMI 
J 

8289 Bus Arbiter works in conjunction with the 8288 
Bus Controller to provide this control. It is compati­
ble with the Multibus architecture and can be used 
in other shared-bus designs as well. 

The 8289 eliminates race conditions, resolves bus 
contention and matches processors operating asyn­
chronously with respect to each other. Each proces­
sor on the bus is assigned a different priority. When 
simultaneous requests for the bus arrive, the 8289 
resolves the contention and grants the bus to the 
processor with the highest priority; three different 
prioritizing techniques may be used. The 8289 Bus 
Arbiter is discussed in more detail in Volume 2 of 
this set. 

4.3 INTERRUPT STRUCTURE 

Interrupts play an important role in the control of 
the CPU. In 8086,88 based systems, each interrupt is 
assigned a type code that identifies it. Interrupts may 
be initiated by devices external to the CPU; in 
addition, they also may be triggered by software in­
terrupt instructions and, under certain conditions, 
by the CPU itself (see Figure 4-7). Figure 4-8 illus­
trates the basic response of the 8086,88 to an 
interrupt. The next sections elaborate on the infor­
mation presented in this drawing. 
Interrupts 0-31 are reserved by Intel 

--r 
I 

-------- ---------, -I I I 
INTERRUPT INTR 8259A 

LOGIC J I 
I 
I 

• t t • 
I 

r I I 
I 
I 

SINGLE· I 
INT n INTO DIVIDE STEP I INSTR. INSTR. ERROR (TF=1) I 

I 
I 
I 
I 
I I 
L 8086/8088 CPU .J 
-----------------

Figure 4-7 Interrupt Sources 
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Figure 4-8 Interrupt Processing Sequence 
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External Interrupts 

The 8086,88 CPUs have two lines that external 
devices may use to signal interrupts (INTR and 
NMI). The INTR (Interrupt Request) line is usually 
driven by an Intel 8259A Programmable Interrupt 
Controller (PIC), which in turn is connected to the 
devices that need interrupt services. The 8259A is a 
very flexible circuit that is controlled by software 
commands from the 8086,88 (the PIC appears as a 
set of I/O ports to the software). Its main job is to 
accept interrupt requests from the devices attached 
to it, determine which requesting device has the 
highest priority, and then activate the 8086,88 INTR 
line if the selected device has higher priority than the 
device currently being serviced (if there is one). 

When INTR is active, the CPU takes different action 
depending on the state of the interrupt-enable flag 
(IF). No action takes place, however, until the 
currently-executing instruction has been completed. 
Then, if IF is clear (meaning that interrupts signaled 
on INTR are masked or disabled), the CPU ignores 
the interrupt request and processes the, next 
instruction. The INTR signal is not latched by the 
CPU, so it must be held active until response is re­
ceived or the request is withdrawn. If interrupts on 
INTR are enabled (if IF is set), then the CPU recog­
nizes the interrupt request and processes it. Interrupt 
requests arriving on INTR can be enabled by execut­
ing an STI (set interrupt-enable flag) instruction. 
They also may be selectively masked (some types 
enabled, some disabled) by writing commands to 
the 8259A. It should be noted that in order to reduce 
the likelihood of excessive stack buildup, the STI 
and IRET instructions will reenable interrupts only 
after the end of the following instruction. (The IRET 
instruction reenables interrupts only if they were 
enabled prior to the execution of the interrupt 
procedure.) 

There are a few cases in which an interrupt request is 
not recognized until after the following instruction. 
Repeat, LOCK and segment override prefixes are 
considered "part of' the instructions they prefix; no 
interrupt is recognized between execution of a prefix 
and an instruction. AMOV (move) to segment 
register instruction and a POP segment register in­
struction are treated similarly: no interrupt is recog­
nized until after the following instruction. This 
mechanism protects a program that is changing to a 
new stack (by updating SS and SP). If an interrupt 
were recognized after SS had been changed, but 
before SP had been altered, the processor would 
push the flags, CS and IP into the wrong area of 
memory. It follows from this that whenever a seg­
ment register and another value must be updated 
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together, the segment register should be changed 
first, followed immediately by the instruction that 
changes the other value. 

In two cases, WAIT and repeated string instructions, 
an interrupt request is recognized in the middle of 
an instruction. In these cases, interrupts are accepted 
after any completed primitive operation or wait test 
cycle. 

The CPU acknowledges the interrupt request by ex­
ecuting two consecutive interrupt acknowledge 
(INTA) bus cycles. If a bus hold request arrives (via 
the HOLD or request/grant lines) during the INTA 
cycles, it is not honored until the cycles have been 
completed. In addition, if the CPU is configured in 
maximum mode, it activates the LOCK signal 
during these cycles to indicate to other processors 
that they should not attempt to obtain the bus. The 
first cycle signals the 8259A that the request has 
been honored. During the second INTA cycle, the 
8259A responds by placing a byte on the data bus 
that contains the interrupt type (0-255) associated 
with the device requesting service. (The type assign­
ment is made when the 8259A is initialized by soft­
ware in the 8086,88.) The CPU reads this type code 
and uses it to call the corresponding interrupt 
procedure. 

An external interrupt request also may arrive on 
another CPU line, NMI (non-maskable interrupt). 
This line is edge-triggered (INTR is level triggered) 
and is generally used to signal the CPU of a 
"catastrophic" event, such as the imminent loss of 
power, memory error detection or bus parity error. 
Interrupt requests arriving on NMI cannot be 
disabled; they are latched by the CPU and have 
higher priority than an interrupt request on INTR. If 
an interrupt request arrives on both lines during the 
execution of an instruction, NMI will be recognized 
first. Non-maskable interrupts are predefined as 
type 2; the processor does not need to be supplied 
with a type code to call the NMI procedure, and it 
does not run the INTA bus cycles in response to a re­
quest on NMI. 

The time required for the CPU to recognize an exter­
nal interrupt request (interrupt latency) depends on 
how many clock periods remain in the execution of 
the current instruction.On the average, the longest 
latency occurs when a multiplication, division or 
variable-bit shift or rotate instruction is executing 
when the interrupt request arrives. (See Section 3.7 
for detailed instruction timing data.) As mentioned 
previously, in a few cases, worst-case latency will 
span two instructions rather than one. 
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Software Generated Interrupts 

An INT (interrupt) instruction generates an inter­
rupt immediately upon completion of its execution. 
The Interrupt type coded into the instruction sup­
plies the CPU with the type code needed to call the 
procedure to process the interrupt. Since any type 
code may be specified, software interrupts may be 
used to test interrupt procedures written to service 
external devices. 

The CPU generates a type 0 interrupt immediately 
following execution of a DIV or IDIV (divide, inte­
ger divide) instruction if the calculated quotient is 
larger than the specified destination. 

If the trap flag (TF) is set, the CPU generates a type 
1 interrupt following most instructions. This is called 
single-step execution and is a powerful debugging 
tool that is discussed in more detail later in this 
chapter. 

If the overflow flag (OF) is set, an INTO (interrupt 
on overflow) instruction generates a type 4 interrupt 
upon completion of its execution. 

All internal interrupts (INT, INTO, divide error,and 
single step) share these characteristics: 

1) The interrupt type code is either contained in the 
instruction or is predefined. 

2) No INTA bus cycles are run. 

3) Internal interrupts cannot be disabled, except for 
single-step. 

4) Any internal interrupt (except single-step) has 
higher priority than any external interrupt (see 
Table 4-0. If interrupt requests arrive on NMI 
andlor INTR during execution of an instruction that 
causes an internal interrupt (e.g., divide error), the 
internal interrupt is processed first. 

Table 4-1 Interrupt Priorities 

INTERRUPT PRIORITY 

Divide error, INT n, INTO highest 
NMI 
INTR 
Single-step lowest 

4.3.3 Interrupt Pointer Table 

The interrupt pointer (or interrupt vector) table 
(Figure 4-9) is the link between an interrupt type 

4-9 

code and the procedure that has been designated to 
service interrupts associated with that code. The in­
terrupt pointer table occupies up to the first lK bytes 
of low memory. There may be up to 256 entries in 
the table, one for each interrupt type that can occur 
in the system. Each entry in the table is a doubleword 
pointer containing the address of the procedure that 
is to service interrupts of that type. The higher­
addressed word of the pointer contains the base ad­
dress of the segment containing the procedure. The 
lower-addressed word contains the procedure's 
offset from the beginning of the segment. Since each 
entry is four bytes long, the CPU can calculate the lo­
cation of the correct entry for a given interrupt type 

_by simply multiplying (type*4). 

Space at the high end of the table that would be occu­
pied by entries for interrupt types that cannot occur 
in a given application may be used for other 
purposes. The dedicated and reserved portions of 
the interrupt pointer table (Iocations OH through 
7FH), however, should not be used for any other 
purpose to insure proper system operation and to 
preserve compatibility with future Intel hardware 
and software products. 

After pushing the flags onto the stack, the 8086,88 
CPUs activate an interrupt procedure by executing 
the equivalent of an intersegment indirect CALL 
instruction. The target of the "CALL" is the address 
contained in the interrupt pointer table element 
located at (type*4). The CPU saves the address of 
the next instruction by pushing CS and IP onto the 
stack. These are then replaced by the second and 
first words of the table element, thus transferring 
control to the procedure. 

If multiple interrupt requests arrive simultaneously, 
the processor activates the interrupt procedures in 
priority order. Figure 4-10 shows how procedures 
would be activated in an extreme case. The processor 
is running in single-step mode with external inter­
rupts enabled. During execution of a divide 
instruction, INTR is activated. Furthermore the in­
struction generates a divide error interrupt. Figure 
4-10 shows that the interrupts are recognized in 
turn, in the order of their priorities except for INTR. 
INTR is not recognized until after the following in­
struction because recognition of the earlier interrupts 
cleared IF. Of course interrupts could be reenabled 
in any of the interrupt response routines if earlier re­
sponse to INTR is desired. 

As Figure 4-10 shows, all main-line code is executed 
in single-step mode. Also, because of the order of in­
terrupt processing, the opportunity exists in each oc­
currence of the single-step routine to select whether 
pending interrupt routines (divide error and INTR 
routines in this example) are executed at full speed 
or in single-step mode. 
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Figure 4-9 Interrupt Pointer Table 
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Figure 4-10 Processing Simultaneous Interrupts 
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Interrupt Procedures 

When an interrupt service procedure is entered, the 
flags, CS and IP are pushed onto the stack and TF 
and IF cleared. The procedure may reenable external 
interrupts with the STI (set interrupt-enable flag) 
instruction, thus allowing itself to be interrupted by 
a request on INTR. (Note, however, that interrupts 
are not actually enabled until the instruction/aI/owing 
STI has executed.) An interrupt procedure may 
always be interrupted by a request arriving on NMI. 
Software- or procedure-initiated interrupts occurring 
within the procedure also will interrupt the 
procedure. Care must be taken in interrupt proce­
dures that the type of interrupt being serviced by the 
procedure does not itself inadvertently occur within 
the procedure. For example, an attempt to divide by 
o in the divide error (type 0) interrupt procedure 
may result in the procedure being reentered 
endlessly. Enough stack space must be available to 
accommodate the maximum depth of interrupt nest­
ing that can occur in the system. 

Like all procedures, interrupt procedures should 
save any registers they use before updating them, 
and restore them before terminating. It is good prac­
tice for an interrupt procedure to enable external in­
terrupts for all but "critical sections" of code (those 
sections that cannot be interrupted without risking 

. erroneous results). If external interrupts are disabled 
for too long in a procedure, interrupt requests on 
INTR can potentially be lost. 

All interrupt procedures should be terminated with 
an IRET (interrupt return) instruction. The IRET in­
struction assumes that the stack is in the same condi­
tion as it was when the procedure was entered. It 
pops the top three stack words into IP, CS and the 
flags, thus returning to the instruction that was 
about to be executed when the interrupt procedure 
was activated. The actual processing done by the 
procedure is dependent upon the application. If the 
procedure is servicing an external device, it should 
output a command to the device instructing it to 
remove its interrupt request. It might then read 
status information from the device, determine the 
cause of the interrupt and then take action 
accordingly. See Chapter 3, Section 3.8 for examples 
of interrupt procedures. 

Software-initiated interrupt procedures may be used 
as service routines ("supervisor calls") for other 
programs in the system. In this case. the interrupt 
procedure is activated when a program, rather than 
an external device, needs attention. (The "atten­
tion" might be to search a file for a record, send a 
message to another program, request an allocation 
of free memory, etc.) Software interrupt procedures 
can be advantageous in systems that dynamically 
relocate programs during execution. 

Since the interrupt pointer table is at a fixed storage 
location, procedures may "call" each other through 
the table by issuing software interrupt instructions. 
This provides a stable communication "exchange" 
that is independent of procedure addresses. The in­
terrupt procedures may themselves be moved so 
long as the interrupt pointer table always is updated 
to provide the linkage from the "caIling" program 
via the interrupt type code. 

Single-Step (Trap) Interrupt 

When TF (the trap flag) is set, the 8086,88 are said 
to be in single-step mode. In this mode, the proces­
sor automatically generates a type I interrupt after 
most instructions. Interrupts will not be generated 
after prefix instructions (e.g., REP), instructions 
which modify segment registers (e.g., POP OS), or 
the WAIT instructions. 

Recall that as part of its interrupt processing, the 
CPU automatically pushes the flags onto the stack 
and then clears TF and IF. Thus the processor is not 
in single-step mode when the single-step interrupt 
procedure is entered; it runs normally. When the 
single-step procedure terminates, the old flag image 
is restored from the stack, placing the CPU back into 
single-step mode. 

Single-stepping is a valuable debugging tool. It 
allows the single-step procedure to act as a 
"window" into the system through which operation 
can be observed instruction-by-instruction. A single­
step interrupt procedure, for example, can print or 
display register contents, the value of the instruction 
pointer (it is on the stack), key memory variables, 
etc., as they change after each instruction. In this 
way the exact flow of a program can be traced in 
detail, and the point at which discrepancies occur can 
be determined. Other possible services that could be 
provided by a single-step routine include: 

• Writing a message when a specified memory 
location or 110 port changes value (or equals 
a specified value). 

• Providing diagnostics selectively (only for cer­
tain instruction addresses for instance). 

• Letting a routine execute a number of times 
before providing diagnostics. 

The 8086,88 CPUs do not have instructions for set­
ting or clearing the TF directly. Rather, TF can be 
changed by modifying the flag-image on the stack. 
(TF can be set by ORing the flag-image with OlOOH 
and cleared by ANDing it with FEFFH). After TF is 
set in this manner, the first single-step interrupt 
occurs after the first instruction following the IRET 
from the single-step procedure. 
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If the processor is single-stepping, it processes an in­
terrupt (either internal or external) as follows. Con­
trol is passed normally (flags, CS an IP are pushed) 
to the procedure designated to handle the type of in­
terrupt that has occurred. However, before the first 
instruction of that procedure is executed, the single­
step interrupt is "recognized" and control is passed 
normally (flags, CS and IP are pushed) to the type 1 
interrupt procedure. When single-step procedure 
terminates, control returns to the previous interrupt 
procedure. Figure 4-10 illustrates this process in a 
case where two interrupts occur when the processor 
is in single-step mode. 

Breakpoint Interrupt 

A type 3 interrupt is dedicated to the breakpoint 
interrupt. A breakpoint is generally any place in a 
program where normal execution is arrested so that 
some sort of special processing may be performed. 
Breakpoints typically are inserted into programs 
during debugging as a way of displaying registers, 
memory locations, etc., at crucial points in the 
program. 

The INT 3 (breakpoint) instruction is one byte long. 
This makes it easy to "plant" a breakpoint anywhere 
in a program. Chapter 3, Section 3.8, contains an 
example that shows how a breakpoint may be set, 
and how a breakpoint procedure may be used to 
place the processor into single-step mode. 

The breakpoint instruction also may be used to 
"patch" a program (insert new instructions) without 
recompiling or reassembling it. This may be done by 
saving an instruction byte, and replacing it with an 
INT 3 (CCH) machine instruction. The breakpoint 
procedure would contain the new machine 
instructions, plus code to restore the saved instruc­
tion byte and decrement IP on the stack before 
returning, so that the displaced instruction would be 
executed after the patch instructions. The breakpoint 
example in Chapter 3, Section 3.8 illustrates these 
principles. 

Note that patching a program requires machine­
instruction programming and should be undertaken 
with considerable caution; it is easy to add new bugs 
to a program in an attempt to correct existing ones. 
Note also that a patch is only a temporary measure 
to be used in exceptional conditions. The affected 
code should be updated and retranslated as soon as 
possible. 

System Reset 

The 8086,88 RESET lines provide an orderly way to 
start or restart an executing system. When the pro­
cessor detects the positive-going edge of a pulse on 

RESET, it terminates all activities until the signal 
goes low, at which time it initializes the system as 
shown in Table 4-2. 

Table 4-2 CPU State Following RESET 

CPU COMPONENT CONTENT 

Flags Clear 
Instruction Pointer OOOOH 
CS Register FFFFH 
OS Register OOOOH 
SS Register OOOOH 
ES Register OOOOH 
Queue Empty 

Since the code segment register contains FFFFH 
and the instruction pointer contains OH, the proces­
sor executes its first instruction following system 
reset from absolute memory location FFFFOH. This 
location normally contains an intersegment direct 
JMP instruction from information in the program 
that identifies its first instruction. As external 
(maskable) interrupts are disabled by system reset, 
the system software should reenable interrupts as 
soon as the system is initialized to the point where 
they can be processed. 

Instruction Queue Status 

When configured in maximum mode, the 8086,88 
provide information about instruction queue opera­
tions on QSO and QS 1. Table 4-3 interprets the four 
states that these lines can represent. 

QSo 

0 

0 

1 

1 

Table 4-3 Queue Status Signals 
(Maximum Mode Only) 

QS1 
QUEUE OPERATION IN LAST 

CLK CYCLE 

0 No operation; default value 

1 First byte of an instruction was 
taken from the queue 

0 Queue was reinitialized 

1 Subsequent byte of an instruction 
was taken from the queue 

4-13 210911 



THE iAPX 86,88 HARDWARE DESIGN OVERVIEW 

The queue status lines are provided for external pro­
cessors that receive instructions and/or operands via 
the ESC (escape) instruction (see Section 4.2). Such 
a processor may monitor the bus to see when an 
ESC instruction is fetched and then track the instruc­
tion through the queue to determine when (and if) 
the instruction is executed. 

Processor Halt 

When the HALT (halt) instruction is executed, the 
processor enters the halt state. This condition may 
be interpreted as "stop all operations until an exter­
nal interrupt occurs or the system is reset." No sig­
nals are floated during the halt state, and the content 
of the address and data buses is undefined. A bus 
hold request arriving on the HOLD line (minimum 
mode, or either request/grant line (maximum 
mode) is acknowledged normally while the processor 
is halted. 

The halt state can be used when an event prevents 
the system from functioning correctly. An example 
might be a power-fail interrupt. After recognizing 
that loss of power is imminent, the CPU could use 
the remaining time to move registers, flags and vital 
variables to (for example) a battery-powered CMOS 
RAM area - or EEPROM area and then halt until the 
return of power was signaled by an interrupt or 
system reset. 

Status Lines 

When configured in maximum mode, the 8086,88 
CPUs emit eight status signals that can be used by 
external devices. Lines SO, SJand S2identify the 
type of bus cycle that the CPU is starting to execute 
(Table 4-4). These lines are typically decoded by the 

by the 8288 Bus Controller. S3 and S4 indicate which 
segment register was used to construct the physical 
address used in this bus cycle (see Table 4-5). Line 
S5 reflects the state of the interrupt-enable flag. S6 is 
always O. S7 is a spare line whose content is 
undefined. 

Table 4-4 Bus Cycle Status Signals 

52 51 SO TYPES OF BUS CYCLE 

0 0 0 Interrupt Acknowledge 
0 0 1 Read I/O 
0 1 0 Write I/O 
0 1 1 HALT 
1 0 0 Instruction Fetch 
1 0 1 Read Memory 
1 1 0 Write Memory 
1 1 1 Passive; no bus cycle 

Table 4-5 Segment Register Status Lines 

S4 S3 SEGMENT REGISTER 

0 0 ES 
0 1 SS 
1 0 CS or none (I/O or Interrupt Vector) 
1 1 OS 
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CHAPTER 5 
iAPX 186,188 HARDWARE DESIGN OVERVIEW 

5.1 INTRODUCTION 

This chapter is a discussion of the hardware design 
of the iAPX 186 (80186) and the iAPX 188 (80188) 
on a functional level. Electrical characteristics and 
other hardware references are found in Volume 2 of 
this set. Volume 2 also contains the Device Specifica­
tions for both processors. 

This chapter will include the following topics: 

• Enhancements to the 8086 CPU 

• Bus Organization 

• Interrupt Structure 

• Clock Generator 

• Internal Peripheral Interface 

• Chip-Select/Ready Generation Logic 

• DMA Controller 

• Timers 

• Interrupt Controller 

5.2 80186 and 80188 CPU 
ENHANCEMENTS 

The iAPX 186 and iAPX 188 are highly ,integrated 
microprocessors, effectively combining 15 to 20 of 
the most common iAPX 86 system components on a 
single chip. Block diagrams for both processors are 
shown in Figures 5-1 and 5-2. The iAPX 186,188 are 
designed to provide both higher performance and 
more highly integrated solutions to the total system 
problem of the microprocessor user. Higher perfor­
mance results from enhancements to both general 
and specific areas of CPU operation, including faster 
effective address calculation, improvement in the 
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Figure 5-2 iAPX 188 Block Diagram 

execution speed of many instructions, and the inclu­
sion of new instructions which are designed to im­

. prove the existing code, or to produce optimum 
80186,188 code. Increased integration simplifies 
system construction, which results in lower system 
part count and thus a substanti!ll reduction in system 
cost for the user. In this section, the 80186,188 CPU 
enhancements will be discussed; increased integra­
tion will be considered in subsequent sections. 

As described in Chapter 3, the 80186 and 80188 
CPUs have the same basic register set, memory 
organization, and addressing modes as the 8086,88. 
The differences between the 80186 and 80188 are 
the same as the differences between the 8086 and 
8088: the 80186 has a 16-bit architecture and 16-bit 
bus interface; the 80~88 has a 16-bit internal 
architecture, but a 8-bit data bus interface. The in­
struction execution times of the two processors 
differ accordingly: for each non-immediate 16-bit 
data read/write instruction, 4 additional clock cycles 
are required by the 80188. 

CPU Execution Speed 

Because of 80186,80188 hardware enhancements in 
both the bus interface unit and the execution unit, 
most instructions require fewer clock cycles to exe­
cute than on the 8086,88. 

Execution speed is gained by performing the effec­
tive address calculations (base + displacement + 
index) with a dedicated hardware adder in the 
80186,188 bus-interface unit, rather than with a mi­
crocode routine (used by the 8086,88). This results 
in an execution speed which is three to six times 
faster than the 8MIiz 8086,88. 

5-2 

In addition, the execution speed of specific instruc­
tions has been enhanced: all multiple-bit shift and 
rotate instructions execute 1.5 to 2.5 times faster 
than on the 8MHz 8086,88; multiply and divide in­
structions execute 3 times faster than on the 8MHz 
8086,88; and string move instructions run at bus 
bandwidth (i.e., data is transferred onto the bus in 
each consecutive CPU clock cycle), allowing trans­
fers in 2 Megabytes per second (80186), and 1 
Megabyte per second (80188), which is about twice 
the speed of the 8MHz 8086 or 8088 respectively. 

Overall, the 80186,188 CPUs are 30% faster than the 
8MHz 8086,88 CPUs and 50% faster than the 5MHz 
8086,88 CPUs. The details of timing for individual 
instructions is contained in the Instruction Set sum­
mary in Chapter 3. 
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New Instructions 

Ten new instructions have been added to the basic 
8086,88 instruction set. These instructions are de­
signed to simplify assembly language programming, 
enhance the performance of high-level language 
implementations, and the reduce the size of object 
code for the 80186,88. The new instructions are sum­
marized below; for more detailed information, refer 
to the Instruction Set summary in Chapter 3. 

INS/OUTS (Block I/O) 

The INS (Input String), and OUTS (Output String) 
instructions move a string of bytes or words at bus 
bandwidth speed between memory and an I/O port. 
This is essentially a DMA transfer in one in-line 
instruction. 

PUSHI (Push Immediate) 

This instruction pushes an immediate 16-bit value or 
a sign extended 8-bit value onto the stack. 

IMUL (Integer Immediate Multiply, signed) 

This instruction performs a signed integer immediate 
multiplication with a 16-bit result. 

PUSHA/POPA (Push All/Pop All) 

These instructions push or pop all 8 general purpose 
registers onto or off the stack. 

SHIFT/ROTATE IMMEDIATE 

These logic instructions shift or rotate by an immedi­
ate value. 

BOUND (Array Bounds) 

This instruction detects a value out of range by 
checking an array index (contained in a register) 
against the array bounds in memory. 

ENTER (Enter Procedure) 

This instruction facilitates high-level language proce­
dure calls. It copies the stack frame pointer from a 
calling procedure to the current stack frame. 

5-3 

LEAVE (Leave Procedure) 

This instruction is also specifically designed for high­
level languages. It deallocates the memory space of 
the the stack frame on procedure exit. 

Additional Traps 

The 80186,188 include two additional traps: 

Unused Opcode. A trap type 6 is generated when 
opcodes OFH, 63H-67H, FIH and FFFFH are 
executed. This trap is useful in detecting program 
errors (e.g., the execution of data), and provides a 
set of opcodes which the user may define for specific 
purposes, emulating the action of the instruction in 
software. 

Escape Opcode. The 80186,188 CPUs may be pro­
grammed to cause a trap type 7 when an escape 
opcode (D8H-DFH) is encountered. This provides a 
straightforward method of giving instructions to co­
processors, e.g., the 8087. The programming is done 
by a bit in the relocation register. It is programmed 
not to cause a trap on reset. 

5.3 BUS STRUCTURE 

The 80186,188 bus structure is similar to that of the 
8086,88. The 80186 has a multiplexed address/data 
bus, with 16-bit data and 20-bit address capability, as 
does the 8086. The 80188 differs by transferring 
8-bits of data per bus cycle (taking two bus cycles to 
transfer a word). 

For both processors, each bus cycle requires a mini­
mum of 4 CPU clock cycles, in addition to any 
number of wait states which may be required to ac­
commodate the speed access limitations of particular 
external memory or peripheral devices. The bus 
cycles initiated by the 80186,188 CPU are identical 
to those which are initiated by the 80186,188 in­
tegrated DMA controller. 

The 80186,188 multiplexed address/data bus sup­
ports simultaneously the 8086,88 minimum mode 
local bus and the maximum mode system bus. It pro­
vides both local bus controller outputs (RD, WR, 
ALE, DEN and DT/R'), as well as system status out­
puts (SO. IT, S2) for use with the 8288 bus 
controller. This differs from the 8086,88, where the 
local bus controller outputs (generated only in mini­
mum mode) are unavailable if status outputs 
(generated only in maximum mode) are required. 
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Because the 80186,188 can simultaneously provide 
local bus control signals and status outputs, many 
systems supporting both a system bus (e.g., a 
M ultibus) and a local bus will not require two separ­
ate external bus controllers. The bus control signals 
may be used to control the local bus, while the status 
signals are concurrently connected to the 8288 bus 
controller to drive the control signals of the system 
bus. To interface with the Multibus, the 80186,188 
CPUs require an 8288 and 8289. 

Local Bus Controller 

The local bus signals are generated by the iAPX 
186,88 integrated local bus controller. Control lines 
are also available that can be used to enable external 
buffers and to direct the flow of data on and off the 
local bus. These address/data, enable, and control 
signals eliminate the need for an external local bus 
controller in most systems. 

Local Bus Arbitration 

The 80186,188 employ a HOLDIHLDA system of 
local bus exchange (instead of a REQUEST/­
GRANT protocol) in order to provide an 
asynchronous bus exchange mechanism. The 
HOLD/HOLDA protocol allows multiple local bus 
masters, operating at separate clock frequencies, to 
gain control of the local bus. This protocol also 
allows compatibility with Intel's new generation of 
highly integrated bus master peripheral devices, for 
example, the 82586 Ethernet controller and the 
82730 CRT controller/text co-processor. 

In the HOLD/HLDA protocol, a device requiring 
bus control (for example, an external DMA device) 
raises the HOLD line. In response to this HOLD 
request, the 80186,188 raises its HLDA line after it 
has finished its current bus activity. When the exter­
nal device is finished with the bus, it drops its bus 
HOLD request; the 80186 responds by dropping its 
HLDA line and resuming bus operation. 

When there is more than one alternate local bus 
master, external circuitry is required to arbitrate 
which bus master will gain control of the bus. 

Memory/Peripheral Control 

Bus control signals are used to strobe data from 
memory to the CPU, or from the CPU to memory. 
The local bus controller does not. provide a 
memory/l/O signal. If a memory/I/O signal is 
needed, the designer must use the S2signal (which 
requires external latching), make the memory and 
I/O space nonoveriapping, or use only the integrated 
chip-select circuitry. 

Transceiver Control 
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The 80186,188 generates two control signals (DT/R 
and DEN) to be connected to 8286/8287 transceiver 
chips. This allows the. addition of transceivers for 
extra buffering without adding external logic. These 
control lines are generated to control the flow of 
data through the transceivers. The operation of 
these signals is shown in Table 5-1. 

Table 5-1 Transceiver Control 
Signals Description 

Pin Name Function 

DEN (Data Enable) Enables the output drivers of 
the transceivers. It is active 
LOW during memory, 1/0, or 
INTA cycles. 

DTfR (Data Transmit! Determines the direction of 
Receive) travel through the transceivers. 

A HIGH level directs data away 
from the processor during write 
operations, while a LOW level 
directs data toward the proces-
sor during a read operation. 

8086,88 and 801 86,1 88 Bus 
Differences 

The 80186,188 bus was designed to be upward com­
patible with the 8086,88 bus. As a result, the 
8086,88 bus interface components (the 8288 bus 
controller and the 8289 bus arbiter) may be used 
directly with the 80186,188. However, there are a 
few significant differences which should be 
considered. 

In the case of the 186,188: 

• RESET OUT is synchronized with the proces­
sor clock, and indicates that the processor is 
being reset. 

• The lines QSO and QSl come out one phase 
earlier (with QSMD option) than in the 
8086,88. 

• ALE comes active one phase earlier than in 
the 8086,88 but remains active throughout 
the 8288 ALE (the 80186,188 generate a 
longer pulse). 

• On RESET the RD/QSMD pin is sampled. If 
it is low, queue status mode is entered, and 
ALE and WR becomes QS lines. If this mode 
is used, an 8288 is required (Ri), WR, ALE 
pins are redefined) . 

• HOLD/HOLDA lines take the place of 
RQ/GT. 
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• S3-S6 are defined differently: S3-S6 are 
always low, except during DMA, when S6 is 
high. 

• There are no advanced write commands. 

• There are no separate I/O-Memory RD/WR 
lines. 

For more detail on the hardware aspects of the 
80186,188 bus see Chapter 2, Volume 2, and the 
iAPX 186 and iAPX 188 Device Specifications, Ap­
pendix B, Volume 2. 

5.4 INTERRUPTS 

The 80186,188 can service interrupts generated by 
software or hardware. Software interrupts are 
generated by specific instructions or the results of 
conditions specified by instructions. Hardware inter­
rupts occur when any of the external interrupt lines 
(INTO-INTI) are activated. The vector types for all 
interrupts are given in Table 5-2. 

Table 5- 2 801 86,188 Interrupt Vectors 

Vector Default Related 
Interrupt Name Type Priority Instructions 

Divide Error 0 '1 DIV.IDIV 
Exception 

Single Step 1 12"2 All 
Interrupt 

NMI 2 1 All 
Breakpoint 3 '1 INT 

Interrupt 
INTO Detected 4 '1 INTO 

Overflow 
Exception 

Array Bounds 5 '1 BOUND 
Exception 

Unused-Opcode 6 '1 Undefined 
Exception Opcodes 

ESC Opcode 7 '1"· ESC Opcodes 
Exception 

Timer 0 Interrupt 8 2A···· 
Timer 1 Interrupt 18 2B···· 
Timer 2 Interrupt 19 2C···· 
Reserved 9 3 
DMA 0 Interrupt 10 4 
DMA 1 Interrupt 11 5 
INTO Interrupt 12 6 
INT1 Interrupt 13 7 
INT2 Interrupt 14 8 
INT3 Interrupt 15 9 

NOTES: 
·1. These are generated as the result of an instruction 

execution. 
·'2. This is handled as in the 8086. 

.. ··3. All three timers constitute one source of request to the 
interrupt controller. The Timer interrupts all have the same 
default priority level with respect to all other interrupt 
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NOTES: (continued) 

sources. However. they "ave a defined priority ordering 
amongst themselves. (Priority 2A is higher priority than 
28.) Each Timer interrupt has a separate vector type 
number. 

4. Default priorities for the interrupt sources are used only if 
the user does not program each source Into a unique 
priority level. 

'··5. An escape opcode will cause a trap only If the proper bit is 
set In the peripheral control block relocation register. 

Software-generated Interrupts 

The 80186,188 software generated interrupts include 
those found on the 8086,88, namely: 

• Divide error exception (type 0) 

• Single-step interrupt (type 1) 

• Breakpoint interrupt (type 3) 

• INTO Detected overflow exception (type 4) 

The divide error interrupt is generated by the CPU 
following execution of a DIV or IDIV instruction if 
the calculated quotient is larger than the specified 
destination. 

The single-step interrupt is controlled by the trap 
flag (IF). If TF is set, the CPU generates a type 1 in­
terrupt after every instruction. 

The breakpoint interrupt is generated if the overflow 
flag (OF) is set. 

The new interrupts available on the 80186,188 are: 

• Array bounds exception (type 5) 

• Unused opcode exception (type 6) 

• Escape opcode exception (type 7) 

The array bounds interrupt occurs during a BOUND 
instruction if the array index is outside the array 
bounds. The array bounds are located in memory at 
a location indicated by one of the instruction 
operands. The other operand indicates the value of 
the index to be checked. (Refer to the BOUND in­
struction in the Instruction Set Summary, Chapter 3 
of this volume, for more details.) 

The unused opcode interrupt is generated by the 
CPU if it is directed to execute any of the following 
unused opcodes: OFH, 63H-67H, FIH and FFFFH. 
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An ESCape opcode interrupt is generated by the at­
tempted execution of opcodes D8H-DFH. This in­
terrupt is programmed by setting the ET bit in the 
relocation register. The return address of this inter­
rupt will point to the ESC instruction causing the 
exception. If a segment override prefix preceded the 
ESC instruction, the return address will point to the 
segment override prefix. 

Hardware-generated Interrupts 

Hardware-generated interrupts are of two types: 
maskable and non-maskable types. For external 
maskable interrupts, the 80186,188 provide the 
INTO-INT3 interrupt request pins. Maskable inter­
rupts may also be generated by the 80186,188 in­
tegrated DMA controller and the integrated timer 
unit. Software enables these inputs by setting the in­
terrupt flag bit (IF) in the Status Word. 

A non-maskable interrupt (NMI) is also provided. 
This interrupt is serviced regardless of the state of 
the IF bit, and is typically used to activate a power 
failure routine. The activation of this inp).lt causes an 
interrupt with an internally supplied vector value of 
2. No external interrupt acknowledge sequence is 
performed. The IF bit is cleared at the beginning of 
an NMI interrupt to prevent maskable interrupts 
from being serviced. 

5.5 CLOCK GENERATOR 

The 80186,188 provides an integrated clock genera­
tor which generates the main clock signal for all 
80186,188 integrated components, as well as all CPU 
synchronous devices in the system. The clock gener­
ator consists of a crystal-controlled oscillator, a 
divide-by-two counter, synchronous and asynchro­
nous ready inputs, and reset circuitry. 

The Oscillator 

The oscillator circuit is designed to be used with a 
parallel resonant fundamental mode crystal at 2X 
the desired CPU clock speed (i.e., 16 MHz for an 8 
MHz 80186,188), or with an external oscillator also 
at 2X the CPU clock. The crystal determines the 
CPU clock speed and is used for all instruction time 
calculations described in Chapter 3. The use of an 
LC or RC circuit with this oscillator is not advised. 
The recommended crystal configuration is shown in 
Figure 5-3. 
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80186 

X1~-----------~--L-

$16 MHz CRYSTAL 

~~------------~ 

Figure 5-3 Recommended iAPX 186 
Crystal Configuration 

If an external oscillator is used, it can be connected 
directly to input pin Xl in lieu of a crystal (X2 
should be left open). This oscillator input is used to 
drive an internal divide-by-two counter (see below) 
to generate the CPU clock signal; thus the external 
frequency input can be practically any duty cycle, so 
long as the minimum high and low times for the 
signal (as specified in the Device Specification) are 
met. The output of the oscillator is not directly 
available outside the iAPX 186,188. 

Divide-by-two Counter 

The clock generator provides the 50% duty cycle pro­
cessor clock for the CPU. This is done by dividing 
the oscillator output by two, forming the symmetri­
cal clock. If an external oscillator is used, the state of 
the clock generator will change on the falling edge of 
the oscillator signal. The CLKOUT pin provides the 
processor clock signal for use outside the 80186,188. 
This signal may be used to drive other system 
components. All timings are referenced to the 
output clock. 

READY Synchronization 

The clock generator also provides both synchronous 
and asynchronous ready inputs. Asynchronous 
ready synchronization is generated by circuitry 
which samples ARDY in the middle ofT2 and again 
in the middle of each Tw until ARDY is sampled 
HIGH. One-half CLKOUT cycle of resolution time 
is used. 

A second ready input (SRDY) is provided to inter­
face with externally synchronized ready signals. This 
input is sampled at the end of T 2 and again at the end 
of each T w until it is sampled HIGH. 
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RESET Logic 

The 80186,188 have both a RES input pin and a 
synchronized RESET pin for use with other system 
components. The RES input pin is provided with 
hysteresis in order to facilitate power-on Reset gen­
eration via an RC network. RESET is guaranteed to 
remain active for at least five clock cycles given a 
RES input of at least six clock cycles. RESET may be 
delayed up to two and one-half clock cycles behind 
RES. 

Multiple 80186,188 processors may be synchronized 
through the RES input pin, since this input resets 
both the processor and the divide-by-two internal 
counter in the clock generator. To insure that the 
divide-by-two counters all begin counting at the 
same time, the active going edge of RES must satisfy 
a 25 ns setup time before the falling edge of the 
80186,188 clock input. In addition, in order to insure 
that all CPUs begin executing in the same clock 
cycle, the reset must satisfy a 25 ns setup time 
before the rising edge of the CLKOUT signal of all 
the processors. 

5.6 INTERNAL PERIPHERAL INTERFACE 

The iAPX 186 and iAPX 188 include six integrated 
peripheral devices along with the BIU and EU. 
These six are the chip select unit, the DMA 
controller, the timer unit, the interrupt controller, 
the local bus controller and the clock generator. The 
first four of these are programmable, and will be dis­
cussed in the remaining sections of this chapter. The 
clock generator and local bus controller, which have 
been discussed in previous sections, operate transpa­
rently to the programmer. 

Peripheral Control Block 

The four 80186,188 programmable integrated 
peripherals are controlled by 16-bit registers located 
in an internal 256-byte control block (see Figure 
5-4). Control and status registers are provided for 
each of the programmable peripherals. The function 
of these registers will be discussed in subsequent sec­
tions under the appropriate peripheral device. 

The control block may be mapped into memory or 
I/O space. Each of the integrated peripherals' control 
and status registers are located at a fixed location 
above the programmed base location of the peripher­
al control block. The base address must be on an 
even 256-byte boundary (i.e, the lower 8 bits of the 
base address are all zeros). 
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Relocation Register 

OMA Descriptors Channel 1 

DMA Descriptors Channel 0 

Chl~Select Control Registers 

Timer 2 Control Registers 

Timer 1 Control Registers 

Timer 0 Control Registers 

Interrupt Controller Registers 

OFFSET 

FEH 

DAH 

DOH 

CAH 

COH 

ASH 

AOH 

88H 

SOH 
5EH 

5SH 
56H 

SOH 

3EH 

20H 

Figure 5-4 Internal Register Map 

The integrated peripherals operate semi-auto­
nomously from the CPU. Access to them is for the 
most part through read and write instructions to the 
control and data locations in the control block. Be­
cause the integrated peripherals are accessed exactly 
as if they were external devices, no new instruction 
types are required to access and control them. 

Relocation Register 

The control block base address is programmed via a 
16-bit relocation register contained within the con­
trol block at offset FEH from the base address (see 
Figure 5-5). The relocation register provides the 
upper 12 bits of the base address of the control 
block. In addition, bit 12 of this register determines 
whether the control block will be mapped into I/O or 
memory space. If this bit is 1, the control block will 
be located in memory space; if the bit is 0, the con­
trol block will be located in I/O space. When the con­
trol register block is mapped into I/O space, the 
upper 4 bits of the base address must be pro­
grammed as 0, since I/O addresses are only 16 bits 
wide. The offset map of the 256-byte control register 
block is shown in Figure 5-4. 
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OF~ET: FEHL--L~~-L~L-________ Re_lo_c_at_~_n_A~ __ ~_._._BI_ts_R_'~ __ R8 __________ ~ 

ET ~ ESC Trap I No ESC Trap (110) 
MIlO ~ Register block located In Memory 11/0 Space (110) 
RMX = Normal Interrupt Controller mode I iRMX compatlbte 

Interrupt Controller mode (011) 

Figure 5-5 Relocation Register 

In addition to the peripheral control block relocation 
information, the relocation register contains two 
additional bits. One is used to set the interrupt con­
troller into iRMX_86 compatibility mode (see Sec­
tion 5.10). The other is used to force the processor 
to trap whenever an ESCape (to a coprocessor) in­
struction is encountered. 

Because the relocation register is contained within 
the control block, upon reset it is automatically pro­
grammed with the value 20FFH. This means that 
the peripheral control block will be located at the 
very top (FFOOH to FFFFH) of 110 space. Thus, 
after reset the relocation register will be located at 
word location FFFEH in 110 space. 

If the user wished to locate the peripheral control 
block starting at memory location 10000H, he would 
program the peripheral control register with the 
value 1l00H. In doing so, all registers within the in­
tegrated peripheral control block would be moved to 
memory locations 10000H to 100FFH. Note that 
since the relocation register is contained within the 
peripheral control block, it would also be moved to 
word location 100FEH in memory space. 

5.7 CHIP SELECT UNIT 

The iAPX 186,188 include an integrated chip select 
unit which provides programmable chip-select gener­
ation for both memory banks and peripherals. In 
addition, it can be programmed to provide READY 
(or WAIT state) generation, and can also provide 
latched address bits Al and A2. 

Six output lines are used for memory addressing and 
seven output lines are used for peripheral 
addressing. The chip-select lines are active for all 
memory and 110 cycles (in their programmed areas) 
generated by both the CPU and by the integrated 
DMA unit. 
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The chip select unit is programmable such that it can 
be used to fulfill the chip select requirements (in 
terms of memory device or bank size and speed) of 
most small and medium sized 80186,188 systems. 

Memory Chip Selects 

The memory chip select lines are divided into 3 
groups which separately address the major areas of 
memory in a typical 8086/80186 system: upper 
memory for reset ROM, lower memory for interrupt 
vectors, and mid-range memory for program 
memory. One output each is provided for upper and 
lower memory; four outputs are provide for mid­
range memory. 

The size of each memory area is user programmable 
and can be set to 2K, 4K, 8K, 16K, 32K, 64K, 128K, 
plus lK and 256K for upper and lower chip selects. 
In addition, the beginning or base address of the 
midrange memory chip select may be programmed 
to be active for any memory location at a time. Note 
that all chip select sizes are bytes, whereas the 80186 
memory is arranged in words. This means that if, for 
example, 16 64K x 1 memories are used, the 
memory block size will be 128K bytes, not 64K 
bytes. 

The starting location and ending location of both 
upper and lower memory areas are fixed at OOOOOH 
and FFFFH respectively; the starting location of the 
mid-range memory is uSer programmable. 

The memory chip selects are controlled by four regis­
ters located in the peripheral control block (see 
Figure 5-6). These include one register each for 
upper and lower memory, the values of which deter­
mine the size of the two memory blocks; the other 
two registers are used to set the size and base address 
of the mid-range block. These registers, and the 
areas of memory they select, are discussed in the fol­
lowing sections. 

210911 



iAPX 186,188 HARDWARE DESIGN OVERVIEW 

15 14 13 12 11 10 7 4 

OFFSET: AOHI 1 I 1 I u I u I u I u I u I u I u I u I 1 I 1 I 
A19 All 

MPCS Register 

15 14 13 12 11 10 9 1 0 

OFFSET: A2H I 0 0 u I u u I u I u I u I u I u I 1 I 1 I 1 R2 I Rl I RO I 
A19 All 

MMCS Register 

15 14 13 12 11 10 9 8 7 6 2 1 0 

OFFSET: A8H I 1 I M61 M5 I M4 I M3 I M2 I Ml I MO I EX I MS I 1 I 1 I 1 I R2 I Rl I RO I 

UMCS Register 

15 0 

OFFSET: A6HI U I u I u I u I u I u I u I 1 R2 I Rl I RO I 
A19 A13 

LMCS Register 

Figure 5-6 Memory Chip Select Registers 

UPPER MEMORY 

The UCS chip select line is used for the top of 
memory. This area is usually used as the system 
memory, because after reset the 80186,188 begin ex­
ecuting at memory location FFFFOH. 

The upper limit of memory defined by this chip 
select is always FFFFFH; the lower limit (and thus 
the size of the memory block) is defined in the 
UMCS register. The UMCS register is located at 
offset AOH in the internal control block. The legal 
values for bits 6-13 and the resulting starting address 
and memory block sizes are given in Table 5-3. Any 
combination of bits 6-13 not shown in Table 5-3 will 
result in undefined operation. After reset, the 
UMCS register is programmed for a lK area. It must 
be reprogrammed if a larger upper memory area is 
desired. 

Any internally generated 20-bit address whose upper 
16 bits are greater than or equal to the UMCS regis­
ter (with register bits 0-5 equal to 0) will cause UCS 
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to be activated. UMCS bits R2-RO are used to specify 
READY mode for the area of memory defined by 
the register (see below). 

Table 5-3 UMCS Programming Values 

Starting 
Address Memory UMCS Value 

(Base Block (Assuming 
Address) Size RO=R1 =R2=O) 

FFCOO 1K FFF8H 
FF800 2K FFB8H 
FFOOO 4K FF38H 
FEOOO 8K FE38H 
FCOOO 16K FC38H 
F8000 32K F838H 
FOOOO 64K F038H 
EOOOO 128K E038H 
COOOO 256K C038H 
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LOWER MEMORY 

The LCS line selects lower memory. The bottom of 
memory contains the interrupt vector table, begin­
ning at location OOOOOH. The lower limit of memory 
defined by this chip select is always OH; the upper 
limit (and thus the size of the memory block) is 
defined in the LMCS register. The LMCS register is 
located at offset A2H in the internal control block. 
The legal vlllues for bits 6-15 and the resulting upper 
address and memory block sizes are given in Table 
5-4. Any combination of bits 6-15 not shown in 
Table 5-4 will result in undefined operation. After 
reset, the LMCS register value is undefined. 
However, the LCS chip select line will not become 
active until the LMCS register is accessed. 

Any internally generated 20-bit address whose upper 
16 bits are less than or equal to LMCS (with register 
bits 0-5 equal to 1) will cause LCS to be active. 
LMCS register bits R2-RO are used to specify the 
READY mode for the area of memory defined by 
the register. 

Table 5-4 LMCS Programming Values 

Memory LMCS Value 
Upper Block (Assuming 

Address Size RO=R1 =R2=O) 

003FFH lK 0038H 
007FFH 2K 0078H 
OOFFFH 4K 00F8H 
01FFFH 8K 01 F8H 
03FFFH 16K 03F8H 
07FFFH 32K 07F8H 
OFFFFH 64K OFF8H 
lFFFFH 128K lFF8H 
3FFFFH 256K 3FF8H 

MID-RANGE MEMORY 

The four MCS lines select locations within a user­
locatable memory block, which can be located any­
where within the 1M byte memory address space 
exclusive of the areas defined by UCS and LCS. 
Both the base address and size of this memory block 
are programmable. 

The size of the memory block defined by the mid­
range .select lines, as shown in Table 5-5, is de­
termined. by bits 8-14 of the MPCS register. This 
register is located at offset A8H in the internal con­
trol block. Note that one, and only one, of bits 8-14 
must be set at a time; unpredictable operation of the 
MCS lines will otherwise occur. The EX and MS bits 
in the ,MPCS register relate to peripheral 
functionality, and are described in Section 5.7. 

Table 5-5 MPCS Programming Values 

Total Block Individual MMCS Bits 
Size Select Size 14-8 
8K 2K 00000016 
16K 4K 00000106 
32K 8K 00001006 
64K 16K 00010006 
128K 32K 00100006 
256K 64K 01000006 
512K 128K 10000006 

Each of the four MCS chip-select lines is active for 
one of the four equal contiguous divisions of the 
mid-range memory block. Thus, if the total block 
size is 32K, each chip select is active for 8K of 
memory, with MCSO being active for the first range 
and MCS3 being active for the last range. 

The base address of the mid-range memory block is 
defined by bits 15-9 of the MMCS register, located 
at offset A6H in the internal control block. Bits 15-9 
correspond to bits A19-A13 of the 20-bit memory 
address. (Bits Al2-AO of the base address are always 
0.) The base address may be set to any integer multi­
ple of the size of the total memory block selected. 
For example, if the mid-range block size is 32K (or 
the size of the block for which each MCS line is 
active is 8K), the block could be located at 10000H 
or 18000H, but not at 14000H, since the first few 
integer multiples of a 32K memory block are OH, 
8000H, 10000H, 18000H, etc. 

The S12K block size for the mid-range memory chip 
selects is a special case. When using 512K, the base 
address would have to be either OOOOH or 80000H; if 
it were to be programmed at OOOOOH when the LCS 
line was programmed, there would be an internal 
conflict between the LCS ready generation logic and 
the MCS ready generation logic. Since the LCS chip­
select line does not become active until 
programmed, while the UCS line is active at reset, 
the memory base can be set only at OOOOOH. If this 
base address is selected, however, the LCS range 
must not be programmed. 

MMCS bits R2-RO specify the READY mode of op­
eration for all mid-range chip selects. All devices in 
mid-range memory must use the same number of 
WAIT states. 

After reset, the contents of the MPCS and MMCS 
registers are undefined. However, none of the MCS 
lines will be active until both registers are accessed. 
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Peripheral Chip Select 

The iAPX 186,188 can generate chip selects for up to 
seven peripheral devices. The chip select lines PCSO­
"6 are active for seven contiguous blocks of 128 
bytes. The base address of the memory block is user­
programmable, and may be located in either I/O or 
memory space. Thus, peripheral devices may be 
1/0- or memory-mapped. 

PCS5 and PCS6 can also be programmed to provide 
latched address bits AI, A2. (When so 
programmed, these lines cannot be used as peripher­
al selects.) The outputs can be connected directly to 
the AO, Al pins used for selecting internal registers 
or 8-bit peripherals. This scheme simplifies the hard­
ware interface because the 8-bit registers of peripher­
als are simply treated as 16-bit registers located on 
even boundaries in I/O space or memory space 
(only the lower 8-bits of the register are significant; 
the upper 8-bits are "don't cares"). 

The peripheral chip selects are controlled by the 
PACS and MPCS registers located in the internal 
peripheral control block (see Figure 5-7). These 
registers allow the base address of the peripherals to 
be set, and specify whether the peripherals are 
mapped into memory or I/O space. (The MPCS 
register is also used to set the size of the mid-range 
memory chip-select block, as described below.) 
Both registers must be accessed before any of the 
peripheral chip selects will become active. 

The starting address of the peripheral chip-$elect 
block is defined by the PACS register, located at 
offset A4H in the internal control block. Bits 15-6 of 
this register correspond to bits 9-10 of the 20-bit pro­
grammable base address (PBA) of the peripheral 
chip-select block. Bits 9-0 of the PBA are all zeros. If 
the chip-select block is located in I/O space, bits 

15 

12-15 must be programmed zero, since the I/O ad­
dress is only 16 bits wide. This address must be a 
multiple of lK bytes, i.e., the least significant 10 bits 
of the starting address are always O. Table 5-6 shows 
the address range of each peripheral chip select with 
respect to the PBA contained in the PACS register. 
PACS bits 0-2 are used to specify READY mode for 
PCSO-PCS3. 

The mode of operation of the peripheral chip selects 
is defined by the MPCS register. Bit 7 (EX) of this 
register is used to select the function of PCS5 and 
PCS6; bit 6 (MS) is used to select whether the 
peripheral chip selects are mapped into memory or 
I/O space. The programming of these bits is de­
scribed in Table 5-7. MPCS bits 0-2 are used to speci­
fy READY mode for PCS4-PCS6. 

Table 5-6 PCS Address Ranges 

pes Line Active between Locations 

PCSO PBA -PBA+127 
PCS1 PBA+128 -PBA+255 
PCS2 PBA+256 - PBA+383 
PCS3 PBA+384 - PBA+511 
PCS4 PBA+512 - PBA+639 
PCS5 PBA+640 -PBA+ 767 
PCS6 PBA+768 -PBA+895 

Table 5- 7 MS, EX Programming Values 

Bit Description 

MS 1 = Peripherals mapped into memory space. 
0 = Peripherals mapped into I/O space. 

EX 0 = 5 PCS lines. A1, A2 provided. 
1 = 7 PCS lines. A1, A2 are not provided. 

OFFSET: A4H I u I u I U ululu ululuJull 
A19 Al0 

PACS Register 

15 14 13 12 11 10 9 8 7 6 2 1 0 

OFFSET: ASH I 1 I M61 M5 I M41 M3 I M21 Ml I MO I EX I MS I 1 I 1 I 1 I R2 I Rl I RO I 
MPCS Register 

Figure 5-7 Peripheral Chip Select Registers 
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READY/WAIT Generation Logic 

The 80186,188 can generate an internal READY 
signal for each of the memory or peripheral CS lines; 
In addition, 0-3 wait states may be inserted for all ac­
cesses to the area for which the chip select is active. 
Finally, each chip-select range may' be individually 
programmed to either ignore external READY or to 
factor external READY with the integrated ready 
generator. 

READY control consists of 3 bits for each CSline or 
group oflines generated by the 80186,188. The inter­
pretation of the ready bits is shown in Table 5-8. 
This allows independent ready generation for each 
of upper memory, lower memory, mid-range 
memory, peripheral devices 0-3 and peripheral 
devices 4-6. The ready bits control an integrated wait 
state generator which allows a programmable 
number of wait states to be automatically inserted 
whenever an access is made to the area of memory 
associated with the chip select area. Each set of ready 
bits includes a bit which determines. whether the ex­
ternal ready signals (ARDY and SRDY) will be 
used, or whether they will be ignored (i.e., the bus 
cycle will terminate even though a ready has not 
been returned on the external pins) . 

If the external READY is used (R2=0), the internal 
ready generator operates in parallel with it, rather 
than in series. For example, if the internal generator 
is set to insert two wait states, but activity on the 
external READY lines inserts four wait states, the 
processor will insert four wait stales, not six. This is 
because the two wait states generated by the internal 
generator overlapped the first two wait states 
generated by the external ready signal. Note that the 
external ARDY and SRDY lines are always ignored 
during cycles accessing internal peripherals. 

Table 5-8 READY Bits Programming 

R2 R1 RO Number of WAIT States Generated 

0 0 0 o wait states, external ROY also used. 
0 0 1 1 wait state inserted, external ROY also 

used. 
0 1 0 2 wait states inserted, external ROYaiso 

used. 
0 1 1 3 wait states inserted, external ROYaiso 

used. 
1 0 0 o wait states, external ROY ignored. 
1 0 1 1 wait state inserted, external ROY 

ignored. 
1 1 0 2 wait states inserted, external ROY 

ignored. 
1 1 1 3 wait states inserted, external RO'! 

ignored. 

R2-RO of each control word specifies the READY 
mode for the corresponding block, with the excep­
tion of the peripheral chip selects: R2-RO of PACS 
set the PCSO-]> READY mode; R2-RO of MPCS set 
the PCS4-6 READY mo.de. 

Chip Select/Ready Logic and Reset 

Upon reset, the Chip-Select/Ready Logic will per­
form the following actions: 

• All chip-select outputs will be driven HIGH 

• Upon leaving RESET, the UCS line will be 
programmed to provide chip selects to a lK 
block. The accompanying READY control 
bits will be set at 011 to allow the maximum 
number of internal wait states in conjunction 
with external Ready consideration (i.e., 
UMCS resets to FFFBH). 

• No other chip select or READY control regis­
ters have any predefined values after RESET. 
They will not become active until the CPU ac­
cesses their control registers. Both the PACS 
and MPCS registers must be accessed before 
the PCS lines will become active. 

5.8 DMA CONTROLLER 

The iAPX 186,188 include two independent, high­
speed DMA channels which operate independently 
of the CPU and drive all integrated bus interface 
components (bus controller, chip selects, etc.). 

Data can be transferred over these channels at the 
rate of 2 MBytes/sec. The transfers can occur be­
tween memory and 110, 110 and 110, or memory 
and memory. Data may be transferred either in 
bytes or words, to or from even or odd addresses. 
Figure 5-8 shows the block diagram representation 
of the DMA unit. 

Every DMA cycle requires two to four bus cycles -
one or two to fetch the data to an internal register, 
and one or two to deposit the data. This allows word 
data to be iocated on odd boundaries, or byte data to 
be moved from odd locations to even locations. 
(This is normally difficult, since odd data bytes are 
transferred on the upper 8 data bits of the 16-bit data 
bus, while even data bytes are transferred on the 
lower 8 data bits of the data bus.) 

Each channel has four registers in the peripheral con­
trol block which define its specific operation. These 
registers include a 20-bit source pointer (2 words), a 
20-bit destination pointer (2 words), a 16-bit transfer 
counter, and a 16-bit control word. All registers may 
be modified or altered by the CPU during any DMA 
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DMA 
CONTROL 

LOGIC 

TIMER REOUEST 

Figure 5·8 DMA Unit Black Diagram 

activity. Changes made to these registers will be re­
flected immediately in DMA operation. Table 5-9 
shows the format of these registers; the specific func­
tion of each register is discussed in the following 
sections. 

Table 5·9 DMA Control Block Format 

Register Address 

Register Name Ch.O Ch.1 

Control Word CAH DAH 
Transfer Count C8H D8H 
Destination Pointer (upper 4 C6H D6H 

bits) 
Destination Pointer C4H D4H 
Source Pointer (upper 4 bits C2H D2H 
Source Pointer COH DOH 

5-13 

Channel Control Word Register 

The DMA control word register (see Figure 5-9) 
contains bits which determine the precise mode of 
operation for each channel, including for both data 
source and destination whether the pointer points to 
memory or I/O space, and whether the pointer will 
be incremented, decremented or left alone after 
each DMA transfer. It also contains the (B7W) bit 
which selects between byte or word transfers. Two 
synchronization bits are used to determine the 
source of the DMA requests: the TC bit determines 
whether DMA activity will cease after a programmed 
number of DMA transfers, and the INT bit is used 
to enable interrupts to the processor when this has 
occurred. 
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15 14 13 

MI DESTINATION 
10 DEC INC 

x ~ DON'T CARE. 

IDw Byte/Word (0/1) Transfers. 

ST/STOP: Start/stop (1/0) Channel. 

CHG/NOCHG: 

INT: 

TC: 

ChangelDo not change (1/0) 
ST/STOP bit. If this bit is set when 
writing to the control word, the 
ST/STOP bit will be programmed by 
the write to the control word. If th is 
bit is cleared when writing the con­
trol word, the ST/STOP bit will not 
be altered. This bit is not stored; it 
will always be a a on read. 

Enable interrupts to CPU on Trans­
fer Count termination. 

If set. DMA will terminate when the 
contents of the Transfer Count 
register reach zero. The ST/STOP 
bit will also be reset at this point if 
TC is set. If this bit is cleared, the 
DMA unit will decrement the trans­
fer cou nt register for each DMA 
cycle, but the DMA transfer will not 
stop when the contents of the TC 
register reach zero. 

SYN: 00 No synchronization. 

(2 bits) NOTE: the ST bit will be cleared au­
tomatically when the contents of 
the TC register reach zero regard­
less of the state of the TC bit. 

01 Source synchronization. 

10 Source synchronization. 

11 Unused. 

SOURCE:INC Increment source painter by 1 or 2 
(depends on IDW) after each transfer. 

Mira Source pointer by 1 or 2 (depends on 
IDW) after each transfer. 

DEC Decrement source pointer by 1 or 2 
(depends on IDW) after each transfer. 

DEST: INC Increment destination pointer by 1 or 2 

P 

TDRQ 

Bit3 

(IDW) after each transfer. 

MIlO Destination pointer is in MilO space 
(1/0). 

Channel priority - relative to other 
channel. 

a low priority. 

1 high priority. 

Channels will alternate cycles if both 
set at same priority level. 

0: Disable DMA requests from timer 2. 

1: Enable DMA requests from timer 2. 

Bit 3 is not used. 

If both INC and DEC are specified for the same pointer. 
the painter will remain constant after each cycle. 

Figure 5-9 DMA Control Word Register and Bit Descriptions 
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The control word register also contains a start/stop 
bit which is used to enable DMA transfers. When 
this bit is set, a DMA transfer will occur whenever a 
DMA request is made to the channel; if this bit is 
cleared, no DMA transfers will be performed by the 
channel. A companion bit, the CHG/NOCHG bit, 
allows the contents of the DMA control register to 
be changed without modifying the state of the 
start/stop bit. The P bit is used to assign a priority to 
each channel. See Figure 5-9 for more information 
on each bit in the control word. 

DMA Destination and Source 
Pointer Registers 

Each DMA channel has a 20-bit source and a 20-bit 
destination pointer (see Figure 5-10). These pointers 
are used to access the I/O or memory location from 
which data will be fetched or to which data will be 
written. Each occupies two 16-bit registers in the 
peripheral control block, with the lower four bits of 
the upper register specifying the four high-order bits 
of the 20-bit physical address. Thus, these registers 
allow access to the entire 1 Mbyte address space of 
the 80186,188. 

The source and destination pointers may be indi­
vidually incremented or decremented after each 
transfer. If word transfers are performed, the pointer 
is incremented or decremented by two. 

Since the DMA channels can perform transfers to or 
from odd addresses, there is no restriction on values 
for the pointer registers. However, higher transfer 
rates can be obtained if all word transfers are per­
formed to even addresses, since this allows data to 
be accessed in a single memory access. 

DMA Transfer Count Register 

The transfer count register specifies the number of 
DMA transfers to be performed, up to a maximum 
of 64K bytes or words. This register is decremented 
after every DMA cycle (for both ,byte and word 
transfers), regardless of the state of the TC bit in the 

HIGHER 
REGISTER 
ADDRESS 

xxx xxx 

LOWER 
REGISTER 
ADDRESS 

Al5-A12 All-AS 

15 

xxx ~ DON'" CARE 

DMA control word register. If the TC bit in the 
DMA control word is set, however, DMA activity 
will terminate when the transfer count register 
reaches zero. A transfer count of zero allows 216 
transfers to be made. 

DMA Requests 

DMA transfers may be initiated by internally or ex­
ternally generated requests. Internally generated re­
quests are issued by timer 2 or by the DMA channel 
itself. Externally generated transfers are those 
requested by an external device. Each DMA channel 
has a single DMA request line by which an external 
device may request a DMA transfer. The synchroni­
zation bits in the DMA control register determine 
whether this line is interpreted to be connected to 
the source of the DMA data or the destination of the 
DMA data. 

For internal interrupt requests, the DMA channel 
can be programmed such that whenever timer 2 
reaches it maximum count, a DMA request is 
generated. This is accomplished by setting the 
TDRQ bit in the DMA channel control word 
register. The DMA channel can also be programmed 
to provide its own DMA requests. DMA transfer 
cycles will then run continuously at the maximum 
bus bandwidth until the programmed number of 
DMA transfers (specified in the transfer count 
register) have occurred. This is accomplished by pro­
gramming the synchronization bits in the DMA con­
trol register for unsynchronized transfers. During 
unsynchronized transfers, the DMA controller 
monopolizes the bus, i.e., no cycle stealing by the 
CPU will occur. 

Synchronized transfers are DMA transfers requested 
by an external device and are of two types: source 
synchronized or destination synchronized, that is, either 
the source of the data or the destination of the data 
may request the transfer. The only difference be­
tween the two is the time at which the DMA request 
pin is sampled to determifle if another DMA transfer 
is required immediately after the currently executing 
transfer. 

xxx Al9-A16 

A7-A4 A3-AO 

Figure 5-1 0 DMA Memory Pointer Register Format 
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When source synchronized (or unscynchronized) 
transfers are performed, the'DMA channel may 
begin another transfer immediately after the' end of 
a previous transfer. This allows a complete transfer 
to take place every two bus cycles or eight clock 
cycles, assuming there are no wait states (see Table 
5-10). 

When destination synchronization transfers are 
requested, the DMA controller relinquishes control 
of the bus after every transfer: If no other bus activi­
ty is initiated, another DMA cycle will begin after 
two processor clock cycles. This is done to allow the 
destination device time to remove its request if 
another transfer is not desired. Since the DMA con­
troller relinquishes the bus, the CPU can initiate a 
bus cycle. As a result, a complete bus cycle will often 
be inserted between destination synchronized 
transfers. This results in the maximum DMA trans­
fer rates shown in Table 5-10. Note that no DMA 
prefetching occurs when destination synchronization 
is performed. Data is noffetched fron'! the source ad­
dress until' the destination device signals that it is 
ready to receive it. 

Table 5~1 0 Maximum DMA Transfer Rates 

Type of 
Synchronization 

Selected CPU, RLinnlng CPU Hatted 

Unsynchronized 2M Byteslsec 2MByteslsec 
Source Synch 2MBytes/sec 2MByteslsec 
Destination Synch 1.3MByteslsec 1.5MByteslsec 

DMA Acknowledge 

The 80186,188 generates no explicit DMA acknowl­
edge signal. Instead, the 80186,188 perform a read 
or write directly, to the ,'DMA requesting device. 
However, if required, a DMA signal can begenerah 
edby a decode of an address. Also, since the chip­
select lines can be programmed, to be active for a 
given block of memory or I/O space, and the DMA 
pointers can be programmed to point to the same 
given block, a chip-select line could be used to indi" 
cafe a DMA acknowledge. 

DMA Priority 

The channels may be programmed such that one 
channel is always given priority' over the other, or 
they may be programmed to, aiternate. cycles when 
both channels have DMA requests pending. DMA 
cycles always have priority over internal CPU cycles 
'except between locked memory accesses or word ac­
cessesto'odd memory locations. An external bus 
hold, however, takes priority' over an internal DMA 

cycle. Because an interrupt request cannot suspend a 
DMA operation and the' CPU cannot access 
memory during a DMA cycle, interrupt latency time 
will suffer during sequences of continuous DMA 
cycles. An NMI reque~t, however, will cause all in­
ternal DMA activity to halt. This allows the CPU to 
quickly respond to the NMI request. 

DMAProgramming 

DMA cycles start whenever the ST/STOP bit of the 
Control Register is set. If synchronized transfers are 
programmed, a DRQ must also b,e generated .. 
Therefore, the source and destination transfer 
pointers, and the transfer count register (if used) , 
must be programmed before t~is bit is set. 

Each PM;\. channel control register may be changed 
while the cha11Ilel is op~rating. If the CHGINOCHG 
bit is cleared, when the "control word register is 
written, the ST/STOP bit will not be modified by the 
write. If ml,iltiple channel registers aTe modified, it is 
recommended that a LOCKED string transfer be 
used to prevent a DMA transfer from 'occurring be­
tween updates to the channel registers. 

DMA Channels and Reset 

Upon RESET, the DMA channels will perform the 
following actions: 

• The ST/STOP bit for each channel will be 
reset to STOP: 

• Any transfer in progress will be aborted. 

TIMER UNIT 

The 80186,188 include an'integrated timer unit 
which provides three i6'-bit timer/counters (see 
Figure 5-10. These tfIners operate independently of 
the CPU: Two of the timers have input and output 
pins allowing counting of external events and gener­
ationof arbitrary waveforms. The third timer is ·not 
connected to any external pins and is useful for real­
time coding and time delay applications. In addition, 
it can be used asa)prescaler for the other two, or as a 
DMA request source. 

the timers are controlled by eleven 16-bit registers 
located in the internal peripheral control block. 
Timers 0 and 1 are controlled by four registers each; 
timer 3 makes use of three registers. The configura-

" tion ofthese registers in the peripheral control block 
,is shown in Table 5-11. 
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TIMER 0 

TIMER 2 

OMA 
REO. 

T2 
INT. 
REO. 

t-::~='=:'!':":":-::f CLOCK MAX COUNT YAWE 
MAX COUNT YAWE 

B 
MODE/CONTROL 

WORD 

INTERNAL ADDRESS/DATA BUS 

ALL 18 BIT REGISTERS 

Figure 5-11 Timer Block Diagram 

Table 5-11 Timer Control Block Format 

ReglBter Offset 

Register Name Tmr.O Tmr.1 Tmr.2 

Mode/Control Word 56H 5EH 66H 
Max Count B 54H 5CH not present, 
Max Count A 52H 5AH 62H 
Count Register 50H 58H 60H 

The count register contains the current value of the 
timer and can be read or written whether the timer 
is running or not. The value of this register will be in­
cremented for each timer event. The MAX COUNT 
register defines the maximum count the timer will 
reach. Timers 0 and 1 are equipped with a second 
MAX COUNT register, which enables them to alter­
nate their count between two different MAX 
COUNT values programmed by the user. The 
mode/control register is used for programming the 
timer's specific mode of operation: These registers 
are discussed in detail in the following three sections. 

Count Registers 

Each of the three timers has a 16-bit count register. 
The current contents of this register may be read or 
written by the processor at any time. If the register is 

written into while the timer is counting, the new 
value will take effect in the current count cycle. 

Because the count register is 16 bits wide, up to 216 

timer events can be counted by a single 
timer/counter. Every fourth CPU clock transition 
can act as a timer event. In addition, transitions on 
the external lines of timers 0 and 1 can act as timer 
events for these timers, and timer 2 can be set to 
produce interrupts that serve as timer events for 
timers 0 and 1. 

Max Count Registers 

Timers 0 and 1 have two MAX COUNT registers, 
while timer 2 has a single MAX COUNT register. 
These contain the number of events the timer will 
count. 

After reaching the MAX COUNT register value, the 
timer count value will reset to zero during the same 
clock cycle, i.e., the maximum count value is never 
stored in' ~he count register itself. Each timer ,can 
generate an interrupt whenever the timer count 
value reaches a maximum count value, that is, an in­
terrupt can be generated whenever the value in 
maximum count register A is reached, and when­
ever the value in maximum count register B is 
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reached. If a timer generates a second interrupt re­
quest before the first interrupt request has been 
serviced, the first interrupt request to the CPU will 
be lost. 

In timers 0 and 1, the MAX COUNT register used 
can alternate between the two max count values 
whenever the current maximum count is reached. 
The timer is reset when the current count value 
equals the max count being used. This means that if 
the count is changed to be above the max count 
value, or if the max count value is changed to be 
below the current value, the timer will not reset to 
zero, but rather will count to its maximum value, 
"wrap around'" to zero, then count until the max 
count is reached. 

Timer Mode/Control Register 

The mode/control register allows the user to pro­
gram the specific mode of operation or check the 
current programmed status of any of the three in­
tegrated timers. Figure 5-12 shows the bits in this 
register and describes the function of each bit. 

The ALT bit selects one of the two MAX COUNT 
registers for comparisons. The CONT bit causes the 

associated timer to run continuously. The EXT bit 
selects between internal and external clocking for 
the timer. The P bit is used to let timer 2 serve as a 
clock for another timer. The RTG bit determines 
the control function provided by an external input 
pin. The EN bit provides control over the 
RUN/HALT status. The INH bit allows for selective 
updating of the EN bit. The INT bit enables inter­
rupts from the timer. The MC bit is set whenever 
the timer reaches its final maximum count value. 
The RIU bit indicates which MAX COUNT bit is 
currently being used. Not all mode bits are provided 
for timer 2; the following bits are hardwired: ALT, 
EXT, P, RTG and IRU are all set to O. 

5.10 INTERRUPT CONTROLLER 

The iAPX 186,188 integrated interrupt controllers 
perform tasks of the interrupt controller in a typical 
system. These include synchronization of interrupt 
requests, prioritization of interrupt requests, and re­
quest type vectoring in response to a CPU interrupt 
acknowledge. Nesting is provided so interrupt ser­
vice routines for lower priority interrupts may them­
selves be interrupt by higher priority interrupts. The 
integrated interrupt controller block diagram is 
shown in Figure 5-13. 

15 14 13 12 11 5 2 1 0 

EN IINH INT I RIU I 0 I··· ·1 MC I RTG I P I EXT I ALT I CONTI 

ALT: . 
The ALT bit determines which of two MAX COUNT regis­
ters is used for count comparison. If ALT = 0, register A 
for that timer is always used, while if ALT = 1, the com­
parison will alternate between register A and register B 
when each maximum count is reached. This alternation 
allows the user to change one MAX COUNT register 
l.i(hile the other is being used, and thus provides a 
method of generating non-repetitive waveforms. Square 

waves and pulse outputs of any duty cycle are a subset 
of available signals obtained by not changing the final 
count registers. The ALT bit also determines the func­
tion of the timer output pin. If ALT is zero, the output pin 
will go LOW for one clock, the clock after the maximum 
count is reached. If ALT is one, the output pin will reflect 
the current MAX COUNT register being used (Oil for 
B/A). 

Figure 5-12 Timer Mode/Control Register 

5-18 210911 



iAPX 186,188 HARDWARE DESIGN OVERVIEW 

CONT: 
Setting the CONT bit causes the associated timer to run 
continuously, while resetting it causes the timer to halt 
upon maximum count. If CONT = 0 and ALT = I, the 
timer will count to the MAX COUNT register A value, 
reset, count to the register B value, reset, and halt. 

EXT: 
The external bit selects between internal and external 
clocking for the timer. The external signal may be 
asynchronous with respect to the 80186 clock. If this 
bit is set the timer will count LOW-to-HIGH transitions 
for the input pin. If cleared, it will count an internal clock 
while using the input pin for control. In this mode, the 
function of the external pin is defined by the RTF bit. 
The maximum input to output transition latency time 
may be as much as 6 clocks. However, clock inputs may 
be pipelined as closely together as every 4 clocks with­
out losing clock pulses. 

P: 
The prescaler bit is ignored unless internal clocking 
has been selected (EXT = 0). If the P bit is a zero, the 
timer will count at one-fourth the internal CPU clock 
rate. If the P bit is a one, the output of timer 2 will be 
used as a clock for the timer. Note that the user must ini­
tialize and start timer 2 to obtain the prescaled clock. 

RTG: 
Retrigger bit is only active for internal clocking (EXT = 
0). In this case it determines the control function provid­
ed by the input pin. 

If RTG = 0, the input level gates the internal clock on 
and off. If the input pin is HIGH, the timer will count; if 
the input pin is LOW, the timer will hold its value. As in­
dicated previously, the input signal may be asynchro­
nous with respect to the 80186 clock. 

When RTG = I, the input pin detects LOW-to-HIGH 
transitions. The first such transition starts the timer 
running, clearing the timer value to zero on the first 
clock and then incrementing thereafter. Further transi­
tions on the input pin will again reset the timer to zero, 
from which it will start counting up again. If CO NT = 0 
when the timer has reached maximum count, the EN bit 
will be cleared, inhibiting further timer activity. 

EN: 
The enable bit provides programmer control over the 
timer's RUN/HALT status. When set, the timer is 
enabled to increment subject to the input pin con­
straints in the internal clock mode (discussed 
previously). When cleared, the timer will be inhibited 
from counting. All input pin transitions during the time 
EN is zero will be ignored. If CO NT as zero, the EN bit is 
automatically cleared upon maximum count. 

INH: 
The inhibit bit allows for selective updating of the 
enable (EN) bit. If INH is a one during the write to the 
mode/control word, then the state of the EN bit will be 
modified by the write. If INHis a zero diring the write, the 
EN bit will be unaffected by the operation. This bit is not 
stored; it will always be a 0 on a read. 

INT: 
When set, the INT bit enables interrupts from the timer, 
which will be generated on every terminal count. If the 
timer is configured in dual MAX COUNT register mode, 
an interrupt will be generated each time the value in 
MAX COUNT register A is reached', and each time the 
value in MAX COUNT register B is reached. If this 
enable bit is cleared after the interrupt request has 
been generated, but before a pending interrupt is 
serviced, the interrupt request will still be in force. (The 
request is latched in the interrupt Controller.) 

MC: 
The Maximum Count is set whenever the timer reaches 
its final maximum count value. If the timer is configured 
in dual MAX COUNT register mode, this bit will be set 
each time the value in MAX COUNT register A is 
reached, and each time the value in MAX COUNT regis­
ter B is reached. This bit is set regardless of the timer's 
interrupt-enable bit. The MC bit gives the user the ability 
to monitor timer status through software instead of 
through interrupts. Programmer intervention is required 
to clear th is bit. 

RIU: 
The Register in Use bit indicates which MAX COUNT 
register is currently being used for comparison to the 
timer count value. A zero value indicates register A. The 
RIU bit cannot be written, i.e., its value is not affected 
when the control register is written. It is always cleared 
when the ALT bit is zero. 

Not all model bits are provided for timer 2. Certain bits 
are hardwired as indicated below: 

ALT = 0, EXT = 0, P = 0, RTG = 0, RIU = 0 

Figure 5-12 Timer Mode/Control Register (continued) 
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TIMER TIMER TIMER DMA 
o 1 2 1 INTO INT1 INT2 INT3 NMI 

DMAO 
CONTROL REG. 

DMA1 
CONTROL REG. 

INTERRUPT 
REQUEST REG. 

INTERRUPT 
MASK REG. 

IN-8ERVICE 
REG. 

EXT. INPUT 0 
CONTROL REG. 

INTERRUPT 
PRIORITY 
RESOLVER 

PRIOR. LEY. 
MASK REG. 
INTERRUPT 
STATUS REG. 

EXT. INPUT 1 
CONTROL REG. 

Figure 5-13 Interrupt Controller Block Diagram 

The 80186,188 can receive interrupts from a 
number of sources, both internal and external. Inter­
nal interrupt sources (timers and DMA channels) 
can be disabled by their own control registers or by 
mask bits within the interrupt controller. The 
80186,188 interrupt controller has its own control 
registers that set the mode of operation for the 
controller. 

The interrupt controller operates in two major 
modes: non-iRMX 86 mode (also called master 
mode) and iRMX 86 mode. In master mode, the 
integrated controller acts as the master interrupt con­
troller for the system; in iRMX 86 mode, the con­
troller operates as a slave to an external interrupt 
controller which functions as the master interrupt 
controller for the system. Some of the interrupt con­
troller registers and interrupt controller pins change 
definition between these two modes, but the basic 
function of the interrupt controller remains funda­
mentally the same. 

Non-iRMX Mode 

In non-iRMX (master) mode, the interrupt control­
ler presents its interrupt input directly to the 
80186,188 CPU. Five pins are provided for external 
interrupt sources. One of these pins is dedicated to 
NMI. The other four (INTO-INT3) may be confi­
gured in three ways: as four interrupt input lines 
with internally generated interrupt vectors; as an in­
terrupt line and an interrupt acknowledge line 
(called the "cascade mode") along with two other 
input lines with internally generated interrupt 
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vectors; or as two interrupt input lines and two 
dedicated interrupt acknowledge output lines. These 
four interrupt inputs can be programmed in either 
edge- or level-trigger mode, as specified by the LTM 
bit in the source's control register. 

The interrupt controller will generate interrupt vec­
tors for the integrated DMA channels and the in­
tegrated timers. In addition, interrupt vectors for the 
external interrupt lines will be generated if they are 
not configured in cascade or special fully nested 
mode (see below). 

Each interrupt source has a pre-assigned vector type 
(see Table 5-2). Vector types point to address infor­
mation for interrupt service routines. The vectors 
generated are fixed and cannot be changed. 

The user can program the interrupt sources into any 
of eight different priority levels. Programming is 
done by placing a 3-bit priority level (0-7) in the con­
trol register of each interrupt source. (A source with 
a priority level of 4 has higher priority over all priori­
ty levels from 5 to 7. Priority registers containing 
values lower than 4 have greater priority.) All inter­
rupt sources have preprogrammed default priority 
levels. 

If two requests with the same programmed priority 
level are pending at once, the priority ordering 
scheme shown in Table 5-2 is used. If the serviced in­
terrupt routine reenables interrupts, it allows other 
requests to be serviced. 
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The interrupt controller has three basic modes of op­
eration when it is configured in the non-iRMX 
mode: fully nested mode, cascade mode and special 
fully nested mode. The response to internal inter­
rupts is identical in all three modes; the function of 
the four external interrupt pins differs in each mode. 
The interrupt controller is set into one of these 
modes by programming the correct bits in the INTO 
and INTI control registers (see below). 

FULLY NESTED MODE 

In the fully nested mode, INTO-INT3 are used as 
direct interrupt requests. The vectors for these four 
inputs are generated internally. An in-service (IS) 
bit is provided for every interrupt source. Setting 
this bit prevents the interrupt controller from 
generating interrupt requests from lower-priority 
devices, as well as from the interrupt source cur­
rently being serviced. This allows interrupt service 
routines to operate with interrupts enabled (thus 
insuring that higher-priority interrupts will be 
serviced) without being interrupted by lower-priority 
interrupts. 

When a service routine has completed, the proper IS 
bit must be reset by writing the proper pattern to the 
EOI register. This is required to allow subsequent in­
terrupts from this interrupt source, and to allow ser­
vicing of lower-priority interrupts. An EOI command 

80188 
IRTiI 

IRTA1I 

is issued at the end of the service routine just before 
the execution of the return from interrupt 
instruction. If the fully nested structure has been 
upheld, the next highest-priority source with its IS 
bit set is then serviced. 

CASCADE MODE 

In the cascade mode, INTO-INT3 are configured 
into interrupt input-dedicated acknowledge signal 
pairs. The interconnection is shown in Figure 5-14. 
INTO is an interrupt input interfaced to an 8259A; 
INT2IINTAO serves as the dedicated interrupt ac­
knowledge signal to that peripheral. The same is true 
for INTI and INT3/INTAl. Each pair can selectively 
be placed in the cascade or non-cascade mode by pro­
gramming the proper value in the INTO and INTI 
control registers. The use of the dedicated acknowl­
edge signal eliminates the need for external logic to 
generate INT A and device select signals. 

The primary cascade mode allows the capability to 
serve up to 128 external interrupt sources through 
the use of external master and slave 8259As. Three 
levels of priority are created, requiring priority reso­
lution in the 80186,188 interrupt controller, the 
master 8259A, and the slave 8259As. If an external 
interrupt is serviced, one IS bit is set at each of these 
levels. When the interrupt service routine is 
completed, up to three end-of-interrupt commands 
must be issued by the programmer. 

INT 
8259A 

PIC 
IRTA 

Figure 5-14 Cascade Mode Interrupt Connection 
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SPECIAL FULLY NESTED MODE 

The special fully nested mode is entered by setting 
the SFNM bit in the INTO or INTl control register. 
This mode enables complete nestability with external 
8259A masters. Normally, an interrupt request from 
an interrupt source will not be recognized unless the 
in-service bit for that source is reset. If more than 
one interrupt source is connected to an external in­
terruptcontroller, all of the interrupts will be chan­
nelled through the same 80186,188 interrupt request 
pin. As a result, if the external interrupt controller 
receives a higher-priority interrupt, its interrupt will 
not be recognized by the 80186,188 controller until 
the 80186,188 in-service bit is reset. In special fully 
nested mode, the 80186,188 interrupt controller will 
allow interrupts from an external pin regardless of 
the state of the in-service bit for an interrupt source 
in order to allow multiple interrupts from a single 
pin. An in-service bit will continue to be set, 
however, to inhibit interrupts from other lower­
priority 80186,188 interrupt sources. 

Special procedures should be followed when reset­
ting IS bits at the end of interrupt service routines. 
Software polling of the external master's IS register 
is required to determine if there is more than one bit 
set. If so, the IS bit in the 80186,188 remains active 
and the next interrupt service routine is entered. 

OPERATION IN A POLLED ENVIRONMENT 

All three modes may be used in a polled 
environment. When polling, the processor disables 
interrupts and then polls the interrupt controller 
whenever it is convenient. Polling the interrupt con­
troller is accomplished by reading the poll register 
(see Figure 5-16). Bit 15 in the poll register indicates 
to the processor that an interrupt of higher priority is 
requesting service. Bits 0-4 indicate the type vector 
of the highest-priority source to be set. 

It is often useful to be able to read the poll register 
information without guaranteeing service of any 
pending interrupts, i.e., without setting the indicated 
in-service bit. The poll status word is provided for 
this purpose. Poll register information is duplicated 
in the poll status word, but reading the poll status 
word does not set the associated in-service bit. 
These words are located in two adjacent memory lo­
cations in the interrupt controller register file. 

END-OF-INTERRUPT COMMAND 

The end-of-interrupt (EO!) command is used by the 
programmer to reset the In-Service (IS) bit when an 

interrupt service routine is completed. The EOI com­
mand is issued by writing the proper pattern to the 
EO! register. There are two types of EO! commands: 
specific and nonspecific. The nonspecific command 
does not specify which IS bit is reset. When issued, 
the interrupt controller automatically resets the IS 
bit of the highest priority source with an active ser­
vice routine. A specific EOI command requires that 
the programmer send the interrupt vector type to 
the interrupt controller indicating which source's IS 
bit is to be reset. This command is used when the 
fully nested structure has been disturbed or the high­
est priority IS bit that was set does not belong to the 
service routine in progress. 

iRMX 86 Compatability Mode 

The iAPX 186,88 integrated interrupt controllers 
have a special iRMX 86 compatability mode that 
allows the use of the 80186,188 within the iRMX 86 
operating system interrupt structure. The controller 
is set in this mode by setting bit 14 in the peripheral 
Gontrol block relocation· register and providing spe-
ciid initialization software. . 

When iRMX mode is used, the internal 80186,188 
interrupt controller will be used as a slave controller 
to an external master interrupt controller. The inter­
nal 80186,188 resources will be monitored through 
the internal interrupt controller, while the external 
controller functions· as the system master interrupt 
controller. 

Because of pin limitations caused by the need to in­
terface to an external 8259A master, the internal in­
terrupt controller will no longer accept external 
inputs. There are, however, enough 80186,188 inter­
rupt controller inputs (internally) to dedicate one to 
each timer. In this mode, each timer interrupt 
source has its own mask bit, IS bit, and control word. 

The iRMX 86 operating system requires peripherals 
to be assigned fixed priority levels. This is incompati­
ble with the normal operation of the 80186,188 inter­
rupt controller. Thus, the initialization software 
must program the proper priority levels for each 
source. The required priority levels for the internal 
interrupt sources in iRMX mode are shown in Table 
5-12. These priority level assignments must remain 
fixed in the iRMX mode of operation. 

Table 5-12 Internal Source Priority Level 

Priority Level Interrupt Source 

0 j Timer 0 
1 (reserved) 
2 DMAO 
3 DMA 1 
4 Timer 1 
5 Timer 2 
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The iRMX 86 mode of operation allows nesting of 
interrupt requests. When an interrupt is acknow­
ledged, the priority logic masks off all priority levels 
except those with equal or higher priority. 

The configuration of the 80186,188 with respect to 
an external 8259A master is shown in Figure 5-15. 
The INTO input is used as the 80186 CPU interrupt 
input. INT3 functions as an output to send the 80186 
slave-interrupt-requests to one of the 8 master­
PIC-inputs. 

For information on external interfacing in iRMX 86 
mode, see Volume 2. 

VECTOR GENERATION IN THE iRMX 86 MODE 

Vector generation in iRMX 86 mode is exactly like 
that of an 8259A slave: the interrupt controller 
generates an 8-bit vector which the CPU multiplies 
by four and uses as an address into a vector table. 
The five most significant bits of the vector are pro­
grammed by writing to the Interrupt Vector register 
at offset 20H. The lower-order three bits are generat­
ed by the priority logic and represent the encoding of 
the priority level requesting service. 

80186 INT. IN 

80186 

INTO 

lim SLAV!! !li!Li!CT 

INT2 -
I 
I 

SPECIFIC END-OF-INTERRUPT 

In iRMX 86 mode, the specific EOI command oper­
ates to reset an in-service bit of a specific priority. 
The user supplies a 3-bit priority level value that 
points to an in-service bit to be reset. The command 
is executed by writing the correct value in the specific 
EO! register at offset 22H. 

Interrupt Controller Registers 

The interrupt controller has a number of registers 
which are .used to control its operation. These regis­
ters have been referred to in the preceding discus­
sion of the interrupt controller's various operations; 
in the following sections they are individually 
discussed. 

The interrupt controller register model is shown in 
Figure 5-16. It contains 15 registers, all of which can 
be read or written unless otherwise specified. Some 
of these registers have a different function depending 
on the processor's operating mode (master or iRMX 
86). The interrupt controller registers for both 
modes will be discussed together; differences in 
function and implementation in the two modes will 
be indicated where appropriate. 

8259A 
MASTER 

INTA 
IRO 

INT 

1 
IR7 -

<==REOUESTSFROM 
OTHER SLAVES 

CA60-2 

~ " ) 

CASCADE 
ADDRESS DECODER 

INT3 
80186 SLAVE INTERRUPT OUTPUT 

Figure 5-15 iRMX 86 Interrupt Controller Interconnection 
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INT3 CONTROL REGISTER 

INn CONTROL REGISTER 

INTl CONTROL REGISTER 

INTO CONTROL REGISTER 

DMA 1 CONTROL REGISTER 

OMA 0 CONTROL REGISTER 

TIMER CONTROL REGISTER 

INTERRUPT CONTROLLER STATUS REGISTER 

INTERRUPT REOUEST REGISTER 

IN-SERVICE REGISTER 

PRIORITY MASK REGISTER 

MASK REGISTER 

POLL STATUS REGISTER 

POLL REGISTER 

EOI REGISTER 

iRMX 86 Mode 

OFFSET 

3EH 

3CH 

3AH 

38H 

38H 

34H 

32H 

30H 

2EH 

2CH 

2AH 

28H 

28H 

24H 

22H 

OFFSET 

LEVEL 5 CONTROL REGISTER 
(TIMER 2) 3AH 

LEVEL 4 CONTROL REGISTER 
(TIMER 1) 

38H 

LEVEL 3 CONTROL REGISTER 
(OMA 1) 38H 

LEVEL 2 CONTROL REGISTER 
(OMAO) 34H 

LEVEL 0 CONTROL REGISTER 
(TIMER 0) 

32H 

INTERRUPT·REQUEST REGISTER 2EH 

IN-SERVICE REGISTER 2CH 

PRIORITY·LEVEL MASK REGISTER 2AH 

MASK REGISTER 28H 

SPECIFIC EOI REGISTER 22H 

INTERRUPT VECTOR REGISTER 20H 

Non-iRMX 86 Mode 

Figure 5-16 Interrupt Controller Registers 

CONTROL REGISTERS 

The interrupt controller includes seven control 
registers, one for each interrupt source (see Figure 
5-17). In master mode, four of these (INTO-INTJ) 
serve the external interrupt inputs, one is provided 
for each of the two D MA channels, and one register 
is used for the collective timer interrupts. In non­
iRMX 86 mode, the control registers for INT2 and 
INT3 are not used, registers INTO and INTI are 
used for timer 1 and timer 2 respectively, and the 
DMA 0 and DMA 1 registers are used for internal 
interrupt sources. 

These registers contain three bits (PRO, PRI and 
PR2), which select one of eight different priority 
'levels for the interrupt device (0 is highest priority, 7 
is lowest p'riority), and a mask (MSK) bit to enable 

the interrupt. When the mask bit is zero, the inter­
rupt is enabled; when it is set, the interrupt is 
masked. The MSK bits in the individual control 
registers are exactly the same bits as those in the 
mask register, so that modifying these bits in the in­
dividual control register will also modify them in the 
mask register, and vice versa. 

INTERRUPT REQUEST REGISTER 

The interrupt request register contains bits which 
are automatically set when internal or external 
(master mode only) interrupt requests are pending. 
The format of this register is shown in Figure 5-18. 
Whenever an interrupt request is made by the inter· 
rupt source associated with a specific control 
register, the bit in the interrupt request register is 
set, whether or not the interrupt is enabled or is of 
sufficient priority to cause an interrupt. 
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15 14 4 3 2 1 0 

o 0 

Timer/DMA Control Registers (Non-iRMX Mode) 

15 14 6 4 3 2 1 0 

o 0 o ISFNMI c I LTM I MSK I PR2 I PRl I PRO I 

INTO/INT1 Control Registers (Non-iRMX Mode) 

15 14 4 3 2 1 0 

o 0 o I LTM I MSKI PR21 PRll PRO I 

INT2/INT3 Control Registers (Non-iRMX Mode) 

15 14 13 3 2 1 0 

Control Word (iRMX 86 Mode) 

Priority programming information. Highest 
Priority = 000, Lowest Priority = 111 

MSK: Mask bit, 1 = mask; 0 = non mask. 

C: Cascade mode bit, 1 = cascade; 0 = direct 
Level-trigger mode bit. 1 = level triggered; 
o = edge-triggered. Interrupt input levels 
are active high. In level-triggered mode, an 
interrupt is generated whenever the external 
line is high. In edge-triggered mode, an in­
terrupt will be generated only when this 
level is preceded by an inactive-to-active 
transition on the line. In both cases, the 
level must remain active until the interrupt 
is acknowledged. 

SFNM: Special fully nested mode bit, 1 = SFNM 

Figure 5-17 Control Register Format 
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15 14 10 9 0 

0 I 0 I 0 0 I 0 13 12 11 10 01 DO I 0 I TMR I 
Non-iRMX 86 Mode 

15 14 13 8 7 6 5 4 2 0 

I 0 I 0 I 0 I 0 I 0 I 0 I TMR21 TMR1 I 01 DO 0 !T~ 

iRMX 86 Mode 

Figure 5-18 In-Service, Interrupt Request and Mask Register Format 

DO and D I are the interrupt request bits for the 
DMA channels; the TMR bit is the logical OR of all 
timer interrupt requests. These bits can be both read 
and written, while the bits associated with the exter­
nal interrupt pins (master mode only) can be read 
but not written (since values written to them are not 
stored). 

The external interrupt request bits show exactly 
when an interrupt request is given to the interrupt 
controller, so that if edge-triggered mode is selected, 
the bit in the register will be HIGH only after an 
inactive-to-active transition. For internal interrupt 
sources, the register bits are set when a request ar­
rives and are reset when the processor acknowledges 
the requests. 

MASK REGISTER 

The mask register contains a mask bit for each in­
terrupt source. When the bit in this register cor­
responding to a particular interrupt source is set, all 
interrupts from that' source will be masked. These 
mask bits are exactly the same bits which are used in 
the individual control registers; thus, changing the 
state of a mask bit in this register will also change the 
state of the mask bit in the individual interrupt con­
trol register corresponding to the bit, and vice versa. 
The format for this register is shown in Figure 5-18. 

PRIORITY MASK REGISTER 

This register allows masking of all interrupts below a 
particular interrupt priority level. The format of this 
register is shown in Figure 5-19. The code in the 
lower three bits indicate the priority of the current 
interrupt being serviced. Wheh an interrupt is 

acknowledged, either by the processor running the 
interrupt acknowledge or by the processor reading 
the interrupt poll register (see beloW), these bits are 
automatically set to the priority of the device whose 
interrupt is being acknowledged. This prevents any 
interrupts of lower priority (as set by the priority bits 
in the interrupt control registers for interrupt 
sources) from interrupting the processor. Thus, the 
contents of this register indicates the lowest priority­
level interrupt which will be serviced. For example, 
100 written into this register masks interrupts of 
level five (101), six (110), and seven (I I 1). The 
register is reset to seven (I I 1) upon RESET, i.e., in­
terrupts of all priority levels are enabled .. 

IN-SERVICE REGISTER 

This register contain's In-Service (IS) bits for each in­
terrupt source, indicating that its service routine is in 
progress (see Figure 5-18). When an IS bit is set, no 
interrupts will be generated from devices with a 
lower priority level. 

In iRMX 86 mode, bit positions 0, 4, and 5 corre­
spond to the integral timers. In master mode, a 
single TMR bit is the IS bit for all three timers, and 
1O-I3 are the IS bits for the external interrupt pins. 
DO and DI are the IS bits for the two DMA channels 
in both modes. 

The IS bit is set when the processor acknowledges an 
interrupt request (either by an interrupt acknowl­
edge or by reading the poll register). The IS bit is 
reset at the end of the interrupt service routine by an 
EIO command issued by the CPU. This register may 
be both read and written, i.e., the CPU may set in­
service bits without an interrupt ever occurring, or 
may reset them without using the EOI function of 
the interrupt controller. 
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POLL AND POLL STATUS REGISTERS 
(MASTER MODE ONLY) 

The interrupt controller contains a poll register and a 
poll status register, both of which contain the same 
polling information. The format of this register is 
shown in Figure 5-20. 

The INTREQ bit indicates an interrupt is pending 
and is set when an interrupt of sufficient priority has 
been received. It is automatically cleared when the 
interrupt is acknowledged. When an interrupt is 
pending, bits SO-S4 indicates the vector type of the 
highest priority interrupt pending. 

Reading the poll register will acknowledge the pend­
ing interrupt to the interrupt controller, just as if the 
processor had acknowledged the interrupt through 
interrupt acknowledge cycles. The processor will not 
actually run any interrupt acknowledge cycles, and 
will not vector through a location in the interrupt 
vector table. Only the interrupt request, in-service 
and priority mask registers in the interrupt controller 
will be set appropriately. 

Reading the poll status register, on the other hand, 
will merely transmit the status of the polling bits 
without modifying any of the other interrupt control­
ler registers. Both registers are read only; data writ­
ten to them is not stored. 

Though these registers are not supported in iRMX 
86 mode, accessing the poll register location when in 
iRMX 86 mode will cause the interrupt controller to 

15 14 13 

"acknowledge" the interrupt (i.e., the in-service bit 
and priority level mask register bits will be set). 

EOI REGISTER 

The end of interrupt register is used by the program­
mer to issue an End Of Interrupt command to the 
controller. After receiving this command, the inter­
rupt controller automatically resets the in-service bit 
for the interrupt (indicating its service routine has 
completed) and the oriority mask register bits. Only 
the specific form of the EOI command is supported 
in iRMX 86 mode. 

This register is write only; data written is not stored 
and cannot be read back. The format of this register 
is shown in Figure 5-21. 

INTERRUPT STATUS REGISTER 

This register contains general interrupt controller 
status information. All the significant bits in this 
register are read/write. The format of this register is 
shown in Figure 5-22. 

Three bits (JRTO-IRT2) are used to differentiate 
among the three timer interrupts. This is required in 
master mode because the timers share a single inter­
rupt control register. The bit associated with a timer 
is automatically cleared after the interrupt request 
for the timer is acknowledged. More than one of 
these bits may be set at a lime. 

7 
i i i 

I I I 
I I I It, 

0 0 0 I 0 I 0 I 0 \ 0 \ 0 10m2 ml mO 

Non-iRMX Mode 
15 14 2 1 0 

0 ! 0 ! ! PRM2! PRMll PRMO I 
iRMX 86 Mode 

Figure 5-19 Priority Level Mask Register Format 

15 14 13 

Figure 5-20 Poll Register Format 
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Non-iRMX Mode 

15 14 13 8 5 

I 0 I 0 I 0 I .0 I 0 o I L2 Ll LO 

iRMX 86 Mode 

Figure 5-21 EOI Register Format 

I 0 I 0 

2 1 0 

o I 0 IIRT2 I IRn I IRTO I 

Figure 5-22 Interrupt Status Register Format 

The DHLT (DMA Halt Transfer) bit insures 
prompt servicing of non-maskable interrupts by halt­
ing all DMA transfers. It is automatically set when­
ever a non-maskable interrupt occurs, and is reset 
when an IRET instruction is executed. This bit may 
also be set explicitly by the programmer. It is never 
automatically cleared (except by RESET), so that if 
DMA activity is desired, the programmer must clear 
this bit after each NMI is received. 

INTERRUPT VECTOR REGISTER 
(iRMX 86 MODE ONLY) 

The interrupt vector register is is used to specify the 
5 most significant bits of the interrupt type vector 
placed on the CPU bus in response to an interrupt 
acknowledgement. The interrupt controller itself 
provides the lower three bits of the interrupt vector 
as determined by the priority level of the interrupt 
request. The lower 3 significant bits of the interrupt 
type are determined by the priority level of the 
device causing the interrupt. The format of this regis­
ter is shown in Figure 5-23. 

Figures 5-24 and 5-25 summarize the methods of in­
teraction among the various interrupt controller 
registers. 

15 14 13 8 

Interrupt Controller and Reset 

Upon RESET, the interrupt controller will perform 
the following actions: 

• All SFNM bits reset to 0, implying fully 
nested mode. 

• All PR bits in the various control registers set 
to 1. This places all sources at lowest priority 
(Jevelll 1) . 

• All LTM bits reset to 0, resulting in edge-sense 
mode. 

• All Interrupt Service bits reset to O. 

• All Interrupt Request bits reset to 0: 

• All MSK (Interrupt Mask) bits set to 1 (mask). 

• AllC (Cascade) bits reset toO (non-cascade). 

• All PRM (Priority Mask) bits set to 1, implying 
no levels masked. 

• Initialized to non-iRMX 86 mode. 

I 0 0 0 I I 0 I 14 

Figure 5-23 InterruptVector Register Format 
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PRESENT 
INTERRUPT 

REQUEST TO 
EXTERNAL 

CONTROLLER 

Figure 5-24 80186 Interrupt Request Sequencing 
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SET IN-SERVICE 
& PRIORITY 

MASK REGISTER 
BITS 
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@YES 

INTERRUPT 
ACKNOWLEDGE 

NO 

PROVIDE 
HIGHEST 
PRIORITY 

INTERRUPT 
VECTOR ON 

INTERNAL BUS 

SET IN-SERVICE 
& PRIORITY 

MASK REGISTER 
BITS 

GENERATE 
INTERRUPT TYPE 

CD Before actual interrupt acknowledge is run by CPU. 

WAIT FOR NEXT 
INTERRUPT 

ACKNOWLEDGE 

.----P-L-A-C-E----.8) 

INTERRUPT TYPE 
ON BUS DURING 
SECOND INTA 

CYCLE 

SET IN-SERVICE 
& PRIORITY 

MASK REGISTER 
BITS 

@Two interrupt acknowledge cycles will be run; the interrupt type is read by the CPU on the second cycle. 

® Interrupt acknowledge cycles will not be run. The interrupt vector address is placed on an internal bus 
and is not available outside the processor. 

8) Interrupt type is not driven on bus iRMX86 mode. 

Figure 5-25 80186 Interrupt Acknowledge Sequencing 
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CHAPTER 6 
THE 8087 NUMERIC PROCESSOR EXTENSION 

6.1 INTRODUCTION 

This chapter describes the 8087 Numeric Processor 
Extension (NPX). It is divided into the following 
sections: 

• Processor Overview 

• Processor Architecture 

• Computation Fundamentals 

• Instruction Set 

• Programming Facilities 

• Spe.cial Features 

• Programming Examples 

The processor overview section covers both hard­
ware and . software topics at a general level. Special 
Features describes those features of the NPX that 
will be of interest to specialized groups of users; it is 
not necessary to understand this section to success­
fully use the 8087 in most applications. Hardware 
coverage in this chapter is limited to discussing pro­
cessor facilities in functionaiterms. Timing, electrical 
characteristics, and other physical interface data may 
be found in Volume 2 of this set. 

Note that throughout this chapter the term "CPU" 
refers to either an 8086,88 configured in maximum 
mode, or an 80186,188. To make best use of the 
material in this chapter readers should have a good 
understanding of the operation of the 8086,88 and 
80186,188 CPUs. 

6.2 PROCESSOR OVERVIEW 

The 8087 Numeric Processor Extension (NPX) per­
forms arithmetic and comparison operations on a 
variety of numeric data types; it also executes 
numerous built-in transcendental functions (e.g., 
tangent and log functions). As a processor extension 
to a maximum mode 8086,88, or an 80186,188, the 
NPX effectively extends the register and instruction 
sets of the host CPU and adds several new data types 
as well. The programmer generally does not perceive 
the 8087 as a separate device; instead, the computa­
tional capabilities of the CPU appear greatly 
expanded. 

6-1 

The 8087 adds extensive high-speed numeric proces­
sing capabilities to an 8086,88- or 80186,188-based 
system. It is specifically designed to deliver stable, 
correct results when used in a straightforward fash­
ion by programmers who are not expert in numerical 
analysis. Its applicability to accounting and financial 
environments, in addition to scientific and engineer­
ing settings, further distinguishes the 8087 from the 
"floating point accelerators" employed in many 
computer systems, including minicomputers and 
mainframes. The NPX is housed in a standard 
40-pin dual in-line package (Figure 6-1) and requires 
a single + 5V power source. 

Vss vee 

A14!014 A15/015 

A1J/D13 A16/S3 

A12/012 A17/S4 

A11/Dl1 A18/55 

A1O/01O A19/S6 

A9/D9 IfHE/S7 

AS/OS RQ/GTl 

AlID7 INT 

AS/OS ROtGTO 

AS/DS Ne 

A4/D4 Ne 

A3(D3 S:i 

A2I02 51 

A11D1 So 

M/oa aso 

NC 051 

Ne BUSY 

eLK READY 

V55 RESET 

NC '" NO CONNECT 

Figure 6-1 8087 Numeric Data 
Processor Pin Diagram 

The description of the 8087 in this section deliberate­
ly omits some operating details in order to provide a 
coherent overall view of the processor's capabilities. 
Subsequent sections of the chapter will describe 
these capabilities, and others, in more detail. 
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THE 8087 NUMERIC PROCESSOR EXTENSION 

Evolution 

The performance of first- and second-generation 
microprocessor-based systems was limited in three 
principal areas: storage capacity, input/output speed, 
and numeric computation. The 8086,88 CPU broke 
the 64K memory barrier, allowing larger and more 
time-critical applications to be undertaken. The 8089 
Input/Output Processor eliminated many of the I/O 
bottlenecks and permitted microprocessors to be 
employed effectively in I/O-intensive designs. The 
8087 Numeric Processor Extension clears the third 
roadblock by enabling applications with significant 
computational requirements to be implemented 
with microprocessor technology. 

Figure 6-2 illustrates the progression of Intel nu­
meric products and events that have led to the devel­
opment of the 8087. In the mid-1970's, Intel made 
the commitment to expand the computational capa­
bilities of microprocessors from addition and 
subtraction of integers to an array of widely useful 
operations on real numbers. (Real numbers encom­
pass integers, fractions, and irrational numbers such 
as 11" and ID In 1977, the corporation adopted a 
standard for representing real numbers in a 
"floating point" format. Intel's Floating Point Arith­
metic Library (FPAL) was the first product to utilize 
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this standard format. FPAL is a set of subroutines 
for the 8080/S0S5 microprocessors. These routines 
perform arithmetic and limited standard functions 
on single precision (32-bit) real numbers; an FPAL 
multiply executes in about loS ms (l.6MHz. 80S0A 
CPU). The next product, the iSBC™ 310 High 
Speed Math Unit, essentially implements FPAL in a 
single iSBC card, reducing a single-precision multiply 
to about 100/Ls. The Intel S232 is a single-chip arith­
metic processor for the SOSO/S085 family. The 8232 
accepts double precision (64-bit) qperands as well as 
single precision numbers. It performs a single preci­
sion multiply in about 100/Ls and multiplies double 
precision numbers in about S75/Ls (2 MHz version). 

In 1979, a working committee of the Institute· for 
Electrical and Electronic Engineers (IEEE) proposed 
an industry standard for minicomputer and micro­
computer floating point arithmetic (J. Coonen, W. 
Kahan, J. Palmer, T. Pittman, D. Stevenson, "A 
Proposed Standard for Binary Floating Point 
Arithmetic," ACM SIGNUM Newsletter, October 
1979). The intent of the standard is to promote 
portability of numeric programs between computers 
and to provide a uniform programming environment 
that encourages the development of accurate, relia­
ble software. The proposed startdardspecifies re­
qUirements and options for number formats as well 
as the results of computations on these numbers. 
The floating point number formats are identical to 
those previously adopted by Intel and used in the 
products described in this section. 

The SOS7 Numeric Processor Extension is the most 
advanced development in Intel's continuing effort 
to provide improved tools for numerically-oriented 
microprocessor applications. It is a single-chip hard­
ware implementation of the proposed IEEE 
standard, including all its options for single and 
double precision numbers. As such, it is compatible 
with previous Intel numerics products; programs 
written for the S087 will be transportable to future 
products that conform to the proposed IEEE 
standard. The NPX also provides many additional 
functions that are extensions to the proposed 
standard. 

Performance 

As Figure 6-2irtdicates, the S087 provides about 10 
times the instruction speed of the 8232 and a 
100-fold improvement over FPAL. The 8087 multi­
ples 32-bit and 64-bit real numbers in about 19/Ls 
and 27/Ls respectively. Of course, the actual perfor­
mance of the NPX in a given system depends on 
numerous application-specific factors. 
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Table 6-1 compares the execution times of several 
8087 instructions with the equivalent operations ex­
ecuted in software on a 5 MHz 8086. The software 
equivalents are highly optimized assembly language 
procedures from the 8087 emulator, an NPX devel­
opment tool discussed later in this section. 

The performance figures quoted in this section are 
for operations on real (floating point) numbers. The 
8087 also has instructions that enable it to utilize 
fixed point binary and decimal integers of up to 64 
bits and 18 digits, respectively. Using an 8087, rather 
than multiple precision software algorithms for inte­
ger operations, can provide speed improvements of 
10-100 times. 

The 8087's unique processor extension interface to 
the CPU can yield an additional performance incre­
ment beyond that of simple instruction speed. No 
overhead is incurred in setting up the device for a 
computation; the 8087 decodes its own instructions 
automatically in parallel with the CPU. Moreover, 
built-in coordination facilities allow the CPU to pro­
ceed with other instructions while the 8087 is 
simultaneously executing its numeric instruction. 
Programs can exploit this processor parallelism to in­
crease total system throughput. 

Usability 

Viewed strictly from the standpoint of raw speed, 
the 8087 enables serious computation-intensive 
tasks to be performed by microprocessors for the 
first time. The 8087 offers more than just high 
performance, however. By synthesizing advances 
made by numerical analysts in the past several years, 
the NPX provides a level of usability that surpasses 
existing minicomputer and mainframe arithmetic 
units. In fact, the charter of the 8087 design team 
was first to achieve exceptional functionality and 
then to obtain high performance. 

The 8087 is explicitly designed to deliver stable, 
accurate results when programmed using straightfor­
ward "pencil and paper" algorithms. While this state­
ment may seem trivial, experienced users of 
"floating point processors" will recognize its funda­
mental importance. For example, most computers 
can overflow when two single precision floating 
point numbers are multiplied together and then 

Table 6-1 8087 Emulator Speed Comparison 

Approximate Execution Time (I-Is) 
(5 MHz Clock) 

Instruction 

8087 
8086 

Emulation 

Multiply (single precision) 19 1,600 

Multiply (double precision) 27 2,100 

Add 17 1,600 

Divide (single precision) 39 3,200 

Compare 9 1,300 

Load (single precision) 9 1,700 

Store (single precision) 18 1,200 

Square root 36 19,600 

Tangent 90 13,000 

Exponentiation 100 17,100 
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divided by a third, even if the final result is a per­
fectly valid 32-bit number. The 8087 delivers the cor­
rectly rounded result. Other typical examples of 
undesirable machine behavior in straightforward cal­
culations occur when solving for roots of a quadratic 
equation: 

- b± .J b2 - 4ac 
2a 

or computing financial rate of return, which involves 
the expression: (1 + nn. Straightforward algorithms 
will not deliver consistently correct results (and will 
not indicate when they are incorrect) on most 
machines. To obtain correct results on traditional 
machines under all conditions usually requires so­
phisticated numerical techniques that are foreign to 
most programmers. General application program­
mers using straightforward algorithms will produce 
much more reliable programs on the 8087. This 
simple fact greatly reduces the software investment 
required to develop safe, accurate computation­
based products. 

Beyond traditional numerics support for "scientific" 
applications, the 8087 has built-in facilities for 
"commercial" computing. It can process decimal 
numbers of up to 18 digits without rounding off 
errors, and it performs exact arithmetic on integers as 
large as 264 Exact arithmetic is vital in accounting ap­
plications where rounding errors may introduce 
money losses that cannot be reconciled. 

The NPX contains a number of facilities that can op­
tionally be invoked by sophisticated users. Examples 
of these advanced features include two models of 
infinity, directed rounding, gradual underflow, and 
traps to user-written exception handling software. 

Applications 

The NPX's versatility and performance make it ap­
propriate for a broad array of numerically-oriented 
applications. In general, applications that exhibit any 
of the following characteristics can benefit by imple­
menting numeric processing on the 8087: 

• Numeric data vary over a wide range of 
values, or include non-integral values; 

• Algorithms produce very large or very small 
intermediate results; 

• Computations must be very precise, i.e., a 
large number of significant digits must be 
maintained; 
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• Performance requirements exceed the capaci­
ty of traditional microprocessors; 

• Consistently safe, reliable results must be 
delivered using a programming staff that is 
not expert in numerical techniques. 

Note also that the 8087 can reduce software develop­
ment costs and improve the performance of systems 
that do not utilize real numbers but operate on 
multi-precision binary or decimal integer values. 

A few examples, which show how the 8087 might be 
utilized in specific numerics applications, are de­
scribed below. In many cases, these types of systems 
have been implemented in the past with 
minicomputers. The advent of the 8087 brings the 
size and cost savings of microprocessor technology 
to these applications for the first time. 

• Business data processing - The NPX's ability 
to accept decimal operands and produce exact 
decimal results of up to 18 digits greatly sim­
plifies accounting programming. Financial cal­
culations which use power functions can take 
advantage of the 8087's exponentiation and 
logarithmic instructions. 

• Process control - The 8087 solves dynamic 
range problems automatically, and its extend­
ed precision allows control functions to be 
fine-tuned for more accurate and efficient 
performance. Control algorithms implement­
ed with the NPX also contribute to improved 
reliability and safety, while the 8087's speed 
can be exploited in real-time operations. 

• Numerical control - The 8087 can move and 
position machine tool heads with extreme 
accuracy. Axis positioning also benefits from 
the hardware trigonometric support provided 
by the 8087. 

• Robotics - Coupling small size and modest 
power requirements with powerful computa­
tional abilities, the NPX is ideal for on-board 
six -axis positioning. 

• Navigation - Very small, light weight, and 
accurate inertial guidance systems can be im­
plemented with the 8087. Its built-in trigo­
nometric functions canspeed and simplify the 
calculation of position from bearing data. 

• Graphics terminals - The 8087 can be used 
in graphics terminals to locally perform many 
functions which normally demand the atten­
tion of a main computer; these include 
rotation, scaling, and interpolation. By also 
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including an 8089 InputlOutput Processor to 
perform high speed data transfers, very 
powerful and highly self-sufficient terminals 
can be built from a relatively small number of 
8086,88 family parts. 

• Data acquisition - The 8087 can be used to 
scan, scale, and reduce large quantities of 
data as it is collected, thereby lowering storage 
requirements as well as the time required to 
process the data for analysis. 

The preceding examples are oriented toward 
"traditional" numerics applications. There are, in 
addition, many other types of systems that do not 
appear to the end user as "computational", but can 
employ the 8087 to advantage. Indeed, the 8087 pre­
sents the imaginative system designer with an oppor­
tunity similar to that created by the introduction of 
the microprocessor itself. Many applications can be 
viewed as numerically-based if sufficient computa­
tional power is available to support this view. This is 
analogous to the thousands of successful products 
that have been built around "buried" microproces­
sors, even though the products themselves bear 
little resemblance to computers. 

Programming Interface 

The combination of an 8086,88 or 80186,188 CPU 
and an 8087 generally appears to the programmer as 
a single machine. The 8087, in effect, adds new data 
types, registers, and instructions to the CPU. The 
programming languages and the coprocessor archi­
tecture take care of most interprocessor coordination 
automatically. 

Table 6-2 lists the seven 8087 data types. Internally, 
the 8087 holds all numbers in the temporary real 
format; the extended range and precision of this 
format are key contributors to the NPX's ability to 
consistently deliver stable, expected results. The 
8087's load and store instructions convert operands 
between the other formats and temporary real. The 
fact that these conversions are made, and that calcu­
lations may be performed on converted numbers, is 
transparent to the programmer. Integer operands, 
whether binary or decimal, yield correct integer 
results, just as real operands yield correct real 
results. Moreover, a rounding error does not occur 
when a number in an external format is converted to 
temporary real. 

Computations in the 8087 center on the processor's 
register stack. These eight 80-bit registers provide 
the equivalent capacity of 40 of the 16-bit registers 
found in typical CPUs. This generous register space 
allows more constants and intermediate results to be 
held in registers during calculations, reducing 
memory access and consequently improving execu­
tion speed as well as bus availability. The 8087 regis­
ter set is unique in that it can be accessed both as a 
stack, with instructions operating implicitly on the 
top one or two stack elements, and as a fixed register 
set, with instructions operating on explicitly 
designated registers. 

Table 6-3 lists the 8087's major instructions by class. 
Assembly language programs are written in 
ASM-86, the 8086,88/80186,188/8087 common as­
sembly language. ASM-86 provides directives for 
defining all 8087 data types and mnemonics for all 

Table 6-2 Data Types 

Data Type Bits 
Significant 

Approximate Range (Decimal) Digits (Decimal) 

Word integer 16 4 -32,768 ~ X ~ + 32,767 

Short integer 32 9 -2x109 ~ X ~ + 2x109 

Long integer 64 18 -9x1018 ~ X ~ +9x1018 

Packed decimal 80 18 -99 ... 99 ~ X ~ + 99 ... 99 (18 digits) 

Short real* 32 6-7 8.43x10-37 ~ Ixi ~ 3.37x1038 

Long real* 64 15-16 4.19x1 0-307 ~ Ix I ~ 1.67x1 0308 

Temporary real 80 19 3.4x10-4932 ~ Ixl ~ 1.2x104932 

*The short and long real data types correspond to the single and double precision data types 
defined in other Intel numerics products. 
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Table 6-3 Principal Instructions 

Class Instructions 

Data Transfer Load (all data types), Store (all data types), Exchange 

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed, 
Divide Reversed, Square Root, Scale, Remainder, 
Integer Part, Change Sign, Absolute Value, Extract 

Comparison Compare, Examine, Test 

Transcendental Tangent, Arctangent, 2X -1, YeLog2(X + 1), YeLog2(X) 

Constants 0, 1,n, Lpg102, Loge2, Log210, Log2e 

Processor Control Load Control Word, Store Control Word, Store Status 
Word, Load Environment, Store Environment, Save, 
Restore, Enable Interrupts, Disable Interrupts, Clear 
Exceptions, Initialize 

instructions. The fact that some instructions in a pro­
gram are executed by the 8087 and others by the 
CPU is usually of no concern to the programmer. All 
8086,88 addressing modes may be used to access 
memory-based 8087 operands, enabling convenient 
processing of numeric arrays, structures, based 
variables, etc. 

NPX routines may also be written in PL/M-86, 
Intel's high-level language for the 8086,88 and 
80186,188 CPUs. PLlM-86 provides the program­
mer with access to many 8087 facilities while re­
ducing the programmer's need to understand the 
architecture of the chip. 

Two features of the 8087 hardware further simplify 
numeric application programming. First, the 8087 is 
invoked directly by the programmer's instructions. 
There is no need to write instructions that "address" 
the NPX as an "I/O device", or to incur the over­
head of setting up a DMA operation to perform data 
transfers. Second, the NPX automatically detects ex­
ception conditions that can potentially damage a cal­
culation at run-time. On-chip exception handlers are 
automatically invoked by default to field these 
exceptions, so that a reasonable result is produced 
and execution may proceed without program 
intervention. Alternatively, the 8087 can interrupt 
the CPU and thus trap to a user procedure when an 
exception is detected. 

Besides the assembler and compiler, Intel provides a 
software emulator for the 8087. The 8087 emulator 
(E8087) is a software package that provides the func­
tional equivalent of an 8087; it executes entirely on 
an 8086,88 or 80186,188 CPU. The emulator allows 
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8087 routines to be developed and checked out on 
an 8086,88 or 80186,188 execution vehicle before 
prototype 8087 hardware is operational. 

At the source code level, there is no difference be­
tween a routine that will ultimately run on an 8087 
or on a CPU emulation of an 8087. At link time, the 
decision is made whether to use the NPX or the soft­
ware emulator; no recompilation or re-assembly is 
necessary. Source programs are independent of the 
numeric execution vehicle: except for timing, the op­
eration of the emulated NPX is the same as for "real 
hardware". The emulator also makes it simple for a 
product to offer the NPX as a "plug-in" performance 
option without the necessity of maintaining two sets 
of source code. The 80186,188 provides a trap when 
an escape (to the 8087) opcode is encountered. 

Hardware Interface 

As a processor extension to an 8086,88 or 
80186,188, the 8087 is wired directly to the CPU as 
shown in Figure 6-3. The CPU's queue status lines 
(QSO and QS 1) enable the NPX to obtain and 
decode instructions in synchronization with the 
CPU. The NPX's BUSY signal informs the CPU that 
the NPX is executing; the CPU WAIT instruction 
tests this signal to ensure that the NPX is ready to 
execute a subsequent instruction. The NPX can in­
terrupt the CPU when it detects an exception. The 
NPX's interrupt request line is typically routed to 
the CPU through an 8259A Programmable Interrupt 
Controller or the 80186,18888 integrated controller. 
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Figure 6-3 NDP Interconnect 

The NPX uses one of its host CPU's request/grant 
lines to obtain control of the local bus for data trans­
fers (loads and stores). The other CPU request/­
grant line is available for general system use, for 
example, by a local 8089 Input/Output Processor. A 
local 8089 may also be connected to the 8087's 
RQ/GTl line. In this configuration, the 8087 passes 
the request/grant handshake signals between the 
CPU and the lOP when the 8087 is not in control of 
the bus, the 8087 relinquishes the bus (at the end of 
the current bus cycle) upon a request from the con­
nected IOP, giving the IOP higher priority than 
itself. In this way, two local 8089's can be configured 
in a module that also includes a CPU and an 8087. 

The .8086, 8088 and 8087 all utilize the same clock 
generator and system bus interface components 
(bus controller, latches, transceivers, and bus 
arbiter). Thus, no additional hardware beyond the 
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8087 is required to add powerful computational capa­
bilities to 8086, 88- based systems. For 80186, 
188-based systems, some additional hardware is re­
quired to interface to the 8087. Refer to Volume 2 
for more information. 

6.3 PROCESSOR ARCHITECTURE 

As shown in Figure 6-4, the NPX is internally divid­
ed into two processing elements, the control unit 
(CU) and the numeric execution unit (NEU). In 
essence, the NEU executes all numeric instructions, 
while the CU fetches instructions, reads and writes 
memory operands, and executes the processor con­
trol class of instructions. The two elements are able 
to operate independently of one another, allowing 
the CU to maintain synchronization with the CPU 
while the NEU executes numeric instructions, 
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Figure 6-4 8087 Block Diagram 

Control Unit 

The CU keeps the 8087 operating in synchronization 
with its host CPU. 8087 instructions are intermixed 
with CPU instructions in a single instruction stream 
fetched by the CPU. By monitoring the status signals 
emitted by the CPU, the NPX control unit can deter­
mine when an instruction is being fetched. When the 
instruction byte or word becomes available on the 
local bus, the CU taps the bus in parallel with the 
CPU and obtains that portion of the instruction. 

The CU maintains an instruction queue that is identi­
cal to the queue in the host CPU. By monitoring the 
CPU's queue status lines, the CU is able to obtain 
and decode instructions from the queue in syn­
chronization with the CPU. In effect, both proces­
sors fetch and decode the instruction stream in 
parallel. 

The two processors execute the instruction stream 
differently, however. The first fiVe bits of all 8087 
machine instructions are identical; these bits desig­
nate the coprocessor escape (ESC) class of 
instructions. The control unit ignores all instructions 
that do not match these bits, since these instructions 
are directed to the CPU only. When the CU decodes 
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an instruction containing the escape code, it either 
executes the instruction itself, or passes it to the 
NEU, depending on the type of instruction. 

The CPU distinguishes between ESC instructions 
that reference memory and those that do not. If the 
instruction refers to a memory operand, the CPU 
calculates the operand's address and then performs 
a "dummy read" of the word at that location. This is 
a normal read cycle, except that the CPU ignores the 
data it receives. If the ESC instruction does not con­
tain a memory reference, the CPU simply proceeds 
to the next instruction. 

A given 8087 instruction (an ESC to the CPU) will 
either require loading an operand from memory into 
the 8087, or will require storing an operand from the 
8087 into memory, or will not reference memory at 
all. In the first two cases, the CU makes use of the 
"dummy read" cycle initiated by the CPU. The CU 
captures and saves the operand address that the 
CPU places on the bus early in the "dummy read". 
If the instruction is an 8087 load, the CU additionally 
captures the first (and possibly only) word of the 
operand when it becomes available on the bus. If the 
operand to be loaded is longer than one word, the 
CU immediately obtains the bus from the CPU and 
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reads the rest of the operand in consecutive bus 
cycles. In a store operation, the CU captures and 
saves the operand address as in a load, and ignores 
the data word that follows in the "dummy read" 
cycle. When the 8087 is ready to perform the store, 
the CU obtains the bus from the CPU and writes the 
operand at the saved address using as many consecu­
tive bus cycles as are necessary to store the operand. 

Numeric Execution Unit 

The NEU executes all instructions that involve the 
register stack; these include arithmetic, comparison, 
transcendental, constant, and data transfer instruc­
tions. The data path in the NEU is 68 bits wide and 
allows internal operand transfers to be performed at 
very high speeds. 

Register Stack 

Each of the eight registers in the 8087's register 
stack is 80 bits wide, and each is divided into the 
"fields" shown in Figure 6-5. This format corre­
sponds to the NPX's temporary real data type that is 
used for all calculations. Section 6.6 describes in 
detail how numbers are represented in the tempo­
rary real format. 

79 84 83 o 

'eXPONENT I SIGNIFICANO 

SIGN 

Figure 6-5 Register Structure 

At a given point in time, the ST field in the status 
word (described shortly) identifies the current top­
of-stack register. A load ("push") operation decre­
ments ST by 1 and loads a value into the new top 
register. A store-and-pop operation stores the value 
from the current top register and then increments 
ST by 1. Thus, like 8086/80186 stacks in memory, 
the 8087 register stack grows "down" toward lower­
addressed registers. 

Instructions may address registers either implicitly 
or explicitly. Many instructions operate on the regis­
ter at the top of the stack. These instructions implicit­
ly address the register pointed to by ST. For 
example, the ASM-86 instruction FSQRT replaces 
the number at the top of the stack with its square 
root; this instruction takes no operands because the 
top-of-stack register is implied as the operand. Other 
instructions allow the programmer to explicitly speci­
fy the register that is to be used. Explicit register 
addressing is "top-relative" where the ASM-86 ex­
pression ST denotes the current stack top and STU) 
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refers to the ith register from ST in the stack (0 i 7). 
For example, if ST contains 011 B (register 3 is the 
top of the stack), the following instruction would 
add registers 3 and 5: 

FADD ST,ST(2) 

In typical use, the programmer may conceptually 
"divide" the registers into a fixed group and an ad­
justable group. The fixed registers are used like the 
conventional registers in a CPU, to hold constants, 
accumulations, etc. The adjustable group is used like 
a stack, with operands pushed on and results popped 
off. After loading, the registers in the fixed group 
are addressed explicitly, while those in the adjustable 
group are addressed implicitly. Of course, all regis­
ters may be addressed using either mode, and the 
"definition" of the fixed versus the adjustable areas 
may be altered at any time. Section 6.8 contains a 
programming example that illustrates typical register 
stack use. 

The stack organization and top-relative addressing 
of the registers simplify subroutine programming. 
Passing subroutine parameters on the register stack 
eliminates the need for the subroutine to "know" 
which registers actually contain the parameters and 
allows different routines to call the same subroutine 
without having to observe a convention for passing 
parameters in dedicated registers. So long as the 
stack is not full, each routine simply loads the 
parameters on the stack and calls the subroutine. 
The subroutine addresses the parameters as ST, 
ST(J), etc., ·even though ST may, for example, refer 
to register 3 in one invocation and register 5 in 
another. 

Status Word 

The status word reflects the overall condition of the 
8087; it may be examined by storing it into memory 
with an NPX instruction and then inspecting it with 
CPU code. The status word is divided into the fields 
shown in Figure 6-6. The busy field (bit 15) indicates 
whether the NPX is executing an instruction (B= 1) 
or is idle (B=O). 

Several 8087 instructions (for example, the compari­
son instructions) post their results to the condition 
code (bits 14 and 10-8 of the status word). The 
principal use of the condition code is for conditional 
branching. This may be accomplished by executing 
an instruction that sets the condition code, storing 
the status word in memory and then examining the 
condition code with CPU instructions. 
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EXCEPTION FLAGS (1 ; EXCEPTION HAS OCCURRED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERO DIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT REQUEST 

CONDITION CODE(" 

STACK TOP POINTER(2) 

BUSY 

(1) See desc'riptions of compare, test, examine and remainder instructions in section S.7 for 
condition code interpretation. 

(2) ST values: 
000 ; register 0 is stack top 
001 ; register 1 Is stack top . . 
111 ; register 7 'S stack top 

Figure 6-6 Status Word Format 

Bits 13-11 of the status word point to the 8087 regis­
ter that is the current stack top (ST). Note that if 
ST=OOOB, a "push" operation, which decrements 
ST, produces ST= IIIB; similarly, popping the stack 
with ST = III B yields ST = OOOB. 

Bit 7 is the interrupt request field. The NPX sets this 
field to record a pending interrupt to the CPU. 

Bits 5-0 are set to indicate that the NEU has detected 
an exception while executing an instruction. Section 
6.4 explains these exceptions. 

Control Word 

To satisfy a broad range of application requirements, 
the NPX provides several processing options which 
are selected by loading a word from memory into 
the control word. Figure 6-7 shows the format and 
encoding of the fields in the control word; it is 
provided here for reference. Section 6.4 explains the 
use of each of these 8087 facilities except the 
interrupt-enable control field, which is covered in 
Volume 2 of this set. 
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Tag Word 
The tag word marks the content of each register as 
shown in Figure 6-8. The principal function of the 

tag word is to optimize the NPX'S performance 
under certa' circumstances, and programmers ordi­
narily need not be concerned with it. 

15 

I I 
IIC I RC 

I I -.-- -.--

l§ 

(1) Interrupt.Enable Mask: 
o = Interrupts Enabled 

EXCEPTION MASKS (1 = EXCEPTION IS MASKED) 

INVALID OPERATION 

DENORMALIZED OPERAND 

ZERODIVIDE 

OVERFLOW 

UNDERFLOW 

PRECISION 

(RESERVED) 

INTERRUPT·ENABLE MASK(1) 

PRECISION CONTROL<2) 

ROUNDING CONTROL<3) 

INFINITY CONTROL<4) 

(RESERVED) 

1 = Interrupts Disabled (Masked) 
(2) Precision Control: 

00 = 24 bits 
01 = (reserved) 
10 = 53 bits 
11 = 64 bits 

(3) Rounding Control: 
00 = Round to Nearest or Even 
01 = Round Down (toward -00) 
10 = Round Up (toward +00) 
11 = Chop (Truncate Toward Zero) 

(4) Infinity Control: 

~ ~ :;n~~tive 

Figure 6- 7 Control Word Format 

1S 7 0 

I TAG(7) I TAG(6) I TAG(S) I TAG(4) I TAG(3) I TAG(2) I TAG(l) I TAG(O) I 

Ta8ov:I't~~id (Normal or Un normal) 
01 = Zero (True) 
10 = Special (Not·A·Number, 00, or Denormal) 
11 = Empty 

Figure 6-8 Tag Word Format 
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Exception Pointers 

The exception pointers (see Figure 6-9) are provided 
for user-written exception handlers. Whenever the 
8087 executes an instruction, the CU saves the in­
struction address and the instruction opcode in the 
exception pointers. In addition, if the instruction 
references a memory operand, the address of the 
operand is retained also. An exception handler can 
store these pointers in memory and thus obtain in­
formation concerning the instruction that caused the 
exception. 

I 

I 

OPERAND ADDRESS(1) 

I INSTRUCTION OPCODEI2) 

INSTRUCTION ADDRESS(1) 

10 o 

(1) 20-bit physical address 
(2) 11 least significant bits of opcode; 5 most sig­

nificant bits are always 8087 hook (11011 B) 

Figure 6·9 Exception Pointers Format 

6.4 COMPUTATION FUNDAMENTALS 

This section covers 8087 programming concepts that 
are common to all applications. It describes the 
8087's internal number system and the various types 
of numbers that can be employed in NPX programs. 
The most commonly used options for rounding, pre­
cision and infinity (selected by fields in the control 
word) are described, with exhaustive coverage of 
less frequently used facilities deferred to the Section 
6.7, Special Topics. Exception conditions which may 
arise during execution of NPX instructions are also 
described, along with the options that are available 
for responding to these exceptions. 

Number System 

The system of real numbers that people use for 
pencil and paper calculations is conceptually infinite 
and continuous. There is no upper or lower limit to 
the magnitude of the numbers one can employ in a 
calculation, or to the precision (number of significant 
digits) that the numbers can represent. When consid" 
ering any real number, there are always aQ infinity 
of numbers both larger and smaller. There is also an 
infinity of numbers between (i.e., with more signifi­
cant digits than) any two real numbers. For 
example, between 2.5 and 2.6 are 2.51, 2.5897, 
2.500001, etc. 

Ideally, it would be desirable for a computer to be 
able to operate on the entire real number system. In 
practice this is not possible. Computers, no matter 
how large, ultimately have fixed size registers and 
memories that limit the system of numbers that can 
be accommodated. These limitations proscribe both 
the range and the precision of numbers. The result is 
a set of numbers that is finite and discrete, rather 
than infinite and continuous. This sequence is a 
subset of the real numbers, which is designed to 
form a useful approximation of the real number 
system. . 

Figure 6-10 superimposes the basic 8087 real 
number system on a real number line (decimal num­
bers are shown for clarity, although the 8087 actually 
represents numbers in binary). The dots indicate the 
subset of real numbers the 8087 can represent as the 
data and final results of calculations. The 8087's 
range is approximately ± 4.19x 10- 307 to 
± 1.67xl0308. Applications that are required to deal 
with data and final results outside this range are rare. 
By comparison, the range of the IBM 370 is about 
±0.54xlO- 78 to ±0.72xI076 . 

The finite spacing in Figure 6-10 illustrates that the 
NPX can represent a great many, but not all, of the 
real numbers in its range. There is always a "gap" be­
tween two "adjacent" 8087 numbers, and it is possi­
ble for the result of a calculation to fall in this space. 
When this occurs, the NPX rounds the true result to 
a number that it can represent. Thus, a real number 
that requires more digits than the 8087 can accom­
modate (e.g., a 20 digit number) is represented with 
some loss of accuracy. Notice also that the 8087's 
representable numbers are not distributed evenly 
along the real number line. There are, in fact, an 
equal number of representable numbers between 
successive powers of 2 (i.e., there are as many repre­
sentable numbers between 2 and 4 as between 
65,536 and 131,072). Therefore, the "gaps" between 
representable numbers are "larger" as the numbers 
increase in magnitude. All integers in the range 
± 264 , however, are exactly representable. 

In its internal operations, the 8087 actually employs 
a number system that is a substantial superset of 
that shown in Figure 6-10. The internal format 
(called temporary real) extends the 8087's range to 
about ± 3.4xl0- 4932 to ± 1.2xl04932 , and its preci­
sion to about 19 (equivalent decimal) digits. This 
format is designed to provide extra range and preci­
sion for constants and intermediate results, and is 
not normally intended for data or final results. 
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From a practical standpoint, the 8087's set of real 
numbers is sufficiently "large" and "dense" so as 
not to lim it the vast majority of microprocessor 
applications. Compared to most computers, includ­
ing mainframes, the NPX provides a very good 
approximation of the real number system. It is im­
portant to remember, however, that it is not an 
exact representation, and that arithmetic on real 
numbers is inherently approximate. 

Conversely, and equally important, the 8087 does 
perform exact arithmetic on its integer subset of the 
reals. That is, an operation on two integers returns 
an exact integral result, provided that the true result 
is an integer and is in range. For example, 4+ 2 

•• NEGATIVE RANGE 
(NORMALIZED) •• 

I , 

~~ __ ~' __ -+ __ .'~'~1~'~'~'~14'4'4'+1~··"·~·~t·"·~·~·I~I~·~·~·I···"::1-1 

1.67x10308 4.19x10·307 

yields an exact integer, 1+3 does not, and 240 x 230 

+ I does not, because the result requires greater 
than 64 bits of precision. 

Data Types and Formats 

The 8087 recognizes seven numeric data types, 
divided into three classes: binary integers, packed 
decimal integers, and binary reals. Figure 6-11 sum­
marizes the format of each data type. In the figure, 
the most significant digits of all numbers (and fields 
within numbers) are the leftmost digits. Table 6-2 
provides the range and number of significant 
(decimal) digits that each format can accommodate. 

' . 
L 

POSITIVE RANGE .' INORMALIZED, 

j • . . 
J 

2.00000000000000000 

(NOT REPRESENTABLE) 

L-____ 1.99999999999999999 

PRECISION: 1-18DIGITS-.t 

Figure 6-10 8087 Number System 
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- INCREASING SIGNIFICANCE 

WORD INTEGER lSi MAGNITUDE I (TWO'S 
COMPLEMENT) 

15 0 

SHORT INTEGER lSi MAGNITUDE I (TWO'S 
....... '--___________ ... COMPLEMENT) 

31 

II I (TWO'S 
LONG INTEGER S MAGNITUDE COMPLEMENT) 

"6~3--------------------------------------------~ 

PACKED DECIMAL 
MAGNITUDE 

d17 d '6 d ,S d" d '3 d 12 d l1 dlO dg dB d, d6 d S d, d3 d, d , dO 

79 72 

SHORT REAL 

o 

LONG REAL ~1_S~I __ E_:_~_AO_SJ_f_N_T_~I _______ S_IG_N_I_F_IC_A_N_D _______ ~ 
63 52~ 0 

'-I' 

TEMPORARY REAL LIS~I~ __ E_X_~_I~_~_i_~_T ___ ~fij_I~ ____________ S_I_G_N_IF_IC_A_N_D ________________ ~ 
79 64 63 1 0 

NOTES: 
S = Sign bit (0= positive, 1 = negative) 
dn = Decimal digit (two per byte) 
X = Bits have no significance; 8087 ignores when loading, zeros when storing. 
, = Position of implicit binary pOint 
I = Integer bit of significand; stored in temporary real. implicit in short and long real 
Exponent Bias (normalized values): 

Short Real: 127 (7FH) 
Long Real: 1023 (3FFH) 
Temporary Real: 16383 (3FFFH) 

Figure 6-1.1 Data Formats 
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BINARY INTEGERS 

The three binary integer formats are identical except 
for length, which governs the range that can be ac­
commodated in each format. The leftmost bit is in­
terpreted as the number's sign: 0= positive and 
1 = negative. Negative numbers are represented in 
standard two's complement notation (the binary 
integers are the only 8087 format to use two's 
complement). The quantity zero is represented with 
a positive sign (all bits are 0). The 8087 word integer 
format is identical to the 16-bit signed integer data 
type of the 8086,88 and 80186,188. 

DECIMAL INTEGERS 

Decimal integers are stored in packed decimal 
notation, with two decimal digits "packed" into each 
byte, except the leftmost byte, which carries the sign 
bit (0 = positive, 1 = negative). Negative numbers 
are not stored in two's complement form and are dis­
tinguished from positive numbers only by the sign 
bit. The most significant digit of the number is the 
leftmost digit. All digits must be in the range OH-9H. 

REAL NUMBERS 

The 8087 stores real numbers in a three-field binary 
format that resembles scientific, or exponential, 
notation. The number's significant digits are held in 
the significand field, the exponent field locates the 
binary point within the significant digits (and there­
fore determines the number's magnitude), and the 
sign field indicates whether the number is positive or 

negative. (The exponent and significand are analo­
gous to the terms "characteristic" and "mantissa" 
used to describe floating point numbers on some 
computers.) Negative numbers differ from positive 
numbers only in their sign bits. 

Table 6-4 shows how the real number 178.125 
(decimal) is stored in the 8087 short real format. 
The table lists a progression of equivalent notations 
that express the same value to show how a number 
can be converted from one form to another. The 
ASM-86 and PLlM-86 language translators perform 
a similar process when they encounter programmer­
defined real number constants. Note that not every 
decimal fraction has an exact binary equivalent. The 
decimal number 1110, for example, cannot be ex­
pressed exactly in binary (just as the number 1/3 
cannot be expressed in decimal). When a translator 
encounters such a value, it produces a rounded 
binary approximation of the decimal value. 

The NPX usually carries the digits of the significand 
in normalized form. This means that, except for the 
value zero, the significand is an integer and a fraction 
as follows: 

1 D. fff ... ff 

where /':,. indicates an assumed binary point. The 
number of fraction bits varies according to the real 
format: 23 for short, 52 for long and 63 for tempo­
rary real. By normalizing real numbers so that their 
integer bit is always ai, the 8087 eliminates leading 
zeros in small values (I x I < 1). This technique 
maximizes the number of significant digits that can 
be accommodated in a significand of a given width. 

Table 6-4 Real Number Notation 

Notation Value 

Ordinary Decimal 178.125 

Scientific Decimal 1,.,78125E2 

Scientific Binary 1,., 0110010001 E111 

Scientifi.c Binary 
1,., 0110010001 E1 000011 0 (Biased Exponent) 

Sign 
Biased 

Significand 
Exponent 

8087 Short Real 
(Normalized) 0 10000110 01100100010000000000000 

L 1,., (implicit) 
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Note that in the short and ,long real formats the 
integer bit is implicit and is not actually stored; the 
integer bit is physically present in the temporary real 
format only. 

If one were to examine only the significand with its 
assumed binary point, all normalized, real numbers 
would have values between I and 2. The exponent 
field locates the actual. binary point in the significant 
digits. Just as in decimal scientific notation, a positive 
exponent has the effect of moving the binary point 
to .the right, and a negative exponent effectively 
moves the binary point to the. left, inserting leading 
zeros as necessary. An unbiased exponent of zero in­
dicates that the position of the assumed binary point 
is also the position of the actual binary. point. The 
exponent field, then, determines a real number's 
magnitude. 

In order to simplify comparing real numbers (e.g., 
for sorting), the 8087 stores exponents in a biased 
form. This means that a constant is added to the true 
exponent described above. The value of this bias is 
different for each real format (see Figure' 6-11). It 
has been chosen so as to force the biasedexponent to 
be a positive value. This allows two real numbers (of 
the same format and sign) to be compared as if they 
are unsigned binary integers. that is, when compar­
ing them bitwise from left to right (beginning with 
the left-most exponent bit), the first bit position that 
differs orders the numbers; there is no need to pro­
ceed further with the. comparison. A number's true 
exponent can be determined simply by subtracting 
the bias value of its format. 

The short and long real formats exist in memory 
only. If a number in one of these formats is loaded 
into a register, it is automatically converted to 
temporary real, the format used for all internal 
operations. Likewise, data in registers can be con­
verted to short or long real for storage in memory. 
The temporary real format may be used in memory 
also, typically to store intermediate results that 
cannot be held in registers. 

Most applications should use the long real form to 
store real number data and results; it provides suffi­
cient range and precision to return correct results 
with a minimum of programmer attention. The 
short real format is appropriate for applications that 
are' constrained by memory, but it should be recog­
nized that this format provides a smaller margin of 
safety. It is also useful for debugging algorithms be­
cause roundoff problems will manifest themselves 
more quickly in this format. The temporary real 
format should normally be reserved for holding in­
termediate results, loop accumulations, and 
constants. Its extra length is designed to shield final 
results from the effects of rounding and overflow /­
underflow in intermediate calculations. When the 

When the temporary real format is used to hold data 
or to deliver final results, the safety features built 
into the 8087 are compromised. Furthermore, the 
range and precision of the long real form are ade­
quate for most microcomputer applications. 

SPECIAL VALUES 

Besides being able to represent positive and negative 
numbers, the 8087 data formats may be used (0 de­
scribe other entities. These special values provide 
extra flexibility but most users do not need to under­
stand them in detail to use the 8087 successfully. 
Accordingly, they are discussed here only briefly; ex­
panded coverage, including the bit encoding of each 
value, is provided in the Special Topics section. 

The value zero may be signed positive or negative in 
the real and decimal integer formats; the sign of a 
binary integer zero is always positive. The fact that 
zero may be signed, however, is transparent to the 
programmer. 

The real number formats allow for the representa, 
tion of the special values' + 00 and - 00. The 8087 
may generate these values as its built-in response to 
exceptions such as division by zero, or the ljttempt 
to store a result that exceeds the upper range limit of 
the destination format. Infinities may participate in 
arithmetic and comparison operations, and in fact 
the processor provides two differ.ent conceptual 
models for handling these special values. 

If a programmer attempts an operation for which the 
8087 cannot deliver a reasonable result, it will, at the 
programmer's discretion, either request an inter­
rupt, or return the special value indefinite. Taking the 
square root of a negative number is an example of 
this type of invalid operation. The recommended 
action in this situation is to stop the computation by 
trapping to a user-written exception handler. If, 
however, the programmer elects to continue the 
computation, the specially coded indefinite value will 
propagate through the calculation and thus flag the 
erroneous computation when it is eventually deliv­
ered as the result. Each format has an encoding that 
represents the special value indefinite. 

In the real formats, a whole range of special values, 
both positive and negative, is designated to represent 
a class of values called NAN (Not-A-Numbed. The 
special value indefinite is a reserved NAN encoding, 
but all other encodings are made available to be 
defined in any way by application software. Using a 
NAN as an operand raises the invalid operation 
exception, and can trap to a user-written routine to 
process the NAN. Alternatively, the 8087's built-in 
exception handler will simply return the NAN itself 
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as the result of the operation; in this way NANs, 
including indefinite, may be propagated through a cal­
culation and delivered as a final, special-valued, 
result. One use for NANs is to detect uninitialized 
variables. 

As mentioned earlier, the 8087 stores non-zero real 
numbers in "normalized floating point" form. It 
also provides for storing and operating on reals that 
are not normalized, i.e., whose significands contain 
one or more leading zeros. Nonnormals arise when 
the result of a calculation yields a value that is too 
small to be represented in normal form. The leading 
zeros of nonnormals permit smaller numbers to be 
represented, at the cost of some lost precision (the 
number of significant digits is reduced by the leading 
zeros). In typical algorithms, extremely small values 
are most likely to be generated as intermediate, 
rather than final results. By using the NPX's tempo­
rary real format for holding intermediates, values as 
small as ±3.4xI0- 4932 can be represented; this 
makes the occurrence of nonnormal numbers a rare 
phenomenon in 8087 applications. Nevertheless, the 
NPX can load, store and operate on nonnormalized 
real numbers. 

Rounding Control 

Internally, the 8087 employs three extra bits (guard, 
round and sticky bits) which enable it to represent 
the infinitely precise true result of a computation; 
these bits are not accessible to programmers. When­
ever the destination can represent the infinitely pre­
cise true result, the 8087 delivers it. Rounding 
occurs in arithmetic and store operations when the 
format of the destination cannot exactly represent 
the infinitely precise true result. For example, a real 

number may be rounded if it is stored in a shorter 
real format, or in an integer format. Or, the infinitely 
precise true result may be rounded whim it is re­
turned to a register. 

The NPX has four rounding modes, selectable by 
the RC field in the control word (see Figure 6-7). 
Given a true result b that cannot be represented by 
the target data type, the 8087 determines the two 
representable numbers a and c that most closely 
bracket b in value (a < b < c). The processor then 
rounds (changes b to a or to c according to the mode 
selected by the RC field as shown in Table 6-5. 
Rounding introduces an error in a result that is less 
than one unit in the last place to which the result is 
rounded. 

"Round to nearest or even" is the default mode and 
is suitable for most applications; it provides the most 
accurate and statistically unbiased estimate of the 
true result. The "chop" mode is provided for integer 
arithmetic applications. 

"Round up" and "round down" are termed directed 
rounding and can be used to implement interval 
arithmetic. Interval arithmetic generates a certifiable 
result independent of the occurrence of rounding 
and other errors. The upper and lower bounds of an 
interval may be computed by executing an algorithm 
twice, rounding up in one pass and down in the 
other. 

Precision Control 

The 8087 allows results to be calculated with 64, 53, 
or 24 bits of precision as selected by the PC field of 
the control word. The default setting, and the one 

Table 6-5 Rounding Modes 

RC Field Rounding Mode Rounding Action. 

00 Round to nearest Closer to b of a or e; if 
equally close, select even 
number (the one whose 
least significant bit is zero). 

01 Round down (toward -00) a 

10 Round up (toward + 00) e 

11 Chop (toward 0) Smaller il1 magnitude of 
a ore 

6-17 210911 

I , 

I 



THE 8087 NUMERIC PROCESSOR EXTENSION 

that is best-suited for most applications, is.the full 64 
bits. The other settings are required by the proposed 
IEEE standard, and are provided to obtain compati­
bility with the specifications of certain existing 
programming languages. Specifying less precision 
nullifies the advantages of the temporary real for­
mat's extended fraction length, and does not im­
prove execution speed. When reduced precision is 
specified, the rounding of the fractiqn zeros the 
unused bits on the right. 

Infinity Control 

The 8087's system of real numbers may be closed by 
either of two moliels of infinity. These two me.ans of 
closing the number system, projective and affine 
closure, are illustrated schematically in Figure 6-12. 
The setting of the IC field in the control word selects 
one model or the other. The default means of clo­
sure is projective, and this is recommended for most 
computations. When projective closure is sele,cted, 
the NPX treats the special values + 00 afld -00 as a 
singl" unsigned infinity (similar to its treatment of 
signed zeros). In the affine mode the Nf>X respects 
the signs of +00 and -00. 

0···· 
- + 

. 
o 

PROJECTIVE CLOSURE 

+ +00 
.~~.-------~------~~ . 

AFFINE CLOSURE 

Figure 6-12 Projective Versus Affine Closure 

While affine mode may provide more information 
than projective, there are occasions when the sign 
maY in fact represent misinformation. For example, 
consider an algorithm that yields an intermediate 
result x of +0 ,and -0 the (the same numeric value) 
in different executions. If IIx were then computed 
in affine mode, two entirely different values (+00 
and - 00) would result from numerically identical 
values of x. Projective mode on the other hand, pro­
vides less information but never returns 
misinformation. In general, then, projective mode 
should be used globally, with affine mode reserved 
for local computations where the programmer can 
take advantage of the sign and knows for certain that 
the nature of the computation will not produce mis­
leading results. 

Exceptions 

During the execution of most instructions, the 8087 
checks for six classes of exception conditions. 

The 8087 reports invalid operation if any of the follow­
ing occurs: 

• An attempt to load a register that is not 
empty, (e.g., Stack overflow), 

• An attempt to pop an operand from an empty 
register (e.g., stack underflow), 

• An operand is a NAN, 

• The operands cause the operation to be inde­
terminate (0/0, square root of a negative 
number, etc.). 

An invalid operation generally indicates a program 
error. 

If the exponent of the true result is too large for the 
destination real format, the 8087 signals overflow. 
Conversely, a true exponent that is too small to be 
represented results in the underflow exception. If 
either of these occur, the result of the opetation is 
outside the range of the destination real format. 

Typical algorithms are most likely to produce ex­
tremely large and small numbers in·ttle calculation 
of intermediate, rather than final, results. Because 
of the great range of the temporary real format 
(recommended as the destination format for 
intermediates), overflow and underflow are relative­
ly rare events in'most 8087 applications. 

If division of a finite non-zero operand by zero is 
attempted, the 8087 reports the zerodivide exception. 

If an instruction attempts to operate on a denormal, 
the NPX reports the denormalized exception. This ex­
ception is provided for users who wish to 
implement, in software, an option of the proposed 
IEEE standard which specifies that operands must 
be prenormalized before they ,are used. 

If the result of an operation is not exactly representa­
ble in the destination format, the 8087 rounds the 
number and reports the precision exception, This ex­
ception occurs frequently and indicates that some 
(generally acceptable) accuracy has been lost; it is 
provided for applications that need to perform exact 
arithmetic only. 

Invalid operation, zerodivide, and denormalized ex­
ceptions are detected before an operation begins, 
while overflow, underflow, and precision exceptions 
are not raised until a true result has been computed. 

6-18 210911 



THE 8087 NUMERIC PROCESSOR EXTENSION 

When a "before" exception is detected, the register 
stack and memory have not yet been updated, and 
appear as if the offending instruction has not been 
executed. When an "after" exception is detected, 
the register stack and memory appear as if the in­
struction has run to completion, i.e., they may be 
updated. (However, in a store or store and pop 
operation, unmasked over/underflow is handled 
like a "before" exception; memory is not updated 
and the stack is not popped.) In cases where multiple 
exceptions arise simultaneously, one exception is 
signaled according to the following precedence 
sequence: 

• Denormalized (if unmasked), 

• Invalid operation, 

• Zerodivide 

• Denormalized (if masked), 

• Over/underflow, 

• Precision 

(The terms "masked" and "unmasked" are ex­
plained shortly.) This means, for example, that zero 
divided by zero will result in an invalid operation 
and not a zerodivide exception. 

The 8087 reports an exception by setting the corre­
sponding flag in the status word to 1. It then checks 
the corresponding exception mask in the control 
word to determine if it should "field" the exception 
(mask = 1), or if it should issue an interrupt request 
to invoke a user-written exception handler 
(mask = 0). In the first case, the exception is said to 
be masked (from user software) and the NPX exe­
cutes its on-chip masked response for that exception. 
In the second case, the exception is unmasked, and 
the processor performs its unmasked response. The 
masked response always produces a standard result 
and then proceeds with the instruction. The un­
masked response always traps to user software by in­
terrupting the CPU (assuming the interrupt path is 
clear). These responses are summarized in Table 
6-6. Section 6.7 contains a complete description of all 
exception conditions and the NPX's masked 
responses. Note that when exceptions are masked, 
the NPX may detect multiple exceptions in a single 

Table 6-6 Exception and Response Summary 

Exception 

Invalid 
Operation 

Zerodivide 

Denormalized 

Overflow 

Underflow 

Precision 

Masked Response 

If one operand is NAN, retu rn it; if 
both are NANs, return NAN with 
larger absolute value; if neither is 
NAN, return indefinite. 

Return 00 signed with "exclusive 
or" of operand signs. 

Memory operand: proceed as 
usual. Register operand: convert 
to valid unnormal, then re-evaluate 
for exceptions. 

Return properly signed 00. 

Denormalize result. 

Return rounded result. 

6-19 

Unmasked Response 

Request interrupt. 

Request interrupt. 

Request interrupt. 

Register destination: adjust 
exponent', store result, request 
interrupt. Memory destination: 
request interrupt. 

Register destination: adjust 
exponent', store result, request 
interrupt. Memory destination: 
request interrupt. 

Return rounded result, request 
interrupt. 
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instruction, since it continues executing the instruc­
tion after performing its masked response. For 
example, the 8087 could detect a denormalized 
operand, perform its masked response to this 
exception, and then detect an underflow. 

By writing different values into the exception masks 
of the control word, the user can accept responsibili­
ty for handling exceptions, or delegate this to the 
NPX. Exception handling software is often difficult 
to write, and the 8087's masked responses have 
been tailored to deliver the most "reasonable" 
result for each condition. The majority of applica­
tions will find that masking all exceptions other than 
invalid operation will yield satisfactory results with 
the least programming investment. An invalid opera­
tion exception normally indicates a fatal error in a 
program that must be corrected; this exception 
should not normally be masked. 

The exception flags are "sticky" and can be cleared 
only by executing the FCLEX (clear exceptions) 
instruction, by reinitializing the processor, or by 
overwriting the flags with an FRSTOR or FLDENV 
instruction. This means that the flags can provide a 
cumulative record of the exceptions encountered in 
a long calculation. A program can therefore mask all 
exceptions (except, typically, invalid operation), run 
(he calculation and then inspect the status word to 
see is any exceptions were detected at any point in 
the calculation. 

Note that the 8087 has another set of internal excep­
tion flags that it clears before each instruction. It is 
these flags and not those in the status word that actu­
ally trigger the 8087's exception response. The flags 
in the status word provide a cumulative record of ex­
ceptions for the programmer only. 

If the NPX executes an unmasked response to an 
exception, it is assumed that a user exception han­
dier will be invoked via an interrupt from the 8087. 
The 8087 sets the IR (interrupt request) bit in the 
status word, but this, in itself, does not guarantee an 
immediate CPU interrupt. The interrupt request 
may be blocked by the IEM (interrupt-enable mask) 
in the 8087 control word, by the 8259A Programma­
ble Interrupt Controller, or by the CPU itself. If any 
exceptionjlag is unmasked. it is imperative that the inter­
rupt path to the CPU is eventually cleared so that the 
user's software canfield the exception and the oj/ending 
task can resume execution. Note that the 8087 remains 
"busy" pending CPU intervention. Interrupts are 
covered in detail in Volume 2. 

A user-written exception handler takes the form of 
an 8086,88/186,188 interrupt procedure. Although 
exception handlers will vary widely from one applica­
tion (0 the next, most will include these basic steps: 

• Store the 8087 environment (control, status 
and tag words, operand and instruction 
pointers) as it existed at the time of the 
exception; 

• Clear the exception bits in the status word; 

• Enable interrupts on the CPU; 

• Identify the exception by examining the 
status and control words in the saved 
environment; 

• Take application-dependent action; 

• Return to the point of interruption, resuming 
normal execution. 

Possible "application-dependent actions" include: 

• Incrementing an exception counter for later 
display or printing; 

• Printing or displaying diagnostic information 
(e.g., the 8087 environment and registers); 

• Aborting further execution of the calculation 
causing the exception; 

• Aborting all further execution; 

• Using the exception pointers to build an in­
struction that will run without exception and 
executing it; 

• Storing a diagnostic value (a NAN) in the 
result and continuing with the computation. 

Notice that an exception mayor may not constitute 
an error, depending on the application. For 
example, an invalid operation caused by a stack 
overflow could signal an ambitious exception han­
dler to extend the register stack to memory and con­
tinue running. 
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6.5 INSTRUCTION SET 

This section describes the operation of each of the 
8087's 69 instructions. The first part of the section 
describes the function of each instruction in detail. 
For this discussion, the instructions are divided into 
six functional groups: data transfer, arithmetic, 
comparisons, transcendental, constant, and proces­
sor control. The second part provides instruction at­
tributes such as execution speed, bus transfers, and 
exceptions, as well as coding example for each com­
bination of operands accepted by the instruction. 
This information is concentrated in a table, orga­
nized alphabetically by instruction mnemonic, for 
easy reference. 
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Throughout this section, the instruction set is de­
scribed as it appears to the ASM-86 programmer 
who is coding a program. Appendix A, in Volume 2 
of this set, covers the actual machine instruction 
encodings, which are principally of use to those read­
ing unformatted memory dumps, monitoring in­
struction fetches on the bus, or writing exception 
handlers. 

The instruction descriptions in this section concen­
trate on describing the normal function of each 
operation. Table 6-17 lists the exceptions that can 
occur for each instruction and Table 6-30 details the 
causes of exceptions as well as the 8087's masked 
responses. 

The typical NPX instruction accepts one or two oper­
ands as "inputs", operates on these, and produces a 
result as an "output". Operands are most often (the 
contents of) register of memory locations. The oper­
ands of some instructions are predefined; for 
example, FSQRT always takes the square root of the 
number in the top stack element. Others allow, or 
require, the programmer to explicitly code the 
operand(s) along with the instruction mnemonic. 
Still others accept one explicit operand and one 
implicit operand, which is usually the top stack 
element. 

Whether supplied by the programmer or utilized 
automatically, there are two basic types of operands, 
sources and destinations. A source operand simply 
supplies one of the "inputs" to an instruction; it is 
not altered by the instruction. Even when an instruc­
tion converts the source operand from one format to 
another (e.g., real to integer), the conversion is actu­
ally performed in an internal work area to avoid al­
tering the source operand. A destination operand 
may also provide an "input" to an instruction. It is 
distinguished from a source operand, however, be­
cause its contents may be altered when it receives 
the result produced by the operation; that is, the 
destination is replaced by the result. 

Many instructions allow their operands to be coded 
in more than one way. For example, FADD (add 
real) may be written without operands, with only a 
source or with a destination and a source. The in­
struction descriptions in this section employ the 
simple convention of separating alternative operand 
forms with slashes; the slashes, however, are not 
coded. Consecutive slashes indicate an option of no 
explicit operands. The operands for FADD are thus 
described as: 

/ / source/destination, source 

This means that FADD may be written in any of 
three ways. 

6-21 

FADD 
FADD source 
FADD destination. source 

When reading this section, it is important to bear in 
mind that memory operahds may be coded with any 
of the CPU's memory addressing modes. Table 6-20 
in this chapter also provides several addressing 
mode examples. 

Data Transfer Instructions 

These instructions (summarized in Table 6-7) move 
operands among elements of the register stack, and 
between the stack top and memory. Any of the 
seven data types can be converted to temporary real 
and loaded (pushed) onto the stack in a single 
operation; they can be stored to memory in the 
same manner. The data transfer instructions auto­
matically update the 8087 tag word to reflect the 
register contents following the instruction. 

Table 6-7 Data Transfer Instructions 

Real Transfers 

FLD Load real 
FST Store real 
FSTP Store real and pop 
FXCH Exchange registers 

Integer Transfers 

FILD Integer load 
FIST Integer store 
FISTP Integer store and pop 

Packed Decimal Transfers 

FBLD Packed decimal (BCD) load 
FBSTP Packed decimal (BCD) store and pop 

FLO source 

FLD (load real) loads (pushes) the source operand 
onto the top of the register stack. This is done by de­
crementing the stack pointer by one and then copy­
ing the contents of the source to the new stack top. 
The source may be a register on the stack (STG» or 
any of the real data types in memory. Short and long 
real source operands are converted to temporary 
real automatically. Coding FLD SI(O) duplicates the 
stack top. 
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FST destination 

FST (store real) transfers the stack top to the 
destination, which may be another register on the 
stack, or a short or long real m,emory operand. If the 
destination is short or long real, the significand is 
rounded to the width of the destination according to 
the RC field of the control word, and the exponent 
is converted to the width and bias of the destination 
format. 

If, however, the stack top is tagged special (it 
contains, a NAN, or a denormal) then the stack 
top's significand is not rounded but is chopped (on 
the right) to fit the destination. Neither is the expo­
nent converted, but it also is chopped on the right 
and transferred "as is". This preserves the value's 
identification as or a NAN (exponent all ones) or a 
denormal (exponent all zeros) so that it can be prop­
erly loaded and tagged later in the program if desired. 

FSTP destination 

FSTP (store real and pop) operates identically to 
FST except that the stack is popped following the 
transfer. This is done by tagging the top stack ele­
ment empty and then incrementing ST. FSTP per­
mits storing to a temporary real memory variable 
while FST does not. Coding FSTP ST(O) is equiva­
lent to popping the stack with no data transfer. 

FXCHlldestination 

FXCH (exchange registers) swaps the contents of 
the destination and the stack top registers. If the 
destination is not coded explicitly, ST(1) is used. 
Many 8087 instructions operate only on the stack 
top; FXCH provides a simple means of effectively 
using these instructions on lower stack elements. 
For example, the follqwing sequence takes the 
square root of the third register from the top: 

FXCH ST(3) 
FSQRT 
FXCH ST(3) 

FILD source 

FILD (integer load) converts the source memory 
operand from its binary integer format (word, short, 
or long,) to temporary real and loads (pushes) the 
result onto the stack. The (new) stack top is tagged 
zero of all bits in the source were zero, and is tagged 
valid otherwise. 

FIST destination 

FIST (integer store) rounds the contents of the 
stack top to an integer according to the RC field of 
the control word and transfers the result to the 
destination. The destination may define a word or 
short integer variable. Negative zero is stored in the 
same encoding as positive zero: 0000 ... 00. 

FISTP destination 

FISTP (integer store and pop) operates like FIST 
and also pops the stack following the transfer. The 
destination may be any of the binary integer data 
types. 

FBLD source 

FBLD (packed decimal (BCD) load) converts the 
contents of the source operand from packed decimal 
to temporary real and loads (pushes) the result onto 
the stack. The sign of the source is preserved, includ­
ing the case where the value is negative zero. FBLD 
is an exact operation; the source is loaded with no 
rounding error. 

The packed decimal digits of the source are assumed 
to be in the range 0-9H. The instruction does not 
check for invalid digits (A-FH) and the result of at­
tempting to load an invalid encoding is undefined. 

FBSTP destination 

FBSTP (packed decimal (BCD) store and pop) con­
verts the contents of the stack top to a packed deci­
mal integer, stores the result at the destination in 
memory, and pops the stack. FBSTP produces a 
rounded integer from a non-integral value by adding 
a value close to 0.5 to the value and chopping. Users 
who are concerned about rounding may precede 
FBSTP with FRNDINT. 

Arithmetic Instructions 

The 8087's arithmetic instruction set (Table 6-8) 
provides a wealth of variations on the basic add, 
subtract, multiply, and divide operations, and a 
number of other useful functions. These range from 
a simple absolute value to a square root instruction 
that executes faster than ordinary division; 8087 pro­
grammers no longer need to spend valuable time 
eliminating square roots from algorithms because 
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they run too slowly. Other arithmetic instructions 
perform exact modulo division, round real numbers 
to integers, and scale values by powers of two. 

The 8087's basic arithmetic instructions (addition, 
subtraction, multiplication, and division) are 
designed to encourage the development of very effi­
cient algorithms. In particular, they allow the pro­
grammer to minimize memory references and to 
make optimum use of the NPX register stack. 

Table 6-8 Arithmetic Instructions 

Addition 

FADD Add real 
FADDP Add real and pop 
FIADD Integer add 

Subtraction 

FSUB Su btract real 
FSUBP Subtract real and pop 
FISUB Integer subtract 
FSUBR Subtract real reversed 
FSUBRP Subtract real reversed and pop 
FISUBR Integer subtract reversed 

Multiplication 

FMUL Multiply real 
FMULP Multiply real and pop 
FIMUL Integer multiply 

Division 

FDIV Divide real 
FDIVP Divide real and pop 
FIDIV Integer divide 
FDIVR Divide real reversed 
FDIVRP Divide real reversed and pop 
FIDIVR Integer divide reversed 

Other Operations 

FSQRT Square root 
FSCALE Scale 
FPREM Partial remainder 
FRNDINT Round to integer 
FXTRACT Extract exponent and significand 
FABS Absolute value 
FCHS Change sign 
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Table 6-9 summarizes the available operation/oper­
and forms that are provided for basic arithmetic. In 
addition to the four normal operations, two 
"reversed" instructions make subtraction and divi­
sion "symmetrical" like addition and multiplication. 
The variety of instruction and operand forms give 
the programmer unusual flexibility: 

• operands may be located in registers or 
memory; 

• results may be deposited in a choice of 
registers; 

• operands may be a variety of NPX data types: 
temporary real, long real, short real, short 
integer or word integer, with automatic con­
version to temporary real performed by the 
8087. 

Five basic instruction forms may be used across all 
six operations, as shown in Table 6-9. The classical 
stack form may be used to make the 8087 operate 
like a classical stack machine. No operands are 
coded in this form, only the instruction mnemonic. 
The NDP picks the source operand from the stack 
top and the destination from the next stack element. 
It then pops the stack, performs the operation, and 
returns the result to the new stack top, effectively 
replacing the operands by the result. (Note that 
FADD, FSUB, FMUL and FDIV also pop ifno oper­
ands are specified, in spite of the fact that the 
mnemonics do not have P as a last character.) 

The register form is a generalization of the classical 
stack form; the programmer specifies the stack top 
as one operand and any register on the stack as the 
other operand. Coding the stack top as the destina­
tion provides a convenient way to access a constant, 
held elsewhere in the stack, from the stack top. The 
converse coding (ST is the source operand) allows, 
for example, adding the top into a register used as an 
accumulator. 

Often the operand in the stack top is needed for one 
operation but then is of no further use in the 
computation. The register pop form can be used to 
pick up the stack top as the source operand, and then 
discard it by popping the stack. Coding operands of 
ST(1),ST with a register pop mnemonic is equivalent 
to a classical stack operation: the top is popped and 
the result is left at the new top. 
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Table 6-9 Basic Arithmetic Instructions and Operands 

Instruction Form 
Mnemonic Operand Forms 

ASM-86 Example Form destination, source 

Classical stack Fop {ST(1),Sn FADD 

Register Fop ST(I),ST or ST,ST(I) FSUB ST,ST(3) 

Register pop FopP ST(I),ST FMULP ST(2),ST 

Real memory Fop {ST,} short-realilong-real FDIV AZIMUTH 

Integer memory Flop {ST,} word-integerlshort-integer FIDIV N_PULSES 

NOTES: Braces { } surround implicit operands; these are not coded, and are shown 
here for information only. 

op = ADD destination +- destination + source 
SUB destination +- destination - source 
SUBR destination +- source - destination 
MUL destination +- destination • source 
DIV destination +- destination';' sou rce 
DIVR destination +- source.;. destination 

The two memory forms increase the flexibility of the 
8087's arithmetic instructions. They permit a real 
number or a binary integer in memory to be used 
directly as a source operand. This is a very useful 
facility in situations where operands are not used fre­
quently enough to justify holding them in registers. 
Note that any memory addressing mode may be 
used to define these operands, so they may be ele­
ments in arrays, structures or other' data 
organizations, as well as simple scalars. 

The six basic operations are discussed further in the 
next paragraphs, and descriptions of the remaining 
seven arithmetic operations follow. 

Addition 

FADD Iisourceidestination,source 
FADDP destination, source 
FIADD source 

The addition instructions (add real, add real and 
pop, integer add) add the source and destination 
operands and return the sum to the destination. The 
operand at the stack top may be doubled by coding: 

FADD ST,ST(O) 

Normal Subtraction 

FSUB Iisourceidestination, source 
FSUBP destination, source 
FISUB source 

The normal subtraction instructions (subtract real, 
subtract real and pop, integer subtract) subtract the 
source operand from the destination and return the 
difference to the destination. 

Reversed Subtraction 

FSUBR Iisourceidestination,source 
FSUBRP l/destination, source 
FISUBR source 

The reversed subtraction instruction (subtract real 
reversed, subtract real reversed and pop, integer 
subtract reversed) subtract the destination from the 
source and return the difference to the destination. 

Multiplication 

FMUL Iisourceidestination, source 
FMULP destination, source 
FIMUL source 

The mulitplication instructions (multiply real, mul­
tiply real and pop, integer multiply) multiply the 
source and destination operands and return the pro­
duct to the destination. Coding FMUL ST,ST(O) 
squares the contents of the stack top. 
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Normal Division 

FDiV 
FDlVP 
FIDIV 

Iisourceidestination,source 
destination, source 
source 

The normal division instructions (divide real, divide 
real and pop, integer divide) divide the destination 
by the source and return the quotient to the 
destination. 

Reversed Division 

FDIVR Iisourceidestination, source 
FDIVRP destination, source 
FIDIVR source 

The reversed division instructions (divide real 
reversed, divide real reversed and pop, integer 
divide reversed) divide the source operand by the 
destination and return the quotient to the 
destination. 

FSQRT 

FSQRT (square root) replaces the contents of the 
top stack element with its square root. (Note: the 
square root of -0 is defined to be -0.) 

FSCALE 

FSCALE (scale) interprets the value contained in 
STU) as an integer, and adds this value to the expo­
nent of the number in ST. 

This is equivalent to: 

ST < - ST'2sT(J) 

thus, FSCALE provides rapid multiplication or divi­
sion by integral powers of 2. It is particularly useful 
for scaling the elements of a vector. 

Note that FSCALE assumes the scale factor in 
ST(1) is an integral value in the range 
- 215,;;;x< 215. If the value is not integral, but is in­
range and is greater in magnitude than 1, FSCALE 
uses the nearest integer smaller in magnitude, i.e., it 
chops the value toward O. If the value is out of 
range, or 0< I X 1< 1, the instruction will produce 
an undefined result and will not signal an exception. 
The recommended practice is to load the scale factor 
from a word integer to ensure correct operation. 

FPREM 

FPREM (partial remainder) performs modulo divi­
sion of the top stack element by the next stack 
element, i.e., STU) is the modulus. FPREM pro­
duces an exact result; the precision exception does 
not occur. The' sign of the remainder is the same as 
the sign of the original dividend. 
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FPREM operates by performing successive scaled 
subtractions; obtaining the exact remainder when 
the operands differ greatly in magnitude can con­
sume large amounts of execution time. Since the 
8087 can only be preempted between instructions, 
the remainder function could seriously increase in­
terrupt latency in these cases. Accordingly, the in­
struction is designed to be executed iteratively in a 
software-controlled loop. 

FPREM can reduce a magnitude difference of up to 
264 in one execution. If FPREM produces a remain­
der that is less than the modulus, the function is 
complete and bit C2 of the status word condition 
code is cleared. If the function is incomplete, C2 is 
set to 1; the result in ST is then called the partial 
remainder. Software can inspect C2 by storing the 
status word following execution of FPREM and re­
execute the instruction (using the partial remainder 
in ST as the dividend), until "C" is cleared. 
Alternatively, a program can determine when the 
function is complete by comparing ST to STU). If 
ST> ST(1) then FPREM must be executed again; if 
ST=ST(1) then the remainder is 0; if ST<ST(1) 
then the remainder is ST. A higher priority interrupt­
ing routine which needs the 8087 can force a context 
switch between the instructions in the remainder 
loop. 

An important use for FPREM is to reduce argu­
ments (operands) of periodic transcendental func­
tions to the range permitted by these instructions. 
For example, the FPTAN (tangent) instruction re­
quires its argument to be less than '11"/4. Using '11"/4 as 
a modulus, FPREM will reduce an argument so that 
it is in range of FPT. Because FPREM produces an 
exact result, the argument reduction does not intro­
duce roundoff error into the calculation, even if 
several iterations are required to bring the argument 
into range. (The rounding of pi does not create the 
effect of a rounded argument, but of a rounded 
period.) 

FPREM also provides the least-significant three bits 
of the quotient generated by FPREM (in Co' C3, 

C I ). This is also important for transcendental argu­
ment reduction since it locates the original angle in 
the correct one of eight '11"4 segments of the unit 
circle. 

The FPREM instruction also functions as a 
"universal normalizer". If the top stack element is 
unnormal and the modulus is greater than the top 
stack element, the top stack element will be 
normalized. In addition, if the number is normalized 
and the precision mode of the 8087 is set to less than 
64 bits, the extra precision bits of the normalized ele­
ment will be cleared. 
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FRNDINT 

FRNDINT (round to integer) rounds the top stack 
element to an integer. For example, assume that ST 
contains the 8087 real number encoding of the deci­
mal value 155.625. FRNDINT will change the value 
to 155 if the RC field of the control word is set to 
down or chop, or to 156 if it is set up or nearest. 

FXTRACT 

FXTRACT (extract exponent and significand) 
"decomposes" the number in the stack top into two 
numbers that represent the actual value of the oper­
and's exponent and significand fields. The 
"exponent" replaces the original operand on the 
stack and the significand is pushed onto the stack. 
Following execution of FXTRACT, ST (the new 
stack top) contains the value of the original signifi­
cand expressed as a real number: its sign is the same 
as the operand's, its exponent is 0 true 06,383 or 
3FFFH biased), and its significand is identical to the 
original operand's. STO) contains the value of the 
original operand's true (unbiased) exponent ex­
pressed as a real number. If the original operand is 
zero, FXTRACT produces zeros in ST and ST(I) 
and both are signed as the original operand. 

To clarify the operation of FXTRACT, assume ST 
contains a number whose true exponent is +4 (i.e., 
its exponent field contains 4003H). After executing 
FXTRACT, ST(I) will contain the real number 
+ 4.0; its sign will be positive, its exponent field will 
contain 4001H (+ 2 true) and its significand field will 
contain 1 1:;. OO ... OOB. In other words, the value in 
ST(l) will be 1.0x22=4. If ST contains an operand 
whose true exponent is -7 (i.e., its exponent field 
contains 3FF8H), then FXTRACT will return an 
"exponent" of -7.0; after the instruction executes, 
ST(l)'s sign and exponent fields will contain COOIH 
(negative sign, true exponent of 2) and its signifi­
cand will be I 1:;. IIOO ... OOB. In other words, the 
value in ST(I) will be -l.llx22= -7.0. In both 
cases, following FXTRACT, ST's sign and signifi­
cand fields will be the same as the original 
operand's, and its exponent field will contain 
3FFFH, (0 true). 

FXTRACT is useful in conjunction with FBSTP for 
converting numbers in 8087 temporary real format 
to decimal representations (e.g., for printing or 
displaying). It can also be useful for debugging, since 
it allows the exponent and significand parts of a real 
number to be examined separately. 

FABS 

FABS (absolute value) changes the top stack ele­
ment to its absolute value by making its sign positive. 

FCHS 

FCHS (change sign) complements (reverses)the 
sign of the top stack element. 

Comparison Instructions 

Each of these instructions (Table 6-10) analyses the 
top stack element, often in relationship to another 
operand, and reports the result in the status word 
condition code. The basic operations are compare, 
test (compare with zero), and examine (report tag, 
sign, and normalization). Special forms of the com­
pare operation are provided to optimize algorithms 
by allowing direct comparisons with binary integers 
and real numbers in memory, as well as popping the 
stack after a comparison. 

Table 6-10 Comparison Instructions 

FCOM 
FCOMP 
FCOMPP 
FICOM 
FICOMP 
FTST 
FXAM 

Compare real 
Compare real and pop 
Compare real and pop twice 
Integer compare 
Integer compare and pop 
Test 
Examine 

The FSTSW (store status word) instruction may be 
used following a comparison to transfer the condi­
tion code to memory for inspection. 

Note that instructions other than those in the com­
parison group may update the condition code. To 
insure that the status word is not altered 
inadvertently, store it immediately following a com­
parison operation. 
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FCOMIIsource 

FCOM (compare. real) compares the stack top to the 
source operand. The source operand may be a regis­
ter on the stack, or a short or long real memory 
operand. If an operand is not coded, ST is compared 
to ST(I). Positive and negative forms on~ero com­
pare identically as if they were unsigned. Following 
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the instruction, the condition codes reflect the order 
of the operands as follows: 

C3 C2 CO Order 

o 0 0 ST> source 
o 0 1 ST< source 
1 0 0 ST=source 
1 I I ST? source 

NANs and 00 (projective) cannot be compared and 
return C3 =CO= I as shown above. 

FCOMP//source 

FCOMP (compare real and pop) operates like 
FCOM, and in addition pops the stack. 

FCOMPP 

FCOMPP (compare real and pop twice) operates 
like FCOM and additionally pops the stack twice, dis­
carding both operands. The comparison is of the 
stack top to ST(l); no operands may be explicitly 
coded. 

FICOMsource 

FICOM (integer compare) converts the source 
operand, which may reference a word or short 
binary integer variable, to temporary real and com­
pares the stack top to.it. 

FICOMPsource 

FICOMP (integer compare and pop) operates identi­
cally to FICOM and additionally discards the value 
in ST by popping the stack. 

FTST 

FTST (test) tests the top stack element by comparing 
it to zero. The result is posted to the condition codes 
as follows: 

C3 C2 CO Result 

o 0 0 ST is positive and nonzero 
o 0 1 ST is negative and nonzero 
1 0 0 ST is zero (+ or - ) 
1 lIST is not comparable (i.e., it is a NAN or pro­

jective 00) 
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FXAM 

FXAM (examine) reports the contents of the top 
stack element as positive/negative and NAN/unnor­
mal/denormal/normallzero, or empty. Table 6-11 
lists and interprets all the condition code values that 
FXAM generates. Although four different encodings 
may be returned for an empty register, bits C3 and 
CO of the condition code are both 1 in all encodings. 
Bits C2 and Cl should be ignored. 

Table 6-11 FXAM Condition Code Settings 

Condition Code 

C3 C2 C1 CO 
Interpretation 

0 0 0 0 + Unnormal 

0 0 0 1 + NAN 

0 0 1 0 - Unnormal 

0 0 1 1 - NAN 

0 1 0 0 + Normal 

0 1 0 1 +00 

0 1 1 0 - Normal 

0 1 1 1 -00 

1 0 0 0 +0 

1 0 0 1 Empty 

1 0 1 0 -0 

1 0 1 1 Empty 

1 1 0 0 + Denormal 

1 1 0 1 Empty 

1 1 1 0 - Denormal 

1 1 1 1 Empty 

Transcendental I nstructions 

The instructions in this group (Table 6-12) perform 
the time-consuming core calculations for all common 
trigonometric, hyperbolic, inverse hyperbolic, loga­
rithmic and exponential functions. Prologue and epi­
logue software may be used to reduce arguments to 
the range accepted by the instructions and to adjust 
the result to correspond to the original arguments if 
necessary. The transcendentals operate on the top 
one or two stack elements and they return their re­
sults to the stack also. 

210911 



THE 8087 NUMERIC PROCESSOR EXTENSION 

Table 6-12 Transcendental Instructions 

FPTAN Partial tangent 

FPATAN Partial arctangent 

F2XM1 2L1 

FYL2X Y e lOQ2X 

FYL2XP1 Y e IOQ2(X+1) 

The transcendental instructions assume that their 
operands are valid and in-range. The instruction de­
scriptions in this section provide the range of each 
operation. To be considered valid, an operand to a 
transcendental must be normalized; denormals, 
unnormals, infinities and NANs are considered 
invalid. (Zero operands are accepted by some func­
tions and are considered out-of-range by others') If 
a transcendental operand is invalid or out of range, 
the instruction will produce an undefined result with­
out signalling an exception. It is the programmer's 
responsibility to ensure that operands are valid and 
in-range before executing a transcendental. For 
periodic functions, FPREM may be used to bring a 
valid operand into range. 

FPTAN 

FPTAN (partial tangent) computes the function 
Y/X = TAN (8). 8 is taken from the top of the 
stack element; it must lie in the rAnge 
0=or<8=or<174. The result of the operation is a 
ratio; Y replaces 8 in the stack and X is pushed, 
becoming the new stack top. 

The ratio result of FPTAN and the ratio argument 
of FPATAN are designed to optimize the calculation 
of the other trigonometric functions, including SIN, 
COS, ARCSIN and ARCCOS. These can be derived 
from TAN and ARCTAN via standard trigonometric 
identities. 

FPATAN 

FPATAN (partial arctangent) computes the function 
8 = ARCTAN (Y/X). X is taken from the top stack 
element and Y from ST(1). Y and X must observe 
the inequality 0 <Y < X < 00. The instruction pops 
the stack and returns 8 to the (new) stack top, over­
writing the Y operand; both original operands are 
destroyed. 

F2XM1 

F2XMI (2 to the X minus 1) calculates the function 
Y = 2X-1. X is taken from the stack top and must 
be in the range 0~X~0.5. The result Y replaces X 
at the stack top. 

This instruction is designed to produce a very accu­
rate result even when X is close to zero. To obtain 
Y = 2" add 1 to the result delivered by F2XM 1. 

The following formulas show how values other than 
2 may be raised to a power of X: 

As shown in the next section, the 8087 has built-in 
instructions for loading the constants LOG210 and 
LOG2e, and the FYL2X instruction may be used to 
calculate X . LOG2 Y. 

FYL2X 

FYL2X (Y log base 2 of X) calculates the function Z 
= YLOG X. X is taken from the stack top and y 
from ST(f). The operands must be in the ranges 
O<x<oo and - 00 <Y< + 00. The instruction 
pops the stack and returns Z at the (new) stack top, 
replacing the Y operand; both original operands are 
destroyed. 

This function optimizes the calculation of log to any 
base other than two since a multiplication is always 
required: 

FYL2XP1 

FYL2XPI (y log base 2 of (X + 1) calculates the 
function Z = Y . LOG 2 (X = 1). X is taken from the 
stack top and must be in the range 0< I X I < (I - ( 
.J212». Y is taken from ST(I) and must be in the 
range - 00 < Y < 00. FYL2XPI pops the stack and 
returns Z at the (new) stack top, replacing Y. 

This instruction provides improved accuracy over 
FYL2X when computing the log of a number very 
close to I, for example 1 + E where E < < 1. Provid­
ing E rather than 1 + E as the input to the function 
allows more significant digits to be retained. 

6-28 

For example, this instruction is useful for any calcu­
lation (i.e., compounded interest rates) requiring a 
logarithm of 1.0+ N where 0< IN < 0.29. If only the 
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FYL2X instruction were available, the value 1.0 
would have to be added to N, potentially losing 
many significant bits in the result. By avoiding the 
addition of 1.0 to N, the result of the FYL2XPI will 
be as accurate (to within 3 units of temporary real 
precision) as N. 

Constant Instructions 

Each of these instructions (Table 6-13) loads 
(pushes) a commonly-used constant onto the stack. 
The values have full temporary real precision (80 
bits) and are accurate to approximately 19 decimal 
digits. Since a temporary real constant occupies 10 
memory bytes, the constant instructions, which are 
only two bytes long, save storage and improve 
execution speed, in addition to simplifying 
programming. 

Table 6-13 Constant Instructions 

FLOZ Load +0.0 

FL01 Load +1.0 

FLOPI Load 11 

FLOL2T Load log21O 

FLOL2E Load log2e 

FLOLG2 Load log102 

FLOLN2 Load 109.2 

FLDZ 

FLOZ (load zero) loads (pushes) +0.0 onto the 
stack. 

FLD1 

FLOI (load one) loads (pushes) + 1.0 onto the 
stack. 

FLDPI 

FLOPI (load pi) loads (pushes) pi onto the stack. 

FLDL2T 

FLOL2T (load log base 2 of 10) loads (pushes) 
value LOG210 onto the stack. 

6-29 

FLDL2E 

FLDL2E (load log base 2 of e) loads (pushes) the 
value LOG 2e onto the stack. 

FLDLG2 

FLDLG2 (load log base 10 of 2) loads (pushes) the 
value LOG \02 onto the stack. 

FLDLN2 

FLDLN2 (load log base e of 2) loads (pushes) the 
value LOGe2 onto the stack. 

Processor Control Instructions 

Most of these instructions (Table 6-14) are not used 
in computations; they are provided principally for 
system-level activities. These include initialization, 
exception handling and task switching. 

As shown in Table 6-14, an alternate mnemonic is 
available for many of the processor control 

Table 6-14 Processor Control Instructions 

FINIT I FNINIT Initialize processor 

FDISII FN DISI Disable interrupts 

FENI/FNENI Enable interrupts 

FLDCW Load control word 

FSTCW I FNSTCW Store control word 

FSTSW I FNSTSW Store status word 

FCLEX I FNCLEX Clear exceptions 

FSTENV I FNSTENV Store environment 

FLDENV Load environment 

FSAVE/FNSAVE Save state 

FRSTOR Restore state 

FINCSTP Increment stack pOinter 

FDECSTP Decrement stack pointer 

FFREE Free register 

FNOP No operation 

FWAIT CPU wait 
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instructions. This mnemonic, distinguished by a 
second character of "N", instructs the assembler not 
to prefix the instruction with a CPU WAIT instruc­
tion (instead, a CPU NOP precedes the instruction). 
This "no-wait" form is intended for use in critical 
code regions where a WAIT instruction is not 
desired. When CPU interrupts are enabled, as will 
normally be the case when an application task is 
running, the "wait" forms of these instructions 
should be used. 

Except for FNSTENV and FNSAVE, all instructions 
which provide a no-wait mnemonic are self­
synchronizing and can be executed back-to-back in 
any combination without intervening FWAITs. 
These instructions can be executed by the 8087 CU 
while the NEU is busy with a previously decoded 
instruction. To insure that the processor control in­
struction executes after completion of any operation 
in progress in the NEU, the "wait" form of that in­
struction should be used. 

FINIT IFNI NIT 

FINIT/FNINIT (initialize processor) performs the 
functional equivalent of a hardware RESET (see 
Volume 2, Processor Control and Monitoring), 
except that it does not affect the instruction fetch 
synchronization of the 8087 and its CPU. 

For compatibility with the 8087 emulator, a system 
should call the INIT87 procedure in lieu of executing 
FINIT/FNINIT when the processor is first initialized 
(see Section 6.6 for details). Note that if FNINIT is 
executed while a previous 8087 memory referencing 
instruction is running, 8087 bus cycles in progress 
will be aborted. 

FDISI/FNDISI 

FDISIIFNDISI (disable interrupts) sets the interrupt 
enable mask in the control word and prevents the 
NPX from issuing an interrrupt request. 

FENI/FNENI 

FENI/FNENI (enable interrupts) clears the inter­
rupt enable mask in the control word, allowing the 
8087 to generate interrupt requests. 

FLDCW source 

FLDCW (load control word) replaces the current 
processor control word with the word defined by the 
source operand. This instruction is typically used to 
establish, or change, the 8087's mode of operation. 

Note that if an exception bit in the status word is set, 
loading a new control word that unmasks that excep­
tion and clears the interrupt enable mask will gener­
ate an immediate interrupt request before the next 
instruction is executed. When changing modes, the 
recommended procedure is to first clear any excep­
tions and then load the new control word. 

FSTCW IFNSTCW destination 

FSTCW/FNSTCW (store control word) writes the 
current processor control word to the memory loca­
tion defined by the destination. 

FSTSW/FNSTSW destination 

FSTSW IFNSTSW destination (store status word) 
writes the current value of the 8087 status word to 
the destination operand in memory. The instruction 
has many uses: 

• to implement conditional branching following 
a comparison of FPREM instruction 
(FSTSW); 

• to poll the 8087 to determine if it is busy 
(FNSTSW); 

• to invoke exception handlers in environments 
that do not use interrupts (FSTSW). 

Ifbusy is set, the status bits are not valid. 

FCLEX/FNCLEX 

FCLEX/FNCLEX (clear exceptions) clears all ex­
ception flags, the interrupt request flag and the busy 
flag in the status word. As a consequence, the 8087's 
INT and BUSY lines go inactive. An exception han­
dier must issue this instruction before returning to 
the interrupted computation, or another interrupt re­
quest will be generated immediately, and an endless 
loop may result. 

FSAVE/FNSAVE destina tion 

FSAVE/FNSAVE (save state) writes the full 8087 
state - environment plus register stack - to the 
memory location defined by the destination 
operand. Figure 6-l3 shows the layout of the 94-byte 
save area; typically the instruction will be coded to 
save this image on the CPU stack. If an instruction is 
executing in the 8087 NEU when FNSAVE is 
decoded, the CPU queues the FNSAVE and delays 
its execution until the running instruction completes 
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normally encounters an unmasked exception. Thus, 
the save image reflects the state of the NPX FOL­
LOWING THE COMPLETION OF ANY running 
instruction. After writing the state image to 
memory, FSAVE/FNSAVE initializes the 8087 as if 
FINIT/FNINIT has been executed. 

INCREASING ADDRESSES 

,s 

CONTROL WORD +0 

STATUS WOAD +2 

TAG WORD +4 

INSTRUCTION {t-__ r._I_P_'S_.Q ____ ~ +" 
POINTER 1,\ IP19-16 0 1 OPCOOE + 8 

OPERAND t---.--------I { 
OP1S,,() +10 

POINTER OP'9-'61 + '2 

SIGNIFICAND 31-16 + 16 
{ 

SIGNIFICAND 15.() +14 

E~~=~~m t-__ S_IG_N_IF_IC_A_ND_4_7_-3_2 _--I + '8 

SIGNIFICAND 63-48 + 20 

sJ EXPONENT 14.(1 +22 

SIGNIFICAND '5-0 +24 

SIGNIFICAND 3'·'6 +26 1-------...... 
NEXT STACK { 

ELEMENT;STI') t-__ S_IG_N_IF_IC_A_N_D_47_.3_2 __ -t + 28 

+30 t-t-------...... sl 
SIGNIFICAND 63-48 

EXPONENT 14.Q +32 

{ 

SIGNIFICANO 15-0 +84 

t---S-IG-N-IF-IC-A-N-D-3'-.'-6---t +8" 

ELi~~Ws\7~ t-__ S_IG_N_IF_IC_A_N_D_47_.3_2 __ -t +88 

SIGNIFICANO 63-48 + 90 

, .,;S"'-I ___ EX_P_O_NE_N_T_'4_.Q __ .... +92 

NOTES; 
S = Sign 
81t 0 of each field Is rightmost. lelSt significant bit Of correspondmg 
regilt.r field. 
81t 63 of slgniflc:and is integer bit (assumed binary point is Immediately 
to the right). 

Figure 6-13 FSAVE/FRSTOR Memory Layout 

FSAVE/FNSAVE is useful whenever a program 
wants to save the current state of the NPX and ini­
tialize it for a new routine. Three examples are: 

• an operating system needs to perform a con­
text switch (suspend the task that had been 
running and give control to a new task); 
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• an interrupt handler needs to use the 8087; 

• an application task wants to pass a "clean" 
8087 to a subroutine. 

FNSAVE must be "protected" by executing it in a 
critical region, i.e., with CPU interrupts disabled. 
This prevents an interrupt handler from executing a 
second FNSAVE (or other "no-wait" processor con­
trol instruction that reference memory) which could 
destroy the first FNSAVE if is queued in the 8087. 
An FWAIT should be executed before CPU inter­
rupts are enabled or any subsequent 8087 instruction 
is executed. 

FRSTOR source 

FRSTOR (restore state) reloads the 8087 from the 
94-byte memory area defined by the source 
operand. This information should have been written 
by a previous FSAVE/FNSAVE instruction and not 
altered by any other instruction. CPU instructions 
(that do not reference the save image) may immedi­
ately follow FRS TOR, but no NPX instruction 
should be without an intervening FWAIT or an 
assembler-generated WAIT. 

Note that the 8087 "reacts" to its new state at the 
conclusion of the FRSTOR; it will for example 
generate an immediate interrupt request if the excep­
tion and mask bits in the memory image so indicate. 

FSTENV IFNSTENV des tina tion 

FSTENV/FNSTENV (store environment) writes 
the 8087's basic status - control, status and tag 
words, and exception pointers - to the memory lo­
cation defined by the destination operand. Typically 
:le environment is saved on the CPU stack. 

FSTENV/FNSTENV is often used by exception han­
dlers because it provides access to the exception 
pointers Which identify the offending instruction and 
operand. After saving the environment, FSTENV /­
FNSTENV sets all exception masks (masking all 
exceptions) in the processor; it does not affect the 
interrupt-enable mask. Figure 6-14 shows the 
format of the environment data in memory. If 
FNSTENV is decoded while another instruction is 
executing concurrently in the NEU, the 8087 queues 
the FNSTENV and does not store the environment 
until the other instructipn has completed. Thus, the 
data saved by the instruction reflects the 8087 after 
any previously decoded instruction has been 
executed. 
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INCREASING ADDRESSES 

15 ,,~",,-RJ 
STATUS WORD +2 

TAG WORD +4 

IP15'() +6 
INSTRUCTION { 

POINTER 
IP19·16 101 OPCODE +8 

OP15·0 +10 
OPERAND { 

POINTER 
OP19.18J 0 +12 

Figure 6-14 FSTENV/FLDENV Memory Layout 

FSTENV IFNSTENV must be allowed to complete 
before any other 8087 instruction is decoded. When 
FSTENV is coded, an explicit FWAIT, or assembler­
generated WAIT, should precede any subsequent 
8087 instruction. An FNSTENV must be executed 
in a critical region that is protected from 
interruption, in the same manner as FNSAVE. 

FLDENV source 

FLDENV (load environment) reloads the 8087 envi­
ronment from the memory area defined by the 
source operand. This data should have been written 
by a previous FSTENV/FNSTENV instruction. 
CPU instructions (that do not reference the environ­
ment image) may immediately follow FLDENV, 
but no subsequent NPX instruction should be ex­
ecuted without an intervening FWAIT or assembler­
generated WAIT. 

Note that loading an environment image that con­
tains an unmasked exception will cause an immedi­
ate interrupt request from the 8087 (assuming 
I~M-O in the environment image). 

FINCSTP 

FINCSTP (increment stack pointer) adds 1 to the 
stack top pointer (ST) in the status word. It does not 
alter tags or register contents, nor does it transfer 
data. It is not equivalent to popping the transfer data 
since it does not set the tag of the previous stack top 
to empty. Incrementing the stack pointer when 
ST= 7 produces ST=O. 

FDECSTP 

FDECSTP (decrement stack pointer) subtracts 1 
from'ST, the stack top pointer in·the status word. No 
tags or registers are altered, nor is any data 
tranSferred. Executing FDECSTP when ST=O pro­
ducesST=7. 

FFREE destination 

FFREE (free register) changes the destination regis­
ter's tag to empty; the contents of the register is 
unaffected. 

FNOP 

FNOP (no operation) stores the stack top to the 
stack top (FST ST,ST(O» and thus effectively per­
forms no operation. 

FWAIT (CPU instruction) 

FWAIT is not actually an 8087 instruction, but an al­
ternate mnemonic for the CPU WAIT instruction 
described in Section 3.8, Addressing Modes. The 
FWAIT mnemonic should be coded whenever the 
programmer wants to synchronize the CPU to the 
NPX, that is, to suspend further instruction decoding 
until the NPX has completed the current instruction. 
A CPU instruction should not attempt to access a 
memory operand that has been read or written by a previ­
ous 8087 instruction until the 8087 instruction has 
completed. The following coding shows how FWAIT 
can be used to force the CPU instruction to wait for 
the 8087: 

FNSAVE STATUS 
FWAIT ;Waitfor FNSAVE 
MOV AX,SAVE AREA STATUS 

Programmers should not code WAIT to synchronize 
the CPU and the NPX. The routines that alter an 
object program for 8087 emulation eliminate 
FWAITs (and assembler-generated WAITs) but do 
not change any explicitly coded WAITs. The pro­
gram will wait forever if a WAIT is encountered in 
emulated execution, since there is no 8087 to drive 
the CPU's TEST pin active. 

Instruction Set Reference 
Information 

Table 6-17 lists the operating characteristics of all the 
8087 instructions. There is one table entry for each 
instruction mnemonic; the entries are in alphabetical 
order for quick lookup. Each entry provides the 
general operand forms accepted by the instruction as 
well as a list of all exceptions that may be detected 
during the operation. 

There is one entry for each combination of operand 
types that can be coded with the mnemoniC. Table 
6-15 explains the operand identifiers allowed in 
Table 6-17. Following this entry are columns that 
provide execution time in clocks, the number of bus 
transfers run during the operation, the'length of the 
instruction in bytes, and an ASM-86 coding sample. 
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Table 6-15 Key to Operand Types 

Identifier Explanation 

ST Stack top; the register currently at 
the top of the stack. 

ST(!) A register in the stack i (0';;;i';;;7) 
stack elements from the lop. ST(I) is 
the next-on-stack register, ST(2) is 
below ST(I), etc. 

Short-real A short real (32 bits) number in 
memory. 

Long-real A long real (64 bits) number in 
memory. 

Temp-real A temporary real (80 bits) number in 
memory. 

Packed-decimal A packed decimal integer (18 digits, 
10 bytes) in memory. 

Word-integer A word binary integer (16 bits) in 
memory. 

Short-integer A short binary integer (32 bits) in 
memory. 

Long-integer A long binary integer (64 bits) in 
memory. 

nn-bytes A memory area nn bytes long. 

EXECUTION TIME 

The execution of an 8087 instruction involves three 
principal activities, each of which may contribute to 
the total duration (execution time) of the operation: 

• Instruction fetch 

• Instruction execution 

• Operand transfer 

The CPU and NPX simutaneously prefetch and 
queue their common instruction stream from 
memory. This activity is performed during spare bus 
cycles and proceeds in parallel with the execution of 
instructions from the queue. Because of their 
complexity, 8087 instructions typically take much 
longer to execute than to fetch. This means that in a 
typical sequence of 8087 instructions the processors 
have a relatively large amount of time available to 
maintain full instruction queues. Instruction fetching 
is therefore fully overlapped with execution and 
does not contribute to the overall duration of a 
series of instructions. 
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Fetch time does become apparent when a CPU jump 
or call instruction alters the normal sequential 
execution. This empties the queues and delays exe­
cution of the target instruction until it is fetched 
from memory. The time required to fetch the in­
struction depends on Its length, the type of CPU 
(80861186 or 80881188), and, if the CPU is an 8086, 
whether the instruction is located at an even or odd 
address. (Slow memories, which force the insertion 
of wait states in bus cycles, and the bus activities of 
other processors in the system, may also lengthen 
fetch time.) Section 4.4 covers this topic in more 
detail. 

Table 6-17 quotes a typical execution time and a 
range for each instruction. Dividing the figures in 
the table by 5 (assuming a 5 MHz clock) produces 
execution time in microseconds. The typical case is 
an estimate for operand values that normally char­
acterize most applications. The range encompasses 
best- and worst-case operand values that may be 
found in extreme circumstances. Where applicable, 
the figures include all overhead incurred by the 
CPU's execution of the ESC instruction, local bus 
arbitration (request/grant time), and the average 
overhead imposed by a preceding WAIT instruction 
(half of the 5-clock cycle that it uses to examine the 
)TEST( pin). 

The execution times assume that no exceptions are 
detected. Invalid operation, denormalized (un­
masked), and zero divide exceptions usually decrease 
execution time from the typical figure, but it will still 
fall within the quoted range. The precision exception 
has no effect on execution time. Unmasked overflow 
and underflow, and masked denormalized 
exceptions, impose the penalties shown in Table 
6-16. Absolute worst-case execution time is there­
fore the high range figure plus the largest penalty 
that may be encountered. 

For instructions that transfer operands to or from 
memory, the execution times in Table 6-17 show 
that the time required for the CPU to calculate the 
operand's effective address (EA) should be added. 
Effective address calculation time varies according 
to addressing mode. and to the CPU processor 
(8086,88 or 80186,188) used; Table 2-18 supplies 
the figures. 

Table 6-16 Execution Penalties 

Exception Additional Clocks 

OverflOW (unmasked) 14 

Underflow (unmasked) 16 

Denormalized (masked) 33 
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BUS TRANSFERS 

Instructions that reference memory execute bus 
cycles to transfer operands. Each transfer requires 
one bus cycle. The number of transfers depends on 
the length of the operand, the type of CPU, and the 
alignment of the operand if the CPU is an 8086. The 
figures in Table 6-17 include the "dummy read" 
transfer(s) performed by the CPU in its execution of 
the escape instruction. The first 8086 figure is for 
even-addressed operands, and the second is for odd­
addressed operands. 

A bus cycle (transfer) consumes four clocks if the 
bus is immediately available and if the memory is 
running at processor speed, without wait states. 
Additional time is required if slow memories are 
employed, because these insert wait states into the 
bus cycle. In multiprocessor environments, the bus 

may not be available immediately if a higher priority 
processor is using it; this also can increase effective 
transfer time. 

INSTRUCTION LENGTH 

Instructions that do not reference memory are two 
bytes long. Memory reference instructions vary be­
tween two and four bytes. The third and fourth 
bytes are used for 8- or 16-bit displacement values; 
the assembler generates the short displacement 
whenever possible. No displacements are required 
in memory references that use only CPU register 
contents to calculate an operand's effective address. 
Note that the lengths quoted in Table 6-17 do not in­
clude the one byte CPU WAIT instruction that the 
assembler automatically inserts in front of all NPX 
instructions (except those coded with a "no-wait" 
mnemonic). 

Table 6-17 Instruction Set Reference Data 

FABS FABS (no operandsi 
Exceptions: I 

Absolute value 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 14 10-17 0 0 2 FAB5 

FADD FADD Iisource/destination,source 
Exceptions: I, D, 0, U, P 

Add real 

Execution Clocks Transferll 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

115T,5T(I)/5T(i),5T 85 70-100 0 0 2 FADD 5T,5T(4) 
short-real 105+EA 90-120+EA 2/4 4 2-4 FADD AIR_TEMP [511 
long-real 110+EA 95-125+EA 4/6 8 2-4 FADD [BXI.MEAN 

FADDP FADDP destination, source 
Exceptions: I, D, 0, U, P 

Ada real and pop 

!,xecution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

5T(i),ST 90 75-105 0 0 2 FADDP ST(2),ST 
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Table 6-17 Instruction Set Reference Data (continued) 

FBLD FBLD source 
Exceptions: I 

Packed decimal (BCD) load 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

packed-decimal 300+EA 290-310+EA 517 10 2-4 FBLD YTD_SALES 

FBSTP FBSTP destination 
Packed decimal (BCD) store and pop 

Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

packed-decimal 530+EA 520-540+EA SIS 12 2-4 FBSTP [BXj.FORECAST 

FCHS FCHS (no operands) 
Change sign Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 15 10-17 0 0 2 FCHS 

FCLEX/FNCLEX FCLEX (no operands) 
Clear exceptions Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 5 2-S 0 0 2 FNCLEX 

FCOM FC.OM ({source 
Compare real 

Exceptions: I. D 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

({ST(i) 45 40-50 0 0 2 FCOM STll) 
short-real 65+EA SO-70+EA 214 4 2-4 FCOM IBPIUPPER LIMIT 
long-real 70+EA S5-75+EA 41S 8 2-4 FCOM WAVELENGTH 
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Table 6-17 Instruction Set Reference Data (continued) 

FCOMP FCOMP I/source 
Exceptions: I, D 

Compare real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

//ST(i) 47 42-52 0 0 2 FCOMP ST(2) 

short-real 68+EA 63-73+EA 2/4 4 2-4 FCOMP iBP + 2' N READINGS 

long-real 72+EA 67-77+EA 4/6 8 2-4 FCOMP DENSITY 

FCOMPP FCOMPP (no operands) 
Compare real and pop twice 

Exceptions: I., D 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 50 45-55 0 0 2 FCOMPP 

FDECSTP FOECSTP (no operands) 
Exceptions: None 

Decrement stack pointer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 9 6-12 0 0 2 FDECSTP 

FDISIIFNDISI FOISI (no operands) 
Disable interrupts Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 5 2-8 0 0 2 FDISI 

FDIV FOIV //source/destination,source 
Exceptions: I, D, Z, 0, U, P 

Divide real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

//ST(i),ST 198 193-203 0 0 2 FDIV 

short-real 220+EA 215-225+EA 2/4 4 2-4 FDIV DISTANCE 

long-real 225+EA 220-230+EA 4/6 8 2-4 FDIV ARC [DIJ 
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Table 6-17 Instruction Set Reference Data (continued) 

FDIVP FDIVP destination,source 
Exceptions: I, D, Z, 0, U, P 

Divide real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i)'ST 202 197-207 0 0 2 FDIVP ST(4),ST 

FDIVR FDIVR Iisourceidestination,source 
Exceptions: I, D, Z, 0, U, P 

Divide real reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

IIST,ST(i)ISTO),ST 199 194-204 0 0 2 FDIVR ST(2),ST 
short-real 221+EA 216-226+EA 214 6 2-4 FDIVR [8X].PULSE_RATE 
long-real 226+EA 221-231+EA 416 8 2-4 FDIVR RECORDER. FREQUENCY 

FDIVRP FDIVRP destination,source 
Divide real reversed and pop 

Exceptions: I, D, Z, 0, U, P 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i),ST 203 198-208 0 0 2 FDIVRP ST(1),ST 

FENIIFNENI FENI (no operands) 
Exceptions: None 

Enable interrupts 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 5 2-8 0 0 2 FNENI 

FFREE FFREE destination 
Free register Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i) 11 9-16 0 a 2 FFREE ST(1) 
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Table 6-17 Instruction Set Reference Data (continued) 

FIADD FIADD source 
Exceptions: I. D. 0 P 

Integer add 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-i nteger 120+EA 102-137+EA 1/2 2 2-4 ~IADD DISTANCE TRAVELLED 

short-integer 125+EA 108-143+EA 2/4 4 2-4 FIADD PULSE COUNTSI, 

FICOM FICOM source 
Exceptions: I, 0 Integer compare 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 80+EA 72-86+EA 112 2 2-4 FICOM TOOl.N_PASSES 
short-integer 85+EA 78-9HEA 2/4 4 2-4 FICOM {BP + 4].PARM_COUNT 

FICOMP FICOMP source 
Exceptions: I, 0 Integer compare and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 82+EA 74-88+EA 1/2 2 2-4 FICOMP {BP].LlMIT {SI] 
short-integer 87+EA 80-93+EA 2/4 4 2-4 FICOMP N_SAMPLES 

FIDIV FIDIV source 
Integer divide Exceptions: I,D, Z, 0, U, P 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

: 

word-integer 230+EA 224-238+EA 1/2 2 2-4 FIDIV SURVEY.OBSERVATIONS 
short-integer 236+EA 230-243+EA 2/4 4 2-4 FIDIV RELATIVE_ANGLE {DI] 

FIDIVR FIDIVR source 
Exceptions: I,D, Z, 0, U, P Integer divide reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 230+EA 225-239+EA 1/2 2 2-4 FIDIVR {BP].X_COORD 
short-integer 237+EA 231-245+EA 2/4 4 2-4 FIDIVR FREQUENCY 

6-38 210911 



THE 8087 NUMERIC PROCESSOR EXTENSION ! 
Table 6-17 Instruction Set Reference Data (continued) 

FILD FILD source 
Exception: I 

Integer load 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 50+EA 46-54+EA 1/2 2 2-4 FILD IBXJ.SEQUENCE 

short-integer 56+EA 52-60+EA 2/4 4 2-4 FILD STANDOFF IDIJ 

long-integer 64+EA 60-68+EA 4/6 8 2-4 FILD RESPONSE.COUNT 

FIMUL FIMUL source 
Exceptions: 1,0,0, P 

Integer multiply 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 130+EA 124-138+EA 1/2 2 2-4 FIMUL BEARING 
short-integer 136+EA 130-144+EA 2/4 4 2-4 FIMUL POSITION.Z_AXIS 

FINCSTP FINCSTP (no operands) 
Increment stack painter Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 9 6-12 a 0 2 FINCSTP 

FINIT IFNINIT FINIT (no operands) 
Exceptions: None 

Initialize processor 

Execution Clocks Transfers 
Operands 

Typical Range 8086 80118 
Bytes Coding Example 

(no operands) 5 2-8 0 0 2 FINIT 

FIST FIST destination 
Integer store Exceptions: I. P 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 86+EA 80-90+EA 2/4 4 2-4 FIST OBS.COUNT [SII 
short-integer 88+EA 82-92+EA 3/5 6 2-4 FIST [BP[.FACTORED PULSES 
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Table 6-1 7 Instruction Set Reference Data (continued) 

FISTP FISTP destination 
EXgeplions: I. P 

Integer store and pop 

Execution Clocks Tr~nsfers 

Operands 
Typical Range 8086 8088 

Byles Coding Example 

word-integer 88+EA 82-S2+EA 2/4 4 2-4 FISTP ; BX ALPHA COUNT SI 

short-Integer SO+EA 84-S4+EA 3/5 6 2-4 FISTP CORRECTED TIME 

long-integer 100+EA S4-105+EA 5/7 10 2-4 FISTP PANEL N READINGS 

FISUB FISUB source 
Exceptions: I, 0, 0, P 

Integer subtract 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 120+EA 102-137+EA 1/2 2 2-4 FISUB BASE_FREQUENCY 
short-integer 125+EA 108-143+EA 2/4 4 2-4 FISUB TRAIN SIZE [01] 

FISUBR FISUBR source 
Exceptions: 1,0,0, P Integer subtract reversed 

Execut.ion Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

word-integer 120+EA 103-13S+EA 1/2 2 2-4 FISUBR FLOOR [BX] [SI] 
short-integer 125+EA "10S-144+EA 2/4 4 2-4 FISUBR BALANCE 

FLO FLO source 
Load real Exceptions: I, 0 

EXecution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Byles Coding Example 

ST(i) 20 17-22 0 0 2 FLO ST(O) 
short-real 43+EA 38-56+EA 2/4 4 2-4 FLO READING [SI].PRESSURE 
long-real 46+EA 40-60+EA 4/6 8 2-4 FLO [BP].TEMPERATURE 
temp-real 57+EA 53-65+EA 517 10 2-4 FLO SAVEREADING 

FLOCW FLOCW source 
Exceptions: None Load control word 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

2-bytes 10+EA 7-14+EA 1/2 2 2-4 FLDCW CONTROL_WORD 
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Table 6-17 Instruction Set Reference Data (continued) 

FLDENV FLDENV source 
Exceptions: None 

Load environment 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

14-bytes 40+EA 35-45+EA 7/9 14 2-4 FLDENV [BP+6] 

FLDLG2 FLDLG2 (no operands) 
Load log,o 2 

Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 21 18-24 0 0 2 FLDLG2 

FLDLN2 FLDLN2 (no operands) 
Load loge 2 

Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 20 17-23 0 0 2 FLDLN2 

FLDL2E FLDL2E (no operands) 
Load 1092 e 

Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 18 15-21 0 0 2 FLDL2E 

FLDL2T FLDL2T (no operands) 
Load 10921O 

Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 19 16-22 0 0 2 FLDL2T 
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Table 6-17 Instruction Set Reference Data (continued) 

FLOPI FLOPI (no operands) 
Exceptions: I 

Load n 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 19 16-22 0 0 2 FLDPI 

FLOZ FLOZ (no operands) 
Exceptions: I Load +0.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 14 11-17 0 0 2 FLOZ 

FL01 FL01 (no operands) 
Exceptions: I Load +1.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 18 15-21 0 0 2 FLD1 

FMUL FMUL Iisourceidestination,source 
Exceptions: I,D, 0, U, P Multiply real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

IIST(i),ST IST,ST(i)' 97 90-105 0 0 2 FMUL ST,ST(3) 
IIST(i),ST IST,ST(i) 138 130-145 0 0 2 FMUL ST,ST(3) 
short-real 118+EA 110-125+EA 2/4 4 2-4 FMUL SPEED_FACTOR 
long-real' 120+EA 112-126+EA 4/6 8 2-4 FMUL [BPJ.HEIGHT 
long-real 161+EA 154-168+EA 4/6 8 2-4 FMUL [BPJ.HEIGHT 

occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g., it was loaded from a short-real 
memory operand). 

FMULP FMULP destination, source 
Exceptions: I, D, 0, U, P Multiply real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i),ST' 100 94-108 0 0 2 FMULP ST(1),ST 
ST(i),ST 142 134-148 0 0 2 FMULP ST(1),ST 

, 
occurs when one or both operands is "short"-it has 40 trailing zeros in its fraction (e.g., it was loaded from a short-real 

memory operand). 
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Table 6-1 7 Instruction Set Reference Data (continued) 

FNOP FNOP (no operands) 
No operation Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 13 10-16 0 0 2 FNOP 

FPATAN FPATAN (no operands) 
Partial arctangent 

Exceptions: U. P (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 650 250-800 0 0 2 FPATAN 

FPREM FPREM (no operands) 
Partial remainder Exceptions: I. D. U 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 125 15-190 0 0 2 FPREM 

FPTAN FPTAN (no operands) 
Partial tangent 

Exceptions: I. P (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 450 30-540 0 0 2 FPTAN 

FRNDINT FRNDINT (no operands) 
Exceptions: 1 P 

Round to integer 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 45 16-50 0 0 2 FRNDINT 
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Table 6-1 7 Instruction Set Reference Data (continued) 

FRSTOR FRSTOR source 
Exceptions: None Restore saved state 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

94-bytes 208+EA 197-207+EA 47/49 96 2-4 FRSTOR [BPJ 

FSAVE/FNSAVE FSAVE destination 
Exceptions: None Save state 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

94-bytes 208+EA 197-207+EA 48/50 94 2-4 FSAVE [BPJ 

FSCALE FSCALE (no operands) 
Exceptions: 1,0, U Scale 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 35 32-38 0 0 2 FSCALE 

FSQRT FSQRT (no operands) 
Exceptions: I,D, P 

Square root 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 183 180-186 0 0 2 FSQRT 

FST FST destination 
Exceptions: 1,0, U, P 

Store real 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

ST(i) 18 15-22 0 0 2 FST ST(3) 
short-real 87+EA 84-90+EA 3/5 6 2-4 FST CORRELATION [DIJ 
long-real 100+EA 96-104+EA 5/7 10 2-4 FST MEAN_READING 
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Table 6-1 7 Instruction Set Reference Data (continued) 

FSTCW IFNSTCW FSTCW destination 
Store control word Exceptions: None 

Execution Clocks Transfers 
Operand .. 

Typical Range 8086 8088 
Bytes Coding Example 

2-bytes 15+EA 12-18+EA 2/4 4 2-4 FSTCW SAVE __ CONTROL 

FSTENV/FNSTENV FSTENV destination 
Store environment Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

14-bytes 45+EA 40-50+EA B/l0 16 2-4 FSTENV [BPI 

FSTP FSTP destination 
Store real and pop 

Exceptions: 1,0, U, P 

Execution Clocks Transfers 
Operands 

Typical Range 8086 80B8 
Bytes Coding Example 

ST(i) 20 ~7-24 0 0 2 FSTP ST(2) 
short-real 89+EA 86-92+EA 3/5 6 2-4 FSTP [BX].ADJUSTED RPM 
long-real 102+EA 98-106+EA 5/7 10 2-4 FSTP TOTAL DOSAGE 
temp-real 55+EA 52-5B+EA 6/B 12 2-4 FSTP REG SAVE [SII 

FSTSW IFNSTSW FSTSW destination 
Exceptions: None 

Store status word 

Execution Clocks Transfe,s 
Operands 

Typical Range BOB6 80BB 
Bytes Coding Example 

2-bytes 15+EA 12-1B+EA 2/4 4 2-4 FSTSW SAVE STATUS 

FSUB FSUB Iisourceidestination,source 
Subtract real 

Exceptions: I.D.O.IJ,P 

Execution Clocks Transfers 
Operands 

Typical Range BOB6 BOBB 
Bytes Coding Example 

IIST,ST(i)/ST(i),ST 85 70-100 0 0 2 FSIJB 5TST'21 
short-real 105+EA 90-120+EA 214 4 2-4 FSUB BASE VALUE 
long-real 110+EA 95-125+EA 416 B 2-4 FSU B COORDINA TE X 
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Table 6-17 Instruction Set Reference Data (continued) 

FSUBP FSUBP destination,source 
Exceptions: I,D,O,U,P Subtract real and pop 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Byt'!s Coding Example 

5T(i),5T 90 75-105 0 0 2 F5UBP 5T(2),5T 

FSUBR F5UBR Iisourceidestination,source 
EX'ceptions: I,D,O,U,P 5ubtract real reversed 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

115T,5T(i)/5T(i),5T 87 70-100 0 0 2 F5UBR ST,ST(1) 
short-real 105+EA 90-120+EA 2/4 4 2-4 FSUBR VECTOR[SI) 
long-real 110+EA 95-125+EA 4/6 8 2-4 FSUBR [BX).INDEX 

FSUBRP FSUBRP destination,source 
Exceptions: I,D,O,U,P Subtract real reversed and pop 

Executon Clocks Transfers 
Operands 

Typical Range 8Q86 8088 
Bytes Coding Example 

ST(i),ST 90 75-105 0 0 2 FSUBRP 5T(1),ST 

FTST FT5T (no operands) 
Exceptions: I, D Test stack top against + 0.0 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 42 38-48 0 0 2 FTST 

FWAIT FWAIT (no operands) 
Exceptions: None (CPU instruction) (CPU) Wait while 8087 is busy 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 3+5n' 3+5n' 0 0 1 FWAIT 

'n = number of times CPU examines TEST line before 8087 lowers BUSY. 
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Table 6·17 Instruction Set Reference Data (continued) 

FXAM FXAM (no operands) 
Examine stack top Exceptions: None 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 17 12-23 0 0 2 FXAM 

FXCH FXCH II destination 
Exceptions: I 

Exchange registers 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

IIST(i) 12 10-15 0 0 2 FXCH ST(2) 

FXTRACT FXTRACT' (no operands) 
Extract exponent and significand Exceptions: I 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 50 27-55 0 0 2 FXTRACT 

FYL2X FYL2X (no operands) 
yo Log2 X Exceptions: P (operands not checked) 

Execution Clocks Transfers 
Operands 

Typical Range 8086 8088 
Bytes Coding Example 

(no operands) 950 900-1100 0 0 2 FYL2X 

FYL2XP1 FYL2XPI (no operands) 
Exceptions: P (operands not checked) 

Y olog2(X+1) 

Execution Clocks Transfers 
Operands 

Typical F!ange 8086 8088 
Bytes Coding Example 

(no operands) 850 700-1000 0 0 2 FYL2XP1 
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Table 6-1 7 Instruction Set Reference Data (continued) 

. F2XM1 F2XMl (no operands) 
2 X_I 

Execution Clocks 
Operands 

Typical Range 

(no operands) 500 310-630 

6.6 PROGRAMMING FACILITIES 

Writing programs for the 8087 is a natural extension 
of the process described in Section 2.9, just as the 
NPX itself is an extension to the CPU. This section 
describes how PLlM-86 and ASM-86 programmers 
work with the 8087 in these languages. It also covers 
the 8087 software emulators provided for. both 
translators. 

The level of detail in this section is intended to give 
programmers a basic understanding of the software 
to.ols that can be used with the 8087, but this infor­
mation is not sufficient to document the full capabili­
ties of these facilities. The definitive description of 
ASM-86 and the full 8087 emulator is provided in 
MCS™-86 Assembly Language Reference Manual, 
Order No. 9800640, and MCS™-86 Assembler 
Operating Instructions for ISIS-II Users, Order No. 
9800641. PLlM-86 and the partial emulator are 
documented in PLIM-86 Programming Manual, 
Order No. 9800466 and ISIS-II PLlM-86 Compiler 
Operator's Manual, Order No. 9800478. These publi­
cations may be ordered from Intel's Literature 
Department. 

Readers should be familiar with Section 2.9 of the 
8086 Family User's Manual in order to benefit from 
the material in this section. 

Exceptions: U, P (operands not checked) 

Transfers 

8086 8088 
Bytes Coding Example 

0 0 2 F2XMl 

PL/M-86 

High level language programmers can access a 
useful subset of the 8087's (real or emulated) 
capabilities. ThePLlM-86 REAL data type corre­
sponds to the NPX's short real (32-bit) format. This 
data type provides a range of about 8.43*10- 37"" 

I X I "" 3.38*1038 , with about seven significant deci­
mal digits. This representation is adequate for the 
data manipulated by many microcomputer 
applications. 

The utility of the REAL data type is extended by the 
PLlM-86 compiler's practice of holding intermediate 
results in the 8087's temporary real format. This 
means that the full range and precision of the proces­
sor may be utilized for intermediate results. 
Underflow, overflow, and rounding errors are most 
likely to occur during intermediate computations 
rather than during calculation of an expression's 
final result. Holding intermediate results in tempo­
rary real format greatly reduces the likelihood of 
overflow and underflow and eliminates roundoff as 
a serious source of error until the final assignment of 
the result is performed. 

The compiler generates 8087 code to evaluate ex­
pressions that contain REAL data types, whether 
variables or constants or both. This means that 
addition, subtraction, multiplication, division, 
comparison, and assignment of REALs will be per­
formed by the NPX. INTEGER expressions, on the 
other hand, are evaluated on the CPU. 
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Five built-in procedures (Table 6-18) give the 
PL/M-86 programmer access to 8087 functions 
manipulated by the processor control instructions. 
Prior to any arithmetic operations, a typical 
PLlM-86 program will setup the NPX after power up 
using the INIT$REAL$MATH$UNIT procedure 
and then issue SET$REAL$MODE to configure the 
NPX. SET$REAL$MODE loads the 8087 control 
word, and its 16-bit parameter has the format shown 
in Figure 6-7. The recommended value of this 
parameter is 033EH (projective closure, round to 
nearest, 64-bit precision, interrupts enabled, all ex­
ceptions masked except invalid operation). Other 
settings may be used at the programmer's discretion. 

If any exceptions are unmasked, an exception han­
dier must be provided in the form of an interrupt 
procedure that is designated to be invoked by CPU 
interrupt pointer (vector) number 16. The exception 
handler can use the GET$REAL$ERROR procedure 
to obtain the low-order byte of the 8087 status word 
and to then clear the exception flags. The byte re­
turned by GET$REAL$ERROR contains the excep­
tion flags; these can be examined to determine the 
source of the exception. 

The SAVE$REAL$STATUS and RESTORE$­
REAL$STATUS procedures are provided for multi­
tasking environments where a running task that 
uses the 8087 may be preempted by another task 
that also uses the 8087. It is the responsibility of the 
preempting task to issue SAVE$REAL$STATUS 
before it executes any statements that affect the 
8087; these include the INIT$REAL$MATH$UNIT 
and SET$REAL$MODE procedures as well as arith­
metic expressions. SAVE$REAL$STATUS saves 
the 8087 state (registers, status, and control words, 

etc.) on the CPU's stack. RESTORE$REAL$STA­
TUS reloads the state information; the preempting 
task must invoke this procedure before terminating 
in order to restore the 8087 to its state at the time 
the running task was preempted. This enables the 
preempted task to resume execution from the point 
of its preemption. 

Note that the PLlM-86 compiler prefixes every 8087 
instruction with a CPU WAIT. Therefore, program­
mers should not code PLlM-86 statements that 
generate 8087 instructions if the NPX can request an 
interrupt and that interrupt is blocked (this may 
result in the endless wait condition described in 
Volume 2). 

ASM-86 

The ASM-86 assembly language provides a single 
uniform set of facilities for all combinations of the 
8086,88/80186,188/8087 processors. Assembly lan­
guage programs can be written to be completely in­
dependent of the processor set on which they are 
destined to execute. 

This means that a program written originally for an 
8088 alone will execute on an 8086/8087 or 
80186,88/8087 combination without re-assembling. 
The programmer's view of the hardware is a single 
machine with these resources: 

• 160 instructions 

• 12 data types 

• 8 general registers 

Table 6-18 PL/M-86 Built-In Procedures 

Procedure 8087 Instruction 

INIT$REAL$MATH$U NIT(1) FINIT 

SET$REAL$MODE FLDCW 

GET$REAL$ERROR(2) FNSTSW & FNCLEX 

SAVE$REAL$STATUS FNSAVE 

RESTORE$REAL$ST ATUS FRSTOR 

(1)Also initiaJizes interrupt pOinters for emulation. 

(2)Returns low-order byte of status word. 
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Description 

Initialize processor. 

Set exception masks, rounding 
precision, and infinity controls. 

Store, then clear, exception 
flags. 

Save processor state. 

Restore processor state. 
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• 4 segment registers 

• 8 floating-point registers, organized as a stack 

The combination of the assembly language and the 
8087 emulator decouples the source code from the 
execution vehicle. For example, the assembler auto­
matically inserts CPU WAIT instructions in front of 
those 8087 instructions that require them. If the pro­
gram actually runs with the emulator rather than the 
8087, the WAITs are automatically removed at link 
time (since there is no NPX for which to wait). 

DEFINING DATA 

The ASM-86 directives shown in Table 6-19 allocate 
storage for 8087 variables and constants. As with 
other storage allocation directives, the assembler as­
sociates a type with any variable defined with these 
directives. The type value is equal to the length of 
the storage unit in bytes (IO for DT, 8 for DQ, etc.). 
The assembler checks the type of any variable coded 
in an instruction to be certain that it is compatible 
with the instruction. For example, the coding 
FIADD ALPHA will be flagged as an error if 
ALPHA's type is not 2 or 4, because integer addition 
is only available for word and short integer data 
types. The operand's type also tells the assembler 
which machine instruction to produce; although to 
the programmer there is only an FIADD 
instruction, a different machine instruction is re­
quired for each operand type. 

On occasion it is desirable to use an instruction with 
an operand that has no declared type. For example, 
if register BX points to a short integer variable, a pro­
grammer may want to code FIADD [BX]. This can 
be done by informing the assembler of the operand's 
type in the instruction, coding FIADD DWORD 

PTR [BX). The corresponding overrides for the 
other storage allocations are WORD PTR, QWORD 
PTR, and TBYTE PTR. 

The assembler does not, however, check the types 
of operands used in processor control instructions. 
Coding FRSTOR [BP) implies that the programmer 
has set up register BP to point to the stack location 
where the processor's 94-byte state record has been 
previously saved. 

The initial values for 8087 constants may be coded 
in several different ways. Binary integer constants 
may be specified as bit strings, decimal integers, 
octal integers, or hexadecimal strings. Packed deci­
mal values are normally written as decimal integers, 
although the assembler will accept and convert other 
representations of integers. Real values may be writ­
ten as ordinary decimal real numbers (decimal point 
required), as decimal numbers in scientific notation, 
or as hexadecimal strings. Using hexadecimal strings 
is primarily intended for defining special values such 
as infinities, NANs, and nonnormalized numbers. 
Most programmers will find that ordinary decimal 
and scientific decimal provide the simplest way to ini­
tialize 8087 constants. Figure 6-15 compares several 
ways of setting the various 8087 data types to the 
same initial value. 

Note that preceding 8087 variables and constants 
with the ASM-86 EVEN directive ensures that the 
operands will be word-aligned in memory. This will 
produce the best performance in 8086/80186-based 
systems, and is good practice even for 8088/80188 
software, in the event that the programs are trans­
ferred to an 8086/80186. All 8087 data types occupy 
integral numbers of words so that no storage is 
"wasted" if blocks of variables are defined together 
and preceded by a single EVEN declarative. 

THE fOLLOWING ALL ALLOCATE THE CONSTANT: -126 
NOTE TWO'S COMPLEMENT STORAGE Of NEGATIVE BINARY INTEGERS. 

; EVEN fORCE WORD ALIGNMENT 
WORD INTEGER OW 111111111000010B BIT STRING 
SHORT INTEGER DO Dffffff82H HEX STRING MUST START WITH DIGIT 
LONG INTEGER DQ -126 ORDINARY DECIMAL 
SHORT REAL DO -126.0 NOTE PRESENCE Of ' , 
LONG REAL DO -1.26E2 "SCIENTIfIC" 
PACKED_DECIMAL DT -126 ; ORDINARY DECIMAL INTEGER 

, 

IN THE fOLLOWING, SIGN AND EXPONENT IS 'COOS', 
SIGNIfICAND IS '7EOO ..• 00', 'R' INfORMS ASSEMBLER THAT 
THE STRING REPRESENTS A REAL DATA TYPE. 

TEMP REAL DT OCOOS7EoooooooOOOOOOOR HEX STRING 

Figure 6-15 Sample 8087 Constants 
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Table 6·19 8087 Storage Allocation Directives 

Directive Interpretation 

OW Define Word 

DO Define Doubleword 

DO Define Ouadword 

DT Define Tenbyte 

RECORDS AND STRUCTURES 

The ASM-86 RECORD and STRUC (structure de­
cJaratives can be very useful in NPX programming. 
The record facility can be used to define the bit fields 
of the control, status, and tag words. 

Figure 6-16 shows one definition of the status words 
and how it might be used in a routine that polls the 
8087 until it has completed an instruction. 

; RESERVE SPACE FOR STATUS WORD 
STATUS_WORD OW , 
; LAY OUT STATUS WORD FIELDS 
STATUS RECORD 
& BUSY: I, 
& COND CODE3: " 
& STACK TOP: 3, 
& COND tODE2: I, 
& COND-CODE1: I, 
& COND-CODEO: I, 
& INTREQ: I, 
& RESERVED: I, 
& P FLAG: 1. 
& U-FLAG: I, 
& O-FLAG: I, 
& Z-FLAG: -I. 
& D-FLAG: I, 
& I-FLAG: 1 
; POLL-STATUS WORD UNTIL 8087 IS NOT BUSY 
POLL: FNSTSW STATUS WORD 

TEST STATUS-WORD, MASK BUSY 
JNZ POLL-

Figure 6·16 Status Word RECORD Definition 

Because structures allow different but related data 
types to be grouped together, they often provide a 
natural way to represent "real world" data 
organizations. The fact that the structure template 
may be "moved" about in memory adds to its 
flexibility. Figure 6-17 shows a simple structure that 
might be used to represent data consisting of a series 
of test score samples. A structure could also be used 
to define the organization of the information stored 
and loaded by the FSTENV and FLDENV 
instructions. 

8087 Data Types 

Word integer 

Short integer, short real 

Long integer, long real 

Packed decimal, temporary real 

SAMPLE STRUC 

N OBS DO ; SHORT INTEGER 
MEAN DQ ; LONG REAL 
MODE OW ;WORD INTEGER 
STD DEV DQ ;LONG REAL 
;ARRAY OF OBSERVATIONS WORD INTEGER 
TEST SCORES DW 1000 DUP (1) 

SAMPLE ENDS 

Figure 6·17 Structure Definition 

ADDRESSING MODES 

8087 memory data can be accessed with any of the 
CPU's twenty-two memory addressing modes. This 
means that S087 data types can be incorporated in 
data aggregates ranging from simple to complex ac­
cording to the needs of the application. The address­
ing modes, and the ASM-S6 notation used to specify 
them in instructions, make the accessing of 
structures, arrays, arrays of structures, and other or­
ganizations direct and straightforward. 

Table 6-20 gives several examples of SOS7 instruc­
tions coded with operands that illustrate different ad­
dressing modes. 

8087 EMULATORS 

Intel offers two software products that provide the 
functional equivalent of an 80S7, implemented in 
SOS6,8S/S0186,S8 software. The full emulator 
(ESOS7) emulates all SOS7 instructions. The partial 
emulator (PESOS7) is a smaller version that imple­
ments only the instructions needed to support 
PLlM-S6 programs. The full emulator adds about 
16K bytes to a program, while the partial emulator 
executes in about SK. Any emulated program will 
deliver the same results (except for timing) ifit is ex­
ecuted on 80S7 hardware. (The partial emulator 
does not support transcendental functions.) 
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Table 6-20 Addressing Mode Examples 

Coding 

FIAOD ALPHA 

FDIVA ALPHA. BETA 

FMUL QWORO PTA [BX] 

FSUB ALPHA [SI] 

FILO [BPJ.BETA 

FBLD TBYTE PTA [BX] [01] 

The emulators may be viewed as consisting of 
emulated hardware and emulated instructions. The 
emulators establish in CPU memory the equivalent 
of the 8087 register stack, control, and status words 
arid all other programmer-accessible elements of the 
NPX architecture. The emulator instructions utilize 
the same algorithms as their hardware counterparts. 
Emulator instructions are actually implemented as 
CPU interrupt procedures. During relocation and 
linkage, the 8087 machine instructions generated by 
the ASM-86 and PLlM-86 translators are changed 
to software interrupt (INT) instructions which 
invoke these procedures as the CPU processes its in­
struction stream. 

Since the decision to produce real or emulated 8087 
instructions is made at link time, a program may be 
switched from one mode to the other without re­
translating the source code. When the PL/M-86 
compiler or ASM-86 assembler places an 8087 ma­
chine instruction into an object module, it also in­
serts a special external reference. This reference is 
satisfied by linking the object module to one of two 
Intel-supplied libraries: the real library, or the emula-

Interpretation 

ALPHA is a simple scalar (mode is 
direct). 

BETA is a field in a structure that is 
"overlaid" on ALPHA (mode is 
direct). 

BX contains the address of a long real 
variable (mode is register indirect). 

ALPHA is an array and SI contains the 
offset of an array element from the 
start of the array (mode is indexed). 

BP contains the address of a 
structure on the CPU stack and BETA 
is a field in the structure (mode is 
based). 

BX contains the address of a packed 
decimal array and 01 contains the off­
set of an array element (mode is 
based indexed). 

tor library. If the real library is specified, LINK -86 
simply deletes the external references, leaving the 
original 8087 machine instructions. 

To run on an emulated 8087, the object program is 
linked to the emulator library and to a file containing 
the code of either the full or the partial emulator. 
LINK-86 then adds the emulator code to the pro­
gram and changes the 8087 machine instructions 
(and their preceding WAITs) to CPU software inter­
rupt instructions. Any FWAIT instructions are also 
changed to CPU NOPs. 

Note that an explicitly-coded CPU WAIT instruction 
will not be changed; if it is executed under 
emulation, the CPU will wait forever. This is why 
the FWAIT mnemonic should always be used when 
the external processor that the CPU is to wait for is 
an 8087. 

In order to be compatible with E8087, ASM -86 pro­
grams should observe the following conventions: 

6-52 

• Their stack segment and class should be 
named STACK. 
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Programming Example • Interrupt pointer (vector) 16 should be 
designated for the user's exception handler 
interrupt procedure. Interrupt pointer 16 only 
needs designating if any exceptions are 
unmasked. 

• The external procedure INITS7 should be 
called in the program's initialization 
(power-up) sequence. If the emulator is being 
used, this procedure will initialize CPU inter­
rupt pointers 20-31 to the addresses of emula­
tor procedures and will execute an 
(emulated) FINIT instruction. If the program 
is not being emulated, INITS7 simply exe­
cutes the FINIT instruction. 

Figures 6-1S and 6-19 show the PLlM-S6 and 
ASM-S6 code for a simple SOS7 program, called 
ARRSUM. The pwgram references an array 
(X$ARRAY), which contains 0-100 short real 
values; the integer variable N$OF$X indicates the 
number of array elements the program is to 
consider. ARRSUM steps through X$ARRAY accu­
mulating three sums: 

• SUM$X, the sum of the array values; 

• SUM$INDEXES, the sum of each array 
value times its index, where the index of the 
first element is 1, the second is 2, etc.; 

PLlM-S6 automatically observes corresponding 
conventions. 

• SUM$SQUARES, the sum of each array ele­
ment squared. 

PL/M-86 COMPILER DICE 

ISIS-II PL/M-86 Vl.Z COMPILATION OF MODULE DICE 
OBJECT MODULE PLACED IN :Fl:DICl.OBJ 
COMPILER INVOKED BY: PLM86 :Fl :DICE.P86 XREF 

8 
9 

10 

11 
lZ 
13 
14 

15 2 
16 2 
17 Z 

18 
19 

20 

21 
2Z 
23 

DICE: DO: 
I" THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF LICE *1 

I" GIVE NAMES TO CONSTANTS *1 
DECLARE CLEAR$CRTl LITERALLY' 01BH': 
DECLARE CLEAR$CRTZ LITERALLY '045H': 
DECLARE HOME$CURSORl LITERALLY 'D1BH': 
DECLARE HOME$CURSORZ LITERALLY' D48H' : 
DECLARE SPACE LITERALLY' DZDH': 

1* PROGRAM VARIABLES "I 
DECLARE (RA~DOM$NUMBER,SAVE) WORD: 

I" CONSOLE OUTPUT PROCEDURE "I 
CO: PROCEDURE(X) EXTERNAL: 

UECLARE x BYTE: 
END CO: 

I" INTELLEC *1 
1* CRT "I 
I" CONTROL "I 
I" CODES "I 
I*ASCII BLANK"I 

I" RANDOM NUMBER GENERATOR PROCEDURE "I 
I" ALGORITHM FOR 16-BIT RANDOM NUMBER FROM: *1 
1* "A GUIDE TO PL/M PROGRAMMING FOR "I 
1* MICROCOMPUTER APPLICATIONS," "I 
I" DANIEL D. MCCRACKEN, "I 
I" ADDISON-WESLEY, 1978 "I 
RANDOM: PROCEDURE WORD: 

RANDOM$NUMBER = SAVE: I"START WITH OLD NUMBER"I 
RANDOM$NUMBER = Z053 " RANDOM$NUMBER + 13849: 
SAVE = RANDOM$NUMBER: I"SAVE FOR NEXT TIME"I 
I"FORCE 16-BIT NUMBER INTO RANGE 1-6"1 
RANDOM$NUMBER = RANDOM$NUMBER MOD 6 + 1: 
RETURN RANDOM$NUMBER: 
END RANDOM: 

I" MAIN ROUTINE "I 
I" CLEAR THE SCREEN*I 
CALL CO(CLEAR$CRT1): 
CALL CO(CLEAR$CRT2): 

1* ROLL THE DICE UNTIL INTERRUPTED *1 

DO ~~~~~El+HAT/:~g~N~o;~V~~";~E DIE VALUE *1 
"I 

l*lST DIE"I 
I"BLANK"I 
I"ZND DIE"I 

I" CONVERTS IT TO ASCII. 
CALL CO(RANDOM + 030H): 
CALL CO(SPACE): 
CALL CO(RANDOM + 030H): 
1* HOME THE CURSOR "I 

Figure 6-18 Sample PL/M-86 Program 
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24 2 
25 2 
26' 2 

CALL CO(HOME$CURSOR1); 
CALL CO(HOME$CURSOR2); 
END; 

27 END DICE; 

CROSS-REFERENCE LISTING 

DE,FN ADDR SIZE NAME, ATTRIBUTES, AND REFERENCES 

CLEARCRT1 LITERALLY 
18 

CLEARCRT2 LITERALLY 
19 

OOOOH CO PROCEDURE EXTERNAL(O) STACK:OOOOH 
18 19 21 22 23 

0002H 71 DICE PROCEDURE STACK=0004H 

'4 HOMECURSOR1 'LITERALLY 
24 

HOMECURSOR2 LITERALLY 
25 

11 0049H 44 RANDOM PROCEDURE WORD STACK:0002H 

OOOOH 2 RANDOMNUMBER 

0002H 2 SAVE 

SPACE 

OOOOH X 

MODULE INFORMATION: 

CODE AREA SIZE 
CONSTANT AREA SIZE 
VARIABLE AREA SIZE 
MAXIMUM STACK SIZE 
51 LINES READ 
o PROGRAM ERROR(S) 

END OF PL/M-86 COMPILATION 

0075H 
OOOOH 
0004H 
0004H 

1170 
00 
40 
40 

21 23 

WORD 
12 13 14 

WORD 
12 14 

LITERALLY 
22 

BYTE PARAMETER 
9 

15 

FigJ,lre 6-18 Sample PL/M-86 Program (continued) 

MCS-86 MACRO ASSEMBLER DICE 

ISIS-II MCS-86 MACRO ASS~MBLER V2.0 ASSEMBLY OF MODULE DICE 
OBJECT MODULE PLACED IN ':F1 :DICE.OBJ 
ASSEMBLER INVOKED BY: ASM86 :F1:DICE"A86 XREF 

LaC OBJ LINE SOURCE 

16 

24 

THIS PROGRAM SIMULATES THE ROLL OF A PAIR OF DICE 

CONSOLE OUTPUT PROCEDURE 
EXTRN CO: NEAR 

25 

1 
2 
3 
4 
5 
6 
7 
8 
9 

; SEGME~T GROUP DEFINITIONS NEEDED FOR PL/M-86 CUMPATIbiLITY 
CGROUP GROUP CODE 

10 
11 
12 

DGROUP GROUP DATA,STACK 

INFORM ASSEMBLER OF SEGMENT REGISTER CONTENTS. 
ASSUME CS': CGRO,UP, OS: DGfiOUP, SS: DGROUP, ES: NOTH I NG 

13 ; ALLOCATE DATA 
14 DATA SEGMENT PUBLI C 'DATA' 
15 NOTE THAT THE FOLLOWING ARE PASSED ON THE STACK TO THE PL/M-86 
16 PROCEDURE 'CO'. bY CONVENTION, A BYTE ~~HAMETER IS PASSED IN 
17 THE LOW-ORDER 8-BITS OF A WORD ON THE STACK. HENCE, THESE ARE 
18 DEFINED AS WORD VALUES, THOUGH THEY OCCUPY 1 BYTE ONLY~ 

Figure 6-19 Sample ASM·86 Program 
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0000 lHOO 
0002 ~500 
0004 lBOO 
0006 ~800 
0008 2000 
OOOA ???? 

0000 (20 
177? 

0028 

0000 
0000 A 10AOO 

MCS-86 ~ACRO ASSEMBLER 

LOC OBJ 

0003 B90508 
0006 F7El 
0008 051936 
OOOB A30AOO 

OOOE 2BD2 
0010 B90600 
0013 F7Fl 
0015 8BC2 
0017 ~O 
0018 C3 

0019 88----
001C 8ED8 
001E 8EDO 

0020 BC2800 

0023 FF360000 R 
0027 £80000 E: 
002A FF360200 R 
002E E80000 E 

0031 E8CCFF 
003~ 0430 
0036 50 
0037 E80000 
003A FF360800 
003E E80000 
00~1 E8BCFF 
OO~~ 0430 
00~6 50 
0047 ~80000 

THE 8087 NUMERIC PROCESSOR EXTENSION 

DICE 

LINE 

~8 
~9 
50 
51 
52 
53 
5~ 

55 
56 
57 
58 
59 
60 
61 
62 
63 
6~ 
65 
66 
67 
68 
69 
70 
71 
72 
73 
7~ 
75 
76 
77 
78 
79 
80 
81 
82 
83 
8~ 
85 
86 
87 
88 
89 
90 
91 
92 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

GLEAR CRTl 
CLEAR- CRT2 
HOME CURSOR 1 
HO~E-CURSOR2 
SPACE 
SAVE 
DATA ENuS 

DW 
DW 
DW 
D. 
D. 
DW 

; ALLOCATE STACK SPACE 

01BH 
0~5H 
01BH 
0~6H 
020H 

STACK SEGMENT STACK 'STACK' 
OW 20 DUP (?) 

INTELLEC 
CRT 
CONTROL 
CODES 

ASCII BLAIlK 
HOLDS LAST 16-BIT RANDOM NUMBER 

31 ; LABEL INITIAL TOS: FOR LATER USE. 
32 STACK TOP LABEL WORD 
33 STACK" EhDS 
3~ 
35 
36 ; PROGRAM CODE 
37 CODE SEGMENT PUBLIC 'CODE' 
38 
39 
~O RANDOM NUMBER GENERATOR PROCEDURE 
41 ALGORITHM FOR 16-BIT RANDOM NUMBE" FROM: 
42 "A GUIDE TO PL/M PROGRAMMING FOR 
43 MICROCOMPUTER APPLICATIONS," 
44 DANIEL D. MCCRACKEN 
~5 ; ADDISON-WESLEY, 1978 
~6 RANDOM PROC 
~7 MOV AX, SAVE NEW NUMBER 

SOURCE 

MOV CX.2053 OLD NUMBER' 2053 
~IUL CX + 138~9 
ADD AX, 13849 
MOV SAVE,AX ; SAVE FOR NEXT TIME 
; FORCE 16-BIT NUMBER INTO RANGE 1 - 6 

SUB BY M~~~~~ DIVISION + C~EAR UPPER DIVIDEND 

MOV CX, 6 SET DIVISOR 
cIV CX DIVIDE BY 6 
MOV AX, DX REMAINDER TO AX 
INC AX ADD 1 
RlT RESUI T IN AX 

RANDOM ENDP 

MAIN PROGRAM 

LOAD SEGMENT REGISTERS 
NOTE PROGRAM DOES NOT USE ES; CS IS INITIALIZED BY HARDWARE RESET; 

DATA & STACK ARE MEMBERS OF SAME GROUP, SO ARE TREATED AS A SINGLE 
; MEMORY SEGMENT POINTED TO BY BOTH DS & SS. 
START: MOV AX,DGROUP 

MO'V DS, AX 
MOV SS,AX 

INITIALIZE STACK POINTER 
MOV SP ,OFFSET DGROUP :STACK_ TOP 

CLEAR THE SCREEN 

; ROLL 
ROLL: 

PUSH CLEAR CRT 1 
CALL CO -
PUSH CLEAR CRT2' 
CALL CO -

THE DICE 
CALL 
ADD 
PUSH 
CALL 
PUSH 
CALL 
CALL 
ADD 
PUSH 
CALL 

UNTIL INTERRUPTED 
RANDOM 
AL,030H 
AX 
CO 
SPACE 
CO 
RANOOM' 
AL,030H 
AX 
CO 

GET 1 ST DIE IN AL 
CONVERT TO ASCII 
PASS IT TO 

CONSOLE OUTPUT 
OUTPUT 

A BLANK 
GET 2ND DIE IN AL 
CONVERT TO ASCII 
PASS IT TO 

CONSOLE OUTPUT 

Figure 6-19 Sample ASM-86 Program (continued) 
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93 ; HOME THE CURSOR 
004A FF360400 R 94 PUSH HOME CURSORl 
004E E80000 E 95 CALL CO 
0051 FF360600 R 96 PUSH HOME CURSOR2 

E 97 CALL CO 0055 E80000 
98 , CO~TINUE FOREVER 
99 JMP ROLL ,0058 EBD7 

100 CODE ENDS 
101 

XREF SHIBOL TABLE ,LISTING 
----- -------

NAME THE VALUE ATTRIBUTES, XREFS 

??SEG SEGNENT SIZE=OOOOH PARA PUBLIC 
CGRUUP. GROUP CODE 111 11 

,CLEAR CRT1. V WORD OOOOH DATA 1911 77 
CU.AR~:CRT2 . V WORD 0002H DATA 20# 79 
Cu. L NEAR OOOOH EXTRN 411 78 80 86 88 92 95 97 
CODE. SEGMENT SIZE=005AH PARA PUBLIC 'CODE' "III 37 100 
DATA. SEGMENT SIZE=OOOCH PAR,A PUBLIC 'DATA' 8f! 14 25 
DGROUP. GROUP DATA STACK 811 11 11 69 74 
flOME CURSOR 1. V WORD 0004H DATA 2111 94 
f10f1E - CURSOR2. V WORD 0006H DATA 2211 96 
RANLOM. L NEAR OOOOH, CODE ,4611 60 83 89 
ROLL. L lH.AR 0031H CODE 83# 99 
SAVE. V WORD OOOAH DATA 2411 47 51 
SPACE V WORD OOOSH DATA 23# 87 
STACK SEGMENT SIZE=0028H PARA STACK 'STACK' 
STACK_TOP V WORD 0028H STACK 3211 74 
START L NEAR 0019H, CODE 69# 104 

ASSEMBLY COMPLETE, NO ERRORS FOUND 

Figure 6-19 Sample ASM-86 Program (continued) 

(A true program, of course, would go beyond these 
steps to store and use the results of these 
calculations.) The control word is set with the recom­
mended values: projective closure, round to nearest, 
64-bit precision, interrupts enabled, and all excep­
tions masked except invalid operation. It is assumed 
that an exception handler has beeii:written to field 
the invalid operation, if it occurs, and that it is in­
voked by interrupt pointer 16. Either version of the 
program will run on an actual or an emulated 8087 
without altering the code shown. 

The PLlM-86 version of ARRSUM (Figur~ 6-18) is 
very straight forward and illustrates how easily the 
8087 can be used in this language. After declaring 
variables, the program calls built-in procedures to 
initialize the processor (or its emulator) and to load' 
the control word. The program clears the sum variac 

. bles and then steps through X$ARRAY with a DO­
loop. The loop control takes into account PLlM-86's 
practice of considering the index of the first element 
of an array to be 0.' In the computation of 
SUM$INDEXES, the built-in procedure FLOAT 
converts I + I from integer to real because the lan­
guage does not support' "mixed mode" arithmetic. 
One of the strengths of the NPX, of course, is that it 
does support arithmetic on mixed data types, and'as~ 
sembly language programmers can take advantage 
of this facility. 

The ASM-86 version (Figure 6-19) defines the ex~ 
ternal procedure INIT87, which tnaI<es the different 

initialization requirements of the processor and its 
emulator transparent to the source code. After defin­
ing the data, and setting up the segment registers 
and stack pointer, the program calls INIT87 and 
loads the control word. The computation begins 
with the next three instructions, which clear three 
registers by loading (pushing) zeros onto the, stack. 
As shown in Figure 6-20, these registers remain at 
the bottom of the stack throughout the computation 
while temporary values are pushed on and popped 
off the, stack above them. 

The program uses the CPU LOOP instruction to con­
trol its iteration through "'-ARRAY; register CX, 
which LOOP automatically decrements". is loaded 
with N_OF-X, the number of array elements to 
be summed. Register S 1 is used to select (index) the 
array elements. The program steps through 
X-ARRAY from "back to front", so SI is initialized 
to point at the element just beyond the first element 
to be processed. The ASM-86 TYPE operator is 
used to determine the number of bytes in each array 
element. This permits changing "'-ARRAY to a 
long real array by simply changing its definition (DD 
toDQ) and re-assembling. 

Figure 6-20 shows the effect of the instructions in 
the program loop on the NPX register stal;k. The 
figure assumes that the program is in its first 
iteration, that N_OF_X is 20, a'nd that 
X-ARRAY(19) (the 20th element) contains the 
value 2.5. When the loop terminates, the three sums 
are left as the top stack elements so that the program 
ends by simply popping them into memory variables. 
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Sl(O) 

ST(1) 

Sl(2) 

FLDZ, FLDZ, FLDZ 

0.0 

0.0 

0.0 

FADD ST(3) ST , 

SU M SQUARES 

UM INDEXES 5 

SU M X 

--

Sl(O) 

Sl(1) 

Sl(2) 

ST(3) -

FLO X ARRAY[Sil 

2.5 

0.0 

0.0 

FLO ST 

X ARRAY (19) 

SUM SQUARES 

SUM INDEXES 

SUM X 

-----
Sl(O) 

ST(1) 

Sl(2) 

Sl(3) 

2.5 X A RRAY(19) Sl (0) 2.5 X ARRAY (19) 

0.0 SUM SQUARES Sl (1) 2.5 X ARRAY (19) 

SUM SQUARES 0.0 SUM INDEXES Sl (2) 0.0 

2.5 SUM X ST (3) 0.0 SUM INDEXES 

Sl(O) 

Sl(1) 

Sl(2) 

Sl(3) 

Sl(4) 

Sl(O) 

Sl(1) 

Sl(2) 

Sl(3) 

FMUL ST,ST 

6.25 

2.5 

0.0 

0.0 

2.5 

FIMUL N OF X 

50.0 

6.25 

0.0 

2.5 

------ -
X ARRAY(19)2 

X ARRAY(19) 

SUM 

SUM 

SUM 

X A 

SUM 

SUM 

SQUARES 

INDEXES 

.X 

RRAY(19)'20 

SQUARES 

INDEXES 

SUM .. X 

Sl (4) 
~ -

Sl(O)-

Sl(1) 

Sl(2) 

Sl(3) 

.... 

Sl(O) 

Sl(1) 

Sl(2) 

2.5 

FADDP ST(2),ST 

2.5 

6.25 

0.0 

2.5 

FAODP ST (2) ,ST 

6.25 

50.0 

2.5 

SUM X 

X ARRAY(19) 

SUM. SQUARES 

SUM INDEXES 

SUM X 

SUM. SQUARES 

SUM. INDEXES 

SUM X 

Figure 6-20 Instructions and Register Stack 

6.7 SPECIAL TOPICS 

This section describes features of the 8087 which will 
be of interest to groups of users who have special 
requirernents. Most users will not need. to under­
stand this rnaterial in detail in order to utilize the 
NPX successfully. Most readers, then, can either 
browse this section, or skip it altogether in favor of 
the prograrnrning exarnples in Section 6.8. 

The first four topics in this section cover the 8087's 
generation and handling of nonnorrnalized real 
values, zeros, infinities, and NANs. In the great 
rnajority of applications, these special values will 

either not appear at all, or in the case of zeros, will 
function according to the normal r~les of arithrnetic. 
Next the bit encodings of each data type are surnrna­
rized in table forrn, including special values. 'This in­
forrnation rnay be of use to prograrnrners who .are 
sorting these data types or are decoding unforrnatted 
rnernory dumps or data rnonitored frorn the bus; At 
the end of the section is a. table thatlists all 8087 ex­
ception comlitions by class, and (he processor's 
rnasked response to each exception. This inforrna­
tion will principally be of use to writers of exception 
handlers and to anyone else interested in'ascertain­
ing the exact conditions under which the NPX sig­
nals a given type of exception. 
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Nonnormal Real Numbers 

As discussed in Section 6.4, the 8087 generally 
stores nonzero real numbers in normalized floating 
point form; that is, the integer (leading) bit of the 
significand is always a 1. This bit is explicitly stored 
in the temporary real format, and is implicit in the 
short and long real forms. Normalized storage 
allows the maximum number of significant digits to 
be held in a significand of a given width, because 
leading zeros are eliminated. 

Denormals 

A denormal is the result of the NPX's masked re­
sponse to an underflow exception. Underflow occurs 
when the exponent of a true result is too small to be 
represented in the destination format. For example, 
a true exponent of -130 will cause underflow if the 
destination is short real, because -126 is the smal­
lest exponent this format can accommodate. (No un­
derflow would occur if the destination were long or 
temporary real siI1ce. these can handle exponents 
down to -1023 and -16,383, respectively.) 

The NPX's unmasked response to underflow is to 
stop and request an interrupt if the destination is a 
memory operand. If the destination is a register, the 
processor adds the constant 24,576 (decimal) to the 
true result's exponent, returns the result, and then 
requests an interrupt. The constant forces the expo­
nent into the range of the temporary real format, 
and an exception handler can subtract out the con­
stant to ascertain the true exponent. Thus, execution 
always stops when there is an unmasked underflow. 

The intent of the masked response to underflow is 
to allow computation to continue without program 

Operation Sign 

True Result 0 

Denormalite 0 

Denormalize 0 

Denormalize 0 

Denormal Result(2) 0 

Notes: 
(1)express~d as unbiased, decimal number 

intervention, while introducing an error that carries 
about the same risk of contaminating the final result 
as roundoff error. Roundoff (precison) errors occur 
frequently in real number calculations; sometimes 
they spoil the result of computation, but often they 
do not. Recognizing that roundoff errors are often 
non-fatal, computation usually proceeds and the pro­
grammer inspects the final result to see if these 
errors have had a significant effect. The 8087's 
masked underflow response allows programmers to 
treat underflows in a similar manner; the computa­
tion continues and the programmer can examine the 
final result to determine if an underflow has had im­
portant consequences. (If the underflow has had a 
significant effect, an invalid operation will probably 
be signaled later in the computation.) 

Most computers underflow "abruptly"; they simply 
return a zero result, which is likely to produce an 
unacceptable final result if computation continues. 
The 8087, on the other hand, underflows "gradual­
ly" when the underflow exception is masked. Grad­
ual underflow is accomplished by denormalizing the 
result until it is just within the exponent range of the 
destination. Denormalizing means incrementing the 
true result's exponent and inserting a corresponding 
leading zero in the significand, shifting the rest of 
the significand- one place to the right. Table 6-21 il­
lustrates how a result might be denormalized to fit a 
short real destination. 

Denormalization produces a denormal or a zero. 
Denormals are readily identified by their exponents, 
which are always the minimum for their formats; in 
biased form, this is always the bit string: 00 ... 00. This 
same exponent value is also assigned to the zeros, 
but a denormal has a nonzero significand. A den or­
mal in a register is tagged special. 

Exponent(1) Significand 

-129 1601011100 ... 00 

-128 06101011100 ... 00 

-127 060101011100 ... 00 

-126 0600101011100 ... 00 

-126 0600101011100 ... 00 

(2)Before storing, significand is rounded to 24 bits, integer bit is dropped, and exponent is 
biased by adding 126. 
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The denormalization process may cause the loss of 
the low-order significand bits as they are shifted off 
the right. In a severe case, all the significand bits of 
the true result are shifted out and replaced by the 
leading zeros. In this case, the result of denormaliza­
tion is a true zero, and if the value is in a register, it 
is tagged as such. However, this is a comparatively 
rare occurrence, and, in any case, is no worse than 
"abrupt" underflow. 

Denormals are rarely encountered in most 
applications. Typical debugged algorithms generate 
extremely small results during the evaluation of in­
termediate subexpressions; the final result is usually 
of an appropriate magnitude for its short or long real 
destination. If intermediate results are held in 
temporary real, as is recommended, the great range 
of this format makes underflow very unlikely. 
Denormals are likely to arise only when an applica­
tion generates a great many intermediates, so many 
that they cannot be held on the register stack or in 
temporary real memory variables. If storage limita­
tions force the use of short or long reals for 
intermediates, and small values are produced, un­
derflow may occur, and if masked, may generate 
denormals. 

Accessing a denormal may produce an exception as 
shown in Table 6-22. (The denormalized exception 
signals that a denormal has been fetched.) Denor­
mals may have reduced significance due to lost low­
order bits, and an option of the proposed IEEE 
standard precludes operations on non-normalized 
operands. This option may be implemented in the 
form of an exception handler that responds to un­
masked denormalized exceptions. Most users will 
mask this exception so that computation may 
proceed; any loss of accuracy will be analyzed by the 
user when the final result is delivered. 

As Table 6-22 shows, the division and remainder op­
erations do not accept denormal divisors and raise 
the invalid operation exception. Recall, also, that the 
transcendental instructions require normalized oper­
ands and do not check for exceptions. In all other 
cases, the NPX converts denormals to unnormals, 
and the unnormal arithmetic rules then apply. 

Unnormals 

An unnormal is the "descendent" of a denormal 
and therefore of a masked underflow response. An 
unnormal may exist only in the temporary real 
format; it may have any exponent that a normal may 
have, but it is distinguished from a normal by the 
integer bit of its significand, which is always O. An 
unnormal in a register is tagged valid. 

Unnormals allow arithmetic to continue following 
an underflow while still retaining their identity as 
numbers which may have reduced significance. That 
is, unnormal operands generate unnormal results, 
so long as their unnormality has a significant effect 
on the result. Unnormals are thus prevented from 
"masquerading" as normals, numbers which have 
full significance. On the other hand, if an unnormal 
has an insignificant effect on a calculation with a 
normal, the result will be normal. For example, 
adding a small unnormal to a large normal yields a 
normal result. The converse situation yields an 
unnormal. 

Table 6-23 shows how the instruction set deals with 
unnormal operands. Note that the unnormal may be 
the originll operand or a temporary created by the 
8087 from a denormal. Unnormals can be converted 
to normals using the FPREM instruction (refer to 
this instruction in Section 6.5) 

Table 6-22 Exceptions Due to Denormal Operands 

Operation Exception Masked Response 

FLD (shortllong real) D Load as equivalent un normal 

arithmetic (except following) D Convert (in a work area) denormal to equivalent 
un normal and proceed 

Compare and test D Convert (in a work area) denormal to equivalent 
unnormal and proceed 

Division or FPREM with I Return real indefinite 
denormal divisor 
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Table 6-23 Unnormal Operands and Results 

Operation 

Additionl subtraction 

Multiplication 

Division (unnormal dividend only) 

FPREM (unnormal dividend only) 

Division/FPREM (unnormal 
divisor) 

Compare/FTST 

FRNDINT 

FSQRT 

FST, FSTP (shortllong real 
destination) 

FSTP (temporary real destination) 

FIST, FISTP, FBSTP 

FLO 

FXCH 

Transcendental instructions 

Zeros and Pseudo-Zeros 

As discussed in Section 6.4, the real and packed deci­
mal data types support signed zeros, while the binary 
integers represent a single zero, signed positive. The 
signed zeros behave, however, as though they are a 
single unsigned quantity. If necessary, the FXAM in­
struction may be used to determine a zero's sign. 

The zeros discussed are called true zeros; if one of 
them is loaded or generated in a register, the register 
is tagged zero. Table 6-24 lists the result of instruc­
tions executed with zero operands and also shows 
how a true zero may be created from nonzero 
operands. (Nonzero operands are denoted "X" or 
"y" in the table.) 

Only the temporary real format may contain a special 
class of values called pseudo-zeros. A pseudo-zero is 
an unnormal whose significand is all zeros, but 
whose (biased) exponent is nonzero (true· zeros 
have a zero exponent). Neither is a pseudo-zero's 
exponent all ones, since this encoding is reserved for 

Result 

Normalization of operand with larger absolute 
value determines normalization of result. 

If either operand is unnormal, result is 
un normal. 

Result is unnormal. 

Result is normalized. 

Signal invalid operation. 

Normalize as much as possible before making 
comparison. 

Normalize as much as possible before 
rounding. 

Signal invalid operation. 

If value is above destination's underflow 
boundary, then signal invalid operation; else 
signal underflow. 

Store as usual. 

Signal invalid operation. 

Load as usual. 

Exchange as usual. 

Undefined; operands must be normal and are 
not checked. 

infinities and NANs. A pseudo-zero result will be 
produced if two unnormals, containing a total of 
more than 64 leading zero bits in their signifcands, 
are multiplied together. This is' a remote possibility 
in most applications, but it can happen. 

Pseudo-zero operands behave like unnormals, 
except in the following cases where they produce the 
same results as true zeros: 

6-60 

• compare and test instructions 

• FRNDINT (round to integer 9) 

• division, where the dividend is either a true 
zero or a pseudo-zero (the divisor is a pseudo­
zero). 

In addition and subtraction· of a pseudo-zero and a 
true zero or another pseudo-zero, the pseudo­
zero (s) behave like unnormals, except for the 
determination of the result's sign. The sign is deter­
mined as shown in Table 6-24 for two true zero 
operands. 
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Table 6-24 Zero Operands and Results 

Operation/Operands Result Operation/Operands Result 

FLO, FBLD (1) Division 
+0 +0 ±O+±O Invalid operation 
-0 -0 ±X+±O Zerodivide 

FILD(2) +0 + +X, -0 +-X +0 
+0 +0 +O+-X,-O++X -0 

FST,FSTP -X + -V, +X + +Y +0, underflow (8) 
+0 +0 -X++Y,+X+-Y -0, underflow (8) 
-0 -0 
+X (3) +0 FPREM 
-X (3) -0 ±O rem ±O Invalid operation 

FBSTP ±Xrem ±O Invalid operation 
+0 +0 +0 rem +X, +0 rem-X +0 
-0 -0 -0 rem +X, -0 rem-X -0 

FIST, FISTP +X rem +Y, +X rem-Y +0 (9) 
+0 +0 -X rem -V, -X rem +Y -0 (9) 
-0 +0 
+X (4) +0 FSQRT 
-X (4) +0 -0 -0 

+0 +0 
Addition 

+0 plus +0 +0 Compare 
-0 plus-O -0 ±O:+X A<B 
+0 plus -0, -0 plus +0 '0 (5) ±o: ±O A=B 
-X plus +X, +X plus -X '0 (5) ±O:-X A>B 
±O plus ±X, ±X plus ±O tx (6) 

FTST 
Subtraction ±o Zero 

+0 minus-O +0 FCHS 
-0 minus+O -0 +0 -0 
+0 minus +0, -0 minus -0 '0 (5) -0 +0 
+X minus +X, -X minus-X '0 (5) FABS 
±O minus ±X, ±X minus ±O tx (6) ±O +0 

F2XM1 
Multiplication +0 +0 

+0 • +0, -0 • -0 +0 -0 -0 
+0 • -0, -0 • +0 -0 FRNDINT 
+0. +X, +X· +0 +0 +0 +0 
+0. -X, -X· +0 -0 -0 -0 
-0· +X, +X·-O -0 FXTRACT 
-O·-X,-X·-O +0 +0 Both +0 
+X· +Y, -X·-Y +0, underflow (7) -0 Both -0 
+X. -V, -X. +Y -0, underflow (7) 

Notes: 
(1) Arithmetic and compare operations with real memory operands interpret the memory operand signs in 

the same way. 
(2) Arithmetic and compare operations with binary integers interpret the integer sign in the same manner. 
(3) Severe underflows in storing to short or long real may generate zeros. 

(4) Small values (lxl < 1) stored into integers may round to zero. 

(5) Sign is determined by rounding mode: 
• = + for nearest, up or chop 
• = -fordown 

(6) t = sign of X. 
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Infinities 

The real formats support signed representations of 
infinities. These values are encoded with a biased 
exponent of all ones and a significand of I b" 00 ... 00; 
if the infinity is in a register, it is tagged special. The 
significand dIstinguishes infinities from NANs, 
including real indefinite. 

A programmer may code an infinity, or it may be 
created by the NPX: as its masked response to an 
overflow or a zerodivide exception. Note that when 
rounding is up or down, the masked response may 
create the largest valid value representable in the 
destination rather than infinity. See Table 6-31 for 
details. As operands, infinities behave somewhat dif­
ferently depending on how the infinity control field 
in the control word is set (see Table 6-25). When the 
projective model of infinity is selected, the infinities 
behave as a single unsigned representation; because 
of this, infinity cannot be compared with any value 
except infinity. In affine mode, the signs of the infini­
ties are observed, and comparisons are possible.·' 

NANs 

. A NAN (Not-A-Number) is a member of Ii class of 
special values that exist in the real formats only. A 
NAN has an exponent of 11...llB, may have either 
sign, and may have any significand except I b" 
OO ... OOB, which is assigned to the infinities. A NAN 
in a register is tagged special. . 
The 8087 will generate the special NAN, .. real 
indefinite, as its masked response to an invaiid opera­
tion exception. This NAN is signed negative; its sig-

. nificand is encoded I b" 100 ... 00. All other NANs 
represent programmer-created values. 

Whenever the NPX uses an operand that is a NAN, 
it signals invalid operation. Its masked response to 
this exception is to return the NAN as the opera­
tion's result. If both operands of an instruction are 
NANs, the result is the NAN with the largerabso­
lute value. In this way, a NAN that enters a computa­
tion propagates through the computation and will 
eventually be delivered as the final result. Note, 
however, that the transcendental instructions do not 
check their operands, and a NAN will produce an un­
defined result. 

Table 6-25 Infinity Operands and Results 

Operation Projective Result Affine Result 

Division 
±oo + ±oo Invalid operation Invalid operation· 
±oo + ±X e~ eoc? . 
±X + ±oo eo ~o 

FSQRT 
-00 Invalid operation Invalid operation 
+00 Invalid operaton +00 

FPREM 
±oo rem ±oo Invalid operation : Invalid operation 
±oorem ±X Invalid operation Invalid operation 
±Y rem ±oo *Y *Y 
±O rem ±oo *0 *0 

FRNDINT 
±oo *00 *00 

FSCALE 
±oo scaled by ±oo Invalid operation Invalid operation 
±oo scaled by ±X *00 *00 
±O scaled by ±oo *0 *.0 
± Y scaled by ±oo Invalid operation Invalid operation 
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Table 6-25 Infinity Operands and Results (continued) 

Operation Projective Result 

FXTRACT 
±oo Invalid operation 

Compare 
±oo:±oo A=B 
±oo:±Y A ? B (and) invalid 

operation 
±oo : ±O A ? B (and) invalid 

operation 

FTST A? B (and) invalid 
±oo operation 

Addition 
+00 plus+oo Invalid operation 
-00 plus -00 Invalid operation 
+00 plus-oo Invalid operation 
-00 plus +00 Invalid operation 
±oo plus ±X *00 

±X plus ±oo *00 

Subtraction 
+00 minus-oo Invalid operation 
-00 minus +00 Invalid operation 
+00 minus +00 Invalid operation 
-00 minus -00 Invalid operation 
±oo minus ±X *00 

±X minus±oo too 

Multiplication 
±oo • ±oo $00 

±oo. ±Y (Doo 
±O • ±oo I ±oo * ±O Invalid operation 

Notes: X = zero or nonzero operand 

Y = nonzero operand 

• = sign of original operand 

t = sign is complement of original operand's sign 

Affine Result 

Invalid operation 

-00<+00 

-00 < Y < +00 

-00 < 0 < +00 

*00 

+00 
-00 

Invalid operation 
Invalid operation 
*00 

*00 

+00 

-00 

Invalid operation 
Invalid operation 
*00 

too 

$00 

$00 

Invalid operation 

$= sign is "exclusive or" original operand signs (+ if operands had same sign, 
- if operands had different signs) 

By unmasking the invalid operation exception, the 
programmer can use NANs to trap to the exception 
handler. The generality of this approach and the 
large number of NAN values that are available, pro­
vide the sophisticated programmer with a tool that 
can be applied to a variety of special situations. 

For example, a compiler could use NANs to refer­
ence uninitialized (real) array elements. The compil­
er could pre-initialize each array element with a 
N AN whose significand contained the index 
(relative position) of the element. If an application 
program attempted to access an element that it had 
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not initialized, it would use the NAN placed there by 
the compiler. If the invalid operation exception 
where unmasked, an interrupt would occur, and the 
exception handler would be invoked. The exception 
handler could determine which element had been 
accessed, since the operand address field of the ex­
ception pointers would point to the NAN, and the 
NAN would contain the index number of the array 
element. 

NANs could also be used to speed up debugging. In 
its early testing phase, a program often contains 
multiple errors. An exception handler could be writ­
ten to save diagnostic information in memory when­
ever it was invoked. After storing the diagnostic 
data, it could supply a NAN as the result of the erro­
neous instruction, and that NAN could point to its 
associated diagnostic area in memory. The program 
would then continue, creating a different NAN for 
each error. When the program ended, the NAN re­
sults could be used to access the diagnostic data 
saved at the time the errors occurred. Many errors 
could thus be diagnosed and corrected in one test 
run. 

Data Type Encoding 

Tables 6-26 through 6-29 summarize how various 
types of values are encoded in the seven NPX data 
types. In all tables, the less significant bits are to the 

right and are stored in the lowest memory 
addresses. The sign bit is always the left-most bit of 
the highest-addressed byte. 

Notice that in every format, one encoding is inter­
preted as representing the special value indefinite. 
The 8087 produces this encoding as its response to a 
masked invalid operation exception. In the case of 
the reals, indefinite can be loaded and stored like any 
NAN and it always retains its special identity; pro­
grammers are advised not to use this encoding for 

III 
GI 

~ 
'iii 
0 

Q. 

III 
GI 

~ 
t\1 
til 
GI 
z 

Table 6-26 Binary Integer Encodings 

Class 

(Largest) 

(Smallest) 

Zero 

(Smallest) 

(Largestllndefinite' ) 

Sign Magnitude 

0 11 ... 11 
• • 
• • 
• • 
0 00 ... 01 

0 00 ... 00 

1 11 ... 11 
• • 
• • 
• • 
1 00 ... 00 

Word: ~15 bits-..l 
Short: ~31 bits-.t 
Long: ~ 63 bits ~ 

Table 6-27 Packed Decimal Encodings 

III 

,~ -i 

Class 

(Largest) o 
• 
• 

III ~--------+------+~~~-+~------~--~--~--~------~--~~~~~~~~~~ 
.~ 
i 
GI 
Z 

9 bytes 

• The packed decimal indefinite encoding is stored by FBSTP in response to a masked invalid 
operation exception. Attempting to load this value via FBLD produces an undefined result. 

Note: "UUUU" means bit values are undefined and may contain any value, 
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I 

1ft .. 
.!: • r z 

Table 6-28 Real and Long Real Encodings 

e .... 

NANs 

.. 
Normals 

• 1 a: 
Denormals 

Zero .. 

Class 

Zero 

Denormais 
1ft 
Oi .. a: 

Normals 

00 

to 

~ I Indefinite 
Z 

Sign 
lined Slgnlflcand" 

Exponent 6H ... H 

0 11...11 11 ... 11 · · · · · · · · · 0 11...11 00 ... 01 

0 11...11 00 ... 00 

0 11...10 11 ... 11 · · · · · · · · · 0 00 ... 01 00 ... 00 

0 00 ... 00 11 ... 11 · · · · · · · · · 0 00 ... 00 00 ... 01 

0 00 ... 00 00 ... 00 

Sign Biased Significand" 
Exponenl 6""'" 

1 00 ... 00 00 ... 00 

1 00 ... 00 00 ... 01 · · · · · · · · · 1 00 ... 00 11 ... 11 

1 00 ... 01 00 ... 00 · · · · · · · · · 1 11...10 11...11 

1 11...11 00 ... 00 

1 11...11 00 ... 01 · · · · · · · · · 1 11 ... 11 10 ... 00 · · · · · · · · · 1 11 ... 11 11...11 

Short. ~8 blts~23 blls~ 
Long: t-ll blts~52 bits~ 

• Integer bit is implied and not stored. 

II .. 
! 
;; 
0 ... 

1ft .. 
.!: 
ii 
0 ... 

f-

1ft .. 
~ r z 

co .. 
.!: • r z 
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Table 6-29 Temporary Real Encodings 

Class Sign 
Biased Signitlcand 

Exponent 16fl..ff 

0 11 ... 11 111...11 · · · NANs · · · · · · 0 11 ... 11 100 ... 01 

00 0 11 ... 11 100 ... 00 

0 11 ... 10 Normals 

· · 111...11 · · · · · · · · · · · · · · 100 ... 00 · · · · Unnormals 

" · · · 011...11 · · · · · · · · · 0 00 ... 01 000 ... 00 

Denormals 

0 00 ... 00 011...11 · · · · · · · · · 0 00 ... 00 000 ... 01 

I Zero 0 00 ... 00 000 ... 00 
Re.ls I Zero 1 00 ... 00 000 ... 00 

Denormals 

1 00 ... 00 000 ... 01 · · · · · · · · · 1 00 ... 00 011 ... 11 

1 00 ... 01 Unnormals 

· · 000 ... 00 · · · · · · · · " · · 011...11 · · · · Normals 

· · · · 100 ... 00 · · · · · · · · · 1 11...10 111...11 

00 1 11...11 100 ... 00 

1 11 ... 11 100 ... 00 · · · · · · · · · 
NANs I Indefinite 1 11 ... 11 110 ... 00 

· · · · · · · · · 1 11 ... 11 111...11 
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any other purpose. Packed decimal indefinite may be 
stored by the NPX in a FBSTP instruction; attempt­
ing to use this encoding in a FBLD instruction, 
however, will have an undefined result. In the 
binary integers, the same encoding may represent 
either indefinite or the largest negative number sup­
ported by the format (_215, _231 or _263). The 
8087 will store this encoding as its masked response 
to an invalid operation, or when the value in a 
source register represents, or rounds to, the largest 
negative integer representable by the destination. In 
situations where its origin may be ambiguous, the in­
valid operation exception flag can be examined to 
see if the value was produced by an exception 
response. When this encoding is loaded, or used by 
an integer arithmetic or compare operation, it is 

always interpreted as a negative number; thus indefi­
nite cannot be loaded from a packed decimal or 
binary integer. 

Exception Handling Details 

Table 6-30 lists every exception condition that the 
NPX detects and describes the processor's response 
when the relevant exception mask is set. The un­
masked responses are described in Table 6-6. Note 
that if an unmasked overflow or underflow occurs in 
an FST or FSTP instruction, no result is stored, and 
the stack and memory are left as they existed before 
the instruction was executed. This gives an exception 
handler the opportunity to examine the offending 
operand on the stack top. 

Table 6-30 Exception Conditions and Masked Responses 

Condition Masked Response 

Invalid Operation 

Source register is tagged empty (usually 
due to stack underflow). 

Destination register is not tagged empty 
(usually due to stack overflow). 

One or both operands is a NAN. 

(Compare and test operations only): 
one or both operands is a NAN. 

(Addition operations only): closure is 
affine and operands are opposite-signed 
infinities; or closure is projective and both 
operands are 00 (signs immaterial). 

(Subtraction operations only): closure is 
affine and operands are like-signed 
infinities; or closure is projective and both 
operands are 00 (signs immaterial). 

(Multiplica.tion operations only): 00' 0; or 
O' 00. 

(Division operations only): 00 .,. 00; or 0'" 0; 
or 0 .,. pseudo-zero; or divisor is denormal 
or unnormal. 

(FPREM instruction only): modulus 
(divisor) is unnormal or denormal; 
or dividend is 00. 

(FSQRT instruction only): operand is 
nonzero and negative; or operand is 
denormal or unnormal; or closure is affine 
and operand is -00; or closure is projective 
and operand is 00. 

6-66 

Return real indefinite. 

Return real indefinite (overwrite 
destination value). 

Return NAN with larger absolute value 
(ignore signs). 

Set condition codes "not comparable". 

Return real indefinite 

Return real indefinite. 

Return real indefinite. 

Retu rn real indefinite. 

Return real indefinite, set condition code 
= "complete remainder". 

Return real indefinite. 
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Table 6-30 Exception Conditions and Masked Responses (continued) 

Invalid Operation 

(Compare operations only): closure is Set condition code = "not comparable" 
projective and"" is being compared with 0 
or a normal, or"". 

(FTST instruction only): closure is Set condition code = "not comparable". 
projective and operand is "". 

(FIST, FISTP instructions only): source Store integer indefinite. 
register is empty, or a NAN, or denormal, 
or unnormal, or 00, or exceeds represent-
able range of destination. 

(FBSTP instruction only): source register Store packed decimal indefinite. 
is empty, or a NAN, or denormal, or 
unnormal, or 00, or exceeds 18 decimal 
digits. 

(FST, FSTP instructions onfy): destination Store 'real indefinite. 
is short or long real and source register is 
an unnormal with exponent in range. 

(FXCH instruction only): one or both Change empty register(s) to real indefinite 
registers is tagged empty. and then perform exchange. 

Denormalized Operand 

(FLO instruction only): source operand is No special action; load as usual. 
denormal. 

(Arithmetic operations only): one or both Convert (in a work area) the operand to the 
operands is denormal. equivalent unnormal and proceed. 

(Compare and test operations only): one Convert (in a work area) any denormal to 
or both operands is denormal or unnormal the equivalent unnormal; normalize as 
(other than pseudo-zero). much as possible, and proceed with 

operation. 

Zerodivide 

(Division operations only): divisor = O. Return 00 signed with "exclusive or" of 
operand signs. 

Overflow 

(Arithmetic operations only): rounding is Return properly signed ooand signal 
nearest or chop, and exponent of true precision exception. 
result> 16,383. 

(FST, FSTP instructions only): rounding is Return properly signed 00 and signal 
nearest or chop, and exponent of true precision exception. 
result> +127 (short real destination) 
or> +1023 (long real destination). 
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Table 6-30 Exception Conditions and Masked Responses (continued) 

Underflow 

(Arithmetic operations only): exponent of Denormalize until exponent rises to 
true result <-16,382 (true). -16,382 (true), round significand to 64 bits. 

If denormalized rounded significand =' 0, 
then return true 0; else, return denormal 
(tag = special, biased exponent =0). 

(FST, FSTP instructions only): destination Denormalize until exponent rises to -126 
is short real and exponent of true result (true), round significand to 24 bits, store 
<-126 (true). true 0 if denormalized rounded significand 

= 0; else, store denormal (biased expo-
nent = 0). 

(FST, FSTP instructions only): destination Denormalize until exponent rises to -1022 
is long real and exponent of true result (true), round significand to 53 bits, store 
<-1022 (true). true 0 if rounded denormalized significand 

= 0; else, store denormal (biased expo-
nent = 0). 

Precision 

True rounding error occurs. 

Masked response to overflow exception 
earlier in instruction. 

When rounding is directed (the RC field of the con­
trol word is set to "up" or "down"), the 8087 han­
dles a masked overflow differently than it does for 
the "nearest" or "chop" rounding modes. Table 
6-31 shows the NPX's masked response when the 

No special action. 

No special action. 

true result is too large to be represented in it's desti­
nation real format. For a normalized result, the es­
sence of this response is to deliver = or the largest 
valid number representable in the destination 
format, as dictated by the rounding mode and the 

Table 6-31 Masked Overflow Response for Directed Rounding 

True Result Rounding 
Normalization Sign Mode 

Normal + Up 

Normal + Down 

Normal - Up 

Normal - Down 

Unnormal + Up 

Unnormal - Down 

Unnormal + Up 

Unnormal - Down 

(1) The largest valid representable reals are encoded: 
exponent: 11 ... 1 OB 
significand: (1) ~ 11 ... 1 OB 

Result Delivered 

+00 

Largest finite positive number(1) 

Largest finite negative number(1) 

-00 

+00 

Largest exponent, result's significand(2) 

Largest exponent, result's significand(2) 

-00 

(2) The significand retains its identity as an unnormal; the true result is rounded as usual (effectively chopped toward 
o in this case). The exponent is encoded 11 ... 1 OB. 
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sign of the true result. Thus, when RC=down, a 
positive overflow is rounded down to the largest 
positive number. Conversely, when RC=up, a nega­
tive overflow is rounded up to the largest negative 
number. A properly signed 00 is returned for a posi­
tive overflow with RC = up, or a negative overflow 
with RC=down. For an unnormalized result, the 
action is similar except that the unnormal character 
of the result is preserved if the sign and rounding 
mode do not indicate that 00 should be delivered. 

to implement conditional branching following a 
comparison, the basic approach is as follows: 

• execute the comparison, 

• store the status word, 

• inspect the condition code bits, 

• jump on the result. 

In all masked overflow responses for directed 
rounding, the overflow flag is not set, but the preci­
sion exception is raised to signal that the exact true 
result has not been returned. 

6.8 PROGRAMMING EXAMPLES 

Conditional Branching 

As discussed in Section 6.5, the comparison instruc­
tions post their results to the condition code bits of 
the 8087 status word. Although there are many ways 

Figure 6-21 is a code fragment that illustrates how 
two memory-resident long real numbers might be 
compared (similar code could be used with the 
FTST instruction). The numbers are called A and B, 
and the comparison is A toB. The comparison itself 
simply requires loading A onto the top of the 8087 
register stack and then comparing it to B and popping 
the stack in the same instruction. The status word is 
written to memory and the code waits for completion 
of the store before attempting to use the result. 

A DQ? 
B DQ? 
STAT 87 OW ? 

FLO 
FCOMP 
FSTSW 
FWAIT 
; 

A 
B 
STAT 87 

;LOAD A ONTO TOP OF 87 STACK 
;COMPARE A:B, POP A 
;S,TORE RESULT 
;WAIT FOR STORE 

;LOAD CPU REGISTER AH WITH BYTE OF 
STATUS WORD CONTAINING CONDITION CODE 

MOV AH, BYTE PTR STAT 87+1 

;LOAD CONDITION CODES INTO CPU FLAGS 
SA H F' 
; 
;USE CONDITIONAL JUMPS TO DETERMINE 

ORDERING OF A AND B 
JB 
; C F 
JNE 

A EQUAL: 

A LESS OR UNORDERED 
(CO)-= ° - -

A_GREATER 

;CF (CO) = 0, ZF (C3) = 

A GREATER: 
;CF (CO) = 0, ZF (C3) = ° 

Figure 6-21 Conditional Branching for Compares 
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A LESS OR_UNORDERED: 
; CF (CO) = 1, TEST ZF (C3) 
JNE A_LESS 

A B UNORDERED: 
;CF (CO) = 1, ZF (C3) = 

A LESS: 
; CF (CO) 1, ZF (C3) = 0 

Figure 6-21 Conditional Branching for Compares (continued) 

There are four possible orderings of A and B, and 
bits C3 and CO of the condition code indicate which 
ordering holds. These bits are positioned in the 
upper byte of the status word so as to correspond to 
the CPU's zero and carry flags (ZF and CF), if the 
byte is written into the flags (see Figures 3-28 and 
6-6). The code fragment, then, sets ZF and CF to 
the values of C3 and CO and then uses the CPU 
conditional jumps to test the flags. Table 3-12 shows 
how each conditional jump instruction tests the CPU 
flags. 

The FXAM instruction updates all four condition 
code bits. Figure 6-22 shows how a jump table can 
be used to determine the characteri~tics of the value 
examined. The jump table (FXAM_TBL) is initial­
ized to contain the 16-bit displacement of 16 labels, 
one for each possible condition code setting. Note 
that four of the table entries contain the same value, 

since there are four condition code settings that cor­
respond to "empty." 

The program fragment performs the FXAM and 
stores the status word. It then manipulates the condi­
tion code bits to finally produce a number in register 
BX that equals the condition code times 2. This in­
volves zeroing the unused bits in the byte that con­
tains the code, shifting C3 to the right so that it is 
adjacent to C2, and then shifting the code to multiply 
it by 2. The resulting value is used as an index which 
selects one of the displacements from FXAM_TBL 
(the multiplication of the condition code is required 
because of the 2-byte length of each value in 
FXAM_TBL). The unconditional lMP instruction 
effectively vectors through the jump table to the 
labeled routine that contains code (not shown in the 
example) to process each possible result of the 
FXAM instruction. 

FXAM TBL 
& 
& 
& 
& 

OW POS_UNNORM, POS_NAN, NEG_UNNORM, 
NEG_NAN, POS_NORM, POS_INFINITY, 
NEG_NORM, NEG_INFINITY, POS_ZERO, 
EMPTY, NEG_ZERO, EMPTY, POS_OENORM, 
EMPTY, NEG_OENORM, EMPTY 

STAT 87 OW ? 

Figure 6-22 Conditional Branching for FXAM 
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;EXAMINE ST, STORE RESULT, WAIT FOR COMPLETION 
FXAM 
FSTSW STAT_87 
F'WA IT 

;CLEAR UPPER HALF OF BX, LOAD CONDITION CODE 
IN LOWER HALF 
MOV BH,O 
MOV BL, BYTE PTR STAT_87+1 

;COPY ORIGINAL IMAGE 
MOV AL,BL 

;CLEAR ALL BITS EXCEPT C2-CO 
AND BL,00000111B 

;CLEAR ALL BITS EXCEPT C3 
AND AL,01000000B 

;SHIFT C3 TWO PLACES RIGHT 
SHR AL,1 
SHR AL,1 

;SHIFT C2-CO' ONE PLACE LEFT (MULTIPLY BY 2) 
SAL BX,1 

;DROP C3 BACK IN ADJACENT TO C2 (OOOXXXXO) 
OR BL,AL 

;JUMP TO THE ROUTINE "ADDRESSED" BY CONDITION CODE 
JMP FXAM_TBL[BXl 

;HERE ARE THE JUMP TARGETS, ONE TO HANDLE 
EACH POSSIBLE RESULT OF FXAM 

p~s UNNORM: 

POS NAN: 

NEG UNNORM: 

Figure 6-22 Conditional Branching for FXAM (continued) 
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EMPTY : 

NEG ZERO: 

POS DENORM: 

NEG DENORM: 

Figure 6-22 Conditional Branching for FXAM (continued) 

Exception Handlers 

There are many approaches to writing exception 
handlers. One useful technique is to consider the ex­
ception handler interrupt procedure as consisting of 
"prologue," "body" and "epilogue" sections of 
code. (For compatibility with the 8087 emulators, 
this procedure should be invoked by interrupt point­
er (vector) number 16.) 

At the beginning of the prologue, CPU interrupts 
have been disabled by the CPU's normal interrupt 
response mechanism. The prologue performs all 
functions that must be protected from possible inter­
ruption by higher-priority sources. Typically this will 
involve saving CPU registers and transferring diag­
nostic information from the 8087 to memory. When 
the critical processing has been completed, the pro­
logue may enable CPU interrupts to allow higher­
priority interrupt handlers to preempt the exception 
handler. 

The exception handler body examines the diagnostic 
information and makes a response that is necessarily 
application-dependent. This response may range 
from halting execution, to displaying a message, to 
attempting to repair the problem and proceed with 
normal execution. 

The epilogue essentially reverses the actions of the 
prologue, restoring the CPU and the NPX so that 
normal execution can be resumed. The epilogue 
must not load an unmasked exception flag into the 
8087 or another interrupt will be requested immedi­
ately (assuming 8087 interrupts are also loaded as 
unmasked). 

Figures 6-23 through 6-25 show the ASM-86 coding 
of three skeleton exception handlers. They show 
how prologues and epilogues can be written for vari­
ous situations, but only provide comments indicating 

where the application-dependent exception handling 
body should be placed. 

Figures 6-23 and 6-24 are very similar; their only 
substantial difference is their choice of instructions 
to save and restore the 8087. The tradeoff here is be­
tween the increased diagnostic information provided 
by FNSAVE and the faster execution of FNSTENV. 
For applications that are sensitive to interrupt 
latency, or do not need to examine register 
contents, FNSTENV reduces the duration of the 
"critical region;" during which the CPU will not 
recognize another interrupt request (unless it is a 
non-maskable interrupt). 

After the exception handler body, the epilogues pre­
pare the CPU and the NPX to resume execution 
from the point of interruption (i.e., the instruction 
following the one that generated the unmasked 
exception). Notice that the exception flags in the 
memory image that is loaded into the 8087 are 
cleared to zero prior to reloading (in fact, in these 
examples, the entire status word image is cleared). 
The prologue also provides for indicating to the in­
terrupt controller hardware (e.g., an 8259A) that the 
interrupt has been processed. The actual processing 
done here is application-dependent, but might typi­
cally involve writing an "end of interrupt" command 
to the interrupt controller. 

The examples in Figures 6-23 and 6-24 assume that 
the exception handler itself will not cause an un­
masked exception. Where this is a possibility, the 
general approach shown in Figure 6-25 can be 
employed. The basic technique is to save the full 
8087 state and then to load a new control word in the 
prologue. Note that considerable care should be 
taken when designing an exception handler of this 
type to prevent the handler from being reentered 
endlessly. 
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PROC 

; SAVE CPU REGISTERS, ALLOCATE STACK SPACER 
; FOR 8087 STATE IMAGE 
; NOTE! INTERRUPTS MUST BE DISABLED. 

PUSH BP 

MOV BP,SP 
SUB SP,94 

iSAVE FULL 8087 STATE, WAIT FOR COMPLETION, 
iENABLE CPU INTERRUPTS 

FNSAVE [BP-941 
FWA IT 
STl 

APPLICATION-DEPENDENT EXCEPTION HANDLING 
CODE GOES HERE 

CLEAR EXCEPTION FLAGS IN STATUS WORD 
RESTORE MODIFIED STATE 
IMAGE 

MOV BYTE PTR [BP-921, OH 
FRSTOR [BP-941 

iWAIT FOR RESTORE TO FINISH BEFORE RELEASING MEMORY 
FWAIT 

iDE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP 

POP BP 
i 
iCODE TO SEND' 'END OF INTERRUPT" COMMAND TO 
i8259A GOES HERE 
i 
iRETURN TO INTERRUPTED CALCULATION 

IRET 
SAVE_ALL ENDP 

Figure 6-23 Full State Exception Handler 
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SAVE_ENVIRONMENT PROC 
, 
; SAVE CPU REGISTERS, ALLOCATE STACK SPACE 
; FOR 8087 ENVIRONMENT 
; NOTE! INTERRUPTS MUST BE DISABLED. 

PUSH BP 

MOV BP,SP 
SUB SP,14 

;SAVE ENVIRONMENT, WAIT FOR COMPLET~ON, 
;ENABLE CPU INTERRUPTS 

FNSTENV [BP-141 
FWA IT 

.S T I 

;APPLICATION EXCEPTION-HANDLING CODE GOES HERE 

;CLEAR EXCEPTION FLAGS IN STATUS WORD 
;RESTORE MODIFIED 
;ENVIRONMENT IMAGE 

MOV BYTE PTR [BP-121, OH 
FLDENV [BP-141 

;WAIT FOR LOAD TO FINISH BEFORE RELEASING MEMORY 
FWAIT 

;DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP' 

POP BP 

;CODE TO SEND' 'END OF INTERRUPT" COMMAND TO 
;8259A GOES HERE 
, 
;RETURN TO INTERRUPTED CALCULATION 

IRET 
SAVE_ENVIRONMENT ENDP 

Figure 6-24 Reduced Latency Exception Handler 
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LOCAL_CONTROL OW ? iASSUME INITIALIZED 

REENTRANT PROC 

iSAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR 
i8087 STATE IMAGE 

PUSH BP 

MOV BP,SP 
SUB SP,94 

iSAVE STATE, LOAD NEW CONTROL WORD, WAIT 
iFOR COMPLETION, ENABLE CPU INTERRUPTS 

FNSAVE [BP-941 
FLDCW LOCAL_CONTROL 
FWAIT 
STI 

iCODE TO SEND' 'END OF INTERRUPT" COMMAND TO 
i8259A GOES H!RE 

iAPPLICATION EXCEPTION HANDLING CODE GOES HERE. 
iAN UNMASKED EXCEPTION GENERATED HERE WILL 
iC~USE THE EXCEPTION HANDLER TO BE REENTERED. 
iIF LOCAL STORAGE IS NEEDED, IT MUST BE 
iALLOCATED ON THE CPU STACK. 

iCLEAR EXCEPTION FLAGS IN STATUS WORD 
iRESTORE MODIFIED STATE IMAGE 

MOV BYTE PTR [BP-921, OH 
FRSTOR [BP-941 

iWAIT FOR RESTORE TO FINISH BEFORE RELEASING MEMORY 
FWAIT 

iDE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS 
MOV SP,BP 

POP BP 
iRETURN TO POINT OF INTERRUPTION 

IRET 
REENTRANT ENDP 

Figure 6-25 Reentrant Exception Handler 
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CHAPTER 7 
THE 8089 INPUT/OUTPUT PROCESSOR 

7.1 INTRODUCTION 

This chapter describes the 8089 Input/Output Pro-
cessor (lOP). The following topics are discussed: 

• Processor Overview 

• Processor Architecture 

• Input/Output 

• Instruction Set 

• Addressing Modes 

• Programming Facilities 

• Programming Guidelines and Examples 

The discussion is confined to covering the hardware 
in functional terms; timing, electrical characteristics 
and other physical interfacing data are in Volume 2, 
Chapter 4. 

7.2 PROCESSOR OVERVIEW 

The 8089 Input/Output Processor is a high­
performance, general purpose I/O system imple­
mented on a single chip. Within the 8089 are two 
independent channels, each of which combines attri­
butes of a CPU with those of a very flexible DMA 
(direct memory access) controller. For example, 
channels can execute programs like CPUs; the lOP 
instruction set has about 50 different types of instruc­
tions specifically designed for efficient input/output 
processing. Each channel also can perform high­
speed DMA transfers; a variety of optional op­
erations allow the data to be manipulated (e.g., 
translated or compared) as it is transferred. The 
8089 is contained in a 40-pin dual in-line package 
(Figure 7-1) and operates from a single + 5V power 
source. An integral member of the iAPX 86,88 
family, the lOP is directly compatible with both the 
8086 and 8088 when these processors are configured 
in maximum mode. The lOP also may be used in 
any system that incorporates Intel's Multibus™ 
shared bus architecture, or a superset of the Multi­
bus™ design. 

7-1 

Vss Vee 

A14/D14 AI5IDI5 

A13/D13 AI6IS3 

A12/012 A11IS4 

AI1IOII AlB/55 

AIO/DIO AI 9/56 

A9/D9 BHE 
A8/D8 EXT I 

A1/D1 EXT 2 

A6I06 ORal 

A51D5 DR02 

A4I04 LOCK 

A3/03 52 
A21D2 51 
AI/DI so 
AOIDO RQ/GT 

SINTR·I SEL 

SINTR·2 CA 

CLK READY 

vss RESET 

Figure 7 -1 80891nput/Output 
Processor Pin Diagram 

Evolution 

Figure 7-2 depicts the general trend in CPU and 1/0 
device relationships in the first three generations of 
microprocessors. First generation CPU s were forced 
to deal directly with substantial numbers of TTL 
components, often performing transfers at the bit 
level. Only a very limited number of relatively slow 
devices could be supported. 

Single-chip interface controllers were introduced in 
the second generation. These devices removed the 
lowest level of device control from the CPU and let 
the CPU transfer whole bytes at once. With the 
introduction of DMA controllers, high-speed 
devices could be added to a system, and whole 
blocks of data could be transferred without CPU 
intervention. Compared to the previous generation, 
I/O device and DMA controllers allowed micropro­
cessors to be applied to problems that required 
moderate levels ofI/O, both in terms of the numbers 
of devices that could be supported and the transfer 
speeds of those devices. 
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DATA LINK 

HOLe/SOLe 
PROTOCOL 

CONTROLLER 
(FUTURE CONTROLLER) 

... , r~;,;;, 
'?)--~ 110 I 

'" A... ./ L ~E~C': .J 
,/" FLOPPY DISK 

CONTROLLER 

Figure 7-2 lOP Evolution 

The controllers themselves, however, still required 
a considerable amount of attention from the CPU, 
and in many cases the CPU had to respond to an in­
terrupt with every byte read or written. The CPU 
also had to stop while DMA transfers were 
performed. 

The 8089 introduces the third generation of 
input/output processing. It continues the trend of 
simplifying the CPU'S "view" of I/O devices by 
removing another level of control from the CPU. 
The CPU performs an I/O operation by building a 
message in memory that describes the function to be 
performed; the lOP reads the message, carries out 
the operation and notifies the CPU when it has 
finished. All I/O devices appear to the CPU as trans­
mitting and receiving whole blocks of data; the lOP 
can make both byte- and word-level transfers invisi­
ble to the CPU. The lOP assumes all device control­
ler overhead, performs both programmed and 
DMA transfers, and can recover from "soft" I/O 
errors without CPU intervention; all of these activi­
ties may be performed while the CPU is attending to 
other tasks. 

7-2 

Principles of Operation 

Since the 8089 is a new concept in microprocessor 
components, this section surveys the basic operation 
of the lOP as background to the detailed descriptions 
provided in the rest of the chapter. This summary 
deliberately omits some operating details in order to 
provide an integrated overview of basic concepts. 

CPU/lOP Communications 

A CPU communicates with an lOP in two distinct 
modes: initialization and command. The initializa­
tion sequence is typically performed when the 
system is powered-up or reset. The CPU initializes 
the lOP. by preparing a series of linked message 
blocks in memory. On a signal from the CPU, the 
lOP reads these blocks and determines from them 
how the data buses are configured and how access to 
the buses is to be controlled. 
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Following initialization, the CPU directs all com­
munications to either of the lOP's two channels; 
during normal operation the lOP appears to be two 
separate devices - channell and channel 2. All CPU­
to-channel communications center on the channel 
control block (CB) illustrated in Figure 7-3. The CB 
is located in the CPU's memory space, and its ad­
dress is passed to the lOP during initialization. Half 
of the block is dedicated to each channel. The chan­
nel maintains the BUSY flag that indicates whether 
it is in the midst of an operation or is available for a 
new command. The CPU sets the CCW (channel 
command word) to indicate what kind of operation 
the lOP is to perform. Six different commands allow 
the CPU to start and stop programs, remove inter­
rupt requests, etc. 

If the CPU is dispatching a channel to run a 
program, it directs the channel to a parameter block 
(PB) and a task block (TB); these are also shown in 
Figure 7-3. The parameter block is analogous to a 
parameter list passed by a program to a subroutine; 
it contains variable data that the channel program is 
to use in carrying out its assignment. The parameter 
block also may contain space for variables (results) 

that the channel is to return to the CPU. Except for 
the first two words, the format and the size of a 
parameter block are completely open; based on the 
specific 110 task, the PB may be set up to exchange 
any kind of information between the CPU and the 
channel program. 

A task block is a channel program - a sequence of 
8089 instructions that will perform an operation. A 
typical channel program might use parameter block 
data to set up the lOP and a device controller for a 
transfer, perform the transfer, return the results, 
and then halt. However, there are no restrictions on 
what a channel program can do; its function may be 
simple or elaborate to suit the needs of the 
application. 

Before the CPU starts a channel program, it links 
the program (TB) to the parameter block and the 
parameter block to the CB as shown in Figure 7-3. 
The links are standard 8086/8088 doubleword point­
er variables; the lower-addressed word contains an 
offset, and the higher-addressed word contains a seg­
ment base value. A system may have many different 
parameter and task blocks; however, only one of 
each is ever linked to a channel at any given time. 

CHANNEL CONTROL BLOCK (CB) 

(RESERVED) 1 

~ } CHANNEL2 
1 
1 
1 
1 
1 

1 

1 

-{ -p(~~~':.i~\R 8~'s~C&K 6~~~~ir- ~ 
BUSY I ccw 

(RESERVED) 

~ } CHANNELl -{ I-p(~~~r:.i1~R B~'s~C&K 6'?~:Jf:-
BUSY J ccw 

I 15 8 7 

I ~-------------------------~ 
L-------- l 

C'HANNEL 2 PARAMETER BLOCK (PS) I 

1 CHANNEL PROGRAM PARAMETERS 1 ,: 
(APPLICATION-DEFINED) 

4 1 

r CHANNEL PROGRAM PARAMETERS 1 
(AP~LICATION-DEFINED) 

TASK BLOCK POINTER 
(SEGMENT BASE II OFFSET) 

r { 1---Y-A-SK-.-LO-C-K-P-O'-NY-E-.---I.2 : i { 
(SEGMENT BASE & OFFSET) +l 

I ~------~ 
CHANNEL2TASK BLOCK (TB) 

(CHANNEL PROGRAM) 

BO" INSTRUCTIONS 
(APPLICATION­

DEFINED) 

L_'-________ --I 

CHANNEL 1 TASK BLOCK (TB) 
(CHANNEL PROGRAM) 

B08, 
INSTRUCTIONS 
(APPLICATION. 

DEFINED) 

L_L-________________ ~ 

Figure 7 -3 Command Communication Blocks 
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After the CPU has filled in the CCW and has linked 
the CB to a parameter block and a task block, if 
appropriate, it issues a channel attention (CA). This 
is done by activating the lOP's CA (channel 
attention) and SEL (channel select) pins. The state 
of SEL at the falling edge of CA directs the channel 
attention to channel I or channel 2. If the lOP is 
located in the CPU's I/O space, it appears to the 
CPU as two consecutive I/O ports (one for each 
channel), and an OUT instruction to the port func­
tions as a CA. If the lOP is memory-mapped, the 
channels appear as two consecutive memory 
locations, and any memory reference instruction 
(e.g., MOV) to these locations causes a channel 
attention. 

An lOP channel attention is functionally similar to a 
CPU interrupt. When the channel recognizes the 
CA, it stops what it is doing (it will typically be idle) 
and examines the command in the CCW. If it is to 
start a program, the channel loads the addresses of 
the parameter and task blocks into internal registers, 
sets its BUSY flag and starts executing the channel 
program. After it has issued the CA, the CPU is free 
to perform other processing; the channel can per­
form its function in parallel, subject to limitations 
imposed by bus configurations (discussed shortly). 

When the channel has completed its program, it noti­
fies the CPU by clearing its BUSY flag in the CB. 
Optionally, it may issue an interrupt request to the 
CPU. 

The CPU/IOP communication structure is summa­
rized in Figure 7-4. Most communication takes place 
via "message areas" shared in common memory. 
The only direct hardware communications between 
the devices are channel attentions and interrupt 
requests. 

CHANNEL ATTENTION 

CPU H MES~:GES 1- lOP 
MEMORY 

INTERRUPT 

Channels 

Each of the two lOP channels operates independent­
ly, and each has its own register set, channel 
attention, interrupt request and DMA control 
signals. At a given point in time, a channel may be 
idle, executing a program, performing a DMA 
transfer, or responding to a channel attention. Al­
though only one channel actually runs at a time, the 
channels can be active concurrently, alternating 
their operations (e.g., channell may execute instruc­
tions in the periods between successive DMA trans­
fer cycles run by channel 2). A built-in priority 
system allows high-priority activities on one channel 
to preempt less critical operations on the other 
channel. The CPU is able to further adjust priorities 
to handle special cases. The CPU starts the channel 
and can halt it, suspend it, or cause it to resume a 
suspended operation by placing different values in 
the CCW. 

Channel Programs (Task Blocks) 

Channel programs are written in ASM-89, the 8089 
assembly language. About 50 basic instructions are 
available. These instructions operate on bit, byte, 
word, and doubleword (pointer) variable types; a 
20-bit physical address variable type (not used by 
the 8086/8088) can also be manipulated. Data may 
be taken from registers, immediate constants and 
memory. Four memory addressing modes allow 
flexible access to both memory variables and I/O 
devices located anywhere in either the CPU's one 
megabyte memory space or in the 8089's 64K 110 
space. 

The lOP instruction set contains general purpose in­
structions similar to those found in CPUs, as well as 
instructions specifically tailored for I/O operations. 
Data transfer, simple arithmetic, logical and address 
manipulation operations are available. Unconditional 
jump and call instructions also are provided so that 
channel programs can link to each other. An indi­
vidual bit may be set or cleared with a single 
instruction. Conditional jumps can test a bit and 
jump if it is set (or cleared), or can test a value and 
jump if it is zero (or non-zero). Other instructions 
initiate DMA transfers, perform a locked test­
and-set semaphore operation, and issue an interrupt 
request to the CPU. 

DMA Transfers 

The 8089 XFER (transfer) instruction prepares the 
channel for a DMA transfer. It executes one addi­
tional instruction, then suspends program execution 
and enters the DMA transfer mode. The transfer is 
governed by channel registers setup by the program 

Figure 7-4 CPU/lOP Communication prior to executing the XFER instruction. 

7-4 210911 



THE 8089 INPUT/OUTPUT PROCESSOR 

Data is transferred from a source to a destination. 
The source and destination may be any locations in 
the CPU's memory space or in the lOP's 1/0 space; 
the lOP makes no distinction between memory 
components and I/O devices. Thus transfers may be 
made from 110 device to memory, memory to I/O 
device, memory to memory and I/O device to I/O 
device. The lOP automatically matches 8- and 16-bit 
components to each other. 

Individual transfer cycles (i.e., the movement of a 
byte or a word) may be synchronized by a signal 
(DMA request) from the source or from the 
destination. In the synchronized mode, the channel 
waits for the synchronizing signal before starting the 
next transfer cycle. The transfer also may be 
unsynchronized, in which case the channel begins 
the next transfer cycle immediately upon completion 
of the previous cycle. 

A transfer cycle is performed in two steps: fetching a 
byte or word from the source into the lOP and then 
storing it from the lOP into the destination. The lOP 
automatically optimizes the transfer to make best 
use of the available data bus widths. For example, if 
data is being transferred from an 8-bit device to 
memory that resides on a 16-bit bus (e.g., 8086 
memory), the lOP will normally run two one-byte 
fetch cycles and then store the full word in a single 
cycle. 

Between the fetch and store cycles, the lOP can oper­
ate on the data. A byte may be translated to another 
code (e.g., EBCDIC to ASCII), or compared to a 
search value, or both, if desired. 

A transfer can be terminated by several 
programmer-specified conditions. The channel can 
stop the transfer when a specified number (up to 
64K) of bytes has been transferred. An external 
device may stop a transfer by signaling on the chan­
nel's external terminate pin. The channel can stop 
the transfer when a byte (possibly translated) com­
pares equal, or unequal, to a search value. Single­
cycle termination, which stops unconditionally after 
one byte or word has been stored, is also available. 

When the transfer terminates, the channel automati­
cally resumes program execution. The channel pro­
gram can determine the cause of the termination in 
situations where mUltiple terminations are possible 
(e.g., terminating when 80 bytes are transferred or a 
carriage return character is encountered, whichever 
occurs first). As an example of post-transfer 
processing, the channel program could read a result 
register from the I/O device controller to determine 
if the transfer was performed successfully. If not 
(e.g., a CRC error was detected by the controller), 
the channel program could retry the operation with­
out CPU intervention. 
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A channel program typically ends by posting the 
result of the operation to a field supplied in the 
parameter block, optionally interrupting the CPU, 
and then halting. When the channel haits, its BUSY 
flag in the channel control block is cleared to indicate 
its availability for another operation. As an alterna­
tive to being interrupted by the channel, the CPU 
can poll this flag to determine when the operation 
has been completed. 

Bus Configuration 

As shown in Figure 7-5, the lOP can access memory 
or ports 0/0 devices) located in a I-megabyte 
system space and memory or ports located in a 64-
kilobyte I/O space. Although the lOP only has one 
physical data bus, it is useful to think of the lOP as 
accessing the system space via a system data bus and 
the I/O space over an I/O data bus. The distinction 
between the "two" buses is based on the type­
of-cycle signals output by the 8288 Bus Controller. 
Components in the system space respond to the 
memory read and memory write signals, whether 
they are memory or 110 devices. Components in the 
I/O space respond to the 1/0 read and I/O write 
signals. Thus 1/0 devices located in the system space 
are memory-mapped, and memory in the I/O space 
is I/O-mapped. The two basic configuration opera­
tions differ in the degree to which the lOP shares 
these buses with the CPU. 

Both configurations require an 8086/8088 CPU to be 
strapped in maximum mode. 

In the local configuration, shown in Figure 7-6, the 
lOP (or lOPs if two are used) shares both buses with 
the CPU. The system bus and the 1/0 bus are the 

B 
SYSTEM SPACE (1 MBYTE) 

B 
I/O 
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Figure 7-5 lOP Data Buses 
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same width (8 bits if the CPU is an 8088 or 16 bits if 
the CPU is an 8086). The lOP system space corre­
sponds to the CPU memory space, and the lOP I/O 
space corresponds to the CPU I/O space. Channel 
programs are typically located in the system space; 
I/O devices may be located in either space. The lOP 
requests use of the bus for channel program instruc­
tion fetches as well as for DMA and programmed 
transfers. In the local configuration, either the lOP 
or the CPU may use the buses, but not both 
simultaneously. The advantage of the local configu­
ration is that intelligent DMA may be added to a 
system with minimal additional components beyond 
the lOP. The disadvantage is that parallel operation 
of the processors is limited to cases in which the 
CPU has instruction in its queue that can be execut­
ed without using the bus. 

In the remote configuration (Figure 7-7), the lOP 
(or lOPs) shares a common system bus with the 
CPU. Access to this bus is controlled by 8289 Bus 
Arbiters. The lOP's I/O bus, however, is physically 
separated from the CPU in the remote 
configuration. Two lOPs can share the local I/O bus. 
Any number of remote lOPs may be contained in a 
system, configured in remote clusters of one or two. 
The local I/O bus need not be the same physical 
width as the shared system bus, allowing an lOP, for 
example, to interface 8-bit peripherals to an 8086. In 
the remote configuration, the lOP can access local 

1/0 SPACE 

1/0 BUS 

8089 lOP 

..... - _ ..... 

B 
Figure 7 -6 Local Configuration 
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I/O devices and memory without using the shared 
system bus, thereby reducing bus contention with 
the CPU. Contention can further be reduced by 
locating the lOP's channel programs in the local I/O 
space. The lOP can then also fetch instructions with­
out accessing the system bus. Parameter, channel 
control and other CPU/lOP communication blocks 
must be located in system memory, however, so 
that both processors can access them. The remote 
configuration thus increases the degree to which an 
lOP and a CPU can operate in parallel and thereby 
increases a system's throughput potential. The price 
paid for this is that additional hardware must be 
added to arbitrate use of the shared bus, and to 
separate the shared and local buses (see Chapter 4 
for details). 

It is also possible to configure an lOP remote to one 
CPU, and local to another CPU (see Figure 7-8). 
The local CPU could be used to perform 
computational-intensive routines for the lOP. 

A Sample Transaction 

Figure 7-9 shows how a CPU and an lOP might work 
together to read a record (sector) from a floppy disk. 
This example is not illustrative of the lOP's full 
capabilities, but it does review its basic operation 
and its interaction with a CPU. 

The CPU must first obtain exclusive use of a 
channel. This can be done by performing a "test and 
set lock" operation on the selected channel's BUSY 
flag. Assuming the CPU wants to use channell, this 
could be accomplished in PLlM-86 by coding similar 
to the following: 

DO WHILE LOCKSET (@CHl,BUSY,OFFH); 
END 

In ASM-86 a loop containing the XCHG instruction 
prefixed by LOCK would accomplish the same 
thing, namely testing the BUSY flag until it is clear 
(OH), and immediately setting it to FFH (busy) to 
prevent another task or processor from obtaining 
use of the channel. 

Having obtained the channel, the CPU fills in a 
parameter block (see Figure 7-10). In this case, the 
CPU passes the following parameters to the channel: 
the address of the floppy disk controller, the address 
of the buffer where the data is to be placed, and the 
drive, track and sector to be read. It also supplies 
space for the lOP to return the result of the 
operation. Note that this is quite a "low-level" 
parameter block in that it implies that the CPU has 
detailed knowledge of the I/O system. For a "real" 
system, a higher-level parameter block would isolate 
the CPU from I/O device characteristics. Such a 
block might contain more general parameters such 
as file name and record key. 
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Figure 7-10 Sample Parameter Block 

After setting up the parameter block, the CPU 
writes a "start channel program" command in chan­
nell's CCW. Then the CPU places the address of 
the desired channel program in the parameter block 
and writes the parameter block address in the CB. 
Notice that in this simple example the CPU 
"knows" the address of the channel program for 
reading from the disk, and presumably also 
"knows" the address of another program for 
writing, etc. A more general solution would be to 
place a function code (read, write, delete, etc.) in the 
parameter block and let a single channel program ex­
ecute different routines depending on which function 
is requested. 

After the communication blocks have been setup, 
the CPU dispatches the channel by issuing a channel 
attention, typically by an OUT instruction for an 
I/O-mapped 8089, or a MOV or other memory refer­
ence instruction for a memory-mapped 8089. 

The channel begins executing the channel program 
(task block) whose address has been placed in the 
parameter block by the CPU. In this case the pro­
gram initializes the 8272 Floppy Disk Controller by 
sending it a "read data" command followed by a all 
other "read data" parameters except for the last 
parameter. The program initializes the channel regis­
ters that define and control the DMA transfer. 

Having prepared the 8272 and the channel itself, the 
channel program executes a XFER instruction and 
sends a final parameter (special sector size) to the 
8272. (The 8272 enters DMA transfer mode im­
mediately upon receiving the last of a series of 
parameters; sending the last parameter after the 
XFER instruction gives the channel time to setup 
for the transfer.) The DMA transfer begins when 

the 8272 issues a DMA request to the channel. The 
transfer continues until the 8272 issues an interrupt 
request, indicating that the data has been transferred 
or that an error has occurred. The 8272's interrupt 
request line is tied to the lOP's EXTl (external ter­
minate on channel 1) pin so that the channel inter­
prets an interrupt request as an external terminate 
condition. Upon termination of the transfer, the 
channel resumes executing instructions and reads 
the 8272 result register to determine if the data was 
read successfully. If a soft (correctable) error is 
indicated, the IOP retries the transfer. If a hard 
(uncorrectable) error is detected, or if the transfer 
has been successful, the lOP posts the content of the 
result register to the parameter block result field, 
thus passing the result back to the CPU. The channel 
then interrupts the CPU (to inform the CPU that 
the request has been processed) and halts. 

When the CPU recognizes the interrupt, it inspects 
the result field in the parameter block to see if the 
content of the buffer is valid. If so, it uses the data; 
otherwise it typically executes an error routine. 

Applications 

Combining the raw speed and responsiveness of a 
traditional DMA controller, an I/O-oriented instruc­
tion set, and a flexible bus organization, the 8089 
lOP is a very versatile I/O system. Applications with 
demanding I/O requirements, previously beyond 
the abilities of microcomputer systems, can be un­
dertaken with the lOP. These kinds of I/O-intensive 
applications include: 

• systems that employ high-bandwidth, low­
latency devices such as disks and graphics 
terminals; 

• systems with many devices requiring 
asynchronous service; and 

• systems with high-overhead peripherals such 
as intelligent CRTs and graphics terminals. 

In addition, virtually every application that performs 
a moderate amount of I/O can benefit from the 
design philosophy embodied in the lOP: system func­
tions should be distributed among special-purpose 
processors. An lOP channel program is likely to be 
both faster and smaller than an equivalent program 
implemented with a CPU. Programming also is 
more straightforward with the lOP's specialized in­
struction set. 

Removing I/O from the CPU and assigning it to one 
or more lOPs simplifies and structures a system's 
design. The main interface to the I/O system can be 
limited to the parameter blocks. Once these are 
defined, the I/O system can be designed and imple­
mented in parallel with the rest of the system. I/O 
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specialists can work on the I/O system without 
detailed knowledge of the application; conversely, 
the operating system and application teams do not 
need to be expert in the operation of I/O devices. 
Standard high-level I/O systems can be used in 
multiple application systems. Because the application 
and I/O systems are almost independent, application 
system changes can be introduced without affecting 
the I/O system. New peripherals can similarly be in­
corporated into a system without impacting applica­
tions or operating system software. The lOP's 
simple CPU interface also is designed to be compati­
ble with future Intel CPUs. 

Keeping in mind the true general-purpose nature of 
the lOP, some of the situations where it can be used 
to advantage are: 

• Bus matching- The lOP can transfer data be­
tween virtually any combination of 8- and 
16-bit memory and I/O components. For 
example, it can interface a 16-bit peripheral to 
an 8-bit CPU bus, such as the 8088 bus. The 
IOP also provides a straightforward means of 
performing DMA between an 8-bit peripheral 
and 8086 memory that is split into odd- and 
even-addressed banks. The 8089 can access 
both 8- and 16-bit peripherals connected to a 
16-bit bus. 

• String processing- The 8089 can perform a 
memory move, translate, scan-for-match or 
scan-for-nonmatch operation much faster 
than the equivalent instructions in an 8086 or 
8088. Translate and scan operations can be 
setup so that the source and destination refer 
to the same addresses to permit the string to 
be operated on in place. 

• Spooling-Data from low-speed devices such 
as terminals and paper tape readers can be 
read by the 8089 and placed into memory or 
on disk until the transmission is complete. 
The lOP can then transfer the data at high 
speed when it is needed by an application 
program. Conversely, output data ultimately 
destined for a low-speed device such as a 
printer, can be temporarily spooled to disk 
and then printed later. This permits batches 
of data to be gathered or distributed by low­
priority programs that run in the background, 
essentially using up "spare" CPU and lOP 
cycles. Application programs that use or pro­
duce the data can execute faster because they 
are not bound by the low -speed devices. 

• Multitasking operating systems-A multitask­
ing operating system can dispatch I/O tasks to 
channels with an absolute minimum of 
overhead. Because a remote channel can run 
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in parallel with the CPU, the operating sys­
tem's capacity for servicing application tasks 
can increase dramatically, as can its ability to 
handle more, and faster, I/O devices. If both 
channels of an lOP are active concurrently, 
the lOP automatically gives preference to the 
higher-priority activity (e.g., DMA normally 
preempts channel program execution). The 
operating system can adjust the priority 
mechanism and also can halt or suspend a 
channel to take care of a critical asynchronous 
event. 

• Disk systems-The lOP can meet the speed 
and latency requirements of hard disks. It can 
be used implement high-level, file-oriented 
systems that appear to application programs 
as simple commands: OPEN, READ, 
WRITE, etc. The lOP can search and update 
disk directories and maintain free space maps. 
"Hierarchical memory" systems that auto­
matically transfer data among memory, high­
speed disks and low-speed disks, based on 
frequency of use, can be built around IOPs. 
Complex database searches (reading data 
directly or following pointer chains) can 
appear to programs as simple commands and 
can execute in parallel with application pro­
grams if an lOP is configured remotely. 

• Display terminals- The 8089 is well suited to 
handling the DMA requirements of CRT 
controllers. The lOP's transfer bandwidth is 
high enough to support both alphanumeric 
and graphic displays. The 8089 can assume re­
sponsibility for refreshing the display from 
memory data; in the remote configuration, 
the refresh overhead display algorithms may 
be programmed to perform sophisticated 
modes of display. 

Each time it performs a refresh operation, the 
lOP can scan a keyboard for input and trans­
late the key's row-and-column format into an 
ASCII or EBCDIC character. The 8089 can 
buffer the characters, scanning the stream 
until an end-of-message character (e.g., car­
riage return) is detected, and then interrupt 
the CPU. 

A single lOP can concurrently support an al­
phanumeric CRT and keyboard on one chan­
nel and a floppy disk on the other channel. 
This configuration makes use of approxi­
mately 30 percent of the available bus 
bandwidth. Performance can be increased 
within the available bus bandwidth by adding 
an 8086 or 8088 CPU to a remote lOP con­
figuration. This configuration can provide 
scaling, rotation or other sophisticated display 
transformations. 
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7.3 PROCESSOR ARCHITECTURE 

The 8089 is internally divided into the functional 
units depicted schematically in Figure 7-11. The 
units are connected by a 20-bit data path to obtain 
maximum internal transfer rates. 

Common Control Unit (CCU) 

All lOP operations (instructions, DMA transfer 
cycles, channel attention responses, etc.) are com­
posed of sequences of more basic processes called in­
ternal cycles. A bus cycle takes one internal cycle; 
the execution of an instruction may require several 
internal cycles. There are 23 different types of inter­
nal cycles, each of which takes from two to eight 
clocks to execute, not including possible wait states 
and bus arbitration times. 

The common control unit (CCU) coordinates the ac­
tivities of the lOP primarily by allocating internal 
cycles to the various processor units; i.e., it deter­
mines which unit will execute the next internal 
cycle. For example, when both channels are active, 
the CCU determines which channel has priority and 
lets that channel run; if the channels have equal 
priority, the CCU "interleaves" their execution 

TASK POINTER 

I/O CONTROL 

t t 
ORO 1 EXT 1 SINTR-l 

(this is discussed more fully later in this section). 
The CCU also initializes the processor. 

Arithmetic/Logic Unit (ALU) 

The ALU can perform unsigned binary arithmetic 
on 8- and 16-bit binary numbers. Arithmetic results 
may be up to 20 bits in length. Available arithmetic 
instructions include addition, increment and 
decrement. Logical operations ("and," "or" and 
"not") may be performed on either 8- or 16-bit 
quantities. 

Assembly/Disassembly Registers 

All data entering the chip flows through these 
registers. When data is being transferred between 
different width buses, the 8089 uses the 
assembly/disassembly registers to effect the transfer 
in the fewest possible bus cycles. In a DMA transfer 
from an 8-bit peripheral to 16-bit memory, for 
example, the lOP runs two bus cycles, picking up 
eight bits in each cycle, assembles a 16-bit word, and 
then transfers the word to memory in a single bus 
cycles. (The first and last cycles of a transfer may be 
performed differently to accommodate odd­
addressed words; the lOP automatically adjusts for 
this condition. 

SHE 

Figure 7-11 8089 Block Diagram 
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Instruction Fetch Unit 

The unit controls instruction fetching for the execut­
ing channel (one channel actually runs at a time). If 
the bus over which the instructions are being 
fetched is eight bits wide, then the instructions are 
obtained one byte at a time, and each fetch requires 
one bus cycle. If the instructions are being fetched 
over a 16-bit bus, then the instruction fetch unit au­
tomatically employs a I-byte queue to reduce the 
number of bus cycles. Each channel has its own 
queue, and the activity of one channel does not 
affect the other's queue. 

During sequential execution, instructions are 
fetched one word at a time from even addresses; 
each fetch requires one bus cycle. This process is 

INSTRUCTION "X" 

r __ ----A .... --_ 

shown graphically in Figure 7-12. When the last byte 
of an instruction falls on an even address, the odd­
addressed byte (the first byte of the following 
instruction) of the fetched word is saved in the 
queue. When the channel begins execution of the 
next instruction, it fetches the first byte from the 
queue rather than from memory. The queue, then, 
keeps the processor fetching words, rather than 
bytes, thereby reducing its use of the bus and in­
creasing throughput. 

The processor fetches bytes rather than words in two 
cases. If a program transfer instruction (e.g., JMP or 
CALL) directs the processor to an instruction locat­
ed at an odd address, the first byte of the instruction 
is fetched by itself as shown in Figure 7-13. This is 
because the program transfer invalidates the content 
of the queue by changing the serial flow of execution. 

INSTRUCTION "Y" 
r,..----'A .... --......., 

I I EVEN, ODD I EVEN, ODD I EVEN, ODD I l 
\ 

FETCH 

1 

2 

3 

4 

--1 ,~ ________ JI ,~ ________ JI 

2 I 4 
I 
t D QUEUE 

3 

INSTRUCTION BYTES 

FIRST TWO BYTES OF "X" 

THIRD BYTE OF "X" PLUS 
FIRST BYTE OF "Y", WHICH IS 
SAVED IN QUEUE 

FIRST BYTE OF "Y" FROM 
QUEUE-NO BUS CYCLE 

LAST TWO BYTES OF "Y" 

Figure 7-12 Sequential Instruction Fetching (16-Bit Bus) 
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The second case arises when an LPDI instruction is 
located at an odd address. In this situation, the six­
byte LPDI instruction is fetched: byte, word, byte, 
byte, byte, and the queue is not used. The first byte 
of the following instruction is fetched in one bus 
cycle as if it had been the target of a program 
transfer. Word fetching resumes with this instruc­
tion's second byte. 

Bus Interface Unit (BIU) 

The BIU runs all bus cycles, transferring instructions 
and data between the lOP and external memory or 
peripherals. Every bus access is associated with a 
register tag bit that indicates to the BIU whether the 
system or I/O space is to be addressed. The BIU out­
puts the type of bus cycle (instruction fetch from I/O 
space, data store into system space, etc.) on status 
lines SO, S 1, and S2. An 8288 Bus Controller 
decodes these lines and provides signals that selec­
tively enable one bus or the other (see Chapter 4 for 
details). 

The BIU further distinguishes between the physical 
and logical widths of the system and 110 buses. The 
physical widths of the buses are fixed and are com­
municated to the BIU d~ring initialization. In the 
local configuration, both buses must be the same 
width, either 8 or 16 bits (matching the width of the 
host CPU bUs). In the remote configuration, the 
lOP system bus must be the same physical width as 
the bus it shares with the CPU. The width of the 
lOP's I/O bus, which is local to the 8089, may be 
selected independently. If any 16-bit peripherals are 
located in the I/O space, theI). a 16-bit I/O bus must 
be used. If only 8-bit devices reside on the I/O bus, 
then either an 8-bit or a l6-bit 110 bus may be 
selected. A 16-bit I/O bus has the advantage of easy 
accommodation of future l6-bit devices and fewer 
instruction fetches if channel programs are placed in 
the I/O space. 

For a given DMA transfer, a channel program speci­
fies the logical width of the system and the I/O 
buses; each channel specifies logical bus width 
independently. The logical width of an 8-bit physical 
bus can only be eight bits. A 16-bit physical bus, 

INSTRUCTION "X" INSTRUCTION "V" 

r'------~~,~----~, r'------~~~----~, 

I ODD I EVEN, ODD I EVEN I ODD I EVEN, ODD I I 
~ '~ ________ ~"~ ________ J' '~ ______ ~~I 

4 I 2 3 

LTRANSFER TARGET 

I o QUEUE 

FETCH INSTRUCTION BVTES 

1 FIRST ~ODD-ADDRESSED) BYTE OF "X" 
(8-BIT US CYCLE) 

2 SECOND AND THIRD BYTES OF "X" 

3 FIRST AND SECOND BYTES OF "V". 

4 THIRD BYTE OF "V" 
PLUS FIRST BYTE OF NEXT INSTRUCTION, 
WHICH IS SAVED IN QUEUE 

Figure 7-13 Instruction Fetching Following a Program Transfer t~ an Odd Address (16-Bit Bus) 
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however, can be used as either an 8- or 16-bit logical 
bus. This allows both 8- and 16-bit devices to be ac­
cessed over a single 16-bit physical bus. Table 7-1 
lists the permissible physical and logical bus widths 
for both locally and remotely configured lOPs. Logi­
cal bus width pertains to DM A transfers only. in­
structions are fetched and operands are read and 
written in bytes or words depending on physical bus 
width. 

Table 7-1 Physical/Logical Bus Combinations 

Configuration 
System Bus 1/0 Bus 

Physical:Logical Physical:Logical 

Local 
8:8 8:8 

16:8/16 16:8/16 

8:8 8:8 

Remote 
16:8/16 16:8/16 
16:8/16 8:8 

8:8 16:8/16 

In addition to performing transfers, the BIU is re­
sponsible for local bus arbitration. In the local 
configuration, the BIU uses the RQ/GT (request/ 
grant) line to obtain the bus from the CPU and to 
return it after a transfer has been performed. In the 
remote configuration, the BIU uses RQ/GT to coor­
dinate use of the local I/O bus with another lOP or a 
local CPU, if present. System bus arbitration in the 
remote configuration is performed by an 8289 Bus 
Arbiter that operates invisibly to the lOP. The BIU 
automatically asserts the LOCK (bus lock) signal 
during execution of a TSL (test and set lock) instruc­
tion and, if specified by the channel program, can 
assert the LOCK signal for the duration of a DMA 
transfer. Volume 2 contains a complete discussion of 
bus arbitration. 

Channels 

Although the 8089 is a single processor, under most 
circumstances it is useful to think of it as two inde­
pendent channels. A channel may perform DMA 
transfers and may execute channel programs; it also 
may be idle. This section describes the hardware fea­
tures that support these operations. 

I/O Control 

Each channel contains its own I/O control section 
that governs the operation of the channel during 
D MA transfers. If the transfer is synchronized, the 
channel waits for a signal on its DRQ (DMA 

request) line before performing the next fetch-store 
sequence in the transfer. If the transfer is to be ter­
minated by an external signal, the channel monitors 
its EXT (external terminate) line and stops the trans­
fer when this line goes fictive. Between the fetch and 
store cycles (when the data is in the lOP) the channel 
optionally counts, translates, and scans the data, and 
may terminate the transfer based on the results of 
these operations. Each channel also has a SINTR 
(system interrupt) line that can be activated by soft­
ware to issue an interrupt request to the CPU. 

Registers 

Figure 7-14 illustrates the channel register set, and 
Table 7-2 summarizes the uses of each register. Each 
channel has an independent set of registers; they are 
not accessible to the other channel. Most of the 
registers play different roles during channel program 
execution than in DMA transfers. Channel programs 
must be careful to save these registers in memory 
prior to a DMA transfer if their values are needed 
following the transfer. 

TAG 
BIT r, 

.... --1 

1--1 
1--1 
L..J 

19 15 7 

GENERAL PURPOSE A 

GENERAL PURPOSE B 

GENERAL PURPOSE C 

TASK POINTER 

PARAMETER BLOCK POINTER 

INDEX 

BYTE COUNT 

MASKICOMPARE 

CHANNEL CONTROL 

o 

GA 

GB 

GC 

TP 

PP 

IX 

BC 

MC 

CC 

Figure 7-14 Channel Register Set 

General Purpose A (GA). A channel program may 
use G A for a general register or a base register. A 
general register can be an operand of most lOP 
instructions; a base register is used to address 
memory operands (see Section 7.6). Before initiating 
a DMA transfer, the channel program points GA to 
either the source or destination address of the 
transfer. 
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Table 7-2 Channel Register Summary 

System Program 
Register Size or liD Use by Channel Programs Use in DMA Transfers 

Access Pointer 

GA 20 Update Either General, base Source/destination pointer 

GB 20 Update Either General, base Source/destination pointer 

GC 20 Update Either General, base Translate table pOinter 

TP 20 Update Either Procedure return, Adjusted to reflect cause of 
instruction pOinter termination 

PP 20 Reference 'System Base N/A 

IX 16 Update N/A General, auto-increment N/A 

BC 16 Update N/A General Byte counter 

MC 16 Update N/A General, masked compare Masked compare 

CC 16 Update N/A Restricted use recommended Defines transfer options 

General Purpose B (GB). GB is functionally inter­
changeable with GA. If GA points to the source of a 
DMA transfer, then GB points to the destination, 
and vice versa. 

General Purpose C (GC). GC may be used as a 
general register or a base register during channel pro­
gram execution. If data is to be translated during a 
DMA transfer, then the channel program loads GC 
with the address of the first byte of a translation 
table before initiating the transfer. GC is not altered 
by a transfer operation. 

Task Pointer (TP). The CCU loads TP from the 
parameter block when it starts or resumes a channel 
program. During program execution, the channel au­
tomatically updates TP to point to the next instruc­
tion to be executed; i.e" TP is used as an instruction 
pointer or program counter. Program transfer in­
structions (JMP, CALL, etc.) update TP to cause 
nonsequential execution. A procedure (subroutine) 
returns to the calling program by loading TP with an 
address previously saved by the CALL instruction. 
The task pointer is fully accessible to channel 
programs; it can be used as a general register or as a 
base register. Such use is not recommended, 
however, as it can make programs very difficult to 
understand. 

Parameter Block Pointer (PP). The CCU loads 
this register with the address of the parameter block 
before it starts a channel program. The register 
cannot be altered by a channel program, but is very 
useful as a base register for accessing data in the 
parameter block. PP is not used during DMA 
transfers. 

7-16 

Index (IX). IX may be used as a general register 
during channel program execution, It also may be 
used as an index register to address memory oper­
ands (the address of the operand is computed by 
adding the content of IX to the content of a base 
register), When specified as an index register, IX 
may be optionally auto-incremented as the last step 
in the instruction to provide a convenient means of 
"stepping" through arrays or strings, IX is not used 
in DMA transfers. 

Byte Count (BC). BC may be used as a general 
register during channel program execution, If DMA 
is to be terminated when a specific number of bytes 
has been transferred, BC should be loaded with the 
desired byte count before initiating the transfer. 
During DMA, BC is decremented for each byte 
transferred, whether byte count termination has 
been specified. If byte count termination has not 
been selected, BC "wraps around" from OH to 
FFFFH and continues to be decremented, 

MasklCompare (MC). A channel program may 
use MC for a general register. This register also may 
be used either in a channel program or in a DMA 
transfer to perform a masked compare of a byte 
value. To use MC in this way, the program loads a 
compare value in the low-order eight bits of the 
register and a mask value in the upper eight bits (see 
Figure 7-15). A "1" in a mask bit selects the bit in 
the corresponding position in the compare value; a 
"0" in a mask bit masks the corresponding bit in the 
compare value. In Figure 7-15, a value compared 
with MC will be considered equal if its low-order 
five bits contain the value 00100; the upper three 
bits may contain any value since they are masked 
out of the comparison. 
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15 8 7 

00011111 i 10100100 

MASK COMPARE 
VALUE VALUE 

I~l·~-I 
~ 

MASKED 
COMPARE 

VALUE 

(X = IGNORE VALUE OF CORRESPONDING BIT) 

Figure 7 -15 Mask/Compare Register 

Channel Control (CC). The content of the channel 
control register governs a DMA transfer (see Figure 
7-16). A channel program loads this register with ap­
propriate values before beginning the transfer 
operation; Section 7.4 covers the encoding of each 
field in detail. Bit 8 (the chain bit) of CC pertains to 
channel program execution rather than to a DMA 

15 7 

I I I I 
-r-- -r-- TT 

transfer. When this bit is zero, the channel program 
runs at a normal priority; when it is one, the priority 
of the program is raised to the same level as DMA 
(priorities are covered later in this section). AI· 
though a channel program may use CC as a general 
register, such use is not recommended because of 
the side effects on the chain bit and thus on the pri· 
ority of the channel program. Channel programs 
should restrict their use of CC to loading control 
values in preparation for a DMA transfer, setting 
and clearing the chain bit, and storing the register. 
When initializing or updating the CC register, the 
MOV or MOVI instruction must be used. 

Program Status Word (PSW) 

Each channel maintains its own program status word 
(PSW) as shown in Figure 7-17. Channel programs 
do not have access to the PSW. The PSW records 
the state of the channel so that channel operation 
may be suspended and then resumed later. When 
the CPU issues a "suspend" command, the channel 
saves the PSW, task pointer, and task pointer tag bit 
in the first four bytes of the channel's parameter 
block as shown in Figure 7-18. Upon receipt ofa sub­
sequent "resume" command, the PSW, TP, and TP 
tag bit are restored from the parameter block save 
area and execution resumes. 

o 
TMC 
I I 

L TERMINATE ON MASKED COMPARE 

TERMINATE ON BYTE COUNT 

TERMINATE ON EXTERNAL SIGNAL 

TERMINATE AFTER SINGLE TRANSFER 

CHAINED CHANNEL PROGRAM 
EXECUTION 
LOCK BUS DURING TRANSFER 

SOURCE/DESTINATION 

SYNCHRONIZATION 

TRANSLATE 

FUNCTION (PORT TO PORT, 
PORT TO MEMORY, ETC.) 

Figure 7 -16 Channel Control Register 

7-17 210911 



THE 80891NPUT/OUTPUT PROCESSOR 

7 0 

1 ·Ix-I ol,sl,*ol s I 01 

~~~
~OEST'NAT'ONOUSLOG'C'LW'OTH(O""'" 16) L SOURCE BUS LOGICAL WIDTH (0 "- 8, 1 = 16) 

TASK BLOCK (CHANNEL PROGRAM) IN PROGRESS 

INTERRUPT CONTROL (O ~ DISABLED, , "- ENABLED) 

INTERRUPT SERVICE (0 ' SINTA N INACTIVE 1 = SINTRN ACTIVE) 

8US LOAD LIMIT 

TRANSFER IN PROGRESS 

PRIORITY BIT 

Figure 7·1 7 Program Status Word 

15 8 7 

TP 15-8 I TP 7-0 --PP 

PSW 1 TP 19-161 TAG 10 0 0 __ PP + 2 

REMAINDER OF PARAMETER BLOCK 

I I L _________________ ~ 

Figure 7 ·18 Channel State Save Area 

Two conditions override the normal channel priority 
mechanism. If one channel is performing DMA 
(priority 1) and the channel receives a channel atten­
tion (priority 2), the channel attention is serviced at 
the end of the current DMA transfer cycle. This 
override prevents a synchronized DMA transfer 
from "shutting out" a channel attention. DMA 
terminations and chained channel programs post­
pone recognition of a CA on the other channel; the 
CA is latched, however, and is serviced as soon as 
priorities permit. 

The lOP's LOCK (bus lock) signal also supersedes 
channel switching. A running channel will not relin­
quish control of the processor while LOCK is active, 
regardless of the priorities of the activities on the 
two channels. This is consistent with the purpose of 
the LOCK signal: to guarantee exclusive access to a 
shared resource in a multiprocessing system. Refer 
to Sections 7.S and Volume 2 for further information 
on the LOCK signal and the TSL instruction. 

Tag Bits 

Registers GA, GB, GC, and TP are called pointer 
registers because they may be used to access, or 
point to, addresses in either the system space or the 

I/O space. The pointer registers may address either 
memory or I/O devices (lOP instructions do not dis­
tinguish between memory and I/O devices since the 
latter are memory-mapped). The tag bit associated 
with each register (Figure 7-14) determines whether 
the register points to an address in the system space 
(tag=O) or the I/O space (tag= 1). 

The CCU sets or clears TP's tag bit depending on 
whether the command it receives from the CPU is 
"start channel program in system space," or "start 
channel program in I/O space." Channel programs 
alter the tag bits of GA, GB, GC, and TP by using 
different instructions for loading the registers. 
Briefly, a "load pointer" instruction clears a tag bit, 
a "move" instruction sets a tag bit, and a "move 
pointer" instruction moves a memory value (either 
o or 1) to a tag bit. Section 7.7 covers these instruc­
tions in detail. 

If a register points to the system space, all 20 bits are 
placed on the address lines to allow the full 
megabyte to be directly addressed. If a register 
points to the I/O space, the upper four bits of the ad­
dress lines are undefined; the lower 16 bits are suffi­
cient to access any location in the 64K byte I/O space. 

Concurrent Channel Operation 

Both channels may be active concurrently, but only 
one can actually run at a time. At the end of each in­
ternal cycle, the CCU lets one channel or the other 
execute the next internal cycle. No extra overhead is 
incurred by this channel switching. The basis for 
making the determination is a priority mechanism 
built into the lOP. This mechanism recognizes that 
some kinds of activities (e.g., DMA) are more im­
portant than others. Each activity that a channel can 
perform has a priority that reflects its relative impor­
tance (see Table 7-3). 

Two new activities are introduced in Table 7-3. 
When a DMA transfer terminates, the channel exe­
cutes a short internal channel program. This DMA 
termination program adjusts TP so that the user's 
program resumes at the instruction specified when 
the transfer was setup (this is discussed in detail in 
Section 7.4). Similarly, when a channel attention is 
recognized, the channel executes an internal pro­
gram that examines the CCW and carries out its 
command. Both of these programs consist of stan­
dard 8089 instructions that are fetched from internal 
ROM. Intel Application Note AP-SO, Debugging 
Strategies and Considerations jor 8089 Systems, lists 
the instructions in these programs. Users monitoring 
the bus during debugging may see operands read or 
written by the termination or channel attention 
programs. The instructions themselves, however, 
will not appear on the bus as they are resident in the 
chip. 
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Table 7 -3 Channel Priorities and Interleave Boundaries 

Channel Activity 
Priority Interleave Boundary 

(1 = highest) ByOMA By Instruction 

DMA transfer 

DMA termination sequence 

Channel program (chained) 

ChannelattenHonsequence 

Channel program (not chained) 

Idle 

'DMA is not interleaved while LOCK is active. 
2Except TSL instruction; see section 3.7. 

Notice also that, according to Table 7-3, a channel 
program may run at priority 3 or at priority 1. Chan­
nel program priority is determined by the chain bit 
in the channel control register. If this bit is cleared, 
the program runs at normal priority (3); if it is set, 
the program is said to be chained, and it runs at the 
same priority as DMA. Thus, the chain bit provides 
a way to raise the priority of a critical channel 
program. 

The CCU lets the channel with the highest priority 
run. If both channels are running activities with the 
same priority, the CCU examines the priority bits in 
the PSWs. If the priority bits are unequal, the chan­
nel with the higher value (1) runs. Thus, the priority 
bits serves as a "tie breaker" when the channels are 
otherwise at the same priority level. The value of the 
priority bit in the PSW is loaded from a correspond­
ing bit in the CCW; therefore, the CPU can control 
which channel will run when the channels are at the 
same priority level. The priority bit has no effect 
when the channel priorities are different. If both 
channels are at the same priority level and if both pri­
ority bits are equal, the channels run alternately 
without any additional overhead. 

The CCU switches channels only at certain points 
called interleave boundaries; these vary according to 
the type of activity running in each channel and are 
shown in Table 7-3. In Table 7-3 and in the following 
discussion, the terms "channel A" and "channel B" 
are used to identify two active channels that are bid­
ding for control of an lOP. "Channel A" is the chan­
nel that last ran and will run again unless the CCU 
switches to "channel B." Where the CCU switches 
from one channel (channel A) to another (channel 
B) depends on whether channel B is performing 
DMA or is executing instructions. For this 
determination, instructions in the internal ROM are 

1 

1 

1 

2 

3 

4 

Bus cycle' Bus cycle' 

Internal cycle None 

Internal cycle 2 Instruction 

Internal cycle None 

Internal cycle2 Instruction 

Two clocks Two clocks 

considered the same as instructions executed in 
user-written channel programs (chained or not 
chained). Table 7-3 shows that a switch from channel 
A to channel B will occur sooner if channel B is run­
ning DMA. DMA, then, interleaves instruction exe­
cution at internal cycle boundaries. Since instructions 
are often composed of several internal cycles, in­
struction execution on channel A can be suspended 
by DMA on channel B (when channel A next runs, 
the instruction is resumed from the point of 
suspension). DMA on channel A is interleaved by 
DMA on channel B after any bus cycle (when chan­
nel A runs again, the DMA transfer sequence is 
resumed from the point of suspension). If both chan­
nels are executing programs, the interleaved 
boundaries are extended to instruction boundaries: 
a program on channel B will not run until channel A 
reaches the end of an instruction. Note that a DMA 
termination sequence or channel attention sequence 
on channel A cannot be interleaved by instructions 
on channel B, regardless of channel B's priority. 
These internal programs are short, however, and 
will not delay channel B for long (see Chapter 4 for 
timing information). 

Table 7-4 summarizes the channel switching mecha­
nism with several examples. It is important to 
remember that channel switching occurs only when 
both channels are ready to run. In typical 
applications, one of the channels will be idle much of 
the time, either because it is waiting to be dispatched 
by the CPU, or because it is waiting for a DMA re­
quest in a synchronized transfer. (During a synchro­
nized transfer, the channel is idle between DMA 
requests; for many peripherals, the channel will 
spend much more time idling than executing DMA 
cycles.) The real potential for one channel "shutting 
out" a priority I activity on the other channel is 
largely limited to unsynchronized DMA transfers 
and locked transfers (synchronized or unsynchro-
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unsynchronized). Long, chained channel programs 
and high-speed synchronized DMA will slow a pri­
ority I activity on the other channel, but will not 
shut it out because the channels will alternate 
(assuming their priority bits are equal). A chained 
channel program will shut out any lower priority ac­
tivity on the other channel, including a channel 
attention. (The channel attention is latched by the 
lOP, however, so it will execute when the other 
channel drops to a lower priority.) Chained channel 
programs should therefore be used with discretion 
and should be made as short as possible. 

7.4 INPUT/OUTPUT 

The 8089 combines the programmed 1/0 capabilities 
of a CPU with the high-speed block transfer facility 
of a DMA controller. It also provides additional fea­
tures (e.g., compare and translate during DMA) and 
is more flexible than a typical CPU or DMA 
controller. The 8089 transfers data from a source ad­
dress to a destination address. Whether the compo­
nent mapped into a given address is actually 
memory or I/O is immaterial. All addresses in both 
the system and I/O spaces are equally accessible, and 
transfers may be made between the two spaces as 
well as within either address space. 

Programmed I/O 

A channel program performs I/O similar to the way 
a CPU communicates with memory-mapped I/O 
devices. Memory reference instructions perform the 
transfer rather than "dedicated" I/O instructions, 
such as the 8086,8088 IN and OUT instructions. Pro­
grammed I/O is typically used to prepare a device 
controller for a DMA transfer and to obtain 
statuslresult information from the controller follow­
ing termination of the transfer. It may, however, be 
used with any device whose transfer rate does not re­
quireDMA. 

I/O Instructions 

Since the 8089 does not distinguish between 
memory components and 1/0 devices, any instruc­
tion that accepts a byte or word memory operand 
can be Qsed to access an I/O device. Most memory 
reference instructions take a source operand or a 
destination operand, or both. The instructions gener­
ally obtain data from the source operand, operate on 
the data, and then place the result of the operation in 
the destination operand. Therefore, when a source 
operand refers to an address where an 1/0 device is 
located, data is input from the device. Similarly, 
when a destination operand refers to an I/O device 
address, data is output to the device. 

Table 7-4 Channel Switching Examples 

Channel A (Ran Last) Channel B 
Result 

Activity 
Chain Priority 

LOCK Activity 
Chain Priority 

Bit Bit Bit Bit 

DMA transfer X X Inactive Idle X X A runs. 
DMA transfer X X Inactive Channel attention X X A runs until end of current 

transfer cycle: then Bruns. 
Channel program X 0 Inactive Channel program X 1 Bruns. 
Channel program X 0 Inactive Channel program X 0 A and B alternate by 

instruction. 
Channel program 1 "X Inactive Channel program 0 X A runs. 
DMA transfer X 1 Inactive, Channel program 1 1 B runs one bus or internal 

, cycle following each bus cycle 
run by A.' 

Channel attention X X Inactive Channel program 1 X A runs if it has started the 
sequence: otherwise Bruns. 

DMA transfer X X Active Channel attention X X A runs until DMA terminates. 
Channel program 0 X Active DMA transfer X X A completes TSL instruction, 

(TSL instruction) LOCK goes inactive and B 
runs. 

'If transfer is synchronized, B also runs when A goes idle between transfer cycles. 
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Most 110 device controllers have one or more inter­
nal registers that accept commands and supply status 
or result information. Working with these registers 
typically involves: 

• reading or writing the entire register; 

• setting or clearing some bits in a register 
while leaving others alone; or 

• testing a single bit in a register. 

Table 7-5 shows some of the 8089 instructions that 
are useful for performing these kinds of operations. 
Section 7.5 covers the 8089 instruction set in detail. 

Table 7 -5 Memory Reference 
Instructions Used for I/O 

Instruction Effect on I/O Device 

MOV/MOVB Read or write word / byte 

AND/ANDB Clear multiple bits in word / byte 

OR/ORB Set multiple bits in word/byte 

CLR Clear single bit (in byte) 

SET Set single bit (in byte) 

JBT Read (byte) and jump if 
single bit =1 

JNBT Read (byte) and jump if 
single bit =0 

Device Addressing 

Since memory reference instructions are used to per­
form programmed 1/0, device addressing is very 
similar to memory addressing. An operand that 
refers to an I/O device always specifies one of the 

pointer registers GA, GB, or GC (PP is legal, but an 
110 device would not normally be mapped into a 
parameter block). The base address of the device is 
taken from the specified pointer register. Any of the 
memory addressing modes (see Section 7.6) may be 
used to modify the base address to produce the effec­
tive (actual) address of the device. The pointer regis­
ter's tag bit locates the device in the system space 
(tag=O) or in the 110 space (tag=l). If the device is 
in the 110 space, only the low-order 16 bits of the 
pointer register are used for the base address; all 20 
bits are used for a system space address. The lOP's 
system and 1/0 spaces are fully compatible with the 
corresponding address spaces of the other iAPX 
86,186 family processors. 

I/O Bus Transfers 

Table 7-6 shows the number of bus cycles the lOP 
runs for all combinations of bus size, transfer size 
(byte or word), and transfer address (even or odd). 
Bus width refers to the physical bus implementation; 
the instruction mnemonic determines whether a 
byte or a word is transferred. 

Both 8- and 16-bit devices may reside on a 16-bit 
bus. All 16-bit devices should be located at even ad­
dresses so that transfers will be performed in one 
bus cycle. The 8-bit devices on a 16-bit bus may be 
located at odd or even addresses. The internal regis­
ters in an 8-bit device on a 16-bit bus must be as­
signed all-odd or all-even addresses that are two 
bytes apart (e.g., IH, 3H, 5H, or 2H, 4H, 6H). All 
8-bit peripherals should be referenced with byte 
instructions, and 16-bit devices should be referenced 
with word instructions. Odd-addressed 8-bit devices 
must be able to transfer data on the upper eight bits 
of the 16-bit physical data bus. 

Only 8-bit devices should be connected to an 8-bit 
bus, and these should only be referenced with byte 
instructions. An 8-bit device on an 8-bit bus may be 
located at an odd or even address, and its internal 

Table 7 -6 Programmed I/O Bus Transfers 

Bus Width: 8 16 

Instruction: byte word' byte word 

Device Address: even odd even odd even odd even odd' 

Bus Cycles: 1 1 2 2 1 1 1 2 

• not normally used 
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registers may be assigned consecutive addresses 
(e.g., IH, 2H, 3H). Assigning all-odd or all-even 
addresses, however, will simplify conversion to a 
l6-bit bus at a later date. 

DMA Transfers 

In addition to byte- and word-oriented programmed 
110, the 8089 can transfer blocks of data by direct 
memory access. A block may be transferred between 
any two addresses; memory-to-memory transfers 
are performed as easily as memory-to-port, port­
to-memory or port-to-port exchanges. There is no 
limitation on the size of the block that can be trans­
ferred except that the block cannot exceed 64K 
bytes if byte count termination is used. A channel 
program typically prepares for a DMA transfer by 
writing commands to a device controller and initializ­
ing channel registers that are used during the 
transfer. No instructions are executed during the 
transfer, however, and very high throughput speeds 
can be achieved. . 

Preparing the Device Controller 

Most controllers that can perform DMA transfers 
are quite flexible in that they can perform several dif­
ferent types of operations. For example, an 8272 
Floppy Disk Controller can read a sector, write a 
sector, seek to track 0, etc. The controller typically 
has one or more internal registers that are 
"programmed" to perform a given operation. Often, 
certain registers will contain status information that 
can be read to determine if the controller is b'usy, if 
it has detected an error, etc. 

An 8089 channel program views these device regis­
ters as a series of memory locations. The channel 
program typically places the device's base address in 
a pointer register and uses programmed 110 to com­
municate with the registers. 

Some controllers start a DMA transfer immediately 
upon receiving the last of a series of parameters. If 
this type of controller is being used, the channel pro­
gram instruction that sends the last parameter 
should follow the 8089 XFER instruction. (The 
XFER instruction places the channel in DMA mode 
after the next instruction; this is explained in more 
detail later in this section). 

Preparing the Channel 

For a channel to perform a DMA transfer, it must 
be provided with information that describes the 
operation. The channel program provides this infor­
mation by loading values into channel registers and, 
in one case, by executing a special instruction (see 
Table 7-7). 

Source and destination pointers. One register is 
loaded to point to the transfer source; the other 
points to the destination. A bit in the channel control 
register is set to indicate which register is the source 
pointer. If a register is pointed at a memory location, 
it should contain the address where the transfer is to 
begin - i.e., the lowest address in the buffer. The 
channel automatically increments a memory pointer 
as the transfer proceeds. If the tag bit selects the I/O 
space, the upper four bits of the register are ignored; 
if the tag selects the system space, all 20 bits are 
used. The source and destination may be located in 
the same or in different address spaces. 

Translate Table Pointer. If the data is to be 
translated as it is transferred, GC should be pointed 
at the first (lowest-addressed) byte in a 256-byte 
translation table. The table may be located in either 
the system or 110 space, and GC should be loaded 
by an instruction that sets or clears its tag bit as 
appropriate. The translate operation is only defined 
for byte data; source and destination logical bus 
width must both be set to eight bits. 

Table 7 -7 DMA Transfer Control Information 

Information Register or Instruction Required or Optional 

Source Pointer GAorGB Required 
Destination Pointer GAorGB Required 
Translate Table Pointer GC Optional 
Byte Count BC Optional 
Mask/Compare Values MC Optional 
Logical Bus Width WID Optional' 
Channel Control CC Required 

'Must be executed once following processor RESET. 
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The channel translates a byte by treating it as an un­
signed 8-bit binary number. This number is added to 
the contents of register GC to form a memory 
address; GC is not altered by the operation. If GC 
points to the I/O space, its upper four bits are ignored 
in the operation. The byte at this address (which is in 
the translate table) is then fetched from memory, 
replacing the source byte. Figure 7-19 illustrates the 
translate process. 

TRANSLATE TABLE 
IN SYSTEM OR I/O SPACE 

00'001-..J3FJ4CJ .. J19JB7J 
GC • 

B : 
SOURCE BYTE I 

00202 ~ ______ J 
TRANSLATE ADDRESS 

_~_ TO DESTINATION 

TRANSLATED BYTE 

Figure 7 -1 9 Translate Operation 

Byte Count. If the transfer is to be terminated on 
byte count-i.e., after a specific number of bytes 
have been transferred-the desired count should be 
loaded into register BC as an unsigned 16-bit 
number. The channel decrements BC as the transfer 
proceeds, whether or not byte count termination has 
been specified. There are cases (discussed later in 
this section) where the difference between BC's 
value before and after the transfer does not accurate­
ly reflect the number of bytes transferred to the 
destination. 

Mask/Compare Values. If the transfer is to be ter­
minated when a byte (possibly translated) is found 
equal or unequal to a search value, MC. should be . 
loaded as described in Section 7.3. MC is not altered 
during the transfer. Normally, the logical destination 
bus width is set to eight bits when transferred data is 
being compared. If the logical destination width is 16 
bits, only the low-order byte of each word is 
compared. 

Logical Bus Width. The 8089 WID (logical bus 
width) instruction is used to set the logical width of 
the source and destination buses for a DMA 
transfer. Any bus whose physical width is eight bits 
can only have a logical width of eight bits. A 16-bit 
physical bus, however, can have a logical width of 8 
or 16 bits; i.e., it can be used as either an 8-bit or 
16-bit bus in any given transfer. Logical bus widths 
are set independently for each channel. 

For a transfer to or from an I/O device on a 16-bit 
physical bus, the logical bus width should be set 
equal to the peripheral's width; i.e., 8 or 16 bits. 
Transfers to or from 16-bit memory will run at maxi­
mum speed if the logical bus width is set to 16, since 
the channel will fetch/store words. In the following 
cases, however, the logical width should be set to 8: 

• the data is being translated, 

• the data is being compared under mask, and 
the 16-bit memory is the destination of the 
transfer. 

The WID instruction sets both logical widths and re­
mains in effect until another WID instruction is 
executed. Following processor reset, the settings of 
the logical bus widths are unpredictable. Therefore, 
the WID instruction must be executed before the 
first DMA transfer. 

Channel Control. The 16 bits of the CC register 
are divided into 10 fields that specify how the DMA 
transfer is to be executed (see Figure 7-20). A chan­
nel program typically sets these fields by loading a 
word into the register. When initializing or updating 
the CC register, the MOV or MOVI instruction 
must be used. 

The junction field (bits 15-14) identifies the source 
and destination as memory or ports· % devices). 
During the transfer, the channel increments 
source/destination pointer registers that refer to 
memory, so that the data will be placed in successive 
locations. Pointers that refer to I/O devices remain 
constant throughout the transfer. 

The translate field (bit 13) controls data translation. 
If it is set, each incoming byte is translated using the 
table pointed to by register GC. Translate is defined 
only for byte transfers; the destination bus must 
have a logical width of eight. 

The synchronization field (bits 12-11) specifies how 
the transfer is to be synchronized. Unsynchronized 
("free running") transfers are typically used in 
memory-to memory moves. The channel begins the 
next transfer cycle immediately upon completion of 
the current cycle (assuming it has the bUS). Slow 
memories, which cannot run as fast as the channel, 
can extend bus cycles by signaling "not ready" to 
the 8284A Clock Generator, which will insert wait 
states into the bus cycle. A similar technique may be 
used with peripherals whose speed exceeds the chan­
nel's ability to execute a synchronized transfer: in 
effect, the peripheral synchronizes the transfer 
through the use of wait states. Chapter 4 discusses 
synchronization in more detail. 
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7 

£. FUNCTION 
00 PORT TO PORT 
01 MEMORY TO PORT 
10 PORT TO MEMORY 
11 MEMORY TO MEMORY 

TR TRANSLATE 
o NO TRANSLATE 
1 TRANSLATE 

SYN SYNCHRONIZATION 
00 NO SYNCHRONIZATION 
01 SYNCHRONIZE ON SOURCE 
10 SYNCHRONIZE ON DESTINATION 
11 RESERVED BY INTEL 

S SOURCE 
o GA POINTS TO SOURCE 
1 GB POINTS TO SOURCE 

L LOCK 
o NO LOCK 
1 ACTUATE LOCK DURING TRANSFER 

C CHAIN 
o NO CHAINING 
1 CHAINED: RAISE TB TO PRIORITY 1 

TS TERMINATE ON SINGLE TRANSFER 
o NO·SINGLE TRANSFER TERMINATION 
1 TERMINATE AFTER SINGLE TRANSFER 

TX TERMINATE ON EXTERNAL SIGNAL 
00 NO EXTERNAL TERMINATION 
01 TERMINATE ON EXT ACTIVE; OFFSET = 0 
10 TERMINATE ON EXT ACTIVE; OFFSET = 4 
11 TERMINATE ON EXT ACTIVE; OFFSET = 8 

TBC TERMINATE ON BYTE COUNT 
00 NO BYTE COUNT TERMINATION 
01 TERMINATE ON BC = 0; OFFSET = 0 
10 TERMINATE ON BC = 0; OFFSET = 4 
11 TERMINATE ON BC = 0; OFFSET = 8 

TMC TERMINATE ON MASKED COMPARE 
000 NO MASK/COMPARE TERMINATION 
001 TERMINATE ON MATCH; OFFSET = 0 
010 TERMINATE ON MATCH; OFFSET = 4 
011 TERMINATE ON MATCH; OFFSET = 8 
100 (NO EFFECT) 
101 TERMINATE ON NON-MATCH; OFFSET = 0 
110 TERMINATE ON NON-MATCH; OFFSET = 4 
111 TERMINATE ON NON-MATCH; OFFSET = 8 

Figure 7-20 Channel Control Register Fields 
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Source synchronization is typically selected when 
the source is an I/O device and the destination is 
memory. The I/O device starts the next transfer 
cycle by activating the channel's DRQ (DMA 
request) line. The channel then runs one transfer 
cycle and waits for the next DRQ. 

Destination synchronization is most often used 
when the source is memory and the destination is an 
I/O device. Again, the I/O device controls the trans­
fer frequency by signaling on DRQ when it is ready 
to receive the next byte or word. 

The source field (bit 10) identifies register GA or GB 
as the source pointer (and the other as the destina­
tion pointer). 

The lock field (bit 9) may be used to instruct the 
channel to assert the processor's bus lock (LOCK) 
signal during the transfer. In a source-synchronized 
transfer, LOCK is active from the time the first 
DMA request is received until the channel enters 
the termination sequence. In a destination synchro­
nized transfer, LOCK is active from the first fetch 
(which precedes the first DMA request) until the 
channel enters the termination sequence. 

The chain field (bit 8) is not used during the transfer. 
As discussed previously, setting this bit raises chan­
nel program execution to priority level 1. 

The terminate on single transfer field (bit 7) can be 
used to cause the channel to run one complete trans­
fer cycle only - i.e., to transfer one byte or word 
and immediately resume channel program execu­
tion. When single transfer is specified, any other ter­
mination conditions are ignored. Single transfer 
termination can be used with low-speed devices, 
such as keyboards and communication lines, to 
translate and/or compare one byte as it is 
transferred. 

The three low-order fields in register CC instruct the 
channel when to terminate the transfer, assuming 
that single transfer has not been selected. Three 
termination conditions may be specified singly or in 
combination. 

External termination allows an 110 device (typically, 
the one that is synchronizing the transfer) to stop 
the transfer by activating the channel's EXT 
(external terminate) line. If byte count termination 
is selected, the channel will stop when BC=O. If 
masked compare termination is specified, the chan­
nel will stop the transfer when a byte is found that is 
equal or unequal (two options are available) to the 
low-order byte in MC as masked by MC's high-order 
byte. The byte that stops the termination is 
transferred. If translate has been specified, the 
translated byte is compared. 

When a DMA transfer ends, the channel adds a 
value called the termination offset to the task pointer 
and resumes channel program execution at that 
point in the program. The termination offset may 
assume a value of 0, 4, or 8. Single transfer termina­
tion always results in a termination offset of O. 
Figure 7-21 shows how the termination offsets can 
be used as indices into a three-element "jump table" 
that identifies the condition that caused the 
termination. 

As an example of using the jump table, consider a 
case in which a transfer is to terminate when 80 
bytes have been transferred or a linefeed character is 
detected, whichever occurs first. The program 
would load 50H into BC and OOOAH into MC 
(ASCII line feed, no bits masked). The channel pro­
gram could assign byte count termination an offset 
of 0 and masked compare termination an offset of 4. 
If the transfer is terminated by byte count (no line­
feed is found), the instruction at location TP + 0 
will be executed first after the termination. If the 
linefeed is found before the byte count expires, the 
instruction at TP + 4 will be executed first. The 
LJMP (long unconditional jump, see Section 7.5) in­
struction is four bytes long and can be placed at TP 
+ 0 and TP + 4 to cause the channel program to 
jump to a different routine, depending on how the 
transfer terminates. 
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.... -(COUL.D BE A DIFFERENT INSTRUCTION) 

(TP POINTS TO 1ST LJMP INSTRUCTION) '-__ _ 

LJMP OFFSET _O_CODE } 

L __ :r"".!I~LJ:::MP~C::F:::FS::E:-L-:4 __ ~CC::D:-E., THREE-ELEMENT JUMP TABLE 

TP+8 
LJMP OFFSET _8_CODE 

OFFSET _o_cOOEl ! 
eXECUTED IF TERMINATION T OFFSET = 0 J 

OFFSET _4 

OFFSET 8 

CCDEI 1 
EXECUTED IF TERMINATION T OFFSET = 4 T 

CCDEI 1 
eXECUTED IF TERMINATION T OFFSET. 8 T 

Figure 7-21 Termination Jump Table 
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If the transfer can only terminate in one way and 
that condition is assigned an offset of 0, there is no 
need for the jump table. Code which is to be un­
conditionally executed when the transfer ends can 
immediately follow the instruction after XFER.This 
is also the case when single transfer is specified 
(execution always resumes at TP + 0). 

It is possible, however, for two, or even three, termi­
nation conditions to arise at the same time. In the 
preceding example, this would occur if the 80th char­
acter were a linefeed. When multiple terminations 
occur simultaneously, the channel indicates that 
termination resulted from the condition with the lar­
gest offset value. In the preceding example, if byte 
count and search termination occur at the same 
time, the channel program resumes at TP + 4. 

Beginning the Transfer 

The 8089 XFER (transfer) instruction puts the chan­
nel into DMA transfer mode after the following in, 
struction has been executed. This technique allows 
the channel time to set itself up when it is used with 
device controllers, such as the 8272 Floppy Disk 
Controller, that begin transferring immediately 
upon receipt of the last in a series of parameters or 
commands. If the transfer is to or from such a 
device, the last parameter should be sent to the 
device after the XFER instruction. If this type of 
device is not being used, the instruction following 
XFER would typically send a "start" commalld to 
the controller. If a memory-to-memory transfer is 
being made, any instruction may follow XFER 
except one that alters GA, GB, or CC. The HLT in­
struction should normally not be coded after the 
XFER; doing so clears the channel's BUSY flag, but 
allows the DMA transfer to proceed. 

DMA Transfer Cycle 

A DMA transfer cycle is illustrated in Figure 7-22; a 
complete transfer is a series of these cycles run until 
a termination condition is encountered. The figure is 
deliberately simplified to explain the general opera­
tion of a DMA transfer; in particular, the updating 
of the source and destination pointer (GA and GB) 
can be more complex than the figure indicates. 
Notice that it is possible to start an unending transfer 
by not specifying a termination condition in CC or 
by specifying a condition that never occurs; it is the 
programmer's responsibility to ensure that the trans­
fer eventually stops. 

If the transfer is source-synchronized, the channel 
waits until the synchronizing device activates the 
channel's DRQ line. The other channel is free to run 
during this idle period. The channel fetches a byte or 
a word, depending on the source address (contained 
in GA or GB) and the logical bus width. Table 7-8 
shows how a channel performs the fetch/store se­
quence for all combinations of addresses and bus 
widths. If the destination is on a 16-bit logical bus 
and the source in on an 8-bit logical bus, and the 
transfer is to an even address, the channel fetches a 
second byte and assembles a word internally. During 
each fetch, the channel decrements BC according to 
whether a byte or word is obtained. Thus BC always 
indicates the number of bytes fetched. 

The channel samples its EXT line after every bus 
cycle in the transfer. If EXT is recognized after the 
first of two scheduled fetches, the second fetch is not 
run. After the fetch sequence has been completed, 
the channel translates the data if this option is speci­
fied in CC. 

If a word has been fetched or assembled, and bytes 
are to be stored (destination bus is eight bits or 
transfer is to an odd address), the channel disassem­
bles the word into two bytes. If the transfer is 
destination-synchronized (only one type of syn­
chronization may be specified for a given transfer), 
the channel waits for DRQ before running a store 
cycle. It stores a word or the lower-addressed byte 
(which may be the only byte or the first of two 
bytes). Table 7-8 shows the possible combinations of 
even/odd addresses and logical bus widths that 
define the store cycle. Whenever stores are to 
memory on a 16-bit logical bus, the channel stores 
words, except that bytes may be stored on the first 
and last cycles. 

Table 7 -8 DMA Transfer Assembly/Disassembly 

Address Logical Bus Width 
(Source ..... Source ..... Destination) 

Destination) 8 ..... 8 8 .... 16 16 ..... 8 16 ..... 16 

EVEN ..... EVEN B ..... B B/B ..... W W ..... B/B W ..... W 
EVEN ..... ODD B .... B B .... B W ..... B/B W .... B/B 
ODD .... EVEN B .... B B/B--+W B .... B B/B ..... W 
ODD ..... ODD B .... B B ..... B B ..... B B ..... B 

B= Byte Fetched or Stored in 1 Bus Cycle 
W= Word Fetched or Stored in 1 Bus Cycle 
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Figure 7-22 Simplified DMA Transfer Flowchart 

The channel samples EXT again after the first store 
cycle and, if it is active, the channel prevents the 
second store cycle from running. If specified in the 
CC register, the low-order byte is compared to the 
value in MC. A "hit" on the comparison (equal or 
unequal, as indicated in CC) also prevents the 
second of two scheduled store cycles from running. 
In both of these cases, one byte has been 
"overfetched," and this is reflected in BC's value. It 

would be unusual, however, for a synchronizing 
device to issue EXT in the midst of a DMA cycle. 
Note also that EXT is valid only when DRQ is 
inactive. Chapter 4 covers the timing requirements 
for these two signals in detail. 

GA and GB are updated next. Only memory pointers 
are incremented; pointers to 1/0 devices remain con­
stant throughout the transfer. 
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If a termination condition has occurred during this 
cycle, the channel stops the transfer. It uses the con­
tents of the CC register to assign a value to the 
termination offset, to reflect the cause of the 
termination. The channel adds this offset to TP and 
resumes channel program execution at the location 
now addressed by TP. This offset will always be 
zero, four, or eight bytes past the end of the instruc­
tion following the XFER instruction. 

If no termination condition is detected and. another 
byte remains to be stored, the channel stores this 
byte, waiting for DRQ if necessary, and updates the 
source and destination pointers. After the store, it 
again checks for termination. 

Following the Transfer 

A DMA transfer updates register BC, register GA 
(if it points to memory), and register GB (if it points 
to memory). If the original contents of these regis­
ters are needed following the transfer, the contents 
should be saved in memory prior to executing the 
XFER instruction. 

A program may determine the address of the last 
byte stored by a DMA transfer by inspecting the 
pointer registers as shown in Table 7-9. The number 
of bytes stored is equal to: 

iasLbyte-llddress-first_byte-llddress + 1. 

For port-to-port transfers, the number of bytes 
transferred can be determined by subtracting the 

final value of BC from its original value provided 
that: 

• the original BC > final BC, 

• a transfer cycle is not "chopped off" before it 
completes by a masked compare or external 
termination. 

-
In general, programs should not use the contents of 
GA, GB and BC following a transfer except as noted 
above and in Table 7-9. This is because the contents 
of the registers are affected by numerous conditions, 
particularly when the transfer is terminated by EXT. 
In particular, when a program is performing a se­
quence of transfers, it should reload these registers 
before each transfer. 

7.5 INSTRUCTION SET 

This section divides the lOP's 53 instruction into 
five functional categories: 

1) data transfer, 

2) arithmetic, 

3) logic and bit manipulation, 

4) program transfer, 

5) processor control. 

Table 7 -9 Address of Last Byte Store 

Termination Source Destination Synchronization Last Byte Stored 

memory memory any destination pointer' 
byte count memory port any source pOinter 

port memory any destination pointer 

memory memory any destination pointer 
masked compare memory port any source pOinter 

port memory any destination pointer 

memory memory unsynchronized destination pOinter 
external memory port destination source pOinter' 

port memory source destination pointer 

'Source pointer may also be used. 
'If transfer is BI B-W, source pOinter must be decremented by 1 to point to last byte transferred. 
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The description of each instruction in these catego­
ries explains how the instruction operates, and how 
it may be used in channel programs. Instructions 
that perform essentially the same operation (e.g., 
ADD and AD DB, which add words and bytes 
respectively), are described together. A reference 
table at the end of the section lists every instruction 
alphabetically and provides execution time, encoded 
length, and sample ASM-89 coding for each per­
missible operand combination. 

In reading this section, it is important to recall that 
the instruction set does not differentiate between 
memory addresses and I/O device addresses. In­
structions that are described as accepting byte and 
word memory operands may also be used to read 
and write 110 devices. 

Data Transfer Instructions 

These instructions move data between memory and 
channel registers. Traditional byte and word moves 
(including memory-to-memory) are available, as 
are special instructions that load addresses into 
pointer registers and update tag bits in the process. 

MOV destination, source 

MOV transfers a byte or word from the source to the 
destination. Four instructions are provided: 

Mav 
MaVB 
MaVI 
MaVBI 

Move Word Variable, 
Move Byte Variable, 
Move Word Immediate, 
Move Byte Immediate. 

Register is Destination 

Tag 19 15 7 0 

Figure 7-23 shows how these instructions affect 
register operands. Notice that when a pointer register 
is specified as the destination of a MOV, its tag bit is 
unconditionally set to 1. MOV instructions are there­
fore used to load 110 space addresses into pointer 
registers. 

MOVP destination, source 

MOVP (move pointer) transfers a physical address 
variable between a pointer register and memory. If 
the source is a pointer register, the contents of the 
20-bit pointer register and its tag bit are stored in 
three consecutive memory bytes beginning at the 
destination (memory location). If the source is a 
memory location, the three consecutive bytes begin­
ning at the source (memory location) are loaded 
into the 20-bit pointer register and its tag bit. MOVP 
is typically used to save and restore pointer registers. 
If the destination is a memory location, this memory 
location must be at an even address. 

LPD destination, source 

LPD (load pointer with doubleword) converts a dou­
bleword pointer to a 20-bit physical address and 
loads it into the destination, which must be a pointer 
register. The pointer register's tag bit is uncondition­
ally cleared to 0, indicating a system address. Two in­
structions are provided: 

LPD Load Pointer With Doubleword Variable 
LPDI Load Pointer With Doubleword Immediate 

An 8086 or 80186 can pass any address in its 
megabyte memory space to a channel program in 
the form of a doubleword pointer. The channel pro­
gram can access the location by using LPD to load 
the location address into a pointer register. 

Register is Source 

Tag 19 15 7 

Byte r 1 r. -­
Operation L 1 J LS ~ ~ sis S S S S S S SiR R R R R R R R I ~xJ0~~xlx X X X X X X XIT T T T T T TTl 

Word rlr-­
Operation L 1J LS ~ ~ siR R R R R R R R I R R R R R R R R I 

T = bit is transferred to destination operand 
R = bit is replaced by source operand 
S = bit is sign extension of high-order bit transferred 
X = bit is ignored 
1 = bit is unconditionally set 

Figure 7-23 Register Operands in MOV Instructions 
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Arithmetic Instructions 

The arithmetic instructions interpret all operands as 
unsigned binary numbers of 8, 16 or 20 bits. Signed 
values may be represented in standard two's comple­
ment notation with the high-order bit representing 
the sign (O=positive, I = negative). The processor, 
however, has no way of detecting an overflow into a 
sign bit, so this possibility must be provided for in 
the user's software. 

The 8089 performs arithmetic operations to 20 sig­
nificant bits as follows. Byte and word operands are 
sign-extended to 20 bits (e.g., bit 7 of a byte operand 
is propagated through bits 8-19 of an internal 
register). Sign extension does not affect the magni­
tude of the operand. The operation is then 
performed, and the 20-bit result is returned to the 
destination operand. High-order bits are truncated 
as necessary to fit the result in the available space. A 
carry out of, or borrow into, the high-order bit of 
the result is not detected. However, if the destination 
is a register that is larger than the source operand, 
carries will be reflected in the upper register bits, up 
to the size of the register. 

Figure 7-24 shows how the arithmetic instructions 
treat registers when they are specified as source and 
destination operands. 

ADD destination, source 

The sum of the two operands replaces the destina­
tion operand. Four addition instructions are 
provided. 

ADD 
ADDB 

Add Word Variable 
Add Byte Variable 

Register is Destination 

Tag 19 15 7 

ADDI Add Word Immediate 
ADDBI Add Byte Immediate 

INC destination 

The destination is incremented by 1. Two instruc­
tions are available: 

INC Increment Word 
INCB Increment Byte 

DEC destination 

The destination is decremented by 1. Word and byte 
instructions are provided: 

DEC 
DECB 

Decrement Word 
Decrement Byte 

Logical and Bit Manipulation Instructions 

The logical instructions include the boolean opera­
tors AND, OR, and NOT. Two bit manipulation in­
structions are provided for setting or clearing a 
single bit in memory or in an 110 device register. As 
shown in Figure 7-25, the logical operations always 
leave the upper four bits of 20-bit destination regis­
ters undefined. These bits should not be assumed to 
contain reliable values or the same values from one 
operation to the the next. Notice also that when. a 
register is specified as the destination of a byte 
operation, bits 8-15 are overwritten by bit 7 of the 
result. Bits 8-15 can be preserved in AND and OR in­
structions by using word operations in which the 
upper byte of the source operand is FFH or OOH, 
respectively. 

Register is Source 

Tag 19 15 7 
Byte 

Operation ~~~~~RIRRRRRRRRIRRRRRRRR I ~xj~~~xlxxxxxxxxlpppppppp I 

Word 
Operation ~xJ~~~RIRRRRRRRRIRRRRRRRR I ~x~~~~xlpppppppplpppppppp I 

x ~ bit is ignored in operation 
R ~ bit is replaced by operation result 
p ~ bit participates in operation 

Figure 7 - 24 Register Operands in Arithmetic Instructions 
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Register is Destination Register is Source 

Tag 19 15 7 0 Tag 19 15 7 o 
Byte r r. - - - ,--------..------..., 

Operation L~LU_U_U uis S S S S S S SiR R R R R R RR I [ xJ G ~ ~ X I X X X X X X X X I p p p p p p p p I 

Word r:J r-­
Operation LlSC:J~~ UIRR R R RR RRIR R R R RR RR I 

X = bit is ignored in operation 
U = bit is undefined following operation 
R = bit participates in operation and is replaced by result 
S = bit is sign-extension of high-order result bit 
P = bit participates in operation, but is unchanged 

Figure 7 -25 Register Operands in Logical Instructions 

AND destination, source 

The two operands are logically ANDed and the 
result replaces the destination operand. A bit in the 
result is set if the bits in the corresponding positions 
of the operands are both set; otherwise the result bit 
is cleared. The following AND instructions are 
available: 

AND 
ANDB 
AND! 
ANDBI 

Logical AND Word Variable 
Logical AND Byte Variable 
Logical AND Word Immediate 
Logical AND Byte Immediate 

AND is useful when more than one bit of a device 
register must be cleared while leaving the remaining 
bits intact. For example, ANDing an 8-bit register 
with EER only clears bits 0 and 4. 

OR destination, source 

The two operands are logically ORed, and the result 
replaces the destination operand. A bit in the result 
is set if either or both of the corresponding bits of 
the operands are set; if both operand bits are 
cleared, the result bit is cleared. Four types of OR in­
structions are provided: 

OR Logical OR Word Variable 
ORB Logical OR Byte Variable 
ORI Logical OR Word Immediate 
ORBI Logical OR Byte Immediate 

OR can be used to selectively set multiple bits in a 
device register. For example, ORing an 8-bit register 

with 30R sets bits 4 and 5, but does not affect the 
other bits. 

NOT destination/destina tion,source 

NOT inverts the bits of an operand. If a single oper­
and is coded, the inverted result replaces the original 
value. If two operands are coded, the inverted bits of 
the source replace the destination value (which must 
be a register), but the source retains its original 
value. In addition to these two operand forms, separ­
ate mnemonics are provided for word and byte 
values: 

NOT 
NOTB 

Logical NOT Word 
Logical NOT Byte 

NOT followed by INC will negate (create the two's 
complement of) a positive number. 

SETS destination, bit-select 

The bit-select operand specifies one bit in the 
destination, which must be a memory byte, that is 
unconditionally set to 1. A bit-select value of 0 speci­
fies the low-order bit of the destination while the 
high-order bit is set if bit-select is 7. SETB is handy 
for setting a single bit in an 8-bit device register. 

CLR des tina tion, bit-select 

CLR operates exactly like SETB except that the 
selected bit is unconditionally cleared to O. 
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Program Transfer Instructions 

Register TP controls the sequence in which channel 
program instructions are executed. As each instruc­
tion is executed, the length of the instruction is 
added to TP so that it points to the next sequential 
instruction. The program transfer instructions can 
alter this sequential execution by adding a signed dis­
placement value to TP. The displacement is con­
tained in the program transfer instruction and may 
be either 8 or 16 bits long. The displacement is 
encoded in two's complement notation, and the 
high-order bit indicates the sign (O=positive 
displacement, 1 = negative displacement). An 8-bit 
displacement may cause a transfer to a location in 
the range -128 through + 127 bytes from the end 
of the transfer instruction, while a l6-bit displace­
ment can transfer to any location within - 32,768 
through + 32,767 bytes. An instruction containing 
an 8-bit displacement is called a short transfer and 
an instruction containing a 16-bit displacement is 
called a long transfer. 

The program transfer instructions have alternate 
mnemonics. If the mnemonic begins with the letter 
"L," the transfer is long, and the distance to the 
transfer target is expressed as a 16-bit displacement 
regardless of how far away the target is located. If 
the mnemonic does not begin with "L," the 
ASM-89 assembler may build a short or long dis­
placement according to rules discussed in Section 
7.7. 

The "self-relative" addressing technique used by 
program transfer instructions has two important 
consequences. First, it promotes position­
independent code, i.e., code that can be moved in 
memory and still execute correctly. The only restric­
tion here is that the entire program must be moved 
as a unit so that the distance between the transfer in­
struction and its target does not change. Second, the 
limited addressing range of the instructions must be 
kept in mind when designing large (over 32K bytes 
of code) channel programs. 

CALLILCALL TPsave, target 

CALL invokes an out-of-line routine, saving the 
value of TP so that the subroutine can transfer back 
to the instruction following the CALL. The instruc­
tion stores TP and its tag bit in the TPsave operand, 
which must be a physical address variable at an even 
address, and then transfers to the target address 
formed by adding the target operand's displacement 
to TP. The subroutine can return to the instruction 
following the CALL by using a MOVP instruction to 
load TPsave back into TP. 

Notice that the 8089's facilities for implementing 
subroutines, or procedures, is less sophisticated 
than its counterparts in the 8086,88/80186,188. The 
principal difference is that the 8089 does not have a 
built-in stack mechanism. 8089 programs can imple­
ment a stack using a base register as a stack pointer. 
On the other hand, since channel programs are not 
subject to interrupts, a stack will not be required for 
most channel programs. 

JMP/LJMP target 

JMP causes an unconditional transfer (jump) to the 
target location. Since the task pointer is not saved, 
no return to the instruction following the JMP is 
implied. 

JZ/LJZ source, target 

JZ (jump if zero) effects a transfer to the target loca­
tion if the source operand is zero; otherwise the in­
struction following JZ is executed. Word and byte 
values may be tested by alternate instructions: 

JZ/LJZ 
JZB/LJZB 

Jump/Long Jump if Word Zero 
Jump/Long Jump if Byte Zero 

Ifthe source operand is a register, only the low-order 
16 bits are tested; any additional high-order bits in 
the register are ignored. To test the low-order byte 
of a register, clear bits 8-15 and then use the word 
form of the instruction. 

JNZ/LJNZ source, target 

JNZ operates exactly like JZ except that control is 
transferred to the target if the source operand does 
not contain all O-bits. Word and byte sources may be 
tested using these mnemonics: 

JNZ/LJNZ Jump/Long Jump if Word Not Zero 
JNZB/LJNZB Jump/Long Jump if Byte Not Zero 

JMCE/LJMCE source, target 

This instruction (jump if masked compare equal) ef­
fects a transfer to the target location if the source (a 
memory byte) is equal to the lower byte in register 
MC as masked by the upper byte in register MC. 
Figure 7-15 illustrates how O-bits in the upper halfof 
MC cause the corresponding bits in the lower half of 
MC and the source operand to compare equal, 
regardless of their actual values. For example, if bits 
8-15 of MC contain the value OlH, then the transfer 
will occur if bit 0 of the source and register MC are 
equal. This instruction is useful for testing multiple 
bits in 8-bit device registers. 
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JMCNE/LJMCNE source, target 

This instruction causes a jump to the target location 
if the source is not equal to the mask/compare value 
in MC. It otherwise operates identically to JMCE. 

JBT /LBJT source, bit-select, target 

1BT Gump if bit true) tests a single bit in the source 
operand and jumps to the target if the bit is a 1. The 
source must be a byte in memory or in an I/O device 
register. The bit-select value may range from 0 - 7, 
with 0 specifying the low-order bit. This instruction 
may be used to test a bit in an 8-bit device register. If 
the target is the JBT instruction itself, the operation 
effectively becomes "wait until bit is 0." 

JNBT /LJNBT source, bit-select, target 

This instruction operates exactly like JBT, except 
that the transfer is made if the bit is not true, i.e., if 
the bit is O. 

Processor Control Instructions 

These instructions enable channel programs to con­
trol lOP hardware facilities such as the LOCK and 
SINTRI-2 pins, logical bus width selection and the 
initiation of a D MA transfer. 

TSL destina tion, set-value, target 

Figure 7-26 illustrates the operation of the TSL (test 
and set while locked) instruction. TSL can be used 
to implement a semaphore variable that controls 
access to a shared resource in a multiprocessor 
system (see Volume 2). If the target operand speci­
fies the address of the TSL instruction, the instruc­
tion is repetitively executed until the semaphore 
(destination) is found to contain zero. Thus the 
channel program does not proceed until the 
resource is free. 

WID source-width, dest-width 

WID (set logical bus widths) alters bits 0 and I of 
the PSW, thus specifying logical bus widths for a 
DMA transfer. The operands may be specified as 8 
or 16 (bits), with the restriction that the logical 
width of a bus cannot exceed its physical width. The 
logical bus widths are undefined following a proces­
sor RESET; therefore the WID instruction must be 
executed before the first transfer. Thereafter the log­
ical widths retain their values until the next WID in­
struction or processor RESET. 

ACTIVATE 
LOCK 

FETCH 
DESTINATION 

ASSIGN 
SET-VALUE TO 
DES TINA TlON 

STORE 
DESTINA TlON 

DE-ACTIVATE 
~ 

NEXT SEQUENTIAL INSTRUCTION 

DE-ACTIVATE 
LOCK 

Figure 7-26 Operation of TSL Instruction 

XFER (no operands) 

XFER (enter DMA transfer mode after following 
instruction) prepares the channel for a DMA transfer 
operation. In a synchronized transfer, the instruction 
following XFER may ready the synchronizing device 
(e.g., send a "start" command or the last of a series 
of parameters). Any instruction, including NOP and 
WID, may follow XFER, except an instruction that 
alters GA, GB or Cc. 
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SINTR (no operands) Instruction Set Reference 
Information 

This instruction sets the interrupt service bit in the 
PSW and activates the channel's SINTR line if the 
interrupt control bit in the PSW is set. If the interrupt 
control bit is cleared (interrupts from this channel 
are disabled), the interrupt service bit is set, but 
SINTRI-2 is not activated. A channel program may 
use this instruction to interrupt a CPU. 

Table 7-12 lists every 8089 instruction alphabetically 
by its ASM-89 mnemonic. The ASM-89 coding 
format is shown (see Table 7-10 for an explanation 
of operand identifiers) along with the instruction 
name. For every combination of operand types (see 
Table 7-11 for key), the instruction's execution 
time, its length in bytes, and a coding example are 
provided. 

NOP (no operands) 

This instruction consumes clock cycles but performs 
no operation. As such, it is useful in timing loops. 

The instruction timing figures are the number of 
clock periods required to execute the instruction 
with the given combination of operands. At 5 MHz, 
one clock period is 200 ns; at 8 MHz a clock period is 
125 ns. Two timings are provided when an instruc­
tion operates on a memory word. The first (lower) 
figure indicates execution time when the word is 
aligned on an even address and is accessed over a 
16-bit bus. The second figure is for odd-addressed 
words on 16-bit buses and any word accessed via an 
8-bit bus. 

HLT (no operands) 

This instruction concludes a channel program. The 
channel clears its BUSY flag and then idles. 

Table 7 -10 Key to ASM-89 Operand Identifiers 

IDENTIFIER USED IN EXPLANATION 

destination data transfer, A register or memory location that may contain data operated on 
arithmetic, by the instruction, and which receives (is replaced by) the result 
bit manipulation of the operation. 

source data transfer, A register, memory location, or immediate value that is used in 
arithmetic, the operation, but is not altered by the instruction. 
bit manipulation 

target program transfer Location to which control is to be transferred. 

TPsave program transfer A 24-bit memory location where the address of the next sequen-
tial instruction is to be saved. 

bit-select bit manipulation Specification of a bit location within a byte; O=least-significant 
(rightmost) bit, 7=most-significant (leftmost) bit. 

set-value TSL Value to which destination is set if it is found O. 

source-width WID Logical width of source bus. 

dest-width WID Logical width of destination bus. 
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7.6 ADDRESSING MODES Instruction fetch time is shown in Table 7-l3 and 
should be added to the execution times shown in 
Table 7-12 to determine how long a sequence of in­
structions will take to run. (Section 7.3 explains the 
effect of the instruction queue on 16-bit instruction 
fetches.) External delays such as bus arbitration, 
wait states and activity on the other channel will in­
crease the elapsed time over the figures shown in 
Tables 7-12 and 7-l3. These delays are application 
dependent. 

8089 instruction operands may reside in registers, in 
the instruction itself, or in the system or I/O address 
spaces. Operands in the system and I/O spaces may 
be either memory locations or I/O device registers 
and may be addressed in four different ways. This 
section describes how the channel processes different 
types of operands and how it calculates addresses 
using its addressing modes. Section 7.7 describes the 
ASM-89 conventions that programmers use to speci­
fy these operands and addressing modes. 

Table 7 -11 Key to Operand Types 

IDENTIFIER EXPLANATION 

(no operands) No operands are written 

register Any general register 

ptr-reg A pOinter register 

immed8 A constant in the range O-FFH 

immed16 A constant in the range O-FFFFH 

mem8 An 8-bit memory location (byte) 

mem16 A 16-bit memory location (word) 

mem24 A 24-bit memory location (physical address pointer) 

mem32 A 32-bit memory location (doubleword pointer) 

label A label within -32,768 to +32,767 bytes of the end of the instruction 

short-label A label within -128 to +127 bytes of the end of the instruction 

0-7 A constant in the range: 0-7 

8/16 The constant 8 or the constant 16 

Table 7-12 Instruction Set Reference Data 

ADD destination, source Add Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 ADD BC, [GAl. LENGTH 
mem16, register 16/26 2-3 ADD [GB], GC 

7-35 210911 



THE80891NPUT/OUTPUTPROCESSOR 

Table 7-1 2 Instruction Set Reference Data (continued) 

ADDB destination, source Add Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ADDB GC, [GAj.N_CHARS 
mem8, register 16 2-3 ADDB [PPj.ERRORS,MC 

ADDBI destination, source Add Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ADDBI MC,lO 
mem8, immed8 16 3-4 ADDBI [PP+IX+j,2CH 

ADDI destination, source Add Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ADDI GB,OC25BH 
mem16, immed16 16/26 4-5 ADDI [GBj.POINTER,5899 

AND destination, source Logical AND Word Variable 

Operands Clocks Bytes Coding Example 

register, mem16 11/15 2-3 AND MC, [GAj.FLAG_WORD 
mem16, register 16/2.6 2-3 AND [GCj.STATUS, BC 

ANDB destination, source Logical AND Byte Variable 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 AND BC, [GCj 
mem8, register 16 2-3 AND [GA+IXj, GA 

ANDBI destination, source Logical AND Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 GA,OllOOOOOB 
mem8, immed8 16 3-4 [GC+IX], 2CH 

ANDI destination, source Logical AND Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 IX,OH 
mem16, immed16 16/26 4-5 [GB+IX],40H 
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Table 7 -1 2 Instruction Set Reference Data (continued) 

CALL TPsave, target Call 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 3-5 CALL [GC+IXj, GET_NEXT 

CLR destination, bit select Clear Bit To Zero 

Operands Clocks Bytes Coding Example 

mem8,0-7 16 2-3 CLR [GAJ,3 

DEC destination Decrement Word By 1 

Operands Clocks Bytes Coding Example 

register 3 2 
mem16 16/26 2-3 DEC [PPj.RETRY 

DECB destination Decrement Byte By 1 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 DECB [GA+IX+l 

HLT (no operands) Halt Channel Program 

Operands Clocks Bytes Coding Example 

(no operands) 11 2 HLT 

INC destination Increment Word by 1 

Operands Clocks Bytes Coding Example 

register 3 2 INC GA 
mem16 16/26 2-3 INC [GAl.COUNT 

INCB destination Increment Byte by 1 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 INCB [GBl.POINTER 

7-37 210911 



THE 80891NPUT/OUTPUT PROCESSOR 

Table 7 -1 2 Instruction Set Reference Data (continued) 

JBT source, bit-select, target Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 3-5 JBT [GA].RESULLREG, 3, DATA_VALID 

JMCE source, target Jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 3-5 JMCE [GBl.FLAG, STOP_SEARCH 

JMCNE source, target Jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

mem8,Iabei 14 3-5 JMCNE [GB+IX], NEXT_ITEM 

JMP target Jump Unconditionally 

Operands Clocks Bytes Coding Example 

label 3 3-4 JMP READ_SECTOR 

JNBT source, bit-select, target Jump If Bit Not True (0) 

Operands Clocks Bytes Coding Example 

mema, 0-7, label 14 3-5 JNBT [GCl. 3, RE_READ 

JNZ source, target Jump if Word Not Zero 

Operands Clocks Bytss Coding Example 

register, label 5 3-4 JNZ BC, WRITE_LINE 
mem16, label 12/16 3-5 JNZ [PP1.NUM_CHARS, PUT_BYTE 

JNZB source, target Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

mema, label 12 3-5 JNZB [GAl. MORE_DATA 

JZ source, target Jump if Word is Zero 

Operands Clocks Bytes Coding Example 

register, label 5 3-4 JZ BC, NEXT_LINE 
mem16, label 12/16 3-5 JZ [GC+IXl BUF _EMPTY 
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Table 7-12 Instruction Set Reference Data (continued) 

JZB source, target Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 3-5 JZB [PPJ.lINES_LEFT, RETURN 

LCALL TPsave, target Long Call 

Operands Clocks Bytes Coding Example 

mem24, label 17/23 4-5 LCALL [GCJ.RETURN_SAVE, INIT _8279 

LJBT source, bit-select, target Long Jump if Bit True (1) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJBT [GAJ.RESULT,1,DATA_OK 

LJMCE source, target Long jump if Masked Compare Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 4-5 LJMCE (GBl. BYTE_.FOUND 

LJMCNE source, target Long jump if Masked Compare Not Equal 

Operands Clocks Bytes Coding Example 

mem8, label 14 4-5 LJMCNE [GC+IX+J, SCAN __ NEXT 

LJMP target Long Jump Unconditional 

Operands Clocks Bytes Coding Example 

label 3 4 LJMP GET_CURSOR 

LJNBT source, bit-select, target Long Jump if Bit Not True (0) 

Operands Clocks Bytes Coding Example 

mem8, 0-7, label 14 4-5 LJNBT (GC], 6, CRCC_ERROR 

LJNZ source, target Long Jump if Word Not Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJNZ BC, PARTIAL_XMIT 
mem16, label 12/16 4-5 LJNZ [GA+IXJ, PUT_DATA 
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Table 7 -12 Instruction Set Reference Data (continued) 

LJNZe source, target Long Jump if Byte Not Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 4-5 LJNZB [GB+IX+]., BUMP _COUNT 

LJZ source, target Long Jump if Word Zero 

Operands Clocks Bytes Coding Example 

register, label 5 4 LJZ IX, FIRST _ELEMENT 
mem16, label 12/16 4-5 LJZ [GB].XMIT_COUNT, NO_DATA 

LJZe source, target Long Jump if Byte Zero 

Operands Clocks Bytes Coding Example 

mem8, label 12 4-5 LJZB [GAL RETURN_LINE 

LPD destination, source Load Pointer With Doubleword Variable 

Operands Clocks BXtes Coding Example 

ptr-reg, mem32 20/28* 2-3 LPD GA, [PP].BUF _START 

*20 clocks if operand is on even address; 28 if on odd address 

LPDI destination, source Load Pointer With Doubleword Immediate 

Operands Clocks Bytes Coding Example 

ptr-reg, immed32 12/16* 6 LPDI GB, DISK_ADDRESS 

*12 clocks if instruction is on even address; 16 if on odd address 

MOV destination, source Move Word 

Operands Clocks Bytes Coding Example 

register, mem16 8/12 2-3 MOV IX, [GC] 
mem16, register 10/16 2-3 MOV [GA].COUNT, BC 
mem16, mem16 18/28 4-6 MOV [GA].READING, [GB] 

Move destination, source Move Byte 

Operands Clocks Bytes Coding Example 

register, mem8 8 2-3 MOVB BC, [PP].TRAN_COUNT 
mem8, register 10 2-3 MOVB [PP].RETURN_CODE, GC 
mem8, mem8 18 4-6 MOVB [GB+IX+], [GA+IX+] 
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Table 7 -1 2 Instruction Set Reference Data (continued) 

MOVBI destination, source Move Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 MOVBI MC, 'A' 
mem8, immed8 12 3-4 MOVBI [PPl.RE5ULT,O 

MOVI destination, source Move Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 MOVI BC,O 
mem16, immed16 12/18 4-5 MOVI [GBl. OFFFFH 

MOVP destination, source Move Pointer 

Operands Clocks Bytes Coding Example 

ptr-reg, mem24 19/27- 2-3 MOVP TP, [GC+IXl 
mem24, ptr-reg 16/22- 2-3 MOVP [GBl.SAVE_ADDR, GC 

- First figure is for operand on even address; second is for odd-addressed operand. 

NOP (no operands) No Operation 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 NOP 

NOT destination / destination, source Logical NOT Word 

Operands Clocks Bytes Coding Example 

register 3 2 NOT MC 
mem16 16/26 2-3 NOT [GAl.PARM 
register, mem16 11/15 2-3 NOT BC, [GA+IXl 

NOTB destination/destination, source Logical NOT Byte 

Operands Clocks Bytes Coding Example 

mem8 16 2-3 NOTB [GAl.PARM_REG 
register, mem8 11 2-3 NOTB IX, [GBl.STATUS 

OR destination, source Logical OR Word 

Operands Clocks Bytes Coding Example 

register, mem16 11115 2-3 OR MC, [GCl.MASK 
mem16, register 16/26 2-3 OR [GCl, BC 
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Table 7 -1 2 Instruction Set Reference Data (continued) 

ORB destination, source Logical OR Byte 

Operands Clocks Bytes Coding Example 

register, mem8 11 2-3 ORB IX, [PP].POINTER 
mem8, register 16 2-3 ORB [GA+IX+l, GB 

ORBI destination, source Logical OR Byte Immediate 

Operands Clocks Bytes Coding Example 

register, immed8 3 3 ORBI IX, 00010001 B 
.mem8, immed8 16 3-4 ORBI [GB].COMMAND,OCH 

ORI destination, source Logical OR Word Immediate 

Operands Clocks Bytes Coding Example 

register, immed16 3 4 ORI MC,OFFODH 
mem16,immed16 16126 4-5 ORI [GAl, 1000H 

SETB destination, bit-select Set Bit to 1 

Operands Clocks Bytes Coding Example 

mem8,0-7 16 2-3 SETB [GA].PARM_REG,2 

SINTR (no operands) Set Interrupt Service Bit 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 SINTR 

TSl destination, set-value, target Test and SetWhile Locked 

Operands Clocks Bytes Coding Example 

mem8, immed8, short-label 14/16* 4-5 TSL [GA].FLAG, OFFH, NOT __ READY 

*14 clocks if destination * 0; 16 clocks if destination = 0 

WID source-width, dest-width Set Logical Bus Widths 

Operands Clocks Bytes Coding Example 

8/16,8116 4 2 WID 8,8 

XFER (no operands) Enter DMA Transfer Mode After Next Instruction 

Operands Clocks Bytes Coding Example 

(no operands) 4 2 XFER 
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Table 7 -13 Instruction Fetch Timings 
(Clock Periods) 

BUSWIDTH 
INSTRUCTION 

LENGTH 16 
(BYTES) 

8 
(1 ) (2) 

2 14 7 11 
3 18 14 11 
4 22 14 15 
5 26 18 15 

Register and Immediate Operands 

Registers may be specified as source or destination 
operands in many instructions. Instructions that 
operate on registers are generally both shorter and 
faster than instructions that specify immediate or 
memory operands. 

Immediate operands are data contained in instruc­
tions rather than in registers or in memory. The data 
may be either 8 or 16 bits in length. The limitations 
of immediate operands are that they may only serve 
as source operands and that they are constant values. 

Memory Addressing Modes 

Whereas the channel has direct access to register 
and immediate operands, operands in the system 
and I/O space must be transferred to or from the 
lOP over the bus. To do this, the lOP must calculate 
the address of the operand, called its effective ad­
dress (EA). The programmer may specify that an 

rOO 

operand's address be calculated in any of four dif­
ferent ways; these are the 8089's memory addressing 
modes. 

Effective Address 

An operand in the system space has 20-bit effective 
address, and an operand in the I/O space has a 16-bit 
effective address. These addresses are unsigned 
numbers that represent the distance (in bytes) of the 
low-order byte of the operand from the beginning of 
the address space. Since the 8089 does not "see" the 
segmented structure of the system space that it may 
share with an 8086,88 or an 80186,188, the 8089 ef­
fective addresses are equivalent to 8086,88/80186,-
188 physical addresses. 

All memory addressing modes use the content of 
one of the pointer registers, and the state of that 
register's tag bit determines whether the operand 
lies in the system or the 110 space. If the operand is 
in the I/O space (tag= 1), bits 16-19 of the pointer 
register are ignored in the effective address 
calculation. Volume 2 describes the two fields (AA 
and MM) in the encoded machine instruction that 
specify the addressing mode and base (pointer) 
register. 

Base AddreSSing 

In based addressing (Figure 7-27), the effective ad­
dress is taken directly from the contents of GA, GB, 
GC or PP. Using this addressing mode, one instruc­
tion may access different locations if the register is 
updated before the instruction executes. LPD, 
MOV, MOVP or arithmetic instructions might be 
used to change the value of the base register. 

R/B/P WB AA W OPCODE MM MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB 
OR 

GC 
OR 

PP 

Figure 7-27 Based Addressing 
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Offset Addressing 

In this mode (Figure 7-28), an 8-bit unsigned value 
contained in the instruction is added to the contents 
of a base register to form the effective address. The 
offset mode provides a convenient way to address 
elements in structures (a parameter block is a typical 

example of a structure). As shown in Figure 7-29, a 
base register can be pointed at the base (first 
element) in the structure, and then different offsets 
can be used to access the elements within the 
structure. By changing the base address, the same 
structure can be relocated elsewhere in memory. 

MM MACHINE INSTRUCTION FORMAT 

GA 
OR 

GB 

OR 

GC 
OR 

PP 

--+---"+ 

Figure 7·28 Offset Addressing 

, 
HIGH ADDRESSES 

,.....---~+ 6 ERROR I LINECT 

+4 BUFF _PTR 

+ 2 POSITIONICURSOR 

r-
I ----r--o-l r - ... + 0 END_BUS 

I I 
I I 

LOW ADDRESSES 
f., 

I I 
I I 
I EA I 
I I L _______________ ~ 

Figure 7·29 Accessing a Structure with Offset Addressing 
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Indexed Addressing 

An indexed address is formed by adding the contents 
of register IX (interpreted as an unsigned quantity) 
to a base register as shown in Figure 7-30. Indexed 
addressing is often used to access array elements 

R/B/P WB AA W OPCODE MM 

(see Figure 7-3 I). A base register locates the begin­
ning of the array and the value in IX selects one 
element, i.e., it acts as the array subscript. The ith 
element of a byte array is selected when IX contains 
(i - 1). To access the ith element of a word array. IX 
should contain (ith -1)*2). 

MACHINE INSTRUCTION FORMAT 

GA 

OR 

GB 

-i OR + IX 

GC 

OR 

PP 

Figure 7 -30 Indexed Addressing 

r 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

IX 

I 

I 

EA I 

'r HIGH ADDRESSES r 

ARRAY (9) 

ARRAY (8) 

ARRAY (7) 

ARRAY (6) 

ARRAY (5) 

~ ARRAY (4) 

ARRAY (3) 

ARRAY (2) 

ARRAY (1) 

------ ARRAY (0) 

!-1WORD_ 

h " LOW ADDRESSES 

Figure 7-31 Accessing a Word Array with Indexed Addressing 
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Indexed Auto-Increment Addressing 

In this variation of indexed addressing, the effective 
address is formed by summing IX and a base 
register; IX is then incremented automatically. (See 
Figure 7-32.) The incrementing takes place after the 
EA is calculated. IX is incrementeq by 1 for a byte 
operation, by 2 for a word operation, by 3 for a 
MOVP instruction, and by 4 for a LPD instruction. 
This addressing mode is very useful for "stepping 
through" successive elements of an array (e.g., a 
program loop that sums an array). 

7.7 PROGRAMMING FACILITIES 

The compatibility of the 8089 with the 8086,88 and 
80186,188 extends beyond the hardware interface. 
Comparing Figure 7-33 with Figure 2-45, one can 
see that, except for the translate step, the software 
development process is identical for both 8086/8088 
and 8089 programs. The ASM-89 assembler pro­
duces a relocatable object module that is compatible 
with the 8086 family software development utilities 

r 11 

LIB-86, LINK-86, LOC-86 and OH-86, described in 
Section 2-9. All of these development tools run on 
an INTELLEC R 800 or Series II and III micro­
computer development system. 

This section surveys the facilities of the ASM -89 as­
sembler and discusses how LINK-86 and LOC-86 
can be used in 8089 software development. For a 
complete description of the 8089 assembly language, 
consult 8089 Macro Assembly User's Guide, Order 
No. 9800938, available from Intel's Literature 
Department. 

ASM-89 

The ASM-89 assembler reads a disk file containing 
8089 assembly language statements, translates these 
statements into 8089 machine instructions, and 
writes the result into a second disk file. The assembly 
input is called a source module, and the principal 
output is a relocatable object module. The assembler 
also produces a file that lists the module and flags 
any errors detected during the assembly. 

IR/B/P WB AA wi OPCODE MM J MACHINE INSTRUCTION FORMAT 

GA 

f-- OR -
GB 

I I OR IX 
GC 

f-- OR - • 
pp I 

I 
I 

I I 
I 

EA I 
I 

I 
I 

1.-0~ IX DELTA I 

Figure 7-32 Indexed Auto-Increment Addressing 
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(FROM PL/M·ae' ASM4e TRANSLATORS) 

UPDATE 
LIBRARIES 

Figure 7-33 8089 Software Development Process 

Statements 

Statements are the building blocks of ASM-89 
programs. Figure 7-34 shows several examples of 
ASM-89 statements. The ASM-89 assembler gives 
programmers considerable flexibility in formatting 
program statements. Variable names and labels 
(identifiers) may be up to 31 characters long, and 
the underscore C) character may be used to improve 
the readability of longer names (e.g., 
WAIT_UNTIL_READY). The component parts of 
statements (fields) need not be located at particular 
"columns" of the statement. Any number of blank 

; THIS STATEMENT CONTAINS A COMMENT FIELD ONLY 
ADDI BC.5 ; TYPICAL ASM89 INSTRUCTION 

ADDI BC, 5 ; NO "COLUMN" REQUIREMENTS 
MOV [GAI.STATUS, 
& 6 ; A CONTINUED STATEMENT 
SOURCE EQU GA ; A SIMPLE ASM89 DIRECTIVE 
LINE_BUFFER __ ADDRESS DO ; A LONG IDENTIFIER 

Figure 7-34 ASM-89 Statements 

7-47 

characters may separate fields and multiple identi­
fiers within the operand field. Long statements may 
be continued onto the next link by coding an amper­
sand (&) as the first character of the continued line. 

A statement whose first non-blank character is a 
semicolon is a comment statement. Comments have 
no affect on program execution and, in fact, are 
ignored by the ASM-89 assembler. Nevertheless, 
carefully selected comments are included in all well 
written ASM-89 programs. They summarize, anno­
tate and clarify the logic of the program where the 
instructions are too "microscopic" to make the oper­
ation of the program self-evident. 

An ASM-89 instruction statement (Figure 7-35) 
directs the assembler to build an 8089 machine 
instruction. The optional label field assigns a symbol­
ic identifier to the address where the instruction will 
be stored in memory. A labeled instruction can be 
the target of a program transfer; the transferring in­
struction specifies the label for its target operand. In 
Figure 3-35, the labeled instruction conditionally 
transfers to itself; the program will loop on this one 
instruction as long as bit 3 of the byte addressed by 
[GAl.STATUS is not true. The mnemonic field of 
an instruction statement specifies the type of 8089 
machine instruction that the assembler is to build. 
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The operand field may contain no operands or one 
or more operands as required by the instruction. 
Multiple operands are separated by commas and, 
optionally, by blanks. Any instruction statement 
may contain a comment field (comment fields are 
initiated by a semicolon). 

An ASM-89 directive statement (Figure 7-36) does 
not produce an 8089 machine instruction. Rather, a 
directive gives the assembler information to use 
during the assembly. For example, the OS (define 
storage) directive in Figure 7-36 tells the assembler 
to reserve 80 bytes of storage and to assign a symbol­
ic identifier (INPUT _BUFFER) to the first 
(lowest-addressed) byte of this area. The ASM-89 

II DEMO: I I JNBT I IIGAI.STArs.,.o,.a l I 

assembler accepts 14 directives; the more commonly 
used directives are discussed in this section. 

The first field in a directive may be a label or a 
name; individual directives may require or prohibit 
names, while labels are optional for directives that 
accept them. A label ends in a colon like an instruc­
tion statement label. However, a directive label 
cannot be specified as the target of a program 
transfer. A name does not have a colon. The second 
field is the directive mnemonic, and the assembler 
distinguishes between instructions and directives by 
this field. Any operands required by the directive are 
written next; multiple operands are separated by 
commas and, optionally, by blanks. A comment 
may be included in any directive by beginning the 
text with a semicolon. 

;WAIT UNTIL READY I 

[ CaMM'NTlaPTlaNAll 

OPERANDS (REQUIRED/PROHIBITED) 

MNEMONIC (REQUIRED) 

LABEL (OPTIONAL) 

Figure 7-35 ASM-89 Instruction Format 

• INPUT_BUFFER: I 

T 
80 I ;TERMINAL LINE STORED HEREJ 

L COMMENT (OPTIONAL) 

'--------- OPERANDS (REQUIRED/PROHIBITED) 

MNEMONIC (REQUIRED) 

L.... _______________ LABEL/NAME (REQUIRED/PROHIBITED) 

Figure 7-36 ASM-89 Directive Format 

7-48 210911 



THE 8089 INPUT/OUTPUT PROCESSOR 

Constants 

Binary, decimal, octal and hexadecimal numeric con­
stants (Figure 7-37) may be written in ASM-89 in­
structions and directives. The assembler can add and 
subtract constants at assembly time. Numeric 
constants, including the results of arithmetic 
operations, must be representable in 16 bits. Positive 
numbers cannot exceed 65,535 (decimal); negative 
numbers, which the assembler represents in two's 
complement notation, cannot be "more negative" 
than - 32,768 (decimal). 

Character constants are enclosed in single quote 
marks as shown in Figure 7-37. Strings of characters 
up to 255 bytes long may be written when initializing 
storage. Instruction operands, however, can only be 
one or two characters long (for byte and word in­
structions respectively). 

As an aid to program clarity, the EQU (equate) 
directive may be used to give names to constants 
(e.g., DISK-STATUS EQU OFF20H). 

Defining Data 

Four ASM-89 directives reserve space for memory 
variables in the ASM-89 program (see Figure 7-38). 
The DB, DW and DD directives allocate units of 
bytes, words and doublewords, respectively, initial­
ize the locations, and optionally label them so that 
they may be referred to by name in instruction 
statements. The label of a storage directive always 
refers to the first (lowest-addressed) byte of the area 
reserved by the directive. 

The DB and DW directives may be used to define 
byte- and word-constant scalars (individual data 
items) and arrays (sequences of the same type of 

item). For example, a character string constant 
could be defined as a byte array: 

SIGN_ON..MSG: DB 'PLEASE ENTER PASSWORD' 

The DD directive is typically used to define the ad­
dress of a location in the system space, i.e., a double­
word pointer variable. The address may be loaded 
into a pointer register with the LPD instruction. 

The DS directive reserves, and optionally names, 
storage in units of bytes, but does not initialize any 
of the reserved bytes. DS is typically used for RAM­
based variables such as buffers. As there is no special 
directive for defining a physical address pointer, DS 
is typically used to reserve the three bytes used by 
the MOVP instruction. 

Structures 

An ASM-89 structure is a map or template that gives 
names and relative locations to a collection of related 
variables that are called structure elements or 
members. Defining a structure, however, does not 
allocate storage. The structure is, in effect, overlaid 
on a particular area of memory when one of its ele­
ments is used as an instruction operand. Figure 7 -39 
shows how a structure representing a parameter 
block could be defined and then used in a channel 
program. The assembler uses the structure element 
name to produce an offset value (structures are used 
with the offset addressing mode). Compared to 
"hard coded" offsets, structures improve program 
clarity and simplify maintenance. If the layout of a 
memory block changes, only the structure definition 
must be modified. When the program is 
reassembled, all symbolic references to the structure 
are automatically adjusted. When multiple areas of 
memory are laid out identically, a single structure 
can be used to address any area by changing the con­
tents of the pointer (base) register that specifies the 
structure's "starting address." 

MOVBI GA 'A' ; CHARACTER 
MOVBI GA: 41 H ; HEXADECIMAL 
MOVBI GA,65 ; DECIMAL 
MOVBI GA,65D ; DECIMAL ALTERNATIVE 
MOVBI GA,101Q ; OCTAL 
MOVBI GA,1010 ; OCTAL ALTERNATIVE 
MOVBI GA, 01000001 B ; BINARY 
; NEXT TWO STATEMENTS ARE EQUIVALENT AND 

ILLUSTRATE TWO'S COMPLEMENT REPRESENTATION 
, OF NEGATIVE NUMBERS 
MOVBI GA,-5 
MOVBI GA, 11111011 B 

Figure 7-37 ASM-89 Constants 
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; ASM89 DIRECTIVE ; MEMORY CONTENT (HEX) 
ALPHA: DB 1 i; 01 

DB -2 ; FE (TWO'S COMPLEMENT) 
DB 'A', '8' ; 4142 

BETA: OW 1 ; 0100 
OW -5 ; FAFF 
OW 'AB' ; 4241 
OW 400,500 I; 2410F401 
OW 400H,500H ; 00040005 

gamma: OW BETA ; OFFSET OF BETA ABOVE, 
; FROM BEGINNING OF PROGRAM 

DELTA DO GAMMA ; ADDRESS (SEGMENT & OFFSET) 
;OFGAMMA 

ZETA: OS 80 ; 80 BYTES, UNINITIALIZED 

Figure 7-38 ASM-89 Storage Directives 

MEMORY MAP 

OFFSETS, , HIGHER ADDRESSES 

+10 BUFFER_LEN 

+8 
BUFFER,_START 

+6 

+4 COMMAND I RESULT 

+2 
TP _ RESERVED 

LOWER ADDRESSES 

USING "HARD-CODED" OFFSETS 

LPD GA, [PPJ.6 
MOVBI [PPj,5,O 

h 

STRUCTURE DEFINITION 

PARM_BLOCK 
TP _RESERVED: 
COMMAND: 
RESULT: 
BUFFER __ START: 
BUFFER_LEN: 

PARM_BLOCK 

STRUC 
OS 4 
OS 1 
OS 1 
OS 4 
OS 2 
ENDS 

USING STRUCTURE ELEMENT NAMES 

LPD GA, [PPJ,BUFFER __ START 
MOVBI [PPJ.RESULT,O 

Figure 7-39 ASM-89 Structure Definition and Use 
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Addressing Modes 

Table 7-14 summarizes the notation a programmer 
uses to specify how the effective address of a 
memory operand is to be computed. Examples of 
typical ASM-89 coding for each addressing mode, as 
well as register and immediate operands, are provid­
ed in Figure 7-40. Notice that a bracketed reference 
to a register indicates that the contents of the register 
is to be used to form the effective address of a 
memory operand, while an unbracketed register 
reference specifies that the register itself is the 
operand. 

Table 7-14 ASM-89 Memory 
Addressing Mode Notation 

Notation Addressing Mode 

[ptr-reg) Based 
[ptr-reg ).offset Offset 
[ptr-reg + IX). Indexed 
[ptr-reg + IX +) Indexed Post Auto-increment 

ptr-reg 
offset 

GA, GB, GC or PP 
8-bit signed value; may be struc­
ture element 

The following examples summarize how the 
memory addressing modes can be used to access 
simple variables, structures and arrays. 

• If GA contains the address of a memory 
operand, then [GA] refers to that operand. 

• If G A contains the base address of a 
structure, then [GAl.DATA refers to the 
DATA element (field) in that structure. If 
DATA is six bytes from the beginning of the 
structure, thel) [GA].6 refers to the same 
location. 

• If G A contains the starting address of an 
array, then [GA + IX] addresses the array 
element indexed by IX. For example, if IX 
contains the value 4H, the effective address 
refers to the fifth element of a byte array, or 
the third element of a word array. [GA + IX 
+ ] selects the same elements and additionally 
auto-increments IX by I (byte operation), 2 
(word operation), 3 (MOVP instruction), or 
4 (LPD instruction) in anticipation of access­
ing the next array element. 

Note that any pointer register could have been sub­
stituted for GA in the previous examples. 

Program Transfer Targets 

As discussed in Section 7.5, program transfer in­
structions operate by adding a signed byte or word 
displacement to the task pointer. Table 7-15 shows 
how the ASM-89 assembler determines the sign and 
size of the displacement value it places in a program 
transfer machine instruction. In the table, the terms 
"backward" and "forward" refer to the location of a 
label specified as a transfer target relative to the 
transfer instruction. "Backward" means the label 
physically precedes the instruction in the source 
module, and "forward" means the label follows the 
instruction in the source text. The distances are 
from the end of the transfer instruction; the distance 
to the instruction immediately following the transfer 
is 0 bytes. 

ADD I 
ADD 
ADDBI 
ADDB 
ADDB 
ADD 
ADDI 
ADDB 

GA,5 ; REGISTER, IMMEDIATE 
GC, [GB] ; REGISTER, MEMORY (BASED) 
[PP],10 ; MEMORY (BASED), IMMEDIATE 
IX, [GB].5 ; REGISTER, MEMORY (OFFSET) 
BC, [GC].COUNT ; REGISTER, MEMORY (OFFSET) 
[GC+ IX], BC ; MEMORY (INDEXED), REGISTER 
[GA+ IX+],5 ; MEMORY (INDEXED AUTO-INCREMENT), IMMED 
[PP].ERROR, [GAJ ; MEMORY (OFFSET), MEMORY (BASED) 

Figure 7-40 ASM-89 Operand Coding Examples 
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Table 7 -15 Program Transfer Displacement 

Target Location 

Mnemonic 
Direction Form 

Backward 
Forward 

Short Backward 
(e.g., JMP) Forward 

Backward 
Forward 

Backward 
Forward 

Long Backward 
(e.g., LJMP) Forward 

Backward 
Forward 

Two important points can be drawn from Table 7-15. 
First, a target must lie within 32K bytes of a transfer 
instruction; this should not prove restrictive except 
in very large programs. Second, one byte can be 
saved in the assembled instruction by writing the 
short mnemonic when the target is known to be 
within -128 through + 127 assembled bytes of the 
transfer. 

It is also important to note that a program transfer 
target must reside in the same module as the trans­
ferring instruction, i.e., the target address must be 
known at assembly time. 

Procedures 

An ASM-89 program may invoke an out-of-line 
procedure (subroutine) with the CALLILCALL 
instruction. The first instruction operand specifies a 
memory location where the contents of TP will be 
stored as a physical address pointer before control is 
transferred to the procedure. The procedure may 
return to the instruction following the CALL/­
LCALL by using the MOVP instruction to restore 
TP from the save area. Figure 7-41 illustrates one ap­
proach to procedure linkage. 

A channel program may use the first two words of 
its parameter block (pointed to by PP) as a task 
pointer save area. However, this is not recommend­
ed if there is any chance that the CPU will issue a 
"suspend" command to the channel; this command 
stores the current value of TP in the same location, 
possibly overwriting a return address. 

Distance 
'Dlsplacement 

Sign Bytes 

'128 - 1 
'127 + 1 
'32,768 - 2 
'32,767 Error 
>32,768 Error 
>32,767 Error 

'128 - 2 
'127 + 2 
'32,768 - 2 
'32,767 + 2 
>32,768 Error 
>32,767 Error 

As in any program transfer, the target of a 
CALLILCALL instruction must be contained in the 
same module and within 32K bytes of the 
instruction. 

Segment Control 

The relocatable object module produced by the 
ASM-89 assembler consists of a single logical 
segment. (A segment is a storage unit up to 64K 
bytes long; for a more complete description, refer to 
Sections 3.4 and 3.7). The ASM-89 SEGMENT and 
ENDS directives name the segment as shown in 
Figure 7-42. Typically, all instructions and most 
directives are coded in between these directives. The 
END directive, which terminates the assembly, is an 
exception. 

The LOC-86 utility can assign this logical segment to 
any memory address that is a physical segment boun­
dary (i.e., whose low-order four bits are DODO). In a 
ROM-based system, variable data (which must be in 
RAM) can be "clustered" together at one "end" of 
the program as shown in Figure 7-43. The ORG 
directive can then be used to force assembly of the 
variables to start at a given offset from the beginning 
of the segment (2,000 hexadecimal bytes in Figure 
7-43), As the figure shows, the segment can then be 
located so that instructions and constants fall into 
the ROM portion of memory, while the variable part 
of the segment is located in RAM. The entire 
segment, including any "unused" portions, of 
course, cannot exceed 64K bytes, 
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CALL SAVE: DS 3 ; TP SAVE AREA 

; SET UP TP SAVE AREA 
; NOTE:EXAMPLEASSUMESPROGRAM 
; IS IN 1/0 SPACE. USE LPDI 
; IF IN SYSTEM SPACE. 
; MOVI GC, CALLSAVE ; LOAD ADDRESS TO GC 
; CALL IT. 

LCALL [GC),DEMO 

HLT ; LOGICAL END OF PROGRAM 

; DEFINE THE PROCEDURE. 
DEMO: 
; PROCEDURE INSTRUCTIONS GO HERE. 
; NOTE: PROCEDURE MUST NOT UPDATE GC 
; AS IT POINTS TO THE RETURN ADDRESS. 

; RETURN TO CALLER. 
MOVP TP, [GC] 

Figure 7-41 ASM-89 Procedure Example 

CHANNEL1 SEGMENT ; START OF SEGMENT 

ASM89 SOURCE STATEMENTS 

CHANNEL1 ENDS 
END 

; END OF SEGMENT 
; END OF ASSEMBLY 

Figure 7-42 ASM-89 SEGMENT and ENDS Directives 
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DEMO: SEGMENT 
;CONSTANT DATA 

;INSTRUCTIONS 

ORG 2000H 
;VARIABLE DATA 

DEMO ENDS 
END 

HIGHER ADDRESSES 

" '~ 
(AVAILABL E) ,-------- t 
VARIABLES 

2000 . .:..:H~t-______ ""'_ 

(UNUSED) 
~~-----­

INSTRUCTIONS 
f--------

RAM 

ROM 

CONSTANTS 
~6~2T~~GHr.::~~T _1000H _______ _ 

(AVAILABLE) 

LOWER ADDRESSES 

Figure 7-43 Using the ASM-89 ORG Directive 

Intermodule Communication 

An ASM-89 module can make some of its addresses 
available to other modules by defining symbols with 
the PUBLIC directive. At a minimum, a channel 
program must make the address of its first instruc­
tion available to the CPU module that starts the 
channel program. Figure 7-44 shows an ASM-89 
module that contains three channel programs 
labeled READ, WRITE and DELETE. The example 
shows how a PLlM-86 program and an ASM-86 pro­
gram could define these "entry points" as EXTER­
NAL and EXTRN symbols respectively. When the 
modules are linked together, LINK-86 will match 
the externals with the publics, thus providing the 
CPU programs with the addresses they need. 

Conversely, an ASM-89 module can obtain the ad­
dress of a public symbol in another module by defin­
ing it with the EXTRN directive. An external 
symbol, however, can only appear as the initial 
value operand of a DD directive (see Figure 7-45). 
This effectively means that an ASM-89 program's 
use of external symbols is limited to obtaining the 
addresses of data located in the system space. Anoth­
er way of doing this, which may be preferable in 
many cases, is to have the CPU program system 
space addresses in the parameter block. 

Sample Program 

Figure 7-46 diagrams the logic of a sample ASM-89 

program; the code is shown in Figure 7-47. The pro­
gram reads one physical record (sector) from a dis­
kette drive controlled by an 8272 Floppy Disk 
Controller. No particular system configuration is im­
plied by the program, except that the 8272 resides in 
the IOP's I/O space. 

Hardware address decoding logic is assumed to be 
set up as follows: 

• reading location FFOOH selects the 8272 
status register, 

• writing location FFOOH selects the 8272 com­
mand register, 

• reading location FFOIH selects the 8272 
result register, 

• writing location FFOIH selects the 8272 
parameter register, 

• decoding the address FF04H provides the 
8272 DACK (DMA acknowledge) signal. 

The program uses structures to address the parame­
ter block and the 8272 registers. Register PP contains 
the address of the parameter block, and the program 
loads GC with FFOOH to point to the 8272 registers. 
The program's entry point (the label START) is 
defined as a PUBLIC symbol so that the CPU pro­
gram can place its address in the parameter block 
when it starts the program. 
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Register IX is used as a retry counter. If the transfer 
is not completed successfully (bit 3 of the 8272 result 
register ~ 0), the program retries the transfer up to 
10 times. 

Since the 8272 automatically requests a DMA trans­
fer upon receipt of the last parameter, this parameter 
is sent immediately following the XFER command. 

Linking and Locating ASM-89 
Modules 

The LINK-86 utility program combines multiple 
relocatable object modules into a single relocatable 
module. The input modules may consist of modules 
produced by any of the iAPX 86,88/186,188 family 
language translators; ASM-89, ASM-86, PLlM-86, 
PASCAL-86 or FORTRAN-86. LINK-86's principal 
function is to satisfy external references made in the 
modules. Any symbol that is defined with the 
EXTRN directive in ASM-89 or ASM-86 or is de­
clared EXTERNAL in PLlM-86 is an external 
reference, i.e., a reference to an address contained 

in another module. Whenever LINK-86 encounters 
an external reference, it searches the other modules 
for a PUBLIC symbol of the same name. If it finds 
the matching symbol, it replaces the external refer­
ence with the address of the object. 

The most common occurrence of an external refer­
ence in a system that employs one or more 8089s is 
the channel program address. In order for a CPU 
program to start a channel program, it must ensure 
that the address of the first channel program instruc­
tion is contained in the first two words of the 
parameter block. Since the channel program is as­
sembled separately, the translator that processes the 
CPU program will not typically know its address. If 
this address is defined as an external (see Figure 
7-44), LINK-86 will obtain the address from the 
ASM-89 channel program when the two are linked 
together. (The ASM-89 program must, of course, 
define the symbol in a PUBLIC directive.) 

Other external references may arise when one 
module uses data (e.g., a buffer) that is contained in 
another module, and (in PLlM-86 and ASM-86 
modules) when one module executes another 
module, typically by a CALL statement or 
instruction. 

ASM-89 MODULE DEFINES THREE PUBLIC SYMBOLS 

PUBLIC READ, WRITE, DELETE 

READ: ; ASM89 INSTRUCTIONS FOR "READ" OPERATION 

HLT 
WRITE: ; ASM89 INSTRUCTIONS FOR "WRITE" OPERATION 

HLT 
DELETE: ; ASM89 INSTRUCTIONS FOR "DELETE" OPERATION 

HLT 

Figure 7-44 ASM-89 PUBLIC Directive 
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PLlM-86 MODULE USES "WRITE" SYMBOL 

DECLARE (READ,WRITE,DELETE) POINTER EXTERNAL; 
DECLARE PARM$BLOCK STRUCTURE 

(TP$START POINTER, 
BUFFER$ADDR POINTER, 
BUFFER$LEN WORD); 

"SET UP "WRITE" CHANNEL OPERATION" 
PARM$BLOCK. TP$START = WRITE; 

ASM-86 MODULE USES "READ" SYMBOL 

EXTRN READ,WRITE,DELETE 

READ_PTR DD READ 
WRITE_PTR DD WRITE 
DELETE_PTR DD DELETE 

; PARM_BLOCK 
EVEN 

TP _START DD ? 
BUFFER_ADDRDD ? 
BUFFER_LEN DW? 

; FORCE TO EVEN ADDRESS 

; SET UP "READ" CHANNEL OPERATION 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTRTP _START, AX 
MOV AX, WORD PTR READ_PTR 
MOV WORD PTR TP _START + 2, AX 

; 1ST WORD 

; 2ND WORD 

Figure 7-44 ASM-89 PUBLIC Directive (continued) 
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When an 8089 module (or modules) is to be located 
in the system space, it may be linked together with 
PLlM-86 or ASM-86 modules as described above 
and shown in Figure 7-48. LINK-86 resolves exter­
nal references and combines the input modules into 
a single ~locatable object module. This module can 
be input to- LOC-86 (LOC-86 assigns final absolute 
memory addresses to all of the instructions and 
data). This absolute object module may, in turn, be 
processed by the OH-86 utility to translate the 
module into the hexadecimal format. This format 
makes the module readable (the records are written 
in ASCII characters) and is required by some PROM 
programmers and RAM loaders. Intel's Universal 
PROM Programmer (UPP) and iSBC 957TM Execu­
tion Package (loader) use the hexadecimal format. 

If the 8089 code is to reside in its I/O space, a dif­
ferent technique is required since separate absolute 
object modules must be produced for the system 
and I/O spaces. Figure 7-49 shows how to link and 
locate when there are external references between 
I/O space modules and system space modules. 

The normal link and locate sequence is followed and 
culminates in the production of an absolute module 
in hexadecimal format. Since the records in this file 
are human-readable, the file can be edited using the 
ISIS-II text editor. The editing task involves finding 
the 8089 I/O space records in the file, writing them 
to one file, and then writing the 8086,88/80186,188 
records (destined for the system space) to another 
file. MCS-86 ABSOLUTE OBJECT FILE FOR­
MATS, Order No. 9800921, available from Intel's 
Literature Department, describes the records in ab­
solute (including hexadecimal) object modules. 

When using the previous method, it is likely that 
LOC-86 will issue messages warning that segments 
overlap. For example, the 8089 code would typically 
be located starting at absolute location OH of the 1/0 
space. However, the 8086,881186,188 interrupt 
pointer table occupies these low memory addresses 
in the system space. Since LOC-86 has no way to 
know that the segment will ultimately be located in 
different address spaces, it wi\l warn of the conflict; 
the warning may be ignored. 

PLlM-86 PROGRAM DECLARES PUBLIC SYMBOL "BUFFER" 

DECLARE BUFFER (80) BYTE PUBLIC; 

ASM-89 PROGRAM OBTAINS ADDRESS OF PUBLIC SYMBOL "BUFFER" 

EXTRN BU FFER 

BUF _ADDRESS DD BUFFER 

LPD GA, BUF _ADDRESS ; POINT TO SYSTEM BUFFER 

Figure 7·45 ASM·89 EXTRN Directive 
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Figure 7-46 ASM-89 Sample Program Flow 

An alternative to linking the modules together and 
then separating them is to link system space 
modules separately from 110 space modules as 
shown in Figure 7-50. This approach avoids the 
manual edit of the absolute object module and the 
segment conflict messages from LOC-86. It 
requires, however, that modules in the two spaces 
not use the EXTRN/PUBLIC mechanism to refer to 
each other. Modules in the same space can define ex­
ternal and public symbols, however. 

External references from 110 space modules to 
system space modules can be eliminated if the CPU 
programs pass all system space addresses in parame­
ter blocks. In other words, a channel program can 
obtain any address in the system space if the address 
is in the parameter block. Using this approach allows 
the system space addresses to be changed during 
execution. If the addresses are constant values, they 

may also be altered as system development proceeds 
without relinking the channel programs. 

External references from system space modules to 
addresses in the 110 space may be eliminated by as­
signing the addresses values that are known at as­
sembly or compilation time. Figure 7-51 illustrates 
how the ASM-89 ORG directive can be used to force 
the first instruction (entry point) of a channel pro­
gram to an absolute address. In the case of the 
example, one module contains two entry points 
labeled "READ" and "WRITE." Assuming the 
module is located at absolute address OH in the 110 
space, the channel programs will begin at 200H and 
600H respectively. In the example, these values 
have been chosen arbitrarily; in a typical application 
they would be based on the length of the programs 
and the location of RAM and ROM areas. By starting 
the programs at fixed addresses that are known to 
the CPU programs that activate them, the channel 
programs can be reassembled without needing to 
relink the CPU programs. 

7.S PROGRAMMING CONSIDERATIONS 

This section provides two types of 8089 program­
ming information. A series of general guidelines, 
which apply to system and program design, is pre­
sented first. These guidelines are followed by specific 
coding examples that illustrate programming tech­
niques that may be applied to many different types 
of applications. 

Programming Guidelines 

The practices in this section are recommended to 
simplify system development and, particularly, for 
system maintenance and enhancement. Software 
that is designed in accordance with these guidelines 
will be adaptable to the changing environment in 
which most systems operate, and will be in the best 
position to take advantage of new Intel hardware 
and software products. 

Segments 

Although the lOP does not "see" the segmented or­
ganization of system memory, it should respect this 
logical structure. The lOP should only address the 
system space through pointers passed by the CPU in 
the parameter block. It should not perform arithmet­
ic on these addresses or otherwise manipulate them 
except for the automatic incrementing that occurs 
during DMA transfers. It is the responsibility of the 
CPU to pass addresses such that transfer operations 
do not cross segment boundaries. 
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8089 ASSEMbLeR 

ISIS-II 8089 ASS~MBLt:H Vl.0 ASSEMBLY OF MUUULE ~LUPPY 
OBJECT MODULE PLACED IN :FO:FLOPPY.OBJ 
ASSEMBLER INVOKED BY ASM89 FLOPPY.A89 

0000 

0000 
0004 
0008 
0009 
OOOA 
0008 

0000 
0001 
0002 

2 
3 
4 
5 
6 
7 
8 
9 

FLOPPY SEGMENT 
; ** * 
;'u 8089 PROGRAM TO READ SECTOR FROM FLOPPY DISK 
i*** 

;'" LAY OUT PARAMETER BLOCK. 
PARM BLOCK STRUC 

RESERVED TP: OS 
BUFF PTR: DS 
THACK: OS 
SECTOR: DS 
RETURN CODE: OS 
PARM SLOCK ENDS 

;"'LAY OUT 8271 
FLO PPY REGS 

COMMAND STAT: 
PARM RESULT: 
FLO PPY REGS 

DEVICE REGISTERS. 
STRUC 

OS 
DS 

ENDS 

HOD 
FF04 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
:l3 
34 
35 
3b 
37 
38 
39 
40 
41 
42 
"3 
44 
45 
4b 
47 
48 
49 
50 
51 
52 
53 
54 

;"'8271 ADDRESSES. 
FLOPPY REG ADDR EQU 
DACK 8271 EQU 

OFF DOH 
OFF04H 

;LOW-ADDRESSED REGISTER 
; DMA ACKNOWLE DGE 

0000 OA4F OA 00 

0004 B130 DADO 

0008 5130 DOFF 

OOOC EABA 00 FC 

0010 OA4E 00 12 

0014 0293 08 02CE 01 

001A u130 2088 

001E AOOO 

0020 238B 04 

;"'MAKE PROGRAM ENTHY POINT ADDRESS 
AVAILABLE TO OTHER MODULES. 

PUBLIC START 

;"'CLEAR RETURN CODE IN PARAMETER BLOCK. 
START: MOVSI [PPJ.RETURN CODE,O 

;"'INITIALIZE RETRY COUNT. 
MOVI IX,10 

;"'POINT GC AT Low-bRDER 8271 REGISTER. 

·"*"SEND 
~***WAIT 
RETRY: 
;***SEND 

MOVI GC,FLOPPY REG ADDR 

COMMAND SEQUENCE TO 8271, HOLDING FINAL PARM. 
UNTIL 8271 IS NOT BUSY. 

JNBT [GCJ.COMMAND STAT,7,RETRY 
"READ SECTOR, DRIVE O· COMMAND. 

MOVSI [GeJ.COMMAND STAT,012H 
;"'SEND TRACK ADDRESS PARAMETER. 

MOVB [GCJ.PARM RESULT,[PPJ.TRACK 

;"'LOAD CHANNEL CONTROL REGISTER SPECIFYING: 
FROM PORT TO MEMORY, 
SYNCHRONIZE ON SOURCE, 
GA POINTS TO SOURCE, 
TERMINATE ON EXT, 
TERMINATION OFFSET O. 

MOVI CC,08820H 

55 ; "'SET SOURCE BUS = 8, DEST BUS = 16. 
56 WID 8,16 
57 
58 ;"'POINT GB AT DESTINATION, GA AT SOURCE. 
59 LPD liB,[PPJ.BUFF PTR 

Figure 7-47 ASM-89 Sample Program 
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0023 1130 04FF 60 MOVI GA,DACK8271 
01 
02 ;"'INSURE THAT 8271 IS READY FOR LAST PARAMETER. 

0027 AABA 00 FC 63 WAIT1: JNBT [GCJ.COMMAND_STAT,5,WAITl 
64 
05 ;"'PREPARE FOR DMA. 

002B 6000 06 XFER 
67 
08 ;"'START DMA BY SENDING FINAL PARAMETER TO 8271. 

002D 0293 09 02CE 01 09 MOVB [GC J. PARM_HESULT, [PP). SECTOR 
70 
'f 1 ;"'PROGRAM RESUMES HERE FOLLOWING EXT. 
72 
73 ;"'IF TRANSFER IS OK THEN EXIT, ELSE TRY AGAIN. 

0033 6ABE 01 05 74 JET [GCJ.PARM RESULT,3,EXIT 
75 
76 ;"'DECREMENT RETRY COUNT. 

0037 A03C 77 DEC IX 
78 
79 ;"'TRY AGAIN IF COUNT NOT EXHAUSTED. 

0039 A840 DO 80 JNZ IX, RE1'RY 
81 
82 ;···WAIT UNTIL 8271 IS NOT BUSY. 

003C EABA 00 FC 83 EXIT: JNBT [GC J. COMMAND STAT,7,EXIT --84 
85 ;···SEND "READ RESULT" COMMAND TO 8271. 

0040 OA4E 00 2C 86 MOVBI [GCJ.COMMAND_STAT,02CH 
87 
88 ; "'WAIT FOR RESULT. 

0044 8ABA 00 FC 89 WAIT2: JNBT [GC J. COMMAND STAT, 4, WAIT2 
90 
91 ;1tttttPOST RESULT IN PARAMETER BLOCK FOR CfU. 

0048 0292 01 02CF OA 92 MOVB [PP).RETURN_CODE,[GCJ.PARM RESULT 
93 
94 ;"'INTERRUPT CPU. 

004E 4000 95 SINTR 
96 
97 ;"'STOP EXECUTION. 

0050 2048 98 HLT 
99 

0052 100 FLOPPY ENDS 
101 END 

SYMBOL TABLE 
------------

DEFN VALUE TYPE NAME 

10 0004 SYM BUFF PTR 
18 0000 SYM COMMAND STAT 
24 FF04 SYM DACK_8271 
83 003C SYM EXIT 

2 0000 SYM FLOPPY 
17 0000 STR FLOPPY REGS 
23 FFOO SYM FLOPPY-REG ADDR 

8 0000 STR PARMBLoCK 
19 0001 SYM PARM-RESULT 
9 0000 SYM RESERVED TP 

41 OOOC SYM RETRY 
13 OOOA SYM RETURN CODE 
12 0009 SYM SECTOR--
31 0000 PUB START 
11 0008 SYM TRACK 
63 0027 SYM WAIT 1 
89 0044 SYM WAIT2 

ASSEMBLY COMPLETE; NO ERRORS FOUND 

Figure 7-47 ASM-89 Sample Program (continued) 
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Figure 7 -48 Creating a Single Absolute Object Module 

Figure 7-49 Creating Separate Absolute Object Modules 
- External References in Relocatable Modules 

Figure 7-50 Creating Separate Absolute Object Modules 
- No External References in Relocatable Modules 

7-61 

TO SYSTEM 
SPACE 

TOSVSTEM 
SPACE 

TOIIO 
SPACE 

TO SYSTEM 
SPACE 

TallO 
SPACE 

210911 



THE80891NPUT/OUTPUTPROCESSOR 

ASM-89 ENTRY POINT DEFINITIONS 

ORG 200H 
READ: 

; INSTRUCTIONS FOR "READ" CHANNEL PROGRAM 

ORG 600H 
WRITE: 

; INSTRUCTIONS FOR "WRITE" CHANNEL PROGRAM 

ASM-86 DEFINITION OF ENTRY POINT ADDRESSES 

READ ADDR 
WRITE_ADDR 

DO 200H 
DO 600H 

PLlM-86 DECLARATION OF ENTRY POINT ADDRESSES 

DECLARE READ$ADDR POINTER; 
DECLARE WRITE$ADDR POINTER; 
READ$ADDR = 200H; 
WRITE$ADDR = 600H; 

Figure 7-51 Using Absolute Entry Point Addresses 

Self-Modifying Code 

Programs that alter their own instructions are diffi­
cult to understand and modify, and preclude placing 
the code in ROM. They may also inhibit compatibili­
ty with future Intel hardware and software products. 

Note also when the 8089 is on a 16-bit bus, its in­
struction fetch queue can interfere with the attempt 
of one instruction to modify the next sequential 
instruction. Although the instruction may be 
changed in memory, its unmodified first byte will be 
fetched from the queue rather than memory if it is 
on an odd address. The processor will thus execute a 
partially-modified instruction with unpredictable 
results. 
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1/0 System Design 

Section 2.l0 notes that 110 systems should be de­
signed hierarchically. Application programs "see" 
only the topmost level of the structure; all details 
pertaining to the physical characteristics and opera­
tion of I/O devices are relegated to lower levels. 
Figure 7-52 shows how this design approach might 
be employed in a system that uses an 8089 to per­
form I/O. The same concept. can be expanded to 
larger systems with multiple lOPs. 

The application system is clearly separated from the 
I/O system. No application programs perform lIO; 
instead they send an lIO request to the I/O 
supervisor. On systems with file-oriented I/O, the re­
quest might be sent to a file system that would then 
invoke the I/O supervisor.) The lIO request should 
be expressed in terms of a logical block of data-a 
record, a line, a message, etc. It should also be 
devoid of any device-dependent information such as 
device address, sector size, etc. 

The lIO supervisor transforms the application pro­
gram's request for service into a parameter block 
and dispatches a channel program to carry out the 
operation. The lIO supervisor controls the channels; 
therefore, it knows the correspondence between 
channels and lIO devices, the locations of CBs and 
channel programs, and the format of all of the 
parameter blocks. The lIO supervisor also coordi­
nates channel "events," monitoring BUSY flags and 
responding to channel-generated interrupt requests. 
The lIO supervisor does not, however, communi­
cate with lIO devices that are controlled by the 
channels. If the CPU performs some lIO itself (this 
should be restricted to devices other than those run 
by the channels), the I/O supervisor invokes the 
equivalent of a channel program in the CPU to do 
the physical lIO. Note that although the I/O supervi­
sor is drawn as a single box in Figure 7-52, it is likely 
to be structured as a hierarchy itself, with separate 
modules performing its many functions. 

The software interface between the CPU's lIO super­
visor and an lOP channel program should be com­
pletely and explicitly defined in the parameter block. 
For example, the I/O supervisor should pass the ad­
dresses of all system memory areas that the channel 
program will use. The channel program should not 
be written so that it "knows" any of these addresses, 
even if they are constants. Concentrating the inter­
face into one place like this makes the system easier 
to understand and reduces the likelihood of an unde­
sirable side effect if it is modified. It also generalizes 
the design so that it may be used in other application 
systems. 

Figure 7 -52 shows a simple channel program running 
on channell and a more complex program running 
on channel 2. Channell's program performs a single 
function and is therefore designed as a simple 
program. The program. on channel 2 performs three 
functions (e.g., "read," "write," "delete") and is 
structured to separate its functions. The functions 
might be implemented as procedures called by the 
"channel supervisor" depending on the content of 
the parameter block. Notice that to the I/O supervi­
sor, both programs appear alike; in particular, both 
have a single entry point. 

In some channel programs, different functions will 
need different information passed to them in the 
parameter block. Figure 7-53 shows one technique 
that accommodates different formats while still al­
lowing the channel supervisor to determine which 
procedure to call from the PB. The parameter block 
is divided into fixed and variable portions, and a 
function code in the fixed area indicates the type of 
operation that is to be performed. Part of the fixed 
area has been set asede so that additional parameters 
can be added in the future. 

Programming Examples 

The first example in this section illustrates how a 
CPU can initialize a group of lOPs and then dispatch 
channel programs. The code is written in PL/M-86. 

The remaining examples, written in ASM-89, 
demonstrate the 8089 instruction set and addressing 
modes in various commonly encountered program­
ming situations. These include: 

• memory-to-memory transfers 

• saving and restoring registers 

Initialization and Dispatch 

The PLlM-86 code in Figure 7-54 initializes two 
lOPs and dispatches two channel programs on one of 
the lOPs. The same general technique can be used to 
initialize any number of lOPs. The hypothetical 
system that this code runs on is configured as 
follows: 
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• 8086 CPU 06-bit system bus); 

• two remote lOPs share an 8-bit local I/O bus 
via the request/grant lines operating in 
mode 1; 
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8089 channel attentions are mapped into four 
port addresses in the CPU's I/O space; 

channel programs reside in the 8089 I/O 
space; 

one 8089 controls a CRT terminal, one chan­
nel running the display, the other scanning 
the keyboard and building input messages; 

the function of the second 8089 is not defined 
in the example. 

I TP/CHANNEL STATE 
SAVE AREA 

o 

2 

FIXED 

The code declares one CB (channel control block) 
for each 8089. The CBs are declared as two-element 
arrays, each element defining the structure of one 
channel's portion of the CB. The SCB (system con­
figuration block) and SCP (system configuration 
pointer) are also declared as structures. The SCP is 
located at its dedicated system space address of 
FFFF6H. The other structures are not located at 
specific addresses since they are all linked together 
by a chain of pointers "anchored" at the SCPo 

Two simple parameter blocks define messages to be 
transmitted between the PLlM-86 program and the 
CRT. Each PB contains a pointer to the beginning of 
the message area and the length of the message. In 
the case of the keyboard (input) message, the chan­
nel program builds the message in the buffer pointed 
to by the pointer in the PB and returns the length of 
the message in the PB. 

FIXED PARM11 FUNCTION 
CODE 

FIXED PARM2 

FIXED PARM3 

For 4 

6 

8 

The code initializes one lOP at a time since the chain 
of control blocks read by the lOP during initialization 
must remain static until the process is complete. To 
initialize the first lOP, the code fills in the SYSBUS 
and SOC fields and links the blocks to each other 
using the PLiM -86 @ (address) operator. It sets 
channel l's BUSY flag to FFH so that it can monitor 
the flag to determine when the initialization has 
been completed (the lOP clears the flag to OH when 
it has finished). Channel2's BUSY flag is cleared, al­
though this could just as well have been done after 
the initialization (the lOP does not alter channel 2's 
BUSY flag during initialization). The code starts the 
lOP by issuing a channel attention to channell to in­
dicate that the lOP is a bus master. PLlM-86's OUT 
function is used to select the port address to which 
the lOP's CA and SEL lines have been mapped. The 
data placed on the bus (OH) is ignored by the lOP. It 
then waits until the lOP clears the channel I BUSY 
flag. 

RESERVED FOR 
FUTURE USE I 10 

12 

VARIABLE 

VARIABLE PARAMETER 

," FORMAT AND SIZE ," FOR1MAT GOVERNED BY 

lr~ ____ F_U_N_C_T_IO_N __ C_O_D_E __ ... :r 
Figure 7 ·53 Variable Format Parameter Block 

I*ASSIGN NAMES TO CONSTANTS* I 
DECLARE CHANNEL$BUSY 
DECLARE CHANNEL$CLEAR 
DECLARE CR I*CARR. RET.*I 
DECLARE LF I*LlNE FEED* I 
DECLARE DISPLAY$TB 
DECLARE KEYBD$TB 

LlTERALLY'OFFH'; 
LlTERALLY'OH'; 
LITERALLY 'ODH'; 
LlTERALLY'OAH'; 
LITERALLY '200H'; 
LITERALLY '600H'; 

Figure 7·54 Initialization and Dispatch Example 
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DECLARE '*IOP CHAN N EL ATTENTION ADDRESSES * , 
IOP$A$CH1 LITERALLY 'OFFEOH', 
IOP$A$CH2 LITERALLY 'OFFE1 H', 
IOP$B$CH1 LITERALLY 'OFFE2H', 
IOP$B$CH2 LITERALLY 'OFFE3H'; 

DECLARE I*CHANNEL CONTROL BLOCK FOR 10P$A) 
CB$A(~ STRUCTURE 
(CCW BYTE 
BUSY BYTE 
PB$PTR POINTER 
RESERVED WORD); 

DECLARE I*CHANNEL CONTROL BLOCK FOR 10P$B' I 
CB$B(2) STRUCTURE 
(CCW BYTE 
BUSY BYTE 
PB$PTR POINTER 
RESERVED WORD); 

DECLARE I*SYSTEM CONFIGURATION BLOCK"; 
SCB STRUCTURE 
(SOC BYTE 
RESERVED BYTE 
CB$PTR POINTER); 

DECLARE /*SYSTEM CONFIGURATION POINTER'; 
SCP STRUCTURE 
(SYSBUS BYTE 
RESERVED BYTE, 
SCB$PTR POINTER) AT (OFFFF6H); 

DECLARE MESSAGE$PB STRUCTURE 
(TB$PTR POINTER, 
MSG$PT-R POINTER, 
MSG$LENGTH WORD); 

DECLARE KEYBD$PB STRUCTUE 
(TP$PTR POINTER, 
BUFF_PTA POINTER, 
MSG$SIZE WORD); 

DECLARE SIGN$ON BYTE (*) DATA 
(CR, LF, 'PLEASE ENTER USER ID'); 

DECLARE KEYBD$BUFF BYTE (256); 

,* 
*INITIALIZE 10P$A, THEN 10P$B 

* , 

'*PREPARE CONTROL BLOCKS FOR 10P$A*' 
SCP .SCB$PTR = @ SCB; 
SCP.SYSBUS = 01H; '*16-BIT SYSTEM BUS*' 
SCB.SOC = 02H; '*RQ'GT MODE1, 8-BIT I/O BUS"' 
SCB.CB$PTR = @ CB$A(O); . 
CB$A(O).BUSY = CHANNEL$BUSY 
CB$A(1 ).BUSY = CHANNEL$CLEAR; 

Figure 7 -54 Initialization and Dispatch Example (continued) 
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'"ISSUE CA FOR CHANNEL1, INDICATING lOP IS MASTER*' 
OUT (lOP$A$CH1) = OH; 

'"WAIT UNTIL FINISHED"' 
DO WHILE CB$A(O).BUSY = CHANNEL$BUSY; 

END; 

'"PREPARE CONTROL BLOCKS FOR 10P$B"' 
SCB.CB$PTR = @CB$B(O); 
CB$B(O).BUSY = CHANNEL$BUSY; 
CB$B(1).BUSY = CHANNEL$CLEAR; 

'"ISSUE CA FOR CHANNEL2, INDICATING SLAVE STATUS"' 
OUT (IOP$B$CH2) = OH; 

'"WAIT UNTIL lOP IS READY"' 
DO WHILE CB$B(O).BUSY = CHANNEL$BUSY; 

END; 

," 
'SEND SIGN ON MESSAGE TO CRT CONTROLLED 
"BY CHANNEL 1 OF 10P$A , , 

"WAIT UNTIL CHANNEL IS CLEAR, THEN SETTO BUSY', 
DO WHILE LOCKSET (@CB$A(O).BUSY, CHANNEL$BUSY); 

END; 

,'SETCCW AS FOLLOWS: 
" PRIORITY = 1, 

NO BUS LOAD LIMIT, 
DISABLE INTERRUPTS, 
START CHANNEL PROGRAM IN I/O SPACE', 

CB$A(O).CCW = 10011001 B; 

'"LINK MESSAGE PARAMETER BLOCK TO CB', 
CB$A(O).PB$PTR = @ MESSAGE$PB; 

'"FILL IN PARAMETER BLOCK', 
MESSAGE$PB.TB$PTR = DISPLAY$TB; 
MESSAGE$PB.MSG$PTR = @SIGN$ON; 
MESSAGE$PB. MSB$LENGTH = LENGTH (SIGN$ON); 

'"DISPATCH THE CHANNEL"' 
OUT (lOP$A$CH1) = OH; 

, ' 
'DISPATCH CHANNEL 2 OF 10P$ATO 
'CONTINUOUSLY SCAN KEYBOARD, INTERRUPTING 
"WHEN A COMPLETE MESSAGE IS READY 

"' "WAIT UNTIL CHANNEL IS CLEAR, THEN SET TO BUSY"' 
DO WHILE LOCKSET (@ CB$A(1).BUSY, CHANNEL$BUSY); 

END; 

Figure 7 -54 Initialization and Dispatch Example (continued) 
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I*SET CCW AS FOLLOWS: 
* PRIORITY = 0 

BUS LOAD LIMIT, 
ENABLE INTERRUPTS, 
START CHANNEL PROGRAM IN 1/0 SPACE* I 

CB$A(1).CCW = 00110001 B; 
I*LlNK KEYBOARD PARAMETER BLOCK TO CB* I 
CB$A(1).PB$PTR = @ KEYBD$PB; 
I*FILL IN PARAMETER BLOCK* I 
KEYBD$PB.TB$PTR = KEYBD$TB; 
KEYBD$PB.BUFF$PTR = @ KEYBD$BUFF; 
KEYBD$PB.MSG$SIZE = OH; 
I*DISPATCH THE CHANNEL * I 
OUT (IOP$A$CH2) = OH; 

Figure 7 -54 Initialization and Dispatch Example (continued) 

The second lOP is initialized in the same manner, 
first changing the pointer in the SCB to point to the 
second lOP's channel control block. If this lOP were 
on a different I/O bus, the SOC field would have 
been altered if a different request/grant mode were 
being used or if the lOP had a 16-bit 110 bus. The 
second lOP is a slave so its initialization is started by 
issuing a CA to channel 2 rather than channell. 

After both lOPs are ready, the code dispatches two 
channel programs (not coded in the example); one 
program is dispatched to each channel of one of the 
lOPs. To avoid external references, the system has 
been set up so that the PLlM-86 code "knows" the 
starting addresses of these channel programs (200H 
and 600H). The code uses the PLlM-86 LOCKSET 
function to: 

• lock the system bus; 

• read the BUSY flag; 

• set the BUSY flag to FFH ifit is clear; 

• unlock the system bus. 

This operation continues until the BUSY flag is 
found to be clear (indicating that the channel is 
available). Setting the flag immediately to FFH pre­
vents another processor (or another task in this pro­
gram activated as a result of an interrupt) from using 
the channel. The code fills in the parameter block 
with the address and length of the message to be 
displayed, sets the CCW and then links the channel 
program (task block) start address to the parameter 
block and links the parameter block to the CB. The 
channel is dispatched with the OUT function that ef­
fects a channel attention for channell. 

A similar procedure is followed to start channel 2 
scanning the terminal keyboard. In this case, the 
code allows channel 2 to generate an interrupt re­
quest (which it might do to signal that a message has 
been assembled). An interrupt procedure would 
then handle the interrupt request. 

Memory-to-Memory Transfer 

Figure 7-55 shows a channel program that performs 
a memory-to-memory block transfer in seven 
instructions. The program moves up to 64K bytes 
between any two locations in the system space. A 
16-bit system bus is assumed, and the CPU is as­
sumed to be monitoring the channel's BUSY flag to 
determine when the program has finished. 

To attain maximum transfer speed, the program 
locks the bus during each transfer cycle. This ensures 
that another processor does not acquire the bus in 
the interval between the DMA fetch and store 
operations. By setting this channel's priority bit in 
the CCW to 1 and the other Channel's to 0, the CPU 
could effectively prevent the other channel from 
running during the transfer. Byte count termination 
is selected so that the transfer will stop when the 
number of bytes specified by the CPU has been 
moved. Since there is only a single termination 
condition, a termination offset of 0 is specified. The 
transfer begins after the WID instruction, and the 
HLT instruction is executed immediately UP\ln 
termination. 
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Saving and Restoring Registers 

A CPU program can "interrupt" a channel program 
by issuing a "suspend" channel command. The chan­
nel responds to this command by saving the task 
pointer and PSW in the first two words of the 
parameter block. The suspended program can be res­
tarted by issuing a "resume" command that loads 
TP and the PSW from the save area. 

A more general solution is shown in Figure 7-56. 
This is a program that does nothing but save the con­
tents of the channel registers. The registers are 
saved in the parameter block because PP is the only 
register that is known to point to an available area of 
memory. A similar program could be written to re­
store registers from the same parameter block. 

Using this approach, the CPU would "interrupt" a 
running program as follows: 

If the CPU wants to execute another channel pro­
gram between the suspend and resume operations, 
the suspended program's registers will usually have 
to be saved first. If the "interrupting" program 
"knows" that the registers must be saved, it can per­
form the operation and also restore the registers 
before it halts. 

MEMEXAMP SEGMENT 

• suspend the running program, 

• run the register save program, 

• run the "interrupting" program, 

• run the register restore program, 

• resume the suspended program. 

;**MEMORY-TO-MEMORY TRANSFER PROGRAM" 
PB STRUC 
TP _RESERVED: DS 4 
FROM_ADDR: DS 4 
TO_AD DR: DS 4 
SIZE: DS 2 
PB ENDS 

;POINT GA AT SOURCE, GB AT DESTINATION. 
LPD GA, [PPl.FROM_ADDR 
LPD GB, [PP .TO_ADDR 

;LdAD BYTE COUNT INTO BC. 
MOV BC, [PPJ.SIZE 

;LOAD CC SPECIFYING: 
MEMORY TO MEMORY, 
NO TRANSLATE, 
UNSYNCHRONIZED, 
GA POINTS TO SOURCE, 
LOCK BUS DURING TRANSFER, 
NO CHAINING, 
TERMINATING ON BYTE COUNT,OFFSET = o. 

MOV CC, OC208H 
;PREPARE CHANNEL FOR TRANSFER. 

XFER 

;SET LOGICAL BUS WIDTH. 
WID 16,16 

;STOP EXECUTION AFTER DMA. 
HLT 

MEMEXAMP ENDS 
END 

Figure 7 -55 Memory-to-Memory Transfer Example 
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SAVEREGS SEGMENT 
;SAVE ANOTHER CHANNEL'S REGISTERS IN PB 
PB STRUC 
TP _RESERVED: DS 4 
GA_SAVE: DS 3 
GB_SAVE: DS 3 
GC_SAVE: DS 3 
IX_SAVE: DS 2 
BC_SAVE: DS 2 
MC_SAVE: DS 2 
CC __ SAVE: DS 2 
PB ENDS 

SAVEREGS 

MOVP 
MOVP 
MOVP 
MOV 
MOV 
MOV 
MOV 
HLT 
ENDS 
END 

Figure 7-56 Register Save Example 
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CHAPTER 8 
THE 80130 OPERATING SYSTEM 

FIRMWARE COMPONENT 

8.1 INTRODUCTION 

This chapter describes the 80130 'Operating System 
Firmware (OSF) component. The 80130 OSF 
component (software in silicon) is a processor exten­
sion in the form of of an extremely sophisticated in­
tegrated circuit. In conjunction with the 8086,88 or 
the 80186,188 CPU, it forms the nucleus of a high­
performance, real-time multitasking operating 
system. The 80130 adds task management, interrupt 
management, message passing, synchronization and 
memory allocation capabilities to the CPU, and ex­
tends the basic data types of the CPU by adding new, 
system data types (JOB'S, TASK'S, MAILBOX's, 
SEGMENT's, and REGION's). To create, manipu­
late and delete these new data types, the 80130 uses 
35 operating-system instructions- or "primitives." 
Programs using the 80130 primitives may be written 
in ASM-86, PL/M-86, Fortran-86, or Pascal-86. 

In addition, the 80130 OSF contains a programmable 
interrupt controller, 16-bit operating-system and 
delay timers, and a variable baud-rate generator. It 
is connected directly to the multiplexed address/data 
bus of the CPU. The 80130 is compatible with the 
MULTIBUS system as well as the iRMX 86 operat­
ingsystem. 

For additional information about the 80130 OSF 
component, the reader is referred to the iOSP 86 
Support Package Reference Manual, Order Number: 
14443, which has been used as the reference docu­
ment for this chapter. 

This chapter contains a discussion of the software as­
pects of the OSF. Hardware considerations are dis­
cussed in Chapter 5, Volume 2 ofthis set. 

The OSF provides the foundation of an operating 
system. To do so, it provides a collection of features 
that can serve as the heart of any operating system. 
Specifically, the OSP processor (see below) provides: 

• Object-Oriented Architecture 

• Multitasking 

• Multiprogramming 

• Intertask Coordination 

• Dynamic Memory Allocation 

8-1 

• Management of Objects 

• Management of Exceptions 

• Management ofInterrupts 

• Extendability 

• Primitives 

• Programming Considerations 

• iRMX 86 Features 

The following sections describe all of these features 
in detail. 

8.2 80130 OSF OVERVIEW 

The 80130 is a component that is designed to work 
in conjunction with either the 8086,88 or the 
80186,188 microprocessor. When the 80130 is com­
bined with the iAPX 86/10 (8086) microprocessor, 
the pair of components is called the iAPX 86/30 
Operating System Processor (OSP). When the 80130 
is combined with the iAPX 186/10 (80186) 
microprocessor, the pair of components is called the 
iAPX 186/30 Operating System Processor. Figure 
8-1 shows the names of these combinations of 
components. In order to simplify nomenclature, this 
manual uses the term OSP to refer to either pair of 
components. 

The 8087 Numeric Processor Extension (NPX) can 
be added to either pair of components. Figure 8-2 
shows the notation used to refer to these 
combinations. 

The 80130 component expands the capabilities of 
the microprocessor to provide a new set of functions 
called primitives. These primitives are designed spe­
cifically to serve as the foundation for a real-time, 
multitasking operating system. 

In other words, the OSP provides an expanded in­
struction set. In addition to the instructions provided 
by the microprocessor alone, the OSP provides 
more sophisticated instructions that can be used to 
build a real-time operating system. 

210911 

: . 
I , 

:;: 
'i 

I, 
n 
i 
!I 



THE 80130 OPERATING SYSTEM FIRMWARE COMPONENT 

iAPX 86110 
(8086) 

80130 

iAPX 88110 
(8088) 

80130 

iAPX 86130 

iAPX 88130 

Figure 8-1 Combining the 80130 and a Microprocessor 

iAPX 86110 
(8086) 

80130 

8087 

iAPX 86140 

iAPX 88110 
(8088) 

80130 

8087 

iAPX 88140 

Figure 8-2 Adding the 8087 Numeric Processor Extension 

In the same way that high-level programming lan­
guages reduce the manpower needed to write a 
program, the more powerful instructions of the asp 
reduce the manpower needed to write an operating 
system. This results in less development time and 
expense. 

8.3 ARCHITECTURE 

The asp uses an object-oriented architecture in 
order to make operating systems easy to learn about 
and to use. 

An operating system is a collection of functions 
meant to be used by software engineers. Many 
operating systems are so complex that the majority 
of the engineers using them are unable to fully grasp 
their organization. In contrast, systems having 
object-oriented architectures are easier to 
understand. Their mechanisms are well defined, and 
they demonstrate a consistency that makes the 
operating system seem less awesome. 
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Explanation of Object-Oriented 
Architecture 

An Object-Oriented Architecture is a means of 
humanizing an operating system. It uses a collection 
of building blocks that are manipulated by operators. 
For purposes of illustration, the architecture of FOR­
TRAN will be used as an example. 

FORTRAN has a typed architecture. Its building 
blocks are variables of several types. For instance, it 
has integers, real numbers, double-precision real 
numbers, etc. It also has operators (+, -, *, /, *', 
and others) that act on variables to produce under­
standable results. 

The asp provides building blocks called objects. As 
with FORTRAN variables, asp objects are of sever­
al types. The types are tasks, jobs, mailboxes, 
regions, and segments. 
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Just as the variables in a FORTRAN program are 
acted upon by operators, the objects in an aSP-based 
system are acted upon by primitives. "Primitives" 
are procedures that the asp provides to allow you to 
manipulate objects. For instance, the CREATE$­
TASK primitive does precisely what its name sug­
gests as shown in Figure 8-3. 

In the text portions of this manual, the pflmltlves 
are consistently referred to by their informal names, 
such as CREATE$TASK. In the example in Figure 
8-3 and throughout most of Chapter 8, the primitives 
are referred to by their formal names. A formal 
name is derived from an informal name by adding 
"RQ$" or "RQ" at the beginning. Consequently, 
the formal counterpart of CREATE$TASK is 
RQ$CREATE$TASK. 

The purpose of this example is to show that primi­
tives are invoked as PLlM-86 procedures. Figure 
8-3 shows how to create a task using the CREATE$­
TASK primitive. The parameters of the primitive 
vary according to the type of task you are creating. 

An object-oriented architecture makes a system 
easier to learn and to use. It does this by taking ad­
vantage of classification of objects. In the case of 
FORTRAN, the variables are classified into types, 
because each type exhibits certain characteristics. 
For instance, all integer variables are similar, 
though they can take on different values. This simi­
larity makes FORTRAN easy to master. For the 
same reasons, the asp objects are classified into 
types. Each object type (such as a mailbox) has a 
specific set of attributes. Once the programmer, has 
become familiar with the attributes of a mailbox, he 
is familiar with all mailboxes. There are no special 
cases. 

Classification by type also applies to as P primitives. 
Each type of asp object has an associated set of 
primitives. These primitives cannot be used to mani­
pulate objects of another type without causing an 
error. (The analogy breaks down at this point. FOR­
TRAN operators almost always work on several 
types ofvariables.l 

The beauty of the object-oriented architecture of the 
asp can be summed up in one statement: Once the 
programmer learns the attributes and the primitives 
associated with a type of object, he has complete 
knowledge of the behavior of the object type. 

Means of Referring to an Object 

One of the by-products of an object-oriented archi­
tecture is that the programmer must have a means 
of referring to a particular object. For this purpose, 
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the asp provides TOKENs. A TOKEN is a 16-bit 
value that the asp gives to you whenever you create 
an object. This value is unique in that no two objects 
can have the same TOKEN at the same time. In 
order to manipulate a particular object, the appropri­
ate primitive is invoked using the object's TOKEN 
as one of the parameters. 

8.4 MULTITASKING 

The asp provides multitasking to simplify the devel­
opment of systems that process real-time events. 

The essence of real-time operating systcms is the 
ability to process numerous events occurring at 
seemingly random times. These events are asynchro­
nous because they can occur at any time, and they 
are potentially concurrent because one event might 
occur while another is being processed. 

Any single program that attempts to process 
multiple, concurrent, asynchronous events is bound 
to be complex. The program must perform several 
functions. It must process the events. It must 
remember which events have occurred and the 
order in which they occurred. It must remember 
which events have occurred but have not been 
processed. The complexity obviously grows greater 
as the system monitors more events. 

Multitasking is a technique that dissipates unwinds 
this confusion. Rather than writing a 5ingle program 
to process N events, N programs can be written, 
each of which processes a single event. This tech­
nique eliminates the need to monitor the order in 
which events occur. 

Each of these N programs forms an as P task, one of 
the types of objects in the object-oriented 
architecture. Tasks are the only active objects provid­
ed by the aSP, as only tasks can invoke primitives. 

Multitasking simplifies the process of building a 
system. This allows systems to be built faster and 
with less expense. Furthermore, because of the one­
to-one relationship between events and tasks, the 
system's code is less complex and is easier to 
maintain. 

Tasks 

Tasks are the active objects provided by the aSP. 
For each task in a running operating system, the 
asp keeps track of a code segment, a task priority, a 
task state, and other attributes that are described 
below. 
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/*********************************************************************** 
* This example illustrates how the CREATE$TASK primitive can be used.* 
***********************************************************************/ 

$INCLUDE(:F1:0SXPRM.EXT); /* Declares all primitive calls */ 

TAS~CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE status 

SAMPLE PROCEDURE: 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not 

support this variable type, 
declare TOKEN a WORD */ 

TOKEN; 
LITERALLY '66'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; 
/* new task's stack 

size is 512 bytes */ 
WORD; 
WORD; 

PROCEDURE; 
start$address 
data$seg = 0; 
stack$pointer 
task$flags = 0; 

@TAS~CODE; /* first instruction of the new task */ 
/* task sets up own data segment */ 

.: } 

0; /* automatic stack allocation */ 
/* designates no floating-point 

instructions */ 

Typical PL/M-86 Statements 

/************************************************************************ 
* The task TASK CODE is created when the calling task invokes the * 
* CREATE$TASK primitive. * 
************************************************************************/ 

task$token = RQ$CREATE$TASK (priority$level$66, 
start$address, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); 

.: } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

Figure 8-3 Example Showing How to Use a Primitive 
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CODE SEGMENTS FOR TASKS 

A code segment is simply an iAPX 86/186 segment 
that contains code. Each task has an associated code 
segment that contains instructions for the task to 
execute. When writing code for a task, whether the 
code is in assembly language or a high-level 
language, procedures rather than main modules, 
must be used. 

TASK PRIORITY 

A task's priority is an integer value between 0 and 
255 (decimal). The lower the priority number, the 
higher the priority of the task. A high priority task 
has favored status as it competes with other tasks for 
the microprocessor. 

Unless a task is involved in processing interrupts 
(described later in this chapter), its priority should 
be between 129 and 255. When a task having a priori­
ty in the range 0 to 128 is running, certain external 
interrupt lines are disabled, depending on the 
priority. 

Also, if a task's code uses instructions that execute 
on the 8087 NPX (Numeric Processor Extension), 
that task should not have a priority high enough to 
disable the interrupt line of the 8087 NPX, or a dead­
lock situation could result. The interrupt line of the 
8087 is configurable. Refer to Section 8.8 of this 
chapter for a correlation between priorities and inter­
rupt lines. 

TASK STATES 

A task is always in one of five execution states. The 
states are asleep, suspended, asleep-suspended, 
ready, and running. 

• The Asleep State 

A task is in the asleep state when it is waiting 
for a request to be granted. Also, a task can 
put itself to sleep for a specified amount of 
time by using the SLEEP primitive. 

• The Suspended State 

A task enters the suspended state when it is 
placed there by another task, when it is wait­
ing for a interrupt, or when it suspends itself. 
Associated with each task is a suspension 
depth, which reflects the number of 
"suspends" outstanding against it. Each sus­
pend operation must be countered with a 
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resume operation before the task can leave 
the suspended state. 

• The Asleep-Suspended State 

When a sleeping task is suspended, it enters 
the asleep-suspended state. In effect, it is 
then in both the asleep and suspended states. 
While asleep-suspended, the task's sleeping 
time might expire, putting the task in the sus­
pended state. Also, if another task resumes 
an asleep-suspended task, the latter task will 
enter the asleep state. 

• The Ready State 

A task is ready if it is not asleep, suspended, 
or asleep-suspended. 

• The Running State 

For a task to become the running (executing) 
task, it must be the highest priority task in the 
ready state. A system built upon the OSP can 
have only one funning task at any given 
instant. 

Task State Transitions 

The OSP does not use a time-slicing algorithm to al­
locate the processor to tasks. Instead, it uses a 
priority-based, event-driven algorithm. As the 
operating system executes, events occur which 
cause tasks to pass from state to state. Figure 8-4 
shows the paths of transition between states. 

The following list describes, by number, the events 
that cause the transitions in Figure 8-4. In the list, 
the migrating task is called "the task." 

1) When the task is created, it is placed in the 
ready state. 

2) The task goes from the ready state to the run­
ning state when one of the following occurs: 

• The task has just become ready and has 
higher priority than does any other 
ready task. 

• The task is ready, no other ready task 
has higher priority, no other task of 
equal priority has been ready for a 
longer time, and the previously running 
task has just left the running state by 
transitions (4), (6), or (10). 
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(NON-EXISTENT) 
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Figure 8-4 Task State Transition Diagram 

3) The task goes from the running state to the 
ready state when the task is preempted by a 
higher priority task that has just become ready. 

4) The task goes from the running state to the 
asleep state when one of the following occurs: 

• The task puts itself to sleep (by the 
SLEEP primitive). 

• The task makes a request (by the LOOK­
UP$OBJECT, RECEIVE$MESSAGE, 
or RECEIVE$CONTROL primitive) 
that cannot be granted immediately and 
expresses, in the request, its willingness 
to wait. 

5) The task goes from the asleep state to the ready 
state or from the asleep-suspended state to the 
suspended state when one of the following 
occurs: 

• The time period specified in the invoca­
tion of the SLEEP primitive expires. 
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• The task's designated waiting period ex­
pires without its request being granted. 

• The task's request is granted (because 
another task called the CATALOG$OB­
JECT, SEND$MESSAGE, or the 
SEND$CONTROL primitive. These 
calls correspond to those mentioned ear­
lier in (4).) 

6) The task goes from the running state to the sus­
pended state when the task suspends itself (by 
the SUSPEND$TASK or WAIT$INTERRUPT 
primitive.) 

7) The task goes from the ready state to the sus­
pended state or from the asleep state to the 
asleep-suspended when the task is suspended 
by another task (by the SUSPEND$TASK 
primitive.) 
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8) The task remains in the suspended state or the 
asleep-suspended state when one of the follow­
ing occurs: 

• The task is, once again, suspended by 
another task using the SUSPEND$­
TASK primitive. 

• The task has a suspension depth greater 
than one and the task is resumed by 
another task (by the RESUME$TASK 
primitive.) 

9) The task goes from the suspended state to the 
ready state or from the asleep-suspended state 
to the asleep state when the task has a suspen­
sion depth of one and the task is resumed by 
another task (by the RESUME$TASK or SIG­
NAL$INTERRUPT primitive) or when a task 
awaiting an interrupt receives the interrupt. 

10) The task goes from any state to non-existence 
when it is deleted (by the DELETE$TASK, or 
RESET$INTERRUPT primitives.) 

ADDITIONAL TASK ATTRIBUTES 

In addition to priority, execution state, and suspen­
sion depth, the OSP maintains the following attri­
butes for each task: containing job, contents of 
registers, starting address of its exception handler, 
the task's exception mode, whether the task is an in­
terrupt task, and whether the task uses the 8087 
NPX. Jobs, interrupts, exception handlers, and ex­
ception modes are discussed later in this chapter. 

Task Resources 

When a task is created, the OSP takes any resources 
that it needs at that time (such as memory) from the 
task's job. If the task is subsequently deleted, the 
OSP returns those resources to the task's job. (Jobs 
are discussed in detail in the section of this chapter 
entitled "Multiprogramming.") 

The task's code, however, is not a resource in this 
sense. It does not come from nor does it return to 
the task's job, because it is static during system 
operation. 

Primitives for Tasks 

The OSP provides the following primitives to mani­
pulate tasks: 
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• CREATE$TASK 
The CREATE$TASK primitive creates a task 
and returns a token for it. 

• DELETE$TASK 
The DELETE$TASK primitive deletes a task 
from the system. 

• SUSPEND$TASK 
The SUSPEND$TASK primitive increases a 
task's suspension depth by one, and suspends 
the task if it is not already suspended. 

• RESUME$TASK 
The RESUME$TASK primitive decreases a 
task's suspension depth by one. If the depth 
becomes zero and the task was suspended, 
this primitive makes the task ready. If the 
depth becomes zero and the task was asleep­
suspended, this primitive puts the task into 
the asleep state. 

• SLEEP 
The SLEEP primitive places the calling task 
in the asleep state for a specified amount of 
time. 

• GET$TASK$TOKENS 
The GET$TASK$TOKENS primitive allows 
a task to obtain a token for any of the follow­
ing 0 bjects: 

- the job containing the task 

- the parameter object for the job containing 
the task 

- the system's root job 

- the task itself 

• SET$PRIORITY 
The SET$PRIORITY primitive allows a task 
to change its own priority or that of another 
task. 
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8.5 MULTIPROGRAMMING 

Multiprogramming is a technique used to run several 
applications on a single hardware system. In order to 
take full advantage of multiprogramming, the asp 
provides each application with a separate 
environment; that is, separate memory and objects. 
The reason for this isolation is to prevent 
independently-developed applications from causing 
problems for each other. 

The asp provides a type of object that can be used 
to obtain this kind of isolation. The object is called a 
job, and it has the following characteristics: 

• Unlike tasks, jobs are passive. They cannot 
invoke primitives. 

• Each job includes a collection of tasks and 
those resources needed by those tasks. 

• Jobs serve as useful boundaries for dynami-
• cally allocating memory. When two tasks of 

one job request memory, they share the 
memory associated with their job. Two tasks 
in different jobs do not directly compete for 
memory. 

• An application consists of one or more jobs. 

Multiprogramming provides application systems 
with two benefits: 

• Multiprogramming increases the amount of 
work a system can do. By running several ap­
plications rather than one, hardware is being 
utilized a greater percentage of the time, thus 
reducing hardware implementation costs. 

• Because of the correspondence between jobs 
and applications, new jobs can be added to a 
system without affecting other jobs. This 
makes system modifications easier and faster. 

Definition of JOB 

A JOB is an asp object that serves as an environ­
ment in which other asp objects such as tasks, 
mailboxes, regions, segments, and (offspring) jobs 
reside. In addition, each job has a pool of memory. 
The job's memory pool provides the raw material 
from which objects can be created by the tasks in the 
job. 

Applications consist of one or more jobs. Although 
the jobs within an application can be independent of 
one another, they can share resources. Objects may 
be shared between jobs, although each object is 
owned by only one job. 

The programmer must decide which tasks belong in 
the same job. In general, tasks should be placed in 
the same job if: 

• They have similar or related purposes 

• They share many resources 

Job Tree and Resource Sharing 

The jobs in a system are arranged in the form of a 
tree. The root job is a job provided by the asp. The 
remaining jobs, including jobs that are created dy­
namically while the system runs, are descendants of 
the root job. A job containing tasks that create other 
jobs is a parent job. A newly created job is a child of 
the job whose task created it. 
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Associated with each job is a set of limits. The limits 
of ajob are as follows: 

• Maximum and minimum allowable sizes of 
the job's memory pool. 

• Maximum allowable number of simultane­
ously existing objects that the job can contain. 

• Maximum allowable number of simultane­
ously existing tasks that the job can contain. 

• Highest allowable priority of any task con­
tained in the job. 

These limits must be specified whenever a job is 
created. These limits apply collectively to the job and 
all of its descendant jo bs. 

For example, suppose Job A creates Job B. When 
this happens: 

• The memory for Job B's memory pool is 
taken from Job A's memory pool. 

• The numbers of tasks and total objects that 
Job A can contain are reduced by the corre­
sponding values specified for Job B. 

• The specified maximum priority for tasks in 
Job B cannot exceed the maximum priority 
for tasks in Job A. 

Job Creation 

When a job is created it has one task. The functions 
of this task include doing some initializing for the 
new jo b. Initializing activities can include housekeep­
ing and creating other objects in the new job. 
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When a task creates ajob, it has the option of passing 
a token for a parameter object to the newly created 
job. The parameter object can be an OSP object of 
any type and it can be used for any purpose. For 
example, the parameter object might be a segment 
containing data, arranged in a predefined format, 
needed by tasks in the new job. Tasks in the new job 
can obtain a token for the job's parameter object by 
means of the GET$TASK$TOKENS primitive, de­
scribed in Chapter 3. 

Jobs differ from other OSP objects in duration. Once 
ajob is created, it exists as long as the system exists. 

Primitives for Jobs 

The OSP provides one primitive that relates to jobs. 
The CREATE$JOB primitive creates a job contain­
ing one task. During the creation, the primitive 
draws resources for the new job from the resources 
of the parent job (the job containing the calling 
task). After the job has been created, the primitive 
returns a token for the job to the calling task. 

8.6 INTERTASK COORDINATION 

The OSP provides simple techniques for tasks to 
coordinate their activities. These techniques allow 
tasks in a multitasking system to mutually exclude, 
synchronize, and communicate with each other. 

Multitasking is a technique used to simplify the 
design of real-time application systems that monitor 
multiple, concurrent, asynchronous events. Multi­
tasking allows engineers to focus their attention on 
the processing of a single event rather than having to 
contend with numerous other events occurring in an 
unpredictable order. 

However, the processing of several events may be 
related. For instance, the task processing Event A 
may need to know how many times Event B has oc­
curred since Event A last occurred. This kind of pro­
cessing requires that tasks be able to coordinate with 
each other. The OSP provides for this coordination. 

Tasks can interract with each other in three ways. 
They can exchange information, mutually exclude 
each other, and synchronize with each other. Each 
of these will be examined in the following sections. 

EXCHANGING INFORMATION 

Tasks exchange information for two purposes. One 
purpose is to pass data from one task to another. For 
instance, suppose that one task accumulates key-
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strokes from a terminal until a carriage return is 
encountered. It then passes the entire line of text to 
another task, which is responsible for decoding 
commands. 

The second reason for passing data is to draw atten­
tion to a specific object in the application system. In 
effect, one task says to another, "I am talking about 
that object." 

The OSP facilitates intertask communication by sup­
plying objects called mailboxes along with primitives 
to manipulate mailboxes. The primitives associated 
with mailboxes are CREATE$MAILBOX, DE­
LETE$MAILBOX, SEND$MESSAGE, and RE­
CEIVE$MESSAGE. Tasks use the first two primi­
tives to build and eradicate a particular mailbox. 
They use the second two to communicate with each 
other. If Task A wants Task B to become aware of a 
particular object, Task A uses the SEND$­
MESSAGE primitive to mail a token for the object 
to the mailbox. Task B uses the RECEIVE$­
MESSAGE primitive to get the token from the 
mailbox. 

NOTE: The foregoing example, along with all of the 
examples in this section, is somewhat simplified in 
order to serve as an introduction. For detailed 
information, refer to Section 8.10, in which each 
OSP primitive is individually described. 

As mentioned previously, tasks can use mailboxes 
to send information to each other. This is accom­
plished by putting the information into a segment (an 
OSP object consisting of a contiguous block of 
memory) and using the SEND$MESSAGE primitive 
to mail a token for the segment. The other task in­
vokes the RECEIVE$MESSAQE primitive to get 
the token for the segment containing the message. 

Why don't tasks just send tokens for messages 
directly between each other, rather than through 
mailboxes? Because tasks are asynchronous-they 
run in unpredictable order. If two tasks want to com­
municate with each other, they need a place to store 
messages and to wait for messages. If the receiver 
uses the RECEIVE$MESSAGE primitive before the 
message has been sent, the receiver can wait at the 
mailbox until a message arrives. Similarly, if the 
sender uses the SEND$MESSAGE primitive before 
the receiver is ready to receive, the message is held 
at the mailbox until a task requests a message from 
the mailbox. In other words, mailboxes allow tasks 
to communicate with each other even though tasks 
are asynchronous. 
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MUTUAL EXCLUSION 

Occasionally, when tasks are running concurrently, 
the following kind of situation arises: 

• Task A is in the process of reading informa­
tion from a segment. 

• An interrupt occurs and Task B, which has 
higher priority than Task A, preempts Task A. 

• Task B modifies the contents of the segment 
that Task A was in the midst of reading. 

• Task B finishes processing its event and sur­
renders the processor. 

• Task A resumesreading the segment. 

The problem is that Task A might obtain informa­
tion that is completely invalid. For instance, suppose 
the application is air traffic control. Task A is re­
sponsible for detecting potential collisions, and Task 
B is responsible for updating the Plane Location 
Table with the new X- and Y-coordinates of each 
plane's location. Unless Task A can obtain exclusive 
use of the Plane Location Table, Task B can make 
Task A fail to spot a collision. 

Here's how it could happen. Task A reads the X­
coordinate of the plane's location and is preempted 
by Task B. Task B updates the entry that Task A was 
reading, changing both the X- and Y-coordinates of 
the plane's location. Task B finishes its function and 
surrenders the processor. Task A resumes execution 
and reads the new Y-coordinate of the plane's 
location. As a direct result of Task B changing the 
Plane Location Table while Task A was reading it, 
Task A thinks the plane is at old X and new Y. 

This problem can be avoided by mutual exclusion. If 
Task A can prevent Task B from modifying the table 
until after A has finished using it, A can be assured 
of valid information. Somehow, Task A must obtain 
exclusive use of the table. 

Corruption of data can occur in this manner whenev­
er the following three conditions are met: 

• The data is shared between two or more tasks. 

• The tasks sharing the data run concurrently. 
(In other words, one of the tasks could possi­
bly preempt another.) 

• At least one of the tasks changes the data. 

Whenever all three of these conditions can exist, 
special precautions must be taken to protect the 
validity of the shared data. The programmer must 

ensure that only one task has access to the shared 
data at any instant, and that the task having access 
cannot be preempted by other tasks desiring access. 
This protocol for sharing data is called mutual 
exclusion, and providing mutual exclusion is the 
function of regions, which are described later in this 
chapter. 

SYNCHRONIZATION 

As mentioned earlier, tasks are asynchronous. 
Nonetheless, occasionally a task must know that a 
certain event has occurred before the task starts 
running. For instance, suppose that a particular appli­
cation system requires that Task A cannot run until 
after Task B has run. This kind of requirement calls 
for synchronizing Task A with Task B. 

Application systems can achieve synchronization by 
using mailboxes. Before executing either Task A or 
Task B, a mailbox must be created. Then Task A in­
vokes the RECEIVE$MESSAGE primitive for that 
mailbox. Task A is forced to wait at the mailbox 
un til Task B sends a message. This achieves the 
desired synchronization. 

The intertask coordination supplied by the asp is 
flexible and simple to use. Mailboxes and regions 
can accommodate a wide variety of situations. A par­
ticular application system is not limited to some ar­
bitrary number of mailboxes or regions; it can create 
as many as it needs. 

Mailboxes 

The principal function of mailboxes is to support in­
tertask communication and synchronization. A send­
ing task uses a mailbox to pass a token for an object 
to another task. For example, the object might be a 
segment containing data needed by the receiving 
task. 

NOTE: Throughout the remainder of this chapter 
we refer to the passing of objects between jobs or be­
tween tasks. Be aware that this does not actually 
occur, that tokens, not objects, are passed, and that 
this means of description is adopted for convenience 
only. 

MAILBOX QUEUES 

Each mailbox has two queues, one for tasks that are 
waiting to receive objects, the other for objects that 
have been sent by tasks but have not yet been 
received. The OSP ensures that waiting tasks receive 
objects as soon as they are available. So, at any given 
time, at least one of the mailbox's queues is empty. 

8-10 210911 



THE 80130 OPERATING SYSTEM FIRMWARE COMPONENT 

MAILBOX MECHANICS 

When a task sends a token to a mailbox, using the 
SEND$MESSAGE primitive, one of two things 
happens. If no tasks are waiting at the mailbox, the 
object is placed at the rear of the object queue 
(which might be empty). Object queues are pro­
cessed in a first-inlfirst-out (FIFO) manner, so the 
object remains in the queue until it makes its way to 
the front and is given to a task. 

On the other hand, if there are tasks waiting, the 
task at the front of the task queue receives the object 
and goes either from the asleep state to the ready 
state or from the asleep-suspended state to the sus­
pended state. 

NOTE: If the receiving task has a higher priority 
than the sending task and is not suspended, then the 
receiving task preempts the sender and becomes the 
running task. 

When a task attempts to receive an object from a 
mailbox via the RECEIVE$MESSAGE primitive, 
and the object queue at the mailbox is not empty, 
the task receives the object immediately and remains 
ready. However, if there are no objects at the mail­
box two things can happen: 

If the task, in its request, elects to wait, it is placed in 
the mailbox's task queue and is put to sleep. If the 
designated waiting period elapses before the. task 
gets an object, the task is made ready and receives 
an E$TIME exception code. 

If the task is not willing to wait, it remains ready and 
immediately receives an E$TIME exception code. 

When using the SEND$MESSAGE primitive, a task 
has the option of specifying that it wants acknowledg­
ment from the receiving task. Thus, any task using 
the RECEIVE$MESSAGE primitive should check 
to see if an acknowledgment has been requested. 
For details, see the description of the RECEIVE$­
MESSAGE primitive in Section 8.11. 

As stated earlier, the object queue for a mailbox is 
processed in a first-in/first-out manner. However, 
the task queue of a mailbox can be either first­
inlfirst-out or priority-based, with higher-priority 
tasks toward the front of the queue. When a task cre­
ates a mailbox, the task specifies which kind of task 
queue the mailbox is to have. 
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HIGH-PERFORMANCE OBJECT QUEUE 

Directly associated with each mailbox is a high­
performance object queue. A task, when creating a 
mailbox with the CREATE$MAILBOX primitive, 
can specify the number of objects this queue can 
hold, from 4 to 60. By using this high-performance 
object queue, the task can greatly improve the per­
formance of SEND$MESSAGE and RECEIVE$­
MESSAGE when these primitives actually get or 
place objects on the queue. (It has no effect when 
tasks are already waiting at the task queue). When 
more objects than the high-performance queue can 
hold are queued at a mailbox, the objects overflow 
into a slower queue whose size is limited only by the 
amount of memory in the job containing the 
mailbox. 

The high-performance queue obtains its high speed 
because the OSP allocates memory space for it when 
the mailbox is created. This memory space is per­
manently allocated to the mailbox, even ifno objects 
are queued there. No space is allocated for the over­
flow portion of the queue until the space is needed to 
contain objects. Thus the overflow portion of the 
queue is slower. 

The user must weigh performance against size when 
deciding how large to make the high performance 
queue. Specifying a high performance queue that is 
too large wastes memory. Conversely, a smaller 
queue that is constantly overflowing slows down the 
system. 

PRIMITIVES FOR MAILBOXES 

The following primitives manipulate mailboxes: 

• CREATE$MAILBOX-creates a mailbox 
and returns a token for it. 

• DELETE$MAILBOX-deletes a mailbox 
from the system. 

• SEND$MESSAGE-sends an object to a 
mailbox. 

• RECEIVE$MESSAGE-sends the calling 
task to a mailbox for an object; the task has 
the option of waiting ifno objects are present. 

Regions 

A region is an OSP object that tasks can use to guard 
a specific collection of shared data such as a table of 
data. Each task desiring access to shared data can 
wait its turn at the region associated with that data. 
When the task currently using the shared data no 
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longer needs access, it notifies the Operating System 
Processor, which then allows the next task to access 
the shared data. 

The following facts regarding regions are 
noteworthy: 

The priority of the task that currently has access to 
the shared data may temporarily be raised. This hap­
pens automatically whenever the region has a priori­
ty queue and the task at the head of the region's 
queue has a priority higher than that of the task that 
has access. Under such circumstances, the priority of 
the task having access is raised to match that of the 
task at the head of the queue. When the task having 
access surrenders access, its priority automatically 
reverts to its original value. 

Once a task gains access to shared data through a 
region, the task cannot be suspended or deleted 
until it surrenders access. This characteristic prevents 
tasks from tying up shared data. 

When a task gains access through a 
region, it must not attempt to suspend or 
delete itself. Any attempt to do so will 
lock up the region, preventing other tasks 
from accessing the data guarded by the 
region. In addition, the task will never run 
again and its memory will not be returned 
to the memory pool. Also, if the task in 
the region attempts to delete itself, all 
other tasks that later attempt to delete 
themselves will be unable to do so. 

When a region is created, one of two rules must be 
specified to determine which waiting task next gains 
access to the shared data. One rule is first-in/first-out 
(FIFO), and the other is priority. 

REGIONS AND DEADLOCK' > 

A major concern in any multitasking system is avoid­
ing deadlock. Deadlock occurs when one or more 
tasks permanently lock each other out of required 
resources. The following hypothetical situation illus­
trates a method for quickly causing deadlock by 
using nested regions. An explanation of how to 
avoid the illustrated deadlock situation follows the 
example. 
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NOTE: In the following example, the only primitive 
used to gain access is the RECEIVE$CONTROL 
primitive. Tasks using the ACCEPT$CONTROL 
primitive cannot deadlock at a region unless they 
keep trying endlessly to. accept control. 

Suppose that two tasks, A (high priority) and B (low 
priority), both need access to two collections of 
shared data. Call the two collections of data Set I 
and Set 2. Access to each set is governed by a region 
(Region 1 and Region 2) . 

Now suppose that the following events take place in 
the order listed: 

1) Task B requests access to Set 1 via Region 1. 
Access is granted. 

2) Before Task B can request access to Set 2, an in­
terrupt occurs and Task A preempts Task B. 

3) Task A requests access to Set 2 via Region 2. 
Access is granted. 

4) Task A requests access to Set 1 via Region 1. 
Task A must wait because Task B already has access. 

5) Task B resumes running and requests access to 
Set 2 via Region 2. Task B must wait because Task A 
already has access. 

At this point Task A is waiting for Task B and vice 
versa. Tasks A and B are hopelessly deadlocked, and 
any other tasks that request access to either set of 
data will also become deadlocked. 

This type of deadlock situation applies only to sys­
tems in which regions are nested. For systems which 
must use nested regions, team deadlock can be pre­
vented by adhering to the following rule: 

A strict ordering must be applied to all the regions in 
a system, and tasks must be written so that they gain 
access to these regions according to the specified 
order. The precise order is unimportant as long as all 
tasks obey it. If this rule is followed consistently, re­
gions can be nested to any depth. 

PRIMITIVES FOR REGIONS 

The following primitives manipulate regions: 

• ACCEPT$CONTROL 
This primitive' allows a task to gain access to 
shared data only when access is immediately 
available. If a different task already has 
access, the requesting task remains ready but 
receives an exception ,code. 
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• CREATE$REGION 
This primitive creates a region and returns a 
token for it. One of the parameters passed 
during this call specifies the queuing rule 
(FIFO or priority.) 

• DELETE$REGION 
This primitive deletes a region. 

• RECEIVE$CONTROL 
This primitive causes a task to wait at the 
region until the task gains access to the 
shared data. 

• SEND$CONTROL 
This primitive, when issued by a task, frees 
the OSP to grant a different task access to the 
shared data. 

8.7 DYNAMIC MEMORY ALLOCATION 

Occasionally a task needs more memory than was 
initially allocated to its job. By using OSP primitives 
for allocating and deallocating memory, tasks can 
usually satisfy their memory needs. 

Segments 

Allocated memory is treated as a collection of 
segments. A segment is a contiguous collection of 
16-byte paragraphs, with its starting address evenly 
divisible by 16. In addition to serving as an address, 
the base address functions as a token for the 
segment. For each segment, the OSP maintains, as 
attributes, the base address, the length in bytes, and 
the containing job. 

When a task needs a segment, it can request one of 
the desired length by calling the CREATE$SEG­
MENT primitive. If enough memory is available, 
the OSP returns a token for the segment. 

NOTE: The token of a segment can be used as the 
base portion of a pointer to the segment. Thus, the 
token can be used as a base address (as when writing 
a message in the segment) or as an object reference 
(as when sending the segment-with-message to a 
mailbox). The PLlM-86 SELECTOR data type is es­
pecially useful when used to refer to the segment. 

Memory Pools 

A memory pool is the memory available to a job and 
its descendants. Each job has a memory pool. When 
a job is created, the memory for its pool is allocated 
from the pool of its parent job. Thus, there is effec­
tively a tree-structured hierarchy of memory pools, 

identical in structure to the hierarchy of jobs. 
Memory that a job borrows from its parent remains 
in the pool of the parent as well as being in the pool 
of the child. Such memory, however, is available for 
use only by tasks in the child job, and not by tasks in 
the parent job. Figure 8-5 illustrates the relationship 
between the job and memory hierarchies. In the 
figure, the pool sizes shown are actually the maxi­
mum sizes of those pools. 

Two parameters, pool$min and pool$max, of the 
CREATE$JOB primitive, dictate the range of sizes 
(in 16-byte paragraphs) of a new job's memory pool. 
Initially, the pool size is equal to pool$min, the pool 
minimum. Memory allocated to tasks in the job is 
still considered to be in the job's pool. 

Movement of Memory Between Jobs 

When a task tries to create a segment (or an object 
of any other type), and the unallocated part of its 
job's pool is not sufficient to satisfy the request, the 
OSP tries to borrow more memory from the job's 
parent (and then, if necessary, from its parent's 
parent, and so on). Such borrowing increases the 
pool size of the borrowing job and is thus restricted 
by the pool maximum attribute of the borrowing 
job. The smallest contiguous piece of memory that a 
job may borrow from its parent is a configuration 
parameter. 

Observe that, if a job has equal pool minimum and 
pool maximum attributes, then its pool is fixed at 
that common value. This means that the job may 
not borrow memory from its parent. 

Memory Allocation 

The memory pool of a job consists of two classes of 
memory: allocated and unallocated. Memory in ajob 
is unallocated unless it has been requested, either ex­
plicitly or implicitly, by tasks in the job or if it is on 
loan to a child job. A task's request for memory is 
explicit when it calls the CREATE$SEGMENT 
primitive. A request is implicit when the task at­
tempts to create any type of object other than a 
segment. 

The OSP borrows small amounts of memory from a 
job's pool each time a task in that job creates an 
object. This memory is needed for bookkeeping 
purposes. When the object is deleted, the borrowed 
memory is returned to the pool. 

When a task no longer needs a segment, it can 
return the segment to the unallocated part of the 
job's pool by using the DELETE$SEGMENT 
primitive. Figure 8-6 shows how memory "moves." 
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Deadlocks Primitives for Segments 

Under certain circumstances, memory allocation 
and the use of some primitives can cause deadlock, 
For a description of the deadlock concept and 
preventive measures, as well as techniques for elim­
inating deadlocks, see the iOSP Support Package 
Reference Manual. 

The OSP provides the following primitives for mani­
pulating segments: 

JOB A 

• CREATE$SEGMENT-creates a segment 
and returns a token for it. 

• DELETE$SEGMENT -returns a segment to 
the pool from which it was allocated, 

POOL A 

/~ 
POOL POOL 

O@ JOB B JOB C 

/ 
JOB 0 

Figure 8-5 Comparison of Job and Memory Hierarchies 
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Figure 8-6 Memory Allocation and Deallocation 
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8.8 MANAGEMENT OF OBJECTS 

Three OSP primitives apply to all objects. These 
primitives allow tasks to inquire about an object's 
type and to use object directories. 

OBJECT TYPES 

The GET$TYPE primitive enables a task to present 
a token to the OSP and get an object's type code in 
return. (Type codes for OSP objects are listed in Sec­
tion 8.10, description of the GET$TYPE primitive.) 

This primitive is useful, for example, when a task is 
expecting to receive objects of several different 
types. By invoking the GET$TYPE primitive, the 
task can ascertain the type of object it received. 

USING OBJECT DIRECTORIES 

Each job has its own object directory. An entry in an 
object directory consists of a token for an object and 
the object name. The name contains from one to 
twelve characters, where a character is a one-byte 
value (from 0 to OFFH). Such a feature is often 
needed because some tasks might only know some 
objects by their associated names. 

By using the LOOKUP$OBJECT primitive, a task 
can present the name of an object to the OSP, The 
OSP consults the object directory corresponding to 
the specified job and, if the object has been cataloged 
there, returns the token. 

NOTE: In object directories, upper and lower case 
alphabetic characters are treated as being different. 
The OSPsees the name as just a string of bytes. It 
does not interpret these bytes as ASCII characters. 

If the object has not yet been cataloged, and the task 
is not willing to wait, the task remains ready and re­
ceives an E$TIME exceptional condition. However, 
if the task is willing to wait, it is put to sleep; then 
there are two possibilities: 

If the designated waiting period elapses before the 
task gets its requested token, the task is made ready 
and receives an E$TIME exceptional condition. 

If the task gets its requested token within the 
designated waiting period, it is made ready with no 
exceptional condition. This case is possible because 
another task can, while the requesting task is 
waiting, catalog the appropriate entry in the specified 
object directory. 

When a task wants to share an object with the other 
tasks in a job (not necessarily its own job), its can 
use the CATALOG$OBJECT primitive to put the 
object in that job's object directory. Typically, the 
task that created the object does this. 

When using an object directory, a task must present 
a token for the job directory. The root job's object 
directory, called the root object directory, is special 
in that its token is easily accessible. Any task can call 
the GET$TASK$TOKENS primitive to obtain a 
token for the root job. 

PRIMITIVES FOR ANY OBJECTS 

The following primitives apply to all objects: 
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• CATALOG$OBJECT -places a name and an 
associated token in an object directory. 

• LOOKUP$OBJECT -accepts a name and re­
turns a token if the OSP can find an entry 
with the name in the specified time. 

• GET$TYPE-accepts a token for an object 
and returns the object's type code. 

Management of Exceptions 

The OSP allows operating systems to specify an 
error handling procedure for each task. This proce­
dure is called an exception handler. 

EXCEPTION HANDLING 

The OSP does provides protection from some types 
of errors. The concepts involved in the OSP excep­
tion handling scheme are condition codes, exception 
handlers, and exception modes: 

• Condition Codes 
Whenever a task invokes a primitive, the 
OSP attempts to perform the requested 
function. Whether or not the attempt is 
successful, the OSP generates a condition code. 
This code indicates two things. First, it shows 
whether. the primitive succeeded or failed. 
Second, in the case of failure, the code, which 
is then called an exception code shows which 
exception prevented successful completion. 

For the sake of flexibility in processing excep­
tion codes, they are divided into two 
categories. The first category, environmental 
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exception codes, consists of errors that a task 
cannot anticipate. An example of such an 
error is insufficient memory. The second 
category, programming exception codes, con­
sists of two subcategories: 

Errors Detected by the Processor 
The 8086 or 8088 microprocessor 
detects several kinds of errors. One of 
these, for instance, is an attempted di­
vision by zero. Such errors can be 
avoided by using good programming 
techniques. 

Incorrect Invocation of a Primitive 
If a task makes an impossible request, 
such as trying to SLEEP forever, the 
problem is considered a programming 
error. This kind of error can usually be 
avoided by good programming 
techniques. 

Table 8-1 lists the condition codes, with their 
associated mnemonics and numeric values. 
Values not listed are reserved. 

• Exception Handlers 
An exception handler is a procedure that the 
OSP can invoke when a task receives an ex­
ception code. The alternative to using excep­
tion handlers is to explicitly incorporate in 
each task any code needed to process excep­
tion codes. 

• Exception Modes 
An exception mode is an attribute of a task. 
Once a task is running, it can invoke the 
SET$EXCEPTION$HANDLER primitive to 
set its exception mode to any of four values. 
This value governs the processing of excep­
tion codes received by the task. The exception 
mode indicates one ofthe following: 

No exception handling. This means 
that the code segment of the task must 
explicitly provide code to process any 
exceptions. 

The task's exception handler processes 
only environmental exception codes. 
This means that the code segment of 
the task must explicitly provide code 
to process any exceptions caused by 
programming errors. 

The task's exception handler processes 
only programming error exception 

codes. This means that the code seg­
ment of the task must explicitly pro­
vide code to process any exceptions 
caused by environmental conditions. 

The task's exception handler processes 
both environmental exception codes 
and programming error exception 
codes. 

When control passes to an exception handler, 
the errant task is still the running task. 

NOTE: The E$INTERRUPT$SATURATION and 
the E$INTERRUPT$OVERFLOW condition codes 
never· cause control to be passed to an exception 
handler. These exceptional conditions must be 
handled in-line or not at aiL 

In summary, exception handling works as follows. 
The OSP generates a condition code for each invoca­
tion of each primitive. If the code indicates successful 
completion, the OSP detected no problems. If the 
code indicates an error, the problem can be pro­
cessed in either of two ways: 

• Within the code segment of the task that in­
voked the primitive. 

• By the task's exception handler, which is in­
voked by the OSP. 

The decision as to which way the error is to be dealt 
with is a function of the task's exception mode and 
the category of the exception code (programming 
error or environmental condition). 

The actions of a task's error handler can be con­
trolled because the programmer writes the handler. 
Consequently, the handler can recover from the 
error, merely log the error, delete the task contain­
ing the error, warn the operator of the error, or 
ignore the error altogether. 

ADVANTAGE OF EXCEPTION HANDLING 

Exception handling provides an operating system 
with several methods of reacting to unusual 
conditions. One of these methods, having the OSP 
automatically invoke a task's exception handler, 
greatly simplifies error processing. The other 
method, dealing with some or all unusual conditions 
within a task's code segment, allows the user to pro­
vide special processing for very unusual 
circumstances. The OSP .allows an operating system 
to use both methods. 
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Table 8·1 Conditions and Their Codes 

NUMERIC CODE 
CATEGORY 

MEANING 
MNEMONIC HEX DECIMAL 

E$OK The most recent primitive ran OH 0 
successfully. 

Environmental Exceptions 

E$TIME A time limit (possibly a limit of zero 1H 1 
time) expired without a task's request 
being satisfied. 

E$MEM There is not sufficient memory 2H 2 
available to satisfy a task's request. 

E$BUSY Another task currently has access to 3H 3 
data protected by the specified 
region. 

E$LlMIT A task attempted on operation which, 4H 4 
if it had been successful, would have 
violated an iOSP processor-enforced 
limit. 

E$CONTEXT A primitive was issued out of context 5H 5 
or the iOSP processor was asked to 
perform an impossible operation 

E$EXIST A token parameter has a value which 6H 6 
is not a token for an existing object. 

E$STATE A task attempted an operation which 7H 7 
would have caused an impossible 
transition of a task's state. 

E$NOT$CONFIGURED The most recently called primitive is 8H 8 
not in the preset configuraton. 

E$INTERRUPT$SATURATION An interrupt task has accumulated 9H 9 
the maximum allowable number of 
SIGNAL$INTERRUPT requests. 

E$INTERRUPT$OVERFLOW An interrupt task has accumulated OAH 10 
more than the maximum allowable 
number of SIGNAL$INTERRUPT 
requests. 

Programmer Errors 

E$ZERO$DIVIDE A task attempted to divide by zero. 8000H 32768 
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Table 8-1 Conditions and Their Codes (continued) 

NUMERIC CODE 
CATEGORY 

MEANING 
MNEMONIC HEX DECIMAL 

E$OVERFLOW An overflow interrupt occurred. 8001H 32769 

E$TYPE A token parameter referred to an 8002H 32770 
existing object that is not of the 
required type. 

E$BOUNDS An offset parameter is out of a 8003H 32771 
segment's boundaries. 

E$PARAM A parameter which is neither a token 8004H 32772 
nor an offset has invalid value. 

E$BAD$CALL When you configured your operating 8005H 32773 
system, you used an OSP diskette 
that was designed for a different 
version of the 80130 component. 

E$ARRAY$BOUNDS Hardware or Language has detected 8006H 32774 
an array overflow. 

E$NDP$ERROR An 8087 (Numeric Processor 8007H 32775 
Extension) error has been detected; 
the 8087 status information is 
contained in a parameter to the 
exception handler. 

CREATING EXCEPTION HANDLERS a significant amount of the processor's time is spent 
in such checking, and, if events have not occurred, 
the processor's time has been wasted. For a complete description of exception handler cre­

ation and assignment, as well as in-line exception 
handling and primitives for exception handlers see 
the iOSP Support Package Reference Manual. 

Management of Interrupts 

The OSP manages interrupts. When an interrupt 
occurs, the iOSP processor can schedule a task to 
process the interrupt. This method of event detec­
tion improves the system performance. 

INTERRUPT PROCESSING 

There are two ways that computer systems can 
schedule processing associated with detecting and 
controlling events in the real world-polling and in­
terrupt processing. Polling is implemented by having 
the software periodically check to see if certain 
events have occurred. Its major shortcoming is that 

The second method of controlling processing is inter­
rupt processing. In this method, when an event 
occurs the processor is literally interrupted. Rather 
than executing the next sequential instruction, the 
processor executes an interrupt handler, which may 
then invoke a task associated specifically with the 
detected event. 

ADVANTAGES OF INTERRUPT PROCESSING 

Interrupt processing of external events provides 
three benefits for an operating system: 

• Better Performance 
Interrupt processing allows the system to 
spend all of its time running the tasks that 
process events, rather than executing a polling 
loop to see if events have occurred. 
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• More Flexibility 
Because of the direct correlation between in­
terrupts and tasks, the system can easily be 
modified to process different events. The 
user simply writes the tasks to process the 
new (or old) types of interrupts. 

• Economic Benefits 
Because interrupt processing allows the 
system to respond to events by means of 
modularly coded tasks, a system's code is 
more structured and easier to understand. 
Modular code is less costly to develop and 
maintain, and it can be developed more quick­
ly than unstructured code. 

INTERRUPT MANAGEMENT IN THE OSP 

An interrupt, signalling the occurrence of an external 
event, triggers an implicit "call" to a location speci­
fied in a section of memory known as the Interrupt 
Vector Table. From there, control is redirected to an 
interrupt procedure called an interrupt handler. At 
this point, one of two things happens. If handling the 
interrupt takes little time and requires no primitives, 
other than certain interrupt-related primitives, the 
interrupt handler processes the interrupt. Otherwise, 
the interrupt handler signals an interrupt task which 
deals with the interrupt. After the interrupt has been 
serviced, control returns to the ready application 
task with highest priority. 

OSP INTERRUPT MECHANISMS 

Three major concepts in OSP interrupt processing 
are the Interrupt Vector Table, interrupt lines, and 
the ability to enable and disable interrupts. 

THE INTERRUPT VECTOR TABLE 

The Interrupt Vector Table is composed of 256 
entries. The entries are numbered 0 to 255, and the 
purpose of each entry is to contain the address of the 
first instruction to be executed when the correspond­
ing interrupt occurs. 

Some of the entries in the Interrupt Vector Table are 
reserved and therefore are not available to be 
defined by user tasks. The entries are allocated as 
follows: 

o divide by zero 
1 single step (used by the iSBC 957B package) 
2 non-maskable interrupt (used by the iSBC 

957B package) 
3 one byte interrupt instruction (used by the 

iSBC 957B package) 
4 interrupt on overflow (used by the hardware) 
5 runtime array bounds error (used by compil­

ers and assembler) 

6-55 
56-63 

64-127 
128-183 

184-223 
224-255 

reserved for Intel 
external interrupts (PIC master lines) 
external interrupts (PIC slave lines) 
unused (available to users for software 
interrupts) 
reserved for Intel 
unused (available to users for operating 
system extensions) 

The interrupt lines, programmable interrupt control­
ler and other hardware related topics are discussed 
in Chapter 5, Volume 2 of this set. 

INTERRUPT LINES 

In the discussion that follows, the word "line" refers 
directly to a pin on a component. This is synonomous 
with the word "level". 

External interrupts are funneled through one or 
more hardware programmable interrupt controllers 
(PICs). The master controller is part of the 80130 
component, but additional PICs (such as the Intel 
8259A PIC) can be used to obtain additional inter­
rupt lines. 

The on-chip PIC that is part of the OSP can manage 
interrupts from as many as eight external sources. 
However, the OSP also supports an expended (or 
cascaded) environJ1lent in which up to seven input 
lines of the on-chip PIC (the master interrupt 
controller) are each connected to a 8259A PIC 
(called a slave interrupt controller). One input line 
from the master PIC cannot be attached to a slave 
because it must be connected directly to the system 
clock. 

Since each of the slaves can manage eight interrupts, 
and as many as seven slaves can be attached to the 
master PIC, the OSP can support as many as 56 inter­
rupt lines from external sources. These 56 lines are 
in addition to the one master line required for the 
system clock. 

The interrupt lines of the master PIC and the inter­
rupt lines of the slave 8259A PICs are each assigned 
entries to the Interrupt Vector Table, as shown in 
Figure 8-7. The master interrupt lines, numbered 
MO through M7, correspond to entries 56 through 
63 (decimal) in the Interrupt Vector Table. The 
slave interrupt lines, numbered xO to x7 (where x 
ranges from 0 to 7 and identifies the master line to 
which the slave PIC is attached) correspond to en­
tries 64 through 127 (decimal) of the Interrupt 
Vector Table. Table 8-2 shows the numbered inter­
rupt lines and their corresponding entries in the In­
terrupt Vector Table. 
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80130 PIC 

MO 
M1 

M2 

M3 

M4 

M5 

M6 

M7 

/ 
/ 
I 
I 
I 

/ 
/ 

I 

..... 

/ 
/ 

/' 

I 
I 

I 
I 

/ 
/ 

--- --

/ 

./ 
/' 

SLAVE 1 
8259A PIC 

LINES 
10·17 

SLAVE 3 
8259A PIC 

LINES 
30·37 

SLAVE 7 
8259A PIC 

LINES 
70·77 

Figure 8-7 80130 On-Chip Master PIC with 8259A Slave PICs 
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Table 8-2 Interrupt Line Numbers 
and Interrupt Vector Numbers 

Line Numbers Vector Table Entry 

MO-M7 
00-07 
10-17 
20-27 
30-37 
40-47 
50-57 
60-67 
70-77 

DISABLING AND ENABLING 
INTERRUPT LINES 

53-63 
64-71 
72-79 
80-87 
88-95 

96-103 
104-111 
112-119 
120-127 

Occasionally the user may want to prevent signals 
from causing an immediate interrupt. For example, 
it is desirable to prevent low priority interrupts from 
interfering with the servicing of a high priority 
interrupt. The OSP provides mechanisms for disa­
bling and enabling interrupts. 

If a signal is received on a line that is enabled, the 
8086 and 8088 microprocessor traf\sfers control to 
the address contained in the Interrupt Vector Table 
entry that corresponds to the line on which the inter­
rupt occurred. 

On the other hand, if a signal is received on a line 
that is disabled, the processor will continue running, 
uninterrupted, until the interrupt line is again 
enabled. Once re-enabled, the interrupt will occur if 
the interrupt signal is still active. For more informa­
tion on interrupt enabling and disabling, see the 
iOSP 86 Support Package Reference Manual. 

INTERRUPT HANDLERS AND 
INTERRUPT TASKS 

Whether an interrupt handler services an interrupt 
line by itself or invokes an interrupt task to service 
the interrupt depends on two factors: 

• the kinds of primitives needed 

• the amount of time required 

Regarding the first factor, interrupt handlers can 
invoke only the ENTER$INTERRUPT, EXIT$IN­
TERRUPT, GET$LEVEL, DISABLE and SIG­
NAL$INTERRUPT primitives. If it is necessary to 
use other primitives to service the interrupt, an in­
terrupt task can be used in conjunction with the in­
terrupt handler. 

Regarding the second factor, an interrupt handler 
should always invoke an interrupt task unless the 
handler can service interrupts quickly. This is be­
cause an interrupt signal disables all interrupts, and 
they remain disabled until the interrupt handler 
either services the interrupt or invokes an interrupt 
task. Invoking an interrupt task allows higher priority 
interrupts (and in some cases, the same priority 
interrupts) to be accepted. 

For more information about interrupt handlers and 
interrupt tasks, consult the iOSP 86 Support Package 
Reference Manual. 

PRIMITIVES FOR INTERRUPTS 

The following primitives manipulate interrupts: 

8-21 

• SET$INTERRUPT -Assigns an interrupt 
handler and, if desired, an interrupt task to 
an interrupt line. 

• RESETS$INTERRUPT -Cancels the assign­
ment made to a line by SET$INTERRUPT 
and, if applicable, deletes the interrupt task 
for that line. 

• EXIT$INTERRUPT-Used by interrupt han­
dlers to send an end-of-interrupt signal to 
hardware. 

• SIGNAL$INTERRUPT - Used by interrupt 
handlers to invoke interrupt tasks. 

• WAIT$INTERRUPT -Suspends the calling 
interrupt task until it is called into service by 
an interrupt handler. 

• ENABLE- Enables an external interrupt line. 

• DISABLE- Disables an external interrupt 
line. 

• GET$LEVEL-Returns the highest priority 
interrupt line for which an interrupt handler 
has started but has not yet finished 
processing. 

• ENTER$INTERRUPT -Sets up a previously 
designated data segment base address for the 
calling interrupt handler. 
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8.9 EXTENDABILITY 

The services provided by the OSP are extendable. 
The user can create his own primitives and add them 
to the operating system without having to modify 
any OSP codes. From the standpoint of an applica­
tion programmer, these customized primitives are 
just as much a part of the operating system as are the 
primitives provided by the OSP. 

NOTE: Another way of extending the OSP is to add 
features and/or subsystems of the iRMX 86 Operat­
ing System. This is the subject of Section 8.11 of this 
chapter. 

Three Ways of Adding Functionality 

Whenever more than one job in an application 
system requires a function not supplied by the OSP, 
the following three methods of adding the needed 
function may be used: 

1) The function can be written as a procedure and 
placed it ina library by using LIB86. After each job 
that requires the function has been compiled, 
LINK86 can be used to link the library to the object 
module for the job. 

2) The function can be written as a task, and applica­
tion tasks can invoke the function through a 
mailbox-segment interface. 

3) The function can be written as a procedure and 
added to the operating system. Application programs 
then invoke the function by means of a primitive. 

The relative advantages and disadvantages of the 
three alternatives are summarized in Table 8-3. 

Alternative 3 involves extending the operating 
system. The procedures that must be added in order 
to support the added function are. called an Operating 

System Extension or OS extension. From the appli­
cation programmer's standpoint, an OS extension 
appears to be a collection of one or more customized 
primitives, no different in style than, say, the primi­
tives for manipulating mailboxes. 

Creating an Operating System 
Extension 

Creating an OS extension involves both writing 
several procedures and initializing the Interrupt 
Vector Table of the iAPX 86/186 microprocessor. 
For detailed treatment of procedures used in operat­
ing system extensions see the iOSP 86 Support Pack­
age Reference Manual. 

Primitives Used in Extending the 
Operating System 

The following primitives are used exclusively by OS 
extensions: 

• DISABLE$DELETION 
This primitive increases the deletion disabling 
depth of an object by one. 

• ENABLE$DELETION 

• 

• 

This primitive removes one level of deletion 
disabling from an object, reversing the effect 
of one DISABLE$DELETION call. 

SET$EXTENSION 
This primitive can be used either to place an 
address in a specific entry of the Interrupt 
Vector Table or to remove such an entry. 

SIGNAL$EXCEPTION 
This primitive advises a task that an exception 
has occurred in an OS extensjon that the task 
has called. 

The uSe of these primitives is covered in detail in the 
following section 8.10. 

8-22 210911 



THE 80130 OPERATING SYSTEM FIRMWARE COMPONENT 

Table 8-3 Comparison of Techniques for Creating Command Functions 

PROCEDURE 
LIBRARY 

APPLICATION SIMPLE 
PROGRAMMER'S 

INTERFACE 

RELATIVE GOOD (for all 
PERFORMANCE functions) 

SYNCHRONOUS or BOTH 
ASYNCHRONOUS 

CALLS 

SYSTEM NOT REQUIRED 
PROGRAMMER 

DUPLICATE CODE Difficult to avoid 

POTENTIAL FOR YES 
COSTLY 

MAINTENANCE 

SUPPORTS NEW NO 
OBJECT TYPES 

8.10 OSP PRIMITIVES 

This section contains the calling sequences and other 
information about the OSP primitives. The descrip­
tions of the primitives are in alphabetical order. In­
formation for each primitive is organized into the 
following categories: 

• A brief sketch of the effects of the primitive. 

• The PL/M -86 calling sequence for the 
primitive. 

• Definitions of the output parameters, if any. 

• A detailed description of the effects of the 
primitive. 

• An example of how the primitive can be used. 

• The condition codes that can result from 
using the primitive, with a description of the 
possible causes of each exception. 

TASK OS EXTENSION 

COMPLEX SIMPLE 

POOR (for quick MODERATE (for quick 
functions) functions) 

MODERATE (for GOOD (for slower 
slower functions) functions) 

ASYNCHRONOUS BOTH 
ONLY 

NOT REQUIRED REQUIRED 

Easy to avoid Automatically avoided 

NO NO 

NO YES 

The examples used in this section assume that the 
reader is familiar with PLlM-86. In these examples, 
the appropriate DECLARE statements are made 
first. Before the first of these DECLARE statements 
is an INCLUDE statement that declares all of the 
primitive calls included in the OSF firmware. For the 
sake of simplicity, the examples assume that an es­
tablished exception handler is to deal with exception­
al conditions. Consequently, they do not illustrate in­
line exception processing. 

Additional condition codes can be returned if the 
OSF firmware is extended to include parameter vali­
dation (see Section 8.9). 

Following the individual descriptions of the primi­
tives is a command dictionary, in which the calls are 
grouped according to type. The dictionary includes a 
short description and the page number of the primi­
tive's complete description in this section. 
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ACCEPT$CONTROL 

The ACCEPT$CONTROL primitive requests immediate access to data protected by a region. 

CALL RQ$ACCEPT$CONTROL (region, except$ptr); 

INPUT PARAMETER 

region A WORD containing a TOKEN for the target region. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

DESCRIPTION 

The ACCEPT$CONTROL primitive provides access to data protected by a region if access is immediately available. If 
access is not immediately available, the primitive generates the E$BUSY condition code and the calling task remains 
ready. 

EXAMPLE 

, ......................................................................................................................... . 
This example illustrates how the ACCEPT$CONTROL primitive can be used to access data protected 
by a region . 

........ ............ _._ ......................................................................... ., .e ................ * ............. * ........ ** ................. * ....... ,., ** ................ ** ........ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE region$token 
DECLARE priority$queue 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

.:} Typical PLlM-86 Statements 

r declares all primitive calls *f 

LITERALLY 'SELECTOR'; 
/* if your 'PLfM compiler does not support this variable 
type, declare TOKEN a WORD *f 
TOKEN; 
literally '1'; f* tasks wait in priority order *f 
WORD; 

/ * ........ _ ...................................... * ......................................................................................................... .. 

In order to access the data within a region, a task must know the TOKEN for that region. In this example, 
the needed TOKEN is known because the calling task creates the region. 

_ •• e" ..... _.a ••• _ •• __ ••• _ ••••••• _ •••••••••••••••••••• _ ••••••• _e_e ........... __ ................... _ ••• * ••••• _ ••••••••••••••••••• / 

region$token = RQ$~REATE$REGION 

... } Typical PLlM-86 Statements 
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(priority$q ueue, 
@status); 
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/*_*** ... **_**_************************,.._.*************************w********************_.***********_*********_*.*._*._ ••• _ 

At some point in the task, access is needed to the data protected by the region. The calling task then in­
vokes the ACCEPT$CONTROL primitive and obtains access to the data if access is immediately 
available. 

*_iII •••• _111._ ... _ ........ 'II"" _.,., *_,., *. *'" **** ** •• ",,., * * * ••• "' .. * * ... * * * ** "'_*. *'" *."'_ *_ illiII •• * ",.iII ••••• ,., * * * * *_. '" * * _.* ill ill *,., * * •• * ..... * * ... * .... * * ... *.iII / 

CALLRQ$ACCEPT$CONTROL 

.:} Typical PLlM-86 Statements 

(region$token, 
@status); 

/******************* ••• *****"'.*************************-_ •• _ ••••• _ •••• _ •••••••• * ••• * •• *. __ •• __ •• _ •••••• _ ••• -**-*,.,-* ••• _ ••• 

When the task is ready to relinquish access to the data protected by the region, it invokes the SEND$­
CONTROL primitive. 

**********-**********************************************:iII** •• **********************************************.,.,._ •• _*.*_ .• I 

CALLRQ$SEND$CONTROL (@status); 

..• } Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$BUSY Another task currently has access to the data. 

E$EXIST The region parameter does not refer to an existing object. 

E$TYPE The region parameter is a TOKEN for an object that is not a region. 
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CATALOG$OBJECT 

The CATALOG$OBJECT primitive places an entry for an object in an object directory. 

CALL RQ$CATALOG$OBJECT (job, object, name, except$ptr); 

INPUT PARAMETERS 

job 

object 

name 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD that indicates where the object is to be cataloged. 

• If zero, the WORD indicates that the object is to be cataloged in the object direc­
tory of the job to which the calling task belongs. 

• If not zero, the WORD contains the TOKEN for the job in whose object directory 
the object is to be cataloged. 

A WORD containing a TOKEN for the object to be cataloged. 

A POINTER to a STRING containing the name under which the object is to be 
cataloged. The name itself must not exceed 12 characters in length. Each character 
can be a byte consisting of any value from 0 to OFFH. 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

The CATALOG$OBJECT primitive places an entry for an object in the object directory of a specific job. The entry con­
sists of both a name and a TOKEN for the object. There may be several such entriet? for a single object in a directory, 
because the object may have several names. (However, in a given object directory, only one object may be cataloged 
under a given name.) If another task is waiting, via the LOOKUP$OBJECT primitive, for the object to be cataloged, that 
task is awakened when the entry is cataloged. 

EXAMPLE 

1············_--_··························· __ ·_-_···-............. _ ...... _----_ .............. ----.... _ ..... --_. __ .. _ .. _.-
This example illustrates how the CATALOG$OBJECT primitive can be used to place an entry in an 
object directory . 

................. '* ..................... '* .. '* .... '* .................................. '* ........ '* ...... '* .. '* '* ........ ** '* ...... '* '* .. '* .... '* ................ '* '* ............. '* ................ '* ........ oil .. "''''''''''" '* .. '* '* '* .... '* '* '* .... / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE mbx$token 
DECLARE mbx$flags 
DECLARE job 
DECLARE status 
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/* Declares all primitive calls * / 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not support this variable 
type, declare TOKEN a WORD * / 
TOKEN; 
WORD; 
TOKEN; 
WORD; 
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SAMPLE PROCEDURE: 
PROCEDURE; 

mbx$flags ~ 0; 

job ~ 0; 

Typical PLlM-86 Statements 

CATALOG$OBJECT 

/. designates four objects to be queued on the high 
performance object queue; designates a first­
in/first-out task queue .• / 

I" indicates objects to be cataloged into the object 
directory of the calling task's job ./ 

/ '* ........ *** ..... * .... ** ....................... ** ................................ ** ** ...................................... * .................. *. *** .......... "' ..................... "' ......................... .. 

The calling task creates an object, in this example a mailbox, before cataloging the object's TOKEN. 

** •• ,.,* ..... ** •• _ ••••••••• *** ...... ** •• ** ••• ************.* **.**********_ • .""" ••• ******_**"'*****************«***1t** *.*********** / 

mbx$token ~ RQ$CREATE$MAILBOX 

-:} Typical PLlM-86 Statements 

(mbx$flags, 
@status); 

/ **** .................... ** ........... * ........................ **** ..... '* ....... *. *.* ... '11 ................................ ** ** ...... ** .... * ................................................. .. 

After creating the mailbox, the calling task catalogs the mailbox TOKEN in the object directory of its 
own job . 

• ** •••••• **.* •• **,.,* •• ***,. ••••• ********* •• ** •• ***** .... "'.***** ••• **** •••• *** ••••• ***.****.**.***** ..... **"'.*****************'* / 

CALL RQ$CATALOG$OBJECT ijob, 
mbx$token, 
@(3, 'MBX'), 
@status); 

:-} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$LlMIT 

E$PARAM 

No exceptional conditior\s. 

At least one of the following is true: 

- The name being cataloged is already in the designated object directory. 

- The directory's maximum allowable size is O. 

The designated object directory is full. 

The first BYTE of the STRING pOinted to by the name parameter contains a zero or a value 
greater than 12. 
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CREATE$JOB 

The CREATE$JOB primitive creates a job containing a single task. 

job = RQ$CREATE$JOB (directory$size, param$obj. pool$min, pool$max, max$objects, max$tasks, 
max$priority, except$handler, job$flags, task$priority, start$address, data$seg, stack$ptr, 
stack$size, task$flags, except$ptrl; 

INPUT PARAMETERS 

directory$size 

param$obj 

pool$min 

pool$max 

max$objects 

max$tasks 

max$priority 

except$handler 

A WORD specifying the maximum allowable number of entries a job can have in its 
object directory. The value zero is permitted, for the case where no object directory is 
desired. The maximum value for this parameter is OFFOH. 

A WORD indicating the presence or absence of a parameter object. See Chapter 2 for 
an explanation of parameter objects. 

• If zero, it indicates that the new job has no parameter object. 

• If not zero, it contains a valid TOKEN for the new job's parameter object. 

A WORD which contains the minimum allowable size of the new job's pool, in 16-byte 
paragraphs. The pool$min parameter is also the initial size of the new job's pool. 
Pool$min should be at least 32 (decimai.llf the stack$ptr parameter has a base value 
of 0, pool$min should be at least 32 (decimal) plus the value of stack$size in 16-byte 
paragraphs. 

A WORD which contains the maximum allowable size of the new job's memory in 
16-byte paragraphs. 

A WORD that specifies the maximum number of objects that the created job can own. 

• If not OFFFFH, it contains the maximum number of objects, created by tasks in the 
new job, that can exist at one time. 

• If OFFFFH, it indicates that there is no limit to the number of objects. 

A WORD that specifies the maximum number of tasks that can exist simultaneously 
in the new job. 

• If not OFFFFH, it contains the maximum number of tasks that can exist simultane­
ously in the new job. 

• If OFFFFH, it indicates that there is no limit to the number of tasks that tasks in the 
new job can create. 

A BYTE that sets an upper limit on the priority of the tasks created in the new job. 

• If not zero, it contains the maximu m allowable priority of tasks in the new job. 

• If zero, it indicates that the new job is to inherit the maximum priority attribute of 
its parent job. 

A POINTER to a structure of the following form: 

STRUCTURE( 
EXCEPTION$HANDLER$PTR 
EXCEPTION$MODE 
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POINTER, 
BYTE); 
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job$flags 

task$priority 

start$address 

data$seg 

stack$ptr 

stack$size 

task$flags 

CREATE$JOB I 
,'j 

t 
:~ 
'I ;j 

If exception$handler$ptr is not zero, then it is a POINTER to the first instruction of , •. 1 .... ,· 
the new job's own exception handler. If exception$handler$ptr is zero, the new job's 
exception handler is the system default exception handler. In both cases, the excep-
tion handler for the new task becomes the default exception handler for the job. The 
exception$mode indicates when control is to be passed to the exception handler. It is 
encoded as follows: 

Value 

o 
1 
2 
3 

When Control Passes 
To Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

A reserved WORD which should be set to 2 (decimal.) 

A BYTE that controls the priority of the new job's initial task. 

• If not zero, it contains the priority of the new job's initial task. 

• If zero, it indicates that the new job's initial task is to have a priority equal to the 
new job's maximum priority attribute. 

A POINTER to the first instruction of the new job's initial task. 

A WORD that specifies which data segment the new job is to use. 

• If not zero, it contains the base address of the data segment of the new job's initial 
task. 

• If zero, it indicates that the new job's initial task assigns its own data segment. 
Refer to Chapter 5 for more information about data segment allocation. 

A POINTER that specifies the location of the stack for the new job's initial task. 

• If the base portion is not zero, the pOinter points to the base of the user-provided 
stack of the new job's initial task. 

• If the base portion is zero, it indicates that the OSP Processor is to allocate a 
stack for the new job's initial task. The length of the allocated stack will be equal 
to the value of the stack$size parameter. 

A WORD containing the size, in bytes, of the stack of the new job's initial task. This 
size must be at least 16 (decimal) bytes. The OSP Processor increases specified 
values that are not multiples of 16 up to the next (higher) multiple of 16. 

The stack size should be at least 300 (decimal) bytes if the new task is going to 
invoke primitives. See Chapter 4 for more information about stack space required by 
primitives. 

A WORD containing information that the OSP Processor needs in order to create and 
maintain the job's initial task. The bits (where bit 15 is the high order bit) have the fol­
lowing meanings: 

Bit Meaning 

15-1 Reserved bits which should be set to zero. 

o If one, the initial task contains floating-point instructions. These in­
structions require the 8087 Numeric Processor Extension for 
execution. 

If zero, the initial task does not contain floating-point instructions. 
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OUTPUT PARAMETERS 

job A WORD containing a TOKEN for the new job. 

except$ptr A POINTER to a WORD toto which the asp will return the condition code generated 
by the primitive. 

DESCRIPTION 

The CREATE$JOB primitive creates a job with an initial task and returns a TOKEN for the job. The new job's parent is 
the calling task's job. The new job counts as one against the' parent job's object limit. The new task counts as one 
against the new job's object and task limits. The new job's resources come from the parent job, as described in Chap­
ter 2. In particular, the max$task and max$objects values are deducted from the creating job's maximum task and 
maximum objects attributes, respectively. 

EXAMPLE 

/ '" '" '" '" '" **" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" "' .. '" "' .. '" '" '" '" '" "' .. '" "' .. "' .. III' '" *,* '" '" '" '" "''' "' ... '" "' .. '" ** "' ... '" ** '" '" '" "' .. '" '" '" '" * "' ...... '" '" '" "' •• "' .. '" '" '" '" ** '" '" "' •• '" "' .. "' ...... "' ... " "' ... '" '" '" ** .... "' .. '" '" 
This example illustrates how the CREATE$JOB primitive can be used. 

*** ... ** ***** '" '" * .. ******** '" '" '" ** **** ** ** '" '" '" **** ** **.,. '" '" '" *** '" '" '" "''' '" **** *** "' ... '" ** '" ******** **.'" '" '" '" '" **** '" '" *** '" "''' ** *****'" ** ** '" ***_."" / 

$INCLUDE(:F1 :OSXPRM.EXT); 

INITIAL TASK: PROCEDURE EXTERNAL; 
END INITIAL_TASK; 

DECLARE TOKEN 

DECLARE job$token 
DECLARE directory$size 
DECLARE param$obj 
DECLARE pool$min 
DECLARE pool$max 
DECLARE max$objects 
DECLARE max$tasks 
DECLARE max$priority 
DECLARE except$handler 
DECLARE job$flags 
DECLARE task$priority 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size 
DECLARE task$flags 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

directory$size = 10; 
param$obj = 0; 
pool$min = 1 FFH; 
pool$max = OFFFFH; 
max$objects = OFFFFH; 
max$tasks = OAH; 
max$priority = 0; 
except$handler = 0; 
job$flags = 0; 
task$priority = 0; 
start$address = @INITIAL_TASK; 

8-30 

I' Declares all primitive calls' f 

LITERALLY 'SELECTOR'; 
!' i.1 yourPLfM compiler does not support this variable 
type, declare TOKEN a WORD' f 
TOKEN; 
WORD; 
WORD; 
WORD; 
WORD; 
WORD; 
WORD; 
BYTE; 
POINTER; 
WORD; 
BYTE; 
POINTER; 
WORD; 
POINTER; 
WORD; 
WORD; 
WORD; 

I' max 10 entries in object directory' f 
!' new job has no parameter object' f 
I' min 1 FFHf max OFFFFH 16-byte • f 
I'paragraphs in job pool'f 
!' no limit to number of objects' f 
I' OAH tasks can exist simu Itaneously • f 
!' inherit max priority of parent' f 
I' use·system default except handler' f 
f' no flags set' f 
1* set initial task to max priority' f 

I' points to first instruction of initial task' f 
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CREATE$JOB 

data$seg = 0; 
stack$pointer = 0; 
stack$size = 512; 
task$flags = 0; 

-:} Typical PLlM-86 Statements 

r initial task sets up own data segment */ 
/* allocate a stack for initial task */ 
r 512 bytes in stack of initial task */ 
r no floating-point instructions */ 

1······_·······································_--_··· ............................... **.*** •••••••••••• ***** ••• iI •••• _ •••• _ ••• 

The calling task creates a job with an initial task labeled INITIAL_TASK . 

•••••••••••••••••• **_ ••••••••••••• _ .. **_ ............ ** __ .",***********" •• ** •• ,,*"11*** .. ***-******************** •• _*.**.*_*_. __ / 
job$token = RQ$CREATE$JOB (directory$size, 

param$obj, 
pool$min, 
pool$max, 
max$objects, 
max$tasks, 
max$priority, 
except$handler, 
job$flags, 
task$priority, 
start$address, 
data$seg, 
stack$pointer, 
stack$size, 
task$flags, 
@status); 

---} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$LlMIT 

E$MEM 

No exceptional conditions. 

At least one of the following is true: 

- max$objects is larger than the unused portion of the object allotment in the calling task's 
job. 

- max$tasks is larger than the unused portion of the task allotment in the calling task's job. 

At least one of the following is true: 

- The memory available to the new job is not sufficient to create the job. 

- The memory available to the new job is not sufficient to satisfy the pool$min parameter. 

- The memory available to the new job is not sufficient to create the initial task as specified. 
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CREATE$MAILBOX 

The CREATE$MAILBOX primitive creates a mailbox. 

mailbox = RQ$CREATE$MAILBOX (mailbox$flags, except$ptrl; 

INPUT PARAMETER 

mailbox$flags 

OUTPUT PARAMETERS 

mailbox 

except$ptr 

DESCRIPTION 

A WORD containing information about the new mailbox. The bits (where bit 15 is the 
high-order bit) have the following meanings: 

Bit Meaning 

15-5 Reserved bits, which should be set to zero. 

4-1 A value that, when multiplied by four, specifies the number of objects 
that can be queued on the high-performance object queue. Additional 
objects are queued on the slower, overflow queue. Four is the minimum 
size for the high performance queue; that is, specifying zero or one in 
these bits results in a high performance queue that holds four objects. 

o A bit that determines the queuing scheme for the task queue of the 
new mailbox, as follows: 

Value Queueing Scheme 

o First-i ntfirst-out 

Priority based 

A WORD containing a TOKEN for the new mailbox. 

A POINTER to a WORD to which the asp will return the condition code generated by 
the primitive. 

The CREATE$MAILBOX primitive creates a mailbox and returns a TOKEN for it. The new mailbox counts as one 
against the object limit of the calling task's job. 

EXAMPLE 

/ •• - * .. * ** ... * .. * ...... _ •• *"' •• _ .... ." * .. * ...... * * .. * .. * ............ * .. * .. -*- ._* .... '* ...... * .. * .................. * ...... ** ........... * .. * .. * .. * * .. ** ............ * ...... * .............. * .. * ........ .. 

This example illustrates how the CREATE$MAILBOX primitive can be used. 

_._***_ ... ********_**********************'*.********_***.'***************************.'*****'****'***'*.*** ••• w**_.************ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE mbx$token 
DECLARE mbx$flags 
DECLARE status 

8-32 

t* Declares all primitive calls * t 

LITERALLY 'SELECTOR'; 
/* if your PLIM compiler does not support this variable 
type, declare TOKEN a WORD * t 
TOKEN; 
WORD; 
WORD; 
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SAMPLE PROCEDURE: 
PROCEDURE; 

mbx$flags = 0; 

Typical PLlM-86 Statements 

CREATE$MAILBOX 

I" designates four objects to be queued on the high 
performance object queue; designates a first­
in/first-out task queue. ", / 

/ *,. .. ,. ................ **'* .... ,.,. *,. ... ,. ......... * .... ,.,. .......... '* .. * .. *,. ...................... * .. *,. .. ,. .. 111 * ........ ,. .... * '/I"""" **,. .. ,. ........ * .... * * ** ................. * ... **,.,. .... * * * * .. * * ...... .. 

The TOKEN mbx$token is returned when the calling task invokes the CREATE$MAILBOX primitive . 

• *.****** •• **** •••• *.*.*.***.*.****_.* ••• *** ••• *.*.********************.*****'11******************** •••• ****** ••••••• *.**** / 

mbx$token = RQ$CREATE$MAILBOX (mbx$flags, 
@status); 

---} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$LlMIT The requested mailbox would exceed the object limit of the calling task's job. 

E$MEM The memory available to the calling task's job is 
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CREATE$REGION 

The CREATE$REGION primitive creates a region. 

region = RQ$CREATE$REGION (region$flags, except$ptr); 

INPUT PARAMETER 

region$flags 

OUTPUT PARAMETERS 

A WORD that specifies the queueing protocol of the new region. If the low order bit 
equals zero, tasks await access in FIFO order. If the low order bit equals one, tasks 
await access in priority order. The other bits in the WORD are reserved and should be 
set to zero. 

region A WORD to which the asp will return a TOKEN for the new region. 

except$ptr A POINTER to a WORD to which the asp will return the condition code generated by 
the primitive. 

DESCRIPTION 

The CREATE$REGION primitive creates a region and returns a TOKEN for the region. 

EXAMPLE 

/ .... '* '* ** .... _ .. '" "' .... '* ** - ** '* '* 11 '* '* '* * '* '* ** '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '*.'* '* '* ** '* .. '* '* '* '* '* '* .. '* '* '* '* * '*,. '* '* .. '* '* '* '* '* '* '* '* '* '* '* '" '* ..... '* '* '* '* '* '* '*.* '* '* '* '* '* '* '* '* '* .. '* .. '* '* ** .... '* '* '* '* '* 

This example illustrates how the CREATE$REGION primitive can be used . 

•• ****_."'.***********"'*******"'**'***********-*****"'******.******.**** •• ** ••• _*********** •• **** •• _***********---'* •• ---- •• *- / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE region$token 
DECLARE priority$queue 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

-:} Typical PLlM-86 Statements 

f* Declares all primitive calls * f 

LITERALLY 'SELECTOR'; 
f* if your PLIM compiler does not support this variable 
type, declare TOKEN a WORD * f 
TOKEN; 
LITERALLY '1 '; f* tasks wait in priority order *f 
WORD; 

/ '* '* '* ** '* '* '* '* '* '* '* '* '* '* '* *** ... '* '* ** '* '* .. '* '* '* *.* '* '* _.- '* ** .**** .. '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* **** '* .. '* '*.* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* '* ** '* '* '* '* '* *** '* '* '* '* '* '* *** '* 

The TOKEN region$token is return when the calling task invokes the CREATE$REGION primitive. 

******.*****"'.,.,******** •• ********************************************._.***** •• *******************************-**********/ 

region$token = RQ$CREATE$REGION (priority$queue, 
@status); 
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CREATE$REGION 

-:} Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$L1MIT 

E$MEM 

No exceptional conditions. 

The calling task's job has reached its object limit. 

The memory pool of the calling task's job does not contain a sufficiently large block to satisfy 
the request. 
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CREATE$SEGMENT 

CREATE$SEGMENT 

The CREATE$SEGMENT primitive creates a segment. 

segment = RQ$CREATE$SEGMENT (size, except$ptr); 

INPUT PARAMETER 

size 

OUTPUT PARAMETERS 

segment 

except$ptr 

DESCRIPTION 

A WORD that specifies the size of the new segment. 

- If not zero, the WORD contains the size, in bytes, of the requested segment. If the 
size parameter is not a multiple of 16, it will be rounded up to the nearest higher 
mu Itiple of 16 before the OSP Processor creates the segment. 

- If zero, the WORD indicates that the size of the request is 65536 (64K) bytes. 

A WORD to which the asp will return a TOKEN for the new segment. 

A POINTER to a WORD to which the OSP will return the condition code generated by 
the primitive. 

The CREATE$SEGMENT primitive creates a segment and returns the TOKEN for it. The memory for the segment is 
taken from the free portion of the memory pool of the calling task's job, unless borrowing from the parent job is both 
necessary and possible. The new segment counts as one against the object limit of the calling task's job. 

To gain access to the segment, you should base an array or structure on a pointer by setting the base portfon equal to 
the segment TOKEN and the offset portion equal to zero. Or, if you have a PLlM-86 compiler that supp0tts the SELEC­
TOR data type, you can accomplish the same thing by setting a variable of type SELECTOR equal to the TOKEN value. 

EXAMPLE 

/ *.* ....................... '" ** '* .......................... ** ** ................ " ** *** ** ............... * ............. *** ** '* ....................... ** ** ................................... flo ** *. ** ........... .. 

This example illustrates how the CREATE$SEGMENT primitive can be used. 

***-*****************************-****************-*** ****~********* ... ********.*.******.***.""."'****.**************-*******/ 

$INCLUDE(:Fl :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE seg$token 
DECLARE.size 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

1* Declares all primitive calls· f 

LITERALLY 'SELECTOR'; 
f· if your PLIM compiler does not support this variable 
type, declare TOKEN a WORD· f 
TOKEN; 
WORD; 
WORD; 

size = 64; f· designates new segment to contain 64 bytes·f 

-:} Typical PLlM-86 Statements 
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CREATE$SEGMENT I 
/ * *,.,.. .... _*._,.. * * 11 .... * '* *,. .. * * '* '* '* * III *,.. .. * ... * '* * .. * •• * * * * * * '* * •• * * '* * .. * .. * * .. '* * * * '* * '* * * ..... * .. '* * .................... * ...... * ... * ... *. * .. * ........ * ••• _._ * ... . 

The TOKEN seg$token is returned when the calling task invokes the CREATE$SEGMENT primitive . 
• *.**********"**************.**********.**.*.******.iI.*._**.* ____ ••• _. _____ ._._ •• ".*_ .... _ ••••••••••••• "'. __ •••••••••••••••• / 

set$token ~ RQ$CREATE$SEGMENT (size, 
@status); 

-:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$LlMIT 

E$MEM 

No exceptional conditions. 

The requested segment would exceed the object limit of the calling task's job. 

The memory available to the calling task's job is not sufficient to create the specified 
segment. 
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CREATE$TASK 

The CREATE$TASK primitive creates a task. 

task = RQ$CREATE$TASK (priority, start$address, data$seg, stack$ptr, stack$size, task$flags, 
except$ptr) ; 

INPUT PARAMETERS 

priority 

start$address 

data$seg 

stack$ptr 

stack$size 

task$flags 

OUTPUT PARAMETERS 

task 

except$ptr 

A BYTE that specifies the priority of the new task. 

• If not zero, the BYTE contains the priority of the new task. The priority parameter 
must not exceed the maximum allowable priority of the calling task's job. 

• If zero, the BYTE indicates that the new task's priority is to equal the maximum al­
lowable priority of the calling task's job. 

A POINTER to the first instruction of the new task. 

A WORD that specifies the new task's data segment. 

• If not zero, the WORD contains the base address of the new task's data segment. 

• If zero, the WORD indicates that the new task assigns its own data segment. Refer 
to Chapter 5 for further information on data segment allocation. 

A POI NTER that specifies the I~cation of the stack for the new task. 

• If the base portion is not zero, the POINTER pOints to the base of the new task's 
stack. 

• If the base portion is zero, the OSP Processor will allocate a stack to the new task. 
The length of the stack will be equal to the value of the stack$size parameter. 

A WORD containing the size, in bytes, of the new task's stack segment. The staCk 
size must be at least 16 bytes. The OSP Processor increases values that are not 
multiples of 16 up to the next higher multiple of 16. 

The stack size should be at least 300 (decimal) bytes if the new task is going to 
invoke OSP primitives. See Chapter 4 for more information about stack size required 
by primitives. 

A WORD containing information that the OSP Processor uses to create and maintain 
the task. The bits (where bit 15 is the high-order bit) have the following meanings: 

Bit Meaning 

15-1 Reserved bits which should be set to zero. 

o If one, the task contains floating-point instructions. These instructions 
require the 8087 Numeric Processor Extension for execution. 

If zero, the task does not contain floating-point instructions. 

A WORD in which the OSP will return a TOKEN for the new task. 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. . 
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DESCRIPTION 

The CREATE$TASK primitive creates a task and returns a TOKEN for it. The new task counts as one against the object 
and task limits of the calling task's job. Attributes of the new task are initialized upon creation as follows: 

• priority: as specified in the invocation. 

• execution state: ready. 

• suspension depth: o. 

• containing job: the job that contains the calling task. 

• exception handler: the exception handler of the containing job. 

• exception mode: the exception mode of the containing job. 

EXAMPLE 

/ ..... '* ......... 'II!""'''''''' 111"""'" "" "' ..... _ ........ ." "" .......................................... * ........... "" ........... "' .... "' ............ * ...... * ................. * ...... * ... * ... * ... ** ............... 11"''''''''''''' "' .................... ,., ... "' ..................... * ... "' ... "' ... '" * ... 

This example illustrates how the CREATE$TASK primitive can be used. 

"'**********-****'11**-*******"'***************.*****************************""*****_******11*."'.***********_***** ***********"'. / 

$INCLUDE(:F1 :OSXPRM.EXT); 

TASK CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$51 2 

DECLARE task$flags 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @TASK CODE; 
data$seg = 0; -
stack$pointer = 0; 
task$flags = 0; 

.:} Typical PUM-B6 Statements 

/* Declares all primitive calls */ 

LlTERALLY'SELECTOR'; 
/* if your PUM compiler does not support this variable 
type, declare TOKEN a WORD */ 
TOKEN; 
LlTERALLY'66'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack size is 512 bytes 
*/ 
WORD; 
WORD; 

/* first instruction of the new task */ 
/* task sets up own data segment */ 
/* automatic stack allocation */ 
/* designates no floating-point instructions */ 

/ ............ ** ** ............ "' ........... ." ... "' ... "' .. "' ... It"'"",,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, "' ........... * ... * ... * '" "' ... *,. ...... "' ............ * .......... * .................. .,. ................. * ... 1<"''''''' * ........................... "' ... ... 

The task TASK_CODE is created when the calling task invokes the CREATE$TASK primitive. 

****." ** ,, ___ * ______ 'II'" * ** ... "'*_*'" _* __ "'_ '" " __ **_*.,, ** .*-_'11 **_*'" '" ** 11 ... '" '/I ** "" *** ** 'II."'''' 11 ... "'", ****** .. '/I'" '/I ******* ** _* **'" '" '" '" '" '" '" '" '" "'''' '" '" '" '" '" '" '" '" / 
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CREATE$TASK 

task$token = RQ$CREATE$TASK 

.:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(priority$level$66, 
start$address, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); 

E$LlMIT The new task would exceed the object limit or the task limit of the calling task's job. 

E$MEM The memory available to the calling task's job is not sufficient to create a task as specified. 
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DELETE$MAILBOX 

The DELETE$MAILBOX primitive deletes a mailbox. 

CALL RQ$DELETE$MAILBOX (mailbox, except$ptr); 

INPUT PARAMETER 

mailbox 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a TOKEN for the mailbox to be deleted. 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

The DELETE$MAILBOX primitive deletes the specified mailbox. If any tasks are queued at the mailbox at the moment 
of deletion, they are awakened with an E$EXIST exceptional condition. If there is a queue of object TOKENs at the 
moment of deletion, the queue is discarded. Deleting the mailbox counts as a credit of one toward the object total of 
the containing job. 

EXAMPLE 

/ '" '* '" "' •• '" '" '" '" '" '" 'lit •• '" "' .. "' .. "' .... '" '" "' ....... _ .. ******.* .... '" '" '" '" ••• '*. '" '" '" '" '" '" '" '" '" '" '" '" ft. '" '" "' ...... * '" '" '" '" '" '" '" '" '" '" '" '" '" "' .. '" '" '" '" '" "' .. '" '" '" '" '" '" '* .. '* '" "' .. '" '" '" '" '* '" '" "'.* ••• '" 
This example illustrates how the DELETE$MAILBOX primitive can be used. 

11"""".* •• ****.****** ••••••••• * ..... "'*** ••••• ** •••••••••••• •••••• *********.'*****"'***",******************* ••• ******** •• ***_*** •• / 

DECLARE TOKEN 

DECLARE mbx$token 
DECLARE mbx$flags 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

mbx$flags ~ 0; 

-:} Typical PLlM-86 Statements 

LITERALLY 'SELECTOR'; 
/* if your PL/M compiler does not support this variable 
type, declare TOKEN a WORD * / 
TOKEN; 
WORD; 
WORD; 

/* designates four objects to be queued on the high 
performance object queue; designates a first­
in/first-out task queue. */ 

/,. '" '" ••• '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" "" '" '" '* '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" **** '" '" '" '" ** '" '" '" '" '" '" "' .... '" '* '" '" '" '" '" '" '" '" '" '" '" '" "' .. '" '" '" '" '" *. '" '" *. '* ... '" '" '" "'.* •• '" ** '" '" '" "' ... '" '* '" '" '" '" '" '" '" '" '" '* 
In order to delete a mailbox, a task must know the name of the TOKEN for that mailbox. In this example, 
the needed TOKEN is known because the calling task creates the mailbox . 

••• - ******* "'."" .--•••••• "' ••••••••••••••••••••• *** •••• * ••• * * '" *. -'" '" '" '" '" '* '" '" '" .*** '" ••• "' •••• * .... ****,.,********* ... * "'''''''''''''-''' '" ** "' •• '" '" "'* '" / 

mbx$token ~ RQ$CREATE$MAILBOX (mbx$flags, 
@status); 
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I ·DELETE$MAILBOX 

-:} Typical PLlM-86 Statements 

/*****.**************-******************************** •• _ •• _--_._._ •••• _. __ ._. __ •• _-_ •••••••• _-.-.-.---------_ ••• __ .... _._. 

When the mailbox is no longer needed, it may be deleted by any task that knows the TOKEN for the 
mailbox. 

* •• _ 1t"' .. "" .. * "" .... _ .... * .... * * * .. * * * * .. * "" """" """". * "" * * * * .. "" * * "" "" * * * * •• "" .. * * *."" '" "" * *"" .. "' .. "" •• "" * .... * * * * "" * * * * "" * * "". * "" "". * "" * "". * "" * "" * "" * * * *_ * .. * * * * * * "" .. * * / 

CALL RQ$DELETE$MAILBOX (mbx$token, 
@status); 

-:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$EXIST Either the mailbox parameter is not a TOKEN for an existing object. 

E$TYPE The mailbox parameter is a TOKEN for an object that is not a mailbox. 
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DELETE$REGION 

The DELETE$REGION primitive deletes a region. 

CALL RQ$DELETE$REGION (region, except$ptr); 

INPUT PARAMETER 

region 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a TOKEN for the region to be deleted. 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

The DELETE$REGION primitive deletes a region. If a task that has access to data protected by the region requests 
that the region be deleted, the task receives an E$CONTEXT exceptional condition. If a task requests deletion while 
another task has access, deletion is delayed until access is surrendered. When the region is deleted, any waiting 
tasks awaken with an E$EXIST exceptional condition. 

EXAMPLE 

/ ** ...... ** '* *** ** '* .......................... *** ** ** *** ........ *** ........ **** ................ '* .... '* ** ................ '* '* .. '* ... _ .... ** ** ........ '* .. ** ** ........ **,., .. ** .......................... .. 

This example illustrates how the DELETE$REGION primitive can be used. 
"'_._* ___ ._."'. _____________ • __ ."'. ____ ._ ••. ______ •.• ____ ********_*******."'.********_*******.****_*************_."'.fI ________ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE region$token 

DECLARE priority$queue 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

.:} Typical PLlM-86 Statements 

/* Declares all primitive calls * / 

LITERALLY 'SELECTOR'; 
/* if your PLIM compiler does not support this variable 
type, declare TOKEN a WORD * / 
TOKEN; 

LITERALLY '1 '; /* tasks wait in priority order * / 
WORD; 

/-*** ••• *************** •• *******************************.*************.**** •••• ****.*********.*.* •• *********.*.-.-._--_ ••• 
In order to delete a region, a task must know the name of the TOKEN for that region. In this example, the 
needed TOKEN is known because the calling task creates the region . 

.. ", .. ,..fIo _* '* .. ,. '* .. '* '* '* * '* '* * '* '" '* .. ** '* flo"" * ...... ,. '* .. '* '* .. '* .. '*,. .... '* '* '" '* ... **. '*. '" * '* '* '* '* * '* '* .. * ... '* .... '* .. '* '* * .. * *,. ** '* '* '* ...... ** '* '* '* '* .. '* .... '* ** '* '*,.,. .... * * '* '* .. '* * ...... '* '* '* / 

region$token = RQ$CREATE$REGION (priority$queue, 
@status); 
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I DELETE$REGION 

.:} Typical PLlM-86 Statements 

/ .... * ....... _ ... * ........ _._ ...... * ..... *. flo 'It_ ....... _ * .... * ....... _ .... l1li * ••• * .. *._ .... * .................. *"' ........... __ ................. * ....................... "' ....... _ ...... *._ .. .. 
When the region is no longer needed, it may be deleted by any task that knows the TOKEN for the 
region . 

• *****.'*****_.*****"'*******_********** ••• "'************"'****_."'***********_**.*********'***'*********_.*** ••• ** •••• _.It .. _ .. _ / 

CALL RQ$DELETE$REGION 

.•. } Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(region$token, 
@status); 

E$CONTEXT The deletion is being requested by a task that currently holds access to data protected by 
the region. . 

E$EXIST The region parameter does not contain a TOKEN for an existing object. 

E$TYPE The region parameter is a TOKEN for an object that is not a region. 
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DELETE$SEGMENT 

The DELETE$SEGMENT primitive deletes a segment. 

CALL RQ$DELETE$SEGMENT (segment, except$ptr); 

INPUT PARAMETER 

segment A WORD containing a TOKEN for the segment that is to be deleted. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

DESCRIPTION 

The DELETE$SEGMENT primitive returns the specified segment to the memory pool from which it was allocated. The 
deleted segment counts as a credit of one toward the object total of the containing job. 

EXAMPLE 

/ * ...... ** .. **** •• ____ .. ** * ........... 'It. ___ ._ ............... ** ................................................ * .......... 'It""" ** * ............. flo ...................................... 'It ............. "" .... .. 

This example illustrates how the DELETE$SEGMENT primitive can be used. 

----_._._--_."'._---_. __ .. _---,.._._ •••• _-----------------*********************************************-*********.-._------"'. / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE seg$token 
DECLARE size 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

size = 64; 

Typical PLlM-86 Statements 

1* Declares all primitive calls 0 f 

LITERALLY 'SELECTOR'; 
1* if your PLIM compiler does not support this variable 
type, declare TOKEN a WORD of 

TOKEN; 
WORD; 
WORD; 

1* designates new segment to contain 64 bytes Of 

/ ** ....................................... _ •• _ • 'It 'It • .... * ............. *** .......... ., .............................................. " ........ 'It_" ...................................... ft ........................... 1ft .......... .. 

In order to delete a segment, a task must know the name of the TOKEN for that segment. In this 
example, the needed TOKEN is known because the calling task creates the segment. 

**************************************************.fI******* •• **********«._._******** • .,,*************_.*********_****,*.***fI / 

seg$token = RQ$CREATE$SEGMENT 

.:} Typical PLfM-86'8tatements 
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@status); 
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I DELETE$SEGMENT 

/ ... flo'" * * .. flo * __ .... * __ flo flo * * * * * flo flo * '* ... _ '" '" flo ... '" "' ... * 'It ...... * *. **._ ........... "' ....................................... "' ............... "' ................... * '* .............................. "' ...... '* .............................. * ...... '" * ... * ... "' ...... * '" flo 

When the segment is no longer needed, it may be deleted by any task that knows the TOKEN for the 
segment. 

**************""************************************fr******_***_*_************""**_*******""******"'*******"''''***_",,,,*fIo ____ "''''_,,, / 

CALL RQ$DELETE$SEGMENT (seg$token, 
@status); 

---} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$EXIST The segment parameter is not a TOKEN for an existing object. 

E$TYPE The segment parameter is a TOKEN for an object that is not a segment. 
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DELETE$TASK 

The DELETE$TASK primitive deletes a task. 

CALL RQ$DELETE$TASK (task, except$ptr); 

INPUT PARAMETER 

task A WORD that identifies the task to be deleted. 

• If not zero, the WORD contains a TOKEN for the task that is to be deleted. 

• If zero, the OSP Processor will delete the calling task. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

DESCRIPTION 

The DELETE$TASK primitive deletes the specified task from the system and from any queues in which the task was 
waiting. Deleting the task counts as a credit of one toward the object count of the containing job. It also counts as a 
credit of one toward the containing job's task count. 

You cannot successfully delete an interrupt task by invoking this primitve. Any attempt to do so will result in an 
E$CONTEXT exceptional condition. To delete an interrupt task, invoke the RESET$INTERRUPT primitive. 

EXAMPLE 

/ •••• _ ••• _._ ... * ... * * ........ * .. * .. * * .... * ... * ** * ........ _*_ ................................. ***.* ........ ** **,. ...... ** ..... * ... * .................. _.* .. *** *** 11 .. ,. ........ """"""" 

This example illustrates how the DELETE$TASK primitive can be used . 

••• ******_*******************_*** •• *********************11*****.***********************.****.******."' ... • •• * .... • __ ••• _._ •••• _/ 

$INCLUDE(:F1 :OSXPRM.EXT); 

TASK CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

DECLARE TOKEN 

DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE status 
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r Declares all primitive calls * / 

LITERALLY 'SELECTOR'; 
/* if your PLIM compiler does not support this variable 
type, declare TOKEN a WORD * / 
TOKEN; 
LITERALLY '66'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; r new task's stack size is 512 bytes 
* / 
WORD; 
WORD; 
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f DELETE$TASK 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @TASK CODE; 
data$seg = 0; -
stack$pointer = 0; 
task$flags = 0; 

r pOints to first instruction of the new task *1 
r task sets up own data segment * / 
1* automatic stack allocation * / 
r indicates no floating-point instructions * / 

/ ** .. *,., * ** ............ * .... ** ** ........ * .... ** ........ * .... ** ....... * * .. * .......... ""* ** .... * * ...... ** ............ -_ ............ ** ........................ ** .. '" "' .. ** ** .. * .... ** .. * ........ ** ........ .. 

In order to delete a task, a task must know the name of the TOKEN for that task. In this example, the 
needed TOKEN is known because the calling task creates the new task (labeled TASK_CODE). 

*************************.'***************_***","'*********** •••• * ••• **** •• ***** •• .".*** •••••• ********* ••• *fI*********"'******* / 

task$token = RQ$CREATE$TASK 
start$add ress, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); 

.:} Typical PLlM-86 Statements 

(priority$level$66, 

/ * ...... *** .. "' .................................. ** *.-_ ..... "' ... ** ........ * * .......... ** .... 111''''' "' .......... * ........ * ...... ** ...... ** .. * .. * ...................... "' ...... * ................ * .... ." ................ '" 

The calling task has created TASK_CODE which is not an interrupt task. When TASK_CODE is no 
longer needed, it may be deleted by any task that knows its TOKEN. 

_****"'********** •• **w***** •• "'***""*****_*************"'.******** •• ."*** •• **************,,******."'*******,,,*******""""""""*_._""""*_'" / 

CALLRQ$DELETE$TASK (task$token, 
@status); 

..• } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The task parameter is a TOKEN for an interrupt task. 

E$EXIST The task parameter is not a TOKEN for an existing object. 

E$TYPE The task parameter is a TOKEN for an object which is not a task. 
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DISABLE 

The DISABLE primitive disables an interrupt line. 

CALL RQ$DISABLE (line, except$ptr); 

INPUT PARAMETER 

line 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD that specifies an interrupt line encoded as follows (bit 15 is the high-order 
bit): 

Bits Value 

15-7 0 

6-4 first digitof the interrupt line (0-71 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave interrupt controller and bits 2-0 specify 
the second digit of the line 

2-0 second digit of the interrupt line (0-71. if bit 3 is zero 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. The calling task must process all exceptional conditions in-line, as 
control does not pass to an exception handler. 

The DISABLE primitive disables the specified interrupt line. It has no effect on other lines. The line must have an inter­
rupt handler assigned to it. 

The line reserved for the system clock should not be disabled. This line is specified during system configuration. 
Refer to Chapter 5 for configuration information. 

EXAMPLE 

/ ............................................................................................. -.......................... . 
This example illustrates how the DISABLE primitive can be used to disable an interrupt line . 

•• • _ •••• * •••• _ •• _ ••••• * ... * ................................ a_ ..................... _ ........ _.* ........ * ...................... * ........... * ................... */ 

$INCLUDE(:F1 :OSXPRM.EXT); 

INTERRUPT HANDLER: PROCEDURE EXTERNAL; 
END INTERRUPT_HANDLER; 

DECLARE interrupt$line$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 
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1* Declares all primitive calls ., 

LITERALLY '0000 0000 0111 1000B'; 
1* specifies master interrupt line 7·' 
BYTE; 
POINTER; 
WORD; 
WORD; 
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I 
SAMPLE PROCEDURE: 

PROCEDURE; 

f* indicates no interrupt task on line 7 * f interrupt$task$flag ~ 0; 
data$segment ~ 0; f* indicates that interrupt handler will load its own data 

segment *f 
interrupt$handler ~ INTERRUPT$PTR (@INTERRUPT HANDLER); 

-f* pOints to first instruction of interrupt handler * f 

.:} Typical PLfM-86 Statements 

/". * .. * .... _ ". '* '* * '* * '* * * * * * ... * * *. flo .. * .. '* '* * ••• '* '*._.* '* .. '* '* * '* * '* .... '* '* .. '* '* * '* '* * ••• _ '* * '* '* *. *" .. '* ... '* '* '* '* * •• _ .. '* ..... * '* ..... '* .... '* '* '* .. '* * '* '* '* * .. '* '*._.* .... '" _.* *. 
An interrupt line must have an interrupt handler or an interrupt task assigned to it. Invoking the SET$IN­
TERRUPT primitive, the calling task assigns INTERRUPT_HANDLER to interrupt line 7. 

**_.*******'*************-********'*************-**************"'**********************."'***'****'***_._"'********_.""."'"."'"."''''. / 

CALL RQ$SET$INTERRUPT 

.:} Typical PLlM-86 Statements 

{interrupt$line$7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@status); 

/ ... * '* '* *_ '" '* '* * ___ *_ *._._ .... _, * '* * *_ ...... * '" '* * * '* .. *_ ... _ *" '* '* '* '* * __ " ••• '* '* '* '* *_ * •••• '* '* '* * .. * 11''' '* '*. '* It .• '* '* *_ *" *._ '* '* .. * "" __ '* '* .. "' ...... *_ *._ 111 '* ... '* ... '* *" It" * 
The SET$INTERRUPT primitive enabled interrupt line 7. In order to disable line 7, the calling task in­
vokes the DISABLE primitive. 

**************"'oIio***""*******"'******""********************** •• ********* .... ***********.************ •• ***_*******_* ••• " •••• .,,"' •• / 

CALL RQ$DISABLE 

.:} Typical PLfM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

{interruPt$line$7, 
@status); 

E$CONTEXT The line indicated by the line parameter is already disabled. 

E$PARAM The lin.e parameter is invalid. 
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DISABLE$DELETION 

The DISABLE$DELETION primitive makes an object immune to ordinary 
deletion. 

CALL RQ$DISABLE$DELETION (object, except$ptr); 

INPUT PARAMETER 

object A WORD containing a TOKEN for the object whose deletion is to be disabled. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

DESCRIPTION 

The DISABLE$DELETION primitive increases by one the disabling depth of an object, making it immune to deletion. If 
a task attempts to delete the object while it is immune, the task sleeps until the immunity is removed. At that time, the 
object is deleted and the task is awakened. 

EXAMPLE 

NOTE 
An attempt to raise an object's disabling depth above 255 causes an E$LlMIT exceptional 
condition. 

/.'* ••••• * .......... '* .. ** *** .. ** '* .. '*.* .. '* ..... * ................. ** ...... * ...................................... *** '* .............. ** .................... ** ............ * ..................... we .......... .. 

This example illustrates how the DISABLE$DELETION primitive can be used to make an object immune 
to ordinary deletion . 

................ .,. ........... ** .......................................... ** * ...................... ." .......... '/II" * ...................... ." * * .............. ** .................... "" .......... '* '* ....................................... / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE task$token 
DECLARE calling$task 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

-:} Typical PLfM-86 Statements 

f* Declares all primitive calls *f 

LITERALLY 'SELECTOR'; 
/* if your PLIM compiler does not support this variable 
type, declare TOKEN a WORD * f 
TOKEN; 
LITERALLY '0'; 
WORD; 

/ ...... ******* .... *** ........................ *** ................ "' ... * ..... ** .. ** *. __ * ...... ***** ........................ ** flo .. "" ** ** .. ** *** ................ ** ........ * * .............. 111 .......... .. 

In this example the calling task will be the object to become immune to ordinary deletion. The GET$­
TASK$TOKEN is invoked by the calling task to obtain its own TOKEN. 

*********************-******111**********,***************************************._*************************'11'***************/ 
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task$token = RQ$GET$TASK$TOKENS 

e:} Typical PLlM-86 Statements 

(calling$task, 
@status); 

/ ...... * .......... * * ..... * •••• * ....................................................................................................... *.* ••• * •• * ...................... *.* ........ * 

Using its own TOKEN, the calling task invokes the DISABLE$DELETION primitive to increase its own 
disabling depth by one. This makes the calling task immune to deletion. 

* ....... "' .............. * ....... _ ........................ *.* ................... * ...... ** ...... * ................................. * ................. " ............................................ 11''''''''''''''''' 'III"""""" _ / 

CALL RQ$DISABLE$DELETION 

e:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional condltions. 

(task$token, 
@status); 

E$LlMIT The object's disabling depth is already 255. 
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ENABLE 

The ENABLE primitive enables an interrupt line. 

CALL RQ$ENABLE (line, except$ptr); 

INPUT PARAMETER 

line A WORD that specifies the an interrupt line encoded as follOWS (bit 15 is the high­
order bit): 

OUTPUT PARAMETER 

Bits Value 

15-7 a 

6-4 first digit of the interrupt line (0-7) 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave interrupt controller and bits 2-0 specify 
the second digit of the line 

2-0 second digit of the interrupt line (0-7), if bit 3 is zero 

except$ptr A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

DESCRIPTION 

The ENABLE primitive enables the specified interrupt line. The line must have an interrupt handler assigned to it. A 
task must not enable the line associated with the system clock. 

EXAMPLE 

/ * * flo * * flo flo * _ •• flo flo .. fIo .. « '* ... * flo •• " * ••• * ... * .. *. * *., * * * * * '* * flo * flo *_., * .. *. * flo * * •• flo •••••• * .... * ... "' .. '" "' •••• "" •• * .... #I .... * ... '" * 'lit .. * *. '" *. flo * .. flo flo *. '" * ..... ." 

This example illustrates how the ENABLE primitive can be used to enable an interrupt line . 

•• *** •••••••• **.**** ••••••••••• * •••• * •• *********.* •••• *._**"' •••• ***."'***.* •••• ***** •• ***************.******* •••• _._-_ ... _.- / 

$INCLUDE(:Fl :OSXPRM.EXT); 

INTERRUPT HANDLER: PROCEDURE EXTERNAL; 
END INTERRUPT_HANDLER; 

DECLARE interrupt$line$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 
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r Declares all primitive calls * j 

LITERALLY '0000 0000 0111 1000B'; 
j* specifies master interrupt line 7 * j 
BYTE; 
POINTER; 
WORD; 
WORD; 
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I ENABLE 

SAMPLE PROCEDURE: 
PROCEDURE; 

f* indicates no interrupt task on line 7 * f interrupt$task$flag = 0; 
data$segment = 0; f* indicates that interrupt handler will load its own data 

segment *f 
interrupt$handler = INTERRUPT$PTR (@INTERRUPT_HANDLER); 
1* pOints to first instruction of interrupt handler * f 

.:} Typical PLfM-86 Statements 

/ *. *.* ***** .... ** ** .. ** ...... ** ........ **_ .................... ** ... * ........... * .......... * ......... ** ** ... * .................................... ** ................ * ..... * ** ••• * .* •• * ........ .. 
An interrupt line must have an interrupt handler or an interrupt task assigned to it. Invoking the SET$IN­
TERRUPT primitive, the calling task assigns INTERRUPT_HANDLER to interrupt line 7 . 

.............. * ............ * ........................... ** ........... "' ...... * .................................................... "" * ...... * .......... * ......................... * ...... ** .................... '* ..... * ....... '* lit .... ." .. / 

CALL RQ$SET$INTERRUPT 

.:} Typical PLfM-86 Statements 

(interrupt$line$7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@status); 

/ ......... _ .......... * .. *** ** .... * ••• **. ** ...... **** •• * .......... ** .* ........ *** .. *** ............................... *.* ................ * ............ '* ......................................... .. 

The SET$INTERRUPT primitive enabled interrupt line 7. In order to illustrate the use of the ENABLE 
primitive, interrupt,line 7 must first be disabled. The calling task invokes the DISABLE primitive to dis­
able interrupt line 7 . 

.. * ....... * .. * .......................................... * ............................. * ............................... "' ....................... *_ ............................................................................ * ** ...... / 

CALL RQ$DISABLE 

.:} Typical PLlM-86 Statements 

(interrupt$line$7, 
@status); 

j************ •• **** •••• *.* •••••••••••••••••••• * ••••••• •••••••••••• * ••••••••••• * •••••••• ** •• * ••••••• **.* •• * •••••••••••• *.*. 

When an interrupt line needs to be enabled, a task must invoke the ENABLE primitive. 

* •••••••••••••••••••••• *. * ••• * •••• *. * *. * * * ••••••• *. * •••• * •••••••••••••••••••••• * * * * * •• *. * •• *. *. *." •••••••• * *,..,. * *. * * •••• * / 

CALL RQ$ENABLE (interrupt$line$7, 
@status); 

... } Typical PLfM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT At least one of the following is true: 

• A non-interrupt task tried to enable a line that was already enabled. 

~ There is not an interrupt handler assigned to the specified interrupt line. 

• There has been an interrupt overflow on the specified interrupt line. 

E$PARAM The line parameter is invalid. 
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ENABLE$DELETION 

The ENABLE$DELETION primitive enables the deletion of objects that have had deletion disabled. 

CALL RQ$ENABLE$DELETION (object, except$ptr); 

INPUT PARAMETER 

object A WORD containing a TOKEN for the object whose deletion is to be enabled. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

DESCRIPTION 

The ENABLE$DELETION primitive decreases by one the disabling depth of an object. If there is a pending deletion re­
quest against the object, and the ENABLE$DELETION primitive makes the object eligible for deletion, the object is 
deleted and the task which made the deletion request is awakened. 

EXAMPLE 

/ '" '" '" '" '" '" '" "'.,. "''''II '" "' ... '" "' ..... "' •• '" * .. '" '" "' ...... '" '" 111 "' .. '" "'''' '*.,. '" '" '" '" '" '" '" '" '" '" '" '" '" '" "'.it "' ... '" "'. "' .. '" '" '" '" '" '" '" '" "' .. '" '" * '" '" '" "' ... '" "',. '" *.* ... "'.,. .. '" '" '" "' •• '" '" * '" '" '" "'" '" "' ... '" "'.,. '" '" "' ... '" '" 

This example illustrates how the ENABLE$DELETION primitive can be used to enable the deletion of a 
task that had been deletion disabled. 

****** .... ",,,.****** •• ***w**.******.********* •• ******.**.***"'********"'*****************************************_* __ ._. ______ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 
DECLARE task$token 
DECLARE calling$task 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

.:} Typical PL/M-86 Statements 

1* Declares all prim itive calls * I 

LlTERALLY'SELECTOR'; 
TOKEN; 
LlTERALLY'O'; 
WORD; 

/ '" '" '" *'" '" '" '" '" '" '" '" '" '" '" __ •• _ ... '" "' ... '" '" "' ... "' .... '" '" '" '" '" 'fl. '* '" '" '" '" '" '" '" '" '" '" '" '" "'.* '" '" * _ •• "' .. '" '" '" '" '" '" '" '" '" '" "' ... '" '" "' .. ,. "'.it '" '" '" *.* '" '" '" "' .. '" '" '" 'lit •• '" * '" '" '" '" '" *. '" '" 'lit '" '" '" '" '" '" '" '" '" 

In this example the calling task will be the object to become immune to deletion. The GET$TASK$TO­
KEN is invoked by the calling task to obtain its own TOKEN. 

**********.***.**.** •• * •••••• ***** .... ****.*******.*** .... **.******** •• *.**** ••• ***********.*.**************.***-- •••••• _*-*- I 

task$token ~ RQ$GET$TASK$TOKENS 

.:} Typical PLlM-86 Statements 
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(calling$task, 
@status); 
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I ENABLE$DELETION 

/ ................... ** .. ** ............................ ** .. ** ......... _ * ..... *** .......... **.*. 111 .... """" •• """""""""''' ** .... ** ** ............ ***** .................................... ** flo .... ** 

Using its own TOKEN, the calling task invokes the DISABLE$DELETION primitive to increase its own 
disabling depth by one. This makes the calling task immune to deletion . 

• :IIr**."._****_*************_._.************************._****tr********************************************«r**_ .. "".**."'***** / 

CALL RQ$DISABLE$DELETION 

-:} Typical PLlM-86 Statements 

(task$token, 
@status); 

/ ... * ... _ ... - ** * ........................... ** ...... ** ** ** .......... ** ** ... - _ ... ** .................... '" * ........ ** ** ••• ** ........... _ ............. "' .. ** .................................... ** .. .. 

In order to allow itself to be deleted, the calling task invokes the ENABLE$DELETION primitive. This 
primitive decreases by one the disabling depth of an object. In this example, the object is the calling 
task. 

********************"'."'***."'**********************************-*********************"'**"'****"'**************************** / 

CALL RQ$ENABLE$DELETION 

-:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The object's deletion is not disabled. 
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(task$token, 
@status); 
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ENTER$INTERRUPT 

ENTER$INTERRUPT is used by interrupt handlers to load a previously specilied segment base address into the DS 
register. 

CALL RQ$ENTER$INTERRUPT (line, except$ptr); 

INPUT PARAMETER 

line 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD specifying an interrupt line that is encoded as follows (bit 15 is the high­
order bit): 

Bits Value 

15-7 0 

6-4 first digit of the interrupt line (0-7) 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave device and bits 2-0 specify the second 
digit of the interrupt line 

2-0 second digit of the interrupt line (0-7), if bit 3 is zero 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. The calling interrupt handler must process all exceptional conditions 
in-line, as control does not pass to an exception handler. 

ENTER$INTERRUPT, on behalf of the calling interrupt handler, loads a base address value into the DS register. The 
value is what was specified when the interrupt handler was set up by an earlier call to SET$INTERRUPT. 

If the handler is gOing to call an interrupt task, ENTER$INTERRUPT allows the handler to place data in the 8086 data 
segment that will be used by the interrupt task. This provides a mechanism for the interrupt handler to pass data to the 
interrupt task. 

EXAMPLE 

/ ,., * *._,.,._ *,.,.,.. * ._ •••• _.,., .. * _.,., _._,., .... _.,.,,., * ••• '* *,., * *,.,. __ • * * .. ** * * * * * * * * * * *,.. .. * ... *,., * * * *._ .. * * * * *. * .. lit lit. * .. * * * * '" 'lit *._ * * * '* * * * * * * * * * *,., * * * * 

This example illustrates how the ENTER$INTERRUPT primitive can be used to load a segment base ad­
dress into the data segment register. 

* .. * * * *,., * *,., * *- *,.. * *." *,., *,., * * * * '" * '" * * * * * * .. * * * *,., * * ... ." * '" * * * * * * * * * * * * * * .. *,.. * '" '" * * * * .. * * * ... * * *,.." * * * * "' .. * * * * * * ... * * * * * *,., '* * * * .. * * * * * *,., * * * * * * .. * / 

$INCLUDE(:Fl :OSXPRM.EXT); 

DECLARE the$first$word 
DECLARE interrupt$line$7 

DECLARE interrupt$task$flag 
DECLARE intrpt$handlr$addrs 
DECLARE data$segment 
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!" Declares all primitive calls * / 

WORD; 
LITERALLY '000000000111 tO008'; 
/* specifies master interrupt line 7 * / 
BYTE; 
POINTER; 
WORD; 
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WORD; 
WORD; 
POINTER; 

DECLARE status 
DECLARE interrupt$status 
DECLARE ds$pointer 
DECLARE PTR$OVERLAY LITERALLY 'STRUCTURE (offset WORD, base 

WORD)'; 

DECLARE ds$pointer$ovly 
1* establishes a structure for overlays *1 
PTR$OVERLAY AT (@ds$pointer); 
1* using the overlay structure, the base address of the 
interrupthandler's data segment is identified * I 

INTERRUPT_HANDLER: PROCEDURE INTERRUPT 59 PUBLIC; 

-:} Typical PL/M-86 Statements 

/ ... _ * ••• fI. * ...... fl ........ fI._"" .. flfI. *."' ............. *. '" * ............ * ........... fI ... "" • __ ..................... _._ .......................... _._ ............ "' .................... _ ...... . 

The calling interrupt handler invokes the ENTER$INTERRUPT primitive which loads a base address 
value (defined by ds$pointer$ovly.base) into the data segment register . 

........ * ................ III< *. * "' ......... * * .................... * .......... "' .... * * ...... "' .............. * * * ........... * ........ * .... * ......... '" "' .......... * ... * ............ * '" * .. "' .. * ......... _ ...... "' ..... _ * ...... / 

CALL RQ$ENTER$INTERRUPT 

CALL INLlNE_ERROR_PROCESS 

-:} Typical PLlM-86 Statements 

(jnterrupt$line$7, 
@interrupt$status); 
(j nterru pt$statu s); 

/ .... * ............ fl •• * .......... * ... * ................ _ .......... * .. *. * ..... _ .......... * .............. * ............ *_ .... fl."""" * * * * .... * .. fI_. * .. * ......... * ........ * .......... .. 
Interrupt handlers that do not invoke interrupt tasks need to invoke the EXIT$INTERRUPT primitive to 
send an end-of-interrupt signal to the hardware. 

'It •••••• _ ••••• _._ ••••••••••••••••••••••••• * ........... _ •• *flfI ••••••••••••••••••••••• _._ ••••• _ •••••• _"' •••••••••••••••••••••••• / 

CALL RQ$EXIT$INTERRUPT 

CALL INLINE ERROR PROCESS 
END INTERRUPT _HANDLER;-

INLINE ERROR PROCESS: PROCEDURE(jnterrupt$status); 
IF internJPt$status < > E$OK THEN 

DO; 

(jnterrupt$line$7, 
@interrupt$status); 
(j nterrupt$statu s); 

-:} In-line Error Processing PLlM-86 Statements 

END; 
END INLlNE_ERROR_PROCESS; 

SAMPLE PROCEDURE: 
PROCEDURE; 

ds$pointer = @the$first$word; 1* a dummy identifier used to pOint to interrupt han­
dier's data segment * I 

data$segment = ds$pointer$ovly.base; 1* identifies the base address of the interrupt handler's 
data segment * I 

intrpt$handlr$adqrs = INTERRUPT$PTR (@INTERRUPT HANDLER); 
I*-points to the first instruction of the interrupt handler 
* I 

interrupt$task$flag = 0; /* indicates no interrupt task on line 7 */ 

-:} Typical PL/M-86 Statements 
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, ••••••••••• ** ••••••••••••••••••••••••••• ** ••••••••••••••••••••••••••••••••••••••••••••••• _ ••••••••••••••••••••••••••••••• 

By first invoking the SET$INTERRUPT primitive, the calling task sets up an interrupt line . 
.................... '* .* ............... -._ ........ ** ** •••• * ......................................................... '* ................. * ................ ** * ... ** ..... * ................. * ........ *' 

CALL RQ$SET$INTERRUPT 

-:} Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

NOTE 

(interrupt$line$7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@status); 

Because the OSP initializes the Interrupt Vector Table, you should use the NOINTVECTOR con­
trol when you compile your interrupt handlers. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT No data segment base address had previously been specified in the call to 
SET$INTERRUPT. 

E$PARAM The line parameter is invalid. 
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EXIT$INTERRUPT 

EXIT$INTERRUPT 

The EXIT$INTERRUPT primitive is used by interrupt handlers when they don't invoke interrupt tasks. This primitive 
sends an end-of-interrupt·signalto the hardware. 

CALL RQ$EXIT$INTERRUPT (line, except$ptr); 

INPUT PARAMETER 

line A WORD specifying an interrupt line that is encoded as follows (bit 15 is the high­
order bit): 

Bits Value 

15-7 0 

6-4 first digit of the interrupt line (0-7) 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

If zero, the line is on a slave device and bits 2-0 specify the second 
digit of the interrupt line 

2-0 second digit of the interrupt line (O-7l.lf bit3 is zero 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
th)s primitive. The calling interrupt handler must process all exceptional conditions 
in-line, as control does not pass to an exception handler. 

DESCRIPTION 

The EXIT$INTERRUPT primitive sends an end-of-interrupt signal to the hardware. This sets the stage for re-enabling 
interrupts. The re-enabling actually occurs when control passes from the interrupt handler to an application task. 

EXAMPLE 

/ ....................... w ..... _._ ................................... * ••••••• _ ....................... e ••••••• w ............................... .. 

This example illustrates how the EXIT$INTERRUPT primitive can be used to send an end-of-interrupt 
signal to the hardware . 

.. ** .................. ** ... * •••• - .-...... ** ........... * •••••••• e .................. ~ ...... * .... * .... * ......................................... ** ............ _._ ........... ** I 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE interrupt$line$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 
DECLARE interrupt$status 

/* Declares all primitive calls * f 

LITERALLY 'DODO 0000 0111 1000B'; 
f* specifies master interrupt line 7 *f 
BYTE; 
POINTER; 
WORD; 
WORD; 
WORD; 

INTERRUPT_HANDLER: PROCEDURE INTERRUPT 59 PUBLIC; 
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EXIT$INTERRUPT 

Typical PLtM-86 Statements 

/ .............. *. ** ...... ** .. ** .... * ...... ** ... * _ •• fIo ................................... *. ** ................ '* ........................ * ...... *.* ............ * .. * ... '* ........ _._ ........ "' .......... .. 

Interrupt handlers that do not invoke interrupt tasks need to invoke the EXIT$INTERRUPT primitive to 
send an end-of-interrupt signal to the hardware . 

............. _ ... _ .......... _-*---_._ ... _----... _ ....... _---_ .. _--------------_ ..... "' ......... _ ........ --._-._ .. *._-•.. _. / 
CALL RQ$EXIT$INTERRUPT 

IF interrupt$status < > E$OK THEN 
DO; 

(interrupt$line$7, 
@interrupt$status); 

-:} In-line Error Processing PLiM-86 Statements 

END; 
END INLlNE_ERROR_PROCESS; 

SAMPLE PROCEDURE: 
PROCEDURE; 

t* indicates no intrpt task on line 7 * / interrupt$task$flag = 0; 
data$segment = 0; t* indicates that the interrupt handler will load its own 

data segment * t 
interrupt$handler = INTERRUPT$PTR (@INTERRUPT HANDLER); 

-t* pOints to the first instruction of the interrupt handler 
* t 

-:} Typical PLtM-86 Statements 

/ .................................... _ .................. _ ..................... ** ........... * ................. * ....... * ... *.* * ••••• _ ........... *.**. ** .............................. '* 

By first invoking the SET$INTERRUPT primitive, the calling task sets up an interrupt line . 
..................... '* '* .. '* •• '* "' ......... * .................. '* ...... '* ....... '* ....... '* .. ** .. "' ................... '* .................... '* .... "' ............ * *. ** ..................... ** .... "' .. * ... '* ..... '* ............ '* ....... '* '* .. I 

CALL RQ$SET$INTERRUPT 
interrupt$task$ilag, 
interrupt$handler, 
data$segment, 
@status); 

-:} Typical PLiM-86 Statements 

END SAMPLE_PROCEDURE; 

(interrupt$line$7, 

NOTE 
Because the OSP initializes the Interrupt Vector Table, you should use the NOINTVECTOR con­
trol when you compile your interrupt handlers. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The SET$INTERRUPT primitive has not been invoked for the specified line. 

E$PARAM The line parameter is invalid. 
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GET$EXCEPTION$HANDLER 

GET$EXCEPTION$HANDLER 

The GET$EXCEPTION$HANDLER primitive returns information about the calling task's exception handler. 

CALL RQ$GET$EXCEPTION$HANDLER (exception$info$ptr, except$ptr); 

OUTPUT PARAMETERS 

exception$info$ptr 

except$ptr 

DESCRIPTION 

A POINTER to a structure of the following form: 

STRUCTURE ( 
EXCEPTION$HANDLER$OFFSET 
EXCEPTlON$HANDLER$BASE 
EXCEPTlON$MODE 

Where, after the call, 

WORD, 
WORD, 
BYTE); 

• exception$handler$offset contains the offset of the first instruction of the excep­
tion handler. 

• exception$handler$base contains a base for the segment containing the first in­
struction of the exception handler. 

• exception$mode contains an encoded indication of the calling task's curren! ex­
ception mode. The value is interpreted as follows: 

Value 

o 
1 
2 
3 

When to Pass Control 
to Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditons 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

The GET$EXCEPTION$HANDLER primitive returns both the address of the calling task's exception handler and the 
current value of the task's exception mode. 

EXAMPLE 

/ •••• _. __ ._ ....... * .. "'''' .... * _. __ * ••• _. "''''''' .. 'It'" "'''''''._ ...... * * ............ * .... * .............. 'Ii * .... "'''' ........ "'''' "'''' "'''' .... "'''' ....... * ...... * .... * ........ * .... * ...... * * .... * * .. * * .... * 

This example illustrates how the GET$EXCEPTION$HANDLER primitive can be used to return informa­
tion abo.ut the calling task'(:l exception handler. 

**********_**************** •• *****_*******'IiI'*********************************************,.,*******_************ ___ ••• _ •••• _ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE x$handler STRUCTURE 

DECLARE status 
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/* Declares all primitive calls *f 

(x$handler$offset WORD, 

x$handler$base WORD, 

x$mode 
WORD; 

BYTE); 
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GET$EXCEPTION$HANDLER 

SAMPLE PROCEDURE: 
PROCEDURE; 

-:} Typical PLlM-86 Statements 

/ •• * * * *,.. *.* ._ •• **,.. **,.. *,.. w •• ,.. *.,... _._,.. *,...,..,...,.. *,...,.. •• ,..,..,.. *,.. *,...,..,...,...*,.. ... _ ........... * ....... * ..... * ...... ,.. .. "' ..... ,.. ............ ,.. .. ,..,.. * .. * ....... ,.. .. ,.. .... ,..,.. .. ,..,..,.. 

The address of the calling task's exception handler and the value of the task's exception mode (which 
specifies when to pass control to the exception handler) are both returned when the calling task invokes 
the GET$EXCEPTlON$HANDLER primitive. 

** •••• *** ••••• *** •• * ••••••• * •• *****.**** ..... ******.** •• *.********************.""*.*.****iI***"*********_***_***._._* ________ / 

CALL RQ$GET$EXCEPTION$HANDLER 

-:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 
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(@x$handler, 
@status); 
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GET$LEVEL 

GET$LEVEL 

The GET$LEVEL primitive returns the number of the highest priority interrupt line being serviced. 

line = RQ$GET$LEVEL (except$ptr); 

OUTPUT PARAMETERS 

line 

except$ptr 

DESCRIPTION 

A WORD whose value is interpreted as follows (bit 15 is the high-order bit): 

Bits Value 

15-8 ignore 

7 if zero, some line is being serviced and bits 6-0 are significant 

if one, no line is being servicedand bits 6-0 are not significant 

6-4 first digit of the interrupt line (0-7) 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave device and bits 2-0 specify the second 
digit 

2-0 second digit of the interrupt line (0-7), if bit 3 is zero 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. The calling task must process all exceptional conditions in-line, as 
control does not pass to an exception handler. 

The GET$LEVEL primitive returns to the calling task the highest priority (numerically lowest) line which an interrupt 
handler has started servicing but has not yet finished. To interpret the returned line number with more ease, strip 
away unwanted one bits by logically ANDing the returned value with OOFFH. 

EXAMPLE 

,.** ........ ** •••••••• ****** ••••••• ***.******.****** •• *.-*-_. __ ._ •.. -_._._---._.-.. -.-_.-.... -.-_._.---_._ .. -_._.*. __ ._._--
This example illustrates how the GET$LEVEL primitive can be used . 

• '* '* '* *** '* * '* '* '* .. *." * *.- * ** * .. * *-- **. ** *.- * '" * * * * * * * * '*." * '* * * * '* * * * * * '* * * * * * '* .. * '* .. * * * '* * * * '* '* * '* '* * '* * * * '* '* * * '*.,. '* * '* '* * '* '* * * '* * * * * * * '* '* * '* * '* * * * * * * / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE interrupt$line 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

-:} Typical PLtM-86 Statements 
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t* Declares all primitive calls * t 

WORD; 
WORD; 
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GET$LEVEL 

/ .. * .......... * * * ..... * * *._ * .... ***., .... ** "'., .................................. * .. * ........................ * •••• * •• * * * .. * .... * .......... * .... * **.* .............. * ..... flo .. """""" * ........ *** .. .. 

The GET$LEVEL primitive returns to the calling task the number of the highest interrupt line being 
serviced . 

••• ** ••• ** ........ ** •••• ***.*******.*********** .. *************** •• ****.*** •• **** •••••• ****** •••• _*** •• **.************ ••• **** / 

interrupt$line = RQ$GET$LEVEL (@status); 

e:} Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 
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GET$TASK$TOKENS 

The GET$TASK$TOKENS primitive returns the TOKEN requested by the calling task. 

token = RQ$GET$TASK$TOKENS (selection, except$ptr); 

INPUT PARAMETER 

selection 

OUTPUT PARAMETERS 

token 

except$ptr 

DESCRIPTION 

A BYTE that tells the asp Processor what information is desired. Encoded as follows: 

Value Object for which a Token is Requested 

o The calling task. 

The calling task's job. 

2 The parameter object of the calling task's job. 

3 The root job. 

A WORD to which the asp will return the requested TOKEN. 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

The GET$TASK$TOKENS primitive returns a TOKEN for either the calling task, the calling task's job, the parameter 
object of the calling task's job, or the root job, depending on the encoded request. 

EXAMPLE 

/ .................. ** .................... *** ...................................... *** .. **** .... ** .... ** ...................................................................... * •••• * ...................... * .. .. 

This example illustrates how the GET$TASK$TOKENS primitive can be used to return the TOKEN 
requested by the calling task . 

.. "" ........................................ ** .......................................................... ** ............................................................. _ ................ "" ..................... _ ........ * .. * .............. / 

$INCLUDE(:Fl :OSXPRM.EXT); 

DECLARE TOKEN 

DECLARE task$token 
DECLARE calling$task 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

-:} Typical PLlM-86 Statements 

8-66 

fO Declares all primitive calls Of 

LITERALLY 'SELECTOR'; 
1* if your PLfM compiler does not support this variable 
type, declare TOKEN a WORD ° f 
TOKEN; 
LITERALLY '0'; 
WORD; 
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GET$TASK$TOKENS 

/ .................. ** ........ **.* ......................... * .. * ** .. * ** ****** * ..................... * .................................. * .............. * ...................... _.* ............................ .. 
By setting the selection parameter to zero, the GET$TASK$TOKENS primitive will return a TOKEN for 
the calling task. 

*** ••• *.* ........ * .. ** * ••• ** * ........... __ ••• _ ............ *** •• **.It ****** ••• '" *.**** ..... _*._ "" _. ___ • *** ... _ * •••• ___ * ••• _. __ •••• *** / 

task$token = RQ$GET$TASK$TOKENS 

.:} Typical PUM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(calling$task, 
@status); 

E$PARAM The selection parameter is greater than 3 . 

• 
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GET$TYPE 

GET$TYPE 

The GET$TYPE primitive returns the encoded type of an object. 

type$code = RQ$GET$TYPE (object, except$ptr); 

INPUT PARAMETER 

object A WORD containing the TOKEN for an object. 

OUTPUT PARAMETERS 

type$code A WORD to which the OSP will return the encoded type ot the specified object. The 
types for OSP objects are encoded as follows: 

Value 

1 
2 
3 
4 
5 
6 

Type 

job 
task 
mailbox 
not used by the OSP 
region 
segment 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this prim itive. 

DESCRIPTION 

The GET$TYPE primitive returns the type code for an object. 

EXAMPLE 

/ ........ ** .......... *. *** .. _. ** ...... *** .................... _._ ** _ ......... * ............... * .............. *** .......... ** ** .................... ** ....................... * 11 .... *._.* .... ** fI' 

This example illustrates how the GET$TYPE primitive can be used to return the encoded type of an 
object. 

*.* •• *.*************.**w******.** •• **"' ••• ************************************** •• ***_***.* ••• ***** ••••• ****._flflflflfI.""* ____ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 
DECLARE type$code 
DECLARE mbx$token 
DECLARE calling$tasks$job 
DECLARE wait$forever 
DECLARE object$token 
DECLARE response 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

-:} Typical PL/M-86 Statements 
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1* Declares all primitive caTls *1 

LITERALLY 'SELECTOR'; 
WORD; 
TOKEN; 
LITERALLY '0'; 
LlTERALLY'OFFFFH'; 
TOKEN; 
TOKEN; 
WORD; 
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GET$TYPE 

/ .................... '* ............ '* .... * ....................... _._ .................. ., ........ 'II._ .......... fIo" .. * flo .............. * ........ it •• _ .................. * •• * .................... ** .. * ................... .. 

In order to invoke the GET$TYPE primitive, the calling task must have the TOKEN for an object. In this 
example, the calling task invokes the LOOKUP$OBJECT primitive and then the RECEIVE$MESSAGE 
primitive to receive the TOKEN for an object of unknown type (object$token). 

........ *.*.*:1''''' *****« .. ." ........ ** _._. __ ._ ..... ***** ••• _____ .'II" *** ...... ***"' ... ** *.* _ •••• _ •• _ ............. ,.*.*.* •• *.* ** ...... * ........... / 

mbx$token ~ RQ$LOOKUP$OBJECT 

-:} Typical PLlM-86 Statements 

(calling$tasks$job, 
@(3:MBX'), 
wait$forever, 
@status); 

/ .... ** .................... III ...... " ...... ** * ......... * ................................................................................................................................... * .................................... .. 

The RECEIVE$MESSAGE primitive returns object$token to the calling task after the calling task in­
voked LOOKUP$OBJECT to receive the TOKEN for the mailbox named 'MBX'. 'MBX' had been prede­
signated as the mailbox another task would use to send an object. 

*****.****** •••• *****.**lI*******************W*********." ••• ____ •••• __ ••••••• _ ••••••• ___ ••••• _._. ___ ._._._ •••••••• ** ••••••• / 

object$token ~ RQ$RECEIVE$MESSAGE 

-:} Typical PL/M-86 Statements 

(mbx$token, 
wait$forever, 
@response, 
@status); 

/ ......... ' ............................................................................................................... . 
Using the type code returned by the GET$TYPE primitive, the calling task can determine if the object is 
a job, a task, a mailbox, a region, or a segment. 

*.* •••••• _ •• _ •• - •• _-------*********-*-***************** ••• **.******-******--**-_._ •• _* •••• **.**** ••••••• _-*-.**-* •• _._*.* I 

type$code ~ RQ$GET$TYPE 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

(object$token, 
@status); 

E$OK No exceptional conditions. 

E$EXIST The object parameter is not a TOKEN for an existing 
object. 
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LOOKUP$OBJECT 

LOOKUP$OBJECT 

The LOOKUP$OBJECT primitive returns a TOKEN for a cataloged object. 

object = RQ$LOOKUP$OBJECT Oob, name, time$limit, except$ptrl; 

INPUT PARAMETERS 

job 

name 

time$limit 

OUTPUT PARAMETERS 

object 

except$ptr 

DESCRIPTION 

A WORD indicating the object directory to be searched. 

• If not zero, the WORD contains a TOKEN for the jOb whose object directory is to 
be searched. 

• If zero, the object directory to be searched is that of the calling task's job. 

A POINTER to a STRING containing the name under which the object is cataloged. 
During the lookup operation, upper and lower case letters are treated as being 
different. 

A WORD indicating the task's willingness to wait. 

• If zero, the WORD indicates that the calling task is not willing to wait. 

• If OFFFFH, the WORD indicates that the task will wait as long as is necessary. 

• If between 0 and OFFFFH, the WORD indicates the number of clock intervals that 
the task is willing to wait. The length of a clock interval is a configuration option. 
Refer to Chapter 5 for further information. 

A WORD containing the requested TOKEN. 

A POINTER to a WORD to which the OSP will return the condition code for this 
primitive. 

The LOOKUP$OBJECT primitive returns the TOKEN for the specified object after searching for its name in the speci­
fied object directory. Because it is possible that the object is not cataloged at the time of the call, the calling task has 
the option of waiting, either indefinitely or for a specific period of time, for another task to catalog the object. 

EXAMPLE 

/ ...... * .. * * .. ** ...... ** ...... * .... **. * ...... * .. * •• _ .... * * .... *. ** ..... * * * "' ... *_.- * * * * *,.. * •• - '* .... * * * .. * ._.--.-*. * * * * .. * ._ ... * * * * ...... * * .. * ... *. * .. * * .. *** *. * 

This example illustrates how the LOOKUP$OBJECT primitive can be used to return a TOKEN for a cata­
loged object. 

* ... ** *_ * * *." .. * * ...... * * * .. * .. * .... '1/ * .... * .... '* .. * ........................ * '* .... * .......................... '* .... * ........ * flo .......... * .............. ** .... * .............. '* .... * ...... * .......... ,. ........... / 

$INCLUDE(:Fl :OSXPRM.EXT); 

DECLARE TOKEN 
DECLARE mbx$token 
DECLARE calling$tasks$job 
DECLARE wait$forever 
DECLARE status 

8-70 

/* Declares all primitive calls * / 

LITERALLY 'SELECTOR'; 
TOKEN; 
LITERALLY '0'; 
LlTERALLY'OFFFFH'; 
WORD; 
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LOOKUP$OBJECT , 

SAMPLE PROCEDURE: 
PROCEDURE; 

.:} Typical PLlM-86 Statements 

/ .......... * .......... * .......................................................... * .. "' .. *« .............. * ...................................... *. "' ... - _. * ......... _ ................ * ....... -- --._.- .............. '" 

In this example, the calling task invokes LOOKUP$OBJECT in order to search the object directory of 
the calling task's job for an object with the name 'MBX' . 

••••••• •••••• "' __ ....... '" * •••• 11 ••••••••• '" •••• * '/I ••• _ ... _ .. 'II" "' .. * ,,_* • __ • ___ * '" '" * __ .. * ... * *_ * * '" __ * __ .... _fIo __ " * __ *. __ •••• _ ... '* ..... _fIo __ fIo __ * .. / 

mbx$token ~ RQ$LOOKUP$OBJECT (calling$tasks$job, 
@(3.'MBX'). 
wait$forever, 
@status); 

... } Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$CONTEXT 

E$EXIST 

E$LlMIT 

E$PARAM 

E$TIME 

No exceptional conditions. 

The specified job has an object directory of size O. 

The name was found, but the cataloged object has a null (zero) TOKEN. 

The specified object directory is full and the object being looked-up has not yet been 
cataloged. 

The first BYTE of the STRING pOinted to by the name parameter contains a zero or a value 
greater than 12. 

One of the following is true: 

• The calling task indicated its willingness to wait a certain amount of time, then waited 
without satisfaction. 

• The task was not willing to wait, and the entry indicated by the name parameter is not in 
the specified object directory. 
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RECEIVESCONTROL 

The RECEIVE$CONTROL primitive allows the calling task to gain access to data protected by a region. 

CALL RQ$RECEIVE$CONTROL (region, except$ptr); 

INPUT PARAMETER 

region 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a TOKEN for the region protecting the data to which the calling 
task wants access. 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

The RECEIVE$CONTROL primitive requests access to data protected by a region. If no task currently has access, 
entry is immediate. If another task currently has access, the calling task is placed in the region's task queue and goes 
to sleep. The task remains asleep until it gains access to the data. 

If the region has a priority-based task queue, the OSP boosts the priority of the task currently having access, if 
necessary, to match that of the task at the head of the queue. See Chapter 2 for a discussion of how regions affect task 
priority. 

EXAMPLE 

/ ~ .. ** ............ *** *** *** ** ***** .. ** .. **._ ......... *. ** .. ** .. ** *** *** ** .. ** ...... *.*. * ..... * ............ ** ... * ...... * .... ** ***** ............. **** .. ** ••• * .. .. 

This example illustrates how the RECEIVE$CONTROL primitive can be used to gain access to data pro­
tected by a region . 

... flo **._ .... **** •••••••• ** ••• ***.** .............. _ ••• _ .*._ ....... ***.*** •••••••••••• "" ......................... * ................. / 

$INCLUDE(:F1 :OSXPRM".EXT); 

DECLARE TOKEN 
DECLARE region$token 
DECLARE priority$queue 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

... } Typical PLlM-86 Statements 

/* Declares all primitive calls */ 

LITERALLY 'SELECTOR'; 
TOKEN; 
LITERALLY '1'; /* tasks wait in priority order * / 
WORD; 

/ .................. ** ........ *** * .......... * ....... * ... * ...... *** .............. * •• *.* .................................................................... ** .................... '* 

In order to access the data within a region, a task must know the name of the TOKEN for that region. In 
this example, the needed TOKEN is known because the calling task creates the region. 

** _.lIt .............. ,.. * ... *"'* ••••• "' ••••••••••• **.** ••••• *** •••••••• *** •••• **.** ....................................... _. _ •••••••• / 

region$token = RQ$CREATE$REGION (priority$queue, 
@status); 
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Typical PLlM-86 Statements 

/ ....... * •• * ....... * ... * ...... * .* ... * ....... * .. * *. * •••• _ ........ "" * ..... _ ...... *** .. * .......... * .... ** ................................ ** .............. ** ........................................ * ..... * '* 

When access to the data protected by a region is needed, the calling task may invoke the RECEIVE$­
CONTROL primitive . 

• **.*** •••• ***.** ••• "" ••••••• *** •••• ** ••• "' ••••• *.** •••• * ...... * ••••• "' ••••• *** ••••• *** ••••••• "" ..... *****"" •• **** ••• ***.*.*** •• **/ 

CALL RQ$RECEIVE$CONTROL (region$token, @status); 

.:} Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The region parameter refers to a region already accessed by the calling task. 

E$EXIST The region parameter does not contain a TOKEN for an existing object. 

E$TYPE The region parameter is a TOKEN for an object that is not a region. 
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RECEIVE$MESSAGE 

The RECEIVE$MESSAGE primitive queues the calling task at a mailbox, where it can wait for an object TOKEN to be 
returned. 

object = RQ$RECEIVE$MESSAGE (mailbox, time$limit, response$ptr, except$ptrl; 

INPUT PARAMETERS 

mailbox 

time$limit 

OUTPUT PARAMETERS 

object 

response$ptr 

A WORD containing a TOKEN for the mailbox at which the calling task expects to re­
ceive an object TOKEN. 

A WORD which, 

• if zero, indicates that the calling task is not willing to wait. 

• if OFFFFH, indicates that the task will wait as long as is necessary. 

• if between 0 and OFFFFH, indicates the number of clock intervals that the task is 
willing to wait. The length of a clock interval is configurable. Refer to Chapter 5 
for further information. 

A WORD containing the TOKEN for the object being received. 

A POINTER to a WORD to which the asp returns a value. The returned word, 

• if not zero, contains a TOKEN for the mailbox to which the receiving task is to 
send a response. 

• if zero, indicates that no response is expected by the sending task. 

The response$ptr points to a location for the sending task to use. If you specify a constant value 
for response$ptr, be careful to ensure that the value does not conflict with system requirements. 

except$ptr 

DESCRIPTION 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

The RECEIVE$MESSAGE primitive causes the calling task either to get the TOKEN for an object or to wait for the 
TOKEN in the task queue of the specified mailbox. If the object qUeue at the mailbox is not empty, then the calling task 
immediately gets the TOKEN at the head of the queue and remains ready. Otherwise, the calling task goes into the 
task queue of the mailbox and goes to sleep, unless the task is not willing to wait. In the latter case, or if the task's wait­
ing period elapses without a TOKEN arriving, the task is awakened with an E$TIME exceptional condition. 

It is possible that the TOKEN returned by RECEIVE$MESSAGE is a TOKEN for an object that has already been 
deleted. To verify that the TOKEN is valid, the receiving task can invoke the GET$TYPE primitive. However, you can 
avoid receiving an invalid TOKEN by adhering to proper programming practices. 

One such practice is for the sending task to request a response from the receiving task and not delete the object until 
it gets a response. When the receiving task finishes with the object, it sends a response, the nature of which must be 
determined by the writers of the two tasks, to the response mailbox. When the sending task gets this response, it can 
then delete the original object if it so desires. 
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RECEIVE$MESSAGE 

EXAMPLE 

/ ........ ***** .................. ** ...... *** * ..................... * ............ ** .......... * .......................................... _.-.......... - ...... *.* ....................... _ ••••• ,. 

This example illustrates how the RECEIVE$MESSAGE primitive can be used to receive a message 
segment. 

** ................ ** ••••••••••••• ** •••••••• '* ............ **** •• *. * ..... ***** ***** ..... it._ ...... "''' .*.* .... **.* .... **.* *** .......... "' .......... _ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE TOKEN 
DECLARE mbx$token 
DECLARE calling$tasks$job 
DECLARE wait$forever 
DECLARE seg$token 
DECLARE response 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

-:} Typical PL/M-86 Statements 

1* Declares all primitive calls· I 

LITERALLY 'SELECTOR'; 
TOKEN; 
LITERALLY '0'; 
LlTERALLY'OFFFFH'; 
WORD; 
WORD; 
WORD; 

/ ... * ............................................... * ........... *** ........... * ........ *** .. ** ............... it ........................ '* ........................................................................ .. 

In this example the calling task looks up the TOKEN for the mailbox prior to invoking the RECEIVE$­
MESSAGE primitive . 

........... _ ........ '* 11 "' ................. * ................ "' .. * ... '/II ............................. "' ....................... '* ............ '* ............................ ." ................................................................... I 

mbx$token ~ RQ$LOOKUP$OBJECT 
@(3,'MBX'), 
wait$forever, 
@status); 

-:} Typical PLlM-86 Statements 

(call i ng$tasks$job, 

/ .... * _._ * .. * * _*._ *_. * * .. * • .,. * .......... 'It .......... * ........ ** .. * * ... _ •• _ ...... *._ ...... * .. * .................. _ flo ... * ........ * flo * * * _ ... * * ...... __ * ..... * .. * .. * .................... '/I 

Knowing the TOKEN for the mailbox, the calling task can wait for a message from this mailbox by invok­
ing the RECEIVE$MESSAGE primitive. 

******** ••• ****_********_****"'****_*********_****._***._*********.*.'*.,,**_********************** •• *** ••• w*.** __ '111 ______ "' __ / 

seg$token ~ RQ$RECEIVE$MESSAGE 
wait$forever, 
@response, 
@status); 

-:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(mbx$token, 

E$EXIST The mailbox was deleted while the task was waiting. 

E$TIME One of the following is true: 

- The calling task was not willing to wait and there was not a TOKEN available. 

- The task waited in the task queue, and its designated waiting period elapsed before the 
task got the desired TOKEN. 

8-75 210911 



RESET$INTERRUPT 

RESET$INTERRUPT 

The RESET$INTERRUPT primitive cancels the assignment of an interrupt handler to an interrupt line. 

CALL RQ$RESET$INTERRUPT (line, excepl$ptr); 

INPUT PARAMETER 

line A WORD specifying an interrupt line that is encoded as follOWS (bit 15 is the high­
order bit): 

OUTPUT PARAMETER 

Bits Value 

15-7 0 

6-4 first digit of the interrupt line (0-7) 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave device and bits 2-0 specify the second 
digit of the interrupt line 

2-0 second digit of the interrupt line (0-7), if bit 3 is zero 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

DESCRIPTION 

The RESET$INTERRUPT primitive cancels the assignment of the current interrupt handler to the specified interrupt 
line. If an interrupt task had also been assigned to the line, the interrupt task is deleted. RESET$INTERRUPT also dis­
ables the line. 

The line reserved for the system clock should not be reset and is a configuration option. Refer to the Chapter 5 for fur­
ther information. 

EXAMPLE 

/ "' .................. ,., ........ * ...... * * ......... * ..... * ........ * * ...... '" ** .. '" '" "' ... '" "' ... "' .. '" '" ** "'_*.*. '" '" '" "'* '" '" '" '" '" '" '" '" "' .. '" '" '" '" '" '" "',., '" '" '" '" '" '" '" '" '" "' .. '" '" '" "'. "' ...... _._* '" "' •• "'. '" * '" '" '" '" '" '" '" '" '" l1li "' .. '" 

This example illustrates how the RESET$INTERRUPT primitive can be used to cancel the assignment 
of an interrupt handler to an interrupt line. 

***********-*"''''*******'11'***.*************'************_ •• _****_"'*******************************"'***********.* •. ************* / 

$INCLUDE(:Fl :OSXPRM.EXT); 

DECLARE TOKEN 
DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$segment 
DECLARE stack$pointer 
DECLARE stack$size$512 
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I' Declares all primitive calls * / 

LITERALLY 'SELECTOR'; 
TOKEN; 
LITERALLY '66'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack size is 512 bytes 
* / 
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RESET$INTERRUPT 

DECLARE task$flags 
DECLARE interrupt$line$7 

DECLARE interrupt$task$flag 
DECLARE intrpt$handlr$addrs 
DECLARE interrupt$status 
DECLARE status 

INTERRUPT_TASK: PROCEDURE PUBLIC; 

WORD; 
LITERALLY '0000 0000 0111 1000B'; 
f* specifies master interrupt line 7 * f 
BYTE; 
POINTER; 
WORD; 
WORD; 

interrupt$task$flag = 001 H; /* indicates that calling task is to be interrupt task *f 
data$segment = 0; f* use own data segment * f 
intrpt$handlr$addrs = INTERRUPT$PTR ( @ INTERRUPT_HANDLER); 

/* pOints to the first instruction of the interrupt handler 

/ ... -*- * * ••••• * * .... *. * ... * * •• *.* ••••• * ......... * .... * ................ * ... * ... * .................................. * ............... * * * • __ ._ •• *. * ... * ...... * ...... * ... * ...... * * ......... * * * * ... * * ........ * ... 
The first primitive in this example, SET$INTERRUPT, makes the calling task (INTERRUPT TASK) the 
interrupt task for the interrupt line. -

_ •••• _ •••••••• _._ •••••••• _._. __ •••••••••••••• _ .......... _ ....... _._ ••• * .*. ___ ._._ ._ ...... _." ... "' .. _. _ .......... w __ w_ .*. * ** ... ** ** ** / 

CALL RQ$SET$INTERRUPT (interrupt$line$7, 
interrupt$task$flag, 
intrpt$handlr$addrs, 
data$segment, 
@interrupt$status); 

/ ..................... - ................................. * .............. * .... *.* ................. ." .. *.*." ........................................................... * ....................................... ... 

The second primitive, WAIT$INTERRUPT, is used by the interrupt task to signal its readiness to service 
an interrupt. 

_ ••••• _._._._._._ ... _ * ....................... _* __ e •• ____ ...... ___ * ... '/1'''''' *. "' .. **** ................ *._ ** •••• ___ •• ** *._ ... * ••• __ ._ •• _ .... * ...... / 

CALL RQ$WAIT$INTERRUPT 

... } Typical PLlM-86 Statements 

(interrupt$line$7; 
@interrupt$status); 

/ ...... '** ••• *'* '*'* ••••••• '* ••• '*'* '* ••••••••• '* •••••••• '* * * * *. * * •••••••••••• **. '* '*. '*. '* •• '*. '*. '* '*. '* '* '* •• '* '*. '* '* '*. '* '* '*'* '* '*. '* '* * •• '*- '*-- - - '* - - - _. 

When the interrupt task invokes the RESET$INTERRUPT primitive, the assignment of the current inter­
rupt handler to interrupt line 7 is canceled and, because an interrupt task has also been assigned to the 
line, the interrupt task is deleted . 

••••• * •• * '*. - _ ••••••• '* •••• '* ••••••••••••• _ •••••••••• '* •••• '* •••• '* •••••••••••••• '*. * '*. '*. * '* '* ••• *. * * '*'* '* '*'* '*. * * * •••••• '* '* '* * '* '* * * * * * * * / 

CALL RQ$RE;SET$INTERRUPT 

END INTERRUPT_TASK; 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @INTERRUPT TASK; 
stack$pointer = 0; -
task$flags = 0; 
data$segment = 0; 

.:} Typical PLfM-86 Statements 
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(interrupt$line$7, 
@interrupt$status); 

f* 1 st instruction of interrupt task * f 
f* automatic stack allocation * f 
f* indicates no floating-point instructions * f 
/* use own data segment * f 
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RESET$INTERRUPT 

/************* •• *************-*******_.***************-_ •••••••••••••••••••• _ •• _ ••• _.- •••• - ........ _._._--_._.************** 

In this example the SAMPLE_PROCEDURE is needed to create the task labeled INTERRUPT_TASK. 

... _ ...... * * ................................. "' ...................................... IiI!"""""""''''''''''''''''''''''''''' * * .. * * .................................. * ............................................... * .............. / 

task$token = RQ$CREATE$TASK 

... } Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(priority$level$66, 
start$address, 
data$segment, 
stack$poi nter, 
stack$size$512, 
task$flags, 
@status); 

E$CONTEXT There is not an interrupt handler assigned to the specified interrupt line. 

E$PARAM The line parameter is invalid. 
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RESUME$TASK 

The RESUME$TASK primitive decreases by one the suspension depth of a task. 

CALL RQ$RESUME$TASK (task, except$ptr); 

INPUT PARAMETER 

task A WORD containing a TOKEN for the task whose suspension depth is to be 
decremented. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

DESCRIPTION 

The RESUME$TASK primitive decreases by one the suspension depth of the specified non-interrupt task. The task 
should be in either the suspended or asleep-suspended state, so its suspension depth should be at least one. If the 
suspension depth is still positive after being decremented, the state of the task is not changed. If the depth becomes 
zero, and the task is in the suspended state, then it is placed in the ready state. If the depth becomes zero, and the 
task is in the asleep-suspended state, then it is placed in the asleep state. 

EXAMPLE 

/ .. * ****._.,., ......... _. **** .. ** .............. * ....... *** ....... _ ............ * ................... ** .......... * ................... ** .............. ** .............. _'It ..... ., .................... ** .......... ." 

This example illustrates how the RESUME$TASK primitive can be used to decrease by one the suspen­
sion depth of a task. 

*********************************."._****-********************************************.*****************.'***************** / 

$INCLUDE(:F1 :OSXPRM.EXT); 

TASK CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

DECLARE TOKEN 
DECLARE task$token 

DECLARE priority$level$200 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @TASK CODE; 
data$seg = 0; -
stack$pointer = 0; 
task$flags = 0; 
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/* Declares all primitive calls '/ 

LITERALLY 'SELECTOR'; 
TOKEN; 

LITERALLY '200'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack size is 512 bytes 
'/ 
WORD; 
WORD; 

/' first instruction of the new task '/ 
/* task sets up own data seg '/ 
/* automatic stack allocation '/ 
/* indicates no floating-point instructions '/ 

210911 

'I 



, RESUME$TASK 

.:} Typical PL/M-86 Statements 

/ * ... _._e. *** ...... ** ** ** .......... ** ....... ** '* _'It ............ 'It ............. * •• _ •• _ *_ ..................................... _ .............. * ..... * ..... *._ ........ _ ........... '* •• '* .. 
In this example the calling task creates a non-interrupt task and suspends that task before invoking the 
RESUME$TASK primitive . 

........................................... _ ................................................... '* ............... * ............ ** ................................. *._ .................................................................... / 
task$token ~ RQ$CREATE$TASK 

.:} Typical PLlM-86 Statements 

(priority$level$200, 
start$address 
data$seg 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); 

/ ...... _ .......................................... _ ........................................... _ ........... -_ ........................................... -.................................................. .. 
After creating the task, the calling task invokes SUSPEND$TASK. This primitive increases by one the 
suspension depth of the new task (TASK_CODE). 

............ '* _ ......................... '* ............................................ '* ........ * .............................. '* .... III ........ "" '* .................................................................. '* .... _ ......... / 

CALLRQ$SUSPEND$TASK 

.:} Typical PL/M-86 Statements 

(task$token, 
@status); 

/ ....................................... __ ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• *. * * * * *. * * •••••••• * 

Using the TOKEN for the suspended the task (TASK_CODE)' the calling task invokes RESUME$TASK 
to decrease by the one the suspension depth of TASK_CODE. 

* * *. * ••• * •••• * * ••••••••••••••• * 'III. 'III ••••••• 'III. 'III ••••••••••• 'III •••• 'III •••••••••• 'III. * 'III •••• 'III. * *. * * * * * 'III. * •••••••••••••••• 'III •••• 'III •••••• 'III, 

CALL RQ$RESUME$TASK 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(task$token, 
@status); 

E$STATE The task indicated by the task parameter was not suspended when the call was made. 
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SEND$CONTROL 

The SEND$CONTROL primitive allows a task to surrender access to data protected by a region. 

CALL RQ$SEND$CONTROL (except$ptrl; 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

DESCRIPTION 

When a task finishes using data protected by a region, the task invokes the SEND$CONTROL primitive to surrender 
access. If the task is using more than one set of data, each of which is protected by a region, the SEND$CONTROL 
primitive surrenders the most recently obtained access. When access is surrendered, the OSP Processor allows the 
next task in line to gain access. 

If a task invoking SEND$CONTROL has had its priority boosted while it had access through a region, its priority is re­
stored when it relinquishes the access. 

EXAMPLE 

/ •••• ** •• _._._._._ ..... * ._ ........ * .. * •• '* .................................... _e __ ...... ** ......... _._ ........ ** •••• * .......... _._ ............. '*.* ........ . 

This example illustrates how the SEND$CONTROL primitive can be used to surrender access to data 
protected by a region . 

...................................... ." .................... ** ........ '* ... *.* ............................................................... a. * ......... ** ... fIo .......... '* ....... * ....................... ** '* * ........... / 

$INCLUDE(:FI :OSXPRM.EXT); 

DECLARE TOKEN 
DECLARE region$token 
DECLARE priority$queue 
DECLARE status 

-:} Typical PL/M-86 Statements 

SAMPLE PROCEDURE: 
PROCEDURE; 

/* Declares all primitive calls *1 

LITERALLY 'SELECTOR'; 
WORD; 
LITERALLY 'I'; 1* tasks wait in priority order *1 
WORD; 

/ .............. '* '* .. *. '*.* '* •• '* .. '* ... * ................... - ............................ * '* ........... * ................ * ...... *.-•. *. _.-.. * .......... * ..... .. 
In order to access the data within a region, a task must know the TOKEN for that region. In this example, 
the needed TOKEN is known because the calling task creates the region . 

• * ...... * .... * ......... _ ...... * .............. _. __ ...................... * .................... * ......................... _ .................. * ....... *_ ... * .. ** ...................... ** ...... / 

region$token = RQ$CREATE$REGION 

-:} Typical PL/M-86 Statements 
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(priority$q ueue, 
@status); 
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I SEND$CONTROl 
·1 

/ ........ *** .... *** ** .................. ** **** .... *** ***** ... * *** ........ **** .................... * ...... **.* ................... ***.* ........ ** ......... * .................................. *** .. 

When access to the data protected by a region is needed, the calling task may invoke the RECEIVE$­
CONTROL primitive . 

.. ** .................... "" "' .................................................... * .. * .................. * ........ "" ...... ** ............................................... * ............. ** ............................................ * .. / 

CALL RQ$RECEIVE$CONTROL 

.:} Typical PL/M-86 Statements 

(region$token, 
@status); 

/ ..... * ....... - ........... ***.* ............... * ................................ *.* ...... *** .......... *. *.* *** ... * ................................ **** .. **** .. *.* ............................ ** ** .. 

When a task finishes using data protected by a region, the task invokes the SEND$CONTROL primitive 
to surrender access . 

....................... ** ................... ** ........................................................... ** ................................................................................................................................ I 

CALLRQ$SEND$CONTROL (@status); 

.:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$CONTEXT 

No exceptional conditions. 

A task invoking the SEND$CONTROL primitive did not have access to data protected by any 
region. 
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SEND$MESSAGE 

The SEND$MESSAGE primitive sends an object TOKEN to a mailbox. 

CALL RQ$SEND$MESSAGE (mailbox, object, response, except$ptr); 

INPUT PARAMETERS 

mailbox 

object 

response 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing a TOKEN for the mailbox to which an object TOKEN is to be sent. 

A WORD containing an object TOKEN that is to be sent. 

AWORDthat, 

• if not zero, contains a TOKEN for the desired response mailbox. 

• if zero, indicates that no response is requested. 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

The SEND$MESSAGE primitive sends the specified object TOKEN to the specified mailbox. If there are tasks in the 
task queue at that mailbox, the task at the head of the queue is awakened and is given the TOKEN. Otherwise, the 
object TOKEN is placed at the tail of the object queue of the mailbox. The sending task has the option of specifying a 
mailbox at which it will wait for a response from the task that receives the object. The nature of the response must be 
agreed upon by the writers of the two tasks. 

EXAMPLE 

/ .. ** *** .... '*.* ... * ** .. ***.* *._ ........... * •• *.**** ....... ** ...... ***** ............ ** .................... ** ...................... ** ......... *** .... ** ........ ** ** ............................... ~ .. .. 

This example illustrates how the SEND$MESSAGE primitive can be used to send a segment TOKEN to 
a mailbox . 

.. *** ........ ** ............ _ ..................... *._ ..................... * .............. * ................ * ........... ** .. It""'''''''''''''''''''''''''''''''' •• ''''''''''' ** .................... ** ............... '* ............................. I 

$INCLUDE(:Fl :OSXPRM.EXT); 

DECLARE TOKEN 
DECLARE seg$token 
DECLARE size 
DECLARE mbx$token 
DECLARE mbx$flags 
DECLARE no$response 
DECLARE status 
DECLARE job 

SAMPLE PROCEDURE: 
PROCEDURE; 

size = 64; 
mbx$flags = 0; 

job=O; 
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/* Declares all primitive calls */ 

LITERALLY 'SELECTOR'; 
TOKEN; 
WORD; 
TOKEN; 
WORD; 
LITERALLY '0'; 
WORD; 
WORD; 

I' designates new segment to contain 64 bytes */ 
/* designates four objects to be queued on the high 
performance object queue; designates a first­
in/first-out task queue. */ 
/* indicates objects to be cataloged into the object 
directory of the calling task's job */ 
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, SEND.$MESSAGE 

-:} Typical PL/M-86 Statements 

/ __ ._ ...... __ ................... _ ••• __ .. _._ ................ _ .... _._._ ............ "' ........ __ ......................... _ ...... __ .... _ ... ___ ._ ............... _ ........ 'It __ ............. _ ......... .. 

The calling task creates a segment and a mailbox and catalogs the mailbox TOKEN. The calling task 
then uses the TOKENs for both objects to send a message . 

........ * ........ '" * * .......... "" ................................................................ "" ........ * .......................................... * ........................ * ................ _'It ........ * .. __ ...... __ .. '* ............ / 

seg$token = RQ$CREATE$SEGMENT 

mbx$token = RQ$CREATE$MAILBOX 

(size, 
@status); 
(mbx$fiags, 
@status); 

/ .... 111 .. _'It_ .......... ___ ........ _ ....................... _ .... _ ... 'It ..................................... * ............... *_ *. __ * ........ _ ............................. _ ........ _ ............ _ ....... __ •• _* .. 

It is not mandatory for the calling task to catalog the mailbox TOKEN in order to send a message. It is 
necessary, however, to catalog the mailbox TOKEN if another task is to receive the message . 

• _************ ...... ***************._*******************,***************************.*.* •• **************'''1''**. ____ ._. ____ ._. __ / 

CALL RQ$CATALOG$OBJECT 

-:} Typical PL/M-86 Statements 

Oob, 
mbx$token, 
@(3,'MBX'), 
@status); 

/ -------------_._--_._._-********************************************************.****************************************** 

The calling task invokes the SEND$MESSAGE primitive to send the TOKEN for the segment to the 
specified mailbox. 

************************************************************************************************************************* / 

CALLRQ$SEND$MESSAGE (mbx$token, 
seg$token, 
no$response, 
@status); 

-:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK 

E$MEM 

No exceptional conditions. 

The high performance queue is full and there is not sufficient memory in the job containing 
the mailbox for the OSP Processor to do the housekeeping that supports a send message 
operation. 
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SET$EXCEPTION$HANDLER 

The SET$EXCEPTION$HANDLER primitive assigns an exception handler to the calling task. 

CALL RQ$SET$EXCEPTION$HANDLER (exception$info$ptr, except$ptr); 

INPUT PARAMETER 

exception$info$ptr 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A POINTER to a structure of the following form: 

STRUCTURE( 
EXCEPTION$HANDLER$OFFSET 
EXCEPTION$HANDLER$BASE 
EXCEPTION$MODE 

Where: 

WORD, 
WORD, 
BYTE); 

• exception$handler$offset contains the offset of the first instruction of the excep­
tion handler. 

• exception$handler$base contains the base of the 8086 segment containing the 
first instruction of the exception handler. 

• exception$mode specifies the calling task's exception mode. The value is encod­
ed as follows: 

Value 

o 
1 
2 
3 

When to Pass Control 
To Exception Handler 

Never 
On programmer errors only 
On environmental conditions only 
On all exceptional conditions 

If exception$handler$offset and exception$handler$base both contain zeros, the ex­
ception handler of the calling task's parent job is assigned. 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

The SET$EXCEPTION$HANDLER primitive enables a task to set its exception handler and exception mode attributes. 

EXAMPLE 

/ *._-.•.......• * *.* •• *. '" "'. **** '" ** ................ * * ..... *** .. ** .............. '" **.* * ** flo * ............. fIo .................... "' .. "' .. * ... '* .................. * .................... .. 

This example illustrates how the SET$EXCEPTION$HANDLER primitive can be used to assign an ex­
ception handler to the calling task . 

• _ •••••••••• _. ____ • __ ......................... __ ••••••••• *.* •••• ***."'.*********'**_.****_**"'._**************.'It ... ************* / 
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SET$EXCEPTION$HANDLER 

$INCLUDE(:F1 :OSXPRM.EXT); 

EXCEPTION HANDLER: PROCEDURE EXTERNAL; 
END EXCEPTION_HANDLER; 

DECLAREX$HANDLER$STRUCTURE 

DECLARE x$handler 

DECLARE new$x$handler 

DECLARE all$exceptions 

DECLARE PTR$OVERLAY 

DECLARE seg$pointer 
DECLARE seg$pointer$ovly 

DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

seg$pointer = @EXCEPTION_HANDLER; 
new$x$handler.offset = seg$pointer$ovly.offset; 

new$x$handler.base = seg$pointer$ovly.base; 

new$x$handler.mode = all$exceptions; 

.:} Typical PLlM-86 Statements 

/* Declares all primitive calls */ 

LITERALLY 'STRUCTURE offset WORD, 
base WORD, 
mode BYTE)'; 

/* establishes a structure for exception handlers */ 

X$HANDLER$STRUCTURE; 
/* using the exception handler structure, the pointer to 
the old exception handler is defined */ 
X$HANDLER$STRUCTURE; 
/* using the exception handler structure, the new ex­
ception handler is defined */ 
LITERALLY '3'; 
/* control is passed to the exception handler on all ex­
ceptional conditions */ 
LITERALLY 'STRUCTURE offset WORD, 

base WORD)'; 
/* establishes a structure for overlays */ 
POINTER; 
PTR$OVERLAY AT (@seg$pointer); 
/* using the overlay structure, the first instruction of 
the exception handler is identified */ 
WORD; 

/* pointer to exception handler */ 

/* offset of the first instruction of the exception handler 
*/ 

/* base address of the exception handler 8086 segment 
containing the first instruction of the exception handler 
*/ 

/* pass control on all conditions */ 

/., ..... ., .. ., .. ** .. ____ *_*_., * .. .,., * ** ***., *.,., * * ..... *., *.,., ... **_.,., * ** * * * * * * __ .fIo .. __ * * * * * * * * * *** * * * * * * * ••• * ** * * ** ** * * .. *._ * * * * ... * ** * * .. '" * * * * * * .... 

The address of the calling task's exception handler and the value of the task's exception mode (when to 
pass control to the exception handler) are both returned when the calling task invokes the GET$EX­
CEPTION$HANDLER primitive . 

• _*--*-------_. __ .... _ .•• _-----"'-"'-_.- •• -._---*-_ .... *-******************************"''''.**************** .. ********"'**"'***** / 

CALL RQ$GET$EXCEPTlON$HANDLER 

.:} Typical PLlM-86 Statements 

(@x$handler, 
@status); 

/****************************************-************--_ •• _-_. __ ••• _-----------_.----_._-------_ .... _----------*--------_. 
The calling task may invoke the SET$EXCEPTION$HANDLER primitive to first set a new exception han­
dier and then to later reset the old old exception handler. 

* * .. * * ........... * .. * * * * * .. * ** .. ** 11" "' .. "' .. * .. * ...... * * .... * .. *., ** .. * * .. * .... * .......... * * **.'* * .. * * .. * '" * * .. *_ .... * * .... * * .. * .. * '" * ...... * * * .... * * * * * '" * * * * * * * * * * * * * * * * / 
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SET$EXCEPTION$HANDLER 

CALL RQ$SET$EXCEPTION$HANDLER 

.:} Typical PLlM-86 Statements 

(@new$x$handler, 
@status); 

/ ....... '" '" '" '" •••• '" '" '" "',., ...... '" '" '" '" '" '" '" '" "' .. '" "' •• '" '" '" "'._ .. '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" "' .. '" "'II' '" '" ........ "' ...... '" '" '" '" '" '" '" "' •• '" '" '" '" '" '" '" '" '" '" "' .... '" '" '" '" '" '" "' •• "' •• '" '" "' .. "' .... "' ........ '" 

No longer needing the new exception handler, the calling task uses the address and mode of the old ex­
ception handler to return exception handling to its original exception handler. 

******.** ••••••• ***.:111."' •••••• ** •••••• ** •••••• "'**.** ••••• **** .. ******** •• "' •••••••• **_ ......... """' ••• ***."'***** ••••••••• _-."'._. I 

CALL RQ$SET$EXCEPTION$HANDLER 

.:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(@x$handler, 
@status); 

E$PARAM The exception$mode parameter is greater than 3. 
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SET$INTERRUPT 

SET$INTERRUPT 

The SET$INTERRUPT primitive assigns an interrupt handler to an interrupt line and, optionally, makes the calling task 
the interrupt task for the line. 

CALL RQ$SET$INTERRUPT (line, interrupt$task$flag, interrupt$handler, interrupt$handler$ds, 
except$ptr) ; 

INPUT PARAMETERS 

line 

interrupt$task 
$flag 

interrupt$handler 

A WORD containing an interrupt line that is encoded as follows (bit 15 is the high­
order bit): 

Bits Value 

15-7 0 

6-4 first digit of the interrupt line (0-7) 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave interrupt controller and bits 2-0 specify 
the second digit of the interrupt line 

2-0 second digit of the interrupt line (0-7), if bit 3 is zero 

A BYTE which, 

• if zero, indicates that no interrupt task is to be associated with the specified inter­
rupt line and that the new interrupt handler will not invoke the SIGNAL$INTER­
RUPT primitive. 

• if not equal to zero, indicates that the calling task is to be the interrupt task that 
will be invoked by the interrupt handler being set. The priority of the calling task 
is adjusted by the asp Processor according to the interrlJpt lin~_being silrviced. 
Table 2-4 lists the interrupts lines and the corresponding interrupt task priorities. 
Be certain that priorities set in this manner do not violate the max$priority attri­
bute of the containing job. 

The value of this parameter indicates the number of outstanding SIGNAL$INTER­
RUPT requests that can exist for this line. When this limit is reached, the associat­
ed interrupt line is disabled. The maximum value for this parameter is 255 
decimal. Chapter 2 describes this feature in more detail. 

A POINTER to the first instruction of the interrupt handler. To obtain the proper start 
address for interrupt handlers written in PLlM-86, place the following instruction 
before the call to SET$INTERRUPT: 

interrupt$handler 
= interrupt$ptr (inter); 

where interrupt$ptr is a PL/M-86 built-in procedure and inter is the name of your in­
terrupt handling procedure. 

interrupt$handler$ds A WORD which, 

• if not zero, contains the base address of the interrupt handler's data segment. See 
the description of ENTER$INTERRUPT in this chapter for information concerning 
the significance of this parameter. 
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OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

SET$INTERRUPT 

It is often desirable for an interrupt handler to pass information to the interrupt 
task that it calls. The following PLlM-86 statements. when included in the inter­
rupt task's code (with the first statement listed here being the first statement in 
the task's code). will extract the DS register value used by the interrupt task and 
make it available to the interrupt handler. which in turn can access it by calling 
ENTER$INTERRUPT: 

DECLARE BEGIN WORD; f* A DUMMY VARIABLE * f 

DECLARE DATA$PTR POINTER; 

DECLARE DATA$ADDRESS STRUCTURE ( 

OFFSET WORD. 

BASE WORD) AT (@DATA$PTR);f*THIS MAKES ACCESSIBLE THE TWO 
HALVES OF THE POINTER DATA$PTR *f 

DATA$PTR = @BEGIN; /* PUTS THE WHOLE ADDRESS OF THE DATA 
SEGMENT INTO DATA$PTR AND DATA$ADDRESS *f 

DS$BASE = DATA$ADDRESS.BASE; 

CALL RQ$SET$INTERRUPT (.. .• DS$BASE •... ); 

• if zero. indicates that the interrupt handler will load its own data segment and may 
not invoke ENTER$INTERRUPT. 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

The SET$INTERRUPT primitive informs the OSP Processor that the specified interrupt handler is to service interrupts 
which come in on the specified line. In a call to SET$INTERRUPT. a task must indicate whether the interrupt handler 
will invoke an interrupt task and whether the interrupt handler has its own data segment. If the handler is to invoke an 
interrupt task. the call to SET$INTERRUPT also specifies the number of outstanding SIGNAL$INTERRUPT requests 
that the handler can make before the associated interrupt line is disabled. This number generally corresponds to the 
number of buffers used by the handler and interrupt task. Refer to Chapter 2 for further information. 

If there is to be an interrupt task. the calling task becomes that interrupt task. If there is no interrupt task. SET$INTER­
RUPT also enables the specified line. which must be disabled at the time of the call. 

EXAMPLE 

/ w •••••••••••••••• _ •••••••••••••••••• '* ...................... _._._ * ....................... _._._ ............ _ ............. * .... *. '* .... '* '* '* .. * ... 
This example illustrates how the SET$INTERRUPT primitive can be used. 

* ....... '* ........................... _ .................. _ .................... -*._ ...... **.* .. '* ................ **.* * ...... *.* ................................................................ / 

$INCLUDE(:F1 :OSXPRM.EXT); 

INTERRUPT HANDLER: PROCEDURE EXTERNAL; 
END INTERRUPT_HANDLER; 

DECLARE interrupt$line$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 

8-89 

f* Declares all primitive calls *f 

LITERALLY '000000000111 1000B'; 
/* specifies master interrupt line 7 *f 
BYTE; 
POINTER; 
WORD; 
WORD; 
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SET$INTERRUPT 

SAMPLE PROCEDURE: 
,PROCEDURE; 

r Indicates no interrupt task on line 7 of interrupt$task$flag = 0; 
data$segment = 0; r indicates that the interrupt handler will load its own 

data segment 0 f 
interrupt$handler = INTERRUPT$PTR (@INTERRUPT_HANDLER); 

/* points to the first instruction of the interrupt handler 
Of 

-:} Typical PLfM-86 Statements 

1·* ••• ** ............ * .......................... * ........................................ ** •••••••••••••••••••••••••••••••••••• 

An interrupt line must have an interrupt handler and may have an interrupt task assigned to it. If there is 
no interrupt task ass'igned to the line, the level is enabled by this primitive Invocation. Otherwise, the 
line is enabled by a call to WAIT$INTERRUPT. By invoking the SET$INTERRUPT primitive, the calling 
task assigns INTERRUPT_HANDLER to interrupt line 7 . 

......... •••••••••• * .. '* .. * ............ *._ ................... *** •. *** .................. '* ............. * '* ... '* ...... ** * ..... ** **** ....... ** .................... '* ....... *' 
CALL RQ$SET$INTERRUPT 

-:} Typical PLfM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(jnterrupt$line$7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@status); 
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SET$OS$EXTENSION 

The SET$OS$EXTENSION primitive either enters the address of an entry (or function) procedure in the Interrupt 
Vector Table or it deletes such an entry. 

CALL RQ$SET$OS$EXTENSION (os$extension, start$address, except$ptr); 

INPUT PARAMETERS 

os$extension A BYTE designating the entry of the Interrupt Vector Table to be set or reset. This 
value must be between 224 and 255 (decimal), inclusive. The values in the range 192 
to 223 will not cause exceptions, but are reserved for Intel use. 

start$address A POINTER to the first instruction of an entry (or function) procedure. If start$address 
contains a zero value, the specified entry of the Interrupt Vector Table is being reset 
(deallocated.) 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

DESCRIPTION 

The SET$OS$EXTENSION primitive sets or resets anyone of the 32 operating system extension entries in the Inter­
rupt Vector Table. An entry must be reset before its contents can be changed. An attempt to set an already set entry 
causes an E$CONTEXT exceptional condition. 

EXAMPLE 

/ ........................ :It __ ........ _._._ ...... flo .. flo ... ., .................. * .... 'It ............ • ___ ............ it ..................................... _ ........................... _ ..................................... .. 

This example illustrates how the SET$OS$EXTENSION primitive can be used to reset an entry in the In­
terrupt Vector Table. The example assumes that the entry for the level (number 250) was set earlier by 
another procedure . 

.. _ ...... _. ____ •••• _._ •••••••••••••••••••••• ******** •••••• ***** ** .. ***." * *_ •• 11" .,,_. _._. __ ••• *** •••• ** •• * __ *._ ................. * ... / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE vector$entry$250 
DECLARE reset 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

:-} Typical PLlM-86 Statements 

/* Declares all primitive calls * / 

LITERALLY '250'; 
LITERALLY '0'; 
WORD; 

/ .................... -_ ............... - ._. _ •••••• _ ............ * ................................... - •••• _ ................................................................................................... .. 

The calling task invokes the SET$OS$EXTENSION primitive to reset entry 250 (decimal) of the Interrupt 
Vector Table . 

•• ***** •••• *****.** ............. ** ••••• " •• ************* •••• -.---_ ••••••• __ •••• _. __ ._ ••••• __ ._. __ ••• _------_._ ••• *"*****_.* ••• / 
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SET$OS$EXTENSION 

CALL RQ$SET$OS$EXTENSION 

: } Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

No exceptional conditions. 

(vector$entry$250, 
reset, 
@status); 

E$OK 

E$CONTEXT 

E$PARAM 

An attempt is being made to set an entry that already is set. 

The os$extension byte value is less than 192. 
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SET$PRIORITY 

SET$PRIORITY 

The SET$PRIORITY primitive changes the priority of a task. 

CALL RQ$SET$PRIORITY (task, priority, except$ptrl; 

INPUT PARAMETERS 

task A WORD containing a TOKEN for the task whose priority is to be changed. A zero 
value specifies the invoking task. 

priority A BYTE containing the task's new priority. A zero value specifies the maximum priori­
ty of the specified task's containing job. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

DESCRIPTION 

The SET$PRIORITY primitive allows the priority of a non interrupt task to be altered dynamically. 

If the priority parameter is set to the zero, the task's new priority is its containing job's maximum priority. Otherwise, 
the priority parameter contains the new priority of the specified task. The new priority, if explicitly specified, must not 
exceed the containing job's maximum priority. 

EXAMPLE 

/ *._ * * '* '* *** '* * '* * '* '* * '* '* '* '* '* '* •••• '" '*. '* * * * "" '* * * * * .*. * "" '* *. * ••• '* ........ '* '* '*. * '* '* '* '*. * *. '* * '* * '* '* '* '* '* '* '* "" * '* '* * '* '* •• '* * '* '* '* .iII. '* '* '* fI' '* ... ** ... '* .. '* '* '* * .. * '* * 11 '* * '* 

This example illustrates how the SET$PRIORITY primitive can be used to change the priority of a task . 

• ** •••• **** ••• ft***.l1************.***** ••• **** ••• ****** ***** •••• ********* •• ********* •• **** •• **_************* ••• *_. ___ *_._. / 
$INCLUDE(:F1 :OSXPRM.EXT); 

TASK CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

DECLARE TOKEN 
DECLARE task$token 
DECLARE priority$level$66 
DECLARE priority$level$O 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
declare stack$size$512 

DECLARE task$flags 
DECLARE status 
DECLARE job 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @TASK CODE; 
data$seg = 0 -
stack$pointer = 0; 
tsk$flags = 0; 

/* Declares all primitive calls' / 

LITERALLY 'SELECTOR'; 
TOKEN; 
LlTERALLY'66'; 
LITERALLY '0'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack size is 512 bytes 
* / 
WORD; 
WORD; 
WORD; 

/* pOinter to first instruction of interrupt task * / 
/* task sets up own data seg * / 
/* automatic stack allocation 
/* designates no floating-point instructions' / 
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I SET$PR!ORITY. 

e:} Typical PLlM-86 Statements 

1-··_·····················_········_·············_···· ..................................... _ ............... -............. . 
In this example, the calling task creates a task whose priority is to be changed. The new task initially 
has a priority level 66.' 

........... * .............. * ............................ * .................. w .................. * .... .;, ....... _ .. ." ........................................................... * ............ w •• ** ... * ................ / 

task$token = RQ$CREATE$TASK (priority$level$66, 
start$address, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); 

/ ••••• --,...* _._ ................. * ...... _._ ............ _ •• - ** .............................. _ ....................................... _ ............. ** .. .. 

The calling task in this example does not need to invoke the CATAlOG$OBJECT primitive to ensure the 
successful use of the SET$PRIORITY primitive. To allow other tasks access to the new task, however, 
requires that the task's object TOKEN be cataloged . 

• * ......... * ............ _'It_._ ............................. * ................... * .......................... '* .......................... * .. "" ....................................... ~ .... ** ......................... / 

CAll RQ$CATAlOG$OBJECT 

e:} Typical Pl/M-86 Statements 

GOb, 
task$token, 
@(12,'TASK CODE'), 
@status); -

I····················································· ................................................................... . 
The new task, TASK_CODE, is not an interrupt task, so its priority may be changed dynamically by 
invoking the SET$PRIORITY primitive . 

........ ..... .................................................................................................. ...... ~ ....... / 
CAll RQ$SET$PRIORITY 

eee} Typical Pl/M-86 Statements 

(task$token, 
priority$level$O, 
@status); 

/ ................................................................................. * •••••••••••••• * ........................ .. 

) Once the need for the higher priority is no longer present, the priority of TASK_CODE can be changed 
back to its original priority by invoking SET$PRIORITY a second time . 

•••• •••••••••••••••••• ••••••••••••• ••••••••••••••••••••••••••••••••••••••••••••••• •••••••••••••••••• *-••••••••••••••••• * •• / 

CAll RQ$SET$PRIORITY 

e:} Typical Pl/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions~ 

(task$token, 
priority$level$66, 
@status); 
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I 

SIGNAL$EXCEPTION 

SIGNALSEXCEPTION 

The SIGNAL$EXCEPTION primitive is invoked by extensions of the OS Processor to signal the occurrence of an ex­
ceptional condition. 

CALL RQ$SIGNAL$EXCEPTION(exception$code, param$num, stack$pointer, reserved$param, 
NPX$status$word, except$ptr); 

INPUT PARAMETERS 

exception$code 

param$num 

stack$pointer 

~eserved$param 

NPX$status$word 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD containing the code (see list in Appendix B) for the exceptional condition 
detected. 

A BYTE containing the number of the parameter which caused the exceptional 
condition. If param$num equals zero, then no parameter is at fault. 

A WORD which, if not zero, must contain the value of the stack pointer saved on entry 
to the operating system extension (see the entry procedure in Chapter 2 for an 
example). The top five words in the stack (where BP is at the top of the stack) must be 
as follows: 

FLAGS Saved by software interrupt to as Processor extension 
CS 
IP 

OS Saved by as Processor extension on entry 
BP 

Upon completion of SIGNAL$EXCEPTION, control is returned to either of two 
instructions. If the stack$pointer contains a zero, control returns to the instruction 
following the call to SIGNAL$EXCEPTION. Otherwise, control returns to the instruc­
tion identified in CS and IP. 

A WORD reserved for Intel use. Set this word to zero. 

A WORD containing the status of the 8087 NPX. 

A POINTER to a WORD to which the asp will return the condition code for this 
parameter. 

asp extensions use the SIGNAL$EXCEPTION primitive to signal the occurrence of exceptional conditions. Depending 
on the exceptional condition and the calling task's exception mode, control mayor may not pass directly to the task's 
exception handler. 

If the exception handler does not get control, the exceptional condition code is returned to the calling task. The task 
can then access the code by checking the contents of the word pOinted to by the except$ptr parameter for its call (not 
for the call to SIGNAL$EXCEPTION). 

EXAMPLE 

/ •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• e •••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

This example Illustrates how the SIGNAL$EXCEPTION primitive can be used to signal the occurrence 
of the exceptional condition E$CONTEXT . 

• * .-•••••••• * fII._ ................................................... eft .. * ..... * .................. * ... * •• * *.ft ... '* * .... *. * .. * ....... * •• * * .. * ..... - * * .. I 
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SIGNAL$EX.CEPTION 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE e$context 
DECLARE param$num 
DECLARE stack$pointer 
DECLARE reserved$word 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

param$num = 0; 
stack$pointer = 0; 

-:} Typical PL/M-86 Statements 

r Declares all primitive calls 0/ 

LlTERALLY'5H'; 
BYTE; 
WORD; 
LITERALLY '0'; 
WORD; 

1* no parameter at fault 0/ 
1* return control to instruction following call"/ 

j***************** •• **** ••••• *.* •••• ** ••• ******** ••••• •••••••••••••••••••••••••••••••••••••••••••••••••••• **** •••••••••••• 

In this example the SIGNAL$EXCEPTION primitive is invoked by extensions of the OSP to signal the oc­
currence of an E$CONTEXT exceptional condition. 

* ••••••••••••• _ •••• __ •••••••••••••••••••••••••••• __ ••••••••••••••• **.*:11 •••• **** ••.• *****.** •••••• **** ••••••• ***********.** / 

CALL RQ$SIGNAL$EXCEPTION 

-:} Typical PL/M-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

8-96 

(e$context, 
param$num, 
stack$pointer, 
reserved$word, 
reserved$word, 
@status); 
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I 

SIGNAL$INTERRUPT 

SIGNAL$lNTERRUPT 

The SIGNAL$INTERRUPT primitive is used by an interrupt handler to activate an interrupt task. 

CALL RQ$SIGNAL$INTERRUPT (line, except$ptr); 

INPUT PARAMETER 

line A WORD specifying an interrupt line which is encoded as follows (bit 15 is the high­
order bit): 

OUTPUT PARAMETER 

Bits Value 

15-7 0 

6-4 first digit of the interrupt line (0-7) 

3 if one, the line is a master line and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave interrupt controller, and bits 2-0 specify 
the second digit 

2-0 second digit of the interrupt line (0-7). if bit 3 is zero 

except$ptr A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. The calling interrupt handler must process all exceptional conditions 
in-line, as control does not pass to an exception handler. 

DESCRIPTION 

An interrupt handler uses SIGNAL$INTERRUPT to start up its associated interrupt task. The interrupt task runs in its 
own environment with higher (and possibly the same) interrupt lines enabled, whereas the interrupt handler runs in 
the environment of the interrupted task with all interrupts disabled. The interrupt task can also make use of exception 
handlers, whereas the interrupt handler always handles exceptions in-line. 

EXAMPLE 

/ ... * _._ ** .. ,. ........ ,. .......... _._._. _._._ ... _ **.* ...... * .... _._ ** .w ........ ** ** ............ ill""""""" '* .... _ ....... _._ ......................................... * .... fIo ... * ............. .. 

This example illustrates how the SIGNAL$INTERRUPT primitive can be used to activate an interrupt 
task. 

_._._ ••••• ____ ._ •••••••• _ •••••••••• ,. •• _ •••• _ ..... _ ._._ •• "'_._ ..... * .................. * *. _ •••• _ .. * ............ * ** ..... _._._._ '" _ •• _,.. .. flo / 

$INCLUDE(:F1 :OSXPRM.EXT); 

DECLARE the$first$word 
DECLARE interrupt$line$7 

DECLARE interrupt$task$fiag 
DECLARE interrupt$handler 
DECLARE data$segment 
DECLARE status 
DECLARE interrupt$status 
DECLARE ds$pointer 

/' Declares all primitive calls '/ 

WORD; 
LITERALLY '000000000111 1 OOOB'; 
1* specifies master interrupt line 7 '/ 
BYTE; 
POINTER; 
WORD; 
WORD; 
WORD; 
POINTER; 
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I SU:;NAL$INTERRUPT 

DECLAREPTR$OVERLAY 

DECLARE ds$pointer$ovly 

LITERALLY 'STRUCTURE (offset WORD, 
base WORD)'; 

f* establishes a structure for overlays * f 
PTR$OVERLAY AT (@ds$pointer); 
f* using the overlay structure, the base address of the 
interrupt handler's data segment is identified * f 

INTERRUPT_HANDLER: PROCEDURE INTERRUPT 59 PUBLIC; 

.:} Typical PlIM-86 Statements 

/ .................... ** .... *** ........... *~*** .... "' .............. ,.. .. "' .. "' .... '" '" "' ...... *. ** ***,*""""" *. *.- *** *.- ** "'.* ....... _. '" "' .. *. "' ...... "' ...... '" *. *. "' ....... _ .. **.* "' .... '" '" '" 

The calling interrupt handler invokes the ENTER$INTERRUPT primitive which loads a base address 
value (defined by ds$pointer$ovly.base) into the data segment register. This register provides a mecha­
nism for the interrupt handler to pass data to the interrupt task to be started up by the SIGNAL$INTER­
RUPT primitive. 

-***** .. 11<******************************-*** •• ""'*******. __ ",-a. __ **_", __ * ________ .",._"' ___ ._.",,,,.,,, __ **.,,,,,,_.,,, •• __ * __ "''''*''' •• '''''''''''' ___ / 

CALL RQ$ENTER$INTERRUPT 

.:. } Typical PlIM-86 Statements 

(interrupt$line$7, 
@ i nterru pt$status); 
(interrupt$status) ; 

/ "' ............ '" '" "' .. '" "'.'It '" "' .. * •• _ ..... "' .. it. "'*_ *. '" "' .... "' .................... '" "' .. "' .... '" '" '" '" "' .. "' ... _ '" "' .. "' .... '" '" "' .... '" '" "' .......... "' .. "' .... '" * __ .. _ .... ** .. '" '" "'.* **** ** .... '" '" "' .. '" '" 

The interrupt handler uses SIGNAL$INTERRUPT to start up its associated interrupt task. 

"' .. "' ........ '" '" "' .. * .... * * .... ,...._ .. '" "' .. "'. "' .. '* "' .. "' .. * '" "' .... "' .. * '" "' .. "' .... '" '" '" '" "' .... '" '" '" '" "' .. "' .... "' .. '" '" '" "' .. '" "' .. '" '" '" * '" * * "' ...... '" "' .... '" '" '" 'II"" "' .. * '" "' .. "' .... '" "' .... '" "' .. '" *_ .... '" "' .. '" '" / 

CALlRQ$SIGNAL$INTERRUPT 

CALLINlINE_ERROR_PROCESS 

END INTERRUPT_HANDLER; 

INlINE_ERROR_PROCESS: PROCEDURE(interrupt$status); 
IF interrupt$status < > E$OK THEN 

DO; 

(interrupt$line$7, 
@interrupt$status); 
(i nterru pt$status); 

.:} In-line Error Processing PLfM-86 Statements 

END; 
END INlINE_ERROR_PROCESS; 

SAMPLE PROCEDURE: 
PROCEDURE; 

ds$pointer = @the$first$word; f* a dummy identifier used to point to interrupt han­
dier's data segment * f 

data$segment = ds$pointer$ovly.base; 1* identifies the base address of the interrupt handler's 
data segment * f 

intrpt$handlr$addrs = INTERRUPT$PTR (@INTERRUPT HANDLER); 
I*-points to the first instruction of the interrupt handler 
* f 

interrupt$task$flag = 01 H; 1* indicates that calling task istobe interrupt task *f 

.:} Typical PLfM-86 Statements 

8-98 210911 



SIG NAL$INTERRUPT 

/ ••• "' ......... * ...................................... * .... *.* .......... * ....................... * ... * ................................................... ,. ..................................................... oil ........................ ** ................................ ... 

By first invoking the SET$INTERRUPT primitive, the calling task enables an interrupt line and becomes 
the interrupt task for line 7. 

_**.**.**.* •• ************ •• _.IIIr*******.*****.**.*.**.*._"' ••••••••••• _."' ...... _ •••• _ •• _ •••••••• __ ... "' ___ ••• _______ ••••••••• _._. / 

CALL RQ$SET$INTERRUPT (j nterru pt$1 i ne$7, 
interrupt$task$flag, 
interrupt$handler, 
data$segment, 
@status); 

..• } Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

NOTE 
Because the OSP initializes the Interrupt Vector Table, you should use the NOINTVECTOR con­
trol when you compile your interrupt handlers. 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT There is not an interrupt task assigned to the specified interrupt line. 

E$INTERRUPT$ The interrupt task has accumulated the maximum allowable number of SIGNAL$INTERRUPT 
SATURATION requests. This is an informative message only. It does not indicate an error. 

E$INTERRUPT$ 
OVERFLOW 

E$LlMIT 

E$PARAM 

The interrupt task has accumulated more than the maximum allowable number of SIGNAL$­
INTERRUPT requests. It had reached its saturation pOint and then called ENABLE to allow 
the handler to receive further interrupt signals. It subsequently received an additional SIG­
NAL$INTERRUPT request before calling WAIT$INTERRUPT. 

An overflow has occurred because the interrupt task has received more than 255 SIGNAL$­
INTERRUPT requests. 

The line parameter is invalid. 
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SLEEP 

The SLEEP primitive puts the calling task to sleep. 

CALL RQ$SLEEP (time$limit, except$ptr); 

INPUT PARAMETER 

time$limit 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD which, 

_ if not zero and not OFFFFH, causes the calling task to go to sleep for that many 
clock intervals, after which it will be awakened. The length of a clock interval is 
configurable. Refer to Chapter 5 for further information. 

- if zero, causes the calling task to be placed on the list of ready tasks, immediately 
behind all tasks of the same priority. If there are no such tasks, there is no effect 
and the calling task continues to run. 

_ if OFFFFH, is invalid. 

A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

The SLEEP primitive has two uses. One use places the calling task in the asleep state for a specific amount of time. 
The other use allows the calling task to defer to the other ready tasks with the same priority. When a task defers in this 
way it is placed on the list of ready tasks, immediately behind all other tasks of equal priority. 

EXAMPLE 

/ ....... *. ** .... *** ................ ** ........................ ** .................................... _.* ................ * ........... ** ..................................... * ................. ** ................. .. 
This example illustrates how the SLEEP primitive can be used . 

............ * * .................. "' .............. * ................. "' ........................................................................ 11\''''''''''''' "' .................................... ** ............................................. / 

$INCLUDE(:Fl :OSXPRM.EXT); 

DECLAR~ time$limit 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

time$limit = 100; 

--.} Typical PL/M-86 Statements 

1* Declares all primitive calls * I 

WORD; 
WORD; 

/* sleep for 100 clock ticks *1 

/ •• * ••• * •••••••• *** •• *** ••••••••••••••• ** ••••••••• ** ••••• ** ••••••• ** ••• ****.*** ••• * •••••••••••• * •••••••••• **.**.*.******** 

The calling task puts itself in the asleep state for one second by invoking the SLEEP primitive. 

* .......... *********** •• ***.* •••• *** ••• *.*** ••• ** •••••• *** •••• "' .... **** ••• *.,,"' •••• ** •••• ***.*****.***.**** •••• ** •••• *.***.*.* / 
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CALL RQ$SLEEP 

:-} Typical PLlM-B6 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

No exceptional conditions. 

(time$limit, 
@status); 

E$OK 

E$PARAM The time$limit parameter contains the invalid value OFFFFH. 
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SUSPEND$TASK 

The SUSPEND$TASK primitive increases by one the suspension depth of a task. 

CALL RQ$SUSPEND$TASK (task, except$ptr); 

INPUT PARAMETER 

task A WORD which, 

• if not zero, contains a TOKEN for the task whose suspension depth is to be 
incremented. 

• if zero, indicates that the calling task is suspending itself. 

OUTPUT PARAMETER 

except$ptr A POINTER to a WORD to which the asp will return the condition code generated by 
this primitive. 

DESCRIPTIONS 

The SUSPEND$TASK primitive increases by one the suspension depth of the specified task. If the task is already in 
either the suspended or asleep-suspended state, its state is not changed. If the task is in the ready or running state, it 
enters the suspended state. If the task is in the asleep state, it enters the asleep-suspended state. 

The SUSPEND$TASK primitive should not be used to suspend interrupt tasks. 

EXAMPLE 

/ ............ * ............. * ...... **.*._ .. *** .............. ** ............ * '" ** .... * *** ** ........ ** ........................................ "' .................. *** * ...... *. ** *.**.* .................... .. 

This example illustrates how the SUSPEND$TASK primitive can be used to increase the suspension 
depth of a non-interrupt task . 

.. * ............................ * ........ * .. * * .... * * * .. * * .. * ',"fr" * ...... * * * * * .. * * * * * .. * ...... * * .... * ...... * .......... "' .......... "" ........................ 'III! "' .................. * .................... * ............ "" / 

$INCLUDE(:F1 :OSXPRM.EXT); 

TASK CODE: PROCEDURE EXTERNAL; 
END TASK_CODE; 

DECLARE TOKEN 
DECLARE task$token 
DECLARE priority$level$200 
DECLARE start$address 
DECLARE data$seg 
DECLARE stack$pointer 
DECLARE stack$size$512 

DECLARE task$flags 
DECLARE status 

SAMPLE PROCEDURE: 
PROCEDURE; 

f* Declares all primitive calls *f 

LITERALLY 'SELECTOR'; 
TOKEN; 
LITERALLY '200'; 
POINTER; 
WORD; 
POINTER; 
LITERALLY '512'; /* new task's stack size Is 512 bytes 
*f 
WORD; 
WORD; 
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SUSPEND$TASK 

start$address ~ @TASK CODE; 
data$seg ~ 0; -
stack$pointer = 0; 
task$flags = 0; 

eee} Typical PL/M-86 Statements 

!" first instruction of the new task '/ 
!" task sets up own data seg '/ 
/' automatic stack allocation '/ 
/' designates no floating-point instructions '/ 

/ '" "''' '*" '" '" '" '" 110""" '" "''' '" '" '*« _ •• _ •••• '" "' .. "' .... '" '" "'" .. '" "''' '" '" '" '" "' .. '" "' .. '" '" 111" "'''" .. "' .. " '/II"" .. ,."" *,." "''''''' *"""" '" '" '" "''''' "''''' ill" "''''''' '" '" '" '" '" "',. '" "''' '" '" '" '" '" '" "''' "' .... '* 111" '" 

In order to suspend a task, a task must know the TOKEN for that task. In this example, the needed 
TOKEN is known because the calling task creates the new task (labeled TASK_CODE). 

•• ********w**********************.***.***************.**._****1r*****************fI*************************** •• ** •• *****11. / 

task$token = RQ$CREATE$TASK 

e:} Typical PLlM-86 Statements 

(priority$level$200, 
start$address, 
data$seg, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); 

/ '" '" '" '" "' .... '" '" '" "' .. '" '" '" __ "' .. '" 11" '" "' .. '" "' .. '" '" '" '" '" "''' "''' '" '" '" "''' '" '" '" '" '" '" '" '" '" '" '" "' .. '" '" '" '" '" '" '" 111 .... "' .... "' ... "' .. '" '" '" '" '" '" "' .. '" '" '" '" "''' '" '" '" '" '" "' .. '" "' .. '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" '" "' .. '" 

After creating the task, the calling task invokes SUSPEND$TASK. This primitive increases by one the 
suspension depth of the new task (TASK_CODE). 

**fI*********,**********************************_.*****_*************************************************** ••• ****.******** / 

CALLRQ$SUSPEND$TASK (task$token, 
@status); 

e:} Typical PLlM-86 Statements 

END SAMPLE_PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

E$CONTEXT The task indicated by the task parameter is an interrupt task. 

E$EXIST The task parameter is not a TOKEN for an existing object. 
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WAIT$INTERRUPT 

The WAIT$INTERRUPT primitive is used by an interrupt task to signal its readiness to service an interrupt. 

CALL RQ$WAIT$INTERRUPT (line, except$ptr); 

INPUT PARAMETER 

line 

OUTPUT PARAMETER 

except$ptr 

DESCRIPTION 

A WORD specifying an interrupt line which is encoded as follows (bit 15 is the high­
order bit): 

Bits Value 

15-7 0 

6-4 firstdigitofthe interrupt line (0-7) 

3 if one, the line is a master Une and bits 6-4 specify the entire line 
number 

if zero, the line is on a slave interrupt controller and bits 2-0 specify 
the second digit of the interrupt line 

2-0 second digit olthe interrupt line (0-7), if bit 3 is zero 

A POINTER to a WORD to which the OSP will return the condition code generated by 
this primitive. 

The WAIT$INTERRUPT primitive is used by interrupt tasks immediately after initializing and immediately after servic­
ing interrupts. Such a call suspends an interrupt task until the interrupt handler for the same line resumes the task by 
invoking the SIGNAL$INTERRUPT primitive. 

While the interrupt task is running, all lower-priority interrupt lines are disabled. The aSSOCiated interrupt line is either 
disabled or enabled, depending on the option originally specified with the SET$INTERRUPT primitive. If the associat­
ed interrupt line is enabled, all SIGNAL$INTERRUPT calls that the handler makes (up to the limit specified with 
SET$INTERRUPT) are logged. If this count of SIGNAL$INTERRUPT calls is greater than zero when the interrupt task 
invokes WAIT$INTERRUPT, the task is not suspended. Instead it continues processing the next SIGNAL$INTERRUPT 
request. 

If the associated interrupt line is disabled while the interrupt task is running and the number of outstanding SIGNAL$­
INTERRUPT requests is less than the user-specified limit, the call to WAIT$INTERRUPT enables that line. 

EXAMPLE 

/ .................... *** * ... ** ... * .......... e._ ••••••• *. ** .... _ •••••••••••••• __ ........... ** ......... * ............. _ ............. *.* ••••• ** .e ••••• 
This example illustrates how the WAIT$INTERRUPT primitive can be used to signal a task's readiness 
to service an interrupt. 

.. * ... **** ."'* .. *--* ........... ** ........ * ......................... *. *** ••• *_ .. --._ ........................ ** ** .................... ** .... ** ............ ** **** .............. ***.* ................ / 
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WAIT$INTERRUPT 

$INCLUDE(:F1 :OSXPRM.EXT); I' Declares ali primitive calls' I 

LITERALLY 'SELECTOR'; 
TOKEN; 
LITERALLY '66'; 
POINTER; 
WORD; 
POINTER; 

DECLARE TOKEN 
DECLARE task$token 
DECLARE priority$level$66 
DECLARE start$address 
DECLARE data$segment 
DECLARE stack$pointer 
DECLARE stack$size$512 LITERALLY '512'; I' new task's stack size is 512 bytes 

'I 
DECLARE task$flags 
DECLARE interrupt$line$7 

DECLARE interrupt$task$flag 
DECLARE interrupt$handler 
DECLARE interrupt$status 
DECLARE status 

INTERRUPT_TASK: PROCEDURE PUBLIC; 

WORD; 
LITERALLY '000000000111 1000B'; 
I' specifies master interrupt line 7 'I 
BYTE; 
POINTER; 
WORD; 
WORD; 

interrupt$task$flag = 01 H; r indicates that calling task is to be interrupt task' I 
data$segment = 0; I' use own data segment 'I 
intrpt$handlr$addrs = INTERRUPT$PTR (@INTERRUPT HANDLER); 

I'-points to the first instruction of the interrupt handler 
, I 

/ ............................ * .... * ................... *.* _III ...... * .............. * ............. * ............. * .............................. * .. * ............... .. 

The first primitive in this example, SET$INTERRUPT, makes the calling task (INTERRUPT_TASK) the 
interrupt task for interrupt line seven . 

... * ... * ............ 'It .... ** ...... ** ................................... * ............. * ............. * ............. ** .......... * ... * ................................................... ** ...... ** ....... * .......... / 

CALL RQ$SET$INTERRUPT 

-:} Typical PUM-86 Statements 

(interrupt$line$7, 
interrupt$task$flag, 
interruptShandler, 
data$segment, 
@interrupt$status); 

/ ....... *.* ................................................................ * ............................ ** .... III ••• * ..................... **** .............. .. 

The calling interrupt task invokes WAIT$INTERRUPT to suspend itself until the interrupt handler for 
the same line resumes the task by invoking the SIGNAL$INTERRUPT primitive . 

............... * .. *** .................................. ." ........ * .. '" * ...... * ............ *** ....... * .............. * .............................................. * ... * ** ....................... I 

CALL RQ$WAIT$INTERRUPT 

-:} Typical PL/M-86 Statements 

(interrupt$line$7, 
@interrupt$status); 

I····················································· ................................................................... . 
When the interrupt task invokes the RESET$INTERRUPT primitive, the assignment of the current inter­
rupt handler to interrupt line 7 is canceled and, because an interrupt task has also been assigned to the 
line, the interrupt task is deleted . 

••••••• ••••••••••••••• •••••••••••• ••••••••••• ••••••••• •••••••••• ••• •••••••••••••••••••••• •••••••••••••••••••••••••••••••• I 

CALL RQ$RESET$INTERRUPT 

END INTERRUPT_TASK; 

(interrupt$line$7, 
@interrupt$status); 
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WAIT$INTERRUPT 

SAMPLE PROCEDURE: 
PROCEDURE; 

start$address = @INTERRUPT TASK; 
stack$pointer = 0; -
task$flags = 0; 
data$segment = 0; 

.•. } Typical PLlM-86 Statements 

I' 1 st instruction of interrupt task" / 
I' automatic stack allocation"/ 
/" designates no floating-point instructions" / 
/" use own data segment" / 

/ .*****.*********.**** ... * •• * ••• **.** •• **-*************.****************** ••• ** •••• ** ••• *****.*** •••••• ** •• *** ••• **** •••••• 

In this example the calling task invokes the primitive CREATE$TASK to create a task labeled 
INTERRUPT _TASK . 

.... "' .. ** ...... * .... ", .................. ", ....... ** .. "' .... ot. ** .. "' .. "' .... "' ....................................................................... * ................ '* .... 111 ................................................................ / 

task$token = RQ$CREATE$TASK 

.:} Typical PLlM-86 Statements 

END SAMPLE~PROCEDURE; 

CONDITION CODES 

E$OK No exceptional conditions. 

(priority$level$66, 
interrupt$task, 
data$segment, 
stack$pointer, 
stack$size$512, 
task$flags, 
@status); 

E$CONTEXT The calling task is not the interrupt task for the given interrupt line. 

E$PARAM The line parameter is invalid. 
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COMMAND DICTIONARY 

Command 

PRIMITIVES FOR JOBS 

Page 

CREA TE$JOB .................... 8-28 
Creates a job with a task and returns a 
TOKEN for the job. 

PRIMITIVES FOR TASKS 

CREATE$T ASK .................. 8-38 
Creates a task and returns a TOKEN for it. 

DELETE$TASK .................. 8-47 
Deletes a task that is not an interrupt task. 

SUSPEND$TASK ................ 8-102 
Increases a task's suspension depth by one. 
Suspends the task if it is not already 
suspended. 

RESUME$T ASK .................. 8-79 
Decreases a task's suspension depth by one. 
Resumes (unsuspends) the task if the sus­
pension depth becomes zero. 

SLEEP. . . . . . . . . . . . . . . . . . . . . . . . .. 8-100 
Places the calling task in the asleep state for 
a specified amount of time. 

SET$PRIORITY ................... 8-93 
Changes a task's priority. 

GET$TASK$TOKENS ............. 8-66 
Returns to the calling task a TOKEN for 
either itself, its job, its job's parameter 
object, or the root job. 

PRIMITIVES FOR MAILBOXES 

CREATE$MAILBOX .............. 8-32 
Creates a mailbox and returns a TOKEN for 
it. 

Command Page 

SEND$MESSAGE ................. 8-83 
Sends an object to a mailbox. 

RECEIVE$MESSAGE ............. 8-74 
Causes the calling task to obtain an object 
from a mailbox. The task. has the option of 
waiting if no objects are present. 

PRIMITIVES FOR REGIONS 

CREA TE$REGION. . . . . . . . . . . . . . . . 8-34 
Creates a region and returns a TOKEN for 
it. 

DELETE$REGION ................ 8-43 
Deletes a region. 

SEND$CONTROL. ................ 8-81 
Relinquishes control to the next task waiting 
at the region. 

RECEIVE$CONTROL ............. 8-72 
Causes the calling task to wait at the region 
until the task receives control. 

ACCEPT$CONTROL .............. 8-24 
Causes the calling task to accept control 
from the region only if control is immediate­
ly available. If control is not available, the 
calling task does not wait at the region. 

PRIMITIVES FOR SEGMENTS AND 
MEMORY POOLS 

CREATE$SEGMENT .............. 8-36 
Creates a segment and returns a TOKEN 
for it. 

DELETE$SEGMENT .............. 8-45 
DELETE$MAILBOX .............. 8-41 Returns a segment to the memory pool 
Deletes a mailbox. from which it was allocated. 
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Command Page 

PRIMITIVES FOR ALL OBJECTS 

CATALOG$OBJECT .............. 8-26 
Places an entry for an object in an object 
directory. 

DISABLE$DELETION ............. 8-51 
Makes an object immune to ordinary 
deletion. 

ENABLE$DELETION ............. 8-55 
Makes an object susceptible to ordinary 
deletion. Required only if the object has had 
its deletion diabled. 

G ET$TYPE ...................... 8-68 
Accepts a TOKEN for an object and returns 
the object's type code. 

LOOK$UP ....................... 8-70 
Returns a TOKEN for a cataloged object. 

PRIMITIVES FOR EXCEPTION 
HANDLERS 

SET$EXCEPTION$HANDLER ..... 8-85 
Sets the exception handler and exception 
mode attributes of the calling task. 

GET$EXCEPTION$HANDLER ..... 8-62 
Returns the current values of the exception 
handler and exception mode attributes for 
the calling task. 

PRIMITIVES FOR INTERR UPT 
HANDLERS, TASKS, AND LINES 

(An asterisk (*) marks primitives that an in­
terrupt handler can invoke.) 

SET$INTERRUPT ................. 8-88 
Assigns an interrupt handler and, if desired, 
an interrupt task to an interrupt line. 

Command Page 

RESET$INTERRUPT .............. 8-76 
Cancels the assignment of an interrupt han­
dler to an interrupt line and, if applicable, 
deletes the interrupt task for that line. 

*ENTER$INTERRUPT ............ 8-57 
Sets up a previously designated data seg­
ment base address for the calling interrupt 
handler. 

*EXIT$INTERRUPT ............... 8-60 
Used by interrupt handlers to send an end­
of-interrupt signal to hardware. 

*SIGNAL$INTERRUPT ......... , .. 8-97 
Used by interrupt handlers to invoke inter­
rupt tasks. 

WAIT$INTERRUPT .............. 8-104 
Puts the calling interrupt task to sleep until 
it is called into service by an interrupt 
handler. 

ENABLE ......................... 8-53 
Enables an external interrupt line. 

*DISABLE ....................... 8-49 
Disables an external interrupt line. 

*GET$LEVEL .................... 8-64 
Returns the interrupt line number of the 
highest priority for which an interrupt han­
dier has started by has not yet finished 
processing. 

PRIMITIVES FOR EXTENDING THE 
OPERATING SYSTEM PROCESSOR 

SET$OS$EXTENSION ............. 8-91 
Either enters the address of an entry (or 
function) procedure in tile Interrupt Vector 
Table or it deletes such an entry. 

SIGNAL$EXCEPTION ............. 8-95 
Used by extensions of the OS Processor to 
signal the occurrence of an exception. 
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8.11 ADDING iRMX 86 FEATURES 
TOTHEOSP 

There are two ways to add functionality to the OSP. 
One way, discussed in Section 8.9, is to create OS 
extensions. The other way is adding iRMX 86 
system calls (and possibly object types as well) to the 
OSP. 

The iRMX 86 Operating System is a functional su­
perset of the OSP and consists of the following parts: 

Nucleus: The Nucleus is the core of the iRMX 86 
Operating System and includes all of the features 
and primitives of the OSP, among other things. 
Every application system built upon the iRMX 86 
Operating System includes the Nucleus. 

Basic I/O System: The Basic I/O System provides 
file management and a device-independent interface 
to input and output devices. It supplies all file drivers 
and a number of device drivers. It offers an 
asynchronous interface for I/O operations, allowing 
I/O functions to run concurrently with other 
operations. 

Extended I/O System: The Extended I/O System 
provides higher-level management of files than does 
the Basic I/O System. It offers a simple synchronous 
interface for I/O operations and automatically per­
forms read-ahead and write-behind buffering. 

Application Loader: The Application Loader pro­
vides a mechanism for loading application code and 
data files from I/O devices into system memory. It 
can load absolute code into fixed locations and relo­
eatable code. into dynamically-allocated locations, 
and it can load files containing overlays. 

Bootstrap Loader: The Bootstrap Loader provides 
a means of loading the entire application system into 
system memory from an I/O device. It can be config­
ured to load from a -specific device or to use the first 
device that becomes ready once the system has been 
started. It can also be configured to load a file speci­
fied by an operator at a terminal. 

Human InterfaO'e: The Human Interface is an inter­
active interface and an application system. It gives 
the operator the ability to invoke an application pro­
gram from a terminal. 

Supplied with the Human Interface are commands 
that perform the following operations: 

• Creating, copying, renaming, and deleting 
files 

• Loading and starting application programs 

• Formatting and verifying device volumes 

• Backing up and restoring files on devices 

• Reading commands from a file, rather than 
from a terminal 

• Communicating with the iSBC 957B package 
to debug programs and to copy files to and 
from an Intel development system 

The Human Interface also provides a number of 
system calls that applications programs can invoke to 
utilize Human Interface services. 

Terminal Handler: The Terminal Handler provides 
a real-time interface between a terminal and an appli­
cation system. It is useful for users who require the 
ability to communicate with their systems but who 
do not need the full services of an I/O System. 

Debugger: The debugger provides the facilities for 
debugging tasks interactively. It allows several tasks 
to be debugged while the remainder of the system 
continues to run. 

For readers who want to know more about the 
iRMX 86 Operating System, its documentation pack­
age consists of the following: 

TITLE NUMBER 
Introduction to the iRMX 86 Operating System 9803124 

iRMX 86 Nucleus Reference Manual 9803122 

iRMX 86 Basic I/O System Reference Manual 9803123 

iRMX 86 Extended I/O System Reference Manual 143308 

iRMX 86 Loader Reference Manual 143318 

iRMX 86 Human Interface Reference Manual 9803202 

iRMX 86 Terminal Handler Reference Manual 143324 

iRMX 86 Debugger Reference Manual 143323 

iRMX 86 Programming Techniques 142982 

iRMX 86 System Programmer's Reference Manual 142721 

Guide to Writing Device Drivers for the iRMX 86 

and iRMX 88 I/O Systems 

iRMX 86 Installation Guide 

iRMX 86 Configuration Guide 

Guide to Using the iRMX 86 Languages 

142926 

9803125 

9803126 

143907 

iRMX 86 Disk Verification Utility Reference Manual 144133 

iRMX 86 System Debug Monitor Reference Manual 143908 

iRMX 86 Pocket Reference 

Run-Time Support Manual for iAPX 86,88 

Applications 

Getting Started with the iRMX 86 System 

142861 

121776 

144340 
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