#U24

@ HITACHI

6301/6801 ASSEMBLER
TEXT EDITOR USER'S MANUAL

6301/6801 ASSEMBLER
TEXT EDITOR USER'S MANUAL

@ HITACHI

When using this manual, the reader should keep the following in mind:
1. This manual may, wholly or partially, be subject to change without notice.

2. All rights reserved: No one is permitted to reproduce or duplicate, in any
form, the whole or part of this manual without Hitachi’s permission.

3. Hitachi will not be responsible for any damage to the user that may result
from accidents or any other reasons during operation of his unit according

4. This manual neither ensures the enforcement of any industrial properties
or other rights, nor sanctions the enforcement right thereof.

PREFACE

The 6301/6801 Assembler-Text Editor User's Manual is a detailed explana-

tion of operational methods for the S31IMIX1-R/S6IMIX2-R Assembler-Text Editor.
The S31MIX1-R/S6IMIX2-R is used with either the 6301 Evaluation Kit (H31EVT1)
or the 6801 Evaluation Kit (H61EVT2).

The 6301/6801 Assembler-Text Editor programmed in HN462732 EPROMs will be
mounted on the evaluation kit (H31EVT1l or H61EVT2). It has functions to edit
and revise text on paper tape medium and to assemble source programs.

When using the present manual, there are two others you should refer to
for details on the 6301 and/or 6801 assembly languages:

°6801 Assembly Language Manual (S61ASL1-EM), and

°HD6301 User's Manual

For details on the H31EVTl evaluation kit monitor, see:

°6301 Evaluation Kit User's Manual (H31EVT1-EM);

and on the H61EVT2 monitor, see:

°6801 Evaluation Kit User's Manual (H61EVT2-EM) .

Table of Contents

1. The System....... Ceceiecessreratanenann QPP |
1.1 System Overview...c.veeuvesesesessesansccascnnns ceseranseene P |
1.2 System Equipment Configuration...... Ceeeneees Ceesesseseseenesl

1.3 Memory Map.....ceoueues Ceerrereaes ceeeeerersesnnneaanns cessciancenennscns 3

1.4 Using the SystemM..eiceceesenscasses Ceetssseetseesasscsasrensensonsersnssd

2. Assembler.......cc0iei0ennnns TS -
2.1 Assembler Overview...... Ceererecans Ceeeerenneaas ceseereans .
2.2 Assembler FeatureS.....ieeuvevssscsasasacasascnsnss O A Y |
2.3 Assembler Input/OUtPUL..e.eeeuesesesessssssscosesasnsensssososcsssssansed

2.3.1 Input to the Assembler.....covsveceessssssssnsossocsssnssnsessnsonsensed
2.3.2 Output from the Assembler...........ccvuees e, tessensensssl8
2.4 Executing the Assembler......ieeieeeocosssescsoesssssssssoscsssasconcesld

2.5 Operating the Assembler..... Ceteesteseneannanons ssesesvsoss siesesasaeessal8

2.5.1 Operational OVervieW....eeeeeeeeeeoseesooenaaoaonns s S 1.
2.5.2 Assembler Processing...... ceresasans Ceseesenes cessaiaeas vessesssneesl8
2.6 Assembler Commands...... [P e eebesecsactssesacnrasrssannns ceeeseas9

2.6.1 18- Executing Pass 1 (not clearing symbol table).....eecesecescossss30
2.6.2 1P- Executing Pass 1 (clearing symbol table).......... g 1 |
2.6.3 2L- Executing Pass 2 (outputting assembly listing).....csiieeveeesess3l
2.6.4 2T- Executing Pass 2 (outputting object program)..... ceeenens ceeeees32
2.6.5 2P~ Executing Pass 2 (simultaneous output of assemblv
listing and object program)...... sseesssscecns 32
2,6.,6 X- Return to Monitor....... Ceesesesstassrsasaresesann B &
2.7 Assembler Directives......veeeeueesvoeosnseeseasosncnesorsasnascnsensss3d
2.7.1 END (End of Program)...cseeeeonceces csesesssitessssccctttssasssnns .o 34
2.7.2 EQU (Equate Symbol Value)...uveeveerunersneosseionsscasassassssoasses3b
2.7.3 FCB (Form ConsStant Byte).u.eeeeceeoerssonsesossesssossensrosonsssess38
2.7.4 FCC (Form Character Constant)....eeoveceseseos Ceeeeaean teressscesessdl
2.7.5 FDB (Form Double Byte Constant)..... Y V3
2.7.6 NAM (Program Name)...veeeesesenesossncrossnssescancs sonnncaossncsnescdb
2.7.7 OPT (Output Option)...... ceenene Y %
2.7.8 OPT T (Specify Assembly Language Type)......... PP /2
2.7.9 OPT M (Output Object to MemOry)...eeeeseseercrsnsssserosssascsscnses50
2,7.10 OPT O (Select Object Output).e..s... eteesecnenas . 3 |

2.7.11 ORG (Origin)uueueeveoneooosnsssesesansancssosnsonssasccsnsnsanoseesd?
2.7.12 PAGE (Top Of Pae).cueeeuseesrescneseasassossossnsssconne D &
2.7.13 RMB (Reserve MemoTry Byte)....seeeaeressosvosersncrssnsacnns B 1)
2.7.14 SPC (SPACE) tuvecrsentrrosoncssncsnsvsssssessssssnsssssensssansnnsass 55
2.8 Assembler Operational ExampleS......ceocessessscsasess cecisesesnnensas .55
2.9 Assembler Error MeSSageS...cseseesesoesssonsescssssessssssasssenssssnss 57

2.10 Assembler CommandS.....ceseeeseessessssssssssesssoscosssnssesssassanasbl

3. TexXt Editor...cuvueeineeieniisneesoeosessosansssusesssssnsanasssassssasasbl
3.1 General Description of Text Editor......ecevecerecececcsoascsccsnsessasbl
3.2 Text Editor FeatureS.....veeeeceeceecssossscososssasasassccsasesssessssbdl
3.3 Text Editor Input/Output......... PP /4

3.3.1 Input to the Text Editor.....ecuieuierecienecnseeacoceecncencccccans . .e.62
3.3.2 Output from the TeXt Editor...c.eeeceeeesessoscssssoscscscsonnsns ...63
3.4 Executing the Text EditOr.seeeeeersssscocscceassscsossasssasesssasssessbdd
3.5 Operating the Text Editor....cceveeeescencnsscsns A 11
3.5.1 Edit Operation FloW....eeeeeeeseescanccaassess PN 64
3.5.2 Operational Procedures for Editing.....veeveeceeevensescescssnsness b6
3.6 Text Editor CommandS.....ceceevecesescocscsssosssscssososssscssassssesasbb
3.6.1 A (teXt INPUL) e.eeeernsosessasnosossseossssssscsssanssssasssnsssasslO
3.6.2 B (moving pointer to head of buffer)...cieeeeecvesececcscscsssaceesll
3.6.3 Cstringl$string2 (replacing a character string).....ceeeeeveecncess 71
3.6.4 nD (deleting text by character Units)....eeevececsccecscosscaseansal3
3.6.5 E (ending editing operations)..... ceesecanseccanens B £
3.6.6 F (outputting feed).seeecessesssesecnsscsesssssnscsosacssssassnanes 76
3.6.7 Itext (inserting teXt)....ececeeeesossees Y)
3.6.8 J (selecting output devicCes)...cececsesoscsoassvsarssnscsacccsssesssal8
3.6.9 nK (deleting text by line UNitS).iceeececessvavossreresoassossccanas 79
3.6.10 nL (moving pointer by line units)....vceeeceeescessocaness ceesases8l
3.6.11 nM (moving pointer by character UNitsS)....eeeeeecscccoscessscesss 82
3.6.12 nN (reﬁeat command execution)......... Ceetcescsasanaenaasanasennen 84
3.6.13 nP (outputting =53) D - 51
3.6.14 Sstring (searching for a character string).....ceeeeeeeen cesereneas 88
3.6.15 nT (displaying teXt)....eeseeeesecescesceasessnsesossosnscnssssnsesdd
3.6.16 X (ending edit operations)...eeeeesseecesvsnesoscncnsans NP
3.6.17 Z (moving pointer to end of input text in buffer)........ceeeee...9]

3.7 Serial Execution of CommandS.....eeeeeeesceresasseceenscccccocnssonssoeeed2
3.8 Text Editor MesSagesS...cieeeevececsesonsscessosonossostonsssasossosseesl6d

3.9 Text Editor COmmAndS...c.ceeecesccescacesacancaconsaneccnsasassacoccsseed?

Appendix

A HD6301 and HD6801 Executive InStructionS.....eeeeesecsesssccccsssvocsssassdB
B ASCII Code Table...eeeeueereeieeeennececesasensosaasnnncssssssssssssensansl2l
C Hexadecimal-Decimal Conversion TableS...ei.ueveeeevescesseesscnscssansesasl22

D EPROM Mounting Method.....ciieieeiinnineriineenssnsenncenssessossonssessl2?

1. THE SYSTEM
1.1 System Overview
The 6301/6801 Assembler-Text Editor is operated on either the 6301
(H31EVT1) or the 6801 (H61EVT2) evaluation kit. These two evaluation kits are
highly effective tools for users designing and developing systems which use
the HD6301 or HD6801. By using a console connected to either kit, the user
can develop hardware or software systems with extreme efficiency. Figures 1-1

and 1-2 show the program diagrams.

6301 6801
Monitor Monitor
© 6301/6801 6301/6801 6301/6801 6301/6801
Assembler Text Editor Assembler Text Editor
Figure 1-1 Programs in H31EVTIl Figure 1-2 Programs in H61EVT2

The monitor program is indispensable to the evaluation kit. The user
uses the program to debug hardware and/or software systems.

The 6301/6801 assembler program converts source programs, written in
6301/6801 assembly language, into object programs. Source and object programs
are compatible with H68/SD series cross assemblers.

The user selects the 6301 or 6801 assembler by executing the assembler

directive "OPT".

HITACHI

1

The 6301/6801 Text Editor is a program for editing and revising text., It
is a particularly effective tool for revising and editing source programs

input into the 6301 or the 6801 assembler.

1.2 System Equipment Configuration
Figure 1-3 shows the equipment configuration of the 6301 evaluation kit.

The 6801 configuration is exactly the same.

Console Typewriter
6301
Evaluation Kit :::
H31EVT1
——
—
L] Dedicated
Small
Console

Figure 1-3 6301 Evaluation Kit Configuration

Execute the 6301/6801 Assembler-Text Editor with the console typewriter.
You cannot use the small, dedicated console.
The EPROMs (HN462732) which are internal to the 6301/6801 Assembler-Text

Editor will be mounted on the evaluation kit board.

HITACHI

1.3 Memory Map

Figure l-4 is the software system memory map of the 6301 Evaluation Kit.

Table 1-1 shows how each area is used.

6801 Evaluation Kit (H61EVT2).

Address (hexadecimal)

The chart and table also apply to the

$0000
Monitor Work Area
$00BO
6301 Assembler/Text Editor

Work Area
$027F
$6000

Monitor
$7000

Symbol Table for 6301 Assembler/
Buffer for 6301 Text Editor
$9800
$B000
6301 Assembler
6301 Text Editor
$DEAA
6301 Assembler/Text Editor I/O Routines
$E000
$E800
Work Area for Monitor

$EC00
$F000

Monitor

Figure 1-4 System Software Memory Map

HITACHI

3

Table 1-1 Use of Memory Areas

No.| Address Use
(hexadecimal)

$00BO Work area and stack for 6301 assembler and
1 / 6301 text editor.
$027F

$7000 Area for 6301 text editor buffer or 6301
2 s assembler symbol table.
$9800

$B000 Storage area for 6301 assembler
3 i)
$CCFF

SD6DF Storage area for 6301 text editor
4 J
$DESF

$DEAA Storage area for I/0 routines shared by the 6301
5 I assembler and 6301 text editor
$DFFF

$E800 Work area and monitor stack
6 J
SEBFF

$0000 Monitor areas
I
SO0AF

$6000
7)
$7000

$F000
s
$FFFF

1.4 Using the System
The flow chart in Figure 1-5 shows the procedures for using this system

to develop programs,

4 HITACHI

Offline

Source Tape

(@)

Source Program

Coding

. " Text ®

" Editor

List

@\/

Assembler

L

Object Tape

)

N\

Monitor

Debugging
Results

List

Bad

Hardware

Simulation

Revise

Figure 1-5

E Object Tape

ROM

Creation

|

End
System
Developemtn

Program Development Procedure

HITACHI

Procedures in Figure 1-5:

(:) Input text from source tape, edit and revise. Output results to
paper tape.

(:) Input source program from paper tape. Assemble and output object
program to paper tape or directly to memory.

(:) Use all monitor functions and debug object program stored in memory.
With these results, revise the source program again and perform hardware

simulation.

2, ASSEMBLER
2.1 Assembler Overview

The 6301/6801 Assembler (from now omn, simply, "the assembler") program-
ming system enters user source programs, written in 6301 or 6801 assembly
language, onto paper tape. The assembler then converts the source programs
into object programs.

You can use assembler source programs as input for 6301 (S31XAS2-F) or
6801 (S61XAS1-F) cross macro assemblers incorporated in the H68/SD series. The
object program can be used for monitor input. It can also be used on paper
tape for the creation of a mask read-only memory (ROM).

Figure 2-1 shows the relationship between the 6301 and 6801 assembly
languages. For further details, see Tables A-1 and A-2 in appendix A "HD6301
and HD6801 Executive Instructions.”

Note: 6301 assembly language

has 10 more execution

6301

Assembly Language instructions than 6801

assembly language. (Table

6801

2-5 lists the instructions
Assembly Language

which are exclusive to the
6301).

Table 2-1 6301 and 6801 Assembly Languages

6 HITACHI

2.2 Assembler Features

The assembler has the following features:

(1) Source programs compatible with source programs input to 6301 and
6801 cross macro assemblers.

(2) Direct output of object programs to memory.

(3) Adequate directives incorporated for easy observation of the assemble
list.

(4) Displayable cross reference list (see (1) in 2.3,2) for easy
observation of the assemble list.

(5) Reference to symbols used in other programs.

(6) Assembler directive "OPT" for switching to the 6801 assembler.
2.3 Assembler Input/Output

The assembler inputs source programs from paper tape and commands entered
from the keyboard. It also outputs the assemble list and object program.

Figure 2-2 diagrams assembler input/output.

Assemble
Source List
Program
Paper Tape
6301/6801
Assembler
G S Object
Command r . 1 Program
=0bJect:
Keyboard :Programl Paper Tape
t
[4

Figure 2-2 Assembler Input/Output

HITACHI

7

2.3.1 Input to the Assembler

The assembler inputs paper tape on which source programs written in 6301
assembly language are punched. It inputs commands keyed in at the keyboard.
For details on the commands, see 2.6, "Assembler Commands."

(1) Source statement format

A source program is a logical sequence of source statements written in
assembly language. Each source statement is a sequence of ASCII characters
ending with a carriage return(CB. See appendix B "ASCII Codes" to find out
which characters in the ASCII set can be used.

Each statement line consists of the four fields shown below. If a label
field begins with an asterisk ("*"), all remaining columns constitute the
comment field.

A statement can have a maximum of 72 columns.

label operation operand comment

statement
(Example)

*COMMENT LINE

LABEL GP cMpA GP) #$20 (BB SPACE CODE? QB
. J J

< \ d

label operation operand comment
— J

stat\ément

@P: at least one blank space
(a) Label field
The label (the symbol in the label field) is a name given to each
statement so it can be easily referred to by an instruction. The label

starts at the head of the statement.

label | GD %

HITACHI

When "*" is in the field header, the statement is a comment.

Comments are output to the assemble list but are not converted into

object codes.

If the header is blank, the statement has no label field, and

consequently no label.

@ operation :>

(i) Label rules

(a) A label symbol consists of 1 to 6 characters.
(b) The allowable symbol characters (in the label field)
are:

°Alphabetics from A to Z,

°Numerics from O to 9.
(c) The first character in the symbol must be alphabetic.
(d) A, B and X are words reserved by the assembler and
cannot be used independently as labels.
(e) Defining labels twice will cause an error.
(f) The location counter's value of the first byte in the
instruction or data storage area is assigned to the label.
(g) You can assign any label to statements that have
executive instructions. But, as Table 2-1 shows, certain
assembler directives require a label and others must not

be labeled.

HITACHI

Table 2-1 Assembler Directives for Label Addition

Type Assembler Directive
Requires label EQU
No label END, NAM, OPT, ORG, PAGE, SPC

(h) The location counter's value cannot be assigned to the
EQU directive. For further details, see the explanations
for each directive.
(b) Operation Field
The operation field comes directly after the label field, and
consists of an operation code of less than 5 characters. The two
types of operation codes entered in the operation field are:
(i) HD6301 or HD6801 executive instructions (from now on,
simply 6301 executive instructions or 6801 executive instruc-
tions)
These are operation codes shown in Appendix A's Table A-1
"6301 Executive Instructions" and Table A-2 "6801 Executive
Instructions."
(ii) Assembler control instructions
The special operation codes recognized by the assembler,
These codes will not be converted into machine language; they
control assembler processing.
(c) Operand field
The 6301 and 6801 executive instructions determine the addres-
sing mode in the operand field. Table 2-2 shows the operand field

format and applicable addressing mode.

10 HITACHI

Table 2-2 Operand Formats

6301/6801

Operand Format

Addressing Mode

6801
6301

or

No operand

Implied

6801
6301

or

<expression)

Direct(l), extended or relative

In selecting between direct (1)
or extended mode, the assembler,
if possible, automatically
selects the direct address
format.

6801
6301

or

#<expression)

Immediate

6801
6301

or

<expression>,X

Index (1)

6801
6301

or

"A" or IIB"

Accumulator

A space may or may not be
entered between the operator and
the accumulator designation. For
example, "RORA" is the same as
“"RORAA",

6301 only

<valuey,
<expressiony¥

Direct(2)

Depending on the executive
instruction, ¢value> takes
the numeric value from 0 to 7
with BCLR, BSET, BTGL or BTST
and the #<expressiony>* with
AIM, EIM, OIM, or TIM. For
example, "AIM #$3F,LABEL+3".

6301 only

<value>,
Lexpression®*,
X

Index(2)

Just as with the Direct (2)
format, ¢value> takes the
numeric value from O to 7 or
fi<expression»* depending on
what the executive instruction
is. For example, "BCLR
3,DISP,X".

*The values in an expression are 1 byte (0 to 255).

(d) Comment field

The comment field is the final field in a source statement.

When a program is assembled, the comment is not converted into

machine language.

It appears only in the source list. The

HITACHI 11

comment explains program processing, it helps you to understand the
program. Comments are also important for their role in helping to
simplify debugging and maintenance.
Rules on the comment field
(i) It is an optional field.
(ii) Leave at least one space after the operand field, then
write the comment. If there is no operand field, leave at
least one space after the operation field and then write the
comment.
(1iii) You can use any character in the ASCII code from $20(SP)
to $5F(_).
(2) Expressions
An expression is composed of symbols, numerics and arithmetic operators
and it specifies the operand value of the operation code. The arithmetic
operators are:
(a) + addition
(b) - subtraction
(¢) * multiplication
(d) / division
Expressions are computed serially from left to right no matter what the
arithmetic operator is.
If an expression's operational result exceeds 2-byte lengths (65535), the
value becomes undefined. If neither symbol nor numeric comes directly before
an arithmetic operator, the computation is made as if a 0 were there.

(example: /SYM = 0/SYM)

12 HITACHI

Figure 2-3 is an example of expression use.

00001 NAM EXPRES
00002 00AA DATA1 EQU SAA
00003 0055 DATA2 EQU $55
00004 * EXAMPLE OF EXPRESSION
00007 0000 0011 FDB 8+6+3
00008 0002 0006 FDB 4/2+4
00009 0004 000D FDB 5%4-7
00010 0006 08 FCB 2%2%2
00012 0007 86 55 LDA A #DATA1-DATA2
00013 0009 B7 0011 STA A WORK1
00014 000C 86 FF LDA A #DATA2*3
00015 O000E B7 0012 STA A WORK2
00017 0011 0001 WORK1 RMB 1

00018 0012 0001 WORK2 RMB 1

00019 END

TOTAL ERRORS 00000

Figure 2-3 Example of Expression Use

(a) Numerics

Table 2-3 shows the methods for expressing numerics.

HITACHI 13

Table 2-3 Expressing Numerics

Numeric Display Format Example

Expression

Decimal <numeric) 255

Hexadecimal $¢numeric) or <numeric>H $FF , OOFFH
(with the latter, the first
digit must be 0 to 9)

Octal @<¢numeric> or <numeric>0 or @377, 3770, 377Q
4numeric>Q (only 0 to 7
can be used)

Binary %¢numeric) or <numeric>B
(only 1 and O can be %211111111, 111111118
used)

(b) Character constants

These constants are formed from character strings.

the method of expressing character constants.

Table 2-4 Expressing Character Constants

Table 2-4 shows

No. Format Explanation
1 'C The character following "'" will
be converted to 7-bit ASCII code.
2 n, character string n characters following ",",
will be converted to ASCII
code.
3 d character string d Character strings enclosed by
d will be converted to ASCII
code.
(c) Symbols
Symbols are strings of 1 to 6 alphanumerics beginning with an
alphabetic. The rules for symbols are:

14 HITACHI

(i) The characters A, B and X are words reserved for the

assembler and cannot be used by themselves.

(ii) "*" is the symbol for location counter. It also indicates
the address of the first byte in an instruction word which has
"*" in the operand.
(3) Addressing Modes
(a) Implied and accumulator addressing modes
In the HD6301 and HD6801, several operation codes have instructions
with only one byte. These instructions are either in implied or
accumulator addressing mode, and when coding in assembly language, there
is no need to write in their operand fields.
(b) Immediate addressing mode
In the immediate addressing mode, 1 or 2 byte values can be
immediately used for operands. Specify the immediate addressing mode by
placing the character "#" at the beginning of the source statement's
operand field. The expression after "#" takes a 1 or 2 byte value
depending on the instruction.
(c) Relative addressing mode
The relative addressing mode is used with branching instructions.
Branching is performed only when relative values from the branching
instruction's first byte are -126 to +129,
(PC + 2) - 128 <D < (PC + 2) + 127
PC = address of first byte of branching instruction

D address of destination to which branch is made.

The branch offset is actually entered into the 2nd byte of the
branch machine instruction. It assigns, in 2's complementary, the
difference between the branch destination address and the address

directly after the branch instruction.

HITACHI 15

(d) Index addressing mode

The index address is related to the index register of the
HD6301 or HD6801. When an instruction is executed, the effective
address is calculated by adding the displacement in the machine
instruction's 2nd byte to the 16 bit index register's present
content. Since signs are not computed, negative values cannot be
used in the offset.

The index addressing mode is specified by the characters ",X"
usually after the operand field expression. ",X" or "X" can be
expressed only when the character is "0,X".

(e) Direct and extended addressing modes

With direct or extended addressing modes, use 1 byte (direct)
or 2 bytes (extended) in the operand's address. In the direct
addressing mode, operand addresses are limited to a range of O to
255 in memory. Direct and extended addressing modes are differenti-
ated according to the value of the expression in the source state-
ment's operand field.

(4) 6301 and 6801 Executive Instructions
Table 2-5 lists the executive instructions for the 6301 and 6801. 6301

dedicated instructions are marked with an asterisk (*).

16 HITACHI

cycle)

Table 2-5 Executive Instructions (addressing mode and machine

EXSRE2 Bt

patjdu]

paxapu]

vwﬂcwwxm

192311Q

ale1pauwm]

X000V

pueisd(g

1-3
1-3

INS

INX
JMP

JSR
LDA

LDD
LDS

LDX

1-2

LSR

1-3

LSRD
MUL
NEG
NOP
*0IM

6-10 e

1-2

1-2

[e}

ORA
PSH

4-3

5-4

PSHX
PUL

3-4
L]

PULX
ROL

1-2
1-2

ROR
RTI

10

RTS

1-2

SBA
SBC
SEC
SEI
SEV
*SLP

1-2
1-2

1-2

STA

STD
STS

STX
SUB

3-4 4-5 5-6 5-6 e .

SUBD
SWI

12

1-2

TAB
TAP
TBA
*TIM

1-2
1-2

1-2

4-6 4-6 o

TPA
TST
TSX
TXS
*XGDX
WAI

1-2

1-3
1-3

aarle|ay

pardug

paxapu]

papualxy

12911(

ajeipaunu]

X020V

pueiad() g

1-2
1-3

ABA
ABX
ADC
ADD

] 3-4 4-5 5-6 5-6 e]

ADDD
*AIM

o

AND
ASL

1-2

1-3

ASLD
ASR

1-2

BCC
*BCLR

o]

BCS

3

BEQ
BGE

BGT
BHI

3

BIT
BLE
BLS
BLT
BMI
BNE
BPL

3

BRA
BRN
*BSET

o

5-6
.

BSR
*BTGL
*BTST

o
o

BVC
BVS
CBA
CLC
CLI

1-2
1-2
1-2

5-6 5-6 e

1-2

CLR
CLV

1-2

CMpP
COM
CPX
DAA
DEC
DES

1-2

3-4 4-5 5-6 5-6 @

1-2

1-3

1-3

DEX
*EIM

EOR

1-2

INC

Note: Figures before "-" are the number of 6301 machine cycles, those after

are the number of 6801 machine cycles.

HITACH! 17

2,3.2 Output from the Assembler
The assembler outputs the assembly listing and object program.
(1) Assembly Listing
There are 4 types:
°Source statement listing
°Error listing
°Symbol table listing
°Cross reference table listing
We will now explain these listings by first looking at Figure 2-4 which

shows an entire assembly listing.

18 HITACHI

PAGE 001

00801
08002

00883

0eEE4 8400
00885 0400
8402
P44

zjelclchd

00D10 B4Bs
QoB11 0408
0BE12 B48B
08813 B48D
©0BO14 B4l10
BBO1S5

LBB1s 0412
00B17 0415
0618 8417
©BB1? B41A
Q20 041D
0eB21 B41F
0oB22 420
©OB23 8423
0oB24 426
@BB2S @427
Qo266 B428
@BBR27 B42A
Glalopes]

M

eo
oo
ele)

04
EC
FD
EC
FD
Aé

FE
Eé
FF
FE
E7
o8
FF
FE
88
4A
26
39

OVE

02
02
B2

Bé
(@10]
0400
(G4
0402
04

8460
(5]3]

404
0482

0404
0484

EB

MOVBEG ©460 MOVDST

MOVBEG ©4060
MOVDST 0482
MOVE 0486
MOVE1B @415
SAVEX @404

TOTAL. ERRORS

Figure 2-4 Assembly

~
o

BoOBSXx
BB &k
VOB *x
01 7%
0B 7k

5]5]5]515]

6301 ASSEMBLER 1.0

MOVBEG
MOVDST
SAVEX

MOVE

*

MOvV@1e

8402

Bro11
613

Qpv2S
Bpo18

NAM MOVE

oPT SYMBOL , XREF
oPT NOP

ORG $400

RMB 2

RMB 2

RMB 2

EQU *

LDD 8, X% *
STD MOVBEG *
LDD 2. % *
STD MOVDST *
LDA A 4,X

LDX MOVBEG

LDA B 8,X

STX SAVEX

LDX MOVDST
STA B ©,X
INX

STX SAVEX
LDX SAVEX
INX

DEC A

BNE MOvele
RTS

END

MOVE 04846 MOVB10 0415

BEB14

0oe1?

o222 0BB23

Listing Example (entire)

SET PARAMETER

SAVEX 0404

HITACHI 19

(a) Source statement listing

The source statement listing includes the source statements, format-
ted for easier reading, as well as additional information generated by
the assembler. Most lines in the listing correspond directly to a source
statement. The listing is output in pass 2. Figure 2-5 is an example of

a source statement listing.

PAGE 001 MOVE 8301 ASSEMBLER 1.0

O]

08881 NAM MOVE
00082 oPT SYMBOL
00063 OPT XREF
@OBE4 0400 ORG $408
GOVOS 0400 BEO2 MOVBEG RMB 2
00004 0402 0OO2 MOVDST RMB 2
00087 0404 0BE2 SAVEX RMB 2
88009 0486 MOVE EQU *
6OB10 0404 EC 00 LDD @, X * SET PARAMETER
00011 8408 FD 8480 STD MOVBEG *
PO012 ©48B EC 02 LDD 2, X *
80013 848D FD 8402 STD MOVDST %
00014 0410 A4 B4 LDA A 4,X
00015 *
08016 8412 FE 0400 LDX MOVBEG
90017 ©415 E6 8@ MOVO1B LDA B 8,X
PO018 9417 FF 0484 STX SAVEX
80019 G41A FE 0402 LDX MOVDST
00828 041D E7 00 STA B @,X
8OB21 B41F B8 INX
00022 0420 FF 0402 STX MOVDST
08023 0423 FE 0404 LDX SAVEX
@0024 0426 08 INX
BOO25 0427 4A DEC A
90026 0428 26 EB BNE MOVO10
80027 B42A 39 RTS
80028 . END ,

® ® ® 6 ®

Figure 2~-5 Source Statement Listing (example)

The circled numbers in Figure 2-5 are used to explain the source state-

ment listing.

C): The program name for the assembly listing. Every time you go to a

20 HITACHI

new page in a list, the top of that page is displayed. The characters in
the operand of the NAM directive, the first statement in the program, are

used in the program name.

GD: Statement numbers. The assembler assigns these numbers
automatically.

: Addresses in memory where the object program is stored (hexadecimal
display).

: Machine operation codes for the instructions (hexadecimal display).

: Operand values of the instructions (hexadecimal display).

©®06 6

: Formats and outputs the source statement.
(b) Error listing
A list is output of total errors occurring in pass 1 and pass 2
and of error messages for source statements which have produced er-

rors. Figure 2-6 is an example of error listing output.

¥¥%%ERROR 201

6BRe! 010 ORG %106
*¥**¥¥ERROR 2081

BBB2 NAM PGM?

003 * ERROR PROGRAM

¥X¥¥ERROR 209

0004 0010 Q0 BBBE LDA =$55
¥*¥¥x*ERROR 207

0BBOBS BB13 0B BB BSS ¥

0BBBS 8016 3D MUL
**¥*¥ERROR 210

80007 8017 Csé\2C LDAB =380
0oBo8 ‘ END

‘“—Error Number
OTAL ERRORS Q©0B10
- \

“——Listing of Total Errors

Note: Error message and source statement where the error is located are

output in pass 1.

- Figure 2-6 Example of Error Listing Output

HITACHI

2]

(c) Symbol table listing

This listing contains all symbols (labels) appearing in the
source program, as well as the addresses or values by which those
symbols were defined. The symbol values are displayed in hexadeci-
mal.

The list will be output only if output is specified in the
source program. Write the output specification as "OPT S" in the
OPT directive.

Figure 2-7 is an example of symbol table output.

MOVBEG 0400 MOVDST 0402 MOVE 0406 MOVOl0 0415 SAVEX 0404
+ +
[Laddress or value
symbol

Figure 2-7 Symbol Table Listing

(d) Cross reference table listing

This listing contains all symbols (labels) which appear in the
source program as well as their corresponding defined addresses or
values. It also contains the line numbers of defined or referenced
statements. For the defined statement, the symbol displays "*"
after the line number.

The listing will be output only if specified in the source
program. If output is specified during execution, line numbers of
label definitions and references prior to that point will not be
output. Specify output by writing "OPT X" in the OPT directive.

If list output is specified and there is no space in the symbol
table area for loading the cross reference table, the list won't be
output (2 bytes are required to reference one symbol).

Figure 2-8 shows an example of cross reference table output.

22 HITACHI

MOVBEG 848@ 00BBS* 8BB11 08014
MOVDST G462 GBG84% 08013 08819 60022
MOVE 0484 08009

MOVEl@ 8415 BBB17* 08826

SAVEX , @404, BBBET* QU018 00023

@ ® ®

1 : Symbols

2 : Addresses

3 : Line numbers being defined and referred to
("#" is a line number being defined.)

Figure 2-8 Cross Reference Table Listing

Note: When assembling two or more programs, an excess of line numbers will be
output to the cross reference table listing.
(2) Object Program
Object programs are normally output to paper tape, but by executing an
"OPT M" directive in the source program, you can have an object program output
directly to memory.
(a) An object program output to paper tape will be in the S type

format shown in Figure 2-9,

HITACHI 23

’,/’F-/d
]
i Leader
1
1
1
1 53 S = Head of record
2 RT RT = Record format-
3
— - ¢ Byte count (length of data from address
4 to checksum)
5
6% 9
B] — —{ ¢ Address
X
7 8 e
g
@ o4 — 7]
g ~ 2
8 s X 3
[o g
< = O
9 v© 2
[— — ¢ Data
10 3
>
/M
= ﬁ:
— — Checksum (1's complement of the sum of
data from byte count to checksum)
N
0A
0D Delimiter of each record
00
|
|
]
‘“»ﬂi_~_

Figure 2-9 S Type Object Tape Format

24 HITACHI

Figure 2-10 is a diagram of all record formats.

® S00B0000484452202020202076
® S11611008644B701004142484445464748494A4B4C4D4E6D
® S88030000FC

®RT=30 ® RT=31 RT=39
Header Data End
Frame Record Record Record
1Head of record 53 S 53 S 53 S
2 Record format 30 0 31 1 30 9
3B t t 30 0B i 16 80 03
un
Qovte co 42 36 38
5 30 31 30
8 30 31 30
Address 0000 1100 0000
7 30 30 30
8 30 30 30
QData Be 48—H 88 86 46 FC
10 38 36 43 (checksum)
34
44 -] 34 "
34 34
35
32 52—>R SN
L 36 6D
] 44 (Checks um)
§Ch k. 37 76
N ecksum 36

Figure 2-10 Record Formats for S Type Objects

In Figure 2-10:

@: The first record in the object program. Content written into the
program's "NAM" directive operand is set into this record's data section.
@: This record includes machine codes.

@: The final record in the object program. The address is normally O,
but when an operand is written in the "END" directive, the operand value

will be set as the start address.

HITACHI

25

(b) When "OPT M" is specified, the assembler outputs the object
directly to the user memory area during assembler execution (pass
2).

By using this function, you don't have to load the object
program into memory again after assembly terminates.

If you try to output the object to a non-packaged RAM area
while using this function, the assembler will display error number
218. The object program will not then be output to memory, but to

paper tape. Figure 2-11 shows the general concept of object output.

System Memory Area User Memory Area

User Program

Assembler "OPT M"
Text Editor

Figure 2-11 '"OPT M's" Object Program Output

2.4 Executing the Assembler
Since the assembler is stored in the evaluation kit EPROM, turn on the
power supply and key in as shown in Figure 2-12. The assembler then enters

command request status.

/ACR

6301 ASSEMBLER

! The user keys in the under-
lined section (as with all

subsequent procedures)

Figure 2-12 Assembler Execution

26 HITACHI

Key to Figure 2-12:

@: Key in monitor command for assembler execution.

@: Display assembler title. Version and revision numbers are entered in
the spaces marked v and r.

(3) : Assembler enters command request status.

HITACHI 27

2.5 Operating the Assembler
2.5.1 Operational Overview

Figure 2-13 outlines the operations of program assembly. Code the source
program first. Then, punch it onto paper tape at the console. When perform-

ing punch operations, the console must be off-line (LQCAL).

Program Sheet

AN PaM Memory (EPROM)
LDAA YY
Assembler
Input f—d R 4---=-- Output
Device ; Device
Punch 1
11001010
11110000
M
Tont Memory (RAM)
m Editor

Object Program Assembly

Figure 2-13 Assembler Operation List

Use an assembler command to input paper tape created during offline
operations or paper tape edited and corrected by text editor. Then, assemble

and output the assembly listing or object tape to an output device.

2.5.2 Assembler Processing

The assembler inputs the source program twice. Figure 2-14 shows the

flow for each pass.

28 HITACHI

Error
Message
Source Assembly
ou .
Program |f---------em- | Assembler | _______ _____] List

P ——]

Object
Program

pass 2 -----—- - Object]
Program

Figure 2-14 Flow ci Assembly

The source program is checked for errors at each statement in pass 1.
Every time an error occurs, an error message applicable to that statement is
displayed. The symbol table is also created during pass 1.

In pass 2, the source program is read in and the assembly listing or
object program is output in line with the specification. Pass 1 execution
must end before pass 2 execution starts. Always process pass 1 first.

Each pass is specified by command. When a pass ends, the assembler again
enters command request status. But, a word of caution: An END directive must
be assigned to end a source program, otherwise the pass will not be considered

ended and the assembler will not enter command request status.

2.6 Assembler Commands

This section explains the specifics of assembler commands using the table

format shown. Figure 2-15 is the format for explaining commands.

HITACHI

29

Command: The key word that executes

e(//fi the command.

Command Command Name| &——— Command name: The title of the
applicable command.

Function €&———Function: Function explanation.

I Explanationll 4%__,_-Exp1anation: How to use the command.

I Important Points I7 ¢ ——Important Points: Describes what
4] to watch out for when using this
command.

Figure 2-15 Understanding the Assembler Command Table

[2.6.1 lsl[ggecuting Pass 1 (not clearing symbol table)

Fungtioq“_:ll (1) Executes pass 1 without clearing symbol table

[Eééighétionll (1) Check syntax. If there is an error, the error message and

statement producing the error will be displayed and the symbol
table will be cataloged.

(2) Because pass 1l is executed with the symbol table on hold,
several programs can simultaneously cross reference the same
symbols.

(3) After setting the source tape in the input unit, key in

"IS".

30 HITACHI

2.6.2 1P| |Executing Pass 1 (clearing symbol table)

LIMnnLiQn__J l (1) Clears symbol table and executes pass 1. AJ

LExplanatioﬂ (1) Check syntax. If there is an error, the error message and

statement causing the error will be displayed and the symbol
table will be cataloged.
(2) Clear symbol table.

(3) Set the source tape in the input unit and key in "1P".

2.6.3 2L| |Executing Pass 2 (outputting assembly listing)

Function 1) Executes pass 2 and outputs assembly listin <T
l]l (1) p P y g

IExplanatioj (1) After pass 1 ends, set source program in input unit again
- and key in "2L",

(2) Assembly listing is output while the source program is
being read.

(3) If there is an error, an error message will be displayed at
the applicable position in the list.

(4) The total number of errors in pass 1 and pass 2 will be

displayed at the end of the assembly listing.

Important

Points (1) The object program will be output only when option M is

specified.

HITACHI 31

[3.6.4 ZTI[ﬁxecuting Pass 2 (outputting object program)

| Function I

(1) Executes pass 2 and outputs object program.

lExplanatioj

(1) After pass 1 ends, set the source program in the input unit
again and key in "2T".

(2) The object program is output while the source program is
being read.

(3) Since errors are checked, error messages will be punched on
paper tape, but this presents no problem since these messages
will be ignored when the monitor inputs the object program.

(4) When the object is output to paper tape, a leader will be
output at the beginning of the object tape and a trailer at the
end., After the trailer is output, the total number of errors

in pass 1 and pass 2 will be output,

mportant
Points (1) No output of assembly listing.
 ——
2.6.5 2P| |Executing Pass 2 (simultaneous output of assembly listing and

object program)

‘Function I

(1) Executes pass 2, simultaneously outputs assembly listing

l " and object program.

Explanation

(1) After pass 1 ends, set the source program in the input unit
again and key in "2P",

(2) The assembly listing and object program will be output at
the same time as the source program is being read.

(3) The assembly listing will be punched on to object tape
depending on what the output device type is, but this will
present no problem since the monitor ignores the assembly

listing when the object program is input.

32 HITACHI

[2.6.6 X [Eéturn to Monitor

lFunction I (1) Returns control from the assembler to the monitor and
I places the monitor in command request status.,
| Explanatioﬂ (1) After the end of assembly, key in the X command and return

control to the monitor.

2.7 Assembler Directives

This section explains the directives recognized by the assembler. Except
for those which define data, assembler directives control processing, they do
not convert directly into object codes. Table 2-6 lists assembler directives

by function. The symbols used in this section and their meanings are:

{ } Select one
[J Optional

[] Repeats the number of times chosen
e :> Character string such as label or operand (<label® <operand®)

A box in each table shows whether a label or operand is required.

label Joperand

* *

In the descriptions, O, X or A will be where the asterisks are. The
symbols mean:
O......required
X......cannot be used

A......either may be used

HITACHI 33

Table 2-6

Assembler Directives

No. Type Control Function Section
Instruction Number
1 |Assembly Control| NAM Specifies program name 2.7.6
OPT T Selects 6301 or 6801 Assembler 2.7.8
OPT M Outputs object code directly to
memory 2.7.9
OPT O Selects object output 2.7.10
ORG Specifies origin 2.7.11
END Specifies end of program 2.7.1
2 Define Symbol |EQU Assigns non-variable value 2.7.2
3 Define Data FCC Obtains character constant data 2.7.4
and FCB Obtains 1 byte constant data 2.7.3
Reserve Area |FDB Obtains 2 byte constant data 2.7.5
RMB Obtains memory area 2.7.13
4 Control PAGE Changes page 2.7.12
of SPC Outputs blank line _‘ 2.7.14
Listing OPT X Outputs cross reference table 2.7.7
OPT S Outputs symbol table 2.7.7
OPT G Outputs Expanded line of -FCB, FCC
and FDB 2.7.7
OPT P Lists in page format 2.7.7
OPT L Outputs list 2.7.7

Assembly controll

END

2.7.1 END [End of Program]

Format END [<expression>] [<comment>] Label |Operand

X A
Function Specifies the end of a program
Explanation The END directive tells the assembler the source program has

ended. The assembler thus ignores any source statement after

an END statement. During the execution of each pass, the
assembler reads the END statement and ends the pass. Expres-
sions can be written in the END directive's operand field. The
expression's value indicates the start address of the program
and is entered into the end record of the object tape. For
object formats see Figures 2-9 and 2-10. Figure 2-16 shows an
example of how this command is used. The statement of the END
directive is underlined. You must write an END directive at

the end of a source program.

34 HITACHI

0BeO1

00093
00004
0985
0086

00008

TOTAL

(END statement's operand field does not include an expression)

NAM END
1600 ORG $1000
1866 246 006 START DA A ©
1602 97 0Ol STA A 1
1864 7E FOO0O JMP $FO00

END START PROGRAM BEGINS AT START

ERRORS 000606

(END statement's operand field includes an expression)

8EBB1

80063
0064
8085
BRBB7

TOTAL

NAM END2

0B 96 0O START LDA A ©

BeR2 27 01 STA A 1
00B4 TE FOOO JMP $F000
END

ERRORS 8006006

Figure 2-16 Example of END Directive

HITACHI 35

Defining Symbols

EQU

2.7.2 EQU [Equate Symbol Value]

Format <label> EQU <expression> [<comment>] Label |{Operand
0 0

Function Defines the value of a symbol.

Explanation The EQU directive assigns the value of an operand

field expression to a symbol in the label field. The label and
expression follow the rules in 2.3.1 "Input to Assembler," It
should be noted that the EQU directive does not assign a
program location counter to a label, it assigns only the
counter's value. Neither label nor operand field can be
omitted. Labels defined by EQU directive cannot be redefined
elsewhere in the program. An EQU directive's operand field
cannot contain undefined symbols. Figure 2-17 gives an example
of how the directive is used. The underlined sections are the

statements of the EQU directive.

36 HITACHI

00001

BOBE3 VOBD BBs4
slolelclsy 032
0eB7 8032
*¥*k¥ERROR 2046
0BBR? O3E8
00011 O3ES8
0BB13

TOTAL ERRORS 00001

NAM EQU
LABEL! RMB 160
LABELZ EGQU LABEL1+50
LABEL3 EQU LABEL2
LABEL4 EQU LABELS ERROR —-- FORWARD REFERENCE
LABELS EQU 1000
END

Figure 2-17 EQU Directive Example

HITACHI 37

Data Definition

FCB

2,7.3 FCB [Form Constant Byte]

Format Label |Operand
A 0
<expression>, <expression>, <expression>
[<label>] FCB { <null> } o <null> Feooof <null> } [<comment>]
Function Forms a constant of one byte
Explanation The FCB directive stores an 8-bit unsigned binary, for a given

operand value, in one byte of the object program. The directive
can have one or more operands. Delimit operands with commas.
Two or more operands will be stored in contiguous bytes. 1In
the operand field, you can write expressions and symbols with
numerics assigned by the assembler and you can write hexadeci~
mal, decimal, octal and binary numerics.

You can assign a series of one or more null operands delimited
by commas to an FCB directive. Zeroes (@) will be stored for
the null operands.

Undefined symbols are not allowed in the expressions of an FCB
directive opérand field.

Figure 2-18 shows an example of how this directive is used.

Underlined sections are FCB directive statements.

38 HITACHI

80001

BEBO3
0004

Glelslals)

0oLBS
0BT
Glelslals]
8EB10

TOTAL

Glelols]
080o1
0802
0003
6Boo4
QLES
0Q0s
©ee7
0oo8
Glelshy
QOOA
ooeB
oeeC

NAM FCB

FF FCB $FF

Gle LABEL FCB L $F, 23,

oF

17

00

82 FCB %018, LABEL+1, %

@2

07

05 FCB 5

00 FCB s ol

00

o1

OA FcB S*2
END

ERRORS 00000

Figure 2-18 FCB Directive Example

HITACHI 39

Data Definition

FCC

2.7.4 FCC [Form Character Constant]

Format Label |Operand
A (o]
[€1abe1>] FCCU3Cy o ASeIT cnarsceor strings) [Scoment>]
Note: ASCII character strings do not include 'CBI'.
Function Forms character constants
Explanation The FCC directive converts character strings to 7

bit ASCII code. In this directive, you can use any character
in the ASCII code from $20 (space) to $5F(-).
You can write in the FCC directive's operand field in either of
2 ways:

(1) <count decimal>,<ASCII character string>
Count is the number of characters to be formed. The character
string starts after the operand's first comma. If the value of
count is greater than the length of the character string, the
code for spaces will be entered until the count value is
reached. The maximum value of count is 255.

(2) d<ASCII character string>d
A character, number or symbol may be used for d. A character
string delimited by d will be converted to ASCII code. If a
number is used for d, the character string cannot start with
",".
If an operand character string contains 2 or more characters,
the ASCII codes corresponding to the contiguous characters will
be entered into contiguous areas. Figure 2~19 is an example of
how the directive is used. The underlined sections are the
statements of the FCC directive.

Note: The same characters as the delimiter symbol d can

not be included in a character string.

(Example) FCC AABCA
(The delimiter symbol A is contained in the character

string ABC.)

40 HITACHI

00001

60003

00064

80BBS

slelslsy)
00008

010
BBO11
0OB12

TOTAL

NAM FCC

066 54 MSG! FCC /TEXT/
6001 4S5

0082 58

0003 54

0004 54 MSG2 FCC 9. TEXT
@BES 45

8Os 58

0007 54

008 206

0eE? 26

0BBA 20

QBB 20

PeOC 20

eoeD 4D FCC TMORE TEXT?

OOBE 4F
BEBF 52
0B16 45
0@1!l 20
0012 54
6013 45
0014 58
Qo155 54

oPT NOGEN
0Blé 4E FCC /NOGEN/

OPT GEN
001B 47 FCC /GEN/
Ba1C 45
001D 4E

END

ERRORS 08000

Figure 2-19 FCC Directive Example

HITACHI 41

Data Definition

FDB

2.7.5 FDB [For

m Double Byte Constant]

Format

Label |Operand

A 0
[<label>] FDB {<expression>} {<expression>}... {<expression>} [<comment>]
<null> i <null> ? < null> <
Function Forms a 2-byte constant
Explanation The FDB directive stores a 16~bit unsigned binary

that is equivalent to the operand value in 2 bytes of the
object program.

When there are two or more operands the binary will be stored
in contiguous areas. In the operand field, you can write
symbols and expressions to which the assembler has assigned
numeric values, and you can write binary, octal, decimal and
hexadecimal numerics.

FDB directives with one or more null operands delimited by
commas will store zeroes (@) for the null operands. You may
assign labels if you wish. FDB directive cannot have unde-

fined symbols within their operand field expressionms.

Figure 2-20 is an example of how this directive is used. The

statements of the FDB directive are underlined.

42 HITACHI

00001

6ROB3

80004

515]5]ols

8BRS

TOTAL

slelsle)
0082
00084
BRBs
0Bes8
BBBA
0eeC
0BBE
0010

ERRORS 0006G

0002
0000
OOOF
QOFF
OFFF
FFFF
elelele
0007
0002

NAM FDB
FDB 2
LABEL FDB s $F ., $FF . $FFF ., $FFFF
FDB LABEL+10,LABEL+5, LABEL
END

Figure 2-20 FDB Directive Example

HITACHI 43

Assembly Control

NAM

2,7.6 NAM [Program Name]

Format Label [Operand
NAM <program name> [<comment] X (0]

Function Used to specify the program name.

Explanation The NAM directive must always be written at the

beginning of a source program.

No labels may be attached to the NAM directive. Write the
program name in the operand field using no more than 8 alphanu-
meric characters.

The NAM directive displays the program name on the first line
of each page in the list. The program name will also be in the
object program's header record. See Figures 2-~9 and 2-10 for
object formats.

Figure 2-21 shows how this directive is used. The statements

in the NAM directive are underlined.

44 HITACHI

60001 NAM NAM
BBLE2 oPT 0
6BBB4 *PROGRAM NAME
80005 0B 946 0O NAMG1 LDA A ©
0oBRS BRB2 ?7 01 STA A 1
07 END

TOTAL ERRORS 00800

Figure 2-21 NAM Directive Example

Listing Control

OPT

2.7.7 OPT [Output Option]

Format Label [Operand
OPT ¢option> [,<optiond]ececce- X 0
Function Selects output
-—E;;I;;;;;;;:h‘ The OPT directive is used to give the programmer optional

control of assembler output. Some options are reset to the
default at the end of pass 1. To cancel control of those
options, specify '"NO" at the header.
Table 2-7 lists the options available. Note the following
points.
(1) N, D and R mean:
N - "NO" can be assigned to the header.
D - Default. Selected when the operand is omitted.
R - Reset at the end of pass 1. The option will be in
effect at a point you specify.
(2) Characters in parentheses are abbreviated forms of the
option.
(3) More detailed explanations of options marked with
asterisks (*) will be given on subsequent pages. Figure
2-22 is an example of how to use XREF and SYMBOL options.

The statements underlined are for that particular option.

HITACHI 45

Table 2-7 Options

Option Segment Meaning
6301 Selects 6301 or 6801 assembler.
*T={ } The default is T = 6301.
6801
GENERATE N, b, R Outputs expanded lines for FCC,
(G) FCB and FDB directives. When
you specify "NO", expanded line
will not be output.
LIST N, D, R The option will begin to output
(L) the list at a specified point
in time. If "NO" is specified,
there will be no output after
that point.
*MEMORY N Outputs the object program
™) directly to memory.
*0TAPE N, D Outputs the object program
(0) tape.
PAGE
(P) N, D Outputs the list in page
format.
SYMBOL N Outputs the symbol table list.
()
XREF N Outputs the cross reference
x) list,

46 HITACHI

PAGE

0O 1
00BO2
6083
64
60085
0pBBs
08607

08069
0vB10
60011
6RE12
00013
8014
80015
0BB14
017
0pBO18
60019
80020
021
BBB22
88023
80024
B0B25
024
8ee27
0BB28

PAGE

MOVBEG

MOVBEG
MOVDST
MOVE
MOVE16
SAVEX

001

84060
0400
0402
0404

840846
0408
0408
840D
0410

0412
0415
0417
041A
841D
041F
0420
0423
84246
0427
Q428
B42A

802

0400

0400
0402
0406
0415
8404

MOVE

0Be2
8602
0882

8486

EC @@
FD 0400
EC @2
FD 08482

FE 0400
FF 0404
FE 08462
E7 00

FF 0402
FE 0404

246 EB

MOVE

MOVDST

BOLBS X
B00Bs6*
[clclclshg
BBO17x
B6LBA7*X

TOTAL ERRORS 00080

Figure 2-22

4391 ASSEMBLER 1.8@

MOVBEG
MOVDST
SAVEX

MOVE

*

MOVO1@

6361

84062

Glclch i
613

0BB24
0Le18

NAM MOVE
OPT SYMBOL
oPT XREF
ORG $408
RMB 2

RMB 2

RMB 2

EQU *

LDD @, X
STD MOVBEG
LDD 2,X
STD MOVDST
LDA 4, X
LDX MOVBEG
LDA 0, X
STX SAVEX
LDX MOVDST
STA 8,X
INX

STX MOVDST
LDX SAVEX
INX

DEC

BNE MOVB16
RTS

END

ASSEMBLER 1.6

MOVE

800146
0BO1?

80023

0406

00022

SET PARAMETER

* ¥ X ¥

MOVB1B 8415 SAVEX 04064

Example of XREF apd SYMBOL Options Use

HITACHI 47

Assembly Control
OPT T

2.7.8 OPT T [Specify Assembly Language Type]

Format Label |Operand
r-]

Function Converts the source program into a specified machine

language.
Explanation The OPT directive's T option directs the assembler to
convert a source program into the machine language specified.

(1) When OPT T = 6801,
The source program will be converted into HD6801 machine
language.
(2) When OPT T = 6301,
The source program will be converted into HD6301 machine
language.
T = 6301 is the default so if you do not specify the T
option, the source program will be converted into HD6301
machine language.
The T option must be placed prior to the statements of the
executive instruction. If the T option is after those
statements, it will be ignored and assembly will be
performed by the default (6301).
The T option cannot be used more than once in one program.
If it is, options specified afterwards will be cancelled.
Figure 2-23 is an example of how this option is used. The
statements in the T option are underlined.

48 HITACHI

PAGE ©O1 OPTTST 6801 ASSEMBLER 2.0

0BRe1 NAM OPTTST
0BYO2 1000 ORG $1600
QB3 OPT X, T=6801
oS 1000 B4 1008 LDA A WORK
Q0BBs 1083 27 106 STA A $10©

FAXKERROR 207
BBBO7 1605 B0 6V1O0 AIM =3$7F, %10

00DO? 1008 BBB1 WORK RMB 1 WORK AREA
Qoo1e END

Figure 2-23 Example of T Option Use

HITACHI 49

Assembly Control

OPT M

2.7.9 OPT M [Output Object to Memory]

Label |Operand

the object

Format OPT{ﬁEMORY} X 0
Function Outputs the object directly to memory.
Explanation The OPT directive's M option directs the assembler to output

code directly to memory. If a RAM is not packaged

in the respective area, error number 218 will be displayed and

there will be no output to memory.

Figure 2-24 gives an example of how this option is used. The

statement specifying the M option is underlined.

50 HITACHI

BoRO! NAM OPTMEM
PBBR2 FB800 ORG $F 860
0003 oPT M
00BOS FB8BD 9246 B0 START LDA A ©
0BBBS FBB2 97 91 STA A 1
0oBE7 FB804 7E FOBO JMP $FB00
slolGlchd END START
TOTAL ERRORS 006600

Figure 2-24 Example of MEMORY Option Use

Assembly Control

orTroO |

2.7.10 OPT O [Select Object Qutput]

Label |Operand

Format OPT{gTAPE} ‘ X 0
Function Selects output of an object program.
Explanation The OPT directive's O option is used in outputting object

programs. The O option is a system default, so that if omit-
ted, object program output will be selected. If you do not
want the object program output, specify the NOO option to
inhibit. The O option can be used only once, and you cannot
use O and NOO together in the same program.

Figure 2-25 shows an example of how this option is used. The

statement specifying the O option is underlined.

8Roo1 NAM OPTOBJ
08062 1000 ORG $10060
oBEO3 oPT 0
80RBS 1080 946 0O START DA A ©
0BRSS 1082 97 01 STA A 1
BBVE7 1004 TE FOGO JMP $F000e
8o END START

TOTAL ERRORS 00080

Figure 2-25 Example of OTAPE Option Use

HITACHI 51

Assembly Control

ORG

2.7.11 ORG [Origin]

Format ORG <expression® [<comment>] Label Operand
X 0

Function Specifies the origin.

Explanation The ORG directive stores the values of operand field expres-

sions into the program counter. Statements after the ORG
directive are assigned to memory locations which start with
those operand values. If ORG is not specified, zeroes (@) will
be stored in the program counter. Do not assign labels to the
ORG directive.

Figure 2~26 gives an example of how this directive is used.

Statements in the ORG directive are underlined.

NAM ORG

OPT 0
00004 BOEO 000! BILL RMB 1
80085 0001 JOHN EQU *
00007 0020 ORG $20
0PEO8 0820 BOBA RMB 18
06010 081 ORG JOHN.
80012 END

TOTAL ERRORS 00000

Figure 2-26 Example of ORG Directive Use

52 HITACHI

Listing Control

PAGE

2.7.12 PAGE [Top of Pagel

Format PAGE Label {Operand

X X
Function Advance to next page.
Explanation The PAGE directive is used to form feed to the beginning of the

next page. This directive will not be displayed on the assem-
bly listing. You cannot use a label or operand with it. Nor

will the PAGE directive translate into a machine instruction.

HITACHI 53

Reserve Area

RMB

2.7.13 RMB [Reserve Memory Byte]

Format [¢label)>] RMB <expression) [<comment>] Label |Operand
A 0

Function Reserves bytes of memory area.

Explanation The RMB directive reserves an area in memory of a size speci-

fied (in bytes) by the operand field value. As a result, the
location counter increments by operand field value. You can
write numeric constants (binary, octal, decimal and hexadeci-
mal), symbols and expressions in the operand field. The
assembler converts the symbols and expressions to numerics. A
memory area reserved using the RMB directive cannot be changed
by a second use of the directive. You cannot write symbols
previously referred to or undefined symbols in the operand
field expression of an RMB directive.

Figure 2-27 gives an example of how the directive is used.

Statements in the RMB directive are underlined.

00001 NAM RMB

P0BO3 BOVLO BBB! CLABI RMB 1 IBYTE RESERVED FOR CLAB1
00BB4 ©BB1 BBLBZ2 CLAB2 RMB 2 2BYTE RESERVED FOR CLAB2
0B0Bs PBB3 BBO3 RMB ¥-CLAB!1 RESULT OF EXPRES. 1S ABS
000B8 BLOS BYBS) RMB * ERROR - RESULT OF EXPRESSION
6B010 END

TOTAL ERRORS 00060

Figure 2-27 Example of RMB Directive Use

54 HITACHI

Listing Control

SPC

2.7.14 SPC [Spacel

Format SPC <expression > Label |[Operand
X 0

Function Outputs a blank line

Explanation The SPC directive instructs as many blank lines as specified by

the operand to be left in the assembly listing. SPC will not
be displayed in the list. In the operand field, write the
number of lines to be left blank in binary, octal, decimal or
hexadecimal. You may write either symbols or expressions. If
page change occurs halfway through execution of the SPC direc-
tive, blank lines will be placed only up to that page. The
operand field expression of this directive cannot contain

undefined symbols or forward reference symbols.

2.8 Assembler Operational Examples

Figure 2-28 is an example of assembler operation.

HITACHI 55

® 6
N
-

PAGE ©01 MOVE 6301 ASSEMBLER 10

00001 NAM MOVE
002 OoPT 0
0oEB3 0400 ORG $400

004 D480 BOO2 MOVBEG RMB 2
00805 0402 8002 MOVDST RMB 2
B0BBS 04084 BBO2 SAVEX RMB 2

80008 0404 MOVE EQU *

00RBY? 0406 EC 060 LDD @, X ¥ SET PARAMETER
00010 0408 FD 04060 STD MOVBEG *
0Be11 B40B EC 02 LDD 2, X *
80012 840D FD ©402 STD MOVDST *
00013 8410 A6 B4 LDA A 4.X

0oo14 *

0bO15 0412 FE 0400 LDX MOVBEG
008146 0415 E6 00 MOVeie LDA B ©,X

BoB17 B417 FF 0404 STX SAVEX
80018 B41A FE 8402 LDX MOVDST
BBl 041D E7 ©9 STA B 8,X

00020 041F 08 INX

80021 0428 FF 0402 STX MOVDST
@822 ©B423 FE 8404 LDX SAVEX
00823 04246 68 INX

BE024 0427 4A DEC A

00025 0428 26 EB BNE MOVD18
8B026 ©42A 39 RTS

8eB27 END

TOTAL ERRORS 80000

® /2TSBPBOBVB4AD4F5645202020203D
S11EQ464ECBBFDO40BOECO2FDB4AB2ASDA4FEGA00E4OOFFB4B4AFEQ4B2ETB008FF 4E
S10DB4210402FEQ404084A246EB3925
S983060606FC

TOTAL ERRORS 000060

/

Figure 2-28 Assembler Operational Example

56 HITACHI

Operations in Figure 2-28:
1 : In assembler command request status, key in command "1P" to execute
pass 1. The "1P" command clears the symbol table and executes pass 1.
2 : Execute pass 2. The "2L" command outputs the assembly listing.
3 : Key in "2T" and output the object program. When performing paper
tape output, key in "2T" and immediately turn the output device switch
on. When paper tape output is complete, turn the output device switch
off.
2.9 Assembler Error Messages
Assembler error messages will be displayed in this format:
#*%%**ERROR xxx
The error message number is displayed in xxx.
Table 2-8 lists the numbers, names and meaning of the assembler error
messages.

Table 2~8 Assembler Error Messages

Error No. Error Name Description of Error
201 NAM directive NAM directive not in first state-
error ment of source program. Or, more
than one NAM directive in the same
program.
202 Label or Label or operation code symbols
operation code start with non-alphabetic.
error
203 Statement error Source statement has only a label

or blank spaces.

204* Syntax error Error in source statement syntax.

205 Label error The label field does not end with a
blank space. Or-an invalid
character was used in the label
field.

HITACHI 57

206 Dual definition An attempt was made to define a

symbol symbol more than once. The value
first defined is the effective
value. Or, the characters A, B or
X have been used by themselves in
the label.

207 Undefined An item, not defined as an
operation code instruction, was used in the

operation code field.

208 Branching error The operand value of a branching
instruction was not within the
l-byte range.

(¥ +2) - 128< D < (* + 2) + 127
*; Address of the first byte in the
branching instruction.

D: Address of the branch
destination.

209 Invalid addres~ An addressing mode that does not

sing mode conform with the operation code
type was used in an operand.

210 Byte overflow or An operand value is outside the
reserved word range of 0 - 255. Or, reserved
reference error word A, B or X was used in the

operand of an FCB directive.

211 Undefined symbol An undefined symbol was used in an
operand.

212 Assembler direc- There is a syntactical error in the

tive syntax assembly directive operand.
error

213 EQU directive The EQU directive is not
syntax error labeled, or, it has a syntax error.

214 FCB directive Syntactical error in FCB directive
syntax error statement.

215 FDB directive Syntactical error in FDB directive
syntax error statement.

216 Assembler direc- Operand error in the assembler
tive operand directive.
error

58 HITACHI

217 OPT directive An undefined option was used in the
error OPT directive statement. Or, there
is an error in the "OPT T =..."
position.

218 Addressing error The object program cannot be output
to memory. Or, the memory to which
output was attempted is not
packaged.

220 Phasing error An instruction word used in
equivalent statements in pass 1 and
pass 2 has two different addresses.

221 Symbol table The symbol table has overflowed.

overflow The defined symbol will not be
cataloged after this error is
output. All statements which refer
to that symbol will also be in
error.

223 Error in assemb- A label was assigned to a directive

ler directive which must not have a label.
label field

234 Dual definition A twice-defined symbol has been

symbol reference

referred to.

* 1f there is a syntax error in an FCC directive, the error message will be

written on the subsequent line of the source statement.

HITACHI 59

2,10 Assembler Commands

Table 2-9 lists the assembler commands.

Table 2-9 Assembler Commands

No. Command Description of Function

1 18 Executes pass 1 without clearing the symbol
table.

2 1P Executes pass 1 after clearing the symbol
table.

3 2L Outputs the assembly listing only.

4 2T Outputs the object program only.

5 2P Outputs the assembly listing and the object
program.

6 X Returns control to the monitor,

60 HITACHI

3. Text Editor
3.1 General Description of Text Editor

The 6301 text editor programming system (afterwards, simply, text editor)
inputs text on paper tape, and then edits and corrects that text.
3.2 Text Editor Features

(1) Editing and correcting of long text on a small, 3Kbyte buffer.

The text editor has functions for storing part of the text on a buffer in
memory, correcting that text and then outputting it. After output terminates,
the text editor reads the text remaining in the input device in the same way
as previous storage, corrects the text and then outputs. It continues this
same processing sequence over and over again. This segmented processing
allows the text editor to handle large volumes of text.

(2) Serial execution of multiple commands.

You can execute commands either one at a time or sequentially.

(3) Repeating command execution

The text editor has functions to repeatedly execute commands, and you can
repeat the same processing as many times as you specify.

(4) Specification of edit location by pointer

The text editor locates the pointer between two adjacent text characters,
It inserts new text or deletes characters on the left or the right of the
pointer. The text editor then moves the pointer to the next location requir-
ing correction.

(5) Specifying edit location by character string

The text editor searches for a character string in the buffer, moves the

pointer to the position directly after that character string and replaces it.

HITACHI

61

(6) Correcting key-in mistakes

When text or a command is incorrectly keyed in, the mistake is corrected
by deleting a character previously keyed in or a line up to the previous
command request.
3.3 Text Editor Input/Output

The text editor edits or corrects text input from paper tape by commands
entered from the keyboard and outputs the results to paper tape. Figure 3-1

shows the flow of text editor I/O.

= List
Paper Tape i
———=16301/6801 |—— Printer
1 Text Editor [——
Command
Keyboard

Paper Tape

Figure 3-1 Text Editor Input/Output

3.3.1 Input to Text Editor
The text editor inputs commands keyed in at the keyboard and text punched
on paper tape. For details on these commands see 3.6 "Text Editor Commands."
Text format
(1) Text is composed of characters in ASCII code.
(2) A line is a group of characters delimited by €R) ($0D: carriage
return).
(3) The final characters in text are@($lA).

Figure 3-2 shows a text format

62 HITACHI

! o®
2
3 (ASCIIcode) CPR
¢ c»
| ||
||

n—1 @

. | ®|

Figure 3-2 Text Format

3.3.2 Output from Text Editor
The text editor follows the directives of an entered command to output
corrected text to paper tape and to output text lists.
Rules on text output
(1) Even if it has not been entered into input text, an@will always be
output prior to a CR.
(2) When text is output up to EQP), the text editor will output a feed
(150 nulls) to the text.
3.4 Executing the Text Editor
If the EPROMs for the text editor are mounted on the evaluation kit, once
the power supply is turned on and a key-in is made like that in Figure 3-3,

the text editor enters command request status.

/E QR
6301 TEXT EDITOR wv.r
@

Figure 3-3 Text Editor Execution

Key to Figure 3-3.

@: Key in a monitor command to execute the text editor.

HITACHI

63

C): Displays the title of the text editor. V stands for the version
number and r for the revision number.

@: The text editor enters command request status.

3.5 Operating the Text Editor
3.5.1 Edit Operation Flow

The text editor inputs text from paper tape. It edits and corrects text

by command from the keyboard.
Figure 3-4 shows the flow of edit operations. The text editor repeatedly

stores part of a continuous text in the buffer, edits buffer content and then

outputs that content.

64 HITACHI

Text Editor

Input -
ﬂ " Device | |

&7
alEn
©
aBlia

nn Theoeee- 1--- Output

Device

Figure 3-4 Flow of Editing Operations

HITACHI 65

3.5.2 Operational Procedures for Editing

Are:

(1) Performed by character or line unit.

(2) Performed for lines or characters located by a pointer. The pointer
indicates where a character is in the buffer. As the example in Figure 3-5

shows, the pointer is considered to be between adjacent characters.

Ls]s]o]1] li}ﬁiﬂ [E[p]1]r]o]r]

Figure 3-5 Pointer Position

(3)(ff)is not stored in the buffer, so it makes no difference whether

input text includes an(Z:)or not.

3.6 Text Editor Commands

This section explains the functions and methods used for each text editor
command. Before thﬁf explanation some general points on command usage should
be mentioned.

(1) Command request

The text editor displays a "@" at the left of the list whenever it is
requesting a command. When a "@" appears, key in a command.

(2) Command execute directive

After keying in the command, key in @S0 twice to end command input and
begin command execution. ESD is an undisplayed character set, but when you
key @O in, the text editor displays "$".

Figure 3-6 is an example of command input. In this example, the pointer

moves to the head of the buffer.

66 HITACHI

@ B GSOESD
S
Displays "$§"

Figure 3-6 Example of Command Input

(3) Rules on key-in

If the bell rings* during command input and the following message is dis-
played,

*% BUFFER NEAR END

You will be able to key in only 10 more characters besides the 2 ESChk for
directing command execution. Any more than 10 will not be accepted. Use GﬁD
and CAN) (see (5)) to partially delete excess commands. Then begin execution.

At times you won't be able key in the C, 1 and S commands during text in-
put. If you are unable to key in these commands and a command is then execut-
ed, you will be unable, as the next example shows, to perform the desired pro-
cessing.

(Example)

@ IABCDEFGHIJKLMNC

** BUFFER NEAR END

P QRSTU$COTP$$
P
L——mno keying in beyond this point
AfCer message is displayed only 12 characters can be
keyed in

Message is displayed when this character is keyed in.
After "OTP" in the C command, an attempt was made to key in "ESO)
OPT" to replace "OPT" with "OTP". But, during C command input, the
command ended and "OTP" was deleted because the buffer was full.
(4) Serial execution of commands

You can key in several different commands sequentially before issuing

*Differs according to console specifications.

HITACHI

67

the directive to execute a command. Figure 3-7 is an example of how this is
done. In this example, text set in the input device is read and the second
line from the header is deleted.
@ABLK @1@
Displays "$"

Figure 3~7 Example of Serial Command Execution

Section 3.7 discusses serial execution of commands in further detail.

(5) Correcting commands

If you notice any key-in errors in a command before issuing the execute
directive, correct them using either method in Table 3-1.

Table 3-1 Methods of Correcting Commands

No. Method Name Operation Code Description
1 Correc~ | Back @ + H $08 Deletes the character just
tion by Space keyed in from the buffer and
ED Key displays the deleted character.
(Example)

€ABLL2LK (ED G50
|
@

In this example, commands
A, B, 2L and K will each be

executed.
2 Correc- Cancel + X $18 1 entire line will be deleted,
tion by a move made to the next line,
CAD) Key and "@", requesting a new
command, will display.
(Example)
@AB2LK
*
@

The examples below explain each command used when text in Figure 3-8 is

stored in the buffer. However, (CR) and (LF) indicate the key-in of @and

@y

68 HITACHI

NAM PGM(CR) (LF)

OTP M MEMORY FILE OPTION(CR)(LF)

OPT O OUTPUT OBJECT TAPES(CR)(LF)

OPT S SELECT PRINTING SYMBOLS(CR)(LF)

ORG 8192 (CR)(LF)

LDA B ADDR(CR)(LF)

COUNT EQU @8 @ INDICATES OCTAL(CR)(LF)
START LDS #STACK INZ STACK POINTER(CR) (LF)

LDX ADDR(CR) (LF)

LDA B #COUNT IMMEDIATE ADDRESSING(CR)(LF)
BACK LDA A 10 DIRECT ADDRESSING(CR) (LF)

CMP A 2,X INDEXED ADDRESSING(CR)(LF)

BEQ FOUND RELATIVE ADDRESSING(CR)(LF)

DEX IMPLIED ADDRESSING(CR) (LF)

DEC B ACCUMULATOR ONLY ADDRESSING(CR)(LF)

BNE BACK(CR)(LF)

WAI WAIT FOR INTERRUPT(CR) (LF)

SPC 1(CR)(LF)

FOUND JSR SUBRTN JUMP TO SUBROUTINE(CR)(LF)

JMP START EXTENDED ADDRESSING(CR)(LF)

* COMMENT STATEMENT NOTE TRUNCATION 01234567890123456789(CR) (LF)
SUBRTN TAB COMMENT FIELD TRUNCATION0123456789(CR)(LF)

ORA A BYTE SET MOST SIGNIFICANT BIT(CR)(LF)

RTS RETURN FROM SUBROUTINE(CR)(LF)

SPC 2(CR)(LF)

RMB 20 SCRATCH AREA FOR STACK(CR)(LF)

STACK RMB 1 START OF STACK(CR)(LF)
BYTE FCB $80 FORM CONSTANT BYTE(CR)(LF)

FCB $10,$84 § INDICATES HEXADECIMAL(CR)(LF)
ADDR FDB DATA FORM CONSTANT DOUBLE BYTE(CR) (LF)
DATA FCC 'SET' FORM CONSTANT DATA STRING AS ASCII(CR)(LF)

END(CR) (LF)

There are several errors in the
above text. Those errors are
corrected by the commands ex-

plained below.

Figure 3-8 Example of Input Text

Symbols used in each command:
A.........Means a space is keyed in.

(underline).....sections keyed in by user.

HITACHI

69

Text Input/Output
A

3.6.1 A (text input)

Functions Text is sent from an input device and stored in the
buffer. Text is not displayed.

Explanation (1) Text input terminates when any of the following
conditions are satisfied. "@" then displays requesting the
next command.

(a) When (EOP) ($1A: €TRD) + Z) is input from tape.

(b) When 150 lines are read in.

(c) When the buffer is full.
(2) If any previously input text remains in the buffer, new
text is read in after it.
(3) The following codes will not be input to the buffer.

@) @D (b ()@D

DED @E ()

() @D @D () AT

(3 Ed (k) @D
(4) If there is space in the buffer, 150 lines or more can be
input when the A command is repeated.
(5) The pointer will not move.
(6) If none of the conditions in (1) are satisfied, the input
device enters input wait status even if all paper tape has been
read in. At this time have an read in.

Examples

@ eass
@
(:): Reads the content of paper tape into the buffer.

70 HITACHI

Moving the Pointer

B

3.6.2 B (moving pointer to head of buffer)

Function Moves the pointer to the head of the buffer.

Examples ® ess
OPT S SELECT PRINTING SYMBOLS

@ s

() : Displays line indicated by pointer (in this case, line
4).
C): Moves pointer to head of buffer.

(): Displays line indicated by pointer (lst line).

Edit Operations
b

Cstringl$string2

3.6.3 Cstringl$string? (replacing a character string)

Functions Searches for a character string which is identical to "stringl"

then replaces that character string with "string2".

Explanation) (1) Execution of this command ends when either of the following
occurs.
(a) "stringl" is found.
"stringl" is replaced by "string2", the pointer moves to a
location after "string2" and "@" displays to request the

next command.

HITACHI 71

(b) "stringl" cannot be found from beginning to end of
input text in the buffer.
After the message "CAN'T FIND 'stringl'" is displayed,
"@" is displayed requesting the next command. The pointer
does not move.
(2) Key in "ESU' once to delimit "stringl" and "string2".
(3) If "string2" is omitted, "stringl" will be deleted. When
this happens, command input must be ended as "Cstringl (ESD
&'
(4) "stringl" and "string2" are ASCII code character strings of
16 characters or less not including the characters and

"stringl" and string2" do not have tc be the same iength.

Examples

72 HITACHI

e Bss
@e 5188
NAM PGM
* REVISION 1
OTP M MEMORY FILE OPTION
OPT O OUTPUT CBJECT TAPFS
OPT S SELECT PRINTING SYMBOLS
(® @CSYMBOLSSOFASYMBOL$S
@ @COTPSOPTSS
CAN'T FIND "OTP"
®esss
(® ecorrsorTSS
@esss
® esTss
NAM PGM
* REVISION 1
OPT M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPES
OPT S SELECT PRINTING OF SYMBOLS

(:): Moves the pointer to the head of the buffer.
: Displays 5 lines after the line indicated by the pointer.
: Searches for "SYMBOLS" and replaces it with '"OFASYMBOLS".

: Searches for "OTP".

©006

But, there is no "OTP" between the pointer location
and the end of input text, and the message 'CAN'T FIND
"OTP"" is displayed.

¢ Moves the pointer to the head of the buffer.

: Searches for "OTP" and replaces it with "OPT".

: Moves the pointer to the head of the buffer.

: Displays 5 lines after the line (lst line) indicated by the

@060

pointer.

Edit Operations

nD

3.6.4 nD (deleting text by character units)

Functions

From the location indicated by the pointer, deletes n

characters from the buffer.

Explanation

(1) n is a decimal integer: -254sn<255,

(2) No execution takes place if n = 0.

(3) If n is negative, n characters to the left of the pointer
location will be deleted.

(4) If there are less than n characters from the pointer
location to the head or foot of the input text, all characters
between the head or foot will be deleted.

(5) If n is omitted, it will be assumed as n = 1, if n is -D,

it will be assumed as equivalent to n = -1,

Example

Oesss
Q@ earss
NAM PGM
% REVISION 1
OTP M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPES

HITACHI 73

() esTAPESSS

@ e-10ss

O e4rss
NAM PGM
* REVISION 1
OTP M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPE
e

@ : Moves pointer to head of buffer.

C): Display 4 lines from line indicated by the pointer (lst
line).

C): Searches for "TAPES". Moves pointer to next immediate
position,

() : Deletes character (S) to left of pointer location.

C): Displays 4 lines above pointer location.

Text Input/Output

E

3.6.5 E (ending editing operations)

74 HITACHI

Functions Outputs entire buffer content to paper tape and continues
to copy the tape remaining in the input device. When all
copying ends, the trailer is output.

Explanation (1) When all text corrections end, key in the E command.

All buffer content and remaining text will be copied on paper
tape.

(2) If there is an @D on the input tape, the EOF)at the end of
the output tape and the trailer (ISOCZE}) will be output and
output will end.

(3) Pointer does not move.

(4) @Ds will not be copied.

(5) When the text in the buffer is output,c:fﬁwill be assigned
before@ 6 MUk will then be output.

(6) The following operations differ according to whether the J
command is executed.
(a) When not executed:
(i) Execute the E command. "PUNCH ON?" will display.
Turn the output device switch on and key in charac-
ters other than {UD, @ED or @F). The keyed in charac-
ters will not be output, but buffer content and
remaining text will be copied.
(ii) If there is an EOP) on the tape, the copying of
input tape will end and the trailer will be output.
Since the tape stops when trailer output ends, turn
the output device switch off and key in a character
other than (D), QED or @P. "@" will be displayed
and the system will enter command request status.
(b) When executed:
Execute the E command. Buffer content and remaining
text will be output immediately. The trailer will also be

output and the system will enter command request status.

Example

Q@ @Ess$
@ PUNCH ON

Qe

@ ¢ Key in the E command to end edit operations.

@ : Turn the output device switch on and key in any character except
@’ @ or @

@: After buffer content is output and text remaining in the input
device is copied, the feed will be output. When this occurs,
turn the output device switch off and key in characters other
than@, @ or@ The text editor will then enter command

request status.

HITACHI

75

Text Input/Output

F

3.6.6 F (outputting feed)

Functions Outputs 150(ULB to paper tape in an output device.
Explanation (1) Use the F command to output trailers or leaders to paper
tape.

(2) Operations will differ depending on whether the J command

has been executed.

(a) When not executed:
(i) Fxecute the F command. "PUNCH ON?" wiil display.
Turn the output device switch on and key in charac-
t:er.s other t:han or@. The keyed in charac-
ters will not be output, but 150 (UDs will.
(ii) When the tape stops, turn the output device
switch off, and key in characters other than UL\
@, or The system will enter command request
status and "@" will be displayed.

(b) When executed:

Execute the F command. The feed will be output immedi-

ately and the system will enter command request status.

Examples

Derss

®e

@PUNCH ON?

@: Key in the F command to output feed (150CNIDs)

@: Turn the output device switch on, and key in any characters

except (NUD), (OED) or CEY

@: When feed output ends, turn the output device switch off and key
in any characters except (NUL) @ED) or CF) The text editor will

enter command request status.

76 HITACHI

Edit Operations

Ttext

3.6.7 Itext (inserting text)

Functions

Inserts text into the buffer in either line or character units.

Explanaticn

(1) Text will be inserted in the location indicated by the
pointer. When insertion ends, the pointer moves to the end of
the insérted text.
(2) Except for the following, 'text" is made up of characters
in ASCII code.

() @D) CED (@D) ED

(e) @D (1) @D () @CD (h) BLD

(1) B0) CAD

Example

@BS$S
@213$

NAM PCM

OTP M MEMORY FILE OPTION
€183

eLss

@IA*AREVISIONAL (CR)

$$

@BSS

@31ss

NAM PGM

* REVISION 1

OPT M MEMCRY FILE OPTION

®0

Qe ©60

: Moves the pointer to the head of the buffer.
: 2 lines after line (lst line) indicated by pointer are

displayed.

C): One space ig inserted in the location indicated by the
pointer.

: Moves pointer to the next line.

HITACHI 77

C) : Insert "IA*AREVISIONAL TR’ into the location indicated by
the pointer.

@): Moves pointer to head of buffer.

GD: Displays 3 lines after the line (lst line) indicated by the

pointer.

Editor Control

J

3.6.8 J (selecting output device)

Function

Specifies console with packaged Automatic Device Control (ADC)

function for controlling automatic punch output.

Explanation

(1) When you execute the J command there will be no temporary
stop to turn the output device switch on or off or to output
text to paper tape. The "PUNCH ON?" message will not be dis-
played.

(2) At a console with a packaged ADC function, there is no need
to turn the output device switch on and off for paper tape
output, Just execute the J command.

(3) Don't use the J command on a console that does not have the
ADC function. If you do, punch errors may result. This is
because you cannot easily time the on-off switching of the

output device.

Example

: When you don't have to operate the output device on/off

switch, key in the J command.

: "PUNCH ON?" will not be displayed, the feed will be
automatically output, and the text editor will enter

@D: Key in the F command to output feed.

command request status,

78 HITACHI

Edit Operations

nK

3.6.9 nK (deleting text by line units)

Function Deletes n lines of text from the buffer beginning at the

position indicated by the pointer.

Fxplenation (1) n is a decimal integer, -2545ns<255.

(2) There will be no execution when n = 0. However, if the
pointer is within a line, that part of the line from the head
to the pointer location will be deleted.

(3) When.n = 1, one line will be deleted. But, if the pointer
is within a line, the line will be deleted from the pointer
location to @.

(4) When n is a negative number, n lines above the pointer
location will be deleted.

(5) When n = -1, one line above the pointer location will be
deleted. But, if the pointer is in a line, the deletion will
be from the head of the previous line to the pointer location.
(6) If n is omitted. or assumed to be "+K", it will be regarded
as equivalent to u = 1, and if it is assumed as "-K", it will

be regarded as equivalent to n = -1.

pointer

: deleted by "CK"
b : deleted by "IK"
¢, a: deleted by "-1K"

(7) 1f the number of lines from the pointer location to the
head or foot of the input text is less than n, only text from

the pointer location to the head or foot will be deleted.

HITACHI 79

Example
@esss
@erss
NAM PGM
* REVISION 1
OTP M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPE
OPT S SELECT PRINTING SYMBOLS
ORG 8192
LDA B ADDR

@ esLpss
® eoLss
® exss
®esss
@ er1$$
NAM PAGM
* REVISION 1
OPT M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPE
OPT S SELECT PRINTING SYMBOLS
ORG 8192
COUNT EQU @8 @ INDICATES OCTAL

.

Moves pointer to head of buffer.

Displays 7 lines from the line indicated by the pointer
(lst line).

Searches for "LD". Immediately moves pointer directly

behind "LD".

Moves pointer to the head of the line.

.

Deletes the line indicated by the pointer.

: Moves pointer to the head of the buffer.

SACRCAS © 06

Displays 7 lines from the line indicated by the pointer

(lst line).

80 HITACHI

Pointer Movement

nL

3.6.10 nL (moving pointer by line units)

Function Moves the pointer n lines

Explanation (1) n is a decimal integer: -254sn<255,

(2) When n = 0, the pointer will not even move one line.
However, if the pointer is in a line, it moves to the head of
that line.

(3) 1f n = 1, the pointer moves to the next line. However, if
the pointer is in a line, it moves to the head of the next
line.

(4) If n is a negative number, the pointer moves backward n
lines.

(5) If n = -1, the pointer moves backward 1 line. However, if
the pointer is in a line, it moves to the head of the previous
line .

(6) 1f n is omitted, or assumed to be "+L", it will be regarded

as equivalent to n = 1. If it is assumed to be "-L" it will be

regarded as equivalent to n = -1.
c
pointer
{ |

a : pointer location at "OL"
b : pointer location at "1L"

¢ : pointer location at "-1L"

(7) If the number of lines from pointer location to the head or
foot of input text is less than n, the pointer moves to the

head or foot.

HITACHI 81

Example @ Q4TSS
NAM PGM

OTP M MEMORY FILE OPTION

OPT O OUTPUT OBJECT TAPES
OPT S SELECT PRINTING SYMBOLS
@3Ls$$

ezss

OPT S SELECT PRINTING SYMBOLS
02188

eT3s

OTP M MEMORY FILE OPTION
esss

erss

M MEMORY FILE OPTION
coLss

eI3s

OTP M MEMORY FILE OPTION

@

: Displays 4 lines from pointer location

O 90 060 O

: Moves pointer down 3 lines
: Displays line indicated by pointer (4th line)
: Moves pointer up 2 lines

Displays line indicated by pointer (2nd line)

Moves pointer 5 characters to the right

SIGIOISICACIC)

: Displays 1 line from pointer location

(8th and subsequent characters in the 2nd line)
: Moves pointer to the head of the line.

() : Displays line indicated by pointer (2nd line)

Pointer Movement

nM

3.6.11 nM (moving pointer by character units)

Functions Moves the pointer n characters.

Explanation (1) n is a decimal integer: -254s<n<255,
(2) If n = 0, the pointer will not move.

(3) If n is negative, the pointer moves n characters to the

82 HITACHI

left.

(4) If n is omitted, or assumed to be "+M", it will be regarded
as equivalent to n = 1. If it is assumed to be "-M", it will
be regarded as equivalent to n = -1.

(5) If the characters between the pointer location and the head
or foot of input text are less than n, the pointer moves to the

head or the foot.

Example
@ earss
NAM PGM
OTP M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPES
OPT S SELECT PRINTING SYMBOLS
@eamss
@ ezss
PGM
OTP M MEMORY FILE OPTION
@ e-i1s8
NAM
Oesmss
® ezss
OTP M MEMORY FILE OPTION
@ e-1mss
)
@

.

Displays 4 lines from the line indicated by the pointer (in

this case, the lst line).

foves the pointer 3 characters to the right.

.

Displays from the pointer location to the next line.

.

Displays from the head of the buffer to pointer location.

: Moves the pointer 5 characters to the right.

Displays the line indicated by the pointer.

.

Moves the pointer 1 character to the left (in front ofaﬁﬁ.

: Displays CR) and @D only.

060600 ©

HITACHI 83

84 HITACHI

Editor Control
nN
3.6.12 N (repeat command execution)
Functions Repeatedly executes a command n times after command request or
previous N command. Actually executes the command a total of
n + 1 times.
Explanation (1) n is a decimal integer: n<255.
(2) 1If n = 0, there is no repeat; the command will be executed
only once.
(3) Negative signs (-) are ignored, the numbers are regarded
as positive.
(4) If n is omitted, or assumed as "+N", it is regarded as
equivalent to n = 1.
(5) If the N command is keyed in more than once in the same
command string, the execution will be as in the following
diagram.
el a2 [sw [[1on]ss
a : Repeated 5 times by N command in(:)
b : Repeated 10 times by N command in(:)
(6) If the buffer is filled during execution of the N command
and the specified number of repeats cannot be performed, the
message "CAN'T CONTINUE" will display and repeats will stop.
Example (D @BILTSS
LDA B #COUNT IMMEDIATE ADDRESSING
(© @CADDRESSINGSADRS$3NSS
@ @BIL6TSS
LDA B #COUNT IMMEDIATE ADR
BACK LDA A 10°'DIRECT ADR
CMP A 2,X INDEXED ADR
BEQ FOUND RELATIVE ADR

DEX IMPLIED ADDRESSING
DEC B ACCUMULATOR ONLY ADDRESSING

C): Moves pointer to the 10th line from the head of the buffer.
(®: Searches for "ADDRESSING." Then executes the processing,
once, to replace "ADDRESSING" with "ADR." Then executes the
same process three times.

(:): Moves the pointer to the 10th line from the head of the
buffer and displays 6 lines.

Text Input/Output

nP

3.6.13 nP (outputting text)

Function Outputs n lines of buffer content to paper tape beginning at
the line indicated by the pointer. Lines output are deleted

from the buffer.

Explanation (1) n is a decimal integer: -254<n<255.

(2) If n = 0, there is no execution. But, if the pointer is
in a line and output, the line, from the head to the pointer
location, will be deleted from the buffer.

(3) If n = 1, one line is output and deleted from the buffer.
But if the pointer is within a line, the line, from pointer
location to CEQ will be output and deleted from the buffer.
(4) 1f n is negative, n lines above the location indicated by
the pointer will be output and deleted from the buffer.

(5) If n = -1, 1 line back will be output and deleted from the
buffer. But if the pointer is within a line, that line, from
the head of the above line to pointer location will be output
and deleted from the buffer.

(6) If n is omitted, or assumed to be "+P", it will be regarded
as equivalent to n = 1; if it is assumed to be "-P" it will be

regarded as equivalent to n = -1,

HITACHI 85

pointer

a : output by "OP"
b : output by "1P"
c, a : output by "-1P"

(7) If the number of lines from pointer location to head or
foot of the input text is less than n, the lines from the
pointer location to the head or foot will be output and deleted
from the buffer.
(8) The following operations differ according to whether the J
command is executed.
(a) When not executed:
(i) Execute the P command. "PUNCH ON?" displays. At
this point, turn the output device switch on and key
in any characters other than , @or@ The
only output will be the specified number of lines,
the keyed-in characters will not be displayed.
(ii) When the tape stops, turn the output device
switch off. Key in any characters other thanﬁﬂﬁl
OED or@ The text editor will enter command
request status and "@" will be displayed.
(b) When executed:
Execute the P command. The number of text lines
specified will output immediately and the editor will

enter command request status.

Examples

86 HITACHI

@ eps1ss
NAM PGM
OTP M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPES
OPT S SELECT PRINTING SYMBOLS

ORG 8192
@ e3pss
PUNCH ON?
@ ess1ss
OPT S SELECT PRINTING SYMBOLS
ORG 9182
LDA B ADDR
COUNT EQU @8 @ INDICATES OCTAL
START LDS #STACK IN STACK POINTER
® eaurss
LDA B ADDR

® e-2p$$
PUNCH ON?

®esstss
LDA B ADDR
COUNT EQU @8 @ INDICATES OCTAL
START LDS #STACK IN STACK POINTER

LDX ADDR
LDA B # COUNT IMMEDIATE ADDRESSING
@
() : Displays 5 lines from the head of the buffer.
@ : Outputs 3 lines from the location (lst line) indicated by
the pointer.
@ : Displays 5 lines from the head of the buffer and confirms
that they were output.
@ : Moves the pointer 2 lines down and displays line indicated
by the pointer.
(D : Outputs 2 lines previous to the line indicated by the
pointer.
C): Displays 5 lines from the head of the buffer and confirms

that they were output.

HITACHI 87

Pointer Movement

Sstring

3.6.14 S string (searching for a character string)

Function Searches for the first character string which appears that is
equal to "string".
Explanation (1) Begins the search from the pointer location, and ends when
the system enters a different status.
(a) When a character string the same as "string' is found:
The pointer locates itself after the final character in
the string. The text editor displays "@" to request a
command .
(b) When the search is completed to the end of text in the
buffer and "string" is not found:
The message "CAN'T FIND "string"" and "@" for command
request are displayed. If an equivalent string cannot be
found, the pointer will not move. .
(2) "string" consists of not more than 16 characters in ASCII
code. It does not include the words ES0O or GREAK).
Example

88 HITACH!

D eBss
@ @sorT s$$
Qerss
OPT S SELECT PRINTING SYMBOLS
@ @s0TP$$
CAN'T FIND "OTP"
® esss
® @s0TPSS
@ eoLss
® erss
OTP M MEMORY FILE OPTION
@

(D : Moves pointer to head of buffer.
@ : Searches for "OPTAS".

Since "@" requesting the next command is displayed, we
know that "OPTAS" was found and the pointer moved to the
location behind it.

@: Displays 1 line from location indicated by pointer.

C): Searches for "OTP".
Since "OTP" does not exist between the pointer location
and the end of input text, the editor displays "CAN'T FIND

"OTP"" and requests the next command.

.

Moves pointer to head of buffer.

Searches for "OTP".

©6

Since "@" requesting the next command is displayed, we
know that "OTP" was found and the pointer moved to a
location behind it.

C) : Moves pointer to head of line.

(® : Displays line (containing "OTP") indicated by pointer.

Text Input/Output

nT

3.6.15 nT (displaying text)

Tunction

Displays n lines of buffer content from the location indicated

by the pointer.

Explanation

(1) n is a decimal integer: -254s<ns<255.

(2) If n = 0, no execution will be performed. However, if the
pointer is within a line, the line will be displayed from the
head to the pointer location.

(3) If n = 1, one line is displayed. However, if the pointer

is within a line, the line from pointer location to(éﬁ)will be

displayed.

(4) If n is regative, n lines above the pointer will be dis-
played.

(5) If n = -1, one line above will be displayed. However, if

the pointer is within a line, the line from the head of the

above line to the pointer location will be displayed.

HITACHI

89

(6) If n is omitted, or assumed to be "+I", it will be regarded
as equivalent to n = 1; if it is assumed to be "-T" it will be

regarded as equivalent to n = -l.

pointer

a : displayed by "OT"
b : displayed by "1T"
c, a : displayed by "-1T"

(7) @D is assigned after CB.

(8) The pointer does not move.

(9) If the number of lines between the pointer location and the
head or foot of input text is less than n, all input text up to
the head or foot will be displayed.

Example

90 HITACHI

@ esTss
OPT S SELECT PRINTING SYMBOLS

ORG 8192
LDA B ADDR
COUNT EQU @8 @ INDICATES OCTAL
START LDS #STACK IN STACK POINTER
@ aorss
@ e-101$$
NAM PGM
OTP M MEMORY FILE OPTION
OPT O OUTPUT OBJECT TAPES

@ erss
OPT S SELECT PRINTING SYMBOLS

C): Displays 5 lines from the pointer location. In this

example, the pointer is at the head of the 4th line.

S

: Displays no lines.

C): Since the number of lines from the pointer location to the
head of the buffer is less than 10, all those lines are
displayed.

©

Displays line indicated by pointer.

Editor Control

X

3.6.16 X (ending edit operations)

Function Moves control to monitor

Explanation (1) If editing operations have ended or you want to cancel
them, execute the X command to put the monitor in command

request status.

Example @ @xs$

/
C): Key in the X command during editing, or when edit
operations terminate. This cancels text editor execution and

puts the monitor in command request status.

Pointer Movement

Z

3.6.17 Z (moving pointer to end of input text in buffer)

Function Moves pointer to end of input text.

Example

@ ezss
NAM PGM
@ ezss
@ e-1188
END

HITACHI

91

C): Displays lines indicated by pointer (in this case, the lst
line).

C): Moves pointer to end of input text.

(:): Displays the line above the one (last line) indicated by

pointer.

3.7 Serial Execution of Commands

You can execute commands serially using the text editor. To do this, key
in the commands (more than one, of course) and then key@i:)in twice.

Observe the following precautions:

(1) When a new command is entered after the character string in a C, I or
S command, key inonce to separate the character string and subsequent
command.

(2) The command string will be executed in sequence from left to right.
If there is an error in one command string, subsequent commands will not be
executed.

(3) At a certain point during serial key-in, a bell will ring and the

following message will be displayed. The bell will not ring in some console

I/0 units.
@IABCDE
#% BUFFER NEAR END
FGHIJKLMNOPQR
Will not be accepted when
keyed in.
Only 12 more characters can be
keyed in when this message
appears.
Message appears when this character is
keyed in.

92 HITACHI

When the message is displayed, you can only key in 10 characters with the
exception of the 2 C:Eh for executing the command. If you attempt to key in
any more, they won't be accepted. You will have to key in@or@to delete
part of the commands and then execute. But, be careful when using a C, I or S
command, a situation may arise where you are unable to input in the middle of
text. If you execute without rectifying the situation, the desired processing
in the following example cannot be performed.

(Example)
@IABCDEFGHIJKLMNO

% BUFFER NEAR END
PQRSTUSCOTPSS

¢ VK__
You cannot key in beyond

this point.

An attempt was made to replace "OPT" with "OTP" by
keying in "ESC OPT" after "OTP" in the C command.
But the C command was discontinued due to a full
buffer and "OTP" was deleted.

Figure 3-9 is an example of serial command execution.

@ esrss

NAM PGM

OTP M MEMORY FILE OPTION

OPT O OUTPUT OBJECT TAPES

OPT S SELECT PRINTING SYMBOLS

ORG 8192

LDA B ADDR

COUNT EQU @8 @ INDICATES OCTAL

START LDS #STACK INZ STACK POINTER

@ @2M1A$0LTCS$S
NAM PGM

HITACHI 93

®

C)@SLD$0LKS@$DI9+93$OLTCOTP$OPT$$
COUNT EQU @3 @ INDICATES OCTAL

CAN'T FIND "OTP"

@ @BTSOTPS$OPT CAD
(® @BCOTPS$OPTSBLIA*AREVISIONAL CR
$SSYMBOLS$~7MIOFAS$S

© @BBTESS

NAM PGM

* REVISION 1

OPT M MEMORY FILE OPTION

OPT O OUTPUT OBJECT TAPE

OPT S SELECT PRINTING OF SYMBOLS
ORG 8192
COUNT EQU @3 @ INDICATES OCTAL
START LDS # STACK INZ STACK POINTER

PUNCH ON?

Figure 3-9 Example of Serial Command Execution

Key to Figure 3-9:

(3 Displays 8 lines from the head of the buffer

C) 2M..........Moves pointer 2 characters to the right.
IA$.........Inserts blank space into location indicated by pointer.
OL..........Moves pointer to the head of that line.
Teeeveeeess..Displays that line.
CS.vvveeesss.Deletes "S" in "TAPES."

C) SLDS........Searches for "LD" and moves the pointer behind it.
OL..........Moves pointer to the head of the line.

Kieeevevsso.Deletes one line indicated by pointer.

94 HITACH!

S@%.........Searches for "@" and moves the pointer behind it.

Divveeeuse..Deletes "8",

I9E3BS......"9" is deleted by (BI) since it was keyed in incorrectly. "3" is
then inserted.

OL..........Moves pointer to head of line.

Teeeeevesss.Displays line indicated by pointer.

COTPSOPT....Searches for "OTP" to replace it with "OPT". But, there is no
"OTP" between the pointer location and the end of input text in
the buffer and "CAN'T FIND "OTP"" is displayed.

@ The command string is deleted by CAD and not executed.
C) B...........Moves pointer to head of buffer.

COTPS$OPTS. . .Searches for "OTP" tc replaces it with "OPT" The pointer
moves directly behind the found location.

B...vvu.....Moves pointer to head of buffer.

L...........Moves pointer to head of next line,

IA*AREVISTONAMCRS

cevennInserts "A*AREVISIONAl €B) " into the location indicated by
the pointer. When inserting a line in this way, put a CB at
the end of the text.

SSYMBOLSS...Searches for "SYMBOLS" and moves the pointer to a location
immediately after ''SYMBOLS".

-7M.........Moves the pointer before '"SYMBOLS".

,I0FA........Inserts "OFA" into location indicated by pointer.

C) B......o....Moves pointer to head of buffer.
8T..........Displays 8 lines from the pointer location.
E...........Copies buffer content and remaining text. Ends text editing

operations.

HITACHI 95

3.8 Text Editor Messages
Table 3-2 lists text editor messages.

Table 3-2 Text Editor Messages

Category Message Meaning

Execute 6301 TEXT EDITOR v.r The head is displayed when con-
Control trol passes to the text editor.
Message v stands for version number, r

for revision number.

@ Indicates that the system is in
command request status.

Error x" 7272 Incorrect characters for a com~
Message mand were keyed in.
CAN'T FIND "string" Specified character string can

not be found.

CAN'T CONTINUE The buffer was filled during
N command execution and
further processing cannot be

performed.
Warning Bell rings 12 characters can be entered
Message before buffer is filled.

** BUFFER NEAR END

96 HITACHI

3.9 Text Editor Commands

Table 3-3 is a complete list of commands in the text editor.

Table 3-3 Text Editor Commands

No. Category Command Major Function Section
1 Text A Inputs text from paper tape.| 3.6.1
Input/
Output E Ends edit operations and 3.6.5
creates output tape.
nP Outputs text in -line units 3.6.13
nT Displays text in line units 3.6.15
F Outputs feed 3.6.6
2 Pointer B Moves pointer to head of 3.6.2
Movement buffer
nL Moves pointer in line units 3.6.10
nM Moves pointer in character 3.6.11
units
Sstring Searches in buffer for 3.6.14
character string and moves
pointer to location after
string.
z Moves pointer to end of text| 3.6.17
in buffer
3 Edit Cstringl$string? Replaces one character 3.6.3
Operations string with another.
nD Deletes text in character 3.6.4
units
Itext Inserts text 3.6.7
nK Deletes text in line units 3.6.9
4 Editor nN Repeats execution of a 3.6.12
Control command string
X Ends text editor 3.6.16
execution
J Selects output device 3.6.8

HITACHI

97

Appendix
A HD6301 and HD6801 Executive Instructions
Table A-1 lists the executive instructions for the HD6301 and Table A-2
lists them for the HD6801.
Explanation of symbols and abbreviations used in the appendix#

(a) Operation symbols

() = indicates content, e.g., V = logical OR

(ACCA): content of accumulator @@ = exclusive OR

ACCA. + = arithmetic addition
+ = send direction - = arithmetic subtraction
A = logical AND

(b) Abbreviation symbols

OP = operation code (hexadecimal display)

t
It

number of MPU cycles

#

number of bytes in an instruction word

(c) Symbols for register in MPU

ACCA = accumulator A PC = program counter, 16-bit
ACCB = accumulator B PCH = upper 8 bits of program counter
ACCAB = double accumulator PCL = lower 8 bits of program counter
cC = condition code register SP = stack pointer, 16-bit
IX = index register, 16-bit SPH = upper 8 bits of stack pointer
IXH = upper 8 bits of index SPL = lower 8 bits of stack pointer
register
IXL = lower 8 bits of index
register

(d) Memory and address format

M = storage address IMMED = immediate addressing

98 HITACHI

M+

1 = storage address + 1 DIRECT = direct addressing

to storage address M

MSP = storage address indi- INDEX = index addressing
cated by pointer
MSP+1 = storage address which EXTND = extended addressing
adds 1 to storage ad-
dress MSP indicated by
stack pointer
MSP-1 = storage address which RELATIVE = relative addressing
subtracts 1 from stor-
age address MSP indi-
cated by the stack
pointer
) = complement of 1 in con- IMPL = implied addressing
tent of storage address
M
Disp = displacement = M - (X) ACCX = accumulator addressing
IMM = immediate value
Mi = 1 bits in storage ad-
dress M (i = 0~7)
(e) Meanings of bits 0 to 5 in the condition code register
C = carry and borrow N = display if negative
V = overflow display if 2's complement I = interrupt mask
Z = display if zero H = carry from bit 3 to bit 4
(half carry)
(f) Symbols indicating changes in condition code register content
R = reset at any time

HITACHI 99

S = set at any time
i = set if true after test, anything else, clear
0 = no change by that instruction
@-@= set 1f true after test. Anything else, clear. Items 1 to 9 are
explained below
@...result = 10000000 (binary display) ?
@ ..result = 00000000 (binary display) ?
(3 ..upper order 4 bit BCD (binary code decimal) display greater than 9?
@ ..operand = 10000000 (binary) ? (before execution)
@...operand = 01111111 (binary) ? (before execution)
®...N®C = 1 after shift?
@...highest order bit = 1? (after execution)
@...was there an overflow when subtracted (addition of 2's
complementary) ?
@. . .result<p?
@ = loads from stack into condition code register
@ = set when interrupt occurs

@= set according to content of accumulator ACCA

100 HITACHI

(Ol IHOVLIH

Table A-1 HD6301 Executive Instructions

Address Model

Condition Code

Type “gf)‘:‘;“ic Operation Content Lozigéfe\;iﬂ::tic IMMED [D1RECT| INDEX | EXTND IM‘;’(S'(.,X s{4(3[2(1]0
OP|~|#[OP|~|#loP|~|#[0P|~ [# 0P|~ |#|H|I|N[2]V]C
2g ADDD Ic)gl;?;e Add without (ACCAB)H(M:M+1)}ACCAB | C3/4{3/D3|5|2/E3/6|2|F3/6/3 00 i t
g8 |MUL |Multiply unsigned (ACCA)*(ACCB)—ACCAB D190 0e e
§x§ SUBD |Deuple Subtract (ACCAB)-(M:M+1)—CCAB | 83 |4 |3]93{5|2[A3|6|2(B3|6]3 LI BB AR
%i : ABX %gdg Acmltr B to Index (IX)+(ACCB)-IX 33|10 @000 e
T|ABA Add Acmltrs (ACCA)+(ACCB)»-ACCA Blzirid| L))l
f:j: g ADCA }Add with carrs (ACCAH(MH-(C)—ACCA 8o|2|2]99|3|2(a9 |4 2|Bo|4]3 L IR RARA R
g |g|ADCH (ACCB)}(M)+(C }~ACCB Cc9|2|2/D9|3|2lE9 |4 {2|Fola|3 11@ 338
% g ADDA }Add (ACCAM-(M)—ACCA 8B|2|2(9B|3 |2/AB |4 2(BB|4 |3 L RIRARAR:
2 |5|ADDB (ACCB)+(M)~ACCB CB|2|2/DB|3|2/EB|4|2|FB|a |3 1@ttt}
; 4 SBA Subtract Acmltrs (ACCA)- (ACCB)—ACCA 10(2(1|@] I I { I
o SBCA _ (ACCA)- (M)-(C)—ACCA 82{2|2(92(3|2/A2|4|2(B2|4|3 L JL IRARS RN
.g SBCH }Subtracl with carry (ACCB)- (M)—(C)—ACCB czl2l2lp2lsl2ez|al2lrelals ® P t 1 t t
it
§ SUBA }Sumract (ACCA)—(M)—ACCA 80(2|2/90(3 |2(A0 (4 {2BO|4 |3 [IRIRARIE
SUBB (ACCB)- (M)-ACCB Col2|2/Do|3|2|E0 |4 |2F0|4 |3 e !t

Note: Execute instruction with an asterisk (*) to the right are for the HD3601 °

IHOVLIH 201

Address Mode

Condition Code

Type M‘C‘zg“znic Operation Content L°8i3£:§iz‘i‘:ti° 1MMED |DIRECT | 1NDEX | ExTND | TR T514]3]2]1]o0

op[~[#[oP[~T#[oP[~]#or]~[#|oP][~[#|H][I [N v]c

CLR 00—M 6F |6 |2 |7F| 6|3 ®/®/r[s|rlRr

I |CLRA Ciear 00—ACCA 4F(2|1|@|@|R|S|[R|R

5 |CLRB 00-ACCB sFl2(1|@|@/R|S|R|R

§ 5 DAA Decimal Adjust, A S::ﬁ{::olg%ry addi tion 192|1 @@ t|t]|1|®

»|§ [DEC (M)-1-M 6A16|2({7A 3 L IRSERIGH)

% g |[DECA Decrement (ACCA)-1-ACCA 421 @@ 1LIoO

';E g DECB (ACCB)- 1-ACCB sAl2|1|@|@1]1]|®@

Sg{ INC (M)+1-M 6C|6 |2|7C 3 ..3 1 ©@®

g9 INCA Increment (ACCA)+1—-ACCA C(2|10|@® t 11®)

f:; E INCB (ACCB)+1-ACCB scl2|1|@(@[1]1]|®@

15 INEG 00-(M)-M 60|6 2| 0l6|3 oot ole

°l< NEGA Complement.2'S 00-(ACCA)—ACCA 40(2/1| @@}t |D|®

NEGB (Negate) 00~ (ACCB)—ACCB 5021 @@Lt DO

2 1CBA Compare Acmltrs (ACCA)-(ACCB) 11121 |@|@]| ¢ 11818

f CMPA) (ACCA)—(M) s81|2|2|e1|3]|2|a1|a|2]|B1]|4|3 CYCIRAERERE:

£lcmes] apare (ACCB)—(M) c1|2|2|p1|3|2|E1|4 |2 |F1]a]3 OIEIEIEE!

SiTsT (M)=00 6D{6 |2 |m|6]3 ®o® {|1|r|R

ElTsTa } (ACCA)-00 w|2|1|@|@ t]1|r|R
5 Test,Zero or Minus

S|TsSTB (ACCB)-00 sD|2|1 (@@ $ItR|R

€01l IHOVAIH

Address Mode Condition Code
Mnemoni . Logic/Arithmeti N TMPL
Type Cz‘;“e’ 1c Operation Content "glgpe:;ti:‘)‘ﬁ e IMMED [DIRECT| INDEX | EXTND ACCx|5|4]3]2
OP|~ | #|OP|~ |# |OP[~ |#|oP|~|#|0oP|[~|# |H|I|N|zZ|V]|C
ASLD®|Double Shift Left 651301 ®
52 Arithmetic -— 0! ! !
5wl 9 (LSLD) [(Logical Double Shift <0
Rt Left) S CI— 0431 R} |®
1
Sé‘%,g LS RD |Double Shift Right O[T TITTIITITITIT -0 L4l !
. bis bo C
Logical
(ALSSIL:) Ml 68|6|2|78|6|3 ®0!|ltl® !
ASLA [{Shift Left Arithmetic DI]:ED:D«——O 821 |@@ ®
(LSLA) (Logical Shift Left) %-I be 1 !
&3S B 5|21 @@ 1191
b ASR M 67(6]2|77|6 |3 [I IESERICIE
Put —
4|2 |ASRA |} Shift Right Arithmetic|lA} [E]jj]]j:[)-»[j 72110011 ®)
" bz be C
&’é’ASRB B ° 57121 @@ t|1®¢
‘E-ELSR M . 64(6 | 2|7416 |3 LI IR G
1
© | " LSRA ||Shift Right Logical |a o~ T TTTTTTI-[] MEAEST T RIRREEIE
_Z‘ ‘:: b2 be C
- |2 |LSRB B 54 1 @@R(T®
(s}
3 ROL M 696 2|79(6|3 L JERRRICIE
o
i ROLA |{ Rotate Left A LD“DIDIED"] 192100119}
o
ROLB BJ C b —— b 921 @@ 11i1®]1
ROR M 66/6|2|76) 6|3 LI IR ARRICIE!
RORA |} Rotate Right A FD“EEDID]]‘I 6|21 |@@|1]1®]
RORB B) ¢ b ———— b s6(2]1 @@ 1]1]®]}

* Mnemonics enclosed in parentheses () may

be used in the 6301 Assembler

IHOVLIH v0l

Address Mode

|Condition Code

Type |MOEMORIC| operation Content Losigéigili\::tic iMMED |DIRECT| 1NDEX | EXTND | TMER Ts [a]3]2[1]0
opf~l#fop[~T#lopl~]#fop |~ #lop|~[#u|1|N|Z|V]C
ANDA }_And (ACCA) - (M)=ACCA 8422194 (3 2/A4/4)2iB4]4|3 OO0 ! RO
ANDB (ACCB) - (M)—ACCB C4 2|2 D4|3[2{E4{4|2|F4{4|3 0 ! | RO
BITA (ACCB) - (M) 85|2|2|95{3| 2|A5/ 4! 2|B5|4|3 00 ! !|rR@®
g BITH }B'tTeS! (ACCB)- (M) ¢s|22Ds|3]2|Esla|2|ms] a3 00 !l rRl@®
g‘, _|cowM) (M)-M 63/6|2({73/6|3 ®@® ! | RS
= § COMA rComplement.l'S (ACCA)-ACCA #2/1 @@ 1 RIS
ZE §[coms (ACCB)-ACCB s3l2)1 @@ 1|1 R[S
= Z EORA }Exclusive o (ACCA) @ (M)—>ACCA 88 2| 2(98|3|2|a8/4]2|B8l4]3 o0 | ! RO
§ éo EORB (ACCB)Y® (M)—>ACCB c8|2|2|D8|3|2|E8{4|2(F8|4]|3 00 ! ! RO
5 ORAA }Or.lnc.usive (ACCA) ®(M)-ACCA 8A|2|2(9A|3|2]aA4|2|Baj4a]3 0 ! ! r@®
2 ORAB (ACCB) ®(M)—ACCB CA|2|2|Dal3|2|EAla|2(FAl4 |3 00 ! ! rR@®
AIM¥* | And Immediate (M) » I MM—M iels|61|7]s 0 ! 1RO
OTM¥* | Or Immediate (M)® I MM—M 126 (362] 7|3 ®@® 1! RO
E1m* | Exclusive Oc o (M) 1 MM—M 7506 |3 |65|7]3 @0 ! 1RO
TIM¥ | Test Immediate (M) - ITMM "B|6 |3 |6B| 73 0 ! ! RO

2
Z|5|BeLr* | Bit Ciear 0. —Mi 71063 61|7|3 0 ! ! RO
|5 | BSET¥ | Bit Set 1 —Mi 2636273 0 1t RO
£|&| BTGL* | Bit Toggle Mi —=Mi 75| 6|3 |6s| 7|3 0 ! RO
819l BrST* | Bit Test Mi-1 B|6|3|6B| 7|3 00 ! 1 RO

&

SOl IHOVLIH

Address Mode

Condition Code

Type Mgz‘;:““ Operation Content L°gigg‘::ait‘i‘:§tic 1MMED | DIRECT| INDEX | EXTND | ™MiEey| s[4 l3l 2]
op | ~|#jori~]#jor|~l#lop|~|#lop|~l#{H]1|N|Z]|V]C
8l Double Load
AR Jeop PRGN Jewmacens el |aielaf2fecls |2/rs |3 || |@@[t]1(n|e
b
o H1OH Double Store - R
T5[E STD uble Stere (ACCAB)-M:M+1 DD| 4| 2|ED{5 |2 |{MD[5]3 o0 ! o
— O 100
ejl,DAA}I A (M)—ACCA 86l 2| 2196/ 3| 2|A6|4|2[B6j4]3 ..11[{.
o Load eml tr.
SILDAB (M)—ACCB ce6l2|2iD6|3|2|me|4a]2|r6|4]3 o0 i r@
ESTAA}S‘ I (ACCAY-M 97| 3| 2(A7|4|2|B7|4]3 00 | || r O
v (¢} - ACT .
HIBISTAR (AUCCB)-M D73 (2(E7(4|2|F1|4]|3 ..i 3 R@
a3
o
80
j
-4
-
o
0
1
@
>
o
E=1
¥ TAp }" fer Acml (ACCA)=ACCB 6/2/10@ (1RO
© ‘ransfer cmlitrs
5 TBA (ACCB)=ACCA 17121 |@|@]| R|@
a ‘A Yoo
° PSHA]P b S AL %|3/11000eee
‘ ush Data (ACCB)—MSP
Z|psuB (SP) 1osE 7311100000 e
3 SP)+1-8P
PULA (MSP)—ACCA 241 000006
}Pull Data (SP)+1->SP
PULB (MSP)—ACCB 3/4(11000©0e

IHOVLIH 901

Address Mode Condition Code
Type [Micmonic Operation Content Condition Deternining |RELATIVE| INDEX | EXTND | IMPL MPlex [s]af3a]2z]1]0
@ |~ |+ |op]~[# |or|~ |4 |oP|~[#]op|~[# [H|I|N|2Z]|V]|C
BCC® | Branch If Carry Clear |(C)=0 2431 o 00000
(BHS) | (Branch If Higher of Same) o
BCS ® |Branch If Carry Set (c)y=1 25|32 00000
(BLO) | (Branch If Lower)
S1.|BEQ |Branch If = Zero (z)-1 27|32 00000
EIE|BGE |Branch If = Zero (N) @ (V) = 0 x|3|2 olooeoo®
e |®IBGT | Branch It > Zero (2) @CNB(VY)I=0 | 28| 3] 2 eoeooo00e
SE|BHI |Branch If Higher (CY® (2) - o 22|32 o000 00
EIS|(BLE |Branch If < Zero (2) ®((NO®(V))=1 | 2F3]|2 o000 00
§ E BLS Branch 1f Lower or Same [(C)®(Z)-1 23|31 2 00 00e
g BLT Branch If < Zero (NYD(V)=1 D32
BMI Branch If Minus (N)=1 2B(3]2 000 oe
BNE Branch If Not Equal Zero|(Z)=0 26|13 |2 00000
BPL |Branch If Plus (N)=0 2432 o000 00
BVC |Branch If Overflow Clear|(V)=0 28(3] 2 o000 00
BVS Branch If Overflow Set |{V)=1 29(3| 2 00000
[~ E[BRA | BRanch always None 2032 00000
S J{BRN |BRanch Never Advances only by PC+2{ 21(3 | 2 00000
=% 5 INop No Operation Advances only by PC+1| 01] 2|1 o000 eo
52 IMP Jump } See(Note) 6E| 3| 2 |7E|3 |3 o000 o0
=T
/M

* Note: Mnemonics enclosed in parentheses () may be used in the 6301 Assembler

L0 IHOVLIH

Address Mode

Condition Code

T Mnemonic . Logic /Arithmetic TMFPL,
ype |Meno Operation Content Glaricime IMMED [DIRECT | INDEX | EXTND acex|54[3]2]1]o
OP|~ | # [OP|~ |# [OP|~ | # |oP|~ | #|OP|~[# |[H|I|N|z|V]|C
s |IDEX Decrement Index Reg (IX)-1-IX 9|3/1 000 ! 0ee
:‘}’j INX Incranent Index Reg (IX)+1-1X 8|31 QGO ! o0
o0
E S|ILDX Load Index Reg (M)-»IXH,(M+1)—IXL!| CE(3 |3 |DE|4|2|EE|5|2|FE|5{3 N JOIRRRAL)
e (IXH)-M, (IXL)-
o |u|[STX Store Index Reg M+1 DF{ 4 |2 |EF|5 |2 |FF|5 o0 {1 R @
© g (Ixm—SM).(IXL)
£ {A]CPX | Campare Index Reg =~ 8C{4|3foc| 5|2 /AaC|6|2|BC|6 |3 "1 JIRCIl
- =
5 2 DES Decrement Stack Pointer (SP)-1-SP (3190000 e e
: é‘ INS Increment Stack Pointer (SP)+1-SP 31/3/1 /00000 e
§|%|LDS | Load Stack Pointer (M)—SPH, (M+1)-SPL 8E|[3|3(9E| 4 |2 AE|5 |2 |BE|5 |3 00> ! r@
% :,,‘3 STS Store Stack Pointer (SPH)-M, (SPL)-Mt1 9F| 4 | 2 |AF|5 |2 |BF|{5| 3 o0 > I R|@
[
& TXS Index Reg—S tack Pointer (1X)~1-SP 33|1100060ee
f TSX | Stack Pointer — Index Reg (SP)+1-1IX (31000 0ee
IXL)-MSP; SP- 1-SP
% |2 [PSHX | Push Index Reg IXH)}-MSP; SP- 18P x4|1000000
315 SE+1-8P; (MSP)->DH
E 12| PULX | Pull Index Reg sp+1—-sp;$1»sp L 85|10 000 6e
XGDX ™| Exchang Aconltr D for (ACCAB) = (1X) 18210000 e e
Index Reg
. CLC Clear Carry 0-C 0C3A1 0000 -r
%E o CLI Clear Interrupt Mask 01 Ei2|1|@|R OO OO
S EICLV | Clear Overflow 0V “nz100eere
g O
g SIsEC Set Carry 1-C Di2/110000® s
-
S |&|SET Set Interrupt Mask 1-1 |21 @S |00 e e
8 SEV | Set Overflow 1V 8|21 000e s e
Eed
‘-é‘ TAP Acmltr A— OC Reg (ACCA }CC 6|21 1D D@
8 ggru OC Reg — Aamltr A (CCY-AccA 712|110 000e0eae
)

IHOVLIH 801

Address Mode

Condition Code

Type |M0SMOME) operation Content C°“diti§::n2§t“mi“i“g RELATIVE| DIRECT | INDEX | EXTND | IMPL |5]4]3]2]1]0

OP|~ | # |OP|~ | # [OP{~ | # [OP|~ | #|OP|~|# | H|I|N|Z|V]|C

§~‘§3‘ BSR | Branch To Subroutine 8D|6 | 2 olo/o/o0l0
EESElI SR | JumpTo Subroutine 9D| 5 | 2 |AD|6 |2 BD|6|3 o000 00
E’éég RTS Return From Subrout ine {(See Note> 39/5|110 0000 e
= §"3 RT I Return From Interrupt 3Bi10| 1 | ® ®|®(® O ®
E E E SWI Sof t Ware Interrupt 3ri12|1|1@|S | @®|® . []
i ESWAI WAi t for Interrupt 3E{91|@0 0006
SLP* |Sleep {See Note) 14411 | 9000 @O

(Notes)

Subroutine

Next Execution
Instruction

Subroutine

Next Execution
Instruction

Subroutine

Next Execution
Instruction

S is composed of SH and SL

Subroutine

Next Execution
Instruction

e
Next Execution
Instruction

Main Program

(1) JSR
PC Main Program SP Stack PC
n| 9D=JSR — SP-2 —> M
Subroutine
+ -
DIRECT{ ™1 |83 ass M (8 bie)l O SP-1 (n+2) B
n+2 |Next Instruction SP (n+2) L
M=$00V$SFF (n+2)H and (n+2)L are the upper and
lower order 8 bits of n+2
PC Main Program SP Stack PC
n AD=JSR — §P-2 — ¢
INDEX { n+l D=Disp > sp-1 (n+2) H.
n+2 | Next Instruction SP (n+2) L
D=8 bit Unsigned Value (n+2)H and (n+2)L are the upper and
lower order 8bits of nt2
PC Main Program SP Stack PC
n BD=JSR — SP-2 [—
Subroutine Address
n+l |SH(upper order8bit Sp-1 (n+3) H
EXTND nt2 SubroutineAddress (+3) L
SL(lowerorder8bit) SP
n+3| Next Instruction (n+3)H and (n+3)L are the upper and
lower order 8 bits of n+3
(2) BSR
PC Main Program SP Stack PC
n 8D=BSR = sp-2) n+24D
n+l +D=Disp C> sp-1 (n+2) H
n+2 | Next Instruction SP (n+2) L
D=7 bit Signed Value n+2 is formed from (n+2)H and (n+2)L
(3) JMp
PC Main Program PC Main Program
n 6E=JMP n| 7E=JMP
n+l D=Disp n+l| Dy=next address
INDEX n+2| Dp=next address
Next Execution
= | Yest Breestion |
p| Next Execution
Instruction
(4) RTS
PC Subroutine SP Stack BC
S 39=RTS C> SP :> n
SP+1 PCy The values PCy
SP+2 PCY, (and PCy, are loaded
from PC into the

stack and then
returned to main)

Main formed from
PCy and PCy,

HITACHI 109

(5) RTI

x

S

(6) SwI
x

n

n+l

Interrupt Program

3B=RTI

&

Main Program

3F=SWI

Next Instruction

PCy: upper order 8 bit of n+l

BC; : lower order 8 bit of n+l

(7) WAL
x
n

n+l

Main Program

3E=WAI

Next Instruction

PCy: upper order 8 bit of n+l

PCL: lower order 8 bit of n+l

(8) srLp
PC

n

n+l

110 HITACHI

Main Program

1A=SLP

o

Next Instruction

Main Program

Next Execution
Instruction

Returns to n+1

main after

loading all n is cmnposed of

information PCy and PCL

in stack into
each register

PC Interrupt Program

Next Execution
Instruction

 —

Goes to inter-

Tupt program execu- g jg the address

tion after saving indicating SWI
information from all interrupt-vector-

registers in the address content
rack

| E———

|
Interrupt Queue

Queues interrupt

after saving information
from all registers in stack

_§£’ Stack
SP
SP+1 cc
SP+2 ACCB
SP+3 ACCA
SP+4 IXg
SP+5 IXy
SP+6 PCy
SP+7 PC1,
EE Stack
Sp-7
SP-6 cc
SP-5 ACCB
SP-4 ACCA
SP-3 IXy
SpP-2 IXy,
sp-1 PCy
sP PCy,
ilz Stack
Sp-7
SP-6 ce
SP-5 ACCB -
SP-4 ACCA
SP-3 Xy
Sp-2 IXL
SP-1 PCH
SP PCy,

— : Location of stack indicating value of SP

after execution of each instruction

CPU functions stop with E:::::::;)

all internal register
statuses on hold

Interrupt Queue

F flag set by maskable
interrupt: n+l — PC

Non-maskable interrupt
or F flag reset: vector
address — PC

LLLIHOVLIH

Table A—2 6801 Executive

Instructions

Address Mode

Condition Code

Type [MEMORIC] peration Content L°gig;‘;§;§‘i‘2§ti“ tuveD [DIRECT | 1xpex [BxTaD [Tl TsTals]2]1]o0
op|~T#jor]~[#lor]~T#lor]~T#lop]~T#lul1nlz]Vv]C
EEU ADDD lggl:rr,;e Add without (ACCAB)-+H M: M1 ACCAB C3{4!3D3|5(2(E3]6|2(F3|6]|3 o0 ! IR t
.§S"é.§ MUL gultipl); :nmgned (ACCA) + (ACCB)-ACCAB) ’ . 3Dfo|1|@ : 00 i
‘ggfég SUBD | goyple Subtract (ACCAB)-(M:M+1)ACCAB | 834 |3]93|5 [2[A3[6]2[B3 o0 !t
S§2HS| A BX ﬁgg Acmitr B to Indexi () yy,(ACCB)-IX sAl3]1 @ @O0 e e
ABA Add Acmltrs (ACCA)+(ACCB)»—ACCA Blz{rl P (sl
g ADCA Add i th carry (ACCA M (MH-(C)—ACCA 89(2 (2[99 3 2(a9l4|2/Bo4a|3 1@ttt
‘» |§]ADCB (ACCBH (M)+(C)~ACCB col2|2Doi3iz2|Eolal2lFola 3 1@t
€ |2 ADDA (ACCA)+(M)-ACCA 8B|2 |2(9B|3|2|AB|4 |2|BB|4 |3 I JEAN RN
"4? g’ appg |J A (ACCB)+(M)-ACCB CB|2|2/DB|3|2[EB|4|2|FB|4a!3 IS0 IRSBAEAR
D19 SBA | Subtract Acmlirs (ACCA)- (ACCB) -ACCA 10i21@@ 1t
= 128|sBca (ACCA) - (M)-(C)—ACCA g2|2 (21923 |2a2 4|2 B2(4 3 e ittt
:? g SBCB }Sum”“ MR CATEY | OB~ (M)—(C)-ACCB czlzl2p2|3|2|E2|a|2(F2|4a |3 LIRS R
S || suBa (ACCA)- (M)-ACCA 80|2|2/90]3]|2a0|4|2BOj4al3 o0 !t
° SUBB }S"b"a“ (ACCB)- (M)—ACCB col2|2/po|3s{2lEo|al2lFo]als @@ it

IHOVLIH T1!

Address Mode

Condition Code

Type |Mem0nic | operation Content L°gig;§§ai:‘i‘:§tic IMMED | DIRECT| INDEX | EXTND | " | 5|4 |3|2]|1]0
op[~T#[oP[~] #[oP][~T#|oP]~]#|oP]~ H{I[N]z[V|C
CLR 00-M 6F 6|2 |7F|6] 3 ®@® R s(RR
S|CLRA Clear 00—ACCA 4F| 2 @® @R S|RIR
=]
5|CLRB 00—ACCB 5F| 2 ®/® RrR(S|R|R
&lpaa Decimal Adjust A Comvarts binary addition 19/21| @@ 1[I]|@
v
§|DEC (M)-1-M 6A |6 |2(7A(6|3 L L IEagaloll |
g|DECA Decrement (ACCA)-1-ACCA 4A| 2 00t 9@
5 fg DECB (ACCB)-1—ACCB A2 1| @@ @
Z|&|1Ne (M)+1-M 6C|6|2|7C| 6|3 00 00
&lalINCA Increment (ACCA)+1-ACCA (2|1 O@1]!®O
Zlg|1NCB (ACCB)+1-ACCB scl2|1|@|@]1|®@
! =
® |5 INEG 00-(M)-M 60|62/ 0 3 L L IEARFLClE
B!
2 “INEGA Complement,2'S 00-(ACCA)—ACCA 40§ 2 00t oD@
2 NEGB (Negate) 00~ (ACCB)-ACCB s002|1|@@3||o®
o
’g CBA Compare Acmltrs (ACCA)-(ACCB) 11 2 " L JESRARAR!
SlaleMpa (ACCA)-(M) 81 2|91|3|2|a1]|4|2|B1|4|3 C1C IR R E!
& Compare ~
3 CMPB (ACCB)-(M) C1 2|D1|3 El1{4 |2 |F1 3 O |1
S|TST (M)-00 6D{6 |2 |7D|6 |3 @® ! !|R|R
2[(TsSTA) (ACCA)-00 2| 1|@ @ t|}|RIR
" Test,Zero or Minus
E|TsTB (ACCB)-00 D}2 1 1@ @ 1|]|RiR
S
L

€11 IHOVLIH

Address Mode Condition Code
T Mnemonic . Logic/Arithmetic s TMPL
ype Code Operation Content Operation IMMED |DIRECT| INDEX | EXTND ACCX{51(413|2 0
2 OP|~|# 0P|~ |#|OP|~ |#OoP|~|#|oP|~[#|H|[I|N|z|V]|C
(&) - i
. ASLD [Double Shift Left 5131 @@t 1{®!
mE Anthmetlc) -—
o|®o| (LSLD) |[(Logical Double Shift OO IIIITOTIITI]«0
Halbs Left) Cbs b wls)
P5[Z5 LS RD |Double Shift Right 0T TLITILIIIITT] * LU IR RALCIR
‘29'”"" . bis be
Logical
(ALSSIIJEE) Ml 6862|7863 " IR ARRICIE
ASLA |+Shift Left Arithmetic |A <TI0 T«09 812100 ®
(LSSI£AB) (Logical Shift Left) B} [g b bo 821 |@@ b ® J
&
(‘LSLB) bt !
ASR M 67/6|2/77/6 |3 00! ! ®
5| ,/ASRA |} Shift Right Arithmetic|A | ED]:D]]»D 7121 1@ @11 |®
b boe C
als|AsRB B ! o © s702(1 @@ 1|1 ®t
Q
“"fLSR M 646 | 2(74|6 |3 OO R O}
- - .
28| LSRA [{Shift Right Logical |A o~ TTTTTTT (] 421 |@@R|1® Y
0 | & b bo C
- |G| LSRB B ' ’ s4/2/1 @ @RILIOY
£ -
g|”|rROL M 69| 6|2[7916 |3 00 ! ®}
'E ROLA Rotate Left A LD‘"D:[DIDJ 4912)110@1]11® 1
o
2| |rovLB B] C b —— b 91211 | @@L 1|®1Y
ROR M 66/ 6| 276|613 00! 1 D!
RORA || Rotate Right o w21 @@ 11|81
RORB B) ¢ b1 —— bo 6021 @@ ® 8

* Mnemonics enclosed in parentheses () may

be used in the 6801 Assembler

IHOVLIH vL

Address Mode

Condition Code

Mnemonic 3 Logic/Arithmeti MPL
Typel | o odo Operation Content 3oper;tion 1c IMMED |DIRECT| INDEX | EXTND accx|s 43210
OP|~|#/OP|~|#|oP|~|#|oP|~|#joP|~|# |H|[I|N|Z|V]|C
ANDA (ACCA)A(M)~ACCA sal2}2]oa|3|2(aa|4]|2{Ba]a|3 00! RO
}.And .
" ANDB (ACCB)A(M)—ACCB ca|2|2/Da|3|2|Es|a|2|Faja]|3 0 ! ! RO
@
a BITA} (ACCBIA(M) 85|2]2l95|3|2|as{4|2|B5{4}3 o® ! ! rRl@®
) Bit Test
ZlgleiTs ' ® (ACCB)IA(M) Cs|2|2Ds|3|2[Es|4|2|F5|a}3 o@ ! ! RO
215 com (W)-M 63[6(2(73/6/3 ®@® !t RS
Do VTR
®|[&lCOMA Complement.1'S (ACCA)—ACCA 43 1 @@ LIRS
2 g|comB (ACCB)—ACCB 53/2|1 @@ L|tIR|S
=4
S13lEoRA } o (ACCA)® (M)—ACCA 88|2}2|98|3|2(A8|4|2|B8|4|3 00 !|! rR@®
e Exclusi R
g EORB xetusive (ACCB) @ (M)—ACCB c8{2{2|D8|3|2|E8|4|2|F8|l4]|3 ®@® il RO
& ORAA (ACCA)V (M)—>ACCA 8A|2|2(9A|3|2(AA[4{2|BA| 4|3 00 !l RO
Or,Inclusive .
ORAB (ACCB)V (M)—ACCB CAl2|2/DA|3|2|EA|4|2|FAl4a]|3 @@ ! ! RO
. ° Double oad . Ve N N .
Z|2|Loo PO (M:M+1)—ACCAB cc|3lapefal|2fecs|z2|rcls|3 oeo|!|!/ir@
8|w|sTp |Double Store (ACCAB)—M:M+1 pD| 4| 2|EDi5s |2 |mis|3 olel:l!lirle®
& g Acmltr,A.B
pe] o
o]
TS
0
et

SLULIHOVLIH

Address Mode

Condition Code

Type “‘C‘g‘;‘:““ Operation Content LOEiSI/’:iig’;‘:tic IMMED [DIRECT| INDEX | EXTND | ™MRkay| s a3l 2]10
op|~|#op|[~|#jor|~[#or|{~[2lop|~|#|H|1[n][z]V]C
o/ LDAA L A (M)—ACCA 86/ 2| 2|96|3|2(a6|al2|B6l4a|3 ..Ita.
d I tr.
2lLpap |J 020 T (M)—ACCB ce|2|2/D6|3|2|B6|4al2]rs|als oo re
o|sTAA }s (ACCA)M 97 3| 2|a7|4a|2|B7| 4|3 00 i RO
o t A ltr.
9| STAB ore fem (ACCB)-M D7|3|2|E7|4af2|F7|4]|3 00 ilre@
303
(0]
el
80
]
3
-
o
s
o
>
=]
g|,{TAB . (ACCA)—~ACCB 16/21 @@ 1RO
. ‘ransfer Acmitrs
fg glrea € (ACCB)=ACCA 17(21 1 @@ 1|} RO
& PSHA]P 5 ﬁg%‘;:‘}:‘g%" (31 000 06e
ush Data (ACCB)—MSP : 1
PSHB (SpIiosE 3731110006000
SP)Y+1-SP
PULA } b %ggl;)—lmgg,x 241000000
Pull ata 1l
PULB (MSP)—~ACCH 341000 00e

IHOVLIH 911

Address Mode Condition Code
themonic Operation Content Gonditions Deternining |peyarive] INDEX | EXTND | 1MpL [Mifex |s[a]a|2]1]0
@ |~ |# |OP[~ |# [OP|~ |# |OP|~ (#|OP|~ {# [H|I |[N|Z |V |C
C* | Branch If Carry Clear (Cc)=o0 24{3]| 2 00000
HS) |(Branch If Higher or Same)
C S* Branch If Carry Set (C)=1 2532 00000
BLO) |[(Branch If Lower)
Q Branch If = Zero (z2)=1 27132 S o000 00
B BGE Branch If = Zero (N ® (v) = 0 2|3 |2 o000 oo
£|c|BGT |Branch If > Zero (2) V(N®(V))=0 | 2E| 3|2 oo0000
c o
S|§|BHI |Branch If Higher (CYV (2) =0 22)3| 2 o000 O00
gf BLE |Branch If <. Zero (Z) VO(ND(V))=1 | 2F|[3]|2 oeo0 000
]
,E E BLS Branch If Lower or Same (CIV(Z)=1 23| 3|2 o000 e e
S|HIBLT | Branch If < Zero (N)B(V)=1 D32 00000
= .
(8|BMI |Branch If Minus (N)=1 8|32 oo0 000
& |BNE |Branch 1f Not Equal Zero|(Z)=0 26/ 32 oo o000
BPL |Branch Lf Plus (N)=0 24|32 o0 0000
BV C Branch If Overflow Clear|(V)=0 28|13 | 2 00000
BVS | Branch [T Overflow Set |{V)=1 29| 3|2 L JC 0 20
BRA BRanch Always None 200312
=
2 BRN BRanch Never Advances only by PC+2| 21| 3| 2 o0 0000
[l
& NOP No Operation Advances only by PC+1| 01} 2] 1
—
gg JMP Jump } See(Note) 6E| 3| 2|7E|3 |3 00000 e
Dy
hoil:!
g
i1
Q
Q
=3
-

* Note: Mnemonics enclosed in parentheses () may be used in the 6801 Assembler

ZL1L IHOVLIH

T ji Address Mode Condition Code

Type |Memonic Operation Content L°8ig{ig§‘i‘fg§tic iMMED [DIRECT | INDEX | ExTaD ["Wt Is{ala[z2]1]0
op|~[# o[~ [+ [op][~T# [op[~]#for[~[e{n[L|N[z2]V]C
s [DEX | Decrement Index Feg (1X)-1-IX ” 31000 ! ee
3 ?,, INX Incranent Index Reg (IX)+1-1X /31000] ee
§ GILDX | Load Index Reg E?;}!;mgr‘ld;i;:IXL CE|3| 3|DE|4|2|EE|5|2|FE|5 |3 00 ! r @
s g STX Store Index Reg (l\l,i;(-}l{ B r\.4) CIxL) DF| 4 |2 |EF|5 |2 |FF|s |3 00 ® ! riO
Z15]CPX | Carpare Index Reg _(les : 8C|4|3]oc| s 2]ac|6]2|BCci6|3 00 !} B
£18|DES | Decrement Stack Pointer (SP)-1-SP 41301100000 e
g g INS Increment Stack Pointer (SP)+1-SP 31131100006 e
g %|LDS Load Stack Pointer (M)-SPH, (M+1)-SPL 8E[3 |3 |9E 4| 2 AE|5 |2 {BE|5|3 o0 l1R@
B12]sTs | Store Stack Pointer (SPH)-M, (SPL)-M#1 oF| a | 2 |AF|5 | 2 |BF|5 | 3 00> ! rl@®
Bl ITXS | Index Reg—Stack Pointer (1X)-1-8P $13/10000ee
" B|TSX | Stack Pointer -+ Index Reg (SP)+1-1X 0310000ee
g “1PSHX | Push Index Reg si%?—»sp;égt?bgag xi4|1000 00O
PULX | Pull Index Reg qu+1—-spf§1vsp L 385110000 ee

CLC | Clear Carry 0—C <2100 0ee®-r
§§ E CLl Clear Interrupt Mask 01 El2|1 @R OO OO
§c§ E|CLV | Clear Overflow 0V ©niz2(100OORrR O
A ;:SEC Set Carry 1-C D21 0000e® :s
S |®|SEL Set Interrupt Mask 1-1 oFi2{1@ S 000 e
B SEV Set (verflow 1V Bi12/110 00050
2 ao TAP | Aemitc A Reg (aCcAYCC wlz|1l@oodeo
SJL%J,'LT PA | OCReg - Aanltr A (CC)—ACCA 720110000 ee®

IHOVLIH gL 1

Address Mode Condition Code

Type “ge:°“i° Operation Content Conditiogs De;eminins RELATIVE| DIRECT | INDEX | EXTND | IMPL |5 (4(3{2[1]0
ode ranc
OP|~ |# |OP|~ | % |OP|~ | % |OP|~ | #|OP|~|#|H|I|N|Z|V|C
TS
“’;EE BSR Branch To Subroutine 8D|6 | 2 900000
EﬁégJSR JumpTo Subrout ine 9Di{ 52 |AD|6| 2 |BD|6|3
o

38:50 RTS Return From Subroutine {See Note) 39(5(11/000 0O o
= |8 =<|RT I | Return From Interrupt 3B10[1 /0|00 Q6@

e 1nn
E §§SW[Sof t Ware Interrupt 3F12|1|@|5 |0 @O e
S CIWA T | Wit for Interrupt 3E| 91|00 0006

(Notes)
(1) JSR

PC Main Program

n 9D=JSR

Subroutine

r
!
DIRECT% n+1| pddress M (8 bit)| C> sp-1

L n+2 Next Instruction

M=$00 ~ $FF

- 5p-2 m—r

SP Stack PC

Subroutine

Next Execution
Instruction

(n+2)H

SP (n+2)L

(n+2)H and (n+2)L are the upper and
lower order 8 bits of n+2

PC Main Program SP Stack PC Subroutine
] Next Execution
n AD=JSR = sp-2 C——) **P| Instruction
INDEX 4 1+l D=Disp > sp-1 (n+2)H
n+2 .
Next Instruction sp (n+2)L
D=8 bit Unsigned Value (n+2)H and (n+2)L are the upper and
lower order 8 bits of n+2
Subroutine

PC Main Program

SP Stack PC

Next Execution
Instruction

n BD=JSR — SP-2 c—> s
n+l [Subroutine Address Sp-1
TND SH(upper order 8bit E> (n+3)H
EX n+2 Subroutine Address] Sp (3L s
SL(lower order8bit

n+3 | Next Instruction

(n+3)H and (n+3)L are the upper and
lower order 8 bits of n+3

is composed of SH and SL

Subroutine

Next Execution
Instruction

(2) BSR
i(i Main Program 8P Stack _P_(_J_
n 8D=BSR — SP-2 e— LS
n+l #D=Disp E'\> SP-1 (n+2)H
n+2 | Next Instruction SP (n+2)L

D=7 bit Signed Value

—_—

Stack location indicating value of SP
after each instruction is executed.

n+2 is composed of (n+2)H and (n+2)L

HITACHI 119

(3) P

PC Main Program PC Main Program
n 6E=JMP [n 7E=JMP
n+l D=Disp n+l| DH=next address
INDEX EXTENDED n+2 | DL=next address
Next Execution
x4D :
p | Next Execution
Instruction
(&) RTS
PC Subroutine SP Stack - Main Program
- r Iy Next Execution
S 39=RTS C;) SP :> Instruction
SP+1 PCy The values PCy
— SP+2 PCp, and PCj, are loaded n is composed of
from PC into the PCy and PC;,
stack and then
returned to main
(5) RTI
PC Interrupt Program sp Stack _PE Main Program
Next Execution
s 3B=RTI o sp C———> n| Instruction . |
Sp+1 cc Ret.:urns to n+l
main after
SP+2 ACCB loading all n is composed of
SP+3 ACCA information PCy and PCp,
in stack into
SP+4 Xy each register
SP+5 IXL
SP+6 ;!
= SP+7 BCy,
(6) SWI
PC Main Program SP Stack PC Interrupt Program
” _ Next Execution
n 3F=SWI E\'>_' sp-7 C——""> S| Instruction |
n+l| Next Instruction SP-6 cC Returns to
SP-5 ACCB interrw:lpt program S i§ thg address
execution after indicating SWI
SP-4 ACCA saving information interrupt-vector-
SP-3 IXg from all registers address content
in the stack
PCy: upper order 8 bit of n+l Sp-2 IXL,
PCp: lower order 8 bit of n+l SP-1 PCH_
Sp PCL
(7) WAL
PC Main Program SP Stack
3E=WAT SP-7 — [j
n [> - I Interrupt Queue 1
n+l| Next Instruction SP-6 cc _ B
SP-5 ACCB Queues interrupt
SP-4 ACCA after SaYing
information from
SP-3 IXH all registers in stack
. IX;
PCy: upper order 8 bit of n+l SP-2 L
PCy,: lower order 8 bit of n+l SP-1 CH i
se| P]

120 HITACHI

B ASCII CODE TABLE

Table B-1 ASCII Code

Parity Bit———| b

bs o 0 o) o)) ® ®

bs o] 0) ° o} o) ®

be o} ® o ° o [) o) ®
bs b2 b bo SB B 0 1 2 3 4 5 [} 7
O|lo |0 0] o | NUuL | DCo SP 0 @ P . p
olo|{o| e®| 1| som| xoN | . 1 A Q a q
O|O| @/ 0| 2 | EOA | TAPE » 2 B R b r
O|o0| ®| @| 3 | EOM | X-OFF| ¢ 3 c S c s
O ®| O | O 4 EOT | TAPE $ 4 D T d t
O! ®| O| @| 5 | WRU |ERROR| % 5 E U e u
O|le| e|[0O] s RU | SYNC | & 8 F v f v
o| e | | » |BELL| LEM [APOS| 4 G w g w
® | O | O)|O 8 FE, CAN (8 H X h x
®@ | O | O | ®]| o | TAB S,) 9 1 Y i y
® o|®@|O]| A LF | EOF * J z i P
® O| ®| ®| B VT Esc + K (k {
®e | @€ OO0 C FF S , < L AN 1 i
e o O| ®| D| cr Ss - = M) m)
el o | O] E so Se . > N A n ~
e o o o F| sI T ? 0 - o | BUB

Characters within the double lined border may be used
in comments or character constants

HITACHI 121

C HEXADECIMAL-DECIMAL CONVERSION TABLES

0 1 2

0016 0017 0018
0032 0033 (0034
0048 0049 0050

0064 0065 0066

0098
0412 0113 Oll4
0128 0129 0130

0160 0161 0162
0176 0177 0178

0192 0198 0194

0256 0257 0258

W WL o Lo o &8 &3 [R N OO DO WO O Pt et e Ll Tt ot et e et ot ot ot [=Y YY) QOO [=X Y Y =) oooC
NoUvh WO TMEOO WPRoo ouh WO THMEUO) WP o0 NOUh N0 TTMEDO WP oo ook WO
g
g

122 HITACHI

Hexadecimal-Decimal

5

0005
0021
0037
0053

0519

0567

0631

0663
0679
0695

0711
0727

0759

0775
0791

0823

0839
0855
0871
0887

Conversion Table

8

0008
0024
0040
0056

0072
0088
0104
0120

0136
0152
0168
0184

0872

A
0010

B

0011
0027
0043

0014
0030

0702
0718

0750
0766

0782

0814
0830

0846

0878
0894

mEOC W00 Qoue WO mmT0 mPB oo

RRED NP ORCO COTCA UGN IV UMWY I B ip pp P poppd Pppp WOOWW WWLw

MO0 TPO® Nowd ON-~C THEDO DROX ok o=

Hexadecimal-Decimal Conversion Table (2)

2 3 4 5 6 7 8 9 A B C D E F
0868 0899 0900 0901 0902 0903 0004 0005 0906 0007 0908 0909 0910 0911

0932
0946 0947 0048 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975

006
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

1026 1027 1028 1029 1030 1031 1032 1033 1084 1035 1036 1037 1038 1039
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
1000 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
1586 1587 1588 1589 1590 1581 1592 1593 1594 1595 1596 1597 1598 1599

1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631

1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

HITACHI 123

QoUE WO HEDO PO Nouh WO MmO TPO® S0k WO MmO WR OO0 QUh PO

BEE> PPE> COOVE DOOO COOO VOO 0WEO 000 000000 00000000 =TJ=3-3-3 =J-3~3J=3 TJIVT VI

124 HITACHI

2545

2561
2577
2593
2609

2625
20641
2657
2873

Hexadecimal-Decimal Conversion Table (3)

5

1797
1813
1829
1845

2614

2630
2646
2662
2678

7

8

1800
1816

9

1801
1817
1833
1849

1865
1881
1897
1913

1929
1946
1961

B

C

1804
1820

1852
1868

1
1916

iplviels!

OGN ooas
NOUE WO MmO EPOX NGl We—C

DDoCT DTTo anca

3264

3296
3312

3328

3360
3376

3313

3329
3345

3377
333

3425
3441

3457
3473

3505

3521
3537

3569

2
2680

2722
2738

2754

Hexadecimal-Decimal Conversion Table (4)

26892
2708
27H
2740

&756

2804

b}

2643
2709
2725
2741

2757
2773
2749
2805

2821
2837
2853
2869

2885
2901
2017
2933

2049
2965
2981
2997

3013
3029
3045
3061

3077
3093
3109
3125

3141
3157
3173
3189

3205
3221
3237
3253

3269
3285
3301
3317

3333
3349
3365
3381

A

2608
2714

2746

B

2699
2715

2747
2763

2811

E F
2702 2703
2718 2719
2734 2735
2750 2751

27608 2767
2782 2783

2314 2815

2862 2863
2878 2879

2894 2395
2910 2911
2926 2927
2042 2943

2958 2959
2974 2975

3006 3007
3022 3023

3054 3055
3070 3071

3086 3087
3102 3103
3118 3119
3134 3135
3150 3151

3182 3183
3198 3199

3214 3215
3230 3231

3262 3263
3278 3279

3326 3327

HITACHI 125

Hexadecimal-Decimal Conversion Table (5)

0 1 2 3 4 5 [} 7 8 9 A B C D E F
3584 3585 3586 3587 3588 3580 3500 8591 3592 3508 3504 3595 3506 3597 3508 3599
3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615

00 3601 3602 3608
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3620 3630 3631
3632 3633 3634 3635 3636 3637 3638 3630 3640 3641 3642 3643 3644 3646 36486 3647

3680 368
3698 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
3712 3713 g% 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3728 3727

3744 3745 3746 3747 3748 3748 3750 3751 3752 3753 3754 3755 3756 3757 37658 3759
3760 3761 3762 3763 3764 3765 3766 3767 3768 3760 3770 3771 3772 3778 3774 3775

3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3780 3700 3791
3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807

3824 3825 38206 3827 3823 38290 3830 3831 3832 3833 3834 3835 3836 3837 3838 3339

3840 3841 3842 3843 3844 3845 3846 3347 3848 3849 3850 3851 3852 3853 3854 3855
3357 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3860 %o gg'?%

3883 3889 3890 3891 3892 3893 3894 3805 3896 3397 3898 3899 3900 83901 3902 3903
3904 3905 3906 3907 3908 3909 3910 3911 3912 3013 3914 3915 3916 3017 3918 3019

3022 934
3936 3937 3938 3039 3940 3041 3942 3943 3944 3945 3046 3047 3948 3040 3950 3051
3952 3953 3054 3955 3956 3957 3958 3959 3060 3961 3062 3963 3064 3065 3966 3967

3068 3960 3970 3971 3072 3973 3074 3975 3076 3977 gggi 3079 3080 3681 39082 3983

4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4081

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047

ik Bk i EeiolooolololoBclololoBllolololo B ol olol o
METOQ WHPOX NoVvE RO TMEDO MPO0 QRUE WO

4066
4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

126 HITACHI

D EPROM MOUNTING METHOD

The EPROMs for the 6301/6801 Assembler-Text Editor (S31MIX1-R/S61MIX2-R)

are mounted on the main module (H62EV02). Figure D-1 and Table D-1 show the

proper locations.

S
Typuter/TTY HesSD

He68SD1
2

—1 M

0

0
L
J

¢]
L

OPT1

P3

P2

Main Module
H6 2EV 02

P1

$10309UuU0) pieog IoIe[nWy

- Ps ABORT RESET
— 0 0O
——J ‘
Pocketable
Console

Figure D-1 EPROM Package Locations

Table D-1 EPROM and Socket Match

Location EPROM Name
OPT 1 S3IMIX1-R or S6IMIXZ-R
OPT 2 S3IMIX1-R or S61MIX2-R
OPT 3 S3IMIX1-R or S6IMIX2-R

HITACHI 127

The following points are important in mounting and replacing EPROMs.
(1) Always turn the power off when removing an EPROM from the board.

(2) Mount the EPROM in the proper position as shown in Figure D-2.

Figure D-2 EPROM Mounting Direction

If the EPROM were mounted backwards and the power applied, the EPROM will
be destroyed. Always make sure that EPROMs are plugged in in the correct

direction.

128 HITACHI

@ HITACHI

A World Leader in Technology

Hitachi America, Lid.

Semiconductor and IC Sales and Service Division
1800 Bering Drive, San Jose, CA 95142
1-408-292-6404

HITACHI #U24 Printed in U.S.A.

