rsc. USER'S GUIDE

SEMICONDUCTOR
Ross Technology Subsidiary

SPARC RISC USER’S GUIDE

ROSS Technology, Inc.
A Cypress Semiconductor Company

'ROSS Technology, Inc. e 7748 Hwy. 290 West e Austin e TX78736 e 512-448-8968
Cypress Semiconductor Corporation e 3901 North First Street ® SanJose o CA95134 e 408-943-2600

Second Edition — February 1990

SPARC is a trademark of Sun Microsystems.
ROSS Technology, Inc. is a subsidiary of Cypress Semiconductor Corporation.

©ROSS Technology, Inc., 1990. The information contained herein is subject to change without notice. ROSS Technology, Inc. assumes no responsibility
for the use of any circuitry other than circuitry embodied in a ROSS Technology, Inc. product. Nor does it convey or imply any license under patent or
other rights. “ROSS Technology does not authorize its products for use as critical componentsin life support systems where a malfunction or failure of the
product may reasonably be expected to result in significant injury to the user. The inclusion of ROSS Technology products in life support systems applica-
tions implies that the manufacturer assumes all risk of such use and in so doing indemnifies ROSS Technology against all damages.”

Table of Contents

Forewardccviiiiieeneneeenerenenoecseennsaaensasss XVil

Chapter 1: Introduction

1.1 SPARC OVeIVIEW ..ccvvevveerocsccncsccocssnscscssessensssssl=l

111
1.1.2
113
114
115
1.1.6

Partitioningouiininiiiii i i e 1-1
The CY7C601 Integer Unitoovniintinin i, 1-2
CY7C611 Integer Unit for Embedded Control 1-4
CY7C602 Floating-Point Unit ..., 1-4
CY7C157 Cache Data RAMottt 1-4
CY7C604/CY7C605 Cache Controllerand MMU 1-4

1.2 Register Windowsc..cceeeeecrosorocsscocssssssossssscenes l=0

1.3 Instruction Setcceveeveesereocsocscsscosscsscssescennss l=6

13.1
132
133
134
135

Load and Store InStructionsoooviiiiiiiiii i,
Arithmetic/Logical /Shift Instructionsc.oiiiiiiiiinn..
Control Transfer Instructions ...,
Read/Write Control Register Instructions
Floating-Point-Operate and Coprocessor-Operate Instructions 1-7

Chapter 2: CY7C601/CY7C611 Integer Unit

2.1 Description Of Parts «...covveerierietsiecieroscencecocasenss2=2

2.2 Programming Modelcooiiitniirincnecnnscnnscaconsaes2=2

221
222
223
224
2.2.5

Register Windows

Processor Statesottt s

Supervisor/User MOdesovuiniiiiiniii i iiieiiannne, 2-8
Control/Status RegIStErSouviiii ittt 2-8
Data TYpes .. ovoii i e e 2-12

2.3 InStruction Set «..cvceveeereeeecoceccocccsocscesssosccssess2=15

2.3.1
2.3.2
233
2.3.4

2.4.1
2.4.2

Instruction Formats

Addressing
Instruction Types
OP COdES vttt

2.4 Signal Descriptioncvvvviierreeeernescesrescessnecosssss2=43
Memory Subsystem Interface SignalscoooiiiiiL., 2-45
Floating-Point/Coprocessor Interface Signals 2-49
Interrupt and Control Signalscooiiiiiiiiiiiiiiiii i, 2-51

243
24.4

Power and Clock Signals ..., 2-52

iii

2.5 Pipeline and Instruction Execution Timingc000vveee..2-52

251 I 2 1 2-53
2.52 Multicycle Instructions 2-54
253 Pipeline Freezes........... 2-58

254 THAPS ottt s 2-58

2.6 Bus Operation and Timingcccvvvieeeeencnncennessss2=58
2.6.1 Instruction Fetch 2-61

2.6.2 Loadooovvvinennnannn.

2.6.3 Load with Interlock ovetiniitii it ieienes
2.6.4 Load DOUDIE . ..uetiiiiii e e e e e
2.6.5 Storeiiiiiiiiiiine,

2.6.6 Store Double

2.6.7 AOmMIC Load-Storet e e
2.6.8 Floating-Point Operations

2.6.9 Bus Arbitration

2.6.10 Load with Cache Miss

2.6.11 Store with Cache MISSvuuuttiiiiiiiieetiiiiiiieeeenineeeens
2.6.12 Memory EXCEpionscoviiuiiiiiiiiiii i
2.6.13 Floating-Point Exceptions

2.6.14 INTEITUPLS . .vnntintit ittt et it it i it i it
2.6.15 Reset Condition . ..o.uuutrnnnet ettt
26.16 Error Conditionouvttiiiitiitiiiiiiie i e i i

2.7 Exception Modelciiiiieriiiiiiiiiiieneenienecnnneess2-78

271 RESET vttt ittt it i i 2-78
2.7.2 Synchronous Traps 2-78
2.7.3 INEEITUPES o ne ettt it 2-80
274 Floating-Point/Coprocessor Trapscoviviiiiiiiiiiineinn... 2-81
275 Trap Operationc.ouiuinininininton e eiiieneenienenennnss 2-82

2.8 Coprocessor Interfacecvvveevvcnesrescncosnccnssesess 2-84
2.8.1 Protocol .. .vneiinii e e 2-85
2.8.2 Register Model

2.83 Exceptions..............

2.9 CY7C611 Integer Unit for Embedded Control2-87

Chapter 3: CY7C602 Floating-Point Unit
3.1 CY7C602 Functional Descriptioncccoecevecncescssseesse3d-1

3.2 Floating-Point/Integer Unit Interfaceccccvevevevevnnee...3-4

321 CY7C602 Instruction Fetch and Executionc.ooviveeeviinnnn. 3-5
3.2.2 Instruction Pipeline Flush ..., 3-9

3.3 CY7C602 Programming Modelcccvevieviirenenneennsess3-12
33.1 CYTCO02 REZISLELS & v v vvve vt ittt i i ii et i eneinennanns 3-12

332
333
334
335

CY7C602 Floating-Point Instructions
CY7C602 Internal Operationc.oeviiueinineiineinneeennnns
CY7C602 IEEE-754 Compliance

CY7C602 Exception Casesovireiiieinnenonanenanennn..

3.4 CY7C602 Signal Descriptionsccoveeevevsceeccssscssess3=23

34.1
34.2
343

Integer Unit Interface Signals............... ..o,
Coprocessor Interface Signals
System/Memory Interface Signals

Chapter 4: CY7C604/CY7C605 Cache Controller and MMU

4.1 Memory Management Unitccciiiveninceieeneeeseas 43

411
412
413
4.14
4.1.5

Translation Lookaside Buffer (TLB)
Table Walkoouiniiiliiii i
Page Table Pointer (PTP) ..ot
Page Table Entry (PTE)

Page Table Pointer Cache (PTPC)ooviiiiiniiiiiiiniiennnn.

4.2 MMU Operation Modesccoveviiieiiiereesenceneesss.. 413

4.2.1

MMU Flush and Probe Operationsoooiiiiin.. 4-14

4.3 CY7C604 / CYTC605 Cache Controllersccovvveveeeencess.4=15

4.3.1 CY7C604/605 Cache MOdesvuvininiiiiiiiniiiiiiiiiainen

43.2 CY7C604 Cache Controller

433 CY7C605 Cache Controller

43.4 CY7C604/CY7C605 Cache Control Signals

43.5 CYT7C604/605 Write Bufferl

4.3.6 CY7C604/605 Read Bufferccooiiiiiiiiiiiiiiiian..

4.3.7 CY7C604/605 Cache Flushing Operationscoooue....

4.3.8 CY7C604/605 Cacheable/Non-Cacheable Memory Accesses 4-33

439 CY7C604/605 Mbus Cacheable MC) BitcooaiaaL. 4-33

43.10 CY7C604/605 LDSTO (Atomic Load-Store Instruction) cycles 4-34

43.11 CY7C604/605 Cache Byte Write Enablesooviuinii.n, 4-34
4.4 CY7C604 / CYTCG605 RegiSters .. .cvveeereeececcsonncaseseess. 4=35

44.1 CY7C604 System Control Register (SCR)cooiiiiiiii .. 4-35

442 CY7C605 System Control Register (SCR)coiiiiiniin., 4-36

443 CY7C604/605 Context Table Pointer Register (CTPR) 4-37

4.4.4 CY7C604/605 Context Register (CXR)oovviiiiiiiiiininn..

4.4.5 CY7C604/605 Reset Register (RR)ooviiiiiiiiiniii ..

4.4.6 CY7C604/605 Root Pointer Register (RPR)

447 CY7C604/605 Instruction access PTP (IPTP)

4.4.8 CY7C604/605 Data access PTP (DPTP)coviviiiininneininn..

449 CY7C604/605 Index Tag Register (ITR)cooiiiiiiiiii..,

4.4.10 CY7C604/605 TLB Replacement Control Register (TRCR) 4-39

4.4.11 CY7C604/605 Synchronous Fault Status Register (SFSR) 4-39

4.4.12 CY7C604/605 Synchronous Fault Address Register (SFAR) 4-40

4413 CY7C604/605 Asynchronous Fault Status Register (AFSR) 4-40
4.4.14 CY7C604/605 Asynchronous Fault Address Register (AFAR)........... 4-40

4.5 CY7C604 / CY7C605 Multichip Configuratione00000ve...4-41
4.6 CY7C604/605 Diagnostic Supportceceeeeeeeeceseeess.4-43

4.6.1 CY7C604/605 MMU TLB ENtieS . o vvvnvnintininenneeneeneennnns 4-43
4.6.2 CY7C604/605 Cache Tag Entriesocovvviiiiiiinineninnnennene. 4-44
4.6.3 CY7C604/605 Cache Data Entrieso.ovviviniieniininennnnnnan.. 4-44
4.7 CYTC604/605 ReSet covvvveverrnceacsssasssncsassccncssseassd=45
471 Power-On Reset (POR)vviiiiiiiiiiiiiiiiiiiiieiiiiiiiiennes 4-45
472 Watch-Dog Reset (WDR)u.ourenriririaneineanneanneaneann.s 4-45
473 Software Internal Reset (SIR)c.ovvvviiiiiiiiiiininininnnnns 4-45
4.74 Software External Reset (SER)coooiiiiiiiiiiiiiiiiiinnn.. 4-45
4.7.5 CY7C604/605 Reset in Multichip Configurationcooveenn 4-46
4.8 CY7C604/605 ASI and Register Mappingcveveesvees..4-46

4.9 Synchronous Faults......covievieiririeniccncscecenccnnesssd-47
49.1 Synchronous Fault Casesvvirviniiiiiiiiiiiiiiinineenennes 4-50

4.10 CY7C604/605 Pin Definitionsocooeeveeresacsccccsanesssd4=55
4.11 Virtual Bus Operationccooveeeeeesnscccssccccseoeass 4=60

4.12 Physical Bus (Mbus) Operationcooeeeeeseeeecccacenss 4-84
4.12.1 Mbus PrinCiplesovuiiiiniiiiiiiiii e 4-84
4122 MbusLevel 1OVEIVIEW ...vininininiiiniiiiiiiniiiiiineininnnenes 4-84
4123 MbusLevel 2O0VeIVIEWvuviniieiniiiiiiiiii ittt 4-84
4.124 Mbus Signal SUMMALYccitiiiiiiiiiiiiiiiiiiiiiiiineanns 4-85
4.12.5 Mbus Address Cycleooviniiiiiiiiiiii i e 4-87
4126 MbusData Cycleovuniniiniiiiiiiiiiiiiiiiiiiieiinaanas 4-88
41277 Mbus Transactionsovvutvntnniiinintiiinninneneineeneennennenns 4-88
4.12.8 Mbus Transaction Timingcoooviiiiiiiiiiii i, 4-92

Chapter 5: CY7C157 Cache RAM
5.1 Description of Partoocveveeeneccrscrccccscecccssccssased=1
5.2 OPperationceeeeeesreeccsssoscocsssssscccrsscsasssccssesd=2
53 BusTiming ...ovveeeeneeeeneossensscsssscsocsssssnassocaoesdI=2

5.4 Signal Descriptions «..coeeeeriieeeeesecsecessceecsscssenessd=2

Chapter 6: SPARC Instruction Set

6.1 Assembly Language Syntax ...eoecceeeccsvecssscsvssncsssocssces6-1
6.1.1 Register Namesovviuiinitiniiriiiiiiiiiieiiieeieeiieneennens 6-1

vi

6.1.2 Special Symbol Namesooiuiiiiiiiiiiiiiiiiiiiiiii i 6-2

6.1.3 VTS -ttt i e e e e e e e e, 6-2
6.1.4 Label oo e e e e e 6-2
6.1.5 Instruction MNemoniCS oot iiii ittt eienneaennns 6-3

ADD
ADDcc
ADDX
ADDXcc
AND
ANDcc
ANDN
ANDNCcc
Bicc
CALL
CBcce
CPop
FABSs
FADDd
FADDs
FADDx
FBfcc
FCMPd
FCMPEd
FCMPEs
FCMPEx
FCMPs
FCMPx
FDIVd
FDIVs
FDIVx
FdTOi
FdTOs
FdTOx
FiTOd
FiTOs
FiTOx
FMOVs
FMULA
FMULs
FMULx
FNEGs
FSQRTId
FSQRTs
FSQRTx
FsTOd
FsTOi
FsTOx
FSUBd
FSUBs

Add . e 6-7
Addandmodifyicc ..o 6-8
Addwith Carryooie i 6-9
Add with Carry and modifyiccooooii 6-10
AN o

And and modify icc
And Not
And Not and modifyicc ...,
Integer Conditional Branch iiiiiiiiiin.n
Call . e e e
Coprocessor Conditional Branch ...,
Coprocessor OPETratevuueineinneiiineiineennneenneennannn
Absolute Value Single ..ot
AddDOUDIE ...vriiiiiiii e e
A SIngle ... e
AddExtendedooiiiiiiiii e
Floating-Point Conditional Branch
Compare Double ...t
Compare Double and Exception if Unordered 6-28
Compare Single and Exception if Unordered 6-29
Compare Extended and Exception if Unordered 6-30
Compare Singleooiniiiiiiiiii i e
Compare Extended
Divide Double

Divide Single ...
Divide Extendedc.oooiiiiiiiiiiiii i
Convert Double toIntegerooovviiiiiiiniiiiiinennn 6-36
Convert Double to Single ..o, 6-37
Convert Double to Extendedcooiiiiiiiiii., 6-38
Convert IntegertoDoubleooviiiiiiiiiiiiiiii.. 6-39
Convert Integerto Singleovviiiiiiiiiiiiiiiiiiinan... 6-40
Convert Integer to Extendedcooiiiiiiiiiiiiiiinn, 6-41
MOVE i e e
Multiply Double..
Multiply Single
Multiply Extended
Negateoounnn
Square Root Double
Square Root Single
Square Root Extendedcooviiiiiiiiiiiiiiiiiiiiiie
Convert Single to Double
Convert Single to Integer

Convert Single to Extendedoooviiiiiiiiiiiiiiiiin.. 6-52
Subtract Doublet e 6-53
Subtract Single ... e 6-54

vii

FSUBx Subtract Extended ...l
FxTOd Convert Extended to Double

FxTOi Convert Extended to Integer

FxTOs Convert Extended to Single

IFLUSH Instruction Cache Flush ...,
JMPL Jump and Link

LD Load Wordoniniiiii i e
LDA Load Word from Alternate spacecooiieiuiininnenenn. 6-62
LDC Load Coprocessor register

LDCSR Load Coprocessor State Registercooviviiiniiiiininnin.n. 6-64
LDD Load Doublewordooeiiiiiiiiiiiiii i 6-65
LDDA Load Doubleword from Alternate spaceoevvvievnuenn 6-66
LDDC Load Doubleword COProCessOroevvreriniiieenennennenns 6-67
LDDF Load Doubleword Floating-Pointooiiiiiao.. 6-68
LDF Load Floating-Point registercoovviiiiiiiiineininn..
LDFSR Load Floating-Point State Register

LDSB Load Signed Byteooiuiiiiiiiiiiiiiiiiiii i
LDSBA Load Signed Byte from Alternate Spacec..covvvuinuinnann. 6-72
LDSH Load Signed Halfwordcoiiiiiiiiiiiiiiiiiii e 6-73
LDSHA Load Signed Halfword from Alternate space 6-74
LDSTUB Atomic Load/Store Unsigned Bytecoovviiiiniinninn.. 6-75
LDSTUBA Atomic Load/Store Unsigned Bytecocviviiiniininnnnn. 6-76
LDUB Load Unsigned Byte ...ttt 6-77
LDUBA Load Unsigned Byte from Alternate space 6-78
LDUH Load Unsigned Halfwordcoviiiiiiiiiiiiiiniiine e, 6-79
LDUHA Load Unsigned Halfword from Alternate space 6-80
MULScc Multiply Step and modifyicc...........cooooiiiiiii i, 6-81
OR InClusive-Or ...oeini i e 6-82
ORcc Inclusive-Or and modify icCooovviiiiiiiiiiii i, 6-83
ORN Inclusive-Or NOtoviinii i 6-84
ORNcc Inclusive-Or Not and modifyicc ..o, 6-85
RDPSR Read Processor State Registero.oviiiiiiiiiiiiiniiiinnn., 6-86
RDTBR Read Trap Base Registercoiuiiiiiiiiiiiiiiiiiininnenn. 6-87
RDWIM Read Window Invalid Mask registerccovveiuiininn. 6-88
RDY Read Yregisteroovvniineiiiiiiiiiii it 6-89
RESTORE Restore caller’s windowoovvininiiiiiiiiiinininnen., 6-90
RETT Return from Trap

SAVE Save caller’s WIndOWoviut et iiiini i
SETHI Set High 22 bitsof rregisterocooviiiiiiiiiiiiinenennnne.

SLL Shift Left Logical

SRA Shift Right Arithmetic

SRL Shift Right Logical

ST Store Word . ..voeiiii e e

STA Store Word into Alternate space

STB SOTE BYte .o vviiei it e
STBA Store Byte into Alternate space

STC Store Coprocessor TegiSterovireuiirniineerniniaiaraninenns
STCSR Store Coprocessor State Register

STD Store Doubleword ..ottt
STDA Store Doubleword into Alternate Spaceveeeeineenn.s 6-105
STDC Store Doubleword COProCESSOT +.vvvvvvvvrvneenineeneenenneanns 6-106

viti

STDCQ Store Doubleword Coprocessor QUEUeoouvvenneinnnennnn..

STDF Store Doubleword Floating-Pointcooooiviiiia..
STDFQ Store Doubleword Floating-Point Queueoouiun.
STF Store Floating-Point Tegistercoovveiiiiiiiiini ...
STFSR Store Floating-Point State Registerooooviiiiiiiiianin..
STH Store Halfwordo
STHA Store Halfword into Alternate spacecooviveeiuennnn..
SUB SUDLIACt ..ot
SUBcc Subtract and modifyicccoiiiiiiiiiiii
SUBX Subtract with Carry ...t
SUBXcc Subtract with Carry and modifyicccoovviiiiiiian.
SWAP Swap rregister withmemory ...t
SWAPA Swap r register with memory in Alternate space

TADDcc Tagged Add and modifyiceo.ovvviiiiiiiiiiiiiiiiinan,
TADDccTV Tagged Add and Trapon Overflowooovviniiiii ...,
Ticc Trap on integer conditioncodesooiiiiiiiiii,
TSUBce Tagged Subtract and modifyicc.........ooovvviuiiiiiiiiiiiie.,
TSUBccTV Tagged Subtract and Trap on Overflow
UNIMP Unimplemented inStructionoovvuiiiiiiiiiiiiiiii ...
WRPSR Write Processor State Registercovviuiiiiiiiinenn..
WRTBR Write Trap Base Register ...,
WRWIM Write Window Invalid Mask register
WRY WIHte Y TeZIStEr . ..ottt
XNOR EXCIUSIVE-NOL . .. ouiie it
XNORcc Exclusive-Nor and modifyicc ...,
XOR EXClUSive-OF . ..ot e
XORcc Exclusive-Or and modify icC «......ooovviviiiiiiiiiiiiiiiiiin,

Chapter 7: CY7C600 Electrical and Mechanical Characteristics

7.1 CY7C601 Electrical and Mechanical Characteristics7-1

71.1 CY7C601 Maximum Ratingscovveiiiniiniiiiniiinniinn,
7.1.2 CY7C601 Operating Range

7.1.3 CY7C601 DC CharaCteristicso.vuveniiriieinninneniineeninnens
714 CYTCO01 Capacitanceoceuininunieinriiieneinneneeneennnnes
7.1.5 CY7C601 AC CharaCteristiCsovvvrervnrinniinennnennnenennennn.ns
7.1.6 CY7C601 AC Loads and Waveforms

717 CYT7C601 AC Waveformsocovuvnininininiiiinenenn..

7.1.8 CY7C601 PGA Package Dimensions

7.1.9 CY7C601 PGA Pin ASSignmentsccoevriiueenennnns

7.1.10 CY7C601 QFP Package Dimensions
7.1.11 CY7C601 QFP Pin Assignments
7.1.12 CY7C601 Military Specifications

7.2 CY7C611 Electrical and Mechanical Characteristics7-14
7.2.1 CY7C611 Maximum Ratings
722 CY7C611 Operating Range
723 CY7C611 DC Characteristics
7.2.4 CY7C611 CapacCitanCec.eeevrenreninenearenineieaneeneenainnns

7.2.5 CY7C611 AC CharacteriStiCs «...oeeueevueeneareivrnrrnrenennennenens 7-15
7.2.6 CY7C611 AC Loads and Waveformsccvvievnneenneennnennnnnn 7-16
727 CYTC611 AC WavefOrms . ..o vvrverrreenneenneneensonnenennennanens 7-16
7.2.8 CY7C611 PQFP Package Dimensionsccvueieininienennennnn. 7-21
729 CY7C611 PQFP Pin ASSIZNMENLS « .o vvvvneeeeeenenenenenenraenenns 7-22
7.3 CY7C602 Electrical and Mechanical Characteristics «..........7-23
7.3.1 CY7C602 Maximum Ratingscovuiieieiiiuineneneninenenenanns 7-23
73.2 CY7C602 Operating Rangeouvitintiniiiennenieniinenneneinens 7-23
733 CY7C602 DC CharaCteriStiCsvveueeennernneennneraresnneonnens 7-23
734 CYT7CO02 Capacitancecovvueneinerneneenneneeneenenesnennens 7-23
735 CY7C602 AC CharacteristiCs . vvvvveerrrennneeeerrennneeeencnnnnes 7-24
7.3.6 CY7C602 AC Test Loads and Waveformscocvvevuvnenn... 7-25
73.7 CYT7C602 AC WavefOrmscvvviinntieniieeeenrennneeennennnnes 7-25
73.8 CYCT7602 Pin ASSIZNMENS .+ .vvnvntnnineininteinenerneerenesnennens 7-27
739 CY7C602 Package Diagramsvvviniiienneneineeneanenennens 7-28
7.4 CY7C604 Electrical and Mechanical Characteristics7-29
74.1 CY7C604 Maximum Ratingsoooviiiiiiiiiiiiiiiinnninn, 7-29
7.4.2 CY7C604 Operating Rangeovvvivntiniireininiiiinnennenennens 7-29
743 CY7C604 DC CharaCteriStiCs «..vveeereeneneerernenrennenennennanens 7-29
7.4.4 CY7C604 Capacitancec.oveniueneiniiieenenrineinennennanens 7-29
7.4.5 CY7C604 AC CharaCteriStiCs . ..vvvuuererennnneerrennneeeennnnnnns 7-30
7.4.6 CY7C604 AC Test Loads and Waveformsc.ccevvneeniennnnnn 7-31
7.4.7 CYTC604 AC Waveformscovvviinneeiiiiireennenaernnnses 7-31
7.4.8 CY7C604 Pin Configurationcooviiiiiiiiiiiinenninen. 7-36
7.49 CY7C604 Package Diagramsoovvnenvinenennininnenenrenense. 7-38
7.5 CY7C605 Electrical and Mechanical Characteristics +..........7-39
7.5.1 CY7C605 Maximum Ratingsoooiiiiina.L. e 7-39
752 CY7C605 Operating Rangecovviiiiiiiiiiiiiiiinininnn.ns 7-39
753 CY7C605 DC CharacteriStiCs «..veeenreerenenreneenernreneonenennens 7-39
754 CYTCOH05 Capacitancecovvuiiineineninneensnncnneneenennens 7-39
7.5.5 CY7C605 AC CharacteristiCs «..vevenveereneereeneneeneeneaneneanens 7-40
1.5.6 CY7C605 AC Test Loads and Waveformsccvvevvnnennn... 7-41
757 CYT7C605 AC Waveforms . ..o oveine et enieieneeaneannenn 7-41
7.5.8 CY7C605 Pin Configurationcooviiiiiiiiiiiiniinninn, 7-46
7.59 CY7C605 CPGA Package Diagramcooviininininiannnennn. 7-48
7.6 CY7C157 Electrical and Mechanical Characteristics7-49
7.6.1 CY7C157 Maximum Ratingoovveieineininiiiiiiiiiennnennn 7-49
7.6.2 CYT7C157 Operating Rangeo.ovvnininiiininininiiiniinanennns 7-49
7.6.3 CY7C157 DC CharacteriStiCs « .. .vevveenenrneneerennnenenenenenenans 7-49
7.6.4 CYTC157 Capacitanceceveueuvunenenrenenereenesaeaennenens 7-49
7.6.5 CY7C157 AC Test Loads and Waveformsoeveneennennnnns 7-50
7.6.6 CYT7C157 AC CharacteriStics «....ouvvviueinniinnreneeineennnennnen 7-50
7.6.7 CYTC157 AC WavefOrms . ..o o ovveeeeieennenneeeeeenenaneannsen 7-51
7.6.8 CYTCISTTruth TADIE .« o ov vttt e e e et ieeieeeneaennanns 7-52
7.6.9 CY7C157 Pin Timing Cross Referenceooiiiiiininnn, 7-52
7.6.10 CY7C157 Pin ASSIZNMENLS0vueninennirenirenenrninraraeaeennnss 7-52
7.6.11 CY7C157 Package Diagramsovuinrenirernenererarnennennnns 7-53

Chapter 8: CY7C600 Ordering Information

8.1
8.2
8.3
8.4
8.5
8.6

CY7C601 Ordering Informationcoooviiiiiiiiiiiiiinn. 8-1
CY7C611 Ordering Informationooviiiiiiiinii i 8-1
CY7C602 Ordering Informationcooiiiiiiiiiiiiin, 8-2
CY7C604 Ordering Information ..., 8-2
CY7C605 Ordering Informationcoovvniiiiiiiiiiiniiinnan... 8-2
CY7C157 Ordering Informationooiiiiiiiiiiiii i, 82

Appendix: CY7C600 Uni-Module

A.1 Uni-Module Board Hardware Description A1

All
Al2
Al3

INtroductionoeuininniiii i e A-1
Features . ..ot e s A-1
Basic Mbus Operation and Timing ..., A-1

GlosSary ...viviiiiiiiiiiiiiiiiiiititerireneseseeananees G-1

INdeX ¢ oiviiieiiineeeeeeeeeeceocesncoscscoanssscnnseeess I-1

List of Figures

Chapter 1: Introduction
Figure 1-1. Architectural Partitioning—Uniprocessor System 1-2
Figure 1-2. Architectural Partitioning—Multiprocessorsocvuvuenn. 1-3
Figure 1-3. Embedded Control Configurationc.ovviiiiiiiiinenn. 1-3

Chapter 2: CY7C601/CY7C611 Integer Unit
Figure 2-1. Integer Unit Block Diagram

Figure 2-2. SPARC Register Modelcoviiiiiiiiiiiiiniiiiiinnenn,
Figure 2-3. Circular Stack of Overlapping Windowsoooiuinn. 2-3
Figure 2-4. Overlapping Windows ...t 2-4
Figure 2-5. Registers as Seen by a Procedureoviiiiiiiniinann, 2-5
Figure 2-6. Register Banks for Fast Context Switchingo0.. 2-7
Figure 2-7. Processor State Registercoiiiiiiiiiiiiiiiii,
Figure 2-8. Window Invalid Maskcoiiiiiiiiiiiiiin,
Figure 2-9. Trap Base REISLE ... vvvvuneeeeeieeerenaiaeeeeiaaaeaeninns
Figure 2-10. Processor Data Typesoovvininiiiiiiniiniiiiininenns
Figure 2-11. Byte Operand Load and Store

Figure 2-12. Data Organization in Memory

Figure 2-13. Extended-Precision Data Organization in Registers 2-15
Figure 2-14. Extended-Precision Data Organization in Memory 2-15
Figure 2-15. Instruction Format Summary ool 2-16
Figure 2-16. Address GEnerationvueuinieniinererinenenenenennns 2-18
Figure 2-17. Tagged Data Examplecoiuiiiiiiiiiiiiiiiiniinininn.. 2-22
Figure 2-18. Ticc Trap Address Generationcooiveiiiiiiieneninn. 2-24
Figure 2-19. Delayed Control Transferoooiiiiiiiiiiiinninn 2-27
Figure 2-20. Delayed Control Transfer Couplesoooiviiiiiiiiine. 2-29
Figure 2-21. CY7C601/CY7C611 External Signalscoooiiine. 2-43
Figure 2-22. Processor Instruction Pipeline ..., 2-52
Figure 2-23. Pipeline with All Single-Cycle Instructions 2-53
Figure 2-24. Pipeline with One Double-Cycle Instruction (Load) 2-54
Figure 2-25. Pipeline with One Triple-Cycle Instruction (Store) 2-55
Figure 2-26. Pipeline with Hardware Interlock (Load)coovene. 2-56
Figure 2-27. Pipeline During Branch Instructioncoveviiniinn.. 2-57
Figure 2-28. Branch with Annulled Delay Instructionoooou.e. 2-57
Figure 2-29. Pipeline Frozen During Bus Arbitrationoo.. 2-58
Figure 2-30. Pipeline Operation for Taken Trap (Internal) 2-59
Figure 2-31. Data Bus Contents During Data Transfers 2-60
Figure 2-32. Instruction Fetchccoiiiuiiiiiiiiiiiiiiiiiiiinin..

Figure 2-33. Load Single Integer Timing
Figure 2-34. Load Single with Interlock Timing
Figure 2-35. Load Double Integer Timingcooiiiiiiiianinann..
Figure 2-36. Store Single Integer Timingcooiiiiiiiiiiiiiiine,
Figure 2-37. Store Double Integer Timing ...,
Figure 2-38. Atomic Load-Store Timingcocoiviiiiiiiiiiiininn,
Figure 2-39. Floating-Point Operation Timing
Figure 2-40. Bus Arbitration Timing ...,

xii

Figure 2-41.

Figure 2-42.
Figure 2-43.
Figure 2-44.
Figure 2-45.
Figure 2-46.
Figure 2-47.
Figure 2-48.
Figure 2-49.

Figure 2-50.

Figure 2-51.

Load with Cache Miss Timingovuiiiiiiiiiiiineninne, 2-68
Store with Cache Miss Timingc.coiiviiiiininniiinne. 2-69
Load with Memory Exception Timingcoooee. 2-71
Store with Memory Exception Timingccovine. 2-73
Floating-Point Exception Handshake Timing 2-75
Asynchronous Interrupt Timingoiiiiiiiiiiiin., 2-75
Power-On Reset Timing ..o, 2-76
Error/Reset TIMingo.ovvemii i, 2-77
Best-Case Interrupt Response Timingooiies. 2-80
Worst-Case Interrupt Response Timingcovuvnina.. 2-81
Coprocessor Register ModelooiiiiiiiiL. 2-86

Chapter 3: CY7C602 Floating-Point Unit

Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.

CY7C602 Functional Block Diagramcooiiiiiiiinnonn, 3-2
CY7C602 Block Diagramcciviiniiiiiiininiinnnnn. 3-3
CY7C602 Address/Instruction Pipecvuviuviinniieinina.n. 3-4
CY7C601 - CY7C602 Hardware Interface 3-4
Instruction Fetch (Cache Hit)ooooiiiiiiiiiin, 3-6
Instruction Fetch (Cache Miss)coviiiiiiiiiiiinnn, 3-7
Floating-Point Instruction Dispatching................ot 3-8
Floating-Point Compare (FCMP) Execution 3-8
Floating-Point Instruction Pipeline During ATrap 3-9
Effect of FLUSH on LDF Instructionc.cocvenine... 3-10
Effect of FLUSH on STF Instruction...................ooooua.. 3-10
Effect of FLUSH on FPop Instructioncoviun... 3-10
Effect of FLUSH on FCMP Instruction 3-11
f Register Organizationvvuiiuiiuinniiiiiiieeeneenns 3-13
f Register Addressingooovviiiiiiiiiiiiiiiii i 3-13
Floating-Point Status Registercooiiiiiina., 3-14
FPU Operation Modescoovviiiiiiiiiiiniiiiiiieeneenn. 3-18
Floating-Point Exception Handshakecooiuiu.. 3-18
Single-Precision Floating-Point Format 3-20
Double-Precision Floating-Point Format 3-20
Extended-Precision Floating-Point Format 3-21
Extended-Precision Data Organization in Registers 3-21
Extended-Precision Data Organization in Memory 3-21

Chapter 4: CY7C604/CY7C605 Cache Controller and MMU

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.
Figure 4-11.
Figure 4-12.

Virtual 64-kbyte Cachecooiiiiiiiiiiiiiiii ..
Translation Lookaside Buffer (TLB)

Address COmMPAriSONvvuet ittt eiie it iieeanennns
TLB Replacement and Lockingooiiiiiiiae,
Four-Level Table Walk (4-kbyte Addressing)ocvuvenn. 4-7
Three-Level Table Walk (256-kbyte Addressing) 4-9
Page Table Pointercooiiiiiiiiiiiiiiiiiiiiiinann., 4-9
Page Table Entry Formatoooiiiiiiiiiiiiiii e, 4-10
Page Table Pointer Cacheoiiiiiiiiiiiiiiiiin., 4-11
Table Walk Algorithm ...t 4-12
MMU Flush Address Formatooiiiiiiiiiiinine, 4-14
CYC7604 Cache Tag Comparisoncoovviiiiiniiannn. 4-17

xii

Figure 4-13.
Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.
Figure 4-21.
Figure 4-22.
Figure 4-23.
Figure 4-24.
Figure 4-25.
Figure 4-26.
Figure 4-27.
Figure 4-28.
Figure 4-29.
Figure 4-30.
Figure 4-31.
Figure 4-32.
Figure 4-33.
Figure 4-34.
Figure 4-35.
Figure 4-36.
Figure 4-37.
Figure 4-38.
Figure 4-39.
Figure 4-40.
Figure 4-41.
Figure 4-42.
Figure 4-43.
Figure 4-44.
Figure 4-45.
Figure 4-46.
Figure 4-47.
Figure 4-48.
Figure 4-49.
Figure 4-50.
Figure 4-51.
Figure 4-52.
Figure 4-53.
Figure 4-54.
Figure 4-55.
Figure 4-56.
Figure 4-57.
Figure 4-58.
Figure 4-59.

CY7C604 Write-Through with No Write Allocate 4-18
CY7C604 Copy-Back with Write Allocateoovvunn 4-18
CY7C605 Processor Virtual Cache Tag (PVTAG) Comparison 4-20
CY7C605 Cache Tag Entriesovvvieieinininininennnn.. 4-21
CY7C605 Mbus Physical Cache Tag (MPTAG) Comparison 4-22
Copy-back Invalidooiiiiiiiiiiiiii it
Copy-back Exclusive Clean

Copy-back Shared Cleancovviiiiiiiniiiiiinnninn,
Copy-back Exclusive Modifiedcoiiiiiiiia,
Copy-back Shared Modifiedcooiiiiiiiiiii,
Write-Through Invalid ..o,
Write-Through Validoooiiiiiiiiiiie,
Write Buffers (Write-Through Mode)
Write Buffer (Copy-Back Mode)

Read Buffer (Copy-Back Mode)coooviiiiiiiiiininn,
CBWE Byte ASSIgNMENtsoovuvniniienieennranenenenanann.
CY7C604 System Control Register (SCR)

CY7C605 System Control Register (SCR)

CY7C604/60S Context Table Pointer Register 4-37
CY7C604/605 Context Registeroooviuiniiiiinann.,
CY7C604/605 Reset Register

CY7C604/605 Root Pointer Register

CY7C604/605 Instruction Access PTP Register 4-38
CY7C604/605 Data Access PTP Registercoovuvnn. 4-38
CY7C604/605 Index Tag Registeroovvviiiiniiniinninn, 4-38
CY7C604/605 TLB Replacement Control Register 4-39
CY7C604/605 Synchronous Fault Status Register 4-39
CY7C604/605 Synchronous Fault Address Register................ 4-40
CY7C604/605 Asynchronous Fault Status Register 4-40
CY7C604/605 Asynchronous Fault Address Register 4-40
Two-CMU Multichip Configuration

Examples of Multichip Addressing

TEBEntry FOrmatoouviiniiii i iiiiiniiiii it
CY7C604 Cache Tag Entry Formatoooiuiininon....
CY7C605 Cache Tag Entry Formatcooviiiiinaia..,
CY7C604 and CY7C605 I/O Signals

Mbus Burst Transaction Exampleccooiiiiiiinn..
Mbus Address CycCleoiiiiiiiiiiiiiiiiiii i
Mbus Data Orderingouiiuiiuiininieniiieiniiennenns
Mbus Read Transactionovvvuiiiiinivneiiiiinnniennanns
Mbus Write Transactionoeveivuinieiriiiineiniennenns
Mbus Coherent Read Transactioncooviiiinina...
Mbus Coherent Read Transaction - MIH asserted 4-90
Mbus Coherent Invalidate Transactionc.oo... 4-90
Mbus Coherent Read and Invalidate Transaction 4-91
Mbus Coherent Read and Invalidate Transaction - MIH asserted ... 4-91
Mbus Coherent Write and Invalidate Transaction 4-92

Chapter 5: CY7C157 Cache RAM

Figure 5~-1. CY7C157 Block Diagramcooviiiiininininininnniennn, 5-1
Chapter 6: SPARC Instruction Set

Figure 6-1. SPARC Instruction Mnemonic Summaryoeevniieaieaiennann, 6-3

Figure 6-2. Instruction Descriptionccoviiiiiiiiiiiiiaiineninenen, 6-4

xv

List of Tables

Chapter 2: CY7C601/CY7C611 Integer Unit

Table 2-1.
Table 2-2.
Table 2-3.
Table 2-4.
Table 2-5.
Table 2-6.
Table 2-7.
Table 2-8.
Table 2-9.

Table 2-10.
Table 2-11.
Table 2-12.
Table 2-13.
Table 2-14.
Table 2-15.
Table 2-16.
Table 2-17.
Table 2-18.
Table 2-19.
Table 2-20.
Table 2-21.
Table 2-22.
Table 2-23.
Table 2-24.
Table 2-25.
Table 2-26.
Table 2-27.
Table 2-28.
Table 2-29.
Table 2-30.
Table 2-31.
Table 2-32.
Table 2-33.
Table 2-34.
Table 2-35.
Table 2-36.
Table 2-37.
‘Table 2-38.
Table 2-39.
Table 2-40.

Register Addressingooviiiiiiii i
Floating-Point Formatsc..coiiiiiiiiiiiiiinnen.

Extended-Precision Floating-Point Format
opFieldCodingoiiiiiiiiiiiiiiiiiii

op2 Field Codingooiiiiiiiiiiiiiiiiiii i

AST ASSIgNMENSouotii ittt

Load/Store INStructionsovit it

Arithmetic/Logical/Shift Instructions

Control Transfer Instructionscoooiiiiiiininin..

Control Transfer Instruction Characteristics 2-23
Bicc and Ticc Condition Codesc.ooiiiiiiniiiinin.. 2-24
FBfcc Condition Codesovvviiiiiiiiiiiiii i 2-24
CBcce Condition Codesvvveniniiniiaiiiiiiiii i, 2-24
Delayed Control Transfer Instruction Example 2-25
Effect of Annul Bit Reset (a=0)............oooiiiiiiiiii .. 2-26
Effect of Annul Bit Set @=1)ooiiiiiiii .., 2-26
Effect of Annul Bit on Delay Instruction 2-27
Delayed Control Transfer Couple Instruction Sequence 2-28
Execution of Delayed Control Transfer Couples 2-28
Read/Write Control Register Instructions 2-29
Floating-Point-Operate and Coprocessor-Operate Instructions 2-30
Miscellaneaous Instructionscoovviiiiiiiiiiiiiin., 2-30
Load/Store Instruction Opcodescovvuiiiiiiineiniinin.. 2-31
Arithmetic/Logical/Shift Instruction Opcodes 2-33
Control Transfer Instruction Opcodescooiuin... 2-35
Bicc and Ticc Condition Codesovvvuiiiiiiinniiiinin.. 2-35
FBfcc Condition Codesovviuiniiiiiiniiiiiiiiiiiiin., 2-36
CBcee Condition Codeso.vvviniiiiiiniiiiiiiiiii i, 2-36
Read/Write Control Register Instruction Opcodes 2-36
Floating-Point /Coprocessor Instruction Opcodes 2-37
Miscellaneous Instruction Opcodescoviieininn... 2-38
Instruction Opcode Numeric Listingcoooiiiiiiiain. 2-38
CY7C601 External Signal Summaryccoivuiinnninnn... 2-44
ASIASSIBNMENES .. oiutit ittt 2-46
SIZEBit Encodingcoviiiiiiiiiiiiiiiiii i 2-48
Internally Generated Opcodeso.vvvuviinieinnnennneennns 2-54
Externally Generated Synchronous Exception Traps 2-78
‘Trap 'Type and Priority Assignmentscc.oo.... 2-83
Signal Differences Between CY7C601 and CY7C611.............. 2-87
CY7C611 Signal Summarycovvviiiniiiieineiiiinennennnns 2-88

Chapter 3: CY7C602 Floating-Point Unit

Table 3-1.
Table 3-2.
Table 3-3.

Load Instruction Execution
Store Instruction Execution
FPOP EXECULION . oo\ vttt

Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.

FHOLD Resource/Operand Dependency Cases 3-12
Floating-Point Status Register Summaryooovvnenn. 3-15
Floating-Point Load and Store Instruction Cycle Count 3-16
Floating-Point Operate (FPops) Instruction Cycle Count 3-17
FCC(1:0) Condition Codes «....uvvvrvniriinineniinenienennnnns 3-23

Chapter 4: CY7C604/CY7C605 Cache Controller and MMU

Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.

Table 4-10.
Table 4-11.
Table 4-12.
Table 4-13.
Table 4-14.
Table 4-15.
Table 4-16.
Table 4-17.
Table 4-18.
Table 4-19.
Table 4-20.
Table 4-21.
Table 4-22.
Table 4-23.

Short Translation Bits - ST(1:0)coovuiiiiiiiiiiiiiiinin.
Access-Level Protection Bits— ACC(2:0)
Page Table Entry TYPe .. .vvviviniiin i,
MMU Operation MOdeso.vveiiiiniininiiiniiiniieniennenns
TLBEntry Flushingooiiiiiiiiiiiiiiiiiiiieen
Mbus Snooping Transactionsc.oeevireieiiiiireennenennn.
Cache Flush Operationsoeeeiiieieeninenenenenenenss
Cacheable/Non-Cacheable ACCESSES ...vvvvvvrevriirineenennnnns
State Table for MC (Memory Cacheable) Bit 4-33
Byte Write Enablesc.coiiiiiiiiiiiiiiiiiii.,

TLB Entry Address Mappingco.viiuiiiiiiininennnnnnn,s
Cache Tag Entry Address Mappingcovvvrviinevnininnnenns
CY7C604/605 Power-On Reset States

CY7C604/605 Register Address Mapping
Standard AST ASSIgNMENtSovvvitinnineineiineieneinenns
OW Bit States ... vvv ittt i ittt inaas
Fault Register Level Field
Fault Register Access Type Fieldocvviiiiiiiiiiiiinenn.
Fault Register Fault Type Fieldooill,
Fault Type (FT) for PTE[ET] = 2
Fault Register Error Prioritiescooiiiiiiiiiiiiinn,
Mbus Signal Summarycooiuiiiiiiiiiiii i
Bus Status Encodingccoiiiiiiiiiiiiiiiie

Chapter 6: SPARC Instruction Set

Table 6-1.
Table 6-2.

Instruction Description Notationscviiiiiiiininen. 6-4
Instruction Set Summaryoooiiiiiiiiiiiiiiiiiii e 6-6

Foreward

RISC: Fundamentals and Future
by Roger D. Ross, President and CEO of Ross Technology, Inc.

RISC is the future of computing. Over the next S years, a totally new computing standard will emerge based upon RISC
(Reduced Instruction Set Computer) architectures. RISC will completely redefine the computer industry’s existing price/
performance curve, which is based on Complex Instruction Set Computers (CISC), and will be the industrial computing
standard that leads us into the 21st century.

Analyzing RISC’s potential is much more than simply discussing how many MIPS and MFLOPS will be offered over the
next two decades. The technical future of reduced instruction set computers is but one facet of a much bigger drama
that is unfolding. First one must understand the technical fundamentals and benefits of RISC as they relate to the more
general trends of the entire computer industry, trends that tend to complement RISC. This introduction briefly explains
the technical fundamentals of RISC architecture and reviews the broader trends of the computer industry. It will show
that RISC architecture has been designed to exploit the computer industry trends and reveal why the future of RISC
architecture is fundamentally the future of the entire computer industry.

RISC Described (and CISC exposed)

Today, a tremendous amount of misinformation exists surrounding the fundamentals of RISC architecture. Obviously,
the promoters of this misinformation are those who stand to lose the most from its impact: the established manufacturers
of proprietary CISC architectures. These manufacturers tell their prospective customers that they can use RISC design
techniques on their CISC architectures to get close to RISC’s single clock cycle execution feature while maintaining com-
patibility with their existing binary application software base. There are two subtle but totally misleading concepts in the
previous statement. The phrase “RISC design techniques” isblatantly misused, and the phrase “RISC’s single clock cycle
execution feature” is misleading as well because it falls far short of RISC’s true goal. Both of these concepts will be ex-
plained and corrected in the ensuing paragraphs.

RISC is quite simply not a set of design techniques. RISC is a new instruction set architecture technique that is distinct
and completely different from CISC. It is not backwardly adaptable to CISC, which is now defined by, and indeed captive
to, its “prior art” forms. Instruction sets are, after all, the fundamental form of computer architecture. RISC evolved
as a solution to the problem of how to derive more power; that is, how to derive more instruction set power out of a com-
puter and its associated compilers. The goal of RISC is not simply to reduce the system’s instruction set, it is to intelligent-
ly select a set of streamlined instructions that yield maximal data-processing performance within the context of compiled
programming techniques. RISC is a way to significantly enhance a system’s performance while keeping costs on or below
par with CISC. These new instruction set techniques are described below. CISC instruction sets were selected over 20
years ago, and cannot now be changed if CISCs are to maintain compatibility with their existing binary application software
base. Consequently, the fallacy of CISC using “so called” RISC technology at the instruction set level is readily apparent.
In fact, these instruction set techniques are the real and only difference between RISC and CISC.

RISC has three major instruction set features that distinguish it from CISC. RISC’s instruction set attributes include
a load/store model of execution, a non-destructive triadic register file that provides a distinct and highly efficient data
preservation model, and, lastly, normalized fixed-length instructions. Conversely, CISC uses a memory/register model
of execution, an accumulator/register file that engendersa destructive data environment, and variable-length, contextual-
field instructions.

RISC'’s load/store model of execution means that the only instructions that can access main memory are load and store
instructions. All other CPU instructions operate on internal registers. By using this model it is possible to decouple
loading and storing traffic from data processing operations such as arithmetic or logical instructions, and thereby raise

xvii

e
¥ i CYoREss Foreward
Z SEMICONDUCTOR

U4

the operational concurrency of the entire CPU. It also makes it possible to schedule code to fill stall slots that naturally
occur due to the latency between the time when a load instruction is issued and the time, typically 2 to 3 clocks later, when
the data is returned from memory and is actually ready for use.

However, the true uniqueness in RISC’s load/store instruction set philosophy is the recognition that the register file is
in actuality a computer’s highest-level data cache. This register file data cache differs from other, lower-level data caches
in that its use is deterministic and not stochastic. Load instructions are simply a way to fill this cache, and store instructions
are merely a way to write back updated data to the lower memory hierarchy. With this in mind, one can argue that load/
store operations are not even instructions at all, they are just mechanisms available to software that allow it to administer
the register data cache. Consequently, the optimization and direction of this register file data cache can be determined
solely by the compiler or assembly language programmer. All of the leading RISC architectures (SPARC, MIPS, Motoro-
la 88K, and Intel 860) have a larger register file than any of the pre-existing commercial CISC architectures. In addition,
SPARC has even further evolved beyond the large register file concept by providing a register file extension that is com-
prised of overlapped register windows. SPARC’s overlapped register windows are primarily used to pass parameters dur-
ing subroutine accesses, thereby further cutting down on load and store traffic and more completely acknowledging the
fact that the modern computer’s register file has now fully evolved into a deterministic cache subsystem. There is now
no way for CISC architectures to directly apply large flat register files to their instruction sets. They could have done
so at one time, but now their binary instruction sets are frozen and it is too late. The decision is irrevocable.

RISC’s non-destructive, three-register (triadic) architecture model means that information in the CPU is preserved (i.e.,
maintained in the register data cache) during ongoing data processing. For example, a RISC add instruction would be
verbalized as “register A is equal to the result of register B plus register C.” All information that was contained in registers
B and C is preserved (it is interesting to note that this more natural model is also the one that we use to teach algebra
to our children). Data preservation within the register file (i.e., data cache) is a fundamental and obvious requirement
to minimize load/store traffic. In contrast the CISC machine’s fundamental model is simply stated as “add the contents
of register A and register B and place the result in register A.” Obviously, the original contents of register A are de-
stroyed, and consequently the name “destructive.”

It is also necessary to allow an optimizing compiler to effectively reschedule code to fill pipeline stalls that frequently
occur in computational engines. Ina computer one can reschedule code so long as it is determined that no data dependen-
cies occur and the original semantic content of the program is maintained. Therefore, a non-destructive register model
taken together with a load/store architecture provides a dramatic boost in instruction set architectural performance due
to its ability to minimize load/store traffic as well as decouple operations and thereby allow optimizing compilers to effi-
ciently fill stall slots.

Alternatively, CISC machines have a memory/register instruction set architecture. This means that in a CISC architec-
ture one can do an add instruction with an addressing mode that appears to obtain an operand directly from main memory
and add it into a register. Inreality, this add instruction is forced to do an operand load before it can complete the instruc-
tion. However, this load is coupled to the add operation and so the unavoidable stall slot between the load and the add
cannot be filled with useful work. Typically 40% to 50% of all instructions dynamically executed in a CISC machine’s
existing software base utilize and therefore mandate this hidden load of operands.

CISC machines evolved from the accumulator model of execution. In this model the programmer “accumulates” results
in a register, thereby destroying the data already existing in that register. The problem with a destructive register model
is that it keeps the compiler from performing efficient algorithmic code rescheduling operations that could lead to higher
throughput. Data and condition codes in CISC machines is location sensitive because it is constantly being destroyed
by new instructions. In addition, this model simultaneously increases a machine’s load/store activity when registers must
either be saved or restored from main memory by the compiler in its struggle to preserve critical data. Again historically
speaking, CISC could have adapted a large triadic register model, but once again it did not, and now it is too late. CISC
is a captive of its installed binary software base and established instruction sets.

All true RISC machines utilize fixed-length instructions. Fixed-length instruction sets make possible normalized instruc-
tion encoding (i.e., minimize. the use of contextual fields) with greatly simplified addressing modes. In addition, operand
accesses only occur between registers (i.e., cached data). By making each instruction 32 bits long, instruction decode is
much easier and can occur much faster than in CISC architectures. RISC CPUs exploit fine-grain parallelism by decoding
all parts of the instruction in parallel. In CISC machines, instruction decode occurs sequentially as the instructions are
of variable length and contextual in nature. Hence final instruction decode cannot usually occur until all parts of the in-
struction are fully analyzed. In CISC machines, depending on the addressing mode and particular instruction used, this
can take from 2 to 11 clocks. In RISC machines with 32-bit, fixed-length instructions, this always takes exactly 1 clock.

There are three major effects of RISC’s streamlined, or reduced, instruction set architecture techniques. First, due to
its instruction set normality, RISC machines have no need for microcode. That is, all instructions can be hardwired in
a very efficient manner.

xviii

= SN

a...; .

E=—F Jor,ooy Foreward
—=r & SEMICONDUCTOR

Second, RISC’s streamlined instruction set allows for single clock cycle execution. But this is just the tip of the iceburg
in that the true goal of RISC is the concurrent execution of many instructions at once. It is in this “superscalar” execution
form that RISC’s full potential ultimately lies. Although by using of millions of extra transistors CISC could eventually
come close to one instruction per clock, superscalability is effectively beyond CISC’s practical scope.

Third, because of the concurrency made possible by the instruction set as described previously, RISCs can more aggres-
sively and efficiently exploit the design technique of pipelining. These distinctions explain why RISC can provide a 2 to
5 times performance advantage over CISC given equal technologies of implementation.

Key Historical Trends of the Computer Industry

This section will not attempt to distill the entire history of the computer industry in just a few pages. Rather, it isintended
to take a step back and look at some of the more important trends in the industry.

There have been three defacto architectural computing standards in the history of the computer industry: the IBM
360/370, the DEC VAX, and systems based on the Intel 80x86. Most professionals in our industry do not remember that
the IBM 360/370 mainframe architecture, originally released in 1964, was in fact the first system to be cloned! This clon-
ing, by companies such as Amdahl and NAS, was a direct realization that the application software was the standard to
which the hardware had to comply. This cloning also led to the IBM 370 and PCMs (plug-compatible mainframes) that
have held between 50% to 70% of the entire computer industry market for nearly 20 years.

The DEC VAX, a minicomputer or mid-range system, was in reality a way to bring a better level of price/performance
to the end user than that offered by mainframes. In the final analysis, price and performance are the drummers to which
the entire computer industry marches. By offering a significant advantage in price/performance (i.e., two times the per-
formance or more) over the IBM and PCM mainframes, DEC was able to establish a beachhead in the systems industry
that enabled it to become second to only IBM in size.

Computers based upon the 80x86 microprocessor architecture from Intel also offered significantly enhanced price/perfor-
mance over the mainframe and minicomputer systems that were in existence at the time. Asis well known, IBM adopted
the 8088 in its original personal computer. This product was brought to market several years after the first personal com-
puters emerged from companies such as Apple. However, distinguishing it from the other market entrants was the fact
that the IBM PC was clonable. Cloning again led to the marketshare dominance of this particular computer architecture.
Today it is estimated by leading market researchers that approximately 85% of the installed worldwide personal computer
base is comprised of IBM and IBM-compatible personal computers. As a result of its use in the IBM personal computer
architecture, Intel’s 80x86 family today exceeds the sales of all other 16- and 32-bit general-purpose microprocessors com-
bined.

The historical trend toward enhanced system price/performance is to obtain greater performance for absolutely lower
costs. In 1990, systems that sell for under $10,000 dominate the entire computer industry, amounting to over 95% of all
units shipped and 40% of the total sales dollars of the computer systems industry. In the next ten years this trend should
accelerate with systems priced under $7,500 amounting to over 99% of all units shipped and 75% of the total sales dollars
of the entire computer systems industry.

With the dramatic increase in the use of low-cost, typically desktop computers, there has been a parallel increase in the
use of computer networks. Distributed data processing, also known as networked computing, in which desktop systems
are tied to server computers, is now much more common than massive mainframes with several hundred terminals. Inter-
estingly, yesterday’s minicomputers and mainframes have become today’s servers. However, even these ECL server sys-
tems are increasingly giving way to CMOS microprocessor-based systems. These new servers also use industry standard
microprocessors, as opposed to designing their own high-cost proprietary CPUs, as a way to offer enhanced price/perfor-
mance.

Enhanced price/performance has another facet to it: enhanced productivity for the user. Also known as user friendliness,
these are quite simply the use of graphics instead of text, and the use of windows and user interfaces rather than simple
command lines. These features have made computers much more accessible. However, this user friendliness has not
been easy to achieve. First of all, the software behind the user friendliness is large and complex. To run windows and
graphics interfaces requires much higher CPU performance than has, until recently, been available in the microprocessor
market. Writing software of this complexity has necessitated the use of high-level languages, of which the overwhelming
language of choice hasbeen C. Of course each line of C, as with any other high-level language, is comprised of multiple
lines of assembly code, so it requires more CPU horsepower to run effectively.

The Future of RISC

The first generation of RISC machines have been what is termed single-instruction launch microarchitectures. Through
pipelining it has been possible to significantly overlap the various stages of an instruction’s lifecycle, and hence the current

==
%iﬁi% Foreward

generation of RISC implementations have asymptotically approached a performance rate of 1 clock per instruction (1
CPI). This overlap is required to provide continued execution opportunities instead of suffering through the delays which
would otherwise arise due to multiple clock cycle instructions and memory accesses. This does not always work perfectly,
however, and consequently the first generation of RISC implementations have an aggregate throughput that is on the
order of 1.25 to 1.5 CPL

The next step in microarchitecture for RISC machines will be the ability to execute two or more instructions simultaneous-
ly. This feature is sometimes referred to as “superscalability.” RISC implementations will be able to fetch, decode, ex-
ecute, and finish two or more instructions at the same time. Multiple-instruction launching requires the ability to internal-
ly schedule the instructions while simultaneously checking for data dependencies and the availability of computing
resources before the instructions are launched. For instance, the ability to launch four integer instructions in the same
clock cycle should yield an instruction execution theoretical peak CPI rate of 0.25. The bus bandwidth required to feed
both instructions and data into the machine and a high-performance cache architecture and cache refill capability to keep
these high-speed channels fully utilized will be very important in multi-launch implementations.

RISC microarchitecture will follow the path of increasing the number of simultaneous execution units and will inevitably
evolve into a dataflow type of architecture whereby multiple data operands flow through the machine being used by avail-
able execution units. Research on dataflow architectures is currently in advanced stages at leading universities. However,
whereas CISC instruction sets have been obsoleted by RISC in the search for higher architectural performance, this will
not happen to RISC. RISC instruction sets can and will be preserved in the evolution to dataflow architectures. It will
be possible to obtain dramatic performance enhancements in RISC, first through multi-launching, then through dataflow,
without making any changes to the fundamental instruction set. These performance improvements will occur under the
surface of the instruction set, and will enable a complete continuum of the application software investment. This continu-
um could last for at least 25 to 30 years, and it will be a truly remarkable period of software base stability.

‘The performance capability and growth path of RISC architectures have not gone unnoticed. At this point, RISC architec-

tures have clearly hit the mainstream of computing. As of this writing, every major manufacturer of computer systems
in the world has somehow endorsed RISC architectures. This list includes IBM, DEC, ICL, Sun, Unisys, NCR, Toshiba,
AT&T, Olivetti, and many more. These manufacturers have moved to RISC not because it is a fad, but because they
realize that RISC offers fundamentally better price/performance than does CISC. Coincidentally, every major manufac-
turer of semiconductors has also aligned itself with a RISC architecture in some form or fashion.

RISC architectures are already used in desktop systems from companies such as Sun and HP, in servers from companies
such as Solbourne, and in mainframes from companies like ICL. RISC architectures have already proven that they pro-
vide from 2 to 5 times the performance of CISC architectures given equal implementation technology (i.e., cost).

Owing to their streamlined, efficient instruction set, RISC architectures result in a fundamentally shorter design cycle
for RISC chips as compared to CISC. It is also due to this simplicity that we have seen RISC architectures already fan
out into custom CMOS, ECL, gate arrays, and GaAs. The significance of these events is that it is now possible to have
a binary software-compatible range of RISC-based computers from the desktop to the mainframe. This has never been
achieved in the industry, and this capability is obviously very synergistic with the trend toward networked computing.

Neither of the previous defacto computing standards (IBM 370 and the Intel 80x86) had the benefit of being able to use
the application software base available from its competitive predecessors. RISC, however, is able to make use of the
existing computing standard software base. That is, by using advanced binary emulation techniques, the entire $15 billion
MS-DOS applications software market is now accessible to RISC architectures. So we have the scenario where RISC
is able to run its native software several times faster than CISC can run software, and at the same time it can run existing
CISC software nearly as fast as the CISC machines can!

The RISC Contenders

There are currently four RISC architectures that are the mainstream contenders in the RISC marketshare race. These
architectures are the SPARC architecture from SPARC International, the MIPS Rx000 from MIPS Inc., the MC88000
from Motorola, and the i860 from Intel.

Marketshare for the competing RISC architectures arises from several key factors. These factors are the alliances with
key systems manufacturers, the availability of low-cost (under $10,000) desktop systems, a large base of shrinkwrap appli-
cation software, a wide range of system price options (from under $10,000 to over $1,000,000), competitive semiconductor
implementations of the CPUs, multiple sources of the CPUs, and state-of-the-art technology.

At this point in time only SPARC is openly owned and controlled, has independent multiple sources for its chip sets, and
has multiple microarchitecture implementations available that all execute the same binary software. Motorola’s
MC88000 is sole-sourced for commercial applications and second-sourced strictly for military applications by Thomp-
son-CSF. However, Motorola owns and controls the MC88000 microarchitecture. MIPS’ architecture is also second-

=

%’i‘&m Foreward

—

sourced, but the microarchitecture is solely controlled by MIPS Inc. And Intel’s i860 is completely proprietary. Unless
MIPS, the MC88000, and the i860 become openly owned and independently second-sourced, it is very unlikely that they
will continue to be contenders in the RISC race against SPARC. Hewlett-Packard now realizes the significance of open
ownership and its relationship to market success. As a result, they also are now attempting to move their architecture
away from a proprietary basis and into the open market.

To date, low-cost systems priced under $10,000 are available that use the SPARC, MIPS and MC88000 architectures. The
differentiating factor between these systems is the software base. SPARC'’s software base is much larger than that for
all other RISC architectures combined, and is usable in shrinkwrap form on multiple platformsbased on multiple vendor’s
SPARC chips. This capability was proven by Solbourne Computer in Longmont, Colorado when they created the world’s
first SPARC-compatible system, thereby making SPARC the only RISC architecture with proven system-level clonability.
Motorola is attempting to create a similar capability for the MC88000 through a committee-generated document called
the MC88000 BCS (Binary Compatibility Standard). MIPS has no such plans in the works, and has actually seen its base
fragment between its own systems, Stardent, DEC, and those of Silicon Graphics. As stated previously, shrinkwrap soft-
ware led the Intel 80x86 architecture to an overwhelming marketshare lead. Likewise, shrinkwrap software will also be
the biggest differentiator in the RISC marketplace and it favors SPARC both from its present large base and also from
its growth rate as well.

Summary

The general trends of the computer industry are very complementary to the capabilities of RISC architectures. The com-
puter industry market always thirsts for higher performance at lower prices, and is structuring itself to allow this to hap-
pen. RISC, a set of instruction set architecture techniques, offers significant performance advantages over CISC, and
requires less transistors to do so. Because of its transistor count frugality, RISC has scaled quickly into very high perform-
ance technologies such as ECL and GaAs, and hence is ideally suited to fitting in at all price/performance points existing
within the entire computer industry. Most importantly, RISC is affordable on the desktop and is able to efficiently run
the huge PC software base that already exists there. In addition, RISC’s performance growth path is assured, and is formi-
dable when compared to that for CISC. For all of these reasons, RISC architectures will come to dominate 32-/64-bit
computing over the ensuing years.

Foreward

E‘r‘—**‘*‘.g Chapter 1

—== & SEMICONDUCTOR Introduction

1.1 SPARC Overview

SPARC, an acronym for Scalable Processor ARChitecture, is an open RISC architecture with multiple semiconductor
implementations from a number of vendors. SPARC is an architecturally driven standard, with binary compatibility of
software between processor versions ensured by enforcing compliance to the architecture standard. The open architec-
ture approach offered by SPARC allows all its participants to make creative contributions in developing their versions
of SPARC processor. This results in a vastly greater number of technical contributions than would be possible for a closed
architecture held and defined by only one group. This architectural freedom has allowed the SPARC architecture to
expand into CMOS gate arrays, full-custom CMOS, bipolar ECL, and GaAs faster than any other RISC architecture.
This same freedom allows SPARC vendors to make microarchitectural enhancements to their SPARC implementations
while maintaining absolute binary compatibility. The final result of this open architecture approach is that it provides
the customer with a wider range of price/performance and technology options that cannot be matched by less innovative
and restricted licensing policies. In addition, the various SPARC vendors also participate in standard second-sourcing
agreements.

The inclusion of the word “scalable” in the acronym for SPARC emphasizes its importance in the philosophy of the archi-
tecture. “Enforced compatibility” hasbeen embraced to ensure migration of the architecture as semiconductor technolo-
gy improves. Scalability allows SPARC to be re-implemented without complication as semiconductor process technology
evolves. This allows SPARC to continually be offered in higher clock speeds and technologies than other RISC architec-
tures, providing rapid performance improvements as process technology continues to be refined. Other RISC processors
have complicated their microarchitectures with features that create an unnecessary burden for the hardware designer.
These features provide only a minimal performance improvement, but greatly complicate hardware design and cost. The
CY7C601 microprocessor does not require multiple-phase clocks, demultiplexing of the processor’s address or data buses
or many of the other problems that affect hardware complexity and cost. This provides CY7C601 SPARC-based designs
with the advantages of excellent performance, low design costs, a high degree of manufacturability, and increased reliabil-
ity due to its simplicity of design.

The CY7C600 chip set is a 32-bit custom CMOS implementation of the SPARC architecture. Designed by Ross Technolo-
gy, Inc., a Cypress Semiconductor subsidiary, the chip set is implemented in Cypress’s state of the art 0.8-um CMOS tech-
nology. The chip set is in production and is available in clock speeds of 25, 33, and 40 MHz. The CY7C600 family includes
the CY7C601 Integer Unit (IU), the CY7C602 Floating-Point Unit (FPU), the CY7C604 Cache controller and MMU
(CMU), the CY7C605 Cache controller and MMU for MultiProcessing (CMU-MP), and the CY7C157 Cache RAM
(CRAM). The CY7C601, CY7C602, CY7C604 or CY7C605, and two CY7C157s comprise a five-chip CPU, providing
up to 29 MIPS of sustained integer performance and over 6 MFLOPS of double-precision floating-point performance
at 40 MHz. This CPU includes a SPARC Reference MMU and a 64-kbyte cache, and directly interfaces to a 64-bit physical
bus capable of a bandwidth approaching 320 Mbytes per second at 40 MHz. The five-chip CY7C600 CPU requires no
glue logic, and provides maximum computing performance with minimal design effort.

1.1.1 Partitioning

The CY7C600 family hasbeen designed to offer a complete solution for high-performance computer and controller appli-
cations. The CY7C601IU and the CY7C602 FPU together comprise the full SPARC instruction set architecture. The
CY7C602 replaces two chips that previously made up the FPU, the CY7C608 floating-point controller and the CY7C609
floating-point processor (Texas Instruments’ SN74ACT8847). Additional family members include the CY7C604 CMU
for uniprocessor applications, the CY7C605 CMU-MP, and the CY7C157 CRAM.

The CY7C611is a specialized derivative of the CY7C601 integer unit that has been optimized for embedded control appli-
cations. It is in production in a cost-effective, 160-pin PQFP package, and is available at a speed of 25 MHz.

1-1

%%cvm Introduction
SEMICONDUCTOR

CY7C601 23..?.2232
Integer !
s FP Interface Signals Point
>
| * Virtual Address Bus VA(31:0) }]
[Data Bus D(31:0) |

t "o

cvrcisr | [cvrcisr
CY7C604 Cache Cache
Cache RAM RAM
Controller
and MMU | cRaAM Control Signals+]

Y

Figure 1-1. Architectural Partitioning— Uniprocessor System

Mbus (64-bit multiplexed data/address bus) I

Figure 1-1and Figure 1-2 illustrate how CY7C600 family devices connect to each other in both uniprocessor and multipro-
cessor applications. The CY7C601’s second coprocessor interface is not shown in these diagrams. The function of this
second coprocessor (CP) is defined by the system designer, but its interface to the CY7C601 is identical to that of the
CY7C602 FPU coprocessor.

Figure 1-3 illustrates an embedded control system utilizing the CY7C601 or CY7C611 with an optional CY7C602 FPU
and user-designed memory system.

1.12 The CY7C601 Integer Unit

The CY7C601 is the primary processing engine in the SPARC architecture, executing all instructions except for specific
floating-point and coprocessor operations. The CY7C602 FPU does its floating-point calculations concurrently with the
CY7C601IU. The architecture also allows for concurrent operation through the use of an optional second coprocessor.

Significant features of the CY7C601 include:

» Full binary compatibility with entire SPARC application software base

« Architectural efficiency that sustains 1.25 to 1.5 clocks per instruction

« Large windowed register file

« Tightly coupled floating-point interface

» User/supervisor modes for multitasking

« Semaphore instructions and alternate address spaces for multiprocessing
» Tagged arithmetic instructions to support artificial intelligence software

1.1.2.1 Traps and Exceptions

The CY7C601 supports a full set of traps and exceptions. A table-based set of trap vectors supports 128 hardware and
128 software trap types, both synchronous (error conditions and instructions) and asynchronous (interrupts and reset).
The CY7C601 supports a very fast interrupt time of 4 to 7 clocks, depending upon the contents of the instruction pipeline.

1-2

%:ié: oRESS Introduction
—r SEMICONDUCTOR
CY7C801, CY7C601 CY7C801 CY7C601
p [CY7C602] f CY7C602 Int ICY7C6802 f CY7C602
"ioger FPU i FPU el FPU "aer FPU
YABLO) t YARLO) f VAG10) 1 VA31,0) f
VD(31:0) VD(31:0) VD3T0)” VD(31.0)
cvrceos 7cis7| | 7c1s7 cvrceos 7cis7| | 7e1s7 - 7cis7| | 7e1s7 —— 7c157| | 701857
cMU cMU CMU CMU
[Mbus (multiplexed 64-bit data/address bus)
Mbus Main Memory
Arbiter S;{}S(t)em or
etc. Second-Level
’ Cache
Systemn Backplane Bus |
Figure 1-2. Architectural Partitioning—Multiprocessors
CYrceon CY7C602
Floating-Point
Cl\ge%i:" FP Interface Signals Unit
Unit “——"—‘—‘_"’((optional
I Address Bus l
L Data Bus_D(31:0)]
Memory
Subsystem
and I/0
l System Bus 1

Figure 1-3. Embedded Control Configuration

1-3

=" F CrrrESS Introduction

1.1.2.2 Multitasking

Multitasking is supported with user and supervisor modes. Certain privileged instructions can only be executed while
the CY7C601 is in supervisor mode, ensuring that user programs cannot accidentally alter the state of the machine. Su-
pervisor mode is only accessible by using a hardware interrupt or by executing a trap instruction.

1.1.2.3 Multiprocessing

The CY7C601 supports multiprocessing with two instructions for implementing semaphores in memory. Atomic Load/
Store Unsigned Byte loads a byte from memory, then sets the memory location to all ones. The SWAP instruction ex-
changes the contents of a register and a memory location. Both of these instructions are “atomic,” meaning uninterrupt-
able.

1.1.3 CY7Ce611 Integer Unit for Embedded Control

The CY7C611 Integer Unit is a subset of the CY7C601 Integer Unit intended for use in embedded control systems. It
is architecturally identical to the CY7C601, and all details concerning the CY7C601 described in Sections 2.1 through
2.8 of Chapter 2 apply to the CY7C611. The CY7C611 is available in a 160-pin plastic QFP and is in production at 25
MHz. The CY7C611 differs from the CY7C601 in that several of the signals available on the CY7C601 that are not re-
quired for embedded control systems have been deleted. Inaddition, the CY7C611 does not have a user-defined copro-
cessor interface. The CY7C611 does have a floating-point interface, which can also be used to interface to a user-defined
coprocessor. Please refer to Section 2.9 for detailed information on the CY7C611.

1.14 CY7C602 Floating-Point Unit

The CY7C602 FPU provides high-performance, IEEE STD-754-1985-compatible single- and double-precision
floating-point calculations for CY7C600 systems, and is designed to operate concurrently with the CY7C601. All address
and control signals for memory accesses by the CY7C602 are supplied by the CY7C601. Floating-point instructions are
addressed by the CY7C601, and are simultaneously latched from the data bus by both the CY7C601 and CY7C602. Floa-
ting-point instructions are concurrently decoded by the CY7C601 and the CY7C602, but do not begin execution in the
CY7C602 until after the instruction is enabled by a signal from the CY7C601. Pending and currently executing FP instruc-
tions are placed in an on-chip queue while the CY7C601 continues to execute non-floating-point instructions.

The CY7C602 has a 32 x 32-bit data register file for floating-point operations. The contents of these registers are trans-
ferred to and from external memory under control of the CY7C601 using floating-point load/store instructions. Address-
es and control signals for data accesses during a floating-point load or store are supplied by the CY7C601, while the
CY7C602 supplies or receives data. Although the CY7C602 operates concurrently with the CY7C601, a program contain-
ing floating-point computations generates results as if the instructions were being executed sequentially.

1.1.5 CY7C157 Cache Data RAM

The CY7C157 is a 16K x 16-bit high-performance CMOS static RAM designed specifically as a cache memory for
CY7C600 systems. It incorporates registered address and write-enable inputs, latched data inputs and outputs, and a
self-timed write mechanism—features that have greatly simplified the design of cache memories for the CY7C600 family.

11.6 CY7C604/CY7C605 Cache Controller and Memory Management Units

The CY7C604 and CY7C605 are combined cache controller and memory management units designed specifically to sup-
port the CY7C601. The CY7C604 and CY7C605 provide control for a 64-kbyte direct-mapped virtual cache and provide
aSPARC reference standard MMU for virtual to physical address translation. The CY7C604 and CY7C605 directly inter-
face with the CY7C600 family, requiring no glue logic for a 64-kbyte cache system. The CY7C604 and CY7C605 use two
CY7C157 Cache RAMs to implement a 64-kbyte cache system using only three chips. Cache tag memory is provided
as an on-chip feature of the CY7C604/CY7C605, thereby reducing hardware complexity for a CY7C604- or
CY7C605-based system.

The CY7C604 is optimized for uniprocessor systems, providing cache locking and cache expandability to 256 kilobytes
using additional CY7C604s. The cache locking feature of the CY7C604 allows deterministic response from the cache
system, an important feature for real-time systems. The SPARC reference MMU, supported on both the CY7C604 and
the CY7C605, provides translation of a 4-Gbyte virtual address space to a 64-Gbyte physical address space. Both the

1-4

===
% i&wmss Introduction
—= »~ SEMICONDUCTOR

CY7C604 and the CY7C605 provide a 64-entry fully associative TLB (Translation Lookaside Buffer), used in translating
virtual addresses to physical addresses. TLB entries may be locked, excluding critical TLB entries from replacement and
thereby preventing unnecessary table walks. Table walking (required to obtain additional virtual to physical address trans-
lations not stored in the TLB) for the CY7C604 and CY7C605 is implemented in hardware, providing a substantial time
savings over software table walk routines.

The SPARC MMU section of the CY7C604/CY7C605 is designed for the efficient support of multitasking operating sys-
tems. CY7C604/CY7C605 TLB and cache tag entries allow a maximum of 4096 different context tags to identify tasks
within an operating system. The SPARC MMU implemented in the CY7C604/CY7C605 provides extensive memory
access level protection (user/supervisor and read/write/execute), including an execute-only memory access level. The
ability to mark memory accesses as execute-only provides a security feature that can be used to protect proprietary fea-
tures of a software system from unauthorized scrutiny. The CY7C604 and CY7C605 MMU also support multilevel ad-
dress mapping, allowing software to select a region of 4 kbytes, 256 kbytes, 16 Mbytes, or 4 Gbytes to be addressed by
a single TLB entry. This feature allows efficient utilization of TLB entries, which in turn reduces the number of table
walks caused by system software.

The CY7C605 is an extension of the CY7C604 designed for use in multiprocessor systems. The CY7C605 provides a dual
cache tag memory, which allows the CY7C605 to perform bus snooping while it simultaneously supports cache accesses
by the CY7C601. The CY7C60S implements a cache coherency protocol based on the IEEE Futurebus, which has been
recognized as a superior protocol for maintaining consistency of shared data in a multiprocessing system. The CY7C605
supports direct data intervention, which is the capability of a CY7C605-based cache to directly supply modified data to
another requesting cache without first requiring main memory to be updated. This feature provides a significant perform-
ance advantage over cache systems that must update main memory in order to supply modified data to another cache.
In addition to direct data intervention, the CY7C605 also supports memory reflection. Memory reflection allows a
memory system to automatically update itself during a direct data intervention operation. This feature allows a multipro-
cessing system to update both a requesting cache and main memory in a single bus operation.

Both the CY7C604 and the CY7C605 are specifically designed to support secondary cache systems. The use of common
secondary caching provides the advantage of increased cache performance for each processing node of a multiprocessor
system without the expense of large caches for each node. This approach also provides a direct upgrade path to the next
generation of high-integration SPARC processors. The CY7C605 is designed to be pin compatible with the CY7C604.
This feature allows a system to be upgraded from uniprocessor to multiprocessor by modifying the operating system and
replacing the CY7C604 with the CY7C605.

The CY7C604 and CY7C605 support the SPARC Mbus standard bus interface. The Mbus is a peer level, high-speed,
64-bit, multiplexed address and data bus which supports a full peer-level protocol (i.e., multiple bus masters). The
CY7C604/605 Mbus supports data transfers in transaction sizes of 1, 2, 4, 8, or 32 bytes. These data transfers are per-
formed in either burst or non-burst mode, depending upon size. Data transactions larger than eight bytes (one double-
word) are transferred in burst mode, which consists of an address phase followed by four data phases. Non-burst transac-
tions consist of an address phase followed by one data phase, and are used for data transactions of eight or less bytes.
Bus mastership is granted and controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access
to a bus master.

Mbus is divided into two levels of implementation: level 1 and level 2. Level 1, implemented on the CY7C604, is the
uniprocessor version of Mbus. Level 1is a subset of level 2, which is the multiprocessor version of Mbus. The CY7C605
supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus (MOSEI) cache coherency protocol, which has been
recognized in the industry as a superior method of supporting multiprocessing systems. Level 2 Mbus defines five cache
states for describing cache line status. Transactions on the Mbus are monitored or “snooped” by the CY7C605 and other
bus agents on the level 2 Mbus to maintain ownership and modified status for each cache line. Transactions on the level
2 Mbus are made with respect to the cache line ownership and modified status to ensure consistency for shared data
images.

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache
line to directly supply the data to another cache system without having to first update main memory. Direct data interven-
tion provides a significant performance improvement over systems that do not support this feature. In addition, the
CY7C605 provides support for memory systems with reflective memory controllers. A memory system with reflective
memory control can recognize a cache-to-cache data transaction and automatically update itself without delaying the sys-
tem. Another system concept supported by the CY7C605 is secondary caching. Secondary caching provides a perform-
ance advantage over systems directly using main memory, and provides an economic advantage over systems using large
caches for each processing node.

Em

=

%?& Introduction
SEMICONDUCTOR

=

1.2 Register Windows

The CY7C601 contains a large, 32-bit-wide, triple-port register file that is divided into multiple windows which are con-
trolled by internal hardware. Each window contains 24 working registers and has access to 8 global registers. Combined
with the CY7C601’s register-to-register architecture, this file operates effectively as a compiler-directed, copy-back data
cache, considerably reducing data bus traffic. Load instructions enter data into this cache, and store instructions “copy
back” information when it needs to be replaced into main memory.

The register file is managed as a circular stack, with the first and last windows overlapping each other. Each window
overlaps the previous window and succeeding window by 8 registers, making the window mechanism ideal for passing pa-
rameters in procedure calls. Results left in the overlapping registers by a calling routine automatically become available
operands for the called routine as the window moves, and vice versa. This parameter passing technique eliminates the
need for the loads and stores to memory required by machines using a stack during procedure calls.

1.3 Instruction Set

SPARC defines 55 basic integer instructions, 14 basic floating-point instructions, and two coprocessor-operate instruction
formats. CY7C600 instructions fall into five basic categories: load/store, arithmetic/logical/shift, control transfer, read/
write control register, and floating-point-operate/coprocessor-operate.

1.3.1 Load and Store Instructions

Load and store instructions are the only way to access memory or external registers. Addresses are calculated using the
contents of two registers or one register and a constant. The destination may be either an integer unit, floating-point
unit, or coprocessor register, which either supplies or receives the data. In order to greatly speed up memory accesses,
halfword, word, and doubleword data must be aligned on their corresponding boundaries. If they are not, a trap is gener-
ated when an access is attempted.

1.3.1.1 Address Space Identifier

Whenever an address is sent to the address bus, the processor also generates 8 bits of address space identifier (ASI).
The ASI pins identify to the external system which of the 256 possible address spaces is to be accessed. For most CY7C601
operations, one of four standard ASI values are asserted. These four ASI values indicate whether the processor is in user
or supervisor mode, and whether the access is an instruction or data reference.

The address space identifier is intended for use by the system operating software. Consequently, the instructions that
specify a particular ASIvalue (load/store alternate) are privileged and can only be executed in the supervisor mode. Many
of the ASI bit patterns are assigned for accessing various features of the CY7C604/CY7C605. A large block of address
spaces are reserved for the designer to implement as desired.

1.3.2 Arithmetic/Logical /Shift Instructions

These instructions compute a result using two source operands and place the result in a destination register. In addition
to standard arithmetic operations, the CY7C601 includes tagged arithmetic operations. Tagged arithmetic instructions
assume that the least-significant two bits of the operands are tags, and set a condition code bit if they are not zero. Tagged
instructions are used with artificial intelligence languages such as LISP to indicate the data type of the operands. The
use of tagged arithmetic instructions allows languages such as LISP and Prolog to run significantly faster than on RISC
machines without this type of instruction.

1.3.3 Control Transfer Instructions

Control transfer instructions include jumps, calls, branches, and traps. Transfer of control to the new address is usually
delayed until after execution of the next instruction immediately following the jump, call or branch, etc., so that the trans-
fer doesn’t create a hole or bubble in the instruction pipeline. It is the compiler’s or the assembly language programmer’s
job to attempt to place a useful instruction in this delay slot.

1.3.4 Read/Write Control Register Instructions

These include instructions to read and write the contents of various CY7C601 control registers. The source (read) or
destination (write) is implied by the instruction name.

1-6

=
%iﬁm Introduction

1.3.5 Floating-Point-Operate and Coprocessor-Operate Instructions

This category includes floating-point calculations, floating-point register operations, and instructions involving computa-
tions or other operations in the second coprocessor.

Floating-point-operate instructions execute concurrently with CY7C601 instructions and possibly with other
floating-point instructions. Concurrent execution is also possible with the coprocessor-operate instructions if they are
so implemented.

Coprocessor-operate instructions are defined by the coprocessor itself. In the CY7C601, they are specified by the CPop
instruction. The SPARC architecture will accommodate 1024 coprocessor-operate instructions.

Floating-point and coprocessor loads and stores are not operate instructions; they belong to the “load and store” category
discussed in Section 1.4.1. 1

1-7

=

= - .

== F ormess Introduction
==/ SEMICONDUCTOR

1-8

—-"_—._s‘g Chapter 2

=+ SEMICONDUCTOR CY7C601/CY7Cé611
Integer Unit

This section describes the workings of the CY7C601 Integer processing Unit (IU), the main computing engine in the
SPARC architecture. Descriptions and explanations given for the CY7C601 also apply to the CY7C611 integer unit, ex-
cept for those differences noted in Section 2.9.

The CY7C600-family IUs are based on the SPARC 32-bit RISC architecture, which defines a processor capable of execu-
tion at a rate approaching one instruction per clock cycle. The CY7C601/611 supports a tightly-coupled Floating-Point
coprocessor Unit (FPU) and a second, system-specific coprocessor, all three of which may operate concurrently. The
CY7C601/611 executes all instructions except floating-point-operate and coprocessor-operate instructions.

A block diagram of the CY7C601/611 is shown in Figure 2-1. The processor is organized around the ALU and the shift
unit. These are both two-operand units, accepting 32-bit information from either source 1 or source 2 of the register file,
the program counters, or the instruction decoder. ALU or shift unit results may be passed to the register file, address
bus, program counters, control registers, or back to themselves.

One of the characteristics of the SPARC load/store architecture is that neither the ALU nor the shift unit directly pass
results to the instruction/data bus. Memory data moves in and out of the register file through alignment units to and from
the instruction/data bus. Instructions are taken directly from the bus and fed to a four-stage instruction pipeline.

Y

Destination

Register File
136 x 32-bits

Source 1 Source 2

—

Arithmetlc
and Logic Shift Unit
Unit
PC Adder]| f *
o

....]T i

Counters

Processor State
Window Invalid

rap Baso
Multiply Step

Instruction
code

Address Instruction/ Data

Figure 2-1. Integer Unit Block Diagram

2-1

== s CY7C601/CY7C611 Integer Unit

U Registers FPU Registers (optional) Copr s (optional)

{ MULTIPLY STEP (Y) | || [FLoatinG poinT sTaTUS (FSR)| || [coprocESSOR sTaTUS (CsR)
WORKING OuTS)
REGISTERS INS(8) FLOATING-POINT REGISTERS COPROCESSOR REGISTERS
Current window (32) (32)
within set of LOCALS(8)
136 1 Registers GLOBALS(8)

Figure 2-2. SPARC Register Model

The SPARC architecture uses a “windowed” register file model in which the file is divided up into groups of registers
called windows. This windowed register model simplifies compiler design, speeds procedure calls, and efficiently supports
AJ/I programming languages such as Prolog, LISP and Smalltalk.

A unique pair of coprocessor interfaces and a common connection to the system data and virtual address buses form the
physical interface between the IU, the FPU, and a coprocessor. The coprocessor interfaces provide the synchronization
and error handling that enable all three processors to operate concurrently. A common interface to the virtual address
bus and data bus permits the IU to provide all addresses for floating-point and coprocessor load and store instructions.

2.1 Description Of Parts

The standard version of the integer unit, the CY7C601, contains a 136 x 32 register file divided into eight overlapping
windows. It is supplied in 207-pin PGA and 208-pin QFP packages, which allows 32-bit address and data buses, an eight-bit
ASI bus, a number of control lines, and floating-point-coprocessor and second coprocessor interfaces.

The CY7C611 embedded control IU is internally the same as the CY7C601, but it is externally optimized for board-space-
sensitive controller applications. By eliminating some external pins, the CY7C611 fits into a 160-pin PQFP package. In
the smaller package, the address bus is modified to 24 bits, the ASI bus to 3 bits, and the second coprocessor interface
and five control lines are omitted. See Section 2.9 for further information.

2.2 Programming Model

This section describes the CY7C601/611’s register model, register window mechanism, processor states, supervisor/user
modes, control/status registers, and data types. The concepts and properties explained here are central to an understand-
ing of the CY7C601/611’s operation.

The register set shown in Figure 2-2 is a snapshot of the registers the CY7C601/611 sees at any given moment. The work-
ing registers constitute the current window on the register file. Registers within the shaded area are accessible only in
the supervisor mode.

‘Working registers are used for normal operations and are called r registers in the CY7C601/611, f registers in the FPU,
and c registers in the coprocessor. The various control/status registers keep track of and/or control the state of each pro-
cessor. See Section 3.3.1 for an explanation of the FPU’s register set.

2.2.1 Register Windows

The 136 r registers of the CY7C601/611 are 32-bits wide and are divided into a set of 128 window registers and a set of
eight global registers. The 128 window registers are grouped into eight sets of 24 r registers called windows.

2-2

T
& Sriress CY7C601/CY7C611 Integer Unit

Table 2-1. Register Addressing

Register numbers Name
1[24] to r[31] ins
r[16] to r[23] locals
[8] to r[15] outs
r{0] to r[7] globals

The SPARC architecture supports a maximum of 32 windows. The currently active window (the window visible to the
programmer) is identified by the Current Window Pointer (CWP), a 5-bit field in the Processor State Register (PSR) (see
Section 2.2.4.2).

Atany given time, a program can address 32 active registers: 24 window registers and the eight globals. By software conven-
tion, the window registers are divided into 8 ins, 8 locals, and 8 outs. Registers are addressed as shown in Table 2-1.
The current window pointer (CWP) acts as an index pointer within the stack of 128 window registers. Changing the cur-
rent window pointer by one offsetsr register addressing by 16. Since 24 r registers can be addressed by a single CWP value,
incrementing or decrementing the CWP results in an eight register overlap between windows. This overlap of window

registers is used to pass parameters from one window to the next.

2.2.1.1 Windowing
The register file is implemented as a circular stack, with the highest numbered window joined to the lowest. In the
CY7C601, window 7 adjoins window 0 (see Figure 2-3).

RESTORE

SAVE

Figure 2-3. Circular Stack of Overlapping Windows

2-3

—_—
¥ CY7C601/CY7C611 Integer Unit
=7 S v 2

Previous Window (CWP + 1)

r31 . Save
: INS
r24 Restore
r23 <
. LOCALS
r16 Current Window (CWP)
ris
: OuTS
rg

Next Window (CWP - 1)

r31

: INS
r2a
r23

. LOCALS
rié
ris

: ouTs
r8

Figure 2-4. Overlapping Windows

Note that each window shares its ins and outs with adjacent windows (refer to Figure 2-4). Outs from a previous window
(CWP + 1) are the ins of the current window, and the outs of the current window are the ins of the next window (CWP - 1).
While only adjacent windows share ins and outs, globals are shared by all windows. A window’s locals, on the other hand,
are not shared at all, belonging only to that window.

After power-on reset, the state of the current window pointer and the WIM register (see Section 2.2.4.3) are undefined.
The power-on reset trap routine must initialize the CWP and WIM register for correct operation.

2.2.1.1.1 Parameter Passing

Register window overlap provides an efficient means of passing parameters during procedure calls and returns. One
method of implementing a procedure call that takes advantage of the overlap is to have the calling procedure move the
parameters to be passed into its outs registers, then execute a CALL instruction. A SAVE instruction then decrements
the CWP to activate the next window. The calling procedure’s outs become the called procedure’s ins, making the passed
parameters directly accessible.

When a called procedure is ready to return results to the procedure that called it, those results are moved into its ins
registers and it then executes a return, usually with a JMPL instruction. A RESTORE instruction increments the CWP
to activate the previous window. The called procedure’s ins are still the calling procedure’s outs; thus the results are avail-
able to the calling procedure. Note that the terms ins and outs are defined relative to calling, not returning.

If the calling procedure must pass more parameters than can be accommodated by the outs and globals, the additional
parameters must be passed on the memory stack. One method of handling the stack pointer is to dedicate an out register
in the current window to hold the stack pointer (see Figure 2-5). After a call, this pointer (which is now in an ins register)
can be used as the frame pointer for the called procedure. The SAVE instruction, in addition to decrementing the CWP,
also performs an ADD using registers from the current window and placing the result in a register in the next window.
This feature can be used to set a new stack pointer for the called procedure from the old pointer in the calling procedure.
RESTORE also performs an ADD, using registers in the current window and placing the result in the previous window.

2-4

== CY7C601/CY7C611 Integer Unit
he—— 4
r31 (i7) return address
r30 (FP) frame pointer
r29 (i5) incoming param reg 5
in re8 (i4) incoming param reg 4
re7 (i3) incoming param reg 3
r26 (i2) incoming param reg 2
r2s (i1) incoming param reg 1
re4 (i0) incoming param reg 0
r23 (I7) local 7
re2 (16) local 6
r21 (15) local 5
local r20 (14) local 4
r19 (13) local 3
ri8 (12) local 2
n7 (11) local 1
16 (10) local 0
r5 (07) temp
r4 (SP) stack pointer
r3 (05) outgoing param reg 5
out 2 (04) outgoing param reg 4
ri (03) outgoing param reg 3
r10 (02) outgoing param reg 2
9 (o1) outgoing param reg 1
8 (00) outgoing param reg 0
7 (g7) global 7
6 (g6) global 6
5 (g5) global 5
global 4 (g4) global 4
3 (3 gobais |
r2 (92) global 2
[l (g1) global 1
0 (g0) 0
31 floating-point value
floating :
point
0 floating-point value

Figure 2-5. Registers as Seen by a Procedure

2.2.1.1.2 Window Overflow and Underflow

No matter how many windows a register file has, it is possible that at some point the program will try to use more than
are available. Since the register file is a circular stack, something must be done to prevent overwriting the oldest window
as the stack wraps around.

The CY7C601/611 handles this by allowing bits in the Window Invalid Mask (WIM) register to be set, which are used
to mark windows that will trigger an underflow or overflow trap (see Section 2.2.4.3). If a SAVE instruction points the
CWP to a marked window, a window overflow trap is generated. This means that in the CY7C601, only seven of the eight
windows are available for calls, because the last window must be saved for the trap handler. However, since a typical over-
flow trap handler would transparently save one or more of the oldest windows to memory, the program sees an apparently
infinite number of windows.

The CY7C601/611 automatically decrements the CWP upon encountering a trap. This happens without generating
another window overflow trap, regardless of the state of the WIM register. By setting at least one window as masked
by the WIM register, the system is assured of at least one window for use by the trap handler.

2-5

—
%

=

?ﬁ:crmss CY7C601/CY7C611 Int Unit
F nteger Uni
%' SEMICONDUCTOR

——

A RESTORE instruction will cause a window underflow trap if it attempts to restore to a window invalidated by the WIM
register. Execution of a RETurn from Trap (RETT) instruction under the same circumstances will also generate an under-
flow trap. SAVE, RESTORE, and RETT always check the WIM register before completing their actions.

As an example, in Figure 2-3, if the procedure using the window labeled w0 executes a CALL and SAVE sequence, a
window overflow trap will occur (assuming WIM bit 7 is set). The overflow trap handler may safely use only the locals
of w7, because w7’s ins are w0’s outs and w7’s outs are woé’s ins.

Active window = 0 CWP =0

Previous window = 1 CWP+1=1

Next window = 7 CWP-1 =17

Trap window = 7 WIM = 10000000 (pase 2)

The overflow trap handler is responsible for saving one or more of the least recently used windows to the memory stack.
Simulations of register file management methods show that saving and restoring one window at a time is the simplest
and most effective algorithm for handling overflow and underflow. The stack pointer to the window-save area must be
aligned to a word boundary in valid memory and, for efficiency, should be doubleword aligned. This is because it is faster
to load and store doublewords than to load and store words.

A linear sequence of doubleword loads and stores is also used to speed up context switches. In a context switch, only
the windows containing valid data are saved, and on average thisis about half the number of CY7C601/611 windows, minus
one for the reserved trap window.

2.2.11.3 Alternate Register Window Usage

Although the windowing layout is particularly well suited to procedure calls and returns, hardware does not force their
use for that purpose alone. Except for the eight-register overlap and the partial fixing of the function of several registers
by the instruction set (see Section 2.2.1.2), register windows can be viewed and manipulated asneeded tofit the application
at hand.

For example, the register set canbe treated as a flat register file. Access to any particular register in any window is obtained
by writing its window value into the current window pointer located in the processor state register. Moreover, windows
naturally segment registers into blocks that could be dedicated to specific purposes and accessed through the CWP. Regis-
ter saving and parameter passing could be done with a standard push/pop stack in memory, although this would substan-
tially increase bus traffic.

For real-time and embedded controller systems, where fast context switching may be more important than procedure
calling, the register file can easily be divided into banks of registers separated by trap handling windows set up by the WIM
register (see Section 2.2.4.3). Switching from one register bank to another is accomplished by writing to the CWP field
of the processor state register. Figure 2-6 shows the CY7C601/611 register file divided into four banks, each with its own
trap handler window of eight local registers. Globals are accessible by all processes.

2.2.1.2 Special Registers

In general, the window registers seen at any given time can be used in any manner desired, while keeping in mind that
windows overlap at both ends. However, the instruction set does fix the use of r[0] and partially fixes the use of r[15].

Global register r[0] always returns the value 0 when read, making the most frequently used constant easily available at
all times. In addition, when addressed as a destination operand, r[0] discards the value written to it.

The CALL instruction writes its own address into register 1{15) (out register 7) of the calling procedure’s window. If a
SAVE instruction then activates a new window, 1[15] of the old window becomes r[31] (in register 7) of the new window
and serves as the return address to the calling procedure. However, if the register is needed for some other purpose, the
return address can be saved to a stack or simply overwritten.

2-6

—_—
="

= CY7C601/CY7C611 Integer Unit
——= # SEMICONDUCTOR
|
/\-/ WIM Register
B L [of1]ofrfo]tfof1]
’2-4 7 6 5 4 3 2 0
. 23
Re(%\',si:go%va;;(3 . The WIM register is used to separate
e the r registers into register banks. Register
s A banks are switched by writing into the CWP
: : E RESERVED field of the processor state register (PSR).
B 24
2| 1l Trap registers for bank 3 ‘
qel [J (Window 6) The CY7C601/611 automatically enters the next
3T 5 window (CWP - 1) upon encountering a trap, :
. . i UNUSED regardless of the state of the WIM register. This
124 8 g feature is used to reserve windows for a trap han-
123 dler.
Register Bank 2)
(Window 5) i
ns 31
: : g RESERVED
B 124
23| 11 Trap registers for bank 2
.] (Window 4)
16
':j“ " g UNUSED
124 8
. 2
Reglgter Bank 1 : The upper eight registers of the trap window are
(Window 3) 116 reserved for parameter passing from the register
115 131 bank, if desired.
: : g RESERVED -~
B 124
23| |1 Trap registers for bank 1
. l (Window 2)
e
31 ns !
: : UNUSED
24 8 ! \ The lower eight registers of the trap window are
. r23 unused, since they are shared with the next regis-
Re\gl\lls";eé Bar11k 0 : ter bank. These can be used to pass parameters
(ow 1) 116 to the next register bank, if desired.
2t 131
. . E RESERVED
8 24
23f || Trap registers for bank 0
. l (Window 0)
116]
s i 7
' " GLOBAL
. g UNUSED o REGISTERS

Figure 2-6. Register Banks for Fast Context Switching

s
¥ i Seess CY7C601/CY7C611 Integer Unit
& SEMICONDUCTOR

i

Two other registers are also used by hardware to save information during a trap. Registers r[17] and 1{18] (locals 1 and
2) of the trap window (not the trapping procedure’s window) are used to save the contents of the program counters (PC
and nPC) at the time the trap is taken. Because the trap window locals are all a trap handler is allowed to use (unless
it saves to the system stack), this limits the trap handler’s usable registers to six.

222 Processor States

The CY7C601/611 is always in one of three possible states: execute mode, reset mode, or error mode. Execute mode is
the normal operating mode.

The processor enters error mode (at which point it halts and asserts ERROR) if a synchronous trap is generated while
traps are disabled (see Section 2.7). The CY7C601/611 remains in error mode until the RESET signal is asserted, where-
upon it enters reset mode. The external system is responsible for asserting RESET whenever the error mode signal, ER-
ROR, is detected.

Reset mode is entered whenever the RESET signal is asserted (see Section 2.4). The processor remains in that mode
until RESET is deasserted. Upon deassertion, the processor enters execute mode, where the first instruction address
to be executed is address 0 in the supervisor instruction address space (see Sections 2.2.3 and 2.3.2.6).

The CY7C601/611 fetches instructions in the execute mode. If the instruction belongs to the floating-point unit or second
coprocessor, execution is directed to the appropriate coprocessor. Otherwise, the instruction is executed by the integer
unit.

22.3 Supervisor/User Modes

In support of multitasking, the CY7C601/611 employs a supervisor/user model of operation. The processor is in supervisor
mode when the S bit in the Processor State Register (PSR) is set, and in user mode when S is reset (see Section 2.2.4.2).
The state of this bit determines which address space is accessed with the ASI bits (see Section 2.3.2.6) and whether or
not privileged instructions may be used. Privileged instructions restrict control register access to supervisor software, pre-
venting user programs from accidentally altering the state of the machine.

In non-multitasking situations, such as embedded systems, user (application) code would probably run in supervisor mode
to gain access to the PSR’s CWP field and other control registers. The only way a program running in user mode may
enter supervisor mode is to encounter a software or hardware trap. A return to user mode is accomplished by executing
a Return from Trap (RETT) instruction, which restores the state of the S bit to what it was before the trap was taken.
A commonly used trap return is the JIMPL, RETT delayed control transfer couple (refer to Section 2.3.3.4.4). This re-
stores both the PC and nPC (see Section 2.2.4.1) and the previous state of the S bit.

22.4 Control/Status Registers

CY7C601/611 control/status registers are all 32 bits wide. The two program counters can only be read to and written to
indirectly using such instructions as a CALL, JMPL, software trap (Ticc), and Return from Trap (RETT). The Processor
State Register (PSR), Window Invalid Mask (WIM), Trap Base Register (TBR), and multiply-step register (Y), are all
read/write registers. Read/write instructions that access the PSR, WIM, and TBR are privileged and thus may only be
used in supervisor mode.

Two of these registers, the PSR and TBR, have both read-only status fields and programmable read/write mode fields.
In Figure 2-7 and Figure 2-9, the read-only status fields appear in lower case italic (for example, impl) while the writable
mode fields appear in UPPER CASE (for example, PIL).

2.2.4.1 Program Counters (PC and nPC)

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601/611, and
the next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming there is
no control transfer and a trap does not occur). The nPC is necessary to implement delayed control transfers, wherein
the instruction that immediately follows a control transfer may be executed before control is transferred to the target
address (see Section 2.3.3.4). Having both the PC and nPC available to the trap handler allows a trap handler to choose
between retrying the instruction causing the trap (after the trap condition has been eliminated) or resuming program
execution after the trap causing instruction.

2-8

CY7C601/CY7C611 Integer Unit

Trap Enabl
rap Enal (%g;_r)

2.2.4.2 Processor State Register (PSR)
Previous Supervisor Mode
Supervisor Mode (S)

Enable Floating-Point Unit (EF)
Enable Coprocessor (EC)*
U 1V} Integer ~ *Forced tozero on CY7CE11. Processor Current
Implementation Version Condition Interrupt Window
Number Number Codes Level Pointer
(impl) (ver) (iICC) Reserved (PIL) (CWP)
L4 1 4 1 4 1 6 | KN N R K1 61 1
3 28 27 24 'Aw«m.,,m.,,»-,.\,‘.,,mh 14 13 12 11 8 76 5 4 0
‘«.\Q .
negative zgJo overflow [S
Loemive] g 1o] gy |
23 22 21 20

Figure 2-7. Processor State Register

This is the CY7C601/611’s key status and control register, containing fields that report the status of processor operations
or control processor operations. Instructions that modify its fields include SAVE, RESTORE, Ticc, RETT, and any in-

struction that modifies the condition code field (icc). Any hardware or software action that generates a trap will modify
the S, PS, and ET fields. The PSR may be read or written directly using the privileged instructions RDPSR and WRPSR.

The PSR is made up of the following fields:
impl—Implementation

Bits 28 through 31 contain the processor’s implementation number. The implementation number for the CY7C601
and CY7C611 is 0001. WRPSR does not modify this field. -
Bits 24 through 27 contain the CY7C601/611’s version number. WRPSR does not modify this field. The current ver-

ver—Version
sion number for the CY7C601 is 0001, and the current version number for the CY7C611 is 0011.

icc—Integer Condition Codes
Bits 20 through 23 hold the integer unit’s condition codes. These bitsare modified by arithmetic and logical instructions
whose names end with the letters cc (for example, ANDcc), and can be overwritten by the WRPSR instruction. The

Bicc and Ticc instructions base their control transfer on these bits, which are defined as follows:

N—Negative
Bit 23 indicates whether the ALU result was negative for the last icc-modifying instruction.

0 = not negative
1 = negative
Z—Zero
Bit 22 indicates whether the ALU result was zero for the last icc-modifying instruction.
0 = result was nonzero

1 = result was zero
V—Overflow

Bit 21 indicates whether an arithmetic overflow occurred during the last icc-modifying instruction. The over-

flow bit is also set if a tagged operation (TADDcc, TSUBce, etc.) is performed on non-tagged operands (refer

to Section 2.3.3.2.3). Logical instructions that modify the icc field always set the overflow bit to 0.

0 = arithmetic overflow did not occur
1 = arithmetic overflow did occur

C—Carry
Bit 20 indicates whether an arithmetic carry out of result bit 31 occurred from the last icc-modifying addition
or if a borrow into bit 31 resulted from the last icc-modifying subtraction. Logical instructions that modify the

icc field always set the carry bit to 0.
0 = a carry/borrow did not occur

1 = a carry/borrow did occur

=it CY7C601/CY7C611 Integer Unit

Reserved

Bits 14 through 19 are reserved. A WRPSR should write only Os to this field.
EC—Coprocessor Enabled

This bit determines whether the optional second coprocessor is enabled or disabled.
0 = disabled
1 = enabled

If the coprocessor is either disabled or enabled but not present, a CPop, CBccc, or coprocessor load/store instruction
will cause a coprocessor-disabled trap. When the CP is disabled, it retains that state until it is re-enabled or reset.
Even when disabled, the coprocessor can continue to execute instructions if it contains a queue. Note that the
CY7C611 does not support a coprocessor interface, and on the CY7C611 the EC bit is permanently set to zero.

EF—Floating-Point Unit Enabled

Bit 12 determines whether the FPU is enabled or disabled.
0 = disabled
1 = enabled

If the FPU is either disabled or enabled but not present, an FPop, FBfcc, or floating-point load/store instruction will
cause a floating-point-disabled trap. When disabled, the FPU retains that state until it is re-enabled or reset. Even
when disabled, it can continue to execute any instructions in its queue.

PIL—Processor Interrupt Level
Bits 8 through 11identify the processor’s external interrupt priority level. The processor will only accept external inter-
rupts whose interrupt level is greater than the value in PIL. Bit 11 of the PIL is the MSB and bit 8 is the LSB.
S—Supervisor
Bit 7 determines whether the processor is in supervisor or user mode. Because WRPSR is privileged and only available
in the supervisor mode, supervisor mode can only be entered by a software or hardware trap.
0 = user mode
1 = supervisor mode
PS—Previous Supervisor

Bit 6 holds the value that was in the S bit at the time the most recent trap was taken.
ET—Enable Traps

Bit 5 determines whether traps are enabled. If traps are disabled, all asynchronous traps are ignored. If a synchronous
or floating-point/coprocessor trap occurs while traps are disabled, the CY7C601/611 halts and enters the error mode
(see Section 2.7).

0 = traps disabled
1 = traps enabled
CWP—Current Window Pointer

Bits 0 through 4 contain a pointer to the currently active register file window. CWP is decremented by traps and the
SAVE instruction, and is incremented by RESTORE and RETT instructions.

The Floating-Point Enabled (EF) bit can be used by the programmer to control FPU use when running multiple processes.
By disabling the EF bit while running a process that doesn’t require the FPU, software would not have to save and restore
the FPU’s registers across context switches. If the FPU is not present, as signaled by the input pin, FP, the EF bit can
be used to provoke floating-point instruction set emulation by generating a floating-point-disabled trap if execution of
a floating-point instruction is attempted. This technique may be used with the coprocessor as well.

If it is necessary for the software to manually disable traps, care must be taken when changing the ET bit from enabled
(ET=1) to disabled (ET =0), since the RDPSR, WRPSR instruction sequence is interruptible. One way to handle that
is to write all interrupt trap handiers so that before they return program control to the supervisor software that was inter-
rupted, they restore the PSR to the value it had before the interrupt was taken. This will guarantee a correct result when
the interrupted RDPSR, WRPSR sequence continues. The only PSR bit that cannot be restored is the PS bit, which is
overwritten when the trap is taken.

An alternative to the RDPSR-WRPSR sequence is to generate a “trap instruction” trap with a Ticc instruction. A taken
trap automatically sets ET to 0, disabling further traps.

2-10

==t CY7C601/CY7C611 Integer Unit

Window 0
Window 1
Window 2
Window 3

etc. |
T Future Expansion for Additional Windows 11101
31 7 6 54 3 210

Figure 2-8. Window Invalid Mask
Trap Base Address (TBA) Trap Type (tt)

I 20 1 8 [olo]o]o]
31 12 4 3 21 0

Figure 2-9. Trap Base Register

2.2.4.3 Window Invalid Mask Register (WIM)

This register designates which window(s) will cause generation of an underflow or overflow trap when pointed to by the
CWP as the result of a SAVE, RESTORE, or RETT instruction.

Each bit in the WIM register (see Figure 2-8) corresponds to a window; if a bit is set to 1, the window corresponding to
that bit is marked as invalid. If a SAVE, RESTORE, or RETT instruction would cause the CWP to point to a window
whose WIM bit equals 1, a window overflow (SAVE) or window underflow (RESTORE, RETT) trap is generated. The
trap handler uses the local registers of the invalidated window.

A WIM bit is usually set by the operating system software to identify the boundary between the oldest and newest window.
The overflow or underflow trap prevents previous windows from being overwritten or restores previous windows from
memory. WIM can also be used to mark off register banks for fast context switching (see Section 2.2.1.1.3).

WIM is read by the RDWIM instruction, and written by the WRWIM instruction. Bits corresponding to unimplemented
windows read as zeros and are unaffected by writes.

NOTE: The WIM register is NOT cleared during reset. It must be initialized by software.

2.2.44 Trap Base Register (TBR)

When a trap occurs, the program counter (PC) is loaded with the contents of the trap base register. The TBR contains
two fields that together constitute a pointer into the trap table, which in turn contains the trap handler address (see
Figure 2-9). RDTBR can read the entire register; however, the WRTBR instruction can write only to the Trap Base Ad-
dress field. Only hardware can write to the Trap Type field, and bits 0 through 3 are zeros and are unaffected by a write.
The Trap Type field can be directly manipulated using the Ticc instruction. For more information on trap operation,
see Section 2.7.

TBA—Trap Base Address

Bits 12 through 31 contain the most-significant 20 bits of the trap table address. This field applies to all trap types except
reset, which forces address 0. The TBA is software controlled.

tt—Trap Type

Bits 4 through 11 comprise the Trap Type field, an eight-bit value that provides an offset into the trap table based on the
type of trap being taken (see Section 2.7.5.3). This field retains its value until the next trap is taken.

2.2.4.5 Y Register

The Y register is used by the multiply step instruction (MULScc) to create 64-bit products. This register is read and written
using the non-privileged RDY and WRY instructions.

2-11

%}E CY7C601/CY7C611 Integer Unit
==+ SEMICONDUCTOR

Table 2-2. Floating-Point Formats

Single-Precision Floating-Point Format

s = sign (1)
e = biased exponent (8)
f = fraction (23)

normalized number (0 < e < 255): (-1)S * 2e-127 * 1 f

subnormal (e =0): 50 (-1)S*2-126 % f

zero (e=0): f#0 -1s*0

signaling NaN: f#0 s=u; e=255 (max); f=.0uuu-uu
(at least one bit must be nonzero)

quiet NaN: f#0 s=u; =255 (max); f=.luuu-uu

infinity: s=0 or 1, depending upon sign;

e=255 (max); f=.00-00 (all zeros)

Double-Precision Floating-Foint Format

s = sign (1)
e = biased exponent (11)
f = fraction (52)

normalized number (0 < e < 2047): (-1)S * 2e-1023 % 1 f

subnormal (e =0): f5£ 0 (-1)S *2-1022 o f

zero (e=0): f5£ 0 “1s*0

signaling NaN: f#0 s=u; e=2047 (max); f=.0uuu-uu
(at least one bit must be nonzero)

quiet NaN: f5£0 s=u; e=2047 (max); f=.1luuu-uu

infinity: s=0 or 1, depending upon sign;

e=2047 (max); f=.00-00 (all zeros)

225 Data Types

The CY7C601/611 supports ten data types (eleven with extended-precision floating-point, see Section 2.2.5.3). Integer
types include byte, unsigned byte, halfword, unsigned halfword, word, unsigned word, doubleword, and tagged data.
ANSI/IEEE 754-1985 floating-point types include single- and double-precision. A byte is 8 bits wide, halfwords are 16
bits, words and single-precision floating-point are 32 bits, doublewords and double-precision floating-point are 64 bits.
Table 2-2 shows the formats for single-precision and double-precision floating-point numbers.

2-12

= N
% i‘cév'm CY7C601/CY7C611 Integer Unit

BYTE [sss ... sss Is] avre |

31 876 0
UNSIGNED | 000 000 | BE |

3 57 0
HALFWORD | sgg sss |s| nHArwomrD |

31 1615 14 0
UNSIGNED
UNSIGNED |31 000 000 16| _ HALFWORD 0I
SIGNED
WORD L‘:‘I WORD o]
UNSIGNED
WORD L WORD OI
TAGGED [WORD [Tac]

5 21 0
DRUBLE WORD 0 (MOST SIGNIFICANT WORD) N)

WORD 1 (LEAST SIGNIFICANT WORD) rN+1)

3 0
SINGLE-
L N FP [331[SOEXPONENT 2a| _ FRACTION 0I

s| EXPONENT JriGH-ORDER BITS OF FRACTION] 1(N)
DOUBLE- LOW-ORDER BITS OF FRACTION fN+1
PRECISION FP b =T 5 N+1)

Figure 2-10. Processor Data Types

2.2.5.1 Data Organization In Registers

The organization of the ten data types when loaded into registers is shown in Figure 2-10.

‘When moving memory data to or from the registers, byte operands are always loaded to or extracted from the lower eight
bits of a register. On a load, bits 8 through 31 are sign-extended for a byte or zero-extended for an unsigned byte. Half-
words are always loaded to or extracted from the lower 16 bits of a register. Bits 16 through 31 are sign-extended for a
halfword or zero-extended for an unsigned halfword during a load. All 32 bits of a signed or unsigned word are loaded
from or stored to memory. Stores of byte and halfword data are not sign-extended. Tagged data is handled as an unsigned
word. Doubleword operands load to and store from two contiguous registers, r[n] and r[n + 1], with r{n] containing the
most significant word. Figure 2-11 illustrates the relationship between the way data is stored in memory and the way it
is loaded into registers.

For single-precision, floating-point operands, bit 31 contains the sign bit, bits 23 through 30 contain the eight bits of expo-
nent, and bits 0 through 22 contain the 23-bit fraction. Double-precision operands require a register pair, with the up-
per-order register (r[n]) containing the sign bit, 11-bit exponent, and the high-order bits of the fraction. The lower-order
register (r[n+ 1]) contains the low-order bits of the fraction. Total fraction size is 52 bits.

When loading doublewords or double-precision operands from memory to the working registers (eitherr or f), the destina-
tion register mustbe at an even address or the hardware will force such an address. For example, an attempted load double
to register r[9] would be forced to r[8], so that the most significant word would be loaded in r[8] and the least significant
word in r{9]. A load double to r{0] would result in the loss of the most significant word.

2-13

E——Fr CY7C601/CY7C611 Integer Unit

——
—= ~ SEMICONDUCTCOR

Address N N+1 N+2 N+3
Memory location 3 8]7 0]

Destination Register |31 Zeroes or Sign Extension

Byte Load Example (From Address N + 1)

Address N N+1
DataBus |31 24|23
Source Register |31 Don't Care

Byte Store Example (To Address N+2)

Figure 2-11. Byte Operand Load and Store

63 Doubleword 0

31 Word 0] 31 Word 0

15 Halfword ol 15 Halfword ol 15 Halfword of 15 Halfword 0

7 Byte ol 7 Byte o]l7 Byte g|7 Byte |7 Byte 45f- Byte ol 7 Bve 7 Byte 4
N N+1 N+2 N+3 N+4 N-+5 N+6 N+7

Figure 2-12. Data Organization in Memory

22.5.2 Data Organization In Memory

Organization and addressing of data in memory follows the “Big-Endian” convention wherein lower addresses contain
the higher-order bytes (see Figure 2-12). For a stored word, address N corresponds to the most significant byte of the word,
and address N + 3 corresponds to the least significant byte. The address of a halfword, word, or doubleword is also the
address of its most significant byte. A halfword datum must be located on a halfword boundary (address bit <0> = 0),
which is evenly divisible by 2. Similarly, a word must be located on a word boundary (address bits < 1:0> = 0) evenly
divisible by 4, and a doubleword must be located on a doubleword boundary (address bits <2:0> = 0) evenly divisible
by 8. Attempting to access misaligned data will generate a memory_address_not_aligned trap.

2.2.5.3 Extended Precision

The SPARC architecture supports another data type, an ANSI/IEEE 754-1985 extended-precision floating-point type
with a width of 128 bits (see Table 2-3). For the present, however, the CY7C602 FPU does not implement extended-preci-
sion Floating-Point-operate (FPop) instructions, so they must be emulated in software. An extended-precision format
FPop will generate a floating-point-exception trap if execution is attempted.

When loaded to the working registers, extended-precision operands require a register quadruple (see Figure 2-13). The
upper-order register (rf{N]) contains the sign bit, a 15-bit exponent, and a 16-bit reserved field. The next register (r[N + 1])
contains the one-bit integer part and 31 high-order bits of the fraction. The next register (r[N + 2]) holds the 32 low-order
bits of the fraction. Total fraction size is 63 bits. The fourth extended-precision register (r[N +3]) is reserved. As with
double-precision operands, when loading an extended-precision operand, the destination register must be at an even ad-
dress or the hardware will force an even address.

The memory address of an extended-precision datum is also the address of its most significant byte (see Figure 2-14). An
extended-precision datum must be located on an extended-precision boundary (address bits <3:0> = 0), which is evenly
divisible by 16.

2-14

- CY7C601/CY7C611 Integer Unit

Table 2-3. Extended-Precision Floating-Point Format

s = sign (1)

e = biased exponent (15)

j = integer part (1)

f-msb f-1sb = f = fraction (63)

normalized number (0 < e < 32767;j = 1): (-1)s * 216383 % ;¢
subnormal number (e = 0;j = 0) (f 7 O): (-1)s *2-16383 % jf
zero (s = 0;e =0) (£ 0)([5 0): (-1)s*0

signaling NaN: f5#£0 s = u; e = 32767 (max); j = u;
f = .0 uuu uu (at least one bit
must be nonzero)
quiet NaN: f£0 s = u; e = 32767 (max); j = u;
f=.1uguuuun
infinity: s = 0 or 1, depending upon sign;
e = 32767 (max); j = u;
f = .000 00 (all zeroes)
EXTENDED PRECISION FP r[N] S EXPONENT I RESERVED
r[N + 1]{J HIGH-ORDER BITS OF FRACTION
r[N + 2] LOW-ORDER BITS OF FRACTION
fN + 3] RESERVED
3130 16 15 0
Figure 2-13. Extended-Precision Data Organization in Registers
Extended - Precision Data
Fw Doubleword Doubleword
63 0]63 0l
Word Word Word T Word
31 0] 31 0}31 0]31 o
AddressN N+4 N+8 N+ 12

Figure 2-14. Extended-Precision Data Organization in Memory

2.3 Instruction Set

This section describes the CY7C601/611 instruction set as defined by the SPARC architecture. Included are subsections
on instruction formats, addressing, instruction types, and an op code summary. Chapter 6, SPARC Instruction Set, con-
tains a description of the assembly language syntax and a complete set of instruction definitions.

2.3.1 Instruction Formats

There are only three basic instruction formats plus three subformats. Format 1 is used for the CALL instruction, format
2 for the SETHI and Branch instructions, and format 3 for the remaining integer and floating-point/coprocessor instruc-
tions. Figure 2-15 shows each format with its fields, bit positions, and the instructions that use that format. All instructions
are one word long and aligned on word boundaries in memory. For most instructions, operands are located in source regis-
ters (represented by rsI and rs2). The remaining instructions use one source register plus a displacement or immediate

operand contained within the instruction itself.

2-15

e —

_—

i‘z CY7C601/CY7C611 Integer Unit
3 nteger uni

CALL

FORMAT 1 l"p(o°°pd) © 30-Bit Displacement (disp30)]

31 30 0
- SETHI

lopcode o opcode 20_Bit| Siate (a2 |
I (o) |Dest|nat|on (rd) | op2) it Immediate (imm22)
31 30 25 22

FORMAT 2 BRANCH

FORMAT 3

cond
disp22

disp30
imm22
op
op2

op3
opc

opf

rd

rsl
rs2

simml13

opcode opcode Rt Y . I
l (op) | al Test Cond. I op2) 22-Bit Displacement (disp22)
31 3029 25 22

OTHER INTEGER INSTRUCTIONS

°Qgg§’° Destination (rd) °§g§e Source 1 (rs1) | 0| Alternate Space (asi) | Source 2 (rs2)

lopcode - opcode _Bi N :
(op) Destination (rd) op3) Source 1 (rs1) 1 13-Bit Immediate (simm13)

31 30 25 19 14 13 5 0

FLOATING POINT/COPROCESSOR OPERATIONS

opcode inati opcode FP Opcode (o]
I (p) |Destmat|on (rd) | Sacp:}) | Source 1 (rs1) i O%CC%%e((O%f():) Source 2 (rs2)

— 31 30 25 19 14 5 0

Figure 2-15. Instruction Format Summary

The a (annul) bit is used in branch instructions to control the execution of the delay instruction that immedi-
ately follows a control transfer instruction (see Section 2.3.3.4.3).

The address space identifier is an eight-bit field used in load/store alternate instructions. See Section 2.3.2.6.
This field identifies the condition code used for a branch instruction.

This field contains the 22-bit displacement value used for PC-relative addressing for a taken branch. It is sign
extended to full-word size when used.

This field contains the 30-bit displacement used for the PC-relative addressing of a CALL instruction.
The i (immediate) bit determines whether the second ALU operand (for non-FPop instructions) will be r{rs2]
(i = 0), or a sign-extended simm13 (i = 1).

This field contains the 22-bit constant used by the SETHI instruction.

The op field selects the instruction format as shown in Table 2—4.

The op2 field (Table 2-5) contains the instruction opcode for format 2 instructions (op =0).

The 6-bit op3 field contains the instruction opcode for a format 3 instruction (op = 2 or 3).

The 9-bit opc identifies a coprocessor-operate (CPop) instruction. The relationship between the opc field and
CPop instructions is described in Section 2.3.3.6.

The 9-bit opfidentifies a floating-point-operate (FPop)instruction. The relationship between the opffield and
FPop instructions is described in Section 2.3.3.6.

The r register (or r register pair) or f register (or fregister pair) specified in the rd field serves as the source
during store instructions. For all other instructions, the identified register (register pair) serves as the destina-
tion. Note that r[0] as a source supplies the value 0, and as a destination causes the result to be discarded. Note
that rd must be a r register for integer instructions and must be a f register for floating-point instructions.

The 5-bit s field identifies the register containing the first source operand. The source is a r register for
integer instructions, a f register for floating-point instructions, or a ¢ register for coprocessor instructions.

The 5-bit rs2 field identifies the register containing the second source operand. The source is a r register for
integer instructions, a f register for floating-point instructions, or a c register for coprocessor instructions.

This field holds the 13-bit immediate value used as the second ALU operand when i = 1. Itis sign-extended to
full-word size when used.

2-16

=
= —— - CY7C601/CY7C611 Integer Unit

Table 2-4. op field Coding

op Value Instruction
00 Bicc, FBfce,CBccc, SETHI
01 Call
10 or 11 Other

Table 2-5. op2 Field Coding

op2 Value Instruction
000 UNIMPlemented
010 Bicc
100 SETHI
110 FBfcc
111 CBccc

Unused (reserved) bit patterns which are used in the op, 0p2, op3, or i (wrong bit used) fields of instructions will cause
an illegal_instruction trap. Fields that are not used for a particular instruction are ignored and so will not cause a trap,
regardless of the bit pattern placed in that field. Unused or reserved bit patterns used in the opfor opc fields of a floating-
point or coprocessor instruction cause an fp exception or a cp exception.

23.2 Addressing

Because it uses a load/store architecture, the CY7C601/611 needs only four address modes. Memory address generation
is done only for load and store instructions and is byte oriented. Program counter-relative addressing is generated only
for calls and branches and is word-boundary oriented because it is addressing instructions. Register-indirect addressing
applies to jumps, returns, and traps and is also word-boundary oriented. Address generation is illustrated in Figure 2-16.

2.3.2.1 Two Register

Two-register addressing uses the rsI and rs2 fields (instruction format 3) to specify two source registers whose 32-bit con-
tents are added together to create a memory address. This is a load/store (or register-indirect) addressing mode.

2.3.2.2 Register Plus 13-Bit Inmediate

This addressing mode is used where an immediate value is required as one of the sources. The address is generated by
adding the 32-bit source register specified by rsI (format 3) to a 13-bit, sign-extended immediate value contained in the
instruction. This is a load/store (or register-indirect) addressing mode.

2.3.2.3 13-Bit Immediate

Immediate addressing is a special case of register-plus-immediate addressing. In this case, the rsI-specified register is r{0]
(whose value is 0), which means the address is generated using only the 13-bit immediate value. Use of this special case
allows absolute addressing of the upper and lower 4 kbytes of a memory (or instruction) space with the 13-bit immediate
value. Immediate addressing is the simplest method of addressing because no registers need be set up beforehand.

2-17

%? gﬂc@m CY7C601/CY7C611 Integer Unit

31 0
I Register Source 1
Memory Address
£ 2 (Progr;ym Counter)
l Register Source 2
31 0
I Register Source 1
Memory Address
2L - - 3 - - S (Progr;ym Counter)
I Sign Extension -I 13-Bit Immediate
31 13 0
I Sign Extension I 13-Bit Immediate I—D Memory Address
(Program Counter)
LOAD/STORE(JMPL, RETT)
31 [
I Program Counter + 4
31 i 0 Program Counter
I 30-Bit Displacement I OIO
CALL
31 0
I Program Counter + 4
a1 2 21 0 Program Counter
| Sign Extension | 22-Bit Displacement ofo
BRANCH

Figure 2-16. Address Generation

2324 CALL

Address generation for the CALL instruction is program counter-relative, that is, the target address is based on the pro-
gram counter. Because the CY7C601/611 is a delayed-control-transfer machine (see Section 2.3.3.4), before the address
is calculated, the PC is replaced by the nPC, so the calculation is actually done with PC + 4 (see Figure 2-16).

An address is generated by adding this PC + 4 value to the 30-bit word displacement contained in the CALL instruction.
The displacement is formed by appending two zeros to the 30-bit value from the instruction. This allows control transfers
to any word-boundary location in the virtual memory instruction space. The result of the address generation becomes
the new nPC.

2.3.2.5 Branch

Branch instructions also use PC-relative addressing, but in this case, the value added to PC + 4 is a sign-extended 22-bit
word displacement. Again, the displacement is formed by appending two zeros to the 22-bit value contained in the branch
instruction and then sign extending out to 32 bits. This allows a branching range of 8 Mbytes on word boundaries. The
generated address becomes the new nPC.

2-18

.= CY7C601/CY7C611 Integer Unit

Table 2-6. ASI Assignments

CY7C601 CY7C611
Address Space Identifier (ASI) | Address Space Identifier (ASI) Address Space
00001000 (08 H) 000 (0 H) User Instruction
00001010 (0A H) 010 (2H) User Data
00001001 (09 H) 001 (1H) Supervisor Instruction
00001011 (0B H) 011 3H) Supervisor Data

2326 ASI

In addition to the 32 bits of address output by the processor, an additional eight bits of Address Space Identifier (ASI)
is also sent to system memory during a memory access. These ASI bits control access to 256 32-bit address spaces, which
may or may not overlap depending upon the designer’s implementation. The SPARC architecture defines four ASI values
for user instructions, user data, supervisor instructions, and supervisor data (see Table 2-6). These four ASI values all
map to the same 32-bit address space, and are used to implement access-level protection. ASIvalues are commonly used
to identify user/supervisor accesses, to identify special protected memory accesses such as boot PROM, and to access
resources such as CY7C604/CY7C605 control registers, TLB entries, cache tag entries, etc..

The ASIvalue is supplied by the CY7C601/611 for each instruction fetch and each data access encountered. The CY7C600
family assigns a number of these ASI values to the CY7C604/ CY7C605 and a number are reserved for future assignment.
Nevertheless, nearly 80 are left unassigned for use by the system. Refer to Table 4-15 for ASI assignments reserved for
the CY7C604/CY7C605.

2.3.3 Instruction Types

CY7C601/611 instructions fall into six functional categories: load/store, arithmetic/logical/shift, control transfer, read/
write control register, floating-point-operate/coprocessor-operate, and miscellaneous. For complete information on each
instruction, see Chapter 6.

2.3.3.1 Load/Store

Load and store instructions (see Table 2-7) move bytes, halfwords, words, and doublewords between the byte-addressable
main memory and a register in either the IU, FPU, or CP. They are the only instructions that access data memory. For
floating-point and coprocessor loads and stores, the CY7C601/611 generates the memory address and the FPU or CP
receives or supplies the data.

The CY7C601/611 implements a hardware-interlocked delay when an instruction immediately following a load tries to
read the register being loaded. The data will be supplied, but only after a one-cycle delay.

Load and store instructions use two-register, register-plus-immediate, and immediate addressing modes. In addition to
the 32-bit address, the CY7C601/611 also generates an eight-bit address space identifier.

23311 ASI

The Address Space Identifier (ASI) is used by the external system to ascertain which of the 256 available address spaces
to access for the load or store being executed. Access to these alternate spaces can be gained directly by using the “load
from alternate space” and “store to alternate space” instructions. These instructions use two-register addressing and the
asi field in instruction format 3. The address space specified in the asi field overrides the automatic ASI assignment made
by the processor, giving access to such resources as system control registers that are invisible to the user. Because the
ASTis intended for use by the system operating software, the alternate space instructions are privileged and can only be
executed in supervisor mode.

2-19

CY7C601/CY7C611 Integer Unit

Table 2-7. Load/Store Instructions

Name Operation Cycles
LDSB (LDSBA*) Load Signed Byte (from Alternate Space) 2
LDSH (LDSHA*) Load Signed Halfword (from Alternate Space) 2
LDUB (LDUBA*) Load Unsigned Byte (from Alternate Space) 2
LDUH (LDUHA®) Load Unsigned Halfword (from Alternate Space) 2
LD (LDA*) Load Word (from Alternate Space) 2
LDD (LDDA*) Load Doubleword (from Alternate Space) 3
LDF Load Floating-Point 2
LDDF Load Double Floating-Point 3
LDFSR Load Floating-Point Status 2
LDC Load Coprocessor 2
LDDC Load Double Coprocessor 3
LDCSR Load Coprocessor Status Register 2
STB (STBA*) Store Byte (into Alternate Space) 3
STH (STHA?®) Store Halfword (into Alternate Space) 3
ST (STA*) Store Word (into Alternate Space) 3
STD (STDA*) Store Doubleword (into Alternate Space) 4
STF Store Floating-Point 3
STDF Store Double Floating-Point 4
STFSR Store Floating-Point Status Register 3
STDFQ* Store Double Floating-Point Queue 4
STC Store Coprocessor 3
STDC Store Double Coprocessor 4
STCSR Store Coprocessor State Register 3
STDCQ* Store Double Coprocessor Queue 4
LDSTUB (LDSTUBAY¥) | Atomic Load-Store Unsigned Byte (in Alternate Space) 4
SWAP (SWAPA*) Swap r Register with Memory (in Alternate Space) 4

* denotes supervisor instruction

2.3.3.1.2 Multiprocessing Instructions

In addition to alternate address spaces, the CY7C601/611 provides two uninterruptible instructions, SWAP and LDSTUB
(atomic load and store unsigned byte), to support tightly coupled multiprocessing.

The SWAP instruction exchanges the contents of an r register with a word from a memory location without allowing
asynchronous traps or other memory accesses during the exchange.

The LDSTUB instruction reads a byte from memory into an r register and then overwrites the memory byte to all ones.
As with SWAP, LDSTUB prevents asynchronous traps and other memory accesses during its execution. LDSTUB is used
to construct semaphores.

Multiple processors attempting to simultaneously execute SWAP or LDSTUB to the same memory location are guaran-
teed that the competing instructions will execute in serial order.

2.3.3.2 Arithmetic/Logical/Shift

This class of instructions performs a computation on two source operands and writes the result into a destination register
(r[rd]). One of the source operands is always a register, 1[rs1}, and the other depends on the state of the instruction’s
“i” (immediate) bit. If i = 0, the second operand isregister r{rs2]. If i = 1, the operand is the 13-bit, sign-extended constant
in the instruction’s simm13 field. SETHI is a special case because it is a single-operand instruction.

2-20

==y CY7C601/CY7C611 Integer Unit

Table 2~-8. Arithmetic/Logical/Shift Instructions

Name Operation Cycles
ADD (ADDcc) Add (and modify icc) 1
ADDX (ADDXcc) Add with Carry (and modify icc) 1
TADDce (TADDccTV) | Tagged Add and modiify icc (and Trap on oVerflow) 1
SUB (SUBcc) Subtract (and modify icc) 1
SUBX (SUBXcc) Subtract with Carry (and modify icc) 1
TSUBcc (TSUBccTV) | Tagged Subtract and modify icc (and Trap on oVerflow) 1
MULSce Multiply Step and modify icc 1
AND (ANDcc) And (and modify icc) 1
ANDN (ANDNCcc) And Not (and modify icc) 1
OR (ORce) Inclusive Or (and modify icc) 1
ORN (ORNcc) Inclusive Or Not (and modify icc) 1
XOR (XORcc) Exclusive Or (and modify icc) 1
XNOR (XNORCcc) Exclusive Nor (and modify icc) 1
SLL Shift Left Logical 1
SRL Shift Right Logical 1
SRA Shift Right Arithmetic 1
SETHI Set High 22 Bits of r Register 1

For most arithmetic and logical instructions, there is both a version that modifies the integer condition codes and one
that doesn’t (see Table 2-8).

Shift instructions shift left or right by a distance specified in either a register or an immediate value in the instruction.

The multiply step instruction, MULScc, is used to generate the signed or unsigned 64-bit product of two 32-bit integers.
For more information on MULScg, refer to its definition in Chapter 6.

2.3.3.2.1 Register r[0]

Because register r[0] reads as a 0 and discards any result written to it as a destination, it can be used with some instructions
to create syntactically familiar pseudoinstructions. For example, an integer COMPARE instruction is created using the
SUBcc (subtract and set condition codes) with r[0] as its destination. A TEST instruction uses SUBcc with r[0] as both
the destination and one of the sources. A register-to-register MOVE is accomplished using an ADD or OR instruction
with r[0] as one of the source registers. A negation is done with SUB and r[0] as one source. If the assembler being used
supports psuedoinstructions, it translates the psuedoinstruction into the equivalent instruction in the native assembly
language. Refer to your assembly language manual for details.

23322 SETHI

SETHLI is a special instruction that can be combined with another arithmetic instruction (such as an OR immediate) to
construct a 32-bit constant. SETHI loads a 22-bit immediate value into the upper 22 bits of the destination register and
clears the lower 10 bits. The arithmetic immediate instruction which follows is used to load the lower 10 bits. Note that
the 13-bit immediate value gives a 3 bit overlap with the 22-bit SETHI value. SETHI can also be combined with a load
or store instruction to construct a 32-bit memory address.

2-21

=
% iﬁm CY7C601/CY7C611 Integer Unit

TAGGED | WORD [o o]

DATA 51 21 0

omer | WORD D] st e nonsero.
31 21 0

Figure 2-17. Tagged Data Example

2.3.3.2.3 Tagged Arithmetic

The tagged arithmetic instructions are useful for languages that employ tags, such as LISP, Smalltalk, or Prolog. For effi-
cient support of such languages, the SPARC architecture defines tagged data as a data type. Tagged data are assumed
to be 30 bits wide with the tag bits (the least two significant bits) set to zero (see Figure 2-17). A tagged add (TADDcc)
or subtract (TSUBcc) will set the overflow bit if either of the operands has a nonzero tag or if a normal overflow occurs.

Tagged add or subtract instructions are normally followed by a conditional branch. If the overflow bit is set during a tagged
add or subtract operation, control is commonly transferred to a routine that checks the operand types. Inorder to expedite
this software construct, the SPARC architecture provides two trap on overflow instructions: TADDccTV and TSUBccTVY,
which automatically trap if the overflow bit is set during their execution.

2.3.3.3 Control Transfer

Control transfer instructions are those that change the values of the PC and nPC. These include conditional branches
(Bicc, FBfcc, CBccc), a call (CALL), a jump (JMPL), conditional traps (Ticc), and a return from trap (RETT). Also in-
cluded are the SAVE and RESTORE instructions, which don’t transfer control but are used to save or restore windows
during a call to a new procedure or a return to a calling procedure (see Table 2-9).

In the CY7C601, control transfer is usually delayed so that the instruction immediately following the control-transfer
instruction (called the delay instruction) can be executed before control transfers to the target address. The delay instruc-
tion is always fetched. However, the annul or a bit in conditional branch instructions can cause the instruction to be an-
nulled (i.e., prevent execution) if the branch is not taken (or always annulled in the case of BA, FBA, and CBA). Ifa
branch is taken, the delay instruction is always executed (except for BA, FBA, and CBA, see Section 2.3.3.4.3). Table 2-10
shows the characteristics of each control transfer type.

Program Counter Relative
;’g-;elative addressing computes the target address by adding a displacement to the program counter. See Section
Register-Indirect
Register-indirect addressing computes the target address as either rfrs1] + r[rs2]if i = 0, or t[rs1] + simmI3ifi =
1. See Section 2.3.2.
Delayed
A control-transfer instruction is delayed if it transfers control to the target address after a one-instruction delay. See
Section 2.3.3.4.
Annul Bit
In an instruction with an annul bit, the delay instruction that follows may be annulled. See Section 2.3.3.4.3.

2.3.3.3.1 Branching and the Condition Codes

The condition code bits in the icc, fcc, and ccc fields, are located (respectively) in the PSR (Processor State Register),
FSR (Floating-point State Register), and CSR (Coprocessor State Register). The integer condition code bits are modified
by arithmetic and logical instructions whose names end with the letters cc, or they may be written directly with WRPSR.
The floating-point condition codes are modified by the floating-point compare instructions, FCMP and FCMPE, or di-
rectly with the STFSR instruction. Modification of the coprocessor condition codes is done directly with STCSR or by
operations defined by the particular coprocessor implementation.

Except for BA (Branch Always) and BN (Branch Never), a Bicc instruction evaluates the integer condition codes as speci-
fied in the cond field. If the tested condition evaluates as true, the branch is taken, causing a PC-relative delayed transfer
to the address [(PC + 4) + sign extnd(disp22)]. If the evaluation result is false, the branch is not taken. For BA and BN,
there is no evaluation; the result is simply forced to true for BA and false for BN.

2-22

=" ﬁm CY7C601/CY7C611 Integer Unit

Table 2-9. Control Transfer Instructions

Name Operation Cycles
SAVE SAVE caller’s window 1
RESTORE (| RESTORE caller’s window 1
Bicc Branch on integer condition codes 1*
FBfcc Branch on floating-point condition codes 1*
CBcce Branch on coprocessor condition codes 1*
CALL Call 1*
JMPL JuMP and Link 2%
RETT RETurn from Trap 2*

Tice Trap on integer condition codes 1 (4 if taken)

* assumes delay slot is filled with a useful instruction

Table 2-10. Control Transfer Instruction Characteristics

Instructions Addressing Mode Delayed Annul Bit
Conditional Branch Program Counter Relative yes yes
Call Program Counter Relative yes yes
Jump Register Indirect yes no
Return Register Indirect yes no
Trap Register Indirect no no

If the branch is not taken, then the annul bit is checked. If the “a” bit is set, the delay instruction is annulled. If “a” is
not set, the delay instruction is executed. If the branch is taken, the annul bit is ignored and the delay instruction is ex-
ecuted. For more information on delayed control transfer and the annul bit, see Section 2.3.3.4.

BN, of course, never branches, and therefore executes like a NOP (but is not recommended as a NOP instruction). How-
ever, as far as the annul bit is concerned, BN acts like a normal branch instruction, annulling the delay instruction if a
= land executing it if a = 0.

BA, on the other hand, always branches, so the annul bit would normally be ignored. But for BA, FBA, and CBA, the
effect of the annul bit is changed. See Section 2.3.3.4.3 for details.

As illustrated in Table 2-11, Bicc and Ticc instructions test for the same conditions and use the same cond field codes
during their evaluations.

An FBfcc instruction operates in the same way as a Bicc, except it tests the FCC < 1:0 > signals output by the CY7C602
floating-point unit (see Table 2-12). The FCC < 1:0 > signals are floating-point condition codes which are set by executing
a floating-point compare instruction. A CBccc instruction behaves in the same manner as a FBfcc, except it tests the
CCC< 1:0> signals supplied by the coprocessor (see Table 2-13). Both FBN and CBN behave in the same way as BN.

2.3.3.3.2 Trap Instructions

The “Trap on integer condition codes” (Ticc) instruction evaluates the condition codes specified by its cond (condition)
field. If the result is true, a trap is immediately taken (no delay instruction). If the condition codes evaluate to false, Ticc
executes as a NOP. ’

Once the Ticc is taken, it identifies which software trap type caused it by writing its trap number + 128 (the offset for
trap instructions) into the # field of the Trap Base Register (IBR), as illustrated in Figure 2-18. The trap number is the
least significant seven bits of either “r[rs1] + r{rs2]” if the i field is zero, or “r[rs1] + sign extnd(simm13)” if the i field
is one. The processor then disables traps (ET=0), saves the state of S into PS, decrements the CWP, saves PC and nPC
into the locals 1[17] and r[18] (respectively) of the new window, enters supervisor mode (S = 1), and writes the trap base
register to the PC and TBR + 4 to nPC.

2-23

= CY7C601/CY7C611 Integer Unit

Table 2-11. Bicc and Ticc Condition Codes

Cond. Test Cond. Test
0000 Never 1000 Always
0001 Equal to 1001 Not equal to
0010 Less than or equal 1010 Greater than
0011 Less than 1011 Greater than or equal to
0100 Less than or equal to, unsigned 1100 Greater than, unsigned
0101 Carry set (less than, unsigned) 1101 Carry clear (greater than or equal to, unsigned)
0110 Negative 1110 Positive
0111 Overflow set 1111 Overflow clear

Table 2-12. FBfcc Condition Codes

Cond. Test Cond. Test

0000 Never 1000 Always

0001 Not equal to 1001 Equal to

0010 Less than or greater than 1010 Unordered or equal to

0011 Unordered or less than 1011 Greater than or equal to

0100 Less than 1100 Unordered or greater than or equal to
0101 Unordered or greater than 1101 Less than or equal to .

0110 Greater than 1110 Unordered or less than or equal to
0111 Unordered 1111 Ordered

Table 2-13. CBccc Condition Codes

Opcode Cond. CCCJ[1:0] Test Opcode Cond. CCC[1:0] Test
CBN 0000 Never CBA 1000 Always
CB123 0001 lor2or3 CB0 1001 0
CB12 0010 lor2 CB03 1010 Oor3
CB13 0011 lor3 CB02 1011 Oor2
CB1 0100 1 CB023 1100 Oor2or3
CB23 0101 2or3 CB01 1101 Oorl
CB2 0110 2 CB013 1110 Qorlor3
CB3 0111 3 CB012 1111 Oorlor2
Trap Base Register
| Trap Base Address (TBA) | Trap Type (1) Joooo]
31 12 11 43 o0

128

3 tt field of Trap Base Register

I Sign Extension -I 13-Bit Immediate

i bit of Ticc instruction = 1
31

128

1t field of Trap Base Register

7-Bit operand

Figure 2-18. Ticc Trap Address Generation

i bit of Ticc instruction = 0

2-24

Iiu

4

- h
»‘éﬂc%-m CY7C601/CY7C611 Integer Unit
2 SEMICONDUCTOR

[

Ticc can be used to implement kernel calls, breakpointing, and tracing. It can also be used for run-time checks, such as
out-of-range array indices, integer overflow, etc.

Return from a trap is accomplished using the delayed control transfer couple, JMPL, RETT. RETT first increments the
CWP by one, calculates the return address (using register-indirect addressing), and then checks for a number of trap con-
ditions before it allows a return. An illegal_instruction trap is generated if traps are enabled (ET=1) when RETT is ex-
ecuted. If ET=0, RETT checks for other trap conditions and will generate a reset trap and enter error mode for the
following conditions: S=0, the new CWP would cause a window underflow, or the return address is not word aligned.
If none of these conditions exist, RETT enables traps (ET = 1), restores the previous supervisor state to the S bit, and
writes the target address into the nPC.

2.3.3.3.3 Calls and Returns

Calling a subroutine or procedure can be done in one of two ways. A CALL instruction computes its target address using
a PC-relative displacement of 30-bits. The JuMP and Link (JMPL) instruction uses register-indirect addressing (the sum
of two registers or the sum of a register and a 13-bit signed immediate value) to compute its target address. Either instruc-
tion allows control transfer to any arbitrary instruction address.

Control transfer to a procedure that requires its own register window is done with either a CALL or JMPL instruction
and a SAVE instruction. A procedure that does not need a new window, a so-called “leaf” routine, is invoked with only
the CALL or JMPL.

The CALL instruction stores its return address (the current PC) into outs register r{15]. When the new window is acti-
vated, this becomes ins register r[31] (see Figure 2-4). The JMPL instruction stores its return address (the contents of
PC, which is the Link) into the r register specified in the destination field, rd.

The primary purpose of the SAVE instruction is to “save” the caller’s window by decrementing the Current Window Point-
er (CWP) by one, thereby activating the next window and making the current window into the previous window. SAVE
also performs a normal ADD, using source registers from the caller’s window, but writing the result into a destination
register in the new window. This can be used to set a new stack pointer from the previous one (see Section 2.2.1.1.1).

Return from a procedure requiring its own window is done with a RESTORE and a JMPL instruction. A leaf procedure
returns by executing a JMPL only. The target address for the return is normally that of the instruction following the
CALLs or JMPLs delay instruction; that is, the return address + 8. The RESTORE instruction restores the caller’s win-
dow by incrementing the CWP by one, causing the previous window to become the current window. As with SAVE, RE-
STORE performs an ADD using source registers from the called (new) window and writing the result into the calling
(previous) window.

Both SAVE and RESTORE compare the new CWP against the Window Invalid Mask (WIM) to check for window over-
flow or underflow. They may also be used to atomically change the CWP while establishing a new memory stack pointer
in an r register.

2.3.3.4 Delayed Control Transfer

Traditional architectures usually execute the target instruction of a control transfer immediately after the control transfer
instruction. However, in a pipelined RISC architecture, this type of transfer would require flushing the instruction that
follows the control transfer instruction. To avoid creating a hole or bubble in the pipeline, the CY7C601/611 delays execu-
tion of the target instruction until the instruction following the control transfer instruction is executed. The instruction
in this delay slot is called the delay instruction.

Table 2-14. Delayed Control Transfer Instruction Example

PC nPC Instruction
8 12 Non-control transfer
12 16 Control transfer (target = 40)
16 40 Non-control transfer (delay instruction)

(Transfers control to 40)
40 44

2-25

=.* —
%’iﬁm CY7C601/CY7C611 Integer Unit
— SEMICONDUCTOR

Table 2-15. Effect of Annul Bit Reset (a =0)

PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (a=0) 40 Not Taken
16 20 Delay slot instruction Executed
20 24 Executed

Table 2-16. Effect of Annul Bit Set (a=1)

PC nPC Instruction Action
8 12 Non-control transfer Executed
12 16 Bicc (@a=1) 40 Not Taken
16 20 Delay slot inst. (annulled) | Not Executed
20 24 Executed

23.34.1 PCandnPC

The Program Counter (PC) contains the address of the instruction currently being executed by the CY7C601/611, and
the next Program Counter (nPC) holds the address (PC + 4) of the next instruction to be executed (assuming a control
transfer or a trap does not occur).

Most instructions end by copying the contents of the nPC into the PC and then they either increment nPC by four or
write a computed control transfer target address into nPC. At this point, the PC points to the instruction that is about
to begin execution and the nPC points to the instruction that will be executed after that, i.e. the second instruction after
the currently executing instruction. It is the existence of the nPC that allows the execution of the delay instruction before
transfer of control to the target instruction.

2.3.3.4.2 Delay Instruction

The instruction pointed to by the nPC when the PC is pointing to a delayed-control-transfer instruction is called the delay
instruction. Normally, this is the next sequential instruction in the code stream. However, if the instruction that preceded
the delayed control transfer was itself a delayed control transfer, the target of the preceding control transfer becomes
the delay instruction (that’s where the nPC will point). For more on delayed control transfer couples, see Section 2.3.3.4.4.

Table 2-14 shows the order of execution for a simple (not back-to-back) delayed control transfer. The order of execution
is 8, 12, 16, 40. If the delayed-control-transfer instruction were not taken, the order would be 8, 12, 16, 20.

23343 Annul Bit

The a (annul) bit is only available on conditional branch instructions (Bicc, FBfcc, and CBccc), where it changes the behav-
ior of the delay instruction. If a is set on a conditional branch instruction (except BA, FBA, and CBA) and the branch
is not taken, the delay instruction is annulled (not executed). An annulled instruction has no effect on the state of the
CY7C601/611 nor can a trap occur during an annulled instruction. If the branch is taken, the a bit is ignored and the delay
instruction is executed. Table 2-15 and Table 2-16 show the effect of the annul bit when it is reset or set.

The “branch always” instructions (BA, FBA, and CBA) are a special case. If the a bit is set in these instructions, the delay
instruction is annulled, even though the branch is taken. Effectively, this gives a “traditional” non-delayed branch. When
a = 0in a “branch always” instruction, it behaves the same as any other conditional branch; the delay instruction is ex-
ecuted. Figure 2—19 displays the effect the a bit has on any branch for either the set or reset state. Table 2-17 summarizes
the effect the annul bit has on the execution of delay instructions.

2-26

%i-ﬁm CY7C601/CY7C611 Integer Unit

Table 2-17. Effect of Annul Bit on Delay Instruction

a bit Type of branch Delay instruction executed?
a=1 Always No
Conditional, taken Yes
Conditional, not taken No
a=20 Always Yes
Conditional, taken Yes
Conditional, not taken Yes
ANNUL = 0 ANNUL = 1
Code Code

Control Transfer Inst. Branch | Control Transfer Inst. Untaken

<Alwa\ys Conditional

Delay Inst.
Untaken

v Conditional +—

Figure 2-19. Delayed Control Transfer

Taken Delay Inst.
Conditional

Taken
Conditional

2.3.3.4.4 Delayed Control Transfer Couples

The occurrence of two back-to-back, delayed control transfer instructions is called a delayed control transfer couple,
which the processor handles differently from a simple control transfer. An instruction sequence containing a delayed
control transfer couple is shown in Table 2-18, and the order of execution for the six different cases of back-to-back,
delayed control transfer instructions is shown in Table 2-19.

The delay slot instruction for a delayed control transfer instruction is the instruction fetched after the delayed control
transfer instruction. For most cases, this instruction is located immediately in the code listing after the delayed control
transfer instruction. However, in the case of a delayed control transfer couple, the target instruction of the first delayed
control transfer instruction is the delay slot instruction for the second delayed control transfer instruction, since that tar-
get instruction is the next instruction to be fetched. The delay slot instruction for the second delayed control transfer
instruction is the next instruction loaded into the instruction pipeline after the second delayed control transfer instruc-
tion.

In the following tables, “delayed control transfer instruction” is abbreviated to “DCTI”. A “Non-DCTI” may be either
a non-control transfer instruction or a control transfer that is not delayed (i.e., a Ticc). Where the annul bit is not indi-
cated, it may be either 0 or 1.

Case 1 of Table 2-19 includes the “JMPL, RETT” couple, which is the normal method of returning from a trap handler.
The JMPL, RETT couple ensures correct values of PC and nPC are restored upon exiting the trap routine, even in the
case of a trap caused by a delay slot instruction (see Section 2.3.3.4.2). The case of a trap caused by a delay slot instruction
is one where the nPC will not be PC + 4, thus requiring both PC and nPC to be restored. The JMPL, RETT couple
allows the choice of re-executing the trapped instruction or executing the instruction following the trap occurrence. Refer
to the RETT entry in Chapter 6 for further information.

2-27

CY7C601/CY7C611 Integer Unit

Table 2-18. Delayed Control Transfer Couple Instruction Sequence

Address Instruction | Target
8: Non DCTI
12: DCTI 40
16: DCTI 60
20: Non DCTI
4:
4.{.): .I;ion DCTI
44:
60: Non DCTI
64:

Table 2-19. Execution of Delayed Control Transfer Couples

Case DCTI at Location 12 DCTI at Location 16 Order of Execution
1 DCTI Unconditional DCTI Taken 12,16,40,60,64,...
2 DCTI Unconditional B*cc(a=0) Untaken 12,16,40,44,...
3 DCTI Unconditional B*cc(a=1) Untaken 12,16,44,48,...(40 annulled)
4 DCTI Unconditional B*A(a=1) 12,16,60,64,...(40 annulled)
5 B*A(a=1) any CTI 12,40,44,...(16 annulled)
6 B*cc DCTI Not Supported
Definitions:
B*A-—-—-—-—---BA,FBA, or CBA
B*cc————- ——-Bice,FBicc, or CBicc (except B*A)
DCTI Uncond.——CALLJMPL RETT, or B*A(a=0)
DCTI Taken---—-CALL,JMPL,RETT,B*cc taken, or B*A(a=0)

Cases 1-5 described in Table 2-19 are illustrated in Figure 2-20. In case 1, the first DCTT is fetched at address 12 and
the target address is calculated while the delay slot instruction is fetched. The delay slot instruction for the first DCTI
(located at address 16) is another DCTI, which also has a delay slot. The target address of the first DCTI has been calcu-
lated by the time the first delay slot instruction has been fetched, and the target instruction is fetched at address 40. The
target instruction is the instruction located in the instruction pipeline after the second DCTI, and therefore it is the delay
slot instruction for the second DCTI. The target instruction for the second DCTI (address 60) is fetched after the delay
slot instruction for the second DCTI (which is also the target address for the first DCTI) has been fetched.

Case 2 differs from case 1 in that the second DCTI is conditional, and is not taken. In case 2, the instruction at address
40 (target for DCTI #1) is the delay slot instruction for the second DCTI. Since the second DCTI does not cause a branch,
the instruction fetch continues to address 44.

Case 3is an interesting case in which the target instruction of the first DCTI is annulled by the second DCTI. This causes
the instruction at address 40 to be annulled. Since the second DCTT is an untaken conditional branch, instruction fetch
continues after the annulled target instruction (address 44).

Case 4 illustrates a DCTI followed by a branch always instruction with the annul bit set. This causes the target instruction
of the first DCTI (address 40) to be annulled, and program control is transferred to the target of the second DCTI at
address 60.

Case § illustrates the case where the second DCTI is annuiled by the annul bit of the first DCTI. The second DCTI,
since it is annulled, has no effect on instruction fetch. This case is identical to the case of any other annulled delay slot
instruction.

When the first instruction of a delayed control transfer couple is a conditional branch, control transfer is undefined (case
6). If such a couple is executed, the location where execution continues is within the same address space but is otherwise
undefined. Execution of this sequence does not change any other aspect of the processor state.

2-28

——

E—t—}:“éﬁm CY7C601/CY7C611 Integer Unit

A(‘;gitess Case 1 A:}Z?;ss Case 2 A;:srgss
12H 12H 12H [DCT inst. 1 |
Delay Slot #1 y Delay Siot #1 Delay Slot #1
164 |[DCTinst 2 | 16H B*cc (untaken) l 16H B*cc (untaken)
a= a=1
y Delay Slot #2] Delay Slot #2] . - Delay-Slot #2|
40H || DCT #1 Target| 40H [DCT #1 Target | 404 |{ DCT#1.Taiget|-

annulled by DCTI #2
44H Next Inst. 44H Next Inst.

A

60H l DCT #2 Targetl

64H Next Inst.

Inst. Inst.
Admess Case 4 Adoess Case s
12H 12H | B*A(a=1)
Delay Slot #1
184 [I7DoT

B*A (a=1) nst2.]

annulled by DCTI #1

Ty Deiy, St 7
4o [[DCT# Target] W DCT #1 Target

annulled by DCTI #2

Next Inst.

60H | DCT #2 Target

64H | Nextinst |

Figure 2-20. Delayed Control Transfer Couples

Table 2-20. Read/Write Control Register Instructions

Name Operation Cycles
RDY Read Y Register 1
RDPSR* Read Processor State Register 1
RDWIM* Read Window Invalid Mask 1
RDTBR* Read Trap Base Register 1
WRY Write Y Register 1
WRPSR* Write Processor State Register 1
WRWIM* Write Window Invalid Mask 1
WRTBR* ‘Write Trap Base Register 1

* denotes supervisor instruction

2-29

= CY7C601/CY7C611 Integer Unit
=F SEMICONDUCTCR

Table 2-21. Floating-Point-Operate and Coprocessor-Operate Instructions

Name Operation Cycles
FPop Floating-Point Operations 1 to launch
CPop Coprocessor Operations 1 to launch

Table 2-22. Miscellaneaous Instructions

Name Operation Cycles
UNIMP Unimplemented Instruction 1
IFLUSH Instruction Cache Flush 1

2.3.3.5 Read/Write Control Registers

This class of instruction reads or writes the contents of the various control registers (see Table 2-20). The source (read)
or destination (write) is implied by the instruction name. Read/write instructions are provided for the PSR, WIM, TBR,
FSR, CSR, and the Y register. Reads and writes to the PSR, WIM, and TBR are privileged and are available in supervisor
mode only.

2.3.3.6 Hoating-Point-Operate and Coprocessor-Operate

Floating-point calculations are accomplished with floating-point-operate instructions (FPops), which are register-to-reg-
ister instructions that compute some result as a function of one or two source operands (see Table 2-21). The result is
always placed in a destination register (i.e., source operands are not overwritten). The source and destination registers
are f registers from the CY7C602’s register file. See Section 3.3.1 for more information. If no CY7C602 is present, or
if the EF bit of the PSR is not set, executing a floating-point instruction will generate a fp disabled trap.

Coprocessor-operate instructions (CPops) are executed by the attached coprocessor. Coprocessor instructions use the
¢ registers located in the coprocessor’s register file as source and destination registers. If there is no attached coprocessor,
attempted execution of a coprocessor instruction generates a cp disabled trap.

Floating-point and coprocessor load/store instructions are not operate instructions; they fall under the CY7C601/611’s
load/store instruction category (see Section 2.3.3.1).

Except for op and op3, which specify the particular floating-point-operate or coprocessor-operate instruction to be ex-
ecuted, the instruction fields of an FPop or CPop are interpreted by the CY7C602 or coprocessor. Floating-point-operate
instructions execute concurrently with CY7C601/611 instructions. CPops can also execute concurrently with both
CY7C601 and FPop instructions if they are designed to do so.

Because the CY7C601/611 and CY7C602 can execute instructions concurrently, when a floating-point exception occurs,
the PC does contain the address of an FPop instruction, but not the one that caused the exception. However, the front
entry of the floating-point queue contains the offending instruction and its address.

If the coprocessor executes instructions concurrently with the CY7C601, the architecture will support a coprocessor
queue that functions in the same fashion as the floating-point queue.

2.3.3.7 Miscellaneous

Instructions in this category handle special circumstances within the integer unit (see Table 2-22). Execution of the
UNIMP instruction causes an illegal instruction trap, so its execution is normally avoided except as part of a checking
routine. Details of one possible use for UNIMP are given in its definition in Chapter 6.

The IFLUSH instruction is used to flush a word from an internal (to the CY7C601/611) instruction cache. Current integer
unit implementations (CY7C601/611) do not incorporate an internal instruction cache, so IFLUSH would normally ex-
ecute as a NOP. However, if there is an external instruction cache, IFLUSH causes an illegal instruction trap if the IFT
signal is LOW (see Section 2.4). }

2-30

|

IP"

-—

& CYPRESS
SEMICONDUCTOR

CY7C601/CY7C611 Integer Unit

l

2.3.4 Op Codes

This section contains tables that give a complete list of the instruction opcodes, both by functional groups and in ascending
numeric order.

2.3.4.1 Load/Store Instructions

Table 2-23. Load/Store Instruction Opcodes

Opcodes with Format
Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0
LD 11 rd 000000 151 i=0 asi s2
i=1 simm13
LDA 11 rd 010000 rs1 i=0 asi 52
LDC 11 rd 110000 sl i=0 ignored 152
i=1 simm13
LDCSR 11 rd 110001 sl i=0 ignored I rs2
i=1 simm13
LDD 11 rd 000011 1 |i=0 asi | ™
i=1 simm13
LDDA 11 rd 010011 rsl i=0 asi s2
LDDC 11 rd 110011 sl i=0 ignored rs2
i=1 simm13
LDDF 11 rd 100011 sl i=0 ignored I 152
i=1 simm13
LDF 11 rd 100000 151 i=0 ignored I 152
i=1 simm13
LDFSR 11 rd 100001 15l i=0 ignored I s2
i=1 simm13
LDSB 11 rd 001001 sl i=0 asi J 52
i=1 simm13
LDSBA 11 rd 011001 sl i=0 asi 152
LDSH 11 rd 001010 rs1 i=0 asi 152
i=1 simm13
LDSHA 11 rd 011010 151 i=0 asi rs2
LDSTUB 11 rd 001101 151 i=0 asi 152
i=1 simm13
LDSTUBA |1 1 rd 011101 sl i=0 asi 152
LDUB 11 rd 000001 151 i=0 asi s2
. i=1 simm13
LDUBA 11 rd 010001 151 i=0 asi 152
LDUH 11 rd 000010 151 i= asi 152
i=1 simm13
LDUHA 11 rd 010010 sl i= asi rs2

2-31

= =
%ﬁm CY7C601/CY7C611 Integer Unit
2 SEMICONDUCTOR
Table 2-23. Load/Store Instruction Opcodes (continued)
Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4

ST 11 rd 000100 sl i=0 asi 1s2
i=1 simm13

STA 11 rd 010100 sl i=0 asi 152

STB 11 rd 000101 sl i=0 asi rs2
i=1 simm13

STBA 11 rd 010101 sl i=0 asi 52

STC 11 rd 110100 sl i=0 ignored rs2
i=1 simm13

STCSR 11 rd 110101 sl i=0 ignored I 52
i=1 simm13

STD 11 rd 000111 sl i=0 asi | s2
i=1 simm13

STDA 11 rd 010111 sl i=0 asi rs2

STDC 11 rd 110111 rsl i=0 ignored s2
i=1 simm13

STDCQ 11 rd 110110 sl i=0 ignored L rs2
i=1 simm13

STDF 11] o 100111 | w1 |i=0 ignored | =2
i=1 simm13

STDFQ 11 rd 100110 sl i=0 ignored I 152
i=1 simm13

STF 11| 100100 [w1 [i=0 ignored [m2
i=1 simm13

STFSR 11] 100101 1 |i=0 ignored | m2
i=1 simm13

STH 11 rd 000110 sl i=0 asi I rs2
i=1 simm13

STHA 11 rd 010110 sl i=0 asi 152

SWAP 11 rd 001111 sl i=0 asi rs2
i=1 simm13

SWAPA 11| 011111 sl |i=0 asi [2

2-32

St CY7C601/CY7C611 Integer Unit

2.3.4.2 Arithmetic/Logical/Shift Instructions

Table 2-24. Arithmetic/Logical/Shift Instruction Opcodes

Opcodes with Format

Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0

ADD 10 rd 000000 sl [i=0 ignored [2
i=1 simm13

ADDce 1o o 010000 | 1 [i=0 ignored [2
i=1 simm13

ADDX 10 rd 001000 sl i=0 ignored r 52
i=1 simm13

ADDXcc 10 rd 011000 151 i=0 ignored [152
i=1 simm13

AND 10| 000001 sl [i=0 ignored [=2
i=1 simm13

ANDce 10 rd 010001 sl [i=0 ignored [2
i=1 simm13

ANDN 10 rd 000101 151 i= ignored] rs2

) i=1 simm13

ANDNce 10 rd 010101 sl i= ignored r 152
i=1 simm13

MULScc 10 rd 100100 sl i=0 ignored I 152
i=1 simm13

OR 10 rd 000010 51 |i= ignored [w2
i=1 simm13

ORce 1o 010010 1 |i= ignored [w2
i=1 simm13

ORN 10 rd 000110 sl [i= ignored [=2
i=1 simm13

ORNCce 10 rd 010110 sl i= ignored | 152
i=1 simm13

SLL 10 rd 100101 1s1 i=0 ignored ‘ 152
i=1 shent

SRA 10 rd 100111 sl i=0 ignored I 52
i=1 shent

SRL 10 rd 100110 sl |i=0 ignored [2
i=1 shent

SUB 10 rd 000100 sl |i=0 ignored [w2
i=1 simm13

SUBcc 10 rd 010100 151 i=0 ignored [152
i=1 simm13

SUBX 10 rd 001100 s1 |i=0 ignored [w2
i=1 simm13

SUBXcc 10 rd 011100 sl i=0 ignored r 152
i=1 simm13

2-33

CY7C601/CY7C611 Integer Unit

Table 2-24. Arithmetic/Logical/Shift Instruction Opcodes (continued)

Opcodes with Format

Mnemeonic 3130 29 25 24 19 18 13 12 5 4 0

TADDcc 10 rd 100000 sl i=0 ignored I 52
i=1 simm13

TADDccTV [1 0] rd 100010 | w1 [i=0 ignored [=2
i=1 simm13

TSUBcc 10 rd 100001 sl [i=0 ignored [m2
i=1 simm13

TSUBcTV [1 0 rd 100011 s1 |i=0 ignored [m2
i=1 simm13

XNOR 10 rd 000111 sl |i=0 ignored | m2
i=1 simm13

XNORce 10 rd 010111 sl |i=0 ignored [=2
i=1 simm13

XOR 10 rd 000011 sl [i=0 ignored [m2
i=1 simm13

XORce 10 rd 010011 sl |i=0 ignored | 2
i=1 simm13

3130 29 25 2422 21 0
SETHI 00] r J1o0] imm22

2-34

=g CY7C601/CY7C611 Integer Unit

2.3.4.3 Control Transfer Instructions

Table 2-25. Control Transfer Instruction Opcodes

Opcodes with Format
Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0
JMPL 10 rd 111000 sl i=0 ignored | 1s2
i=1 simm13
RESTORE |1 0 rd 111101 sl i=0 ignored L 152
i=1 simm13
RETT 1 0| ignored 111001 sl i=0 ignored [152
i=1 simm13
SAVE 10| 111100 [w1 [i=0 ignored [2
i=1 simm13
3130 29 2825 2422 21 0
Bicc 0 0}lafcond]| 010 disp22
CBece 0 0fajcond| 111 disp22
FBfcc 0 0fja|cond | 110 disp22
3130 29 2825 24 19 18 14 13 12 5 4 0
Tice 1 0|I*|cond| 111010 sl i=0 ignored 152
i=1 simm13
CALL 01 disp30

*I = ignored.

Table 2-26. Bicc and Ticc Condition Codes

Cond. Test
0000 Never

0001 Equal to

0010 Less than or equal to

0011 Less than

0100 Less than or equal to, unsigned
0101 Carry set (less than, unsigned)
0110 Negative

0111 Overflow set

1000 Always

1001 Not equal to

1010 Greater than

1011 Greater than or equal to

1100 Greater than, unsigned

1101 Carry clear (greater than or equal, unsigned)
1110 Positive

1111 Overflow clear

2-35

CY7C601/CY7C611 Integer Unit

Table 2-27. FBfcc Condition Codes

Cond. Test

0000 Never

0001 Not equal

0010 Less than or greater than

0011 Unordered or less than

0100 Less than

0101 Unordered or greater than
0110 Greater than

0111 Unordered

1000 Always

1001 Equal

1010 Unordered or equal

1011 Greater than or equal

1100 Unordered or greater than or equal
1101 Less than or equal

1110 Unordered or less than or equal
1111 Ordered

Table 2-28. CBccc Condition Codes

Opcode Cond. CCC[1:0] Test
CBN 0000 Never
CB123 0001 lor2or3
CB12 0010 lor2
CB13 0011 lor3
CB1 0100 1
CB23 0101 2or3
CB2 0110 2
CB3 0111 3
CBA 1000 Always
CBO 1001 0
CB03 1010 Oor3
CB02 1011 OQor2
CB023 1100 Qor2or3
CB01 1101 Qorl
CB013 1110 Qorlor3
CB012 1111 OQorlor2

2.3.4.4 Read/Write Control Register Instructions

Table 2-29. Read/Write Control Register Instruction Opcodes

Opcodes with Format
Mnemonic 3130 29 25 24 19 18 14 13 12 0
RDPSR 10 rd 101001 | ignored | I* ignored
RDTBR 10 rd 101011 | ignored I* ignored
RDWIM 10 rd 101010 [ignored I* ignored
RDY 10 rd 101000 | ignored | I* ignored
3130 29 25 24 19 18 14 13 12 5 4 0
WRPSR 1 0 | ignored 110001 15l i=0 ignored | 152
i=1 simm13
WRTBR 1 0 ignored | 110011 sl |i=0 ignored | 2
i=1 simm13
WRWIM 1 0 [ignored 110010 sl i=0 ignored | 152
i=1 simm13
WRY 1 0] ignored | 110000 151 i=0 ignored [w2
i=1 simm13

*I = ignored.

2-36

St CY7C601/CY7C611 Integer Unit

2.3.4.5 HFoating-Point/Coprocessor Instructions

Table 2-30. Floating-Point /Coprocessor Instruction Opcodes

Opcodes with Format
Mnemonic 3130 29 25 24 19 18 14 13 5 4 0
CPOP1 10 rd 110110 sl OPC 152
CPOP2 10 rd 110111 sl OPC rs2
FABSs 10 rd 110100 | ignored 000001001 rs2
FADDs 10 rd 110100 rs1 001000001 rs2
FADDd 10 rd 110100 sl 001000010 152
FADDx 10 rd 110100 sl 001000011 52
FCMPs 1 0 | ignored 110101 sl 001010001 52
FCMPd 1 0| ignored 110101 sl 001010010 rs2
FCMPx 1 0| ignored 110101 rs1 001010011 152
FCMPEs 1 0| ignored 110101 sl 001010101 52
FCMPEd 1 0} ignored 110101 sl 001010110 52
FCMPEx 1 0 | ignored 110101 sl 001010111 152
FDIVs 10 rd 110100 sl 001001101 152
FDIVd 10 rd 110100 sl 001001110 52
FDIVx 10 rd 110100 rsl 001001111 52
FMOVs 10 rd 110100 | ignored 000000001 2
FMULs 10 rd 110100 sl 001001001 rs2
FMULd 10 rd 110100 sl 001001010 52
FMUILx 10 rd 110100 sl 001001011 152
FNEGs 10 rd 110100 | ignored 000000101 rs2
FSQRTs 10 rd 110100 | ignored 000101001 152
FSQRTd 10 rd 110100 | ignored 000101010 rs2
FSQRTx 10 rd 110100 | ignored 000101011 rs2
FSUBs 10 rd 110100 rsl 001000101 152
FSUBd 10 rd 110100 sl 001000110 152
FSUBx 10 rd 110100 sl 001000111 152
FdTOi 10 rd 110100 | ignored 011010010 rs2
FdTOs 10 rd 110100 | ignored 011000110 152
FdTOx 10 rd 110100 | ignored 011001110 152
FiTOd 10 rd 110100 | ignored 011001000 52
FiTOs 10 rd 110100 | ignored 011000100 152
FiTOx 10 rd 110100 | ignored 011001100 rs2
FsTOd 10 rd 110100 | ignored 011001001 1s2
FsTOi 10 rd 110100 | ignored 011010001 1s2
FsTOx 10 rd 110100 | ignored 011001101 152
FxTOi 10 rd 110100 | ignored 011010011 152
FxTOs 10 rd 110100 | ignored 011000111 1s2
FxTOd 10 rd 110100 | ignored 011001011 152

2-37

{

B
¥ e CY7C601/CY7C611 Integer Unit

SEMICONDUCTOR

III

2.3.4.6 Miscell Instructi
Table 2-31. Miscellaneous Instruction Opcodes
Opcodes with Format
Mnemonic 3130 29 25 24 19 18 14 13 12 5 4 0
IFLUSH 1 0| ignored 111011 sl i=0 ignored 1 152
i=1 simm13
UNIMP 0 0 [ignored [000] const22

2.3.47 Opcodes In Ascending Numeric Order
Table 2-32. Instruction Opcode Numeric Listing

Opcodes with Format

Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0

UNIMP 0 0] ignored | 000 const22

Bicc 0 0[afcond[010 disp22

SETHI 00 rd 100 imm22

FBfcc 00 cond [110 disp22

CBcce 00 cond [111 disp22

CALL 01 disp30

ADD 10 rd 000000 sl i=0 ignored l 152
i=1 simm13

AND 10| 000001 | w1 [i=0 ignored [2
i=1 simm13

OR 10 rd 000010 sl i=0 ignored L 152
i=1 simm13

XOR 10 rd 000011 sl i=0 ignored I 152
i=1 simm13

SUB 10 rd 000100 sl i=0 ignored | 152
i=1 simm13

ANDN 10 rd 000101 sl i=0 ignored 1 1s2
i=1 simm13

ORN 10 rd 000110 | 1 [i=0 ignored | m2
i=1 simm13

XNOR 10 rd 000111 sl i=0 ignored] 152
i=1 simm13

ADDX 10 rd 001000 rsl i=0 ignored I 2
i=1 simm13

SUBX 10 001100 | w1 [i= ignored [=2
i=1 simm13

ADDce 10| m 010000 | w1 |i=0 ignored [=2
i=1 simm13

ANDcc 10 rd 010001 sl |i=0 ignored [=2
i=1 simm13

ORce 10| xd 010010 | m1 [i=0 ignored | =™
i=1 simm13

2-38

=
%;gm CY7C601/CY7C611 Integer Unit
— SEMICONDUCTOR
Table 2-32. Instruction Opcode Numeric Listing (continued)
Opcodes with Format

Mnemonic 3130 29 25 2422 2119 18 14 13 12 S

XORce 10 rd 010011 sl |i=0 ignored [™2
i=1 simm13

SUBcc 10 rd 010100 rsl i=0 ignored I 1s2
i=1 simm13

ANDNcc 10 rd 010101 sl i=0 ignored l rs2
i=1 simm13

ORNce 10 rd 010110 sl |i=0 ignored [m2
i=1 simm13

XNORcc 10 rd 010111 rs1 i=0 ignored] 152
i=1 simm13

ADDXcc 10 rd 011000 rsl i=0 ignored [rs2
i=1 simm13

SUBXce 10 rd 011100 st |i=0 ignored [w2
i=1 simm13

TADDcc 10 rd 100000 151 i=0 ignored [m2
i=1 simm13

TSUBcc 10 rd 100001 rs1 i=0 ignored [m2
i=1 simm13

TADDceTV [1 0| rd 100010 | w1 [i=0 ignored [2
i=1 simm13

TSUBccTV |1 0 rd 100011 rs1 i=0 ignored | rs2
i=1 simm13

MULScc [1 0| rd 100100 | w1 [i=0 ignored [m2
i=1 simm13

SLL 10 rd 100101 rs1 i=0 ignored] rs2
i=1 shent

SRL 10 rd 100110 sl i=0 ignored l 152
i=1 shent

SRA 10 rd 100111 s1 [i=0 ignored | m2
i=1 shent

RDY 10 rd 101000 | ignored I* ignored

RDPSR 10 rd 101001 | ignored I* ignored

RDWIM 10 rd 101010 | ignored I* ignored

RDTBR 10 rd 101011 | ignored I* ignored

WRY 1 0| ignored 110000 sl i=0 ignored [1s2
i=1 simm13

WRPSR 1 0| ignored 110001 sl i=0 ignored I 152
i=1 simm13

WRWIM 1 0 ignored [110010 sl i=0 ignored [=
i=1 simm13

WRTBR 1 0] ignored | 110011 rs1 i=0 ignored [=2
i=1 simm13

2-39

- /
% CYPRESS n eger ni

Table 2-32. Instruction Opcode Numeric Listing (continued)

Opcodes with Format
Mnemonic 3130 29 25 2422 2119 18 14 13 12 5 4 0
FPOP1 10 rd 110100 151 OPF 52
FMOVs 10 rd 110100 | ignored 000000001 rs2
FNEGs 10 rd 110100 | ignored 000000101 s2
FABSs 10 rd 110100 | ignored 000001001 s2
FSQRTs 10 rd 110100 | ignored 000101001 s2
FSQRTd 10 rd 110100 | ignored 000101010 52
FSQRTx 10 rd 110100 | ignored 000101011 12
FADDs 10 rd 110100 sl 001000001 rs2
FADDd 10 rd 110100 sl 001000010 152
FADDx 10 rd 110100 sl 001000011 152
FSUBs 10 rd 110100 sl 001000101 152
FSUBd 10 rd 110100 sl 001000110 1s2
FSUBx 10 rd 110100 51 001000111 152
FMULs 10 rd 110100 sl 001001001 52
FMULd 10 rd 110100 sl 001001010 52
FMULx 10 rd 110100 rs1 001001011 152
FDIVs 10 rd 110100 sl 001001101 152
FDIVd 10 rd 110100 51 001001110 12
FDIVx 10 rd 110100 rs1 001001111 152
FiTOs 10 rd 110100 | ignored 011000100 rs2
FdTOs 10 rd 110100 | ignored 011000110 s2
FxTOs 10 rd 110100 | ignored 011000111 rs2
FiTOd 10 rd 110100 | ignored 011001000 rs2
FsTOd 10 rd 110100 | ignored 011001001 s2
FxTOd 10 rd 110100 | ignored 011001011 rs2
FiTOx 10 rd 110100 | ignored 011001100 rs2
FsTOx 10 rd 110100 | ignored 011001101 52
FdTOx 10 rd 110100 | ignored 011001110 rs2
FsTOi 10 rd 110100 | ignored 011010001 2
FdTOi 10 rd 110100 | ignored 011010010 12
FxTOi 10 rd 110100 | ignored 011010011 rs2
FPOP2 10 rd 110101 rs1 OPF rs2
FCMPs 1 0 | ignored 110101 51 001010001 rs2
FCMPd 1 0| ignored 110101 rs1 001010010 s2
FCMPx 1 0| ignored 110101 sl 001010011 1s2
FCMPEs 1 0| ignored 110101 rs1 001010101 1s2
FCMPEd 1 0| ignored 110101 sl 001010110 s2
FCMPEx 1 0| ignored 110101 sl 001010111 1s2
CPOP1 10 rd 110110 rs1 OPC 1s2
CPOP2 10 rd 110111 rs1 OPC 152
JMPL 10 rd 111000 rs1 i=0 ignored 2
i=1 simm13

2-40

===
= =

%ﬁm CY7C601/CY7C611 Integer Unit
—=r SEMICONDUCTOR

Table 2-32. Instruction Opcode Numeric Listing (continued)

Opcodes with Format

Mnemonic |3130 29 25 2422 2119 18 14 13 12 5 4 0

RETT 1 0 ignored [111001 [w1 [i=0 ignored [=2
i=1 simm13

Tice 1 0[I*Jcond| 111010 1s1 i=0 ignored | w2
i=1 simm13

IFLUSH 1 0| ignored 111011 sl i=0 ignored I 1s2
i=1 simm13

SAVE 10 rd 111100 sl [i=0 ignored | =2
i=1 simm13

RESTORE [1 0 rd 111101 sl |i=0 ignored [m2
i=1 simm13

LD 11| o 000000 | 1 [i=0 asi [m2
i=1 simm13

LDUB 11 rd 000001 s |i=0 asi [=2
i=1 simm13

LDUH 11 o 000010 | 1 [i=0 asi [m2
i=1 simm13

LDD 11| o 000011 | st [i=0 asi [=2
i=1 simm13

ST 11 d 000100 sl [i=0 asi [m2
i=1 simm13

STB 11 d 000101 sl |i=0 asi [=2
i=1 simm13

STH 11 rd 000110 s1 [i=0 asi | =2
i=1 simm13

STD 11{ 000111 | 1 [i=0 asi [w2
i=1 simm13

LDSB 11| « 001001 [1 [i=0 asi [m2
i=1 simm13

LDSH 11| 001010 [w1 [i=0 asi | =
i=1 simm13

LDSTUB 11 rd 001101 sl [i=0 asi [2
i=1 simm13

SWAP 11| 001111 | w1 [i=0 asi [w2
i=1 simm13

LDA 11 rd 010000 sl [i=0 asi 152

LDUBA 11 d 010001 sl |i=0 asi 1s2

LDUHA 11 d 010010 s1 |i=0 asi 1s2

LDDA 11 d 010011 sl [i=0 asi 152

STA 11 rd 010100 1 |i=0 asi 152

STBA 11 rd 010101 sl [i=0 asi 152

STHA 11 rd 010110 s1 |i=0 asi)

STDA 11 rd 010111 s1 |i=0 asi 152

2-41

= =
= CY7C601/CY7C611 Integer Unit
== 4 SEMIOCONDUCTOR
Table 2-32. Instruction Opcode Numeric Listing (continued)
Opcodes with Format
Mnemonic 3130 29 25 2422 2119 18 14 13 12 5
LDSBA 11 rd 011001 sl i=0 asi 152
LDSHA 11 rd 011010 rs1 i=0 asi 52
LDSTUBA |1 1 rd 011101 sl i=0 asi rs2
SWAPA 11 rd 011111 sl i=0 asi rs2
LDF 11 rd 100000 sl i=0 ignored 152
i=1 simm13
LDFSR 11 rd 100001 rs1 i=0 ignored [s2
’ i=1 simm13
LDDF 11 rd 100011 sl i=0 ignored J rs2
i=1 simm13
STF 11 rd 100100 sl i=0 ignored [152
i=1 simm13
STFSR 11 rd 100101 sl |i=0 ignored [w2
i=1 simm13
STDFQ 11 rd 100110 sl i=0 ignored l rs2
i=1 simm13
STDF 11 rd 100111 sl i=0 ignored l rs2
i=1 simm13
LDC 11 rd 110000 sl i=0 ignored f rs2
i=1 simm13
LDCSR 11 rd 110001 sl i=0 ignored T rs2
i=1 simm13
LDDC 11| 110011 | w1 [i=0 ignored | =2
i=1 simm13
STC 11 rd 110100 sl i=0 ignored | 152
i= simm13
STCSR 11 rd 110101 sl i=0 ignored [m2
i= simm13
STDCQ 11 rd 110110 sl |i= ignored [m2
i=1 simm13
STDC 11 rd 110111 sl [i=0 ignored [=
i=1 simm13

2-42

CY7C601/CY7C611 Integer Unit

==
==-"_—';5 SVBOONDUCTOR

2.4 Signal Description !

This section provides a description of the CY7C601’s (and CY7C611’s) external signals. Functionally, the IU’s external
signals can be divided into four categories: memory subsystem interface, floating-point/coprocessor interface, interrupt
and control signals, and power and clock signals.

-—an | e FF___
Asuro) | le—FHOLD
SIZE(1:0) 4——‘@%(——
FXA(
MAO | EXACR
—_— > FCC(1:0)
| e el -
« DOLO) e FCCV AQ3:0) iz
—] e
T5S | FINSL__ FHOLD
- le—EHOLD
———™ FINS2 -«—ANZ0 TERC
MHOLDA e SIZE(1:0) le—FEXC__
MHOLDB f-————— %,
BOID ——MAQ 1:0)
BHOLD le—ECCLO
—BHOLD |
TOE 4__'3(1&)_. le—FCCV
——
— FINS1
MDS i
o COE CY7C601 MDS FINS2
CLK MHOLDA T v———
——> SPARC INST — cY7C611 EPSYN
IRL(3:0) integer ———— MHOLDB DT
INTACK, Unit | FLuse BHOLD SPARC |—ELUSH
i e— —
MEXC TOE Integer et
—_—— 2
RESET Unit >
pe— | lock
¢ ERROR MEXC
—— — INULL
<« RD | RESET LDSTO
-—E ERROR
WRT «—CL. <—RD— INTACK
p— e i
DXFER CHOLD -~ IRL(3:0)
LDSTO CEXC ‘T «—CLK.
INULL CXACK -—
LOCK CCC(1:0)
D B ———— EEE————
——DOE] leCCCV___
AOE CINS1
——— ——————
TFT CINS2
— IFT J} pciNs2

Figure 2-21. CY7C601/CY7C611 External Signals

Signals that are active LOW are marked with an overscore; all others are active HIGH. Figure 2-21 summarizes the sig-
nals described in this section. Table 2-33 provides a summary of the external signals for the CY7C601. The external signal
summary for the CY7C611 is listed in Table 2-40 in Section 2.9.

Note: In the descriptions below, and in this manual in general, when a signal is asserted it is active, and when it is deas-
serted it is inactive. When a signal is HIGH, it is a logical 1; when it is LOW, it is a logical 0. This is true regardless of
whether it is asserted or deasserted.

2-43

CY7C601/CY7C611 Integer Unit

=2 SEMICONDUCTCR

Table 2-33. CY7C601 External Signal Summary

Memory Subsystem Interface Signals:

Pin Name Description Signal Type Active
A<31:0> Address Bus Three-State Output

‘AOE Address Output Enable Input LOW
ASI<T:0> Address Space Identifier Three-State Qutput

COE Control Output Enable Input LOW
BHOLD Bus Hold Input LOW
D<31:0> Data Bus Three-State BiDir.

DOE Data Output Enable Input LOW
DXFER Data Transfer Three-State Output HIGH
IFT Instruction Cache Flush Trap Input LOW
INULL Integer Unit Nullify Cycle Three-State Output HIGH
LDSTO Atomic Load-Store Three-State Output HIGH
LOCK Bus Lock Three-State Output HIGH
MAO Memory Address Output Input HIGH
MDS Memory Data Strobe Input LOW
MEXC Memory Exception Input LOW
MHOLDA Memory Bus Hold A Input LOW
MHOLDB Memory Bus Hold B Input LOW
RD) Read Access Three-State Output HIGH
SIZE<1:0> Bus Transaction Size Three-State Output

WE ‘Write Enable Three-State Output LOW
WRT Advanced Write Three-State Output HIGH
Floating-Point / Coprocessor Interface Signals:

Pin Name Description Signal Type Active
CCC<1:0> Coprocessor Condition Codes Input

ccev Coprocessor Condition Codes Valid Input HIGH
CEXC Coprocessor Exception Input LOW
CHOLD Coprocessor Hold Input LOW
CINS1 Coprocessor Instruction in Buffer 1 Three-State Output HIGH
CINS2 Coprocessor Instruction in Buffer 2 Three-State Output HIGH
Cp Coprocessor Unit Present Input LOW
CXACK Coprocessor Exception Acknowledge Three-State Output HIGH
FCC<1:.0> Floating-Point Condition Codes Input

FCCV Floating-Point Condition Codes Valid Input HIGH
FEXC Floating-Point Exception Input LOW
FHOLD Floating-Point Hold Input LOW
FINS1 Floating-Point Instruction in Buffer 1 Three-State Output HIGH
FINS2 Floating-Point Instruction in Buffer 2 Three-State Output HIGH
FLUSH Floating-Point/Coprocessor Instruction Flush Three-State Output HIGH
FP Floating-Point Unit Present Input LOW
FXACK Floating-Point Exception Acknowledge Three-State Output HIGH
INST Instruction Fetch Three-State Cutput HIGH

2-44

CY7C601/CY7C611 Integer Unit

Table 2-33. CY7C601 External Signal Summary (continued)

Interrupt and Control Signals:

Pin Name Description Signal Type Active
IRL<3:0> Interrupt Request Level Input

INTACK Interrupt Acknowledge Three-State Output HIGH
RESET Reset Input LOW
ERROR Error State Three-State Output LOW
FPSYN Floating-Point Synonym Mode Input HIGH
TOE Test Mode Output Enable Input LOW
Power and Clock Signals:

Pin Name Description Signal Type

CLK Clock Input

vcaa Main internal VCC Input

vcco Output driver VCC Input

VCCT Input circuit VCC Input

VSSI Main internal VSS Input

VSSO Output driver VSS Input

VSST Input circuit VSS Input

The following sections describe the external signals for the CY7C601 and CY7C611. Signals that are modified for the
CY7C611 are listed in brackets, such as /4 <23:0>]. Signals not available on the CY7C611 are denoted as [Not available
on CY7C611].

2.4.1 Memory Subsystem Interface Signals

Memory interface signals consist of the address lines (40 bits), bidirectional data lines (32 bits), transaction size lines (2
bits), and various control signals.

2.4.1.1 A<3I1:0>—Address Bus (output) [A<23:0>]

The 32-bit address bus carries instruction or data addresses during a fetch or load/store operation. Addresses are sent
out unlatched and must be latched external to the CY7C601/611. Assertion of the MAO signal during a cache miss (which
is signaled by pulling one of the MHOLD lines low) will force the Integer Unit to place the previous (missed) address
on the address bus. The address bus is three-stated when the AOE or TOE signal is deasserted (HIGH).

2.412 AOE—Address Output Enable (input) [Not available on CY7C611]

Assertion of this signal enables the output drivers for the address bus, A<31:0>, and the ASI bus, ASI<7:0>, and is
the normal condition. Deassertion of AOE three-states the output drivers and should only be done when the bus is
granted to another bus master (i.e., when either BHOLD or MHOLDA/B is asserted).

2.4.1.3 ASI<7:0>—Address Space Identifier (output) [ASI<2:0>]

These 8 bits constitute the Address Space Identifier (ASI), which identifies the memory address space to which the instruc-
tion or data access is being directed. The ASI bits are sent out unlatched—simultaneously with the memory address—and
must be latched externally. Assertion of the MAO signal during a cache miss (which is signaled by pulling one of the
MHOLD lines low) will force the integer unit to place the previous address space identifier on the ASI<7:0> pins. The
ASI pins are three-stated when the AOE or TOE signal is deasserted (HIGH). Encoding of the ASI bits is shown in
Table 2-34. Additional ASI assignments for the SPARC architecture are listed in Table 4 - 15.

2-45

===
=t CY7C601/CY7C611 Integer Unit

Table 2-34. ASI Assignments

CY7C601 CY7C611
Address Space Identifier (ASI) Address Space Identifier (ASI) Address Space
00001000 (08 H) 000 (0 H) User Instruction
00001010 (0A H) 010 (2H) User Data
00001001 (09 H) 001 (1H) Supervisor Instruction
00001011 (0B H) 011 (3 H) Supervisor Data

2.4.1.4 BHOLD—Bus Hold (input)

BHOLD is asserted when an external bus master wants control of the data bus. Assertion of this signal will freeze the
processor pipeline, so after deassertion of BHOLD, external logic must guarantee that the data at all inputs to the
CY7C601/611 is the same as it was before BHOLD was asserted. This signal is tested on the falling edge (midpoint) of
a cycle and must be valid and stable at the processor for the duration of the specified set-up time prior to the falling edge
of CLK. All HOLD signals are latched in the CY7C601/611 (transparent latch with clock high) before they are used.

Because MDS and MEXC signals are not recognized while this input is active, BHOLD should only be used for bus access
requests by an external device. BHOLD should not be asserted when LOCK is asserted.

2.4.1.5 COE—Control Qutput Enable (input) [Not available on CY7C611]

Assertion of this signal enables the output drivers for SIZE < 1:0 >, RD, WE, WRT, LOCK, LDSTO, and DXFER out-
puts, and is the normal condition. Deassertion of COE three-states these output drivers and should only be done when
the bus is granted to another bus master (i.e., when either BHOLD or MHOLDAJB is asserted).

24.1.6 D<31:0>—Data Bus (bidirectional)

These pins form a 32-bit bidirectional data bus that serves as the interface between the integer unit and memory. The
data bus is only driven by the CY7C601/611 during the execution of integer store instructions and the store cycle of atom-
ic-load-store instructions. Similarly, the CY7C602 FPU drives the data bus only during the execution of floating-point
store instructions.

Store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during
the second data cycle of a store single access, the second and third data cycle of a store double access, and the third data
cycle of an atomic-load-store access.

Alignment for load and store instructions is performed by the processor. Doublewords are aligned on 8-byte boundaries,
words on 4-byte boundaries, and halfwords on 2-byte boundaries. If a doubleword, word, or halfword load or store instruc-
tion generates an improperly aligned address, a memory address not aligned trap will occur. Instructions and operands
are always expected to reside in a 32-bit wide memory. D < 31> corresponds to the most significant bit of the most signifi-
cant byte of a 32-bit word going to or from memory.

2.4.1.7 DOE—Data Output Enable (input) [Not available on CY7C611]

Assertion of this signal enables the output drivers for the data bus, D < 31:0 >, and is the normal condition. Deassertion
of DOE three-states the data bus output drivers and should only be done when the bus is granted to another bus master
(i.e., when either BHOLD or MHOLDAJB is asserted).

2.4.1.8 DXFER—Data Transfer (output) [Not available on CY7C611]

DXFER is used to differentiate between the addresses being sent out for instruction fetches and the addresses of data
fetches. DXFER is asserted by the processor during the address cycles of all bus data transfer cycles, including both cycles
of store single and all three cycles of store double and atomic load-store. DXFER is sent out unlatched and must be
latched externally before it is used.

2.4.1.9 TFT—Instruction Cache Flush Trap (input) [Not available on CY7C611]

The state of this pin determines whether or not execution of the IFLUSH instruction generates a trap. If IFT =0, then
execution of IFLUSH causes an illegal instruction trap. If IFT = 1, then IFLUSH executes like a NOP with no side effects.

2-46

s
3 % CY7C601/CY7C611 Integer Unit

2.4.1.10 INULL— Integer Unit Nullify Cycle (output)

The processor asserts INULL to indicate that the current memory access is being nullified. It is asserted in the same cycle
in which the address being nullified is active (though no longer on the address bus, the address is held in the external
address latches). INULL is used to prevent a cache miss (in systems with cache memory) and to disable memory exception
generation for the current memory access. This means that MDS and MEXC should not be asserted for a memory access
in which INULL = 1. INULL is a latched output and should not be latched externally. If a floating-point unit or coproces-
sor is present in the system, INULL should be ORed with the FNULL and CNULL signals to generate a final NULL
signal.

INULL is asserted under the following conditions:

1. During the second data cycle of any store instruction (including Atomic Load-Store) to nullify the second occurrence
of the store address.

2. Onall traps, to nullify the third instruction fetch after the trapped instruction. For reset, it nullifies the error-produc-
ing address.

3. On a load in which the hardware interlock is activated.
4. JMPL and RETT instructions.

2.4.1.11 LDSTO—Atomic Load-Store (output)

This signal is used to identify an atomic load-store to the system and is asserted by the integer unit during all the data
cycles (the load cycle and both store cycles) of atomic load-store instructions. LDSTO is sent out unlatched and must
be latched externally before it is used.

2.4.1.12 LOCK~—Bus Lock (output)

LOCK is asserted by the processor when it needs to retain control of the bus (address and data) for multiple cycle transac-
tions (Load Double, Store Single and Double, Atomic Load-Store). The bus will not be granted to another bus master
as long as LOCK is asserted. Note that BHOLD should not be asserted in the processor clock cycle which follows a cycle
in which LOCK is asserted. LOCK is sent out unlatched and must be latched externally before it is used.

2.4.1.13 MAO—Memory Address Output (input)

This signal is asserted during an MHOLD condition to force the previous (missed) memory access parameters back on
their various buses and control lines. The miss parameters are those that were valid on the rising edge of the clock, one
cycle before the cycle in which MHOLD was asserted. A logic HIGH value at this pin during a cache miss causes the
integer unit to put A<31:0>, ASI<7:0>, SIZE< 1:0>, RD, WE, WRT, LDSTO, LOCK, and DXFER values corre-
sponding to the missed memory address on the bus.

Normally, MAO is kept at a LOW level, thereby selecting the access parameters for the current memory address. MAO
should not be used for a cache miss during a store cycle, because it would select the wrong value for WE.

MAO must be driven LOW while RESET is LOW.

2.4.1.14 MDS—Memory Data Strobe (input)

MDS is asserted by the memory system to enable the clock to the integer unit’s instruction register (during an instruction
fetch) or to the load result register (during a data fetch) while the pipeline is frozen with an MHOLDA/B. In a system
with cache, MDS is used to signal the processor when the missed data (cache miss) is ready on the data bus. In a system
with slow memories, MDS tells the processor when the read data is available on the bus. bus. During a cache line replacement,
MDS may be asserted anywhere within the MHOLD cycle and deasserted before MHOLD is released. For example, if
a cache miss occurs on word 2 of a 4-word cache line, MDS should only be driven active while word 2 is being replaced
in the cache.

MDS is also used to strobe in the MEXC memory exception signal. MDS may only be asserted when the pipeline is frozen
with MHOLDA/B. The CY7C601/611 samples MDS with an on-chip transparent latch before it is used.

2.4.1.15 MEXC—Memory Exception (input)

Assertion of this signal by the memory system initiates an instruction access exception or data access exception trap and
indicates to the CY7C601/611 that the memory system was unable to supply a valid instruction or data. If MEXC is as-

2-47

=
= ,T‘B .
= ’is; CY7C601/CY7C611 Integer Unit

serted during an instruction fetch cycle, it generates an instruction access exception trap. If asserted during a data cycle,
it generates a data access exception trap.

MEXC is used as a qualifier for the MDS signal, and must be asserted when both MHOLDA/B and MDS are already
asserted. If MDS is applied without MEXC, the CY7C601/611 accepts the contents of the data bus as valid. If MEXC
accompanies MDS, an exception is generated and the data bus content is ignored.

MEXC is latched in the processor on the rising edge of CLK and is used in the following cycle. MEXC must be deasserted
in the same clock cycle in which MHOLDA/B is deasserted.

2.4.1.16 MHOLD(A/B)—Memory Holds (inputs)

MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systems with
cache memory) or when accessing a slow memory. The processor pipeline is frozen while MHOLDA is asserted and the
CY7C601/611 outputs revert to and maintain the value they had at the rising edge of the clock in the cycle in which
MHOLDA was asserted. This signal is tested on the falling edge (midpoint) of a cycle and must be valid and stable at
the processor for the duration of the specified set-up time prior to the falling edge of CLK.

MHOLDB behaves in the same fashion as MHOLDA, and either can be used to stop the processor during a cache miss
or memory exception. The pipeline is actually frozen by a “final” hold signal that is the logical OR of all hold signals
(MHOLDA, MHOLDB, and BHOLD). All HOLD signals are latched in the CY7C601/611 (transparent latch with clock
high) before they are used.

Note that MHOLD must be driven HIGH while RESET is LOW.

2.4.1.17 RD—Read Access (output)

RD is sent out during the address portion of an access to specify whether the current memory access is a read (RD=1)
or a write (RD =0) operation. RD is set to “0” only during the address cycles of store instructions. For atomic load-store
instructions, RD is “1” during the load address cycle and “0” during the two store address cycles. It is sent out unlatched
by the Integer Unit and must be latched externally before it is used.

RD is used in conjunction with SIZE < 1:0 >, ASI< 7:0 >, and LDSTO to determine the type and to check the read/write
access rights of bus transactions. It may also be used to turn off the output drivers of data RAMs during a store operation.

2.4.1.18 SIZE<1:0> — Bus Transaction Size (oufputs)

The coding on these pins specifies the size of the data being transferred during an instruction or data fetch. The value
of the size bits during a given cycle relates only to the memory address which appears on pins A < 31:0> simultaneously
with the size outputs. It does not apply to data which may be on the data bus during that same cycle.

Size bits are sent out unlatched and must be latched external to the CY7C601/611 before they are used. SIZE < 1:.0 >
remains valid during the data address cycles of loads, stores, load doubles, store doubles, and atomic load-stores. Encoding
of the size bits is shown in Table 2-35. For example, during an instruction fetch, SIZE < 1:0> is set to “10”, because all
instructions are 32 bits long. For doubleword instructions, SIZE < 1:0 > is “11” for all data address cycles.

Table 2-35. SIZE Bit Encoding

SIZE<1> SIZE<0> Data Transfer Type
0 0 Byte
0 1 Halfword
1 0 Word
1 1 Word (Load/Store Doubie)

2.4.1.19 WE—Write Enable (output)

WE is asserted by the integer unit during the cycle in which the store data is on the data bus. For a store single instruction,
this is during the second store address cycle; the second and third store address cycles of store double instructions, and

2-48

% igm CY7C601/CY7C611 Integer Unit
SEMICONDUCTOR

the third load-store address cycle of atomic load-store instructions. It is sent out unlatched and must be latched externally
before it is used. To avoid writing to memory during memory exceptions, WE must be externally qualified by the
MHOLDA/B signals.

2.4.1.20 WRT—Advanced Write (output)

WRT is an early write signal, asserted by the processor during the first store address cycle of integer single or double store
instructions, the first store address cycle of floating-point single or double store instructions, and the second load-store
address cycle of atomic load-store instructions. WRT is sent out unlatched and must be latched externally before it is used.

2.42 Floating-Point/Coprocessor Interface Signals

The IU incorporates a dedicated group of pins that act as direct-connect interfaces between the integer unit and both
the floating-point unit and the coprocessor. Using these connections, no external circuits are required to interface the
1U to the FPU and coprocessor. The interfaces consist of the following signals:

2.42.1 CCC<1:0>—Coprocessor Condition Codes (input) [Not available on CY7C611]

These lines represent the current condition code bits from the Coprocessor State Register (CSR), qualified by the CCCV
signal. When CCCV =1, these bits are valid. During the execution of a CBccc instruction, the processor uses CCC < 1:0 >
to determine whether or not to take the branch. These bits are latched by the processor before they are used.

2.4.2.2 CCCV—Coprocessor Condition Codes Valid (input) [Not available on CY7C611]

This signal is a specialized hold used to synchronize coprocessor compare instructions with coprocessor branch instruc-
tions. It is asserted (the normal condition) whenever the CCC < 1:0 > bits are valid. A coprocessor would deassert CCCV
(CCCV =0) as soon as a coprocessor compare instruction enters the coprocessor queue, unless an exception is detected
(see Section 2.8). Deasserting CCCV freezes the integer unit pipeline, preventing any further compares from entering
the pipeline. CCCV is reasserted when the compare is completed and the coprocessor condition codes are valid, thus
ensuring that the condition codes match the proper compare instruction. CCCV is latched in the CY7C601 before it is
used.

2.4.2.3 CEXC—Coprocessor Exception (input) [Not available on CY7C611]

CEXC is used to signal the integer unit that a coprocessor exception has occurred. CEXC must remain asserted until
the CY7C601 takes the trap and acknowledges the FPU exception via the CXACK signal. Although coprocessor excep-
tions can occur at any time, they are taken by the CY7C601 only during the execution of a subsequent CPop, a CBfcc
instruction, or a coprocessor load or store instruction. A coprocessor implementation should deassert CHOLD if it de-
tects an exceptlon while CHOLD is asserted. In such a case, CEXC should be asserted one cycle before CHOLD is deas-
serted. CEXC is latched in the CY7C601 before it is used.

2.42.4 CHOLD—Coprocessor Hold (input) [Not available on CY7C611]

This signal is asserted by the coprocessor if a situation arisesin which it cannot continue execution. The coprocessor checks
all dependencies in the decode stage of the instruction and asserts CHOLD (if necessary) in the next cycle. If the integer
unit receives a CHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing the CHOLD
are resolved, the coprocessor deasserts CHOLD, releasing the instruction pipeline. CHOLD is latched in the CY7C601
before it is used.

The conditions under which the coprocessor asserts CHOLD are implementation dependent.

2.4.2.5 CINS1—Coprocessor Instruction in Buffer 1 (output) [Not available on CY7C611]

CINS1 is asserted by the integer unit during the decode stage of the coprocessor instruction that is in the D1 buffer of
the coprocessor chip. The coprocessor uses this signal to begin decoding and execution of the D1 instruction, and to latch
it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

2-49

=G CY7C601/CY7C611 Integer Unit
— SEMICONDUCTOR

2.4.2.6 CINS2—Coprocessor Instruction in Buffer 2 (output) (Not available on CY7C611)

CINS2 is asserted by the Integer Unit during the decode stage of the coprocessor instruction that is in the D2 buffer of
the coprocessor chip. The Coprocessor uses this signal to begin decoding and execution of the D2 instruction, and to latch
it into its execute-stage register. CINS1 and CINS2 are never asserted in the same cycle.

2.4.2.7 CP—Coprocessor Unit Present (input) [Not available on CY7C611]

When pulled low, CP indicates that a coprocessor is available to the system. It is normally pulled up to VDD through
aresistor, and then grounded by connection to the coprocessor. The integer unit will generate a cp disabled trap if CP =1
during the execution of an CPop, CBfcc, or coprocessor load or store instruction.

2.4.2.8 CXACK—Coprocessor Exception Acknowledge (output) [Not available on CY7C611]

CXACK is asserted by the integer unit to inform the coprocessor that a trap has been taken for the currently asserted
CEXC signal. Receipt of the asserted CXACK causes the coprocessor to deassert CEXC, which in turn causes the to
deassert CXACK. CXACK is a latched output and should not be latched externally.

2.42.9 FCC<1:0>—RHoating-Point Condition Codes (input)

These lines represent the current condition code bits from the FPU’s Floating-point State Register (FSR), qualified by
the FCCV signal. When FCCV = 1, these bits are valid. During the execution of an FBfcc instruction, the processor uses
FCC< 1:0 > to determine whether or not to take the branch. These bits are latched by the processor before they are used.

2.4.2.10 FCCV— Roating-Point Condition Codes Valid (input)

This signal is a specialized hold used to synchronize FPU compare instructions with floating-point branch instructions.
It is asserted (the normal condition) whenever the FCC < 1:0 > bits are valid. The CY7C602 deasserts FCCV (FCCV =0)
as soon as a floating-point compare instruction enters the floating-point queue, unless an exception is detected (see Sec-
tion 3.2.1.2.1). Deasserting FCCV freezes the integer unit pipeline, preventing any further compares from entering the
pipeline. FCCV isreasserted when the compare is completed and the floating-point condition codes are valid, thus ensur-
ing that the condition codes match the proper compare instruction. FCCV islatched in the CY7C601/611before it is used.

2.4.2.11 FEXC— HRoating-Point Exception (input)

FEXC is used to signal the integer unit that a floating-point exception has occurred. FEXC must remain asserted until
the CY7C601/611 takes the trap and acknowledges the FPU exception via the FXACK signal. Although floating-point
exceptions can occur at any time, they are taken by the CY7C601/611 only during the execution of a subsequent FPop,
an FBfcc instruction, or a floating-point load or store instruction. The CY7C602 deasserts FHOLD if it detects an excep-
tion while FHOLD is asserted. In such a case, FEXC is asserted one cycle before FHOLD is deasserted. FEXC is latched
in the CY7C601/611 before it is used.

2.4.2.12 FHOLD— Floating-Point Hold (input)

This signal is asserted by the CY7C602 if a situation arises in which the FPU cannot continue execution. The FPU checks
all dependencws in the decode stage of the instruction and asserts FHOLD (if necessary) in the next cycle. If the integer
unit receives an FHOLD, it freezes the instruction pipeline in the same cycle. Once the conditions causing the FHOLD
are resolved, the FPU deasserts FHOLD, releasing the instruction pipeline. FHOLD is latched in the CY7C601/611 be-
fore it is used.

An FHOLD is asserted if (1) the FPU encounters an STFSR instruction with one or more FPops pending in the queue,
(2) if either a resource or operand dependency exists between the FPop being decoded and any FPops already being ex-
ecuted, or (3) if the floating-point queue is full.

2.4.2.13 FINS1— FRoating-Point Instruction In Buffer 1 (output)

FINS1 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D1 buffer
of the floating-point unit (see Section 3.2). The FPU uses this signal to begin decoding and execution of the D1 instruc-

2-50

% i‘c%m CY7C601/CY7C611 Integer Unit
===4# SEMICONDUCTCR

tion, and to latch it into its execute-stage register. FINS1 and FINS2 are never asserted in the same cycle and both are
ignored if (1) FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

2.4.2.14 FINS2— Floating-Point Instruction In Buffer 2 (output)

FINS?2 is asserted by the integer unit during the decode stage of the floating-point instruction that is in the D2 buffer
of the floating-point unit (see Section 3.1). The FPU uses this signal to begin decoding and execution of the D2 instruction,
and to latch it into its execute-stage register. FINS1and FINS2 are never asserted in the same cycle and both are ignored
if (1) FLUSH is asserted, (2) any HOLD is asserted, or (3) if FCCV or CCCV is deasserted.

2.4.2.15 FLUSH— Floating-Point/Coprocessor Instruction Flush (output)

This signal is asserted by the integer unit whenever it takes a trap. FLUSH is used by the FPU (or coprocessor) to flush
the instructions in its instruction buffers. These instructions, as well as the instructions annulled in the CY7C601/611’s
pipeline, are restarted after the trap handler is finished. If the trap was not caused by a floating-point (or coprocessor)
exception, instructions already in the floating-point (or coprocessor) queue may continue their execution. If the trap was
caused by a floating-point (or coprocessor) exception, the fp (or cp) queue must be emptied before the FPU (coprocessor)
can resume execution.

2.4.2.16 FP— Floating-point Unit Present (input)

When pulled low, FP indicates that a floating-point unit is available to the system. It is normally pulled up to VDD through
aresistor, and then grounded by connection to the FPU. The integer unit will generate an fp disabled trap if FP =1 during
the execution of an FPop, FBfcc, or floating-point load or store instruction.

2.4.2.17 FXACK— Floating-Point Exception Acknowledge (output)

FXACK is asserted by the integer unit to inform the floating-point unit that a trap has been taken for the currently as-
serted FEXC signal. Receipt of the asserted FXACK causes the FPU to deassert FEXC, which in turn causes the
CY7C601/611 to deassert FXACK. FXACK is a latched output and should not be latched externally.

2.4.2.18 INST— Instruction Fetch (output)

The INST signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the floating-point
unit or coprocessor to latch the instruction currently on the data bus into an FPU or coprocessor instruction buffer.
SPARC-compatible floating-point units and coprocessors have two instruction buffers (D1 and D2) to save the last two
fetched instructions (see Section 3.2). When INST is asserted, a new instruction enters buffer D1 and the instruction that
was in D1 moves to buffer D2. INST is a latched output and should not be latched externally.

24.3 Interrupt and Control Signals

The following signals are used by the integer unit to control and to receive input from external events.

2.43.1 ERROR-—Error State (output)

This signal is asserted when the integer unit enters the error mode state. This happens if a synchronous trap occurs while
traps are disabled (the PSR’s ET bit =0). Before it enters the error mode state, the CY7C601/611 saves the PC and nPC
and sets the trap type (tt) for the trap causing the error mode into the TBR. It then asserts the ERROR signal and halts.
The only way to restart a processor which is in the error mode state is to trigger a reset by asserting the RESET signal.

2.4.3.2 FPSYN—Floating-point Synonym Mode (input)

This is a mode pin which will be used to allow execution of additional instructions in future designs. For the CY7C601/611,
it should be kept grounded.

2.43.3 INTACK—Interrupt Acknowledge (output)

INTACK is a latched output that is asserted by the integer unit when an external interrupt is faken, not when it is sampled
and latched.

2-51

2

==t CY7C601/CY7C611 Integer Unit

2.4.3.4 IRL<3:0> —Interrupt Request Level (input)

The state of these pins defines the External Interrupt Level (IRL). IRL < 3:0 > =0000 indicates that no external inter-
rupts are pending and is the normal state of the IRL pins. IRL < 3:0 > = 1111 signifies a nonmaskable interrupt. All other
interrupt levels are maskable by the Processor Interrupt Level (PIL) field of the Processor State Register (PSR). The
integer unit uses two on-chip synchronizing latches to sample these signals, and a given level must remain valid for two
consecutive cycles to be recognized. External interrupts should be latched and prioritized by external logic before they
are passed to the CY7C601/611. Logic must also keep an interrupt valid until it is taken and acknowledged. External
interrupts can be acknowledged by system software or by the CY7C601/611’s INTerrupt ACKnowledge (INTACK) signal.

2.43.5 RESET—Integer Unit Reset (input)

Assertion of this pin will reset the integer unit. RESET must be asserted for a minimum of eight processor clock cycles.
After RESET is deasserted, the integer unit starts fetching from address 0. RESET is latched by the CY7C601/611 before
it is used.

2.43.6 TOE—Test Mode Output Enable (input)

When deasserted, this signal will three-state all integer unit output drivers. Thus, in normal operation, this pin should
always be asserted (tied to ground). Deassertion of TOE isolates the CY7C601/611 from the system for debugging pur-
poses.

244 Power and Clock Signals

The signals listed below provide clocking and power to the integer unit.

2.44.1 CLK—Clock (input)

CLK is a 50%-duty-cycle clock used for clocking the integer unit’s pipeline registers. The rising edge of CLK defines the
beginning of each pipeline stage and a processor cycle is equal to a full clock cycle.

2442 VCCO, VCCI, VCCT— Power (inputs)

These pins provide + SV power to various sections of the processor. Power is supplied on three different buses to provide
clean, stable power to each section: output drivers, main internal circuitry, and the input circuits. VCCO pins supply the
output driver bus; VCCI pins supply main internal circuitry bus; and VCCT pins supply the input circuit bus. See Section
7.1 for pin identification.

2.4.43 VSSO, VSSI, VSST—Ground (inputs)

These pins provide ground return for the power signals. Ground is supplied on three different buses to match the power
signals to each section: VSSO pins for the output driver bus; VSSI pins for the main internal circuitry bus; and VSST
pins for the input circuit bus. See Section 7.1 for pin identification.

2.5 Pipeline and Instruction Execution Timing

One of the major contributing factors to the CY7C601/611’s very high performance is an instruction execution rate ap-
proaching one instruction per clock cycle. To achieve that rate of execution, the CY7C601/611 employs a four-stage in-
struction pipeline that permits parallel execution of multiple instructions.

=

Instruction s
from Memory

3
>
—

0 -~C W
“~®—-=CcD
200000
o~cOOXM
o»-—-‘E

Internally Generated Opcode (IOP)

Figure 2-22. Processor Instruction Pipeline

2-52

CY7C601/CY7C611 Integer Unit

Decode

Inst 1

Inst3

Inst 4

Write

CLK

A<31:.0>

D<31:.0>

2.5.1 Stages

Inst 1

Inst 2

Inst3

Figure 2-23. Pipeline with All Single-Cycle Instructions

Instruction execution is broken into four stages corresponding to the stages of the pipeline:

1. Fetch—The processor outputs the instruction address to fetch the instruction.

2. Decode—The instruction is placed in the instruction register and decoded. The processor reads the operands from
the register file and computes the next instruction address.

3. Execute—The processor executes the instruction and saves the results in temporary registers. Pending traps are priori-

tized and internal traps taken during this stage.
4. Write—If no trap is taken, the processor writes the result to the destination register.

All four stages operate in parallel, working on up to four different instructions at a time. A basic “single-cycle” instruction
enters the pipeline and completes in four cycles. By the time it reaches the write stage, three more instructions have
entered and are moving through the pipeline behind it. So, after the first four cycles, a single-cycle instruction exits the

pipeline and a single-cycle instruction enters the pipeline on every cycle (see Figure 2-23).

Of course, a “single-cycle” instruction actually takes four cycles to complete, but they are called single cycle because with
this type of instruction the processor can complete one instruction per cycle after the initial four-cycle delay.

2.5.1.1 Internal Opcodes

Instructions that require extra cycles automatically insert internal opcodes (IOPs) into the decode stage as they move into
the execute stage. These internal opcodes are unique to the instruction that generates them. They move all the way
through the pipeline, performing functions specific to the instruction that created them. For example, in Figure 2-24,
the data load in cycle four can be thought of as the fetch for the IOP that starts in cycle three; together they make a com-
plete four-cycle instruction that balances out the pipeline. JMPL and RETT also generate an IOF, but have no external

data cycle.

Multicycle instructions may generate up to three IOPs to complete execution. Table 2-36 lists the instructions that require

IOPs and the number generated.

Because instructions continue to be fetched even though IOPs occupy the decode stage, a two-stage prefetch buffer is
used to hold instructions until they can move into the decode stage (see Figure 2-22). This enables the processor to fully
utilize the data bus bandwidth and still keep the pipeline full. Only two buffers are required because a maximum of two

cycles are available for instruction fetching for any multicycle instruction.

2-53

= .
E— ooy CY7C601/CY7C611 Integer Unit

Table 2-36. Internally Generated Opcodes

Instruction Number of Internal Opcodes

Single Loads 1
Double Loads
Single Stores
Double Stores
Atomic Load-Store
Jump

Return from Trap

lmiwiwin

2.5.2 Multicycle Instructions

Multicycle instructions are those that take more than four cycles (one bus cycle plus the three pipeline cycles) to complete.
A double-cycle instruction takes five cycles (two bus cycles), a triple-cycle instruction takes six cycles (three bus cycles),
and so on.

In most cases, the extra cycles required by multicycle instructions result from data bus usage (e.g., a data load or store
to memory) that prevents the processor from fetching the next instruction during those cycles. In Figure 2-24, the fetch
of instruction Inst 3 is delayed by one cycle for the data load, and in Figure 2-25, the store sequence delays the Inst 3 fetch
by two cycles.

Decode Load 0P, Inst 1 Inst 2 Inst 3

Write Load 10P, Inst 1

CLK I , | | I l |___
A<31:0> GB__XXXXX Al XXXXX A2 LDA A3 A4

D<31:0> :XXXXXX:XLD lnstXXXE(inst 1 Inst 2 Data inst 3
DXFER / \

INST __/

Figure 2-24. Pipeline with One Double-Cycle Instruction (Load)

2-54

Decode

Write

CLK

o<ov0- XTRRRNEreX KR XD

RD

DXFER

LOCK

WRT

INULL

INST

CY7C601/CY7C611 Integer Unit

Store

0P,

I0P,

Store

Inst 1

0P,

Inst 2

0P,

—

I

|

|

|

H
H

i

\

H

—

\

Figure 2-25. Pipeline with One Triple-Cycle Instruction (Store)

2-55

CY7C601/CY7C611 Integer Unit

7/

Inst 1

Inst 2 { Inst3

Write Load I0P4 0P, Inst 1

CLK

A@31:0) 1 RAXXR_22 RXXXR L0 ARXXX) XXX
o1 XXX XXX X TR XXX YRR 0
DXFER /7 \
INULL /___— —_______

—_

INST \

Figure 2-26. Pipeline with Hardware Interlock (Load)

2.5.2.1 Register Interlocks

The pipeline holds several instructions at any given time, so it is possible that an instruction may try to use the contents
of a particular register which is in the process of being updated by a previous instruction. Special bypass paths in the pipe-
line of the CY7C601/611 make the correct data available to subsequent instructions for all internal register to register
operations, but cannot solve the problem of loads to the registers from external memory. For this case, interlock hardware
prevents an instruction following a load instruction from reading the register being loaded until the load is complete (see
Figure 2-26). This also applies to a a CALL instruction with a delay slot instruction using r{15] and a JMPL with a delay
slot instruction using the same register specified as the r{rd] of the JMPL. To maximize performance, compilers and
assembly language programmers should avoid loads followed immediately by instructions using the loaded register’s con-
tents.

2.5.2.2 Branching

The CY7C601/611’s delayed-control-transfer mechanism allows branches (taken or untaken) to occur without creating
abubble in the pipeline (see Figure 2-27). Special parallel hardware enables the processor to evaluate the condition codes
and calculate the effective branch address during the decode stage rather than the execute stage, so that only one delay
instruction is required between the branch and the target instruction (or the next instruction, if the branch is not taken).
See Section 2.3.3.3.1 for a discussion on branching.

If the compiler or programmer cannot place an appropriate instruction in the delay instruction slot, the delay instruction
can be annulled by setting the branch instruction’s 2 bit. The result is shown in Figure 2-28.

CY7C601/CY7C611 Integer Unit

Decode

Branch

Delay

Target

Inst 1

Inst 2 Inst 3

Write

Branch

Delay

Target Inst 1

CLK

I L

ast0) {(Ba XXX0 -0'0'0) o A QOO A1 XXXX QUOXX_ 12 XXX 24 XXXX

D(31:0) X

A‘A‘A’I‘A’ ‘ ’ .A‘ m ‘ ’ ’A‘ m ‘X‘ ‘A Inst 1% Inst Zm Inst sm

Figure 2-27. Pipeline During Branch Instruction

Decode

Branch

Annulled

Target

Inst 1

Inst 2 Inst 3

Write

Branch

Annulled

Target

CLK

A(31:0) C

r A Delay A

D(31:0) Xz

Targ A

A1

2 XHRRX

OO0 M “).M‘A’QQW QAQQQ Inst 1 XXXZX Inst 2 XXXXX Inst 3)@

Figure 2-28. Branch with Annulled Delay Instruction

2-57

% ﬁm CY7C601/CY7C611 Integer Unit

3 M':N’ | l,:n“l I"I::::"l"' ",n:'“ |::::I i
00002072

Decode Inst 0 Inst 1 Inst 1 Inst 1 Inst 1 Inst 1 Inst 2

Write Inst0

HOLD \ /
DOE / \

o

O

3
N
~

Figure 2-29. Pipeline Frozen During Bus Arbitration

2.5.3 Pipeline Freezes

Whenever the processor receives an externally generated hold input, such as MHOLDA/B or BHOLD, the instruction
pipeline is frozen. How long it is frozen depends on the type of hold and the external hardware generating the hold.
Figure 2-29 shows the pipeline frozen by a BHOLD as the result of bus arbitration initiated by another bus master in the
system.

254 Traps

Figure 2-30 shows the pipeline operation when an internally generated trap is taken. Instructions in the pipeline after
detection of the trap are annulled and the first instruction of the trap target routine is executed in the fourth cycle follow-
ing detection.

2.6 Bus Operation and Timing

This section covers standard and non-standard bus operations. Standard operations include instruction fetch, load inte-
ger, load double integer, load floating-point, load double floating-point, store integer, store double integer, store float-
ing-point, store double floating-point, atomic load-store unsigned byte, and floating-point operations (FPops). Non-stan-
dard operations include bus arbitration, cache misses, exceptions, and the reset and error conditions. Coprocessor loads,
coprocessor stores, and coprocessor operations are identical in timing to their floating-point counterpart, and are not
repeated as a separate case in this section.

2-58

%9 ig’m CY7C601/CY7C611 Integer Unit

ﬂ"'“ll“ ||||"'|||||"| ||I|"I |ll"'"|ﬂ“' I

e
I
Annulled
|
|I" |,|| "“.m""u "",n “I,ul:"“.l III,||
s
L L L L L
,;U i M'" III||| |4'
Write Annulied Annulled Annulied M':::,,.:l:::::I:':::::I::::::I:::'w"""""'""".«" Trap 1
T Ll L]

A

oK I | 1 | | L

i ; ; i

INULL

/T N\
INST ___/

Figure 2-30. Pipeline Operation for Taken Trap (Internal)

Each of the following sections describes a type of bus transaction along with appropriate timing diagrams. The timing
diagrams show multiple instructions being fetched for the pipeline. Instruction addresses are sent out in the cycle before
the instruction fetch. Instruction fetch cycles begin with the instruction address latched by the memory at the beginning
of the fetch cycle and end with the instruction supplied by the memory. Instruction decode begins with the latching of
the instruction at rising clock edge of the cycle after the fetch cycle. If the instruction is multicycle, or execution requires
an interlock, IOPs are inserted into the pipeline at the decode stage and propagate through the pipeline like a fetched
instruction.

The cross-hatched areas shown in the traces are periods in which the signal is not guaranteed to be asserted or deasserted;
in other words, undefined.

In general, signals are valid at the beginning of a cycle, i.e., on the rising edge of the clock. In support of the
CY7C601/611’s high-speed operation, many signals are sent out unlatched. Refer to Section 2.4 for further details on
CY7C601/611 signals.

The processor automatically aligns byte (and halfword) transfers as previously shown in Figure 2-11. Figure 2-31 shows
the relationship between the data transferred during byte, halfword, and word operations and the pins of the data bus.
For byte and halfword data transfers, the CY7C601/611 repeats the byte or halfword on each eight-bit or 16-bit section
of the bus. In other words, the undefined portions of the bus illustrated in Figure 2-31 are actually a repeat of the data
driven onto the bus. However, this feature is not specified in the SPARC Architecture Reference, and may not be sup-
ported on other SPARC processors.

2-59

4
)

& SEMICONDUCTOR
L |

CY7C601/CY7C611 Integer Unit

CLK __] | |
a<atos (o X0 XXX 2 X0 XXXX)
Co XXX 0 XX 0 XXXXX 0 XXXX)

SIZE<1:0>

D<31:24>

D<23:16>

D<15:8>
Byte Data Alignment

N [N I IS N

CLK
a<ato> (o X002 XXX0)
SIZE<1:0> QUK X000 QX0

XX (X0 X0

XXX
XX R0 XXX

D<7:0>

D<31:16>
D<15:0>
Half Word Data Alignment Word Data Alignment
Note: This lustration depicts data alignment and
not intended to illustrate a timing case.

X = word boundary address
Figure 2-31. Data Bus Contents During Data Transfers

2-60

= CY7C601/CY7C611 Integer Unit
=% 7 SEMICONDUCTOR

cLK I | I | I
p<sto> (imst0 OO0 imst XXX st 2 XXX st XK st XXXKN st)
; i i 2

Figure 2-32. Instruction Fetch

o [| | | | L
peso (BRI XD KR X TR XD
DXFER / \
INST \—_/———_—

Figure 2-33. Load Single Integer Timing

2.6.1 Instruction Fetch

The instruction fetch cycle is that cycle in which both the instruction address and the data (the instruction itself) are active
on their respective buses (see Figure 2-32). The instruction address on A <31:0> is actually sent out in the previous cycle,
but is held into the fetch cycle. It should be latched externally. The instruction is returned on the data bus at the very
end of the fetch cycle and is held into the decode cycle. It is latched into the on-chip instruction register at the beginning
of the decode cycle.

262 Load

Figure 2-33 shows the timing for a load single integer instruction. Because the bus is used for a data fetch in the fifth cycle,
this is a double-cycle instruction. Note that DXFER is active in the cycle in which the load data address is sent out, while
INST is inactive in the cycle in which the load data is on the data bus.

2.6.3 Load with Interlock

In a load with interlock situation, the instruction following the load tries to use the contents of the load’s destination
register before the load data is available. This requires the insertion of an IOP into the decode stage of the pipeline (see
Section 2.5.1.1) in the fourth cycle, which must be matched by a null bus cycle in the fetch stage to balance the pipeline
(see Figure 2-34).

2-61

CY7C601/CY7C611 Integer Unit

2

4

5

CLK

|

—

v o XK ar XXIXK 22 XX w0 XXX KX XIXKX)
o101 XXX XKXXKE moX R e XRKR) 5 ‘ ‘

DXFER

—

N\

Data

VD)

INULL /_ —__
INST \ /——_

Figure 2-34. Load Single with Interlock Timing

1

2

CLK

3

|

A3 Ad

a@to) { LD Al A2 XXXXXLm D2

D(31:0) LD Inst Inst 1)@22)(Inst 2 Data 1 Data 2 Inst 3
DXFER / \

Loox /\
INST \

Figure 2-35. Load Double Integer Timing

S

2.64 Load Double

The timing for a load double integer is shown in Figure 2-35. The timing is essentially the same as a load single except
for the additional data fetch in the fifth cycle. That makes load double a triple-cycle instruction. The most-significant word
is fetched in cycle four and the least-significant word in cycle five. Note that the size bits are set to 11 during the address
portion of both loads and that the bus is locked to allow the completion of both loads without interruption.

Load single and load double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

2-62

%ﬁm CY7C601/CY7C611 Integer Unit

2.6.5 Store

Store transactions involve more bus activity than loads, as shown in the store single integer timing in Figure 2-36. Store
single is a triple-cycle instruction because it includes an extra tag check cycle in which to check an external cache for the
store address. This extra cycle also gives the processor and the memory system time to three-state the data bus and turn
it around for the store. The store address is sent out again in the fifth cycle to complete the data transfer. Note that the
store data is generated by the processor off the falling edge of CLK and is therefore only available at the very end of the
first data cycle (see Section 7.1).

Note also that INULL is active during the second application of the store address. If there is a cache miss on the tag check
cycle, INULL prevents an additional miss the second time the address is sent out in the store cycle. Because it is a triple-
cycle instruction, LOCK is asserted to retain control of the buses.

1 2 3 4 5 6

o« T il i
a<sro> (ST XRRRK A XXX XXX YRR YRR XXX)
o \ /

W n__ /

DXFER

/
Lock | VAR
Vanm

WRT

0\
0\

INULL / \
INST \ /_— -

Figure 2-36. Store Single Integer Timing

2-63

=
%% CY7C601/CY7C611 Integer Unit
==~ SEMICONDUCTOR

2.6.6 Store Double

The timing for a store double integer is shown in Figure 2-37. The timing is essentially the same as store single except
for the additional store cycle in the sixth cycle, making it a four-cycle instruction. The most-significant word is stored in
cycle five and the least-significant word in cycle six. Note that the size bits are set to 11 during the address portion of all
three data cycles and that the bus is locked to allow the completion of both stores without interruption. INULL is not
active for the address of the least-significant store because there cannot be a miss on this cycle if there wasn’t one on
the tag check cycle, unless the cache line is less than two words.

Store single and store double floating-point instructions look identical to their integer counterparts except that the
FINS1/FINS2 signal is active for floating-point operations.

1 2 3 4 5 6

oLk I I I | I I
p<aro> XXXXXXOE reX XXXt XXX ot 2)—— sror XXX STz »—o
RD \

ol

DXFER /

LOCK / \
WRT / \

INULL / | W
INST \

Figure 2-37. Store Double Integer Timing

~ |

2-64

a_x)
i ress CY7C601/CY7C611 Integer Unit
% SEMICONDUCTOR

i

ﬂ

2.6.7 Atomic Load-Store

Atomic transactions consist of two or more steps which are indivisible; once the sequence begins in the instruction pipe-
line, it cannot be interrupted. Because atomic operations are four-cycle instructions, the CY7C601/611 asserts LOCK
for as long as necessary to make sure that no interruption occurs on the bus. Figure 2-38 applies to the atomic operations
load-store unsigned byte (LDSTUB, LDSTUBA) and word swap (SWAP, SWAPA). Note that, as with any store, INULL
is active on the second occurrence of the store address.

L LT

S v v i T i G R O
D<31:0> MmmOMmM_m
RD \ / : :

LDSTO /

~

~

DXFER /

LocK /
WRT /_ _\

INST \ /_

7~

Figure 2-38. Atomic Load-Store Timing

2-65

CY7C601/CY7C611 Integer Unit

=
i* s
E;CYPRE’SS

2.6.8 Floating-Point Operations

The timing for floating-point operations and integer operations is the same except for the addition of the FINS1 and
FINS2 signals in floating-point operations. In this example, Instruction 1 is a floating-point operation (see Figure 2-39)
FINS1/2 tell the floating-point unit to move an instruction out of its decode buffer and begin execution. The FPU also

makes use of the INST signal to latch instructions into its decode buffers

1
CLK |
A4 A5

a<atos> { At sz(A2 A3
ASI<7:0> (ASIA, XXXXX ASIAz QOO0 M OO0 m QOO0 M
- XXXXXFPOP w"@nM@WM@

D<31:.0>
10 10

sizE<to> { 10 XXXXX 10 10

Figure 2-39. Floating-Point Operation Timing

FINS1/FINS2

2-66

!%g@fw

CY7C601/CY7C611 Integer Unit

2.6.9 Bus Arbitration

The CY7C601/611 does not have on-chip bus arbitration circuitry because it is designed to operate as a bus slave. There-
fore, external circuitry must arbitrate between external bus requests and the CY7C601/611. When the CY7C601/611
needs to retain the buses it asserts the LOCK signal. The arbitration circuitry should assert BHOLD when it needs to
keep the CY7C601/611 off the buses. When BHOLD is asserted, the processor’s instruction pipeline is frozen until it
is deasserted. The arbitration circuitry should also deassert the DOE, AOE, and COE signals to three-state the
CY7C601’s address bus, data bus and control signal output drivers so they may be driven by an external source (see
Figure 2-40).

1 2 ; 3 4 : 5 6

o 11 | L |
asi<7:0> o'wo i |
D<31:0> mmo st

10 10

SIZE<1:0> 10 10),

w0 TR— <XXX7— -
" VoK W
/3 TR

»|
O
i

N

~

g
D
~

Figure 2-40. Bus Arbitration Timing

2-67

?—‘*‘7
=
iCYPRF:B
SEMICONDUCTOR

l!

2.6.10 Load with Cache Miss

CY7C601/CY7C611 Integer Unit

Figure 2-41 gives the timing for a load with cache miss. Cache logic must stop the processor by asserting MHOLDA or
MHOLDB in the next cycle. However, the processor stops with the address of the next instruction on the address bus
rather than the instruction that caused the miss. In order to retrieve the proper load data, the memory system needs the
missed address on the bus. To do this the memory system must send an MAQO signal, forcing the processor to output the
previous address (the address that was on the bus in the cycle before MHOLD was asserted). The MHOLD signal must
be maintained while the missed data is strobed into the processor with the MDS signal (it must be strobed externally be-
cause the internal processor clock is frozen by the MHOLD).

1

2

3

4

5

6

CLK |

rev0- COXREXREDN RO ORI XD

L
oo

D<31:0> (LD lnstm Inst 1% Inst 2 m W W m m

SIZE<1:0> (_m

DXFER /_— —_—\ /_—
MHOLD \
MAO /
INST ;_._/

Figure 2-41. Load with Cache Miss Timing

2-68

O\
AV
—_

A

ST

———

=
%ﬁg&m CY7C601/CY7C611 Integer Unit

2.6.11 Store with Cache Miss

The timing for a store with cache miss is similar to the load with cache miss situation, except that MAO and MDS are
not required (see Figure 2-42). Because the processor outputs the store address twice, it already has the proper address
on the bus when it’s stopped by MHOLD. MDS is not required because nothing needs to be strobed into the processor.

INULL is asserted for the second occurrence of the store address so that it doesn’t trigger the miss circuitry during the
time the cache is processing the miss on the first occurrence of that address.

oLk I | | | .
A<sro> { A1 XXXXX B STA sTA sta E
<)<XXXX XXX XD st
RD \
WE \

DXFER / i
LOCK /_ _\
WRT /——_ —_\

INULL /

MHOLD \

INST \

Figure 2-42. Store with Cache Miss Timing (1 of 2)

2-69

CY7C601/CY7C611 Integer Unit

6

CLK _]_—I

A<31:0> STA

ASI<7:0> ASlgr

—

D<31:0> STData

N

|
XRXRX e XRRRX o XRRRX e XERRX i)
: (RRRX = XRRRX = XRRR =)

10

SIZE<1:0> ST Size

RD

R N

DXFER

LOCK

WRT

INULL

MHOLD

INST

/

2-70

Figure 2-42. Store with Cache Miss Timing (2 of 2)

= CY7C601/CY7C611 Integer Unit
SEMICONDUCTOR

2.6.12 Memory Exceptions

Load with memory exception timing is shown in Figure 2-43. As with a cache miss, memory logic must stop the processor
by asserting MHOLDA or MHOLDB in the next cycle. The MHOLD signal must be maintained while the memory excep-
tion (MEXC) signal is strobed into the processor with the MDS signal (it must be strobed in externallybecause the internal
processor clock is frozen by the MHOLD) MEXC must be deasserted in the same clock cycle in which MHOLD is deas-
serted. Note that INULL is asserted in the cycle 8 instruction fetch to annul that fetch. This is the same action shown
in cycle 2 of Figure 2-30 for an internal trap. Store with memory exception has the same timing (sce Figure 2-44) except
INULL is asserted from the second store address through to the annulled cycle 8 instruction fetch.

1 2 3 4 ; 5

| | | L 1

A<31:0> (At XXXXX A2 DA A3 m
ASI<7:0> (ASIM)@XXX ASIAZ AS:I,_D AS:IM AS:lAa
D<31:0> (LD MXXXXX Inst 1 "‘Q Inst 2 0"‘. Data ."‘ - “"‘

SIZE<1:.0> (10 m 10 LDsize 10 10
DXFER / \

MHOLD \

INULL

£
O
(2

=
o
X
O

INST _—/

FLUSH

Figure 2-43. Load with Memory Exception Timing (1 of 2)

2-71

=
%;%m CY7C601/CY7C611 Integer Unit
== # SEMICONDUCTOR

CLK | | |

A<31:0> A3 A4 ATB AT1

(R = XN X)
o<sro> (CXTRRX RN ORRRCOERRNE)

SIZE<1:0> 10 10 10 10

ASI<7:0> ASla3

DXFER

)
e -\ /
INST -
—

-

FLUSH

Figure 2-43. Load with Memory Exception Timing (2 of 2)

2-72

=
= .
=2 SEMICONDUCTCR

CY7C601/CY7C611 Integer Unit

N

w

STA

STA

1
|
STA

CLK
A<31:0> (m XXXX)(Az
sizE<10> {10 XXXXX 10 mm_;sm

D<31:0>
RD \
WE \
DXFER /
Lok I\
INULL /
MAOLD \
‘MDS
MEXC
\

INST
Figure 2-44. Store with Memory Exception Timing (page 1 of 2)

2-73

e
= =

CY7C601/CY7C611 Integer Unit

ATB

=="F SEMICONDUCTCR
6 7
cLK | |
A<31:0> STA)@XXX A3
ASI<7:0> ASlgr XXXXX ASlps

D<31:0> ST Data

)_

Q

QXXX A5 XXXXX A)

AT1

RO

SIZE<1:.0> ST Size

XXX

10

RD

10

DXFER

LOCK

N NN

WRT

INULL

MHOLD

) —
AN

/
/
/

Figure 2-44. Store with Memory Exception Timing (page 2 of 2)

2-74

%? i?:"-m CY7C601/CY7C611 Integer Unit
SEMICONDUCTCR

CLK B 1 (R-I | | | L
e\ %) /
p)

FXACK

(

FLUSH é / \
{

Figure 2-45. Floating-Point Exception Handshake Timing

CLK | I 1 [| I_
A<31:0> { Al)@XXX A2 S = z -
o <ov2> (e X KRR YRR X RN e XK YRR e XD

IRL<3:0> OH X Interrupt Asserted Xon

INTACK /___ \

Figure 2-46. Asynchronous Interrupt Timing

2.6.13 Floating-Point Exceptions

The floating-point unit asserts FEXC to notify the CY7C601/611 that a floating-point exception has occurred and that
it should take a trap on the next floating-point instruction that it encounters in the instruction stream (see Figure 2-45).
The CY7C601/611 asserts FXACK to signal the FPU that the trap is being taken, and FLUSH to clean out the FPU’s
decode buffers. From this point on, the FPU will execute only floating-point store queue instructions until its queue is
emptied by the trap handler.

FEXC is deasserted by the FPU after FXACK is asserted. FXACK is deasserted by the CY7C601/611 after FEXC is
deasserted.

2.6.14 Interrupts

The asynchronous IRL < 3:0> inputs are sampled on the rising edge of every clock. If the interrupt value represented
by those inputs is greater than the masking value in the processor, and no higher priority trap supersedes it, the
CY7C601/611 will take the interrupt. The IRL input level should be held stable until the processor asserts INTACK.
Figure 2-46 shows the timing for the best case response time where the IRL input value is asserted one clock and a set-up
time before the execute stage of a single-cycle instruction. Refer to Section 2.7.3 for more information on interrupts.

2-75

—m

= z@ms CY7C601/CY7C611 Int Unit
=i nteger Uni
% SEMICONDUCTOR

A<31:0>

XXX e won XXX

w LTI | l
(
(

ASI<7:0>

D<31:0> (_XXXXX —— // -)@XXXlnsto)
SIZE<1:0> <_XXXXX 1:0 // | o)@XXX 150)
INULL ((| W N

Figure 2-47. Power-On Reset Timing

2.6.15 Reset Condition

Figure 2-47 shows the timing for a power-on reset. RESET must be asserted for at least eight cycles so that the processor
can synchronize the reset input and initialize its internal state. For RESET to be synchronized, the CLK signal must be
active.

During the initialization, the processor disables traps (ET =0), sets the supervisor mode (S=1), and sets the program
counter to location zero (PC=0, nPC=4).

2.6.16 Error Condition

Error mode is one of the three states in which the CY7C601/611 can exist. To get into the error mode, a synchronous
trap must occur while traps are disabled (the processor state register’s ET bit is set to zero). This essentially means that
a trap which cannot be ignored occurs while another trap is being serviced. In order for that synchronous trap to be serv-
iced, the processor goes through the normal operations of a irap (see Section 2.7), including setting the 1t bits to identify
the trap type. It then enters error mode, halts, and asserts the ERROR signal (see Figure 2-48).

The only way to leave error mode is to receive an external RESET signal, which forces the processor into reset mode.
All information placed in the CY7C601/611’s registers from the last execute mode (the trap operation) remains un-
changed and the processor resumes operation at address zero. The reset trap handler can examine the trap type of the
synchronous trap and deal with it accordingly.

2-76

%? j‘c%'m CY7C601/CY7C611 Integer Unit

» | I e T e P
XK= RXK o7

ol R —r
X XX =

/¢
o T\ / 5

- \ ¢

A<31:.0>

ASI<7:0>

D<31:0>

N N N N

SIZE<1:0>

*“RESET must be asserted for a minimum of 8 clocks h
(continued) 9 10 11 12
oK 1 I | |
A<31:0> 0000 H AT A2 A3
SIZE<1:0> 10 | 150 1§o 150
INULL \
ERROA
mserr - f

Figure 2-48. Error/Reset Timing

* MAO and MHOLD must be driven to a deasserted state when RESET is asserted.

2-71

==t CY7C601/CY7C611 Integer Unit

Table 2-37. Externally Generated Synchronous Exception Traps

Trap Initiating Signal Condition
Data Access Exception MEXC Memory error during data access
Instruction Access Exception MEXC Memory error during instruction access
Floating-Point Exception FEXC Floating-point unit error
Coprocessor Exception CEXC Coprocessor unit error

2.7 Exception Model

The CY7C601/611 supports three types of traps: synchronous, floating-point/coprocessor, and asynchronous (also called
interrupts). Synchronous traps are caused by hardware responding to a particular instruction or by the Trap on integer
condition code (Ticc) instructions; they occur during the instruction that caused them.

Floating-point/coprocessor traps caused by a Floating-Point-operate (FPop) or CoProcessor-operate (CPop) instruction
occur before that instruction is complete. However, because floating-point (and coprocessor) exceptions are pended until
the next floating-point (coprocessor) instruction is executed, other non-floating-point (coprocessor) instructions may have
executed before the trap is taken. See Section 3.3.3.1.

Asynchronous traps occur when an external event interrupts the processor. They are not related to any particular instruc-
tion and occur between the execution of instructions. See Section 2.7.3.

2.7.1 Reset

The reset trap is a special case of the external asynchronous trap type. It is asynchronous because it is triggered by asserting
the RESET input signal. But from that point on, its behavior is entirely different from that of an asynchronous interrupt
(see Section 2.7.3).

As soon as the CY7C601/611 recognizes the RESET signal, it enters reset mode and stays there until the RESET line
is deasserted. The processor then enters execute mode and then the execute trap procedure. Here, it deviates from the
normal action of a trap (Section 2.7.5) by modifying the enable traps bit (ET =0), and the supervisor bit (S=1). It then
sets the PC to 0 (rather than changing the contents of the TBR), the nPC to 4, and transfers control to location 0. All
other PSR fields, and all other registers retain their values from the last execute mode.

Note: Upon power-up reset the state of all registers other than the PSR are undefined.

If the processor got to reset mode from error mode, then the normal actions of a trap have already been performed, includ-
ing setting the #t field to reflect the cause of the error mode. Because this field is not changed by the reset trap, a
post-mortem can be conducted on what caused the error mode. The processor enters error mode whenever a synchronous
trap occurs while traps are disabled.

2.72 Synchronous Traps

Synchronous traps are caused by the actions of an instruction, with the trap stimulus occurring either internally to the
CY7C601/611 or from an external signal which was provoked by the instruction. These traps are taken immediately and
the instruction that caused the trap is aborted before it changes any state in the processor.

The external signals that can cause a synchronous trap are listed in Table 2-37.

2.7.2.1 External Signals

Synchronous traps generated by the input signal MEXC (Memory Exception) occur during the execute phase of an in-
struction or occur immediately for data accesses. Traps generated by the FEXC and CEXC signals belong to the special
floating-point/coprocessor category, and may not occur immediately. See Section 3.3.3.1.

2.7.2.1.1 instruction access exception

An instruction access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during
an instruction fetch.

2-78

= CY7C601/CY7C611 Integer Unit

2.7.2.1.2 data access exception

A data access exception trap is generated if a memory exception occurs (the MEXC input signal is asserted) during the
data cycle of any instruction that moves data to or from memory.

2.7.2.2 Internal/Software

Synchronous traps generated by internal hardware are associated with an instruction. The trap condition is detected dur-
ing the execute stage of the instruction and the trap is taken immediately, before the instruction can complete.

2.7.2.2.1 illegal instruction

An illegal instruction trap occurs:

« when the UNIMP instruction is encountered,

« when an unimplemented instruction is encountered (excluding FPops and CPops),

« inany of the situations below where the continued execution of an instruction would result in an illegal processor state:
1. Writing a value to the PSR’s CWP field that is greater than the number of implemented windows (witha WRPSR)
2. Executing an Alternate Space instruction with its i bit set to 1
3. Executing a RETT instruction with traps enabled (ET=1)
4. Executing an IFLUSH instruction with IFT =0

Unimplemented floating-point and unimplemented coprocessor instructions do not generate an illegal instruction trap.
They generate fp exception and cp exception traps, respectively.

2.7.2.2.2 privileged instruction

This trap occurs when a privileged instruction is encountered while the PSR’s supervisor bit is reset (S =0).

27223 fpdisabled

A fp disabled trap is generated when an FPop, FBfcc, or floating-point load/store instruction is encountered while the
PSR’s EF bit =0, or if no FPU is present (FP input signal =1).

2.7.2.2.4 cp disabled

Acpdisabled trap is generated when a CPop, CBccc, or coprocessor load/store instruction is encountered while the PSR’s
EC bit =0, or if no coprocessor is present (CP input signal =1).

2.7.2.2.5 window overflow

This trap occurs when the continued execution of a SAVE instruction would cause the CWP to point toa window marked
invalid in the WIM register.

2.7.2.2.6 window underflow

This trap occurs when the continued execution of a RESTORE instruction would cause the CWP to point to a window
marked invalid in the WIM register. The window underflow trap type can also be set in the PSR during a RETT instruc-
tion, but the trap taken is a reset. See Section 2.7.1 on'reset traps and Chapter 6 for the instruction definition for RETT.

2.7.2.2.7 memory address not aligned

Memory address not aligned trap occurs when a load or store instruction generates a memory address that is not properly
aligned for the data type or if a JMPL instruction generates a PC value that is not word aligned (low-order two bits non-
2€r0).

2-79

===
=== e CY7C601/CY7C611 Integer Unit

Fetch
’ |l"I ||l"I ’ I"'.#ul'
Decode inst 1 Inst 2 Annulled i Trap 1 Trap 2
i
! l||||l" i l"".ll"| i '",,N"'“ i
e i
Execute ﬁ’fuu“' ||||l'“u|::: .::: /) I:' |:::'"
H ",; :,‘ P !
Write Inst 1 i Annulled Annulied .ul"" :'“ﬂwu"",lu M::',ln
5 .|ln Al .IA
IRL<3:0> I‘ A t
Taken
Prioritized
: Latched
L—— Sampled
INTACK

Figure 2-49. Best-Case Interrupt Response Timing

2.7.2.2.8 tag overflow

This trap occurs if execution of a TADDccTV or TSUBccTV instruction causes the overflow bit of the integer condition
codes to be set. See the instruction definitions of TADDccTV and TSUBccTV and Section 2.3.3.2.3 for details.

2.7.2.2.9 trap instruction

This trap occurs when a Ticc instruction is executed and the trap conditions are met. There are 128 programmable trap
types available within the trap instruction trap (see Chapter 6, Ticc instruction).

2.73 Interrupts (Asynchronous Traps)

Asynchronous traps occur in response to the Interrupt Request Level (IRL < 3:0 >) inputs. This type of trap is not asso-
ciated with an instruction and is said to happen between instructions. This is because, unlike synchronous traps, an inter-
rupt allows the instruction in whose execute stage it is prioritized to complete execution (see Figure 2-49). Any instruction
that has entered the pipeline behind the instruction which was allowed to complete is annulled, but can be restarted again
after returning from the trap.

2.7.3.1 Priority

The level, or priority, of the interrupt is determined by the value on the IRL < 3:0 > pins. For the interrupt to be taken,
the IRL value must be greater than the value in the Processor Interrupt Level (PIL) field of the Processor State Register
(PSR). A value of 0 indicates that no interrupt is requested. A value of 15 represents a non-maskable interrupt. All other
IRL values between 0 and 15 represent interrupt requests which can be masked by the PIL field. The priority and trap
type (#t) for each level is shown in Table 2-38 in Section 2.7.5.3.

2-80

CY7C601/CY7C611 Integer Unit

: " |l"“ |l"I il
||l"':I||I"':|||I"'::||I
] ! ||III W

Store H A ll"' |l"*l |f”I !
Decode doupie 'OP1 i 1OP; Inst2 | Annull ¥ :“‘:.nﬂ‘n‘:.gﬁ::‘,,tl::lz Trap
m \L" i
|I",ﬁ:|“'|
l | yl i
Write dst;zrb? o ::u::]:ﬂ'"":n n:,.. Trap 1
; H H e H
IRL<3:0> ‘ ‘ A t
Taken
Prioritized
Latched
Sampled
INTACK

Figure 2-50. Worst-Case Interrupt Response Timing

2.7.3.2 Response Time

The CY7C601/611 samples the IRL inputs at the rising edge of every clock. In order to properly synchronize these asynch-
ronous inputs, they are put through two synchronizing levels of D-type flip-flops. The outputs of the two levels must agree
before the interrupt can be processed. If the outputs disagree, the interrupt request is ignored. This logic serves to filter
transients on the IRL lines, but it means that the lines must be active for two consecutive clock edges to be accepted as
valid.

Once the IRL input has been accepted, it is prioritized and the appropriate trap is taken during the next execute stage
of the instruction pipeline. Best case interrupt response occurs when the interrupt is applied one clock plus one setup
time before the execute phase of any instruction in the pipeline (see Figure 2-49). In this case, the first instruction of the
interrupt service routine is fetched during the fourth clock following the application of an IRL value greater than the
PIL field of the processor status register (PSR). This also holds for an IRL value of OF H, which acts as a non-maskable
interrupt.

The worst case interrupt response occurs when the detection of the IRL input just misses the cutoff point for the execute
stage of a four-cycle instruction, such as a store double or atomic load-store (see Figure 2-50). In this case, the interrupt
input must wait an additional three cycles for the next pipeline execute phase. In addition, if the IRL input just misses
the sampling clock edge, an additional clock delay occurs. As a result, the first instruction of the service routine is fetched
in the eighth clock following the application of IRL.

The best and worst case interrupt timing described above assumes that the processor is not stopped via the application
of an external hold signal, and that the IRL input is not superceded by the occurrence of a synchronous (internal) trap.

2.7.3.3 Interrupt Acknowledge

As shown in Figure 2-49, and morc clearly in Figure 2-50, the INTerrupt ACKnowledge (INTACK) output signal is as-
serted when the interrupt is faken, not when it is first detected and latched. Because of this delay, if the IRL < 3:0 > inputs
are changed to reflect another interrupt condition before the corresponding INTACK for the latched condition is re-
ceived, there could be some question as to which interrupt the INTACK is responding to. Therefore, external hardware
should ensure that the IRL <3:0> inputs are held stable until an INTACK is received.

2.7.4 Floating-Point/Coprocessor Traps
Floating-point/coprocessor exception traps are considered a separate class of traps because they are both synchronous

and asynchronous. They are asynchronous because they are triggered by an external signal (FEXC or CEXC), and are

2-81

==

=

%; ﬁm CY7C601/CY7C611 Integer Unit
==2 SEMICONDUCTOR

taken sometime after the floating-point or coprocessor instruction that caused the exception. This can happen because
the CY7C601/611 and the FPU (coprocessor) operate concurrently. However, they are also synchronous, because they
are tied to an instruction—the next floating-point or coprocessor instruction encountered in the instruction stream after
the signal is received.

‘When the FPU (coprocessor) recognizes an exception condition, it enters an “exception pending mode” state. It remains
in this state until the CY7C601/611 signals that it has taken an fp exception (cp exception) trap by sending back an FXACK
(CXACK)signal. The FPU (coprocessor) then enters the “exception mode” state, remaining there until the floating-point
(coprocessor) queue has been emptied by execution of one or more STDFQ (STDCQ) instructions.

Although the PC will always point to a floating-point or coprocessor instruction after an exception trap is taken, it doesn’t
point to the instruction that caused the exception. However, the instruction that did cause the exception is always the
front entry in the queue at the time the trap is taken, and the entry includes both the instruction and its address. The
remaining entries in the queue point to FPops (CPops) that have been started but have not yet completed. Once the queue
has been emptied, these can be re-executed or emulated.

2.7.4.1 Roating-Point Exception

This trap occurs when the FPU is in exception pending mode and an FPop, FBfcc, or floating-point load/store instruction
is encountered. The type of exception is encoded in the # field of the Floating-point State Register (FSR). See Section
33.1.

2.7.4.2 Coprocessor Exception

This trap occurs when the Coprocessor is in exception pending mode and a CPop, CBccc, or coprocessor load/store in-
struction is encountered. The type of exception should be encoded in the # field of the Coprocessor State Register (CSR).
The nature of the exception is implementation dependent.

2.75 Trap Operation
Once a trap is taken, the following operations take place:

« Further traps are disabled (asynchronous traps are ignored; synchronous traps force an error mode).
+ The S bit of the PSR is copied into the PS bit; the S bit is then set to 1.

+ The CWP is decremented by one (modulo the number of windows) to activate a trap window.

* The PC and nPC are saved into r{17] and r{18], respectively, of the trap window.

* The # field of the TBR is set to the appropriate value.

 If the trap is not a reset, the PC is written with the contents of the TBR and the nPC is written with TBR + 4. If the
trap is a reset, the PC is set to address zero and the nPC to address four.

Unlike many other processors, the SPARC architecture does not automatically save the PSR into memory during a trap.
Instead, it saves the volatile S bit into the PSR itself and the remaining fields are either altered in a reversible manner
(ET and CWP), or should not be altered in the trap handler until the PSR has been saved to memory.

2.7.5.1 Recognition

Inmost cases, traps are “recognized” in the pipeline’s execute stage. For a synchronous trap, the trap criteria are examined
during the execute stage of an instruction, and the trap is taken immediately, before the write stage of that instruction
takes place. This includes the fp disabled and cp disabled trap type. The special cases occur with those traps generated
by external signals. A memory exception on an instruction fetch is detected at the beginning of the execute stage of instruc-
tion execution. Memory exceptions occurring on data accesses are detected on the rising clock edge of the data cycle.

Because asynchronous traps happen “between” instructions, their timing is slightly different. As long as the ET bit is set
to one, the CY7C601/611 checks for interrupts. The interrupt is sampled on a rising clock edge and latched on the next
rising clock edge. The processor compares the IRL < 3:0> input value against the PIL field of the PSR, and if IRL is
greater than PIL, or IRL is 15 (unmaskable), then it is prioritized at the end of the next execute stage of the pipeline.
A trap keyed to the IRL level occurs after the write stage completes.

2-82

——

%ﬁ%m& CY7C601/CY7C611 Integer Unit

Floating-point/coprocessor exception traps are not recognized when the FEXC or CEXC signal is first sampled. The pro-
cessor waits until it encounters a floating-point or coprocessor instruction in the instruction stream and then handles it
as if it were an internal synchronous trap.

2.7.5.2 Trap Addressing

The Trap Base Register (TBR) is made up of two fields, the Trap Base Address (TBA) and the trap type (). The TBA
contains the most-significant 20 address bits of the trap table, which is in external memory. The trap type field, which
was written by the trap, not only uniquely identifies the trap, it also serves as an offset into the trap table when the TBR
is written to the PC. The TBR address is the first address of the trap handler. However, because the trap addresses are
only separated by four words (the least-significant four bits of TBR are zero), the program must jump from the trap table
to the actual address of the particular trap handler.

Of the 256 trap types allowed by the 8-bit # field, half are dedicated to hardware traps (0-127), and half are dedicated
to programmer-initiated traps (Ticc). For a Ticc instruction, the processor must calculate the ¢ value from the fields given
in the instruction, while the hardware traps can be set from a table such as the one below. See the Ticc instruction defini-
tion for details.

The # field remains valid until another trap occurs.

2.7.5.3 Trap Types and Priority

Each type of trap is assigned a priority (see Table 2-38). When multiple traps occur, the highest priority trap is taken, and
lower priority traps are ignored. In this situation, a lower priority trap must either persist or be repeated in order to be
recognized and taken.

Table 2-38. Trap Type and Priority Assignments

Trap Synchronous or
Trap Priority | Type (tt) Asynchronous
Reset 1 - Async.
Instruction Access 2 1 Sync.
Illegal Instruction 3 2 Sync.
Privleged Instruction 4 3 Sync.
Floating-Point Disabled S 4 Sync.
Coprocessor Disabled 6 36 Sync.
Window Overflow 7 5 Sync.
Window Underflow 8 6 Sync.
Memory Address not Aligned 9 Sync.
Floating-Point Exception 10 8 Sync.
Coprocessor Exception 11 40 Sync.
Data Access Exception 12 9 Sync.
Tag Overflow 13 10 Sync.
Trap Instructions (Ticc) 14 128 - 255 Sync.

2-83

;ﬁm CY7C601/CY7C611 Integer Unit
SEMICONDUCTOR

Table 2-38. Trap Type and Priority Assignments (continued)

Trap Type | Synchronous or
Trap Priority (tt) Asynchronous
Interrupt Level 15 15 31 Async.
Interrupt Level 14 16 30 Async.
Interrupt Level 13 17 29 Async.
Interrupt Level 12 18 28 Async.
Interrupt Level 11 19 27 Async.
Interrupt Level 10 20 26 Async.
Interrupt Level 9 21 25 Async.
Interrupt Level 8 22 24 Async.
Interrupt Level 7 23 23 Async.
Interrupt Level 6 24 22 Async.
Interrupt Level § 25 21 Async.
Interrupt Level 4 26 20 Async.
Interrupt Level 3 27 19 Async.
Interrupt Level 2 28 18 Async.
Interrupt Level 1 29 17 Async.

2.7.5.4 Return From Trap
On returning from a trap with the RETT instruction, the following operations take place:

¢ The CWP is incremented by one (modulo the number of windows) to re-activate the previous window.
¢ The return address is calculated

« Trap conditions are checked. If traps have already been enabled (ET = 1), an illegal instruction trap is taken. If traps
are still disabled but S =0, or the new CWP points to an invalid window, or the return address is not properly aligned,
then an error mode/reset trap is taken.

* If no traps are taken, then traps are re-enabled (ET=1).

¢ The PC is written with the contents of the nPC, and the nPC is written with the return address.

« The PS bit is copied back into the S bit.

The last two instructions of a trap handler should be a JMPL followed by a RETT. This instruction couple causes a

non-delayed control transfer back to the trapped instruction or to the instruction following the trapped instruction, which-
ever is desired. See the RETT instruction definition for details.

2.8 Coprocessor Interface

In the SPARC architecture, the integer unit is the basic processing engine, but provision is made for two coprocessor
extensions. The extensions are in the form of instruction set extensions and a pair of identical signal interfaces. In the
CY7C601, one of these instruction and signal interface extensions is dedicated to floating-point operations and the other
is designated for a second coprocessor, either user defined or some future device offered by Cypress. Although signals
and instructions have been named to reflect the assumption of how these two extensions will be used, either instruction
set extension/signal interface may be used in any way desired.

The floating-point unit and its interface are described in Chapter 3. This section deals only with the second coprocessor
interface.

2-84

===

= o
% ig’f’m CY7C601/CY7C611 Integer Unit
—= # SEMICONDUCTOR

In order for the CY7C601 to support a user-defined coprocessor, the coprocessor should contain certain elements defined
by the SPARC architecture. These include an internal register set, a status register, a coprocessor queue, and a set of
compatible interface pins. These elements are identical to the floating-point interface, and it is recommended that a user
desiring to use the coprocessor interface thoroughly study the floating-point interface in Chapter 3 as an example of a
coprocessor interface application.

2.8.1 Protocol

The coprocessor extensions to the architecture are designed to allow the coprocessor to operate concurrently with the
integer unit and the floating-point unit. To keep operations synchronized, address and data buses are shared. The initial
CY7C601 instruction decode determines which unit should execute the instruction. The CY7C601 executes its own in-
structions, but signals the coprocessor to continue the decode and execution if it recognizes a coprocessor instruction.
For coprocessor loads and stores, the CY7C601 supplies the memory address and the coprocessor receives or supplies
the data. The coprocessor must deal with resource or data dependencies, signaling the problem to the CY7C601 by freez-
ing the instruction pipeline with the CHOLD signal.

The signal interface between the CY7C601 and the coprocessor consists of shared address, data, clock, reset, and control
signals, plus a special set of signals that provide synchronization and minimal status information between the coprocessor
and the CY7C601.

2.8.1.1 Coprocessor Interface Signals

The SPARC architecture defines two sets of signals intended for interfacing with two coprocessors. The CY7C601 assigns
one set of coprocessor signals for specific use by the floating-point unit, and the other set of coprocessor signals for a
user-defined coprocessor. All floating-point interface signal names begin with an F, and all coprocessor interface signal
names begin with a C. Both sets of interface signals share the INST signal, which identifies a CY7C601 instruction fetch.
The two groups of signals are symmetric, have identical timing requirements, and are listed in Table 2-33.

Instruction fetch is signaled by the CY7C601 using the INST signal. The coprocessor uses INST as an input to enable
latching of an instruction on the data bus. The coprocessor latches all instructions fetched by the CY7C601, regardless
of instruction type. The coprocessor is expected to use a two-stage instruction/address buffer as described in Section 3.2
on the floating-point/integer unit interface. The CY7C601 asserts CINS1 or CINS2 at the beginning of the decode stage
of instruction execution of a coprocessor instruction. The CINS1 or CINS2 signals are used to start the execution of a
coprocessor instruction and select which of the two most recently fetched instructions stored in the two-stage instruction
buffer is to be executed by the coprocessor.

The CY7C601 requires the CP signal to be driven low in order for the integer unit to recognize the presence of a coproces-
sor. Attempting to execute coprocessor instructions with CP high will cause the CY7C601 to execute a cp disabled trap.

Hardware interlocking for coprocessor instruction execution is provided with the CHOLD signal. This signal is asserted
by the coprocessor to freeze the CY7C601. This signal is asserted in cases where the CY7C601 must be halted to prevent
it from causing a condition from which the coprocessor cannot recover. An example of this would be fetching multiple
coprocessor instructions that would otherwise overrun the coprocessor queue. The coprocessor would be expected to
assert CHOLD until it could handle additional instructions.

Coprocessor interrupts are asserted with the CEXC signal. This signal is asserted by the coprocessor upon the detection
of an exception case. The CY7C601 will continue normal execution until the execution stage of the next coprocessor
instruction. At that time, the CY7C601 will acknowledge the interrupt with CXACK, and begin coprocessor trap execu-
tion.

Coprocessor branch on condition code (CBcc) instructions are executed by the CY7C601 integer unit based on the value
of the CCC < 1:0 > signals supplied by the coprocessor. These signals are typically set by the execution of a coprocessor
compare instruction (defined by the designer). The CCCV signal supplied by the coprocessor indicates whether the state
of the CCC < 1:0 > signals is valid. CCCV is normally asserted, but is deasserted when a coprocessor compare instruction
is executed and remains deasserted until that instruction is completed. The deassertion of this signal causes the CY7C601
to halt execution. This interlock prevents the CY7C601 from branching on invalid condition codes. The SPARC architec-
ture requires at least one non-coprocessor instruction between a coprocessor compare and a coprocessor branch on condi-
tion code (CBcc) instruction.

2-85

L
E

%? % CY7C601/CY7C611 Integer Unit

32-Word by 32-Bit Register File

I 32-Bit Status Register I
Address Decode Register 1 Instruction Decode Register 1
Address Decode Register 2 Instruction Decode Register 2
Address Queue Register N Instruction Queue Register N
Address Queue Register 1 Instruction Queue Register 1
Address Queue Register 0 Instruction Queue Register 0

Figure 2-51. Coprocessor Register Model

2.82 Register Model

The coprocessor register model specified by the SPARC architecture is shown in Figure 2-51. The coprocessor has its own
32 x 32-bit working register file from which all operands for CPop instructions originate and to which all results return.
The contents of these registers are transferred to and from memory under control of the CY7C601, using coprocessor
load/store instructions.

The Coprocessor State Register (CSR) contains the current status of the coprocessor. The exact nature of the exception
bits and trap types are implementation dependent. The CSR is read and written indirectly through memory using the
LDCSR and STCSR instructions.

The coprocessor queue is necessary to properly handle traps with concurrently operating units. The first-in, first-out
queue records all pending coprocessor instructions and their addresses at the time of a coprocessor exception. The front
entry of the queue contains the unfinished instruction that caused the exception. The rest of the queue contains unfin-
ished CPops which would be restarted or emulated after the trap handler returns control to the main program.

The address and instruction decode buffers hold instructions and their addresses until the CY7C601 determines if they
belong to the coprocessor. If one of the held instructions belongs to the coprocessor, the CY7C601 sends the appropriate
CINS signal to move the instruction into the coprocessor execute stage. The address and a copy of the instruction also
move into the queue at this point and remain there until the instruction completes.

When a trap is taken, the CY7C601 asserts the FLUSH signal, causing the coprocessor to dump any instructions in the
decode buffers. FLUSH does not affect instructions which are already in the queue.

28.3 Exceptions

Exactly what conditions will generate a cp exception trap are implementation dependent. However, most implementa-
tions would probably include Unfinished CPop as a condition that would cause an exception.

An Unfinished CPop trap is generated when the coprocessor cannot complete execution because the data has exceeded
the capabilities of the coprocessor and/or has generated an inappropriate result.

2-86

==t CY7C601/CY7C611 Integer Unit

2.9 CY7C611 Integer Unit for Embedded Control

The CY7C611 is a SPARC Integer Unit designed for embedded control applications. It is a functional equivalent of the
CY7C601 with a reduced pin out for lower cost applications. The CY7C611retains all internal features of the CY7C601,
and maintains complete binary code compatibility with all other SPARC processors. The CY7C611 differs from the
CY7C601 in that the address bus has been reduced to 24 bits, the ASI signals have been reduced to three bits, and several
control signals not required for lower cost systems have been eliminated. The CY7C611 supports the floating-point inter-
face, but does not include the coprocessor interface. The CY7C611 is packaged in a low-cost 160-pin plastic quad flat
package (PQFP) and is available in speeds of 25 MHz.

CY7C601 signals not available on the CY7C611 are listed in Table 2-39 below. The signal summary for the CY7C611
is listed in Table 2-40. All CY7C611 signals are identical to their CY7C601 counterparts, and the information regarding
the CY7C601 in this chapter is also valid for the CY7C611.

Note that the EC (enable coprocessor) bit of the PSR register for the CY7C611 is permanently forced to zero.

A user-defined coprocessor can be connected to the CY7C611 instead of a floating-point unit, if desired. All floating-
point interface signals are identical in function to their coprocessor counterparts. In order to use the floating-point inter-
face to support a user-defined coprocessor, the floating-point instructions must be used to exercise the coprocessor. This
will require software remapping of coprocessor instructions. The CY7C601 and CY7C611 do not decode the nine-bit
opf field of a floating-point operate instruction. This can be used to map coprocessor instructions to valid and invalid
FPop instructions (as specified by the op3 and opf fields of the op code) without causing an invalid FP instruction trap,
since the invalid FP instruction must recognized by the floating-point unit.

Table 2-39. Signal Differences Between CY7C601 and CY7C611

CY7C601 Signals Not Available on CY7C611
A<31:24> Address bits 31 through 24
AOE Address Output Enable
ASI<7:3> ASI bits 7 through 3
CCC<1.0> Coprocessor Condition Codes < 1:0>
ccev Coprocessor Condition Codes Valid
CEXC Coprocessor Exception
CHOLD Coprocessor Hold
CINS1 Coprocessor Instruction Stage 1
CINS2 Coprocessor Instruction Stage 2
COE Control OQutput Enable
CP Coprocessor Present
CXACK Coprocessor Exception Acknowledge
DOE Data Output Enable
DXFER Data Transfer
IFT Instruction Cache Flush Trap

2-87

Eﬁ

CY7C601/CY7C611 Integer Unit

=== & CYFRESS
==~ SEMICONDUCTOR
Table 2-40. CY7C611 Signal Summary
. CY7C611 Signal Summary
Signal Name Signal Description Input/Output Active

A<230> Address Bus Three-StateOutput
ASI<2:0> Address Space Identifier Three-State Output
BHOLD Bus Hold Input Low
CLK Clock Input
D<310> Data Three-State Bidir.
ERROR IU Error Mode Three-State Output | Low

|FCC<1:0> Floating-Point Condition Codes Input
FCCV Floating-Point Condition Codes Valid Input High
FEXC Floating-Point Exception Input Low
FHOLD Floating-Point Hold Input Low
FINS1 Floating-Point Instruction Stage 1 Three-State Output | High
FINS2 Floating-Point Instruction Stage 2 Three-State Output | High
FLUSH Flush FP Instruction Three-State Output | High
FP Floating-Point Present Input Low
FPSYN FP Synonym Mode Input High
FXACK FP Exception Acknowledge Three-State OQutput | High
IRL<3:0> Interrupt Level <3:0> Input
INST Instruction Fetch Cycle Three-State Output | High
INULL Instruction Cycle Nullify Three-State Output | High
INTACK Interrupt Acknowledge Three-State Output | High
LDSTO Atomic Load-Store Operation Three-State Output | High
LOCK Multicycle Bus Lock Three-State Output | High
MAO Memory Address Output Select Input High
MDS Memory Data Strobe Input Low
MEXC Memory Exception Input Low
MHOLDA Memory Hold A Input Low
MHOLDB Memory Hold B Input Low
RD Read Three-State Output | High
IRESET Reset Input Low
SIZE<1:0> | Bus Transaction Size Three-State Output
TOE Test Output Enable Input Low
WRT Advanced Write Three-State Output | High
WE Write Three-State Output | Low

2-88

-_—;‘——__*_.ﬂ:;?: Chapter 3

The CY7C602 Floating-Point Unit (FPU) is a high-performance, single-chip implementation of the SPARC reference
floating-point unit. The CY7C602 FPU is designed to provide execution of single and double-precision floating-point
instructions concurrently with execution of integer instructions by the CY7C601 Integer Unit (IU). The CY7C602 iscom-
pliant to the ANSI/IEEE-754 floating-point standard.

The CY7C602 provides a 64-bit internal datapath, a 64-bit ALU, and a 64-bit multiply/divide/square-root unit for efficient
execution of double-precision floating-point instructions. For efficient data management, the CY7C602 provides thirty-
two 32-bit floating-point registers. These 32-bit registers can be concatenated for use as 64-bit registers for double-preci-
sion operations. The internal 64-bit architecture of the CY7C602 allows high speed execution of both single- and double-
precision operations. The CY7C602 is capable of a peak performance of 6.15 MFLOPS (double-precision) at a clock speed
of 40 MHz.

The SPARC floating-point/integer unit interface supports concurrent execution of integer and floating-point instructions.
The tightly coupled floating-point/integer unit interface requires the integer unit to provide all addressing and control
signals for memory access. All instructions are fetched by the integer unit, and these instructions are simultaneously
latched and decoded by both the CY7C601 and CY7C602. Execution of a floating-point instruction is enabled by
CY7C601, which signals the CY7C602 to begin execution of the floating-point instruction when that instruction reaches
the execute stage of the CY7C601 instruction pipeline. In the case of a floating-point load or store instruction, the
CY7C601 executes the FP load or store in conjunction with the CY7C602 by asserting address and control signals for
memory access while the CY7C602 loads or stores the data. All other floating-point instructions execute independently
of the integer unit and in parallel with integer instruction execution.

The floating-point/integer unit interface provides hardware interlocking to ensure synchronization between the
CY7C601 and CY7C602. Hardware interlocking ensures software compatibility among SPARC systems with different
levels of floating-point performance.

3.1 CY7C602 Functional Description

Figure 3-1 illustrates the functional block diagram for the CY7C602. The fetch unit captures instructions and their ad-
dresses from the D(31:0) and A(31:0) buses. The decode unit contains logic to decode the floating-point instruction op-
codes. The execution unit handles all instruction execution. The execution unit includes a floating-point queue (FP
queue), which contains stored floating-point operate (FPop) instructions (see Section 3.3.2) under execution and their
addresses. The execution unit controls the load unit, the store unit, and the datapath unit.

The load unit holds data that is fetched from memory via the data bus before it is written into the register file. The register
file contains the 32 f registers. The exceptions/floating-point status register (FSR) unit keeps the status of completing
FPops, as well as the operating mode of the CY7C602. The store unit holds data that is supplied to the data bus during
a store operation. The dependency checking unit checks for conditions where the FPU must freeze the CY7C601 integer
unit pipeline so that an incoming instruction does not overflow the floating-point queue (described below). The datapath
unit contains arithmetic logic used by FPops to operate on the data in the register file and is comprised of a 64-bit ALU
and a 64-bit multiply/divide/square-root/compare unit. Figure 3-2 gives a more detailed block diagram of the CY7C602.

The CY7C602 provides three types of registers: f registers, FSR, and the FP queue. The fregisters are the thirty-two
floating-point operand registers, each 32-bits in size. Adjacent even-odd fregister pairs (for instance, freg0 and fregl) can
be concatenated to support double-precision operands. The FSR is a 32-bit status and control register. It keeps track of
rounding modes, floating-point trap types, queue status, condition codes, and various IEEE exception information. The
floating-point queue contains the floating-point instructions currently under execution, along with their corresponding
addresses. The floating-point queue provides an efficient method of handling floating-point exceptions. When an FPop
instruction causes a floating-point exception, the queue contains the offending instruction/address pair along with any
other instructions that have started execution. The CY7C601 integer unit acknowledges the floating-point exception,
enters a floating-point trap routine, empties the queue, and corrects the exception case. After the exception case is cor-

3-1

=
= Froe CY7C602 Floating-Point Unit
=4 SVICONDUCTOR

rected, unfinished floating-point instructions found in the floating-point queue are either executed or emulated in the
trap handler before returning to normal execution.

The CY7C602 depends upon the CY7C601 to assert all addresses and control signals for memory access. Floating-point
loads and stores are executed in conjunction with the CY7C601, which provides addresses and control signals while the
CY7C602 supplies or stores the data. Instruction fetch for integer and floating-point instructions is provided by the
CY7C601. When the CY7C601 integer unit asserts an address for an instruction fetch, it asserts the INST signal one
clock later. The CY7C602 floating-point unit uses INST to determine when a valid instruction is present on the D(31:0)
bus. The instruction, which appears on the data bus on the next clock cycle, is latched and paired with its corresponding
address (refer to Figure 3-3). In any given cycle, the two previous instruction/address pairs are stored by the CY7C602,
regardless of whether the instruction is an integer or floating-point instruction. Either of these two instruction/address
pairs may be selected for execution by the CY7C601 upon asserting the FINS1 or FINS2 signal. The CY7C601/CY7C602
interface uses this two stage address/ instruction buffer toaccommodate delaysin the instruction pipeline of the CY7C601
integer unit. The FINS1 or FINS2 signals select between the output of the two stages of the address/instruction buffer,
enabling a floating-point instruction to begin execution by the CY7C602.

Upon decoding a floating-point instruction, the CY7C601 will assert the FINS1 or the FINS2 signal to enable the
CY7C602 to begin execution. The FINS1 or FINS2 signal is asserted during the decode stage of the floating-point instruc-
tion, and is recognized by the CY7C602 at the beginning of the execute stage of the floating-point instruction. This ensur-
es synchronization of the decode and execute stages of a floating-point instruction between instruction pipelines of the
CY7C601 and the CY7C602.

ADDRESS BUS DATA BUS
INST.
Fetch Unit -« TE Load Unit
HoDS, n
l 1
3 v
p
o
I
w
2 Decode Unit E /
EFOD. S xceptions
-ha % FSRUnit |2
ENULL 5 ECCi10)
2 Register File
S 32 x 32 bits
2
g& Execution Unit/ T
Floating-Point

EINSLZ g Queue *

ELUSH

HOIDS*,,

RESET Foov * Yy Floating-Point
Datapath Unit
Store Unit
o S—
* HOLDS refers to the MHOLDA,
MHOLDB, and BHOLD inputs
DATA BUS

Figure 3-1. CY7C602 Functional Block Diagram

3-2

CY7C602 Floating-Point Unit

Q D
32 be 32 ¥ 32
DW1
L, 32
7 264
b é 32/' 32) 32 7
Address Instruction MUX MUX
Pipe Pipe
[—™ Control
LAT2
, 64
j STATUS 4
D oo | D a0 |
32 x 32-bit f regs
[wux or 16 x 64-bit fregs ™
\
D ea] D o1]

b2y o

| wmux | wmux]
64
,,34 * 64 1] 64
1 ’ i
IZMEI Bs1 B D D D]
2 K3 ' ! { 1
132
Add, Subtract, Convert Muitiply, Divide, Compare,
Square Root

MUX
RESULT 64
7

32

D (same as input D)

Figure 3-2. CY7C602 Block Diagram

3-3

i

|

CY7C602 Floating-Point Unit

II!"l
)

!

i
g
%

3.2 Floating-Point/Integer Unit Interface

The CY7C602 is designed to directly interface with the CY7C601 without external glue logic. Figure 3-4 illustrates the
signals required to interconnect the CY7C601 and CY7C602. The control signals illustrated in Figure 3-4 are used to
interface with the remainder of the CPU system components. The FNULL, RESET, BHOLD, MHOLDA or MHOLDB,
MDS, and DOE signals are used by the CY7C604 or CY7C605 for cache interface and virtual bus arbitration. The signal

descriptions for the CY7C602 signals are described in Section 3.4.

A(31:0) D(31:0)

D patr | D b1 |

Do | | D o2 |
safg ety |

FINS2 X ZEmns2

e | De |
))

to FP queue to FP queue

Figure 3-3. CY7C602 Address/Instruction Pipe

A =7V M <

CY7C602

Cl\r:Ze%?: jb_ Floating-
Unit > — T — Point
Unit

a8
5| 5] gl g Tref 2 A 9
= = 2 = Al 1ol 1al2f 1B] (uwl
s| & o] mIIlo:\:S
<l O | o] ofic] IS {Z{I=] (o)

ADDRESS BUS

DATA BUS

CONTROL SIGNALS

AN
VVV

Figure 3-4. CY7C601 - CY7C602 Hardware Interface

3-4

= =

== CY7C602 Floating-Poi it
= CYPRESS oating-Point Uni

3.2.1 CY7C602 Instruction Fetch and Execution

The CY7C602 uses a four-stage instruction pipeline consisting of fetch, decode, execute, and write stages (F, D, E, and
W). The instruction pipelines for the CY7C601/611 and the CY7C602 are concurrent and synchronized; a floating-point
instruction will be in the same stage in both processors. Multiple cycle instructions such as floating-point operate instruc-
tions (FPops) leave the pipeline after the W stage and enter the FP queue until completion.

Addresses for both integer unit and floating-point unit instructions are supplied by the CY7C601. The CY7C602 FPU
latches all instructions and the corresponding addresses from the D(31:0) and A(31:0) buses. The CY7C602 uses the INST
signal, supplied by the CY7C601, to identify an instruction fetch by the integer unit.

Decode of the latched instruction occurs on the next clock cycle, with both the IU and the FPU decoding the instruction
simultaneously. During the decode stage of the floating-point instruction, the FPU checks for operand and resource de-
pendencies. When the CY7C601 integer unit decodes a FPop, it asserts the FINS1 or FINS2 signal. This occurs before
the end of the decode stage, and is used by the CY7C602 to initiate the execution of a floating-point instruction. If the
CY7C602 has detected an operand or resource dependency during the decode stage, the FPU will assert FHOLD as the
instruction begins the execution stage. This freezes the integer unit’s pipeline until the FPU can resolve the dependency.

If no resource or operand dependencies exist, the decoded floating-point instruction begins execution. Instructionsenter-
ing execution are stored in the FP queue, where they are held until execution is completed. Note that if the FP queue
is full during an instruction’s decode stage, the CY7C602 asserts FHOLD as the instruction enters the execution stage
in order to halt the CY7C601. FHOLD is released when space becomes available in the FP queue.

The following tables describe the execution phases of CY7C602 instructions. Additional cycles beyond the F, D, E, and

W stages are denoted as Wh (Write hold). Wh stages are equivalent to the additional cycles held by IOPs in the
CY7C601/611.

Table 3-1. Load instruction execution

Cycle Action

D stage Decode instruction, check operand depen-
dencies

E stage FHOLD if necessary

W stage | Capture data from D(31:0) bus (LDF,
LDFSR), capture MSW from D(31:0) bus
(LDDF).

Whi1 stage | Write data into register FSR (LDE, LDFSR),
capture LSW from D(31:0) bus (LDDF)

Wh2 stage | Write data into register (LDDF)

Table 3-2. Store instruction execution

Cycle Action

D stage Decode instruction, check operand
dependencies
E stage FHOLD if necessary, read data from FSR
register or FP queue

W stage Drive data onto D(31:0) bus (STF, STFSR),
(mid-cycle) |drive MSW or FP queue address onto
D(31:0) bus (STDF, STDFQ)
Wh1stage |Stop driving D(31:0) bus (STE, STFSR),
(mid-cycle) |drive LSW or FP queue opcode onto D(31:0)
bus (STDE, STDFQ)
Wh2 stage | Stop driving D(31:0) bus
(mid-cycle)

3-5

CY7C602 Floating-Point Unit

Table 3-3. FPop execution

Cycle

Action

D stage

Decode FPop, check resource and operand
dependencies

E stage

FHOLD if necessary, read operand(s) from
register file

W stage

Read any additional operands from register
file; start computing results

FP Queue

Compute, FPop in queue

.

FP Queue

Check exception status

FP Queue

Update FSR, write results or signal FP ex-
ception trap if necessary

3.2.1.1 Instruction Fetch

As the CY7C601 fetches an instruction, the CY7C602 captures it at the same time from the D(31:0) bus. The address
corresponding to this instruction is captured from the A(31:0) in the previous cycle. The INST signal is used to determine
when a valid instruction is present on the D(31:0) bus, and when a valid address has been fetched from the A(31:0) bus
in the previous cycle. Figure 3-5 illustrates an example of an instruction fetch with a cache hit. The transactions on the

address and data buses show two instruction fetches followed by a data fetch.

ok | |

INST

D(31:0)

D1 X

o2 x

XXXXX

A(31:0)

DDA ' X Al

X A2 XDataAXAS

DA1 X

X A1 X §A2

" 3

Figure 3-5. Instruction Fetch (Cache Hit)

3-6

CY7C602 Floating-Point Unit

)
i

ﬂ

o _[] | | | | |
STxxxxx/ S/
MHOLD —\ | /"'——'——
oor0) KK XX X KR R AR = mo@h
o1 X : X omom.mnmnm.o. XX
AG10) (X XXZXX XXXXXDW
oo _X ")(=)(Da o'mm mmm
S c— f‘fx —

Figure 3-6. Instruction Fetch (Cache Miss on A2)

In the case of an instruction cache miss, a memory hold signal (MHOLDA, MHOLDB, or BHOLD) is driven low by the
cache system starting in the cycle following the instruction fetch. The instruction which was captured from the D(31:0)
bus is invalid and is replaced when the system returns a valid instruction on the D(31:0) bus. The hold signal lasts for
several cycles during which time the MDS signal is asserted by the cache system, notifying the CY7C602 that the valid
instruction is available on the D(31:0) bus. MDS is also used when there is a cache miss on data (via load instructions)
so the instruction is reloaded only if INST was asserted in the previous non-hold cycle. The same sequence of transactions
in Figure 3-5 are used in Figure 3-6, except that the second instruction fetch (Inst 2) experiences a cache miss.

3.2.1.2 Instruction Execution

The FINS1 and FINS2 signals notify the CY7C602 when to launch a floating-point instruction. When FINS1/FINS2 is
received, the floating-point instruction is in the D stage of the CY7C601 integer unit pipeline. The example in Figure 3-7
shows a situation where both FINS1 and FINS2 are used. A load instruction is immediately followed by two FPops. The
FPops are fetched while the load instruction is executing. Because the load takes more than one cycle to execute, the
starting of the FPops are deferred, and thus two instructions are held in the instruction buffers of the CY7C602. When
the CY7C601 reaches the D stage of the first FPop (Inst 2), it issues FINS2 to start the FPop. When the D stage of the
second FPop (Inst 3) is reached, FINSI is issued to start the second FPop.

FINS1 and FINS2 are never asserted in the same cycle. Both FINS1 and FINS2 are ignored in the following conditions:

1. FLUSH is asserted.
2. MHOLDA, MHOLDB, BHOLD,CHOLD, or FHOLD is asserted.
3. FCCV or CCCV is deasserted.

3-7

CY7C602 Floating-Point Unit

Decode

Inst 1 Inst 1 (hold)

Inst 2

Inst 3

Write

Inst 1

Inst 1 (hold)

Inst 2 Inst 3

CLK

D(31:0) :X:

FINS1

Inst 1 Inst 2

Inst 3

FINS2

/]

Ad 1) FP({ps

Figure 3-7. Floating-Point Instruction Dispatching

FINS2 starts Inst 2

N
FINS1 starts Inst 3

Decode

FCMP Next

Write

FCMP

Next
Instr.

CLK

FINS1/2

FCCV

/

FCC(1:0)

/

FINS signal corresponding
to FCMP instruction

VALID

Figure 3-8. Floating-Point Compare (FCMP) Execution

=G CY7C602 Floating-Point Unit

3.2.1.2.1 Floating-Point Compare Execution

Floating-point compare instructions cause the instruction pipeline to be frozen by the use of FCCV, starting from the
E stage of the instruction following the compare instruction until the FCC condition codes become valid. FCCV is deas-
serted, causing the CY7C601/611 to halt execution until FCCV is asserted. Figure 3-8 illustrates the timing of FCCV
relative to the FCMP instruction and the FCC condition codes.

FCCV is deasserted in the W stage of the FCMP instruction. The instruction that immediately follows the FCMP:is held
in its E stage until FCCV is reasserted. FCC(1:0) is valid one cycle before FCCV is reasserted. For unimplemented
compare instructions, the CY7C602 freezes the instruction pipeline and causes an unimplemented FPop trap, which the
CY7C601 takes immediately.

3.2.1.2.2 FPop Queuing

‘When a FPop has passed the first cycle of the W stage and FLUSH has not been asserted, the FPop enters the FP queue.
Note that the W stage of an FPop may be extended to more than one cycle if a hold condition exists. Asan FPop completes
execution successfully and results are written to the register file, it is removed from the FP queue. The front entry of
the FP queue contains the instruction/address pair of the oldest FPop which is still being executed by the CY7C602.

3.2.2 Instruction Pipeline Flush

When a trap or interrupt occurs in the integer unit, normal program execution is halted and control is transferred to the
trap handler. The instruction in the E stage of the pipeline and any instructions fetched after it are aborted and must
be restarted after the trap handler is done (or emulated in the trap handler). Instructions that have not yet been trans-
ferred to the FP queue are aborted by the CY7C602 when the trap occurs. The CY7C601 asserts the FLUSH signal in
the W stage of the instruction tobe aborted (refer to Figure 3-9). FPops which were issued before this instruction continue
execution (and are in the queue) while instructions issued after it are aborted.

The following figures illustrate how each type of floating-point instruction is affected by the FLUSH signal. Figure 3-10
illustrates the effect of the FLUSH signal during a load floating-point instruction (LDF). A FLUSH signal asserted any-
time on or before the last Wh stage of a load instruction causes the load to abort, leaving the contents of the floating-point
register file unchanged.

Figure 3-11 illustrates the effect of FLUSH on a store floating-point instruction (STF). A FLUSH signal asserted on or
before the last Wh stage of a store instruction causes the store to abort and the CY7C602 to stop driving the D(31:0) bus
by the middle of the next clock cycle.

Figure 3-12 illustrates the effect of FLUSH on a FPop instruction. A FLUSH signal asserted anytime on or before the
W stage of a FPop instruction causes the FPop to abort, leaving the contents of the register file and the FSR unchanged
by that instruction. FPops that have passed the W stage but are still executing (stored in the FP queue) are not affected.

Figure 3-13 illustrates the effect of FLUSH on a floating-point compare. FLUSH asserted in the W stage of a FCMP
instruction causes the FCMP to abort, leaving the FSR unchanged by that instruction. FCCV is reasserted in the next
clock cycle.

Decode Inst 1 Inst 2 Inst 3 Inst 4
. Inst3
Write Inst 1 Inst 2 (ABORTED)
cLK L [| L I I L
FLUSH / \._.

Figure 3-9. Floating-Point Instruction Pipeline During A Trap

3-9

CY7C602 Floating-Point Unit

l L

CLK

FINS1/2
7 ”
ors0) JOORXRXX XXX XX 2= XXX XXX
- i ; IT
Assertion of FLUSH during this period aborts LDF instruction

Figure 3-10. Effect of FLUSH on LDF Instruction

Whi Wh2

CLK]
FINS1/2

pato) YOO QOO0 - Q ’v‘v’v’ ’v.v‘v‘ QOO0 - XX
= Assertion of FLUSH during this penod aborts STF instruction

Figure 3-11. Effect of FLUSH on STF Instruction

E VIV L_-

cLK |
oty OCCRRXX_ XKXXX_XRXXXC_ XXX
P - £ i ii
Assertion of FLUSH during this period aborts FPop instruction

Figure 3-12. Effect of FLUSH on FPop Instruction

3-10

= Croerss CY7C602 Floating-Point Unit

NEXT
Decode FCMP INSTR.

; NEXT
Wite FCMP INSTR.
(aborted)

oK | | | |_

FINS1/2] / ? \

FCCV \ _f/

FLUSH

N

FINS signal'corresponding
to FCMP instruction

Figure 3-13. Effect of FLUSH on FCMP Instruction

3.2.2.1 Hold Signals

If MHOLDA, MHOLDB, BHOLD, CHOLD, or FHOLD is active, or FCCV or CCCV is inactive, the instruction pipe-
lines of the CY7C601 and CY7C602 are frozen. FHOLD and FCCV are generated by the CY7C602, CHOLD and CCCV
are generated by the coprocessor, and the others are generated by the system.

In the CY7C602, “freezing” or “holding” the instruction pipeline means that instructions that are still being tracked by
the CY7C601 are not allowed to continue executing. The instructions are allowed to continue execution when all of the
hold signals are inactive and all of the condition code valid signals are active. Holds affect all load/store instructions,
and only FPops which are in the F, D, and E stages of the instruction pipeline. Hold signals do not affect the execution
of FPops in the FP queue.

3.2.2.2 Interlocking with FHOLD

In some situations it is necessary to stop the CY7C601 pipeline, either because a FP load/store instruction must be sus-
pended due to an ogerand dependency, or because the CY7C602 cannot accept any more instructions due to a resource
dependency. FHOLD is used to freeze the instruction pipeline in these cases. Table 3-4 describes mandatory conditions
under which FHOLD is asserted.

Operand dependencies listed in Table 3-4 apply to all FPops that are defined in the architecture. For example, suppose
an unimplemented FPop is in the FP queue, waiting to cause an exception. If a store instruction is issued to the CY7C602
to store the contents of the unimplemented FPop’s destination register, the store instruction must cause a FHOLD so
that the wrong data is not stored. The unimplemented FPop eventually causes a trap that is taken by the CY7C601 in
the E stage of the store instruction.

The following simplification could be applied when handling all unimplemented FPops: when an unimplemented FPop
hasbeen issued to the CY7C602 but has not yet caused a trap, assert FHOLD on the next floating-point instruction issued
until FEXC is asserted. There is no loss in performance because any FPops entering the FP queue after the unimplem-
ented FPop would be re-executed after the unimplemented FPop has been taken care of in the trap handler.

3-11

E— o ' CY7C602 Floating-Point Unit

Table 3-4. FHOLD Resource/Operand Dependency Cases

Resource Dependencies:

If the CY7C602 will not have FP queue entries available to accommodate additional FPops, the CY7C602 asserts FHOLD to stop
the CY7C601 from issuing any more instructions to the CY7C602.

Operand Dependencies:

LDE Load data from | Load instructions must not overwrite the source or destination registers of any FPop that has
LDDF memory to f register | not completed execution. In other words, the rd field of the load instruction must not refer to
the same fregister as any valid rs1, rs2 or rd field of an outstanding FPop. The source registers
of FPops (rs1, rs2) may not be altered because an FP exception trap would require that the source
registers be unaltered for the trap handler.

STE Store data from freg- | If a store instruction accesses an fregister that is the destination register of an FPop that has
STDF ister to memory not yet finished execution, the store instruction waits until all outstanding FPops with that regis-
ter as a destination are complete.
LDFSR, |Load/store data be- | If any instructions are currently executing in the CY7C602 when a LDFSR/STFSR instruction
STFSR tween memory and | is issued by the CY7C601, the CY7C602 holds until all instructions have completed execution
floating-point status | and are no longer in the FP queue.
register

If the CY7C602 goes into exception mode, FHOLD is deasserted. If there is a floating-point sequence error (see Section
3.3.3), FHOLD is asserted for one cycle. This is the only case where FHOLD is asserted in the exception mode.

If a floating-point trap condition occurs while FHHOLD is asserted, FHOLD is deasserted at least one cycle after FEXC
isasserted. Similarly, if FCCV is deasserted, it is reasserted at least one cycle after FEX FEXC is asserted. For the FHOLD
case, the CY7C601 takes the FP trap on the FP instruction that triggered the FHOLD.

3.2.2.3 FNULL Signal

FNULL is used to signal a pipeline delay of the CY7C601 by the CY7C602. FNULL replaces FCCV and FHOLD for
informing the system that the pipeline is being held. FNULL is asserted when either FHOLD is asserted or FCCV is
deasserted. This signal is used as an input by the CY7C604/605 to monitor pipeline freezes initiated by the CY7C602.

3.3 CY7C602 Programming Model

3.3.1 CY7C602 Registers

The CY7C602 has three types of user accessible registers: the fregisters, the FP queue, and the Floating-point Status
Register (FSR). The fregisters are the CY7C602 data registers. The FSR is the CY7C602 status and operating mode
register. The FP queue contains the CY7C602 instructions that have started execution and are awaiting completion.
The following section describes these registers in detail.

3.3.1.1 f Registers

The CY7C602 provides 32 registers for floating-point operations, referred to as f registers. These registers are 32 bits
in length, which can be concatenated to support 64-bit double words. Extended precision instructions are not supported
in the CY7C602, but the extended precision data format and its position in the SPARC FPU is defined for the SPARC
architecture. Figure 3-14 illustrates the data organization for the f registers.

Integer and single precision data requires a single 32-bit fregister. Double precision data requires 64 bits of storage and
occupies an even-odd pair of adjacent f registers. Extended precision data requires 128 bits of storage and occupies a
group of four consecutive f registers, always starting with register 0, f4, {8, £12, f16, £20, £24, or £28.

The CY7C602 forces register addressing to match the data type specified by the floating-point instruction. This ensures
data alignment in the f register file for double and extended precision data. Figure 3-15 illustrates how the CY7C602
uses the five register address bits in a floating-point instruction for the different types of data. Single data word transfers
(integer, smgle-preaslon floatmg pomt) can be stored in any register. Consequently, all five bits of the register address
specified in the floating-point instruction are valid. Double precision data must reside in an even-odd pair of adjacent
registers. By ignoring the LSB of the register address for a FPop requiring a register pair, the CY7C602 ensures data
alignment. Ina similar manner, the two LSBs of the register address are ignored in a SPARC FPU that supports extended
precision data.

3-12

= s CY7C602 Floating-Point Unit
SEMICONDUCTOR

10 11 [3
1 Registers| {4 [16 7
18 19 110 | f11
112 | 13 | 014 | £15
16 | t17 | #18 | 19
20 | f21 | 22 | 23
f24 25 26 o1
[28 | 20 [30 [31

<
s

single precision or I |
signed integer data

—

s
B

double precision datajMSw LSW [Msw LSW]

b -

»
2

extended precision data{ MSW LSW |

Figure 3-14. f Register Organization

rd, rst,
or rs2 field
of FP instruction

single precision renjot adaress
and integer data are used
double precision data . - . .
extended 2LSB's are
precision data ignored

Figure 3-15. f Register Addressing

LSB is ignored

3.3.1.2 FP Queue

The CY7C602 maintains a floating-point queue of instructions that have started execution, but have yet to complete ex-
ecution. The FP queue is used to accommodate the multiple clock nature of floating-point instructions and to support
the handling of FP exceptions.

When the CY7C602 encounters an exception case, it asserts FEXC and enters pending exception mode. The CY7C602
remains in pending exception mode until the CY7C601/611 encounters another floating-point instruction, at which time
the CY7C601/611 asserts the FXACK signal to force the CY7C602 into exception mode. When the CY7C602 enters
the exception mode, floating-point execution halts until the FP queue is emptied. This allows the CY7C601 to store the
floating-point instructions under execution when the exception case occurred. Emptying the FP queue frees the
CY7C602 for use by the trap handler without losing the pre-exception state of the CY7C602.

The FP queue contains the 32-bit address and 32-bit FPop instruction of up to two instructions under execution. Floating-
point load and store instructions and FP branch instructions are not queued. The front entry of the FP queue is accessible
by executing the store double floating-point queue (STDFQ) instruction. The FP queue acts as a FIFO stack, pushing
later entries to the top of the stack as the top entry is removed (or executed). A load FP queue instruction does not exist,
as the FP queue must be loaded by launching instructions.

3-13

%ﬁ?ﬁm CY7C602 Floating-Point Unit
_—
[RD I RP l TEM Nsl R lversionl FTT IQNEI R | FCC I AEXC CEXC
8, 23:22 2120 19 1716 14 13 12 11“‘_410“9
TEM AEXC CEXC .
I nvmlofml ufmldzml nxm l nval ofa l ufal dza I nxa I I nvcl ofcl ufc I dzcl nch

Figure 3-16. Floating-Point Status Register

3.3.1.3 Floating-Point Status Register (FSR)

The following paragraphs describe the bit fields of the floating-point status register (FSR). Refer to Table 3-5 (following
page) for bit assignments for the FSR fields.

RD FSR(31:30). Rounding Direction: These two bits define the rounding direction used by the CY7C602 during an FP
arithmetic operation.

RP FSR(29:28). Rounding Precision: These two bits define the rounding precision to which extended-precision results
are rounded. This bit is included in accordance with the ANSI/IEEE STD-754-1985. The CY7C602 does not currently
support rounding of extended-precision results and this bit does not affect CY7C602 operation.

TEM FSR(27:23). Trap Enable Mask: These five bits enable traps caused by FPops. These bits are ANDed (1= enable,
0= disable) with the bits of the CEXC (current exception field) to determine whether to force a floating-point exception
to the CY7C601. All trap enable fields correspond to the similarly named bit in the CEXC field (see below). The TEM
field only affects which bits in the CEXC field will cause the FEXC signal to be asserted.

NS FSR(22). Non-Standard floating point: This bit enables non-standard floating-point operations in the CY7C602.
‘When enabled, the CY7C602 inserts zeros for denormalized floating-point numbers before using them in a floating-point
operation. The CY7C602 also writes back zero if a denormalized number results from an operation. Thisis not consistent
with the IEEE-754-1985 specification, and is therefore, non-standard.

version FSR(19:17). The version number is used to identify the SPARC floating-point processor type. This field is set
to 011 (3H) for the CY7C602, and is read-only.

FTT FSR(16:14). Floating-point Trap Type: This field identifies the floating point trap type of the current FP exception.
This field can be read and written, and must be cleared by software.

QNE FSR(13). Queue Not Empty: This bit signals whether the FP queue is empty. (0= empty, 1= not empty)
FCC FSR(11:10). Floating-point Condition Codes: These two bits report the FP condition codes (see Table 3-5).
AEXC FSR(9:5). Accumulated EXCeptions: This field reports the accumulated FP exceptions that are masked by the
TEM field. All masked exception cases are ORed with the contents of the AEXC and accumulated as status. Allaccumu-

lated fields have the same definition as the corresponding field for CEXC (see below). This field can be read and written,
and must be cleared by software (see Table 3-5).

CEXC FSR(4:0). Current EXCeptions: This field reports the current FP exceptions. This field is automatically cleared
upon the execution of the next floating-point instruction. CEXC status is not lost upon assertion of a floating-point excep-
tion, because instructions following a valid exception are not executed by the CY7C602. The five CEXC bits are:

nve =1 indicates invalid operation exception. This is defined as an operation using an improper operand
value. An example of this is 0/0.

ofc =1 indicates overflow exception. The rounded result would be larger in magnitude than the largest
normalized number in the specified format.

I
~

ufe

indicates underflow exception. The rounded result is inexact, and would be smalier in magnitude
than the smallest normalized number in the indicated format.

dzc =1 indicates division-by-zero: X/0, where X is subnormal or normalized. Note that 0/0 does not set the
dzc bit.

nxc =1 indicates inexact exception. The rounded result differs from the infinitely precise correct result.
R FSR21, 20, and 12. Reserved - always set to 0.

3-14

: ——
%} TPRESS CY7C602 Floating-Point Unit
Table 3-5. Floating-Point Status Register Summary
Loadable
Field Values FSR bits Description by LDFSR
RD 0 -~ Round to nearest (tie-even) 31:30 Rounding Direction yes
1- Round to 0
2 - Round to + o0
3 - Round to - oo
RP 0 - Extended precision 29:28 Extended Rounding Precision yes
1 - Single precision
2 - Double precision
3 - Reserved
TEM 0 - Disable trap 27:23 Trap Enable Mask yes
1 - Enable trap
NVM 27 invalid operation trap mask
OFM 26 overflow trap mask
UFM 25 underflow trap mask
DZM 24 divide by zero trap mask
NXM 23 inexact trap mask
NS 22 n-standar ing-point: yes
0 - Disable 0 = IEEE mode; multiplier and ALU generate denor-
malized operand exceptions and produce unrounded nor-
malized values on underflow exceptions.
1 - Enable 1 = FAST mode; multiplier and ALU flush denormalized
operands to zero and round underflow results to zero.
version | 0-7 19:17 FPU version number no
FIT 0 - None 16:14 Floating-point trap type no
1 - IEEE Exception
2 - Unfinished FPop
3 - Unimplemented FPop
4 - Sequence Error
5 -7 Reserved
QNE 0 - queue empty 13 Queue Not Empty no
FCC 0-= 11:10 Floating-point Condition Codes yes
1-<
2->
3 - Unordered
AEXC 9:5 Accrued Exception Bits yes
NVA 9 accrued invalid exception
OFA 8 accrued overflow exception
UFA 7 accrued underflow exception
DXA 6 accrued divide by zero exception
NXA N accrued inexact exception
CEXC 40 Current Exception Bits yes
NVC 4 current invalid exception
OFC 3 current overflow exception
UFC 2 ‘current underflow exception
DZC 1 current divide by zero exception
NXC 0 current inexact exception
r Always set to 0 21,20,12 | reserved bits no

= .
= o CY7C602 Floating-Point Unit
=4 SMCONDUCTCR

3.32 CY7C602 Floating-Point Instructions

SPARC floating-point instructions are separated into three groups: floating-point load/store, floating-point branch
(FBfcc), and floating-point operate instructions (FPops). Floating-point load/store instructions are used to transfer data
to and from the data registers (f registers). FP load/store instructions also allow the CY7C601/611 integer unit to read
and write the floating-point status register (FSR) and to read the front entry of the floating-point queue. Floating-point
load and store instructions are executed by both the CY7C601/611 and the CY7C602; the CY7C601/611 supplying all
address and control signals for memory access and the CY7C602 loading or storing the data.

Floating-point branch (FBfcc) instructions (and coprocessor branch instructions (CBccc)) are executed by the
CY7C601/611, since the CY7C601/611 is responsible for generating address and control signals for memory access. Con-
ditional FBfcc branches are based upon the FCC(1:0) signals supplied by the CY7C602. FCC(1:0) is set by executing a
FCMP instruction, which belongs to the FPop group of instructions. Floating-point branch instructions will cause the
CY7C601/611 to recognize a pending floating-point exception in the same manner as other floating-point instructions
(see Section 3.3.3).

FPops include all other floating-point instructions executed by the CY7C602. Floating-point operate instructions (FPops)
include basic numeric operations (add, subtract, multiply, and divide), conversions between data types, register to register
moves, and floating-point number comparison. FPops operate only on data in the floating-point registers.

The SPARC architecture supports four data types: 32-bit signed integer, single-precision FP, double-precision FFP, and
extended-precision FP. Extended precision instructions are defined in the SPARC architecture, but are not supported
in the CY7C602. The CY7C602 supports execution of extended precision floating-point instructions by asserting an unim-
plemented instruction trap. This allows the CY7C601 to trap to a software emulation of extended precision floating-
point.

Seven load/store instructions are executed by the CY7C602. The following describes the CY7C602 load/store instruc-
tions:

LDF and LDDF transfer data from memory to f registers 32 and 64 bits at a time, respectively.
STF and STDF transfer data from the f registers to memory in data widths of 32 and 64 bits.
LSFSR and STFSR allow the FSR to be read and written to.

STDFAQ is a privileged instruction which allows the FP queue to be read.

All FPops operate only on data located in the fregisters. The FPops are divided into four groups: basic arithmetic opera-
tions, compares, format conversions, and register-to-register moves. Move operations do not cause exceptions. The con-
verts, moves and the square root instruction use only a single source operand. FP compare instructions modify only the
FCC(1:0) signals. FPops are dispatched in one cycle in the CY7C601, and require multiple cycles to execute in the
CY7C602.

Floating-point performance can be improved in the CY7C602 by scheduling FPop instructions such that the floating-point
ALU and the floating-point multiply/divide/compare/square-root units are concurrently operating. With the exception
of data dependencies, the ALU and multiply/divide/compare/square-root units are independent and can execute separate
instructions without requiring the other unit to complete execution. Therefore, an FPop using the ALU followed by a
FPop using the multiply/divide/compare/square-root unit does not require the previous instruction to finish before start-
ing (assuming there are no data dependencies).

Table 3-6 and Table 3-7 illustrate the CY7C602 instructions and their execution cycle count. For further information
on the SPARC floating-point instructions, please refer to Chapter 6, SPARC Instruction Set.

Table 3-6. Floating-Point Load and Store Instruction Cycle Count

Mnemonic Operation Cycles
LDF load floating-point 2
LDDF load double floating-point 3
LDFSR load FSR 2
STF store floating-point 3
STDF store floating-point double 4
STFSR store FSR 3
STDFQ store double FP queue 4

3-16

o =
= . CY7C602 Floating-Point Unit

Table 3-7. Floating-Point Operate (FPops) Instruction Cycle Count

Mnemonic Operation Cycles
FABSs absolute value 4
FADDs add single 5
FADDd add double 5
FCMPs compare single 4
FCMPd compare double 4
FCMPEs compare single and exception if 4
unordered
FCMPEd compare double and exception 4
if unordered

FDIVs divide single 23
FDIVd divide double 37
FMOVs move 4
FMULs multiply single 5
FMULAd multiply double 7
FNEGs negate 4
FSQRTs square root single 34
FSQRTd square root double 63
FSUBs subtract single 5
FSUBd subtract double 5
FdTOi convert double to integer 5
FdTOs convert double to single 5
FiTOs convert integer to single 9
FTOd convert integer to double 5
FsTOi convert single to integer 5
FsTOd convert single to double 5

3.3.3 CY7C602 Internal Operation

The CY7C602 operates in one of three modes: execution mode, pending exception mode, and exception mode (see
Figure 3-17). After reset, the CY7C602 enters execution mode, which is the normal mode of operation. When the
CY7C602 encounters a floating-point exception condition, the CY7C602 asserts FEXC and enters the pending exception
mode. All FPop instructions under execution at this point are suspended. The CY7C601 asserts FXACK and enters the
floating-point trap when the next floating point instruction is encountered. Upon receiving FXACK, the CY7C602 FPU
enters exception mode. The CY7C602 returns to execution mode as soon as the trap handler empties the FP queue using
STore Double Floating-point Queue instructions (STDFQ).

3.3.3.1 Exception Handling

Upon encountering an exception condition, the CY7C602 asserts FEXC to notify the CY7C601/611 that a floating-point
exception has occurred and enters the pending exception mode. The CY7C601/611 enters the trap handler on the next
floating-point instruction it encounters in the instruction stream, asserting FXACK to signal to the CY7C602 that the
trap is being taken. At this point, the CY7C602 enters exception mode (see Figure 3-17).

3-17

= CY7C602 Floating-Point Unit

RESET

FP
EXCEPTION

SEQUENCE ERROR

PENDING
EXCEPTION

Figure 3-17. FPU Operation Modes

Upon receiving FXACK from the CY7C601, the mode of the CY7C602 changes from pending exception to exception
mode. All FPops in the CY7C602 stop executing during pending exception and exception modes. While in exception
mode, the CY7C602 will execute only store floating-point instructions until the FP queue is emptied. All floating-point
store instructions are allowed while in this operating mode. Any load or FPop issued to the CY7C602 while in this mode
causes a sequence error and returns the CY7C602 to exception pending mode. Once the queue is emptied by successive
STDFQ instructions, the CY7C602 returns to execution mode.

Due to the latency of floating-point instruction execution, an exception caused by a FPop occasionally may not occur until
one or more FP instructions have been fetched and executed (or entered into the FP queue for execution). Thisis a case
where FEXC is not asserted before the next floating-point instruction is fetched and executed. In this case, FEXC is
asserted as soon as the exception case is recognized, and the CY7C601/611 acknowledges the FP exception during the
execute stage of the next floating-point instruction fetched after FEXC is asserted.

Figure 3-18 illustrates the handshake of signals between the CY7C601 and the CY7C602 during a floating-point excep-
tion. The gne (queue not empty) bit of the FSR is shown in Figure 3-18 to illustrate the dependency of clearing the FP
queue to return to execution mode.

ol I | | I I | L
?:feFSR) \

— 4
FEXC \ /

FXACK

\

Floating-point exception occurs;
FEXC = 0

STDFQ instructions are executed

i i CY7C601 executes FP instruction, takes FP and queue is cleared; gne field of
Pending gggﬁl& mode of trap;)}éx(;\c‘;e(=1, FLugH =1 FSR = 0; Return to execution
Exception mode of CY7C602 mode of CY7C602

Figure 3-18. Floating-Point Exception Handshake

3-18

== CY7C602 Floating-Point Unit

3.3.4 CY7C602 IEEE-754 Compliance

The CY7C602 meets the requirements of the IEEE Std. 754-1985 for floating-point arithmetic. Accuracy of the results
of its operations are within =+ %2 LSB, as specified by the IEEE standard. The following sections describe the IEEE format
as implemented on the CY7C602.

3.3.4.1 IEEE Definitions

The following terms are used extensively in describing the IEEE-754 floating-point data formats. This section is directly
quoted from the IEEE Standard for Binary Floating-Point Arithmetic.

biased exponent The sum of the exponent and a constant (bias) chosen to make the biased exponent’s range
nonnegative. (Note in the remainder of this section, the term “exponent” refers to a biased
exponent.)

binary floating-point number A bit string characterized by three components: a sign, a signed exponent and a significand.
Its numerical value, if any, is the signed product of its significand and two raised to the power
of its exponent.

Denormalized Denormalized numbers are those numbers whose magnitude is smaller than the smallest
magnitude representable in the format. They have a zero exponent and a denormalized
non-zero fraction. Denormalized fraction means that the hidden bit is zero.

The CY7C602 cannot directly operate on denormalized operands. The CY7C602 asserts an
unfinished FPop exception when an operation results in a denormalized number.

denormalized number (DNRM) A non-zero floating-point number whose exponent has a reserved value, usually
the format’s minimum, and whose explicit or implicit leading significand bit is zero. (Denor-
malized numbers are also referred to as subnormal in this text.)

fraction The field of the significand that lies to the right of its implied binary point.
|2

NaN Not a number, a symbolic entry encoded in floating-point format. They are used to signal
invalid operations and as a way of passing status information through a series of calculations.
NaNs arise in one of two ways: they can be generated by the CY7C602 upon an invalid opera-
tion or they may be supplied by the user as an input operand. NaN is further subdivided
into two categories: quiet and signaling. Signaling NaNs signal the invalid operation excep-
tion whenever they appear as operands. Quiet NaNs propagate through almost every arith-
metic operation without signaling exceptions.

Normalized Most calculations are performed on normalized numbers. For single-precision, they have
abiased exponent range of 1 to 255, which results in a true exponent range of -126 to *127.
The normalized number type implies a normalized significand (hidden bit is 1).

significand The component of a binary floating-point number that consists of an explicit or implicit lead
ing bit to the left of its implied binary point and a fraction field to the right.

true exponent The component of a binary floating-point number that normally signifies the integer power
to which 2 is raised in determining the value of the represented number.

Zero The IEEE zero has all fields except the sign field equal to zero. The sign bit determines
the sign of zero (i.e., the IEEE format defines a +0 and a -0).

3.3.4.2 IEEE Floating-point Data Formats

The CY7C602 directly supports single- and double-precision floating-point data formats. Extended-precision formats
are defined as part of the SPARC architecture, but are not directly executed by the CY7C602. Extended-precision instruc-
tions encountered by the CY7C602 cause an unimplemented instruction trap to be asserted by the CY7C602. This allows
software to emulate extended-precision instructions through the use of a trap handler. Single-, double-, and
extended-precision formats are described in this section.

3-19

%ﬁ CYPRESS CY7C602 Floating-Point Unit
— SEMICONDUCTOR

MSB LsB

(s)l exponent () fraction (f)

31 30 23 22 0

Figure 3-19. Single-Precision Floating-Point Format

MSB LSB
(s)| exponent (e) fraction (f) '
63 62 52 51 32 31 0

L I]
3 Word 0 0 31 word 1 0

Figure 3-20. Double-Precision Floating-Point Format

Single-Precision Floating-Foint

Single-precision floating-point data are 32-bits wide and consist of three fields: a single sign bit (s), an eight-bit biased
exponent (e), and a 23-bit fraction (f). Figure 3-19 illustrates the single-precision floating-point format.

The IEEE standard defines single-precision floating-point numbers according to the following conventions:

(+0,-0) If e = 0 and f = 0, then the value V = (-1)* * (0) Note that two representations of zero
exist, one positive and one negative

DNRM (denormalized) If e = 0 and f £ 0, then the value V = DNRM

Normalized If 0 < e < 225, then value V = (-1) * (2¢-127) * (L.f) Note that 1.f is the significand. The
one to the left of the binary point is the so-called “hidden bit.” This bit is not stored as part
of the floating-point word; it is implied. For a number to be normalized, it must have this
one to the left of the binary point.

(+ 00, —o0) If e = 255and f = 0, then value V = (~1)* (c0)

NaN (not a number) If e = 255 and f 5% 0, then value V = NaN.
The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first
bit of the fraction is 0 (at least one bit must be non-zero).

Double-Precision Floating-Point

Double-precision floating-point data are 64-bits wide and consist of three fields: a single sign bit (s), an eleven-bit biased
exponent (e), and a 52-bit fraction (f). Figure 3-20 illustrates the double-precision floating-point format.

The IEEE standard defines double-precision floating-point numbers according to the following conventions:

(+0,-0) Ife = 0andf = 0, then value V = (-1)* * (0)

DNRM If e = 0 and f #£ 0, then value V = DNRM

Normalized If0 < e < 2047, then value V = (-1)s * (2¢-1023) * (L.f) .
(+ o0, —o0) If e = 2047 and f = 0, then value V = (-1)* * (co0)

NaN If e = 2047 and f £ 0, then value V = NaN.

The value is a quiet NaN if the first bii of the fraction is 1, and a signaling NaN if the first
bit of the fraction is 0 (at least one bit must be non-zero).

3-20

=
.

CY7C602 Floating-Point Unit

Extended-Precision Floating-Point

Extended-precision floating-point data are 128 bits wide and consist of six fields: a single sign bit (s), a 15-bit biased expo-
nent (e), 16 reserved bits, a single hidden bit(j), a 63-bit fraction, and 32 additional reserved bits. The extended-precision
floating-point differs from the other precision types in that the “hidden bit” is no longer hidden. The value of the hidden
bit is explicitly defined as j, which defines the number as normalized or denormalized.

The IEEE standard defines extended-precision floating-point numbers according to the following conventions:

(+0,-0)
DNRM
Normalized
(+ o0, —00)
NaN

MSB

Ife = 0andf = 0, then value V = (-1)* * (0)

If e = 0 and f 5 0, then value V = DNRM

If0 < e < 32767, then value V = (-1)8 * (26-16383) * (1.f)
If e = 32767 and f = 0, then value V = (-1)* * (c0)

If e = 32767 and f 5 0, then value V = NaN

The value is a quiet NaN if the first bit of the fraction is 1, and a signaling NaN if the first
bit of the fraction is 0 (at least one bit must be non-zero).

LSB

(s{exponent (e)l reserveq (j) fraction (f) reserved

127126
L

112111 96 9594 64 63 3231 0

Il I Il |

EXTENDED PRECISION FP r[n] S EXPONENT RESERVED

word 0

word 1 word 2 word 3

Figure 3-21. Extended-Precision Floating-Point Format

rin + 1114 HIGH - ORDER BITS OF FRACTION
rn + 2] LOW - ORDER BITS OF FRACTION

rn + 3] RESERVED
3130 16 15 0

Figure 3-22. Extended-Precision Data Organization in Registers

Extended - Precision Data

2 |

Double Word Double Word
063 [

31

Word

J Word Word J Word
31 31 3N

Addressn

n+4 n+8 n+12

Figure 3-23. Extended-Precision Data Organization in Memory

3-21

==
= =

=15 G CY7C602 Floating-Point Unit
===~ SEMICONDUCTOR

3.3.5 CY7C602 Exception Cases
The following section describes the CY7C602 exception cases, including exceptions specified by the IEEE-754 standard.

Unfinished FPop. This exception case can occur when operations on normalized floating-point numbers either encounter
adenormalized operand or produce a denormalized result. This exception case is asserted upon executing any FPop en-
countering a NaN as one of the operands. The CY7C602 also asserts this trap when a floating-point to integer conversion
overflow occurs.

Unimplemented FPop. This exception is asserted by the CY7C602 upon encountering a defined SPARC FPop instruction
that is not supported by the CY7C602. This includes all operations using extended-precision format operands. The trap
handler is expected to emulate the unimplemented instruction.

Sequence Error. This exception is asserted by the CY7C602 when a floating-point instruction (other than FP store) is
attempted after the CY7C602 has entered either pending exception or exception mode. The CY7C602 suspends all in-
struction execution with the exception of FP stores until the FP exception has been acknowledged and the FP queue has
been cleared.

IEEE Exceptions. This class of exceptions is defined as part of the IEEE-754 Standard. The five exceptions defined as
IEEE Exceptions are reported in the CEXC and AEXC fields of the FSR. These exceptions are: invalid, overflow, under-
flow, division-by-zero, and inexact. The only exceptions that can coincide are inexact with overflow and inexact with un-
derflow. The following paragraphs discuss these exception cases.

Invalid Operation. The invalid operation exception is signaled if an operand is invalid for the operation to be
performed. The result, when the exception occurs without a trap, shall be a quiet NaN provided the destination
has a floating-point format. The invalid operations are:

1. Any operation on a signaling NaN

Addition or subtraction: Magnitude subtraction of infinities such as (+ o) + (-o0)
Multiplication: 0 x co

Division: 0/0 or co/oco

Square root if the operand is less than zero

AN LI N

Conversion of a binary floating-point number to an integer or decimal format when overflow, infinity, or NaN
precludes a faithful representation in that format and this cannot otherwise be signaled

7. Floating-point compare operations: when one or more of the operands are NaN

Division-by-zero. If the divisor is zero and the dividend is a finite nonzero number, then the division by zero
exception shall be signaled. The result, when no trap occurs, shall be a correctly signed oo.

Overflow. The overflow exception shall be signaled whenever the destination format’s largest finite number is
exceeded in magnitude by what would have been the rounded floating-point result were the exponent range un-
bounded. The result, when no trap occurs, shall be determined by the rounding mode and the sign of the interme-
diate result as follows:

1. Round to nearest carries all overflows to co with the sign of the intermediate result.

2. Round toward 0 carries all overflows to the format’s largest finite number with the sign of the intermediate
result.

3. Round toward -co carries positive overflows to the format’s largest positive finite number, and carries nega-
tive overflows to —co.

4. Round toward + oo carries negative overflows to the format’s most negative finite number, and carries posi-
tive overflows to + co.

Underflow. The CY7C602 does not assert an underflow exception. Underflow cases are covered in the unfin-
ished FPop trap, which is asserted in any case where a denormalized number is used as an operand. The unfin-
ished FPop trap handler must resolve the underflow condition and update this bit to reflect correct accumulated
exception status (AEXC field of FSR).

Inexact. The inexact exception is generated whenever there is a loss of accuracy (or significance) in the result.
The CY7C602 computes results to higher precision than the number of fraction bits in the format. If any of the
fraction bits to the right of the LSB was one prior to rounding, the inexact exception is signaled.

3-22

mk%

%‘5% CY7C602 Floating-Point Unit

3.4 CY7C602 Signal Descriptions

The following sections describe the external signals of the CY7C602. Active low signals are marked with an overbar, active
high signals are not.

3.4.1 Integer Unit Interface Signals

FP active-low output Floating-point Present: This signal indicates to the CY7C601 that a FPU is present in the system.
In the absence of a FPU, this signal is pulled up to VCCby a resistor. This is a static signal; it always asserts a low output.
The CY7C601 generates a floating-point disable trap if FP is not asserted during the execution of a floating-point instruc-
tion.

FCC(1:0) output Floating-point Condition Codes: The FCC(1:0) bits indicate the current condition code of the FPU,
and are valid only if FCCV is asserted. FBfcc instructions use the value of these bits during the execute cycle if they are
valid. If the FCC(1:0) bits are not valid, then FCCV is released, which halts the CY7C601 until the FCC bits become
valid.

Table 3-8. FCC(1:0) Condition Codes

FCC1 FCCO Condition
0 0 equal
0 1 Op1 < Op2
1 0 Op1 > Op2
1 1 Unordered

FCCV output Floating-point Condition Codes Valid: The CY7C602 asserts the FCCV signal when the FCC(1:0) repre-
sent a valid condition. The FCCV signal is deasserted when a pending floating-point compare instruction exists in the
floating-point queue. FCCV is reasserted when the compare instruction is completed and FCC bits are valid.

FHOLD output Floating-point HOLD: The FHOLD signal is asserted by the CY7C602 if it cannot continue execution
due to a resource or operand dependency. The CY7C602 checks for all dependencies in the decode stage, and if neces-
sary, asserts FHOLD in the next cycle. The FHOLD signal is used by the CY7C601 to freeze its pipeline in the same
cycle. The CY7C602 must eventually de-assert FHOLD to release the CY7C601 pipeline.

FEXC output Floating-point EXCeption: The FEXC is asserted if a floating-point exception has occurred. It remains
asserted until the CY7C601 acknowledges that it has taken a trap by asserting FXACK. Floating-point exceptions are
taken only during the execution of a floating-point instruction. The CY7C602 releases FEXC when it receives FXACK.

FXACK input Floating-point eXception ACKnowledge: The FXACK signal is asserted by the CY7C601 to acknowledge
to the CY7C602 that the current FP trap is taken.

INST input INSTruction fetch: The INST signal is asserted by the CY7C601 whenever a new instruction is being fetched.
It is used by the CY7C602 to latch the instruction on the D(31:0) bus into the FPU instruction buffer. The CY7C602
has two instruction buffers (D1 and D2) to save the last two fetched instructions (see Figure 3-3). When INST is asserted,
the new instruction enters the D1 buffer and the old instruction is pushed into the D2 buffer.

FINS1 input Floating-point INStruction in buffer 1: The FINS1 signal is asserted by the CY7C601 during the decode
stage of a FPU instruction if the instruction is stored in the D1 buffer of the CY7C602. The CY7C602 uses this signal
to launch the instruction in the D1 buffer into its execute stage instruction register.

FINS2 input Floating-point INStruction in buffer 2: The FINS2 signal is asserted by the CY7C601 during the decode
stage of a FPU instruction if the instruction is stored in the D2 buffer of the CY7C602. The CY7C602 uses this signal
to launch the instruction in the D2 buffer into its execute stage instruction register.

FLUSH input Floating-point instruction fLUSH: The FLUSH signal is asserted by the CY7C601 to signal to the
CY7C602 to flush the instructions in its instruction registers. This may happen when a trap is taken by the CY7C601.
The CY7C601 will restart the flushed instructions after returning from the trap. FLUSH has no effect on instructions
in the floating-point queue. In addition to freezing the FPU pipeline, the CY7C602 uses FLUSH to shut off the D bus
drivers during store operations. To ensure correct operation of the CY7C602, FLUSH must not change state more than
once during a clock cycle.

3-23

r—ag
E} CYPRESS CY7C602 Floating-Point Unit

_—

3.42 Coprocessor Interface Signals

CHOLD input Coprocessor HOLD: The CHOLD signal is asserted by the coprocessor if it cannot continue execution.
The coprocessor must check all dependencies in the decode stage of the instruction and assert the CHOLD signal, if
necessary, in the next cycle. The coprocessor must eventually deassert this signal to unfreeze the CY7C601 and CY7C602
pipelines. The CHOLD signal is latched with a transparent latch in the CY7C602 before it is used.

CCCYV input Coprocessor Condition Codes Valid: The coprocessor asserts the CCCV signal when the CCC(1:0) repre-
sent a valid condition. The CCCV signal is deasserted when a pending coprocessor compare instruction exists in the co-
processor queue. CCCV is reasserted when the compare instruction is completed and the CCC(1:0) bits are valid. The
CY7C602 will enter a wait state if CCCV is deasserted. The CCCV signal is latched with a transparent latch in the
CY7C602 before it is used.

3.4.3 System/Memory Interface Signals

A(31:0) input Address bus (31:0): The address bus for the CY7C602 is an input-only bus. The CY7C601 supplies all
addresses for instruction and data fetches for the CY7C602. The CY7C602 captures addresses of floating-point instruc-
tions from the A(31:0) bus into the DDA register. When INST is asserted by the CY7C601, the contents of the DDA
is transferred to the DAL register.

D(31:0) input/output Data bus (31:0): The D(31:0) bus is driven by the FPU only during the execution of floating-point
store instructions. The store data is sent out unlatched and must be latched externally before it is used. Once latched,
store data is valid during the second data cycle of a store single access and on the second and third data cycle of a store
double access. The data alignment for load and store instructions is done inside the FPU. A double word is aligned on
an eight-byte boundary. A single word is aligned on a four-byte boundary.

DOE input Data Output Enable: The DOE signal is connected directly to the data output drivers and must be asserted
during normal operation. Deassertion of this signal three-states all output drivers on the data bus. This signal should
be deasserted only when the bus is granted to another bus master, i.e, when either BHOLD, CHOLD, MHOLDA, or
MHOLDB is asserted.

MHOLDA, MHOLDB input Memory HOLD: Asserting MHOLDA or MHOLDB freezes the CY7C602 pipeline. Either
MHOLDA or MHOLDB is used to freeze the FPU (and the IU) pipelines during a cache miss (for systems with cache)
or when slow memory is accessed.

BHOLD input Bus HOLD: This signal is asserted by the system’s I/O controller when an external bus master requests
the data bus. Assertion of this signal will freeze the FPU pipeline. External logic should guarantee that after deassertion
of BHOLD, the state of all inputs to the chip is the same as before BHOLD was asserted.

MDS input Memory Data Strobe: The MDS signal is used to load data into the FPU when the internal FPU pipeline
is frozen by assertion of MHOLDA, MHOLDB, or BHOLD.

FNULL output Fpu NULLIfy cycle: This signal signals to the memory system when the CY7C602 is holding the instruc-
tion pipeline of the system. This hold would occur when FHOLD is asserted or FCCV is deasserted. This signal is used
by the memory system in the same fashion as the integer unit’s INULL signal. The system needs this signal because the
IU’s INULL does not take into account holds requested by the FPU.

RESET input RESET: Asserting the RESET signal resets the pipeline and sets the writable fields of the floating-point
status register (FSR) to zero. The RESET signal must remain asserted for a minimum of eight cycles.

CLK input CLocK: The CLK signal is used for clocking the FPU’s pipeline registers. It is high during the first half
of the processor cycle and low during the second half. The rising edge of CLK defines the beginning of each pipeline
stage in the FPU.

3-24

_—*‘.E Chapter 4

SS S
—==+ SEMICONDUCTOR CY7C604 / CY7C605

Cache Controller and
Memory Management Units

The CY7C604 (CMU) and CY7C605 (CMU-MP) are combined memory management unit (MMU) and cache controllers
with on-chip cache tag memory. The CY7C604 and CY7C605 are designed as an integral part of the CY7C600 family
to provide a high-performance solution for cache and virtual memory support. The CY7C604 is designed for uniprocessor
systems, providing control for a 64-kbyte virtual cache. The CY7C604/605 cache is extendible to 256 kbytes through the
addition of cache RAMs and CY7C604/605s. Expansion of the CY7C604/605 cache increases the number of TLB (Trans-
lation Lookaside Buffer) entries available to the system for MMU address translation, as well as increasing the number
of cache tag entries available to the cache. Another feature of the CY7C604 is cache locking, which provides deterministic
response time for real-time systems controlling time-critical processes. The CY7C604, as well as the CY7C605, provides
the SPARC reference MMU and supports the SPARC Mbus standard for interfacing to physical memory.

The CY7C605, a derivative of the CY7C604, is designed to support the requirements of multiprocessing systems. The
CY7C605 provides two separate cache tag memories, as compared to the single cache tag memory used on the CY7C604.
The second cache tag memory is physically addressed and allows concurrent bus snooping without stalling the CY7C601.
This allows the CY7C605 to maintain cache coherency with other cache systems without degrading CPU performance.
The CY7C605 supports the Mbus level 2 cache coherency protocol, which is modeled after the acclaimed IEEE Future-
bus. The CY7C605 is pin compatible with the CY7C604, which allows a CY7C604-based CPU to be used in a multiproces-
sor system by substituting the CY7C604 with the CY7C605 and enhancing the system software.

The MMU portion of the CY7C604 and CY7C605 provides translation from a 32-bit virtual address range (4 gigabytes)
to a 36-bit physical address (64 gigabytes), as provided in the SPARC reference MMU specification. Virtual address trans-
lation is further extended with the use of a context register, which is used to identify up to 4096 contexts or tasks. The
cache tag entries and TLB entries contain context numbers to identify tasks or processes. This minimizes unnecessary
cache tag and TLB entry replacement during task switching.

The MMU features a 64-entry translation lookaside buffer. The TLB acts as a cache for address mapping entries used
by the MMU to map a virtual address to a physical address. These mapping entries, referred to as page table entries or
PTEs, allow one of four levels of address mapping. A PTE can be defined as the address mapping for a single 4-kbyte
page, a 256-kbyte region, a 16-Mbyte region, or a 4-Gbyte region. The TLB entries are lockable, allowing important TLB
entries to be excluded from replacement.

The MMU performs its address translation task by comparing a virtual address supplied by the CY7C601 (Integer Unit)
to the address tags in the TLB entries. If the virtual address and the value of the context register match a TLB entry,
a TLB “hit” occurs. When this occurs, the physical address stored in the TLB is used to translate the virtual address
to a physical address. The access type (read/write of data or instruction) and privilege level (user/supervisor) are checked
during translation. If a TLB hit occurs but access-level protection is violated, the MMU signals an exception and the
operation ends.

If the virtual address or context does not match any valid TLB entry, a TLB “miss” occurs. This causes a table walk to
be performed by the MMU. The table walk is a search performed by the MMU through the address translation tables
stored in main memory. The MMU searches through several levels of tables for the PTE corresponding to the virtual
address. Upon finding the PTE, the MMU translates the address and selects a TLB entry for replacement, where it then
stores the PTE.

The 64-kbyte virtual cache is organized into 2048 lines of 32 bytes each. The term “virtual cache” refers to the direct
addressing of the cache by the integer unit (CY7C601) with the virtual address bus. Virtual address bits VA(15:5) select
the cache line, and virtual address bits VA(4:2) select the 32-bit word of the cache line, as illustrated in Figure 4-1. The
CY7C604/605 provides access control for the cache by checking the context and virtual address against the cache tags.
If the virtual address, access-level, and context match the cache tag for the cache line addressed, a cache hit occurs and
the access is enabled. If the virtual address or context do not match the cache tag for the cache line, a cache miss occurs
and the cache controller accesses main memory for the required data.

4-1

=G CY7C604/CY7C605 CMU
— SEMICONDUCTOR
CY7C601
¥ Data Bus
§ VA<31:.0> VA<4:2>

3 Cache Word Addr. IR N .
g E 32 bytes (8 x 32-bit words) .
g VA y ']
£ <15:5> »! .
Cache Line Addr. ; !
L] 1]
: 2048 lines *
1] 1]
CY7C604 or CY7C605 |—CBWE<30>) :
CROE H '
! '
1 L]
' 0
L] 1]

1]
! 64-kbyte Cache Memory '

Mbus ‘mﬁical bus}
-— I

Figure 4-1. Virtual 64-kbyte Cache

The CY7C604/605 cache controller supports two modes of caching : write-through with no write allocate and copy-back
with write allocate. Write-through mode is a simpler style of cache management that causes write accesses to the cache
to be written through to main memory upon each write access. The advantage of this method is that the cache always
remains coherent with main memory. Its disadvantage is that each write to the cache is echoed to main memory, which
increases traffic on the system bus. Another disadvantage to write-through is that the processor is delayed by the time
required to arbitrate the system bus and write the data to main memory. However, in the case of the CY7C604/605, this
disadvantage is significantly offset by the inclusion of write buffers. The write buffers can store up to four doubleword
accesses, allowing the CY7C601 to continue execution while data is written to main memory.

Copy-back cache mode causes write accesses to be written to the cache only. This causes the cache line to become modi-
fied. Modified cache lines are automatically written back to main memory only when the cache line is no longer needed.
Copy-back mode is a more complex mode of cache management, but provides substantial system performance improve-
ments over write-through due to decreased traffic on the system bus.

A 32-byte write buffer and a 32-byte read buffer are provided in the CY7C604/605 to fully buffer the transfer of a cache
line. This feature allows the CY7C604/605 to simultaneously read a cache line from main memory asit is flushing a modi-
fied cache line from the cache. This feature is also used in write-through cache mode for write accesses to main memory.
The write buffer avoids stalling the CY7C601 on writes to main memory by storing the write data until the physical bus
becomes available. The write buffer writes the data to memory as a background task.

The CY7C604 and CY7C605 support the SPARC Mbus reference standard interface. The Mbus is a peer-level,
high-speed, 64-bit, multiplexed address and data bus that supports a full peer-level protocol (i.e., multiple bus masters).
The CY7C604/605 Mbus supports data transfers in transaction sizes of 1, 2, 4, 8, or 32 bytes. These data transfers are
performed in either burst or non-burst mode, depending upon size. Data transactions larger than eight bytes (one double-
word) are transferred in burst mode, which consists of an address phase followed by four data phases. Non-burst transac-
tions consist of an address phase followed by one data phase, and are used for data transactions of eight or less bytes.
Bus mastership is granted and controlled by an external bus arbiter. The bus arbiter sets bus priorities, and grants access
to a bus master. Additional information on the Mbus can be found in the Physical Bus section.

Mbus is divided into two levels of implementation: level 1 and level 2. Level 1, implemented on the CY7C604, is the
uniprocessor version of Mbus. Level 1is a subset of level 2, which is the multiprocessor version of Mbus. The CY7C605
supports level 2 Mbus. Level 2 Mbus includes the IEEE Futurebus cache coherency protocol, which has been recognized
in the industry as a superior method of supporting multiprocessing systems. Level 2 Mbus defines five cache states for
describing cache line status. Transactions on the Mbus are monitored or “snooped” by the CY7C605 and other bus agents

4-2

S 4 CYPRESS CY7C604/CY7C605 CMU

on the level 2 Mbus to maintain ownership status for each cache line. Transactions on the level 2 Mbus are made with
respect to the cache line ownership status to ensure consistency for shared data images.

The level 2 Mbus supports direct data intervention, which allows a cache system with the up-to-date version of a cache
line to directly supply the data to another cache system without having to first update main memory. Direct data interven-
tion provides a significant performance improvement over systems which do not support this feature. In addition, the
CY7C605 provides support for memory systems with reflective memory controllers. A memory system with reflective
memory control can recognize a cache-to-cache data transaction and automatically update itself without delaying the sys-
tem. Another system concept supported by the CY7C605 is secondary caching. Secondary caching provides a perform-
ance advantage over systems directly using main memory, and provides an economic advantage over systems using large
caches for each processing node.

4.1 Memory Management Unit

This section describes the SPARC reference MMU implemented on the CY7C604 and CY7C605. This function isidenti-
cal for both the CY7C604 and CY7C60S, and all details of Sections 4.1 and 4.2 apply to both.

The MMU provides virtual to physical address translation with the use of an on-chip translation lookaside buffer. The
TLB is in reality a full Address Translation Cache for address translation entries stored from tables in main memory.
These entries, referred to as page table entries or PTEs, contain the mapping information used by the MMU to translate
the virtual addresses. Addresses presented to the MMU for translation are compared against the set of PTEs stored in
the TLB. All entries in the TLB are simultaneously accessed through the use of advanced Content Addressable Memory
(CAM) technology. If a match for the virtual address and context is found in a valid TLB entry and the access protection
is not violated, a TLB hit occurs and the address is translated. A virtual address and context that matches a valid TLB
entry but violates the memory access protections will cause the CY7C604/605 to generate a memory exception to the
CY7C601. If the TLB entries do not match the address and context, or the TLB entry is invalid, then a TLB miss occurs.
The MMU responds to the TLB miss by initiating a table walk to find the correct PTE stored in main memory for the
virtual address.

The MMU uses a tree-structured table walk algorithm to find page table entries not found in the TLB. The table walk
is a search through a series of four tables in main memory for the PTE corresponding to a virtual address. These tables
are: the context table, the level 1 table, the level 2 table, and the level 3 table. The table walk uses the context table pointer
register as a base register and the context number as a offset to point to an entry in the context table. At any address,
the MMU finds either a PTE, which terminates its search, or a Page Table Pointer (PTP). A PTP is a pointer used in
conjunction with a field in the virtual address to select an entry in the next level of tables. The table walk continues search-
ing through levels of tables as long as PTPs are found pointing to the next table. The table walk terminates when a PTE
isfound, oran exception is generated if a PTE is not found after accessing the level 3 table. An exception is also generated
if the table walk finds an invalid or reserved entry in the page tables. Upon finding the PTE, the CY7C604/605 stores
it in an available TLB entry and translates the corresponding virtual address. The table walk processing is implemented
in the CY7C604/605 hardware. It is self-initiated, and is transparent to the user.

Virtual Section Physical Section
(CAM Array) (RAM Array)
”~ N~

VA (31:12) | exn11:0) penesiiz) c[m) acczo) | sTio) |v

64 TLB entries

VA (31:12) | cxN(11:0) JPPNB5:12) M| Acc(2:0) | sT(1:0) [V

Figure 4-2. Translation Lookaside Buffer (TLB)

4-3

= o CY7C604/CY7C605 CMU

4.1.1 Translation Lookaside Buffer (TLB)

The CY7C604/605 uses a 64-entry fully associative TLB for address translation. The TLB consists of two sections: a virtual
section and a physical section, as shown in Figure 4-2. The virtual section is compared against the virtual address and
the contents of the context register. A content addressable memory (CAM) is used as the virtual section of the TLB.
The CAM provides simultaneous comparison of all 64 TLB entries with the current virtual address and context. The
physical section of the TLB is a RAM array, and its entries are addressed by a valid compare output from a CAM entry.
If a CAM entry matches the virtual address and context, the corresponding RAM entry in the TLB provides the physical
address for use by the CY7C604/605.

The virtual section of a TLB entry consists of 20 bits of virtual address (VA(31:12)) and a 12-bit context number
(CXN(11:0)). The physical section of a TLB entry consists of a 24-bit physical page number (PPN(35:12)), a cacheable
bit (C), a modified bit (M), a three-bit field for page access-level protection (ACC(2:0)), a two-bit short translation field
(ST(1:0)), and one valid bit (V).

As described by the SPARC reference MMU specification, bits 31 through 12 of the virtual address are translated to an
expanded physical address using bits 35 through 12. The translation of these bits depends upon the ST field of the TLB
entry (or PTE) and the MMU operation mode (refer to page 4-13). Bits 11 through 0 of the virtual address are not trans-
lated, and are defined as the page offset for the 4-kbyte memory page.

ATLB entry (PTE) can be defined to map a virtual address into one of four sizes of addressing regions using the ST field.
The four sizes of addressing regions are: 4-kbyte, 256-kbyte, 16-Mbyte, or 4-Gbyte. Table 4-1 illustrates the values as-
signed to the ST(1:0) field.

The value of the short translation bits affects both the addresses generated using the TLB entry and the virtual addresses
allowed to match with the TLB entry. The virtual address supplied by the integer unit is divided into four fields : index
1,index 2, index 3, and page offset, as illustrated in Figure 4-3. For ST = (1,1) (4-Gbyte addressing range), only the context
register is used to match a TLB entry. Setting ST = (1,1) essentially causes the CAM array to ignore the index 1, 2, and
3 fields of the virtual address. Consequently, the address generated using the TLB entry only supplies the upper four
bits of the 36-bit physical address. Index 1, 2, and 3 fields, along with the page offset, are passed along to the physical
address unchanged.

The three remaining values of the ST field “turn on” comparison of the three index fields. The index fields that are re-
quired to match a TLB entry also become the fields that are replaced by the TLB entry during virtual to physical transla-
tion. Setting ST = (1,0), (16-Mbyte addressing region), requires the TLB to match the context and index 1 fields of the
virtual address to the TLB entry. The TLB entry with ST = (1,0) will supply the upper four address bits and replace
the index 1 field of the virtual address with a physical address field. The index 2, 3, and page offset fields are passed along
to the physical address from the virtual address. Setting ST = (0,1) and (0,0) adds index 2 and index 3 fields to the compari-
son, respectively. Setting ST = (0,0) causes the TLB to require matching of the context, index 1, 2, and 3, and will replace
all but the page offset when translating the virtual address.

Vitual — ™ogex1 | index2 | Index3 | Page Offset]

Address 5% 23 8 17 iEE 0
—————— Context Register (CXR) |
TLB Entry | va@t2oeg | vaesisy | vapriz | oxngto | Acceo) | stao) | v]
v v Y ¥ !
\Oompare/ \Compare/ \Compare/ \Compare/
! Y ! ¥

Hit/Miss

Logic TLB Hit

ASI(5:0)

RD Access Violation
LDSTO

Figure 4-3. Address Comparison

4-4

CY7C604/CY7C605 CMU

Table 4-1. Short Translation Bits— ST(1:0)

ST1 STO Address Mapping
0 0 4-kbyte (page size)
0 1 256-kbyte
1 0 16-Mbyte
1 1 4-Gbyte

Physical addresses are generated using the contents of the PPN field of the TLB entry. The portion of the PPN field
used to map the virtual address to a physical address is dependent upon the ST(1:0) bit field, as described above. If a
4-kbyte linear addressing range is specified by the ST(1:0) bits, then the entire 24 bit field is used as the upper 24 bits of
the physical address. When a 256-kbyte linear addressing range is specified, the upper 18 bits of the PPN(35:18) field
are used in the physical address. The remaining bits of the physical address are supplied from the virtual address. The
upper 12 bits of the PPN(35:24) field are used for a 16-Mbyte addressing region. If a 4-Gbyte region is selected, only the
upper four bits of the PPN(35:32) field are used in the address translation. The page offset field of the virtual address
is always used as the lower twelve bits of the physical address.

The cacheable bit (C) indicates whether the memory addressed by the TLB entry is cacheable or not. If the MMU is
enabled, the value of the C bit is output on the MC pin (MAD(43)) of the Mbus during the address phase of a transaction.
The Mbus is described in the Physical Bus section.

The modified bit (M) in the TLB is set when the CY7C601 modifies the memory page. This bit may be checked by an
operating system to determine the modified status of a memory area.

The access-level protection (ACC) bits are described in Table 4-2. The ACC bits define the access-level protection for
the addressing region controlled by the TLB entry. Access-level protection is checked during a TLB access. If a TLB
hit occurs but access-level protection is violated, the MMU generates a synchronous fault and the operation terminates
(see Section 4.9, Synchronous Faults).

The valid bit (V) reports the valid status of the TLB entry. These bits are cleared upon power on reset (POR) to invalidate
the TLB entries. These bits are also cleared for a TLB entry flush.

Programmer’s Note: When loading the TLB entries under software control (i.e., TLB entries loaded by the integer unit
with ASI = 6), care must be taken to ensure that multiple TLB entries cannot map to the same virtual address. This
may inadvertently occur when combining TLB entries that map different sizes of addressing regions. For example, a
4-kbyte region described by a TLB entry could be included in a TLB entry for a 16-Mbyte region. Violation of this restric-
tion will result in an invalid output from the TLB. Note that this case cannot happen when the TLB entries are automati-
cally loaded by the CY7C604/605 during a table walk, as the TLB is checked for a “hit” first.

Table 4-2. Access-Level Protection Bits —ACC(2:0)

ACC User Access Supervisor Access
0 Read Only Read Only
1 Read / Write Read / Write
2 Read / Execute Read / Execute
3 Read / Write / Execute Read / Write / Execute
4 Execute Only Execute Only
5 Read Only Read / Write
6 No Access Read / Execute
7 No Access Read / Write / Execute

==
=i s CY7C604/CYTC605 CMU
—== # SEMICONDUCTOR

4.1.1.1 TLB Look-up

A virtual address to be translated by the CY7C604/605 is compared against each entry in the TLB as shown in Figure 4-3.
If a TLB hit (match) occurs and access-level requirements are satisfied, then the TLB outputs the physical address and
the cacheable bit. This physical address is output by the CY7C604/605 onto the Mbus (see Section 4.12, Physical Bus)
if the cache has been disabled or if the page is non-cacheable. If the cache controller is enabled and a cache miss occurs,
the physical address of the cache miss is used to access the new cache line in main memory for cache line replacement.

The short translation bits specify a linear address mapping range of 4-kbytes, 256-kbytes, 16-Mbytes, or 4-Gbytes for each
TLB entry. The short translation bits also determine the index fields of the virtual address that are matched with the
TLB entry to determine a TLB hit. For a TLB entry with a linear address range of 4 kbytes, index fields 1, 2, and 3 of
the virtual address and the context register are compared against the TLB entry. A TLB entry with a 256-kbyte linear
addressing range requires a match of the context and of the index 1 and index 2 fields. A 16-Mbyte linear addressing range
requires a match of the index 1 field and the context. The 4-Gbyte linear address mapping requires only a context match
to produce a TLB hit.

If the modified bit is not set in a TLB entry, write or load-store accesses that match the TLB entry and meet all access-level
requirements will cause a table walk. (sce Table Walk, Section 4.1.2.) If the modified (M) bit is not set for a write access,
then the table walk sets the modified bit in the page table pointer entry for the memory region. This information is used
by an operating system to ensure that modified regions of memory are stored in alternate memory media (typically a disk
drive) before they are overwritten during memory page swap operations.

If there is a matched entry, but the access-level requirements are not satisfied, then a synchronous address fault exception
is asserted. Context number matching is not required if the access-level field (ACC) is either 6 or 7 and the memory access is
a supervisor mode access (ASI = 9,B H). This produces a means of mapping the kernel of an operating system into the
same virtual address locations of every context.

The TLB ignores access-level checking during MMU probe operations, copy-back flush cycles, and alias detection cycles.

4.1.1.2 TLB Entry Replacement and Locking

The CY7C604/605 supports a random replacement algorithm to replace a TLB entry during TLB miss processing. The
random replacement is implemented by using a counter to point to one of the 64 TLB entries. A 6-bit replacement count-
er (RC) is incremented by one during each clock cycle to point to one of the TLB entries as shown in Figure 4-4. Upon
encountering a TLB miss, the CY7C604/605 uses the counter value to address a TLB entry to be replaced. The hardware
automatically replaces an entry pointed to by the replacement counter (RC) during TLB miss processing.

Locking of TLB entries is supported with a 6-bit initial replacement counter (IRC). The number of locked entries is speci-
fied by setting the value of the IRC. The value of the IRC is used as a counter preset for the replacement counter. Once
the replacement counter (RC) reaches the maximum value, it wraps to the initial replacement counter (IRC) value. Upon
power-on reset (POR), both the IRC and RC are initialized to zero.

Locked TLB entries can be changed (read/write) only through the alternate space load/store instructions with ASI =
6 (see Diagnostics Support, page 4-43.) These locked entries will not participate in the random replacement algorithm
during TLB miss processing. The IRC should be initialized to the number of lockable entries by writing to the TLB re-
placement control register (TRCR).

Programming Note: When changing the IRC, the RC should also be written with the same value. This ensures that the
RC is always pointing to the replacement area of the TLB.

4.1.1.3 TLB Entries (TLBEs)

Both the virtual and physical sections of each TLB entry can be accessed (read/write) through single load or store instruc-

tions. Software has the option to write and to lock high-usage or high-priority TLB entries to optimize system response
time (Refer to MMU TLB Entries, page 4-43, for more details.)

4-6

%fcvm CY7C604/CYTC605 CMU
— & SEMICONDUCTOR
63
@~ Replacement
Counter (RC)
TLB Entries
@ Initial
Replacement
Counter
(IRC)

Figure 4-4. TLB Replacement and Locking

Xlgggé's-s INDEX1 | INDEX2 INDEX3 | OFFSET |
31 24 23 1817 12 11 { 0
Context Ptr. 1 __ Context Table :
Register ' Level 1 '
! *Page Tabl .
' Page Table :
' g PTP Level 3 '
! Page Table .
! —e PTP .
E . PTE

' —

PHYSICAL | Physical Page Number | Byteofiset |
ADDRESS 12 11 0

Figure 4-5. Four-Level Table Walk (4-kbyte Addressing)

4-7

E— e CY7C604/CY7C605 CMU
—== & SEMICONDUCTOR

4.12 Table Walk

The CY7C604/605 supports tree-structured, 4-level table walk processing (including the context table level) as shown
in Figure 4-5. All of the virtual to physical address mapping tables are located in physical memory. These tables are ac-
cessed in the case of a TLB miss or of a write or load-store operation with a cleared M (modified) bit in the TLB entry.

Upon starting a table walk, the CY7C604/605 walks through a series of tables to find a page table entry (PTE). The page
table entry contains the physical page number, the access-level permission, cacheable, modified, and referenced bits for
the address generating the table walk. (Refer to page 4-10 for information on PTEs.) A table walk caused by a TLB miss
causes the CY7C604/605 to update an available TLB entry with the new PTE. A table walk forced by a write or load-store
operation on an unmodified memory region causes the CY7C604/605 to set the modified bit in the page table entry and
in the TLB entry.

The table walk begins with an access to the context table. The CY7C604/605 uses the context table pointer register
(CTPR) as a base register to point to the beginning of the context table. The context register (CXR) is used as an index
register to point to the table entry. The upper twenty-two bits of the CTPR are concatenated with the twelve bits of the
CXR to provide a 36-bit address. The lowest two bits of all addresses pointing to a page table entry or pointer are always
forced to zero.

If a page table entry (PTE) is found at the context table level, the table walk terminates. The PTE is stored in the TLB
and, if necessary, the modified bits and/or the reference bits are updated. If a page table entry is not found, then a Page
Table Pointer (PTP) must be located at the address pointed to in the context table. (See page 4-9 for more information
on PTPs and PTEs.) The page table pointer is used as the base address for the next table.

If a PTE is not found, the table walk continues by accessing the level 1 table using the PTP as a base address and the index
1field from the virtual address as an index pointer. It is possible to find a PTE instead of a page table pointer at any level
during the table walk. The index 1 field (virtual address (31:24)) is used to select an entry in the level 1 table. If a page
table entry is not found at this location, a page table pointer stored at this entry is used as the base address for the level
2 table. The index 2 field (virtual address (23:18)) is used to select an entry in the level 2 table. The entry in the level
2table, if not a page table entry, is used as the base address for the level 3 table. The index 3 field (virtual address (17:12))
is used to select an entry in the level 3 table, which must be a page table entry.

If a page table entry is not found after the level 3 table access, a synchronous fault exception is asserted. A synchronous
fault exception is also generated if an invalid entry is found at any level of the table walk. The table walk terminates
immediately when an exception is generated.

The level at which the table walk terminates is related to the size of addressing region associated with the entry. A table
walk that finds its page table entry in the context table corresponds to an addressing region of 4-Gbyte. Each level deeper
into the table walk corresponds to a smaller size of address mapping. A PTE for a 16-Mbyte addressing region will be
foundinalevel 1 table. A256-kbyte PTE will be found in a level 2 table. Only an addressing region of 4 kbytes will require
a table walk of four levels to find the correct page table entry).

An example of a table walk for a 256-kbyte linear address space is shown in Figure 4-6. The value of the short translation
bits are related to the level at which the table walk terminates. The short translation bits decrease from (1,1) for a table
walk with a context table PTE to (0,0) for a table walk with a level 3 table PTE. (Refer to Table 4-1.)

Each table walk access is performed as a non-burst transaction on the Mbus (physical bus). The Mbus busy (MBB) signal
is asserted from the beginning of the table walk to the end of the table walk process. This locks the Mbus and prevents
another bus master from gaining the bus until the table walk is complete. The MLOCK bit in the address phase of the
Mbus transaction will be set (refer to Section 4.12.5), indicating a locked transaction. During these transactions, the C
bit in the SCR register is output on the MC signal of the Mbus. There will be write transactions during the table walk
only if the reference bit (R) and/or the modified bit (M) has to be set in the page tables.

If there is an invalid page table entry (ET = 0) at any level, an invalid address error exception occurs and the table walk
terminates immediately. If an external bus error occurs, a reserved entry (ET = 3)is detected, or a PTP entry is detected
in level 3, a translation error exception occurs, and the table walk terminates immediately. If an access-level protection
occurs, the table walk is terminated and a protection/privilege violation exception is asserted.

The reference bit (R) and the modified bit (M) are set according to the access iype. In order to record the exceptions
in the synchronous fault status registers properly, the table walk hardware must indicate the fault type and the level at
which the fault occurred (Refer to Section 4.9 for more details). For access-level checking during the table walk,
load-store cycles are treated as write cycles. The table walk state diagram is shown in Figure 4-10.

During MMU probe operations, copy-back flush cycles, and alias detection cycles, the table walk controller ignores access-
level checking.

48

= — L CY7C604/CY7C605 CMU

VIRTUAL
ADDRESS INDEX 1 INDEX2 | OFFSET
31 24 23 1817 0
Context Ptr. ' ‘Context Table E
Register : Level 1 '
. *Page Table .
Context Reg. ; E Root Pointer = Level 2 '
H Page Table '
: &1 PTP ‘
Lol PIE :
1 [}

1 Y

PHYSICAL :
ADDRESS Physical Page Number Page Offset]
35 1817 0

Figure 4-6. Three-Level Table Walk (256-kbyte Addressing)

4.1.3 Page Table Pointer (PTP)

A Page Table Pointer (PTP), as shown in Figure 4-7, may be found in the context, level 1, or level 2 tables. The PTP
is used in conjunction with an index field of the virtual address to point to the next level of table in a table walk. The
PTPfound at the context level is called the root pointer. Bits 31 through 6 of the root pointer are output on bits 35 through
10 of the Mbus (MAD(35:10)) and are concatenated with the eight bits of the index 1 field of the virtual address to access
the entry in the first level page table. (Refer to Figure 4-6.) The lowest two bits of the address are equal to zero, as ad-
dressing is aligned on word boundaries.

Similarly, bits 31 through 4 of the PTP in level 1 or level 2 tables are output on bits 35 through 8 of the Mbus (MAD(35:8)).
The index 2 or index 3 fields are concatenated with the PTP to yield the address of the next table entry. The ET field
(see Table 4-3) describes the entry type: invalid, page table pointer, or page table entry.

In order to reduce the penalty for a TLB miss, the root pointer from the context level table and two PTPs from the level
2 table are cached in the PTP cache. The PTPs from the most recent data and instruction misses using a four-level table
walk are cached for later use. The TLB checks the PTP cache upon a TLB miss, and uses the cached PTP to access the
level 3 table if an entry matches the access. The PTP cache is discussed in more detail in Section 4.1.5.

{ PTP [Rev | er]
31 43 210
PTP = Page Table Pointer ET = Entry type
RSV = Reserved

Figure 4-7. Page Table Pointer

w

CY7C604/CY7C605 CMU

{
;

Table 4-3. Page Table Entry Type

ET Entry Type
0 Invalid
1 Page Table Pointer
2 Page Table Entry
3 Reserved

4.1.4 Page Table Entry (PTE)

The Page Table Entry (PTE) is shown in Figure 4-8 and may be found in the context, level 1, level 2 or level 3 tables.
The page table entry contains the address mapping information used by the MMU to translate a range of virtual addresses
to physical addresses.

The level of the table in which the PTE is found is related to the addressing range associated with the PTE. A PTE found
in the context table will map a 4-Gbyte addressing region. Alevel 1 PTE will map a 16-Mbyte addressing region. A level
2 PTE corresponds to a mapping region of 256 kbytes. A level 3 PTE maps a 4-kbyte addressing region.

The addressing region mapped to the PTE determines how many bits in the PPN field of the PTE are used to form the
physical address. PTE(31:28) from a context level table PTE are output on bits 35 through 32 of the physical address bus
(MAD(35:32)) to offer 4-Gbytes of linear address mapping. Similarly, PTE(31:20) from a level 1 table PTE are asserted
on bits 35 through 24, and provides 16 Mbytes of linear addressing. PTE(31:14) from a level 2 table PTE are asserted
on bits 35 through 18, and PTE(31:8) from a level 3 table PTE are asserted on bits 35 through 12 to offer 256K and 4 kbytes
of linear address mapping, respectively. The remainder of the PPN field not used for address translation is reserved.
The remaining physical address bits not specified by the PPN field are supplied from the virtual address.

The ACC bits describe the access-level and privilege protection assigned to the PTE. These bits are described in
Table 4-2. The referenced (R) bit is set in the PTE when the CY7C604/605 has read the value of the PTE in a table walk.
The CY7C604/605 automatically sets this bit upon access of the PTE. The modified (M) bit is set upon a write or load-store
access of a previously unmodified memory region. This information is commonly used by an operating system to flag
regions of memory that must be written to mass storage before being replaced by another memory page.

The cacheable (C) bit indicates whether or not the memory region addressed by the PTE is allowed to be cached. This
bit may be used to prevent shared memory pages from being cached, thereby avoiding potential aliasing problems. It also
may be used to prevent caching of memory mapped input/output devices.

The ET field, illustrated in Table 4-3, is used by the CY7C604/605 to determine the type of table entry during a table
walk. The ET field is set to 2 to indicate a PTE, and is set to 1 to indicate a PTP. If the CY7C604/605 encounters a table
entry with ET = 0during a table walk, the CY7C604/605 generates an invalid address error. The CY7C604/605 generates
a translation error if ET = 3 (reserved) is encountered in a table entry during a table walk.

24 111 3 2
I PN [ofv]r] aec | er]
3 87 6 54 210
PPN = Physical Page Number R = Referenced bit
C = Cacheable bit ACC = Access protection bits
M = Modified bit ET = Entry type

Figure 4-8. Page Table Entry Format

4-10

=

—_— —~—

=—"p

___';‘é'cym CY7C604/ CY7C605 CMU

PTP Cache :' ---------- cecececccoco s r e ey

4 Index Tag Register | ome [ma |
: :
¢ .
! Instruction PTP Reg. [Instruction Access PTP I v I:
' '
! Data PTP Reg. [DataAccessPtp Jv |1
' .
' L]
! RP Register | Root Pointer fv]:
[}

Figure 4-9. Page Table Pointer Cache

4.1.5 Page Table Pointer Cache (PTPC)

In order to reduce the penalty for a TLB miss, the CY7C604/605 supports a three-PTP entry page table pointer cache.
The Page Table Pointer Cache (PTPC) caches the most recently used PTPs, as shown in Figure 4-9. The three entries
are: the Root Pointer Register (RPR), the Instruction access level 2 PTP (IPTP), and the Data access level 2 PTP (DPTP).
The IPTP and DPTP registers are referenced by a fourth register, the Index Tag Register (ITR). These entries are cached
during table walk processing for a TLB miss.

The root pointer for a context is cached in the RPR. The RPR remains valid until the ConteXt Register (CXR) or the
Context Table Pointer Register (CTPR) value is changed. The instruction access PTP register contains the latest level
2PTP foran instruction access. This PTP is cached from the last TLB miss requiring a four-level table walk for an instruc-
tion access. The Data Access PTP Register contains the latest level 2 PTP for a data access. This PTP is also cached
from the last four-level table walk for a data access. The IPTP and DPTP registers are invalidated when another table
walk that accesses level 3 of the page tables is forced for an instruction or data access or a TLB flush. They also are invali-
dated when either the context register or context pointer register is changed. Refer to page 4-38 for more information
on these registers.

Figure 4-9 illustrates the PTPC. The index tag register (ITR) is used to reference the IPTP and DPTP registers. The
ITAG and DTAG fields of the index tag register are used by the CY7C604/605 to compare against an address generating
a TLB miss. Once a level 2 page table pointer is cached for an instruction or a data access, the same PTP is used if the
index 1 and index 2 fields of the virtual address match the index 1 and index 2 tag fields of the ITAG or DTAG. The IPTP
and DPTP registers are updated only if a TLB miss occurs that does not match the ITAG or DTAG and also generates
a table walk that accesses level 3 of the page tables.

Once a root pointer is cached for a particular context, the same root pointer can be used as long as the context is not
changed. If the table walk finds a context level or level 1 or level 2 entry PTE (i.e., is not a four-level table walk), then
no caching of level 2 pointers is performed.

Whenever the context is changed, the entire PTPC (all three entries) is invalidated. Upon power-on reset, all the PTPC
entries are invalidated. When the ContexT Pointer Register (CTPR) is written, the page table pointer cache is invalidated
by clearing the V bits in the IPTP, DPTP, and RPR registers. Any TLB flush invalidates the IPTP and DPTP registers
of the PTP Cache.

The IPTP and DPTP registers are not updated during table walks caused by address alias detection and copy-back flush
cycles.

4-11

== & CYPREsS CY7C604/CY7C605 CMU

Translation Error

(L=23,FT =4
Translation Error
(L=0,FT = 4)
Invalid
Translation Error Address Error
(L=3,FT =4 (L=3FT=1)
Short Tost Invalid
Translation Table Entry Address Error
=1, Type (L=0FT=1)
(4-Gbyte)
Privilege Violation
Fetch 1st- Level (L=03,FT =3

Pointer

Tyon e Test Read Protection Violation
(L=1FT =4 Write/Exe. iy o
Access
N
Shot } prg
Translation Table Entry ‘Address Error v
B, Type (L=1FT=1)
R=1 R=0 R=1
= M=1 =1
Fetch 2nd-Level M =X M
Pointer
Set R Set Rand M Set R
Y
orB:sgsEer:S;d Translation Error * * +
(ET=3) (L=2FT=4)
N Y
Translation Error
ot | FTE Test Nnvalid (L=03,FT =4
Trans:)a t;on Table Entry Address Error
o L=2FT=1
(256-kbyte) Type () v 4 |
PTP
Fetch drd-Level Load TLB
Pointer

y
& <D

Figure 4-10. Table Walk Algorithm

4-12

!

==
=t CY7C604/CY7C605 CMU

4.2 MMU Operation Modes

This section describes the different modes of operation of the CY7C604/605, the conditions under which they occur, and
what information is reflected on the pins. The operation mode for the MMU (and cache controller) is controlled by the
system control register (SCR). Please refer to Sections 4.4.1 and 4.4.2 for further information on the SCR.

The following symbols are used throughout the chart:

MC(MAD(43)) Mbus Cacheable indicator signal UN Unassigned ASI
(Refer to Pin Definitions, Section 4.10) RES Reserved ASI and ASI
MBI(MAD(45)) Mbus Boot/Local indicator signal defined but not implemented (see Table 4-15)
(Refer to Pin Definitions, Section 4.10) PA Physical Address
ASI Address Space Identifier code VA Virtual Address
for current access from CY7C601 BM, ME, CE Bits in System Control Register (SCR)
SCRIC] Cacheable bit of SCR PTE[C] Cacheable bit of page table pointer
X Not Defined or Don’t Care

Table 4-4. MMU Operation Modes

MMU Operation Modes
Mode Conditions Results
ASI BM |ME | CE Physical Addressing Caching | MC | MBL

Local 1 X | X | X | PA<3532> =0 PA<31:0> = Not 0 1

VA<31:0> Cached
UN, RES UNRES | X | X | X Ignore Ignore Ignore N/A | N/A
By-pass 20-2F X | X | X | PA<3532> = PA<31:0> = Not 0 0

ASI<3:.0> VA<31:0> Cached

Pass-Through 8,9,A,B 0 0 X | PA<3532> = 0 PA<31:.0> = Not SCR 0

VA<31:0> Cached [C]
Boot 8,9 1 | X | X | PA<3528>= PA<27.0> = Not SCR 1
(Instr. access) FF VA<27:0> Cached [C]
Boot AB 1 0 | X | PA<3532> = 0| PA<310> = Not SCR 1
(Data access) VA<31.0> Cached [C]
Translation 1 AB X 1 0 PA<35:12> = PA<11:0> = Not PTE 0
(Data Access PTE <31:8>* VA<11:0>* Cached [C]
and Cache
Disabled)
Translation 2 AB X 1 1 PA<35:12> = PA<11:0> = Cached if | PTE 0
(Data Access PTE<31:8>* VA<11:0>* PTE[C] [C]
and Cache =1
Enabled)
Translation 3 8,9 0 1 0 PA<35:12> = PA<11.0> = Not PTE 0
(Instruction PTE<31:8>* VA<11.0>* Cached [C]
Access and
Cache
Disabled)
‘Iranslation 4 8,9 0 | 1|1 | PA<3512> = | PA<IL0> = | Cachedif | PTE | 0
(Instruction PTE <31:8>* VA<11:0>* PTE[C] [C]
Access and =1
Cache
Enabled)

* Concatenation field sizes vary depending upon the short translation (ST) bits to provide 4G, 16M, 256K, 4 kbytes of linear address mapping.
Refer to Section 4.1.1 for further details.

4-13

%ﬁ% CY7C604/CYTC605 CMU

The MMU provides three types of operating modes: boot modes, direct-access modes, and translation modes. Two boot
modes are defined for the MMU, one for data accesses, and one for instruction accesses. The boot modes force the upper
eight bits of the physical address to FF H for instruction accesses. The upper four bits are forced to zero for data accesses.
These two modes also assert the Mbus Boot mode/Local indicator (MBL) signal. This signal can be used in the system
to enable a memory region used only for system boot and configuration. This allows the system a secure method of access-
ing bootstrap ROM and shadow RAM separate from the main memory space.

The direct access modes allow the integer unit to access the main memory without address translation by the MMU.
These modes include: local, by-pass, and pass-through.” Local mode enables the MBL signal and forces the upper four
bits of the physical address to zero. The lower 32 bits of the physical address are supplied directly from the virtual address
bus. This mode allows the integer unit to access the boot mode memory (if supported in the system) without changing
the state of the System Control Register (SCR). Local mode is enabled by using a load or store alternate instruction with
ASI" = 1H.

Bypass mode allows complete access to the main memory space. MBL is not enabled, and the lower four bits of the ASI
are used as the upper bits of the physical address. The remaining 32 bits are supplied directly from the virtual address
bus. The state of the SCR does not have to be modified. This mode is mapped into the ASI space as ASI = 20 - 2F H.

Pass-through mode describes the CY7C604/605 operation with the MMU disabled. The upper four address bits of the
physical address are forced to zero. The MBL signal is not asserted. This mode does not require non standard ASI assign-
ments (i.e., ASI = 8,9,A,B H), but the boot mode (BM) and MMU enable (ME) bits of the SCR must be cleared.

The translation modes are considered to be the normal operating modes of the MMU. This group includes four modes
of translation operations: Translation 1 - 4. Translation 1and 2 are the non-cached and cached data access modes. Transla-
tion 3 and 4 are the non-cached and cached instruction access modes. The cached and non-cached modes are identical
in results for both data and instruction accesses, with the exception that the data access modes ignore the Boot Mode
(BM) bit of the SCR. This feature allows the system to enable the MMU for data accesses, yet still access instructions
from the boot memory space without changing the BM bit.

* The SPARC architecture reference supports the concept of Address Space Identifiers (ASI), which provide an on of the standard add
space. These bits are used to enable special addressing modes, or to provide access to registers and other features of the CY 7C604. Refer to section on
ASI and Register Mapping for more information.

42.1 MMU Flush and Probe Operations
4.2.1.1 Rush Operations

The flush operation allows software invalidation of selected entries in the TLB. TLB entries are flushed by executing
a Store Alternate ASI instruction using ASI = 3 H and supplying a virtual address in the format shown in Figure 4-11.
The context number is given by the context register (CXR). All TLB entries that match the virtual address, context, and
TLB flush type will be flushed (invalidated) simultaneously. The flush type is specified in bits 11-8 of the virtual address
for the flush operation.

The CY7C604/605 supports five different types of TLB flushing operations. These types are: page, segment, region, con-
text, and entire flush. The five types of flushing are listed in Table 4-5, and define the address comparison required to
match a TLB entry for flushing. The Short Translation (ST) bits in the TLB entries are ignored for TLB matching. All
TLB entries matching the compare criterion of the flush type are invalidated, including those locked by the IRC.

Virtual Address Format:

I INDEX1 I INDEX2] INDEX3 l TYPE l RSV]
31 2423 8 17 21 8 7 0

Figure 4-11. MMU Flush Address Format

4-14

T
%ﬁ‘-m CY7C604/CY7C605 CMU

Table 4-5. TLB Entry Flushing

Type Flush Compare Criterion

0 Page Context (or ACC = 6, 7),
Index 1, Index 2, and Index 3

1 Segment Context (or ACC = 6, 7),
Index 1, and Index 2

2 Region Context (or ACC = 6, 7),
and Index 1

3 Context Context (user pages with
ACC = 0105)

4 Entire None

StoF Reserved

4.2.1.2 Probe Operation

The probe operation allows testing the TLB and page tables for a PTE entry corresponding to a virtual address. The opera-
tion is initiated by executing a load alternate ASI instruction with ASI = 3 H, the appropriate virtual address, and the
context number. The context is specified by the context register. Upon starting a probe operation, the TLB is probed
first. If there is a TLB hit, it returns the 32-bit physical section of the matched entry. The returned entry fields are for-
matted such that it is identical to a PTE (see Section 4.1.4 on page 4-10, for PTE format information). If a matching entry
could not be found in the TLB, a table walk is started and an appropriate 32-bit value (PTE) is returned and loaded into
the TLB.

A probe operation causes the Reference bit (R) to be set in the PTE by means of a table walk. When a probe operation
hits the TLB, the R bit is always returned as set.

The context register and access-level protection checking are ignored for TLB matching and during the probe operation
table walk. The table walk hardware checks for invalid address error and translation error exceptions and records appro-
priate fields in the SFSR register as in the normal table walk process. If a bus error occurs or an invalid or reserved entry
is detected during the table walk, a 32-bit zero value is returned as status. If a zero value is returned, the UC, TO, BE,
L, and FT fields of the SFSR are updated accordingly, but the operation does not cause an exception to the CY7C601.

4.3 CY7C604 / CY7C605 Cache Controllers

The differences between the CY7C604 and CY7C605become evident in the features of their respective cache controllers.
The CY7C604 cache controller is designed for a uniprocessor system, and provides cache locking for real-time system
support. The CY7C605 cache controller is enhanced to accommodate the requirements of a multiprocessing system.
The CY7C605 provides bus snooping and a Futurebus style of cache coherency protocol. The CY7C605 is designed to
provide high visibility into its cache operations from the perspective of the shared physical bus in order to simplify support
by a secondary cache system. The following sections discuss the CY7C604 and CY7C60S cache controllers. Sections
specific to the CY7C604 or CY7C605 are marked with that part number only. Sections applying to both the CY7C604
and the CY7C605 are marked “CY7C604/605.”

4.3.1 CY7C604/605 Cache Modes

The CY7C604/605 virtual cache can be programmed for either write-through with no write allocate or copy-back with
write allocate. The two cache modes differ in how they treat cache write accesses. Write-through cache mode causes
write hits to the cache to be written to both cache and main memory. Write-through write cache misses only update main
memory and invalidate the cache tag, but do not modify the cache.

A write access in copy-back mode only modifies the cache. The writing of the modified cache line to main memory is
deferred until the cache line is no longer required. Copy-back cache mode has the advantage of reducing traffic on the
system bus. Bus traffic is reduced since all updates to memory are deferred and are performed subsequently only as abso-
lutely required. In addition, all such data transfers are made utilizing the more efficient burst mode. The following de-
scribes the two cache modes in detail.

4-15

=

=

%@"‘é’ Omess CY7C604/CY7C605 CMU

4.3.1.1 CY7C604/605 Write-Through Mode with No Write Allocate

For write-through cache mode, write access cache hits cause both the cache and main memory to be updated simulta-
neously. A write access cache miss causes only main memory to be updated (no write allocate). The selected cache line
is invalidated for a write access cache miss. Write-through caching mode normally requires a processor to delay during
a write miss while the data is written to main memory. The CY7C604/605 provides write buffers to prevent this delay in
most cases. The write buffers store the write access and write the data to main memory as a background task. (Refer to
page 4-31 for further information on the write buffers.)

During read access cache hits, the cached data is read out and supplied to the CY7C601. In the case of a read access cache
miss, a cache line is fetched from main memory to load into the cache and the required data is supplied to the CY7C601.

4.3.1.2 CY7C604/605 Copy-Back Mode with Write Allocate

When the cache is configured for copy-back mode, only the cache is updated on write access cache hits (i.e., main memory
is not updated). The modified bit of the cache tag for the cache line is set on a copy-back write access (write hit or after
a write miss is corrected). During write access cache misses, if the selected cache line is clean (not modified), a cache line
is fetched from main memory to load into the cache and only the cache is updated. If the selected cache line is modified,
the selected cache line is flushed out to update main memory. The CY7C604/605 simultaneously fetches the new cache
line from main memory and stores it into the read buffer as it flushes the modified cache line from the cache and stores
it into its write buffer. After the modified cache line has been flushed, the CY7C604/605 writes the modified cache line
out of its write buffer into main memory while the new cache line is stored into the cache memory from the read buffer.

During read access cache hits, the cached data is read out and supplied to the CY7C601. During read access cache misses,
if the selected cache line is clean (not modified), a cache line is fetched from main memory to load into the cache. If the
selected cache line is modified, the selected cache line is flushed out to the CY7C604/605 write buffer, and a new cache
line is fetched from main memory and stored into the read buffer. The new cache line is then stored in the cache from
the read buffer, while the modified cache line stored in the write buffer is written out to main memory.

4.3.2 CY7C604 Cache Controller

The cache controller provides cache memory access control for a 64-kbyte direct mapped virtual cache. The cache control-
ler is designed to use two CY7C157 Cache RAM:s for the cache memory. These cache RAMs are 16-kbyte x 16 SRAMs
with on-chip address and data latches and timing control. The CY7C601 cache can be expanded to a maximum of 256
kbytes by adding additional groups of one CY7C604 and two CY7C157s. Using multiple CY7C604s to expand the cache
is referred to as a multichip configuration for the CY7C604, and is described in the Section 4.5, Multichip Configuration.

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C604 has 2048 cache tag entries on-chip, one tag
entry for each cache line. Addressing for the virtual cache is provided directly from the virtual address bus. The virtual
address field VA(15:5) selects one of the 2048 lines of the cache. This address field also selects one of the corresponding
cache tag entries in the CY7C604. A cache hit occurs when the upper sixteen bits of the virtual address and the context
register match with the virtual address and context stored in the selected cache tag entry. The lowest five bits of the virtual
address bus (VA(4:0)) select one or more of the 32 bytes in the cache line. Cache data replacement is always performed
by replacing cache lines.

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller.
The CY7C604 controls cache read access by holding the CY7C601 with MHOLD if a cache hit is not detected by the cache
controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the
CY7C601. After the correct data is latched into the CY7C601 by strobing the MDS signal, the CY7C601 is released and
execution proceeds normally.

Writes to the cache are controlled by the CY7C604, which decodes the lowest two bits of the virtual address, the SIZE(1:0)
signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the
CY7C604 decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 Cache RAM write
enables. If the cache mode is set to write-ithrough (see Cache Modes, Section 4.3.1), the write data is also written to main
memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache
is not updated. If the write cache miss occurs during copy-back cache mode (see Figure 4-14) and the selected cache line
is not modified, the missed cache line is fetched from main memory. If a write cache miss occurs during copy-back mode
and the selected cache line is modified, the CY7C604 simultaneously flushes the modified cache line into the write buffers
while it fetches the new cache line from main memory. After the cache line hasbeen replaced, the write access is enabled
by the CY7C604. The modified cache line is written to main memory from the write buffers as a background task.

4-16

== s CY7C604/CY7C605 CMU

I Virtual Address I Cache Line Select l Byte Select I
0

31 1615 54
Cache Tag Entries
VA (31:16) CXN(11:0) vim]s
|
] : . : '
))))
\ \ \ \
e

VA (31:16) CXN(11:0) v M s

JI Context Register I

\Compare / \Compare /

—!—_\, Cache Hit

Figure 4-12. CYC7604 Cache Tag Comparison

4.3.2.1 CY7C604 Cache Tag

The CY7C604 features 2048 direct-mapped cache tag entries, as shown in Figure 4-12. The on-chip cache tag and the
TLB are accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address (VA(31:16)), a 12-bit context
number (CXN(11:0)), one valid bit (V) and one modified bit (M). The valid bit (V) is set or cleared to indicate the validity
of the cache tag entry. The modified bit (M) of a cache tag entry is set during copy-back mode after a write access to the
cache line. This indicates that the cache line has been modified. The modified bit has no meaning for write-through cache
mode. The cache line select field (VA(15:5)) is used to select a cache line entry and its corresponding cache tag entry.
The address field VA(31:16) and context register are compared against the virtual address and the context fields of the
selected cache tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is
generated. To complete an access successfully, both the cache tag and the TLB must be hit with appropriate access-level
permission. Upon Power-On Reset (POR), all cache tag entries are invalidated (all V bits are cleared).

A Supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the supervisor only
(access-level field 6 or 7), the S bit is set. During a cache tag look up, if the access is supervisor mode and the the S bit
is set, the context number comparison is ignored and the context match is forced. This operation is similar to a TLB look
up with access-level field set to either 6 or 7.

4.3.2.2 CY7C604 Address Aliasing

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be detected to maintain
data consistency in a virtual cache system. The SPARC reference system software convention permits the use of aliases
in address spaces that are modulo with respect to the system’s underlying cache size. In order to allow the efficient caching
of physical memory pages where such aliases may occur, the CY7C604 supports automatic address aliasing protection.

The CY7C604 tests for address aliasing during copy-back read or copy-back write cache misses or during write-through
read misses. The MMU must be enabled to allow the CY7C604 to test and correct address aliases.

To detect address aliasing, the virtual address of the selected cache tag entry is translated through the MMU. The trans-
lated physical address is compared with the physical address of the missed cache access. If the physical address of the
selected cache tag entry and the physical address of the cache miss match, then address aliasing is detected.

4-17

—== > SEMICONDUCTOR

CY7C604/CY7C605 CMU

Read Miss

fetch cache line
Reset or Flush trom

Write Miss
update only
and invalidate cache Ilne

Read Hit
Read Miss, Alias
Write Miss update cache tag only
update memory only
Read Miss Write Hit
fech cache e update memory
Figure 4-13. CY7C604 Write-Through with No Write Allocate
Read Miss
fetch cache line
from memory
Read Hit
Reset or Flush Reﬁ%ﬁfés&ﬂ"“ Alias
tag only
Read Miss
fetch cache line Write Miss
from memory .
flush modified w Aligs
cache line update cache
fetch cache line tag a'u‘glmhe
Write Miss Write Hit
fetch cache ﬁpdale
Write Miss line, update cache
fetch cache line cache only only
update cache only
Write Miss Read Hit
flush modified cache line
fetch cache fine .
update cache only Valid
Modified
Wite Miss with Alias Read Niss
update cache tag and 3
et o e
Write Hit
update cache only

Figure 4-14. CY7C604 Copy-Back with Write Allocate

4-18

%

= Ty
=555 CY7C604/CYTC605 CMU
—== & SEMICONDUCTOR

The SPARC system software convention ensures that the aliasing maps to the same cache line address for a particular
CY7C604. Coupled with this convention, the cache controller hardware automatically prevents any existence of address
aliases in the virtual caches.

Aliasing is checked during a cache miss. If detected, an alias is corrected by updating the selected cache tag entry with
the new virtual address. The CY7C604 then halts the cache miss processing and provides an access to the cache, as with
a cache hit. If no alias is detected, the cache miss processing proceeds normally. The state diagrams for write-through
and copy-back cache modes with alias detection and correction are illustrated in Figure 4-13 and Figure 4-14.

In copy-back mode, address aliasing is checked during a read- or a write-access cache miss. For an alias detected during
a read-access cache miss, the selected cache tag entry is updated with the virtual address that caused the cache miss. The
cache miss processing is halted, and the CY7C601 is supplied with data from the cache.

If an address alias is detected during a write access cache miss, the selected cache tag entry is updated with the new virtual
address that caused the cache miss. The modified bit is set if it was not set previously. The cache miss processing is halted,
and the cache write access is enabled.

In write-through mode, address aliasing is checked only on read-access cache misses. If an address alias is detected on
aread-access cache miss, the old cache tag entry is replaced with the new virtual address. The cache miss is halted, and
the cache supplies the data requested.

In write-through cache mode, address aliasing is not checked during write-access cache misses. In order to avoid potential
address aliasing, the selected cache line is invalidated. Address aliasing is not checked in this case in order to avoid unnec-
essary performance degradation.

To detect address aliasing, the selected cache line address is translated through the TLB. Protection checking is ignored
during this translation. The translation may occasionally cause a TLB miss. If this happens in a write-through read miss
case, the alias checking and the TLB miss are ignored. In a copy-back read miss or a write miss when the selected cache
line is clean, alias checking and TLB miss processing are ignored. To provide data consistency, the table walk is performed
in order to detect address aliasing in a copy-back read miss or a write miss when the selected cache line is modified.

4.3.2.3 CY7C604 Cache Lock

The CY7C604 supports a cache lock mechanism that allows the system to lock all entries in the cache. This feature is
provided to allow deterministic response times for real-time systems. The cache lock function affects only cache miss
operations, since it locks out cache line replacement of valid entries. Since alias detection is not enabled, shared memory
pages must be declared as non-cacheable when the cache is locked . The following description summarizes each case in
detail:

a. Write-through read miss and selected entry is invalid: A new cache line is fetched from main memory to load into the
cache and the requested data is supplied to CY7C601 as in normal operation mode.

b. Write-through read miss and selected entry is valid: The requested data is obtained from main memory as a non-burst
transaction on the Mbus and supplied to the CY7C601, but is not loaded into the cache.

c. Write-through write miss: The selected cache line is invalidated in order to prevent data inconsistency due to potential
address aliasing.

d. Copy-back read miss and selected entry is invalid: A new cache line is fetched from main memory to load into the cache
and the requested data is supplied to CY7C601 as in a normal operation.

e. Copy-back read miss, selected entry is valid: The requested data is obtained from main memory as a non-burst transaction
on the Mbus and supplied to the CY7C601, but is not loaded into the cache.

f. Copy-back write miss and selected entry is invalid: A new cache line is fetched from main memory to load into the cache
and the CY7C601 data is stored in the cache as in a normal operation.

g. Copy-back write miss and selected entry is valid: The CY7C601 data is stored in the main memory as a non-burst transac-
tion on the Mbus, but the cache is not updated.

4-19

N

w"

Il

Virtual Address
VA(31:16) I Cache Line Select I Byte Select]
1 - 1615 5 4 0

)

PVTAG Entries
VA (31:16) CXN(11:0) V |SH| s

2048
entries

]

VA (31:16) cxN(11:0) | v |sH| s

1' Context Register l

‘—_\r Cache Hit

\Compare / \Compare /
I [

Figure 4-15. CY7C605 Processor Virtual Cache Tag (PVTAG) Comparison

4.3.3 CY7C605 Cache Controller

The cache controller provides cache memory access control for a 64-kbyte direct-mapped virtual cache. The cache control-
ler performs this task by comparing memory accesses against the address and status entries in a cache tag memory. The
CY7C605 provides two separate cache tag memories for access comparison. Cache memory accesses from the processor
are compared against the Processor Virtual cache TAG (PVTAG) memory. Bus snooping operations are compared against
the Mbus Physical cache TAG (MPTAG) memory. The use of two cache tag memories allows the cache controller to ser-
vice processor cache accesses concurrently with bus snooping cache tag accesses. This feature of the CY7C605 provides
significant performance improvements over cache systems sharing a single cache tag memory between the processor
cache access and the bus snooping operations. Single cache tag systems typically must stall the processor when a bus
snooping operation is required, causing serious performance degradation.
The cache controller is designed to use two CY7C157 cache RAMs for the cache memory. These cache RAMs are
16-kbyte x 16 SRAMs with on-chip address and data latches and timing control. Two CY7C157s and one CY7C605 com-
prise an entire 64-kbyte cache system with physical bus interface and read and write buffers.

The cache is organized as 2048 cache lines of 32 bytes each. The CY7C605 has 2048 cache tag entries in both the PVTAG
and MPTAG, one entry in each cache tag memory per cache line. Addressing for the virtual cache is provided directly from
the virtual address bus. The virtual address field (VA(15:5)) selects one of the 2048 lines of the cache (refer to Figure 4-15).
This address field also selects the cache tag entry in the PVTAG dedicated to the selected cache line. A cache hit occurs
when the upper sixteen bits of the virtual address and the context register match with the virtual address and context
stored in the selected cache tag entry in PVTAG. The lowest five bits of the virtual address bus (VA(4:0)) select one or
more of the 32 bytes in the cache line. Cache data replacement is always performed by replacing cache lincs.

The cache is designed to provide data with every read access asserted on the virtual bus, regardless of the cache controller.
The CY7C605 controls cache read access by holding the CY7C601 with MHOLD if a cache hit is not detected by the cache
controller. The cache controller then reads the new cache line from main memory, and supplies the correct data to the
CY7C601. After the correct data is latched into the CY7C601 by strobing the MDS signal, the CY7C601 is released and

execution proceeds normally.

4-20

mm

¥

== Fovmes CY7C604/CY7C605 CMU

Writes to the cache are controlled by the CY7C605, which decodes the lowest two bits of the virtual address, the SIZE(1:0)
signal, and checks for a cache hit to enable the correct cache byte write enable signals. If a cache write hit occurs, the
CY7C605 decodes the correct CBWE signals for the write access, and outputs these to the CY7C157 cache RAM write
enables. If the cache mode is set to write-through (see Section 4.3.1, Cache Modes), the write data is also written to main
memory. If a write cache miss occurs for write-through cache mode, the data is written to main memory and the cache is
not updated. If the write cache miss occurs during copy-back cache mode, the cache line is fetched from main memory. If
the cache line stored in the cache when the write cache miss occurred has been modified, the old cache line is written to
main memory before the cache line is replaced by the new data. After the cache line has been replaced, the write access is
enabled by the CY7C605.

4.3.3.1 CY7C605 Cache Tag

The CY7C605 features two separate cache tag arrays: the processor virtual cache tag memory (PVTAG) and the Mbus
physical cache tag memory (MPTAG). Cache controllers using only one cache tag array must delay the processor when bus
snooping requires access to the cache tags. The inclusion of two independent cache tag memories allows the CY7C605 to
support processor accesses to cache while simultaneously performing bus snooping on the Mbus.

4.3.3.1.1 CY7C60S5 Processor Virtual Cache Tag (PVTAG)

The PVTAG consists of 2048 direct-mapped cache tag entries, as shown in Figure 4-16. The PVTAG and the TLB are
accessed simultaneously. Each entry in the cache consists of 16 bits of virtual address (VA(31:16)), a 12-bit context number
(CXN(11:0)), one valid bit (V), and one shared bit (SH). The valid bit (V) is set or cleared to indicate the validity of the
cache tag entry. The shared bit (SH) of a cache tag entry is set when bus snooping indicates that the cache line is shared.
The cache line select field (VA(15:5)) is used to select a cache line entry and its corresponding cache tag entry. The address
field VA(31:16) and context register are compared against the virtual address and the context fields of the selected cache

tag entry. If a match occurs, then a cache hit is generated. If a match is not found, then a cache miss is generated. To.

complete an access successfully, both the cache tag and the TLB must be hit with appropriate access-level permission. On
Power-On Reset (POR), all cache tag entries are invalidated (all V bits are cleared).

A supervisor bit (S) is included in the cache tag entry. For cache tag entries which are accessible by the supervisor only
(access-level field 6 or 7), the S bit is set. During a cache tag look up, if the access is supervisor mode and the the Sbit is set,
the context number comparison is ignored and the context match is forced. This operation is similar to a TLB look up with
access-level field set to either 6 or 7.

4.3.3.1.2 CY7C605 Mbus Cache Tag (MPTAG)

The MPTAG consists of 2048 direct-mapped, physical address cache tag entries (refer to Figure 4-16). Each entry in the
cache consists of 24 bits of physical address (PA <35:12>), a valid bit (V), a shared bit (SH), and a modified bit (M).

The 2048 MPTAG entries are virtual address indexed. The index field for MPTAG, as supplied by the Mbus, is formed by
concatenating the superset virtual address bits (15:12) (MAD(49:46)) with physical address bits (11:5) (MAD(11:5)) (refer
to Figure 4-17). The format of the Mbus address bus cycle is described in Section 4.12.5 in Section 4.12.5.

PVTAG Cache Tag Entry MPTAG Cache Tag Entry
TAG l CXN (11:0) [VISHI s|n | TAG lSHl Mlvl R I
31 16 15 43 210 3 876 5 4 0
) TAG = Physical Address Tag M = Modified
TAG = Virtual Address Tag S = Supervisor V = Valid R = Reserved
CXN = Context Number R = Reserved SH = Shared
V = Valid bit SH = Shared

Figure 4-16. CY7C605 Cache Tag Entries

4-21

=

= ,;“}'m CY7C604/CY7C605 CMU
MAD Address Cycle
RN S | N
63 49 l 46 35 12 1] 54 0
! : MPTAG Entried __
H i MAD(35:12) sHl M| v
| : s 1HE
l \ \ARA R
2048
- - entries

MAD(35:12) SHl M| v

\oomeere/ i
D'——’ Cache Hit

Figure 4-17. CY7C605 Mbus Physical Cache Tag (MPTAG) Comparison

During a MPTAG compare operation, the physical address field (35:12) of the access is compared against the physical
address field of the MPTAG entry selected by the virtual address index. If a match occurs and the valid bit is set, a cache hit
is generated. If a match is not found, or the valid bit is not set, a cache miss is generated. On Power-On Reset (POR), all the
MPTAG cache entries are invalidated (V bits are cleared).

4.3.3.2 CY7C605 Multiprocessing Support

The CY7C605 is specifically designed to support multiprocessing systems. The CY7C60S accomplishes this by providing
features necessary to maintain cache coherency with a second-level memory system (typically main memory or a secondary
cache) and other caching systems on the shared bus.

The CY7C605 supports two modes of caching: write-through and copy-back. Operation in write-through caching mode
causes main memory to be modified with each write access to the cache. This avoids the issue of lack of coherency between
the individual cache systems and main memory, but greatly increases memory bus traffic. The effect of this increased bus
traffic is a degrading of the performance of a multiprocessor system as the processing nodes compete for memory bus
bandwidth. This problem is greatly reduced when copy-back caching mode is used.

Operation in copy-back mode causes all changes to a cache line to be held until the line is flushed from the cache. This
minimizes bus traffic to only those transactions necessary to maintain the cache. However, by allowing the cache line tobe
modified without updating main memory, a problem arises when other processing nodes require an up-to-date copy of that
memory location. The problem of modified cache lines is solved by the enforcement of a cache coherency protocol.

The CY7C605 implements a cache coherency protocol specified by the SPARC reference standard Mbus level-2 interface.
This protocol is modeled after that used by the IEEE Futurebus. In this protocol, each cache line is described by one of five
states: invalid (I), exclusive clean (EC), exclusive modified (EM), shared clean (SC), and shared modified (SM). The fol-
lowing describes these five cache states: -

Invalid (I): Cache line is not valid.

Exclusive Clean (EC): Only this cache module has a valid copy of this cache line, other than the next level of memory (main
memory or secondary cache). No other cache module on the same level of memory has a valid copy of this cache line.

Exclusive Modified (EM): Only this cache module has a valid copy of this cache line. This cache module is the OWNER of
the cache line, and has the responsibility to update the next level of memory (main memory or secondary cache) and also to
supply data if any other cache references this memory location.

4-22

===
=.‘-7‘ haan
=5 CY7C604/CY7C605 CMU

Shared Clean (SC): The same cache line may exist in more than one cache module. The next level of memory may or may
not contain a valid copy of this cache line, depending upon whether this cache line has been modified in any other cache.

Shared Modified (SM): The same cache line may exist in more than one cache module, but this cache module is the OWN-
ER of the cache line. The next level of memory does not have a valid copy of this cache line, and this cache module has the
responsibility to update the next level of memory and to supply any other cache that may reference this same memory
location.

These five states are described by three state bits (valid (V), shared (SH), and modified(M)) in each MPTAG cache tag
entry (refer to Figure 4-16). The PVTAG cache tag entries are described by two state bits: valid (V), and shared (SH). The
PVTAG cache tag entries corresponding to the same cache lines can be in one of three states: invalid, exclusive valid, and
shared valid.

Under write-through cache mode, only the valid and invalid states apply to either the MPTAG or PVTAG cache tag en-
tries. The shared and modified bits in the MPTAG are ignored by the CY7C605 when in write-through mode.

4.3.3.3 CY7C605 Cache State Transitions

The following sections describe the five cache line states (invalid, exclusive clean, exclusive modified, shared clean, and
shared modified) and the transitions these states undergo due to transactions on the Mbus. Each numbered transitionina
section corresponds to a numbered transition on the state diagram for that section. Note that state transitions are depen-
dent upon both the cache transaction and the state of the Mbus signals: memory shared (MSH), and memory inhibit
(MIH).

All processor transactions described in this section affect the processor serviced by the CY7C605. All coherent transac-
tions affect all bus agents on the Mbus with a copy of the shared cache line. For further information on Mbus transactions,
please refer to Section 4.12.

4.3.3.3.1 Copy-Back Invalid

Processor Read Miss: CY7C60S issues a coherent read transaction on the Mbus. The CY7C605 will read the cache line
from the second-level memory and then load it into the cache RAM. Then the data is supplied to the processor in the cycle
following the last cache line entry.

1. If MSH = HIGH, then invalid changes to exclusive valid in PVTAG and invalid changes to exclusive clean in
MPTAG.

2. If MSH = LOW, then invalid changes to shared valid in PVTAG and invalid changes to shared clean in MPTAG.

Processor Write Miss: CY7C605S issues a coherent read and invalidate transaction on the Mbus. The CY7C605 reads the
cache line from the second-level memory and loads it into the cache RAM. Then the processor data is written into the
cache RAM in the cycle following the last cache line entry.

3. Invalid changes to exclusive valid in PVTAG and invalid changes to exclusive modified in MPTAG.

Figure 4-18. Copy-Back Invalid

423

_—
= =
=G CY7C604/CY7C605 CMU

Figure 4-19. Copy-Back Exclusive Clean

4.3.3.3.2 Copy-Back Exclusive Clean v
Processor Read Hit: The CY7C605 will supply data to the CY7C601 immediately.
1. PVTAG entry is exclusive valid; exclusive clean in MPTAG: NO STATE CHANGE.

Processor Read Miss: The CY7C605 will issue a coherent read transaction on the Mbus. The CY7C605 will read the cache
line from the second-level memory and then load it into the cache RAM. Then the data is supplied to the CY7C601 in the
cycle following the last cache line entry.

2. If MSH = HIGH, then exclusive valid in PVTAG; exclusive clean in MPTAG.

3. If MSH = LOW, then shared valid in PVTAG; exclusive clean changes to shared clean in MPTAG.
Processor Write Hit: The CY7C605 will update the cache immediately with the CY7C601 data.

4. PVTAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG.

Processor Write Miss: The CY7C605 will issue a coherent read and invalidate transaction on the Mbus. The CY7C605 will
read the cache line from the second-level memory and then load it into the cache RAM. Then the processor data is written
into the cache RAM in the cycle following the last cache line entry.

5. PVTAG entry is exclusive valid; exclusive clean changes to exclusive modified in MPTAG.

Software Flush (Store alternate instruction with ASI = 10H to 14H; see Section 4.3.7): The CY7C605 will invalidate both the
PVTAG and MPTAG cache tag entries.

6. Exclusive valid is changed to invalid in PVTAG; exclusive clean is changed to invalid in MPTAG.

Coherent Read: During the A+ 2 cycle of the Mbus coherent read transaction, the CY7C605 will assert MSH and change
the state of the cache line from exclusive clean to shared clean.

7. Assert MSH; exclusive clean is changed to shared clean in MPTAG and shared valid in PVTAG.
Coherent Read and Invalidate: Both the PVTAG and the MPTAG cache tag entries in the CY7C605 are invalidated.
8. Exclusive valid is changed to invalid in PVTAG:; exclusive clean is changed to invalid in MPTAG.
Coherent Invalidate: Both the PVTAG and the MPTAG entries in the CY7C605 are invalidated.
9. Exclusive valid is changed to invalid in PVTAG; exclusive clean is changed to invalid in MPTAG.
Coherent Write and Invalidate: The CY7C60S invalidates both the PVTAG and MPTAG cache tag entries.
10. Exclusive valid is changed to invalid in PVTAG and exclusive clean is changed to invalid in MPTAG.

4-24

CY7C604/CY7C605 CMU

¢

p

n;

Figure 4-20. Copy-Back Shared Clean

4.3.3.3.3 Copy-Back Shared Clean
Processor Read Hit: The CY7C605 will supply data immediately to the CY7C601.
1. PVTAG entry is shared valid; shared clean in MPTAG: NO STATE CHANGE.
Processor Read Miss: The CYTC605 will issue a coherent read transaction on the Mbus. The CY7C605 will read the cache
line from the second-level memory and load it into the cache RAM. Then the data is supplied to the CY7C601 in the cycle

following the last cache line entry.
2. If MSH = HIGH, then exclusive valid in PVTAG and shared clean is changed to exclusive clean in MPTAG.
3. If MSH = LOW), then shared valid in PVTAG and shared clean in MPTAG.
Processor Write Hit: 'The CY7C605 issues a coherent invalidate transaction on the Mbus. The CY7C605 will update the
cache immediately with the processor data.

4. PVTAG entry is exclusive valid; shared clean is changed to exclusive modified in MPTAG.
Processor Write Miss: The CY7C605 will issue a coherent read and invalidate transaction on the Mbus. The CY7C605 will
read the cache line from the second-level memory and then load the data into the cache RAM. The processor data is

written into the cache RAM in the cycle following the last cache line entry.
Software Flush: The CY7C605 will invalidate both the PVTAG and MPTAG cache tag entries.

6. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG.

S. PVTAG entry is changed to exclusive valid; shared clean is changed to exclusive modified in the MPTAG.
Coherent Read: During the A+ 2 cycle of the Mbus coherent read transaction, the CY7C605 will assert the MSH

7. Assert MSH; shared clean in MPTAG and shared valid in PVTAG.
Coherent Read and Invalidate: Both the PVTAG and the MPTAG cache tag entries will be invalidated.
8. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG.

Coherent Invalidate: Both the PVTAG and MPTAG cache tag entries are invalidated.
9. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG.

Coherent Write and Invalidate: Both the PVTAG and MPTAG cache tag entries are invalidated.
4-25

10. Shared valid is changed to invalid in PVTAG; shared clean is changed to invalid in MPTAG.

% ggcév'm CY7C604/CY7C605 CMU

~—== - SEMICONDUCTCR

6,9,10,11

Figure 4-21. Copy-Back Exclusive Modified

4.3.3.3.4 Copy-Back Exclusive Modified
Processor Read Hit: The CY7C605 will supply data to the processor immediately.
1. PVTAG entry is exclusive valid; exclusive modified in MPTAG: NO STATE CHANGE.

Processor Read Miss: The CY7C605 will initiate a coherent read transaction followed by a write block transaction of the
previously modified cache line. The CY7C60S will read the cache line from the second-level memory and load the data
into the cache RAM. Then the data will be supplied to the processor in the cycle following the last cache line entry into the
cache RAM. The modified cache line has to be written to update the second-level memory. The Mbus Busy (MBB) signal
is asserted from the beginning of the coherent read transaction to the end of the write transaction on the Mbus.

2. If MSH = HIGH, then the PVTAG entry is exclusive valid, and the MPTAG entry is changed from exclusive
modified to exclusive clean.

3. f MSH = LOW, then the PVTAG entry is changed to shared valid, and the MPTAG entry is changed from exclusive
modified to shared clean.

Processor Write Hit: The CY7C605 will update the cache immediately with the processor data.
4. PVTAG entry is exclusive valid; exclusive modified remains as exclusive modified in MPTAG.

Processor Write Miss: The CY7C605 will initiate a coherent read and invalidate transaction followed by a write block trans-
action of the previously modified cache line. The CY7C605 will read the cache line from the second-level memory and
load it into the cache RAM. The processor data is written into the cache RAM in the cycle following the last cache line
entry into the cache RAM. The modified cache line must be written into the second-level memory in order to update the
memory. The MBB signal is asserted from the beginning of the coherent read and invalidate transaction to the end of the
write transaction on the Mbus.

5. PVTAG entry remains exclusive valid; the MPTAG entry remains exclusive modified.

Software Flush: The CY7C605 initiates a coherent write and invalidate transaction on the Mbus. The CY7C605 will write
the modified cache line to update the second-level memory and then it invalidates both the PVTAG and MPTAG cache
tag entries.

6. Exclusive valid is changed to invalid in PVTAG; exclusive modified is changed to invalid in MPTAG.

Coherent Read: During the A + 2 cycle of the coherent read transaction on the Mbus, the CY7C605 asserts both the MSH
and MIH signals. This CY7C605 is the OWNER of the cache line, and is responsible to supply the data for the coherent
read transaction on the Mbus.

4-26

= . CY7C604/ CYTC605 CMU

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C60S changes the state of
the MPTAG cache tag entry from exclusive modified to shared clean, and the PVTAG entry from exclusive valid
to shared valid.

8. If the memory reflection (MR)bit of the SCR is cleared, the CY7C605 changes the state of the MPTAG entry from
exclusive modified to shared modified. The PVTAG entry is changed to shared valid.

Coherent Read and Invalidate: During the A+2 cycle of a coherent read and invalidate transaction on the Mbus, the
CY7C605 asserts both the MSH and MIH signals. This CY7C605 is the OWNER of the cache line, and is responsible to
supply the data for the coherent read transaction on the Mbus. Both the PVTAG and MPTAG cache tag entries are invali-
dated.
9. Exclusive valid is changed to invalid in the PVTAG entry; exclusive modified is changed to invalid in the MPTAG
entry.
Coherent Invalidate: Both the PVTAG and MPTAG cache tag entries in the CY7C60S are invalidated.
10. Exclusive valid is changed to invalid in the PVTAG entry; exclusive modified is changed to invalid in the MPTAG
entry.
Coherent Write and Invalidate: Both the PVTAG and the MPTAG cache tag entries are invalidated.

11. Exclusive valid is changed to invalid in the PVTAG entry; exclusive modified is changed to invalid in the MPTAG
entry.

4.3.3.3.5 Copy-Back Shared Modified
Processor Read Hit: The CY7C605 will supply data immediately to the CY7C601.
1. PVTAG entry is shared valid; shared modified in MPTAG: NO STATE CHANGE.

Processor Read Miss: The CY7C605 will initiate a coherent read transaction followed by a write block transaction of the
previously modified cache line. The CY7C605 will read the cache line from the second-level memory and load the data
into the cache RAM. Then the data will be supplied to the processor in the cycle following the last cache line entry into the
cache RAM. The modified cache line has to be written to update the second-level memory. The MBB signal is asserted
from the beginning of the coherent read transaction to the end of the write transaction on the Mbus.

2. If MSH = HIGH, the PVTAG entry changes to exclusive valid. The MPTAG entry is changed from shared modified
to exclusive clean.

3. If MSH = LOW, then the PVTAG entry changes to shared valid, and the MPTAG entry is changed from shared
modified to shared clean.

Processor Write Hit: The CY7C605 initiates a coherent invalidate transaction on the Mbus. The CY7C605 will update the
cache immediately with the processor data.

4. The PVTAG entry changes to exclusive valid; the entry in the MPTAG is changed from shared modified to exclusive
modified.

Processor Write Miss: The CY7C605 will initiate a coherent read and invalidate transaction followed by a write block trans-
action of the previously modified cache line. The CY7C605 will read the cache line from the second-level memory and
load it into the cache RAM. The processor data is written into the cache RAM in the cycle following the last cache line
entry into the cache RAM. The modified cache line must be written into the second-level memory in order to update the
memory. The MBB signal is asserted from the beginning of the coherent read and invalidate transaction to the end of the
write transaction on the Mbus.

5. PVTAG entry is exclusive valid; the MPTAG entry is changed from shared modified to exclusive modificd.

Software Flush: The CY7C605 initiates a coherent write and invalidate transaction on the Mbus. The CY7C605 will write
the modified cache line to update the second-level memory and then it invalidates both the PVTAG and MPTAG cache
tag entries.

6. Shared valid is changed to invalid in PVTAG; shared modified is changed to invalid in MPTAG.
Coherent Read: During the A+ 2 cycle of the coherent read transaction on the Mbus, the CY7C605 asserts both the MSH

and MIH signals. This CY7C60S is the OWNER of the cache line, and is responsible for supplying the data for the co-
herent read transaction on the Mbus.

4-27

=5 CY7C604/CY7C605 CMU

Figure 4-22. Copy-Back Shared Modified

7. If the memory reflection (MR) bit of the system control register (SCR) is set, the CY7C605 changes the state of
the MPTAG from shared modified to shared clean, and the PVTAG entry is shared valid.

8. If the MR bit of the SCR is not set, then the PVTAG remains shared valid and the MPTAG remains shared
modified. '

Coherent Read and Invalidate: During the A+ 2 cycle of a coherent read and invalidate transaction on the Mbus, the
CY7C605 asserts both the MSH and MIH signals. This CY7C605 is the OWNER of the cache line, and is responsible for

supplying the data for the coherent read transaction on the Mbus. Both the PVTAG and MPTAG cache tag entries are
invalidated.

9. Shared valid is changed to invalid in the PVTAG entry; shared modified is changed to invalid in the MPTAG entry.
Coherent Invalidate: Both the PVTAG and MPTAG cache tag entries in the CY7C605 are invalidated.

10. Shared valid is changed to invalid in the PVTAG entry; shared modified is changed to invalid in the MPTAG entry.
Coherent Write and Invalidate: Both the PVTAG and the MPTAG cache tag entries are invalidated.

11. Shared valid is changed to invalid in the PVTAG entry; shared modified is changed to invalid in the MPTAG entry.

4.3.3.3.6 Write-Through Invalid

Processor Read Miss: The CY7C605 issues a block read transaction on the Mbus. The CY7C60S will read the cache line
from the second-level memory and load the data into the cache RAM. The data will be supplied to the processor in the
cycle following the last cache line entry written to the cache RAM.

1. The PVTAG and MPTAG entries are changed from invalid to valid.
Processor Write Miss: The CY7C605 will issue a write-buffered coherent write and invalidate transaction on the Mbus.
2. The PVTAG and MPTAG entries remain invalid.

Figure 4-23. Write-Through Invalid

4-28

T'“j
=g CY7C604/CY7C605 CMU

Figure 4-24. Write-Through Valid

4.3.3.3.7 Write-Through Valid
Processor Read Hit: The CY7C605 will supply data to the CY7C601 immediately.
1. The PVTAG and MPTAG entries remain valid: NO STATE CHANGE.

Processor Read Miss: The CY7C605 issues a coherent read transaction on the Mbus. The CY7C605 will read the cache line
from the second-level memory and load the data into the cache RAM. The data will be supplied to the processor in the
cycle following the last cache line entry written to the cache RAM.

2. The PVTAG and MPTAG entries remain valid.

Processor Write Hit: The CY7C60S issues a write-buffered coherent write and invalidation transaction on the Mbus. The
CY7C605 will write data into the cache.

3. The PVTAG and MPTAG entries remain valid.

Processor Write Miss: The CY7C605 issues a write-buffered coherent write and invalidate transaction on the Mbus. The ;
CY7C605 will not write to the cache and invalidates the cache line in order to avoid potential data inconsistency due to
aliasing.

4. The PVTAG and MPTAG entries change from valid to invalid.
Software Flush: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries.

5. The PVTAG and MPTAG entries change from valid to invalid.
Coherent Read: During the A+ 2 cycle of the Mbus coherent read transaction, the CY7C605 asserts MSH.

6. Assert MSH; the PVTAG and MPTAG entries remain valid.
Coherent Read and Invalidate: The CY7C60S invalidates both the PVTAG and MPTAG cache tag entries.

7. The PVTAG and MPTAG entries change from valid to invalid.

Coherent Write and Invalidate: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries.
8. The PVTAG and MPTAG entries change from valid to invalid.

Coherent Invalidate: The CY7C605 invalidates both the PVTAG and MPTAG cache tag entries.
9. The PVTAG and MPTAG entries change from valid to invalid.

4.3.3.3.8 Bus Snooping

The CY7C605 bus snooper watches Mbus transactions and snoops into the MPTAG array for certain transactions, aslisted
in Table 4-6.

4.3.3.4 CY7C605 Address Aliasing

Two or more virtual addresses mapped to the same physical address is known as aliasing. This must be detected to maintain
data consistency in a virtual cache system. The SPARC reference system software convention permits the use of aliases in
address spaces that are modulo with respect to the system’s underlying cache size. In order to allow the efficient caching of
physical memory pages where such aliases may occur, the CY7C60S supports automatic address aliasing protection.

4-29

& Crrress CY7C604/CY7C605 CMU

Table 4-6. Mbus Snooping Transactions

Cache Mode Transaction Type Snoop

Copy-Back Coherent Read & Invalidate yes
Coherent Write & Invalidate yes
Coherent Read yes
Coherent Invalidate yes
Read no
Write no

Write-Through | Coherent Read & Invalidate yes*
Coherent Write & Invalidate yes
Coherent Read yes*
Coherent Invalidate yes
Read no
Write no

*These transactions are not generated by the CY7C605, but the CY7C605 will snoop these transactions if generated by another bus master

The SPARC system software convention ensures that the aliased entry maps to the same cache line address for each
CY7C605 in the multiprocessor system. Coupled with this convention, the cache controller hardware automatically pre-
vents any existence of address aliases in the virtual caches.

The CY7C605 tests for address aliasing during all cache misses except write-through mode write misses. Address aliasing
cannot occur unless the MMU is enabled (ME bit of SCR). To detect address aliasing in the CY7C605, the physical ad-
dress of the missed cache access is compared with the selected MPTAG entry.

If the physical address of the selected MPTAG entry and the physical address of the cache miss match, then address alias-
ingisdetected. If detected, an aliasis corrected by updating the selected cache tag entry with the new virtual address. The
CY7C605 then halts the cache miss processing and provides an access to the cache, as with a cache hit. If no alias is de-
tected, the cache miss processing proceeds normally.

For an alias detected during a read-access cache miss, the selected cache tag entry is updated with the virtual address that
caused the cache miss. The cache miss processing is halted, and the CY7C601 is supplied with data from the cache.

If an address alias is detected during a copy-back mode write-access cache miss, the selected cache tag entry is updated
with the new virtual address causing the cache miss. The modified bit is set if it was not set previously. The cache miss
processing is halted, and the cache write access is enabled.

In write-through write-access cache misses, address aliasing is not checked. However, in order to avoid potential address
aliasing, the selected cache line is invalidated. Address aliasing is not checked in write-through cache mode in order to
avoid unnecessary performance degradation.

4.3.4 CY7C604/CY7C605 Cache Control Signals

The CY7C604/605 controls the virtual cache through control signals supplied to the CY7C601 and to the cache RAMs.
The signals used by the cache controller to control the CY7C601 consist of MHOLD, MDS, and TOE. MHOLD is used
tostall the CY7C601 until the CY7C604/605 can service the CY7C601 memory access request, such as during cache miss
processing or during table walks. MDS is used by the CY7C604/605 to strobe data into the CY7C601 when MHOLD is
asserted. This causes the CY7C601 to latch data on the data bus despite being stalled by the assertion of MHOLD. IOE
is used as the enable signal for the AOE and DOE inputs of the CY7C601. When TOE is deasserted, the address and
data bus output drivers of the CY7C601 are disabled. This feature is used to force the CY7C601 off of the virtual address
and data buses.

The signals used to control the cache RAM consist of the cache byte write enable (CBWE) and cache read output enable
(CROE) signals. CROE is asserted low to enable the output of the cache RAMs during a cache read. CBWE(3:0) is as-
serted low to enable writing to the cache RAMs. The multiple CBWE signals allow the cache controller to enable byte,
halfword, or word writes to the cache RAM. Single byte or halfword reads are handled by the CY7C601, which reads an
entire 32-bit word and internally discards unwanted bytes.

During a cache read miss, the CY7C604/605 halts the CY7C601 by asserting MHOLD. The CY7C604/605S also deasserts
IOE, which is used to disable the CY7C601 data bus and address bus output drivers. The cache controller fetches the

4-30

!Ii

T
£ e CY7C604/CY7C605 CMU
SEVACONDUCTOR

4

X

new cache line from main memory, asserting CBWE(3:0) and the cache line addresses to write the data into the cache.
Then the CY7C604/60S places the missed read data word on the data bus and toggles the MDS (Memory Data Strobe)
51gna1 Toggling MDS forces the integer unit to latch the data on the data bus. The cache read miss terminates by reassert-
ing the IOE s1gnal and then releasing the MHOLD signal. TOE is typically reasserted one or more clocks before the
MHOLD signal is deasserted, thus allowing the CY7C601 to output the next address onto the virtual address bus. This
provides the address set-up time for the next memory access after MHOLD is released. Read misses are handled in the
same manner for both copy-back and write-through modes of caching.

Cache write misses for write-through mode generally do not affect the operation of the CY7C601 due to the presence
of write buffers in the CY7C604/605 (refer to the following section on the write buffer). In the case of a write miss, the
write data is written to the write buffer instead of the cache memory and the cache tag for the cache line is invalidated.
The write buffer writes the data to memory as a background task. The CY7C601 is stalled for a write-through write miss
only if the write buffer is full. This occurs when the CY7C601 overruns the four doubleword buffers in the write buffer.
In this case, MHOLD is asserted until space is made by the write buffer as it writes its contents into main memory.

On a write miss, if the cache mode is copy-back and the cache line is clean, the cache line is replaced in a similar manner
as in the cache read miss described above. MHOLD is asserted to stall the CY7C601 and TOE is deasserted to force the
CY7C601 off the data and address buses. A new cache line is read from main memory, and the cache is updated by writing
the data into the cache. This is accomplished by supplying the cache addresses, cache line data from main memory, and
asserting the CBWE signals to write the data. The write cache miss terminates by reasserting IOE, which causes the
missed write data and address to reappear on their respective buses. The CY7C604/605 then strobes CBWE(3:0) accord-
ing to the address and SIZE(1:0) signals to write the data into the cache. The copy-back write miss procedure terminates
by deasserting MHOLD, which allows the processor to return to execution.

If the cache line is modified, the modified cache line is read out of the cache and stored into the write buffer during the
same time the new cache line is fetched from main memory and stored in the read buffer (refer to the following sections
on write and read buffers). MHOLD is asserted and IOE deasserted to force the CY7C601 into a halted and inactive
state. The cache controller asserts CROE and the cache addresses to flush the modified cache line into the write buffer.
The cache controller then writes the new cache line into the cache from the read buffer while simultaneously writing
the modified cache line into main memory from the write buffer. This is accomplished by supplying the cache addresses
for the cache line data, and asserting the CBWE(3:0) signals to write the data into the cache. The copy-back write miss
for a modified cache line terminates by releasing IOE to allow the missed write data and address to reassert on the data
and address buses. The CY7C604/605 asserts the CBWE(3:0) signals to write the data into the cache. The MHOLD signal
is then deasserted to allow the CY7C601 to return to processing. See Section 4.11 for virtual bus timing diagrams.

4.3.5 CY7C604/605 Write Buffer

The CY7C604/605 supports four write buffers on chip, as shown in Figure 4-25. In write-through mode, each buffer can
store two 32-bit words, which efficiently supports store double operations. A physical address tag is associated with each
of the four buffers in write-through mode. Upon a write access, the write buffers are loaded with the data to be written
to main memory. This allows the CY7C601 to continue operation without stalling due to memory access delays on the
physical bus.

In copy-back mode, the same buffers are configured to store a 32-byte cache line with a single physical address as shown
in Figure 4-26. This allows for faster cache line flushes during modified cache line replacement. The modified cache line
is flushed into the write buffer as the new cache line is simultaneously fetched from main memory. In either case, the
contents of the buffers are transferred to main memory as a background task. On Power-On Reset (POR), all of the write
buffers are invalidated.

Non-cacheable writes use the four write buffers in the same manner as write-through cache transaction, even if copy-back
mode is enabled. However, a copy-back cache line and non-cacheable data cannot simultaneously occupy the write buffer.

The CY7C604/605 requests Mbus ownership as soon as one of the write buffers is valid. For each write buffer transfer,
the CY7C604/605 re-arbitrates the Mbus again. A modified cache-line flush is considered as one transaction. When the
bus is still granted to the CY7C604/605 (i.e., bus parking), the CY7C604/605 can transfer the data immediately without
any bus re-arbitration (so there are no dead clocks between transactions). Once all of the write buffers are full, further
writes from the CY7C601 are held until a buffer is empty. If there is a read access cache miss, the CY7C601 is held until
all of the write buffers are written back into main memory in order to maintain data consistency. After the write buffers
are cleared, the CY7C604/605 resumes the task of fetching the cache line for the cache read miss.

4-31

u-"*
M

= CY7C604/CY7C605 CMU

PAO A Word 0 Word 1
PA1 v Word 0 Word 1
PA2 v Word 0 Word 1
PA3) Word 0 Word 1
35 0 31 0 31 0

Figure 4-25. Write Buffers
(Write-Through Mode or Non-Cacheable Write)

I PA]vlwo|W1|w2|w3|w4|w5|we|w7|
35 0 31 031 031 031 031 031 031 0310
Figure 4-26. Write Buffer (Copy-Back Mode)

|w0|w1]w2|w3[w4]w5] ws]w7]
31 031 031 031 031 031 031 031 0
Figure 4-27. Read Buffer (Copy-Back Mode)

4.3.6 CY7C604/605 Read Buffer

The CY7C604/605 provides a read buffer of 32 bytes (one cache line) in order to support simultaneous writing of a modi-
fied cache line to main memory and reading of a new cache line from main memory into the cache under copy-back mode.
The read buffer is shown in Figure 4-27. The read buffers are invalidated on power-on reset.

4.3.7 CY7C604/605 Cache Flushing Operations

The CY7C604/605 supports five different levels of cache flushing operations, as illustrated in Table 4-7. The cache flush-
ing operations are dependent upon the cache mode and state. Flushing under copy-back cache mode for a modified cache
line means flushing the cache line into main memory and invalidating the cache tag entry. If the cache line is clean (copy-
back mode), or is in write-through cache mode, flushing only invalidates the cache tag entry.

Unlike a TLB flush operation, all cache flushing operations flush only one cache line at a time. Each cache line can be
flushed on the basis of a page, segment, region, context, or user mode, as illustrated in Table 4-7. The levels of address
matching for a cache line flush vary from a full 4-kbyte page level match of address and context, to a match of user mode
only.

The cache line selected for operation is indexed as in normal cache access operations (VA(15:5)). If the cache flush opera-
tion does not cause a match of the cache tag entry, no action occurs. The five types of cache flush operations are: page
flush, segment flush, region flush, context flush, and user flush. These different levels of cache flush are mapped with
the ASIbits. The store alternate space instructions for the CY7C601 must be used to assert the ASIvalue that corresponds
with the level of cache flush operation desired. The combination of the ASIand a store operation using the virtual address
specify the cache flush operation and the cache line to be matched for flushing. During flush operations, the context
register provides the context number to be compared.

Table 4-7. Cache Flush Operations
Cache Flush ASI | Compares:

PAGE 10 H { Context (or Supervisor S = 1,), Index 1, Index 2, and Index 3
(bits 17 and 16)

SEGMENT 11 H | Context (or Supervisor S = 1), Index 1, and Index 2

REGION 12 H | Context, (or Supervisor S = 1), and Index 1
CONTEXT 13 H | Context and User (S = 0)
USER 14 H | User (S = 0)

4-32

CY7C604/CY7C605 CMU

é

IlrY
\

§

Table 4-8. Cacheable/Non-Cacheable accesses

Access Condition
Not cached | ASI = 20-2F H (By-pass) or ASI = 1 (Local)
ASI = UN, RES (unassigned/reserved)
BM = 1and ME = xand CE = xand ASI = 89 H
BM = xand not (ME = 1 and CE = 1 and PTE[C] = 1)
LDSTO cycles in write-through mode

Table walk cycles

Cache lock miss accesses which have valid entries, but no alias

Cached BM = 0 and ME = 1and CE = 1and ASI = 89,A,BH and PTE[C] =1
BM = 1land ME = 1and CE = 1and ASI = A,BH and PTE[C] =1

4.3.8 CY7C604/605 Cacheable/Non-Cacheable Memory Accesses

Pages that are declared as non-cacheable (C = 0 in the page table entry (PTE)) are not cached in the cache RAM and,

as such, there are no associated cache tag entries in the CY7C604/605. For data consistency and implementation reasons,

the CY7C604/605 assumes the following cycles are also non-cacheable:

a. LDSTO cycles in write-through mode (CY7C604 only)

b. table walk accesses

c. cache-missed accesses during cache-lock mode (CY7C604 only) ni
d. boot mode accesses (except user/supervisor data accesses when the MMU is enabled and the cache is enabled) i
e. pass-through mode accesses

f. by-pass mode accesses

g. accesses while the cache is disabled

h. local-mode accesses

i. when MMU is disabled (ME bit of SCR = 0)

Table 4-8 shows the CY7C604/605 operation conditions for cacheable and non-cacheable accesses. Refer to the section
on MMU operation modes for additional information.

4.3.9 CY7C604/605 Mbus Cacheable (MC) Bit

One of the CY7C604/605 output signals is a Mbus cacheable bit, which is embedded in the Mbus address phase as
MAD(43) (Refer to Section 4.12, Physical Bus for more information on Mbus.) The Mbus cacheable bit indicates the
cacheable status of a memory access by the CY7C604/605. This information is consistent with the cache visibility philoso-
phy of the CY7C604/605 and is made available for use by a secondary cache tag array.

When the MMU is enabled, the MC bit is set by the state of the C bit in the corresponding PTE entry. When the MMU
function of the CY7C604/605 is disabled, the C bit of the SCR register sets the value of the MC bit. The C bit of the SCR
register is loaded by the CY7C601, and it defines the cacheable status of memory accesses when the MMU is disabled.
Table 4-9 illustrates the state of the MC bit for various CY7C604/605 operation conditions.

Table 4-9. State Table for MC (Memory Cacheable) Bit

MC Condition
0 ASI = 20-2FHor ASI = 1H
not applicable ASI = UN, RES
SCR[C] Not one of the above and ME =0 or

Not one of the above and (BM = 1 and ASI = 8,9 H) or
Not one of the above and table walk

PTE(C] Not one of the above

4-33

=
== s CY7C604/CYTC605 CMU

4.3.10 CY7C604/605 LDSTO (Atomic Load-Store Instruction) cycles

In order to maintain data consistency under write-through cache mode, LDSTO (atomic load-store) cycles are treated
as non-cacheable transactions (CY7C604 only). All LDSTO accesses are forced into main memory in this case. The C
bit in the TLB entry is output on the Mbus as the MC (MAD(43)) bit. If a cache hit occurs on a LDSTO cycle with the
cache in write-through mode, the cache line is invalidated. If the MMU is disabled, the C bit in the SCR is output on
the MC signal of the Mbus.

In copy-back mode, LDSTO cycles are treated as normal memory accesses and are cached according to the C bit of the
PTE associated with the access.

LDSTO operations on the physical bus (Mbus) are repeated if interrupted by a relinquish and retry before the load opera-
tion of the LDSTO has been completed. However, if the relinquish and retry occurs after the load operation has com-
pleted, only the store operation of the LDSTO is repeated.

4.3.11 CY7C604/605 Cache Byte Write Enables

The CY7C604/605 supports four separate byte write enables (CBWE(3:0)) to control write accesses to the cache RAM
(CY7C157). These signals are generated using the lower two bits of the virtual address (VA(1:0)) and size (SIZE(1:0))
information during write accesses.

The decoding of the SIZE(1:0) and VA(1:0) bits is shown in Tuble 4-10. The CBWEQD signal controls the most significant
" byte (MSB), which is located at a word-aligned address N. CBWE3 controls the least-significant byte, located at address
N +3. All of the byte write enables are asserted for a cache line load into the cache RAM during a cache miss.

‘CBWEO CBWET CBWE2 CBWE3
| Address N I Address N+1 l Address N+2 |Address N+3]

31 2423 16 15 87 0
Figure 4-28. CBWE Byte Assignments

Table 4-10. Byte Write Enables

Size(1:0) | A(1:0) | CBWE3 | CBWE2 | CBWEI | CBWEO
00 00 1 1 1 0
00 01 1 1 0 1
00 10 1 0 1 1
00 11 0 1 1 1
01 00 1 1 0 0
01* o1* 1 1 1 1
01 10 0 0 1 1
o01* 11* 1 1 1 1
10 00 0 0 0 0
10* o1+ 1 1 1 1
10* 10* 1 1 1 1
10* 11+ 1 1 1 1
11 00 0 0 0 0
11* 01* 1 1 1 1
11* 10* 1 1 1 1
11* 11* 1 1 1 1

*Denotes an illegal combination of Size(1:0) and A(1:

S

).

4-34

=
= . CY7C604/CY7C605 CMU
=== 47 SEMICONDUCTOR

4.4 CY7C604 / CY7C605 Registers

This section describes the control and data registers for the CY7C604/605. All registers for the CY7C604 and CY7C605
are identical with the exception of the system control register (SCR). Sections or diagrams specific to the CY7C604 or
CY7C605 are named with that part name only, whereas sections or diagrams common to both will be named using
CY7C604/605.

Allvalues in all control registers are read/write (with the exception of the Implementation and Version fields of the SCR).
Control registers are accessible by use of the alternate space load or store instructions with ASI = 4. Please refer to
Section 4.8, ASI and Register Mapping, for more information on register addressing.

Programmer’s Note: To ensure software compatibility with future versions of the CY7C604/605, reserved fields in a register
should be written as zeros and masked out when read.

4.4.1 CY7C604 System Control Register (SCR)

The system control register, as shown in Figure 4-29, defines the operation modes for the cache controller and MMU.
Refer to Section 4.2, MMU Operational Modes, for additional information on the operation modes of the MMU. The
following describes the functions of the bit fields in the SCR.

IMPL, VER The Implementation number (SCR(31:28)) and the Version number (SCR(27:24)) fields are hardwired; they
are read only fields and writes to those fields are ignored. The assignments for the CY7C604 these fields are:

Implementation number field: 0001
Version number field: 0000

MCA(1:0) Multichip address field (SCR(23:22)) provides the address field in multichip configuration. Refer to the Section
on Multichip Configuration for more information.

MCM(1:0) Multichip mask field (SCR(21:20)) provides a masking facility to mask certain multichip address (MCA) bits
in order to provide a facility to build systems with a different number of CY7C604s (from 1 to 4).

MV Multichip configuration valid bit (SCR(19)) indicates that the MCA and MCM fields are valid (see Multichip Configu-
ration, Section 4.5).

BM Boot-mode bit (SCR(14)) indicates the system is in boot mode. This bit is set to 1 to indicate boot mode. This bit
is automatically set upon power-on reset.

C Cacheable bit (SCR(13)) indicates whether the access is cacheable or not when the MMU is disabled (this bit is indepen-
dent of the CE bit, see Cacheable/Non-Cacheable Memory Accesses, Section 4.3.8 for more details.) This bit is set to
1if accesses on the physical bus (with the MMU disabled) are to be considered cacheable.

CM Cache-mode bit (SCR(10)) indicates whether the cache is operating under write-through no write allocate policy or
copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable
write-through cache mode.

CL Cache-lock bit (SCR(9)) indicates whether the entire cache is locked or not (see Section 4.3.2.3 on Cache Lock, page
4-19). This bit is set to 1 to lock the cache.

CE Cache-enable bit (SCR(8)) indicates whether the virtual cache is enabled or not. This bit is set to 1 to enable the cache
controller.

l mee | ver | mca | mom [mv] Rsv emfc| msv [eufci]ce] RSV [el
31 28 27 24 23 22 21 20 19 18 1514 13 12 11 10 9 8 7 21 0

IMPL = Specific Implementation of the MMU CM = Cache Mode

VER = Version of Specific Implementation (typically mask revision) CL = Cache Lock

MCA (0:1) = Multichip Address CE = Cache Enable

MCM (0:1) = Multichip Mask NF = No Fault

MV = Multichip Valid ME = MMU Enable

BM = Boot Mode RSV = Reserved

C = Cacheable (when MMU disabled)

Figure 4-29. CY7C604 System Control Register (SCR)

4-35

=), CY7C604/CYTC605 CMU

NF No-fault bit (SCR(1)) prevents supervisor data accesses from signaling data faults to the CY7C601. When the NF
bit is set, exception-generating logic (in both the TLB and the table walk) does not indicate supervisor data faults to the
CY7C601 (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data
access operations. When the NF bit is not set, the CY7C604 reports the supervisor data exceptions.

ME MMU-enable bit (SCR(O)) indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU.
Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the CY7C604 into the following
state: cache disabled (CE = 0), cache unlocked (CL = 0), write-through mode (CM = 0), non-cacheable (C = 0),

boot-mode enabled (BM = 1), multichip disabled (MV = 0), no fault disabled (NF = 0), and MMU disabled (ME =
0).

4.42 CY7C605 System Control Register (SCR)

The System Control Register, as shown in Figure 4-30, defines the operation modes for the cache controller and MMU.
Refer to page 4-13 for additional information on the operation modes of the MMU. The following describes the functions
of the bit fields in the SCR.

IMPL, VER The Implementation number (SCR(31:28)) and the Version number (SCR(27:24)) fields are hardwired; they
are read only fields and writes to those fields are ignored. The assignments for the CY7C605 are:

Implementation number field: 0001

Version number field: 1111
MCA(1:0) Multichip address field (SCR(23:22)) provides the address field in multichip configuration. Refer to Section 4.5
on Multichip Configuration for more information.
MCM(1:0) Multichip mask field (SCR(21:20)) provides a masking facility to mask certain multichip address (MCA) bits in
order to provide a facility to build systems with a different number of CY7C605s (from 1 to 4).
MV Multichip configuration valid bit (SCR(19)) indicates that the MCA and MCM fields are valid (see Multichip Configu-
ration, Section 4.5).

MID(@3:0) Module identification number (SCR(18:15)) identifies the processor module during transactions on the Mbus
(refer to Section 4.12). This four bit module identification number is embedded in the Mbus address phase of all Mbus
transactions initiated by the CY7C605.

BM Boot-mode bit (SCR(14)) indicates the system is in boot mode. This bit is set to 1 to indicate boot mode. This bit is
automatically set upon power-on reset.

C Cacheable bit (SCR(13)) indicates whether the access is cacheable or not when the MMU is disabled (this bit is indepen-
dent of the CE bit, see Cacheable/Non-cacheable Memory Accesses, Section 4.3.8, for more details.) This bit is set to 1if
accesses on the physical bus (with the MMU disabled) are to be considered cacheable.

MR Memory Reflection (SCR(11)) MR = 1 indicates that the main memory system on the Mbus supports memory reflec-
tion. MR affects the status of the MPTAG cache tagbits as described in the cache state transitions section starting on page
4-23.

CM Cache-mode bit (SCR(10)) indicates whether the cache is operating under write-through no write allocate policy or
copy-back write allocate policy. This bit is set to 1 to enable copy-back cache mode. Setting this bit to 0 will enable
write-through cache mode.

mee | ven | mca | mom [mv] mo@Eo) |av] clrsvmeom]rsy] cel RSV [[mef
31 28 27 24 23 22 21 20 19 18 1514 13 12 11 10 9 8 7 21 0
IMPL = Specific Implementation of the MMU C = Cacheable (when MMU disabled)
VER = Version of Specific Implementation (typically mask revision) MR = Memory Reflection
MCA (1:0) = Multichip Address CM = Cache Mode
MCM (1:0) = Multichip Mask CE = Cache Enable
MV = Multichip Valid NF = No Fault
MID(3:0) = Module Identifier (3:0) ME = MMU Enable
BM = Boot Mode RSV = Reserved

Figure 4-30. CY7C605 System Control Register (SCR)

4-36

=

= o
— CY7C604/CY7C605 CMU
SEMICONDUCTOR

u!

CE Cache-enable bit (SCR(8)) indicates whether the virtual cache is enabled or not. Thisbit is set to 1 to enable the cache
controller.

NF No-fault bit (SCR(1)) prevents supervisor data accesses from signaling data faults to the CY7C601. When the NF bit is
set, exception-generating logic (in both the TLB and the table walk) does not indicate supervisor data faults to the
CY7C601 (via MEXC), but status and address information is recorded in the SFSR and SFAR registers as in normal data
access operations. When the NF bit is not set, the CY7C605 reports the supervisor data exceptions.

ME MMU-enable bit (SCR(0)) indicates whether the MMU is enabled or not. This bit is set to 1 to enable the MMU.

Upon power-on reset, all writable control bits except the BM bit are cleared. This sets the CY7C605 into the following
state: cache disabled (CE = 0), write-through mode (CM = 0), non-cacheable (C = 0), boot-mode enabled (BM = 1),
memory reflection disabled (MR = 0), no fault disabled (NF = 0), and MMU disabled (ME = 0).

4.4.3 CY7C604/605 Context Table Pointer Register (CTPR)

The context table pointer points to the context table in physical memory. The table is indexed by the contents of the
context register. The context table pointer appears on bits 35 through 14 of the Mbus (MAD(35:14)) during the first fetch
of TLB miss processing. Once the root pointer is cached in the PTPC (Page Table Pointer Cache), no fetching of the
root pointer is required until the context is changed (see Figure 4-31).

[ctp l RSV l
31 70 9 0

CTP = Context Table Pointer
RSV = Reserved

Figure 4-31. CY7C604/605 Context Table Pointer Register

4.4.4 CY7C604/605 Context Register (CXR)

The context register defines a virtual address space associated with the current process. The CXR is a twelve-bit register,
which supports 4096 contexts. This register is used to define the current context for the CY7C604/605. Nearly all
CY7C604/605 operations are dependent upon matching the value of this register to a cache tag entry or TLB entry.

| RSV | CXN]
31 12 1 0

CXN = Context Number
RSV = Reserved

Figure 4-32. CY7C604/605 Context Register

4.4.5 CY7C604/605 Reset Register (RR)

The RR register contains information regarding whether Watch Dog Reset (WDR), Software Internal Reset (SIR) or
Software External Reset (SER) occurred. This is a read/write register, and setting the software internal reset bit (SIR)
or the software external reset (SER) causes the corresponding reset. Refer to CY7C604/605 Reset, Section 4.7, for more
details on reset processing. Upon power-on reset, the WDR, SIR, and SER bits in the RR will be cleared. Reading the

RR will also clear these bits.
lg, RSV k@ﬁ{&ﬁ]éeﬂ
3 2 1 0

31

RSV = Reserved SIR = Software Internal Reset
WDR = Watch Dog Reset SER = Software External Reset

Figure 4-33. CY7C604/605 Reset Register

4-37

=
=55 CY7C604/CY7C605 CMU
===+ SEMICONDUCTOR

4.4.6 CY7C604/605 Root Pointer Register (RPR)

The RPR is the context level table page table pointer (PTP) and is cached in the Page Table Pointer Cache. Refer to
Section 4.1.5 on page 4-11 for information on the page table pointer cache.

On power-on reset, the V bit is cleared. When the current context is changed by writing to the Context Pointer Register
(CXR), the V bit of the RPR is cleared. The V bit is also cleared when the CTPR register is written.

I RP I
31 6 5 10
RP = Root Pointer
RSV = Reserved
V = Valid

Figure 4-34. CY7C604/605 Root Pointer Register

4.4.7 CY7C604/605 Instruction access PTP (IPTP)

The IPTP is the instruction access level 2 table page table pointer (PTP) and is part of the Page Table Pointer Cache.
On power-on reset, the V bit is cleared.

| IPTP [rev |v]
31 4 3 10
IPTP = Instruction Access PTP
RSV = Reserved
V = Valid

Figure 4-35. CY7C604/605 Instruction Access PTP Register

4.48 CY7C604/605 Data access PTP (DPTP)

The DPTP is the data access level 2 table page table pointer (PTP) and is a register in the Page Table Pointer Cache.
On power-on reset, the V bit is cleared.

I DPTP | RSV I v |
31 4 3 10
DPTP = Data Access PTP
RSV = Reserved
V = Valid

Figure 4-36. CY7C604/605 Data Access PTP Register

4.49 CY7C604/605 Index Tag Register (ITR)

The ITR contains the tag (index1 and index2) fields of the IPTP and DPTP entries. Refer to Section 4.1.5 on page 4-11
for information on the PTP cache.

I ITAG I RSV | DTAG l RSV |
31 8 17 16 15 2 1 0

RSV = Reserved
ITAG = Instruction Access PTP Tag
DTAG = Data Access PTP Tag

Figure 4-37. CY7C604/605 Index Tag Register

4-38

5"@’ CY7C604/CY7C605 CMU
===, SEMICONDUCTCR

4.4.10 CY7C604/605 TLB Repl t Control Register (TRCR)

The TRCR contains the Replacement Counter (RC) and Initial Replacement Counter (IRC) fields as shown in
Figure 4-38. These fields are used in order to support random replacement and to support locking capabilities of the TLB.
Refer to Section 4.1.1.2 on page 4-6for information on TLB entry locking. Upon power-on reset, both the RC and IRC
fields are initialized to zero.

| RSV | re jnsvl IRC]

31 14 13 8 7 65 0

RSV = Reserved
RC = Replacement Counter
IRC = Initial Replacement Counter

Figure 4-38. CY7C604/605 TLB Replacement Control Register

4.4.11 CY7C604/605 Synchronous Fault Status Register (SFSR)

The synchronous fault status register, illustrated in Figure 4-39, contains fault-associated information for synchronous
faults. Synchronous faults are faults that occur during an integer unit access of memory. Synchronous faults include
almost all possible faults for the CY7C604/605. This type of fault is synchronous to the operations of the CY7C601. For
the CY7C604/605, this fault type covers all cases except those caused by delayed writes of data stored in the write buffers.
These faults are asynchronous to the operation of the CY7C601, and are named asynchronous faults.

An example of a synchronous fault is a privilege violation fault caused by attempting an unauthorized memory access.
These faults are discussed in detail in Section 4.9. Upon encountering a synchronous fault, the CY7C604/605 asserts the
MEXC signal, along with MHOLD and MDS. Synchronous faults are the only exception type that assert the MEXC
signal.

In the CY7C604, the copy-back translation error (CBT) bit indicates that a translation error occurred during a table walk
for the flush of a modified cache line of a copy-back mode cache miss. The SFAR contains the address of the missed
cache access, not the modified cache line address that caused the translation error. When this type of error occurs, the
cache tag remains valid, and the cache line remains modified. Note that this bit is not used in the CY7C60S, and is re-
served. The physical address for a cache line is always available in the CY7C605, therefore making the CBT bit unneces-
sary in a CY7C60S based system.

The uncorrectable error (UE), timeout error (TO), and bus error bits (BE) report error status as encoded in the MERR,
MRTY, and MRDY signals. (Refer to the Section 4.12 on Mbus for further information.) The level bits (L) describe
the level in a table walk process at which the fault occurred (if applicable). These bits are described in Table 4-17 on page
4-49.

The access type bits (AT(2:0)) describes the access type that caused the fault. This field specifies user/supervisor access
and whether the access is load or store of data or instruction. The AT bits are described in Table 4-18 in the section on
synchronous faults. The fault type bits (FT) describe the fault type, and are illustrated in Table 4-19 on page 4-49. The
fault address valid bit is set when the address in the synchronous fault address register (SFAR) is a valid fault address.
The over-write bit (OW) is set in the case of a double fault where the fault status stored in the SFSR does not correspond
with the fault first trapped on by the CY7C601. This is discussed in detail in the section on synchronous faults, page 4-47.

Upon power-on reset, the UC, TO, BE, FT, FAV, and OW bits in the SFSR will be cleared. Reading the synchronous
fault status register clears all fault status bits.

[rsv ICBT{UC[TO[BE[L | AT l FT IFAV F)w]

31 14 13 12 11 109

RSV = Reserved L = Level

UC = Uncorrectable Error AT = Access Type

TO = Time Out Error FT = Fault Type

BE = Bus Error FV = Fault Address Valid

*CBT = Copy-back Translation Error OW = Over Write
(*CY7C604 only; reserved in CY7C605)

Figure 4-39. CY7C604/605 Synchronous Fault Status Register

4-39

|

==
== Croress CY7C604/CY7C605 CMU

4.4.12 CY7C604/605 Synchronous Fault Address Register (SFAR)

The synchronous fault address register contains the faulted virtual address.

[‘ SFA I
0

31 SFA = Synchronous Fault Address
Figure 4-40. CY7C604/605 Synchronous Fault Address Register

4.4.13 CY7C604/605 Asynchronous Fault Status Register (AFSR)

Asynchronous faults are those faults caused by a delayed memory access initiated by the CY7C604/605. This type of error
can only be caused by a delayed write to main memory initiated by the write buffer. Asynchronous faults cause the CMER
signal to be asserted, which can be used as an interrupt to the CY7C601.

The UC, TO, and BE bits are identical to those in the SFSR. They are set by the information encoded into the MERR,

MRTY, and MRDY signals of the Mbus (see Section 4.12.4). The asynchronous fault address bits provide the upper four
bits of the physical address not captured in the Asynchronous Fault Address Register (AFAR), which is a thirty-two bit

register.
The Asynchronous Fault Occurred (AFO) bit is set when an asynchronous fault is encountered. Once the asynchronous

fault occurred bit is set, no further asynchronous faults are recorded until the AFO bit is cleared, which is accomplished
by reading the asynchronous fault address register (see Figure 4-41). The UC, TO, BE, and AFO bits in the AFSR will

be cleared upon power-on reset. Reading the AFSR will also clear these bits.

RSV Iucl TOI BEI RSV | AFA(35:32) | RSV }AFOI
31 1312 11 109 87 4 3 i 0
RSV = Reserved BE = Bus Error
UC = Uncorrectable Error AFA = Asynchronous Fault Address
TO = Time Out Error AFO = Asynchronous Fault Occurred

Figure 4-41. CY7C604/605 Asynchronous Fault Status Register

4.4.14 CY7C604/605 Asynchronous Fault Address Register (AFAR)

The AFAR contains bits 31 through 0 of the physical address for asynchronous faults (bus errors). Asynchronous faults
can occur during delayed write accesses or during background cache line flush operations in copy-back mode (see
Figure 4-42). The address in the AFAR is concatenated with the four AFA bits in the AFSR to define the entire 36-bit

physical address.

AFA l

31
AFA = Asynchronous Fault Address

Figure 4-42. CY7C604/605 Asynchronous Fault Address Register

4-40

CY7C604/CY7C605 CMU

4.5 CY7C604 / CY7C605 Multichip Configuration

The CY7C604/605 is designed to allow expansion of the 64-kbyte cache by adding additional CY7C604/605s, each control-
ling two CY7C157 cache RAMs. A system using an expanded cache is required to configure the CY7C604/605s for multi-
chip operation. Multichip operation is defined by the MultiChip Address field (MCA(1:0)), MultiChip Mask field
(MCM(1:0)), and the Multichip Valid bit (MV) of the System Control Register (SCR). The two-bit MCA and MCM fields
control the addresses to which the CY7C604/605 is allowed to respond. The multichip valid bit enables the multichip
mode for the CY7C604/605, and is to be set when the MCA and MCM fields are configured for the system.

System initialization under multichip operation mode is handled by designating one of the CY7C604/605s to respond to
all addresses from the CY7C601 until the CY7C604/605s have been initialized. This CY7C604/605 is referred to as the
boot mode CY7C604/605. The other CY7C604/605s remain inactive until multichip operation has been set.

The boot mode CY7C604/605 is responsible for accesses to memory during system initialization. The boot mode
CY7C604/605 responds to all memory accesses until multichip operation is enabled by setting the multichip fields of the
SCR. The other CY7C604/605s remain inactive for all memory accesses until their SCR has been enabled for multichip
mode. The non-boot mode CY7C604/605s three-states MDS and MEXC.

SYSRESET
CY7C604/605 Py
CMU 1
@
(Boot CMU)
———
CLOCK @—P> CY7Ci157
GENERATOR s 2X)
. D
CY7C601 1 jud
WE -
VA(3I: ’]
L—{ RESET VD(31:0;
= —
MEXC TT ' T
MDS E CY7C604/605 . CY7C157
:= AOE CMU 2 . (2%)
= =
DOE
| ob | 4 s —"
P VA(23) CROE OE
MHOLDA WE @ TBWE(3.0) » e n
— Pt MHOLDB As) 4 POR
TOE SIZE
Pt A
I D pr—
10E
—P» s MHOLD
. CONTROL
@
L 4
L —

Figure 4-43. Two-CMU Multichip Configuration

441

== Cress CY7C604/CY7C605 CMU

Two CMU System: Virtual Addressing:

CMU1 VA(31:20) VA(15:0)
M ~ o0 LN\
| MCA=10;MCM =10 | | ——Jm= X X X (0cx0) X X X X

VA17 VA16

CMU2
| MCA=1;MCM =10 | [—— T X X X (x00c1) X X X X
— e SSem Conol Regieiet
Four CMU System: Virtual Addressing:
CcMU1 VA(31:20) VA(15:0)
— o VAR oo\
| MCA = ooﬂﬁ“&" = %gls ;: — X X X (xx00) X X X X
CcMU2 VA17 VA16
I MCA = 01; MCM = 00 | — X X X (xx01) X X X X
System Control Register
CMU3
-~ "
I MCA = 10; MCM = 00 | — X X X (xx10) X X X X
System Control Register
CMU4
~ A
i _McCA = "Ly";'fm’“é'wi.%i.sé — XXX (ox11) X X X X

Figure 4-44. Examples of Multichip Addressing

The boot mode CY7C604/605 is selected by forcing LOW the CSEL signal as the power-on reset (POR) signal is deas-
serted. The remaining CY7C604/605s are connected such that the CSEL signals are forced HIGH when the POR signal
is deasserted. Each CY7C604/605 latches the state of its CSEL signal upon rising clock edge after POR is deasserted,
and remains in either boot mode or becomes inactive until the multichip fields of its SCR have been set. (See CSEL power-
onreset timing diagrams in Sections 7.4.7 and 7.5.7.) A single CY7C604/605 system should tie the CSEL signal to ground
to ensure correct operation upon reset.

While multichip operation is not enabled, CY7C604/605 registers are addressed by using a combination of CSEL, the
register address, and ASI = 4. The CSEL signal of each CY7C604/605 is tied to one of the upper virtual address signals,
thereby mapping the CY7C604/605 registers to different virtual addresses. These virtual addresses mapped using the
CSEL signals are ignored by the CY7C604/605 after the multichip fields of the SCR are initialized. The non-boot mode
CY7C604/605s will ignore all register accesses except to SCR until the multichip mode is enabled for the CY7C604/605.

All boot-mode CY7C604/605 registers can be accessed without enabling the multichip operation mode. Register access
is accomplished by using a load or store alternate instruction with ASI = 4. Section 4.8 on ASI and Register Mapping
describes the address mapping for the CY7C604/605. Note that after the multichip fields of the SCR have been set, CSEL
is ignored for register addressing. All register accesses are mapped according to the MCM and MCA ficlds aftcr the MV
bit has been set.

The multichip fields of the SCR for the non-boot mode CY7C604/605s should be configured and enabled before the SCR
for the boot mode CY7C604/605 is enabled. This prevents problems with the boot mode CY7C604/605 interfering during
the configuration of the non-boot mode CY7C604/605s.

Figure 4-43 illustrates a 128-kbyte cache using two CY7C604/605s in a multichip configuration. Note that VA24 of the
virtual address is connected to the CSEL input of CMU1 and is pulled to ground with a resistor. This signal is used to

4-42

=__

b
=S CY7C604/CY7C605 CMU

access the CMUI1 registers before multichip operation has been enabled. Using a pull-down resistor also accomplishes
the task of forcing the CSEL signal for CMU1 to low, which is latched on the rising clock edge after POR is deasserted
to enable the CY7C604/605 as the boot mode CMU. VA23 is connected to the CSEL input for CMU2. This signal is
pulled up with a resistor to ensure that it is forced HIGH when the system reset signal is released. The virtual address
bus (VA(31:0)) is three-stated by using the system reset signal to drive TOE HIGH, thereby forcing the CY7C601 off the
address bus.

The SNULL input signal causes the CY7C604/605 to ignore an address on the virtual address bus. This input is used
in multichip operation to keep a CY7C604/605 from responding to addresses output on the virtual address bus by other
CY7C604/605s. The MHOLD output signal from a CY7C604/605 is used as the SNULL input for the remaining
CY7C604/605s. Figure 4-43 illustrates the MHOLD to SNULL connections for a two-CY7C604/605 system.

The multichip address bits (MCA(1:0)) of the System Control Register (SCR) select the state of the VA(17:16) bits that
must be matched for multichip addressing. The multichip mask bits (MCM(1:0)) select which of the VA(17:16) bits can
be ignored. The combination of the two fields define the address mapping for the CY7C604/605. The multichip valid
bit (MV) must be set when writing to the MCA and MCM fields in order to enable multichip mode. Figure 4-44 illustrates
two examples of how these fields are used to define the address mapping for multiple CY7C604/605 systems.

4.6 CY7C604/605 Diagnostic Support

4.6.1 CY7C604/605 MMU TLB Entries

TLB entries can be accessed with a load or store alternate instruction with the TLB entry address and ASI = 6H. This
feature is supported for diagnostic purposes and to provide CY7C601 access to locked TLB entries. The virtual and physi-
cal sections of each entry in the TLB can be accessed by the CY7C601 as a single-word read or write. The address mapping
for the TLB entries is shown in Table 4-11. The format of CAM word and RAM word entries in the TLB is shown in
Figure 4-45.

Table 4-11. TLB Entry Address Mapping

Address TLB Entry Register
0H Entry 0 RAM Word
4H Entry 0 CAM Word
8 H Entry 1 RAM Word
CH Entry 1 CAM Word
10H Entry 2 RAM Word
14 H Entry 2 CAM Word
. .
. .
. .
1FOH Entry 62 RAM Word
1F4 H Entry 62 CAM Word
1F8 H Entry 63 RAM Word
1FCH Entry 63 CAM Word
200-FFFFFFF8 H Reserved
TLB Entry CAM Word Format TLB Entry RAM Word Format
VA (31:12) CXN (11:0) I l PPN (35:12) | c I MI ACC [ST I v |
31 12 1 0 31 87 6 5 3210
VA = Virtual Address PPN = Physical Page Number ACC = Access protection bits
CXN = Context Number C = Cacheable bit ST = Short Translation Type
M = Modified bit V = Valid

Figure 4-45. TLB Entry Format

4-43

CY7C604/CY7C605 CMU

i
§ 4/

Table 4-12. Cache Tag Entry Address Mapping

Address Cache Tag Entry
000x H 0
002x H 1
004x H 2
006x H 3

. .
FFEx H 2047

(x = don’t care)

4.6.2 CY7C604/605 Cache Tag Entries

CY7C604 tag entries are accessed using a load or store alternate instruction with the cache tag entry address and ASI
= 0E H. The CY7C605 PVTAG is accessed using a load or store alternate instruction specifing the entry address and
ASI = OE H. CY7C605 MPTAG entries are accessed in a similar manner using ASI = 30 H. Each tag entry can be read
as a load single or can be written as a store single from the CY7C601. The address mapping for the cache tag entries
is shown in Table 4-12. The format of a CY7C604 tag entry is shown in Figure 4-46. The CY7C605 PVTAG and MPTAG

entry formats are illustrated in Figure 4-47.

4.6.3 CY7C604/605 Cache Data Entries

Cache data entries can be accessed from the cache RAM by using a load or store alternate instruction asserting the virtual
addressand ASI = OF H. The CY7C604/605 cache controller causes a forced hit from the cache tag during these accesses.
All data widths are supported for a read or write to the cache ram.

TAG] CXN (11:0)] I I I I
31 16 15 43 2 1
TAG = Virtual Address Tag M = Modified bit
CXN = Context Number S = Supervisor
V = Valid bit R = Reserved

Figure 4-46. CY7C604 Cache Tag Entry Format

PVTAG Entry MPTAG Entry
[TAG | owvano [v[s]s |—] | TAG [si[u[v] = |
31 16 15 43 21 31 876 54 0
TAG = Virtual Address Tag SH = Shared TAG = Physical Address Tag M = Modified
CXN = Context Number S = Supervisor V = Valid R = Reserved
V = Valid bit R = Reserved SH = Shared

Figure 4-47. CY7C605 Cache Tag Entry Format

= =
= s CY7C604/CYTC605 CMU

4.7 CY7C604/605 Reset
4.7.1 Power-On Reset (POR)

Upon power-on reset, the entire system is forced into a defined state. The TLB and the cache tag(s) in the CY7C604/605
are invalidated, all valid bits in control registers are cleared, and certain bits in the ASFR and SFSR are cleared as de-
scribed in the previous sections. The CY7C604/605 asserts IRST to the integer unit foras long as POR isasserted. MRST
is not asserted. POR must be asserted for a minimum of 8 clocks. The bits in the reset register (RR) are cleared. Upon
power-on reset, the UC, TO, BE, FT, FAV, and OW bits in the SFSR will be cleared. The SCR fields in the CY7C604/605
will have the following state after a power-on reset:

Table 4-13. CY7C604/605 Power-On Reset States

IMPL Unchanged
VER Unchanged
MCA(1:0) Unchanged
MCM(1:0) Unchanged
MV 0
BM 1
C 0
CM 0
CL 0
CE 0
NF 0
ME 0
MR 0

4.72 Watch-Dog Reset (WDR)

When the CY7C601 encounters a trap while traps are disabled, the CY7C601 enters into an error state, asserts the
ERROR signal, and then halts. The only way to restart the CY7C601 in the error state is to assert its RESET signal.
The CY7C604/605 does this by performing a watch-dog reset, which asserts the TRST signal for 1024 clock cycles. MRST
is not asserted. The TLB and the cache tag(s) in the CY7C604/605 are not invalidated. The WDR (RR[2]) bit in the RR
register is set. All SCR fields except boot mode (BM) are unchanged. BM is set to 1 after a watch-dog reset.

4.7.3 Software Internal Reset (SIR)

The operating system can reset the CY7C601 by setting the SIR bit in the reset register. The CY7C604/605 asserts IRST
for 1024 clock cycles to reset the CY7C601. The TLB and the cache tag are not invalidated. All SCR fields except BM
are unchanged, and BM is set to 1 after a software internal reset. The contents of the reset register are unchanged and
the SIR bit will remain set. Refer to page 4-83 for timing diagrams for the SIR and SER resets.

4.7.4 Software External Reset (SER)

The operating system can reset the system separately from the CY7C601 by writing 1 into the SER bit of the RR register.
Only the writing of a 1 into the SER bit will cause MRST to be asserted. The CY7C604/605 asserts MRST for 1024 Mbus
clock cycles to reset the system. The TLB and the cache tag are not invalidated. The SCR register remains unchanged.
The CY7C604/605 will wait for its write buffers to empty before asserting MRST on a software external reset. The con-
tents of the reset register are unchanged and the SER bit will remain set.

MRST will not be asserted on a software external reset until the write buffers have been flushed. Writing both the SIR
and SER bits in the reset register will cause the assertion of both IRST and MRST. A reset routine can poll the reset
register to determine the source of any reset.

4-45

__—=-—’=

%5 CrRess CY7C604/CY7C605 CMU

4.7.5 CY7C604/605 Reset in Multichip Configuration

In a multichip configuration, the CY7C604/605 that is responsible for handling boot mode can also assume the responsi-
bility to handle the Reset operations described above. The IRST to the CY7C601 and the MRST to the external system
are connected only to this responsible CY7C604/605. The reset signals from the other CY7C604/605s are not connected.
The ERROR pin of the CY7C601 should be connected to all CY7C604/605s thereby puttmg all CY7C604/605s in the
same state during watch dog reset. Only the TRST of the boot-handling CY7C604/605 is connected to the RESET input
of the CY7C601.

When performing a software internal reset in a multichip configuration, the reset register SIR bit should be set in all
the non-boot-handling CY7C604/605s before SIR is set in the boot-handling CY7C604/605. This places all CY7C604/605s
contained in the system in the same mode before the CY7C601 is reset. A software external reset ina multichip configura-
tion can be performed by writing the SER bit in the boot-handling CY7C604/605 only. It is not necessary to alter the
non-boot-handling CY7C604/605s.

4.8 CY7C604/605 ASI and Register Mapping

The CY7C604/605 uses the address space identifier bus (ASI < 5:0 >) to provide access by the CY7C601 to internal regis-
ters and resources, such as the cache tag and the TLB. The CY7C604/605 also uses the ASIbus to map restricted memory
access functions, such as local and pass-through memory addressing modes. Register access to the CY7C604/605 requires
using a load or store alternate instruction with ASI = 04 H in addition to the register address, given in Table 4-14.
Table 4-15 illustrates the ASI mapping for the CY7C604/605.

Table 4-14. CY7C604/605 Register Address Mapping

VA (15:0) CY7C604/605 Registers
0H System Control Register (SCR)
100 H Context Table Pointer Register (CTPR)
200 H Context Register (CXR)
300 H Synchronous Fault Status Register (SFSR)
400 H Synchronous Fault Address Register (SFAR)
500 H Asynchronous Fault Status Register (AFSR)
600 H Asynchronous Fault Address Register (AFAR)
700 H Reset Register (RR)
800 - FOO H Reserved
1000 H Root Pointer Register (RPR)
1100 H Instruction Access PTP (IPTP)
1200 H Data Access PTP (DPTP)
1300 H Index Tag Register (ITR)
1400 H TLB Replacement Control Register (TRCR)
1500 - FFO0 H | Reserved

=_

=, CY7C604/CYTC605 CMU

Table 4-15. Standard ASI Assignments

ASI Function ASI Function

0H Reserved 12H Flush combined cache line (region)*
1H Mbus extended address space* 13H Flush combined cache line (context)*
2H Unassigned 14H Flush combined cache line (user)*
3H MMU flush/probe* 1SH Reserved

4H MMU registers* 16 H Reserved

SH MMU diagnostics instruction only TLB 17H Block copy

6H MMU diagnostics instruction/data TLB* 18H Flush data cache line (page)

7TH MMU diagnostics I/O TLB 19H Flush data cache line (segment)

8H User instruction* 1AH Flush data cache line (region)

9H Supervisor instruction* 1BH Flush data cache line (context)

AH User data* 1CH Flush data cache line (user)

BH Supervisor data* IDH |Reserved

CH Cache tag for instruction cache 1IEH Reserved

DH Cache data for instruction cache 1IFH Block zero

EH Cache tag combined(inst/data) cache* (PVTAG)** | 20-2F H | MMU passthrough physical address*
FH Cache data for combined cache* 30H MPTAG cache tag entries **

10H Flush combined cache line (page)* 31-7F H | Unassigned

11H Flush combined cache line (segment)* 80-FF H | Reserved

*Indicates functions supported by the CY7C604 and CY7C605
**Indicates function is specific to the CY7C605

4.9 Synchronous Faults

Synchronous faults are grouped into three classes: instruction access faults, data access faults, and translation table access
faults. The translation table access faults are further divided into translation instruction access faults and translation data
access faults. The SPARC architecture causes the timing and priority of these fault classes to be handled differently.
Due to delays caused by the instruction pipeline, the CY7C601 can possibly encounter a second fault before the CY7C601
enters a trap to correct the first. Depending upon the class of fault encountered, the status and address of a fault may
be allowed to overwrite information for a previous fault that has not yet generated a trap. This potential condition re-
quires a trap handler that can correct the various combinations of fault conditions. This section describes these potential
fault conditions.

The case of a pair of faults occurring presents a problem in reporting the correct fault status. This problem is solved by
use of an overwrite (OW) bit in the SFSR and by prioritizing which types of faults may overwrite a previous fault. The
OW bit signals the trap handler that the status and address stored in the fault registers are not valid for the trap that
the CY7C601 has entered. The SFSR logic sets the OW bit according to a state sequence based on the fault handling
of the CY7C601 and the type of faults encountered.

Since the CY7C601 delays entering a trap handler for an instruction fault, a trap caused by another fault will overwrite
the trap information for the initial instruction fault. ¥ the second fault causes a trap in the CY7C601 before the initial
instruction fault trap is entered, the OW bit is not set. This is because the information in the fault registers will be correct
for the first trap reading the registers. However, if the initial instruction trap is entered before the second fault trap is
entered, the OW bit will be set. This is because the first trap reading the fault status registers will have the fault data
for the second trap. The OW bit is set only if the trap that will be executed first by the CY7C601 does not match the
status information stored in the SFSR. The setting of the OW bit is entirely based upon the types of faults and their order
of occurrence. Table 4-16 illustrates the possible fault cases and their effect on OW.

4-47

= . CY7C604/CY7C605 CMU

Table 4-16. OW Bit States

Update
First Fault Second Fault SFSR [OW
single fault yes 0
instruction | instruction yes 1
instruction | data yes 0
instruction | translate instr. yes 1
instruction | translate data yes 0
data instruction no 0
data data yes 1*
data translate yes 1
translate instruction, data no 0
translate translate no 0

*NOT POSSIBLE with CY7C601 (and related processors)

The CY7C601 delays a trap caused by an instruction access fault until that instruction reaches the execute stage. Howev-
er, since data accesses are not pipelined, the CY7C601 jumps to a trap immediately upon encountering a data access fault.

Faults are allowed to overwrite another fault status dependent upon priority. An instruction fault is allowed to overwrite
only another instruction fault. It is not allowed to overwrite either a data fault or a translation fault. Data faults may
overwrite an instruction fault, but not a translation fault. Data faults cannot overwrite another data fault, since the
CY7C601 traps immediately upon encountering a data fault. Translation faults may overwrite any type of fault, but cannot
be overwritten. Translation faults may not overwrite another translation fault.

All double fault cases are recoverable by re-executing the instruction or access that caused the fault whose status has
been overwritten. If an instruction access fault occurs and the OW bit is set, the system software must determine the
cause by probing the MMU and/or memory.

Upon encountering a synchronous fault, the SFSR records the bus error status (bus error, timeout, and uncorrectable
error) when a bus error occurs during memory accesses. The level field (L), as shown in Table 4-17, is set to the page
table level of the entry that caused the fault, if the fault is associated with a table walk. The access type (AT) field, illus-
trated in Table 4-18, defines the type of access that caused the fault. The fault type field FT (see Table 4-19) defines
the type of the current fault.

A translation table access fault (FT = 4) occurs if an MMU page table access causes an external system error. This also
occurs if a reserved entry type (ET = 3 in the PTE) is found in any level of the table walk. A translation table access
fault (FT = 4) also can occur if a PTP (page table pointer) is found in level 3, instead of a PTE. If the page table entry
is invalid (ET = 0 in the PTE), the fault type is an invalid address error (FT = 1). Table 4-20 illustrates the fault type
(FT)assigned for valid TLB entries or PTE entries (ET = 2) that cause a fault condition. These fault conditions are always
either a protection error (read/write of data or instruction) or a privilege violation (user/supervisor access) error.

The copy-back translation fault bit (CBT) is set if there is an error occurring during a table walk for a modified cache
line replacement or during a modified cache line flush operation. The fault address valid bit (FAV) is set to one if the
content of the synchronous fault address register is valid. The SFAR may not be valid for instruction faults. The SFAR
is always valid for data faults and translation errors.

If multiple fault types apply to the same fault occurrence, the highest priority fault is recorded. The highest fault priority
is a translation fault (priority 2), as shown in Table 4-21. Priority 1 is reserved for an internal fault.

Upon power-on reset, the UC, TO, BE, FT, FAV, and OW bits in the SFSR will be cleared. Reading the synchronous
fault status register clears all fault status bits.

CY7C604/CY7C605 CMU

Table 4-17. Fault Register Level Field

Level

Entry in Context Field

Entry in Level 1 Table

Entry in Level 2 Table

W= -

Entry in Level 3 Table

Table 4-18. Fault Register Access Type Field

<

Access Type

Load from User Data Space

Load from Supervisor Data Space

Load/Execute from User Instruction Space

Load/Execute from Supervisor Instruction Space

Store to User Data Space

Store to Supervisor Data Space

Store to User Instruction Space

Nl ojwmlalwN=lO

Store to Supervisor Instruction Space

Table 4-19. Fault Register Fault Type Field

Fault Type I
None '

Invalid Address Error

Protection Error

Privilege Violation Error

Translation Error

Bus Access Error i

Not Generated

N R IR IR E

Reserved

4-49

CY7C604/CY7C605 CMU

Table 4-20. Fault Type (FT) for PTE[ET] = 2

AT ACC
0 1 2 3 4 5 6 7
0 0 0 0 0 2 0 3 3
1 0 0 0 0 2 0 0 0
2 2 2 0 0 0 2 3 3
3 2 2 0 0 0 2 0 0
4 2 0 2 0 2 2 3 3
5 2 0 2 0 2 0 2 0
[3 2 2 2 0 2 2 3 3
7 2 2 2 0 2 2 2 0
Table 4-21. Fault Register Error Priorities
Priority Error
1 Internal Error
2 Translation Error
3 Invalid Address Error
4 Privilege Violation Error
5 Protection Error
6 Bus Access Error

4.9.1 Synchronous Fault Cases

The following seventeen cases describe the combinations of fault cases that can occur:

Case 1: Instruction fault with no further faults. The CY7C601 trap is delayed until the CY7C601 tries to execute the instruc-

tion.

The trap is taken immediately if the instruction access is actually a data access that is interpreted by the CY7C604/605
as an instruction access due to asserting ASI = 8 or 9 with a load alternate instruction. In this case, the trap handlers
cannot probe main memory using the PC of the instruction. If the instruction is a load alternate instruction, the trap
handler has to calculate the effective address to probe. The SFAR has the valid address if the OW bit is not set.

Case 1: Single-Instruction Fault
ow| 0
FAV SFAR has valid address
FT 1 Invalid error occurred
(ET = 0 during table walk)

2 Protection error occurred (either TLB or table walk)

3 Privilege violation error occurred (either TLB or table walk)

5 Bus access error occurred (external bus error: UC or TO or BE is set).
AT | 23 Load/Execute from User/Supervisor instruction space
L 0,1,2,3 Level at which fault occurred during table walk (only valid with FT = 1)

4-50

= o=
=——F CY7C604/CY7C605 CMU

Case 2: Double instruction fault. Instruction fault (1) followed by another instruction fault (2); CY7C601 traps on instruc-

tion fault (1).
If the instruction fault (2) is due to a load access with ASI 8,9 (load alternate), it overwrites the fault associated informa-
tion of fault (1). In this case the SFAR has a valid address for the data access of the load alternate instruction.

The fault address of fault (1) can be obtained from the PC in the CY7C601 for the trap handler with the exception of
the following case.

A possible case is that of a data access interpreted by the CY7C604/605 as an instruction access because of the use of
aload or store alternate instruction with ASI = 8,9. Before the CY7C601 takes the trap on the data access fault (which
is recorded as an instruction fault in the CY7C604/605), another instruction fault may occur. The second instruction will
overwrite the data access fault information, because it is recorded as an instruction fault in the CY7C604/605. In this
case, the trap handler can not just probe on the PC of the instruction. If the instruction is a load alternate instruction,
the trap handler has to calculate the effective address to probe and the SFAR will not contain the fault address of the

data access fault.

Case 2: Double-Instruction Fault

ow | 1
FAV | 1 SFAR has valid address for fault (2)
FT Fault type of fault (2)

1,235

AT 2,3 Access type of fault (2)
L 0,1,2,3 Level at which fault (2) occurred during table walk (only valid with FT = 1)

Case 3: Single data fault. CY7C601 trap (taken immediately)

Case 3: Single Data Fault

oW | 0
FAV | 1 SFAR has valid address
FT 1 Invalid error occurred (ET = 0 during table walk)
2 Protection error occurred (either TLB or table walk)
3 Privilege violation error occurred (either TLB or table walk)

5 Bus error occurred (external bus error, UC or TO or BE is set)

AT |0,1,4,5,6,7
L 0,1,2,3 Level at which fault occurred during table walk (only valid with FT = 1)

Case 4: Instruction fault followed by data fault. CY7C601 traps on the data fault
The history of the instruction fault is lost, but the same fault can be obtained again, once the return from the trap handler
of the data fault is completed.

Case 4: Instruction Fault then Data Fault

ow | 0
FAV | 1 SFAR has valid address for data fault

FT 1,2,3,5 Fault type of data fault

AT {0,1,4,56,7
L 0,1,2,3 Level at which data fault occurred during table walk (only valid with FT = 1)

4-51

=
E— T CY7C604/CY7C605 CMU
=5~ SEMICONDUCTOR

Case 5: Data fault followed by instruction fault. The instruction fault cannot overwrite the data fault. The instruction fault
will occur again, once the return from the data fault trap handler is completed. CY7C601 will trap on data fault.

Case 5: Data Fault then Instruction Fault

oW | 0

FAV | 1 SFAR has valid address for data fault

FT 1,2,3,5 Fault type of data fault

AT [0,1,4,567 ‘

L 0,1,2,3 Level at which data fault occurred during table walk (only valid with FT = 1)

Case 6: Data fault followed by data fault. (NOT POSSIBLE with CY7C601.)

Case 7: Translation fault (instruction access); no further faults. The CY7C601 trap is delayed until the CY7C601 tries to
execute the instruction or is taken immediately if the access is data due to a load alternate instruction.

Case 7: Translation Fault on Instruction Access
ow | 0
FAV | 1 SFAR has valid address for translation fault.
FT 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table
walk) .
AT 2,3 Load/Execute from User/Supervisor instruction space
L 0,1,2,3 Level at which translation fault occurred during table walk

Case 8: Translation fault (data access). The CY7C601 trap is taken immediately.

Case 8: Translation Fault on Data Access

oW | 0

FAV| 1 SFAR has valid address for translation fault

FT 4 Translation error occurred (bus error or ET = 3 or PTP in level 3 during table
walk)

AT |0,1,4,5,6,7

L 0,1,2,3 Level at which translation fault occurred during table walk

Case 9: Instruction fault followed by translation fault (instruction.) The CY7C601 traps on the instruction fault.
The fault address of the instruction fault can be obtained from the PC in the CY7C601 for the trap handler with the
exception of the following case.

A data access fault can be recorded as an instruction fault if a load alternate instruction with ASI = 8, 9 causes a fault.
Before the CY7C601 takes the trap on the data access fault (which is recorded as an instruction fault in the CY7C604/605),
a translation fault may occur due to an instruction access. This will overwrite the data access fault information.

Case 9: Instruction Fault then Translation Fault (I)
ow | 1
FAV | 1 SFAR has valid address for translation fault
FT | 4
AT | 23 Load/Execute from User/Supervisor instruction space
L 0,1,2,3 Level at which translation fault occurred during table walk

4-52

=4 ores CY7C604/CY7C605 CMU

Case 10: Translation fault (instruction access) followed by instruction fault. The CY7C601 traps on the translation fault. The
instruction fault cannot overwrite the translation fault.

Case 10: Translation Fault (I) then Instruction Fault
oW | 0
FAV | 1 SFAR has valid address for translation fault
FT | 4
AT 23 Load/Execute from User/Supervisor instruction space
L 0,1,2,3 | Level at which translation fault occurred during table walk

Case 11: Translation faultl (instruction access) followed by translation fault? (instruction). The CY7C601 traps on transla-
tion faultl.

Case 11: Translation Fault (I) then Translation Fault (I)
oW | 0
FAV | 1 SFAR has valid address for first translation fault
FT 4
AT 23 Load/Execute from User/Supervisor instruction space
L 0,1,2,3 | Level at which first translation fault occurred during table walk

The second translation fault cannot overwrite the first translation fault.

Case 12: Translation faultl (instruction access) followed by translation fault2 (data access). The CY7C601 traps on transla-
tion fault2. The translation fault2 cannot overwrite translation faultl.

Case 12: Translation Fault (I) then Translation Fault (D)
oW | 0
FAV | 1 SFAR has valid address for translation faultl
FT 4
AT 2,3 Execute from User/Supervisor instruction space
L 0,1,2,3 | Level at which translation faultl occurred during table walk

Case 13: Translation fault (instruction access) followed by data fault. The CY7C601 traps on the data fault. The data fault
cannot overwrite the translation fault.

Case 13: Translation Fault (I) then Data Fault
oW | 0
FAV | 1 SFAR has valid address for translation fault
FT 4
AT 2,3 Execute from User/Supervisor instruction space
L 0,1,2,3 | Level at which translation fault occurred during table walk

4-53

?a.s
%‘?&m CY7C604/CY7C605 CMU

Case 14: Data fault followed by translation fault (instruction access). The CY7C601 traps on the data fault.

Before the CY7C601 takes the trap on the data access fault, a translation fault may occur due to an instruction access.
This will overwrite the data access fault information.

Case 14: Data Fault then Translation Fault (I)
ow | 1
FAV | 1 SFAR has valid address for translation fault
FT 4
AT 2,3 Execute from User/Supervisor instruction space
L 0,1,2,3 | Level at which translation fault occurred during table walk

Case 15: Instruction fault followed by translation fault (data). The CY7C601 will trap on the data fault.

Case 15: Instruction Fault then Translation Fault (D)
oW | 0
FAV | 1 SFAR has valid address for translation fault
FT 4
AT |0,1,4,5,6,7
L 0,123 Level at which translation fault occurred during table walk

Case 16: Translation fault (data) followed by instruction fault. The CY7C601 will trap on the data fault.

Case 16: Translation Fault (D) then Instruction Fault
ow | 0
FAV | 1 SFAR has valid address for translation fault
FT 4
AT 10,1,4,56,7
L 0,123 Level at which translation fault occurred during table walk

Case 17: Translation fault (data) followed by translation fault (instruction). The CY7C601 will trap on the data fault.

Case 17: Translation Fault (D) then Translation Fault (I)

ow | 0

FAV | 1 SFAR has valid address for data translation fault

FT 4

AT |0,1,4,5,6,7

L 0,123 Level at which translation fault occurred during table walk

4-54

=
=
%ﬁam
=7 SEMICONDUCTOR
e 4

CY7C604/CY7C605 CMU

4.10 CY7C604/605 Pin Definitions

The functional pinouts for the CY7C604 and CY7C605 are shown in Figure 4-48. Note that all three-state output signals
are driven to their inactive state before they are released to three-state. All signals described are common to both the
CY7C604 and CY7C605 unless otherwise stated.

Misc. Signals Misc. Sign_als
Virtual Bus Signals — j Virtual Bus Signals <
. =t P Q—E——_
é‘rﬁﬂ_’ _‘Iih_> <2y Mbus Signals
=E1.‘a l)“—m;_ A‘Tl:iﬁl . I ‘—‘EQB -
ASUO:S) . ASK0:5) . l m‘n‘u:oz'
Ll cy7c604 N_'%u-;ff—m b cyrceos [—P
—R R —m g -5
—E A —E DY
T, @ iEEE— —
—sun_p) @ E— |__mE g,
_— EE— =
IN.IILL.’ <4L__ . —
— L < i<
Py - gy, T
- > <D <=
| MEST g, = | —CMER_Jy.
@B Cache RAM _ii_gnals <_|E Cache RAM Signals
__. -

Figure 4-48. CY7C604 and CY7C605 1/0 Signals

CY7C604/605 Virtual Bus Signals

Signal Name 1/0 Description

A(31:16) I Virtual Address bus. A(31:16) are input signals during normal read/write accesses
and are latched into the CY7C604/605 on the rising edge of clock.

A(15:2) /0 Virtual Address bus. Three-state input/output signals. A(15:2) are input signals dur-
ing normal read/write accesses and are latched into the CY7C604/605 on the rising
edge of the clock. They are output signals during cache line loads into the CACHE
RAM and modified cache-line reads from the CACHE RAM.

A(1:0) I Virtual Address bus. A(1:0) are input signals during normal read/write accesses and
are latched on the rising edge of clock.

ASI(5:0) 1 Address Space Identifiers. The ASI bits are used to:

1. Identify various types of accesses (user/supervisor, instruction/data)
2. Access CY7C604/605 registers

3. Initiate MMU Flush/Probe operation

4. Identify CACHE Flush operations

5. Recognize diagnostic operations

6. Recognize pass physical address space

4-55

CY7C604/CY7C605 CMU

Signal Name

/0

Description

D(31:0)

ERROR

MEXC

MHOLD

RD

SIZE(1:0)
SNULL

WE

1/0

ot

Virtual Data bus. Three-state input/output signals. D(31:0) are input signals during
CY7C601 normal write accesses, modified cache-line reads from the CACHE RAM,
CY7C604/605 register writes or CY7C604/605 diagnostic accesses. They are output
signals during cache line loads into CACHE RAM, CY7C604/605 register reads,
non-cacheable loads, or CY7C604/605 diagnostic accesses.

Error (active LOW) signal from the CY7C601. When this signal is asserted, it indi-
cates the CY7C601 has halted due to entering the error state. The CY7C604/605
reads this signal and initiates a watchdog reset. (Refer to Section 4.7.2 for more
details.)

Floating-point unit NULLification cycle (active HIGH). When FNULL is active,
the current access is ignored.

Integer unit NULLification cycle (active HIGH). When INULL is active, the cur-
rent access is ignored.

Integer unit Output Enable (active LOW). This signal is continually driven HIGH
or LOW. This signal is connected to the AOE and DOE inputs of the CY7C601.
When deasserted (HIGH), the TOE will place the address (A(31: 0)), address space
identifiers (ASI(7:0)), and data (D(31:0)) drivers of the CY7C601 in a three-state
condition.

Integer unit Reset (active LOW) is asserted to reset the integer unit. (Refer to Sec-
tion 4.7.2 for more details.) This signal is continually driven HIGH or LOW.

Load-Store Atomic operation indicator (active HIGH). Asserted by the CY7C601
during atomic load store cycles and is sampled by the CY7C604/605 on the rising
edge of the clock.

Memory Data Strobe (actlve LOW) is asserted for one clock to strobe data into the
CY7C601 during a cache miss. MHOLD must be low when MDS is asserted. It is
driven off of the falling edge of the clock. This is a three-state output.

Memory Exception (active LOW) is asserted for one clock whenever a privilege or
protection violation is detected. MHOLD and MDS must be low when MEXC is
asserted. This is a three-state output.

Memory Hold (active LOW) is asserted by the CY7C604/605 whenever it requires
additional time to complete the current access such as during cache miss etc. It is
driven off of the falling edge of the clock.

Read cycle indicator (active HIGH). Asserted by the CY7C601 during read cycles
and is sampled by the CY7C604/605 on the rising edge of the clock. This signal is
also used to generate cache read output enable (CROE)

SIZE of access indicator. Specifies the data width of the CY7C601 access and is
sampled by the CY7C604/605 at the rising edge of the clock.

System NULLification cycle (active LOW). When SNULL is active, the current ac-
cess is ignored.

Write Enable to indicate write cycle (active LOW). Asserted by the CY7C601 dur-
ing write cycles and is sampled by the CY7C604/605 on the rising edge of the clock.
This signal is also used to generate cache byte-write enables (CBWE(3:0)).

4-56

= # CYPRESS CY7C604/CY7C605 CMU

Mbus Signals

Signal Name 1/0 Description

CMER (0] CMU Error (active LOW). This signal is asserted if any bus error has occurred
during writes to main memory. A system can use this signal to cause an interrupt.
This signal has the same timing specifications as the Mbus control signals and is as-
serted for one clock. This signal is constantly driven. :

MAD(63:0) 1/0 Mbus Address and Data (three-state bus). During the address phase of a transac-
tion, MAD(35:0) contains the physical address PA(35:0). The remaining signals
MAD(63:36) contain the transaction-associated information, as shown below:

0OH Mbus write

1H Mbus read
2H* Coherent invalidate
3 H* Coherent read
4 H* Coherent write and invalidate
SH* Coherent read and invalidate
6-FH Reserved
*CY7C605 ONLY
0 Byte (8 bits)
1 Halfword (16 bits)
2 Word (32 bits)
3 Doubleword (64 bits)
4 16 Bytes**
5 32 Bytes
6 64 Bytes**
7 128 Bytes**

**Not supported by CY7C604/605.

MAD(43) (MC) Mbus Cacheable (active HIGH). Indicates the current Mbus trans-
action is cacheable.

MAD(44) (MLOCK) Mbus LOCK (active HIGH). Indicates the currrent Mbus
transaction is a locked transaction.

MAD(45) (MBL) Mbus Boot mode/Local indicator. MBL is high during the address
phase of boot mode transactions. The instruction fetch and data accesses to the
Mbus while the MMU is disabled in boot mode are considered BOOT MODE
transactions. The data transactions on the Mbus required for Load/Store Alternate
instructions with ASI = 01 are considered LOCAL transactions.

MAD(63:46) Reserved during the address phase (driven HIGH).

During the data phase of the transaction the MAD(63:0) lines contain the 64 bits of
data being transferred.

MAS O (604) Mbus Address Strobe (active LOW). Asserted by the bus master during the first
I/0(605) cycle of every bus transaction to indicate the address phase of that transaction. This
is a three-state output.

MBB 1/0 Mbus Bus Busy (active LOW). Asserted by the current Mbus master during an en-
tire transaction and, if required, during both the read and write transactions of indi-
visible accesses. The potential bus master devices sample MBB in order to obtain
bus mastership as soon as the current master releases the bus. This is a three-state
output.

4-57

CY7C604/CY7C605 CMU

Signal Name

Description

MBG
MBR
MERR

MIH
(605 ONLY)

MRDY
MRST

MRTY

MSH
(605 ONLY)

POR

/0

1(604)
/O (605)

(6]

1/0

Mbus Bus Grant (active LOW). Asserted by external arbiter when the Mbus is
granted to a master. This signal is continually driven.

Mbus Bus Request (active LOW). Asserted by potential Mbus master devices to
acquire bus mastership. This signal is continually driven.

Mbus Error (active LOW). Asserted or deasserted by an Mbus slave during every
data phase of a transaction. This signal is three-stated when released.

Memory InHibit (active LOW). Asserted by the CY7C605 for Mbus transactions
where the cache owns the data that has been requested on the Mbus. This signal is
monitored during bus snooping by the CY7C605. Refer to section 4.12 for further
details.

Mbus Ready (active LOW). Asserted or deasserted by an Mbus slave during every
data phase of a transaction. This signal is to be three-stated when released.

Mbus Reset (active LOW). Asserted for 1024 clock cycles by only one source on the
Mbus to initialize all devices on the Mbus. This signal is continually driven.

Mbus Retry (active LOW). Asserted or deasserted by an Mbus slave during every
data phase of a transaction. This signal is three-stated when released.

Nothing

Relinquish and Retry*
Data Strobe

Reserved

Bus Error

Time Out
Uncorrectable Error
Retry*

%

[Spll ll el e s ofaches)
|l e fecl ol e ce
="l qli=>R == e

* See Section 4.12 on Mbus.

Memory SHared (active LOW). Asserted by the CY7C605 after detecting a data
request on the Mbus for which the CY7C605 has a copy. This signal is monitored by
the CY7C605 during bus snooping. Refer to Section 4.12 for further information.

Power-On Reset (active LOW). The POR initializes all on-chip logic to a known
state, invalidates all the TLB entries, and all cache tag entries. It must be asserted
for a minimum of 8 clocks. It also causes the CY7C604/605 to assert IRST to reset
the CY7C601.

4-58

CY7C604/CY7C605 CMU

Cache RAM Signals

Signal Name

1/0

Description

CBWE(3:0)

Cache Byte Write Enables (active LOW). During normal write operations, certain
byte enable signals are asserted depending upon the size and A(1:0) inputs. During
a cache line load all four byte enable signals are asserted. These signals can also be
driven by using a store alternate instruction with ASI = OF H. This feature is sup-
ported for diagnostic purposes. This output is continually driven (not three-stated).
CBWEQD controls the most significant byte (MSB) and CBWES3 controls the least
significant byte (LSB). Refer to page 4-34 for further information on this signal.

Cache RAM Output Enable (active LOW). Asserted during normal read operations
with ASI = 8,9, A, B, and during modified cache line read operations. This signal
is also asserted during cache data read operations with ASI = OF H for diagnostic
purposes. This signal is continually driven.

Miscellaneous Signals

Signal Name

/0

Description

CLK

CSEL
(604 only)

CSTA
(604 only)

System Clock. This is the same clock used by the 7C601 integer unit.

Chip Select (active low). In multi-CMU systems, CSEL on each CY7C604 is con-
nected to different address lines (any one from A(31:16)) to initialize the Multichip
Configuration. In single-CMU systems, CSEL should be connected to ground in
order to permanently enable the CY7C604. In multi-CMU systems, CSEL should
be connected to ground or VCC through a resistor during power-on reset. This is
required in order to enable only one boot mode CMU. (Refer to Multichip Configu-
ration, Section 4.5, for more details.)

Cache Status. This pin provides the status of cache. In write-through, the CSTA
indicates whether the write transaction on the Mbus is associated with a cache hit or
not. For read transaction on the Mbus in either write-through or copy-back mode,
the CSTA indicates whether the CY7C604 is replacing a valid cache line entry or
not.

This signal has the same timing specifications as the Mbus signals such as MC and
has meaning only in the address phase of Mbus transactions. This signal is continu-
ally driven HIGH or LOW.

Cache Mode | CSTA Condition
‘Write-through 1 read and valid cache line replacement

read and invalid cache line replacement

write and cache hit
write and cache miss

= © = B

I nd vali he line replacemen

Copy-back
1] read and invalid cache line replacement

undef. write

Test/Output Enable (active LOW). When HIGH, this signal is used to three-state
all output drivers of the CY7C604/605. TOE SHOULD BE TIED LOW DURING
NORMAL OPERATION. It is used to isolate the CY7C604/605 from the rest of
the system for debugging purposes.

4-59

_—
—_— _———
%‘%’ﬁxm CY7C604/CYTC605 CMU

4.11 Virtual Bus Operation
The following timing diagrams illustrate CY7C604/605 virtual bus operations:

WriteThrough Read Cache Hitouiniiniiii i i it ettt ie i
Write-Through Read Cache Missooovviiiiiiiiiiiinne,

Write-Through Read Cache Miss (Alias Detected)

Write-Through Write Cache Hit
Write-Through Write Cache Miss
Copy-Back, Read Cache Miss (Modified Cache Line)
Copy-Back Read Cache Miss, Modified or Non-Modified (Alias Detected)oovviviiiiiiiiniininnnn, 4-72
Copy-Back Write Cache Miss, Modified or Non-Modified (Alias Detected)ccvviuininineinininnn.. 4-73
Copy-Back Write Cache Hitooviiiiiiiiiiiiiiiiiiininn..

Write-Through Load Double Cache Hitccooiiiiinn,

Wirite-Through Store Double Cache Hitccovnaae,

Table Walk (with Modified Bit Update)cocovvviniininn..

Read Access with Protection/Privilege Violation

CY7C604/605 Diagnostic Cache Tag Write Access
CY7C604/605 Register Read
CY7C604/605 Register Write
Power-OnResetooiuennn

Software External Resetccoiiiiiiiiiiiininiiiiininnn,
Software Internal Reset

Write-Through (Copy-Back) Read Cache Hit Timing Diagram

o L l | | L

A(31:0)

D(31:0)

RD

4-60

=5 Cress CY7C604/CY7C605 CMU

Write-Through (Copy-Back, Clean Cache Line) Read Cache Miss Timing Diagram (page 1 of 3)*
1 2 3 4 5

CLK I I I I I_
aero) A XXX s XXXXX al
D@1:0) S
o /T \XXX/
omoe [\ /

cBwE@E0) /

— o

(<]

(missed data)

=
I
O]
-]
O
N
-

g
(7
N

=
~
N

3
us)]
2

N
N

3
m
@l

N
e

MAD(63:0) ’ { ADDR XX@(D1,2 XXX
vas 7 \
wr ¢ s

*Two clocks can be deleted from the cache miss timing if MBG is already granted.

N

4-61

=
%;iécvm
= SEMICONDUCTOR

CY7C604/CY7C605 CMU

Write-Through (Copy-Back) Read Cache Miss Timing Diagram (page 2 of 3)

5

CLK

A(31:0)

D(31:0)

RD

;l
|
|
N

<
o]
Ol
”~

k<
[ae]
@
~

6

7

8

10

"

Al

A4

A5

X=X

X

sXA6

102 X:|33