
z
o -....
< o
:l
C w
a:
w
:e
o
(/)

:l
o
c
:E «

ED29116

DESIGNING

WITH THE Am29116

16-BIT

BIPOLAR MICR PR CESSOR

LECTURE
VOLUME II

I -rtI/J ED29116 1-00

ED29116

"Designing with the Arn29116 16-Bit Bipolar Microprocessor ll

by

Barb ar a Albert
Arndt Bode, Dr. rer. nat.

J.W. Locke, Ph.D.

March 1983

Customer Education Center
Advanced Micro Devices, Inc.

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES ~

1-10 ED29116

Copyright by

ADVANCED MICRO DEVICES, INC.

901 Thompson Place

Sunnyvale

California 94086

1983

1-10

ADVANCED MICRO DEVICES ~

1-20 ED29116

INDEX to VOLUME II

Day 2

3. Exercises on the Am29116, part 1
Exercises
Solutions

4. Am29116 Bit-Mapped Graphics Controllers
Introduction
Drawing a Vector
Fast Vector-Plotting Algorithm
Am29116 Microcode for Vector Generation
- Improving the Vector Algorithm

5. Application of the Am29116 for intelligent controllers
Intelligent controller structures

, low speed version
• high speed version
• comparison with an Am2901 based solution
, very high speed solution

- Am9520 burst error processor
- Microprogramming the controller

6. Application of the Am29116 for general purpose CPUs
A Microprogrammed CPU using Am29116
System overview
System Organization
Instruction Formats
Timing analysis
Pipelining at the Macro level
Comparison with Super-16

o Macro Instruction Execution
Comparison for 2901-29203-29116 solutions
Performance Analysis

7. Exercises on the Am29116, part 2
Exercises (Microprogramming the Am29116)
Solutions

1-20

page

3.10
3.20
3.80

4.10
4.20
4.30
4.50
4.80
4.110

5.10
5.15
5.30
5.110
5.170
5.220
5.240
5.425

6.10
6.20
6.30
6.40
6.60
6.130
6.190
6.270
6.340
6.430
6.450

7.10
7.20
7.30

ADVANCED MICRO DEVICES ~

: j

ADVANCED MICRO DEVICES ;1

3-10 ED29116 3-10

6,

DAY 2

CHAPTER 3

Exercises, Part 1

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES ~

3-20 ED29116

Exercises - Part 1

True or false:

1. The Am29116 is externally TTL compatible,
but uses Eel ciruitry internally.

2. The Am29116 is expandable (i.e. two can be hooked together).

3. The Am29116 is for 8-bit or 16-bit intelligent controllers.

4. The Am29116 can perform conditional testing
on its status register.

5. The barrel shifter rotates 1 to 15 bits
up or down in one microcycle.

6. The Am29116 must be used with an Am2904.

7. The Am29116 can perform immediate operations.

8. The Am29116 has a choice of four input sources to its data
MUX's which in turn provide three AlU inputs, R, S, U.

9. The Am29116 can perform three-address instructions.

10. Fast clock speed is synonymous with high throughput.

11. The Am29116 can generate remainders up to 16 bits long
from eRe polynomials.

3-20

ADVANCED MICRO DEVICES ~

3-30 ED29116

Exercises - Part 1 (continued)

12. The Am29116 always has its ALU output at Vi'

13. The ALU destinations are RAM, ACC, D-Latch.

14. Single-operand instructions are PASS, COMPLEMENT,
INCREMENT, and TWO's COMPLEMENT.

15. D(0E) (0 with zero extend) is used
for two's-complement arithmetic.

16. "R -:.> Destll calculates one's-complement,
and "R + 1 --> Dest" calculates two's complement.

17. The Am29116 can perform NAND, NOR, EXOR in one microcycle.

18. Shift up can use 0, 1 or the QLINK bit as input to the LSB.

19. Shift down uses 0, 1 or the QLINK bit
as the only input choices to the MSB.

20. Rotate operates in byte or word mode.

21. Rotate uses the U-input to the ALU.

22. Load 2n causes a mask (1 in a field of 0 1 s) to be
generated and can be used for loading RAM, ACC.

23. Read V-bus, change a bit, output to V-bus is possible
in one microcycle with the Am29116.

24. If you perform a bit-oriented instruction on the ACC,
the destination is the ACC or the RAM.

25. There are 17 possible results when priority encoding a word.

26. Byte-mode prioritizing ignores bits 8-15.

3-30

ADVANCED MICRO DEVICES ~

3-40 ED29116

Exercises - Part 1 (continued)

27. The Am29116 can perform operations on polynomials
of degree 16 or less.

3-40

28. 95% of CRC calculations use polynomials with 16-bit remainders.

29. The CRC calculations can be done in a forward or reverse mode.
(i.e. either transmit bit 0 first or transmit bit 15 first)

30. CRC remainders can be calculated in byte or word mode.

31. The status word can be loaded from D~ RAM, or ACC.

32. The Z, C, Nand OVR status bits can be loaded
without affecting LINK or the user flags.

33. You can set or reset the entire status word.

34. You can set or reset the ALU flags individually.

35. On the Am29116, you can load both the status register
and the ACC in the same microcycle if the RAM is the source.

36. If the status-register enable is high, the status register
is IIfrozen". That is, no operation can alter status.

37. All conditional testing is performed on the stored
values in the status register.

ADVANCED MICRO DEVICES ~

3-50 ED29116

Exercises - Part 1 (continued)

Fill in or answer:

38. How many bits are in the Am29116 status register?

39. How many conditional tests can be made?

40. Can you perform a conditional test during another
instruction? If so, how?

41. Can byte operations be performed in either the upper byte
or the lower byte of a register?

42. Can the Am29116 support a 100 ns microcycle time?

43. List three possible sources for single operand instructions.

44. Can you load a byte into the D-latch?

3-50

45. List three possible source pairs for two-operand instructions.

46. Show the content of this register after a word-mode rotate with n=2.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
1 100 1 0 1 000 1 101 0 1

47. Does the Am29116 allow you to rotate R3
and place the result back into R3?

48. Does the Am29116 allow you to rotate R3
and place the result in R7?

49. If there is no active priority request, what result
;s produced by a prioritize instruction in word mode?

ADVANCED MICRO DEVICES ~

3-60 ED29116

Exercises - Part 1 (continued)

50. If bit 15 is active, what result is produced
by a prioritize instruction in word mode?

51. If bit 15 is active, what result is produced
by a prioritize instruction in byte mode?

3-60

52. Is it true that the Arn29116 ;s an order of magnitude faster
than the Am2901 which in turn is an order of magnitude faster
than the ArnZ8000 for certain controller-oriented operations?

53. Can the Am29116 be used to do multiply?
If so, outline the required code.

54. Can the Am29116 be used for bit operations?

55. Can the Arn29116 be used for rotate operations?

56. Does the Am29116 have an ALU?

57. Can the Arn29116 be used to build a CPU?

58. If a mask bit is zero in a ROTATE-and-MERGE instruction, from
which operand is the corresponding bit passed to the destination?

59. If U = 0011 0001 0101 0110
R = 1010 1010 1010 1010

mask = 0101 1010 0110 1001

what bit pattern is produced by a word-mode
ROTATE-and-MERGE instruction with n=4?

60. If the highest bit position with a one is position 7
and the mask is 1010 HEX' what is the result
of a word-mode prioritize instruction?

61. If the highest bit position with a one is position 7
and the mask is 1010 HEX' what is the result
of a byte-mode prioritize instruction?

ADVANCED MICRO DEViCES ~

3-70 ED29116

Exercises - Part 1 (continued)

62. What is the result of loading the complement of 2n?
What type of instruction allows you to do this?

63. Suppose you want to do a word-rotate down five bit
positions. How do you do this on an Am29116?

64. What is QLINK?

65. Can you set and reset the ALU status bits individually
as you can with the Am2904 micro-status register?

3-70

66. Can you set & reset the LINK and FLAG status bits individually?

67. In byte mode, are all 8 bits of the status register loaded?

68. Which instructions do not cause the ALU status bits
to be updated?

69. When are the upper four status bits
(LINK, FLAGl, FLAG2, FLAG3) changed?

ADVANCED MICRO DEVICES ~

3-80 ED29116 3-80

Exercises - Part 1

SOLUTIONS

ADVANCED MICRO DEVICES ~

@ 3M

ADVANCED MICRO DEVICES ~

3-90 ED29116 3-90

Solutions for Exercises - Part 1 (continued)

1. True

2. False

3. True - almost every instruction operates in byte or word mode.

4. True - using either the instruction lines II - I4 or the
Tl - T4 lines.

5. False - the barrel shifter only rotates ~ 1 to 15 bits.
An effective down rotate is achieved by choosing an appropriate
number of bits to rotate up such that the result is equivalent
to the desired down rotation.
(16-; in word mode; 8-; in byte mode)

6. False - but an Am2904 is useful for emulations
because of its bit-settable status register.

7. True - requires two microwords and two microcycles.

8. True - ACC, D-Latch, RAM
and the instruction lines (for immediate data).

9. False - the Am29116 can be extended only to a two-register-address
structure (using an external MUX, an additional 5-bit
microinstruction field and extended timing).

10. False! - recall the problems that occur on branching with a
double-pipelined CPU based on Am2910 & Am2901 or Am2903
and the need for extra NOP instructions.

11. True

ADVANCED MICRO DEVICES ~

3-100 ED29116

Solutions for Exercises - Part 1 (continued)

12. True if OEy is enabled. Otherwise, false.

13. True with reservations - the D-latch can be used but
requires some tricky timing. You could generate a race
condition if the D-latch is also a source for the
operation. The D-latch is not intended to be a
destination, and its use as such is not recommended.
"Norma'" destinations are RAM, ACC or NONE.

14. True. (PASS is another term for MOVE).

15. False - D(SE) (D sign-extended from bit 7)
is used for two's complement arithmetic

16. True

17. True

3-100

18. True - shift uses the 0, 1 or QLINK. The inputs to the carry MUX
should not be confused with the inputs to the shift MUX.

19. False - QC, QNffiQOVR and QLINK are also available.

20. True

21. True

Do not confuse the use of Q in the Am29116 context
(designating status-register contents) with the
Q-shifter or Q-register of Am2901, Am2903 and Am29203.

22. True - also goes to internal Y-bus

23. True - be careful with the timing

24. False - ACC only.
BONR instruction has common source/destination field.

25. True - none and 1 thru 16.

26. True

ADVANCED MICRO DEVICES 11

3-110 E029116

Solutions for Exercises - Part 1 (continued)

27. True

28. True - according to an AMO survey.

29. True

30. False - Word mode only. But short polynomials that produce
an 8-bit remainder can be used.

3-110

31. True - the status can also be loaded from immediate data as well.

32. True

33. True

34. False - if you need this use an Am2904.

35. False - this is the one source which precludes
loading both the ACC and the status register.

36. True

37. True

Answers to Fill-in or Answer Section:

38. Eight - Z, C, N, OVR, LINK, FLAG1, FLAG2, FLAG3

39. There are 12 condition code test signals -
You can test all 8 status bits indi~idual1y. You can force a LOW.
And you can test 3 combinations: Z+C, NffiOVR, (NffiOVR)+Z.

40. Yes - by using the T-bus lines as input. This requires a wider
microword to control the T-bus.

ADVANCED MICRO DEVICES ~

3-120 ED29116 3-120

Solutions for Exercises - Part 1 (continued)

41. In byte mode, instructions alter only the lower byte.

42. Yes - Very carefully!
This requires a register between the sequencer and the control
store as well as the pipeline register at the output of the
control store. 125 ns is more easily achieved.

43. RAM, ACC, D, I, Zero.

44. No.

45. RAM - ACC, RAM - I, D - RAM, D - ACC, ACC - I, D - I

46. Rotate is up only -

1100 1010 0011 0101 n = 2 becomes
0010 1000 1101 0111

47. Yes

48. Yes - with an external MUX and care with timing.

49. Zero.

50. One.

51. Bit 15 does not participate in the byte mode.
The result will depend on the content of the lower byte.

52. Yes it is true. Especially when multi-bit rotation, priority
determination or CRC remainder calculations are needed.

ADVANCED MICRO DEVICES l1

t

3-130 ED29116 3-130

Solutions for Exercises - Part 1 (continued)

53. Yes - but it was not optimized for this application.

Consider a 16 x 16-bit unsigned multiplication:

i) Initialize the partial product (PP) and a counter to zero.

ii) Increment the counter.

iii) Test the MSB of the multiplier -
If the MSB is a one then: PP+multiplicand --> PP

iv) If count equals 16 then END
else upshift the PP and the multiplier.
(remember to carry from the LSH to the MSH of the PP)

v) Goto ii).

Look at the Am29116 instruction set! We can write a better
procedure for the Am29116 than the above.

With the use of the prioritize and the rotate instructions
you can reduce the number of microcycles.
(But now the number of microcycles depends on the multiplier!)

An improved algorithm is as follows:

i) Initialize PP and counter to zero.

ii) Prioritize the multiplier & call the result 'priolo
If (prio = 0) OR (prio > (16-counter))
then rotate PP by (16-counter) and END.

iii) count+prio --> count

iv) Rotate PP and multiplier by prio.

v) PP+multiplicand --> PP

vi) Gato ii).

ADVANCED MICRO DEVICES 11

3-140 E029116

Solutions for Exercises - Part 1 (continued)

54. Yes

55. Yes - The barrel shifter works in the byte or word mode.

56. Yes - The Am29116 has a 16-bit three-operand ALU.

57. Yes - but it was not optimized for this application.

58. The R-operand bit is passed to the destination.

59. The result is 1011 000 1110 0011.

60. The result is 9.
Note: <mask bit i equal to zero> allows participation of
the source bit i in the priority determination.

61. The result is one.

62. This clears the nth bit and sets all of the other bits
in the destination. The instruction is:
'BOR1, LOC2NR ' or 'BONR, LOC2NA ' or 'BONR, LOC2NY ' •

63. Rotate ~ with n=ll.

example: 0000 1111 0101 1010
1101 0000 0111 1010

(16-5=11)

3-140

ADVANCED MICRO DEVICES ~

3-150 ED29116

Solutions for Exercises - Part 1 (continued)

64. QLINK is the linkage bit for shift operations. It is also
used by CRC instructions to bring in each bit of serial data.

65. You cannot set/reset the ALU status bits one by one.
If you need this feature, use the Am2904 as an
additional external status logic.

66. Yes

67. In byte mode, the lower ± bits (ALU status) on the
status register are loaded.

68. NOOP, save-status, test-status
or any instruction if either of lEN or SRE are high.

69~ The upper four status bits (LINK, FLAG 1, FLAG 2,
FLAG 3) are changed during status set/reset; status load
(word mode only); plus QLINK is updated after each shift

3-150

ADVANCED MICRO DEVICES ~

4-10 ED29116 4-10

CHAPTER 4

Am29116 Bit-Mapped Graphics Controllers

ADVANCED MICRO DEVICES l1

4-20 ED29116 4-20

Am29116 Bit-Mapped Graphics Controllers

The Am29116 has proved to be very popular amongst designers of
graphics controllers. This is a natural result of the fact that the Am29116
has a very suitable instruction set for the kinds of algorithms that arise in
graphics applications.

We will first discuss this subject in general using the article* by
Chu and Miller as a reference. Then we will examine in detail one of the most
useful procedures for bit-mapped raster scan graphics, the efficient drawing
of a straight vector, and show how this is coded for the Am29116. By taking
both an overall look at the requirements of bit-mapped graphics and by follow­
ing a particular algorithm in detail, we are going to demonstrate why the
Am29116 has been so successful as a graphics controller.

* "Microprocessor Architecture Suits Bit-Mapped Graphics"

by Paul Chu and Warren Miller, Electronic Design, Jan.20,1983 p.143

ADVANCED MICRO DEVICES 11

4-25 ED29116 4-25

Am29116 Bit-Mapped Graphics Controllers (continued)

Logical Address to Physical Address Mapping

Display Memory (logical)

y

~1 kpixel ~
. ..

1.....--1
&

• ·

· · •
. . .

10-bit
address

y

row#

X

~ ..

...

· · · T
1 kpixel

· · • _1
l 16-bit words

10-bit
address

x

column#

Bit-Map Memory (physical)

16
~bits~

64 kword

16-bit
address

yl

word#

, ,
•

.. ..
•

XI

yl

4-bit
address

bit#

ADVANCED MICRO DEVICES 11

4-26 ED29116

Am29116 Bit-Mapped Graphics Controllers (continued)

Logical Address to Physical Address Mapping (continued)

The mapping process:

logical row#

6 bits 10 bits

10 bits 6 bits

Rotate Down 4

16 bits

physical word address

4-26

logical column#

6 bits 10 bits

~x

Ignore upper
12 bits

12 bits 4 bits

physical bit address

ADVANCED MICRO DEVICES 4:'1

4-30 ED29116

Drawing a Vector on a Two-Dimensional Raster Grid

I
---t------t-----t-------J(- CD ----1

s3
--+-----+----+ CD ---r- CD -¥----+-

~~--CD~------~-----+--

~-----CD~----~~------+----~--

;=0
I

i =1 i =2 i=3 i=4

4-30

We would like to find an efficient procedure to draw a straight
vector between two points. When given the coordinates of two end points, PA
and PB, located on a raster grid, the procedure should set the bits in screen
memory associated with these end points and with a set of intermediate points
closely approximating a straight line. We will describe a procedure that works
for lines of unit or less slope that selects the _closer of the two candidate
points for each increment of IXI. That is, for each Iii in the above figure,
the procedure will compare the lengths of Isil and It;1 and will select the
point associated with the shorter length. This procedure can be generalized to
handle lines with slope exceeding unity.

ADVANCED MICRO DEVICES ~

4-40 ED29116

Drawing a Vector on a Two-Dimensional Raster Grid (continued)

V2
(+ve)

- of course at x=xA and x=xS' Y=0

4-40

In the above figure we see a successful application of such a pro­
cedure. Since the intermediate points are selected from a finite grid, they do
not lie precisely on the ideal straight line linking PA with PS' A measure of
the success of the procedure is the value of the Vi 's, the differences between
the y-coordinates of the intermediate points and the corresponding vertical
position of the ideal line.

ADVANCED MICRO DEVICES ~

4-50 ED29116 4-50

An Algorithm for Fast Vector Plotting with an Am29116

For a straight line linking two points PA(xA'YA) and PB(xB,xB):

(YB-YA)x+xBYA-xAYB
Y = y(x) = xB-xA

Let us define dY=(YB-YA) and dx=(xB-xA)' For an arbitrary
point P(xp,Yp)' not necessarily on this line:

Yp=(Yp-y(xp))'dx = -xp'dY+Yp'dx-xBYA+xAYB

is proportional to the vertical distance of P from the line. We multiplied
the distance by Idx l to obtain a measure of vertical distance that can be
calculated without performing a division. In all further discussion we will
use this scaled measure for vertical distances. Since we will apply the same
scale factor, Idx l

, to all vertical distances, this tactic will not affect our
ability to determine which of two points is closer to an ideal line.

A simple vector-drawing procedure is as follows:

1. Plot a point at xA'YAo
2. Increment x by one.
3. If x > xB then quit.
4. Calculate V, the vertical distance error, scaled by idx',

for two points: x,Y and x,y+1.
5. If ABS(Y(x,y)) < ABS(Y(x,y+1)) then goto 6 else y=y+1.
6. Plot a point at X,y.
7. Goto 2.

This procedure may be referred to as a digital differential analyser
by analogy with numerical methods for solvingdifferental equations. This
procedure has avoided division and multiplication but it still has redundant
arithmetic. Two additions are required for the two YIS, we may have to
perform a two Is-complement operation on either or both of the YIS to produce
absolute values and finally a subtraction is required to compare the ViS. We
can compress this procedure further.

We have been choosing the next point based on the sign of

d = ABS(Ylower)-ABS(Yupper)

(We will now call Id' the "discriminant" for our problem).

ADVANCED MICRO DEVICES ~

4-60 ED29116 4-60

An Algorithm for Fast Vector Plotting with an Am29116 (continued)

But in the situation shown below, Ylower is negative and Yupper is
positive. In this case:

d = -Ylower-Yupper

and the absolute-value operation is not required.

i -1 i

Further the ;th discriminant can be obtained efficiently from the
(i_l)th discriminant. To discover how, consider the VIS involved:

Y· 1 1-

Ylower
i

Yupper.
1

Therefore:

And since Y0 = 0:

=

=

=

-X, 1ody+
1-

-(Xi_l+1)'dy+ Yi-lodx-xBYA+xAYB = Yi-l-dy

-(X;_l+l)·dY+(Y;_l+l)·dx-XBYA+XAYB = Yi_l-dy+dx

d; = -Ylower.-Yupper. = -2Y i _l+2ody-dx
1 1

d1 = 2·dy-dx

ADVANCED MICRO DEVICES .t1

4-70 ED29116 4-70

An Algorithm for Fast Vector Plotting with an Am29116 (continued)

An efficient algorithm for plotting a straight vector from given end
points with minimal arithmetic can now be based on the use of a sequence of
values of the above discriminant, d. We start with x=xA' Y=YA' dl=2·dy-dx.
For each point we check to see if x>xB' If so we terminate the procedure.
Otherwise we set the bit corresponding to x,Y in the screen memory. Then we
check the sign of di and proceed to select the next point and the next dis­
crimininant, di +1 as follows:

If d· is -ve 1

X· = x·+l 1 1
Yi = Yi

(i.e. select lower point)

di+1 = -2Yi+2'dy-dx
= -2(Yi_l-dy)+2'dy-dx
= d;+2'dy

i.e. di +1 = d;+incrl
where incrl = 2'dy (always +ve)

If d; is +ve

X· = x·+l 1 1
Yi = Yi+1

(i.e. select upper point)

di+1 = -2Y i +2'dy-dx
= -2(Y i _l-dy+dx)+2'dy-dx
= d;+2'dy-2'dx

i.e. di +1 = di+incr2
where incr2 = 2'dy-2'dx (always

-ve)

Thus for each point plotted, we require only one addition plus one
increment for 'x' and possibly one increment for 'yr. This improved procedure
is Bresenham'sl algorithm for a straight line, Variations on this algorithm
can be devised to plot circular and elliptical arcs.

Reference: Bresenham,J.E. "Algorithm for Computer Control of a Digital Plotter ll

IBM Syst. J., Vol. 4, No.1 (1965), pp.25-30

ADVANCED MICRO D~VlCES 11

4-80 E029116 4-80

Am29II6 Microcode for Vector Generation

Let us show the code that implements Bresenham's algorithm in two
sections. First let us calculate the various quantities needed before the main
loop begins.

We start with: Reg Content

ROO xA
R0I YA
R02 xB
R03 YB

We want: Reg Content

R00 xA
R0I YA
R02 dx=(pixel count)-I
R03 incrI = 2'dy --- always +ve
R04 incr2 = 2'dy-2'dx --- always -ve
ACC dI = 2'dy-dx

The code required to achieve this result is:

SOR W,MOVE,SORA,ROO & CONT xA --> ACC
TORI W,SUBS,TORAA,R02 & CONT dx=xB-xA --> ACe
SOR W,MOVE,SOAR,R02 & CONT dx --> R02 final dx
SOR W,MOVE,SOAR,R04 & CONT dx --> R04
SOR W,MOVE,SORA,R0I & CONT YA --> ACC
TORI W,SUBS,TORAA,R03 & CONT dY=YB-YA --> ACC
SHFTNR W,SHA,SHUPZ,NRA & CONT 2'dy --> ACC
SOR
TORI
TORI

W,MOVE,SOAR,R03 & CO NT 2'dy --> R03 final incrl
W,SUBR,TORAA,R02 & CONT 2'dy-dx --> ACC final dl **
W,SUBR,TORAR,R04 & CONT 2'dy-2'dx --> R04 final incr2

* Note: "SHFTR" is used to multiply by two.
The alternative of adding RAM to RAM is not available.

** Note: The particular implementation of the main loop we are about
to discuss requires that 'dl ' be adjusted further.

ADVANCED MICRO DEVICES ~

4-90 ED29116

Am29116 Microcode for Vector Generation (continued)

Program Flow Chart for Main Loop of Bresenham's Vector Algorithm:

No

No

X=XA' Y=YA
d = -dx

Count = dx+1
incr1 = 2e dy
incr2 = 2"dy-2odx

DNEG:

Plot at X,y
+i ncrl --> d

DPOS:

y+1 --> Y
Plot at X,y
d+incr2 -->d

4-90

Exit

4-100 ED29116 4-100

Am29116 Microcode for Vector Generation (continued)

DNEG:

The main loop section of the code is as follows:

TOR1 W,SUBR,TORAA,R03

SOR

YYYY

TOR

AAAA

& CONT

W, INC, SORY ,R02
& IFNOT CT16 & CT LOW & LDCT JUNK
& JMPI & OEY

; dis -ve
Instruction #1 of subroutine PLOT
& IFNOT CT16 & CT LOW & CJS PLOT+l

W,ADD,TORAA,R03
& RPCT DNEG0

Any instruction
& IFNOT CT16 & CT LOW & CJP BRXIT

; -dx --> ACC (final d1)

dx+1 --> Am2910 counter
Forced pass loads counter
via "JUMP INDIRECT" path.

avoid waste of 1 cycle
unconditional CALL

d+incrl --> d
Last pt plotted? Jmp if not.

last point has been plotted
unconditional jmp to exit

DNEG0: SOR W,INC,SORR,R00 x+1 --> X

DPOS:
SOR

TOR

& IF CT16 & CT N & CJP DNEG

; d is +ve
W,INC,SORR,R01
& IFNOT CT16 & CT LOW & CJS PLOT

W,ADD,TORAA,R04
& RPCT DNEG0

Test sign of d, branch if -ve,
continue if +ve.

y+1 --> Y
unconditional CALL

d+incr2 --> d
Last pt plotted? Jmp if not.

BRXIT: XXXX ; The vector is now completely drawn. Exit from Bresenham.

PLOT: ; Hardware-dependant routine to plot point at R00,R01
YYYY First instruction of PLOT subroutine

& CONT

PLOT+1:ZZZZ Second instruction of PLOT subroutine

LLLL Last instruction of PLOT subroutine
& IFNOT CT16 & CT LOW & CRTN return to caller of PLOT/PLOT+l

4-110 ED29116 4-110

j@t

Am29116 Microcode for Vector Generation (continued)

Improving the Vector Algorithm:

The above implementation of Bresenham's algorithm can still be
improved. As it stands, the code manipulates the logical addresses, 'x' and
'y', and then plots each point by a procedure ("PLOT") that must convert these
address coordinates to physical coordinates. It would be better to work with
the physical addresses directly and hence shorten "PLOT".

Suppose the physical address consists of a word address,'W', and a
bit address, 'b ' • Suppose further that 'b' is represented by a word, 'B',
that has a single bit set in the bit position corresponding to 'b'. Then the
algorithm can be modified as follows:

1. Replace 'y+l --> y' by:

W+(# of pixels per line) --> W usually add 2n via 'BOR2 A2NR'
(Ib' does not need to be altered)

2. Replace 'x+l --> Xl by:

Rotate B up one.
Then if this rotation sets the sign bit,
conditionally: 'W+l --> W'

If the code is altered to manipulate 'w ' and 'B' in this manner,
then the subroutine, "PLOT", receives the address of the word in the screen
memory to be modified, along with the bit bit mask with which to set that
word. This shortens "PLOT" by at least 4 cycles. The implementation of this
improvement is left as an exercise for the reader.

ADVANCED MICRO DEVICES ~

e

5-10 ED29116 5-10

CHAPTER 5

Intelligent Controllers Based on Am29116

ADVANCED MICRO DEVICES ~

5-15 ED29116 5-15

A Typical Peripheral Controller

INPUT-STROBE

HOST -
OUTPUT -STROBE .. SEPARATE DATA
WR I TE PROTECT SEPARATE CLOCK PULSE

COMPUTER INTERRUPT REQUEST - - READ DATA
INTERRUPT ACKNOWLEDGE ~JRITE DATA

WRITE-GATE TYPICAL
STEP

nAT DISK - DIRECTION
.. DISK-

-",

ADDRESS CONTROLLER ERROR DRI VE

ERROR RESET
TRACK 0

REQUEST READY
ACKNOWLEDGE INDEX

MEMORY DRIVE SELECT (4)
WRITE/READ

BLOCK DIAGRAM OF A TYPICAL PERIPHERAL CONTROLLER

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES ~

5-20 ED29116

Peripheral Controllers

The functions of a peripheral controller may include:

i Parallel transmission of data and address information
between the host computer and the device being controlled.

I Detection and execution of commands from the host.

• Provision of status information to the host

5-20

indicating the state of the controller and the controlled device.

I Serial transmission of data to and from the controlled device.

• Generation and testing of status, command and timing bits
that coordinate controller/controlled-device interaction.

• Execution of calculations or algorithms related
to the control of the peripheral or to processing data from it.

ADVANCED MICRO DEVICES ~

5-30 ED29116

Intelligent Controller

Low Speed Version

5-30

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES ~

5-40 ED29116

Intelligent Controller - Low Speed

Devices Needed for the Minimum Configuration:

To control the Am29116:

I Am2910 sequencer

i Microprogram Memory

• Pipeline Register (could be incorporated in a registered
PROM that contains the microprogram)

To control the sequencer:

I 1 1/2 octal D-type flip-flops (Am2920 I s) forming a 12-bit register
acting as a latch for the direct input to the Am2910 sequencer

To interface with the host:

,2 8-bit bidirectional I/O ports (Am2950 I s) connected to the data bus
and providing the data path to and from the host

@ 2 DMA address generators (Am2940 I s)
to drive the host address bus

@ 1 bidirectional I/O port (Am2950)
interfacing with the host control bus

To interface with the peripheral device:

I 2 bidirectional I/O ports (Am2950 I s) conveying status and
command signals to and from the peripheral device

@ 1 serial-to-parallel converter for the serial data stream
to and from the peripheral device

I 1 scratchpad or buffer RAM

And, of course the Am29116

5-40

ADVANCED MICRO DEVICES ;;;1

5-45

I' 4

E029116 5-45

Low Speed Disk Controller

)2
1(11/2) Am2920

12 12 I---/:t... ,
/ - ,., (2) Am2950 da ta bus

1 12 16 DMA address lj - / generator
'/ ,. address b

uO •• 11 CT (2) Am2940
l.- IT Am2910

~~
8

r""" 10 .. 3 YO •• 11 Am29116
, (1) Am2950 /. control b 1 /

16-bit 10 .. 15 12 16
mi crocode

YO •• 15 - -~ 16 I. j6/. addr ,,,,. I (2) Am2950
peripheral

~ program
~ Trn 16 2

memory - / set~A~em~ lle 1, /. device
--------- 16

pipelinereg. 8 MAR / eTR Q

L--.J
nl L-

(2) 25LS2569

I

OE*-and U*-
control for peripheral devices

*51 = output enable
*E1 = clock enable

_19

block diagram of a minimal configuration of a disk controller

scratchpad
address

data RAM

ADVANCED MICRO DEVICES ~

us

us

5-50 ED29116

Intelligent Controller - Low Speed

Brief Description of Some of the Elements

Am2910 Sequencer

• an address sequencer intended for controlling the sequence
of the execution of microinstructions stored in microprogram memory

i capabilities:

- fixed width of 12 address bits

- simple sequential access

- conditional branching to any microinstruction within
its 12-bit 4096-word address range

- incorporates a 12-bit counter for loop control

- provides a 5-1evel stack for microsubroutine linkage

, can accept an address from one of 4 sources:

- its microprogram address counter

- a direct input from an external source

- its internal register

- its stack

, executes 16 instructions as specified by 4 instruction inputs

@ has 5 control pins to control branching, loading
of its register, incrementing of its program counter
and enabling its output bus drivers

5-50

ADVANCED MICRO DEVICES ~

5-60 ED29116

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements (continued)

Am2920 Octal D-Type Flip-Flop

~ provides eight edge-triggered D-type flip-flops with

- a buffered common clock

- a buffered common clock enable

- a buffered common asynchronous clear input

- three-state output control

, the clear input,CLR, resets all eight flip-flops
independent of all other inputs

i With the three-state output-enable LOW, all eight outputs
appear as normal TTL outputs. Otherwise the outputs are
in a high impedance state.

, The clock-enable input, EL is used to selectively load data
into the register. When E is HIGH the register will retain
its current data. When E is LOW, new data is entered
on the LOW-to-HIGH transition of the clock input.

5-60

ADVANCED MICRO DEVICES ~

5-70 ED29116 5-70

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements (continued)

Am2950 Eight-Bit Bidirectional I/O Port

, designed for use as a parallel data I/O port

, provides 2 back-to-back registers to store data moving in both directions
between 2 bidirectional three-state busses

~ provides a handshake-flag flip-flop for each data direction
to allow coordination of demand-response data transfer:

Each flag flip-flop is set automatically when a register is loaded.

- Each flag flip-flop has an edge-sensitive clear input.

e provides for each register:

- a clock input

- a clock enable

- a three-state output enable

ADVANCED MICRO DEVICES l'Q

5-80 E029116

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements (continued)

The DMA Address Generator - Am2940

I High speed, cascadable, eight-bit wide
Qirect t1emory ~ccess address generator slice

8#

, Generates sequential memory addresses for use in the
sequential transfer of data to or from a memory

CD Equipped with

- address counter (increment/decrement)

- address register (saves the initial address)

- word counter (increment/decrement)

- word counter register (terminal count)

- three-state address ouput buffers

t 4 control modes

• 8 different instructions (3 instruction pins)

- write/read control register (control mode)

- read word/address counter

- reinitialize counters

- load address/word count

- enable counters

, 3 control pins

5-80

ADVANCED MICRO DEVICES ~

5-90 ED29116

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements (continued)

The Scratch Pad Memory

e Not always necessary for a peripheral controller

• Improves system performance by allowing the host CPU

and the peripheral device to respond at different rates .

• May also be useful in improving the execution speed of

a controller algorithm by providing quick-access storage

for variables or look-up tables. This traffic can thus be

kept off of the main bus.

5-90

ADVANCED MICRO DEVICES ~

5-100 ED29116

Intelligent Controller - Low Speed (continued)

Microword

e 16 instruction bits for the Am29116 that are

shared with the 12 data bits to the Am2910 that provide for

loading the counter and providing branch addresses

• 1 bit to determine the destination of the above lines

(to either the Am29116 or the Am2910). Use the lEN input

of the Am29116 to disable it on those microcycles -when the data

on the instruction lines is intended for the Am2910.

• 4 instruction bits for the Am2910

• 3 instruction bits for the Am2940

• Using this technique of sharing microinstruction fields,

a microword of 28 bits is possible. Of course, there is

a speed penalty caused by the need to halt the Am29116

when data is passed to the sequencer.

5-100

ADVANCED MICRO DEVICES l1

5-115 ED29116 5-115

Peripheral Controller with Maximal Performance

ex erna 1 test 1~
/ 1(1.1/2) Am2920 I '"

II =-::..::.-. I . :
~~UX~ - i - - - -,

CT cc Am2910

~~ !..~-:r-
. .

10 •• 3 Y : MUX • 10 •• 4
'- ___ -'

Am29116

~ •• 15 16

address DO .. 15
,

~ program .. 11. .4
memory rJ- ITN

pipelinere~

Q ;----t-----.
r - - --, f I~ ~ ! "SI :
I , · Am2904 I

I I · ,
: Am2925 I •

13 .. 0 ~
I · CT I

I I ~ I I

I I · IZ C N OVR : ... _____ .J "11 I

I 4 ~ ----t --; -:
1

14

DE-and IT contro 1
for peripheral devices

block diagram of a maxima1 configuration of a disk controller

12 16 16
/ 1 (2) Am2950

~

16 -0/'-1 (2)Am2940 14-
8

~ (1)Am2950 I~
16y-l (2)Am2950 I-.r-

~r serial-prallell~
converter

~ MAR / CTR
(2)Am25LS2569 I

t >
I~ address

. da ta RAt~

data bus

address bus

control bus

periheral

device

scratchpad

5-120 ED29116

Intelligent Controller - High Speed (continued)

Additional Elements

• 2 multiplexers:

- to define different Am29116 source and destination registers

- to select the branch condition for the Am2910

• Am2925 clock generator and microcycle length controller.
For extended timing required by Am29116 two-address operation.

I Am2904 status and shift control unit:

- to add more flexibility to the Am29116 status tests

- use only the Am2904 micro status register and its
condition code instructions

5-120

ADVANCED MICRO DEVICES ~

5-130 ED29116 5-130

Intelligent Controller - High Speed (continued)

Brief Description of the Additional Elements

Am2925 Clock Generator and Microcycle Length Controller

• General purpose crystal-controlled clock generator/driver ..
I Has a microprogrammable clock cycle length:

- provides significant speed-up over fixed clock cycle

- meets a variety of system speed requirements

• Generates four different simultaneous clock output waveforms

• One of eight cycle lengths can be selected by the microprogram

• System control functions include:

- run

- halt

- single-step

- initialize

- ready twa it

- inputs can determine: . where a halt occurs
. the end point timing of wait cycles

I Up to 12 pins can be controlled by the microword.

ADVANCED MICRO DEVICES ~

5-140 ED29116

Intelligent Controller - High Speed (continued)

Brief Description of the Additional Elements (continued)

Am2904 Status and Shift Control Unit

i Designed to perform all the miscellaneous functions
which are usually performed in MSI around an ALU

e It contains three nearly independent blocks of logic:

- multiplexer to generate the carry-in

- 4 three-state multiplexers for shift linkage

- 2 status registers for storing carry, overflow, zero
and negative status flags.
These status registers control a condition-test output
via a condition code multiplexer.
A wide selection of condition-code test logic is provided.

In our application only the status registers
and condition-test logic is used.

5-140

ADVANCED MICR.O DEVICES ~

5-150 ED29116 5-150

Intelligent Controller - High Speed (continued)

Brief Description of the Additional Elements (continued)

Am2904 Condition Code Output

13 - 10 Condition Code Output

o 0 0 0 (NalOVR)+Z

000 1 (NalOVR) ·Z *
o 0 1 0 N(l)OVR

001 1 NtBOVR *
o 1 0 0 Z

o 1 0 1 Z *
o 1 1 0 OVR

o 1 1 1 OVR *
1 000 C+Z *
100 1 c·z *
1 0 1 0 C

101 1 C *
1 1 0 0 C+Z

1 101 C+Z *
1 1 1 0 N

111 1 N *

* 9 Condition codes not available at the Am29116 CT-output.

ADVANCED MICRO DEVICES l1

5-160 ED29116 5-160

Intelligent Controller - High Speed (continued)

Reasons for the Better Performance of the Second Solution

, Instruction inputs of the Am29116 and the D0-11 inputs of
the Am2910 are driven from separate microcode bits.

- allows simultaneous instruction execution in the Am29116 and
direct-address branching in the Am2910

- requires an additional 12 bits in the microinstruction

I Multiplexer at the CC-input of the Am2910 (controlled by 2 bits)

- allows testing of conditions without loading the signals
into the Am29116

, Tl-4 inputs of the Am29116 driven by 4 additionalmicroword bits

- allows simultaneous testing and execution of an Am29116 instruction

, Use of the Am2904 (controlled by 4 bits)

- improved flexibility in status testing

• Multiplexer at the 10-4 inputs of the Am29116 (needs 6 bits)

- allows different source and destination addresses in RAM
in the same m;crocycle

, The Am2925 clock generator/driver

- able to dynamically alter the length of the microcycle

ADVANCED MICRO DEVICES ~

5-170 ED29116

Intelligent Controller

Comparison with an Am2901 - Based So1ution

5-170

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES ~

~
~ n
1'1'1
10

! n
~
fOI
1'1'1 :s n
II'VII
«.n
tt

Alternate Means of Obtaining Am29116 Features

Am29116

, 16-bit data path

i 32 registers

• 16-bit barrel shifter

Am2901-Based Solution

• Use 4 Am2901 microprocessor slices and
1 Am2902 carry-look-ahead generator.

I Am2901 has 16 registers but is not readily
expandable. For additional registers use
Am2903 or Am29203 processor with 4 Am29705
16 x 4-bit register file extenders.

• Use n cycles to shift data by n bits.

<.TI
I

I-'
'-I
<.TI

iT1
a
N
~
I-'
I-'
O'l

<.TI
I

I-'
'-I
<.TI

t
~ n
1'1'1
t'JJ
~
n
3
t'JJ

~ n
1'1'1
Coft

'tS

Alternate Means of Obtaining Am29116 Features (continued)

Am29116

• Status register and
condition code generator/MUX

• Byte/Word Mode

Am2901-Based Solution

~ Use 2 Am2904 status and shift control units

- One Am2904 for the ALU flags (C,N,OVR,Z)
and condition code generation

- One Am2904 for the 3 user-definable flags
and the linkage flag

• Use two output enable bits (OEy).
Then in byte operations force OEy high
for slices 3 and 4.

• Multiplex status lines at slices 2 and 4

Note: This will permit external byte-mode functions.
Operations on internal registers will still
alter all 16-bits. You should choose Am29203
rather than Am2901 if Byte/Word operations are
important. When used with a statUS-flag MUX,
Am29203 fully supports Byte/Word operations.

U1
I

I-'
-....J
Q')

I"TJ
Cl
N
1.0
I-'
I-'
Q')

U1
I

I-'
-....J
0)

t
~
n
i'Ii'I
\0

~
n

3
~ n
i'Ii'I
lilt

'td

Alternate Means of Obtaining Am29116 Features (continued)

Am29116

e Built-in 16-bit priority encoder
~ Masking capability of the ALU

~ Bit oriented instructions

@ CRC instructions

Am2901-Based Solution

I Use two 8-bit Am25LS2513 priority encoders
• Use three microcycles:

- mask the first operand

mask the second operand

operate on the masked operands

• Emulate with several microinstructions

, Can be emulated by a lengthy microcode
sequence. Will execute too slowly
for many applications.

U"'1
I

........
-...J
-...J

("T1

o
N
1.0
........
0"1

U"'1 ,
........
-...J
"'-J

5-180 ED29116 5-180

Intelligent Controller - Using Am2901

Brief Description of the Additional Devices

Am2901 4-bit Microprocessor Slice

, High-speed cascadable element for use in

- CPU's

- peripheral controllers

- programmable microprocessors

- numerous other applications

e Consists of:

- a 16-word by 4-bit two-port RAM

- a high-speed 8-function ALU
plus shifting, decoding and multiplexing sections

• Cascadable with either:

- simple ripple carry propagation

- the Am2902 look-ahead carry generator

• Produces 4 status flags (N, OVR, C, Z)

• accepts 9-bit microinstructions:

- 3 bits select the ALU operand source

- 3 bits select the ALU function

- 3 bits select the ALU destination

• accepts 8 bits to select the two RAM addresses

, accepts 2 control bits (OE and carry-in)

ADVANCED MICRO DEVICES ~

5-190 ED29116 5-190

Intelligent Controller - Using Am2901

Brief Description of the Additional Devices

Am2902 High-Speed Look-Ahead Carry Generator

• Provides anticipated carries across a group of four binary ALU's

I Accepts up to 4 pairs of carry fropagate and carry Qenerate
signals from an ALU and one carry input.

With ALU operands A and B and an addition operation:

P0 = A0+B0 G0 = A0"B0

P1 = A1+B1 Gl = Al e S1

P2 = A2+S2 G2 = A2'S2

P3 = A3+B3 G3 = A3· S3

• Also provides carry-propagate and carry-generate signals
to use for further levels of look-ahead.

i Logic results provided at the outputs are:

Cn+y = G1+PloG0+Pl'P0'Cn

Cn+z = G2+P2'G1+P2oPloG0+P2"P1'P0'Cn
-
G = G3+P3'G2+P3'P2'G1+P3"P2"Pl'G0

ADVANCED MICRO DEVICES ;;q

5-2rJt/J ED29116 5-2rJt/J

Intelligent Controller - Using Am2901

Brief Description of the Additional Devices

Am25LS2513 Three-State Priority Encoder

• Encodes eight lines to three-line binary

• Three-state outputs

- controlled by three active LOW and two active HIGH inputs

.. Cascadable

- provides an input enable and an output enable
to permit cascading without additional circuitry

ADVANCED MICRO DEVICES ~

5-205

I 1 5

114

113
I 1 2

I 1 1

I 1 0

19

18

E029116 5-205

Building a 16-bit Priority Encoder from 2 AM25LS2513

- A2
E1'

-A1

AO

G1 -0 V cc
G2

-G3 r--

G4 r--

EO G5 I ~~

EI A2

A1

AO

G1 OVcc

U G2

G3
-
G4

=l li5 EO -
if LOW: I 1 5 - I 0 = OOOOH

ADVANCED MICRO DEVICES ~

5-210 ED29116
R¥+#

Intelligent Controller - Using Am2901

Thus we have seen that it ;s rather hard to build a controller

with the same features as the AM29116 from parts with a lower

level of integration.

On the next page we see a simple disk controller

based on a pair of Am2901A's.

5-210

ADVANCED MICRO DEVICES ~

tM

~
~
n
W1l'!
ICI
:r:
n
~
ICI

S
n
IITI
U't

~

CONDIT10N CODE
SELECT AND
POt.AAIlY CONTROt

CONDITION
CODES 16

UNIBUS

~

ADDRESS1eN DATA16N 'IN CONTROL ADORESS18N O.o.T.o.161'-, 2NcONTROl

41

.7

CNfl & STS REGISTERS
AND

RAM WRITE REGISTER

..
~

CONTROL STOfll
AND

MICROPROGRAM FIE G1SH A

121 }----;

SEQUENCER

.7

45 44 42 41 J9 38 37 36 35

..! ~ ~],.

UNIBUS INTERFACE

MBUS!IIBITSI

Am2901A'~

Am29811INSTR

MEMORY ADDRESS

6R ADOR

32)1 28 27 24 23 20 19 18 11 16 15 1211

DISK, INTERFACE

• 7

[TTl I I I I I I I I I I I 'TT7T-'--'-'TTTITTI I TTTTTTI 1 I TTl I rml~

1 z 1 u 1 • 1 1 U 1 1 ~ 1 ~ 1;1.1-101 • 1 1 • 1
1 it 1 ::i 1 II Ijpol~1 • I ~ 1 ~ I ~ I~I~I:I:I ~ I I g 1
I I I I I II I I 1 I " " I I 1

MICROCODE 81T ASSIGNMlNTS

v

::t=>

0
III

"
("")
0
:::s
M-....
0
--'
(1)
0-
C
-'.
--'
M-

SlJ
-;
0
c
:::s
0-

::t=>
3
N
\.0
C>
~

VI

MPR-430

I

U1
I

N
~

U1

rr1
0
N
\.0
~
~

Ol

U1
I

N
~
U1

5-217 E029116 5-217

The Microword for the 2901 - Based Solution

- 48 bits wide

• 19 bits Am2901 instruction (M47 - M37, M35 - M28)

- 3 bits function select (FCN)

- 3 bits source (SRC)

- 3 bits destination (OST)

- 4 bits A port register address

- 4 bits B port register address

- 1 bit carry in (C N)

- 1 bit output enable (OE)

8 bits M-bus control (M27 - M20)

- 4 bits bus source (BUS SRC)

- 4 bits bus destination (BUS OST)

11 bits sequencer (M36, M17 - M8)

- 4 bits Am2911 instruction (SEQ INSTR)

- 4 bits condition code select (TEST)

- 1 bit polarity of CC (poL)

2 bits to determine the page of microprogram

8 bits data (M7 - MO)

2 bits additional control (M19, M18)

- 1 bit increments MAR (INC MA)

- 1 bit initiate data transfer (TRAN)

memory

ADVANCED MICRO DEVICES ~

5-220 ED29116

Intelligent Controller

Very High Speed Solution

5-220

ADVANCED MICRO DEVICES ~

5-230 ED29116

Intelligent Controller - Very High Speed

Some General Considerations

~ Interface-signal names, polarities and functions
used here are similar to those used in the current ANSI
standard for hard-disk drives.

I The methods and functions discussed here can be used for most
current hard- or flexible-disk drives.

, With minimal external logic, this controller uses an Am29116
and an Am9520 burst error processor to perform all of the
functions needed to:

- write and read at 30 Mbits per second

- format a disk

Including:

- searching a track for a specific header and sector

- managing data flow through a high-speed buffer memory

- generating modified Fire-code check bits while writing

- detecting and correcting single and burst errors on reading

- generating and checking of CRC's in sector headers

5-230

ADVANCED MICRO DEVICES ~

5-240 ED29116 5-240

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor

Distinctive Characteristics:

• Provides for detection and correction of burst errors:

- detects errors in serial-data blocks up to 585K bits long

- allows correction of error bursts of up to 12 bits long

• Effective data rates up to 20 Mbits per second:

- fast enough for high-performance hard disk systems

I Four selectable industry-standard polynomials:

- popular IBM 56- and 48-bit polynomials

- also 35-bit and 32-bit polynomials

• Three correction algorithms provide flexibility:

- full-period clock-around method compatible with current practice

- Chinese Remainder Theorem method reduces correction time
by orders of magnitude

- reciprocal polynomial method for correction
with the 48-bit IBM code

• Designed for use in disk controllers and communication systems
based on fixed-instruction-set or microprogrammed processors.

ADVANCED MICRO DEVICES ~

t
~
n
ffl
t:I
3:
n
S
t:I'

S
n
1'1'1
~

~

RESET (MR)

CLOCK (CP)

FUNCTION /
SELECT (C2-CO) J

Vss

I

READ ERROR
PATTERN (REP) ---"'~a

POLYNOMIAL SHIFT
CONTROL (P3-PO)

Vee

I

CONTROL
LOGIC

POLYNOMIAL J '-"

SELECT (51-SO) JL v Ba....-Y'"""I __II

8
DATA IN /
(DrDol

1-----,
STATUS LOGIC

I ~ ZERO DETECTION

I ALIGNMENT MONITOR

I ERROR PATTERN DETECTOR

-------------'

I--Jt--~ I REGISTER I
ARRAY

POLYNOMIAL
DIVIDE MATRIX

L SELECTABLE POLYNOMIAL ~
DIVIDERS ----------

ERROR (ER)

ALIGNMENT EXCEPTION (AE)

3. . ERROR PATTERN (EP)

PATTERN MATCH (PM4-PM2)

8 ,

7
I
> DATA OUT

(0,00)

4 I ...
LOCATED ERROR
PATTERN (LP3-LPO)

)::>
3
~
(j1
N
a
OJ
s::::
-s
VI
rt

I"1l
-S
-S
0
-s

" -s
0
(")
CD
VI
VI
0
-s

I

(j1
I

N
+::0
(j1

I"1l
0.
N
~
0'1

(j1
I

N
+::0
(j1

5-25(/J ED29116

Intelligent Controller - Very High Speed (continued)

Am952(/J Burst Error Processor (continued)

Functional Description:

• Register Array

- consists of 56 flip-flops used for

• check-bit computation during write operations

• syndrome computation during read operations

• error pattern extraction during error correction operations

, Polynomial-Divide Matrix:

- establishes interconnectio~s and feedback for a group
of shift registers such that an entire byte of data
is divided in a parallel operation by the selected polynomial

- the matrix is controlled by 2 Polynomial Select
and 2 Function Select inputs

- the data is presented to the matrix a byte at a time
on 8 data lines

• When correction operations are complete, the error
pattern is available on 12 outputs:

- eight bits on the Q(/J-Q7 outputs

- four bits on the LP(/J-LP3 outputs

5-25(/J

ADVANCED MICRO DEVICES ~

5-260 ED29116 5-260

Intelligent Controller - Very High Speed (continued)

Arn9520 Burst Error Processor (continued)

I Write:

- While the data is being written, the Arn9520 is in the
Compute-Check-Bits mode, calculating the polynomial remainder
without affecting the flow of data to the disk

- After the last data byte, the Am9520 is switched into the
Write-Check-Bits mode, outputting the 4, 5, 6 or 7 check bytes.

- These check bytes constitute additional information
to be appended to the data stream to allow detection
and correction of errors on reading.

, Read:

- Two modes are available when reading: Normal and High Speed

- The two modes use different correction algorithms.

- After the last information byte has been read, the state of
the ER output signal indicates whether an error has occured.

5-270 ED29116 5-270

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

• Correction:

- After the read operation, the syndrome in the register array
contains information specifying:

• the location of the error

• the bit pattern of the error

e Normal Correction Mode:

- The error location is found by counting the number of clock
pulses required to make the EP output go HIGH.

- The error pattern available on LP0-LP3 and Q(j)-Q7 can
be Exclusive ORed with the data to effect the correction .

• High-Speed Correction Mode:

- The error location is found by counting the number of clock
pulses required to generate an indicator for each of the
2 or 4 factors of the polynomial.

- The error pattern available on LP0-LP3-and Q0-Q7 can
be Exclusive ORed with the data to effect the correction.

- While there are more steps to the high-speed-correction procedure
than are required by the "Normal" procedure, the correction is
accomplished far faster.

The high-speed correction method is not available for the 48-bit
polynomial.

- For the 56-, 35- and 32-bit polynomials,
the high-speed method should be preferred over the "normal method".

ADVANCED MICRO DEVICES ~

5-280 ED29116

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Computing Check Bits:

, The Polynomial Divide Matrix and the Register Array implement
the familiar serial form of feedback shift register arrangement
in an 8-bit parallel form •

• The $1 and S0 inputs select one of 4 polynomials:

5-280

Degree & Correctable
Polynomial Number of Period Burst Error

Check Bits (Bits) Length (Bits)

(x22+11e(x11+x7+x6+x+1).
(x12+x 1+x10+ ••• +x+1). 56 585,442 11
(x11+x9+x7+x6+x5+x+1)

(x21+1)0(x11+x2+1) 32 42 s 987 11

(x23+1) o (x12+x11+x8+x7+x3+x+1) 35 94,185 12

(x13+1) o (x35+x23+x8+x2+1) 48 13 0(235_1)
=4.466 •.. X1011 /

7

e When the last data byte has been read or written, the Register Array
contains the check bits.

e Remember to select the same polynomial for reading as was used for writing.

M

5-290 E029116
ffl't'M1' 4

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Computing Check Bits (continued)

~ Sequence of events to compute the check bits

i) The clock input,CP, should be in the quiescent HIGH state.

ii) Initialize by activating the master reset input, MR, LOW
and return it to HIGH.

iii) Specify the desired polynomial via S0' Sl.
Apply zeroes to C2-C0 to select Compute-Cheek-Bits mode.

iv) Establish a byte of data on 00-07 inputs.

v) Make the clock input go LOW then HIGH.

vi) Repeat from step iv) until all data bytes are entered.

5-290

ADVANCED MICRO DEVICES 11

5-300 ED29116 5-300

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Write Check Bits:

, When the Write-Check-Bits mode is established, the feedback
paths of the register array are disabled and the check bits
may be shifted out.

~ Checkbits are available on the Q0-Q7 outputs one byte at a time •

• Sequence of events to obtain the check bits:

i) The clock input, CP, should be in the quiescent HIGH state.

ii) Select the polynomial via the S0,Sl inputs.

iii) Force C2,C1,C0 to LOW LOW HIGH (Write Check Bits).

iv) After a propagation delay the Q0-Q7 outputs will
contain the, first check byte.

v) Make the clock input go LOW then HIGH. The next check byte
will be available on the Q0-Q7 outputs.

vi) Repeat from step v) until all check bytes are read out.

ADVANCED MICRO DEVICES l1

5-310 ED29116

; fAdE ME t

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Read - General:

• The input stream (data and check bytes) is divided by the
selected polynomial to obtain the syndrome.

• A non-zero syndrome indicates an error has been detected.
If the syndrome ;s not zero the ER output will be HIGH.

o Two methods for error correction are available:

- full-period clock-around ("Normal")

- Chinese Remainder Theorem ("High Speed Method")

o There ;s a different read procedure for each of these methods:

- Read Normal: produces one syndrome

- Read High Speed: produces as many syndromes as the
number of factors in the polynomial.

The input stream is simultaneously divided by all of the
factors of the polynomial. The ER output indicates
whether or not all syndromes are zero.

• Read High Speed is not available for the 48-bit polynomial

5-310

ADVANCED MICRO DEVICES 11

5-320 ED29116

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Read Norma 1 :

• Sequence of events for Read Normal:

i) The clock input should be in the quiescent HIGH state.

ii) Initialize by pulling the master reset, MR, LOW
and then returning it to HIGH.

iii) Select the required polynomial via S0,Sl inputs.

iv) Apply LHL to C2,C1,C0 to select Read Normal.

v) Present a byte of information as read from the disk
to the 00-D7 inputs.

vi) Make the clock go LOW then HIGH.

vii) Repeat from step v) until the last check byte read
from the disk ;s processed.

vi;;) Test the ER output:

- ER HIGH: an error has been detected.

- ER LOW: no error has been detected.

5-320

5-330 E029116 5-330

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

High Speed Read:

, Sequence of events for Read High Speed:

i) The clock input, CP, should be in the quiescent HIGH state.

ii) Specify the polynomial via the 50,Sl inputs.

iii) Apply LHH to C2,C1,C0 to select Read High Speed.

iv) Initialize by pulling the master reset, MR, LOW
and then returning it to HIGH.

v) Present a byte as read from the disk to the 00-07 inputs.

vi) Make the clock go LOW then HIGH.

vii) Repeat from step v) until the last check byte has been read.

viii) Test the ER output:

- ER HIGH: an error has been detected.

- ER LOW: no error has been detected.

ADVANCED MICRO DEVICES 11

5-340 ED29116 5-340

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Function Select Codes

C2 Cl C0 Function

L L L Compute check bits

L L H Write check bits

L H L Read normal

L H H Read high speed

H L L Load

H L H Reserved

H H L Correct normal

H H H Correct high speed

5-350 E029116 5-350

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Correct Norma 1 :

I The Am9520 manipulates the syndrome to yield:

- error pattern (at Q0-Q7 and LP0-LP3 outputs)

- error location (needs further external computation)

• Syndrome is repeatedly divided by the polynomial until
the error pattern is located:

- done by repeatedly clocking without regard to the 00-07 inputs
until EP goes HIGH

• If the AE output goes HIGH while the EP output remains LOW,
an alignment exception has been detected.

• Count clock cycles (#C) until EP goes HIGH.

• If IC > (period of polynomial) then the error is uncorrectable.

ADVANCED MICRO DEVICES ~

5-360 ED29116 5-360

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Correct Normal: (continued)

I Use two external counters (RI, R2)

- RI counts the number of cycles until AE goes HIGH

- R2 counts the number of cycles from AE going HIGH
to EP going HIGH. (= 0 if no alignment exception)

• If RI+R2 > (period of polynomial) then the error ;s uncorrectable.

, (NoK - S"RI - R2) gives the location of the first bit in the
error burst counting from the last check bit of the record
for the 56-bit and 32-bit polynomials.

(N'K - S"RI - R2+5) gives the location of the first bit in the
error burst counting from the last check bit of the record
for the 35-bit polynomial.

where:
K ;s the smallest +ve integer that makes this expression +ve.
and N is the period of the polynomial.

Note: The 4S-bit polynomial uses another correction algorithm.
See specification sheet for details.

5-370 ED29116 5-370

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Burst Error Processor (continued)

Correct High Speed:

• This mode allows you to determine the error pattern
in far fewer clock cycles than does the "Normal" mode.

- A polynomial with m factors with periods P1,P2"." Pm
will correct in no more than the following number of
of clock cycles:

In Normal mode: 'Pm i.e. the product of the piS

+Pm i.e. the sum of the piS

, Number of syndromes equals the number of factors of the polynomial.

, Refer to the table a few pages back which shows the factorization
of the polynomials.

As we have written the factors, the first factor has a special
signifigance. The degree of this first factor determines the
maximum length of an error burst that ;s still correctable.

ADVANCED MICRO DEVICES ~

5-380 ED29116

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

• The error location is given by:

L = N'K - (A1M1 + A2M2 + .•• + ~~)

Where N is the natural period of the polynomial.
K ;s the smallest integer that makes L positive.
Mi are the numbers of clock cycles required to match

the error pattern of each factor.
and Ai are the Chinese Remainder Theorem coefficients:

Polynomials A1 A2 A3 A4

56-bit 452,387 578,864 2,521,904 2,647,216

32-bit 311,144 32,760 -- --

35-bit 32,760 720,728 -- --

5-380

ADVANCED MICRO DEVICES ~

5-390 E029116 5-390

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Correct High Speed (continued)

o To determine M; and the error pattern use:

- P0-P3 inputs to select the register section to be clocked

- PM2-PM4' the II patternmatch" outputs:

When PM; is HIGH then the syndrome; shows a match
with the error pattern •

• For M1: use the polynomial-shift controls to select
register-section #1 (P0,P1,P2,P3 - HLLL).

Use the same procedure as in the correct normal mode.

- If Rl+R2 > (period of factor #1) then error is uncorrectable.

- If error is correctable then MI = 8RI + R2

I The Mi will be determined after MI but slightly differently~

- Select the ;th register section via P3-P0

- While PMi is LOW clock the 9520 and increment a counter

- If the count exceeds the period of this factor the error
is not correctable.

t When EP and all PM; 's associated with this polynomial are HIGH,
then the error pattern and error location are determined.

ADVANCED MICRO DEVICES l1

5-400 ED29116 5-400

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Am9520 Polynomial Periods

Period Period Period Period Composite
'Po lynomi a 1 Factor 1 Factor 2 Factor 3 Factor 4 Period (N)

56-bit 22 13 89 23 585,442

32-bit 21 2047 -- -- 42,987

35-bit 23 4095 -- -- 94,185

Note: The 48-bit polynomial requires the use of
a different correction procedure and is not shown here.

ADVANCED MICRO DEVICES ~

5-405 E029116 5-405

Error Pattern Format for 56-Bit, 35-Bit and 32-Bit Polynomials

z o
~
U

9
II: o
II:
II: w
o
W
f- 0
::> a:
c.. 0
::;; U o w
!:. II:
..J

" UCI)
wf­:em
U

-~

..:
f­
ot o

f­
CI)
II:
::>
til
II:
o
II:
II:
w

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

f­
CI)
II:
::>
til
o
w

t
w
II:
II: o
U

~

c..
..J

'" Q.
..J

M c..
...J

o o

'" o

M o

U'> o

<D o

I­o
~ __ ~ L-__ ~

ADVANCED MICRO DEVICES l1

5-407

.- - - - ... - - - - - - - - -,
I

not detailed I

here

host memory
or

data channel

ED29116

Data Path for Very High Speed Controller

Am2910
micro­
sequencer

Am27S35
microprogram
emory with
i~ternal pipe-

Am29116
micro

controller

test
multiplexer

16-bit control bus

status

,-------,

Am2920
buffer memory

Am9147
buffer

Am9520
burst

5-407

drive

BEP (burst error prosc.)

FIFO

drive
control

~ferential
~te control

read
clock

5-410 ED29116 5-410

Intelligent Controller - Very High Speed (continued)

System Organisation:

• Interface to the disk drives:

- bit-serial data paths for read and write

- byte-parallel paths for

• commands

• disk addresses

• disk status

• Am2910 sequencer and Am27S35 registered PROM microprogram
memory drives 76-bit control bus:

• Data flow is:

- asynchronous & serial at 30 Mbits/sec from drive to a FIFO array

- 16-bit clocked & parallel from the FIFO array to the buffer memory
at 20 Mbits per second via the internal data bus.

• The BEP is located on the internal data bus.

• Disk read:

- Data is read into the FIFO array at 30 Mbit per second.

- Concurrently, the data is transferred from the buffer memory
to the BEP at a rate of 15 MHz.

Ii Disk write:

- The BEP pre-calculates the check bits before the write. There is
not enough time to overlap BEP/buffer and buffer/FIFO transfers.

ADVANCED MICRO DEVICES l1

5-420 ED29116

Intelligent Controller - Very High Speed (continued)

Microinstruction Format

I 80-bit wide microinstruction

- This is not a minimum width, but it demonstrates
microcoding in a straightforward manner.

I Sample microcode for uncompressed sector read/write
operations is available including:

- header and sector searching

- error checking of the header via Am29116 CRC instructions

- error checking and correction of the data segments
via Am9520 and its 56-bit modified Fire code polynomial

, The sector input/output microroutine (SECTIO) performs input
or output of a single 256-byte sector.

5-420

Microinstruction for the Very High Speed Controller

Microinstruction Field

Bits Width Mnemonic Comment

79-64 16 115-10 Am29116 Instruction

63-60 4 T4-T1 Am29116 Conditional Test Select

59 1 SRE Am29116 Status Register Enable

58 1 OEy Am29116 Output Enable V-Bus

57 1 lEN Am29116 Instruction Enable

56 1 OLE Am29116 Data Latch Enable

55-52 4 13-10 Am2910 Instruction

51-42 1(]) D9-D0 Am2910 Direct Input

t 41-36 6 Condition-Code MUX Selection & Polarity
~ 35 1 ADMC Address Mark Control n
"' C

BFCB (Enable Memory) Bus from (Disk Drive) Control Bus ! 34 1
n
~ 33 1 BFTP (Enable Memory) Bus from Translate PROM c

(Translate PROM needed in data compression operations) ffl

:s
n

32 1 BF03 (Enable Memory) Bus from 9403A FIFO array
ffl
11ft

~

U"1
I

..;::.
N
U'1

n

tlU"1
I

..;::.
N
U"1

Microinstruction for the Very High Speed Controller (continued)

Microinstruction Field

Bits Width Mnemonic Comment

31 1 BFl6 (Enable Memory) Bus from Am29116 V-Bus

3Q:l 1 BF2L (Enable Memory) Bus Lower Byte from Am9520 Q-Bus

29 1 BF2U (Enable Memory) Bus Upper Byte from Am952Q:l Q-Bus

28 1 BOUT Bus Direction OUT

27 1 BTQ:l3 (Enable Memory) Bus to 9403A FIFO Array

26 1 BT16 (Enable Memory) Bus to Am29116 V-Bus

25 1 BT2L (Enable Memory) Bus Lower Byte to Am9520 D-Bus

24 1 BT2U (Enable Memory) Bus Upper Byte to Am952Q:l D-Bus

t 23 1 BT20 (Enable Memory) Bus to Am952Q:l REP, P3-P0, C2-CQ:l
~ 22 1 CE2L Clock Enable Am952Q:l to Lower-Byte BlIS Interface Register n
I'li
IOl

CE2Q:l ! 21 1 Clock Enable Memory Bus to Am9520 Interface Registers
n
3 20 1 CP2iiJ Clock Pulse for 952Q:l (Microcoded Waveform)
0
I'li

~I
19 1 CREQ Command Request

18 1 INPT (Enable Serial Data) Input to 94Q:l3A FIFO Array

U1
I

..j:::o
N
0'1

... rr1
Cl

I ~

I 'f'
..j:::o
N
0'1

~
~
n ..,
o
l n
3
."

S n ..,
CIt

ts

Microinstruction for the Very High Speed Controller (continued)

Microinstruction Field

Bits

17-16

15

14

13

12

11

10

9

8

7

6

5

4

3

2-0

Width

2

1

1

1

1

1

1

1

1

1

1

1

1

1

3

Mnemonic Comment

JMPI (Enable) Jump Indirect Am29116 V-Bus (double rail)

MADR (Enable Loading of Buffer) Memory Address Register.

MREA (Enable Buffer) Memory Read

MWRT (Enable) Memory Write Operation

OUPT

PENB

PFPM

PF03

PL03

PREQ

RDGA

RFIF

SAST

WRGA

XLAT

(Enable Serial Data) Output from 9403A FIFO array

Parameter Enable

(Enable Setting of Am9520) P Bits from Am9520 PM Bits

(Enable) Parallel Fetch from 9403A FIFO array

(Enable) Parallel Load of 9403A FIFO array

Parameter Request

Read Gate

Reset 9403A FIFO array

Select/Attention Strobe

Write Gate

Translate Table Select for Data Compression PROM

Ul
I

.j:::.
N

"

ITI
o
N
~
m

Ul
I

.j:::.
N

"

5-460 E029116 5-460
9

Intelligent Controller - Very High Speed (continued)

Conclusion

What makes this controller so fast?

• The Am29116 microprocessor has been combined
with the Am9520 burst error processor.

- This provides the powerful Am29116 instruction set
and the very effective hardware elements of the Am29116:

· its CRC logic
• 32 registers
• barrel shifter
• priority encoder

- The Am9520 is a relevant specialized device which:

• generates the checksum

• checks the data together with the checksum
and produces both the error pattern and error location

· is very fast (due to its special hardware).

You can calculate a CRC remainder -

on an Am9520 at 50nsec per data byte.
on an Am29116 at 200nsec per data bit.

(The Am9520 ;s 32x faster than the Am29116!).

I The Am9520 is unique in supporting the very fast
Chinese Remainder Theorem method that greatly speeds
the correction of a faulty sector.

This method is fully supported by hardware for use while
reading and in the correction calculation itself.

ADVANCED MICRO DEVICES ~

5-47(/; ED29116 5-47(/;

Intelligent Controller - Very High Speed (continued)

Conclusion (continued)

, We can write special microcode: for example for packing
ASCII fields.
This is not possible with a fixed-instruction-set processor
or a specialized LSI disk-controller chip.

i We are making use of the parallel hardware of the 952(/;.
For example, the Am952(/; can perform up to four simultaneous
polynomial division operations and produce four independant
syndromes concurrently.

, We are concurrently reading from the disk and generating
the polynomial remainders for error detection and correction.

(We were not able to support checkbit calculation
in parallel with writing, however) •

• We have used a FIFO array to allow us to read a data stream
that is faster than even an Am952(/; can check it •

• We have incorporated a buffer memory that:

- holds images of the last eight sectors read from or
written to disk

- holds II(/; request queues to maximize throughput

- holds additional house keeping tables

'. We have used a PROM to translate from EBCDIC data
to packed-BCD or ASCII

ADVANCED MICRO DEVICES l1

6-10 ED29116 6-10

CHAPTER 6

Application of Am29116 to General Purpose CPUs

ADVANCED MICRO DEVICES ~

6-20 ED29116

A Microprogrammed CPU Using Am29116

The following pages provide an introduction to
AMD Application Note MPR-1712

6-20

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES 1'I

6-30 ED29116 6-30

A Microprogrammed CPU Using Am29116

Introduction and System Overview

• Am29116 is optimized for peripheral controller applications

• However, Am29116 is also an ideal choice for CPUls as well.

- it has a powerful instruction set for:

• arithmetic operations

• data movement

· multiple-bit shifts

• bit manipulation

• status manipulation

- it has high speed (100 nsec cycle time)

- it can reduce power requirements

- it save area on PC boards

, We will describe a CPU built with the Am29116 which maintains
architectural and software compatibility with the Super-16.*

I This CPU incorporates pipelining at

- the microprogram level
- the macroinstruction level

* As described in detail in
IIBitslice Microprocessor Design" by Mick and Brick, Chapter 9

6-35

INTERRUPT - r- CONTROL

t

I
CLOCK

~
CONTROL

ED29116 6-35
m 5

Central Processing Unit Block Diagram

MAIN
MEMORY
CONTROL

MAIN
MEMORY

J t
ADDRESS BUS

DATA BUS

INSTRUCTION
LOOKAHEAD

INTERNAL BUS

INSTRUCTION REGISTER

~. l

SEQUENCE
CONTROL AND

MICROPROGRAM
MEMORY

I

PIPELINE REGISTER

I I l I I I I

DATA REGISTER ADDRESS REGISTER

I N J REGISTER

Am29116

STATUS
CONTROL

MPR-819

ADVANCED MICRO DEVICES ~

6-40 ED29116 6-40

'iB

A Microprogrammed CPU Using Am29116 (continued)

System Organization

This is a simple system comprised of:

o 16-bits'wide main memory built from static RAM chips

, Am29116 processor and CCU

, A simple bus structure:

- can be modified to accomodate interface signals

- but to add other 1/0 devices, a bus controller is needed

6-45 ED29116

System Organization (continued)

Interface Signals between the Memory and the CPU

16/ data bus ,

16/ address bus
1'/ address accepted

- (, data strobe
I

CPU
1 I read/wri te
1', memory request ,
1, data synch
l' interrupt reg.

I

. handshaking over three busses
- 16-bit-wide address bus

and a-"ck

- 16-bit-wide bidirectional data bus
7-bit-wide control bus
• memory request
• read/write
· address accepted
• data strobe
· data synch
· interrupt control lines

Memory

6-45

ADVANCED MICRO DEVICES ~

6-47

clock control: cp-.1

CPU:

ADDRESS

MEMORY
REaUEST

Alii

memory: ADDRESS
ACCP

CPU: DATA STROBE

mem: DATA SVNCH

data on bus: READDATA

n - 1th CYCLE

E029116 6-47

nth CYCLe n + 1th CYCLE

f f L
valid

MPR-821

ADVANCED MICRO DEVICES 6:1

6-50 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Memory Read (continued)

• To use the data in the n+lth cycle, the Am29116
generates the main memory address during the
(n_l}th cycle •.

• Data ;s read during the nth cycle.

• The nth cycle must be stretched
to accomodate main-memory READ timing.

• The signal to stretch the nth cycle is provided
to the Am2925 clock generator during the (n_l)th cycle.

6-50

ADVANCED MICRO DEVICES l'i

6-55

System Organization (continued)

Memory Wri te
n - ilh CYCLE

clock control: cPJ

CPU

ADDRESS

MEMORY
REQUEST

R/ii

memory: ADDRESS Acep

CPU: DATA STROBE

data on bus:

memo ry: DATA SYNCH

ED29116

nih CYCLE

t f

6-55

note: cycle n
is also
strecked L

MPR-B22

6-60 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Instruction Formats

(same as for Super-16)

• One-word instructions (16 bits):

15 8 7 4 3 0

- register to register RR OP I Rll R21

- register storage RS OP I Rll X21

- storage to storage SS OP I Xli X21

• Two-word instructions (32 bits):
15 o 15

- register indexed storage RX OP Rl X2

- register storage immediate RX OP Rl X2 d

• 4-bit register address defines one of 16 registers:

- uses lower half (R0 - R15) of the 32 registers in the Am29116
as user registers

- upper half (R16 - R31) used by the operating system
(stack pointer, counter, etc.)

6-60

d

ADVANCED MICRO DEVICES 11

6-7rtJ E029116

A Microprogrammed CPU Using Am29116 (continued)

Instruction Formats (continued)

• 8-bit opcode specifies 256 instructions

- includes information about the addressing mode

- PUSH/POP operations

- I/O instructions

- decimal and binary integer arithmetic

• Data types

- bit

- nibble

- byte

- word

6-7rtJ

ADVANCED MICRO DEVICES ~

6-90 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Central Processing Unit

/I

<
"
A

~

fj
~

8

IN~

I·' T

(291 16)

-
r--

50.2 MO_1

PO-7

Am2914 VO•2

10-3

INTO
INT
REO

'-----
--;-.
,---!-

r--

~

-

CC
MUX

~

3

3

A[)[)RESS BUS

I DATA BUS ,.

I Z LATCH r cp

15 87 I 43 0

INST REG I r cp
Rl R2

(tRl OF CODE

, I

INT VEer M:~6~G OE Ao-Az PROM OE~
l---- MAP {PL}

00·°11

VEer (Pl)
12

12 12

- 0 0•11

r-+- o 0 r-- Co
CCFF Am2910

SEQUENCER
CP- CK

"----;-
I Yo.n I-- CP

12{

~ MEMORY I
J

PIPELINE REGISTER (PL)

LJ I· ·1 Il [

ADDRESS ~ C,., "'" ACCEPTED ex Am2925 CP
READY

C2

J

CP

EN

,
4

IR
O

_
3

CP

6-90

"
"
"

1 • .f' 1.{

CP CATA J EN MEMORY
ADDRESS

EN REGISTER CP REGISTER

INTERNAL 8US_~
16

I
16

N
REGISTER

12 YO-15
'0-3

'4.e, 113.15 ,
4

'9-12

12 5
lEN

L SAE
Am29116

~ CP OLE

L Fo- OEy -
OET

,
T1.4

CT

4
Iz, C, N, OVR

li,)o. Am29G4 y~
r--

~
MUX rr- '0_3

CT

IR4_1

MPR·82 4

ADVANCED MICRO DEVICES 11

6-100 ED29116 6-100

A Microprogrammed CPU Using Am29116 (continued)

CPU - Architecture

• Int~rnal data transfers use 16-bit wide internal bus

I Data is transferred between the system bus and
the internal CPU bus on three paths:

- data register

- address register

- instruction lookahead register (Z-latch)

til Pipelining

- microlevel: pipeline register at the output
of the microprogram memory

(for overlapped instruction fetch and execution)

- macrolevel: instruction register (IR) and Z-latch

• decodes the macroinstruction in the IR

• next macroinstruction, displacement field
or data in the Z-latch

6-110 ED29116 6-110

¥

A Microprogrammed CPU Using Am29116 (continued)

Macroinstruction Data Path

, Macroinstruction can move from main memory to

- the Z-latch or

- immediately to the IR (by making the Z-latch transparent)

I Load IR directly:

- during pipeline-fill operation

- on instruction after a two-word instruction

, Decoding of (IR) determines the meaning of (Z):

- next instruction if (IR) is a RR, R5 or 55 instruction

- displacement if (IR) is a RX instruction:

A displacement is moved into the Am29116 via its V-bus
in the cycle in which the operand address ;s formed.

- immediate data (used in the execution cycle)

• Am29116 can input and output data in the same microcycle:

- data passes into the D-latch in 1st half of cycle

- In the second half of the cycle, the D-latch is disabled
& the ALU result goes out to internal bus via the V-bus.

tN-register can be used for:

- N-way branching or for normalization (use prioritize instr'n)

- "n" in the rotate-by-n instruction

ADVANCED MICRO DEVICES ~

6-120 ED29116 6-120

A Microprogrammed CPU Using Am29116 (continued)

Microprogram Control

, Am2910 sequencer generates address for next microinstruction

- branch address sources:

• pipeline register

• interrupt vector decoder

• macroinstruction decoder (mapping PROM)

• N-register

- Conditions for branching can come from:

• Am29116 condition-test output

• Am2904 condition-test output. Provides:

- for extended set of branching conditions

- for saving conditions generated previously
(a useful result of having 2 status registers)

- Am29116 T-bus (carry, overflow, negative, zero)

- Interrupt request accepted by an
Am2914 interrupt controller request

ADVANCED MICRO DEVICES ~

6-130 ED29116 6-130
t

A Microprogrammed CPU Using Arn29116 (continued)

Timing Analyses

A

<-. ADDRESS BUS

"

<- "-
DATA BUS

...
" '.~ ",f'

y

J EN MEMORY I r cp
CP OA1.

ADDRESS
Z LATCH EN REGISTER CP REGISTER

INTERNAL BUS ~

" it

I
15 • T I .. • I

~ I R2 r-- CP

,
INST REG A'

C. N
(IR) EN

REGtSTER
OP CODe

SO.2 , J • ,

(291

~ •

~ • . -r- po.,
IHT RfOO.7 Aml914 V .. , ~ tNT vEeT

~~
MA ~G DE r--- MAPtPl) IRo., "0-"2 PROM P - ",.,

" 5
Do·On iEN

r- 'NTO L SRe An ". 'NT VEeT (Pl)

~ REQ ,

CPT DlE

" " £-,-. DEy

16) -
~~

,
- //"-'- ----(0 DE,

- 0 Q • --=- CCFF ,.:. fl .•

S CEA

~_ cP-~ 0 '-,
-'CP ,

0~ /--0 Ill' /·.-----0

r I M OflV •
IZ. C. H. OVR

l J.,j ,...:~
Am29O< V~ r--

1--
Y\JX r-- 10.,

F'tPELINE REGISTER (PLI CP
CT

mlJ 1·· .. 1 III
IR4.7

3

ADDRESS F=t '" WR'Q iCCEPfEo ex Am2925 CP
READY

C,

J MPR-826

6-140 ED29116 6-140

A Microprogrammed CPU Using Am291l6 (continued)

Timing Analyses (continued)

Path Computations

Path 1 (IR --> pipeline)

From To

Instruction register CP Q 13 ns

Mapping PROM ADD Y 40 ns

Sequencer D y 20 ns

Micromemory ADD y 40 ns

Pipeline register set up 5 ns

118 ns

Path 2 (CC-flip flop --> CC-MUX control)

From To

CC flip flop CP Q 13 ns

Sequencer CC y 43 ns

Micromemory ADD y 40 ns

CC-MUX sel y 15 ns

CC-flip-flop set up 5 ns

116 ns

6-150 ED29116 6-150

A Microprogrammed CPU Using Am29116 (continued)

Timing Analysis (continued)

Path Computations (continued)

Path 3 (pipeline register --> pipeline register)

From To

Pipeline register CP y 13 ns

Sequencer I Y 70 ns

Micromemory ADD Y 40 ns

Pipeline register set up 5 ns

128 ns

Path 4 (pipeline register --> CC-flip-flop)

from to

Pipeline register CP y 13 ns

Three-state gate enable Y 29 ns

Am29116 (preliminary) I CT 47 ns

CC - MUX Din y 15 ns

CC flip flop set up 5 ns

109 ns

ADVANCED MICRO DEVICES ~

6-160 ED29116 6-160

A Microprogrammed CPU Using Am29116 (continued)

Timing Analysis (continued)

Path Computations (continued)

Path 5 (pipeline register --> data register)

From To

Pipeline register CP y 13 ns

Three-state gate enable y 29 ns

Am29116 (preliminary) I y 88 ns

Data register set up 5 ns

135 ns

Path 6 (PC and STACK --> pipeline register)

From To

Am2910 (PC and STACK) CP y 100 ns*

Micromemory ADD Y 40 ns

Pipeline register set up 5 ns

145 ns

* It is assumed that the previous instruction could
produce no change in the counter or could only
decrement the counter

ADVANCED MICRO DEVICES ~

6-170 ED29116 6-170

A Microprogrammed CPU Using Am29116 (continued)

Timing Analysis (continued)

I Most critical path was

From To

Pipeline register CP Y 13 ns

Am29116 I CT 47 ns

CC MUX 0 Y 15 ns

Sequencer CC y 43 ns

Micromemory ADD y 40 ns

Pipeline register set up 5 ns

163 ns

@ Introducing the CC-Flip-Flop separates the cycle time for
that path into two non-critical paths (4 and 2).

e Since the CC-FF delays the CC signal by one clock, the
CC-MUX-select lines are driven directly from the microprogram
memory rather than the pipeline register. This tactic
re-aligns the selection of the condition code with the
execution of the microinstruction.

ADVANCED MICRO DEVICES ~

6-180 ED29116 6-180

A Microprogrammed CPU Using Am29116 (continued)

Macroinstruction Execution

• 4 basic sequences of operations:

- Form Memory Address of Instruction: (1 m;crocycle)

PC, MAR <-- PC + 2

- Fetch Instruction: (1 microcycle)

generate Main-Memory-Request and Read-Strobe

bus <-- ((MAR))

IR <-- (bus) at the next rising edge

- Decode Instruction: (1 microcycle)

IR <-- Z-latch

PROM generates starting address for the microprogram

- Execute:

Am29116 performs the specified operation on the operands.
The number of microcycles depends upon the operation.

, 2 extra steps are needed for instructions with memory operands

- Form Operand Address: (1 m;crocycle)

MAR <-- (X) + d using the Id' in the Z-latch

- Fetch Operand: (1 m;crocycle)

Z <-- ((MAR)) or D <-- ((MAR})

ADVANCED MICRO DEVICES ~

6-190 ED29116 6-190

A Microprogrammed CPU Using Am29116 (continued)

Pipelining at the Macrolevel

, There is very little scope in this configuration

for additional macrolevel pipelining:

- You could use a second Am29116 as the basis for a

Program Control Unit.

That is, you would use one Am29116 as an ALU

and the second Am29116 as a PCU.

- You could use some other processor as a basis for

this PCU •

• A PCU would increase throughput by introducing parallelism

in the advancing of the program counter, and in stack

operations •

• The present configuration already incorporates some

concurrency, however.

ADVANCED MICRO DEVICES ~

6-200

1 2

Form Instruction
Address

A B

Fetch fR

Instruction A

Decode

Form Operand
Address

Fetch
Operand

Execute

Y Y

3

Z

B

A

E029116

A Microprogrammed CPU Using Am29116 (continued)

Pipelining at the Macrolevel (continued)

Overlapping of Register to Register Instructions

4 5 6

C

fR

B

A A

Y Y y

7 8 9 10 11 12 13 14 15 16 17

D E

Z Z Z

C D E

fR fR

C D

B B C C D D

Y Y Y Y Y Y Y Y

A, S, C, 0 are Register to Register type instructions.
Z = Z Latch
IR = Instruction Register

18 19 20

6-200

21

PC + 2 ~ PC
PC + 2-MAR

PC + 2 - MAR and
Load Z Latch or IR

Decode Instruction and
Load Pipeline Register

Z + Index
Register ~ MAR

Load Data Register

The Am29116 Usage

, Cycle 2: pipefill operation (directly load IR) from memory
while Am29116 forms next instruction address

i Cycle 4,5: in single-port Am29116, RR instr. needs 2 cycles

~ Cycle 6: IR <-- (Z) and map into microaddress with a PROM
while Am29116 forms next instruction address

i Cycle 3 is the only cycle in which the Am29116 is idle.

I After the first 5 cycles, every third cycle produces a result.

ADVANCED MICRO DEVICES ~

6-210 I ED29116

A Microprogrammed CPU Using Am29116 (continued)

Pipelining at the Macrolevel (continued)

Overlapping of Register to Index Storage Instructions

1 2 3 4 5 6

Form Instruction
Address A AD B

Fetch
IR Z IR

Instruction A AD B

Decode A

Foro, Operand
Address

A

Fetch
A

Operand

Execute A

y y y y y

'For pipefill operation only.

7 8 9 10 11 12 13 14 15 16

BD C Co

Z IR Z

Bo C CD

B C

B C

B C

B C

y y y y y y y y

A, B C are Register to Index storage type instructions.
AD, BD, CD are displacement.
Z = Z Latch
IR = Instruction Register

17 18

• Cycle 2: Form AD creates address to fetch displacement, Id l •

• Cycle 3: Decoding determines if Z contains a displacement.

, Cycle 6: Two-word instructions use both Z-latch and IR:
- Instruction is directly loaded into IR.

19 20

6-210

21

PC + 2~ MAR
PC + 2~ PC.

(PC + 2 ~ MAR
and PC)'
Load IR or Z Latch

PC + 2 ~ MAR and PC
Decode and Load
Pipeline Register

Z + Index
Register ~ MAR

PC + 2 ~ PC and MAR
load Operand In
Data Regisler

The Am29116 Usage

- Execution of A prevents formation of address of displacement, Idl.
(a PCU would save a cycle here).

• Every fifth cycle the Am29116 is idle.

~ Every fifth cycle produces a result

ADVANCED MICRO DEVRCES l'1

6-220

1 2 3

Form Irlstruction
Address

A AD

IR Z
Fetch
Instruction A AD

Decode A

Form Operand
Address

Fetch
Operand

Execute

Y Y

ED29116 6-220

A Microprogrammed CPU Using Am29116 (continued)

Pipelining of the Macrolevel (continued)

Overlapping of Branch-on-Condition RX Type Instructions

4 5 6

B or BO
K KO

IR
Bor
K

A-

Y Y Y

d M is the condition
(X2)+d is the address

7 8 9 10 11 12 13 14 15 16

B+2 B+20
K+2 K+20

Z IR Z

BD B+2 6+20
KD K+2 K+20

6 B+2
K K+2

B 6+2
K K+2

B 6+2
K K+2

6 6+2
Or K K+2

Y y Y Y Y Y Y

I

"During this cycle decision to branch takes place
If condition is true, Address = K = Index Reg + AD
If condition is false, Address = B = A+1

z = Z Latch
IR = Instruction Register

17 18 19 20 21

PC + 2 ~ MAR
PC+2-PC

(PC + 2~ MAR
and PC)'
Load IR or Z Latch

PC + 2 - MAR and PC
Decode and Load
Pipeline Register

Z + Index
Register ~ MAR

PC + 2 ~ PC and MAR
Load Operand In
Data Register

The Am29116 Usage

9 Cycle 5: the result of the execution in cycle 4 held by the Am2904 determines
whether the Am29116 will issue the inline or the branch address

ADVANCED MICRO DEVICES ~

6-230 ED29116 6-230

A Microprogrammed CPU Using Am29116 (continued)

Microword Format

, 78-bit wide microword • Control bits for each functional unit are grouped

Field Width Mnemonic Description

ALU

16 10-115 29116 Instruction

1 DLE 29116 Data Latch Enable

1 lEN 29116 Instruction Enable

1 OEY 29116 Output Enable Y-bus

1 SRE 29116 Status Register Enable

1 OET 29116 Output Enable T-bus

3 RAMSRC 29116 10-14 Source Select

2 NSRC 29116 19-112 Source Select

Data Path

4 DSEL Data Register Source/Destination Select

1 DLD Data Register Enable

1 MARLD Memory Address Enable

1 IRLD Instruction Register Enab le

1 ZLD I Z-Latch Enable

1 NLD I N-Register Enable ,
t

1 MAP I Mapping PROM Output Enable

1 VEeT Interrupt Vector PROM Output Enable

ADVANCED MICRO DEVICES ~

6-240

!

I

Field Width

Memory Control

1

1

1

1

ED29116

A Microprogrammed CPU Using Am29116 (continued)

Microword Format (continued)

Mnemonic Description

R/W Memory READ/WRITE Pulse

WREO ~Ja it Request

DATASTB Data Strope

MEMREQ Memory Request

6-240

Interrupt Control

4

1

Clock

3

Status

1

1

1

1

1

1

Select

I0-13

INTO

L1-L3

EZ

EC

ES

EOVR

OEM

OEMICRO

2914 Instruction

2914 Interrupt Disable

2925 Clock Length Select

I
I 2904 Enable Zero • !

I 2904 Enable Carry
f
I
i 2904 Enable Sign I ,
I 2904 Enable Overflow

2904 Enable Machine Status

2904 Enable Micro Status

ADV~CED MICRO DEVICES ~

!
!
1
1

I
i
I
1
>,
l
>j ,
1
I

6-25(/)

Field Width

Test

4

CCSEL

3

ED29116

A Microprogrammed CPU Using Am29116 (continued)

Microword Format (continued)

Mnemonic Description

6-25(/)

T1-T4 29116 or 29(/)4 Test Status Instruction

CCSEL Condition Code MUX Select

Sequence Control

4 1(/)-13 291(/) Instruction

Branch Address

12 BA Next Micro Address

78

ADVANCED MICRO DEVICES ~

6-260 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Conclusion

• Microprogrammability makes for easy and quick design
of a customized architecture •

• The powerful instruction set of the Am29116 ;s very
suitable for CPU applications:

- bit mampulation

- multiple bit rotate

- rotate and merge

- rotate and compare

- prioritize functions

t We have shown a minimal configuration:

- a PCU unit based on another Am29116, Am2901 1 s

or Am2930 PCU slices could increse the throughput.

6-260

ADVANCED MICRO DEVICES ;;4

6-270 ED29116 6-270

M eW5E* ?f~

A Microprogrammed CPU Using Am29116 (continued)

Comparison with Super-16

ADVANCED MICRO DEVICES l1

6-280 ED29116 6-280

A Microprogrammed CPU Using Am29116 (continued)

The Super-16

A 16-bit computer built from Am2900 Family parts to illustrate design techniques.
Incorporates pipelining at the macro- and microprogram level.

~s~-

I
I
I
I
I
I
I
I
I
I

AOOResS8US

DATA BUS

~ET-'I-l

YBUS

6K------r~F~S-L-------
I ... "''' ~ I '"EEl" .".BU, I

~
I I
I I
I I
l __ -=_

I
I c""so" W PE"PH""" '''' •• " ~'Am,

-----,
L....-----''---__ ---, C c:. u

TeST TREE

MICROPROGRAM MEMORY

Am2!H7('SJ:12

PIPELINE REGISTER

I
I
I
I
I
I
I
I I I

L-------i
VEctOR , I

I
__ I J

~-----------~

6-290 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Super-16 (continued)

Processor Organization

• Distinct sections

- program control unit (PCU)

- arithmetic and logic unit (ALU)

- computer control unit (CCU)

- data paths

- memory control, clock control

- I/O interface

- interrupt section

There is one important distinguishing feature as compared
with the Am29116 CPU described in the last section:

• The ALU and the PCU are separate.

We will restrict our attention to this point.

6-290

ADVANCED MICRO DEVICES II

6-3rfl!J ED29116 6-3(/J(/J

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen

The PCU:

, Incorporates:

- MAR (latch)

- 4 Am29(/Jl microprocessor slices

- a 16-bit transfer register

- a 16-bit bidirectional buffer ••• called a transfer driver

• Controls the macroprogram sequencing

, Is controlled by the microprogram

, Register assignments

R(/J- program counter PC

Rl- stack pointer

R2- stack lower limit

R3- stack upper limit

R4- +2 a useful constant

R5- +4 a useful constant

R6,R7- not used but are available

R8,R15- not used (wired to be disabled)

ADVANCED MICRO DEVICES ~

6-310 ED29116 6-310

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

PCU (continued)

.. Function

- updating of the PCU

- MAR <-- (PC) for reading instructions or data from main memory

- updating of the stack pointer
checking stack limits

• Communication

- data to PCU from ALU via transfer register

- data from PCU to V-bus of the ALU via PCU
transfer drivers

ADVANCED MICRO DEVICES It

6-320 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

ALU

I Designed from

- 4 Am2903 superslices

- Am2904 status and shift control logic

- PSW register

- 3 buses

DA: ALU input from Z0 register (memory data)

1MMD gate (immediate field of microcode)

DB: ALU input from PSW

Y: ALU output, input to RAM registers

I RAM register selection from instruction register (I)

- 10-3: A address on Am2903

- 14-7: B address on Am2903 or

control for CCMUX (in Am29(4) in conditional

branch instructions (macrolevel!)

6-320

ADVANCED MICRO DEVICES ~

6-330 ED29116 6-330

A Microprogrammed CPU Using Am29II6 (continued)

Comparison with the Super-Sixteen (continued)

ALU (continued)

• Byte-wide operations are possible as well as word-wide:

- only the lower 8 bits are affected

- by disabling write-enable & output-enable for slices 3,4

- word/byte MUX selects C,N,OVR from slice 2 (MSS)

- force V8-I5 to zero for Z-signal

, Control for the ALU

- A & B addresses, Am2904 CCMUX from macrolevel 17-0

- ALU operations from microlevel M78-86

- WORD signal M90 (byte/word)

ADVANCED MICRO DEVICES l1

6-340 ED29116 6-340

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

(Macro) Instruction Execution

• Form instruction address (PCU)

- publish bus request at the beginning of the cycle

- PC, MAR <-- (PC) + 2

- address bus <-- (MAR) 50ns prior to beginning of next cycle

, Instruction fetch (main memory)

- the main memory is fast enough to all reading in one cycle

i Decode (mapping PROM)

- fetched instruction is routed through Z and Zl registers
to the instruction decoder (mapping PROM)

- 8-bit opcode is address for the PROM giving the starting
address for the microprogram to execute this instruction

I Displacement fetch (main memory)

- every instruction fetch is followed by another read cycle:

. next instruction fetch for one word instructions

. displacement fetch for two word instructions

- decoding of the previous instruction determines how
this data should be interpreted.

6-35~ ED29116 6-35~

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

(Macro) Instruction Execution (continued)

, Form operand address (ALU)

- fetched displacement is sent through the Z and Z~
register to the ALU (29~3)

- MAR <-- (X2) + d (5~ ns before the end of the cycle)

(See note 1)

• Operand fetch (memory)

I Execute (ALU) (See note 2)

- 29~31S perform specified operation on the operand's

- simultaneous with the last execution cycle
the instruction decoder is enabled

Notes: 1) Remember the instruction format for the CPU in
the last section. This application is an emulation
of the Super-16, so that the instruction formats
match.

2) Execution may take more than one microcycle.

ADVANCED MICRO DEVICES 11

6-360 ED29116 6-360

Pipelining at the Macrolevel (continued)

Register-to-Register Pipeline Operation

Action A, B, C, Dare RR instructions

Form Instruction Address A 8 C D

Fetch Instruction A B C D

Decode A B C D

Felch Displacement

Form Operand
Address

Fetch Operand

Execute A B C D

Cyde...- \ '- 3 4- '5 (p '1

, Cycle 1,2: Compare with pipelining of the CPU in the last section

i Cycle 3: Address of a third instruction is formed
(Super-16: Z,Z0,Zl-registers; Other: Z-register)

i Cycle 4: Simultaneous instruction execution and
formation of instruction address

Execution of A needs:

- one microcycle for most instructions because
of simultaneous decoding of B

- more than one microcycle for a few instructions
(e.g. I/O instructions). The pipeline stops.

I After the first three cycles, every cycle produces a result.

6-370 ED29116 6-370

Pipelining at the Macrolevel (continued)

Reg;ster-to-Indexed-Storage Pipeline Operation

Action A. B. C. Dare RX instructions

Form Instruct"ion Address A B C

Fetch Instruction A B C

Decode A B C

Fetch Displacement A B C

Form Operand Address A B C

Fetch Operand A B C

Execute A B c

Cyde.... I 2- 3 4- 5 I.p -=t 8 9 \.0 1\ 12..

• Cycle 2: The same actions as in the RR pipeline operation occurs
(fetch instruction At MAR <-- PC + 2) .

• Cycle 3: Form instruction address, memory read and decode
are performed simultaneously

The system doesn't "know" whether a displacement
or the next instruction is fetched from memory.

After the decode of instruction A it is determined
to be a displacement

• Cycle 4: Simultaneous form instruction address (PCU) and form
operand address (ALU). This was impossible in the
CPU of the last section.

• Cycle 5: Only one pipeline stage is active: memory read

The operand is fetched

Decoder is not enabled yet and therefore the
upper part of the pipeline is stopped

ADVANCED MICRO DEVICES ~

6-380 E029116 6-380

Pipelining at the Macrolevel (continued)

Register-to-Indexed-Storage Pipeline Operation (continued)

I Cycle 6: Compare with Cycle 3

Additional execute A cycle (ALU)

In this cycle you see again the advantage of two
separate devices for the PCU and the ALU.
You can form instruction address and execute in
the same microcycle.

, The pipeline needs 6 cycles from the beginning

to produce the first result.

, Every third cycle a result is produced.

6-390 ED29116 6-390
¥&&E& tiM

Pipelining at the Macrolevel (continued)

Branch on Condition RX Pipeline Operation

A = AX Branch Instruction

Action B = Next AX Instruction if branch is not taken
K = next AX Instruction if branch is taken

Form Instruction Address A B
B+2

K
K+2

Fetch Instruction A B K
B+2

K+2

Decode A
B

etc.
K

Fetch Displacement A
B

K

B
Form Operand Address

K

B
Fetch Operand

K

Execute Al A2 A3
B

K

I 2- ~ 4- ~ ~ '=to 8 9 \0

Cycle 3: Form instruction-address (next instruction if branch is not taken)

Fetch displacement of next instruction

Decoding A detects a branch instruction

ADVANCED MICRO DEVICES ~

6-400 ED29116

Pipelining at the Macrolevel (continued)

Branch on Condition RX Pipeline Operation (continued)

• Cycle 4: Execution of the branch instruction starts

- Determination whether the condition is true
or false is not yet possible.

- Sequencing of the program is temporarily unknown

To place the correct instruction in the Z-register
when decoding of the next instruction (B or K)
is enabled, form the instruction addresses of the
two alternative instructions:

- Form instruction address K (where K = (X2) + d)

- Instruction address B was formed in the last
cycle and B can be fetched in this cycle.

• Cycle 5: Fetch instruction K

Executing A2 determines whether the condition
is true or false

The cycle ;s long enough to form the correct
instruction address (K+2 or B+2)

• Cycle 6: The last execution cycle A3 enables the decoder.

Decode either K or B as determined in cycle 5.

6-400

I You see: The generation of the two alternative instruction addresses
prevents the pipeline from flushing out totally.

ADVANCED MICRO DEVICES ~

6-410 ED29116 6-410

Super-16 Microword Format

ROUTE TO B RTB
CD
tn

s:
TRANSFER Z TO ZI (BP) Z ~ ZI CD (ij

'" 0
Am2910 CCEN ~

Am2903 lEU WORD/BYTE WORD CD
0

Am2903 EA CD
CD

Am2903 OEY CD
CD

Am2903 OEB CD
-.J

Am2903 18 CD
<:r>

Am2903 17 CD -> tn ~r

Am2903 16 CD ~c:
"" Am2903 15 CD

'" Am2903 14 CD

'" Am2903 13 :::
Am2903 12 CD

0

Am2903 1, -.J
CD

Am2903 10 -.J
CD

il:
--- n

ENABLE TRANSFER REG. ENTREG -.J ::0
-.J 0

LOAD TRANSFER REG LDTREG
....,
<:r> 0

I-REG EN CTR ENCTR -.J 0 tn
I-REG INC/DEC INC -.J z -"" -I (Il

PCU TRANS CHIP DISABLE PCUCD -.J -"'DC ::0
Co '" .. .,., 0

PCU TRANSFER REG. PCU ---> Y " ~':T r; r ::j
'" LOAD MEMORY ADDR. REG. LDMAR ::: :E 0

LOAD D-REG LDD "
0 0

0 :0 s::
LOAD ZI INTO I REG. ZI---> I m C "'D

to
CD c:

ENABLE ZO ~ DA ENZO m -I CD ::j m
ENABLE PSW PSW m

C ::0 -.J

SHIFT CNT Am2910 ADDR. SHTCNTEN m m
m 'TI

BRANCH INSTR. EN BRIEN m Z tn
::j
0 z
(/)

Am2901 F~ Bio PCUI7 m

"" Am2901 PCUI3 m

'" Am2901 PCUI2 en (')4' '" Am2901 PCUI, ~ -00
Am2901 PCUlo <.n "::lCC "- ... CD - ... ",

Am2901 PCUA2 <.n 2.3
CD

Am2901 PCUA, '" " Am2901 PCUAo tn
m

Am2901 PCUB2 <.n
tn

Am2901 PCUB, tn

"" Am2901 PCUBo

oS:
BUS REQUEST REQB tn Ui§3 '" MEMORY REQUEST MREQ tn -::r 0

'" 2..:.2
HOLD REQUEST HREQ ~
MEMORY WRITE/READ WRITE '" 0

MEMORY WORD/BYTE MWORD .j>.
CD

ADVANCED MICRO DEVICES ~

6-420 ED29116 6-420

Super-16 Microword Format (continued)

x
x

EN IMMEDIATE - DA BUS IMMD ~
CD en(,)

ROMIIREGEN ROMII ~ mag
1/0 CONTROL REG. EN 10EN ~ -g~ '" Am2914 INTERRUPTS DISABLE INTOIS ~ .. !2.

'" Am2914 ENlo·ENI3 INTRIEN ~
~

Am2904 SHIFT EN SHFTEN ~

'"
CNTLB7

~

'" CNTLBs ~
GENERAL CNTLBs ~

0 (')

USE CNTLB4 '" _al°
<0 CD -. :l

CONTROL CNTLB3 '" -;;:::-
CD !2. BITS CNTLB2 '"

CNTLB, '" '" CNTLBo '" '"
x
x

Am2904 OUT EN CONDITIONAL TEST OECT '" -~ ..:
Am2904 EN ZERO EZ

w
w n

EC
w

Am2904 EN CARRY '" en :lJ

Am2904 EN SIGN ES
w co; 0 - -2' (')

EOVR
w

Am2904 EN OVERFLOW 0 .. 0
Am2904 EN MACHINE STATUS CEM '" z

<0 -I
Am2904 EN MICRO STATUS CEIL '" :lJ '" CD 0 til '" Am2904 1'2 CARRY OUT CNTL 1'2 r :::j

Am2904 111 CARRY OUT CNTL 111 '" :E '" (')
0 0
:lJ ..:

Am2904 TESTs '" 0 "'0 tn

Am2904. TEST4
I\J al c:
~ :::j -I

Am2904 TEST3
I\J --I

rn
w ", .. 0 :lJ

Am2904 & Am25LS251 TEST2
I\J -~ rn
I\J :!l

Am2904 & Am25LS251 TEST, r::: z
Am2904 & Am25LS251 TESTa '" :::j

0 (5
z

Am291013 NAC3
en IJ)

<0 ..
(').0

Am291012 NAC2 CD - zC:
Am29101, NAC, ~ ~ -I ~

rn
Am291010 NACo ai

M,s (J;

M'4 :t:
M'3 W
M'2

I
~

Mll --M,o 0 ~
o.z Mg <D c. ..

Me ~ "
Cl -::::110-

M7 "'-3l: - 3 _ .
M6 '" 3 Q
Ms

.. 0

'" 0.

M4 "
M3 w

M2 I\J

M, -
Mo 0

ADVANCED MICRO DEVICES 11

ADVANCED MICRO DEVICES 11

6-430 ED29116

Comparing Am2901, Am29203, Am29116
for General Purpose CPU's

6-430

• EFWffWMi

ADVANCED MICRO DEVICES ~

Comparison of Features as General Purpose CPUls

Operation

16-bit ADD

16-bit MULT

BCD ADD

Data Word Width

Registers

8-Bit Rotate

8-Bit Rotate & Merge

Devices for
16-bit ALU

Typical power
for 16-bit ALU

Am2901C

83 ns (max)

r..t 1600 ns (max)

-v 1000 ns (max)

4-256 Bits

16 only

"" 800 ns (max)

N 1000 ns (max)

4 x Am2901C
1 x Am2902
1 x Am2904

.--J 3 x SSI

5.2 W

15

Am29203

IV 120 ns (max)

/V 1800 ns (max)

,... 120 ns (max)

4-256 Bits

16,32,48,64

,... 1000 ns (max)

IV 1300 ns (max)

4 x Am29203
1 x Am2902
1 x Am2904

5.6 W

Am29116

100-120 ns (max)

,v 9000 ns (max)
~ 300 ns (max with Am29516/7)

.N' 1000 ns (max)

8 or 16 Bits

32 only

~ 100-120 ns (max)

IV 100-120 ns (max)

1 x Am29116

2.2 W

0"1
I

..j::>
W
U'1

ITl
0
N
1.0
0"1

0"1
I

..j::>
w
U'1

6-450 ED29116 6-450

Performance Analysis

Instruction Type

Processor Type Bit Test Bit Set

8048

Arn9080

ArnZ8rJt/J0

Arn2901B (4) 1 1 Key
Arn2904
Arn2902A
25LS2538 (2) 100ns

Am2901B (4) 1 1
Arn2904 I Am2902A i

25LS2538 (2) I
25510 (8) 100ns

I
100ns

Am29116
100ns 100ns

ADVANCED MICRO DEVICES l1

6-460 ED29116 6-460

Performance Analysis (continued)

Instruction Type

Processor Type Rotate by N Rotate and Merge

8048

Arn9080

ArnZ8000

Am2901B (4) 9 12 Key
Arn2904
Arn2902A Number of
25LS2538 (2) 1,025ns 1,325n5

Arn2901B (4) 1 4
Arn2904
Arn2902A
25LS2538 (2)
25S10 (8) 460ns

1
Arn29116 //

100n5
/'

,// 100ns

6-470 ED29116 6-470

Performance Analysis (continued)

Instruction Type

Processor Type 16-bit ADD 16-bit Multiply

8048

Am9080

AmZ8000

Am2901B (4) 1 2 Key
Am2904
Am2902A Number of
25LS2538 (2) 2,000ns

Am2901B (4) 2
Am2904
Am2902A
25LS2538 (2)
25S10 (8) 2,000ns

Am29116 I

!
100ns ! 9,600ns

ADVANCED MICRO DEVICES ~

6-475 E029116 6-475

Performance Analysis (continued)

Are you familiar with the Am25S10?

How does it help speed up shifts and rotates on Am2901 systems?

It is a four-~it high-speed shifter:

- It shifts four bits of data 0,1,2 or 3 places.

- Several devices can be connected to:

• perform shifts of 0,1,2 or 3 places

on words of any length. (# of 25S10's equals # of bits/4)

• perform a complete end-around barrel shift.

(# of 25S10's needed equals # of bits/2)

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES 11

7-10 ED29116

CHAPTER 7

Exercises - Part 2

7-10

ADVANCED MICRO DEVICES ~

ADVANCED MICRO DEVICES ~

7-20 ED29116

Exercises - Part 2

1. You have 8 ASCII characters that normally occupy 64 bits of
memory. Since each byte has in fact only 7 active bits, it
may be useful to pack these bytes into only 56 bits for
storage on a disk. In writing these bytes to a disk you wish
to pack them into a 56-bit contiguous frame by discarding the
parity bit from each byte (i.e. the bit in the most
signifigant position). Write the microinstructions for the
Am29116 for packing these 64 bits into 56 bits. Assume that
the characters are initially in R0 thru R3 and are to be
packed into R4 thru R7.

2. Write the code to perform a 16 x 16-bit unsigned integer
multiplication. Write your code on the assumption.that the
operands are already in the RAM or on the assumption that the
operands are to be supplied by your code as immediate values.

3. If you have time, try the following exercise:

The Am29116 can be very effective in arbitrating requests for
service from several different sources. Suppose there are
eight sources of service requests and the Am29116 has already
serviced all requests from sources S7,S6 and S5. Write the
code to cause the Am29116 to branch to the service routine
associated with the highest priority source of the group
S4,S3,S2,Sl,S0 while ignoring S7,S6 and S5.

7-20

ADVANCED MICRO DEVICES M

7-30 ED29116 7-30

Solutions for Exercises - Part 2

ADVANCED MICRO DEViCES ~

ADVANCED MICRO DEVICES ~

7-40 ED29116

Solutions for Exercises - Part 2

Problem #1: Packing ASCII characters

Example Even parity

0100 0100 1100 0011 0100 0010 t100 0001
~ ~ '--v-----/ ~

D C B A

R1 R0

SOR, B, MOVE, SORA, R0 ;0000 0000 0100 0001 --> ACC
ROTM, W, 15, MRAI, R0
IMME H#3F80

U: 0100 0010 0100 0001
rot U: 1010 0001 0010 0000

R: (/J(/J00 0000 0100 0001

mask: 0011 1111 1000 0000

ACC: 0010 0001 0100 0001
~

B without A without
parity parity

ROTM, W, 14, MRAI, R1
IMME H#C000

U: 0100 0100 1100 0011
rot U: 1101 0001 0011 00(/J(/J

R: (/J(/J10 (/J(/J01 0100 (/J(/J01

mask: 1100 00(/J(/J 00(/J(/J 00(/J(/J

ACC: 1110 0001 01(/J(/J 0001

T~
~two last bit~of C

etc..

7-40

ADVANCED MiCRO DEVICES ~

7-50 ED29116 7-50

Solutions for Exercises - Part 2 (continued)

Microinstructions for Packing ASCII Characters

SOR B, MOVE, SORA, R0

ROTM W, 15, MRAI, R0 IMME H if 3F80

ROTM W, 14, MRAI, Rl IMME H if C0¢¢

SOR W, MOVE, SOAR, R4

ROTRl W, 14, RTRA, Rl

ROTM W, 13, MRAI, Rl IMME H if 0FEtJ

ROTM W, 12, MRAI, R2 IMME H if F00~

SOR W, MOVE, SOAR, R5

ROTRI W, 12, RTRA, R2

ROTM W, 11, MRAI, R2 IMME H if 03F8

ROTM W, 10, MRAI, R3 IMME H if FC~0

SOR W, MOVE, SOAR, R6

ROTRI W, 10, RTRA, R3

ROTM W, 9, RAI, R3 IMME H # ¢~FE

SOR B, MOVE, SOAR, R7

ADVANCED MICRO DEVICES ~

7-6C/J ED29116 7-6C/J

Solutions for Exercises - Part 2 (continued)

Problem #2: Unsigned Integer Multiplication

Some observations •••

o Result is a 32-bit value.
The Am29116 does not provide a double length shift directly.

o Remember that the Am29116 has a single port RAM architecture.

- try to minimize operations which need two register operands

i.e. - shift the result, not the multiplicand
(only the result needs two registers)

- use the ACC or D-latch for the multiplicand

- in the double-precision addition use zero as
as an immediate value

ADVANCED MICRO DEVICES ~

Exercise Solutions (continued) I ~ Unsigned Multiplication (16 x 16 bit)

SYlnbOliCjBranCh ~ Am29116 _ Addr~~s Address Sequencer CC Instruction I SRE I Comment

cont . SOR,MOVE,SOIR,R00 I x I Multiplier --> R00

cont Multiplier I x I Immedi ate value

cont SONR,MOVE,SOI,NRA
I

x Multiplicand --> ACC

cont Multi pl i cand Immediate value I x

cont SOR,MOVE,SOZR,R02 x I Initialize MSH of product to 0

16 PUSH PASS SOR,MOVE,SOZR,R03 x Initialize LSH of product to 0
Load counter & push loop address

I! LOOP: cont SHFTR,SHRR,SHUPZ,R03 0 Shift LSH of product by one.
Load LSB with zero.

I Sh i ft MSH of product by one. cont SHFTR,SHRR,SHUPL,R02 x
Load LSB with QLINK.

cont SHFTR,SHRR,SHUPZ,R00 I 0 Shift multiplier.
Load LSB with zero.

~ i CT(29116)
I

~ SKIP CJP TEST,TL I x I Branch to SKIP if MSB was zero.

t 0
n cont TOR1,TORAR.ADD,R03 I Double precision ADD l1"li
tlI

I I to accumu 1 ate part i a 1 product ~
n LSH: R03+ACC --> R03
3
tlI cont TOR1,TORIR,ADDC,R02 I x I MSH: R02+0+C --> R02 S n cont 0 I Immedi ate zero ~I x

I ~ SKIP: RFCT x I Loop back to "LOOpli

#::;, Exercise Solution

DRIVE REQUEST H

DRIVE 2 REQUEST H

DRIVE 3 REQUEST H

DRIVE 4 L

DRiVE 5 REQUEST H

DRIVE 6 REQUEST H EE _

DRIVE 7 REQUEST H rio bi ts 7-~
of 0- I Late!

DRIVE 8 L via V-bus

D-1
XXEE _ - ~0~E __

II'

rJII-

fv\A<2>\,\

R3 001F

~IO~ITY
09~5 _

e:.1J C OJ) E.l\ - Ac..c..

-....J
I

-....J
c.n

rrI
Cl
N
l.O
0"1

-....J
I

-....J
c.n

ADVANCED MICRO DEVICES d:1

A-0 ED29116 A-0

APPENDIX A

A BRIEf REVIEW Of NUMBER THEORY

ADVANCED MICRO DEVICES 1'1

ADVANCED MICRO DEVICES d:1

A-1 ED29116 A-1

A Brief Review of Number Theory

Number theory has application in relation to several products of Advanced
Micro Devices, including the Am29500 Family of signal and array-processing
devices and the Am9520/Am8065 Burst Error Processor. The theory also is
important in cryptography and in random-number generation. What follows is a
brief summary, without proofs, of selected number theory results and related
notation.

For proofs and much more material see:

J.V. Uspensky and M.A. Heaslet, Elementary Number Theory
(McGraw-Hill, New York 1939)

H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms
(Springer-Verlag, New York 1982)

If la' and 'b' are integers, with 'b' positive, the division of 'a' by
Ib' is defined by:

a=bq+r

where 'q' is called the quotient and Ir' is called the remainder. When IrS is
zero, Ib' and iq' are factors or divisors of 'a'. To indicate that 'b' is a
factor of 'a' we write "bla", which we can read as "'b' divides 'a"'. When
'a' has no divisors other than 1 and 'a', la' is a prime. In all other cases,
'a' is composite.

All integers which yield the same remainder when divided by Ib' are said
to be congruent modulo Bbl. To say that 'c' is congruent to IdS modulo Ib'
we write

c = d modulo b. (but we will write = for - from here on)

This condition will be true if bl(c-d).

ADVANCED MICRO DEVICES ~

A-2 ED29116

Modulus arithmetic is similar to ordinary arithmetic:

(al~a2) modulo b = ((al modulo b) ~ (a2 modulo b)) modulo b

(al'a2) modulo b = (al modulo b)'(a2 modulo b) modulo b

However, division is a little more complicated. If

we cannot always cancel the n's and conclude

al=a2 modulo b.

What is true is that

A-2

where d is the greatest common divisor of Inl and Ib' which we write as

d=(n,b).

Only if d=l can we cancel the n1s. That is, we can only divide by
numbers that are "relatively prime" to the modulus.

It proves useful to define a function which designates the number of
integers that are smaller than a given integer, Iml, and are relatively prime
to 1m'. We call this Eulerls totient function and write it as il9J(m)lI.

If 'm' ;s a prime then <p (m) = m-l.

If 1m' is composite such that

'p as
• e - S

then

5D (m) = m •
ps-l

Ps

ADVANCED MICRO DEVICES ~

A-3 ED29116

We now have enough notation to state Euler's Theorem:

If (a,m) = 1 then

a9'(m) = 1 modulo m.

A-3

Euler's Theorem allows us to perform division with respect to a modulus
in a more general way than we discussed above. Suppose we want to solve for
'x' given this linear congruence with one unknown:

ax=c modulo m

Using Euler's Theorem

ax=c"a<?(m)modulo m

and provided (a,m)=l we may divide both sides by la l so that

x=c'a9'(m)-l modulo m

and we can see that a9P(m)-l is the reciprocal of la
l with respect to modulus

1m' •

One of the uses of Euler's Theorem relates to its application to the
Chinese Remainder Theorem.

ADVANCED MICRO DEVICES ~

A-4 ED29116 A-4

The Chinese Remainder Theorem states that simultaneous linear congruences
in one unknown can be solved:

Let mi be k positive integers greater than 1 and relatively
prime in pairs. The set of linear congruences x=ri modulo mi
has a unique solution modulo M, where M=ml'm2em3' .e, 'mk e

The calculation of x from the rils and mils is called the
Chinese remainder reconstruction, It can be shown that

modulo Me

That is, IXI is obtained from a linear combination of the remainders:

We can note that for x=l, all ri IS also equal 1. Hence we see that the
coefficients, Ai' also sum to 1:

which is a useful check on the correctness of a set of such Chinese remainder
reconstruction coefficients which we may have calculated.

It will often be easier to calculate the coefficients of the ri'S by
knowing that

M JG?(m.)
(~;7 1 modulo M =

1

M

m· 1

where the equivalent expression on the RHS above can be calculated on a
machine with a shorter capacity for integers than is required for the LHS.

ADVANCED MICRO DEVICES ~

A-5 ED29116 A-5

An Example of Chinese-Remainder Reconstruction

Let us apply the above material to the problem of calculating the loca­
tion of an error burst detected by an Am9520/Am8065 Burst Error Processor
using its 32-bit polynomial. In this case, the location in bits will be given
modulo 21 and 2047. These moduli have no common factors and hence are rela­
tively prime_ We may expect from the Chinese Remainder Theorem that we can
calculate the location modulo M=21-2047=42,987.

We will need the totients for the two factors:

21 is composite, thus <p (21) = ?,(3 0 7) = 21 . 3-1 • 7-1 - -
3 7

= 12

2047 is also composite, thus '1(2047) = 'f (23°89) = 2047 • 23-1 • 89-1 = 1936
23 89

ADVANCED MICRO DEVICES ~

A-6 ED29116 A-6

To understand how to proceed to calculate the Chinese remainder
reconstruction coefficients, let us begin with the second coefficient:

(
42,987j 1936 =

211936 mod 42,987.
2047

65547269477777817757200969720480807996746850662145197381218624584202721941899507
21423897202387805933094706460527736304494713254745339081373600441413238843120193
32585827514379333859761233117712533509551459443911208580632578963327992769384375
42603036057970228687681011232749791880072864832561980276282272591617574260963299
10793538286544760653100399786955431363161625429428147166799811460139502247280241
48421990224184032422659001952950125880854620435176178676536304017189886727728577
66478762808632533720316541630429665323923628823770688465926358082614916364897819
95299608995721341133829535195688330579297981894772229974859050987993820371499794
81395954754540598720417165654121078033944840123118486698356560103988760885806716
49401708128661849049145563730469483530514180432470512369426690573967032574682856
19505758551358401503702558533907289929937210320299658444316439393747438560146636
68039649829256742652205700088710439478948136143462730131378420168689745030305135
30381506509830279486809578859037463252657776488671886012947491670732595286632623
51238881264892457976606743296108336267285279283503060928469489247666663467542882
42872774392908778211927604044280555600130652888690727539976402131080690579575162
33026218677122044778041620387985106584998777559109963128759282081825133237066491
14360200478860036199638263326158639613593793313283634473525862578760726807117983
83504786413185684889586777243776418266864603084497027156863545962997632912488928
24382666238233440270657440539167330004997768395266387139798524809164723581467953
70122867501116649732338446947707912921938208517168298067784043392255318744545510
48987827341190093854105444095401537664898756640898301015058812731231352290137586
72561948104908089710618342205542107240251659744640805787879248125748563346533914
49216499047922658518221629883204672382218062598860097198121309519710514803739640
47732062609858999542190657569218137188675174633600219492324116932670268519947893
95154782422791252339103131937353661659594851341730694387344197857885617918745707
51567134183215224267935955780888418997411766677983604449691049545327112018360127
56862721010965881665681274008574228137556218007157472347276882310366231153287428
90393414227090838945939699975151036281500004075438705477189761562777940953711229
20344720978570249941195753494856222496335355113341500070914900206483837650114413
19486308794026419003550913064591870027487527693765073802654682863900464126535037
46847030398846937549187409894959831291292882913809459139940065827331105367368931
14522615452826162207116348274817955572941952657616714150555124862263651922390721

No kidding! ..• 2~560 digits.

ADVANCED MICRO DEVICES ~

A-7 ED29116 A-7
H A

It is inconvenient to deal with such large integers. Thus it is clear
that doing the multiplications to get the 1936th power then reducing this
large result modulo 42,987 is a difficult route to get A2e Since the power is
a relatively small number, we could alternately do one multiplication, reduce
this partial result mpdulo 42~987and then repeat this process until we have
reached the 1936th power. By this route we will never have to produce a
partial result that exceeds (42,987-1)x21=902,706. This 6-digit integer is
within the range of a pocket calculator. However, multiplying 1936-1=1935
times and reducing the result modulo 42,987 each time is still more tedious
than necessary.

At this point it is useful to note that we can reach large powers rapidly
by repeated squaring. That is, to raise a number la' to the power 2b we just
square la' 'b l times:

That is, we can get the 16th power by 4 multiplications rather than by 16-1=15
multiplications.

1936 in binary is
10 9 8 7 6 5 4 3 2 1 0
1 1 1 100 1 0 0 0 0

which we can calculate by only (10+9+8+7+4)+4=42 multiplications and, by far
fewer multiplications if we can use the calculation of the smaller powers as a
start towards the larger powers.

A-8 ED29116 A-8

All of this can be consolidated in a short BASIC language program that
calculates integer powers by converting the power to binary and accumulating
the power by the squari ng method while build; ng the larger terms from the
smaller:

2000 'Integer Power Subroutine
2020 'Calculates A=BASEAPWR mod M
2040 'Alters BASE & PWR
2060 I

2080 A=ll initial partial result
2100 IF PWR MOD 2 = 1 THEN A = (A*BASE) MOD M

I update partial result if next bit of PWR is one
2120 PWR=INT(PWR/2), right shift pwr
2140 IF PWR=0 THEN RETURN' done if all bits of PWR have been used
2160 BASE=(BASE*BASE) MOD M' square again
2180 GOTO 2100

By the use of this program or other means we obtain

**

And similarly we get Al - modulo 42,987 = (42;1987)12

= 204712 modulo 42,987

= 38,893 **

Note that A1+A2 = 42,988 = 1 modulo 42,987 (as is expected for valid
coefficients). Of course, if we were absolutely sure of the value for A2, we
could have obtained Al from 42,988-A2'

Thus, if the error location was known to be 16 mod 21 and 1128 mod 2047
then the location is

L = (38,893*16+4095*1128) modulo 42,987

= 40,021 (Checking: 40,021 = 1,905*21+16
& 40,021 = 19*2047+1128)

** Note: Am9520/Am8065 data sheets show Al and A2 as above but
multiplied by 8 for convenience in using byte counts
rather than bit counts in calculating error locations.

ADVANCED MICRO· DEVICES ~

ADVANCED MICRO DEVICES i:'1

ADVANCED MICRO DEVICES i:'1

	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A: Review of Number Theory

