Extensible Security For X:

Motivation and Design

Eamon Walsh
SELinux Team

Information Assurance Research
National Security Agency

Summary

* Working towards an open source, trusted
desktop.

* Need to have infrastructure for doing fine-
grained access control 1n the X server.

* Hooks only — no specific policies.

* Local to server — no protocol changes.

* Branch development model.

What Is SEL1nux?

* Fine-grained Mandatory Access Control for
Linux.

* Policy system based on Flask architecture.

— Strong separation of security domains and roles.
— Controls over process execution & resource access.

— Diminish severity of program vulnerabilities.

* Kernel module; uses LSM security hooks.

* Some userspace changes.

1985

1990

1995

1999
2000
2001
2002
2003
Present

SEL1nux Timeline
LOCK (early Type Enforcement)

DTMach / DTOS

Utah Fluke / Flask
2.2 Linux Kernel (patch)

2.4 Linux Kernel (patch)
LSM
2.6 Linux Kernel (mainline)

SEL1nux Precursors

* LOCK
— Early type enforcement.

* Distributed Trusted Mach (DTMach)
* Distributed Trusted OS (DTOS)

— Improved design and implementation in Mach.
* Flux Advanced Security Kernel (Flask)
— Flexible MAC architecture in the Flux OS.

SEL1nux Distributions

* Fedora Core 2

* Hardened Gentoo
* Debian (packages)
* SE-BSD (port)

* SE-Darwin (port)

SEL1nux Research Agenda

* Security architecture research
* Kernel prototype code

* Kernel production code

* Userspace enhancements

— Local GUI security

* Labeled networking

* Network-wide policy

Current State of SEL1nux

Network —

X Window

System libselinux

GUI Security

* GUI security 1s the last piece of the complete
SELinux desktop system.

* X Window System operations should be policy-
controlled.

* Need to write policy for the X Window System
and have the X server enforce it.

* Generalize: make 1t easy to write access control
extensions for the X server.

SEL1nux/X architecture

security SELinux
framework extension
extension

X Server

libselinux

X Security and the Network

®* SELinux 1s currently a local system.

* SELinux does not have labeled networking or
network authentication.

* X Window System big problem 1s client
authentication over the network.

* Local security engine, new auth solution can be
independent; complementary.

Goals for Security Framework

* Based on existing work.
* Easily extensible.
* Non-intrusive: based on callbacks, not local code.

* Works at dispatch (DIX) layer to avoid
performance issues.

* Provides framework for arbitrary decision-
making (access control) extensions.

Current XC-Security Extension

client
structure

Decision Engine:

trusted = good

" =

Xext/security.c

»

DIX ®
0S

Generalized Security Extension

Xext/yourext.c

Your code here
Your state here

client
structure

4,//

DIX

OS

Xext/xace.c

\\

Easily Extensible

Xext/xsf.c

DIX

OS

:

/

¢

R
W\

o

e

FancyPants
Extension

Non-Intrusive

* At decision point, only need to pass parameters to
a hook function and check the result.

* Actual security code 1s 1n the callback functions.
* Separates security code from the core code.

®* Whole framework 1s compile-time option.

Code Examples

ProcDoSomething(...)
{
rval = SecurityLookupIDByType
(client,
MyResType, stuff—->id,
SecurityReadAccess);

Pri ’rval) return BadSomething,
{ 21 fc%yStulf“fg() .

%ifdef XACE

1f (!SecurityHook
(XACE_FOO_ACCESS,
client, whatever))
return BadSomething;

Sample Hooks

CORE_DISPATCH
EXT_DISPATCH
— Replace XC-Security shadow dispatcher.

RESOURCE_ACCESS
DEVICE_ACCESS
PROPERTY_ACCESS
— Replace SecurityCheck*Access() functions.

MAP_ACCESS
BACKGRND_ACCESS
— Replace untrusted child & background “None” checks.

Performance Issues

* Keep hooks at the DIX layer.
* O(1) hook calls per protocol request.

* Make decision before starting graphics operation.

Provides General Framework

* Arbitrary new extensions can be written to use
the framework's interface.

— Provide own state for server objects and own callback
functions.

* No client-side work necessary (except for proper
error handling).

How to make Security Decisions?

®* Need information about the connected client.
®* (Obtain once - store as client state.

* Can get:
— From the local system.

— From the system security policy.

— From the authentication mechanism.

Local System

UID
e getpeercred GIDH /
ClientPtr osPriv fd \ PID proc
getpeercon ™ security

context

Local Security Policy

description of
access event

~—B

decision
X server

w/security
framework

Authentication Protocol

X Server

AUTH_AVAIL
security hook

/

remote
Cliqnt auth data I os auth

layer

\

\

client

structure

Authentication Protocol, cont'd.

* Opportunity to combine power of the security
framework with new, secure authentication
methods.

* Design protocol, then write security extension to
do fine-grained access control.

* At connect time, pass auth data to a security
hook.

®* (Callbacks on that hook can set client state based
on the anith data

Other Security Issues

* Trusted window labeling

— Pass some String label to window manager on
request.

— Define a standard way to do this (new extension).

= Or, use a Property on the window (that other clients
can't mess with).

In Closing

* Flexible MAC on the open-source desktop 1s
within reach.

* Generalized security engine, as described, will
benefit SELinux project and others.

* Combine with better authentication for full
solution.

Contact Information

* http://www.nsa.gov/selinux
* selinux-team@epoch.ncsc.mil

* ewalsh@epoch.ncsc.mil

