pyspark.pandas.DataFrame.notna#
- DataFrame.notna()#
Detects non-missing values for items in the current Dataframe.
This function takes a dataframe and indicates whether it’s values are valid (not missing, which is
NaN
in numeric datatypes,None
orNaN
in objects andNaT
in datetimelike).See also
Examples
>>> df = ps.DataFrame([(.2, .3), (.0, None), (.6, None), (.2, .1)]) >>> df.notnull() 0 1 0 True True 1 True False 2 True False 3 True True
>>> df = ps.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']]) >>> df.notnull() 0 1 2 0 True True True 1 True False True