pyspark.pandas.read_parquet¶
-
pyspark.pandas.
read_parquet
(path: str, columns: Optional[List[str]] = None, index_col: Optional[List[str]] = None, pandas_metadata: bool = False, **options: Any) → pyspark.pandas.frame.DataFrame[source]¶ Load a parquet object from the file path, returning a DataFrame.
- Parameters
- pathstring
File path
- columnslist, default=None
If not None, only these columns will be read from the file.
- index_colstr or list of str, optional, default: None
Index column of table in Spark.
- pandas_metadatabool, default: False
If True, try to respect the metadata if the Parquet file is written from pandas.
- optionsdict
All other options passed directly into Spark’s data source.
- Returns
- DataFrame
See also
DataFrame.to_parquet
DataFrame.read_table
DataFrame.read_delta
DataFrame.read_spark_io
Examples
>>> ps.range(1).to_parquet('%s/read_spark_io/data.parquet' % path) >>> ps.read_parquet('%s/read_spark_io/data.parquet' % path, columns=['id']) id 0 0
You can preserve the index in the roundtrip as below.
>>> ps.range(1).to_parquet('%s/read_spark_io/data.parquet' % path, index_col="index") >>> ps.read_parquet('%s/read_spark_io/data.parquet' % path, columns=['id'], index_col="index") ... id index 0 0