DataFrame.
mode
Get the mode(s) of each element along the selected axis.
The mode of a set of values is the value that appears most often. It can be multiple values.
New in version 3.4.0.
Axis for the function to be applied on.
If True, only apply to numeric columns.
Don’t consider counts of NaN/NaT.
The modes of each column or row.
See also
Series.mode
Return the highest frequency value in a Series.
Series.value_counts
Return the counts of values in a Series.
Examples
>>> df = ps.DataFrame([('bird', 2, 2), ... ('mammal', 4, np.nan), ... ('arthropod', 8, 0), ... ('bird', 2, np.nan)], ... index=('falcon', 'horse', 'spider', 'ostrich'), ... columns=('species', 'legs', 'wings')) >>> df species legs wings falcon bird 2 2.0 horse mammal 4 NaN spider arthropod 8 0.0 ostrich bird 2 NaN
By default missing values are not considered, and the mode of wings are both 0 and 2. Because the resulting DataFrame has two rows, the second row of species and legs contains NaN.
species
legs
NaN
>>> df.mode() species legs wings 0 bird 2.0 0.0 1 None NaN 2.0
Setting dropna=False NaN values are considered and they can be the mode (like for wings).
dropna=False
>>> df.mode(dropna=False) species legs wings 0 bird 2 NaN
Setting numeric_only=True, only the mode of numeric columns is computed, and columns of other types are ignored.
numeric_only=True
>>> df.mode(numeric_only=True) legs wings 0 2.0 0.0 1 NaN 2.0