DataFrame.
all
Return whether all elements are True.
Returns True unless there is at least one element within a series that is False or equivalent (e.g. zero or empty)
Indicate which axis or axes should be reduced.
0 / ‘index’ : reduce the index, return a Series whose index is the original column labels.
Include only boolean columns. If None, will attempt to use everything, then use only boolean data.
Exclude NA values, such as None or numpy.NaN. If an entire row/column is NA values and skipna is True, then the result will be True, as for an empty row/column. If skipna is False, numpy.NaNs are treated as True because these are not equal to zero, Nones are treated as False.
Examples
Create a dataframe from a dictionary.
>>> df = ps.DataFrame({ ... 'col1': [True, True, True], ... 'col2': [True, False, False], ... 'col3': [0, 0, 0], ... 'col4': [1, 2, 3], ... 'col5': [True, True, None], ... 'col6': [True, False, None]}, ... columns=['col1', 'col2', 'col3', 'col4', 'col5', 'col6'])
Default behavior checks if column-wise values all return True.
>>> df.all() col1 True col2 False col3 False col4 True col5 True col6 False dtype: bool
Include NA values when set skipna=False.
>>> df[['col5', 'col6']].all(skipna=False) col5 False col6 False dtype: bool
Include only boolean columns when set bool_only=True.
>>> df.all(bool_only=True) col1 True col2 False dtype: bool