join {SparkR} | R Documentation |
Joins two SparkDataFrames based on the given join expression.
## S4 method for signature 'SparkDataFrame,SparkDataFrame' join(x, y, joinExpr = NULL, joinType = NULL)
x |
A SparkDataFrame |
y |
A SparkDataFrame |
joinExpr |
(Optional) The expression used to perform the join. joinExpr must be a Column expression. If joinExpr is omitted, the default, inner join is attempted and an error is thrown if it would be a Cartesian Product. For Cartesian join, use crossJoin instead. |
joinType |
The type of join to perform, default 'inner'. Must be one of: 'inner', 'cross', 'outer', 'full', 'full_outer', 'left', 'left_outer', 'right', 'right_outer', 'left_semi', or 'left_anti'. |
A SparkDataFrame containing the result of the join operation.
join since 1.4.0
Other SparkDataFrame functions: SparkDataFrame-class
,
agg
, arrange
,
as.data.frame
, attach
,
cache
, coalesce
,
collect
, colnames
,
coltypes
,
createOrReplaceTempView
,
crossJoin
, dapplyCollect
,
dapply
, describe
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
gapplyCollect
, gapply
,
getNumPartitions
, group_by
,
head
, histogram
,
insertInto
, intersect
,
isLocal
, limit
,
merge
, mutate
,
ncol
, nrow
,
persist
, printSchema
,
randomSplit
, rbind
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, schema
,
selectExpr
, select
,
showDF
, show
,
storageLevel
, str
,
subset
, take
,
union
, unpersist
,
withColumn
, with
,
write.df
, write.jdbc
,
write.json
, write.orc
,
write.parquet
, write.text
## Not run:
##D sparkR.session()
##D df1 <- read.json(path)
##D df2 <- read.json(path2)
##D join(df1, df2, df1$col1 == df2$col2) # Performs an inner join based on expression
##D join(df1, df2, df1$col1 == df2$col2, "right_outer")
##D join(df1, df2) # Attempts an inner join
## End(Not run)