describe {SparkR} | R Documentation |
Computes statistics for numeric columns. If no columns are given, this function computes statistics for all numerical columns.
Returns the summary of a model produced by glm() or spark.glm(), similarly to R's summary().
Returns the summary of a naive Bayes model produced by spark.naiveBayes(), similarly to R's summary().
Returns the summary of a k-means model produced by spark.kmeans(), similarly to R's summary().
Returns the summary of an AFT survival regression model produced by spark.survreg(), similarly to R's summary().
describe(x, col, ...) summary(object, ...) ## S4 method for signature 'SparkDataFrame,character' describe(x, col, ...) ## S4 method for signature 'SparkDataFrame,ANY' describe(x) ## S4 method for signature 'SparkDataFrame' summary(object, ...) ## S4 method for signature 'GeneralizedLinearRegressionModel' summary(object, ...) ## S4 method for signature 'NaiveBayesModel' summary(object, ...) ## S4 method for signature 'KMeansModel' summary(object, ...) ## S4 method for signature 'AFTSurvivalRegressionModel' summary(object, ...)
x |
A SparkDataFrame to be computed. |
col |
A string of name |
... |
Additional expressions |
object |
A fitted generalized linear model |
object |
A fitted MLlib model |
object |
a fitted k-means model |
object |
a fitted AFT survival regression model |
A SparkDataFrame
coefficients the model's coefficients, intercept
a list containing 'apriori', the label distribution, and 'tables', conditional
the model's coefficients, size and cluster
coefficients the model's coefficients, intercept and log(scale).
Other SparkDataFrame functions: SparkDataFrame-class
,
[[
, agg
,
arrange
, as.data.frame
,
attach
, cache
,
collect
, colnames
,
coltypes
, columns
,
count
, dapply
,
dim
, distinct
,
dropDuplicates
, dropna
,
drop
, dtypes
,
except
, explain
,
filter
, first
,
group_by
, head
,
histogram
, insertInto
,
intersect
, isLocal
,
join
, limit
,
merge
, mutate
,
ncol
, persist
,
printSchema
,
registerTempTable
, rename
,
repartition
, sample
,
saveAsTable
, selectExpr
,
select
, showDF
,
show
, str
,
take
, unionAll
,
unpersist
, withColumn
,
write.df
, write.jdbc
,
write.json
, write.parquet
,
write.text
## Not run:
##D sc <- sparkR.init()
##D sqlContext <- sparkRSQL.init(sc)
##D path <- "path/to/file.json"
##D df <- read.json(sqlContext, path)
##D describe(df)
##D describe(df, "col1")
##D describe(df, "col1", "col2")
## End(Not run)
## Not run:
##D model <- glm(y ~ x, trainingData)
##D summary(model)
## End(Not run)
## Not run:
##D model <- spark.naiveBayes(trainingData, y ~ x)
##D summary(model)
## End(Not run)
## Not run:
##D model <- spark.kmeans(trainingData, ~ ., 2)
##D summary(model)
## End(Not run)
## Not run:
##D model <- spark.survreg(trainingData, Surv(futime, fustat) ~ ecog_ps + rx)
##D summary(model)
## End(Not run)