Source code for pyspark.ml.classification

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

from pyspark.ml.util import keyword_only
from pyspark.ml.wrapper import JavaEstimator, JavaModel
from pyspark.ml.param.shared import *
from pyspark.ml.regression import (
    RandomForestParams, DecisionTreeModel, TreeEnsembleModels)
from pyspark.mllib.common import inherit_doc


__all__ = ['LogisticRegression', 'LogisticRegressionModel', 'DecisionTreeClassifier',
           'DecisionTreeClassificationModel', 'GBTClassifier', 'GBTClassificationModel',
           'RandomForestClassifier', 'RandomForestClassificationModel', 'NaiveBayes',
           'NaiveBayesModel']


@inherit_doc
[docs]class LogisticRegression(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasMaxIter, HasRegParam, HasTol, HasProbabilityCol, HasRawPredictionCol): """ Logistic regression. Currently, this class only supports binary classification. >>> from pyspark.sql import Row >>> from pyspark.mllib.linalg import Vectors >>> df = sc.parallelize([ ... Row(label=1.0, features=Vectors.dense(1.0)), ... Row(label=0.0, features=Vectors.sparse(1, [], []))]).toDF() >>> lr = LogisticRegression(maxIter=5, regParam=0.01) >>> model = lr.fit(df) >>> model.weights DenseVector([5.5...]) >>> model.intercept -2.68... >>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF() >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> result.probability DenseVector([0.99..., 0.00...]) >>> result.rawPrediction DenseVector([8.22..., -8.22...]) >>> test1 = sc.parallelize([Row(features=Vectors.sparse(1, [0], [1.0]))]).toDF() >>> model.transform(test1).head().prediction 1.0 >>> lr.setParams("vector") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. """ # a placeholder to make it appear in the generated doc elasticNetParam = \ Param(Params._dummy(), "elasticNetParam", "the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, " + "the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.") fitIntercept = Param(Params._dummy(), "fitIntercept", "whether to fit an intercept term.") thresholds = Param(Params._dummy(), "thresholds", "Thresholds in multi-class classification" + " to adjust the probability of predicting each class." + " Array must have length equal to the number of classes, with values >= 0." + " The class with largest value p/t is predicted, where p is the original" + " probability of that class and t is the class' threshold.") threshold = Param(Params._dummy(), "threshold", "Threshold in binary classification prediction, in range [0, 1]." + " If threshold and thresholds are both set, they must match.") @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, threshold=0.5, thresholds=None, probabilityCol="probability", rawPredictionCol="rawPrediction"): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \ threshold=0.5, thresholds=None, \ probabilityCol="probability", rawPredictionCol="rawPrediction") If the threshold and thresholds Params are both set, they must be equivalent. """ super(LogisticRegression, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.classification.LogisticRegression", self.uid) #: param for the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, the penalty # is an L2 penalty. For alpha = 1, it is an L1 penalty. self.elasticNetParam = \ Param(self, "elasticNetParam", "the ElasticNet mixing parameter, in range [0, 1]. For alpha = 0, " + "the penalty is an L2 penalty. For alpha = 1, it is an L1 penalty.") #: param for whether to fit an intercept term. self.fitIntercept = Param(self, "fitIntercept", "whether to fit an intercept term.") #: param for threshold in binary classification, in range [0, 1]. self.threshold = Param(self, "threshold", "Threshold in binary classification prediction, in range [0, 1]." + " If threshold and thresholds are both set, they must match.") #: param for thresholds or cutoffs in binary or multiclass classification self.thresholds = \ Param(self, "thresholds", "Thresholds in multi-class classification" + " to adjust the probability of predicting each class." + " Array must have length equal to the number of classes, with values >= 0." + " The class with largest value p/t is predicted, where p is the original" + " probability of that class and t is the class' threshold.") self._setDefault(maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1E-6, fitIntercept=True, threshold=0.5) kwargs = self.__init__._input_kwargs self.setParams(**kwargs) self._checkThresholdConsistency() @keyword_only
[docs] def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, threshold=0.5, thresholds=None, probabilityCol="probability", rawPredictionCol="rawPrediction"): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxIter=100, regParam=0.1, elasticNetParam=0.0, tol=1e-6, fitIntercept=True, \ threshold=0.5, thresholds=None, \ probabilityCol="probability", rawPredictionCol="rawPrediction") Sets params for logistic regression. If the threshold and thresholds Params are both set, they must be equivalent. """ kwargs = self.setParams._input_kwargs self._set(**kwargs) self._checkThresholdConsistency() return self
def _create_model(self, java_model): return LogisticRegressionModel(java_model)
[docs] def setElasticNetParam(self, value): """ Sets the value of :py:attr:`elasticNetParam`. """ self._paramMap[self.elasticNetParam] = value return self
[docs] def getElasticNetParam(self): """ Gets the value of elasticNetParam or its default value. """ return self.getOrDefault(self.elasticNetParam)
[docs] def setFitIntercept(self, value): """ Sets the value of :py:attr:`fitIntercept`. """ self._paramMap[self.fitIntercept] = value return self
[docs] def getFitIntercept(self): """ Gets the value of fitIntercept or its default value. """ return self.getOrDefault(self.fitIntercept)
[docs] def setThreshold(self, value): """ Sets the value of :py:attr:`threshold`. Clears value of :py:attr:`thresholds` if it has been set. """ self._paramMap[self.threshold] = value if self.isSet(self.thresholds): del self._paramMap[self.thresholds] return self
[docs] def getThreshold(self): """ Gets the value of threshold or its default value. """ self._checkThresholdConsistency() if self.isSet(self.thresholds): ts = self.getOrDefault(self.thresholds) if len(ts) != 2: raise ValueError("Logistic Regression getThreshold only applies to" + " binary classification, but thresholds has length != 2." + " thresholds: " + ",".join(ts)) return 1.0/(1.0 + ts[0]/ts[1]) else: return self.getOrDefault(self.threshold)
[docs] def setThresholds(self, value): """ Sets the value of :py:attr:`thresholds`. Clears value of :py:attr:`threshold` if it has been set. """ self._paramMap[self.thresholds] = value if self.isSet(self.threshold): del self._paramMap[self.threshold] return self
[docs] def getThresholds(self): """ If :py:attr:`thresholds` is set, return its value. Otherwise, if :py:attr:`threshold` is set, return the equivalent thresholds for binary classification: (1-threshold, threshold). If neither are set, throw an error. """ self._checkThresholdConsistency() if not self.isSet(self.thresholds) and self.isSet(self.threshold): t = self.getOrDefault(self.threshold) return [1.0-t, t] else: return self.getOrDefault(self.thresholds)
def _checkThresholdConsistency(self): if self.isSet(self.threshold) and self.isSet(self.thresholds): ts = self.getParam(self.thresholds) if len(ts) != 2: raise ValueError("Logistic Regression getThreshold only applies to" + " binary classification, but thresholds has length != 2." + " thresholds: " + ",".join(ts)) t = 1.0/(1.0 + ts[0]/ts[1]) t2 = self.getParam(self.threshold) if abs(t2 - t) >= 1E-5: raise ValueError("Logistic Regression getThreshold found inconsistent values for" + " threshold (%g) and thresholds (equivalent to %g)" % (t2, t))
[docs]class LogisticRegressionModel(JavaModel): """ Model fitted by LogisticRegression. """ @property def weights(self): """ Model weights. """ return self._call_java("weights") @property def intercept(self): """ Model intercept. """ return self._call_java("intercept")
class TreeClassifierParams(object): """ Private class to track supported impurity measures. """ supportedImpurities = ["entropy", "gini"] class GBTParams(object): """ Private class to track supported GBT params. """ supportedLossTypes = ["logistic"] @inherit_doc
[docs]class DecisionTreeClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasProbabilityCol, HasRawPredictionCol, DecisionTreeParams, HasCheckpointInterval): """ `http://en.wikipedia.org/wiki/Decision_tree_learning Decision tree` learning algorithm for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features. >>> from pyspark.mllib.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = sqlContext.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> dt = DecisionTreeClassifier(maxDepth=2, labelCol="indexed") >>> model = dt.fit(td) >>> model.numNodes 3 >>> model.depth 1 >>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> result.probability DenseVector([1.0, 0.0]) >>> result.rawPrediction DenseVector([1.0, 0.0]) >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 """ # a placeholder to make it appear in the generated doc impurity = Param(Params._dummy(), "impurity", "Criterion used for information gain calculation (case-insensitive). " + "Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities)) @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini"): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ probabilityCol="probability", rawPredictionCol="rawPrediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini") """ super(DecisionTreeClassifier, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.classification.DecisionTreeClassifier", self.uid) #: param for Criterion used for information gain calculation (case-insensitive). self.impurity = \ Param(self, "impurity", "Criterion used for information gain calculation (case-insensitive). " + "Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities)) self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini") kwargs = self.__init__._input_kwargs self.setParams(**kwargs) @keyword_only
[docs] def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini"): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ probabilityCol="probability", rawPredictionCol="rawPrediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini") Sets params for the DecisionTreeClassifier. """ kwargs = self.setParams._input_kwargs return self._set(**kwargs)
def _create_model(self, java_model): return DecisionTreeClassificationModel(java_model)
[docs] def setImpurity(self, value): """ Sets the value of :py:attr:`impurity`. """ self._paramMap[self.impurity] = value return self
[docs] def getImpurity(self): """ Gets the value of impurity or its default value. """ return self.getOrDefault(self.impurity)
@inherit_doc
[docs]class DecisionTreeClassificationModel(DecisionTreeModel): """ Model fitted by DecisionTreeClassifier. """
@inherit_doc
[docs]class RandomForestClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasSeed, HasRawPredictionCol, HasProbabilityCol, DecisionTreeParams, HasCheckpointInterval): """ `http://en.wikipedia.org/wiki/Random_forest Random Forest` learning algorithm for classification. It supports both binary and multiclass labels, as well as both continuous and categorical features. >>> import numpy >>> from numpy import allclose >>> from pyspark.mllib.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = sqlContext.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> rf = RandomForestClassifier(numTrees=3, maxDepth=2, labelCol="indexed", seed=42) >>> model = rf.fit(td) >>> allclose(model.treeWeights, [1.0, 1.0, 1.0]) True >>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> result = model.transform(test0).head() >>> result.prediction 0.0 >>> numpy.argmax(result.probability) 0 >>> numpy.argmax(result.rawPrediction) 0 >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 """ # a placeholder to make it appear in the generated doc impurity = Param(Params._dummy(), "impurity", "Criterion used for information gain calculation (case-insensitive). " + "Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities)) subsamplingRate = Param(Params._dummy(), "subsamplingRate", "Fraction of the training data used for learning each decision tree, " + "in range (0, 1].") numTrees = Param(Params._dummy(), "numTrees", "Number of trees to train (>= 1)") featureSubsetStrategy = \ Param(Params._dummy(), "featureSubsetStrategy", "The number of features to consider for splits at each tree node. Supported " + "options: " + ", ".join(RandomForestParams.supportedFeatureSubsetStrategies)) @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", numTrees=20, featureSubsetStrategy="auto", seed=None): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ probabilityCol="probability", rawPredictionCol="rawPrediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, impurity="gini", \ numTrees=20, featureSubsetStrategy="auto", seed=None) """ super(RandomForestClassifier, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.classification.RandomForestClassifier", self.uid) #: param for Criterion used for information gain calculation (case-insensitive). self.impurity = \ Param(self, "impurity", "Criterion used for information gain calculation (case-insensitive). " + "Supported options: " + ", ".join(TreeClassifierParams.supportedImpurities)) #: param for Fraction of the training data used for learning each decision tree, # in range (0, 1] self.subsamplingRate = Param(self, "subsamplingRate", "Fraction of the training data used for learning each " + "decision tree, in range (0, 1].") #: param for Number of trees to train (>= 1) self.numTrees = Param(self, "numTrees", "Number of trees to train (>= 1)") #: param for The number of features to consider for splits at each tree node self.featureSubsetStrategy = \ Param(self, "featureSubsetStrategy", "The number of features to consider for splits at each tree node. Supported " + "options: " + ", ".join(RandomForestParams.supportedFeatureSubsetStrategies)) self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, impurity="gini", numTrees=20, featureSubsetStrategy="auto") kwargs = self.__init__._input_kwargs self.setParams(**kwargs) @keyword_only
[docs] def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, impurity="gini", numTrees=20, featureSubsetStrategy="auto"): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ probabilityCol="probability", rawPredictionCol="rawPrediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, seed=None, \ impurity="gini", numTrees=20, featureSubsetStrategy="auto") Sets params for linear classification. """ kwargs = self.setParams._input_kwargs return self._set(**kwargs)
def _create_model(self, java_model): return RandomForestClassificationModel(java_model)
[docs] def setImpurity(self, value): """ Sets the value of :py:attr:`impurity`. """ self._paramMap[self.impurity] = value return self
[docs] def getImpurity(self): """ Gets the value of impurity or its default value. """ return self.getOrDefault(self.impurity)
[docs] def setSubsamplingRate(self, value): """ Sets the value of :py:attr:`subsamplingRate`. """ self._paramMap[self.subsamplingRate] = value return self
[docs] def getSubsamplingRate(self): """ Gets the value of subsamplingRate or its default value. """ return self.getOrDefault(self.subsamplingRate)
[docs] def setNumTrees(self, value): """ Sets the value of :py:attr:`numTrees`. """ self._paramMap[self.numTrees] = value return self
[docs] def getNumTrees(self): """ Gets the value of numTrees or its default value. """ return self.getOrDefault(self.numTrees)
[docs] def setFeatureSubsetStrategy(self, value): """ Sets the value of :py:attr:`featureSubsetStrategy`. """ self._paramMap[self.featureSubsetStrategy] = value return self
[docs] def getFeatureSubsetStrategy(self): """ Gets the value of featureSubsetStrategy or its default value. """ return self.getOrDefault(self.featureSubsetStrategy)
[docs]class RandomForestClassificationModel(TreeEnsembleModels): """ Model fitted by RandomForestClassifier. """
@inherit_doc
[docs]class GBTClassifier(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasMaxIter, DecisionTreeParams, HasCheckpointInterval): """ `http://en.wikipedia.org/wiki/Gradient_boosting Gradient-Boosted Trees (GBTs)` learning algorithm for classification. It supports binary labels, as well as both continuous and categorical features. Note: Multiclass labels are not currently supported. >>> from numpy import allclose >>> from pyspark.mllib.linalg import Vectors >>> from pyspark.ml.feature import StringIndexer >>> df = sqlContext.createDataFrame([ ... (1.0, Vectors.dense(1.0)), ... (0.0, Vectors.sparse(1, [], []))], ["label", "features"]) >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> si_model = stringIndexer.fit(df) >>> td = si_model.transform(df) >>> gbt = GBTClassifier(maxIter=5, maxDepth=2, labelCol="indexed") >>> model = gbt.fit(td) >>> allclose(model.treeWeights, [1.0, 0.1, 0.1, 0.1, 0.1]) True >>> test0 = sqlContext.createDataFrame([(Vectors.dense(-1.0),)], ["features"]) >>> model.transform(test0).head().prediction 0.0 >>> test1 = sqlContext.createDataFrame([(Vectors.sparse(1, [0], [1.0]),)], ["features"]) >>> model.transform(test1).head().prediction 1.0 """ # a placeholder to make it appear in the generated doc lossType = Param(Params._dummy(), "lossType", "Loss function which GBT tries to minimize (case-insensitive). " + "Supported options: " + ", ".join(GBTParams.supportedLossTypes)) subsamplingRate = Param(Params._dummy(), "subsamplingRate", "Fraction of the training data used for learning each decision tree, " + "in range (0, 1].") stepSize = Param(Params._dummy(), "stepSize", "Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the " + "contribution of each estimator") @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic", maxIter=20, stepSize=0.1): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ lossType="logistic", maxIter=20, stepSize=0.1) """ super(GBTClassifier, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.classification.GBTClassifier", self.uid) #: param for Loss function which GBT tries to minimize (case-insensitive). self.lossType = Param(self, "lossType", "Loss function which GBT tries to minimize (case-insensitive). " + "Supported options: " + ", ".join(GBTParams.supportedLossTypes)) #: Fraction of the training data used for learning each decision tree, in range (0, 1]. self.subsamplingRate = Param(self, "subsamplingRate", "Fraction of the training data used for learning each " + "decision tree, in range (0, 1].") #: Step size (a.k.a. learning rate) in interval (0, 1] for shrinking the contribution of # each estimator self.stepSize = Param(self, "stepSize", "Step size (a.k.a. learning rate) in interval (0, 1] for shrinking " + "the contribution of each estimator") self._setDefault(maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic", maxIter=20, stepSize=0.1) kwargs = self.__init__._input_kwargs self.setParams(**kwargs) @keyword_only
[docs] def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, lossType="logistic", maxIter=20, stepSize=0.1): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ maxDepth=5, maxBins=32, minInstancesPerNode=1, minInfoGain=0.0, \ maxMemoryInMB=256, cacheNodeIds=False, checkpointInterval=10, \ lossType="logistic", maxIter=20, stepSize=0.1) Sets params for Gradient Boosted Tree Classification. """ kwargs = self.setParams._input_kwargs return self._set(**kwargs)
def _create_model(self, java_model): return GBTClassificationModel(java_model)
[docs] def setLossType(self, value): """ Sets the value of :py:attr:`lossType`. """ self._paramMap[self.lossType] = value return self
[docs] def getLossType(self): """ Gets the value of lossType or its default value. """ return self.getOrDefault(self.lossType)
[docs] def setSubsamplingRate(self, value): """ Sets the value of :py:attr:`subsamplingRate`. """ self._paramMap[self.subsamplingRate] = value return self
[docs] def getSubsamplingRate(self): """ Gets the value of subsamplingRate or its default value. """ return self.getOrDefault(self.subsamplingRate)
[docs] def setStepSize(self, value): """ Sets the value of :py:attr:`stepSize`. """ self._paramMap[self.stepSize] = value return self
[docs] def getStepSize(self): """ Gets the value of stepSize or its default value. """ return self.getOrDefault(self.stepSize)
[docs]class GBTClassificationModel(TreeEnsembleModels): """ Model fitted by GBTClassifier. """
@inherit_doc
[docs]class NaiveBayes(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredictionCol, HasProbabilityCol, HasRawPredictionCol): """ Naive Bayes Classifiers. It supports both Multinomial and Bernoulli NB. Multinomial NB (`http://nlp.stanford.edu/IR-book/html/htmledition/naive-bayes-text-classification-1.html`) can handle finitely supported discrete data. For example, by converting documents into TF-IDF vectors, it can be used for document classification. By making every vector a binary (0/1) data, it can also be used as Bernoulli NB (`http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html`). The input feature values must be nonnegative. >>> from pyspark.sql import Row >>> from pyspark.mllib.linalg import Vectors >>> df = sqlContext.createDataFrame([ ... Row(label=0.0, features=Vectors.dense([0.0, 0.0])), ... Row(label=0.0, features=Vectors.dense([0.0, 1.0])), ... Row(label=1.0, features=Vectors.dense([1.0, 0.0]))]) >>> nb = NaiveBayes(smoothing=1.0, modelType="multinomial") >>> model = nb.fit(df) >>> model.pi DenseVector([-0.51..., -0.91...]) >>> model.theta DenseMatrix(2, 2, [-1.09..., -0.40..., -0.40..., -1.09...], 1) >>> test0 = sc.parallelize([Row(features=Vectors.dense([1.0, 0.0]))]).toDF() >>> result = model.transform(test0).head() >>> result.prediction 1.0 >>> result.probability DenseVector([0.42..., 0.57...]) >>> result.rawPrediction DenseVector([-1.60..., -1.32...]) >>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF() >>> model.transform(test1).head().prediction 1.0 """ # a placeholder to make it appear in the generated doc smoothing = Param(Params._dummy(), "smoothing", "The smoothing parameter, should be >= 0, " + "default is 1.0") modelType = Param(Params._dummy(), "modelType", "The model type which is a string " + "(case-sensitive). Supported options: multinomial (default) and bernoulli.") @keyword_only def __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, modelType="multinomial"): """ __init__(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, \ modelType="multinomial") """ super(NaiveBayes, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.classification.NaiveBayes", self.uid) #: param for the smoothing parameter. self.smoothing = Param(self, "smoothing", "The smoothing parameter, should be >= 0, " + "default is 1.0") #: param for the model type. self.modelType = Param(self, "modelType", "The model type which is a string " + "(case-sensitive). Supported options: multinomial (default) " + "and bernoulli.") self._setDefault(smoothing=1.0, modelType="multinomial") kwargs = self.__init__._input_kwargs self.setParams(**kwargs) @keyword_only
[docs] def setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, modelType="multinomial"): """ setParams(self, featuresCol="features", labelCol="label", predictionCol="prediction", \ probabilityCol="probability", rawPredictionCol="rawPrediction", smoothing=1.0, \ modelType="multinomial") Sets params for Naive Bayes. """ kwargs = self.setParams._input_kwargs return self._set(**kwargs)
def _create_model(self, java_model): return NaiveBayesModel(java_model)
[docs] def setSmoothing(self, value): """ Sets the value of :py:attr:`smoothing`. """ self._paramMap[self.smoothing] = value return self
[docs] def getSmoothing(self): """ Gets the value of smoothing or its default value. """ return self.getOrDefault(self.smoothing)
[docs] def setModelType(self, value): """ Sets the value of :py:attr:`modelType`. """ self._paramMap[self.modelType] = value return self
[docs] def getModelType(self): """ Gets the value of modelType or its default value. """ return self.getOrDefault(self.modelType)
[docs]class NaiveBayesModel(JavaModel): """ Model fitted by NaiveBayes. """ @property def pi(self): """ log of class priors. """ return self._call_java("pi") @property def theta(self): """ log of class conditional probabilities. """ return self._call_java("theta")
if __name__ == "__main__": import doctest from pyspark.context import SparkContext from pyspark.sql import SQLContext globs = globals().copy() # The small batch size here ensures that we see multiple batches, # even in these small test examples: sc = SparkContext("local[2]", "ml.classification tests") sqlContext = SQLContext(sc) globs['sc'] = sc globs['sqlContext'] = sqlContext (failure_count, test_count) = doctest.testmod( globs=globs, optionflags=doctest.ELLIPSIS) sc.stop() if failure_count: exit(-1)