An Introduction To

Db::Documentum

M. Scott Roth

October 2000

Verson 1.1

© 2000 M. Scott Roth

Contents

1 INTRODUCTION....oiiiiiritteieiesrese et ss e s sr e sesresn e enean e enenrens 1
1.1 REQUIREMENTS .. ccutittiteeetestesseessesseseesessesse e ssesbesseseabesb e e eseab e s ese e b e e be s e st e b e ns e e esesre s enenne s 1
1.2 CONVENTIONS. . .cueeuertesteseeuestesseesseseessesessessesessessesseseasesseneesessesseseesesbeeeseaseseeneeseseensenessenes 2
1.3 INSTALLATION ..etueeuietesteeeuesteseesesseseeseesessessesessessessesesseseenessessessesessessensesessessenessessesseneasenes 2
L4 USE ittt R R R R R e R e e Rt e 3

2 DB::DOCUMENTUM MODULE OVERVIEWccccooiiiiiieinineereseee e 4
2.1 DMAPIEXEC() eeueeterterientirieeee ettt sttt ettt ebe st b b nn bt nn e 4
2.2 DMAPIGET() cteeeeieeiteeeeseesteseesseesseaseesseessesseesseesseassesseesseassesseesseasssssesssesssessessseessessenssens 5
ARG N o AN o 1S = (SR 6
24 DMAPIINIT() AND DMAPIDEINIT() viooeeeeeiieeinsieesieeiesiesieeee e see e e sseeste e sreesseseesseeneens 7

3 DB::DOCUMENTUM: :TOOLSMODULE OVERVIEW.cccooviiiiriieneenereeeees 8
3.1 DM _LASTERROR() .ieiviceiitieieiie it et ste st e ste et e ste e e s e et te e sneenaeesaesneesseeneesneenneennesneensens 8
3.2 DM_CONNECT() teertereessersueriesueesseesseaseessesssessessseessesssssseessesssesseasssssssssesssesssessesssessessenssens 9
3.3 DM_CREATETYPH) cuiiutiteruirieeeeeesiestesteseesiesie e seeseessesaesbe st s sse e e s e nsesseseesbesaessesneeneenes 10
G A oV I O 7. = O = o (S 10
3.5 DM_CREATEPATH() s:eeeteeterersieesieeeesteestesieesieessesseesieseessesssesessnesssesseesseessesnsesseessesnsesees 11
3.6 DM_LOCATESERVER() .iterterueeueeeeeessestestestesiesseeseessessessessessessessesseessessessessesseseessessesnsenes 12

4 REAL-WORLD EXAMPLES ... 13
4.1 INBOX TICKLER ..ecutitiiteeeuestesteieste st eeiesbesse e sesee et s e s e e bt e st e besae e enesae s eseseeese e ene s 13
B | 5 L OSSR 14
4.3 CONFIG SCRIPT ...ccuiititeeeuessessesessessese s s s e e ssesse st s s s e e s s e s e s e e s b e sse e esesne s esenneane e eneerens 19
44 SERIAL PORT LISTENERcoutiieuertisteeetestesseessessessesessessesssessessesessessesssssssessessssessensssessens 24
A5 WWEB ACCESS .. tiiiuiiueiieeeiestesteies it e st e et be s ae et b e b et e bt e b e e e st e be s e et eaesaent e st sbesbe e eneebens 30

ST O I @ 15 N PRSPPSO 38

An Introduction to Db::Documentum, Version 1.1 Pagei

Figures

FIGURE L - SAMPLE TICKLERPL OUTPUT. 1.utcutitiiesistesieseesesseseesessessesessessessesessessessssessensssessessessesenes 14
FIGURE 2 - A SAMPLE IDQL.PL SESSION.....cueeutiteieietesseeesessessesessessessssessessesessessessssessessessssessessesenns
FIGURE 3 - OUTPUT FROM THE CONFIG.PL SCRIPT.ccveietiiteieesissesseeesessessesessessesssssssessessssessensssenns 23
FIGURE 4 - OUTPUT FROM SERV.PL SCRIPT.ccttiteutstesieeesesseseesessessesessessessesessessessssessessssessessessssenes
FIGURES - SAMPLE LISTENER.PL OUTPUT. ..cutitiieuistesieseesesseseesessesseessessessesessessessssessesssssssessessssenns 29
FIGURE 6 - CABINET/FOLDER HIERARCHY IN WORKSPACE.c.cotiteieresteiereete s eese e ssessesene s 30
FIGURE 7 - DMQUERY.HTML. t1tutettstiteueeresteseesesteseesessesessessessessssessessesessessensesessessessesessensssessessensssenes
FIGURE 8 - QUERY RESULTSFOR 'INFORMATION.cutitiieuisiesieisresseeesessessesessessesessessessesessessessssenes 36
FIGURE O = GETFILEPL. ..eueetiiteitetististeeetesteseesestesaeseesessessesessessessssessessesessessessasessessesessensessssessensssenes 36
Revisions

1.1 | October 2000 | Updated for Db::Documentum 1.4. Editorial improvements.

1.0 | July 2000 Initial Release

An Introduction to Db::Documentum, Version 1.1

Pageii

1 Introduction

The Db::Documentum module is an interface between Perl and Documentum’ s Enterprise
Document Management System (EDMS). It provides access to Documentum’s API from Perl,
thus alowing you to program for Documentum with Perl.

Documentum is an industry leader in enterprise document management systems. Its server
contains an extensive APl (~148 methods) that provides access to al areas of the EDMS. Perl is
an excellent choice for programming in Documentum. It has al the capabilities of a
sophisticated programming language (1/0, logic, extensibility--not to mention regular
expressions) in addition to the freedom and flexibility you expect from a scripting language. The
marriage of Perl and Documentum seems natural and exciting to me. | think you will agree.

This tutorial gives you an overview of the Db::Documentum module: how to install it, what it
contains, and how to useit. It presents a number of real-world examples to demonstrate how
easily you can program Documentum in Perl ard how powerful the combination can be.

Note: Thistutorial and its examples were written and tested on a PC running Microsoft
Windows NT 4 and ActiveState Per| 5.6 (build 616). Db::Documentum has been successfully run
on other platforms and under other software configurations; see the documentation for details.
Although nearly everything discussed here is applicable as-is, in UNIX there are a few
exceptions. | will point them out along the way.

1.1 Requirements

To implement the examples discussed in this tuorial:

- You must have access to a working EDMS 98 or 4il Docbase. Y ou will need sufficient
privileges to create types, cabinets, and folders.
Y ou must have either the Documentum WorkSpace or 4i Desktop Client installed on
your workstation.
Depending on how you choose to install the Db::Documentum module, you may need a
C/C++ compiler. If you choose the traditional method, you will need the compiler. |If
you choose the PPM method you will not.

1 Documentum 4.1.4 or earlier.

An Introduction to Db::Documentum, Version 1.1 Page 1

Y ou will need the Db::Documentum module (version 1.4 or later).
Y ou will need a good working knowledge of Perl and Documentum’s API.

1.2 Conventions

The following typographic conventions are used in this tutoria:

Couri er Fi xed W dt h denotes Perl code, variable names, file names, OS
commands, and other programmatic el ements.

Italics denotes Db::Documentum function names and URLS.

Courier Fixed Wdth Italics denotes subroutine and Documentum method
names.

Arial denotes screen elements.

| use ">" to indicate the command line prompt.

1.3 Installation

If you are using Microsoft Windows NT, you have two options for installation: the traditional
method or the PPM method. If you are using UNIX, use the traditional method.

1.3.1 TheTraditional Method

Download the module from the CPAN (http://www.per|.comy CPAN-local/modul es/by-
module/Db/), unpack it, and carefully read the README and the Makef i | e. PL files.

Makef i | e. PL requires some tweaking to ensure the DMCL libraries and header files are in the
proper locations on your hard drive and that those locations are communicated to nake.

Makef i | e. PL details al of the necessary files and paths. After tweaking, it's business as usual
for the install:

>per| Makefile.PL
>nnmake?

>nmake test
>nnake install

1.3.2 ThePPM Method

If you are installing Db::Documentum on Windows NT and don’t have a C/C++ compiler, you
can download compiled versions of the module from: http://www.er ols.convtheroths/
perl_stuff.ntml. After downloading and unpacking the archive, install it by typing:

>PPM i nstal | Db-Docunentum ppd

21n UNIX, this command issimply make.

An Introduction to Db::Documentum, Version 1.1 Page 2

14 Use

To use Db::Documentum and Db::Documentum::Tools, just use them in your Perl script.

#!/usr/ | ocal / bi n/ perl

use Db:: Documentumaqgw (:all);
use Db:: Docunentum :Tools qgw (:all);

Because the modules do not automatically import their functions into Perl’s namespace, you
must declare which functions in Db::Documentum and Db::Documentum::Tools you want to
use. Thekeyword: al | imports al of the functions. See the nodules' source code for more
details.

That's dl thereistoit!

An Introduction to Db::Documentum, Version 1.1 Page 3

2 Db::Documentum Module Overview

Documentum really has only three API functions. dmAPIExec(), dmAPIGet(), and dmAPI Set().
These three provide access to all of the methods of the EDM Server and WorkSpace client.
Through them, Perl interfaces with Documentum. This section discusses the three functions,
what they do, and how to use them.

2.1 dmAPIExec()

The dmAPIExec() function executes EDM Server and Workspace methods. dmAPIExec()
returns TRUE (1) or FALSE (0) based upon the success or failure of the method it executes.

211 Syntax

$api _stat = dmAPI Exec(" <met hod name>, <sessi on i d>, <met hod argunents>");

where<net hod nane> isaDocumentum method name, <sessi on i d> isaDocumentum
session identifier, and <met hod ar gument s> are arguments required by <met hod
nane>. 3

2.1.2 Examples
dmAPI Exec(" cl ose, ¢, $col _i d"); 4

closes the open collection identified by $col _i d.

$api _stat = dmAPI Exec("execquery,c,’F ,select * from dmdocument where owner_nanme =
user");

runs a DQL query against the Docbase. Remember, dmAPIExec() returnsonly TRUE or FALSE

3 Consult the Documentum Server Reference Manual for acomplete list of all methods and their arguments.

4y ou will often see the Documentum shorthand "c" used for the current session ID.

An Introduction to Db::Documentum, Version 1.1 Page 4

and not the result of the query. To obtain the result of the query, you must use a dmAPI Get()
method as discussed below.

22 dmAPIGet()

The dmAPI Get() function retrieves information from the EDM Server. dmAPIGet() returns a
scalar containing the information that was requested.

221 Syntax

$rv = dmAPI Get (" <met hod nane>, <sessi on i d>, <net hod argunents >");

where<net hod nane> is a Documentum method name, <sessi on i d> isaDocumentum
session identifier, and <nmet hod ar gunment s> are arguments required by <met hod namne>.

2.2.2 Examples

$sessi onl D = dmAPI Get (“connect, $docbase, $user, $password”) ;

logs$user into $docbase, and returns $sessi onl D.

$last_col _id = dmAPI Get (“getl astcoll,c”)

returns the collection ID for the last executed query. Remember, the dmAPIGet() function
returns a scalar, not TRUE or FALSE.

Using dmAPIExec() and dmAPIGet() you can query the Docbase and print the names of the
documents you own.

do query
$api _stat = dmAPI Exec("execquery,c,’ F ,select * from dm docunent where owner_nane =
user");

if query successfu
if ($api_stat) {
$col _id = dmAPI Get (“getl astcol |, c”);

if collection id obtained
if ($col _id) {

iterate over collection getting attrs and printing
whi |l e (dmAPI Exec(“next,c, $col _id")) {
$title = dmAPI Get (“get, c, $col _id, title");
$obj _name = dmAPI Get (“get, c, $col _i d, obj ect _nane”);
$owner = dmAPI Get (“get, c, $col _i d, owner _nane”);
print “$title ($obj_nane) is owned by $owner\n”

}

it is VERY inportant to close collections
dmAPI Exec(“cl ose, c, $col _id");

An Introduction to Db::Documentum, Version 1.1 Page 5

23 dmAPISe()

The dmAPI Set() function sets the value of an attribute on an object. dmAPISet() returns TRUE or
FAL SE based upon the success or failure of setting the indicated value.

2.3.1 Syntax

$api _stat = dmAPI Set (" <met hod name>, <sessi on i d>, <net hod argunents >","<val ue>");

where<met hod name> is a Documentum method name, <sessi on i d> isaDocumentum
session identifier, <net hod ar gunent s> are argumentsrequired by <nmet hod nane>, and
<val ue> isthevalue being set by <net hod nane>. Note: unlike the other API functions,
this function's signature contains two scalars separated by a comma.

2.3.2 Examples

$api _stat = dmAPI Set ("set,c, $obj _id, title", $title);

setsthe attributet i t | e tothe value contained in $t i t | e for the object identified by
$obj _id.

$api _stat = dmAPI Set ("append, c, $obj _id, ny_date, yyyymdd", " 19890805") ;

appends ‘19890805’ to the repeating attribute, my _dat e, of the object identified by $obj i d
(using a custom date format).

Using dmAPI Exec(), dmAPIGet (), and dmAPI Set() you can search the Docbase for the
documents you own and touch them.

assunme $now = today's date

do query

$api _stat = dmAPI Exec("execquery,c,'F' ,select * fromdmdocunent where owner_nanme =
user");

if query successful
if (%api_stat) {
$col _id = dmAPI Get ("getl astcol I, c");

if collection ID obtained
if ($col _id) {

iterate over collection getting attrs, setting date_nodified,
and printing
whi |l e (dmAPI Exec(" next,c, $col _id")) {
$title = dmAPI Get ("get, c, $col _id,title");
$obj _name = dmAPI CGet ("get, c, $col _i d, obj ect _nane");
$obj _id = dmAPI Get ("get, c, $col _id, r_object_id");
dmAPI Set ("set, c, $col _i d, date_nodi fi ed", "$now, ' dd/ ni yyyy' ");

An Introduction to Db::Documentum, Version 1.1 Page 6

remenber to save the changes!
dmAPI Exec(" save, ¢, $obj _i d");
print "$titl e ($obj_nane) touched\n";

}
}
it is VERY inmportant to cl ose collections
dmAPI Exec(" cl ose, c, $col _id");

2.4 dmAPIInit() and dmAPIDel nit()

Two other Documentum API functions are used in Db::Documentum: dmAPIInit() and
dmAPIDelnit(). Astheir namesimply, they initialize and deinitialize the API interface. These
functions require no parameters and return TRUE or FAL SE based upon their success or failure.
The Db::Documentum module calls these functions automatically for you when your program
begins and ends. Y ou need not call them directly.

An Introduction to Db::Documentum, Version 1.1 Page 7

3 Db::Documentum::Tools Module Overview

Db::Documentum::Tools is a companion module to Db::Documentum. It contains subroutines
for many common Documentum tasks.®. These tasks can be accomplished through the API--
some easier than others--but encapsulating them in subroutines relieves you of unnecessary and
tedious programming and helps to ensure consistent reuse.

This section discusses each of the modul€e's subroutines, what they do, and how to use them. |
encourage you to examine the code for the Db::Documentum::Tools module itself for additional
insights.

3.1 dm_LastError()

dm_LastError() returns a scalar containing error messages for a particular session.

3.1.1 Syntax

$errors = dm LastError(<session id>, <l evel > <nunber>);

All of dm_LastError()'sarguments are optional. However, you will almost aways call it with, at
least, <sessi on i d>. Theonly exception is when you retrieve errors for afailed logon
attempt and no <sessi on i d> exigts. Withno <sessi on i d> defined, dm LastError()
usestheapi sessi on session ID. Theapi sessi on identifies the session created by
dmAPIInit() when it initially connects to the server.

The arguments operate as follows:

<sessi on i d> =thesesson ID of the messagesto return. If not present,
api sessi on assumed.

<l evel > =thelevel of messagesto return. This argument returns all messages equal to
or less than the level setting. If not present, level 3 is assumed.

1 = Informational Messages

S There are additional subroutines in the Db::Documentum:: Tools module that are not discussed here.

An Introduction to Db::Documentum, Version 1.1 Page 8

2 = Warning Messages
3 = Error Messages
4 = Fatal Error Messages.

<number> = the number of messages to return. The specified number of messages will
be returned as a scalar delimited by “\ n.” If not present, al messages are returned.

3.1.2 Examples

$errors = dm LastError();

returns all level 3 error messages for the api sessi on session (i.e., failed logon).

$info = dm_LastError($sessionl D, 1);

returns al level 1 messagesto $i nf o.

print dm_ LastError($sessionlD, 3,1);

prints the last level 3 error message.

3.2 dm_Connect()

dm_Connect() logs a user onto the Docbase and returns the session ID if successful, or undef
on failure.

321 Syntax

$sessi onl D = dm Connect (<docbase>, <user nane>, <passwor d>, <domai n>, <user _arg>);

Depending upon which OS you use and how you authenticate users, the dm_Connect() syntax
differs slightly. All OSsrequire the first three arguments: <docbase>, <user nane>, and
<passwor d>. <domai n> isoptiona. If you use an authentication method other than that
provided by Documentum, you can pass an additional argument, <user _ar g>, to your
authentication program. See the Documentum Server Reference Manual and the
Db::Documentum:: Tools source code for details and examples.®

3.2.2 Examples

assume $DOCBASE, $USER, $PASSWD defined previously
$sessi onl D = dm Connect ($DOCBASE, $USER, $PASSWD) ;
die dm LastError() unless $sessionlD;

attempts to logon to $DOCBASE as $USER with password $PASSWD and returns the session ID

6 The Db::Documentum:: Tools modul e contains subroutines and information to assist users of Kerberos authentication.

An Introduction to Db::Documentum, Version 1.1 Page 9

to$sessi onl D. If no session ID isreturned (i.e., logon failed), an error message is printed
and the script di es.

3.3 dm_CreateTypeg)

New object types are usually created in a Docbase using DQL because the Documentum API
does not include a method to perform this task. Have no fear! Db::Documentum::Tools
provides an easy-to-use subroutine for thisjob: dm_CreateType().

3.3.1 Syntax

$api _stat = dm Cr eat eType(<obj ect nane>, <super type>, <attribute hash>);

where<obj ect name> isany valid object name that you desire, <super type> isany
Documentum object type that you can subtype, and <at t ri but e hash> isan optiond list of
custom attributes. The<at t ri but e hash> isaPerl hash where the attribute names are used
as the hash keys, and the database field definitions as their values. The function can be called
without a hash defined, in which case no additional attributes are added to the new object type.

The dm_CreateType() returns TRUE or FAL SE based upon its success or failure.
3.3.2 Examples

$api _stat = dm CreateType ("ny_docunent","dm docunent");

creates an object type called my _docunent that isasubtype of dm documnent with no
customized attributes.

YATTRS = (cat_id => ' CHAR(16)',
| ocal e => ' CHAR(255) REPEATING);
$api _stat = dm CreateType ("your_docurment", " nmy_docunent", ¥ATTRS) ;

creates an object type called your _docunent that isasubtypeof ny _docunment and
contains two additional attributes: cat i d andl ocal e.

34 dm_CreateObject()

dm_CreateObject() allows you to easily create a new instance of an existing object type, and
optionally assign attribute values to it.

341 Syntax

$obj _id = dm CreateObj ect (<object type> <attribute hash>);

where<obj ect type>isany valid object type that you can instantiate and <at t ri but e
hash> isan optiona list of custom attributes and their values. The<attri bute hash>isa
Perl hash where the attribute names are used as the hash keys, and the attribute values as the hash

An Introduction to Db::Documentum, Version 1.1 Page 10

values. In the case of repeating attributes, the hash values must be delimited by

$Db: : Docurment um : Tool s: : Del i m t er. (The subroutine parses the hash values
looking for thisvalue. If it isfound, the hash valueisspl it on

$Db: : Docunent um : Tool s: : Delimter andappended() to the repeating attribute.)
The function can also be called without the hash defined, in which case no attributes are set.
dm_CreateObject() returns the newly created object’sr _obj ect _i d upon its success, or
undef onfailure.

3.4.2 Examples

get the repeating attr delinmter
$del i m = $Db: : Docunentum : Tool s: :Deliniter;

Y%ATTRS = (object_nane => 'test_docl',
title = 'My Test Doc 1',
keywor ds => '"Scott' . $delim. 'Test Doc' . $delim.

' Db- Docunent uni ,
r_version_|label =>"TEST);

$obj _id = dm CreateObj ect ("dmdocunent”, ¥ATTRS);
$api _stat = dmAPI Exec("save, $sessi onl D, $obj _i d");

creates and saves a new document in the Docbase with attribute values defined in %ATTRS.
Note: dm_CreateObject() does not save the object. You must execute thesave() method

Separately.

$obj _id = dm Createbj ect ("dm.docunent”);
$api _stat = dmAPI Exec("save, $sessi onl D, $obj _i d");

creates and saves a document in the Docbase with no attribute values assigned.

3.5 dm_CreatePath()

dm_CreatePath() allows you to easily create folder hierarchiesin a Docbase. dm_CreatePath()
returnsther _obj ect _i d of the newly created folder upon success, or undef onfailure.

351 Syntax

$fol der _i d = dm Cr eat ePat h(<pat h>) ;

where<pat h> isafully qualified path starting at the Docbase root.
3.5.2 Examples

$fol der _id = dm Creat ePat h(' / Tenp/ Db- Docurment uni Test ') ;

creates the folder Test and returnsitsr _obj ect _i d. If / Tenp and/ Tenp/ Db-
Documnent umdo not exist, they are also created.

An Introduction to Db::Documentum, Version 1.1 Page 11

@ears = ('/DatalYears/1998','/Datal Years/1999',
'/ Dat a/ Year s/ 2000' , ' / Dat a/ Year s/ 2001") ;
foreach $year (@ears) {
die dm LastError($sessionl D) unl ess dm CreatePat h($year);
}

creates the folder hierarchy contained in @ ear s.

3.6 dm_LocateServer()

The dm_LocateServer() subroutine returns a scalar containing the hostname of the server running
the Docbase named in its argument. If a server cannot be found for the Docbase, the subroutine

returnsundef .

3.6.1 Syntax

$host nane = dm Locat eSer ver (<docbase nane>);

where<docbase nane> isthe name of the Dochase.

3.6.2 Examples

print "Enter a Docbase nane: ";
chomp ($dochbase = <STDI N>);
print "$docbase hosted by server " . dm LocateServer($docbase) . "\n";

prints the name of the Docbase entered at the prompt and the name of the server hosting it.

An Introduction to Db::Documentum, Version 1.1 Page 12

4 Real-World Examples

In this section, | present five real-world examples of programming for Documentum with Perl.
The first example is a straightforward script that checks a user’ s inbox for items. The second isa
Perl implementation of Documentum’s Interactive DQL Editor (IDQL). (Asof version 1.4, this
script can be found in the/ et ¢ directory of the Db::Documentum distribution.) The last three
examples are related in that they implement a system for capturing, searching, and viewing
documents in the Docbase. The first of these examples is a Docbase configuration script. The
second captures news stories from a wire service (e.g., AP), and imports them into the Docbase.
The last example is a set of scripts that provide web-based access to the news stories in the
Dochase.

41 InBox Tickler

This short, but useful script demonstrates how easy programming for Documentum with Perl
really is. Itisasimpletickler to alert usersif they have any queued items in their inboxes.

4.1.1 tickler.pl

#! [usr/ 1 ocal / bi n/ perl
tickler.pl
(c) 2000 Ms Roth

use Db:: Documentum : Tools gw (dm Connect dm LastError);

1

2

3

4

5 use Db:: Documentumqw (:all);

6

7

8 print "\ nDb:: Docunentum | nbox Tickler\n";

9 print M-----ee oo \n";

11 # defi ne $DOCBASE, $USER, $PASSWD

12 # logon or die

13 $SESSI ON_I D = dm Connect ($DOCBASE, $USER, $PASSWD) ;
14 die "No session |ID obtained.\nDocunentum Error was: "
15 dmlLastError() unless $SESSI ON I D;

17 # define SQL for counting
18 $DQL = "SELECT COUNT(*) AS cnt FROM dm _queue_item WHERE nane = user";

20 # do duery
21 $col _id = dmAPI Get ("query, $SESSI ON_I D, $DQL") ;

An Introduction to Db::Documentum, Version 1.1 Page 13

23 # if query successful
24 if ($col _id) {

25 # 1 oop through collection (of 1) and print count

26 whil e (dmAPI Exec(" next, $SESSI ON_I D, $col _id")) {

27 $count = dmAPI Get ("get, $SESSI ON_I D, $col _id,cnt");
28 }

29 dmAPI Exec("cl ose, $SESSI ON_I D, $col _i d");

30 print "You have $count itenms in your inbox.\n";
31}

32 # if no collection, error

33 el se {

34 print "\ nNo collection ID obtained.\n";

35 print "Documentum Error was: " . dm . LastError ($SESSION ID);
36 }

37

38 dmAPI Exec(" di sconnect, $SESSI ON_| D") ;

39

40 # __ECF

4.1.2 Discussion

The beauty of scriptsliket i ckl er. pl isthat virtually no effort was invested in their
production. They can be cobbled together quickly, used once, and discarded with no loss of
investment. Or, they can be used and reused with great utility. In addition, because
tickler. pl isascript (and not acompiled program), it can be changed tomorrow or next
week with little effort. Isn't Perl great?

Though this script is pretty ssmple, it does contain afew points | want to highlight. First, the
script does not define $DOCBASE, $USER, and $PASSWD. There are a number of ways to
obtain the $DOCBASE, $USER, and $PASSWV\D if you don't want to hardcode them in the script.
Y ou could prompt the user to enter them (as | will demonstrate later), read them from afile,
glean them from the OS, or pass them on the command line. | leave this as an exercise for you.

The second point | want to highlight is the loop between lines 26 - 28. This loop accesses the
data in the collection returned by the query on line 21. This loop demonstrates the basic
construct for accessing datain a collection. You must execute at least one next () method on a

collection to obtain any data from it, and as noted earlier, awayscl ose() your collections. In
between, you can get () any of the attributes you named in your query.

4.1.3 Output
Whenti ckl er. pl isrun, the output looks like this:

Db: : Docurrent um | nbox Ti ckl er

You have 13 itens in your inbox.

Figure 1- Sampletickler.pl output.

42 1DQL

As|’m sure you are aware, the IDQL editor is a very handy Documentum tool. Asatest of my

An Introduction to Db::Documentum, Version 1.1 Page 14

Documentum API programming skills, and to exercise the Db::Documentum module, | wrote the
following implementation of the IDQL editor. Since the IDQL editor is only part of the Docbase
Administrator in 4i, alocal implementation like this one is very handy.

4.2.1 idqgl.pl

#! [usr/ 1 ocal / bi n/ perl
idqgl.pl
(c) 2000 Ms Roth

use Db:: Documentumgw(:all);
use Db:: Docunentum :Tools qw (:all);
use Term : ReadKey;

O©CoO~NOUIA, WN P

| ogon();

11 # main | oop
12 $cnmd_counter = 1,
13 while (1) {

14 print "$cnd_counter> ";

15 chonmp($cnd = <STDI N>) ;

16 if ($cnd =~ /go%/i) {

17 do_DQL($DQL);

18 $DQL = "M,

19 $cnd_counter = 0;

20 } elsif ($cmd =~ /quit$/i) {

21 do_Quit();

22 } else {

23 $DQL .= " $cnd”;

24 }

25 $cnd_count er ++;

26}

27

28 sub | ogon {

29 print "\ n" x 10;

30 print "Db::Docunentum I nteractive Docunent Query Language Editor
(1DQ)\n";

31 [| S R e
\n";

32 print "Enter Docbase Nane: ";

33 chonp ($DOCBASE = <STDI N>);

34 print "Enter User Nane: ";

35 chonp ($SUSERNAME = <STDI N>);

36 print "Enter Password: ";

37 # turn of f display

38 ReadMbde ' noecho';

39 chonp ($PASSWD = <STDI N>);

40 # turn display back on

41 ReadMbde ' normal ' ;

42

43 # 1 ogin

44 $SESSI ON = dm Connect ($DOCBASE, $USERNANME, $PASSWD) ;

45 die dm LastError() unless $SESSI ON,

46 ny $host = dm Locat eServer ($DOCBASE) ;

47 print "\ nLogon to $DOCBASE\ @host successful. Type 'quit' to quit.\n\n";

48 '}

49

50 sub do_DQL {

51 ny $dgl = shift;

An Introduction to Db::Documentum, Version 1.1 Page 15

53 print "\ n\n";
54
55 # do sql and print results
56 $api _stat = dmAPI Exec(" execquery, $SESSI ON, F, $dqgl ")
57
58 if (%api_stat) {
59 $col _id = dmAPI Get ("getl astcol |, $SESSI ON') ;
60
61 # get _count
62 $attr_count = dmAPI Get ("get, $SESSI ON, $col _id, _count");
63
64 if ($attr_count > 0) {
65 # get _nanmes and _l engths
66 @ttr_nanes = ()
67 @ttr_lengths = ();
68
69 for ($i=0; $i<$attr_count; $i++) {
70 push(@ttr_names, dmAPl Get (" get, $SESSI ON, $col _id, _names[$i]"));
71 push(@ttr_I engths,
dmAPI Get (" get, $SESSI ON, $col _id, _lengths[$i]"));
72 }
73
74 # print attr nanes
75 for ($i=0; $i<$attr_count; $i++) {
76 print $attr_names[$i];
77 print " " x ($attr_lengths[$i] -
length($attr_names[$i]) . " ");
78 }
79 print "\n";
80
81 # print underbars for attr nanes
82 for ($i=0; $i<$attr_count; $i++) {
83 if ($attr_lengths[$i] == 0)
84 { $attr_lengths[$i] = 16; }
85 print "-" x $attr_lengths[$i] . " ";
86
87 print "\n";
88
89 # print attr val ues
90 $row _counter = 0;
91 whi | e (dmAPI Exec(" next, $SESSI ON, $col _id")) {
92 my $attr_counter = 0;
93 foreach nmy $nane (@ttr_nanes) {
94 ny $val ue = dmAPI Get (" get, $SESSI ON, $col _i d, $nanme") ;
95 print $val ue;
96 print " " x ($attr_lengths[$attr_counter] -
I engt h($value)) . " ";
97 $attr_counter++
98 }
99 print "\n";
100 $row _count er ++;
101
102 print "\ n[$row _counter row(s) affected]\n\n";
103 dmAPI Exec(" cl ose, $SESSI ON, $col _i d");
104 }
105 }
106 print dm LastError($SESSION, 3, all")
107 '}
108

109 sub do_Quit {

An Introduction to Db::Documentum, Version 1.1 Page 16

110 print "\ m\nQuitting!\n\n";

111 dmAPI Exec("di sconnect, $SESSI ON') ;
112 exit;

113 }

114

115# EOF

4.2.2 Discussion

The Term::ReadKey module on line 7 is used to hide the password when it is entered later on
line 39. If you don’'t have this module installed, you can easily get it from the CPAN, or just
comment-out thisline if you prefer not to use it at dl; it has no impact on the operation of the
script. Note that if you do comment-out line 7, you must also comment-out lines 38 and 41
where the module is actualy used.

The main loop in this script is an infinite whi | e loop containing three conditiona statements.
The first condition tests whether the input from STDI N contains "go" (Remember, "go" isthe
signal to IDQL to execute the entered syntax.). If it does, then do_DQL() iscalled with the
$DQL query string. The second condition tests whether the input contains "quit"” If it does,
do_Qui t () iscaledtoterminate the script. The third condition is smply the default, and
concatenates STDI N to the existing $DQL variable to build the query statement.

The heart of this script isthedo_DQL() subroutine on lines 50 - 107. Noticethat | used the
execquer y() method withther ead_quer y flag set to FAL SE to execute the query (line
56). Because | can't anticipate what kind of DQL statement | will receive in $DQL, this allows
me the most flexibility in processing the statement. For more details regarding execquer y()
and the use of ther ead_quer y flag, see the Documentum Server Reference Guide.

Since | don't know what to expect in the $DQL variable, | certainly don't know what to expect in
the collection theexecquer y() returns. Therefore, | must first interrogate the collection
object and extract its column names before | can print the results. Line 62 retrieves the number
of columns contained in the collection, and line 64 checks that the number of columnsis greater
than 0. If it's not, then an error occurred. Lines 69 - 72 iterate over the attributes of the
collection object and retrieve the names and widths of its columns. Note that these are metadata
about the collection-I haven't yet started to process the actual contents of the collection. Lines
74 - 87 print the names of the columns spaced appropriately for their widths. Finaly, lines 89 -
101 iterate over the collection, retrieve the query results, and print them.

This was afun and eye-opening exercise. | hope you learned something from it. Interrogating
the collection object isinsightful and has lots of application. Check the Documentum Server
Reference Manual for more information regarding a collection objects's other attributes.

4.2.3 Output

Here is output from a sample session using i dql . pl (edited dightly to conserve space):

Db: : Docunentum I nt eracti ve Document Query Language Editor (I DQL)

Ent er Docbase Nane: Dochase-1

An Introduction to Db::Documentum, Version 1.1 Page 17

Enter User Nanme: nsroth
Ent er Passwor d:

Logon to Docbase- 1@ocpage_serv successful. Type 'quit' to quit.
1> sel ect object_name,title from dm docunent where owner_nane =

"meroth';
2> go

obj ect _nane

title

getfile.pl

Intro to DB:: Docunentum - getfile.pl

show fil es. pl

Intro to Db::Docunentum - show files. pl

dmyuery. ht m

Intro to Db::Docunentum - dmQuery. htm

i ntro-db-dct m doc

Intro to Db:: Docunent um

tickler.pl

Intro to Db::Docunentum - tickler.pl

[5 row(s) affected]

1>

Figure 2- A sampleidql.pl session.

An Introduction to Db::Documentum, Version 1.1 Page 18

4.3 Config Script

The original impetus for Db::Documentum was to perform repeatable, customized Documentum
installations around the country. These custom installations required creating new filestores (for
distributed content storage), users, ACLS, cabinet/folder hierarchies, methods and procedures,
and registering external database tables. Doing this once was tedious; doing it multiple times
was out of the question (Remember, this was in the days before the DocApp.). What | needed
was away to autormate installations to the point that | could e-mail a script to a system
administrator and have him run it.

| found that Perl was the perfect tool for this. It had all the necessary 1/0, OS, and logic
capabilities to create a robust installation process; it was easy to modify; and it was cross
platform. All it needed was an interface with Documentum. Thus, Db::Documentum was born’,

The following configuration script isn't nearly as involved as that mentioned above, but it will
give you ataste of how easy it isto configure a Docbase using Perl. This script creates a new
object type (news_wi r e_t ype), whose storage is separate from that of the rest of the
Docbase; anew user (I i st ener); and a cabinet/folder hierarchy. The configurations made by
this script are used by the remaining examples in this tutorial.

4.3.1 config.pl

#1/usr/ 1 ocal / bi n/ perl
config. pl
(c) 2000 Ms Roth

$ =1

use Db:: Documentumagw(:all);

use Db::Documentum :Tools gw:all);
use Term : ReadKey;

OoOoO~NOUTh WN -

10 $BASE_CABI NET = 'Data';
11 $CONTENT _DI R = "c:\\docunentum \ dat a\\ news";

12
13 @-OLDERS = ("$BASE_CABI NET/ News_Servi ces",
14 " $BASE_CABI NET/ News_Ser vi ces/ AP",
15 " $BASE_CABI NET/ News_Ser vi ces/ AP/ 1999",
16 " $BASE_CABI NET/ News_Ser vi ces/ AP/ 2000",
17 "$BASE_CABI NET/ News_Ser vi ces/ Reut ers",
18 " $BASE_CABI NET/ News_Ser vi ces/ Reut er s/ 1999",
19 " $BASE_CABI NET/ News_Ser vi ces/ Reut er s/ 2000") ;
20
21 QWISERS = ('listener’ => {'client_capability’ = '2',
22 "defaul t _fol der' =>
"/ $BASE_CABI NET/ News_Ser vi ces",
23 " description’ => ' News Listener',
24 " honme_docbase' => ' Docbase-1',
25 'user _group_nane' => 'adm ngroup',
26 '‘user _os_nane' => 'listener',

7 After completing these installations, | began to investigate releasing my Perl-Documentum integration to the CPAN. |
discovered that only weeks before, Brian Spolarich had published the Db::Documentum module. After examining it, | found that
we both came to essentially identical solutions--except that his module was UNIX -based and mine was NT-based. | contacted
Brain and we collaborated on versions 1.1, 1.2, and 1.3 of the module. Since 1.4, | have been the sole maintainer.

An Introduction to Db::Documentum, Version 1.1 Page 19

27 'user _address' => '|istener @ocbase-1',

28 ‘user_privil eges’ => 3,
29 'user_state’ = '01});
30

31 UIYPES = ('news_wire_type' => {'news_agency' => 'CHAR(32)'});

33 print "\ n\n\n\===== CONFI GURE DOCBASE START =====\n\n\n";
34 | ogon();

35 creat e_new_obj ect _types();

36 create_new_storage();

37 bui | d_f ol der _hi erarchy();

38 create_users();

39 | ogoff();

40 print "\ n\n\===== CONFI GURE DOCBASE DONE =====\n\n\n";
41 exit;

42

43 sub |l ogon {

44 print "Enter Docbase nane: ";

45 chonp($DOCBASE = (<STDI N>));

46 print "Enter dmadm n User nane:

47 chonmp($USERNAME = (<STDI N>)) ;

48 print "Enter Password: ";

49 ReadMbde ' noecho';

50 chomp ($PASSWD = (<STDI N>));

51 ReadMbde ' nornml';

52 $SESSI ON_I D = dm _Connect ($DOCBASE, $USERNAME, $PASSWD) ;
53 die dm LastError() unless $SESSI ON I D;

54 print "\ n\n";;

55 }

56

57 sub | ogof f {

58 print "\ n\nLogging off...\n\n";

59 dmAPI Exec(" di sconnect, $SESSION_| D") ;

60 }

61

62 sub buil d_fol der_hierarchy {

63 print "Building folder hierarchy...\n";

64

65 foreach (@COLDERS) {

66 print "\t$_\n";

67 warn dm Last Error ($SESSION_I D) unl ess dm CreatePath($_);
68 }

69 }

70

71 sub create_users {

72 print "Creating news users...\n";

73

74 foreach ny $user (keys %JSERS) {

75 print "\t$user\n";

76

77 ny ¥YATTRS = ();

78 ny $puser = $USERS{ $user};

79

80 # remenber these users need OS accounts too!
81 foreach ny $attrs (keys %puser) {

82 SATTRS{ $attrs} = $$puser{$attrs}

83 }

84 SATTRS{ ' user _nane'} = $user;

85 ny $obj _id = dm Createj ect("dm user"”, ¥%ATTRS);
86 warn dm Last Error ($SESSI ON_I D) unl ess $obj _i d;
87 warn dm Last Error ($SESSI ON_I D) unl ess

An Introduction to Db::Documentum, Version 1.1 Page 20

88 dmAPI Exec("save, $SESSI ON_I D, $obj _i d");

89 }
90 }
91
92 sub create_new object_types {
93 print "Creating object types...\n";
94 foreach ny $type (keys YIYPES) {
95 print "\t$type\n";
96
97 nmy Yattrs = ();
98 ny $ptype = STYPES{ $type};
99
100 foreach ny $attr (keys %ptype) {
101 $attrs{Pattr} = $$ptype{Battr}
102 }
103
104 # we can only do this because we know dm docunent is the super-type
105 # of all these types.
106 warn dm Last Error ($SESSI ON_I D) unl ess
dm Creat eType($t ype, "dm document ", Yattrs);
107 }
108 }
109
110 sub create_new storage {
111 print "Creating new storage location...\n";
112
113 # Create new | ocation object
114 ny %ATTRS = (object_nane => 'news-|ocation',
115 pat h_t ype => "directory',
116 security_type => "public',
117 file_systempath => $CONTENT_DIR);
118 ny $obj _id = dm CreateCbj ect("dm.| ocation", ¥ATTRS);
119
120 if ($obj_id) {
121 dmAPI Exec("save, $SESSI ON_I D, $obj _i d");
122 } else {
123 warn dm Last Error ($SESSI ON_I D) ;
124 }
125
126 # Create new fil estore object
127 YATTRS = ();
128 YATTRS = (nane => 'news-filestore',
129 r oot => 'news-| ocation');
130 $obj _id = dm CreateCbject("dmfil estore", ¥ATTRS);
131
132 if ($obj_id) {
133 dmAPI Exec(" save, $SESSI ON_I D, $obj _i d");
134 } else {
135 warn dm Last Error ($SESSI ON_| D) ;
136 }
137
138 # Create new fulltext index object
139 YATTRS = ();
140 YATTRS = (index_name => 'news-index',
141 st ore_nane => 'news-filestore',
142 | ocati on_name => 'news-location');
143 dm CreateObj ect ("dm ful | text _i ndex", ¥ATTRS) ;
144
145 if ($obj_id) {
146 dmAPI Exec(" save, $SESSI ON_I D, $obj _i d");
147 } else {

An Introduction to Db::Documentum, Version 1.1 Page 21

148 warn dm Last Error ($SESSION_I D) ;

149 }

150

151 # Alter all news_service types to use news_service

152 $sgl = "ALTER TYPE news_servi ce_type SET DEFAULT STORAGE
"news-filestore'";

153 ny $api _stat = dmAPI Exec("execquery, $SESSION ID, ' F' , $sql ") ;

154

155 if ($api_stat) {

156 $col _id = dmAPI Get ("getl astcol |, $SESSI ON_I D");

157 dmAPI Exec("cl ose, $SESSI ON_I D, $col _i d");

158 } else {

159 warn dm Last Error ($SESSION I D) ;

160 }

161 }

162

163 # _ EOF

4.3.2 Discussion

This script is pretty straightforward in what it does: logs on, creates some new object types,
creates a few folders, creates a new user, and logs off (seelines 33 - 41). It'sthe details that are
of interest, so let's examine them.

First, note the use of the data structures in lines 10 -31. These structures make visualizing and
maintaining objects in the script much easier. In fact, the ease-of- use and flexibility of data
structuresin Perl is on of the primary reasons | chose Perl to create my installation scripts. |
encourage the use of data structures like these everywhere possible.

The cabinet/folder hierarchy is contained in the list, @OLDERS; t he order of the pathsis
irrelevant. The users are defined in 94JSERS, a hash of hashes (HoH). The HoH makesiit clear
by inspection what users | am creating and their attribute values. %I'YPES is aso a HoH making
it clear the types of objects | will create. In this example | am creating only one new object type
(news_wi re_t ype) with asingle custom attribute (news _agency). Notice that this new
type isasubtype of dm docunent andthat dm docunent has been hardcoded into the
dm_CreateType() function call inthecr eat e_new_obj ect _t ypes() subroutine (line 106).
If | were creating a number of new types with different supertypes, | would need to modify the
data structure or subroutine to account for them.

The first subroutine encountered after loggingoniscr eat e_new_obj ect _types() (lines
92 - 108). This subroutine uses embedded f or each loopsto iterate over the % YPES HoH and
extract each type definition. The outer f or each loop iterates over each key (type name) in the
%I YPES HoH and the inner loop extracts each type's definition into %at t r s. Line 106 creates
the object in the Docbase using %@at t r s. Noticethat | used war n statements to indicate when
errorsoccur. di e is probably more appropriate because an unnoticed error in configuration can
be disastrous later.

The next step in the configuration is to create a new storage location for the content of our
news_ W re_type objects. Thisisdoneby creat e_new_st orage() onlines110 - 161.
Three things are notable about this subroutine: 1) the objects it creates; 2) the order in which

An Introduction to Db::Documentum, Version 1.1 Page 22

they are created; and 3) the fact that the leaf directory of $CONTENT _DI R cannot exist. This

subroutine was adapted from Documentum's pr i nt p. dgl script found in the DocPage Server
System Administrator's Guide. See the guide for further explanation.

Next, |et's examine the creation of the cabinet/folder hierarchy in the Docbase.

bui | d_fol der _hi erarchy() onlines62 - 69 creates the cabinet/folder hierarchy by
simply iterating over the @ OLDERS list and passing each line (containing a path) to
dm_CreatePath(), where the real work is done.

The final step in the configuration isto create users. Thisisdone by thecr eat e_user s()
subroutine on lines 71 - 90. This subroutine functions in a manner nearly identical to
create_new obj ect _types() inthatitusesembedded f or each loopsto iterate over an
HoH to create users. Remember that each Documentum user also requires an OS account.

It's obvious from this example that with a few data gructures and a few smart subroutines, you
can use Perl to quickly and easily build configuration scripts for Documentum. With some
planning, generalization, and more extensive use of data structures, this script can easily be
extended to perform maintenance or data migration.

4.3.3 Output

Here is the output from running confi g. pl . The output is not nearly as important as the
changes occurring inside the Dochase.

Ent er Docbase nane: Docbase-1
Enter dnmadm n Usernane: dnmadm n
Ent er Passwor d:

Creating object types...
news_wre_type
Creating new storage | ocation...
Bui | di ng fol der hierarchy...
Dat a/ News_Ser vi ces
Dat a/ News_Ser vi ces/ AP
Dat a/ News_Ser vi ces/ AP/ 1999
Dat a/ News_Ser vi ces/ AP/ 2000
Dat a/ News_Ser vi ces/ Reut er s
Dat a/ News_Ser vi ces/ Reut er s/ 1999
Dat a/ News_Ser vi ces/ Reut er s/ 2000
Creating news users...
|'i stener

Loggi ng of f...

Figure 3 - Output from the config.pl script.

An Introduction to Db::Documentum, Version 1.1 Page 23

4.4 Serial Port Listener
Thel i st ener . pl script demonstrates how Perl can be used to capture real-time data and

store it in Documentum. The real-time data are news stories streamed over an AP seria news

feed and into my PC's serial port. The script listens to the seria port, waiting to hear a story
delimiter, and then saves the story in the Docbase. This script assumes that you have an AP

serial news feed attached to the seria port of your PC (Doesn't everybody?). If you don't, the
serv. pl script discussed in section 5.4.3 can be used to simulateone. | i st ener. pl makes

use of the object, user, and folder hierarchy created by theconf i g. pl script above.

441

OCoO~NO O WNPE

listener.pl

#!/usr/1 ocal / bi n/ perl
|istener.pl
(c) 2000 MS Roth

use Wn32::Serial Port;

use Db:: Documentum gw(:all);

use Db::Docunentum:Tools gw:all);
use Owd;

$PORT_NAME = " COML";

$OQUTPUT_DIR = cwd() . "\\news";

$DM BASE_CABI NET = "/ Dat a/ News_Ser vi ces/ AP";
$CURRENT _DM PATH = "";

$LAST_DAY = (localtine)[3];

@/MONTHS = gwW January February March April May June July August
Sept enber Cct ober Novenber Decenber);

$NonASCl | = "\x7f-\xff'"; # chars above printable characters
$ctrl 1 = "\ x00-\ x09'; # chars bel ow LF

$ctrl 2 = "\ x0b-\ x0c'; # chars between LF and CR

$ctrl 3 = "\ x0e-\ x1f"; # chars between CR and ASCl |
$DOCBASE = "Docbhase-1";

$USERNAME = "listener";

$PASSWORD = " XXX";

$SESSI ON_| D = dm Connect ($DOCBASE, $USERNAME, $PASSWORD) ;
die dm LastError() unless $SESSI ON I D

make sure we have a tenp dir for saving our files
if (! -e "$SQUTPUT_DIR") {

nkdir "$OUTPUT_DIR', "0777";
}

make sure we have a dmfolder for saving files
$CURRENT_DM PATH = create_todays_fol der();

open Serial Port
$Port = new Wn32::Serial Port ($PORT_NAME) ||

die "*** Could not open $PORT_NAME $"E ***\n";
$Port - >dat abi t s(8);

An Introduction to Db::Documentum, Version 1.1 Page 24

44 $Port->baudrat e(1200);

45 $Port->parity("none");

46 $Port->stopbits(1);

47 $Port - >handshake(" none");

48 $Por t - >buf f er s(4096, 4096) ;

49 $Port->write_settings || undef $Port;

50 die "*** Could not wite settings to $PORT_NAME ***\ n" unl ess $Port;

52 print "\n\nListening to port $PORT_NAME. Press Control-C to quit.\n";

54 # Loop infinitely over open port
55 while (1) {

56 my $gotit = ""

57 $Port - >l ookcl ear;

58

59 # use ' AP-NY- 99-99-99 9999EST<' as story delimter

60 $Port->are_match("-re"," AP- NY-\d{1, 2} -\d{1, 2}-\d{2,4}\sH\ d{2,4}\W3}<");
61

62 until ("" ne $gotit) {

63 $gotit = $Port->streanline;

64 #H#### VERY | MPORTANT TO SLEEP #####

65 sl eep(1);

66 }

67 ny ($match) = ($Port->l astl ook)[0];

68

69 # clean up story

70 $gotit =~ s/\ n+/\n/sgq; # make it single spaced

71 $gotit =~ s/[$NonASCI I]//sg; # renove non-ASCl| chars

72 $gotit =~ s/[$ctrll1]//sg; # remove | ow control chars
73 $gotit =~ s/[$ctrl2]//sqg; # renmove nmiddl e control chars
74 $gotit =~ s/[$ctrl3]//sg; # renove upper control chars
75

76 # wite story to file

77 ny $filename = build_filenanme();

78 print "$PORT_NAME: " . localtime() . " FILE $filenane -> ";
79 open (APFILE, ">$0UTPUT_DI R/ $fil ename") ||

80 die "Could not open $QUTPUT_DI R/ $fil enane. $!";

81 print APFILE $gotit;

82 cl ose (APFILE);

83

84 # do Attrs

85 my YAttrs = ();

86

87 # parse title fromstory

88 # There are several lines that start with ~ and end with < so exam ne
89 # themall.

90 while ($gotit =~ /\~(.*?2)\</g) {

91 my $t = $1;

92 $t =~ s/\'//g;

93 # choose the last one that is not an ed coment

94 if (($t !'~/Ed/) && ($t !~ /AP Photo/)){

95 SAttrs{'title} = $t;

96 $Attrs{'title' '} =~ s/\'//g; # renpve appostrophies
97 }

98 }

99

100 if (! exists $Attrs{'title }) {

101 $Attrs{'title } = $fil enane;

102 }

103

104 $Attrs{' news_agency'} = 'AP;

An Introduction to Db::Documentum, Version 1.1 Page 25

105 SAttrs{'a full _text'} ="'TRUE ;

106 $Attrs{' object_nane'} = $fil enang;

107

108 # put in docbase

109 # if the day changed on us, create a new fol der

110 if ((localtinme)[3] !'= $LAST_DAY) {

111 $CURRENT_DM PATH = creat e_t odays_fol der();

112 $LAST_DAY = (localtine)[3];

113 }

114

115 ny $obj _id = dmCreateCbject("news_wire_type", ¥Attrs);

116 if ($obj_id) {

117 warn dm LastError ($SESSION ID, 3,"al | ") unl ess

118 dmAPI Exec("setfil e, $SESSI ON_I D, $obj _i d, $OQUTPUT_DI R/

$fil ename, crtext");

119 warn dm LastError ($SESSION_ID, 3,"al ") unl ess

120 dmAPI Exec("1 i nk, $SESSI ON_I D, $obj _i d, \ ' $CURRENT_DM PATH ' ") ;

121 warn dm LastError ($SESSION_ID, 3,"al ") unl ess

122 dmAPI Exec(" save, $SESSI ON_I D, $obj _i d");

123

124 print " OBJECT: $obj _i d\ n";

125 unl i nk "$OQUTPUT DI R/ $fi |l enane";

126 }

127 el se {

128 print "ERROR. " . dm LastError($SESSIONID) . "\n";

129 }

130 }

131

132

133 sub build_filenanme {

134 ny ($sec, $m n, $hour, $nday, $non, $year) = (localtinme)[0..5];

135 $non++;

136 $year += 1900;

137 return sprintf("AP %94d%902d%02d- %92d%902d%02d\ . t xt ",
$year, $non, $nday, $hour, $m n, $sec) ;

138 }

139

140 sub logoff {

141 print "\ n\nLogging off...\n\n";

142 dmAPI Exec(" di sconnect, $SESSION_| D") ;

143 if (defined $Port) {

144 $Port->close || die "Could not close $PORT_NAME. \ n";

145 undef $Port;

146 }

147 exit;

148 }

149

150 sub create_todays_fol der {

151 # create today's folder in docbase

152 ny ($nday, $non, $year) = (localtinme)[3..5];

153 $nday = "0$nday" if ($nday !~ /\d\d/);

154 $year += 1900;

155 ny $path = "$DM BASE CABI NET/ $year / SMONTHS[$rron] / $nday”;

156 die dm LastError ($SESSI ON_I D) unl ess dm Cr eat ePat h($pat h) ;

157 return $path;

158 }

159

160 # _ ECF

An Introduction to Db::Documentum, Version 1.1 Page 26

4.4.2 Discussion

i stener. pl usestheWin32::SerialPort module. Win32::SerialPort provides an object-
based interface to your PC's serial port8. If you don't have this module, you need to get it from
the CPAN. For more information regarding the use of Win32::SerialPort, see the
Win32::Serial Port documentation.

To begin, this script defines some constants (lines 10 - 26), logs on to the Docbase (lines 29 -
30), creates alocal working directory (lines 32 - 35), creates afolder hierarchy in the Docbase
(lines 37 - 38), and opens and configures the serial port (lines 40 - 52). Then, this script lives
within the infinite whi | e loop defined on lines 54 - 130. Each story is read from the seria port
by theunt i | loop onlines 62 - 66. When the gory delimiter (defined on line 60) is
encountered in the input data, the story is assigned to $gotit (line63) andtheunt i | loop
exits. Note: the sl eep inthisloop is paramount. Without it, the script won't give any CPU
time to other processes on your computer!

Once a complete story is contained in $got it , itiscleaned up on lines 69 - 74 and saved to a
temporary fileonlines 76 - 82. Lines 87 - 106 extract information from the body of the story
itself and assign values to a few attributesin the %At t r s hash. Lines 108 - 129 check the story
into the Docbase using set f i | e() to transfer the story contentsand | i nk () to put it inthe
correct folder. That's essentialy it.

There are afew things | want to point out about this script. First, examine lines 87 - 98. This
loop tries to extract the title from the story. Legitimate news stories have atitle, and often an
editor and photographer that are denoted by lines that begin with ™ " and end with "<". For
example:

ASuspect in police shooting agrees to testify for |ighter sentence<
AAP Phot os<

When that is the case, and the reporter followed the format, this loop does a good job of
extracting the title and assigning it tothet i t | e key in %At t r s. However, the news wire often
carries stories that don't adhere to this format such as. corrections, multi-part stories,
announcements, and stock market reports. In those cases, no title is extracted and $f i | enane

isassignedtothetit| e keyof Y%At trs.

Second, notice that on line 105 | explicitly flag the story for full-text indexing. This is important
if you want to be able to find the story using the web interface in the next example. This, of
course, assumes that your server is running the full-text indexing job.

Thisis apowerful script for only 160 lines of code. It contains the basic elements needed for
real-time and bulk data loading, and it wouldn't take much to convert it from a script that listens
to aserial port to one that reads a file or a database table asinput. Scripts of this type are
invaluable when bulk loading or migrating data into Documentum.

8 The UNIX equivaent of Win32::SerialPort is Device::Serial Port; also available from the CPAN.

An Introduction to Db::Documentum, Version 1.1 Page 27

| havefoundthat | i st ener. pl runswell asaWindows NT service. To learn how to convert
a Perl script into a Windows NT service, read Kevin Méeltzer's Perl Journal (http://www.tpj.com)
aticle "Turning a Perl Program Into an NT Service" in issue #15.

443 serv.pl

i stener. pl makesabigassumption. It assumes that you have access to an AP serial news
feed. | realize that most people do not have access to such athing. Infact, | didn't either when |
wrote this script. That'swhy | wrotetheser v. pl script. serv. pl will serve any text fileto a
serial port. You can think of it asthereciprocal of | i st ener . pl inthat it talksinstead of
listens to the serial port!

PP O0O~NOOUOTA,WNE

#! [usr/ bi n/ perl
serv.pl
(c) 2000 M5 Roth

use Wn32::Serial Port;

$PORT_NAME = "COWR";
$DATA FILE = "ap.txt";

open port
$Port = new W n32:: Serial Port ($PORT_NAME) ||
die "Could not open $PORT_NAME. $"E\n";

$Por t - >dat abi t s(8);
$Port - >baudr at e(1200) ;
$Port->parity("none");
$Port - >st opbi t s(1);
$Por t - >handshake(" none");
$Por t - >buf f er s(4096, 4096) ;
$Port->wite_settings || undef $Port;

die "Could not wite settings to $PORT_NAME.\n" unl ess $Port;

read data file into nenory

open(DATA, "<$DATA FILE") || die "Could not open $DATA FILE for read. $!'";
@lat a = (<DATA>);

cl ose(DATA);

print "\n\nServing test data ($DATA_FILE) on port $PORT_NAME.
Press Control-C to quit.\n\n";

serve data
while(l) {
print "\ n#";
foreach (@ata) {
$Port->wite($);
if (/AP-NY/i) {
print "\.";
sl eep(int(rand 20));

An Introduction to Db::Documentum, Version 1.1 Page 28

4.4.4 Discussion

This script simply opens the seria port, reads the $DATA_FI LE into memory, and endlessly
spews it out. A few things to note here:

1. Myap. txt wasatext file containing real, captured data from my customer's AP serid
news feed. You can use any text file that you like, but you will want to change the
regular expression on line 33 to match your story delimiter. Y ou will need to make this
changeinli st ener. pl aso (line 60).

2. Line 35 executesarandom s| eep between successive stories. This pause between
stories more closely emulates the timing of areal AP seria news feed.

3. Touselistener.pl and serv.pl together on the same machine, run them in
separate command windows, and connect your serial ports together with a null modem
cable.®

445 Output

The output generated by theser v. pl script looks like this. Each "#" represents an iteration of
the datafile, and each ". " represents a story sent to the serial port.

Serving test data (ap.txt) on port COMR. Press Control-Cto quit.

#.

Figure 4 - Output from serv.pl script.

The output generated by thel i st ener . pl scriptisalittle moreinteresting. | i st ener . pl
informs you at which port and at what time a story was received, what it named the file (and
hence the obj ect _nane in the Docbase), and what ther _obj ect _i d waswhen it was
checked into the Docbase.

Listening to port COML. Press Control-C to quit.

COML: Wed Jul 5 10:51:51 2000 FILE: AP-20000705- 105151. t xt ->
OBJECT: 0901605380011120

COoML: Wed Jul 5 10:52:19 2000 FILE: AP-20000705- 105219. t xt ->
OBJECT: 0901605380011121

COML: Wed Jul 5 10:52:43 2000 FILE: AP-20000705- 105243. t xt ->
OBJECT: 0901605380011122

COML: Wed Jul 5 10:52:58 2000 FILE: AP-20000705- 105258. t xt ->
OBJECT: 0901605380011123

COML: Wed Jul 5 10:53:16 2000 FI LE: AP-20000705- 105316. t xt ->
OBJECT: 0901605380011124

COML: Wed Jul 5 10:53:25 2000 FI LE: AP-20000705- 105325. t xt ->
OBJECT: 0901605380011125

COML: Wed Jul 5 10:53:33 2000 FILE: AP-20000705- 105333. t xt ->
OBJECT: 0901605380011126

Figure 5- Samplelistener.pl output.

9 This should also work on UNIX systems, athough | confess, | have never tried it.

An Introduction to Db::Documentum, Version 1.1 Page 29

In WorkSpace, the result of running conf i g. pl andl i st ener. pl lookslike this.

= DhbjectName ook Dwine
| = Data Cabinet ﬂ
= = MNews Services Folder
= [Erap Folder
+ [1999 Foldsr
= = 2000 Folder
= E?July Falder
% [105 Falder
= =08 Falder
2] AP-20000706-155734.txt SSCI... News Wwire Type
2] AP-20000706-155802 tat ASCI... News Wi Type
2] AP-20000705-155636 tat ASCI... Mews Wie Type
2] AP-20000705-155503 tat ASCI... Mews Wie Type
2] AP-20000706-15551 9.kt ASCI... Mews Wire Tupe
2] AP-20000705-155542 ket ASCI... Mews Wire Tupe
2] AP-20000706-160016 kst ASCI... News Wi Type
3 AP-20000708-160049 bt ASCI... News Wire Type e
Al Wi

Figure 6 - Cabinet/folder hierarchy in WorkSpace.

45 Web Access

One of the more fun applications of Db::Documentum is the World Wide Web. Documentum
provides aweb server (RightSitel9) and environment for developing and fielding web-based
solutions. However, sometimes all that overhead isn't necessary. Sometimes, a simple solution
will suffice. In these instances, Perl and Db::Documentum fit the bill perfectly.

The following set of scripts provide a bare-bones example of hosting a Docbase on the web using
CGil, Perl, and Db::Documentum. The scripts will provide web-based search-and-retrieva
services for the archive of news storiesthe |l i st ener . pl script is depositing in the Docbase.
Thefirst script, show _fi | es. pl , logson; querys the Docbase for news stories; and builds a
list of the query results. The second script, get fi | e. pl, displays the files on the query results
list when they are selected.

This example assumes you are running aweb server. If not, there are plenty of free ones on the
web--some are even written in Perl (check the CPAN). Both show fi |l es. pl and
getfile.pl runasCGI programs and should be located in your web server'scgi - bi n
directory.

10 And now with Documentum 4i v4.1, the Web Devel opers Kit (WDK).

An Introduction to Db::Documentum, Version 1.1 Page 30

451 dmquery.html

Before these scripts will run, they need an HTML page to launch from; dnmguery. ht m
provides that launch pad. This page displays a smple form that asks you to enter your logon
information and a word to search for.

<HTM_>

<l-- dnguery.htm -->

<l-- (C 2000 M5 Roth -->

<HEAD><TI TLE>Db: : Docunent um Wb Denp Page</ Tl TLE></ HEAD>

<BODY>
<p>
<CENTER>
<H1>Db: : Docunent um Wb Deno Page</ Hl1>
10 <H2>Logon t o Docbase</ H2><P>
11 <FORM METHOD=POST ACTI ON=' cgi - bi n/ show_files.pl"'>
12 <TABLE BORDER=1>
13 <TR><TD>Dochase</ TD><TD><| NPUT TYPE='text' SIZE=40 NAME='docbase' ></ TD></ TR>
14 <TR><TD>User </ TD><TD><| NPUT TYPE='text' S| ZE=40 NAME=' user nane' ></ TD></ TR>
15 <TR><TD>Passwor d</ TD><TD><| NPUT TYPE=' password' S| ZE=40
NAME=" passwor d' ></ TD></ TR>
16 </ TABLE>
17 <H2>Query Dochase for: </ H2>
18 <INPUT TYPE='text' NAME='search' >
19 <I NPUT TYPE=' subnit'>
20 </ FORW>
21 </ CENTER>
22 </ BODY>
23 </ HTM.>

©Coo~NOoOUTA~hWNE

45.2 show_files.pl

The show fil es. pl scriptistheact i on of theform created by dnguery. ht mi . It does
the query and displays the results as hyperlinks.

1 #1 [/ usr/ bi n/ perl

2 # show files. pl

3 # (c) 2000 MS Roth

4

5 $ = 1;

6 use Db:: Docurmentumagw(:all);

7 use Db:: Docunmentum : Tools gw:all);
8 use CA gw:standard);

9 use Cd::Carp 'fatal sToBrowser';
10

11 $q = new C43 ;

12

13 # get input fromform

14 $input $qg- >par an(' search');

15 $docbase
16 $user nane
17 $password

$g- >par an(' docbase');
$g- >par an(' user nane') ;
$g- >par an(' password');

19 # | ogon to Docbase
20 $session = dm Connect ($docbase, $usernane, $password);
21 die dm LastError() unless $session;

An Introduction to Db::Documentum, Version 1.1 Page 31

22
23 # set cookie for use by getfile.pl
24 %im session = ('dochase' =>%docbase,

25 ' user nane' =>$user nane,

26 ' passwor d' =>$passwor d) ;

27

28 $cooki e = $qg->cooki e(- nane => 'dm session',
29 -val ue =>\ %dm sessi on,
30 -path => '/cgi-bin',
31 -expires =>'+5m);

32

33 print $g->header (- cooki e => $cooki e);

34

35 # start html page

36 print $g->start_htm ();

37 print "<CENTER><H2>Search Docbase for title containing \'$input\'
</ H2> </ CENTER><HR>\n";

38

39 # build DQL query string

40 nmy $DQL = "select title,r_object_id,r_creation_date, news_agency from
news_wi re_type search docunent contains \'$input\' order
by r_creation_date";

41

42 # do query
43 $col _id = dmAPI Get ("readquery, $sessi on, $DQL") ;

45 # if query succeeded
46 if ($col _id) {

47 print "\n";

48 # iterate over collection and print links

49 whi | e(dmAPI Exec(" next, $sessi on, $col _id")) {

50 nmy $title = dmAPI Get ("get, $session, $col _id, title");

51 ny $obj _id = dmAPI Get ("get, $session, $col _id, r_object_id");

52 ny $date = dmAPI Get (" get, $session, $col _id,r_creation_date");

53 ny $agency = dmAPI Get ("get, $sessi on, $col _i d, news_agency");

54 print "$date --
$agency -- S$title</ A>\n";

55 }

56 dmAPI Exec(" cl ose, $sessi on, $col _i d");

57 print "</ UL>\n";

58 } else {

59 print "<CENTER><H3>Query returned no results. </ CENTER>\n";

60 }

61

62 print $g->end_htm ();

63

64 # _EOF__

45.3 Discussion

There are three aspects of this script | want to discuss. The first is the use of CGIl.pm on lines 8
and 9: don't do CGI without it. The second is the form of the URL printed on line 54. This URL
pointstotheget fi | e. pl script and passes (viathe query-info portion of the URL) the object

ID of the document to retrieve. For example, an <A> tag produced by line 54 might look like
this:

.

An Introduction to Db::Documentum, Version 1.1 Page 32

Third, | want to discuss the cookie. Lines 23 - 33 save your logon information to a cookie. This
is necessary because Db::Documentum executes a dmAPI Del nit() automatically when

show fil es. pl terminates. dmAPIDelnit() destroystheapi conf i g object created by
dmAPIInit() and effectively closes the session (RightSite certainly has an advantage over us
here!). To retrieve a document from the Docbase, get f i | e. pl will need an active session.
To provide it one, | stash your logon information in the cookie and retrieveitinget fi | es. pl
to logon again.

Now, | will be the first to admit that saving logon information--especially passwords--in a cookie
isabad idea. There are better solutions. However, since this script is meant only for
demonstration, | took the simple approach and saved the logon information in the cookie.

454 getfilepl

The getfil e. pl script retrieves the content of the document selected from the search results
page and displaysit.

#! [/ usr/ bi n/ perl
getfile.pl
(c) 2000 MS Roth

$| = 1

ulse Db: : Documentum gw(:al l);

use Db::Docunmentum : Tools gw(:all);
use CA gw(:standard);

use Cd::Carp 'fatal sToBrowser';

OCO~NOUTRA,WNPEP

11 $q = new C43 ;

13 # get obj _id fromcomand |ine
14 $obj _id = $g->paran(' obj _id");

16 # get session fromcookie

17 %Im sessi on = $g- >cooki e(- nane => 'dm session');
18 $docbase $dm sessi on{' docbase'};

19 $username = $dm session{' usernane'};

20 $password $dm sessi on{' password' };

22 # logon or die
23 $session = dm Connect ($docbase, $usernane, $password);
24 die "No session or session has expired\." unless $session;

25
26 # get the type of content associated with obj_id
27 $DQ. = "sel ect a_content _type, obj ect _nane from dm docunent where

r_object_id = \'"$obj _id\'";
28 $col _id = dmAPI Get ("readquery, $sessi on, $DQ") ;
29 if ($col _id) {

30 whi | e(dmAPI Exec(" next, $sessi on, $col _id")) {

31 $type = dmAPI Get ("get, $sessi on, $col _id, a content _type");
32 $title = dmAPI Get ("get, $sessi on, $col _i d, obj ect _nane");
33 }

34 dmAPI Exec(" cl ose, $sessi on, $col _i d");

35 }

36 el se {

37 $type = 'crtext’;

38 }

An Introduction to Db::Documentum, Version 1.1 Page 33

39
40 # if plain text, print
41 if ($type eq "crtext') {

42 print $q->header();

43 print $q->start_htm ();

44 print "<CENTER><H2>$ti t| e</ H2></ CENTER><HR>\ n";

45

46 $col _id = dmAPI Get ("get cont ent, $sessi on, $obj _i d");
47 whi | e(dmAPI Exec(" next , $session, $col _id")) {

48 $doc .= dnmAPI Get (" get, $sessi on, $col _id, _content _buffer");
49 }

50 dmAPI Exec(" cl ose, $sessi on, $col _id");

51

52 print "<PRE>$doc</PRE>\n";

53 print $q->end_htnm ();

54}

55 # if other than plain text, dowload it to web server and redirect
56 el se {

57 $dl _file = dmAPI Get ("getfil e, $session, $obj _id,\.\.\\ $obj id\.Stype");
58 print $qg->redirect("http://<host>/tenp/ $obj id\.S$type");

59 }

60

61 # _ECOF

455 Discussion

Theget fil e. pl scriptissmple enough. The basic ideais to get the object ID from the URL,
guery the Docbase to determine what type the object is (text vs. binary), and retrieve the content
of the object in an appropriate manner.

The script begins by retrieving the object ID from the URL (line 14) and the cookie from the
browser (lines 17 - 20). Both of these tasks are made possible by CGIl.pm. Lines 22 - 38 logon
to the Docbase and execute a query to retrieve the content type information about the document
referenced by $obj ect _i d.

Starting at line 40, | branch based upon the content of $t ype. If | am dealing with atext
document (cr t ext), | execute lines 42 - 54, which use get cont ent () to retrieve the object's
content and print it. Notice the loop on lines 47 - 50. Thisis necessary because

get cont ent () returnsacollection of pages. For this example, the collection will contain
only one page.

If the object's type is not text, the el se condition is executed on lines 55 - 59. Thisis abit over
designed for this example because | am only ever retrieving text files (news_wi re_t ype), but
| wanted to show you an interesting trick if you ever expect to retrieve binary files. Line 57
downloads the file from the Docbase to the web server. Line 58 then redirects the browser to

$dl _fil e and letsthe server and the browser resolve the MIME type and launch the
appropriate plug-in or helper application. Pretty neat trick, eh?

Two notes:

1. You will need to modify the path and host names on lines 57 - 58 to reflect your
configuration.

An Introduction to Db::Documentum, Version 1.1 Page 34

2. If you do retrieve hinary files, make sure you occasionally deletethe $dl _fi | e files
from your web server; they can really add up after awhile.

45.6 Output

To use the web interface, point your browser at http://<host>/dmquery.html, enter your logon
information and aword to search on

3 Db sDocmmantin Wl Denne Paga - Nier oot b nat Exgloner

fin E# Yew Favores Tl Heb

(=]
ol e A D I =T A A [P

oy B Sion Rekszh Home | Semich Fovorbes Hidors Frint

=l
Db::Documentum Web Demo Page

Logon to Dochase

Diocbase ill:ln:ba.:a-1

ey !|:m|h

Pasweed |F"‘m

Query Docbase for:

Fiarmahoe Submit Quary |

Bnire [[Meloctiroe

o

Figure 7 - dmquery.html.

Clicking the Submit Query button results in the following response from show fi | es. pl

An Introduction to Db::Documentum, Version 1.1 Page 35

!'Julrl:‘-z-l DscimiTiainn - W bET ST ier man Explor e
|| B B Yew Faorks Inw Heb
| T = e - D 1 I
.o @ 9 48 @M e ‘Q..E“Lﬂm”
Back Fiormeand S Retmsh Hone Semich Favorbes Hidory Wsi Frint il Cimcuzy
=
Search Dochase for: "information’
» TrAM00 105052 At -- AT -- AP-20000705-105151.bd
o JORO0 105115 AN - AF -- AP-2000000F- 10559 6
= TS0 10.52.53 At -- AT -- AP-20000705-105533.0d
w TrAM06 10:54:30 A - AP - Amencan dobulance Assooabon Commends Eeps. Sobum and
v L0 105 A0 AN -- AT -- AP-20000703- 1006006
= [IF5M00 031206 Fh -- AF -- AF-200007705- 14 13=]6.rx_1:
o TR0 0E12 36 FM - AR . AR 20000705 141334 bt
H
Bl [MgLocsimeret =
Figure 8 - query resultsfor 'information.’
Clicking on "American Ambulance Association Commends Reps. Coburn and" launches

getfile.pl todisplay its contents.

! i oo - e ST e i Ep o e

|| Br B4 o Faorks Imk ek | = |

= e [R

Semich Favortez Hidory Wsi

[IRES A

S Retrmsh Hone

e
LS

AP-20H TOS-1 05530, txt

[&TE]
[1M] HEL
(S0 LES
TO WATIONAL AND FEDICAL EDITOERD:
American Axfulmnce Amaociation foomends Aepa. Coburo and
Shedegy for Covering Emergency ibulance Seevices

WASHINGTON, S=pt, 23 /FRNes=wire/ -— Mark M=ijer, president of the Anericsn
inrulenca Aesasiacion (ALY, commendad Represantecives Tom Cabuen [R-OK) and
Jobn Sbadegy (F-AZ| for iocluding coversgs of swecgency anbulanpe secvices ik
the =pergency cace poovision of their Patiepta’ Bill of Pighta legimlation
incroduced coday.

The Hesmlth Cere Quality aod Choice kot of 1988 ix the first =and only
CONprebandive Fearaged care reform legislation incradusad ie che House Thar
inpludes anbalance SEEVICOES in 1te EMERENOT CATE A=0C1aL.

"To their coedit, lepresenbatives Coburp and Shedegqg cecogoize= bhet
eNETgEneY ARiUlanoe servicss osn be che single most oritical response in an
epergency nedical sibuation, * s=id President H=i1jer. "When tine im precious.
delays caused by douobra shout whether an arbulance will be reinburasd cao be
life-threacening., The CoburndShadepg bill oouwld b=lp remows thet thoe=ac, ™

] nire [Fgiocsimane

Figure 9 - getfile.pl.

This has been a very simple example to demonstrate the basics of using CGl, Perl,

An Introduction to Db::Documentum, Version 1.1

and

Page 36

Db::Documentum to host a Docbase on the web, it is far from complete. Besides the security
issue with the cookie, you might consider implementing some of these improvements:

Thereislittle or no error checking or recovery in either script. 1f empty collections or
object IDs are returned, you are often presented with only a blank page in your browser.

Intheshow fil es. pl script, you could display the cabinet/folder path associated
witheach $ti t | e by querying for thei _f ol der _i d and associating it with the
corresponding dm f ol der object. Thiswould provide the user some additional context
(i.e., date and wire service name) about the story.

Y ou might also consider giving everyone anonymous access to the Docbase, do away
with the cookie, and hard code the logon in the script.

Y ou could improve the DQL query to process Boolean search terms.

Y ou could employ templates to display the news articles in a more pleasing style and add
navigational aids so the directory structure can be traversed.

Y ou could use the ideas here to create an entirely different web application. For instance,
aguest book. The possibilities abound!

An Introduction to Db::Documentum, Version 1.1 Page 37

5 Closing

This tutorial has discussed the installation and contents of the Db::Documentum module and how
to useit. Through the use of the real-world examples, | hope | have given you an appreciation of
how easy and powerful programming for Documentum with Perl can be. From simple, one-time
scripts, to data capturing and migration, to entire applications, Perl and Db::Documentum can do
it al. Not only that, they can do it easily, flexibly, and cross-platform.

| know that Perl and Db::Documentum lack the flash and glamour of other Documentum-enabled
programming languages (e.g., Visua Basic, Java), but they excel in power and ssimplicity.
Besides, real hackers like 80x24! Who needs a GUI?

| would like to express my thanks to the people who have assisted me with thistutorial: Frances,
Matt, John, and Scott. Thanks!

[SoLI DEO GLORIA]

M. Scott Roth is co-author of the Db:: Documentum module, and "just another Perl hacker” at
SAIC in Reston, VA. Mr. Roth is currently hard at work building a Perl interface to the DFC.
Fedl free to contact him with your comments, suggestions, complaints, etc. regarding this
tutorial or Db::Documentumin general. Mr. Roth can be reached at

m chael . s. rot h@ai c. com

An Introduction to Db::Documentum, Version 1.1 Page 38

